diff --git a/sys/net/if_vlan.c b/sys/net/if_vlan.c
index 39978afe7ce1..10a254d22440 100644
--- a/sys/net/if_vlan.c
+++ b/sys/net/if_vlan.c
@@ -1,2173 +1,2220 @@
 /*-
  * Copyright 1998 Massachusetts Institute of Technology
  * Copyright 2012 ADARA Networks, Inc.
  * Copyright 2017 Dell EMC Isilon
  *
  * Portions of this software were developed by Robert N. M. Watson under
  * contract to ADARA Networks, Inc.
  *
  * Permission to use, copy, modify, and distribute this software and
  * its documentation for any purpose and without fee is hereby
  * granted, provided that both the above copyright notice and this
  * permission notice appear in all copies, that both the above
  * copyright notice and this permission notice appear in all
  * supporting documentation, and that the name of M.I.T. not be used
  * in advertising or publicity pertaining to distribution of the
  * software without specific, written prior permission.  M.I.T. makes
  * no representations about the suitability of this software for any
  * purpose.  It is provided "as is" without express or implied
  * warranty.
  *
  * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''.  M.I.T. DISCLAIMS
  * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
  * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
  * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
  * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  * SUCH DAMAGE.
  */
 
 /*
  * if_vlan.c - pseudo-device driver for IEEE 802.1Q virtual LANs.
  * This is sort of sneaky in the implementation, since
  * we need to pretend to be enough of an Ethernet implementation
  * to make arp work.  The way we do this is by telling everyone
  * that we are an Ethernet, and then catch the packets that
  * ether_output() sends to us via if_transmit(), rewrite them for
  * use by the real outgoing interface, and ask it to send them.
  */
 
 #include <sys/cdefs.h>
 __FBSDID("$FreeBSD$");
 
 #include "opt_inet.h"
 #include "opt_inet6.h"
 #include "opt_kern_tls.h"
 #include "opt_vlan.h"
 #include "opt_ratelimit.h"
 
 #include <sys/param.h>
 #include <sys/eventhandler.h>
 #include <sys/kernel.h>
 #include <sys/lock.h>
 #include <sys/malloc.h>
 #include <sys/mbuf.h>
 #include <sys/module.h>
 #include <sys/rmlock.h>
 #include <sys/priv.h>
 #include <sys/queue.h>
 #include <sys/socket.h>
 #include <sys/sockio.h>
 #include <sys/sysctl.h>
 #include <sys/systm.h>
 #include <sys/sx.h>
 #include <sys/taskqueue.h>
 
 #include <net/bpf.h>
 #include <net/ethernet.h>
 #include <net/if.h>
 #include <net/if_var.h>
 #include <net/if_clone.h>
 #include <net/if_dl.h>
 #include <net/if_types.h>
 #include <net/if_vlan_var.h>
 #include <net/route.h>
 #include <net/vnet.h>
 
 #ifdef INET
 #include <netinet/in.h>
 #include <netinet/if_ether.h>
 #endif
 
 #ifdef INET6
 /*
  * XXX: declare here to avoid to include many inet6 related files..
  * should be more generalized?
  */
 extern void	nd6_setmtu(struct ifnet *);
 #endif
 
 #define	VLAN_DEF_HWIDTH	4
 #define	VLAN_IFFLAGS	(IFF_BROADCAST | IFF_MULTICAST)
 
 #define	UP_AND_RUNNING(ifp) \
     ((ifp)->if_flags & IFF_UP && (ifp)->if_drv_flags & IFF_DRV_RUNNING)
 
 CK_SLIST_HEAD(ifvlanhead, ifvlan);
 
 struct ifvlantrunk {
 	struct	ifnet   *parent;	/* parent interface of this trunk */
 	struct	mtx	lock;
 #ifdef VLAN_ARRAY
 #define	VLAN_ARRAY_SIZE	(EVL_VLID_MASK + 1)
 	struct	ifvlan	*vlans[VLAN_ARRAY_SIZE]; /* static table */
 #else
 	struct	ifvlanhead *hash;	/* dynamic hash-list table */
 	uint16_t	hmask;
 	uint16_t	hwidth;
 #endif
 	int		refcnt;
 };
 
 #if defined(KERN_TLS) || defined(RATELIMIT)
 struct vlan_snd_tag {
 	struct m_snd_tag com;
 	struct m_snd_tag *tag;
 };
 
 static inline struct vlan_snd_tag *
 mst_to_vst(struct m_snd_tag *mst)
 {
 
 	return (__containerof(mst, struct vlan_snd_tag, com));
 }
 #endif
 
 /*
  * This macro provides a facility to iterate over every vlan on a trunk with
  * the assumption that none will be added/removed during iteration.
  */
 #ifdef VLAN_ARRAY
 #define VLAN_FOREACH(_ifv, _trunk) \
 	size_t _i; \
 	for (_i = 0; _i < VLAN_ARRAY_SIZE; _i++) \
 		if (((_ifv) = (_trunk)->vlans[_i]) != NULL)
 #else /* VLAN_ARRAY */
 #define VLAN_FOREACH(_ifv, _trunk) \
 	struct ifvlan *_next; \
 	size_t _i; \
 	for (_i = 0; _i < (1 << (_trunk)->hwidth); _i++) \
 		CK_SLIST_FOREACH_SAFE((_ifv), &(_trunk)->hash[_i], ifv_list, _next)
 #endif /* VLAN_ARRAY */
 
 /*
  * This macro provides a facility to iterate over every vlan on a trunk while
  * also modifying the number of vlans on the trunk. The iteration continues
  * until some condition is met or there are no more vlans on the trunk.
  */
 #ifdef VLAN_ARRAY
 /* The VLAN_ARRAY case is simple -- just a for loop using the condition. */
 #define VLAN_FOREACH_UNTIL_SAFE(_ifv, _trunk, _cond) \
 	size_t _i; \
 	for (_i = 0; !(_cond) && _i < VLAN_ARRAY_SIZE; _i++) \
 		if (((_ifv) = (_trunk)->vlans[_i]))
 #else /* VLAN_ARRAY */
 /*
  * The hash table case is more complicated. We allow for the hash table to be
  * modified (i.e. vlans removed) while we are iterating over it. To allow for
  * this we must restart the iteration every time we "touch" something during
  * the iteration, since removal will resize the hash table and invalidate our
  * current position. If acting on the touched element causes the trunk to be
  * emptied, then iteration also stops.
  */
 #define VLAN_FOREACH_UNTIL_SAFE(_ifv, _trunk, _cond) \
 	size_t _i; \
 	bool _touch = false; \
 	for (_i = 0; \
 	    !(_cond) && _i < (1 << (_trunk)->hwidth); \
 	    _i = (_touch && ((_trunk) != NULL) ? 0 : _i + 1), _touch = false) \
 		if (((_ifv) = CK_SLIST_FIRST(&(_trunk)->hash[_i])) != NULL && \
 		    (_touch = true))
 #endif /* VLAN_ARRAY */
 
 struct vlan_mc_entry {
 	struct sockaddr_dl		mc_addr;
 	CK_SLIST_ENTRY(vlan_mc_entry)	mc_entries;
 	struct epoch_context		mc_epoch_ctx;
 };
 
 struct ifvlan {
 	struct	ifvlantrunk *ifv_trunk;
 	struct	ifnet *ifv_ifp;
 #define	TRUNK(ifv)	((ifv)->ifv_trunk)
 #define	PARENT(ifv)	(TRUNK(ifv)->parent)
 	void	*ifv_cookie;
 	int	ifv_pflags;	/* special flags we have set on parent */
 	int	ifv_capenable;
 	int	ifv_encaplen;	/* encapsulation length */
 	int	ifv_mtufudge;	/* MTU fudged by this much */
 	int	ifv_mintu;	/* min transmission unit */
 	struct  ether_8021q_tag ifv_qtag;
 #define ifv_proto	ifv_qtag.proto
 #define ifv_vid		ifv_qtag.vid
 #define ifv_pcp		ifv_qtag.pcp
 	struct task lladdr_task;
 	CK_SLIST_HEAD(, vlan_mc_entry) vlan_mc_listhead;
 #ifndef VLAN_ARRAY
 	CK_SLIST_ENTRY(ifvlan) ifv_list;
 #endif
 };
 
 /* Special flags we should propagate to parent. */
 static struct {
 	int flag;
 	int (*func)(struct ifnet *, int);
 } vlan_pflags[] = {
 	{IFF_PROMISC, ifpromisc},
 	{IFF_ALLMULTI, if_allmulti},
 	{0, NULL}
 };
 
 extern int vlan_mtag_pcp;
 
 static const char vlanname[] = "vlan";
 static MALLOC_DEFINE(M_VLAN, vlanname, "802.1Q Virtual LAN Interface");
 
 static eventhandler_tag ifdetach_tag;
 static eventhandler_tag iflladdr_tag;
 
 /*
  * if_vlan uses two module-level synchronizations primitives to allow concurrent
  * modification of vlan interfaces and (mostly) allow for vlans to be destroyed
  * while they are being used for tx/rx. To accomplish this in a way that has
  * acceptable performance and cooperation with other parts of the network stack
  * there is a non-sleepable epoch(9) and an sx(9).
  *
  * The performance-sensitive paths that warrant using the epoch(9) are
  * vlan_transmit and vlan_input. Both have to check for the vlan interface's
  * existence using if_vlantrunk, and being in the network tx/rx paths the use
  * of an epoch(9) gives a measureable improvement in performance.
  *
  * The reason for having an sx(9) is mostly because there are still areas that
  * must be sleepable and also have safe concurrent access to a vlan interface.
  * Since the sx(9) exists, it is used by default in most paths unless sleeping
  * is not permitted, or if it is not clear whether sleeping is permitted.
  *
  */
 #define _VLAN_SX_ID ifv_sx
 
 static struct sx _VLAN_SX_ID;
 
 #define VLAN_LOCKING_INIT() \
 	sx_init_flags(&_VLAN_SX_ID, "vlan_sx", SX_RECURSE)
 
 #define VLAN_LOCKING_DESTROY() \
 	sx_destroy(&_VLAN_SX_ID)
 
 #define	VLAN_SLOCK()			sx_slock(&_VLAN_SX_ID)
 #define	VLAN_SUNLOCK()			sx_sunlock(&_VLAN_SX_ID)
 #define	VLAN_XLOCK()			sx_xlock(&_VLAN_SX_ID)
 #define	VLAN_XUNLOCK()			sx_xunlock(&_VLAN_SX_ID)
 #define	VLAN_SLOCK_ASSERT()		sx_assert(&_VLAN_SX_ID, SA_SLOCKED)
 #define	VLAN_XLOCK_ASSERT()		sx_assert(&_VLAN_SX_ID, SA_XLOCKED)
 #define	VLAN_SXLOCK_ASSERT()		sx_assert(&_VLAN_SX_ID, SA_LOCKED)
 
 /*
  * We also have a per-trunk mutex that should be acquired when changing
  * its state.
  */
 #define	TRUNK_LOCK_INIT(trunk)		mtx_init(&(trunk)->lock, vlanname, NULL, MTX_DEF)
 #define	TRUNK_LOCK_DESTROY(trunk)	mtx_destroy(&(trunk)->lock)
 #define	TRUNK_WLOCK(trunk)		mtx_lock(&(trunk)->lock)
 #define	TRUNK_WUNLOCK(trunk)		mtx_unlock(&(trunk)->lock)
 #define	TRUNK_WLOCK_ASSERT(trunk)	mtx_assert(&(trunk)->lock, MA_OWNED);
 
 /*
  * The VLAN_ARRAY substitutes the dynamic hash with a static array
  * with 4096 entries. In theory this can give a boost in processing,
  * however in practice it does not. Probably this is because the array
  * is too big to fit into CPU cache.
  */
 #ifndef VLAN_ARRAY
 static	void vlan_inithash(struct ifvlantrunk *trunk);
 static	void vlan_freehash(struct ifvlantrunk *trunk);
 static	int vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv);
 static	int vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv);
 static	void vlan_growhash(struct ifvlantrunk *trunk, int howmuch);
 static __inline struct ifvlan * vlan_gethash(struct ifvlantrunk *trunk,
 	uint16_t vid);
 #endif
 static	void trunk_destroy(struct ifvlantrunk *trunk);
 
 static	void vlan_init(void *foo);
 static	void vlan_input(struct ifnet *ifp, struct mbuf *m);
 static	int vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t addr);
 #if defined(KERN_TLS) || defined(RATELIMIT)
 static	int vlan_snd_tag_alloc(struct ifnet *,
     union if_snd_tag_alloc_params *, struct m_snd_tag **);
 static	int vlan_snd_tag_modify(struct m_snd_tag *,
     union if_snd_tag_modify_params *);
 static	int vlan_snd_tag_query(struct m_snd_tag *,
     union if_snd_tag_query_params *);
 static	void vlan_snd_tag_free(struct m_snd_tag *);
 static struct m_snd_tag *vlan_next_snd_tag(struct m_snd_tag *);
 static void vlan_ratelimit_query(struct ifnet *,
     struct if_ratelimit_query_results *);
 #endif
 static	void vlan_qflush(struct ifnet *ifp);
 static	int vlan_setflag(struct ifnet *ifp, int flag, int status,
     int (*func)(struct ifnet *, int));
 static	int vlan_setflags(struct ifnet *ifp, int status);
 static	int vlan_setmulti(struct ifnet *ifp);
 static	int vlan_transmit(struct ifnet *ifp, struct mbuf *m);
+#ifdef ALTQ
+static void vlan_altq_start(struct ifnet *ifp);
+static	int vlan_altq_transmit(struct ifnet *ifp, struct mbuf *m);
+#endif
 static	int vlan_output(struct ifnet *ifp, struct mbuf *m,
     const struct sockaddr *dst, struct route *ro);
 static	void vlan_unconfig(struct ifnet *ifp);
 static	void vlan_unconfig_locked(struct ifnet *ifp, int departing);
 static	int vlan_config(struct ifvlan *ifv, struct ifnet *p, uint16_t tag,
 	uint16_t proto);
 static	void vlan_link_state(struct ifnet *ifp);
 static	void vlan_capabilities(struct ifvlan *ifv);
 static	void vlan_trunk_capabilities(struct ifnet *ifp);
 
 static	struct ifnet *vlan_clone_match_ethervid(const char *, int *);
 static	int vlan_clone_match(struct if_clone *, const char *);
 static	int vlan_clone_create(struct if_clone *, char *, size_t, caddr_t);
 static	int vlan_clone_destroy(struct if_clone *, struct ifnet *);
 
 static	void vlan_ifdetach(void *arg, struct ifnet *ifp);
 static  void vlan_iflladdr(void *arg, struct ifnet *ifp);
 
 static  void vlan_lladdr_fn(void *arg, int pending);
 
 static struct if_clone *vlan_cloner;
 
 #ifdef VIMAGE
 VNET_DEFINE_STATIC(struct if_clone *, vlan_cloner);
 #define	V_vlan_cloner	VNET(vlan_cloner)
 #endif
 
 static void
 vlan_mc_free(struct epoch_context *ctx)
 {
 	struct vlan_mc_entry *mc = __containerof(ctx, struct vlan_mc_entry, mc_epoch_ctx);
 	free(mc, M_VLAN);
 }
 
 #ifndef VLAN_ARRAY
 #define HASH(n, m)	((((n) >> 8) ^ ((n) >> 4) ^ (n)) & (m))
 
 static void
 vlan_inithash(struct ifvlantrunk *trunk)
 {
 	int i, n;
 
 	/*
 	 * The trunk must not be locked here since we call malloc(M_WAITOK).
 	 * It is OK in case this function is called before the trunk struct
 	 * gets hooked up and becomes visible from other threads.
 	 */
 
 	KASSERT(trunk->hwidth == 0 && trunk->hash == NULL,
 	    ("%s: hash already initialized", __func__));
 
 	trunk->hwidth = VLAN_DEF_HWIDTH;
 	n = 1 << trunk->hwidth;
 	trunk->hmask = n - 1;
 	trunk->hash = malloc(sizeof(struct ifvlanhead) * n, M_VLAN, M_WAITOK);
 	for (i = 0; i < n; i++)
 		CK_SLIST_INIT(&trunk->hash[i]);
 }
 
 static void
 vlan_freehash(struct ifvlantrunk *trunk)
 {
 #ifdef INVARIANTS
 	int i;
 
 	KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
 	for (i = 0; i < (1 << trunk->hwidth); i++)
 		KASSERT(CK_SLIST_EMPTY(&trunk->hash[i]),
 		    ("%s: hash table not empty", __func__));
 #endif
 	free(trunk->hash, M_VLAN);
 	trunk->hash = NULL;
 	trunk->hwidth = trunk->hmask = 0;
 }
 
 static int
 vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv)
 {
 	int i, b;
 	struct ifvlan *ifv2;
 
 	VLAN_XLOCK_ASSERT();
 	KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
 
 	b = 1 << trunk->hwidth;
 	i = HASH(ifv->ifv_vid, trunk->hmask);
 	CK_SLIST_FOREACH(ifv2, &trunk->hash[i], ifv_list)
 		if (ifv->ifv_vid == ifv2->ifv_vid)
 			return (EEXIST);
 
 	/*
 	 * Grow the hash when the number of vlans exceeds half of the number of
 	 * hash buckets squared. This will make the average linked-list length
 	 * buckets/2.
 	 */
 	if (trunk->refcnt > (b * b) / 2) {
 		vlan_growhash(trunk, 1);
 		i = HASH(ifv->ifv_vid, trunk->hmask);
 	}
 	CK_SLIST_INSERT_HEAD(&trunk->hash[i], ifv, ifv_list);
 	trunk->refcnt++;
 
 	return (0);
 }
 
 static int
 vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv)
 {
 	int i, b;
 	struct ifvlan *ifv2;
 
 	VLAN_XLOCK_ASSERT();
 	KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
 
 	b = 1 << trunk->hwidth;
 	i = HASH(ifv->ifv_vid, trunk->hmask);
 	CK_SLIST_FOREACH(ifv2, &trunk->hash[i], ifv_list)
 		if (ifv2 == ifv) {
 			trunk->refcnt--;
 			CK_SLIST_REMOVE(&trunk->hash[i], ifv2, ifvlan, ifv_list);
 			if (trunk->refcnt < (b * b) / 2)
 				vlan_growhash(trunk, -1);
 			return (0);
 		}
 
 	panic("%s: vlan not found\n", __func__);
 	return (ENOENT); /*NOTREACHED*/
 }
 
 /*
  * Grow the hash larger or smaller if memory permits.
  */
 static void
 vlan_growhash(struct ifvlantrunk *trunk, int howmuch)
 {
 	struct ifvlan *ifv;
 	struct ifvlanhead *hash2;
 	int hwidth2, i, j, n, n2;
 
 	VLAN_XLOCK_ASSERT();
 	KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
 
 	if (howmuch == 0) {
 		/* Harmless yet obvious coding error */
 		printf("%s: howmuch is 0\n", __func__);
 		return;
 	}
 
 	hwidth2 = trunk->hwidth + howmuch;
 	n = 1 << trunk->hwidth;
 	n2 = 1 << hwidth2;
 	/* Do not shrink the table below the default */
 	if (hwidth2 < VLAN_DEF_HWIDTH)
 		return;
 
 	hash2 = malloc(sizeof(struct ifvlanhead) * n2, M_VLAN, M_WAITOK);
 	if (hash2 == NULL) {
 		printf("%s: out of memory -- hash size not changed\n",
 		    __func__);
 		return;		/* We can live with the old hash table */
 	}
 	for (j = 0; j < n2; j++)
 		CK_SLIST_INIT(&hash2[j]);
 	for (i = 0; i < n; i++)
 		while ((ifv = CK_SLIST_FIRST(&trunk->hash[i])) != NULL) {
 			CK_SLIST_REMOVE(&trunk->hash[i], ifv, ifvlan, ifv_list);
 			j = HASH(ifv->ifv_vid, n2 - 1);
 			CK_SLIST_INSERT_HEAD(&hash2[j], ifv, ifv_list);
 		}
 	NET_EPOCH_WAIT();
 	free(trunk->hash, M_VLAN);
 	trunk->hash = hash2;
 	trunk->hwidth = hwidth2;
 	trunk->hmask = n2 - 1;
 
 	if (bootverbose)
 		if_printf(trunk->parent,
 		    "VLAN hash table resized from %d to %d buckets\n", n, n2);
 }
 
 static __inline struct ifvlan *
 vlan_gethash(struct ifvlantrunk *trunk, uint16_t vid)
 {
 	struct ifvlan *ifv;
 
 	NET_EPOCH_ASSERT();
 
 	CK_SLIST_FOREACH(ifv, &trunk->hash[HASH(vid, trunk->hmask)], ifv_list)
 		if (ifv->ifv_vid == vid)
 			return (ifv);
 	return (NULL);
 }
 
 #if 0
 /* Debugging code to view the hashtables. */
 static void
 vlan_dumphash(struct ifvlantrunk *trunk)
 {
 	int i;
 	struct ifvlan *ifv;
 
 	for (i = 0; i < (1 << trunk->hwidth); i++) {
 		printf("%d: ", i);
 		CK_SLIST_FOREACH(ifv, &trunk->hash[i], ifv_list)
 			printf("%s ", ifv->ifv_ifp->if_xname);
 		printf("\n");
 	}
 }
 #endif /* 0 */
 #else
 
 static __inline struct ifvlan *
 vlan_gethash(struct ifvlantrunk *trunk, uint16_t vid)
 {
 
 	return trunk->vlans[vid];
 }
 
 static __inline int
 vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv)
 {
 
 	if (trunk->vlans[ifv->ifv_vid] != NULL)
 		return EEXIST;
 	trunk->vlans[ifv->ifv_vid] = ifv;
 	trunk->refcnt++;
 
 	return (0);
 }
 
 static __inline int
 vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv)
 {
 
 	trunk->vlans[ifv->ifv_vid] = NULL;
 	trunk->refcnt--;
 
 	return (0);
 }
 
 static __inline void
 vlan_freehash(struct ifvlantrunk *trunk)
 {
 }
 
 static __inline void
 vlan_inithash(struct ifvlantrunk *trunk)
 {
 }
 
 #endif /* !VLAN_ARRAY */
 
 static void
 trunk_destroy(struct ifvlantrunk *trunk)
 {
 	VLAN_XLOCK_ASSERT();
 
 	vlan_freehash(trunk);
 	trunk->parent->if_vlantrunk = NULL;
 	TRUNK_LOCK_DESTROY(trunk);
 	if_rele(trunk->parent);
 	free(trunk, M_VLAN);
 }
 
 /*
  * Program our multicast filter. What we're actually doing is
  * programming the multicast filter of the parent. This has the
  * side effect of causing the parent interface to receive multicast
  * traffic that it doesn't really want, which ends up being discarded
  * later by the upper protocol layers. Unfortunately, there's no way
  * to avoid this: there really is only one physical interface.
  */
 static int
 vlan_setmulti(struct ifnet *ifp)
 {
 	struct ifnet		*ifp_p;
 	struct ifmultiaddr	*ifma;
 	struct ifvlan		*sc;
 	struct vlan_mc_entry	*mc;
 	int			error;
 
 	VLAN_XLOCK_ASSERT();
 
 	/* Find the parent. */
 	sc = ifp->if_softc;
 	ifp_p = PARENT(sc);
 
 	CURVNET_SET_QUIET(ifp_p->if_vnet);
 
 	/* First, remove any existing filter entries. */
 	while ((mc = CK_SLIST_FIRST(&sc->vlan_mc_listhead)) != NULL) {
 		CK_SLIST_REMOVE_HEAD(&sc->vlan_mc_listhead, mc_entries);
 		(void)if_delmulti(ifp_p, (struct sockaddr *)&mc->mc_addr);
 		NET_EPOCH_CALL(vlan_mc_free, &mc->mc_epoch_ctx);
 	}
 
 	/* Now program new ones. */
 	IF_ADDR_WLOCK(ifp);
 	CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
 		if (ifma->ifma_addr->sa_family != AF_LINK)
 			continue;
 		mc = malloc(sizeof(struct vlan_mc_entry), M_VLAN, M_NOWAIT);
 		if (mc == NULL) {
 			IF_ADDR_WUNLOCK(ifp);
 			CURVNET_RESTORE();
 			return (ENOMEM);
 		}
 		bcopy(ifma->ifma_addr, &mc->mc_addr, ifma->ifma_addr->sa_len);
 		mc->mc_addr.sdl_index = ifp_p->if_index;
 		CK_SLIST_INSERT_HEAD(&sc->vlan_mc_listhead, mc, mc_entries);
 	}
 	IF_ADDR_WUNLOCK(ifp);
 	CK_SLIST_FOREACH (mc, &sc->vlan_mc_listhead, mc_entries) {
 		error = if_addmulti(ifp_p, (struct sockaddr *)&mc->mc_addr,
 		    NULL);
 		if (error) {
 			CURVNET_RESTORE();
 			return (error);
 		}
 	}
 
 	CURVNET_RESTORE();
 	return (0);
 }
 
 /*
  * A handler for parent interface link layer address changes.
  * If the parent interface link layer address is changed we
  * should also change it on all children vlans.
  */
 static void
 vlan_iflladdr(void *arg __unused, struct ifnet *ifp)
 {
 	struct epoch_tracker et;
 	struct ifvlan *ifv;
 	struct ifnet *ifv_ifp;
 	struct ifvlantrunk *trunk;
 	struct sockaddr_dl *sdl;
 
 	/* Need the epoch since this is run on taskqueue_swi. */
 	NET_EPOCH_ENTER(et);
 	trunk = ifp->if_vlantrunk;
 	if (trunk == NULL) {
 		NET_EPOCH_EXIT(et);
 		return;
 	}
 
 	/*
 	 * OK, it's a trunk.  Loop over and change all vlan's lladdrs on it.
 	 * We need an exclusive lock here to prevent concurrent SIOCSIFLLADDR
 	 * ioctl calls on the parent garbling the lladdr of the child vlan.
 	 */
 	TRUNK_WLOCK(trunk);
 	VLAN_FOREACH(ifv, trunk) {
 		/*
 		 * Copy new new lladdr into the ifv_ifp, enqueue a task
 		 * to actually call if_setlladdr. if_setlladdr needs to
 		 * be deferred to a taskqueue because it will call into
 		 * the if_vlan ioctl path and try to acquire the global
 		 * lock.
 		 */
 		ifv_ifp = ifv->ifv_ifp;
 		bcopy(IF_LLADDR(ifp), IF_LLADDR(ifv_ifp),
 		    ifp->if_addrlen);
 		sdl = (struct sockaddr_dl *)ifv_ifp->if_addr->ifa_addr;
 		sdl->sdl_alen = ifp->if_addrlen;
 		taskqueue_enqueue(taskqueue_thread, &ifv->lladdr_task);
 	}
 	TRUNK_WUNLOCK(trunk);
 	NET_EPOCH_EXIT(et);
 }
 
 /*
  * A handler for network interface departure events.
  * Track departure of trunks here so that we don't access invalid
  * pointers or whatever if a trunk is ripped from under us, e.g.,
  * by ejecting its hot-plug card.  However, if an ifnet is simply
  * being renamed, then there's no need to tear down the state.
  */
 static void
 vlan_ifdetach(void *arg __unused, struct ifnet *ifp)
 {
 	struct ifvlan *ifv;
 	struct ifvlantrunk *trunk;
 
 	/* If the ifnet is just being renamed, don't do anything. */
 	if (ifp->if_flags & IFF_RENAMING)
 		return;
 	VLAN_XLOCK();
 	trunk = ifp->if_vlantrunk;
 	if (trunk == NULL) {
 		VLAN_XUNLOCK();
 		return;
 	}
 
 	/*
 	 * OK, it's a trunk.  Loop over and detach all vlan's on it.
 	 * Check trunk pointer after each vlan_unconfig() as it will
 	 * free it and set to NULL after the last vlan was detached.
 	 */
 	VLAN_FOREACH_UNTIL_SAFE(ifv, ifp->if_vlantrunk,
 	    ifp->if_vlantrunk == NULL)
 		vlan_unconfig_locked(ifv->ifv_ifp, 1);
 
 	/* Trunk should have been destroyed in vlan_unconfig(). */
 	KASSERT(ifp->if_vlantrunk == NULL, ("%s: purge failed", __func__));
 	VLAN_XUNLOCK();
 }
 
 /*
  * Return the trunk device for a virtual interface.
  */
 static struct ifnet  *
 vlan_trunkdev(struct ifnet *ifp)
 {
 	struct ifvlan *ifv;
 
 	NET_EPOCH_ASSERT();
 
 	if (ifp->if_type != IFT_L2VLAN)
 		return (NULL);
 
 	ifv = ifp->if_softc;
 	ifp = NULL;
 	if (ifv->ifv_trunk)
 		ifp = PARENT(ifv);
 	return (ifp);
 }
 
 /*
  * Return the 12-bit VLAN VID for this interface, for use by external
  * components such as Infiniband.
  *
  * XXXRW: Note that the function name here is historical; it should be named
  * vlan_vid().
  */
 static int
 vlan_tag(struct ifnet *ifp, uint16_t *vidp)
 {
 	struct ifvlan *ifv;
 
 	if (ifp->if_type != IFT_L2VLAN)
 		return (EINVAL);
 	ifv = ifp->if_softc;
 	*vidp = ifv->ifv_vid;
 	return (0);
 }
 
 static int
 vlan_pcp(struct ifnet *ifp, uint16_t *pcpp)
 {
 	struct ifvlan *ifv;
 
 	if (ifp->if_type != IFT_L2VLAN)
 		return (EINVAL);
 	ifv = ifp->if_softc;
 	*pcpp = ifv->ifv_pcp;
 	return (0);
 }
 
 /*
  * Return a driver specific cookie for this interface.  Synchronization
  * with setcookie must be provided by the driver.
  */
 static void *
 vlan_cookie(struct ifnet *ifp)
 {
 	struct ifvlan *ifv;
 
 	if (ifp->if_type != IFT_L2VLAN)
 		return (NULL);
 	ifv = ifp->if_softc;
 	return (ifv->ifv_cookie);
 }
 
 /*
  * Store a cookie in our softc that drivers can use to store driver
  * private per-instance data in.
  */
 static int
 vlan_setcookie(struct ifnet *ifp, void *cookie)
 {
 	struct ifvlan *ifv;
 
 	if (ifp->if_type != IFT_L2VLAN)
 		return (EINVAL);
 	ifv = ifp->if_softc;
 	ifv->ifv_cookie = cookie;
 	return (0);
 }
 
 /*
  * Return the vlan device present at the specific VID.
  */
 static struct ifnet *
 vlan_devat(struct ifnet *ifp, uint16_t vid)
 {
 	struct ifvlantrunk *trunk;
 	struct ifvlan *ifv;
 
 	NET_EPOCH_ASSERT();
 
 	trunk = ifp->if_vlantrunk;
 	if (trunk == NULL)
 		return (NULL);
 	ifp = NULL;
 	ifv = vlan_gethash(trunk, vid);
 	if (ifv)
 		ifp = ifv->ifv_ifp;
 	return (ifp);
 }
 
 /*
  * VLAN support can be loaded as a module.  The only place in the
  * system that's intimately aware of this is ether_input.  We hook
  * into this code through vlan_input_p which is defined there and
  * set here.  No one else in the system should be aware of this so
  * we use an explicit reference here.
  */
 extern	void (*vlan_input_p)(struct ifnet *, struct mbuf *);
 
 /* For if_link_state_change() eyes only... */
 extern	void (*vlan_link_state_p)(struct ifnet *);
 
 static int
 vlan_modevent(module_t mod, int type, void *data)
 {
 
 	switch (type) {
 	case MOD_LOAD:
 		ifdetach_tag = EVENTHANDLER_REGISTER(ifnet_departure_event,
 		    vlan_ifdetach, NULL, EVENTHANDLER_PRI_ANY);
 		if (ifdetach_tag == NULL)
 			return (ENOMEM);
 		iflladdr_tag = EVENTHANDLER_REGISTER(iflladdr_event,
 		    vlan_iflladdr, NULL, EVENTHANDLER_PRI_ANY);
 		if (iflladdr_tag == NULL)
 			return (ENOMEM);
 		VLAN_LOCKING_INIT();
 		vlan_input_p = vlan_input;
 		vlan_link_state_p = vlan_link_state;
 		vlan_trunk_cap_p = vlan_trunk_capabilities;
 		vlan_trunkdev_p = vlan_trunkdev;
 		vlan_cookie_p = vlan_cookie;
 		vlan_setcookie_p = vlan_setcookie;
 		vlan_tag_p = vlan_tag;
 		vlan_pcp_p = vlan_pcp;
 		vlan_devat_p = vlan_devat;
 #ifndef VIMAGE
 		vlan_cloner = if_clone_advanced(vlanname, 0, vlan_clone_match,
 		    vlan_clone_create, vlan_clone_destroy);
 #endif
 		if (bootverbose)
 			printf("vlan: initialized, using "
 #ifdef VLAN_ARRAY
 			       "full-size arrays"
 #else
 			       "hash tables with chaining"
 #endif
 
 			       "\n");
 		break;
 	case MOD_UNLOAD:
 #ifndef VIMAGE
 		if_clone_detach(vlan_cloner);
 #endif
 		EVENTHANDLER_DEREGISTER(ifnet_departure_event, ifdetach_tag);
 		EVENTHANDLER_DEREGISTER(iflladdr_event, iflladdr_tag);
 		vlan_input_p = NULL;
 		vlan_link_state_p = NULL;
 		vlan_trunk_cap_p = NULL;
 		vlan_trunkdev_p = NULL;
 		vlan_tag_p = NULL;
 		vlan_cookie_p = NULL;
 		vlan_setcookie_p = NULL;
 		vlan_devat_p = NULL;
 		VLAN_LOCKING_DESTROY();
 		if (bootverbose)
 			printf("vlan: unloaded\n");
 		break;
 	default:
 		return (EOPNOTSUPP);
 	}
 	return (0);
 }
 
 static moduledata_t vlan_mod = {
 	"if_vlan",
 	vlan_modevent,
 	0
 };
 
 DECLARE_MODULE(if_vlan, vlan_mod, SI_SUB_PSEUDO, SI_ORDER_ANY);
 MODULE_VERSION(if_vlan, 3);
 
 #ifdef VIMAGE
 static void
 vnet_vlan_init(const void *unused __unused)
 {
 
 	vlan_cloner = if_clone_advanced(vlanname, 0, vlan_clone_match,
 		    vlan_clone_create, vlan_clone_destroy);
 	V_vlan_cloner = vlan_cloner;
 }
 VNET_SYSINIT(vnet_vlan_init, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_ANY,
     vnet_vlan_init, NULL);
 
 static void
 vnet_vlan_uninit(const void *unused __unused)
 {
 
 	if_clone_detach(V_vlan_cloner);
 }
 VNET_SYSUNINIT(vnet_vlan_uninit, SI_SUB_INIT_IF, SI_ORDER_ANY,
     vnet_vlan_uninit, NULL);
 #endif
 
 /*
  * Check for <etherif>.<vlan>[.<vlan> ...] style interface names.
  */
 static struct ifnet *
 vlan_clone_match_ethervid(const char *name, int *vidp)
 {
 	char ifname[IFNAMSIZ];
 	char *cp;
 	struct ifnet *ifp;
 	int vid;
 
 	strlcpy(ifname, name, IFNAMSIZ);
 	if ((cp = strrchr(ifname, '.')) == NULL)
 		return (NULL);
 	*cp = '\0';
 	if ((ifp = ifunit_ref(ifname)) == NULL)
 		return (NULL);
 	/* Parse VID. */
 	if (*++cp == '\0') {
 		if_rele(ifp);
 		return (NULL);
 	}
 	vid = 0;
 	for(; *cp >= '0' && *cp <= '9'; cp++)
 		vid = (vid * 10) + (*cp - '0');
 	if (*cp != '\0') {
 		if_rele(ifp);
 		return (NULL);
 	}
 	if (vidp != NULL)
 		*vidp = vid;
 
 	return (ifp);
 }
 
 static int
 vlan_clone_match(struct if_clone *ifc, const char *name)
 {
 	struct ifnet *ifp;
 	const char *cp;
 
 	ifp = vlan_clone_match_ethervid(name, NULL);
 	if (ifp != NULL) {
 		if_rele(ifp);
 		return (1);
 	}
 
 	if (strncmp(vlanname, name, strlen(vlanname)) != 0)
 		return (0);
 	for (cp = name + 4; *cp != '\0'; cp++) {
 		if (*cp < '0' || *cp > '9')
 			return (0);
 	}
 
 	return (1);
 }
 
 static int
 vlan_clone_create(struct if_clone *ifc, char *name, size_t len, caddr_t params)
 {
 	char *dp;
 	bool wildcard = false;
 	bool subinterface = false;
 	int unit;
 	int error;
 	int vid = 0;
 	uint16_t proto = ETHERTYPE_VLAN;
 	struct ifvlan *ifv;
 	struct ifnet *ifp;
 	struct ifnet *p = NULL;
 	struct ifaddr *ifa;
 	struct sockaddr_dl *sdl;
 	struct vlanreq vlr;
 	static const u_char eaddr[ETHER_ADDR_LEN];	/* 00:00:00:00:00:00 */
 
 
 	/*
 	 * There are three ways to specify the cloned device:
 	 * o pass a parameter block with the clone request.
 	 * o specify parameters in the text of the clone device name
 	 * o specify no parameters and get an unattached device that
 	 *   must be configured separately.
 	 * The first technique is preferred; the latter two are supported
 	 * for backwards compatibility.
 	 *
 	 * XXXRW: Note historic use of the word "tag" here.  New ioctls may be
 	 * called for.
 	 */
 
 	if (params) {
 		error = copyin(params, &vlr, sizeof(vlr));
 		if (error)
 			return error;
 		vid = vlr.vlr_tag;
 		proto = vlr.vlr_proto;
 
 #ifdef COMPAT_FREEBSD12
 		if (proto == 0)
 			proto = ETHERTYPE_VLAN;
 #endif
 		p = ifunit_ref(vlr.vlr_parent);
 		if (p == NULL)
 			return (ENXIO);
 	}
 
 	if ((error = ifc_name2unit(name, &unit)) == 0) {
 
 		/*
 		 * vlanX interface. Set wildcard to true if the unit number
 		 * is not fixed (-1)
 		 */
 		wildcard = (unit < 0);
 	} else {
 		struct ifnet *p_tmp = vlan_clone_match_ethervid(name, &vid);
 		if (p_tmp != NULL) {
 			error = 0;
 			subinterface = true;
 			unit = IF_DUNIT_NONE;
 			wildcard = false;
 			if (p != NULL) {
 				if_rele(p_tmp);
 				if (p != p_tmp)
 					error = EINVAL;
 			} else
 				p = p_tmp;
 		} else
 			error = ENXIO;
 	}
 
 	if (error != 0) {
 		if (p != NULL)
 			if_rele(p);
 		return (error);
 	}
 
 	if (!subinterface) {
 		/* vlanX interface, mark X as busy or allocate new unit # */
 		error = ifc_alloc_unit(ifc, &unit);
 		if (error != 0) {
 			if (p != NULL)
 				if_rele(p);
 			return (error);
 		}
 	}
 
 	/* In the wildcard case, we need to update the name. */
 	if (wildcard) {
 		for (dp = name; *dp != '\0'; dp++);
 		if (snprintf(dp, len - (dp-name), "%d", unit) >
 		    len - (dp-name) - 1) {
 			panic("%s: interface name too long", __func__);
 		}
 	}
 
 	ifv = malloc(sizeof(struct ifvlan), M_VLAN, M_WAITOK | M_ZERO);
 	ifp = ifv->ifv_ifp = if_alloc(IFT_ETHER);
 	if (ifp == NULL) {
 		if (!subinterface)
 			ifc_free_unit(ifc, unit);
 		free(ifv, M_VLAN);
 		if (p != NULL)
 			if_rele(p);
 		return (ENOSPC);
 	}
 	CK_SLIST_INIT(&ifv->vlan_mc_listhead);
 	ifp->if_softc = ifv;
 	/*
 	 * Set the name manually rather than using if_initname because
 	 * we don't conform to the default naming convention for interfaces.
 	 */
 	strlcpy(ifp->if_xname, name, IFNAMSIZ);
 	ifp->if_dname = vlanname;
 	ifp->if_dunit = unit;
 
 	ifp->if_init = vlan_init;
+#ifdef ALTQ
+	ifp->if_start = vlan_altq_start;
+	ifp->if_transmit = vlan_altq_transmit;
+	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
+	ifp->if_snd.ifq_drv_maxlen = 0;
+	IFQ_SET_READY(&ifp->if_snd);
+#else
 	ifp->if_transmit = vlan_transmit;
+#endif
 	ifp->if_qflush = vlan_qflush;
 	ifp->if_ioctl = vlan_ioctl;
 #if defined(KERN_TLS) || defined(RATELIMIT)
 	ifp->if_snd_tag_alloc = vlan_snd_tag_alloc;
 	ifp->if_snd_tag_modify = vlan_snd_tag_modify;
 	ifp->if_snd_tag_query = vlan_snd_tag_query;
 	ifp->if_snd_tag_free = vlan_snd_tag_free;
 	ifp->if_next_snd_tag = vlan_next_snd_tag;
 	ifp->if_ratelimit_query = vlan_ratelimit_query;
 #endif
 	ifp->if_flags = VLAN_IFFLAGS;
 	ether_ifattach(ifp, eaddr);
 	/* Now undo some of the damage... */
 	ifp->if_baudrate = 0;
 	ifp->if_type = IFT_L2VLAN;
 	ifp->if_hdrlen = ETHER_VLAN_ENCAP_LEN;
 	ifa = ifp->if_addr;
 	sdl = (struct sockaddr_dl *)ifa->ifa_addr;
 	sdl->sdl_type = IFT_L2VLAN;
 
 	if (p != NULL) {
 		error = vlan_config(ifv, p, vid, proto);
 		if_rele(p);
 		if (error != 0) {
 			/*
 			 * Since we've partially failed, we need to back
 			 * out all the way, otherwise userland could get
 			 * confused.  Thus, we destroy the interface.
 			 */
 			ether_ifdetach(ifp);
 			vlan_unconfig(ifp);
 			if_free(ifp);
 			if (!subinterface)
 				ifc_free_unit(ifc, unit);
 			free(ifv, M_VLAN);
 
 			return (error);
 		}
 	}
 
 	return (0);
 }
 
 static int
 vlan_clone_destroy(struct if_clone *ifc, struct ifnet *ifp)
 {
 	struct ifvlan *ifv = ifp->if_softc;
 	int unit = ifp->if_dunit;
 
 	if (ifp->if_vlantrunk)
 		return (EBUSY);
 
+#ifdef ALTQ
+	IFQ_PURGE(&ifp->if_snd);
+#endif
 	ether_ifdetach(ifp);	/* first, remove it from system-wide lists */
 	vlan_unconfig(ifp);	/* now it can be unconfigured and freed */
 	/*
 	 * We should have the only reference to the ifv now, so we can now
 	 * drain any remaining lladdr task before freeing the ifnet and the
 	 * ifvlan.
 	 */
 	taskqueue_drain(taskqueue_thread, &ifv->lladdr_task);
 	NET_EPOCH_WAIT();
 	if_free(ifp);
 	free(ifv, M_VLAN);
 	if (unit != IF_DUNIT_NONE)
 		ifc_free_unit(ifc, unit);
 
 	return (0);
 }
 
 /*
  * The ifp->if_init entry point for vlan(4) is a no-op.
  */
 static void
 vlan_init(void *foo __unused)
 {
 }
 
 /*
  * The if_transmit method for vlan(4) interface.
  */
 static int
 vlan_transmit(struct ifnet *ifp, struct mbuf *m)
 {
 	struct ifvlan *ifv;
 	struct ifnet *p;
 	int error, len, mcast;
 
 	NET_EPOCH_ASSERT();
 
 	ifv = ifp->if_softc;
 	if (TRUNK(ifv) == NULL) {
 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
 		m_freem(m);
 		return (ENETDOWN);
 	}
 	p = PARENT(ifv);
 	len = m->m_pkthdr.len;
 	mcast = (m->m_flags & (M_MCAST | M_BCAST)) ? 1 : 0;
 
 	BPF_MTAP(ifp, m);
 
 #if defined(KERN_TLS) || defined(RATELIMIT)
 	if (m->m_pkthdr.csum_flags & CSUM_SND_TAG) {
 		struct vlan_snd_tag *vst;
 		struct m_snd_tag *mst;
 
 		MPASS(m->m_pkthdr.snd_tag->ifp == ifp);
 		mst = m->m_pkthdr.snd_tag;
 		vst = mst_to_vst(mst);
 		if (vst->tag->ifp != p) {
 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
 			m_freem(m);
 			return (EAGAIN);
 		}
 
 		m->m_pkthdr.snd_tag = m_snd_tag_ref(vst->tag);
 		m_snd_tag_rele(mst);
 	}
 #endif
 
 	/*
 	 * Do not run parent's if_transmit() if the parent is not up,
 	 * or parent's driver will cause a system crash.
 	 */
 	if (!UP_AND_RUNNING(p)) {
 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
 		m_freem(m);
 		return (ENETDOWN);
 	}
 
 	if (!ether_8021q_frame(&m, ifp, p, &ifv->ifv_qtag)) {
 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
 		return (0);
 	}
 
 	/*
 	 * Send it, precisely as ether_output() would have.
 	 */
 	error = (p->if_transmit)(p, m);
 	if (error == 0) {
 		if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
 		if_inc_counter(ifp, IFCOUNTER_OBYTES, len);
 		if_inc_counter(ifp, IFCOUNTER_OMCASTS, mcast);
 	} else
 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
 	return (error);
 }
 
 static int
 vlan_output(struct ifnet *ifp, struct mbuf *m, const struct sockaddr *dst,
     struct route *ro)
 {
 	struct ifvlan *ifv;
 	struct ifnet *p;
 
 	NET_EPOCH_ASSERT();
 
 	/*
 	 * Find the first non-VLAN parent interface.
 	 */
 	ifv = ifp->if_softc;
 	do {
 		if (TRUNK(ifv) == NULL) {
 			m_freem(m);
 			return (ENETDOWN);
 		}
 		p = PARENT(ifv);
 		ifv = p->if_softc;
 	} while (p->if_type == IFT_L2VLAN);
 
 	return p->if_output(ifp, m, dst, ro);
 }
 
+#ifdef ALTQ
+static void
+vlan_altq_start(if_t ifp)
+{
+	struct ifaltq *ifq = &ifp->if_snd;
+	struct mbuf *m;
+
+	IFQ_LOCK(ifq);
+	IFQ_DEQUEUE_NOLOCK(ifq, m);
+	while (m != NULL) {
+		vlan_transmit(ifp, m);
+		IFQ_DEQUEUE_NOLOCK(ifq, m);
+	}
+	IFQ_UNLOCK(ifq);
+}
+
+static int
+vlan_altq_transmit(if_t ifp, struct mbuf *m)
+{
+	int err;
+
+	if (ALTQ_IS_ENABLED(&ifp->if_snd)) {
+		IFQ_ENQUEUE(&ifp->if_snd, m, err);
+		if (err == 0)
+			vlan_altq_start(ifp);
+	} else
+		err = vlan_transmit(ifp, m);
+
+	return (err);
+}
+#endif	/* ALTQ */
+
 /*
  * The ifp->if_qflush entry point for vlan(4) is a no-op.
  */
 static void
 vlan_qflush(struct ifnet *ifp __unused)
 {
 }
 
 static void
 vlan_input(struct ifnet *ifp, struct mbuf *m)
 {
 	struct ifvlantrunk *trunk;
 	struct ifvlan *ifv;
 	struct m_tag *mtag;
 	uint16_t vid, tag;
 
 	NET_EPOCH_ASSERT();
 
 	trunk = ifp->if_vlantrunk;
 	if (trunk == NULL) {
 		m_freem(m);
 		return;
 	}
 
 	if (m->m_flags & M_VLANTAG) {
 		/*
 		 * Packet is tagged, but m contains a normal
 		 * Ethernet frame; the tag is stored out-of-band.
 		 */
 		tag = m->m_pkthdr.ether_vtag;
 		m->m_flags &= ~M_VLANTAG;
 	} else {
 		struct ether_vlan_header *evl;
 
 		/*
 		 * Packet is tagged in-band as specified by 802.1q.
 		 */
 		switch (ifp->if_type) {
 		case IFT_ETHER:
 			if (m->m_len < sizeof(*evl) &&
 			    (m = m_pullup(m, sizeof(*evl))) == NULL) {
 				if_printf(ifp, "cannot pullup VLAN header\n");
 				return;
 			}
 			evl = mtod(m, struct ether_vlan_header *);
 			tag = ntohs(evl->evl_tag);
 
 			/*
 			 * Remove the 802.1q header by copying the Ethernet
 			 * addresses over it and adjusting the beginning of
 			 * the data in the mbuf.  The encapsulated Ethernet
 			 * type field is already in place.
 			 */
 			bcopy((char *)evl, (char *)evl + ETHER_VLAN_ENCAP_LEN,
 			      ETHER_HDR_LEN - ETHER_TYPE_LEN);
 			m_adj(m, ETHER_VLAN_ENCAP_LEN);
 			break;
 
 		default:
 #ifdef INVARIANTS
 			panic("%s: %s has unsupported if_type %u",
 			      __func__, ifp->if_xname, ifp->if_type);
 #endif
 			if_inc_counter(ifp, IFCOUNTER_NOPROTO, 1);
 			m_freem(m);
 			return;
 		}
 	}
 
 	vid = EVL_VLANOFTAG(tag);
 
 	ifv = vlan_gethash(trunk, vid);
 	if (ifv == NULL || !UP_AND_RUNNING(ifv->ifv_ifp)) {
 		if_inc_counter(ifp, IFCOUNTER_NOPROTO, 1);
 		m_freem(m);
 		return;
 	}
 
 	if (vlan_mtag_pcp) {
 		/*
 		 * While uncommon, it is possible that we will find a 802.1q
 		 * packet encapsulated inside another packet that also had an
 		 * 802.1q header.  For example, ethernet tunneled over IPSEC
 		 * arriving over ethernet.  In that case, we replace the
 		 * existing 802.1q PCP m_tag value.
 		 */
 		mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_IN, NULL);
 		if (mtag == NULL) {
 			mtag = m_tag_alloc(MTAG_8021Q, MTAG_8021Q_PCP_IN,
 			    sizeof(uint8_t), M_NOWAIT);
 			if (mtag == NULL) {
 				if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
 				m_freem(m);
 				return;
 			}
 			m_tag_prepend(m, mtag);
 		}
 		*(uint8_t *)(mtag + 1) = EVL_PRIOFTAG(tag);
 	}
 
 	m->m_pkthdr.rcvif = ifv->ifv_ifp;
 	if_inc_counter(ifv->ifv_ifp, IFCOUNTER_IPACKETS, 1);
 
 	/* Pass it back through the parent's input routine. */
 	(*ifv->ifv_ifp->if_input)(ifv->ifv_ifp, m);
 }
 
 static void
 vlan_lladdr_fn(void *arg, int pending __unused)
 {
 	struct ifvlan *ifv;
 	struct ifnet *ifp;
 
 	ifv = (struct ifvlan *)arg;
 	ifp = ifv->ifv_ifp;
 
 	CURVNET_SET(ifp->if_vnet);
 
 	/* The ifv_ifp already has the lladdr copied in. */
 	if_setlladdr(ifp, IF_LLADDR(ifp), ifp->if_addrlen);
 
 	CURVNET_RESTORE();
 }
 
 static int
 vlan_config(struct ifvlan *ifv, struct ifnet *p, uint16_t vid,
 	uint16_t proto)
 {
 	struct epoch_tracker et;
 	struct ifvlantrunk *trunk;
 	struct ifnet *ifp;
 	int error = 0;
 
 	/*
 	 * We can handle non-ethernet hardware types as long as
 	 * they handle the tagging and headers themselves.
 	 */
 	if (p->if_type != IFT_ETHER &&
 	    p->if_type != IFT_L2VLAN &&
 	    (p->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
 		return (EPROTONOSUPPORT);
 	if ((p->if_flags & VLAN_IFFLAGS) != VLAN_IFFLAGS)
 		return (EPROTONOSUPPORT);
 	/*
 	 * Don't let the caller set up a VLAN VID with
 	 * anything except VLID bits.
 	 * VID numbers 0x0 and 0xFFF are reserved.
 	 */
 	if (vid == 0 || vid == 0xFFF || (vid & ~EVL_VLID_MASK))
 		return (EINVAL);
 	if (ifv->ifv_trunk)
 		return (EBUSY);
 
 	VLAN_XLOCK();
 	if (p->if_vlantrunk == NULL) {
 		trunk = malloc(sizeof(struct ifvlantrunk),
 		    M_VLAN, M_WAITOK | M_ZERO);
 		vlan_inithash(trunk);
 		TRUNK_LOCK_INIT(trunk);
 		TRUNK_WLOCK(trunk);
 		p->if_vlantrunk = trunk;
 		trunk->parent = p;
 		if_ref(trunk->parent);
 		TRUNK_WUNLOCK(trunk);
 	} else {
 		trunk = p->if_vlantrunk;
 	}
 
 	ifv->ifv_vid = vid;	/* must set this before vlan_inshash() */
 	ifv->ifv_pcp = 0;       /* Default: best effort delivery. */
 	error = vlan_inshash(trunk, ifv);
 	if (error)
 		goto done;
 	ifv->ifv_proto = proto;
 	ifv->ifv_encaplen = ETHER_VLAN_ENCAP_LEN;
 	ifv->ifv_mintu = ETHERMIN;
 	ifv->ifv_pflags = 0;
 	ifv->ifv_capenable = -1;
 
 	/*
 	 * If the parent supports the VLAN_MTU capability,
 	 * i.e. can Tx/Rx larger than ETHER_MAX_LEN frames,
 	 * use it.
 	 */
 	if (p->if_capenable & IFCAP_VLAN_MTU) {
 		/*
 		 * No need to fudge the MTU since the parent can
 		 * handle extended frames.
 		 */
 		ifv->ifv_mtufudge = 0;
 	} else {
 		/*
 		 * Fudge the MTU by the encapsulation size.  This
 		 * makes us incompatible with strictly compliant
 		 * 802.1Q implementations, but allows us to use
 		 * the feature with other NetBSD implementations,
 		 * which might still be useful.
 		 */
 		ifv->ifv_mtufudge = ifv->ifv_encaplen;
 	}
 
 	ifv->ifv_trunk = trunk;
 	ifp = ifv->ifv_ifp;
 	/*
 	 * Initialize fields from our parent.  This duplicates some
 	 * work with ether_ifattach() but allows for non-ethernet
 	 * interfaces to also work.
 	 */
 	ifp->if_mtu = p->if_mtu - ifv->ifv_mtufudge;
 	ifp->if_baudrate = p->if_baudrate;
 	ifp->if_input = p->if_input;
 	ifp->if_resolvemulti = p->if_resolvemulti;
 	ifp->if_addrlen = p->if_addrlen;
 	ifp->if_broadcastaddr = p->if_broadcastaddr;
 	ifp->if_pcp = ifv->ifv_pcp;
 
 	/*
 	 * We wrap the parent's if_output using vlan_output to ensure that it
 	 * can't become stale.
 	 */
 	ifp->if_output = vlan_output;
 
 	/*
 	 * Copy only a selected subset of flags from the parent.
 	 * Other flags are none of our business.
 	 */
 #define VLAN_COPY_FLAGS (IFF_SIMPLEX)
 	ifp->if_flags &= ~VLAN_COPY_FLAGS;
 	ifp->if_flags |= p->if_flags & VLAN_COPY_FLAGS;
 #undef VLAN_COPY_FLAGS
 
 	ifp->if_link_state = p->if_link_state;
 
 	NET_EPOCH_ENTER(et);
 	vlan_capabilities(ifv);
 	NET_EPOCH_EXIT(et);
 
 	/*
 	 * Set up our interface address to reflect the underlying
 	 * physical interface's.
 	 */
 	TASK_INIT(&ifv->lladdr_task, 0, vlan_lladdr_fn, ifv);
 	((struct sockaddr_dl *)ifp->if_addr->ifa_addr)->sdl_alen =
 	    p->if_addrlen;
 
 	/*
 	 * Do not schedule link address update if it was the same
 	 * as previous parent's. This helps avoid updating for each
 	 * associated llentry.
 	 */
 	if (memcmp(IF_LLADDR(p), IF_LLADDR(ifp), p->if_addrlen) != 0) {
 		bcopy(IF_LLADDR(p), IF_LLADDR(ifp), p->if_addrlen);
 		taskqueue_enqueue(taskqueue_thread, &ifv->lladdr_task);
 	}
 
 	/* We are ready for operation now. */
 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
 
 	/* Update flags on the parent, if necessary. */
 	vlan_setflags(ifp, 1);
 
 	/*
 	 * Configure multicast addresses that may already be
 	 * joined on the vlan device.
 	 */
 	(void)vlan_setmulti(ifp);
 
 done:
 	if (error == 0)
 		EVENTHANDLER_INVOKE(vlan_config, p, ifv->ifv_vid);
 	VLAN_XUNLOCK();
 
 	return (error);
 }
 
 static void
 vlan_unconfig(struct ifnet *ifp)
 {
 
 	VLAN_XLOCK();
 	vlan_unconfig_locked(ifp, 0);
 	VLAN_XUNLOCK();
 }
 
 static void
 vlan_unconfig_locked(struct ifnet *ifp, int departing)
 {
 	struct ifvlantrunk *trunk;
 	struct vlan_mc_entry *mc;
 	struct ifvlan *ifv;
 	struct ifnet  *parent;
 	int error;
 
 	VLAN_XLOCK_ASSERT();
 
 	ifv = ifp->if_softc;
 	trunk = ifv->ifv_trunk;
 	parent = NULL;
 
 	if (trunk != NULL) {
 		parent = trunk->parent;
 
 		/*
 		 * Since the interface is being unconfigured, we need to
 		 * empty the list of multicast groups that we may have joined
 		 * while we were alive from the parent's list.
 		 */
 		while ((mc = CK_SLIST_FIRST(&ifv->vlan_mc_listhead)) != NULL) {
 			/*
 			 * If the parent interface is being detached,
 			 * all its multicast addresses have already
 			 * been removed.  Warn about errors if
 			 * if_delmulti() does fail, but don't abort as
 			 * all callers expect vlan destruction to
 			 * succeed.
 			 */
 			if (!departing) {
 				error = if_delmulti(parent,
 				    (struct sockaddr *)&mc->mc_addr);
 				if (error)
 					if_printf(ifp,
 		    "Failed to delete multicast address from parent: %d\n",
 					    error);
 			}
 			CK_SLIST_REMOVE_HEAD(&ifv->vlan_mc_listhead, mc_entries);
 			NET_EPOCH_CALL(vlan_mc_free, &mc->mc_epoch_ctx);
 		}
 
 		vlan_setflags(ifp, 0); /* clear special flags on parent */
 
 		vlan_remhash(trunk, ifv);
 		ifv->ifv_trunk = NULL;
 
 		/*
 		 * Check if we were the last.
 		 */
 		if (trunk->refcnt == 0) {
 			parent->if_vlantrunk = NULL;
 			NET_EPOCH_WAIT();
 			trunk_destroy(trunk);
 		}
 	}
 
 	/* Disconnect from parent. */
 	if (ifv->ifv_pflags)
 		if_printf(ifp, "%s: ifv_pflags unclean\n", __func__);
 	ifp->if_mtu = ETHERMTU;
 	ifp->if_link_state = LINK_STATE_UNKNOWN;
 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
 
 	/*
 	 * Only dispatch an event if vlan was
 	 * attached, otherwise there is nothing
 	 * to cleanup anyway.
 	 */
 	if (parent != NULL)
 		EVENTHANDLER_INVOKE(vlan_unconfig, parent, ifv->ifv_vid);
 }
 
 /* Handle a reference counted flag that should be set on the parent as well */
 static int
 vlan_setflag(struct ifnet *ifp, int flag, int status,
 	     int (*func)(struct ifnet *, int))
 {
 	struct ifvlan *ifv;
 	int error;
 
 	VLAN_SXLOCK_ASSERT();
 
 	ifv = ifp->if_softc;
 	status = status ? (ifp->if_flags & flag) : 0;
 	/* Now "status" contains the flag value or 0 */
 
 	/*
 	 * See if recorded parent's status is different from what
 	 * we want it to be.  If it is, flip it.  We record parent's
 	 * status in ifv_pflags so that we won't clear parent's flag
 	 * we haven't set.  In fact, we don't clear or set parent's
 	 * flags directly, but get or release references to them.
 	 * That's why we can be sure that recorded flags still are
 	 * in accord with actual parent's flags.
 	 */
 	if (status != (ifv->ifv_pflags & flag)) {
 		error = (*func)(PARENT(ifv), status);
 		if (error)
 			return (error);
 		ifv->ifv_pflags &= ~flag;
 		ifv->ifv_pflags |= status;
 	}
 	return (0);
 }
 
 /*
  * Handle IFF_* flags that require certain changes on the parent:
  * if "status" is true, update parent's flags respective to our if_flags;
  * if "status" is false, forcedly clear the flags set on parent.
  */
 static int
 vlan_setflags(struct ifnet *ifp, int status)
 {
 	int error, i;
 
 	for (i = 0; vlan_pflags[i].flag; i++) {
 		error = vlan_setflag(ifp, vlan_pflags[i].flag,
 				     status, vlan_pflags[i].func);
 		if (error)
 			return (error);
 	}
 	return (0);
 }
 
 /* Inform all vlans that their parent has changed link state */
 static void
 vlan_link_state(struct ifnet *ifp)
 {
 	struct epoch_tracker et;
 	struct ifvlantrunk *trunk;
 	struct ifvlan *ifv;
 
 	NET_EPOCH_ENTER(et);
 	trunk = ifp->if_vlantrunk;
 	if (trunk == NULL) {
 		NET_EPOCH_EXIT(et);
 		return;
 	}
 
 	TRUNK_WLOCK(trunk);
 	VLAN_FOREACH(ifv, trunk) {
 		ifv->ifv_ifp->if_baudrate = trunk->parent->if_baudrate;
 		if_link_state_change(ifv->ifv_ifp,
 		    trunk->parent->if_link_state);
 	}
 	TRUNK_WUNLOCK(trunk);
 	NET_EPOCH_EXIT(et);
 }
 
 static void
 vlan_capabilities(struct ifvlan *ifv)
 {
 	struct ifnet *p;
 	struct ifnet *ifp;
 	struct ifnet_hw_tsomax hw_tsomax;
 	int cap = 0, ena = 0, mena;
 	u_long hwa = 0;
 
 	NET_EPOCH_ASSERT();
 	VLAN_SXLOCK_ASSERT();
 
 	p = PARENT(ifv);
 	ifp = ifv->ifv_ifp;
 
 	/* Mask parent interface enabled capabilities disabled by user. */
 	mena = p->if_capenable & ifv->ifv_capenable;
 
 	/*
 	 * If the parent interface can do checksum offloading
 	 * on VLANs, then propagate its hardware-assisted
 	 * checksumming flags. Also assert that checksum
 	 * offloading requires hardware VLAN tagging.
 	 */
 	if (p->if_capabilities & IFCAP_VLAN_HWCSUM)
 		cap |= p->if_capabilities & (IFCAP_HWCSUM | IFCAP_HWCSUM_IPV6);
 	if (p->if_capenable & IFCAP_VLAN_HWCSUM &&
 	    p->if_capenable & IFCAP_VLAN_HWTAGGING) {
 		ena |= mena & (IFCAP_HWCSUM | IFCAP_HWCSUM_IPV6);
 		if (ena & IFCAP_TXCSUM)
 			hwa |= p->if_hwassist & (CSUM_IP | CSUM_TCP |
 			    CSUM_UDP | CSUM_SCTP);
 		if (ena & IFCAP_TXCSUM_IPV6)
 			hwa |= p->if_hwassist & (CSUM_TCP_IPV6 |
 			    CSUM_UDP_IPV6 | CSUM_SCTP_IPV6);
 	}
 
 	/*
 	 * If the parent interface can do TSO on VLANs then
 	 * propagate the hardware-assisted flag. TSO on VLANs
 	 * does not necessarily require hardware VLAN tagging.
 	 */
 	memset(&hw_tsomax, 0, sizeof(hw_tsomax));
 	if_hw_tsomax_common(p, &hw_tsomax);
 	if_hw_tsomax_update(ifp, &hw_tsomax);
 	if (p->if_capabilities & IFCAP_VLAN_HWTSO)
 		cap |= p->if_capabilities & IFCAP_TSO;
 	if (p->if_capenable & IFCAP_VLAN_HWTSO) {
 		ena |= mena & IFCAP_TSO;
 		if (ena & IFCAP_TSO)
 			hwa |= p->if_hwassist & CSUM_TSO;
 	}
 
 	/*
 	 * If the parent interface can do LRO and checksum offloading on
 	 * VLANs, then guess it may do LRO on VLANs.  False positive here
 	 * cost nothing, while false negative may lead to some confusions.
 	 */
 	if (p->if_capabilities & IFCAP_VLAN_HWCSUM)
 		cap |= p->if_capabilities & IFCAP_LRO;
 	if (p->if_capenable & IFCAP_VLAN_HWCSUM)
 		ena |= p->if_capenable & IFCAP_LRO;
 
 	/*
 	 * If the parent interface can offload TCP connections over VLANs then
 	 * propagate its TOE capability to the VLAN interface.
 	 *
 	 * All TOE drivers in the tree today can deal with VLANs.  If this
 	 * changes then IFCAP_VLAN_TOE should be promoted to a full capability
 	 * with its own bit.
 	 */
 #define	IFCAP_VLAN_TOE IFCAP_TOE
 	if (p->if_capabilities & IFCAP_VLAN_TOE)
 		cap |= p->if_capabilities & IFCAP_TOE;
 	if (p->if_capenable & IFCAP_VLAN_TOE) {
 		TOEDEV(ifp) = TOEDEV(p);
 		ena |= mena & IFCAP_TOE;
 	}
 
 	/*
 	 * If the parent interface supports dynamic link state, so does the
 	 * VLAN interface.
 	 */
 	cap |= (p->if_capabilities & IFCAP_LINKSTATE);
 	ena |= (mena & IFCAP_LINKSTATE);
 
 #ifdef RATELIMIT
 	/*
 	 * If the parent interface supports ratelimiting, so does the
 	 * VLAN interface.
 	 */
 	cap |= (p->if_capabilities & IFCAP_TXRTLMT);
 	ena |= (mena & IFCAP_TXRTLMT);
 #endif
 
 	/*
 	 * If the parent interface supports unmapped mbufs, so does
 	 * the VLAN interface.  Note that this should be fine even for
 	 * interfaces that don't support hardware tagging as headers
 	 * are prepended in normal mbufs to unmapped mbufs holding
 	 * payload data.
 	 */
 	cap |= (p->if_capabilities & IFCAP_MEXTPG);
 	ena |= (mena & IFCAP_MEXTPG);
 
 	/*
 	 * If the parent interface can offload encryption and segmentation
 	 * of TLS records over TCP, propagate it's capability to the VLAN
 	 * interface.
 	 *
 	 * All TLS drivers in the tree today can deal with VLANs.  If
 	 * this ever changes, then a new IFCAP_VLAN_TXTLS can be
 	 * defined.
 	 */
 	if (p->if_capabilities & (IFCAP_TXTLS | IFCAP_TXTLS_RTLMT))
 		cap |= p->if_capabilities & (IFCAP_TXTLS | IFCAP_TXTLS_RTLMT);
 	if (p->if_capenable & (IFCAP_TXTLS | IFCAP_TXTLS_RTLMT))
 		ena |= mena & (IFCAP_TXTLS | IFCAP_TXTLS_RTLMT);
 
 	ifp->if_capabilities = cap;
 	ifp->if_capenable = ena;
 	ifp->if_hwassist = hwa;
 }
 
 static void
 vlan_trunk_capabilities(struct ifnet *ifp)
 {
 	struct epoch_tracker et;
 	struct ifvlantrunk *trunk;
 	struct ifvlan *ifv;
 
 	VLAN_SLOCK();
 	trunk = ifp->if_vlantrunk;
 	if (trunk == NULL) {
 		VLAN_SUNLOCK();
 		return;
 	}
 	NET_EPOCH_ENTER(et);
 	VLAN_FOREACH(ifv, trunk)
 		vlan_capabilities(ifv);
 	NET_EPOCH_EXIT(et);
 	VLAN_SUNLOCK();
 }
 
 static int
 vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
 {
 	struct ifnet *p;
 	struct ifreq *ifr;
 	struct ifaddr *ifa;
 	struct ifvlan *ifv;
 	struct ifvlantrunk *trunk;
 	struct vlanreq vlr;
 	int error = 0, oldmtu;
 
 	ifr = (struct ifreq *)data;
 	ifa = (struct ifaddr *) data;
 	ifv = ifp->if_softc;
 
 	switch (cmd) {
 	case SIOCSIFADDR:
 		ifp->if_flags |= IFF_UP;
 #ifdef INET
 		if (ifa->ifa_addr->sa_family == AF_INET)
 			arp_ifinit(ifp, ifa);
 #endif
 		break;
 	case SIOCGIFADDR:
 		bcopy(IF_LLADDR(ifp), &ifr->ifr_addr.sa_data[0],
 		    ifp->if_addrlen);
 		break;
 	case SIOCGIFMEDIA:
 		VLAN_SLOCK();
 		if (TRUNK(ifv) != NULL) {
 			p = PARENT(ifv);
 			if_ref(p);
 			error = (*p->if_ioctl)(p, SIOCGIFMEDIA, data);
 			if_rele(p);
 			/* Limit the result to the parent's current config. */
 			if (error == 0) {
 				struct ifmediareq *ifmr;
 
 				ifmr = (struct ifmediareq *)data;
 				if (ifmr->ifm_count >= 1 && ifmr->ifm_ulist) {
 					ifmr->ifm_count = 1;
 					error = copyout(&ifmr->ifm_current,
 						ifmr->ifm_ulist,
 						sizeof(int));
 				}
 			}
 		} else {
 			error = EINVAL;
 		}
 		VLAN_SUNLOCK();
 		break;
 
 	case SIOCSIFMEDIA:
 		error = EINVAL;
 		break;
 
 	case SIOCSIFMTU:
 		/*
 		 * Set the interface MTU.
 		 */
 		VLAN_SLOCK();
 		trunk = TRUNK(ifv);
 		if (trunk != NULL) {
 			TRUNK_WLOCK(trunk);
 			if (ifr->ifr_mtu >
 			     (PARENT(ifv)->if_mtu - ifv->ifv_mtufudge) ||
 			    ifr->ifr_mtu <
 			     (ifv->ifv_mintu - ifv->ifv_mtufudge))
 				error = EINVAL;
 			else
 				ifp->if_mtu = ifr->ifr_mtu;
 			TRUNK_WUNLOCK(trunk);
 		} else
 			error = EINVAL;
 		VLAN_SUNLOCK();
 		break;
 
 	case SIOCSETVLAN:
 #ifdef VIMAGE
 		/*
 		 * XXXRW/XXXBZ: The goal in these checks is to allow a VLAN
 		 * interface to be delegated to a jail without allowing the
 		 * jail to change what underlying interface/VID it is
 		 * associated with.  We are not entirely convinced that this
 		 * is the right way to accomplish that policy goal.
 		 */
 		if (ifp->if_vnet != ifp->if_home_vnet) {
 			error = EPERM;
 			break;
 		}
 #endif
 		error = copyin(ifr_data_get_ptr(ifr), &vlr, sizeof(vlr));
 		if (error)
 			break;
 		if (vlr.vlr_parent[0] == '\0') {
 			vlan_unconfig(ifp);
 			break;
 		}
 		p = ifunit_ref(vlr.vlr_parent);
 		if (p == NULL) {
 			error = ENOENT;
 			break;
 		}
 #ifdef COMPAT_FREEBSD12
 		if (vlr.vlr_proto == 0)
 			vlr.vlr_proto = ETHERTYPE_VLAN;
 #endif
 		oldmtu = ifp->if_mtu;
 		error = vlan_config(ifv, p, vlr.vlr_tag, vlr.vlr_proto);
 		if_rele(p);
 
 		/*
 		 * VLAN MTU may change during addition of the vlandev.
 		 * If it did, do network layer specific procedure.
 		 */
 		if (ifp->if_mtu != oldmtu) {
 #ifdef INET6
 			nd6_setmtu(ifp);
 #endif
 			rt_updatemtu(ifp);
 		}
 		break;
 
 	case SIOCGETVLAN:
 #ifdef VIMAGE
 		if (ifp->if_vnet != ifp->if_home_vnet) {
 			error = EPERM;
 			break;
 		}
 #endif
 		bzero(&vlr, sizeof(vlr));
 		VLAN_SLOCK();
 		if (TRUNK(ifv) != NULL) {
 			strlcpy(vlr.vlr_parent, PARENT(ifv)->if_xname,
 			    sizeof(vlr.vlr_parent));
 			vlr.vlr_tag = ifv->ifv_vid;
 			vlr.vlr_proto = ifv->ifv_proto;
 		}
 		VLAN_SUNLOCK();
 		error = copyout(&vlr, ifr_data_get_ptr(ifr), sizeof(vlr));
 		break;
 
 	case SIOCSIFFLAGS:
 		/*
 		 * We should propagate selected flags to the parent,
 		 * e.g., promiscuous mode.
 		 */
 		VLAN_XLOCK();
 		if (TRUNK(ifv) != NULL)
 			error = vlan_setflags(ifp, 1);
 		VLAN_XUNLOCK();
 		break;
 
 	case SIOCADDMULTI:
 	case SIOCDELMULTI:
 		/*
 		 * If we don't have a parent, just remember the membership for
 		 * when we do.
 		 *
 		 * XXX We need the rmlock here to avoid sleeping while
 		 * holding in6_multi_mtx.
 		 */
 		VLAN_XLOCK();
 		trunk = TRUNK(ifv);
 		if (trunk != NULL)
 			error = vlan_setmulti(ifp);
 		VLAN_XUNLOCK();
 
 		break;
 	case SIOCGVLANPCP:
 #ifdef VIMAGE
 		if (ifp->if_vnet != ifp->if_home_vnet) {
 			error = EPERM;
 			break;
 		}
 #endif
 		ifr->ifr_vlan_pcp = ifv->ifv_pcp;
 		break;
 
 	case SIOCSVLANPCP:
 #ifdef VIMAGE
 		if (ifp->if_vnet != ifp->if_home_vnet) {
 			error = EPERM;
 			break;
 		}
 #endif
 		error = priv_check(curthread, PRIV_NET_SETVLANPCP);
 		if (error)
 			break;
 		if (ifr->ifr_vlan_pcp > VLAN_PCP_MAX) {
 			error = EINVAL;
 			break;
 		}
 		ifv->ifv_pcp = ifr->ifr_vlan_pcp;
 		ifp->if_pcp = ifv->ifv_pcp;
 		/* broadcast event about PCP change */
 		EVENTHANDLER_INVOKE(ifnet_event, ifp, IFNET_EVENT_PCP);
 		break;
 
 	case SIOCSIFCAP:
 		VLAN_SLOCK();
 		ifv->ifv_capenable = ifr->ifr_reqcap;
 		trunk = TRUNK(ifv);
 		if (trunk != NULL) {
 			struct epoch_tracker et;
 
 			NET_EPOCH_ENTER(et);
 			vlan_capabilities(ifv);
 			NET_EPOCH_EXIT(et);
 		}
 		VLAN_SUNLOCK();
 		break;
 
 	default:
 		error = EINVAL;
 		break;
 	}
 
 	return (error);
 }
 
 #if defined(KERN_TLS) || defined(RATELIMIT)
 static int
 vlan_snd_tag_alloc(struct ifnet *ifp,
     union if_snd_tag_alloc_params *params,
     struct m_snd_tag **ppmt)
 {
 	struct epoch_tracker et;
 	struct vlan_snd_tag *vst;
 	struct ifvlan *ifv;
 	struct ifnet *parent;
 	int error;
 
 	NET_EPOCH_ENTER(et);
 	ifv = ifp->if_softc;
 	if (ifv->ifv_trunk != NULL)
 		parent = PARENT(ifv);
 	else
 		parent = NULL;
 	if (parent == NULL) {
 		NET_EPOCH_EXIT(et);
 		return (EOPNOTSUPP);
 	}
 	if_ref(parent);
 	NET_EPOCH_EXIT(et);
 
 	vst = malloc(sizeof(*vst), M_VLAN, M_NOWAIT);
 	if (vst == NULL) {
 		if_rele(parent);
 		return (ENOMEM);
 	}
 
 	error = m_snd_tag_alloc(parent, params, &vst->tag);
 	if_rele(parent);
 	if (error) {
 		free(vst, M_VLAN);
 		return (error);
 	}
 
 	m_snd_tag_init(&vst->com, ifp, vst->tag->type);
 
 	*ppmt = &vst->com;
 	return (0);
 }
 
 static struct m_snd_tag *
 vlan_next_snd_tag(struct m_snd_tag *mst)
 {
 	struct vlan_snd_tag *vst;
 
 	vst = mst_to_vst(mst);
 	return (vst->tag);
 }
 
 static int
 vlan_snd_tag_modify(struct m_snd_tag *mst,
     union if_snd_tag_modify_params *params)
 {
 	struct vlan_snd_tag *vst;
 
 	vst = mst_to_vst(mst);
 	return (vst->tag->ifp->if_snd_tag_modify(vst->tag, params));
 }
 
 static int
 vlan_snd_tag_query(struct m_snd_tag *mst,
     union if_snd_tag_query_params *params)
 {
 	struct vlan_snd_tag *vst;
 
 	vst = mst_to_vst(mst);
 	return (vst->tag->ifp->if_snd_tag_query(vst->tag, params));
 }
 
 static void
 vlan_snd_tag_free(struct m_snd_tag *mst)
 {
 	struct vlan_snd_tag *vst;
 
 	vst = mst_to_vst(mst);
 	m_snd_tag_rele(vst->tag);
 	free(vst, M_VLAN);
 }
 
 static void
 vlan_ratelimit_query(struct ifnet *ifp __unused, struct if_ratelimit_query_results *q)
 {
 	/*
 	 * For vlan, we have an indirect
 	 * interface. The caller needs to
 	 * get a ratelimit tag on the actual
 	 * interface the flow will go on.
 	 */
 	q->rate_table = NULL;
 	q->flags = RT_IS_INDIRECT;
 	q->max_flows = 0;
 	q->number_of_rates = 0;
 }
 
 #endif