diff --git a/sys/dev/e1000/if_em.c b/sys/dev/e1000/if_em.c index 40579b0a5a55..1da0579cdce9 100644 --- a/sys/dev/e1000/if_em.c +++ b/sys/dev/e1000/if_em.c @@ -1,5037 +1,5083 @@ /*- * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 2016 Nicole Graziano * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* $FreeBSD$ */ #include "if_em.h" #include #include #define em_mac_min e1000_82571 #define igb_mac_min e1000_82575 /********************************************************************* * Driver version: *********************************************************************/ char em_driver_version[] = "7.7.8-fbsd"; char igb_driver_version[] = "2.5.19-fbsd"; /********************************************************************* * PCI Device ID Table * * Used by probe to select devices to load on * Last field stores an index into e1000_strings * Last entry must be all 0s * * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, String Index } *********************************************************************/ static pci_vendor_info_t em_vendor_info_array[] = { /* Intel(R) - lem-class legacy devices */ PVID(0x8086, E1000_DEV_ID_82540EM, "Intel(R) Legacy PRO/1000 MT 82540EM"), PVID(0x8086, E1000_DEV_ID_82540EM_LOM, "Intel(R) Legacy PRO/1000 MT 82540EM (LOM)"), PVID(0x8086, E1000_DEV_ID_82540EP, "Intel(R) Legacy PRO/1000 MT 82540EP"), PVID(0x8086, E1000_DEV_ID_82540EP_LOM, "Intel(R) Legacy PRO/1000 MT 82540EP (LOM)"), PVID(0x8086, E1000_DEV_ID_82540EP_LP, "Intel(R) Legacy PRO/1000 MT 82540EP (Mobile)"), PVID(0x8086, E1000_DEV_ID_82541EI, "Intel(R) Legacy PRO/1000 MT 82541EI (Copper)"), PVID(0x8086, E1000_DEV_ID_82541ER, "Intel(R) Legacy PRO/1000 82541ER"), PVID(0x8086, E1000_DEV_ID_82541ER_LOM, "Intel(R) Legacy PRO/1000 MT 82541ER"), PVID(0x8086, E1000_DEV_ID_82541EI_MOBILE, "Intel(R) Legacy PRO/1000 MT 82541EI (Mobile)"), PVID(0x8086, E1000_DEV_ID_82541GI, "Intel(R) Legacy PRO/1000 MT 82541GI"), PVID(0x8086, E1000_DEV_ID_82541GI_LF, "Intel(R) Legacy PRO/1000 GT 82541PI"), PVID(0x8086, E1000_DEV_ID_82541GI_MOBILE, "Intel(R) Legacy PRO/1000 MT 82541GI (Mobile)"), PVID(0x8086, E1000_DEV_ID_82542, "Intel(R) Legacy PRO/1000 82542 (Fiber)"), PVID(0x8086, E1000_DEV_ID_82543GC_FIBER, "Intel(R) Legacy PRO/1000 F 82543GC (Fiber)"), PVID(0x8086, E1000_DEV_ID_82543GC_COPPER, "Intel(R) Legacy PRO/1000 T 82543GC (Copper)"), PVID(0x8086, E1000_DEV_ID_82544EI_COPPER, "Intel(R) Legacy PRO/1000 XT 82544EI (Copper)"), PVID(0x8086, E1000_DEV_ID_82544EI_FIBER, "Intel(R) Legacy PRO/1000 XF 82544EI (Fiber)"), PVID(0x8086, E1000_DEV_ID_82544GC_COPPER, "Intel(R) Legacy PRO/1000 T 82544GC (Copper)"), PVID(0x8086, E1000_DEV_ID_82544GC_LOM, "Intel(R) Legacy PRO/1000 XT 82544GC (LOM)"), PVID(0x8086, E1000_DEV_ID_82545EM_COPPER, "Intel(R) Legacy PRO/1000 MT 82545EM (Copper)"), PVID(0x8086, E1000_DEV_ID_82545EM_FIBER, "Intel(R) Legacy PRO/1000 MF 82545EM (Fiber)"), PVID(0x8086, E1000_DEV_ID_82545GM_COPPER, "Intel(R) Legacy PRO/1000 MT 82545GM (Copper)"), PVID(0x8086, E1000_DEV_ID_82545GM_FIBER, "Intel(R) Legacy PRO/1000 MF 82545GM (Fiber)"), PVID(0x8086, E1000_DEV_ID_82545GM_SERDES, "Intel(R) Legacy PRO/1000 MB 82545GM (SERDES)"), PVID(0x8086, E1000_DEV_ID_82546EB_COPPER, "Intel(R) Legacy PRO/1000 MT 82546EB (Copper)"), PVID(0x8086, E1000_DEV_ID_82546EB_FIBER, "Intel(R) Legacy PRO/1000 MF 82546EB (Fiber)"), PVID(0x8086, E1000_DEV_ID_82546EB_QUAD_COPPER, "Intel(R) Legacy PRO/1000 MT 82546EB (Quad Copper"), PVID(0x8086, E1000_DEV_ID_82546GB_COPPER, "Intel(R) Legacy PRO/1000 MT 82546GB (Copper)"), PVID(0x8086, E1000_DEV_ID_82546GB_FIBER, "Intel(R) Legacy PRO/1000 MF 82546GB (Fiber)"), PVID(0x8086, E1000_DEV_ID_82546GB_SERDES, "Intel(R) Legacy PRO/1000 MB 82546GB (SERDES)"), PVID(0x8086, E1000_DEV_ID_82546GB_PCIE, "Intel(R) Legacy PRO/1000 P 82546GB (PCIe)"), PVID(0x8086, E1000_DEV_ID_82546GB_QUAD_COPPER, "Intel(R) Legacy PRO/1000 GT 82546GB (Quad Copper)"), PVID(0x8086, E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3, "Intel(R) Legacy PRO/1000 GT 82546GB (Quad Copper)"), PVID(0x8086, E1000_DEV_ID_82547EI, "Intel(R) Legacy PRO/1000 CT 82547EI"), PVID(0x8086, E1000_DEV_ID_82547EI_MOBILE, "Intel(R) Legacy PRO/1000 CT 82547EI (Mobile)"), PVID(0x8086, E1000_DEV_ID_82547GI, "Intel(R) Legacy PRO/1000 CT 82547GI"), /* Intel(R) - em-class devices */ PVID(0x8086, E1000_DEV_ID_82571EB_COPPER, "Intel(R) PRO/1000 PT 82571EB/82571GB (Copper)"), PVID(0x8086, E1000_DEV_ID_82571EB_FIBER, "Intel(R) PRO/1000 PF 82571EB/82571GB (Fiber)"), PVID(0x8086, E1000_DEV_ID_82571EB_SERDES, "Intel(R) PRO/1000 PB 82571EB (SERDES)"), PVID(0x8086, E1000_DEV_ID_82571EB_SERDES_DUAL, "Intel(R) PRO/1000 82571EB (Dual Mezzanine)"), PVID(0x8086, E1000_DEV_ID_82571EB_SERDES_QUAD, "Intel(R) PRO/1000 82571EB (Quad Mezzanine)"), PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_COPPER, "Intel(R) PRO/1000 PT 82571EB/82571GB (Quad Copper)"), PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_COPPER_LP, "Intel(R) PRO/1000 PT 82571EB/82571GB (Quad Copper)"), PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_FIBER, "Intel(R) PRO/1000 PF 82571EB (Quad Fiber)"), PVID(0x8086, E1000_DEV_ID_82571PT_QUAD_COPPER, "Intel(R) PRO/1000 PT 82571PT (Quad Copper)"), PVID(0x8086, E1000_DEV_ID_82572EI, "Intel(R) PRO/1000 PT 82572EI (Copper)"), PVID(0x8086, E1000_DEV_ID_82572EI_COPPER, "Intel(R) PRO/1000 PT 82572EI (Copper)"), PVID(0x8086, E1000_DEV_ID_82572EI_FIBER, "Intel(R) PRO/1000 PF 82572EI (Fiber)"), PVID(0x8086, E1000_DEV_ID_82572EI_SERDES, "Intel(R) PRO/1000 82572EI (SERDES)"), PVID(0x8086, E1000_DEV_ID_82573E, "Intel(R) PRO/1000 82573E (Copper)"), PVID(0x8086, E1000_DEV_ID_82573E_IAMT, "Intel(R) PRO/1000 82573E AMT (Copper)"), PVID(0x8086, E1000_DEV_ID_82573L, "Intel(R) PRO/1000 82573L"), PVID(0x8086, E1000_DEV_ID_82583V, "Intel(R) 82583V"), PVID(0x8086, E1000_DEV_ID_80003ES2LAN_COPPER_SPT, "Intel(R) 80003ES2LAN (Copper)"), PVID(0x8086, E1000_DEV_ID_80003ES2LAN_SERDES_SPT, "Intel(R) 80003ES2LAN (SERDES)"), PVID(0x8086, E1000_DEV_ID_80003ES2LAN_COPPER_DPT, "Intel(R) 80003ES2LAN (Dual Copper)"), PVID(0x8086, E1000_DEV_ID_80003ES2LAN_SERDES_DPT, "Intel(R) 80003ES2LAN (Dual SERDES)"), PVID(0x8086, E1000_DEV_ID_ICH8_IGP_M_AMT, "Intel(R) 82566MM ICH8 AMT (Mobile)"), PVID(0x8086, E1000_DEV_ID_ICH8_IGP_AMT, "Intel(R) 82566DM ICH8 AMT"), PVID(0x8086, E1000_DEV_ID_ICH8_IGP_C, "Intel(R) 82566DC ICH8"), PVID(0x8086, E1000_DEV_ID_ICH8_IFE, "Intel(R) 82562V ICH8"), PVID(0x8086, E1000_DEV_ID_ICH8_IFE_GT, "Intel(R) 82562GT ICH8"), PVID(0x8086, E1000_DEV_ID_ICH8_IFE_G, "Intel(R) 82562G ICH8"), PVID(0x8086, E1000_DEV_ID_ICH8_IGP_M, "Intel(R) 82566MC ICH8"), PVID(0x8086, E1000_DEV_ID_ICH8_82567V_3, "Intel(R) 82567V-3 ICH8"), PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M_AMT, "Intel(R) 82567LM ICH9 AMT"), PVID(0x8086, E1000_DEV_ID_ICH9_IGP_AMT, "Intel(R) 82566DM-2 ICH9 AMT"), PVID(0x8086, E1000_DEV_ID_ICH9_IGP_C, "Intel(R) 82566DC-2 ICH9"), PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M, "Intel(R) 82567LF ICH9"), PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M_V, "Intel(R) 82567V ICH9"), PVID(0x8086, E1000_DEV_ID_ICH9_IFE, "Intel(R) 82562V-2 ICH9"), PVID(0x8086, E1000_DEV_ID_ICH9_IFE_GT, "Intel(R) 82562GT-2 ICH9"), PVID(0x8086, E1000_DEV_ID_ICH9_IFE_G, "Intel(R) 82562G-2 ICH9"), PVID(0x8086, E1000_DEV_ID_ICH9_BM, "Intel(R) 82567LM-4 ICH9"), PVID(0x8086, E1000_DEV_ID_82574L, "Intel(R) Gigabit CT 82574L"), PVID(0x8086, E1000_DEV_ID_82574LA, "Intel(R) 82574L-Apple"), PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_LM, "Intel(R) 82567LM-2 ICH10"), PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_LF, "Intel(R) 82567LF-2 ICH10"), PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_V, "Intel(R) 82567V-2 ICH10"), PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_LM, "Intel(R) 82567LM-3 ICH10"), PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_LF, "Intel(R) 82567LF-3 ICH10"), PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_V, "Intel(R) 82567V-4 ICH10"), PVID(0x8086, E1000_DEV_ID_PCH_M_HV_LM, "Intel(R) 82577LM"), PVID(0x8086, E1000_DEV_ID_PCH_M_HV_LC, "Intel(R) 82577LC"), PVID(0x8086, E1000_DEV_ID_PCH_D_HV_DM, "Intel(R) 82578DM"), PVID(0x8086, E1000_DEV_ID_PCH_D_HV_DC, "Intel(R) 82578DC"), PVID(0x8086, E1000_DEV_ID_PCH2_LV_LM, "Intel(R) 82579LM"), PVID(0x8086, E1000_DEV_ID_PCH2_LV_V, "Intel(R) 82579V"), PVID(0x8086, E1000_DEV_ID_PCH_LPT_I217_LM, "Intel(R) I217-LM LPT"), PVID(0x8086, E1000_DEV_ID_PCH_LPT_I217_V, "Intel(R) I217-V LPT"), PVID(0x8086, E1000_DEV_ID_PCH_LPTLP_I218_LM, "Intel(R) I218-LM LPTLP"), PVID(0x8086, E1000_DEV_ID_PCH_LPTLP_I218_V, "Intel(R) I218-V LPTLP"), PVID(0x8086, E1000_DEV_ID_PCH_I218_LM2, "Intel(R) I218-LM (2)"), PVID(0x8086, E1000_DEV_ID_PCH_I218_V2, "Intel(R) I218-V (2)"), PVID(0x8086, E1000_DEV_ID_PCH_I218_LM3, "Intel(R) I218-LM (3)"), PVID(0x8086, E1000_DEV_ID_PCH_I218_V3, "Intel(R) I218-V (3)"), PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM, "Intel(R) I219-LM SPT"), PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V, "Intel(R) I219-V SPT"), PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM2, "Intel(R) I219-LM SPT-H(2)"), PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V2, "Intel(R) I219-V SPT-H(2)"), PVID(0x8086, E1000_DEV_ID_PCH_LBG_I219_LM3, "Intel(R) I219-LM LBG(3)"), PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM4, "Intel(R) I219-LM SPT(4)"), PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V4, "Intel(R) I219-V SPT(4)"), PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM5, "Intel(R) I219-LM SPT(5)"), PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V5, "Intel(R) I219-V SPT(5)"), PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_LM6, "Intel(R) I219-LM CNP(6)"), PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_V6, "Intel(R) I219-V CNP(6)"), PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_LM7, "Intel(R) I219-LM CNP(7)"), PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_V7, "Intel(R) I219-V CNP(7)"), PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_LM8, "Intel(R) I219-LM ICP(8)"), PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_V8, "Intel(R) I219-V ICP(8)"), PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_LM9, "Intel(R) I219-LM ICP(9)"), PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_V9, "Intel(R) I219-V ICP(9)"), PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_LM10, "Intel(R) I219-LM CMP(10)"), PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_V10, "Intel(R) I219-V CMP(10)"), PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_LM11, "Intel(R) I219-LM CMP(11)"), PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_V11, "Intel(R) I219-V CMP(11)"), PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_LM12, "Intel(R) I219-LM CMP(12)"), PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_V12, "Intel(R) I219-V CMP(12)"), PVID(0x8086, E1000_DEV_ID_PCH_TGP_I219_LM13, "Intel(R) I219-LM TGP(13)"), PVID(0x8086, E1000_DEV_ID_PCH_TGP_I219_V13, "Intel(R) I219-V TGP(13)"), PVID(0x8086, E1000_DEV_ID_PCH_TGP_I219_LM14, "Intel(R) I219-LM TGP(14)"), PVID(0x8086, E1000_DEV_ID_PCH_TGP_I219_V14, "Intel(R) I219-V GTP(14)"), PVID(0x8086, E1000_DEV_ID_PCH_TGP_I219_LM15, "Intel(R) I219-LM TGP(15)"), PVID(0x8086, E1000_DEV_ID_PCH_TGP_I219_V15, "Intel(R) I219-V TGP(15)"), PVID(0x8086, E1000_DEV_ID_PCH_ADL_I219_LM16, "Intel(R) I219-LM ADL(16)"), PVID(0x8086, E1000_DEV_ID_PCH_ADL_I219_V16, "Intel(R) I219-V ADL(16)"), PVID(0x8086, E1000_DEV_ID_PCH_ADL_I219_LM17, "Intel(R) I219-LM ADL(17)"), PVID(0x8086, E1000_DEV_ID_PCH_ADL_I219_V17, "Intel(R) I219-V ADL(17)"), PVID(0x8086, E1000_DEV_ID_PCH_MTP_I219_LM18, "Intel(R) I219-LM MTP(18)"), PVID(0x8086, E1000_DEV_ID_PCH_MTP_I219_V18, "Intel(R) I219-V MTP(18)"), PVID(0x8086, E1000_DEV_ID_PCH_MTP_I219_LM19, "Intel(R) I219-LM MTP(19)"), PVID(0x8086, E1000_DEV_ID_PCH_MTP_I219_V19, "Intel(R) I219-V MTP(19)"), PVID(0x8086, E1000_DEV_ID_PCH_LNL_I219_LM20, "Intel(R) I219-LM LNL(20)"), PVID(0x8086, E1000_DEV_ID_PCH_LNL_I219_V20, "Intel(R) I219-V LNL(20)"), PVID(0x8086, E1000_DEV_ID_PCH_LNL_I219_LM21, "Intel(R) I219-LM LNL(21)"), PVID(0x8086, E1000_DEV_ID_PCH_LNL_I219_V21, "Intel(R) I219-V LNL(21)"), PVID(0x8086, E1000_DEV_ID_PCH_RPL_I219_LM22, "Intel(R) I219-LM RPL(22)"), PVID(0x8086, E1000_DEV_ID_PCH_RPL_I219_V22, "Intel(R) I219-V RPL(22)"), PVID(0x8086, E1000_DEV_ID_PCH_RPL_I219_LM23, "Intel(R) I219-LM RPL(23)"), PVID(0x8086, E1000_DEV_ID_PCH_RPL_I219_V23, "Intel(R) I219-V RPL(23)"), PVID(0x8086, E1000_DEV_ID_PCH_ARL_I219_LM24, "Intel(R) I219-LM ARL(24)"), PVID(0x8086, E1000_DEV_ID_PCH_ARL_I219_V24, "Intel(R) I219-V ARL(24)"), PVID(0x8086, E1000_DEV_ID_PCH_PTP_I219_LM25, "Intel(R) I219-LM PTP(25)"), PVID(0x8086, E1000_DEV_ID_PCH_PTP_I219_V25, "Intel(R) I219-V PTP(25)"), PVID(0x8086, E1000_DEV_ID_PCH_PTP_I219_LM26, "Intel(R) I219-LM PTP(26)"), PVID(0x8086, E1000_DEV_ID_PCH_PTP_I219_V26, "Intel(R) I219-V PTP(26)"), PVID(0x8086, E1000_DEV_ID_PCH_PTP_I219_LM27, "Intel(R) I219-LM PTP(27)"), PVID(0x8086, E1000_DEV_ID_PCH_PTP_I219_V27, "Intel(R) I219-V PTP(27)"), /* required last entry */ PVID_END }; static pci_vendor_info_t igb_vendor_info_array[] = { /* Intel(R) - igb-class devices */ PVID(0x8086, E1000_DEV_ID_82575EB_COPPER, "Intel(R) PRO/1000 82575EB (Copper)"), PVID(0x8086, E1000_DEV_ID_82575EB_FIBER_SERDES, "Intel(R) PRO/1000 82575EB (SERDES)"), PVID(0x8086, E1000_DEV_ID_82575GB_QUAD_COPPER, "Intel(R) PRO/1000 VT 82575GB (Quad Copper)"), PVID(0x8086, E1000_DEV_ID_82576, "Intel(R) PRO/1000 82576"), PVID(0x8086, E1000_DEV_ID_82576_NS, "Intel(R) PRO/1000 82576NS"), PVID(0x8086, E1000_DEV_ID_82576_NS_SERDES, "Intel(R) PRO/1000 82576NS (SERDES)"), PVID(0x8086, E1000_DEV_ID_82576_FIBER, "Intel(R) PRO/1000 EF 82576 (Dual Fiber)"), PVID(0x8086, E1000_DEV_ID_82576_SERDES, "Intel(R) PRO/1000 82576 (Dual SERDES)"), PVID(0x8086, E1000_DEV_ID_82576_SERDES_QUAD, "Intel(R) PRO/1000 ET 82576 (Quad SERDES)"), PVID(0x8086, E1000_DEV_ID_82576_QUAD_COPPER, "Intel(R) PRO/1000 ET 82576 (Quad Copper)"), PVID(0x8086, E1000_DEV_ID_82576_QUAD_COPPER_ET2, "Intel(R) PRO/1000 ET(2) 82576 (Quad Copper)"), PVID(0x8086, E1000_DEV_ID_82576_VF, "Intel(R) PRO/1000 82576 Virtual Function"), PVID(0x8086, E1000_DEV_ID_82580_COPPER, "Intel(R) I340 82580 (Copper)"), PVID(0x8086, E1000_DEV_ID_82580_FIBER, "Intel(R) I340 82580 (Fiber)"), PVID(0x8086, E1000_DEV_ID_82580_SERDES, "Intel(R) I340 82580 (SERDES)"), PVID(0x8086, E1000_DEV_ID_82580_SGMII, "Intel(R) I340 82580 (SGMII)"), PVID(0x8086, E1000_DEV_ID_82580_COPPER_DUAL, "Intel(R) I340-T2 82580 (Dual Copper)"), PVID(0x8086, E1000_DEV_ID_82580_QUAD_FIBER, "Intel(R) I340-F4 82580 (Quad Fiber)"), PVID(0x8086, E1000_DEV_ID_DH89XXCC_SERDES, "Intel(R) DH89XXCC (SERDES)"), PVID(0x8086, E1000_DEV_ID_DH89XXCC_SGMII, "Intel(R) I347-AT4 DH89XXCC"), PVID(0x8086, E1000_DEV_ID_DH89XXCC_SFP, "Intel(R) DH89XXCC (SFP)"), PVID(0x8086, E1000_DEV_ID_DH89XXCC_BACKPLANE, "Intel(R) DH89XXCC (Backplane)"), PVID(0x8086, E1000_DEV_ID_I350_COPPER, "Intel(R) I350 (Copper)"), PVID(0x8086, E1000_DEV_ID_I350_FIBER, "Intel(R) I350 (Fiber)"), PVID(0x8086, E1000_DEV_ID_I350_SERDES, "Intel(R) I350 (SERDES)"), PVID(0x8086, E1000_DEV_ID_I350_SGMII, "Intel(R) I350 (SGMII)"), PVID(0x8086, E1000_DEV_ID_I350_VF, "Intel(R) I350 Virtual Function"), PVID(0x8086, E1000_DEV_ID_I210_COPPER, "Intel(R) I210 (Copper)"), PVID(0x8086, E1000_DEV_ID_I210_COPPER_IT, "Intel(R) I210 IT (Copper)"), PVID(0x8086, E1000_DEV_ID_I210_COPPER_OEM1, "Intel(R) I210 (OEM)"), PVID(0x8086, E1000_DEV_ID_I210_COPPER_FLASHLESS, "Intel(R) I210 Flashless (Copper)"), PVID(0x8086, E1000_DEV_ID_I210_SERDES_FLASHLESS, "Intel(R) I210 Flashless (SERDES)"), PVID(0x8086, E1000_DEV_ID_I210_SGMII_FLASHLESS, "Intel(R) I210 Flashless (SGMII)"), PVID(0x8086, E1000_DEV_ID_I210_FIBER, "Intel(R) I210 (Fiber)"), PVID(0x8086, E1000_DEV_ID_I210_SERDES, "Intel(R) I210 (SERDES)"), PVID(0x8086, E1000_DEV_ID_I210_SGMII, "Intel(R) I210 (SGMII)"), PVID(0x8086, E1000_DEV_ID_I211_COPPER, "Intel(R) I211 (Copper)"), PVID(0x8086, E1000_DEV_ID_I354_BACKPLANE_1GBPS, "Intel(R) I354 (1.0 GbE Backplane)"), PVID(0x8086, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS, "Intel(R) I354 (2.5 GbE Backplane)"), PVID(0x8086, E1000_DEV_ID_I354_SGMII, "Intel(R) I354 (SGMII)"), /* required last entry */ PVID_END }; /********************************************************************* * Function prototypes *********************************************************************/ static void *em_register(device_t); static void *igb_register(device_t); static int em_if_attach_pre(if_ctx_t); static int em_if_attach_post(if_ctx_t); static int em_if_detach(if_ctx_t); static int em_if_shutdown(if_ctx_t); static int em_if_suspend(if_ctx_t); static int em_if_resume(if_ctx_t); static int em_if_tx_queues_alloc(if_ctx_t, caddr_t *, uint64_t *, int, int); static int em_if_rx_queues_alloc(if_ctx_t, caddr_t *, uint64_t *, int, int); static void em_if_queues_free(if_ctx_t); static uint64_t em_if_get_counter(if_ctx_t, ift_counter); static void em_if_init(if_ctx_t); static void em_if_stop(if_ctx_t); static void em_if_media_status(if_ctx_t, struct ifmediareq *); static int em_if_media_change(if_ctx_t); static int em_if_mtu_set(if_ctx_t, uint32_t); static void em_if_timer(if_ctx_t, uint16_t); static void em_if_vlan_register(if_ctx_t, u16); static void em_if_vlan_unregister(if_ctx_t, u16); static void em_if_watchdog_reset(if_ctx_t); static bool em_if_needs_restart(if_ctx_t, enum iflib_restart_event); static void em_identify_hardware(if_ctx_t); static int em_allocate_pci_resources(if_ctx_t); static void em_free_pci_resources(if_ctx_t); static void em_reset(if_ctx_t); static int em_setup_interface(if_ctx_t); static int em_setup_msix(if_ctx_t); static void em_initialize_transmit_unit(if_ctx_t); static void em_initialize_receive_unit(if_ctx_t); static void em_if_intr_enable(if_ctx_t); static void em_if_intr_disable(if_ctx_t); static void igb_if_intr_enable(if_ctx_t); static void igb_if_intr_disable(if_ctx_t); static int em_if_rx_queue_intr_enable(if_ctx_t, uint16_t); static int em_if_tx_queue_intr_enable(if_ctx_t, uint16_t); static int igb_if_rx_queue_intr_enable(if_ctx_t, uint16_t); static int igb_if_tx_queue_intr_enable(if_ctx_t, uint16_t); static void em_if_multi_set(if_ctx_t); static void em_if_update_admin_status(if_ctx_t); static void em_if_debug(if_ctx_t); static void em_update_stats_counters(struct e1000_softc *); static void em_add_hw_stats(struct e1000_softc *); static int em_if_set_promisc(if_ctx_t, int); static bool em_if_vlan_filter_capable(if_ctx_t); static bool em_if_vlan_filter_used(if_ctx_t); static void em_if_vlan_filter_enable(struct e1000_softc *); static void em_if_vlan_filter_disable(struct e1000_softc *); static void em_if_vlan_filter_write(struct e1000_softc *); static void em_setup_vlan_hw_support(if_ctx_t ctx); static int em_sysctl_nvm_info(SYSCTL_HANDLER_ARGS); static void em_print_nvm_info(struct e1000_softc *); static void em_fw_version_locked(if_ctx_t); static void em_sbuf_fw_version(struct e1000_fw_version *, struct sbuf *); static void em_print_fw_version(struct e1000_softc *); static int em_sysctl_print_fw_version(SYSCTL_HANDLER_ARGS); static int em_sysctl_debug_info(SYSCTL_HANDLER_ARGS); static int em_get_rs(SYSCTL_HANDLER_ARGS); static void em_print_debug_info(struct e1000_softc *); static int em_is_valid_ether_addr(u8 *); +static bool em_automask_tso(if_ctx_t); static int em_sysctl_int_delay(SYSCTL_HANDLER_ARGS); static void em_add_int_delay_sysctl(struct e1000_softc *, const char *, const char *, struct em_int_delay_info *, int, int); /* Management and WOL Support */ static void em_init_manageability(struct e1000_softc *); static void em_release_manageability(struct e1000_softc *); static void em_get_hw_control(struct e1000_softc *); static void em_release_hw_control(struct e1000_softc *); static void em_get_wakeup(if_ctx_t); static void em_enable_wakeup(if_ctx_t); static int em_enable_phy_wakeup(struct e1000_softc *); static void em_disable_aspm(struct e1000_softc *); int em_intr(void *); /* MSI-X handlers */ static int em_if_msix_intr_assign(if_ctx_t, int); static int em_msix_link(void *); static void em_handle_link(void *); static void em_enable_vectors_82574(if_ctx_t); static int em_set_flowcntl(SYSCTL_HANDLER_ARGS); static int em_sysctl_eee(SYSCTL_HANDLER_ARGS); static void em_if_led_func(if_ctx_t, int); static int em_get_regs(SYSCTL_HANDLER_ARGS); static void lem_smartspeed(struct e1000_softc *); static void igb_configure_queues(struct e1000_softc *); static void em_flush_desc_rings(struct e1000_softc *); /********************************************************************* * FreeBSD Device Interface Entry Points *********************************************************************/ static device_method_t em_methods[] = { /* Device interface */ DEVMETHOD(device_register, em_register), DEVMETHOD(device_probe, iflib_device_probe), DEVMETHOD(device_attach, iflib_device_attach), DEVMETHOD(device_detach, iflib_device_detach), DEVMETHOD(device_shutdown, iflib_device_shutdown), DEVMETHOD(device_suspend, iflib_device_suspend), DEVMETHOD(device_resume, iflib_device_resume), DEVMETHOD_END }; static device_method_t igb_methods[] = { /* Device interface */ DEVMETHOD(device_register, igb_register), DEVMETHOD(device_probe, iflib_device_probe), DEVMETHOD(device_attach, iflib_device_attach), DEVMETHOD(device_detach, iflib_device_detach), DEVMETHOD(device_shutdown, iflib_device_shutdown), DEVMETHOD(device_suspend, iflib_device_suspend), DEVMETHOD(device_resume, iflib_device_resume), DEVMETHOD_END }; static driver_t em_driver = { "em", em_methods, sizeof(struct e1000_softc), }; DRIVER_MODULE(em, pci, em_driver, 0, 0); MODULE_DEPEND(em, pci, 1, 1, 1); MODULE_DEPEND(em, ether, 1, 1, 1); MODULE_DEPEND(em, iflib, 1, 1, 1); IFLIB_PNP_INFO(pci, em, em_vendor_info_array); static driver_t igb_driver = { "igb", igb_methods, sizeof(struct e1000_softc), }; DRIVER_MODULE(igb, pci, igb_driver, 0, 0); MODULE_DEPEND(igb, pci, 1, 1, 1); MODULE_DEPEND(igb, ether, 1, 1, 1); MODULE_DEPEND(igb, iflib, 1, 1, 1); IFLIB_PNP_INFO(pci, igb, igb_vendor_info_array); static device_method_t em_if_methods[] = { DEVMETHOD(ifdi_attach_pre, em_if_attach_pre), DEVMETHOD(ifdi_attach_post, em_if_attach_post), DEVMETHOD(ifdi_detach, em_if_detach), DEVMETHOD(ifdi_shutdown, em_if_shutdown), DEVMETHOD(ifdi_suspend, em_if_suspend), DEVMETHOD(ifdi_resume, em_if_resume), DEVMETHOD(ifdi_init, em_if_init), DEVMETHOD(ifdi_stop, em_if_stop), DEVMETHOD(ifdi_msix_intr_assign, em_if_msix_intr_assign), DEVMETHOD(ifdi_intr_enable, em_if_intr_enable), DEVMETHOD(ifdi_intr_disable, em_if_intr_disable), DEVMETHOD(ifdi_tx_queues_alloc, em_if_tx_queues_alloc), DEVMETHOD(ifdi_rx_queues_alloc, em_if_rx_queues_alloc), DEVMETHOD(ifdi_queues_free, em_if_queues_free), DEVMETHOD(ifdi_update_admin_status, em_if_update_admin_status), DEVMETHOD(ifdi_multi_set, em_if_multi_set), DEVMETHOD(ifdi_media_status, em_if_media_status), DEVMETHOD(ifdi_media_change, em_if_media_change), DEVMETHOD(ifdi_mtu_set, em_if_mtu_set), DEVMETHOD(ifdi_promisc_set, em_if_set_promisc), DEVMETHOD(ifdi_timer, em_if_timer), DEVMETHOD(ifdi_watchdog_reset, em_if_watchdog_reset), DEVMETHOD(ifdi_vlan_register, em_if_vlan_register), DEVMETHOD(ifdi_vlan_unregister, em_if_vlan_unregister), DEVMETHOD(ifdi_get_counter, em_if_get_counter), DEVMETHOD(ifdi_led_func, em_if_led_func), DEVMETHOD(ifdi_rx_queue_intr_enable, em_if_rx_queue_intr_enable), DEVMETHOD(ifdi_tx_queue_intr_enable, em_if_tx_queue_intr_enable), DEVMETHOD(ifdi_debug, em_if_debug), DEVMETHOD(ifdi_needs_restart, em_if_needs_restart), DEVMETHOD_END }; static driver_t em_if_driver = { "em_if", em_if_methods, sizeof(struct e1000_softc) }; static device_method_t igb_if_methods[] = { DEVMETHOD(ifdi_attach_pre, em_if_attach_pre), DEVMETHOD(ifdi_attach_post, em_if_attach_post), DEVMETHOD(ifdi_detach, em_if_detach), DEVMETHOD(ifdi_shutdown, em_if_shutdown), DEVMETHOD(ifdi_suspend, em_if_suspend), DEVMETHOD(ifdi_resume, em_if_resume), DEVMETHOD(ifdi_init, em_if_init), DEVMETHOD(ifdi_stop, em_if_stop), DEVMETHOD(ifdi_msix_intr_assign, em_if_msix_intr_assign), DEVMETHOD(ifdi_intr_enable, igb_if_intr_enable), DEVMETHOD(ifdi_intr_disable, igb_if_intr_disable), DEVMETHOD(ifdi_tx_queues_alloc, em_if_tx_queues_alloc), DEVMETHOD(ifdi_rx_queues_alloc, em_if_rx_queues_alloc), DEVMETHOD(ifdi_queues_free, em_if_queues_free), DEVMETHOD(ifdi_update_admin_status, em_if_update_admin_status), DEVMETHOD(ifdi_multi_set, em_if_multi_set), DEVMETHOD(ifdi_media_status, em_if_media_status), DEVMETHOD(ifdi_media_change, em_if_media_change), DEVMETHOD(ifdi_mtu_set, em_if_mtu_set), DEVMETHOD(ifdi_promisc_set, em_if_set_promisc), DEVMETHOD(ifdi_timer, em_if_timer), DEVMETHOD(ifdi_watchdog_reset, em_if_watchdog_reset), DEVMETHOD(ifdi_vlan_register, em_if_vlan_register), DEVMETHOD(ifdi_vlan_unregister, em_if_vlan_unregister), DEVMETHOD(ifdi_get_counter, em_if_get_counter), DEVMETHOD(ifdi_led_func, em_if_led_func), DEVMETHOD(ifdi_rx_queue_intr_enable, igb_if_rx_queue_intr_enable), DEVMETHOD(ifdi_tx_queue_intr_enable, igb_if_tx_queue_intr_enable), DEVMETHOD(ifdi_debug, em_if_debug), DEVMETHOD(ifdi_needs_restart, em_if_needs_restart), DEVMETHOD_END }; static driver_t igb_if_driver = { "igb_if", igb_if_methods, sizeof(struct e1000_softc) }; /********************************************************************* * Tunable default values. *********************************************************************/ #define EM_TICKS_TO_USECS(ticks) ((1024 * (ticks) + 500) / 1000) #define EM_USECS_TO_TICKS(usecs) ((1000 * (usecs) + 512) / 1024) #define MAX_INTS_PER_SEC 8000 #define DEFAULT_ITR (1000000000/(MAX_INTS_PER_SEC * 256)) /* Allow common code without TSO */ #ifndef CSUM_TSO #define CSUM_TSO 0 #endif static SYSCTL_NODE(_hw, OID_AUTO, em, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "EM driver parameters"); static int em_disable_crc_stripping = 0; SYSCTL_INT(_hw_em, OID_AUTO, disable_crc_stripping, CTLFLAG_RDTUN, &em_disable_crc_stripping, 0, "Disable CRC Stripping"); static int em_tx_int_delay_dflt = EM_TICKS_TO_USECS(EM_TIDV); static int em_rx_int_delay_dflt = EM_TICKS_TO_USECS(EM_RDTR); SYSCTL_INT(_hw_em, OID_AUTO, tx_int_delay, CTLFLAG_RDTUN, &em_tx_int_delay_dflt, 0, "Default transmit interrupt delay in usecs"); SYSCTL_INT(_hw_em, OID_AUTO, rx_int_delay, CTLFLAG_RDTUN, &em_rx_int_delay_dflt, 0, "Default receive interrupt delay in usecs"); static int em_tx_abs_int_delay_dflt = EM_TICKS_TO_USECS(EM_TADV); static int em_rx_abs_int_delay_dflt = EM_TICKS_TO_USECS(EM_RADV); SYSCTL_INT(_hw_em, OID_AUTO, tx_abs_int_delay, CTLFLAG_RDTUN, &em_tx_abs_int_delay_dflt, 0, "Default transmit interrupt delay limit in usecs"); SYSCTL_INT(_hw_em, OID_AUTO, rx_abs_int_delay, CTLFLAG_RDTUN, &em_rx_abs_int_delay_dflt, 0, "Default receive interrupt delay limit in usecs"); static int em_smart_pwr_down = false; SYSCTL_INT(_hw_em, OID_AUTO, smart_pwr_down, CTLFLAG_RDTUN, &em_smart_pwr_down, 0, "Set to true to leave smart power down enabled on newer adapters"); +static bool em_unsupported_tso = false; +SYSCTL_BOOL(_hw_em, OID_AUTO, unsupported_tso, CTLFLAG_RDTUN, + &em_unsupported_tso, 0, "Allow unsupported em(4) TSO configurations"); + /* Controls whether promiscuous also shows bad packets */ static int em_debug_sbp = false; SYSCTL_INT(_hw_em, OID_AUTO, sbp, CTLFLAG_RDTUN, &em_debug_sbp, 0, "Show bad packets in promiscuous mode"); /* How many packets rxeof tries to clean at a time */ static int em_rx_process_limit = 100; SYSCTL_INT(_hw_em, OID_AUTO, rx_process_limit, CTLFLAG_RDTUN, &em_rx_process_limit, 0, "Maximum number of received packets to process " "at a time, -1 means unlimited"); /* Energy efficient ethernet - default to OFF */ static int eee_setting = 1; SYSCTL_INT(_hw_em, OID_AUTO, eee_setting, CTLFLAG_RDTUN, &eee_setting, 0, "Enable Energy Efficient Ethernet"); /* ** Tuneable Interrupt rate */ static int em_max_interrupt_rate = 8000; SYSCTL_INT(_hw_em, OID_AUTO, max_interrupt_rate, CTLFLAG_RDTUN, &em_max_interrupt_rate, 0, "Maximum interrupts per second"); /* Global used in WOL setup with multiport cards */ static int global_quad_port_a = 0; extern struct if_txrx igb_txrx; extern struct if_txrx em_txrx; extern struct if_txrx lem_txrx; static struct if_shared_ctx em_sctx_init = { .isc_magic = IFLIB_MAGIC, .isc_q_align = PAGE_SIZE, .isc_tx_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header), .isc_tx_maxsegsize = PAGE_SIZE, .isc_tso_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header), .isc_tso_maxsegsize = EM_TSO_SEG_SIZE, .isc_rx_maxsize = MJUM9BYTES, .isc_rx_nsegments = 1, .isc_rx_maxsegsize = MJUM9BYTES, .isc_nfl = 1, .isc_nrxqs = 1, .isc_ntxqs = 1, .isc_admin_intrcnt = 1, .isc_vendor_info = em_vendor_info_array, .isc_driver_version = em_driver_version, .isc_driver = &em_if_driver, .isc_flags = IFLIB_NEED_SCRATCH | IFLIB_TSO_INIT_IP | IFLIB_NEED_ZERO_CSUM, .isc_nrxd_min = {EM_MIN_RXD}, .isc_ntxd_min = {EM_MIN_TXD}, .isc_nrxd_max = {EM_MAX_RXD}, .isc_ntxd_max = {EM_MAX_TXD}, .isc_nrxd_default = {EM_DEFAULT_RXD}, .isc_ntxd_default = {EM_DEFAULT_TXD}, }; static struct if_shared_ctx igb_sctx_init = { .isc_magic = IFLIB_MAGIC, .isc_q_align = PAGE_SIZE, .isc_tx_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header), .isc_tx_maxsegsize = PAGE_SIZE, .isc_tso_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header), .isc_tso_maxsegsize = EM_TSO_SEG_SIZE, .isc_rx_maxsize = MJUM9BYTES, .isc_rx_nsegments = 1, .isc_rx_maxsegsize = MJUM9BYTES, .isc_nfl = 1, .isc_nrxqs = 1, .isc_ntxqs = 1, .isc_admin_intrcnt = 1, .isc_vendor_info = igb_vendor_info_array, .isc_driver_version = igb_driver_version, .isc_driver = &igb_if_driver, .isc_flags = IFLIB_NEED_SCRATCH | IFLIB_TSO_INIT_IP | IFLIB_NEED_ZERO_CSUM, .isc_nrxd_min = {EM_MIN_RXD}, .isc_ntxd_min = {EM_MIN_TXD}, .isc_nrxd_max = {IGB_MAX_RXD}, .isc_ntxd_max = {IGB_MAX_TXD}, .isc_nrxd_default = {EM_DEFAULT_RXD}, .isc_ntxd_default = {EM_DEFAULT_TXD}, }; /***************************************************************** * * Dump Registers * ****************************************************************/ #define IGB_REGS_LEN 739 static int em_get_regs(SYSCTL_HANDLER_ARGS) { struct e1000_softc *sc = (struct e1000_softc *)arg1; struct e1000_hw *hw = &sc->hw; struct sbuf *sb; u32 *regs_buff; int rc; regs_buff = malloc(sizeof(u32) * IGB_REGS_LEN, M_DEVBUF, M_WAITOK); memset(regs_buff, 0, IGB_REGS_LEN * sizeof(u32)); rc = sysctl_wire_old_buffer(req, 0); MPASS(rc == 0); if (rc != 0) { free(regs_buff, M_DEVBUF); return (rc); } sb = sbuf_new_for_sysctl(NULL, NULL, 32*400, req); MPASS(sb != NULL); if (sb == NULL) { free(regs_buff, M_DEVBUF); return (ENOMEM); } /* General Registers */ regs_buff[0] = E1000_READ_REG(hw, E1000_CTRL); regs_buff[1] = E1000_READ_REG(hw, E1000_STATUS); regs_buff[2] = E1000_READ_REG(hw, E1000_CTRL_EXT); regs_buff[3] = E1000_READ_REG(hw, E1000_ICR); regs_buff[4] = E1000_READ_REG(hw, E1000_RCTL); regs_buff[5] = E1000_READ_REG(hw, E1000_RDLEN(0)); regs_buff[6] = E1000_READ_REG(hw, E1000_RDH(0)); regs_buff[7] = E1000_READ_REG(hw, E1000_RDT(0)); regs_buff[8] = E1000_READ_REG(hw, E1000_RXDCTL(0)); regs_buff[9] = E1000_READ_REG(hw, E1000_RDBAL(0)); regs_buff[10] = E1000_READ_REG(hw, E1000_RDBAH(0)); regs_buff[11] = E1000_READ_REG(hw, E1000_TCTL); regs_buff[12] = E1000_READ_REG(hw, E1000_TDBAL(0)); regs_buff[13] = E1000_READ_REG(hw, E1000_TDBAH(0)); regs_buff[14] = E1000_READ_REG(hw, E1000_TDLEN(0)); regs_buff[15] = E1000_READ_REG(hw, E1000_TDH(0)); regs_buff[16] = E1000_READ_REG(hw, E1000_TDT(0)); regs_buff[17] = E1000_READ_REG(hw, E1000_TXDCTL(0)); regs_buff[18] = E1000_READ_REG(hw, E1000_TDFH); regs_buff[19] = E1000_READ_REG(hw, E1000_TDFT); regs_buff[20] = E1000_READ_REG(hw, E1000_TDFHS); regs_buff[21] = E1000_READ_REG(hw, E1000_TDFPC); sbuf_printf(sb, "General Registers\n"); sbuf_printf(sb, "\tCTRL\t %08x\n", regs_buff[0]); sbuf_printf(sb, "\tSTATUS\t %08x\n", regs_buff[1]); sbuf_printf(sb, "\tCTRL_EXT\t %08x\n\n", regs_buff[2]); sbuf_printf(sb, "Interrupt Registers\n"); sbuf_printf(sb, "\tICR\t %08x\n\n", regs_buff[3]); sbuf_printf(sb, "RX Registers\n"); sbuf_printf(sb, "\tRCTL\t %08x\n", regs_buff[4]); sbuf_printf(sb, "\tRDLEN\t %08x\n", regs_buff[5]); sbuf_printf(sb, "\tRDH\t %08x\n", regs_buff[6]); sbuf_printf(sb, "\tRDT\t %08x\n", regs_buff[7]); sbuf_printf(sb, "\tRXDCTL\t %08x\n", regs_buff[8]); sbuf_printf(sb, "\tRDBAL\t %08x\n", regs_buff[9]); sbuf_printf(sb, "\tRDBAH\t %08x\n\n", regs_buff[10]); sbuf_printf(sb, "TX Registers\n"); sbuf_printf(sb, "\tTCTL\t %08x\n", regs_buff[11]); sbuf_printf(sb, "\tTDBAL\t %08x\n", regs_buff[12]); sbuf_printf(sb, "\tTDBAH\t %08x\n", regs_buff[13]); sbuf_printf(sb, "\tTDLEN\t %08x\n", regs_buff[14]); sbuf_printf(sb, "\tTDH\t %08x\n", regs_buff[15]); sbuf_printf(sb, "\tTDT\t %08x\n", regs_buff[16]); sbuf_printf(sb, "\tTXDCTL\t %08x\n", regs_buff[17]); sbuf_printf(sb, "\tTDFH\t %08x\n", regs_buff[18]); sbuf_printf(sb, "\tTDFT\t %08x\n", regs_buff[19]); sbuf_printf(sb, "\tTDFHS\t %08x\n", regs_buff[20]); sbuf_printf(sb, "\tTDFPC\t %08x\n\n", regs_buff[21]); free(regs_buff, M_DEVBUF); #ifdef DUMP_DESCS { if_softc_ctx_t scctx = sc->shared; struct rx_ring *rxr = &rx_que->rxr; struct tx_ring *txr = &tx_que->txr; int ntxd = scctx->isc_ntxd[0]; int nrxd = scctx->isc_nrxd[0]; int j; for (j = 0; j < nrxd; j++) { u32 staterr = le32toh(rxr->rx_base[j].wb.upper.status_error); u32 length = le32toh(rxr->rx_base[j].wb.upper.length); sbuf_printf(sb, "\tReceive Descriptor Address %d: %08" PRIx64 " Error:%d Length:%d\n", j, rxr->rx_base[j].read.buffer_addr, staterr, length); } for (j = 0; j < min(ntxd, 256); j++) { unsigned int *ptr = (unsigned int *)&txr->tx_base[j]; sbuf_printf(sb, "\tTXD[%03d] [0]: %08x [1]: %08x [2]: %08x [3]: %08x eop: %d DD=%d\n", j, ptr[0], ptr[1], ptr[2], ptr[3], buf->eop, buf->eop != -1 ? txr->tx_base[buf->eop].upper.fields.status & E1000_TXD_STAT_DD : 0); } } #endif rc = sbuf_finish(sb); sbuf_delete(sb); return(rc); } static void * em_register(device_t dev) { return (&em_sctx_init); } static void * igb_register(device_t dev) { return (&igb_sctx_init); } static int em_set_num_queues(if_ctx_t ctx) { struct e1000_softc *sc = iflib_get_softc(ctx); int maxqueues; /* Sanity check based on HW */ switch (sc->hw.mac.type) { case e1000_82576: case e1000_82580: case e1000_i350: case e1000_i354: maxqueues = 8; break; case e1000_i210: case e1000_82575: maxqueues = 4; break; case e1000_i211: case e1000_82574: maxqueues = 2; break; default: maxqueues = 1; break; } return (maxqueues); } #define LEM_CAPS \ IFCAP_HWCSUM | IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING | \ IFCAP_VLAN_HWCSUM | IFCAP_WOL | IFCAP_VLAN_HWFILTER | IFCAP_TSO4 | \ IFCAP_LRO | IFCAP_VLAN_HWTSO | IFCAP_JUMBO_MTU | IFCAP_HWCSUM_IPV6 #define EM_CAPS \ IFCAP_HWCSUM | IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING | \ IFCAP_VLAN_HWCSUM | IFCAP_WOL | IFCAP_VLAN_HWFILTER | IFCAP_TSO4 | \ IFCAP_LRO | IFCAP_VLAN_HWTSO | IFCAP_JUMBO_MTU | IFCAP_HWCSUM_IPV6 | \ IFCAP_TSO6 #define IGB_CAPS \ IFCAP_HWCSUM | IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING | \ IFCAP_VLAN_HWCSUM | IFCAP_WOL | IFCAP_VLAN_HWFILTER | IFCAP_TSO4 | \ IFCAP_LRO | IFCAP_VLAN_HWTSO | IFCAP_JUMBO_MTU | IFCAP_HWCSUM_IPV6 | \ IFCAP_TSO6 /********************************************************************* * Device initialization routine * * The attach entry point is called when the driver is being loaded. * This routine identifies the type of hardware, allocates all resources * and initializes the hardware. * * return 0 on success, positive on failure *********************************************************************/ static int em_if_attach_pre(if_ctx_t ctx) { struct e1000_softc *sc; if_softc_ctx_t scctx; device_t dev; struct e1000_hw *hw; struct sysctl_oid_list *child; struct sysctl_ctx_list *ctx_list; int error = 0; INIT_DEBUGOUT("em_if_attach_pre: begin"); dev = iflib_get_dev(ctx); sc = iflib_get_softc(ctx); sc->ctx = sc->osdep.ctx = ctx; sc->dev = sc->osdep.dev = dev; scctx = sc->shared = iflib_get_softc_ctx(ctx); sc->media = iflib_get_media(ctx); hw = &sc->hw; sc->tx_process_limit = scctx->isc_ntxd[0]; /* Determine hardware and mac info */ em_identify_hardware(ctx); /* SYSCTL stuff */ ctx_list = device_get_sysctl_ctx(dev); child = SYSCTL_CHILDREN(device_get_sysctl_tree(dev)); SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO, "nvm", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc, 0, em_sysctl_nvm_info, "I", "NVM Information"); SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO, "fw_version", CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, sc, 0, em_sysctl_print_fw_version, "A", "Prints FW/NVM Versions"); SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO, "debug", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc, 0, em_sysctl_debug_info, "I", "Debug Information"); SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO, "fc", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc, 0, em_set_flowcntl, "I", "Flow Control"); SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO, "reg_dump", CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, sc, 0, em_get_regs, "A", "Dump Registers"); SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO, "rs_dump", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc, 0, em_get_rs, "I", "Dump RS indexes"); scctx->isc_tx_nsegments = EM_MAX_SCATTER; scctx->isc_nrxqsets_max = scctx->isc_ntxqsets_max = em_set_num_queues(ctx); if (bootverbose) device_printf(dev, "attach_pre capping queues at %d\n", scctx->isc_ntxqsets_max); if (hw->mac.type >= igb_mac_min) { scctx->isc_txqsizes[0] = roundup2(scctx->isc_ntxd[0] * sizeof(union e1000_adv_tx_desc), EM_DBA_ALIGN); scctx->isc_rxqsizes[0] = roundup2(scctx->isc_nrxd[0] * sizeof(union e1000_adv_rx_desc), EM_DBA_ALIGN); scctx->isc_txd_size[0] = sizeof(union e1000_adv_tx_desc); scctx->isc_rxd_size[0] = sizeof(union e1000_adv_rx_desc); scctx->isc_txrx = &igb_txrx; scctx->isc_tx_tso_segments_max = EM_MAX_SCATTER; scctx->isc_tx_tso_size_max = EM_TSO_SIZE; scctx->isc_tx_tso_segsize_max = EM_TSO_SEG_SIZE; scctx->isc_capabilities = scctx->isc_capenable = IGB_CAPS; scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP | CSUM_TSO | CSUM_IP6_TCP | CSUM_IP6_UDP; if (hw->mac.type != e1000_82575) scctx->isc_tx_csum_flags |= CSUM_SCTP | CSUM_IP6_SCTP; /* ** Some new devices, as with ixgbe, now may ** use a different BAR, so we need to keep ** track of which is used. */ scctx->isc_msix_bar = pci_msix_table_bar(dev); } else if (hw->mac.type >= em_mac_min) { scctx->isc_txqsizes[0] = roundup2(scctx->isc_ntxd[0]* sizeof(struct e1000_tx_desc), EM_DBA_ALIGN); scctx->isc_rxqsizes[0] = roundup2(scctx->isc_nrxd[0] * sizeof(union e1000_rx_desc_extended), EM_DBA_ALIGN); scctx->isc_txd_size[0] = sizeof(struct e1000_tx_desc); scctx->isc_rxd_size[0] = sizeof(union e1000_rx_desc_extended); scctx->isc_txrx = &em_txrx; scctx->isc_tx_tso_segments_max = EM_MAX_SCATTER; scctx->isc_tx_tso_size_max = EM_TSO_SIZE; scctx->isc_tx_tso_segsize_max = EM_TSO_SEG_SIZE; scctx->isc_capabilities = scctx->isc_capenable = EM_CAPS; /* * For EM-class devices, don't enable IFCAP_{TSO4,VLAN_HWTSO,TSO6} * by default as we don't have workarounds for all associated * silicon errata. E. g., with several MACs such as 82573E, * TSO only works at Gigabit speed and otherwise can cause the * hardware to hang (which also would be next to impossible to * work around given that already queued TSO-using descriptors * would need to be flushed and vlan(4) reconfigured at runtime * in case of a link speed change). Moreover, MACs like 82579 * still can hang at Gigabit even with all publicly documented * TSO workarounds implemented. Generally, the penality of * these workarounds is rather high and may involve copying * mbuf data around so advantages of TSO lapse. Still, TSO may * work for a few MACs of this class - at least when sticking * with Gigabit - in which case users may enable TSO manually. */ scctx->isc_capenable &= ~(IFCAP_TSO4 | IFCAP_VLAN_HWTSO | IFCAP_TSO6); scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP | CSUM_IP_TSO | CSUM_IP6_TCP | CSUM_IP6_UDP; /* * We support MSI-X with 82574 only, but indicate to iflib(4) * that it shall give MSI at least a try with other devices. */ if (hw->mac.type == e1000_82574) { scctx->isc_msix_bar = pci_msix_table_bar(dev); } else { scctx->isc_msix_bar = -1; scctx->isc_disable_msix = 1; } } else { scctx->isc_txqsizes[0] = roundup2((scctx->isc_ntxd[0] + 1) * sizeof(struct e1000_tx_desc), EM_DBA_ALIGN); scctx->isc_rxqsizes[0] = roundup2((scctx->isc_nrxd[0] + 1) * sizeof(struct e1000_rx_desc), EM_DBA_ALIGN); scctx->isc_txd_size[0] = sizeof(struct e1000_tx_desc); scctx->isc_rxd_size[0] = sizeof(struct e1000_rx_desc); scctx->isc_txrx = &lem_txrx; scctx->isc_tx_tso_segments_max = EM_MAX_SCATTER; scctx->isc_tx_tso_size_max = EM_TSO_SIZE; scctx->isc_tx_tso_segsize_max = EM_TSO_SEG_SIZE; scctx->isc_capabilities = scctx->isc_capenable = LEM_CAPS; + if (em_unsupported_tso) + scctx->isc_capabilities |= IFCAP_TSO6; /* * For LEM-class devices, don't enable IFCAP_{TSO4,VLAN_HWTSO} * by default as we don't have workarounds for all associated * silicon errata. TSO4 may work on > 82544 but its status * is unknown by the authors. Please report any success or failures. */ scctx->isc_capenable &= ~(IFCAP_TSO4 | IFCAP_VLAN_HWTSO); scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP | CSUM_IP_TSO | CSUM_IP6_TCP | CSUM_IP6_UDP; /* "PCI/PCI-X SDM 4.0" page 33 (b) - FDX requirement on these chips */ if (hw->mac.type == e1000_82542 || hw->mac.type == e1000_82547 || hw->mac.type == e1000_82547_rev_2) scctx->isc_capenable &= ~(IFCAP_HWCSUM | IFCAP_VLAN_HWCSUM | IFCAP_HWCSUM_IPV6); /* 82541ER doesn't do HW tagging */ if (hw->device_id == E1000_DEV_ID_82541ER || hw->device_id == E1000_DEV_ID_82541ER_LOM) scctx->isc_capenable &= ~IFCAP_VLAN_HWTAGGING; /* INTx only */ scctx->isc_msix_bar = 0; } /* Setup PCI resources */ if (em_allocate_pci_resources(ctx)) { device_printf(dev, "Allocation of PCI resources failed\n"); error = ENXIO; goto err_pci; } /* ** For ICH8 and family we need to ** map the flash memory, and this ** must happen after the MAC is ** identified */ if ((hw->mac.type == e1000_ich8lan) || (hw->mac.type == e1000_ich9lan) || (hw->mac.type == e1000_ich10lan) || (hw->mac.type == e1000_pchlan) || (hw->mac.type == e1000_pch2lan) || (hw->mac.type == e1000_pch_lpt)) { int rid = EM_BAR_TYPE_FLASH; sc->flash = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, RF_ACTIVE); if (sc->flash == NULL) { device_printf(dev, "Mapping of Flash failed\n"); error = ENXIO; goto err_pci; } /* This is used in the shared code */ hw->flash_address = (u8 *)sc->flash; sc->osdep.flash_bus_space_tag = rman_get_bustag(sc->flash); sc->osdep.flash_bus_space_handle = rman_get_bushandle(sc->flash); } /* ** In the new SPT device flash is not a ** separate BAR, rather it is also in BAR0, ** so use the same tag and an offset handle for the ** FLASH read/write macros in the shared code. */ else if (hw->mac.type >= e1000_pch_spt) { sc->osdep.flash_bus_space_tag = sc->osdep.mem_bus_space_tag; sc->osdep.flash_bus_space_handle = sc->osdep.mem_bus_space_handle + E1000_FLASH_BASE_ADDR; } /* Do Shared Code initialization */ error = e1000_setup_init_funcs(hw, true); if (error) { device_printf(dev, "Setup of Shared code failed, error %d\n", error); error = ENXIO; goto err_pci; } em_setup_msix(ctx); e1000_get_bus_info(hw); /* Set up some sysctls for the tunable interrupt delays */ em_add_int_delay_sysctl(sc, "rx_int_delay", "receive interrupt delay in usecs", &sc->rx_int_delay, E1000_REGISTER(hw, E1000_RDTR), em_rx_int_delay_dflt); em_add_int_delay_sysctl(sc, "tx_int_delay", "transmit interrupt delay in usecs", &sc->tx_int_delay, E1000_REGISTER(hw, E1000_TIDV), em_tx_int_delay_dflt); em_add_int_delay_sysctl(sc, "rx_abs_int_delay", "receive interrupt delay limit in usecs", &sc->rx_abs_int_delay, E1000_REGISTER(hw, E1000_RADV), em_rx_abs_int_delay_dflt); em_add_int_delay_sysctl(sc, "tx_abs_int_delay", "transmit interrupt delay limit in usecs", &sc->tx_abs_int_delay, E1000_REGISTER(hw, E1000_TADV), em_tx_abs_int_delay_dflt); em_add_int_delay_sysctl(sc, "itr", "interrupt delay limit in usecs/4", &sc->tx_itr, E1000_REGISTER(hw, E1000_ITR), DEFAULT_ITR); hw->mac.autoneg = DO_AUTO_NEG; hw->phy.autoneg_wait_to_complete = false; hw->phy.autoneg_advertised = AUTONEG_ADV_DEFAULT; if (hw->mac.type < em_mac_min) { e1000_init_script_state_82541(hw, true); e1000_set_tbi_compatibility_82543(hw, true); } /* Copper options */ if (hw->phy.media_type == e1000_media_type_copper) { hw->phy.mdix = AUTO_ALL_MODES; hw->phy.disable_polarity_correction = false; hw->phy.ms_type = EM_MASTER_SLAVE; } /* * Set the frame limits assuming * standard ethernet sized frames. */ scctx->isc_max_frame_size = hw->mac.max_frame_size = ETHERMTU + ETHER_HDR_LEN + ETHERNET_FCS_SIZE; /* * This controls when hardware reports transmit completion * status. */ hw->mac.report_tx_early = 1; /* Allocate multicast array memory. */ sc->mta = malloc(sizeof(u8) * ETHER_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES, M_DEVBUF, M_NOWAIT); if (sc->mta == NULL) { device_printf(dev, "Can not allocate multicast setup array\n"); error = ENOMEM; goto err_late; } + /* Clear the IFCAP_TSO auto mask */ + sc->tso_automasked = 0; + /* Check SOL/IDER usage */ if (e1000_check_reset_block(hw)) device_printf(dev, "PHY reset is blocked" " due to SOL/IDER session.\n"); /* Sysctl for setting Energy Efficient Ethernet */ hw->dev_spec.ich8lan.eee_disable = eee_setting; SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO, "eee_control", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc, 0, em_sysctl_eee, "I", "Disable Energy Efficient Ethernet"); /* ** Start from a known state, this is ** important in reading the nvm and ** mac from that. */ e1000_reset_hw(hw); /* Make sure we have a good EEPROM before we read from it */ if (e1000_validate_nvm_checksum(hw) < 0) { /* ** Some PCI-E parts fail the first check due to ** the link being in sleep state, call it again, ** if it fails a second time its a real issue. */ if (e1000_validate_nvm_checksum(hw) < 0) { device_printf(dev, "The EEPROM Checksum Is Not Valid\n"); error = EIO; goto err_late; } } /* Copy the permanent MAC address out of the EEPROM */ if (e1000_read_mac_addr(hw) < 0) { device_printf(dev, "EEPROM read error while reading MAC" " address\n"); error = EIO; goto err_late; } if (!em_is_valid_ether_addr(hw->mac.addr)) { if (sc->vf_ifp) { ether_gen_addr(iflib_get_ifp(ctx), (struct ether_addr *)hw->mac.addr); } else { device_printf(dev, "Invalid MAC address\n"); error = EIO; goto err_late; } } /* Save the EEPROM/NVM versions, must be done under IFLIB_CTX_LOCK */ em_fw_version_locked(ctx); em_print_fw_version(sc); /* * Get Wake-on-Lan and Management info for later use */ em_get_wakeup(ctx); /* Enable only WOL MAGIC by default */ scctx->isc_capenable &= ~IFCAP_WOL; if (sc->wol != 0) scctx->isc_capenable |= IFCAP_WOL_MAGIC; iflib_set_mac(ctx, hw->mac.addr); return (0); err_late: em_release_hw_control(sc); err_pci: em_free_pci_resources(ctx); free(sc->mta, M_DEVBUF); return (error); } static int em_if_attach_post(if_ctx_t ctx) { struct e1000_softc *sc = iflib_get_softc(ctx); struct e1000_hw *hw = &sc->hw; int error = 0; /* Setup OS specific network interface */ error = em_setup_interface(ctx); if (error != 0) { device_printf(sc->dev, "Interface setup failed: %d\n", error); goto err_late; } em_reset(ctx); /* Initialize statistics */ em_update_stats_counters(sc); hw->mac.get_link_status = 1; em_if_update_admin_status(ctx); em_add_hw_stats(sc); /* Non-AMT based hardware can now take control from firmware */ if (sc->has_manage && !sc->has_amt) em_get_hw_control(sc); INIT_DEBUGOUT("em_if_attach_post: end"); return (0); err_late: /* upon attach_post() error, iflib calls _if_detach() to free resources. */ return (error); } /********************************************************************* * Device removal routine * * The detach entry point is called when the driver is being removed. * This routine stops the adapter and deallocates all the resources * that were allocated for driver operation. * * return 0 on success, positive on failure *********************************************************************/ static int em_if_detach(if_ctx_t ctx) { struct e1000_softc *sc = iflib_get_softc(ctx); INIT_DEBUGOUT("em_if_detach: begin"); e1000_phy_hw_reset(&sc->hw); em_release_manageability(sc); em_release_hw_control(sc); em_free_pci_resources(ctx); free(sc->mta, M_DEVBUF); sc->mta = NULL; return (0); } /********************************************************************* * * Shutdown entry point * **********************************************************************/ static int em_if_shutdown(if_ctx_t ctx) { return em_if_suspend(ctx); } /* * Suspend/resume device methods. */ static int em_if_suspend(if_ctx_t ctx) { struct e1000_softc *sc = iflib_get_softc(ctx); em_release_manageability(sc); em_release_hw_control(sc); em_enable_wakeup(ctx); return (0); } static int em_if_resume(if_ctx_t ctx) { struct e1000_softc *sc = iflib_get_softc(ctx); if (sc->hw.mac.type == e1000_pch2lan) e1000_resume_workarounds_pchlan(&sc->hw); em_if_init(ctx); em_init_manageability(sc); return(0); } static int em_if_mtu_set(if_ctx_t ctx, uint32_t mtu) { int max_frame_size; struct e1000_softc *sc = iflib_get_softc(ctx); if_softc_ctx_t scctx = iflib_get_softc_ctx(ctx); IOCTL_DEBUGOUT("ioctl rcv'd: SIOCSIFMTU (Set Interface MTU)"); switch (sc->hw.mac.type) { case e1000_82571: case e1000_82572: case e1000_ich9lan: case e1000_ich10lan: case e1000_pch2lan: case e1000_pch_lpt: case e1000_pch_spt: case e1000_pch_cnp: case e1000_pch_tgp: case e1000_pch_adp: case e1000_pch_mtp: case e1000_pch_ptp: case e1000_82574: case e1000_82583: case e1000_80003es2lan: /* 9K Jumbo Frame size */ max_frame_size = 9234; break; case e1000_pchlan: max_frame_size = 4096; break; case e1000_82542: case e1000_ich8lan: /* Adapters that do not support jumbo frames */ max_frame_size = ETHER_MAX_LEN; break; default: if (sc->hw.mac.type >= igb_mac_min) max_frame_size = 9234; else /* lem */ max_frame_size = MAX_JUMBO_FRAME_SIZE; } if (mtu > max_frame_size - ETHER_HDR_LEN - ETHER_CRC_LEN) { return (EINVAL); } scctx->isc_max_frame_size = sc->hw.mac.max_frame_size = mtu + ETHER_HDR_LEN + ETHER_CRC_LEN; return (0); } /********************************************************************* * Init entry point * * This routine is used in two ways. It is used by the stack as * init entry point in network interface structure. It is also used * by the driver as a hw/sw initialization routine to get to a * consistent state. * **********************************************************************/ static void em_if_init(if_ctx_t ctx) { struct e1000_softc *sc = iflib_get_softc(ctx); if_softc_ctx_t scctx = sc->shared; if_t ifp = iflib_get_ifp(ctx); struct em_tx_queue *tx_que; int i; INIT_DEBUGOUT("em_if_init: begin"); /* Get the latest mac address, User can use a LAA */ bcopy(if_getlladdr(ifp), sc->hw.mac.addr, ETHER_ADDR_LEN); /* Put the address into the Receive Address Array */ e1000_rar_set(&sc->hw, sc->hw.mac.addr, 0); /* * With the 82571 adapter, RAR[0] may be overwritten * when the other port is reset, we make a duplicate * in RAR[14] for that eventuality, this assures * the interface continues to function. */ if (sc->hw.mac.type == e1000_82571) { e1000_set_laa_state_82571(&sc->hw, true); e1000_rar_set(&sc->hw, sc->hw.mac.addr, E1000_RAR_ENTRIES - 1); } /* Initialize the hardware */ em_reset(ctx); em_if_update_admin_status(ctx); for (i = 0, tx_que = sc->tx_queues; i < sc->tx_num_queues; i++, tx_que++) { struct tx_ring *txr = &tx_que->txr; txr->tx_rs_cidx = txr->tx_rs_pidx; /* Initialize the last processed descriptor to be the end of * the ring, rather than the start, so that we avoid an * off-by-one error when calculating how many descriptors are * done in the credits_update function. */ txr->tx_cidx_processed = scctx->isc_ntxd[0] - 1; } /* Setup VLAN support, basic and offload if available */ E1000_WRITE_REG(&sc->hw, E1000_VET, ETHERTYPE_VLAN); /* Clear bad data from Rx FIFOs */ if (sc->hw.mac.type >= igb_mac_min) e1000_rx_fifo_flush_base(&sc->hw); /* Configure for OS presence */ em_init_manageability(sc); /* Prepare transmit descriptors and buffers */ em_initialize_transmit_unit(ctx); /* Setup Multicast table */ em_if_multi_set(ctx); sc->rx_mbuf_sz = iflib_get_rx_mbuf_sz(ctx); em_initialize_receive_unit(ctx); /* Set up VLAN support and filter */ em_setup_vlan_hw_support(ctx); /* Don't lose promiscuous settings */ em_if_set_promisc(ctx, if_getflags(ifp)); e1000_clear_hw_cntrs_base_generic(&sc->hw); /* MSI-X configuration for 82574 */ if (sc->hw.mac.type == e1000_82574) { int tmp = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT); tmp |= E1000_CTRL_EXT_PBA_CLR; E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT, tmp); /* Set the IVAR - interrupt vector routing. */ E1000_WRITE_REG(&sc->hw, E1000_IVAR, sc->ivars); } else if (sc->intr_type == IFLIB_INTR_MSIX) /* Set up queue routing */ igb_configure_queues(sc); /* this clears any pending interrupts */ E1000_READ_REG(&sc->hw, E1000_ICR); E1000_WRITE_REG(&sc->hw, E1000_ICS, E1000_ICS_LSC); /* AMT based hardware can now take control from firmware */ if (sc->has_manage && sc->has_amt) em_get_hw_control(sc); /* Set Energy Efficient Ethernet */ if (sc->hw.mac.type >= igb_mac_min && sc->hw.phy.media_type == e1000_media_type_copper) { if (sc->hw.mac.type == e1000_i354) e1000_set_eee_i354(&sc->hw, true, true); else e1000_set_eee_i350(&sc->hw, true, true); } } /********************************************************************* * * Fast Legacy/MSI Combined Interrupt Service routine * *********************************************************************/ int em_intr(void *arg) { struct e1000_softc *sc = arg; if_ctx_t ctx = sc->ctx; u32 reg_icr; reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR); /* Hot eject? */ if (reg_icr == 0xffffffff) return FILTER_STRAY; /* Definitely not our interrupt. */ if (reg_icr == 0x0) return FILTER_STRAY; /* * Starting with the 82571 chip, bit 31 should be used to * determine whether the interrupt belongs to us. */ if (sc->hw.mac.type >= e1000_82571 && (reg_icr & E1000_ICR_INT_ASSERTED) == 0) return FILTER_STRAY; /* * Only MSI-X interrupts have one-shot behavior by taking advantage * of the EIAC register. Thus, explicitly disable interrupts. This * also works around the MSI message reordering errata on certain * systems. */ IFDI_INTR_DISABLE(ctx); /* Link status change */ if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) em_handle_link(ctx); if (reg_icr & E1000_ICR_RXO) sc->rx_overruns++; return (FILTER_SCHEDULE_THREAD); } static int em_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid) { struct e1000_softc *sc = iflib_get_softc(ctx); struct em_rx_queue *rxq = &sc->rx_queues[rxqid]; E1000_WRITE_REG(&sc->hw, E1000_IMS, rxq->eims); return (0); } static int em_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid) { struct e1000_softc *sc = iflib_get_softc(ctx); struct em_tx_queue *txq = &sc->tx_queues[txqid]; E1000_WRITE_REG(&sc->hw, E1000_IMS, txq->eims); return (0); } static int igb_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid) { struct e1000_softc *sc = iflib_get_softc(ctx); struct em_rx_queue *rxq = &sc->rx_queues[rxqid]; E1000_WRITE_REG(&sc->hw, E1000_EIMS, rxq->eims); return (0); } static int igb_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid) { struct e1000_softc *sc = iflib_get_softc(ctx); struct em_tx_queue *txq = &sc->tx_queues[txqid]; E1000_WRITE_REG(&sc->hw, E1000_EIMS, txq->eims); return (0); } /********************************************************************* * * MSI-X RX Interrupt Service routine * **********************************************************************/ static int em_msix_que(void *arg) { struct em_rx_queue *que = arg; ++que->irqs; return (FILTER_SCHEDULE_THREAD); } /********************************************************************* * * MSI-X Link Fast Interrupt Service routine * **********************************************************************/ static int em_msix_link(void *arg) { struct e1000_softc *sc = arg; u32 reg_icr; ++sc->link_irq; MPASS(sc->hw.back != NULL); reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR); if (reg_icr & E1000_ICR_RXO) sc->rx_overruns++; if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) em_handle_link(sc->ctx); /* Re-arm unconditionally */ if (sc->hw.mac.type >= igb_mac_min) { E1000_WRITE_REG(&sc->hw, E1000_IMS, E1000_IMS_LSC); E1000_WRITE_REG(&sc->hw, E1000_EIMS, sc->link_mask); } else if (sc->hw.mac.type == e1000_82574) { E1000_WRITE_REG(&sc->hw, E1000_IMS, E1000_IMS_LSC | E1000_IMS_OTHER); /* * Because we must read the ICR for this interrupt it may * clear other causes using autoclear, for this reason we * simply create a soft interrupt for all these vectors. */ if (reg_icr) E1000_WRITE_REG(&sc->hw, E1000_ICS, sc->ims); } else E1000_WRITE_REG(&sc->hw, E1000_IMS, E1000_IMS_LSC); return (FILTER_HANDLED); } static void em_handle_link(void *context) { if_ctx_t ctx = context; struct e1000_softc *sc = iflib_get_softc(ctx); sc->hw.mac.get_link_status = 1; iflib_admin_intr_deferred(ctx); } /********************************************************************* * * Media Ioctl callback * * This routine is called whenever the user queries the status of * the interface using ifconfig. * **********************************************************************/ static void em_if_media_status(if_ctx_t ctx, struct ifmediareq *ifmr) { struct e1000_softc *sc = iflib_get_softc(ctx); u_char fiber_type = IFM_1000_SX; INIT_DEBUGOUT("em_if_media_status: begin"); iflib_admin_intr_deferred(ctx); ifmr->ifm_status = IFM_AVALID; ifmr->ifm_active = IFM_ETHER; if (!sc->link_active) { return; } ifmr->ifm_status |= IFM_ACTIVE; if ((sc->hw.phy.media_type == e1000_media_type_fiber) || (sc->hw.phy.media_type == e1000_media_type_internal_serdes)) { if (sc->hw.mac.type == e1000_82545) fiber_type = IFM_1000_LX; ifmr->ifm_active |= fiber_type | IFM_FDX; } else { switch (sc->link_speed) { case 10: ifmr->ifm_active |= IFM_10_T; break; case 100: ifmr->ifm_active |= IFM_100_TX; break; case 1000: ifmr->ifm_active |= IFM_1000_T; break; } if (sc->link_duplex == FULL_DUPLEX) ifmr->ifm_active |= IFM_FDX; else ifmr->ifm_active |= IFM_HDX; } } /********************************************************************* * * Media Ioctl callback * * This routine is called when the user changes speed/duplex using * media/mediopt option with ifconfig. * **********************************************************************/ static int em_if_media_change(if_ctx_t ctx) { struct e1000_softc *sc = iflib_get_softc(ctx); struct ifmedia *ifm = iflib_get_media(ctx); INIT_DEBUGOUT("em_if_media_change: begin"); if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) return (EINVAL); switch (IFM_SUBTYPE(ifm->ifm_media)) { case IFM_AUTO: sc->hw.mac.autoneg = DO_AUTO_NEG; sc->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT; break; case IFM_1000_LX: case IFM_1000_SX: case IFM_1000_T: sc->hw.mac.autoneg = DO_AUTO_NEG; sc->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL; break; case IFM_100_TX: sc->hw.mac.autoneg = false; sc->hw.phy.autoneg_advertised = 0; if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) sc->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL; else sc->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF; break; case IFM_10_T: sc->hw.mac.autoneg = false; sc->hw.phy.autoneg_advertised = 0; if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) sc->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL; else sc->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF; break; default: device_printf(sc->dev, "Unsupported media type\n"); } em_if_init(ctx); return (0); } static int em_if_set_promisc(if_ctx_t ctx, int flags) { struct e1000_softc *sc = iflib_get_softc(ctx); if_t ifp = iflib_get_ifp(ctx); u32 reg_rctl; int mcnt = 0; reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL); reg_rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_UPE); if (flags & IFF_ALLMULTI) mcnt = MAX_NUM_MULTICAST_ADDRESSES; else mcnt = min(if_llmaddr_count(ifp), MAX_NUM_MULTICAST_ADDRESSES); if (mcnt < MAX_NUM_MULTICAST_ADDRESSES) reg_rctl &= (~E1000_RCTL_MPE); E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl); if (flags & IFF_PROMISC) { reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE); em_if_vlan_filter_disable(sc); /* Turn this on if you want to see bad packets */ if (em_debug_sbp) reg_rctl |= E1000_RCTL_SBP; E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl); } else { if (flags & IFF_ALLMULTI) { reg_rctl |= E1000_RCTL_MPE; reg_rctl &= ~E1000_RCTL_UPE; E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl); } if (em_if_vlan_filter_used(ctx)) em_if_vlan_filter_enable(sc); } return (0); } static u_int em_copy_maddr(void *arg, struct sockaddr_dl *sdl, u_int idx) { u8 *mta = arg; if (idx == MAX_NUM_MULTICAST_ADDRESSES) return (0); bcopy(LLADDR(sdl), &mta[idx * ETHER_ADDR_LEN], ETHER_ADDR_LEN); return (1); } /********************************************************************* * Multicast Update * * This routine is called whenever multicast address list is updated. * **********************************************************************/ static void em_if_multi_set(if_ctx_t ctx) { struct e1000_softc *sc = iflib_get_softc(ctx); if_t ifp = iflib_get_ifp(ctx); u8 *mta; /* Multicast array memory */ u32 reg_rctl = 0; int mcnt = 0; IOCTL_DEBUGOUT("em_set_multi: begin"); mta = sc->mta; bzero(mta, sizeof(u8) * ETHER_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES); if (sc->hw.mac.type == e1000_82542 && sc->hw.revision_id == E1000_REVISION_2) { reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL); if (sc->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE) e1000_pci_clear_mwi(&sc->hw); reg_rctl |= E1000_RCTL_RST; E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl); msec_delay(5); } mcnt = if_foreach_llmaddr(ifp, em_copy_maddr, mta); if (mcnt < MAX_NUM_MULTICAST_ADDRESSES) e1000_update_mc_addr_list(&sc->hw, mta, mcnt); reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL); if (if_getflags(ifp) & IFF_PROMISC) reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE); else if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES || if_getflags(ifp) & IFF_ALLMULTI) { reg_rctl |= E1000_RCTL_MPE; reg_rctl &= ~E1000_RCTL_UPE; } else reg_rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE); E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl); if (sc->hw.mac.type == e1000_82542 && sc->hw.revision_id == E1000_REVISION_2) { reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL); reg_rctl &= ~E1000_RCTL_RST; E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl); msec_delay(5); if (sc->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE) e1000_pci_set_mwi(&sc->hw); } } /********************************************************************* * Timer routine * * This routine schedules em_if_update_admin_status() to check for * link status and to gather statistics as well as to perform some * controller-specific hardware patting. * **********************************************************************/ static void em_if_timer(if_ctx_t ctx, uint16_t qid) { if (qid != 0) return; iflib_admin_intr_deferred(ctx); } static void em_if_update_admin_status(if_ctx_t ctx) { struct e1000_softc *sc = iflib_get_softc(ctx); struct e1000_hw *hw = &sc->hw; device_t dev = iflib_get_dev(ctx); u32 link_check, thstat, ctrl; + bool automasked = false; link_check = thstat = ctrl = 0; /* Get the cached link value or read phy for real */ switch (hw->phy.media_type) { case e1000_media_type_copper: if (hw->mac.get_link_status) { if (hw->mac.type == e1000_pch_spt) msec_delay(50); /* Do the work to read phy */ e1000_check_for_link(hw); link_check = !hw->mac.get_link_status; if (link_check) /* ESB2 fix */ e1000_cfg_on_link_up(hw); } else { link_check = true; } break; case e1000_media_type_fiber: e1000_check_for_link(hw); link_check = (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU); break; case e1000_media_type_internal_serdes: e1000_check_for_link(hw); link_check = hw->mac.serdes_has_link; break; /* VF device is type_unknown */ case e1000_media_type_unknown: e1000_check_for_link(hw); link_check = !hw->mac.get_link_status; /* FALLTHROUGH */ default: break; } /* Check for thermal downshift or shutdown */ if (hw->mac.type == e1000_i350) { thstat = E1000_READ_REG(hw, E1000_THSTAT); ctrl = E1000_READ_REG(hw, E1000_CTRL_EXT); } /* Now check for a transition */ if (link_check && (sc->link_active == 0)) { e1000_get_speed_and_duplex(hw, &sc->link_speed, &sc->link_duplex); /* Check if we must disable SPEED_MODE bit on PCI-E */ if ((sc->link_speed != SPEED_1000) && ((hw->mac.type == e1000_82571) || (hw->mac.type == e1000_82572))) { int tarc0; tarc0 = E1000_READ_REG(hw, E1000_TARC(0)); tarc0 &= ~TARC_SPEED_MODE_BIT; E1000_WRITE_REG(hw, E1000_TARC(0), tarc0); } if (bootverbose) device_printf(dev, "Link is up %d Mbps %s\n", sc->link_speed, ((sc->link_duplex == FULL_DUPLEX) ? "Full Duplex" : "Half Duplex")); sc->link_active = 1; sc->smartspeed = 0; if ((ctrl & E1000_CTRL_EXT_LINK_MODE_MASK) == E1000_CTRL_EXT_LINK_MODE_GMII && (thstat & E1000_THSTAT_LINK_THROTTLE)) device_printf(dev, "Link: thermal downshift\n"); /* Delay Link Up for Phy update */ if (((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) && (hw->phy.id == I210_I_PHY_ID)) msec_delay(I210_LINK_DELAY); /* Reset if the media type changed. */ if (hw->dev_spec._82575.media_changed && hw->mac.type >= igb_mac_min) { hw->dev_spec._82575.media_changed = false; sc->flags |= IGB_MEDIA_RESET; em_reset(ctx); } - iflib_link_state_change(ctx, LINK_STATE_UP, - IF_Mbps(sc->link_speed)); + /* Only do TSO on gigabit Ethernet for older chips due to errata */ + if (hw->mac.type < igb_mac_min) + automasked = em_automask_tso(ctx); + + /* Automasking resets the interface, so don't mark it up yet */ + if (!automasked) + iflib_link_state_change(ctx, LINK_STATE_UP, + IF_Mbps(sc->link_speed)); } else if (!link_check && (sc->link_active == 1)) { sc->link_speed = 0; sc->link_duplex = 0; sc->link_active = 0; iflib_link_state_change(ctx, LINK_STATE_DOWN, 0); } em_update_stats_counters(sc); /* Reset LAA into RAR[0] on 82571 */ if (hw->mac.type == e1000_82571 && e1000_get_laa_state_82571(hw)) e1000_rar_set(hw, hw->mac.addr, 0); if (hw->mac.type < em_mac_min) lem_smartspeed(sc); } static void em_if_watchdog_reset(if_ctx_t ctx) { struct e1000_softc *sc = iflib_get_softc(ctx); /* * Just count the event; iflib(4) will already trigger a * sufficient reset of the controller. */ sc->watchdog_events++; } /********************************************************************* * * This routine disables all traffic on the adapter by issuing a * global reset on the MAC. * **********************************************************************/ static void em_if_stop(if_ctx_t ctx) { struct e1000_softc *sc = iflib_get_softc(ctx); INIT_DEBUGOUT("em_if_stop: begin"); /* I219 needs special flushing to avoid hangs */ if (sc->hw.mac.type >= e1000_pch_spt && sc->hw.mac.type < igb_mac_min) em_flush_desc_rings(sc); e1000_reset_hw(&sc->hw); if (sc->hw.mac.type >= e1000_82544) E1000_WRITE_REG(&sc->hw, E1000_WUFC, 0); e1000_led_off(&sc->hw); e1000_cleanup_led(&sc->hw); } /********************************************************************* * * Determine hardware revision. * **********************************************************************/ static void em_identify_hardware(if_ctx_t ctx) { device_t dev = iflib_get_dev(ctx); struct e1000_softc *sc = iflib_get_softc(ctx); /* Make sure our PCI config space has the necessary stuff set */ sc->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2); /* Save off the information about this board */ sc->hw.vendor_id = pci_get_vendor(dev); sc->hw.device_id = pci_get_device(dev); sc->hw.revision_id = pci_read_config(dev, PCIR_REVID, 1); sc->hw.subsystem_vendor_id = pci_read_config(dev, PCIR_SUBVEND_0, 2); sc->hw.subsystem_device_id = pci_read_config(dev, PCIR_SUBDEV_0, 2); /* Do Shared Code Init and Setup */ if (e1000_set_mac_type(&sc->hw)) { device_printf(dev, "Setup init failure\n"); return; } /* Are we a VF device? */ if ((sc->hw.mac.type == e1000_vfadapt) || (sc->hw.mac.type == e1000_vfadapt_i350)) sc->vf_ifp = 1; else sc->vf_ifp = 0; } static int em_allocate_pci_resources(if_ctx_t ctx) { struct e1000_softc *sc = iflib_get_softc(ctx); device_t dev = iflib_get_dev(ctx); int rid, val; rid = PCIR_BAR(0); sc->memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, RF_ACTIVE); if (sc->memory == NULL) { device_printf(dev, "Unable to allocate bus resource: memory\n"); return (ENXIO); } sc->osdep.mem_bus_space_tag = rman_get_bustag(sc->memory); sc->osdep.mem_bus_space_handle = rman_get_bushandle(sc->memory); sc->hw.hw_addr = (u8 *)&sc->osdep.mem_bus_space_handle; /* Only older adapters use IO mapping */ if (sc->hw.mac.type < em_mac_min && sc->hw.mac.type > e1000_82543) { /* Figure our where our IO BAR is ? */ for (rid = PCIR_BAR(0); rid < PCIR_CIS;) { val = pci_read_config(dev, rid, 4); if (EM_BAR_TYPE(val) == EM_BAR_TYPE_IO) { break; } rid += 4; /* check for 64bit BAR */ if (EM_BAR_MEM_TYPE(val) == EM_BAR_MEM_TYPE_64BIT) rid += 4; } if (rid >= PCIR_CIS) { device_printf(dev, "Unable to locate IO BAR\n"); return (ENXIO); } sc->ioport = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid, RF_ACTIVE); if (sc->ioport == NULL) { device_printf(dev, "Unable to allocate bus resource: " "ioport\n"); return (ENXIO); } sc->hw.io_base = 0; sc->osdep.io_bus_space_tag = rman_get_bustag(sc->ioport); sc->osdep.io_bus_space_handle = rman_get_bushandle(sc->ioport); } sc->hw.back = &sc->osdep; return (0); } /********************************************************************* * * Set up the MSI-X Interrupt handlers * **********************************************************************/ static int em_if_msix_intr_assign(if_ctx_t ctx, int msix) { struct e1000_softc *sc = iflib_get_softc(ctx); struct em_rx_queue *rx_que = sc->rx_queues; struct em_tx_queue *tx_que = sc->tx_queues; int error, rid, i, vector = 0, rx_vectors; char buf[16]; /* First set up ring resources */ for (i = 0; i < sc->rx_num_queues; i++, rx_que++, vector++) { rid = vector + 1; snprintf(buf, sizeof(buf), "rxq%d", i); error = iflib_irq_alloc_generic(ctx, &rx_que->que_irq, rid, IFLIB_INTR_RXTX, em_msix_que, rx_que, rx_que->me, buf); if (error) { device_printf(iflib_get_dev(ctx), "Failed to allocate que int %d err: %d", i, error); sc->rx_num_queues = i + 1; goto fail; } rx_que->msix = vector; /* * Set the bit to enable interrupt * in E1000_IMS -- bits 20 and 21 * are for RX0 and RX1, note this has * NOTHING to do with the MSI-X vector */ if (sc->hw.mac.type == e1000_82574) { rx_que->eims = 1 << (20 + i); sc->ims |= rx_que->eims; sc->ivars |= (8 | rx_que->msix) << (i * 4); } else if (sc->hw.mac.type == e1000_82575) rx_que->eims = E1000_EICR_TX_QUEUE0 << vector; else rx_que->eims = 1 << vector; } rx_vectors = vector; vector = 0; for (i = 0; i < sc->tx_num_queues; i++, tx_que++, vector++) { snprintf(buf, sizeof(buf), "txq%d", i); tx_que = &sc->tx_queues[i]; iflib_softirq_alloc_generic(ctx, &sc->rx_queues[i % sc->rx_num_queues].que_irq, IFLIB_INTR_TX, tx_que, tx_que->me, buf); tx_que->msix = (vector % sc->rx_num_queues); /* * Set the bit to enable interrupt * in E1000_IMS -- bits 22 and 23 * are for TX0 and TX1, note this has * NOTHING to do with the MSI-X vector */ if (sc->hw.mac.type == e1000_82574) { tx_que->eims = 1 << (22 + i); sc->ims |= tx_que->eims; sc->ivars |= (8 | tx_que->msix) << (8 + (i * 4)); } else if (sc->hw.mac.type == e1000_82575) { tx_que->eims = E1000_EICR_TX_QUEUE0 << i; } else { tx_que->eims = 1 << i; } } /* Link interrupt */ rid = rx_vectors + 1; error = iflib_irq_alloc_generic(ctx, &sc->irq, rid, IFLIB_INTR_ADMIN, em_msix_link, sc, 0, "aq"); if (error) { device_printf(iflib_get_dev(ctx), "Failed to register admin handler"); goto fail; } sc->linkvec = rx_vectors; if (sc->hw.mac.type < igb_mac_min) { sc->ivars |= (8 | rx_vectors) << 16; sc->ivars |= 0x80000000; /* Enable the "Other" interrupt type for link status change */ sc->ims |= E1000_IMS_OTHER; } return (0); fail: iflib_irq_free(ctx, &sc->irq); rx_que = sc->rx_queues; for (int i = 0; i < sc->rx_num_queues; i++, rx_que++) iflib_irq_free(ctx, &rx_que->que_irq); return (error); } static void igb_configure_queues(struct e1000_softc *sc) { struct e1000_hw *hw = &sc->hw; struct em_rx_queue *rx_que; struct em_tx_queue *tx_que; u32 tmp, ivar = 0, newitr = 0; /* First turn on RSS capability */ if (hw->mac.type != e1000_82575) E1000_WRITE_REG(hw, E1000_GPIE, E1000_GPIE_MSIX_MODE | E1000_GPIE_EIAME | E1000_GPIE_PBA | E1000_GPIE_NSICR); /* Turn on MSI-X */ switch (hw->mac.type) { case e1000_82580: case e1000_i350: case e1000_i354: case e1000_i210: case e1000_i211: case e1000_vfadapt: case e1000_vfadapt_i350: /* RX entries */ for (int i = 0; i < sc->rx_num_queues; i++) { u32 index = i >> 1; ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index); rx_que = &sc->rx_queues[i]; if (i & 1) { ivar &= 0xFF00FFFF; ivar |= (rx_que->msix | E1000_IVAR_VALID) << 16; } else { ivar &= 0xFFFFFF00; ivar |= rx_que->msix | E1000_IVAR_VALID; } E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar); } /* TX entries */ for (int i = 0; i < sc->tx_num_queues; i++) { u32 index = i >> 1; ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index); tx_que = &sc->tx_queues[i]; if (i & 1) { ivar &= 0x00FFFFFF; ivar |= (tx_que->msix | E1000_IVAR_VALID) << 24; } else { ivar &= 0xFFFF00FF; ivar |= (tx_que->msix | E1000_IVAR_VALID) << 8; } E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar); sc->que_mask |= tx_que->eims; } /* And for the link interrupt */ ivar = (sc->linkvec | E1000_IVAR_VALID) << 8; sc->link_mask = 1 << sc->linkvec; E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar); break; case e1000_82576: /* RX entries */ for (int i = 0; i < sc->rx_num_queues; i++) { u32 index = i & 0x7; /* Each IVAR has two entries */ ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index); rx_que = &sc->rx_queues[i]; if (i < 8) { ivar &= 0xFFFFFF00; ivar |= rx_que->msix | E1000_IVAR_VALID; } else { ivar &= 0xFF00FFFF; ivar |= (rx_que->msix | E1000_IVAR_VALID) << 16; } E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar); sc->que_mask |= rx_que->eims; } /* TX entries */ for (int i = 0; i < sc->tx_num_queues; i++) { u32 index = i & 0x7; /* Each IVAR has two entries */ ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index); tx_que = &sc->tx_queues[i]; if (i < 8) { ivar &= 0xFFFF00FF; ivar |= (tx_que->msix | E1000_IVAR_VALID) << 8; } else { ivar &= 0x00FFFFFF; ivar |= (tx_que->msix | E1000_IVAR_VALID) << 24; } E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar); sc->que_mask |= tx_que->eims; } /* And for the link interrupt */ ivar = (sc->linkvec | E1000_IVAR_VALID) << 8; sc->link_mask = 1 << sc->linkvec; E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar); break; case e1000_82575: /* enable MSI-X support*/ tmp = E1000_READ_REG(hw, E1000_CTRL_EXT); tmp |= E1000_CTRL_EXT_PBA_CLR; /* Auto-Mask interrupts upon ICR read. */ tmp |= E1000_CTRL_EXT_EIAME; tmp |= E1000_CTRL_EXT_IRCA; E1000_WRITE_REG(hw, E1000_CTRL_EXT, tmp); /* Queues */ for (int i = 0; i < sc->rx_num_queues; i++) { rx_que = &sc->rx_queues[i]; tmp = E1000_EICR_RX_QUEUE0 << i; tmp |= E1000_EICR_TX_QUEUE0 << i; rx_que->eims = tmp; E1000_WRITE_REG_ARRAY(hw, E1000_MSIXBM(0), i, rx_que->eims); sc->que_mask |= rx_que->eims; } /* Link */ E1000_WRITE_REG(hw, E1000_MSIXBM(sc->linkvec), E1000_EIMS_OTHER); sc->link_mask |= E1000_EIMS_OTHER; default: break; } /* Set the starting interrupt rate */ if (em_max_interrupt_rate > 0) newitr = (4000000 / em_max_interrupt_rate) & 0x7FFC; if (hw->mac.type == e1000_82575) newitr |= newitr << 16; else newitr |= E1000_EITR_CNT_IGNR; for (int i = 0; i < sc->rx_num_queues; i++) { rx_que = &sc->rx_queues[i]; E1000_WRITE_REG(hw, E1000_EITR(rx_que->msix), newitr); } return; } static void em_free_pci_resources(if_ctx_t ctx) { struct e1000_softc *sc = iflib_get_softc(ctx); struct em_rx_queue *que = sc->rx_queues; device_t dev = iflib_get_dev(ctx); /* Release all MSI-X queue resources */ if (sc->intr_type == IFLIB_INTR_MSIX) iflib_irq_free(ctx, &sc->irq); if (que != NULL) { for (int i = 0; i < sc->rx_num_queues; i++, que++) { iflib_irq_free(ctx, &que->que_irq); } } if (sc->memory != NULL) { bus_release_resource(dev, SYS_RES_MEMORY, rman_get_rid(sc->memory), sc->memory); sc->memory = NULL; } if (sc->flash != NULL) { bus_release_resource(dev, SYS_RES_MEMORY, rman_get_rid(sc->flash), sc->flash); sc->flash = NULL; } if (sc->ioport != NULL) { bus_release_resource(dev, SYS_RES_IOPORT, rman_get_rid(sc->ioport), sc->ioport); sc->ioport = NULL; } } /* Set up MSI or MSI-X */ static int em_setup_msix(if_ctx_t ctx) { struct e1000_softc *sc = iflib_get_softc(ctx); if (sc->hw.mac.type == e1000_82574) { em_enable_vectors_82574(ctx); } return (0); } /********************************************************************* * * Workaround for SmartSpeed on 82541 and 82547 controllers * **********************************************************************/ static void lem_smartspeed(struct e1000_softc *sc) { u16 phy_tmp; if (sc->link_active || (sc->hw.phy.type != e1000_phy_igp) || sc->hw.mac.autoneg == 0 || (sc->hw.phy.autoneg_advertised & ADVERTISE_1000_FULL) == 0) return; if (sc->smartspeed == 0) { /* If Master/Slave config fault is asserted twice, * we assume back-to-back */ e1000_read_phy_reg(&sc->hw, PHY_1000T_STATUS, &phy_tmp); if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT)) return; e1000_read_phy_reg(&sc->hw, PHY_1000T_STATUS, &phy_tmp); if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) { e1000_read_phy_reg(&sc->hw, PHY_1000T_CTRL, &phy_tmp); if(phy_tmp & CR_1000T_MS_ENABLE) { phy_tmp &= ~CR_1000T_MS_ENABLE; e1000_write_phy_reg(&sc->hw, PHY_1000T_CTRL, phy_tmp); sc->smartspeed++; if(sc->hw.mac.autoneg && !e1000_copper_link_autoneg(&sc->hw) && !e1000_read_phy_reg(&sc->hw, PHY_CONTROL, &phy_tmp)) { phy_tmp |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG); e1000_write_phy_reg(&sc->hw, PHY_CONTROL, phy_tmp); } } } return; } else if(sc->smartspeed == EM_SMARTSPEED_DOWNSHIFT) { /* If still no link, perhaps using 2/3 pair cable */ e1000_read_phy_reg(&sc->hw, PHY_1000T_CTRL, &phy_tmp); phy_tmp |= CR_1000T_MS_ENABLE; e1000_write_phy_reg(&sc->hw, PHY_1000T_CTRL, phy_tmp); if(sc->hw.mac.autoneg && !e1000_copper_link_autoneg(&sc->hw) && !e1000_read_phy_reg(&sc->hw, PHY_CONTROL, &phy_tmp)) { phy_tmp |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG); e1000_write_phy_reg(&sc->hw, PHY_CONTROL, phy_tmp); } } /* Restart process after EM_SMARTSPEED_MAX iterations */ if(sc->smartspeed++ == EM_SMARTSPEED_MAX) sc->smartspeed = 0; } /********************************************************************* * * Initialize the DMA Coalescing feature * **********************************************************************/ static void igb_init_dmac(struct e1000_softc *sc, u32 pba) { device_t dev = sc->dev; struct e1000_hw *hw = &sc->hw; u32 dmac, reg = ~E1000_DMACR_DMAC_EN; u16 hwm; u16 max_frame_size; if (hw->mac.type == e1000_i211) return; max_frame_size = sc->shared->isc_max_frame_size; if (hw->mac.type > e1000_82580) { if (sc->dmac == 0) { /* Disabling it */ E1000_WRITE_REG(hw, E1000_DMACR, reg); return; } else device_printf(dev, "DMA Coalescing enabled\n"); /* Set starting threshold */ E1000_WRITE_REG(hw, E1000_DMCTXTH, 0); hwm = 64 * pba - max_frame_size / 16; if (hwm < 64 * (pba - 6)) hwm = 64 * (pba - 6); reg = E1000_READ_REG(hw, E1000_FCRTC); reg &= ~E1000_FCRTC_RTH_COAL_MASK; reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT) & E1000_FCRTC_RTH_COAL_MASK); E1000_WRITE_REG(hw, E1000_FCRTC, reg); dmac = pba - max_frame_size / 512; if (dmac < pba - 10) dmac = pba - 10; reg = E1000_READ_REG(hw, E1000_DMACR); reg &= ~E1000_DMACR_DMACTHR_MASK; reg |= ((dmac << E1000_DMACR_DMACTHR_SHIFT) & E1000_DMACR_DMACTHR_MASK); /* transition to L0x or L1 if available..*/ reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK); /* Check if status is 2.5Gb backplane connection * before configuration of watchdog timer, which is * in msec values in 12.8usec intervals * watchdog timer= msec values in 32usec intervals * for non 2.5Gb connection */ if (hw->mac.type == e1000_i354) { int status = E1000_READ_REG(hw, E1000_STATUS); if ((status & E1000_STATUS_2P5_SKU) && (!(status & E1000_STATUS_2P5_SKU_OVER))) reg |= ((sc->dmac * 5) >> 6); else reg |= (sc->dmac >> 5); } else { reg |= (sc->dmac >> 5); } E1000_WRITE_REG(hw, E1000_DMACR, reg); E1000_WRITE_REG(hw, E1000_DMCRTRH, 0); /* Set the interval before transition */ reg = E1000_READ_REG(hw, E1000_DMCTLX); if (hw->mac.type == e1000_i350) reg |= IGB_DMCTLX_DCFLUSH_DIS; /* ** in 2.5Gb connection, TTLX unit is 0.4 usec ** which is 0x4*2 = 0xA. But delay is still 4 usec */ if (hw->mac.type == e1000_i354) { int status = E1000_READ_REG(hw, E1000_STATUS); if ((status & E1000_STATUS_2P5_SKU) && (!(status & E1000_STATUS_2P5_SKU_OVER))) reg |= 0xA; else reg |= 0x4; } else { reg |= 0x4; } E1000_WRITE_REG(hw, E1000_DMCTLX, reg); /* free space in tx packet buffer to wake from DMA coal */ E1000_WRITE_REG(hw, E1000_DMCTXTH, (IGB_TXPBSIZE - (2 * max_frame_size)) >> 6); /* make low power state decision controlled by DMA coal */ reg = E1000_READ_REG(hw, E1000_PCIEMISC); reg &= ~E1000_PCIEMISC_LX_DECISION; E1000_WRITE_REG(hw, E1000_PCIEMISC, reg); } else if (hw->mac.type == e1000_82580) { u32 reg = E1000_READ_REG(hw, E1000_PCIEMISC); E1000_WRITE_REG(hw, E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION); E1000_WRITE_REG(hw, E1000_DMACR, 0); } } /********************************************************************* * The 3 following flush routines are used as a workaround in the * I219 client parts and only for them. * * em_flush_tx_ring - remove all descriptors from the tx_ring * * We want to clear all pending descriptors from the TX ring. * zeroing happens when the HW reads the regs. We assign the ring itself as * the data of the next descriptor. We don't care about the data we are about * to reset the HW. **********************************************************************/ static void em_flush_tx_ring(struct e1000_softc *sc) { struct e1000_hw *hw = &sc->hw; struct tx_ring *txr = &sc->tx_queues->txr; struct e1000_tx_desc *txd; u32 tctl, txd_lower = E1000_TXD_CMD_IFCS; u16 size = 512; tctl = E1000_READ_REG(hw, E1000_TCTL); E1000_WRITE_REG(hw, E1000_TCTL, tctl | E1000_TCTL_EN); txd = &txr->tx_base[txr->tx_cidx_processed]; /* Just use the ring as a dummy buffer addr */ txd->buffer_addr = txr->tx_paddr; txd->lower.data = htole32(txd_lower | size); txd->upper.data = 0; /* flush descriptors to memory before notifying the HW */ wmb(); E1000_WRITE_REG(hw, E1000_TDT(0), txr->tx_cidx_processed); mb(); usec_delay(250); } /********************************************************************* * em_flush_rx_ring - remove all descriptors from the rx_ring * * Mark all descriptors in the RX ring as consumed and disable the rx ring **********************************************************************/ static void em_flush_rx_ring(struct e1000_softc *sc) { struct e1000_hw *hw = &sc->hw; u32 rctl, rxdctl; rctl = E1000_READ_REG(hw, E1000_RCTL); E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN); E1000_WRITE_FLUSH(hw); usec_delay(150); rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(0)); /* zero the lower 14 bits (prefetch and host thresholds) */ rxdctl &= 0xffffc000; /* * update thresholds: prefetch threshold to 31, host threshold to 1 * and make sure the granularity is "descriptors" and not "cache lines" */ rxdctl |= (0x1F | (1 << 8) | E1000_RXDCTL_THRESH_UNIT_DESC); E1000_WRITE_REG(hw, E1000_RXDCTL(0), rxdctl); /* momentarily enable the RX ring for the changes to take effect */ E1000_WRITE_REG(hw, E1000_RCTL, rctl | E1000_RCTL_EN); E1000_WRITE_FLUSH(hw); usec_delay(150); E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN); } /********************************************************************* * em_flush_desc_rings - remove all descriptors from the descriptor rings * * In I219, the descriptor rings must be emptied before resetting the HW * or before changing the device state to D3 during runtime (runtime PM). * * Failure to do this will cause the HW to enter a unit hang state which can * only be released by PCI reset on the device * **********************************************************************/ static void em_flush_desc_rings(struct e1000_softc *sc) { struct e1000_hw *hw = &sc->hw; device_t dev = sc->dev; u16 hang_state; u32 fext_nvm11, tdlen; /* First, disable MULR fix in FEXTNVM11 */ fext_nvm11 = E1000_READ_REG(hw, E1000_FEXTNVM11); fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX; E1000_WRITE_REG(hw, E1000_FEXTNVM11, fext_nvm11); /* do nothing if we're not in faulty state, or if the queue is empty */ tdlen = E1000_READ_REG(hw, E1000_TDLEN(0)); hang_state = pci_read_config(dev, PCICFG_DESC_RING_STATUS, 2); if (!(hang_state & FLUSH_DESC_REQUIRED) || !tdlen) return; em_flush_tx_ring(sc); /* recheck, maybe the fault is caused by the rx ring */ hang_state = pci_read_config(dev, PCICFG_DESC_RING_STATUS, 2); if (hang_state & FLUSH_DESC_REQUIRED) em_flush_rx_ring(sc); } /********************************************************************* * * Initialize the hardware to a configuration as specified by the * sc structure. * **********************************************************************/ static void em_reset(if_ctx_t ctx) { device_t dev = iflib_get_dev(ctx); struct e1000_softc *sc = iflib_get_softc(ctx); if_t ifp = iflib_get_ifp(ctx); struct e1000_hw *hw = &sc->hw; u32 rx_buffer_size; u32 pba; INIT_DEBUGOUT("em_reset: begin"); /* Let the firmware know the OS is in control */ em_get_hw_control(sc); /* Set up smart power down as default off on newer adapters. */ if (!em_smart_pwr_down && (hw->mac.type == e1000_82571 || hw->mac.type == e1000_82572)) { u16 phy_tmp = 0; /* Speed up time to link by disabling smart power down. */ e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_tmp); phy_tmp &= ~IGP02E1000_PM_SPD; e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_tmp); } /* * Packet Buffer Allocation (PBA) * Writing PBA sets the receive portion of the buffer * the remainder is used for the transmit buffer. */ switch (hw->mac.type) { /* 82547: Total Packet Buffer is 40K */ case e1000_82547: case e1000_82547_rev_2: if (hw->mac.max_frame_size > 8192) pba = E1000_PBA_22K; /* 22K for Rx, 18K for Tx */ else pba = E1000_PBA_30K; /* 30K for Rx, 10K for Tx */ break; /* 82571/82572/80003es2lan: Total Packet Buffer is 48K */ case e1000_82571: case e1000_82572: case e1000_80003es2lan: pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */ break; /* 82573: Total Packet Buffer is 32K */ case e1000_82573: pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */ break; case e1000_82574: case e1000_82583: pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */ break; case e1000_ich8lan: pba = E1000_PBA_8K; break; case e1000_ich9lan: case e1000_ich10lan: /* Boost Receive side for jumbo frames */ if (hw->mac.max_frame_size > 4096) pba = E1000_PBA_14K; else pba = E1000_PBA_10K; break; case e1000_pchlan: case e1000_pch2lan: case e1000_pch_lpt: case e1000_pch_spt: case e1000_pch_cnp: case e1000_pch_tgp: case e1000_pch_adp: case e1000_pch_mtp: case e1000_pch_ptp: pba = E1000_PBA_26K; break; case e1000_82575: pba = E1000_PBA_32K; break; case e1000_82576: case e1000_vfadapt: pba = E1000_READ_REG(hw, E1000_RXPBS); pba &= E1000_RXPBS_SIZE_MASK_82576; break; case e1000_82580: case e1000_i350: case e1000_i354: case e1000_vfadapt_i350: pba = E1000_READ_REG(hw, E1000_RXPBS); pba = e1000_rxpbs_adjust_82580(pba); break; case e1000_i210: case e1000_i211: pba = E1000_PBA_34K; break; default: /* Remaining devices assumed to have a Packet Buffer of 64K. */ if (hw->mac.max_frame_size > 8192) pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */ else pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */ } /* Special needs in case of Jumbo frames */ if ((hw->mac.type == e1000_82575) && (if_getmtu(ifp) > ETHERMTU)) { u32 tx_space, min_tx, min_rx; pba = E1000_READ_REG(hw, E1000_PBA); tx_space = pba >> 16; pba &= 0xffff; min_tx = (hw->mac.max_frame_size + sizeof(struct e1000_tx_desc) - ETHERNET_FCS_SIZE) * 2; min_tx = roundup2(min_tx, 1024); min_tx >>= 10; min_rx = hw->mac.max_frame_size; min_rx = roundup2(min_rx, 1024); min_rx >>= 10; if (tx_space < min_tx && ((min_tx - tx_space) < pba)) { pba = pba - (min_tx - tx_space); /* * if short on rx space, rx wins * and must trump tx adjustment */ if (pba < min_rx) pba = min_rx; } E1000_WRITE_REG(hw, E1000_PBA, pba); } if (hw->mac.type < igb_mac_min) E1000_WRITE_REG(hw, E1000_PBA, pba); INIT_DEBUGOUT1("em_reset: pba=%dK",pba); /* * These parameters control the automatic generation (Tx) and * response (Rx) to Ethernet PAUSE frames. * - High water mark should allow for at least two frames to be * received after sending an XOFF. * - Low water mark works best when it is very near the high water mark. * This allows the receiver to restart by sending XON when it has * drained a bit. Here we use an arbitrary value of 1500 which will * restart after one full frame is pulled from the buffer. There * could be several smaller frames in the buffer and if so they will * not trigger the XON until their total number reduces the buffer * by 1500. * - The pause time is fairly large at 1000 x 512ns = 512 usec. */ rx_buffer_size = (pba & 0xffff) << 10; hw->fc.high_water = rx_buffer_size - roundup2(hw->mac.max_frame_size, 1024); hw->fc.low_water = hw->fc.high_water - 1500; if (sc->fc) /* locally set flow control value? */ hw->fc.requested_mode = sc->fc; else hw->fc.requested_mode = e1000_fc_full; if (hw->mac.type == e1000_80003es2lan) hw->fc.pause_time = 0xFFFF; else hw->fc.pause_time = EM_FC_PAUSE_TIME; hw->fc.send_xon = true; /* Device specific overrides/settings */ switch (hw->mac.type) { case e1000_pchlan: /* Workaround: no TX flow ctrl for PCH */ hw->fc.requested_mode = e1000_fc_rx_pause; hw->fc.pause_time = 0xFFFF; /* override */ if (if_getmtu(ifp) > ETHERMTU) { hw->fc.high_water = 0x3500; hw->fc.low_water = 0x1500; } else { hw->fc.high_water = 0x5000; hw->fc.low_water = 0x3000; } hw->fc.refresh_time = 0x1000; break; case e1000_pch2lan: case e1000_pch_lpt: case e1000_pch_spt: case e1000_pch_cnp: case e1000_pch_tgp: case e1000_pch_adp: case e1000_pch_mtp: case e1000_pch_ptp: hw->fc.high_water = 0x5C20; hw->fc.low_water = 0x5048; hw->fc.pause_time = 0x0650; hw->fc.refresh_time = 0x0400; /* Jumbos need adjusted PBA */ if (if_getmtu(ifp) > ETHERMTU) E1000_WRITE_REG(hw, E1000_PBA, 12); else E1000_WRITE_REG(hw, E1000_PBA, 26); break; case e1000_82575: case e1000_82576: /* 8-byte granularity */ hw->fc.low_water = hw->fc.high_water - 8; break; case e1000_82580: case e1000_i350: case e1000_i354: case e1000_i210: case e1000_i211: case e1000_vfadapt: case e1000_vfadapt_i350: /* 16-byte granularity */ hw->fc.low_water = hw->fc.high_water - 16; break; case e1000_ich9lan: case e1000_ich10lan: if (if_getmtu(ifp) > ETHERMTU) { hw->fc.high_water = 0x2800; hw->fc.low_water = hw->fc.high_water - 8; break; } /* FALLTHROUGH */ default: if (hw->mac.type == e1000_80003es2lan) hw->fc.pause_time = 0xFFFF; break; } /* I219 needs some special flushing to avoid hangs */ if (sc->hw.mac.type >= e1000_pch_spt && sc->hw.mac.type < igb_mac_min) em_flush_desc_rings(sc); /* Issue a global reset */ e1000_reset_hw(hw); if (hw->mac.type >= igb_mac_min) { E1000_WRITE_REG(hw, E1000_WUC, 0); } else { E1000_WRITE_REG(hw, E1000_WUFC, 0); em_disable_aspm(sc); } if (sc->flags & IGB_MEDIA_RESET) { e1000_setup_init_funcs(hw, true); e1000_get_bus_info(hw); sc->flags &= ~IGB_MEDIA_RESET; } /* and a re-init */ if (e1000_init_hw(hw) < 0) { device_printf(dev, "Hardware Initialization Failed\n"); return; } if (hw->mac.type >= igb_mac_min) igb_init_dmac(sc, pba); E1000_WRITE_REG(hw, E1000_VET, ETHERTYPE_VLAN); e1000_get_phy_info(hw); e1000_check_for_link(hw); } /* * Initialise the RSS mapping for NICs that support multiple transmit/ * receive rings. */ #define RSSKEYLEN 10 static void em_initialize_rss_mapping(struct e1000_softc *sc) { uint8_t rss_key[4 * RSSKEYLEN]; uint32_t reta = 0; struct e1000_hw *hw = &sc->hw; int i; /* * Configure RSS key */ arc4rand(rss_key, sizeof(rss_key), 0); for (i = 0; i < RSSKEYLEN; ++i) { uint32_t rssrk = 0; rssrk = EM_RSSRK_VAL(rss_key, i); E1000_WRITE_REG(hw,E1000_RSSRK(i), rssrk); } /* * Configure RSS redirect table in following fashion: * (hash & ring_cnt_mask) == rdr_table[(hash & rdr_table_mask)] */ for (i = 0; i < sizeof(reta); ++i) { uint32_t q; q = (i % sc->rx_num_queues) << 7; reta |= q << (8 * i); } for (i = 0; i < 32; ++i) E1000_WRITE_REG(hw, E1000_RETA(i), reta); E1000_WRITE_REG(hw, E1000_MRQC, E1000_MRQC_RSS_ENABLE_2Q | E1000_MRQC_RSS_FIELD_IPV4_TCP | E1000_MRQC_RSS_FIELD_IPV4 | E1000_MRQC_RSS_FIELD_IPV6_TCP_EX | E1000_MRQC_RSS_FIELD_IPV6_EX | E1000_MRQC_RSS_FIELD_IPV6); } static void igb_initialize_rss_mapping(struct e1000_softc *sc) { struct e1000_hw *hw = &sc->hw; int i; int queue_id; u32 reta; u32 rss_key[10], mrqc, shift = 0; /* XXX? */ if (hw->mac.type == e1000_82575) shift = 6; /* * The redirection table controls which destination * queue each bucket redirects traffic to. * Each DWORD represents four queues, with the LSB * being the first queue in the DWORD. * * This just allocates buckets to queues using round-robin * allocation. * * NOTE: It Just Happens to line up with the default * RSS allocation method. */ /* Warning FM follows */ reta = 0; for (i = 0; i < 128; i++) { #ifdef RSS queue_id = rss_get_indirection_to_bucket(i); /* * If we have more queues than buckets, we'll * end up mapping buckets to a subset of the * queues. * * If we have more buckets than queues, we'll * end up instead assigning multiple buckets * to queues. * * Both are suboptimal, but we need to handle * the case so we don't go out of bounds * indexing arrays and such. */ queue_id = queue_id % sc->rx_num_queues; #else queue_id = (i % sc->rx_num_queues); #endif /* Adjust if required */ queue_id = queue_id << shift; /* * The low 8 bits are for hash value (n+0); * The next 8 bits are for hash value (n+1), etc. */ reta = reta >> 8; reta = reta | ( ((uint32_t) queue_id) << 24); if ((i & 3) == 3) { E1000_WRITE_REG(hw, E1000_RETA(i >> 2), reta); reta = 0; } } /* Now fill in hash table */ /* * MRQC: Multiple Receive Queues Command * Set queuing to RSS control, number depends on the device. */ mrqc = E1000_MRQC_ENABLE_RSS_MQ; #ifdef RSS /* XXX ew typecasting */ rss_getkey((uint8_t *) &rss_key); #else arc4rand(&rss_key, sizeof(rss_key), 0); #endif for (i = 0; i < 10; i++) E1000_WRITE_REG_ARRAY(hw, E1000_RSSRK(0), i, rss_key[i]); /* * Configure the RSS fields to hash upon. */ mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 | E1000_MRQC_RSS_FIELD_IPV4_TCP); mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 | E1000_MRQC_RSS_FIELD_IPV6_TCP); mrqc |=( E1000_MRQC_RSS_FIELD_IPV4_UDP | E1000_MRQC_RSS_FIELD_IPV6_UDP); mrqc |=( E1000_MRQC_RSS_FIELD_IPV6_UDP_EX | E1000_MRQC_RSS_FIELD_IPV6_TCP_EX); E1000_WRITE_REG(hw, E1000_MRQC, mrqc); } /********************************************************************* * * Setup networking device structure and register interface media. * **********************************************************************/ static int em_setup_interface(if_ctx_t ctx) { if_t ifp = iflib_get_ifp(ctx); struct e1000_softc *sc = iflib_get_softc(ctx); if_softc_ctx_t scctx = sc->shared; INIT_DEBUGOUT("em_setup_interface: begin"); /* Single Queue */ if (sc->tx_num_queues == 1) { if_setsendqlen(ifp, scctx->isc_ntxd[0] - 1); if_setsendqready(ifp); } /* * Specify the media types supported by this adapter and register * callbacks to update media and link information */ if (sc->hw.phy.media_type == e1000_media_type_fiber || sc->hw.phy.media_type == e1000_media_type_internal_serdes) { u_char fiber_type = IFM_1000_SX; /* default type */ if (sc->hw.mac.type == e1000_82545) fiber_type = IFM_1000_LX; ifmedia_add(sc->media, IFM_ETHER | fiber_type | IFM_FDX, 0, NULL); ifmedia_add(sc->media, IFM_ETHER | fiber_type, 0, NULL); } else { ifmedia_add(sc->media, IFM_ETHER | IFM_10_T, 0, NULL); ifmedia_add(sc->media, IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL); ifmedia_add(sc->media, IFM_ETHER | IFM_100_TX, 0, NULL); ifmedia_add(sc->media, IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL); if (sc->hw.phy.type != e1000_phy_ife) { ifmedia_add(sc->media, IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL); ifmedia_add(sc->media, IFM_ETHER | IFM_1000_T, 0, NULL); } } ifmedia_add(sc->media, IFM_ETHER | IFM_AUTO, 0, NULL); ifmedia_set(sc->media, IFM_ETHER | IFM_AUTO); return (0); } static int em_if_tx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int ntxqs, int ntxqsets) { struct e1000_softc *sc = iflib_get_softc(ctx); if_softc_ctx_t scctx = sc->shared; int error = E1000_SUCCESS; struct em_tx_queue *que; int i, j; MPASS(sc->tx_num_queues > 0); MPASS(sc->tx_num_queues == ntxqsets); /* First allocate the top level queue structs */ if (!(sc->tx_queues = (struct em_tx_queue *) malloc(sizeof(struct em_tx_queue) * sc->tx_num_queues, M_DEVBUF, M_NOWAIT | M_ZERO))) { device_printf(iflib_get_dev(ctx), "Unable to allocate queue memory\n"); return(ENOMEM); } for (i = 0, que = sc->tx_queues; i < sc->tx_num_queues; i++, que++) { /* Set up some basics */ struct tx_ring *txr = &que->txr; txr->sc = que->sc = sc; que->me = txr->me = i; /* Allocate report status array */ if (!(txr->tx_rsq = (qidx_t *) malloc(sizeof(qidx_t) * scctx->isc_ntxd[0], M_DEVBUF, M_NOWAIT | M_ZERO))) { device_printf(iflib_get_dev(ctx), "failed to allocate rs_idxs memory\n"); error = ENOMEM; goto fail; } for (j = 0; j < scctx->isc_ntxd[0]; j++) txr->tx_rsq[j] = QIDX_INVALID; /* get the virtual and physical address of the hardware queues */ txr->tx_base = (struct e1000_tx_desc *)vaddrs[i*ntxqs]; txr->tx_paddr = paddrs[i*ntxqs]; } if (bootverbose) device_printf(iflib_get_dev(ctx), "allocated for %d tx_queues\n", sc->tx_num_queues); return (0); fail: em_if_queues_free(ctx); return (error); } static int em_if_rx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int nrxqs, int nrxqsets) { struct e1000_softc *sc = iflib_get_softc(ctx); int error = E1000_SUCCESS; struct em_rx_queue *que; int i; MPASS(sc->rx_num_queues > 0); MPASS(sc->rx_num_queues == nrxqsets); /* First allocate the top level queue structs */ if (!(sc->rx_queues = (struct em_rx_queue *) malloc(sizeof(struct em_rx_queue) * sc->rx_num_queues, M_DEVBUF, M_NOWAIT | M_ZERO))) { device_printf(iflib_get_dev(ctx), "Unable to allocate queue memory\n"); error = ENOMEM; goto fail; } for (i = 0, que = sc->rx_queues; i < nrxqsets; i++, que++) { /* Set up some basics */ struct rx_ring *rxr = &que->rxr; rxr->sc = que->sc = sc; rxr->que = que; que->me = rxr->me = i; /* get the virtual and physical address of the hardware queues */ rxr->rx_base = (union e1000_rx_desc_extended *)vaddrs[i*nrxqs]; rxr->rx_paddr = paddrs[i*nrxqs]; } if (bootverbose) device_printf(iflib_get_dev(ctx), "allocated for %d rx_queues\n", sc->rx_num_queues); return (0); fail: em_if_queues_free(ctx); return (error); } static void em_if_queues_free(if_ctx_t ctx) { struct e1000_softc *sc = iflib_get_softc(ctx); struct em_tx_queue *tx_que = sc->tx_queues; struct em_rx_queue *rx_que = sc->rx_queues; if (tx_que != NULL) { for (int i = 0; i < sc->tx_num_queues; i++, tx_que++) { struct tx_ring *txr = &tx_que->txr; if (txr->tx_rsq == NULL) break; free(txr->tx_rsq, M_DEVBUF); txr->tx_rsq = NULL; } free(sc->tx_queues, M_DEVBUF); sc->tx_queues = NULL; } if (rx_que != NULL) { free(sc->rx_queues, M_DEVBUF); sc->rx_queues = NULL; } } /********************************************************************* * * Enable transmit unit. * **********************************************************************/ static void em_initialize_transmit_unit(if_ctx_t ctx) { struct e1000_softc *sc = iflib_get_softc(ctx); if_softc_ctx_t scctx = sc->shared; struct em_tx_queue *que; struct tx_ring *txr; struct e1000_hw *hw = &sc->hw; u32 tctl, txdctl = 0, tarc, tipg = 0; INIT_DEBUGOUT("em_initialize_transmit_unit: begin"); for (int i = 0; i < sc->tx_num_queues; i++, txr++) { u64 bus_addr; caddr_t offp, endp; que = &sc->tx_queues[i]; txr = &que->txr; bus_addr = txr->tx_paddr; /* Clear checksum offload context. */ offp = (caddr_t)&txr->csum_flags; endp = (caddr_t)(txr + 1); bzero(offp, endp - offp); /* Base and Len of TX Ring */ E1000_WRITE_REG(hw, E1000_TDLEN(i), scctx->isc_ntxd[0] * sizeof(struct e1000_tx_desc)); E1000_WRITE_REG(hw, E1000_TDBAH(i), (u32)(bus_addr >> 32)); E1000_WRITE_REG(hw, E1000_TDBAL(i), (u32)bus_addr); /* Init the HEAD/TAIL indices */ E1000_WRITE_REG(hw, E1000_TDT(i), 0); E1000_WRITE_REG(hw, E1000_TDH(i), 0); HW_DEBUGOUT2("Base = %x, Length = %x\n", E1000_READ_REG(hw, E1000_TDBAL(i)), E1000_READ_REG(hw, E1000_TDLEN(i))); txdctl = 0; /* clear txdctl */ txdctl |= 0x1f; /* PTHRESH */ txdctl |= 1 << 8; /* HTHRESH */ txdctl |= 1 << 16;/* WTHRESH */ txdctl |= 1 << 22; /* Reserved bit 22 must always be 1 */ txdctl |= E1000_TXDCTL_GRAN; txdctl |= 1 << 25; /* LWTHRESH */ E1000_WRITE_REG(hw, E1000_TXDCTL(i), txdctl); } /* Set the default values for the Tx Inter Packet Gap timer */ switch (hw->mac.type) { case e1000_80003es2lan: tipg = DEFAULT_82543_TIPG_IPGR1; tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT; break; case e1000_82542: tipg = DEFAULT_82542_TIPG_IPGT; tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT; tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT; break; default: if (hw->phy.media_type == e1000_media_type_fiber || hw->phy.media_type == e1000_media_type_internal_serdes) tipg = DEFAULT_82543_TIPG_IPGT_FIBER; else tipg = DEFAULT_82543_TIPG_IPGT_COPPER; tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT; tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT; } E1000_WRITE_REG(hw, E1000_TIPG, tipg); E1000_WRITE_REG(hw, E1000_TIDV, sc->tx_int_delay.value); if(hw->mac.type >= e1000_82540) E1000_WRITE_REG(hw, E1000_TADV, sc->tx_abs_int_delay.value); if (hw->mac.type == e1000_82571 || hw->mac.type == e1000_82572) { tarc = E1000_READ_REG(hw, E1000_TARC(0)); tarc |= TARC_SPEED_MODE_BIT; E1000_WRITE_REG(hw, E1000_TARC(0), tarc); } else if (hw->mac.type == e1000_80003es2lan) { /* errata: program both queues to unweighted RR */ tarc = E1000_READ_REG(hw, E1000_TARC(0)); tarc |= 1; E1000_WRITE_REG(hw, E1000_TARC(0), tarc); tarc = E1000_READ_REG(hw, E1000_TARC(1)); tarc |= 1; E1000_WRITE_REG(hw, E1000_TARC(1), tarc); } else if (hw->mac.type == e1000_82574) { tarc = E1000_READ_REG(hw, E1000_TARC(0)); tarc |= TARC_ERRATA_BIT; if ( sc->tx_num_queues > 1) { tarc |= (TARC_COMPENSATION_MODE | TARC_MQ_FIX); E1000_WRITE_REG(hw, E1000_TARC(0), tarc); E1000_WRITE_REG(hw, E1000_TARC(1), tarc); } else E1000_WRITE_REG(hw, E1000_TARC(0), tarc); } if (sc->tx_int_delay.value > 0) sc->txd_cmd |= E1000_TXD_CMD_IDE; /* Program the Transmit Control Register */ tctl = E1000_READ_REG(hw, E1000_TCTL); tctl &= ~E1000_TCTL_CT; tctl |= (E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN | (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT)); if (hw->mac.type >= e1000_82571) tctl |= E1000_TCTL_MULR; /* This write will effectively turn on the transmit unit. */ E1000_WRITE_REG(hw, E1000_TCTL, tctl); /* SPT and KBL errata workarounds */ if (hw->mac.type == e1000_pch_spt) { u32 reg; reg = E1000_READ_REG(hw, E1000_IOSFPC); reg |= E1000_RCTL_RDMTS_HEX; E1000_WRITE_REG(hw, E1000_IOSFPC, reg); /* i218-i219 Specification Update 1.5.4.5 */ reg = E1000_READ_REG(hw, E1000_TARC(0)); reg &= ~E1000_TARC0_CB_MULTIQ_3_REQ; reg |= E1000_TARC0_CB_MULTIQ_2_REQ; E1000_WRITE_REG(hw, E1000_TARC(0), reg); } } /********************************************************************* * * Enable receive unit. * **********************************************************************/ #define BSIZEPKT_ROUNDUP ((1<shared; if_t ifp = iflib_get_ifp(ctx); struct e1000_hw *hw = &sc->hw; struct em_rx_queue *que; int i; uint32_t rctl, rxcsum; INIT_DEBUGOUT("em_initialize_receive_units: begin"); /* * Make sure receives are disabled while setting * up the descriptor ring */ rctl = E1000_READ_REG(hw, E1000_RCTL); /* Do not disable if ever enabled on this hardware */ if ((hw->mac.type != e1000_82574) && (hw->mac.type != e1000_82583)) E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN); /* Setup the Receive Control Register */ rctl &= ~(3 << E1000_RCTL_MO_SHIFT); rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT); /* Do not store bad packets */ rctl &= ~E1000_RCTL_SBP; /* Enable Long Packet receive */ if (if_getmtu(ifp) > ETHERMTU) rctl |= E1000_RCTL_LPE; else rctl &= ~E1000_RCTL_LPE; /* Strip the CRC */ if (!em_disable_crc_stripping) rctl |= E1000_RCTL_SECRC; if (hw->mac.type >= e1000_82540) { E1000_WRITE_REG(hw, E1000_RADV, sc->rx_abs_int_delay.value); /* * Set the interrupt throttling rate. Value is calculated * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns) */ E1000_WRITE_REG(hw, E1000_ITR, DEFAULT_ITR); } E1000_WRITE_REG(hw, E1000_RDTR, sc->rx_int_delay.value); if (hw->mac.type >= em_mac_min) { uint32_t rfctl; /* Use extended rx descriptor formats */ rfctl = E1000_READ_REG(hw, E1000_RFCTL); rfctl |= E1000_RFCTL_EXTEN; /* * When using MSI-X interrupts we need to throttle * using the EITR register (82574 only) */ if (hw->mac.type == e1000_82574) { for (int i = 0; i < 4; i++) E1000_WRITE_REG(hw, E1000_EITR_82574(i), DEFAULT_ITR); /* Disable accelerated acknowledge */ rfctl |= E1000_RFCTL_ACK_DIS; } E1000_WRITE_REG(hw, E1000_RFCTL, rfctl); } /* Set up L3 and L4 csum Rx descriptor offloads */ rxcsum = E1000_READ_REG(hw, E1000_RXCSUM); if (if_getcapenable(ifp) & IFCAP_RXCSUM) { rxcsum |= E1000_RXCSUM_TUOFL | E1000_RXCSUM_IPOFL; if (hw->mac.type > e1000_82575) rxcsum |= E1000_RXCSUM_CRCOFL; else if (hw->mac.type < em_mac_min && if_getcapenable(ifp) & IFCAP_HWCSUM_IPV6) rxcsum |= E1000_RXCSUM_IPV6OFL; } else { rxcsum &= ~(E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL); if (hw->mac.type > e1000_82575) rxcsum &= ~E1000_RXCSUM_CRCOFL; else if (hw->mac.type < em_mac_min) rxcsum &= ~E1000_RXCSUM_IPV6OFL; } if (sc->rx_num_queues > 1) { /* RSS hash needed in the Rx descriptor */ rxcsum |= E1000_RXCSUM_PCSD; if (hw->mac.type >= igb_mac_min) igb_initialize_rss_mapping(sc); else em_initialize_rss_mapping(sc); } E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum); /* * XXX TEMPORARY WORKAROUND: on some systems with 82573 * long latencies are observed, like Lenovo X60. This * change eliminates the problem, but since having positive * values in RDTR is a known source of problems on other * platforms another solution is being sought. */ if (hw->mac.type == e1000_82573) E1000_WRITE_REG(hw, E1000_RDTR, 0x20); for (i = 0, que = sc->rx_queues; i < sc->rx_num_queues; i++, que++) { struct rx_ring *rxr = &que->rxr; /* Setup the Base and Length of the Rx Descriptor Ring */ u64 bus_addr = rxr->rx_paddr; #if 0 u32 rdt = sc->rx_num_queues -1; /* default */ #endif E1000_WRITE_REG(hw, E1000_RDLEN(i), scctx->isc_nrxd[0] * sizeof(union e1000_rx_desc_extended)); E1000_WRITE_REG(hw, E1000_RDBAH(i), (u32)(bus_addr >> 32)); E1000_WRITE_REG(hw, E1000_RDBAL(i), (u32)bus_addr); /* Setup the Head and Tail Descriptor Pointers */ E1000_WRITE_REG(hw, E1000_RDH(i), 0); E1000_WRITE_REG(hw, E1000_RDT(i), 0); } /* * Set PTHRESH for improved jumbo performance * According to 10.2.5.11 of Intel 82574 Datasheet, * RXDCTL(1) is written whenever RXDCTL(0) is written. * Only write to RXDCTL(1) if there is a need for different * settings. */ if ((hw->mac.type == e1000_ich9lan || hw->mac.type == e1000_pch2lan || hw->mac.type == e1000_ich10lan) && if_getmtu(ifp) > ETHERMTU) { u32 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(0)); E1000_WRITE_REG(hw, E1000_RXDCTL(0), rxdctl | 3); } else if (hw->mac.type == e1000_82574) { for (int i = 0; i < sc->rx_num_queues; i++) { u32 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i)); rxdctl |= 0x20; /* PTHRESH */ rxdctl |= 4 << 8; /* HTHRESH */ rxdctl |= 4 << 16;/* WTHRESH */ rxdctl |= 1 << 24; /* Switch to granularity */ E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl); } } else if (hw->mac.type >= igb_mac_min) { u32 psize, srrctl = 0; if (if_getmtu(ifp) > ETHERMTU) { psize = scctx->isc_max_frame_size; /* are we on a vlan? */ if (if_vlantrunkinuse(ifp)) psize += VLAN_TAG_SIZE; if (sc->vf_ifp) e1000_rlpml_set_vf(hw, psize); else E1000_WRITE_REG(hw, E1000_RLPML, psize); } /* Set maximum packet buffer len */ srrctl |= (sc->rx_mbuf_sz + BSIZEPKT_ROUNDUP) >> E1000_SRRCTL_BSIZEPKT_SHIFT; /* * If TX flow control is disabled and there's >1 queue defined, * enable DROP. * * This drops frames rather than hanging the RX MAC for all queues. */ if ((sc->rx_num_queues > 1) && (sc->fc == e1000_fc_none || sc->fc == e1000_fc_rx_pause)) { srrctl |= E1000_SRRCTL_DROP_EN; } /* Setup the Base and Length of the Rx Descriptor Rings */ for (i = 0, que = sc->rx_queues; i < sc->rx_num_queues; i++, que++) { struct rx_ring *rxr = &que->rxr; u64 bus_addr = rxr->rx_paddr; u32 rxdctl; #ifdef notyet /* Configure for header split? -- ignore for now */ rxr->hdr_split = igb_header_split; #else srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF; #endif E1000_WRITE_REG(hw, E1000_RDLEN(i), scctx->isc_nrxd[0] * sizeof(struct e1000_rx_desc)); E1000_WRITE_REG(hw, E1000_RDBAH(i), (uint32_t)(bus_addr >> 32)); E1000_WRITE_REG(hw, E1000_RDBAL(i), (uint32_t)bus_addr); E1000_WRITE_REG(hw, E1000_SRRCTL(i), srrctl); /* Enable this Queue */ rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i)); rxdctl |= E1000_RXDCTL_QUEUE_ENABLE; rxdctl &= 0xFFF00000; rxdctl |= IGB_RX_PTHRESH; rxdctl |= IGB_RX_HTHRESH << 8; rxdctl |= IGB_RX_WTHRESH << 16; E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl); } } else if (hw->mac.type >= e1000_pch2lan) { if (if_getmtu(ifp) > ETHERMTU) e1000_lv_jumbo_workaround_ich8lan(hw, true); else e1000_lv_jumbo_workaround_ich8lan(hw, false); } /* Make sure VLAN Filters are off */ rctl &= ~E1000_RCTL_VFE; /* Set up packet buffer size, overridden by per queue srrctl on igb */ if (hw->mac.type < igb_mac_min) { if (sc->rx_mbuf_sz > 2048 && sc->rx_mbuf_sz <= 4096) rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX; else if (sc->rx_mbuf_sz > 4096 && sc->rx_mbuf_sz <= 8192) rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX; else if (sc->rx_mbuf_sz > 8192) rctl |= E1000_RCTL_SZ_16384 | E1000_RCTL_BSEX; else { rctl |= E1000_RCTL_SZ_2048; rctl &= ~E1000_RCTL_BSEX; } } else rctl |= E1000_RCTL_SZ_2048; /* * rctl bits 11:10 are as follows * lem: reserved * em: DTYPE * igb: reserved * and should be 00 on all of the above */ rctl &= ~0x00000C00; /* Write out the settings */ E1000_WRITE_REG(hw, E1000_RCTL, rctl); return; } static void em_if_vlan_register(if_ctx_t ctx, u16 vtag) { struct e1000_softc *sc = iflib_get_softc(ctx); u32 index, bit; index = (vtag >> 5) & 0x7F; bit = vtag & 0x1F; sc->shadow_vfta[index] |= (1 << bit); ++sc->num_vlans; em_if_vlan_filter_write(sc); } static void em_if_vlan_unregister(if_ctx_t ctx, u16 vtag) { struct e1000_softc *sc = iflib_get_softc(ctx); u32 index, bit; index = (vtag >> 5) & 0x7F; bit = vtag & 0x1F; sc->shadow_vfta[index] &= ~(1 << bit); --sc->num_vlans; em_if_vlan_filter_write(sc); } static bool em_if_vlan_filter_capable(if_ctx_t ctx) { if_t ifp = iflib_get_ifp(ctx); if ((if_getcapenable(ifp) & IFCAP_VLAN_HWFILTER) && !em_disable_crc_stripping) return (true); return (false); } static bool em_if_vlan_filter_used(if_ctx_t ctx) { struct e1000_softc *sc = iflib_get_softc(ctx); if (!em_if_vlan_filter_capable(ctx)) return (false); for (int i = 0; i < EM_VFTA_SIZE; i++) if (sc->shadow_vfta[i] != 0) return (true); return (false); } static void em_if_vlan_filter_enable(struct e1000_softc *sc) { struct e1000_hw *hw = &sc->hw; u32 reg; reg = E1000_READ_REG(hw, E1000_RCTL); reg &= ~E1000_RCTL_CFIEN; reg |= E1000_RCTL_VFE; E1000_WRITE_REG(hw, E1000_RCTL, reg); } static void em_if_vlan_filter_disable(struct e1000_softc *sc) { struct e1000_hw *hw = &sc->hw; u32 reg; reg = E1000_READ_REG(hw, E1000_RCTL); reg &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN); E1000_WRITE_REG(hw, E1000_RCTL, reg); } static void em_if_vlan_filter_write(struct e1000_softc *sc) { struct e1000_hw *hw = &sc->hw; if (sc->vf_ifp) return; /* Disable interrupts for lem-class devices during the filter change */ if (hw->mac.type < em_mac_min) em_if_intr_disable(sc->ctx); for (int i = 0; i < EM_VFTA_SIZE; i++) if (sc->shadow_vfta[i] != 0) { /* XXXKB: incomplete VF support, we return early above */ if (sc->vf_ifp) e1000_vfta_set_vf(hw, sc->shadow_vfta[i], true); else e1000_write_vfta(hw, i, sc->shadow_vfta[i]); } /* Re-enable interrupts for lem-class devices */ if (hw->mac.type < em_mac_min) em_if_intr_enable(sc->ctx); } static void em_setup_vlan_hw_support(if_ctx_t ctx) { struct e1000_softc *sc = iflib_get_softc(ctx); struct e1000_hw *hw = &sc->hw; if_t ifp = iflib_get_ifp(ctx); u32 reg; /* XXXKB: Return early if we are a VF until VF decap and filter management * is ready and tested. */ if (sc->vf_ifp) return; if (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING && !em_disable_crc_stripping) { reg = E1000_READ_REG(hw, E1000_CTRL); reg |= E1000_CTRL_VME; E1000_WRITE_REG(hw, E1000_CTRL, reg); } else { reg = E1000_READ_REG(hw, E1000_CTRL); reg &= ~E1000_CTRL_VME; E1000_WRITE_REG(hw, E1000_CTRL, reg); } /* If we aren't doing HW filtering, we're done */ if (!em_if_vlan_filter_capable(ctx)) { em_if_vlan_filter_disable(sc); return; } /* * A soft reset zero's out the VFTA, so * we need to repopulate it now. * We also insert VLAN 0 in the filter list, so we pass VLAN 0 tagged * traffic through. This will write the entire table. */ em_if_vlan_register(ctx, 0); /* Enable the Filter Table */ em_if_vlan_filter_enable(sc); } static void em_if_intr_enable(if_ctx_t ctx) { struct e1000_softc *sc = iflib_get_softc(ctx); struct e1000_hw *hw = &sc->hw; u32 ims_mask = IMS_ENABLE_MASK; if (sc->intr_type == IFLIB_INTR_MSIX) { E1000_WRITE_REG(hw, EM_EIAC, sc->ims); ims_mask |= sc->ims; } E1000_WRITE_REG(hw, E1000_IMS, ims_mask); E1000_WRITE_FLUSH(hw); } static void em_if_intr_disable(if_ctx_t ctx) { struct e1000_softc *sc = iflib_get_softc(ctx); struct e1000_hw *hw = &sc->hw; if (sc->intr_type == IFLIB_INTR_MSIX) E1000_WRITE_REG(hw, EM_EIAC, 0); E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff); E1000_WRITE_FLUSH(hw); } static void igb_if_intr_enable(if_ctx_t ctx) { struct e1000_softc *sc = iflib_get_softc(ctx); struct e1000_hw *hw = &sc->hw; u32 mask; if (__predict_true(sc->intr_type == IFLIB_INTR_MSIX)) { mask = (sc->que_mask | sc->link_mask); E1000_WRITE_REG(hw, E1000_EIAC, mask); E1000_WRITE_REG(hw, E1000_EIAM, mask); E1000_WRITE_REG(hw, E1000_EIMS, mask); E1000_WRITE_REG(hw, E1000_IMS, E1000_IMS_LSC); } else E1000_WRITE_REG(hw, E1000_IMS, IMS_ENABLE_MASK); E1000_WRITE_FLUSH(hw); } static void igb_if_intr_disable(if_ctx_t ctx) { struct e1000_softc *sc = iflib_get_softc(ctx); struct e1000_hw *hw = &sc->hw; if (__predict_true(sc->intr_type == IFLIB_INTR_MSIX)) { E1000_WRITE_REG(hw, E1000_EIMC, 0xffffffff); E1000_WRITE_REG(hw, E1000_EIAC, 0); } E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff); E1000_WRITE_FLUSH(hw); } /* * Bit of a misnomer, what this really means is * to enable OS management of the system... aka * to disable special hardware management features */ static void em_init_manageability(struct e1000_softc *sc) { /* A shared code workaround */ #define E1000_82542_MANC2H E1000_MANC2H if (sc->has_manage) { int manc2h = E1000_READ_REG(&sc->hw, E1000_MANC2H); int manc = E1000_READ_REG(&sc->hw, E1000_MANC); /* disable hardware interception of ARP */ manc &= ~(E1000_MANC_ARP_EN); /* enable receiving management packets to the host */ manc |= E1000_MANC_EN_MNG2HOST; #define E1000_MNG2HOST_PORT_623 (1 << 5) #define E1000_MNG2HOST_PORT_664 (1 << 6) manc2h |= E1000_MNG2HOST_PORT_623; manc2h |= E1000_MNG2HOST_PORT_664; E1000_WRITE_REG(&sc->hw, E1000_MANC2H, manc2h); E1000_WRITE_REG(&sc->hw, E1000_MANC, manc); } } /* * Give control back to hardware management * controller if there is one. */ static void em_release_manageability(struct e1000_softc *sc) { if (sc->has_manage) { int manc = E1000_READ_REG(&sc->hw, E1000_MANC); /* re-enable hardware interception of ARP */ manc |= E1000_MANC_ARP_EN; manc &= ~E1000_MANC_EN_MNG2HOST; E1000_WRITE_REG(&sc->hw, E1000_MANC, manc); } } /* * em_get_hw_control sets the {CTRL_EXT|FWSM}:DRV_LOAD bit. * For ASF and Pass Through versions of f/w this means * that the driver is loaded. For AMT version type f/w * this means that the network i/f is open. */ static void em_get_hw_control(struct e1000_softc *sc) { u32 ctrl_ext, swsm; if (sc->vf_ifp) return; if (sc->hw.mac.type == e1000_82573) { swsm = E1000_READ_REG(&sc->hw, E1000_SWSM); E1000_WRITE_REG(&sc->hw, E1000_SWSM, swsm | E1000_SWSM_DRV_LOAD); return; } /* else */ ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT); E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD); } /* * em_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit. * For ASF and Pass Through versions of f/w this means that * the driver is no longer loaded. For AMT versions of the * f/w this means that the network i/f is closed. */ static void em_release_hw_control(struct e1000_softc *sc) { u32 ctrl_ext, swsm; if (!sc->has_manage) return; if (sc->hw.mac.type == e1000_82573) { swsm = E1000_READ_REG(&sc->hw, E1000_SWSM); E1000_WRITE_REG(&sc->hw, E1000_SWSM, swsm & ~E1000_SWSM_DRV_LOAD); return; } /* else */ ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT); E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD); return; } static int em_is_valid_ether_addr(u8 *addr) { char zero_addr[6] = { 0, 0, 0, 0, 0, 0 }; if ((addr[0] & 1) || (!bcmp(addr, zero_addr, ETHER_ADDR_LEN))) { return (false); } return (true); } +static bool +em_automask_tso(if_ctx_t ctx) +{ + struct e1000_softc *sc = iflib_get_softc(ctx); + if_softc_ctx_t scctx = iflib_get_softc_ctx(ctx); + if_t ifp = iflib_get_ifp(ctx); + + if (!em_unsupported_tso && sc->link_speed && + sc->link_speed != SPEED_1000 && scctx->isc_capenable & IFCAP_TSO) { + device_printf(sc->dev, "Disabling TSO for 10/100 Ethernet.\n"); + sc->tso_automasked = scctx->isc_capenable & IFCAP_TSO; + scctx->isc_capenable &= ~IFCAP_TSO; + if_setcapenablebit(ifp, 0, IFCAP_TSO); + /* iflib_init_locked handles ifnet hwassistbits */ + iflib_request_reset(ctx); + return true; + } else if (sc->link_speed == SPEED_1000 && sc->tso_automasked) { + device_printf(sc->dev, "Re-enabling TSO for GbE.\n"); + scctx->isc_capenable |= sc->tso_automasked; + if_setcapenablebit(ifp, sc->tso_automasked, 0); + sc->tso_automasked = 0; + /* iflib_init_locked handles ifnet hwassistbits */ + iflib_request_reset(ctx); + return true; + } + + return false; +} + /* ** Parse the interface capabilities with regard ** to both system management and wake-on-lan for ** later use. */ static void em_get_wakeup(if_ctx_t ctx) { struct e1000_softc *sc = iflib_get_softc(ctx); device_t dev = iflib_get_dev(ctx); u16 eeprom_data = 0, device_id, apme_mask; sc->has_manage = e1000_enable_mng_pass_thru(&sc->hw); apme_mask = EM_EEPROM_APME; switch (sc->hw.mac.type) { case e1000_82542: case e1000_82543: break; case e1000_82544: e1000_read_nvm(&sc->hw, NVM_INIT_CONTROL2_REG, 1, &eeprom_data); apme_mask = EM_82544_APME; break; case e1000_82546: case e1000_82546_rev_3: if (sc->hw.bus.func == 1) { e1000_read_nvm(&sc->hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data); break; } else e1000_read_nvm(&sc->hw, NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data); break; case e1000_82573: case e1000_82583: sc->has_amt = true; /* FALLTHROUGH */ case e1000_82571: case e1000_82572: case e1000_80003es2lan: if (sc->hw.bus.func == 1) { e1000_read_nvm(&sc->hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data); break; } else e1000_read_nvm(&sc->hw, NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data); break; case e1000_ich8lan: case e1000_ich9lan: case e1000_ich10lan: case e1000_pchlan: case e1000_pch2lan: case e1000_pch_lpt: case e1000_pch_spt: case e1000_82575: /* listing all igb devices */ case e1000_82576: case e1000_82580: case e1000_i350: case e1000_i354: case e1000_i210: case e1000_i211: case e1000_vfadapt: case e1000_vfadapt_i350: apme_mask = E1000_WUC_APME; sc->has_amt = true; eeprom_data = E1000_READ_REG(&sc->hw, E1000_WUC); break; default: e1000_read_nvm(&sc->hw, NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data); break; } if (eeprom_data & apme_mask) sc->wol = (E1000_WUFC_MAG | E1000_WUFC_MC); /* * We have the eeprom settings, now apply the special cases * where the eeprom may be wrong or the board won't support * wake on lan on a particular port */ device_id = pci_get_device(dev); switch (device_id) { case E1000_DEV_ID_82546GB_PCIE: sc->wol = 0; break; case E1000_DEV_ID_82546EB_FIBER: case E1000_DEV_ID_82546GB_FIBER: /* Wake events only supported on port A for dual fiber * regardless of eeprom setting */ if (E1000_READ_REG(&sc->hw, E1000_STATUS) & E1000_STATUS_FUNC_1) sc->wol = 0; break; case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: /* if quad port adapter, disable WoL on all but port A */ if (global_quad_port_a != 0) sc->wol = 0; /* Reset for multiple quad port adapters */ if (++global_quad_port_a == 4) global_quad_port_a = 0; break; case E1000_DEV_ID_82571EB_FIBER: /* Wake events only supported on port A for dual fiber * regardless of eeprom setting */ if (E1000_READ_REG(&sc->hw, E1000_STATUS) & E1000_STATUS_FUNC_1) sc->wol = 0; break; case E1000_DEV_ID_82571EB_QUAD_COPPER: case E1000_DEV_ID_82571EB_QUAD_FIBER: case E1000_DEV_ID_82571EB_QUAD_COPPER_LP: /* if quad port adapter, disable WoL on all but port A */ if (global_quad_port_a != 0) sc->wol = 0; /* Reset for multiple quad port adapters */ if (++global_quad_port_a == 4) global_quad_port_a = 0; break; } return; } /* * Enable PCI Wake On Lan capability */ static void em_enable_wakeup(if_ctx_t ctx) { struct e1000_softc *sc = iflib_get_softc(ctx); device_t dev = iflib_get_dev(ctx); if_t ifp = iflib_get_ifp(ctx); int error = 0; u32 pmc, ctrl, ctrl_ext, rctl; u16 status; if (pci_find_cap(dev, PCIY_PMG, &pmc) != 0) return; /* * Determine type of Wakeup: note that wol * is set with all bits on by default. */ if ((if_getcapenable(ifp) & IFCAP_WOL_MAGIC) == 0) sc->wol &= ~E1000_WUFC_MAG; if ((if_getcapenable(ifp) & IFCAP_WOL_UCAST) == 0) sc->wol &= ~E1000_WUFC_EX; if ((if_getcapenable(ifp) & IFCAP_WOL_MCAST) == 0) sc->wol &= ~E1000_WUFC_MC; else { rctl = E1000_READ_REG(&sc->hw, E1000_RCTL); rctl |= E1000_RCTL_MPE; E1000_WRITE_REG(&sc->hw, E1000_RCTL, rctl); } if (!(sc->wol & (E1000_WUFC_EX | E1000_WUFC_MAG | E1000_WUFC_MC))) goto pme; /* Advertise the wakeup capability */ ctrl = E1000_READ_REG(&sc->hw, E1000_CTRL); ctrl |= (E1000_CTRL_SWDPIN2 | E1000_CTRL_SWDPIN3); E1000_WRITE_REG(&sc->hw, E1000_CTRL, ctrl); /* Keep the laser running on Fiber adapters */ if (sc->hw.phy.media_type == e1000_media_type_fiber || sc->hw.phy.media_type == e1000_media_type_internal_serdes) { ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT); ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA; E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT, ctrl_ext); } if ((sc->hw.mac.type == e1000_ich8lan) || (sc->hw.mac.type == e1000_pchlan) || (sc->hw.mac.type == e1000_ich9lan) || (sc->hw.mac.type == e1000_ich10lan)) e1000_suspend_workarounds_ich8lan(&sc->hw); if ( sc->hw.mac.type >= e1000_pchlan) { error = em_enable_phy_wakeup(sc); if (error) goto pme; } else { /* Enable wakeup by the MAC */ E1000_WRITE_REG(&sc->hw, E1000_WUC, E1000_WUC_PME_EN); E1000_WRITE_REG(&sc->hw, E1000_WUFC, sc->wol); } if (sc->hw.phy.type == e1000_phy_igp_3) e1000_igp3_phy_powerdown_workaround_ich8lan(&sc->hw); pme: status = pci_read_config(dev, pmc + PCIR_POWER_STATUS, 2); status &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE); if (!error && (if_getcapenable(ifp) & IFCAP_WOL)) status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE; pci_write_config(dev, pmc + PCIR_POWER_STATUS, status, 2); return; } /* * WOL in the newer chipset interfaces (pchlan) * require thing to be copied into the phy */ static int em_enable_phy_wakeup(struct e1000_softc *sc) { struct e1000_hw *hw = &sc->hw; u32 mreg, ret = 0; u16 preg; /* copy MAC RARs to PHY RARs */ e1000_copy_rx_addrs_to_phy_ich8lan(hw); /* copy MAC MTA to PHY MTA */ for (int i = 0; i < hw->mac.mta_reg_count; i++) { mreg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i); e1000_write_phy_reg(hw, BM_MTA(i), (u16)(mreg & 0xFFFF)); e1000_write_phy_reg(hw, BM_MTA(i) + 1, (u16)((mreg >> 16) & 0xFFFF)); } /* configure PHY Rx Control register */ e1000_read_phy_reg(hw, BM_RCTL, &preg); mreg = E1000_READ_REG(hw, E1000_RCTL); if (mreg & E1000_RCTL_UPE) preg |= BM_RCTL_UPE; if (mreg & E1000_RCTL_MPE) preg |= BM_RCTL_MPE; preg &= ~(BM_RCTL_MO_MASK); if (mreg & E1000_RCTL_MO_3) preg |= (((mreg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT) << BM_RCTL_MO_SHIFT); if (mreg & E1000_RCTL_BAM) preg |= BM_RCTL_BAM; if (mreg & E1000_RCTL_PMCF) preg |= BM_RCTL_PMCF; mreg = E1000_READ_REG(hw, E1000_CTRL); if (mreg & E1000_CTRL_RFCE) preg |= BM_RCTL_RFCE; e1000_write_phy_reg(hw, BM_RCTL, preg); /* enable PHY wakeup in MAC register */ E1000_WRITE_REG(hw, E1000_WUC, E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN | E1000_WUC_APME); E1000_WRITE_REG(hw, E1000_WUFC, sc->wol); /* configure and enable PHY wakeup in PHY registers */ e1000_write_phy_reg(hw, BM_WUFC, sc->wol); e1000_write_phy_reg(hw, BM_WUC, E1000_WUC_PME_EN); /* activate PHY wakeup */ ret = hw->phy.ops.acquire(hw); if (ret) { printf("Could not acquire PHY\n"); return ret; } e1000_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT)); ret = e1000_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, &preg); if (ret) { printf("Could not read PHY page 769\n"); goto out; } preg |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT; ret = e1000_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, preg); if (ret) printf("Could not set PHY Host Wakeup bit\n"); out: hw->phy.ops.release(hw); return ret; } static void em_if_led_func(if_ctx_t ctx, int onoff) { struct e1000_softc *sc = iflib_get_softc(ctx); if (onoff) { e1000_setup_led(&sc->hw); e1000_led_on(&sc->hw); } else { e1000_led_off(&sc->hw); e1000_cleanup_led(&sc->hw); } } /* * Disable the L0S and L1 LINK states */ static void em_disable_aspm(struct e1000_softc *sc) { int base, reg; u16 link_cap,link_ctrl; device_t dev = sc->dev; switch (sc->hw.mac.type) { case e1000_82573: case e1000_82574: case e1000_82583: break; default: return; } if (pci_find_cap(dev, PCIY_EXPRESS, &base) != 0) return; reg = base + PCIER_LINK_CAP; link_cap = pci_read_config(dev, reg, 2); if ((link_cap & PCIEM_LINK_CAP_ASPM) == 0) return; reg = base + PCIER_LINK_CTL; link_ctrl = pci_read_config(dev, reg, 2); link_ctrl &= ~PCIEM_LINK_CTL_ASPMC; pci_write_config(dev, reg, link_ctrl, 2); return; } /********************************************************************** * * Update the board statistics counters. * **********************************************************************/ static void em_update_stats_counters(struct e1000_softc *sc) { u64 prev_xoffrxc = sc->stats.xoffrxc; if(sc->hw.phy.media_type == e1000_media_type_copper || (E1000_READ_REG(&sc->hw, E1000_STATUS) & E1000_STATUS_LU)) { sc->stats.symerrs += E1000_READ_REG(&sc->hw, E1000_SYMERRS); sc->stats.sec += E1000_READ_REG(&sc->hw, E1000_SEC); } sc->stats.crcerrs += E1000_READ_REG(&sc->hw, E1000_CRCERRS); sc->stats.mpc += E1000_READ_REG(&sc->hw, E1000_MPC); sc->stats.scc += E1000_READ_REG(&sc->hw, E1000_SCC); sc->stats.ecol += E1000_READ_REG(&sc->hw, E1000_ECOL); sc->stats.mcc += E1000_READ_REG(&sc->hw, E1000_MCC); sc->stats.latecol += E1000_READ_REG(&sc->hw, E1000_LATECOL); sc->stats.colc += E1000_READ_REG(&sc->hw, E1000_COLC); sc->stats.dc += E1000_READ_REG(&sc->hw, E1000_DC); sc->stats.rlec += E1000_READ_REG(&sc->hw, E1000_RLEC); sc->stats.xonrxc += E1000_READ_REG(&sc->hw, E1000_XONRXC); sc->stats.xontxc += E1000_READ_REG(&sc->hw, E1000_XONTXC); sc->stats.xoffrxc += E1000_READ_REG(&sc->hw, E1000_XOFFRXC); /* ** For watchdog management we need to know if we have been ** paused during the last interval, so capture that here. */ if (sc->stats.xoffrxc != prev_xoffrxc) sc->shared->isc_pause_frames = 1; sc->stats.xofftxc += E1000_READ_REG(&sc->hw, E1000_XOFFTXC); sc->stats.fcruc += E1000_READ_REG(&sc->hw, E1000_FCRUC); sc->stats.prc64 += E1000_READ_REG(&sc->hw, E1000_PRC64); sc->stats.prc127 += E1000_READ_REG(&sc->hw, E1000_PRC127); sc->stats.prc255 += E1000_READ_REG(&sc->hw, E1000_PRC255); sc->stats.prc511 += E1000_READ_REG(&sc->hw, E1000_PRC511); sc->stats.prc1023 += E1000_READ_REG(&sc->hw, E1000_PRC1023); sc->stats.prc1522 += E1000_READ_REG(&sc->hw, E1000_PRC1522); sc->stats.gprc += E1000_READ_REG(&sc->hw, E1000_GPRC); sc->stats.bprc += E1000_READ_REG(&sc->hw, E1000_BPRC); sc->stats.mprc += E1000_READ_REG(&sc->hw, E1000_MPRC); sc->stats.gptc += E1000_READ_REG(&sc->hw, E1000_GPTC); /* For the 64-bit byte counters the low dword must be read first. */ /* Both registers clear on the read of the high dword */ sc->stats.gorc += E1000_READ_REG(&sc->hw, E1000_GORCL) + ((u64)E1000_READ_REG(&sc->hw, E1000_GORCH) << 32); sc->stats.gotc += E1000_READ_REG(&sc->hw, E1000_GOTCL) + ((u64)E1000_READ_REG(&sc->hw, E1000_GOTCH) << 32); sc->stats.rnbc += E1000_READ_REG(&sc->hw, E1000_RNBC); sc->stats.ruc += E1000_READ_REG(&sc->hw, E1000_RUC); sc->stats.rfc += E1000_READ_REG(&sc->hw, E1000_RFC); sc->stats.roc += E1000_READ_REG(&sc->hw, E1000_ROC); sc->stats.rjc += E1000_READ_REG(&sc->hw, E1000_RJC); sc->stats.tor += E1000_READ_REG(&sc->hw, E1000_TORH); sc->stats.tot += E1000_READ_REG(&sc->hw, E1000_TOTH); sc->stats.tpr += E1000_READ_REG(&sc->hw, E1000_TPR); sc->stats.tpt += E1000_READ_REG(&sc->hw, E1000_TPT); sc->stats.ptc64 += E1000_READ_REG(&sc->hw, E1000_PTC64); sc->stats.ptc127 += E1000_READ_REG(&sc->hw, E1000_PTC127); sc->stats.ptc255 += E1000_READ_REG(&sc->hw, E1000_PTC255); sc->stats.ptc511 += E1000_READ_REG(&sc->hw, E1000_PTC511); sc->stats.ptc1023 += E1000_READ_REG(&sc->hw, E1000_PTC1023); sc->stats.ptc1522 += E1000_READ_REG(&sc->hw, E1000_PTC1522); sc->stats.mptc += E1000_READ_REG(&sc->hw, E1000_MPTC); sc->stats.bptc += E1000_READ_REG(&sc->hw, E1000_BPTC); /* Interrupt Counts */ sc->stats.iac += E1000_READ_REG(&sc->hw, E1000_IAC); sc->stats.icrxptc += E1000_READ_REG(&sc->hw, E1000_ICRXPTC); sc->stats.icrxatc += E1000_READ_REG(&sc->hw, E1000_ICRXATC); sc->stats.ictxptc += E1000_READ_REG(&sc->hw, E1000_ICTXPTC); sc->stats.ictxatc += E1000_READ_REG(&sc->hw, E1000_ICTXATC); sc->stats.ictxqec += E1000_READ_REG(&sc->hw, E1000_ICTXQEC); sc->stats.ictxqmtc += E1000_READ_REG(&sc->hw, E1000_ICTXQMTC); sc->stats.icrxdmtc += E1000_READ_REG(&sc->hw, E1000_ICRXDMTC); sc->stats.icrxoc += E1000_READ_REG(&sc->hw, E1000_ICRXOC); if (sc->hw.mac.type >= e1000_82543) { sc->stats.algnerrc += E1000_READ_REG(&sc->hw, E1000_ALGNERRC); sc->stats.rxerrc += E1000_READ_REG(&sc->hw, E1000_RXERRC); sc->stats.tncrs += E1000_READ_REG(&sc->hw, E1000_TNCRS); sc->stats.cexterr += E1000_READ_REG(&sc->hw, E1000_CEXTERR); sc->stats.tsctc += E1000_READ_REG(&sc->hw, E1000_TSCTC); sc->stats.tsctfc += E1000_READ_REG(&sc->hw, E1000_TSCTFC); } } static uint64_t em_if_get_counter(if_ctx_t ctx, ift_counter cnt) { struct e1000_softc *sc = iflib_get_softc(ctx); if_t ifp = iflib_get_ifp(ctx); switch (cnt) { case IFCOUNTER_COLLISIONS: return (sc->stats.colc); case IFCOUNTER_IERRORS: return (sc->dropped_pkts + sc->stats.rxerrc + sc->stats.crcerrs + sc->stats.algnerrc + sc->stats.ruc + sc->stats.roc + sc->stats.mpc + sc->stats.cexterr); case IFCOUNTER_OERRORS: return (sc->stats.ecol + sc->stats.latecol + sc->watchdog_events); default: return (if_get_counter_default(ifp, cnt)); } } /* em_if_needs_restart - Tell iflib when the driver needs to be reinitialized * @ctx: iflib context * @event: event code to check * * Defaults to returning true for unknown events. * * @returns true if iflib needs to reinit the interface */ static bool em_if_needs_restart(if_ctx_t ctx __unused, enum iflib_restart_event event) { switch (event) { case IFLIB_RESTART_VLAN_CONFIG: return (false); default: return (true); } } /* Export a single 32-bit register via a read-only sysctl. */ static int em_sysctl_reg_handler(SYSCTL_HANDLER_ARGS) { struct e1000_softc *sc; u_int val; sc = oidp->oid_arg1; val = E1000_READ_REG(&sc->hw, oidp->oid_arg2); return (sysctl_handle_int(oidp, &val, 0, req)); } /* * Add sysctl variables, one per statistic, to the system. */ static void em_add_hw_stats(struct e1000_softc *sc) { device_t dev = iflib_get_dev(sc->ctx); struct em_tx_queue *tx_que = sc->tx_queues; struct em_rx_queue *rx_que = sc->rx_queues; struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(dev); struct sysctl_oid *tree = device_get_sysctl_tree(dev); struct sysctl_oid_list *child = SYSCTL_CHILDREN(tree); struct e1000_hw_stats *stats = &sc->stats; struct sysctl_oid *stat_node, *queue_node, *int_node; struct sysctl_oid_list *stat_list, *queue_list, *int_list; #define QUEUE_NAME_LEN 32 char namebuf[QUEUE_NAME_LEN]; /* Driver Statistics */ SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "dropped", CTLFLAG_RD, &sc->dropped_pkts, "Driver dropped packets"); SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "link_irq", CTLFLAG_RD, &sc->link_irq, "Link MSI-X IRQ Handled"); SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "rx_overruns", CTLFLAG_RD, &sc->rx_overruns, "RX overruns"); SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "watchdog_timeouts", CTLFLAG_RD, &sc->watchdog_events, "Watchdog timeouts"); SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "device_control", CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, sc, E1000_CTRL, em_sysctl_reg_handler, "IU", "Device Control Register"); SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "rx_control", CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, sc, E1000_RCTL, em_sysctl_reg_handler, "IU", "Receiver Control Register"); SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "fc_high_water", CTLFLAG_RD, &sc->hw.fc.high_water, 0, "Flow Control High Watermark"); SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "fc_low_water", CTLFLAG_RD, &sc->hw.fc.low_water, 0, "Flow Control Low Watermark"); for (int i = 0; i < sc->tx_num_queues; i++, tx_que++) { struct tx_ring *txr = &tx_que->txr; snprintf(namebuf, QUEUE_NAME_LEN, "queue_tx_%d", i); queue_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, namebuf, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TX Queue Name"); queue_list = SYSCTL_CHILDREN(queue_node); SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "txd_head", CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, sc, E1000_TDH(txr->me), em_sysctl_reg_handler, "IU", "Transmit Descriptor Head"); SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "txd_tail", CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, sc, E1000_TDT(txr->me), em_sysctl_reg_handler, "IU", "Transmit Descriptor Tail"); SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO, "tx_irq", CTLFLAG_RD, &txr->tx_irq, "Queue MSI-X Transmit Interrupts"); } for (int j = 0; j < sc->rx_num_queues; j++, rx_que++) { struct rx_ring *rxr = &rx_que->rxr; snprintf(namebuf, QUEUE_NAME_LEN, "queue_rx_%d", j); queue_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, namebuf, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "RX Queue Name"); queue_list = SYSCTL_CHILDREN(queue_node); SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "rxd_head", CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, sc, E1000_RDH(rxr->me), em_sysctl_reg_handler, "IU", "Receive Descriptor Head"); SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "rxd_tail", CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, sc, E1000_RDT(rxr->me), em_sysctl_reg_handler, "IU", "Receive Descriptor Tail"); SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO, "rx_irq", CTLFLAG_RD, &rxr->rx_irq, "Queue MSI-X Receive Interrupts"); } /* MAC stats get their own sub node */ stat_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "mac_stats", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Statistics"); stat_list = SYSCTL_CHILDREN(stat_node); SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "excess_coll", CTLFLAG_RD, &stats->ecol, "Excessive collisions"); SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "single_coll", CTLFLAG_RD, &stats->scc, "Single collisions"); SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "multiple_coll", CTLFLAG_RD, &stats->mcc, "Multiple collisions"); SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "late_coll", CTLFLAG_RD, &stats->latecol, "Late collisions"); SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "collision_count", CTLFLAG_RD, &stats->colc, "Collision Count"); SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "symbol_errors", CTLFLAG_RD, &sc->stats.symerrs, "Symbol Errors"); SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "sequence_errors", CTLFLAG_RD, &sc->stats.sec, "Sequence Errors"); SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "defer_count", CTLFLAG_RD, &sc->stats.dc, "Defer Count"); SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "missed_packets", CTLFLAG_RD, &sc->stats.mpc, "Missed Packets"); SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_no_buff", CTLFLAG_RD, &sc->stats.rnbc, "Receive No Buffers"); SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_undersize", CTLFLAG_RD, &sc->stats.ruc, "Receive Undersize"); SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_fragmented", CTLFLAG_RD, &sc->stats.rfc, "Fragmented Packets Received "); SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_oversize", CTLFLAG_RD, &sc->stats.roc, "Oversized Packets Received"); SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_jabber", CTLFLAG_RD, &sc->stats.rjc, "Recevied Jabber"); SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_errs", CTLFLAG_RD, &sc->stats.rxerrc, "Receive Errors"); SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "crc_errs", CTLFLAG_RD, &sc->stats.crcerrs, "CRC errors"); SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "alignment_errs", CTLFLAG_RD, &sc->stats.algnerrc, "Alignment Errors"); /* On 82575 these are collision counts */ SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "coll_ext_errs", CTLFLAG_RD, &sc->stats.cexterr, "Collision/Carrier extension errors"); SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xon_recvd", CTLFLAG_RD, &sc->stats.xonrxc, "XON Received"); SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xon_txd", CTLFLAG_RD, &sc->stats.xontxc, "XON Transmitted"); SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xoff_recvd", CTLFLAG_RD, &sc->stats.xoffrxc, "XOFF Received"); SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xoff_txd", CTLFLAG_RD, &sc->stats.xofftxc, "XOFF Transmitted"); /* Packet Reception Stats */ SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "total_pkts_recvd", CTLFLAG_RD, &sc->stats.tpr, "Total Packets Received "); SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_pkts_recvd", CTLFLAG_RD, &sc->stats.gprc, "Good Packets Received"); SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "bcast_pkts_recvd", CTLFLAG_RD, &sc->stats.bprc, "Broadcast Packets Received"); SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_recvd", CTLFLAG_RD, &sc->stats.mprc, "Multicast Packets Received"); SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_64", CTLFLAG_RD, &sc->stats.prc64, "64 byte frames received "); SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_65_127", CTLFLAG_RD, &sc->stats.prc127, "65-127 byte frames received"); SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_128_255", CTLFLAG_RD, &sc->stats.prc255, "128-255 byte frames received"); SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_256_511", CTLFLAG_RD, &sc->stats.prc511, "256-511 byte frames received"); SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_512_1023", CTLFLAG_RD, &sc->stats.prc1023, "512-1023 byte frames received"); SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_1024_1522", CTLFLAG_RD, &sc->stats.prc1522, "1023-1522 byte frames received"); SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_octets_recvd", CTLFLAG_RD, &sc->stats.gorc, "Good Octets Received"); /* Packet Transmission Stats */ SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_octets_txd", CTLFLAG_RD, &sc->stats.gotc, "Good Octets Transmitted"); SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "total_pkts_txd", CTLFLAG_RD, &sc->stats.tpt, "Total Packets Transmitted"); SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_pkts_txd", CTLFLAG_RD, &sc->stats.gptc, "Good Packets Transmitted"); SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "bcast_pkts_txd", CTLFLAG_RD, &sc->stats.bptc, "Broadcast Packets Transmitted"); SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_txd", CTLFLAG_RD, &sc->stats.mptc, "Multicast Packets Transmitted"); SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_64", CTLFLAG_RD, &sc->stats.ptc64, "64 byte frames transmitted "); SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_65_127", CTLFLAG_RD, &sc->stats.ptc127, "65-127 byte frames transmitted"); SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_128_255", CTLFLAG_RD, &sc->stats.ptc255, "128-255 byte frames transmitted"); SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_256_511", CTLFLAG_RD, &sc->stats.ptc511, "256-511 byte frames transmitted"); SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_512_1023", CTLFLAG_RD, &sc->stats.ptc1023, "512-1023 byte frames transmitted"); SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_1024_1522", CTLFLAG_RD, &sc->stats.ptc1522, "1024-1522 byte frames transmitted"); SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tso_txd", CTLFLAG_RD, &sc->stats.tsctc, "TSO Contexts Transmitted"); SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tso_ctx_fail", CTLFLAG_RD, &sc->stats.tsctfc, "TSO Contexts Failed"); /* Interrupt Stats */ int_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "interrupts", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Interrupt Statistics"); int_list = SYSCTL_CHILDREN(int_node); SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "asserts", CTLFLAG_RD, &sc->stats.iac, "Interrupt Assertion Count"); SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_pkt_timer", CTLFLAG_RD, &sc->stats.icrxptc, "Interrupt Cause Rx Pkt Timer Expire Count"); SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_abs_timer", CTLFLAG_RD, &sc->stats.icrxatc, "Interrupt Cause Rx Abs Timer Expire Count"); SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_pkt_timer", CTLFLAG_RD, &sc->stats.ictxptc, "Interrupt Cause Tx Pkt Timer Expire Count"); SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_abs_timer", CTLFLAG_RD, &sc->stats.ictxatc, "Interrupt Cause Tx Abs Timer Expire Count"); SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_queue_empty", CTLFLAG_RD, &sc->stats.ictxqec, "Interrupt Cause Tx Queue Empty Count"); SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_queue_min_thresh", CTLFLAG_RD, &sc->stats.ictxqmtc, "Interrupt Cause Tx Queue Min Thresh Count"); SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_desc_min_thresh", CTLFLAG_RD, &sc->stats.icrxdmtc, "Interrupt Cause Rx Desc Min Thresh Count"); SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_overrun", CTLFLAG_RD, &sc->stats.icrxoc, "Interrupt Cause Receiver Overrun Count"); } static void em_fw_version_locked(if_ctx_t ctx) { struct e1000_softc *sc = iflib_get_softc(ctx); struct e1000_hw *hw = &sc->hw; struct e1000_fw_version *fw_ver = &sc->fw_ver; uint16_t eep = 0; /* * em_fw_version_locked() must run under the IFLIB_CTX_LOCK to meet the * NVM locking model, so we do it in em_if_attach_pre() and store the * info in the softc */ ASSERT_CTX_LOCK_HELD(hw); *fw_ver = (struct e1000_fw_version){0}; if (hw->mac.type >= igb_mac_min) { /* * Use the Shared Code for igb(4) */ e1000_get_fw_version(hw, fw_ver); } else { /* * Otherwise, EEPROM version should be present on (almost?) all * devices here */ if(e1000_read_nvm(hw, NVM_VERSION, 1, &eep)) { INIT_DEBUGOUT("can't get EEPROM version"); return; } fw_ver->eep_major = (eep & NVM_MAJOR_MASK) >> NVM_MAJOR_SHIFT; fw_ver->eep_minor = (eep & NVM_MINOR_MASK) >> NVM_MINOR_SHIFT; fw_ver->eep_build = (eep & NVM_IMAGE_ID_MASK); } } static void em_sbuf_fw_version(struct e1000_fw_version *fw_ver, struct sbuf *buf) { const char *space = ""; if (fw_ver->eep_major || fw_ver->eep_minor || fw_ver->eep_build) { sbuf_printf(buf, "EEPROM V%d.%d-%d", fw_ver->eep_major, fw_ver->eep_minor, fw_ver->eep_build); space = " "; } if (fw_ver->invm_major || fw_ver->invm_minor || fw_ver->invm_img_type) { sbuf_printf(buf, "%sNVM V%d.%d imgtype%d", space, fw_ver->invm_major, fw_ver->invm_minor, fw_ver->invm_img_type); space = " "; } if (fw_ver->or_valid) { sbuf_printf(buf, "%sOption ROM V%d-b%d-p%d", space, fw_ver->or_major, fw_ver->or_build, fw_ver->or_patch); space = " "; } if (fw_ver->etrack_id) sbuf_printf(buf, "%seTrack 0x%08x", space, fw_ver->etrack_id); } static void em_print_fw_version(struct e1000_softc *sc ) { device_t dev = sc->dev; struct sbuf *buf; int error = 0; buf = sbuf_new_auto(); if (!buf) { device_printf(dev, "Could not allocate sbuf for output.\n"); return; } em_sbuf_fw_version(&sc->fw_ver, buf); error = sbuf_finish(buf); if (error) device_printf(dev, "Error finishing sbuf: %d\n", error); else if (sbuf_len(buf)) device_printf(dev, "%s\n", sbuf_data(buf)); sbuf_delete(buf); } static int em_sysctl_print_fw_version(SYSCTL_HANDLER_ARGS) { struct e1000_softc *sc = (struct e1000_softc *)arg1; device_t dev = sc->dev; struct sbuf *buf; int error = 0; buf = sbuf_new_for_sysctl(NULL, NULL, 128, req); if (!buf) { device_printf(dev, "Could not allocate sbuf for output.\n"); return (ENOMEM); } em_sbuf_fw_version(&sc->fw_ver, buf); error = sbuf_finish(buf); if (error) device_printf(dev, "Error finishing sbuf: %d\n", error); sbuf_delete(buf); return (0); } /********************************************************************** * * This routine provides a way to dump out the adapter eeprom, * often a useful debug/service tool. This only dumps the first * 32 words, stuff that matters is in that extent. * **********************************************************************/ static int em_sysctl_nvm_info(SYSCTL_HANDLER_ARGS) { struct e1000_softc *sc = (struct e1000_softc *)arg1; int error; int result; result = -1; error = sysctl_handle_int(oidp, &result, 0, req); if (error || !req->newptr) return (error); /* * This value will cause a hex dump of the * first 32 16-bit words of the EEPROM to * the screen. */ if (result == 1) em_print_nvm_info(sc); return (error); } static void em_print_nvm_info(struct e1000_softc *sc) { struct e1000_hw *hw = &sc->hw; struct sx *iflib_ctx_lock = iflib_ctx_lock_get(sc->ctx); u16 eeprom_data; int i, j, row = 0; /* Its a bit crude, but it gets the job done */ printf("\nInterface EEPROM Dump:\n"); printf("Offset\n0x0000 "); /* We rely on the IFLIB_CTX_LOCK as part of NVM locking model */ sx_xlock(iflib_ctx_lock); ASSERT_CTX_LOCK_HELD(hw); for (i = 0, j = 0; i < 32; i++, j++) { if (j == 8) { /* Make the offset block */ j = 0; ++row; printf("\n0x00%x0 ",row); } e1000_read_nvm(hw, i, 1, &eeprom_data); printf("%04x ", eeprom_data); } sx_xunlock(iflib_ctx_lock); printf("\n"); } static int em_sysctl_int_delay(SYSCTL_HANDLER_ARGS) { struct em_int_delay_info *info; struct e1000_softc *sc; u32 regval; int error, usecs, ticks; info = (struct em_int_delay_info *) arg1; usecs = info->value; error = sysctl_handle_int(oidp, &usecs, 0, req); if (error != 0 || req->newptr == NULL) return (error); if (usecs < 0 || usecs > EM_TICKS_TO_USECS(65535)) return (EINVAL); info->value = usecs; ticks = EM_USECS_TO_TICKS(usecs); if (info->offset == E1000_ITR) /* units are 256ns here */ ticks *= 4; sc = info->sc; regval = E1000_READ_OFFSET(&sc->hw, info->offset); regval = (regval & ~0xffff) | (ticks & 0xffff); /* Handle a few special cases. */ switch (info->offset) { case E1000_RDTR: break; case E1000_TIDV: if (ticks == 0) { sc->txd_cmd &= ~E1000_TXD_CMD_IDE; /* Don't write 0 into the TIDV register. */ regval++; } else sc->txd_cmd |= E1000_TXD_CMD_IDE; break; } E1000_WRITE_OFFSET(&sc->hw, info->offset, regval); return (0); } static void em_add_int_delay_sysctl(struct e1000_softc *sc, const char *name, const char *description, struct em_int_delay_info *info, int offset, int value) { info->sc = sc; info->offset = offset; info->value = value; SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->dev), SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO, name, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, info, 0, em_sysctl_int_delay, "I", description); } /* * Set flow control using sysctl: * Flow control values: * 0 - off * 1 - rx pause * 2 - tx pause * 3 - full */ static int em_set_flowcntl(SYSCTL_HANDLER_ARGS) { int error; static int input = 3; /* default is full */ struct e1000_softc *sc = (struct e1000_softc *) arg1; error = sysctl_handle_int(oidp, &input, 0, req); if ((error) || (req->newptr == NULL)) return (error); if (input == sc->fc) /* no change? */ return (error); switch (input) { case e1000_fc_rx_pause: case e1000_fc_tx_pause: case e1000_fc_full: case e1000_fc_none: sc->hw.fc.requested_mode = input; sc->fc = input; break; default: /* Do nothing */ return (error); } sc->hw.fc.current_mode = sc->hw.fc.requested_mode; e1000_force_mac_fc(&sc->hw); return (error); } /* * Manage Energy Efficient Ethernet: * Control values: * 0/1 - enabled/disabled */ static int em_sysctl_eee(SYSCTL_HANDLER_ARGS) { struct e1000_softc *sc = (struct e1000_softc *) arg1; int error, value; value = sc->hw.dev_spec.ich8lan.eee_disable; error = sysctl_handle_int(oidp, &value, 0, req); if (error || req->newptr == NULL) return (error); sc->hw.dev_spec.ich8lan.eee_disable = (value != 0); em_if_init(sc->ctx); return (0); } static int em_sysctl_debug_info(SYSCTL_HANDLER_ARGS) { struct e1000_softc *sc; int error; int result; result = -1; error = sysctl_handle_int(oidp, &result, 0, req); if (error || !req->newptr) return (error); if (result == 1) { sc = (struct e1000_softc *) arg1; em_print_debug_info(sc); } return (error); } static int em_get_rs(SYSCTL_HANDLER_ARGS) { struct e1000_softc *sc = (struct e1000_softc *) arg1; int error; int result; result = 0; error = sysctl_handle_int(oidp, &result, 0, req); if (error || !req->newptr || result != 1) return (error); em_dump_rs(sc); return (error); } static void em_if_debug(if_ctx_t ctx) { em_dump_rs(iflib_get_softc(ctx)); } /* * This routine is meant to be fluid, add whatever is * needed for debugging a problem. -jfv */ static void em_print_debug_info(struct e1000_softc *sc) { device_t dev = iflib_get_dev(sc->ctx); if_t ifp = iflib_get_ifp(sc->ctx); struct tx_ring *txr = &sc->tx_queues->txr; struct rx_ring *rxr = &sc->rx_queues->rxr; if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) printf("Interface is RUNNING "); else printf("Interface is NOT RUNNING\n"); if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) printf("and INACTIVE\n"); else printf("and ACTIVE\n"); for (int i = 0; i < sc->tx_num_queues; i++, txr++) { device_printf(dev, "TX Queue %d ------\n", i); device_printf(dev, "hw tdh = %d, hw tdt = %d\n", E1000_READ_REG(&sc->hw, E1000_TDH(i)), E1000_READ_REG(&sc->hw, E1000_TDT(i))); } for (int j=0; j < sc->rx_num_queues; j++, rxr++) { device_printf(dev, "RX Queue %d ------\n", j); device_printf(dev, "hw rdh = %d, hw rdt = %d\n", E1000_READ_REG(&sc->hw, E1000_RDH(j)), E1000_READ_REG(&sc->hw, E1000_RDT(j))); } } /* * 82574 only: * Write a new value to the EEPROM increasing the number of MSI-X * vectors from 3 to 5, for proper multiqueue support. */ static void em_enable_vectors_82574(if_ctx_t ctx) { struct e1000_softc *sc = iflib_get_softc(ctx); struct e1000_hw *hw = &sc->hw; device_t dev = iflib_get_dev(ctx); u16 edata; e1000_read_nvm(hw, EM_NVM_PCIE_CTRL, 1, &edata); if (bootverbose) device_printf(dev, "EM_NVM_PCIE_CTRL = %#06x\n", edata); if (((edata & EM_NVM_MSIX_N_MASK) >> EM_NVM_MSIX_N_SHIFT) != 4) { device_printf(dev, "Writing to eeprom: increasing " "reported MSI-X vectors from 3 to 5...\n"); edata &= ~(EM_NVM_MSIX_N_MASK); edata |= 4 << EM_NVM_MSIX_N_SHIFT; e1000_write_nvm(hw, EM_NVM_PCIE_CTRL, 1, &edata); e1000_update_nvm_checksum(hw); device_printf(dev, "Writing to eeprom: done\n"); } } diff --git a/sys/dev/e1000/if_em.h b/sys/dev/e1000/if_em.h index 8c5abf5b48cb..d3c3bc0da097 100644 --- a/sys/dev/e1000/if_em.h +++ b/sys/dev/e1000/if_em.h @@ -1,556 +1,557 @@ /*- * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 2016 Nicole Graziano * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /*$FreeBSD$*/ #ifndef _EM_H_DEFINED_ #define _EM_H_DEFINED_ #include "opt_ddb.h" #include "opt_inet.h" #include "opt_inet6.h" #include "opt_rss.h" #ifdef HAVE_KERNEL_OPTION_HEADERS #include "opt_device_polling.h" #endif #include #include #ifdef DDB #include #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef RSS #include #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include "e1000_api.h" #include "e1000_82571.h" #include "ifdi_if.h" /* Tunables */ /* * EM_MAX_TXD: Maximum number of Transmit Descriptors * Valid Range: 80-256 for 82542 and 82543-based adapters * 80-4096 for others * Default Value: 1024 * This value is the number of transmit descriptors allocated by the driver. * Increasing this value allows the driver to queue more transmits. Each * descriptor is 16 bytes. * Since TDLEN should be multiple of 128bytes, the number of transmit * desscriptors should meet the following condition. * (num_tx_desc * sizeof(struct e1000_tx_desc)) % 128 == 0 */ #define EM_MIN_TXD 128 #define EM_MAX_TXD 4096 #define EM_DEFAULT_TXD 1024 #define EM_DEFAULT_MULTI_TXD 4096 #define IGB_MAX_TXD 4096 /* * EM_MAX_RXD - Maximum number of receive Descriptors * Valid Range: 80-256 for 82542 and 82543-based adapters * 80-4096 for others * Default Value: 1024 * This value is the number of receive descriptors allocated by the driver. * Increasing this value allows the driver to buffer more incoming packets. * Each descriptor is 16 bytes. A receive buffer is also allocated for each * descriptor. The maximum MTU size is 16110. * Since TDLEN should be multiple of 128bytes, the number of transmit * desscriptors should meet the following condition. * (num_tx_desc * sizeof(struct e1000_tx_desc)) % 128 == 0 */ #define EM_MIN_RXD 128 #define EM_MAX_RXD 4096 #define EM_DEFAULT_RXD 1024 #define EM_DEFAULT_MULTI_RXD 4096 #define IGB_MAX_RXD 4096 /* * EM_TIDV - Transmit Interrupt Delay Value * Valid Range: 0-65535 (0=off) * Default Value: 64 * This value delays the generation of transmit interrupts in units of * 1.024 microseconds. Transmit interrupt reduction can improve CPU * efficiency if properly tuned for specific network traffic. If the * system is reporting dropped transmits, this value may be set too high * causing the driver to run out of available transmit descriptors. */ #define EM_TIDV 64 /* * EM_TADV - Transmit Absolute Interrupt Delay Value * (Not valid for 82542/82543/82544) * Valid Range: 0-65535 (0=off) * Default Value: 64 * This value, in units of 1.024 microseconds, limits the delay in which a * transmit interrupt is generated. Useful only if EM_TIDV is non-zero, * this value ensures that an interrupt is generated after the initial * packet is sent on the wire within the set amount of time. Proper tuning, * along with EM_TIDV, may improve traffic throughput in specific * network conditions. */ #define EM_TADV 64 /* * EM_RDTR - Receive Interrupt Delay Timer (Packet Timer) * Valid Range: 0-65535 (0=off) * Default Value: 0 * This value delays the generation of receive interrupts in units of 1.024 * microseconds. Receive interrupt reduction can improve CPU efficiency if * properly tuned for specific network traffic. Increasing this value adds * extra latency to frame reception and can end up decreasing the throughput * of TCP traffic. If the system is reporting dropped receives, this value * may be set too high, causing the driver to run out of available receive * descriptors. * * CAUTION: When setting EM_RDTR to a value other than 0, adapters * may hang (stop transmitting) under certain network conditions. * If this occurs a WATCHDOG message is logged in the system * event log. In addition, the controller is automatically reset, * restoring the network connection. To eliminate the potential * for the hang ensure that EM_RDTR is set to 0. */ #define EM_RDTR 0 /* * Receive Interrupt Absolute Delay Timer (Not valid for 82542/82543/82544) * Valid Range: 0-65535 (0=off) * Default Value: 64 * This value, in units of 1.024 microseconds, limits the delay in which a * receive interrupt is generated. Useful only if EM_RDTR is non-zero, * this value ensures that an interrupt is generated after the initial * packet is received within the set amount of time. Proper tuning, * along with EM_RDTR, may improve traffic throughput in specific network * conditions. */ #define EM_RADV 64 /* * This parameter controls whether or not autonegotiation is enabled. * 0 - Disable autonegotiation * 1 - Enable autonegotiation */ #define DO_AUTO_NEG 1 /* * This parameter control whether or not the driver will wait for * autonegotiation to complete. * 1 - Wait for autonegotiation to complete * 0 - Don't wait for autonegotiation to complete */ #define WAIT_FOR_AUTO_NEG_DEFAULT 0 /* Tunables -- End */ #define AUTONEG_ADV_DEFAULT (ADVERTISE_10_HALF | ADVERTISE_10_FULL | \ ADVERTISE_100_HALF | ADVERTISE_100_FULL | \ ADVERTISE_1000_FULL) #define AUTO_ALL_MODES 0 /* PHY master/slave setting */ #define EM_MASTER_SLAVE e1000_ms_hw_default /* * Miscellaneous constants */ #define EM_VENDOR_ID 0x8086 #define EM_FLASH 0x0014 #define EM_JUMBO_PBA 0x00000028 #define EM_DEFAULT_PBA 0x00000030 #define EM_SMARTSPEED_DOWNSHIFT 3 #define EM_SMARTSPEED_MAX 15 #define EM_MAX_LOOP 10 #define MAX_NUM_MULTICAST_ADDRESSES 128 #define PCI_ANY_ID (~0U) #define ETHER_ALIGN 2 #define EM_FC_PAUSE_TIME 0x0680 #define EM_EEPROM_APME 0x400; #define EM_82544_APME 0x0004; /* Support AutoMediaDetect for Marvell M88 PHY in i354 */ #define IGB_MEDIA_RESET (1 << 0) /* Define the starting Interrupt rate per Queue */ #define IGB_INTS_PER_SEC 8000 #define IGB_DEFAULT_ITR ((1000000/IGB_INTS_PER_SEC) << 2) #define IGB_LINK_ITR 2000 #define I210_LINK_DELAY 1000 #define IGB_TXPBSIZE 20408 #define IGB_HDR_BUF 128 #define IGB_PKTTYPE_MASK 0x0000FFF0 #define IGB_DMCTLX_DCFLUSH_DIS 0x80000000 /* Disable DMA Coalesce Flush */ /* * Driver state logic for the detection of a hung state * in hardware. Set TX_HUNG whenever a TX packet is used * (data is sent) and clear it when txeof() is invoked if * any descriptors from the ring are cleaned/reclaimed. * Increment internal counter if no descriptors are cleaned * and compare to TX_MAXTRIES. When counter > TX_MAXTRIES, * reset adapter. */ #define EM_TX_IDLE 0x00000000 #define EM_TX_BUSY 0x00000001 #define EM_TX_HUNG 0x80000000 #define EM_TX_MAXTRIES 10 #define PCICFG_DESC_RING_STATUS 0xe4 #define FLUSH_DESC_REQUIRED 0x100 #define IGB_RX_PTHRESH ((hw->mac.type == e1000_i354) ? 12 : \ ((hw->mac.type <= e1000_82576) ? 16 : 8)) #define IGB_RX_HTHRESH 8 #define IGB_RX_WTHRESH ((hw->mac.type == e1000_82576 && \ (sc->intr_type == IFLIB_INTR_MSIX)) ? 1 : 4) #define IGB_TX_PTHRESH ((hw->mac.type == e1000_i354) ? 20 : 8) #define IGB_TX_HTHRESH 1 #define IGB_TX_WTHRESH ((hw->mac.type != e1000_82575 && \ sc->intr_type == IFLIB_INTR_MSIX) ? 1 : 16) /* * TDBA/RDBA should be aligned on 16 byte boundary. But TDLEN/RDLEN should be * multiple of 128 bytes. So we align TDBA/RDBA on 128 byte boundary. This will * also optimize cache line size effect. H/W supports up to cache line size 128. */ #define EM_DBA_ALIGN 128 /* * See Intel 82574 Driver Programming Interface Manual, Section 10.2.6.9 */ #define TARC_COMPENSATION_MODE (1 << 7) /* Compensation Mode */ #define TARC_SPEED_MODE_BIT (1 << 21) /* On PCI-E MACs only */ #define TARC_MQ_FIX (1 << 23) | \ (1 << 24) | \ (1 << 25) /* Handle errata in MQ mode */ #define TARC_ERRATA_BIT (1 << 26) /* Note from errata on 82574 */ /* PCI Config defines */ #define EM_BAR_TYPE(v) ((v) & EM_BAR_TYPE_MASK) #define EM_BAR_TYPE_MASK 0x00000001 #define EM_BAR_TYPE_MMEM 0x00000000 #define EM_BAR_TYPE_IO 0x00000001 #define EM_BAR_TYPE_FLASH 0x0014 #define EM_BAR_MEM_TYPE(v) ((v) & EM_BAR_MEM_TYPE_MASK) #define EM_BAR_MEM_TYPE_MASK 0x00000006 #define EM_BAR_MEM_TYPE_32BIT 0x00000000 #define EM_BAR_MEM_TYPE_64BIT 0x00000004 /* Defines for printing debug information */ #define DEBUG_INIT 0 #define DEBUG_IOCTL 0 #define DEBUG_HW 0 #define INIT_DEBUGOUT(S) if (DEBUG_INIT) printf(S "\n") #define INIT_DEBUGOUT1(S, A) if (DEBUG_INIT) printf(S "\n", A) #define INIT_DEBUGOUT2(S, A, B) if (DEBUG_INIT) printf(S "\n", A, B) #define IOCTL_DEBUGOUT(S) if (DEBUG_IOCTL) printf(S "\n") #define IOCTL_DEBUGOUT1(S, A) if (DEBUG_IOCTL) printf(S "\n", A) #define IOCTL_DEBUGOUT2(S, A, B) if (DEBUG_IOCTL) printf(S "\n", A, B) #define HW_DEBUGOUT(S) if (DEBUG_HW) printf(S "\n") #define HW_DEBUGOUT1(S, A) if (DEBUG_HW) printf(S "\n", A) #define HW_DEBUGOUT2(S, A, B) if (DEBUG_HW) printf(S "\n", A, B) #define EM_MAX_SCATTER 40 #define EM_VFTA_SIZE 128 #define EM_TSO_SIZE 65535 #define EM_TSO_SEG_SIZE 4096 /* Max dma segment size */ #define ETH_ZLEN 60 /* Offload bits in mbuf flag */ #define EM_CSUM_OFFLOAD (CSUM_IP | CSUM_IP_UDP | CSUM_IP_TCP | \ CSUM_IP6_UDP | CSUM_IP6_TCP) #define IGB_CSUM_OFFLOAD (CSUM_IP | CSUM_IP_UDP | CSUM_IP_TCP | \ CSUM_IP_SCTP | CSUM_IP6_UDP | CSUM_IP6_TCP | \ CSUM_IP6_SCTP) #define IGB_PKTTYPE_MASK 0x0000FFF0 #define IGB_DMCTLX_DCFLUSH_DIS 0x80000000 /* Disable DMA Coalesce Flush */ /* * 82574 has a nonstandard address for EIAC * and since its only used in MSI-X, and in * the em driver only 82574 uses MSI-X we can * solve it just using this define. */ #define EM_EIAC 0x000DC /* * 82574 only reports 3 MSI-X vectors by default; * defines assisting with making it report 5 are * located here. */ #define EM_NVM_PCIE_CTRL 0x1B #define EM_NVM_MSIX_N_MASK (0x7 << EM_NVM_MSIX_N_SHIFT) #define EM_NVM_MSIX_N_SHIFT 7 struct e1000_softc; struct em_int_delay_info { struct e1000_softc *sc; /* Back-pointer to the sc struct */ int offset; /* Register offset to read/write */ int value; /* Current value in usecs */ }; /* * The transmit ring, one per tx queue */ struct tx_ring { struct e1000_softc *sc; struct e1000_tx_desc *tx_base; uint64_t tx_paddr; qidx_t *tx_rsq; bool tx_tso; /* last tx was tso */ uint8_t me; qidx_t tx_rs_cidx; qidx_t tx_rs_pidx; qidx_t tx_cidx_processed; /* Interrupt resources */ void *tag; struct resource *res; unsigned long tx_irq; /* Saved csum offloading context information */ int csum_flags; int csum_lhlen; int csum_iphlen; int csum_thlen; int csum_mss; int csum_pktlen; uint32_t csum_txd_upper; uint32_t csum_txd_lower; /* last field */ }; /* * The Receive ring, one per rx queue */ struct rx_ring { struct e1000_softc *sc; struct em_rx_queue *que; u32 me; u32 payload; union e1000_rx_desc_extended *rx_base; uint64_t rx_paddr; /* Interrupt resources */ void *tag; struct resource *res; bool discard; /* Soft stats */ unsigned long rx_irq; unsigned long rx_discarded; unsigned long rx_packets; unsigned long rx_bytes; }; struct em_tx_queue { struct e1000_softc *sc; u32 msix; u32 eims; /* This queue's EIMS bit */ u32 me; struct tx_ring txr; }; struct em_rx_queue { struct e1000_softc *sc; u32 me; u32 msix; u32 eims; struct rx_ring rxr; u64 irqs; struct if_irq que_irq; }; /* Our softc structure */ struct e1000_softc { struct e1000_hw hw; if_softc_ctx_t shared; if_ctx_t ctx; #define tx_num_queues shared->isc_ntxqsets #define rx_num_queues shared->isc_nrxqsets #define intr_type shared->isc_intr /* FreeBSD operating-system-specific structures. */ struct e1000_osdep osdep; device_t dev; struct cdev *led_dev; struct em_tx_queue *tx_queues; struct em_rx_queue *rx_queues; struct if_irq irq; struct resource *memory; struct resource *flash; struct resource *ioport; struct resource *res; void *tag; u32 linkvec; u32 ivars; struct ifmedia *media; int msix; int if_flags; int em_insert_vlan_header; u32 ims; bool in_detach; u32 flags; /* Task for FAST handling */ struct grouptask link_task; u16 num_vlans; u32 txd_cmd; u32 tx_process_limit; u32 rx_process_limit; u32 rx_mbuf_sz; /* Management and WOL features */ u32 wol; bool has_manage; bool has_amt; /* Multicast array memory */ u8 *mta; /* ** Shadow VFTA table, this is needed because ** the real vlan filter table gets cleared during ** a soft reset and the driver needs to be able ** to repopulate it. */ u32 shadow_vfta[EM_VFTA_SIZE]; /* Info about the interface */ u16 link_active; u16 fc; u16 link_speed; u16 link_duplex; u32 smartspeed; u32 dmac; int link_mask; + int tso_automasked; u64 que_mask; /* We need to store this at attach due to e1000 hw/sw locking model */ struct e1000_fw_version fw_ver; struct em_int_delay_info tx_int_delay; struct em_int_delay_info tx_abs_int_delay; struct em_int_delay_info rx_int_delay; struct em_int_delay_info rx_abs_int_delay; struct em_int_delay_info tx_itr; /* Misc stats maintained by the driver */ unsigned long dropped_pkts; unsigned long link_irq; unsigned long rx_overruns; unsigned long watchdog_events; struct e1000_hw_stats stats; u16 vf_ifp; }; /******************************************************************************** * vendor_info_array * * This array contains the list of Subvendor/Subdevice IDs on which the driver * should load. * ********************************************************************************/ typedef struct _em_vendor_info_t { unsigned int vendor_id; unsigned int device_id; unsigned int subvendor_id; unsigned int subdevice_id; unsigned int index; } em_vendor_info_t; void em_dump_rs(struct e1000_softc *); #define EM_RSSRK_SIZE 4 #define EM_RSSRK_VAL(key, i) (key[(i) * EM_RSSRK_SIZE] | \ key[(i) * EM_RSSRK_SIZE + 1] << 8 | \ key[(i) * EM_RSSRK_SIZE + 2] << 16 | \ key[(i) * EM_RSSRK_SIZE + 3] << 24) #endif /* _EM_H_DEFINED_ */