diff --git a/sys/kern/kern_fork.c b/sys/kern/kern_fork.c index 072908fd542e..60639c9fcb84 100644 --- a/sys/kern/kern_fork.c +++ b/sys/kern/kern_fork.c @@ -1,1068 +1,1057 @@ /*- * Copyright (c) 1982, 1986, 1989, 1991, 1993 * The Regents of the University of California. All rights reserved. * (c) UNIX System Laboratories, Inc. * All or some portions of this file are derived from material licensed * to the University of California by American Telephone and Telegraph * Co. or Unix System Laboratories, Inc. and are reproduced herein with * the permission of UNIX System Laboratories, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)kern_fork.c 8.6 (Berkeley) 4/8/94 */ #include __FBSDID("$FreeBSD$"); #include "opt_kdtrace.h" #include "opt_ktrace.h" #include "opt_kstack_pages.h" #include "opt_procdesc.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef KDTRACE_HOOKS #include dtrace_fork_func_t dtrace_fasttrap_fork; #endif SDT_PROVIDER_DECLARE(proc); SDT_PROBE_DEFINE(proc, kernel, , create, create); SDT_PROBE_ARGTYPE(proc, kernel, , create, 0, "struct proc *"); SDT_PROBE_ARGTYPE(proc, kernel, , create, 1, "struct proc *"); SDT_PROBE_ARGTYPE(proc, kernel, , create, 2, "int"); #ifndef _SYS_SYSPROTO_H_ struct fork_args { int dummy; }; #endif /* ARGSUSED */ int sys_fork(struct thread *td, struct fork_args *uap) { int error; struct proc *p2; error = fork1(td, RFFDG | RFPROC, 0, &p2, NULL, 0); if (error == 0) { td->td_retval[0] = p2->p_pid; td->td_retval[1] = 0; } return (error); } /* ARGUSED */ int sys_pdfork(td, uap) struct thread *td; struct pdfork_args *uap; { #ifdef PROCDESC int error, fd; struct proc *p2; /* * It is necessary to return fd by reference because 0 is a valid file * descriptor number, and the child needs to be able to distinguish * itself from the parent using the return value. */ error = fork1(td, RFFDG | RFPROC | RFPROCDESC, 0, &p2, &fd, uap->flags); if (error == 0) { td->td_retval[0] = p2->p_pid; td->td_retval[1] = 0; error = copyout(&fd, uap->fdp, sizeof(fd)); } return (error); #else return (ENOSYS); #endif } /* ARGSUSED */ int sys_vfork(struct thread *td, struct vfork_args *uap) { int error, flags; struct proc *p2; #ifdef XEN flags = RFFDG | RFPROC; /* validate that this is still an issue */ #else flags = RFFDG | RFPROC | RFPPWAIT | RFMEM; #endif error = fork1(td, flags, 0, &p2, NULL, 0); if (error == 0) { td->td_retval[0] = p2->p_pid; td->td_retval[1] = 0; } return (error); } int sys_rfork(struct thread *td, struct rfork_args *uap) { struct proc *p2; int error; /* Don't allow kernel-only flags. */ if ((uap->flags & RFKERNELONLY) != 0) return (EINVAL); AUDIT_ARG_FFLAGS(uap->flags); error = fork1(td, uap->flags, 0, &p2, NULL, 0); if (error == 0) { td->td_retval[0] = p2 ? p2->p_pid : 0; td->td_retval[1] = 0; } return (error); } int nprocs = 1; /* process 0 */ int lastpid = 0; SYSCTL_INT(_kern, OID_AUTO, lastpid, CTLFLAG_RD, &lastpid, 0, "Last used PID"); /* * Random component to lastpid generation. We mix in a random factor to make * it a little harder to predict. We sanity check the modulus value to avoid * doing it in critical paths. Don't let it be too small or we pointlessly * waste randomness entropy, and don't let it be impossibly large. Using a * modulus that is too big causes a LOT more process table scans and slows * down fork processing as the pidchecked caching is defeated. */ static int randompid = 0; static int sysctl_kern_randompid(SYSCTL_HANDLER_ARGS) { int error, pid; error = sysctl_wire_old_buffer(req, sizeof(int)); if (error != 0) return(error); sx_xlock(&allproc_lock); pid = randompid; error = sysctl_handle_int(oidp, &pid, 0, req); if (error == 0 && req->newptr != NULL) { if (pid < 0 || pid > PID_MAX - 100) /* out of range */ pid = PID_MAX - 100; else if (pid < 2) /* NOP */ pid = 0; else if (pid < 100) /* Make it reasonable */ pid = 100; randompid = pid; } sx_xunlock(&allproc_lock); return (error); } SYSCTL_PROC(_kern, OID_AUTO, randompid, CTLTYPE_INT|CTLFLAG_RW, 0, 0, sysctl_kern_randompid, "I", "Random PID modulus"); static int fork_findpid(int flags) { struct proc *p; int trypid; static int pidchecked = 0; /* * Requires allproc_lock in order to iterate over the list * of processes, and proctree_lock to access p_pgrp. */ sx_assert(&allproc_lock, SX_LOCKED); sx_assert(&proctree_lock, SX_LOCKED); /* * Find an unused process ID. We remember a range of unused IDs * ready to use (from lastpid+1 through pidchecked-1). * * If RFHIGHPID is set (used during system boot), do not allocate * low-numbered pids. */ trypid = lastpid + 1; if (flags & RFHIGHPID) { if (trypid < 10) trypid = 10; } else { if (randompid) trypid += arc4random() % randompid; } retry: /* * If the process ID prototype has wrapped around, * restart somewhat above 0, as the low-numbered procs * tend to include daemons that don't exit. */ if (trypid >= PID_MAX) { trypid = trypid % PID_MAX; if (trypid < 100) trypid += 100; pidchecked = 0; } if (trypid >= pidchecked) { int doingzomb = 0; pidchecked = PID_MAX; /* * Scan the active and zombie procs to check whether this pid * is in use. Remember the lowest pid that's greater * than trypid, so we can avoid checking for a while. */ p = LIST_FIRST(&allproc); again: for (; p != NULL; p = LIST_NEXT(p, p_list)) { while (p->p_pid == trypid || (p->p_pgrp != NULL && (p->p_pgrp->pg_id == trypid || (p->p_session != NULL && p->p_session->s_sid == trypid)))) { trypid++; if (trypid >= pidchecked) goto retry; } if (p->p_pid > trypid && pidchecked > p->p_pid) pidchecked = p->p_pid; if (p->p_pgrp != NULL) { if (p->p_pgrp->pg_id > trypid && pidchecked > p->p_pgrp->pg_id) pidchecked = p->p_pgrp->pg_id; if (p->p_session != NULL && p->p_session->s_sid > trypid && pidchecked > p->p_session->s_sid) pidchecked = p->p_session->s_sid; } } if (!doingzomb) { doingzomb = 1; p = LIST_FIRST(&zombproc); goto again; } } /* * RFHIGHPID does not mess with the lastpid counter during boot. */ if (flags & RFHIGHPID) pidchecked = 0; else lastpid = trypid; return (trypid); } static int fork_norfproc(struct thread *td, int flags) { int error; struct proc *p1; KASSERT((flags & RFPROC) == 0, ("fork_norfproc called with RFPROC set")); p1 = td->td_proc; if (((p1->p_flag & (P_HADTHREADS|P_SYSTEM)) == P_HADTHREADS) && (flags & (RFCFDG | RFFDG))) { PROC_LOCK(p1); if (thread_single(SINGLE_BOUNDARY)) { PROC_UNLOCK(p1); return (ERESTART); } PROC_UNLOCK(p1); } error = vm_forkproc(td, NULL, NULL, NULL, flags); if (error) goto fail; /* * Close all file descriptors. */ if (flags & RFCFDG) { struct filedesc *fdtmp; fdtmp = fdinit(td->td_proc->p_fd); fdfree(td); p1->p_fd = fdtmp; } /* * Unshare file descriptors (from parent). */ if (flags & RFFDG) fdunshare(p1, td); fail: if (((p1->p_flag & (P_HADTHREADS|P_SYSTEM)) == P_HADTHREADS) && (flags & (RFCFDG | RFFDG))) { PROC_LOCK(p1); thread_single_end(); PROC_UNLOCK(p1); } return (error); } static void do_fork(struct thread *td, int flags, struct proc *p2, struct thread *td2, struct vmspace *vm2, int pdflags) { struct proc *p1, *pptr; int p2_held, trypid; struct filedesc *fd; struct filedesc_to_leader *fdtol; struct sigacts *newsigacts; sx_assert(&proctree_lock, SX_SLOCKED); sx_assert(&allproc_lock, SX_XLOCKED); p2_held = 0; p1 = td->td_proc; /* * Increment the nprocs resource before blocking can occur. There * are hard-limits as to the number of processes that can run. */ nprocs++; trypid = fork_findpid(flags); sx_sunlock(&proctree_lock); p2->p_state = PRS_NEW; /* protect against others */ p2->p_pid = trypid; AUDIT_ARG_PID(p2->p_pid); LIST_INSERT_HEAD(&allproc, p2, p_list); LIST_INSERT_HEAD(PIDHASH(p2->p_pid), p2, p_hash); tidhash_add(td2); PROC_LOCK(p2); PROC_LOCK(p1); sx_xunlock(&allproc_lock); bcopy(&p1->p_startcopy, &p2->p_startcopy, __rangeof(struct proc, p_startcopy, p_endcopy)); pargs_hold(p2->p_args); PROC_UNLOCK(p1); bzero(&p2->p_startzero, __rangeof(struct proc, p_startzero, p_endzero)); p2->p_ucred = crhold(td->td_ucred); /* Tell the prison that we exist. */ prison_proc_hold(p2->p_ucred->cr_prison); PROC_UNLOCK(p2); /* * Malloc things while we don't hold any locks. */ if (flags & RFSIGSHARE) newsigacts = NULL; else newsigacts = sigacts_alloc(); /* * Copy filedesc. */ if (flags & RFCFDG) { fd = fdinit(p1->p_fd); fdtol = NULL; } else if (flags & RFFDG) { fd = fdcopy(p1->p_fd); fdtol = NULL; } else { fd = fdshare(p1->p_fd); if (p1->p_fdtol == NULL) p1->p_fdtol = filedesc_to_leader_alloc(NULL, NULL, p1->p_leader); if ((flags & RFTHREAD) != 0) { /* * Shared file descriptor table, and shared * process leaders. */ fdtol = p1->p_fdtol; FILEDESC_XLOCK(p1->p_fd); fdtol->fdl_refcount++; FILEDESC_XUNLOCK(p1->p_fd); } else { /* * Shared file descriptor table, and different * process leaders. */ fdtol = filedesc_to_leader_alloc(p1->p_fdtol, p1->p_fd, p2); } } /* * Make a proc table entry for the new process. * Start by zeroing the section of proc that is zero-initialized, * then copy the section that is copied directly from the parent. */ PROC_LOCK(p2); PROC_LOCK(p1); bzero(&td2->td_startzero, __rangeof(struct thread, td_startzero, td_endzero)); bcopy(&td->td_startcopy, &td2->td_startcopy, __rangeof(struct thread, td_startcopy, td_endcopy)); bcopy(&p2->p_comm, &td2->td_name, sizeof(td2->td_name)); td2->td_sigstk = td->td_sigstk; td2->td_sigmask = td->td_sigmask; td2->td_flags = TDF_INMEM; td2->td_lend_user_pri = PRI_MAX; #ifdef VIMAGE td2->td_vnet = NULL; td2->td_vnet_lpush = NULL; #endif /* * Allow the scheduler to initialize the child. */ thread_lock(td); sched_fork(td, td2); thread_unlock(td); /* * Duplicate sub-structures as needed. * Increase reference counts on shared objects. */ p2->p_flag = P_INMEM; p2->p_swtick = ticks; if (p1->p_flag & P_PROFIL) startprofclock(p2); td2->td_ucred = crhold(p2->p_ucred); if (flags & RFSIGSHARE) { p2->p_sigacts = sigacts_hold(p1->p_sigacts); } else { sigacts_copy(newsigacts, p1->p_sigacts); p2->p_sigacts = newsigacts; } if (flags & RFTSIGZMB) p2->p_sigparent = RFTSIGNUM(flags); else if (flags & RFLINUXTHPN) p2->p_sigparent = SIGUSR1; else p2->p_sigparent = SIGCHLD; p2->p_textvp = p1->p_textvp; p2->p_fd = fd; p2->p_fdtol = fdtol; /* * p_limit is copy-on-write. Bump its refcount. */ lim_fork(p1, p2); pstats_fork(p1->p_stats, p2->p_stats); PROC_UNLOCK(p1); PROC_UNLOCK(p2); /* Bump references to the text vnode (for procfs). */ if (p2->p_textvp) vref(p2->p_textvp); /* * Set up linkage for kernel based threading. */ if ((flags & RFTHREAD) != 0) { mtx_lock(&ppeers_lock); p2->p_peers = p1->p_peers; p1->p_peers = p2; p2->p_leader = p1->p_leader; mtx_unlock(&ppeers_lock); PROC_LOCK(p1->p_leader); if ((p1->p_leader->p_flag & P_WEXIT) != 0) { PROC_UNLOCK(p1->p_leader); /* * The task leader is exiting, so process p1 is * going to be killed shortly. Since p1 obviously * isn't dead yet, we know that the leader is either * sending SIGKILL's to all the processes in this * task or is sleeping waiting for all the peers to * exit. We let p1 complete the fork, but we need * to go ahead and kill the new process p2 since * the task leader may not get a chance to send * SIGKILL to it. We leave it on the list so that * the task leader will wait for this new process * to commit suicide. */ PROC_LOCK(p2); kern_psignal(p2, SIGKILL); PROC_UNLOCK(p2); } else PROC_UNLOCK(p1->p_leader); } else { p2->p_peers = NULL; p2->p_leader = p2; } sx_xlock(&proctree_lock); PGRP_LOCK(p1->p_pgrp); PROC_LOCK(p2); PROC_LOCK(p1); /* * Preserve some more flags in subprocess. P_PROFIL has already * been preserved. */ p2->p_flag |= p1->p_flag & P_SUGID; td2->td_pflags |= td->td_pflags & TDP_ALTSTACK; SESS_LOCK(p1->p_session); if (p1->p_session->s_ttyvp != NULL && p1->p_flag & P_CONTROLT) p2->p_flag |= P_CONTROLT; SESS_UNLOCK(p1->p_session); if (flags & RFPPWAIT) p2->p_flag |= P_PPWAIT; p2->p_pgrp = p1->p_pgrp; LIST_INSERT_AFTER(p1, p2, p_pglist); PGRP_UNLOCK(p1->p_pgrp); LIST_INIT(&p2->p_children); callout_init(&p2->p_itcallout, CALLOUT_MPSAFE); /* * If PF_FORK is set, the child process inherits the * procfs ioctl flags from its parent. */ if (p1->p_pfsflags & PF_FORK) { p2->p_stops = p1->p_stops; p2->p_pfsflags = p1->p_pfsflags; } /* * This begins the section where we must prevent the parent * from being swapped. */ _PHOLD(p1); PROC_UNLOCK(p1); /* * Attach the new process to its parent. * * If RFNOWAIT is set, the newly created process becomes a child * of init. This effectively disassociates the child from the * parent. */ if (flags & RFNOWAIT) pptr = initproc; else pptr = p1; p2->p_pptr = pptr; LIST_INSERT_HEAD(&pptr->p_children, p2, p_sibling); sx_xunlock(&proctree_lock); /* Inform accounting that we have forked. */ p2->p_acflag = AFORK; PROC_UNLOCK(p2); #ifdef KTRACE ktrprocfork(p1, p2); #endif /* * Finish creating the child process. It will return via a different * execution path later. (ie: directly into user mode) */ vm_forkproc(td, p2, td2, vm2, flags); if (flags == (RFFDG | RFPROC)) { PCPU_INC(cnt.v_forks); PCPU_ADD(cnt.v_forkpages, p2->p_vmspace->vm_dsize + p2->p_vmspace->vm_ssize); } else if (flags == (RFFDG | RFPROC | RFPPWAIT | RFMEM)) { PCPU_INC(cnt.v_vforks); PCPU_ADD(cnt.v_vforkpages, p2->p_vmspace->vm_dsize + p2->p_vmspace->vm_ssize); } else if (p1 == &proc0) { PCPU_INC(cnt.v_kthreads); PCPU_ADD(cnt.v_kthreadpages, p2->p_vmspace->vm_dsize + p2->p_vmspace->vm_ssize); } else { PCPU_INC(cnt.v_rforks); PCPU_ADD(cnt.v_rforkpages, p2->p_vmspace->vm_dsize + p2->p_vmspace->vm_ssize); } #ifdef PROCDESC /* * Associate the process descriptor with the process before anything * can happen that might cause that process to need the descriptor. * However, don't do this until after fork(2) can no longer fail. */ if (flags & RFPROCDESC) procdesc_new(p2, pdflags); #endif /* * Both processes are set up, now check if any loadable modules want * to adjust anything. */ EVENTHANDLER_INVOKE(process_fork, p1, p2, flags); /* * Set the child start time and mark the process as being complete. */ PROC_LOCK(p2); PROC_LOCK(p1); microuptime(&p2->p_stats->p_start); PROC_SLOCK(p2); p2->p_state = PRS_NORMAL; PROC_SUNLOCK(p2); #ifdef KDTRACE_HOOKS /* * Tell the DTrace fasttrap provider about the new process * if it has registered an interest. We have to do this only after * p_state is PRS_NORMAL since the fasttrap module will use pfind() * later on. */ if (dtrace_fasttrap_fork) dtrace_fasttrap_fork(p1, p2); #endif if ((p1->p_flag & (P_TRACED | P_FOLLOWFORK)) == (P_TRACED | P_FOLLOWFORK)) { /* * Arrange for debugger to receive the fork event. * * We can report PL_FLAG_FORKED regardless of * P_FOLLOWFORK settings, but it does not make a sense * for runaway child. */ td->td_dbgflags |= TDB_FORK; td->td_dbg_forked = p2->p_pid; td2->td_dbgflags |= TDB_STOPATFORK; _PHOLD(p2); p2_held = 1; } PROC_UNLOCK(p2); if ((flags & RFSTOPPED) == 0) { /* * If RFSTOPPED not requested, make child runnable and * add to run queue. */ thread_lock(td2); TD_SET_CAN_RUN(td2); sched_add(td2, SRQ_BORING); thread_unlock(td2); } /* * Now can be swapped. */ _PRELE(p1); PROC_UNLOCK(p1); /* * Tell any interested parties about the new process. */ knote_fork(&p1->p_klist, p2->p_pid); SDT_PROBE(proc, kernel, , create, p2, p1, flags, 0, 0); /* * Wait until debugger is attached to child. */ PROC_LOCK(p2); while ((td2->td_dbgflags & TDB_STOPATFORK) != 0) cv_wait(&p2->p_dbgwait, &p2->p_mtx); if (p2_held) _PRELE(p2); /* * Preserve synchronization semantics of vfork. If waiting for * child to exec or exit, set P_PPWAIT on child, and sleep on our * proc (in case of exit). */ while (p2->p_flag & P_PPWAIT) cv_wait(&p2->p_pwait, &p2->p_mtx); PROC_UNLOCK(p2); } int fork1(struct thread *td, int flags, int pages, struct proc **procp, int *procdescp, int pdflags) { struct proc *p1; struct proc *newproc; int ok; struct thread *td2; struct vmspace *vm2; vm_ooffset_t mem_charged; int error; static int curfail; static struct timeval lastfail; #ifdef PROCDESC struct file *fp_procdesc = NULL; #endif /* Check for the undefined or unimplemented flags. */ if ((flags & ~(RFFLAGS | RFTSIGFLAGS(RFTSIGMASK))) != 0) return (EINVAL); /* Signal value requires RFTSIGZMB. */ if ((flags & RFTSIGFLAGS(RFTSIGMASK)) != 0 && (flags & RFTSIGZMB) == 0) return (EINVAL); /* Can't copy and clear. */ if ((flags & (RFFDG|RFCFDG)) == (RFFDG|RFCFDG)) return (EINVAL); /* Check the validity of the signal number. */ if ((flags & RFTSIGZMB) != 0 && (u_int)RFTSIGNUM(flags) > _SIG_MAXSIG) return (EINVAL); #ifdef PROCDESC if ((flags & RFPROCDESC) != 0) { /* Can't not create a process yet get a process descriptor. */ if ((flags & RFPROC) == 0) return (EINVAL); /* Must provide a place to put a procdesc if creating one. */ if (procdescp == NULL) return (EINVAL); } #endif p1 = td->td_proc; /* * Here we don't create a new process, but we divorce * certain parts of a process from itself. */ if ((flags & RFPROC) == 0) { *procp = NULL; return (fork_norfproc(td, flags)); } #ifdef PROCDESC /* * If required, create a process descriptor in the parent first; we * will abandon it if something goes wrong. We don't finit() until * later. */ if (flags & RFPROCDESC) { error = falloc(td, &fp_procdesc, procdescp, 0); if (error != 0) return (error); } #endif mem_charged = 0; vm2 = NULL; if (pages == 0) pages = KSTACK_PAGES; /* Allocate new proc. */ newproc = uma_zalloc(proc_zone, M_WAITOK); td2 = FIRST_THREAD_IN_PROC(newproc); if (td2 == NULL) { td2 = thread_alloc(pages); if (td2 == NULL) { error = ENOMEM; goto fail1; } proc_linkup(newproc, td2); } else { if (td2->td_kstack == 0 || td2->td_kstack_pages != pages) { if (td2->td_kstack != 0) vm_thread_dispose(td2); if (!thread_alloc_stack(td2, pages)) { error = ENOMEM; goto fail1; } } } if ((flags & RFMEM) == 0) { vm2 = vmspace_fork(p1->p_vmspace, &mem_charged); if (vm2 == NULL) { error = ENOMEM; goto fail1; } if (!swap_reserve(mem_charged)) { /* * The swap reservation failed. The accounting * from the entries of the copied vm2 will be * substracted in vmspace_free(), so force the * reservation there. */ swap_reserve_force(mem_charged); error = ENOMEM; goto fail1; } } else vm2 = NULL; /* * XXX: This is ugly; when we copy resource usage, we need to bump * per-cred resource counters. */ newproc->p_ucred = p1->p_ucred; /* * Initialize resource accounting for the child process. */ error = racct_proc_fork(p1, newproc); if (error != 0) { error = EAGAIN; goto fail1; } -#ifdef RACCT - PROC_LOCK(newproc); - error = racct_add(newproc, RACCT_NPROC, 1); - error += racct_add(newproc, RACCT_NTHR, 1); - PROC_UNLOCK(newproc); - if (error != 0) { - error = EAGAIN; - goto fail1; - } -#endif - #ifdef MAC mac_proc_init(newproc); #endif knlist_init_mtx(&newproc->p_klist, &newproc->p_mtx); STAILQ_INIT(&newproc->p_ktr); /* We have to lock the process tree while we look for a pid. */ sx_slock(&proctree_lock); /* * Although process entries are dynamically created, we still keep * a global limit on the maximum number we will create. Don't allow * a nonprivileged user to use the last ten processes; don't let root * exceed the limit. The variable nprocs is the current number of * processes, maxproc is the limit. */ sx_xlock(&allproc_lock); if ((nprocs >= maxproc - 10 && priv_check_cred(td->td_ucred, PRIV_MAXPROC, 0) != 0) || nprocs >= maxproc) { error = EAGAIN; goto fail; } /* * Increment the count of procs running with this uid. Don't allow * a nonprivileged user to exceed their current limit. * * XXXRW: Can we avoid privilege here if it's not needed? */ error = priv_check_cred(td->td_ucred, PRIV_PROC_LIMIT, 0); if (error == 0) ok = chgproccnt(td->td_ucred->cr_ruidinfo, 1, 0); else { PROC_LOCK(p1); ok = chgproccnt(td->td_ucred->cr_ruidinfo, 1, lim_cur(p1, RLIMIT_NPROC)); PROC_UNLOCK(p1); } if (ok) { do_fork(td, flags, newproc, td2, vm2, pdflags); /* * Return child proc pointer to parent. */ *procp = newproc; #ifdef PROCDESC if (flags & RFPROCDESC) procdesc_finit(newproc->p_procdesc, fp_procdesc); #endif racct_proc_fork_done(newproc); return (0); } error = EAGAIN; fail: sx_sunlock(&proctree_lock); if (ppsratecheck(&lastfail, &curfail, 1)) printf("maxproc limit exceeded by uid %i, please see tuning(7) and login.conf(5).\n", td->td_ucred->cr_ruid); sx_xunlock(&allproc_lock); #ifdef MAC mac_proc_destroy(newproc); #endif fail1: racct_proc_exit(newproc); if (vm2 != NULL) vmspace_free(vm2); uma_zfree(proc_zone, newproc); #ifdef PROCDESC if (((flags & RFPROCDESC) != 0) && (fp_procdesc != NULL)) fdrop(fp_procdesc, td); #endif pause("fork", hz / 2); return (error); } /* * Handle the return of a child process from fork1(). This function * is called from the MD fork_trampoline() entry point. */ void fork_exit(void (*callout)(void *, struct trapframe *), void *arg, struct trapframe *frame) { struct proc *p; struct thread *td; struct thread *dtd; td = curthread; p = td->td_proc; KASSERT(p->p_state == PRS_NORMAL, ("executing process is still new")); CTR4(KTR_PROC, "fork_exit: new thread %p (td_sched %p, pid %d, %s)", td, td->td_sched, p->p_pid, td->td_name); sched_fork_exit(td); /* * Processes normally resume in mi_switch() after being * cpu_switch()'ed to, but when children start up they arrive here * instead, so we must do much the same things as mi_switch() would. */ if ((dtd = PCPU_GET(deadthread))) { PCPU_SET(deadthread, NULL); thread_stash(dtd); } thread_unlock(td); /* * cpu_set_fork_handler intercepts this function call to * have this call a non-return function to stay in kernel mode. * initproc has its own fork handler, but it does return. */ KASSERT(callout != NULL, ("NULL callout in fork_exit")); callout(arg, frame); /* * Check if a kernel thread misbehaved and returned from its main * function. */ if (p->p_flag & P_KTHREAD) { printf("Kernel thread \"%s\" (pid %d) exited prematurely.\n", td->td_name, p->p_pid); kproc_exit(0); } mtx_assert(&Giant, MA_NOTOWNED); if (p->p_sysent->sv_schedtail != NULL) (p->p_sysent->sv_schedtail)(td); } /* * Simplified back end of syscall(), used when returning from fork() * directly into user mode. Giant is not held on entry, and must not * be held on return. This function is passed in to fork_exit() as the * first parameter and is called when returning to a new userland process. */ void fork_return(struct thread *td, struct trapframe *frame) { struct proc *p, *dbg; if (td->td_dbgflags & TDB_STOPATFORK) { p = td->td_proc; sx_xlock(&proctree_lock); PROC_LOCK(p); if ((p->p_pptr->p_flag & (P_TRACED | P_FOLLOWFORK)) == (P_TRACED | P_FOLLOWFORK)) { /* * If debugger still wants auto-attach for the * parent's children, do it now. */ dbg = p->p_pptr->p_pptr; p->p_flag |= P_TRACED; p->p_oppid = p->p_pptr->p_pid; proc_reparent(p, dbg); sx_xunlock(&proctree_lock); ptracestop(td, SIGSTOP); } else { /* * ... otherwise clear the request. */ sx_xunlock(&proctree_lock); td->td_dbgflags &= ~TDB_STOPATFORK; cv_broadcast(&p->p_dbgwait); } PROC_UNLOCK(p); } userret(td, frame); #ifdef KTRACE if (KTRPOINT(td, KTR_SYSRET)) ktrsysret(SYS_fork, 0, 0); #endif mtx_assert(&Giant, MA_NOTOWNED); } diff --git a/sys/kern/kern_racct.c b/sys/kern/kern_racct.c index 8414cda38521..04beabd11599 100644 --- a/sys/kern/kern_racct.c +++ b/sys/kern/kern_racct.c @@ -1,840 +1,853 @@ /*- * Copyright (c) 2010 The FreeBSD Foundation * All rights reserved. * * This software was developed by Edward Tomasz Napierala under sponsorship * from the FreeBSD Foundation. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ #include __FBSDID("$FreeBSD$"); #include "opt_kdtrace.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef RCTL #include #endif #ifdef RACCT FEATURE(racct, "Resource Accounting"); static struct mtx racct_lock; MTX_SYSINIT(racct_lock, &racct_lock, "racct lock", MTX_DEF); static uma_zone_t racct_zone; static void racct_sub_racct(struct racct *dest, const struct racct *src); static void racct_sub_cred_locked(struct ucred *cred, int resource, uint64_t amount); static void racct_add_cred_locked(struct ucred *cred, int resource, uint64_t amount); SDT_PROVIDER_DEFINE(racct); SDT_PROBE_DEFINE3(racct, kernel, rusage, add, add, "struct proc *", "int", "uint64_t"); SDT_PROBE_DEFINE3(racct, kernel, rusage, add_failure, add-failure, "struct proc *", "int", "uint64_t"); SDT_PROBE_DEFINE3(racct, kernel, rusage, add_cred, add-cred, "struct ucred *", "int", "uint64_t"); SDT_PROBE_DEFINE3(racct, kernel, rusage, add_force, add-force, "struct proc *", "int", "uint64_t"); SDT_PROBE_DEFINE3(racct, kernel, rusage, set, set, "struct proc *", "int", "uint64_t"); SDT_PROBE_DEFINE3(racct, kernel, rusage, set_failure, set-failure, "struct proc *", "int", "uint64_t"); SDT_PROBE_DEFINE3(racct, kernel, rusage, sub, sub, "struct proc *", "int", "uint64_t"); SDT_PROBE_DEFINE3(racct, kernel, rusage, sub_cred, sub-cred, "struct ucred *", "int", "uint64_t"); SDT_PROBE_DEFINE1(racct, kernel, racct, create, create, "struct racct *"); SDT_PROBE_DEFINE1(racct, kernel, racct, destroy, destroy, "struct racct *"); SDT_PROBE_DEFINE2(racct, kernel, racct, join, join, "struct racct *", "struct racct *"); SDT_PROBE_DEFINE2(racct, kernel, racct, join_failure, join-failure, "struct racct *", "struct racct *"); SDT_PROBE_DEFINE2(racct, kernel, racct, leave, leave, "struct racct *", "struct racct *"); int racct_types[] = { [RACCT_CPU] = RACCT_IN_MILLIONS, [RACCT_DATA] = RACCT_RECLAIMABLE | RACCT_INHERITABLE | RACCT_DENIABLE, [RACCT_STACK] = RACCT_RECLAIMABLE | RACCT_INHERITABLE | RACCT_DENIABLE, [RACCT_CORE] = RACCT_DENIABLE, [RACCT_RSS] = RACCT_RECLAIMABLE, [RACCT_MEMLOCK] = RACCT_RECLAIMABLE | RACCT_DENIABLE, [RACCT_NPROC] = RACCT_RECLAIMABLE | RACCT_DENIABLE, [RACCT_NOFILE] = RACCT_RECLAIMABLE | RACCT_INHERITABLE | RACCT_DENIABLE, [RACCT_VMEM] = RACCT_RECLAIMABLE | RACCT_INHERITABLE | RACCT_DENIABLE, [RACCT_NPTS] = RACCT_RECLAIMABLE | RACCT_DENIABLE | RACCT_SLOPPY, [RACCT_SWAP] = RACCT_RECLAIMABLE | RACCT_DENIABLE | RACCT_SLOPPY, [RACCT_NTHR] = RACCT_RECLAIMABLE | RACCT_DENIABLE, [RACCT_MSGQQUEUED] = RACCT_RECLAIMABLE | RACCT_DENIABLE | RACCT_SLOPPY, [RACCT_MSGQSIZE] = RACCT_RECLAIMABLE | RACCT_DENIABLE | RACCT_SLOPPY, [RACCT_NMSGQ] = RACCT_RECLAIMABLE | RACCT_DENIABLE | RACCT_SLOPPY, [RACCT_NSEM] = RACCT_RECLAIMABLE | RACCT_DENIABLE | RACCT_SLOPPY, [RACCT_NSEMOP] = RACCT_RECLAIMABLE | RACCT_INHERITABLE | RACCT_DENIABLE, [RACCT_NSHM] = RACCT_RECLAIMABLE | RACCT_DENIABLE | RACCT_SLOPPY, [RACCT_SHMSIZE] = RACCT_RECLAIMABLE | RACCT_DENIABLE | RACCT_SLOPPY, [RACCT_WALLCLOCK] = RACCT_IN_MILLIONS }; static void racct_add_racct(struct racct *dest, const struct racct *src) { int i; mtx_assert(&racct_lock, MA_OWNED); /* * Update resource usage in dest. */ for (i = 0; i <= RACCT_MAX; i++) { KASSERT(dest->r_resources[i] >= 0, ("racct propagation meltdown: dest < 0")); KASSERT(src->r_resources[i] >= 0, ("racct propagation meltdown: src < 0")); dest->r_resources[i] += src->r_resources[i]; } } static void racct_sub_racct(struct racct *dest, const struct racct *src) { int i; mtx_assert(&racct_lock, MA_OWNED); /* * Update resource usage in dest. */ for (i = 0; i <= RACCT_MAX; i++) { if (!RACCT_IS_SLOPPY(i)) { KASSERT(dest->r_resources[i] >= 0, ("racct propagation meltdown: dest < 0")); KASSERT(src->r_resources[i] >= 0, ("racct propagation meltdown: src < 0")); KASSERT(src->r_resources[i] <= dest->r_resources[i], ("racct propagation meltdown: src > dest")); } if (RACCT_IS_RECLAIMABLE(i)) { dest->r_resources[i] -= src->r_resources[i]; if (dest->r_resources[i] < 0) { KASSERT(RACCT_IS_SLOPPY(i), ("racct_sub_racct: usage < 0")); dest->r_resources[i] = 0; } } } } void racct_create(struct racct **racctp) { SDT_PROBE(racct, kernel, racct, create, racctp, 0, 0, 0, 0); KASSERT(*racctp == NULL, ("racct already allocated")); *racctp = uma_zalloc(racct_zone, M_WAITOK | M_ZERO); } static void racct_destroy_locked(struct racct **racctp) { int i; struct racct *racct; SDT_PROBE(racct, kernel, racct, destroy, racctp, 0, 0, 0, 0); mtx_assert(&racct_lock, MA_OWNED); KASSERT(racctp != NULL, ("NULL racctp")); KASSERT(*racctp != NULL, ("NULL racct")); racct = *racctp; for (i = 0; i <= RACCT_MAX; i++) { if (RACCT_IS_SLOPPY(i)) continue; if (!RACCT_IS_RECLAIMABLE(i)) continue; KASSERT(racct->r_resources[i] == 0, ("destroying non-empty racct: " "%ju allocated for resource %d\n", racct->r_resources[i], i)); } uma_zfree(racct_zone, racct); *racctp = NULL; } void racct_destroy(struct racct **racct) { mtx_lock(&racct_lock); racct_destroy_locked(racct); mtx_unlock(&racct_lock); } /* * Increase consumption of 'resource' by 'amount' for 'racct' * and all its parents. Differently from other cases, 'amount' here * may be less than zero. */ static void racct_alloc_resource(struct racct *racct, int resource, uint64_t amount) { mtx_assert(&racct_lock, MA_OWNED); KASSERT(racct != NULL, ("NULL racct")); racct->r_resources[resource] += amount; if (racct->r_resources[resource] < 0) { KASSERT(RACCT_IS_SLOPPY(resource), ("racct_alloc_resource: usage < 0")); racct->r_resources[resource] = 0; } } -/* - * Increase allocation of 'resource' by 'amount' for process 'p'. - * Return 0 if it's below limits, or errno, if it's not. - */ -int -racct_add(struct proc *p, int resource, uint64_t amount) +static int +racct_add_locked(struct proc *p, int resource, uint64_t amount) { #ifdef RCTL int error; #endif if (p->p_flag & P_SYSTEM) return (0); SDT_PROBE(racct, kernel, rusage, add, p, resource, amount, 0, 0); /* * We need proc lock to dereference p->p_ucred. */ PROC_LOCK_ASSERT(p, MA_OWNED); - mtx_lock(&racct_lock); #ifdef RCTL error = rctl_enforce(p, resource, amount); if (error && RACCT_IS_DENIABLE(resource)) { SDT_PROBE(racct, kernel, rusage, add_failure, p, resource, amount, 0, 0); - mtx_unlock(&racct_lock); return (error); } #endif racct_alloc_resource(p->p_racct, resource, amount); racct_add_cred_locked(p->p_ucred, resource, amount); - mtx_unlock(&racct_lock); return (0); } +/* + * Increase allocation of 'resource' by 'amount' for process 'p'. + * Return 0 if it's below limits, or errno, if it's not. + */ +int +racct_add(struct proc *p, int resource, uint64_t amount) +{ + int error; + + mtx_lock(&racct_lock); + error = racct_add_locked(p, resource, amount); + mtx_unlock(&racct_lock); + return (error); +} + static void racct_add_cred_locked(struct ucred *cred, int resource, uint64_t amount) { struct prison *pr; SDT_PROBE(racct, kernel, rusage, add_cred, cred, resource, amount, 0, 0); racct_alloc_resource(cred->cr_ruidinfo->ui_racct, resource, amount); for (pr = cred->cr_prison; pr != NULL; pr = pr->pr_parent) racct_alloc_resource(pr->pr_prison_racct->prr_racct, resource, amount); racct_alloc_resource(cred->cr_loginclass->lc_racct, resource, amount); } /* * Increase allocation of 'resource' by 'amount' for credential 'cred'. * Doesn't check for limits and never fails. * * XXX: Shouldn't this ever return an error? */ void racct_add_cred(struct ucred *cred, int resource, uint64_t amount) { mtx_lock(&racct_lock); racct_add_cred_locked(cred, resource, amount); mtx_unlock(&racct_lock); } /* * Increase allocation of 'resource' by 'amount' for process 'p'. * Doesn't check for limits and never fails. */ void racct_add_force(struct proc *p, int resource, uint64_t amount) { if (p->p_flag & P_SYSTEM) return; SDT_PROBE(racct, kernel, rusage, add_force, p, resource, amount, 0, 0); /* * We need proc lock to dereference p->p_ucred. */ PROC_LOCK_ASSERT(p, MA_OWNED); mtx_lock(&racct_lock); racct_alloc_resource(p->p_racct, resource, amount); mtx_unlock(&racct_lock); racct_add_cred(p->p_ucred, resource, amount); } static int racct_set_locked(struct proc *p, int resource, uint64_t amount) { int64_t diff; #ifdef RCTL int error; #endif if (p->p_flag & P_SYSTEM) return (0); SDT_PROBE(racct, kernel, rusage, set, p, resource, amount, 0, 0); /* * We need proc lock to dereference p->p_ucred. */ PROC_LOCK_ASSERT(p, MA_OWNED); diff = amount - p->p_racct->r_resources[resource]; #ifdef notyet KASSERT(diff >= 0 || RACCT_IS_RECLAIMABLE(resource), ("racct_set: usage of non-reclaimable resource %d dropping", resource)); #endif #ifdef RCTL if (diff > 0) { error = rctl_enforce(p, resource, diff); if (error && RACCT_IS_DENIABLE(resource)) { SDT_PROBE(racct, kernel, rusage, set_failure, p, resource, amount, 0, 0); return (error); } } #endif racct_alloc_resource(p->p_racct, resource, diff); if (diff > 0) racct_add_cred_locked(p->p_ucred, resource, diff); else if (diff < 0) racct_sub_cred_locked(p->p_ucred, resource, -diff); return (0); } /* * Set allocation of 'resource' to 'amount' for process 'p'. * Return 0 if it's below limits, or errno, if it's not. * * Note that decreasing the allocation always returns 0, * even if it's above the limit. */ int racct_set(struct proc *p, int resource, uint64_t amount) { int error; mtx_lock(&racct_lock); error = racct_set_locked(p, resource, amount); mtx_unlock(&racct_lock); return (error); } void racct_set_force(struct proc *p, int resource, uint64_t amount) { int64_t diff; if (p->p_flag & P_SYSTEM) return; SDT_PROBE(racct, kernel, rusage, set, p, resource, amount, 0, 0); /* * We need proc lock to dereference p->p_ucred. */ PROC_LOCK_ASSERT(p, MA_OWNED); mtx_lock(&racct_lock); diff = amount - p->p_racct->r_resources[resource]; racct_alloc_resource(p->p_racct, resource, diff); if (diff > 0) racct_add_cred_locked(p->p_ucred, resource, diff); else if (diff < 0) racct_sub_cred_locked(p->p_ucred, resource, -diff); mtx_unlock(&racct_lock); } /* * Returns amount of 'resource' the process 'p' can keep allocated. * Allocating more than that would be denied, unless the resource * is marked undeniable. Amount of already allocated resource does * not matter. */ uint64_t racct_get_limit(struct proc *p, int resource) { #ifdef RCTL return (rctl_get_limit(p, resource)); #else return (UINT64_MAX); #endif } /* * Returns amount of 'resource' the process 'p' can keep allocated. * Allocating more than that would be denied, unless the resource * is marked undeniable. Amount of already allocated resource does * matter. */ uint64_t racct_get_available(struct proc *p, int resource) { #ifdef RCTL return (rctl_get_available(p, resource)); #else return (UINT64_MAX); #endif } /* * Decrease allocation of 'resource' by 'amount' for process 'p'. */ void racct_sub(struct proc *p, int resource, uint64_t amount) { if (p->p_flag & P_SYSTEM) return; SDT_PROBE(racct, kernel, rusage, sub, p, resource, amount, 0, 0); /* * We need proc lock to dereference p->p_ucred. */ PROC_LOCK_ASSERT(p, MA_OWNED); KASSERT(RACCT_IS_RECLAIMABLE(resource), ("racct_sub: called for non-reclaimable resource %d", resource)); mtx_lock(&racct_lock); KASSERT(amount <= p->p_racct->r_resources[resource], ("racct_sub: freeing %ju of resource %d, which is more " "than allocated %jd for %s (pid %d)", amount, resource, (intmax_t)p->p_racct->r_resources[resource], p->p_comm, p->p_pid)); racct_alloc_resource(p->p_racct, resource, -amount); racct_sub_cred_locked(p->p_ucred, resource, amount); mtx_unlock(&racct_lock); } static void racct_sub_cred_locked(struct ucred *cred, int resource, uint64_t amount) { struct prison *pr; SDT_PROBE(racct, kernel, rusage, sub_cred, cred, resource, amount, 0, 0); #ifdef notyet KASSERT(RACCT_IS_RECLAIMABLE(resource), ("racct_sub_cred: called for non-reclaimable resource %d", resource)); #endif racct_alloc_resource(cred->cr_ruidinfo->ui_racct, resource, -amount); for (pr = cred->cr_prison; pr != NULL; pr = pr->pr_parent) racct_alloc_resource(pr->pr_prison_racct->prr_racct, resource, -amount); racct_alloc_resource(cred->cr_loginclass->lc_racct, resource, -amount); } /* * Decrease allocation of 'resource' by 'amount' for credential 'cred'. */ void racct_sub_cred(struct ucred *cred, int resource, uint64_t amount) { mtx_lock(&racct_lock); racct_sub_cred_locked(cred, resource, amount); mtx_unlock(&racct_lock); } /* * Inherit resource usage information from the parent process. */ int racct_proc_fork(struct proc *parent, struct proc *child) { int i, error = 0; /* * Create racct for the child process. */ racct_create(&child->p_racct); /* * No resource accounting for kernel processes. */ if (child->p_flag & P_SYSTEM) return (0); PROC_LOCK(parent); PROC_LOCK(child); mtx_lock(&racct_lock); /* * Inherit resource usage. */ for (i = 0; i <= RACCT_MAX; i++) { if (parent->p_racct->r_resources[i] == 0 || !RACCT_IS_INHERITABLE(i)) continue; error = racct_set_locked(child, i, parent->p_racct->r_resources[i]); if (error != 0) goto out; } #ifdef RCTL error = rctl_proc_fork(parent, child); + if (error != 0) + goto out; #endif + error = racct_add_locked(child, RACCT_NPROC, 1); + error += racct_add_locked(child, RACCT_NTHR, 1); + out: mtx_unlock(&racct_lock); PROC_UNLOCK(child); PROC_UNLOCK(parent); return (error); } /* * Called at the end of fork1(), to handle rules that require the process * to be fully initialized. */ void racct_proc_fork_done(struct proc *child) { #ifdef RCTL PROC_LOCK(child); mtx_lock(&racct_lock); rctl_enforce(child, RACCT_NPROC, 0); rctl_enforce(child, RACCT_NTHR, 0); mtx_unlock(&racct_lock); PROC_UNLOCK(child); #endif } void racct_proc_exit(struct proc *p) { int i; uint64_t runtime; PROC_LOCK(p); /* * We don't need to calculate rux, proc_reap() has already done this. */ runtime = cputick2usec(p->p_rux.rux_runtime); #ifdef notyet KASSERT(runtime >= p->p_prev_runtime, ("runtime < p_prev_runtime")); #else if (runtime < p->p_prev_runtime) runtime = p->p_prev_runtime; #endif mtx_lock(&racct_lock); racct_set_locked(p, RACCT_CPU, runtime); for (i = 0; i <= RACCT_MAX; i++) { if (p->p_racct->r_resources[i] == 0) continue; if (!RACCT_IS_RECLAIMABLE(i)) continue; racct_set_locked(p, i, 0); } mtx_unlock(&racct_lock); PROC_UNLOCK(p); #ifdef RCTL rctl_racct_release(p->p_racct); #endif racct_destroy(&p->p_racct); } /* * Called after credentials change, to move resource utilisation * between raccts. */ void racct_proc_ucred_changed(struct proc *p, struct ucred *oldcred, struct ucred *newcred) { struct uidinfo *olduip, *newuip; struct loginclass *oldlc, *newlc; struct prison *oldpr, *newpr, *pr; PROC_LOCK_ASSERT(p, MA_NOTOWNED); newuip = newcred->cr_ruidinfo; olduip = oldcred->cr_ruidinfo; newlc = newcred->cr_loginclass; oldlc = oldcred->cr_loginclass; newpr = newcred->cr_prison; oldpr = oldcred->cr_prison; mtx_lock(&racct_lock); if (newuip != olduip) { racct_sub_racct(olduip->ui_racct, p->p_racct); racct_add_racct(newuip->ui_racct, p->p_racct); } if (newlc != oldlc) { racct_sub_racct(oldlc->lc_racct, p->p_racct); racct_add_racct(newlc->lc_racct, p->p_racct); } if (newpr != oldpr) { for (pr = oldpr; pr != NULL; pr = pr->pr_parent) racct_sub_racct(pr->pr_prison_racct->prr_racct, p->p_racct); for (pr = newpr; pr != NULL; pr = pr->pr_parent) racct_add_racct(pr->pr_prison_racct->prr_racct, p->p_racct); } mtx_unlock(&racct_lock); #ifdef RCTL rctl_proc_ucred_changed(p, newcred); #endif } static void racctd(void) { struct thread *td; struct proc *p; struct timeval wallclock; uint64_t runtime; for (;;) { sx_slock(&allproc_lock); FOREACH_PROC_IN_SYSTEM(p) { if (p->p_state != PRS_NORMAL) continue; if (p->p_flag & P_SYSTEM) continue; microuptime(&wallclock); timevalsub(&wallclock, &p->p_stats->p_start); PROC_LOCK(p); PROC_SLOCK(p); FOREACH_THREAD_IN_PROC(p, td) { ruxagg(p, td); thread_lock(td); thread_unlock(td); } runtime = cputick2usec(p->p_rux.rux_runtime); PROC_SUNLOCK(p); #ifdef notyet KASSERT(runtime >= p->p_prev_runtime, ("runtime < p_prev_runtime")); #else if (runtime < p->p_prev_runtime) runtime = p->p_prev_runtime; #endif p->p_prev_runtime = runtime; mtx_lock(&racct_lock); racct_set_locked(p, RACCT_CPU, runtime); racct_set_locked(p, RACCT_WALLCLOCK, wallclock.tv_sec * 1000000 + wallclock.tv_usec); mtx_unlock(&racct_lock); PROC_UNLOCK(p); } sx_sunlock(&allproc_lock); pause("-", hz); } } static struct kproc_desc racctd_kp = { "racctd", racctd, NULL }; SYSINIT(racctd, SI_SUB_RACCTD, SI_ORDER_FIRST, kproc_start, &racctd_kp); static void racct_init(void) { racct_zone = uma_zcreate("racct", sizeof(struct racct), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); /* * XXX: Move this somewhere. */ prison0.pr_prison_racct = prison_racct_find("0"); } SYSINIT(racct, SI_SUB_RACCT, SI_ORDER_FIRST, racct_init, NULL); #else /* !RACCT */ int racct_add(struct proc *p, int resource, uint64_t amount) { return (0); } void racct_add_cred(struct ucred *cred, int resource, uint64_t amount) { } void racct_add_force(struct proc *p, int resource, uint64_t amount) { return; } int racct_set(struct proc *p, int resource, uint64_t amount) { return (0); } void racct_set_force(struct proc *p, int resource, uint64_t amount) { } void racct_sub(struct proc *p, int resource, uint64_t amount) { } void racct_sub_cred(struct ucred *cred, int resource, uint64_t amount) { } uint64_t racct_get_limit(struct proc *p, int resource) { return (UINT64_MAX); } uint64_t racct_get_available(struct proc *p, int resource) { return (UINT64_MAX); } void racct_create(struct racct **racctp) { } void racct_destroy(struct racct **racctp) { } int racct_proc_fork(struct proc *parent, struct proc *child) { return (0); } void racct_proc_fork_done(struct proc *child) { } void racct_proc_exit(struct proc *p) { } #endif /* !RACCT */