diff --git a/sys/net80211/ieee80211_ddb.c b/sys/net80211/ieee80211_ddb.c index 0050038457c7..05b370eafa38 100644 --- a/sys/net80211/ieee80211_ddb.c +++ b/sys/net80211/ieee80211_ddb.c @@ -1,1052 +1,1052 @@ /*- * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 2007-2009 Sam Leffler, Errno Consulting * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include "opt_ddb.h" #include "opt_wlan.h" #ifdef DDB /* * IEEE 802.11 DDB support */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef IEEE80211_SUPPORT_TDMA #include #endif #ifdef IEEE80211_SUPPORT_MESH #include #endif #include #include #define DB_PRINTSYM(prefix, name, addr) do { \ db_printf("%s%-25s : ", prefix, name); \ db_printsym((db_addr_t) addr, DB_STGY_ANY); \ db_printf("\n"); \ } while (0) static void _db_show_sta(const struct ieee80211_node *); static void _db_show_vap(const struct ieee80211vap *, int, int); static void _db_show_com(const struct ieee80211com *, int showvaps, int showsta, int showmesh, int showprocs, int); static void _db_show_all_vaps(void *, struct ieee80211com *); static void _db_show_node_table(const char *tag, const struct ieee80211_node_table *); static void _db_show_channel(const char *tag, const struct ieee80211_channel *); static void _db_show_ssid(const char *tag, int ix, int len, const uint8_t *); static void _db_show_appie(const char *tag, const struct ieee80211_appie *); static void _db_show_key(const char *tag, int ix, const struct ieee80211_key *); static void _db_show_roamparams(const char *tag, const void *arg, const struct ieee80211_roamparam *rp); static void _db_show_txparams(const char *tag, const void *arg, const struct ieee80211_txparam *tp); static void _db_show_ageq(const char *tag, const struct ieee80211_ageq *q); static void _db_show_stats(const struct ieee80211_stats *); #ifdef IEEE80211_SUPPORT_MESH static void _db_show_mesh(const struct ieee80211_mesh_state *); #endif DB_SHOW_COMMAND(sta, db_show_sta) { if (!have_addr) { db_printf("usage: show sta \n"); return; } _db_show_sta((const struct ieee80211_node *) addr); } DB_SHOW_COMMAND(statab, db_show_statab) { if (!have_addr) { db_printf("usage: show statab \n"); return; } _db_show_node_table("", (const struct ieee80211_node_table *) addr); } DB_SHOW_COMMAND(vap, db_show_vap) { int i, showmesh = 0, showprocs = 0; if (!have_addr) { db_printf("usage: show vap \n"); return; } for (i = 0; modif[i] != '\0'; i++) switch (modif[i]) { case 'a': showprocs = 1; showmesh = 1; break; case 'm': showmesh = 1; break; case 'p': showprocs = 1; break; } _db_show_vap((const struct ieee80211vap *) addr, showmesh, showprocs); } DB_SHOW_COMMAND(com, db_show_com) { const struct ieee80211com *ic; int i, showprocs = 0, showvaps = 0, showsta = 0, showmesh = 0, showscan = 0; if (!have_addr) { db_printf("usage: show com \n"); return; } for (i = 0; modif[i] != '\0'; i++) switch (modif[i]) { case 'a': showsta = showmesh = showvaps = showprocs = showscan = 1; break; case 'S': showscan = 1; break; case 's': showsta = 1; break; case 'm': showmesh = 1; break; case 'v': showvaps = 1; break; case 'p': showprocs = 1; break; } ic = (const struct ieee80211com *) addr; _db_show_com(ic, showvaps, showsta, showmesh, showprocs, showscan); } DB_SHOW_ALL_COMMAND(vaps, db_show_all_vaps) { int i, showall = 0; for (i = 0; modif[i] != '\0'; i++) switch (modif[i]) { case 'a': showall = 1; break; } ieee80211_iterate_coms(_db_show_all_vaps, &showall); } #ifdef IEEE80211_SUPPORT_MESH DB_SHOW_ALL_COMMAND(mesh, db_show_mesh) { const struct ieee80211_mesh_state *ms; if (!have_addr) { db_printf("usage: show mesh \n"); return; } ms = (const struct ieee80211_mesh_state *) addr; _db_show_mesh(ms); } #endif /* IEEE80211_SUPPORT_MESH */ static void _db_show_txampdu(const char *sep, int ix, const struct ieee80211_tx_ampdu *tap) { db_printf("%stxampdu[%d]: %p flags %b %s\n", sep, ix, tap, tap->txa_flags, IEEE80211_AGGR_BITS, ieee80211_wme_acnames[TID_TO_WME_AC(tap->txa_tid)]); db_printf("%s token %u lastsample %d pkts %d avgpps %d qbytes %d qframes %d\n", sep, tap->txa_token, tap->txa_lastsample, tap->txa_pkts, tap->txa_avgpps, tap->txa_qbytes, tap->txa_qframes); db_printf("%s start %u seqpending %u wnd %u attempts %d nextrequest %d\n", sep, tap->txa_start, tap->txa_seqpending, tap->txa_wnd, tap->txa_attempts, tap->txa_nextrequest); /* XXX timer */ } static void _db_show_rxampdu(const char *sep, int ix, const struct ieee80211_rx_ampdu *rap) { struct mbuf *m; int i; db_printf("%srxampdu[%d]: %p flags 0x%x tid %u\n", sep, ix, rap, rap->rxa_flags, ix /*XXX */); db_printf("%s qbytes %d qframes %d seqstart %u start %u wnd %u\n", sep, rap->rxa_qbytes, rap->rxa_qframes, rap->rxa_seqstart, rap->rxa_start, rap->rxa_wnd); db_printf("%s age %d nframes %d\n", sep, rap->rxa_age, rap->rxa_nframes); for (i = 0; i < IEEE80211_AGGR_BAWMAX; i++) if (!mbufq_empty(&rap->rxa_mq[i])) { db_printf("%s m[%2u:%4u] ", sep, i, IEEE80211_SEQ_ADD(rap->rxa_start, i)); STAILQ_FOREACH(m, &rap->rxa_mq[i].mq_head, m_stailqpkt) { db_printf(" %p", m); } db_printf("\n"); } } static void _db_show_sta(const struct ieee80211_node *ni) { int i; db_printf("STA: %p: mac %s refcnt %d\n", ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)); db_printf("\tvap %p wdsvap %p ic %p table %p\n", ni->ni_vap, ni->ni_wdsvap, ni->ni_ic, ni->ni_table); db_printf("\tflags=%b\n", ni->ni_flags, IEEE80211_NODE_BITS); db_printf("\tauthmode %u ath_flags 0x%x ath_defkeyix %u\n", ni->ni_authmode, ni->ni_ath_flags, ni->ni_ath_defkeyix); db_printf("\tassocid 0x%x txpower %u vlan %u\n", ni->ni_associd, ni->ni_txpower, ni->ni_vlan); db_printf("\tjointime %d (%lu secs) challenge %p\n", ni->ni_jointime, (unsigned long)(time_uptime - ni->ni_jointime), ni->ni_challenge); db_printf("\ties: data %p len %d\n", ni->ni_ies.data, ni->ni_ies.len); db_printf("\t[wpa_ie %p rsn_ie %p wme_ie %p ath_ie %p\n", ni->ni_ies.wpa_ie, ni->ni_ies.rsn_ie, ni->ni_ies.wme_ie, ni->ni_ies.ath_ie); db_printf("\t htcap_ie %p htinfo_ie %p]\n", ni->ni_ies.htcap_ie, ni->ni_ies.htinfo_ie); db_printf("\t vhtcap_ie %p vhtopmode_ie %p vhtpwrenv_ie %p]\n", ni->ni_ies.vhtcap_ie, ni->ni_ies.vhtopmode_ie, ni->ni_ies.vhtpwrenv_ie); if (ni->ni_flags & IEEE80211_NODE_QOS) { for (i = 0; i < WME_NUM_TID; i++) { if (ni->ni_txseqs[i] || ni->ni_rxseqs[i]) db_printf("\t[%u] txseq %u rxseq %u fragno %u\n", i, ni->ni_txseqs[i], ni->ni_rxseqs[i] >> IEEE80211_SEQ_SEQ_SHIFT, ni->ni_rxseqs[i] & IEEE80211_SEQ_FRAG_MASK); } } db_printf("\ttxseq %u rxseq %u fragno %u rxfragstamp %u\n", ni->ni_txseqs[IEEE80211_NONQOS_TID], ni->ni_rxseqs[IEEE80211_NONQOS_TID] >> IEEE80211_SEQ_SEQ_SHIFT, ni->ni_rxseqs[IEEE80211_NONQOS_TID] & IEEE80211_SEQ_FRAG_MASK, ni->ni_rxfragstamp); db_printf("\trxfrag[0] %p rxfrag[1] %p rxfrag[2] %p\n", ni->ni_rxfrag[0], ni->ni_rxfrag[1], ni->ni_rxfrag[2]); _db_show_key("\tucastkey", 0, &ni->ni_ucastkey); db_printf("\tavgrssi 0x%x (rssi %d) noise %d\n", ni->ni_avgrssi, IEEE80211_RSSI_GET(ni->ni_avgrssi), ni->ni_noise); db_printf("\tintval %u capinfo %b\n", ni->ni_intval, ni->ni_capinfo, IEEE80211_CAPINFO_BITS); db_printf("\tbssid %s", ether_sprintf(ni->ni_bssid)); _db_show_ssid(" essid ", 0, ni->ni_esslen, ni->ni_essid); db_printf("\n"); _db_show_channel("\tchannel", ni->ni_chan); db_printf("\n"); db_printf("\terp %b dtim_period %u dtim_count %u\n", ni->ni_erp, IEEE80211_ERP_BITS, ni->ni_dtim_period, ni->ni_dtim_count); db_printf("\thtcap %b htparam 0x%x htctlchan %u ht2ndchan %u\n", ni->ni_htcap, IEEE80211_HTCAP_BITS, ni->ni_htparam, ni->ni_htctlchan, ni->ni_ht2ndchan); - db_printf("\thtopmode 0x%x htstbc 0x%x chw %b\n", + db_printf("\thtopmode 0x%x htstbc 0x%x chw %d (%s)\n", ni->ni_htopmode, ni->ni_htstbc, - ni->ni_chw, IEEE80211_NI_CHW_BITS); + ni->ni_chw, ieee80211_ni_chw_to_str(ni->ni_chw)); /* XXX ampdu state */ for (i = 0; i < WME_NUM_TID; i++) if (ni->ni_tx_ampdu[i].txa_flags & IEEE80211_AGGR_SETUP) _db_show_txampdu("\t", i, &ni->ni_tx_ampdu[i]); for (i = 0; i < WME_NUM_TID; i++) if (ni->ni_rx_ampdu[i].rxa_flags) _db_show_rxampdu("\t", i, &ni->ni_rx_ampdu[i]); db_printf("\tinact %u inact_reload %u txrate %u\n", ni->ni_inact, ni->ni_inact_reload, ni->ni_txrate); #ifdef IEEE80211_SUPPORT_MESH _db_show_ssid("\tmeshid ", 0, ni->ni_meshidlen, ni->ni_meshid); db_printf(" mlstate %b mllid 0x%x mlpid 0x%x mlrcnt %u mltval %u\n", ni->ni_mlstate, IEEE80211_MESH_MLSTATE_BITS, ni->ni_mllid, ni->ni_mlpid, ni->ni_mlrcnt, ni->ni_mltval); #endif /* VHT state */ db_printf("\tvhtcap %b vht_basicmcs %#06x vht_pad2 %#06x\n", ni->ni_vhtcap, IEEE80211_VHTCAP_BITS, ni->ni_vht_basicmcs, ni->ni_vht_pad2); db_printf("\tvht_mcsinfo: { rx_mcs_map %#06x rx_highest %#06x " "tx_mcs_map %#06x tx_highest %#06x }\n", ni->ni_vht_mcsinfo.rx_mcs_map, ni->ni_vht_mcsinfo.rx_highest, ni->ni_vht_mcsinfo.tx_mcs_map, ni->ni_vht_mcsinfo.tx_highest); db_printf("\tvht_chan1/chan2 %u/%u vht_chanwidth %#04x\n", ni->ni_vht_chan1, ni->ni_vht_chan2, ni->ni_vht_chanwidth); db_printf("\tvht_pad1 %#04x vht_spare { %#x %#x %#x %#x %#x %#x %#x %#x }\n", ni->ni_vht_pad1, ni->ni_vht_spare[0], ni->ni_vht_spare[1], ni->ni_vht_spare[2], ni->ni_vht_spare[3], ni->ni_vht_spare[4], ni->ni_vht_spare[5], ni->ni_vht_spare[6], ni->ni_vht_spare[7]); db_printf("\tni_tx_superg[] = {"); for (i = 0; i < WME_NUM_TID; i++) db_printf(" %p%s", ni->ni_tx_superg[i], (i == 0) ? "" : ","); db_printf(" }\n"); db_printf("\tni_rctls = %p", ni->ni_rctls); db_printf("\tni_drv_data = %p", ni->ni_drv_data); db_printf("\n"); db_printf("\tni_spare[3] = { %#jx %#jx %#jx }", ni->ni_spare[0], ni->ni_spare[1], ni->ni_spare[2]); db_printf("\n"); #ifdef __notyet__ struct ieee80211_psq ni_psq; /* power save queue */ struct ieee80211_nodestats ni_stats; /* per-node statistics */ /* quiet time IE state for the given node */ uint32_t ni_quiet_ie_set; /* Quiet time IE was seen */ struct ieee80211_quiet_ie ni_quiet_ie; /* last seen quiet IE */ /* U-APSD */ uint8_t ni_uapsd; /* U-APSD per-node flags matching WMM STA QoS Info field */ #endif } #ifdef IEEE80211_SUPPORT_TDMA static void _db_show_tdma(const char *sep, const struct ieee80211_tdma_state *ts, int showprocs) { db_printf("%stdma %p:\n", sep, ts); db_printf("%s version %u slot %u bintval %u peer %p\n", sep, ts->tdma_version, ts->tdma_slot, ts->tdma_bintval, ts->tdma_peer); db_printf("%s slotlen %u slotcnt %u", sep, ts->tdma_slotlen, ts->tdma_slotcnt); db_printf(" inuse 0x%x active 0x%x count %d\n", ts->tdma_inuse[0], ts->tdma_active[0], ts->tdma_count); if (showprocs) { DB_PRINTSYM(sep, " tdma_newstate", ts->tdma_newstate); DB_PRINTSYM(sep, " tdma_recv_mgmt", ts->tdma_recv_mgmt); DB_PRINTSYM(sep, " tdma_opdetach", ts->tdma_opdetach); } } #endif /* IEEE80211_SUPPORT_TDMA */ static void _db_show_scan(const struct ieee80211_scan_state *ss, int showprocs) { int i; const struct ieee80211_scanner *ss_ops; db_printf("SCAN %p:", ss); db_printf(" vap %p ic %p", ss->ss_vap, ss->ss_ic); db_printf("\n"); db_printf("\tss_ops %p (%s) ss_priv %p", ss->ss_ops, ss->ss_ops->scan_name, ss->ss_priv); db_printf("\n"); if (showprocs) { ss_ops = ss->ss_ops; DB_PRINTSYM("\t", "scan_attach", ss_ops->scan_attach); DB_PRINTSYM("\t", "scan_detach", ss_ops->scan_detach); DB_PRINTSYM("\t", "scan_start", ss_ops->scan_start); DB_PRINTSYM("\t", "scan_restart", ss_ops->scan_restart); DB_PRINTSYM("\t", "scan_cancel", ss_ops->scan_cancel); DB_PRINTSYM("\t", "scan_end", ss_ops->scan_end); DB_PRINTSYM("\t", "scan_flush", ss_ops->scan_flush); DB_PRINTSYM("\t", "scan_pickchan", ss_ops->scan_pickchan); DB_PRINTSYM("\t", "scan_add", ss_ops->scan_add); DB_PRINTSYM("\t", "scan_age", ss_ops->scan_age); DB_PRINTSYM("\t", "scan_assoc_fail", ss_ops->scan_assoc_fail); DB_PRINTSYM("\t", "scan_assoc_success", ss_ops->scan_assoc_success); DB_PRINTSYM("\t", "scan_iterate", ss_ops->scan_iterate); DB_PRINTSYM("\t", "scan_spare0", ss_ops->scan_spare0); DB_PRINTSYM("\t", "scan_spare1", ss_ops->scan_spare1); DB_PRINTSYM("\t", "scan_spare2", ss_ops->scan_spare2); DB_PRINTSYM("\t", "scan_spare3", ss_ops->scan_spare3); } db_printf("\tss_flags %b", ss->ss_flags, IEEE80211_SS_FLAGS_BITS); db_printf("\n"); db_printf("\tss_nssid %u", ss->ss_nssid); for (i = 0; i < ss->ss_nssid && i < IEEE80211_SCAN_MAX_SSID; i++) _db_show_ssid(" ss_nssid[%d]", i, ss->ss_ssid[i].len, ss->ss_ssid[i].ssid); db_printf("\n"); db_printf("\tss_chans:\n"); for (i = 0; i < ss->ss_last && i < IEEE80211_SCAN_MAX; i++) { db_printf("\t%-3d", i); _db_show_channel(" ", ss->ss_chans[i]); db_printf("\n"); } db_printf("\tss_next %u ss_last %u ss_mindwell %lu ss_maxdwell %lu", ss->ss_next, ss->ss_last, ss->ss_mindwell, ss->ss_maxdwell); db_printf("\n"); } static void _db_show_rate(const struct ieee80211_ratectl *rate, const void *rs, const int showprocs) { db_printf("\tiv_rate %p", rate); db_printf(" iv_rs %p", rs); db_printf("\n"); if (showprocs) { db_printf("\t ir_name %s", rate->ir_name); db_printf("\n"); DB_PRINTSYM("\t ", "ir_attach", rate->ir_attach); DB_PRINTSYM("\t ", "ir_detach", rate->ir_detach); DB_PRINTSYM("\t ", "ir_init", rate->ir_init); DB_PRINTSYM("\t ", "ir_deinit", rate->ir_deinit); DB_PRINTSYM("\t ", "ir_node_init", rate->ir_node_init); DB_PRINTSYM("\t ", "ir_node_deinit", rate->ir_node_deinit); DB_PRINTSYM("\t ", "ir_rate", rate->ir_rate); DB_PRINTSYM("\t ", "ir_tx_complete", rate->ir_tx_complete); DB_PRINTSYM("\t ", "ir_tx_update", rate->ir_tx_update); DB_PRINTSYM("\t ", "ir_setinterval", rate->ir_setinterval); DB_PRINTSYM("\t ", "ir_node_stats", rate->ir_node_stats); } } static void _db_show_vap(const struct ieee80211vap *vap, int showmesh, int showprocs) { const struct ieee80211com *ic = vap->iv_ic; int i; db_printf("VAP %p:", vap); db_printf(" bss %p", vap->iv_bss); db_printf(" myaddr %s", ether_sprintf(vap->iv_myaddr)); db_printf("\n"); db_printf("\topmode %s", ieee80211_opmode_name[vap->iv_opmode]); #ifdef IEEE80211_SUPPORT_MESH if (vap->iv_opmode == IEEE80211_M_MBSS) db_printf("(%p)", vap->iv_mesh); #endif db_printf(" state %#x %s", vap->iv_state, ieee80211_state_name[vap->iv_state]); db_printf(" ifp %p(%s)", vap->iv_ifp, if_name(vap->iv_ifp)); db_printf("\n"); db_printf("\tic %p", vap->iv_ic); db_printf(" media %p", &vap->iv_media); db_printf(" bpf_if %p", vap->iv_rawbpf); db_printf(" mgtsend %p", &vap->iv_mgtsend); #if 0 struct sysctllog *iv_sysctl; /* dynamic sysctl context */ #endif db_printf("\n"); db_printf("\tiv_nstate %#x %s iv_nstate_b %d iv_nstate_n %d\n", vap->iv_nstate, ieee80211_state_name[vap->iv_nstate], /* historic */ vap->iv_nstate_b, vap->iv_nstate_n); for (i = 0; i < NET80211_IV_NSTATE_NUM; i++) { db_printf("\t [%d] iv_nstates %#x %s _task %p _args %d\n", i, vap->iv_nstates[i], ieee80211_state_name[vap->iv_nstates[i]], &vap->iv_nstate_task[i], vap->iv_nstate_args[i]); } db_printf("\tdebug=%b\n", vap->iv_debug, IEEE80211_MSG_BITS); db_printf("\tflags=%b\n", vap->iv_flags, IEEE80211_F_BITS); db_printf("\tflags_ext=%b\n", vap->iv_flags_ext, IEEE80211_FEXT_BITS); db_printf("\tflags_ht=%b\n", vap->iv_flags_ht, IEEE80211_FHT_BITS); db_printf("\tflags_ven=%b\n", vap->iv_flags_ven, IEEE80211_FVEN_BITS); db_printf("\tcaps=%b\n", vap->iv_caps, IEEE80211_C_BITS); db_printf("\thtcaps=%b\n", vap->iv_htcaps, IEEE80211_C_HTCAP_BITS); db_printf("\tvhtcap=%b\n", vap->iv_vht_cap.vht_cap_info, IEEE80211_VHTCAP_BITS); _db_show_stats(&vap->iv_stats); db_printf("\tinact_init %d", vap->iv_inact_init); db_printf(" inact_auth %d", vap->iv_inact_auth); db_printf(" inact_run %d", vap->iv_inact_run); db_printf(" inact_probe %d", vap->iv_inact_probe); db_printf("\n"); db_printf("\tdes_nssid %d", vap->iv_des_nssid); if (vap->iv_des_nssid) _db_show_ssid(" des_ssid[%u] ", 0, vap->iv_des_ssid[0].len, vap->iv_des_ssid[0].ssid); db_printf(" des_bssid %s", ether_sprintf(vap->iv_des_bssid)); db_printf("\n"); db_printf("\tdes_mode %d", vap->iv_des_mode); _db_show_channel(" des_chan", vap->iv_des_chan); db_printf("\n"); #if 0 int iv_nicknamelen; /* XXX junk */ uint8_t iv_nickname[IEEE80211_NWID_LEN]; #endif db_printf("\tbgscanidle %u", vap->iv_bgscanidle); db_printf(" bgscanintvl %u", vap->iv_bgscanintvl); db_printf(" scanvalid %u", vap->iv_scanvalid); db_printf("\n"); db_printf("\tscanreq_duration %u", vap->iv_scanreq_duration); db_printf(" scanreq_mindwell %u", vap->iv_scanreq_mindwell); db_printf(" scanreq_maxdwell %u", vap->iv_scanreq_maxdwell); db_printf("\n"); db_printf("\tscanreq_flags 0x%x", vap->iv_scanreq_flags); db_printf(" scanreq_nssid %d", vap->iv_scanreq_nssid); for (i = 0; i < vap->iv_scanreq_nssid; i++) _db_show_ssid(" scanreq_ssid[%u]", i, vap->iv_scanreq_ssid[i].len, vap->iv_scanreq_ssid[i].ssid); db_printf(" roaming %d", vap->iv_roaming); db_printf("\n"); for (i = IEEE80211_MODE_11A; i < IEEE80211_MODE_MAX; i++) if (isset(ic->ic_modecaps, i)) { _db_show_roamparams("\troamparms[%s]", ieee80211_phymode_name[i], &vap->iv_roamparms[i]); db_printf("\n"); } db_printf("\tbmissthreshold %u", vap->iv_bmissthreshold); db_printf(" bmiss_max %u", vap->iv_bmiss_count); db_printf(" bmiss_max %d", vap->iv_bmiss_max); db_printf("\n"); db_printf("\tswbmiss_count %u", vap->iv_swbmiss_count); db_printf(" swbmiss_period %u", vap->iv_swbmiss_period); db_printf(" swbmiss %p", &vap->iv_swbmiss); db_printf("\n"); db_printf("\tampdu_rxmax %d", vap->iv_ampdu_rxmax); db_printf(" ampdu_density %d", vap->iv_ampdu_density); db_printf(" ampdu_limit %d", vap->iv_ampdu_limit); db_printf(" amsdu_limit %d", vap->iv_amsdu_limit); db_printf("\n"); db_printf("\tmax_aid %u", vap->iv_max_aid); db_printf(" aid_bitmap %p", vap->iv_aid_bitmap); db_printf("\n"); db_printf("\tsta_assoc %u", vap->iv_sta_assoc); db_printf(" ps_sta %u", vap->iv_ps_sta); db_printf(" ps_pending %u", vap->iv_ps_pending); db_printf(" tim_len %u", vap->iv_tim_len); db_printf(" tim_bitmap %p", vap->iv_tim_bitmap); db_printf("\n"); db_printf("\tdtim_period %u", vap->iv_dtim_period); db_printf(" dtim_count %u", vap->iv_dtim_count); db_printf(" set_tim %p", vap->iv_set_tim); db_printf(" csa_count %d", vap->iv_csa_count); db_printf("\n"); db_printf("\trtsthreshold %u", vap->iv_rtsthreshold); db_printf(" fragthreshold %u", vap->iv_fragthreshold); db_printf(" inact_timer %d", vap->iv_inact_timer); db_printf("\n"); for (i = IEEE80211_MODE_11A; i < IEEE80211_MODE_MAX; i++) if (isset(ic->ic_modecaps, i)) { _db_show_txparams("\ttxparms[%s]", ieee80211_phymode_name[i], &vap->iv_txparms[i]); db_printf("\n"); } /* application-specified IE's to attach to mgt frames */ _db_show_appie("\tappie_beacon", vap->iv_appie_beacon); _db_show_appie("\tappie_probereq", vap->iv_appie_probereq); _db_show_appie("\tappie_proberesp", vap->iv_appie_proberesp); _db_show_appie("\tappie_assocreq", vap->iv_appie_assocreq); _db_show_appie("\tappie_asscoresp", vap->iv_appie_assocresp); _db_show_appie("\tappie_wpa", vap->iv_appie_wpa); if (vap->iv_wpa_ie != NULL || vap->iv_rsn_ie != NULL) { if (vap->iv_wpa_ie != NULL) db_printf("\twpa_ie %p", vap->iv_wpa_ie); if (vap->iv_rsn_ie != NULL) db_printf("\trsn_ie %p", vap->iv_rsn_ie); db_printf("\n"); } db_printf("\tmax_keyix %u", vap->iv_max_keyix); db_printf(" def_txkey %d", vap->iv_def_txkey); db_printf("\n"); for (i = 0; i < IEEE80211_WEP_NKID; i++) _db_show_key("\tnw_keys[%u]", i, &vap->iv_nw_keys[i]); db_printf("\tauth %p(%s)", vap->iv_auth, vap->iv_auth->ia_name); db_printf(" ec %p", vap->iv_ec); db_printf(" acl %p", vap->iv_acl); db_printf(" as %p", vap->iv_as); db_printf("\n"); #ifdef IEEE80211_SUPPORT_MESH if (showmesh && vap->iv_mesh != NULL) _db_show_mesh(vap->iv_mesh); #endif #ifdef IEEE80211_SUPPORT_TDMA if (vap->iv_tdma != NULL) _db_show_tdma("\t", vap->iv_tdma, showprocs); #endif /* IEEE80211_SUPPORT_TDMA */ db_printf("\tsta_assoc %u", vap->iv_sta_assoc); db_printf(" ht_sta_assoc %u", vap->iv_ht_sta_assoc); db_printf(" ht40_sta_assoc %u", vap->iv_ht40_sta_assoc); db_printf("\n"); db_printf("\tnonerpsta %u", vap->iv_nonerpsta); db_printf(" longslotsta %u", vap->iv_longslotsta); db_printf(" lastnonerp %d", vap->iv_lastnonerp); db_printf(" lastnonht %d", vap->iv_lastnonht); db_printf("\n"); if (vap->iv_rate != NULL) _db_show_rate(vap->iv_rate, vap->iv_rs, showprocs); if (showprocs) { DB_PRINTSYM("\t", "iv_key_alloc", vap->iv_key_alloc); DB_PRINTSYM("\t", "iv_key_delete", vap->iv_key_delete); DB_PRINTSYM("\t", "iv_key_set", vap->iv_key_set); DB_PRINTSYM("\t", "iv_key_update_begin", vap->iv_key_update_begin); DB_PRINTSYM("\t", "iv_key_update_end", vap->iv_key_update_end); DB_PRINTSYM("\t", "iv_opdetach", vap->iv_opdetach); DB_PRINTSYM("\t", "iv_input", vap->iv_input); DB_PRINTSYM("\t", "iv_recv_mgmt", vap->iv_recv_mgmt); DB_PRINTSYM("\t", "iv_deliver_data", vap->iv_deliver_data); DB_PRINTSYM("\t", "iv_bmiss", vap->iv_bmiss); DB_PRINTSYM("\t", "iv_reset", vap->iv_reset); DB_PRINTSYM("\t", "iv_update_beacon", vap->iv_update_beacon); DB_PRINTSYM("\t", "iv_newstate", vap->iv_newstate); DB_PRINTSYM("\t", "iv_output", vap->iv_output); } } static void _db_show_com(const struct ieee80211com *ic, int showvaps, int showsta, int showmesh, int showprocs, int showscan) { struct ieee80211vap *vap; db_printf("COM: %p:", ic); TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) db_printf(" %s(%p)", if_name(vap->iv_ifp), vap); db_printf("\n"); db_printf("\tsoftc %p", ic->ic_softc); db_printf("\tname %s", ic->ic_name); db_printf(" comlock %p", &ic->ic_comlock); db_printf(" txlock %p", &ic->ic_txlock); db_printf(" fflock %p", &ic->ic_fflock); db_printf("\n"); db_printf("\theadroom %d", ic->ic_headroom); db_printf(" phytype %d", ic->ic_phytype); db_printf(" opmode %s", ieee80211_opmode_name[ic->ic_opmode]); db_printf("\n"); db_printf("\tinact %p", &ic->ic_inact); db_printf("\n"); db_printf("\tflags=%b\n", ic->ic_flags, IEEE80211_F_BITS); db_printf("\tflags_ext=%b\n", ic->ic_flags_ext, IEEE80211_FEXT_BITS); db_printf("\tflags_ht=%b\n", ic->ic_flags_ht, IEEE80211_FHT_BITS); db_printf("\tflags_ven=%b\n", ic->ic_flags_ven, IEEE80211_FVEN_BITS); db_printf("\tcaps=%b\n", ic->ic_caps, IEEE80211_C_BITS); db_printf("\tcryptocaps=%b\n", ic->ic_cryptocaps, IEEE80211_CRYPTO_BITS); db_printf("\thtcaps=%b\n", ic->ic_htcaps, IEEE80211_HTCAP_BITS); db_printf("\tvhtcaps=%b\n", ic->ic_vht_cap.vht_cap_info, IEEE80211_VHTCAP_BITS); #if 0 uint8_t ic_modecaps[2]; /* set of mode capabilities */ #endif db_printf("\tcurmode %u", ic->ic_curmode); db_printf(" promisc %u", ic->ic_promisc); db_printf(" allmulti %u", ic->ic_allmulti); db_printf(" nrunning %u", ic->ic_nrunning); db_printf("\n"); db_printf("\tbintval %u", ic->ic_bintval); db_printf(" lintval %u", ic->ic_lintval); db_printf(" holdover %u", ic->ic_holdover); db_printf(" txpowlimit %u", ic->ic_txpowlimit); db_printf("\n"); #if 0 struct ieee80211_rateset ic_sup_rates[IEEE80211_MODE_MAX]; #endif /* * Channel state: * * ic_channels is the set of available channels for the device; * it is setup by the driver * ic_nchans is the number of valid entries in ic_channels * ic_chan_avail is a bit vector of these channels used to check * whether a channel is available w/o searching the channel table. * ic_chan_active is a (potentially) constrained subset of * ic_chan_avail that reflects any mode setting or user-specified * limit on the set of channels to use/scan * ic_curchan is the current channel the device is set to; it may * be different from ic_bsschan when we are off-channel scanning * or otherwise doing background work * ic_bsschan is the channel selected for operation; it may * be undefined (IEEE80211_CHAN_ANYC) * ic_prevchan is a cached ``previous channel'' used to optimize * lookups when switching back+forth between two channels * (e.g. for dynamic turbo) */ db_printf("\tnchans %d", ic->ic_nchans); #if 0 struct ieee80211_channel ic_channels[IEEE80211_CHAN_MAX]; uint8_t ic_chan_avail[IEEE80211_CHAN_BYTES]; uint8_t ic_chan_active[IEEE80211_CHAN_BYTES]; uint8_t ic_chan_scan[IEEE80211_CHAN_BYTES]; #endif db_printf("\n"); _db_show_channel("\tcurchan", ic->ic_curchan); db_printf("\n"); _db_show_channel("\tbsschan", ic->ic_bsschan); db_printf("\n"); _db_show_channel("\tprevchan", ic->ic_prevchan); db_printf("\n"); db_printf("\tregdomain %p", &ic->ic_regdomain); db_printf("\n"); _db_show_channel("\tcsa_newchan", ic->ic_csa_newchan); db_printf(" csa_count %d", ic->ic_csa_count); db_printf( "dfs %p", &ic->ic_dfs); db_printf("\n"); db_printf("\tscan %p", ic->ic_scan); db_printf(" lastdata %d", ic->ic_lastdata); db_printf(" lastscan %d", ic->ic_lastscan); db_printf("\n"); db_printf("\tmax_keyix %d", ic->ic_max_keyix); db_printf(" hash_key 0x%x", ic->ic_hash_key); db_printf(" wme %p", &ic->ic_wme); if (!showsta) db_printf(" sta %p", &ic->ic_sta); db_printf("\n"); db_printf("\tstageq@%p:\n", &ic->ic_stageq); _db_show_ageq("\t", &ic->ic_stageq); if (showsta) _db_show_node_table("\t", &ic->ic_sta); db_printf("\tprotmode %d", ic->ic_protmode); db_printf("\tcurhtprotmode 0x%x", ic->ic_curhtprotmode); db_printf(" htprotmode %d", ic->ic_htprotmode); db_printf("\n"); db_printf("\tsuperg %p\n", ic->ic_superg); db_printf("\tmontaps %d th %p txchan %p rh %p rxchan %p\n", ic->ic_montaps, ic->ic_th, ic->ic_txchan, ic->ic_rh, ic->ic_rxchan); if (showprocs) { DB_PRINTSYM("\t", "ic_vap_create", ic->ic_vap_create); DB_PRINTSYM("\t", "ic_vap_delete", ic->ic_vap_delete); #if 0 /* operating mode attachment */ ieee80211vap_attach ic_vattach[IEEE80211_OPMODE_MAX]; #endif DB_PRINTSYM("\t", "ic_newassoc", ic->ic_newassoc); DB_PRINTSYM("\t", "ic_getradiocaps", ic->ic_getradiocaps); DB_PRINTSYM("\t", "ic_setregdomain", ic->ic_setregdomain); DB_PRINTSYM("\t", "ic_send_mgmt", ic->ic_send_mgmt); DB_PRINTSYM("\t", "ic_raw_xmit", ic->ic_raw_xmit); DB_PRINTSYM("\t", "ic_updateslot", ic->ic_updateslot); DB_PRINTSYM("\t", "ic_update_mcast", ic->ic_update_mcast); DB_PRINTSYM("\t", "ic_update_promisc", ic->ic_update_promisc); DB_PRINTSYM("\t", "ic_node_alloc", ic->ic_node_alloc); DB_PRINTSYM("\t", "ic_node_free", ic->ic_node_free); DB_PRINTSYM("\t", "ic_node_cleanup", ic->ic_node_cleanup); DB_PRINTSYM("\t", "ic_node_getrssi", ic->ic_node_getrssi); DB_PRINTSYM("\t", "ic_node_getsignal", ic->ic_node_getsignal); DB_PRINTSYM("\t", "ic_node_getmimoinfo", ic->ic_node_getmimoinfo); DB_PRINTSYM("\t", "ic_scan_start", ic->ic_scan_start); DB_PRINTSYM("\t", "ic_scan_end", ic->ic_scan_end); DB_PRINTSYM("\t", "ic_set_channel", ic->ic_set_channel); DB_PRINTSYM("\t", "ic_scan_curchan", ic->ic_scan_curchan); DB_PRINTSYM("\t", "ic_scan_mindwell", ic->ic_scan_mindwell); DB_PRINTSYM("\t", "ic_recv_action", ic->ic_recv_action); DB_PRINTSYM("\t", "ic_send_action", ic->ic_send_action); DB_PRINTSYM("\t", "ic_addba_request", ic->ic_addba_request); DB_PRINTSYM("\t", "ic_addba_response", ic->ic_addba_response); DB_PRINTSYM("\t", "ic_addba_stop", ic->ic_addba_stop); } if (showscan) { db_printf("\n"); _db_show_scan(ic->ic_scan, showprocs); } if (showvaps && !TAILQ_EMPTY(&ic->ic_vaps)) { db_printf("\n"); TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) _db_show_vap(vap, showmesh, showprocs); } if (showsta && !TAILQ_EMPTY(&ic->ic_sta.nt_node)) { const struct ieee80211_node_table *nt = &ic->ic_sta; const struct ieee80211_node *ni; TAILQ_FOREACH(ni, &nt->nt_node, ni_list) { db_printf("\n"); _db_show_sta(ni); } } } static void _db_show_all_vaps(void *arg, struct ieee80211com *ic) { int showall = *(int *)arg; if (!showall) { const struct ieee80211vap *vap; db_printf("%s: com %p vaps:", ic->ic_name, ic); TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) db_printf(" %s(%p)", if_name(vap->iv_ifp), vap); db_printf("\n"); } else _db_show_com(ic, 1, 1, 1, 1, 1); } static void _db_show_node_table(const char *tag, const struct ieee80211_node_table *nt) { int i; db_printf("%s%s@%p:\n", tag, nt->nt_name, nt); db_printf("%s nodelock %p", tag, &nt->nt_nodelock); db_printf(" inact_init %d", nt->nt_inact_init); db_printf("%s keyixmax %d keyixmap %p\n", tag, nt->nt_keyixmax, nt->nt_keyixmap); for (i = 0; i < nt->nt_keyixmax; i++) { const struct ieee80211_node *ni = nt->nt_keyixmap[i]; if (ni != NULL) db_printf("%s [%3u] %p %s\n", tag, i, ni, ether_sprintf(ni->ni_macaddr)); } } static void _db_show_channel(const char *tag, const struct ieee80211_channel *c) { db_printf("%s ", tag); if (c == NULL) db_printf(""); else if (c == IEEE80211_CHAN_ANYC) db_printf(""); else db_printf("[%u (%u) flags=%b maxreg %d maxpow %d minpow %d state 0x%x extieee %u]", c->ic_freq, c->ic_ieee, c->ic_flags, IEEE80211_CHAN_BITS, c->ic_maxregpower, c->ic_maxpower, c->ic_minpower, c->ic_state, c->ic_extieee); } static void _db_show_ssid(const char *tag, int ix, int len, const uint8_t *ssid) { const uint8_t *p; int i; db_printf(tag, ix); if (len > IEEE80211_NWID_LEN) len = IEEE80211_NWID_LEN; /* determine printable or not */ for (i = 0, p = ssid; i < len; i++, p++) { if (*p < ' ' || *p > 0x7e) break; } if (i == len) { db_printf("\""); for (i = 0, p = ssid; i < len; i++, p++) db_printf("%c", *p); db_printf("\""); } else { db_printf("0x"); for (i = 0, p = ssid; i < len; i++, p++) db_printf("%02x", *p); } } static void _db_show_appie(const char *tag, const struct ieee80211_appie *ie) { const uint8_t *p; int i; if (ie == NULL) return; db_printf("%s [0x", tag); for (i = 0, p = ie->ie_data; i < ie->ie_len; i++, p++) db_printf("%02x", *p); db_printf("]\n"); } static void _db_show_key(const char *tag, int ix, const struct ieee80211_key *wk) { static const uint8_t zerodata[IEEE80211_KEYBUF_SIZE]; const struct ieee80211_cipher *cip = wk->wk_cipher; int keylen = wk->wk_keylen; db_printf(tag, ix); switch (cip->ic_cipher) { case IEEE80211_CIPHER_WEP: /* compatibility */ db_printf(" wepkey %u:%s", wk->wk_keyix, keylen <= 5 ? "40-bit" : keylen <= 13 ? "104-bit" : "128-bit"); break; case IEEE80211_CIPHER_TKIP: if (keylen > 128/8) keylen -= 128/8; /* ignore MIC for now */ db_printf(" TKIP %u:%u-bit", wk->wk_keyix, 8*keylen); break; case IEEE80211_CIPHER_AES_OCB: db_printf(" AES-OCB %u:%u-bit", wk->wk_keyix, 8*keylen); break; case IEEE80211_CIPHER_AES_CCM: db_printf(" AES-CCM %u:%u-bit", wk->wk_keyix, 8*keylen); break; case IEEE80211_CIPHER_CKIP: db_printf(" CKIP %u:%u-bit", wk->wk_keyix, 8*keylen); break; case IEEE80211_CIPHER_NONE: db_printf(" NULL %u:%u-bit", wk->wk_keyix, 8*keylen); break; default: db_printf(" UNKNOWN (0x%x) %u:%u-bit", cip->ic_cipher, wk->wk_keyix, 8*keylen); break; } if (wk->wk_rxkeyix != wk->wk_keyix) db_printf(" rxkeyix %u", wk->wk_rxkeyix); if (memcmp(wk->wk_key, zerodata, keylen) != 0) { int i; db_printf(" <"); for (i = 0; i < keylen; i++) db_printf("%02x", wk->wk_key[i]); db_printf(">"); if (cip->ic_cipher != IEEE80211_CIPHER_WEP && wk->wk_keyrsc[IEEE80211_NONQOS_TID] != 0) db_printf(" rsc %ju", (uintmax_t)wk->wk_keyrsc[IEEE80211_NONQOS_TID]); if (cip->ic_cipher != IEEE80211_CIPHER_WEP && wk->wk_keytsc != 0) db_printf(" tsc %ju", (uintmax_t)wk->wk_keytsc); db_printf(" flags=%b", wk->wk_flags, IEEE80211_KEY_BITS); } db_printf("\n"); } static void printrate(const char *tag, int v) { if (v == IEEE80211_FIXED_RATE_NONE) db_printf(" %s ", tag); else if (v == 11) db_printf(" %s 5.5", tag); else if (v & IEEE80211_RATE_MCS) db_printf(" %s MCS%d", tag, v &~ IEEE80211_RATE_MCS); else db_printf(" %s %d", tag, v/2); } static void _db_show_roamparams(const char *tag, const void *arg, const struct ieee80211_roamparam *rp) { db_printf(tag, arg); if (rp->rssi & 1) db_printf(" rssi %u.5", rp->rssi/2); else db_printf(" rssi %u", rp->rssi/2); printrate("rate", rp->rate); } static void _db_show_txparams(const char *tag, const void *arg, const struct ieee80211_txparam *tp) { db_printf(tag, arg); printrate("ucastrate", tp->ucastrate); printrate("mcastrate", tp->mcastrate); printrate("mgmtrate", tp->mgmtrate); db_printf(" maxretry %d", tp->maxretry); } static void _db_show_ageq(const char *tag, const struct ieee80211_ageq *q) { const struct mbuf *m; db_printf("%s lock %p len %d maxlen %d drops %d head %p tail %p\n", tag, &q->aq_lock, q->aq_len, q->aq_maxlen, q->aq_drops, q->aq_head, q->aq_tail); for (m = q->aq_head; m != NULL; m = m->m_nextpkt) db_printf("%s %p (len %d, %b)\n", tag, m, m->m_len, /* XXX could be either TX or RX but is mostly TX */ m->m_flags, IEEE80211_MBUF_TX_FLAG_BITS); } static void _db_show_stats(const struct ieee80211_stats *is) { } #ifdef IEEE80211_SUPPORT_MESH static void _db_show_mesh(const struct ieee80211_mesh_state *ms) { struct ieee80211_mesh_route *rt; int i; _db_show_ssid(" meshid ", 0, ms->ms_idlen, ms->ms_id); db_printf("nextseq %u ttl %u flags 0x%x\n", ms->ms_seq, ms->ms_ttl, ms->ms_flags); db_printf("routing table:\n"); i = 0; TAILQ_FOREACH(rt, &ms->ms_routes, rt_next) { db_printf("entry %d:\tdest: %6D nexthop: %6D metric: %u", i, rt->rt_dest, ":", rt->rt_nexthop, ":", rt->rt_metric); db_printf("\tlifetime: %u lastseq: %u priv: %p\n", ieee80211_mesh_rt_update(rt, 0), rt->rt_lastmseq, rt->rt_priv); i++; } } #endif /* IEEE80211_SUPPORT_MESH */ #endif /* DDB */ diff --git a/sys/net80211/ieee80211_ht.c b/sys/net80211/ieee80211_ht.c index 2ec5ffb1a2af..9e047244cc3b 100644 --- a/sys/net80211/ieee80211_ht.c +++ b/sys/net80211/ieee80211_ht.c @@ -1,3748 +1,3748 @@ /*- * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 2007-2008 Sam Leffler, Errno Consulting * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * IEEE 802.11n protocol support. */ #include "opt_inet.h" #include "opt_wlan.h" #include #include #include #include #include #include #include #include #include #include #include #include #include const struct ieee80211_mcs_rates ieee80211_htrates[IEEE80211_HTRATE_MAXSIZE] = { { 13, 14, 27, 30 }, /* MCS 0 */ { 26, 29, 54, 60 }, /* MCS 1 */ { 39, 43, 81, 90 }, /* MCS 2 */ { 52, 58, 108, 120 }, /* MCS 3 */ { 78, 87, 162, 180 }, /* MCS 4 */ { 104, 116, 216, 240 }, /* MCS 5 */ { 117, 130, 243, 270 }, /* MCS 6 */ { 130, 144, 270, 300 }, /* MCS 7 */ { 26, 29, 54, 60 }, /* MCS 8 */ { 52, 58, 108, 120 }, /* MCS 9 */ { 78, 87, 162, 180 }, /* MCS 10 */ { 104, 116, 216, 240 }, /* MCS 11 */ { 156, 173, 324, 360 }, /* MCS 12 */ { 208, 231, 432, 480 }, /* MCS 13 */ { 234, 260, 486, 540 }, /* MCS 14 */ { 260, 289, 540, 600 }, /* MCS 15 */ { 39, 43, 81, 90 }, /* MCS 16 */ { 78, 87, 162, 180 }, /* MCS 17 */ { 117, 130, 243, 270 }, /* MCS 18 */ { 156, 173, 324, 360 }, /* MCS 19 */ { 234, 260, 486, 540 }, /* MCS 20 */ { 312, 347, 648, 720 }, /* MCS 21 */ { 351, 390, 729, 810 }, /* MCS 22 */ { 390, 433, 810, 900 }, /* MCS 23 */ { 52, 58, 108, 120 }, /* MCS 24 */ { 104, 116, 216, 240 }, /* MCS 25 */ { 156, 173, 324, 360 }, /* MCS 26 */ { 208, 231, 432, 480 }, /* MCS 27 */ { 312, 347, 648, 720 }, /* MCS 28 */ { 416, 462, 864, 960 }, /* MCS 29 */ { 468, 520, 972, 1080 }, /* MCS 30 */ { 520, 578, 1080, 1200 }, /* MCS 31 */ { 0, 0, 12, 13 }, /* MCS 32 */ { 78, 87, 162, 180 }, /* MCS 33 */ { 104, 116, 216, 240 }, /* MCS 34 */ { 130, 144, 270, 300 }, /* MCS 35 */ { 117, 130, 243, 270 }, /* MCS 36 */ { 156, 173, 324, 360 }, /* MCS 37 */ { 195, 217, 405, 450 }, /* MCS 38 */ { 104, 116, 216, 240 }, /* MCS 39 */ { 130, 144, 270, 300 }, /* MCS 40 */ { 130, 144, 270, 300 }, /* MCS 41 */ { 156, 173, 324, 360 }, /* MCS 42 */ { 182, 202, 378, 420 }, /* MCS 43 */ { 182, 202, 378, 420 }, /* MCS 44 */ { 208, 231, 432, 480 }, /* MCS 45 */ { 156, 173, 324, 360 }, /* MCS 46 */ { 195, 217, 405, 450 }, /* MCS 47 */ { 195, 217, 405, 450 }, /* MCS 48 */ { 234, 260, 486, 540 }, /* MCS 49 */ { 273, 303, 567, 630 }, /* MCS 50 */ { 273, 303, 567, 630 }, /* MCS 51 */ { 312, 347, 648, 720 }, /* MCS 52 */ { 130, 144, 270, 300 }, /* MCS 53 */ { 156, 173, 324, 360 }, /* MCS 54 */ { 182, 202, 378, 420 }, /* MCS 55 */ { 156, 173, 324, 360 }, /* MCS 56 */ { 182, 202, 378, 420 }, /* MCS 57 */ { 208, 231, 432, 480 }, /* MCS 58 */ { 234, 260, 486, 540 }, /* MCS 59 */ { 208, 231, 432, 480 }, /* MCS 60 */ { 234, 260, 486, 540 }, /* MCS 61 */ { 260, 289, 540, 600 }, /* MCS 62 */ { 260, 289, 540, 600 }, /* MCS 63 */ { 286, 318, 594, 660 }, /* MCS 64 */ { 195, 217, 405, 450 }, /* MCS 65 */ { 234, 260, 486, 540 }, /* MCS 66 */ { 273, 303, 567, 630 }, /* MCS 67 */ { 234, 260, 486, 540 }, /* MCS 68 */ { 273, 303, 567, 630 }, /* MCS 69 */ { 312, 347, 648, 720 }, /* MCS 70 */ { 351, 390, 729, 810 }, /* MCS 71 */ { 312, 347, 648, 720 }, /* MCS 72 */ { 351, 390, 729, 810 }, /* MCS 73 */ { 390, 433, 810, 900 }, /* MCS 74 */ { 390, 433, 810, 900 }, /* MCS 75 */ { 429, 477, 891, 990 }, /* MCS 76 */ }; static int ieee80211_ampdu_age = -1; /* threshold for ampdu reorder q (ms) */ SYSCTL_PROC(_net_wlan, OID_AUTO, ampdu_age, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &ieee80211_ampdu_age, 0, ieee80211_sysctl_msecs_ticks, "I", "AMPDU max reorder age (ms)"); static int ieee80211_recv_bar_ena = 1; SYSCTL_INT(_net_wlan, OID_AUTO, recv_bar, CTLFLAG_RW, &ieee80211_recv_bar_ena, 0, "BAR frame processing (ena/dis)"); static int ieee80211_addba_timeout = -1;/* timeout for ADDBA response */ SYSCTL_PROC(_net_wlan, OID_AUTO, addba_timeout, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &ieee80211_addba_timeout, 0, ieee80211_sysctl_msecs_ticks, "I", "ADDBA request timeout (ms)"); static int ieee80211_addba_backoff = -1;/* backoff after max ADDBA requests */ SYSCTL_PROC(_net_wlan, OID_AUTO, addba_backoff, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &ieee80211_addba_backoff, 0, ieee80211_sysctl_msecs_ticks, "I", "ADDBA request backoff (ms)"); static int ieee80211_addba_maxtries = 3;/* max ADDBA requests before backoff */ SYSCTL_INT(_net_wlan, OID_AUTO, addba_maxtries, CTLFLAG_RW, &ieee80211_addba_maxtries, 0, "max ADDBA requests sent before backoff"); static int ieee80211_bar_timeout = -1; /* timeout waiting for BAR response */ static int ieee80211_bar_maxtries = 50;/* max BAR requests before DELBA */ static ieee80211_recv_action_func ht_recv_action_ba_addba_request; static ieee80211_recv_action_func ht_recv_action_ba_addba_response; static ieee80211_recv_action_func ht_recv_action_ba_delba; static ieee80211_recv_action_func ht_recv_action_ht_mimopwrsave; static ieee80211_recv_action_func ht_recv_action_ht_txchwidth; static ieee80211_send_action_func ht_send_action_ba_addba; static ieee80211_send_action_func ht_send_action_ba_delba; static ieee80211_send_action_func ht_send_action_ht_txchwidth; static void ieee80211_ht_init(void) { /* * Setup HT parameters that depends on the clock frequency. */ ieee80211_ampdu_age = msecs_to_ticks(500); ieee80211_addba_timeout = msecs_to_ticks(250); ieee80211_addba_backoff = msecs_to_ticks(10*1000); ieee80211_bar_timeout = msecs_to_ticks(250); /* * Register action frame handlers. */ ieee80211_recv_action_register(IEEE80211_ACTION_CAT_BA, IEEE80211_ACTION_BA_ADDBA_REQUEST, ht_recv_action_ba_addba_request); ieee80211_recv_action_register(IEEE80211_ACTION_CAT_BA, IEEE80211_ACTION_BA_ADDBA_RESPONSE, ht_recv_action_ba_addba_response); ieee80211_recv_action_register(IEEE80211_ACTION_CAT_BA, IEEE80211_ACTION_BA_DELBA, ht_recv_action_ba_delba); ieee80211_recv_action_register(IEEE80211_ACTION_CAT_HT, IEEE80211_ACTION_HT_MIMOPWRSAVE, ht_recv_action_ht_mimopwrsave); ieee80211_recv_action_register(IEEE80211_ACTION_CAT_HT, IEEE80211_ACTION_HT_TXCHWIDTH, ht_recv_action_ht_txchwidth); ieee80211_send_action_register(IEEE80211_ACTION_CAT_BA, IEEE80211_ACTION_BA_ADDBA_REQUEST, ht_send_action_ba_addba); ieee80211_send_action_register(IEEE80211_ACTION_CAT_BA, IEEE80211_ACTION_BA_ADDBA_RESPONSE, ht_send_action_ba_addba); ieee80211_send_action_register(IEEE80211_ACTION_CAT_BA, IEEE80211_ACTION_BA_DELBA, ht_send_action_ba_delba); ieee80211_send_action_register(IEEE80211_ACTION_CAT_HT, IEEE80211_ACTION_HT_TXCHWIDTH, ht_send_action_ht_txchwidth); } SYSINIT(wlan_ht, SI_SUB_DRIVERS, SI_ORDER_FIRST, ieee80211_ht_init, NULL); static int ieee80211_ampdu_enable(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap); static int ieee80211_addba_request(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap, int dialogtoken, int baparamset, int batimeout); static int ieee80211_addba_response(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap, int code, int baparamset, int batimeout); static void ieee80211_addba_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap); static void null_addba_response_timeout(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap); static void ieee80211_bar_response(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap, int status); static void ampdu_tx_stop(struct ieee80211_tx_ampdu *tap); static void bar_stop_timer(struct ieee80211_tx_ampdu *tap); static int ampdu_rx_start(struct ieee80211_node *, struct ieee80211_rx_ampdu *, int baparamset, int batimeout, int baseqctl); static void ampdu_rx_stop(struct ieee80211_node *, struct ieee80211_rx_ampdu *); void ieee80211_ht_attach(struct ieee80211com *ic) { /* setup default aggregation policy */ ic->ic_recv_action = ieee80211_recv_action; ic->ic_send_action = ieee80211_send_action; ic->ic_ampdu_enable = ieee80211_ampdu_enable; ic->ic_addba_request = ieee80211_addba_request; ic->ic_addba_response = ieee80211_addba_response; ic->ic_addba_response_timeout = null_addba_response_timeout; ic->ic_addba_stop = ieee80211_addba_stop; ic->ic_bar_response = ieee80211_bar_response; ic->ic_ampdu_rx_start = ampdu_rx_start; ic->ic_ampdu_rx_stop = ampdu_rx_stop; ic->ic_htprotmode = IEEE80211_PROT_RTSCTS; ic->ic_curhtprotmode = IEEE80211_HTINFO_OPMODE_PURE; } void ieee80211_ht_detach(struct ieee80211com *ic) { } void ieee80211_ht_vattach(struct ieee80211vap *vap) { /* driver can override defaults */ vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_8K; vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_NA; vap->iv_ampdu_limit = vap->iv_ampdu_rxmax; vap->iv_amsdu_limit = vap->iv_htcaps & IEEE80211_HTCAP_MAXAMSDU; /* tx aggregation traffic thresholds */ vap->iv_ampdu_mintraffic[WME_AC_BK] = 128; vap->iv_ampdu_mintraffic[WME_AC_BE] = 64; vap->iv_ampdu_mintraffic[WME_AC_VO] = 32; vap->iv_ampdu_mintraffic[WME_AC_VI] = 32; vap->iv_htprotmode = IEEE80211_PROT_RTSCTS; vap->iv_curhtprotmode = IEEE80211_HTINFO_OPMODE_PURE; if (vap->iv_htcaps & IEEE80211_HTC_HT) { /* * Device is HT capable; enable all HT-related * facilities by default. * XXX these choices may be too aggressive. */ vap->iv_flags_ht |= IEEE80211_FHT_HT | IEEE80211_FHT_HTCOMPAT ; if (vap->iv_htcaps & IEEE80211_HTCAP_SHORTGI20) vap->iv_flags_ht |= IEEE80211_FHT_SHORTGI20; /* XXX infer from channel list? */ if (vap->iv_htcaps & IEEE80211_HTCAP_CHWIDTH40) { vap->iv_flags_ht |= IEEE80211_FHT_USEHT40; if (vap->iv_htcaps & IEEE80211_HTCAP_SHORTGI40) vap->iv_flags_ht |= IEEE80211_FHT_SHORTGI40; } /* enable RIFS if capable */ if (vap->iv_htcaps & IEEE80211_HTC_RIFS) vap->iv_flags_ht |= IEEE80211_FHT_RIFS; /* NB: A-MPDU and A-MSDU rx are mandated, these are tx only */ vap->iv_flags_ht |= IEEE80211_FHT_AMPDU_RX; if (vap->iv_htcaps & IEEE80211_HTC_AMPDU) vap->iv_flags_ht |= IEEE80211_FHT_AMPDU_TX; vap->iv_flags_ht |= IEEE80211_FHT_AMSDU_RX; if (vap->iv_htcaps & IEEE80211_HTC_AMSDU) vap->iv_flags_ht |= IEEE80211_FHT_AMSDU_TX; if (vap->iv_htcaps & IEEE80211_HTCAP_TXSTBC) vap->iv_flags_ht |= IEEE80211_FHT_STBC_TX; if (vap->iv_htcaps & IEEE80211_HTCAP_RXSTBC) vap->iv_flags_ht |= IEEE80211_FHT_STBC_RX; if (vap->iv_htcaps & IEEE80211_HTCAP_LDPC) vap->iv_flags_ht |= IEEE80211_FHT_LDPC_RX; if (vap->iv_htcaps & IEEE80211_HTC_TXLDPC) vap->iv_flags_ht |= IEEE80211_FHT_LDPC_TX; } /* NB: disable default legacy WDS, too many issues right now */ if (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) vap->iv_flags_ht &= ~IEEE80211_FHT_HT; } void ieee80211_ht_vdetach(struct ieee80211vap *vap) { } static int ht_getrate(struct ieee80211com *ic, int index, enum ieee80211_phymode mode, int ratetype) { int mword, rate; mword = ieee80211_rate2media(ic, index | IEEE80211_RATE_MCS, mode); if (IFM_SUBTYPE(mword) != IFM_IEEE80211_MCS) return (0); switch (ratetype) { case 0: rate = ieee80211_htrates[index].ht20_rate_800ns; break; case 1: rate = ieee80211_htrates[index].ht20_rate_400ns; break; case 2: rate = ieee80211_htrates[index].ht40_rate_800ns; break; default: rate = ieee80211_htrates[index].ht40_rate_400ns; break; } return (rate); } static struct printranges { int minmcs; int maxmcs; int txstream; int ratetype; int htcapflags; } ranges[] = { { 0, 7, 1, 0, 0 }, { 8, 15, 2, 0, 0 }, { 16, 23, 3, 0, 0 }, { 24, 31, 4, 0, 0 }, { 32, 0, 1, 2, IEEE80211_HTC_TXMCS32 }, { 33, 38, 2, 0, IEEE80211_HTC_TXUNEQUAL }, { 39, 52, 3, 0, IEEE80211_HTC_TXUNEQUAL }, { 53, 76, 4, 0, IEEE80211_HTC_TXUNEQUAL }, { 0, 0, 0, 0, 0 }, }; static void ht_rateprint(struct ieee80211com *ic, enum ieee80211_phymode mode, int ratetype) { int minrate, maxrate; struct printranges *range; for (range = ranges; range->txstream != 0; range++) { if (ic->ic_txstream < range->txstream) continue; if (range->htcapflags && (ic->ic_htcaps & range->htcapflags) == 0) continue; if (ratetype < range->ratetype) continue; minrate = ht_getrate(ic, range->minmcs, mode, ratetype); maxrate = ht_getrate(ic, range->maxmcs, mode, ratetype); if (range->maxmcs) { ic_printf(ic, "MCS %d-%d: %d%sMbps - %d%sMbps\n", range->minmcs, range->maxmcs, minrate/2, ((minrate & 0x1) != 0 ? ".5" : ""), maxrate/2, ((maxrate & 0x1) != 0 ? ".5" : "")); } else { ic_printf(ic, "MCS %d: %d%sMbps\n", range->minmcs, minrate/2, ((minrate & 0x1) != 0 ? ".5" : "")); } } } static void ht_announce(struct ieee80211com *ic, enum ieee80211_phymode mode) { const char *modestr = ieee80211_phymode_name[mode]; ic_printf(ic, "%s MCS 20MHz\n", modestr); ht_rateprint(ic, mode, 0); if (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI20) { ic_printf(ic, "%s MCS 20MHz SGI\n", modestr); ht_rateprint(ic, mode, 1); } if (ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) { ic_printf(ic, "%s MCS 40MHz:\n", modestr); ht_rateprint(ic, mode, 2); } if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) && (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI40)) { ic_printf(ic, "%s MCS 40MHz SGI:\n", modestr); ht_rateprint(ic, mode, 3); } } void ieee80211_ht_announce(struct ieee80211com *ic) { if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) || isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) ic_printf(ic, "%dT%dR\n", ic->ic_txstream, ic->ic_rxstream); if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA)) ht_announce(ic, IEEE80211_MODE_11NA); if (isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) ht_announce(ic, IEEE80211_MODE_11NG); } void ieee80211_init_suphtrates(struct ieee80211com *ic) { #define ADDRATE(x) do { \ htrateset->rs_rates[htrateset->rs_nrates] = x; \ htrateset->rs_nrates++; \ } while (0) struct ieee80211_htrateset *htrateset = &ic->ic_sup_htrates; int i; memset(htrateset, 0, sizeof(struct ieee80211_htrateset)); for (i = 0; i < ic->ic_txstream * 8; i++) ADDRATE(i); if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) && (ic->ic_htcaps & IEEE80211_HTC_TXMCS32)) ADDRATE(32); if (ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL) { if (ic->ic_txstream >= 2) { for (i = 33; i <= 38; i++) ADDRATE(i); } if (ic->ic_txstream >= 3) { for (i = 39; i <= 52; i++) ADDRATE(i); } if (ic->ic_txstream == 4) { for (i = 53; i <= 76; i++) ADDRATE(i); } } #undef ADDRATE } /* * Receive processing. */ /* * Decap the encapsulated A-MSDU frames and dispatch all but * the last for delivery. The last frame is returned for * delivery via the normal path. */ struct mbuf * ieee80211_decap_amsdu(struct ieee80211_node *ni, struct mbuf *m) { struct ieee80211vap *vap = ni->ni_vap; int framelen; struct mbuf *n; /* discard 802.3 header inserted by ieee80211_decap */ m_adj(m, sizeof(struct ether_header)); vap->iv_stats.is_amsdu_decap++; for (;;) { /* * Decap the first frame, bust it apart from the * remainder and deliver. We leave the last frame * delivery to the caller (for consistency with other * code paths, could also do it here). */ m = ieee80211_decap1(m, &framelen); if (m == NULL) { IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY, ni->ni_macaddr, "a-msdu", "%s", "decap failed"); vap->iv_stats.is_amsdu_tooshort++; return NULL; } if (m->m_pkthdr.len == framelen) break; n = m_split(m, framelen, IEEE80211_M_NOWAIT); if (n == NULL) { IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY, ni->ni_macaddr, "a-msdu", "%s", "unable to split encapsulated frames"); vap->iv_stats.is_amsdu_split++; m_freem(m); /* NB: must reclaim */ return NULL; } vap->iv_deliver_data(vap, ni, m); /* * Remove frame contents; each intermediate frame * is required to be aligned to a 4-byte boundary. */ m = n; m_adj(m, roundup2(framelen, 4) - framelen); /* padding */ } return m; /* last delivered by caller */ } static void ampdu_rx_purge_slot(struct ieee80211_rx_ampdu *rap, int i) { struct mbuf *m; /* Walk the queue, removing frames as appropriate */ for (;;) { m = mbufq_dequeue(&rap->rxa_mq[i]); if (m == NULL) break; rap->rxa_qbytes -= m->m_pkthdr.len; rap->rxa_qframes--; m_freem(m); } } /* * Add the given frame to the current RX reorder slot. * * For future offloaded A-MSDU handling where multiple frames with * the same sequence number show up here, this routine will append * those frames as long as they're appropriately tagged. */ static int ampdu_rx_add_slot(struct ieee80211_rx_ampdu *rap, int off, int tid, ieee80211_seq rxseq, struct ieee80211_node *ni, struct mbuf *m, const struct ieee80211_rx_stats *rxs) { const struct ieee80211_rx_stats *rxs_final = NULL; struct ieee80211vap *vap = ni->ni_vap; int toss_dup; #define PROCESS 0 /* caller should process frame */ #define CONSUMED 1 /* frame consumed, caller does nothing */ /* * Figure out if this is a duplicate frame for the given slot. * * We're assuming that the driver will hand us all the frames * for a given AMSDU decap pass and if we get /a/ frame * for an AMSDU decap then we'll get all of them. * * The tricksy bit is that we don't know when the /end/ of * the decap pass is, because we aren't tracking state here * per-slot to know that we've finished receiving the frame list. * * The driver sets RX_F_AMSDU and RX_F_AMSDU_MORE to tell us * what's going on; so ideally we'd just check the frame at the * end of the reassembly slot to see if its F_AMSDU w/ no F_AMSDU_MORE - * that means we've received the whole AMSDU decap pass. */ /* * Get the rxs of the final mbuf in the slot, if one exists. */ if (!mbufq_empty(&rap->rxa_mq[off])) { rxs_final = ieee80211_get_rx_params_ptr(mbufq_last(&rap->rxa_mq[off])); } /* Default to tossing the duplicate frame */ toss_dup = 1; /* * Check to see if the final frame has F_AMSDU and F_AMSDU set, AND * this frame has F_AMSDU set (MORE or otherwise.) That's a sign * that more can come. */ if ((rxs != NULL) && (rxs_final != NULL) && ieee80211_check_rxseq_amsdu(rxs) && ieee80211_check_rxseq_amsdu(rxs_final)) { if (! ieee80211_check_rxseq_amsdu_more(rxs_final)) { /* * amsdu_more() returning 0 means "it's not the * final frame" so we can append more * frames here. */ toss_dup = 0; } } /* * If the list is empty OR we have determined we can put more * driver decap'ed AMSDU frames in here, then insert. */ if (mbufq_empty(&rap->rxa_mq[off]) || (toss_dup == 0)) { if (mbufq_enqueue(&rap->rxa_mq[off], m) != 0) { IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, ni->ni_macaddr, "a-mpdu queue fail", "seqno %u tid %u BA win <%u:%u> off=%d, qlen=%d, maxqlen=%d", rxseq, tid, rap->rxa_start, IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), off, mbufq_len(&rap->rxa_mq[off]), rap->rxa_mq[off].mq_maxlen); /* XXX error count */ m_freem(m); return CONSUMED; } rap->rxa_qframes++; rap->rxa_qbytes += m->m_pkthdr.len; vap->iv_stats.is_ampdu_rx_reorder++; /* * Statistics for AMSDU decap. */ if (rxs != NULL && ieee80211_check_rxseq_amsdu(rxs)) { if (ieee80211_check_rxseq_amsdu_more(rxs)) { /* more=1, AMSDU, end of batch */ IEEE80211_NODE_STAT(ni, rx_amsdu_more_end); } else { IEEE80211_NODE_STAT(ni, rx_amsdu_more); } } } else { IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, ni->ni_macaddr, "a-mpdu duplicate", "seqno %u tid %u BA win <%u:%u>", rxseq, tid, rap->rxa_start, IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1)); if (rxs != NULL) { IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, ni->ni_macaddr, "a-mpdu duplicate", "seqno %d tid %u pktflags 0x%08x\n", rxseq, tid, rxs->c_pktflags); } if (rxs_final != NULL) { IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, ni->ni_macaddr, "a-mpdu duplicate", "final: pktflags 0x%08x\n", rxs_final->c_pktflags); } vap->iv_stats.is_rx_dup++; IEEE80211_NODE_STAT(ni, rx_dup); m_freem(m); } return CONSUMED; #undef CONSUMED #undef PROCESS } /* * Purge all frames in the A-MPDU re-order queue. */ static void ampdu_rx_purge(struct ieee80211_rx_ampdu *rap) { int i; for (i = 0; i < rap->rxa_wnd; i++) { ampdu_rx_purge_slot(rap, i); if (rap->rxa_qframes == 0) break; } KASSERT(rap->rxa_qbytes == 0 && rap->rxa_qframes == 0, ("lost %u data, %u frames on ampdu rx q", rap->rxa_qbytes, rap->rxa_qframes)); } static void ieee80211_ampdu_rx_init_rap(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap) { int i; /* XXX TODO: ensure the queues are empty */ memset(rap, 0, sizeof(*rap)); for (i = 0; i < IEEE80211_AGGR_BAWMAX; i++) mbufq_init(&rap->rxa_mq[i], 256); } /* * Start A-MPDU rx/re-order processing for the specified TID. */ static int ampdu_rx_start(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap, int baparamset, int batimeout, int baseqctl) { struct ieee80211vap *vap = ni->ni_vap; int bufsiz = _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_BUFSIZ); if (rap->rxa_flags & IEEE80211_AGGR_RUNNING) { /* * AMPDU previously setup and not terminated with a DELBA, * flush the reorder q's in case anything remains. */ ampdu_rx_purge(rap); } ieee80211_ampdu_rx_init_rap(ni, rap); rap->rxa_wnd = (bufsiz == 0) ? IEEE80211_AGGR_BAWMAX : min(bufsiz, IEEE80211_AGGR_BAWMAX); rap->rxa_start = _IEEE80211_MASKSHIFT(baseqctl, IEEE80211_BASEQ_START); rap->rxa_flags |= IEEE80211_AGGR_RUNNING | IEEE80211_AGGR_XCHGPEND; /* XXX this should be a configuration flag */ if ((vap->iv_htcaps & IEEE80211_HTC_RX_AMSDU_AMPDU) && (_IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_AMSDU))) rap->rxa_flags |= IEEE80211_AGGR_AMSDU; else rap->rxa_flags &= ~IEEE80211_AGGR_AMSDU; return 0; } /* * Public function; manually setup the RX ampdu state. */ int ieee80211_ampdu_rx_start_ext(struct ieee80211_node *ni, int tid, int seq, int baw) { struct ieee80211_rx_ampdu *rap; /* XXX TODO: sanity check tid, seq, baw */ rap = &ni->ni_rx_ampdu[tid]; if (rap->rxa_flags & IEEE80211_AGGR_RUNNING) { /* * AMPDU previously setup and not terminated with a DELBA, * flush the reorder q's in case anything remains. */ ampdu_rx_purge(rap); } ieee80211_ampdu_rx_init_rap(ni, rap); rap->rxa_wnd = (baw== 0) ? IEEE80211_AGGR_BAWMAX : min(baw, IEEE80211_AGGR_BAWMAX); if (seq == -1) { /* Wait for the first RX frame, use that as BAW */ rap->rxa_start = 0; rap->rxa_flags |= IEEE80211_AGGR_WAITRX; } else { rap->rxa_start = seq; } rap->rxa_flags |= IEEE80211_AGGR_RUNNING | IEEE80211_AGGR_XCHGPEND; /* XXX TODO: no amsdu flag */ IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, ni, "%s: tid=%d, start=%d, wnd=%d, flags=0x%08x", __func__, tid, seq, rap->rxa_wnd, rap->rxa_flags); return 0; } /* * Public function; manually stop the RX AMPDU state. */ void ieee80211_ampdu_rx_stop_ext(struct ieee80211_node *ni, int tid) { struct ieee80211_rx_ampdu *rap; /* XXX TODO: sanity check tid, seq, baw */ rap = &ni->ni_rx_ampdu[tid]; ampdu_rx_stop(ni, rap); } /* * Stop A-MPDU rx processing for the specified TID. */ static void ampdu_rx_stop(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap) { ampdu_rx_purge(rap); rap->rxa_flags &= ~(IEEE80211_AGGR_RUNNING | IEEE80211_AGGR_XCHGPEND | IEEE80211_AGGR_WAITRX); } /* * Dispatch a frame from the A-MPDU reorder queue. The * frame is fed back into ieee80211_input marked with an * M_AMPDU_MPDU flag so it doesn't come back to us (it also * permits ieee80211_input to optimize re-processing). */ static __inline void ampdu_dispatch(struct ieee80211_node *ni, struct mbuf *m) { m->m_flags |= M_AMPDU_MPDU; /* bypass normal processing */ /* NB: rssi and noise are ignored w/ M_AMPDU_MPDU set */ (void) ieee80211_input(ni, m, 0, 0); } static int ampdu_dispatch_slot(struct ieee80211_rx_ampdu *rap, struct ieee80211_node *ni, int i) { struct mbuf *m; int n = 0; for (;;) { m = mbufq_dequeue(&rap->rxa_mq[i]); if (m == NULL) break; n++; rap->rxa_qbytes -= m->m_pkthdr.len; rap->rxa_qframes--; ampdu_dispatch(ni, m); } return (n); } static void ampdu_rx_moveup(struct ieee80211_rx_ampdu *rap, struct ieee80211_node *ni, int i, int winstart) { struct ieee80211vap *vap = ni->ni_vap; /* * If frames remain, copy the mbuf pointers down so * they correspond to the offsets in the new window. */ if (rap->rxa_qframes != 0) { int n = rap->rxa_qframes, j; for (j = i+1; j < rap->rxa_wnd; j++) { /* * Concat the list contents over, which will * blank the source list for us. */ if (mbufq_len(&rap->rxa_mq[j]) != 0) { n = n - mbufq_len(&rap->rxa_mq[j]); mbufq_concat(&rap->rxa_mq[j-i], &rap->rxa_mq[j]); KASSERT(n >= 0, ("%s: n < 0 (%d)", __func__, n)); if (n == 0) break; } } KASSERT(n == 0, ("%s: lost %d frames, qframes %d off %d " "BA win <%d:%d> winstart %d", __func__, n, rap->rxa_qframes, i, rap->rxa_start, IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), winstart)); vap->iv_stats.is_ampdu_rx_copy += rap->rxa_qframes; } } /* * Dispatch as many frames as possible from the re-order queue. * Frames will always be "at the front"; we process all frames * up to the first empty slot in the window. On completion we * cleanup state if there are still pending frames in the current * BA window. We assume the frame at slot 0 is already handled * by the caller; we always start at slot 1. */ static void ampdu_rx_dispatch(struct ieee80211_rx_ampdu *rap, struct ieee80211_node *ni) { struct ieee80211vap *vap = ni->ni_vap; int i, r, r2; /* flush run of frames */ r2 = 0; for (i = 1; i < rap->rxa_wnd; i++) { r = ampdu_dispatch_slot(rap, ni, i); if (r == 0) break; r2 += r; } /* move up frames */ ampdu_rx_moveup(rap, ni, i, -1); /* * Adjust the start of the BA window to * reflect the frames just dispatched. */ rap->rxa_start = IEEE80211_SEQ_ADD(rap->rxa_start, i); vap->iv_stats.is_ampdu_rx_oor += r2; IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, ni, "%s: moved slot up %d slots to start at %d (%d frames)", __func__, i, rap->rxa_start, r2); } /* * Dispatch all frames in the A-MPDU re-order queue. */ static void ampdu_rx_flush(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap) { int i, r; for (i = 0; i < rap->rxa_wnd; i++) { r = ampdu_dispatch_slot(rap, ni, i); if (r == 0) continue; ni->ni_vap->iv_stats.is_ampdu_rx_oor += r; IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, ni, "%s: moved slot up %d slots to start at %d (%d frames)", __func__, 1, rap->rxa_start, r); if (rap->rxa_qframes == 0) break; } } /* * Dispatch all frames in the A-MPDU re-order queue * preceding the specified sequence number. This logic * handles window moves due to a received MSDU or BAR. */ static void ampdu_rx_flush_upto(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap, ieee80211_seq winstart) { struct ieee80211vap *vap = ni->ni_vap; ieee80211_seq seqno; int i, r; /* * Flush any complete MSDU's with a sequence number lower * than winstart. Gaps may exist. Note that we may actually * dispatch frames past winstart if a run continues; this is * an optimization that avoids having to do a separate pass * to dispatch frames after moving the BA window start. */ seqno = rap->rxa_start; for (i = 0; i < rap->rxa_wnd; i++) { if ((r = mbufq_len(&rap->rxa_mq[i])) != 0) { (void) ampdu_dispatch_slot(rap, ni, i); } else { if (!IEEE80211_SEQ_BA_BEFORE(seqno, winstart)) break; } vap->iv_stats.is_ampdu_rx_oor += r; seqno = IEEE80211_SEQ_INC(seqno); IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, ni, "%s: moved slot up %d slots to start at %d (%d frames)", __func__, 1, seqno, r); } /* * If frames remain, copy the mbuf pointers down so * they correspond to the offsets in the new window. */ ampdu_rx_moveup(rap, ni, i, winstart); /* * Move the start of the BA window; we use the * sequence number of the last MSDU that was * passed up the stack+1 or winstart if stopped on * a gap in the reorder buffer. */ rap->rxa_start = seqno; } /* * Process a received QoS data frame for an HT station. Handle * A-MPDU reordering: if this frame is received out of order * and falls within the BA window hold onto it. Otherwise if * this frame completes a run, flush any pending frames. We * return 1 if the frame is consumed. A 0 is returned if * the frame should be processed normally by the caller. * * A-MSDU: handle hardware decap'ed A-MSDU frames that are * pretending to be MPDU's. They're dispatched directly if * able; or attempted to put into the receive reordering slot. */ int ieee80211_ampdu_reorder(struct ieee80211_node *ni, struct mbuf *m, const struct ieee80211_rx_stats *rxs) { #define PROCESS 0 /* caller should process frame */ #define CONSUMED 1 /* frame consumed, caller does nothing */ struct ieee80211vap *vap = ni->ni_vap; struct ieee80211_qosframe *wh; struct ieee80211_rx_ampdu *rap; ieee80211_seq rxseq; uint8_t tid; int off; int amsdu = ieee80211_check_rxseq_amsdu(rxs); int amsdu_end = ieee80211_check_rxseq_amsdu_more(rxs); KASSERT((m->m_flags & (M_AMPDU | M_AMPDU_MPDU)) == M_AMPDU, ("!a-mpdu or already re-ordered, flags 0x%x", m->m_flags)); KASSERT(ni->ni_flags & IEEE80211_NODE_HT, ("not an HT sta")); /* NB: m_len known to be sufficient */ wh = mtod(m, struct ieee80211_qosframe *); if (!IEEE80211_IS_QOSDATA(wh)) { /* * Not QoS data, shouldn't get here but just * return it to the caller for processing. */ return PROCESS; } /* * 802.11-2012 9.3.2.10 - Duplicate detection and recovery. * * Multicast QoS data frames are checked against a different * counter, not the per-TID counter. */ if (IEEE80211_IS_MULTICAST(wh->i_addr1)) return PROCESS; tid = ieee80211_getqos(wh)[0]; tid &= IEEE80211_QOS_TID; rap = &ni->ni_rx_ampdu[tid]; if ((rap->rxa_flags & IEEE80211_AGGR_XCHGPEND) == 0) { /* * No ADDBA request yet, don't touch. */ return PROCESS; } rxseq = le16toh(*(uint16_t *)wh->i_seq); if ((rxseq & IEEE80211_SEQ_FRAG_MASK) != 0) { /* * Fragments are not allowed; toss. */ IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, ni->ni_macaddr, "A-MPDU", "fragment, rxseq 0x%x tid %u%s", rxseq, tid, wh->i_fc[1] & IEEE80211_FC1_RETRY ? " (retransmit)" : ""); vap->iv_stats.is_ampdu_rx_drop++; IEEE80211_NODE_STAT(ni, rx_drop); m_freem(m); return CONSUMED; } rxseq >>= IEEE80211_SEQ_SEQ_SHIFT; rap->rxa_nframes++; /* * Handle waiting for the first frame to define the BAW. * Some firmware doesn't provide the RX of the starting point * of the BAW and we have to cope. */ if (rap->rxa_flags & IEEE80211_AGGR_WAITRX) { rap->rxa_flags &= ~IEEE80211_AGGR_WAITRX; rap->rxa_start = rxseq; } again: if (rxseq == rap->rxa_start) { /* * First frame in window. */ if (rap->rxa_qframes != 0) { /* * Dispatch as many packets as we can. */ KASSERT(mbufq_empty(&rap->rxa_mq[0]), ("unexpected dup")); ampdu_dispatch(ni, m); ampdu_rx_dispatch(rap, ni); return CONSUMED; } else { /* * In order; advance window if needed and notify * caller to dispatch directly. */ if (amsdu) { if (amsdu_end) { rap->rxa_start = IEEE80211_SEQ_INC(rxseq); IEEE80211_NODE_STAT(ni, rx_amsdu_more_end); } else { IEEE80211_NODE_STAT(ni, rx_amsdu_more); } } else { rap->rxa_start = IEEE80211_SEQ_INC(rxseq); } return PROCESS; } } /* * Frame is out of order; store if in the BA window. */ /* calculate offset in BA window */ off = IEEE80211_SEQ_SUB(rxseq, rap->rxa_start); if (off < rap->rxa_wnd) { /* * Common case (hopefully): in the BA window. * Sec 9.10.7.6.2 a) (p.137) */ /* * Check for frames sitting too long in the reorder queue. * This should only ever happen if frames are not delivered * without the sender otherwise notifying us (e.g. with a * BAR to move the window). Typically this happens because * of vendor bugs that cause the sequence number to jump. * When this happens we get a gap in the reorder queue that * leaves frame sitting on the queue until they get pushed * out due to window moves. When the vendor does not send * BAR this move only happens due to explicit packet sends * * NB: we only track the time of the oldest frame in the * reorder q; this means that if we flush we might push * frames that still "new"; if this happens then subsequent * frames will result in BA window moves which cost something * but is still better than a big throughput dip. */ if (rap->rxa_qframes != 0) { /* XXX honor batimeout? */ if (ticks - rap->rxa_age > ieee80211_ampdu_age) { /* * Too long since we received the first * frame; flush the reorder buffer. */ if (rap->rxa_qframes != 0) { vap->iv_stats.is_ampdu_rx_age += rap->rxa_qframes; ampdu_rx_flush(ni, rap); } /* * Advance the window if needed and notify * the caller to dispatch directly. */ if (amsdu) { if (amsdu_end) { rap->rxa_start = IEEE80211_SEQ_INC(rxseq); IEEE80211_NODE_STAT(ni, rx_amsdu_more_end); } else { IEEE80211_NODE_STAT(ni, rx_amsdu_more); } } else { rap->rxa_start = IEEE80211_SEQ_INC(rxseq); } return PROCESS; } } else { /* * First frame, start aging timer. */ rap->rxa_age = ticks; } /* save packet - this consumes, no matter what */ ampdu_rx_add_slot(rap, off, tid, rxseq, ni, m, rxs); return CONSUMED; } if (off < IEEE80211_SEQ_BA_RANGE) { /* * Outside the BA window, but within range; * flush the reorder q and move the window. * Sec 9.10.7.6.2 b) (p.138) */ IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni, "move BA win <%u:%u> (%u frames) rxseq %u tid %u", rap->rxa_start, IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), rap->rxa_qframes, rxseq, tid); vap->iv_stats.is_ampdu_rx_move++; /* * The spec says to flush frames up to but not including: * WinStart_B = rxseq - rap->rxa_wnd + 1 * Then insert the frame or notify the caller to process * it immediately. We can safely do this by just starting * over again because we know the frame will now be within * the BA window. */ /* NB: rxa_wnd known to be >0 */ ampdu_rx_flush_upto(ni, rap, IEEE80211_SEQ_SUB(rxseq, rap->rxa_wnd-1)); goto again; } else { /* * Outside the BA window and out of range; toss. * Sec 9.10.7.6.2 c) (p.138) */ IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, ni->ni_macaddr, "MPDU", "BA win <%u:%u> (%u frames) rxseq %u tid %u%s", rap->rxa_start, IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), rap->rxa_qframes, rxseq, tid, wh->i_fc[1] & IEEE80211_FC1_RETRY ? " (retransmit)" : ""); vap->iv_stats.is_ampdu_rx_drop++; IEEE80211_NODE_STAT(ni, rx_drop); m_freem(m); return CONSUMED; } #undef CONSUMED #undef PROCESS } /* * Process a BAR ctl frame. Dispatch all frames up to * the sequence number of the frame. If this frame is * out of range it's discarded. */ void ieee80211_recv_bar(struct ieee80211_node *ni, struct mbuf *m0) { struct ieee80211vap *vap = ni->ni_vap; struct ieee80211_frame_bar *wh; struct ieee80211_rx_ampdu *rap; ieee80211_seq rxseq; int tid, off; if (!ieee80211_recv_bar_ena) { #if 0 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_11N, ni->ni_macaddr, "BAR", "%s", "processing disabled"); #endif vap->iv_stats.is_ampdu_bar_bad++; return; } wh = mtod(m0, struct ieee80211_frame_bar *); /* XXX check basic BAR */ tid = _IEEE80211_MASKSHIFT(le16toh(wh->i_ctl), IEEE80211_BAR_TID); rap = &ni->ni_rx_ampdu[tid]; if ((rap->rxa_flags & IEEE80211_AGGR_XCHGPEND) == 0) { /* * No ADDBA request yet, don't touch. */ IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, ni->ni_macaddr, "BAR", "no BA stream, tid %u", tid); vap->iv_stats.is_ampdu_bar_bad++; return; } vap->iv_stats.is_ampdu_bar_rx++; rxseq = le16toh(wh->i_seq) >> IEEE80211_SEQ_SEQ_SHIFT; if (rxseq == rap->rxa_start) return; /* calculate offset in BA window */ off = IEEE80211_SEQ_SUB(rxseq, rap->rxa_start); if (off < IEEE80211_SEQ_BA_RANGE) { /* * Flush the reorder q up to rxseq and move the window. * Sec 9.10.7.6.3 a) (p.138) */ IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni, "BAR moves BA win <%u:%u> (%u frames) rxseq %u tid %u", rap->rxa_start, IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), rap->rxa_qframes, rxseq, tid); vap->iv_stats.is_ampdu_bar_move++; ampdu_rx_flush_upto(ni, rap, rxseq); if (off >= rap->rxa_wnd) { /* * BAR specifies a window start to the right of BA * window; we must move it explicitly since * ampdu_rx_flush_upto will not. */ rap->rxa_start = rxseq; } } else { /* * Out of range; toss. * Sec 9.10.7.6.3 b) (p.138) */ IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_INPUT | IEEE80211_MSG_11N, ni->ni_macaddr, "BAR", "BA win <%u:%u> (%u frames) rxseq %u tid %u%s", rap->rxa_start, IEEE80211_SEQ_ADD(rap->rxa_start, rap->rxa_wnd-1), rap->rxa_qframes, rxseq, tid, wh->i_fc[1] & IEEE80211_FC1_RETRY ? " (retransmit)" : ""); vap->iv_stats.is_ampdu_bar_oow++; IEEE80211_NODE_STAT(ni, rx_drop); } } /* * Setup HT-specific state in a node. Called only * when HT use is negotiated so we don't do extra * work for temporary and/or legacy sta's. */ void ieee80211_ht_node_init(struct ieee80211_node *ni) { struct ieee80211_tx_ampdu *tap; int tid; IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, ni, "%s: called (%p)", __func__, ni); if (ni->ni_flags & IEEE80211_NODE_HT) { /* * Clean AMPDU state on re-associate. This handles the case * where a station leaves w/o notifying us and then returns * before node is reaped for inactivity. */ IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, ni, "%s: calling cleanup (%p)", __func__, ni); ieee80211_ht_node_cleanup(ni); } for (tid = 0; tid < WME_NUM_TID; tid++) { tap = &ni->ni_tx_ampdu[tid]; tap->txa_tid = tid; tap->txa_ni = ni; ieee80211_txampdu_init_pps(tap); /* NB: further initialization deferred */ ieee80211_ampdu_rx_init_rap(ni, &ni->ni_rx_ampdu[tid]); } ni->ni_flags |= IEEE80211_NODE_HT | IEEE80211_NODE_AMPDU | IEEE80211_NODE_AMSDU; } /* * Cleanup HT-specific state in a node. Called only * when HT use has been marked. */ void ieee80211_ht_node_cleanup(struct ieee80211_node *ni) { struct ieee80211com *ic = ni->ni_ic; int i; IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, ni, "%s: called (%p)", __func__, ni); KASSERT(ni->ni_flags & IEEE80211_NODE_HT, ("not an HT node")); /* XXX optimize this */ for (i = 0; i < WME_NUM_TID; i++) { struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[i]; if (tap->txa_flags & IEEE80211_AGGR_SETUP) ampdu_tx_stop(tap); } for (i = 0; i < WME_NUM_TID; i++) ic->ic_ampdu_rx_stop(ni, &ni->ni_rx_ampdu[i]); ni->ni_htcap = 0; ni->ni_flags &= ~IEEE80211_NODE_HT_ALL; } /* * Age out HT resources for a station. */ void ieee80211_ht_node_age(struct ieee80211_node *ni) { struct ieee80211vap *vap = ni->ni_vap; uint8_t tid; KASSERT(ni->ni_flags & IEEE80211_NODE_HT, ("not an HT sta")); for (tid = 0; tid < WME_NUM_TID; tid++) { struct ieee80211_rx_ampdu *rap; rap = &ni->ni_rx_ampdu[tid]; if ((rap->rxa_flags & IEEE80211_AGGR_XCHGPEND) == 0) continue; if (rap->rxa_qframes == 0) continue; /* * Check for frames sitting too long in the reorder queue. * See above for more details on what's happening here. */ /* XXX honor batimeout? */ if (ticks - rap->rxa_age > ieee80211_ampdu_age) { /* * Too long since we received the first * frame; flush the reorder buffer. */ vap->iv_stats.is_ampdu_rx_age += rap->rxa_qframes; ampdu_rx_flush(ni, rap); } } } static struct ieee80211_channel * findhtchan(struct ieee80211com *ic, struct ieee80211_channel *c, int htflags) { return ieee80211_find_channel(ic, c->ic_freq, (c->ic_flags &~ IEEE80211_CHAN_HT) | htflags); } /* * Adjust a channel to be HT/non-HT according to the vap's configuration. */ struct ieee80211_channel * ieee80211_ht_adjust_channel(struct ieee80211com *ic, struct ieee80211_channel *chan, int flags) { struct ieee80211_channel *c; if (flags & IEEE80211_FHT_HT) { /* promote to HT if possible */ if (flags & IEEE80211_FHT_USEHT40) { if (!IEEE80211_IS_CHAN_HT40(chan)) { /* NB: arbitrarily pick ht40+ over ht40- */ c = findhtchan(ic, chan, IEEE80211_CHAN_HT40U); if (c == NULL) c = findhtchan(ic, chan, IEEE80211_CHAN_HT40D); if (c == NULL) c = findhtchan(ic, chan, IEEE80211_CHAN_HT20); if (c != NULL) chan = c; } } else if (!IEEE80211_IS_CHAN_HT20(chan)) { c = findhtchan(ic, chan, IEEE80211_CHAN_HT20); if (c != NULL) chan = c; } } else if (IEEE80211_IS_CHAN_HT(chan)) { /* demote to legacy, HT use is disabled */ c = ieee80211_find_channel(ic, chan->ic_freq, chan->ic_flags &~ IEEE80211_CHAN_HT); if (c != NULL) chan = c; } return chan; } /* * Setup HT-specific state for a legacy WDS peer. */ void ieee80211_ht_wds_init(struct ieee80211_node *ni) { struct ieee80211vap *vap = ni->ni_vap; struct ieee80211_tx_ampdu *tap; int tid; KASSERT(vap->iv_flags_ht & IEEE80211_FHT_HT, ("no HT requested")); /* XXX check scan cache in case peer has an ap and we have info */ /* * If setup with a legacy channel; locate an HT channel. * Otherwise if the inherited channel (from a companion * AP) is suitable use it so we use the same location * for the extension channel). */ ni->ni_chan = ieee80211_ht_adjust_channel(ni->ni_ic, ni->ni_chan, ieee80211_htchanflags(ni->ni_chan)); ni->ni_htcap = 0; if (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20) ni->ni_htcap |= IEEE80211_HTCAP_SHORTGI20; if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) { ni->ni_htcap |= IEEE80211_HTCAP_CHWIDTH40; ni->ni_chw = IEEE80211_STA_RX_BW_40; if (IEEE80211_IS_CHAN_HT40U(ni->ni_chan)) ni->ni_ht2ndchan = IEEE80211_HTINFO_2NDCHAN_ABOVE; else if (IEEE80211_IS_CHAN_HT40D(ni->ni_chan)) ni->ni_ht2ndchan = IEEE80211_HTINFO_2NDCHAN_BELOW; if (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40) ni->ni_htcap |= IEEE80211_HTCAP_SHORTGI40; } else { ni->ni_chw = IEEE80211_STA_RX_BW_20; ni->ni_ht2ndchan = IEEE80211_HTINFO_2NDCHAN_NONE; } ni->ni_htctlchan = ni->ni_chan->ic_ieee; if (vap->iv_flags_ht & IEEE80211_FHT_RIFS) ni->ni_flags |= IEEE80211_NODE_RIFS; /* XXX does it make sense to enable SMPS? */ ni->ni_htopmode = 0; /* XXX need protection state */ ni->ni_htstbc = 0; /* XXX need info */ for (tid = 0; tid < WME_NUM_TID; tid++) { tap = &ni->ni_tx_ampdu[tid]; tap->txa_tid = tid; ieee80211_txampdu_init_pps(tap); } /* NB: AMPDU tx/rx governed by IEEE80211_FHT_AMPDU_{TX,RX} */ ni->ni_flags |= IEEE80211_NODE_HT | IEEE80211_NODE_AMPDU | IEEE80211_NODE_AMSDU; } /* * Notify a VAP of a change in the HTINFO ie if it's a hostap VAP. * * This is to be called from the deferred HT protection update * task once the flags are updated. */ void ieee80211_htinfo_notify(struct ieee80211vap *vap) { IEEE80211_LOCK_ASSERT(vap->iv_ic); if (vap->iv_opmode != IEEE80211_M_HOSTAP) return; if (vap->iv_state != IEEE80211_S_RUN || !IEEE80211_IS_CHAN_HT(vap->iv_bss->ni_chan)) return; IEEE80211_NOTE(vap, IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, vap->iv_bss, "HT bss occupancy change: %d sta, %d ht, " "%d ht40%s, HT protmode now 0x%x" , vap->iv_sta_assoc , vap->iv_ht_sta_assoc , vap->iv_ht40_sta_assoc , (vap->iv_flags_ht & IEEE80211_FHT_NONHT_PR) ? ", non-HT sta present" : "" , vap->iv_curhtprotmode); ieee80211_beacon_notify(vap, IEEE80211_BEACON_HTINFO); } /* * Calculate HT protection mode from current * state and handle updates. */ static void htinfo_update(struct ieee80211vap *vap) { struct ieee80211com *ic = vap->iv_ic; uint8_t protmode; if (vap->iv_sta_assoc != vap->iv_ht_sta_assoc) { protmode = IEEE80211_HTINFO_OPMODE_MIXED | IEEE80211_HTINFO_NONHT_PRESENT; } else if (vap->iv_flags_ht & IEEE80211_FHT_NONHT_PR) { protmode = IEEE80211_HTINFO_OPMODE_PROTOPT | IEEE80211_HTINFO_NONHT_PRESENT; } else if (ic->ic_bsschan != IEEE80211_CHAN_ANYC && IEEE80211_IS_CHAN_HT40(ic->ic_bsschan) && vap->iv_sta_assoc != vap->iv_ht40_sta_assoc) { protmode = IEEE80211_HTINFO_OPMODE_HT20PR; } else { protmode = IEEE80211_HTINFO_OPMODE_PURE; } if (protmode != vap->iv_curhtprotmode) { vap->iv_curhtprotmode = protmode; /* Update VAP with new protection mode */ ieee80211_vap_update_ht_protmode(vap); } } /* * Handle an HT station joining a BSS. */ void ieee80211_ht_node_join(struct ieee80211_node *ni) { struct ieee80211vap *vap = ni->ni_vap; IEEE80211_LOCK_ASSERT(vap->iv_ic); if (ni->ni_flags & IEEE80211_NODE_HT) { vap->iv_ht_sta_assoc++; if (ni->ni_chw == IEEE80211_STA_RX_BW_40) vap->iv_ht40_sta_assoc++; } htinfo_update(vap); } /* * Handle an HT station leaving a BSS. */ void ieee80211_ht_node_leave(struct ieee80211_node *ni) { struct ieee80211vap *vap = ni->ni_vap; IEEE80211_LOCK_ASSERT(vap->iv_ic); if (ni->ni_flags & IEEE80211_NODE_HT) { vap->iv_ht_sta_assoc--; if (ni->ni_chw == IEEE80211_STA_RX_BW_40) vap->iv_ht40_sta_assoc--; } htinfo_update(vap); } /* * Public version of htinfo_update; used for processing * beacon frames from overlapping bss. * * Caller can specify either IEEE80211_HTINFO_OPMODE_MIXED * (on receipt of a beacon that advertises MIXED) or * IEEE80211_HTINFO_OPMODE_PROTOPT (on receipt of a beacon * from an overlapping legacy bss). We treat MIXED with * a higher precedence than PROTOPT (i.e. we will not change * change PROTOPT -> MIXED; only MIXED -> PROTOPT). This * corresponds to how we handle things in htinfo_update. * */ void ieee80211_htprot_update(struct ieee80211vap *vap, int protmode) { struct ieee80211com *ic = vap->iv_ic; #define OPMODE(x) _IEEE80211_SHIFTMASK(x, IEEE80211_HTINFO_OPMODE) IEEE80211_LOCK(ic); /* track non-HT station presence */ KASSERT(protmode & IEEE80211_HTINFO_NONHT_PRESENT, ("protmode 0x%x", protmode)); vap->iv_flags_ht |= IEEE80211_FHT_NONHT_PR; vap->iv_lastnonht = ticks; if (protmode != vap->iv_curhtprotmode && (OPMODE(vap->iv_curhtprotmode) != IEEE80211_HTINFO_OPMODE_MIXED || OPMODE(protmode) == IEEE80211_HTINFO_OPMODE_PROTOPT)) { vap->iv_curhtprotmode = protmode; /* Update VAP with new protection mode */ ieee80211_vap_update_ht_protmode(vap); } IEEE80211_UNLOCK(ic); #undef OPMODE } /* * Time out presence of an overlapping bss with non-HT * stations. When operating in hostap mode we listen for * beacons from other stations and if we identify a non-HT * station is present we update the opmode field of the * HTINFO ie. To identify when all non-HT stations are * gone we time out this condition. */ void ieee80211_ht_timeout(struct ieee80211vap *vap) { IEEE80211_LOCK_ASSERT(vap->iv_ic); if ((vap->iv_flags_ht & IEEE80211_FHT_NONHT_PR) && ieee80211_time_after(ticks, vap->iv_lastnonht + IEEE80211_NONHT_PRESENT_AGE)) { IEEE80211_DPRINTF(vap, IEEE80211_MSG_11N, "%s", "time out non-HT STA present on channel"); vap->iv_flags_ht &= ~IEEE80211_FHT_NONHT_PR; htinfo_update(vap); } } /* * Process an 802.11n HT capabilities ie. */ void ieee80211_parse_htcap(struct ieee80211_node *ni, const uint8_t *ie) { if (ie[0] == IEEE80211_ELEMID_VENDOR) { /* * Station used Vendor OUI ie to associate; * mark the node so when we respond we'll use * the Vendor OUI's and not the standard ie's. */ ni->ni_flags |= IEEE80211_NODE_HTCOMPAT; ie += 4; } else ni->ni_flags &= ~IEEE80211_NODE_HTCOMPAT; ni->ni_htcap = le16dec(ie + __offsetof(struct ieee80211_ie_htcap, hc_cap)); ni->ni_htparam = ie[__offsetof(struct ieee80211_ie_htcap, hc_param)]; } static void htinfo_parse(struct ieee80211_node *ni, const struct ieee80211_ie_htinfo *htinfo) { uint16_t w; ni->ni_htctlchan = htinfo->hi_ctrlchannel; ni->ni_ht2ndchan = _IEEE80211_SHIFTMASK(htinfo->hi_byte1, IEEE80211_HTINFO_2NDCHAN); w = le16dec(&htinfo->hi_byte2); ni->ni_htopmode = _IEEE80211_SHIFTMASK(w, IEEE80211_HTINFO_OPMODE); w = le16dec(&htinfo->hi_byte45); ni->ni_htstbc = _IEEE80211_SHIFTMASK(w, IEEE80211_HTINFO_BASIC_STBCMCS); } /* * Parse an 802.11n HT info ie and save useful information * to the node state. Note this does not effect any state * changes such as for channel width change. */ void ieee80211_parse_htinfo(struct ieee80211_node *ni, const uint8_t *ie) { if (ie[0] == IEEE80211_ELEMID_VENDOR) ie += 4; htinfo_parse(ni, (const struct ieee80211_ie_htinfo *) ie); } /* * Handle 11n/11ac channel switch. * * Use the received HT/VHT ie's to identify the right channel to use. * If we cannot locate it in the channel table then fallback to * legacy operation. * * Note that we use this information to identify the node's * channel only; the caller is responsible for insuring any * required channel change is done (e.g. in sta mode when * parsing the contents of a beacon frame). */ static int htinfo_update_chw(struct ieee80211_node *ni, int htflags, int vhtflags) { struct ieee80211com *ic = ni->ni_ic; struct ieee80211_channel *c; int chanflags; int ret = 0; /* * First step - do HT/VHT only channel lookup based on operating mode * flags. This involves masking out the VHT flags as well. * Otherwise we end up doing the full channel walk each time * we trigger this, which is expensive. */ chanflags = (ni->ni_chan->ic_flags &~ (IEEE80211_CHAN_HT | IEEE80211_CHAN_VHT)) | htflags | vhtflags; if (chanflags == ni->ni_chan->ic_flags) goto done; /* * If HT /or/ VHT flags have changed then check both. * We need to start by picking a HT channel anyway. */ c = NULL; chanflags = (ni->ni_chan->ic_flags &~ (IEEE80211_CHAN_HT | IEEE80211_CHAN_VHT)) | htflags; /* XXX not right for ht40- */ c = ieee80211_find_channel(ic, ni->ni_chan->ic_freq, chanflags); if (c == NULL && (htflags & IEEE80211_CHAN_HT40)) { /* * No HT40 channel entry in our table; fall back * to HT20 operation. This should not happen. */ c = findhtchan(ic, ni->ni_chan, IEEE80211_CHAN_HT20); #if 0 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, ni, "no HT40 channel (freq %u), falling back to HT20", ni->ni_chan->ic_freq); #endif /* XXX stat */ } /* Nothing found - leave it alone; move onto VHT */ if (c == NULL) c = ni->ni_chan; /* * If it's non-HT, then bail out now. */ if (! IEEE80211_IS_CHAN_HT(c)) { IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, ni, "not HT; skipping VHT check (%u/0x%x)", c->ic_freq, c->ic_flags); goto done; } /* * Next step - look at the current VHT flags and determine * if we need to upgrade. Mask out the VHT and HT flags since * the vhtflags field will already have the correct HT * flags to use. */ if (IEEE80211_CONF_VHT(ic) && ni->ni_vhtcap != 0 && vhtflags != 0) { chanflags = (c->ic_flags &~ (IEEE80211_CHAN_HT | IEEE80211_CHAN_VHT)) | vhtflags; IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, ni, "%s: VHT; chanwidth=0x%02x; vhtflags=0x%08x", __func__, ni->ni_vht_chanwidth, vhtflags); IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, ni, "%s: VHT; trying lookup for %d/0x%08x", __func__, c->ic_freq, chanflags); c = ieee80211_find_channel(ic, c->ic_freq, chanflags); } /* Finally, if it's changed */ if (c != NULL && c != ni->ni_chan) { IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ASSOC | IEEE80211_MSG_11N, ni, "switch station to %s%d channel %u/0x%x", IEEE80211_IS_CHAN_VHT(c) ? "VHT" : "HT", IEEE80211_IS_CHAN_VHT80(c) ? 80 : (IEEE80211_IS_CHAN_HT40(c) ? 40 : 20), c->ic_freq, c->ic_flags); ni->ni_chan = c; ret = 1; } /* NB: caller responsible for forcing any channel change */ done: /* update node's (11n) tx channel width */ ni->ni_chw = IEEE80211_IS_CHAN_HT40(ni->ni_chan) ? IEEE80211_STA_RX_BW_40 : IEEE80211_STA_RX_BW_20; return (ret); } /* * Update 11n MIMO PS state according to received htcap. */ static __inline int htcap_update_mimo_ps(struct ieee80211_node *ni) { uint16_t oflags = ni->ni_flags; switch (ni->ni_htcap & IEEE80211_HTCAP_SMPS) { case IEEE80211_HTCAP_SMPS_DYNAMIC: ni->ni_flags |= IEEE80211_NODE_MIMO_PS; ni->ni_flags |= IEEE80211_NODE_MIMO_RTS; break; case IEEE80211_HTCAP_SMPS_ENA: ni->ni_flags |= IEEE80211_NODE_MIMO_PS; ni->ni_flags &= ~IEEE80211_NODE_MIMO_RTS; break; case IEEE80211_HTCAP_SMPS_OFF: default: /* disable on rx of reserved value */ ni->ni_flags &= ~IEEE80211_NODE_MIMO_PS; ni->ni_flags &= ~IEEE80211_NODE_MIMO_RTS; break; } return (oflags ^ ni->ni_flags); } /* * Update short GI state according to received htcap * and local settings. */ static __inline void htcap_update_shortgi(struct ieee80211_node *ni) { struct ieee80211vap *vap = ni->ni_vap; ni->ni_flags &= ~(IEEE80211_NODE_SGI20|IEEE80211_NODE_SGI40); if ((ni->ni_htcap & IEEE80211_HTCAP_SHORTGI20) && (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20)) ni->ni_flags |= IEEE80211_NODE_SGI20; if ((ni->ni_htcap & IEEE80211_HTCAP_SHORTGI40) && (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40)) ni->ni_flags |= IEEE80211_NODE_SGI40; } /* * Update LDPC state according to received htcap * and local settings. */ static __inline void htcap_update_ldpc(struct ieee80211_node *ni) { struct ieee80211vap *vap = ni->ni_vap; if ((ni->ni_htcap & IEEE80211_HTCAP_LDPC) && (vap->iv_flags_ht & IEEE80211_FHT_LDPC_TX)) ni->ni_flags |= IEEE80211_NODE_LDPC; } /* * Parse and update HT-related state extracted from * the HT cap and info ie's. * * This is called from the STA management path and * the ieee80211_node_join() path. It will take into * account the IEs discovered during scanning and * adjust things accordingly. */ void ieee80211_ht_updateparams(struct ieee80211_node *ni, const uint8_t *htcapie, const uint8_t *htinfoie) { struct ieee80211vap *vap = ni->ni_vap; const struct ieee80211_ie_htinfo *htinfo; ieee80211_parse_htcap(ni, htcapie); if (vap->iv_htcaps & IEEE80211_HTC_SMPS) htcap_update_mimo_ps(ni); htcap_update_shortgi(ni); htcap_update_ldpc(ni); if (htinfoie[0] == IEEE80211_ELEMID_VENDOR) htinfoie += 4; htinfo = (const struct ieee80211_ie_htinfo *) htinfoie; htinfo_parse(ni, htinfo); /* * Defer the node channel change; we need to now * update VHT parameters before we do it. */ if ((htinfo->hi_byte1 & IEEE80211_HTINFO_RIFSMODE_PERM) && (vap->iv_flags_ht & IEEE80211_FHT_RIFS)) ni->ni_flags |= IEEE80211_NODE_RIFS; else ni->ni_flags &= ~IEEE80211_NODE_RIFS; } static uint32_t ieee80211_vht_get_vhtflags(struct ieee80211_node *ni, uint32_t htflags) { struct ieee80211vap *vap = ni->ni_vap; uint32_t vhtflags = 0; vhtflags = 0; if (ni->ni_flags & IEEE80211_NODE_VHT && vap->iv_vht_flags & IEEE80211_FVHT_VHT) { if ((ni->ni_vht_chanwidth == IEEE80211_VHT_CHANWIDTH_160MHZ) && IEEE80211_VHTCAP_SUPP_CHAN_WIDTH_IS_160MHZ(vap->iv_vht_cap.vht_cap_info) && (vap->iv_vht_flags & IEEE80211_FVHT_USEVHT160)) { vhtflags = IEEE80211_CHAN_VHT160; /* Mirror the HT40 flags */ if (htflags == IEEE80211_CHAN_HT40U) { vhtflags |= IEEE80211_CHAN_HT40U; } else if (htflags == IEEE80211_CHAN_HT40D) { vhtflags |= IEEE80211_CHAN_HT40D; } } else if ((ni->ni_vht_chanwidth == IEEE80211_VHT_CHANWIDTH_80P80MHZ) && IEEE80211_VHTCAP_SUPP_CHAN_WIDTH_IS_160_80P80MHZ(vap->iv_vht_cap.vht_cap_info) && (vap->iv_vht_flags & IEEE80211_FVHT_USEVHT80P80)) { vhtflags = IEEE80211_CHAN_VHT80P80; /* Mirror the HT40 flags */ if (htflags == IEEE80211_CHAN_HT40U) { vhtflags |= IEEE80211_CHAN_HT40U; } else if (htflags == IEEE80211_CHAN_HT40D) { vhtflags |= IEEE80211_CHAN_HT40D; } } else if ((ni->ni_vht_chanwidth == IEEE80211_VHT_CHANWIDTH_80MHZ) && (vap->iv_vht_flags & IEEE80211_FVHT_USEVHT80)) { vhtflags = IEEE80211_CHAN_VHT80; /* Mirror the HT40 flags */ if (htflags == IEEE80211_CHAN_HT40U) { vhtflags |= IEEE80211_CHAN_HT40U; } else if (htflags == IEEE80211_CHAN_HT40D) { vhtflags |= IEEE80211_CHAN_HT40D; } } else if (ni->ni_vht_chanwidth == IEEE80211_VHT_CHANWIDTH_USE_HT) { /* Mirror the HT40 flags */ /* * XXX TODO: if ht40 is disabled, but vht40 isn't * disabled then this logic will get very, very sad. * It's quite possible the only sane thing to do is * to not have vht40 as an option, and just obey * 'ht40' as that flag. */ if ((htflags == IEEE80211_CHAN_HT40U) && (vap->iv_vht_flags & IEEE80211_FVHT_USEVHT40)) { vhtflags = IEEE80211_CHAN_VHT40U | IEEE80211_CHAN_HT40U; } else if (htflags == IEEE80211_CHAN_HT40D && (vap->iv_vht_flags & IEEE80211_FVHT_USEVHT40)) { vhtflags = IEEE80211_CHAN_VHT40D | IEEE80211_CHAN_HT40D; } else if (htflags == IEEE80211_CHAN_HT20) { vhtflags = IEEE80211_CHAN_VHT20 | IEEE80211_CHAN_HT20; } } else { vhtflags = IEEE80211_CHAN_VHT20; } } return (vhtflags); } /* * Final part of updating the HT parameters. * * This is called from the STA management path and * the ieee80211_node_join() path. It will take into * account the IEs discovered during scanning and * adjust things accordingly. * * This is done after a call to ieee80211_ht_updateparams() * because it (and the upcoming VHT version of updateparams) * needs to ensure everything is parsed before htinfo_update_chw() * is called - which will change the channel config for the * node for us. */ int ieee80211_ht_updateparams_final(struct ieee80211_node *ni, const uint8_t *htcapie, const uint8_t *htinfoie) { struct ieee80211vap *vap = ni->ni_vap; const struct ieee80211_ie_htinfo *htinfo; int htflags, vhtflags; int ret = 0; htinfo = (const struct ieee80211_ie_htinfo *) htinfoie; htflags = (vap->iv_flags_ht & IEEE80211_FHT_HT) ? IEEE80211_CHAN_HT20 : 0; /* NB: honor operating mode constraint */ if ((htinfo->hi_byte1 & IEEE80211_HTINFO_TXWIDTH_2040) && (vap->iv_flags_ht & IEEE80211_FHT_USEHT40)) { if (ni->ni_ht2ndchan == IEEE80211_HTINFO_2NDCHAN_ABOVE) htflags = IEEE80211_CHAN_HT40U; else if (ni->ni_ht2ndchan == IEEE80211_HTINFO_2NDCHAN_BELOW) htflags = IEEE80211_CHAN_HT40D; } /* * VHT flags - do much the same; check whether VHT is available * and if so, what our ideal channel use would be based on our * capabilities and the (pre-parsed) VHT info IE. */ vhtflags = ieee80211_vht_get_vhtflags(ni, htflags); if (htinfo_update_chw(ni, htflags, vhtflags)) ret = 1; return (ret); } /* * Parse and update HT-related state extracted from the HT cap ie * for a station joining an HT BSS. * * This is called from the hostap path for each station. */ void ieee80211_ht_updatehtcap(struct ieee80211_node *ni, const uint8_t *htcapie) { struct ieee80211vap *vap = ni->ni_vap; ieee80211_parse_htcap(ni, htcapie); if (vap->iv_htcaps & IEEE80211_HTC_SMPS) htcap_update_mimo_ps(ni); htcap_update_shortgi(ni); htcap_update_ldpc(ni); } /* * Called once HT and VHT capabilities are parsed in hostap mode - * this will adjust the channel configuration of the given node * based on the configuration and capabilities. */ void ieee80211_ht_updatehtcap_final(struct ieee80211_node *ni) { struct ieee80211vap *vap = ni->ni_vap; int htflags; int vhtflags; /* NB: honor operating mode constraint */ /* XXX 40 MHz intolerant */ htflags = (vap->iv_flags_ht & IEEE80211_FHT_HT) ? IEEE80211_CHAN_HT20 : 0; if ((ni->ni_htcap & IEEE80211_HTCAP_CHWIDTH40) && (vap->iv_flags_ht & IEEE80211_FHT_USEHT40)) { if (IEEE80211_IS_CHAN_HT40U(vap->iv_bss->ni_chan)) htflags = IEEE80211_CHAN_HT40U; else if (IEEE80211_IS_CHAN_HT40D(vap->iv_bss->ni_chan)) htflags = IEEE80211_CHAN_HT40D; } /* * VHT flags - do much the same; check whether VHT is available * and if so, what our ideal channel use would be based on our * capabilities and the (pre-parsed) VHT info IE. */ vhtflags = ieee80211_vht_get_vhtflags(ni, htflags); (void) htinfo_update_chw(ni, htflags, vhtflags); } /* * Install received HT rate set by parsing the HT cap ie. */ int ieee80211_setup_htrates(struct ieee80211_node *ni, const uint8_t *ie, int flags) { struct ieee80211com *ic = ni->ni_ic; struct ieee80211vap *vap = ni->ni_vap; const struct ieee80211_ie_htcap *htcap; struct ieee80211_htrateset *rs; int i, maxequalmcs, maxunequalmcs; maxequalmcs = ic->ic_txstream * 8 - 1; maxunequalmcs = 0; if (ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL) { if (ic->ic_txstream >= 2) maxunequalmcs = 38; if (ic->ic_txstream >= 3) maxunequalmcs = 52; if (ic->ic_txstream >= 4) maxunequalmcs = 76; } rs = &ni->ni_htrates; memset(rs, 0, sizeof(*rs)); if (ie != NULL) { if (ie[0] == IEEE80211_ELEMID_VENDOR) ie += 4; htcap = (const struct ieee80211_ie_htcap *) ie; for (i = 0; i < IEEE80211_HTRATE_MAXSIZE; i++) { if (isclr(htcap->hc_mcsset, i)) continue; if (rs->rs_nrates == IEEE80211_HTRATE_MAXSIZE) { IEEE80211_NOTE(vap, IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni, "WARNING, HT rate set too large; only " "using %u rates", IEEE80211_HTRATE_MAXSIZE); vap->iv_stats.is_rx_rstoobig++; break; } if (i <= 31 && i > maxequalmcs) continue; if (i == 32 && (ic->ic_htcaps & IEEE80211_HTC_TXMCS32) == 0) continue; if (i > 32 && i > maxunequalmcs) continue; rs->rs_rates[rs->rs_nrates++] = i; } } return ieee80211_fix_rate(ni, (struct ieee80211_rateset *) rs, flags); } /* * Mark rates in a node's HT rate set as basic according * to the information in the supplied HT info ie. */ void ieee80211_setup_basic_htrates(struct ieee80211_node *ni, const uint8_t *ie) { const struct ieee80211_ie_htinfo *htinfo; struct ieee80211_htrateset *rs; int i, j; if (ie[0] == IEEE80211_ELEMID_VENDOR) ie += 4; htinfo = (const struct ieee80211_ie_htinfo *) ie; rs = &ni->ni_htrates; if (rs->rs_nrates == 0) { IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni, "%s", "WARNING, empty HT rate set"); return; } for (i = 0; i < IEEE80211_HTRATE_MAXSIZE; i++) { if (isclr(htinfo->hi_basicmcsset, i)) continue; for (j = 0; j < rs->rs_nrates; j++) if ((rs->rs_rates[j] & IEEE80211_RATE_VAL) == i) rs->rs_rates[j] |= IEEE80211_RATE_BASIC; } } static void ampdu_tx_setup(struct ieee80211_tx_ampdu *tap) { callout_init(&tap->txa_timer, 1); tap->txa_flags |= IEEE80211_AGGR_SETUP; tap->txa_lastsample = ticks; } static void ampdu_tx_stop(struct ieee80211_tx_ampdu *tap) { struct ieee80211_node *ni = tap->txa_ni; struct ieee80211com *ic = ni->ni_ic; IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, tap->txa_ni, "%s: called", __func__); KASSERT(tap->txa_flags & IEEE80211_AGGR_SETUP, ("txa_flags 0x%x tid %d ac %d", tap->txa_flags, tap->txa_tid, TID_TO_WME_AC(tap->txa_tid))); /* * Stop BA stream if setup so driver has a chance * to reclaim any resources it might have allocated. */ ic->ic_addba_stop(ni, tap); /* * Stop any pending BAR transmit. */ bar_stop_timer(tap); /* * Reset packet estimate. */ ieee80211_txampdu_init_pps(tap); /* NB: clearing NAK means we may re-send ADDBA */ tap->txa_flags &= ~(IEEE80211_AGGR_SETUP | IEEE80211_AGGR_NAK); } /* * ADDBA response timeout. * * If software aggregation and per-TID queue management was done here, * that queue would be unpaused after the ADDBA timeout occurs. */ static void addba_timeout(void *arg) { struct ieee80211_tx_ampdu *tap = arg; struct ieee80211_node *ni = tap->txa_ni; struct ieee80211com *ic = ni->ni_ic; /* XXX ? */ tap->txa_flags &= ~IEEE80211_AGGR_XCHGPEND; tap->txa_attempts++; ic->ic_addba_response_timeout(ni, tap); } static void addba_start_timeout(struct ieee80211_tx_ampdu *tap) { /* XXX use CALLOUT_PENDING instead? */ callout_reset(&tap->txa_timer, ieee80211_addba_timeout, addba_timeout, tap); tap->txa_flags |= IEEE80211_AGGR_XCHGPEND; tap->txa_nextrequest = ticks + ieee80211_addba_timeout; } static void addba_stop_timeout(struct ieee80211_tx_ampdu *tap) { /* XXX use CALLOUT_PENDING instead? */ if (tap->txa_flags & IEEE80211_AGGR_XCHGPEND) { callout_stop(&tap->txa_timer); tap->txa_flags &= ~IEEE80211_AGGR_XCHGPEND; } } static void null_addba_response_timeout(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap) { } /* * Default method for requesting A-MPDU tx aggregation. * We setup the specified state block and start a timer * to wait for an ADDBA response frame. */ static int ieee80211_addba_request(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap, int dialogtoken, int baparamset, int batimeout) { int bufsiz; /* XXX locking */ tap->txa_token = dialogtoken; tap->txa_flags |= IEEE80211_AGGR_IMMEDIATE; bufsiz = _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_BUFSIZ); tap->txa_wnd = (bufsiz == 0) ? IEEE80211_AGGR_BAWMAX : min(bufsiz, IEEE80211_AGGR_BAWMAX); addba_start_timeout(tap); return 1; } /* * Called by drivers that wish to request an ADDBA session be * setup. This brings it up and starts the request timer. */ int ieee80211_ampdu_tx_request_ext(struct ieee80211_node *ni, int tid) { struct ieee80211_tx_ampdu *tap; if (tid < 0 || tid > 15) return (0); tap = &ni->ni_tx_ampdu[tid]; /* XXX locking */ if ((tap->txa_flags & IEEE80211_AGGR_SETUP) == 0) { /* do deferred setup of state */ ampdu_tx_setup(tap); } /* XXX hack for not doing proper locking */ tap->txa_flags &= ~IEEE80211_AGGR_NAK; addba_start_timeout(tap); return (1); } /* * Called by drivers that have marked a session as active. */ int ieee80211_ampdu_tx_request_active_ext(struct ieee80211_node *ni, int tid, int status) { struct ieee80211_tx_ampdu *tap; if (tid < 0 || tid > 15) return (0); tap = &ni->ni_tx_ampdu[tid]; /* XXX locking */ addba_stop_timeout(tap); if (status == 1) { tap->txa_flags |= IEEE80211_AGGR_RUNNING; tap->txa_attempts = 0; } else { /* mark tid so we don't try again */ tap->txa_flags |= IEEE80211_AGGR_NAK; } return (1); } /* * Default method for processing an A-MPDU tx aggregation * response. We shutdown any pending timer and update the * state block according to the reply. */ static int ieee80211_addba_response(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap, int status, int baparamset, int batimeout) { struct ieee80211vap *vap = ni->ni_vap; int bufsiz; /* XXX locking */ addba_stop_timeout(tap); if (status == IEEE80211_STATUS_SUCCESS) { bufsiz = _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_BUFSIZ); /* XXX override our request? */ tap->txa_wnd = (bufsiz == 0) ? IEEE80211_AGGR_BAWMAX : min(bufsiz, IEEE80211_AGGR_BAWMAX); #ifdef __notyet__ tid = _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_TID); #endif tap->txa_flags |= IEEE80211_AGGR_RUNNING; tap->txa_attempts = 0; /* TODO: this should be a vap flag */ if ((vap->iv_htcaps & IEEE80211_HTC_TX_AMSDU_AMPDU) && (ni->ni_flags & IEEE80211_NODE_AMSDU_TX) && (_IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_AMSDU))) tap->txa_flags |= IEEE80211_AGGR_AMSDU; else tap->txa_flags &= ~IEEE80211_AGGR_AMSDU; } else { /* mark tid so we don't try again */ tap->txa_flags |= IEEE80211_AGGR_NAK; } return 1; } /* * Default method for stopping A-MPDU tx aggregation. * Any timer is cleared and we drain any pending frames. */ static void ieee80211_addba_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap) { /* XXX locking */ addba_stop_timeout(tap); if (tap->txa_flags & IEEE80211_AGGR_RUNNING) { /* XXX clear aggregation queue */ tap->txa_flags &= ~(IEEE80211_AGGR_RUNNING | IEEE80211_AGGR_AMSDU); } tap->txa_attempts = 0; } /* * Process a received action frame using the default aggregation * policy. We intercept ADDBA-related frames and use them to * update our aggregation state. All other frames are passed up * for processing by ieee80211_recv_action. */ static int ht_recv_action_ba_addba_request(struct ieee80211_node *ni, const struct ieee80211_frame *wh, const uint8_t *frm, const uint8_t *efrm) { struct ieee80211com *ic = ni->ni_ic; struct ieee80211vap *vap = ni->ni_vap; struct ieee80211_rx_ampdu *rap; uint8_t dialogtoken; uint16_t baparamset, batimeout, baseqctl; uint16_t args[5]; int tid; dialogtoken = frm[2]; baparamset = le16dec(frm+3); batimeout = le16dec(frm+5); baseqctl = le16dec(frm+7); tid = _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_TID); IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, "recv ADDBA request: dialogtoken %u baparamset 0x%x " "(tid %d bufsiz %d) batimeout %d baseqctl %d:%d amsdu %d", dialogtoken, baparamset, tid, _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_BUFSIZ), batimeout, _IEEE80211_MASKSHIFT(baseqctl, IEEE80211_BASEQ_START), _IEEE80211_MASKSHIFT(baseqctl, IEEE80211_BASEQ_FRAG), _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_AMSDU)); rap = &ni->ni_rx_ampdu[tid]; /* Send ADDBA response */ args[0] = dialogtoken; /* * NB: We ack only if the sta associated with HT and * the ap is configured to do AMPDU rx (the latter * violates the 11n spec and is mostly for testing). */ if ((ni->ni_flags & IEEE80211_NODE_AMPDU_RX) && (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_RX)) { /* XXX TODO: handle ampdu_rx_start failure */ ic->ic_ampdu_rx_start(ni, rap, baparamset, batimeout, baseqctl); args[1] = IEEE80211_STATUS_SUCCESS; } else { IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, "reject ADDBA request: %s", ni->ni_flags & IEEE80211_NODE_AMPDU_RX ? "administratively disabled" : "not negotiated for station"); vap->iv_stats.is_addba_reject++; args[1] = IEEE80211_STATUS_UNSPECIFIED; } /* XXX honor rap flags? */ args[2] = IEEE80211_BAPS_POLICY_IMMEDIATE | _IEEE80211_SHIFTMASK(tid, IEEE80211_BAPS_TID) | _IEEE80211_SHIFTMASK(rap->rxa_wnd, IEEE80211_BAPS_BUFSIZ) ; /* * TODO: we're out of iv_flags_ht fields; once * this is extended we should make this configurable. */ if ((baparamset & IEEE80211_BAPS_AMSDU) && (ni->ni_flags & IEEE80211_NODE_AMSDU_RX) && (vap->iv_htcaps & IEEE80211_HTC_RX_AMSDU_AMPDU)) args[2] |= IEEE80211_BAPS_AMSDU; args[3] = 0; args[4] = 0; ic->ic_send_action(ni, IEEE80211_ACTION_CAT_BA, IEEE80211_ACTION_BA_ADDBA_RESPONSE, args); return 0; } static int ht_recv_action_ba_addba_response(struct ieee80211_node *ni, const struct ieee80211_frame *wh, const uint8_t *frm, const uint8_t *efrm) { struct ieee80211com *ic = ni->ni_ic; struct ieee80211vap *vap = ni->ni_vap; struct ieee80211_tx_ampdu *tap; uint8_t dialogtoken, policy; uint16_t baparamset, batimeout, code; int tid; #ifdef IEEE80211_DEBUG int amsdu, bufsiz; #endif dialogtoken = frm[2]; code = le16dec(frm+3); baparamset = le16dec(frm+5); tid = _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_TID); #ifdef IEEE80211_DEBUG bufsiz = _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_BUFSIZ); amsdu = !! _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_AMSDU); #endif policy = _IEEE80211_MASKSHIFT(baparamset, IEEE80211_BAPS_POLICY); batimeout = le16dec(frm+7); tap = &ni->ni_tx_ampdu[tid]; if ((tap->txa_flags & IEEE80211_AGGR_XCHGPEND) == 0) { IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni->ni_macaddr, "ADDBA response", "no pending ADDBA, tid %d dialogtoken %u " "code %d", tid, dialogtoken, code); vap->iv_stats.is_addba_norequest++; return 0; } if (dialogtoken != tap->txa_token) { IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni->ni_macaddr, "ADDBA response", "dialogtoken mismatch: waiting for %d, " "received %d, tid %d code %d", tap->txa_token, dialogtoken, tid, code); vap->iv_stats.is_addba_badtoken++; return 0; } /* NB: assumes IEEE80211_AGGR_IMMEDIATE is 1 */ if (policy != (tap->txa_flags & IEEE80211_AGGR_IMMEDIATE)) { IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni->ni_macaddr, "ADDBA response", "policy mismatch: expecting %s, " "received %s, tid %d code %d", tap->txa_flags & IEEE80211_AGGR_IMMEDIATE, policy, tid, code); vap->iv_stats.is_addba_badpolicy++; return 0; } #if 0 /* XXX we take MIN in ieee80211_addba_response */ if (bufsiz > IEEE80211_AGGR_BAWMAX) { IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni->ni_macaddr, "ADDBA response", "BA window too large: max %d, " "received %d, tid %d code %d", bufsiz, IEEE80211_AGGR_BAWMAX, tid, code); vap->iv_stats.is_addba_badbawinsize++; return 0; } #endif IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, "recv ADDBA response: dialogtoken %u code %d " "baparamset 0x%x (tid %d bufsiz %d amsdu %d) batimeout %d", dialogtoken, code, baparamset, tid, bufsiz, amsdu, batimeout); ic->ic_addba_response(ni, tap, code, baparamset, batimeout); return 0; } static int ht_recv_action_ba_delba(struct ieee80211_node *ni, const struct ieee80211_frame *wh, const uint8_t *frm, const uint8_t *efrm) { struct ieee80211com *ic = ni->ni_ic; struct ieee80211_rx_ampdu *rap; struct ieee80211_tx_ampdu *tap; uint16_t baparamset; #ifdef IEEE80211_DEBUG uint16_t code; #endif int tid; baparamset = le16dec(frm+2); #ifdef IEEE80211_DEBUG code = le16dec(frm+4); #endif tid = _IEEE80211_MASKSHIFT(baparamset, IEEE80211_DELBAPS_TID); IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, "recv DELBA: baparamset 0x%x (tid %d initiator %d) " "code %d", baparamset, tid, _IEEE80211_MASKSHIFT(baparamset, IEEE80211_DELBAPS_INIT), code); if ((baparamset & IEEE80211_DELBAPS_INIT) == 0) { tap = &ni->ni_tx_ampdu[tid]; ic->ic_addba_stop(ni, tap); } else { rap = &ni->ni_rx_ampdu[tid]; ic->ic_ampdu_rx_stop(ni, rap); } return 0; } static int ht_recv_action_ht_txchwidth(struct ieee80211_node *ni, const struct ieee80211_frame *wh __unused, const uint8_t *frm, const uint8_t *efrm __unused) { int chw; /* If 20/40 is not supported the chw cannot change. */ if ((ni->ni_htcap & IEEE80211_HTCAP_CHWIDTH40) == 0) return (0); chw = (frm[2] == IEEE80211_A_HT_TXCHWIDTH_2040) ? IEEE80211_STA_RX_BW_40 : IEEE80211_STA_RX_BW_20; IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, - "%s: HT txchwidth, width %b%s", - __func__, chw, IEEE80211_NI_CHW_BITS, ni->ni_chw != chw ? "*" : ""); + "%s: HT txchwidth, width %d%s (%s)", __func__, + chw, ni->ni_chw != chw ? "*" : "", ieee80211_ni_chw_to_str(chw)); if (chw != ni->ni_chw) { /* XXX does this need to change the ht40 station count? */ ni->ni_chw = chw; /* XXX notify on change */ } return 0; } static int ht_recv_action_ht_mimopwrsave(struct ieee80211_node *ni, const struct ieee80211_frame *wh, const uint8_t *frm, const uint8_t *efrm) { const struct ieee80211_action_ht_mimopowersave *mps = (const struct ieee80211_action_ht_mimopowersave *) frm; /* XXX check iv_htcaps */ if (mps->am_control & IEEE80211_A_HT_MIMOPWRSAVE_ENA) ni->ni_flags |= IEEE80211_NODE_MIMO_PS; else ni->ni_flags &= ~IEEE80211_NODE_MIMO_PS; if (mps->am_control & IEEE80211_A_HT_MIMOPWRSAVE_MODE) ni->ni_flags |= IEEE80211_NODE_MIMO_RTS; else ni->ni_flags &= ~IEEE80211_NODE_MIMO_RTS; /* XXX notify on change */ IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, "%s: HT MIMO PS (%s%s)", __func__, (ni->ni_flags & IEEE80211_NODE_MIMO_PS) ? "on" : "off", (ni->ni_flags & IEEE80211_NODE_MIMO_RTS) ? "+rts" : "" ); return 0; } /* * Transmit processing. */ /* * Check if A-MPDU should be requested/enabled for a stream. * We require a traffic rate above a per-AC threshold and we * also handle backoff from previous failed attempts. * * Drivers may override this method to bring in information * such as link state conditions in making the decision. */ static int ieee80211_ampdu_enable(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap) { struct ieee80211vap *vap = ni->ni_vap; if (tap->txa_avgpps < vap->iv_ampdu_mintraffic[TID_TO_WME_AC(tap->txa_tid)]) return 0; /* XXX check rssi? */ if (tap->txa_attempts >= ieee80211_addba_maxtries && ieee80211_time_after(ticks, tap->txa_nextrequest)) { /* * Don't retry too often; txa_nextrequest is set * to the minimum interval we'll retry after * ieee80211_addba_maxtries failed attempts are made. */ return 0; } IEEE80211_NOTE(vap, IEEE80211_MSG_11N, ni, "enable AMPDU on tid %d (%s), avgpps %d pkts %d attempt %d", tap->txa_tid, ieee80211_wme_acnames[TID_TO_WME_AC(tap->txa_tid)], tap->txa_avgpps, tap->txa_pkts, tap->txa_attempts); return 1; } /* * Request A-MPDU tx aggregation. Setup local state and * issue an ADDBA request. BA use will only happen after * the other end replies with ADDBA response. */ int ieee80211_ampdu_request(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap) { struct ieee80211com *ic = ni->ni_ic; uint16_t args[5]; int tid, dialogtoken; static int tokens = 0; /* XXX */ /* XXX locking */ if ((tap->txa_flags & IEEE80211_AGGR_SETUP) == 0) { /* do deferred setup of state */ ampdu_tx_setup(tap); } /* XXX hack for not doing proper locking */ tap->txa_flags &= ~IEEE80211_AGGR_NAK; dialogtoken = (tokens+1) % 63; /* XXX */ tid = tap->txa_tid; /* * XXX TODO: This is racy with any other parallel TX going on. :( */ tap->txa_start = ni->ni_txseqs[tid]; args[0] = dialogtoken; args[1] = 0; /* NB: status code not used */ args[2] = IEEE80211_BAPS_POLICY_IMMEDIATE | _IEEE80211_SHIFTMASK(tid, IEEE80211_BAPS_TID) | _IEEE80211_SHIFTMASK(IEEE80211_AGGR_BAWMAX, IEEE80211_BAPS_BUFSIZ) ; /* XXX TODO: this should be a flag, not iv_htcaps */ if ((ni->ni_flags & IEEE80211_NODE_AMSDU_TX) && (ni->ni_vap->iv_htcaps & IEEE80211_HTC_TX_AMSDU_AMPDU)) args[2] |= IEEE80211_BAPS_AMSDU; args[3] = 0; /* batimeout */ /* NB: do first so there's no race against reply */ if (!ic->ic_addba_request(ni, tap, dialogtoken, args[2], args[3])) { /* unable to setup state, don't make request */ IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, ni, "%s: could not setup BA stream for TID %d AC %d", __func__, tap->txa_tid, TID_TO_WME_AC(tap->txa_tid)); /* defer next try so we don't slam the driver with requests */ tap->txa_attempts = ieee80211_addba_maxtries; /* NB: check in case driver wants to override */ if (tap->txa_nextrequest <= ticks) tap->txa_nextrequest = ticks + ieee80211_addba_backoff; return 0; } tokens = dialogtoken; /* allocate token */ /* NB: after calling ic_addba_request so driver can set txa_start */ args[4] = _IEEE80211_SHIFTMASK(tap->txa_start, IEEE80211_BASEQ_START) | _IEEE80211_SHIFTMASK(0, IEEE80211_BASEQ_FRAG) ; return ic->ic_send_action(ni, IEEE80211_ACTION_CAT_BA, IEEE80211_ACTION_BA_ADDBA_REQUEST, args); } /* * Terminate an AMPDU tx stream. State is reclaimed * and the peer notified with a DelBA Action frame. */ void ieee80211_ampdu_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap, int reason) { struct ieee80211com *ic = ni->ni_ic; struct ieee80211vap *vap = ni->ni_vap; uint16_t args[4]; /* XXX locking */ tap->txa_flags &= ~IEEE80211_AGGR_BARPEND; if (IEEE80211_AMPDU_RUNNING(tap)) { IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, "%s: stop BA stream for TID %d (reason: %d (%s))", __func__, tap->txa_tid, reason, ieee80211_reason_to_string(reason)); vap->iv_stats.is_ampdu_stop++; ic->ic_addba_stop(ni, tap); args[0] = tap->txa_tid; args[1] = IEEE80211_DELBAPS_INIT; args[2] = reason; /* XXX reason code */ ic->ic_send_action(ni, IEEE80211_ACTION_CAT_BA, IEEE80211_ACTION_BA_DELBA, args); } else { IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, "%s: BA stream for TID %d not running " "(reason: %d (%s))", __func__, tap->txa_tid, reason, ieee80211_reason_to_string(reason)); vap->iv_stats.is_ampdu_stop_failed++; } } /* XXX */ static void bar_start_timer(struct ieee80211_tx_ampdu *tap); static void bar_timeout(void *arg) { struct ieee80211_tx_ampdu *tap = arg; struct ieee80211_node *ni = tap->txa_ni; KASSERT((tap->txa_flags & IEEE80211_AGGR_XCHGPEND) == 0, ("bar/addba collision, flags 0x%x", tap->txa_flags)); IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, ni, "%s: tid %u flags 0x%x attempts %d", __func__, tap->txa_tid, tap->txa_flags, tap->txa_attempts); /* guard against race with bar_tx_complete */ if ((tap->txa_flags & IEEE80211_AGGR_BARPEND) == 0) return; /* XXX ? */ if (tap->txa_attempts >= ieee80211_bar_maxtries) { struct ieee80211com *ic = ni->ni_ic; ni->ni_vap->iv_stats.is_ampdu_bar_tx_fail++; /* * If (at least) the last BAR TX timeout was due to * an ieee80211_send_bar() failures, then we need * to make sure we notify the driver that a BAR * TX did occur and fail. This gives the driver * a chance to undo any queue pause that may * have occurred. */ ic->ic_bar_response(ni, tap, 1); ieee80211_ampdu_stop(ni, tap, IEEE80211_REASON_TIMEOUT); } else { ni->ni_vap->iv_stats.is_ampdu_bar_tx_retry++; if (ieee80211_send_bar(ni, tap, tap->txa_seqpending) != 0) { IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, ni, "%s: failed to TX, starting timer\n", __func__); /* * If ieee80211_send_bar() fails here, the * timer may have stopped and/or the pending * flag may be clear. Because of this, * fake the BARPEND and reset the timer. * A retransmission attempt will then occur * during the next timeout. */ /* XXX locking */ tap->txa_flags |= IEEE80211_AGGR_BARPEND; bar_start_timer(tap); } } } static void bar_start_timer(struct ieee80211_tx_ampdu *tap) { IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, tap->txa_ni, "%s: called", __func__); callout_reset(&tap->txa_timer, ieee80211_bar_timeout, bar_timeout, tap); } static void bar_stop_timer(struct ieee80211_tx_ampdu *tap) { IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, tap->txa_ni, "%s: called", __func__); callout_stop(&tap->txa_timer); } static void bar_tx_complete(struct ieee80211_node *ni, void *arg, int status) { struct ieee80211_tx_ampdu *tap = arg; IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, ni, "%s: tid %u flags 0x%x pending %d status %d", __func__, tap->txa_tid, tap->txa_flags, callout_pending(&tap->txa_timer), status); ni->ni_vap->iv_stats.is_ampdu_bar_tx++; /* XXX locking */ if ((tap->txa_flags & IEEE80211_AGGR_BARPEND) && callout_pending(&tap->txa_timer)) { struct ieee80211com *ic = ni->ni_ic; if (status == 0) /* ACK'd */ bar_stop_timer(tap); ic->ic_bar_response(ni, tap, status); /* NB: just let timer expire so we pace requests */ } } static void ieee80211_bar_response(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap, int status) { IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, tap->txa_ni, "%s: called", __func__); if (status == 0) { /* got ACK */ IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, ni, "BAR moves BA win <%u:%u> (%u frames) txseq %u tid %u", tap->txa_start, IEEE80211_SEQ_ADD(tap->txa_start, tap->txa_wnd-1), tap->txa_qframes, tap->txa_seqpending, tap->txa_tid); /* NB: timer already stopped in bar_tx_complete */ tap->txa_start = tap->txa_seqpending; tap->txa_flags &= ~IEEE80211_AGGR_BARPEND; } } /* * Transmit a BAR frame to the specified node. The * BAR contents are drawn from the supplied aggregation * state associated with the node. * * NB: we only handle immediate ACK w/ compressed bitmap. */ int ieee80211_send_bar(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap, ieee80211_seq seq) { #define senderr(_x, _v) do { vap->iv_stats._v++; ret = _x; goto bad; } while (0) struct ieee80211vap *vap = ni->ni_vap; struct ieee80211com *ic = ni->ni_ic; struct ieee80211_frame_bar *bar; struct mbuf *m; uint16_t barctl, barseqctl; uint8_t *frm; int tid, ret; IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, tap->txa_ni, "%s: called", __func__); if ((tap->txa_flags & IEEE80211_AGGR_RUNNING) == 0) { /* no ADDBA response, should not happen */ /* XXX stat+msg */ return EINVAL; } /* XXX locking */ bar_stop_timer(tap); ieee80211_ref_node(ni); m = ieee80211_getmgtframe(&frm, ic->ic_headroom, sizeof(*bar)); if (m == NULL) senderr(ENOMEM, is_tx_nobuf); if (!ieee80211_add_callback(m, bar_tx_complete, tap)) { m_freem(m); senderr(ENOMEM, is_tx_nobuf); /* XXX */ /* NOTREACHED */ } bar = mtod(m, struct ieee80211_frame_bar *); bar->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR; bar->i_fc[1] = 0; IEEE80211_ADDR_COPY(bar->i_ra, ni->ni_macaddr); IEEE80211_ADDR_COPY(bar->i_ta, vap->iv_myaddr); tid = tap->txa_tid; barctl = (tap->txa_flags & IEEE80211_AGGR_IMMEDIATE ? 0 : IEEE80211_BAR_NOACK) | IEEE80211_BAR_COMP | _IEEE80211_SHIFTMASK(tid, IEEE80211_BAR_TID) ; barseqctl = _IEEE80211_SHIFTMASK(seq, IEEE80211_BAR_SEQ_START); /* NB: known to have proper alignment */ bar->i_ctl = htole16(barctl); bar->i_seq = htole16(barseqctl); m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_bar); M_WME_SETAC(m, WME_AC_VO); IEEE80211_NODE_STAT(ni, tx_mgmt); /* XXX tx_ctl? */ /* XXX locking */ /* init/bump attempts counter */ if ((tap->txa_flags & IEEE80211_AGGR_BARPEND) == 0) tap->txa_attempts = 1; else tap->txa_attempts++; tap->txa_seqpending = seq; tap->txa_flags |= IEEE80211_AGGR_BARPEND; IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_11N, ni, "send BAR: tid %u ctl 0x%x start %u (attempt %d)", tid, barctl, seq, tap->txa_attempts); /* * ic_raw_xmit will free the node reference * regardless of queue/TX success or failure. */ IEEE80211_TX_LOCK(ic); ret = ieee80211_raw_output(vap, ni, m, NULL); IEEE80211_TX_UNLOCK(ic); if (ret != 0) { IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_11N, ni, "send BAR: failed: (ret = %d)\n", ret); /* xmit failed, clear state flag */ tap->txa_flags &= ~IEEE80211_AGGR_BARPEND; vap->iv_stats.is_ampdu_bar_tx_fail++; return ret; } /* XXX hack against tx complete happening before timer is started */ if (tap->txa_flags & IEEE80211_AGGR_BARPEND) bar_start_timer(tap); return 0; bad: IEEE80211_NOTE(tap->txa_ni->ni_vap, IEEE80211_MSG_11N, tap->txa_ni, "%s: bad! ret=%d", __func__, ret); vap->iv_stats.is_ampdu_bar_tx_fail++; ieee80211_free_node(ni); return ret; #undef senderr } static int ht_action_output(struct ieee80211_node *ni, struct mbuf *m) { struct ieee80211_bpf_params params; memset(¶ms, 0, sizeof(params)); params.ibp_pri = WME_AC_VO; params.ibp_rate0 = ni->ni_txparms->mgmtrate; /* NB: we know all frames are unicast */ params.ibp_try0 = ni->ni_txparms->maxretry; params.ibp_power = ni->ni_txpower; return ieee80211_mgmt_output(ni, m, IEEE80211_FC0_SUBTYPE_ACTION, ¶ms); } #define ADDSHORT(frm, v) do { \ frm[0] = (v) & 0xff; \ frm[1] = (v) >> 8; \ frm += 2; \ } while (0) /* * Send an action management frame. The arguments are stuff * into a frame without inspection; the caller is assumed to * prepare them carefully (e.g. based on the aggregation state). */ static int ht_send_action_ba_addba(struct ieee80211_node *ni, int category, int action, void *arg0) { struct ieee80211vap *vap = ni->ni_vap; struct ieee80211com *ic = ni->ni_ic; uint16_t *args = arg0; struct mbuf *m; uint8_t *frm; IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, "send ADDBA %s: dialogtoken %d status %d " "baparamset 0x%x (tid %d amsdu %d) batimeout 0x%x baseqctl 0x%x", (action == IEEE80211_ACTION_BA_ADDBA_REQUEST) ? "request" : "response", args[0], args[1], args[2], _IEEE80211_MASKSHIFT(args[2], IEEE80211_BAPS_TID), _IEEE80211_MASKSHIFT(args[2], IEEE80211_BAPS_AMSDU), args[3], args[4]); IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__, ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1); ieee80211_ref_node(ni); m = ieee80211_getmgtframe(&frm, ic->ic_headroom + sizeof(struct ieee80211_frame), sizeof(uint16_t) /* action+category */ /* XXX may action payload */ + sizeof(struct ieee80211_action_ba_addbaresponse) ); if (m != NULL) { *frm++ = category; *frm++ = action; *frm++ = args[0]; /* dialog token */ if (action == IEEE80211_ACTION_BA_ADDBA_RESPONSE) ADDSHORT(frm, args[1]); /* status code */ ADDSHORT(frm, args[2]); /* baparamset */ ADDSHORT(frm, args[3]); /* batimeout */ if (action == IEEE80211_ACTION_BA_ADDBA_REQUEST) ADDSHORT(frm, args[4]); /* baseqctl */ m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); return ht_action_output(ni, m); } else { vap->iv_stats.is_tx_nobuf++; ieee80211_free_node(ni); return ENOMEM; } } static int ht_send_action_ba_delba(struct ieee80211_node *ni, int category, int action, void *arg0) { struct ieee80211vap *vap = ni->ni_vap; struct ieee80211com *ic = ni->ni_ic; uint16_t *args = arg0; struct mbuf *m; uint16_t baparamset; uint8_t *frm; baparamset = _IEEE80211_SHIFTMASK(args[0], IEEE80211_DELBAPS_TID) | args[1] ; IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, "send DELBA action: tid %d, initiator %d reason %d (%s)", args[0], args[1], args[2], ieee80211_reason_to_string(args[2])); IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__, ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1); ieee80211_ref_node(ni); m = ieee80211_getmgtframe(&frm, ic->ic_headroom + sizeof(struct ieee80211_frame), sizeof(uint16_t) /* action+category */ /* XXX may action payload */ + sizeof(struct ieee80211_action_ba_addbaresponse) ); if (m != NULL) { *frm++ = category; *frm++ = action; ADDSHORT(frm, baparamset); ADDSHORT(frm, args[2]); /* reason code */ m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); return ht_action_output(ni, m); } else { vap->iv_stats.is_tx_nobuf++; ieee80211_free_node(ni); return ENOMEM; } } static int ht_send_action_ht_txchwidth(struct ieee80211_node *ni, int category, int action, void *arg0) { struct ieee80211vap *vap = ni->ni_vap; struct ieee80211com *ic = ni->ni_ic; struct mbuf *m; uint8_t *frm; IEEE80211_NOTE(vap, IEEE80211_MSG_ACTION | IEEE80211_MSG_11N, ni, "send HT txchwidth: width %d", IEEE80211_IS_CHAN_HT40(ni->ni_chan) ? 40 : 20); IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__, ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1); ieee80211_ref_node(ni); m = ieee80211_getmgtframe(&frm, ic->ic_headroom + sizeof(struct ieee80211_frame), sizeof(uint16_t) /* action+category */ /* XXX may action payload */ + sizeof(struct ieee80211_action_ba_addbaresponse) ); if (m != NULL) { *frm++ = category; *frm++ = action; *frm++ = IEEE80211_IS_CHAN_HT40(ni->ni_chan) ? IEEE80211_A_HT_TXCHWIDTH_2040 : IEEE80211_A_HT_TXCHWIDTH_20; m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); return ht_action_output(ni, m); } else { vap->iv_stats.is_tx_nobuf++; ieee80211_free_node(ni); return ENOMEM; } } #undef ADDSHORT /* * Construct the MCS bit mask for inclusion in an HT capabilities * information element. */ static void ieee80211_set_mcsset(struct ieee80211com *ic, uint8_t *frm) { int i; uint8_t txparams; KASSERT((ic->ic_rxstream > 0 && ic->ic_rxstream <= 4), ("ic_rxstream %d out of range", ic->ic_rxstream)); KASSERT((ic->ic_txstream > 0 && ic->ic_txstream <= 4), ("ic_txstream %d out of range", ic->ic_txstream)); for (i = 0; i < ic->ic_rxstream * 8; i++) setbit(frm, i); if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) && (ic->ic_htcaps & IEEE80211_HTC_RXMCS32)) setbit(frm, 32); if (ic->ic_htcaps & IEEE80211_HTC_RXUNEQUAL) { if (ic->ic_rxstream >= 2) { for (i = 33; i <= 38; i++) setbit(frm, i); } if (ic->ic_rxstream >= 3) { for (i = 39; i <= 52; i++) setbit(frm, i); } if (ic->ic_rxstream >= 4) { for (i = 53; i <= 76; i++) setbit(frm, i); } } txparams = 0x1; /* TX MCS set defined */ if (ic->ic_rxstream != ic->ic_txstream) { txparams |= 0x2; /* TX RX MCS not equal */ txparams |= (ic->ic_txstream - 1) << 2; /* num TX streams */ if (ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL) txparams |= 0x16; /* TX unequal modulation sup */ } frm[12] = txparams; } /* * Add body of an HTCAP information element. */ static uint8_t * ieee80211_add_htcap_body(uint8_t *frm, struct ieee80211_node *ni) { #define ADDSHORT(frm, v) do { \ frm[0] = (v) & 0xff; \ frm[1] = (v) >> 8; \ frm += 2; \ } while (0) struct ieee80211com *ic = ni->ni_ic; struct ieee80211vap *vap = ni->ni_vap; uint16_t caps, extcaps; int rxmax, density; /* HT capabilities */ caps = vap->iv_htcaps & 0xffff; /* * Note channel width depends on whether we are operating as * a sta or not. When operating as a sta we are generating * a request based on our desired configuration. Otherwise * we are operational and the channel attributes identify * how we've been setup (which might be different if a fixed * channel is specified). */ if (vap->iv_opmode == IEEE80211_M_STA) { /* override 20/40 use based on config */ if (vap->iv_flags_ht & IEEE80211_FHT_USEHT40) caps |= IEEE80211_HTCAP_CHWIDTH40; else caps &= ~IEEE80211_HTCAP_CHWIDTH40; /* Start by using the advertised settings */ rxmax = _IEEE80211_MASKSHIFT(ni->ni_htparam, IEEE80211_HTCAP_MAXRXAMPDU); density = _IEEE80211_MASKSHIFT(ni->ni_htparam, IEEE80211_HTCAP_MPDUDENSITY); IEEE80211_DPRINTF(vap, IEEE80211_MSG_11N, "%s: advertised rxmax=%d, density=%d, vap rxmax=%d, density=%d\n", __func__, rxmax, density, vap->iv_ampdu_rxmax, vap->iv_ampdu_density); /* Cap at VAP rxmax */ if (rxmax > vap->iv_ampdu_rxmax) rxmax = vap->iv_ampdu_rxmax; /* * If the VAP ampdu density value greater, use that. * * (Larger density value == larger minimum gap between A-MPDU * subframes.) */ if (vap->iv_ampdu_density > density) density = vap->iv_ampdu_density; /* * NB: Hardware might support HT40 on some but not all * channels. We can't determine this earlier because only * after association the channel is upgraded to HT based * on the negotiated capabilities. */ if (ni->ni_chan != IEEE80211_CHAN_ANYC && findhtchan(ic, ni->ni_chan, IEEE80211_CHAN_HT40U) == NULL && findhtchan(ic, ni->ni_chan, IEEE80211_CHAN_HT40D) == NULL) caps &= ~IEEE80211_HTCAP_CHWIDTH40; } else { /* override 20/40 use based on current channel */ if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) caps |= IEEE80211_HTCAP_CHWIDTH40; else caps &= ~IEEE80211_HTCAP_CHWIDTH40; /* XXX TODO should it start by using advertised settings? */ rxmax = vap->iv_ampdu_rxmax; density = vap->iv_ampdu_density; } /* adjust short GI based on channel and config */ if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20) == 0) caps &= ~IEEE80211_HTCAP_SHORTGI20; if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40) == 0 || (caps & IEEE80211_HTCAP_CHWIDTH40) == 0) caps &= ~IEEE80211_HTCAP_SHORTGI40; /* adjust STBC based on receive capabilities */ if ((vap->iv_flags_ht & IEEE80211_FHT_STBC_RX) == 0) caps &= ~IEEE80211_HTCAP_RXSTBC; /* adjust LDPC based on receive capabilites */ if ((vap->iv_flags_ht & IEEE80211_FHT_LDPC_RX) == 0) caps &= ~IEEE80211_HTCAP_LDPC; ADDSHORT(frm, caps); /* HT parameters */ *frm = _IEEE80211_SHIFTMASK(rxmax, IEEE80211_HTCAP_MAXRXAMPDU) | _IEEE80211_SHIFTMASK(density, IEEE80211_HTCAP_MPDUDENSITY) ; frm++; /* pre-zero remainder of ie */ memset(frm, 0, sizeof(struct ieee80211_ie_htcap) - __offsetof(struct ieee80211_ie_htcap, hc_mcsset)); /* supported MCS set */ /* * XXX: For sta mode the rate set should be restricted based * on the AP's capabilities, but ni_htrates isn't setup when * we're called to form an AssocReq frame so for now we're * restricted to the device capabilities. */ ieee80211_set_mcsset(ni->ni_ic, frm); frm += __offsetof(struct ieee80211_ie_htcap, hc_extcap) - __offsetof(struct ieee80211_ie_htcap, hc_mcsset); /* HT extended capabilities */ extcaps = vap->iv_htextcaps & 0xffff; ADDSHORT(frm, extcaps); frm += sizeof(struct ieee80211_ie_htcap) - __offsetof(struct ieee80211_ie_htcap, hc_txbf); return frm; #undef ADDSHORT } /* * Add 802.11n HT capabilities information element */ uint8_t * ieee80211_add_htcap(uint8_t *frm, struct ieee80211_node *ni) { frm[0] = IEEE80211_ELEMID_HTCAP; frm[1] = sizeof(struct ieee80211_ie_htcap) - 2; return ieee80211_add_htcap_body(frm + 2, ni); } /* * Non-associated probe request - add HT capabilities based on * the current channel configuration. */ static uint8_t * ieee80211_add_htcap_body_ch(uint8_t *frm, struct ieee80211vap *vap, struct ieee80211_channel *c) { #define ADDSHORT(frm, v) do { \ frm[0] = (v) & 0xff; \ frm[1] = (v) >> 8; \ frm += 2; \ } while (0) struct ieee80211com *ic = vap->iv_ic; uint16_t caps, extcaps; int rxmax, density; /* HT capabilities */ caps = vap->iv_htcaps & 0xffff; /* * We don't use this in STA mode; only in IBSS mode. * So in IBSS mode we base our HTCAP flags on the * given channel. */ /* override 20/40 use based on current channel */ if (IEEE80211_IS_CHAN_HT40(c)) caps |= IEEE80211_HTCAP_CHWIDTH40; else caps &= ~IEEE80211_HTCAP_CHWIDTH40; /* Use the currently configured values */ rxmax = vap->iv_ampdu_rxmax; density = vap->iv_ampdu_density; /* adjust short GI based on channel and config */ if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20) == 0) caps &= ~IEEE80211_HTCAP_SHORTGI20; if ((vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40) == 0 || (caps & IEEE80211_HTCAP_CHWIDTH40) == 0) caps &= ~IEEE80211_HTCAP_SHORTGI40; ADDSHORT(frm, caps); /* HT parameters */ *frm = _IEEE80211_SHIFTMASK(rxmax, IEEE80211_HTCAP_MAXRXAMPDU) | _IEEE80211_SHIFTMASK(density, IEEE80211_HTCAP_MPDUDENSITY) ; frm++; /* pre-zero remainder of ie */ memset(frm, 0, sizeof(struct ieee80211_ie_htcap) - __offsetof(struct ieee80211_ie_htcap, hc_mcsset)); /* supported MCS set */ /* * XXX: For sta mode the rate set should be restricted based * on the AP's capabilities, but ni_htrates isn't setup when * we're called to form an AssocReq frame so for now we're * restricted to the device capabilities. */ ieee80211_set_mcsset(ic, frm); frm += __offsetof(struct ieee80211_ie_htcap, hc_extcap) - __offsetof(struct ieee80211_ie_htcap, hc_mcsset); /* HT extended capabilities */ extcaps = vap->iv_htextcaps & 0xffff; ADDSHORT(frm, extcaps); frm += sizeof(struct ieee80211_ie_htcap) - __offsetof(struct ieee80211_ie_htcap, hc_txbf); return frm; #undef ADDSHORT } /* * Add 802.11n HT capabilities information element */ uint8_t * ieee80211_add_htcap_ch(uint8_t *frm, struct ieee80211vap *vap, struct ieee80211_channel *c) { frm[0] = IEEE80211_ELEMID_HTCAP; frm[1] = sizeof(struct ieee80211_ie_htcap) - 2; return ieee80211_add_htcap_body_ch(frm + 2, vap, c); } /* * Add Broadcom OUI wrapped standard HTCAP ie; this is * used for compatibility w/ pre-draft implementations. */ uint8_t * ieee80211_add_htcap_vendor(uint8_t *frm, struct ieee80211_node *ni) { frm[0] = IEEE80211_ELEMID_VENDOR; frm[1] = 4 + sizeof(struct ieee80211_ie_htcap) - 2; frm[2] = (BCM_OUI >> 0) & 0xff; frm[3] = (BCM_OUI >> 8) & 0xff; frm[4] = (BCM_OUI >> 16) & 0xff; frm[5] = BCM_OUI_HTCAP; return ieee80211_add_htcap_body(frm + 6, ni); } /* * Construct the MCS bit mask of basic rates * for inclusion in an HT information element. */ static void ieee80211_set_basic_htrates(uint8_t *frm, const struct ieee80211_htrateset *rs) { int i; for (i = 0; i < rs->rs_nrates; i++) { int r = rs->rs_rates[i] & IEEE80211_RATE_VAL; if ((rs->rs_rates[i] & IEEE80211_RATE_BASIC) && r < IEEE80211_HTRATE_MAXSIZE) { /* NB: this assumes a particular implementation */ setbit(frm, r); } } } /* * Update the HTINFO ie for a beacon frame. */ void ieee80211_ht_update_beacon(struct ieee80211vap *vap, struct ieee80211_beacon_offsets *bo) { #define PROTMODE (IEEE80211_HTINFO_OPMODE|IEEE80211_HTINFO_NONHT_PRESENT) struct ieee80211_node *ni; const struct ieee80211_channel *bsschan; struct ieee80211com *ic = vap->iv_ic; struct ieee80211_ie_htinfo *ht = (struct ieee80211_ie_htinfo *) bo->bo_htinfo; ni = ieee80211_ref_node(vap->iv_bss); bsschan = ni->ni_chan; /* XXX only update on channel change */ ht->hi_ctrlchannel = ieee80211_chan2ieee(ic, bsschan); if (vap->iv_flags_ht & IEEE80211_FHT_RIFS) ht->hi_byte1 = IEEE80211_HTINFO_RIFSMODE_PERM; else ht->hi_byte1 = IEEE80211_HTINFO_RIFSMODE_PROH; if (IEEE80211_IS_CHAN_HT40U(bsschan)) ht->hi_byte1 |= IEEE80211_HTINFO_2NDCHAN_ABOVE; else if (IEEE80211_IS_CHAN_HT40D(bsschan)) ht->hi_byte1 |= IEEE80211_HTINFO_2NDCHAN_BELOW; else ht->hi_byte1 |= IEEE80211_HTINFO_2NDCHAN_NONE; if (IEEE80211_IS_CHAN_HT40(bsschan)) ht->hi_byte1 |= IEEE80211_HTINFO_TXWIDTH_2040; /* protection mode */ /* * XXX TODO: this uses the global flag, not the per-VAP flag. * Eventually (once the protection modes are done per-channel * rather than per-VAP) we can flip this over to be per-VAP but * using the channel protection mode. */ ht->hi_byte2 = (ht->hi_byte2 &~ PROTMODE) | ic->ic_curhtprotmode; ieee80211_free_node(ni); /* XXX propagate to vendor ie's */ #undef PROTMODE } /* * Add body of an HTINFO information element. * * NB: We don't use struct ieee80211_ie_htinfo because we can * be called to fillin both a standard ie and a compat ie that * has a vendor OUI at the front. */ static uint8_t * ieee80211_add_htinfo_body(uint8_t *frm, struct ieee80211_node *ni) { struct ieee80211vap *vap = ni->ni_vap; struct ieee80211com *ic = ni->ni_ic; /* pre-zero remainder of ie */ memset(frm, 0, sizeof(struct ieee80211_ie_htinfo) - 2); /* primary/control channel center */ *frm++ = ieee80211_chan2ieee(ic, ni->ni_chan); if (vap->iv_flags_ht & IEEE80211_FHT_RIFS) frm[0] = IEEE80211_HTINFO_RIFSMODE_PERM; else frm[0] = IEEE80211_HTINFO_RIFSMODE_PROH; if (IEEE80211_IS_CHAN_HT40U(ni->ni_chan)) frm[0] |= IEEE80211_HTINFO_2NDCHAN_ABOVE; else if (IEEE80211_IS_CHAN_HT40D(ni->ni_chan)) frm[0] |= IEEE80211_HTINFO_2NDCHAN_BELOW; else frm[0] |= IEEE80211_HTINFO_2NDCHAN_NONE; if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) frm[0] |= IEEE80211_HTINFO_TXWIDTH_2040; /* * Add current protection mode. Unlike for beacons, * this will respect the per-VAP flags. */ frm[1] = vap->iv_curhtprotmode; frm += 5; /* basic MCS set */ ieee80211_set_basic_htrates(frm, &ni->ni_htrates); frm += sizeof(struct ieee80211_ie_htinfo) - __offsetof(struct ieee80211_ie_htinfo, hi_basicmcsset); return frm; } /* * Add 802.11n HT information element. */ uint8_t * ieee80211_add_htinfo(uint8_t *frm, struct ieee80211_node *ni) { frm[0] = IEEE80211_ELEMID_HTINFO; frm[1] = sizeof(struct ieee80211_ie_htinfo) - 2; return ieee80211_add_htinfo_body(frm + 2, ni); } /* * Add Broadcom OUI wrapped standard HTINFO ie; this is * used for compatibility w/ pre-draft implementations. */ uint8_t * ieee80211_add_htinfo_vendor(uint8_t *frm, struct ieee80211_node *ni) { frm[0] = IEEE80211_ELEMID_VENDOR; frm[1] = 4 + sizeof(struct ieee80211_ie_htinfo) - 2; frm[2] = (BCM_OUI >> 0) & 0xff; frm[3] = (BCM_OUI >> 8) & 0xff; frm[4] = (BCM_OUI >> 16) & 0xff; frm[5] = BCM_OUI_HTINFO; return ieee80211_add_htinfo_body(frm + 6, ni); } /* * Get the HT density for the given 802.11n node. * * Take into account the density advertised from the peer. * Larger values are longer A-MPDU density spacing values, and * we want to obey them per station if we get them. */ int ieee80211_ht_get_node_ampdu_density(const struct ieee80211_node *ni) { struct ieee80211vap *vap; int peer_mpdudensity; vap = ni->ni_vap; peer_mpdudensity = _IEEE80211_MASKSHIFT(ni->ni_htparam, IEEE80211_HTCAP_MPDUDENSITY); if (vap->iv_ampdu_density > peer_mpdudensity) peer_mpdudensity = vap->iv_ampdu_density; return (peer_mpdudensity); } /* * Get the transmit A-MPDU limit for the given 802.11n node. * * Take into account the limit advertised from the peer. * Smaller values indicate smaller maximum A-MPDU sizes, and * should be used when forming an A-MPDU to the given peer. */ int ieee80211_ht_get_node_ampdu_limit(const struct ieee80211_node *ni) { struct ieee80211vap *vap; int peer_mpdulimit; vap = ni->ni_vap; peer_mpdulimit = _IEEE80211_MASKSHIFT(ni->ni_htparam, IEEE80211_HTCAP_MAXRXAMPDU); return (MIN(vap->iv_ampdu_limit, peer_mpdulimit)); } /* * Return true if short-GI is available when transmitting to * the given node at 20MHz. * * Ensure it's configured and available in the VAP / driver as * well as the node. */ bool ieee80211_ht_check_tx_shortgi_20(const struct ieee80211_node *ni) { const struct ieee80211vap *vap; const struct ieee80211com *ic; if (! ieee80211_ht_check_tx_ht(ni)) return (false); vap = ni->ni_vap; ic = ni->ni_ic; return ((ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI20) && (ni->ni_htcap & IEEE80211_HTCAP_SHORTGI20) && (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20)); } /* * Return true if short-GI is available when transmitting to * the given node at 40MHz. * * Ensure it's configured and available in the VAP / driver as * well as the node and BSS. */ bool ieee80211_ht_check_tx_shortgi_40(const struct ieee80211_node *ni) { const struct ieee80211vap *vap; const struct ieee80211com *ic; if (! ieee80211_ht_check_tx_ht40(ni)) return (false); vap = ni->ni_vap; ic = ni->ni_ic; return ((ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI40) && (ni->ni_htcap & IEEE80211_HTCAP_SHORTGI40) && (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40)); } /* * Return true if HT rates can be used for the given node. * * There are some situations seen in the wild, wild past where * HT APs would announce HT but no HT rates. */ bool ieee80211_ht_check_tx_ht(const struct ieee80211_node *ni) { const struct ieee80211vap *vap; const struct ieee80211_channel *bss_chan; if (ni == NULL || ni->ni_chan == IEEE80211_CHAN_ANYC || ni->ni_vap == NULL || ni->ni_vap->iv_bss == NULL) return (false); vap = ni->ni_vap; bss_chan = vap->iv_bss->ni_chan; if (bss_chan == IEEE80211_CHAN_ANYC) return (false); if (IEEE80211_IS_CHAN_HT(ni->ni_chan) && ni->ni_htrates.rs_nrates == 0) return (false); return (IEEE80211_IS_CHAN_HT(ni->ni_chan)); } /* * Return true if HT40 rates can be transmitted to the given node. * * This verifies that the BSS is HT40 capable and the current * node channel width is 40MHz. */ bool ieee80211_ht_check_tx_ht40(const struct ieee80211_node *ni) { struct ieee80211vap *vap; struct ieee80211_channel *bss_chan; if (! ieee80211_ht_check_tx_ht(ni)) return (false); vap = ni->ni_vap; bss_chan = vap->iv_bss->ni_chan; return (IEEE80211_IS_CHAN_HT40(bss_chan) && IEEE80211_IS_CHAN_HT40(ni->ni_chan) && (ni->ni_chw == IEEE80211_STA_RX_BW_40)); } diff --git a/sys/net80211/ieee80211_node.c b/sys/net80211/ieee80211_node.c index d2a4558970f9..17ddc8533e41 100644 --- a/sys/net80211/ieee80211_node.c +++ b/sys/net80211/ieee80211_node.c @@ -1,3139 +1,3139 @@ /*- * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 2001 Atsushi Onoe * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include "opt_wlan.h" #include #include #include #include #include #include #include #include #include #include #include #include #ifdef IEEE80211_SUPPORT_SUPERG #include #endif #ifdef IEEE80211_SUPPORT_TDMA #include #endif #include #include #include #include #include #ifdef IEEE80211_DEBUG_REFCNT #define __debrefcnt_used #else #define __debrefcnt_used __unused #endif /* * IEEE80211_NODE_HASHSIZE must be a power of 2. */ CTASSERT((IEEE80211_NODE_HASHSIZE & (IEEE80211_NODE_HASHSIZE-1)) == 0); /* * Association id's are managed with a bit vector. */ #define IEEE80211_AID_SET(_vap, b) \ ((_vap)->iv_aid_bitmap[IEEE80211_AID(b) / 32] |= \ (1 << (IEEE80211_AID(b) % 32))) #define IEEE80211_AID_CLR(_vap, b) \ ((_vap)->iv_aid_bitmap[IEEE80211_AID(b) / 32] &= \ ~(1 << (IEEE80211_AID(b) % 32))) #define IEEE80211_AID_ISSET(_vap, b) \ ((_vap)->iv_aid_bitmap[IEEE80211_AID(b) / 32] & (1 << (IEEE80211_AID(b) % 32))) static int ieee80211_sta_join1(struct ieee80211_node *); static struct ieee80211_node *ieee80211_alloc_node( struct ieee80211_node_table *, struct ieee80211vap *, const uint8_t macaddr[IEEE80211_ADDR_LEN], const char *, int); static struct ieee80211_node *node_alloc(struct ieee80211vap *, const uint8_t [IEEE80211_ADDR_LEN]); static int node_init(struct ieee80211_node *); static void node_cleanup(struct ieee80211_node *); static void node_free(struct ieee80211_node *); static void node_age(struct ieee80211_node *); static int8_t node_getrssi(const struct ieee80211_node *); static void node_getsignal(const struct ieee80211_node *, int8_t *, int8_t *); static void node_getmimoinfo(const struct ieee80211_node *, struct ieee80211_mimo_info *); static void __ieee80211_free_node(struct ieee80211_node *); static void node_reclaim(struct ieee80211_node_table *nt, struct ieee80211_node *ni); static void ieee80211_node_table_init(struct ieee80211com *ic, struct ieee80211_node_table *nt, const char *name, int inact, int keymaxix); static void ieee80211_node_table_reset(struct ieee80211_node_table *, struct ieee80211vap *); static void ieee80211_node_table_cleanup(struct ieee80211_node_table *nt); static void ieee80211_vap_erp_timeout(struct ieee80211vap *); MALLOC_DEFINE(M_80211_NODE, "80211node", "802.11 node state"); MALLOC_DEFINE(M_80211_NODE_IE, "80211nodeie", "802.11 node ie"); void ieee80211_node_attach(struct ieee80211com *ic) { /* XXX really want maxlen enforced per-sta */ ieee80211_ageq_init(&ic->ic_stageq, ic->ic_max_keyix * 8, "802.11 staging q"); ieee80211_node_table_init(ic, &ic->ic_sta, "station", IEEE80211_INACT_INIT, ic->ic_max_keyix); callout_init(&ic->ic_inact, 1); callout_reset(&ic->ic_inact, IEEE80211_INACT_WAIT*hz, ieee80211_node_timeout, ic); ic->ic_node_alloc = node_alloc; ic->ic_node_init = node_init; ic->ic_node_free = node_free; ic->ic_node_cleanup = node_cleanup; ic->ic_node_age = node_age; ic->ic_node_drain = node_age; /* NB: same as age */ ic->ic_node_getrssi = node_getrssi; ic->ic_node_getsignal = node_getsignal; ic->ic_node_getmimoinfo = node_getmimoinfo; /* * Set flags to be propagated to all vap's; * these define default behaviour/configuration. */ ic->ic_flags_ext |= IEEE80211_FEXT_INACT; /* inactivity processing */ } void ieee80211_node_detach(struct ieee80211com *ic) { callout_drain(&ic->ic_inact); ieee80211_node_table_cleanup(&ic->ic_sta); ieee80211_ageq_drain(&ic->ic_stageq); ieee80211_ageq_cleanup(&ic->ic_stageq); } void ieee80211_node_vattach(struct ieee80211vap *vap) { /* NB: driver can override */ vap->iv_max_aid = IEEE80211_AID_DEF; /* default station inactivity timer settings */ vap->iv_inact_init = IEEE80211_INACT_INIT; vap->iv_inact_auth = IEEE80211_INACT_AUTH; vap->iv_inact_run = IEEE80211_INACT_RUN; vap->iv_inact_probe = IEEE80211_INACT_PROBE; IEEE80211_DPRINTF(vap, IEEE80211_MSG_INACT, "%s: init %u auth %u run %u probe %u\n", __func__, vap->iv_inact_init, vap->iv_inact_auth, vap->iv_inact_run, vap->iv_inact_probe); } void ieee80211_node_latevattach(struct ieee80211vap *vap) { /* XXX should ieee80211_vap_attach(), our only caller hold the lock? */ IEEE80211_UNLOCK_ASSERT(vap->iv_ic); if (vap->iv_opmode == IEEE80211_M_HOSTAP) { /* XXX should we allow max aid to be zero? */ if (vap->iv_max_aid < IEEE80211_AID_MIN) { vap->iv_max_aid = IEEE80211_AID_MIN; if_printf(vap->iv_ifp, "WARNING: max aid too small, changed to %d\n", vap->iv_max_aid); } vap->iv_aid_bitmap = (uint32_t *) IEEE80211_MALLOC( howmany(vap->iv_max_aid, 32) * sizeof(uint32_t), M_80211_NODE, IEEE80211_M_NOWAIT | IEEE80211_M_ZERO); if (vap->iv_aid_bitmap == NULL) { /* XXX no way to recover */ printf("%s: no memory for AID bitmap, max aid %d!\n", __func__, vap->iv_max_aid); vap->iv_max_aid = 0; } } IEEE80211_LOCK(vap->iv_ic); ieee80211_reset_bss(vap); IEEE80211_UNLOCK(vap->iv_ic); vap->iv_auth = ieee80211_authenticator_get(vap->iv_bss->ni_authmode); } void ieee80211_node_vdetach(struct ieee80211vap *vap) { struct ieee80211com *ic = vap->iv_ic; /* XXX should ieee80211_vap_detach(), our only caller hold the lock? */ IEEE80211_UNLOCK_ASSERT(vap->iv_ic); ieee80211_node_table_reset(&ic->ic_sta, vap); IEEE80211_LOCK(ic); if (vap->iv_bss != NULL) { ieee80211_free_node(vap->iv_bss); vap->iv_update_bss(vap, NULL); } IEEE80211_UNLOCK(ic); if (vap->iv_aid_bitmap != NULL) { IEEE80211_FREE(vap->iv_aid_bitmap, M_80211_NODE); vap->iv_aid_bitmap = NULL; } } /* * Port authorize/unauthorize interfaces for use by an authenticator. */ void ieee80211_node_authorize(struct ieee80211_node *ni) { struct ieee80211vap *vap = ni->ni_vap; ni->ni_flags |= IEEE80211_NODE_AUTH; ni->ni_inact_reload = vap->iv_inact_run; ni->ni_inact = ni->ni_inact_reload; IEEE80211_NOTE(vap, IEEE80211_MSG_INACT, ni, "%s: inact_reload %u", __func__, ni->ni_inact_reload); } void ieee80211_node_unauthorize(struct ieee80211_node *ni) { struct ieee80211vap *vap = ni->ni_vap; ni->ni_flags &= ~IEEE80211_NODE_AUTH; ni->ni_inact_reload = vap->iv_inact_auth; if (ni->ni_inact > ni->ni_inact_reload) ni->ni_inact = ni->ni_inact_reload; IEEE80211_NOTE(vap, IEEE80211_MSG_INACT, ni, "%s: inact_reload %u inact %u", __func__, ni->ni_inact_reload, ni->ni_inact); } /* * Fix tx parameters for a node according to ``association state''. */ void ieee80211_node_setuptxparms(struct ieee80211_node *ni) { struct ieee80211vap *vap = ni->ni_vap; enum ieee80211_phymode mode; if (ni->ni_flags & IEEE80211_NODE_VHT) { if (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan)) mode = IEEE80211_MODE_VHT_5GHZ; else mode = IEEE80211_MODE_VHT_2GHZ; } else if (ni->ni_flags & IEEE80211_NODE_HT) { if (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan)) mode = IEEE80211_MODE_11NA; else mode = IEEE80211_MODE_11NG; } else { /* legacy rate handling */ if (IEEE80211_IS_CHAN_ST(ni->ni_chan)) mode = IEEE80211_MODE_STURBO_A; else if (IEEE80211_IS_CHAN_HALF(ni->ni_chan)) mode = IEEE80211_MODE_HALF; else if (IEEE80211_IS_CHAN_QUARTER(ni->ni_chan)) mode = IEEE80211_MODE_QUARTER; /* NB: 108A should be handled as 11a */ else if (IEEE80211_IS_CHAN_A(ni->ni_chan)) mode = IEEE80211_MODE_11A; else if (IEEE80211_IS_CHAN_108G(ni->ni_chan) || (ni->ni_flags & IEEE80211_NODE_ERP)) mode = IEEE80211_MODE_11G; else mode = IEEE80211_MODE_11B; } ni->ni_txparms = &vap->iv_txparms[mode]; } /* * Set/change the channel. The rate set is also updated as * to insure a consistent view by drivers. * XXX should be private but hostap needs it to deal with CSA */ void ieee80211_node_set_chan(struct ieee80211_node *ni, struct ieee80211_channel *chan) { struct ieee80211com *ic = ni->ni_ic; struct ieee80211vap *vap = ni->ni_vap; enum ieee80211_phymode mode; KASSERT(chan != IEEE80211_CHAN_ANYC, ("no channel")); ni->ni_chan = chan; mode = ieee80211_chan2mode(chan); if (IEEE80211_IS_CHAN_HT(chan)) { /* * We must install the legacy rate est in ni_rates and the * HT rate set in ni_htrates. */ ni->ni_htrates = *ieee80211_get_suphtrates(ic, chan); /* * Setup bss tx parameters based on operating mode. We * use legacy rates when operating in a mixed HT+non-HT bss * and non-ERP rates in 11g for mixed ERP+non-ERP bss. */ if (mode == IEEE80211_MODE_11NA && (vap->iv_flags_ht & IEEE80211_FHT_PUREN) == 0) mode = IEEE80211_MODE_11A; else if (mode == IEEE80211_MODE_11NG && (vap->iv_flags_ht & IEEE80211_FHT_PUREN) == 0) mode = IEEE80211_MODE_11G; if (mode == IEEE80211_MODE_11G && (vap->iv_flags & IEEE80211_F_PUREG) == 0) mode = IEEE80211_MODE_11B; } ni->ni_txparms = &vap->iv_txparms[mode]; ni->ni_rates = *ieee80211_get_suprates(ic, chan); } static __inline void copy_bss(struct ieee80211_node *nbss, const struct ieee80211_node *obss) { /* propagate useful state */ nbss->ni_authmode = obss->ni_authmode; nbss->ni_txpower = obss->ni_txpower; nbss->ni_vlan = obss->ni_vlan; /* XXX statistics? */ /* XXX legacy WDS bssid? */ } void ieee80211_create_ibss(struct ieee80211vap* vap, struct ieee80211_channel *chan) { struct ieee80211com *ic = vap->iv_ic; struct ieee80211_node *ni; IEEE80211_DPRINTF(vap, IEEE80211_MSG_SCAN, "%s: creating %s on channel %u%c flags 0x%08x\n", __func__, ieee80211_opmode_name[vap->iv_opmode], ieee80211_chan2ieee(ic, chan), ieee80211_channel_type_char(chan), chan->ic_flags); ni = ieee80211_alloc_node(&ic->ic_sta, vap, vap->iv_myaddr, __func__, __LINE__); if (ni == NULL) { /* XXX recovery? */ return; } IEEE80211_ADDR_COPY(ni->ni_bssid, vap->iv_myaddr); ni->ni_esslen = vap->iv_des_ssid[0].len; memcpy(ni->ni_essid, vap->iv_des_ssid[0].ssid, ni->ni_esslen); if (vap->iv_bss != NULL) copy_bss(ni, vap->iv_bss); ni->ni_intval = ic->ic_bintval; if (vap->iv_flags & IEEE80211_F_PRIVACY) ni->ni_capinfo |= IEEE80211_CAPINFO_PRIVACY; if (ic->ic_phytype == IEEE80211_T_FH) { ni->ni_fhdwell = 200; /* XXX */ ni->ni_fhindex = 1; } if (vap->iv_opmode == IEEE80211_M_IBSS) { ni->ni_capinfo |= IEEE80211_CAPINFO_IBSS; /* XXX */ if (vap->iv_flags & IEEE80211_F_DESBSSID) IEEE80211_ADDR_COPY(ni->ni_bssid, vap->iv_des_bssid); else { net80211_get_random_bytes(ni->ni_bssid, IEEE80211_ADDR_LEN); /* clear group bit, add local bit */ ni->ni_bssid[0] = (ni->ni_bssid[0] &~ 0x01) | 0x02; } } else if (vap->iv_opmode == IEEE80211_M_AHDEMO) { if (vap->iv_flags & IEEE80211_F_DESBSSID) IEEE80211_ADDR_COPY(ni->ni_bssid, vap->iv_des_bssid); else #ifdef IEEE80211_SUPPORT_TDMA if ((vap->iv_caps & IEEE80211_C_TDMA) == 0) #endif memset(ni->ni_bssid, 0, IEEE80211_ADDR_LEN); #ifdef IEEE80211_SUPPORT_MESH } else if (vap->iv_opmode == IEEE80211_M_MBSS) { ni->ni_meshidlen = vap->iv_mesh->ms_idlen; memcpy(ni->ni_meshid, vap->iv_mesh->ms_id, ni->ni_meshidlen); #endif } /* * Fix the channel and related attributes. */ /* clear DFS CAC state on previous channel */ if (ic->ic_bsschan != IEEE80211_CHAN_ANYC && ic->ic_bsschan->ic_freq != chan->ic_freq && IEEE80211_IS_CHAN_CACDONE(ic->ic_bsschan)) ieee80211_dfs_cac_clear(ic, ic->ic_bsschan); ic->ic_bsschan = chan; ieee80211_node_set_chan(ni, chan); ic->ic_curmode = ieee80211_chan2mode(chan); /* * Do mode-specific setup. */ if (IEEE80211_IS_CHAN_FULL(chan)) { if (IEEE80211_IS_CHAN_ANYG(chan)) { /* * Use a mixed 11b/11g basic rate set. */ ieee80211_setbasicrates(&ni->ni_rates, IEEE80211_MODE_11G); if (vap->iv_flags & IEEE80211_F_PUREG) { /* * Also mark OFDM rates basic so 11b * stations do not join (WiFi compliance). */ ieee80211_addbasicrates(&ni->ni_rates, IEEE80211_MODE_11A); } } else if (IEEE80211_IS_CHAN_B(chan)) { /* * Force pure 11b rate set. */ ieee80211_setbasicrates(&ni->ni_rates, IEEE80211_MODE_11B); } } /* XXX TODO: other bits and pieces - eg fast-frames? */ /* If we're an 11n channel then initialise the 11n bits */ if (IEEE80211_IS_CHAN_VHT(ni->ni_chan)) { /* XXX what else? */ ieee80211_ht_node_init(ni); ieee80211_vht_node_init(ni); } else if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) { /* XXX what else? */ ieee80211_ht_node_init(ni); } (void) ieee80211_sta_join1(ieee80211_ref_node(ni)); } /* * Reset bss state on transition to the INIT state. * Clear any stations from the table (they have been * deauth'd) and reset the bss node (clears key, rate * etc. state). */ void ieee80211_reset_bss(struct ieee80211vap *vap) { struct ieee80211com *ic = vap->iv_ic; struct ieee80211_node *ni, *obss; IEEE80211_LOCK_ASSERT(ic); ieee80211_node_table_reset(&ic->ic_sta, vap); /* XXX multi-bss: wrong */ ieee80211_vap_reset_erp(vap); ni = ieee80211_alloc_node(&ic->ic_sta, vap, vap->iv_myaddr, __func__, __LINE__); KASSERT(ni != NULL, ("unable to setup initial BSS node")); obss = vap->iv_update_bss(vap, ieee80211_ref_node(ni)); if (obss != NULL) { copy_bss(ni, obss); ni->ni_intval = ic->ic_bintval; ieee80211_free_node(obss); } else IEEE80211_ADDR_COPY(ni->ni_bssid, vap->iv_myaddr); } static int match_ssid(const struct ieee80211_node *ni, int nssid, const struct ieee80211_scan_ssid ssids[]) { int i; for (i = 0; i < nssid; i++) { if (ni->ni_esslen == ssids[i].len && memcmp(ni->ni_essid, ssids[i].ssid, ni->ni_esslen) == 0) return 1; } return 0; } /* * Test a node for suitability/compatibility. */ static int check_bss(struct ieee80211vap *vap, struct ieee80211_node *ni) { struct ieee80211com *ic = ni->ni_ic; uint8_t rate; if (isclr(ic->ic_chan_active, ieee80211_chan2ieee(ic, ni->ni_chan))) return 0; if (vap->iv_opmode == IEEE80211_M_IBSS) { if ((ni->ni_capinfo & IEEE80211_CAPINFO_IBSS) == 0) return 0; } else { if ((ni->ni_capinfo & IEEE80211_CAPINFO_ESS) == 0) return 0; } if (vap->iv_flags & IEEE80211_F_PRIVACY) { if ((ni->ni_capinfo & IEEE80211_CAPINFO_PRIVACY) == 0) return 0; } else { /* XXX does this mean privacy is supported or required? */ if (ni->ni_capinfo & IEEE80211_CAPINFO_PRIVACY) return 0; } rate = ieee80211_fix_rate(ni, &ni->ni_rates, IEEE80211_F_JOIN | IEEE80211_F_DONEGO | IEEE80211_F_DOFRATE); if (rate & IEEE80211_RATE_BASIC) return 0; if (vap->iv_des_nssid != 0 && !match_ssid(ni, vap->iv_des_nssid, vap->iv_des_ssid)) return 0; if ((vap->iv_flags & IEEE80211_F_DESBSSID) && !IEEE80211_ADDR_EQ(vap->iv_des_bssid, ni->ni_bssid)) return 0; return 1; } #ifdef IEEE80211_DEBUG /* * Display node suitability/compatibility. */ static void check_bss_debug(struct ieee80211vap *vap, struct ieee80211_node *ni) { struct ieee80211com *ic = ni->ni_ic; uint8_t rate; int fail; fail = 0; if (isclr(ic->ic_chan_active, ieee80211_chan2ieee(ic, ni->ni_chan))) fail |= 0x01; if (vap->iv_opmode == IEEE80211_M_IBSS) { if ((ni->ni_capinfo & IEEE80211_CAPINFO_IBSS) == 0) fail |= 0x02; } else { if ((ni->ni_capinfo & IEEE80211_CAPINFO_ESS) == 0) fail |= 0x02; } if (vap->iv_flags & IEEE80211_F_PRIVACY) { if ((ni->ni_capinfo & IEEE80211_CAPINFO_PRIVACY) == 0) fail |= 0x04; } else { /* XXX does this mean privacy is supported or required? */ if (ni->ni_capinfo & IEEE80211_CAPINFO_PRIVACY) fail |= 0x04; } rate = ieee80211_fix_rate(ni, &ni->ni_rates, IEEE80211_F_JOIN | IEEE80211_F_DONEGO | IEEE80211_F_DOFRATE); if (rate & IEEE80211_RATE_BASIC) fail |= 0x08; if (vap->iv_des_nssid != 0 && !match_ssid(ni, vap->iv_des_nssid, vap->iv_des_ssid)) fail |= 0x10; if ((vap->iv_flags & IEEE80211_F_DESBSSID) && !IEEE80211_ADDR_EQ(vap->iv_des_bssid, ni->ni_bssid)) fail |= 0x20; printf(" %c %s", fail ? '-' : '+', ether_sprintf(ni->ni_macaddr)); printf(" %s%c", ether_sprintf(ni->ni_bssid), fail & 0x20 ? '!' : ' '); printf(" %3d%c", ieee80211_chan2ieee(ic, ni->ni_chan), fail & 0x01 ? '!' : ' '); printf(" %2dM%c", (rate & IEEE80211_RATE_VAL) / 2, fail & 0x08 ? '!' : ' '); printf(" %4s%c", (ni->ni_capinfo & IEEE80211_CAPINFO_ESS) ? "ess" : (ni->ni_capinfo & IEEE80211_CAPINFO_IBSS) ? "ibss" : "????", fail & 0x02 ? '!' : ' '); printf(" %3s%c ", (ni->ni_capinfo & IEEE80211_CAPINFO_PRIVACY) ? "wep" : "no", fail & 0x04 ? '!' : ' '); ieee80211_print_essid(ni->ni_essid, ni->ni_esslen); printf("%s\n", fail & 0x10 ? "!" : ""); } #endif /* IEEE80211_DEBUG */ int ieee80211_ibss_merge_check(struct ieee80211_node *ni) { struct ieee80211vap *vap = ni->ni_vap; if (ni == vap->iv_bss || IEEE80211_ADDR_EQ(ni->ni_bssid, vap->iv_bss->ni_bssid)) { /* unchanged, nothing to do */ return 0; } if (!check_bss(vap, ni)) { /* capabilities mismatch */ IEEE80211_DPRINTF(vap, IEEE80211_MSG_ASSOC, "%s: merge failed, capabilities mismatch\n", __func__); #ifdef IEEE80211_DEBUG if (ieee80211_msg_assoc(vap)) check_bss_debug(vap, ni); #endif vap->iv_stats.is_ibss_capmismatch++; return 0; } return 1; } /* * Check if the given node should populate the node table. * * We need to be in "see all beacons for all ssids" mode in order * to do IBSS merges, however this means we will populate nodes for * /all/ IBSS SSIDs, versus just the one we care about. * * So this check ensures the node can actually belong to our IBSS * configuration. For now it simply checks the SSID. */ int ieee80211_ibss_node_check_new(struct ieee80211_node *ni, const struct ieee80211_scanparams *scan) { struct ieee80211vap *vap = ni->ni_vap; int i; /* * If we have no SSID and no scan SSID, return OK. */ if (vap->iv_des_nssid == 0 && scan->ssid == NULL) goto ok; /* * If we have one of (SSID, scan SSID) then return error. */ if (!! (vap->iv_des_nssid == 0) != !! (scan->ssid == NULL)) goto mismatch; /* * Double-check - we need scan SSID. */ if (scan->ssid == NULL) goto mismatch; /* * Check if the scan SSID matches the SSID list for the VAP. */ for (i = 0; i < vap->iv_des_nssid; i++) { /* Sanity length check */ if (vap->iv_des_ssid[i].len != scan->ssid[1]) continue; /* Note: SSID in the scan entry is the IE format */ if (memcmp(vap->iv_des_ssid[i].ssid, scan->ssid + 2, vap->iv_des_ssid[i].len) == 0) goto ok; } mismatch: return (0); ok: return (1); } /* * Handle 802.11 ad hoc network merge. The * convention, set by the Wireless Ethernet Compatibility Alliance * (WECA), is that an 802.11 station will change its BSSID to match * the "oldest" 802.11 ad hoc network, on the same channel, that * has the station's desired SSID. The "oldest" 802.11 network * sends beacons with the greatest TSF timestamp. * * The caller is assumed to validate TSF's before attempting a merge. * * Return !0 if the BSSID changed, 0 otherwise. */ int ieee80211_ibss_merge(struct ieee80211_node *ni) { #ifdef IEEE80211_DEBUG struct ieee80211vap *vap = ni->ni_vap; #endif if (! ieee80211_ibss_merge_check(ni)) return 0; IEEE80211_DPRINTF(vap, IEEE80211_MSG_ASSOC, "%s: new bssid %s: %s preamble, %s slot time%s\n", __func__, ether_sprintf(ni->ni_bssid), vap->iv_flags&IEEE80211_F_SHPREAMBLE ? "short" : "long", vap->iv_flags&IEEE80211_F_SHSLOT ? "short" : "long", vap->iv_flags&IEEE80211_F_USEPROT ? ", protection" : "" ); return ieee80211_sta_join1(ieee80211_ref_node(ni)); } /* * Calculate HT channel promotion flags for all vaps. * This assumes ni_chan have been setup for each vap. */ static int gethtadjustflags(struct ieee80211com *ic) { struct ieee80211vap *vap; int flags; flags = 0; /* XXX locking */ TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { if (vap->iv_state < IEEE80211_S_RUN) continue; switch (vap->iv_opmode) { case IEEE80211_M_WDS: case IEEE80211_M_STA: case IEEE80211_M_AHDEMO: case IEEE80211_M_HOSTAP: case IEEE80211_M_IBSS: case IEEE80211_M_MBSS: flags |= ieee80211_htchanflags(vap->iv_bss->ni_chan); break; default: break; } } return flags; } /* * Calculate VHT channel promotion flags for all vaps. * This assumes ni_chan have been setup for each vap. */ static int getvhtadjustflags(struct ieee80211com *ic) { struct ieee80211vap *vap; int flags; flags = 0; /* XXX locking */ TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { if (vap->iv_state < IEEE80211_S_RUN) continue; switch (vap->iv_opmode) { case IEEE80211_M_WDS: case IEEE80211_M_STA: case IEEE80211_M_AHDEMO: case IEEE80211_M_HOSTAP: case IEEE80211_M_IBSS: case IEEE80211_M_MBSS: flags |= ieee80211_vhtchanflags(vap->iv_bss->ni_chan); break; default: break; } } return flags; } /* * Check if the current channel needs to change based on whether * any vap's are using HT20/HT40. This is used to sync the state * of ic_curchan after a channel width change on a running vap. * * Same applies for VHT. */ void ieee80211_sync_curchan(struct ieee80211com *ic) { struct ieee80211_channel *c; c = ieee80211_ht_adjust_channel(ic, ic->ic_curchan, gethtadjustflags(ic)); c = ieee80211_vht_adjust_channel(ic, c, getvhtadjustflags(ic)); if (c != ic->ic_curchan) { ic->ic_curchan = c; ic->ic_curmode = ieee80211_chan2mode(ic->ic_curchan); ic->ic_rt = ieee80211_get_ratetable(ic->ic_curchan); IEEE80211_UNLOCK(ic); ic->ic_set_channel(ic); ieee80211_radiotap_chan_change(ic); IEEE80211_LOCK(ic); } } /* * Setup the current channel. The request channel may be * promoted if other vap's are operating with HT20/HT40. */ void ieee80211_setupcurchan(struct ieee80211com *ic, struct ieee80211_channel *c) { if (ic->ic_htcaps & IEEE80211_HTC_HT) { int flags = gethtadjustflags(ic); /* * Check for channel promotion required to support the * set of running vap's. This assumes we are called * after ni_chan is setup for each vap. */ /* XXX VHT? */ /* NB: this assumes IEEE80211_FHT_USEHT40 > IEEE80211_FHT_HT */ if (flags > ieee80211_htchanflags(c)) c = ieee80211_ht_adjust_channel(ic, c, flags); } /* * VHT promotion - this will at least promote to VHT20/40 * based on what HT has done; it may further promote the * channel to VHT80 or above. */ if (ic->ic_vht_cap.vht_cap_info != 0) { int flags = getvhtadjustflags(ic); if (flags > ieee80211_vhtchanflags(c)) c = ieee80211_vht_adjust_channel(ic, c, flags); } ic->ic_bsschan = ic->ic_curchan = c; ic->ic_curmode = ieee80211_chan2mode(ic->ic_curchan); ic->ic_rt = ieee80211_get_ratetable(ic->ic_curchan); } /* * Change the current channel. The channel change is guaranteed to have * happened before the next state change. */ void ieee80211_setcurchan(struct ieee80211com *ic, struct ieee80211_channel *c) { ieee80211_setupcurchan(ic, c); ieee80211_runtask(ic, &ic->ic_chan_task); } void ieee80211_update_chw(struct ieee80211com *ic) { ieee80211_setupcurchan(ic, ic->ic_curchan); ieee80211_runtask(ic, &ic->ic_chw_task); } /* * Join the specified IBSS/BSS network. The node is assumed to * be passed in with a held reference. */ static int ieee80211_sta_join1(struct ieee80211_node *selbs) { struct ieee80211vap *vap = selbs->ni_vap; struct ieee80211com *ic = selbs->ni_ic; struct ieee80211_node *obss; int canreassoc; /* * Committed to selbs, setup state. */ IEEE80211_LOCK(ic); /* XXX may recurse here, check callers. */ obss = vap->iv_update_bss(vap, selbs); /* NB: caller assumed to bump refcnt */ IEEE80211_UNLOCK(ic); /* * Check if old+new node have the same address in which * case we can reassociate when operating in sta mode. */ /* XXX We'll not be in RUN anymore as iv_state got updated already? */ canreassoc = (obss != NULL && vap->iv_state == IEEE80211_S_RUN && IEEE80211_ADDR_EQ(obss->ni_macaddr, selbs->ni_macaddr)); if (obss != NULL) { struct ieee80211_node_table *nt = obss->ni_table; copy_bss(selbs, obss); if (nt != NULL) { ieee80211_node_decref(obss); /* iv_bss reference */ IEEE80211_NODE_LOCK(nt); node_reclaim(nt, obss); /* station table reference */ IEEE80211_NODE_UNLOCK(nt); } else { ieee80211_free_node(obss); /* iv_bss reference */ } obss = NULL; /* NB: guard against later use */ } /* * Delete unusable rates; we've already checked * that the negotiated rate set is acceptable. */ ieee80211_fix_rate(vap->iv_bss, &vap->iv_bss->ni_rates, IEEE80211_F_DODEL | IEEE80211_F_JOIN); ieee80211_setcurchan(ic, selbs->ni_chan); /* * Set the erp state (mostly the slot time) to deal with * the auto-select case; this should be redundant if the * mode is locked. */ ieee80211_vap_reset_erp(vap); ieee80211_wme_initparams(vap); if (vap->iv_opmode == IEEE80211_M_STA) { if (canreassoc) { /* Reassociate */ ieee80211_new_state(vap, IEEE80211_S_ASSOC, 1); } else { /* * Act as if we received a DEAUTH frame in case we * are invoked from the RUN state. This will cause * us to try to re-authenticate if we are operating * as a station. */ IEEE80211_DPRINTF(vap, IEEE80211_MSG_AUTH, "%s %p<%s> %s -> AUTH, FC0_SUBTYPE_DEAUTH\n", __func__, selbs, ether_sprintf(selbs->ni_macaddr), ieee80211_state_name[vap->iv_state]); ieee80211_new_state(vap, IEEE80211_S_AUTH, IEEE80211_FC0_SUBTYPE_DEAUTH); } } else ieee80211_new_state(vap, IEEE80211_S_RUN, -1); return 1; } int ieee80211_sta_join(struct ieee80211vap *vap, struct ieee80211_channel *chan, const struct ieee80211_scan_entry *se) { struct ieee80211com *ic = vap->iv_ic; struct ieee80211_node *ni; int do_ht = 0; ni = ieee80211_alloc_node(&ic->ic_sta, vap, se->se_macaddr, __func__, __LINE__); if (ni == NULL) { /* XXX msg */ return 0; } /* * Expand scan state into node's format. * XXX may not need all this stuff */ IEEE80211_ADDR_COPY(ni->ni_bssid, se->se_bssid); ni->ni_esslen = se->se_ssid[1]; memcpy(ni->ni_essid, se->se_ssid+2, ni->ni_esslen); ni->ni_tstamp.tsf = se->se_tstamp.tsf; ni->ni_intval = se->se_intval; ni->ni_capinfo = se->se_capinfo; ni->ni_chan = chan; ni->ni_timoff = se->se_timoff; ni->ni_fhdwell = se->se_fhdwell; ni->ni_fhindex = se->se_fhindex; ni->ni_erp = se->se_erp; IEEE80211_RSSI_LPF(ni->ni_avgrssi, se->se_rssi); ni->ni_noise = se->se_noise; if (vap->iv_opmode == IEEE80211_M_STA) { /* NB: only infrastructure mode requires an associd */ ni->ni_flags |= IEEE80211_NODE_ASSOCID; } if (ieee80211_ies_init(&ni->ni_ies, se->se_ies.data, se->se_ies.len)) { ieee80211_ies_expand(&ni->ni_ies); #ifdef IEEE80211_SUPPORT_SUPERG if (ni->ni_ies.ath_ie != NULL) ieee80211_parse_ath(ni, ni->ni_ies.ath_ie); #endif if (ni->ni_ies.htcap_ie != NULL) ieee80211_parse_htcap(ni, ni->ni_ies.htcap_ie); if (ni->ni_ies.htinfo_ie != NULL) ieee80211_parse_htinfo(ni, ni->ni_ies.htinfo_ie); #ifdef IEEE80211_SUPPORT_MESH if (ni->ni_ies.meshid_ie != NULL) ieee80211_parse_meshid(ni, ni->ni_ies.meshid_ie); #endif #ifdef IEEE80211_SUPPORT_TDMA if (ni->ni_ies.tdma_ie != NULL) ieee80211_parse_tdma(ni, ni->ni_ies.tdma_ie); #endif if (ni->ni_ies.vhtcap_ie != NULL) ieee80211_parse_vhtcap(ni, ni->ni_ies.vhtcap_ie); if (ni->ni_ies.vhtopmode_ie != NULL) ieee80211_parse_vhtopmode(ni, ni->ni_ies.vhtopmode_ie); /* XXX parse BSSLOAD IE */ /* XXX parse TXPWRENV IE */ /* XXX parse APCHANREP IE */ } vap->iv_dtim_period = se->se_dtimperiod; vap->iv_dtim_count = 0; /* NB: must be after ni_chan is setup */ ieee80211_setup_rates(ni, se->se_rates, se->se_xrates, IEEE80211_F_DOSORT); if (ieee80211_iserp_rateset(&ni->ni_rates)) ni->ni_flags |= IEEE80211_NODE_ERP; /* * Setup HT state for this node if it's available, otherwise * non-STA modes won't pick this state up. * * For IBSS and related modes that don't go through an * association request/response, the only appropriate place * to setup the HT state is here. */ if (ni->ni_ies.htinfo_ie != NULL && ni->ni_ies.htcap_ie != NULL && vap->iv_flags_ht & IEEE80211_FHT_HT) { ieee80211_ht_node_init(ni); ieee80211_ht_updateparams(ni, ni->ni_ies.htcap_ie, ni->ni_ies.htinfo_ie); do_ht = 1; } /* * Setup VHT state for this node if it's available. * Same as the above. * * For now, don't allow 2GHz VHT operation. */ if (ni->ni_ies.vhtopmode_ie != NULL && ni->ni_ies.vhtcap_ie != NULL && vap->iv_vht_flags & IEEE80211_FVHT_VHT) { if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) { printf("%s: BSS %6D: 2GHz channel, VHT info; ignoring\n", __func__, ni->ni_macaddr, ":"); } else { ieee80211_vht_node_init(ni); ieee80211_vht_updateparams(ni, ni->ni_ies.vhtcap_ie, ni->ni_ies.vhtopmode_ie); ieee80211_setup_vht_rates(ni, ni->ni_ies.vhtcap_ie, ni->ni_ies.vhtopmode_ie); do_ht = 1; } } /* Finally do the node channel change */ if (do_ht) { ieee80211_ht_updateparams_final(ni, ni->ni_ies.htcap_ie, ni->ni_ies.htinfo_ie); ieee80211_setup_htrates(ni, ni->ni_ies.htcap_ie, IEEE80211_F_JOIN | IEEE80211_F_DOBRS); ieee80211_setup_basic_htrates(ni, ni->ni_ies.htinfo_ie); } /* XXX else check for ath FF? */ /* XXX QoS? Difficult given that WME config is specific to a master */ ieee80211_node_setuptxparms(ni); ieee80211_ratectl_node_init(ni); return ieee80211_sta_join1(ieee80211_ref_node(ni)); } /* * Leave the specified IBSS/BSS network. The node is assumed to * be passed in with a held reference. */ void ieee80211_sta_leave(struct ieee80211_node *ni) { struct ieee80211com *ic = ni->ni_ic; ic->ic_node_cleanup(ni); ieee80211_notify_node_leave(ni); } /* * Send a deauthenticate frame and drop the station. */ void ieee80211_node_deauth(struct ieee80211_node *ni, int reason) { /* NB: bump the refcnt to be sure temporary nodes are not reclaimed */ ieee80211_ref_node(ni); if (ni->ni_associd != 0) IEEE80211_SEND_MGMT(ni, IEEE80211_FC0_SUBTYPE_DEAUTH, reason); ieee80211_node_leave(ni); ieee80211_free_node(ni); } static struct ieee80211_node * node_alloc(struct ieee80211vap *vap, const uint8_t macaddr[IEEE80211_ADDR_LEN]) { struct ieee80211_node *ni; ni = (struct ieee80211_node *) IEEE80211_MALLOC(sizeof(struct ieee80211_node), M_80211_NODE, IEEE80211_M_NOWAIT | IEEE80211_M_ZERO); return ni; } static int node_init(struct ieee80211_node *ni) { return 0; } /* * Initialize an ie blob with the specified data. If previous * data exists re-use the data block. As a side effect we clear * all references to specific ie's; the caller is required to * recalculate them. */ int ieee80211_ies_init(struct ieee80211_ies *ies, const uint8_t *data, int len) { /* NB: assumes data+len are the last fields */ memset(ies, 0, offsetof(struct ieee80211_ies, data)); if (ies->data != NULL && ies->len != len) { /* data size changed */ IEEE80211_FREE(ies->data, M_80211_NODE_IE); ies->data = NULL; } if (ies->data == NULL) { ies->data = (uint8_t *) IEEE80211_MALLOC(len, M_80211_NODE_IE, IEEE80211_M_NOWAIT | IEEE80211_M_ZERO); if (ies->data == NULL) { ies->len = 0; /* NB: pointers have already been zero'd above */ return 0; } } memcpy(ies->data, data, len); ies->len = len; return 1; } /* * Reclaim storage for an ie blob. */ void ieee80211_ies_cleanup(struct ieee80211_ies *ies) { if (ies->data != NULL) IEEE80211_FREE(ies->data, M_80211_NODE_IE); } /* * Expand an ie blob data contents and to fillin individual * ie pointers. The data blob is assumed to be well-formed; * we don't do any validity checking of ie lengths. */ void ieee80211_ies_expand(struct ieee80211_ies *ies) { uint8_t *ie; int ielen; ie = ies->data; ielen = ies->len; while (ielen > 1) { /* Make sure the given IE length fits into the total length. */ if ((2 + ie[1]) > ielen) { printf("%s: malformed IEs! ies %p { data %p len %d }: " "ie %u len 2+%u > total len left %d\n", __func__, ies, ies->data, ies->len, ie[0], ie[1], ielen); return; } switch (ie[0]) { case IEEE80211_ELEMID_VENDOR: if (iswpaoui(ie)) ies->wpa_ie = ie; else if (iswmeoui(ie)) ies->wme_ie = ie; #ifdef IEEE80211_SUPPORT_SUPERG else if (isatherosoui(ie)) ies->ath_ie = ie; #endif #ifdef IEEE80211_SUPPORT_TDMA else if (istdmaoui(ie)) ies->tdma_ie = ie; #endif break; case IEEE80211_ELEMID_RSN: ies->rsn_ie = ie; break; case IEEE80211_ELEMID_HTCAP: ies->htcap_ie = ie; break; case IEEE80211_ELEMID_HTINFO: ies->htinfo_ie = ie; break; #ifdef IEEE80211_SUPPORT_MESH case IEEE80211_ELEMID_MESHID: ies->meshid_ie = ie; break; #endif case IEEE80211_ELEMID_VHT_CAP: ies->vhtcap_ie = ie; break; case IEEE80211_ELEMID_VHT_OPMODE: ies->vhtopmode_ie = ie; break; case IEEE80211_ELEMID_VHT_PWR_ENV: ies->vhtpwrenv_ie = ie; break; case IEEE80211_ELEMID_BSSLOAD: ies->bssload_ie = ie; break; case IEEE80211_ELEMID_APCHANREP: ies->apchanrep_ie = ie; break; } ielen -= 2 + ie[1]; ie += 2 + ie[1]; } } /* * Reclaim any resources in a node and reset any critical * state. Typically nodes are free'd immediately after, * but in some cases the storage may be reused so we need * to insure consistent state (should probably fix that). */ static void node_cleanup(struct ieee80211_node *ni) { struct ieee80211vap *vap = ni->ni_vap; struct ieee80211com *ic = ni->ni_ic; int i; /* NB: preserve ni_table */ if (ni->ni_flags & IEEE80211_NODE_PWR_MGT) { if (vap->iv_opmode != IEEE80211_M_STA) vap->iv_ps_sta--; ni->ni_flags &= ~IEEE80211_NODE_PWR_MGT; IEEE80211_NOTE(vap, IEEE80211_MSG_POWER, ni, "power save mode off, %u sta's in ps mode", vap->iv_ps_sta); } /* * Cleanup any VHT and HT-related state. */ if (ni->ni_flags & IEEE80211_NODE_VHT) ieee80211_vht_node_cleanup(ni); if (ni->ni_flags & IEEE80211_NODE_HT) ieee80211_ht_node_cleanup(ni); #ifdef IEEE80211_SUPPORT_SUPERG /* Always do FF node cleanup; for A-MSDU */ ieee80211_ff_node_cleanup(ni); #endif #ifdef IEEE80211_SUPPORT_MESH /* * Cleanup any mesh-related state. */ if (vap->iv_opmode == IEEE80211_M_MBSS) ieee80211_mesh_node_cleanup(ni); #endif /* * Clear any staging queue entries. */ ieee80211_ageq_drain_node(&ic->ic_stageq, ni); /* * Clear AREF flag that marks the authorization refcnt bump * has happened. This is probably not needed as the node * should always be removed from the table so not found but * do it just in case. * Likewise clear the ASSOCID flag as these flags are intended * to be managed in tandem. */ ni->ni_flags &= ~(IEEE80211_NODE_AREF | IEEE80211_NODE_ASSOCID); /* * Drain power save queue and, if needed, clear TIM. */ if (ieee80211_node_psq_drain(ni) != 0 && vap->iv_set_tim != NULL) vap->iv_set_tim(ni, 0); ni->ni_associd = 0; if (ni->ni_challenge != NULL) { IEEE80211_FREE(ni->ni_challenge, M_80211_NODE); ni->ni_challenge = NULL; } /* * Preserve SSID, WPA, and WME ie's so the bss node is * reusable during a re-auth/re-assoc state transition. * If we remove these data they will not be recreated * because they come from a probe-response or beacon frame * which cannot be expected prior to the association-response. * This should not be an issue when operating in other modes * as stations leaving always go through a full state transition * which will rebuild this state. * * XXX does this leave us open to inheriting old state? */ for (i = 0; i < nitems(ni->ni_rxfrag); i++) if (ni->ni_rxfrag[i] != NULL) { m_freem(ni->ni_rxfrag[i]); ni->ni_rxfrag[i] = NULL; } /* * Must be careful here to remove any key map entry w/o a LOR. */ ieee80211_node_delucastkey(ni); } static void node_free(struct ieee80211_node *ni) { struct ieee80211com *ic = ni->ni_ic; ieee80211_ratectl_node_deinit(ni); ic->ic_node_cleanup(ni); ieee80211_ies_cleanup(&ni->ni_ies); ieee80211_psq_cleanup(&ni->ni_psq); IEEE80211_FREE(ni, M_80211_NODE); } static void node_age(struct ieee80211_node *ni) { struct ieee80211vap *vap = ni->ni_vap; /* * Age frames on the power save queue. */ if (ieee80211_node_psq_age(ni) != 0 && ni->ni_psq.psq_len == 0 && vap->iv_set_tim != NULL) vap->iv_set_tim(ni, 0); /* * Age out HT resources (e.g. frames on the * A-MPDU reorder queues). */ if (ni->ni_associd != 0 && (ni->ni_flags & IEEE80211_NODE_HT)) ieee80211_ht_node_age(ni); } static int8_t node_getrssi(const struct ieee80211_node *ni) { uint32_t avgrssi = ni->ni_avgrssi; int32_t rssi; if (avgrssi == IEEE80211_RSSI_DUMMY_MARKER) return 0; rssi = IEEE80211_RSSI_GET(avgrssi); return rssi < 0 ? 0 : rssi > 127 ? 127 : rssi; } static void node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise) { *rssi = node_getrssi(ni); *noise = ni->ni_noise; } static void node_getmimoinfo(const struct ieee80211_node *ni, struct ieee80211_mimo_info *info) { int i; uint32_t avgrssi; int32_t rssi; bzero(info, sizeof(*info)); for (i = 0; i < MIN(IEEE80211_MAX_CHAINS, ni->ni_mimo_chains); i++) { /* Note: for now, just pri20 channel info */ avgrssi = ni->ni_mimo_rssi_ctl[i]; if (avgrssi == IEEE80211_RSSI_DUMMY_MARKER) { info->ch[i].rssi[0] = 0; } else { rssi = IEEE80211_RSSI_GET(avgrssi); info->ch[i].rssi[0] = rssi < 0 ? 0 : rssi > 127 ? 127 : rssi; } info->ch[i].noise[0] = ni->ni_mimo_noise_ctl[i]; } /* XXX ext radios? */ /* XXX EVM? */ } static void ieee80211_add_node_nt(struct ieee80211_node_table *nt, struct ieee80211_node *ni) { struct ieee80211com *ic = nt->nt_ic; int hash; IEEE80211_NODE_LOCK_ASSERT(nt); hash = IEEE80211_NODE_HASH(ic, ni->ni_macaddr); (void) ic; /* XXX IEEE80211_NODE_HASH */ TAILQ_INSERT_TAIL(&nt->nt_node, ni, ni_list); LIST_INSERT_HEAD(&nt->nt_hash[hash], ni, ni_hash); nt->nt_count++; ni->ni_table = nt; } static void ieee80211_del_node_nt(struct ieee80211_node_table *nt, struct ieee80211_node *ni) { IEEE80211_NODE_LOCK_ASSERT(nt); TAILQ_REMOVE(&nt->nt_node, ni, ni_list); LIST_REMOVE(ni, ni_hash); nt->nt_count--; KASSERT(nt->nt_count >= 0, ("nt_count is negative (%d)!\n", nt->nt_count)); ni->ni_table = NULL; } static struct ieee80211_node * ieee80211_alloc_node(struct ieee80211_node_table *nt, struct ieee80211vap *vap, const uint8_t macaddr[IEEE80211_ADDR_LEN], const char *func __debrefcnt_used, int line __debrefcnt_used) { struct ieee80211com *ic = nt->nt_ic; struct ieee80211_node *ni; ni = ic->ic_node_alloc(vap, macaddr); if (ni == NULL) { vap->iv_stats.is_rx_nodealloc++; return NULL; } IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, "%s %p<%s> in %s table\n", __func__, ni, ether_sprintf(macaddr), nt->nt_name); IEEE80211_ADDR_COPY(ni->ni_macaddr, macaddr); ieee80211_node_initref(ni); /* mark referenced */ #ifdef IEEE80211_DEBUG_REFCNT IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, "%s (%s:%u) %p<%s> refcnt %d\n", __func__, func, line, ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)); #endif ni->ni_chan = IEEE80211_CHAN_ANYC; ni->ni_authmode = IEEE80211_AUTH_OPEN; ni->ni_txpower = ic->ic_txpowlimit; /* max power */ ni->ni_txparms = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)]; ieee80211_crypto_resetkey(vap, &ni->ni_ucastkey, IEEE80211_KEYIX_NONE); ni->ni_avgrssi = IEEE80211_RSSI_DUMMY_MARKER; ni->ni_inact_reload = nt->nt_inact_init; ni->ni_inact = ni->ni_inact_reload; ni->ni_ath_defkeyix = 0x7fff; ieee80211_psq_init(&ni->ni_psq, "unknown"); #ifdef IEEE80211_SUPPORT_MESH if (vap->iv_opmode == IEEE80211_M_MBSS) ieee80211_mesh_node_init(vap, ni); #endif IEEE80211_NODE_LOCK(nt); ieee80211_add_node_nt(nt, ni); ni->ni_vap = vap; ni->ni_ic = ic; IEEE80211_NODE_UNLOCK(nt); /* handle failure; free node state */ if (ic->ic_node_init(ni) != 0) { vap->iv_stats.is_rx_nodealloc++; ieee80211_psq_cleanup(&ni->ni_psq); ieee80211_ratectl_node_deinit(ni); __ieee80211_free_node(ni); return NULL; } IEEE80211_NOTE(vap, IEEE80211_MSG_INACT, ni, "%s: inact_reload %u", __func__, ni->ni_inact_reload); return ni; } /* * Craft a temporary node suitable for sending a management frame * to the specified station. We craft only as much state as we * need to do the work since the node will be immediately reclaimed * once the send completes. */ struct ieee80211_node * ieee80211_tmp_node(struct ieee80211vap *vap, const uint8_t macaddr[IEEE80211_ADDR_LEN]) { struct ieee80211com *ic = vap->iv_ic; struct ieee80211_node *ni; ni = ic->ic_node_alloc(vap, macaddr); if (ni != NULL) { struct ieee80211_node *bss = vap->iv_bss; IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, "%s %p<%s>\n", __func__, ni, ether_sprintf(macaddr)); ni->ni_table = NULL; /* NB: pedantic */ ni->ni_ic = ic; /* NB: needed to set channel */ ni->ni_vap = vap; IEEE80211_ADDR_COPY(ni->ni_macaddr, macaddr); IEEE80211_ADDR_COPY(ni->ni_bssid, bss->ni_bssid); ieee80211_node_initref(ni); /* mark referenced */ #ifdef IEEE80211_DEBUG_REFCNT /* Only one caller so we skip func/line passing into the func. */ IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, "%s (%s:%u) %p<%s> refcnt %d\n", __func__, "", -1, ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)); #endif /* NB: required by ieee80211_fix_rate */ ieee80211_node_set_chan(ni, bss->ni_chan); ieee80211_crypto_resetkey(vap, &ni->ni_ucastkey, IEEE80211_KEYIX_NONE); ni->ni_txpower = bss->ni_txpower; /* XXX optimize away */ ieee80211_psq_init(&ni->ni_psq, "unknown"); ieee80211_ratectl_node_init(ni); /* handle failure; free node state */ if (ic->ic_node_init(ni) != 0) { vap->iv_stats.is_rx_nodealloc++; ieee80211_psq_cleanup(&ni->ni_psq); ieee80211_ratectl_node_deinit(ni); __ieee80211_free_node(ni); return NULL; } } else { /* XXX msg */ vap->iv_stats.is_rx_nodealloc++; } return ni; } struct ieee80211_node * ieee80211_dup_bss(struct ieee80211vap *vap, const uint8_t macaddr[IEEE80211_ADDR_LEN]) { struct ieee80211com *ic = vap->iv_ic; struct ieee80211_node *ni; ni = ieee80211_alloc_node(&ic->ic_sta, vap, macaddr, __func__, __LINE__); if (ni != NULL) { struct ieee80211_node *bss = vap->iv_bss; /* * Inherit from iv_bss. */ copy_bss(ni, bss); IEEE80211_ADDR_COPY(ni->ni_bssid, bss->ni_bssid); ieee80211_node_set_chan(ni, bss->ni_chan); } return ni; } /* * Create a bss node for a legacy WDS vap. The far end does * not associate so we just create create a new node and * simulate an association. The caller is responsible for * installing the node as the bss node and handling any further * setup work like authorizing the port. */ struct ieee80211_node * ieee80211_node_create_wds(struct ieee80211vap *vap, const uint8_t bssid[IEEE80211_ADDR_LEN], struct ieee80211_channel *chan) { struct ieee80211com *ic = vap->iv_ic; struct ieee80211_node *ni; /* XXX check if node already in sta table? */ ni = ieee80211_alloc_node(&ic->ic_sta, vap, bssid, __func__, __LINE__); if (ni != NULL) { ni->ni_wdsvap = vap; IEEE80211_ADDR_COPY(ni->ni_bssid, bssid); /* * Inherit any manually configured settings. */ copy_bss(ni, vap->iv_bss); ieee80211_node_set_chan(ni, chan); /* NB: propagate ssid so available to WPA supplicant */ ni->ni_esslen = vap->iv_des_ssid[0].len; memcpy(ni->ni_essid, vap->iv_des_ssid[0].ssid, ni->ni_esslen); /* NB: no associd for peer */ /* * There are no management frames to use to * discover neighbor capabilities, so blindly * propagate the local configuration. */ if (vap->iv_flags & IEEE80211_F_WME) ni->ni_flags |= IEEE80211_NODE_QOS; #ifdef IEEE80211_SUPPORT_SUPERG if (vap->iv_flags & IEEE80211_F_FF) ni->ni_flags |= IEEE80211_NODE_FF; #endif /* XXX VHT */ if ((ic->ic_htcaps & IEEE80211_HTC_HT) && (vap->iv_flags_ht & IEEE80211_FHT_HT)) { /* * Device is HT-capable and HT is enabled for * the vap; setup HT operation. On return * ni_chan will be adjusted to an HT channel. */ ieee80211_ht_wds_init(ni); if (vap->iv_vht_flags & IEEE80211_FVHT_VHT) { printf("%s: TODO: vht_wds_init\n", __func__); } } else { struct ieee80211_channel *c = ni->ni_chan; /* * Force a legacy channel to be used. */ c = ieee80211_find_channel(ic, c->ic_freq, c->ic_flags &~ IEEE80211_CHAN_HT); KASSERT(c != NULL, ("no legacy channel, %u/%x", ni->ni_chan->ic_freq, ni->ni_chan->ic_flags)); ni->ni_chan = c; } } return ni; } struct ieee80211_node * _ieee80211_find_node_locked(struct ieee80211_node_table *nt, const uint8_t macaddr[IEEE80211_ADDR_LEN], const char *func __debrefcnt_used, int line __debrefcnt_used) { struct ieee80211_node *ni; int hash; IEEE80211_NODE_LOCK_ASSERT(nt); hash = IEEE80211_NODE_HASH(nt->nt_ic, macaddr); LIST_FOREACH(ni, &nt->nt_hash[hash], ni_hash) { if (IEEE80211_ADDR_EQ(ni->ni_macaddr, macaddr)) { ieee80211_ref_node(ni); /* mark referenced */ #ifdef IEEE80211_DEBUG_REFCNT IEEE80211_DPRINTF(ni->ni_vap, IEEE80211_MSG_NODE, "%s (%s:%u) %p<%s> refcnt %d\n", __func__, func, line, ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)); #endif return ni; } } return NULL; } struct ieee80211_node * _ieee80211_find_node(struct ieee80211_node_table *nt, const uint8_t macaddr[IEEE80211_ADDR_LEN], const char *func __debrefcnt_used, int line __debrefcnt_used) { struct ieee80211_node *ni; IEEE80211_NODE_LOCK(nt); ni = _ieee80211_find_node_locked(nt, macaddr, func, line); IEEE80211_NODE_UNLOCK(nt); return ni; } struct ieee80211_node * _ieee80211_find_vap_node_locked(struct ieee80211_node_table *nt, const struct ieee80211vap *vap, const uint8_t macaddr[IEEE80211_ADDR_LEN], const char *func __debrefcnt_used, int line __debrefcnt_used) { struct ieee80211_node *ni; int hash; IEEE80211_NODE_LOCK_ASSERT(nt); hash = IEEE80211_NODE_HASH(nt->nt_ic, macaddr); LIST_FOREACH(ni, &nt->nt_hash[hash], ni_hash) { if (ni->ni_vap == vap && IEEE80211_ADDR_EQ(ni->ni_macaddr, macaddr)) { ieee80211_ref_node(ni); /* mark referenced */ #ifdef IEEE80211_DEBUG_REFCNT IEEE80211_DPRINTF(ni->ni_vap, IEEE80211_MSG_NODE, "%s (%s:%u) %p<%s> refcnt %d\n", __func__, func, line, ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)); #endif return ni; } } return NULL; } struct ieee80211_node * _ieee80211_find_vap_node(struct ieee80211_node_table *nt, const struct ieee80211vap *vap, const uint8_t macaddr[IEEE80211_ADDR_LEN], const char *func __debrefcnt_used, int line __debrefcnt_used) { struct ieee80211_node *ni; IEEE80211_NODE_LOCK(nt); ni = _ieee80211_find_vap_node_locked(nt, vap, macaddr, func, line); IEEE80211_NODE_UNLOCK(nt); return ni; } /* * Fake up a node; this handles node discovery in adhoc mode. * Note that for the driver's benefit we treat this like * an association so the driver has an opportunity to setup * it's private state. */ struct ieee80211_node * ieee80211_fakeup_adhoc_node(struct ieee80211vap *vap, const uint8_t macaddr[IEEE80211_ADDR_LEN]) { struct ieee80211_node *ni; IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE | IEEE80211_MSG_ASSOC, "%s: mac<%s>\n", __func__, ether_sprintf(macaddr)); ni = ieee80211_dup_bss(vap, macaddr); if (ni != NULL) { struct ieee80211com *ic = vap->iv_ic; /* XXX no rate negotiation; just dup */ ni->ni_rates = vap->iv_bss->ni_rates; if (ieee80211_iserp_rateset(&ni->ni_rates)) ni->ni_flags |= IEEE80211_NODE_ERP; if (vap->iv_opmode == IEEE80211_M_AHDEMO) { /* * In adhoc demo mode there are no management * frames to use to discover neighbor capabilities, * so blindly propagate the local configuration * so we can do interesting things (e.g. use * WME to disable ACK's). */ /* * XXX TODO: 11n? */ if (vap->iv_flags & IEEE80211_F_WME) ni->ni_flags |= IEEE80211_NODE_QOS; #ifdef IEEE80211_SUPPORT_SUPERG if (vap->iv_flags & IEEE80211_F_FF) ni->ni_flags |= IEEE80211_NODE_FF; #endif } ieee80211_node_setuptxparms(ni); ieee80211_ratectl_node_init(ni); /* * XXX TODO: 11n? At least 20MHz, at least A-MPDU RX, * not A-MPDU TX; not 11n rates, etc. We'll cycle * that after we hear that we can indeed do 11n * (either by a beacon frame or by a probe response.) */ /* * This is the first time we see the node. */ if (ic->ic_newassoc != NULL) ic->ic_newassoc(ni, 1); /* * Kick off a probe request to the given node; * we will then use the probe response to update * 11n/etc configuration state. * * XXX TODO: this isn't guaranteed, and until we get * a probe response, we won't be able to actually * do anything 802.11n related to the node. * So if this does indeed work, maybe we should hold * off on sending responses until we get the probe * response, or just default to some sensible subset * of 802.11n behaviour (eg always allow aggregation * negotiation TO us, but not FROM us, etc) so we * aren't entirely busted. */ if (vap->iv_opmode == IEEE80211_M_IBSS) { ieee80211_send_probereq(ni, /* node */ vap->iv_myaddr, /* SA */ ni->ni_macaddr, /* DA */ vap->iv_bss->ni_bssid, /* BSSID */ vap->iv_bss->ni_essid, vap->iv_bss->ni_esslen); /* SSID */ } /* XXX not right for 802.1x/WPA */ ieee80211_node_authorize(ni); } return ni; } void ieee80211_init_neighbor(struct ieee80211_node *ni, const struct ieee80211_frame *wh, const struct ieee80211_scanparams *sp) { int do_ht_setup = 0, do_vht_setup = 0; ni->ni_esslen = sp->ssid[1]; memcpy(ni->ni_essid, sp->ssid + 2, sp->ssid[1]); IEEE80211_ADDR_COPY(ni->ni_bssid, wh->i_addr3); memcpy(ni->ni_tstamp.data, sp->tstamp, sizeof(ni->ni_tstamp)); ni->ni_intval = sp->bintval; ni->ni_capinfo = sp->capinfo; ni->ni_chan = ni->ni_ic->ic_curchan; ni->ni_fhdwell = sp->fhdwell; ni->ni_fhindex = sp->fhindex; ni->ni_erp = sp->erp; ni->ni_timoff = sp->timoff; #ifdef IEEE80211_SUPPORT_MESH if (ni->ni_vap->iv_opmode == IEEE80211_M_MBSS) ieee80211_mesh_init_neighbor(ni, wh, sp); #endif if (ieee80211_ies_init(&ni->ni_ies, sp->ies, sp->ies_len)) { ieee80211_ies_expand(&ni->ni_ies); if (ni->ni_ies.wme_ie != NULL) ni->ni_flags |= IEEE80211_NODE_QOS; else ni->ni_flags &= ~IEEE80211_NODE_QOS; #ifdef IEEE80211_SUPPORT_SUPERG if (ni->ni_ies.ath_ie != NULL) ieee80211_parse_ath(ni, ni->ni_ies.ath_ie); #endif if (ni->ni_ies.htcap_ie != NULL) ieee80211_parse_htcap(ni, ni->ni_ies.htcap_ie); if (ni->ni_ies.htinfo_ie != NULL) ieee80211_parse_htinfo(ni, ni->ni_ies.htinfo_ie); if (ni->ni_ies.vhtcap_ie != NULL) ieee80211_parse_vhtcap(ni, ni->ni_ies.vhtcap_ie); if (ni->ni_ies.vhtopmode_ie != NULL) ieee80211_parse_vhtopmode(ni, ni->ni_ies.vhtopmode_ie); if ((ni->ni_ies.htcap_ie != NULL) && (ni->ni_ies.htinfo_ie != NULL) && (ni->ni_vap->iv_flags_ht & IEEE80211_FHT_HT)) { do_ht_setup = 1; } if ((ni->ni_ies.vhtcap_ie != NULL) && (ni->ni_ies.vhtopmode_ie != NULL) && (ni->ni_vap->iv_vht_flags & IEEE80211_FVHT_VHT)) { do_vht_setup = 1; } } /* NB: must be after ni_chan is setup */ ieee80211_setup_rates(ni, sp->rates, sp->xrates, IEEE80211_F_DOSORT | IEEE80211_F_DOFRATE | IEEE80211_F_DONEGO | IEEE80211_F_DODEL); /* * If the neighbor is HT compatible, flip that on. */ if (do_ht_setup) { IEEE80211_DPRINTF(ni->ni_vap, IEEE80211_MSG_ASSOC, "%s: doing HT setup\n", __func__); ieee80211_ht_node_init(ni); ieee80211_ht_updateparams(ni, ni->ni_ies.htcap_ie, ni->ni_ies.htinfo_ie); if (do_vht_setup) { if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) { printf("%s: BSS %6D: 2GHz channel, VHT info; ignoring\n", __func__, ni->ni_macaddr, ":"); } else { ieee80211_vht_node_init(ni); ieee80211_vht_updateparams(ni, ni->ni_ies.vhtcap_ie, ni->ni_ies.vhtopmode_ie); ieee80211_setup_vht_rates(ni, ni->ni_ies.vhtcap_ie, ni->ni_ies.vhtopmode_ie); } } /* * Finally do the channel upgrade/change based * on the HT/VHT configuration. */ ieee80211_ht_updateparams_final(ni, ni->ni_ies.htcap_ie, ni->ni_ies.htinfo_ie); ieee80211_setup_htrates(ni, ni->ni_ies.htcap_ie, IEEE80211_F_JOIN | IEEE80211_F_DOBRS); ieee80211_setup_basic_htrates(ni, ni->ni_ies.htinfo_ie); ieee80211_node_setuptxparms(ni); ieee80211_ratectl_node_init(ni); /* Reassociate; we're now 11n/11ac */ /* * XXX TODO: this is the wrong thing to do - * we're calling it with isnew=1 so the ath(4) * driver reinitialises the rate tables. * This "mostly" works for ath(4), but it won't * be right for firmware devices which allocate * node states. * * So, do we just create a new node and delete * the old one? Or? */ if (ni->ni_ic->ic_newassoc) ni->ni_ic->ic_newassoc(ni, 1); } } /* * Do node discovery in adhoc mode on receipt of a beacon * or probe response frame. Note that for the driver's * benefit we treat this like an association so the * driver has an opportunity to setup it's private state. */ struct ieee80211_node * ieee80211_add_neighbor(struct ieee80211vap *vap, const struct ieee80211_frame *wh, const struct ieee80211_scanparams *sp) { struct ieee80211_node *ni; IEEE80211_DPRINTF(vap, IEEE80211_MSG_ASSOC, "%s: mac<%s>\n", __func__, ether_sprintf(wh->i_addr2)); ni = ieee80211_dup_bss(vap, wh->i_addr2);/* XXX alloc_node? */ if (ni != NULL) { struct ieee80211com *ic = vap->iv_ic; ieee80211_init_neighbor(ni, wh, sp); if (ieee80211_iserp_rateset(&ni->ni_rates)) ni->ni_flags |= IEEE80211_NODE_ERP; ieee80211_node_setuptxparms(ni); ieee80211_ratectl_node_init(ni); if (ic->ic_newassoc != NULL) ic->ic_newassoc(ni, 1); /* XXX not right for 802.1x/WPA */ ieee80211_node_authorize(ni); } return ni; } #define IS_PROBEREQ(wh) \ ((wh->i_fc[0] & (IEEE80211_FC0_TYPE_MASK|IEEE80211_FC0_SUBTYPE_MASK)) \ == (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ)) #define IS_BCAST_PROBEREQ(wh) \ (IS_PROBEREQ(wh) && IEEE80211_IS_MULTICAST( \ ((const struct ieee80211_frame *)(wh))->i_addr3)) static __inline struct ieee80211_node * _find_rxnode(struct ieee80211_node_table *nt, const struct ieee80211_frame_min *wh, const char *func __debrefcnt_used, int line __debrefcnt_used) { if (IS_BCAST_PROBEREQ(wh)) return NULL; /* spam bcast probe req to all vap's */ return _ieee80211_find_node_locked(nt, wh->i_addr2, func, line); } /* * Locate the node for sender, track state, and then pass the * (referenced) node up to the 802.11 layer for its use. Note * we can return NULL if the sender is not in the table. */ struct ieee80211_node * _ieee80211_find_rxnode(struct ieee80211com *ic, const struct ieee80211_frame_min *wh, const char *func __debrefcnt_used, int line __debrefcnt_used) { struct ieee80211_node_table *nt; struct ieee80211_node *ni; nt = &ic->ic_sta; IEEE80211_NODE_LOCK(nt); ni = _find_rxnode(nt, wh, func, line); IEEE80211_NODE_UNLOCK(nt); return ni; } /* * Like ieee80211_find_rxnode but use the supplied h/w * key index as a hint to locate the node in the key * mapping table. If an entry is present at the key * index we return it; otherwise do a normal lookup and * update the mapping table if the station has a unicast * key assigned to it. */ struct ieee80211_node * _ieee80211_find_rxnode_withkey(struct ieee80211com *ic, const struct ieee80211_frame_min *wh, ieee80211_keyix keyix, const char *func __debrefcnt_used, int line __debrefcnt_used) { struct ieee80211_node_table *nt; struct ieee80211_node *ni; nt = &ic->ic_sta; IEEE80211_NODE_LOCK(nt); if (nt->nt_keyixmap != NULL && keyix < nt->nt_keyixmax) ni = nt->nt_keyixmap[keyix]; else ni = NULL; if (ni == NULL) { ni = _find_rxnode(nt, wh, func, line); if (ni != NULL && nt->nt_keyixmap != NULL) { /* * If the station has a unicast key cache slot * assigned update the key->node mapping table. */ keyix = ni->ni_ucastkey.wk_rxkeyix; /* XXX can keyixmap[keyix] != NULL? */ if (keyix < nt->nt_keyixmax && nt->nt_keyixmap[keyix] == NULL) { IEEE80211_DPRINTF(ni->ni_vap, IEEE80211_MSG_NODE, "%s: add key map entry %p<%s> refcnt %d\n", __func__, ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1); nt->nt_keyixmap[keyix] = ieee80211_ref_node(ni); } } } else { if (IS_BCAST_PROBEREQ(wh)) ni = NULL; /* spam bcast probe req to all vap's */ else ieee80211_ref_node(ni); } IEEE80211_NODE_UNLOCK(nt); return ni; } #undef IS_BCAST_PROBEREQ #undef IS_PROBEREQ /* * Return a reference to the appropriate node for sending * a data frame. This handles node discovery in adhoc networks. */ struct ieee80211_node * _ieee80211_find_txnode(struct ieee80211vap *vap, const uint8_t macaddr[IEEE80211_ADDR_LEN], const char *func __debrefcnt_used, int line __debrefcnt_used) { struct ieee80211_node_table *nt = &vap->iv_ic->ic_sta; struct ieee80211_node *ni; /* * The destination address should be in the node table * unless this is a multicast/broadcast frame. We can * also optimize station mode operation, all frames go * to the bss node. */ /* XXX can't hold lock across dup_bss 'cuz of recursive locking */ IEEE80211_NODE_LOCK(nt); if (vap->iv_opmode == IEEE80211_M_STA || vap->iv_opmode == IEEE80211_M_WDS || IEEE80211_IS_MULTICAST(macaddr)) ni = ieee80211_ref_node(vap->iv_bss); else ni = _ieee80211_find_node_locked(nt, macaddr, func, line); IEEE80211_NODE_UNLOCK(nt); if (ni == NULL) { if (vap->iv_opmode == IEEE80211_M_IBSS || vap->iv_opmode == IEEE80211_M_AHDEMO) { /* * In adhoc mode cons up a node for the destination. * Note that we need an additional reference for the * caller to be consistent with * ieee80211_find_node_locked. */ /* * XXX TODO: this doesn't fake up 11n state; we need * to find another way to get it upgraded. */ ni = ieee80211_fakeup_adhoc_node(vap, macaddr); if (ni != NULL) (void) ieee80211_ref_node(ni); } else { IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_OUTPUT, macaddr, "no node, discard frame (%s)", __func__); vap->iv_stats.is_tx_nonode++; } } return ni; } struct ieee80211_node * _ieee80211_ref_node(struct ieee80211_node *ni, const char *func __debrefcnt_used, int line __debrefcnt_used) { #ifdef IEEE80211_DEBUG_REFCNT IEEE80211_DPRINTF(ni->ni_vap, IEEE80211_MSG_NODE, "%s (%s:%u) %p<%s> refcnt %d\n", __func__, func, line, ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1); #endif ieee80211_node_incref(ni); return (ni); } static void __ieee80211_free_node(struct ieee80211_node *ni) { struct ieee80211_node_table *nt = ni->ni_table; /* * NB: careful about referencing the vap as it may be * gone if the last reference was held by a driver. * We know the com will always be present so it's safe * to use ni_ic below to reclaim resources. */ #if 0 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, "%s %p<%s> in %s table\n", __func__, ni, ether_sprintf(ni->ni_macaddr), nt != NULL ? nt->nt_name : ""); #endif if (ni->ni_associd != 0) { struct ieee80211vap *vap = ni->ni_vap; if (vap->iv_aid_bitmap != NULL) IEEE80211_AID_CLR(vap, ni->ni_associd); } if (nt != NULL) ieee80211_del_node_nt(nt, ni); ni->ni_ic->ic_node_free(ni); } /* * Clear any entry in the unicast key mapping table. */ static int node_clear_keyixmap(struct ieee80211_node_table *nt, struct ieee80211_node *ni) { ieee80211_keyix keyix; keyix = ni->ni_ucastkey.wk_rxkeyix; if (nt->nt_keyixmap != NULL && keyix < nt->nt_keyixmax && nt->nt_keyixmap[keyix] == ni) { IEEE80211_DPRINTF(ni->ni_vap, IEEE80211_MSG_NODE, "%s: %p<%s> clear key map entry %u\n", __func__, ni, ether_sprintf(ni->ni_macaddr), keyix); nt->nt_keyixmap[keyix] = NULL; ieee80211_node_decref(ni); return 1; } return 0; } void _ieee80211_free_node(struct ieee80211_node *ni, const char *func __debrefcnt_used, int line __debrefcnt_used) { struct ieee80211_node_table *nt = ni->ni_table; #ifdef IEEE80211_DEBUG_REFCNT IEEE80211_DPRINTF(ni->ni_vap, IEEE80211_MSG_NODE, "%s (%s:%u) %p<%s> refcnt %d\n", __func__, func, line, ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)-1); #endif if (nt != NULL) { IEEE80211_NODE_LOCK(nt); if (ieee80211_node_dectestref(ni)) { /* * Last reference, reclaim state. */ __ieee80211_free_node(ni); } else if (ieee80211_node_refcnt(ni) == 1) if (node_clear_keyixmap(nt, ni)) __ieee80211_free_node(ni); IEEE80211_NODE_UNLOCK(nt); } else { if (ieee80211_node_dectestref(ni)) __ieee80211_free_node(ni); } } /* * Reclaim a unicast key and clear any key cache state. */ int ieee80211_node_delucastkey(struct ieee80211_node *ni) { struct ieee80211com *ic = ni->ni_ic; struct ieee80211_node_table *nt = &ic->ic_sta; struct ieee80211_node *nikey; ieee80211_keyix keyix; int isowned, status; /* * NB: We must beware of LOR here; deleting the key * can cause the crypto layer to block traffic updates * which can generate a LOR against the node table lock; * grab it here and stash the key index for our use below. * * Must also beware of recursion on the node table lock. * When called from node_cleanup we may already have * the node table lock held. Unfortunately there's no * way to separate out this path so we must do this * conditionally. */ isowned = IEEE80211_NODE_IS_LOCKED(nt); if (!isowned) IEEE80211_NODE_LOCK(nt); nikey = NULL; status = 1; /* NB: success */ if (ni->ni_ucastkey.wk_keyix != IEEE80211_KEYIX_NONE) { keyix = ni->ni_ucastkey.wk_rxkeyix; status = ieee80211_crypto_delkey(ni->ni_vap, &ni->ni_ucastkey); if (nt->nt_keyixmap != NULL && keyix < nt->nt_keyixmax) { nikey = nt->nt_keyixmap[keyix]; nt->nt_keyixmap[keyix] = NULL; } } if (!isowned) IEEE80211_NODE_UNLOCK(nt); if (nikey != NULL) { KASSERT(nikey == ni, ("key map out of sync, ni %p nikey %p", ni, nikey)); IEEE80211_DPRINTF(ni->ni_vap, IEEE80211_MSG_NODE, "%s: delete key map entry %p<%s> refcnt %d\n", __func__, ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)-1); ieee80211_free_node(ni); } return status; } /* * Reclaim a node. If this is the last reference count then * do the normal free work. Otherwise remove it from the node * table and mark it gone by clearing the back-reference. */ static void node_reclaim(struct ieee80211_node_table *nt, struct ieee80211_node *ni) { IEEE80211_NODE_LOCK_ASSERT(nt); IEEE80211_DPRINTF(ni->ni_vap, IEEE80211_MSG_NODE, "%s: remove %p<%s> from %s table, refcnt %d\n", __func__, ni, ether_sprintf(ni->ni_macaddr), nt->nt_name, ieee80211_node_refcnt(ni)-1); /* * Clear any entry in the unicast key mapping table. * We need to do it here so rx lookups don't find it * in the mapping table even if it's not in the hash * table. We cannot depend on the mapping table entry * being cleared because the node may not be free'd. */ (void)node_clear_keyixmap(nt, ni); if (!ieee80211_node_dectestref(ni)) { /* * Other references are present, just remove the * node from the table so it cannot be found. When * the references are dropped storage will be * reclaimed. */ ieee80211_del_node_nt(nt, ni); } else __ieee80211_free_node(ni); } /* * Node table support. */ static void ieee80211_node_table_init(struct ieee80211com *ic, struct ieee80211_node_table *nt, const char *name, int inact, int keyixmax) { nt->nt_ic = ic; IEEE80211_NODE_LOCK_INIT(nt, ic->ic_name); TAILQ_INIT(&nt->nt_node); nt->nt_count = 0; nt->nt_name = name; nt->nt_inact_init = inact; nt->nt_keyixmax = keyixmax; if (nt->nt_keyixmax > 0) { nt->nt_keyixmap = (struct ieee80211_node **) IEEE80211_MALLOC( keyixmax * sizeof(struct ieee80211_node *), M_80211_NODE, IEEE80211_M_NOWAIT | IEEE80211_M_ZERO); if (nt->nt_keyixmap == NULL) ic_printf(ic, "Cannot allocate key index map with %u entries\n", keyixmax); } else nt->nt_keyixmap = NULL; } static void ieee80211_node_table_reset(struct ieee80211_node_table *nt, struct ieee80211vap *match) { struct ieee80211_node *ni, *next; IEEE80211_NODE_LOCK(nt); TAILQ_FOREACH_SAFE(ni, &nt->nt_node, ni_list, next) { if (match != NULL && ni->ni_vap != match) continue; /* XXX can this happen? if so need's work */ if (ni->ni_associd != 0) { struct ieee80211vap *vap = ni->ni_vap; if (vap->iv_auth->ia_node_leave != NULL) vap->iv_auth->ia_node_leave(ni); if (vap->iv_aid_bitmap != NULL) IEEE80211_AID_CLR(vap, ni->ni_associd); } ni->ni_wdsvap = NULL; /* clear reference */ node_reclaim(nt, ni); } if (match != NULL && match->iv_opmode == IEEE80211_M_WDS) { /* * Make a separate pass to clear references to this vap * held by DWDS entries. They will not be matched above * because ni_vap will point to the ap vap but we still * need to clear ni_wdsvap when the WDS vap is destroyed * and/or reset. */ TAILQ_FOREACH_SAFE(ni, &nt->nt_node, ni_list, next) if (ni->ni_wdsvap == match) ni->ni_wdsvap = NULL; } IEEE80211_NODE_UNLOCK(nt); } static void ieee80211_node_table_cleanup(struct ieee80211_node_table *nt) { ieee80211_node_table_reset(nt, NULL); if (nt->nt_keyixmap != NULL) { #ifdef DIAGNOSTIC /* XXX verify all entries are NULL */ int i; for (i = 0; i < nt->nt_keyixmax; i++) if (nt->nt_keyixmap[i] != NULL) printf("%s: %s[%u] still active\n", __func__, nt->nt_name, i); #endif IEEE80211_FREE(nt->nt_keyixmap, M_80211_NODE); nt->nt_keyixmap = NULL; } IEEE80211_NODE_LOCK_DESTROY(nt); } static void timeout_stations(void *arg __unused, struct ieee80211_node *ni) { struct ieee80211com *ic = ni->ni_ic; struct ieee80211vap *vap = ni->ni_vap; /* * Only process stations when in RUN state. This * insures, for example, that we don't timeout an * inactive station during CAC. Note that CSA state * is actually handled in ieee80211_node_timeout as * it applies to more than timeout processing. */ if (vap->iv_state != IEEE80211_S_RUN) return; /* * Ignore entries for which have yet to receive an * authentication frame. These are transient and * will be reclaimed when the last reference to them * goes away (when frame xmits complete). */ if ((vap->iv_opmode == IEEE80211_M_HOSTAP || vap->iv_opmode == IEEE80211_M_STA) && (ni->ni_flags & IEEE80211_NODE_AREF) == 0) return; /* * Free fragment if not needed anymore * (last fragment older than 1s). * XXX doesn't belong here, move to node_age */ if (ni->ni_rxfrag[0] != NULL && ticks > ni->ni_rxfragstamp + hz) { m_freem(ni->ni_rxfrag[0]); ni->ni_rxfrag[0] = NULL; } if (ni->ni_inact > 0) { ni->ni_inact--; IEEE80211_NOTE(vap, IEEE80211_MSG_INACT, ni, "%s: inact %u inact_reload %u nrates %u", __func__, ni->ni_inact, ni->ni_inact_reload, ni->ni_rates.rs_nrates); } /* * Special case ourself; we may be idle for extended periods * of time and regardless reclaiming our state is wrong. * XXX run ic_node_age */ /* XXX before inact decrement? */ if (ni == vap->iv_bss) return; if (ni->ni_associd != 0 || (vap->iv_opmode == IEEE80211_M_IBSS || vap->iv_opmode == IEEE80211_M_AHDEMO)) { /* * Age/drain resources held by the station. */ ic->ic_node_age(ni); /* * Probe the station before time it out. We * send a null data frame which may not be * universally supported by drivers (need it * for ps-poll support so it should be...). * * XXX don't probe the station unless we've * received a frame from them (and have * some idea of the rates they are capable * of); this will get fixed more properly * soon with better handling of the rate set. */ if ((vap->iv_flags_ext & IEEE80211_FEXT_INACT) && (0 < ni->ni_inact && ni->ni_inact <= vap->iv_inact_probe) && ni->ni_rates.rs_nrates != 0) { IEEE80211_NOTE(vap, IEEE80211_MSG_INACT | IEEE80211_MSG_NODE, ni, "%s", "probe station due to inactivity"); /* * Grab a reference so the node cannot * be reclaimed before we send the frame. * ieee80211_send_nulldata understands * we've done this and reclaims the * ref for us as needed. */ /* XXX fix this (not required anymore). */ ieee80211_ref_node(ni); /* XXX useless */ ieee80211_send_nulldata(ni); /* XXX stat? */ return; } } if ((vap->iv_flags_ext & IEEE80211_FEXT_INACT) && ni->ni_inact <= 0) { IEEE80211_NOTE(vap, IEEE80211_MSG_INACT | IEEE80211_MSG_NODE, ni, "station timed out due to inactivity " "(refcnt %u)", ieee80211_node_refcnt(ni)); /* * Send a deauthenticate frame and drop the station. * This is somewhat complicated due to reference counts * and locking. At this point a station will typically * have a reference count of 2. ieee80211_node_leave * will do a "free" of the node which will drop the * reference count. But in the meantime a reference * wil be held by the deauth frame. The actual reclaim * of the node will happen either after the tx is * completed or by ieee80211_node_leave. */ if (ni->ni_associd != 0) { IEEE80211_SEND_MGMT(ni, IEEE80211_FC0_SUBTYPE_DEAUTH, IEEE80211_REASON_AUTH_EXPIRE); } ieee80211_node_leave(ni); vap->iv_stats.is_node_timeout++; } } /* * Timeout inactive stations and do related housekeeping. */ static void ieee80211_timeout_stations(struct ieee80211com *ic) { struct ieee80211_node_table *nt = &ic->ic_sta; ieee80211_iterate_nodes(nt, timeout_stations, NULL); } /* * Aggressively reclaim resources. This should be used * only in a critical situation to reclaim mbuf resources. */ void ieee80211_drain(struct ieee80211com *ic) { struct ieee80211_node_table *nt = &ic->ic_sta; struct ieee80211vap *vap; struct ieee80211_node *ni; IEEE80211_NODE_LOCK(nt); TAILQ_FOREACH(ni, &nt->nt_node, ni_list) { /* * Ignore entries for which have yet to receive an * authentication frame. These are transient and * will be reclaimed when the last reference to them * goes away (when frame xmits complete). */ vap = ni->ni_vap; /* * Only process stations when in RUN state. This * insures, for example, that we don't timeout an * inactive station during CAC. Note that CSA state * is actually handled in ieee80211_node_timeout as * it applies to more than timeout processing. */ if (vap->iv_state != IEEE80211_S_RUN) continue; /* XXX can vap be NULL? */ if ((vap->iv_opmode == IEEE80211_M_HOSTAP || vap->iv_opmode == IEEE80211_M_STA) && (ni->ni_flags & IEEE80211_NODE_AREF) == 0) continue; /* * Free fragments. * XXX doesn't belong here, move to node_drain */ if (ni->ni_rxfrag[0] != NULL) { m_freem(ni->ni_rxfrag[0]); ni->ni_rxfrag[0] = NULL; } /* * Drain resources held by the station. */ ic->ic_node_drain(ni); } IEEE80211_NODE_UNLOCK(nt); } /* * Per-ieee80211vap inactivity timer callback. */ static void ieee80211_vap_timeout(struct ieee80211vap *vap) { IEEE80211_LOCK_ASSERT(vap->iv_ic); ieee80211_vap_erp_timeout(vap); ieee80211_ht_timeout(vap); ieee80211_vht_timeout(vap); } /* * Per-ieee80211com inactivity timer callback. */ void ieee80211_node_timeout(void *arg) { struct ieee80211com *ic = arg; struct ieee80211vap *vap; /* * Defer timeout processing if a channel switch is pending. * We typically need to be mute so not doing things that * might generate frames is good to handle in one place. * Suppressing the station timeout processing may extend the * lifetime of inactive stations (by not decrementing their * idle counters) but this should be ok unless the CSA is * active for an unusually long time. */ if ((ic->ic_flags & IEEE80211_F_CSAPENDING) == 0) { ieee80211_scan_timeout(ic); ieee80211_timeout_stations(ic); ieee80211_ageq_age(&ic->ic_stageq, IEEE80211_INACT_WAIT); IEEE80211_LOCK(ic); TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) ieee80211_vap_timeout(vap); IEEE80211_UNLOCK(ic); } callout_reset(&ic->ic_inact, IEEE80211_INACT_WAIT*hz, ieee80211_node_timeout, ic); } /* * The same as ieee80211_iterate_nodes(), but for one vap only. */ int ieee80211_iterate_nodes_vap(struct ieee80211_node_table *nt, struct ieee80211vap *vap, ieee80211_iter_func *f, void *arg) { struct ieee80211_node **ni_arr; struct ieee80211_node *ni; size_t size; int count, i; /* * Iterate over the node table and save an array of ref'ed nodes. * * This is separated out from calling the actual node function so that * no LORs will occur. */ IEEE80211_NODE_LOCK(nt); count = nt->nt_count; size = count * sizeof(struct ieee80211_node *); ni_arr = (struct ieee80211_node **) IEEE80211_MALLOC(size, M_80211_NODE, IEEE80211_M_NOWAIT | IEEE80211_M_ZERO); if (ni_arr == NULL) { IEEE80211_NODE_UNLOCK(nt); return (ENOMEM); } i = 0; TAILQ_FOREACH(ni, &nt->nt_node, ni_list) { if (vap != NULL && ni->ni_vap != vap) continue; KASSERT(i < count, ("node array overflow (vap %p, i %d, count %d)\n", vap, i, count)); ni_arr[i] = ieee80211_ref_node(ni); i++; } IEEE80211_NODE_UNLOCK(nt); for (i = 0; i < count; i++) { if (ni_arr[i] == NULL) /* end of the list */ break; (*f)(arg, ni_arr[i]); /* ieee80211_free_node() locks by itself */ ieee80211_free_node(ni_arr[i]); } IEEE80211_FREE(ni_arr, M_80211_NODE); return (0); } /* * Just a wrapper, so we don't have to change every ieee80211_iterate_nodes() * reference in the source. */ void ieee80211_iterate_nodes(struct ieee80211_node_table *nt, ieee80211_iter_func *f, void *arg) { /* XXX no way to pass error to the caller. */ (void) ieee80211_iterate_nodes_vap(nt, NULL, f, arg); } void ieee80211_dump_node(struct ieee80211_node_table *nt __unused, struct ieee80211_node *ni) { printf("%p: mac %s refcnt %d\n", ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)); printf("\tauthmode %u flags 0x%x\n", ni->ni_authmode, ni->ni_flags); printf("\tassocid 0x%x txpower %u vlan %u\n", ni->ni_associd, ni->ni_txpower, ni->ni_vlan); printf("\ttxseq %u rxseq %u fragno %u rxfragstamp %u\n", ni->ni_txseqs[IEEE80211_NONQOS_TID], ni->ni_rxseqs[IEEE80211_NONQOS_TID] >> IEEE80211_SEQ_SEQ_SHIFT, ni->ni_rxseqs[IEEE80211_NONQOS_TID] & IEEE80211_SEQ_FRAG_MASK, ni->ni_rxfragstamp); printf("\trssi %d noise %d intval %u capinfo 0x%x\n", node_getrssi(ni), ni->ni_noise, ni->ni_intval, ni->ni_capinfo); printf("\tbssid %s essid \"%.*s\" channel %u:0x%x\n", ether_sprintf(ni->ni_bssid), ni->ni_esslen, ni->ni_essid, (ni->ni_chan != IEEE80211_CHAN_ANYC) ? ni->ni_chan->ic_freq : 0, (ni->ni_chan != IEEE80211_CHAN_ANYC) ? ni->ni_chan->ic_flags : 0); printf("\tinact %u inact_reload %u txrate %u\n", ni->ni_inact, ni->ni_inact_reload, ni->ni_txrate); printf("\thtcap %x htparam %x htctlchan %u ht2ndchan %u\n", ni->ni_htcap, ni->ni_htparam, ni->ni_htctlchan, ni->ni_ht2ndchan); - printf("\thtopmode %x htstbc %x htchw %b\n", + printf("\thtopmode %x htstbc %x htchw %d (%s)\n", ni->ni_htopmode, ni->ni_htstbc, - ni->ni_chw, IEEE80211_NI_CHW_BITS); + ni->ni_chw, ieee80211_ni_chw_to_str(ni->ni_chw)); printf("\tvhtcap %x freq1 %d freq2 %d vhtbasicmcs %x\n", ni->ni_vhtcap, (int) ni->ni_vht_chan1, (int) ni->ni_vht_chan2, (int) ni->ni_vht_basicmcs); /* XXX VHT state */ } void ieee80211_dump_nodes(struct ieee80211_node_table *nt) { ieee80211_iterate_nodes(nt, (ieee80211_iter_func *) ieee80211_dump_node, nt); } /* * Iterate over the VAPs and update their ERP beacon IEs. * * Note this must be called from the deferred ERP update task paths. */ void ieee80211_notify_erp_locked(struct ieee80211com *ic) { struct ieee80211vap *vap; IEEE80211_LOCK_ASSERT(ic); TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) if (vap->iv_opmode == IEEE80211_M_HOSTAP) ieee80211_beacon_notify(vap, IEEE80211_BEACON_ERP); } /* * Handle a station joining an 11g network. */ static void ieee80211_node_join_11g(struct ieee80211_node *ni) { struct ieee80211com *ic = ni->ni_ic; struct ieee80211vap *vap = ni->ni_vap; IEEE80211_LOCK_ASSERT(ic); /* * Station isn't capable of short slot time. Bump * the count of long slot time stations and disable * use of short slot time. Note that the actual switch * over to long slot time use may not occur until the * next beacon transmission (per sec. 7.3.1.4 of 11g). */ if ((ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_SLOTTIME) == 0) { vap->iv_longslotsta++; IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ASSOC, ni, "station needs long slot time, count %d", vap->iv_longslotsta); /* * XXX TODO: this may need all VAPs checked! */ if (!IEEE80211_IS_CHAN_108G(ic->ic_bsschan)) { /* * Don't force slot time when switched to turbo * mode as non-ERP stations won't be present; this * need only be done when on the normal G channel. */ ieee80211_vap_set_shortslottime(vap, 0); } } /* * If the new station is not an ERP station * then bump the counter and enable protection * if configured. */ if (!ieee80211_iserp_rateset(&ni->ni_rates)) { vap->iv_nonerpsta++; IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ASSOC, ni, "station is !ERP, %d non-ERP stations associated", vap->iv_nonerpsta); /* * If station does not support short preamble * then we must enable use of Barker preamble. */ if ((ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE) == 0) { IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ASSOC, ni, "%s", "station needs long preamble"); vap->iv_flags |= IEEE80211_F_USEBARKER; vap->iv_flags &= ~IEEE80211_F_SHPREAMBLE; ieee80211_vap_update_preamble(vap); } /* * If protection is configured and this is the first * indication we should use protection, enable it. */ if (vap->iv_protmode != IEEE80211_PROT_NONE && vap->iv_nonerpsta == 1 && (vap->iv_flags_ext & IEEE80211_FEXT_NONERP_PR) == 0) { IEEE80211_DPRINTF(ni->ni_vap, IEEE80211_MSG_ASSOC, "%s: enable use of protection\n", __func__); vap->iv_flags |= IEEE80211_F_USEPROT; ieee80211_vap_update_erp_protmode(vap); } } else ni->ni_flags |= IEEE80211_NODE_ERP; } void ieee80211_node_join(struct ieee80211_node *ni, int resp) { struct ieee80211com *ic = ni->ni_ic; struct ieee80211vap *vap = ni->ni_vap; int newassoc; if (ni->ni_associd == 0) { uint16_t aid; KASSERT(vap->iv_aid_bitmap != NULL, ("no aid bitmap")); /* * It would be good to search the bitmap * more efficiently, but this will do for now. */ for (aid = 1; aid < vap->iv_max_aid; aid++) { if (!IEEE80211_AID_ISSET(vap, aid)) break; } if (aid >= vap->iv_max_aid) { IEEE80211_SEND_MGMT(ni, resp, IEEE80211_STATUS_TOOMANY); ieee80211_node_leave(ni); return; } ni->ni_associd = aid | 0xc000; ni->ni_jointime = time_uptime; IEEE80211_LOCK(ic); IEEE80211_AID_SET(vap, ni->ni_associd); vap->iv_sta_assoc++; if (IEEE80211_IS_CHAN_HT(ic->ic_bsschan)) ieee80211_ht_node_join(ni); if (IEEE80211_IS_CHAN_VHT(ic->ic_bsschan)) ieee80211_vht_node_join(ni); if (IEEE80211_IS_CHAN_ANYG(ic->ic_bsschan) && IEEE80211_IS_CHAN_FULL(ic->ic_bsschan)) ieee80211_node_join_11g(ni); IEEE80211_UNLOCK(ic); newassoc = 1; } else newassoc = 0; /* * XXX VHT - should log VHT channel width, etc */ IEEE80211_NOTE(vap, IEEE80211_MSG_ASSOC | IEEE80211_MSG_DEBUG, ni, "station associated at aid %d: %s preamble, %s slot time%s%s%s%s%s%s%s%s%s", IEEE80211_NODE_AID(ni), vap->iv_flags & IEEE80211_F_SHPREAMBLE ? "short" : "long", vap->iv_flags & IEEE80211_F_SHSLOT ? "short" : "long", vap->iv_flags & IEEE80211_F_USEPROT ? ", protection" : "", ni->ni_flags & IEEE80211_NODE_QOS ? ", QoS" : "", /* XXX update for VHT string */ ni->ni_flags & IEEE80211_NODE_HT ? (ni->ni_chw == IEEE80211_STA_RX_BW_40 ? ", HT40" : ", HT20") : "", ni->ni_flags & IEEE80211_NODE_AMPDU ? " (+AMPDU)" : "", ni->ni_flags & IEEE80211_NODE_AMSDU ? " (+AMSDU)" : "", ni->ni_flags & IEEE80211_NODE_MIMO_RTS ? " (+SMPS-DYN)" : ni->ni_flags & IEEE80211_NODE_MIMO_PS ? " (+SMPS)" : "", ni->ni_flags & IEEE80211_NODE_RIFS ? " (+RIFS)" : "", IEEE80211_ATH_CAP(vap, ni, IEEE80211_NODE_FF) ? ", fast-frames" : "", IEEE80211_ATH_CAP(vap, ni, IEEE80211_NODE_TURBOP) ? ", turbo" : "" ); ieee80211_node_setuptxparms(ni); ieee80211_ratectl_node_init(ni); /* give driver a chance to setup state like ni_txrate */ if (ic->ic_newassoc != NULL) ic->ic_newassoc(ni, newassoc); IEEE80211_SEND_MGMT(ni, resp, IEEE80211_STATUS_SUCCESS); /* tell the authenticator about new station */ if (vap->iv_auth->ia_node_join != NULL) vap->iv_auth->ia_node_join(ni); ieee80211_notify_node_join(ni, resp == IEEE80211_FC0_SUBTYPE_ASSOC_RESP); } static void disable_protection(struct ieee80211vap *vap) { struct ieee80211com *ic = vap->iv_ic; KASSERT(vap->iv_nonerpsta == 0 && (vap->iv_flags_ext & IEEE80211_FEXT_NONERP_PR) == 0, ("%d non ERP stations, flags 0x%x", vap->iv_nonerpsta, vap->iv_flags_ext)); vap->iv_flags &= ~IEEE80211_F_USEPROT; /* XXX verify mode? */ if (ic->ic_caps & IEEE80211_C_SHPREAMBLE) { vap->iv_flags |= IEEE80211_F_SHPREAMBLE; vap->iv_flags &= ~IEEE80211_F_USEBARKER; } ieee80211_vap_update_erp_protmode(vap); ieee80211_vap_update_preamble(vap); } /* * Handle a station leaving an 11g network. */ static void ieee80211_node_leave_11g(struct ieee80211_node *ni) { struct ieee80211com *ic = ni->ni_ic; struct ieee80211vap *vap = ni->ni_vap; IEEE80211_LOCK_ASSERT(ic); KASSERT(IEEE80211_IS_CHAN_ANYG(ic->ic_bsschan), ("not in 11g, bss %u:0x%x", ic->ic_bsschan->ic_freq, ic->ic_bsschan->ic_flags)); /* * If a long slot station do the slot time bookkeeping. */ if ((ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_SLOTTIME) == 0) { KASSERT(vap->iv_longslotsta > 0, ("bogus long slot station count %d", vap->iv_longslotsta)); vap->iv_longslotsta--; IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ASSOC, ni, "long slot time station leaves, count now %d", vap->iv_longslotsta); /* * XXX TODO: this may need all VAPs checked! */ if (vap->iv_longslotsta == 0) { /* * Re-enable use of short slot time if supported * and not operating in IBSS mode (per spec). */ if ((ic->ic_caps & IEEE80211_C_SHSLOT) && ic->ic_opmode != IEEE80211_M_IBSS) { IEEE80211_DPRINTF(ni->ni_vap, IEEE80211_MSG_ASSOC, "%s: re-enable use of short slot time\n", __func__); ieee80211_vap_set_shortslottime(vap, 1); } } } /* * If a non-ERP station do the protection-related bookkeeping. */ if ((ni->ni_flags & IEEE80211_NODE_ERP) == 0) { KASSERT(vap->iv_nonerpsta > 0, ("bogus non-ERP station count %d", vap->iv_nonerpsta)); vap->iv_nonerpsta--; IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_ASSOC, ni, "non-ERP station leaves, count now %d%s", vap->iv_nonerpsta, (vap->iv_flags_ext & IEEE80211_FEXT_NONERP_PR) ? " (non-ERP sta present)" : ""); if (vap->iv_nonerpsta == 0 && (vap->iv_flags_ext & IEEE80211_FEXT_NONERP_PR) == 0) { IEEE80211_DPRINTF(ni->ni_vap, IEEE80211_MSG_ASSOC, "%s: disable use of protection\n", __func__); disable_protection(vap); } } } /* * Time out presence of an overlapping bss with non-ERP * stations. When operating in hostap mode we listen for * beacons from other stations and if we identify a non-ERP * station is present we enable protection. To identify * when all non-ERP stations are gone we time out this * condition. */ static void ieee80211_vap_erp_timeout(struct ieee80211vap *vap) { IEEE80211_LOCK_ASSERT(vap->iv_ic); if ((vap->iv_flags_ext & IEEE80211_FEXT_NONERP_PR) && ieee80211_time_after(ticks, vap->iv_lastnonerp + IEEE80211_NONERP_PRESENT_AGE)) { IEEE80211_DPRINTF(vap, IEEE80211_MSG_ASSOC, "%s", "age out non-ERP sta present on channel"); vap->iv_flags_ext &= ~IEEE80211_FEXT_NONERP_PR; if (vap->iv_nonerpsta == 0) disable_protection(vap); } } /* * Handle bookkeeping for station deauthentication/disassociation * when operating as an ap. */ void ieee80211_node_leave(struct ieee80211_node *ni) { struct ieee80211com *ic = ni->ni_ic; struct ieee80211vap *vap = ni->ni_vap; struct ieee80211_node_table *nt = ni->ni_table; IEEE80211_NOTE(vap, IEEE80211_MSG_ASSOC | IEEE80211_MSG_DEBUG, ni, "station with aid %d leaves", IEEE80211_NODE_AID(ni)); KASSERT(vap->iv_opmode != IEEE80211_M_STA, ("unexpected operating mode %u", vap->iv_opmode)); /* * If node wasn't previously associated all * we need to do is reclaim the reference. */ /* XXX ibss mode bypasses 11g and notification */ if (ni->ni_associd == 0) goto done; /* * Tell the authenticator the station is leaving. * Note that we must do this before yanking the * association id as the authenticator uses the * associd to locate it's state block. */ if (vap->iv_auth->ia_node_leave != NULL) vap->iv_auth->ia_node_leave(ni); IEEE80211_LOCK(ic); IEEE80211_AID_CLR(vap, ni->ni_associd); vap->iv_sta_assoc--; if (IEEE80211_IS_CHAN_VHT(ic->ic_bsschan)) ieee80211_vht_node_leave(ni); if (IEEE80211_IS_CHAN_HT(ic->ic_bsschan)) ieee80211_ht_node_leave(ni); if (IEEE80211_IS_CHAN_ANYG(ic->ic_bsschan) && IEEE80211_IS_CHAN_FULL(ic->ic_bsschan)) ieee80211_node_leave_11g(ni); IEEE80211_UNLOCK(ic); /* * Cleanup station state. In particular clear various * state that might otherwise be reused if the node * is reused before the reference count goes to zero * (and memory is reclaimed). */ ieee80211_sta_leave(ni); done: /* * Remove the node from any table it's recorded in and * drop the caller's reference. Removal from the table * is important to insure the node is not reprocessed * for inactivity. */ if (nt != NULL) { IEEE80211_NODE_LOCK(nt); node_reclaim(nt, ni); IEEE80211_NODE_UNLOCK(nt); } else ieee80211_free_node(ni); } struct rssiinfo { int rssi_samples; uint32_t rssi_total; }; static void get_hostap_rssi(void *arg, struct ieee80211_node *ni) { struct rssiinfo *info = arg; struct ieee80211vap *vap = ni->ni_vap; int8_t rssi; /* only associated stations */ if (ni->ni_associd == 0) return; rssi = vap->iv_ic->ic_node_getrssi(ni); if (rssi != 0) { info->rssi_samples++; info->rssi_total += rssi; } } static void get_adhoc_rssi(void *arg, struct ieee80211_node *ni) { struct rssiinfo *info = arg; struct ieee80211vap *vap = ni->ni_vap; int8_t rssi; /* only neighbors */ /* XXX check bssid */ if ((ni->ni_capinfo & IEEE80211_CAPINFO_IBSS) == 0) return; rssi = vap->iv_ic->ic_node_getrssi(ni); if (rssi != 0) { info->rssi_samples++; info->rssi_total += rssi; } } #ifdef IEEE80211_SUPPORT_MESH static void get_mesh_rssi(void *arg, struct ieee80211_node *ni) { struct rssiinfo *info = arg; struct ieee80211vap *vap = ni->ni_vap; int8_t rssi; /* only neighbors that peered successfully */ if (ni->ni_mlstate != IEEE80211_NODE_MESH_ESTABLISHED) return; rssi = vap->iv_ic->ic_node_getrssi(ni); if (rssi != 0) { info->rssi_samples++; info->rssi_total += rssi; } } #endif /* IEEE80211_SUPPORT_MESH */ int8_t ieee80211_getrssi(struct ieee80211vap *vap) { #define NZ(x) ((x) == 0 ? 1 : (x)) struct ieee80211com *ic = vap->iv_ic; struct rssiinfo info; info.rssi_total = 0; info.rssi_samples = 0; switch (vap->iv_opmode) { case IEEE80211_M_IBSS: /* average of all ibss neighbors */ case IEEE80211_M_AHDEMO: /* average of all neighbors */ ieee80211_iterate_nodes_vap(&ic->ic_sta, vap, get_adhoc_rssi, &info); break; case IEEE80211_M_HOSTAP: /* average of all associated stations */ ieee80211_iterate_nodes_vap(&ic->ic_sta, vap, get_hostap_rssi, &info); break; #ifdef IEEE80211_SUPPORT_MESH case IEEE80211_M_MBSS: /* average of all mesh neighbors */ ieee80211_iterate_nodes_vap(&ic->ic_sta, vap, get_mesh_rssi, &info); break; #endif case IEEE80211_M_MONITOR: /* XXX */ case IEEE80211_M_STA: /* use stats from associated ap */ default: if (vap->iv_bss != NULL) info.rssi_total = ic->ic_node_getrssi(vap->iv_bss); info.rssi_samples = 1; break; } return info.rssi_total / NZ(info.rssi_samples); #undef NZ } void ieee80211_getsignal(struct ieee80211vap *vap, int8_t *rssi, int8_t *noise) { if (vap->iv_bss == NULL) /* NB: shouldn't happen */ return; vap->iv_ic->ic_node_getsignal(vap->iv_bss, rssi, noise); /* for non-station mode return avg'd rssi accounting */ if (vap->iv_opmode != IEEE80211_M_STA) *rssi = ieee80211_getrssi(vap); } diff --git a/sys/net80211/ieee80211_node.h b/sys/net80211/ieee80211_node.h index 1f36ceb368b9..0039c743544c 100644 --- a/sys/net80211/ieee80211_node.h +++ b/sys/net80211/ieee80211_node.h @@ -1,489 +1,501 @@ /*- * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 2001 Atsushi Onoe * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef _NET80211_IEEE80211_NODE_H_ #define _NET80211_IEEE80211_NODE_H_ #include /* for ieee80211_nodestats */ #include /* for aggregation state */ /* * Each ieee80211com instance has a single timer that fires every * IEEE80211_INACT_WAIT seconds to handle "inactivity processing". * This is used to do node inactivity processing when operating * as an AP, adhoc or mesh mode. For inactivity processing each node * has a timeout set in its ni_inact field that is decremented * on each timeout and the node is reclaimed when the counter goes * to zero. We use different inactivity timeout values depending * on whether the node is associated and authorized (either by * 802.1x or open/shared key authentication) or associated but yet * to be authorized. The latter timeout is shorter to more aggressively * reclaim nodes that leave part way through the 802.1x exchange. */ #define IEEE80211_INACT_WAIT 15 /* inactivity interval (secs) */ #define IEEE80211_INACT_INIT (30/IEEE80211_INACT_WAIT) /* initial */ #define IEEE80211_INACT_AUTH (180/IEEE80211_INACT_WAIT) /* associated but not authorized */ #define IEEE80211_INACT_RUN (300/IEEE80211_INACT_WAIT) /* authorized */ #define IEEE80211_INACT_PROBE (30/IEEE80211_INACT_WAIT) /* probe */ #define IEEE80211_INACT_SCAN (300/IEEE80211_INACT_WAIT) /* scanned */ #define IEEE80211_TRANS_WAIT 2 /* mgt frame tx timer (secs) */ /* threshold for aging overlapping non-ERP bss */ #define IEEE80211_NONERP_PRESENT_AGE msecs_to_ticks(60*1000) #define IEEE80211_NODE_HASHSIZE 32 /* NB: hash size must be pow2 */ /* simple hash is enough for variation of macaddr */ #define IEEE80211_NODE_HASH(ic, addr) \ (((const uint8_t *)(addr))[IEEE80211_ADDR_LEN - 1] % \ IEEE80211_NODE_HASHSIZE) struct ieee80211_node_table; struct ieee80211com; struct ieee80211vap; struct ieee80211_scanparams; /* * Information element (IE) ``blob''. We use this structure * to capture management frame payloads that need to be * retained. Information elements within the payload that * we need to consult have references recorded. */ struct ieee80211_ies { /* the following are either NULL or point within data */ uint8_t *wpa_ie; /* captured WPA ie */ uint8_t *rsn_ie; /* captured RSN ie */ uint8_t *wme_ie; /* captured WME ie */ uint8_t *ath_ie; /* captured Atheros ie */ uint8_t *htcap_ie; /* captured HTCAP ie */ uint8_t *htinfo_ie; /* captured HTINFO ie */ uint8_t *tdma_ie; /* captured TDMA ie */ uint8_t *meshid_ie; /* captured MESH ID ie */ uint8_t *vhtcap_ie; /* captured VHTCAP ie */ uint8_t *vhtopmode_ie; /* captured VHTOPMODE ie */ uint8_t *vhtpwrenv_ie; /* captured VHTPWRENV ie */ uint8_t *apchanrep_ie; /* captured APCHANREP ie */ uint8_t *bssload_ie; /* captured BSSLOAD ie */ uint8_t *spare[4]; /* NB: these must be the last members of this structure */ uint8_t *data; /* frame data > 802.11 header */ int len; /* data size in bytes */ }; /* * 802.11s (Mesh) Peer Link FSM state. */ enum ieee80211_mesh_mlstate { IEEE80211_NODE_MESH_IDLE = 0, IEEE80211_NODE_MESH_OPENSNT = 1, /* open frame sent */ IEEE80211_NODE_MESH_OPENRCV = 2, /* open frame received */ IEEE80211_NODE_MESH_CONFIRMRCV = 3, /* confirm frame received */ IEEE80211_NODE_MESH_ESTABLISHED = 4, /* link established */ IEEE80211_NODE_MESH_HOLDING = 5, /* link closing */ }; #define IEEE80211_MESH_MLSTATE_BITS \ "\20\1IDLE\2OPENSNT\2OPENRCV\3CONFIRMRCV\4ESTABLISHED\5HOLDING" /* * This structure is shared with LinuxKPI 802.11 code describing up-to * which channel width the station can receive. * Rather than using hardcoded MHz values for the channel width use an enum with * flags. This allows us to keep the uint8_t slot for ni_chw in * struct ieee80211_node and means we do not have to sync to the value for * LinuxKPI. + * + * NB: BW_20 needs to 0 and values need to be sorted! Cannot make it + * bitfield-alike for use with %b. */ enum ieee80211_sta_rx_bw { - IEEE80211_STA_RX_BW_20 = 0x01, - IEEE80211_STA_RX_BW_40 = 0x02, - IEEE80211_STA_RX_BW_80 = 0x04, - IEEE80211_STA_RX_BW_160 = 0x08, - IEEE80211_STA_RX_BW_320 = 0x10, + IEEE80211_STA_RX_BW_20 = 0x00, + IEEE80211_STA_RX_BW_40, + IEEE80211_STA_RX_BW_80, + IEEE80211_STA_RX_BW_160, + IEEE80211_STA_RX_BW_320, } __packed; -#define IEEE80211_NI_CHW_BITS \ - "\20\1BW_20\2BW_40\3BW_80\4BW_160\5BW_320" +static inline const char * +ieee80211_ni_chw_to_str(enum ieee80211_sta_rx_bw bw) +{ + switch (bw) { + case IEEE80211_STA_RX_BW_20: return ("BW_20"); + case IEEE80211_STA_RX_BW_40: return ("BW_40"); + case IEEE80211_STA_RX_BW_80: return ("BW_80"); + case IEEE80211_STA_RX_BW_160: return ("BW_160"); + case IEEE80211_STA_RX_BW_320: return ("BW_320"); + } +} /* * Node specific information. Note that drivers are expected * to derive from this structure to add device-specific per-node * state. This is done by overriding the ic_node_* methods in * the ieee80211com structure. */ struct ieee80211_node { struct ieee80211vap *ni_vap; /* associated vap */ struct ieee80211com *ni_ic; /* copy from vap to save deref*/ struct ieee80211_node_table *ni_table; /* NB: may be NULL */ TAILQ_ENTRY(ieee80211_node) ni_list; /* list of all nodes */ LIST_ENTRY(ieee80211_node) ni_hash; /* hash collision list */ u_int ni_refcnt; /* count of held references */ u_int ni_flags; #define IEEE80211_NODE_AUTH 0x000001 /* authorized for data */ #define IEEE80211_NODE_QOS 0x000002 /* QoS enabled */ #define IEEE80211_NODE_ERP 0x000004 /* ERP enabled */ /* NB: this must have the same value as IEEE80211_FC1_PWR_MGT */ #define IEEE80211_NODE_PWR_MGT 0x000010 /* power save mode enabled */ #define IEEE80211_NODE_AREF 0x000020 /* authentication ref held */ #define IEEE80211_NODE_HT 0x000040 /* HT enabled */ #define IEEE80211_NODE_HTCOMPAT 0x000080 /* HT setup w/ vendor OUI's */ #define IEEE80211_NODE_WPS 0x000100 /* WPS association */ #define IEEE80211_NODE_TSN 0x000200 /* TSN association */ #define IEEE80211_NODE_AMPDU_RX 0x000400 /* AMPDU rx enabled */ #define IEEE80211_NODE_AMPDU_TX 0x000800 /* AMPDU tx enabled */ #define IEEE80211_NODE_MIMO_PS 0x001000 /* MIMO power save enabled */ #define IEEE80211_NODE_MIMO_RTS 0x002000 /* send RTS in MIMO PS */ #define IEEE80211_NODE_RIFS 0x004000 /* RIFS enabled */ #define IEEE80211_NODE_SGI20 0x008000 /* Short GI in HT20 enabled */ #define IEEE80211_NODE_SGI40 0x010000 /* Short GI in HT40 enabled */ #define IEEE80211_NODE_ASSOCID 0x020000 /* xmit requires associd */ #define IEEE80211_NODE_AMSDU_RX 0x040000 /* AMSDU rx enabled */ #define IEEE80211_NODE_AMSDU_TX 0x080000 /* AMSDU tx enabled */ #define IEEE80211_NODE_VHT 0x100000 /* VHT enabled */ #define IEEE80211_NODE_LDPC 0x200000 /* LDPC enabled */ #define IEEE80211_NODE_UAPSD 0x400000 /* U-APSD power save enabled */ uint16_t ni_associd; /* association ID */ uint16_t ni_vlan; /* vlan tag */ uint16_t ni_txpower; /* current transmit power */ uint8_t ni_authmode; /* authentication algorithm */ uint8_t ni_ath_flags; /* Atheros feature flags */ /* NB: These must have the same values as IEEE80211_ATHC_* */ #define IEEE80211_NODE_TURBOP 0x0001 /* Turbo prime enable */ #define IEEE80211_NODE_COMP 0x0002 /* Compresssion enable */ #define IEEE80211_NODE_FF 0x0004 /* Fast Frame capable */ #define IEEE80211_NODE_XR 0x0008 /* Atheros WME enable */ #define IEEE80211_NODE_AR 0x0010 /* AR capable */ #define IEEE80211_NODE_BOOST 0x0080 /* Dynamic Turbo boosted */ uint16_t ni_ath_defkeyix;/* Atheros def key index */ const struct ieee80211_txparam *ni_txparms; uint32_t ni_jointime; /* time of join (secs) */ uint32_t *ni_challenge; /* shared-key challenge */ struct ieee80211_ies ni_ies; /* captured ie's */ /* tx seq per-tid */ ieee80211_seq ni_txseqs[IEEE80211_TID_SIZE]; /* rx seq previous per-tid*/ ieee80211_seq ni_rxseqs[IEEE80211_TID_SIZE]; uint32_t ni_rxfragstamp; /* time stamp of last rx frag */ struct mbuf *ni_rxfrag[3]; /* rx frag reassembly */ struct ieee80211_key ni_ucastkey; /* unicast key */ /* hardware */ uint32_t ni_avgrssi; /* recv ssi state */ int8_t ni_noise; /* noise floor */ /* mimo statistics */ uint32_t ni_mimo_rssi_ctl[IEEE80211_MAX_CHAINS]; uint32_t ni_mimo_rssi_ext[IEEE80211_MAX_CHAINS]; uint8_t ni_mimo_noise_ctl[IEEE80211_MAX_CHAINS]; uint8_t ni_mimo_noise_ext[IEEE80211_MAX_CHAINS]; uint8_t ni_mimo_chains; /* header */ uint8_t ni_macaddr[IEEE80211_ADDR_LEN]; uint8_t ni_bssid[IEEE80211_ADDR_LEN]; /* beacon, probe response */ union { uint8_t data[8]; u_int64_t tsf; } ni_tstamp; /* from last rcv'd beacon */ uint16_t ni_intval; /* beacon interval */ uint16_t ni_capinfo; /* capabilities */ uint8_t ni_esslen; uint8_t ni_essid[IEEE80211_NWID_LEN]; struct ieee80211_rateset ni_rates; /* negotiated rate set */ struct ieee80211_channel *ni_chan; uint16_t ni_fhdwell; /* FH only */ uint8_t ni_fhindex; /* FH only */ uint16_t ni_erp; /* ERP from beacon/probe resp */ uint16_t ni_timoff; /* byte offset to TIM ie */ uint8_t ni_dtim_period; /* DTIM period */ uint8_t ni_dtim_count; /* DTIM count for last bcn */ /* 11s state */ uint8_t ni_meshidlen; uint8_t ni_meshid[IEEE80211_MESHID_LEN]; enum ieee80211_mesh_mlstate ni_mlstate; /* peering management state */ uint16_t ni_mllid; /* link local ID */ uint16_t ni_mlpid; /* link peer ID */ struct callout ni_mltimer; /* link mesh timer */ uint8_t ni_mlrcnt; /* link mesh retry counter */ uint8_t ni_mltval; /* link mesh timer value */ struct callout ni_mlhtimer; /* link mesh backoff timer */ uint8_t ni_mlhcnt; /* link mesh holding counter */ /* 11n state */ uint16_t ni_htcap; /* HT capabilities */ uint8_t ni_htparam; /* HT params */ uint8_t ni_htctlchan; /* HT control channel */ uint8_t ni_ht2ndchan; /* HT 2nd channel */ uint8_t ni_htopmode; /* HT operating mode */ uint8_t ni_htstbc; /* HT */ enum ieee80211_sta_rx_bw ni_chw; /* negotiated channel width */ struct ieee80211_htrateset ni_htrates; /* negotiated ht rate set */ struct ieee80211_tx_ampdu ni_tx_ampdu[WME_NUM_TID]; struct ieee80211_rx_ampdu ni_rx_ampdu[WME_NUM_TID]; /* VHT state */ uint32_t ni_vhtcap; uint16_t ni_vht_basicmcs; uint16_t ni_vht_pad2; struct ieee80211_vht_mcs_info ni_vht_mcsinfo; uint8_t ni_vht_chan1; /* 20/40/80/160 - VHT chan1 */ uint8_t ni_vht_chan2; /* 80+80 - VHT chan2 */ uint8_t ni_vht_chanwidth; /* IEEE80211_VHT_CHANWIDTH_ */ uint8_t ni_vht_pad1; uint32_t ni_vht_spare[8]; /* fast-frames state */ struct mbuf * ni_tx_superg[WME_NUM_TID]; /* others */ short ni_inact; /* inactivity mark count */ short ni_inact_reload;/* inactivity reload value */ int ni_txrate; /* legacy rate/MCS */ struct ieee80211_psq ni_psq; /* power save queue */ struct ieee80211_nodestats ni_stats; /* per-node statistics */ struct ieee80211vap *ni_wdsvap; /* associated WDS vap */ void *ni_rctls; /* private ratectl state */ /* quiet time IE state for the given node */ uint32_t ni_quiet_ie_set; /* Quiet time IE was seen */ struct ieee80211_quiet_ie ni_quiet_ie; /* last seen quiet IE */ /* U-APSD */ uint8_t ni_uapsd; /* U-APSD per-node flags matching WMM STA QoS Info field */ void *ni_drv_data; /* driver specific */ uint64_t ni_spare[3]; }; MALLOC_DECLARE(M_80211_NODE); MALLOC_DECLARE(M_80211_NODE_IE); #define IEEE80211_NODE_ATH (IEEE80211_NODE_FF | IEEE80211_NODE_TURBOP) #define IEEE80211_NODE_AMPDU \ (IEEE80211_NODE_AMPDU_RX | IEEE80211_NODE_AMPDU_TX) #define IEEE80211_NODE_AMSDU \ (IEEE80211_NODE_AMSDU_RX | IEEE80211_NODE_AMSDU_TX) #define IEEE80211_NODE_HT_ALL \ (IEEE80211_NODE_HT | IEEE80211_NODE_HTCOMPAT | \ IEEE80211_NODE_AMPDU | IEEE80211_NODE_AMSDU | \ IEEE80211_NODE_MIMO_PS | IEEE80211_NODE_MIMO_RTS | \ IEEE80211_NODE_RIFS | IEEE80211_NODE_SGI20 | IEEE80211_NODE_SGI40) #define IEEE80211_NODE_BITS \ "\20\1AUTH\2QOS\3ERP\5PWR_MGT\6AREF\7HT\10HTCOMPAT\11WPS\12TSN" \ "\13AMPDU_RX\14AMPDU_TX\15MIMO_PS\16MIMO_RTS\17RIFS\20SGI20\21SGI40" \ "\22ASSOCID" #define IEEE80211_NODE_AID(ni) IEEE80211_AID(ni->ni_associd) #define IEEE80211_NODE_STAT(ni,stat) (ni->ni_stats.ns_##stat++) #define IEEE80211_NODE_STAT_ADD(ni,stat,v) (ni->ni_stats.ns_##stat += v) #define IEEE80211_NODE_STAT_SET(ni,stat,v) (ni->ni_stats.ns_##stat = v) /* * Filtered rssi calculation support. The receive rssi is maintained * as an average over the last 10 frames received using a low pass filter * (all frames for now, possibly need to be more selective). Calculations * are designed such that a good compiler can optimize them. The avg * rssi state should be initialized to IEEE80211_RSSI_DUMMY_MARKER and * each sample incorporated with IEEE80211_RSSI_LPF. Use IEEE80211_RSSI_GET * to extract the current value. * * Note that we assume rssi data are in the range [-127..127] and we * discard values <-20. This is consistent with assumptions throughout * net80211 that signal strength data are in .5 dBm units relative to * the current noise floor (linear, not log). */ #define IEEE80211_RSSI_LPF_LEN 10 #define IEEE80211_RSSI_DUMMY_MARKER 127 /* NB: pow2 to optimize out * and / */ #define IEEE80211_RSSI_EP_MULTIPLIER (1<<7) #define IEEE80211_RSSI_IN(x) ((x) * IEEE80211_RSSI_EP_MULTIPLIER) #define _IEEE80211_RSSI_LPF(x, y, len) \ (((x) != IEEE80211_RSSI_DUMMY_MARKER) ? (((x) * ((len) - 1) + (y)) / (len)) : (y)) #define IEEE80211_RSSI_LPF(x, y) do { \ if ((y) >= -20) { \ x = _IEEE80211_RSSI_LPF((x), IEEE80211_RSSI_IN((y)), \ IEEE80211_RSSI_LPF_LEN); \ } \ } while (0) #define IEEE80211_RSSI_EP_RND(x, mul) \ ((((x) % (mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul)) #define IEEE80211_RSSI_GET(x) \ IEEE80211_RSSI_EP_RND(x, IEEE80211_RSSI_EP_MULTIPLIER) void ieee80211_node_attach(struct ieee80211com *); void ieee80211_node_lateattach(struct ieee80211com *); void ieee80211_node_detach(struct ieee80211com *); void ieee80211_node_vattach(struct ieee80211vap *); void ieee80211_node_latevattach(struct ieee80211vap *); void ieee80211_node_vdetach(struct ieee80211vap *); static __inline int ieee80211_node_is_authorized(const struct ieee80211_node *ni) { return (ni->ni_flags & IEEE80211_NODE_AUTH); } void ieee80211_node_authorize(struct ieee80211_node *); void ieee80211_node_unauthorize(struct ieee80211_node *); void ieee80211_node_setuptxparms(struct ieee80211_node *); void ieee80211_node_set_chan(struct ieee80211_node *, struct ieee80211_channel *); void ieee80211_create_ibss(struct ieee80211vap*, struct ieee80211_channel *); void ieee80211_reset_bss(struct ieee80211vap *); void ieee80211_sync_curchan(struct ieee80211com *); void ieee80211_setupcurchan(struct ieee80211com *, struct ieee80211_channel *); void ieee80211_setcurchan(struct ieee80211com *, struct ieee80211_channel *); void ieee80211_update_chw(struct ieee80211com *); int ieee80211_ibss_merge_check(struct ieee80211_node *); int ieee80211_ibss_node_check_new(struct ieee80211_node *ni, const struct ieee80211_scanparams *); int ieee80211_ibss_merge(struct ieee80211_node *); struct ieee80211_scan_entry; int ieee80211_sta_join(struct ieee80211vap *, struct ieee80211_channel *, const struct ieee80211_scan_entry *); void ieee80211_sta_leave(struct ieee80211_node *); void ieee80211_node_deauth(struct ieee80211_node *, int); int ieee80211_ies_init(struct ieee80211_ies *, const uint8_t *, int); void ieee80211_ies_cleanup(struct ieee80211_ies *); void ieee80211_ies_expand(struct ieee80211_ies *); #define ieee80211_ies_setie(_ies, _ie, _off) do { \ (_ies)._ie = (_ies).data + (_off); \ } while (0) /* * Table of ieee80211_node instances. Each ieee80211com * has one that holds association stations (when operating * as an ap) or neighbors (in ibss mode). * * XXX embed this in ieee80211com instead of indirect? */ struct ieee80211_node_table { struct ieee80211com *nt_ic; /* back reference */ ieee80211_node_lock_t nt_nodelock; /* on node table */ TAILQ_HEAD(, ieee80211_node) nt_node; /* information of all nodes */ LIST_HEAD(, ieee80211_node) nt_hash[IEEE80211_NODE_HASHSIZE]; int nt_count; /* number of nodes */ struct ieee80211_node **nt_keyixmap; /* key ix -> node map */ int nt_keyixmax; /* keyixmap size */ const char *nt_name; /* table name for debug msgs */ int nt_inact_init; /* initial node inact setting */ }; struct ieee80211_node *ieee80211_tmp_node(struct ieee80211vap *, const uint8_t macaddr[IEEE80211_ADDR_LEN]); struct ieee80211_node *ieee80211_dup_bss(struct ieee80211vap *, const uint8_t macaddr[IEEE80211_ADDR_LEN]); struct ieee80211_node *ieee80211_node_create_wds(struct ieee80211vap *, const uint8_t bssid[IEEE80211_ADDR_LEN], struct ieee80211_channel *); /* These functions are taking __func__, __LINE__ for IEEE80211_DEBUG_REFCNT */ struct ieee80211_node *_ieee80211_ref_node(struct ieee80211_node *, const char *func, int line); void _ieee80211_free_node(struct ieee80211_node *, const char *func, int line); struct ieee80211_node *_ieee80211_find_node_locked( struct ieee80211_node_table *, const uint8_t macaddr[IEEE80211_ADDR_LEN], const char *func, int line); struct ieee80211_node *_ieee80211_find_node(struct ieee80211_node_table *, const uint8_t macaddr[IEEE80211_ADDR_LEN], const char *func, int line); struct ieee80211_node *_ieee80211_find_vap_node_locked( struct ieee80211_node_table *, const struct ieee80211vap *vap, const uint8_t macaddr[IEEE80211_ADDR_LEN], const char *func, int line); struct ieee80211_node *_ieee80211_find_vap_node( struct ieee80211_node_table *, const struct ieee80211vap *vap, const uint8_t macaddr[IEEE80211_ADDR_LEN], const char *func, int line); struct ieee80211_node *_ieee80211_find_rxnode(struct ieee80211com *, const struct ieee80211_frame_min *, const char *func, int line); struct ieee80211_node *_ieee80211_find_rxnode_withkey( struct ieee80211com *, const struct ieee80211_frame_min *, uint16_t keyix, const char *func, int line); struct ieee80211_node *_ieee80211_find_txnode(struct ieee80211vap *, const uint8_t macaddr[IEEE80211_ADDR_LEN], const char *func, int line); #define ieee80211_ref_node(ni) \ _ieee80211_ref_node(ni, __func__, __LINE__) #define ieee80211_free_node(ni) \ _ieee80211_free_node(ni, __func__, __LINE__) #define ieee80211_find_node_locked(nt, mac) \ _ieee80211_find_node_locked(nt, mac, __func__, __LINE__) #define ieee80211_find_node(nt, mac) \ _ieee80211_find_node(nt, mac, __func__, __LINE__) #define ieee80211_find_vap_node_locked(nt, vap, mac) \ _ieee80211_find_vap_node_locked(nt, vap, mac, __func__, __LINE__) #define ieee80211_find_vap_node(nt, vap, mac) \ _ieee80211_find_vap_node(nt, vap, mac, __func__, __LINE__) #define ieee80211_find_rxnode(ic, wh) \ _ieee80211_find_rxnode(ic, wh, __func__, __LINE__) #define ieee80211_find_rxnode_withkey(ic, wh, keyix) \ _ieee80211_find_rxnode_withkey(ic, wh, keyix, __func__, __LINE__) #define ieee80211_find_txnode(vap, mac) \ _ieee80211_find_txnode(vap, mac, __func__, __LINE__) int ieee80211_node_delucastkey(struct ieee80211_node *); void ieee80211_node_timeout(void *arg); typedef void ieee80211_iter_func(void *, struct ieee80211_node *); int ieee80211_iterate_nodes_vap(struct ieee80211_node_table *, struct ieee80211vap *, ieee80211_iter_func *, void *); void ieee80211_iterate_nodes(struct ieee80211_node_table *, ieee80211_iter_func *, void *); void ieee80211_notify_erp_locked(struct ieee80211com *); void ieee80211_dump_node(struct ieee80211_node_table *, struct ieee80211_node *); void ieee80211_dump_nodes(struct ieee80211_node_table *); struct ieee80211_node *ieee80211_fakeup_adhoc_node(struct ieee80211vap *, const uint8_t macaddr[IEEE80211_ADDR_LEN]); struct ieee80211_scanparams; void ieee80211_init_neighbor(struct ieee80211_node *, const struct ieee80211_frame *, const struct ieee80211_scanparams *); struct ieee80211_node *ieee80211_add_neighbor(struct ieee80211vap *, const struct ieee80211_frame *, const struct ieee80211_scanparams *); void ieee80211_node_join(struct ieee80211_node *,int); void ieee80211_node_leave(struct ieee80211_node *); int8_t ieee80211_getrssi(struct ieee80211vap *); void ieee80211_getsignal(struct ieee80211vap *, int8_t *, int8_t *); #endif /* _NET80211_IEEE80211_NODE_H_ */