diff --git a/sys/contrib/openzfs/config/kernel-blk-queue.m4 b/sys/contrib/openzfs/config/kernel-blk-queue.m4 index 2f0b386e6637..a064140f337a 100644 --- a/sys/contrib/openzfs/config/kernel-blk-queue.m4 +++ b/sys/contrib/openzfs/config/kernel-blk-queue.m4 @@ -1,433 +1,461 @@ dnl # dnl # 2.6.39 API change, dnl # blk_start_plug() and blk_finish_plug() dnl # AC_DEFUN([ZFS_AC_KERNEL_SRC_BLK_QUEUE_PLUG], [ ZFS_LINUX_TEST_SRC([blk_plug], [ #include ],[ struct blk_plug plug __attribute__ ((unused)); blk_start_plug(&plug); blk_finish_plug(&plug); ]) ]) AC_DEFUN([ZFS_AC_KERNEL_BLK_QUEUE_PLUG], [ AC_MSG_CHECKING([whether struct blk_plug is available]) ZFS_LINUX_TEST_RESULT([blk_plug], [ AC_MSG_RESULT(yes) ],[ ZFS_LINUX_TEST_ERROR([blk_plug]) ]) ]) dnl # dnl # 2.6.32 - 4.11: statically allocated bdi in request_queue dnl # 4.12: dynamically allocated bdi in request_queue +dnl # 6.11: bdi no longer available through request_queue, so get it from +dnl # the gendisk attached to the queue dnl # AC_DEFUN([ZFS_AC_KERNEL_SRC_BLK_QUEUE_BDI], [ ZFS_LINUX_TEST_SRC([blk_queue_bdi], [ #include ],[ struct request_queue q; struct backing_dev_info bdi; q.backing_dev_info = &bdi; ]) ]) AC_DEFUN([ZFS_AC_KERNEL_BLK_QUEUE_BDI], [ AC_MSG_CHECKING([whether blk_queue bdi is dynamic]) ZFS_LINUX_TEST_RESULT([blk_queue_bdi], [ AC_MSG_RESULT(yes) AC_DEFINE(HAVE_BLK_QUEUE_BDI_DYNAMIC, 1, [blk queue backing_dev_info is dynamic]) ],[ AC_MSG_RESULT(no) ]) ]) +AC_DEFUN([ZFS_AC_KERNEL_SRC_BLK_QUEUE_DISK_BDI], [ + ZFS_LINUX_TEST_SRC([blk_queue_disk_bdi], [ + #include + #include + ], [ + struct request_queue q; + struct gendisk disk; + struct backing_dev_info bdi __attribute__ ((unused)); + q.disk = &disk; + q.disk->bdi = &bdi; + ]) +]) + +AC_DEFUN([ZFS_AC_KERNEL_BLK_QUEUE_DISK_BDI], [ + AC_MSG_CHECKING([whether backing_dev_info is available through queue gendisk]) + ZFS_LINUX_TEST_RESULT([blk_queue_disk_bdi], [ + AC_MSG_RESULT(yes) + AC_DEFINE(HAVE_BLK_QUEUE_DISK_BDI, 1, + [backing_dev_info is available through queue gendisk]) + ],[ + AC_MSG_RESULT(no) + ]) +]) + dnl # dnl # 5.9: added blk_queue_update_readahead(), dnl # 5.15: renamed to disk_update_readahead() dnl # AC_DEFUN([ZFS_AC_KERNEL_SRC_BLK_QUEUE_UPDATE_READAHEAD], [ ZFS_LINUX_TEST_SRC([blk_queue_update_readahead], [ #include ],[ struct request_queue q; blk_queue_update_readahead(&q); ]) ZFS_LINUX_TEST_SRC([disk_update_readahead], [ #include ],[ struct gendisk disk; disk_update_readahead(&disk); ]) ]) AC_DEFUN([ZFS_AC_KERNEL_BLK_QUEUE_UPDATE_READAHEAD], [ AC_MSG_CHECKING([whether blk_queue_update_readahead() exists]) ZFS_LINUX_TEST_RESULT([blk_queue_update_readahead], [ AC_MSG_RESULT(yes) AC_DEFINE(HAVE_BLK_QUEUE_UPDATE_READAHEAD, 1, [blk_queue_update_readahead() exists]) ],[ AC_MSG_RESULT(no) AC_MSG_CHECKING([whether disk_update_readahead() exists]) ZFS_LINUX_TEST_RESULT([disk_update_readahead], [ AC_MSG_RESULT(yes) AC_DEFINE(HAVE_DISK_UPDATE_READAHEAD, 1, [disk_update_readahead() exists]) ],[ AC_MSG_RESULT(no) ]) ]) ]) dnl # dnl # 5.19: bdev_max_discard_sectors() available dnl # 2.6.32: blk_queue_discard() available dnl # AC_DEFUN([ZFS_AC_KERNEL_SRC_BLK_QUEUE_DISCARD], [ ZFS_LINUX_TEST_SRC([bdev_max_discard_sectors], [ #include ],[ struct block_device *bdev __attribute__ ((unused)) = NULL; unsigned int error __attribute__ ((unused)); error = bdev_max_discard_sectors(bdev); ]) ZFS_LINUX_TEST_SRC([blk_queue_discard], [ #include ],[ struct request_queue r; struct request_queue *q = &r; int value __attribute__ ((unused)); memset(q, 0, sizeof(r)); value = blk_queue_discard(q); ],[-Wframe-larger-than=8192]) ]) AC_DEFUN([ZFS_AC_KERNEL_BLK_QUEUE_DISCARD], [ AC_MSG_CHECKING([whether bdev_max_discard_sectors() is available]) ZFS_LINUX_TEST_RESULT([bdev_max_discard_sectors], [ AC_MSG_RESULT(yes) AC_DEFINE(HAVE_BDEV_MAX_DISCARD_SECTORS, 1, [bdev_max_discard_sectors() is available]) ],[ AC_MSG_RESULT(no) AC_MSG_CHECKING([whether blk_queue_discard() is available]) ZFS_LINUX_TEST_RESULT([blk_queue_discard], [ AC_MSG_RESULT(yes) AC_DEFINE(HAVE_BLK_QUEUE_DISCARD, 1, [blk_queue_discard() is available]) ],[ ZFS_LINUX_TEST_ERROR([blk_queue_discard]) ]) ]) ]) dnl # dnl # 5.19: bdev_max_secure_erase_sectors() available dnl # 4.8: blk_queue_secure_erase() available dnl # 2.6.36: blk_queue_secdiscard() available dnl # AC_DEFUN([ZFS_AC_KERNEL_SRC_BLK_QUEUE_SECURE_ERASE], [ ZFS_LINUX_TEST_SRC([bdev_max_secure_erase_sectors], [ #include ],[ struct block_device *bdev __attribute__ ((unused)) = NULL; unsigned int error __attribute__ ((unused)); error = bdev_max_secure_erase_sectors(bdev); ]) ZFS_LINUX_TEST_SRC([blk_queue_secure_erase], [ #include ],[ struct request_queue r; struct request_queue *q = &r; int value __attribute__ ((unused)); memset(q, 0, sizeof(r)); value = blk_queue_secure_erase(q); ],[-Wframe-larger-than=8192]) ZFS_LINUX_TEST_SRC([blk_queue_secdiscard], [ #include ],[ struct request_queue r; struct request_queue *q = &r; int value __attribute__ ((unused)); memset(q, 0, sizeof(r)); value = blk_queue_secdiscard(q); ]) ]) AC_DEFUN([ZFS_AC_KERNEL_BLK_QUEUE_SECURE_ERASE], [ AC_MSG_CHECKING([whether bdev_max_secure_erase_sectors() is available]) ZFS_LINUX_TEST_RESULT([bdev_max_secure_erase_sectors], [ AC_MSG_RESULT(yes) AC_DEFINE(HAVE_BDEV_MAX_SECURE_ERASE_SECTORS, 1, [bdev_max_secure_erase_sectors() is available]) ],[ AC_MSG_RESULT(no) AC_MSG_CHECKING([whether blk_queue_secure_erase() is available]) ZFS_LINUX_TEST_RESULT([blk_queue_secure_erase], [ AC_MSG_RESULT(yes) AC_DEFINE(HAVE_BLK_QUEUE_SECURE_ERASE, 1, [blk_queue_secure_erase() is available]) ],[ AC_MSG_RESULT(no) AC_MSG_CHECKING([whether blk_queue_secdiscard() is available]) ZFS_LINUX_TEST_RESULT([blk_queue_secdiscard], [ AC_MSG_RESULT(yes) AC_DEFINE(HAVE_BLK_QUEUE_SECDISCARD, 1, [blk_queue_secdiscard() is available]) ],[ ZFS_LINUX_TEST_ERROR([blk_queue_secure_erase]) ]) ]) ]) ]) dnl # dnl # 4.16 API change, dnl # Introduction of blk_queue_flag_set and blk_queue_flag_clear dnl # AC_DEFUN([ZFS_AC_KERNEL_SRC_BLK_QUEUE_FLAG_SET], [ ZFS_LINUX_TEST_SRC([blk_queue_flag_set], [ #include #include ],[ struct request_queue *q = NULL; blk_queue_flag_set(0, q); ]) ]) AC_DEFUN([ZFS_AC_KERNEL_BLK_QUEUE_FLAG_SET], [ AC_MSG_CHECKING([whether blk_queue_flag_set() exists]) ZFS_LINUX_TEST_RESULT([blk_queue_flag_set], [ AC_MSG_RESULT(yes) AC_DEFINE(HAVE_BLK_QUEUE_FLAG_SET, 1, [blk_queue_flag_set() exists]) ],[ AC_MSG_RESULT(no) ]) ]) AC_DEFUN([ZFS_AC_KERNEL_SRC_BLK_QUEUE_FLAG_CLEAR], [ ZFS_LINUX_TEST_SRC([blk_queue_flag_clear], [ #include #include ],[ struct request_queue *q = NULL; blk_queue_flag_clear(0, q); ]) ]) AC_DEFUN([ZFS_AC_KERNEL_BLK_QUEUE_FLAG_CLEAR], [ AC_MSG_CHECKING([whether blk_queue_flag_clear() exists]) ZFS_LINUX_TEST_RESULT([blk_queue_flag_clear], [ AC_MSG_RESULT(yes) AC_DEFINE(HAVE_BLK_QUEUE_FLAG_CLEAR, 1, [blk_queue_flag_clear() exists]) ],[ AC_MSG_RESULT(no) ]) ]) dnl # dnl # 2.6.36 API change, dnl # Added blk_queue_flush() interface, while the previous interface dnl # was available to all the new one is GPL-only. Thus in addition to dnl # detecting if this function is available we determine if it is dnl # GPL-only. If the GPL-only interface is there we implement our own dnl # compatibility function, otherwise we use the function. The hope dnl # is that long term this function will be opened up. dnl # dnl # 4.7 API change, dnl # Replace blk_queue_flush with blk_queue_write_cache dnl # AC_DEFUN([ZFS_AC_KERNEL_SRC_BLK_QUEUE_FLUSH], [ ZFS_LINUX_TEST_SRC([blk_queue_flush], [ #include ], [ struct request_queue *q __attribute__ ((unused)) = NULL; (void) blk_queue_flush(q, REQ_FLUSH); ], [], [ZFS_META_LICENSE]) ZFS_LINUX_TEST_SRC([blk_queue_write_cache], [ #include #include ], [ struct request_queue *q __attribute__ ((unused)) = NULL; blk_queue_write_cache(q, true, true); ], [], [ZFS_META_LICENSE]) ]) AC_DEFUN([ZFS_AC_KERNEL_BLK_QUEUE_FLUSH], [ AC_MSG_CHECKING([whether blk_queue_flush() is available]) ZFS_LINUX_TEST_RESULT([blk_queue_flush], [ AC_MSG_RESULT(yes) AC_DEFINE(HAVE_BLK_QUEUE_FLUSH, 1, [blk_queue_flush() is available]) AC_MSG_CHECKING([whether blk_queue_flush() is GPL-only]) ZFS_LINUX_TEST_RESULT([blk_queue_flush_license], [ AC_MSG_RESULT(no) ],[ AC_MSG_RESULT(yes) AC_DEFINE(HAVE_BLK_QUEUE_FLUSH_GPL_ONLY, 1, [blk_queue_flush() is GPL-only]) ]) ],[ AC_MSG_RESULT(no) ]) dnl # dnl # 4.7 API change dnl # Replace blk_queue_flush with blk_queue_write_cache dnl # AC_MSG_CHECKING([whether blk_queue_write_cache() exists]) ZFS_LINUX_TEST_RESULT([blk_queue_write_cache], [ AC_MSG_RESULT(yes) AC_DEFINE(HAVE_BLK_QUEUE_WRITE_CACHE, 1, [blk_queue_write_cache() exists]) AC_MSG_CHECKING([whether blk_queue_write_cache() is GPL-only]) ZFS_LINUX_TEST_RESULT([blk_queue_write_cache_license], [ AC_MSG_RESULT(no) ],[ AC_MSG_RESULT(yes) AC_DEFINE(HAVE_BLK_QUEUE_WRITE_CACHE_GPL_ONLY, 1, [blk_queue_write_cache() is GPL-only]) ]) ],[ AC_MSG_RESULT(no) ]) ]) dnl # dnl # 2.6.34 API change dnl # blk_queue_max_hw_sectors() replaces blk_queue_max_sectors(). dnl # AC_DEFUN([ZFS_AC_KERNEL_SRC_BLK_QUEUE_MAX_HW_SECTORS], [ ZFS_LINUX_TEST_SRC([blk_queue_max_hw_sectors], [ #include ], [ struct request_queue *q __attribute__ ((unused)) = NULL; (void) blk_queue_max_hw_sectors(q, BLK_SAFE_MAX_SECTORS); ], []) ]) AC_DEFUN([ZFS_AC_KERNEL_BLK_QUEUE_MAX_HW_SECTORS], [ AC_MSG_CHECKING([whether blk_queue_max_hw_sectors() is available]) ZFS_LINUX_TEST_RESULT([blk_queue_max_hw_sectors], [ AC_MSG_RESULT(yes) ],[ AC_MSG_RESULT(no) ]) ]) dnl # dnl # 2.6.34 API change dnl # blk_queue_max_segments() consolidates blk_queue_max_hw_segments() dnl # and blk_queue_max_phys_segments(). dnl # AC_DEFUN([ZFS_AC_KERNEL_SRC_BLK_QUEUE_MAX_SEGMENTS], [ ZFS_LINUX_TEST_SRC([blk_queue_max_segments], [ #include ], [ struct request_queue *q __attribute__ ((unused)) = NULL; (void) blk_queue_max_segments(q, BLK_MAX_SEGMENTS); ], []) ]) AC_DEFUN([ZFS_AC_KERNEL_BLK_QUEUE_MAX_SEGMENTS], [ AC_MSG_CHECKING([whether blk_queue_max_segments() is available]) ZFS_LINUX_TEST_RESULT([blk_queue_max_segments], [ AC_MSG_RESULT(yes) ], [ AC_MSG_RESULT(no) ]) ]) dnl # dnl # See if kernel supports block multi-queue and blk_status_t. dnl # blk_status_t represents the new status codes introduced in the 4.13 dnl # kernel patch: dnl # dnl # block: introduce new block status code type dnl # dnl # We do not currently support the "old" block multi-queue interfaces from dnl # prior kernels. dnl # AC_DEFUN([ZFS_AC_KERNEL_SRC_BLK_MQ], [ ZFS_LINUX_TEST_SRC([blk_mq], [ #include ], [ struct blk_mq_tag_set tag_set __attribute__ ((unused)) = {0}; (void) blk_mq_alloc_tag_set(&tag_set); return BLK_STS_OK; ], []) ZFS_LINUX_TEST_SRC([blk_mq_rq_hctx], [ #include #include ], [ struct request rq = {0}; struct blk_mq_hw_ctx *hctx = NULL; rq.mq_hctx = hctx; ], []) ]) AC_DEFUN([ZFS_AC_KERNEL_BLK_MQ], [ AC_MSG_CHECKING([whether block multiqueue with blk_status_t is available]) ZFS_LINUX_TEST_RESULT([blk_mq], [ AC_MSG_RESULT(yes) AC_DEFINE(HAVE_BLK_MQ, 1, [block multiqueue is available]) AC_MSG_CHECKING([whether block multiqueue hardware context is cached in struct request]) ZFS_LINUX_TEST_RESULT([blk_mq_rq_hctx], [ AC_MSG_RESULT(yes) AC_DEFINE(HAVE_BLK_MQ_RQ_HCTX, 1, [block multiqueue hardware context is cached in struct request]) ], [ AC_MSG_RESULT(no) ]) ], [ AC_MSG_RESULT(no) ]) ]) AC_DEFUN([ZFS_AC_KERNEL_SRC_BLK_QUEUE], [ ZFS_AC_KERNEL_SRC_BLK_QUEUE_PLUG ZFS_AC_KERNEL_SRC_BLK_QUEUE_BDI + ZFS_AC_KERNEL_SRC_BLK_QUEUE_DISK_BDI ZFS_AC_KERNEL_SRC_BLK_QUEUE_UPDATE_READAHEAD ZFS_AC_KERNEL_SRC_BLK_QUEUE_DISCARD ZFS_AC_KERNEL_SRC_BLK_QUEUE_SECURE_ERASE ZFS_AC_KERNEL_SRC_BLK_QUEUE_FLAG_SET ZFS_AC_KERNEL_SRC_BLK_QUEUE_FLAG_CLEAR ZFS_AC_KERNEL_SRC_BLK_QUEUE_FLUSH ZFS_AC_KERNEL_SRC_BLK_QUEUE_MAX_HW_SECTORS ZFS_AC_KERNEL_SRC_BLK_QUEUE_MAX_SEGMENTS ZFS_AC_KERNEL_SRC_BLK_MQ ]) AC_DEFUN([ZFS_AC_KERNEL_BLK_QUEUE], [ ZFS_AC_KERNEL_BLK_QUEUE_PLUG ZFS_AC_KERNEL_BLK_QUEUE_BDI + ZFS_AC_KERNEL_BLK_QUEUE_DISK_BDI ZFS_AC_KERNEL_BLK_QUEUE_UPDATE_READAHEAD ZFS_AC_KERNEL_BLK_QUEUE_DISCARD ZFS_AC_KERNEL_BLK_QUEUE_SECURE_ERASE ZFS_AC_KERNEL_BLK_QUEUE_FLAG_SET ZFS_AC_KERNEL_BLK_QUEUE_FLAG_CLEAR ZFS_AC_KERNEL_BLK_QUEUE_FLUSH ZFS_AC_KERNEL_BLK_QUEUE_MAX_HW_SECTORS ZFS_AC_KERNEL_BLK_QUEUE_MAX_SEGMENTS ZFS_AC_KERNEL_BLK_MQ ]) diff --git a/sys/contrib/openzfs/config/kernel-make-request-fn.m4 b/sys/contrib/openzfs/config/kernel-make-request-fn.m4 index 9813ad2fb3f3..4c54bdd6d4a2 100644 --- a/sys/contrib/openzfs/config/kernel-make-request-fn.m4 +++ b/sys/contrib/openzfs/config/kernel-make-request-fn.m4 @@ -1,213 +1,234 @@ dnl # dnl # Check for make_request_fn interface. dnl # AC_DEFUN([ZFS_AC_KERNEL_SRC_MAKE_REQUEST_FN], [ ZFS_LINUX_TEST_SRC([make_request_fn_void], [ #include static void make_request(struct request_queue *q, struct bio *bio) { return; } ],[ blk_queue_make_request(NULL, &make_request); ]) ZFS_LINUX_TEST_SRC([make_request_fn_blk_qc_t], [ #include static blk_qc_t make_request(struct request_queue *q, struct bio *bio) { return (BLK_QC_T_NONE); } ],[ blk_queue_make_request(NULL, &make_request); ]) ZFS_LINUX_TEST_SRC([blk_alloc_queue_request_fn], [ #include static blk_qc_t make_request(struct request_queue *q, struct bio *bio) { return (BLK_QC_T_NONE); } ],[ struct request_queue *q __attribute__ ((unused)); q = blk_alloc_queue(make_request, NUMA_NO_NODE); ]) ZFS_LINUX_TEST_SRC([blk_alloc_queue_request_fn_rh], [ #include static blk_qc_t make_request(struct request_queue *q, struct bio *bio) { return (BLK_QC_T_NONE); } ],[ struct request_queue *q __attribute__ ((unused)); q = blk_alloc_queue_rh(make_request, NUMA_NO_NODE); ]) ZFS_LINUX_TEST_SRC([block_device_operations_submit_bio], [ #include ],[ struct block_device_operations o; o.submit_bio = NULL; ]) ZFS_LINUX_TEST_SRC([blk_alloc_disk], [ #include ],[ struct gendisk *disk __attribute__ ((unused)); disk = blk_alloc_disk(NUMA_NO_NODE); ]) ZFS_LINUX_TEST_SRC([blk_alloc_disk_2arg], [ #include ],[ struct queue_limits *lim = NULL; struct gendisk *disk __attribute__ ((unused)); disk = blk_alloc_disk(lim, NUMA_NO_NODE); ]) + ZFS_LINUX_TEST_SRC([blkdev_queue_limits_features], [ + #include + ],[ + struct queue_limits *lim = NULL; + lim->features = 0; + ]) + ZFS_LINUX_TEST_SRC([blk_cleanup_disk], [ #include ],[ struct gendisk *disk __attribute__ ((unused)); blk_cleanup_disk(disk); ]) ]) AC_DEFUN([ZFS_AC_KERNEL_MAKE_REQUEST_FN], [ dnl # Checked as part of the blk_alloc_queue_request_fn test dnl # dnl # Linux 5.9 API Change dnl # make_request_fn was moved into block_device_operations->submit_bio dnl # AC_MSG_CHECKING([whether submit_bio is member of struct block_device_operations]) ZFS_LINUX_TEST_RESULT([block_device_operations_submit_bio], [ AC_MSG_RESULT(yes) AC_DEFINE(HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS, 1, [submit_bio is member of struct block_device_operations]) dnl # dnl # Linux 5.14 API Change: dnl # blk_alloc_queue() + alloc_disk() combo replaced by dnl # a single call to blk_alloc_disk(). dnl # AC_MSG_CHECKING([whether blk_alloc_disk() exists]) ZFS_LINUX_TEST_RESULT([blk_alloc_disk], [ AC_MSG_RESULT(yes) AC_DEFINE([HAVE_BLK_ALLOC_DISK], 1, [blk_alloc_disk() exists]) dnl # dnl # 5.20 API change, dnl # Removed blk_cleanup_disk(), put_disk() should be used. dnl # AC_MSG_CHECKING([whether blk_cleanup_disk() exists]) ZFS_LINUX_TEST_RESULT([blk_cleanup_disk], [ AC_MSG_RESULT(yes) AC_DEFINE([HAVE_BLK_CLEANUP_DISK], 1, [blk_cleanup_disk() exists]) ], [ AC_MSG_RESULT(no) ]) ], [ AC_MSG_RESULT(no) ]) dnl # dnl # Linux 6.9 API Change: dnl # blk_alloc_queue() takes a nullable queue_limits arg. dnl # AC_MSG_CHECKING([whether blk_alloc_disk() exists and takes 2 args]) ZFS_LINUX_TEST_RESULT([blk_alloc_disk_2arg], [ AC_MSG_RESULT(yes) AC_DEFINE([HAVE_BLK_ALLOC_DISK_2ARG], 1, [blk_alloc_disk() exists and takes 2 args]) + dnl # + dnl # Linux 6.11 API change: + dnl # struct queue_limits gains a 'features' field, + dnl # used to set flushing options + dnl # + AC_MSG_CHECKING([whether struct queue_limits has a features field]) + ZFS_LINUX_TEST_RESULT([blkdev_queue_limits_features], [ + AC_MSG_RESULT(yes) + AC_DEFINE([HAVE_BLKDEV_QUEUE_LIMITS_FEATURES], 1, + [struct queue_limits has a features field]) + ], [ + AC_MSG_RESULT(no) + ]) + dnl # dnl # 5.20 API change, dnl # Removed blk_cleanup_disk(), put_disk() should be used. dnl # AC_MSG_CHECKING([whether blk_cleanup_disk() exists]) ZFS_LINUX_TEST_RESULT([blk_cleanup_disk], [ AC_MSG_RESULT(yes) AC_DEFINE([HAVE_BLK_CLEANUP_DISK], 1, [blk_cleanup_disk() exists]) ], [ AC_MSG_RESULT(no) ]) ], [ AC_MSG_RESULT(no) ]) ],[ AC_MSG_RESULT(no) dnl # Checked as part of the blk_alloc_queue_request_fn test dnl # dnl # Linux 5.7 API Change dnl # blk_alloc_queue() expects request function. dnl # AC_MSG_CHECKING([whether blk_alloc_queue() expects request function]) ZFS_LINUX_TEST_RESULT([blk_alloc_queue_request_fn], [ AC_MSG_RESULT(yes) dnl # This is currently always the case. AC_MSG_CHECKING([whether make_request_fn() returns blk_qc_t]) AC_MSG_RESULT(yes) AC_DEFINE(HAVE_BLK_ALLOC_QUEUE_REQUEST_FN, 1, [blk_alloc_queue() expects request function]) AC_DEFINE(MAKE_REQUEST_FN_RET, blk_qc_t, [make_request_fn() return type]) AC_DEFINE(HAVE_MAKE_REQUEST_FN_RET_QC, 1, [Noting that make_request_fn() returns blk_qc_t]) ],[ dnl # dnl # CentOS Stream 4.18.0-257 API Change dnl # The Linux 5.7 blk_alloc_queue() change was back- dnl # ported and the symbol renamed blk_alloc_queue_rh(). dnl # As of this kernel version they're not providing dnl # any compatibility code in the kernel for this. dnl # ZFS_LINUX_TEST_RESULT([blk_alloc_queue_request_fn_rh], [ AC_MSG_RESULT(yes) dnl # This is currently always the case. AC_MSG_CHECKING([whether make_request_fn_rh() returns blk_qc_t]) AC_MSG_RESULT(yes) AC_DEFINE(HAVE_BLK_ALLOC_QUEUE_REQUEST_FN_RH, 1, [blk_alloc_queue_rh() expects request function]) AC_DEFINE(MAKE_REQUEST_FN_RET, blk_qc_t, [make_request_fn() return type]) AC_DEFINE(HAVE_MAKE_REQUEST_FN_RET_QC, 1, [Noting that make_request_fn() returns blk_qc_t]) ],[ AC_MSG_RESULT(no) dnl # dnl # Linux 3.2 API Change dnl # make_request_fn returns void. dnl # AC_MSG_CHECKING( [whether make_request_fn() returns void]) ZFS_LINUX_TEST_RESULT([make_request_fn_void], [ AC_MSG_RESULT(yes) AC_DEFINE(MAKE_REQUEST_FN_RET, void, [make_request_fn() return type]) AC_DEFINE(HAVE_MAKE_REQUEST_FN_RET_VOID, 1, [Noting that make_request_fn() returns void]) ],[ AC_MSG_RESULT(no) dnl # dnl # Linux 4.4 API Change dnl # make_request_fn returns blk_qc_t. dnl # AC_MSG_CHECKING( [whether make_request_fn() returns blk_qc_t]) ZFS_LINUX_TEST_RESULT([make_request_fn_blk_qc_t], [ AC_MSG_RESULT(yes) AC_DEFINE(MAKE_REQUEST_FN_RET, blk_qc_t, [make_request_fn() return type]) AC_DEFINE(HAVE_MAKE_REQUEST_FN_RET_QC, 1, [Noting that make_request_fn() ] [returns blk_qc_t]) ],[ ZFS_LINUX_TEST_ERROR([make_request_fn]) ]) ]) ]) ]) ]) ]) diff --git a/sys/contrib/openzfs/config/kernel-mm-page-size.m4 b/sys/contrib/openzfs/config/kernel-mm-page-size.m4 deleted file mode 100644 index d5ebd926986a..000000000000 --- a/sys/contrib/openzfs/config/kernel-mm-page-size.m4 +++ /dev/null @@ -1,17 +0,0 @@ -AC_DEFUN([ZFS_AC_KERNEL_SRC_MM_PAGE_SIZE], [ - ZFS_LINUX_TEST_SRC([page_size], [ - #include - ],[ - unsigned long s; - s = page_size(NULL); - ]) -]) -AC_DEFUN([ZFS_AC_KERNEL_MM_PAGE_SIZE], [ - AC_MSG_CHECKING([whether page_size() is available]) - ZFS_LINUX_TEST_RESULT([page_size], [ - AC_MSG_RESULT(yes) - AC_DEFINE(HAVE_MM_PAGE_SIZE, 1, [page_size() is available]) - ],[ - AC_MSG_RESULT(no) - ]) -]) diff --git a/sys/contrib/openzfs/config/kernel-mm-pagemap.m4 b/sys/contrib/openzfs/config/kernel-mm-pagemap.m4 new file mode 100644 index 000000000000..466b6fa07d9a --- /dev/null +++ b/sys/contrib/openzfs/config/kernel-mm-pagemap.m4 @@ -0,0 +1,36 @@ +AC_DEFUN([ZFS_AC_KERNEL_SRC_MM_PAGE_SIZE], [ + ZFS_LINUX_TEST_SRC([page_size], [ + #include + ],[ + unsigned long s; + s = page_size(NULL); + ]) +]) +AC_DEFUN([ZFS_AC_KERNEL_MM_PAGE_SIZE], [ + AC_MSG_CHECKING([whether page_size() is available]) + ZFS_LINUX_TEST_RESULT([page_size], [ + AC_MSG_RESULT(yes) + AC_DEFINE(HAVE_MM_PAGE_SIZE, 1, [page_size() is available]) + ],[ + AC_MSG_RESULT(no) + ]) +]) + + +AC_DEFUN([ZFS_AC_KERNEL_SRC_MM_PAGE_MAPPING], [ + ZFS_LINUX_TEST_SRC([page_mapping], [ + #include + ],[ + struct page *p = NULL; + struct address_space *m = page_mapping(NULL); + ]) +]) +AC_DEFUN([ZFS_AC_KERNEL_MM_PAGE_MAPPING], [ + AC_MSG_CHECKING([whether page_mapping() is available]) + ZFS_LINUX_TEST_RESULT([page_mapping], [ + AC_MSG_RESULT(yes) + AC_DEFINE(HAVE_MM_PAGE_MAPPING, 1, [page_mapping() is available]) + ],[ + AC_MSG_RESULT(no) + ]) +]) diff --git a/sys/contrib/openzfs/config/kernel-register_sysctl_table.m4 b/sys/contrib/openzfs/config/kernel-register_sysctl_table.m4 index a5e934f56d29..12ffe9d95142 100644 --- a/sys/contrib/openzfs/config/kernel-register_sysctl_table.m4 +++ b/sys/contrib/openzfs/config/kernel-register_sysctl_table.m4 @@ -1,27 +1,86 @@ dnl # dnl # Linux 6.5 removes register_sysctl_table dnl # AC_DEFUN([ZFS_AC_KERNEL_SRC_REGISTER_SYSCTL_TABLE], [ ZFS_LINUX_TEST_SRC([has_register_sysctl_table], [ #include static struct ctl_table dummy_table[] = { {} }; ],[ struct ctl_table_header *h __attribute((unused)) = register_sysctl_table(dummy_table); ]) ]) AC_DEFUN([ZFS_AC_KERNEL_REGISTER_SYSCTL_TABLE], [ AC_MSG_CHECKING([whether register_sysctl_table exists]) ZFS_LINUX_TEST_RESULT([has_register_sysctl_table], [ AC_MSG_RESULT([yes]) AC_DEFINE(HAVE_REGISTER_SYSCTL_TABLE, 1, [register_sysctl_table exists]) ],[ AC_MSG_RESULT([no]) ]) ]) + +dnl # +dnl # Linux 6.11 register_sysctl() enforces that sysctl tables no longer +dnl # supply a sentinel end-of-table element. 6.6 introduces +dnl # register_sysctl_sz() to enable callers to choose, so we use it if +dnl # available for backward compatibility. +dnl # +AC_DEFUN([ZFS_AC_KERNEL_SRC_REGISTER_SYSCTL_SZ], [ + ZFS_LINUX_TEST_SRC([has_register_sysctl_sz], [ + #include + ],[ + struct ctl_table test_table[] __attribute__((unused)) = {0}; + register_sysctl_sz("", test_table, 0); + ]) +]) + +AC_DEFUN([ZFS_AC_KERNEL_REGISTER_SYSCTL_SZ], [ + AC_MSG_CHECKING([whether register_sysctl_sz exists]) + ZFS_LINUX_TEST_RESULT([has_register_sysctl_sz], [ + AC_MSG_RESULT([yes]) + AC_DEFINE(HAVE_REGISTER_SYSCTL_SZ, 1, + [register_sysctl_sz exists]) + ],[ + AC_MSG_RESULT([no]) + ]) +]) + +dnl # +dnl # Linux 6.11 makes const the ctl_table arg of proc_handler +dnl # +AC_DEFUN([ZFS_AC_KERNEL_SRC_PROC_HANDLER_CTL_TABLE_CONST], [ + ZFS_LINUX_TEST_SRC([has_proc_handler_ctl_table_const], [ + #include + + static int test_handler( + const struct ctl_table *ctl __attribute((unused)), + int write __attribute((unused)), + void *buffer __attribute((unused)), + size_t *lenp __attribute((unused)), + loff_t *ppos __attribute((unused))) + { + return (0); + } + ], [ + proc_handler *ph __attribute((unused)) = + &test_handler; + ]) +]) + +AC_DEFUN([ZFS_AC_KERNEL_PROC_HANDLER_CTL_TABLE_CONST], [ + AC_MSG_CHECKING([whether proc_handler ctl_table arg is const]) + ZFS_LINUX_TEST_RESULT([has_proc_handler_ctl_table_const], [ + AC_MSG_RESULT([yes]) + AC_DEFINE(HAVE_PROC_HANDLER_CTL_TABLE_CONST, 1, + [proc_handler ctl_table arg is const]) + ], [ + AC_MSG_RESULT([no]) + ]) +]) diff --git a/sys/contrib/openzfs/config/kernel.m4 b/sys/contrib/openzfs/config/kernel.m4 index f282ccd8b9d7..4d471358d242 100644 --- a/sys/contrib/openzfs/config/kernel.m4 +++ b/sys/contrib/openzfs/config/kernel.m4 @@ -1,1050 +1,1056 @@ dnl # dnl # Default ZFS kernel configuration dnl # AC_DEFUN([ZFS_AC_CONFIG_KERNEL], [ AM_COND_IF([BUILD_LINUX], [ dnl # Setup the kernel build environment. ZFS_AC_KERNEL ZFS_AC_QAT dnl # Sanity checks for module building and CONFIG_* defines ZFS_AC_KERNEL_CONFIG_DEFINED ZFS_AC_MODULE_SYMVERS dnl # Sequential ZFS_LINUX_TRY_COMPILE tests ZFS_AC_KERNEL_FPU_HEADER ZFS_AC_KERNEL_OBJTOOL_HEADER ZFS_AC_KERNEL_WAIT_QUEUE_ENTRY_T ZFS_AC_KERNEL_MISC_MINOR ZFS_AC_KERNEL_DECLARE_EVENT_CLASS dnl # Parallel ZFS_LINUX_TEST_SRC / ZFS_LINUX_TEST_RESULT tests ZFS_AC_KERNEL_TEST_SRC ZFS_AC_KERNEL_TEST_RESULT AS_IF([test "$LINUX_OBJ" != "$LINUX"], [ KERNEL_MAKE="$KERNEL_MAKE O=$LINUX_OBJ" ]) AC_SUBST(KERNEL_MAKE) ]) ]) dnl # dnl # Generate and compile all of the kernel API test cases to determine dnl # which interfaces are available. By invoking the kernel build system dnl # only once the compilation can be done in parallel significantly dnl # speeding up the process. dnl # AC_DEFUN([ZFS_AC_KERNEL_TEST_SRC], [ ZFS_AC_KERNEL_SRC_TYPES ZFS_AC_KERNEL_SRC_OBJTOOL ZFS_AC_KERNEL_SRC_GLOBAL_PAGE_STATE ZFS_AC_KERNEL_SRC_ACCESS_OK_TYPE ZFS_AC_KERNEL_SRC_PDE_DATA ZFS_AC_KERNEL_SRC_FALLOCATE ZFS_AC_KERNEL_SRC_FADVISE ZFS_AC_KERNEL_SRC_GENERIC_FADVISE ZFS_AC_KERNEL_SRC_2ARGS_ZLIB_DEFLATE_WORKSPACESIZE ZFS_AC_KERNEL_SRC_RWSEM ZFS_AC_KERNEL_SRC_SCHED ZFS_AC_KERNEL_SRC_USLEEP_RANGE ZFS_AC_KERNEL_SRC_KMEM_CACHE ZFS_AC_KERNEL_SRC_KVMALLOC ZFS_AC_KERNEL_SRC_VMALLOC_PAGE_KERNEL ZFS_AC_KERNEL_SRC_WAIT ZFS_AC_KERNEL_SRC_INODE_TIMES ZFS_AC_KERNEL_SRC_INODE_LOCK ZFS_AC_KERNEL_SRC_GROUP_INFO_GID ZFS_AC_KERNEL_SRC_RW ZFS_AC_KERNEL_SRC_TIMER_SETUP ZFS_AC_KERNEL_SRC_SUPER_USER_NS ZFS_AC_KERNEL_SRC_PROC_OPERATIONS ZFS_AC_KERNEL_SRC_BLOCK_DEVICE_OPERATIONS ZFS_AC_KERNEL_SRC_BIO ZFS_AC_KERNEL_SRC_BLKDEV ZFS_AC_KERNEL_SRC_BLK_QUEUE ZFS_AC_KERNEL_SRC_GENHD_FLAGS ZFS_AC_KERNEL_SRC_REVALIDATE_DISK ZFS_AC_KERNEL_SRC_GET_DISK_RO ZFS_AC_KERNEL_SRC_GENERIC_READLINK_GLOBAL ZFS_AC_KERNEL_SRC_DISCARD_GRANULARITY ZFS_AC_KERNEL_SRC_INODE_OWNER_OR_CAPABLE ZFS_AC_KERNEL_SRC_XATTR ZFS_AC_KERNEL_SRC_ACL ZFS_AC_KERNEL_SRC_INODE_SETATTR ZFS_AC_KERNEL_SRC_INODE_GETATTR ZFS_AC_KERNEL_SRC_INODE_SET_FLAGS ZFS_AC_KERNEL_SRC_INODE_SET_IVERSION ZFS_AC_KERNEL_SRC_SHOW_OPTIONS ZFS_AC_KERNEL_SRC_FILE_INODE ZFS_AC_KERNEL_SRC_FILE_DENTRY ZFS_AC_KERNEL_SRC_FSYNC ZFS_AC_KERNEL_SRC_AIO_FSYNC ZFS_AC_KERNEL_SRC_EVICT_INODE ZFS_AC_KERNEL_SRC_DIRTY_INODE ZFS_AC_KERNEL_SRC_SHRINKER ZFS_AC_KERNEL_SRC_MKDIR ZFS_AC_KERNEL_SRC_LOOKUP_FLAGS ZFS_AC_KERNEL_SRC_CREATE ZFS_AC_KERNEL_SRC_PERMISSION ZFS_AC_KERNEL_SRC_GET_LINK ZFS_AC_KERNEL_SRC_PUT_LINK ZFS_AC_KERNEL_SRC_TMPFILE ZFS_AC_KERNEL_SRC_AUTOMOUNT ZFS_AC_KERNEL_SRC_ENCODE_FH_WITH_INODE ZFS_AC_KERNEL_SRC_COMMIT_METADATA ZFS_AC_KERNEL_SRC_CLEAR_INODE ZFS_AC_KERNEL_SRC_SETATTR_PREPARE ZFS_AC_KERNEL_SRC_INSERT_INODE_LOCKED ZFS_AC_KERNEL_SRC_DENTRY ZFS_AC_KERNEL_SRC_DENTRY_ALIAS_D_U ZFS_AC_KERNEL_SRC_TRUNCATE_SETSIZE ZFS_AC_KERNEL_SRC_SECURITY_INODE ZFS_AC_KERNEL_SRC_FST_MOUNT ZFS_AC_KERNEL_SRC_BDI ZFS_AC_KERNEL_SRC_SET_NLINK ZFS_AC_KERNEL_SRC_SGET ZFS_AC_KERNEL_SRC_LSEEK_EXECUTE ZFS_AC_KERNEL_SRC_VFS_FILEMAP_DIRTY_FOLIO ZFS_AC_KERNEL_SRC_VFS_READ_FOLIO ZFS_AC_KERNEL_SRC_VFS_GETATTR ZFS_AC_KERNEL_SRC_VFS_FSYNC_2ARGS ZFS_AC_KERNEL_SRC_VFS_ITERATE ZFS_AC_KERNEL_SRC_VFS_DIRECT_IO ZFS_AC_KERNEL_SRC_VFS_READPAGES ZFS_AC_KERNEL_SRC_VFS_SET_PAGE_DIRTY_NOBUFFERS ZFS_AC_KERNEL_SRC_VFS_RW_ITERATE ZFS_AC_KERNEL_SRC_VFS_GENERIC_WRITE_CHECKS ZFS_AC_KERNEL_SRC_VFS_IOV_ITER ZFS_AC_KERNEL_SRC_VFS_COPY_FILE_RANGE ZFS_AC_KERNEL_SRC_VFS_GENERIC_COPY_FILE_RANGE ZFS_AC_KERNEL_SRC_VFS_SPLICE_COPY_FILE_RANGE ZFS_AC_KERNEL_SRC_VFS_REMAP_FILE_RANGE ZFS_AC_KERNEL_SRC_VFS_CLONE_FILE_RANGE ZFS_AC_KERNEL_SRC_VFS_DEDUPE_FILE_RANGE ZFS_AC_KERNEL_SRC_VFS_FILE_OPERATIONS_EXTEND ZFS_AC_KERNEL_SRC_KMAP_ATOMIC_ARGS ZFS_AC_KERNEL_SRC_KMAP_LOCAL_PAGE ZFS_AC_KERNEL_SRC_FOLLOW_DOWN_ONE ZFS_AC_KERNEL_SRC_MAKE_REQUEST_FN ZFS_AC_KERNEL_SRC_GENERIC_IO_ACCT ZFS_AC_KERNEL_SRC_FPU ZFS_AC_KERNEL_SRC_FMODE_T ZFS_AC_KERNEL_SRC_KUIDGID_T ZFS_AC_KERNEL_SRC_KUID_HELPERS ZFS_AC_KERNEL_SRC_RENAME ZFS_AC_KERNEL_SRC_CURRENT_TIME ZFS_AC_KERNEL_SRC_USERNS_CAPABILITIES ZFS_AC_KERNEL_SRC_IN_COMPAT_SYSCALL ZFS_AC_KERNEL_SRC_KTIME ZFS_AC_KERNEL_SRC_TOTALRAM_PAGES_FUNC ZFS_AC_KERNEL_SRC_TOTALHIGH_PAGES ZFS_AC_KERNEL_SRC_KSTRTOUL ZFS_AC_KERNEL_SRC_PERCPU ZFS_AC_KERNEL_SRC_CPU_HOTPLUG ZFS_AC_KERNEL_SRC_GENERIC_FILLATTR ZFS_AC_KERNEL_SRC_MKNOD ZFS_AC_KERNEL_SRC_SYMLINK ZFS_AC_KERNEL_SRC_BIO_MAX_SEGS ZFS_AC_KERNEL_SRC_SIGNAL_STOP ZFS_AC_KERNEL_SRC_SIGINFO ZFS_AC_KERNEL_SRC_SYSFS ZFS_AC_KERNEL_SRC_SET_SPECIAL_STATE ZFS_AC_KERNEL_SRC_STANDALONE_LINUX_STDARG ZFS_AC_KERNEL_SRC_STRLCPY ZFS_AC_KERNEL_SRC_STRSCPY ZFS_AC_KERNEL_SRC_PAGEMAP_FOLIO_WAIT_BIT ZFS_AC_KERNEL_SRC_ADD_DISK ZFS_AC_KERNEL_SRC_KTHREAD ZFS_AC_KERNEL_SRC_ZERO_PAGE ZFS_AC_KERNEL_SRC___COPY_FROM_USER_INATOMIC ZFS_AC_KERNEL_SRC_USER_NS_COMMON_INUM ZFS_AC_KERNEL_SRC_IDMAP_MNT_API ZFS_AC_KERNEL_SRC_IDMAP_NO_USERNS ZFS_AC_KERNEL_SRC_IATTR_VFSID ZFS_AC_KERNEL_SRC_FILEMAP ZFS_AC_KERNEL_SRC_WRITEPAGE_T ZFS_AC_KERNEL_SRC_RECLAIMED ZFS_AC_KERNEL_SRC_REGISTER_SYSCTL_TABLE + ZFS_AC_KERNEL_SRC_REGISTER_SYSCTL_SZ + ZFS_AC_KERNEL_SRC_PROC_HANDLER_CTL_TABLE_CONST ZFS_AC_KERNEL_SRC_COPY_SPLICE_READ ZFS_AC_KERNEL_SRC_SYNC_BDEV ZFS_AC_KERNEL_SRC_MM_PAGE_SIZE + ZFS_AC_KERNEL_SRC_MM_PAGE_MAPPING case "$host_cpu" in powerpc*) ZFS_AC_KERNEL_SRC_CPU_HAS_FEATURE ZFS_AC_KERNEL_SRC_FLUSH_DCACHE_PAGE ;; riscv*) ZFS_AC_KERNEL_SRC_FLUSH_DCACHE_PAGE ;; esac AC_MSG_CHECKING([for available kernel interfaces]) ZFS_LINUX_TEST_COMPILE_ALL([kabi]) AC_MSG_RESULT([done]) ]) dnl # dnl # Check results of kernel interface tests. dnl # AC_DEFUN([ZFS_AC_KERNEL_TEST_RESULT], [ ZFS_AC_KERNEL_TYPES ZFS_AC_KERNEL_ACCESS_OK_TYPE ZFS_AC_KERNEL_GLOBAL_PAGE_STATE ZFS_AC_KERNEL_OBJTOOL ZFS_AC_KERNEL_PDE_DATA ZFS_AC_KERNEL_FALLOCATE ZFS_AC_KERNEL_FADVISE ZFS_AC_KERNEL_GENERIC_FADVISE ZFS_AC_KERNEL_2ARGS_ZLIB_DEFLATE_WORKSPACESIZE ZFS_AC_KERNEL_RWSEM ZFS_AC_KERNEL_SCHED ZFS_AC_KERNEL_USLEEP_RANGE ZFS_AC_KERNEL_KMEM_CACHE ZFS_AC_KERNEL_KVMALLOC ZFS_AC_KERNEL_VMALLOC_PAGE_KERNEL ZFS_AC_KERNEL_WAIT ZFS_AC_KERNEL_INODE_TIMES ZFS_AC_KERNEL_INODE_LOCK ZFS_AC_KERNEL_GROUP_INFO_GID ZFS_AC_KERNEL_RW ZFS_AC_KERNEL_TIMER_SETUP ZFS_AC_KERNEL_SUPER_USER_NS ZFS_AC_KERNEL_PROC_OPERATIONS ZFS_AC_KERNEL_BLOCK_DEVICE_OPERATIONS ZFS_AC_KERNEL_BIO ZFS_AC_KERNEL_BLKDEV ZFS_AC_KERNEL_BLK_QUEUE ZFS_AC_KERNEL_GENHD_FLAGS ZFS_AC_KERNEL_REVALIDATE_DISK ZFS_AC_KERNEL_GET_DISK_RO ZFS_AC_KERNEL_GENERIC_READLINK_GLOBAL ZFS_AC_KERNEL_DISCARD_GRANULARITY ZFS_AC_KERNEL_INODE_OWNER_OR_CAPABLE ZFS_AC_KERNEL_XATTR ZFS_AC_KERNEL_ACL ZFS_AC_KERNEL_INODE_SETATTR ZFS_AC_KERNEL_INODE_GETATTR ZFS_AC_KERNEL_INODE_SET_FLAGS ZFS_AC_KERNEL_INODE_SET_IVERSION ZFS_AC_KERNEL_SHOW_OPTIONS ZFS_AC_KERNEL_FILE_INODE ZFS_AC_KERNEL_FILE_DENTRY ZFS_AC_KERNEL_FSYNC ZFS_AC_KERNEL_AIO_FSYNC ZFS_AC_KERNEL_EVICT_INODE ZFS_AC_KERNEL_DIRTY_INODE ZFS_AC_KERNEL_SHRINKER ZFS_AC_KERNEL_MKDIR ZFS_AC_KERNEL_LOOKUP_FLAGS ZFS_AC_KERNEL_CREATE ZFS_AC_KERNEL_PERMISSION ZFS_AC_KERNEL_GET_LINK ZFS_AC_KERNEL_PUT_LINK ZFS_AC_KERNEL_TMPFILE ZFS_AC_KERNEL_AUTOMOUNT ZFS_AC_KERNEL_ENCODE_FH_WITH_INODE ZFS_AC_KERNEL_COMMIT_METADATA ZFS_AC_KERNEL_CLEAR_INODE ZFS_AC_KERNEL_SETATTR_PREPARE ZFS_AC_KERNEL_INSERT_INODE_LOCKED ZFS_AC_KERNEL_DENTRY ZFS_AC_KERNEL_DENTRY_ALIAS_D_U ZFS_AC_KERNEL_TRUNCATE_SETSIZE ZFS_AC_KERNEL_SECURITY_INODE ZFS_AC_KERNEL_FST_MOUNT ZFS_AC_KERNEL_BDI ZFS_AC_KERNEL_SET_NLINK ZFS_AC_KERNEL_SGET ZFS_AC_KERNEL_LSEEK_EXECUTE ZFS_AC_KERNEL_VFS_FILEMAP_DIRTY_FOLIO ZFS_AC_KERNEL_VFS_READ_FOLIO ZFS_AC_KERNEL_VFS_GETATTR ZFS_AC_KERNEL_VFS_FSYNC_2ARGS ZFS_AC_KERNEL_VFS_ITERATE ZFS_AC_KERNEL_VFS_DIRECT_IO ZFS_AC_KERNEL_VFS_READPAGES ZFS_AC_KERNEL_VFS_SET_PAGE_DIRTY_NOBUFFERS ZFS_AC_KERNEL_VFS_RW_ITERATE ZFS_AC_KERNEL_VFS_GENERIC_WRITE_CHECKS ZFS_AC_KERNEL_VFS_IOV_ITER ZFS_AC_KERNEL_VFS_COPY_FILE_RANGE ZFS_AC_KERNEL_VFS_GENERIC_COPY_FILE_RANGE ZFS_AC_KERNEL_VFS_SPLICE_COPY_FILE_RANGE ZFS_AC_KERNEL_VFS_REMAP_FILE_RANGE ZFS_AC_KERNEL_VFS_CLONE_FILE_RANGE ZFS_AC_KERNEL_VFS_DEDUPE_FILE_RANGE ZFS_AC_KERNEL_VFS_FILE_OPERATIONS_EXTEND ZFS_AC_KERNEL_KMAP_ATOMIC_ARGS ZFS_AC_KERNEL_KMAP_LOCAL_PAGE ZFS_AC_KERNEL_FOLLOW_DOWN_ONE ZFS_AC_KERNEL_MAKE_REQUEST_FN ZFS_AC_KERNEL_GENERIC_IO_ACCT ZFS_AC_KERNEL_FPU ZFS_AC_KERNEL_FMODE_T ZFS_AC_KERNEL_KUIDGID_T ZFS_AC_KERNEL_KUID_HELPERS ZFS_AC_KERNEL_RENAME ZFS_AC_KERNEL_CURRENT_TIME ZFS_AC_KERNEL_USERNS_CAPABILITIES ZFS_AC_KERNEL_IN_COMPAT_SYSCALL ZFS_AC_KERNEL_KTIME ZFS_AC_KERNEL_TOTALRAM_PAGES_FUNC ZFS_AC_KERNEL_TOTALHIGH_PAGES ZFS_AC_KERNEL_KSTRTOUL ZFS_AC_KERNEL_PERCPU ZFS_AC_KERNEL_CPU_HOTPLUG ZFS_AC_KERNEL_GENERIC_FILLATTR ZFS_AC_KERNEL_MKNOD ZFS_AC_KERNEL_SYMLINK ZFS_AC_KERNEL_BIO_MAX_SEGS ZFS_AC_KERNEL_SIGNAL_STOP ZFS_AC_KERNEL_SIGINFO ZFS_AC_KERNEL_SYSFS ZFS_AC_KERNEL_SET_SPECIAL_STATE ZFS_AC_KERNEL_STANDALONE_LINUX_STDARG ZFS_AC_KERNEL_STRLCPY ZFS_AC_KERNEL_STRSCPY ZFS_AC_KERNEL_PAGEMAP_FOLIO_WAIT_BIT ZFS_AC_KERNEL_ADD_DISK ZFS_AC_KERNEL_KTHREAD ZFS_AC_KERNEL_ZERO_PAGE ZFS_AC_KERNEL___COPY_FROM_USER_INATOMIC ZFS_AC_KERNEL_USER_NS_COMMON_INUM ZFS_AC_KERNEL_IDMAP_MNT_API ZFS_AC_KERNEL_IDMAP_NO_USERNS ZFS_AC_KERNEL_IATTR_VFSID ZFS_AC_KERNEL_FILEMAP ZFS_AC_KERNEL_WRITEPAGE_T ZFS_AC_KERNEL_RECLAIMED ZFS_AC_KERNEL_REGISTER_SYSCTL_TABLE + ZFS_AC_KERNEL_REGISTER_SYSCTL_SZ + ZFS_AC_KERNEL_PROC_HANDLER_CTL_TABLE_CONST ZFS_AC_KERNEL_COPY_SPLICE_READ ZFS_AC_KERNEL_SYNC_BDEV ZFS_AC_KERNEL_MM_PAGE_SIZE + ZFS_AC_KERNEL_MM_PAGE_MAPPING case "$host_cpu" in powerpc*) ZFS_AC_KERNEL_CPU_HAS_FEATURE ZFS_AC_KERNEL_FLUSH_DCACHE_PAGE ;; riscv*) ZFS_AC_KERNEL_FLUSH_DCACHE_PAGE ;; esac ]) dnl # dnl # Detect name used for Module.symvers file in kernel dnl # AC_DEFUN([ZFS_AC_MODULE_SYMVERS], [ modpost=$LINUX/scripts/Makefile.modpost AC_MSG_CHECKING([kernel file name for module symbols]) AS_IF([test "x$enable_linux_builtin" != xyes -a -f "$modpost"], [ AS_IF([grep -q Modules.symvers $modpost], [ LINUX_SYMBOLS=Modules.symvers ], [ LINUX_SYMBOLS=Module.symvers ]) AS_IF([test ! -f "$LINUX_OBJ/$LINUX_SYMBOLS"], [ AC_MSG_ERROR([ *** Please make sure the kernel devel package for your distribution *** is installed. If you are building with a custom kernel, make sure *** the kernel is configured, built, and the '--with-linux=PATH' *** configure option refers to the location of the kernel source. ]) ]) ], [ LINUX_SYMBOLS=NONE ]) AC_MSG_RESULT($LINUX_SYMBOLS) AC_SUBST(LINUX_SYMBOLS) ]) dnl # dnl # Detect the kernel to be built against dnl # dnl # Most modern Linux distributions have separate locations for bare dnl # source (source) and prebuilt (build) files. Additionally, there are dnl # `source` and `build` symlinks in `/lib/modules/$(KERNEL_VERSION)` dnl # pointing to them. The directory search order is now: dnl # dnl # - `configure` command line values if both `--with-linux` and dnl # `--with-linux-obj` were defined dnl # dnl # - If only `--with-linux` was defined, `--with-linux-obj` is assumed dnl # to have the same value as `--with-linux` dnl # dnl # - If neither `--with-linux` nor `--with-linux-obj` were defined dnl # autodetection is used: dnl # dnl # - `/lib/modules/$(uname -r)/{source,build}` respectively, if exist. dnl # dnl # - If only `/lib/modules/$(uname -r)/build` exists, it is assumed dnl # to be both source and build directory. dnl # dnl # - The first directory in `/lib/modules` with the highest version dnl # number according to `sort -V` which contains both `source` and dnl # `build` symlinks/directories. If module directory contains only dnl # `build` component, it is assumed to be both source and build dnl # directory. dnl # dnl # - Last resort: the first directory matching `/usr/src/kernels/*` dnl # and `/usr/src/linux-*` with the highest version number according dnl # to `sort -V` is assumed to be both source and build directory. dnl # AC_DEFUN([ZFS_AC_KERNEL], [ AC_ARG_WITH([linux], AS_HELP_STRING([--with-linux=PATH], [Path to kernel source]), [kernelsrc="$withval"]) AC_ARG_WITH(linux-obj, AS_HELP_STRING([--with-linux-obj=PATH], [Path to kernel build objects]), [kernelbuild="$withval"]) AC_MSG_CHECKING([kernel source and build directories]) AS_IF([test -n "$kernelsrc" && test -z "$kernelbuild"], [ kernelbuild="$kernelsrc" ], [test -z "$kernelsrc"], [ AS_IF([test -e "/lib/modules/$(uname -r)/source" && \ test -e "/lib/modules/$(uname -r)/build"], [ src="/lib/modules/$(uname -r)/source" build="/lib/modules/$(uname -r)/build" ], [test -e "/lib/modules/$(uname -r)/build"], [ build="/lib/modules/$(uname -r)/build" src="$build" ], [ src= for d in $(ls -1d /lib/modules/* 2>/dev/null | sort -Vr); do if test -e "$d/source" && test -e "$d/build"; then src="$d/source" build="$d/build" break fi if test -e "$d/build"; then src="$d/build" build="$d/build" break fi done # the least reliable method if test -z "$src"; then src=$(ls -1d /usr/src/kernels/* /usr/src/linux-* \ 2>/dev/null | grep -v obj | sort -Vr | head -1) build="$src" fi ]) AS_IF([test -n "$src" && test -e "$src"], [ kernelsrc=$(readlink -e "$src") ], [ kernelsrc="[Not found]" ]) AS_IF([test -n "$build" && test -e "$build"], [ kernelbuild=$(readlink -e "$build") ], [ kernelbuild="[Not found]" ]) ], [ AS_IF([test "$kernelsrc" = "NONE"], [ kernsrcver=NONE ]) withlinux=yes ]) AC_MSG_RESULT([done]) AC_MSG_CHECKING([kernel source directory]) AC_MSG_RESULT([$kernelsrc]) AC_MSG_CHECKING([kernel build directory]) AC_MSG_RESULT([$kernelbuild]) AS_IF([test ! -d "$kernelsrc" || test ! -d "$kernelbuild"], [ AC_MSG_ERROR([ *** Please make sure the kernel devel package for your distribution *** is installed and then try again. If that fails, you can specify the *** location of the kernel source and build with the '--with-linux=PATH' and *** '--with-linux-obj=PATH' options respectively.]) ]) AC_MSG_CHECKING([kernel source version]) utsrelease1=$kernelbuild/include/linux/version.h utsrelease2=$kernelbuild/include/linux/utsrelease.h utsrelease3=$kernelbuild/include/generated/utsrelease.h AS_IF([test -r $utsrelease1 && grep -qF UTS_RELEASE $utsrelease1], [ utsrelease=$utsrelease1 ], [test -r $utsrelease2 && grep -qF UTS_RELEASE $utsrelease2], [ utsrelease=$utsrelease2 ], [test -r $utsrelease3 && grep -qF UTS_RELEASE $utsrelease3], [ utsrelease=$utsrelease3 ]) AS_IF([test -n "$utsrelease"], [ kernsrcver=$($AWK '/UTS_RELEASE/ { gsub(/"/, "", $[3]); print $[3] }' $utsrelease) AS_IF([test -z "$kernsrcver"], [ AC_MSG_RESULT([Not found]) AC_MSG_ERROR([ *** Cannot determine kernel version. ]) ]) ], [ AC_MSG_RESULT([Not found]) if test "x$enable_linux_builtin" != xyes; then AC_MSG_ERROR([ *** Cannot find UTS_RELEASE definition. ]) else AC_MSG_ERROR([ *** Cannot find UTS_RELEASE definition. *** Please run 'make prepare' inside the kernel source tree.]) fi ]) AC_MSG_RESULT([$kernsrcver]) AS_VERSION_COMPARE([$kernsrcver], [$ZFS_META_KVER_MIN], [ AC_MSG_ERROR([ *** Cannot build against kernel version $kernsrcver. *** The minimum supported kernel version is $ZFS_META_KVER_MIN. ]) ]) LINUX=${kernelsrc} LINUX_OBJ=${kernelbuild} LINUX_VERSION=${kernsrcver} AC_SUBST(LINUX) AC_SUBST(LINUX_OBJ) AC_SUBST(LINUX_VERSION) ]) dnl # dnl # Detect the QAT module to be built against, QAT provides hardware dnl # acceleration for data compression: dnl # dnl # https://01.org/intel-quickassist-technology dnl # dnl # 1) Download and install QAT driver from the above link dnl # 2) Start QAT driver in your system: dnl # service qat_service start dnl # 3) Enable QAT in ZFS, e.g.: dnl # ./configure --with-qat=/QAT1.6 dnl # make dnl # 4) Set GZIP compression in ZFS dataset: dnl # zfs set compression = gzip dnl # dnl # Then the data written to this ZFS pool is compressed by QAT accelerator dnl # automatically, and de-compressed by QAT when read from the pool. dnl # dnl # 1) Get QAT hardware statistics with: dnl # cat /proc/icp_dh895xcc_dev/qat dnl # 2) To disable QAT: dnl # insmod zfs.ko zfs_qat_disable=1 dnl # AC_DEFUN([ZFS_AC_QAT], [ AC_ARG_WITH([qat], AS_HELP_STRING([--with-qat=PATH], [Path to qat source]), AS_IF([test "$withval" = "yes"], AC_MSG_ERROR([--with-qat=PATH requires a PATH]), [qatsrc="$withval"])) AC_ARG_WITH([qat-obj], AS_HELP_STRING([--with-qat-obj=PATH], [Path to qat build objects]), [qatbuild="$withval"]) AS_IF([test ! -z "${qatsrc}"], [ AC_MSG_CHECKING([qat source directory]) AC_MSG_RESULT([$qatsrc]) QAT_SRC="${qatsrc}/quickassist" AS_IF([ test ! -e "$QAT_SRC/include/cpa.h"], [ AC_MSG_ERROR([ *** Please make sure the qat driver package is installed *** and specify the location of the qat source with the *** '--with-qat=PATH' option then try again. Failed to *** find cpa.h in: ${QAT_SRC}/include]) ]) ]) AS_IF([test ! -z "${qatsrc}"], [ AC_MSG_CHECKING([qat build directory]) AS_IF([test -z "$qatbuild"], [ qatbuild="${qatsrc}/build" ]) AC_MSG_RESULT([$qatbuild]) QAT_OBJ=${qatbuild} AS_IF([ ! test -e "$QAT_OBJ/icp_qa_al.ko" && ! test -e "$QAT_OBJ/qat_api.ko"], [ AC_MSG_ERROR([ *** Please make sure the qat driver is installed then try again. *** Failed to find icp_qa_al.ko or qat_api.ko in: $QAT_OBJ]) ]) AC_SUBST(QAT_SRC) AC_SUBST(QAT_OBJ) AC_DEFINE(HAVE_QAT, 1, [qat is enabled and existed]) ]) dnl # dnl # Detect the name used for the QAT Module.symvers file. dnl # AS_IF([test ! -z "${qatsrc}"], [ AC_MSG_CHECKING([qat file for module symbols]) QAT_SYMBOLS=$QAT_SRC/lookaside/access_layer/src/Module.symvers AS_IF([test -r $QAT_SYMBOLS], [ AC_MSG_RESULT([$QAT_SYMBOLS]) AC_SUBST(QAT_SYMBOLS) ],[ AC_MSG_ERROR([ *** Please make sure the qat driver is installed then try again. *** Failed to find Module.symvers in: $QAT_SYMBOLS ]) ]) ]) ]) dnl # dnl # ZFS_LINUX_CONFTEST_H dnl # AC_DEFUN([ZFS_LINUX_CONFTEST_H], [ test -d build/$2 || mkdir -p build/$2 cat - <<_ACEOF >build/$2/$2.h $1 _ACEOF ]) dnl # dnl # ZFS_LINUX_CONFTEST_C dnl # AC_DEFUN([ZFS_LINUX_CONFTEST_C], [ test -d build/$2 || mkdir -p build/$2 cat confdefs.h - <<_ACEOF >build/$2/$2.c $1 _ACEOF ]) dnl # dnl # ZFS_LINUX_CONFTEST_MAKEFILE dnl # dnl # $1 - test case name dnl # $2 - add to top-level Makefile dnl # $3 - additional build flags dnl # AC_DEFUN([ZFS_LINUX_CONFTEST_MAKEFILE], [ test -d build || mkdir -p build test -d build/$1 || mkdir -p build/$1 file=build/$1/Makefile dnl # Example command line to manually build source. cat - <<_ACEOF >$file # Example command line to manually build source # make modules -C $LINUX_OBJ $ARCH_UM M=$PWD/build/$1 ccflags-y := -Werror $FRAME_LARGER_THAN _ACEOF dnl # Additional custom CFLAGS as requested. m4_ifval($3, [echo "ccflags-y += $3" >>$file], []) dnl # Test case source echo "obj-m := $1.o" >>$file AS_IF([test "x$2" = "xyes"], [echo "obj-m += $1/" >>build/Makefile], []) ]) dnl # dnl # ZFS_LINUX_TEST_PROGRAM(C)([PROLOGUE], [BODY]) dnl # m4_define([ZFS_LINUX_TEST_PROGRAM], [ #include $1 int main (void) { $2 ; return 0; } MODULE_DESCRIPTION("conftest"); MODULE_AUTHOR(ZFS_META_AUTHOR); MODULE_VERSION(ZFS_META_VERSION "-" ZFS_META_RELEASE); MODULE_LICENSE($3); ]) dnl # dnl # ZFS_LINUX_TEST_REMOVE dnl # dnl # Removes the specified test source and results. dnl # AC_DEFUN([ZFS_LINUX_TEST_REMOVE], [ test -d build/$1 && rm -Rf build/$1 test -f build/Makefile && sed '/$1/d' build/Makefile ]) dnl # dnl # ZFS_LINUX_COMPILE dnl # dnl # $1 - build dir dnl # $2 - test command dnl # $3 - pass command dnl # $4 - fail command dnl # $5 - set KBUILD_MODPOST_NOFINAL='yes' dnl # $6 - set KBUILD_MODPOST_WARN='yes' dnl # dnl # Used internally by ZFS_LINUX_TEST_{COMPILE,MODPOST} dnl # AC_DEFUN([ZFS_LINUX_COMPILE], [ AC_ARG_VAR([KERNEL_CC], [C compiler for building kernel modules]) AC_ARG_VAR([KERNEL_LD], [Linker for building kernel modules]) AC_ARG_VAR([KERNEL_LLVM], [Binary option to build kernel modules with LLVM/CLANG toolchain]) AC_TRY_COMMAND([ KBUILD_MODPOST_NOFINAL="$5" KBUILD_MODPOST_WARN="$6" make modules -k -j$TEST_JOBS ${KERNEL_CC:+CC=$KERNEL_CC} ${KERNEL_LD:+LD=$KERNEL_LD} ${KERNEL_LLVM:+LLVM=$KERNEL_LLVM} CONFIG_MODULES=y CFLAGS_MODULE=-DCONFIG_MODULES -C $LINUX_OBJ $ARCH_UM M=$PWD/$1 >$1/build.log 2>&1]) AS_IF([AC_TRY_COMMAND([$2])], [$3], [$4]) ]) dnl # dnl # ZFS_LINUX_TEST_COMPILE dnl # dnl # Perform a full compile excluding the final modpost phase. dnl # AC_DEFUN([ZFS_LINUX_TEST_COMPILE], [ ZFS_LINUX_COMPILE([$2], [test -f $2/build.log], [ mv $2/Makefile $2/Makefile.compile.$1 mv $2/build.log $2/build.log.$1 ],[ AC_MSG_ERROR([ *** Unable to compile test source to determine kernel interfaces.]) ], [yes], []) ]) dnl # dnl # ZFS_LINUX_TEST_MODPOST dnl # dnl # Perform a full compile including the modpost phase. This may dnl # be an incremental build if the objects have already been built. dnl # AC_DEFUN([ZFS_LINUX_TEST_MODPOST], [ ZFS_LINUX_COMPILE([$2], [test -f $2/build.log], [ mv $2/Makefile $2/Makefile.modpost.$1 cat $2/build.log >>build/build.log.$1 ],[ AC_MSG_ERROR([ *** Unable to modpost test source to determine kernel interfaces.]) ], [], [yes]) ]) dnl # dnl # Perform the compilation of the test cases in two phases. dnl # dnl # Phase 1) attempt to build the object files for all of the tests dnl # defined by the ZFS_LINUX_TEST_SRC macro. But do not dnl # perform the final modpost stage. dnl # dnl # Phase 2) disable all tests which failed the initial compilation, dnl # then invoke the final modpost step for the remaining tests. dnl # dnl # This allows us efficiently build the test cases in parallel while dnl # remaining resilient to build failures which are expected when dnl # detecting the available kernel interfaces. dnl # dnl # The maximum allowed parallelism can be controlled by setting the dnl # TEST_JOBS environment variable. Otherwise, it default to $(nproc). dnl # AC_DEFUN([ZFS_LINUX_TEST_COMPILE_ALL], [ dnl # Phase 1 - Compilation only, final linking is skipped. ZFS_LINUX_TEST_COMPILE([$1], [build]) dnl # dnl # Phase 2 - When building external modules disable test cases dnl # which failed to compile and invoke modpost to verify the dnl # final linking. dnl # dnl # Test names suffixed with '_license' call modpost independently dnl # to ensure that a single incompatibility does not result in the dnl # modpost phase exiting early. This check is not performed on dnl # every symbol since the majority are compatible and doing so dnl # would significantly slow down this phase. dnl # dnl # When configuring for builtin (--enable-linux-builtin) dnl # fake the linking step artificially create the expected .ko dnl # files for tests which did compile. This is required for dnl # kernels which do not have loadable module support or have dnl # not yet been built. dnl # AS_IF([test "x$enable_linux_builtin" = "xno"], [ for dir in $(awk '/^obj-m/ { print [$]3 }' \ build/Makefile.compile.$1); do name=${dir%/} AS_IF([test -f build/$name/$name.o], [ AS_IF([test "${name##*_}" = "license"], [ ZFS_LINUX_TEST_MODPOST([$1], [build/$name]) echo "obj-n += $dir" >>build/Makefile ], [ echo "obj-m += $dir" >>build/Makefile ]) ], [ echo "obj-n += $dir" >>build/Makefile ]) done ZFS_LINUX_TEST_MODPOST([$1], [build]) ], [ for dir in $(awk '/^obj-m/ { print [$]3 }' \ build/Makefile.compile.$1); do name=${dir%/} AS_IF([test -f build/$name/$name.o], [ touch build/$name/$name.ko ]) done ]) ]) dnl # dnl # ZFS_LINUX_TEST_SRC dnl # dnl # $1 - name dnl # $2 - global dnl # $3 - source dnl # $4 - extra cflags dnl # $5 - check license-compatibility dnl # dnl # Check if the test source is buildable at all and then if it is dnl # license compatible. dnl # dnl # N.B because all of the test cases are compiled in parallel they dnl # must never depend on the results of previous tests. Each test dnl # needs to be entirely independent. dnl # AC_DEFUN([ZFS_LINUX_TEST_SRC], [ ZFS_LINUX_CONFTEST_C([ZFS_LINUX_TEST_PROGRAM([[$2]], [[$3]], [["Dual BSD/GPL"]])], [$1]) ZFS_LINUX_CONFTEST_MAKEFILE([$1], [yes], [$4]) AS_IF([ test -n "$5" ], [ ZFS_LINUX_CONFTEST_C([ZFS_LINUX_TEST_PROGRAM( [[$2]], [[$3]], [[$5]])], [$1_license]) ZFS_LINUX_CONFTEST_MAKEFILE([$1_license], [yes], [$4]) ]) ]) dnl # dnl # ZFS_LINUX_TEST_RESULT dnl # dnl # $1 - name of a test source (ZFS_LINUX_TEST_SRC) dnl # $2 - run on success (valid .ko generated) dnl # $3 - run on failure (unable to compile) dnl # AC_DEFUN([ZFS_LINUX_TEST_RESULT], [ AS_IF([test -d build/$1], [ AS_IF([test -f build/$1/$1.ko], [$2], [$3]) ], [ AC_MSG_ERROR([ *** No matching source for the "$1" test, check that *** both the test source and result macros refer to the same name. ]) ]) ]) dnl # dnl # ZFS_LINUX_TEST_ERROR dnl # dnl # Generic error message which can be used when none of the expected dnl # kernel interfaces were detected. dnl # AC_DEFUN([ZFS_LINUX_TEST_ERROR], [ AC_MSG_ERROR([ *** None of the expected "$1" interfaces were detected. *** This may be because your kernel version is newer than what is *** supported, or you are using a patched custom kernel with *** incompatible modifications. *** *** ZFS Version: $ZFS_META_ALIAS *** Compatible Kernels: $ZFS_META_KVER_MIN - $ZFS_META_KVER_MAX ]) ]) dnl # dnl # ZFS_LINUX_TEST_RESULT_SYMBOL dnl # dnl # Like ZFS_LINUX_TEST_RESULT except ZFS_CHECK_SYMBOL_EXPORT is called to dnl # verify symbol exports, unless --enable-linux-builtin was provided to dnl # configure. dnl # AC_DEFUN([ZFS_LINUX_TEST_RESULT_SYMBOL], [ AS_IF([ ! test -f build/$1/$1.ko], [ $5 ], [ AS_IF([test "x$enable_linux_builtin" != "xyes"], [ ZFS_CHECK_SYMBOL_EXPORT([$2], [$3], [$4], [$5]) ], [ $4 ]) ]) ]) dnl # dnl # ZFS_LINUX_COMPILE_IFELSE dnl # AC_DEFUN([ZFS_LINUX_COMPILE_IFELSE], [ ZFS_LINUX_TEST_REMOVE([conftest]) m4_ifvaln([$1], [ZFS_LINUX_CONFTEST_C([$1], [conftest])]) m4_ifvaln([$5], [ZFS_LINUX_CONFTEST_H([$5], [conftest])], [ZFS_LINUX_CONFTEST_H([], [conftest])]) ZFS_LINUX_CONFTEST_MAKEFILE([conftest], [no], [m4_ifvaln([$5], [-I$PWD/build/conftest], [])]) ZFS_LINUX_COMPILE([build/conftest], [$2], [$3], [$4], [], []) ]) dnl # dnl # ZFS_LINUX_TRY_COMPILE dnl # dnl # $1 - global dnl # $2 - source dnl # $3 - run on success (valid .ko generated) dnl # $4 - run on failure (unable to compile) dnl # dnl # When configuring as builtin (--enable-linux-builtin) for kernels dnl # without loadable module support (CONFIG_MODULES=n) only the object dnl # file is created. See ZFS_LINUX_TEST_COMPILE_ALL for details. dnl # AC_DEFUN([ZFS_LINUX_TRY_COMPILE], [ AS_IF([test "x$enable_linux_builtin" = "xyes"], [ ZFS_LINUX_COMPILE_IFELSE( [ZFS_LINUX_TEST_PROGRAM([[$1]], [[$2]], [[ZFS_META_LICENSE]])], [test -f build/conftest/conftest.o], [$3], [$4]) ], [ ZFS_LINUX_COMPILE_IFELSE( [ZFS_LINUX_TEST_PROGRAM([[$1]], [[$2]], [[ZFS_META_LICENSE]])], [test -f build/conftest/conftest.ko], [$3], [$4]) ]) ]) dnl # dnl # ZFS_CHECK_SYMBOL_EXPORT dnl # dnl # Check if a symbol is exported on not by consulting the symbols dnl # file, or optionally the source code. dnl # AC_DEFUN([ZFS_CHECK_SYMBOL_EXPORT], [ grep -q -E '[[[:space:]]]$1[[[:space:]]]' \ $LINUX_OBJ/$LINUX_SYMBOLS 2>/dev/null rc=$? if test $rc -ne 0; then export=0 for file in $2; do grep -q -E "EXPORT_SYMBOL.*($1)" \ "$LINUX/$file" 2>/dev/null rc=$? if test $rc -eq 0; then export=1 break; fi done if test $export -eq 0; then : $4 else : $3 fi else : $3 fi ]) dnl # dnl # ZFS_LINUX_TRY_COMPILE_SYMBOL dnl # dnl # Like ZFS_LINUX_TRY_COMPILER except ZFS_CHECK_SYMBOL_EXPORT is called dnl # to verify symbol exports, unless --enable-linux-builtin was provided dnl # to configure. dnl # AC_DEFUN([ZFS_LINUX_TRY_COMPILE_SYMBOL], [ ZFS_LINUX_TRY_COMPILE([$1], [$2], [rc=0], [rc=1]) if test $rc -ne 0; then : $6 else if test "x$enable_linux_builtin" != xyes; then ZFS_CHECK_SYMBOL_EXPORT([$3], [$4], [rc=0], [rc=1]) fi if test $rc -ne 0; then : $6 else : $5 fi fi ]) dnl # dnl # ZFS_LINUX_TRY_COMPILE_HEADER dnl # like ZFS_LINUX_TRY_COMPILE, except the contents conftest.h are dnl # provided via the fifth parameter dnl # AC_DEFUN([ZFS_LINUX_TRY_COMPILE_HEADER], [ AS_IF([test "x$enable_linux_builtin" = "xyes"], [ ZFS_LINUX_COMPILE_IFELSE( [ZFS_LINUX_TEST_PROGRAM([[$1]], [[$2]], [[ZFS_META_LICENSE]])], [test -f build/conftest/conftest.o], [$3], [$4], [$5]) ], [ ZFS_LINUX_COMPILE_IFELSE( [ZFS_LINUX_TEST_PROGRAM([[$1]], [[$2]], [[ZFS_META_LICENSE]])], [test -f build/conftest/conftest.ko], [$3], [$4], [$5]) ]) ]) dnl # dnl # AS_VERSION_COMPARE_LE dnl # like AS_VERSION_COMPARE_LE, but runs $3 if (and only if) $1 <= $2 dnl # AS_VERSION_COMPARE_LE (version-1, version-2, [action-if-less-or-equal], [action-if-greater]) dnl # AC_DEFUN([AS_VERSION_COMPARE_LE], [ AS_VERSION_COMPARE([$1], [$2], [$3], [$3], [$4]) ]) dnl # dnl # ZFS_LINUX_REQUIRE_API dnl # like ZFS_LINUX_TEST_ERROR, except only fails if the kernel is dnl # at least some specified version. dnl # AC_DEFUN([ZFS_LINUX_REQUIRE_API], [ AS_VERSION_COMPARE_LE([$2], [$kernsrcver], [ AC_MSG_ERROR([ *** None of the expected "$1" interfaces were detected. This *** interface is expected for kernels version "$2" and above. *** This may be because your kernel version is newer than what is *** supported, or you are using a patched custom kernel with *** incompatible modifications. Newer kernels may have incompatible *** APIs. *** *** ZFS Version: $ZFS_META_ALIAS *** Compatible Kernels: $ZFS_META_KVER_MIN - $ZFS_META_KVER_MAX ]) ], [ AC_MSG_RESULT(no) ]) ]) diff --git a/sys/contrib/openzfs/include/os/linux/kernel/linux/blkdev_compat.h b/sys/contrib/openzfs/include/os/linux/kernel/linux/blkdev_compat.h index 658f546213de..c2e818b4d4ee 100644 --- a/sys/contrib/openzfs/include/os/linux/kernel/linux/blkdev_compat.h +++ b/sys/contrib/openzfs/include/os/linux/kernel/linux/blkdev_compat.h @@ -1,810 +1,819 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or https://opensource.org/licenses/CDDL-1.0. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (C) 2011 Lawrence Livermore National Security, LLC. * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER). * Written by Brian Behlendorf . * LLNL-CODE-403049. */ #ifndef _ZFS_BLKDEV_H #define _ZFS_BLKDEV_H #include #include #include #include #include /* for SECTOR_* */ #include #ifdef HAVE_BLK_MQ #include #endif #ifndef HAVE_BLK_QUEUE_FLAG_SET static inline void blk_queue_flag_set(unsigned int flag, struct request_queue *q) { queue_flag_set(flag, q); } #endif #ifndef HAVE_BLK_QUEUE_FLAG_CLEAR static inline void blk_queue_flag_clear(unsigned int flag, struct request_queue *q) { queue_flag_clear(flag, q); } #endif /* + * 6.11 API + * Setting the flush flags directly is no longer possible; flush flags are set + * on the queue_limits structure and passed to blk_disk_alloc(). In this case + * we remove this function entirely. + * * 4.7 API, * The blk_queue_write_cache() interface has replaced blk_queue_flush() * interface. However, the new interface is GPL-only thus we implement * our own trivial wrapper when the GPL-only version is detected. * * 2.6.36 - 4.6 API, * The blk_queue_flush() interface has replaced blk_queue_ordered() * interface. However, while the old interface was available to all the * new one is GPL-only. Thus if the GPL-only version is detected we * implement our own trivial helper. */ +#if !defined(HAVE_BLK_ALLOC_DISK_2ARG) || \ + !defined(HAVE_BLKDEV_QUEUE_LIMITS_FEATURES) static inline void -blk_queue_set_write_cache(struct request_queue *q, bool wc, bool fua) +blk_queue_set_write_cache(struct request_queue *q, bool on) { #if defined(HAVE_BLK_QUEUE_WRITE_CACHE_GPL_ONLY) - if (wc) + if (on) { blk_queue_flag_set(QUEUE_FLAG_WC, q); - else - blk_queue_flag_clear(QUEUE_FLAG_WC, q); - if (fua) blk_queue_flag_set(QUEUE_FLAG_FUA, q); - else + } else { + blk_queue_flag_clear(QUEUE_FLAG_WC, q); blk_queue_flag_clear(QUEUE_FLAG_FUA, q); + } #elif defined(HAVE_BLK_QUEUE_WRITE_CACHE) - blk_queue_write_cache(q, wc, fua); + blk_queue_write_cache(q, on, on); #elif defined(HAVE_BLK_QUEUE_FLUSH_GPL_ONLY) - if (wc) - q->flush_flags |= REQ_FLUSH; - if (fua) - q->flush_flags |= REQ_FUA; + if (on) + q->flush_flags |= REQ_FLUSH | REQ_FUA; + else + q->flush_flags &= ~(REQ_FLUSH | REQ_FUA); #elif defined(HAVE_BLK_QUEUE_FLUSH) - blk_queue_flush(q, (wc ? REQ_FLUSH : 0) | (fua ? REQ_FUA : 0)); + blk_queue_flush(q, on ? (REQ_FLUSH | REQ_FUA) : 0); #else #error "Unsupported kernel" #endif } +#endif /* !HAVE_BLK_ALLOC_DISK_2ARG || !HAVE_BLKDEV_QUEUE_LIMITS_FEATURES */ /* * Detect if a device has a write cache. Used to set the intial value for the * vdev nowritecache flag. * * 4.10: QUEUE_FLAG_WC added. Initialised by the driver, but can be changed * later by the operator. If not set, kernel will return flush requests * immediately without doing anything. * 6.6: QUEUE_FLAG_HW_WC added. Initialised by the driver, can't be changed. * Only controls if the operator is allowed to change _WC. Initial version * buggy; aliased to QUEUE_FLAG_FUA, so unuseable. * 6.6.10, 6.7: QUEUE_FLAG_HW_WC fixed. * * Older than 4.10 we just assume write cache, and let the normal flush fail * detection apply. */ static inline boolean_t zfs_bdev_has_write_cache(struct block_device *bdev) { #if defined(QUEUE_FLAG_HW_WC) && QUEUE_FLAG_HW_WC != QUEUE_FLAG_FUA return (test_bit(QUEUE_FLAG_HW_WC, &bdev_get_queue(bdev)->queue_flags)); #elif defined(QUEUE_FLAG_WC) return (test_bit(QUEUE_FLAG_WC, &bdev_get_queue(bdev)->queue_flags)); #else return (B_TRUE); #endif } static inline void blk_queue_set_read_ahead(struct request_queue *q, unsigned long ra_pages) { #if !defined(HAVE_BLK_QUEUE_UPDATE_READAHEAD) && \ !defined(HAVE_DISK_UPDATE_READAHEAD) -#ifdef HAVE_BLK_QUEUE_BDI_DYNAMIC +#if defined(HAVE_BLK_QUEUE_BDI_DYNAMIC) q->backing_dev_info->ra_pages = ra_pages; +#elif defined(HAVE_BLK_QUEUE_DISK_BDI) + q->disk->bdi->ra_pages = ra_pages; #else q->backing_dev_info.ra_pages = ra_pages; #endif #endif } #ifdef HAVE_BIO_BVEC_ITER #define BIO_BI_SECTOR(bio) (bio)->bi_iter.bi_sector #define BIO_BI_SIZE(bio) (bio)->bi_iter.bi_size #define BIO_BI_IDX(bio) (bio)->bi_iter.bi_idx #define BIO_BI_SKIP(bio) (bio)->bi_iter.bi_bvec_done #define bio_for_each_segment4(bv, bvp, b, i) \ bio_for_each_segment((bv), (b), (i)) typedef struct bvec_iter bvec_iterator_t; #else #define BIO_BI_SECTOR(bio) (bio)->bi_sector #define BIO_BI_SIZE(bio) (bio)->bi_size #define BIO_BI_IDX(bio) (bio)->bi_idx #define BIO_BI_SKIP(bio) (0) #define bio_for_each_segment4(bv, bvp, b, i) \ bio_for_each_segment((bvp), (b), (i)) typedef int bvec_iterator_t; #endif static inline void bio_set_flags_failfast(struct block_device *bdev, int *flags, bool dev, bool transport, bool driver) { #ifdef CONFIG_BUG /* * Disable FAILFAST for loopback devices because of the * following incorrect BUG_ON() in loop_make_request(). * This support is also disabled for md devices because the * test suite layers md devices on top of loopback devices. * This may be removed when the loopback driver is fixed. * * BUG_ON(!lo || (rw != READ && rw != WRITE)); */ if ((MAJOR(bdev->bd_dev) == LOOP_MAJOR) || (MAJOR(bdev->bd_dev) == MD_MAJOR)) return; #ifdef BLOCK_EXT_MAJOR if (MAJOR(bdev->bd_dev) == BLOCK_EXT_MAJOR) return; #endif /* BLOCK_EXT_MAJOR */ #endif /* CONFIG_BUG */ if (dev) *flags |= REQ_FAILFAST_DEV; if (transport) *flags |= REQ_FAILFAST_TRANSPORT; if (driver) *flags |= REQ_FAILFAST_DRIVER; } /* * Maximum disk label length, it may be undefined for some kernels. */ #if !defined(DISK_NAME_LEN) #define DISK_NAME_LEN 32 #endif /* DISK_NAME_LEN */ #ifdef HAVE_BIO_BI_STATUS static inline int bi_status_to_errno(blk_status_t status) { switch (status) { case BLK_STS_OK: return (0); case BLK_STS_NOTSUPP: return (EOPNOTSUPP); case BLK_STS_TIMEOUT: return (ETIMEDOUT); case BLK_STS_NOSPC: return (ENOSPC); case BLK_STS_TRANSPORT: return (ENOLINK); case BLK_STS_TARGET: return (EREMOTEIO); #ifdef HAVE_BLK_STS_RESV_CONFLICT case BLK_STS_RESV_CONFLICT: #else case BLK_STS_NEXUS: #endif return (EBADE); case BLK_STS_MEDIUM: return (ENODATA); case BLK_STS_PROTECTION: return (EILSEQ); case BLK_STS_RESOURCE: return (ENOMEM); case BLK_STS_AGAIN: return (EAGAIN); case BLK_STS_IOERR: return (EIO); default: return (EIO); } } static inline blk_status_t errno_to_bi_status(int error) { switch (error) { case 0: return (BLK_STS_OK); case EOPNOTSUPP: return (BLK_STS_NOTSUPP); case ETIMEDOUT: return (BLK_STS_TIMEOUT); case ENOSPC: return (BLK_STS_NOSPC); case ENOLINK: return (BLK_STS_TRANSPORT); case EREMOTEIO: return (BLK_STS_TARGET); case EBADE: #ifdef HAVE_BLK_STS_RESV_CONFLICT return (BLK_STS_RESV_CONFLICT); #else return (BLK_STS_NEXUS); #endif case ENODATA: return (BLK_STS_MEDIUM); case EILSEQ: return (BLK_STS_PROTECTION); case ENOMEM: return (BLK_STS_RESOURCE); case EAGAIN: return (BLK_STS_AGAIN); case EIO: return (BLK_STS_IOERR); default: return (BLK_STS_IOERR); } } #endif /* HAVE_BIO_BI_STATUS */ /* * 4.3 API change * The bio_endio() prototype changed slightly. These are helper * macro's to ensure the prototype and invocation are handled. */ #ifdef HAVE_1ARG_BIO_END_IO_T #ifdef HAVE_BIO_BI_STATUS #define BIO_END_IO_ERROR(bio) bi_status_to_errno(bio->bi_status) #define BIO_END_IO_PROTO(fn, x, z) static void fn(struct bio *x) #define BIO_END_IO(bio, error) bio_set_bi_status(bio, error) static inline void bio_set_bi_status(struct bio *bio, int error) { ASSERT3S(error, <=, 0); bio->bi_status = errno_to_bi_status(-error); bio_endio(bio); } #else #define BIO_END_IO_ERROR(bio) (-(bio->bi_error)) #define BIO_END_IO_PROTO(fn, x, z) static void fn(struct bio *x) #define BIO_END_IO(bio, error) bio_set_bi_error(bio, error) static inline void bio_set_bi_error(struct bio *bio, int error) { ASSERT3S(error, <=, 0); bio->bi_error = error; bio_endio(bio); } #endif /* HAVE_BIO_BI_STATUS */ #else #define BIO_END_IO_PROTO(fn, x, z) static void fn(struct bio *x, int z) #define BIO_END_IO(bio, error) bio_endio(bio, error); #endif /* HAVE_1ARG_BIO_END_IO_T */ /* * 5.15 MACRO, * GD_DEAD * * 2.6.36 - 5.14 MACRO, * GENHD_FL_UP * * Check the disk status and return B_TRUE if alive * otherwise B_FALSE */ static inline boolean_t zfs_check_disk_status(struct block_device *bdev) { #if defined(GENHD_FL_UP) return (!!(bdev->bd_disk->flags & GENHD_FL_UP)); #elif defined(GD_DEAD) return (!test_bit(GD_DEAD, &bdev->bd_disk->state)); #else /* * This is encountered if neither GENHD_FL_UP nor GD_DEAD is available in * the kernel - likely due to an MACRO change that needs to be chased down. */ #error "Unsupported kernel: no usable disk status check" #endif } /* * 4.1 API, * 3.10.0 CentOS 7.x API, * blkdev_reread_part() * * For older kernels trigger a re-reading of the partition table by calling * check_disk_change() which calls flush_disk() to invalidate the device. * * For newer kernels (as of 5.10), bdev_check_media_change is used, in favor of * check_disk_change(), with the modification that invalidation is no longer * forced. */ #ifdef HAVE_CHECK_DISK_CHANGE #define zfs_check_media_change(bdev) check_disk_change(bdev) #ifdef HAVE_BLKDEV_REREAD_PART #define vdev_bdev_reread_part(bdev) blkdev_reread_part(bdev) #else #define vdev_bdev_reread_part(bdev) check_disk_change(bdev) #endif /* HAVE_BLKDEV_REREAD_PART */ #else #ifdef HAVE_BDEV_CHECK_MEDIA_CHANGE static inline int zfs_check_media_change(struct block_device *bdev) { #ifdef HAVE_BLOCK_DEVICE_OPERATIONS_REVALIDATE_DISK struct gendisk *gd = bdev->bd_disk; const struct block_device_operations *bdo = gd->fops; #endif if (!bdev_check_media_change(bdev)) return (0); #ifdef HAVE_BLOCK_DEVICE_OPERATIONS_REVALIDATE_DISK /* * Force revalidation, to mimic the old behavior of * check_disk_change() */ if (bdo->revalidate_disk) bdo->revalidate_disk(gd); #endif return (0); } #define vdev_bdev_reread_part(bdev) zfs_check_media_change(bdev) #elif defined(HAVE_DISK_CHECK_MEDIA_CHANGE) #define vdev_bdev_reread_part(bdev) disk_check_media_change(bdev->bd_disk) #define zfs_check_media_change(bdev) disk_check_media_change(bdev->bd_disk) #else /* * This is encountered if check_disk_change() and bdev_check_media_change() * are not available in the kernel - likely due to an API change that needs * to be chased down. */ #error "Unsupported kernel: no usable disk change check" #endif /* HAVE_BDEV_CHECK_MEDIA_CHANGE */ #endif /* HAVE_CHECK_DISK_CHANGE */ /* * 2.6.27 API change * The function was exported for use, prior to this it existed but the * symbol was not exported. * * 4.4.0-6.21 API change for Ubuntu * lookup_bdev() gained a second argument, FMODE_*, to check inode permissions. * * 5.11 API change * Changed to take a dev_t argument which is set on success and return a * non-zero error code on failure. */ static inline int vdev_lookup_bdev(const char *path, dev_t *dev) { #if defined(HAVE_DEVT_LOOKUP_BDEV) return (lookup_bdev(path, dev)); #elif defined(HAVE_1ARG_LOOKUP_BDEV) struct block_device *bdev = lookup_bdev(path); if (IS_ERR(bdev)) return (PTR_ERR(bdev)); *dev = bdev->bd_dev; bdput(bdev); return (0); #elif defined(HAVE_MODE_LOOKUP_BDEV) struct block_device *bdev = lookup_bdev(path, FMODE_READ); if (IS_ERR(bdev)) return (PTR_ERR(bdev)); *dev = bdev->bd_dev; bdput(bdev); return (0); #else #error "Unsupported kernel" #endif } #if defined(HAVE_BLK_MODE_T) #define blk_mode_is_open_write(flag) ((flag) & BLK_OPEN_WRITE) #else #define blk_mode_is_open_write(flag) ((flag) & FMODE_WRITE) #endif /* * Kernels without bio_set_op_attrs use bi_rw for the bio flags. */ #if !defined(HAVE_BIO_SET_OP_ATTRS) static inline void bio_set_op_attrs(struct bio *bio, unsigned rw, unsigned flags) { #if defined(HAVE_BIO_BI_OPF) bio->bi_opf = rw | flags; #else bio->bi_rw |= rw | flags; #endif /* HAVE_BIO_BI_OPF */ } #endif /* * bio_set_flush - Set the appropriate flags in a bio to guarantee * data are on non-volatile media on completion. * * 2.6.37 - 4.8 API, * Introduce WRITE_FLUSH, WRITE_FUA, and WRITE_FLUSH_FUA flags as a * replacement for WRITE_BARRIER to allow expressing richer semantics * to the block layer. It's up to the block layer to implement the * semantics correctly. Use the WRITE_FLUSH_FUA flag combination. * * 4.8 - 4.9 API, * REQ_FLUSH was renamed to REQ_PREFLUSH. For consistency with previous * OpenZFS releases, prefer the WRITE_FLUSH_FUA flag set if it's available. * * 4.10 API, * The read/write flags and their modifiers, including WRITE_FLUSH, * WRITE_FUA and WRITE_FLUSH_FUA were removed from fs.h in * torvalds/linux@70fd7614 and replaced by direct flag modification * of the REQ_ flags in bio->bi_opf. Use REQ_PREFLUSH. */ static inline void bio_set_flush(struct bio *bio) { #if defined(HAVE_REQ_PREFLUSH) /* >= 4.10 */ bio_set_op_attrs(bio, 0, REQ_PREFLUSH | REQ_OP_WRITE); #elif defined(WRITE_FLUSH_FUA) /* >= 2.6.37 and <= 4.9 */ bio_set_op_attrs(bio, 0, WRITE_FLUSH_FUA); #else #error "Allowing the build will cause bio_set_flush requests to be ignored." #endif } /* * 4.8 API, * REQ_OP_FLUSH * * 4.8-rc0 - 4.8-rc1, * REQ_PREFLUSH * * 2.6.36 - 4.7 API, * REQ_FLUSH * * in all cases but may have a performance impact for some kernels. It * has the advantage of minimizing kernel specific changes in the zvol code. * */ static inline boolean_t bio_is_flush(struct bio *bio) { #if defined(HAVE_REQ_OP_FLUSH) && defined(HAVE_BIO_BI_OPF) return ((bio_op(bio) == REQ_OP_FLUSH) || (bio->bi_opf & REQ_PREFLUSH)); #elif defined(HAVE_REQ_PREFLUSH) && defined(HAVE_BIO_BI_OPF) return (bio->bi_opf & REQ_PREFLUSH); #elif defined(HAVE_REQ_PREFLUSH) && !defined(HAVE_BIO_BI_OPF) return (bio->bi_rw & REQ_PREFLUSH); #elif defined(HAVE_REQ_FLUSH) return (bio->bi_rw & REQ_FLUSH); #else #error "Unsupported kernel" #endif } /* * 4.8 API, * REQ_FUA flag moved to bio->bi_opf * * 2.6.x - 4.7 API, * REQ_FUA */ static inline boolean_t bio_is_fua(struct bio *bio) { #if defined(HAVE_BIO_BI_OPF) return (bio->bi_opf & REQ_FUA); #elif defined(REQ_FUA) return (bio->bi_rw & REQ_FUA); #else #error "Allowing the build will cause fua requests to be ignored." #endif } /* * 4.8 API, * REQ_OP_DISCARD * * 2.6.36 - 4.7 API, * REQ_DISCARD * * In all cases the normal I/O path is used for discards. The only * difference is how the kernel tags individual I/Os as discards. */ static inline boolean_t bio_is_discard(struct bio *bio) { #if defined(HAVE_REQ_OP_DISCARD) return (bio_op(bio) == REQ_OP_DISCARD); #elif defined(HAVE_REQ_DISCARD) return (bio->bi_rw & REQ_DISCARD); #else #error "Unsupported kernel" #endif } /* * 4.8 API, * REQ_OP_SECURE_ERASE * * 2.6.36 - 4.7 API, * REQ_SECURE */ static inline boolean_t bio_is_secure_erase(struct bio *bio) { #if defined(HAVE_REQ_OP_SECURE_ERASE) return (bio_op(bio) == REQ_OP_SECURE_ERASE); #elif defined(REQ_SECURE) return (bio->bi_rw & REQ_SECURE); #else return (0); #endif } /* * 2.6.33 API change * Discard granularity and alignment restrictions may now be set. For * older kernels which do not support this it is safe to skip it. */ static inline void blk_queue_discard_granularity(struct request_queue *q, unsigned int dg) { q->limits.discard_granularity = dg; } /* * 5.19 API, * bdev_max_discard_sectors() * * 2.6.32 API, * blk_queue_discard() */ static inline boolean_t bdev_discard_supported(struct block_device *bdev) { #if defined(HAVE_BDEV_MAX_DISCARD_SECTORS) return (bdev_max_discard_sectors(bdev) > 0 && bdev_discard_granularity(bdev) > 0); #elif defined(HAVE_BLK_QUEUE_DISCARD) return (blk_queue_discard(bdev_get_queue(bdev)) > 0 && bdev_get_queue(bdev)->limits.discard_granularity > 0); #else #error "Unsupported kernel" #endif } /* * 5.19 API, * bdev_max_secure_erase_sectors() * * 4.8 API, * blk_queue_secure_erase() * * 2.6.36 - 4.7 API, * blk_queue_secdiscard() */ static inline boolean_t bdev_secure_discard_supported(struct block_device *bdev) { #if defined(HAVE_BDEV_MAX_SECURE_ERASE_SECTORS) return (!!bdev_max_secure_erase_sectors(bdev)); #elif defined(HAVE_BLK_QUEUE_SECURE_ERASE) return (!!blk_queue_secure_erase(bdev_get_queue(bdev))); #elif defined(HAVE_BLK_QUEUE_SECDISCARD) return (!!blk_queue_secdiscard(bdev_get_queue(bdev))); #else #error "Unsupported kernel" #endif } /* * A common holder for vdev_bdev_open() is used to relax the exclusive open * semantics slightly. Internal vdev disk callers may pass VDEV_HOLDER to * allow them to open the device multiple times. Other kernel callers and * user space processes which don't pass this value will get EBUSY. This is * currently required for the correct operation of hot spares. */ #define VDEV_HOLDER ((void *)0x2401de7) static inline unsigned long blk_generic_start_io_acct(struct request_queue *q __attribute__((unused)), struct gendisk *disk __attribute__((unused)), int rw __attribute__((unused)), struct bio *bio) { #if defined(HAVE_BDEV_IO_ACCT_63) return (bdev_start_io_acct(bio->bi_bdev, bio_op(bio), jiffies)); #elif defined(HAVE_BDEV_IO_ACCT_OLD) return (bdev_start_io_acct(bio->bi_bdev, bio_sectors(bio), bio_op(bio), jiffies)); #elif defined(HAVE_DISK_IO_ACCT) return (disk_start_io_acct(disk, bio_sectors(bio), bio_op(bio))); #elif defined(HAVE_BIO_IO_ACCT) return (bio_start_io_acct(bio)); #elif defined(HAVE_GENERIC_IO_ACCT_3ARG) unsigned long start_time = jiffies; generic_start_io_acct(rw, bio_sectors(bio), &disk->part0); return (start_time); #elif defined(HAVE_GENERIC_IO_ACCT_4ARG) unsigned long start_time = jiffies; generic_start_io_acct(q, rw, bio_sectors(bio), &disk->part0); return (start_time); #else /* Unsupported */ return (0); #endif } static inline void blk_generic_end_io_acct(struct request_queue *q __attribute__((unused)), struct gendisk *disk __attribute__((unused)), int rw __attribute__((unused)), struct bio *bio, unsigned long start_time) { #if defined(HAVE_BDEV_IO_ACCT_63) bdev_end_io_acct(bio->bi_bdev, bio_op(bio), bio_sectors(bio), start_time); #elif defined(HAVE_BDEV_IO_ACCT_OLD) bdev_end_io_acct(bio->bi_bdev, bio_op(bio), start_time); #elif defined(HAVE_DISK_IO_ACCT) disk_end_io_acct(disk, bio_op(bio), start_time); #elif defined(HAVE_BIO_IO_ACCT) bio_end_io_acct(bio, start_time); #elif defined(HAVE_GENERIC_IO_ACCT_3ARG) generic_end_io_acct(rw, &disk->part0, start_time); #elif defined(HAVE_GENERIC_IO_ACCT_4ARG) generic_end_io_acct(q, rw, &disk->part0, start_time); #endif } #ifndef HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS static inline struct request_queue * blk_generic_alloc_queue(make_request_fn make_request, int node_id) { #if defined(HAVE_BLK_ALLOC_QUEUE_REQUEST_FN) return (blk_alloc_queue(make_request, node_id)); #elif defined(HAVE_BLK_ALLOC_QUEUE_REQUEST_FN_RH) return (blk_alloc_queue_rh(make_request, node_id)); #else struct request_queue *q = blk_alloc_queue(GFP_KERNEL); if (q != NULL) blk_queue_make_request(q, make_request); return (q); #endif } #endif /* !HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS */ /* * All the io_*() helper functions below can operate on a bio, or a rq, but * not both. The older submit_bio() codepath will pass a bio, and the * newer blk-mq codepath will pass a rq. */ static inline int io_data_dir(struct bio *bio, struct request *rq) { #ifdef HAVE_BLK_MQ if (rq != NULL) { if (op_is_write(req_op(rq))) { return (WRITE); } else { return (READ); } } #else ASSERT3P(rq, ==, NULL); #endif return (bio_data_dir(bio)); } static inline int io_is_flush(struct bio *bio, struct request *rq) { #ifdef HAVE_BLK_MQ if (rq != NULL) return (req_op(rq) == REQ_OP_FLUSH); #else ASSERT3P(rq, ==, NULL); #endif return (bio_is_flush(bio)); } static inline int io_is_discard(struct bio *bio, struct request *rq) { #ifdef HAVE_BLK_MQ if (rq != NULL) return (req_op(rq) == REQ_OP_DISCARD); #else ASSERT3P(rq, ==, NULL); #endif return (bio_is_discard(bio)); } static inline int io_is_secure_erase(struct bio *bio, struct request *rq) { #ifdef HAVE_BLK_MQ if (rq != NULL) return (req_op(rq) == REQ_OP_SECURE_ERASE); #else ASSERT3P(rq, ==, NULL); #endif return (bio_is_secure_erase(bio)); } static inline int io_is_fua(struct bio *bio, struct request *rq) { #ifdef HAVE_BLK_MQ if (rq != NULL) return (rq->cmd_flags & REQ_FUA); #else ASSERT3P(rq, ==, NULL); #endif return (bio_is_fua(bio)); } static inline uint64_t io_offset(struct bio *bio, struct request *rq) { #ifdef HAVE_BLK_MQ if (rq != NULL) return (blk_rq_pos(rq) << 9); #else ASSERT3P(rq, ==, NULL); #endif return (BIO_BI_SECTOR(bio) << 9); } static inline uint64_t io_size(struct bio *bio, struct request *rq) { #ifdef HAVE_BLK_MQ if (rq != NULL) return (blk_rq_bytes(rq)); #else ASSERT3P(rq, ==, NULL); #endif return (BIO_BI_SIZE(bio)); } static inline int io_has_data(struct bio *bio, struct request *rq) { #ifdef HAVE_BLK_MQ if (rq != NULL) return (bio_has_data(rq->bio)); #else ASSERT3P(rq, ==, NULL); #endif return (bio_has_data(bio)); } #endif /* _ZFS_BLKDEV_H */ diff --git a/sys/contrib/openzfs/include/os/linux/kernel/linux/mm_compat.h b/sys/contrib/openzfs/include/os/linux/kernel/linux/mm_compat.h index 40056c68d6dd..817f6df422de 100644 --- a/sys/contrib/openzfs/include/os/linux/kernel/linux/mm_compat.h +++ b/sys/contrib/openzfs/include/os/linux/kernel/linux/mm_compat.h @@ -1,36 +1,43 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or https://opensource.org/licenses/CDDL-1.0. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2023, 2024, Klara Inc. + * Copyright (c) 2024, Rob Norris */ #ifndef _ZFS_MM_COMPAT_H #define _ZFS_MM_COMPAT_H #include +#include /* 5.4 introduced page_size(). Older kernels can use a trivial macro instead */ #ifndef HAVE_MM_PAGE_SIZE #define page_size(p) ((unsigned long)(PAGE_SIZE << compound_order(p))) #endif +/* 6.11 removed page_mapping(). A simple wrapper around folio_mapping() works */ +#ifndef HAVE_MM_PAGE_MAPPING +#define page_mapping(p) folio_mapping(page_folio(p)) +#endif + #endif /* _ZFS_MM_COMPAT_H */ diff --git a/sys/contrib/openzfs/module/os/linux/spl/spl-proc.c b/sys/contrib/openzfs/module/os/linux/spl/spl-proc.c index f0f929d3ce90..2c0cdd9febf5 100644 --- a/sys/contrib/openzfs/module/os/linux/spl/spl-proc.c +++ b/sys/contrib/openzfs/module/os/linux/spl/spl-proc.c @@ -1,766 +1,807 @@ /* * Copyright (C) 2007-2010 Lawrence Livermore National Security, LLC. * Copyright (C) 2007 The Regents of the University of California. * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER). * Written by Brian Behlendorf . * UCRL-CODE-235197 * * This file is part of the SPL, Solaris Porting Layer. * * The SPL is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. * * The SPL is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. * * You should have received a copy of the GNU General Public License along * with the SPL. If not, see . * * Solaris Porting Layer (SPL) Proc Implementation. */ +/* + * Copyright (c) 2024, Rob Norris + */ #include #include #include #include #include #include #include #include #include #include #include #include #include "zfs_gitrev.h" #if defined(CONSTIFY_PLUGIN) && LINUX_VERSION_CODE >= KERNEL_VERSION(3, 8, 0) typedef struct ctl_table __no_const spl_ctl_table; #else typedef struct ctl_table spl_ctl_table; #endif +#ifdef HAVE_PROC_HANDLER_CTL_TABLE_CONST +#define CONST_CTL_TABLE const struct ctl_table +#else +#define CONST_CTL_TABLE struct ctl_table +#endif + static unsigned long table_min = 0; static unsigned long table_max = ~0; static struct ctl_table_header *spl_header = NULL; #ifndef HAVE_REGISTER_SYSCTL_TABLE static struct ctl_table_header *spl_kmem = NULL; static struct ctl_table_header *spl_kstat = NULL; #endif static struct proc_dir_entry *proc_spl = NULL; static struct proc_dir_entry *proc_spl_kmem = NULL; static struct proc_dir_entry *proc_spl_kmem_slab = NULL; static struct proc_dir_entry *proc_spl_taskq_all = NULL; static struct proc_dir_entry *proc_spl_taskq = NULL; struct proc_dir_entry *proc_spl_kstat = NULL; #ifdef DEBUG_KMEM static int -proc_domemused(struct ctl_table *table, int write, +proc_domemused(CONST_CTL_TABLE *table, int write, void __user *buffer, size_t *lenp, loff_t *ppos) { int rc = 0; unsigned long val; spl_ctl_table dummy = *table; dummy.data = &val; dummy.proc_handler = &proc_dointvec; dummy.extra1 = &table_min; dummy.extra2 = &table_max; if (write) { *ppos += *lenp; } else { #ifdef HAVE_ATOMIC64_T val = atomic64_read((atomic64_t *)table->data); #else val = atomic_read((atomic_t *)table->data); #endif /* HAVE_ATOMIC64_T */ rc = proc_doulongvec_minmax(&dummy, write, buffer, lenp, ppos); } return (rc); } #endif /* DEBUG_KMEM */ static int -proc_doslab(struct ctl_table *table, int write, +proc_doslab(CONST_CTL_TABLE *table, int write, void __user *buffer, size_t *lenp, loff_t *ppos) { int rc = 0; unsigned long val = 0, mask; spl_ctl_table dummy = *table; spl_kmem_cache_t *skc = NULL; dummy.data = &val; dummy.proc_handler = &proc_dointvec; dummy.extra1 = &table_min; dummy.extra2 = &table_max; if (write) { *ppos += *lenp; } else { down_read(&spl_kmem_cache_sem); mask = (unsigned long)table->data; list_for_each_entry(skc, &spl_kmem_cache_list, skc_list) { /* Only use slabs of the correct kmem/vmem type */ if (!(skc->skc_flags & mask)) continue; /* Sum the specified field for selected slabs */ switch (mask & (KMC_TOTAL | KMC_ALLOC | KMC_MAX)) { case KMC_TOTAL: val += skc->skc_slab_size * skc->skc_slab_total; break; case KMC_ALLOC: val += skc->skc_obj_size * skc->skc_obj_alloc; break; case KMC_MAX: val += skc->skc_obj_size * skc->skc_obj_max; break; } } up_read(&spl_kmem_cache_sem); rc = proc_doulongvec_minmax(&dummy, write, buffer, lenp, ppos); } return (rc); } static int -proc_dohostid(struct ctl_table *table, int write, +proc_dohostid(CONST_CTL_TABLE *table, int write, void __user *buffer, size_t *lenp, loff_t *ppos) { char *end, str[32]; unsigned long hid; spl_ctl_table dummy = *table; dummy.data = str; dummy.maxlen = sizeof (str) - 1; if (!write) snprintf(str, sizeof (str), "%lx", (unsigned long) zone_get_hostid(NULL)); /* always returns 0 */ proc_dostring(&dummy, write, buffer, lenp, ppos); if (write) { /* * We can't use proc_doulongvec_minmax() in the write * case here because hostid, while a hex value, has no * leading 0x, which confuses the helper function. */ hid = simple_strtoul(str, &end, 16); if (str == end) return (-EINVAL); spl_hostid = hid; } return (0); } static void taskq_seq_show_headers(struct seq_file *f) { seq_printf(f, "%-25s %5s %5s %5s %5s %5s %5s %12s %5s %10s\n", "taskq", "act", "nthr", "spwn", "maxt", "pri", "mina", "maxa", "cura", "flags"); } /* indices into the lheads array below */ #define LHEAD_PEND 0 #define LHEAD_PRIO 1 #define LHEAD_DELAY 2 #define LHEAD_WAIT 3 #define LHEAD_ACTIVE 4 #define LHEAD_SIZE 5 static unsigned int spl_max_show_tasks = 512; /* CSTYLED */ module_param(spl_max_show_tasks, uint, 0644); MODULE_PARM_DESC(spl_max_show_tasks, "Max number of tasks shown in taskq proc"); static int taskq_seq_show_impl(struct seq_file *f, void *p, boolean_t allflag) { taskq_t *tq = p; taskq_thread_t *tqt = NULL; spl_wait_queue_entry_t *wq; struct task_struct *tsk; taskq_ent_t *tqe; char name[100]; struct list_head *lheads[LHEAD_SIZE], *lh; static char *list_names[LHEAD_SIZE] = {"pend", "prio", "delay", "wait", "active" }; int i, j, have_lheads = 0; unsigned long wflags, flags; spin_lock_irqsave_nested(&tq->tq_lock, flags, tq->tq_lock_class); spin_lock_irqsave(&tq->tq_wait_waitq.lock, wflags); /* get the various lists and check whether they're empty */ lheads[LHEAD_PEND] = &tq->tq_pend_list; lheads[LHEAD_PRIO] = &tq->tq_prio_list; lheads[LHEAD_DELAY] = &tq->tq_delay_list; #ifdef HAVE_WAIT_QUEUE_HEAD_ENTRY lheads[LHEAD_WAIT] = &tq->tq_wait_waitq.head; #else lheads[LHEAD_WAIT] = &tq->tq_wait_waitq.task_list; #endif lheads[LHEAD_ACTIVE] = &tq->tq_active_list; for (i = 0; i < LHEAD_SIZE; ++i) { if (list_empty(lheads[i])) lheads[i] = NULL; else ++have_lheads; } /* early return in non-"all" mode if lists are all empty */ if (!allflag && !have_lheads) { spin_unlock_irqrestore(&tq->tq_wait_waitq.lock, wflags); spin_unlock_irqrestore(&tq->tq_lock, flags); return (0); } /* unlock the waitq quickly */ if (!lheads[LHEAD_WAIT]) spin_unlock_irqrestore(&tq->tq_wait_waitq.lock, wflags); /* show the base taskq contents */ snprintf(name, sizeof (name), "%s/%d", tq->tq_name, tq->tq_instance); seq_printf(f, "%-25s ", name); seq_printf(f, "%5d %5d %5d %5d %5d %5d %12d %5d %10x\n", tq->tq_nactive, tq->tq_nthreads, tq->tq_nspawn, tq->tq_maxthreads, tq->tq_pri, tq->tq_minalloc, tq->tq_maxalloc, tq->tq_nalloc, tq->tq_flags); /* show the active list */ if (lheads[LHEAD_ACTIVE]) { j = 0; list_for_each_entry(tqt, &tq->tq_active_list, tqt_active_list) { if (j == 0) seq_printf(f, "\t%s:", list_names[LHEAD_ACTIVE]); else if (j == 2) { seq_printf(f, "\n\t "); j = 0; } seq_printf(f, " [%d]%pf(%ps)", tqt->tqt_thread->pid, tqt->tqt_task->tqent_func, tqt->tqt_task->tqent_arg); ++j; } seq_printf(f, "\n"); } for (i = LHEAD_PEND; i <= LHEAD_WAIT; ++i) if (lheads[i]) { j = 0; list_for_each(lh, lheads[i]) { if (spl_max_show_tasks != 0 && j >= spl_max_show_tasks) { seq_printf(f, "\n\t(truncated)"); break; } /* show the wait waitq list */ if (i == LHEAD_WAIT) { #ifdef HAVE_WAIT_QUEUE_HEAD_ENTRY wq = list_entry(lh, spl_wait_queue_entry_t, entry); #else wq = list_entry(lh, spl_wait_queue_entry_t, task_list); #endif if (j == 0) seq_printf(f, "\t%s:", list_names[i]); else if (j % 8 == 0) seq_printf(f, "\n\t "); tsk = wq->private; seq_printf(f, " %d", tsk->pid); /* pend, prio and delay lists */ } else { tqe = list_entry(lh, taskq_ent_t, tqent_list); if (j == 0) seq_printf(f, "\t%s:", list_names[i]); else if (j % 2 == 0) seq_printf(f, "\n\t "); seq_printf(f, " %pf(%ps)", tqe->tqent_func, tqe->tqent_arg); } ++j; } seq_printf(f, "\n"); } if (lheads[LHEAD_WAIT]) spin_unlock_irqrestore(&tq->tq_wait_waitq.lock, wflags); spin_unlock_irqrestore(&tq->tq_lock, flags); return (0); } static int taskq_all_seq_show(struct seq_file *f, void *p) { return (taskq_seq_show_impl(f, p, B_TRUE)); } static int taskq_seq_show(struct seq_file *f, void *p) { return (taskq_seq_show_impl(f, p, B_FALSE)); } static void * taskq_seq_start(struct seq_file *f, loff_t *pos) { struct list_head *p; loff_t n = *pos; down_read(&tq_list_sem); if (!n) taskq_seq_show_headers(f); p = tq_list.next; while (n--) { p = p->next; if (p == &tq_list) return (NULL); } return (list_entry(p, taskq_t, tq_taskqs)); } static void * taskq_seq_next(struct seq_file *f, void *p, loff_t *pos) { taskq_t *tq = p; ++*pos; return ((tq->tq_taskqs.next == &tq_list) ? NULL : list_entry(tq->tq_taskqs.next, taskq_t, tq_taskqs)); } static void slab_seq_show_headers(struct seq_file *f) { seq_printf(f, "--------------------- cache ----------" "--------------------------------------------- " "----- slab ------ " "---- object ----- " "--- emergency ---\n"); seq_printf(f, "name " " flags size alloc slabsize objsize " "total alloc max " "total alloc max " "dlock alloc max\n"); } static int slab_seq_show(struct seq_file *f, void *p) { spl_kmem_cache_t *skc = p; ASSERT(skc->skc_magic == SKC_MAGIC); if (skc->skc_flags & KMC_SLAB) { /* * This cache is backed by a generic Linux kmem cache which * has its own accounting. For these caches we only track * the number of active allocated objects that exist within * the underlying Linux slabs. For the overall statistics of * the underlying Linux cache please refer to /proc/slabinfo. */ spin_lock(&skc->skc_lock); uint64_t objs_allocated = percpu_counter_sum(&skc->skc_linux_alloc); seq_printf(f, "%-36s ", skc->skc_name); seq_printf(f, "0x%05lx %9s %9lu %8s %8u " "%5s %5s %5s %5s %5lu %5s %5s %5s %5s\n", (long unsigned)skc->skc_flags, "-", (long unsigned)(skc->skc_obj_size * objs_allocated), "-", (unsigned)skc->skc_obj_size, "-", "-", "-", "-", (long unsigned)objs_allocated, "-", "-", "-", "-"); spin_unlock(&skc->skc_lock); return (0); } spin_lock(&skc->skc_lock); seq_printf(f, "%-36s ", skc->skc_name); seq_printf(f, "0x%05lx %9lu %9lu %8u %8u " "%5lu %5lu %5lu %5lu %5lu %5lu %5lu %5lu %5lu\n", (long unsigned)skc->skc_flags, (long unsigned)(skc->skc_slab_size * skc->skc_slab_total), (long unsigned)(skc->skc_obj_size * skc->skc_obj_alloc), (unsigned)skc->skc_slab_size, (unsigned)skc->skc_obj_size, (long unsigned)skc->skc_slab_total, (long unsigned)skc->skc_slab_alloc, (long unsigned)skc->skc_slab_max, (long unsigned)skc->skc_obj_total, (long unsigned)skc->skc_obj_alloc, (long unsigned)skc->skc_obj_max, (long unsigned)skc->skc_obj_deadlock, (long unsigned)skc->skc_obj_emergency, (long unsigned)skc->skc_obj_emergency_max); spin_unlock(&skc->skc_lock); return (0); } static void * slab_seq_start(struct seq_file *f, loff_t *pos) { struct list_head *p; loff_t n = *pos; down_read(&spl_kmem_cache_sem); if (!n) slab_seq_show_headers(f); p = spl_kmem_cache_list.next; while (n--) { p = p->next; if (p == &spl_kmem_cache_list) return (NULL); } return (list_entry(p, spl_kmem_cache_t, skc_list)); } static void * slab_seq_next(struct seq_file *f, void *p, loff_t *pos) { spl_kmem_cache_t *skc = p; ++*pos; return ((skc->skc_list.next == &spl_kmem_cache_list) ? NULL : list_entry(skc->skc_list.next, spl_kmem_cache_t, skc_list)); } static void slab_seq_stop(struct seq_file *f, void *v) { up_read(&spl_kmem_cache_sem); } static const struct seq_operations slab_seq_ops = { .show = slab_seq_show, .start = slab_seq_start, .next = slab_seq_next, .stop = slab_seq_stop, }; static int proc_slab_open(struct inode *inode, struct file *filp) { return (seq_open(filp, &slab_seq_ops)); } static const kstat_proc_op_t proc_slab_operations = { #ifdef HAVE_PROC_OPS_STRUCT .proc_open = proc_slab_open, .proc_read = seq_read, .proc_lseek = seq_lseek, .proc_release = seq_release, #else .open = proc_slab_open, .read = seq_read, .llseek = seq_lseek, .release = seq_release, #endif }; static void taskq_seq_stop(struct seq_file *f, void *v) { up_read(&tq_list_sem); } static const struct seq_operations taskq_all_seq_ops = { .show = taskq_all_seq_show, .start = taskq_seq_start, .next = taskq_seq_next, .stop = taskq_seq_stop, }; static const struct seq_operations taskq_seq_ops = { .show = taskq_seq_show, .start = taskq_seq_start, .next = taskq_seq_next, .stop = taskq_seq_stop, }; static int proc_taskq_all_open(struct inode *inode, struct file *filp) { return (seq_open(filp, &taskq_all_seq_ops)); } static int proc_taskq_open(struct inode *inode, struct file *filp) { return (seq_open(filp, &taskq_seq_ops)); } static const kstat_proc_op_t proc_taskq_all_operations = { #ifdef HAVE_PROC_OPS_STRUCT .proc_open = proc_taskq_all_open, .proc_read = seq_read, .proc_lseek = seq_lseek, .proc_release = seq_release, #else .open = proc_taskq_all_open, .read = seq_read, .llseek = seq_lseek, .release = seq_release, #endif }; static const kstat_proc_op_t proc_taskq_operations = { #ifdef HAVE_PROC_OPS_STRUCT .proc_open = proc_taskq_open, .proc_read = seq_read, .proc_lseek = seq_lseek, .proc_release = seq_release, #else .open = proc_taskq_open, .read = seq_read, .llseek = seq_lseek, .release = seq_release, #endif }; static struct ctl_table spl_kmem_table[] = { #ifdef DEBUG_KMEM { .procname = "kmem_used", .data = &kmem_alloc_used, #ifdef HAVE_ATOMIC64_T .maxlen = sizeof (atomic64_t), #else .maxlen = sizeof (atomic_t), #endif /* HAVE_ATOMIC64_T */ .mode = 0444, .proc_handler = &proc_domemused, }, { .procname = "kmem_max", .data = &kmem_alloc_max, .maxlen = sizeof (unsigned long), .extra1 = &table_min, .extra2 = &table_max, .mode = 0444, .proc_handler = &proc_doulongvec_minmax, }, #endif /* DEBUG_KMEM */ { .procname = "slab_kvmem_total", .data = (void *)(KMC_KVMEM | KMC_TOTAL), .maxlen = sizeof (unsigned long), .extra1 = &table_min, .extra2 = &table_max, .mode = 0444, .proc_handler = &proc_doslab, }, { .procname = "slab_kvmem_alloc", .data = (void *)(KMC_KVMEM | KMC_ALLOC), .maxlen = sizeof (unsigned long), .extra1 = &table_min, .extra2 = &table_max, .mode = 0444, .proc_handler = &proc_doslab, }, { .procname = "slab_kvmem_max", .data = (void *)(KMC_KVMEM | KMC_MAX), .maxlen = sizeof (unsigned long), .extra1 = &table_min, .extra2 = &table_max, .mode = 0444, .proc_handler = &proc_doslab, }, {}, }; static struct ctl_table spl_kstat_table[] = { {}, }; static struct ctl_table spl_table[] = { /* * NB No .strategy entries have been provided since * sysctl(8) prefers to go via /proc for portability. */ { .procname = "gitrev", .data = (char *)ZFS_META_GITREV, .maxlen = sizeof (ZFS_META_GITREV), .mode = 0444, .proc_handler = &proc_dostring, }, { .procname = "hostid", .data = &spl_hostid, .maxlen = sizeof (unsigned long), .mode = 0644, .proc_handler = &proc_dohostid, }, #ifdef HAVE_REGISTER_SYSCTL_TABLE { .procname = "kmem", .mode = 0555, .child = spl_kmem_table, }, { .procname = "kstat", .mode = 0555, .child = spl_kstat_table, }, #endif {}, }; #ifdef HAVE_REGISTER_SYSCTL_TABLE static struct ctl_table spl_dir[] = { { .procname = "spl", .mode = 0555, .child = spl_table, }, {} }; static struct ctl_table spl_root[] = { { .procname = "kernel", .mode = 0555, .child = spl_dir, }, {} }; #endif static void spl_proc_cleanup(void) { remove_proc_entry("kstat", proc_spl); remove_proc_entry("slab", proc_spl_kmem); remove_proc_entry("kmem", proc_spl); remove_proc_entry("taskq-all", proc_spl); remove_proc_entry("taskq", proc_spl); remove_proc_entry("spl", NULL); #ifndef HAVE_REGISTER_SYSCTL_TABLE if (spl_kstat) { unregister_sysctl_table(spl_kstat); spl_kstat = NULL; } if (spl_kmem) { unregister_sysctl_table(spl_kmem); spl_kmem = NULL; } #endif if (spl_header) { unregister_sysctl_table(spl_header); spl_header = NULL; } } +#ifndef HAVE_REGISTER_SYSCTL_TABLE + +/* + * Traditionally, struct ctl_table arrays have been terminated by an "empty" + * sentinel element (specifically, one with .procname == NULL). + * + * Linux 6.6 began migrating away from this, adding register_sysctl_sz() so + * that callers could provide the size directly, and redefining + * register_sysctl() to just call register_sysctl_sz() with the array size. It + * retained support for the terminating element so that existing callers would + * continue to work. + * + * Linux 6.11 removed support for the terminating element, instead interpreting + * it as a real malformed element, and rejecting it. + * + * In order to continue support older kernels, we retain the terminating + * sentinel element for our sysctl tables, but instead detect availability of + * register_sysctl_sz(). If it exists, we pass it the array size -1, stopping + * the kernel from trying to process the terminator. For pre-6.6 kernels that + * don't have register_sysctl_sz(), we just use register_sysctl(), which can + * handle the terminating element as it always has. + */ +#ifdef HAVE_REGISTER_SYSCTL_SZ +#define spl_proc_register_sysctl(p, t) \ + register_sysctl_sz(p, t, ARRAY_SIZE(t)-1) +#else +#define spl_proc_register_sysctl(p, t) \ + register_sysctl(p, t) +#endif +#endif + int spl_proc_init(void) { int rc = 0; #ifdef HAVE_REGISTER_SYSCTL_TABLE spl_header = register_sysctl_table(spl_root); if (spl_header == NULL) return (-EUNATCH); #else - spl_header = register_sysctl("kernel/spl", spl_table); + spl_header = spl_proc_register_sysctl("kernel/spl", spl_table); if (spl_header == NULL) return (-EUNATCH); - spl_kmem = register_sysctl("kernel/spl/kmem", spl_kmem_table); + spl_kmem = spl_proc_register_sysctl("kernel/spl/kmem", spl_kmem_table); if (spl_kmem == NULL) { rc = -EUNATCH; goto out; } - spl_kstat = register_sysctl("kernel/spl/kstat", spl_kstat_table); + spl_kstat = spl_proc_register_sysctl("kernel/spl/kstat", + spl_kstat_table); if (spl_kstat == NULL) { rc = -EUNATCH; goto out; } #endif proc_spl = proc_mkdir("spl", NULL); if (proc_spl == NULL) { rc = -EUNATCH; goto out; } proc_spl_taskq_all = proc_create_data("taskq-all", 0444, proc_spl, &proc_taskq_all_operations, NULL); if (proc_spl_taskq_all == NULL) { rc = -EUNATCH; goto out; } proc_spl_taskq = proc_create_data("taskq", 0444, proc_spl, &proc_taskq_operations, NULL); if (proc_spl_taskq == NULL) { rc = -EUNATCH; goto out; } proc_spl_kmem = proc_mkdir("kmem", proc_spl); if (proc_spl_kmem == NULL) { rc = -EUNATCH; goto out; } proc_spl_kmem_slab = proc_create_data("slab", 0444, proc_spl_kmem, &proc_slab_operations, NULL); if (proc_spl_kmem_slab == NULL) { rc = -EUNATCH; goto out; } proc_spl_kstat = proc_mkdir("kstat", proc_spl); if (proc_spl_kstat == NULL) { rc = -EUNATCH; goto out; } out: if (rc) spl_proc_cleanup(); return (rc); } void spl_proc_fini(void) { spl_proc_cleanup(); } diff --git a/sys/contrib/openzfs/module/os/linux/zfs/zfs_vnops_os.c b/sys/contrib/openzfs/module/os/linux/zfs/zfs_vnops_os.c index 1cecad9f7755..9803c7fecb5c 100644 --- a/sys/contrib/openzfs/module/os/linux/zfs/zfs_vnops_os.c +++ b/sys/contrib/openzfs/module/os/linux/zfs/zfs_vnops_os.c @@ -1,4255 +1,4268 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or https://opensource.org/licenses/CDDL-1.0. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2012, 2018 by Delphix. All rights reserved. * Copyright (c) 2015 by Chunwei Chen. All rights reserved. * Copyright 2017 Nexenta Systems, Inc. */ /* Portions Copyright 2007 Jeremy Teo */ /* Portions Copyright 2010 Robert Milkowski */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include +#include /* * Programming rules. * * Each vnode op performs some logical unit of work. To do this, the ZPL must * properly lock its in-core state, create a DMU transaction, do the work, * record this work in the intent log (ZIL), commit the DMU transaction, * and wait for the intent log to commit if it is a synchronous operation. * Moreover, the vnode ops must work in both normal and log replay context. * The ordering of events is important to avoid deadlocks and references * to freed memory. The example below illustrates the following Big Rules: * * (1) A check must be made in each zfs thread for a mounted file system. * This is done avoiding races using zfs_enter(zfsvfs). * A zfs_exit(zfsvfs) is needed before all returns. Any znodes * must be checked with zfs_verify_zp(zp). Both of these macros * can return EIO from the calling function. * * (2) zrele() should always be the last thing except for zil_commit() (if * necessary) and zfs_exit(). This is for 3 reasons: First, if it's the * last reference, the vnode/znode can be freed, so the zp may point to * freed memory. Second, the last reference will call zfs_zinactive(), * which may induce a lot of work -- pushing cached pages (which acquires * range locks) and syncing out cached atime changes. Third, * zfs_zinactive() may require a new tx, which could deadlock the system * if you were already holding one. This deadlock occurs because the tx * currently being operated on prevents a txg from syncing, which * prevents the new tx from progressing, resulting in a deadlock. If you * must call zrele() within a tx, use zfs_zrele_async(). Note that iput() * is a synonym for zrele(). * * (3) All range locks must be grabbed before calling dmu_tx_assign(), * as they can span dmu_tx_assign() calls. * * (4) If ZPL locks are held, pass TXG_NOWAIT as the second argument to * dmu_tx_assign(). This is critical because we don't want to block * while holding locks. * * If no ZPL locks are held (aside from zfs_enter()), use TXG_WAIT. This * reduces lock contention and CPU usage when we must wait (note that if * throughput is constrained by the storage, nearly every transaction * must wait). * * Note, in particular, that if a lock is sometimes acquired before * the tx assigns, and sometimes after (e.g. z_lock), then failing * to use a non-blocking assign can deadlock the system. The scenario: * * Thread A has grabbed a lock before calling dmu_tx_assign(). * Thread B is in an already-assigned tx, and blocks for this lock. * Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open() * forever, because the previous txg can't quiesce until B's tx commits. * * If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT, * then drop all locks, call dmu_tx_wait(), and try again. On subsequent * calls to dmu_tx_assign(), pass TXG_NOTHROTTLE in addition to TXG_NOWAIT, * to indicate that this operation has already called dmu_tx_wait(). * This will ensure that we don't retry forever, waiting a short bit * each time. * * (5) If the operation succeeded, generate the intent log entry for it * before dropping locks. This ensures that the ordering of events * in the intent log matches the order in which they actually occurred. * During ZIL replay the zfs_log_* functions will update the sequence * number to indicate the zil transaction has replayed. * * (6) At the end of each vnode op, the DMU tx must always commit, * regardless of whether there were any errors. * * (7) After dropping all locks, invoke zil_commit(zilog, foid) * to ensure that synchronous semantics are provided when necessary. * * In general, this is how things should be ordered in each vnode op: * * zfs_enter(zfsvfs); // exit if unmounted * top: * zfs_dirent_lock(&dl, ...) // lock directory entry (may igrab()) * rw_enter(...); // grab any other locks you need * tx = dmu_tx_create(...); // get DMU tx * dmu_tx_hold_*(); // hold each object you might modify * error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT); * if (error) { * rw_exit(...); // drop locks * zfs_dirent_unlock(dl); // unlock directory entry * zrele(...); // release held znodes * if (error == ERESTART) { * waited = B_TRUE; * dmu_tx_wait(tx); * dmu_tx_abort(tx); * goto top; * } * dmu_tx_abort(tx); // abort DMU tx * zfs_exit(zfsvfs); // finished in zfs * return (error); // really out of space * } * error = do_real_work(); // do whatever this VOP does * if (error == 0) * zfs_log_*(...); // on success, make ZIL entry * dmu_tx_commit(tx); // commit DMU tx -- error or not * rw_exit(...); // drop locks * zfs_dirent_unlock(dl); // unlock directory entry * zrele(...); // release held znodes * zil_commit(zilog, foid); // synchronous when necessary * zfs_exit(zfsvfs); // finished in zfs * return (error); // done, report error */ int zfs_open(struct inode *ip, int mode, int flag, cred_t *cr) { (void) cr; znode_t *zp = ITOZ(ip); zfsvfs_t *zfsvfs = ITOZSB(ip); int error; if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0) return (error); /* Honor ZFS_APPENDONLY file attribute */ if (blk_mode_is_open_write(mode) && (zp->z_pflags & ZFS_APPENDONLY) && ((flag & O_APPEND) == 0)) { zfs_exit(zfsvfs, FTAG); return (SET_ERROR(EPERM)); } /* * Keep a count of the synchronous opens in the znode. On first * synchronous open we must convert all previous async transactions * into sync to keep correct ordering. */ if (flag & O_SYNC) { if (atomic_inc_32_nv(&zp->z_sync_cnt) == 1) zil_async_to_sync(zfsvfs->z_log, zp->z_id); } zfs_exit(zfsvfs, FTAG); return (0); } int zfs_close(struct inode *ip, int flag, cred_t *cr) { (void) cr; znode_t *zp = ITOZ(ip); zfsvfs_t *zfsvfs = ITOZSB(ip); int error; if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0) return (error); /* Decrement the synchronous opens in the znode */ if (flag & O_SYNC) atomic_dec_32(&zp->z_sync_cnt); zfs_exit(zfsvfs, FTAG); return (0); } #if defined(_KERNEL) static int zfs_fillpage(struct inode *ip, struct page *pp); /* * When a file is memory mapped, we must keep the IO data synchronized * between the DMU cache and the memory mapped pages. Update all mapped * pages with the contents of the coresponding dmu buffer. */ void update_pages(znode_t *zp, int64_t start, int len, objset_t *os) { struct address_space *mp = ZTOI(zp)->i_mapping; int64_t off = start & (PAGE_SIZE - 1); for (start &= PAGE_MASK; len > 0; start += PAGE_SIZE) { uint64_t nbytes = MIN(PAGE_SIZE - off, len); struct page *pp = find_lock_page(mp, start >> PAGE_SHIFT); if (pp) { if (mapping_writably_mapped(mp)) flush_dcache_page(pp); void *pb = kmap(pp); int error = dmu_read(os, zp->z_id, start + off, nbytes, pb + off, DMU_READ_PREFETCH); kunmap(pp); if (error) { SetPageError(pp); ClearPageUptodate(pp); } else { ClearPageError(pp); SetPageUptodate(pp); if (mapping_writably_mapped(mp)) flush_dcache_page(pp); mark_page_accessed(pp); } unlock_page(pp); put_page(pp); } len -= nbytes; off = 0; } } /* * When a file is memory mapped, we must keep the I/O data synchronized * between the DMU cache and the memory mapped pages. Preferentially read * from memory mapped pages, otherwise fallback to reading through the dmu. */ int mappedread(znode_t *zp, int nbytes, zfs_uio_t *uio) { struct inode *ip = ZTOI(zp); struct address_space *mp = ip->i_mapping; int64_t start = uio->uio_loffset; int64_t off = start & (PAGE_SIZE - 1); int len = nbytes; int error = 0; for (start &= PAGE_MASK; len > 0; start += PAGE_SIZE) { uint64_t bytes = MIN(PAGE_SIZE - off, len); struct page *pp = find_lock_page(mp, start >> PAGE_SHIFT); if (pp) { /* * If filemap_fault() retries there exists a window * where the page will be unlocked and not up to date. * In this case we must try and fill the page. */ if (unlikely(!PageUptodate(pp))) { error = zfs_fillpage(ip, pp); if (error) { unlock_page(pp); put_page(pp); return (error); } } ASSERT(PageUptodate(pp) || PageDirty(pp)); unlock_page(pp); void *pb = kmap(pp); error = zfs_uiomove(pb + off, bytes, UIO_READ, uio); kunmap(pp); if (mapping_writably_mapped(mp)) flush_dcache_page(pp); mark_page_accessed(pp); put_page(pp); } else { error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl), uio, bytes); } len -= bytes; off = 0; if (error) break; } return (error); } #endif /* _KERNEL */ static unsigned long zfs_delete_blocks = DMU_MAX_DELETEBLKCNT; /* * Write the bytes to a file. * * IN: zp - znode of file to be written to * data - bytes to write * len - number of bytes to write * pos - offset to start writing at * * OUT: resid - remaining bytes to write * * RETURN: 0 if success * positive error code if failure. EIO is returned * for a short write when residp isn't provided. * * Timestamps: * zp - ctime|mtime updated if byte count > 0 */ int zfs_write_simple(znode_t *zp, const void *data, size_t len, loff_t pos, size_t *residp) { fstrans_cookie_t cookie; int error; struct iovec iov; iov.iov_base = (void *)data; iov.iov_len = len; zfs_uio_t uio; zfs_uio_iovec_init(&uio, &iov, 1, pos, UIO_SYSSPACE, len, 0); cookie = spl_fstrans_mark(); error = zfs_write(zp, &uio, 0, kcred); spl_fstrans_unmark(cookie); if (error == 0) { if (residp != NULL) *residp = zfs_uio_resid(&uio); else if (zfs_uio_resid(&uio) != 0) error = SET_ERROR(EIO); } return (error); } static void zfs_rele_async_task(void *arg) { iput(arg); } void zfs_zrele_async(znode_t *zp) { struct inode *ip = ZTOI(zp); objset_t *os = ITOZSB(ip)->z_os; ASSERT(atomic_read(&ip->i_count) > 0); ASSERT(os != NULL); /* * If decrementing the count would put us at 0, we can't do it inline * here, because that would be synchronous. Instead, dispatch an iput * to run later. * * For more information on the dangers of a synchronous iput, see the * header comment of this file. */ if (!atomic_add_unless(&ip->i_count, -1, 1)) { VERIFY(taskq_dispatch(dsl_pool_zrele_taskq(dmu_objset_pool(os)), zfs_rele_async_task, ip, TQ_SLEEP) != TASKQID_INVALID); } } /* * Lookup an entry in a directory, or an extended attribute directory. * If it exists, return a held inode reference for it. * * IN: zdp - znode of directory to search. * nm - name of entry to lookup. * flags - LOOKUP_XATTR set if looking for an attribute. * cr - credentials of caller. * direntflags - directory lookup flags * realpnp - returned pathname. * * OUT: zpp - znode of located entry, NULL if not found. * * RETURN: 0 on success, error code on failure. * * Timestamps: * NA */ int zfs_lookup(znode_t *zdp, char *nm, znode_t **zpp, int flags, cred_t *cr, int *direntflags, pathname_t *realpnp) { zfsvfs_t *zfsvfs = ZTOZSB(zdp); int error = 0; /* * Fast path lookup, however we must skip DNLC lookup * for case folding or normalizing lookups because the * DNLC code only stores the passed in name. This means * creating 'a' and removing 'A' on a case insensitive * file system would work, but DNLC still thinks 'a' * exists and won't let you create it again on the next * pass through fast path. */ if (!(flags & (LOOKUP_XATTR | FIGNORECASE))) { if (!S_ISDIR(ZTOI(zdp)->i_mode)) { return (SET_ERROR(ENOTDIR)); } else if (zdp->z_sa_hdl == NULL) { return (SET_ERROR(EIO)); } if (nm[0] == 0 || (nm[0] == '.' && nm[1] == '\0')) { error = zfs_fastaccesschk_execute(zdp, cr); if (!error) { *zpp = zdp; zhold(*zpp); return (0); } return (error); } } if ((error = zfs_enter_verify_zp(zfsvfs, zdp, FTAG)) != 0) return (error); *zpp = NULL; if (flags & LOOKUP_XATTR) { /* * We don't allow recursive attributes.. * Maybe someday we will. */ if (zdp->z_pflags & ZFS_XATTR) { zfs_exit(zfsvfs, FTAG); return (SET_ERROR(EINVAL)); } if ((error = zfs_get_xattrdir(zdp, zpp, cr, flags))) { zfs_exit(zfsvfs, FTAG); return (error); } /* * Do we have permission to get into attribute directory? */ if ((error = zfs_zaccess(*zpp, ACE_EXECUTE, 0, B_TRUE, cr, zfs_init_idmap))) { zrele(*zpp); *zpp = NULL; } zfs_exit(zfsvfs, FTAG); return (error); } if (!S_ISDIR(ZTOI(zdp)->i_mode)) { zfs_exit(zfsvfs, FTAG); return (SET_ERROR(ENOTDIR)); } /* * Check accessibility of directory. */ if ((error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr, zfs_init_idmap))) { zfs_exit(zfsvfs, FTAG); return (error); } if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { zfs_exit(zfsvfs, FTAG); return (SET_ERROR(EILSEQ)); } error = zfs_dirlook(zdp, nm, zpp, flags, direntflags, realpnp); if ((error == 0) && (*zpp)) zfs_znode_update_vfs(*zpp); zfs_exit(zfsvfs, FTAG); return (error); } /* * Attempt to create a new entry in a directory. If the entry * already exists, truncate the file if permissible, else return * an error. Return the ip of the created or trunc'd file. * * IN: dzp - znode of directory to put new file entry in. * name - name of new file entry. * vap - attributes of new file. * excl - flag indicating exclusive or non-exclusive mode. * mode - mode to open file with. * cr - credentials of caller. * flag - file flag. * vsecp - ACL to be set * mnt_ns - user namespace of the mount * * OUT: zpp - znode of created or trunc'd entry. * * RETURN: 0 on success, error code on failure. * * Timestamps: * dzp - ctime|mtime updated if new entry created * zp - ctime|mtime always, atime if new */ int zfs_create(znode_t *dzp, char *name, vattr_t *vap, int excl, int mode, znode_t **zpp, cred_t *cr, int flag, vsecattr_t *vsecp, zidmap_t *mnt_ns) { znode_t *zp; zfsvfs_t *zfsvfs = ZTOZSB(dzp); zilog_t *zilog; objset_t *os; zfs_dirlock_t *dl; dmu_tx_t *tx; int error; uid_t uid; gid_t gid; zfs_acl_ids_t acl_ids; boolean_t fuid_dirtied; boolean_t have_acl = B_FALSE; boolean_t waited = B_FALSE; boolean_t skip_acl = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; /* * If we have an ephemeral id, ACL, or XVATTR then * make sure file system is at proper version */ gid = crgetgid(cr); uid = crgetuid(cr); if (zfsvfs->z_use_fuids == B_FALSE && (vsecp || IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid))) return (SET_ERROR(EINVAL)); if (name == NULL) return (SET_ERROR(EINVAL)); if ((error = zfs_enter_verify_zp(zfsvfs, dzp, FTAG)) != 0) return (error); os = zfsvfs->z_os; zilog = zfsvfs->z_log; if (zfsvfs->z_utf8 && u8_validate(name, strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { zfs_exit(zfsvfs, FTAG); return (SET_ERROR(EILSEQ)); } if (vap->va_mask & ATTR_XVATTR) { if ((error = secpolicy_xvattr((xvattr_t *)vap, crgetuid(cr), cr, vap->va_mode)) != 0) { zfs_exit(zfsvfs, FTAG); return (error); } } top: *zpp = NULL; if (*name == '\0') { /* * Null component name refers to the directory itself. */ zhold(dzp); zp = dzp; dl = NULL; error = 0; } else { /* possible igrab(zp) */ int zflg = 0; if (flag & FIGNORECASE) zflg |= ZCILOOK; error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL); if (error) { if (have_acl) zfs_acl_ids_free(&acl_ids); if (strcmp(name, "..") == 0) error = SET_ERROR(EISDIR); zfs_exit(zfsvfs, FTAG); return (error); } } if (zp == NULL) { uint64_t txtype; uint64_t projid = ZFS_DEFAULT_PROJID; /* * Create a new file object and update the directory * to reference it. */ if ((error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, skip_acl, cr, mnt_ns))) { if (have_acl) zfs_acl_ids_free(&acl_ids); goto out; } /* * We only support the creation of regular files in * extended attribute directories. */ if ((dzp->z_pflags & ZFS_XATTR) && !S_ISREG(vap->va_mode)) { if (have_acl) zfs_acl_ids_free(&acl_ids); error = SET_ERROR(EINVAL); goto out; } if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap, cr, vsecp, &acl_ids, mnt_ns)) != 0) goto out; have_acl = B_TRUE; if (S_ISREG(vap->va_mode) || S_ISDIR(vap->va_mode)) projid = zfs_inherit_projid(dzp); if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, projid)) { zfs_acl_ids_free(&acl_ids); error = SET_ERROR(EDQUOT); goto out; } tx = dmu_tx_create(os); dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes + ZFS_SA_BASE_ATTR_SIZE); fuid_dirtied = zfsvfs->z_fuid_dirty; if (fuid_dirtied) zfs_fuid_txhold(zfsvfs, tx); dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE); if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) { dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, acl_ids.z_aclp->z_acl_bytes); } error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT); if (error) { zfs_dirent_unlock(dl); if (error == ERESTART) { waited = B_TRUE; dmu_tx_wait(tx); dmu_tx_abort(tx); goto top; } zfs_acl_ids_free(&acl_ids); dmu_tx_abort(tx); zfs_exit(zfsvfs, FTAG); return (error); } zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids); error = zfs_link_create(dl, zp, tx, ZNEW); if (error != 0) { /* * Since, we failed to add the directory entry for it, * delete the newly created dnode. */ zfs_znode_delete(zp, tx); remove_inode_hash(ZTOI(zp)); zfs_acl_ids_free(&acl_ids); dmu_tx_commit(tx); goto out; } if (fuid_dirtied) zfs_fuid_sync(zfsvfs, tx); txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap); if (flag & FIGNORECASE) txtype |= TX_CI; zfs_log_create(zilog, tx, txtype, dzp, zp, name, vsecp, acl_ids.z_fuidp, vap); zfs_acl_ids_free(&acl_ids); dmu_tx_commit(tx); } else { int aflags = (flag & O_APPEND) ? V_APPEND : 0; if (have_acl) zfs_acl_ids_free(&acl_ids); /* * A directory entry already exists for this name. */ /* * Can't truncate an existing file if in exclusive mode. */ if (excl) { error = SET_ERROR(EEXIST); goto out; } /* * Can't open a directory for writing. */ if (S_ISDIR(ZTOI(zp)->i_mode)) { error = SET_ERROR(EISDIR); goto out; } /* * Verify requested access to file. */ if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr, mnt_ns))) { goto out; } mutex_enter(&dzp->z_lock); dzp->z_seq++; mutex_exit(&dzp->z_lock); /* * Truncate regular files if requested. */ if (S_ISREG(ZTOI(zp)->i_mode) && (vap->va_mask & ATTR_SIZE) && (vap->va_size == 0)) { /* we can't hold any locks when calling zfs_freesp() */ if (dl) { zfs_dirent_unlock(dl); dl = NULL; } error = zfs_freesp(zp, 0, 0, mode, TRUE); } } out: if (dl) zfs_dirent_unlock(dl); if (error) { if (zp) zrele(zp); } else { zfs_znode_update_vfs(dzp); zfs_znode_update_vfs(zp); *zpp = zp; } if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) zil_commit(zilog, 0); zfs_exit(zfsvfs, FTAG); return (error); } int zfs_tmpfile(struct inode *dip, vattr_t *vap, int excl, int mode, struct inode **ipp, cred_t *cr, int flag, vsecattr_t *vsecp, zidmap_t *mnt_ns) { (void) excl, (void) mode, (void) flag; znode_t *zp = NULL, *dzp = ITOZ(dip); zfsvfs_t *zfsvfs = ITOZSB(dip); objset_t *os; dmu_tx_t *tx; int error; uid_t uid; gid_t gid; zfs_acl_ids_t acl_ids; uint64_t projid = ZFS_DEFAULT_PROJID; boolean_t fuid_dirtied; boolean_t have_acl = B_FALSE; boolean_t waited = B_FALSE; /* * If we have an ephemeral id, ACL, or XVATTR then * make sure file system is at proper version */ gid = crgetgid(cr); uid = crgetuid(cr); if (zfsvfs->z_use_fuids == B_FALSE && (vsecp || IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid))) return (SET_ERROR(EINVAL)); if ((error = zfs_enter_verify_zp(zfsvfs, dzp, FTAG)) != 0) return (error); os = zfsvfs->z_os; if (vap->va_mask & ATTR_XVATTR) { if ((error = secpolicy_xvattr((xvattr_t *)vap, crgetuid(cr), cr, vap->va_mode)) != 0) { zfs_exit(zfsvfs, FTAG); return (error); } } top: *ipp = NULL; /* * Create a new file object and update the directory * to reference it. */ if ((error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr, mnt_ns))) { if (have_acl) zfs_acl_ids_free(&acl_ids); goto out; } if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap, cr, vsecp, &acl_ids, mnt_ns)) != 0) goto out; have_acl = B_TRUE; if (S_ISREG(vap->va_mode) || S_ISDIR(vap->va_mode)) projid = zfs_inherit_projid(dzp); if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, projid)) { zfs_acl_ids_free(&acl_ids); error = SET_ERROR(EDQUOT); goto out; } tx = dmu_tx_create(os); dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes + ZFS_SA_BASE_ATTR_SIZE); dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); fuid_dirtied = zfsvfs->z_fuid_dirty; if (fuid_dirtied) zfs_fuid_txhold(zfsvfs, tx); if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) { dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, acl_ids.z_aclp->z_acl_bytes); } error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT); if (error) { if (error == ERESTART) { waited = B_TRUE; dmu_tx_wait(tx); dmu_tx_abort(tx); goto top; } zfs_acl_ids_free(&acl_ids); dmu_tx_abort(tx); zfs_exit(zfsvfs, FTAG); return (error); } zfs_mknode(dzp, vap, tx, cr, IS_TMPFILE, &zp, &acl_ids); if (fuid_dirtied) zfs_fuid_sync(zfsvfs, tx); /* Add to unlinked set */ zp->z_unlinked = B_TRUE; zfs_unlinked_add(zp, tx); zfs_acl_ids_free(&acl_ids); dmu_tx_commit(tx); out: if (error) { if (zp) zrele(zp); } else { zfs_znode_update_vfs(dzp); zfs_znode_update_vfs(zp); *ipp = ZTOI(zp); } zfs_exit(zfsvfs, FTAG); return (error); } /* * Remove an entry from a directory. * * IN: dzp - znode of directory to remove entry from. * name - name of entry to remove. * cr - credentials of caller. * flags - case flags. * * RETURN: 0 if success * error code if failure * * Timestamps: * dzp - ctime|mtime * ip - ctime (if nlink > 0) */ static uint64_t null_xattr = 0; int zfs_remove(znode_t *dzp, char *name, cred_t *cr, int flags) { znode_t *zp; znode_t *xzp; zfsvfs_t *zfsvfs = ZTOZSB(dzp); zilog_t *zilog; uint64_t acl_obj, xattr_obj; uint64_t xattr_obj_unlinked = 0; uint64_t obj = 0; uint64_t links; zfs_dirlock_t *dl; dmu_tx_t *tx; boolean_t may_delete_now, delete_now = FALSE; boolean_t unlinked, toobig = FALSE; uint64_t txtype; pathname_t *realnmp = NULL; pathname_t realnm; int error; int zflg = ZEXISTS; boolean_t waited = B_FALSE; if (name == NULL) return (SET_ERROR(EINVAL)); if ((error = zfs_enter_verify_zp(zfsvfs, dzp, FTAG)) != 0) return (error); zilog = zfsvfs->z_log; if (flags & FIGNORECASE) { zflg |= ZCILOOK; pn_alloc(&realnm); realnmp = &realnm; } top: xattr_obj = 0; xzp = NULL; /* * Attempt to lock directory; fail if entry doesn't exist. */ if ((error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, realnmp))) { if (realnmp) pn_free(realnmp); zfs_exit(zfsvfs, FTAG); return (error); } if ((error = zfs_zaccess_delete(dzp, zp, cr, zfs_init_idmap))) { goto out; } /* * Need to use rmdir for removing directories. */ if (S_ISDIR(ZTOI(zp)->i_mode)) { error = SET_ERROR(EPERM); goto out; } mutex_enter(&zp->z_lock); may_delete_now = atomic_read(&ZTOI(zp)->i_count) == 1 && !zn_has_cached_data(zp, 0, LLONG_MAX); mutex_exit(&zp->z_lock); /* * We may delete the znode now, or we may put it in the unlinked set; * it depends on whether we're the last link, and on whether there are * other holds on the inode. So we dmu_tx_hold() the right things to * allow for either case. */ obj = zp->z_id; tx = dmu_tx_create(zfsvfs->z_os); dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name); dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); zfs_sa_upgrade_txholds(tx, zp); zfs_sa_upgrade_txholds(tx, dzp); if (may_delete_now) { toobig = zp->z_size > zp->z_blksz * zfs_delete_blocks; /* if the file is too big, only hold_free a token amount */ dmu_tx_hold_free(tx, zp->z_id, 0, (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END)); } /* are there any extended attributes? */ error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), &xattr_obj, sizeof (xattr_obj)); if (error == 0 && xattr_obj) { error = zfs_zget(zfsvfs, xattr_obj, &xzp); ASSERT0(error); dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE); dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE); } mutex_enter(&zp->z_lock); if ((acl_obj = zfs_external_acl(zp)) != 0 && may_delete_now) dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END); mutex_exit(&zp->z_lock); /* charge as an update -- would be nice not to charge at all */ dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); /* * Mark this transaction as typically resulting in a net free of space */ dmu_tx_mark_netfree(tx); error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT); if (error) { zfs_dirent_unlock(dl); if (error == ERESTART) { waited = B_TRUE; dmu_tx_wait(tx); dmu_tx_abort(tx); zrele(zp); if (xzp) zrele(xzp); goto top; } if (realnmp) pn_free(realnmp); dmu_tx_abort(tx); zrele(zp); if (xzp) zrele(xzp); zfs_exit(zfsvfs, FTAG); return (error); } /* * Remove the directory entry. */ error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked); if (error) { dmu_tx_commit(tx); goto out; } if (unlinked) { /* * Hold z_lock so that we can make sure that the ACL obj * hasn't changed. Could have been deleted due to * zfs_sa_upgrade(). */ mutex_enter(&zp->z_lock); (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), &xattr_obj_unlinked, sizeof (xattr_obj_unlinked)); delete_now = may_delete_now && !toobig && atomic_read(&ZTOI(zp)->i_count) == 1 && !zn_has_cached_data(zp, 0, LLONG_MAX) && xattr_obj == xattr_obj_unlinked && zfs_external_acl(zp) == acl_obj; VERIFY_IMPLY(xattr_obj_unlinked, xzp); } if (delete_now) { if (xattr_obj_unlinked) { ASSERT3U(ZTOI(xzp)->i_nlink, ==, 2); mutex_enter(&xzp->z_lock); xzp->z_unlinked = B_TRUE; clear_nlink(ZTOI(xzp)); links = 0; error = sa_update(xzp->z_sa_hdl, SA_ZPL_LINKS(zfsvfs), &links, sizeof (links), tx); ASSERT3U(error, ==, 0); mutex_exit(&xzp->z_lock); zfs_unlinked_add(xzp, tx); if (zp->z_is_sa) error = sa_remove(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), tx); else error = sa_update(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), &null_xattr, sizeof (uint64_t), tx); ASSERT0(error); } /* * Add to the unlinked set because a new reference could be * taken concurrently resulting in a deferred destruction. */ zfs_unlinked_add(zp, tx); mutex_exit(&zp->z_lock); } else if (unlinked) { mutex_exit(&zp->z_lock); zfs_unlinked_add(zp, tx); } txtype = TX_REMOVE; if (flags & FIGNORECASE) txtype |= TX_CI; zfs_log_remove(zilog, tx, txtype, dzp, name, obj, unlinked); dmu_tx_commit(tx); out: if (realnmp) pn_free(realnmp); zfs_dirent_unlock(dl); zfs_znode_update_vfs(dzp); zfs_znode_update_vfs(zp); if (delete_now) zrele(zp); else zfs_zrele_async(zp); if (xzp) { zfs_znode_update_vfs(xzp); zfs_zrele_async(xzp); } if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) zil_commit(zilog, 0); zfs_exit(zfsvfs, FTAG); return (error); } /* * Create a new directory and insert it into dzp using the name * provided. Return a pointer to the inserted directory. * * IN: dzp - znode of directory to add subdir to. * dirname - name of new directory. * vap - attributes of new directory. * cr - credentials of caller. * flags - case flags. * vsecp - ACL to be set * mnt_ns - user namespace of the mount * * OUT: zpp - znode of created directory. * * RETURN: 0 if success * error code if failure * * Timestamps: * dzp - ctime|mtime updated * zpp - ctime|mtime|atime updated */ int zfs_mkdir(znode_t *dzp, char *dirname, vattr_t *vap, znode_t **zpp, cred_t *cr, int flags, vsecattr_t *vsecp, zidmap_t *mnt_ns) { znode_t *zp; zfsvfs_t *zfsvfs = ZTOZSB(dzp); zilog_t *zilog; zfs_dirlock_t *dl; uint64_t txtype; dmu_tx_t *tx; int error; int zf = ZNEW; uid_t uid; gid_t gid = crgetgid(cr); zfs_acl_ids_t acl_ids; boolean_t fuid_dirtied; boolean_t waited = B_FALSE; ASSERT(S_ISDIR(vap->va_mode)); /* * If we have an ephemeral id, ACL, or XVATTR then * make sure file system is at proper version */ uid = crgetuid(cr); if (zfsvfs->z_use_fuids == B_FALSE && (vsecp || IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid))) return (SET_ERROR(EINVAL)); if (dirname == NULL) return (SET_ERROR(EINVAL)); if ((error = zfs_enter_verify_zp(zfsvfs, dzp, FTAG)) != 0) return (error); zilog = zfsvfs->z_log; if (dzp->z_pflags & ZFS_XATTR) { zfs_exit(zfsvfs, FTAG); return (SET_ERROR(EINVAL)); } if (zfsvfs->z_utf8 && u8_validate(dirname, strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { zfs_exit(zfsvfs, FTAG); return (SET_ERROR(EILSEQ)); } if (flags & FIGNORECASE) zf |= ZCILOOK; if (vap->va_mask & ATTR_XVATTR) { if ((error = secpolicy_xvattr((xvattr_t *)vap, crgetuid(cr), cr, vap->va_mode)) != 0) { zfs_exit(zfsvfs, FTAG); return (error); } } if ((error = zfs_acl_ids_create(dzp, 0, vap, cr, vsecp, &acl_ids, mnt_ns)) != 0) { zfs_exit(zfsvfs, FTAG); return (error); } /* * First make sure the new directory doesn't exist. * * Existence is checked first to make sure we don't return * EACCES instead of EEXIST which can cause some applications * to fail. */ top: *zpp = NULL; if ((error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf, NULL, NULL))) { zfs_acl_ids_free(&acl_ids); zfs_exit(zfsvfs, FTAG); return (error); } if ((error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr, mnt_ns))) { zfs_acl_ids_free(&acl_ids); zfs_dirent_unlock(dl); zfs_exit(zfsvfs, FTAG); return (error); } if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, zfs_inherit_projid(dzp))) { zfs_acl_ids_free(&acl_ids); zfs_dirent_unlock(dl); zfs_exit(zfsvfs, FTAG); return (SET_ERROR(EDQUOT)); } /* * Add a new entry to the directory. */ tx = dmu_tx_create(zfsvfs->z_os); dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname); dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL); fuid_dirtied = zfsvfs->z_fuid_dirty; if (fuid_dirtied) zfs_fuid_txhold(zfsvfs, tx); if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) { dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, acl_ids.z_aclp->z_acl_bytes); } dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes + ZFS_SA_BASE_ATTR_SIZE); error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT); if (error) { zfs_dirent_unlock(dl); if (error == ERESTART) { waited = B_TRUE; dmu_tx_wait(tx); dmu_tx_abort(tx); goto top; } zfs_acl_ids_free(&acl_ids); dmu_tx_abort(tx); zfs_exit(zfsvfs, FTAG); return (error); } /* * Create new node. */ zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids); /* * Now put new name in parent dir. */ error = zfs_link_create(dl, zp, tx, ZNEW); if (error != 0) { zfs_znode_delete(zp, tx); remove_inode_hash(ZTOI(zp)); goto out; } if (fuid_dirtied) zfs_fuid_sync(zfsvfs, tx); *zpp = zp; txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap); if (flags & FIGNORECASE) txtype |= TX_CI; zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp, acl_ids.z_fuidp, vap); out: zfs_acl_ids_free(&acl_ids); dmu_tx_commit(tx); zfs_dirent_unlock(dl); if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) zil_commit(zilog, 0); if (error != 0) { zrele(zp); } else { zfs_znode_update_vfs(dzp); zfs_znode_update_vfs(zp); } zfs_exit(zfsvfs, FTAG); return (error); } /* * Remove a directory subdir entry. If the current working * directory is the same as the subdir to be removed, the * remove will fail. * * IN: dzp - znode of directory to remove from. * name - name of directory to be removed. * cwd - inode of current working directory. * cr - credentials of caller. * flags - case flags * * RETURN: 0 on success, error code on failure. * * Timestamps: * dzp - ctime|mtime updated */ int zfs_rmdir(znode_t *dzp, char *name, znode_t *cwd, cred_t *cr, int flags) { znode_t *zp; zfsvfs_t *zfsvfs = ZTOZSB(dzp); zilog_t *zilog; zfs_dirlock_t *dl; dmu_tx_t *tx; int error; int zflg = ZEXISTS; boolean_t waited = B_FALSE; if (name == NULL) return (SET_ERROR(EINVAL)); if ((error = zfs_enter_verify_zp(zfsvfs, dzp, FTAG)) != 0) return (error); zilog = zfsvfs->z_log; if (flags & FIGNORECASE) zflg |= ZCILOOK; top: zp = NULL; /* * Attempt to lock directory; fail if entry doesn't exist. */ if ((error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL))) { zfs_exit(zfsvfs, FTAG); return (error); } if ((error = zfs_zaccess_delete(dzp, zp, cr, zfs_init_idmap))) { goto out; } if (!S_ISDIR(ZTOI(zp)->i_mode)) { error = SET_ERROR(ENOTDIR); goto out; } if (zp == cwd) { error = SET_ERROR(EINVAL); goto out; } /* * Grab a lock on the directory to make sure that no one is * trying to add (or lookup) entries while we are removing it. */ rw_enter(&zp->z_name_lock, RW_WRITER); /* * Grab a lock on the parent pointer to make sure we play well * with the treewalk and directory rename code. */ rw_enter(&zp->z_parent_lock, RW_WRITER); tx = dmu_tx_create(zfsvfs->z_os); dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name); dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); zfs_sa_upgrade_txholds(tx, zp); zfs_sa_upgrade_txholds(tx, dzp); dmu_tx_mark_netfree(tx); error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT); if (error) { rw_exit(&zp->z_parent_lock); rw_exit(&zp->z_name_lock); zfs_dirent_unlock(dl); if (error == ERESTART) { waited = B_TRUE; dmu_tx_wait(tx); dmu_tx_abort(tx); zrele(zp); goto top; } dmu_tx_abort(tx); zrele(zp); zfs_exit(zfsvfs, FTAG); return (error); } error = zfs_link_destroy(dl, zp, tx, zflg, NULL); if (error == 0) { uint64_t txtype = TX_RMDIR; if (flags & FIGNORECASE) txtype |= TX_CI; zfs_log_remove(zilog, tx, txtype, dzp, name, ZFS_NO_OBJECT, B_FALSE); } dmu_tx_commit(tx); rw_exit(&zp->z_parent_lock); rw_exit(&zp->z_name_lock); out: zfs_dirent_unlock(dl); zfs_znode_update_vfs(dzp); zfs_znode_update_vfs(zp); zrele(zp); if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) zil_commit(zilog, 0); zfs_exit(zfsvfs, FTAG); return (error); } /* * Read directory entries from the given directory cursor position and emit * name and position for each entry. * * IN: ip - inode of directory to read. * ctx - directory entry context. * cr - credentials of caller. * * RETURN: 0 if success * error code if failure * * Timestamps: * ip - atime updated * * Note that the low 4 bits of the cookie returned by zap is always zero. * This allows us to use the low range for "special" directory entries: * We use 0 for '.', and 1 for '..'. If this is the root of the filesystem, * we use the offset 2 for the '.zfs' directory. */ int zfs_readdir(struct inode *ip, zpl_dir_context_t *ctx, cred_t *cr) { (void) cr; znode_t *zp = ITOZ(ip); zfsvfs_t *zfsvfs = ITOZSB(ip); objset_t *os; zap_cursor_t zc; zap_attribute_t zap; int error; uint8_t prefetch; uint8_t type; int done = 0; uint64_t parent; uint64_t offset; /* must be unsigned; checks for < 1 */ if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0) return (error); if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs), &parent, sizeof (parent))) != 0) goto out; /* * Quit if directory has been removed (posix) */ if (zp->z_unlinked) goto out; error = 0; os = zfsvfs->z_os; offset = ctx->pos; prefetch = zp->z_zn_prefetch; /* * Initialize the iterator cursor. */ if (offset <= 3) { /* * Start iteration from the beginning of the directory. */ zap_cursor_init(&zc, os, zp->z_id); } else { /* * The offset is a serialized cursor. */ zap_cursor_init_serialized(&zc, os, zp->z_id, offset); } /* * Transform to file-system independent format */ while (!done) { uint64_t objnum; /* * Special case `.', `..', and `.zfs'. */ if (offset == 0) { (void) strcpy(zap.za_name, "."); zap.za_normalization_conflict = 0; objnum = zp->z_id; type = DT_DIR; } else if (offset == 1) { (void) strcpy(zap.za_name, ".."); zap.za_normalization_conflict = 0; objnum = parent; type = DT_DIR; } else if (offset == 2 && zfs_show_ctldir(zp)) { (void) strcpy(zap.za_name, ZFS_CTLDIR_NAME); zap.za_normalization_conflict = 0; objnum = ZFSCTL_INO_ROOT; type = DT_DIR; } else { /* * Grab next entry. */ if ((error = zap_cursor_retrieve(&zc, &zap))) { if (error == ENOENT) break; else goto update; } /* * Allow multiple entries provided the first entry is * the object id. Non-zpl consumers may safely make * use of the additional space. * * XXX: This should be a feature flag for compatibility */ if (zap.za_integer_length != 8 || zap.za_num_integers == 0) { cmn_err(CE_WARN, "zap_readdir: bad directory " "entry, obj = %lld, offset = %lld, " "length = %d, num = %lld\n", (u_longlong_t)zp->z_id, (u_longlong_t)offset, zap.za_integer_length, (u_longlong_t)zap.za_num_integers); error = SET_ERROR(ENXIO); goto update; } objnum = ZFS_DIRENT_OBJ(zap.za_first_integer); type = ZFS_DIRENT_TYPE(zap.za_first_integer); } done = !zpl_dir_emit(ctx, zap.za_name, strlen(zap.za_name), objnum, type); if (done) break; if (prefetch) dmu_prefetch_dnode(os, objnum, ZIO_PRIORITY_SYNC_READ); /* * Move to the next entry, fill in the previous offset. */ if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) { zap_cursor_advance(&zc); offset = zap_cursor_serialize(&zc); } else { offset += 1; } ctx->pos = offset; } zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */ update: zap_cursor_fini(&zc); if (error == ENOENT) error = 0; out: zfs_exit(zfsvfs, FTAG); return (error); } /* * Get the basic file attributes and place them in the provided kstat * structure. The inode is assumed to be the authoritative source * for most of the attributes. However, the znode currently has the * authoritative atime, blksize, and block count. * * IN: ip - inode of file. * * OUT: sp - kstat values. * * RETURN: 0 (always succeeds) */ int #ifdef HAVE_GENERIC_FILLATTR_IDMAP_REQMASK zfs_getattr_fast(zidmap_t *user_ns, u32 request_mask, struct inode *ip, struct kstat *sp) #else zfs_getattr_fast(zidmap_t *user_ns, struct inode *ip, struct kstat *sp) #endif { znode_t *zp = ITOZ(ip); zfsvfs_t *zfsvfs = ITOZSB(ip); uint32_t blksize; u_longlong_t nblocks; int error; if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0) return (error); mutex_enter(&zp->z_lock); #ifdef HAVE_GENERIC_FILLATTR_IDMAP_REQMASK zpl_generic_fillattr(user_ns, request_mask, ip, sp); #else zpl_generic_fillattr(user_ns, ip, sp); #endif /* * +1 link count for root inode with visible '.zfs' directory. */ if ((zp->z_id == zfsvfs->z_root) && zfs_show_ctldir(zp)) if (sp->nlink < ZFS_LINK_MAX) sp->nlink++; sa_object_size(zp->z_sa_hdl, &blksize, &nblocks); sp->blksize = blksize; sp->blocks = nblocks; if (unlikely(zp->z_blksz == 0)) { /* * Block size hasn't been set; suggest maximal I/O transfers. */ sp->blksize = zfsvfs->z_max_blksz; } mutex_exit(&zp->z_lock); /* * Required to prevent NFS client from detecting different inode * numbers of snapshot root dentry before and after snapshot mount. */ if (zfsvfs->z_issnap) { if (ip->i_sb->s_root->d_inode == ip) sp->ino = ZFSCTL_INO_SNAPDIRS - dmu_objset_id(zfsvfs->z_os); } zfs_exit(zfsvfs, FTAG); return (0); } /* * For the operation of changing file's user/group/project, we need to * handle not only the main object that is assigned to the file directly, * but also the ones that are used by the file via hidden xattr directory. * * Because the xattr directory may contains many EA entries, as to it may * be impossible to change all of them via the transaction of changing the * main object's user/group/project attributes. Then we have to change them * via other multiple independent transactions one by one. It may be not good * solution, but we have no better idea yet. */ static int zfs_setattr_dir(znode_t *dzp) { struct inode *dxip = ZTOI(dzp); struct inode *xip = NULL; zfsvfs_t *zfsvfs = ZTOZSB(dzp); objset_t *os = zfsvfs->z_os; zap_cursor_t zc; zap_attribute_t zap; zfs_dirlock_t *dl; znode_t *zp = NULL; dmu_tx_t *tx = NULL; uint64_t uid, gid; sa_bulk_attr_t bulk[4]; int count; int err; zap_cursor_init(&zc, os, dzp->z_id); while ((err = zap_cursor_retrieve(&zc, &zap)) == 0) { count = 0; if (zap.za_integer_length != 8 || zap.za_num_integers != 1) { err = ENXIO; break; } err = zfs_dirent_lock(&dl, dzp, (char *)zap.za_name, &zp, ZEXISTS, NULL, NULL); if (err == ENOENT) goto next; if (err) break; xip = ZTOI(zp); if (KUID_TO_SUID(xip->i_uid) == KUID_TO_SUID(dxip->i_uid) && KGID_TO_SGID(xip->i_gid) == KGID_TO_SGID(dxip->i_gid) && zp->z_projid == dzp->z_projid) goto next; tx = dmu_tx_create(os); if (!(zp->z_pflags & ZFS_PROJID)) dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE); else dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); err = dmu_tx_assign(tx, TXG_WAIT); if (err) break; mutex_enter(&dzp->z_lock); if (KUID_TO_SUID(xip->i_uid) != KUID_TO_SUID(dxip->i_uid)) { xip->i_uid = dxip->i_uid; uid = zfs_uid_read(dxip); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL, &uid, sizeof (uid)); } if (KGID_TO_SGID(xip->i_gid) != KGID_TO_SGID(dxip->i_gid)) { xip->i_gid = dxip->i_gid; gid = zfs_gid_read(dxip); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), NULL, &gid, sizeof (gid)); } - if (zp->z_projid != dzp->z_projid) { + + uint64_t projid = dzp->z_projid; + if (zp->z_projid != projid) { if (!(zp->z_pflags & ZFS_PROJID)) { - zp->z_pflags |= ZFS_PROJID; - SA_ADD_BULK_ATTR(bulk, count, - SA_ZPL_FLAGS(zfsvfs), NULL, &zp->z_pflags, - sizeof (zp->z_pflags)); + err = sa_add_projid(zp->z_sa_hdl, tx, projid); + if (unlikely(err == EEXIST)) { + err = 0; + } else if (err != 0) { + goto sa_add_projid_err; + } else { + projid = ZFS_INVALID_PROJID; + } } - zp->z_projid = dzp->z_projid; - SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_PROJID(zfsvfs), - NULL, &zp->z_projid, sizeof (zp->z_projid)); + if (projid != ZFS_INVALID_PROJID) { + zp->z_projid = projid; + SA_ADD_BULK_ATTR(bulk, count, + SA_ZPL_PROJID(zfsvfs), NULL, &zp->z_projid, + sizeof (zp->z_projid)); + } } +sa_add_projid_err: mutex_exit(&dzp->z_lock); if (likely(count > 0)) { err = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); dmu_tx_commit(tx); + } else if (projid == ZFS_INVALID_PROJID) { + dmu_tx_commit(tx); } else { dmu_tx_abort(tx); } tx = NULL; if (err != 0 && err != ENOENT) break; next: if (zp) { zrele(zp); zp = NULL; zfs_dirent_unlock(dl); } zap_cursor_advance(&zc); } if (tx) dmu_tx_abort(tx); if (zp) { zrele(zp); zfs_dirent_unlock(dl); } zap_cursor_fini(&zc); return (err == ENOENT ? 0 : err); } /* * Set the file attributes to the values contained in the * vattr structure. * * IN: zp - znode of file to be modified. * vap - new attribute values. * If ATTR_XVATTR set, then optional attrs are being set * flags - ATTR_UTIME set if non-default time values provided. * - ATTR_NOACLCHECK (CIFS context only). * cr - credentials of caller. * mnt_ns - user namespace of the mount * * RETURN: 0 if success * error code if failure * * Timestamps: * ip - ctime updated, mtime updated if size changed. */ int zfs_setattr(znode_t *zp, vattr_t *vap, int flags, cred_t *cr, zidmap_t *mnt_ns) { struct inode *ip; zfsvfs_t *zfsvfs = ZTOZSB(zp); objset_t *os; zilog_t *zilog; dmu_tx_t *tx; vattr_t oldva; xvattr_t *tmpxvattr; uint_t mask = vap->va_mask; uint_t saved_mask = 0; int trim_mask = 0; uint64_t new_mode; uint64_t new_kuid = 0, new_kgid = 0, new_uid, new_gid; uint64_t xattr_obj; uint64_t mtime[2], ctime[2], atime[2]; uint64_t projid = ZFS_INVALID_PROJID; znode_t *attrzp; int need_policy = FALSE; int err, err2 = 0; zfs_fuid_info_t *fuidp = NULL; xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */ xoptattr_t *xoap; zfs_acl_t *aclp; boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; boolean_t fuid_dirtied = B_FALSE; boolean_t handle_eadir = B_FALSE; sa_bulk_attr_t *bulk, *xattr_bulk; int count = 0, xattr_count = 0, bulks = 8; if (mask == 0) return (0); if ((err = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0) return (err); ip = ZTOI(zp); os = zfsvfs->z_os; /* * If this is a xvattr_t, then get a pointer to the structure of * optional attributes. If this is NULL, then we have a vattr_t. */ xoap = xva_getxoptattr(xvap); if (xoap != NULL && (mask & ATTR_XVATTR)) { if (XVA_ISSET_REQ(xvap, XAT_PROJID)) { if (!dmu_objset_projectquota_enabled(os) || (!S_ISREG(ip->i_mode) && !S_ISDIR(ip->i_mode))) { zfs_exit(zfsvfs, FTAG); return (SET_ERROR(ENOTSUP)); } projid = xoap->xoa_projid; if (unlikely(projid == ZFS_INVALID_PROJID)) { zfs_exit(zfsvfs, FTAG); return (SET_ERROR(EINVAL)); } if (projid == zp->z_projid && zp->z_pflags & ZFS_PROJID) projid = ZFS_INVALID_PROJID; else need_policy = TRUE; } if (XVA_ISSET_REQ(xvap, XAT_PROJINHERIT) && (xoap->xoa_projinherit != ((zp->z_pflags & ZFS_PROJINHERIT) != 0)) && (!dmu_objset_projectquota_enabled(os) || (!S_ISREG(ip->i_mode) && !S_ISDIR(ip->i_mode)))) { zfs_exit(zfsvfs, FTAG); return (SET_ERROR(ENOTSUP)); } } zilog = zfsvfs->z_log; /* * Make sure that if we have ephemeral uid/gid or xvattr specified * that file system is at proper version level */ if (zfsvfs->z_use_fuids == B_FALSE && (((mask & ATTR_UID) && IS_EPHEMERAL(vap->va_uid)) || ((mask & ATTR_GID) && IS_EPHEMERAL(vap->va_gid)) || (mask & ATTR_XVATTR))) { zfs_exit(zfsvfs, FTAG); return (SET_ERROR(EINVAL)); } if (mask & ATTR_SIZE && S_ISDIR(ip->i_mode)) { zfs_exit(zfsvfs, FTAG); return (SET_ERROR(EISDIR)); } if (mask & ATTR_SIZE && !S_ISREG(ip->i_mode) && !S_ISFIFO(ip->i_mode)) { zfs_exit(zfsvfs, FTAG); return (SET_ERROR(EINVAL)); } tmpxvattr = kmem_alloc(sizeof (xvattr_t), KM_SLEEP); xva_init(tmpxvattr); bulk = kmem_alloc(sizeof (sa_bulk_attr_t) * bulks, KM_SLEEP); xattr_bulk = kmem_alloc(sizeof (sa_bulk_attr_t) * bulks, KM_SLEEP); /* * Immutable files can only alter immutable bit and atime */ if ((zp->z_pflags & ZFS_IMMUTABLE) && ((mask & (ATTR_SIZE|ATTR_UID|ATTR_GID|ATTR_MTIME|ATTR_MODE)) || ((mask & ATTR_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) { err = SET_ERROR(EPERM); goto out3; } if ((mask & ATTR_SIZE) && (zp->z_pflags & ZFS_READONLY)) { err = SET_ERROR(EPERM); goto out3; } /* * Verify timestamps doesn't overflow 32 bits. * ZFS can handle large timestamps, but 32bit syscalls can't * handle times greater than 2039. This check should be removed * once large timestamps are fully supported. */ if (mask & (ATTR_ATIME | ATTR_MTIME)) { if (((mask & ATTR_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) || ((mask & ATTR_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) { err = SET_ERROR(EOVERFLOW); goto out3; } } top: attrzp = NULL; aclp = NULL; /* Can this be moved to before the top label? */ if (zfs_is_readonly(zfsvfs)) { err = SET_ERROR(EROFS); goto out3; } /* * First validate permissions */ if (mask & ATTR_SIZE) { err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr, mnt_ns); if (err) goto out3; /* * XXX - Note, we are not providing any open * mode flags here (like FNDELAY), so we may * block if there are locks present... this * should be addressed in openat(). */ /* XXX - would it be OK to generate a log record here? */ err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE); if (err) goto out3; } if (mask & (ATTR_ATIME|ATTR_MTIME) || ((mask & ATTR_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) || XVA_ISSET_REQ(xvap, XAT_READONLY) || XVA_ISSET_REQ(xvap, XAT_ARCHIVE) || XVA_ISSET_REQ(xvap, XAT_OFFLINE) || XVA_ISSET_REQ(xvap, XAT_SPARSE) || XVA_ISSET_REQ(xvap, XAT_CREATETIME) || XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) { need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0, skipaclchk, cr, mnt_ns); } if (mask & (ATTR_UID|ATTR_GID)) { int idmask = (mask & (ATTR_UID|ATTR_GID)); int take_owner; int take_group; uid_t uid; gid_t gid; /* * NOTE: even if a new mode is being set, * we may clear S_ISUID/S_ISGID bits. */ if (!(mask & ATTR_MODE)) vap->va_mode = zp->z_mode; /* * Take ownership or chgrp to group we are a member of */ uid = zfs_uid_to_vfsuid(mnt_ns, zfs_i_user_ns(ip), vap->va_uid); gid = zfs_gid_to_vfsgid(mnt_ns, zfs_i_user_ns(ip), vap->va_gid); take_owner = (mask & ATTR_UID) && (uid == crgetuid(cr)); take_group = (mask & ATTR_GID) && zfs_groupmember(zfsvfs, gid, cr); /* * If both ATTR_UID and ATTR_GID are set then take_owner and * take_group must both be set in order to allow taking * ownership. * * Otherwise, send the check through secpolicy_vnode_setattr() * */ if (((idmask == (ATTR_UID|ATTR_GID)) && take_owner && take_group) || ((idmask == ATTR_UID) && take_owner) || ((idmask == ATTR_GID) && take_group)) { if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0, skipaclchk, cr, mnt_ns) == 0) { /* * Remove setuid/setgid for non-privileged users */ (void) secpolicy_setid_clear(vap, cr); trim_mask = (mask & (ATTR_UID|ATTR_GID)); } else { need_policy = TRUE; } } else { need_policy = TRUE; } } mutex_enter(&zp->z_lock); oldva.va_mode = zp->z_mode; zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid); if (mask & ATTR_XVATTR) { /* * Update xvattr mask to include only those attributes * that are actually changing. * * the bits will be restored prior to actually setting * the attributes so the caller thinks they were set. */ if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { if (xoap->xoa_appendonly != ((zp->z_pflags & ZFS_APPENDONLY) != 0)) { need_policy = TRUE; } else { XVA_CLR_REQ(xvap, XAT_APPENDONLY); XVA_SET_REQ(tmpxvattr, XAT_APPENDONLY); } } if (XVA_ISSET_REQ(xvap, XAT_PROJINHERIT)) { if (xoap->xoa_projinherit != ((zp->z_pflags & ZFS_PROJINHERIT) != 0)) { need_policy = TRUE; } else { XVA_CLR_REQ(xvap, XAT_PROJINHERIT); XVA_SET_REQ(tmpxvattr, XAT_PROJINHERIT); } } if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { if (xoap->xoa_nounlink != ((zp->z_pflags & ZFS_NOUNLINK) != 0)) { need_policy = TRUE; } else { XVA_CLR_REQ(xvap, XAT_NOUNLINK); XVA_SET_REQ(tmpxvattr, XAT_NOUNLINK); } } if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { if (xoap->xoa_immutable != ((zp->z_pflags & ZFS_IMMUTABLE) != 0)) { need_policy = TRUE; } else { XVA_CLR_REQ(xvap, XAT_IMMUTABLE); XVA_SET_REQ(tmpxvattr, XAT_IMMUTABLE); } } if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { if (xoap->xoa_nodump != ((zp->z_pflags & ZFS_NODUMP) != 0)) { need_policy = TRUE; } else { XVA_CLR_REQ(xvap, XAT_NODUMP); XVA_SET_REQ(tmpxvattr, XAT_NODUMP); } } if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { if (xoap->xoa_av_modified != ((zp->z_pflags & ZFS_AV_MODIFIED) != 0)) { need_policy = TRUE; } else { XVA_CLR_REQ(xvap, XAT_AV_MODIFIED); XVA_SET_REQ(tmpxvattr, XAT_AV_MODIFIED); } } if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { if ((!S_ISREG(ip->i_mode) && xoap->xoa_av_quarantined) || xoap->xoa_av_quarantined != ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0)) { need_policy = TRUE; } else { XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED); XVA_SET_REQ(tmpxvattr, XAT_AV_QUARANTINED); } } if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) { mutex_exit(&zp->z_lock); err = SET_ERROR(EPERM); goto out3; } if (need_policy == FALSE && (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) || XVA_ISSET_REQ(xvap, XAT_OPAQUE))) { need_policy = TRUE; } } mutex_exit(&zp->z_lock); if (mask & ATTR_MODE) { if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr, mnt_ns) == 0) { err = secpolicy_setid_setsticky_clear(ip, vap, &oldva, cr, mnt_ns, zfs_i_user_ns(ip)); if (err) goto out3; trim_mask |= ATTR_MODE; } else { need_policy = TRUE; } } if (need_policy) { /* * If trim_mask is set then take ownership * has been granted or write_acl is present and user * has the ability to modify mode. In that case remove * UID|GID and or MODE from mask so that * secpolicy_vnode_setattr() doesn't revoke it. */ if (trim_mask) { saved_mask = vap->va_mask; vap->va_mask &= ~trim_mask; } err = secpolicy_vnode_setattr(cr, ip, vap, &oldva, flags, zfs_zaccess_unix, zp); if (err) goto out3; if (trim_mask) vap->va_mask |= saved_mask; } /* * secpolicy_vnode_setattr, or take ownership may have * changed va_mask */ mask = vap->va_mask; if ((mask & (ATTR_UID | ATTR_GID)) || projid != ZFS_INVALID_PROJID) { handle_eadir = B_TRUE; err = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), &xattr_obj, sizeof (xattr_obj)); if (err == 0 && xattr_obj) { err = zfs_zget(ZTOZSB(zp), xattr_obj, &attrzp); if (err) goto out2; } if (mask & ATTR_UID) { new_kuid = zfs_fuid_create(zfsvfs, (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp); if (new_kuid != KUID_TO_SUID(ZTOI(zp)->i_uid) && zfs_id_overquota(zfsvfs, DMU_USERUSED_OBJECT, new_kuid)) { if (attrzp) zrele(attrzp); err = SET_ERROR(EDQUOT); goto out2; } } if (mask & ATTR_GID) { new_kgid = zfs_fuid_create(zfsvfs, (uint64_t)vap->va_gid, cr, ZFS_GROUP, &fuidp); if (new_kgid != KGID_TO_SGID(ZTOI(zp)->i_gid) && zfs_id_overquota(zfsvfs, DMU_GROUPUSED_OBJECT, new_kgid)) { if (attrzp) zrele(attrzp); err = SET_ERROR(EDQUOT); goto out2; } } if (projid != ZFS_INVALID_PROJID && zfs_id_overquota(zfsvfs, DMU_PROJECTUSED_OBJECT, projid)) { if (attrzp) zrele(attrzp); err = EDQUOT; goto out2; } } tx = dmu_tx_create(os); if (mask & ATTR_MODE) { uint64_t pmode = zp->z_mode; uint64_t acl_obj; new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT); if (ZTOZSB(zp)->z_acl_mode == ZFS_ACL_RESTRICTED && !(zp->z_pflags & ZFS_ACL_TRIVIAL)) { err = EPERM; goto out; } if ((err = zfs_acl_chmod_setattr(zp, &aclp, new_mode))) goto out; mutex_enter(&zp->z_lock); if (!zp->z_is_sa && ((acl_obj = zfs_external_acl(zp)) != 0)) { /* * Are we upgrading ACL from old V0 format * to V1 format? */ if (zfsvfs->z_version >= ZPL_VERSION_FUID && zfs_znode_acl_version(zp) == ZFS_ACL_VERSION_INITIAL) { dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END); dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, aclp->z_acl_bytes); } else { dmu_tx_hold_write(tx, acl_obj, 0, aclp->z_acl_bytes); } } else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) { dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, aclp->z_acl_bytes); } mutex_exit(&zp->z_lock); dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE); } else { if (((mask & ATTR_XVATTR) && XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) || (projid != ZFS_INVALID_PROJID && !(zp->z_pflags & ZFS_PROJID))) dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE); else dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); } if (attrzp) { dmu_tx_hold_sa(tx, attrzp->z_sa_hdl, B_FALSE); } fuid_dirtied = zfsvfs->z_fuid_dirty; if (fuid_dirtied) zfs_fuid_txhold(zfsvfs, tx); zfs_sa_upgrade_txholds(tx, zp); err = dmu_tx_assign(tx, TXG_WAIT); if (err) goto out; count = 0; /* * Set each attribute requested. * We group settings according to the locks they need to acquire. * * Note: you cannot set ctime directly, although it will be * updated as a side-effect of calling this function. */ if (projid != ZFS_INVALID_PROJID && !(zp->z_pflags & ZFS_PROJID)) { /* * For the existed object that is upgraded from old system, * its on-disk layout has no slot for the project ID attribute. * But quota accounting logic needs to access related slots by * offset directly. So we need to adjust old objects' layout * to make the project ID to some unified and fixed offset. */ if (attrzp) err = sa_add_projid(attrzp->z_sa_hdl, tx, projid); if (err == 0) err = sa_add_projid(zp->z_sa_hdl, tx, projid); if (unlikely(err == EEXIST)) err = 0; else if (err != 0) goto out; else projid = ZFS_INVALID_PROJID; } if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE)) mutex_enter(&zp->z_acl_lock); mutex_enter(&zp->z_lock); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, &zp->z_pflags, sizeof (zp->z_pflags)); if (attrzp) { if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE)) mutex_enter(&attrzp->z_acl_lock); mutex_enter(&attrzp->z_lock); SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, SA_ZPL_FLAGS(zfsvfs), NULL, &attrzp->z_pflags, sizeof (attrzp->z_pflags)); if (projid != ZFS_INVALID_PROJID) { attrzp->z_projid = projid; SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, SA_ZPL_PROJID(zfsvfs), NULL, &attrzp->z_projid, sizeof (attrzp->z_projid)); } } if (mask & (ATTR_UID|ATTR_GID)) { if (mask & ATTR_UID) { ZTOI(zp)->i_uid = SUID_TO_KUID(new_kuid); new_uid = zfs_uid_read(ZTOI(zp)); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL, &new_uid, sizeof (new_uid)); if (attrzp) { SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, SA_ZPL_UID(zfsvfs), NULL, &new_uid, sizeof (new_uid)); ZTOI(attrzp)->i_uid = SUID_TO_KUID(new_uid); } } if (mask & ATTR_GID) { ZTOI(zp)->i_gid = SGID_TO_KGID(new_kgid); new_gid = zfs_gid_read(ZTOI(zp)); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), NULL, &new_gid, sizeof (new_gid)); if (attrzp) { SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, SA_ZPL_GID(zfsvfs), NULL, &new_gid, sizeof (new_gid)); ZTOI(attrzp)->i_gid = SGID_TO_KGID(new_kgid); } } if (!(mask & ATTR_MODE)) { SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL, &new_mode, sizeof (new_mode)); new_mode = zp->z_mode; } err = zfs_acl_chown_setattr(zp); ASSERT(err == 0); if (attrzp) { err = zfs_acl_chown_setattr(attrzp); ASSERT(err == 0); } } if (mask & ATTR_MODE) { SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL, &new_mode, sizeof (new_mode)); zp->z_mode = ZTOI(zp)->i_mode = new_mode; ASSERT3P(aclp, !=, NULL); err = zfs_aclset_common(zp, aclp, cr, tx); ASSERT0(err); if (zp->z_acl_cached) zfs_acl_free(zp->z_acl_cached); zp->z_acl_cached = aclp; aclp = NULL; } if ((mask & ATTR_ATIME) || zp->z_atime_dirty) { zp->z_atime_dirty = B_FALSE; inode_timespec_t tmp_atime = zpl_inode_get_atime(ip); ZFS_TIME_ENCODE(&tmp_atime, atime); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL, &atime, sizeof (atime)); } if (mask & (ATTR_MTIME | ATTR_SIZE)) { ZFS_TIME_ENCODE(&vap->va_mtime, mtime); zpl_inode_set_mtime_to_ts(ZTOI(zp), zpl_inode_timestamp_truncate(vap->va_mtime, ZTOI(zp))); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, mtime, sizeof (mtime)); } if (mask & (ATTR_CTIME | ATTR_SIZE)) { ZFS_TIME_ENCODE(&vap->va_ctime, ctime); zpl_inode_set_ctime_to_ts(ZTOI(zp), zpl_inode_timestamp_truncate(vap->va_ctime, ZTOI(zp))); SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, ctime, sizeof (ctime)); } if (projid != ZFS_INVALID_PROJID) { zp->z_projid = projid; SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_PROJID(zfsvfs), NULL, &zp->z_projid, sizeof (zp->z_projid)); } if (attrzp && mask) { SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, sizeof (ctime)); } /* * Do this after setting timestamps to prevent timestamp * update from toggling bit */ if (xoap && (mask & ATTR_XVATTR)) { /* * restore trimmed off masks * so that return masks can be set for caller. */ if (XVA_ISSET_REQ(tmpxvattr, XAT_APPENDONLY)) { XVA_SET_REQ(xvap, XAT_APPENDONLY); } if (XVA_ISSET_REQ(tmpxvattr, XAT_NOUNLINK)) { XVA_SET_REQ(xvap, XAT_NOUNLINK); } if (XVA_ISSET_REQ(tmpxvattr, XAT_IMMUTABLE)) { XVA_SET_REQ(xvap, XAT_IMMUTABLE); } if (XVA_ISSET_REQ(tmpxvattr, XAT_NODUMP)) { XVA_SET_REQ(xvap, XAT_NODUMP); } if (XVA_ISSET_REQ(tmpxvattr, XAT_AV_MODIFIED)) { XVA_SET_REQ(xvap, XAT_AV_MODIFIED); } if (XVA_ISSET_REQ(tmpxvattr, XAT_AV_QUARANTINED)) { XVA_SET_REQ(xvap, XAT_AV_QUARANTINED); } if (XVA_ISSET_REQ(tmpxvattr, XAT_PROJINHERIT)) { XVA_SET_REQ(xvap, XAT_PROJINHERIT); } if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) ASSERT(S_ISREG(ip->i_mode)); zfs_xvattr_set(zp, xvap, tx); } if (fuid_dirtied) zfs_fuid_sync(zfsvfs, tx); if (mask != 0) zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp); mutex_exit(&zp->z_lock); if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE)) mutex_exit(&zp->z_acl_lock); if (attrzp) { if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE)) mutex_exit(&attrzp->z_acl_lock); mutex_exit(&attrzp->z_lock); } out: if (err == 0 && xattr_count > 0) { err2 = sa_bulk_update(attrzp->z_sa_hdl, xattr_bulk, xattr_count, tx); ASSERT(err2 == 0); } if (aclp) zfs_acl_free(aclp); if (fuidp) { zfs_fuid_info_free(fuidp); fuidp = NULL; } if (err) { dmu_tx_abort(tx); if (attrzp) zrele(attrzp); if (err == ERESTART) goto top; } else { if (count > 0) err2 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); dmu_tx_commit(tx); if (attrzp) { if (err2 == 0 && handle_eadir) err = zfs_setattr_dir(attrzp); zrele(attrzp); } zfs_znode_update_vfs(zp); } out2: if (os->os_sync == ZFS_SYNC_ALWAYS) zil_commit(zilog, 0); out3: kmem_free(xattr_bulk, sizeof (sa_bulk_attr_t) * bulks); kmem_free(bulk, sizeof (sa_bulk_attr_t) * bulks); kmem_free(tmpxvattr, sizeof (xvattr_t)); zfs_exit(zfsvfs, FTAG); return (err); } typedef struct zfs_zlock { krwlock_t *zl_rwlock; /* lock we acquired */ znode_t *zl_znode; /* znode we held */ struct zfs_zlock *zl_next; /* next in list */ } zfs_zlock_t; /* * Drop locks and release vnodes that were held by zfs_rename_lock(). */ static void zfs_rename_unlock(zfs_zlock_t **zlpp) { zfs_zlock_t *zl; while ((zl = *zlpp) != NULL) { if (zl->zl_znode != NULL) zfs_zrele_async(zl->zl_znode); rw_exit(zl->zl_rwlock); *zlpp = zl->zl_next; kmem_free(zl, sizeof (*zl)); } } /* * Search back through the directory tree, using the ".." entries. * Lock each directory in the chain to prevent concurrent renames. * Fail any attempt to move a directory into one of its own descendants. * XXX - z_parent_lock can overlap with map or grow locks */ static int zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp) { zfs_zlock_t *zl; znode_t *zp = tdzp; uint64_t rootid = ZTOZSB(zp)->z_root; uint64_t oidp = zp->z_id; krwlock_t *rwlp = &szp->z_parent_lock; krw_t rw = RW_WRITER; /* * First pass write-locks szp and compares to zp->z_id. * Later passes read-lock zp and compare to zp->z_parent. */ do { if (!rw_tryenter(rwlp, rw)) { /* * Another thread is renaming in this path. * Note that if we are a WRITER, we don't have any * parent_locks held yet. */ if (rw == RW_READER && zp->z_id > szp->z_id) { /* * Drop our locks and restart */ zfs_rename_unlock(&zl); *zlpp = NULL; zp = tdzp; oidp = zp->z_id; rwlp = &szp->z_parent_lock; rw = RW_WRITER; continue; } else { /* * Wait for other thread to drop its locks */ rw_enter(rwlp, rw); } } zl = kmem_alloc(sizeof (*zl), KM_SLEEP); zl->zl_rwlock = rwlp; zl->zl_znode = NULL; zl->zl_next = *zlpp; *zlpp = zl; if (oidp == szp->z_id) /* We're a descendant of szp */ return (SET_ERROR(EINVAL)); if (oidp == rootid) /* We've hit the top */ return (0); if (rw == RW_READER) { /* i.e. not the first pass */ int error = zfs_zget(ZTOZSB(zp), oidp, &zp); if (error) return (error); zl->zl_znode = zp; } (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(ZTOZSB(zp)), &oidp, sizeof (oidp)); rwlp = &zp->z_parent_lock; rw = RW_READER; } while (zp->z_id != sdzp->z_id); return (0); } /* * Move an entry from the provided source directory to the target * directory. Change the entry name as indicated. * * IN: sdzp - Source directory containing the "old entry". * snm - Old entry name. * tdzp - Target directory to contain the "new entry". * tnm - New entry name. * cr - credentials of caller. * flags - case flags * rflags - RENAME_* flags * wa_vap - attributes for RENAME_WHITEOUT (must be a char 0:0). * mnt_ns - user namespace of the mount * * RETURN: 0 on success, error code on failure. * * Timestamps: * sdzp,tdzp - ctime|mtime updated */ int zfs_rename(znode_t *sdzp, char *snm, znode_t *tdzp, char *tnm, cred_t *cr, int flags, uint64_t rflags, vattr_t *wo_vap, zidmap_t *mnt_ns) { znode_t *szp, *tzp; zfsvfs_t *zfsvfs = ZTOZSB(sdzp); zilog_t *zilog; zfs_dirlock_t *sdl, *tdl; dmu_tx_t *tx; zfs_zlock_t *zl; int cmp, serr, terr; int error = 0; int zflg = 0; boolean_t waited = B_FALSE; /* Needed for whiteout inode creation. */ boolean_t fuid_dirtied; zfs_acl_ids_t acl_ids; boolean_t have_acl = B_FALSE; znode_t *wzp = NULL; if (snm == NULL || tnm == NULL) return (SET_ERROR(EINVAL)); if (rflags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) return (SET_ERROR(EINVAL)); /* Already checked by Linux VFS, but just to make sure. */ if (rflags & RENAME_EXCHANGE && (rflags & (RENAME_NOREPLACE | RENAME_WHITEOUT))) return (SET_ERROR(EINVAL)); /* * Make sure we only get wo_vap iff. RENAME_WHITEOUT and that it's the * right kind of vattr_t for the whiteout file. These are set * internally by ZFS so should never be incorrect. */ VERIFY_EQUIV(rflags & RENAME_WHITEOUT, wo_vap != NULL); VERIFY_IMPLY(wo_vap, wo_vap->va_mode == S_IFCHR); VERIFY_IMPLY(wo_vap, wo_vap->va_rdev == makedevice(0, 0)); if ((error = zfs_enter_verify_zp(zfsvfs, sdzp, FTAG)) != 0) return (error); zilog = zfsvfs->z_log; if ((error = zfs_verify_zp(tdzp)) != 0) { zfs_exit(zfsvfs, FTAG); return (error); } /* * We check i_sb because snapshots and the ctldir must have different * super blocks. */ if (ZTOI(tdzp)->i_sb != ZTOI(sdzp)->i_sb || zfsctl_is_node(ZTOI(tdzp))) { zfs_exit(zfsvfs, FTAG); return (SET_ERROR(EXDEV)); } if (zfsvfs->z_utf8 && u8_validate(tnm, strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { zfs_exit(zfsvfs, FTAG); return (SET_ERROR(EILSEQ)); } if (flags & FIGNORECASE) zflg |= ZCILOOK; top: szp = NULL; tzp = NULL; zl = NULL; /* * This is to prevent the creation of links into attribute space * by renaming a linked file into/outof an attribute directory. * See the comment in zfs_link() for why this is considered bad. */ if ((tdzp->z_pflags & ZFS_XATTR) != (sdzp->z_pflags & ZFS_XATTR)) { zfs_exit(zfsvfs, FTAG); return (SET_ERROR(EINVAL)); } /* * Lock source and target directory entries. To prevent deadlock, * a lock ordering must be defined. We lock the directory with * the smallest object id first, or if it's a tie, the one with * the lexically first name. */ if (sdzp->z_id < tdzp->z_id) { cmp = -1; } else if (sdzp->z_id > tdzp->z_id) { cmp = 1; } else { /* * First compare the two name arguments without * considering any case folding. */ int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER); cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error); ASSERT(error == 0 || !zfsvfs->z_utf8); if (cmp == 0) { /* * POSIX: "If the old argument and the new argument * both refer to links to the same existing file, * the rename() function shall return successfully * and perform no other action." */ zfs_exit(zfsvfs, FTAG); return (0); } /* * If the file system is case-folding, then we may * have some more checking to do. A case-folding file * system is either supporting mixed case sensitivity * access or is completely case-insensitive. Note * that the file system is always case preserving. * * In mixed sensitivity mode case sensitive behavior * is the default. FIGNORECASE must be used to * explicitly request case insensitive behavior. * * If the source and target names provided differ only * by case (e.g., a request to rename 'tim' to 'Tim'), * we will treat this as a special case in the * case-insensitive mode: as long as the source name * is an exact match, we will allow this to proceed as * a name-change request. */ if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE || (zfsvfs->z_case == ZFS_CASE_MIXED && flags & FIGNORECASE)) && u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST, &error) == 0) { /* * case preserving rename request, require exact * name matches */ zflg |= ZCIEXACT; zflg &= ~ZCILOOK; } } /* * If the source and destination directories are the same, we should * grab the z_name_lock of that directory only once. */ if (sdzp == tdzp) { zflg |= ZHAVELOCK; rw_enter(&sdzp->z_name_lock, RW_READER); } if (cmp < 0) { serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp, ZEXISTS | zflg, NULL, NULL); terr = zfs_dirent_lock(&tdl, tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL); } else { terr = zfs_dirent_lock(&tdl, tdzp, tnm, &tzp, zflg, NULL, NULL); serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg, NULL, NULL); } if (serr) { /* * Source entry invalid or not there. */ if (!terr) { zfs_dirent_unlock(tdl); if (tzp) zrele(tzp); } if (sdzp == tdzp) rw_exit(&sdzp->z_name_lock); if (strcmp(snm, "..") == 0) serr = EINVAL; zfs_exit(zfsvfs, FTAG); return (serr); } if (terr) { zfs_dirent_unlock(sdl); zrele(szp); if (sdzp == tdzp) rw_exit(&sdzp->z_name_lock); if (strcmp(tnm, "..") == 0) terr = EINVAL; zfs_exit(zfsvfs, FTAG); return (terr); } /* * If we are using project inheritance, means if the directory has * ZFS_PROJINHERIT set, then its descendant directories will inherit * not only the project ID, but also the ZFS_PROJINHERIT flag. Under * such case, we only allow renames into our tree when the project * IDs are the same. */ if (tdzp->z_pflags & ZFS_PROJINHERIT && tdzp->z_projid != szp->z_projid) { error = SET_ERROR(EXDEV); goto out; } /* * Must have write access at the source to remove the old entry * and write access at the target to create the new entry. * Note that if target and source are the same, this can be * done in a single check. */ if ((error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr, mnt_ns))) goto out; if (S_ISDIR(ZTOI(szp)->i_mode)) { /* * Check to make sure rename is valid. * Can't do a move like this: /usr/a/b to /usr/a/b/c/d */ if ((error = zfs_rename_lock(szp, tdzp, sdzp, &zl))) goto out; } /* * Does target exist? */ if (tzp) { if (rflags & RENAME_NOREPLACE) { error = SET_ERROR(EEXIST); goto out; } /* * Source and target must be the same type (unless exchanging). */ if (!(rflags & RENAME_EXCHANGE)) { boolean_t s_is_dir = S_ISDIR(ZTOI(szp)->i_mode) != 0; boolean_t t_is_dir = S_ISDIR(ZTOI(tzp)->i_mode) != 0; if (s_is_dir != t_is_dir) { error = SET_ERROR(s_is_dir ? ENOTDIR : EISDIR); goto out; } } /* * POSIX dictates that when the source and target * entries refer to the same file object, rename * must do nothing and exit without error. */ if (szp->z_id == tzp->z_id) { error = 0; goto out; } } else if (rflags & RENAME_EXCHANGE) { /* Target must exist for RENAME_EXCHANGE. */ error = SET_ERROR(ENOENT); goto out; } /* Set up inode creation for RENAME_WHITEOUT. */ if (rflags & RENAME_WHITEOUT) { /* * Whiteout files are not regular files or directories, so to * match zfs_create() we do not inherit the project id. */ uint64_t wo_projid = ZFS_DEFAULT_PROJID; error = zfs_zaccess(sdzp, ACE_ADD_FILE, 0, B_FALSE, cr, mnt_ns); if (error) goto out; if (!have_acl) { error = zfs_acl_ids_create(sdzp, 0, wo_vap, cr, NULL, &acl_ids, mnt_ns); if (error) goto out; have_acl = B_TRUE; } if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, wo_projid)) { error = SET_ERROR(EDQUOT); goto out; } } tx = dmu_tx_create(zfsvfs->z_os); dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE); dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE); dmu_tx_hold_zap(tx, sdzp->z_id, (rflags & RENAME_EXCHANGE) ? TRUE : FALSE, snm); dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm); if (sdzp != tdzp) { dmu_tx_hold_sa(tx, tdzp->z_sa_hdl, B_FALSE); zfs_sa_upgrade_txholds(tx, tdzp); } if (tzp) { dmu_tx_hold_sa(tx, tzp->z_sa_hdl, B_FALSE); zfs_sa_upgrade_txholds(tx, tzp); } if (rflags & RENAME_WHITEOUT) { dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes + ZFS_SA_BASE_ATTR_SIZE); dmu_tx_hold_zap(tx, sdzp->z_id, TRUE, snm); dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE); if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) { dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, acl_ids.z_aclp->z_acl_bytes); } } fuid_dirtied = zfsvfs->z_fuid_dirty; if (fuid_dirtied) zfs_fuid_txhold(zfsvfs, tx); zfs_sa_upgrade_txholds(tx, szp); dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT); if (error) { if (zl != NULL) zfs_rename_unlock(&zl); zfs_dirent_unlock(sdl); zfs_dirent_unlock(tdl); if (sdzp == tdzp) rw_exit(&sdzp->z_name_lock); if (error == ERESTART) { waited = B_TRUE; dmu_tx_wait(tx); dmu_tx_abort(tx); zrele(szp); if (tzp) zrele(tzp); goto top; } dmu_tx_abort(tx); zrele(szp); if (tzp) zrele(tzp); zfs_exit(zfsvfs, FTAG); return (error); } /* * Unlink the source. */ szp->z_pflags |= ZFS_AV_MODIFIED; if (tdzp->z_pflags & ZFS_PROJINHERIT) szp->z_pflags |= ZFS_PROJINHERIT; error = sa_update(szp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs), (void *)&szp->z_pflags, sizeof (uint64_t), tx); VERIFY0(error); error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL); if (error) goto commit; /* * Unlink the target. */ if (tzp) { int tzflg = zflg; if (rflags & RENAME_EXCHANGE) { /* This inode will be re-linked soon. */ tzflg |= ZRENAMING; tzp->z_pflags |= ZFS_AV_MODIFIED; if (sdzp->z_pflags & ZFS_PROJINHERIT) tzp->z_pflags |= ZFS_PROJINHERIT; error = sa_update(tzp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs), (void *)&tzp->z_pflags, sizeof (uint64_t), tx); ASSERT0(error); } error = zfs_link_destroy(tdl, tzp, tx, tzflg, NULL); if (error) goto commit_link_szp; } /* * Create the new target links: * * We always link the target. * * RENAME_EXCHANGE: Link the old target to the source. * * RENAME_WHITEOUT: Create a whiteout inode in-place of the source. */ error = zfs_link_create(tdl, szp, tx, ZRENAMING); if (error) { /* * If we have removed the existing target, a subsequent call to * zfs_link_create() to add back the same entry, but with a new * dnode (szp), should not fail. */ ASSERT3P(tzp, ==, NULL); goto commit_link_tzp; } switch (rflags & (RENAME_EXCHANGE | RENAME_WHITEOUT)) { case RENAME_EXCHANGE: error = zfs_link_create(sdl, tzp, tx, ZRENAMING); /* * The same argument as zfs_link_create() failing for * szp applies here, since the source directory must * have had an entry we are replacing. */ ASSERT0(error); if (error) goto commit_unlink_td_szp; break; case RENAME_WHITEOUT: zfs_mknode(sdzp, wo_vap, tx, cr, 0, &wzp, &acl_ids); error = zfs_link_create(sdl, wzp, tx, ZNEW); if (error) { zfs_znode_delete(wzp, tx); remove_inode_hash(ZTOI(wzp)); goto commit_unlink_td_szp; } break; } if (fuid_dirtied) zfs_fuid_sync(zfsvfs, tx); switch (rflags & (RENAME_EXCHANGE | RENAME_WHITEOUT)) { case RENAME_EXCHANGE: zfs_log_rename_exchange(zilog, tx, (flags & FIGNORECASE ? TX_CI : 0), sdzp, sdl->dl_name, tdzp, tdl->dl_name, szp); break; case RENAME_WHITEOUT: zfs_log_rename_whiteout(zilog, tx, (flags & FIGNORECASE ? TX_CI : 0), sdzp, sdl->dl_name, tdzp, tdl->dl_name, szp, wzp); break; default: ASSERT0(rflags & ~RENAME_NOREPLACE); zfs_log_rename(zilog, tx, (flags & FIGNORECASE ? TX_CI : 0), sdzp, sdl->dl_name, tdzp, tdl->dl_name, szp); break; } commit: dmu_tx_commit(tx); out: if (have_acl) zfs_acl_ids_free(&acl_ids); zfs_znode_update_vfs(sdzp); if (sdzp == tdzp) rw_exit(&sdzp->z_name_lock); if (sdzp != tdzp) zfs_znode_update_vfs(tdzp); zfs_znode_update_vfs(szp); zrele(szp); if (wzp) { zfs_znode_update_vfs(wzp); zrele(wzp); } if (tzp) { zfs_znode_update_vfs(tzp); zrele(tzp); } if (zl != NULL) zfs_rename_unlock(&zl); zfs_dirent_unlock(sdl); zfs_dirent_unlock(tdl); if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) zil_commit(zilog, 0); zfs_exit(zfsvfs, FTAG); return (error); /* * Clean-up path for broken link state. * * At this point we are in a (very) bad state, so we need to do our * best to correct the state. In particular, all of the nlinks are * wrong because we were destroying and creating links with ZRENAMING. * * In some form, all of these operations have to resolve the state: * * * link_destroy() *must* succeed. Fortunately, this is very likely * since we only just created it. * * * link_create()s are allowed to fail (though they shouldn't because * we only just unlinked them and are putting the entries back * during clean-up). But if they fail, we can just forcefully drop * the nlink value to (at the very least) avoid broken nlink values * -- though in the case of non-empty directories we will have to * panic (otherwise we'd have a leaked directory with a broken ..). */ commit_unlink_td_szp: VERIFY0(zfs_link_destroy(tdl, szp, tx, ZRENAMING, NULL)); commit_link_tzp: if (tzp) { if (zfs_link_create(tdl, tzp, tx, ZRENAMING)) VERIFY0(zfs_drop_nlink(tzp, tx, NULL)); } commit_link_szp: if (zfs_link_create(sdl, szp, tx, ZRENAMING)) VERIFY0(zfs_drop_nlink(szp, tx, NULL)); goto commit; } /* * Insert the indicated symbolic reference entry into the directory. * * IN: dzp - Directory to contain new symbolic link. * name - Name of directory entry in dip. * vap - Attributes of new entry. * link - Name for new symlink entry. * cr - credentials of caller. * flags - case flags * mnt_ns - user namespace of the mount * * OUT: zpp - Znode for new symbolic link. * * RETURN: 0 on success, error code on failure. * * Timestamps: * dip - ctime|mtime updated */ int zfs_symlink(znode_t *dzp, char *name, vattr_t *vap, char *link, znode_t **zpp, cred_t *cr, int flags, zidmap_t *mnt_ns) { znode_t *zp; zfs_dirlock_t *dl; dmu_tx_t *tx; zfsvfs_t *zfsvfs = ZTOZSB(dzp); zilog_t *zilog; uint64_t len = strlen(link); int error; int zflg = ZNEW; zfs_acl_ids_t acl_ids; boolean_t fuid_dirtied; uint64_t txtype = TX_SYMLINK; boolean_t waited = B_FALSE; ASSERT(S_ISLNK(vap->va_mode)); if (name == NULL) return (SET_ERROR(EINVAL)); if ((error = zfs_enter_verify_zp(zfsvfs, dzp, FTAG)) != 0) return (error); zilog = zfsvfs->z_log; if (zfsvfs->z_utf8 && u8_validate(name, strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { zfs_exit(zfsvfs, FTAG); return (SET_ERROR(EILSEQ)); } if (flags & FIGNORECASE) zflg |= ZCILOOK; if (len > MAXPATHLEN) { zfs_exit(zfsvfs, FTAG); return (SET_ERROR(ENAMETOOLONG)); } if ((error = zfs_acl_ids_create(dzp, 0, vap, cr, NULL, &acl_ids, mnt_ns)) != 0) { zfs_exit(zfsvfs, FTAG); return (error); } top: *zpp = NULL; /* * Attempt to lock directory; fail if entry already exists. */ error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL); if (error) { zfs_acl_ids_free(&acl_ids); zfs_exit(zfsvfs, FTAG); return (error); } if ((error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr, mnt_ns))) { zfs_acl_ids_free(&acl_ids); zfs_dirent_unlock(dl); zfs_exit(zfsvfs, FTAG); return (error); } if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, ZFS_DEFAULT_PROJID)) { zfs_acl_ids_free(&acl_ids); zfs_dirent_unlock(dl); zfs_exit(zfsvfs, FTAG); return (SET_ERROR(EDQUOT)); } tx = dmu_tx_create(zfsvfs->z_os); fuid_dirtied = zfsvfs->z_fuid_dirty; dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len)); dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes + ZFS_SA_BASE_ATTR_SIZE + len); dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE); if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) { dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, acl_ids.z_aclp->z_acl_bytes); } if (fuid_dirtied) zfs_fuid_txhold(zfsvfs, tx); error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT); if (error) { zfs_dirent_unlock(dl); if (error == ERESTART) { waited = B_TRUE; dmu_tx_wait(tx); dmu_tx_abort(tx); goto top; } zfs_acl_ids_free(&acl_ids); dmu_tx_abort(tx); zfs_exit(zfsvfs, FTAG); return (error); } /* * Create a new object for the symlink. * for version 4 ZPL datasets the symlink will be an SA attribute */ zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids); if (fuid_dirtied) zfs_fuid_sync(zfsvfs, tx); mutex_enter(&zp->z_lock); if (zp->z_is_sa) error = sa_update(zp->z_sa_hdl, SA_ZPL_SYMLINK(zfsvfs), link, len, tx); else zfs_sa_symlink(zp, link, len, tx); mutex_exit(&zp->z_lock); zp->z_size = len; (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs), &zp->z_size, sizeof (zp->z_size), tx); /* * Insert the new object into the directory. */ error = zfs_link_create(dl, zp, tx, ZNEW); if (error != 0) { zfs_znode_delete(zp, tx); remove_inode_hash(ZTOI(zp)); } else { if (flags & FIGNORECASE) txtype |= TX_CI; zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link); zfs_znode_update_vfs(dzp); zfs_znode_update_vfs(zp); } zfs_acl_ids_free(&acl_ids); dmu_tx_commit(tx); zfs_dirent_unlock(dl); if (error == 0) { *zpp = zp; if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) zil_commit(zilog, 0); } else { zrele(zp); } zfs_exit(zfsvfs, FTAG); return (error); } /* * Return, in the buffer contained in the provided uio structure, * the symbolic path referred to by ip. * * IN: ip - inode of symbolic link * uio - structure to contain the link path. * cr - credentials of caller. * * RETURN: 0 if success * error code if failure * * Timestamps: * ip - atime updated */ int zfs_readlink(struct inode *ip, zfs_uio_t *uio, cred_t *cr) { (void) cr; znode_t *zp = ITOZ(ip); zfsvfs_t *zfsvfs = ITOZSB(ip); int error; if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0) return (error); mutex_enter(&zp->z_lock); if (zp->z_is_sa) error = sa_lookup_uio(zp->z_sa_hdl, SA_ZPL_SYMLINK(zfsvfs), uio); else error = zfs_sa_readlink(zp, uio); mutex_exit(&zp->z_lock); zfs_exit(zfsvfs, FTAG); return (error); } /* * Insert a new entry into directory tdzp referencing szp. * * IN: tdzp - Directory to contain new entry. * szp - znode of new entry. * name - name of new entry. * cr - credentials of caller. * flags - case flags. * * RETURN: 0 if success * error code if failure * * Timestamps: * tdzp - ctime|mtime updated * szp - ctime updated */ int zfs_link(znode_t *tdzp, znode_t *szp, char *name, cred_t *cr, int flags) { struct inode *sip = ZTOI(szp); znode_t *tzp; zfsvfs_t *zfsvfs = ZTOZSB(tdzp); zilog_t *zilog; zfs_dirlock_t *dl; dmu_tx_t *tx; int error; int zf = ZNEW; uint64_t parent; uid_t owner; boolean_t waited = B_FALSE; boolean_t is_tmpfile = 0; uint64_t txg; #ifdef HAVE_TMPFILE is_tmpfile = (sip->i_nlink == 0 && (sip->i_state & I_LINKABLE)); #endif ASSERT(S_ISDIR(ZTOI(tdzp)->i_mode)); if (name == NULL) return (SET_ERROR(EINVAL)); if ((error = zfs_enter_verify_zp(zfsvfs, tdzp, FTAG)) != 0) return (error); zilog = zfsvfs->z_log; /* * POSIX dictates that we return EPERM here. * Better choices include ENOTSUP or EISDIR. */ if (S_ISDIR(sip->i_mode)) { zfs_exit(zfsvfs, FTAG); return (SET_ERROR(EPERM)); } if ((error = zfs_verify_zp(szp)) != 0) { zfs_exit(zfsvfs, FTAG); return (error); } /* * If we are using project inheritance, means if the directory has * ZFS_PROJINHERIT set, then its descendant directories will inherit * not only the project ID, but also the ZFS_PROJINHERIT flag. Under * such case, we only allow hard link creation in our tree when the * project IDs are the same. */ if (tdzp->z_pflags & ZFS_PROJINHERIT && tdzp->z_projid != szp->z_projid) { zfs_exit(zfsvfs, FTAG); return (SET_ERROR(EXDEV)); } /* * We check i_sb because snapshots and the ctldir must have different * super blocks. */ if (sip->i_sb != ZTOI(tdzp)->i_sb || zfsctl_is_node(sip)) { zfs_exit(zfsvfs, FTAG); return (SET_ERROR(EXDEV)); } /* Prevent links to .zfs/shares files */ if ((error = sa_lookup(szp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs), &parent, sizeof (uint64_t))) != 0) { zfs_exit(zfsvfs, FTAG); return (error); } if (parent == zfsvfs->z_shares_dir) { zfs_exit(zfsvfs, FTAG); return (SET_ERROR(EPERM)); } if (zfsvfs->z_utf8 && u8_validate(name, strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { zfs_exit(zfsvfs, FTAG); return (SET_ERROR(EILSEQ)); } if (flags & FIGNORECASE) zf |= ZCILOOK; /* * We do not support links between attributes and non-attributes * because of the potential security risk of creating links * into "normal" file space in order to circumvent restrictions * imposed in attribute space. */ if ((szp->z_pflags & ZFS_XATTR) != (tdzp->z_pflags & ZFS_XATTR)) { zfs_exit(zfsvfs, FTAG); return (SET_ERROR(EINVAL)); } owner = zfs_fuid_map_id(zfsvfs, KUID_TO_SUID(sip->i_uid), cr, ZFS_OWNER); if (owner != crgetuid(cr) && secpolicy_basic_link(cr) != 0) { zfs_exit(zfsvfs, FTAG); return (SET_ERROR(EPERM)); } if ((error = zfs_zaccess(tdzp, ACE_ADD_FILE, 0, B_FALSE, cr, zfs_init_idmap))) { zfs_exit(zfsvfs, FTAG); return (error); } top: /* * Attempt to lock directory; fail if entry already exists. */ error = zfs_dirent_lock(&dl, tdzp, name, &tzp, zf, NULL, NULL); if (error) { zfs_exit(zfsvfs, FTAG); return (error); } tx = dmu_tx_create(zfsvfs->z_os); dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE); dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, name); if (is_tmpfile) dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); zfs_sa_upgrade_txholds(tx, szp); zfs_sa_upgrade_txholds(tx, tdzp); error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT); if (error) { zfs_dirent_unlock(dl); if (error == ERESTART) { waited = B_TRUE; dmu_tx_wait(tx); dmu_tx_abort(tx); goto top; } dmu_tx_abort(tx); zfs_exit(zfsvfs, FTAG); return (error); } /* unmark z_unlinked so zfs_link_create will not reject */ if (is_tmpfile) szp->z_unlinked = B_FALSE; error = zfs_link_create(dl, szp, tx, 0); if (error == 0) { uint64_t txtype = TX_LINK; /* * tmpfile is created to be in z_unlinkedobj, so remove it. * Also, we don't log in ZIL, because all previous file * operation on the tmpfile are ignored by ZIL. Instead we * always wait for txg to sync to make sure all previous * operation are sync safe. */ if (is_tmpfile) { VERIFY(zap_remove_int(zfsvfs->z_os, zfsvfs->z_unlinkedobj, szp->z_id, tx) == 0); } else { if (flags & FIGNORECASE) txtype |= TX_CI; zfs_log_link(zilog, tx, txtype, tdzp, szp, name); } } else if (is_tmpfile) { /* restore z_unlinked since when linking failed */ szp->z_unlinked = B_TRUE; } txg = dmu_tx_get_txg(tx); dmu_tx_commit(tx); zfs_dirent_unlock(dl); if (!is_tmpfile && zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) zil_commit(zilog, 0); if (is_tmpfile && zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), txg); zfs_znode_update_vfs(tdzp); zfs_znode_update_vfs(szp); zfs_exit(zfsvfs, FTAG); return (error); } static void zfs_putpage_sync_commit_cb(void *arg) { struct page *pp = arg; ClearPageError(pp); end_page_writeback(pp); } static void zfs_putpage_async_commit_cb(void *arg) { struct page *pp = arg; znode_t *zp = ITOZ(pp->mapping->host); ClearPageError(pp); end_page_writeback(pp); atomic_dec_32(&zp->z_async_writes_cnt); } /* * Push a page out to disk, once the page is on stable storage the * registered commit callback will be run as notification of completion. * * IN: ip - page mapped for inode. * pp - page to push (page is locked) * wbc - writeback control data * for_sync - does the caller intend to wait synchronously for the * page writeback to complete? * * RETURN: 0 if success * error code if failure * * Timestamps: * ip - ctime|mtime updated */ int zfs_putpage(struct inode *ip, struct page *pp, struct writeback_control *wbc, boolean_t for_sync) { znode_t *zp = ITOZ(ip); zfsvfs_t *zfsvfs = ITOZSB(ip); loff_t offset; loff_t pgoff; unsigned int pglen; dmu_tx_t *tx; caddr_t va; int err = 0; uint64_t mtime[2], ctime[2]; inode_timespec_t tmp_ts; sa_bulk_attr_t bulk[3]; int cnt = 0; struct address_space *mapping; if ((err = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0) return (err); ASSERT(PageLocked(pp)); pgoff = page_offset(pp); /* Page byte-offset in file */ offset = i_size_read(ip); /* File length in bytes */ pglen = MIN(PAGE_SIZE, /* Page length in bytes */ P2ROUNDUP(offset, PAGE_SIZE)-pgoff); /* Page is beyond end of file */ if (pgoff >= offset) { unlock_page(pp); zfs_exit(zfsvfs, FTAG); return (0); } /* Truncate page length to end of file */ if (pgoff + pglen > offset) pglen = offset - pgoff; #if 0 /* * FIXME: Allow mmap writes past its quota. The correct fix * is to register a page_mkwrite() handler to count the page * against its quota when it is about to be dirtied. */ if (zfs_id_overblockquota(zfsvfs, DMU_USERUSED_OBJECT, KUID_TO_SUID(ip->i_uid)) || zfs_id_overblockquota(zfsvfs, DMU_GROUPUSED_OBJECT, KGID_TO_SGID(ip->i_gid)) || (zp->z_projid != ZFS_DEFAULT_PROJID && zfs_id_overblockquota(zfsvfs, DMU_PROJECTUSED_OBJECT, zp->z_projid))) { err = EDQUOT; } #endif /* * The ordering here is critical and must adhere to the following * rules in order to avoid deadlocking in either zfs_read() or * zfs_free_range() due to a lock inversion. * * 1) The page must be unlocked prior to acquiring the range lock. * This is critical because zfs_read() calls find_lock_page() * which may block on the page lock while holding the range lock. * * 2) Before setting or clearing write back on a page the range lock * must be held in order to prevent a lock inversion with the * zfs_free_range() function. * * This presents a problem because upon entering this function the * page lock is already held. To safely acquire the range lock the * page lock must be dropped. This creates a window where another * process could truncate, invalidate, dirty, or write out the page. * * Therefore, after successfully reacquiring the range and page locks * the current page state is checked. In the common case everything * will be as is expected and it can be written out. However, if * the page state has changed it must be handled accordingly. */ mapping = pp->mapping; redirty_page_for_writepage(wbc, pp); unlock_page(pp); zfs_locked_range_t *lr = zfs_rangelock_enter(&zp->z_rangelock, pgoff, pglen, RL_WRITER); lock_page(pp); /* Page mapping changed or it was no longer dirty, we're done */ if (unlikely((mapping != pp->mapping) || !PageDirty(pp))) { unlock_page(pp); zfs_rangelock_exit(lr); zfs_exit(zfsvfs, FTAG); return (0); } /* Another process started write block if required */ if (PageWriteback(pp)) { unlock_page(pp); zfs_rangelock_exit(lr); if (wbc->sync_mode != WB_SYNC_NONE) { /* * Speed up any non-sync page writebacks since * they may take several seconds to complete. * Refer to the comment in zpl_fsync() (when * HAVE_FSYNC_RANGE is defined) for details. */ if (atomic_load_32(&zp->z_async_writes_cnt) > 0) { zil_commit(zfsvfs->z_log, zp->z_id); } if (PageWriteback(pp)) #ifdef HAVE_PAGEMAP_FOLIO_WAIT_BIT folio_wait_bit(page_folio(pp), PG_writeback); #else wait_on_page_bit(pp, PG_writeback); #endif } zfs_exit(zfsvfs, FTAG); return (0); } /* Clear the dirty flag the required locks are held */ if (!clear_page_dirty_for_io(pp)) { unlock_page(pp); zfs_rangelock_exit(lr); zfs_exit(zfsvfs, FTAG); return (0); } /* * Counterpart for redirty_page_for_writepage() above. This page * was in fact not skipped and should not be counted as if it were. */ wbc->pages_skipped--; if (!for_sync) atomic_inc_32(&zp->z_async_writes_cnt); set_page_writeback(pp); unlock_page(pp); tx = dmu_tx_create(zfsvfs->z_os); dmu_tx_hold_write(tx, zp->z_id, pgoff, pglen); dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); zfs_sa_upgrade_txholds(tx, zp); err = dmu_tx_assign(tx, TXG_WAIT); if (err != 0) { dmu_tx_abort(tx); #ifdef HAVE_VFS_FILEMAP_DIRTY_FOLIO filemap_dirty_folio(page_mapping(pp), page_folio(pp)); #else __set_page_dirty_nobuffers(pp); #endif ClearPageError(pp); end_page_writeback(pp); if (!for_sync) atomic_dec_32(&zp->z_async_writes_cnt); zfs_rangelock_exit(lr); zfs_exit(zfsvfs, FTAG); return (err); } va = kmap(pp); ASSERT3U(pglen, <=, PAGE_SIZE); dmu_write(zfsvfs->z_os, zp->z_id, pgoff, pglen, va, tx); kunmap(pp); SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16); SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16); SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_FLAGS(zfsvfs), NULL, &zp->z_pflags, 8); /* Preserve the mtime and ctime provided by the inode */ tmp_ts = zpl_inode_get_mtime(ip); ZFS_TIME_ENCODE(&tmp_ts, mtime); tmp_ts = zpl_inode_get_ctime(ip); ZFS_TIME_ENCODE(&tmp_ts, ctime); zp->z_atime_dirty = B_FALSE; zp->z_seq++; err = sa_bulk_update(zp->z_sa_hdl, bulk, cnt, tx); boolean_t commit = B_FALSE; if (wbc->sync_mode != WB_SYNC_NONE) { /* * Note that this is rarely called under writepages(), because * writepages() normally handles the entire commit for * performance reasons. */ commit = B_TRUE; } else if (!for_sync && atomic_load_32(&zp->z_sync_writes_cnt) > 0) { /* * If the caller does not intend to wait synchronously * for this page writeback to complete and there are active * synchronous calls on this file, do a commit so that * the latter don't accidentally end up waiting for * our writeback to complete. Refer to the comment in * zpl_fsync() (when HAVE_FSYNC_RANGE is defined) for details. */ commit = B_TRUE; } zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, pgoff, pglen, commit, for_sync ? zfs_putpage_sync_commit_cb : zfs_putpage_async_commit_cb, pp); dmu_tx_commit(tx); zfs_rangelock_exit(lr); if (commit) zil_commit(zfsvfs->z_log, zp->z_id); dataset_kstats_update_write_kstats(&zfsvfs->z_kstat, pglen); zfs_exit(zfsvfs, FTAG); return (err); } /* * Update the system attributes when the inode has been dirtied. For the * moment we only update the mode, atime, mtime, and ctime. */ int zfs_dirty_inode(struct inode *ip, int flags) { znode_t *zp = ITOZ(ip); zfsvfs_t *zfsvfs = ITOZSB(ip); dmu_tx_t *tx; uint64_t mode, atime[2], mtime[2], ctime[2]; inode_timespec_t tmp_ts; sa_bulk_attr_t bulk[4]; int error = 0; int cnt = 0; if (zfs_is_readonly(zfsvfs) || dmu_objset_is_snapshot(zfsvfs->z_os)) return (0); if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0) return (error); #ifdef I_DIRTY_TIME /* * This is the lazytime semantic introduced in Linux 4.0 * This flag will only be called from update_time when lazytime is set. * (Note, I_DIRTY_SYNC will also set if not lazytime) * Fortunately mtime and ctime are managed within ZFS itself, so we * only need to dirty atime. */ if (flags == I_DIRTY_TIME) { zp->z_atime_dirty = B_TRUE; goto out; } #endif tx = dmu_tx_create(zfsvfs->z_os); dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); zfs_sa_upgrade_txholds(tx, zp); error = dmu_tx_assign(tx, TXG_WAIT); if (error) { dmu_tx_abort(tx); goto out; } mutex_enter(&zp->z_lock); zp->z_atime_dirty = B_FALSE; SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_MODE(zfsvfs), NULL, &mode, 8); SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_ATIME(zfsvfs), NULL, &atime, 16); SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16); SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16); /* Preserve the mode, mtime and ctime provided by the inode */ tmp_ts = zpl_inode_get_atime(ip); ZFS_TIME_ENCODE(&tmp_ts, atime); tmp_ts = zpl_inode_get_mtime(ip); ZFS_TIME_ENCODE(&tmp_ts, mtime); tmp_ts = zpl_inode_get_ctime(ip); ZFS_TIME_ENCODE(&tmp_ts, ctime); mode = ip->i_mode; zp->z_mode = mode; error = sa_bulk_update(zp->z_sa_hdl, bulk, cnt, tx); mutex_exit(&zp->z_lock); dmu_tx_commit(tx); out: zfs_exit(zfsvfs, FTAG); return (error); } void zfs_inactive(struct inode *ip) { znode_t *zp = ITOZ(ip); zfsvfs_t *zfsvfs = ITOZSB(ip); uint64_t atime[2]; int error; int need_unlock = 0; /* Only read lock if we haven't already write locked, e.g. rollback */ if (!RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock)) { need_unlock = 1; rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER); } if (zp->z_sa_hdl == NULL) { if (need_unlock) rw_exit(&zfsvfs->z_teardown_inactive_lock); return; } if (zp->z_atime_dirty && zp->z_unlinked == B_FALSE) { dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os); dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); zfs_sa_upgrade_txholds(tx, zp); error = dmu_tx_assign(tx, TXG_WAIT); if (error) { dmu_tx_abort(tx); } else { inode_timespec_t tmp_atime; tmp_atime = zpl_inode_get_atime(ip); ZFS_TIME_ENCODE(&tmp_atime, atime); mutex_enter(&zp->z_lock); (void) sa_update(zp->z_sa_hdl, SA_ZPL_ATIME(zfsvfs), (void *)&atime, sizeof (atime), tx); zp->z_atime_dirty = B_FALSE; mutex_exit(&zp->z_lock); dmu_tx_commit(tx); } } zfs_zinactive(zp); if (need_unlock) rw_exit(&zfsvfs->z_teardown_inactive_lock); } /* * Fill pages with data from the disk. */ static int zfs_fillpage(struct inode *ip, struct page *pp) { zfsvfs_t *zfsvfs = ITOZSB(ip); loff_t i_size = i_size_read(ip); u_offset_t io_off = page_offset(pp); size_t io_len = PAGE_SIZE; ASSERT3U(io_off, <, i_size); if (io_off + io_len > i_size) io_len = i_size - io_off; void *va = kmap(pp); int error = dmu_read(zfsvfs->z_os, ITOZ(ip)->z_id, io_off, io_len, va, DMU_READ_PREFETCH); if (io_len != PAGE_SIZE) memset((char *)va + io_len, 0, PAGE_SIZE - io_len); kunmap(pp); if (error) { /* convert checksum errors into IO errors */ if (error == ECKSUM) error = SET_ERROR(EIO); SetPageError(pp); ClearPageUptodate(pp); } else { ClearPageError(pp); SetPageUptodate(pp); } return (error); } /* * Uses zfs_fillpage to read data from the file and fill the page. * * IN: ip - inode of file to get data from. * pp - page to read * * RETURN: 0 on success, error code on failure. * * Timestamps: * vp - atime updated */ int zfs_getpage(struct inode *ip, struct page *pp) { zfsvfs_t *zfsvfs = ITOZSB(ip); znode_t *zp = ITOZ(ip); int error; if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0) return (error); error = zfs_fillpage(ip, pp); if (error == 0) dataset_kstats_update_read_kstats(&zfsvfs->z_kstat, PAGE_SIZE); zfs_exit(zfsvfs, FTAG); return (error); } /* * Check ZFS specific permissions to memory map a section of a file. * * IN: ip - inode of the file to mmap * off - file offset * addrp - start address in memory region * len - length of memory region * vm_flags- address flags * * RETURN: 0 if success * error code if failure */ int zfs_map(struct inode *ip, offset_t off, caddr_t *addrp, size_t len, unsigned long vm_flags) { (void) addrp; znode_t *zp = ITOZ(ip); zfsvfs_t *zfsvfs = ITOZSB(ip); int error; if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0) return (error); if ((vm_flags & VM_WRITE) && (vm_flags & VM_SHARED) && (zp->z_pflags & (ZFS_IMMUTABLE | ZFS_READONLY | ZFS_APPENDONLY))) { zfs_exit(zfsvfs, FTAG); return (SET_ERROR(EPERM)); } if ((vm_flags & (VM_READ | VM_EXEC)) && (zp->z_pflags & ZFS_AV_QUARANTINED)) { zfs_exit(zfsvfs, FTAG); return (SET_ERROR(EACCES)); } if (off < 0 || len > MAXOFFSET_T - off) { zfs_exit(zfsvfs, FTAG); return (SET_ERROR(ENXIO)); } zfs_exit(zfsvfs, FTAG); return (0); } /* * Free or allocate space in a file. Currently, this function only * supports the `F_FREESP' command. However, this command is somewhat * misnamed, as its functionality includes the ability to allocate as * well as free space. * * IN: zp - znode of file to free data in. * cmd - action to take (only F_FREESP supported). * bfp - section of file to free/alloc. * flag - current file open mode flags. * offset - current file offset. * cr - credentials of caller. * * RETURN: 0 on success, error code on failure. * * Timestamps: * zp - ctime|mtime updated */ int zfs_space(znode_t *zp, int cmd, flock64_t *bfp, int flag, offset_t offset, cred_t *cr) { (void) offset; zfsvfs_t *zfsvfs = ZTOZSB(zp); uint64_t off, len; int error; if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0) return (error); if (cmd != F_FREESP) { zfs_exit(zfsvfs, FTAG); return (SET_ERROR(EINVAL)); } /* * Callers might not be able to detect properly that we are read-only, * so check it explicitly here. */ if (zfs_is_readonly(zfsvfs)) { zfs_exit(zfsvfs, FTAG); return (SET_ERROR(EROFS)); } if (bfp->l_len < 0) { zfs_exit(zfsvfs, FTAG); return (SET_ERROR(EINVAL)); } /* * Permissions aren't checked on Solaris because on this OS * zfs_space() can only be called with an opened file handle. * On Linux we can get here through truncate_range() which * operates directly on inodes, so we need to check access rights. */ if ((error = zfs_zaccess(zp, ACE_WRITE_DATA, 0, B_FALSE, cr, zfs_init_idmap))) { zfs_exit(zfsvfs, FTAG); return (error); } off = bfp->l_start; len = bfp->l_len; /* 0 means from off to end of file */ error = zfs_freesp(zp, off, len, flag, TRUE); zfs_exit(zfsvfs, FTAG); return (error); } int zfs_fid(struct inode *ip, fid_t *fidp) { znode_t *zp = ITOZ(ip); zfsvfs_t *zfsvfs = ITOZSB(ip); uint32_t gen; uint64_t gen64; uint64_t object = zp->z_id; zfid_short_t *zfid; int size, i, error; if ((error = zfs_enter(zfsvfs, FTAG)) != 0) return (error); if (fidp->fid_len < SHORT_FID_LEN) { fidp->fid_len = SHORT_FID_LEN; zfs_exit(zfsvfs, FTAG); return (SET_ERROR(ENOSPC)); } if ((error = zfs_verify_zp(zp)) != 0) { zfs_exit(zfsvfs, FTAG); return (error); } if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &gen64, sizeof (uint64_t))) != 0) { zfs_exit(zfsvfs, FTAG); return (error); } gen = (uint32_t)gen64; size = SHORT_FID_LEN; zfid = (zfid_short_t *)fidp; zfid->zf_len = size; for (i = 0; i < sizeof (zfid->zf_object); i++) zfid->zf_object[i] = (uint8_t)(object >> (8 * i)); /* Must have a non-zero generation number to distinguish from .zfs */ if (gen == 0) gen = 1; for (i = 0; i < sizeof (zfid->zf_gen); i++) zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i)); zfs_exit(zfsvfs, FTAG); return (0); } #if defined(_KERNEL) EXPORT_SYMBOL(zfs_open); EXPORT_SYMBOL(zfs_close); EXPORT_SYMBOL(zfs_lookup); EXPORT_SYMBOL(zfs_create); EXPORT_SYMBOL(zfs_tmpfile); EXPORT_SYMBOL(zfs_remove); EXPORT_SYMBOL(zfs_mkdir); EXPORT_SYMBOL(zfs_rmdir); EXPORT_SYMBOL(zfs_readdir); EXPORT_SYMBOL(zfs_getattr_fast); EXPORT_SYMBOL(zfs_setattr); EXPORT_SYMBOL(zfs_rename); EXPORT_SYMBOL(zfs_symlink); EXPORT_SYMBOL(zfs_readlink); EXPORT_SYMBOL(zfs_link); EXPORT_SYMBOL(zfs_inactive); EXPORT_SYMBOL(zfs_space); EXPORT_SYMBOL(zfs_fid); EXPORT_SYMBOL(zfs_getpage); EXPORT_SYMBOL(zfs_putpage); EXPORT_SYMBOL(zfs_dirty_inode); EXPORT_SYMBOL(zfs_map); /* CSTYLED */ module_param(zfs_delete_blocks, ulong, 0644); MODULE_PARM_DESC(zfs_delete_blocks, "Delete files larger than N blocks async"); #endif diff --git a/sys/contrib/openzfs/module/os/linux/zfs/zvol_os.c b/sys/contrib/openzfs/module/os/linux/zfs/zvol_os.c index 83f80f62aee7..2beec6436bff 100644 --- a/sys/contrib/openzfs/module/os/linux/zfs/zvol_os.c +++ b/sys/contrib/openzfs/module/os/linux/zfs/zvol_os.c @@ -1,1926 +1,1971 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or https://opensource.org/licenses/CDDL-1.0. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2012, 2020 by Delphix. All rights reserved. + * Copyright (c) 2024, Rob Norris * Copyright (c) 2024, Klara, Inc. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef HAVE_BLK_MQ #include #endif static void zvol_request_impl(zvol_state_t *zv, struct bio *bio, struct request *rq, boolean_t force_sync); static unsigned int zvol_major = ZVOL_MAJOR; static unsigned int zvol_request_sync = 0; static unsigned int zvol_prefetch_bytes = (128 * 1024); static unsigned long zvol_max_discard_blocks = 16384; /* * Switch taskq at multiple of 512 MB offset. This can be set to a lower value * to utilize more threads for small files but may affect prefetch hits. */ #define ZVOL_TASKQ_OFFSET_SHIFT 29 #ifndef HAVE_BLKDEV_GET_ERESTARTSYS static unsigned int zvol_open_timeout_ms = 1000; #endif static unsigned int zvol_threads = 0; #ifdef HAVE_BLK_MQ static unsigned int zvol_blk_mq_threads = 0; static unsigned int zvol_blk_mq_actual_threads; static boolean_t zvol_use_blk_mq = B_FALSE; /* * The maximum number of volblocksize blocks to process per thread. Typically, * write heavy workloads preform better with higher values here, and read * heavy workloads preform better with lower values, but that's not a hard * and fast rule. It's basically a knob to tune between "less overhead with * less parallelism" and "more overhead, but more parallelism". * * '8' was chosen as a reasonable, balanced, default based off of sequential * read and write tests to a zvol in an NVMe pool (with 16 CPUs). */ static unsigned int zvol_blk_mq_blocks_per_thread = 8; #endif static unsigned int zvol_num_taskqs = 0; #ifndef BLKDEV_DEFAULT_RQ /* BLKDEV_MAX_RQ was renamed to BLKDEV_DEFAULT_RQ in the 5.16 kernel */ #define BLKDEV_DEFAULT_RQ BLKDEV_MAX_RQ #endif /* * Finalize our BIO or request. */ #ifdef HAVE_BLK_MQ #define END_IO(zv, bio, rq, error) do { \ if (bio) { \ BIO_END_IO(bio, error); \ } else { \ blk_mq_end_request(rq, errno_to_bi_status(error)); \ } \ } while (0) #else #define END_IO(zv, bio, rq, error) BIO_END_IO(bio, error) #endif #ifdef HAVE_BLK_MQ static unsigned int zvol_blk_mq_queue_depth = BLKDEV_DEFAULT_RQ; static unsigned int zvol_actual_blk_mq_queue_depth; #endif struct zvol_state_os { struct gendisk *zvo_disk; /* generic disk */ struct request_queue *zvo_queue; /* request queue */ dev_t zvo_dev; /* device id */ #ifdef HAVE_BLK_MQ struct blk_mq_tag_set tag_set; #endif /* Set from the global 'zvol_use_blk_mq' at zvol load */ boolean_t use_blk_mq; }; typedef struct zv_taskq { uint_t tqs_cnt; taskq_t **tqs_taskq; } zv_taskq_t; static zv_taskq_t zvol_taskqs; static struct ida zvol_ida; typedef struct zv_request_stack { zvol_state_t *zv; struct bio *bio; struct request *rq; } zv_request_t; typedef struct zv_work { struct request *rq; struct work_struct work; } zv_work_t; typedef struct zv_request_task { zv_request_t zvr; taskq_ent_t ent; } zv_request_task_t; static zv_request_task_t * zv_request_task_create(zv_request_t zvr) { zv_request_task_t *task; task = kmem_alloc(sizeof (zv_request_task_t), KM_SLEEP); taskq_init_ent(&task->ent); task->zvr = zvr; return (task); } static void zv_request_task_free(zv_request_task_t *task) { kmem_free(task, sizeof (*task)); } #ifdef HAVE_BLK_MQ /* * This is called when a new block multiqueue request comes in. A request * contains one or more BIOs. */ static blk_status_t zvol_mq_queue_rq(struct blk_mq_hw_ctx *hctx, const struct blk_mq_queue_data *bd) { struct request *rq = bd->rq; zvol_state_t *zv = rq->q->queuedata; /* Tell the kernel that we are starting to process this request */ blk_mq_start_request(rq); if (blk_rq_is_passthrough(rq)) { /* Skip non filesystem request */ blk_mq_end_request(rq, BLK_STS_IOERR); return (BLK_STS_IOERR); } zvol_request_impl(zv, NULL, rq, 0); /* Acknowledge to the kernel that we got this request */ return (BLK_STS_OK); } static struct blk_mq_ops zvol_blk_mq_queue_ops = { .queue_rq = zvol_mq_queue_rq, }; /* Initialize our blk-mq struct */ static int zvol_blk_mq_alloc_tag_set(zvol_state_t *zv) { struct zvol_state_os *zso = zv->zv_zso; memset(&zso->tag_set, 0, sizeof (zso->tag_set)); /* Initialize tag set. */ zso->tag_set.ops = &zvol_blk_mq_queue_ops; zso->tag_set.nr_hw_queues = zvol_blk_mq_actual_threads; zso->tag_set.queue_depth = zvol_actual_blk_mq_queue_depth; zso->tag_set.numa_node = NUMA_NO_NODE; zso->tag_set.cmd_size = 0; /* * We need BLK_MQ_F_BLOCKING here since we do blocking calls in * zvol_request_impl() */ zso->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_BLOCKING; zso->tag_set.driver_data = zv; return (blk_mq_alloc_tag_set(&zso->tag_set)); } #endif /* HAVE_BLK_MQ */ /* * Given a path, return TRUE if path is a ZVOL. */ boolean_t zvol_os_is_zvol(const char *path) { dev_t dev = 0; if (vdev_lookup_bdev(path, &dev) != 0) return (B_FALSE); if (MAJOR(dev) == zvol_major) return (B_TRUE); return (B_FALSE); } static void zvol_write(zv_request_t *zvr) { struct bio *bio = zvr->bio; struct request *rq = zvr->rq; int error = 0; zfs_uio_t uio; zvol_state_t *zv = zvr->zv; struct request_queue *q; struct gendisk *disk; unsigned long start_time = 0; boolean_t acct = B_FALSE; ASSERT3P(zv, !=, NULL); ASSERT3U(zv->zv_open_count, >, 0); ASSERT3P(zv->zv_zilog, !=, NULL); q = zv->zv_zso->zvo_queue; disk = zv->zv_zso->zvo_disk; /* bio marked as FLUSH need to flush before write */ if (io_is_flush(bio, rq)) zil_commit(zv->zv_zilog, ZVOL_OBJ); /* Some requests are just for flush and nothing else. */ if (io_size(bio, rq) == 0) { rw_exit(&zv->zv_suspend_lock); END_IO(zv, bio, rq, 0); return; } zfs_uio_bvec_init(&uio, bio, rq); ssize_t start_resid = uio.uio_resid; /* * With use_blk_mq, accounting is done by blk_mq_start_request() * and blk_mq_end_request(), so we can skip it here. */ if (bio) { acct = blk_queue_io_stat(q); if (acct) { start_time = blk_generic_start_io_acct(q, disk, WRITE, bio); } } boolean_t sync = io_is_fua(bio, rq) || zv->zv_objset->os_sync == ZFS_SYNC_ALWAYS; zfs_locked_range_t *lr = zfs_rangelock_enter(&zv->zv_rangelock, uio.uio_loffset, uio.uio_resid, RL_WRITER); uint64_t volsize = zv->zv_volsize; while (uio.uio_resid > 0 && uio.uio_loffset < volsize) { uint64_t bytes = MIN(uio.uio_resid, DMU_MAX_ACCESS >> 1); uint64_t off = uio.uio_loffset; dmu_tx_t *tx = dmu_tx_create(zv->zv_objset); if (bytes > volsize - off) /* don't write past the end */ bytes = volsize - off; dmu_tx_hold_write_by_dnode(tx, zv->zv_dn, off, bytes); /* This will only fail for ENOSPC */ error = dmu_tx_assign(tx, TXG_WAIT); if (error) { dmu_tx_abort(tx); break; } error = dmu_write_uio_dnode(zv->zv_dn, &uio, bytes, tx); if (error == 0) { zvol_log_write(zv, tx, off, bytes, sync); } dmu_tx_commit(tx); if (error) break; } zfs_rangelock_exit(lr); int64_t nwritten = start_resid - uio.uio_resid; dataset_kstats_update_write_kstats(&zv->zv_kstat, nwritten); task_io_account_write(nwritten); if (sync) zil_commit(zv->zv_zilog, ZVOL_OBJ); rw_exit(&zv->zv_suspend_lock); if (bio && acct) { blk_generic_end_io_acct(q, disk, WRITE, bio, start_time); } END_IO(zv, bio, rq, -error); } static void zvol_write_task(void *arg) { zv_request_task_t *task = arg; zvol_write(&task->zvr); zv_request_task_free(task); } static void zvol_discard(zv_request_t *zvr) { struct bio *bio = zvr->bio; struct request *rq = zvr->rq; zvol_state_t *zv = zvr->zv; uint64_t start = io_offset(bio, rq); uint64_t size = io_size(bio, rq); uint64_t end = start + size; boolean_t sync; int error = 0; dmu_tx_t *tx; struct request_queue *q = zv->zv_zso->zvo_queue; struct gendisk *disk = zv->zv_zso->zvo_disk; unsigned long start_time = 0; boolean_t acct = B_FALSE; ASSERT3P(zv, !=, NULL); ASSERT3U(zv->zv_open_count, >, 0); ASSERT3P(zv->zv_zilog, !=, NULL); if (bio) { acct = blk_queue_io_stat(q); if (acct) { start_time = blk_generic_start_io_acct(q, disk, WRITE, bio); } } sync = io_is_fua(bio, rq) || zv->zv_objset->os_sync == ZFS_SYNC_ALWAYS; if (end > zv->zv_volsize) { error = SET_ERROR(EIO); goto unlock; } /* * Align the request to volume block boundaries when a secure erase is * not required. This will prevent dnode_free_range() from zeroing out * the unaligned parts which is slow (read-modify-write) and useless * since we are not freeing any space by doing so. */ if (!io_is_secure_erase(bio, rq)) { start = P2ROUNDUP(start, zv->zv_volblocksize); end = P2ALIGN_TYPED(end, zv->zv_volblocksize, uint64_t); size = end - start; } if (start >= end) goto unlock; zfs_locked_range_t *lr = zfs_rangelock_enter(&zv->zv_rangelock, start, size, RL_WRITER); tx = dmu_tx_create(zv->zv_objset); dmu_tx_mark_netfree(tx); error = dmu_tx_assign(tx, TXG_WAIT); if (error != 0) { dmu_tx_abort(tx); } else { zvol_log_truncate(zv, tx, start, size); dmu_tx_commit(tx); error = dmu_free_long_range(zv->zv_objset, ZVOL_OBJ, start, size); } zfs_rangelock_exit(lr); if (error == 0 && sync) zil_commit(zv->zv_zilog, ZVOL_OBJ); unlock: rw_exit(&zv->zv_suspend_lock); if (bio && acct) { blk_generic_end_io_acct(q, disk, WRITE, bio, start_time); } END_IO(zv, bio, rq, -error); } static void zvol_discard_task(void *arg) { zv_request_task_t *task = arg; zvol_discard(&task->zvr); zv_request_task_free(task); } static void zvol_read(zv_request_t *zvr) { struct bio *bio = zvr->bio; struct request *rq = zvr->rq; int error = 0; zfs_uio_t uio; boolean_t acct = B_FALSE; zvol_state_t *zv = zvr->zv; struct request_queue *q; struct gendisk *disk; unsigned long start_time = 0; ASSERT3P(zv, !=, NULL); ASSERT3U(zv->zv_open_count, >, 0); zfs_uio_bvec_init(&uio, bio, rq); q = zv->zv_zso->zvo_queue; disk = zv->zv_zso->zvo_disk; ssize_t start_resid = uio.uio_resid; /* * When blk-mq is being used, accounting is done by * blk_mq_start_request() and blk_mq_end_request(). */ if (bio) { acct = blk_queue_io_stat(q); if (acct) start_time = blk_generic_start_io_acct(q, disk, READ, bio); } zfs_locked_range_t *lr = zfs_rangelock_enter(&zv->zv_rangelock, uio.uio_loffset, uio.uio_resid, RL_READER); uint64_t volsize = zv->zv_volsize; while (uio.uio_resid > 0 && uio.uio_loffset < volsize) { uint64_t bytes = MIN(uio.uio_resid, DMU_MAX_ACCESS >> 1); /* don't read past the end */ if (bytes > volsize - uio.uio_loffset) bytes = volsize - uio.uio_loffset; error = dmu_read_uio_dnode(zv->zv_dn, &uio, bytes); if (error) { /* convert checksum errors into IO errors */ if (error == ECKSUM) error = SET_ERROR(EIO); break; } } zfs_rangelock_exit(lr); int64_t nread = start_resid - uio.uio_resid; dataset_kstats_update_read_kstats(&zv->zv_kstat, nread); task_io_account_read(nread); rw_exit(&zv->zv_suspend_lock); if (bio && acct) { blk_generic_end_io_acct(q, disk, READ, bio, start_time); } END_IO(zv, bio, rq, -error); } static void zvol_read_task(void *arg) { zv_request_task_t *task = arg; zvol_read(&task->zvr); zv_request_task_free(task); } /* * Process a BIO or request * * Either 'bio' or 'rq' should be set depending on if we are processing a * bio or a request (both should not be set). * * force_sync: Set to 0 to defer processing to a background taskq * Set to 1 to process data synchronously */ static void zvol_request_impl(zvol_state_t *zv, struct bio *bio, struct request *rq, boolean_t force_sync) { fstrans_cookie_t cookie = spl_fstrans_mark(); uint64_t offset = io_offset(bio, rq); uint64_t size = io_size(bio, rq); int rw = io_data_dir(bio, rq); if (unlikely(zv->zv_flags & ZVOL_REMOVING)) { END_IO(zv, bio, rq, -SET_ERROR(ENXIO)); goto out; } if (zvol_request_sync || zv->zv_threading == B_FALSE) force_sync = 1; zv_request_t zvr = { .zv = zv, .bio = bio, .rq = rq, }; if (io_has_data(bio, rq) && offset + size > zv->zv_volsize) { printk(KERN_INFO "%s: bad access: offset=%llu, size=%lu\n", zv->zv_zso->zvo_disk->disk_name, (long long unsigned)offset, (long unsigned)size); END_IO(zv, bio, rq, -SET_ERROR(EIO)); goto out; } zv_request_task_t *task; zv_taskq_t *ztqs = &zvol_taskqs; uint_t blk_mq_hw_queue = 0; uint_t tq_idx; uint_t taskq_hash; #ifdef HAVE_BLK_MQ if (rq) #ifdef HAVE_BLK_MQ_RQ_HCTX blk_mq_hw_queue = rq->mq_hctx->queue_num; #else blk_mq_hw_queue = rq->q->queue_hw_ctx[rq->q->mq_map[rq->cpu]]->queue_num; #endif #endif taskq_hash = cityhash4((uintptr_t)zv, offset >> ZVOL_TASKQ_OFFSET_SHIFT, blk_mq_hw_queue, 0); tq_idx = taskq_hash % ztqs->tqs_cnt; if (rw == WRITE) { if (unlikely(zv->zv_flags & ZVOL_RDONLY)) { END_IO(zv, bio, rq, -SET_ERROR(EROFS)); goto out; } /* * Prevents the zvol from being suspended, or the ZIL being * concurrently opened. Will be released after the i/o * completes. */ rw_enter(&zv->zv_suspend_lock, RW_READER); /* * Open a ZIL if this is the first time we have written to this * zvol. We protect zv->zv_zilog with zv_suspend_lock rather * than zv_state_lock so that we don't need to acquire an * additional lock in this path. */ if (zv->zv_zilog == NULL) { rw_exit(&zv->zv_suspend_lock); rw_enter(&zv->zv_suspend_lock, RW_WRITER); if (zv->zv_zilog == NULL) { zv->zv_zilog = zil_open(zv->zv_objset, zvol_get_data, &zv->zv_kstat.dk_zil_sums); zv->zv_flags |= ZVOL_WRITTEN_TO; /* replay / destroy done in zvol_create_minor */ VERIFY0((zv->zv_zilog->zl_header->zh_flags & ZIL_REPLAY_NEEDED)); } rw_downgrade(&zv->zv_suspend_lock); } /* * We don't want this thread to be blocked waiting for i/o to * complete, so we instead wait from a taskq callback. The * i/o may be a ZIL write (via zil_commit()), or a read of an * indirect block, or a read of a data block (if this is a * partial-block write). We will indicate that the i/o is * complete by calling END_IO() from the taskq callback. * * This design allows the calling thread to continue and * initiate more concurrent operations by calling * zvol_request() again. There are typically only a small * number of threads available to call zvol_request() (e.g. * one per iSCSI target), so keeping the latency of * zvol_request() low is important for performance. * * The zvol_request_sync module parameter allows this * behavior to be altered, for performance evaluation * purposes. If the callback blocks, setting * zvol_request_sync=1 will result in much worse performance. * * We can have up to zvol_threads concurrent i/o's being * processed for all zvols on the system. This is typically * a vast improvement over the zvol_request_sync=1 behavior * of one i/o at a time per zvol. However, an even better * design would be for zvol_request() to initiate the zio * directly, and then be notified by the zio_done callback, * which would call END_IO(). Unfortunately, the DMU/ZIL * interfaces lack this functionality (they block waiting for * the i/o to complete). */ if (io_is_discard(bio, rq) || io_is_secure_erase(bio, rq)) { if (force_sync) { zvol_discard(&zvr); } else { task = zv_request_task_create(zvr); taskq_dispatch_ent(ztqs->tqs_taskq[tq_idx], zvol_discard_task, task, 0, &task->ent); } } else { if (force_sync) { zvol_write(&zvr); } else { task = zv_request_task_create(zvr); taskq_dispatch_ent(ztqs->tqs_taskq[tq_idx], zvol_write_task, task, 0, &task->ent); } } } else { /* * The SCST driver, and possibly others, may issue READ I/Os * with a length of zero bytes. These empty I/Os contain no * data and require no additional handling. */ if (size == 0) { END_IO(zv, bio, rq, 0); goto out; } rw_enter(&zv->zv_suspend_lock, RW_READER); /* See comment in WRITE case above. */ if (force_sync) { zvol_read(&zvr); } else { task = zv_request_task_create(zvr); taskq_dispatch_ent(ztqs->tqs_taskq[tq_idx], zvol_read_task, task, 0, &task->ent); } } out: spl_fstrans_unmark(cookie); } #ifdef HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS #ifdef HAVE_BDEV_SUBMIT_BIO_RETURNS_VOID static void zvol_submit_bio(struct bio *bio) #else static blk_qc_t zvol_submit_bio(struct bio *bio) #endif #else static MAKE_REQUEST_FN_RET zvol_request(struct request_queue *q, struct bio *bio) #endif { #ifdef HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS #if defined(HAVE_BIO_BDEV_DISK) struct request_queue *q = bio->bi_bdev->bd_disk->queue; #else struct request_queue *q = bio->bi_disk->queue; #endif #endif zvol_state_t *zv = q->queuedata; zvol_request_impl(zv, bio, NULL, 0); #if defined(HAVE_MAKE_REQUEST_FN_RET_QC) || \ defined(HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS) && \ !defined(HAVE_BDEV_SUBMIT_BIO_RETURNS_VOID) return (BLK_QC_T_NONE); #endif } static int #ifdef HAVE_BLK_MODE_T zvol_open(struct gendisk *disk, blk_mode_t flag) #else zvol_open(struct block_device *bdev, fmode_t flag) #endif { zvol_state_t *zv; int error = 0; boolean_t drop_suspend = B_FALSE; #ifndef HAVE_BLKDEV_GET_ERESTARTSYS hrtime_t timeout = MSEC2NSEC(zvol_open_timeout_ms); hrtime_t start = gethrtime(); retry: #endif rw_enter(&zvol_state_lock, RW_READER); /* * Obtain a copy of private_data under the zvol_state_lock to make * sure that either the result of zvol free code path setting * disk->private_data to NULL is observed, or zvol_os_free() * is not called on this zv because of the positive zv_open_count. */ #ifdef HAVE_BLK_MODE_T zv = disk->private_data; #else zv = bdev->bd_disk->private_data; #endif if (zv == NULL) { rw_exit(&zvol_state_lock); return (-SET_ERROR(ENXIO)); } mutex_enter(&zv->zv_state_lock); if (unlikely(zv->zv_flags & ZVOL_REMOVING)) { mutex_exit(&zv->zv_state_lock); rw_exit(&zvol_state_lock); return (-SET_ERROR(ENXIO)); } /* * Make sure zvol is not suspended during first open * (hold zv_suspend_lock) and respect proper lock acquisition * ordering - zv_suspend_lock before zv_state_lock */ if (zv->zv_open_count == 0) { if (!rw_tryenter(&zv->zv_suspend_lock, RW_READER)) { mutex_exit(&zv->zv_state_lock); rw_enter(&zv->zv_suspend_lock, RW_READER); mutex_enter(&zv->zv_state_lock); /* check to see if zv_suspend_lock is needed */ if (zv->zv_open_count != 0) { rw_exit(&zv->zv_suspend_lock); } else { drop_suspend = B_TRUE; } } else { drop_suspend = B_TRUE; } } rw_exit(&zvol_state_lock); ASSERT(MUTEX_HELD(&zv->zv_state_lock)); if (zv->zv_open_count == 0) { boolean_t drop_namespace = B_FALSE; ASSERT(RW_READ_HELD(&zv->zv_suspend_lock)); /* * In all other call paths the spa_namespace_lock is taken * before the bdev->bd_mutex lock. However, on open(2) * the __blkdev_get() function calls fops->open() with the * bdev->bd_mutex lock held. This can result in a deadlock * when zvols from one pool are used as vdevs in another. * * To prevent a lock inversion deadlock we preemptively * take the spa_namespace_lock. Normally the lock will not * be contended and this is safe because spa_open_common() * handles the case where the caller already holds the * spa_namespace_lock. * * When the lock cannot be aquired after multiple retries * this must be the vdev on zvol deadlock case and we have * no choice but to return an error. For 5.12 and older * kernels returning -ERESTARTSYS will result in the * bdev->bd_mutex being dropped, then reacquired, and * fops->open() being called again. This process can be * repeated safely until both locks are acquired. For 5.13 * and newer the -ERESTARTSYS retry logic was removed from * the kernel so the only option is to return the error for * the caller to handle it. */ if (!mutex_owned(&spa_namespace_lock)) { if (!mutex_tryenter(&spa_namespace_lock)) { mutex_exit(&zv->zv_state_lock); rw_exit(&zv->zv_suspend_lock); drop_suspend = B_FALSE; #ifdef HAVE_BLKDEV_GET_ERESTARTSYS schedule(); return (-SET_ERROR(ERESTARTSYS)); #else if ((gethrtime() - start) > timeout) return (-SET_ERROR(ERESTARTSYS)); schedule_timeout_interruptible( MSEC_TO_TICK(10)); goto retry; #endif } else { drop_namespace = B_TRUE; } } error = -zvol_first_open(zv, !(blk_mode_is_open_write(flag))); if (drop_namespace) mutex_exit(&spa_namespace_lock); } if (error == 0) { if ((blk_mode_is_open_write(flag)) && (zv->zv_flags & ZVOL_RDONLY)) { if (zv->zv_open_count == 0) zvol_last_close(zv); error = -SET_ERROR(EROFS); } else { zv->zv_open_count++; } } mutex_exit(&zv->zv_state_lock); if (drop_suspend) rw_exit(&zv->zv_suspend_lock); if (error == 0) #ifdef HAVE_BLK_MODE_T disk_check_media_change(disk); #else zfs_check_media_change(bdev); #endif return (error); } static void #ifdef HAVE_BLOCK_DEVICE_OPERATIONS_RELEASE_1ARG zvol_release(struct gendisk *disk) #else zvol_release(struct gendisk *disk, fmode_t unused) #endif { #if !defined(HAVE_BLOCK_DEVICE_OPERATIONS_RELEASE_1ARG) (void) unused; #endif zvol_state_t *zv; boolean_t drop_suspend = B_TRUE; rw_enter(&zvol_state_lock, RW_READER); zv = disk->private_data; mutex_enter(&zv->zv_state_lock); ASSERT3U(zv->zv_open_count, >, 0); /* * make sure zvol is not suspended during last close * (hold zv_suspend_lock) and respect proper lock acquisition * ordering - zv_suspend_lock before zv_state_lock */ if (zv->zv_open_count == 1) { if (!rw_tryenter(&zv->zv_suspend_lock, RW_READER)) { mutex_exit(&zv->zv_state_lock); rw_enter(&zv->zv_suspend_lock, RW_READER); mutex_enter(&zv->zv_state_lock); /* check to see if zv_suspend_lock is needed */ if (zv->zv_open_count != 1) { rw_exit(&zv->zv_suspend_lock); drop_suspend = B_FALSE; } } } else { drop_suspend = B_FALSE; } rw_exit(&zvol_state_lock); ASSERT(MUTEX_HELD(&zv->zv_state_lock)); zv->zv_open_count--; if (zv->zv_open_count == 0) { ASSERT(RW_READ_HELD(&zv->zv_suspend_lock)); zvol_last_close(zv); } mutex_exit(&zv->zv_state_lock); if (drop_suspend) rw_exit(&zv->zv_suspend_lock); } static int zvol_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long arg) { zvol_state_t *zv = bdev->bd_disk->private_data; int error = 0; ASSERT3U(zv->zv_open_count, >, 0); switch (cmd) { case BLKFLSBUF: #ifdef HAVE_FSYNC_BDEV fsync_bdev(bdev); #elif defined(HAVE_SYNC_BLOCKDEV) sync_blockdev(bdev); #else #error "Neither fsync_bdev() nor sync_blockdev() found" #endif invalidate_bdev(bdev); rw_enter(&zv->zv_suspend_lock, RW_READER); if (!(zv->zv_flags & ZVOL_RDONLY)) txg_wait_synced(dmu_objset_pool(zv->zv_objset), 0); rw_exit(&zv->zv_suspend_lock); break; case BLKZNAME: mutex_enter(&zv->zv_state_lock); error = copy_to_user((void *)arg, zv->zv_name, MAXNAMELEN); mutex_exit(&zv->zv_state_lock); break; default: error = -ENOTTY; break; } return (SET_ERROR(error)); } #ifdef CONFIG_COMPAT static int zvol_compat_ioctl(struct block_device *bdev, fmode_t mode, unsigned cmd, unsigned long arg) { return (zvol_ioctl(bdev, mode, cmd, arg)); } #else #define zvol_compat_ioctl NULL #endif static unsigned int zvol_check_events(struct gendisk *disk, unsigned int clearing) { unsigned int mask = 0; rw_enter(&zvol_state_lock, RW_READER); zvol_state_t *zv = disk->private_data; if (zv != NULL) { mutex_enter(&zv->zv_state_lock); mask = zv->zv_changed ? DISK_EVENT_MEDIA_CHANGE : 0; zv->zv_changed = 0; mutex_exit(&zv->zv_state_lock); } rw_exit(&zvol_state_lock); return (mask); } static int zvol_revalidate_disk(struct gendisk *disk) { rw_enter(&zvol_state_lock, RW_READER); zvol_state_t *zv = disk->private_data; if (zv != NULL) { mutex_enter(&zv->zv_state_lock); set_capacity(zv->zv_zso->zvo_disk, zv->zv_volsize >> SECTOR_BITS); mutex_exit(&zv->zv_state_lock); } rw_exit(&zvol_state_lock); return (0); } int zvol_os_update_volsize(zvol_state_t *zv, uint64_t volsize) { struct gendisk *disk = zv->zv_zso->zvo_disk; #if defined(HAVE_REVALIDATE_DISK_SIZE) revalidate_disk_size(disk, zvol_revalidate_disk(disk) == 0); #elif defined(HAVE_REVALIDATE_DISK) revalidate_disk(disk); #else zvol_revalidate_disk(disk); #endif return (0); } void zvol_os_clear_private(zvol_state_t *zv) { /* * Cleared while holding zvol_state_lock as a writer * which will prevent zvol_open() from opening it. */ zv->zv_zso->zvo_disk->private_data = NULL; } /* * Provide a simple virtual geometry for legacy compatibility. For devices * smaller than 1 MiB a small head and sector count is used to allow very * tiny devices. For devices over 1 Mib a standard head and sector count * is used to keep the cylinders count reasonable. */ static int zvol_getgeo(struct block_device *bdev, struct hd_geometry *geo) { zvol_state_t *zv = bdev->bd_disk->private_data; sector_t sectors; ASSERT3U(zv->zv_open_count, >, 0); sectors = get_capacity(zv->zv_zso->zvo_disk); if (sectors > 2048) { geo->heads = 16; geo->sectors = 63; } else { geo->heads = 2; geo->sectors = 4; } geo->start = 0; geo->cylinders = sectors / (geo->heads * geo->sectors); return (0); } /* * Why have two separate block_device_operations structs? * * Normally we'd just have one, and assign 'submit_bio' as needed. However, * it's possible the user's kernel is built with CONSTIFY_PLUGIN, meaning we * can't just change submit_bio dynamically at runtime. So just create two * separate structs to get around this. */ static const struct block_device_operations zvol_ops_blk_mq = { .open = zvol_open, .release = zvol_release, .ioctl = zvol_ioctl, .compat_ioctl = zvol_compat_ioctl, .check_events = zvol_check_events, #ifdef HAVE_BLOCK_DEVICE_OPERATIONS_REVALIDATE_DISK .revalidate_disk = zvol_revalidate_disk, #endif .getgeo = zvol_getgeo, .owner = THIS_MODULE, }; static const struct block_device_operations zvol_ops = { .open = zvol_open, .release = zvol_release, .ioctl = zvol_ioctl, .compat_ioctl = zvol_compat_ioctl, .check_events = zvol_check_events, #ifdef HAVE_BLOCK_DEVICE_OPERATIONS_REVALIDATE_DISK .revalidate_disk = zvol_revalidate_disk, #endif .getgeo = zvol_getgeo, .owner = THIS_MODULE, #ifdef HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS .submit_bio = zvol_submit_bio, #endif }; +/* + * Since 6.9, Linux has been removing queue limit setters in favour of an + * initial queue_limits struct applied when the device is open. Since 6.11, + * queue_limits is being extended to allow more things to be applied when the + * device is open. Setters are also being removed for this. + * + * For OpenZFS, this means that depending on kernel version, some options may + * be set up before the device is open, and some applied to an open device + * (queue) after the fact. + * + * We manage this complexity by having our own limits struct, + * zvol_queue_limits_t, in which we carry any queue config that we're + * interested in setting. This structure is the same on all kernels. + * + * These limits are then applied to the queue at device open time by the most + * appropriate method for the kernel. + * + * zvol_queue_limits_convert() is used on 6.9+ (where the two-arg form of + * blk_alloc_disk() exists). This converts our limits struct to a proper Linux + * struct queue_limits, and passes it in. Any fields added in later kernels are + * (obviously) not set up here. + * + * zvol_queue_limits_apply() is called on all kernel versions after the queue + * is created, and applies any remaining config. Before 6.9 that will be + * everything, via setter methods. After 6.9 that will be whatever couldn't be + * put into struct queue_limits. (This implies that zvol_queue_limits_apply() + * will always be a no-op on the latest kernel we support). + */ typedef struct zvol_queue_limits { unsigned int zql_max_hw_sectors; unsigned short zql_max_segments; unsigned int zql_max_segment_size; unsigned int zql_io_opt; + unsigned int zql_physical_block_size; + unsigned int zql_max_discard_sectors; + unsigned int zql_discard_granularity; } zvol_queue_limits_t; static void zvol_queue_limits_init(zvol_queue_limits_t *limits, zvol_state_t *zv, boolean_t use_blk_mq) { limits->zql_max_hw_sectors = (DMU_MAX_ACCESS / 4) >> 9; if (use_blk_mq) { /* * IO requests can be really big (1MB). When an IO request * comes in, it is passed off to zvol_read() or zvol_write() * in a new thread, where it is chunked up into 'volblocksize' * sized pieces and processed. So for example, if the request * is a 1MB write and your volblocksize is 128k, one zvol_write * thread will take that request and sequentially do ten 128k * IOs. This is due to the fact that the thread needs to lock * each volblocksize sized block. So you might be wondering: * "instead of passing the whole 1MB request to one thread, * why not pass ten individual 128k chunks to ten threads and * process the whole write in parallel?" The short answer is * that there's a sweet spot number of chunks that balances * the greater parallelism with the added overhead of more * threads. The sweet spot can be different depending on if you * have a read or write heavy workload. Writes typically want * high chunk counts while reads typically want lower ones. On * a test pool with 6 NVMe drives in a 3x 2-disk mirror * configuration, with volblocksize=8k, the sweet spot for good * sequential reads and writes was at 8 chunks. */ /* * Below we tell the kernel how big we want our requests * to be. You would think that blk_queue_io_opt() would be * used to do this since it is used to "set optimal request * size for the queue", but that doesn't seem to do * anything - the kernel still gives you huge requests * with tons of little PAGE_SIZE segments contained within it. * * Knowing that the kernel will just give you PAGE_SIZE segments * no matter what, you can say "ok, I want PAGE_SIZE byte * segments, and I want 'N' of them per request", where N is * the correct number of segments for the volblocksize and * number of chunks you want. */ #ifdef HAVE_BLK_MQ if (zvol_blk_mq_blocks_per_thread != 0) { unsigned int chunks; chunks = MIN(zvol_blk_mq_blocks_per_thread, UINT16_MAX); limits->zql_max_segment_size = PAGE_SIZE; limits->zql_max_segments = (zv->zv_volblocksize * chunks) / PAGE_SIZE; } else { /* * Special case: zvol_blk_mq_blocks_per_thread = 0 * Max everything out. */ limits->zql_max_segments = UINT16_MAX; limits->zql_max_segment_size = UINT_MAX; } } else { #endif limits->zql_max_segments = UINT16_MAX; limits->zql_max_segment_size = UINT_MAX; } limits->zql_io_opt = zv->zv_volblocksize; + + limits->zql_physical_block_size = zv->zv_volblocksize; + limits->zql_max_discard_sectors = + (zvol_max_discard_blocks * zv->zv_volblocksize) >> 9; + limits->zql_discard_granularity = zv->zv_volblocksize; } #ifdef HAVE_BLK_ALLOC_DISK_2ARG static void zvol_queue_limits_convert(zvol_queue_limits_t *limits, struct queue_limits *qlimits) { memset(qlimits, 0, sizeof (struct queue_limits)); qlimits->max_hw_sectors = limits->zql_max_hw_sectors; qlimits->max_segments = limits->zql_max_segments; qlimits->max_segment_size = limits->zql_max_segment_size; qlimits->io_opt = limits->zql_io_opt; + qlimits->physical_block_size = limits->zql_physical_block_size; + qlimits->max_discard_sectors = limits->zql_max_discard_sectors; + qlimits->discard_granularity = limits->zql_discard_granularity; +#ifdef HAVE_BLKDEV_QUEUE_LIMITS_FEATURES + qlimits->features = + BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA | BLK_FEAT_IO_STAT; +#endif } -#else +#endif + static void zvol_queue_limits_apply(zvol_queue_limits_t *limits, struct request_queue *queue) { +#ifndef HAVE_BLK_ALLOC_DISK_2ARG blk_queue_max_hw_sectors(queue, limits->zql_max_hw_sectors); blk_queue_max_segments(queue, limits->zql_max_segments); blk_queue_max_segment_size(queue, limits->zql_max_segment_size); blk_queue_io_opt(queue, limits->zql_io_opt); -} + blk_queue_physical_block_size(queue, limits->zql_physical_block_size); + blk_queue_max_discard_sectors(queue, limits->zql_max_discard_sectors); + blk_queue_discard_granularity(queue, limits->zql_discard_granularity); +#endif +#ifndef HAVE_BLKDEV_QUEUE_LIMITS_FEATURES + blk_queue_set_write_cache(queue, B_TRUE); + blk_queue_flag_set(QUEUE_FLAG_IO_STAT, queue); #endif +} static int zvol_alloc_non_blk_mq(struct zvol_state_os *zso, zvol_queue_limits_t *limits) { #if defined(HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS) #if defined(HAVE_BLK_ALLOC_DISK) zso->zvo_disk = blk_alloc_disk(NUMA_NO_NODE); if (zso->zvo_disk == NULL) return (1); zso->zvo_disk->minors = ZVOL_MINORS; zso->zvo_queue = zso->zvo_disk->queue; zvol_queue_limits_apply(limits, zso->zvo_queue); #elif defined(HAVE_BLK_ALLOC_DISK_2ARG) struct queue_limits qlimits; zvol_queue_limits_convert(limits, &qlimits); struct gendisk *disk = blk_alloc_disk(&qlimits, NUMA_NO_NODE); if (IS_ERR(disk)) { zso->zvo_disk = NULL; return (1); } +#ifndef HAVE_BLKDEV_QUEUE_LIMITS_FEATURES + blk_queue_set_write_cache(zso->zvo_queue, B_TRUE); +#endif + zso->zvo_disk = disk; zso->zvo_disk->minors = ZVOL_MINORS; zso->zvo_queue = zso->zvo_disk->queue; #else zso->zvo_queue = blk_alloc_queue(NUMA_NO_NODE); if (zso->zvo_queue == NULL) return (1); zso->zvo_disk = alloc_disk(ZVOL_MINORS); if (zso->zvo_disk == NULL) { blk_cleanup_queue(zso->zvo_queue); return (1); } zso->zvo_disk->queue = zso->zvo_queue; - zvol_queue_limits_apply(limits, zso->zvo_queue); #endif /* HAVE_BLK_ALLOC_DISK */ #else zso->zvo_queue = blk_generic_alloc_queue(zvol_request, NUMA_NO_NODE); if (zso->zvo_queue == NULL) return (1); zso->zvo_disk = alloc_disk(ZVOL_MINORS); if (zso->zvo_disk == NULL) { blk_cleanup_queue(zso->zvo_queue); return (1); } zso->zvo_disk->queue = zso->zvo_queue; - zvol_queue_limits_apply(limits, zso->zvo_queue); #endif /* HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS */ + + zvol_queue_limits_apply(limits, zso->zvo_queue); + return (0); } static int zvol_alloc_blk_mq(zvol_state_t *zv, zvol_queue_limits_t *limits) { #ifdef HAVE_BLK_MQ struct zvol_state_os *zso = zv->zv_zso; /* Allocate our blk-mq tag_set */ if (zvol_blk_mq_alloc_tag_set(zv) != 0) return (1); #if defined(HAVE_BLK_ALLOC_DISK) zso->zvo_disk = blk_mq_alloc_disk(&zso->tag_set, zv); if (zso->zvo_disk == NULL) { blk_mq_free_tag_set(&zso->tag_set); return (1); } zso->zvo_queue = zso->zvo_disk->queue; - zvol_queue_limits_apply(limits, zso->zvo_queue); zso->zvo_disk->minors = ZVOL_MINORS; #elif defined(HAVE_BLK_ALLOC_DISK_2ARG) struct queue_limits qlimits; zvol_queue_limits_convert(limits, &qlimits); struct gendisk *disk = blk_mq_alloc_disk(&zso->tag_set, &qlimits, zv); if (IS_ERR(disk)) { zso->zvo_disk = NULL; blk_mq_free_tag_set(&zso->tag_set); return (1); } zso->zvo_disk = disk; zso->zvo_queue = zso->zvo_disk->queue; zso->zvo_disk->minors = ZVOL_MINORS; #else zso->zvo_disk = alloc_disk(ZVOL_MINORS); if (zso->zvo_disk == NULL) { blk_cleanup_queue(zso->zvo_queue); blk_mq_free_tag_set(&zso->tag_set); return (1); } /* Allocate queue */ zso->zvo_queue = blk_mq_init_queue(&zso->tag_set); if (IS_ERR(zso->zvo_queue)) { blk_mq_free_tag_set(&zso->tag_set); return (1); } /* Our queue is now created, assign it to our disk */ zso->zvo_disk->queue = zso->zvo_queue; - zvol_queue_limits_apply(limits, zso->zvo_queue); - #endif + + zvol_queue_limits_apply(limits, zso->zvo_queue); #endif + return (0); } /* * Allocate memory for a new zvol_state_t and setup the required * request queue and generic disk structures for the block device. */ static zvol_state_t * zvol_alloc(dev_t dev, const char *name) { zvol_state_t *zv; struct zvol_state_os *zso; uint64_t volmode; int ret; if (dsl_prop_get_integer(name, "volmode", &volmode, NULL) != 0) return (NULL); if (volmode == ZFS_VOLMODE_DEFAULT) volmode = zvol_volmode; if (volmode == ZFS_VOLMODE_NONE) return (NULL); zv = kmem_zalloc(sizeof (zvol_state_t), KM_SLEEP); zso = kmem_zalloc(sizeof (struct zvol_state_os), KM_SLEEP); zv->zv_zso = zso; zv->zv_volmode = volmode; list_link_init(&zv->zv_next); mutex_init(&zv->zv_state_lock, NULL, MUTEX_DEFAULT, NULL); cv_init(&zv->zv_removing_cv, NULL, CV_DEFAULT, NULL); #ifdef HAVE_BLK_MQ zv->zv_zso->use_blk_mq = zvol_use_blk_mq; #endif zvol_queue_limits_t limits; zvol_queue_limits_init(&limits, zv, zv->zv_zso->use_blk_mq); /* * The block layer has 3 interfaces for getting BIOs: * * 1. blk-mq request queues (new) * 2. submit_bio() (oldest) * 3. regular request queues (old). * * Each of those interfaces has two permutations: * * a) We have blk_alloc_disk()/blk_mq_alloc_disk(), which allocates * both the disk and its queue (5.14 kernel or newer) * * b) We don't have blk_*alloc_disk(), and have to allocate the * disk and the queue separately. (5.13 kernel or older) */ if (zv->zv_zso->use_blk_mq) { ret = zvol_alloc_blk_mq(zv, &limits); zso->zvo_disk->fops = &zvol_ops_blk_mq; } else { ret = zvol_alloc_non_blk_mq(zso, &limits); zso->zvo_disk->fops = &zvol_ops; } if (ret != 0) goto out_kmem; - blk_queue_set_write_cache(zso->zvo_queue, B_TRUE, B_TRUE); - /* Limit read-ahead to a single page to prevent over-prefetching. */ blk_queue_set_read_ahead(zso->zvo_queue, 1); if (!zv->zv_zso->use_blk_mq) { /* Disable write merging in favor of the ZIO pipeline. */ blk_queue_flag_set(QUEUE_FLAG_NOMERGES, zso->zvo_queue); } - /* Enable /proc/diskstats */ - blk_queue_flag_set(QUEUE_FLAG_IO_STAT, zso->zvo_queue); - zso->zvo_queue->queuedata = zv; zso->zvo_dev = dev; zv->zv_open_count = 0; strlcpy(zv->zv_name, name, sizeof (zv->zv_name)); zfs_rangelock_init(&zv->zv_rangelock, NULL, NULL); rw_init(&zv->zv_suspend_lock, NULL, RW_DEFAULT, NULL); zso->zvo_disk->major = zvol_major; zso->zvo_disk->events = DISK_EVENT_MEDIA_CHANGE; /* * Setting ZFS_VOLMODE_DEV disables partitioning on ZVOL devices. * This is accomplished by limiting the number of minors for the * device to one and explicitly disabling partition scanning. */ if (volmode == ZFS_VOLMODE_DEV) { zso->zvo_disk->minors = 1; zso->zvo_disk->flags &= ~ZFS_GENHD_FL_EXT_DEVT; zso->zvo_disk->flags |= ZFS_GENHD_FL_NO_PART; } zso->zvo_disk->first_minor = (dev & MINORMASK); zso->zvo_disk->private_data = zv; snprintf(zso->zvo_disk->disk_name, DISK_NAME_LEN, "%s%d", ZVOL_DEV_NAME, (dev & MINORMASK)); return (zv); out_kmem: kmem_free(zso, sizeof (struct zvol_state_os)); kmem_free(zv, sizeof (zvol_state_t)); return (NULL); } /* * Cleanup then free a zvol_state_t which was created by zvol_alloc(). * At this time, the structure is not opened by anyone, is taken off * the zvol_state_list, and has its private data set to NULL. * The zvol_state_lock is dropped. * * This function may take many milliseconds to complete (e.g. we've seen * it take over 256ms), due to the calls to "blk_cleanup_queue" and * "del_gendisk". Thus, consumers need to be careful to account for this * latency when calling this function. */ void zvol_os_free(zvol_state_t *zv) { ASSERT(!RW_LOCK_HELD(&zv->zv_suspend_lock)); ASSERT(!MUTEX_HELD(&zv->zv_state_lock)); ASSERT0(zv->zv_open_count); ASSERT3P(zv->zv_zso->zvo_disk->private_data, ==, NULL); rw_destroy(&zv->zv_suspend_lock); zfs_rangelock_fini(&zv->zv_rangelock); del_gendisk(zv->zv_zso->zvo_disk); #if defined(HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS) && \ (defined(HAVE_BLK_ALLOC_DISK) || defined(HAVE_BLK_ALLOC_DISK_2ARG)) #if defined(HAVE_BLK_CLEANUP_DISK) blk_cleanup_disk(zv->zv_zso->zvo_disk); #else put_disk(zv->zv_zso->zvo_disk); #endif #else blk_cleanup_queue(zv->zv_zso->zvo_queue); put_disk(zv->zv_zso->zvo_disk); #endif #ifdef HAVE_BLK_MQ if (zv->zv_zso->use_blk_mq) blk_mq_free_tag_set(&zv->zv_zso->tag_set); #endif ida_simple_remove(&zvol_ida, MINOR(zv->zv_zso->zvo_dev) >> ZVOL_MINOR_BITS); cv_destroy(&zv->zv_removing_cv); mutex_destroy(&zv->zv_state_lock); dataset_kstats_destroy(&zv->zv_kstat); kmem_free(zv->zv_zso, sizeof (struct zvol_state_os)); kmem_free(zv, sizeof (zvol_state_t)); } void zvol_wait_close(zvol_state_t *zv) { } struct add_disk_work { struct delayed_work work; struct gendisk *disk; int error; }; static int __zvol_os_add_disk(struct gendisk *disk) { int error = 0; #ifdef HAVE_ADD_DISK_RET error = add_disk(disk); #else add_disk(disk); #endif return (error); } #if defined(HAVE_BDEV_FILE_OPEN_BY_PATH) static void zvol_os_add_disk_work(struct work_struct *work) { struct add_disk_work *add_disk_work; add_disk_work = container_of(work, struct add_disk_work, work.work); add_disk_work->error = __zvol_os_add_disk(add_disk_work->disk); } #endif /* * SPECIAL CASE: * * This function basically calls add_disk() from a workqueue. You may be * thinking: why not just call add_disk() directly? * * When you call add_disk(), the zvol appears to the world. When this happens, * the kernel calls disk_scan_partitions() on the zvol, which behaves * differently on the 6.9+ kernels: * * - 6.8 and older kernels - * disk_scan_partitions() * handle = bdev_open_by_dev( * zvol_open() * bdev_release(handle); * zvol_release() * * * - 6.9+ kernels - * disk_scan_partitions() * file = bdev_file_open_by_dev() * zvol_open() * fput(file) * < wait for return to userspace > * zvol_release() * * The difference is that the bdev_release() from the 6.8 kernel is synchronous * while the fput() from the 6.9 kernel is async. Or more specifically it's * async that has to wait until we return to userspace (since it adds the fput * into the caller's work queue with the TWA_RESUME flag set). This is not the * behavior we want, since we want do things like create+destroy a zvol within * a single ZFS_IOC_CREATE ioctl, and the "create" part needs to release the * reference to the zvol while we're in the IOCTL, which can't wait until we * return to userspace. * * We can get around this since fput() has a special codepath for when it's * running in a kernel thread or interrupt. In those cases, it just puts the * fput into the system workqueue, which we can force to run with * __flush_workqueue(). That is why we call add_disk() from a workqueue - so it * run from a kernel thread and "tricks" the fput() codepaths. * * Note that __flush_workqueue() is slowly getting deprecated. This may be ok * though, since our IOCTL will spin on EBUSY waiting for the zvol release (via * fput) to happen, which it eventually, naturally, will from the system_wq * without us explicitly calling __flush_workqueue(). */ static int zvol_os_add_disk(struct gendisk *disk) { #if defined(HAVE_BDEV_FILE_OPEN_BY_PATH) /* 6.9+ kernel */ struct add_disk_work add_disk_work; INIT_DELAYED_WORK(&add_disk_work.work, zvol_os_add_disk_work); add_disk_work.disk = disk; add_disk_work.error = 0; /* Use *_delayed_work functions since they're not GPL'd */ schedule_delayed_work(&add_disk_work.work, 0); flush_delayed_work(&add_disk_work.work); __flush_workqueue(system_wq); return (add_disk_work.error); #else /* <= 6.8 kernel */ return (__zvol_os_add_disk(disk)); #endif } /* * Create a block device minor node and setup the linkage between it * and the specified volume. Once this function returns the block * device is live and ready for use. */ int zvol_os_create_minor(const char *name) { zvol_state_t *zv; objset_t *os; dmu_object_info_t *doi; uint64_t volsize; uint64_t len; unsigned minor = 0; int error = 0; int idx; uint64_t hash = zvol_name_hash(name); uint64_t volthreading; bool replayed_zil = B_FALSE; if (zvol_inhibit_dev) return (0); idx = ida_simple_get(&zvol_ida, 0, 0, kmem_flags_convert(KM_SLEEP)); if (idx < 0) return (SET_ERROR(-idx)); minor = idx << ZVOL_MINOR_BITS; if (MINOR(minor) != minor) { /* too many partitions can cause an overflow */ zfs_dbgmsg("zvol: create minor overflow: %s, minor %u/%u", name, minor, MINOR(minor)); ida_simple_remove(&zvol_ida, idx); return (SET_ERROR(EINVAL)); } zv = zvol_find_by_name_hash(name, hash, RW_NONE); if (zv) { ASSERT(MUTEX_HELD(&zv->zv_state_lock)); mutex_exit(&zv->zv_state_lock); ida_simple_remove(&zvol_ida, idx); return (SET_ERROR(EEXIST)); } doi = kmem_alloc(sizeof (dmu_object_info_t), KM_SLEEP); error = dmu_objset_own(name, DMU_OST_ZVOL, B_TRUE, B_TRUE, FTAG, &os); if (error) goto out_doi; error = dmu_object_info(os, ZVOL_OBJ, doi); if (error) goto out_dmu_objset_disown; error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize); if (error) goto out_dmu_objset_disown; zv = zvol_alloc(MKDEV(zvol_major, minor), name); if (zv == NULL) { error = SET_ERROR(EAGAIN); goto out_dmu_objset_disown; } zv->zv_hash = hash; if (dmu_objset_is_snapshot(os)) zv->zv_flags |= ZVOL_RDONLY; zv->zv_volblocksize = doi->doi_data_block_size; zv->zv_volsize = volsize; zv->zv_objset = os; /* Default */ zv->zv_threading = B_TRUE; if (dsl_prop_get_integer(name, "volthreading", &volthreading, NULL) == 0) zv->zv_threading = volthreading; set_capacity(zv->zv_zso->zvo_disk, zv->zv_volsize >> 9); - - - blk_queue_physical_block_size(zv->zv_zso->zvo_queue, - zv->zv_volblocksize); - blk_queue_max_discard_sectors(zv->zv_zso->zvo_queue, - (zvol_max_discard_blocks * zv->zv_volblocksize) >> 9); - blk_queue_discard_granularity(zv->zv_zso->zvo_queue, - zv->zv_volblocksize); #ifdef QUEUE_FLAG_DISCARD blk_queue_flag_set(QUEUE_FLAG_DISCARD, zv->zv_zso->zvo_queue); #endif #ifdef QUEUE_FLAG_NONROT blk_queue_flag_set(QUEUE_FLAG_NONROT, zv->zv_zso->zvo_queue); #endif #ifdef QUEUE_FLAG_ADD_RANDOM blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, zv->zv_zso->zvo_queue); #endif /* This flag was introduced in kernel version 4.12. */ #ifdef QUEUE_FLAG_SCSI_PASSTHROUGH blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, zv->zv_zso->zvo_queue); #endif ASSERT3P(zv->zv_kstat.dk_kstats, ==, NULL); error = dataset_kstats_create(&zv->zv_kstat, zv->zv_objset); if (error) goto out_dmu_objset_disown; ASSERT3P(zv->zv_zilog, ==, NULL); zv->zv_zilog = zil_open(os, zvol_get_data, &zv->zv_kstat.dk_zil_sums); if (spa_writeable(dmu_objset_spa(os))) { if (zil_replay_disable) replayed_zil = zil_destroy(zv->zv_zilog, B_FALSE); else replayed_zil = zil_replay(os, zv, zvol_replay_vector); } if (replayed_zil) zil_close(zv->zv_zilog); zv->zv_zilog = NULL; /* * When udev detects the addition of the device it will immediately * invoke blkid(8) to determine the type of content on the device. * Prefetching the blocks commonly scanned by blkid(8) will speed * up this process. */ len = MIN(zvol_prefetch_bytes, SPA_MAXBLOCKSIZE); if (len > 0) { dmu_prefetch(os, ZVOL_OBJ, 0, 0, len, ZIO_PRIORITY_SYNC_READ); dmu_prefetch(os, ZVOL_OBJ, 0, volsize - len, len, ZIO_PRIORITY_SYNC_READ); } zv->zv_objset = NULL; out_dmu_objset_disown: dmu_objset_disown(os, B_TRUE, FTAG); out_doi: kmem_free(doi, sizeof (dmu_object_info_t)); /* * Keep in mind that once add_disk() is called, the zvol is * announced to the world, and zvol_open()/zvol_release() can * be called at any time. Incidentally, add_disk() itself calls * zvol_open()->zvol_first_open() and zvol_release()->zvol_last_close() * directly as well. */ if (error == 0) { rw_enter(&zvol_state_lock, RW_WRITER); zvol_insert(zv); rw_exit(&zvol_state_lock); error = zvol_os_add_disk(zv->zv_zso->zvo_disk); } else { ida_simple_remove(&zvol_ida, idx); } return (error); } void zvol_os_rename_minor(zvol_state_t *zv, const char *newname) { int readonly = get_disk_ro(zv->zv_zso->zvo_disk); ASSERT(RW_LOCK_HELD(&zvol_state_lock)); ASSERT(MUTEX_HELD(&zv->zv_state_lock)); strlcpy(zv->zv_name, newname, sizeof (zv->zv_name)); /* move to new hashtable entry */ zv->zv_hash = zvol_name_hash(newname); hlist_del(&zv->zv_hlink); hlist_add_head(&zv->zv_hlink, ZVOL_HT_HEAD(zv->zv_hash)); /* * The block device's read-only state is briefly changed causing * a KOBJ_CHANGE uevent to be issued. This ensures udev detects * the name change and fixes the symlinks. This does not change * ZVOL_RDONLY in zv->zv_flags so the actual read-only state never * changes. This would normally be done using kobject_uevent() but * that is a GPL-only symbol which is why we need this workaround. */ set_disk_ro(zv->zv_zso->zvo_disk, !readonly); set_disk_ro(zv->zv_zso->zvo_disk, readonly); dataset_kstats_rename(&zv->zv_kstat, newname); } void zvol_os_set_disk_ro(zvol_state_t *zv, int flags) { set_disk_ro(zv->zv_zso->zvo_disk, flags); } void zvol_os_set_capacity(zvol_state_t *zv, uint64_t capacity) { set_capacity(zv->zv_zso->zvo_disk, capacity); } int zvol_init(void) { int error; /* * zvol_threads is the module param the user passes in. * * zvol_actual_threads is what we use internally, since the user can * pass zvol_thread = 0 to mean "use all the CPUs" (the default). */ static unsigned int zvol_actual_threads; if (zvol_threads == 0) { /* * See dde9380a1 for why 32 was chosen here. This should * probably be refined to be some multiple of the number * of CPUs. */ zvol_actual_threads = MAX(num_online_cpus(), 32); } else { zvol_actual_threads = MIN(MAX(zvol_threads, 1), 1024); } /* * Use atleast 32 zvol_threads but for many core system, * prefer 6 threads per taskq, but no more taskqs * than threads in them on large systems. * * taskq total * cpus taskqs threads threads * ------- ------- ------- ------- * 1 1 32 32 * 2 1 32 32 * 4 1 32 32 * 8 2 16 32 * 16 3 11 33 * 32 5 7 35 * 64 8 8 64 * 128 11 12 132 * 256 16 16 256 */ zv_taskq_t *ztqs = &zvol_taskqs; uint_t num_tqs = MIN(num_online_cpus(), zvol_num_taskqs); if (num_tqs == 0) { num_tqs = 1 + num_online_cpus() / 6; while (num_tqs * num_tqs > zvol_actual_threads) num_tqs--; } uint_t per_tq_thread = zvol_actual_threads / num_tqs; if (per_tq_thread * num_tqs < zvol_actual_threads) per_tq_thread++; ztqs->tqs_cnt = num_tqs; ztqs->tqs_taskq = kmem_alloc(num_tqs * sizeof (taskq_t *), KM_SLEEP); error = register_blkdev(zvol_major, ZVOL_DRIVER); if (error) { kmem_free(ztqs->tqs_taskq, ztqs->tqs_cnt * sizeof (taskq_t *)); ztqs->tqs_taskq = NULL; printk(KERN_INFO "ZFS: register_blkdev() failed %d\n", error); return (error); } #ifdef HAVE_BLK_MQ if (zvol_blk_mq_queue_depth == 0) { zvol_actual_blk_mq_queue_depth = BLKDEV_DEFAULT_RQ; } else { zvol_actual_blk_mq_queue_depth = MAX(zvol_blk_mq_queue_depth, BLKDEV_MIN_RQ); } if (zvol_blk_mq_threads == 0) { zvol_blk_mq_actual_threads = num_online_cpus(); } else { zvol_blk_mq_actual_threads = MIN(MAX(zvol_blk_mq_threads, 1), 1024); } #endif for (uint_t i = 0; i < num_tqs; i++) { char name[32]; (void) snprintf(name, sizeof (name), "%s_tq-%u", ZVOL_DRIVER, i); ztqs->tqs_taskq[i] = taskq_create(name, per_tq_thread, maxclsyspri, per_tq_thread, INT_MAX, TASKQ_PREPOPULATE | TASKQ_DYNAMIC); if (ztqs->tqs_taskq[i] == NULL) { for (int j = i - 1; j >= 0; j--) taskq_destroy(ztqs->tqs_taskq[j]); unregister_blkdev(zvol_major, ZVOL_DRIVER); kmem_free(ztqs->tqs_taskq, ztqs->tqs_cnt * sizeof (taskq_t *)); ztqs->tqs_taskq = NULL; return (-ENOMEM); } } zvol_init_impl(); ida_init(&zvol_ida); return (0); } void zvol_fini(void) { zv_taskq_t *ztqs = &zvol_taskqs; zvol_fini_impl(); unregister_blkdev(zvol_major, ZVOL_DRIVER); if (ztqs->tqs_taskq == NULL) { ASSERT3U(ztqs->tqs_cnt, ==, 0); } else { for (uint_t i = 0; i < ztqs->tqs_cnt; i++) { ASSERT3P(ztqs->tqs_taskq[i], !=, NULL); taskq_destroy(ztqs->tqs_taskq[i]); } kmem_free(ztqs->tqs_taskq, ztqs->tqs_cnt * sizeof (taskq_t *)); ztqs->tqs_taskq = NULL; } ida_destroy(&zvol_ida); } /* BEGIN CSTYLED */ module_param(zvol_inhibit_dev, uint, 0644); MODULE_PARM_DESC(zvol_inhibit_dev, "Do not create zvol device nodes"); module_param(zvol_major, uint, 0444); MODULE_PARM_DESC(zvol_major, "Major number for zvol device"); module_param(zvol_threads, uint, 0444); MODULE_PARM_DESC(zvol_threads, "Number of threads to handle I/O requests. Set" "to 0 to use all active CPUs"); module_param(zvol_request_sync, uint, 0644); MODULE_PARM_DESC(zvol_request_sync, "Synchronously handle bio requests"); module_param(zvol_max_discard_blocks, ulong, 0444); MODULE_PARM_DESC(zvol_max_discard_blocks, "Max number of blocks to discard"); module_param(zvol_num_taskqs, uint, 0444); MODULE_PARM_DESC(zvol_num_taskqs, "Number of zvol taskqs"); module_param(zvol_prefetch_bytes, uint, 0644); MODULE_PARM_DESC(zvol_prefetch_bytes, "Prefetch N bytes at zvol start+end"); module_param(zvol_volmode, uint, 0644); MODULE_PARM_DESC(zvol_volmode, "Default volmode property value"); #ifdef HAVE_BLK_MQ module_param(zvol_blk_mq_queue_depth, uint, 0644); MODULE_PARM_DESC(zvol_blk_mq_queue_depth, "Default blk-mq queue depth"); module_param(zvol_use_blk_mq, uint, 0644); MODULE_PARM_DESC(zvol_use_blk_mq, "Use the blk-mq API for zvols"); module_param(zvol_blk_mq_blocks_per_thread, uint, 0644); MODULE_PARM_DESC(zvol_blk_mq_blocks_per_thread, "Process volblocksize blocks per thread"); #endif #ifndef HAVE_BLKDEV_GET_ERESTARTSYS module_param(zvol_open_timeout_ms, uint, 0644); MODULE_PARM_DESC(zvol_open_timeout_ms, "Timeout for ZVOL open retries"); #endif /* END CSTYLED */ diff --git a/sys/contrib/openzfs/tests/zfs-tests/tests/functional/alloc_class/alloc_class.kshlib b/sys/contrib/openzfs/tests/zfs-tests/tests/functional/alloc_class/alloc_class.kshlib index e204f43b3bcd..795e71b26b5a 100644 --- a/sys/contrib/openzfs/tests/zfs-tests/tests/functional/alloc_class/alloc_class.kshlib +++ b/sys/contrib/openzfs/tests/zfs-tests/tests/functional/alloc_class/alloc_class.kshlib @@ -1,68 +1,68 @@ # # This file and its contents are supplied under the terms of the # Common Development and Distribution License ("CDDL"), version 1.0. # You may only use this file in accordance with the terms of version # 1.0 of the CDDL. # # A full copy of the text of the CDDL should have accompanied this # source. A copy of the CDDL is also available via the Internet at # http://www.illumos.org/license/CDDL. # # # Copyright (c) 2017, Intel Corporation. # Copyright (c) 2018 by Delphix. All rights reserved. # . $STF_SUITE/include/libtest.shlib . $STF_SUITE/tests/functional/alloc_class/alloc_class.cfg function disk_setup { truncate -s $ZPOOL_DEVSIZE $ZPOOL_DISKS truncate -s $CLASS_DEVSIZE $CLASS_DISKS } function disk_cleanup { rm -f $ZPOOL_DEVSIZE $ZPOOL_DISKS 2> /dev/null rm -f $CLASS_DEVSIZE $CLASS_DISKS 2> /dev/null } function cleanup { if datasetexists $TESTPOOL ; then zpool destroy -f $TESTPOOL 2> /dev/null fi disk_cleanup } # # Try zpool status/iostat for given pool # # $1 pool # function display_status { typeset pool=$1 typeset -i ret=0 zpool status -xv $pool > /dev/null 2>&1 ret=$? zpool iostat > /dev/null 2>&1 ((ret |= $?)) typeset mntpnt=$(get_prop mountpoint $pool) - dd if=/dev/random of=$mntpnt/testfile.$$ & + dd if=/dev/urandom of=$mntpnt/testfile.$$ & typeset pid=$! zpool iostat -v 1 3 > /dev/null ((ret |= $?)) kill -9 $pid wait $pid 2> /dev/null return $ret } diff --git a/sys/contrib/openzfs/tests/zfs-tests/tests/functional/block_cloning/block_cloning_rlimit_fsize.ksh b/sys/contrib/openzfs/tests/zfs-tests/tests/functional/block_cloning/block_cloning_rlimit_fsize.ksh index a8a64e52491a..3632fc9a4df0 100755 --- a/sys/contrib/openzfs/tests/zfs-tests/tests/functional/block_cloning/block_cloning_rlimit_fsize.ksh +++ b/sys/contrib/openzfs/tests/zfs-tests/tests/functional/block_cloning/block_cloning_rlimit_fsize.ksh @@ -1,64 +1,64 @@ #!/bin/ksh -p # # CDDL HEADER START # # The contents of this file are subject to the terms of the # Common Development and Distribution License (the "License"). # You may not use this file except in compliance with the License. # # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE # or https://opensource.org/licenses/CDDL-1.0. # See the License for the specific language governing permissions # and limitations under the License. # # When distributing Covered Code, include this CDDL HEADER in each # file and include the License file at usr/src/OPENSOLARIS.LICENSE. # If applicable, add the following below this CDDL HEADER, with the # fields enclosed by brackets "[]" replaced with your own identifying # information: Portions Copyright [yyyy] [name of copyright owner] # # CDDL HEADER END # . $STF_SUITE/include/libtest.shlib . $STF_SUITE/tests/functional/block_cloning/block_cloning.kshlib # # DESCRIPTION: # When block cloning is used to implement copy_file_range(2), the # RLIMIT_FSIZE limit must be respected. # # STRATEGY: # 1. Create a pool. # 2. ??? # verify_runnable "global" VDIR=$TEST_BASE_DIR/disk-bclone VDEV="$VDIR/a" function cleanup { datasetexists $TESTPOOL && destroy_pool $TESTPOOL rm -rf $VDIR } log_onexit cleanup log_assert "Test for RLIMIT_FSIZE handling with block cloning enabled" log_must rm -rf $VDIR log_must mkdir -p $VDIR log_must truncate -s 1G $VDEV log_must zpool create -o feature@block_cloning=enabled $TESTPOOL $VDEV -log_must dd if=/dev/random of=/$TESTPOOL/file1 bs=1 count=1000 +log_must dd if=/dev/urandom of=/$TESTPOOL/file1 bs=1 count=1000 ulimit -f 2 log_must clonefile -f /$TESTPOOL/file1 /$TESTPOOL/file2 0 0 all ulimit -f 1 log_mustnot clonefile -f /$TESTPOOL/file1 /$TESTPOOL/file3 0 0 all log_pass "copy_file_range(2) respects RLIMIT_FSIZE" diff --git a/sys/contrib/openzfs/tests/zfs-tests/tests/functional/fault/suspend_resume_single.ksh b/sys/contrib/openzfs/tests/zfs-tests/tests/functional/fault/suspend_resume_single.ksh index 041dadb1eadb..05f3ac708477 100755 --- a/sys/contrib/openzfs/tests/zfs-tests/tests/functional/fault/suspend_resume_single.ksh +++ b/sys/contrib/openzfs/tests/zfs-tests/tests/functional/fault/suspend_resume_single.ksh @@ -1,102 +1,102 @@ #!/bin/ksh -p # # CDDL HEADER START # # The contents of this file are subject to the terms of the # Common Development and Distribution License (the "License"). # You may not use this file except in compliance with the License. # # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE # or https://opensource.org/licenses/CDDL-1.0. # See the License for the specific language governing permissions # and limitations under the License. # # When distributing Covered Code, include this CDDL HEADER in each # file and include the License file at usr/src/OPENSOLARIS.LICENSE. # If applicable, add the following below this CDDL HEADER, with the # fields enclosed by brackets "[]" replaced with your own identifying # information: Portions Copyright [yyyy] [name of copyright owner] # # CDDL HEADER END # # # Copyright (c) 2024, Klara Inc. # . $STF_SUITE/include/libtest.shlib set -x DATAFILE="$TMPDIR/datafile" function cleanup { destroy_pool $TESTPOOL unload_scsi_debug rm -f $DATA_FILE } log_onexit cleanup log_assert "ensure single-disk pool resumes properly after suspend and clear" # create a file, and take a checksum, so we can compare later -log_must dd if=/dev/random of=$DATAFILE bs=128K count=1 +log_must dd if=/dev/urandom of=$DATAFILE bs=128K count=1 typeset sum1=$(cat $DATAFILE | md5sum) # make a debug device that we can "unplug" load_scsi_debug 100 1 1 1 '512b' sd=$(get_debug_device) # create a single-device pool log_must zpool create $TESTPOOL $sd log_must zpool sync # "pull" the disk log_must eval "echo offline > /sys/block/$sd/device/state" # copy data onto the pool. it'll appear to succeed, but only be in memory log_must cp $DATAFILE /$TESTPOOL/file # wait until sync starts, and the pool suspends log_note "waiting for pool to suspend" typeset -i tries=10 until [[ $(cat /proc/spl/kstat/zfs/$TESTPOOL/state) == "SUSPENDED" ]] ; do if ((tries-- == 0)); then log_fail "pool didn't suspend" fi sleep 1 done # return the disk log_must eval "echo running > /sys/block/$sd/device/state" # clear the error states, which should reopen the vdev, get the pool back # online, and replay the failed IO log_must zpool clear $TESTPOOL # wait a while for everything to sync out. if something is going to go wrong, # this is where it will happen log_note "giving pool time to settle and complete txg" sleep 7 # if the pool suspended, then everything is bad if [[ $(cat /proc/spl/kstat/zfs/$TESTPOOL/state) == "SUSPENDED" ]] ; then log_fail "pool suspended" fi # export the pool, to make sure it exports clean, and also to clear the file # out of the cache log_must zpool export $TESTPOOL # import the pool log_must zpool import $TESTPOOL # sum the file we wrote earlier typeset sum2=$(cat /$TESTPOOL/file | md5sum) # make sure the checksums match log_must test "$sum1" = "$sum2" log_pass "single-disk pool resumes properly after disk suspend and clear" diff --git a/sys/contrib/openzfs/tests/zfs-tests/tests/functional/upgrade/upgrade_projectquota_001_pos.ksh b/sys/contrib/openzfs/tests/zfs-tests/tests/functional/upgrade/upgrade_projectquota_001_pos.ksh index 2ad37e06a5f1..2c365e37af23 100755 --- a/sys/contrib/openzfs/tests/zfs-tests/tests/functional/upgrade/upgrade_projectquota_001_pos.ksh +++ b/sys/contrib/openzfs/tests/zfs-tests/tests/functional/upgrade/upgrade_projectquota_001_pos.ksh @@ -1,128 +1,143 @@ #!/bin/ksh -p # # CDDL HEADER START # # The contents of this file are subject to the terms of the # Common Development and Distribution License (the "License"). # You may not use this file except in compliance with the License. # # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE # or https://opensource.org/licenses/CDDL-1.0. # See the License for the specific language governing permissions # and limitations under the License. # # When distributing Covered Code, include this CDDL HEADER in each # file and include the License file at usr/src/OPENSOLARIS.LICENSE. # If applicable, add the following below this CDDL HEADER, with the # fields enclosed by brackets "[]" replaced with your own identifying # information: Portions Copyright [yyyy] [name of copyright owner] # # CDDL HEADER END # # # Copyright (c) 2017 by Fan Yong. All rights reserved. # . $STF_SUITE/tests/functional/upgrade/upgrade_common.kshlib # # DESCRIPTION: # # Check whether zfs upgrade for project quota works or not. # The project quota is per dataset based feature, this test # will create multiple datasets and try different upgrade methods. # # STRATEGY: # 1. Create a pool with all features disabled # 2. Create a few dataset for testing # 3. Make sure automatic upgrade work # 4. Make sure manual upgrade work # verify_runnable "global" if ! lsattr -pd > /dev/null 2>&1; then log_unsupported "Current lsattr does not support set/show project ID" fi log_assert "pool upgrade for projectquota should work" log_onexit cleanup_upgrade log_must zpool create -d -m $TESTDIR $TESTPOOL $TMPDEV log_must mkfiles $TESTDIR/tf $((RANDOM % 100 + 1)) log_must zfs create $TESTPOOL/fs1 log_must mkfiles $TESTDIR/fs1/tf $((RANDOM % 100 + 1)) log_must zfs umount $TESTPOOL/fs1 log_must zfs create $TESTPOOL/fs2 log_must mkdir $TESTDIR/fs2/dir log_must mkfiles $TESTDIR/fs2/tf $((RANDOM % 100 + 1)) log_must zfs create $TESTPOOL/fs3 log_must mkdir $TESTDIR/fs3/dir log_must mkfiles $TESTDIR/fs3/tf $((RANDOM % 100 + 1)) +log_must set_xattr_stdin passwd $TESTDIR/fs3/dir < /etc/passwd # Make sure project quota is disabled zfs projectspace -o used $TESTPOOL | grep -q "USED" && log_fail "project quota should be disabled initially" # set projectquota before upgrade will fail log_mustnot zfs set projectquota@100=100m $TESTDIR/fs3 # set projectobjquota before upgrade will fail log_mustnot zfs set projectobjquota@100=1000 $TESTDIR/fs3 # 'chattr -p' should fail before upgrade log_mustnot chattr -p 100 $TESTDIR/fs3/dir # 'chattr +P' should fail before upgrade log_mustnot chattr +P $TESTDIR/fs3/dir # Upgrade zpool to support all features log_must zpool upgrade $TESTPOOL # Double check project quota is disabled zfs projectspace -o used $TESTPOOL | grep -q "USED" && log_fail "project quota should be disabled after pool upgrade" # Mount dataset should trigger upgrade log_must zfs mount $TESTPOOL/fs1 log_must sleep 3 # upgrade done in the background so let's wait for a while zfs projectspace -o used $TESTPOOL/fs1 | grep -q "USED" || log_fail "project quota should be enabled for $TESTPOOL/fs1" # Create file should trigger dataset upgrade log_must mkfile 1m $TESTDIR/fs2/dir/tf log_must sleep 3 # upgrade done in the background so let's wait for a while zfs projectspace -o used $TESTPOOL/fs2 | grep -q "USED" || log_fail "project quota should be enabled for $TESTPOOL/fs2" # "lsattr -p" should NOT trigger upgrade log_must lsattr -p -d $TESTDIR/fs3/dir zfs projectspace -o used $TESTPOOL/fs3 | grep -q "USED" && log_fail "project quota should not active for $TESTPOOL/fs3" # 'chattr -p' should trigger dataset upgrade log_must chattr -p 100 $TESTDIR/fs3/dir log_must sleep 5 # upgrade done in the background so let's wait for a while zfs projectspace -o used $TESTPOOL/fs3 | grep -q "USED" || log_fail "project quota should be enabled for $TESTPOOL/fs3" +dirino=$(stat -c '%i' $TESTDIR/fs3/dir) +log_must zdb -ddddd $TESTPOOL/fs3 $dirino +xattrdirino=$(zdb -ddddd $TESTPOOL/fs3 $dirino |grep -w "xattr" |awk '{print $2}') +echo "xattrdirino: $xattrdirino" +expectedcnt=1 +echo "expectedcnt: $expectedcnt" +if [ "$xattrdirino" != "" ]; then + expectedcnt=$(($expectedcnt + 1)) + echo "expectedcnt: $expectedcnt" + log_must zdb -ddddd $TESTPOOL/fs3 $xattrdirino + xattrinocnt=$(zdb -ddddd $TESTPOOL/fs3 $xattrdirino |grep -w "(type:" |wc -l) + echo "xattrinocnt: $xattrinocnt" + expectedcnt=$(($expectedcnt + $xattrinocnt)) + echo "expectedcnt: $expectedcnt" +fi cnt=$(get_prop projectobjused@100 $TESTPOOL/fs3) -# if 'xattr=on', then 'cnt = 2' -[[ $cnt -ne 1 ]] && [[ $cnt -ne 2 ]] && +[[ $cnt -ne $expectedcnt ]] && log_fail "projectquota accounting failed $cnt" # All in all, after having been through this, the dataset for testpool # still shouldn't be upgraded zfs projectspace -o used $TESTPOOL | grep -q "USED" && log_fail "project quota should be disabled for $TESTPOOL" # Manual upgrade root dataset # uses an ioctl which will wait for the upgrade to be done before returning log_must zfs set version=current $TESTPOOL zfs projectspace -o used $TESTPOOL | grep -q "USED" || log_fail "project quota should be enabled for $TESTPOOL" log_pass "Project Quota upgrade done" diff --git a/sys/modules/zfs/zfs_config.h b/sys/modules/zfs/zfs_config.h index 631c83fe8bab..2508de5421df 100644 --- a/sys/modules/zfs/zfs_config.h +++ b/sys/modules/zfs/zfs_config.h @@ -1,1239 +1,1254 @@ /* */ /* zfs_config.h. Generated from zfs_config.h.in by configure. */ /* zfs_config.h.in. Generated from configure.ac by autoheader. */ /* Define to 1 if translation of program messages to the user's native language is requested. */ /* #undef ENABLE_NLS */ /* bio_end_io_t wants 1 arg */ /* #undef HAVE_1ARG_BIO_END_IO_T */ /* lookup_bdev() wants 1 arg */ /* #undef HAVE_1ARG_LOOKUP_BDEV */ /* submit_bio() wants 1 arg */ /* #undef HAVE_1ARG_SUBMIT_BIO */ /* bdi_setup_and_register() wants 2 args */ /* #undef HAVE_2ARGS_BDI_SETUP_AND_REGISTER */ /* vfs_getattr wants 2 args */ /* #undef HAVE_2ARGS_VFS_GETATTR */ /* zlib_deflate_workspacesize() wants 2 args */ /* #undef HAVE_2ARGS_ZLIB_DEFLATE_WORKSPACESIZE */ /* bdi_setup_and_register() wants 3 args */ /* #undef HAVE_3ARGS_BDI_SETUP_AND_REGISTER */ /* vfs_getattr wants 3 args */ /* #undef HAVE_3ARGS_VFS_GETATTR */ /* vfs_getattr wants 4 args */ /* #undef HAVE_4ARGS_VFS_GETATTR */ /* kernel has access_ok with 'type' parameter */ /* #undef HAVE_ACCESS_OK_TYPE */ /* posix_acl has refcount_t */ /* #undef HAVE_ACL_REFCOUNT */ /* add_disk() returns int */ /* #undef HAVE_ADD_DISK_RET */ /* Define if host toolchain supports AES */ #define HAVE_AES 1 /* Define if you have [rt] */ #define HAVE_AIO_H 1 #ifdef __amd64__ #ifndef RESCUE /* Define if host toolchain supports AVX */ #define HAVE_AVX 1 #endif /* Define if host toolchain supports AVX2 */ #define HAVE_AVX2 1 /* Define if host toolchain supports AVX512BW */ #define HAVE_AVX512BW 1 /* Define if host toolchain supports AVX512CD */ #define HAVE_AVX512CD 1 /* Define if host toolchain supports AVX512DQ */ #define HAVE_AVX512DQ 1 /* Define if host toolchain supports AVX512ER */ #define HAVE_AVX512ER 1 /* Define if host toolchain supports AVX512F */ #define HAVE_AVX512F 1 /* Define if host toolchain supports AVX512IFMA */ #define HAVE_AVX512IFMA 1 /* Define if host toolchain supports AVX512PF */ #define HAVE_AVX512PF 1 /* Define if host toolchain supports AVX512VBMI */ #define HAVE_AVX512VBMI 1 /* Define if host toolchain supports AVX512VL */ #define HAVE_AVX512VL 1 #endif /* backtrace() is available */ /* #undef HAVE_BACKTRACE */ /* bdevname() is available */ /* #undef HAVE_BDEVNAME */ /* bdev_check_media_change() exists */ /* #undef HAVE_BDEV_CHECK_MEDIA_CHANGE */ /* bdev_file_open_by_path() exists */ /* #undef HAVE_BDEV_FILE_OPEN_BY_PATH */ /* bdev_*_io_acct() available */ /* #undef HAVE_BDEV_IO_ACCT_63 */ /* bdev_*_io_acct() available */ /* #undef HAVE_BDEV_IO_ACCT_OLD */ /* bdev_kobj() exists */ /* #undef HAVE_BDEV_KOBJ */ /* bdev_max_discard_sectors() is available */ /* #undef HAVE_BDEV_MAX_DISCARD_SECTORS */ /* bdev_max_secure_erase_sectors() is available */ /* #undef HAVE_BDEV_MAX_SECURE_ERASE_SECTORS */ /* bdev_nr_bytes() is available */ /* #undef HAVE_BDEV_NR_BYTES */ /* bdev_open_by_path() exists */ /* #undef HAVE_BDEV_OPEN_BY_PATH */ /* bdev_release() exists */ /* #undef HAVE_BDEV_RELEASE */ /* block_device_operations->submit_bio() returns void */ /* #undef HAVE_BDEV_SUBMIT_BIO_RETURNS_VOID */ /* bdev_whole() is available */ /* #undef HAVE_BDEV_WHOLE */ /* bio_alloc() takes 4 arguments */ /* #undef HAVE_BIO_ALLOC_4ARG */ /* bio->bi_bdev->bd_disk exists */ /* #undef HAVE_BIO_BDEV_DISK */ /* bio->bi_opf is defined */ /* #undef HAVE_BIO_BI_OPF */ /* bio->bi_status exists */ /* #undef HAVE_BIO_BI_STATUS */ /* bio has bi_iter */ /* #undef HAVE_BIO_BVEC_ITER */ /* bio_*_io_acct() available */ /* #undef HAVE_BIO_IO_ACCT */ /* bio_max_segs() is implemented */ /* #undef HAVE_BIO_MAX_SEGS */ /* bio_set_dev() is available */ /* #undef HAVE_BIO_SET_DEV */ /* bio_set_dev() GPL-only */ /* #undef HAVE_BIO_SET_DEV_GPL_ONLY */ /* bio_set_dev() is a macro */ /* #undef HAVE_BIO_SET_DEV_MACRO */ /* bio_set_op_attrs is available */ /* #undef HAVE_BIO_SET_OP_ATTRS */ /* blkdev_get_by_path() exists and takes 4 args */ /* #undef HAVE_BLKDEV_GET_BY_PATH_4ARG */ /* blkdev_get_by_path() handles ERESTARTSYS */ /* #undef HAVE_BLKDEV_GET_ERESTARTSYS */ /* __blkdev_issue_discard(flags) is available */ /* #undef HAVE_BLKDEV_ISSUE_DISCARD_ASYNC_FLAGS */ /* __blkdev_issue_discard() is available */ /* #undef HAVE_BLKDEV_ISSUE_DISCARD_ASYNC_NOFLAGS */ /* blkdev_issue_discard(flags) is available */ /* #undef HAVE_BLKDEV_ISSUE_DISCARD_FLAGS */ /* blkdev_issue_discard() is available */ /* #undef HAVE_BLKDEV_ISSUE_DISCARD_NOFLAGS */ /* blkdev_issue_secure_erase() is available */ /* #undef HAVE_BLKDEV_ISSUE_SECURE_ERASE */ /* blkdev_put() exists */ /* #undef HAVE_BLKDEV_PUT */ /* blkdev_put() accepts void* as arg 2 */ /* #undef HAVE_BLKDEV_PUT_HOLDER */ +/* struct queue_limits has a features field */ +/* #undef HAVE_BLKDEV_QUEUE_LIMITS_FEATURES */ + /* blkdev_reread_part() exists */ /* #undef HAVE_BLKDEV_REREAD_PART */ /* blkg_tryget() is available */ /* #undef HAVE_BLKG_TRYGET */ /* blkg_tryget() GPL-only */ /* #undef HAVE_BLKG_TRYGET_GPL_ONLY */ /* blk_alloc_disk() exists */ /* #undef HAVE_BLK_ALLOC_DISK */ /* blk_alloc_disk() exists and takes 2 args */ /* #undef HAVE_BLK_ALLOC_DISK_2ARG */ /* blk_alloc_queue() expects request function */ /* #undef HAVE_BLK_ALLOC_QUEUE_REQUEST_FN */ /* blk_alloc_queue_rh() expects request function */ /* #undef HAVE_BLK_ALLOC_QUEUE_REQUEST_FN_RH */ /* blk_cleanup_disk() exists */ /* #undef HAVE_BLK_CLEANUP_DISK */ /* blk_mode_t is defined */ /* #undef HAVE_BLK_MODE_T */ /* block multiqueue is available */ /* #undef HAVE_BLK_MQ */ /* block multiqueue hardware context is cached in struct request */ /* #undef HAVE_BLK_MQ_RQ_HCTX */ /* blk queue backing_dev_info is dynamic */ /* #undef HAVE_BLK_QUEUE_BDI_DYNAMIC */ /* blk_queue_discard() is available */ /* #undef HAVE_BLK_QUEUE_DISCARD */ +/* backing_dev_info is available through queue gendisk */ +/* #undef HAVE_BLK_QUEUE_DISK_BDI */ + /* blk_queue_flag_clear() exists */ /* #undef HAVE_BLK_QUEUE_FLAG_CLEAR */ /* blk_queue_flag_set() exists */ /* #undef HAVE_BLK_QUEUE_FLAG_SET */ /* blk_queue_flush() is available */ /* #undef HAVE_BLK_QUEUE_FLUSH */ /* blk_queue_flush() is GPL-only */ /* #undef HAVE_BLK_QUEUE_FLUSH_GPL_ONLY */ /* blk_queue_secdiscard() is available */ /* #undef HAVE_BLK_QUEUE_SECDISCARD */ /* blk_queue_secure_erase() is available */ /* #undef HAVE_BLK_QUEUE_SECURE_ERASE */ /* blk_queue_update_readahead() exists */ /* #undef HAVE_BLK_QUEUE_UPDATE_READAHEAD */ /* blk_queue_write_cache() exists */ /* #undef HAVE_BLK_QUEUE_WRITE_CACHE */ /* blk_queue_write_cache() is GPL-only */ /* #undef HAVE_BLK_QUEUE_WRITE_CACHE_GPL_ONLY */ /* BLK_STS_RESV_CONFLICT is defined */ /* #undef HAVE_BLK_STS_RESV_CONFLICT */ /* Define if release() in block_device_operations takes 1 arg */ /* #undef HAVE_BLOCK_DEVICE_OPERATIONS_RELEASE_1ARG */ /* Define if revalidate_disk() in block_device_operations */ /* #undef HAVE_BLOCK_DEVICE_OPERATIONS_REVALIDATE_DISK */ /* Define to 1 if you have the Mac OS X function CFLocaleCopyCurrent in the CoreFoundation framework. */ /* #undef HAVE_CFLOCALECOPYCURRENT */ /* Define to 1 if you have the Mac OS X function CFLocaleCopyPreferredLanguages in the CoreFoundation framework. */ /* #undef HAVE_CFLOCALECOPYPREFERREDLANGUAGES */ /* Define to 1 if you have the Mac OS X function CFPreferencesCopyAppValue in the CoreFoundation framework. */ /* #undef HAVE_CFPREFERENCESCOPYAPPVALUE */ /* check_disk_change() exists */ /* #undef HAVE_CHECK_DISK_CHANGE */ /* clear_inode() is available */ /* #undef HAVE_CLEAR_INODE */ /* dentry uses const struct dentry_operations */ /* #undef HAVE_CONST_DENTRY_OPERATIONS */ /* copy_from_iter() is available */ /* #undef HAVE_COPY_FROM_ITER */ /* copy_splice_read exists */ /* #undef HAVE_COPY_SPLICE_READ */ /* copy_to_iter() is available */ /* #undef HAVE_COPY_TO_ITER */ /* cpu_has_feature() is GPL-only */ /* #undef HAVE_CPU_HAS_FEATURE_GPL_ONLY */ /* yes */ /* #undef HAVE_CPU_HOTPLUG */ /* current_time() exists */ /* #undef HAVE_CURRENT_TIME */ /* Define if the GNU dcgettext() function is already present or preinstalled. */ /* #undef HAVE_DCGETTEXT */ /* DECLARE_EVENT_CLASS() is available */ /* #undef HAVE_DECLARE_EVENT_CLASS */ /* dentry aliases are in d_u member */ /* #undef HAVE_DENTRY_D_U_ALIASES */ /* dequeue_signal() takes 4 arguments */ /* #undef HAVE_DEQUEUE_SIGNAL_4ARG */ /* lookup_bdev() wants dev_t arg */ /* #undef HAVE_DEVT_LOOKUP_BDEV */ /* sops->dirty_inode() wants flags */ /* #undef HAVE_DIRTY_INODE_WITH_FLAGS */ /* disk_check_media_change() exists */ /* #undef HAVE_DISK_CHECK_MEDIA_CHANGE */ /* disk_*_io_acct() available */ /* #undef HAVE_DISK_IO_ACCT */ /* disk_update_readahead() exists */ /* #undef HAVE_DISK_UPDATE_READAHEAD */ /* Define to 1 if you have the header file. */ #define HAVE_DLFCN_H 1 /* d_make_root() is available */ /* #undef HAVE_D_MAKE_ROOT */ /* d_prune_aliases() is available */ /* #undef HAVE_D_PRUNE_ALIASES */ /* dops->d_revalidate() operation takes nameidata */ /* #undef HAVE_D_REVALIDATE_NAMEIDATA */ /* eops->encode_fh() wants child and parent inodes */ /* #undef HAVE_ENCODE_FH_WITH_INODE */ /* sops->evict_inode() exists */ /* #undef HAVE_EVICT_INODE */ /* Define to 1 if you have the 'execvpe' function. */ #define HAVE_EXECVPE 1 /* FALLOC_FL_ZERO_RANGE is defined */ /* #undef HAVE_FALLOC_FL_ZERO_RANGE */ /* fault_in_iov_iter_readable() is available */ /* #undef HAVE_FAULT_IN_IOV_ITER_READABLE */ /* filemap_range_has_page() is available */ /* #undef HAVE_FILEMAP_RANGE_HAS_PAGE */ /* fops->aio_fsync() exists */ /* #undef HAVE_FILE_AIO_FSYNC */ /* file_dentry() is available */ /* #undef HAVE_FILE_DENTRY */ /* fops->fadvise() exists */ /* #undef HAVE_FILE_FADVISE */ /* file_inode() is available */ /* #undef HAVE_FILE_INODE */ /* flush_dcache_page() is GPL-only */ /* #undef HAVE_FLUSH_DCACHE_PAGE_GPL_ONLY */ /* iops->follow_link() cookie */ /* #undef HAVE_FOLLOW_LINK_COOKIE */ /* iops->follow_link() nameidata */ /* #undef HAVE_FOLLOW_LINK_NAMEIDATA */ /* Define if compiler supports -Wformat-overflow */ /* #undef HAVE_FORMAT_OVERFLOW */ /* fsync_bdev() is declared in include/blkdev.h */ /* #undef HAVE_FSYNC_BDEV */ /* fops->fsync() with range */ /* #undef HAVE_FSYNC_RANGE */ /* fops->fsync() without dentry */ /* #undef HAVE_FSYNC_WITHOUT_DENTRY */ /* yes */ /* #undef HAVE_GENERIC_FADVISE */ /* generic_fillattr requires struct mnt_idmap* */ /* #undef HAVE_GENERIC_FILLATTR_IDMAP */ /* generic_fillattr requires struct mnt_idmap* and u32 request_mask */ /* #undef HAVE_GENERIC_FILLATTR_IDMAP_REQMASK */ /* generic_fillattr requires struct user_namespace* */ /* #undef HAVE_GENERIC_FILLATTR_USERNS */ /* generic_*_io_acct() 3 arg available */ /* #undef HAVE_GENERIC_IO_ACCT_3ARG */ /* generic_*_io_acct() 4 arg available */ /* #undef HAVE_GENERIC_IO_ACCT_4ARG */ /* generic_readlink is global */ /* #undef HAVE_GENERIC_READLINK */ /* generic_setxattr() exists */ /* #undef HAVE_GENERIC_SETXATTR */ /* generic_write_checks() takes kiocb */ /* #undef HAVE_GENERIC_WRITE_CHECKS_KIOCB */ /* Define if the GNU gettext() function is already present or preinstalled. */ /* #undef HAVE_GETTEXT */ /* Define to 1 if you have the 'gettid' function. */ /* #undef HAVE_GETTID */ /* iops->get_acl() exists */ /* #undef HAVE_GET_ACL */ /* iops->get_acl() takes rcu */ /* #undef HAVE_GET_ACL_RCU */ /* has iops->get_inode_acl() */ /* #undef HAVE_GET_INODE_ACL */ /* iops->get_link() cookie */ /* #undef HAVE_GET_LINK_COOKIE */ /* iops->get_link() delayed */ /* #undef HAVE_GET_LINK_DELAYED */ /* group_info->gid exists */ /* #undef HAVE_GROUP_INFO_GID */ /* has_capability() is available */ /* #undef HAVE_HAS_CAPABILITY */ /* iattr->ia_vfsuid and iattr->ia_vfsgid exist */ /* #undef HAVE_IATTR_VFSID */ /* Define if you have the iconv() function and it works. */ #define HAVE_ICONV 1 /* iops->getattr() takes struct mnt_idmap* */ /* #undef HAVE_IDMAP_IOPS_GETATTR */ /* iops->setattr() takes struct mnt_idmap* */ /* #undef HAVE_IDMAP_IOPS_SETATTR */ /* APIs for idmapped mount are present */ /* #undef HAVE_IDMAP_MNT_API */ /* mnt_idmap does not have user_namespace */ /* #undef HAVE_IDMAP_NO_USERNS */ /* Define if compiler supports -Wimplicit-fallthrough */ /* #undef HAVE_IMPLICIT_FALLTHROUGH */ /* Define if compiler supports -Winfinite-recursion */ /* #undef HAVE_INFINITE_RECURSION */ /* inode_get_atime() exists in linux/fs.h */ /* #undef HAVE_INODE_GET_ATIME */ /* inode_get_ctime() exists in linux/fs.h */ /* #undef HAVE_INODE_GET_CTIME */ /* inode_get_mtime() exists in linux/fs.h */ /* #undef HAVE_INODE_GET_MTIME */ /* yes */ /* #undef HAVE_INODE_LOCK_SHARED */ /* inode_owner_or_capable() exists */ /* #undef HAVE_INODE_OWNER_OR_CAPABLE */ /* inode_owner_or_capable() takes mnt_idmap */ /* #undef HAVE_INODE_OWNER_OR_CAPABLE_IDMAP */ /* inode_owner_or_capable() takes user_ns */ /* #undef HAVE_INODE_OWNER_OR_CAPABLE_USERNS */ /* inode_set_atime_to_ts() exists in linux/fs.h */ /* #undef HAVE_INODE_SET_ATIME_TO_TS */ /* inode_set_ctime_to_ts() exists in linux/fs.h */ /* #undef HAVE_INODE_SET_CTIME_TO_TS */ /* inode_set_flags() exists */ /* #undef HAVE_INODE_SET_FLAGS */ /* inode_set_iversion() exists */ /* #undef HAVE_INODE_SET_IVERSION */ /* inode_set_mtime_to_ts() exists in linux/fs.h */ /* #undef HAVE_INODE_SET_MTIME_TO_TS */ /* inode->i_*time's are timespec64 */ /* #undef HAVE_INODE_TIMESPEC64_TIMES */ /* timestamp_truncate() exists */ /* #undef HAVE_INODE_TIMESTAMP_TRUNCATE */ /* Define to 1 if you have the header file. */ #define HAVE_INTTYPES_H 1 /* in_compat_syscall() is available */ /* #undef HAVE_IN_COMPAT_SYSCALL */ /* iops->create() takes struct mnt_idmap* */ /* #undef HAVE_IOPS_CREATE_IDMAP */ /* iops->create() takes struct user_namespace* */ /* #undef HAVE_IOPS_CREATE_USERNS */ /* iops->mkdir() takes struct mnt_idmap* */ /* #undef HAVE_IOPS_MKDIR_IDMAP */ /* iops->mkdir() takes struct user_namespace* */ /* #undef HAVE_IOPS_MKDIR_USERNS */ /* iops->mknod() takes struct mnt_idmap* */ /* #undef HAVE_IOPS_MKNOD_IDMAP */ /* iops->mknod() takes struct user_namespace* */ /* #undef HAVE_IOPS_MKNOD_USERNS */ /* iops->permission() takes struct mnt_idmap* */ /* #undef HAVE_IOPS_PERMISSION_IDMAP */ /* iops->permission() takes struct user_namespace* */ /* #undef HAVE_IOPS_PERMISSION_USERNS */ /* iops->rename() takes struct mnt_idmap* */ /* #undef HAVE_IOPS_RENAME_IDMAP */ /* iops->rename() takes struct user_namespace* */ /* #undef HAVE_IOPS_RENAME_USERNS */ /* iops->setattr() exists */ /* #undef HAVE_IOPS_SETATTR */ /* iops->symlink() takes struct mnt_idmap* */ /* #undef HAVE_IOPS_SYMLINK_IDMAP */ /* iops->symlink() takes struct user_namespace* */ /* #undef HAVE_IOPS_SYMLINK_USERNS */ /* iov_iter_advance() is available */ /* #undef HAVE_IOV_ITER_ADVANCE */ /* iov_iter_count() is available */ /* #undef HAVE_IOV_ITER_COUNT */ /* iov_iter_fault_in_readable() is available */ /* #undef HAVE_IOV_ITER_FAULT_IN_READABLE */ /* iov_iter_revert() is available */ /* #undef HAVE_IOV_ITER_REVERT */ /* iov_iter_type() is available */ /* #undef HAVE_IOV_ITER_TYPE */ /* iov_iter types are available */ /* #undef HAVE_IOV_ITER_TYPES */ /* yes */ /* #undef HAVE_IO_SCHEDULE_TIMEOUT */ /* Define to 1 if you have the 'issetugid' function. */ #define HAVE_ISSETUGID 1 /* iter_iov() is available */ /* #undef HAVE_ITER_IOV */ /* kernel has kernel_fpu_* functions */ /* #undef HAVE_KERNEL_FPU */ /* kernel has asm/fpu/api.h */ /* #undef HAVE_KERNEL_FPU_API_HEADER */ /* kernel fpu internal */ /* #undef HAVE_KERNEL_FPU_INTERNAL */ /* kernel has asm/fpu/internal.h */ /* #undef HAVE_KERNEL_FPU_INTERNAL_HEADER */ /* uncached_acl_sentinel() exists */ /* #undef HAVE_KERNEL_GET_ACL_HANDLE_CACHE */ /* Define if compiler supports -Winfinite-recursion */ /* #undef HAVE_KERNEL_INFINITE_RECURSION */ /* kernel defines intptr_t */ /* #undef HAVE_KERNEL_INTPTR_T */ /* kernel has kernel_neon_* functions */ /* #undef HAVE_KERNEL_NEON */ /* kernel does stack verification */ /* #undef HAVE_KERNEL_OBJTOOL */ /* kernel has linux/objtool.h */ /* #undef HAVE_KERNEL_OBJTOOL_HEADER */ /* kernel_read() take loff_t pointer */ /* #undef HAVE_KERNEL_READ_PPOS */ /* strlcpy() exists */ /* #undef HAVE_KERNEL_STRLCPY */ /* strscpy() exists */ /* #undef HAVE_KERNEL_STRSCPY */ /* timer_list.function gets a timer_list */ /* #undef HAVE_KERNEL_TIMER_FUNCTION_TIMER_LIST */ /* struct timer_list has a flags member */ /* #undef HAVE_KERNEL_TIMER_LIST_FLAGS */ /* timer_setup() is available */ /* #undef HAVE_KERNEL_TIMER_SETUP */ /* kernel_write() take loff_t pointer */ /* #undef HAVE_KERNEL_WRITE_PPOS */ /* kernel has kmap_local_page */ /* #undef HAVE_KMAP_LOCAL_PAGE */ /* kmem_cache_create_usercopy() exists */ /* #undef HAVE_KMEM_CACHE_CREATE_USERCOPY */ /* kstrtoul() exists */ /* #undef HAVE_KSTRTOUL */ /* ktime_get_coarse_real_ts64() exists */ /* #undef HAVE_KTIME_GET_COARSE_REAL_TS64 */ /* ktime_get_raw_ts64() exists */ /* #undef HAVE_KTIME_GET_RAW_TS64 */ /* kvmalloc exists */ /* #undef HAVE_KVMALLOC */ /* Define if you have [aio] */ /* #undef HAVE_LIBAIO */ /* Define if you have [blkid] */ /* #undef HAVE_LIBBLKID */ /* Define if you have [crypto] */ #define HAVE_LIBCRYPTO 1 /* Define if you have [tirpc] */ /* #undef HAVE_LIBTIRPC */ /* Define if you have [udev] */ /* #undef HAVE_LIBUDEV */ /* Define if you have [unwind] */ /* #undef HAVE_LIBUNWIND */ /* libunwind has unw_get_elf_filename */ /* #undef HAVE_LIBUNWIND_ELF */ /* Define if you have [uuid] */ /* #undef HAVE_LIBUUID */ /* linux/blk-cgroup.h exists */ /* #undef HAVE_LINUX_BLK_CGROUP_HEADER */ /* lseek_execute() is available */ /* #undef HAVE_LSEEK_EXECUTE */ /* makedev() is declared in sys/mkdev.h */ /* #undef HAVE_MAKEDEV_IN_MKDEV */ /* makedev() is declared in sys/sysmacros.h */ /* #undef HAVE_MAKEDEV_IN_SYSMACROS */ /* Noting that make_request_fn() returns blk_qc_t */ /* #undef HAVE_MAKE_REQUEST_FN_RET_QC */ /* Noting that make_request_fn() returns void */ /* #undef HAVE_MAKE_REQUEST_FN_RET_VOID */ /* iops->mkdir() takes umode_t */ /* #undef HAVE_MKDIR_UMODE_T */ /* Define to 1 if you have the 'mlockall' function. */ #define HAVE_MLOCKALL 1 +/* page_mapping() is available */ +/* #undef HAVE_MM_PAGE_MAPPING */ + /* page_size() is available */ /* #undef HAVE_MM_PAGE_SIZE */ /* lookup_bdev() wants mode arg */ /* #undef HAVE_MODE_LOOKUP_BDEV */ /* Define if host toolchain supports MOVBE */ #define HAVE_MOVBE 1 /* new_sync_read()/new_sync_write() are available */ /* #undef HAVE_NEW_SYNC_READ */ /* folio_wait_bit() exists */ /* #undef HAVE_PAGEMAP_FOLIO_WAIT_BIT */ /* part_to_dev() exists */ /* #undef HAVE_PART_TO_DEV */ /* iops->getattr() takes a path */ /* #undef HAVE_PATH_IOPS_GETATTR */ /* Define if host toolchain supports PCLMULQDQ */ #define HAVE_PCLMULQDQ 1 /* percpu_counter_add_batch() is defined */ /* #undef HAVE_PERCPU_COUNTER_ADD_BATCH */ /* percpu_counter_init() wants gfp_t */ /* #undef HAVE_PERCPU_COUNTER_INIT_WITH_GFP */ /* posix_acl_chmod() exists */ /* #undef HAVE_POSIX_ACL_CHMOD */ /* posix_acl_from_xattr() needs user_ns */ /* #undef HAVE_POSIX_ACL_FROM_XATTR_USERNS */ /* posix_acl_release() is available */ /* #undef HAVE_POSIX_ACL_RELEASE */ /* posix_acl_release() is GPL-only */ /* #undef HAVE_POSIX_ACL_RELEASE_GPL_ONLY */ /* posix_acl_valid() wants user namespace */ /* #undef HAVE_POSIX_ACL_VALID_WITH_NS */ +/* proc_handler ctl_table arg is const */ +/* #undef HAVE_PROC_HANDLER_CTL_TABLE_CONST */ + /* proc_ops structure exists */ /* #undef HAVE_PROC_OPS_STRUCT */ /* iops->put_link() cookie */ /* #undef HAVE_PUT_LINK_COOKIE */ /* iops->put_link() delayed */ /* #undef HAVE_PUT_LINK_DELAYED */ /* iops->put_link() nameidata */ /* #undef HAVE_PUT_LINK_NAMEIDATA */ /* If available, contains the Python version number currently in use. */ #define HAVE_PYTHON "3.7" /* qat is enabled and existed */ /* #undef HAVE_QAT */ /* struct reclaim_state has reclaimed */ /* #undef HAVE_RECLAIM_STATE_RECLAIMED */ /* register_shrinker is vararg */ /* #undef HAVE_REGISTER_SHRINKER_VARARG */ +/* register_sysctl_sz exists */ +/* #undef HAVE_REGISTER_SYSCTL_SZ */ + /* register_sysctl_table exists */ /* #undef HAVE_REGISTER_SYSCTL_TABLE */ /* iops->rename2() exists */ /* #undef HAVE_RENAME2 */ /* struct inode_operations_wrapper takes .rename2() */ /* #undef HAVE_RENAME2_OPERATIONS_WRAPPER */ /* iops->rename() wants flags */ /* #undef HAVE_RENAME_WANTS_FLAGS */ /* REQ_DISCARD is defined */ /* #undef HAVE_REQ_DISCARD */ /* REQ_FLUSH is defined */ /* #undef HAVE_REQ_FLUSH */ /* REQ_OP_DISCARD is defined */ /* #undef HAVE_REQ_OP_DISCARD */ /* REQ_OP_FLUSH is defined */ /* #undef HAVE_REQ_OP_FLUSH */ /* REQ_OP_SECURE_ERASE is defined */ /* #undef HAVE_REQ_OP_SECURE_ERASE */ /* REQ_PREFLUSH is defined */ /* #undef HAVE_REQ_PREFLUSH */ /* revalidate_disk() is available */ /* #undef HAVE_REVALIDATE_DISK */ /* revalidate_disk_size() is available */ /* #undef HAVE_REVALIDATE_DISK_SIZE */ /* struct rw_semaphore has member activity */ /* #undef HAVE_RWSEM_ACTIVITY */ /* struct rw_semaphore has atomic_long_t member count */ /* #undef HAVE_RWSEM_ATOMIC_LONG_COUNT */ /* linux/sched/signal.h exists */ /* #undef HAVE_SCHED_SIGNAL_HEADER */ /* Define to 1 if you have the header file. */ #define HAVE_SECURITY_PAM_MODULES_H 1 /* setattr_prepare() accepts mnt_idmap */ /* #undef HAVE_SETATTR_PREPARE_IDMAP */ /* setattr_prepare() is available, doesn't accept user_namespace */ /* #undef HAVE_SETATTR_PREPARE_NO_USERNS */ /* setattr_prepare() accepts user_namespace */ /* #undef HAVE_SETATTR_PREPARE_USERNS */ /* iops->set_acl() exists, takes 3 args */ /* #undef HAVE_SET_ACL */ /* iops->set_acl() takes 4 args, arg1 is struct mnt_idmap * */ /* #undef HAVE_SET_ACL_IDMAP_DENTRY */ /* iops->set_acl() takes 4 args */ /* #undef HAVE_SET_ACL_USERNS */ /* iops->set_acl() takes 4 args, arg2 is struct dentry * */ /* #undef HAVE_SET_ACL_USERNS_DENTRY_ARG2 */ /* set_cached_acl() is usable */ /* #undef HAVE_SET_CACHED_ACL_USABLE */ /* set_special_state() exists */ /* #undef HAVE_SET_SPECIAL_STATE */ /* shrinker_register exists */ /* #undef HAVE_SHRINKER_REGISTER */ /* struct shrink_control exists */ /* #undef HAVE_SHRINK_CONTROL_STRUCT */ /* kernel_siginfo_t exists */ /* #undef HAVE_SIGINFO */ /* signal_stop() exists */ /* #undef HAVE_SIGNAL_STOP */ /* new shrinker callback wants 2 args */ /* #undef HAVE_SINGLE_SHRINKER_CALLBACK */ /* cs->count_objects exists */ /* #undef HAVE_SPLIT_SHRINKER_CALLBACK */ #if defined(__amd64__) || defined(__i386__) /* Define if host toolchain supports SSE */ #define HAVE_SSE 1 /* Define if host toolchain supports SSE2 */ #define HAVE_SSE2 1 /* Define if host toolchain supports SSE3 */ #define HAVE_SSE3 1 /* Define if host toolchain supports SSE4.1 */ #define HAVE_SSE4_1 1 /* Define if host toolchain supports SSE4.2 */ #define HAVE_SSE4_2 1 /* Define if host toolchain supports SSSE3 */ #define HAVE_SSSE3 1 #endif /* STACK_FRAME_NON_STANDARD is defined */ /* #undef HAVE_STACK_FRAME_NON_STANDARD */ /* standalone exists */ /* #undef HAVE_STANDALONE_LINUX_STDARG */ /* Define to 1 if you have the header file. */ #define HAVE_STDINT_H 1 /* Define to 1 if you have the header file. */ #define HAVE_STDIO_H 1 /* Define to 1 if you have the header file. */ #define HAVE_STDLIB_H 1 /* Define to 1 if you have the header file. */ #define HAVE_STRINGS_H 1 /* Define to 1 if you have the header file. */ #define HAVE_STRING_H 1 /* Define to 1 if you have the 'strlcat' function. */ #define HAVE_STRLCAT 1 /* Define to 1 if you have the 'strlcpy' function. */ #define HAVE_STRLCPY 1 /* submit_bio is member of struct block_device_operations */ /* #undef HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS */ /* have super_block s_shrink */ /* #undef HAVE_SUPER_BLOCK_S_SHRINK */ /* have super_block s_shrink pointer */ /* #undef HAVE_SUPER_BLOCK_S_SHRINK_PTR */ /* super_setup_bdi_name() exits */ /* #undef HAVE_SUPER_SETUP_BDI_NAME */ /* super_block->s_user_ns exists */ /* #undef HAVE_SUPER_USER_NS */ /* sync_blockdev() is declared in include/blkdev.h */ /* #undef HAVE_SYNC_BLOCKDEV */ /* struct kobj_type has default_groups */ /* #undef HAVE_SYSFS_DEFAULT_GROUPS */ /* Define to 1 if you have the header file. */ #define HAVE_SYS_STAT_H 1 /* Define to 1 if you have the header file. */ #define HAVE_SYS_TYPES_H 1 /* i_op->tmpfile() exists */ /* #undef HAVE_TMPFILE */ /* i_op->tmpfile() uses old dentry signature */ /* #undef HAVE_TMPFILE_DENTRY */ /* i_op->tmpfile() has mnt_idmap */ /* #undef HAVE_TMPFILE_IDMAP */ /* i_op->tmpfile() has userns */ /* #undef HAVE_TMPFILE_USERNS */ /* totalhigh_pages() exists */ /* #undef HAVE_TOTALHIGH_PAGES */ /* kernel has totalram_pages() */ /* #undef HAVE_TOTALRAM_PAGES_FUNC */ /* Define to 1 if you have the 'udev_device_get_is_initialized' function. */ /* #undef HAVE_UDEV_DEVICE_GET_IS_INITIALIZED */ /* kernel has __kernel_fpu_* functions */ /* #undef HAVE_UNDERSCORE_KERNEL_FPU */ /* Define to 1 if you have the header file. */ #define HAVE_UNISTD_H 1 /* iops->getattr() takes struct user_namespace* */ /* #undef HAVE_USERNS_IOPS_GETATTR */ /* iops->setattr() takes struct user_namespace* */ /* #undef HAVE_USERNS_IOPS_SETATTR */ /* user_namespace->ns.inum exists */ /* #undef HAVE_USER_NS_COMMON_INUM */ /* iops->getattr() takes a vfsmount */ /* #undef HAVE_VFSMOUNT_IOPS_GETATTR */ /* fops->clone_file_range() is available */ /* #undef HAVE_VFS_CLONE_FILE_RANGE */ /* fops->copy_file_range() is available */ /* #undef HAVE_VFS_COPY_FILE_RANGE */ /* fops->dedupe_file_range() is available */ /* #undef HAVE_VFS_DEDUPE_FILE_RANGE */ /* aops->direct_IO() uses iovec */ /* #undef HAVE_VFS_DIRECT_IO_IOVEC */ /* aops->direct_IO() uses iov_iter without rw */ /* #undef HAVE_VFS_DIRECT_IO_ITER */ /* aops->direct_IO() uses iov_iter with offset */ /* #undef HAVE_VFS_DIRECT_IO_ITER_OFFSET */ /* aops->direct_IO() uses iov_iter with rw and offset */ /* #undef HAVE_VFS_DIRECT_IO_ITER_RW_OFFSET */ /* filemap_dirty_folio exists */ /* #undef HAVE_VFS_FILEMAP_DIRTY_FOLIO */ /* file_operations_extend takes .copy_file_range() and .clone_file_range() */ /* #undef HAVE_VFS_FILE_OPERATIONS_EXTEND */ /* generic_copy_file_range() is available */ /* #undef HAVE_VFS_GENERIC_COPY_FILE_RANGE */ /* All required iov_iter interfaces are available */ /* #undef HAVE_VFS_IOV_ITER */ /* fops->iterate() is available */ /* #undef HAVE_VFS_ITERATE */ /* fops->iterate_shared() is available */ /* #undef HAVE_VFS_ITERATE_SHARED */ /* fops->readdir() is available */ /* #undef HAVE_VFS_READDIR */ /* address_space_operations->readpages exists */ /* #undef HAVE_VFS_READPAGES */ /* read_folio exists */ /* #undef HAVE_VFS_READ_FOLIO */ /* fops->remap_file_range() is available */ /* #undef HAVE_VFS_REMAP_FILE_RANGE */ /* fops->read/write_iter() are available */ /* #undef HAVE_VFS_RW_ITERATE */ /* __set_page_dirty_nobuffers exists */ /* #undef HAVE_VFS_SET_PAGE_DIRTY_NOBUFFERS */ /* splice_copy_file_range() is available */ /* #undef HAVE_VFS_SPLICE_COPY_FILE_RANGE */ /* __vmalloc page flags exists */ /* #undef HAVE_VMALLOC_PAGE_KERNEL */ /* yes */ /* #undef HAVE_WAIT_ON_BIT_ACTION */ /* wait_queue_entry_t exists */ /* #undef HAVE_WAIT_QUEUE_ENTRY_T */ /* wq_head->head and wq_entry->entry exist */ /* #undef HAVE_WAIT_QUEUE_HEAD_ENTRY */ /* int (*writepage_t)() takes struct folio* */ /* #undef HAVE_WRITEPAGE_T_FOLIO */ /* xattr_handler->get() wants dentry */ /* #undef HAVE_XATTR_GET_DENTRY */ /* xattr_handler->get() wants both dentry and inode */ /* #undef HAVE_XATTR_GET_DENTRY_INODE */ /* xattr_handler->get() wants dentry and inode and flags */ /* #undef HAVE_XATTR_GET_DENTRY_INODE_FLAGS */ /* xattr_handler->get() wants xattr_handler */ /* #undef HAVE_XATTR_GET_HANDLER */ /* xattr_handler has name */ /* #undef HAVE_XATTR_HANDLER_NAME */ /* xattr_handler->list() wants dentry */ /* #undef HAVE_XATTR_LIST_DENTRY */ /* xattr_handler->list() wants xattr_handler */ /* #undef HAVE_XATTR_LIST_HANDLER */ /* xattr_handler->list() wants simple */ /* #undef HAVE_XATTR_LIST_SIMPLE */ /* xattr_handler->set() wants dentry */ /* #undef HAVE_XATTR_SET_DENTRY */ /* xattr_handler->set() wants both dentry and inode */ /* #undef HAVE_XATTR_SET_DENTRY_INODE */ /* xattr_handler->set() wants xattr_handler */ /* #undef HAVE_XATTR_SET_HANDLER */ /* xattr_handler->set() takes mnt_idmap */ /* #undef HAVE_XATTR_SET_IDMAP */ /* xattr_handler->set() takes user_namespace */ /* #undef HAVE_XATTR_SET_USERNS */ /* Define if host toolchain supports XSAVE */ #define HAVE_XSAVE 1 /* Define if host toolchain supports XSAVEOPT */ #define HAVE_XSAVEOPT 1 /* Define if host toolchain supports XSAVES */ #define HAVE_XSAVES 1 /* ZERO_PAGE() is GPL-only */ /* #undef HAVE_ZERO_PAGE_GPL_ONLY */ /* Define if you have [z] */ #define HAVE_ZLIB 1 /* __posix_acl_chmod() exists */ /* #undef HAVE___POSIX_ACL_CHMOD */ /* kernel exports FPU functions */ /* #undef KERNEL_EXPORTS_X86_FPU */ /* TBD: fetch(3) support */ #if 0 /* whether the chosen libfetch is to be loaded at run-time */ #define LIBFETCH_DYNAMIC 1 /* libfetch is fetch(3) */ #define LIBFETCH_IS_FETCH 1 /* libfetch is libcurl */ #define LIBFETCH_IS_LIBCURL 0 /* soname of chosen libfetch */ #define LIBFETCH_SONAME "libfetch.so.6" #endif /* Define to the sub-directory where libtool stores uninstalled libraries. */ #define LT_OBJDIR ".libs/" /* make_request_fn() return type */ /* #undef MAKE_REQUEST_FN_RET */ /* struct shrink_control has nid */ /* #undef SHRINK_CONTROL_HAS_NID */ /* using complete_and_exit() instead */ /* #undef SPL_KTHREAD_COMPLETE_AND_EXIT */ /* Defined for legacy compatibility. */ #define SPL_META_ALIAS ZFS_META_ALIAS /* Defined for legacy compatibility. */ #define SPL_META_RELEASE ZFS_META_RELEASE /* Defined for legacy compatibility. */ #define SPL_META_VERSION ZFS_META_VERSION /* pde_data() is PDE_DATA() */ /* #undef SPL_PDE_DATA */ /* Define to 1 if all of the C89 standard headers exist (not just the ones required in a freestanding environment). This macro is provided for backward compatibility; new code need not use it. */ #define SYSTEM_FREEBSD 1 /* True if ZFS is to be compiled for a Linux system */ /* #undef SYSTEM_LINUX */ /* Version number of package */ /* #undef ZFS_DEBUG */ /* /dev/zfs minor */ /* #undef ZFS_DEVICE_MINOR */ /* enum node_stat_item contains NR_FILE_PAGES */ /* #undef ZFS_ENUM_NODE_STAT_ITEM_NR_FILE_PAGES */ /* enum node_stat_item contains NR_INACTIVE_ANON */ /* #undef ZFS_ENUM_NODE_STAT_ITEM_NR_INACTIVE_ANON */ /* enum node_stat_item contains NR_INACTIVE_FILE */ /* #undef ZFS_ENUM_NODE_STAT_ITEM_NR_INACTIVE_FILE */ /* enum zone_stat_item contains NR_FILE_PAGES */ /* #undef ZFS_ENUM_ZONE_STAT_ITEM_NR_FILE_PAGES */ /* enum zone_stat_item contains NR_INACTIVE_ANON */ /* #undef ZFS_ENUM_ZONE_STAT_ITEM_NR_INACTIVE_ANON */ /* enum zone_stat_item contains NR_INACTIVE_FILE */ /* #undef ZFS_ENUM_ZONE_STAT_ITEM_NR_INACTIVE_FILE */ /* GENHD_FL_EXT_DEVT flag is not available */ /* #undef ZFS_GENHD_FL_EXT_DEVT */ /* GENHD_FL_NO_PART_SCAN flag is available */ /* #undef ZFS_GENHD_FL_NO_PART */ /* global_node_page_state() exists */ /* #undef ZFS_GLOBAL_NODE_PAGE_STATE */ /* global_zone_page_state() exists */ /* #undef ZFS_GLOBAL_ZONE_PAGE_STATE */ /* Define to 1 if GPL-only symbols can be used */ /* #undef ZFS_IS_GPL_COMPATIBLE */ /* Define the project alias string. */ -#define ZFS_META_ALIAS "zfs-2.2.99-623-FreeBSD_g9c56b8ec7" +#define ZFS_META_ALIAS "zfs-2.2.99-634-FreeBSD_gd2ccc2155" /* Define the project author. */ #define ZFS_META_AUTHOR "OpenZFS" /* Define the project release date. */ /* #undef ZFS_META_DATA */ /* Define the maximum compatible kernel version. */ #define ZFS_META_KVER_MAX "6.9" /* Define the minimum compatible kernel version. */ #define ZFS_META_KVER_MIN "3.10" /* Define the project license. */ #define ZFS_META_LICENSE "CDDL" /* Define the libtool library 'age' version information. */ /* #undef ZFS_META_LT_AGE */ /* Define the libtool library 'current' version information. */ /* #undef ZFS_META_LT_CURRENT */ /* Define the libtool library 'revision' version information. */ /* #undef ZFS_META_LT_REVISION */ /* Define the project name. */ #define ZFS_META_NAME "zfs" /* Define the project release. */ -#define ZFS_META_RELEASE "623-FreeBSD_g9c56b8ec7" +#define ZFS_META_RELEASE "634-FreeBSD_gd2ccc2155" /* Define the project version. */ #define ZFS_META_VERSION "2.2.99" /* count is located in percpu_ref.data */ /* #undef ZFS_PERCPU_REF_COUNT_IN_DATA */ diff --git a/sys/modules/zfs/zfs_gitrev.h b/sys/modules/zfs/zfs_gitrev.h index 97a0479c6fc0..23b7a5afa4ce 100644 --- a/sys/modules/zfs/zfs_gitrev.h +++ b/sys/modules/zfs/zfs_gitrev.h @@ -1 +1 @@ -#define ZFS_META_GITREV "zfs-2.2.99-623-g9c56b8ec7" +#define ZFS_META_GITREV "zfs-2.2.99-634-gd2ccc2155"