diff --git a/sys/net80211/ieee80211_output.c b/sys/net80211/ieee80211_output.c
index 07f7349461ac..ab3e3142ad2c 100644
--- a/sys/net80211/ieee80211_output.c
+++ b/sys/net80211/ieee80211_output.c
@@ -1,4172 +1,4173 @@
 /*-
  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
  *
  * Copyright (c) 2001 Atsushi Onoe
  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
  * All rights reserved.
  *
  * Redistribution and use in source and binary forms, with or without
  * modification, are permitted provided that the following conditions
  * are met:
  * 1. Redistributions of source code must retain the above copyright
  *    notice, this list of conditions and the following disclaimer.
  * 2. Redistributions in binary form must reproduce the above copyright
  *    notice, this list of conditions and the following disclaimer in the
  *    documentation and/or other materials provided with the distribution.
  *
  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  */
 
 #include <sys/cdefs.h>
 __FBSDID("$FreeBSD$");
 
 #include "opt_inet.h"
 #include "opt_inet6.h"
 #include "opt_wlan.h"
 
 #include <sys/param.h>
 #include <sys/systm.h> 
 #include <sys/kernel.h>
 #include <sys/malloc.h>
 #include <sys/mbuf.h>   
 #include <sys/endian.h>
 
 #include <sys/socket.h>
 
 #include <net/bpf.h>
 #include <net/ethernet.h>
 #include <net/if.h>
 #include <net/if_var.h>
 #include <net/if_llc.h>
 #include <net/if_media.h>
 #include <net/if_vlan_var.h>
 
 #include <net80211/ieee80211_var.h>
 #include <net80211/ieee80211_regdomain.h>
 #ifdef IEEE80211_SUPPORT_SUPERG
 #include <net80211/ieee80211_superg.h>
 #endif
 #ifdef IEEE80211_SUPPORT_TDMA
 #include <net80211/ieee80211_tdma.h>
 #endif
 #include <net80211/ieee80211_wds.h>
 #include <net80211/ieee80211_mesh.h>
 #include <net80211/ieee80211_vht.h>
 
 #if defined(INET) || defined(INET6)
 #include <netinet/in.h> 
 #endif
 
 #ifdef INET
 #include <netinet/if_ether.h>
 #include <netinet/in_systm.h>
 #include <netinet/ip.h>
 #endif
 #ifdef INET6
 #include <netinet/ip6.h>
 #endif
 
 #include <security/mac/mac_framework.h>
 
 #define	ETHER_HEADER_COPY(dst, src) \
 	memcpy(dst, src, sizeof(struct ether_header))
 
 static int ieee80211_fragment(struct ieee80211vap *, struct mbuf *,
 	u_int hdrsize, u_int ciphdrsize, u_int mtu);
 static	void ieee80211_tx_mgt_cb(struct ieee80211_node *, void *, int);
 
 #ifdef IEEE80211_DEBUG
 /*
  * Decide if an outbound management frame should be
  * printed when debugging is enabled.  This filters some
  * of the less interesting frames that come frequently
  * (e.g. beacons).
  */
 static __inline int
 doprint(struct ieee80211vap *vap, int subtype)
 {
 	switch (subtype) {
 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
 		return (vap->iv_opmode == IEEE80211_M_IBSS);
 	}
 	return 1;
 }
 #endif
 
 /*
  * Transmit a frame to the given destination on the given VAP.
  *
  * It's up to the caller to figure out the details of who this
  * is going to and resolving the node.
  *
  * This routine takes care of queuing it for power save,
  * A-MPDU state stuff, fast-frames state stuff, encapsulation
  * if required, then passing it up to the driver layer.
  *
  * This routine (for now) consumes the mbuf and frees the node
  * reference; it ideally will return a TX status which reflects
  * whether the mbuf was consumed or not, so the caller can
  * free the mbuf (if appropriate) and the node reference (again,
  * if appropriate.)
  */
 int
 ieee80211_vap_pkt_send_dest(struct ieee80211vap *vap, struct mbuf *m,
     struct ieee80211_node *ni)
 {
 	struct ieee80211com *ic = vap->iv_ic;
 	struct ifnet *ifp = vap->iv_ifp;
 	int mcast;
 	int do_ampdu = 0;
 	int do_amsdu = 0;
 	int do_ampdu_amsdu = 0;
 	int no_ampdu = 1; /* Will be set to 0 if ampdu is active */
 	int do_ff = 0;
 
 	if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
 	    (m->m_flags & M_PWR_SAV) == 0) {
 		/*
 		 * Station in power save mode; pass the frame
 		 * to the 802.11 layer and continue.  We'll get
 		 * the frame back when the time is right.
 		 * XXX lose WDS vap linkage?
 		 */
 		if (ieee80211_pwrsave(ni, m) != 0)
 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
 		ieee80211_free_node(ni);
 
 		/*
 		 * We queued it fine, so tell the upper layer
 		 * that we consumed it.
 		 */
 		return (0);
 	}
 	/* calculate priority so drivers can find the tx queue */
 	if (ieee80211_classify(ni, m)) {
 		IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
 		    ni->ni_macaddr, NULL,
 		    "%s", "classification failure");
 		vap->iv_stats.is_tx_classify++;
 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
 		m_freem(m);
 		ieee80211_free_node(ni);
 
 		/* XXX better status? */
 		return (0);
 	}
 	/*
 	 * Stash the node pointer.  Note that we do this after
 	 * any call to ieee80211_dwds_mcast because that code
 	 * uses any existing value for rcvif to identify the
 	 * interface it (might have been) received on.
 	 */
 	MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0);
 	m->m_pkthdr.rcvif = (void *)ni;
 	mcast = (m->m_flags & (M_MCAST | M_BCAST)) ? 1: 0;
 
 	BPF_MTAP(ifp, m);		/* 802.3 tx */
 
 	/*
 	 * Figure out if we can do A-MPDU, A-MSDU or FF.
 	 *
 	 * A-MPDU depends upon vap/node config.
 	 * A-MSDU depends upon vap/node config.
 	 * FF depends upon vap config, IE and whether
 	 *  it's 11abg (and not 11n/11ac/etc.)
 	 *
 	 * Note that these flags indiciate whether we can do
 	 * it at all, rather than the situation (eg traffic type.)
 	 */
 	do_ampdu = ((ni->ni_flags & IEEE80211_NODE_AMPDU_TX) &&
 	    (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_TX));
 	do_amsdu = ((ni->ni_flags & IEEE80211_NODE_AMSDU_TX) &&
 	    (vap->iv_flags_ht & IEEE80211_FHT_AMSDU_TX));
 	do_ff =
 	    ((ni->ni_flags & IEEE80211_NODE_HT) == 0) &&
 	    ((ni->ni_flags & IEEE80211_NODE_VHT) == 0) &&
 	    (IEEE80211_ATH_CAP(vap, ni, IEEE80211_NODE_FF));
 
 	/*
 	 * Check if A-MPDU tx aggregation is setup or if we
 	 * should try to enable it.  The sta must be associated
 	 * with HT and A-MPDU enabled for use.  When the policy
 	 * routine decides we should enable A-MPDU we issue an
 	 * ADDBA request and wait for a reply.  The frame being
 	 * encapsulated will go out w/o using A-MPDU, or possibly
 	 * it might be collected by the driver and held/retransmit.
 	 * The default ic_ampdu_enable routine handles staggering
 	 * ADDBA requests in case the receiver NAK's us or we are
 	 * otherwise unable to establish a BA stream.
 	 *
 	 * Don't treat group-addressed frames as candidates for aggregation;
 	 * net80211 doesn't support 802.11aa-2012 and so group addressed
 	 * frames will always have sequence numbers allocated from the NON_QOS
 	 * TID.
 	 */
 	if (do_ampdu) {
 		if ((m->m_flags & M_EAPOL) == 0 && (! mcast)) {
 			int tid = WME_AC_TO_TID(M_WME_GETAC(m));
 			struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[tid];
 
 			ieee80211_txampdu_count_packet(tap);
 			if (IEEE80211_AMPDU_RUNNING(tap)) {
 				/*
 				 * Operational, mark frame for aggregation.
 				 *
 				 * XXX do tx aggregation here
 				 */
 				m->m_flags |= M_AMPDU_MPDU;
 			} else if (!IEEE80211_AMPDU_REQUESTED(tap) &&
 			    ic->ic_ampdu_enable(ni, tap)) {
 				/*
 				 * Not negotiated yet, request service.
 				 */
 				ieee80211_ampdu_request(ni, tap);
 				/* XXX hold frame for reply? */
 			}
 			/*
 			 * Now update the no-ampdu flag.  A-MPDU may have been
 			 * started or administratively disabled above; so now we
 			 * know whether we're running yet or not.
 			 *
 			 * This will let us know whether we should be doing A-MSDU
 			 * at this point.  We only do A-MSDU if we're either not
 			 * doing A-MPDU, or A-MPDU is NACKed, or A-MPDU + A-MSDU
 			 * is available.
 			 *
 			 * Whilst here, update the amsdu-ampdu flag.  The above may
 			 * have also set or cleared the amsdu-in-ampdu txa_flags
 			 * combination so we can correctly do A-MPDU + A-MSDU.
 			 */
 			no_ampdu = (! IEEE80211_AMPDU_RUNNING(tap)
 			    || (IEEE80211_AMPDU_NACKED(tap)));
 			do_ampdu_amsdu = IEEE80211_AMPDU_RUNNING_AMSDU(tap);
 		}
 	}
 
 #ifdef IEEE80211_SUPPORT_SUPERG
 	/*
 	 * Check for AMSDU/FF; queue for aggregation
 	 *
 	 * Note: we don't bother trying to do fast frames or
 	 * A-MSDU encapsulation for 802.3 drivers.  Now, we
 	 * likely could do it for FF (because it's a magic
 	 * atheros tunnel LLC type) but I don't think we're going
 	 * to really need to.  For A-MSDU we'd have to set the
 	 * A-MSDU QoS bit in the wifi header, so we just plain
 	 * can't do it.
 	 */
 	if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) {
 		if ((! mcast) &&
 		    (do_ampdu_amsdu || (no_ampdu && do_amsdu)) &&
 		    ieee80211_amsdu_tx_ok(ni)) {
 			m = ieee80211_amsdu_check(ni, m);
 			if (m == NULL) {
 				/* NB: any ni ref held on stageq */
 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
 				    "%s: amsdu_check queued frame\n",
 				    __func__);
 				return (0);
 			}
 		} else if ((! mcast) && do_ff) {
 			m = ieee80211_ff_check(ni, m);
 			if (m == NULL) {
 				/* NB: any ni ref held on stageq */
 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
 				    "%s: ff_check queued frame\n",
 				    __func__);
 				return (0);
 			}
 		}
 	}
 #endif /* IEEE80211_SUPPORT_SUPERG */
 
 	/*
 	 * Grab the TX lock - serialise the TX process from this
 	 * point (where TX state is being checked/modified)
 	 * through to driver queue.
 	 */
 	IEEE80211_TX_LOCK(ic);
 
 	/*
 	 * XXX make the encap and transmit code a separate function
 	 * so things like the FF (and later A-MSDU) path can just call
 	 * it for flushed frames.
 	 */
 	if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) {
 		/*
 		 * Encapsulate the packet in prep for transmission.
 		 */
 		m = ieee80211_encap(vap, ni, m);
 		if (m == NULL) {
 			/* NB: stat+msg handled in ieee80211_encap */
 			IEEE80211_TX_UNLOCK(ic);
 			ieee80211_free_node(ni);
 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
 			return (ENOBUFS);
 		}
 	}
 	(void) ieee80211_parent_xmitpkt(ic, m);
 
 	/*
 	 * Unlock at this point - no need to hold it across
 	 * ieee80211_free_node() (ie, the comlock)
 	 */
 	IEEE80211_TX_UNLOCK(ic);
 	ic->ic_lastdata = ticks;
 
 	return (0);
 }
 
 /*
  * Send the given mbuf through the given vap.
  *
  * This consumes the mbuf regardless of whether the transmit
  * was successful or not.
  *
  * This does none of the initial checks that ieee80211_start()
  * does (eg CAC timeout, interface wakeup) - the caller must
  * do this first.
  */
 static int
 ieee80211_start_pkt(struct ieee80211vap *vap, struct mbuf *m)
 {
 #define	IS_DWDS(vap) \
 	(vap->iv_opmode == IEEE80211_M_WDS && \
 	 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) == 0)
 	struct ieee80211com *ic = vap->iv_ic;
 	struct ifnet *ifp = vap->iv_ifp;
 	struct ieee80211_node *ni;
 	struct ether_header *eh;
 
 	/*
 	 * Cancel any background scan.
 	 */
 	if (ic->ic_flags & IEEE80211_F_SCAN)
 		ieee80211_cancel_anyscan(vap);
 	/* 
 	 * Find the node for the destination so we can do
 	 * things like power save and fast frames aggregation.
 	 *
 	 * NB: past this point various code assumes the first
 	 *     mbuf has the 802.3 header present (and contiguous).
 	 */
 	ni = NULL;
 	if (m->m_len < sizeof(struct ether_header) &&
 	   (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
 		    "discard frame, %s\n", "m_pullup failed");
 		vap->iv_stats.is_tx_nobuf++;	/* XXX */
 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
 		return (ENOBUFS);
 	}
 	eh = mtod(m, struct ether_header *);
 	if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
 		if (IS_DWDS(vap)) {
 			/*
 			 * Only unicast frames from the above go out
 			 * DWDS vaps; multicast frames are handled by
 			 * dispatching the frame as it comes through
 			 * the AP vap (see below).
 			 */
 			IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_WDS,
 			    eh->ether_dhost, "mcast", "%s", "on DWDS");
 			vap->iv_stats.is_dwds_mcast++;
 			m_freem(m);
 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
 			/* XXX better status? */
 			return (ENOBUFS);
 		}
 		if (vap->iv_opmode == IEEE80211_M_HOSTAP) {
 			/*
 			 * Spam DWDS vap's w/ multicast traffic.
 			 */
 			/* XXX only if dwds in use? */
 			ieee80211_dwds_mcast(vap, m);
 		}
 	}
 #ifdef IEEE80211_SUPPORT_MESH
 	if (vap->iv_opmode != IEEE80211_M_MBSS) {
 #endif
 		ni = ieee80211_find_txnode(vap, eh->ether_dhost);
 		if (ni == NULL) {
 			/* NB: ieee80211_find_txnode does stat+msg */
 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
 			m_freem(m);
 			/* XXX better status? */
 			return (ENOBUFS);
 		}
 		if (ni->ni_associd == 0 &&
 		    (ni->ni_flags & IEEE80211_NODE_ASSOCID)) {
 			IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
 			    eh->ether_dhost, NULL,
 			    "sta not associated (type 0x%04x)",
 			    htons(eh->ether_type));
 			vap->iv_stats.is_tx_notassoc++;
 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
 			m_freem(m);
 			ieee80211_free_node(ni);
 			/* XXX better status? */
 			return (ENOBUFS);
 		}
 #ifdef IEEE80211_SUPPORT_MESH
 	} else {
 		if (!IEEE80211_ADDR_EQ(eh->ether_shost, vap->iv_myaddr)) {
 			/*
 			 * Proxy station only if configured.
 			 */
 			if (!ieee80211_mesh_isproxyena(vap)) {
 				IEEE80211_DISCARD_MAC(vap,
 				    IEEE80211_MSG_OUTPUT |
 				    IEEE80211_MSG_MESH,
 				    eh->ether_dhost, NULL,
 				    "%s", "proxy not enabled");
 				vap->iv_stats.is_mesh_notproxy++;
 				if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
 				m_freem(m);
 				/* XXX better status? */
 				return (ENOBUFS);
 			}
 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
 			    "forward frame from DS SA(%6D), DA(%6D)\n",
 			    eh->ether_shost, ":",
 			    eh->ether_dhost, ":");
 			ieee80211_mesh_proxy_check(vap, eh->ether_shost);
 		}
 		ni = ieee80211_mesh_discover(vap, eh->ether_dhost, m);
 		if (ni == NULL) {
 			/*
 			 * NB: ieee80211_mesh_discover holds/disposes
 			 * frame (e.g. queueing on path discovery).
 			 */
 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
 			/* XXX better status? */
 			return (ENOBUFS);
 		}
 	}
 #endif
 
 	/*
 	 * We've resolved the sender, so attempt to transmit it.
 	 */
 
 	if (vap->iv_state == IEEE80211_S_SLEEP) {
 		/*
 		 * In power save; queue frame and then  wakeup device
 		 * for transmit.
 		 */
 		ic->ic_lastdata = ticks;
 		if (ieee80211_pwrsave(ni, m) != 0)
 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
 		ieee80211_free_node(ni);
 		ieee80211_new_state(vap, IEEE80211_S_RUN, 0);
 		return (0);
 	}
 
 	if (ieee80211_vap_pkt_send_dest(vap, m, ni) != 0)
 		return (ENOBUFS);
 	return (0);
 #undef	IS_DWDS
 }
 
 /*
  * Start method for vap's.  All packets from the stack come
  * through here.  We handle common processing of the packets
  * before dispatching them to the underlying device.
  *
  * if_transmit() requires that the mbuf be consumed by this call
  * regardless of the return condition.
  */
 int
 ieee80211_vap_transmit(struct ifnet *ifp, struct mbuf *m)
 {
 	struct ieee80211vap *vap = ifp->if_softc;
 	struct ieee80211com *ic = vap->iv_ic;
 
 	/*
 	 * No data frames go out unless we're running.
 	 * Note in particular this covers CAC and CSA
 	 * states (though maybe we should check muting
 	 * for CSA).
 	 */
 	if (vap->iv_state != IEEE80211_S_RUN &&
 	    vap->iv_state != IEEE80211_S_SLEEP) {
 		IEEE80211_LOCK(ic);
 		/* re-check under the com lock to avoid races */
 		if (vap->iv_state != IEEE80211_S_RUN &&
 		    vap->iv_state != IEEE80211_S_SLEEP) {
 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
 			    "%s: ignore queue, in %s state\n",
 			    __func__, ieee80211_state_name[vap->iv_state]);
 			vap->iv_stats.is_tx_badstate++;
 			IEEE80211_UNLOCK(ic);
 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
 			m_freem(m);
 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
 			return (ENETDOWN);
 		}
 		IEEE80211_UNLOCK(ic);
 	}
 
 	/*
 	 * Sanitize mbuf flags for net80211 use.  We cannot
 	 * clear M_PWR_SAV or M_MORE_DATA because these may
 	 * be set for frames that are re-submitted from the
 	 * power save queue.
 	 *
 	 * NB: This must be done before ieee80211_classify as
 	 *     it marks EAPOL in frames with M_EAPOL.
 	 */
 	m->m_flags &= ~(M_80211_TX - M_PWR_SAV - M_MORE_DATA);
 
 	/*
 	 * Bump to the packet transmission path.
 	 * The mbuf will be consumed here.
 	 */
 	return (ieee80211_start_pkt(vap, m));
 }
 
 void
 ieee80211_vap_qflush(struct ifnet *ifp)
 {
 
 	/* Empty for now */
 }
 
 /*
  * 802.11 raw output routine.
  *
  * XXX TODO: this (and other send routines) should correctly
  * XXX keep the pwr mgmt bit set if it decides to call into the
  * XXX driver to send a frame whilst the state is SLEEP.
  *
  * Otherwise the peer may decide that we're awake and flood us
  * with traffic we are still too asleep to receive!
  */
 int
 ieee80211_raw_output(struct ieee80211vap *vap, struct ieee80211_node *ni,
     struct mbuf *m, const struct ieee80211_bpf_params *params)
 {
 	struct ieee80211com *ic = vap->iv_ic;
 	int error;
 
 	/*
 	 * Set node - the caller has taken a reference, so ensure
 	 * that the mbuf has the same node value that
 	 * it would if it were going via the normal path.
 	 */
 	MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0);
 	m->m_pkthdr.rcvif = (void *)ni;
 
 	/*
 	 * Attempt to add bpf transmit parameters.
 	 *
 	 * For now it's ok to fail; the raw_xmit api still takes
 	 * them as an option.
 	 *
 	 * Later on when ic_raw_xmit() has params removed,
 	 * they'll have to be added - so fail the transmit if
 	 * they can't be.
 	 */
 	if (params)
 		(void) ieee80211_add_xmit_params(m, params);
 
 	error = ic->ic_raw_xmit(ni, m, params);
 	if (error) {
 		if_inc_counter(vap->iv_ifp, IFCOUNTER_OERRORS, 1);
 		ieee80211_free_node(ni);
 	}
 	return (error);
 }
 
 static int
 ieee80211_validate_frame(struct mbuf *m,
     const struct ieee80211_bpf_params *params)
 {
 	struct ieee80211_frame *wh;
 	int type;
 
 	if (m->m_pkthdr.len < sizeof(struct ieee80211_frame_ack))
 		return (EINVAL);
 
 	wh = mtod(m, struct ieee80211_frame *);
 	if ((wh->i_fc[0] & IEEE80211_FC0_VERSION_MASK) !=
 	    IEEE80211_FC0_VERSION_0)
 		return (EINVAL);
 
 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
 	if (type != IEEE80211_FC0_TYPE_DATA) {
 		if ((wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) !=
 		    IEEE80211_FC1_DIR_NODS)
 			return (EINVAL);
 
 		if (type != IEEE80211_FC0_TYPE_MGT &&
 		    (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) != 0)
 			return (EINVAL);
 
 		/* XXX skip other field checks? */
 	}
 
 	if ((params && (params->ibp_flags & IEEE80211_BPF_CRYPTO) != 0) ||
 	    (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) != 0) {
 		int subtype;
 
 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
 
 		/*
 		 * See IEEE Std 802.11-2012,
 		 * 8.2.4.1.9 'Protected Frame field'
 		 */
 		/* XXX no support for robust management frames yet. */
 		if (!(type == IEEE80211_FC0_TYPE_DATA ||
 		    (type == IEEE80211_FC0_TYPE_MGT &&
 		     subtype == IEEE80211_FC0_SUBTYPE_AUTH)))
 			return (EINVAL);
 
 		wh->i_fc[1] |= IEEE80211_FC1_PROTECTED;
 	}
 
 	if (m->m_pkthdr.len < ieee80211_anyhdrsize(wh))
 		return (EINVAL);
 
 	return (0);
 }
 
 static int
 ieee80211_validate_rate(struct ieee80211_node *ni, uint8_t rate)
 {
 	struct ieee80211com *ic = ni->ni_ic;
 
 	if (IEEE80211_IS_HT_RATE(rate)) {
 		if ((ic->ic_htcaps & IEEE80211_HTC_HT) == 0)
 			return (EINVAL);
 
 		rate = IEEE80211_RV(rate);
 		if (rate <= 31) {
 			if (rate > ic->ic_txstream * 8 - 1)
 				return (EINVAL);
 
 			return (0);
 		}
 
 		if (rate == 32) {
 			if ((ic->ic_htcaps & IEEE80211_HTC_TXMCS32) == 0)
 				return (EINVAL);
 
 			return (0);
 		}
 
 		if ((ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL) == 0)
 			return (EINVAL);
 
 		switch (ic->ic_txstream) {
 		case 0:
 		case 1:
 			return (EINVAL);
 		case 2:
 			if (rate > 38)
 				return (EINVAL);
 
 			return (0);
 		case 3:
 			if (rate > 52)
 				return (EINVAL);
 
 			return (0);
 		case 4:
 		default:
 			if (rate > 76)
 				return (EINVAL);
 
 			return (0);
 		}
 	}
 
 	if (!ieee80211_isratevalid(ic->ic_rt, rate))
 		return (EINVAL);
 
 	return (0);
 }
 
 static int
 ieee80211_sanitize_rates(struct ieee80211_node *ni, struct mbuf *m,
     const struct ieee80211_bpf_params *params)
 {
 	int error;
 
 	if (!params)
 		return (0);	/* nothing to do */
 
 	/* NB: most drivers assume that ibp_rate0 is set (!= 0). */
 	if (params->ibp_rate0 != 0) {
 		error = ieee80211_validate_rate(ni, params->ibp_rate0);
 		if (error != 0)
 			return (error);
 	} else {
 		/* XXX pre-setup some default (e.g., mgmt / mcast) rate */
 		/* XXX __DECONST? */
 		(void) m;
 	}
 
 	if (params->ibp_rate1 != 0 &&
 	    (error = ieee80211_validate_rate(ni, params->ibp_rate1)) != 0)
 		return (error);
 
 	if (params->ibp_rate2 != 0 &&
 	    (error = ieee80211_validate_rate(ni, params->ibp_rate2)) != 0)
 		return (error);
 
 	if (params->ibp_rate3 != 0 &&
 	    (error = ieee80211_validate_rate(ni, params->ibp_rate3)) != 0)
 		return (error);
 
 	return (0);
 }
 
 /*
  * 802.11 output routine. This is (currently) used only to
  * connect bpf write calls to the 802.11 layer for injecting
  * raw 802.11 frames.
  */
 int
 ieee80211_output(struct ifnet *ifp, struct mbuf *m,
 	const struct sockaddr *dst, struct route *ro)
 {
 #define senderr(e) do { error = (e); goto bad;} while (0)
 	const struct ieee80211_bpf_params *params = NULL;
 	struct ieee80211_node *ni = NULL;
 	struct ieee80211vap *vap;
 	struct ieee80211_frame *wh;
 	struct ieee80211com *ic = NULL;
 	int error;
 	int ret;
 
 	if (ifp->if_drv_flags & IFF_DRV_OACTIVE) {
 		/*
 		 * Short-circuit requests if the vap is marked OACTIVE
 		 * as this can happen because a packet came down through
 		 * ieee80211_start before the vap entered RUN state in
 		 * which case it's ok to just drop the frame.  This
 		 * should not be necessary but callers of if_output don't
 		 * check OACTIVE.
 		 */
 		senderr(ENETDOWN);
 	}
 	vap = ifp->if_softc;
 	ic = vap->iv_ic;
 	/*
 	 * Hand to the 802.3 code if not tagged as
 	 * a raw 802.11 frame.
 	 */
 	if (dst->sa_family != AF_IEEE80211)
 		return vap->iv_output(ifp, m, dst, ro);
 #ifdef MAC
 	error = mac_ifnet_check_transmit(ifp, m);
 	if (error)
 		senderr(error);
 #endif
 	if (ifp->if_flags & IFF_MONITOR)
 		senderr(ENETDOWN);
 	if (!IFNET_IS_UP_RUNNING(ifp))
 		senderr(ENETDOWN);
 	if (vap->iv_state == IEEE80211_S_CAC) {
 		IEEE80211_DPRINTF(vap,
 		    IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
 		    "block %s frame in CAC state\n", "raw data");
 		vap->iv_stats.is_tx_badstate++;
 		senderr(EIO);		/* XXX */
 	} else if (vap->iv_state == IEEE80211_S_SCAN)
 		senderr(EIO);
 	/* XXX bypass bridge, pfil, carp, etc. */
 
 	/*
 	 * NB: DLT_IEEE802_11_RADIO identifies the parameters are
 	 * present by setting the sa_len field of the sockaddr (yes,
 	 * this is a hack).
 	 * NB: we assume sa_data is suitably aligned to cast.
 	 */
 	if (dst->sa_len != 0)
 		params = (const struct ieee80211_bpf_params *)dst->sa_data;
 
 	error = ieee80211_validate_frame(m, params);
 	if (error != 0)
 		senderr(error);
 
 	wh = mtod(m, struct ieee80211_frame *);
 
 	/* locate destination node */
 	switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
 	case IEEE80211_FC1_DIR_NODS:
 	case IEEE80211_FC1_DIR_FROMDS:
 		ni = ieee80211_find_txnode(vap, wh->i_addr1);
 		break;
 	case IEEE80211_FC1_DIR_TODS:
 	case IEEE80211_FC1_DIR_DSTODS:
 		ni = ieee80211_find_txnode(vap, wh->i_addr3);
 		break;
 	default:
 		senderr(EDOOFUS);
 	}
 	if (ni == NULL) {
 		/*
 		 * Permit packets w/ bpf params through regardless
 		 * (see below about sa_len).
 		 */
 		if (dst->sa_len == 0)
 			senderr(EHOSTUNREACH);
 		ni = ieee80211_ref_node(vap->iv_bss);
 	}
 
 	/*
 	 * Sanitize mbuf for net80211 flags leaked from above.
 	 *
 	 * NB: This must be done before ieee80211_classify as
 	 *     it marks EAPOL in frames with M_EAPOL.
 	 */
 	m->m_flags &= ~M_80211_TX;
 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
 
 	if (IEEE80211_IS_DATA(wh)) {
 		/* calculate priority so drivers can find the tx queue */
 		if (ieee80211_classify(ni, m))
 			senderr(EIO);		/* XXX */
 
 		/* NB: ieee80211_encap does not include 802.11 header */
 		IEEE80211_NODE_STAT_ADD(ni, tx_bytes,
 		    m->m_pkthdr.len - ieee80211_hdrsize(wh));
 	} else
 		M_WME_SETAC(m, WME_AC_BE);
 
 	error = ieee80211_sanitize_rates(ni, m, params);
 	if (error != 0)
 		senderr(error);
 
 	IEEE80211_NODE_STAT(ni, tx_data);
 	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
 		IEEE80211_NODE_STAT(ni, tx_mcast);
 		m->m_flags |= M_MCAST;
 	} else
 		IEEE80211_NODE_STAT(ni, tx_ucast);
 
 	IEEE80211_TX_LOCK(ic);
 	ret = ieee80211_raw_output(vap, ni, m, params);
 	IEEE80211_TX_UNLOCK(ic);
 	return (ret);
 bad:
 	if (m != NULL)
 		m_freem(m);
 	if (ni != NULL)
 		ieee80211_free_node(ni);
 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
 	return error;
 #undef senderr
 }
 
 /*
  * Set the direction field and address fields of an outgoing
  * frame.  Note this should be called early on in constructing
  * a frame as it sets i_fc[1]; other bits can then be or'd in.
  */
 void
 ieee80211_send_setup(
 	struct ieee80211_node *ni,
 	struct mbuf *m,
 	int type, int tid,
 	const uint8_t sa[IEEE80211_ADDR_LEN],
 	const uint8_t da[IEEE80211_ADDR_LEN],
 	const uint8_t bssid[IEEE80211_ADDR_LEN])
 {
 #define	WH4(wh)	((struct ieee80211_frame_addr4 *)wh)
 	struct ieee80211vap *vap = ni->ni_vap;
 	struct ieee80211_tx_ampdu *tap;
 	struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
 	ieee80211_seq seqno;
 
 	IEEE80211_TX_LOCK_ASSERT(ni->ni_ic);
 
 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type;
 	if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) {
 		switch (vap->iv_opmode) {
 		case IEEE80211_M_STA:
 			wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
 			IEEE80211_ADDR_COPY(wh->i_addr1, bssid);
 			IEEE80211_ADDR_COPY(wh->i_addr2, sa);
 			IEEE80211_ADDR_COPY(wh->i_addr3, da);
 			break;
 		case IEEE80211_M_IBSS:
 		case IEEE80211_M_AHDEMO:
 			wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
 			IEEE80211_ADDR_COPY(wh->i_addr1, da);
 			IEEE80211_ADDR_COPY(wh->i_addr2, sa);
 			IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
 			break;
 		case IEEE80211_M_HOSTAP:
 			wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
 			IEEE80211_ADDR_COPY(wh->i_addr1, da);
 			IEEE80211_ADDR_COPY(wh->i_addr2, bssid);
 			IEEE80211_ADDR_COPY(wh->i_addr3, sa);
 			break;
 		case IEEE80211_M_WDS:
 			wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
 			IEEE80211_ADDR_COPY(wh->i_addr1, da);
 			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
 			IEEE80211_ADDR_COPY(wh->i_addr3, da);
 			IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa);
 			break;
 		case IEEE80211_M_MBSS:
 #ifdef IEEE80211_SUPPORT_MESH
 			if (IEEE80211_IS_MULTICAST(da)) {
 				wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
 				/* XXX next hop */
 				IEEE80211_ADDR_COPY(wh->i_addr1, da);
 				IEEE80211_ADDR_COPY(wh->i_addr2,
 				    vap->iv_myaddr);
 			} else {
 				wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
 				IEEE80211_ADDR_COPY(wh->i_addr1, da);
 				IEEE80211_ADDR_COPY(wh->i_addr2,
 				    vap->iv_myaddr);
 				IEEE80211_ADDR_COPY(wh->i_addr3, da);
 				IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa);
 			}
 #endif
 			break;
 		case IEEE80211_M_MONITOR:	/* NB: to quiet compiler */
 			break;
 		}
 	} else {
 		wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
 		IEEE80211_ADDR_COPY(wh->i_addr1, da);
 		IEEE80211_ADDR_COPY(wh->i_addr2, sa);
 #ifdef IEEE80211_SUPPORT_MESH
 		if (vap->iv_opmode == IEEE80211_M_MBSS)
 			IEEE80211_ADDR_COPY(wh->i_addr3, sa);
 		else
 #endif
 			IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
 	}
 	*(uint16_t *)&wh->i_dur[0] = 0;
 
 	/*
 	 * XXX TODO: this is what the TX lock is for.
 	 * Here we're incrementing sequence numbers, and they
 	 * need to be in lock-step with what the driver is doing
 	 * both in TX ordering and crypto encap (IV increment.)
 	 *
 	 * If the driver does seqno itself, then we can skip
 	 * assigning sequence numbers here, and we can avoid
 	 * requiring the TX lock.
 	 */
 	tap = &ni->ni_tx_ampdu[tid];
 	if (tid != IEEE80211_NONQOS_TID && IEEE80211_AMPDU_RUNNING(tap)) {
 		m->m_flags |= M_AMPDU_MPDU;
 
 		/* NB: zero out i_seq field (for s/w encryption etc) */
 		*(uint16_t *)&wh->i_seq[0] = 0;
 	} else {
 		if (IEEE80211_HAS_SEQ(type & IEEE80211_FC0_TYPE_MASK,
 				      type & IEEE80211_FC0_SUBTYPE_MASK))
 			/*
 			 * 802.11-2012 9.3.2.10 - QoS multicast frames
 			 * come out of a different seqno space.
 			 */
 			if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
 				seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
 			} else {
 				seqno = ni->ni_txseqs[tid]++;
 			}
 		else
 			seqno = 0;
 
 		*(uint16_t *)&wh->i_seq[0] =
 		    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
 		M_SEQNO_SET(m, seqno);
 	}
 
 	if (IEEE80211_IS_MULTICAST(wh->i_addr1))
 		m->m_flags |= M_MCAST;
 #undef WH4
 }
 
 /*
  * Send a management frame to the specified node.  The node pointer
  * must have a reference as the pointer will be passed to the driver
  * and potentially held for a long time.  If the frame is successfully
  * dispatched to the driver, then it is responsible for freeing the
  * reference (and potentially free'ing up any associated storage);
  * otherwise deal with reclaiming any reference (on error).
  */
 int
 ieee80211_mgmt_output(struct ieee80211_node *ni, struct mbuf *m, int type,
 	struct ieee80211_bpf_params *params)
 {
 	struct ieee80211vap *vap = ni->ni_vap;
 	struct ieee80211com *ic = ni->ni_ic;
 	struct ieee80211_frame *wh;
 	int ret;
 
 	KASSERT(ni != NULL, ("null node"));
 
 	if (vap->iv_state == IEEE80211_S_CAC) {
 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
 		    ni, "block %s frame in CAC state",
 			ieee80211_mgt_subtype_name(type));
 		vap->iv_stats.is_tx_badstate++;
 		ieee80211_free_node(ni);
 		m_freem(m);
 		return EIO;		/* XXX */
 	}
 
 	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
 	if (m == NULL) {
 		ieee80211_free_node(ni);
 		return ENOMEM;
 	}
 
 	IEEE80211_TX_LOCK(ic);
 
 	wh = mtod(m, struct ieee80211_frame *);
 	ieee80211_send_setup(ni, m,
 	     IEEE80211_FC0_TYPE_MGT | type, IEEE80211_NONQOS_TID,
 	     vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
 	if (params->ibp_flags & IEEE80211_BPF_CRYPTO) {
 		IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_AUTH, wh->i_addr1,
 		    "encrypting frame (%s)", __func__);
 		wh->i_fc[1] |= IEEE80211_FC1_PROTECTED;
 	}
 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
 
 	KASSERT(type != IEEE80211_FC0_SUBTYPE_PROBE_RESP, ("probe response?"));
 	M_WME_SETAC(m, params->ibp_pri);
 
 #ifdef IEEE80211_DEBUG
 	/* avoid printing too many frames */
 	if ((ieee80211_msg_debug(vap) && doprint(vap, type)) ||
 	    ieee80211_msg_dumppkts(vap)) {
 		printf("[%s] send %s on channel %u\n",
 		    ether_sprintf(wh->i_addr1),
 		    ieee80211_mgt_subtype_name(type),
 		    ieee80211_chan2ieee(ic, ic->ic_curchan));
 	}
 #endif
 	IEEE80211_NODE_STAT(ni, tx_mgmt);
 
 	ret = ieee80211_raw_output(vap, ni, m, params);
 	IEEE80211_TX_UNLOCK(ic);
 	return (ret);
 }
 
 static void
 ieee80211_nulldata_transmitted(struct ieee80211_node *ni, void *arg,
     int status)
 {
 	struct ieee80211vap *vap = ni->ni_vap;
 
 	wakeup(vap);
 }
 
 /*
  * Send a null data frame to the specified node.  If the station
  * is setup for QoS then a QoS Null Data frame is constructed.
  * If this is a WDS station then a 4-address frame is constructed.
  *
  * NB: the caller is assumed to have setup a node reference
  *     for use; this is necessary to deal with a race condition
  *     when probing for inactive stations.  Like ieee80211_mgmt_output
  *     we must cleanup any node reference on error;  however we
  *     can safely just unref it as we know it will never be the
  *     last reference to the node.
  */
 int
 ieee80211_send_nulldata(struct ieee80211_node *ni)
 {
 	struct ieee80211vap *vap = ni->ni_vap;
 	struct ieee80211com *ic = ni->ni_ic;
 	struct mbuf *m;
 	struct ieee80211_frame *wh;
 	int hdrlen;
 	uint8_t *frm;
 	int ret;
 
 	if (vap->iv_state == IEEE80211_S_CAC) {
 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
 		    ni, "block %s frame in CAC state", "null data");
 		ieee80211_unref_node(&ni);
 		vap->iv_stats.is_tx_badstate++;
 		return EIO;		/* XXX */
 	}
 
 	if (ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT))
 		hdrlen = sizeof(struct ieee80211_qosframe);
 	else
 		hdrlen = sizeof(struct ieee80211_frame);
 	/* NB: only WDS vap's get 4-address frames */
 	if (vap->iv_opmode == IEEE80211_M_WDS)
 		hdrlen += IEEE80211_ADDR_LEN;
 	if (ic->ic_flags & IEEE80211_F_DATAPAD)
 		hdrlen = roundup(hdrlen, sizeof(uint32_t));
 
 	m = ieee80211_getmgtframe(&frm, ic->ic_headroom + hdrlen, 0);
 	if (m == NULL) {
 		/* XXX debug msg */
 		ieee80211_unref_node(&ni);
 		vap->iv_stats.is_tx_nobuf++;
 		return ENOMEM;
 	}
 	KASSERT(M_LEADINGSPACE(m) >= hdrlen,
 	    ("leading space %zd", M_LEADINGSPACE(m)));
 	M_PREPEND(m, hdrlen, M_NOWAIT);
 	if (m == NULL) {
 		/* NB: cannot happen */
 		ieee80211_free_node(ni);
 		return ENOMEM;
 	}
 
 	IEEE80211_TX_LOCK(ic);
 
 	wh = mtod(m, struct ieee80211_frame *);		/* NB: a little lie */
 	if (ni->ni_flags & IEEE80211_NODE_QOS) {
 		const int tid = WME_AC_TO_TID(WME_AC_BE);
 		uint8_t *qos;
 
 		ieee80211_send_setup(ni, m,
 		    IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_QOS_NULL,
 		    tid, vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
 
 		if (vap->iv_opmode == IEEE80211_M_WDS)
 			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
 		else
 			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
 		qos[0] = tid & IEEE80211_QOS_TID;
 		if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[WME_AC_BE].wmep_noackPolicy)
 			qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
 		qos[1] = 0;
 	} else {
 		ieee80211_send_setup(ni, m,
 		    IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA,
 		    IEEE80211_NONQOS_TID,
 		    vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
 	}
 	if (vap->iv_opmode != IEEE80211_M_WDS) {
 		/* NB: power management bit is never sent by an AP */
 		if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
 		    vap->iv_opmode != IEEE80211_M_HOSTAP)
 			wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT;
 	}
 	if ((ic->ic_flags & IEEE80211_F_SCAN) &&
 	    (ni->ni_flags & IEEE80211_NODE_PWR_MGT)) {
 		ieee80211_add_callback(m, ieee80211_nulldata_transmitted,
 		    NULL);
 	}
 	m->m_len = m->m_pkthdr.len = hdrlen;
 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
 
 	M_WME_SETAC(m, WME_AC_BE);
 
 	IEEE80211_NODE_STAT(ni, tx_data);
 
 	IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, ni,
 	    "send %snull data frame on channel %u, pwr mgt %s",
 	    ni->ni_flags & IEEE80211_NODE_QOS ? "QoS " : "",
 	    ieee80211_chan2ieee(ic, ic->ic_curchan),
 	    wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis");
 
 	ret = ieee80211_raw_output(vap, ni, m, NULL);
 	IEEE80211_TX_UNLOCK(ic);
 	return (ret);
 }
 
 /* 
  * Assign priority to a frame based on any vlan tag assigned
  * to the station and/or any Diffserv setting in an IP header.
  * Finally, if an ACM policy is setup (in station mode) it's
  * applied.
  */
 int
 ieee80211_classify(struct ieee80211_node *ni, struct mbuf *m)
 {
 	const struct ether_header *eh = NULL;
 	uint16_t ether_type;
 	int v_wme_ac, d_wme_ac, ac;
 
 	if (__predict_false(m->m_flags & M_ENCAP)) {
 		struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
 		struct llc *llc;
 		int hdrlen, subtype;
 
 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
 		if (subtype & IEEE80211_FC0_SUBTYPE_NODATA) {
 			ac = WME_AC_BE;
 			goto done;
 		}
 
 		hdrlen = ieee80211_hdrsize(wh);
 		if (m->m_pkthdr.len < hdrlen + sizeof(*llc))
 			return 1;
 
 		llc = (struct llc *)mtodo(m, hdrlen);
 		if (llc->llc_dsap != LLC_SNAP_LSAP ||
 		    llc->llc_ssap != LLC_SNAP_LSAP ||
 		    llc->llc_control != LLC_UI ||
 		    llc->llc_snap.org_code[0] != 0 ||
 		    llc->llc_snap.org_code[1] != 0 ||
 		    llc->llc_snap.org_code[2] != 0)
 			return 1;
 
 		ether_type = llc->llc_snap.ether_type;
 	} else {
 		eh = mtod(m, struct ether_header *);
 		ether_type = eh->ether_type;
 	}
 
 	/*
 	 * Always promote PAE/EAPOL frames to high priority.
 	 */
 	if (ether_type == htons(ETHERTYPE_PAE)) {
 		/* NB: mark so others don't need to check header */
 		m->m_flags |= M_EAPOL;
 		ac = WME_AC_VO;
 		goto done;
 	}
 	/*
 	 * Non-qos traffic goes to BE.
 	 */
 	if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) {
 		ac = WME_AC_BE;
 		goto done;
 	}
 
 	/* 
 	 * If node has a vlan tag then all traffic
 	 * to it must have a matching tag.
 	 */
 	v_wme_ac = 0;
 	if (ni->ni_vlan != 0) {
 		 if ((m->m_flags & M_VLANTAG) == 0) {
 			IEEE80211_NODE_STAT(ni, tx_novlantag);
 			return 1;
 		}
 		if (EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) !=
 		    EVL_VLANOFTAG(ni->ni_vlan)) {
 			IEEE80211_NODE_STAT(ni, tx_vlanmismatch);
 			return 1;
 		}
 		/* map vlan priority to AC */
 		v_wme_ac = TID_TO_WME_AC(EVL_PRIOFTAG(ni->ni_vlan));
 	}
 
 	/* XXX m_copydata may be too slow for fast path */
 #ifdef INET
 	if (eh && eh->ether_type == htons(ETHERTYPE_IP)) {
 		uint8_t tos;
 		/*
 		 * IP frame, map the DSCP bits from the TOS field.
 		 */
 		/* NB: ip header may not be in first mbuf */
 		m_copydata(m, sizeof(struct ether_header) +
 		    offsetof(struct ip, ip_tos), sizeof(tos), &tos);
 		tos >>= 5;		/* NB: ECN + low 3 bits of DSCP */
 		d_wme_ac = TID_TO_WME_AC(tos);
 	} else {
 #endif /* INET */
 #ifdef INET6
 	if (eh && eh->ether_type == htons(ETHERTYPE_IPV6)) {
 		uint32_t flow;
 		uint8_t tos;
 		/*
 		 * IPv6 frame, map the DSCP bits from the traffic class field.
 		 */
 		m_copydata(m, sizeof(struct ether_header) +
 		    offsetof(struct ip6_hdr, ip6_flow), sizeof(flow),
 		    (caddr_t) &flow);
 		tos = (uint8_t)(ntohl(flow) >> 20);
 		tos >>= 5;		/* NB: ECN + low 3 bits of DSCP */
 		d_wme_ac = TID_TO_WME_AC(tos);
 	} else {
 #endif /* INET6 */
 		d_wme_ac = WME_AC_BE;
 #ifdef INET6
 	}
 #endif
 #ifdef INET
 	}
 #endif
 	/*
 	 * Use highest priority AC.
 	 */
 	if (v_wme_ac > d_wme_ac)
 		ac = v_wme_ac;
 	else
 		ac = d_wme_ac;
 
 	/*
 	 * Apply ACM policy.
 	 */
 	if (ni->ni_vap->iv_opmode == IEEE80211_M_STA) {
 		static const int acmap[4] = {
 			WME_AC_BK,	/* WME_AC_BE */
 			WME_AC_BK,	/* WME_AC_BK */
 			WME_AC_BE,	/* WME_AC_VI */
 			WME_AC_VI,	/* WME_AC_VO */
 		};
 		struct ieee80211com *ic = ni->ni_ic;
 
 		while (ac != WME_AC_BK &&
 		    ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm)
 			ac = acmap[ac];
 	}
 done:
 	M_WME_SETAC(m, ac);
 	return 0;
 }
 
 /*
  * Insure there is sufficient contiguous space to encapsulate the
  * 802.11 data frame.  If room isn't already there, arrange for it.
  * Drivers and cipher modules assume we have done the necessary work
  * and fail rudely if they don't find the space they need.
  */
 struct mbuf *
 ieee80211_mbuf_adjust(struct ieee80211vap *vap, int hdrsize,
 	struct ieee80211_key *key, struct mbuf *m)
 {
 #define	TO_BE_RECLAIMED	(sizeof(struct ether_header) - sizeof(struct llc))
 	int needed_space = vap->iv_ic->ic_headroom + hdrsize;
 
 	if (key != NULL) {
 		/* XXX belongs in crypto code? */
 		needed_space += key->wk_cipher->ic_header;
 		/* XXX frags */
 		/*
 		 * When crypto is being done in the host we must insure
 		 * the data are writable for the cipher routines; clone
 		 * a writable mbuf chain.
 		 * XXX handle SWMIC specially
 		 */
 		if (key->wk_flags & (IEEE80211_KEY_SWENCRYPT|IEEE80211_KEY_SWENMIC)) {
 			m = m_unshare(m, M_NOWAIT);
 			if (m == NULL) {
 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
 				    "%s: cannot get writable mbuf\n", __func__);
 				vap->iv_stats.is_tx_nobuf++; /* XXX new stat */
 				return NULL;
 			}
 		}
 	}
 	/*
 	 * We know we are called just before stripping an Ethernet
 	 * header and prepending an LLC header.  This means we know
 	 * there will be
 	 *	sizeof(struct ether_header) - sizeof(struct llc)
 	 * bytes recovered to which we need additional space for the
 	 * 802.11 header and any crypto header.
 	 */
 	/* XXX check trailing space and copy instead? */
 	if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) {
 		struct mbuf *n = m_gethdr(M_NOWAIT, m->m_type);
 		if (n == NULL) {
 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
 			    "%s: cannot expand storage\n", __func__);
 			vap->iv_stats.is_tx_nobuf++;
 			m_freem(m);
 			return NULL;
 		}
 		KASSERT(needed_space <= MHLEN,
 		    ("not enough room, need %u got %d\n", needed_space, MHLEN));
 		/*
 		 * Setup new mbuf to have leading space to prepend the
 		 * 802.11 header and any crypto header bits that are
 		 * required (the latter are added when the driver calls
 		 * back to ieee80211_crypto_encap to do crypto encapsulation).
 		 */
 		/* NB: must be first 'cuz it clobbers m_data */
 		m_move_pkthdr(n, m);
 		n->m_len = 0;			/* NB: m_gethdr does not set */
 		n->m_data += needed_space;
 		/*
 		 * Pull up Ethernet header to create the expected layout.
 		 * We could use m_pullup but that's overkill (i.e. we don't
 		 * need the actual data) and it cannot fail so do it inline
 		 * for speed.
 		 */
 		/* NB: struct ether_header is known to be contiguous */
 		n->m_len += sizeof(struct ether_header);
 		m->m_len -= sizeof(struct ether_header);
 		m->m_data += sizeof(struct ether_header);
 		/*
 		 * Replace the head of the chain.
 		 */
 		n->m_next = m;
 		m = n;
 	}
 	return m;
 #undef TO_BE_RECLAIMED
 }
 
 /*
  * Return the transmit key to use in sending a unicast frame.
  * If a unicast key is set we use that.  When no unicast key is set
  * we fall back to the default transmit key.
  */ 
 static __inline struct ieee80211_key *
 ieee80211_crypto_getucastkey(struct ieee80211vap *vap,
 	struct ieee80211_node *ni)
 {
 	if (IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)) {
 		if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
 		    IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
 			return NULL;
 		return &vap->iv_nw_keys[vap->iv_def_txkey];
 	} else {
 		return &ni->ni_ucastkey;
 	}
 }
 
 /*
  * Return the transmit key to use in sending a multicast frame.
  * Multicast traffic always uses the group key which is installed as
  * the default tx key.
  */ 
 static __inline struct ieee80211_key *
 ieee80211_crypto_getmcastkey(struct ieee80211vap *vap,
 	struct ieee80211_node *ni)
 {
 	if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
 	    IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
 		return NULL;
 	return &vap->iv_nw_keys[vap->iv_def_txkey];
 }
 
 /*
  * Encapsulate an outbound data frame.  The mbuf chain is updated.
  * If an error is encountered NULL is returned.  The caller is required
  * to provide a node reference and pullup the ethernet header in the
  * first mbuf.
  *
  * NB: Packet is assumed to be processed by ieee80211_classify which
  *     marked EAPOL frames w/ M_EAPOL.
  */
 struct mbuf *
 ieee80211_encap(struct ieee80211vap *vap, struct ieee80211_node *ni,
     struct mbuf *m)
 {
 #define	WH4(wh)	((struct ieee80211_frame_addr4 *)(wh))
 #define MC01(mc)	((struct ieee80211_meshcntl_ae01 *)mc)
 	struct ieee80211com *ic = ni->ni_ic;
 #ifdef IEEE80211_SUPPORT_MESH
 	struct ieee80211_mesh_state *ms = vap->iv_mesh;
 	struct ieee80211_meshcntl_ae10 *mc;
 	struct ieee80211_mesh_route *rt = NULL;
 	int dir = -1;
 #endif
 	struct ether_header eh;
 	struct ieee80211_frame *wh;
 	struct ieee80211_key *key;
 	struct llc *llc;
 	int hdrsize, hdrspace, datalen, addqos, txfrag, is4addr, is_mcast;
 	ieee80211_seq seqno;
 	int meshhdrsize, meshae;
 	uint8_t *qos;
 	int is_amsdu = 0;
 
 	IEEE80211_TX_LOCK_ASSERT(ic);
 
 	is_mcast = !! (m->m_flags & (M_MCAST | M_BCAST));
 
 	/*
 	 * Copy existing Ethernet header to a safe place.  The
 	 * rest of the code assumes it's ok to strip it when
 	 * reorganizing state for the final encapsulation.
 	 */
 	KASSERT(m->m_len >= sizeof(eh), ("no ethernet header!"));
 	ETHER_HEADER_COPY(&eh, mtod(m, caddr_t));
 
 	/*
 	 * Insure space for additional headers.  First identify
 	 * transmit key to use in calculating any buffer adjustments
 	 * required.  This is also used below to do privacy
 	 * encapsulation work.  Then calculate the 802.11 header
 	 * size and any padding required by the driver.
 	 *
 	 * Note key may be NULL if we fall back to the default
 	 * transmit key and that is not set.  In that case the
 	 * buffer may not be expanded as needed by the cipher
 	 * routines, but they will/should discard it.
 	 */
 	if (vap->iv_flags & IEEE80211_F_PRIVACY) {
 		if (vap->iv_opmode == IEEE80211_M_STA ||
 		    !IEEE80211_IS_MULTICAST(eh.ether_dhost) ||
 		    (vap->iv_opmode == IEEE80211_M_WDS &&
 		     (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY))) {
 			key = ieee80211_crypto_getucastkey(vap, ni);
 		} else if ((vap->iv_opmode == IEEE80211_M_WDS) &&
 		    (! (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY))) {
 			/*
 			 * Use ucastkey for DWDS transmit nodes, multicast
 			 * or otherwise.
 			 *
 			 * This is required to ensure that multicast frames
 			 * from a DWDS AP to a DWDS STA is encrypted with
 			 * a key that can actually work.
 			 *
 			 * There's no default key for multicast traffic
 			 * on a DWDS WDS VAP node (note NOT the DWDS enabled
 			 * AP VAP, the dynamically created per-STA WDS node)
 			 * so encap fails and transmit fails.
 			 */
 			key = ieee80211_crypto_getucastkey(vap, ni);
 		} else {
 			key = ieee80211_crypto_getmcastkey(vap, ni);
 		}
 		if (key == NULL && (m->m_flags & M_EAPOL) == 0) {
 			IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO,
 			    eh.ether_dhost,
 			    "no default transmit key (%s) deftxkey %u",
 			    __func__, vap->iv_def_txkey);
 			vap->iv_stats.is_tx_nodefkey++;
 			goto bad;
 		}
 	} else
 		key = NULL;
 	/*
 	 * XXX Some ap's don't handle QoS-encapsulated EAPOL
 	 * frames so suppress use.  This may be an issue if other
 	 * ap's require all data frames to be QoS-encapsulated
 	 * once negotiated in which case we'll need to make this
 	 * configurable.
 	 *
 	 * Don't send multicast QoS frames.
 	 * Technically multicast frames can be QoS if all stations in the
 	 * BSS are also QoS.
 	 *
 	 * NB: mesh data frames are QoS, including multicast frames.
 	 */
 	addqos =
 	    (((is_mcast == 0) && (ni->ni_flags &
 	     (IEEE80211_NODE_QOS|IEEE80211_NODE_HT))) ||
 	    (vap->iv_opmode == IEEE80211_M_MBSS)) &&
 	    (m->m_flags & M_EAPOL) == 0;
 
 	if (addqos)
 		hdrsize = sizeof(struct ieee80211_qosframe);
 	else
 		hdrsize = sizeof(struct ieee80211_frame);
 #ifdef IEEE80211_SUPPORT_MESH
 	if (vap->iv_opmode == IEEE80211_M_MBSS) {
 		/*
 		 * Mesh data frames are encapsulated according to the
 		 * rules of Section 11B.8.5 (p.139 of D3.0 spec).
 		 * o Group Addressed data (aka multicast) originating
 		 *   at the local sta are sent w/ 3-address format and
 		 *   address extension mode 00
 		 * o Individually Addressed data (aka unicast) originating
 		 *   at the local sta are sent w/ 4-address format and
 		 *   address extension mode 00
 		 * o Group Addressed data forwarded from a non-mesh sta are
 		 *   sent w/ 3-address format and address extension mode 01
 		 * o Individually Address data from another sta are sent
 		 *   w/ 4-address format and address extension mode 10
 		 */
 		is4addr = 0;		/* NB: don't use, disable */
 		if (!IEEE80211_IS_MULTICAST(eh.ether_dhost)) {
 			rt = ieee80211_mesh_rt_find(vap, eh.ether_dhost);
 			KASSERT(rt != NULL, ("route is NULL"));
 			dir = IEEE80211_FC1_DIR_DSTODS;
 			hdrsize += IEEE80211_ADDR_LEN;
 			if (rt->rt_flags & IEEE80211_MESHRT_FLAGS_PROXY) {
 				if (IEEE80211_ADDR_EQ(rt->rt_mesh_gate,
 				    vap->iv_myaddr)) {
 					IEEE80211_NOTE_MAC(vap,
 					    IEEE80211_MSG_MESH,
 					    eh.ether_dhost,
 					    "%s", "trying to send to ourself");
 					goto bad;
 				}
 				meshae = IEEE80211_MESH_AE_10;
 				meshhdrsize =
 				    sizeof(struct ieee80211_meshcntl_ae10);
 			} else {
 				meshae = IEEE80211_MESH_AE_00;
 				meshhdrsize =
 				    sizeof(struct ieee80211_meshcntl);
 			}
 		} else {
 			dir = IEEE80211_FC1_DIR_FROMDS;
 			if (!IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr)) {
 				/* proxy group */
 				meshae = IEEE80211_MESH_AE_01;
 				meshhdrsize =
 				    sizeof(struct ieee80211_meshcntl_ae01);
 			} else {
 				/* group */
 				meshae = IEEE80211_MESH_AE_00;
 				meshhdrsize = sizeof(struct ieee80211_meshcntl);
 			}
 		}
 	} else {
 #endif
 		/*
 		 * 4-address frames need to be generated for:
 		 * o packets sent through a WDS vap (IEEE80211_M_WDS)
 		 * o packets sent through a vap marked for relaying
 		 *   (e.g. a station operating with dynamic WDS)
 		 */
 		is4addr = vap->iv_opmode == IEEE80211_M_WDS ||
 		    ((vap->iv_flags_ext & IEEE80211_FEXT_4ADDR) &&
 		     !IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr));
 		if (is4addr)
 			hdrsize += IEEE80211_ADDR_LEN;
 		meshhdrsize = meshae = 0;
 #ifdef IEEE80211_SUPPORT_MESH
 	}
 #endif
 	/*
 	 * Honor driver DATAPAD requirement.
 	 */
 	if (ic->ic_flags & IEEE80211_F_DATAPAD)
 		hdrspace = roundup(hdrsize, sizeof(uint32_t));
 	else
 		hdrspace = hdrsize;
 
 	if (__predict_true((m->m_flags & M_FF) == 0)) {
 		/*
 		 * Normal frame.
 		 */
 		m = ieee80211_mbuf_adjust(vap, hdrspace + meshhdrsize, key, m);
 		if (m == NULL) {
 			/* NB: ieee80211_mbuf_adjust handles msgs+statistics */
 			goto bad;
 		}
 		/* NB: this could be optimized 'cuz of ieee80211_mbuf_adjust */
 		m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
 		llc = mtod(m, struct llc *);
 		llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
 		llc->llc_control = LLC_UI;
 		llc->llc_snap.org_code[0] = 0;
 		llc->llc_snap.org_code[1] = 0;
 		llc->llc_snap.org_code[2] = 0;
 		llc->llc_snap.ether_type = eh.ether_type;
 	} else {
 #ifdef IEEE80211_SUPPORT_SUPERG
 		/*
 		 * Aggregated frame.  Check if it's for AMSDU or FF.
 		 *
 		 * XXX TODO: IEEE80211_NODE_AMSDU* isn't implemented
 		 * anywhere for some reason.  But, since 11n requires
 		 * AMSDU RX, we can just assume "11n" == "AMSDU".
 		 */
 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, "%s: called; M_FF\n", __func__);
 		if (ieee80211_amsdu_tx_ok(ni)) {
 			m = ieee80211_amsdu_encap(vap, m, hdrspace + meshhdrsize, key);
 			is_amsdu = 1;
 		} else {
 			m = ieee80211_ff_encap(vap, m, hdrspace + meshhdrsize, key);
 		}
 		if (m == NULL)
 #endif
 			goto bad;
 	}
 	datalen = m->m_pkthdr.len;		/* NB: w/o 802.11 header */
 
 	M_PREPEND(m, hdrspace + meshhdrsize, M_NOWAIT);
 	if (m == NULL) {
 		vap->iv_stats.is_tx_nobuf++;
 		goto bad;
 	}
 	wh = mtod(m, struct ieee80211_frame *);
 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA;
 	*(uint16_t *)wh->i_dur = 0;
 	qos = NULL;	/* NB: quiet compiler */
 	if (is4addr) {
 		wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
 		IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr);
 		IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
 		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
 		IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, eh.ether_shost);
 	} else switch (vap->iv_opmode) {
 	case IEEE80211_M_STA:
 		wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
 		IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid);
 		IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
 		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
 		break;
 	case IEEE80211_M_IBSS:
 	case IEEE80211_M_AHDEMO:
 		wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
 		IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
 		IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
 		/*
 		 * NB: always use the bssid from iv_bss as the
 		 *     neighbor's may be stale after an ibss merge
 		 */
 		IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_bss->ni_bssid);
 		break;
 	case IEEE80211_M_HOSTAP:
 		wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
 		IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
 		IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid);
 		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost);
 		break;
 #ifdef IEEE80211_SUPPORT_MESH
 	case IEEE80211_M_MBSS:
 		/* NB: offset by hdrspace to deal with DATAPAD */
 		mc = (struct ieee80211_meshcntl_ae10 *)
 		     (mtod(m, uint8_t *) + hdrspace);
 		wh->i_fc[1] = dir;
 		switch (meshae) {
 		case IEEE80211_MESH_AE_00:	/* no proxy */
 			mc->mc_flags = 0;
 			if (dir == IEEE80211_FC1_DIR_DSTODS) { /* ucast */
 				IEEE80211_ADDR_COPY(wh->i_addr1,
 				    ni->ni_macaddr);
 				IEEE80211_ADDR_COPY(wh->i_addr2,
 				    vap->iv_myaddr);
 				IEEE80211_ADDR_COPY(wh->i_addr3,
 				    eh.ether_dhost);
 				IEEE80211_ADDR_COPY(WH4(wh)->i_addr4,
 				    eh.ether_shost);
 				qos =((struct ieee80211_qosframe_addr4 *)
 				    wh)->i_qos;
 			} else if (dir == IEEE80211_FC1_DIR_FROMDS) {
 				 /* mcast */
 				IEEE80211_ADDR_COPY(wh->i_addr1,
 				    eh.ether_dhost);
 				IEEE80211_ADDR_COPY(wh->i_addr2,
 				    vap->iv_myaddr);
 				IEEE80211_ADDR_COPY(wh->i_addr3,
 				    eh.ether_shost);
 				qos = ((struct ieee80211_qosframe *)
 				    wh)->i_qos;
 			}
 			break;
 		case IEEE80211_MESH_AE_01:	/* mcast, proxy */
 			wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
 			IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
 			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
 			IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_myaddr);
 			mc->mc_flags = 1;
 			IEEE80211_ADDR_COPY(MC01(mc)->mc_addr4,
 			    eh.ether_shost);
 			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
 			break;
 		case IEEE80211_MESH_AE_10:	/* ucast, proxy */
 			KASSERT(rt != NULL, ("route is NULL"));
 			IEEE80211_ADDR_COPY(wh->i_addr1, rt->rt_nexthop);
 			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
 			IEEE80211_ADDR_COPY(wh->i_addr3, rt->rt_mesh_gate);
 			IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, vap->iv_myaddr);
 			mc->mc_flags = IEEE80211_MESH_AE_10;
 			IEEE80211_ADDR_COPY(mc->mc_addr5, eh.ether_dhost);
 			IEEE80211_ADDR_COPY(mc->mc_addr6, eh.ether_shost);
 			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
 			break;
 		default:
 			KASSERT(0, ("meshae %d", meshae));
 			break;
 		}
 		mc->mc_ttl = ms->ms_ttl;
 		ms->ms_seq++;
 		le32enc(mc->mc_seq, ms->ms_seq);
 		break;
 #endif
 	case IEEE80211_M_WDS:		/* NB: is4addr should always be true */
 	default:
 		goto bad;
 	}
 	if (m->m_flags & M_MORE_DATA)
 		wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
 	if (addqos) {
 		int ac, tid;
 
 		if (is4addr) {
 			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
 		/* NB: mesh case handled earlier */
 		} else if (vap->iv_opmode != IEEE80211_M_MBSS)
 			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
 		ac = M_WME_GETAC(m);
 		/* map from access class/queue to 11e header priorty value */
 		tid = WME_AC_TO_TID(ac);
 		qos[0] = tid & IEEE80211_QOS_TID;
 		if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy)
 			qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
 #ifdef IEEE80211_SUPPORT_MESH
 		if (vap->iv_opmode == IEEE80211_M_MBSS)
 			qos[1] = IEEE80211_QOS_MC;
 		else
 #endif
 			qos[1] = 0;
 		wh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS;
 
 		/*
 		 * If this is an A-MSDU then ensure we set the
 		 * relevant field.
 		 */
 		if (is_amsdu)
 			qos[0] |= IEEE80211_QOS_AMSDU;
 
 		/*
 		 * XXX TODO TX lock is needed for atomic updates of sequence
 		 * numbers.  If the driver does it, then don't do it here;
 		 * and we don't need the TX lock held.
 		 */
 		if ((m->m_flags & M_AMPDU_MPDU) == 0) {
 			/*
 			 * 802.11-2012 9.3.2.10 -
 			 *
 			 * If this is a multicast frame then we need
 			 * to ensure that the sequence number comes from
 			 * a separate seqno space and not the TID space.
 			 *
 			 * Otherwise multicast frames may actually cause
 			 * holes in the TX blockack window space and
 			 * upset various things.
 			 */
 			if (IEEE80211_IS_MULTICAST(wh->i_addr1))
 				seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
 			else
 				seqno = ni->ni_txseqs[tid]++;
 
 			/*
 			 * NB: don't assign a sequence # to potential
 			 * aggregates; we expect this happens at the
 			 * point the frame comes off any aggregation q
 			 * as otherwise we may introduce holes in the
 			 * BA sequence space and/or make window accouting
 			 * more difficult.
 			 *
 			 * XXX may want to control this with a driver
 			 * capability; this may also change when we pull
 			 * aggregation up into net80211
 			 */
 			*(uint16_t *)wh->i_seq =
 			    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
 			M_SEQNO_SET(m, seqno);
 		} else {
 			/* NB: zero out i_seq field (for s/w encryption etc) */
 			*(uint16_t *)wh->i_seq = 0;
 		}
 	} else {
 		/*
 		 * XXX TODO TX lock is needed for atomic updates of sequence
 		 * numbers.  If the driver does it, then don't do it here;
 		 * and we don't need the TX lock held.
 		 */
 		seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
 		*(uint16_t *)wh->i_seq =
 		    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
 		M_SEQNO_SET(m, seqno);
 
 		/*
 		 * XXX TODO: we shouldn't allow EAPOL, etc that would
 		 * be forced to be non-QoS traffic to be A-MSDU encapsulated.
 		 */
 		if (is_amsdu)
 			printf("%s: XXX ERROR: is_amsdu set; not QoS!\n",
 			    __func__);
 	}
 
 	/*
 	 * Check if xmit fragmentation is required.
 	 *
 	 * If the hardware does fragmentation offload, then don't bother
 	 * doing it here.
 	 */
 	if (IEEE80211_CONF_FRAG_OFFLOAD(ic))
 		txfrag = 0;
 	else
 		txfrag = (m->m_pkthdr.len > vap->iv_fragthreshold &&
 		    !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
 		    (vap->iv_caps & IEEE80211_C_TXFRAG) &&
 		    (m->m_flags & (M_FF | M_AMPDU_MPDU)) == 0);
 
 	if (key != NULL) {
 		/*
 		 * IEEE 802.1X: send EAPOL frames always in the clear.
 		 * WPA/WPA2: encrypt EAPOL keys when pairwise keys are set.
 		 */
 		if ((m->m_flags & M_EAPOL) == 0 ||
 		    ((vap->iv_flags & IEEE80211_F_WPA) &&
 		     (vap->iv_opmode == IEEE80211_M_STA ?
 		      !IEEE80211_KEY_UNDEFINED(key) :
 		      !IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)))) {
 			wh->i_fc[1] |= IEEE80211_FC1_PROTECTED;
 			if (!ieee80211_crypto_enmic(vap, key, m, txfrag)) {
 				IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_OUTPUT,
 				    eh.ether_dhost,
 				    "%s", "enmic failed, discard frame");
 				vap->iv_stats.is_crypto_enmicfail++;
 				goto bad;
 			}
 		}
 	}
 	if (txfrag && !ieee80211_fragment(vap, m, hdrsize,
 	    key != NULL ? key->wk_cipher->ic_header : 0, vap->iv_fragthreshold))
 		goto bad;
 
 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
 
 	IEEE80211_NODE_STAT(ni, tx_data);
 	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
 		IEEE80211_NODE_STAT(ni, tx_mcast);
 		m->m_flags |= M_MCAST;
 	} else
 		IEEE80211_NODE_STAT(ni, tx_ucast);
 	IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen);
 
 	return m;
 bad:
 	if (m != NULL)
 		m_freem(m);
 	return NULL;
 #undef WH4
 #undef MC01
 }
 
 void
 ieee80211_free_mbuf(struct mbuf *m)
 {
 	struct mbuf *next;
 
 	if (m == NULL)
 		return;
 
 	do {
 		next = m->m_nextpkt;
 		m->m_nextpkt = NULL;
 		m_freem(m);
 	} while ((m = next) != NULL);
 }
 
 /*
  * Fragment the frame according to the specified mtu.
  * The size of the 802.11 header (w/o padding) is provided
  * so we don't need to recalculate it.  We create a new
  * mbuf for each fragment and chain it through m_nextpkt;
  * we might be able to optimize this by reusing the original
  * packet's mbufs but that is significantly more complicated.
  */
 static int
 ieee80211_fragment(struct ieee80211vap *vap, struct mbuf *m0,
 	u_int hdrsize, u_int ciphdrsize, u_int mtu)
 {
 	struct ieee80211com *ic = vap->iv_ic;
 	struct ieee80211_frame *wh, *whf;
 	struct mbuf *m, *prev;
 	u_int totalhdrsize, fragno, fragsize, off, remainder, payload;
 	u_int hdrspace;
 
 	KASSERT(m0->m_nextpkt == NULL, ("mbuf already chained?"));
 	KASSERT(m0->m_pkthdr.len > mtu,
 		("pktlen %u mtu %u", m0->m_pkthdr.len, mtu));
 
 	/*
 	 * Honor driver DATAPAD requirement.
 	 */
 	if (ic->ic_flags & IEEE80211_F_DATAPAD)
 		hdrspace = roundup(hdrsize, sizeof(uint32_t));
 	else
 		hdrspace = hdrsize;
 
 	wh = mtod(m0, struct ieee80211_frame *);
 	/* NB: mark the first frag; it will be propagated below */
 	wh->i_fc[1] |= IEEE80211_FC1_MORE_FRAG;
 	totalhdrsize = hdrspace + ciphdrsize;
 	fragno = 1;
 	off = mtu - ciphdrsize;
 	remainder = m0->m_pkthdr.len - off;
 	prev = m0;
 	do {
 		fragsize = MIN(totalhdrsize + remainder, mtu);
 		m = m_get2(fragsize, M_NOWAIT, MT_DATA, M_PKTHDR);
 		if (m == NULL)
 			goto bad;
 		/* leave room to prepend any cipher header */
 		m_align(m, fragsize - ciphdrsize);
 
 		/*
 		 * Form the header in the fragment.  Note that since
 		 * we mark the first fragment with the MORE_FRAG bit
 		 * it automatically is propagated to each fragment; we
 		 * need only clear it on the last fragment (done below).
 		 * NB: frag 1+ dont have Mesh Control field present.
 		 */
 		whf = mtod(m, struct ieee80211_frame *);
 		memcpy(whf, wh, hdrsize);
 #ifdef IEEE80211_SUPPORT_MESH
 		if (vap->iv_opmode == IEEE80211_M_MBSS)
 			ieee80211_getqos(wh)[1] &= ~IEEE80211_QOS_MC;
 #endif
 		*(uint16_t *)&whf->i_seq[0] |= htole16(
 			(fragno & IEEE80211_SEQ_FRAG_MASK) <<
 				IEEE80211_SEQ_FRAG_SHIFT);
 		fragno++;
 
 		payload = fragsize - totalhdrsize;
 		/* NB: destination is known to be contiguous */
 
 		m_copydata(m0, off, payload, mtod(m, uint8_t *) + hdrspace);
 		m->m_len = hdrspace + payload;
 		m->m_pkthdr.len = hdrspace + payload;
 		m->m_flags |= M_FRAG;
 
 		/* chain up the fragment */
 		prev->m_nextpkt = m;
 		prev = m;
 
 		/* deduct fragment just formed */
 		remainder -= payload;
 		off += payload;
 	} while (remainder != 0);
 
 	/* set the last fragment */
 	m->m_flags |= M_LASTFRAG;
 	whf->i_fc[1] &= ~IEEE80211_FC1_MORE_FRAG;
 
 	/* strip first mbuf now that everything has been copied */
 	m_adj(m0, -(m0->m_pkthdr.len - (mtu - ciphdrsize)));
 	m0->m_flags |= M_FIRSTFRAG | M_FRAG;
 
 	vap->iv_stats.is_tx_fragframes++;
 	vap->iv_stats.is_tx_frags += fragno-1;
 
 	return 1;
 bad:
 	/* reclaim fragments but leave original frame for caller to free */
 	ieee80211_free_mbuf(m0->m_nextpkt);
 	m0->m_nextpkt = NULL;
 	return 0;
 }
 
 /*
  * Add a supported rates element id to a frame.
  */
 uint8_t *
 ieee80211_add_rates(uint8_t *frm, const struct ieee80211_rateset *rs)
 {
 	int nrates;
 
 	*frm++ = IEEE80211_ELEMID_RATES;
 	nrates = rs->rs_nrates;
 	if (nrates > IEEE80211_RATE_SIZE)
 		nrates = IEEE80211_RATE_SIZE;
 	*frm++ = nrates;
 	memcpy(frm, rs->rs_rates, nrates);
 	return frm + nrates;
 }
 
 /*
  * Add an extended supported rates element id to a frame.
  */
 uint8_t *
 ieee80211_add_xrates(uint8_t *frm, const struct ieee80211_rateset *rs)
 {
 	/*
 	 * Add an extended supported rates element if operating in 11g mode.
 	 */
 	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
 		int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
 		*frm++ = IEEE80211_ELEMID_XRATES;
 		*frm++ = nrates;
 		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
 		frm += nrates;
 	}
 	return frm;
 }
 
 /* 
  * Add an ssid element to a frame.
  */
 uint8_t *
 ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, u_int len)
 {
 	*frm++ = IEEE80211_ELEMID_SSID;
 	*frm++ = len;
 	memcpy(frm, ssid, len);
 	return frm + len;
 }
 
 /*
  * Add an erp element to a frame.
  */
 static uint8_t *
 ieee80211_add_erp(uint8_t *frm, struct ieee80211vap *vap)
 {
 	struct ieee80211com *ic = vap->iv_ic;
 	uint8_t erp;
 
 	*frm++ = IEEE80211_ELEMID_ERP;
 	*frm++ = 1;
 	erp = 0;
 
 	/*
 	 * TODO:  This uses the global flags for now because
 	 * the per-VAP flags are fine for per-VAP, but don't
 	 * take into account which VAPs share the same channel
 	 * and which are on different channels.
 	 *
 	 * ERP and HT/VHT protection mode is a function of
 	 * how many stations are on a channel, not specifically
 	 * the VAP or global.  But, until we grow that status,
 	 * the global flag will have to do.
 	 */
 	if (ic->ic_flags_ext & IEEE80211_FEXT_NONERP_PR)
 		erp |= IEEE80211_ERP_NON_ERP_PRESENT;
 
 	/*
 	 * TODO: same as above; these should be based not
 	 * on the vap or ic flags, but instead on a combination
 	 * of per-VAP and channels.
 	 */
 	if (ic->ic_flags & IEEE80211_F_USEPROT)
 		erp |= IEEE80211_ERP_USE_PROTECTION;
 	if (ic->ic_flags & IEEE80211_F_USEBARKER)
 		erp |= IEEE80211_ERP_LONG_PREAMBLE;
 	*frm++ = erp;
 	return frm;
 }
 
 /*
  * Add a CFParams element to a frame.
  */
 static uint8_t *
 ieee80211_add_cfparms(uint8_t *frm, struct ieee80211com *ic)
 {
 #define	ADDSHORT(frm, v) do {	\
 	le16enc(frm, v);	\
 	frm += 2;		\
 } while (0)
 	*frm++ = IEEE80211_ELEMID_CFPARMS;
 	*frm++ = 6;
 	*frm++ = 0;		/* CFP count */
 	*frm++ = 2;		/* CFP period */
 	ADDSHORT(frm, 0);	/* CFP MaxDuration (TU) */
 	ADDSHORT(frm, 0);	/* CFP CurRemaining (TU) */
 	return frm;
 #undef ADDSHORT
 }
 
 static __inline uint8_t *
 add_appie(uint8_t *frm, const struct ieee80211_appie *ie)
 {
 	memcpy(frm, ie->ie_data, ie->ie_len);
 	return frm + ie->ie_len;
 }
 
 static __inline uint8_t *
 add_ie(uint8_t *frm, const uint8_t *ie)
 {
 	memcpy(frm, ie, 2 + ie[1]);
 	return frm + 2 + ie[1];
 }
 
 #define	WME_OUI_BYTES		0x00, 0x50, 0xf2
 /*
  * Add a WME information element to a frame.
  */
 uint8_t *
 ieee80211_add_wme_info(uint8_t *frm, struct ieee80211_wme_state *wme,
     struct ieee80211_node *ni)
 {
 	static const uint8_t oui[4] = { WME_OUI_BYTES, WME_OUI_TYPE };
 	struct ieee80211vap *vap = ni->ni_vap;
 
 	*frm++ = IEEE80211_ELEMID_VENDOR;
 	*frm++ = sizeof(struct ieee80211_wme_info) - 2;
 	memcpy(frm, oui, sizeof(oui));
 	frm += sizeof(oui);
 	*frm++ = WME_INFO_OUI_SUBTYPE;
 	*frm++ = WME_VERSION;
 
 	/* QoS info field depends upon operating mode */
 	switch (vap->iv_opmode) {
 	case IEEE80211_M_HOSTAP:
 		*frm = wme->wme_bssChanParams.cap_info;
 		if (vap->iv_flags_ext & IEEE80211_FEXT_UAPSD)
 			*frm |= WME_CAPINFO_UAPSD_EN;
 		frm++;
 		break;
 	case IEEE80211_M_STA:
 		/*
 		 * NB: UAPSD drivers must set this up in their
 		 * VAP creation method.
 		 */
 		*frm++ = vap->iv_uapsdinfo;
 		break;
 	default:
 		*frm++ = 0;
 		break;
 	}
 
 	return frm;
 }
 
 /*
  * Add a WME parameters element to a frame.
  */
 static uint8_t *
 ieee80211_add_wme_param(uint8_t *frm, struct ieee80211_wme_state *wme,
     int uapsd_enable)
 {
 #define	ADDSHORT(frm, v) do {	\
 	le16enc(frm, v);	\
 	frm += 2;		\
 } while (0)
 	/* NB: this works 'cuz a param has an info at the front */
 	static const struct ieee80211_wme_info param = {
 		.wme_id		= IEEE80211_ELEMID_VENDOR,
 		.wme_len	= sizeof(struct ieee80211_wme_param) - 2,
 		.wme_oui	= { WME_OUI_BYTES },
 		.wme_type	= WME_OUI_TYPE,
 		.wme_subtype	= WME_PARAM_OUI_SUBTYPE,
 		.wme_version	= WME_VERSION,
 	};
 	int i;
 
 	memcpy(frm, &param, sizeof(param));
 	frm += __offsetof(struct ieee80211_wme_info, wme_info);
 	*frm = wme->wme_bssChanParams.cap_info;	/* AC info */
 	if (uapsd_enable)
 		*frm |= WME_CAPINFO_UAPSD_EN;
 	frm++;
 	*frm++ = 0;					/* reserved field */
 	/* XXX TODO - U-APSD bits - SP, flags below */
 	for (i = 0; i < WME_NUM_AC; i++) {
 		const struct wmeParams *ac =
 		       &wme->wme_bssChanParams.cap_wmeParams[i];
 		*frm++ = _IEEE80211_SHIFTMASK(i, WME_PARAM_ACI)
 		       | _IEEE80211_SHIFTMASK(ac->wmep_acm, WME_PARAM_ACM)
 		       | _IEEE80211_SHIFTMASK(ac->wmep_aifsn, WME_PARAM_AIFSN)
 		       ;
 		*frm++ = _IEEE80211_SHIFTMASK(ac->wmep_logcwmax,
 			    WME_PARAM_LOGCWMAX)
 		       | _IEEE80211_SHIFTMASK(ac->wmep_logcwmin,
 			    WME_PARAM_LOGCWMIN)
 		       ;
 		ADDSHORT(frm, ac->wmep_txopLimit);
 	}
 	return frm;
 #undef ADDSHORT
 }
 #undef WME_OUI_BYTES
 
 /*
  * Add an 11h Power Constraint element to a frame.
  */
 static uint8_t *
 ieee80211_add_powerconstraint(uint8_t *frm, struct ieee80211vap *vap)
 {
 	const struct ieee80211_channel *c = vap->iv_bss->ni_chan;
 	/* XXX per-vap tx power limit? */
 	int8_t limit = vap->iv_ic->ic_txpowlimit / 2;
 
 	frm[0] = IEEE80211_ELEMID_PWRCNSTR;
 	frm[1] = 1;
 	frm[2] = c->ic_maxregpower > limit ?  c->ic_maxregpower - limit : 0;
 	return frm + 3;
 }
 
 /*
  * Add an 11h Power Capability element to a frame.
  */
 static uint8_t *
 ieee80211_add_powercapability(uint8_t *frm, const struct ieee80211_channel *c)
 {
 	frm[0] = IEEE80211_ELEMID_PWRCAP;
 	frm[1] = 2;
 	frm[2] = c->ic_minpower;
 	frm[3] = c->ic_maxpower;
 	return frm + 4;
 }
 
 /*
  * Add an 11h Supported Channels element to a frame.
  */
 static uint8_t *
 ieee80211_add_supportedchannels(uint8_t *frm, struct ieee80211com *ic)
 {
 	static const int ielen = 26;
 
 	frm[0] = IEEE80211_ELEMID_SUPPCHAN;
 	frm[1] = ielen;
 	/* XXX not correct */
 	memcpy(frm+2, ic->ic_chan_avail, ielen);
 	return frm + 2 + ielen;
 }
 
 /*
  * Add an 11h Quiet time element to a frame.
  */
 static uint8_t *
 ieee80211_add_quiet(uint8_t *frm, struct ieee80211vap *vap, int update)
 {
 	struct ieee80211_quiet_ie *quiet = (struct ieee80211_quiet_ie *) frm;
 
 	quiet->quiet_ie = IEEE80211_ELEMID_QUIET;
 	quiet->len = 6;
 
 	/*
 	 * Only update every beacon interval - otherwise probe responses
 	 * would update the quiet count value.
 	 */
 	if (update) {
 		if (vap->iv_quiet_count_value == 1)
 			vap->iv_quiet_count_value = vap->iv_quiet_count;
 		else if (vap->iv_quiet_count_value > 1)
 			vap->iv_quiet_count_value--;
 	}
 
 	if (vap->iv_quiet_count_value == 0) {
 		/* value 0 is reserved as per 802.11h standerd */
 		vap->iv_quiet_count_value = 1;
 	}
 
 	quiet->tbttcount = vap->iv_quiet_count_value;
 	quiet->period = vap->iv_quiet_period;
 	quiet->duration = htole16(vap->iv_quiet_duration);
 	quiet->offset = htole16(vap->iv_quiet_offset);
 	return frm + sizeof(*quiet);
 }
 
 /*
  * Add an 11h Channel Switch Announcement element to a frame.
  * Note that we use the per-vap CSA count to adjust the global
  * counter so we can use this routine to form probe response
  * frames and get the current count.
  */
 static uint8_t *
 ieee80211_add_csa(uint8_t *frm, struct ieee80211vap *vap)
 {
 	struct ieee80211com *ic = vap->iv_ic;
 	struct ieee80211_csa_ie *csa = (struct ieee80211_csa_ie *) frm;
 
 	csa->csa_ie = IEEE80211_ELEMID_CSA;
 	csa->csa_len = 3;
 	csa->csa_mode = 1;		/* XXX force quiet on channel */
 	csa->csa_newchan = ieee80211_chan2ieee(ic, ic->ic_csa_newchan);
 	csa->csa_count = ic->ic_csa_count - vap->iv_csa_count;
 	return frm + sizeof(*csa);
 }
 
 /*
  * Add an 11h country information element to a frame.
  */
 static uint8_t *
 ieee80211_add_countryie(uint8_t *frm, struct ieee80211com *ic)
 {
 
 	if (ic->ic_countryie == NULL ||
 	    ic->ic_countryie_chan != ic->ic_bsschan) {
 		/*
 		 * Handle lazy construction of ie.  This is done on
 		 * first use and after a channel change that requires
 		 * re-calculation.
 		 */
 		if (ic->ic_countryie != NULL)
 			IEEE80211_FREE(ic->ic_countryie, M_80211_NODE_IE);
 		ic->ic_countryie = ieee80211_alloc_countryie(ic);
 		if (ic->ic_countryie == NULL)
 			return frm;
 		ic->ic_countryie_chan = ic->ic_bsschan;
 	}
 	return add_appie(frm, ic->ic_countryie);
 }
 
 uint8_t *
 ieee80211_add_wpa(uint8_t *frm, const struct ieee80211vap *vap)
 {
 	if (vap->iv_flags & IEEE80211_F_WPA1 && vap->iv_wpa_ie != NULL)
 		return (add_ie(frm, vap->iv_wpa_ie));
 	else {
 		/* XXX else complain? */
 		return (frm);
 	}
 }
 
 uint8_t *
 ieee80211_add_rsn(uint8_t *frm, const struct ieee80211vap *vap)
 {
 	if (vap->iv_flags & IEEE80211_F_WPA2 && vap->iv_rsn_ie != NULL)
 		return (add_ie(frm, vap->iv_rsn_ie));
 	else {
 		/* XXX else complain? */
 		return (frm);
 	}
 }
 
 uint8_t *
 ieee80211_add_qos(uint8_t *frm, const struct ieee80211_node *ni)
 {
 	if (ni->ni_flags & IEEE80211_NODE_QOS) {
 		*frm++ = IEEE80211_ELEMID_QOS;
 		*frm++ = 1;
 		*frm++ = 0;
 	}
 
 	return (frm);
 }
 
 /*
  * ieee80211_send_probereq(): send a probe request frame with the specified ssid
  * and any optional information element data;  some helper functions as FW based
  * HW scans need some of that information passed too.
  */
 static uint32_t
 ieee80211_probereq_ie_len(struct ieee80211vap *vap, struct ieee80211com *ic)
 {
 	const struct ieee80211_rateset *rs;
 
 	rs = ieee80211_get_suprates(ic, ic->ic_curchan);
 
 	/*
 	 * prreq frame format
 	 *	[tlv] ssid
 	 *	[tlv] supported rates
 	 *	[tlv] RSN (optional)
 	 *	[tlv] extended supported rates (if needed)
 	 *	[tlv] HT cap (optional)
 	 *	[tlv] VHT cap (optional)
 	 *	[tlv] WPA (optional)
 	 *	[tlv] user-specified ie's
 	 */
 	return ( 2 + IEEE80211_NWID_LEN
 	       + 2 + IEEE80211_RATE_SIZE
 	       + ((vap->iv_flags & IEEE80211_F_WPA2 && vap->iv_rsn_ie != NULL) ?
 	           vap->iv_rsn_ie[1] : 0)
 	       + ((rs->rs_nrates > IEEE80211_RATE_SIZE) ?
 	           2 + (rs->rs_nrates - IEEE80211_RATE_SIZE) : 0)
 	       + (((vap->iv_opmode == IEEE80211_M_IBSS) &&
 		    (vap->iv_flags_ht & IEEE80211_FHT_HT)) ?
 	                sizeof(struct ieee80211_ie_htcap) : 0)
 #ifdef notyet
 	       + sizeof(struct ieee80211_ie_htinfo)	/* XXX not needed? */
 	       + sizeof(struct ieee80211_ie_vhtcap)
 #endif
 	       + ((vap->iv_flags & IEEE80211_F_WPA1 && vap->iv_wpa_ie != NULL) ?
 	           vap->iv_wpa_ie[1] : 0)
 	       + (vap->iv_appie_probereq != NULL ?
 		   vap->iv_appie_probereq->ie_len : 0)
 	);
 }
 
 int
 ieee80211_probereq_ie(struct ieee80211vap *vap, struct ieee80211com *ic,
     uint8_t **frmp, uint32_t *frmlen, const uint8_t *ssid, size_t ssidlen,
     bool alloc)
 {
 	const struct ieee80211_rateset *rs;
 	uint8_t	*frm;
 	uint32_t len;
 
 	if (!alloc && (frmp == NULL || frmlen == NULL))
 		return (EINVAL);
 
 	len = ieee80211_probereq_ie_len(vap, ic);
 	if (!alloc && len > *frmlen)
 		return (ENOBUFS);
 
+	/* For HW scans we usually do not pass in the SSID as IE. */
+	if (ssidlen == -1)
+		len -= (2 + IEEE80211_NWID_LEN);
+
 	if (alloc) {
 		frm = malloc(len, M_80211_VAP, M_WAITOK | M_ZERO);
 		*frmp = frm;
 		*frmlen = len;
 	} else
 		frm = *frmp;
 
-	/* For HW scans we usually do not pass in the SSID as IE. */
-	if (ssidlen == -1)
-		len -= (2 + IEEE80211_NWID_LEN);
-	else
+	if (ssidlen != -1)
 		frm = ieee80211_add_ssid(frm, ssid, ssidlen);
 	rs = ieee80211_get_suprates(ic, ic->ic_curchan);
 	frm = ieee80211_add_rates(frm, rs);
 	frm = ieee80211_add_rsn(frm, vap);
 	frm = ieee80211_add_xrates(frm, rs);
 
 	/*
 	 * Note: we can't use bss; we don't have one yet.
 	 *
 	 * So, we should announce our capabilities
 	 * in this channel mode (2g/5g), not the
 	 * channel details itself.
 	 */
 	if ((vap->iv_opmode == IEEE80211_M_IBSS) &&
 	    (vap->iv_flags_ht & IEEE80211_FHT_HT)) {
 		struct ieee80211_channel *c;
 
 		/*
 		 * Get the HT channel that we should try upgrading to.
 		 * If we can do 40MHz then this'll upgrade it appropriately.
 		 */
 		c = ieee80211_ht_adjust_channel(ic, ic->ic_curchan,
 		    vap->iv_flags_ht);
 		frm = ieee80211_add_htcap_ch(frm, vap, c);
 	}
 
 	/*
 	 * XXX TODO: need to figure out what/how to update the
 	 * VHT channel.
 	 */
 #ifdef notyet
 	if (vap->iv_flags_vht & IEEE80211_FVHT_VHT) {
 		struct ieee80211_channel *c;
 
 		c = ieee80211_ht_adjust_channel(ic, ic->ic_curchan,
 		    vap->iv_flags_ht);
 		c = ieee80211_vht_adjust_channel(ic, c, vap->iv_flags_vht);
 		frm = ieee80211_add_vhtcap_ch(frm, vap, c);
 	}
 #endif
 
 	frm = ieee80211_add_wpa(frm, vap);
 	if (vap->iv_appie_probereq != NULL)
 		frm = add_appie(frm, vap->iv_appie_probereq);
 
 	if (!alloc) {
 		*frmp = frm;
 		*frmlen = len;
 	}
 
 	return (0);
 }
 
 int
 ieee80211_send_probereq(struct ieee80211_node *ni,
 	const uint8_t sa[IEEE80211_ADDR_LEN],
 	const uint8_t da[IEEE80211_ADDR_LEN],
 	const uint8_t bssid[IEEE80211_ADDR_LEN],
 	const uint8_t *ssid, size_t ssidlen)
 {
 	struct ieee80211vap *vap = ni->ni_vap;
 	struct ieee80211com *ic = ni->ni_ic;
 	struct ieee80211_node *bss;
 	const struct ieee80211_txparam *tp;
 	struct ieee80211_bpf_params params;
 	struct mbuf *m;
 	uint8_t *frm;
 	uint32_t frmlen;
 	int ret;
 
 	bss = ieee80211_ref_node(vap->iv_bss);
 
 	if (vap->iv_state == IEEE80211_S_CAC) {
 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, ni,
 		    "block %s frame in CAC state", "probe request");
 		vap->iv_stats.is_tx_badstate++;
 		ieee80211_free_node(bss);
 		return EIO;		/* XXX */
 	}
 
 	/*
 	 * Hold a reference on the node so it doesn't go away until after
 	 * the xmit is complete all the way in the driver.  On error we
 	 * will remove our reference.
 	 */
 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
 		"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
 		__func__, __LINE__,
 		ni, ether_sprintf(ni->ni_macaddr),
 		ieee80211_node_refcnt(ni)+1);
 	ieee80211_ref_node(ni);
 
 	/* See comments above for entire frame format. */
 	frmlen = ieee80211_probereq_ie_len(vap, ic);
 	m = ieee80211_getmgtframe(&frm,
 	    ic->ic_headroom + sizeof(struct ieee80211_frame), frmlen);
 	if (m == NULL) {
 		vap->iv_stats.is_tx_nobuf++;
 		ieee80211_free_node(ni);
 		ieee80211_free_node(bss);
 		return ENOMEM;
 	}
 
 	ret = ieee80211_probereq_ie(vap, ic, &frm, &frmlen, ssid, ssidlen,
 	    false);
 	KASSERT(ret == 0,
 	    ("%s: ieee80211_probereq_ie railed: %d\n", __func__, ret));
 
 	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
 	KASSERT(M_LEADINGSPACE(m) >= sizeof(struct ieee80211_frame),
 	    ("leading space %zd", M_LEADINGSPACE(m)));
 	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
 	if (m == NULL) {
 		/* NB: cannot happen */
 		ieee80211_free_node(ni);
 		ieee80211_free_node(bss);
 		return ENOMEM;
 	}
 
 	IEEE80211_TX_LOCK(ic);
 	ieee80211_send_setup(ni, m,
 	     IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ,
 	     IEEE80211_NONQOS_TID, sa, da, bssid);
 	/* XXX power management? */
 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
 
 	M_WME_SETAC(m, WME_AC_BE);
 
 	IEEE80211_NODE_STAT(ni, tx_probereq);
 	IEEE80211_NODE_STAT(ni, tx_mgmt);
 
 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
 	    "send probe req on channel %u bssid %s sa %6D da %6D ssid \"%.*s\"\n",
 	    ieee80211_chan2ieee(ic, ic->ic_curchan),
 	    ether_sprintf(bssid),
 	    sa, ":",
 	    da, ":",
 	    ssidlen, ssid);
 
 	memset(&params, 0, sizeof(params));
 	params.ibp_pri = M_WME_GETAC(m);
 	tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
 	params.ibp_rate0 = tp->mgmtrate;
 	if (IEEE80211_IS_MULTICAST(da)) {
 		params.ibp_flags |= IEEE80211_BPF_NOACK;
 		params.ibp_try0 = 1;
 	} else
 		params.ibp_try0 = tp->maxretry;
 	params.ibp_power = ni->ni_txpower;
 	ret = ieee80211_raw_output(vap, ni, m, &params);
 	IEEE80211_TX_UNLOCK(ic);
 	ieee80211_free_node(bss);
 	return (ret);
 }
 
 /*
  * Calculate capability information for mgt frames.
  */
 uint16_t
 ieee80211_getcapinfo(struct ieee80211vap *vap, struct ieee80211_channel *chan)
 {
 	uint16_t capinfo;
 
 	KASSERT(vap->iv_opmode != IEEE80211_M_STA, ("station mode"));
 
 	if (vap->iv_opmode == IEEE80211_M_HOSTAP)
 		capinfo = IEEE80211_CAPINFO_ESS;
 	else if (vap->iv_opmode == IEEE80211_M_IBSS)
 		capinfo = IEEE80211_CAPINFO_IBSS;
 	else
 		capinfo = 0;
 	if (vap->iv_flags & IEEE80211_F_PRIVACY)
 		capinfo |= IEEE80211_CAPINFO_PRIVACY;
 	if ((vap->iv_flags & IEEE80211_F_SHPREAMBLE) &&
 	    IEEE80211_IS_CHAN_2GHZ(chan))
 		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
 	if (vap->iv_flags & IEEE80211_F_SHSLOT)
 		capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
 	if (IEEE80211_IS_CHAN_5GHZ(chan) && (vap->iv_flags & IEEE80211_F_DOTH))
 		capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
 	return capinfo;
 }
 
 /*
  * Send a management frame.  The node is for the destination (or ic_bss
  * when in station mode).  Nodes other than ic_bss have their reference
  * count bumped to reflect our use for an indeterminant time.
  */
 int
 ieee80211_send_mgmt(struct ieee80211_node *ni, int type, int arg)
 {
 #define	HTFLAGS (IEEE80211_NODE_HT | IEEE80211_NODE_HTCOMPAT)
 #define	senderr(_x, _v)	do { vap->iv_stats._v++; ret = _x; goto bad; } while (0)
 	struct ieee80211vap *vap = ni->ni_vap;
 	struct ieee80211com *ic = ni->ni_ic;
 	struct ieee80211_node *bss = vap->iv_bss;
 	struct ieee80211_bpf_params params;
 	struct mbuf *m;
 	uint8_t *frm;
 	uint16_t capinfo;
 	int has_challenge, is_shared_key, ret, status;
 
 	KASSERT(ni != NULL, ("null node"));
 
 	/*
 	 * Hold a reference on the node so it doesn't go away until after
 	 * the xmit is complete all the way in the driver.  On error we
 	 * will remove our reference.
 	 */
 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
 		"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
 		__func__, __LINE__,
 		ni, ether_sprintf(ni->ni_macaddr),
 		ieee80211_node_refcnt(ni)+1);
 	ieee80211_ref_node(ni);
 
 	memset(&params, 0, sizeof(params));
 	switch (type) {
 	case IEEE80211_FC0_SUBTYPE_AUTH:
 		status = arg >> 16;
 		arg &= 0xffff;
 		has_challenge = ((arg == IEEE80211_AUTH_SHARED_CHALLENGE ||
 		    arg == IEEE80211_AUTH_SHARED_RESPONSE) &&
 		    ni->ni_challenge != NULL);
 
 		/*
 		 * Deduce whether we're doing open authentication or
 		 * shared key authentication.  We do the latter if
 		 * we're in the middle of a shared key authentication
 		 * handshake or if we're initiating an authentication
 		 * request and configured to use shared key.
 		 */
 		is_shared_key = has_challenge ||
 		     arg >= IEEE80211_AUTH_SHARED_RESPONSE ||
 		     (arg == IEEE80211_AUTH_SHARED_REQUEST &&
 		      bss->ni_authmode == IEEE80211_AUTH_SHARED);
 
 		m = ieee80211_getmgtframe(&frm,
 			  ic->ic_headroom + sizeof(struct ieee80211_frame),
 			  3 * sizeof(uint16_t)
 			+ (has_challenge && status == IEEE80211_STATUS_SUCCESS ?
 				sizeof(uint16_t)+IEEE80211_CHALLENGE_LEN : 0)
 		);
 		if (m == NULL)
 			senderr(ENOMEM, is_tx_nobuf);
 
 		((uint16_t *)frm)[0] =
 		    (is_shared_key) ? htole16(IEEE80211_AUTH_ALG_SHARED)
 		                    : htole16(IEEE80211_AUTH_ALG_OPEN);
 		((uint16_t *)frm)[1] = htole16(arg);	/* sequence number */
 		((uint16_t *)frm)[2] = htole16(status);/* status */
 
 		if (has_challenge && status == IEEE80211_STATUS_SUCCESS) {
 			((uint16_t *)frm)[3] =
 			    htole16((IEEE80211_CHALLENGE_LEN << 8) |
 			    IEEE80211_ELEMID_CHALLENGE);
 			memcpy(&((uint16_t *)frm)[4], ni->ni_challenge,
 			    IEEE80211_CHALLENGE_LEN);
 			m->m_pkthdr.len = m->m_len =
 				4 * sizeof(uint16_t) + IEEE80211_CHALLENGE_LEN;
 			if (arg == IEEE80211_AUTH_SHARED_RESPONSE) {
 				IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
 				    "request encrypt frame (%s)", __func__);
 				/* mark frame for encryption */
 				params.ibp_flags |= IEEE80211_BPF_CRYPTO;
 			}
 		} else
 			m->m_pkthdr.len = m->m_len = 3 * sizeof(uint16_t);
 
 		/* XXX not right for shared key */
 		if (status == IEEE80211_STATUS_SUCCESS)
 			IEEE80211_NODE_STAT(ni, tx_auth);
 		else
 			IEEE80211_NODE_STAT(ni, tx_auth_fail);
 
 		if (vap->iv_opmode == IEEE80211_M_STA)
 			ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
 				(void *) vap->iv_state);
 		break;
 
 	case IEEE80211_FC0_SUBTYPE_DEAUTH:
 		IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
 		    "send station deauthenticate (reason: %d (%s))", arg,
 		    ieee80211_reason_to_string(arg));
 		m = ieee80211_getmgtframe(&frm,
 			ic->ic_headroom + sizeof(struct ieee80211_frame),
 			sizeof(uint16_t));
 		if (m == NULL)
 			senderr(ENOMEM, is_tx_nobuf);
 		*(uint16_t *)frm = htole16(arg);	/* reason */
 		m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
 
 		IEEE80211_NODE_STAT(ni, tx_deauth);
 		IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg);
 
 		ieee80211_node_unauthorize(ni);		/* port closed */
 		break;
 
 	case IEEE80211_FC0_SUBTYPE_ASSOC_REQ:
 	case IEEE80211_FC0_SUBTYPE_REASSOC_REQ:
 		/*
 		 * asreq frame format
 		 *	[2] capability information
 		 *	[2] listen interval
 		 *	[6*] current AP address (reassoc only)
 		 *	[tlv] ssid
 		 *	[tlv] supported rates
 		 *	[tlv] extended supported rates
 		 *	[4] power capability (optional)
 		 *	[28] supported channels (optional)
 		 *	[tlv] HT capabilities
 		 *	[tlv] VHT capabilities
 		 *	[tlv] WME (optional)
 		 *	[tlv] Vendor OUI HT capabilities (optional)
 		 *	[tlv] Atheros capabilities (if negotiated)
 		 *	[tlv] AppIE's (optional)
 		 */
 		m = ieee80211_getmgtframe(&frm,
 			 ic->ic_headroom + sizeof(struct ieee80211_frame),
 			 sizeof(uint16_t)
 		       + sizeof(uint16_t)
 		       + IEEE80211_ADDR_LEN
 		       + 2 + IEEE80211_NWID_LEN
 		       + 2 + IEEE80211_RATE_SIZE
 		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
 		       + 4
 		       + 2 + 26
 		       + sizeof(struct ieee80211_wme_info)
 		       + sizeof(struct ieee80211_ie_htcap)
 		       + sizeof(struct ieee80211_ie_vhtcap)
 		       + 4 + sizeof(struct ieee80211_ie_htcap)
 #ifdef IEEE80211_SUPPORT_SUPERG
 		       + sizeof(struct ieee80211_ath_ie)
 #endif
 		       + (vap->iv_appie_wpa != NULL ?
 				vap->iv_appie_wpa->ie_len : 0)
 		       + (vap->iv_appie_assocreq != NULL ?
 				vap->iv_appie_assocreq->ie_len : 0)
 		);
 		if (m == NULL)
 			senderr(ENOMEM, is_tx_nobuf);
 
 		KASSERT(vap->iv_opmode == IEEE80211_M_STA,
 		    ("wrong mode %u", vap->iv_opmode));
 		capinfo = IEEE80211_CAPINFO_ESS;
 		if (vap->iv_flags & IEEE80211_F_PRIVACY)
 			capinfo |= IEEE80211_CAPINFO_PRIVACY;
 		/*
 		 * NB: Some 11a AP's reject the request when
 		 *     short preamble is set.
 		 */
 		if ((vap->iv_flags & IEEE80211_F_SHPREAMBLE) &&
 		    IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
 			capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
 		if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) &&
 		    (ic->ic_caps & IEEE80211_C_SHSLOT))
 			capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
 		if ((ni->ni_capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) &&
 		    (vap->iv_flags & IEEE80211_F_DOTH))
 			capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
 		*(uint16_t *)frm = htole16(capinfo);
 		frm += 2;
 
 		KASSERT(bss->ni_intval != 0, ("beacon interval is zero!"));
 		*(uint16_t *)frm = htole16(howmany(ic->ic_lintval,
 						    bss->ni_intval));
 		frm += 2;
 
 		if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) {
 			IEEE80211_ADDR_COPY(frm, bss->ni_bssid);
 			frm += IEEE80211_ADDR_LEN;
 		}
 
 		frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen);
 		frm = ieee80211_add_rates(frm, &ni->ni_rates);
 		frm = ieee80211_add_rsn(frm, vap);
 		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
 		if (capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) {
 			frm = ieee80211_add_powercapability(frm,
 			    ic->ic_curchan);
 			frm = ieee80211_add_supportedchannels(frm, ic);
 		}
 
 		/*
 		 * Check the channel - we may be using an 11n NIC with an
 		 * 11n capable station, but we're configured to be an 11b
 		 * channel.
 		 */
 		if ((vap->iv_flags_ht & IEEE80211_FHT_HT) &&
 		    IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
 		    ni->ni_ies.htcap_ie != NULL &&
 		    ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_HTCAP) {
 			frm = ieee80211_add_htcap(frm, ni);
 		}
 
 		if ((vap->iv_flags_vht & IEEE80211_FVHT_VHT) &&
 		    IEEE80211_IS_CHAN_VHT(ni->ni_chan) &&
 		    ni->ni_ies.vhtcap_ie != NULL &&
 		    ni->ni_ies.vhtcap_ie[0] == IEEE80211_ELEMID_VHT_CAP) {
 			frm = ieee80211_add_vhtcap(frm, ni);
 		}
 
 		frm = ieee80211_add_wpa(frm, vap);
 		if ((ic->ic_flags & IEEE80211_F_WME) &&
 		    ni->ni_ies.wme_ie != NULL)
 			frm = ieee80211_add_wme_info(frm, &ic->ic_wme, ni);
 
 		/*
 		 * Same deal - only send HT info if we're on an 11n
 		 * capable channel.
 		 */
 		if ((vap->iv_flags_ht & IEEE80211_FHT_HT) &&
 		    IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
 		    ni->ni_ies.htcap_ie != NULL &&
 		    ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_VENDOR) {
 			frm = ieee80211_add_htcap_vendor(frm, ni);
 		}
 #ifdef IEEE80211_SUPPORT_SUPERG
 		if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS)) {
 			frm = ieee80211_add_ath(frm, 
 				IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
 				((vap->iv_flags & IEEE80211_F_WPA) == 0 &&
 				 ni->ni_authmode != IEEE80211_AUTH_8021X) ?
 				vap->iv_def_txkey : IEEE80211_KEYIX_NONE);
 		}
 #endif /* IEEE80211_SUPPORT_SUPERG */
 		if (vap->iv_appie_assocreq != NULL)
 			frm = add_appie(frm, vap->iv_appie_assocreq);
 		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
 
 		ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
 			(void *) vap->iv_state);
 		break;
 
 	case IEEE80211_FC0_SUBTYPE_ASSOC_RESP:
 	case IEEE80211_FC0_SUBTYPE_REASSOC_RESP:
 		/*
 		 * asresp frame format
 		 *	[2] capability information
 		 *	[2] status
 		 *	[2] association ID
 		 *	[tlv] supported rates
 		 *	[tlv] extended supported rates
 		 *	[tlv] HT capabilities (standard, if STA enabled)
 		 *	[tlv] HT information (standard, if STA enabled)
 		 *	[tlv] VHT capabilities (standard, if STA enabled)
 		 *	[tlv] VHT information (standard, if STA enabled)
 		 *	[tlv] WME (if configured and STA enabled)
 		 *	[tlv] HT capabilities (vendor OUI, if STA enabled)
 		 *	[tlv] HT information (vendor OUI, if STA enabled)
 		 *	[tlv] Atheros capabilities (if STA enabled)
 		 *	[tlv] AppIE's (optional)
 		 */
 		m = ieee80211_getmgtframe(&frm,
 			 ic->ic_headroom + sizeof(struct ieee80211_frame),
 			 sizeof(uint16_t)
 		       + sizeof(uint16_t)
 		       + sizeof(uint16_t)
 		       + 2 + IEEE80211_RATE_SIZE
 		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
 		       + sizeof(struct ieee80211_ie_htcap) + 4
 		       + sizeof(struct ieee80211_ie_htinfo) + 4
 		       + sizeof(struct ieee80211_ie_vhtcap)
 		       + sizeof(struct ieee80211_ie_vht_operation)
 		       + sizeof(struct ieee80211_wme_param)
 #ifdef IEEE80211_SUPPORT_SUPERG
 		       + sizeof(struct ieee80211_ath_ie)
 #endif
 		       + (vap->iv_appie_assocresp != NULL ?
 				vap->iv_appie_assocresp->ie_len : 0)
 		);
 		if (m == NULL)
 			senderr(ENOMEM, is_tx_nobuf);
 
 		capinfo = ieee80211_getcapinfo(vap, bss->ni_chan);
 		*(uint16_t *)frm = htole16(capinfo);
 		frm += 2;
 
 		*(uint16_t *)frm = htole16(arg);	/* status */
 		frm += 2;
 
 		if (arg == IEEE80211_STATUS_SUCCESS) {
 			*(uint16_t *)frm = htole16(ni->ni_associd);
 			IEEE80211_NODE_STAT(ni, tx_assoc);
 		} else
 			IEEE80211_NODE_STAT(ni, tx_assoc_fail);
 		frm += 2;
 
 		frm = ieee80211_add_rates(frm, &ni->ni_rates);
 		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
 		/* NB: respond according to what we received */
 		if ((ni->ni_flags & HTFLAGS) == IEEE80211_NODE_HT) {
 			frm = ieee80211_add_htcap(frm, ni);
 			frm = ieee80211_add_htinfo(frm, ni);
 		}
 		if ((vap->iv_flags & IEEE80211_F_WME) &&
 		    ni->ni_ies.wme_ie != NULL)
 			frm = ieee80211_add_wme_param(frm, &ic->ic_wme,
 			    !! (vap->iv_flags_ext & IEEE80211_FEXT_UAPSD));
 		if ((ni->ni_flags & HTFLAGS) == HTFLAGS) {
 			frm = ieee80211_add_htcap_vendor(frm, ni);
 			frm = ieee80211_add_htinfo_vendor(frm, ni);
 		}
 		if (ni->ni_flags & IEEE80211_NODE_VHT) {
 			frm = ieee80211_add_vhtcap(frm, ni);
 			frm = ieee80211_add_vhtinfo(frm, ni);
 		}
 #ifdef IEEE80211_SUPPORT_SUPERG
 		if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS))
 			frm = ieee80211_add_ath(frm, 
 				IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
 				((vap->iv_flags & IEEE80211_F_WPA) == 0 &&
 				 ni->ni_authmode != IEEE80211_AUTH_8021X) ?
 				vap->iv_def_txkey : IEEE80211_KEYIX_NONE);
 #endif /* IEEE80211_SUPPORT_SUPERG */
 		if (vap->iv_appie_assocresp != NULL)
 			frm = add_appie(frm, vap->iv_appie_assocresp);
 		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
 		break;
 
 	case IEEE80211_FC0_SUBTYPE_DISASSOC:
 		IEEE80211_NOTE(vap, IEEE80211_MSG_ASSOC, ni,
 		    "send station disassociate (reason: %d (%s))", arg,
 		    ieee80211_reason_to_string(arg));
 		m = ieee80211_getmgtframe(&frm,
 			ic->ic_headroom + sizeof(struct ieee80211_frame),
 			sizeof(uint16_t));
 		if (m == NULL)
 			senderr(ENOMEM, is_tx_nobuf);
 		*(uint16_t *)frm = htole16(arg);	/* reason */
 		m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
 
 		IEEE80211_NODE_STAT(ni, tx_disassoc);
 		IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg);
 		break;
 
 	default:
 		IEEE80211_NOTE(vap, IEEE80211_MSG_ANY, ni,
 		    "invalid mgmt frame type %u", type);
 		senderr(EINVAL, is_tx_unknownmgt);
 		/* NOTREACHED */
 	}
 
 	/* NB: force non-ProbeResp frames to the highest queue */
 	params.ibp_pri = WME_AC_VO;
 	params.ibp_rate0 = bss->ni_txparms->mgmtrate;
 	/* NB: we know all frames are unicast */
 	params.ibp_try0 = bss->ni_txparms->maxretry;
 	params.ibp_power = bss->ni_txpower;
 	return ieee80211_mgmt_output(ni, m, type, &params);
 bad:
 	ieee80211_free_node(ni);
 	return ret;
 #undef senderr
 #undef HTFLAGS
 }
 
 /*
  * Return an mbuf with a probe response frame in it.
  * Space is left to prepend and 802.11 header at the
  * front but it's left to the caller to fill in.
  */
 struct mbuf *
 ieee80211_alloc_proberesp(struct ieee80211_node *bss, int legacy)
 {
 	struct ieee80211vap *vap = bss->ni_vap;
 	struct ieee80211com *ic = bss->ni_ic;
 	const struct ieee80211_rateset *rs;
 	struct mbuf *m;
 	uint16_t capinfo;
 	uint8_t *frm;
 
 	/*
 	 * probe response frame format
 	 *	[8] time stamp
 	 *	[2] beacon interval
 	 *	[2] cabability information
 	 *	[tlv] ssid
 	 *	[tlv] supported rates
 	 *	[tlv] parameter set (FH/DS)
 	 *	[tlv] parameter set (IBSS)
 	 *	[tlv] country (optional)
 	 *	[3] power control (optional)
 	 *	[5] channel switch announcement (CSA) (optional)
 	 *	[tlv] extended rate phy (ERP)
 	 *	[tlv] extended supported rates
 	 *	[tlv] RSN (optional)
 	 *	[tlv] HT capabilities
 	 *	[tlv] HT information
 	 *	[tlv] VHT capabilities
 	 *	[tlv] VHT information
 	 *	[tlv] WPA (optional)
 	 *	[tlv] WME (optional)
 	 *	[tlv] Vendor OUI HT capabilities (optional)
 	 *	[tlv] Vendor OUI HT information (optional)
 	 *	[tlv] Atheros capabilities
 	 *	[tlv] AppIE's (optional)
 	 *	[tlv] Mesh ID (MBSS)
 	 *	[tlv] Mesh Conf (MBSS)
 	 */
 	m = ieee80211_getmgtframe(&frm,
 		 ic->ic_headroom + sizeof(struct ieee80211_frame),
 		 8
 	       + sizeof(uint16_t)
 	       + sizeof(uint16_t)
 	       + 2 + IEEE80211_NWID_LEN
 	       + 2 + IEEE80211_RATE_SIZE
 	       + 7	/* max(7,3) */
 	       + IEEE80211_COUNTRY_MAX_SIZE
 	       + 3
 	       + sizeof(struct ieee80211_csa_ie)
 	       + sizeof(struct ieee80211_quiet_ie)
 	       + 3
 	       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
 	       + sizeof(struct ieee80211_ie_wpa)
 	       + sizeof(struct ieee80211_ie_htcap)
 	       + sizeof(struct ieee80211_ie_htinfo)
 	       + sizeof(struct ieee80211_ie_wpa)
 	       + sizeof(struct ieee80211_wme_param)
 	       + 4 + sizeof(struct ieee80211_ie_htcap)
 	       + 4 + sizeof(struct ieee80211_ie_htinfo)
 	       +  sizeof(struct ieee80211_ie_vhtcap)
 	       +  sizeof(struct ieee80211_ie_vht_operation)
 #ifdef IEEE80211_SUPPORT_SUPERG
 	       + sizeof(struct ieee80211_ath_ie)
 #endif
 #ifdef IEEE80211_SUPPORT_MESH
 	       + 2 + IEEE80211_MESHID_LEN
 	       + sizeof(struct ieee80211_meshconf_ie)
 #endif
 	       + (vap->iv_appie_proberesp != NULL ?
 			vap->iv_appie_proberesp->ie_len : 0)
 	);
 	if (m == NULL) {
 		vap->iv_stats.is_tx_nobuf++;
 		return NULL;
 	}
 
 	memset(frm, 0, 8);	/* timestamp should be filled later */
 	frm += 8;
 	*(uint16_t *)frm = htole16(bss->ni_intval);
 	frm += 2;
 	capinfo = ieee80211_getcapinfo(vap, bss->ni_chan);
 	*(uint16_t *)frm = htole16(capinfo);
 	frm += 2;
 
 	frm = ieee80211_add_ssid(frm, bss->ni_essid, bss->ni_esslen);
 	rs = ieee80211_get_suprates(ic, bss->ni_chan);
 	frm = ieee80211_add_rates(frm, rs);
 
 	if (IEEE80211_IS_CHAN_FHSS(bss->ni_chan)) {
 		*frm++ = IEEE80211_ELEMID_FHPARMS;
 		*frm++ = 5;
 		*frm++ = bss->ni_fhdwell & 0x00ff;
 		*frm++ = (bss->ni_fhdwell >> 8) & 0x00ff;
 		*frm++ = IEEE80211_FH_CHANSET(
 		    ieee80211_chan2ieee(ic, bss->ni_chan));
 		*frm++ = IEEE80211_FH_CHANPAT(
 		    ieee80211_chan2ieee(ic, bss->ni_chan));
 		*frm++ = bss->ni_fhindex;
 	} else {
 		*frm++ = IEEE80211_ELEMID_DSPARMS;
 		*frm++ = 1;
 		*frm++ = ieee80211_chan2ieee(ic, bss->ni_chan);
 	}
 
 	if (vap->iv_opmode == IEEE80211_M_IBSS) {
 		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
 		*frm++ = 2;
 		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
 	}
 	if ((vap->iv_flags & IEEE80211_F_DOTH) ||
 	    (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
 		frm = ieee80211_add_countryie(frm, ic);
 	if (vap->iv_flags & IEEE80211_F_DOTH) {
 		if (IEEE80211_IS_CHAN_5GHZ(bss->ni_chan))
 			frm = ieee80211_add_powerconstraint(frm, vap);
 		if (ic->ic_flags & IEEE80211_F_CSAPENDING)
 			frm = ieee80211_add_csa(frm, vap);
 	}
 	if (vap->iv_flags & IEEE80211_F_DOTH) {
 		if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
 		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) {
 			if (vap->iv_quiet)
 				frm = ieee80211_add_quiet(frm, vap, 0);
 		}
 	}
 	if (IEEE80211_IS_CHAN_ANYG(bss->ni_chan))
 		frm = ieee80211_add_erp(frm, vap);
 	frm = ieee80211_add_xrates(frm, rs);
 	frm = ieee80211_add_rsn(frm, vap);
 	/*
 	 * NB: legacy 11b clients do not get certain ie's.
 	 *     The caller identifies such clients by passing
 	 *     a token in legacy to us.  Could expand this to be
 	 *     any legacy client for stuff like HT ie's.
 	 */
 	if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
 	    legacy != IEEE80211_SEND_LEGACY_11B) {
 		frm = ieee80211_add_htcap(frm, bss);
 		frm = ieee80211_add_htinfo(frm, bss);
 	}
 	if (IEEE80211_IS_CHAN_VHT(bss->ni_chan) &&
 	    legacy != IEEE80211_SEND_LEGACY_11B) {
 		frm = ieee80211_add_vhtcap(frm, bss);
 		frm = ieee80211_add_vhtinfo(frm, bss);
 	}
 	frm = ieee80211_add_wpa(frm, vap);
 	if (vap->iv_flags & IEEE80211_F_WME)
 		frm = ieee80211_add_wme_param(frm, &ic->ic_wme,
 		    !! (vap->iv_flags_ext & IEEE80211_FEXT_UAPSD));
 	if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
 	    (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT) &&
 	    legacy != IEEE80211_SEND_LEGACY_11B) {
 		frm = ieee80211_add_htcap_vendor(frm, bss);
 		frm = ieee80211_add_htinfo_vendor(frm, bss);
 	}
 #ifdef IEEE80211_SUPPORT_SUPERG
 	if ((vap->iv_flags & IEEE80211_F_ATHEROS) &&
 	    legacy != IEEE80211_SEND_LEGACY_11B)
 		frm = ieee80211_add_athcaps(frm, bss);
 #endif
 	if (vap->iv_appie_proberesp != NULL)
 		frm = add_appie(frm, vap->iv_appie_proberesp);
 #ifdef IEEE80211_SUPPORT_MESH
 	if (vap->iv_opmode == IEEE80211_M_MBSS) {
 		frm = ieee80211_add_meshid(frm, vap);
 		frm = ieee80211_add_meshconf(frm, vap);
 	}
 #endif
 	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
 
 	return m;
 }
 
 /*
  * Send a probe response frame to the specified mac address.
  * This does not go through the normal mgt frame api so we
  * can specify the destination address and re-use the bss node
  * for the sta reference.
  */
 int
 ieee80211_send_proberesp(struct ieee80211vap *vap,
 	const uint8_t da[IEEE80211_ADDR_LEN], int legacy)
 {
 	struct ieee80211_node *bss = vap->iv_bss;
 	struct ieee80211com *ic = vap->iv_ic;
 	struct mbuf *m;
 	int ret;
 
 	if (vap->iv_state == IEEE80211_S_CAC) {
 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, bss,
 		    "block %s frame in CAC state", "probe response");
 		vap->iv_stats.is_tx_badstate++;
 		return EIO;		/* XXX */
 	}
 
 	/*
 	 * Hold a reference on the node so it doesn't go away until after
 	 * the xmit is complete all the way in the driver.  On error we
 	 * will remove our reference.
 	 */
 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
 	    "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
 	    __func__, __LINE__, bss, ether_sprintf(bss->ni_macaddr),
 	    ieee80211_node_refcnt(bss)+1);
 	ieee80211_ref_node(bss);
 
 	m = ieee80211_alloc_proberesp(bss, legacy);
 	if (m == NULL) {
 		ieee80211_free_node(bss);
 		return ENOMEM;
 	}
 
 	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
 	KASSERT(m != NULL, ("no room for header"));
 
 	IEEE80211_TX_LOCK(ic);
 	ieee80211_send_setup(bss, m,
 	     IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP,
 	     IEEE80211_NONQOS_TID, vap->iv_myaddr, da, bss->ni_bssid);
 	/* XXX power management? */
 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
 
 	M_WME_SETAC(m, WME_AC_BE);
 
 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
 	    "send probe resp on channel %u to %s%s\n",
 	    ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(da),
 	    legacy ? " <legacy>" : "");
 	IEEE80211_NODE_STAT(bss, tx_mgmt);
 
 	ret = ieee80211_raw_output(vap, bss, m, NULL);
 	IEEE80211_TX_UNLOCK(ic);
 	return (ret);
 }
 
 /*
  * Allocate and build a RTS (Request To Send) control frame.
  */
 struct mbuf *
 ieee80211_alloc_rts(struct ieee80211com *ic,
 	const uint8_t ra[IEEE80211_ADDR_LEN],
 	const uint8_t ta[IEEE80211_ADDR_LEN],
 	uint16_t dur)
 {
 	struct ieee80211_frame_rts *rts;
 	struct mbuf *m;
 
 	/* XXX honor ic_headroom */
 	m = m_gethdr(M_NOWAIT, MT_DATA);
 	if (m != NULL) {
 		rts = mtod(m, struct ieee80211_frame_rts *);
 		rts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
 			IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_RTS;
 		rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
 		*(u_int16_t *)rts->i_dur = htole16(dur);
 		IEEE80211_ADDR_COPY(rts->i_ra, ra);
 		IEEE80211_ADDR_COPY(rts->i_ta, ta);
 
 		m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_rts);
 	}
 	return m;
 }
 
 /*
  * Allocate and build a CTS (Clear To Send) control frame.
  */
 struct mbuf *
 ieee80211_alloc_cts(struct ieee80211com *ic,
 	const uint8_t ra[IEEE80211_ADDR_LEN], uint16_t dur)
 {
 	struct ieee80211_frame_cts *cts;
 	struct mbuf *m;
 
 	/* XXX honor ic_headroom */
 	m = m_gethdr(M_NOWAIT, MT_DATA);
 	if (m != NULL) {
 		cts = mtod(m, struct ieee80211_frame_cts *);
 		cts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
 			IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_CTS;
 		cts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
 		*(u_int16_t *)cts->i_dur = htole16(dur);
 		IEEE80211_ADDR_COPY(cts->i_ra, ra);
 
 		m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_cts);
 	}
 	return m;
 }
 
 /*
  * Wrapper for CTS/RTS frame allocation.
  */
 struct mbuf *
 ieee80211_alloc_prot(struct ieee80211_node *ni, const struct mbuf *m,
     uint8_t rate, int prot)
 {
 	struct ieee80211com *ic = ni->ni_ic;
 	struct ieee80211vap *vap = ni->ni_vap;
 	const struct ieee80211_frame *wh;
 	struct mbuf *mprot;
 	uint16_t dur;
 	int pktlen, isshort;
 
 	KASSERT(prot == IEEE80211_PROT_RTSCTS ||
 	    prot == IEEE80211_PROT_CTSONLY,
 	    ("wrong protection type %d", prot));
 
 	wh = mtod(m, const struct ieee80211_frame *);
 	pktlen = m->m_pkthdr.len + IEEE80211_CRC_LEN;
 	isshort = (vap->iv_flags & IEEE80211_F_SHPREAMBLE) != 0;
 	dur = ieee80211_compute_duration(ic->ic_rt, pktlen, rate, isshort)
 	    + ieee80211_ack_duration(ic->ic_rt, rate, isshort);
 
 	if (prot == IEEE80211_PROT_RTSCTS) {
 		/* NB: CTS is the same size as an ACK */
 		dur += ieee80211_ack_duration(ic->ic_rt, rate, isshort);
 		mprot = ieee80211_alloc_rts(ic, wh->i_addr1, wh->i_addr2, dur);
 	} else
 		mprot = ieee80211_alloc_cts(ic, vap->iv_myaddr, dur);
 
 	return (mprot);
 }
 
 static void
 ieee80211_tx_mgt_timeout(void *arg)
 {
 	struct ieee80211vap *vap = arg;
 
 	IEEE80211_LOCK(vap->iv_ic);
 	if (vap->iv_state != IEEE80211_S_INIT &&
 	    (vap->iv_ic->ic_flags & IEEE80211_F_SCAN) == 0) {
 		/*
 		 * NB: it's safe to specify a timeout as the reason here;
 		 *     it'll only be used in the right state.
 		 */
 		ieee80211_new_state_locked(vap, IEEE80211_S_SCAN,
 			IEEE80211_SCAN_FAIL_TIMEOUT);
 	}
 	IEEE80211_UNLOCK(vap->iv_ic);
 }
 
 /*
  * This is the callback set on net80211-sourced transmitted
  * authentication request frames.
  *
  * This does a couple of things:
  *
  * + If the frame transmitted was a success, it schedules a future
  *   event which will transition the interface to scan.
  *   If a state transition _then_ occurs before that event occurs,
  *   said state transition will cancel this callout.
  *
  * + If the frame transmit was a failure, it immediately schedules
  *   the transition back to scan.
  */
 static void
 ieee80211_tx_mgt_cb(struct ieee80211_node *ni, void *arg, int status)
 {
 	struct ieee80211vap *vap = ni->ni_vap;
 	enum ieee80211_state ostate = (enum ieee80211_state)(uintptr_t)arg;
 
 	/*
 	 * Frame transmit completed; arrange timer callback.  If
 	 * transmit was successfully we wait for response.  Otherwise
 	 * we arrange an immediate callback instead of doing the
 	 * callback directly since we don't know what state the driver
 	 * is in (e.g. what locks it is holding).  This work should
 	 * not be too time-critical and not happen too often so the
 	 * added overhead is acceptable.
 	 *
 	 * XXX what happens if !acked but response shows up before callback?
 	 */
 	if (vap->iv_state == ostate) {
 		callout_reset(&vap->iv_mgtsend,
 			status == 0 ? IEEE80211_TRANS_WAIT*hz : 0,
 			ieee80211_tx_mgt_timeout, vap);
 	}
 }
 
 static void
 ieee80211_beacon_construct(struct mbuf *m, uint8_t *frm,
 	struct ieee80211_node *ni)
 {
 	struct ieee80211vap *vap = ni->ni_vap;
 	struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off;
 	struct ieee80211com *ic = ni->ni_ic;
 	struct ieee80211_rateset *rs = &ni->ni_rates;
 	uint16_t capinfo;
 
 	/*
 	 * beacon frame format
 	 *
 	 * TODO: update to 802.11-2012; a lot of stuff has changed;
 	 * vendor extensions should be at the end, etc.
 	 *
 	 *	[8] time stamp
 	 *	[2] beacon interval
 	 *	[2] cabability information
 	 *	[tlv] ssid
 	 *	[tlv] supported rates
 	 *	[3] parameter set (DS)
 	 *	[8] CF parameter set (optional)
 	 *	[tlv] parameter set (IBSS/TIM)
 	 *	[tlv] country (optional)
 	 *	[3] power control (optional)
 	 *	[5] channel switch announcement (CSA) (optional)
 	 * XXX TODO: Quiet
 	 * XXX TODO: IBSS DFS
 	 * XXX TODO: TPC report
 	 *	[tlv] extended rate phy (ERP)
 	 *	[tlv] extended supported rates
 	 *	[tlv] RSN parameters
 	 * XXX TODO: BSSLOAD
 	 * (XXX EDCA parameter set, QoS capability?)
 	 * XXX TODO: AP channel report
 	 *
 	 *	[tlv] HT capabilities
 	 *	[tlv] HT information
 	 *	XXX TODO: 20/40 BSS coexistence
 	 * Mesh:
 	 * XXX TODO: Meshid
 	 * XXX TODO: mesh config
 	 * XXX TODO: mesh awake window
 	 * XXX TODO: beacon timing (mesh, etc)
 	 * XXX TODO: MCCAOP Advertisement Overview
 	 * XXX TODO: MCCAOP Advertisement
 	 * XXX TODO: Mesh channel switch parameters
 	 * VHT:
 	 * XXX TODO: VHT capabilities
 	 * XXX TODO: VHT operation
 	 * XXX TODO: VHT transmit power envelope
 	 * XXX TODO: channel switch wrapper element
 	 * XXX TODO: extended BSS load element
 	 *
 	 * XXX Vendor-specific OIDs (e.g. Atheros)
 	 *	[tlv] WPA parameters
 	 *	[tlv] WME parameters
 	 *	[tlv] Vendor OUI HT capabilities (optional)
 	 *	[tlv] Vendor OUI HT information (optional)
 	 *	[tlv] Atheros capabilities (optional)
 	 *	[tlv] TDMA parameters (optional)
 	 *	[tlv] Mesh ID (MBSS)
 	 *	[tlv] Mesh Conf (MBSS)
 	 *	[tlv] application data (optional)
 	 */
 
 	memset(bo, 0, sizeof(*bo));
 
 	memset(frm, 0, 8);	/* XXX timestamp is set by hardware/driver */
 	frm += 8;
 	*(uint16_t *)frm = htole16(ni->ni_intval);
 	frm += 2;
 	capinfo = ieee80211_getcapinfo(vap, ni->ni_chan);
 	bo->bo_caps = (uint16_t *)frm;
 	*(uint16_t *)frm = htole16(capinfo);
 	frm += 2;
 	*frm++ = IEEE80211_ELEMID_SSID;
 	if ((vap->iv_flags & IEEE80211_F_HIDESSID) == 0) {
 		*frm++ = ni->ni_esslen;
 		memcpy(frm, ni->ni_essid, ni->ni_esslen);
 		frm += ni->ni_esslen;
 	} else
 		*frm++ = 0;
 	frm = ieee80211_add_rates(frm, rs);
 	if (!IEEE80211_IS_CHAN_FHSS(ni->ni_chan)) {
 		*frm++ = IEEE80211_ELEMID_DSPARMS;
 		*frm++ = 1;
 		*frm++ = ieee80211_chan2ieee(ic, ni->ni_chan);
 	}
 	if (ic->ic_flags & IEEE80211_F_PCF) {
 		bo->bo_cfp = frm;
 		frm = ieee80211_add_cfparms(frm, ic);
 	}
 	bo->bo_tim = frm;
 	if (vap->iv_opmode == IEEE80211_M_IBSS) {
 		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
 		*frm++ = 2;
 		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
 		bo->bo_tim_len = 0;
 	} else if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
 	    vap->iv_opmode == IEEE80211_M_MBSS) {
 		/* TIM IE is the same for Mesh and Hostap */
 		struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) frm;
 
 		tie->tim_ie = IEEE80211_ELEMID_TIM;
 		tie->tim_len = 4;	/* length */
 		tie->tim_count = 0;	/* DTIM count */ 
 		tie->tim_period = vap->iv_dtim_period;	/* DTIM period */
 		tie->tim_bitctl = 0;	/* bitmap control */
 		tie->tim_bitmap[0] = 0;	/* Partial Virtual Bitmap */
 		frm += sizeof(struct ieee80211_tim_ie);
 		bo->bo_tim_len = 1;
 	}
 	bo->bo_tim_trailer = frm;
 	if ((vap->iv_flags & IEEE80211_F_DOTH) ||
 	    (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
 		frm = ieee80211_add_countryie(frm, ic);
 	if (vap->iv_flags & IEEE80211_F_DOTH) {
 		if (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan))
 			frm = ieee80211_add_powerconstraint(frm, vap);
 		bo->bo_csa = frm;
 		if (ic->ic_flags & IEEE80211_F_CSAPENDING)
 			frm = ieee80211_add_csa(frm, vap);	
 	} else
 		bo->bo_csa = frm;
 
 	bo->bo_quiet = NULL;
 	if (vap->iv_flags & IEEE80211_F_DOTH) {
 		if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
 		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS) &&
 		    (vap->iv_quiet == 1)) {
 			/*
 			 * We only insert the quiet IE offset if
 			 * the quiet IE is enabled.  Otherwise don't
 			 * put it here or we'll just overwrite
 			 * some other beacon contents.
 			 */
 			if (vap->iv_quiet) {
 				bo->bo_quiet = frm;
 				frm = ieee80211_add_quiet(frm,vap, 0);
 			}
 		}
 	}
 
 	if (IEEE80211_IS_CHAN_ANYG(ni->ni_chan)) {
 		bo->bo_erp = frm;
 		frm = ieee80211_add_erp(frm, vap);
 	}
 	frm = ieee80211_add_xrates(frm, rs);
 	frm = ieee80211_add_rsn(frm, vap);
 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
 		frm = ieee80211_add_htcap(frm, ni);
 		bo->bo_htinfo = frm;
 		frm = ieee80211_add_htinfo(frm, ni);
 	}
 
 	if (IEEE80211_IS_CHAN_VHT(ni->ni_chan)) {
 		frm = ieee80211_add_vhtcap(frm, ni);
 		bo->bo_vhtinfo = frm;
 		frm = ieee80211_add_vhtinfo(frm, ni);
 		/* Transmit power envelope */
 		/* Channel switch wrapper element */
 		/* Extended bss load element */
 	}
 
 	frm = ieee80211_add_wpa(frm, vap);
 	if (vap->iv_flags & IEEE80211_F_WME) {
 		bo->bo_wme = frm;
 		frm = ieee80211_add_wme_param(frm, &ic->ic_wme,
 		    !! (vap->iv_flags_ext & IEEE80211_FEXT_UAPSD));
 	}
 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
 	    (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT)) {
 		frm = ieee80211_add_htcap_vendor(frm, ni);
 		frm = ieee80211_add_htinfo_vendor(frm, ni);
 	}
 
 #ifdef IEEE80211_SUPPORT_SUPERG
 	if (vap->iv_flags & IEEE80211_F_ATHEROS) {
 		bo->bo_ath = frm;
 		frm = ieee80211_add_athcaps(frm, ni);
 	}
 #endif
 #ifdef IEEE80211_SUPPORT_TDMA
 	if (vap->iv_caps & IEEE80211_C_TDMA) {
 		bo->bo_tdma = frm;
 		frm = ieee80211_add_tdma(frm, vap);
 	}
 #endif
 	if (vap->iv_appie_beacon != NULL) {
 		bo->bo_appie = frm;
 		bo->bo_appie_len = vap->iv_appie_beacon->ie_len;
 		frm = add_appie(frm, vap->iv_appie_beacon);
 	}
 
 	/* XXX TODO: move meshid/meshconf up to before vendor extensions? */
 #ifdef IEEE80211_SUPPORT_MESH
 	if (vap->iv_opmode == IEEE80211_M_MBSS) {
 		frm = ieee80211_add_meshid(frm, vap);
 		bo->bo_meshconf = frm;
 		frm = ieee80211_add_meshconf(frm, vap);
 	}
 #endif
 	bo->bo_tim_trailer_len = frm - bo->bo_tim_trailer;
 	bo->bo_csa_trailer_len = frm - bo->bo_csa;
 	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
 }
 
 /*
  * Allocate a beacon frame and fillin the appropriate bits.
  */
 struct mbuf *
 ieee80211_beacon_alloc(struct ieee80211_node *ni)
 {
 	struct ieee80211vap *vap = ni->ni_vap;
 	struct ieee80211com *ic = ni->ni_ic;
 	struct ifnet *ifp = vap->iv_ifp;
 	struct ieee80211_frame *wh;
 	struct mbuf *m;
 	int pktlen;
 	uint8_t *frm;
 
 	/*
 	 * Update the "We're putting the quiet IE in the beacon" state.
 	 */
 	if (vap->iv_quiet == 1)
 		vap->iv_flags_ext |= IEEE80211_FEXT_QUIET_IE;
 	else if (vap->iv_quiet == 0)
 		vap->iv_flags_ext &= ~IEEE80211_FEXT_QUIET_IE;
 
 	/*
 	 * beacon frame format
 	 *
 	 * Note: This needs updating for 802.11-2012.
 	 *
 	 *	[8] time stamp
 	 *	[2] beacon interval
 	 *	[2] cabability information
 	 *	[tlv] ssid
 	 *	[tlv] supported rates
 	 *	[3] parameter set (DS)
 	 *	[8] CF parameter set (optional)
 	 *	[tlv] parameter set (IBSS/TIM)
 	 *	[tlv] country (optional)
 	 *	[3] power control (optional)
 	 *	[5] channel switch announcement (CSA) (optional)
 	 *	[tlv] extended rate phy (ERP)
 	 *	[tlv] extended supported rates
 	 *	[tlv] RSN parameters
 	 *	[tlv] HT capabilities
 	 *	[tlv] HT information
 	 *	[tlv] VHT capabilities
 	 *	[tlv] VHT operation
 	 *	[tlv] Vendor OUI HT capabilities (optional)
 	 *	[tlv] Vendor OUI HT information (optional)
 	 * XXX Vendor-specific OIDs (e.g. Atheros)
 	 *	[tlv] WPA parameters
 	 *	[tlv] WME parameters
 	 *	[tlv] TDMA parameters (optional)
 	 *	[tlv] Mesh ID (MBSS)
 	 *	[tlv] Mesh Conf (MBSS)
 	 *	[tlv] application data (optional)
 	 * NB: we allocate the max space required for the TIM bitmap.
 	 * XXX how big is this?
 	 */
 	pktlen =   8					/* time stamp */
 		 + sizeof(uint16_t)			/* beacon interval */
 		 + sizeof(uint16_t)			/* capabilities */
 		 + 2 + ni->ni_esslen			/* ssid */
 	         + 2 + IEEE80211_RATE_SIZE		/* supported rates */
 	         + 2 + 1				/* DS parameters */
 		 + 2 + 6				/* CF parameters */
 		 + 2 + 4 + vap->iv_tim_len		/* DTIM/IBSSPARMS */
 		 + IEEE80211_COUNTRY_MAX_SIZE		/* country */
 		 + 2 + 1				/* power control */
 		 + sizeof(struct ieee80211_csa_ie)	/* CSA */
 		 + sizeof(struct ieee80211_quiet_ie)	/* Quiet */
 		 + 2 + 1				/* ERP */
 	         + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
 		 + (vap->iv_caps & IEEE80211_C_WPA ?	/* WPA 1+2 */
 			2*sizeof(struct ieee80211_ie_wpa) : 0)
 		 /* XXX conditional? */
 		 + 4+2*sizeof(struct ieee80211_ie_htcap)/* HT caps */
 		 + 4+2*sizeof(struct ieee80211_ie_htinfo)/* HT info */
 		 + sizeof(struct ieee80211_ie_vhtcap)/* VHT caps */
 		 + sizeof(struct ieee80211_ie_vht_operation)/* VHT info */
 		 + (vap->iv_caps & IEEE80211_C_WME ?	/* WME */
 			sizeof(struct ieee80211_wme_param) : 0)
 #ifdef IEEE80211_SUPPORT_SUPERG
 		 + sizeof(struct ieee80211_ath_ie)	/* ATH */
 #endif
 #ifdef IEEE80211_SUPPORT_TDMA
 		 + (vap->iv_caps & IEEE80211_C_TDMA ?	/* TDMA */
 			sizeof(struct ieee80211_tdma_param) : 0)
 #endif
 #ifdef IEEE80211_SUPPORT_MESH
 		 + 2 + ni->ni_meshidlen
 		 + sizeof(struct ieee80211_meshconf_ie)
 #endif
 		 + IEEE80211_MAX_APPIE
 		 ;
 	m = ieee80211_getmgtframe(&frm,
 		ic->ic_headroom + sizeof(struct ieee80211_frame), pktlen);
 	if (m == NULL) {
 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_ANY,
 			"%s: cannot get buf; size %u\n", __func__, pktlen);
 		vap->iv_stats.is_tx_nobuf++;
 		return NULL;
 	}
 	ieee80211_beacon_construct(m, frm, ni);
 
 	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
 	KASSERT(m != NULL, ("no space for 802.11 header?"));
 	wh = mtod(m, struct ieee80211_frame *);
 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
 	    IEEE80211_FC0_SUBTYPE_BEACON;
 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
 	*(uint16_t *)wh->i_dur = 0;
 	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
 	IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
 	IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid);
 	*(uint16_t *)wh->i_seq = 0;
 
 	return m;
 }
 
 /*
  * Update the dynamic parts of a beacon frame based on the current state.
  */
 int
 ieee80211_beacon_update(struct ieee80211_node *ni, struct mbuf *m, int mcast)
 {
 	struct ieee80211vap *vap = ni->ni_vap;
 	struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off;
 	struct ieee80211com *ic = ni->ni_ic;
 	int len_changed = 0;
 	uint16_t capinfo;
 	struct ieee80211_frame *wh;
 	ieee80211_seq seqno;
 
 	IEEE80211_LOCK(ic);
 	/*
 	 * Handle 11h channel change when we've reached the count.
 	 * We must recalculate the beacon frame contents to account
 	 * for the new channel.  Note we do this only for the first
 	 * vap that reaches this point; subsequent vaps just update
 	 * their beacon state to reflect the recalculated channel.
 	 */
 	if (isset(bo->bo_flags, IEEE80211_BEACON_CSA) &&
 	    vap->iv_csa_count == ic->ic_csa_count) {
 		vap->iv_csa_count = 0;
 		/*
 		 * Effect channel change before reconstructing the beacon
 		 * frame contents as many places reference ni_chan.
 		 */
 		if (ic->ic_csa_newchan != NULL)
 			ieee80211_csa_completeswitch(ic);
 		/*
 		 * NB: ieee80211_beacon_construct clears all pending
 		 * updates in bo_flags so we don't need to explicitly
 		 * clear IEEE80211_BEACON_CSA.
 		 */
 		ieee80211_beacon_construct(m,
 		    mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni);
 
 		/* XXX do WME aggressive mode processing? */
 		IEEE80211_UNLOCK(ic);
 		return 1;		/* just assume length changed */
 	}
 
 	/*
 	 * Handle the quiet time element being added and removed.
 	 * Again, for now we just cheat and reconstruct the whole
 	 * beacon - that way the gap is provided as appropriate.
 	 *
 	 * So, track whether we have already added the IE versus
 	 * whether we want to be adding the IE.
 	 */
 	if ((vap->iv_flags_ext & IEEE80211_FEXT_QUIET_IE) &&
 	    (vap->iv_quiet == 0)) {
 		/*
 		 * Quiet time beacon IE enabled, but it's disabled;
 		 * recalc
 		 */
 		vap->iv_flags_ext &= ~IEEE80211_FEXT_QUIET_IE;
 		ieee80211_beacon_construct(m,
 		    mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni);
 		/* XXX do WME aggressive mode processing? */
 		IEEE80211_UNLOCK(ic);
 		return 1;		/* just assume length changed */
 	}
 
 	if (((vap->iv_flags_ext & IEEE80211_FEXT_QUIET_IE) == 0) &&
 	    (vap->iv_quiet == 1)) {
 		/*
 		 * Quiet time beacon IE disabled, but it's now enabled;
 		 * recalc
 		 */
 		vap->iv_flags_ext |= IEEE80211_FEXT_QUIET_IE;
 		ieee80211_beacon_construct(m,
 		    mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni);
 		/* XXX do WME aggressive mode processing? */
 		IEEE80211_UNLOCK(ic);
 		return 1;		/* just assume length changed */
 	}
 
 	wh = mtod(m, struct ieee80211_frame *);
 
 	/*
 	 * XXX TODO Strictly speaking this should be incremented with the TX
 	 * lock held so as to serialise access to the non-qos TID sequence
 	 * number space.
 	 *
 	 * If the driver identifies it does its own TX seqno management then
 	 * we can skip this (and still not do the TX seqno.)
 	 */
 	seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
 	*(uint16_t *)&wh->i_seq[0] =
 		htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
 	M_SEQNO_SET(m, seqno);
 
 	/* XXX faster to recalculate entirely or just changes? */
 	capinfo = ieee80211_getcapinfo(vap, ni->ni_chan);
 	*bo->bo_caps = htole16(capinfo);
 
 	if (vap->iv_flags & IEEE80211_F_WME) {
 		struct ieee80211_wme_state *wme = &ic->ic_wme;
 
 		/*
 		 * Check for aggressive mode change.  When there is
 		 * significant high priority traffic in the BSS
 		 * throttle back BE traffic by using conservative
 		 * parameters.  Otherwise BE uses aggressive params
 		 * to optimize performance of legacy/non-QoS traffic.
 		 */
 		if (wme->wme_flags & WME_F_AGGRMODE) {
 			if (wme->wme_hipri_traffic >
 			    wme->wme_hipri_switch_thresh) {
 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
 				    "%s: traffic %u, disable aggressive mode\n",
 				    __func__, wme->wme_hipri_traffic);
 				wme->wme_flags &= ~WME_F_AGGRMODE;
 				ieee80211_wme_updateparams_locked(vap);
 				wme->wme_hipri_traffic =
 					wme->wme_hipri_switch_hysteresis;
 			} else
 				wme->wme_hipri_traffic = 0;
 		} else {
 			if (wme->wme_hipri_traffic <=
 			    wme->wme_hipri_switch_thresh) {
 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
 				    "%s: traffic %u, enable aggressive mode\n",
 				    __func__, wme->wme_hipri_traffic);
 				wme->wme_flags |= WME_F_AGGRMODE;
 				ieee80211_wme_updateparams_locked(vap);
 				wme->wme_hipri_traffic = 0;
 			} else
 				wme->wme_hipri_traffic =
 					wme->wme_hipri_switch_hysteresis;
 		}
 		if (isset(bo->bo_flags, IEEE80211_BEACON_WME)) {
 			(void) ieee80211_add_wme_param(bo->bo_wme, wme,
 			  vap->iv_flags_ext & IEEE80211_FEXT_UAPSD);
 			clrbit(bo->bo_flags, IEEE80211_BEACON_WME);
 		}
 	}
 
 	if (isset(bo->bo_flags,  IEEE80211_BEACON_HTINFO)) {
 		ieee80211_ht_update_beacon(vap, bo);
 		clrbit(bo->bo_flags, IEEE80211_BEACON_HTINFO);
 	}
 #ifdef IEEE80211_SUPPORT_TDMA
 	if (vap->iv_caps & IEEE80211_C_TDMA) {
 		/*
 		 * NB: the beacon is potentially updated every TBTT.
 		 */
 		ieee80211_tdma_update_beacon(vap, bo);
 	}
 #endif
 #ifdef IEEE80211_SUPPORT_MESH
 	if (vap->iv_opmode == IEEE80211_M_MBSS)
 		ieee80211_mesh_update_beacon(vap, bo);
 #endif
 
 	if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
 	    vap->iv_opmode == IEEE80211_M_MBSS) {	/* NB: no IBSS support*/
 		struct ieee80211_tim_ie *tie =
 			(struct ieee80211_tim_ie *) bo->bo_tim;
 		if (isset(bo->bo_flags, IEEE80211_BEACON_TIM)) {
 			u_int timlen, timoff, i;
 			/* 
 			 * ATIM/DTIM needs updating.  If it fits in the
 			 * current space allocated then just copy in the
 			 * new bits.  Otherwise we need to move any trailing
 			 * data to make room.  Note that we know there is
 			 * contiguous space because ieee80211_beacon_allocate
 			 * insures there is space in the mbuf to write a
 			 * maximal-size virtual bitmap (based on iv_max_aid).
 			 */
 			/*
 			 * Calculate the bitmap size and offset, copy any
 			 * trailer out of the way, and then copy in the
 			 * new bitmap and update the information element.
 			 * Note that the tim bitmap must contain at least
 			 * one byte and any offset must be even.
 			 */
 			if (vap->iv_ps_pending != 0) {
 				timoff = 128;		/* impossibly large */
 				for (i = 0; i < vap->iv_tim_len; i++)
 					if (vap->iv_tim_bitmap[i]) {
 						timoff = i &~ 1;
 						break;
 					}
 				KASSERT(timoff != 128, ("tim bitmap empty!"));
 				for (i = vap->iv_tim_len-1; i >= timoff; i--)
 					if (vap->iv_tim_bitmap[i])
 						break;
 				timlen = 1 + (i - timoff);
 			} else {
 				timoff = 0;
 				timlen = 1;
 			}
 
 			/*
 			 * TODO: validate this!
 			 */
 			if (timlen != bo->bo_tim_len) {
 				/* copy up/down trailer */
 				int adjust = tie->tim_bitmap+timlen
 					   - bo->bo_tim_trailer;
 				ovbcopy(bo->bo_tim_trailer,
 				    bo->bo_tim_trailer+adjust,
 				    bo->bo_tim_trailer_len);
 				bo->bo_tim_trailer += adjust;
 				bo->bo_erp += adjust;
 				bo->bo_htinfo += adjust;
 				bo->bo_vhtinfo += adjust;
 #ifdef IEEE80211_SUPPORT_SUPERG
 				bo->bo_ath += adjust;
 #endif
 #ifdef IEEE80211_SUPPORT_TDMA
 				bo->bo_tdma += adjust;
 #endif
 #ifdef IEEE80211_SUPPORT_MESH
 				bo->bo_meshconf += adjust;
 #endif
 				bo->bo_appie += adjust;
 				bo->bo_wme += adjust;
 				bo->bo_csa += adjust;
 				bo->bo_quiet += adjust;
 				bo->bo_tim_len = timlen;
 
 				/* update information element */
 				tie->tim_len = 3 + timlen;
 				tie->tim_bitctl = timoff;
 				len_changed = 1;
 			}
 			memcpy(tie->tim_bitmap, vap->iv_tim_bitmap + timoff,
 				bo->bo_tim_len);
 
 			clrbit(bo->bo_flags, IEEE80211_BEACON_TIM);
 
 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_POWER,
 				"%s: TIM updated, pending %u, off %u, len %u\n",
 				__func__, vap->iv_ps_pending, timoff, timlen);
 		}
 		/* count down DTIM period */
 		if (tie->tim_count == 0)
 			tie->tim_count = tie->tim_period - 1;
 		else
 			tie->tim_count--;
 		/* update state for buffered multicast frames on DTIM */
 		if (mcast && tie->tim_count == 0)
 			tie->tim_bitctl |= 1;
 		else
 			tie->tim_bitctl &= ~1;
 		if (isset(bo->bo_flags, IEEE80211_BEACON_CSA)) {
 			struct ieee80211_csa_ie *csa =
 			    (struct ieee80211_csa_ie *) bo->bo_csa;
 
 			/*
 			 * Insert or update CSA ie.  If we're just starting
 			 * to count down to the channel switch then we need
 			 * to insert the CSA ie.  Otherwise we just need to
 			 * drop the count.  The actual change happens above
 			 * when the vap's count reaches the target count.
 			 */
 			if (vap->iv_csa_count == 0) {
 				memmove(&csa[1], csa, bo->bo_csa_trailer_len);
 				bo->bo_erp += sizeof(*csa);
 				bo->bo_htinfo += sizeof(*csa);
 				bo->bo_vhtinfo += sizeof(*csa);
 				bo->bo_wme += sizeof(*csa);
 #ifdef IEEE80211_SUPPORT_SUPERG
 				bo->bo_ath += sizeof(*csa);
 #endif
 #ifdef IEEE80211_SUPPORT_TDMA
 				bo->bo_tdma += sizeof(*csa);
 #endif
 #ifdef IEEE80211_SUPPORT_MESH
 				bo->bo_meshconf += sizeof(*csa);
 #endif
 				bo->bo_appie += sizeof(*csa);
 				bo->bo_csa_trailer_len += sizeof(*csa);
 				bo->bo_quiet += sizeof(*csa);
 				bo->bo_tim_trailer_len += sizeof(*csa);
 				m->m_len += sizeof(*csa);
 				m->m_pkthdr.len += sizeof(*csa);
 
 				ieee80211_add_csa(bo->bo_csa, vap);
 			} else
 				csa->csa_count--;
 			vap->iv_csa_count++;
 			/* NB: don't clear IEEE80211_BEACON_CSA */
 		}
 
 		/*
 		 * Only add the quiet time IE if we've enabled it
 		 * as appropriate.
 		 */
 		if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
 		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) {
 			if (vap->iv_quiet &&
 			    (vap->iv_flags_ext & IEEE80211_FEXT_QUIET_IE)) {
 				ieee80211_add_quiet(bo->bo_quiet, vap, 1);
 			}
 		}
 		if (isset(bo->bo_flags, IEEE80211_BEACON_ERP)) {
 			/*
 			 * ERP element needs updating.
 			 */
 			(void) ieee80211_add_erp(bo->bo_erp, vap);
 			clrbit(bo->bo_flags, IEEE80211_BEACON_ERP);
 		}
 #ifdef IEEE80211_SUPPORT_SUPERG
 		if (isset(bo->bo_flags,  IEEE80211_BEACON_ATH)) {
 			ieee80211_add_athcaps(bo->bo_ath, ni);
 			clrbit(bo->bo_flags, IEEE80211_BEACON_ATH);
 		}
 #endif
 	}
 	if (isset(bo->bo_flags, IEEE80211_BEACON_APPIE)) {
 		const struct ieee80211_appie *aie = vap->iv_appie_beacon;
 		int aielen;
 		uint8_t *frm;
 
 		aielen = 0;
 		if (aie != NULL)
 			aielen += aie->ie_len;
 		if (aielen != bo->bo_appie_len) {
 			/* copy up/down trailer */
 			int adjust = aielen - bo->bo_appie_len;
 			ovbcopy(bo->bo_tim_trailer, bo->bo_tim_trailer+adjust,
 				bo->bo_tim_trailer_len);
 			bo->bo_tim_trailer += adjust;
 			bo->bo_appie += adjust;
 			bo->bo_appie_len = aielen;
 
 			len_changed = 1;
 		}
 		frm = bo->bo_appie;
 		if (aie != NULL)
 			frm  = add_appie(frm, aie);
 		clrbit(bo->bo_flags, IEEE80211_BEACON_APPIE);
 	}
 	IEEE80211_UNLOCK(ic);
 
 	return len_changed;
 }
 
 /*
  * Do Ethernet-LLC encapsulation for each payload in a fast frame
  * tunnel encapsulation.  The frame is assumed to have an Ethernet
  * header at the front that must be stripped before prepending the
  * LLC followed by the Ethernet header passed in (with an Ethernet
  * type that specifies the payload size).
  */
 struct mbuf *
 ieee80211_ff_encap1(struct ieee80211vap *vap, struct mbuf *m,
 	const struct ether_header *eh)
 {
 	struct llc *llc;
 	uint16_t payload;
 
 	/* XXX optimize by combining m_adj+M_PREPEND */
 	m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
 	llc = mtod(m, struct llc *);
 	llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
 	llc->llc_control = LLC_UI;
 	llc->llc_snap.org_code[0] = 0;
 	llc->llc_snap.org_code[1] = 0;
 	llc->llc_snap.org_code[2] = 0;
 	llc->llc_snap.ether_type = eh->ether_type;
 	payload = m->m_pkthdr.len;		/* NB: w/o Ethernet header */
 
 	M_PREPEND(m, sizeof(struct ether_header), M_NOWAIT);
 	if (m == NULL) {		/* XXX cannot happen */
 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
 			"%s: no space for ether_header\n", __func__);
 		vap->iv_stats.is_tx_nobuf++;
 		return NULL;
 	}
 	ETHER_HEADER_COPY(mtod(m, void *), eh);
 	mtod(m, struct ether_header *)->ether_type = htons(payload);
 	return m;
 }
 
 /*
  * Complete an mbuf transmission.
  *
  * For now, this simply processes a completed frame after the
  * driver has completed it's transmission and/or retransmission.
  * It assumes the frame is an 802.11 encapsulated frame.
  *
  * Later on it will grow to become the exit path for a given frame
  * from the driver and, depending upon how it's been encapsulated
  * and already transmitted, it may end up doing A-MPDU retransmission,
  * power save requeuing, etc.
  *
  * In order for the above to work, the driver entry point to this
  * must not hold any driver locks.  Thus, the driver needs to delay
  * any actual mbuf completion until it can release said locks.
  *
  * This frees the mbuf and if the mbuf has a node reference,
  * the node reference will be freed.
  */
 void
 ieee80211_tx_complete(struct ieee80211_node *ni, struct mbuf *m, int status)
 {
 
 	if (ni != NULL) {
 		struct ifnet *ifp = ni->ni_vap->iv_ifp;
 
 		if (status == 0) {
 			if_inc_counter(ifp, IFCOUNTER_OBYTES, m->m_pkthdr.len);
 			if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
 			if (m->m_flags & M_MCAST)
 				if_inc_counter(ifp, IFCOUNTER_OMCASTS, 1);
 		} else
 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
 		if (m->m_flags & M_TXCB)
 			ieee80211_process_callback(ni, m, status);
 		ieee80211_free_node(ni);
 	}
 	m_freem(m);
 }