diff --git a/sys/net/rtsock.c b/sys/net/rtsock.c index 011f07803bfa..939e628f0f62 100644 --- a/sys/net/rtsock.c +++ b/sys/net/rtsock.c @@ -1,2518 +1,2529 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 1988, 1991, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)rtsock.c 8.7 (Berkeley) 10/12/95 * $FreeBSD$ */ #include "opt_ddb.h" #include "opt_route.h" #include "opt_inet.h" #include "opt_inet6.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INET6 #include #include #include #endif #include #ifdef COMPAT_FREEBSD32 #include #include struct if_msghdr32 { uint16_t ifm_msglen; uint8_t ifm_version; uint8_t ifm_type; int32_t ifm_addrs; int32_t ifm_flags; uint16_t ifm_index; uint16_t _ifm_spare1; struct if_data ifm_data; }; struct if_msghdrl32 { uint16_t ifm_msglen; uint8_t ifm_version; uint8_t ifm_type; int32_t ifm_addrs; int32_t ifm_flags; uint16_t ifm_index; uint16_t _ifm_spare1; uint16_t ifm_len; uint16_t ifm_data_off; uint32_t _ifm_spare2; struct if_data ifm_data; }; struct ifa_msghdrl32 { uint16_t ifam_msglen; uint8_t ifam_version; uint8_t ifam_type; int32_t ifam_addrs; int32_t ifam_flags; uint16_t ifam_index; uint16_t _ifam_spare1; uint16_t ifam_len; uint16_t ifam_data_off; int32_t ifam_metric; struct if_data ifam_data; }; #define SA_SIZE32(sa) \ ( (((struct sockaddr *)(sa))->sa_len == 0) ? \ sizeof(int) : \ 1 + ( (((struct sockaddr *)(sa))->sa_len - 1) | (sizeof(int) - 1) ) ) #endif /* COMPAT_FREEBSD32 */ MALLOC_DEFINE(M_RTABLE, "routetbl", "routing tables"); /* NB: these are not modified */ static struct sockaddr route_src = { 2, PF_ROUTE, }; static struct sockaddr sa_zero = { sizeof(sa_zero), AF_INET, }; /* These are external hooks for CARP. */ int (*carp_get_vhid_p)(struct ifaddr *); /* * Used by rtsock/raw_input callback code to decide whether to filter the update * notification to a socket bound to a particular FIB. */ #define RTS_FILTER_FIB M_PROTO8 typedef struct { int ip_count; /* attached w/ AF_INET */ int ip6_count; /* attached w/ AF_INET6 */ int any_count; /* total attached */ } route_cb_t; VNET_DEFINE_STATIC(route_cb_t, route_cb); #define V_route_cb VNET(route_cb) struct mtx rtsock_mtx; MTX_SYSINIT(rtsock, &rtsock_mtx, "rtsock route_cb lock", MTX_DEF); #define RTSOCK_LOCK() mtx_lock(&rtsock_mtx) #define RTSOCK_UNLOCK() mtx_unlock(&rtsock_mtx) #define RTSOCK_LOCK_ASSERT() mtx_assert(&rtsock_mtx, MA_OWNED) SYSCTL_NODE(_net, OID_AUTO, route, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, ""); struct walkarg { int family; int w_tmemsize; int w_op, w_arg; caddr_t w_tmem; struct sysctl_req *w_req; struct sockaddr *dst; struct sockaddr *mask; }; static void rts_input(struct mbuf *m); static struct mbuf *rtsock_msg_mbuf(int type, struct rt_addrinfo *rtinfo); static int rtsock_msg_buffer(int type, struct rt_addrinfo *rtinfo, struct walkarg *w, int *plen); static int rt_xaddrs(caddr_t cp, caddr_t cplim, struct rt_addrinfo *rtinfo); static int cleanup_xaddrs(struct rt_addrinfo *info); static int sysctl_dumpentry(struct rtentry *rt, void *vw); static int sysctl_dumpnhop(struct rtentry *rt, struct nhop_object *nh, uint32_t weight, struct walkarg *w); static int sysctl_iflist(int af, struct walkarg *w); static int sysctl_ifmalist(int af, struct walkarg *w); static int route_output(struct mbuf *m, struct socket *so, ...); static void rt_getmetrics(const struct rtentry *rt, const struct nhop_object *nh, struct rt_metrics *out); static void rt_dispatch(struct mbuf *, sa_family_t); static int handle_rtm_get(struct rt_addrinfo *info, u_int fibnum, struct rt_msghdr *rtm, struct rib_cmd_info *rc); static int update_rtm_from_rc(struct rt_addrinfo *info, struct rt_msghdr **prtm, int alloc_len, struct rib_cmd_info *rc, struct nhop_object *nh); static void send_rtm_reply(struct socket *so, struct rt_msghdr *rtm, struct mbuf *m, sa_family_t saf, u_int fibnum, int rtm_errno); static bool can_export_rte(struct ucred *td_ucred, bool rt_is_host, const struct sockaddr *rt_dst); static struct netisr_handler rtsock_nh = { .nh_name = "rtsock", .nh_handler = rts_input, .nh_proto = NETISR_ROUTE, .nh_policy = NETISR_POLICY_SOURCE, }; static int sysctl_route_netisr_maxqlen(SYSCTL_HANDLER_ARGS) { int error, qlimit; netisr_getqlimit(&rtsock_nh, &qlimit); error = sysctl_handle_int(oidp, &qlimit, 0, req); if (error || !req->newptr) return (error); if (qlimit < 1) return (EINVAL); return (netisr_setqlimit(&rtsock_nh, qlimit)); } SYSCTL_PROC(_net_route, OID_AUTO, netisr_maxqlen, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 0, sysctl_route_netisr_maxqlen, "I", "maximum routing socket dispatch queue length"); static void vnet_rts_init(void) { int tmp; if (IS_DEFAULT_VNET(curvnet)) { if (TUNABLE_INT_FETCH("net.route.netisr_maxqlen", &tmp)) rtsock_nh.nh_qlimit = tmp; netisr_register(&rtsock_nh); } #ifdef VIMAGE else netisr_register_vnet(&rtsock_nh); #endif } VNET_SYSINIT(vnet_rtsock, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, vnet_rts_init, 0); #ifdef VIMAGE static void vnet_rts_uninit(void) { netisr_unregister_vnet(&rtsock_nh); } VNET_SYSUNINIT(vnet_rts_uninit, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, vnet_rts_uninit, 0); #endif static int raw_input_rts_cb(struct mbuf *m, struct sockproto *proto, struct sockaddr *src, struct rawcb *rp) { int fibnum; KASSERT(m != NULL, ("%s: m is NULL", __func__)); KASSERT(proto != NULL, ("%s: proto is NULL", __func__)); KASSERT(rp != NULL, ("%s: rp is NULL", __func__)); /* No filtering requested. */ if ((m->m_flags & RTS_FILTER_FIB) == 0) return (0); /* Check if it is a rts and the fib matches the one of the socket. */ fibnum = M_GETFIB(m); if (proto->sp_family != PF_ROUTE || rp->rcb_socket == NULL || rp->rcb_socket->so_fibnum == fibnum) return (0); /* Filtering requested and no match, the socket shall be skipped. */ return (1); } static void rts_input(struct mbuf *m) { struct sockproto route_proto; unsigned short *family; struct m_tag *tag; route_proto.sp_family = PF_ROUTE; tag = m_tag_find(m, PACKET_TAG_RTSOCKFAM, NULL); if (tag != NULL) { family = (unsigned short *)(tag + 1); route_proto.sp_protocol = *family; m_tag_delete(m, tag); } else route_proto.sp_protocol = 0; raw_input_ext(m, &route_proto, &route_src, raw_input_rts_cb); } /* * It really doesn't make any sense at all for this code to share much * with raw_usrreq.c, since its functionality is so restricted. XXX */ static void rts_abort(struct socket *so) { raw_usrreqs.pru_abort(so); } static void rts_close(struct socket *so) { raw_usrreqs.pru_close(so); } /* pru_accept is EOPNOTSUPP */ static int rts_attach(struct socket *so, int proto, struct thread *td) { struct rawcb *rp; int error; KASSERT(so->so_pcb == NULL, ("rts_attach: so_pcb != NULL")); /* XXX */ rp = malloc(sizeof *rp, M_PCB, M_WAITOK | M_ZERO); so->so_pcb = (caddr_t)rp; so->so_fibnum = td->td_proc->p_fibnum; error = raw_attach(so, proto); rp = sotorawcb(so); if (error) { so->so_pcb = NULL; free(rp, M_PCB); return error; } RTSOCK_LOCK(); switch(rp->rcb_proto.sp_protocol) { case AF_INET: V_route_cb.ip_count++; break; case AF_INET6: V_route_cb.ip6_count++; break; } V_route_cb.any_count++; RTSOCK_UNLOCK(); soisconnected(so); so->so_options |= SO_USELOOPBACK; return 0; } static int rts_bind(struct socket *so, struct sockaddr *nam, struct thread *td) { return (raw_usrreqs.pru_bind(so, nam, td)); /* xxx just EINVAL */ } static int rts_connect(struct socket *so, struct sockaddr *nam, struct thread *td) { return (raw_usrreqs.pru_connect(so, nam, td)); /* XXX just EINVAL */ } /* pru_connect2 is EOPNOTSUPP */ /* pru_control is EOPNOTSUPP */ static void rts_detach(struct socket *so) { struct rawcb *rp = sotorawcb(so); KASSERT(rp != NULL, ("rts_detach: rp == NULL")); RTSOCK_LOCK(); switch(rp->rcb_proto.sp_protocol) { case AF_INET: V_route_cb.ip_count--; break; case AF_INET6: V_route_cb.ip6_count--; break; } V_route_cb.any_count--; RTSOCK_UNLOCK(); raw_usrreqs.pru_detach(so); } static int rts_disconnect(struct socket *so) { return (raw_usrreqs.pru_disconnect(so)); } /* pru_listen is EOPNOTSUPP */ static int rts_peeraddr(struct socket *so, struct sockaddr **nam) { return (raw_usrreqs.pru_peeraddr(so, nam)); } /* pru_rcvd is EOPNOTSUPP */ /* pru_rcvoob is EOPNOTSUPP */ static int rts_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam, struct mbuf *control, struct thread *td) { return (raw_usrreqs.pru_send(so, flags, m, nam, control, td)); } /* pru_sense is null */ static int rts_shutdown(struct socket *so) { return (raw_usrreqs.pru_shutdown(so)); } static int rts_sockaddr(struct socket *so, struct sockaddr **nam) { return (raw_usrreqs.pru_sockaddr(so, nam)); } static struct pr_usrreqs route_usrreqs = { .pru_abort = rts_abort, .pru_attach = rts_attach, .pru_bind = rts_bind, .pru_connect = rts_connect, .pru_detach = rts_detach, .pru_disconnect = rts_disconnect, .pru_peeraddr = rts_peeraddr, .pru_send = rts_send, .pru_shutdown = rts_shutdown, .pru_sockaddr = rts_sockaddr, .pru_close = rts_close, }; #ifndef _SOCKADDR_UNION_DEFINED #define _SOCKADDR_UNION_DEFINED /* * The union of all possible address formats we handle. */ union sockaddr_union { struct sockaddr sa; struct sockaddr_in sin; struct sockaddr_in6 sin6; }; #endif /* _SOCKADDR_UNION_DEFINED */ static int rtm_get_jailed(struct rt_addrinfo *info, struct ifnet *ifp, struct nhop_object *nh, union sockaddr_union *saun, struct ucred *cred) { #if defined(INET) || defined(INET6) struct epoch_tracker et; #endif /* First, see if the returned address is part of the jail. */ if (prison_if(cred, nh->nh_ifa->ifa_addr) == 0) { info->rti_info[RTAX_IFA] = nh->nh_ifa->ifa_addr; return (0); } switch (info->rti_info[RTAX_DST]->sa_family) { #ifdef INET case AF_INET: { struct in_addr ia; struct ifaddr *ifa; int found; found = 0; /* * Try to find an address on the given outgoing interface * that belongs to the jail. */ NET_EPOCH_ENTER(et); CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { struct sockaddr *sa; sa = ifa->ifa_addr; if (sa->sa_family != AF_INET) continue; ia = ((struct sockaddr_in *)sa)->sin_addr; if (prison_check_ip4(cred, &ia) == 0) { found = 1; break; } } NET_EPOCH_EXIT(et); if (!found) { /* * As a last resort return the 'default' jail address. */ ia = ((struct sockaddr_in *)nh->nh_ifa->ifa_addr)-> sin_addr; if (prison_get_ip4(cred, &ia) != 0) return (ESRCH); } bzero(&saun->sin, sizeof(struct sockaddr_in)); saun->sin.sin_len = sizeof(struct sockaddr_in); saun->sin.sin_family = AF_INET; saun->sin.sin_addr.s_addr = ia.s_addr; info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin; break; } #endif #ifdef INET6 case AF_INET6: { struct in6_addr ia6; struct ifaddr *ifa; int found; found = 0; /* * Try to find an address on the given outgoing interface * that belongs to the jail. */ NET_EPOCH_ENTER(et); CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { struct sockaddr *sa; sa = ifa->ifa_addr; if (sa->sa_family != AF_INET6) continue; bcopy(&((struct sockaddr_in6 *)sa)->sin6_addr, &ia6, sizeof(struct in6_addr)); if (prison_check_ip6(cred, &ia6) == 0) { found = 1; break; } } NET_EPOCH_EXIT(et); if (!found) { /* * As a last resort return the 'default' jail address. */ ia6 = ((struct sockaddr_in6 *)nh->nh_ifa->ifa_addr)-> sin6_addr; if (prison_get_ip6(cred, &ia6) != 0) return (ESRCH); } bzero(&saun->sin6, sizeof(struct sockaddr_in6)); saun->sin6.sin6_len = sizeof(struct sockaddr_in6); saun->sin6.sin6_family = AF_INET6; bcopy(&ia6, &saun->sin6.sin6_addr, sizeof(struct in6_addr)); if (sa6_recoverscope(&saun->sin6) != 0) return (ESRCH); info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin6; break; } #endif default: return (ESRCH); } return (0); } /* * Fills in @info based on userland-provided @rtm message. * * Returns 0 on success. */ static int fill_addrinfo(struct rt_msghdr *rtm, int len, u_int fibnum, struct rt_addrinfo *info) { int error; sa_family_t saf; rtm->rtm_pid = curproc->p_pid; info->rti_addrs = rtm->rtm_addrs; info->rti_mflags = rtm->rtm_inits; info->rti_rmx = &rtm->rtm_rmx; /* * rt_xaddrs() performs s6_addr[2] := sin6_scope_id for AF_INET6 * link-local address because rtrequest requires addresses with * embedded scope id. */ if (rt_xaddrs((caddr_t)(rtm + 1), len + (caddr_t)rtm, info)) return (EINVAL); info->rti_flags = rtm->rtm_flags; error = cleanup_xaddrs(info); if (error != 0) return (error); saf = info->rti_info[RTAX_DST]->sa_family; /* * Verify that the caller has the appropriate privilege; RTM_GET * is the only operation the non-superuser is allowed. */ if (rtm->rtm_type != RTM_GET) { error = priv_check(curthread, PRIV_NET_ROUTE); if (error != 0) return (error); } /* * The given gateway address may be an interface address. * For example, issuing a "route change" command on a route * entry that was created from a tunnel, and the gateway * address given is the local end point. In this case the * RTF_GATEWAY flag must be cleared or the destination will * not be reachable even though there is no error message. */ if (info->rti_info[RTAX_GATEWAY] != NULL && info->rti_info[RTAX_GATEWAY]->sa_family != AF_LINK) { struct rt_addrinfo ginfo; struct sockaddr *gdst; struct sockaddr_storage ss; bzero(&ginfo, sizeof(ginfo)); bzero(&ss, sizeof(ss)); ss.ss_len = sizeof(ss); ginfo.rti_info[RTAX_GATEWAY] = (struct sockaddr *)&ss; gdst = info->rti_info[RTAX_GATEWAY]; /* * A host route through the loopback interface is * installed for each interface adddress. In pre 8.0 * releases the interface address of a PPP link type * is not reachable locally. This behavior is fixed as * part of the new L2/L3 redesign and rewrite work. The * signature of this interface address route is the * AF_LINK sa_family type of the gateway, and the * rt_ifp has the IFF_LOOPBACK flag set. */ if (rib_lookup_info(fibnum, gdst, NHR_REF, 0, &ginfo) == 0) { if (ss.ss_family == AF_LINK && ginfo.rti_ifp->if_flags & IFF_LOOPBACK) { info->rti_flags &= ~RTF_GATEWAY; info->rti_flags |= RTF_GWFLAG_COMPAT; } rib_free_info(&ginfo); } } return (0); } static struct nhop_object * select_nhop(struct nhop_object *nh, const struct sockaddr *gw) { if (!NH_IS_NHGRP(nh)) return (nh); #ifdef ROUTE_MPATH struct weightened_nhop *wn; uint32_t num_nhops; wn = nhgrp_get_nhops((struct nhgrp_object *)nh, &num_nhops); if (gw == NULL) return (wn[0].nh); for (int i = 0; i < num_nhops; i++) { if (match_nhop_gw(wn[i].nh, gw)) return (wn[i].nh); } #endif return (NULL); } /* * Handles RTM_GET message from routing socket, returning matching rt. * * Returns: * 0 on success, with locked and referenced matching rt in @rt_nrt * errno of failure */ static int handle_rtm_get(struct rt_addrinfo *info, u_int fibnum, struct rt_msghdr *rtm, struct rib_cmd_info *rc) { RIB_RLOCK_TRACKER; struct rib_head *rnh; struct nhop_object *nh; sa_family_t saf; saf = info->rti_info[RTAX_DST]->sa_family; rnh = rt_tables_get_rnh(fibnum, saf); if (rnh == NULL) return (EAFNOSUPPORT); RIB_RLOCK(rnh); /* * By (implicit) convention host route (one without netmask) * means longest-prefix-match request and the route with netmask * means exact-match lookup. * As cleanup_xaddrs() cleans up info flags&addrs for the /32,/128 * prefixes, use original data to check for the netmask presence. */ if ((rtm->rtm_addrs & RTA_NETMASK) == 0) { /* * Provide longest prefix match for * address lookup (no mask). * 'route -n get addr' */ rc->rc_rt = (struct rtentry *) rnh->rnh_matchaddr( info->rti_info[RTAX_DST], &rnh->head); } else rc->rc_rt = (struct rtentry *) rnh->rnh_lookup( info->rti_info[RTAX_DST], info->rti_info[RTAX_NETMASK], &rnh->head); if (rc->rc_rt == NULL) { RIB_RUNLOCK(rnh); return (ESRCH); } nh = select_nhop(rt_get_raw_nhop(rc->rc_rt), info->rti_info[RTAX_GATEWAY]); if (nh == NULL) { RIB_RUNLOCK(rnh); return (ESRCH); } /* * If performing proxied L2 entry insertion, and * the actual PPP host entry is found, perform * another search to retrieve the prefix route of * the local end point of the PPP link. * TODO: move this logic to userland. */ if (rtm->rtm_flags & RTF_ANNOUNCE) { struct sockaddr laddr; if (nh->nh_ifp != NULL && nh->nh_ifp->if_type == IFT_PROPVIRTUAL) { struct ifaddr *ifa; ifa = ifa_ifwithnet(info->rti_info[RTAX_DST], 1, RT_ALL_FIBS); if (ifa != NULL) rt_maskedcopy(ifa->ifa_addr, &laddr, ifa->ifa_netmask); } else rt_maskedcopy(nh->nh_ifa->ifa_addr, &laddr, nh->nh_ifa->ifa_netmask); /* * refactor rt and no lock operation necessary */ rc->rc_rt = (struct rtentry *)rnh->rnh_matchaddr(&laddr, &rnh->head); if (rc->rc_rt == NULL) { RIB_RUNLOCK(rnh); return (ESRCH); } nh = select_nhop(rt_get_raw_nhop(rc->rc_rt), info->rti_info[RTAX_GATEWAY]); if (nh == NULL) { RIB_RUNLOCK(rnh); return (ESRCH); } } rc->rc_nh_new = nh; rc->rc_nh_weight = rc->rc_rt->rt_weight; RIB_RUNLOCK(rnh); return (0); } static void init_sockaddrs_family(int family, struct sockaddr *dst, struct sockaddr *mask) { #ifdef INET if (family == AF_INET) { struct sockaddr_in *dst4 = (struct sockaddr_in *)dst; struct sockaddr_in *mask4 = (struct sockaddr_in *)mask; bzero(dst4, sizeof(struct sockaddr_in)); bzero(mask4, sizeof(struct sockaddr_in)); dst4->sin_family = AF_INET; dst4->sin_len = sizeof(struct sockaddr_in); mask4->sin_family = AF_INET; mask4->sin_len = sizeof(struct sockaddr_in); } #endif #ifdef INET6 if (family == AF_INET6) { struct sockaddr_in6 *dst6 = (struct sockaddr_in6 *)dst; struct sockaddr_in6 *mask6 = (struct sockaddr_in6 *)mask; bzero(dst6, sizeof(struct sockaddr_in6)); bzero(mask6, sizeof(struct sockaddr_in6)); dst6->sin6_family = AF_INET6; dst6->sin6_len = sizeof(struct sockaddr_in6); mask6->sin6_family = AF_INET6; mask6->sin6_len = sizeof(struct sockaddr_in6); } #endif } static void export_rtaddrs(const struct rtentry *rt, struct sockaddr *dst, struct sockaddr *mask) { #ifdef INET if (dst->sa_family == AF_INET) { struct sockaddr_in *dst4 = (struct sockaddr_in *)dst; struct sockaddr_in *mask4 = (struct sockaddr_in *)mask; uint32_t scopeid = 0; rt_get_inet_prefix_pmask(rt, &dst4->sin_addr, &mask4->sin_addr, &scopeid); return; } #endif #ifdef INET6 if (dst->sa_family == AF_INET6) { struct sockaddr_in6 *dst6 = (struct sockaddr_in6 *)dst; struct sockaddr_in6 *mask6 = (struct sockaddr_in6 *)mask; uint32_t scopeid = 0; rt_get_inet6_prefix_pmask(rt, &dst6->sin6_addr, &mask6->sin6_addr, &scopeid); dst6->sin6_scope_id = scopeid; return; } #endif } /* * Update sockaddrs, flags, etc in @prtm based on @rc data. * rtm can be reallocated. * * Returns 0 on success, along with pointer to (potentially reallocated) * rtm. * */ static int update_rtm_from_rc(struct rt_addrinfo *info, struct rt_msghdr **prtm, int alloc_len, struct rib_cmd_info *rc, struct nhop_object *nh) { struct walkarg w; union sockaddr_union saun; struct rt_msghdr *rtm, *orig_rtm = NULL; struct ifnet *ifp; int error, len; rtm = *prtm; union sockaddr_union sa_dst, sa_mask; int family = info->rti_info[RTAX_DST]->sa_family; init_sockaddrs_family(family, &sa_dst.sa, &sa_mask.sa); export_rtaddrs(rc->rc_rt, &sa_dst.sa, &sa_mask.sa); info->rti_info[RTAX_DST] = &sa_dst.sa; info->rti_info[RTAX_NETMASK] = rt_is_host(rc->rc_rt) ? NULL : &sa_mask.sa; info->rti_info[RTAX_GATEWAY] = &nh->gw_sa; info->rti_info[RTAX_GENMASK] = 0; ifp = nh->nh_ifp; if (rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) { if (ifp) { info->rti_info[RTAX_IFP] = ifp->if_addr->ifa_addr; error = rtm_get_jailed(info, ifp, nh, &saun, curthread->td_ucred); if (error != 0) return (error); if (ifp->if_flags & IFF_POINTOPOINT) info->rti_info[RTAX_BRD] = nh->nh_ifa->ifa_dstaddr; rtm->rtm_index = ifp->if_index; } else { info->rti_info[RTAX_IFP] = NULL; info->rti_info[RTAX_IFA] = NULL; } } else if (ifp != NULL) rtm->rtm_index = ifp->if_index; /* Check if we need to realloc storage */ rtsock_msg_buffer(rtm->rtm_type, info, NULL, &len); if (len > alloc_len) { struct rt_msghdr *tmp_rtm; tmp_rtm = malloc(len, M_TEMP, M_NOWAIT); if (tmp_rtm == NULL) return (ENOBUFS); bcopy(rtm, tmp_rtm, rtm->rtm_msglen); orig_rtm = rtm; rtm = tmp_rtm; alloc_len = len; /* * Delay freeing original rtm as info contains * data referencing it. */ } w.w_tmem = (caddr_t)rtm; w.w_tmemsize = alloc_len; rtsock_msg_buffer(rtm->rtm_type, info, &w, &len); rtm->rtm_flags = rc->rc_rt->rte_flags | nhop_get_rtflags(nh); if (rtm->rtm_flags & RTF_GWFLAG_COMPAT) rtm->rtm_flags = RTF_GATEWAY | (rtm->rtm_flags & ~RTF_GWFLAG_COMPAT); rt_getmetrics(rc->rc_rt, nh, &rtm->rtm_rmx); rtm->rtm_rmx.rmx_weight = rc->rc_nh_weight; rtm->rtm_addrs = info->rti_addrs; if (orig_rtm != NULL) free(orig_rtm, M_TEMP); *prtm = rtm; return (0); } #ifdef ROUTE_MPATH static void save_del_notification(struct rib_cmd_info *rc, void *_cbdata) { struct rib_cmd_info *rc_new = (struct rib_cmd_info *)_cbdata; if (rc->rc_cmd == RTM_DELETE) *rc_new = *rc; } static void save_add_notification(struct rib_cmd_info *rc, void *_cbdata) { struct rib_cmd_info *rc_new = (struct rib_cmd_info *)_cbdata; if (rc->rc_cmd == RTM_ADD) *rc_new = *rc; } #endif /*ARGSUSED*/ static int route_output(struct mbuf *m, struct socket *so, ...) { struct rt_msghdr *rtm = NULL; struct rtentry *rt = NULL; struct rt_addrinfo info; struct epoch_tracker et; #ifdef INET6 struct sockaddr_storage ss; struct sockaddr_in6 *sin6; int i, rti_need_deembed = 0; #endif int alloc_len = 0, len, error = 0, fibnum; sa_family_t saf = AF_UNSPEC; struct walkarg w; struct rib_cmd_info rc; struct nhop_object *nh; fibnum = so->so_fibnum; #define senderr(e) { error = e; goto flush;} if (m == NULL || ((m->m_len < sizeof(long)) && (m = m_pullup(m, sizeof(long))) == NULL)) return (ENOBUFS); if ((m->m_flags & M_PKTHDR) == 0) panic("route_output"); NET_EPOCH_ENTER(et); len = m->m_pkthdr.len; if (len < sizeof(*rtm) || len != mtod(m, struct rt_msghdr *)->rtm_msglen) senderr(EINVAL); /* * Most of current messages are in range 200-240 bytes, * minimize possible re-allocation on reply using larger size * buffer aligned on 1k boundaty. */ alloc_len = roundup2(len, 1024); if ((rtm = malloc(alloc_len, M_TEMP, M_NOWAIT)) == NULL) senderr(ENOBUFS); m_copydata(m, 0, len, (caddr_t)rtm); bzero(&info, sizeof(info)); bzero(&w, sizeof(w)); nh = NULL; if (rtm->rtm_version != RTM_VERSION) { /* Do not touch message since format is unknown */ free(rtm, M_TEMP); rtm = NULL; senderr(EPROTONOSUPPORT); } /* * Starting from here, it is possible * to alter original message and insert * caller PID and error value. */ if ((error = fill_addrinfo(rtm, len, fibnum, &info)) != 0) { senderr(error); } saf = info.rti_info[RTAX_DST]->sa_family; /* support for new ARP code */ if (rtm->rtm_flags & RTF_LLDATA) { error = lla_rt_output(rtm, &info); #ifdef INET6 if (error == 0) rti_need_deembed = 1; #endif goto flush; } switch (rtm->rtm_type) { case RTM_ADD: case RTM_CHANGE: if (rtm->rtm_type == RTM_ADD) { if (info.rti_info[RTAX_GATEWAY] == NULL) senderr(EINVAL); } error = rib_action(fibnum, rtm->rtm_type, &info, &rc); if (error == 0) { #ifdef INET6 rti_need_deembed = 1; #endif #ifdef ROUTE_MPATH if (NH_IS_NHGRP(rc.rc_nh_new) || (rc.rc_nh_old && NH_IS_NHGRP(rc.rc_nh_old))) { struct rib_cmd_info rc_simple = {}; rib_decompose_notification(&rc, save_add_notification, (void *)&rc_simple); rc = rc_simple; } #endif nh = rc.rc_nh_new; rtm->rtm_index = nh->nh_ifp->if_index; rtm->rtm_flags = rc.rc_rt->rte_flags | nhop_get_rtflags(nh); } break; case RTM_DELETE: error = rib_action(fibnum, RTM_DELETE, &info, &rc); if (error == 0) { #ifdef ROUTE_MPATH if (NH_IS_NHGRP(rc.rc_nh_old) || (rc.rc_nh_new && NH_IS_NHGRP(rc.rc_nh_new))) { struct rib_cmd_info rc_simple = {}; rib_decompose_notification(&rc, save_del_notification, (void *)&rc_simple); rc = rc_simple; } #endif nh = rc.rc_nh_old; goto report; } #ifdef INET6 /* rt_msg2() will not be used when RTM_DELETE fails. */ rti_need_deembed = 1; #endif break; case RTM_GET: error = handle_rtm_get(&info, fibnum, rtm, &rc); if (error != 0) senderr(error); nh = rc.rc_nh_new; report: if (!can_export_rte(curthread->td_ucred, info.rti_info[RTAX_NETMASK] == NULL, info.rti_info[RTAX_DST])) { senderr(ESRCH); } error = update_rtm_from_rc(&info, &rtm, alloc_len, &rc, nh); /* * Note that some sockaddr pointers may have changed to * point to memory outsize @rtm. Some may be pointing * to the on-stack variables. * Given that, any pointer in @info CANNOT BE USED. */ /* * scopeid deembedding has been performed while * writing updated rtm in rtsock_msg_buffer(). * With that in mind, skip deembedding procedure below. */ #ifdef INET6 rti_need_deembed = 0; #endif if (error != 0) senderr(error); break; default: senderr(EOPNOTSUPP); } flush: NET_EPOCH_EXIT(et); rt = NULL; #ifdef INET6 if (rtm != NULL) { if (rti_need_deembed) { /* sin6_scope_id is recovered before sending rtm. */ sin6 = (struct sockaddr_in6 *)&ss; for (i = 0; i < RTAX_MAX; i++) { if (info.rti_info[i] == NULL) continue; if (info.rti_info[i]->sa_family != AF_INET6) continue; bcopy(info.rti_info[i], sin6, sizeof(*sin6)); if (sa6_recoverscope(sin6) == 0) bcopy(sin6, info.rti_info[i], sizeof(*sin6)); } } } #endif send_rtm_reply(so, rtm, m, saf, fibnum, error); return (error); } /* * Sends the prepared reply message in @rtm to all rtsock clients. * Frees @m and @rtm. * */ static void send_rtm_reply(struct socket *so, struct rt_msghdr *rtm, struct mbuf *m, sa_family_t saf, u_int fibnum, int rtm_errno) { struct rawcb *rp = NULL; /* * Check to see if we don't want our own messages. */ if ((so->so_options & SO_USELOOPBACK) == 0) { if (V_route_cb.any_count <= 1) { if (rtm != NULL) free(rtm, M_TEMP); m_freem(m); return; } /* There is another listener, so construct message */ rp = sotorawcb(so); } if (rtm != NULL) { if (rtm_errno!= 0) rtm->rtm_errno = rtm_errno; else rtm->rtm_flags |= RTF_DONE; m_copyback(m, 0, rtm->rtm_msglen, (caddr_t)rtm); if (m->m_pkthdr.len < rtm->rtm_msglen) { m_freem(m); m = NULL; } else if (m->m_pkthdr.len > rtm->rtm_msglen) m_adj(m, rtm->rtm_msglen - m->m_pkthdr.len); free(rtm, M_TEMP); } if (m != NULL) { M_SETFIB(m, fibnum); m->m_flags |= RTS_FILTER_FIB; if (rp) { /* * XXX insure we don't get a copy by * invalidating our protocol */ unsigned short family = rp->rcb_proto.sp_family; rp->rcb_proto.sp_family = 0; rt_dispatch(m, saf); rp->rcb_proto.sp_family = family; } else rt_dispatch(m, saf); } } static void rt_getmetrics(const struct rtentry *rt, const struct nhop_object *nh, struct rt_metrics *out) { bzero(out, sizeof(*out)); out->rmx_mtu = nh->nh_mtu; out->rmx_weight = rt->rt_weight; out->rmx_nhidx = nhop_get_idx(nh); /* Kernel -> userland timebase conversion. */ out->rmx_expire = rt->rt_expire ? rt->rt_expire - time_uptime + time_second : 0; } /* * Extract the addresses of the passed sockaddrs. * Do a little sanity checking so as to avoid bad memory references. * This data is derived straight from userland. */ static int rt_xaddrs(caddr_t cp, caddr_t cplim, struct rt_addrinfo *rtinfo) { struct sockaddr *sa; int i; for (i = 0; i < RTAX_MAX && cp < cplim; i++) { if ((rtinfo->rti_addrs & (1 << i)) == 0) continue; sa = (struct sockaddr *)cp; /* * It won't fit. */ if (cp + sa->sa_len > cplim) return (EINVAL); /* * there are no more.. quit now * If there are more bits, they are in error. * I've seen this. route(1) can evidently generate these. * This causes kernel to core dump. * for compatibility, If we see this, point to a safe address. */ if (sa->sa_len == 0) { rtinfo->rti_info[i] = &sa_zero; return (0); /* should be EINVAL but for compat */ } /* accept it */ #ifdef INET6 if (sa->sa_family == AF_INET6) sa6_embedscope((struct sockaddr_in6 *)sa, V_ip6_use_defzone); #endif rtinfo->rti_info[i] = sa; cp += SA_SIZE(sa); } return (0); } #ifdef INET static inline void fill_sockaddr_inet(struct sockaddr_in *sin, struct in_addr addr) { const struct sockaddr_in nsin = { .sin_family = AF_INET, .sin_len = sizeof(struct sockaddr_in), .sin_addr = addr, }; *sin = nsin; } #endif #ifdef INET6 static inline void fill_sockaddr_inet6(struct sockaddr_in6 *sin6, const struct in6_addr *addr6, uint32_t scopeid) { const struct sockaddr_in6 nsin6 = { .sin6_family = AF_INET6, .sin6_len = sizeof(struct sockaddr_in6), .sin6_addr = *addr6, .sin6_scope_id = scopeid, }; *sin6 = nsin6; } #endif static int cleanup_xaddrs_gateway(struct rt_addrinfo *info) { struct sockaddr *gw = info->rti_info[RTAX_GATEWAY]; switch (gw->sa_family) { #ifdef INET case AF_INET: { struct sockaddr_in *gw_sin = (struct sockaddr_in *)gw; if (gw_sin->sin_len < sizeof(struct sockaddr_in)) { printf("gw sin_len too small\n"); return (EINVAL); } fill_sockaddr_inet(gw_sin, gw_sin->sin_addr); } break; #endif #ifdef INET6 case AF_INET6: { struct sockaddr_in6 *gw_sin6 = (struct sockaddr_in6 *)gw; if (gw_sin6->sin6_len < sizeof(struct sockaddr_in6)) { printf("gw sin6_len too small\n"); return (EINVAL); } fill_sockaddr_inet6(gw_sin6, &gw_sin6->sin6_addr, 0); break; } #endif case AF_LINK: { struct sockaddr_dl_short *gw_sdl; gw_sdl = (struct sockaddr_dl_short *)gw; if (gw_sdl->sdl_len < sizeof(struct sockaddr_dl_short)) { printf("gw sdl_len too small\n"); return (EINVAL); } const struct sockaddr_dl_short sdl = { .sdl_family = AF_LINK, .sdl_len = sizeof(struct sockaddr_dl_short), .sdl_index = gw_sdl->sdl_index, }; *gw_sdl = sdl; break; } } return (0); } +static void +remove_netmask(struct rt_addrinfo *info) +{ + info->rti_info[RTAX_NETMASK] = NULL; + info->rti_flags |= RTF_HOST; + info->rti_addrs &= ~RTA_NETMASK; +} + #ifdef INET static int cleanup_xaddrs_inet(struct rt_addrinfo *info) { struct sockaddr_in *dst_sa, *mask_sa; /* Check & fixup dst/netmask combination first */ dst_sa = (struct sockaddr_in *)info->rti_info[RTAX_DST]; mask_sa = (struct sockaddr_in *)info->rti_info[RTAX_NETMASK]; struct in_addr mask = { .s_addr = mask_sa ? mask_sa->sin_addr.s_addr : INADDR_BROADCAST, }; struct in_addr dst = { .s_addr = htonl(ntohl(dst_sa->sin_addr.s_addr) & ntohl(mask.s_addr)) }; if (dst_sa->sin_len < sizeof(struct sockaddr_in)) { printf("dst sin_len too small\n"); return (EINVAL); } if (mask_sa && mask_sa->sin_len < sizeof(struct sockaddr_in)) { printf("mask sin_len too small\n"); return (EINVAL); } fill_sockaddr_inet(dst_sa, dst); if (mask.s_addr != INADDR_BROADCAST) fill_sockaddr_inet(mask_sa, mask); - else { - info->rti_info[RTAX_NETMASK] = NULL; - info->rti_flags |= RTF_HOST; - info->rti_addrs &= ~RTA_NETMASK; - } + else + remove_netmask(info); /* Check gateway */ if (info->rti_info[RTAX_GATEWAY] != NULL) return (cleanup_xaddrs_gateway(info)); return (0); } #endif #ifdef INET6 static int cleanup_xaddrs_inet6(struct rt_addrinfo *info) { struct sockaddr_in6 *dst_sa, *mask_sa; struct in6_addr mask; /* Check & fixup dst/netmask combination first */ dst_sa = (struct sockaddr_in6 *)info->rti_info[RTAX_DST]; mask_sa = (struct sockaddr_in6 *)info->rti_info[RTAX_NETMASK]; mask = mask_sa ? mask_sa->sin6_addr : in6mask128; IN6_MASK_ADDR(&dst_sa->sin6_addr, &mask); if (dst_sa->sin6_len < sizeof(struct sockaddr_in6)) { printf("dst sin6_len too small\n"); return (EINVAL); } if (mask_sa && mask_sa->sin6_len < sizeof(struct sockaddr_in6)) { printf("mask sin6_len too small\n"); return (EINVAL); } fill_sockaddr_inet6(dst_sa, &dst_sa->sin6_addr, 0); if (!IN6_ARE_ADDR_EQUAL(&mask, &in6mask128)) fill_sockaddr_inet6(mask_sa, &mask, 0); - else { - info->rti_info[RTAX_NETMASK] = NULL; - info->rti_flags |= RTF_HOST; - info->rti_addrs &= ~RTA_NETMASK; - } + else + remove_netmask(info); /* Check gateway */ if (info->rti_info[RTAX_GATEWAY] != NULL) return (cleanup_xaddrs_gateway(info)); return (0); } #endif static int cleanup_xaddrs(struct rt_addrinfo *info) { int error = EAFNOSUPPORT; if (info->rti_info[RTAX_DST] == NULL) return (EINVAL); + if (info->rti_flags & RTF_LLDATA) { + /* + * arp(8)/ndp(8) sends RTA_NETMASK for the associated + * prefix along with the actual address in RTA_DST. + * Remove netmask to avoid unnecessary address masking. + */ + remove_netmask(info); + } + switch (info->rti_info[RTAX_DST]->sa_family) { #ifdef INET case AF_INET: error = cleanup_xaddrs_inet(info); break; #endif #ifdef INET6 case AF_INET6: error = cleanup_xaddrs_inet6(info); break; #endif } return (error); } /* * Fill in @dmask with valid netmask leaving original @smask * intact. Mostly used with radix netmasks. */ struct sockaddr * rtsock_fix_netmask(const struct sockaddr *dst, const struct sockaddr *smask, struct sockaddr_storage *dmask) { if (dst == NULL || smask == NULL) return (NULL); memset(dmask, 0, dst->sa_len); memcpy(dmask, smask, smask->sa_len); dmask->ss_len = dst->sa_len; dmask->ss_family = dst->sa_family; return ((struct sockaddr *)dmask); } /* * Writes information related to @rtinfo object to newly-allocated mbuf. * Assumes MCLBYTES is enough to construct any message. * Used for OS notifications of vaious events (if/ifa announces,etc) * * Returns allocated mbuf or NULL on failure. */ static struct mbuf * rtsock_msg_mbuf(int type, struct rt_addrinfo *rtinfo) { struct sockaddr_storage ss; struct rt_msghdr *rtm; struct mbuf *m; int i; struct sockaddr *sa; #ifdef INET6 struct sockaddr_in6 *sin6; #endif int len, dlen; switch (type) { case RTM_DELADDR: case RTM_NEWADDR: len = sizeof(struct ifa_msghdr); break; case RTM_DELMADDR: case RTM_NEWMADDR: len = sizeof(struct ifma_msghdr); break; case RTM_IFINFO: len = sizeof(struct if_msghdr); break; case RTM_IFANNOUNCE: case RTM_IEEE80211: len = sizeof(struct if_announcemsghdr); break; default: len = sizeof(struct rt_msghdr); } /* XXXGL: can we use MJUMPAGESIZE cluster here? */ KASSERT(len <= MCLBYTES, ("%s: message too big", __func__)); if (len > MHLEN) m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); else m = m_gethdr(M_NOWAIT, MT_DATA); if (m == NULL) return (m); m->m_pkthdr.len = m->m_len = len; rtm = mtod(m, struct rt_msghdr *); bzero((caddr_t)rtm, len); for (i = 0; i < RTAX_MAX; i++) { if ((sa = rtinfo->rti_info[i]) == NULL) continue; rtinfo->rti_addrs |= (1 << i); dlen = SA_SIZE(sa); KASSERT(dlen <= sizeof(ss), ("%s: sockaddr size overflow", __func__)); bzero(&ss, sizeof(ss)); bcopy(sa, &ss, sa->sa_len); sa = (struct sockaddr *)&ss; #ifdef INET6 if (sa->sa_family == AF_INET6) { sin6 = (struct sockaddr_in6 *)sa; (void)sa6_recoverscope(sin6); } #endif m_copyback(m, len, dlen, (caddr_t)sa); len += dlen; } if (m->m_pkthdr.len != len) { m_freem(m); return (NULL); } rtm->rtm_msglen = len; rtm->rtm_version = RTM_VERSION; rtm->rtm_type = type; return (m); } /* * Writes information related to @rtinfo object to preallocated buffer. * Stores needed size in @plen. If @w is NULL, calculates size without * writing. * Used for sysctl dumps and rtsock answers (RTM_DEL/RTM_GET) generation. * * Returns 0 on success. * */ static int rtsock_msg_buffer(int type, struct rt_addrinfo *rtinfo, struct walkarg *w, int *plen) { struct sockaddr_storage ss; int len, buflen = 0, dlen, i; caddr_t cp = NULL; struct rt_msghdr *rtm = NULL; #ifdef INET6 struct sockaddr_in6 *sin6; #endif #ifdef COMPAT_FREEBSD32 bool compat32 = false; #endif switch (type) { case RTM_DELADDR: case RTM_NEWADDR: if (w != NULL && w->w_op == NET_RT_IFLISTL) { #ifdef COMPAT_FREEBSD32 if (w->w_req->flags & SCTL_MASK32) { len = sizeof(struct ifa_msghdrl32); compat32 = true; } else #endif len = sizeof(struct ifa_msghdrl); } else len = sizeof(struct ifa_msghdr); break; case RTM_IFINFO: #ifdef COMPAT_FREEBSD32 if (w != NULL && w->w_req->flags & SCTL_MASK32) { if (w->w_op == NET_RT_IFLISTL) len = sizeof(struct if_msghdrl32); else len = sizeof(struct if_msghdr32); compat32 = true; break; } #endif if (w != NULL && w->w_op == NET_RT_IFLISTL) len = sizeof(struct if_msghdrl); else len = sizeof(struct if_msghdr); break; case RTM_NEWMADDR: len = sizeof(struct ifma_msghdr); break; default: len = sizeof(struct rt_msghdr); } if (w != NULL) { rtm = (struct rt_msghdr *)w->w_tmem; buflen = w->w_tmemsize - len; cp = (caddr_t)w->w_tmem + len; } rtinfo->rti_addrs = 0; for (i = 0; i < RTAX_MAX; i++) { struct sockaddr *sa; if ((sa = rtinfo->rti_info[i]) == NULL) continue; rtinfo->rti_addrs |= (1 << i); #ifdef COMPAT_FREEBSD32 if (compat32) dlen = SA_SIZE32(sa); else #endif dlen = SA_SIZE(sa); if (cp != NULL && buflen >= dlen) { KASSERT(dlen <= sizeof(ss), ("%s: sockaddr size overflow", __func__)); bzero(&ss, sizeof(ss)); bcopy(sa, &ss, sa->sa_len); sa = (struct sockaddr *)&ss; #ifdef INET6 if (sa->sa_family == AF_INET6) { sin6 = (struct sockaddr_in6 *)sa; (void)sa6_recoverscope(sin6); } #endif bcopy((caddr_t)sa, cp, (unsigned)dlen); cp += dlen; buflen -= dlen; } else if (cp != NULL) { /* * Buffer too small. Count needed size * and return with error. */ cp = NULL; } len += dlen; } if (cp != NULL) { dlen = ALIGN(len) - len; if (buflen < dlen) cp = NULL; else { bzero(cp, dlen); cp += dlen; buflen -= dlen; } } len = ALIGN(len); if (cp != NULL) { /* fill header iff buffer is large enough */ rtm->rtm_version = RTM_VERSION; rtm->rtm_type = type; rtm->rtm_msglen = len; } *plen = len; if (w != NULL && cp == NULL) return (ENOBUFS); return (0); } /* * This routine is called to generate a message from the routing * socket indicating that a redirect has occurred, a routing lookup * has failed, or that a protocol has detected timeouts to a particular * destination. */ void rt_missmsg_fib(int type, struct rt_addrinfo *rtinfo, int flags, int error, int fibnum) { struct rt_msghdr *rtm; struct mbuf *m; struct sockaddr *sa = rtinfo->rti_info[RTAX_DST]; if (V_route_cb.any_count == 0) return; m = rtsock_msg_mbuf(type, rtinfo); if (m == NULL) return; if (fibnum != RT_ALL_FIBS) { KASSERT(fibnum >= 0 && fibnum < rt_numfibs, ("%s: fibnum out " "of range 0 <= %d < %d", __func__, fibnum, rt_numfibs)); M_SETFIB(m, fibnum); m->m_flags |= RTS_FILTER_FIB; } rtm = mtod(m, struct rt_msghdr *); rtm->rtm_flags = RTF_DONE | flags; rtm->rtm_errno = error; rtm->rtm_addrs = rtinfo->rti_addrs; rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC); } void rt_missmsg(int type, struct rt_addrinfo *rtinfo, int flags, int error) { rt_missmsg_fib(type, rtinfo, flags, error, RT_ALL_FIBS); } /* * This routine is called to generate a message from the routing * socket indicating that the status of a network interface has changed. */ void rt_ifmsg(struct ifnet *ifp) { struct if_msghdr *ifm; struct mbuf *m; struct rt_addrinfo info; if (V_route_cb.any_count == 0) return; bzero((caddr_t)&info, sizeof(info)); m = rtsock_msg_mbuf(RTM_IFINFO, &info); if (m == NULL) return; ifm = mtod(m, struct if_msghdr *); ifm->ifm_index = ifp->if_index; ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; if_data_copy(ifp, &ifm->ifm_data); ifm->ifm_addrs = 0; rt_dispatch(m, AF_UNSPEC); } /* * Announce interface address arrival/withdraw. * Please do not call directly, use rt_addrmsg(). * Assume input data to be valid. * Returns 0 on success. */ int rtsock_addrmsg(int cmd, struct ifaddr *ifa, int fibnum) { struct rt_addrinfo info; struct sockaddr *sa; int ncmd; struct mbuf *m; struct ifa_msghdr *ifam; struct ifnet *ifp = ifa->ifa_ifp; struct sockaddr_storage ss; if (V_route_cb.any_count == 0) return (0); ncmd = cmd == RTM_ADD ? RTM_NEWADDR : RTM_DELADDR; bzero((caddr_t)&info, sizeof(info)); info.rti_info[RTAX_IFA] = sa = ifa->ifa_addr; info.rti_info[RTAX_IFP] = ifp->if_addr->ifa_addr; info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask( info.rti_info[RTAX_IFA], ifa->ifa_netmask, &ss); info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; if ((m = rtsock_msg_mbuf(ncmd, &info)) == NULL) return (ENOBUFS); ifam = mtod(m, struct ifa_msghdr *); ifam->ifam_index = ifp->if_index; ifam->ifam_metric = ifa->ifa_ifp->if_metric; ifam->ifam_flags = ifa->ifa_flags; ifam->ifam_addrs = info.rti_addrs; if (fibnum != RT_ALL_FIBS) { M_SETFIB(m, fibnum); m->m_flags |= RTS_FILTER_FIB; } rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC); return (0); } /* * Announce route addition/removal to rtsock based on @rt data. * Callers are advives to use rt_routemsg() instead of using this * function directly. * Assume @rt data is consistent. * * Returns 0 on success. */ int rtsock_routemsg(int cmd, struct rtentry *rt, struct nhop_object *nh, int fibnum) { union sockaddr_union dst, mask; struct rt_addrinfo info; if (V_route_cb.any_count == 0) return (0); int family = rt_get_family(rt); init_sockaddrs_family(family, &dst.sa, &mask.sa); export_rtaddrs(rt, &dst.sa, &mask.sa); bzero((caddr_t)&info, sizeof(info)); info.rti_info[RTAX_DST] = &dst.sa; info.rti_info[RTAX_NETMASK] = &mask.sa; info.rti_info[RTAX_GATEWAY] = &nh->gw_sa; info.rti_flags = rt->rte_flags | nhop_get_rtflags(nh); info.rti_ifp = nh->nh_ifp; return (rtsock_routemsg_info(cmd, &info, fibnum)); } int rtsock_routemsg_info(int cmd, struct rt_addrinfo *info, int fibnum) { struct rt_msghdr *rtm; struct sockaddr *sa; struct mbuf *m; if (V_route_cb.any_count == 0) return (0); if (info->rti_flags & RTF_HOST) info->rti_info[RTAX_NETMASK] = NULL; m = rtsock_msg_mbuf(cmd, info); if (m == NULL) return (ENOBUFS); if (fibnum != RT_ALL_FIBS) { KASSERT(fibnum >= 0 && fibnum < rt_numfibs, ("%s: fibnum out " "of range 0 <= %d < %d", __func__, fibnum, rt_numfibs)); M_SETFIB(m, fibnum); m->m_flags |= RTS_FILTER_FIB; } rtm = mtod(m, struct rt_msghdr *); rtm->rtm_addrs = info->rti_addrs; if (info->rti_ifp != NULL) rtm->rtm_index = info->rti_ifp->if_index; /* Add RTF_DONE to indicate command 'completion' required by API */ info->rti_flags |= RTF_DONE; /* Reported routes has to be up */ if (cmd == RTM_ADD || cmd == RTM_CHANGE) info->rti_flags |= RTF_UP; rtm->rtm_flags = info->rti_flags; sa = info->rti_info[RTAX_DST]; rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC); return (0); } /* * This is the analogue to the rt_newaddrmsg which performs the same * function but for multicast group memberhips. This is easier since * there is no route state to worry about. */ void rt_newmaddrmsg(int cmd, struct ifmultiaddr *ifma) { struct rt_addrinfo info; struct mbuf *m = NULL; struct ifnet *ifp = ifma->ifma_ifp; struct ifma_msghdr *ifmam; if (V_route_cb.any_count == 0) return; bzero((caddr_t)&info, sizeof(info)); info.rti_info[RTAX_IFA] = ifma->ifma_addr; if (ifp && ifp->if_addr) info.rti_info[RTAX_IFP] = ifp->if_addr->ifa_addr; else info.rti_info[RTAX_IFP] = NULL; /* * If a link-layer address is present, present it as a ``gateway'' * (similarly to how ARP entries, e.g., are presented). */ info.rti_info[RTAX_GATEWAY] = ifma->ifma_lladdr; m = rtsock_msg_mbuf(cmd, &info); if (m == NULL) return; ifmam = mtod(m, struct ifma_msghdr *); KASSERT(ifp != NULL, ("%s: link-layer multicast address w/o ifp\n", __func__)); ifmam->ifmam_index = ifp->if_index; ifmam->ifmam_addrs = info.rti_addrs; rt_dispatch(m, ifma->ifma_addr ? ifma->ifma_addr->sa_family : AF_UNSPEC); } static struct mbuf * rt_makeifannouncemsg(struct ifnet *ifp, int type, int what, struct rt_addrinfo *info) { struct if_announcemsghdr *ifan; struct mbuf *m; if (V_route_cb.any_count == 0) return NULL; bzero((caddr_t)info, sizeof(*info)); m = rtsock_msg_mbuf(type, info); if (m != NULL) { ifan = mtod(m, struct if_announcemsghdr *); ifan->ifan_index = ifp->if_index; strlcpy(ifan->ifan_name, ifp->if_xname, sizeof(ifan->ifan_name)); ifan->ifan_what = what; } return m; } /* * This is called to generate routing socket messages indicating * IEEE80211 wireless events. * XXX we piggyback on the RTM_IFANNOUNCE msg format in a clumsy way. */ void rt_ieee80211msg(struct ifnet *ifp, int what, void *data, size_t data_len) { struct mbuf *m; struct rt_addrinfo info; m = rt_makeifannouncemsg(ifp, RTM_IEEE80211, what, &info); if (m != NULL) { /* * Append the ieee80211 data. Try to stick it in the * mbuf containing the ifannounce msg; otherwise allocate * a new mbuf and append. * * NB: we assume m is a single mbuf. */ if (data_len > M_TRAILINGSPACE(m)) { struct mbuf *n = m_get(M_NOWAIT, MT_DATA); if (n == NULL) { m_freem(m); return; } bcopy(data, mtod(n, void *), data_len); n->m_len = data_len; m->m_next = n; } else if (data_len > 0) { bcopy(data, mtod(m, u_int8_t *) + m->m_len, data_len); m->m_len += data_len; } if (m->m_flags & M_PKTHDR) m->m_pkthdr.len += data_len; mtod(m, struct if_announcemsghdr *)->ifan_msglen += data_len; rt_dispatch(m, AF_UNSPEC); } } /* * This is called to generate routing socket messages indicating * network interface arrival and departure. */ void rt_ifannouncemsg(struct ifnet *ifp, int what) { struct mbuf *m; struct rt_addrinfo info; m = rt_makeifannouncemsg(ifp, RTM_IFANNOUNCE, what, &info); if (m != NULL) rt_dispatch(m, AF_UNSPEC); } static void rt_dispatch(struct mbuf *m, sa_family_t saf) { struct m_tag *tag; /* * Preserve the family from the sockaddr, if any, in an m_tag for * use when injecting the mbuf into the routing socket buffer from * the netisr. */ if (saf != AF_UNSPEC) { tag = m_tag_get(PACKET_TAG_RTSOCKFAM, sizeof(unsigned short), M_NOWAIT); if (tag == NULL) { m_freem(m); return; } *(unsigned short *)(tag + 1) = saf; m_tag_prepend(m, tag); } #ifdef VIMAGE if (V_loif) m->m_pkthdr.rcvif = V_loif; else { m_freem(m); return; } #endif netisr_queue(NETISR_ROUTE, m); /* mbuf is free'd on failure. */ } /* * Checks if rte can be exported v.r.t jails/vnets. * * Returns 1 if it can, 0 otherwise. */ static bool can_export_rte(struct ucred *td_ucred, bool rt_is_host, const struct sockaddr *rt_dst) { if ((!rt_is_host) ? jailed_without_vnet(td_ucred) : prison_if(td_ucred, rt_dst) != 0) return (false); return (true); } /* * This is used in dumping the kernel table via sysctl(). */ static int sysctl_dumpentry(struct rtentry *rt, void *vw) { struct walkarg *w = vw; struct nhop_object *nh; int error = 0; NET_EPOCH_ASSERT(); export_rtaddrs(rt, w->dst, w->mask); if (!can_export_rte(w->w_req->td->td_ucred, rt_is_host(rt), w->dst)) return (0); nh = rt_get_raw_nhop(rt); #ifdef ROUTE_MPATH if (NH_IS_NHGRP(nh)) { struct weightened_nhop *wn; uint32_t num_nhops; wn = nhgrp_get_nhops((struct nhgrp_object *)nh, &num_nhops); for (int i = 0; i < num_nhops; i++) { error = sysctl_dumpnhop(rt, wn[i].nh, wn[i].weight, w); if (error != 0) return (error); } } else #endif error = sysctl_dumpnhop(rt, nh, rt->rt_weight, w); return (0); } static int sysctl_dumpnhop(struct rtentry *rt, struct nhop_object *nh, uint32_t weight, struct walkarg *w) { struct rt_addrinfo info; int error = 0, size; uint32_t rtflags; rtflags = nhop_get_rtflags(nh); if (w->w_op == NET_RT_FLAGS && !(rtflags & w->w_arg)) return (0); bzero((caddr_t)&info, sizeof(info)); info.rti_info[RTAX_DST] = w->dst; info.rti_info[RTAX_GATEWAY] = &nh->gw_sa; info.rti_info[RTAX_NETMASK] = (rtflags & RTF_HOST) ? NULL : w->mask; info.rti_info[RTAX_GENMASK] = 0; if (nh->nh_ifp && !(nh->nh_ifp->if_flags & IFF_DYING)) { info.rti_info[RTAX_IFP] = nh->nh_ifp->if_addr->ifa_addr; info.rti_info[RTAX_IFA] = nh->nh_ifa->ifa_addr; if (nh->nh_ifp->if_flags & IFF_POINTOPOINT) info.rti_info[RTAX_BRD] = nh->nh_ifa->ifa_dstaddr; } if ((error = rtsock_msg_buffer(RTM_GET, &info, w, &size)) != 0) return (error); if (w->w_req && w->w_tmem) { struct rt_msghdr *rtm = (struct rt_msghdr *)w->w_tmem; bzero(&rtm->rtm_index, sizeof(*rtm) - offsetof(struct rt_msghdr, rtm_index)); /* * rte flags may consist of RTF_HOST (duplicated in nhop rtflags) * and RTF_UP (if entry is linked, which is always true here). * Given that, use nhop rtflags & add RTF_UP. */ rtm->rtm_flags = rtflags | RTF_UP; if (rtm->rtm_flags & RTF_GWFLAG_COMPAT) rtm->rtm_flags = RTF_GATEWAY | (rtm->rtm_flags & ~RTF_GWFLAG_COMPAT); rt_getmetrics(rt, nh, &rtm->rtm_rmx); rtm->rtm_rmx.rmx_weight = weight; rtm->rtm_index = nh->nh_ifp->if_index; rtm->rtm_addrs = info.rti_addrs; error = SYSCTL_OUT(w->w_req, (caddr_t)rtm, size); return (error); } return (error); } static int sysctl_iflist_ifml(struct ifnet *ifp, const struct if_data *src_ifd, struct rt_addrinfo *info, struct walkarg *w, int len) { struct if_msghdrl *ifm; struct if_data *ifd; ifm = (struct if_msghdrl *)w->w_tmem; #ifdef COMPAT_FREEBSD32 if (w->w_req->flags & SCTL_MASK32) { struct if_msghdrl32 *ifm32; ifm32 = (struct if_msghdrl32 *)ifm; ifm32->ifm_addrs = info->rti_addrs; ifm32->ifm_flags = ifp->if_flags | ifp->if_drv_flags; ifm32->ifm_index = ifp->if_index; ifm32->_ifm_spare1 = 0; ifm32->ifm_len = sizeof(*ifm32); ifm32->ifm_data_off = offsetof(struct if_msghdrl32, ifm_data); ifm32->_ifm_spare2 = 0; ifd = &ifm32->ifm_data; } else #endif { ifm->ifm_addrs = info->rti_addrs; ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; ifm->ifm_index = ifp->if_index; ifm->_ifm_spare1 = 0; ifm->ifm_len = sizeof(*ifm); ifm->ifm_data_off = offsetof(struct if_msghdrl, ifm_data); ifm->_ifm_spare2 = 0; ifd = &ifm->ifm_data; } memcpy(ifd, src_ifd, sizeof(*ifd)); return (SYSCTL_OUT(w->w_req, (caddr_t)ifm, len)); } static int sysctl_iflist_ifm(struct ifnet *ifp, const struct if_data *src_ifd, struct rt_addrinfo *info, struct walkarg *w, int len) { struct if_msghdr *ifm; struct if_data *ifd; ifm = (struct if_msghdr *)w->w_tmem; #ifdef COMPAT_FREEBSD32 if (w->w_req->flags & SCTL_MASK32) { struct if_msghdr32 *ifm32; ifm32 = (struct if_msghdr32 *)ifm; ifm32->ifm_addrs = info->rti_addrs; ifm32->ifm_flags = ifp->if_flags | ifp->if_drv_flags; ifm32->ifm_index = ifp->if_index; ifm32->_ifm_spare1 = 0; ifd = &ifm32->ifm_data; } else #endif { ifm->ifm_addrs = info->rti_addrs; ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; ifm->ifm_index = ifp->if_index; ifm->_ifm_spare1 = 0; ifd = &ifm->ifm_data; } memcpy(ifd, src_ifd, sizeof(*ifd)); return (SYSCTL_OUT(w->w_req, (caddr_t)ifm, len)); } static int sysctl_iflist_ifaml(struct ifaddr *ifa, struct rt_addrinfo *info, struct walkarg *w, int len) { struct ifa_msghdrl *ifam; struct if_data *ifd; ifam = (struct ifa_msghdrl *)w->w_tmem; #ifdef COMPAT_FREEBSD32 if (w->w_req->flags & SCTL_MASK32) { struct ifa_msghdrl32 *ifam32; ifam32 = (struct ifa_msghdrl32 *)ifam; ifam32->ifam_addrs = info->rti_addrs; ifam32->ifam_flags = ifa->ifa_flags; ifam32->ifam_index = ifa->ifa_ifp->if_index; ifam32->_ifam_spare1 = 0; ifam32->ifam_len = sizeof(*ifam32); ifam32->ifam_data_off = offsetof(struct ifa_msghdrl32, ifam_data); ifam32->ifam_metric = ifa->ifa_ifp->if_metric; ifd = &ifam32->ifam_data; } else #endif { ifam->ifam_addrs = info->rti_addrs; ifam->ifam_flags = ifa->ifa_flags; ifam->ifam_index = ifa->ifa_ifp->if_index; ifam->_ifam_spare1 = 0; ifam->ifam_len = sizeof(*ifam); ifam->ifam_data_off = offsetof(struct ifa_msghdrl, ifam_data); ifam->ifam_metric = ifa->ifa_ifp->if_metric; ifd = &ifam->ifam_data; } bzero(ifd, sizeof(*ifd)); ifd->ifi_datalen = sizeof(struct if_data); ifd->ifi_ipackets = counter_u64_fetch(ifa->ifa_ipackets); ifd->ifi_opackets = counter_u64_fetch(ifa->ifa_opackets); ifd->ifi_ibytes = counter_u64_fetch(ifa->ifa_ibytes); ifd->ifi_obytes = counter_u64_fetch(ifa->ifa_obytes); /* Fixup if_data carp(4) vhid. */ if (carp_get_vhid_p != NULL) ifd->ifi_vhid = (*carp_get_vhid_p)(ifa); return (SYSCTL_OUT(w->w_req, w->w_tmem, len)); } static int sysctl_iflist_ifam(struct ifaddr *ifa, struct rt_addrinfo *info, struct walkarg *w, int len) { struct ifa_msghdr *ifam; ifam = (struct ifa_msghdr *)w->w_tmem; ifam->ifam_addrs = info->rti_addrs; ifam->ifam_flags = ifa->ifa_flags; ifam->ifam_index = ifa->ifa_ifp->if_index; ifam->_ifam_spare1 = 0; ifam->ifam_metric = ifa->ifa_ifp->if_metric; return (SYSCTL_OUT(w->w_req, w->w_tmem, len)); } static int sysctl_iflist(int af, struct walkarg *w) { struct ifnet *ifp; struct ifaddr *ifa; struct if_data ifd; struct rt_addrinfo info; int len, error = 0; struct sockaddr_storage ss; bzero((caddr_t)&info, sizeof(info)); bzero(&ifd, sizeof(ifd)); CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { if (w->w_arg && w->w_arg != ifp->if_index) continue; if_data_copy(ifp, &ifd); ifa = ifp->if_addr; info.rti_info[RTAX_IFP] = ifa->ifa_addr; error = rtsock_msg_buffer(RTM_IFINFO, &info, w, &len); if (error != 0) goto done; info.rti_info[RTAX_IFP] = NULL; if (w->w_req && w->w_tmem) { if (w->w_op == NET_RT_IFLISTL) error = sysctl_iflist_ifml(ifp, &ifd, &info, w, len); else error = sysctl_iflist_ifm(ifp, &ifd, &info, w, len); if (error) goto done; } while ((ifa = CK_STAILQ_NEXT(ifa, ifa_link)) != NULL) { if (af && af != ifa->ifa_addr->sa_family) continue; if (prison_if(w->w_req->td->td_ucred, ifa->ifa_addr) != 0) continue; info.rti_info[RTAX_IFA] = ifa->ifa_addr; info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask( ifa->ifa_addr, ifa->ifa_netmask, &ss); info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; error = rtsock_msg_buffer(RTM_NEWADDR, &info, w, &len); if (error != 0) goto done; if (w->w_req && w->w_tmem) { if (w->w_op == NET_RT_IFLISTL) error = sysctl_iflist_ifaml(ifa, &info, w, len); else error = sysctl_iflist_ifam(ifa, &info, w, len); if (error) goto done; } } info.rti_info[RTAX_IFA] = NULL; info.rti_info[RTAX_NETMASK] = NULL; info.rti_info[RTAX_BRD] = NULL; } done: return (error); } static int sysctl_ifmalist(int af, struct walkarg *w) { struct rt_addrinfo info; struct ifaddr *ifa; struct ifmultiaddr *ifma; struct ifnet *ifp; int error, len; NET_EPOCH_ASSERT(); error = 0; bzero((caddr_t)&info, sizeof(info)); CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { if (w->w_arg && w->w_arg != ifp->if_index) continue; ifa = ifp->if_addr; info.rti_info[RTAX_IFP] = ifa ? ifa->ifa_addr : NULL; CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { if (af && af != ifma->ifma_addr->sa_family) continue; if (prison_if(w->w_req->td->td_ucred, ifma->ifma_addr) != 0) continue; info.rti_info[RTAX_IFA] = ifma->ifma_addr; info.rti_info[RTAX_GATEWAY] = (ifma->ifma_addr->sa_family != AF_LINK) ? ifma->ifma_lladdr : NULL; error = rtsock_msg_buffer(RTM_NEWMADDR, &info, w, &len); if (error != 0) break; if (w->w_req && w->w_tmem) { struct ifma_msghdr *ifmam; ifmam = (struct ifma_msghdr *)w->w_tmem; ifmam->ifmam_index = ifma->ifma_ifp->if_index; ifmam->ifmam_flags = 0; ifmam->ifmam_addrs = info.rti_addrs; ifmam->_ifmam_spare1 = 0; error = SYSCTL_OUT(w->w_req, w->w_tmem, len); if (error != 0) break; } } if (error != 0) break; } return (error); } static void rtable_sysctl_dump(uint32_t fibnum, int family, struct walkarg *w) { union sockaddr_union sa_dst, sa_mask; w->family = family; w->dst = (struct sockaddr *)&sa_dst; w->mask = (struct sockaddr *)&sa_mask; init_sockaddrs_family(family, w->dst, w->mask); rib_walk(fibnum, family, false, sysctl_dumpentry, w); } static int sysctl_rtsock(SYSCTL_HANDLER_ARGS) { struct epoch_tracker et; int *name = (int *)arg1; u_int namelen = arg2; struct rib_head *rnh = NULL; /* silence compiler. */ int i, lim, error = EINVAL; int fib = 0; u_char af; struct walkarg w; name ++; namelen--; if (req->newptr) return (EPERM); if (name[1] == NET_RT_DUMP || name[1] == NET_RT_NHOP || name[1] == NET_RT_NHGRP) { if (namelen == 3) fib = req->td->td_proc->p_fibnum; else if (namelen == 4) fib = (name[3] == RT_ALL_FIBS) ? req->td->td_proc->p_fibnum : name[3]; else return ((namelen < 3) ? EISDIR : ENOTDIR); if (fib < 0 || fib >= rt_numfibs) return (EINVAL); } else if (namelen != 3) return ((namelen < 3) ? EISDIR : ENOTDIR); af = name[0]; if (af > AF_MAX) return (EINVAL); bzero(&w, sizeof(w)); w.w_op = name[1]; w.w_arg = name[2]; w.w_req = req; error = sysctl_wire_old_buffer(req, 0); if (error) return (error); /* * Allocate reply buffer in advance. * All rtsock messages has maximum length of u_short. */ w.w_tmemsize = 65536; w.w_tmem = malloc(w.w_tmemsize, M_TEMP, M_WAITOK); NET_EPOCH_ENTER(et); switch (w.w_op) { case NET_RT_DUMP: case NET_RT_FLAGS: if (af == 0) { /* dump all tables */ i = 1; lim = AF_MAX; } else /* dump only one table */ i = lim = af; /* * take care of llinfo entries, the caller must * specify an AF */ if (w.w_op == NET_RT_FLAGS && (w.w_arg == 0 || w.w_arg & RTF_LLINFO)) { if (af != 0) error = lltable_sysctl_dumparp(af, w.w_req); else error = EINVAL; break; } /* * take care of routing entries */ for (error = 0; error == 0 && i <= lim; i++) { rnh = rt_tables_get_rnh(fib, i); if (rnh != NULL) { rtable_sysctl_dump(fib, i, &w); } else if (af != 0) error = EAFNOSUPPORT; } break; case NET_RT_NHOP: case NET_RT_NHGRP: /* Allow dumping one specific af/fib at a time */ if (namelen < 4) { error = EINVAL; break; } fib = name[3]; if (fib < 0 || fib > rt_numfibs) { error = EINVAL; break; } rnh = rt_tables_get_rnh(fib, af); if (rnh == NULL) { error = EAFNOSUPPORT; break; } if (w.w_op == NET_RT_NHOP) error = nhops_dump_sysctl(rnh, w.w_req); else #ifdef ROUTE_MPATH error = nhgrp_dump_sysctl(rnh, w.w_req); #else error = ENOTSUP; #endif break; case NET_RT_IFLIST: case NET_RT_IFLISTL: error = sysctl_iflist(af, &w); break; case NET_RT_IFMALIST: error = sysctl_ifmalist(af, &w); break; } NET_EPOCH_EXIT(et); free(w.w_tmem, M_TEMP); return (error); } static SYSCTL_NODE(_net, PF_ROUTE, routetable, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_rtsock, "Return route tables and interface/address lists"); /* * Definitions of protocols supported in the ROUTE domain. */ static struct domain routedomain; /* or at least forward */ static struct protosw routesw[] = { { .pr_type = SOCK_RAW, .pr_domain = &routedomain, .pr_flags = PR_ATOMIC|PR_ADDR, .pr_output = route_output, .pr_ctlinput = raw_ctlinput, .pr_init = raw_init, .pr_usrreqs = &route_usrreqs } }; static struct domain routedomain = { .dom_family = PF_ROUTE, .dom_name = "route", .dom_protosw = routesw, .dom_protoswNPROTOSW = &routesw[nitems(routesw)] }; VNET_DOMAIN_SET(route); diff --git a/usr.sbin/arp/arp.c b/usr.sbin/arp/arp.c index 07e07f1f2da9..08698c7bc299 100644 --- a/usr.sbin/arp/arp.c +++ b/usr.sbin/arp/arp.c @@ -1,891 +1,882 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 1984, 1993 * The Regents of the University of California. All rights reserved. * * This code is derived from software contributed to Berkeley by * Sun Microsystems, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #if 0 #ifndef lint static char const copyright[] = "@(#) Copyright (c) 1984, 1993\n\ The Regents of the University of California. All rights reserved.\n"; #endif /* not lint */ #ifndef lint static char const sccsid[] = "@(#)from: arp.c 8.2 (Berkeley) 1/2/94"; #endif /* not lint */ #endif #include __FBSDID("$FreeBSD$"); /* * arp - display, set, and delete arp table entries */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include typedef void (action_fn)(struct sockaddr_dl *sdl, struct sockaddr_in *s_in, struct rt_msghdr *rtm); static int search(u_long addr, action_fn *action); static action_fn print_entry; static action_fn nuke_entry; static int delete(char *host); static void usage(void); static int set(int argc, char **argv); static int get(char *host); static int file(char *name); static struct rt_msghdr *rtmsg(int cmd, struct sockaddr_in *dst, struct sockaddr_dl *sdl); static int get_ether_addr(in_addr_t ipaddr, struct ether_addr *hwaddr); static struct sockaddr_in *getaddr(char *host); static int valid_type(int type); static int nflag; /* no reverse dns lookups */ static char *rifname; static time_t expire_time; static int flags, doing_proxy; struct if_nameindex *ifnameindex; /* which function we're supposed to do */ #define F_GET 1 #define F_SET 2 #define F_FILESET 3 #define F_REPLACE 4 #define F_DELETE 5 #define SETFUNC(f) { if (func) usage(); func = (f); } #define ARP_XO_VERSION "1" int main(int argc, char *argv[]) { int ch, func = 0; int rtn = 0; int aflag = 0; /* do it for all entries */ argc = xo_parse_args(argc, argv); if (argc < 0) exit(1); while ((ch = getopt(argc, argv, "andfsSi:")) != -1) switch(ch) { case 'a': aflag = 1; break; case 'd': SETFUNC(F_DELETE); break; case 'n': nflag = 1; break; case 'S': SETFUNC(F_REPLACE); break; case 's': SETFUNC(F_SET); break; case 'f' : SETFUNC(F_FILESET); break; case 'i': rifname = optarg; break; case '?': default: usage(); } argc -= optind; argv += optind; if (!func) func = F_GET; if (rifname) { if (func != F_GET && !(func == F_DELETE && aflag)) xo_errx(1, "-i not applicable to this operation"); if (if_nametoindex(rifname) == 0) { if (errno == ENXIO) xo_errx(1, "interface %s does not exist", rifname); else xo_err(1, "if_nametoindex(%s)", rifname); } } switch (func) { case F_GET: if (aflag) { if (argc != 0) usage(); xo_set_version(ARP_XO_VERSION); xo_open_container("arp"); xo_open_list("arp-cache"); search(0, print_entry); xo_close_list("arp-cache"); xo_close_container("arp"); xo_finish(); } else { if (argc != 1) usage(); rtn = get(argv[0]); } break; case F_SET: case F_REPLACE: if (argc < 2 || argc > 6) usage(); if (func == F_REPLACE) (void)delete(argv[0]); rtn = set(argc, argv) ? 1 : 0; break; case F_DELETE: if (aflag) { if (argc != 0) usage(); search(0, nuke_entry); } else { if (argc != 1) usage(); rtn = delete(argv[0]); } break; case F_FILESET: if (argc != 1) usage(); rtn = file(argv[0]); break; } if (ifnameindex != NULL) if_freenameindex(ifnameindex); return (rtn); } /* * Process a file to set standard arp entries */ static int file(char *name) { FILE *fp; int i, retval; char line[100], arg[5][50], *args[5], *p; if ((fp = fopen(name, "r")) == NULL) xo_err(1, "cannot open %s", name); args[0] = &arg[0][0]; args[1] = &arg[1][0]; args[2] = &arg[2][0]; args[3] = &arg[3][0]; args[4] = &arg[4][0]; retval = 0; while(fgets(line, sizeof(line), fp) != NULL) { if ((p = strchr(line, '#')) != NULL) *p = '\0'; for (p = line; isblank(*p); p++); if (*p == '\n' || *p == '\0') continue; i = sscanf(p, "%49s %49s %49s %49s %49s", arg[0], arg[1], arg[2], arg[3], arg[4]); if (i < 2) { xo_warnx("bad line: %s", line); retval = 1; continue; } if (set(i, args)) retval = 1; } fclose(fp); return (retval); } /* * Given a hostname, fills up a (static) struct sockaddr_in with * the address of the host and returns a pointer to the * structure. */ static struct sockaddr_in * getaddr(char *host) { struct hostent *hp; static struct sockaddr_in reply; bzero(&reply, sizeof(reply)); reply.sin_len = sizeof(reply); reply.sin_family = AF_INET; reply.sin_addr.s_addr = inet_addr(host); if (reply.sin_addr.s_addr == INADDR_NONE) { if (!(hp = gethostbyname(host))) { xo_warnx("%s: %s", host, hstrerror(h_errno)); return (NULL); } bcopy((char *)hp->h_addr, (char *)&reply.sin_addr, sizeof reply.sin_addr); } return (&reply); } /* * Returns true if the type is a valid one for ARP. */ static int valid_type(int type) { switch (type) { case IFT_ETHER: case IFT_FDDI: case IFT_INFINIBAND: case IFT_ISO88023: case IFT_ISO88024: case IFT_L2VLAN: case IFT_BRIDGE: return (1); default: return (0); } } /* * Set an individual arp entry */ static int set(int argc, char **argv) { struct sockaddr_in *addr; struct sockaddr_in *dst; /* what are we looking for */ struct sockaddr_dl *sdl; struct rt_msghdr *rtm; struct ether_addr *ea; char *host = argv[0], *eaddr = argv[1]; struct sockaddr_dl sdl_m; argc -= 2; argv += 2; bzero(&sdl_m, sizeof(sdl_m)); sdl_m.sdl_len = sizeof(sdl_m); sdl_m.sdl_family = AF_LINK; dst = getaddr(host); if (dst == NULL) return (1); doing_proxy = flags = expire_time = 0; while (argc-- > 0) { if (strcmp(argv[0], "temp") == 0) { struct timespec tp; int max_age; size_t len = sizeof(max_age); clock_gettime(CLOCK_MONOTONIC, &tp); if (sysctlbyname("net.link.ether.inet.max_age", &max_age, &len, NULL, 0) != 0) xo_err(1, "sysctlbyname"); expire_time = tp.tv_sec + max_age; } else if (strcmp(argv[0], "pub") == 0) { flags |= RTF_ANNOUNCE; doing_proxy = 1; if (argc && strcmp(argv[1], "only") == 0) { /* * Compatibility: in pre FreeBSD 8 times * the "only" keyword used to mean that * an ARP entry should be announced, but * not installed into routing table. */ argc--; argv++; } } else if (strcmp(argv[0], "blackhole") == 0) { if (flags & RTF_REJECT) { xo_errx(1, "Choose one of blackhole or reject, " "not both."); } flags |= RTF_BLACKHOLE; } else if (strcmp(argv[0], "reject") == 0) { if (flags & RTF_BLACKHOLE) { xo_errx(1, "Choose one of blackhole or reject, " "not both."); } flags |= RTF_REJECT; } else { xo_warnx("Invalid parameter '%s'", argv[0]); usage(); } argv++; } ea = (struct ether_addr *)LLADDR(&sdl_m); if (doing_proxy && !strcmp(eaddr, "auto")) { if (!get_ether_addr(dst->sin_addr.s_addr, ea)) { xo_warnx("no interface found for %s", inet_ntoa(dst->sin_addr)); return (1); } sdl_m.sdl_alen = ETHER_ADDR_LEN; } else { struct ether_addr *ea1 = ether_aton(eaddr); if (ea1 == NULL) { xo_warnx("invalid Ethernet address '%s'", eaddr); return (1); } else { *ea = *ea1; sdl_m.sdl_alen = ETHER_ADDR_LEN; } } /* * In the case a proxy-arp entry is being added for * a remote end point, the RTF_ANNOUNCE flag in the * RTM_GET command is an indication to the kernel * routing code that the interface associated with * the prefix route covering the local end of the * PPP link should be returned, on which ARP applies. */ rtm = rtmsg(RTM_GET, dst, NULL); if (rtm == NULL) { xo_warn("%s", host); return (1); } addr = (struct sockaddr_in *)(rtm + 1); sdl = (struct sockaddr_dl *)(SA_SIZE(addr) + (char *)addr); if ((sdl->sdl_family != AF_LINK) || (rtm->rtm_flags & RTF_GATEWAY) || !valid_type(sdl->sdl_type)) { xo_warnx("cannot intuit interface index and type for %s", host); return (1); } sdl_m.sdl_type = sdl->sdl_type; sdl_m.sdl_index = sdl->sdl_index; return (rtmsg(RTM_ADD, dst, &sdl_m) == NULL); } /* * Display an individual arp entry */ static int get(char *host) { struct sockaddr_in *addr; int found; addr = getaddr(host); if (addr == NULL) return (1); xo_set_version(ARP_XO_VERSION); xo_open_container("arp"); xo_open_list("arp-cache"); found = search(addr->sin_addr.s_addr, print_entry); if (found == 0) { xo_emit("{d:hostname/%s} ({d:ip-address/%s}) -- no entry", host, inet_ntoa(addr->sin_addr)); if (rifname) xo_emit(" on {d:interface/%s}", rifname); xo_emit("\n"); } xo_close_list("arp-cache"); xo_close_container("arp"); xo_finish(); return (found == 0); } /* * Delete an arp entry */ static int delete(char *host) { struct sockaddr_in *addr, *dst; struct rt_msghdr *rtm; struct sockaddr_dl *sdl; dst = getaddr(host); if (dst == NULL) return (1); /* * Perform a regular entry delete first. */ flags &= ~RTF_ANNOUNCE; for (;;) { /* try twice */ rtm = rtmsg(RTM_GET, dst, NULL); if (rtm == NULL) { xo_warn("%s", host); return (1); } addr = (struct sockaddr_in *)(rtm + 1); sdl = (struct sockaddr_dl *)(SA_SIZE(addr) + (char *)addr); /* * With the new L2/L3 restructure, the route * returned is a prefix route. The important * piece of information from the previous * RTM_GET is the interface index. In the * case of ECMP, the kernel will traverse * the route group for the given entry. */ if (sdl->sdl_family == AF_LINK && !(rtm->rtm_flags & RTF_GATEWAY) && valid_type(sdl->sdl_type) ) { addr->sin_addr.s_addr = dst->sin_addr.s_addr; break; } /* * Regular entry delete failed, now check if there * is a proxy-arp entry to remove. */ if (flags & RTF_ANNOUNCE) { xo_warnx("delete: cannot locate %s", host); return (1); } flags |= RTF_ANNOUNCE; } rtm->rtm_flags |= RTF_LLDATA; if (rtmsg(RTM_DELETE, dst, NULL) != NULL) { printf("%s (%s) deleted\n", host, inet_ntoa(addr->sin_addr)); return (0); } return (1); } /* * Search the arp table and do some action on matching entries */ static int search(u_long addr, action_fn *action) { int mib[6]; size_t needed; char *lim, *buf, *next; struct rt_msghdr *rtm; struct sockaddr_in *sin2; struct sockaddr_dl *sdl; char ifname[IF_NAMESIZE]; int st, found_entry = 0; mib[0] = CTL_NET; mib[1] = PF_ROUTE; mib[2] = 0; mib[3] = AF_INET; mib[4] = NET_RT_FLAGS; #ifdef RTF_LLINFO mib[5] = RTF_LLINFO; #else mib[5] = 0; #endif if (sysctl(mib, 6, NULL, &needed, NULL, 0) < 0) xo_err(1, "route-sysctl-estimate"); if (needed == 0) /* empty table */ return 0; buf = NULL; for (;;) { buf = reallocf(buf, needed); if (buf == NULL) xo_errx(1, "could not reallocate memory"); st = sysctl(mib, 6, buf, &needed, NULL, 0); if (st == 0 || errno != ENOMEM) break; needed += needed / 8; } if (st == -1) xo_err(1, "actual retrieval of routing table"); lim = buf + needed; for (next = buf; next < lim; next += rtm->rtm_msglen) { rtm = (struct rt_msghdr *)next; sin2 = (struct sockaddr_in *)(rtm + 1); sdl = (struct sockaddr_dl *)((char *)sin2 + SA_SIZE(sin2)); if (rifname && if_indextoname(sdl->sdl_index, ifname) && strcmp(ifname, rifname)) continue; if (addr) { if (addr != sin2->sin_addr.s_addr) continue; found_entry = 1; } (*action)(sdl, sin2, rtm); } free(buf); return (found_entry); } /* * Display an arp entry */ static void print_entry(struct sockaddr_dl *sdl, struct sockaddr_in *addr, struct rt_msghdr *rtm) { const char *host; struct hostent *hp; struct if_nameindex *p; if (ifnameindex == NULL) if ((ifnameindex = if_nameindex()) == NULL) xo_err(1, "cannot retrieve interface names"); xo_open_instance("arp-cache"); if (nflag == 0) hp = gethostbyaddr((caddr_t)&(addr->sin_addr), sizeof addr->sin_addr, AF_INET); else hp = 0; if (hp) host = hp->h_name; else { host = "?"; if (h_errno == TRY_AGAIN) nflag = 1; } xo_emit("{:hostname/%s} ({:ip-address/%s}) at ", host, inet_ntoa(addr->sin_addr)); if (sdl->sdl_alen) { if ((sdl->sdl_type == IFT_ETHER || sdl->sdl_type == IFT_L2VLAN || sdl->sdl_type == IFT_BRIDGE) && sdl->sdl_alen == ETHER_ADDR_LEN) xo_emit("{:mac-address/%s}", ether_ntoa((struct ether_addr *)LLADDR(sdl))); else { int n = sdl->sdl_nlen > 0 ? sdl->sdl_nlen + 1 : 0; xo_emit("{:mac-address/%s}", link_ntoa(sdl) + n); } } else xo_emit("{d:/(incomplete)}{en:incomplete/true}"); for (p = ifnameindex; p && p->if_index && p->if_name; p++) { if (p->if_index == sdl->sdl_index) { xo_emit(" on {:interface/%s}", p->if_name); break; } } if (rtm->rtm_rmx.rmx_expire == 0) xo_emit("{d:/ permanent}{en:permanent/true}"); else { static struct timespec tp; if (tp.tv_sec == 0) clock_gettime(CLOCK_MONOTONIC, &tp); if ((expire_time = rtm->rtm_rmx.rmx_expire - tp.tv_sec) > 0) xo_emit(" expires in {:expires/%d} seconds", (int)expire_time); else xo_emit("{d:/ expired}{en:expired/true}"); } if (rtm->rtm_flags & RTF_ANNOUNCE) xo_emit("{d:/ published}{en:published/true}"); switch(sdl->sdl_type) { case IFT_ETHER: xo_emit(" [{:type/ethernet}]"); break; case IFT_FDDI: xo_emit(" [{:type/fddi}]"); break; case IFT_ATM: xo_emit(" [{:type/atm}]"); break; case IFT_L2VLAN: xo_emit(" [{:type/vlan}]"); break; case IFT_IEEE1394: xo_emit(" [{:type/firewire}]"); break; case IFT_BRIDGE: xo_emit(" [{:type/bridge}]"); break; case IFT_INFINIBAND: xo_emit(" [{:type/infiniband}]"); break; default: break; } xo_emit("\n"); xo_close_instance("arp-cache"); } /* * Nuke an arp entry */ static void nuke_entry(struct sockaddr_dl *sdl __unused, struct sockaddr_in *addr, struct rt_msghdr *rtm) { char ip[20]; if (rtm->rtm_flags & RTF_PINNED) return; snprintf(ip, sizeof(ip), "%s", inet_ntoa(addr->sin_addr)); delete(ip); } static void usage(void) { fprintf(stderr, "%s\n%s\n%s\n%s\n%s\n%s\n%s\n", "usage: arp [-n] [-i interface] hostname", " arp [-n] [-i interface] -a", " arp -d hostname [pub]", " arp -d [-i interface] -a", " arp -s hostname ether_addr [temp] [reject | blackhole] [pub [only]]", " arp -S hostname ether_addr [temp] [reject | blackhole] [pub [only]]", " arp -f filename"); exit(1); } static struct rt_msghdr * rtmsg(int cmd, struct sockaddr_in *dst, struct sockaddr_dl *sdl) { static int seq; int rlen; int l; - struct sockaddr_in so_mask, *som = &so_mask; static int s = -1; static pid_t pid; static struct { struct rt_msghdr m_rtm; char m_space[512]; } m_rtmsg; struct rt_msghdr *rtm = &m_rtmsg.m_rtm; char *cp = m_rtmsg.m_space; if (s < 0) { /* first time: open socket, get pid */ s = socket(PF_ROUTE, SOCK_RAW, 0); if (s < 0) xo_err(1, "socket"); pid = getpid(); } - bzero(&so_mask, sizeof(so_mask)); - so_mask.sin_len = 8; - so_mask.sin_addr.s_addr = 0xffffffff; errno = 0; /* * XXX RTM_DELETE relies on a previous RTM_GET to fill the buffer * appropriately. */ if (cmd == RTM_DELETE) goto doit; bzero((char *)&m_rtmsg, sizeof(m_rtmsg)); rtm->rtm_flags = flags; rtm->rtm_version = RTM_VERSION; switch (cmd) { default: xo_errx(1, "internal wrong cmd"); case RTM_ADD: rtm->rtm_addrs |= RTA_GATEWAY; rtm->rtm_rmx.rmx_expire = expire_time; rtm->rtm_inits = RTV_EXPIRE; rtm->rtm_flags |= (RTF_HOST | RTF_STATIC | RTF_LLDATA); - if (doing_proxy) { - rtm->rtm_addrs |= RTA_NETMASK; - rtm->rtm_flags &= ~RTF_HOST; - } /* FALLTHROUGH */ case RTM_GET: rtm->rtm_addrs |= RTA_DST; } #define NEXTADDR(w, s) \ do { \ if ((s) != NULL && rtm->rtm_addrs & (w)) { \ bcopy((s), cp, sizeof(*(s))); \ cp += SA_SIZE(s); \ } \ } while (0) NEXTADDR(RTA_DST, dst); NEXTADDR(RTA_GATEWAY, sdl); - NEXTADDR(RTA_NETMASK, som); rtm->rtm_msglen = cp - (char *)&m_rtmsg; doit: l = rtm->rtm_msglen; rtm->rtm_seq = ++seq; rtm->rtm_type = cmd; if ((rlen = write(s, (char *)&m_rtmsg, l)) < 0) { if (errno != ESRCH || cmd != RTM_DELETE) { xo_warn("writing to routing socket"); return (NULL); } } do { l = read(s, (char *)&m_rtmsg, sizeof(m_rtmsg)); } while (l > 0 && (rtm->rtm_type != cmd || rtm->rtm_seq != seq || rtm->rtm_pid != pid)); if (l < 0) xo_warn("read from routing socket"); return (rtm); } /* * get_ether_addr - get the hardware address of an interface on the * the same subnet as ipaddr. */ #define MAX_IFS 32 static int get_ether_addr(in_addr_t ipaddr, struct ether_addr *hwaddr) { struct ifreq *ifr, *ifend, *ifp; in_addr_t ina, mask; struct sockaddr_dl *dla; struct ifreq ifreq; struct ifconf ifc; struct ifreq ifs[MAX_IFS]; int sock; int retval = 0; sock = socket(AF_INET, SOCK_DGRAM, 0); if (sock < 0) xo_err(1, "socket"); ifc.ifc_len = sizeof(ifs); ifc.ifc_req = ifs; if (ioctl(sock, SIOCGIFCONF, &ifc) < 0) { xo_warnx("ioctl(SIOCGIFCONF)"); goto done; } #define NEXTIFR(i) \ ((struct ifreq *)((char *)&(i)->ifr_addr \ + MAX((i)->ifr_addr.sa_len, sizeof((i)->ifr_addr))) ) /* * Scan through looking for an interface with an Internet * address on the same subnet as `ipaddr'. */ ifend = (struct ifreq *)(ifc.ifc_buf + ifc.ifc_len); for (ifr = ifc.ifc_req; ifr < ifend; ifr = NEXTIFR(ifr) ) { if (ifr->ifr_addr.sa_family != AF_INET) continue; strncpy(ifreq.ifr_name, ifr->ifr_name, sizeof(ifreq.ifr_name)); ifreq.ifr_addr = ifr->ifr_addr; /* * Check that the interface is up, * and not point-to-point or loopback. */ if (ioctl(sock, SIOCGIFFLAGS, &ifreq) < 0) continue; if ((ifreq.ifr_flags & (IFF_UP|IFF_BROADCAST|IFF_POINTOPOINT| IFF_LOOPBACK|IFF_NOARP)) != (IFF_UP|IFF_BROADCAST)) continue; /* Get its netmask and check that it's on the right subnet. */ if (ioctl(sock, SIOCGIFNETMASK, &ifreq) < 0) continue; mask = ((struct sockaddr_in *) &ifreq.ifr_addr)->sin_addr.s_addr; ina = ((struct sockaddr_in *) &ifr->ifr_addr)->sin_addr.s_addr; if ((ipaddr & mask) == (ina & mask)) break; /* ok, we got it! */ } if (ifr >= ifend) goto done; /* * Now scan through again looking for a link-level address * for this interface. */ ifp = ifr; for (ifr = ifc.ifc_req; ifr < ifend; ifr = NEXTIFR(ifr)) if (strcmp(ifp->ifr_name, ifr->ifr_name) == 0 && ifr->ifr_addr.sa_family == AF_LINK) break; if (ifr >= ifend) goto done; /* * Found the link-level address - copy it out */ dla = (struct sockaddr_dl *) &ifr->ifr_addr; memcpy(hwaddr, LLADDR(dla), dla->sdl_alen); printf("using interface %s for proxy with address %s\n", ifp->ifr_name, ether_ntoa(hwaddr)); retval = dla->sdl_alen; done: close(sock); return (retval); } diff --git a/usr.sbin/ndp/ndp.c b/usr.sbin/ndp/ndp.c index aa40e2775a59..ce21e34417c3 100644 --- a/usr.sbin/ndp/ndp.c +++ b/usr.sbin/ndp/ndp.c @@ -1,1386 +1,1376 @@ /* $FreeBSD$ */ /* $KAME: ndp.c,v 1.104 2003/06/27 07:48:39 itojun Exp $ */ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (C) 1995, 1996, 1997, 1998, and 1999 WIDE Project. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the project nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * Copyright (c) 1984, 1993 * The Regents of the University of California. All rights reserved. * * This code is derived from software contributed to Berkeley by * Sun Microsystems, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * Based on: * "@(#) Copyright (c) 1984, 1993\n\ * The Regents of the University of California. All rights reserved.\n"; * * "@(#)arp.c 8.2 (Berkeley) 1/2/94"; */ /* * ndp - display, set, delete and flush neighbor cache */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "gmt2local.h" #define NEXTADDR(w, s) \ if (rtm->rtm_addrs & (w)) { \ bcopy((char *)&s, cp, sizeof(s)); \ cp += SA_SIZE(&s); \ } static pid_t pid; static int nflag; static int tflag; static int32_t thiszone; /* time difference with gmt */ static int s = -1; static int repeat = 0; static char host_buf[NI_MAXHOST]; /* getnameinfo() */ static char ifix_buf[IFNAMSIZ]; /* if_indextoname() */ static int file(char *); static void getsocket(void); static int set(int, char **); static void get(char *); static int delete(char *); static void dump(struct sockaddr_in6 *, int); static struct in6_nbrinfo *getnbrinfo(struct in6_addr *, int, int); static char *ether_str(struct sockaddr_dl *); static int ndp_ether_aton(char *, u_char *); static void usage(void); static int rtmsg(int); static void ifinfo(char *, int, char **); static void rtrlist(void); static void plist(void); static void pfx_flush(void); static void rtr_flush(void); static void harmonize_rtr(void); #ifdef SIOCSDEFIFACE_IN6 /* XXX: check SIOCGDEFIFACE_IN6 as well? */ static void getdefif(void); static void setdefif(char *); #endif static char *sec2str(time_t); static void ts_print(const struct timeval *); static const char *rtpref_str[] = { "medium", /* 00 */ "high", /* 01 */ "rsv", /* 10 */ "low" /* 11 */ }; int main(int argc, char **argv) { int ch, mode = 0; char *arg = NULL; pid = getpid(); thiszone = gmt2local(0); while ((ch = getopt(argc, argv, "acd:f:Ii:nprstA:HPR")) != -1) switch (ch) { case 'a': case 'c': case 'p': case 'r': case 'H': case 'P': case 'R': case 's': case 'I': if (mode) { usage(); /*NOTREACHED*/ } mode = ch; arg = NULL; break; case 'f': exit(file(optarg) ? 1 : 0); case 'd': case 'i': if (mode) { usage(); /*NOTREACHED*/ } mode = ch; arg = optarg; break; case 'n': nflag = 1; break; case 't': tflag = 1; break; case 'A': if (mode) { usage(); /*NOTREACHED*/ } mode = 'a'; repeat = atoi(optarg); if (repeat < 0) { usage(); /*NOTREACHED*/ } break; default: usage(); } argc -= optind; argv += optind; switch (mode) { case 'a': case 'c': if (argc != 0) { usage(); /*NOTREACHED*/ } dump(0, mode == 'c'); break; case 'd': if (argc != 0) { usage(); /*NOTREACHED*/ } delete(arg); break; case 'I': #ifdef SIOCSDEFIFACE_IN6 /* XXX: check SIOCGDEFIFACE_IN6 as well? */ if (argc > 1) { usage(); /*NOTREACHED*/ } else if (argc == 1) { if (strcmp(*argv, "delete") == 0 || if_nametoindex(*argv)) setdefif(*argv); else errx(1, "invalid interface %s", *argv); } getdefif(); /* always call it to print the result */ break; #else errx(1, "not supported yet"); /*NOTREACHED*/ #endif case 'p': if (argc != 0) { usage(); /*NOTREACHED*/ } plist(); break; case 'i': ifinfo(arg, argc, argv); break; case 'r': if (argc != 0) { usage(); /*NOTREACHED*/ } rtrlist(); break; case 's': if (argc < 2 || argc > 4) usage(); exit(set(argc, argv) ? 1 : 0); case 'H': if (argc != 0) { usage(); /*NOTREACHED*/ } harmonize_rtr(); break; case 'P': if (argc != 0) { usage(); /*NOTREACHED*/ } pfx_flush(); break; case 'R': if (argc != 0) { usage(); /*NOTREACHED*/ } rtr_flush(); break; case 0: if (argc != 1) { usage(); /*NOTREACHED*/ } get(argv[0]); break; } exit(0); } /* * Process a file to set standard ndp entries */ static int file(char *name) { FILE *fp; int i, retval; char line[100], arg[5][50], *args[5], *p; if ((fp = fopen(name, "r")) == NULL) err(1, "cannot open %s", name); args[0] = &arg[0][0]; args[1] = &arg[1][0]; args[2] = &arg[2][0]; args[3] = &arg[3][0]; args[4] = &arg[4][0]; retval = 0; while (fgets(line, sizeof(line), fp) != NULL) { if ((p = strchr(line, '#')) != NULL) *p = '\0'; for (p = line; isblank(*p); p++); if (*p == '\n' || *p == '\0') continue; i = sscanf(line, "%49s %49s %49s %49s %49s", arg[0], arg[1], arg[2], arg[3], arg[4]); if (i < 2) { warnx("bad line: %s", line); retval = 1; continue; } if (set(i, args)) retval = 1; } fclose(fp); return (retval); } static void getsocket() { if (s < 0) { s = socket(PF_ROUTE, SOCK_RAW, 0); if (s < 0) { err(1, "socket"); /* NOTREACHED */ } } } static struct sockaddr_in6 so_mask = { .sin6_len = sizeof(so_mask), .sin6_family = AF_INET6 }; static struct sockaddr_in6 blank_sin = { .sin6_len = sizeof(blank_sin), .sin6_family = AF_INET6 }; static struct sockaddr_in6 sin_m; static struct sockaddr_dl blank_sdl = { .sdl_len = sizeof(blank_sdl), .sdl_family = AF_LINK }; static struct sockaddr_dl sdl_m; static time_t expire_time; static int flags, found_entry; static struct { struct rt_msghdr m_rtm; char m_space[512]; } m_rtmsg; /* * Set an individual neighbor cache entry */ static int set(int argc, char **argv) { register struct sockaddr_in6 *sin = &sin_m; register struct sockaddr_dl *sdl; register struct rt_msghdr *rtm = &(m_rtmsg.m_rtm); struct addrinfo hints, *res; int gai_error; u_char *ea; char *host = argv[0], *eaddr = argv[1]; getsocket(); argc -= 2; argv += 2; sdl_m = blank_sdl; sin_m = blank_sin; bzero(&hints, sizeof(hints)); hints.ai_family = AF_INET6; gai_error = getaddrinfo(host, NULL, &hints, &res); if (gai_error) { fprintf(stderr, "ndp: %s: %s\n", host, gai_strerror(gai_error)); return 1; } sin->sin6_addr = ((struct sockaddr_in6 *)res->ai_addr)->sin6_addr; sin->sin6_scope_id = ((struct sockaddr_in6 *)res->ai_addr)->sin6_scope_id; ea = (u_char *)LLADDR(&sdl_m); if (ndp_ether_aton(eaddr, ea) == 0) sdl_m.sdl_alen = 6; flags = expire_time = 0; while (argc-- > 0) { if (strncmp(argv[0], "temp", 4) == 0) { struct timeval now; gettimeofday(&now, 0); expire_time = now.tv_sec + 20 * 60; } else if (strncmp(argv[0], "proxy", 5) == 0) flags |= RTF_ANNOUNCE; argv++; } if (rtmsg(RTM_GET) < 0) { errx(1, "RTM_GET(%s) failed", host); /* NOTREACHED */ } sin = (struct sockaddr_in6 *)(rtm + 1); sdl = (struct sockaddr_dl *)(ALIGN(sin->sin6_len) + (char *)sin); if (IN6_ARE_ADDR_EQUAL(&sin->sin6_addr, &sin_m.sin6_addr)) { if (sdl->sdl_family == AF_LINK && !(rtm->rtm_flags & RTF_GATEWAY)) { switch (sdl->sdl_type) { case IFT_ETHER: case IFT_FDDI: case IFT_ISO88023: case IFT_ISO88024: case IFT_ISO88025: case IFT_L2VLAN: case IFT_BRIDGE: goto overwrite; } } fprintf(stderr, "set: cannot configure a new entry\n"); return 1; } overwrite: if (sdl->sdl_family != AF_LINK) { printf("cannot intuit interface index and type for %s\n", host); return (1); } sdl_m.sdl_type = sdl->sdl_type; sdl_m.sdl_index = sdl->sdl_index; return (rtmsg(RTM_ADD)); } /* * Display an individual neighbor cache entry */ static void get(char *host) { struct sockaddr_in6 *sin = &sin_m; struct addrinfo hints, *res; int gai_error; sin_m = blank_sin; bzero(&hints, sizeof(hints)); hints.ai_family = AF_INET6; gai_error = getaddrinfo(host, NULL, &hints, &res); if (gai_error) { fprintf(stderr, "ndp: %s: %s\n", host, gai_strerror(gai_error)); return; } sin->sin6_addr = ((struct sockaddr_in6 *)res->ai_addr)->sin6_addr; sin->sin6_scope_id = ((struct sockaddr_in6 *)res->ai_addr)->sin6_scope_id; dump(sin, 0); if (found_entry == 0) { getnameinfo((struct sockaddr *)sin, sin->sin6_len, host_buf, sizeof(host_buf), NULL ,0, (nflag ? NI_NUMERICHOST : 0)); printf("%s (%s) -- no entry\n", host, host_buf); exit(1); } } /* * Delete a neighbor cache entry */ static int delete(char *host) { struct sockaddr_in6 *sin = &sin_m; register struct rt_msghdr *rtm = &m_rtmsg.m_rtm; register char *cp = m_rtmsg.m_space; struct sockaddr_dl *sdl; struct addrinfo hints, *res; int gai_error; getsocket(); sin_m = blank_sin; bzero(&hints, sizeof(hints)); hints.ai_family = AF_INET6; gai_error = getaddrinfo(host, NULL, &hints, &res); if (gai_error) { fprintf(stderr, "ndp: %s: %s\n", host, gai_strerror(gai_error)); return 1; } sin->sin6_addr = ((struct sockaddr_in6 *)res->ai_addr)->sin6_addr; sin->sin6_scope_id = ((struct sockaddr_in6 *)res->ai_addr)->sin6_scope_id; if (rtmsg(RTM_GET) < 0) { errx(1, "RTM_GET(%s) failed", host); /* NOTREACHED */ } sin = (struct sockaddr_in6 *)(rtm + 1); sdl = (struct sockaddr_dl *)(ALIGN(sin->sin6_len) + (char *)sin); if (IN6_ARE_ADDR_EQUAL(&sin->sin6_addr, &sin_m.sin6_addr)) { if (sdl->sdl_family == AF_LINK && !(rtm->rtm_flags & RTF_GATEWAY)) { goto delete; } fprintf(stderr, "delete: cannot delete non-NDP entry\n"); return 1; } delete: if (sdl->sdl_family != AF_LINK) { printf("cannot locate %s\n", host); return (1); } /* * need to reinit the field because it has rt_key * but we want the actual address */ NEXTADDR(RTA_DST, sin_m); rtm->rtm_flags |= RTF_LLDATA; if (rtmsg(RTM_DELETE) == 0) { getnameinfo((struct sockaddr *)sin, sin->sin6_len, host_buf, sizeof(host_buf), NULL, 0, (nflag ? NI_NUMERICHOST : 0)); printf("%s (%s) deleted\n", host, host_buf); } return 0; } #define W_ADDR 36 #define W_LL 17 #define W_IF 6 /* * Dump the entire neighbor cache */ static void dump(struct sockaddr_in6 *addr, int cflag) { int mib[6]; size_t needed; char *lim, *buf, *next; struct rt_msghdr *rtm; struct sockaddr_in6 *sin; struct sockaddr_dl *sdl; struct timeval now; time_t expire; int addrwidth; int llwidth; int ifwidth; char flgbuf[8]; char *ifname; /* Print header */ if (!tflag && !cflag) printf("%-*.*s %-*.*s %*.*s %-9.9s %1s %5s\n", W_ADDR, W_ADDR, "Neighbor", W_LL, W_LL, "Linklayer Address", W_IF, W_IF, "Netif", "Expire", "S", "Flags"); again:; mib[0] = CTL_NET; mib[1] = PF_ROUTE; mib[2] = 0; mib[3] = AF_INET6; mib[4] = NET_RT_FLAGS; #ifdef RTF_LLINFO mib[5] = RTF_LLINFO; #else mib[5] = 0; #endif if (sysctl(mib, 6, NULL, &needed, NULL, 0) < 0) err(1, "sysctl(PF_ROUTE estimate)"); if (needed > 0) { if ((buf = malloc(needed)) == NULL) err(1, "malloc"); if (sysctl(mib, 6, buf, &needed, NULL, 0) < 0) err(1, "sysctl(PF_ROUTE, NET_RT_FLAGS)"); lim = buf + needed; } else buf = lim = NULL; for (next = buf; next && next < lim; next += rtm->rtm_msglen) { int isrouter = 0, prbs = 0; rtm = (struct rt_msghdr *)next; sin = (struct sockaddr_in6 *)(rtm + 1); sdl = (struct sockaddr_dl *)((char *)sin + ALIGN(sin->sin6_len)); /* * Some OSes can produce a route that has the LINK flag but * has a non-AF_LINK gateway (e.g. fe80::xx%lo0 on FreeBSD * and BSD/OS, where xx is not the interface identifier on * lo0). Such routes entry would annoy getnbrinfo() below, * so we skip them. * XXX: such routes should have the GATEWAY flag, not the * LINK flag. However, there is rotten routing software * that advertises all routes that have the GATEWAY flag. * Thus, KAME kernel intentionally does not set the LINK flag. * What is to be fixed is not ndp, but such routing software * (and the kernel workaround)... */ if (sdl->sdl_family != AF_LINK) continue; if (!(rtm->rtm_flags & RTF_HOST)) continue; if (addr) { if (IN6_ARE_ADDR_EQUAL(&addr->sin6_addr, &sin->sin6_addr) == 0 || addr->sin6_scope_id != sin->sin6_scope_id) continue; found_entry = 1; } else if (IN6_IS_ADDR_MULTICAST(&sin->sin6_addr)) continue; if (IN6_IS_ADDR_LINKLOCAL(&sin->sin6_addr) || IN6_IS_ADDR_MC_LINKLOCAL(&sin->sin6_addr)) { /* XXX: should scope id be filled in the kernel? */ if (sin->sin6_scope_id == 0) sin->sin6_scope_id = sdl->sdl_index; } getnameinfo((struct sockaddr *)sin, sin->sin6_len, host_buf, sizeof(host_buf), NULL, 0, (nflag ? NI_NUMERICHOST : 0)); if (cflag) { #ifdef RTF_WASCLONED if (rtm->rtm_flags & RTF_WASCLONED) delete(host_buf); #elif defined(RTF_CLONED) if (rtm->rtm_flags & RTF_CLONED) delete(host_buf); #else if (rtm->rtm_flags & RTF_PINNED) continue; delete(host_buf); #endif continue; } gettimeofday(&now, 0); if (tflag) ts_print(&now); addrwidth = strlen(host_buf); if (addrwidth < W_ADDR) addrwidth = W_ADDR; llwidth = strlen(ether_str(sdl)); if (W_ADDR + W_LL - addrwidth > llwidth) llwidth = W_ADDR + W_LL - addrwidth; ifname = if_indextoname(sdl->sdl_index, ifix_buf); if (ifname == NULL) { strlcpy(ifix_buf, "?", sizeof(ifix_buf)); ifname = ifix_buf; } ifwidth = strlen(ifname); if (W_ADDR + W_LL + W_IF - addrwidth - llwidth > ifwidth) ifwidth = W_ADDR + W_LL + W_IF - addrwidth - llwidth; printf("%-*.*s %-*.*s %*.*s", addrwidth, addrwidth, host_buf, llwidth, llwidth, ether_str(sdl), ifwidth, ifwidth, ifname); /* Print neighbor discovery specific information */ expire = rtm->rtm_rmx.rmx_expire; if (expire > now.tv_sec) printf(" %-9.9s", sec2str(expire - now.tv_sec)); else if (expire == 0) printf(" %-9.9s", "permanent"); else printf(" %-9.9s", "expired"); switch (rtm->rtm_rmx.rmx_state) { case ND6_LLINFO_NOSTATE: printf(" N"); break; #ifdef ND6_LLINFO_WAITDELETE case ND6_LLINFO_WAITDELETE: printf(" W"); break; #endif case ND6_LLINFO_INCOMPLETE: printf(" I"); break; case ND6_LLINFO_REACHABLE: printf(" R"); break; case ND6_LLINFO_STALE: printf(" S"); break; case ND6_LLINFO_DELAY: printf(" D"); break; case ND6_LLINFO_PROBE: printf(" P"); break; default: printf(" ?"); break; } isrouter = rtm->rtm_flags & RTF_GATEWAY; prbs = rtm->rtm_rmx.rmx_pksent; /* * other flags. R: router, P: proxy, W: ?? */ if ((rtm->rtm_addrs & RTA_NETMASK) == 0) { snprintf(flgbuf, sizeof(flgbuf), "%s%s", isrouter ? "R" : "", (rtm->rtm_flags & RTF_ANNOUNCE) ? "p" : ""); } else { #if 0 /* W and P are mystery even for us */ sin = (struct sockaddr_in6 *) (sdl->sdl_len + (char *)sdl); snprintf(flgbuf, sizeof(flgbuf), "%s%s%s%s", isrouter ? "R" : "", !IN6_IS_ADDR_UNSPECIFIED(&sin->sin6_addr) ? "P" : "", (sin->sin6_len != sizeof(struct sockaddr_in6)) ? "W" : "", (rtm->rtm_flags & RTF_ANNOUNCE) ? "p" : ""); #else snprintf(flgbuf, sizeof(flgbuf), "%s%s", isrouter ? "R" : "", (rtm->rtm_flags & RTF_ANNOUNCE) ? "p" : ""); #endif } printf(" %s", flgbuf); if (prbs) printf(" %d", prbs); printf("\n"); } if (buf != NULL) free(buf); if (repeat) { printf("\n"); fflush(stdout); sleep(repeat); goto again; } } static struct in6_nbrinfo * getnbrinfo(struct in6_addr *addr, int ifindex, int warning) { static struct in6_nbrinfo nbi; int sock; if ((sock = socket(AF_INET6, SOCK_DGRAM, 0)) < 0) err(1, "socket"); bzero(&nbi, sizeof(nbi)); if_indextoname(ifindex, nbi.ifname); nbi.addr = *addr; if (ioctl(sock, SIOCGNBRINFO_IN6, (caddr_t)&nbi) < 0) { if (warning) warn("ioctl(SIOCGNBRINFO_IN6)"); close(sock); return(NULL); } close(sock); return(&nbi); } static char * ether_str(struct sockaddr_dl *sdl) { static char hbuf[NI_MAXHOST]; if (sdl->sdl_alen == ETHER_ADDR_LEN) { strlcpy(hbuf, ether_ntoa((struct ether_addr *)LLADDR(sdl)), sizeof(hbuf)); } else if (sdl->sdl_alen) { int n = sdl->sdl_nlen > 0 ? sdl->sdl_nlen + 1 : 0; snprintf(hbuf, sizeof(hbuf), "%s", link_ntoa(sdl) + n); } else snprintf(hbuf, sizeof(hbuf), "(incomplete)"); return(hbuf); } static int ndp_ether_aton(char *a, u_char *n) { int i, o[6]; i = sscanf(a, "%x:%x:%x:%x:%x:%x", &o[0], &o[1], &o[2], &o[3], &o[4], &o[5]); if (i != 6) { fprintf(stderr, "ndp: invalid Ethernet address '%s'\n", a); return (1); } for (i = 0; i < 6; i++) n[i] = o[i]; return (0); } static void usage() { printf("usage: ndp [-nt] hostname\n"); printf(" ndp [-nt] -a | -c | -p | -r | -H | -P | -R\n"); printf(" ndp [-nt] -A wait\n"); printf(" ndp [-nt] -d hostname\n"); printf(" ndp [-nt] -f filename\n"); printf(" ndp [-nt] -i interface [flags...]\n"); #ifdef SIOCSDEFIFACE_IN6 printf(" ndp [-nt] -I [interface|delete]\n"); #endif printf(" ndp [-nt] -s nodename etheraddr [temp] [proxy]\n"); exit(1); } static int rtmsg(int cmd) { static int seq; int rlen; register struct rt_msghdr *rtm = &m_rtmsg.m_rtm; register char *cp = m_rtmsg.m_space; register int l; errno = 0; if (cmd == RTM_DELETE) goto doit; bzero((char *)&m_rtmsg, sizeof(m_rtmsg)); rtm->rtm_flags = flags; rtm->rtm_version = RTM_VERSION; switch (cmd) { default: fprintf(stderr, "ndp: internal wrong cmd\n"); exit(1); case RTM_ADD: rtm->rtm_addrs |= RTA_GATEWAY; if (expire_time) { rtm->rtm_rmx.rmx_expire = expire_time; rtm->rtm_inits = RTV_EXPIRE; } rtm->rtm_flags |= (RTF_HOST | RTF_STATIC | RTF_LLDATA); -#if 0 /* we don't support ipv6addr/128 type proxying */ - if (rtm->rtm_flags & RTF_ANNOUNCE) { - rtm->rtm_flags &= ~RTF_HOST; - rtm->rtm_addrs |= RTA_NETMASK; - } -#endif /* FALLTHROUGH */ case RTM_GET: rtm->rtm_addrs |= RTA_DST; } NEXTADDR(RTA_DST, sin_m); NEXTADDR(RTA_GATEWAY, sdl_m); -#if 0 /* we don't support ipv6addr/128 type proxying */ - memset(&so_mask.sin6_addr, 0xff, sizeof(so_mask.sin6_addr)); - NEXTADDR(RTA_NETMASK, so_mask); -#endif rtm->rtm_msglen = cp - (char *)&m_rtmsg; doit: l = rtm->rtm_msglen; rtm->rtm_seq = ++seq; rtm->rtm_type = cmd; if ((rlen = write(s, (char *)&m_rtmsg, l)) < 0) { if (errno != ESRCH || cmd != RTM_DELETE) { err(1, "writing to routing socket"); /* NOTREACHED */ } } do { l = read(s, (char *)&m_rtmsg, sizeof(m_rtmsg)); } while (l > 0 && (rtm->rtm_type != cmd || rtm->rtm_seq != seq || rtm->rtm_pid != pid)); if (l < 0) (void) fprintf(stderr, "ndp: read from routing socket: %s\n", strerror(errno)); return (0); } static void ifinfo(char *ifname, int argc, char **argv) { struct in6_ndireq nd; int i, sock; u_int32_t newflags; #ifdef IPV6CTL_USETEMPADDR u_int8_t nullbuf[8]; #endif if ((sock = socket(AF_INET6, SOCK_DGRAM, 0)) < 0) { err(1, "socket"); /* NOTREACHED */ } bzero(&nd, sizeof(nd)); strlcpy(nd.ifname, ifname, sizeof(nd.ifname)); if (ioctl(sock, SIOCGIFINFO_IN6, (caddr_t)&nd) < 0) { err(1, "ioctl(SIOCGIFINFO_IN6)"); /* NOTREACHED */ } #define ND nd.ndi newflags = ND.flags; for (i = 0; i < argc; i++) { int clear = 0; char *cp = argv[i]; if (*cp == '-') { clear = 1; cp++; } #define SETFLAG(s, f) do { \ if (strcmp(cp, (s)) == 0) { \ if (clear) \ newflags &= ~(f); \ else \ newflags |= (f); \ } \ } while (0) /* * XXX: this macro is not 100% correct, in that it matches "nud" against * "nudbogus". But we just let it go since this is minor. */ #define SETVALUE(f, v) do { \ char *valptr; \ unsigned long newval; \ v = 0; /* unspecified */ \ if (strncmp(cp, f, strlen(f)) == 0) { \ valptr = strchr(cp, '='); \ if (valptr == NULL) \ err(1, "syntax error in %s field", (f)); \ errno = 0; \ newval = strtoul(++valptr, NULL, 0); \ if (errno) \ err(1, "syntax error in %s's value", (f)); \ v = newval; \ } \ } while (0) SETFLAG("disabled", ND6_IFF_IFDISABLED); SETFLAG("nud", ND6_IFF_PERFORMNUD); #ifdef ND6_IFF_ACCEPT_RTADV SETFLAG("accept_rtadv", ND6_IFF_ACCEPT_RTADV); #endif #ifdef ND6_IFF_AUTO_LINKLOCAL SETFLAG("auto_linklocal", ND6_IFF_AUTO_LINKLOCAL); #endif #ifdef ND6_IFF_NO_PREFER_IFACE SETFLAG("no_prefer_iface", ND6_IFF_NO_PREFER_IFACE); #endif SETVALUE("basereachable", ND.basereachable); SETVALUE("retrans", ND.retrans); SETVALUE("curhlim", ND.chlim); ND.flags = newflags; if (ioctl(sock, SIOCSIFINFO_IN6, (caddr_t)&nd) < 0) { err(1, "ioctl(SIOCSIFINFO_IN6)"); /* NOTREACHED */ } #undef SETFLAG #undef SETVALUE } if (!ND.initialized) { errx(1, "%s: not initialized yet", ifname); /* NOTREACHED */ } if (ioctl(sock, SIOCGIFINFO_IN6, (caddr_t)&nd) < 0) { err(1, "ioctl(SIOCGIFINFO_IN6)"); /* NOTREACHED */ } printf("linkmtu=%d", ND.linkmtu); printf(", maxmtu=%d", ND.maxmtu); printf(", curhlim=%d", ND.chlim); printf(", basereachable=%ds%dms", ND.basereachable / 1000, ND.basereachable % 1000); printf(", reachable=%ds", ND.reachable); printf(", retrans=%ds%dms", ND.retrans / 1000, ND.retrans % 1000); #ifdef IPV6CTL_USETEMPADDR memset(nullbuf, 0, sizeof(nullbuf)); if (memcmp(nullbuf, ND.randomid, sizeof(nullbuf)) != 0) { int j; u_int8_t *rbuf; for (i = 0; i < 3; i++) { switch (i) { case 0: printf("\nRandom seed(0): "); rbuf = ND.randomseed0; break; case 1: printf("\nRandom seed(1): "); rbuf = ND.randomseed1; break; case 2: printf("\nRandom ID: "); rbuf = ND.randomid; break; default: errx(1, "impossible case for tempaddr display"); } for (j = 0; j < 8; j++) printf("%02x", rbuf[j]); } } #endif /* IPV6CTL_USETEMPADDR */ if (ND.flags) { printf("\nFlags: "); #ifdef ND6_IFF_IFDISABLED if ((ND.flags & ND6_IFF_IFDISABLED)) printf("disabled "); #endif if ((ND.flags & ND6_IFF_PERFORMNUD)) printf("nud "); #ifdef ND6_IFF_ACCEPT_RTADV if ((ND.flags & ND6_IFF_ACCEPT_RTADV)) printf("accept_rtadv "); #endif #ifdef ND6_IFF_AUTO_LINKLOCAL if ((ND.flags & ND6_IFF_AUTO_LINKLOCAL)) printf("auto_linklocal "); #endif #ifdef ND6_IFF_NO_PREFER_IFACE if ((ND.flags & ND6_IFF_NO_PREFER_IFACE)) printf("no_prefer_iface "); #endif } putc('\n', stdout); #undef ND close(sock); } #ifndef ND_RA_FLAG_RTPREF_MASK /* XXX: just for compilation on *BSD release */ #define ND_RA_FLAG_RTPREF_MASK 0x18 /* 00011000 */ #endif static void rtrlist() { int mib[] = { CTL_NET, PF_INET6, IPPROTO_ICMPV6, ICMPV6CTL_ND6_DRLIST }; char *buf; struct in6_defrouter *p, *ep; size_t l; struct timeval now; if (sysctl(mib, sizeof(mib) / sizeof(mib[0]), NULL, &l, NULL, 0) < 0) { err(1, "sysctl(ICMPV6CTL_ND6_DRLIST)"); /*NOTREACHED*/ } if (l == 0) return; buf = malloc(l); if (!buf) { err(1, "malloc"); /*NOTREACHED*/ } if (sysctl(mib, sizeof(mib) / sizeof(mib[0]), buf, &l, NULL, 0) < 0) { err(1, "sysctl(ICMPV6CTL_ND6_DRLIST)"); /*NOTREACHED*/ } ep = (struct in6_defrouter *)(buf + l); for (p = (struct in6_defrouter *)buf; p < ep; p++) { int rtpref; if (getnameinfo((struct sockaddr *)&p->rtaddr, p->rtaddr.sin6_len, host_buf, sizeof(host_buf), NULL, 0, (nflag ? NI_NUMERICHOST : 0)) != 0) strlcpy(host_buf, "?", sizeof(host_buf)); printf("%s if=%s", host_buf, if_indextoname(p->if_index, ifix_buf)); printf(", flags=%s%s", p->flags & ND_RA_FLAG_MANAGED ? "M" : "", p->flags & ND_RA_FLAG_OTHER ? "O" : ""); #ifdef DRAFT_IETF_6MAN_IPV6ONLY_FLAG printf("%s", p->flags & ND_RA_FLAG_IPV6_ONLY ? "S" : ""); #endif rtpref = ((p->flags & ND_RA_FLAG_RTPREF_MASK) >> 3) & 0xff; printf(", pref=%s", rtpref_str[rtpref]); gettimeofday(&now, 0); if (p->expire == 0) printf(", expire=Never\n"); else printf(", expire=%s\n", sec2str(p->expire - now.tv_sec)); } free(buf); } static void plist() { int mib[] = { CTL_NET, PF_INET6, IPPROTO_ICMPV6, ICMPV6CTL_ND6_PRLIST }; char *buf; struct in6_prefix *p, *ep, *n; struct sockaddr_in6 *advrtr; size_t l; struct timeval now; const int niflags = NI_NUMERICHOST; int ninflags = nflag ? NI_NUMERICHOST : 0; char namebuf[NI_MAXHOST]; if (sysctl(mib, sizeof(mib) / sizeof(mib[0]), NULL, &l, NULL, 0) < 0) { err(1, "sysctl(ICMPV6CTL_ND6_PRLIST)"); /*NOTREACHED*/ } buf = malloc(l); if (!buf) { err(1, "malloc"); /*NOTREACHED*/ } if (sysctl(mib, sizeof(mib) / sizeof(mib[0]), buf, &l, NULL, 0) < 0) { err(1, "sysctl(ICMPV6CTL_ND6_PRLIST)"); /*NOTREACHED*/ } ep = (struct in6_prefix *)(buf + l); for (p = (struct in6_prefix *)buf; p < ep; p = n) { advrtr = (struct sockaddr_in6 *)(p + 1); n = (struct in6_prefix *)&advrtr[p->advrtrs]; if (getnameinfo((struct sockaddr *)&p->prefix, p->prefix.sin6_len, namebuf, sizeof(namebuf), NULL, 0, niflags) != 0) strlcpy(namebuf, "?", sizeof(namebuf)); printf("%s/%d if=%s\n", namebuf, p->prefixlen, if_indextoname(p->if_index, ifix_buf)); gettimeofday(&now, 0); /* * meaning of fields, especially flags, is very different * by origin. notify the difference to the users. */ printf("flags=%s%s%s%s%s", p->raflags.onlink ? "L" : "", p->raflags.autonomous ? "A" : "", (p->flags & NDPRF_ONLINK) != 0 ? "O" : "", (p->flags & NDPRF_DETACHED) != 0 ? "D" : "", #ifdef NDPRF_HOME (p->flags & NDPRF_HOME) != 0 ? "H" : "" #else "" #endif ); if (p->vltime == ND6_INFINITE_LIFETIME) printf(" vltime=infinity"); else printf(" vltime=%lu", (unsigned long)p->vltime); if (p->pltime == ND6_INFINITE_LIFETIME) printf(", pltime=infinity"); else printf(", pltime=%lu", (unsigned long)p->pltime); if (p->expire == 0) printf(", expire=Never"); else if (p->expire >= now.tv_sec) printf(", expire=%s", sec2str(p->expire - now.tv_sec)); else printf(", expired"); printf(", ref=%d", p->refcnt); printf("\n"); /* * "advertising router" list is meaningful only if the prefix * information is from RA. */ if (p->advrtrs) { int j; struct sockaddr_in6 *sin6; sin6 = advrtr; printf(" advertised by\n"); for (j = 0; j < p->advrtrs; j++) { struct in6_nbrinfo *nbi; if (getnameinfo((struct sockaddr *)sin6, sin6->sin6_len, namebuf, sizeof(namebuf), NULL, 0, ninflags) != 0) strlcpy(namebuf, "?", sizeof(namebuf)); printf(" %s", namebuf); nbi = getnbrinfo(&sin6->sin6_addr, p->if_index, 0); if (nbi) { switch (nbi->state) { case ND6_LLINFO_REACHABLE: case ND6_LLINFO_STALE: case ND6_LLINFO_DELAY: case ND6_LLINFO_PROBE: printf(" (reachable)\n"); break; default: printf(" (unreachable)\n"); } } else printf(" (no neighbor state)\n"); sin6++; } } else printf(" No advertising router\n"); } free(buf); } static void pfx_flush() { char dummyif[IFNAMSIZ+8]; int sock; if ((sock = socket(AF_INET6, SOCK_DGRAM, 0)) < 0) err(1, "socket"); strlcpy(dummyif, "lo0", sizeof(dummyif)); /* dummy */ if (ioctl(sock, SIOCSPFXFLUSH_IN6, (caddr_t)&dummyif) < 0) err(1, "ioctl(SIOCSPFXFLUSH_IN6)"); close(sock); } static void rtr_flush() { char dummyif[IFNAMSIZ+8]; int sock; if ((sock = socket(AF_INET6, SOCK_DGRAM, 0)) < 0) err(1, "socket"); strlcpy(dummyif, "lo0", sizeof(dummyif)); /* dummy */ if (ioctl(sock, SIOCSRTRFLUSH_IN6, (caddr_t)&dummyif) < 0) err(1, "ioctl(SIOCSRTRFLUSH_IN6)"); close(sock); } static void harmonize_rtr() { char dummyif[IFNAMSIZ+8]; int sock; if ((sock = socket(AF_INET6, SOCK_DGRAM, 0)) < 0) err(1, "socket"); strlcpy(dummyif, "lo0", sizeof(dummyif)); /* dummy */ if (ioctl(sock, SIOCSNDFLUSH_IN6, (caddr_t)&dummyif) < 0) err(1, "ioctl(SIOCSNDFLUSH_IN6)"); close(sock); } #ifdef SIOCSDEFIFACE_IN6 /* XXX: check SIOCGDEFIFACE_IN6 as well? */ static void setdefif(char *ifname) { struct in6_ndifreq ndifreq; unsigned int ifindex; int sock; if (strcasecmp(ifname, "delete") == 0) ifindex = 0; else { if ((ifindex = if_nametoindex(ifname)) == 0) err(1, "failed to resolve i/f index for %s", ifname); } if ((sock = socket(AF_INET6, SOCK_DGRAM, 0)) < 0) err(1, "socket"); strlcpy(ndifreq.ifname, "lo0", sizeof(ndifreq.ifname)); /* dummy */ ndifreq.ifindex = ifindex; if (ioctl(sock, SIOCSDEFIFACE_IN6, (caddr_t)&ndifreq) < 0) err(1, "ioctl(SIOCSDEFIFACE_IN6)"); close(sock); } static void getdefif() { struct in6_ndifreq ndifreq; char ifname[IFNAMSIZ+8]; int sock; if ((sock = socket(AF_INET6, SOCK_DGRAM, 0)) < 0) err(1, "socket"); memset(&ndifreq, 0, sizeof(ndifreq)); strlcpy(ndifreq.ifname, "lo0", sizeof(ndifreq.ifname)); /* dummy */ if (ioctl(sock, SIOCGDEFIFACE_IN6, (caddr_t)&ndifreq) < 0) err(1, "ioctl(SIOCGDEFIFACE_IN6)"); if (ndifreq.ifindex == 0) printf("No default interface.\n"); else { if ((if_indextoname(ndifreq.ifindex, ifname)) == NULL) err(1, "failed to resolve ifname for index %lu", ndifreq.ifindex); printf("ND default interface = %s\n", ifname); } close(sock); } #endif /* SIOCSDEFIFACE_IN6 */ static char * sec2str(time_t total) { static char result[256]; int days, hours, mins, secs; int first = 1; char *p = result; char *ep = &result[sizeof(result)]; int n; days = total / 3600 / 24; hours = (total / 3600) % 24; mins = (total / 60) % 60; secs = total % 60; if (days) { first = 0; n = snprintf(p, ep - p, "%dd", days); if (n < 0 || n >= ep - p) return "?"; p += n; } if (!first || hours) { first = 0; n = snprintf(p, ep - p, "%dh", hours); if (n < 0 || n >= ep - p) return "?"; p += n; } if (!first || mins) { first = 0; n = snprintf(p, ep - p, "%dm", mins); if (n < 0 || n >= ep - p) return "?"; p += n; } snprintf(p, ep - p, "%ds", secs); return(result); } /* * Print the timestamp * from tcpdump/util.c */ static void ts_print(const struct timeval *tvp) { int sec; /* Default */ sec = (tvp->tv_sec + thiszone) % 86400; (void)printf("%02d:%02d:%02d.%06u ", sec / 3600, (sec % 3600) / 60, sec % 60, (u_int32_t)tvp->tv_usec); } #undef NEXTADDR