diff --git a/contrib/llvm-project/openmp/runtime/src/kmp_settings.cpp b/contrib/llvm-project/openmp/runtime/src/kmp_settings.cpp index ec86ee07472c..58f19ea5b8ab 100644 --- a/contrib/llvm-project/openmp/runtime/src/kmp_settings.cpp +++ b/contrib/llvm-project/openmp/runtime/src/kmp_settings.cpp @@ -1,6641 +1,6643 @@ /* * kmp_settings.cpp -- Initialize environment variables */ //===----------------------------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "kmp.h" #include "kmp_affinity.h" #include "kmp_atomic.h" #if KMP_USE_HIER_SCHED #include "kmp_dispatch_hier.h" #endif #include "kmp_environment.h" #include "kmp_i18n.h" #include "kmp_io.h" #include "kmp_itt.h" #include "kmp_lock.h" #include "kmp_settings.h" #include "kmp_str.h" #include "kmp_wrapper_getpid.h" #include // toupper() #if OMPD_SUPPORT #include "ompd-specific.h" #endif static int __kmp_env_toPrint(char const *name, int flag); bool __kmp_env_format = 0; // 0 - old format; 1 - new format // ----------------------------------------------------------------------------- // Helper string functions. Subject to move to kmp_str. #ifdef USE_LOAD_BALANCE static double __kmp_convert_to_double(char const *s) { double result; if (KMP_SSCANF(s, "%lf", &result) < 1) { result = 0.0; } return result; } #endif #ifdef KMP_DEBUG static unsigned int __kmp_readstr_with_sentinel(char *dest, char const *src, size_t len, char sentinel) { unsigned int i; for (i = 0; i < len; i++) { if ((*src == '\0') || (*src == sentinel)) { break; } *(dest++) = *(src++); } *dest = '\0'; return i; } #endif static int __kmp_match_with_sentinel(char const *a, char const *b, size_t len, char sentinel) { size_t l = 0; if (a == NULL) a = ""; if (b == NULL) b = ""; while (*a && *b && *b != sentinel) { char ca = *a, cb = *b; if (ca >= 'a' && ca <= 'z') ca -= 'a' - 'A'; if (cb >= 'a' && cb <= 'z') cb -= 'a' - 'A'; if (ca != cb) return FALSE; ++l; ++a; ++b; } return l >= len; } // Expected usage: // token is the token to check for. // buf is the string being parsed. // *end returns the char after the end of the token. // it is not modified unless a match occurs. // // Example 1: // // if (__kmp_match_str("token", buf, *end) { // // buf = end; // } // // Example 2: // // if (__kmp_match_str("token", buf, *end) { // char *save = **end; // **end = sentinel; // // **end = save; // buf = end; // } static int __kmp_match_str(char const *token, char const *buf, const char **end) { KMP_ASSERT(token != NULL); KMP_ASSERT(buf != NULL); KMP_ASSERT(end != NULL); while (*token && *buf) { char ct = *token, cb = *buf; if (ct >= 'a' && ct <= 'z') ct -= 'a' - 'A'; if (cb >= 'a' && cb <= 'z') cb -= 'a' - 'A'; if (ct != cb) return FALSE; ++token; ++buf; } if (*token) { return FALSE; } *end = buf; return TRUE; } #if KMP_OS_DARWIN static size_t __kmp_round4k(size_t size) { size_t _4k = 4 * 1024; if (size & (_4k - 1)) { size &= ~(_4k - 1); if (size <= KMP_SIZE_T_MAX - _4k) { size += _4k; // Round up if there is no overflow. } } return size; } // __kmp_round4k #endif static int __kmp_strcasecmp_with_sentinel(char const *a, char const *b, char sentinel) { if (a == NULL) a = ""; if (b == NULL) b = ""; while (*a && *b && *b != sentinel) { char ca = *a, cb = *b; if (ca >= 'a' && ca <= 'z') ca -= 'a' - 'A'; if (cb >= 'a' && cb <= 'z') cb -= 'a' - 'A'; if (ca != cb) return (int)(unsigned char)*a - (int)(unsigned char)*b; ++a; ++b; } return *a ? (*b && *b != sentinel) ? (int)(unsigned char)*a - (int)(unsigned char)*b : 1 : (*b && *b != sentinel) ? -1 : 0; } // ============================================================================= // Table structures and helper functions. typedef struct __kmp_setting kmp_setting_t; typedef struct __kmp_stg_ss_data kmp_stg_ss_data_t; typedef struct __kmp_stg_wp_data kmp_stg_wp_data_t; typedef struct __kmp_stg_fr_data kmp_stg_fr_data_t; typedef void (*kmp_stg_parse_func_t)(char const *name, char const *value, void *data); typedef void (*kmp_stg_print_func_t)(kmp_str_buf_t *buffer, char const *name, void *data); struct __kmp_setting { char const *name; // Name of setting (environment variable). kmp_stg_parse_func_t parse; // Parser function. kmp_stg_print_func_t print; // Print function. void *data; // Data passed to parser and printer. int set; // Variable set during this "session" // (__kmp_env_initialize() or kmp_set_defaults() call). int defined; // Variable set in any "session". }; // struct __kmp_setting struct __kmp_stg_ss_data { size_t factor; // Default factor: 1 for KMP_STACKSIZE, 1024 for others. kmp_setting_t **rivals; // Array of pointers to rivals (including itself). }; // struct __kmp_stg_ss_data struct __kmp_stg_wp_data { int omp; // 0 -- KMP_LIBRARY, 1 -- OMP_WAIT_POLICY. kmp_setting_t **rivals; // Array of pointers to rivals (including itself). }; // struct __kmp_stg_wp_data struct __kmp_stg_fr_data { int force; // 0 -- KMP_DETERMINISTIC_REDUCTION, 1 -- KMP_FORCE_REDUCTION. kmp_setting_t **rivals; // Array of pointers to rivals (including itself). }; // struct __kmp_stg_fr_data static int __kmp_stg_check_rivals( // 0 -- Ok, 1 -- errors found. char const *name, // Name of variable. char const *value, // Value of the variable. kmp_setting_t **rivals // List of rival settings (must include current one). ); // Helper struct that trims heading/trailing white spaces struct kmp_trimmed_str_t { kmp_str_buf_t buf; kmp_trimmed_str_t(const char *str) { __kmp_str_buf_init(&buf); size_t len = KMP_STRLEN(str); if (len == 0) return; const char *begin = str; const char *end = str + KMP_STRLEN(str) - 1; SKIP_WS(begin); while (begin < end && *end == ' ') end--; __kmp_str_buf_cat(&buf, begin, end - begin + 1); } ~kmp_trimmed_str_t() { __kmp_str_buf_free(&buf); } const char *get() { return buf.str; } }; // ----------------------------------------------------------------------------- // Helper parse functions. static void __kmp_stg_parse_bool(char const *name, char const *value, int *out) { if (__kmp_str_match_true(value)) { *out = TRUE; } else if (__kmp_str_match_false(value)) { *out = FALSE; } else { __kmp_msg(kmp_ms_warning, KMP_MSG(BadBoolValue, name, value), KMP_HNT(ValidBoolValues), __kmp_msg_null); } } // __kmp_stg_parse_bool // placed here in order to use __kmp_round4k static function void __kmp_check_stksize(size_t *val) { // if system stack size is too big then limit the size for worker threads #if KMP_OS_AIX if (*val > KMP_DEFAULT_STKSIZE * 2) // Use 2 times, 16 is too large for AIX. *val = KMP_DEFAULT_STKSIZE * 2; #else if (*val > KMP_DEFAULT_STKSIZE * 16) // just a heuristics... *val = KMP_DEFAULT_STKSIZE * 16; #endif if (*val < __kmp_sys_min_stksize) *val = __kmp_sys_min_stksize; if (*val > KMP_MAX_STKSIZE) *val = KMP_MAX_STKSIZE; // dead code currently, but may work in future #if KMP_OS_DARWIN *val = __kmp_round4k(*val); #endif // KMP_OS_DARWIN } static void __kmp_stg_parse_size(char const *name, char const *value, size_t size_min, size_t size_max, int *is_specified, size_t *out, size_t factor) { char const *msg = NULL; #if KMP_OS_DARWIN size_min = __kmp_round4k(size_min); size_max = __kmp_round4k(size_max); #endif // KMP_OS_DARWIN if (value) { if (is_specified != NULL) { *is_specified = 1; } __kmp_str_to_size(value, out, factor, &msg); if (msg == NULL) { if (*out > size_max) { *out = size_max; msg = KMP_I18N_STR(ValueTooLarge); } else if (*out < size_min) { *out = size_min; msg = KMP_I18N_STR(ValueTooSmall); } else { #if KMP_OS_DARWIN size_t round4k = __kmp_round4k(*out); if (*out != round4k) { *out = round4k; msg = KMP_I18N_STR(NotMultiple4K); } #endif } } else { // If integer overflow occurred, * out == KMP_SIZE_T_MAX. Cut it to // size_max silently. if (*out < size_min) { *out = size_max; } else if (*out > size_max) { *out = size_max; } } if (msg != NULL) { // Message is not empty. Print warning. kmp_str_buf_t buf; __kmp_str_buf_init(&buf); __kmp_str_buf_print_size(&buf, *out); KMP_WARNING(ParseSizeIntWarn, name, value, msg); KMP_INFORM(Using_str_Value, name, buf.str); __kmp_str_buf_free(&buf); } } } // __kmp_stg_parse_size static void __kmp_stg_parse_str(char const *name, char const *value, char **out) { __kmp_str_free(out); *out = __kmp_str_format("%s", value); } // __kmp_stg_parse_str static void __kmp_stg_parse_int( char const *name, // I: Name of environment variable (used in warning messages). char const *value, // I: Value of environment variable to parse. int min, // I: Minimum allowed value. int max, // I: Maximum allowed value. int *out // O: Output (parsed) value. ) { char const *msg = NULL; kmp_uint64 uint = *out; __kmp_str_to_uint(value, &uint, &msg); if (msg == NULL) { if (uint < (unsigned int)min) { msg = KMP_I18N_STR(ValueTooSmall); uint = min; } else if (uint > (unsigned int)max) { msg = KMP_I18N_STR(ValueTooLarge); uint = max; } } else { // If overflow occurred msg contains error message and uint is very big. Cut // tmp it to INT_MAX. if (uint < (unsigned int)min) { uint = min; } else if (uint > (unsigned int)max) { uint = max; } } if (msg != NULL) { // Message is not empty. Print warning. kmp_str_buf_t buf; KMP_WARNING(ParseSizeIntWarn, name, value, msg); __kmp_str_buf_init(&buf); __kmp_str_buf_print(&buf, "%" KMP_UINT64_SPEC "", uint); KMP_INFORM(Using_uint64_Value, name, buf.str); __kmp_str_buf_free(&buf); } __kmp_type_convert(uint, out); } // __kmp_stg_parse_int #if KMP_DEBUG_ADAPTIVE_LOCKS static void __kmp_stg_parse_file(char const *name, char const *value, const char *suffix, char **out) { char buffer[256]; char *t; int hasSuffix; __kmp_str_free(out); t = (char *)strrchr(value, '.'); hasSuffix = t && __kmp_str_eqf(t, suffix); t = __kmp_str_format("%s%s", value, hasSuffix ? "" : suffix); __kmp_expand_file_name(buffer, sizeof(buffer), t); __kmp_str_free(&t); *out = __kmp_str_format("%s", buffer); } // __kmp_stg_parse_file #endif #ifdef KMP_DEBUG static char *par_range_to_print = NULL; static void __kmp_stg_parse_par_range(char const *name, char const *value, int *out_range, char *out_routine, char *out_file, int *out_lb, int *out_ub) { const char *par_range_value; size_t len = KMP_STRLEN(value) + 1; par_range_to_print = (char *)KMP_INTERNAL_MALLOC(len + 1); KMP_STRNCPY_S(par_range_to_print, len + 1, value, len + 1); __kmp_par_range = +1; __kmp_par_range_lb = 0; __kmp_par_range_ub = INT_MAX; for (;;) { unsigned int len; if (!value || *value == '\0') { break; } if (!__kmp_strcasecmp_with_sentinel("routine", value, '=')) { par_range_value = strchr(value, '=') + 1; if (!par_range_value) goto par_range_error; value = par_range_value; len = __kmp_readstr_with_sentinel(out_routine, value, KMP_PAR_RANGE_ROUTINE_LEN - 1, ','); if (len == 0) { goto par_range_error; } value = strchr(value, ','); if (value != NULL) { value++; } continue; } if (!__kmp_strcasecmp_with_sentinel("filename", value, '=')) { par_range_value = strchr(value, '=') + 1; if (!par_range_value) goto par_range_error; value = par_range_value; len = __kmp_readstr_with_sentinel(out_file, value, KMP_PAR_RANGE_FILENAME_LEN - 1, ','); if (len == 0) { goto par_range_error; } value = strchr(value, ','); if (value != NULL) { value++; } continue; } if ((!__kmp_strcasecmp_with_sentinel("range", value, '=')) || (!__kmp_strcasecmp_with_sentinel("incl_range", value, '='))) { par_range_value = strchr(value, '=') + 1; if (!par_range_value) goto par_range_error; value = par_range_value; if (KMP_SSCANF(value, "%d:%d", out_lb, out_ub) != 2) { goto par_range_error; } *out_range = +1; value = strchr(value, ','); if (value != NULL) { value++; } continue; } if (!__kmp_strcasecmp_with_sentinel("excl_range", value, '=')) { par_range_value = strchr(value, '=') + 1; if (!par_range_value) goto par_range_error; value = par_range_value; if (KMP_SSCANF(value, "%d:%d", out_lb, out_ub) != 2) { goto par_range_error; } *out_range = -1; value = strchr(value, ','); if (value != NULL) { value++; } continue; } par_range_error: KMP_WARNING(ParRangeSyntax, name); __kmp_par_range = 0; break; } } // __kmp_stg_parse_par_range #endif int __kmp_initial_threads_capacity(int req_nproc) { int nth = 32; /* MIN( MAX( 32, 4 * $OMP_NUM_THREADS, 4 * omp_get_num_procs() ), * __kmp_max_nth) */ if (nth < (4 * req_nproc)) nth = (4 * req_nproc); if (nth < (4 * __kmp_xproc)) nth = (4 * __kmp_xproc); // If hidden helper task is enabled, we initialize the thread capacity with // extra __kmp_hidden_helper_threads_num. if (__kmp_enable_hidden_helper) { nth += __kmp_hidden_helper_threads_num; } if (nth > __kmp_max_nth) nth = __kmp_max_nth; return nth; } int __kmp_default_tp_capacity(int req_nproc, int max_nth, int all_threads_specified) { int nth = 128; if (all_threads_specified) return max_nth; /* MIN( MAX (128, 4 * $OMP_NUM_THREADS, 4 * omp_get_num_procs() ), * __kmp_max_nth ) */ if (nth < (4 * req_nproc)) nth = (4 * req_nproc); if (nth < (4 * __kmp_xproc)) nth = (4 * __kmp_xproc); if (nth > __kmp_max_nth) nth = __kmp_max_nth; return nth; } // ----------------------------------------------------------------------------- // Helper print functions. static void __kmp_stg_print_bool(kmp_str_buf_t *buffer, char const *name, int value) { if (__kmp_env_format) { KMP_STR_BUF_PRINT_BOOL; } else { __kmp_str_buf_print(buffer, " %s=%s\n", name, value ? "true" : "false"); } } // __kmp_stg_print_bool static void __kmp_stg_print_int(kmp_str_buf_t *buffer, char const *name, int value) { if (__kmp_env_format) { KMP_STR_BUF_PRINT_INT; } else { __kmp_str_buf_print(buffer, " %s=%d\n", name, value); } } // __kmp_stg_print_int static void __kmp_stg_print_uint64(kmp_str_buf_t *buffer, char const *name, kmp_uint64 value) { if (__kmp_env_format) { KMP_STR_BUF_PRINT_UINT64; } else { __kmp_str_buf_print(buffer, " %s=%" KMP_UINT64_SPEC "\n", name, value); } } // __kmp_stg_print_uint64 static void __kmp_stg_print_str(kmp_str_buf_t *buffer, char const *name, char const *value) { if (__kmp_env_format) { KMP_STR_BUF_PRINT_STR; } else { __kmp_str_buf_print(buffer, " %s=%s\n", name, value); } } // __kmp_stg_print_str static void __kmp_stg_print_size(kmp_str_buf_t *buffer, char const *name, size_t value) { if (__kmp_env_format) { KMP_STR_BUF_PRINT_NAME_EX(name); __kmp_str_buf_print_size(buffer, value); __kmp_str_buf_print(buffer, "'\n"); } else { __kmp_str_buf_print(buffer, " %s=", name); __kmp_str_buf_print_size(buffer, value); __kmp_str_buf_print(buffer, "\n"); return; } } // __kmp_stg_print_size // ============================================================================= // Parse and print functions. // ----------------------------------------------------------------------------- // KMP_DEVICE_THREAD_LIMIT, KMP_ALL_THREADS static void __kmp_stg_parse_device_thread_limit(char const *name, char const *value, void *data) { kmp_setting_t **rivals = (kmp_setting_t **)data; int rc; if (strcmp(name, "KMP_ALL_THREADS") == 0) { KMP_INFORM(EnvVarDeprecated, name, "KMP_DEVICE_THREAD_LIMIT"); } rc = __kmp_stg_check_rivals(name, value, rivals); if (rc) { return; } if (!__kmp_strcasecmp_with_sentinel("all", value, 0)) { __kmp_max_nth = __kmp_xproc; __kmp_allThreadsSpecified = 1; } else { __kmp_stg_parse_int(name, value, 1, __kmp_sys_max_nth, &__kmp_max_nth); __kmp_allThreadsSpecified = 0; } K_DIAG(1, ("__kmp_max_nth == %d\n", __kmp_max_nth)); } // __kmp_stg_parse_device_thread_limit static void __kmp_stg_print_device_thread_limit(kmp_str_buf_t *buffer, char const *name, void *data) { __kmp_stg_print_int(buffer, name, __kmp_max_nth); } // __kmp_stg_print_device_thread_limit // ----------------------------------------------------------------------------- // OMP_THREAD_LIMIT static void __kmp_stg_parse_thread_limit(char const *name, char const *value, void *data) { __kmp_stg_parse_int(name, value, 1, __kmp_sys_max_nth, &__kmp_cg_max_nth); K_DIAG(1, ("__kmp_cg_max_nth == %d\n", __kmp_cg_max_nth)); } // __kmp_stg_parse_thread_limit static void __kmp_stg_print_thread_limit(kmp_str_buf_t *buffer, char const *name, void *data) { __kmp_stg_print_int(buffer, name, __kmp_cg_max_nth); } // __kmp_stg_print_thread_limit // ----------------------------------------------------------------------------- // OMP_NUM_TEAMS static void __kmp_stg_parse_nteams(char const *name, char const *value, void *data) { __kmp_stg_parse_int(name, value, 1, __kmp_sys_max_nth, &__kmp_nteams); K_DIAG(1, ("__kmp_nteams == %d\n", __kmp_nteams)); } // __kmp_stg_parse_nteams static void __kmp_stg_print_nteams(kmp_str_buf_t *buffer, char const *name, void *data) { __kmp_stg_print_int(buffer, name, __kmp_nteams); } // __kmp_stg_print_nteams // ----------------------------------------------------------------------------- // OMP_TEAMS_THREAD_LIMIT static void __kmp_stg_parse_teams_th_limit(char const *name, char const *value, void *data) { __kmp_stg_parse_int(name, value, 1, __kmp_sys_max_nth, &__kmp_teams_thread_limit); K_DIAG(1, ("__kmp_teams_thread_limit == %d\n", __kmp_teams_thread_limit)); } // __kmp_stg_parse_teams_th_limit static void __kmp_stg_print_teams_th_limit(kmp_str_buf_t *buffer, char const *name, void *data) { __kmp_stg_print_int(buffer, name, __kmp_teams_thread_limit); } // __kmp_stg_print_teams_th_limit // ----------------------------------------------------------------------------- // KMP_TEAMS_THREAD_LIMIT static void __kmp_stg_parse_teams_thread_limit(char const *name, char const *value, void *data) { __kmp_stg_parse_int(name, value, 1, __kmp_sys_max_nth, &__kmp_teams_max_nth); } // __kmp_stg_teams_thread_limit static void __kmp_stg_print_teams_thread_limit(kmp_str_buf_t *buffer, char const *name, void *data) { __kmp_stg_print_int(buffer, name, __kmp_teams_max_nth); } // __kmp_stg_print_teams_thread_limit // ----------------------------------------------------------------------------- // KMP_USE_YIELD static void __kmp_stg_parse_use_yield(char const *name, char const *value, void *data) { __kmp_stg_parse_int(name, value, 0, 2, &__kmp_use_yield); __kmp_use_yield_exp_set = 1; } // __kmp_stg_parse_use_yield static void __kmp_stg_print_use_yield(kmp_str_buf_t *buffer, char const *name, void *data) { __kmp_stg_print_int(buffer, name, __kmp_use_yield); } // __kmp_stg_print_use_yield // ----------------------------------------------------------------------------- // KMP_BLOCKTIME static void __kmp_stg_parse_blocktime(char const *name, char const *value, void *data) { const char *buf = value; const char *next; const int ms_mult = 1000; int multiplier = 1; int num; // Read integer blocktime value SKIP_WS(buf); if ((*buf >= '0') && (*buf <= '9')) { next = buf; SKIP_DIGITS(next); num = __kmp_basic_str_to_int(buf); KMP_ASSERT(num >= 0); buf = next; SKIP_WS(buf); } else { num = -1; } // Read units: note that __kmp_dflt_blocktime units is now us next = buf; if (*buf == '\0' || __kmp_match_str("ms", buf, &next)) { // units are in ms; convert __kmp_dflt_blocktime = ms_mult * num; __kmp_blocktime_units = 'm'; multiplier = ms_mult; } else if (__kmp_match_str("us", buf, &next)) { // units are in us __kmp_dflt_blocktime = num; __kmp_blocktime_units = 'u'; } else if (__kmp_match_str("infinite", buf, &next) || __kmp_match_str("infinity", buf, &next)) { // units are in ms __kmp_dflt_blocktime = KMP_MAX_BLOCKTIME; __kmp_blocktime_units = 'm'; multiplier = ms_mult; } else { KMP_WARNING(StgInvalidValue, name, value); // default units are in ms __kmp_dflt_blocktime = ms_mult * num; __kmp_blocktime_units = 'm'; multiplier = ms_mult; } if (num < 0 && __kmp_dflt_blocktime < 0) { // num out of range __kmp_dflt_blocktime = KMP_DEFAULT_BLOCKTIME; // now in us __kmp_msg(kmp_ms_warning, KMP_MSG(InvalidValue, name, value), __kmp_msg_null); // Inform in appropriate units KMP_INFORM(Using_int_Value, name, __kmp_dflt_blocktime / multiplier); __kmp_env_blocktime = FALSE; // Revert to default as if var not set. } else if (num > 0 && __kmp_dflt_blocktime < 0) { // overflow __kmp_dflt_blocktime = KMP_MAX_BLOCKTIME; __kmp_msg(kmp_ms_warning, KMP_MSG(LargeValue, name, value), __kmp_msg_null); KMP_INFORM(MaxValueUsing, name, __kmp_dflt_blocktime / multiplier); __kmp_env_blocktime = TRUE; // KMP_BLOCKTIME was specified. } else { if (__kmp_dflt_blocktime < KMP_MIN_BLOCKTIME) { __kmp_dflt_blocktime = KMP_MIN_BLOCKTIME; __kmp_msg(kmp_ms_warning, KMP_MSG(SmallValue, name, value), __kmp_msg_null); KMP_INFORM(MinValueUsing, name, __kmp_dflt_blocktime / multiplier); } else if (__kmp_dflt_blocktime > KMP_MAX_BLOCKTIME) { __kmp_dflt_blocktime = KMP_MAX_BLOCKTIME; __kmp_msg(kmp_ms_warning, KMP_MSG(LargeValue, name, value), __kmp_msg_null); KMP_INFORM(MaxValueUsing, name, __kmp_dflt_blocktime / multiplier); } __kmp_env_blocktime = TRUE; // KMP_BLOCKTIME was specified. } #if KMP_USE_MONITOR // calculate number of monitor thread wakeup intervals corresponding to // blocktime. __kmp_monitor_wakeups = KMP_WAKEUPS_FROM_BLOCKTIME(__kmp_dflt_blocktime, __kmp_monitor_wakeups); __kmp_bt_intervals = KMP_INTERVALS_FROM_BLOCKTIME(__kmp_dflt_blocktime, __kmp_monitor_wakeups); #endif K_DIAG(1, ("__kmp_env_blocktime == %d\n", __kmp_env_blocktime)); if (__kmp_env_blocktime) { K_DIAG(1, ("__kmp_dflt_blocktime == %d\n", __kmp_dflt_blocktime)); } } // __kmp_stg_parse_blocktime static void __kmp_stg_print_blocktime(kmp_str_buf_t *buffer, char const *name, void *data) { int num = __kmp_dflt_blocktime; if (__kmp_blocktime_units == 'm') { num = num / 1000; } if (__kmp_env_format) { KMP_STR_BUF_PRINT_NAME_EX(name); } else { __kmp_str_buf_print(buffer, " %s=", name); } __kmp_str_buf_print(buffer, "%d", num); __kmp_str_buf_print(buffer, "%cs\n", __kmp_blocktime_units); } // __kmp_stg_print_blocktime // ----------------------------------------------------------------------------- // KMP_DUPLICATE_LIB_OK static void __kmp_stg_parse_duplicate_lib_ok(char const *name, char const *value, void *data) { /* actually this variable is not supported, put here for compatibility with earlier builds and for static/dynamic combination */ __kmp_stg_parse_bool(name, value, &__kmp_duplicate_library_ok); } // __kmp_stg_parse_duplicate_lib_ok static void __kmp_stg_print_duplicate_lib_ok(kmp_str_buf_t *buffer, char const *name, void *data) { __kmp_stg_print_bool(buffer, name, __kmp_duplicate_library_ok); } // __kmp_stg_print_duplicate_lib_ok // ----------------------------------------------------------------------------- // KMP_INHERIT_FP_CONTROL #if KMP_ARCH_X86 || KMP_ARCH_X86_64 static void __kmp_stg_parse_inherit_fp_control(char const *name, char const *value, void *data) { __kmp_stg_parse_bool(name, value, &__kmp_inherit_fp_control); } // __kmp_stg_parse_inherit_fp_control static void __kmp_stg_print_inherit_fp_control(kmp_str_buf_t *buffer, char const *name, void *data) { #if KMP_DEBUG __kmp_stg_print_bool(buffer, name, __kmp_inherit_fp_control); #endif /* KMP_DEBUG */ } // __kmp_stg_print_inherit_fp_control #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ // Used for OMP_WAIT_POLICY static char const *blocktime_str = NULL; // ----------------------------------------------------------------------------- // KMP_LIBRARY, OMP_WAIT_POLICY static void __kmp_stg_parse_wait_policy(char const *name, char const *value, void *data) { kmp_stg_wp_data_t *wait = (kmp_stg_wp_data_t *)data; int rc; rc = __kmp_stg_check_rivals(name, value, wait->rivals); if (rc) { return; } if (wait->omp) { if (__kmp_str_match("ACTIVE", 1, value)) { __kmp_library = library_turnaround; if (blocktime_str == NULL) { // KMP_BLOCKTIME not specified, so set default to "infinite". __kmp_dflt_blocktime = KMP_MAX_BLOCKTIME; } } else if (__kmp_str_match("PASSIVE", 1, value)) { __kmp_library = library_throughput; __kmp_wpolicy_passive = true; /* allow sleep while active tasking */ if (blocktime_str == NULL) { // KMP_BLOCKTIME not specified, so set default to 0. __kmp_dflt_blocktime = 0; } } else { KMP_WARNING(StgInvalidValue, name, value); } } else { if (__kmp_str_match("serial", 1, value)) { /* S */ __kmp_library = library_serial; } else if (__kmp_str_match("throughput", 2, value)) { /* TH */ __kmp_library = library_throughput; if (blocktime_str == NULL) { // KMP_BLOCKTIME not specified, so set default to 0. __kmp_dflt_blocktime = 0; } } else if (__kmp_str_match("turnaround", 2, value)) { /* TU */ __kmp_library = library_turnaround; } else if (__kmp_str_match("dedicated", 1, value)) { /* D */ __kmp_library = library_turnaround; } else if (__kmp_str_match("multiuser", 1, value)) { /* M */ __kmp_library = library_throughput; if (blocktime_str == NULL) { // KMP_BLOCKTIME not specified, so set default to 0. __kmp_dflt_blocktime = 0; } } else { KMP_WARNING(StgInvalidValue, name, value); } } } // __kmp_stg_parse_wait_policy static void __kmp_stg_print_wait_policy(kmp_str_buf_t *buffer, char const *name, void *data) { kmp_stg_wp_data_t *wait = (kmp_stg_wp_data_t *)data; char const *value = NULL; if (wait->omp) { switch (__kmp_library) { case library_turnaround: { value = "ACTIVE"; } break; case library_throughput: { value = "PASSIVE"; } break; case library_none: case library_serial: { value = NULL; } break; } } else { switch (__kmp_library) { case library_serial: { value = "serial"; } break; case library_turnaround: { value = "turnaround"; } break; case library_throughput: { value = "throughput"; } break; case library_none: { value = NULL; } break; } } if (value != NULL) { __kmp_stg_print_str(buffer, name, value); } } // __kmp_stg_print_wait_policy #if KMP_USE_MONITOR // ----------------------------------------------------------------------------- // KMP_MONITOR_STACKSIZE static void __kmp_stg_parse_monitor_stacksize(char const *name, char const *value, void *data) { __kmp_stg_parse_size(name, value, __kmp_sys_min_stksize, KMP_MAX_STKSIZE, NULL, &__kmp_monitor_stksize, 1); } // __kmp_stg_parse_monitor_stacksize static void __kmp_stg_print_monitor_stacksize(kmp_str_buf_t *buffer, char const *name, void *data) { if (__kmp_env_format) { if (__kmp_monitor_stksize > 0) KMP_STR_BUF_PRINT_NAME_EX(name); else KMP_STR_BUF_PRINT_NAME; } else { __kmp_str_buf_print(buffer, " %s", name); } if (__kmp_monitor_stksize > 0) { __kmp_str_buf_print_size(buffer, __kmp_monitor_stksize); } else { __kmp_str_buf_print(buffer, ": %s\n", KMP_I18N_STR(NotDefined)); } if (__kmp_env_format && __kmp_monitor_stksize) { __kmp_str_buf_print(buffer, "'\n"); } } // __kmp_stg_print_monitor_stacksize #endif // KMP_USE_MONITOR // ----------------------------------------------------------------------------- // KMP_SETTINGS static void __kmp_stg_parse_settings(char const *name, char const *value, void *data) { __kmp_stg_parse_bool(name, value, &__kmp_settings); } // __kmp_stg_parse_settings static void __kmp_stg_print_settings(kmp_str_buf_t *buffer, char const *name, void *data) { __kmp_stg_print_bool(buffer, name, __kmp_settings); } // __kmp_stg_print_settings // ----------------------------------------------------------------------------- // KMP_STACKPAD static void __kmp_stg_parse_stackpad(char const *name, char const *value, void *data) { __kmp_stg_parse_int(name, // Env var name value, // Env var value KMP_MIN_STKPADDING, // Min value KMP_MAX_STKPADDING, // Max value &__kmp_stkpadding // Var to initialize ); } // __kmp_stg_parse_stackpad static void __kmp_stg_print_stackpad(kmp_str_buf_t *buffer, char const *name, void *data) { __kmp_stg_print_int(buffer, name, __kmp_stkpadding); } // __kmp_stg_print_stackpad // ----------------------------------------------------------------------------- // KMP_STACKOFFSET static void __kmp_stg_parse_stackoffset(char const *name, char const *value, void *data) { __kmp_stg_parse_size(name, // Env var name value, // Env var value KMP_MIN_STKOFFSET, // Min value KMP_MAX_STKOFFSET, // Max value NULL, // &__kmp_stkoffset, // Var to initialize 1); } // __kmp_stg_parse_stackoffset static void __kmp_stg_print_stackoffset(kmp_str_buf_t *buffer, char const *name, void *data) { __kmp_stg_print_size(buffer, name, __kmp_stkoffset); } // __kmp_stg_print_stackoffset // ----------------------------------------------------------------------------- // KMP_STACKSIZE, OMP_STACKSIZE, GOMP_STACKSIZE static void __kmp_stg_parse_stacksize(char const *name, char const *value, void *data) { kmp_stg_ss_data_t *stacksize = (kmp_stg_ss_data_t *)data; int rc; rc = __kmp_stg_check_rivals(name, value, stacksize->rivals); if (rc) { return; } __kmp_stg_parse_size(name, // Env var name value, // Env var value __kmp_sys_min_stksize, // Min value KMP_MAX_STKSIZE, // Max value &__kmp_env_stksize, // &__kmp_stksize, // Var to initialize stacksize->factor); } // __kmp_stg_parse_stacksize // This function is called for printing both KMP_STACKSIZE (factor is 1) and // OMP_STACKSIZE (factor is 1024). Currently it is not possible to print // OMP_STACKSIZE value in bytes. We can consider adding this possibility by a // customer request in future. static void __kmp_stg_print_stacksize(kmp_str_buf_t *buffer, char const *name, void *data) { kmp_stg_ss_data_t *stacksize = (kmp_stg_ss_data_t *)data; if (__kmp_env_format) { KMP_STR_BUF_PRINT_NAME_EX(name); __kmp_str_buf_print_size(buffer, (__kmp_stksize % 1024) ? __kmp_stksize / stacksize->factor : __kmp_stksize); __kmp_str_buf_print(buffer, "'\n"); } else { __kmp_str_buf_print(buffer, " %s=", name); __kmp_str_buf_print_size(buffer, (__kmp_stksize % 1024) ? __kmp_stksize / stacksize->factor : __kmp_stksize); __kmp_str_buf_print(buffer, "\n"); } } // __kmp_stg_print_stacksize // ----------------------------------------------------------------------------- // KMP_VERSION static void __kmp_stg_parse_version(char const *name, char const *value, void *data) { __kmp_stg_parse_bool(name, value, &__kmp_version); } // __kmp_stg_parse_version static void __kmp_stg_print_version(kmp_str_buf_t *buffer, char const *name, void *data) { __kmp_stg_print_bool(buffer, name, __kmp_version); } // __kmp_stg_print_version // ----------------------------------------------------------------------------- // KMP_WARNINGS static void __kmp_stg_parse_warnings(char const *name, char const *value, void *data) { __kmp_stg_parse_bool(name, value, &__kmp_generate_warnings); if (__kmp_generate_warnings != kmp_warnings_off) { // AC: only 0/1 values documented, so reset to explicit to distinguish from // default setting __kmp_generate_warnings = kmp_warnings_explicit; } } // __kmp_stg_parse_warnings static void __kmp_stg_print_warnings(kmp_str_buf_t *buffer, char const *name, void *data) { // AC: TODO: change to print_int? (needs documentation change) __kmp_stg_print_bool(buffer, name, __kmp_generate_warnings); } // __kmp_stg_print_warnings // ----------------------------------------------------------------------------- // KMP_NESTING_MODE static void __kmp_stg_parse_nesting_mode(char const *name, char const *value, void *data) { __kmp_stg_parse_int(name, value, 0, INT_MAX, &__kmp_nesting_mode); #if KMP_AFFINITY_SUPPORTED && KMP_USE_HWLOC if (__kmp_nesting_mode > 0) __kmp_affinity_top_method = affinity_top_method_hwloc; #endif } // __kmp_stg_parse_nesting_mode static void __kmp_stg_print_nesting_mode(kmp_str_buf_t *buffer, char const *name, void *data) { if (__kmp_env_format) { KMP_STR_BUF_PRINT_NAME; } else { __kmp_str_buf_print(buffer, " %s", name); } __kmp_str_buf_print(buffer, "=%d\n", __kmp_nesting_mode); } // __kmp_stg_print_nesting_mode // ----------------------------------------------------------------------------- // OMP_NESTED, OMP_NUM_THREADS static void __kmp_stg_parse_nested(char const *name, char const *value, void *data) { int nested; KMP_INFORM(EnvVarDeprecated, name, "OMP_MAX_ACTIVE_LEVELS"); __kmp_stg_parse_bool(name, value, &nested); if (nested) { if (!__kmp_dflt_max_active_levels_set) __kmp_dflt_max_active_levels = KMP_MAX_ACTIVE_LEVELS_LIMIT; } else { // nesting explicitly turned off __kmp_dflt_max_active_levels = 1; __kmp_dflt_max_active_levels_set = true; } } // __kmp_stg_parse_nested static void __kmp_stg_print_nested(kmp_str_buf_t *buffer, char const *name, void *data) { if (__kmp_env_format) { KMP_STR_BUF_PRINT_NAME; } else { __kmp_str_buf_print(buffer, " %s", name); } __kmp_str_buf_print(buffer, ": deprecated; max-active-levels-var=%d\n", __kmp_dflt_max_active_levels); } // __kmp_stg_print_nested static void __kmp_parse_nested_num_threads(const char *var, const char *env, kmp_nested_nthreads_t *nth_array) { const char *next = env; const char *scan = next; int total = 0; // Count elements that were set. It'll be used as an array size int prev_comma = FALSE; // For correct processing sequential commas // Count the number of values in the env. var string for (;;) { SKIP_WS(next); if (*next == '\0') { break; } // Next character is not an integer or not a comma => end of list if (((*next < '0') || (*next > '9')) && (*next != ',')) { KMP_WARNING(NthSyntaxError, var, env); return; } // The next character is ',' if (*next == ',') { // ',' is the first character if (total == 0 || prev_comma) { total++; } prev_comma = TRUE; next++; // skip ',' SKIP_WS(next); } // Next character is a digit if (*next >= '0' && *next <= '9') { prev_comma = FALSE; SKIP_DIGITS(next); total++; const char *tmp = next; SKIP_WS(tmp); if ((*next == ' ' || *next == '\t') && (*tmp >= '0' && *tmp <= '9')) { KMP_WARNING(NthSpacesNotAllowed, var, env); return; } } } if (!__kmp_dflt_max_active_levels_set && total > 1) __kmp_dflt_max_active_levels = KMP_MAX_ACTIVE_LEVELS_LIMIT; KMP_DEBUG_ASSERT(total > 0); if (total <= 0) { KMP_WARNING(NthSyntaxError, var, env); return; } // Check if the nested nthreads array exists if (!nth_array->nth) { // Allocate an array of double size nth_array->nth = (int *)KMP_INTERNAL_MALLOC(sizeof(int) * total * 2); if (nth_array->nth == NULL) { KMP_FATAL(MemoryAllocFailed); } nth_array->size = total * 2; } else { if (nth_array->size < total) { // Increase the array size do { nth_array->size *= 2; } while (nth_array->size < total); nth_array->nth = (int *)KMP_INTERNAL_REALLOC( nth_array->nth, sizeof(int) * nth_array->size); if (nth_array->nth == NULL) { KMP_FATAL(MemoryAllocFailed); } } } nth_array->used = total; int i = 0; prev_comma = FALSE; total = 0; // Save values in the array for (;;) { SKIP_WS(scan); if (*scan == '\0') { break; } // The next character is ',' if (*scan == ',') { // ',' in the beginning of the list if (total == 0) { // The value is supposed to be equal to __kmp_avail_proc but it is // unknown at the moment. // So let's put a placeholder (#threads = 0) to correct it later. nth_array->nth[i++] = 0; total++; } else if (prev_comma) { // Num threads is inherited from the previous level nth_array->nth[i] = nth_array->nth[i - 1]; i++; total++; } prev_comma = TRUE; scan++; // skip ',' SKIP_WS(scan); } // Next character is a digit if (*scan >= '0' && *scan <= '9') { int num; const char *buf = scan; char const *msg = NULL; prev_comma = FALSE; SKIP_DIGITS(scan); total++; num = __kmp_str_to_int(buf, *scan); if (num < KMP_MIN_NTH) { msg = KMP_I18N_STR(ValueTooSmall); num = KMP_MIN_NTH; } else if (num > __kmp_sys_max_nth) { msg = KMP_I18N_STR(ValueTooLarge); num = __kmp_sys_max_nth; } if (msg != NULL) { // Message is not empty. Print warning. KMP_WARNING(ParseSizeIntWarn, var, env, msg); KMP_INFORM(Using_int_Value, var, num); } nth_array->nth[i++] = num; } } } static void __kmp_stg_parse_num_threads(char const *name, char const *value, void *data) { // TODO: Remove this option. OMP_NUM_THREADS is a list of positive integers! if (!__kmp_strcasecmp_with_sentinel("all", value, 0)) { // The array of 1 element __kmp_nested_nth.nth = (int *)KMP_INTERNAL_MALLOC(sizeof(int)); __kmp_nested_nth.size = __kmp_nested_nth.used = 1; __kmp_nested_nth.nth[0] = __kmp_dflt_team_nth = __kmp_dflt_team_nth_ub = __kmp_xproc; } else { __kmp_parse_nested_num_threads(name, value, &__kmp_nested_nth); if (__kmp_nested_nth.nth) { __kmp_dflt_team_nth = __kmp_nested_nth.nth[0]; if (__kmp_dflt_team_nth_ub < __kmp_dflt_team_nth) { __kmp_dflt_team_nth_ub = __kmp_dflt_team_nth; } } } K_DIAG(1, ("__kmp_dflt_team_nth == %d\n", __kmp_dflt_team_nth)); } // __kmp_stg_parse_num_threads #if OMPX_TASKGRAPH static void __kmp_stg_parse_max_tdgs(char const *name, char const *value, void *data) { __kmp_stg_parse_int(name, value, 0, INT_MAX, &__kmp_max_tdgs); } // __kmp_stg_parse_max_tdgs static void __kmp_std_print_max_tdgs(kmp_str_buf_t *buffer, char const *name, void *data) { __kmp_stg_print_int(buffer, name, __kmp_max_tdgs); } // __kmp_std_print_max_tdgs static void __kmp_stg_parse_tdg_dot(char const *name, char const *value, void *data) { __kmp_stg_parse_bool(name, value, &__kmp_tdg_dot); } // __kmp_stg_parse_tdg_dot static void __kmp_stg_print_tdg_dot(kmp_str_buf_t *buffer, char const *name, void *data) { __kmp_stg_print_bool(buffer, name, __kmp_tdg_dot); } // __kmp_stg_print_tdg_dot #endif static void __kmp_stg_parse_num_hidden_helper_threads(char const *name, char const *value, void *data) { __kmp_stg_parse_int(name, value, 0, 16, &__kmp_hidden_helper_threads_num); // If the number of hidden helper threads is zero, we disable hidden helper // task if (__kmp_hidden_helper_threads_num == 0) { __kmp_enable_hidden_helper = FALSE; } else { // Since the main thread of hidden helper team does not participate // in tasks execution let's increment the number of threads by one // so that requested number of threads do actual job. __kmp_hidden_helper_threads_num++; } } // __kmp_stg_parse_num_hidden_helper_threads static void __kmp_stg_print_num_hidden_helper_threads(kmp_str_buf_t *buffer, char const *name, void *data) { if (__kmp_hidden_helper_threads_num == 0) { __kmp_stg_print_int(buffer, name, __kmp_hidden_helper_threads_num); } else { KMP_DEBUG_ASSERT(__kmp_hidden_helper_threads_num > 1); // Let's exclude the main thread of hidden helper team and print // number of worker threads those do actual job. __kmp_stg_print_int(buffer, name, __kmp_hidden_helper_threads_num - 1); } } // __kmp_stg_print_num_hidden_helper_threads static void __kmp_stg_parse_use_hidden_helper(char const *name, char const *value, void *data) { __kmp_stg_parse_bool(name, value, &__kmp_enable_hidden_helper); #if !KMP_OS_LINUX __kmp_enable_hidden_helper = FALSE; K_DIAG(1, ("__kmp_stg_parse_use_hidden_helper: Disable hidden helper task on " "non-Linux platform although it is enabled by user explicitly.\n")); #endif } // __kmp_stg_parse_use_hidden_helper static void __kmp_stg_print_use_hidden_helper(kmp_str_buf_t *buffer, char const *name, void *data) { __kmp_stg_print_bool(buffer, name, __kmp_enable_hidden_helper); } // __kmp_stg_print_use_hidden_helper static void __kmp_stg_print_num_threads(kmp_str_buf_t *buffer, char const *name, void *data) { if (__kmp_env_format) { KMP_STR_BUF_PRINT_NAME; } else { __kmp_str_buf_print(buffer, " %s", name); } if (__kmp_nested_nth.used) { kmp_str_buf_t buf; __kmp_str_buf_init(&buf); for (int i = 0; i < __kmp_nested_nth.used; i++) { __kmp_str_buf_print(&buf, "%d", __kmp_nested_nth.nth[i]); if (i < __kmp_nested_nth.used - 1) { __kmp_str_buf_print(&buf, ","); } } __kmp_str_buf_print(buffer, "='%s'\n", buf.str); __kmp_str_buf_free(&buf); } else { __kmp_str_buf_print(buffer, ": %s\n", KMP_I18N_STR(NotDefined)); } } // __kmp_stg_print_num_threads // ----------------------------------------------------------------------------- // OpenMP 3.0: KMP_TASKING, OMP_MAX_ACTIVE_LEVELS, static void __kmp_stg_parse_tasking(char const *name, char const *value, void *data) { __kmp_stg_parse_int(name, value, 0, (int)tskm_max, (int *)&__kmp_tasking_mode); } // __kmp_stg_parse_tasking static void __kmp_stg_print_tasking(kmp_str_buf_t *buffer, char const *name, void *data) { __kmp_stg_print_int(buffer, name, __kmp_tasking_mode); } // __kmp_stg_print_tasking static void __kmp_stg_parse_task_stealing(char const *name, char const *value, void *data) { __kmp_stg_parse_int(name, value, 0, 1, (int *)&__kmp_task_stealing_constraint); } // __kmp_stg_parse_task_stealing static void __kmp_stg_print_task_stealing(kmp_str_buf_t *buffer, char const *name, void *data) { __kmp_stg_print_int(buffer, name, __kmp_task_stealing_constraint); } // __kmp_stg_print_task_stealing static void __kmp_stg_parse_max_active_levels(char const *name, char const *value, void *data) { kmp_uint64 tmp_dflt = 0; char const *msg = NULL; if (!__kmp_dflt_max_active_levels_set) { // Don't overwrite __kmp_dflt_max_active_levels if we get an invalid setting __kmp_str_to_uint(value, &tmp_dflt, &msg); if (msg != NULL) { // invalid setting; print warning and ignore KMP_WARNING(ParseSizeIntWarn, name, value, msg); } else if (tmp_dflt > KMP_MAX_ACTIVE_LEVELS_LIMIT) { // invalid setting; print warning and ignore msg = KMP_I18N_STR(ValueTooLarge); KMP_WARNING(ParseSizeIntWarn, name, value, msg); } else { // valid setting __kmp_type_convert(tmp_dflt, &(__kmp_dflt_max_active_levels)); __kmp_dflt_max_active_levels_set = true; } } } // __kmp_stg_parse_max_active_levels static void __kmp_stg_print_max_active_levels(kmp_str_buf_t *buffer, char const *name, void *data) { __kmp_stg_print_int(buffer, name, __kmp_dflt_max_active_levels); } // __kmp_stg_print_max_active_levels // ----------------------------------------------------------------------------- // OpenMP 4.0: OMP_DEFAULT_DEVICE static void __kmp_stg_parse_default_device(char const *name, char const *value, void *data) { __kmp_stg_parse_int(name, value, 0, KMP_MAX_DEFAULT_DEVICE_LIMIT, &__kmp_default_device); } // __kmp_stg_parse_default_device static void __kmp_stg_print_default_device(kmp_str_buf_t *buffer, char const *name, void *data) { __kmp_stg_print_int(buffer, name, __kmp_default_device); } // __kmp_stg_print_default_device // ----------------------------------------------------------------------------- // OpenMP 5.0: OMP_TARGET_OFFLOAD static void __kmp_stg_parse_target_offload(char const *name, char const *value, void *data) { kmp_trimmed_str_t value_str(value); const char *scan = value_str.get(); __kmp_target_offload = tgt_default; if (*scan == '\0') return; if (!__kmp_strcasecmp_with_sentinel("mandatory", scan, 0)) { __kmp_target_offload = tgt_mandatory; } else if (!__kmp_strcasecmp_with_sentinel("disabled", scan, 0)) { __kmp_target_offload = tgt_disabled; } else if (!__kmp_strcasecmp_with_sentinel("default", scan, 0)) { __kmp_target_offload = tgt_default; } else { KMP_WARNING(SyntaxErrorUsing, name, "DEFAULT"); } } // __kmp_stg_parse_target_offload static void __kmp_stg_print_target_offload(kmp_str_buf_t *buffer, char const *name, void *data) { const char *value = NULL; if (__kmp_target_offload == tgt_default) value = "DEFAULT"; else if (__kmp_target_offload == tgt_mandatory) value = "MANDATORY"; else if (__kmp_target_offload == tgt_disabled) value = "DISABLED"; KMP_DEBUG_ASSERT(value); if (__kmp_env_format) { KMP_STR_BUF_PRINT_NAME; } else { __kmp_str_buf_print(buffer, " %s", name); } __kmp_str_buf_print(buffer, "=%s\n", value); } // __kmp_stg_print_target_offload // ----------------------------------------------------------------------------- // OpenMP 4.5: OMP_MAX_TASK_PRIORITY static void __kmp_stg_parse_max_task_priority(char const *name, char const *value, void *data) { __kmp_stg_parse_int(name, value, 0, KMP_MAX_TASK_PRIORITY_LIMIT, &__kmp_max_task_priority); } // __kmp_stg_parse_max_task_priority static void __kmp_stg_print_max_task_priority(kmp_str_buf_t *buffer, char const *name, void *data) { __kmp_stg_print_int(buffer, name, __kmp_max_task_priority); } // __kmp_stg_print_max_task_priority // KMP_TASKLOOP_MIN_TASKS // taskloop threshold to switch from recursive to linear tasks creation static void __kmp_stg_parse_taskloop_min_tasks(char const *name, char const *value, void *data) { int tmp = 0; __kmp_stg_parse_int(name, value, 0, INT_MAX, &tmp); __kmp_taskloop_min_tasks = tmp; } // __kmp_stg_parse_taskloop_min_tasks static void __kmp_stg_print_taskloop_min_tasks(kmp_str_buf_t *buffer, char const *name, void *data) { __kmp_stg_print_uint64(buffer, name, __kmp_taskloop_min_tasks); } // __kmp_stg_print_taskloop_min_tasks // ----------------------------------------------------------------------------- // KMP_DISP_NUM_BUFFERS static void __kmp_stg_parse_disp_buffers(char const *name, char const *value, void *data) { if (TCR_4(__kmp_init_serial)) { KMP_WARNING(EnvSerialWarn, name); return; } // read value before serial initialization only __kmp_stg_parse_int(name, value, KMP_MIN_DISP_NUM_BUFF, KMP_MAX_DISP_NUM_BUFF, &__kmp_dispatch_num_buffers); } // __kmp_stg_parse_disp_buffers static void __kmp_stg_print_disp_buffers(kmp_str_buf_t *buffer, char const *name, void *data) { __kmp_stg_print_int(buffer, name, __kmp_dispatch_num_buffers); } // __kmp_stg_print_disp_buffers #if KMP_NESTED_HOT_TEAMS // ----------------------------------------------------------------------------- // KMP_HOT_TEAMS_MAX_LEVEL, KMP_HOT_TEAMS_MODE static void __kmp_stg_parse_hot_teams_level(char const *name, char const *value, void *data) { if (TCR_4(__kmp_init_parallel)) { KMP_WARNING(EnvParallelWarn, name); return; } // read value before first parallel only __kmp_stg_parse_int(name, value, 0, KMP_MAX_ACTIVE_LEVELS_LIMIT, &__kmp_hot_teams_max_level); } // __kmp_stg_parse_hot_teams_level static void __kmp_stg_print_hot_teams_level(kmp_str_buf_t *buffer, char const *name, void *data) { __kmp_stg_print_int(buffer, name, __kmp_hot_teams_max_level); } // __kmp_stg_print_hot_teams_level static void __kmp_stg_parse_hot_teams_mode(char const *name, char const *value, void *data) { if (TCR_4(__kmp_init_parallel)) { KMP_WARNING(EnvParallelWarn, name); return; } // read value before first parallel only __kmp_stg_parse_int(name, value, 0, KMP_MAX_ACTIVE_LEVELS_LIMIT, &__kmp_hot_teams_mode); } // __kmp_stg_parse_hot_teams_mode static void __kmp_stg_print_hot_teams_mode(kmp_str_buf_t *buffer, char const *name, void *data) { __kmp_stg_print_int(buffer, name, __kmp_hot_teams_mode); } // __kmp_stg_print_hot_teams_mode #endif // KMP_NESTED_HOT_TEAMS // ----------------------------------------------------------------------------- // KMP_HANDLE_SIGNALS #if KMP_HANDLE_SIGNALS static void __kmp_stg_parse_handle_signals(char const *name, char const *value, void *data) { __kmp_stg_parse_bool(name, value, &__kmp_handle_signals); } // __kmp_stg_parse_handle_signals static void __kmp_stg_print_handle_signals(kmp_str_buf_t *buffer, char const *name, void *data) { __kmp_stg_print_bool(buffer, name, __kmp_handle_signals); } // __kmp_stg_print_handle_signals #endif // KMP_HANDLE_SIGNALS // ----------------------------------------------------------------------------- // KMP_X_DEBUG, KMP_DEBUG, KMP_DEBUG_BUF_*, KMP_DIAG #ifdef KMP_DEBUG #define KMP_STG_X_DEBUG(x) \ static void __kmp_stg_parse_##x##_debug(char const *name, char const *value, \ void *data) { \ __kmp_stg_parse_int(name, value, 0, INT_MAX, &kmp_##x##_debug); \ } /* __kmp_stg_parse_x_debug */ \ static void __kmp_stg_print_##x##_debug(kmp_str_buf_t *buffer, \ char const *name, void *data) { \ __kmp_stg_print_int(buffer, name, kmp_##x##_debug); \ } /* __kmp_stg_print_x_debug */ KMP_STG_X_DEBUG(a) KMP_STG_X_DEBUG(b) KMP_STG_X_DEBUG(c) KMP_STG_X_DEBUG(d) KMP_STG_X_DEBUG(e) KMP_STG_X_DEBUG(f) #undef KMP_STG_X_DEBUG static void __kmp_stg_parse_debug(char const *name, char const *value, void *data) { int debug = 0; __kmp_stg_parse_int(name, value, 0, INT_MAX, &debug); if (kmp_a_debug < debug) { kmp_a_debug = debug; } if (kmp_b_debug < debug) { kmp_b_debug = debug; } if (kmp_c_debug < debug) { kmp_c_debug = debug; } if (kmp_d_debug < debug) { kmp_d_debug = debug; } if (kmp_e_debug < debug) { kmp_e_debug = debug; } if (kmp_f_debug < debug) { kmp_f_debug = debug; } } // __kmp_stg_parse_debug static void __kmp_stg_parse_debug_buf(char const *name, char const *value, void *data) { __kmp_stg_parse_bool(name, value, &__kmp_debug_buf); // !!! TODO: Move buffer initialization of this file! It may works // incorrectly if KMP_DEBUG_BUF is parsed before KMP_DEBUG_BUF_LINES or // KMP_DEBUG_BUF_CHARS. if (__kmp_debug_buf) { int i; int elements = __kmp_debug_buf_lines * __kmp_debug_buf_chars; /* allocate and initialize all entries in debug buffer to empty */ __kmp_debug_buffer = (char *)__kmp_page_allocate(elements * sizeof(char)); for (i = 0; i < elements; i += __kmp_debug_buf_chars) __kmp_debug_buffer[i] = '\0'; __kmp_debug_count = 0; } K_DIAG(1, ("__kmp_debug_buf = %d\n", __kmp_debug_buf)); } // __kmp_stg_parse_debug_buf static void __kmp_stg_print_debug_buf(kmp_str_buf_t *buffer, char const *name, void *data) { __kmp_stg_print_bool(buffer, name, __kmp_debug_buf); } // __kmp_stg_print_debug_buf static void __kmp_stg_parse_debug_buf_atomic(char const *name, char const *value, void *data) { __kmp_stg_parse_bool(name, value, &__kmp_debug_buf_atomic); } // __kmp_stg_parse_debug_buf_atomic static void __kmp_stg_print_debug_buf_atomic(kmp_str_buf_t *buffer, char const *name, void *data) { __kmp_stg_print_bool(buffer, name, __kmp_debug_buf_atomic); } // __kmp_stg_print_debug_buf_atomic static void __kmp_stg_parse_debug_buf_chars(char const *name, char const *value, void *data) { __kmp_stg_parse_int(name, value, KMP_DEBUG_BUF_CHARS_MIN, INT_MAX, &__kmp_debug_buf_chars); } // __kmp_stg_debug_parse_buf_chars static void __kmp_stg_print_debug_buf_chars(kmp_str_buf_t *buffer, char const *name, void *data) { __kmp_stg_print_int(buffer, name, __kmp_debug_buf_chars); } // __kmp_stg_print_debug_buf_chars static void __kmp_stg_parse_debug_buf_lines(char const *name, char const *value, void *data) { __kmp_stg_parse_int(name, value, KMP_DEBUG_BUF_LINES_MIN, INT_MAX, &__kmp_debug_buf_lines); } // __kmp_stg_parse_debug_buf_lines static void __kmp_stg_print_debug_buf_lines(kmp_str_buf_t *buffer, char const *name, void *data) { __kmp_stg_print_int(buffer, name, __kmp_debug_buf_lines); } // __kmp_stg_print_debug_buf_lines static void __kmp_stg_parse_diag(char const *name, char const *value, void *data) { __kmp_stg_parse_int(name, value, 0, INT_MAX, &kmp_diag); } // __kmp_stg_parse_diag static void __kmp_stg_print_diag(kmp_str_buf_t *buffer, char const *name, void *data) { __kmp_stg_print_int(buffer, name, kmp_diag); } // __kmp_stg_print_diag #endif // KMP_DEBUG // ----------------------------------------------------------------------------- // KMP_ALIGN_ALLOC static void __kmp_stg_parse_align_alloc(char const *name, char const *value, void *data) { __kmp_stg_parse_size(name, value, CACHE_LINE, INT_MAX, NULL, &__kmp_align_alloc, 1); } // __kmp_stg_parse_align_alloc static void __kmp_stg_print_align_alloc(kmp_str_buf_t *buffer, char const *name, void *data) { __kmp_stg_print_size(buffer, name, __kmp_align_alloc); } // __kmp_stg_print_align_alloc // ----------------------------------------------------------------------------- // KMP_PLAIN_BARRIER, KMP_FORKJOIN_BARRIER, KMP_REDUCTION_BARRIER // TODO: Remove __kmp_barrier_branch_bit_env_name varibale, remove loops from // parse and print functions, pass required info through data argument. static void __kmp_stg_parse_barrier_branch_bit(char const *name, char const *value, void *data) { const char *var; /* ---------- Barrier branch bit control ------------ */ for (int i = bs_plain_barrier; i < bs_last_barrier; i++) { var = __kmp_barrier_branch_bit_env_name[i]; if ((strcmp(var, name) == 0) && (value != 0)) { char *comma; comma = CCAST(char *, strchr(value, ',')); __kmp_barrier_gather_branch_bits[i] = (kmp_uint32)__kmp_str_to_int(value, ','); /* is there a specified release parameter? */ if (comma == NULL) { __kmp_barrier_release_branch_bits[i] = __kmp_barrier_release_bb_dflt; } else { __kmp_barrier_release_branch_bits[i] = (kmp_uint32)__kmp_str_to_int(comma + 1, 0); if (__kmp_barrier_release_branch_bits[i] > KMP_MAX_BRANCH_BITS) { __kmp_msg(kmp_ms_warning, KMP_MSG(BarrReleaseValueInvalid, name, comma + 1), __kmp_msg_null); __kmp_barrier_release_branch_bits[i] = __kmp_barrier_release_bb_dflt; } } if (__kmp_barrier_gather_branch_bits[i] > KMP_MAX_BRANCH_BITS) { KMP_WARNING(BarrGatherValueInvalid, name, value); KMP_INFORM(Using_uint_Value, name, __kmp_barrier_gather_bb_dflt); __kmp_barrier_gather_branch_bits[i] = __kmp_barrier_gather_bb_dflt; } } K_DIAG(1, ("%s == %d,%d\n", __kmp_barrier_branch_bit_env_name[i], __kmp_barrier_gather_branch_bits[i], __kmp_barrier_release_branch_bits[i])) } } // __kmp_stg_parse_barrier_branch_bit static void __kmp_stg_print_barrier_branch_bit(kmp_str_buf_t *buffer, char const *name, void *data) { const char *var; for (int i = bs_plain_barrier; i < bs_last_barrier; i++) { var = __kmp_barrier_branch_bit_env_name[i]; if (strcmp(var, name) == 0) { if (__kmp_env_format) { KMP_STR_BUF_PRINT_NAME_EX(__kmp_barrier_branch_bit_env_name[i]); } else { __kmp_str_buf_print(buffer, " %s='", __kmp_barrier_branch_bit_env_name[i]); } __kmp_str_buf_print(buffer, "%d,%d'\n", __kmp_barrier_gather_branch_bits[i], __kmp_barrier_release_branch_bits[i]); } } } // __kmp_stg_print_barrier_branch_bit // ---------------------------------------------------------------------------- // KMP_PLAIN_BARRIER_PATTERN, KMP_FORKJOIN_BARRIER_PATTERN, // KMP_REDUCTION_BARRIER_PATTERN // TODO: Remove __kmp_barrier_pattern_name variable, remove loops from parse and // print functions, pass required data to functions through data argument. static void __kmp_stg_parse_barrier_pattern(char const *name, char const *value, void *data) { const char *var; /* ---------- Barrier method control ------------ */ static int dist_req = 0, non_dist_req = 0; static bool warn = 1; for (int i = bs_plain_barrier; i < bs_last_barrier; i++) { var = __kmp_barrier_pattern_env_name[i]; if ((strcmp(var, name) == 0) && (value != 0)) { int j; char *comma = CCAST(char *, strchr(value, ',')); /* handle first parameter: gather pattern */ for (j = bp_linear_bar; j < bp_last_bar; j++) { if (__kmp_match_with_sentinel(__kmp_barrier_pattern_name[j], value, 1, ',')) { if (j == bp_dist_bar) { dist_req++; } else { non_dist_req++; } __kmp_barrier_gather_pattern[i] = (kmp_bar_pat_e)j; break; } } if (j == bp_last_bar) { KMP_WARNING(BarrGatherValueInvalid, name, value); KMP_INFORM(Using_str_Value, name, __kmp_barrier_pattern_name[bp_linear_bar]); } /* handle second parameter: release pattern */ if (comma != NULL) { for (j = bp_linear_bar; j < bp_last_bar; j++) { if (__kmp_str_match(__kmp_barrier_pattern_name[j], 1, comma + 1)) { if (j == bp_dist_bar) { dist_req++; } else { non_dist_req++; } __kmp_barrier_release_pattern[i] = (kmp_bar_pat_e)j; break; } } if (j == bp_last_bar) { __kmp_msg(kmp_ms_warning, KMP_MSG(BarrReleaseValueInvalid, name, comma + 1), __kmp_msg_null); KMP_INFORM(Using_str_Value, name, __kmp_barrier_pattern_name[bp_linear_bar]); } } } } if (dist_req != 0) { // set all barriers to dist if ((non_dist_req != 0) && warn) { KMP_INFORM(BarrierPatternOverride, name, __kmp_barrier_pattern_name[bp_dist_bar]); warn = 0; } for (int i = bs_plain_barrier; i < bs_last_barrier; i++) { if (__kmp_barrier_release_pattern[i] != bp_dist_bar) __kmp_barrier_release_pattern[i] = bp_dist_bar; if (__kmp_barrier_gather_pattern[i] != bp_dist_bar) __kmp_barrier_gather_pattern[i] = bp_dist_bar; } } } // __kmp_stg_parse_barrier_pattern static void __kmp_stg_print_barrier_pattern(kmp_str_buf_t *buffer, char const *name, void *data) { const char *var; for (int i = bs_plain_barrier; i < bs_last_barrier; i++) { var = __kmp_barrier_pattern_env_name[i]; if (strcmp(var, name) == 0) { int j = __kmp_barrier_gather_pattern[i]; int k = __kmp_barrier_release_pattern[i]; if (__kmp_env_format) { KMP_STR_BUF_PRINT_NAME_EX(__kmp_barrier_pattern_env_name[i]); } else { __kmp_str_buf_print(buffer, " %s='", __kmp_barrier_pattern_env_name[i]); } KMP_DEBUG_ASSERT(j < bp_last_bar && k < bp_last_bar); __kmp_str_buf_print(buffer, "%s,%s'\n", __kmp_barrier_pattern_name[j], __kmp_barrier_pattern_name[k]); } } } // __kmp_stg_print_barrier_pattern // ----------------------------------------------------------------------------- // KMP_ABORT_DELAY static void __kmp_stg_parse_abort_delay(char const *name, char const *value, void *data) { // Units of KMP_DELAY_ABORT are seconds, units of __kmp_abort_delay is // milliseconds. int delay = __kmp_abort_delay / 1000; __kmp_stg_parse_int(name, value, 0, INT_MAX / 1000, &delay); __kmp_abort_delay = delay * 1000; } // __kmp_stg_parse_abort_delay static void __kmp_stg_print_abort_delay(kmp_str_buf_t *buffer, char const *name, void *data) { __kmp_stg_print_int(buffer, name, __kmp_abort_delay); } // __kmp_stg_print_abort_delay // ----------------------------------------------------------------------------- // KMP_CPUINFO_FILE static void __kmp_stg_parse_cpuinfo_file(char const *name, char const *value, void *data) { #if KMP_AFFINITY_SUPPORTED __kmp_stg_parse_str(name, value, &__kmp_cpuinfo_file); K_DIAG(1, ("__kmp_cpuinfo_file == %s\n", __kmp_cpuinfo_file)); #endif } //__kmp_stg_parse_cpuinfo_file static void __kmp_stg_print_cpuinfo_file(kmp_str_buf_t *buffer, char const *name, void *data) { #if KMP_AFFINITY_SUPPORTED if (__kmp_env_format) { KMP_STR_BUF_PRINT_NAME; } else { __kmp_str_buf_print(buffer, " %s", name); } if (__kmp_cpuinfo_file) { __kmp_str_buf_print(buffer, "='%s'\n", __kmp_cpuinfo_file); } else { __kmp_str_buf_print(buffer, ": %s\n", KMP_I18N_STR(NotDefined)); } #endif } //__kmp_stg_print_cpuinfo_file // ----------------------------------------------------------------------------- // KMP_FORCE_REDUCTION, KMP_DETERMINISTIC_REDUCTION static void __kmp_stg_parse_force_reduction(char const *name, char const *value, void *data) { kmp_stg_fr_data_t *reduction = (kmp_stg_fr_data_t *)data; int rc; rc = __kmp_stg_check_rivals(name, value, reduction->rivals); if (rc) { return; } if (reduction->force) { if (value != 0) { if (__kmp_str_match("critical", 0, value)) __kmp_force_reduction_method = critical_reduce_block; else if (__kmp_str_match("atomic", 0, value)) __kmp_force_reduction_method = atomic_reduce_block; else if (__kmp_str_match("tree", 0, value)) __kmp_force_reduction_method = tree_reduce_block; else { KMP_FATAL(UnknownForceReduction, name, value); } } } else { __kmp_stg_parse_bool(name, value, &__kmp_determ_red); if (__kmp_determ_red) { __kmp_force_reduction_method = tree_reduce_block; } else { __kmp_force_reduction_method = reduction_method_not_defined; } } K_DIAG(1, ("__kmp_force_reduction_method == %d\n", __kmp_force_reduction_method)); } // __kmp_stg_parse_force_reduction static void __kmp_stg_print_force_reduction(kmp_str_buf_t *buffer, char const *name, void *data) { kmp_stg_fr_data_t *reduction = (kmp_stg_fr_data_t *)data; if (reduction->force) { if (__kmp_force_reduction_method == critical_reduce_block) { __kmp_stg_print_str(buffer, name, "critical"); } else if (__kmp_force_reduction_method == atomic_reduce_block) { __kmp_stg_print_str(buffer, name, "atomic"); } else if (__kmp_force_reduction_method == tree_reduce_block) { __kmp_stg_print_str(buffer, name, "tree"); } else { if (__kmp_env_format) { KMP_STR_BUF_PRINT_NAME; } else { __kmp_str_buf_print(buffer, " %s", name); } __kmp_str_buf_print(buffer, ": %s\n", KMP_I18N_STR(NotDefined)); } } else { __kmp_stg_print_bool(buffer, name, __kmp_determ_red); } } // __kmp_stg_print_force_reduction // ----------------------------------------------------------------------------- // KMP_STORAGE_MAP static void __kmp_stg_parse_storage_map(char const *name, char const *value, void *data) { if (__kmp_str_match("verbose", 1, value)) { __kmp_storage_map = TRUE; __kmp_storage_map_verbose = TRUE; __kmp_storage_map_verbose_specified = TRUE; } else { __kmp_storage_map_verbose = FALSE; __kmp_stg_parse_bool(name, value, &__kmp_storage_map); // !!! } } // __kmp_stg_parse_storage_map static void __kmp_stg_print_storage_map(kmp_str_buf_t *buffer, char const *name, void *data) { if (__kmp_storage_map_verbose || __kmp_storage_map_verbose_specified) { __kmp_stg_print_str(buffer, name, "verbose"); } else { __kmp_stg_print_bool(buffer, name, __kmp_storage_map); } } // __kmp_stg_print_storage_map // ----------------------------------------------------------------------------- // KMP_ALL_THREADPRIVATE static void __kmp_stg_parse_all_threadprivate(char const *name, char const *value, void *data) { __kmp_stg_parse_int(name, value, __kmp_allThreadsSpecified ? __kmp_max_nth : 1, __kmp_max_nth, &__kmp_tp_capacity); } // __kmp_stg_parse_all_threadprivate static void __kmp_stg_print_all_threadprivate(kmp_str_buf_t *buffer, char const *name, void *data) { __kmp_stg_print_int(buffer, name, __kmp_tp_capacity); } // ----------------------------------------------------------------------------- // KMP_FOREIGN_THREADS_THREADPRIVATE static void __kmp_stg_parse_foreign_threads_threadprivate(char const *name, char const *value, void *data) { __kmp_stg_parse_bool(name, value, &__kmp_foreign_tp); } // __kmp_stg_parse_foreign_threads_threadprivate static void __kmp_stg_print_foreign_threads_threadprivate(kmp_str_buf_t *buffer, char const *name, void *data) { __kmp_stg_print_bool(buffer, name, __kmp_foreign_tp); } // __kmp_stg_print_foreign_threads_threadprivate // ----------------------------------------------------------------------------- // KMP_AFFINITY, GOMP_CPU_AFFINITY, KMP_TOPOLOGY_METHOD static inline const char * __kmp_hw_get_core_type_keyword(kmp_hw_core_type_t type) { switch (type) { case KMP_HW_CORE_TYPE_UNKNOWN: case KMP_HW_MAX_NUM_CORE_TYPES: return "unknown"; #if KMP_ARCH_X86 || KMP_ARCH_X86_64 case KMP_HW_CORE_TYPE_ATOM: return "intel_atom"; case KMP_HW_CORE_TYPE_CORE: return "intel_core"; #endif } KMP_ASSERT2(false, "Unhandled kmp_hw_core_type_t enumeration"); KMP_BUILTIN_UNREACHABLE; } #if KMP_AFFINITY_SUPPORTED // Parse the proc id list. Return TRUE if successful, FALSE otherwise. static int __kmp_parse_affinity_proc_id_list(const char *var, const char *env, const char **nextEnv, char **proclist) { const char *scan = env; const char *next = scan; int empty = TRUE; *proclist = NULL; for (;;) { int start, end, stride; SKIP_WS(scan); next = scan; if (*next == '\0') { break; } if (*next == '{') { int num; next++; // skip '{' SKIP_WS(next); scan = next; // Read the first integer in the set. if ((*next < '0') || (*next > '9')) { KMP_WARNING(AffSyntaxError, var); return FALSE; } SKIP_DIGITS(next); num = __kmp_str_to_int(scan, *next); KMP_ASSERT(num >= 0); for (;;) { // Check for end of set. SKIP_WS(next); if (*next == '}') { next++; // skip '}' break; } // Skip optional comma. if (*next == ',') { next++; } SKIP_WS(next); // Read the next integer in the set. scan = next; if ((*next < '0') || (*next > '9')) { KMP_WARNING(AffSyntaxError, var); return FALSE; } SKIP_DIGITS(next); num = __kmp_str_to_int(scan, *next); KMP_ASSERT(num >= 0); } empty = FALSE; SKIP_WS(next); if (*next == ',') { next++; } scan = next; continue; } // Next character is not an integer => end of list if ((*next < '0') || (*next > '9')) { if (empty) { KMP_WARNING(AffSyntaxError, var); return FALSE; } break; } // Read the first integer. SKIP_DIGITS(next); start = __kmp_str_to_int(scan, *next); KMP_ASSERT(start >= 0); SKIP_WS(next); // If this isn't a range, then go on. if (*next != '-') { empty = FALSE; // Skip optional comma. if (*next == ',') { next++; } scan = next; continue; } // This is a range. Skip over the '-' and read in the 2nd int. next++; // skip '-' SKIP_WS(next); scan = next; if ((*next < '0') || (*next > '9')) { KMP_WARNING(AffSyntaxError, var); return FALSE; } SKIP_DIGITS(next); end = __kmp_str_to_int(scan, *next); KMP_ASSERT(end >= 0); // Check for a stride parameter stride = 1; SKIP_WS(next); if (*next == ':') { // A stride is specified. Skip over the ':" and read the 3rd int. int sign = +1; next++; // skip ':' SKIP_WS(next); scan = next; if (*next == '-') { sign = -1; next++; SKIP_WS(next); scan = next; } if ((*next < '0') || (*next > '9')) { KMP_WARNING(AffSyntaxError, var); return FALSE; } SKIP_DIGITS(next); stride = __kmp_str_to_int(scan, *next); KMP_ASSERT(stride >= 0); stride *= sign; } // Do some range checks. if (stride == 0) { KMP_WARNING(AffZeroStride, var); return FALSE; } if (stride > 0) { if (start > end) { KMP_WARNING(AffStartGreaterEnd, var, start, end); return FALSE; } } else { if (start < end) { KMP_WARNING(AffStrideLessZero, var, start, end); return FALSE; } } if ((end - start) / stride > 65536) { KMP_WARNING(AffRangeTooBig, var, end, start, stride); return FALSE; } empty = FALSE; // Skip optional comma. SKIP_WS(next); if (*next == ',') { next++; } scan = next; } *nextEnv = next; { ptrdiff_t len = next - env; char *retlist = (char *)__kmp_allocate((len + 1) * sizeof(char)); KMP_MEMCPY_S(retlist, (len + 1) * sizeof(char), env, len * sizeof(char)); retlist[len] = '\0'; *proclist = retlist; } return TRUE; } // If KMP_AFFINITY is specified without a type, then // __kmp_affinity_notype should point to its setting. static kmp_setting_t *__kmp_affinity_notype = NULL; static void __kmp_parse_affinity_env(char const *name, char const *value, kmp_affinity_t *out_affinity) { char *buffer = NULL; // Copy of env var value. char *buf = NULL; // Buffer for strtok_r() function. char *next = NULL; // end of token / start of next. const char *start; // start of current token (for err msgs) int count = 0; // Counter of parsed integer numbers. int number[2]; // Parsed numbers. // Guards. int type = 0; int proclist = 0; int verbose = 0; int warnings = 0; int respect = 0; int gran = 0; int dups = 0; int reset = 0; bool set = false; KMP_ASSERT(value != NULL); if (TCR_4(__kmp_init_middle)) { KMP_WARNING(EnvMiddleWarn, name); __kmp_env_toPrint(name, 0); return; } __kmp_env_toPrint(name, 1); buffer = __kmp_str_format("%s", value); // Copy env var to keep original intact. buf = buffer; SKIP_WS(buf); // Helper macros. // If we see a parse error, emit a warning and scan to the next ",". // // FIXME - there's got to be a better way to print an error // message, hopefully without overwriting peices of buf. #define EMIT_WARN(skip, errlist) \ { \ char ch; \ if (skip) { \ SKIP_TO(next, ','); \ } \ ch = *next; \ *next = '\0'; \ KMP_WARNING errlist; \ *next = ch; \ if (skip) { \ if (ch == ',') \ next++; \ } \ buf = next; \ } #define _set_param(_guard, _var, _val) \ { \ if (_guard == 0) { \ _var = _val; \ } else { \ EMIT_WARN(FALSE, (AffParamDefined, name, start)); \ } \ ++_guard; \ } #define set_type(val) _set_param(type, out_affinity->type, val) #define set_verbose(val) _set_param(verbose, out_affinity->flags.verbose, val) #define set_warnings(val) \ _set_param(warnings, out_affinity->flags.warnings, val) #define set_respect(val) _set_param(respect, out_affinity->flags.respect, val) #define set_dups(val) _set_param(dups, out_affinity->flags.dups, val) #define set_proclist(val) _set_param(proclist, out_affinity->proclist, val) #define set_reset(val) _set_param(reset, out_affinity->flags.reset, val) #define set_gran(val, levels) \ { \ if (gran == 0) { \ out_affinity->gran = val; \ out_affinity->gran_levels = levels; \ } else { \ EMIT_WARN(FALSE, (AffParamDefined, name, start)); \ } \ ++gran; \ } KMP_DEBUG_ASSERT((__kmp_nested_proc_bind.bind_types != NULL) && (__kmp_nested_proc_bind.used > 0)); while (*buf != '\0') { start = next = buf; if (__kmp_match_str("none", buf, CCAST(const char **, &next))) { set_type(affinity_none); __kmp_nested_proc_bind.bind_types[0] = proc_bind_false; buf = next; } else if (__kmp_match_str("scatter", buf, CCAST(const char **, &next))) { set_type(affinity_scatter); __kmp_nested_proc_bind.bind_types[0] = proc_bind_intel; buf = next; } else if (__kmp_match_str("compact", buf, CCAST(const char **, &next))) { set_type(affinity_compact); __kmp_nested_proc_bind.bind_types[0] = proc_bind_intel; buf = next; } else if (__kmp_match_str("logical", buf, CCAST(const char **, &next))) { set_type(affinity_logical); __kmp_nested_proc_bind.bind_types[0] = proc_bind_intel; buf = next; } else if (__kmp_match_str("physical", buf, CCAST(const char **, &next))) { set_type(affinity_physical); __kmp_nested_proc_bind.bind_types[0] = proc_bind_intel; buf = next; } else if (__kmp_match_str("explicit", buf, CCAST(const char **, &next))) { set_type(affinity_explicit); __kmp_nested_proc_bind.bind_types[0] = proc_bind_intel; buf = next; } else if (__kmp_match_str("balanced", buf, CCAST(const char **, &next))) { set_type(affinity_balanced); __kmp_nested_proc_bind.bind_types[0] = proc_bind_intel; buf = next; } else if (__kmp_match_str("disabled", buf, CCAST(const char **, &next))) { set_type(affinity_disabled); __kmp_nested_proc_bind.bind_types[0] = proc_bind_false; buf = next; } else if (__kmp_match_str("verbose", buf, CCAST(const char **, &next))) { set_verbose(TRUE); buf = next; } else if (__kmp_match_str("noverbose", buf, CCAST(const char **, &next))) { set_verbose(FALSE); buf = next; } else if (__kmp_match_str("warnings", buf, CCAST(const char **, &next))) { set_warnings(TRUE); buf = next; } else if (__kmp_match_str("nowarnings", buf, CCAST(const char **, &next))) { set_warnings(FALSE); buf = next; } else if (__kmp_match_str("respect", buf, CCAST(const char **, &next))) { set_respect(TRUE); buf = next; } else if (__kmp_match_str("norespect", buf, CCAST(const char **, &next))) { set_respect(FALSE); buf = next; } else if (__kmp_match_str("reset", buf, CCAST(const char **, &next))) { set_reset(TRUE); buf = next; } else if (__kmp_match_str("noreset", buf, CCAST(const char **, &next))) { set_reset(FALSE); buf = next; } else if (__kmp_match_str("duplicates", buf, CCAST(const char **, &next)) || __kmp_match_str("dups", buf, CCAST(const char **, &next))) { set_dups(TRUE); buf = next; } else if (__kmp_match_str("noduplicates", buf, CCAST(const char **, &next)) || __kmp_match_str("nodups", buf, CCAST(const char **, &next))) { set_dups(FALSE); buf = next; } else if (__kmp_match_str("granularity", buf, CCAST(const char **, &next)) || __kmp_match_str("gran", buf, CCAST(const char **, &next))) { SKIP_WS(next); if (*next != '=') { EMIT_WARN(TRUE, (AffInvalidParam, name, start)); continue; } next++; // skip '=' SKIP_WS(next); buf = next; // Have to try core_type and core_efficiency matches first since "core" // will register as core granularity with "extra chars" if (__kmp_match_str("core_type", buf, CCAST(const char **, &next))) { set_gran(KMP_HW_CORE, -1); out_affinity->flags.core_types_gran = 1; buf = next; set = true; } else if (__kmp_match_str("core_efficiency", buf, CCAST(const char **, &next)) || __kmp_match_str("core_eff", buf, CCAST(const char **, &next))) { set_gran(KMP_HW_CORE, -1); out_affinity->flags.core_effs_gran = 1; buf = next; set = true; } if (!set) { // Try any hardware topology type for granularity KMP_FOREACH_HW_TYPE(type) { const char *name = __kmp_hw_get_keyword(type); if (__kmp_match_str(name, buf, CCAST(const char **, &next))) { set_gran(type, -1); buf = next; set = true; break; } } } if (!set) { // Support older names for different granularity layers if (__kmp_match_str("fine", buf, CCAST(const char **, &next))) { set_gran(KMP_HW_THREAD, -1); buf = next; set = true; } else if (__kmp_match_str("package", buf, CCAST(const char **, &next))) { set_gran(KMP_HW_SOCKET, -1); buf = next; set = true; } else if (__kmp_match_str("node", buf, CCAST(const char **, &next))) { set_gran(KMP_HW_NUMA, -1); buf = next; set = true; #if KMP_GROUP_AFFINITY } else if (__kmp_match_str("group", buf, CCAST(const char **, &next))) { set_gran(KMP_HW_PROC_GROUP, -1); buf = next; set = true; #endif /* KMP_GROUP AFFINITY */ } else if ((*buf >= '0') && (*buf <= '9')) { int n; next = buf; SKIP_DIGITS(next); n = __kmp_str_to_int(buf, *next); KMP_ASSERT(n >= 0); buf = next; set_gran(KMP_HW_UNKNOWN, n); set = true; } else { EMIT_WARN(TRUE, (AffInvalidParam, name, start)); continue; } } } else if (__kmp_match_str("proclist", buf, CCAST(const char **, &next))) { char *temp_proclist; SKIP_WS(next); if (*next != '=') { EMIT_WARN(TRUE, (AffInvalidParam, name, start)); continue; } next++; // skip '=' SKIP_WS(next); if (*next != '[') { EMIT_WARN(TRUE, (AffInvalidParam, name, start)); continue; } next++; // skip '[' buf = next; if (!__kmp_parse_affinity_proc_id_list( name, buf, CCAST(const char **, &next), &temp_proclist)) { // warning already emitted. SKIP_TO(next, ']'); if (*next == ']') next++; SKIP_TO(next, ','); if (*next == ',') next++; buf = next; continue; } if (*next != ']') { EMIT_WARN(TRUE, (AffInvalidParam, name, start)); continue; } next++; // skip ']' set_proclist(temp_proclist); } else if ((*buf >= '0') && (*buf <= '9')) { // Parse integer numbers -- permute and offset. int n; next = buf; SKIP_DIGITS(next); n = __kmp_str_to_int(buf, *next); KMP_ASSERT(n >= 0); buf = next; if (count < 2) { number[count] = n; } else { KMP_WARNING(AffManyParams, name, start); } ++count; } else { EMIT_WARN(TRUE, (AffInvalidParam, name, start)); continue; } SKIP_WS(next); if (*next == ',') { next++; SKIP_WS(next); } else if (*next != '\0') { const char *temp = next; EMIT_WARN(TRUE, (ParseExtraCharsWarn, name, temp)); continue; } buf = next; } // while #undef EMIT_WARN #undef _set_param #undef set_type #undef set_verbose #undef set_warnings #undef set_respect #undef set_granularity #undef set_reset __kmp_str_free(&buffer); if (proclist) { if (!type) { KMP_WARNING(AffProcListNoType, name); out_affinity->type = affinity_explicit; __kmp_nested_proc_bind.bind_types[0] = proc_bind_intel; } else if (out_affinity->type != affinity_explicit) { KMP_WARNING(AffProcListNotExplicit, name); KMP_ASSERT(out_affinity->proclist != NULL); KMP_INTERNAL_FREE(out_affinity->proclist); out_affinity->proclist = NULL; } } switch (out_affinity->type) { case affinity_logical: case affinity_physical: { if (count > 0) { out_affinity->offset = number[0]; } if (count > 1) { KMP_WARNING(AffManyParamsForLogic, name, number[1]); } } break; case affinity_balanced: { if (count > 0) { out_affinity->compact = number[0]; } if (count > 1) { out_affinity->offset = number[1]; } if (__kmp_affinity.gran == KMP_HW_UNKNOWN) { int verbose = out_affinity->flags.verbose; int warnings = out_affinity->flags.warnings; #if KMP_MIC_SUPPORTED if (__kmp_mic_type != non_mic) { if (verbose || warnings) { KMP_WARNING(AffGranUsing, out_affinity->env_var, "fine"); } out_affinity->gran = KMP_HW_THREAD; } else #endif { if (verbose || warnings) { KMP_WARNING(AffGranUsing, out_affinity->env_var, "core"); } out_affinity->gran = KMP_HW_CORE; } } } break; case affinity_scatter: case affinity_compact: { if (count > 0) { out_affinity->compact = number[0]; } if (count > 1) { out_affinity->offset = number[1]; } } break; case affinity_explicit: { if (out_affinity->proclist == NULL) { KMP_WARNING(AffNoProcList, name); out_affinity->type = affinity_none; } if (count > 0) { KMP_WARNING(AffNoParam, name, "explicit"); } } break; case affinity_none: { if (count > 0) { KMP_WARNING(AffNoParam, name, "none"); } } break; case affinity_disabled: { if (count > 0) { KMP_WARNING(AffNoParam, name, "disabled"); } } break; case affinity_default: { if (count > 0) { KMP_WARNING(AffNoParam, name, "default"); } } break; default: { KMP_ASSERT(0); } } } // __kmp_parse_affinity_env static void __kmp_stg_parse_affinity(char const *name, char const *value, void *data) { kmp_setting_t **rivals = (kmp_setting_t **)data; int rc; rc = __kmp_stg_check_rivals(name, value, rivals); if (rc) { return; } __kmp_parse_affinity_env(name, value, &__kmp_affinity); } // __kmp_stg_parse_affinity static void __kmp_stg_parse_hh_affinity(char const *name, char const *value, void *data) { __kmp_parse_affinity_env(name, value, &__kmp_hh_affinity); // Warn about unused parts of hidden helper affinity settings if specified. if (__kmp_hh_affinity.flags.reset) { KMP_WARNING(AffInvalidParam, name, "reset"); } if (__kmp_hh_affinity.flags.respect != affinity_respect_mask_default) { KMP_WARNING(AffInvalidParam, name, "respect"); } } static void __kmp_print_affinity_env(kmp_str_buf_t *buffer, char const *name, const kmp_affinity_t &affinity) { bool is_hh_affinity = (&affinity == &__kmp_hh_affinity); if (__kmp_env_format) { KMP_STR_BUF_PRINT_NAME_EX(name); } else { __kmp_str_buf_print(buffer, " %s='", name); } if (affinity.flags.verbose) { __kmp_str_buf_print(buffer, "%s,", "verbose"); } else { __kmp_str_buf_print(buffer, "%s,", "noverbose"); } if (affinity.flags.warnings) { __kmp_str_buf_print(buffer, "%s,", "warnings"); } else { __kmp_str_buf_print(buffer, "%s,", "nowarnings"); } if (KMP_AFFINITY_CAPABLE()) { // Hidden helper affinity does not affect global reset // or respect flags. That is still solely controlled by KMP_AFFINITY. if (!is_hh_affinity) { if (affinity.flags.respect) { __kmp_str_buf_print(buffer, "%s,", "respect"); } else { __kmp_str_buf_print(buffer, "%s,", "norespect"); } if (affinity.flags.reset) { __kmp_str_buf_print(buffer, "%s,", "reset"); } else { __kmp_str_buf_print(buffer, "%s,", "noreset"); } } __kmp_str_buf_print(buffer, "granularity="); if (affinity.flags.core_types_gran) __kmp_str_buf_print(buffer, "core_type,"); else if (affinity.flags.core_effs_gran) { __kmp_str_buf_print(buffer, "core_eff,"); } else { __kmp_str_buf_print( buffer, "%s,", __kmp_hw_get_keyword(affinity.gran, /*plural=*/false)); } } if (!KMP_AFFINITY_CAPABLE()) { __kmp_str_buf_print(buffer, "%s", "disabled"); } else { int compact = affinity.compact; int offset = affinity.offset; switch (affinity.type) { case affinity_none: __kmp_str_buf_print(buffer, "%s", "none"); break; case affinity_physical: __kmp_str_buf_print(buffer, "%s,%d", "physical", offset); break; case affinity_logical: __kmp_str_buf_print(buffer, "%s,%d", "logical", offset); break; case affinity_compact: __kmp_str_buf_print(buffer, "%s,%d,%d", "compact", compact, offset); break; case affinity_scatter: __kmp_str_buf_print(buffer, "%s,%d,%d", "scatter", compact, offset); break; case affinity_explicit: __kmp_str_buf_print(buffer, "%s=[%s],%s", "proclist", affinity.proclist, "explicit"); break; case affinity_balanced: __kmp_str_buf_print(buffer, "%s,%d,%d", "balanced", compact, offset); break; case affinity_disabled: __kmp_str_buf_print(buffer, "%s", "disabled"); break; case affinity_default: __kmp_str_buf_print(buffer, "%s", "default"); break; default: __kmp_str_buf_print(buffer, "%s", ""); break; } } __kmp_str_buf_print(buffer, "'\n"); } //__kmp_stg_print_affinity static void __kmp_stg_print_affinity(kmp_str_buf_t *buffer, char const *name, void *data) { __kmp_print_affinity_env(buffer, name, __kmp_affinity); } static void __kmp_stg_print_hh_affinity(kmp_str_buf_t *buffer, char const *name, void *data) { __kmp_print_affinity_env(buffer, name, __kmp_hh_affinity); } #ifdef KMP_GOMP_COMPAT static void __kmp_stg_parse_gomp_cpu_affinity(char const *name, char const *value, void *data) { const char *next = NULL; char *temp_proclist; kmp_setting_t **rivals = (kmp_setting_t **)data; int rc; rc = __kmp_stg_check_rivals(name, value, rivals); if (rc) { return; } if (TCR_4(__kmp_init_middle)) { KMP_WARNING(EnvMiddleWarn, name); __kmp_env_toPrint(name, 0); return; } __kmp_env_toPrint(name, 1); if (__kmp_parse_affinity_proc_id_list(name, value, &next, &temp_proclist)) { SKIP_WS(next); if (*next == '\0') { // GOMP_CPU_AFFINITY => granularity=fine,explicit,proclist=... __kmp_affinity.proclist = temp_proclist; __kmp_affinity.type = affinity_explicit; __kmp_affinity.gran = KMP_HW_THREAD; __kmp_nested_proc_bind.bind_types[0] = proc_bind_intel; } else { KMP_WARNING(AffSyntaxError, name); if (temp_proclist != NULL) { KMP_INTERNAL_FREE((void *)temp_proclist); } } } else { // Warning already emitted __kmp_affinity.type = affinity_none; __kmp_nested_proc_bind.bind_types[0] = proc_bind_false; } } // __kmp_stg_parse_gomp_cpu_affinity #endif /* KMP_GOMP_COMPAT */ /*----------------------------------------------------------------------------- The OMP_PLACES proc id list parser. Here is the grammar: place_list := place place_list := place , place_list place := num place := place : num place := place : num : signed place := { subplacelist } place := ! place // (lowest priority) subplace_list := subplace subplace_list := subplace , subplace_list subplace := num subplace := num : num subplace := num : num : signed signed := num signed := + signed signed := - signed -----------------------------------------------------------------------------*/ // Return TRUE if successful parse, FALSE otherwise static int __kmp_parse_subplace_list(const char *var, const char **scan) { const char *next; for (;;) { int start, count, stride; // // Read in the starting proc id // SKIP_WS(*scan); if ((**scan < '0') || (**scan > '9')) { return FALSE; } next = *scan; SKIP_DIGITS(next); start = __kmp_str_to_int(*scan, *next); KMP_ASSERT(start >= 0); *scan = next; // valid follow sets are ',' ':' and '}' SKIP_WS(*scan); if (**scan == '}') { break; } if (**scan == ',') { (*scan)++; // skip ',' continue; } if (**scan != ':') { return FALSE; } (*scan)++; // skip ':' // Read count parameter SKIP_WS(*scan); if ((**scan < '0') || (**scan > '9')) { return FALSE; } next = *scan; SKIP_DIGITS(next); count = __kmp_str_to_int(*scan, *next); KMP_ASSERT(count >= 0); *scan = next; // valid follow sets are ',' ':' and '}' SKIP_WS(*scan); if (**scan == '}') { break; } if (**scan == ',') { (*scan)++; // skip ',' continue; } if (**scan != ':') { return FALSE; } (*scan)++; // skip ':' // Read stride parameter int sign = +1; for (;;) { SKIP_WS(*scan); if (**scan == '+') { (*scan)++; // skip '+' continue; } if (**scan == '-') { sign *= -1; (*scan)++; // skip '-' continue; } break; } SKIP_WS(*scan); if ((**scan < '0') || (**scan > '9')) { return FALSE; } next = *scan; SKIP_DIGITS(next); stride = __kmp_str_to_int(*scan, *next); KMP_ASSERT(stride >= 0); *scan = next; stride *= sign; // valid follow sets are ',' and '}' SKIP_WS(*scan); if (**scan == '}') { break; } if (**scan == ',') { (*scan)++; // skip ',' continue; } return FALSE; } return TRUE; } // Return TRUE if successful parse, FALSE otherwise static int __kmp_parse_place(const char *var, const char **scan) { const char *next; // valid follow sets are '{' '!' and num SKIP_WS(*scan); if (**scan == '{') { (*scan)++; // skip '{' if (!__kmp_parse_subplace_list(var, scan)) { return FALSE; } if (**scan != '}') { return FALSE; } (*scan)++; // skip '}' } else if (**scan == '!') { (*scan)++; // skip '!' return __kmp_parse_place(var, scan); //'!' has lower precedence than ':' } else if ((**scan >= '0') && (**scan <= '9')) { next = *scan; SKIP_DIGITS(next); int proc = __kmp_str_to_int(*scan, *next); KMP_ASSERT(proc >= 0); *scan = next; } else { return FALSE; } return TRUE; } // Return TRUE if successful parse, FALSE otherwise static int __kmp_parse_place_list(const char *var, const char *env, char **place_list) { const char *scan = env; const char *next = scan; for (;;) { int count, stride; if (!__kmp_parse_place(var, &scan)) { return FALSE; } // valid follow sets are ',' ':' and EOL SKIP_WS(scan); if (*scan == '\0') { break; } if (*scan == ',') { scan++; // skip ',' continue; } if (*scan != ':') { return FALSE; } scan++; // skip ':' // Read count parameter SKIP_WS(scan); if ((*scan < '0') || (*scan > '9')) { return FALSE; } next = scan; SKIP_DIGITS(next); count = __kmp_str_to_int(scan, *next); KMP_ASSERT(count >= 0); scan = next; // valid follow sets are ',' ':' and EOL SKIP_WS(scan); if (*scan == '\0') { break; } if (*scan == ',') { scan++; // skip ',' continue; } if (*scan != ':') { return FALSE; } scan++; // skip ':' // Read stride parameter int sign = +1; for (;;) { SKIP_WS(scan); if (*scan == '+') { scan++; // skip '+' continue; } if (*scan == '-') { sign *= -1; scan++; // skip '-' continue; } break; } SKIP_WS(scan); if ((*scan < '0') || (*scan > '9')) { return FALSE; } next = scan; SKIP_DIGITS(next); stride = __kmp_str_to_int(scan, *next); KMP_ASSERT(stride >= 0); scan = next; stride *= sign; // valid follow sets are ',' and EOL SKIP_WS(scan); if (*scan == '\0') { break; } if (*scan == ',') { scan++; // skip ',' continue; } return FALSE; } { ptrdiff_t len = scan - env; char *retlist = (char *)__kmp_allocate((len + 1) * sizeof(char)); KMP_MEMCPY_S(retlist, (len + 1) * sizeof(char), env, len * sizeof(char)); retlist[len] = '\0'; *place_list = retlist; } return TRUE; } static inline void __kmp_places_set(enum affinity_type type, kmp_hw_t kind) { __kmp_affinity.type = type; __kmp_affinity.gran = kind; __kmp_affinity.flags.dups = FALSE; __kmp_affinity.flags.omp_places = TRUE; } static void __kmp_places_syntax_error_fallback(char const *name, kmp_hw_t kind) { const char *str = __kmp_hw_get_catalog_string(kind, /*plural=*/true); KMP_WARNING(SyntaxErrorUsing, name, str); __kmp_places_set(affinity_compact, kind); if (__kmp_nested_proc_bind.bind_types[0] == proc_bind_default) __kmp_nested_proc_bind.bind_types[0] = proc_bind_true; } static void __kmp_stg_parse_places(char const *name, char const *value, void *data) { struct kmp_place_t { const char *name; kmp_hw_t type; }; int count; bool set = false; const char *scan = value; const char *next = scan; kmp_place_t std_places[] = {{"threads", KMP_HW_THREAD}, {"cores", KMP_HW_CORE}, {"numa_domains", KMP_HW_NUMA}, {"ll_caches", KMP_HW_LLC}, {"sockets", KMP_HW_SOCKET}}; kmp_setting_t **rivals = (kmp_setting_t **)data; int rc; rc = __kmp_stg_check_rivals(name, value, rivals); if (rc) { return; } // Standard choices for (size_t i = 0; i < sizeof(std_places) / sizeof(std_places[0]); ++i) { const kmp_place_t &place = std_places[i]; if (__kmp_match_str(place.name, scan, &next)) { scan = next; __kmp_places_set(affinity_compact, place.type); set = true; // Parse core attribute if it exists if (KMP_HW_MAX_NUM_CORE_TYPES > 1) { SKIP_WS(scan); if (*scan == ':') { if (place.type != KMP_HW_CORE) { __kmp_places_syntax_error_fallback(name, place.type); return; } scan++; // skip ':' SKIP_WS(scan); #if KMP_ARCH_X86 || KMP_ARCH_X86_64 if (__kmp_match_str("intel_core", scan, &next)) { __kmp_affinity.core_attr_gran.core_type = KMP_HW_CORE_TYPE_CORE; __kmp_affinity.core_attr_gran.valid = 1; scan = next; } else if (__kmp_match_str("intel_atom", scan, &next)) { __kmp_affinity.core_attr_gran.core_type = KMP_HW_CORE_TYPE_ATOM; __kmp_affinity.core_attr_gran.valid = 1; scan = next; } else #endif if (__kmp_match_str("eff", scan, &next)) { int eff; if (!isdigit(*next)) { __kmp_places_syntax_error_fallback(name, place.type); return; } scan = next; SKIP_DIGITS(next); eff = __kmp_str_to_int(scan, *next); if (eff < 0) { __kmp_places_syntax_error_fallback(name, place.type); return; } if (eff >= KMP_HW_MAX_NUM_CORE_EFFS) eff = KMP_HW_MAX_NUM_CORE_EFFS - 1; __kmp_affinity.core_attr_gran.core_eff = eff; __kmp_affinity.core_attr_gran.valid = 1; scan = next; } if (!__kmp_affinity.core_attr_gran.valid) { __kmp_places_syntax_error_fallback(name, place.type); return; } } } break; } } // Implementation choices for OMP_PLACES based on internal types if (!set) { KMP_FOREACH_HW_TYPE(type) { const char *name = __kmp_hw_get_keyword(type, true); if (__kmp_match_str("unknowns", scan, &next)) continue; if (__kmp_match_str(name, scan, &next)) { scan = next; __kmp_places_set(affinity_compact, type); set = true; break; } } } // Implementation choices for OMP_PLACES based on core attributes if (!set) { if (__kmp_match_str("core_types", scan, &next)) { scan = next; if (*scan != '\0') { KMP_WARNING(ParseExtraCharsWarn, name, scan); } __kmp_places_set(affinity_compact, KMP_HW_CORE); __kmp_affinity.flags.core_types_gran = 1; set = true; } else if (__kmp_match_str("core_effs", scan, &next) || __kmp_match_str("core_efficiencies", scan, &next)) { scan = next; if (*scan != '\0') { KMP_WARNING(ParseExtraCharsWarn, name, scan); } __kmp_places_set(affinity_compact, KMP_HW_CORE); __kmp_affinity.flags.core_effs_gran = 1; set = true; } } // Explicit place list if (!set) { if (__kmp_affinity.proclist != NULL) { KMP_INTERNAL_FREE((void *)__kmp_affinity.proclist); __kmp_affinity.proclist = NULL; } if (__kmp_parse_place_list(name, value, &__kmp_affinity.proclist)) { __kmp_places_set(affinity_explicit, KMP_HW_THREAD); } else { // Syntax error fallback __kmp_places_syntax_error_fallback(name, KMP_HW_CORE); } if (__kmp_nested_proc_bind.bind_types[0] == proc_bind_default) { __kmp_nested_proc_bind.bind_types[0] = proc_bind_true; } return; } kmp_hw_t gran = __kmp_affinity.gran; if (__kmp_affinity.gran != KMP_HW_UNKNOWN) { gran = __kmp_affinity.gran; } else { gran = KMP_HW_CORE; } if (__kmp_nested_proc_bind.bind_types[0] == proc_bind_default) { __kmp_nested_proc_bind.bind_types[0] = proc_bind_true; } SKIP_WS(scan); if (*scan == '\0') { return; } // Parse option count parameter in parentheses if (*scan != '(') { __kmp_places_syntax_error_fallback(name, gran); return; } scan++; // skip '(' SKIP_WS(scan); next = scan; SKIP_DIGITS(next); count = __kmp_str_to_int(scan, *next); KMP_ASSERT(count >= 0); scan = next; SKIP_WS(scan); if (*scan != ')') { __kmp_places_syntax_error_fallback(name, gran); return; } scan++; // skip ')' SKIP_WS(scan); if (*scan != '\0') { KMP_WARNING(ParseExtraCharsWarn, name, scan); } __kmp_affinity_num_places = count; } static void __kmp_stg_print_places(kmp_str_buf_t *buffer, char const *name, void *data) { enum affinity_type type = __kmp_affinity.type; const char *proclist = __kmp_affinity.proclist; kmp_hw_t gran = __kmp_affinity.gran; if (__kmp_env_format) { KMP_STR_BUF_PRINT_NAME; } else { __kmp_str_buf_print(buffer, " %s", name); } if ((__kmp_nested_proc_bind.used == 0) || (__kmp_nested_proc_bind.bind_types == NULL) || (__kmp_nested_proc_bind.bind_types[0] == proc_bind_false)) { __kmp_str_buf_print(buffer, ": %s\n", KMP_I18N_STR(NotDefined)); } else if (type == affinity_explicit) { if (proclist != NULL) { __kmp_str_buf_print(buffer, "='%s'\n", proclist); } else { __kmp_str_buf_print(buffer, ": %s\n", KMP_I18N_STR(NotDefined)); } } else if (type == affinity_compact) { int num; if (__kmp_affinity.num_masks > 0) { num = __kmp_affinity.num_masks; } else if (__kmp_affinity_num_places > 0) { num = __kmp_affinity_num_places; } else { num = 0; } if (gran != KMP_HW_UNKNOWN) { // If core_types or core_effs, just print and return if (__kmp_affinity.flags.core_types_gran) { __kmp_str_buf_print(buffer, "='%s'\n", "core_types"); return; } if (__kmp_affinity.flags.core_effs_gran) { __kmp_str_buf_print(buffer, "='%s'\n", "core_effs"); return; } // threads, cores, sockets, cores:, etc. const char *name = __kmp_hw_get_keyword(gran, true); __kmp_str_buf_print(buffer, "='%s", name); // Add core attributes if it exists if (__kmp_affinity.core_attr_gran.valid) { kmp_hw_core_type_t ct = (kmp_hw_core_type_t)__kmp_affinity.core_attr_gran.core_type; int eff = __kmp_affinity.core_attr_gran.core_eff; if (ct != KMP_HW_CORE_TYPE_UNKNOWN) { const char *ct_name = __kmp_hw_get_core_type_keyword(ct); __kmp_str_buf_print(buffer, ":%s", name, ct_name); } else if (eff >= 0 && eff < KMP_HW_MAX_NUM_CORE_EFFS) { __kmp_str_buf_print(buffer, ":eff%d", name, eff); } } // Add the '(#)' part if it exists if (num > 0) __kmp_str_buf_print(buffer, "(%d)", num); __kmp_str_buf_print(buffer, "'\n"); } else { __kmp_str_buf_print(buffer, ": %s\n", KMP_I18N_STR(NotDefined)); } } else { __kmp_str_buf_print(buffer, ": %s\n", KMP_I18N_STR(NotDefined)); } } static void __kmp_stg_parse_topology_method(char const *name, char const *value, void *data) { if (__kmp_str_match("all", 1, value)) { __kmp_affinity_top_method = affinity_top_method_all; } #if KMP_USE_HWLOC else if (__kmp_str_match("hwloc", 1, value)) { __kmp_affinity_top_method = affinity_top_method_hwloc; } #endif #if KMP_ARCH_X86 || KMP_ARCH_X86_64 else if (__kmp_str_match("cpuid_leaf31", 12, value) || __kmp_str_match("cpuid 1f", 8, value) || __kmp_str_match("cpuid 31", 8, value) || __kmp_str_match("cpuid1f", 7, value) || __kmp_str_match("cpuid31", 7, value) || __kmp_str_match("leaf 1f", 7, value) || __kmp_str_match("leaf 31", 7, value) || __kmp_str_match("leaf1f", 6, value) || __kmp_str_match("leaf31", 6, value)) { __kmp_affinity_top_method = affinity_top_method_x2apicid_1f; } else if (__kmp_str_match("x2apic id", 9, value) || __kmp_str_match("x2apic_id", 9, value) || __kmp_str_match("x2apic-id", 9, value) || __kmp_str_match("x2apicid", 8, value) || __kmp_str_match("cpuid leaf 11", 13, value) || __kmp_str_match("cpuid_leaf_11", 13, value) || __kmp_str_match("cpuid-leaf-11", 13, value) || __kmp_str_match("cpuid leaf11", 12, value) || __kmp_str_match("cpuid_leaf11", 12, value) || __kmp_str_match("cpuid-leaf11", 12, value) || __kmp_str_match("cpuidleaf 11", 12, value) || __kmp_str_match("cpuidleaf_11", 12, value) || __kmp_str_match("cpuidleaf-11", 12, value) || __kmp_str_match("cpuidleaf11", 11, value) || __kmp_str_match("cpuid 11", 8, value) || __kmp_str_match("cpuid_11", 8, value) || __kmp_str_match("cpuid-11", 8, value) || __kmp_str_match("cpuid11", 7, value) || __kmp_str_match("leaf 11", 7, value) || __kmp_str_match("leaf_11", 7, value) || __kmp_str_match("leaf-11", 7, value) || __kmp_str_match("leaf11", 6, value)) { __kmp_affinity_top_method = affinity_top_method_x2apicid; } else if (__kmp_str_match("apic id", 7, value) || __kmp_str_match("apic_id", 7, value) || __kmp_str_match("apic-id", 7, value) || __kmp_str_match("apicid", 6, value) || __kmp_str_match("cpuid leaf 4", 12, value) || __kmp_str_match("cpuid_leaf_4", 12, value) || __kmp_str_match("cpuid-leaf-4", 12, value) || __kmp_str_match("cpuid leaf4", 11, value) || __kmp_str_match("cpuid_leaf4", 11, value) || __kmp_str_match("cpuid-leaf4", 11, value) || __kmp_str_match("cpuidleaf 4", 11, value) || __kmp_str_match("cpuidleaf_4", 11, value) || __kmp_str_match("cpuidleaf-4", 11, value) || __kmp_str_match("cpuidleaf4", 10, value) || __kmp_str_match("cpuid 4", 7, value) || __kmp_str_match("cpuid_4", 7, value) || __kmp_str_match("cpuid-4", 7, value) || __kmp_str_match("cpuid4", 6, value) || __kmp_str_match("leaf 4", 6, value) || __kmp_str_match("leaf_4", 6, value) || __kmp_str_match("leaf-4", 6, value) || __kmp_str_match("leaf4", 5, value)) { __kmp_affinity_top_method = affinity_top_method_apicid; } #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ else if (__kmp_str_match("/proc/cpuinfo", 2, value) || __kmp_str_match("cpuinfo", 5, value)) { __kmp_affinity_top_method = affinity_top_method_cpuinfo; } #if KMP_GROUP_AFFINITY else if (__kmp_str_match("group", 1, value)) { KMP_WARNING(StgDeprecatedValue, name, value, "all"); __kmp_affinity_top_method = affinity_top_method_group; } #endif /* KMP_GROUP_AFFINITY */ else if (__kmp_str_match("flat", 1, value)) { __kmp_affinity_top_method = affinity_top_method_flat; } else { KMP_WARNING(StgInvalidValue, name, value); } } // __kmp_stg_parse_topology_method static void __kmp_stg_print_topology_method(kmp_str_buf_t *buffer, char const *name, void *data) { char const *value = NULL; switch (__kmp_affinity_top_method) { case affinity_top_method_default: value = "default"; break; case affinity_top_method_all: value = "all"; break; #if KMP_ARCH_X86 || KMP_ARCH_X86_64 case affinity_top_method_x2apicid_1f: value = "x2APIC id leaf 0x1f"; break; case affinity_top_method_x2apicid: value = "x2APIC id leaf 0xb"; break; case affinity_top_method_apicid: value = "APIC id"; break; #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ #if KMP_USE_HWLOC case affinity_top_method_hwloc: value = "hwloc"; break; #endif case affinity_top_method_cpuinfo: value = "cpuinfo"; break; #if KMP_GROUP_AFFINITY case affinity_top_method_group: value = "group"; break; #endif /* KMP_GROUP_AFFINITY */ case affinity_top_method_flat: value = "flat"; break; } if (value != NULL) { __kmp_stg_print_str(buffer, name, value); } } // __kmp_stg_print_topology_method // KMP_TEAMS_PROC_BIND struct kmp_proc_bind_info_t { const char *name; kmp_proc_bind_t proc_bind; }; static kmp_proc_bind_info_t proc_bind_table[] = { {"spread", proc_bind_spread}, {"true", proc_bind_spread}, {"close", proc_bind_close}, // teams-bind = false means "replicate the primary thread's affinity" {"false", proc_bind_primary}, {"primary", proc_bind_primary}}; static void __kmp_stg_parse_teams_proc_bind(char const *name, char const *value, void *data) { int valid; const char *end; valid = 0; for (size_t i = 0; i < sizeof(proc_bind_table) / sizeof(proc_bind_table[0]); ++i) { if (__kmp_match_str(proc_bind_table[i].name, value, &end)) { __kmp_teams_proc_bind = proc_bind_table[i].proc_bind; valid = 1; break; } } if (!valid) { KMP_WARNING(StgInvalidValue, name, value); } } static void __kmp_stg_print_teams_proc_bind(kmp_str_buf_t *buffer, char const *name, void *data) { const char *value = KMP_I18N_STR(NotDefined); for (size_t i = 0; i < sizeof(proc_bind_table) / sizeof(proc_bind_table[0]); ++i) { if (__kmp_teams_proc_bind == proc_bind_table[i].proc_bind) { value = proc_bind_table[i].name; break; } } __kmp_stg_print_str(buffer, name, value); } #endif /* KMP_AFFINITY_SUPPORTED */ // OMP_PROC_BIND / bind-var is functional on all 4.0 builds, including OS X* // OMP_PLACES / place-partition-var is not. static void __kmp_stg_parse_proc_bind(char const *name, char const *value, void *data) { kmp_setting_t **rivals = (kmp_setting_t **)data; int rc; rc = __kmp_stg_check_rivals(name, value, rivals); if (rc) { return; } // In OMP 4.0 OMP_PROC_BIND is a vector of proc_bind types. KMP_DEBUG_ASSERT((__kmp_nested_proc_bind.bind_types != NULL) && (__kmp_nested_proc_bind.used > 0)); const char *buf = value; const char *next; int num; SKIP_WS(buf); if ((*buf >= '0') && (*buf <= '9')) { next = buf; SKIP_DIGITS(next); num = __kmp_str_to_int(buf, *next); KMP_ASSERT(num >= 0); buf = next; SKIP_WS(buf); } else { num = -1; } next = buf; if (__kmp_match_str("disabled", buf, &next)) { buf = next; SKIP_WS(buf); #if KMP_AFFINITY_SUPPORTED __kmp_affinity.type = affinity_disabled; #endif /* KMP_AFFINITY_SUPPORTED */ __kmp_nested_proc_bind.used = 1; __kmp_nested_proc_bind.bind_types[0] = proc_bind_false; } else if ((num == (int)proc_bind_false) || __kmp_match_str("false", buf, &next)) { buf = next; SKIP_WS(buf); #if KMP_AFFINITY_SUPPORTED __kmp_affinity.type = affinity_none; #endif /* KMP_AFFINITY_SUPPORTED */ __kmp_nested_proc_bind.used = 1; __kmp_nested_proc_bind.bind_types[0] = proc_bind_false; } else if ((num == (int)proc_bind_true) || __kmp_match_str("true", buf, &next)) { buf = next; SKIP_WS(buf); __kmp_nested_proc_bind.used = 1; __kmp_nested_proc_bind.bind_types[0] = proc_bind_true; } else { // Count the number of values in the env var string const char *scan; int nelem = 1; for (scan = buf; *scan != '\0'; scan++) { if (*scan == ',') { nelem++; } } // Create / expand the nested proc_bind array as needed if (__kmp_nested_proc_bind.size < nelem) { __kmp_nested_proc_bind.bind_types = (kmp_proc_bind_t *)KMP_INTERNAL_REALLOC( __kmp_nested_proc_bind.bind_types, sizeof(kmp_proc_bind_t) * nelem); if (__kmp_nested_proc_bind.bind_types == NULL) { KMP_FATAL(MemoryAllocFailed); } __kmp_nested_proc_bind.size = nelem; } __kmp_nested_proc_bind.used = nelem; if (nelem > 1 && !__kmp_dflt_max_active_levels_set) __kmp_dflt_max_active_levels = KMP_MAX_ACTIVE_LEVELS_LIMIT; // Save values in the nested proc_bind array int i = 0; for (;;) { enum kmp_proc_bind_t bind; if ((num == (int)proc_bind_primary) || __kmp_match_str("master", buf, &next) || __kmp_match_str("primary", buf, &next)) { buf = next; SKIP_WS(buf); bind = proc_bind_primary; } else if ((num == (int)proc_bind_close) || __kmp_match_str("close", buf, &next)) { buf = next; SKIP_WS(buf); bind = proc_bind_close; } else if ((num == (int)proc_bind_spread) || __kmp_match_str("spread", buf, &next)) { buf = next; SKIP_WS(buf); bind = proc_bind_spread; } else { KMP_WARNING(StgInvalidValue, name, value); __kmp_nested_proc_bind.bind_types[0] = proc_bind_false; __kmp_nested_proc_bind.used = 1; return; } __kmp_nested_proc_bind.bind_types[i++] = bind; if (i >= nelem) { break; } KMP_DEBUG_ASSERT(*buf == ','); buf++; SKIP_WS(buf); // Read next value if it was specified as an integer if ((*buf >= '0') && (*buf <= '9')) { next = buf; SKIP_DIGITS(next); num = __kmp_str_to_int(buf, *next); KMP_ASSERT(num >= 0); buf = next; SKIP_WS(buf); } else { num = -1; } } SKIP_WS(buf); } if (*buf != '\0') { KMP_WARNING(ParseExtraCharsWarn, name, buf); } } static void __kmp_stg_print_proc_bind(kmp_str_buf_t *buffer, char const *name, void *data) { int nelem = __kmp_nested_proc_bind.used; if (__kmp_env_format) { KMP_STR_BUF_PRINT_NAME; } else { __kmp_str_buf_print(buffer, " %s", name); } if (nelem == 0) { __kmp_str_buf_print(buffer, ": %s\n", KMP_I18N_STR(NotDefined)); } else { int i; __kmp_str_buf_print(buffer, "='", name); for (i = 0; i < nelem; i++) { switch (__kmp_nested_proc_bind.bind_types[i]) { case proc_bind_false: __kmp_str_buf_print(buffer, "false"); break; case proc_bind_true: __kmp_str_buf_print(buffer, "true"); break; case proc_bind_primary: __kmp_str_buf_print(buffer, "primary"); break; case proc_bind_close: __kmp_str_buf_print(buffer, "close"); break; case proc_bind_spread: __kmp_str_buf_print(buffer, "spread"); break; case proc_bind_intel: __kmp_str_buf_print(buffer, "intel"); break; case proc_bind_default: __kmp_str_buf_print(buffer, "default"); break; } if (i < nelem - 1) { __kmp_str_buf_print(buffer, ","); } } __kmp_str_buf_print(buffer, "'\n"); } } static void __kmp_stg_parse_display_affinity(char const *name, char const *value, void *data) { __kmp_stg_parse_bool(name, value, &__kmp_display_affinity); } static void __kmp_stg_print_display_affinity(kmp_str_buf_t *buffer, char const *name, void *data) { __kmp_stg_print_bool(buffer, name, __kmp_display_affinity); } static void __kmp_stg_parse_affinity_format(char const *name, char const *value, void *data) { size_t length = KMP_STRLEN(value); __kmp_strncpy_truncate(__kmp_affinity_format, KMP_AFFINITY_FORMAT_SIZE, value, length); } static void __kmp_stg_print_affinity_format(kmp_str_buf_t *buffer, char const *name, void *data) { if (__kmp_env_format) { KMP_STR_BUF_PRINT_NAME_EX(name); } else { __kmp_str_buf_print(buffer, " %s='", name); } __kmp_str_buf_print(buffer, "%s'\n", __kmp_affinity_format); } /*----------------------------------------------------------------------------- OMP_ALLOCATOR sets default allocator. Here is the grammar: |= | | : |= = | =, |= omp_default_mem_alloc | omp_large_cap_mem_alloc | omp_const_mem_alloc | omp_high_bw_mem_alloc | omp_low_lat_mem_alloc | omp_cgroup_mem_alloc | omp_pteam_mem_alloc | omp_thread_mem_alloc |= omp_default_mem_space | omp_large_cap_mem_space | omp_const_mem_space | omp_high_bw_mem_space | omp_low_lat_mem_space |= sync_hint | alignment | access | pool_size | fallback | fb_data | pinned | partition |= one of the allowed values of trait | non-negative integer | -----------------------------------------------------------------------------*/ static void __kmp_stg_parse_allocator(char const *name, char const *value, void *data) { const char *buf = value; const char *next, *scan, *start; char *key; omp_allocator_handle_t al; omp_memspace_handle_t ms = omp_default_mem_space; bool is_memspace = false; int ntraits = 0, count = 0; SKIP_WS(buf); next = buf; const char *delim = strchr(buf, ':'); const char *predef_mem_space = strstr(buf, "mem_space"); bool is_memalloc = (!predef_mem_space && !delim) ? true : false; // Count the number of traits in the env var string if (delim) { ntraits = 1; for (scan = buf; *scan != '\0'; scan++) { if (*scan == ',') ntraits++; } } omp_alloctrait_t *traits = (omp_alloctrait_t *)KMP_ALLOCA(ntraits * sizeof(omp_alloctrait_t)); // Helper macros #define IS_POWER_OF_TWO(n) (((n) & ((n)-1)) == 0) #define GET_NEXT(sentinel) \ { \ SKIP_WS(next); \ if (*next == sentinel) \ next++; \ SKIP_WS(next); \ scan = next; \ } #define SKIP_PAIR(key) \ { \ char const str_delimiter[] = {',', 0}; \ char *value = __kmp_str_token(CCAST(char *, scan), str_delimiter, \ CCAST(char **, &next)); \ KMP_WARNING(StgInvalidValue, key, value); \ ntraits--; \ SKIP_WS(next); \ scan = next; \ } #define SET_KEY() \ { \ char const str_delimiter[] = {'=', 0}; \ key = __kmp_str_token(CCAST(char *, start), str_delimiter, \ CCAST(char **, &next)); \ scan = next; \ } scan = next; while (*next != '\0') { if (is_memalloc || __kmp_match_str("fb_data", scan, &next)) { // allocator check start = scan; GET_NEXT('='); // check HBW and LCAP first as the only non-default supported if (__kmp_match_str("omp_high_bw_mem_alloc", scan, &next)) { SKIP_WS(next); if (is_memalloc) { if (__kmp_memkind_available) { __kmp_def_allocator = omp_high_bw_mem_alloc; return; } else { KMP_WARNING(OmpNoAllocator, "omp_high_bw_mem_alloc"); } } else { traits[count].key = omp_atk_fb_data; traits[count].value = RCAST(omp_uintptr_t, omp_high_bw_mem_alloc); } } else if (__kmp_match_str("omp_large_cap_mem_alloc", scan, &next)) { SKIP_WS(next); if (is_memalloc) { if (__kmp_memkind_available) { __kmp_def_allocator = omp_large_cap_mem_alloc; return; } else { KMP_WARNING(OmpNoAllocator, "omp_large_cap_mem_alloc"); } } else { traits[count].key = omp_atk_fb_data; traits[count].value = RCAST(omp_uintptr_t, omp_large_cap_mem_alloc); } } else if (__kmp_match_str("omp_default_mem_alloc", scan, &next)) { // default requested SKIP_WS(next); if (!is_memalloc) { traits[count].key = omp_atk_fb_data; traits[count].value = RCAST(omp_uintptr_t, omp_default_mem_alloc); } } else if (__kmp_match_str("omp_const_mem_alloc", scan, &next)) { SKIP_WS(next); if (is_memalloc) { KMP_WARNING(OmpNoAllocator, "omp_const_mem_alloc"); } else { traits[count].key = omp_atk_fb_data; traits[count].value = RCAST(omp_uintptr_t, omp_const_mem_alloc); } } else if (__kmp_match_str("omp_low_lat_mem_alloc", scan, &next)) { SKIP_WS(next); if (is_memalloc) { KMP_WARNING(OmpNoAllocator, "omp_low_lat_mem_alloc"); } else { traits[count].key = omp_atk_fb_data; traits[count].value = RCAST(omp_uintptr_t, omp_low_lat_mem_alloc); } } else if (__kmp_match_str("omp_cgroup_mem_alloc", scan, &next)) { SKIP_WS(next); if (is_memalloc) { KMP_WARNING(OmpNoAllocator, "omp_cgroup_mem_alloc"); } else { traits[count].key = omp_atk_fb_data; traits[count].value = RCAST(omp_uintptr_t, omp_cgroup_mem_alloc); } } else if (__kmp_match_str("omp_pteam_mem_alloc", scan, &next)) { SKIP_WS(next); if (is_memalloc) { KMP_WARNING(OmpNoAllocator, "omp_pteam_mem_alloc"); } else { traits[count].key = omp_atk_fb_data; traits[count].value = RCAST(omp_uintptr_t, omp_pteam_mem_alloc); } } else if (__kmp_match_str("omp_thread_mem_alloc", scan, &next)) { SKIP_WS(next); if (is_memalloc) { KMP_WARNING(OmpNoAllocator, "omp_thread_mem_alloc"); } else { traits[count].key = omp_atk_fb_data; traits[count].value = RCAST(omp_uintptr_t, omp_thread_mem_alloc); } } else { if (!is_memalloc) { SET_KEY(); SKIP_PAIR(key); continue; } } if (is_memalloc) { __kmp_def_allocator = omp_default_mem_alloc; if (next == buf || *next != '\0') { // either no match or extra symbols present after the matched token KMP_WARNING(StgInvalidValue, name, value); } return; } else { ++count; if (count == ntraits) break; GET_NEXT(','); } } else { // memspace if (!is_memspace) { if (__kmp_match_str("omp_default_mem_space", scan, &next)) { SKIP_WS(next); ms = omp_default_mem_space; } else if (__kmp_match_str("omp_large_cap_mem_space", scan, &next)) { SKIP_WS(next); ms = omp_large_cap_mem_space; } else if (__kmp_match_str("omp_const_mem_space", scan, &next)) { SKIP_WS(next); ms = omp_const_mem_space; } else if (__kmp_match_str("omp_high_bw_mem_space", scan, &next)) { SKIP_WS(next); ms = omp_high_bw_mem_space; } else if (__kmp_match_str("omp_low_lat_mem_space", scan, &next)) { SKIP_WS(next); ms = omp_low_lat_mem_space; } else { __kmp_def_allocator = omp_default_mem_alloc; if (next == buf || *next != '\0') { // either no match or extra symbols present after the matched token KMP_WARNING(StgInvalidValue, name, value); } return; } is_memspace = true; } if (delim) { // traits GET_NEXT(':'); start = scan; if (__kmp_match_str("sync_hint", scan, &next)) { GET_NEXT('='); traits[count].key = omp_atk_sync_hint; if (__kmp_match_str("contended", scan, &next)) { traits[count].value = omp_atv_contended; } else if (__kmp_match_str("uncontended", scan, &next)) { traits[count].value = omp_atv_uncontended; } else if (__kmp_match_str("serialized", scan, &next)) { traits[count].value = omp_atv_serialized; } else if (__kmp_match_str("private", scan, &next)) { traits[count].value = omp_atv_private; } else { SET_KEY(); SKIP_PAIR(key); continue; } } else if (__kmp_match_str("alignment", scan, &next)) { GET_NEXT('='); if (!isdigit(*next)) { SET_KEY(); SKIP_PAIR(key); continue; } SKIP_DIGITS(next); int n = __kmp_str_to_int(scan, ','); if (n < 0 || !IS_POWER_OF_TWO(n)) { SET_KEY(); SKIP_PAIR(key); continue; } traits[count].key = omp_atk_alignment; traits[count].value = n; } else if (__kmp_match_str("access", scan, &next)) { GET_NEXT('='); traits[count].key = omp_atk_access; if (__kmp_match_str("all", scan, &next)) { traits[count].value = omp_atv_all; } else if (__kmp_match_str("cgroup", scan, &next)) { traits[count].value = omp_atv_cgroup; } else if (__kmp_match_str("pteam", scan, &next)) { traits[count].value = omp_atv_pteam; } else if (__kmp_match_str("thread", scan, &next)) { traits[count].value = omp_atv_thread; } else { SET_KEY(); SKIP_PAIR(key); continue; } } else if (__kmp_match_str("pool_size", scan, &next)) { GET_NEXT('='); if (!isdigit(*next)) { SET_KEY(); SKIP_PAIR(key); continue; } SKIP_DIGITS(next); int n = __kmp_str_to_int(scan, ','); if (n < 0) { SET_KEY(); SKIP_PAIR(key); continue; } traits[count].key = omp_atk_pool_size; traits[count].value = n; } else if (__kmp_match_str("fallback", scan, &next)) { GET_NEXT('='); traits[count].key = omp_atk_fallback; if (__kmp_match_str("default_mem_fb", scan, &next)) { traits[count].value = omp_atv_default_mem_fb; } else if (__kmp_match_str("null_fb", scan, &next)) { traits[count].value = omp_atv_null_fb; } else if (__kmp_match_str("abort_fb", scan, &next)) { traits[count].value = omp_atv_abort_fb; } else if (__kmp_match_str("allocator_fb", scan, &next)) { traits[count].value = omp_atv_allocator_fb; } else { SET_KEY(); SKIP_PAIR(key); continue; } } else if (__kmp_match_str("pinned", scan, &next)) { GET_NEXT('='); traits[count].key = omp_atk_pinned; if (__kmp_str_match_true(next)) { traits[count].value = omp_atv_true; } else if (__kmp_str_match_false(next)) { traits[count].value = omp_atv_false; } else { SET_KEY(); SKIP_PAIR(key); continue; } } else if (__kmp_match_str("partition", scan, &next)) { GET_NEXT('='); traits[count].key = omp_atk_partition; if (__kmp_match_str("environment", scan, &next)) { traits[count].value = omp_atv_environment; } else if (__kmp_match_str("nearest", scan, &next)) { traits[count].value = omp_atv_nearest; } else if (__kmp_match_str("blocked", scan, &next)) { traits[count].value = omp_atv_blocked; } else if (__kmp_match_str("interleaved", scan, &next)) { traits[count].value = omp_atv_interleaved; } else { SET_KEY(); SKIP_PAIR(key); continue; } } else { SET_KEY(); SKIP_PAIR(key); continue; } SKIP_WS(next); ++count; if (count == ntraits) break; GET_NEXT(','); } // traits } // memspace } // while al = __kmpc_init_allocator(__kmp_get_gtid(), ms, ntraits, traits); __kmp_def_allocator = (al == omp_null_allocator) ? omp_default_mem_alloc : al; } static void __kmp_stg_print_allocator(kmp_str_buf_t *buffer, char const *name, void *data) { if (__kmp_def_allocator == omp_default_mem_alloc) { __kmp_stg_print_str(buffer, name, "omp_default_mem_alloc"); } else if (__kmp_def_allocator == omp_high_bw_mem_alloc) { __kmp_stg_print_str(buffer, name, "omp_high_bw_mem_alloc"); } else if (__kmp_def_allocator == omp_large_cap_mem_alloc) { __kmp_stg_print_str(buffer, name, "omp_large_cap_mem_alloc"); } else if (__kmp_def_allocator == omp_const_mem_alloc) { __kmp_stg_print_str(buffer, name, "omp_const_mem_alloc"); } else if (__kmp_def_allocator == omp_low_lat_mem_alloc) { __kmp_stg_print_str(buffer, name, "omp_low_lat_mem_alloc"); } else if (__kmp_def_allocator == omp_cgroup_mem_alloc) { __kmp_stg_print_str(buffer, name, "omp_cgroup_mem_alloc"); } else if (__kmp_def_allocator == omp_pteam_mem_alloc) { __kmp_stg_print_str(buffer, name, "omp_pteam_mem_alloc"); } else if (__kmp_def_allocator == omp_thread_mem_alloc) { __kmp_stg_print_str(buffer, name, "omp_thread_mem_alloc"); } } // ----------------------------------------------------------------------------- // OMP_DYNAMIC static void __kmp_stg_parse_omp_dynamic(char const *name, char const *value, void *data) { __kmp_stg_parse_bool(name, value, &(__kmp_global.g.g_dynamic)); } // __kmp_stg_parse_omp_dynamic static void __kmp_stg_print_omp_dynamic(kmp_str_buf_t *buffer, char const *name, void *data) { __kmp_stg_print_bool(buffer, name, __kmp_global.g.g_dynamic); } // __kmp_stg_print_omp_dynamic static void __kmp_stg_parse_kmp_dynamic_mode(char const *name, char const *value, void *data) { if (TCR_4(__kmp_init_parallel)) { KMP_WARNING(EnvParallelWarn, name); __kmp_env_toPrint(name, 0); return; } #ifdef USE_LOAD_BALANCE else if (__kmp_str_match("load balance", 2, value) || __kmp_str_match("load_balance", 2, value) || __kmp_str_match("load-balance", 2, value) || __kmp_str_match("loadbalance", 2, value) || __kmp_str_match("balance", 1, value)) { __kmp_global.g.g_dynamic_mode = dynamic_load_balance; } #endif /* USE_LOAD_BALANCE */ else if (__kmp_str_match("thread limit", 1, value) || __kmp_str_match("thread_limit", 1, value) || __kmp_str_match("thread-limit", 1, value) || __kmp_str_match("threadlimit", 1, value) || __kmp_str_match("limit", 2, value)) { __kmp_global.g.g_dynamic_mode = dynamic_thread_limit; } else if (__kmp_str_match("random", 1, value)) { __kmp_global.g.g_dynamic_mode = dynamic_random; } else { KMP_WARNING(StgInvalidValue, name, value); } } //__kmp_stg_parse_kmp_dynamic_mode static void __kmp_stg_print_kmp_dynamic_mode(kmp_str_buf_t *buffer, char const *name, void *data) { #if KMP_DEBUG if (__kmp_global.g.g_dynamic_mode == dynamic_default) { __kmp_str_buf_print(buffer, " %s: %s \n", name, KMP_I18N_STR(NotDefined)); } #ifdef USE_LOAD_BALANCE else if (__kmp_global.g.g_dynamic_mode == dynamic_load_balance) { __kmp_stg_print_str(buffer, name, "load balance"); } #endif /* USE_LOAD_BALANCE */ else if (__kmp_global.g.g_dynamic_mode == dynamic_thread_limit) { __kmp_stg_print_str(buffer, name, "thread limit"); } else if (__kmp_global.g.g_dynamic_mode == dynamic_random) { __kmp_stg_print_str(buffer, name, "random"); } else { KMP_ASSERT(0); } #endif /* KMP_DEBUG */ } // __kmp_stg_print_kmp_dynamic_mode #ifdef USE_LOAD_BALANCE // ----------------------------------------------------------------------------- // KMP_LOAD_BALANCE_INTERVAL static void __kmp_stg_parse_ld_balance_interval(char const *name, char const *value, void *data) { double interval = __kmp_convert_to_double(value); if (interval >= 0) { __kmp_load_balance_interval = interval; } else { KMP_WARNING(StgInvalidValue, name, value); } } // __kmp_stg_parse_load_balance_interval static void __kmp_stg_print_ld_balance_interval(kmp_str_buf_t *buffer, char const *name, void *data) { #if KMP_DEBUG __kmp_str_buf_print(buffer, " %s=%8.6f\n", name, __kmp_load_balance_interval); #endif /* KMP_DEBUG */ } // __kmp_stg_print_load_balance_interval #endif /* USE_LOAD_BALANCE */ // ----------------------------------------------------------------------------- // KMP_INIT_AT_FORK static void __kmp_stg_parse_init_at_fork(char const *name, char const *value, void *data) { __kmp_stg_parse_bool(name, value, &__kmp_need_register_atfork); if (__kmp_need_register_atfork) { __kmp_need_register_atfork_specified = TRUE; } } // __kmp_stg_parse_init_at_fork static void __kmp_stg_print_init_at_fork(kmp_str_buf_t *buffer, char const *name, void *data) { __kmp_stg_print_bool(buffer, name, __kmp_need_register_atfork_specified); } // __kmp_stg_print_init_at_fork // ----------------------------------------------------------------------------- // KMP_SCHEDULE static void __kmp_stg_parse_schedule(char const *name, char const *value, void *data) { if (value != NULL) { size_t length = KMP_STRLEN(value); if (length > INT_MAX) { KMP_WARNING(LongValue, name); } else { const char *semicolon; if (value[length - 1] == '"' || value[length - 1] == '\'') KMP_WARNING(UnbalancedQuotes, name); do { char sentinel; semicolon = strchr(value, ';'); if (*value && semicolon != value) { const char *comma = strchr(value, ','); if (comma) { ++comma; sentinel = ','; } else sentinel = ';'; if (!__kmp_strcasecmp_with_sentinel("static", value, sentinel)) { if (!__kmp_strcasecmp_with_sentinel("greedy", comma, ';')) { __kmp_static = kmp_sch_static_greedy; continue; } else if (!__kmp_strcasecmp_with_sentinel("balanced", comma, ';')) { __kmp_static = kmp_sch_static_balanced; continue; } } else if (!__kmp_strcasecmp_with_sentinel("guided", value, sentinel)) { if (!__kmp_strcasecmp_with_sentinel("iterative", comma, ';')) { __kmp_guided = kmp_sch_guided_iterative_chunked; continue; } else if (!__kmp_strcasecmp_with_sentinel("analytical", comma, ';')) { /* analytical not allowed for too many threads */ __kmp_guided = kmp_sch_guided_analytical_chunked; continue; } } KMP_WARNING(InvalidClause, name, value); } else KMP_WARNING(EmptyClause, name); } while ((value = semicolon ? semicolon + 1 : NULL)); } } } // __kmp_stg_parse__schedule static void __kmp_stg_print_schedule(kmp_str_buf_t *buffer, char const *name, void *data) { if (__kmp_env_format) { KMP_STR_BUF_PRINT_NAME_EX(name); } else { __kmp_str_buf_print(buffer, " %s='", name); } if (__kmp_static == kmp_sch_static_greedy) { __kmp_str_buf_print(buffer, "%s", "static,greedy"); } else if (__kmp_static == kmp_sch_static_balanced) { __kmp_str_buf_print(buffer, "%s", "static,balanced"); } if (__kmp_guided == kmp_sch_guided_iterative_chunked) { __kmp_str_buf_print(buffer, ";%s'\n", "guided,iterative"); } else if (__kmp_guided == kmp_sch_guided_analytical_chunked) { __kmp_str_buf_print(buffer, ";%s'\n", "guided,analytical"); } } // __kmp_stg_print_schedule // ----------------------------------------------------------------------------- // OMP_SCHEDULE static inline void __kmp_omp_schedule_restore() { #if KMP_USE_HIER_SCHED __kmp_hier_scheds.deallocate(); #endif __kmp_chunk = 0; __kmp_sched = kmp_sch_default; } // if parse_hier = true: // Parse [HW,][modifier:]kind[,chunk] // else: // Parse [modifier:]kind[,chunk] static const char *__kmp_parse_single_omp_schedule(const char *name, const char *value, bool parse_hier = false) { /* get the specified scheduling style */ const char *ptr = value; const char *delim; int chunk = 0; enum sched_type sched = kmp_sch_default; if (*ptr == '\0') return NULL; delim = ptr; while (*delim != ',' && *delim != ':' && *delim != '\0') delim++; #if KMP_USE_HIER_SCHED kmp_hier_layer_e layer = kmp_hier_layer_e::LAYER_THREAD; if (parse_hier) { if (*delim == ',') { if (!__kmp_strcasecmp_with_sentinel("L1", ptr, ',')) { layer = kmp_hier_layer_e::LAYER_L1; } else if (!__kmp_strcasecmp_with_sentinel("L2", ptr, ',')) { layer = kmp_hier_layer_e::LAYER_L2; } else if (!__kmp_strcasecmp_with_sentinel("L3", ptr, ',')) { layer = kmp_hier_layer_e::LAYER_L3; } else if (!__kmp_strcasecmp_with_sentinel("NUMA", ptr, ',')) { layer = kmp_hier_layer_e::LAYER_NUMA; } } if (layer != kmp_hier_layer_e::LAYER_THREAD && *delim != ',') { // If there is no comma after the layer, then this schedule is invalid KMP_WARNING(StgInvalidValue, name, value); __kmp_omp_schedule_restore(); return NULL; } else if (layer != kmp_hier_layer_e::LAYER_THREAD) { ptr = ++delim; while (*delim != ',' && *delim != ':' && *delim != '\0') delim++; } } #endif // KMP_USE_HIER_SCHED // Read in schedule modifier if specified enum sched_type sched_modifier = (enum sched_type)0; if (*delim == ':') { if (!__kmp_strcasecmp_with_sentinel("monotonic", ptr, *delim)) { sched_modifier = sched_type::kmp_sch_modifier_monotonic; ptr = ++delim; while (*delim != ',' && *delim != ':' && *delim != '\0') delim++; } else if (!__kmp_strcasecmp_with_sentinel("nonmonotonic", ptr, *delim)) { sched_modifier = sched_type::kmp_sch_modifier_nonmonotonic; ptr = ++delim; while (*delim != ',' && *delim != ':' && *delim != '\0') delim++; } else if (!parse_hier) { // If there is no proper schedule modifier, then this schedule is invalid KMP_WARNING(StgInvalidValue, name, value); __kmp_omp_schedule_restore(); return NULL; } } // Read in schedule kind (required) if (!__kmp_strcasecmp_with_sentinel("dynamic", ptr, *delim)) sched = kmp_sch_dynamic_chunked; else if (!__kmp_strcasecmp_with_sentinel("guided", ptr, *delim)) sched = kmp_sch_guided_chunked; // AC: TODO: probably remove TRAPEZOIDAL (OMP 3.0 does not allow it) else if (!__kmp_strcasecmp_with_sentinel("auto", ptr, *delim)) sched = kmp_sch_auto; else if (!__kmp_strcasecmp_with_sentinel("trapezoidal", ptr, *delim)) sched = kmp_sch_trapezoidal; else if (!__kmp_strcasecmp_with_sentinel("static", ptr, *delim)) sched = kmp_sch_static; #if KMP_STATIC_STEAL_ENABLED else if (!__kmp_strcasecmp_with_sentinel("static_steal", ptr, *delim)) { // replace static_steal with dynamic to better cope with ordered loops sched = kmp_sch_dynamic_chunked; sched_modifier = sched_type::kmp_sch_modifier_nonmonotonic; } #endif else { // If there is no proper schedule kind, then this schedule is invalid KMP_WARNING(StgInvalidValue, name, value); __kmp_omp_schedule_restore(); return NULL; } // Read in schedule chunk size if specified if (*delim == ',') { ptr = delim + 1; SKIP_WS(ptr); if (!isdigit(*ptr)) { // If there is no chunk after comma, then this schedule is invalid KMP_WARNING(StgInvalidValue, name, value); __kmp_omp_schedule_restore(); return NULL; } SKIP_DIGITS(ptr); // auto schedule should not specify chunk size if (sched == kmp_sch_auto) { __kmp_msg(kmp_ms_warning, KMP_MSG(IgnoreChunk, name, delim), __kmp_msg_null); } else { if (sched == kmp_sch_static) sched = kmp_sch_static_chunked; chunk = __kmp_str_to_int(delim + 1, *ptr); if (chunk < 1) { chunk = KMP_DEFAULT_CHUNK; __kmp_msg(kmp_ms_warning, KMP_MSG(InvalidChunk, name, delim), __kmp_msg_null); KMP_INFORM(Using_int_Value, name, __kmp_chunk); // AC: next block commented out until KMP_DEFAULT_CHUNK != KMP_MIN_CHUNK // (to improve code coverage :) // The default chunk size is 1 according to standard, thus making // KMP_MIN_CHUNK not 1 we would introduce mess: // wrong chunk becomes 1, but it will be impossible to explicitly set // to 1 because it becomes KMP_MIN_CHUNK... // } else if ( chunk < KMP_MIN_CHUNK ) { // chunk = KMP_MIN_CHUNK; } else if (chunk > KMP_MAX_CHUNK) { chunk = KMP_MAX_CHUNK; __kmp_msg(kmp_ms_warning, KMP_MSG(LargeChunk, name, delim), __kmp_msg_null); KMP_INFORM(Using_int_Value, name, chunk); } } } else { ptr = delim; } SCHEDULE_SET_MODIFIERS(sched, sched_modifier); #if KMP_USE_HIER_SCHED if (layer != kmp_hier_layer_e::LAYER_THREAD) { __kmp_hier_scheds.append(sched, chunk, layer); } else #endif { __kmp_chunk = chunk; __kmp_sched = sched; } return ptr; } static void __kmp_stg_parse_omp_schedule(char const *name, char const *value, void *data) { size_t length; const char *ptr = value; SKIP_WS(ptr); if (value) { length = KMP_STRLEN(value); if (length) { if (value[length - 1] == '"' || value[length - 1] == '\'') KMP_WARNING(UnbalancedQuotes, name); /* get the specified scheduling style */ #if KMP_USE_HIER_SCHED if (!__kmp_strcasecmp_with_sentinel("EXPERIMENTAL", ptr, ' ')) { SKIP_TOKEN(ptr); SKIP_WS(ptr); while ((ptr = __kmp_parse_single_omp_schedule(name, ptr, true))) { while (*ptr == ' ' || *ptr == '\t' || *ptr == ':') ptr++; if (*ptr == '\0') break; } } else #endif __kmp_parse_single_omp_schedule(name, ptr); } else KMP_WARNING(EmptyString, name); } #if KMP_USE_HIER_SCHED __kmp_hier_scheds.sort(); #endif K_DIAG(1, ("__kmp_static == %d\n", __kmp_static)) K_DIAG(1, ("__kmp_guided == %d\n", __kmp_guided)) K_DIAG(1, ("__kmp_sched == %d\n", __kmp_sched)) K_DIAG(1, ("__kmp_chunk == %d\n", __kmp_chunk)) } // __kmp_stg_parse_omp_schedule static void __kmp_stg_print_omp_schedule(kmp_str_buf_t *buffer, char const *name, void *data) { if (__kmp_env_format) { KMP_STR_BUF_PRINT_NAME_EX(name); } else { __kmp_str_buf_print(buffer, " %s='", name); } enum sched_type sched = SCHEDULE_WITHOUT_MODIFIERS(__kmp_sched); if (SCHEDULE_HAS_MONOTONIC(__kmp_sched)) { __kmp_str_buf_print(buffer, "monotonic:"); } else if (SCHEDULE_HAS_NONMONOTONIC(__kmp_sched)) { __kmp_str_buf_print(buffer, "nonmonotonic:"); } if (__kmp_chunk) { switch (sched) { case kmp_sch_dynamic_chunked: __kmp_str_buf_print(buffer, "%s,%d'\n", "dynamic", __kmp_chunk); break; case kmp_sch_guided_iterative_chunked: case kmp_sch_guided_analytical_chunked: __kmp_str_buf_print(buffer, "%s,%d'\n", "guided", __kmp_chunk); break; case kmp_sch_trapezoidal: __kmp_str_buf_print(buffer, "%s,%d'\n", "trapezoidal", __kmp_chunk); break; case kmp_sch_static: case kmp_sch_static_chunked: case kmp_sch_static_balanced: case kmp_sch_static_greedy: __kmp_str_buf_print(buffer, "%s,%d'\n", "static", __kmp_chunk); break; case kmp_sch_static_steal: __kmp_str_buf_print(buffer, "%s,%d'\n", "static_steal", __kmp_chunk); break; case kmp_sch_auto: __kmp_str_buf_print(buffer, "%s,%d'\n", "auto", __kmp_chunk); break; default: KMP_ASSERT2(false, "Unhandled sched_type enumeration"); KMP_BUILTIN_UNREACHABLE; break; } } else { switch (sched) { case kmp_sch_dynamic_chunked: __kmp_str_buf_print(buffer, "%s'\n", "dynamic"); break; case kmp_sch_guided_iterative_chunked: case kmp_sch_guided_analytical_chunked: __kmp_str_buf_print(buffer, "%s'\n", "guided"); break; case kmp_sch_trapezoidal: __kmp_str_buf_print(buffer, "%s'\n", "trapezoidal"); break; case kmp_sch_static: case kmp_sch_static_chunked: case kmp_sch_static_balanced: case kmp_sch_static_greedy: __kmp_str_buf_print(buffer, "%s'\n", "static"); break; case kmp_sch_static_steal: __kmp_str_buf_print(buffer, "%s'\n", "static_steal"); break; case kmp_sch_auto: __kmp_str_buf_print(buffer, "%s'\n", "auto"); break; default: KMP_ASSERT2(false, "Unhandled sched_type enumeration"); KMP_BUILTIN_UNREACHABLE; break; } } } // __kmp_stg_print_omp_schedule #if KMP_USE_HIER_SCHED // ----------------------------------------------------------------------------- // KMP_DISP_HAND_THREAD static void __kmp_stg_parse_kmp_hand_thread(char const *name, char const *value, void *data) { __kmp_stg_parse_bool(name, value, &(__kmp_dispatch_hand_threading)); } // __kmp_stg_parse_kmp_hand_thread static void __kmp_stg_print_kmp_hand_thread(kmp_str_buf_t *buffer, char const *name, void *data) { __kmp_stg_print_bool(buffer, name, __kmp_dispatch_hand_threading); } // __kmp_stg_print_kmp_hand_thread #endif // ----------------------------------------------------------------------------- // KMP_FORCE_MONOTONIC_DYNAMIC_SCHEDULE static void __kmp_stg_parse_kmp_force_monotonic(char const *name, char const *value, void *data) { __kmp_stg_parse_bool(name, value, &(__kmp_force_monotonic)); } // __kmp_stg_parse_kmp_force_monotonic static void __kmp_stg_print_kmp_force_monotonic(kmp_str_buf_t *buffer, char const *name, void *data) { __kmp_stg_print_bool(buffer, name, __kmp_force_monotonic); } // __kmp_stg_print_kmp_force_monotonic // ----------------------------------------------------------------------------- // KMP_ATOMIC_MODE static void __kmp_stg_parse_atomic_mode(char const *name, char const *value, void *data) { // Modes: 0 -- do not change default; 1 -- Intel perf mode, 2 -- GOMP // compatibility mode. int mode = 0; int max = 1; #ifdef KMP_GOMP_COMPAT max = 2; #endif /* KMP_GOMP_COMPAT */ __kmp_stg_parse_int(name, value, 0, max, &mode); // TODO; parse_int is not very suitable for this case. In case of overflow it // is better to use // 0 rather that max value. if (mode > 0) { __kmp_atomic_mode = mode; } } // __kmp_stg_parse_atomic_mode static void __kmp_stg_print_atomic_mode(kmp_str_buf_t *buffer, char const *name, void *data) { __kmp_stg_print_int(buffer, name, __kmp_atomic_mode); } // __kmp_stg_print_atomic_mode // ----------------------------------------------------------------------------- // KMP_CONSISTENCY_CHECK static void __kmp_stg_parse_consistency_check(char const *name, char const *value, void *data) { if (!__kmp_strcasecmp_with_sentinel("all", value, 0)) { // Note, this will not work from kmp_set_defaults because th_cons stack was // not allocated // for existed thread(s) thus the first __kmp_push_ will break // with assertion. // TODO: allocate th_cons if called from kmp_set_defaults. __kmp_env_consistency_check = TRUE; } else if (!__kmp_strcasecmp_with_sentinel("none", value, 0)) { __kmp_env_consistency_check = FALSE; } else { KMP_WARNING(StgInvalidValue, name, value); } } // __kmp_stg_parse_consistency_check static void __kmp_stg_print_consistency_check(kmp_str_buf_t *buffer, char const *name, void *data) { #if KMP_DEBUG const char *value = NULL; if (__kmp_env_consistency_check) { value = "all"; } else { value = "none"; } if (value != NULL) { __kmp_stg_print_str(buffer, name, value); } #endif /* KMP_DEBUG */ } // __kmp_stg_print_consistency_check #if USE_ITT_BUILD // ----------------------------------------------------------------------------- // KMP_ITT_PREPARE_DELAY #if USE_ITT_NOTIFY static void __kmp_stg_parse_itt_prepare_delay(char const *name, char const *value, void *data) { // Experimental code: KMP_ITT_PREPARE_DELAY specifies numbert of loop // iterations. int delay = 0; __kmp_stg_parse_int(name, value, 0, INT_MAX, &delay); __kmp_itt_prepare_delay = delay; } // __kmp_str_parse_itt_prepare_delay static void __kmp_stg_print_itt_prepare_delay(kmp_str_buf_t *buffer, char const *name, void *data) { __kmp_stg_print_uint64(buffer, name, __kmp_itt_prepare_delay); } // __kmp_str_print_itt_prepare_delay #endif // USE_ITT_NOTIFY #endif /* USE_ITT_BUILD */ // ----------------------------------------------------------------------------- // KMP_MALLOC_POOL_INCR static void __kmp_stg_parse_malloc_pool_incr(char const *name, char const *value, void *data) { __kmp_stg_parse_size(name, value, KMP_MIN_MALLOC_POOL_INCR, KMP_MAX_MALLOC_POOL_INCR, NULL, &__kmp_malloc_pool_incr, 1); } // __kmp_stg_parse_malloc_pool_incr static void __kmp_stg_print_malloc_pool_incr(kmp_str_buf_t *buffer, char const *name, void *data) { __kmp_stg_print_size(buffer, name, __kmp_malloc_pool_incr); } // _kmp_stg_print_malloc_pool_incr #ifdef KMP_DEBUG // ----------------------------------------------------------------------------- // KMP_PAR_RANGE static void __kmp_stg_parse_par_range_env(char const *name, char const *value, void *data) { __kmp_stg_parse_par_range(name, value, &__kmp_par_range, __kmp_par_range_routine, __kmp_par_range_filename, &__kmp_par_range_lb, &__kmp_par_range_ub); } // __kmp_stg_parse_par_range_env static void __kmp_stg_print_par_range_env(kmp_str_buf_t *buffer, char const *name, void *data) { if (__kmp_par_range != 0) { __kmp_stg_print_str(buffer, name, par_range_to_print); } } // __kmp_stg_print_par_range_env #endif // ----------------------------------------------------------------------------- // KMP_GTID_MODE static void __kmp_stg_parse_gtid_mode(char const *name, char const *value, void *data) { // Modes: // 0 -- do not change default // 1 -- sp search // 2 -- use "keyed" TLS var, i.e. // pthread_getspecific(Linux* OS/OS X*) or TlsGetValue(Windows* OS) // 3 -- __declspec(thread) TLS var in tdata section int mode = 0; int max = 2; #ifdef KMP_TDATA_GTID max = 3; #endif /* KMP_TDATA_GTID */ __kmp_stg_parse_int(name, value, 0, max, &mode); // TODO; parse_int is not very suitable for this case. In case of overflow it // is better to use 0 rather that max value. if (mode == 0) { __kmp_adjust_gtid_mode = TRUE; } else { __kmp_gtid_mode = mode; __kmp_adjust_gtid_mode = FALSE; } } // __kmp_str_parse_gtid_mode static void __kmp_stg_print_gtid_mode(kmp_str_buf_t *buffer, char const *name, void *data) { if (__kmp_adjust_gtid_mode) { __kmp_stg_print_int(buffer, name, 0); } else { __kmp_stg_print_int(buffer, name, __kmp_gtid_mode); } } // __kmp_stg_print_gtid_mode // ----------------------------------------------------------------------------- // KMP_NUM_LOCKS_IN_BLOCK static void __kmp_stg_parse_lock_block(char const *name, char const *value, void *data) { __kmp_stg_parse_int(name, value, 0, KMP_INT_MAX, &__kmp_num_locks_in_block); } // __kmp_str_parse_lock_block static void __kmp_stg_print_lock_block(kmp_str_buf_t *buffer, char const *name, void *data) { __kmp_stg_print_int(buffer, name, __kmp_num_locks_in_block); } // __kmp_stg_print_lock_block // ----------------------------------------------------------------------------- // KMP_LOCK_KIND #if KMP_USE_DYNAMIC_LOCK #define KMP_STORE_LOCK_SEQ(a) (__kmp_user_lock_seq = lockseq_##a) #else #define KMP_STORE_LOCK_SEQ(a) #endif static void __kmp_stg_parse_lock_kind(char const *name, char const *value, void *data) { if (__kmp_init_user_locks) { KMP_WARNING(EnvLockWarn, name); return; } if (__kmp_str_match("tas", 2, value) || __kmp_str_match("test and set", 2, value) || __kmp_str_match("test_and_set", 2, value) || __kmp_str_match("test-and-set", 2, value) || __kmp_str_match("test andset", 2, value) || __kmp_str_match("test_andset", 2, value) || __kmp_str_match("test-andset", 2, value) || __kmp_str_match("testand set", 2, value) || __kmp_str_match("testand_set", 2, value) || __kmp_str_match("testand-set", 2, value) || __kmp_str_match("testandset", 2, value)) { __kmp_user_lock_kind = lk_tas; KMP_STORE_LOCK_SEQ(tas); } #if KMP_USE_FUTEX else if (__kmp_str_match("futex", 1, value)) { if (__kmp_futex_determine_capable()) { __kmp_user_lock_kind = lk_futex; KMP_STORE_LOCK_SEQ(futex); } else { KMP_WARNING(FutexNotSupported, name, value); } } #endif else if (__kmp_str_match("ticket", 2, value)) { __kmp_user_lock_kind = lk_ticket; KMP_STORE_LOCK_SEQ(ticket); } else if (__kmp_str_match("queuing", 1, value) || __kmp_str_match("queue", 1, value)) { __kmp_user_lock_kind = lk_queuing; KMP_STORE_LOCK_SEQ(queuing); } else if (__kmp_str_match("drdpa ticket", 1, value) || __kmp_str_match("drdpa_ticket", 1, value) || __kmp_str_match("drdpa-ticket", 1, value) || __kmp_str_match("drdpaticket", 1, value) || __kmp_str_match("drdpa", 1, value)) { __kmp_user_lock_kind = lk_drdpa; KMP_STORE_LOCK_SEQ(drdpa); } #if KMP_USE_ADAPTIVE_LOCKS else if (__kmp_str_match("adaptive", 1, value)) { if (__kmp_cpuinfo.flags.rtm) { // ??? Is cpuinfo available here? __kmp_user_lock_kind = lk_adaptive; KMP_STORE_LOCK_SEQ(adaptive); } else { KMP_WARNING(AdaptiveNotSupported, name, value); __kmp_user_lock_kind = lk_queuing; KMP_STORE_LOCK_SEQ(queuing); } } #endif // KMP_USE_ADAPTIVE_LOCKS #if KMP_USE_DYNAMIC_LOCK && KMP_USE_TSX else if (__kmp_str_match("rtm_queuing", 1, value)) { if (__kmp_cpuinfo.flags.rtm) { __kmp_user_lock_kind = lk_rtm_queuing; KMP_STORE_LOCK_SEQ(rtm_queuing); } else { KMP_WARNING(AdaptiveNotSupported, name, value); __kmp_user_lock_kind = lk_queuing; KMP_STORE_LOCK_SEQ(queuing); } } else if (__kmp_str_match("rtm_spin", 1, value)) { if (__kmp_cpuinfo.flags.rtm) { __kmp_user_lock_kind = lk_rtm_spin; KMP_STORE_LOCK_SEQ(rtm_spin); } else { KMP_WARNING(AdaptiveNotSupported, name, value); __kmp_user_lock_kind = lk_tas; KMP_STORE_LOCK_SEQ(queuing); } } else if (__kmp_str_match("hle", 1, value)) { __kmp_user_lock_kind = lk_hle; KMP_STORE_LOCK_SEQ(hle); } #endif else { KMP_WARNING(StgInvalidValue, name, value); } } static void __kmp_stg_print_lock_kind(kmp_str_buf_t *buffer, char const *name, void *data) { const char *value = NULL; switch (__kmp_user_lock_kind) { case lk_default: value = "default"; break; case lk_tas: value = "tas"; break; #if KMP_USE_FUTEX case lk_futex: value = "futex"; break; #endif #if KMP_USE_DYNAMIC_LOCK && KMP_USE_TSX case lk_rtm_queuing: value = "rtm_queuing"; break; case lk_rtm_spin: value = "rtm_spin"; break; case lk_hle: value = "hle"; break; #endif case lk_ticket: value = "ticket"; break; case lk_queuing: value = "queuing"; break; case lk_drdpa: value = "drdpa"; break; #if KMP_USE_ADAPTIVE_LOCKS case lk_adaptive: value = "adaptive"; break; #endif } if (value != NULL) { __kmp_stg_print_str(buffer, name, value); } } // ----------------------------------------------------------------------------- // KMP_SPIN_BACKOFF_PARAMS // KMP_SPIN_BACKOFF_PARAMS=max_backoff[,min_tick] (max backoff size, min tick // for machine pause) static void __kmp_stg_parse_spin_backoff_params(const char *name, const char *value, void *data) { const char *next = value; int total = 0; // Count elements that were set. It'll be used as an array size int prev_comma = FALSE; // For correct processing sequential commas int i; kmp_uint32 max_backoff = __kmp_spin_backoff_params.max_backoff; kmp_uint32 min_tick = __kmp_spin_backoff_params.min_tick; // Run only 3 iterations because it is enough to read two values or find a // syntax error for (i = 0; i < 3; i++) { SKIP_WS(next); if (*next == '\0') { break; } // Next character is not an integer or not a comma OR number of values > 2 // => end of list if (((*next < '0' || *next > '9') && *next != ',') || total > 2) { KMP_WARNING(EnvSyntaxError, name, value); return; } // The next character is ',' if (*next == ',') { // ',' is the first character if (total == 0 || prev_comma) { total++; } prev_comma = TRUE; next++; // skip ',' SKIP_WS(next); } // Next character is a digit if (*next >= '0' && *next <= '9') { int num; const char *buf = next; char const *msg = NULL; prev_comma = FALSE; SKIP_DIGITS(next); total++; const char *tmp = next; SKIP_WS(tmp); if ((*next == ' ' || *next == '\t') && (*tmp >= '0' && *tmp <= '9')) { KMP_WARNING(EnvSpacesNotAllowed, name, value); return; } num = __kmp_str_to_int(buf, *next); if (num <= 0) { // The number of retries should be > 0 msg = KMP_I18N_STR(ValueTooSmall); num = 1; } else if (num > KMP_INT_MAX) { msg = KMP_I18N_STR(ValueTooLarge); num = KMP_INT_MAX; } if (msg != NULL) { // Message is not empty. Print warning. KMP_WARNING(ParseSizeIntWarn, name, value, msg); KMP_INFORM(Using_int_Value, name, num); } if (total == 1) { max_backoff = num; } else if (total == 2) { min_tick = num; } } } KMP_DEBUG_ASSERT(total > 0); if (total <= 0) { KMP_WARNING(EnvSyntaxError, name, value); return; } __kmp_spin_backoff_params.max_backoff = max_backoff; __kmp_spin_backoff_params.min_tick = min_tick; } static void __kmp_stg_print_spin_backoff_params(kmp_str_buf_t *buffer, char const *name, void *data) { if (__kmp_env_format) { KMP_STR_BUF_PRINT_NAME_EX(name); } else { __kmp_str_buf_print(buffer, " %s='", name); } __kmp_str_buf_print(buffer, "%d,%d'\n", __kmp_spin_backoff_params.max_backoff, __kmp_spin_backoff_params.min_tick); } #if KMP_USE_ADAPTIVE_LOCKS // ----------------------------------------------------------------------------- // KMP_ADAPTIVE_LOCK_PROPS, KMP_SPECULATIVE_STATSFILE // Parse out values for the tunable parameters from a string of the form // KMP_ADAPTIVE_LOCK_PROPS=max_soft_retries[,max_badness] static void __kmp_stg_parse_adaptive_lock_props(const char *name, const char *value, void *data) { int max_retries = 0; int max_badness = 0; const char *next = value; int total = 0; // Count elements that were set. It'll be used as an array size int prev_comma = FALSE; // For correct processing sequential commas int i; // Save values in the structure __kmp_speculative_backoff_params // Run only 3 iterations because it is enough to read two values or find a // syntax error for (i = 0; i < 3; i++) { SKIP_WS(next); if (*next == '\0') { break; } // Next character is not an integer or not a comma OR number of values > 2 // => end of list if (((*next < '0' || *next > '9') && *next != ',') || total > 2) { KMP_WARNING(EnvSyntaxError, name, value); return; } // The next character is ',' if (*next == ',') { // ',' is the first character if (total == 0 || prev_comma) { total++; } prev_comma = TRUE; next++; // skip ',' SKIP_WS(next); } // Next character is a digit if (*next >= '0' && *next <= '9') { int num; const char *buf = next; char const *msg = NULL; prev_comma = FALSE; SKIP_DIGITS(next); total++; const char *tmp = next; SKIP_WS(tmp); if ((*next == ' ' || *next == '\t') && (*tmp >= '0' && *tmp <= '9')) { KMP_WARNING(EnvSpacesNotAllowed, name, value); return; } num = __kmp_str_to_int(buf, *next); if (num < 0) { // The number of retries should be >= 0 msg = KMP_I18N_STR(ValueTooSmall); num = 1; } else if (num > KMP_INT_MAX) { msg = KMP_I18N_STR(ValueTooLarge); num = KMP_INT_MAX; } if (msg != NULL) { // Message is not empty. Print warning. KMP_WARNING(ParseSizeIntWarn, name, value, msg); KMP_INFORM(Using_int_Value, name, num); } if (total == 1) { max_retries = num; } else if (total == 2) { max_badness = num; } } } KMP_DEBUG_ASSERT(total > 0); if (total <= 0) { KMP_WARNING(EnvSyntaxError, name, value); return; } __kmp_adaptive_backoff_params.max_soft_retries = max_retries; __kmp_adaptive_backoff_params.max_badness = max_badness; } static void __kmp_stg_print_adaptive_lock_props(kmp_str_buf_t *buffer, char const *name, void *data) { if (__kmp_env_format) { KMP_STR_BUF_PRINT_NAME_EX(name); } else { __kmp_str_buf_print(buffer, " %s='", name); } __kmp_str_buf_print(buffer, "%d,%d'\n", __kmp_adaptive_backoff_params.max_soft_retries, __kmp_adaptive_backoff_params.max_badness); } // __kmp_stg_print_adaptive_lock_props #if KMP_DEBUG_ADAPTIVE_LOCKS static void __kmp_stg_parse_speculative_statsfile(char const *name, char const *value, void *data) { __kmp_stg_parse_file(name, value, "", CCAST(char **, &__kmp_speculative_statsfile)); } // __kmp_stg_parse_speculative_statsfile static void __kmp_stg_print_speculative_statsfile(kmp_str_buf_t *buffer, char const *name, void *data) { if (__kmp_str_match("-", 0, __kmp_speculative_statsfile)) { __kmp_stg_print_str(buffer, name, "stdout"); } else { __kmp_stg_print_str(buffer, name, __kmp_speculative_statsfile); } } // __kmp_stg_print_speculative_statsfile #endif // KMP_DEBUG_ADAPTIVE_LOCKS #endif // KMP_USE_ADAPTIVE_LOCKS // ----------------------------------------------------------------------------- // KMP_HW_SUBSET (was KMP_PLACE_THREADS) // 2s16c,2t => 2S16C,2T => 2S16C \0 2T // Return KMP_HW_SUBSET preferred hardware type in case a token is ambiguously // short. The original KMP_HW_SUBSET environment variable had single letters: // s, c, t for sockets, cores, threads repsectively. static kmp_hw_t __kmp_hw_subset_break_tie(const kmp_hw_t *possible, size_t num_possible) { for (size_t i = 0; i < num_possible; ++i) { if (possible[i] == KMP_HW_THREAD) return KMP_HW_THREAD; else if (possible[i] == KMP_HW_CORE) return KMP_HW_CORE; else if (possible[i] == KMP_HW_SOCKET) return KMP_HW_SOCKET; } return KMP_HW_UNKNOWN; } // Return hardware type from string or HW_UNKNOWN if string cannot be parsed // This algorithm is very forgiving to the user in that, the instant it can // reduce the search space to one, it assumes that is the topology level the // user wanted, even if it is misspelled later in the token. static kmp_hw_t __kmp_stg_parse_hw_subset_name(char const *token) { size_t index, num_possible, token_length; kmp_hw_t possible[KMP_HW_LAST]; const char *end; // Find the end of the hardware token string end = token; token_length = 0; while (isalnum(*end) || *end == '_') { token_length++; end++; } // Set the possibilities to all hardware types num_possible = 0; KMP_FOREACH_HW_TYPE(type) { possible[num_possible++] = type; } // Eliminate hardware types by comparing the front of the token // with hardware names // In most cases, the first letter in the token will indicate exactly // which hardware type is parsed, e.g., 'C' = Core index = 0; while (num_possible > 1 && index < token_length) { size_t n = num_possible; char token_char = (char)toupper(token[index]); for (size_t i = 0; i < n; ++i) { const char *s; kmp_hw_t type = possible[i]; s = __kmp_hw_get_keyword(type, false); if (index < KMP_STRLEN(s)) { char c = (char)toupper(s[index]); // Mark hardware types for removal when the characters do not match if (c != token_char) { possible[i] = KMP_HW_UNKNOWN; num_possible--; } } } // Remove hardware types that this token cannot be size_t start = 0; for (size_t i = 0; i < n; ++i) { if (possible[i] != KMP_HW_UNKNOWN) { kmp_hw_t temp = possible[i]; possible[i] = possible[start]; possible[start] = temp; start++; } } KMP_ASSERT(start == num_possible); index++; } // Attempt to break a tie if user has very short token // (e.g., is 'T' tile or thread?) if (num_possible > 1) return __kmp_hw_subset_break_tie(possible, num_possible); if (num_possible == 1) return possible[0]; return KMP_HW_UNKNOWN; } // The longest observable sequence of items can only be HW_LAST length // The input string is usually short enough, let's use 512 limit for now #define MAX_T_LEVEL KMP_HW_LAST #define MAX_STR_LEN 512 static void __kmp_stg_parse_hw_subset(char const *name, char const *value, void *data) { // Value example: 1s,5c@3,2T // Which means "use 1 socket, 5 cores with offset 3, 2 threads per core" kmp_setting_t **rivals = (kmp_setting_t **)data; if (strcmp(name, "KMP_PLACE_THREADS") == 0) { KMP_INFORM(EnvVarDeprecated, name, "KMP_HW_SUBSET"); } if (__kmp_stg_check_rivals(name, value, rivals)) { return; } char *components[MAX_T_LEVEL]; char const *digits = "0123456789"; char input[MAX_STR_LEN]; size_t len = 0, mlen = MAX_STR_LEN; int level = 0; bool absolute = false; // Canonicalize the string (remove spaces, unify delimiters, etc.) char *pos = CCAST(char *, value); while (*pos && mlen) { if (*pos != ' ') { // skip spaces if (len == 0 && *pos == ':') { absolute = true; } else { input[len] = (char)(toupper(*pos)); if (input[len] == 'X') input[len] = ','; // unify delimiters of levels if (input[len] == 'O' && strchr(digits, *(pos + 1))) input[len] = '@'; // unify delimiters of offset len++; } } mlen--; pos++; } if (len == 0 || mlen == 0) { goto err; // contents is either empty or too long } input[len] = '\0'; // Split by delimiter pos = input; components[level++] = pos; while ((pos = strchr(pos, ','))) { if (level >= MAX_T_LEVEL) goto err; // too many components provided *pos = '\0'; // modify input and avoid more copying components[level++] = ++pos; // expect something after "," } __kmp_hw_subset = kmp_hw_subset_t::allocate(); if (absolute) __kmp_hw_subset->set_absolute(); // Check each component for (int i = 0; i < level; ++i) { int core_level = 0; char *core_components[MAX_T_LEVEL]; // Split possible core components by '&' delimiter pos = components[i]; core_components[core_level++] = pos; while ((pos = strchr(pos, '&'))) { if (core_level >= MAX_T_LEVEL) goto err; // too many different core types *pos = '\0'; // modify input and avoid more copying core_components[core_level++] = ++pos; // expect something after '&' } for (int j = 0; j < core_level; ++j) { char *offset_ptr; char *attr_ptr; int offset = 0; kmp_hw_attr_t attr; int num; // components may begin with an optional count of the number of resources if (isdigit(*core_components[j])) { num = atoi(core_components[j]); if (num <= 0) { goto err; // only positive integers are valid for count } pos = core_components[j] + strspn(core_components[j], digits); } else if (*core_components[j] == '*') { num = kmp_hw_subset_t::USE_ALL; pos = core_components[j] + 1; } else { num = kmp_hw_subset_t::USE_ALL; pos = core_components[j]; } offset_ptr = strchr(core_components[j], '@'); attr_ptr = strchr(core_components[j], ':'); if (offset_ptr) { offset = atoi(offset_ptr + 1); // save offset *offset_ptr = '\0'; // cut the offset from the component } if (attr_ptr) { attr.clear(); // save the attribute #if KMP_ARCH_X86 || KMP_ARCH_X86_64 if (__kmp_str_match("intel_core", -1, attr_ptr + 1)) { attr.set_core_type(KMP_HW_CORE_TYPE_CORE); } else if (__kmp_str_match("intel_atom", -1, attr_ptr + 1)) { attr.set_core_type(KMP_HW_CORE_TYPE_ATOM); } else #endif if (__kmp_str_match("eff", 3, attr_ptr + 1)) { const char *number = attr_ptr + 1; // skip the eff[iciency] token while (isalpha(*number)) number++; if (!isdigit(*number)) { goto err; } int efficiency = atoi(number); attr.set_core_eff(efficiency); } else { goto err; } *attr_ptr = '\0'; // cut the attribute from the component } // detect the component type kmp_hw_t type = __kmp_stg_parse_hw_subset_name(pos); if (type == KMP_HW_UNKNOWN) { goto err; } // Only the core type can have attributes if (attr && type != KMP_HW_CORE) goto err; // Must allow core be specified more than once if (type != KMP_HW_CORE && __kmp_hw_subset->specified(type)) { goto err; } __kmp_hw_subset->push_back(num, type, offset, attr); } } return; err: KMP_WARNING(AffHWSubsetInvalid, name, value); if (__kmp_hw_subset) { kmp_hw_subset_t::deallocate(__kmp_hw_subset); __kmp_hw_subset = nullptr; } return; } static void __kmp_stg_print_hw_subset(kmp_str_buf_t *buffer, char const *name, void *data) { kmp_str_buf_t buf; int depth; if (!__kmp_hw_subset) return; __kmp_str_buf_init(&buf); if (__kmp_env_format) KMP_STR_BUF_PRINT_NAME_EX(name); else __kmp_str_buf_print(buffer, " %s='", name); depth = __kmp_hw_subset->get_depth(); for (int i = 0; i < depth; ++i) { const auto &item = __kmp_hw_subset->at(i); if (i > 0) __kmp_str_buf_print(&buf, "%c", ','); for (int j = 0; j < item.num_attrs; ++j) { __kmp_str_buf_print(&buf, "%s%d%s", (j > 0 ? "&" : ""), item.num[j], __kmp_hw_get_keyword(item.type)); if (item.attr[j].is_core_type_valid()) __kmp_str_buf_print( &buf, ":%s", __kmp_hw_get_core_type_keyword(item.attr[j].get_core_type())); if (item.attr[j].is_core_eff_valid()) __kmp_str_buf_print(&buf, ":eff%d", item.attr[j].get_core_eff()); if (item.offset[j]) __kmp_str_buf_print(&buf, "@%d", item.offset[j]); } } __kmp_str_buf_print(buffer, "%s'\n", buf.str); __kmp_str_buf_free(&buf); } #if USE_ITT_BUILD // ----------------------------------------------------------------------------- // KMP_FORKJOIN_FRAMES static void __kmp_stg_parse_forkjoin_frames(char const *name, char const *value, void *data) { __kmp_stg_parse_bool(name, value, &__kmp_forkjoin_frames); } // __kmp_stg_parse_forkjoin_frames static void __kmp_stg_print_forkjoin_frames(kmp_str_buf_t *buffer, char const *name, void *data) { __kmp_stg_print_bool(buffer, name, __kmp_forkjoin_frames); } // __kmp_stg_print_forkjoin_frames // ----------------------------------------------------------------------------- // KMP_FORKJOIN_FRAMES_MODE static void __kmp_stg_parse_forkjoin_frames_mode(char const *name, char const *value, void *data) { __kmp_stg_parse_int(name, value, 0, 3, &__kmp_forkjoin_frames_mode); } // __kmp_stg_parse_forkjoin_frames static void __kmp_stg_print_forkjoin_frames_mode(kmp_str_buf_t *buffer, char const *name, void *data) { __kmp_stg_print_int(buffer, name, __kmp_forkjoin_frames_mode); } // __kmp_stg_print_forkjoin_frames #endif /* USE_ITT_BUILD */ // ----------------------------------------------------------------------------- // KMP_ENABLE_TASK_THROTTLING static void __kmp_stg_parse_task_throttling(char const *name, char const *value, void *data) { __kmp_stg_parse_bool(name, value, &__kmp_enable_task_throttling); } // __kmp_stg_parse_task_throttling static void __kmp_stg_print_task_throttling(kmp_str_buf_t *buffer, char const *name, void *data) { __kmp_stg_print_bool(buffer, name, __kmp_enable_task_throttling); } // __kmp_stg_print_task_throttling #if KMP_HAVE_MWAIT || KMP_HAVE_UMWAIT // ----------------------------------------------------------------------------- // KMP_USER_LEVEL_MWAIT static void __kmp_stg_parse_user_level_mwait(char const *name, char const *value, void *data) { __kmp_stg_parse_bool(name, value, &__kmp_user_level_mwait); } // __kmp_stg_parse_user_level_mwait static void __kmp_stg_print_user_level_mwait(kmp_str_buf_t *buffer, char const *name, void *data) { __kmp_stg_print_bool(buffer, name, __kmp_user_level_mwait); } // __kmp_stg_print_user_level_mwait // ----------------------------------------------------------------------------- // KMP_MWAIT_HINTS static void __kmp_stg_parse_mwait_hints(char const *name, char const *value, void *data) { __kmp_stg_parse_int(name, value, 0, INT_MAX, &__kmp_mwait_hints); } // __kmp_stg_parse_mwait_hints static void __kmp_stg_print_mwait_hints(kmp_str_buf_t *buffer, char const *name, void *data) { __kmp_stg_print_int(buffer, name, __kmp_mwait_hints); } // __kmp_stg_print_mwait_hints #endif // KMP_HAVE_MWAIT || KMP_HAVE_UMWAIT #if KMP_HAVE_UMWAIT // ----------------------------------------------------------------------------- // KMP_TPAUSE // 0 = don't use TPAUSE, 1 = use C0.1 state, 2 = use C0.2 state static void __kmp_stg_parse_tpause(char const *name, char const *value, void *data) { __kmp_stg_parse_int(name, value, 0, INT_MAX, &__kmp_tpause_state); if (__kmp_tpause_state != 0) { // The actual hint passed to tpause is: 0 for C0.2 and 1 for C0.1 if (__kmp_tpause_state == 2) // use C0.2 __kmp_tpause_hint = 0; // default was set to 1 for C0.1 } } // __kmp_stg_parse_tpause static void __kmp_stg_print_tpause(kmp_str_buf_t *buffer, char const *name, void *data) { __kmp_stg_print_int(buffer, name, __kmp_tpause_state); } // __kmp_stg_print_tpause #endif // KMP_HAVE_UMWAIT // ----------------------------------------------------------------------------- // OMP_DISPLAY_ENV static void __kmp_stg_parse_omp_display_env(char const *name, char const *value, void *data) { if (__kmp_str_match("VERBOSE", 1, value)) { __kmp_display_env_verbose = TRUE; } else { __kmp_stg_parse_bool(name, value, &__kmp_display_env); } } // __kmp_stg_parse_omp_display_env static void __kmp_stg_print_omp_display_env(kmp_str_buf_t *buffer, char const *name, void *data) { if (__kmp_display_env_verbose) { __kmp_stg_print_str(buffer, name, "VERBOSE"); } else { __kmp_stg_print_bool(buffer, name, __kmp_display_env); } } // __kmp_stg_print_omp_display_env static void __kmp_stg_parse_omp_cancellation(char const *name, char const *value, void *data) { if (TCR_4(__kmp_init_parallel)) { KMP_WARNING(EnvParallelWarn, name); return; } // read value before first parallel only __kmp_stg_parse_bool(name, value, &__kmp_omp_cancellation); } // __kmp_stg_parse_omp_cancellation static void __kmp_stg_print_omp_cancellation(kmp_str_buf_t *buffer, char const *name, void *data) { __kmp_stg_print_bool(buffer, name, __kmp_omp_cancellation); } // __kmp_stg_print_omp_cancellation #if OMPT_SUPPORT int __kmp_tool = 1; static void __kmp_stg_parse_omp_tool(char const *name, char const *value, void *data) { __kmp_stg_parse_bool(name, value, &__kmp_tool); } // __kmp_stg_parse_omp_tool static void __kmp_stg_print_omp_tool(kmp_str_buf_t *buffer, char const *name, void *data) { if (__kmp_env_format) { KMP_STR_BUF_PRINT_BOOL_EX(name, __kmp_tool, "enabled", "disabled"); } else { __kmp_str_buf_print(buffer, " %s=%s\n", name, __kmp_tool ? "enabled" : "disabled"); } } // __kmp_stg_print_omp_tool char *__kmp_tool_libraries = NULL; static void __kmp_stg_parse_omp_tool_libraries(char const *name, char const *value, void *data) { __kmp_stg_parse_str(name, value, &__kmp_tool_libraries); } // __kmp_stg_parse_omp_tool_libraries static void __kmp_stg_print_omp_tool_libraries(kmp_str_buf_t *buffer, char const *name, void *data) { if (__kmp_tool_libraries) __kmp_stg_print_str(buffer, name, __kmp_tool_libraries); else { if (__kmp_env_format) { KMP_STR_BUF_PRINT_NAME; } else { __kmp_str_buf_print(buffer, " %s", name); } __kmp_str_buf_print(buffer, ": %s\n", KMP_I18N_STR(NotDefined)); } } // __kmp_stg_print_omp_tool_libraries char *__kmp_tool_verbose_init = NULL; static void __kmp_stg_parse_omp_tool_verbose_init(char const *name, char const *value, void *data) { __kmp_stg_parse_str(name, value, &__kmp_tool_verbose_init); } // __kmp_stg_parse_omp_tool_libraries static void __kmp_stg_print_omp_tool_verbose_init(kmp_str_buf_t *buffer, char const *name, void *data) { if (__kmp_tool_verbose_init) __kmp_stg_print_str(buffer, name, __kmp_tool_verbose_init); else { if (__kmp_env_format) { KMP_STR_BUF_PRINT_NAME; } else { __kmp_str_buf_print(buffer, " %s", name); } __kmp_str_buf_print(buffer, ": %s\n", KMP_I18N_STR(NotDefined)); } } // __kmp_stg_print_omp_tool_verbose_init #endif // Table. static kmp_setting_t __kmp_stg_table[] = { {"KMP_ALL_THREADS", __kmp_stg_parse_device_thread_limit, NULL, NULL, 0, 0}, {"KMP_BLOCKTIME", __kmp_stg_parse_blocktime, __kmp_stg_print_blocktime, NULL, 0, 0}, {"KMP_USE_YIELD", __kmp_stg_parse_use_yield, __kmp_stg_print_use_yield, NULL, 0, 0}, {"KMP_DUPLICATE_LIB_OK", __kmp_stg_parse_duplicate_lib_ok, __kmp_stg_print_duplicate_lib_ok, NULL, 0, 0}, {"KMP_LIBRARY", __kmp_stg_parse_wait_policy, __kmp_stg_print_wait_policy, NULL, 0, 0}, {"KMP_DEVICE_THREAD_LIMIT", __kmp_stg_parse_device_thread_limit, __kmp_stg_print_device_thread_limit, NULL, 0, 0}, #if KMP_USE_MONITOR {"KMP_MONITOR_STACKSIZE", __kmp_stg_parse_monitor_stacksize, __kmp_stg_print_monitor_stacksize, NULL, 0, 0}, #endif {"KMP_SETTINGS", __kmp_stg_parse_settings, __kmp_stg_print_settings, NULL, 0, 0}, {"KMP_STACKOFFSET", __kmp_stg_parse_stackoffset, __kmp_stg_print_stackoffset, NULL, 0, 0}, {"KMP_STACKSIZE", __kmp_stg_parse_stacksize, __kmp_stg_print_stacksize, NULL, 0, 0}, {"KMP_STACKPAD", __kmp_stg_parse_stackpad, __kmp_stg_print_stackpad, NULL, 0, 0}, {"KMP_VERSION", __kmp_stg_parse_version, __kmp_stg_print_version, NULL, 0, 0}, {"KMP_WARNINGS", __kmp_stg_parse_warnings, __kmp_stg_print_warnings, NULL, 0, 0}, {"KMP_NESTING_MODE", __kmp_stg_parse_nesting_mode, __kmp_stg_print_nesting_mode, NULL, 0, 0}, {"OMP_NESTED", __kmp_stg_parse_nested, __kmp_stg_print_nested, NULL, 0, 0}, {"OMP_NUM_THREADS", __kmp_stg_parse_num_threads, __kmp_stg_print_num_threads, NULL, 0, 0}, {"OMP_STACKSIZE", __kmp_stg_parse_stacksize, __kmp_stg_print_stacksize, NULL, 0, 0}, {"KMP_TASKING", __kmp_stg_parse_tasking, __kmp_stg_print_tasking, NULL, 0, 0}, {"KMP_TASK_STEALING_CONSTRAINT", __kmp_stg_parse_task_stealing, __kmp_stg_print_task_stealing, NULL, 0, 0}, {"OMP_MAX_ACTIVE_LEVELS", __kmp_stg_parse_max_active_levels, __kmp_stg_print_max_active_levels, NULL, 0, 0}, {"OMP_DEFAULT_DEVICE", __kmp_stg_parse_default_device, __kmp_stg_print_default_device, NULL, 0, 0}, {"OMP_TARGET_OFFLOAD", __kmp_stg_parse_target_offload, __kmp_stg_print_target_offload, NULL, 0, 0}, {"OMP_MAX_TASK_PRIORITY", __kmp_stg_parse_max_task_priority, __kmp_stg_print_max_task_priority, NULL, 0, 0}, {"KMP_TASKLOOP_MIN_TASKS", __kmp_stg_parse_taskloop_min_tasks, __kmp_stg_print_taskloop_min_tasks, NULL, 0, 0}, {"OMP_THREAD_LIMIT", __kmp_stg_parse_thread_limit, __kmp_stg_print_thread_limit, NULL, 0, 0}, {"KMP_TEAMS_THREAD_LIMIT", __kmp_stg_parse_teams_thread_limit, __kmp_stg_print_teams_thread_limit, NULL, 0, 0}, {"OMP_NUM_TEAMS", __kmp_stg_parse_nteams, __kmp_stg_print_nteams, NULL, 0, 0}, {"OMP_TEAMS_THREAD_LIMIT", __kmp_stg_parse_teams_th_limit, __kmp_stg_print_teams_th_limit, NULL, 0, 0}, {"OMP_WAIT_POLICY", __kmp_stg_parse_wait_policy, __kmp_stg_print_wait_policy, NULL, 0, 0}, {"KMP_DISP_NUM_BUFFERS", __kmp_stg_parse_disp_buffers, __kmp_stg_print_disp_buffers, NULL, 0, 0}, #if KMP_NESTED_HOT_TEAMS {"KMP_HOT_TEAMS_MAX_LEVEL", __kmp_stg_parse_hot_teams_level, __kmp_stg_print_hot_teams_level, NULL, 0, 0}, {"KMP_HOT_TEAMS_MODE", __kmp_stg_parse_hot_teams_mode, __kmp_stg_print_hot_teams_mode, NULL, 0, 0}, #endif // KMP_NESTED_HOT_TEAMS #if KMP_HANDLE_SIGNALS {"KMP_HANDLE_SIGNALS", __kmp_stg_parse_handle_signals, __kmp_stg_print_handle_signals, NULL, 0, 0}, #endif #if KMP_ARCH_X86 || KMP_ARCH_X86_64 {"KMP_INHERIT_FP_CONTROL", __kmp_stg_parse_inherit_fp_control, __kmp_stg_print_inherit_fp_control, NULL, 0, 0}, #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ #ifdef KMP_GOMP_COMPAT {"GOMP_STACKSIZE", __kmp_stg_parse_stacksize, NULL, NULL, 0, 0}, #endif #ifdef KMP_DEBUG {"KMP_A_DEBUG", __kmp_stg_parse_a_debug, __kmp_stg_print_a_debug, NULL, 0, 0}, {"KMP_B_DEBUG", __kmp_stg_parse_b_debug, __kmp_stg_print_b_debug, NULL, 0, 0}, {"KMP_C_DEBUG", __kmp_stg_parse_c_debug, __kmp_stg_print_c_debug, NULL, 0, 0}, {"KMP_D_DEBUG", __kmp_stg_parse_d_debug, __kmp_stg_print_d_debug, NULL, 0, 0}, {"KMP_E_DEBUG", __kmp_stg_parse_e_debug, __kmp_stg_print_e_debug, NULL, 0, 0}, {"KMP_F_DEBUG", __kmp_stg_parse_f_debug, __kmp_stg_print_f_debug, NULL, 0, 0}, {"KMP_DEBUG", __kmp_stg_parse_debug, NULL, /* no print */ NULL, 0, 0}, {"KMP_DEBUG_BUF", __kmp_stg_parse_debug_buf, __kmp_stg_print_debug_buf, NULL, 0, 0}, {"KMP_DEBUG_BUF_ATOMIC", __kmp_stg_parse_debug_buf_atomic, __kmp_stg_print_debug_buf_atomic, NULL, 0, 0}, {"KMP_DEBUG_BUF_CHARS", __kmp_stg_parse_debug_buf_chars, __kmp_stg_print_debug_buf_chars, NULL, 0, 0}, {"KMP_DEBUG_BUF_LINES", __kmp_stg_parse_debug_buf_lines, __kmp_stg_print_debug_buf_lines, NULL, 0, 0}, {"KMP_DIAG", __kmp_stg_parse_diag, __kmp_stg_print_diag, NULL, 0, 0}, {"KMP_PAR_RANGE", __kmp_stg_parse_par_range_env, __kmp_stg_print_par_range_env, NULL, 0, 0}, #endif // KMP_DEBUG {"KMP_ALIGN_ALLOC", __kmp_stg_parse_align_alloc, __kmp_stg_print_align_alloc, NULL, 0, 0}, {"KMP_PLAIN_BARRIER", __kmp_stg_parse_barrier_branch_bit, __kmp_stg_print_barrier_branch_bit, NULL, 0, 0}, {"KMP_PLAIN_BARRIER_PATTERN", __kmp_stg_parse_barrier_pattern, __kmp_stg_print_barrier_pattern, NULL, 0, 0}, {"KMP_FORKJOIN_BARRIER", __kmp_stg_parse_barrier_branch_bit, __kmp_stg_print_barrier_branch_bit, NULL, 0, 0}, {"KMP_FORKJOIN_BARRIER_PATTERN", __kmp_stg_parse_barrier_pattern, __kmp_stg_print_barrier_pattern, NULL, 0, 0}, #if KMP_FAST_REDUCTION_BARRIER {"KMP_REDUCTION_BARRIER", __kmp_stg_parse_barrier_branch_bit, __kmp_stg_print_barrier_branch_bit, NULL, 0, 0}, {"KMP_REDUCTION_BARRIER_PATTERN", __kmp_stg_parse_barrier_pattern, __kmp_stg_print_barrier_pattern, NULL, 0, 0}, #endif {"KMP_ABORT_DELAY", __kmp_stg_parse_abort_delay, __kmp_stg_print_abort_delay, NULL, 0, 0}, {"KMP_CPUINFO_FILE", __kmp_stg_parse_cpuinfo_file, __kmp_stg_print_cpuinfo_file, NULL, 0, 0}, {"KMP_FORCE_REDUCTION", __kmp_stg_parse_force_reduction, __kmp_stg_print_force_reduction, NULL, 0, 0}, {"KMP_DETERMINISTIC_REDUCTION", __kmp_stg_parse_force_reduction, __kmp_stg_print_force_reduction, NULL, 0, 0}, {"KMP_STORAGE_MAP", __kmp_stg_parse_storage_map, __kmp_stg_print_storage_map, NULL, 0, 0}, {"KMP_ALL_THREADPRIVATE", __kmp_stg_parse_all_threadprivate, __kmp_stg_print_all_threadprivate, NULL, 0, 0}, {"KMP_FOREIGN_THREADS_THREADPRIVATE", __kmp_stg_parse_foreign_threads_threadprivate, __kmp_stg_print_foreign_threads_threadprivate, NULL, 0, 0}, #if KMP_AFFINITY_SUPPORTED {"KMP_AFFINITY", __kmp_stg_parse_affinity, __kmp_stg_print_affinity, NULL, 0, 0}, {"KMP_HIDDEN_HELPER_AFFINITY", __kmp_stg_parse_hh_affinity, __kmp_stg_print_hh_affinity, NULL, 0, 0}, #ifdef KMP_GOMP_COMPAT {"GOMP_CPU_AFFINITY", __kmp_stg_parse_gomp_cpu_affinity, NULL, /* no print */ NULL, 0, 0}, #endif /* KMP_GOMP_COMPAT */ {"OMP_PROC_BIND", __kmp_stg_parse_proc_bind, __kmp_stg_print_proc_bind, NULL, 0, 0}, {"KMP_TEAMS_PROC_BIND", __kmp_stg_parse_teams_proc_bind, __kmp_stg_print_teams_proc_bind, NULL, 0, 0}, {"OMP_PLACES", __kmp_stg_parse_places, __kmp_stg_print_places, NULL, 0, 0}, {"KMP_TOPOLOGY_METHOD", __kmp_stg_parse_topology_method, __kmp_stg_print_topology_method, NULL, 0, 0}, #else // KMP_AFFINITY is not supported on OS X*, nor is OMP_PLACES. // OMP_PROC_BIND and proc-bind-var are supported, however. {"OMP_PROC_BIND", __kmp_stg_parse_proc_bind, __kmp_stg_print_proc_bind, NULL, 0, 0}, #endif // KMP_AFFINITY_SUPPORTED {"OMP_DISPLAY_AFFINITY", __kmp_stg_parse_display_affinity, __kmp_stg_print_display_affinity, NULL, 0, 0}, {"OMP_AFFINITY_FORMAT", __kmp_stg_parse_affinity_format, __kmp_stg_print_affinity_format, NULL, 0, 0}, {"KMP_INIT_AT_FORK", __kmp_stg_parse_init_at_fork, __kmp_stg_print_init_at_fork, NULL, 0, 0}, {"KMP_SCHEDULE", __kmp_stg_parse_schedule, __kmp_stg_print_schedule, NULL, 0, 0}, {"OMP_SCHEDULE", __kmp_stg_parse_omp_schedule, __kmp_stg_print_omp_schedule, NULL, 0, 0}, #if KMP_USE_HIER_SCHED {"KMP_DISP_HAND_THREAD", __kmp_stg_parse_kmp_hand_thread, __kmp_stg_print_kmp_hand_thread, NULL, 0, 0}, #endif {"KMP_FORCE_MONOTONIC_DYNAMIC_SCHEDULE", __kmp_stg_parse_kmp_force_monotonic, __kmp_stg_print_kmp_force_monotonic, NULL, 0, 0}, {"KMP_ATOMIC_MODE", __kmp_stg_parse_atomic_mode, __kmp_stg_print_atomic_mode, NULL, 0, 0}, {"KMP_CONSISTENCY_CHECK", __kmp_stg_parse_consistency_check, __kmp_stg_print_consistency_check, NULL, 0, 0}, #if USE_ITT_BUILD && USE_ITT_NOTIFY {"KMP_ITT_PREPARE_DELAY", __kmp_stg_parse_itt_prepare_delay, __kmp_stg_print_itt_prepare_delay, NULL, 0, 0}, #endif /* USE_ITT_BUILD && USE_ITT_NOTIFY */ {"KMP_MALLOC_POOL_INCR", __kmp_stg_parse_malloc_pool_incr, __kmp_stg_print_malloc_pool_incr, NULL, 0, 0}, {"KMP_GTID_MODE", __kmp_stg_parse_gtid_mode, __kmp_stg_print_gtid_mode, NULL, 0, 0}, {"OMP_DYNAMIC", __kmp_stg_parse_omp_dynamic, __kmp_stg_print_omp_dynamic, NULL, 0, 0}, {"KMP_DYNAMIC_MODE", __kmp_stg_parse_kmp_dynamic_mode, __kmp_stg_print_kmp_dynamic_mode, NULL, 0, 0}, #ifdef USE_LOAD_BALANCE {"KMP_LOAD_BALANCE_INTERVAL", __kmp_stg_parse_ld_balance_interval, __kmp_stg_print_ld_balance_interval, NULL, 0, 0}, #endif {"KMP_NUM_LOCKS_IN_BLOCK", __kmp_stg_parse_lock_block, __kmp_stg_print_lock_block, NULL, 0, 0}, {"KMP_LOCK_KIND", __kmp_stg_parse_lock_kind, __kmp_stg_print_lock_kind, NULL, 0, 0}, {"KMP_SPIN_BACKOFF_PARAMS", __kmp_stg_parse_spin_backoff_params, __kmp_stg_print_spin_backoff_params, NULL, 0, 0}, #if KMP_USE_ADAPTIVE_LOCKS {"KMP_ADAPTIVE_LOCK_PROPS", __kmp_stg_parse_adaptive_lock_props, __kmp_stg_print_adaptive_lock_props, NULL, 0, 0}, #if KMP_DEBUG_ADAPTIVE_LOCKS {"KMP_SPECULATIVE_STATSFILE", __kmp_stg_parse_speculative_statsfile, __kmp_stg_print_speculative_statsfile, NULL, 0, 0}, #endif #endif // KMP_USE_ADAPTIVE_LOCKS {"KMP_PLACE_THREADS", __kmp_stg_parse_hw_subset, __kmp_stg_print_hw_subset, NULL, 0, 0}, {"KMP_HW_SUBSET", __kmp_stg_parse_hw_subset, __kmp_stg_print_hw_subset, NULL, 0, 0}, #if USE_ITT_BUILD {"KMP_FORKJOIN_FRAMES", __kmp_stg_parse_forkjoin_frames, __kmp_stg_print_forkjoin_frames, NULL, 0, 0}, {"KMP_FORKJOIN_FRAMES_MODE", __kmp_stg_parse_forkjoin_frames_mode, __kmp_stg_print_forkjoin_frames_mode, NULL, 0, 0}, #endif {"KMP_ENABLE_TASK_THROTTLING", __kmp_stg_parse_task_throttling, __kmp_stg_print_task_throttling, NULL, 0, 0}, {"OMP_DISPLAY_ENV", __kmp_stg_parse_omp_display_env, __kmp_stg_print_omp_display_env, NULL, 0, 0}, {"OMP_CANCELLATION", __kmp_stg_parse_omp_cancellation, __kmp_stg_print_omp_cancellation, NULL, 0, 0}, {"OMP_ALLOCATOR", __kmp_stg_parse_allocator, __kmp_stg_print_allocator, NULL, 0, 0}, {"LIBOMP_USE_HIDDEN_HELPER_TASK", __kmp_stg_parse_use_hidden_helper, __kmp_stg_print_use_hidden_helper, NULL, 0, 0}, {"LIBOMP_NUM_HIDDEN_HELPER_THREADS", __kmp_stg_parse_num_hidden_helper_threads, __kmp_stg_print_num_hidden_helper_threads, NULL, 0, 0}, #if OMPX_TASKGRAPH {"KMP_MAX_TDGS", __kmp_stg_parse_max_tdgs, __kmp_std_print_max_tdgs, NULL, 0, 0}, {"KMP_TDG_DOT", __kmp_stg_parse_tdg_dot, __kmp_stg_print_tdg_dot, NULL, 0, 0}, #endif #if OMPT_SUPPORT {"OMP_TOOL", __kmp_stg_parse_omp_tool, __kmp_stg_print_omp_tool, NULL, 0, 0}, {"OMP_TOOL_LIBRARIES", __kmp_stg_parse_omp_tool_libraries, __kmp_stg_print_omp_tool_libraries, NULL, 0, 0}, {"OMP_TOOL_VERBOSE_INIT", __kmp_stg_parse_omp_tool_verbose_init, __kmp_stg_print_omp_tool_verbose_init, NULL, 0, 0}, #endif #if KMP_HAVE_MWAIT || KMP_HAVE_UMWAIT {"KMP_USER_LEVEL_MWAIT", __kmp_stg_parse_user_level_mwait, __kmp_stg_print_user_level_mwait, NULL, 0, 0}, {"KMP_MWAIT_HINTS", __kmp_stg_parse_mwait_hints, __kmp_stg_print_mwait_hints, NULL, 0, 0}, #endif #if KMP_HAVE_UMWAIT {"KMP_TPAUSE", __kmp_stg_parse_tpause, __kmp_stg_print_tpause, NULL, 0, 0}, #endif {"", NULL, NULL, NULL, 0, 0}}; // settings static int const __kmp_stg_count = sizeof(__kmp_stg_table) / sizeof(kmp_setting_t); static inline kmp_setting_t *__kmp_stg_find(char const *name) { int i; if (name != NULL) { for (i = 0; i < __kmp_stg_count; ++i) { if (strcmp(__kmp_stg_table[i].name, name) == 0) { return &__kmp_stg_table[i]; } } } return NULL; } // __kmp_stg_find static int __kmp_stg_cmp(void const *_a, void const *_b) { const kmp_setting_t *a = RCAST(const kmp_setting_t *, _a); const kmp_setting_t *b = RCAST(const kmp_setting_t *, _b); // Process KMP_AFFINITY last. // It needs to come after OMP_PLACES and GOMP_CPU_AFFINITY. if (strcmp(a->name, "KMP_AFFINITY") == 0) { if (strcmp(b->name, "KMP_AFFINITY") == 0) { return 0; } return 1; } else if (strcmp(b->name, "KMP_AFFINITY") == 0) { return -1; } return strcmp(a->name, b->name); } // __kmp_stg_cmp static void __kmp_stg_init(void) { static int initialized = 0; if (!initialized) { // Sort table. qsort(__kmp_stg_table, __kmp_stg_count - 1, sizeof(kmp_setting_t), __kmp_stg_cmp); { // Initialize *_STACKSIZE data. kmp_setting_t *kmp_stacksize = __kmp_stg_find("KMP_STACKSIZE"); // 1st priority. #ifdef KMP_GOMP_COMPAT kmp_setting_t *gomp_stacksize = __kmp_stg_find("GOMP_STACKSIZE"); // 2nd priority. #endif kmp_setting_t *omp_stacksize = __kmp_stg_find("OMP_STACKSIZE"); // 3rd priority. // !!! volatile keyword is Intel(R) C Compiler bug CQ49908 workaround. // !!! Compiler does not understand rivals is used and optimizes out // assignments // !!! rivals[ i ++ ] = ...; static kmp_setting_t *volatile rivals[4]; static kmp_stg_ss_data_t kmp_data = {1, CCAST(kmp_setting_t **, rivals)}; #ifdef KMP_GOMP_COMPAT static kmp_stg_ss_data_t gomp_data = {1024, CCAST(kmp_setting_t **, rivals)}; #endif static kmp_stg_ss_data_t omp_data = {1024, CCAST(kmp_setting_t **, rivals)}; int i = 0; rivals[i++] = kmp_stacksize; #ifdef KMP_GOMP_COMPAT if (gomp_stacksize != NULL) { rivals[i++] = gomp_stacksize; } #endif rivals[i++] = omp_stacksize; rivals[i++] = NULL; kmp_stacksize->data = &kmp_data; #ifdef KMP_GOMP_COMPAT if (gomp_stacksize != NULL) { gomp_stacksize->data = &gomp_data; } #endif omp_stacksize->data = &omp_data; } { // Initialize KMP_LIBRARY and OMP_WAIT_POLICY data. kmp_setting_t *kmp_library = __kmp_stg_find("KMP_LIBRARY"); // 1st priority. kmp_setting_t *omp_wait_policy = __kmp_stg_find("OMP_WAIT_POLICY"); // 2nd priority. // !!! volatile keyword is Intel(R) C Compiler bug CQ49908 workaround. static kmp_setting_t *volatile rivals[3]; static kmp_stg_wp_data_t kmp_data = {0, CCAST(kmp_setting_t **, rivals)}; static kmp_stg_wp_data_t omp_data = {1, CCAST(kmp_setting_t **, rivals)}; int i = 0; rivals[i++] = kmp_library; if (omp_wait_policy != NULL) { rivals[i++] = omp_wait_policy; } rivals[i++] = NULL; kmp_library->data = &kmp_data; if (omp_wait_policy != NULL) { omp_wait_policy->data = &omp_data; } } { // Initialize KMP_DEVICE_THREAD_LIMIT and KMP_ALL_THREADS kmp_setting_t *kmp_device_thread_limit = __kmp_stg_find("KMP_DEVICE_THREAD_LIMIT"); // 1st priority. kmp_setting_t *kmp_all_threads = __kmp_stg_find("KMP_ALL_THREADS"); // 2nd priority. // !!! volatile keyword is Intel(R) C Compiler bug CQ49908 workaround. static kmp_setting_t *volatile rivals[3]; int i = 0; rivals[i++] = kmp_device_thread_limit; rivals[i++] = kmp_all_threads; rivals[i++] = NULL; kmp_device_thread_limit->data = CCAST(kmp_setting_t **, rivals); kmp_all_threads->data = CCAST(kmp_setting_t **, rivals); } { // Initialize KMP_HW_SUBSET and KMP_PLACE_THREADS // 1st priority kmp_setting_t *kmp_hw_subset = __kmp_stg_find("KMP_HW_SUBSET"); // 2nd priority kmp_setting_t *kmp_place_threads = __kmp_stg_find("KMP_PLACE_THREADS"); // !!! volatile keyword is Intel(R) C Compiler bug CQ49908 workaround. static kmp_setting_t *volatile rivals[3]; int i = 0; rivals[i++] = kmp_hw_subset; rivals[i++] = kmp_place_threads; rivals[i++] = NULL; kmp_hw_subset->data = CCAST(kmp_setting_t **, rivals); kmp_place_threads->data = CCAST(kmp_setting_t **, rivals); } #if KMP_AFFINITY_SUPPORTED { // Initialize KMP_AFFINITY, GOMP_CPU_AFFINITY, and OMP_PROC_BIND data. kmp_setting_t *kmp_affinity = __kmp_stg_find("KMP_AFFINITY"); // 1st priority. KMP_DEBUG_ASSERT(kmp_affinity != NULL); #ifdef KMP_GOMP_COMPAT kmp_setting_t *gomp_cpu_affinity = __kmp_stg_find("GOMP_CPU_AFFINITY"); // 2nd priority. KMP_DEBUG_ASSERT(gomp_cpu_affinity != NULL); #endif kmp_setting_t *omp_proc_bind = __kmp_stg_find("OMP_PROC_BIND"); // 3rd priority. KMP_DEBUG_ASSERT(omp_proc_bind != NULL); // !!! volatile keyword is Intel(R) C Compiler bug CQ49908 workaround. static kmp_setting_t *volatile rivals[4]; int i = 0; rivals[i++] = kmp_affinity; #ifdef KMP_GOMP_COMPAT rivals[i++] = gomp_cpu_affinity; gomp_cpu_affinity->data = CCAST(kmp_setting_t **, rivals); #endif rivals[i++] = omp_proc_bind; omp_proc_bind->data = CCAST(kmp_setting_t **, rivals); rivals[i++] = NULL; static kmp_setting_t *volatile places_rivals[4]; i = 0; kmp_setting_t *omp_places = __kmp_stg_find("OMP_PLACES"); // 3rd priority. KMP_DEBUG_ASSERT(omp_places != NULL); places_rivals[i++] = kmp_affinity; #ifdef KMP_GOMP_COMPAT places_rivals[i++] = gomp_cpu_affinity; #endif places_rivals[i++] = omp_places; omp_places->data = CCAST(kmp_setting_t **, places_rivals); places_rivals[i++] = NULL; } #else // KMP_AFFINITY not supported, so OMP_PROC_BIND has no rivals. // OMP_PLACES not supported yet. #endif // KMP_AFFINITY_SUPPORTED { // Initialize KMP_DETERMINISTIC_REDUCTION and KMP_FORCE_REDUCTION data. kmp_setting_t *kmp_force_red = __kmp_stg_find("KMP_FORCE_REDUCTION"); // 1st priority. kmp_setting_t *kmp_determ_red = __kmp_stg_find("KMP_DETERMINISTIC_REDUCTION"); // 2nd priority. // !!! volatile keyword is Intel(R) C Compiler bug CQ49908 workaround. static kmp_setting_t *volatile rivals[3]; static kmp_stg_fr_data_t force_data = {1, CCAST(kmp_setting_t **, rivals)}; static kmp_stg_fr_data_t determ_data = {0, CCAST(kmp_setting_t **, rivals)}; int i = 0; rivals[i++] = kmp_force_red; if (kmp_determ_red != NULL) { rivals[i++] = kmp_determ_red; } rivals[i++] = NULL; kmp_force_red->data = &force_data; if (kmp_determ_red != NULL) { kmp_determ_red->data = &determ_data; } } initialized = 1; } // Reset flags. int i; for (i = 0; i < __kmp_stg_count; ++i) { __kmp_stg_table[i].set = 0; } } // __kmp_stg_init static void __kmp_stg_parse(char const *name, char const *value) { // On Windows* OS there are some nameless variables like "C:=C:\" (yeah, // really nameless, they are presented in environment block as // "=C:=C\\\x00=D:=D:\\\x00...", so let us skip them. if (name[0] == 0) { return; } if (value != NULL) { kmp_setting_t *setting = __kmp_stg_find(name); if (setting != NULL) { setting->parse(name, value, setting->data); setting->defined = 1; } } } // __kmp_stg_parse static int __kmp_stg_check_rivals( // 0 -- Ok, 1 -- errors found. char const *name, // Name of variable. char const *value, // Value of the variable. kmp_setting_t **rivals // List of rival settings (must include current one). ) { if (rivals == NULL) { return 0; } // Loop thru higher priority settings (listed before current). int i = 0; for (; strcmp(rivals[i]->name, name) != 0; i++) { KMP_DEBUG_ASSERT(rivals[i] != NULL); #if KMP_AFFINITY_SUPPORTED if (rivals[i] == __kmp_affinity_notype) { // If KMP_AFFINITY is specified without a type name, // it does not rival OMP_PROC_BIND or GOMP_CPU_AFFINITY. continue; } #endif if (rivals[i]->set) { KMP_WARNING(StgIgnored, name, rivals[i]->name); return 1; } } ++i; // Skip current setting. return 0; } // __kmp_stg_check_rivals static int __kmp_env_toPrint(char const *name, int flag) { int rc = 0; kmp_setting_t *setting = __kmp_stg_find(name); if (setting != NULL) { rc = setting->defined; if (flag >= 0) { setting->defined = flag; } } return rc; } #if defined(KMP_DEBUG) && KMP_AFFINITY_SUPPORTED static void __kmp_print_affinity_settings(const kmp_affinity_t *affinity) { K_DIAG(1, ("%s:\n", affinity->env_var)); K_DIAG(1, (" type : %d\n", affinity->type)); K_DIAG(1, (" compact : %d\n", affinity->compact)); K_DIAG(1, (" offset : %d\n", affinity->offset)); K_DIAG(1, (" verbose : %u\n", affinity->flags.verbose)); K_DIAG(1, (" warnings : %u\n", affinity->flags.warnings)); K_DIAG(1, (" respect : %u\n", affinity->flags.respect)); K_DIAG(1, (" reset : %u\n", affinity->flags.reset)); K_DIAG(1, (" dups : %u\n", affinity->flags.dups)); K_DIAG(1, (" gran : %d\n", (int)affinity->gran)); KMP_DEBUG_ASSERT(affinity->type != affinity_default); } #endif static void __kmp_aux_env_initialize(kmp_env_blk_t *block) { char const *value; /* OMP_NUM_THREADS */ value = __kmp_env_blk_var(block, "OMP_NUM_THREADS"); if (value) { ompc_set_num_threads(__kmp_dflt_team_nth); } /* KMP_BLOCKTIME */ value = __kmp_env_blk_var(block, "KMP_BLOCKTIME"); if (value) { int gtid, tid; kmp_info_t *thread; gtid = __kmp_entry_gtid(); tid = __kmp_tid_from_gtid(gtid); thread = __kmp_thread_from_gtid(gtid); __kmp_aux_set_blocktime(__kmp_dflt_blocktime, thread, tid); } /* OMP_NESTED */ value = __kmp_env_blk_var(block, "OMP_NESTED"); if (value) { ompc_set_nested(__kmp_dflt_max_active_levels > 1); } /* OMP_DYNAMIC */ value = __kmp_env_blk_var(block, "OMP_DYNAMIC"); if (value) { ompc_set_dynamic(__kmp_global.g.g_dynamic); } } void __kmp_env_initialize(char const *string) { kmp_env_blk_t block; int i; __kmp_stg_init(); // Hack!!! if (string == NULL) { // __kmp_max_nth = __kmp_sys_max_nth; __kmp_threads_capacity = __kmp_initial_threads_capacity(__kmp_dflt_team_nth_ub); } __kmp_env_blk_init(&block, string); // update the set flag on all entries that have an env var for (i = 0; i < block.count; ++i) { if ((block.vars[i].name == NULL) || (*block.vars[i].name == '\0')) { continue; } if (block.vars[i].value == NULL) { continue; } kmp_setting_t *setting = __kmp_stg_find(block.vars[i].name); if (setting != NULL) { setting->set = 1; } } // We need to know if blocktime was set when processing OMP_WAIT_POLICY blocktime_str = __kmp_env_blk_var(&block, "KMP_BLOCKTIME"); // Special case. If we parse environment, not a string, process KMP_WARNINGS // first. if (string == NULL) { char const *name = "KMP_WARNINGS"; char const *value = __kmp_env_blk_var(&block, name); __kmp_stg_parse(name, value); } #if KMP_AFFINITY_SUPPORTED // Special case. KMP_AFFINITY is not a rival to other affinity env vars // if no affinity type is specified. We want to allow // KMP_AFFINITY=[no],verbose/[no]warnings/etc. to be enabled when // specifying the affinity type via GOMP_CPU_AFFINITY or the OMP 4.0 // affinity mechanism. __kmp_affinity_notype = NULL; char const *aff_str = __kmp_env_blk_var(&block, "KMP_AFFINITY"); if (aff_str != NULL) { // Check if the KMP_AFFINITY type is specified in the string. // We just search the string for "compact", "scatter", etc. // without really parsing the string. The syntax of the // KMP_AFFINITY env var is such that none of the affinity // type names can appear anywhere other that the type // specifier, even as substrings. // // I can't find a case-insensitive version of strstr on Windows* OS. // Use the case-sensitive version for now. AIX does the same. #if KMP_OS_WINDOWS || KMP_OS_AIX #define FIND strstr #else #define FIND strcasestr #endif if ((FIND(aff_str, "none") == NULL) && (FIND(aff_str, "physical") == NULL) && (FIND(aff_str, "logical") == NULL) && (FIND(aff_str, "compact") == NULL) && (FIND(aff_str, "scatter") == NULL) && (FIND(aff_str, "explicit") == NULL) && (FIND(aff_str, "balanced") == NULL) && (FIND(aff_str, "disabled") == NULL)) { __kmp_affinity_notype = __kmp_stg_find("KMP_AFFINITY"); } else { // A new affinity type is specified. // Reset the affinity flags to their default values, // in case this is called from kmp_set_defaults(). __kmp_affinity.type = affinity_default; __kmp_affinity.gran = KMP_HW_UNKNOWN; __kmp_affinity_top_method = affinity_top_method_default; __kmp_affinity.flags.respect = affinity_respect_mask_default; } #undef FIND // Also reset the affinity flags if OMP_PROC_BIND is specified. aff_str = __kmp_env_blk_var(&block, "OMP_PROC_BIND"); if (aff_str != NULL) { __kmp_affinity.type = affinity_default; __kmp_affinity.gran = KMP_HW_UNKNOWN; __kmp_affinity_top_method = affinity_top_method_default; __kmp_affinity.flags.respect = affinity_respect_mask_default; } } #endif /* KMP_AFFINITY_SUPPORTED */ // Set up the nested proc bind type vector. if (__kmp_nested_proc_bind.bind_types == NULL) { __kmp_nested_proc_bind.bind_types = (kmp_proc_bind_t *)KMP_INTERNAL_MALLOC(sizeof(kmp_proc_bind_t)); if (__kmp_nested_proc_bind.bind_types == NULL) { KMP_FATAL(MemoryAllocFailed); } __kmp_nested_proc_bind.size = 1; __kmp_nested_proc_bind.used = 1; #if KMP_AFFINITY_SUPPORTED __kmp_nested_proc_bind.bind_types[0] = proc_bind_default; #else // default proc bind is false if affinity not supported __kmp_nested_proc_bind.bind_types[0] = proc_bind_false; #endif } // Set up the affinity format ICV // Grab the default affinity format string from the message catalog kmp_msg_t m = __kmp_msg_format(kmp_i18n_msg_AffFormatDefault, "%P", "%i", "%n", "%A"); KMP_DEBUG_ASSERT(KMP_STRLEN(m.str) < KMP_AFFINITY_FORMAT_SIZE); if (__kmp_affinity_format == NULL) { __kmp_affinity_format = (char *)KMP_INTERNAL_MALLOC(sizeof(char) * KMP_AFFINITY_FORMAT_SIZE); } KMP_STRCPY_S(__kmp_affinity_format, KMP_AFFINITY_FORMAT_SIZE, m.str); __kmp_str_free(&m.str); // Now process all of the settings. for (i = 0; i < block.count; ++i) { __kmp_stg_parse(block.vars[i].name, block.vars[i].value); } // If user locks have been allocated yet, don't reset the lock vptr table. if (!__kmp_init_user_locks) { if (__kmp_user_lock_kind == lk_default) { __kmp_user_lock_kind = lk_queuing; } #if KMP_USE_DYNAMIC_LOCK __kmp_init_dynamic_user_locks(); #else __kmp_set_user_lock_vptrs(__kmp_user_lock_kind); #endif } else { KMP_DEBUG_ASSERT(string != NULL); // kmp_set_defaults() was called KMP_DEBUG_ASSERT(__kmp_user_lock_kind != lk_default); // Binds lock functions again to follow the transition between different // KMP_CONSISTENCY_CHECK values. Calling this again is harmless as long // as we do not allow lock kind changes after making a call to any // user lock functions (true). #if KMP_USE_DYNAMIC_LOCK __kmp_init_dynamic_user_locks(); #else __kmp_set_user_lock_vptrs(__kmp_user_lock_kind); #endif } #if KMP_AFFINITY_SUPPORTED if (!TCR_4(__kmp_init_middle)) { #if KMP_USE_HWLOC // Force using hwloc when either tiles or numa nodes requested within // KMP_HW_SUBSET or granularity setting and no other topology method // is requested if (__kmp_hw_subset && __kmp_affinity_top_method == affinity_top_method_default) if (__kmp_hw_subset->specified(KMP_HW_NUMA) || __kmp_hw_subset->specified(KMP_HW_TILE) || __kmp_affinity.gran == KMP_HW_TILE || __kmp_affinity.gran == KMP_HW_NUMA) __kmp_affinity_top_method = affinity_top_method_hwloc; // Force using hwloc when tiles or numa nodes requested for OMP_PLACES if (__kmp_affinity.gran == KMP_HW_NUMA || __kmp_affinity.gran == KMP_HW_TILE) __kmp_affinity_top_method = affinity_top_method_hwloc; #endif // Determine if the machine/OS is actually capable of supporting // affinity. const char *var = "KMP_AFFINITY"; KMPAffinity::pick_api(); #if KMP_USE_HWLOC // If Hwloc topology discovery was requested but affinity was also disabled, // then tell user that Hwloc request is being ignored and use default // topology discovery method. if (__kmp_affinity_top_method == affinity_top_method_hwloc && __kmp_affinity_dispatch->get_api_type() != KMPAffinity::HWLOC) { KMP_WARNING(AffIgnoringHwloc, var); __kmp_affinity_top_method = affinity_top_method_all; } #endif if (__kmp_affinity.type == affinity_disabled) { KMP_AFFINITY_DISABLE(); } else if (!KMP_AFFINITY_CAPABLE()) { __kmp_affinity_dispatch->determine_capable(var); if (!KMP_AFFINITY_CAPABLE()) { if (__kmp_affinity.flags.verbose || (__kmp_affinity.flags.warnings && (__kmp_affinity.type != affinity_default) && (__kmp_affinity.type != affinity_none) && (__kmp_affinity.type != affinity_disabled))) { KMP_WARNING(AffNotSupported, var); } __kmp_affinity.type = affinity_disabled; __kmp_affinity.flags.respect = FALSE; __kmp_affinity.gran = KMP_HW_THREAD; } } if (__kmp_affinity.type == affinity_disabled) { __kmp_nested_proc_bind.bind_types[0] = proc_bind_false; } else if (__kmp_nested_proc_bind.bind_types[0] == proc_bind_true) { // OMP_PROC_BIND=true maps to OMP_PROC_BIND=spread. __kmp_nested_proc_bind.bind_types[0] = proc_bind_spread; } if (KMP_AFFINITY_CAPABLE()) { #if KMP_GROUP_AFFINITY // This checks to see if the initial affinity mask is equal // to a single windows processor group. If it is, then we do // not respect the initial affinity mask and instead, use the // entire machine. bool exactly_one_group = false; if (__kmp_num_proc_groups > 1) { int group; bool within_one_group; // Get the initial affinity mask and determine if it is // contained within a single group. kmp_affin_mask_t *init_mask; KMP_CPU_ALLOC(init_mask); __kmp_get_system_affinity(init_mask, TRUE); group = __kmp_get_proc_group(init_mask); within_one_group = (group >= 0); // If the initial affinity is within a single group, // then determine if it is equal to that single group. if (within_one_group) { DWORD num_bits_in_group = __kmp_GetActiveProcessorCount(group); DWORD num_bits_in_mask = 0; for (int bit = init_mask->begin(); bit != init_mask->end(); bit = init_mask->next(bit)) num_bits_in_mask++; exactly_one_group = (num_bits_in_group == num_bits_in_mask); } KMP_CPU_FREE(init_mask); } // Handle the Win 64 group affinity stuff if there are multiple // processor groups, or if the user requested it, and OMP 4.0 // affinity is not in effect. if (__kmp_num_proc_groups > 1 && __kmp_affinity.type == affinity_default && __kmp_nested_proc_bind.bind_types[0] == proc_bind_default) { // Do not respect the initial processor affinity mask if it is assigned // exactly one Windows Processor Group since this is interpreted as the // default OS assignment. Not respecting the mask allows the runtime to // use all the logical processors in all groups. if (__kmp_affinity.flags.respect == affinity_respect_mask_default && exactly_one_group) { __kmp_affinity.flags.respect = FALSE; } // Use compact affinity with anticipation of pinning to at least the // group granularity since threads can only be bound to one group. if (__kmp_affinity.type == affinity_default) { __kmp_affinity.type = affinity_compact; __kmp_nested_proc_bind.bind_types[0] = proc_bind_intel; } if (__kmp_hh_affinity.type == affinity_default) __kmp_hh_affinity.type = affinity_compact; if (__kmp_affinity_top_method == affinity_top_method_default) __kmp_affinity_top_method = affinity_top_method_all; if (__kmp_affinity.gran == KMP_HW_UNKNOWN) __kmp_affinity.gran = KMP_HW_PROC_GROUP; if (__kmp_hh_affinity.gran == KMP_HW_UNKNOWN) __kmp_hh_affinity.gran = KMP_HW_PROC_GROUP; } else #endif /* KMP_GROUP_AFFINITY */ { if (__kmp_affinity.flags.respect == affinity_respect_mask_default) { #if KMP_GROUP_AFFINITY if (__kmp_num_proc_groups > 1 && exactly_one_group) { __kmp_affinity.flags.respect = FALSE; } else #endif /* KMP_GROUP_AFFINITY */ { __kmp_affinity.flags.respect = TRUE; } } if ((__kmp_nested_proc_bind.bind_types[0] != proc_bind_intel) && (__kmp_nested_proc_bind.bind_types[0] != proc_bind_default)) { + if (__kmp_nested_proc_bind.bind_types[0] == proc_bind_false) + __kmp_affinity.type = affinity_none; if (__kmp_affinity.type == affinity_default) { __kmp_affinity.type = affinity_compact; __kmp_affinity.flags.dups = FALSE; } } else if (__kmp_affinity.type == affinity_default) { #if KMP_MIC_SUPPORTED if (__kmp_mic_type != non_mic) { __kmp_nested_proc_bind.bind_types[0] = proc_bind_intel; } else #endif { __kmp_nested_proc_bind.bind_types[0] = proc_bind_false; } #if KMP_MIC_SUPPORTED if (__kmp_mic_type != non_mic) { __kmp_affinity.type = affinity_scatter; } else #endif { __kmp_affinity.type = affinity_none; } } if (__kmp_hh_affinity.type == affinity_default) __kmp_hh_affinity.type = affinity_none; if ((__kmp_affinity.gran == KMP_HW_UNKNOWN) && (__kmp_affinity.gran_levels < 0)) { #if KMP_MIC_SUPPORTED if (__kmp_mic_type != non_mic) { __kmp_affinity.gran = KMP_HW_THREAD; } else #endif { __kmp_affinity.gran = KMP_HW_CORE; } } if ((__kmp_hh_affinity.gran == KMP_HW_UNKNOWN) && (__kmp_hh_affinity.gran_levels < 0)) { #if KMP_MIC_SUPPORTED if (__kmp_mic_type != non_mic) { __kmp_hh_affinity.gran = KMP_HW_THREAD; } else #endif { __kmp_hh_affinity.gran = KMP_HW_CORE; } } if (__kmp_affinity_top_method == affinity_top_method_default) { __kmp_affinity_top_method = affinity_top_method_all; } } } else { // If affinity is disabled, then still need to assign topology method // to attempt machine detection and affinity types if (__kmp_affinity_top_method == affinity_top_method_default) __kmp_affinity_top_method = affinity_top_method_all; if (__kmp_affinity.type == affinity_default) __kmp_affinity.type = affinity_disabled; if (__kmp_hh_affinity.type == affinity_default) __kmp_hh_affinity.type = affinity_disabled; } #ifdef KMP_DEBUG for (const kmp_affinity_t *affinity : __kmp_affinities) __kmp_print_affinity_settings(affinity); KMP_DEBUG_ASSERT(__kmp_nested_proc_bind.bind_types[0] != proc_bind_default); K_DIAG(1, ("__kmp_nested_proc_bind.bind_types[0] == %d\n", __kmp_nested_proc_bind.bind_types[0])); #endif } #endif /* KMP_AFFINITY_SUPPORTED */ // Post-initialization step: some env. vars need their value's further // processing if (string != NULL) { // kmp_set_defaults() was called __kmp_aux_env_initialize(&block); } __kmp_env_blk_free(&block); KMP_MB(); } // __kmp_env_initialize void __kmp_env_print() { kmp_env_blk_t block; int i; kmp_str_buf_t buffer; __kmp_stg_init(); __kmp_str_buf_init(&buffer); __kmp_env_blk_init(&block, NULL); __kmp_env_blk_sort(&block); // Print real environment values. __kmp_str_buf_print(&buffer, "\n%s\n\n", KMP_I18N_STR(UserSettings)); for (i = 0; i < block.count; ++i) { char const *name = block.vars[i].name; char const *value = block.vars[i].value; if ((KMP_STRLEN(name) > 4 && strncmp(name, "KMP_", 4) == 0) || strncmp(name, "OMP_", 4) == 0 #ifdef KMP_GOMP_COMPAT || strncmp(name, "GOMP_", 5) == 0 #endif // KMP_GOMP_COMPAT ) { __kmp_str_buf_print(&buffer, " %s=%s\n", name, value); } } __kmp_str_buf_print(&buffer, "\n"); // Print internal (effective) settings. __kmp_str_buf_print(&buffer, "%s\n\n", KMP_I18N_STR(EffectiveSettings)); for (int i = 0; i < __kmp_stg_count; ++i) { if (__kmp_stg_table[i].print != NULL) { __kmp_stg_table[i].print(&buffer, __kmp_stg_table[i].name, __kmp_stg_table[i].data); } } __kmp_printf("%s", buffer.str); __kmp_env_blk_free(&block); __kmp_str_buf_free(&buffer); __kmp_printf("\n"); } // __kmp_env_print void __kmp_env_print_2() { __kmp_display_env_impl(__kmp_display_env, __kmp_display_env_verbose); } // __kmp_env_print_2 void __kmp_display_env_impl(int display_env, int display_env_verbose) { kmp_env_blk_t block; kmp_str_buf_t buffer; __kmp_env_format = 1; __kmp_stg_init(); __kmp_str_buf_init(&buffer); __kmp_env_blk_init(&block, NULL); __kmp_env_blk_sort(&block); __kmp_str_buf_print(&buffer, "\n%s\n", KMP_I18N_STR(DisplayEnvBegin)); __kmp_str_buf_print(&buffer, " _OPENMP='%d'\n", __kmp_openmp_version); for (int i = 0; i < __kmp_stg_count; ++i) { if (__kmp_stg_table[i].print != NULL && ((display_env && strncmp(__kmp_stg_table[i].name, "OMP_", 4) == 0) || display_env_verbose)) { __kmp_stg_table[i].print(&buffer, __kmp_stg_table[i].name, __kmp_stg_table[i].data); } } __kmp_str_buf_print(&buffer, "%s\n", KMP_I18N_STR(DisplayEnvEnd)); __kmp_str_buf_print(&buffer, "\n"); __kmp_printf("%s", buffer.str); __kmp_env_blk_free(&block); __kmp_str_buf_free(&buffer); __kmp_printf("\n"); } #if OMPD_SUPPORT // Dump environment variables for OMPD void __kmp_env_dump() { kmp_env_blk_t block; kmp_str_buf_t buffer, env, notdefined; __kmp_stg_init(); __kmp_str_buf_init(&buffer); __kmp_str_buf_init(&env); __kmp_str_buf_init(¬defined); __kmp_env_blk_init(&block, NULL); __kmp_env_blk_sort(&block); __kmp_str_buf_print(¬defined, ": %s", KMP_I18N_STR(NotDefined)); for (int i = 0; i < __kmp_stg_count; ++i) { if (__kmp_stg_table[i].print == NULL) continue; __kmp_str_buf_clear(&env); __kmp_stg_table[i].print(&env, __kmp_stg_table[i].name, __kmp_stg_table[i].data); if (env.used < 4) // valid definition must have indents (3) and a new line continue; if (strstr(env.str, notdefined.str)) // normalize the string __kmp_str_buf_print(&buffer, "%s=undefined\n", __kmp_stg_table[i].name); else __kmp_str_buf_cat(&buffer, env.str + 3, env.used - 3); } ompd_env_block = (char *)__kmp_allocate(buffer.used + 1); KMP_MEMCPY(ompd_env_block, buffer.str, buffer.used + 1); ompd_env_block_size = (ompd_size_t)KMP_STRLEN(ompd_env_block); __kmp_env_blk_free(&block); __kmp_str_buf_free(&buffer); __kmp_str_buf_free(&env); __kmp_str_buf_free(¬defined); } #endif // OMPD_SUPPORT // end of file