diff --git a/sys/net/if_stf.c b/sys/net/if_stf.c index 40f8a6f3a30a..f7d6758d052c 100644 --- a/sys/net/if_stf.c +++ b/sys/net/if_stf.c @@ -1,762 +1,758 @@ /* $FreeBSD$ */ /* $KAME: if_stf.c,v 1.73 2001/12/03 11:08:30 keiichi Exp $ */ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (C) 2000 WIDE Project. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the project nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * 6to4 interface, based on RFC3056. * * 6to4 interface is NOT capable of link-layer (I mean, IPv4) multicasting. * There is no address mapping defined from IPv6 multicast address to IPv4 * address. Therefore, we do not have IFF_MULTICAST on the interface. * * Due to the lack of address mapping for link-local addresses, we cannot * throw packets toward link-local addresses (fe80::x). Also, we cannot throw * packets to link-local multicast addresses (ff02::x). * * Here are interesting symptoms due to the lack of link-local address: * * Unicast routing exchange: * - RIPng: Impossible. Uses link-local multicast packet toward ff02::9, * and link-local addresses as nexthop. * - OSPFv6: Impossible. OSPFv6 assumes that there's link-local address * assigned to the link, and makes use of them. Also, HELLO packets use * link-local multicast addresses (ff02::5 and ff02::6). * - BGP4+: Maybe. You can only use global address as nexthop, and global * address as TCP endpoint address. * * Multicast routing protocols: * - PIM: Hello packet cannot be used to discover adjacent PIM routers. * Adjacent PIM routers must be configured manually (is it really spec-wise * correct thing to do?). * * ICMPv6: * - Redirects cannot be used due to the lack of link-local address. * * stf interface does not have, and will not need, a link-local address. * It seems to have no real benefit and does not help the above symptoms much. * Even if we assign link-locals to interface, we cannot really * use link-local unicast/multicast on top of 6to4 cloud (since there's no * encapsulation defined for link-local address), and the above analysis does * not change. RFC3056 does not mandate the assignment of link-local address * either. * * 6to4 interface has security issues. Refer to * http://playground.iijlab.net/i-d/draft-itojun-ipv6-transition-abuse-00.txt * for details. The code tries to filter out some of malicious packets. * Note that there is no way to be 100% secure. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include SYSCTL_DECL(_net_link); static SYSCTL_NODE(_net_link, IFT_STF, stf, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, "6to4 Interface"); static int stf_permit_rfc1918 = 0; SYSCTL_INT(_net_link_stf, OID_AUTO, permit_rfc1918, CTLFLAG_RWTUN, &stf_permit_rfc1918, 0, "Permit the use of private IPv4 addresses"); #define STFUNIT 0 #define IN6_IS_ADDR_6TO4(x) (ntohs((x)->s6_addr16[0]) == 0x2002) /* * XXX: Return a pointer with 16-bit aligned. Don't cast it to * struct in_addr *; use bcopy() instead. */ #define GET_V4(x) (&(x)->s6_addr16[1]) struct stf_softc { struct ifnet *sc_ifp; u_int sc_fibnum; const struct encaptab *encap_cookie; }; #define STF2IFP(sc) ((sc)->sc_ifp) static const char stfname[] = "stf"; static MALLOC_DEFINE(M_STF, stfname, "6to4 Tunnel Interface"); static const int ip_stf_ttl = 40; static int in_stf_input(struct mbuf *, int, int, void *); static char *stfnames[] = {"stf0", "stf", "6to4", NULL}; static int stfmodevent(module_t, int, void *); static int stf_encapcheck(const struct mbuf *, int, int, void *); static int stf_getsrcifa6(struct ifnet *, struct in6_addr *, struct in6_addr *); static int stf_output(struct ifnet *, struct mbuf *, const struct sockaddr *, struct route *); static int isrfc1918addr(struct in_addr *); static int stf_checkaddr4(struct stf_softc *, struct in_addr *, struct ifnet *); static int stf_checkaddr6(struct stf_softc *, struct in6_addr *, struct ifnet *); static int stf_ioctl(struct ifnet *, u_long, caddr_t); static int stf_clone_match(struct if_clone *, const char *); static int stf_clone_create(struct if_clone *, char *, size_t, caddr_t); static int stf_clone_destroy(struct if_clone *, struct ifnet *); static struct if_clone *stf_cloner; static const struct encap_config ipv4_encap_cfg = { .proto = IPPROTO_IPV6, .min_length = sizeof(struct ip), .exact_match = (sizeof(in_addr_t) << 3) + 8, .check = stf_encapcheck, .input = in_stf_input }; static int stf_clone_match(struct if_clone *ifc, const char *name) { int i; for(i = 0; stfnames[i] != NULL; i++) { if (strcmp(stfnames[i], name) == 0) return (1); } return (0); } static int stf_clone_create(struct if_clone *ifc, char *name, size_t len, caddr_t params) { char *dp; int err, unit, wildcard; struct stf_softc *sc; struct ifnet *ifp; err = ifc_name2unit(name, &unit); if (err != 0) return (err); wildcard = (unit < 0); /* * We can only have one unit, but since unit allocation is * already locked, we use it to keep from allocating extra * interfaces. */ unit = STFUNIT; err = ifc_alloc_unit(ifc, &unit); if (err != 0) return (err); sc = malloc(sizeof(struct stf_softc), M_STF, M_WAITOK | M_ZERO); ifp = STF2IFP(sc) = if_alloc(IFT_STF); if (ifp == NULL) { free(sc, M_STF); ifc_free_unit(ifc, unit); return (ENOSPC); } ifp->if_softc = sc; sc->sc_fibnum = curthread->td_proc->p_fibnum; /* * Set the name manually rather then using if_initname because * we don't conform to the default naming convention for interfaces. * In the wildcard case, we need to update the name. */ if (wildcard) { for (dp = name; *dp != '\0'; dp++); if (snprintf(dp, len - (dp-name), "%d", unit) > len - (dp-name) - 1) { /* * This can only be a programmer error and * there's no straightforward way to recover if * it happens. */ panic("if_clone_create(): interface name too long"); } } strlcpy(ifp->if_xname, name, IFNAMSIZ); ifp->if_dname = stfname; ifp->if_dunit = IF_DUNIT_NONE; sc->encap_cookie = ip_encap_attach(&ipv4_encap_cfg, sc, M_WAITOK); if (sc->encap_cookie == NULL) { if_printf(ifp, "attach failed\n"); free(sc, M_STF); ifc_free_unit(ifc, unit); return (ENOMEM); } ifp->if_mtu = IPV6_MMTU; ifp->if_ioctl = stf_ioctl; ifp->if_output = stf_output; ifp->if_snd.ifq_maxlen = ifqmaxlen; if_attach(ifp); bpfattach(ifp, DLT_NULL, sizeof(u_int32_t)); return (0); } static int stf_clone_destroy(struct if_clone *ifc, struct ifnet *ifp) { struct stf_softc *sc = ifp->if_softc; int err __unused; err = ip_encap_detach(sc->encap_cookie); KASSERT(err == 0, ("Unexpected error detaching encap_cookie")); bpfdetach(ifp); if_detach(ifp); if_free(ifp); free(sc, M_STF); ifc_free_unit(ifc, STFUNIT); return (0); } static int stfmodevent(module_t mod, int type, void *data) { switch (type) { case MOD_LOAD: stf_cloner = if_clone_advanced(stfname, 0, stf_clone_match, stf_clone_create, stf_clone_destroy); break; case MOD_UNLOAD: if_clone_detach(stf_cloner); break; default: return (EOPNOTSUPP); } return (0); } static moduledata_t stf_mod = { "if_stf", stfmodevent, 0 }; DECLARE_MODULE(if_stf, stf_mod, SI_SUB_PSEUDO, SI_ORDER_ANY); static int stf_encapcheck(const struct mbuf *m, int off, int proto, void *arg) { struct ip ip; struct stf_softc *sc; struct in_addr a, b, mask; struct in6_addr addr6, mask6; sc = (struct stf_softc *)arg; if (sc == NULL) return 0; if ((STF2IFP(sc)->if_flags & IFF_UP) == 0) return 0; /* IFF_LINK0 means "no decapsulation" */ if ((STF2IFP(sc)->if_flags & IFF_LINK0) != 0) return 0; if (proto != IPPROTO_IPV6) return 0; m_copydata(m, 0, sizeof(ip), (caddr_t)&ip); if (ip.ip_v != 4) return 0; if (stf_getsrcifa6(STF2IFP(sc), &addr6, &mask6) != 0) return (0); /* * check if IPv4 dst matches the IPv4 address derived from the * local 6to4 address. * success on: dst = 10.1.1.1, ia6->ia_addr = 2002:0a01:0101:... */ if (bcmp(GET_V4(&addr6), &ip.ip_dst, sizeof(ip.ip_dst)) != 0) return 0; /* * check if IPv4 src matches the IPv4 address derived from the * local 6to4 address masked by prefixmask. * success on: src = 10.1.1.1, ia6->ia_addr = 2002:0a00:.../24 * fail on: src = 10.1.1.1, ia6->ia_addr = 2002:0b00:.../24 */ bzero(&a, sizeof(a)); bcopy(GET_V4(&addr6), &a, sizeof(a)); bcopy(GET_V4(&mask6), &mask, sizeof(mask)); a.s_addr &= mask.s_addr; b = ip.ip_src; b.s_addr &= mask.s_addr; if (a.s_addr != b.s_addr) return 0; /* stf interface makes single side match only */ return 32; } static int stf_getsrcifa6(struct ifnet *ifp, struct in6_addr *addr, struct in6_addr *mask) { struct rm_priotracker in_ifa_tracker; struct ifaddr *ia; struct in_ifaddr *ia4; struct in6_ifaddr *ia6; struct sockaddr_in6 *sin6; struct in_addr in; NET_EPOCH_ASSERT(); CK_STAILQ_FOREACH(ia, &ifp->if_addrhead, ifa_link) { if (ia->ifa_addr->sa_family != AF_INET6) continue; sin6 = (struct sockaddr_in6 *)ia->ifa_addr; if (!IN6_IS_ADDR_6TO4(&sin6->sin6_addr)) continue; bcopy(GET_V4(&sin6->sin6_addr), &in, sizeof(in)); IN_IFADDR_RLOCK(&in_ifa_tracker); LIST_FOREACH(ia4, INADDR_HASH(in.s_addr), ia_hash) if (ia4->ia_addr.sin_addr.s_addr == in.s_addr) break; IN_IFADDR_RUNLOCK(&in_ifa_tracker); if (ia4 == NULL) continue; ia6 = (struct in6_ifaddr *)ia; *addr = sin6->sin6_addr; *mask = ia6->ia_prefixmask.sin6_addr; return (0); } return (ENOENT); } static int stf_output(struct ifnet *ifp, struct mbuf *m, const struct sockaddr *dst, struct route *ro) { struct stf_softc *sc; const struct sockaddr_in6 *dst6; struct in_addr in4; const void *ptr; u_int8_t tos; struct ip *ip; struct ip6_hdr *ip6; struct in6_addr addr6, mask6; int error; #ifdef MAC error = mac_ifnet_check_transmit(ifp, m); if (error) { m_freem(m); return (error); } #endif sc = ifp->if_softc; dst6 = (const struct sockaddr_in6 *)dst; /* just in case */ if ((ifp->if_flags & IFF_UP) == 0) { m_freem(m); if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); return ENETDOWN; } /* * If we don't have an ip4 address that match my inner ip6 address, * we shouldn't generate output. Without this check, we'll end up * using wrong IPv4 source. */ if (stf_getsrcifa6(ifp, &addr6, &mask6) != 0) { m_freem(m); if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); return ENETDOWN; } if (m->m_len < sizeof(*ip6)) { m = m_pullup(m, sizeof(*ip6)); if (!m) { if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); return ENOBUFS; } } ip6 = mtod(m, struct ip6_hdr *); tos = IPV6_TRAFFIC_CLASS(ip6); /* * Pickup the right outer dst addr from the list of candidates. * ip6_dst has priority as it may be able to give us shorter IPv4 hops. */ ptr = NULL; if (IN6_IS_ADDR_6TO4(&ip6->ip6_dst)) ptr = GET_V4(&ip6->ip6_dst); else if (IN6_IS_ADDR_6TO4(&dst6->sin6_addr)) ptr = GET_V4(&dst6->sin6_addr); else { m_freem(m); if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); return ENETUNREACH; } bcopy(ptr, &in4, sizeof(in4)); if (bpf_peers_present(ifp->if_bpf)) { /* * We need to prepend the address family as * a four byte field. Cons up a dummy header * to pacify bpf. This is safe because bpf * will only read from the mbuf (i.e., it won't * try to free it or keep a pointer a to it). */ u_int af = AF_INET6; bpf_mtap2(ifp->if_bpf, &af, sizeof(af), m); } M_PREPEND(m, sizeof(struct ip), M_NOWAIT); if (m == NULL) { if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); return ENOBUFS; } ip = mtod(m, struct ip *); bzero(ip, sizeof(*ip)); bcopy(GET_V4(&addr6), &ip->ip_src, sizeof(ip->ip_src)); bcopy(&in4, &ip->ip_dst, sizeof(ip->ip_dst)); ip->ip_p = IPPROTO_IPV6; ip->ip_ttl = ip_stf_ttl; ip->ip_len = htons(m->m_pkthdr.len); if (ifp->if_flags & IFF_LINK1) ip_ecn_ingress(ECN_ALLOWED, &ip->ip_tos, &tos); else ip_ecn_ingress(ECN_NOCARE, &ip->ip_tos, &tos); M_SETFIB(m, sc->sc_fibnum); if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1); error = ip_output(m, NULL, NULL, 0, NULL, NULL); return error; } static int isrfc1918addr(struct in_addr *in) { /* * returns 1 if private address range: * 10.0.0.0/8 172.16.0.0/12 192.168.0.0/16 */ if (stf_permit_rfc1918 == 0 && ( (ntohl(in->s_addr) & 0xff000000) >> 24 == 10 || (ntohl(in->s_addr) & 0xfff00000) >> 16 == 172 * 256 + 16 || (ntohl(in->s_addr) & 0xffff0000) >> 16 == 192 * 256 + 168)) return 1; return 0; } static int stf_checkaddr4(struct stf_softc *sc, struct in_addr *in, struct ifnet *inifp) { - struct rm_priotracker in_ifa_tracker; struct in_ifaddr *ia4; /* * reject packets with the following address: * 224.0.0.0/4 0.0.0.0/8 127.0.0.0/8 255.0.0.0/8 */ if (IN_MULTICAST(ntohl(in->s_addr))) return -1; switch ((ntohl(in->s_addr) & 0xff000000) >> 24) { case 0: case 127: case 255: return -1; } /* * reject packets with private address range. * (requirement from RFC3056 section 2 1st paragraph) */ if (isrfc1918addr(in)) return -1; /* * reject packets with broadcast */ - IN_IFADDR_RLOCK(&in_ifa_tracker); CK_STAILQ_FOREACH(ia4, &V_in_ifaddrhead, ia_link) { if ((ia4->ia_ifa.ifa_ifp->if_flags & IFF_BROADCAST) == 0) continue; if (in->s_addr == ia4->ia_broadaddr.sin_addr.s_addr) { - IN_IFADDR_RUNLOCK(&in_ifa_tracker); return -1; } } - IN_IFADDR_RUNLOCK(&in_ifa_tracker); /* * perform ingress filter */ if (sc && (STF2IFP(sc)->if_flags & IFF_LINK2) == 0 && inifp) { struct nhop_object *nh; NET_EPOCH_ASSERT(); nh = fib4_lookup(sc->sc_fibnum, *in, 0, 0, 0); if (nh == NULL) return (-1); if (nh->nh_ifp != inifp) return (-1); } return 0; } static int stf_checkaddr6(struct stf_softc *sc, struct in6_addr *in6, struct ifnet *inifp) { /* * check 6to4 addresses */ if (IN6_IS_ADDR_6TO4(in6)) { struct in_addr in4; bcopy(GET_V4(in6), &in4, sizeof(in4)); return stf_checkaddr4(sc, &in4, inifp); } /* * reject anything that look suspicious. the test is implemented * in ip6_input too, but we check here as well to * (1) reject bad packets earlier, and * (2) to be safe against future ip6_input change. */ if (IN6_IS_ADDR_V4COMPAT(in6) || IN6_IS_ADDR_V4MAPPED(in6)) return -1; return 0; } static int in_stf_input(struct mbuf *m, int off, int proto, void *arg) { struct stf_softc *sc = arg; struct ip *ip; struct ip6_hdr *ip6; u_int8_t otos, itos; struct ifnet *ifp; NET_EPOCH_ASSERT(); if (proto != IPPROTO_IPV6) { m_freem(m); return (IPPROTO_DONE); } ip = mtod(m, struct ip *); if (sc == NULL || (STF2IFP(sc)->if_flags & IFF_UP) == 0) { m_freem(m); return (IPPROTO_DONE); } ifp = STF2IFP(sc); #ifdef MAC mac_ifnet_create_mbuf(ifp, m); #endif /* * perform sanity check against outer src/dst. * for source, perform ingress filter as well. */ if (stf_checkaddr4(sc, &ip->ip_dst, NULL) < 0 || stf_checkaddr4(sc, &ip->ip_src, m->m_pkthdr.rcvif) < 0) { m_freem(m); return (IPPROTO_DONE); } otos = ip->ip_tos; m_adj(m, off); if (m->m_len < sizeof(*ip6)) { m = m_pullup(m, sizeof(*ip6)); if (!m) return (IPPROTO_DONE); } ip6 = mtod(m, struct ip6_hdr *); /* * perform sanity check against inner src/dst. * for source, perform ingress filter as well. */ if (stf_checkaddr6(sc, &ip6->ip6_dst, NULL) < 0 || stf_checkaddr6(sc, &ip6->ip6_src, m->m_pkthdr.rcvif) < 0) { m_freem(m); return (IPPROTO_DONE); } itos = IPV6_TRAFFIC_CLASS(ip6); if ((ifp->if_flags & IFF_LINK1) != 0) ip_ecn_egress(ECN_ALLOWED, &otos, &itos); else ip_ecn_egress(ECN_NOCARE, &otos, &itos); ip6->ip6_flow &= ~htonl(0xff << 20); ip6->ip6_flow |= htonl((u_int32_t)itos << 20); m->m_pkthdr.rcvif = ifp; if (bpf_peers_present(ifp->if_bpf)) { /* * We need to prepend the address family as * a four byte field. Cons up a dummy header * to pacify bpf. This is safe because bpf * will only read from the mbuf (i.e., it won't * try to free it or keep a pointer a to it). */ u_int32_t af = AF_INET6; bpf_mtap2(ifp->if_bpf, &af, sizeof(af), m); } /* * Put the packet to the network layer input queue according to the * specified address family. * See net/if_gif.c for possible issues with packet processing * reorder due to extra queueing. */ if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1); if_inc_counter(ifp, IFCOUNTER_IBYTES, m->m_pkthdr.len); M_SETFIB(m, ifp->if_fib); netisr_dispatch(NETISR_IPV6, m); return (IPPROTO_DONE); } static int stf_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) { struct ifaddr *ifa; struct ifreq *ifr; struct sockaddr_in6 *sin6; struct in_addr addr; int error, mtu; error = 0; switch (cmd) { case SIOCSIFADDR: ifa = (struct ifaddr *)data; if (ifa == NULL || ifa->ifa_addr->sa_family != AF_INET6) { error = EAFNOSUPPORT; break; } sin6 = (struct sockaddr_in6 *)ifa->ifa_addr; if (!IN6_IS_ADDR_6TO4(&sin6->sin6_addr)) { error = EINVAL; break; } bcopy(GET_V4(&sin6->sin6_addr), &addr, sizeof(addr)); if (isrfc1918addr(&addr)) { error = EINVAL; break; } ifp->if_flags |= IFF_UP; ifp->if_drv_flags |= IFF_DRV_RUNNING; break; case SIOCADDMULTI: case SIOCDELMULTI: ifr = (struct ifreq *)data; if (ifr && ifr->ifr_addr.sa_family == AF_INET6) ; else error = EAFNOSUPPORT; break; case SIOCGIFMTU: break; case SIOCSIFMTU: ifr = (struct ifreq *)data; mtu = ifr->ifr_mtu; /* RFC 4213 3.2 ideal world MTU */ if (mtu < IPV6_MINMTU || mtu > IF_MAXMTU - 20) return (EINVAL); ifp->if_mtu = mtu; break; default: error = EINVAL; break; } return error; } diff --git a/sys/netinet/if_ether.c b/sys/netinet/if_ether.c index 5400f35d953f..45ce04117948 100644 --- a/sys/netinet/if_ether.c +++ b/sys/netinet/if_ether.c @@ -1,1542 +1,1538 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 1982, 1986, 1988, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)if_ether.c 8.1 (Berkeley) 6/10/93 */ /* * Ethernet address resolution protocol. * TODO: * add "inuse/lock" bit (or ref. count) along with valid bit */ #include __FBSDID("$FreeBSD$"); #include "opt_inet.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INET #include #endif #include #define SIN(s) ((const struct sockaddr_in *)(s)) static struct timeval arp_lastlog; static int arp_curpps; static int arp_maxpps = 1; /* Simple ARP state machine */ enum arp_llinfo_state { ARP_LLINFO_INCOMPLETE = 0, /* No LLE data */ ARP_LLINFO_REACHABLE, /* LLE is valid */ ARP_LLINFO_VERIFY, /* LLE is valid, need refresh */ ARP_LLINFO_DELETED, /* LLE is deleted */ }; SYSCTL_DECL(_net_link_ether); static SYSCTL_NODE(_net_link_ether, PF_INET, inet, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, ""); static SYSCTL_NODE(_net_link_ether, PF_ARP, arp, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, ""); /* timer values */ VNET_DEFINE_STATIC(int, arpt_keep) = (20*60); /* once resolved, good for 20 * minutes */ VNET_DEFINE_STATIC(int, arp_maxtries) = 5; VNET_DEFINE_STATIC(int, arp_proxyall) = 0; VNET_DEFINE_STATIC(int, arpt_down) = 20; /* keep incomplete entries for * 20 seconds */ VNET_DEFINE_STATIC(int, arpt_rexmit) = 1; /* retransmit arp entries, sec*/ VNET_PCPUSTAT_DEFINE(struct arpstat, arpstat); /* ARP statistics, see if_arp.h */ VNET_PCPUSTAT_SYSINIT(arpstat); #ifdef VIMAGE VNET_PCPUSTAT_SYSUNINIT(arpstat); #endif /* VIMAGE */ VNET_DEFINE_STATIC(int, arp_maxhold) = 16; #define V_arpt_keep VNET(arpt_keep) #define V_arpt_down VNET(arpt_down) #define V_arpt_rexmit VNET(arpt_rexmit) #define V_arp_maxtries VNET(arp_maxtries) #define V_arp_proxyall VNET(arp_proxyall) #define V_arp_maxhold VNET(arp_maxhold) SYSCTL_INT(_net_link_ether_inet, OID_AUTO, max_age, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(arpt_keep), 0, "ARP entry lifetime in seconds"); SYSCTL_INT(_net_link_ether_inet, OID_AUTO, maxtries, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(arp_maxtries), 0, "ARP resolution attempts before returning error"); SYSCTL_INT(_net_link_ether_inet, OID_AUTO, proxyall, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(arp_proxyall), 0, "Enable proxy ARP for all suitable requests"); SYSCTL_INT(_net_link_ether_inet, OID_AUTO, wait, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(arpt_down), 0, "Incomplete ARP entry lifetime in seconds"); SYSCTL_VNET_PCPUSTAT(_net_link_ether_arp, OID_AUTO, stats, struct arpstat, arpstat, "ARP statistics (struct arpstat, net/if_arp.h)"); SYSCTL_INT(_net_link_ether_inet, OID_AUTO, maxhold, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(arp_maxhold), 0, "Number of packets to hold per ARP entry"); SYSCTL_INT(_net_link_ether_inet, OID_AUTO, max_log_per_second, CTLFLAG_RW, &arp_maxpps, 0, "Maximum number of remotely triggered ARP messages that can be " "logged per second"); /* * Due to the exponential backoff algorithm used for the interval between GARP * retransmissions, the maximum number of retransmissions is limited for * sanity. This limit corresponds to a maximum interval between retransmissions * of 2^16 seconds ~= 18 hours. * * Making this limit more dynamic is more complicated than worthwhile, * especially since sending out GARPs spaced days apart would be of little * use. A maximum dynamic limit would look something like: * * const int max = fls(INT_MAX / hz) - 1; */ #define MAX_GARP_RETRANSMITS 16 static int sysctl_garp_rexmit(SYSCTL_HANDLER_ARGS); static int garp_rexmit_count = 0; /* GARP retransmission setting. */ SYSCTL_PROC(_net_link_ether_inet, OID_AUTO, garp_rexmit_count, CTLTYPE_INT|CTLFLAG_RW|CTLFLAG_MPSAFE, &garp_rexmit_count, 0, sysctl_garp_rexmit, "I", "Number of times to retransmit GARP packets;" " 0 to disable, maximum of 16"); VNET_DEFINE_STATIC(int, arp_log_level) = LOG_INFO; /* Min. log(9) level. */ #define V_arp_log_level VNET(arp_log_level) SYSCTL_INT(_net_link_ether_arp, OID_AUTO, log_level, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(arp_log_level), 0, "Minimum log(9) level for recording rate limited arp log messages. " "The higher will be log more (emerg=0, info=6 (default), debug=7)."); #define ARP_LOG(pri, ...) do { \ if ((pri) <= V_arp_log_level && \ ppsratecheck(&arp_lastlog, &arp_curpps, arp_maxpps)) \ log((pri), "arp: " __VA_ARGS__); \ } while (0) static void arpintr(struct mbuf *); static void arptimer(void *); #ifdef INET static void in_arpinput(struct mbuf *); #endif static void arp_check_update_lle(struct arphdr *ah, struct in_addr isaddr, struct ifnet *ifp, int bridged, struct llentry *la); static void arp_mark_lle_reachable(struct llentry *la); static void arp_iflladdr(void *arg __unused, struct ifnet *ifp); static eventhandler_tag iflladdr_tag; static const struct netisr_handler arp_nh = { .nh_name = "arp", .nh_handler = arpintr, .nh_proto = NETISR_ARP, .nh_policy = NETISR_POLICY_SOURCE, }; /* * Timeout routine. Age arp_tab entries periodically. */ static void arptimer(void *arg) { struct llentry *lle = (struct llentry *)arg; struct ifnet *ifp; if (lle->la_flags & LLE_STATIC) { return; } LLE_WLOCK(lle); if (callout_pending(&lle->lle_timer)) { /* * Here we are a bit odd here in the treatment of * active/pending. If the pending bit is set, it got * rescheduled before I ran. The active * bit we ignore, since if it was stopped * in ll_tablefree() and was currently running * it would have return 0 so the code would * not have deleted it since the callout could * not be stopped so we want to go through * with the delete here now. If the callout * was restarted, the pending bit will be back on and * we just want to bail since the callout_reset would * return 1 and our reference would have been removed * by arpresolve() below. */ LLE_WUNLOCK(lle); return; } ifp = lle->lle_tbl->llt_ifp; CURVNET_SET(ifp->if_vnet); switch (lle->ln_state) { case ARP_LLINFO_REACHABLE: /* * Expiration time is approaching. * Request usage feedback from the datapath. * Change state and re-schedule ourselves. */ llentry_request_feedback(lle); lle->ln_state = ARP_LLINFO_VERIFY; callout_schedule(&lle->lle_timer, hz * V_arpt_rexmit); LLE_WUNLOCK(lle); CURVNET_RESTORE(); return; case ARP_LLINFO_VERIFY: if (llentry_get_hittime(lle) > 0 && lle->la_preempt > 0) { /* Entry was used, issue refresh request */ struct epoch_tracker et; struct in_addr dst; dst = lle->r_l3addr.addr4; lle->la_preempt--; callout_schedule(&lle->lle_timer, hz * V_arpt_rexmit); LLE_WUNLOCK(lle); NET_EPOCH_ENTER(et); arprequest(ifp, NULL, &dst, NULL); NET_EPOCH_EXIT(et); CURVNET_RESTORE(); return; } /* Nothing happened. Reschedule if not too late */ if (lle->la_expire > time_uptime) { callout_schedule(&lle->lle_timer, hz * V_arpt_rexmit); LLE_WUNLOCK(lle); CURVNET_RESTORE(); return; } break; case ARP_LLINFO_INCOMPLETE: case ARP_LLINFO_DELETED: break; } if ((lle->la_flags & LLE_DELETED) == 0) { int evt; if (lle->la_flags & LLE_VALID) evt = LLENTRY_EXPIRED; else evt = LLENTRY_TIMEDOUT; EVENTHANDLER_INVOKE(lle_event, lle, evt); } callout_stop(&lle->lle_timer); /* XXX: LOR avoidance. We still have ref on lle. */ LLE_WUNLOCK(lle); IF_AFDATA_LOCK(ifp); LLE_WLOCK(lle); /* Guard against race with other llentry_free(). */ if (lle->la_flags & LLE_LINKED) { LLE_REMREF(lle); lltable_unlink_entry(lle->lle_tbl, lle); } IF_AFDATA_UNLOCK(ifp); size_t pkts_dropped = llentry_free(lle); ARPSTAT_ADD(dropped, pkts_dropped); ARPSTAT_INC(timeouts); CURVNET_RESTORE(); } /* * Stores link-layer header for @ifp in format suitable for if_output() * into buffer @buf. Resulting header length is stored in @bufsize. * * Returns 0 on success. */ static int arp_fillheader(struct ifnet *ifp, struct arphdr *ah, int bcast, u_char *buf, size_t *bufsize) { struct if_encap_req ereq; int error; bzero(buf, *bufsize); bzero(&ereq, sizeof(ereq)); ereq.buf = buf; ereq.bufsize = *bufsize; ereq.rtype = IFENCAP_LL; ereq.family = AF_ARP; ereq.lladdr = ar_tha(ah); ereq.hdata = (u_char *)ah; if (bcast) ereq.flags = IFENCAP_FLAG_BROADCAST; error = ifp->if_requestencap(ifp, &ereq); if (error == 0) *bufsize = ereq.bufsize; return (error); } /* * Broadcast an ARP request. Caller specifies: * - arp header source ip address * - arp header target ip address * - arp header source ethernet address */ static int arprequest_internal(struct ifnet *ifp, const struct in_addr *sip, const struct in_addr *tip, u_char *enaddr) { struct mbuf *m; struct arphdr *ah; struct sockaddr sa; u_char *carpaddr = NULL; uint8_t linkhdr[LLE_MAX_LINKHDR]; size_t linkhdrsize; struct route ro; int error; NET_EPOCH_ASSERT(); if (sip == NULL) { /* * The caller did not supply a source address, try to find * a compatible one among those assigned to this interface. */ struct ifaddr *ifa; CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { if (ifa->ifa_addr->sa_family != AF_INET) continue; if (ifa->ifa_carp) { if ((*carp_iamatch_p)(ifa, &carpaddr) == 0) continue; sip = &IA_SIN(ifa)->sin_addr; } else { carpaddr = NULL; sip = &IA_SIN(ifa)->sin_addr; } if (0 == ((sip->s_addr ^ tip->s_addr) & IA_MASKSIN(ifa)->sin_addr.s_addr)) break; /* found it. */ } if (sip == NULL) { printf("%s: cannot find matching address\n", __func__); return (EADDRNOTAVAIL); } } if (enaddr == NULL) enaddr = carpaddr ? carpaddr : (u_char *)IF_LLADDR(ifp); if ((m = m_gethdr(M_NOWAIT, MT_DATA)) == NULL) return (ENOMEM); m->m_len = sizeof(*ah) + 2 * sizeof(struct in_addr) + 2 * ifp->if_addrlen; m->m_pkthdr.len = m->m_len; M_ALIGN(m, m->m_len); ah = mtod(m, struct arphdr *); bzero((caddr_t)ah, m->m_len); #ifdef MAC mac_netinet_arp_send(ifp, m); #endif ah->ar_pro = htons(ETHERTYPE_IP); ah->ar_hln = ifp->if_addrlen; /* hardware address length */ ah->ar_pln = sizeof(struct in_addr); /* protocol address length */ ah->ar_op = htons(ARPOP_REQUEST); bcopy(enaddr, ar_sha(ah), ah->ar_hln); bcopy(sip, ar_spa(ah), ah->ar_pln); bcopy(tip, ar_tpa(ah), ah->ar_pln); sa.sa_family = AF_ARP; sa.sa_len = 2; /* Calculate link header for sending frame */ bzero(&ro, sizeof(ro)); linkhdrsize = sizeof(linkhdr); error = arp_fillheader(ifp, ah, 1, linkhdr, &linkhdrsize); if (error != 0 && error != EAFNOSUPPORT) { m_freem(m); ARP_LOG(LOG_ERR, "Failed to calculate ARP header on %s: %d\n", if_name(ifp), error); return (error); } ro.ro_prepend = linkhdr; ro.ro_plen = linkhdrsize; ro.ro_flags = 0; m->m_flags |= M_BCAST; m_clrprotoflags(m); /* Avoid confusing lower layers. */ error = (*ifp->if_output)(ifp, m, &sa, &ro); ARPSTAT_INC(txrequests); if (error) { ARPSTAT_INC(txerrors); ARP_LOG(LOG_DEBUG, "Failed to send ARP packet on %s: %d\n", if_name(ifp), error); } return (error); } void arprequest(struct ifnet *ifp, const struct in_addr *sip, const struct in_addr *tip, u_char *enaddr) { (void) arprequest_internal(ifp, sip, tip, enaddr); } /* * Resolve an IP address into an ethernet address - heavy version. * Used internally by arpresolve(). * We have already checked that we can't use an existing lle without * modification so we have to acquire an LLE_EXCLUSIVE lle lock. * * On success, desten and pflags are filled in and the function returns 0; * If the packet must be held pending resolution, we return EWOULDBLOCK * On other errors, we return the corresponding error code. * Note that m_freem() handles NULL. */ static int arpresolve_full(struct ifnet *ifp, int is_gw, int flags, struct mbuf *m, const struct sockaddr *dst, u_char *desten, uint32_t *pflags, struct llentry **plle) { struct llentry *la = NULL, *la_tmp; struct mbuf *curr = NULL; struct mbuf *next = NULL; int error, renew; char *lladdr; int ll_len; NET_EPOCH_ASSERT(); if (pflags != NULL) *pflags = 0; if (plle != NULL) *plle = NULL; if ((flags & LLE_CREATE) == 0) la = lla_lookup(LLTABLE(ifp), LLE_EXCLUSIVE, dst); if (la == NULL && (ifp->if_flags & (IFF_NOARP | IFF_STATICARP)) == 0) { la = lltable_alloc_entry(LLTABLE(ifp), 0, dst); if (la == NULL) { char addrbuf[INET_ADDRSTRLEN]; log(LOG_DEBUG, "arpresolve: can't allocate llinfo for %s on %s\n", inet_ntoa_r(SIN(dst)->sin_addr, addrbuf), if_name(ifp)); m_freem(m); return (EINVAL); } IF_AFDATA_WLOCK(ifp); LLE_WLOCK(la); la_tmp = lla_lookup(LLTABLE(ifp), LLE_EXCLUSIVE, dst); /* Prefer ANY existing lle over newly-created one */ if (la_tmp == NULL) lltable_link_entry(LLTABLE(ifp), la); IF_AFDATA_WUNLOCK(ifp); if (la_tmp != NULL) { lltable_free_entry(LLTABLE(ifp), la); la = la_tmp; } } if (la == NULL) { m_freem(m); return (EINVAL); } if ((la->la_flags & LLE_VALID) && ((la->la_flags & LLE_STATIC) || la->la_expire > time_uptime)) { if (flags & LLE_ADDRONLY) { lladdr = la->ll_addr; ll_len = ifp->if_addrlen; } else { lladdr = la->r_linkdata; ll_len = la->r_hdrlen; } bcopy(lladdr, desten, ll_len); /* Notify LLE code that the entry was used by datapath */ llentry_provide_feedback(la); if (pflags != NULL) *pflags = la->la_flags & (LLE_VALID|LLE_IFADDR); if (plle) { LLE_ADDREF(la); *plle = la; } LLE_WUNLOCK(la); return (0); } renew = (la->la_asked == 0 || la->la_expire != time_uptime); /* * There is an arptab entry, but no ethernet address * response yet. Add the mbuf to the list, dropping * the oldest packet if we have exceeded the system * setting. */ if (m != NULL) { if (la->la_numheld >= V_arp_maxhold) { if (la->la_hold != NULL) { next = la->la_hold->m_nextpkt; m_freem(la->la_hold); la->la_hold = next; la->la_numheld--; ARPSTAT_INC(dropped); } } if (la->la_hold != NULL) { curr = la->la_hold; while (curr->m_nextpkt != NULL) curr = curr->m_nextpkt; curr->m_nextpkt = m; } else la->la_hold = m; la->la_numheld++; } /* * Return EWOULDBLOCK if we have tried less than arp_maxtries. It * will be masked by ether_output(). Return EHOSTDOWN/EHOSTUNREACH * if we have already sent arp_maxtries ARP requests. Retransmit the * ARP request, but not faster than one request per second. */ if (la->la_asked < V_arp_maxtries) error = EWOULDBLOCK; /* First request. */ else error = is_gw != 0 ? EHOSTUNREACH : EHOSTDOWN; if (renew) { int canceled, e; LLE_ADDREF(la); la->la_expire = time_uptime; canceled = callout_reset(&la->lle_timer, hz * V_arpt_down, arptimer, la); if (canceled) LLE_REMREF(la); la->la_asked++; LLE_WUNLOCK(la); e = arprequest_internal(ifp, NULL, &SIN(dst)->sin_addr, NULL); /* * Only overwrite 'error' in case of error; in case of success * the proper return value was already set above. */ if (e != 0) return (e); return (error); } LLE_WUNLOCK(la); return (error); } /* * Lookups link header based on an IP address. * On input: * ifp is the interface we use * is_gw != 0 if @dst represents gateway to some destination * m is the mbuf. May be NULL if we don't have a packet. * dst is the next hop, * desten is the storage to put LL header. * flags returns subset of lle flags: LLE_VALID | LLE_IFADDR * * On success, full/partial link header and flags are filled in and * the function returns 0. * If the packet must be held pending resolution, we return EWOULDBLOCK * On other errors, we return the corresponding error code. * Note that m_freem() handles NULL. */ int arpresolve(struct ifnet *ifp, int is_gw, struct mbuf *m, const struct sockaddr *dst, u_char *desten, uint32_t *pflags, struct llentry **plle) { struct llentry *la = NULL; NET_EPOCH_ASSERT(); if (pflags != NULL) *pflags = 0; if (plle != NULL) *plle = NULL; if (m != NULL) { if (m->m_flags & M_BCAST) { /* broadcast */ (void)memcpy(desten, ifp->if_broadcastaddr, ifp->if_addrlen); return (0); } if (m->m_flags & M_MCAST) { /* multicast */ ETHER_MAP_IP_MULTICAST(&SIN(dst)->sin_addr, desten); return (0); } } la = lla_lookup(LLTABLE(ifp), plle ? LLE_EXCLUSIVE : LLE_UNLOCKED, dst); if (la != NULL && (la->r_flags & RLLE_VALID) != 0) { /* Entry found, let's copy lle info */ bcopy(la->r_linkdata, desten, la->r_hdrlen); if (pflags != NULL) *pflags = LLE_VALID | (la->r_flags & RLLE_IFADDR); /* Notify the LLE handling code that the entry was used. */ llentry_provide_feedback(la); if (plle) { LLE_ADDREF(la); *plle = la; LLE_WUNLOCK(la); } return (0); } if (plle && la) LLE_WUNLOCK(la); return (arpresolve_full(ifp, is_gw, la == NULL ? LLE_CREATE : 0, m, dst, desten, pflags, plle)); } /* * Common length and type checks are done here, * then the protocol-specific routine is called. */ static void arpintr(struct mbuf *m) { struct arphdr *ar; struct ifnet *ifp; char *layer; int hlen; ifp = m->m_pkthdr.rcvif; if (m->m_len < sizeof(struct arphdr) && ((m = m_pullup(m, sizeof(struct arphdr))) == NULL)) { ARP_LOG(LOG_NOTICE, "packet with short header received on %s\n", if_name(ifp)); return; } ar = mtod(m, struct arphdr *); /* Check if length is sufficient */ if (m->m_len < arphdr_len(ar)) { m = m_pullup(m, arphdr_len(ar)); if (m == NULL) { ARP_LOG(LOG_NOTICE, "short packet received on %s\n", if_name(ifp)); return; } ar = mtod(m, struct arphdr *); } hlen = 0; layer = ""; switch (ntohs(ar->ar_hrd)) { case ARPHRD_ETHER: hlen = ETHER_ADDR_LEN; /* RFC 826 */ layer = "ethernet"; break; case ARPHRD_INFINIBAND: hlen = 20; /* RFC 4391, INFINIBAND_ALEN */ layer = "infiniband"; break; case ARPHRD_IEEE1394: hlen = 0; /* SHALL be 16 */ /* RFC 2734 */ layer = "firewire"; /* * Restrict too long hardware addresses. * Currently we are capable of handling 20-byte * addresses ( sizeof(lle->ll_addr) ) */ if (ar->ar_hln >= 20) hlen = 16; break; default: ARP_LOG(LOG_NOTICE, "packet with unknown hardware format 0x%02d received on " "%s\n", ntohs(ar->ar_hrd), if_name(ifp)); m_freem(m); return; } if (hlen != 0 && hlen != ar->ar_hln) { ARP_LOG(LOG_NOTICE, "packet with invalid %s address length %d received on %s\n", layer, ar->ar_hln, if_name(ifp)); m_freem(m); return; } ARPSTAT_INC(received); switch (ntohs(ar->ar_pro)) { #ifdef INET case ETHERTYPE_IP: in_arpinput(m); return; #endif } m_freem(m); } #ifdef INET /* * ARP for Internet protocols on 10 Mb/s Ethernet. * Algorithm is that given in RFC 826. * In addition, a sanity check is performed on the sender * protocol address, to catch impersonators. * We no longer handle negotiations for use of trailer protocol: * Formerly, ARP replied for protocol type ETHERTYPE_TRAIL sent * along with IP replies if we wanted trailers sent to us, * and also sent them in response to IP replies. * This allowed either end to announce the desire to receive * trailer packets. * We no longer reply to requests for ETHERTYPE_TRAIL protocol either, * but formerly didn't normally send requests. */ static int log_arp_wrong_iface = 1; static int log_arp_movements = 1; static int log_arp_permanent_modify = 1; static int allow_multicast = 0; SYSCTL_INT(_net_link_ether_inet, OID_AUTO, log_arp_wrong_iface, CTLFLAG_RW, &log_arp_wrong_iface, 0, "log arp packets arriving on the wrong interface"); SYSCTL_INT(_net_link_ether_inet, OID_AUTO, log_arp_movements, CTLFLAG_RW, &log_arp_movements, 0, "log arp replies from MACs different than the one in the cache"); SYSCTL_INT(_net_link_ether_inet, OID_AUTO, log_arp_permanent_modify, CTLFLAG_RW, &log_arp_permanent_modify, 0, "log arp replies from MACs different than the one in the permanent arp entry"); SYSCTL_INT(_net_link_ether_inet, OID_AUTO, allow_multicast, CTLFLAG_RW, &allow_multicast, 0, "accept multicast addresses"); static void in_arpinput(struct mbuf *m) { struct rm_priotracker in_ifa_tracker; struct arphdr *ah; struct ifnet *ifp = m->m_pkthdr.rcvif; struct llentry *la = NULL, *la_tmp; struct ifaddr *ifa; struct in_ifaddr *ia; struct sockaddr sa; struct in_addr isaddr, itaddr, myaddr; u_int8_t *enaddr = NULL; int op; int bridged = 0, is_bridge = 0; int carped; struct sockaddr_in sin; struct sockaddr *dst; struct nhop_object *nh; uint8_t linkhdr[LLE_MAX_LINKHDR]; struct route ro; size_t linkhdrsize; int lladdr_off; int error; char addrbuf[INET_ADDRSTRLEN]; NET_EPOCH_ASSERT(); sin.sin_len = sizeof(struct sockaddr_in); sin.sin_family = AF_INET; sin.sin_addr.s_addr = 0; if (ifp->if_bridge) bridged = 1; if (ifp->if_type == IFT_BRIDGE) is_bridge = 1; /* * We already have checked that mbuf contains enough contiguous data * to hold entire arp message according to the arp header. */ ah = mtod(m, struct arphdr *); /* * ARP is only for IPv4 so we can reject packets with * a protocol length not equal to an IPv4 address. */ if (ah->ar_pln != sizeof(struct in_addr)) { ARP_LOG(LOG_NOTICE, "requested protocol length != %zu\n", sizeof(struct in_addr)); goto drop; } if (allow_multicast == 0 && ETHER_IS_MULTICAST(ar_sha(ah))) { ARP_LOG(LOG_NOTICE, "%*D is multicast\n", ifp->if_addrlen, (u_char *)ar_sha(ah), ":"); goto drop; } op = ntohs(ah->ar_op); (void)memcpy(&isaddr, ar_spa(ah), sizeof (isaddr)); (void)memcpy(&itaddr, ar_tpa(ah), sizeof (itaddr)); if (op == ARPOP_REPLY) ARPSTAT_INC(rxreplies); /* * For a bridge, we want to check the address irrespective * of the receive interface. (This will change slightly * when we have clusters of interfaces). */ IN_IFADDR_RLOCK(&in_ifa_tracker); LIST_FOREACH(ia, INADDR_HASH(itaddr.s_addr), ia_hash) { if (((bridged && ia->ia_ifp->if_bridge == ifp->if_bridge) || ia->ia_ifp == ifp) && itaddr.s_addr == ia->ia_addr.sin_addr.s_addr && (ia->ia_ifa.ifa_carp == NULL || (*carp_iamatch_p)(&ia->ia_ifa, &enaddr))) { ifa_ref(&ia->ia_ifa); IN_IFADDR_RUNLOCK(&in_ifa_tracker); goto match; } } LIST_FOREACH(ia, INADDR_HASH(isaddr.s_addr), ia_hash) if (((bridged && ia->ia_ifp->if_bridge == ifp->if_bridge) || ia->ia_ifp == ifp) && isaddr.s_addr == ia->ia_addr.sin_addr.s_addr) { ifa_ref(&ia->ia_ifa); IN_IFADDR_RUNLOCK(&in_ifa_tracker); goto match; } #define BDG_MEMBER_MATCHES_ARP(addr, ifp, ia) \ (ia->ia_ifp->if_bridge == ifp->if_softc && \ !bcmp(IF_LLADDR(ia->ia_ifp), IF_LLADDR(ifp), ifp->if_addrlen) && \ addr == ia->ia_addr.sin_addr.s_addr) /* * Check the case when bridge shares its MAC address with * some of its children, so packets are claimed by bridge * itself (bridge_input() does it first), but they are really * meant to be destined to the bridge member. */ if (is_bridge) { LIST_FOREACH(ia, INADDR_HASH(itaddr.s_addr), ia_hash) { if (BDG_MEMBER_MATCHES_ARP(itaddr.s_addr, ifp, ia)) { ifa_ref(&ia->ia_ifa); ifp = ia->ia_ifp; IN_IFADDR_RUNLOCK(&in_ifa_tracker); goto match; } } } #undef BDG_MEMBER_MATCHES_ARP IN_IFADDR_RUNLOCK(&in_ifa_tracker); /* * No match, use the first inet address on the receive interface * as a dummy address for the rest of the function. */ CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) if (ifa->ifa_addr->sa_family == AF_INET && (ifa->ifa_carp == NULL || (*carp_iamatch_p)(ifa, &enaddr))) { ia = ifatoia(ifa); ifa_ref(ifa); goto match; } /* * If bridging, fall back to using any inet address. */ - IN_IFADDR_RLOCK(&in_ifa_tracker); - if (!bridged || (ia = CK_STAILQ_FIRST(&V_in_ifaddrhead)) == NULL) { - IN_IFADDR_RUNLOCK(&in_ifa_tracker); + if (!bridged || (ia = CK_STAILQ_FIRST(&V_in_ifaddrhead)) == NULL) goto drop; - } ifa_ref(&ia->ia_ifa); - IN_IFADDR_RUNLOCK(&in_ifa_tracker); match: if (!enaddr) enaddr = (u_int8_t *)IF_LLADDR(ifp); carped = (ia->ia_ifa.ifa_carp != NULL); myaddr = ia->ia_addr.sin_addr; ifa_free(&ia->ia_ifa); if (!bcmp(ar_sha(ah), enaddr, ifp->if_addrlen)) goto drop; /* it's from me, ignore it. */ if (!bcmp(ar_sha(ah), ifp->if_broadcastaddr, ifp->if_addrlen)) { ARP_LOG(LOG_NOTICE, "link address is broadcast for IP address " "%s!\n", inet_ntoa_r(isaddr, addrbuf)); goto drop; } if (ifp->if_addrlen != ah->ar_hln) { ARP_LOG(LOG_WARNING, "from %*D: addr len: new %d, " "i/f %d (ignored)\n", ifp->if_addrlen, (u_char *) ar_sha(ah), ":", ah->ar_hln, ifp->if_addrlen); goto drop; } /* * Warn if another host is using the same IP address, but only if the * IP address isn't 0.0.0.0, which is used for DHCP only, in which * case we suppress the warning to avoid false positive complaints of * potential misconfiguration. */ if (!bridged && !carped && isaddr.s_addr == myaddr.s_addr && myaddr.s_addr != 0) { ARP_LOG(LOG_ERR, "%*D is using my IP address %s on %s!\n", ifp->if_addrlen, (u_char *)ar_sha(ah), ":", inet_ntoa_r(isaddr, addrbuf), ifp->if_xname); itaddr = myaddr; ARPSTAT_INC(dupips); goto reply; } if (ifp->if_flags & IFF_STATICARP) goto reply; bzero(&sin, sizeof(sin)); sin.sin_len = sizeof(struct sockaddr_in); sin.sin_family = AF_INET; sin.sin_addr = isaddr; dst = (struct sockaddr *)&sin; la = lla_lookup(LLTABLE(ifp), LLE_EXCLUSIVE, dst); if (la != NULL) arp_check_update_lle(ah, isaddr, ifp, bridged, la); else if (itaddr.s_addr == myaddr.s_addr) { /* * Request/reply to our address, but no lle exists yet. * Calculate full link prepend to use in lle. */ linkhdrsize = sizeof(linkhdr); if (lltable_calc_llheader(ifp, AF_INET, ar_sha(ah), linkhdr, &linkhdrsize, &lladdr_off) != 0) goto reply; /* Allocate new entry */ la = lltable_alloc_entry(LLTABLE(ifp), 0, dst); if (la == NULL) { /* * lle creation may fail if source address belongs * to non-directly connected subnet. However, we * will try to answer the request instead of dropping * frame. */ goto reply; } lltable_set_entry_addr(ifp, la, linkhdr, linkhdrsize, lladdr_off); IF_AFDATA_WLOCK(ifp); LLE_WLOCK(la); la_tmp = lla_lookup(LLTABLE(ifp), LLE_EXCLUSIVE, dst); /* * Check if lle still does not exists. * If it does, that means that we either * 1) have configured it explicitly, via * 1a) 'arp -s' static entry or * 1b) interface address static record * or * 2) it was the result of sending first packet to-host * or * 3) it was another arp reply packet we handled in * different thread. * * In all cases except 3) we definitely need to prefer * existing lle. For the sake of simplicity, prefer any * existing lle over newly-create one. */ if (la_tmp == NULL) lltable_link_entry(LLTABLE(ifp), la); IF_AFDATA_WUNLOCK(ifp); if (la_tmp == NULL) { arp_mark_lle_reachable(la); LLE_WUNLOCK(la); } else { /* Free newly-create entry and handle packet */ lltable_free_entry(LLTABLE(ifp), la); la = la_tmp; la_tmp = NULL; arp_check_update_lle(ah, isaddr, ifp, bridged, la); /* arp_check_update_lle() returns @la unlocked */ } la = NULL; } reply: if (op != ARPOP_REQUEST) goto drop; ARPSTAT_INC(rxrequests); if (itaddr.s_addr == myaddr.s_addr) { /* Shortcut.. the receiving interface is the target. */ (void)memcpy(ar_tha(ah), ar_sha(ah), ah->ar_hln); (void)memcpy(ar_sha(ah), enaddr, ah->ar_hln); } else { /* * Destination address is not ours. Check if * proxyarp entry exists or proxyarp is turned on globally. */ struct llentry *lle; sin.sin_addr = itaddr; lle = lla_lookup(LLTABLE(ifp), 0, (struct sockaddr *)&sin); if ((lle != NULL) && (lle->la_flags & LLE_PUB)) { (void)memcpy(ar_tha(ah), ar_sha(ah), ah->ar_hln); (void)memcpy(ar_sha(ah), lle->ll_addr, ah->ar_hln); LLE_RUNLOCK(lle); } else { if (lle != NULL) LLE_RUNLOCK(lle); if (!V_arp_proxyall) goto drop; NET_EPOCH_ASSERT(); nh = fib4_lookup(ifp->if_fib, itaddr, 0, 0, 0); if (nh == NULL) goto drop; /* * Don't send proxies for nodes on the same interface * as this one came out of, or we'll get into a fight * over who claims what Ether address. */ if (nh->nh_ifp == ifp) goto drop; (void)memcpy(ar_tha(ah), ar_sha(ah), ah->ar_hln); (void)memcpy(ar_sha(ah), enaddr, ah->ar_hln); /* * Also check that the node which sent the ARP packet * is on the interface we expect it to be on. This * avoids ARP chaos if an interface is connected to the * wrong network. */ nh = fib4_lookup(ifp->if_fib, isaddr, 0, 0, 0); if (nh == NULL) goto drop; if (nh->nh_ifp != ifp) { ARP_LOG(LOG_INFO, "proxy: ignoring request" " from %s via %s\n", inet_ntoa_r(isaddr, addrbuf), ifp->if_xname); goto drop; } #ifdef DEBUG_PROXY printf("arp: proxying for %s\n", inet_ntoa_r(itaddr, addrbuf)); #endif } } if (itaddr.s_addr == myaddr.s_addr && IN_LINKLOCAL(ntohl(itaddr.s_addr))) { /* RFC 3927 link-local IPv4; always reply by broadcast. */ #ifdef DEBUG_LINKLOCAL printf("arp: sending reply for link-local addr %s\n", inet_ntoa_r(itaddr, addrbuf)); #endif m->m_flags |= M_BCAST; m->m_flags &= ~M_MCAST; } else { /* default behaviour; never reply by broadcast. */ m->m_flags &= ~(M_BCAST|M_MCAST); } (void)memcpy(ar_tpa(ah), ar_spa(ah), ah->ar_pln); (void)memcpy(ar_spa(ah), &itaddr, ah->ar_pln); ah->ar_op = htons(ARPOP_REPLY); ah->ar_pro = htons(ETHERTYPE_IP); /* let's be sure! */ m->m_len = sizeof(*ah) + (2 * ah->ar_pln) + (2 * ah->ar_hln); m->m_pkthdr.len = m->m_len; m->m_pkthdr.rcvif = NULL; sa.sa_family = AF_ARP; sa.sa_len = 2; /* Calculate link header for sending frame */ bzero(&ro, sizeof(ro)); linkhdrsize = sizeof(linkhdr); error = arp_fillheader(ifp, ah, 0, linkhdr, &linkhdrsize); /* * arp_fillheader() may fail due to lack of support inside encap request * routing. This is not necessary an error, AF_ARP can/should be handled * by if_output(). */ if (error != 0 && error != EAFNOSUPPORT) { ARP_LOG(LOG_ERR, "Failed to calculate ARP header on %s: %d\n", if_name(ifp), error); goto drop; } ro.ro_prepend = linkhdr; ro.ro_plen = linkhdrsize; ro.ro_flags = 0; m_clrprotoflags(m); /* Avoid confusing lower layers. */ (*ifp->if_output)(ifp, m, &sa, &ro); ARPSTAT_INC(txreplies); return; drop: m_freem(m); } #endif static struct mbuf * arp_grab_holdchain(struct llentry *la) { struct mbuf *chain; LLE_WLOCK_ASSERT(la); chain = la->la_hold; la->la_hold = NULL; la->la_numheld = 0; return (chain); } static void arp_flush_holdchain(struct ifnet *ifp, struct llentry *la, struct mbuf *chain) { struct mbuf *m_hold, *m_hold_next; struct sockaddr_in sin; NET_EPOCH_ASSERT(); struct route ro = { .ro_prepend = la->r_linkdata, .ro_plen = la->r_hdrlen, }; lltable_fill_sa_entry(la, (struct sockaddr *)&sin); for (m_hold = chain; m_hold != NULL; m_hold = m_hold_next) { m_hold_next = m_hold->m_nextpkt; m_hold->m_nextpkt = NULL; /* Avoid confusing lower layers. */ m_clrprotoflags(m_hold); (*ifp->if_output)(ifp, m_hold, (struct sockaddr *)&sin, &ro); } } /* * Checks received arp data against existing @la. * Updates lle state/performs notification if necessary. */ static void arp_check_update_lle(struct arphdr *ah, struct in_addr isaddr, struct ifnet *ifp, int bridged, struct llentry *la) { uint8_t linkhdr[LLE_MAX_LINKHDR]; size_t linkhdrsize; int lladdr_off; char addrbuf[INET_ADDRSTRLEN]; LLE_WLOCK_ASSERT(la); /* the following is not an error when doing bridging */ if (!bridged && la->lle_tbl->llt_ifp != ifp) { if (log_arp_wrong_iface) ARP_LOG(LOG_WARNING, "%s is on %s " "but got reply from %*D on %s\n", inet_ntoa_r(isaddr, addrbuf), la->lle_tbl->llt_ifp->if_xname, ifp->if_addrlen, (u_char *)ar_sha(ah), ":", ifp->if_xname); LLE_WUNLOCK(la); return; } if ((la->la_flags & LLE_VALID) && bcmp(ar_sha(ah), la->ll_addr, ifp->if_addrlen)) { if (la->la_flags & LLE_STATIC) { LLE_WUNLOCK(la); if (log_arp_permanent_modify) ARP_LOG(LOG_ERR, "%*D attempts to modify " "permanent entry for %s on %s\n", ifp->if_addrlen, (u_char *)ar_sha(ah), ":", inet_ntoa_r(isaddr, addrbuf), ifp->if_xname); return; } if (log_arp_movements) { ARP_LOG(LOG_INFO, "%s moved from %*D " "to %*D on %s\n", inet_ntoa_r(isaddr, addrbuf), ifp->if_addrlen, (u_char *)la->ll_addr, ":", ifp->if_addrlen, (u_char *)ar_sha(ah), ":", ifp->if_xname); } } /* Calculate full link prepend to use in lle */ linkhdrsize = sizeof(linkhdr); if (lltable_calc_llheader(ifp, AF_INET, ar_sha(ah), linkhdr, &linkhdrsize, &lladdr_off) != 0) return; /* Check if something has changed */ if (memcmp(la->r_linkdata, linkhdr, linkhdrsize) != 0 || (la->la_flags & LLE_VALID) == 0) { /* Try to perform LLE update */ if (lltable_try_set_entry_addr(ifp, la, linkhdr, linkhdrsize, lladdr_off) == 0) return; /* Clear fast path feedback request if set */ llentry_mark_used(la); } arp_mark_lle_reachable(la); /* * The packets are all freed within the call to the output * routine. * * NB: The lock MUST be released before the call to the * output routine. */ if (la->la_hold != NULL) { struct mbuf *chain; chain = arp_grab_holdchain(la); LLE_WUNLOCK(la); arp_flush_holdchain(ifp, la, chain); } else LLE_WUNLOCK(la); } static void arp_mark_lle_reachable(struct llentry *la) { int canceled, wtime; LLE_WLOCK_ASSERT(la); la->ln_state = ARP_LLINFO_REACHABLE; EVENTHANDLER_INVOKE(lle_event, la, LLENTRY_RESOLVED); if (!(la->la_flags & LLE_STATIC)) { LLE_ADDREF(la); la->la_expire = time_uptime + V_arpt_keep; wtime = V_arpt_keep - V_arp_maxtries * V_arpt_rexmit; if (wtime < 0) wtime = V_arpt_keep; canceled = callout_reset(&la->lle_timer, hz * wtime, arptimer, la); if (canceled) LLE_REMREF(la); } la->la_asked = 0; la->la_preempt = V_arp_maxtries; } /* * Add permanent link-layer record for given interface address. */ static __noinline void arp_add_ifa_lle(struct ifnet *ifp, const struct sockaddr *dst) { struct llentry *lle, *lle_tmp; /* * Interface address LLE record is considered static * because kernel code relies on LLE_STATIC flag to check * if these entries can be rewriten by arp updates. */ lle = lltable_alloc_entry(LLTABLE(ifp), LLE_IFADDR | LLE_STATIC, dst); if (lle == NULL) { log(LOG_INFO, "arp_ifinit: cannot create arp " "entry for interface address\n"); return; } IF_AFDATA_WLOCK(ifp); LLE_WLOCK(lle); /* Unlink any entry if exists */ lle_tmp = lla_lookup(LLTABLE(ifp), LLE_EXCLUSIVE, dst); if (lle_tmp != NULL) lltable_unlink_entry(LLTABLE(ifp), lle_tmp); lltable_link_entry(LLTABLE(ifp), lle); IF_AFDATA_WUNLOCK(ifp); if (lle_tmp != NULL) EVENTHANDLER_INVOKE(lle_event, lle_tmp, LLENTRY_EXPIRED); EVENTHANDLER_INVOKE(lle_event, lle, LLENTRY_RESOLVED); LLE_WUNLOCK(lle); if (lle_tmp != NULL) lltable_free_entry(LLTABLE(ifp), lle_tmp); } /* * Handle the garp_rexmit_count. Like sysctl_handle_int(), but limits the range * of valid values. */ static int sysctl_garp_rexmit(SYSCTL_HANDLER_ARGS) { int error; int rexmit_count = *(int *)arg1; error = sysctl_handle_int(oidp, &rexmit_count, 0, req); /* Enforce limits on any new value that may have been set. */ if (!error && req->newptr) { /* A new value was set. */ if (rexmit_count < 0) { rexmit_count = 0; } else if (rexmit_count > MAX_GARP_RETRANSMITS) { rexmit_count = MAX_GARP_RETRANSMITS; } *(int *)arg1 = rexmit_count; } return (error); } /* * Retransmit a Gratuitous ARP (GARP) and, if necessary, schedule a callout to * retransmit it again. A pending callout owns a reference to the ifa. */ static void garp_rexmit(void *arg) { struct in_ifaddr *ia = arg; if (callout_pending(&ia->ia_garp_timer) || !callout_active(&ia->ia_garp_timer)) { IF_ADDR_WUNLOCK(ia->ia_ifa.ifa_ifp); ifa_free(&ia->ia_ifa); return; } CURVNET_SET(ia->ia_ifa.ifa_ifp->if_vnet); /* * Drop lock while the ARP request is generated. */ IF_ADDR_WUNLOCK(ia->ia_ifa.ifa_ifp); arprequest(ia->ia_ifa.ifa_ifp, &IA_SIN(ia)->sin_addr, &IA_SIN(ia)->sin_addr, IF_LLADDR(ia->ia_ifa.ifa_ifp)); /* * Increment the count of retransmissions. If the count has reached the * maximum value, stop sending the GARP packets. Otherwise, schedule * the callout to retransmit another GARP packet. */ ++ia->ia_garp_count; if (ia->ia_garp_count >= garp_rexmit_count) { ifa_free(&ia->ia_ifa); } else { int rescheduled; IF_ADDR_WLOCK(ia->ia_ifa.ifa_ifp); rescheduled = callout_reset(&ia->ia_garp_timer, (1 << ia->ia_garp_count) * hz, garp_rexmit, ia); IF_ADDR_WUNLOCK(ia->ia_ifa.ifa_ifp); if (rescheduled) { ifa_free(&ia->ia_ifa); } } CURVNET_RESTORE(); } /* * Start the GARP retransmit timer. * * A single GARP is always transmitted when an IPv4 address is added * to an interface and that is usually sufficient. However, in some * circumstances, such as when a shared address is passed between * cluster nodes, this single GARP may occasionally be dropped or * lost. This can lead to neighbors on the network link working with a * stale ARP cache and sending packets destined for that address to * the node that previously owned the address, which may not respond. * * To avoid this situation, GARP retransmits can be enabled by setting * the net.link.ether.inet.garp_rexmit_count sysctl to a value greater * than zero. The setting represents the maximum number of * retransmissions. The interval between retransmissions is calculated * using an exponential backoff algorithm, doubling each time, so the * retransmission intervals are: {1, 2, 4, 8, 16, ...} (seconds). */ static void garp_timer_start(struct ifaddr *ifa) { struct in_ifaddr *ia = (struct in_ifaddr *) ifa; IF_ADDR_WLOCK(ia->ia_ifa.ifa_ifp); ia->ia_garp_count = 0; if (callout_reset(&ia->ia_garp_timer, (1 << ia->ia_garp_count) * hz, garp_rexmit, ia) == 0) { ifa_ref(ifa); } IF_ADDR_WUNLOCK(ia->ia_ifa.ifa_ifp); } void arp_ifinit(struct ifnet *ifp, struct ifaddr *ifa) { struct epoch_tracker et; const struct sockaddr_in *dst_in; const struct sockaddr *dst; if (ifa->ifa_carp != NULL) return; dst = ifa->ifa_addr; dst_in = (const struct sockaddr_in *)dst; if (ntohl(dst_in->sin_addr.s_addr) == INADDR_ANY) return; NET_EPOCH_ENTER(et); arp_announce_ifaddr(ifp, dst_in->sin_addr, IF_LLADDR(ifp)); NET_EPOCH_EXIT(et); if (garp_rexmit_count > 0) { garp_timer_start(ifa); } arp_add_ifa_lle(ifp, dst); } void arp_announce_ifaddr(struct ifnet *ifp, struct in_addr addr, u_char *enaddr) { if (ntohl(addr.s_addr) != INADDR_ANY) arprequest(ifp, &addr, &addr, enaddr); } /* * Sends gratuitous ARPs for each ifaddr to notify other * nodes about the address change. */ static __noinline void arp_handle_ifllchange(struct ifnet *ifp) { struct ifaddr *ifa; CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { if (ifa->ifa_addr->sa_family == AF_INET) arp_ifinit(ifp, ifa); } } /* * A handler for interface link layer address change event. */ static void arp_iflladdr(void *arg __unused, struct ifnet *ifp) { /* if_bridge can update its lladdr during if_vmove(), after we've done * if_detach_internal()/dom_ifdetach(). */ if (ifp->if_afdata[AF_INET] == NULL) return; lltable_update_ifaddr(LLTABLE(ifp)); if ((ifp->if_flags & IFF_UP) != 0) arp_handle_ifllchange(ifp); } static void vnet_arp_init(void) { if (IS_DEFAULT_VNET(curvnet)) { netisr_register(&arp_nh); iflladdr_tag = EVENTHANDLER_REGISTER(iflladdr_event, arp_iflladdr, NULL, EVENTHANDLER_PRI_ANY); } #ifdef VIMAGE else netisr_register_vnet(&arp_nh); #endif } VNET_SYSINIT(vnet_arp_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_SECOND, vnet_arp_init, 0); #ifdef VIMAGE /* * We have to unregister ARP along with IP otherwise we risk doing INADDR_HASH * lookups after destroying the hash. Ideally this would go on SI_ORDER_3.5. */ static void vnet_arp_destroy(__unused void *arg) { netisr_unregister_vnet(&arp_nh); } VNET_SYSUNINIT(vnet_arp_uninit, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, vnet_arp_destroy, NULL); #endif diff --git a/sys/netinet/igmp.c b/sys/netinet/igmp.c index ef0da5e5cb46..e7636330d267 100644 --- a/sys/netinet/igmp.c +++ b/sys/netinet/igmp.c @@ -1,3710 +1,3706 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 2007-2009 Bruce Simpson. * Copyright (c) 1988 Stephen Deering. * Copyright (c) 1992, 1993 * The Regents of the University of California. All rights reserved. * * This code is derived from software contributed to Berkeley by * Stephen Deering of Stanford University. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)igmp.c 8.1 (Berkeley) 7/19/93 */ /* * Internet Group Management Protocol (IGMP) routines. * [RFC1112, RFC2236, RFC3376] * * Written by Steve Deering, Stanford, May 1988. * Modified by Rosen Sharma, Stanford, Aug 1994. * Modified by Bill Fenner, Xerox PARC, Feb 1995. * Modified to fully comply to IGMPv2 by Bill Fenner, Oct 1995. * Significantly rewritten for IGMPv3, VIMAGE, and SMP by Bruce Simpson. * * MULTICAST Revision: 3.5.1.4 */ #include __FBSDID("$FreeBSD$"); #include "opt_ddb.h" #include #include #include #include #include #include #include #include #include -#include #include #include #include #ifdef DDB #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifndef KTR_IGMPV3 #define KTR_IGMPV3 KTR_INET #endif static struct igmp_ifsoftc * igi_alloc_locked(struct ifnet *); static void igi_delete_locked(const struct ifnet *); static void igmp_dispatch_queue(struct mbufq *, int, const int); static void igmp_fasttimo_vnet(void); static void igmp_final_leave(struct in_multi *, struct igmp_ifsoftc *); static int igmp_handle_state_change(struct in_multi *, struct igmp_ifsoftc *); static int igmp_initial_join(struct in_multi *, struct igmp_ifsoftc *); static int igmp_input_v1_query(struct ifnet *, const struct ip *, const struct igmp *); static int igmp_input_v2_query(struct ifnet *, const struct ip *, const struct igmp *); static int igmp_input_v3_query(struct ifnet *, const struct ip *, /*const*/ struct igmpv3 *); static int igmp_input_v3_group_query(struct in_multi *, struct igmp_ifsoftc *, int, /*const*/ struct igmpv3 *); static int igmp_input_v1_report(struct ifnet *, /*const*/ struct ip *, /*const*/ struct igmp *); static int igmp_input_v2_report(struct ifnet *, /*const*/ struct ip *, /*const*/ struct igmp *); static void igmp_intr(struct mbuf *); static int igmp_isgroupreported(const struct in_addr); static struct mbuf * igmp_ra_alloc(void); #ifdef KTR static char * igmp_rec_type_to_str(const int); #endif static void igmp_set_version(struct igmp_ifsoftc *, const int); static void igmp_slowtimo_vnet(void); static int igmp_v1v2_queue_report(struct in_multi *, const int); static void igmp_v1v2_process_group_timer(struct in_multi *, const int); static void igmp_v1v2_process_querier_timers(struct igmp_ifsoftc *); static void igmp_v2_update_group(struct in_multi *, const int); static void igmp_v3_cancel_link_timers(struct igmp_ifsoftc *); static void igmp_v3_dispatch_general_query(struct igmp_ifsoftc *); static struct mbuf * igmp_v3_encap_report(struct ifnet *, struct mbuf *); static int igmp_v3_enqueue_group_record(struct mbufq *, struct in_multi *, const int, const int, const int); static int igmp_v3_enqueue_filter_change(struct mbufq *, struct in_multi *); static void igmp_v3_process_group_timers(struct in_multi_head *, struct mbufq *, struct mbufq *, struct in_multi *, const int); static int igmp_v3_merge_state_changes(struct in_multi *, struct mbufq *); static void igmp_v3_suppress_group_record(struct in_multi *); static int sysctl_igmp_default_version(SYSCTL_HANDLER_ARGS); static int sysctl_igmp_gsr(SYSCTL_HANDLER_ARGS); static int sysctl_igmp_ifinfo(SYSCTL_HANDLER_ARGS); static int sysctl_igmp_stat(SYSCTL_HANDLER_ARGS); static const struct netisr_handler igmp_nh = { .nh_name = "igmp", .nh_handler = igmp_intr, .nh_proto = NETISR_IGMP, .nh_policy = NETISR_POLICY_SOURCE, }; /* * System-wide globals. * * Unlocked access to these is OK, except for the global IGMP output * queue. The IGMP subsystem lock ends up being system-wide for the moment, * because all VIMAGEs have to share a global output queue, as netisrs * themselves are not virtualized. * * Locking: * * The permitted lock order is: IN_MULTI_LIST_LOCK, IGMP_LOCK, IF_ADDR_LOCK. * Any may be taken independently; if any are held at the same * time, the above lock order must be followed. * * All output is delegated to the netisr. * Now that Giant has been eliminated, the netisr may be inlined. * * IN_MULTI_LIST_LOCK covers in_multi. * * IGMP_LOCK covers igmp_ifsoftc and any global variables in this file, * including the output queue. * * IF_ADDR_LOCK covers if_multiaddrs, which is used for a variety of * per-link state iterators. * * igmp_ifsoftc is valid as long as PF_INET is attached to the interface, * therefore it is not refcounted. * We allow unlocked reads of igmp_ifsoftc when accessed via in_multi. * * Reference counting * * IGMP acquires its own reference every time an in_multi is passed to * it and the group is being joined for the first time. * * IGMP releases its reference(s) on in_multi in a deferred way, * because the operations which process the release run as part of * a loop whose control variables are directly affected by the release * (that, and not recursing on the IF_ADDR_LOCK). * * VIMAGE: Each in_multi corresponds to an ifp, and each ifp corresponds * to a vnet in ifp->if_vnet. * * SMPng: XXX We may potentially race operations on ifma_protospec. * The problem is that we currently lack a clean way of taking the * IF_ADDR_LOCK() between the ifnet and in layers w/o recursing, * as anything which modifies ifma needs to be covered by that lock. * So check for ifma_protospec being NULL before proceeding. */ struct mtx igmp_mtx; struct mbuf *m_raopt; /* Router Alert option */ static MALLOC_DEFINE(M_IGMP, "igmp", "igmp state"); /* * VIMAGE-wide globals. * * The IGMPv3 timers themselves need to run per-image, however, * protosw timers run globally (see tcp). * An ifnet can only be in one vimage at a time, and the loopback * ifnet, loif, is itself virtualized. * It would otherwise be possible to seriously hose IGMP state, * and create inconsistencies in upstream multicast routing, if you have * multiple VIMAGEs running on the same link joining different multicast * groups, UNLESS the "primary IP address" is different. This is because * IGMP for IPv4 does not force link-local addresses to be used for each * node, unlike MLD for IPv6. * Obviously the IGMPv3 per-interface state has per-vimage granularity * also as a result. * * FUTURE: Stop using IFP_TO_IA/INADDR_ANY, and use source address selection * policy to control the address used by IGMP on the link. */ VNET_DEFINE_STATIC(int, interface_timers_running); /* IGMPv3 general * query response */ VNET_DEFINE_STATIC(int, state_change_timers_running); /* IGMPv3 state-change * retransmit */ VNET_DEFINE_STATIC(int, current_state_timers_running); /* IGMPv1/v2 host * report; IGMPv3 g/sg * query response */ #define V_interface_timers_running VNET(interface_timers_running) #define V_state_change_timers_running VNET(state_change_timers_running) #define V_current_state_timers_running VNET(current_state_timers_running) VNET_PCPUSTAT_DEFINE(struct igmpstat, igmpstat); VNET_PCPUSTAT_SYSINIT(igmpstat); VNET_PCPUSTAT_SYSUNINIT(igmpstat); VNET_DEFINE_STATIC(LIST_HEAD(, igmp_ifsoftc), igi_head) = LIST_HEAD_INITIALIZER(igi_head); VNET_DEFINE_STATIC(struct timeval, igmp_gsrdelay) = {10, 0}; #define V_igi_head VNET(igi_head) #define V_igmp_gsrdelay VNET(igmp_gsrdelay) VNET_DEFINE_STATIC(int, igmp_recvifkludge) = 1; VNET_DEFINE_STATIC(int, igmp_sendra) = 1; VNET_DEFINE_STATIC(int, igmp_sendlocal) = 1; VNET_DEFINE_STATIC(int, igmp_v1enable) = 1; VNET_DEFINE_STATIC(int, igmp_v2enable) = 1; VNET_DEFINE_STATIC(int, igmp_legacysupp); VNET_DEFINE_STATIC(int, igmp_default_version) = IGMP_VERSION_3; #define V_igmp_recvifkludge VNET(igmp_recvifkludge) #define V_igmp_sendra VNET(igmp_sendra) #define V_igmp_sendlocal VNET(igmp_sendlocal) #define V_igmp_v1enable VNET(igmp_v1enable) #define V_igmp_v2enable VNET(igmp_v2enable) #define V_igmp_legacysupp VNET(igmp_legacysupp) #define V_igmp_default_version VNET(igmp_default_version) /* * Virtualized sysctls. */ SYSCTL_PROC(_net_inet_igmp, IGMPCTL_STATS, stats, CTLFLAG_VNET | CTLTYPE_STRUCT | CTLFLAG_RW | CTLFLAG_MPSAFE, &VNET_NAME(igmpstat), 0, sysctl_igmp_stat, "S,igmpstat", "IGMP statistics (struct igmpstat, netinet/igmp_var.h)"); SYSCTL_INT(_net_inet_igmp, OID_AUTO, recvifkludge, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(igmp_recvifkludge), 0, "Rewrite IGMPv1/v2 reports from 0.0.0.0 to contain subnet address"); SYSCTL_INT(_net_inet_igmp, OID_AUTO, sendra, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(igmp_sendra), 0, "Send IP Router Alert option in IGMPv2/v3 messages"); SYSCTL_INT(_net_inet_igmp, OID_AUTO, sendlocal, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(igmp_sendlocal), 0, "Send IGMP membership reports for 224.0.0.0/24 groups"); SYSCTL_INT(_net_inet_igmp, OID_AUTO, v1enable, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(igmp_v1enable), 0, "Enable backwards compatibility with IGMPv1"); SYSCTL_INT(_net_inet_igmp, OID_AUTO, v2enable, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(igmp_v2enable), 0, "Enable backwards compatibility with IGMPv2"); SYSCTL_INT(_net_inet_igmp, OID_AUTO, legacysupp, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(igmp_legacysupp), 0, "Allow v1/v2 reports to suppress v3 group responses"); SYSCTL_PROC(_net_inet_igmp, OID_AUTO, default_version, CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, &VNET_NAME(igmp_default_version), 0, sysctl_igmp_default_version, "I", "Default version of IGMP to run on each interface"); SYSCTL_PROC(_net_inet_igmp, OID_AUTO, gsrdelay, CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, &VNET_NAME(igmp_gsrdelay.tv_sec), 0, sysctl_igmp_gsr, "I", "Rate limit for IGMPv3 Group-and-Source queries in seconds"); /* * Non-virtualized sysctls. */ static SYSCTL_NODE(_net_inet_igmp, OID_AUTO, ifinfo, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_igmp_ifinfo, "Per-interface IGMPv3 state"); static __inline void igmp_save_context(struct mbuf *m, struct ifnet *ifp) { #ifdef VIMAGE m->m_pkthdr.PH_loc.ptr = ifp->if_vnet; #endif /* VIMAGE */ m->m_pkthdr.rcvif = ifp; m->m_pkthdr.flowid = ifp->if_index; } static __inline void igmp_scrub_context(struct mbuf *m) { m->m_pkthdr.PH_loc.ptr = NULL; m->m_pkthdr.flowid = 0; } /* * Restore context from a queued IGMP output chain. * Return saved ifindex. * * VIMAGE: The assertion is there to make sure that we * actually called CURVNET_SET() with what's in the mbuf chain. */ static __inline uint32_t igmp_restore_context(struct mbuf *m) { #ifdef notyet #if defined(VIMAGE) && defined(INVARIANTS) KASSERT(curvnet == (m->m_pkthdr.PH_loc.ptr), ("%s: called when curvnet was not restored", __func__)); #endif #endif return (m->m_pkthdr.flowid); } /* * IGMP statistics. */ static int sysctl_igmp_stat(SYSCTL_HANDLER_ARGS) { struct igmpstat igps0; int error; char *p; error = sysctl_wire_old_buffer(req, sizeof(struct igmpstat)); if (error) return (error); if (req->oldptr != NULL) { if (req->oldlen < sizeof(struct igmpstat)) error = ENOMEM; else { /* * Copy the counters, and explicitly set the struct's * version and length fields. */ COUNTER_ARRAY_COPY(VNET(igmpstat), &igps0, sizeof(struct igmpstat) / sizeof(uint64_t)); igps0.igps_version = IGPS_VERSION_3; igps0.igps_len = IGPS_VERSION3_LEN; error = SYSCTL_OUT(req, &igps0, sizeof(struct igmpstat)); } } else req->validlen = sizeof(struct igmpstat); if (error) goto out; if (req->newptr != NULL) { if (req->newlen < sizeof(struct igmpstat)) error = ENOMEM; else error = SYSCTL_IN(req, &igps0, sizeof(igps0)); if (error) goto out; /* * igps0 must be "all zero". */ p = (char *)&igps0; while (p < (char *)&igps0 + sizeof(igps0) && *p == '\0') p++; if (p != (char *)&igps0 + sizeof(igps0)) { error = EINVAL; goto out; } COUNTER_ARRAY_ZERO(VNET(igmpstat), sizeof(struct igmpstat) / sizeof(uint64_t)); } out: return (error); } /* * Retrieve or set default IGMP version. * * VIMAGE: Assume curvnet set by caller. * SMPng: NOTE: Serialized by IGMP lock. */ static int sysctl_igmp_default_version(SYSCTL_HANDLER_ARGS) { int error; int new; error = sysctl_wire_old_buffer(req, sizeof(int)); if (error) return (error); IGMP_LOCK(); new = V_igmp_default_version; error = sysctl_handle_int(oidp, &new, 0, req); if (error || !req->newptr) goto out_locked; if (new < IGMP_VERSION_1 || new > IGMP_VERSION_3) { error = EINVAL; goto out_locked; } CTR2(KTR_IGMPV3, "change igmp_default_version from %d to %d", V_igmp_default_version, new); V_igmp_default_version = new; out_locked: IGMP_UNLOCK(); return (error); } /* * Retrieve or set threshold between group-source queries in seconds. * * VIMAGE: Assume curvnet set by caller. * SMPng: NOTE: Serialized by IGMP lock. */ static int sysctl_igmp_gsr(SYSCTL_HANDLER_ARGS) { int error; int i; error = sysctl_wire_old_buffer(req, sizeof(int)); if (error) return (error); IGMP_LOCK(); i = V_igmp_gsrdelay.tv_sec; error = sysctl_handle_int(oidp, &i, 0, req); if (error || !req->newptr) goto out_locked; if (i < -1 || i >= 60) { error = EINVAL; goto out_locked; } CTR2(KTR_IGMPV3, "change igmp_gsrdelay from %d to %d", V_igmp_gsrdelay.tv_sec, i); V_igmp_gsrdelay.tv_sec = i; out_locked: IGMP_UNLOCK(); return (error); } /* * Expose struct igmp_ifsoftc to userland, keyed by ifindex. * For use by ifmcstat(8). * * SMPng: NOTE: Does an unlocked ifindex space read. * VIMAGE: Assume curvnet set by caller. The node handler itself * is not directly virtualized. */ static int sysctl_igmp_ifinfo(SYSCTL_HANDLER_ARGS) { int *name; int error; u_int namelen; struct ifnet *ifp; struct igmp_ifsoftc *igi; name = (int *)arg1; namelen = arg2; if (req->newptr != NULL) return (EPERM); if (namelen != 1) return (EINVAL); error = sysctl_wire_old_buffer(req, sizeof(struct igmp_ifinfo)); if (error) return (error); IN_MULTI_LIST_LOCK(); IGMP_LOCK(); if (name[0] <= 0 || name[0] > V_if_index) { error = ENOENT; goto out_locked; } error = ENOENT; ifp = ifnet_byindex(name[0]); if (ifp == NULL) goto out_locked; LIST_FOREACH(igi, &V_igi_head, igi_link) { if (ifp == igi->igi_ifp) { struct igmp_ifinfo info; info.igi_version = igi->igi_version; info.igi_v1_timer = igi->igi_v1_timer; info.igi_v2_timer = igi->igi_v2_timer; info.igi_v3_timer = igi->igi_v3_timer; info.igi_flags = igi->igi_flags; info.igi_rv = igi->igi_rv; info.igi_qi = igi->igi_qi; info.igi_qri = igi->igi_qri; info.igi_uri = igi->igi_uri; error = SYSCTL_OUT(req, &info, sizeof(info)); break; } } out_locked: IGMP_UNLOCK(); IN_MULTI_LIST_UNLOCK(); return (error); } /* * Dispatch an entire queue of pending packet chains * using the netisr. * VIMAGE: Assumes the vnet pointer has been set. */ static void igmp_dispatch_queue(struct mbufq *mq, int limit, const int loop) { struct epoch_tracker et; struct mbuf *m; NET_EPOCH_ENTER(et); while ((m = mbufq_dequeue(mq)) != NULL) { CTR3(KTR_IGMPV3, "%s: dispatch %p from %p", __func__, mq, m); if (loop) m->m_flags |= M_IGMP_LOOP; netisr_dispatch(NETISR_IGMP, m); if (--limit == 0) break; } NET_EPOCH_EXIT(et); } /* * Filter outgoing IGMP report state by group. * * Reports are ALWAYS suppressed for ALL-HOSTS (224.0.0.1). * If the net.inet.igmp.sendlocal sysctl is 0, then IGMP reports are * disabled for all groups in the 224.0.0.0/24 link-local scope. However, * this may break certain IGMP snooping switches which rely on the old * report behaviour. * * Return zero if the given group is one for which IGMP reports * should be suppressed, or non-zero if reports should be issued. */ static __inline int igmp_isgroupreported(const struct in_addr addr) { if (in_allhosts(addr) || ((!V_igmp_sendlocal && IN_LOCAL_GROUP(ntohl(addr.s_addr))))) return (0); return (1); } /* * Construct a Router Alert option to use in outgoing packets. */ static struct mbuf * igmp_ra_alloc(void) { struct mbuf *m; struct ipoption *p; m = m_get(M_WAITOK, MT_DATA); p = mtod(m, struct ipoption *); p->ipopt_dst.s_addr = INADDR_ANY; p->ipopt_list[0] = (char)IPOPT_RA; /* Router Alert Option */ p->ipopt_list[1] = 0x04; /* 4 bytes long */ p->ipopt_list[2] = IPOPT_EOL; /* End of IP option list */ p->ipopt_list[3] = 0x00; /* pad byte */ m->m_len = sizeof(p->ipopt_dst) + p->ipopt_list[1]; return (m); } /* * Attach IGMP when PF_INET is attached to an interface. */ struct igmp_ifsoftc * igmp_domifattach(struct ifnet *ifp) { struct igmp_ifsoftc *igi; CTR3(KTR_IGMPV3, "%s: called for ifp %p(%s)", __func__, ifp, ifp->if_xname); IGMP_LOCK(); igi = igi_alloc_locked(ifp); if (!(ifp->if_flags & IFF_MULTICAST)) igi->igi_flags |= IGIF_SILENT; IGMP_UNLOCK(); return (igi); } /* * VIMAGE: assume curvnet set by caller. */ static struct igmp_ifsoftc * igi_alloc_locked(/*const*/ struct ifnet *ifp) { struct igmp_ifsoftc *igi; IGMP_LOCK_ASSERT(); igi = malloc(sizeof(struct igmp_ifsoftc), M_IGMP, M_NOWAIT|M_ZERO); if (igi == NULL) goto out; igi->igi_ifp = ifp; igi->igi_version = V_igmp_default_version; igi->igi_flags = 0; igi->igi_rv = IGMP_RV_INIT; igi->igi_qi = IGMP_QI_INIT; igi->igi_qri = IGMP_QRI_INIT; igi->igi_uri = IGMP_URI_INIT; mbufq_init(&igi->igi_gq, IGMP_MAX_RESPONSE_PACKETS); LIST_INSERT_HEAD(&V_igi_head, igi, igi_link); CTR2(KTR_IGMPV3, "allocate igmp_ifsoftc for ifp %p(%s)", ifp, ifp->if_xname); out: return (igi); } /* * Hook for ifdetach. * * NOTE: Some finalization tasks need to run before the protocol domain * is detached, but also before the link layer does its cleanup. * * SMPNG: igmp_ifdetach() needs to take IF_ADDR_LOCK(). * XXX This is also bitten by unlocked ifma_protospec access. */ void igmp_ifdetach(struct ifnet *ifp) { struct igmp_ifsoftc *igi; struct ifmultiaddr *ifma, *next; struct in_multi *inm; struct in_multi_head inm_free_tmp; CTR3(KTR_IGMPV3, "%s: called for ifp %p(%s)", __func__, ifp, ifp->if_xname); SLIST_INIT(&inm_free_tmp); IGMP_LOCK(); igi = ((struct in_ifinfo *)ifp->if_afdata[AF_INET])->ii_igmp; if (igi->igi_version == IGMP_VERSION_3) { IF_ADDR_WLOCK(ifp); restart: CK_STAILQ_FOREACH_SAFE(ifma, &ifp->if_multiaddrs, ifma_link, next) { if (ifma->ifma_addr->sa_family != AF_INET || ifma->ifma_protospec == NULL) continue; inm = (struct in_multi *)ifma->ifma_protospec; if (inm->inm_state == IGMP_LEAVING_MEMBER) inm_rele_locked(&inm_free_tmp, inm); inm_clear_recorded(inm); if (__predict_false(ifma_restart)) { ifma_restart = false; goto restart; } } IF_ADDR_WUNLOCK(ifp); inm_release_list_deferred(&inm_free_tmp); } IGMP_UNLOCK(); } /* * Hook for domifdetach. */ void igmp_domifdetach(struct ifnet *ifp) { CTR3(KTR_IGMPV3, "%s: called for ifp %p(%s)", __func__, ifp, ifp->if_xname); IGMP_LOCK(); igi_delete_locked(ifp); IGMP_UNLOCK(); } static void igi_delete_locked(const struct ifnet *ifp) { struct igmp_ifsoftc *igi, *tigi; CTR3(KTR_IGMPV3, "%s: freeing igmp_ifsoftc for ifp %p(%s)", __func__, ifp, ifp->if_xname); IGMP_LOCK_ASSERT(); LIST_FOREACH_SAFE(igi, &V_igi_head, igi_link, tigi) { if (igi->igi_ifp == ifp) { /* * Free deferred General Query responses. */ mbufq_drain(&igi->igi_gq); LIST_REMOVE(igi, igi_link); free(igi, M_IGMP); return; } } } /* * Process a received IGMPv1 query. * Return non-zero if the message should be dropped. * * VIMAGE: The curvnet pointer is derived from the input ifp. */ static int igmp_input_v1_query(struct ifnet *ifp, const struct ip *ip, const struct igmp *igmp) { struct ifmultiaddr *ifma; struct igmp_ifsoftc *igi; struct in_multi *inm; NET_EPOCH_ASSERT(); /* * IGMPv1 Host Mmembership Queries SHOULD always be addressed to * 224.0.0.1. They are always treated as General Queries. * igmp_group is always ignored. Do not drop it as a userland * daemon may wish to see it. * XXX SMPng: unlocked increments in igmpstat assumed atomic. */ if (!in_allhosts(ip->ip_dst) || !in_nullhost(igmp->igmp_group)) { IGMPSTAT_INC(igps_rcv_badqueries); return (0); } IGMPSTAT_INC(igps_rcv_gen_queries); IN_MULTI_LIST_LOCK(); IGMP_LOCK(); igi = ((struct in_ifinfo *)ifp->if_afdata[AF_INET])->ii_igmp; KASSERT(igi != NULL, ("%s: no igmp_ifsoftc for ifp %p", __func__, ifp)); if (igi->igi_flags & IGIF_LOOPBACK) { CTR2(KTR_IGMPV3, "ignore v1 query on IGIF_LOOPBACK ifp %p(%s)", ifp, ifp->if_xname); goto out_locked; } /* * Switch to IGMPv1 host compatibility mode. */ igmp_set_version(igi, IGMP_VERSION_1); CTR2(KTR_IGMPV3, "process v1 query on ifp %p(%s)", ifp, ifp->if_xname); /* * Start the timers in all of our group records * for the interface on which the query arrived, * except those which are already running. */ CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { if (ifma->ifma_addr->sa_family != AF_INET || ifma->ifma_protospec == NULL) continue; inm = (struct in_multi *)ifma->ifma_protospec; if (inm->inm_timer != 0) continue; switch (inm->inm_state) { case IGMP_NOT_MEMBER: case IGMP_SILENT_MEMBER: break; case IGMP_G_QUERY_PENDING_MEMBER: case IGMP_SG_QUERY_PENDING_MEMBER: case IGMP_REPORTING_MEMBER: case IGMP_IDLE_MEMBER: case IGMP_LAZY_MEMBER: case IGMP_SLEEPING_MEMBER: case IGMP_AWAKENING_MEMBER: inm->inm_state = IGMP_REPORTING_MEMBER; inm->inm_timer = IGMP_RANDOM_DELAY( IGMP_V1V2_MAX_RI * PR_FASTHZ); V_current_state_timers_running = 1; break; case IGMP_LEAVING_MEMBER: break; } } out_locked: IGMP_UNLOCK(); IN_MULTI_LIST_UNLOCK(); return (0); } /* * Process a received IGMPv2 general or group-specific query. */ static int igmp_input_v2_query(struct ifnet *ifp, const struct ip *ip, const struct igmp *igmp) { struct ifmultiaddr *ifma; struct igmp_ifsoftc *igi; struct in_multi *inm; int is_general_query; uint16_t timer; NET_EPOCH_ASSERT(); is_general_query = 0; /* * Validate address fields upfront. * XXX SMPng: unlocked increments in igmpstat assumed atomic. */ if (in_nullhost(igmp->igmp_group)) { /* * IGMPv2 General Query. * If this was not sent to the all-hosts group, ignore it. */ if (!in_allhosts(ip->ip_dst)) return (0); IGMPSTAT_INC(igps_rcv_gen_queries); is_general_query = 1; } else { /* IGMPv2 Group-Specific Query. */ IGMPSTAT_INC(igps_rcv_group_queries); } IN_MULTI_LIST_LOCK(); IGMP_LOCK(); igi = ((struct in_ifinfo *)ifp->if_afdata[AF_INET])->ii_igmp; KASSERT(igi != NULL, ("%s: no igmp_ifsoftc for ifp %p", __func__, ifp)); if (igi->igi_flags & IGIF_LOOPBACK) { CTR2(KTR_IGMPV3, "ignore v2 query on IGIF_LOOPBACK ifp %p(%s)", ifp, ifp->if_xname); goto out_locked; } /* * Ignore v2 query if in v1 Compatibility Mode. */ if (igi->igi_version == IGMP_VERSION_1) goto out_locked; igmp_set_version(igi, IGMP_VERSION_2); timer = igmp->igmp_code * PR_FASTHZ / IGMP_TIMER_SCALE; if (timer == 0) timer = 1; if (is_general_query) { /* * For each reporting group joined on this * interface, kick the report timer. */ CTR2(KTR_IGMPV3, "process v2 general query on ifp %p(%s)", ifp, ifp->if_xname); CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { if (ifma->ifma_addr->sa_family != AF_INET || ifma->ifma_protospec == NULL) continue; inm = (struct in_multi *)ifma->ifma_protospec; igmp_v2_update_group(inm, timer); } } else { /* * Group-specific IGMPv2 query, we need only * look up the single group to process it. */ inm = inm_lookup(ifp, igmp->igmp_group); if (inm != NULL) { CTR3(KTR_IGMPV3, "process v2 query 0x%08x on ifp %p(%s)", ntohl(igmp->igmp_group.s_addr), ifp, ifp->if_xname); igmp_v2_update_group(inm, timer); } } out_locked: IGMP_UNLOCK(); IN_MULTI_LIST_UNLOCK(); return (0); } /* * Update the report timer on a group in response to an IGMPv2 query. * * If we are becoming the reporting member for this group, start the timer. * If we already are the reporting member for this group, and timer is * below the threshold, reset it. * * We may be updating the group for the first time since we switched * to IGMPv3. If we are, then we must clear any recorded source lists, * and transition to REPORTING state; the group timer is overloaded * for group and group-source query responses. * * Unlike IGMPv3, the delay per group should be jittered * to avoid bursts of IGMPv2 reports. */ static void igmp_v2_update_group(struct in_multi *inm, const int timer) { CTR4(KTR_IGMPV3, "0x%08x: %s/%s timer=%d", __func__, ntohl(inm->inm_addr.s_addr), inm->inm_ifp->if_xname, timer); IN_MULTI_LIST_LOCK_ASSERT(); switch (inm->inm_state) { case IGMP_NOT_MEMBER: case IGMP_SILENT_MEMBER: break; case IGMP_REPORTING_MEMBER: if (inm->inm_timer != 0 && inm->inm_timer <= timer) { CTR1(KTR_IGMPV3, "%s: REPORTING and timer running, " "skipping.", __func__); break; } /* FALLTHROUGH */ case IGMP_SG_QUERY_PENDING_MEMBER: case IGMP_G_QUERY_PENDING_MEMBER: case IGMP_IDLE_MEMBER: case IGMP_LAZY_MEMBER: case IGMP_AWAKENING_MEMBER: CTR1(KTR_IGMPV3, "%s: ->REPORTING", __func__); inm->inm_state = IGMP_REPORTING_MEMBER; inm->inm_timer = IGMP_RANDOM_DELAY(timer); V_current_state_timers_running = 1; break; case IGMP_SLEEPING_MEMBER: CTR1(KTR_IGMPV3, "%s: ->AWAKENING", __func__); inm->inm_state = IGMP_AWAKENING_MEMBER; break; case IGMP_LEAVING_MEMBER: break; } } /* * Process a received IGMPv3 general, group-specific or * group-and-source-specific query. * Assumes m has already been pulled up to the full IGMP message length. * Return 0 if successful, otherwise an appropriate error code is returned. */ static int igmp_input_v3_query(struct ifnet *ifp, const struct ip *ip, /*const*/ struct igmpv3 *igmpv3) { struct igmp_ifsoftc *igi; struct in_multi *inm; int is_general_query; uint32_t maxresp, nsrc, qqi; uint16_t timer; uint8_t qrv; is_general_query = 0; CTR2(KTR_IGMPV3, "process v3 query on ifp %p(%s)", ifp, ifp->if_xname); maxresp = igmpv3->igmp_code; /* in 1/10ths of a second */ if (maxresp >= 128) { maxresp = IGMP_MANT(igmpv3->igmp_code) << (IGMP_EXP(igmpv3->igmp_code) + 3); } /* * Robustness must never be less than 2 for on-wire IGMPv3. * FUTURE: Check if ifp has IGIF_LOOPBACK set, as we will make * an exception for interfaces whose IGMPv3 state changes * are redirected to loopback (e.g. MANET). */ qrv = IGMP_QRV(igmpv3->igmp_misc); if (qrv < 2) { CTR3(KTR_IGMPV3, "%s: clamping qrv %d to %d", __func__, qrv, IGMP_RV_INIT); qrv = IGMP_RV_INIT; } qqi = igmpv3->igmp_qqi; if (qqi >= 128) { qqi = IGMP_MANT(igmpv3->igmp_qqi) << (IGMP_EXP(igmpv3->igmp_qqi) + 3); } timer = maxresp * PR_FASTHZ / IGMP_TIMER_SCALE; if (timer == 0) timer = 1; nsrc = ntohs(igmpv3->igmp_numsrc); /* * Validate address fields and versions upfront before * accepting v3 query. * XXX SMPng: Unlocked access to igmpstat counters here. */ if (in_nullhost(igmpv3->igmp_group)) { /* * IGMPv3 General Query. * * General Queries SHOULD be directed to 224.0.0.1. * A general query with a source list has undefined * behaviour; discard it. */ IGMPSTAT_INC(igps_rcv_gen_queries); if (!in_allhosts(ip->ip_dst) || nsrc > 0) { IGMPSTAT_INC(igps_rcv_badqueries); return (0); } is_general_query = 1; } else { /* Group or group-source specific query. */ if (nsrc == 0) IGMPSTAT_INC(igps_rcv_group_queries); else IGMPSTAT_INC(igps_rcv_gsr_queries); } IN_MULTI_LIST_LOCK(); IGMP_LOCK(); igi = ((struct in_ifinfo *)ifp->if_afdata[AF_INET])->ii_igmp; KASSERT(igi != NULL, ("%s: no igmp_ifsoftc for ifp %p", __func__, ifp)); if (igi->igi_flags & IGIF_LOOPBACK) { CTR2(KTR_IGMPV3, "ignore v3 query on IGIF_LOOPBACK ifp %p(%s)", ifp, ifp->if_xname); goto out_locked; } /* * Discard the v3 query if we're in Compatibility Mode. * The RFC is not obviously worded that hosts need to stay in * compatibility mode until the Old Version Querier Present * timer expires. */ if (igi->igi_version != IGMP_VERSION_3) { CTR3(KTR_IGMPV3, "ignore v3 query in v%d mode on ifp %p(%s)", igi->igi_version, ifp, ifp->if_xname); goto out_locked; } igmp_set_version(igi, IGMP_VERSION_3); igi->igi_rv = qrv; igi->igi_qi = qqi; igi->igi_qri = maxresp; CTR4(KTR_IGMPV3, "%s: qrv %d qi %d qri %d", __func__, qrv, qqi, maxresp); if (is_general_query) { /* * Schedule a current-state report on this ifp for * all groups, possibly containing source lists. * If there is a pending General Query response * scheduled earlier than the selected delay, do * not schedule any other reports. * Otherwise, reset the interface timer. */ CTR2(KTR_IGMPV3, "process v3 general query on ifp %p(%s)", ifp, ifp->if_xname); if (igi->igi_v3_timer == 0 || igi->igi_v3_timer >= timer) { igi->igi_v3_timer = IGMP_RANDOM_DELAY(timer); V_interface_timers_running = 1; } } else { /* * Group-source-specific queries are throttled on * a per-group basis to defeat denial-of-service attempts. * Queries for groups we are not a member of on this * link are simply ignored. */ inm = inm_lookup(ifp, igmpv3->igmp_group); if (inm == NULL) goto out_locked; if (nsrc > 0) { if (!ratecheck(&inm->inm_lastgsrtv, &V_igmp_gsrdelay)) { CTR1(KTR_IGMPV3, "%s: GS query throttled.", __func__); IGMPSTAT_INC(igps_drop_gsr_queries); goto out_locked; } } CTR3(KTR_IGMPV3, "process v3 0x%08x query on ifp %p(%s)", ntohl(igmpv3->igmp_group.s_addr), ifp, ifp->if_xname); /* * If there is a pending General Query response * scheduled sooner than the selected delay, no * further report need be scheduled. * Otherwise, prepare to respond to the * group-specific or group-and-source query. */ if (igi->igi_v3_timer == 0 || igi->igi_v3_timer >= timer) igmp_input_v3_group_query(inm, igi, timer, igmpv3); } out_locked: IGMP_UNLOCK(); IN_MULTI_LIST_UNLOCK(); return (0); } /* * Process a received IGMPv3 group-specific or group-and-source-specific * query. * Return <0 if any error occurred. Currently this is ignored. */ static int igmp_input_v3_group_query(struct in_multi *inm, struct igmp_ifsoftc *igi, int timer, /*const*/ struct igmpv3 *igmpv3) { int retval; uint16_t nsrc; IN_MULTI_LIST_LOCK_ASSERT(); IGMP_LOCK_ASSERT(); retval = 0; switch (inm->inm_state) { case IGMP_NOT_MEMBER: case IGMP_SILENT_MEMBER: case IGMP_SLEEPING_MEMBER: case IGMP_LAZY_MEMBER: case IGMP_AWAKENING_MEMBER: case IGMP_IDLE_MEMBER: case IGMP_LEAVING_MEMBER: return (retval); break; case IGMP_REPORTING_MEMBER: case IGMP_G_QUERY_PENDING_MEMBER: case IGMP_SG_QUERY_PENDING_MEMBER: break; } nsrc = ntohs(igmpv3->igmp_numsrc); /* * Deal with group-specific queries upfront. * If any group query is already pending, purge any recorded * source-list state if it exists, and schedule a query response * for this group-specific query. */ if (nsrc == 0) { if (inm->inm_state == IGMP_G_QUERY_PENDING_MEMBER || inm->inm_state == IGMP_SG_QUERY_PENDING_MEMBER) { inm_clear_recorded(inm); timer = min(inm->inm_timer, timer); } inm->inm_state = IGMP_G_QUERY_PENDING_MEMBER; inm->inm_timer = IGMP_RANDOM_DELAY(timer); V_current_state_timers_running = 1; return (retval); } /* * Deal with the case where a group-and-source-specific query has * been received but a group-specific query is already pending. */ if (inm->inm_state == IGMP_G_QUERY_PENDING_MEMBER) { timer = min(inm->inm_timer, timer); inm->inm_timer = IGMP_RANDOM_DELAY(timer); V_current_state_timers_running = 1; return (retval); } /* * Finally, deal with the case where a group-and-source-specific * query has been received, where a response to a previous g-s-r * query exists, or none exists. * In this case, we need to parse the source-list which the Querier * has provided us with and check if we have any source list filter * entries at T1 for these sources. If we do not, there is no need * schedule a report and the query may be dropped. * If we do, we must record them and schedule a current-state * report for those sources. * FIXME: Handling source lists larger than 1 mbuf requires that * we pass the mbuf chain pointer down to this function, and use * m_getptr() to walk the chain. */ if (inm->inm_nsrc > 0) { const struct in_addr *ap; int i, nrecorded; ap = (const struct in_addr *)(igmpv3 + 1); nrecorded = 0; for (i = 0; i < nsrc; i++, ap++) { retval = inm_record_source(inm, ap->s_addr); if (retval < 0) break; nrecorded += retval; } if (nrecorded > 0) { CTR1(KTR_IGMPV3, "%s: schedule response to SG query", __func__); inm->inm_state = IGMP_SG_QUERY_PENDING_MEMBER; inm->inm_timer = IGMP_RANDOM_DELAY(timer); V_current_state_timers_running = 1; } } return (retval); } /* * Process a received IGMPv1 host membership report. * * NOTE: 0.0.0.0 workaround breaks const correctness. */ static int igmp_input_v1_report(struct ifnet *ifp, /*const*/ struct ip *ip, /*const*/ struct igmp *igmp) { - struct rm_priotracker in_ifa_tracker; struct in_ifaddr *ia; struct in_multi *inm; IGMPSTAT_INC(igps_rcv_reports); if (ifp->if_flags & IFF_LOOPBACK) return (0); if (!IN_MULTICAST(ntohl(igmp->igmp_group.s_addr)) || !in_hosteq(igmp->igmp_group, ip->ip_dst)) { IGMPSTAT_INC(igps_rcv_badreports); return (EINVAL); } /* * RFC 3376, Section 4.2.13, 9.2, 9.3: * Booting clients may use the source address 0.0.0.0. Some * IGMP daemons may not know how to use IP_RECVIF to determine * the interface upon which this message was received. * Replace 0.0.0.0 with the subnet address if told to do so. */ if (V_igmp_recvifkludge && in_nullhost(ip->ip_src)) { - IFP_TO_IA(ifp, ia, &in_ifa_tracker); + IFP_TO_IA(ifp, ia); if (ia != NULL) ip->ip_src.s_addr = htonl(ia->ia_subnet); } CTR3(KTR_IGMPV3, "process v1 report 0x%08x on ifp %p(%s)", ntohl(igmp->igmp_group.s_addr), ifp, ifp->if_xname); /* * IGMPv1 report suppression. * If we are a member of this group, and our membership should be * reported, stop our group timer and transition to the 'lazy' state. */ IN_MULTI_LIST_LOCK(); inm = inm_lookup(ifp, igmp->igmp_group); if (inm != NULL) { struct igmp_ifsoftc *igi; igi = inm->inm_igi; if (igi == NULL) { KASSERT(igi != NULL, ("%s: no igi for ifp %p", __func__, ifp)); goto out_locked; } IGMPSTAT_INC(igps_rcv_ourreports); /* * If we are in IGMPv3 host mode, do not allow the * other host's IGMPv1 report to suppress our reports * unless explicitly configured to do so. */ if (igi->igi_version == IGMP_VERSION_3) { if (V_igmp_legacysupp) igmp_v3_suppress_group_record(inm); goto out_locked; } inm->inm_timer = 0; switch (inm->inm_state) { case IGMP_NOT_MEMBER: case IGMP_SILENT_MEMBER: break; case IGMP_IDLE_MEMBER: case IGMP_LAZY_MEMBER: case IGMP_AWAKENING_MEMBER: CTR3(KTR_IGMPV3, "report suppressed for 0x%08x on ifp %p(%s)", ntohl(igmp->igmp_group.s_addr), ifp, ifp->if_xname); case IGMP_SLEEPING_MEMBER: inm->inm_state = IGMP_SLEEPING_MEMBER; break; case IGMP_REPORTING_MEMBER: CTR3(KTR_IGMPV3, "report suppressed for 0x%08x on ifp %p(%s)", ntohl(igmp->igmp_group.s_addr), ifp, ifp->if_xname); if (igi->igi_version == IGMP_VERSION_1) inm->inm_state = IGMP_LAZY_MEMBER; else if (igi->igi_version == IGMP_VERSION_2) inm->inm_state = IGMP_SLEEPING_MEMBER; break; case IGMP_G_QUERY_PENDING_MEMBER: case IGMP_SG_QUERY_PENDING_MEMBER: case IGMP_LEAVING_MEMBER: break; } } out_locked: IN_MULTI_LIST_UNLOCK(); return (0); } /* * Process a received IGMPv2 host membership report. * * NOTE: 0.0.0.0 workaround breaks const correctness. */ static int igmp_input_v2_report(struct ifnet *ifp, /*const*/ struct ip *ip, /*const*/ struct igmp *igmp) { - struct rm_priotracker in_ifa_tracker; struct in_ifaddr *ia; struct in_multi *inm; /* * Make sure we don't hear our own membership report. Fast * leave requires knowing that we are the only member of a * group. */ - IFP_TO_IA(ifp, ia, &in_ifa_tracker); + IFP_TO_IA(ifp, ia); if (ia != NULL && in_hosteq(ip->ip_src, IA_SIN(ia)->sin_addr)) { return (0); } IGMPSTAT_INC(igps_rcv_reports); if (ifp->if_flags & IFF_LOOPBACK) { return (0); } if (!IN_MULTICAST(ntohl(igmp->igmp_group.s_addr)) || !in_hosteq(igmp->igmp_group, ip->ip_dst)) { IGMPSTAT_INC(igps_rcv_badreports); return (EINVAL); } /* * RFC 3376, Section 4.2.13, 9.2, 9.3: * Booting clients may use the source address 0.0.0.0. Some * IGMP daemons may not know how to use IP_RECVIF to determine * the interface upon which this message was received. * Replace 0.0.0.0 with the subnet address if told to do so. */ if (V_igmp_recvifkludge && in_nullhost(ip->ip_src)) { if (ia != NULL) ip->ip_src.s_addr = htonl(ia->ia_subnet); } CTR3(KTR_IGMPV3, "process v2 report 0x%08x on ifp %p(%s)", ntohl(igmp->igmp_group.s_addr), ifp, ifp->if_xname); /* * IGMPv2 report suppression. * If we are a member of this group, and our membership should be * reported, and our group timer is pending or about to be reset, * stop our group timer by transitioning to the 'lazy' state. */ IN_MULTI_LIST_LOCK(); inm = inm_lookup(ifp, igmp->igmp_group); if (inm != NULL) { struct igmp_ifsoftc *igi; igi = inm->inm_igi; KASSERT(igi != NULL, ("%s: no igi for ifp %p", __func__, ifp)); IGMPSTAT_INC(igps_rcv_ourreports); /* * If we are in IGMPv3 host mode, do not allow the * other host's IGMPv1 report to suppress our reports * unless explicitly configured to do so. */ if (igi->igi_version == IGMP_VERSION_3) { if (V_igmp_legacysupp) igmp_v3_suppress_group_record(inm); goto out_locked; } inm->inm_timer = 0; switch (inm->inm_state) { case IGMP_NOT_MEMBER: case IGMP_SILENT_MEMBER: case IGMP_SLEEPING_MEMBER: break; case IGMP_REPORTING_MEMBER: case IGMP_IDLE_MEMBER: case IGMP_AWAKENING_MEMBER: CTR3(KTR_IGMPV3, "report suppressed for 0x%08x on ifp %p(%s)", ntohl(igmp->igmp_group.s_addr), ifp, ifp->if_xname); case IGMP_LAZY_MEMBER: inm->inm_state = IGMP_LAZY_MEMBER; break; case IGMP_G_QUERY_PENDING_MEMBER: case IGMP_SG_QUERY_PENDING_MEMBER: case IGMP_LEAVING_MEMBER: break; } } out_locked: IN_MULTI_LIST_UNLOCK(); return (0); } int igmp_input(struct mbuf **mp, int *offp, int proto) { int iphlen; struct ifnet *ifp; struct igmp *igmp; struct ip *ip; struct mbuf *m; int igmplen; int minlen; int queryver; CTR3(KTR_IGMPV3, "%s: called w/mbuf (%p,%d)", __func__, *mp, *offp); m = *mp; ifp = m->m_pkthdr.rcvif; *mp = NULL; IGMPSTAT_INC(igps_rcv_total); ip = mtod(m, struct ip *); iphlen = *offp; igmplen = ntohs(ip->ip_len) - iphlen; /* * Validate lengths. */ if (igmplen < IGMP_MINLEN) { IGMPSTAT_INC(igps_rcv_tooshort); m_freem(m); return (IPPROTO_DONE); } /* * Always pullup to the minimum size for v1/v2 or v3 * to amortize calls to m_pullup(). */ minlen = iphlen; if (igmplen >= IGMP_V3_QUERY_MINLEN) minlen += IGMP_V3_QUERY_MINLEN; else minlen += IGMP_MINLEN; if ((!M_WRITABLE(m) || m->m_len < minlen) && (m = m_pullup(m, minlen)) == NULL) { IGMPSTAT_INC(igps_rcv_tooshort); return (IPPROTO_DONE); } ip = mtod(m, struct ip *); /* * Validate checksum. */ m->m_data += iphlen; m->m_len -= iphlen; igmp = mtod(m, struct igmp *); if (in_cksum(m, igmplen)) { IGMPSTAT_INC(igps_rcv_badsum); m_freem(m); return (IPPROTO_DONE); } m->m_data -= iphlen; m->m_len += iphlen; /* * IGMP control traffic is link-scope, and must have a TTL of 1. * DVMRP traffic (e.g. mrinfo, mtrace) is an exception; * probe packets may come from beyond the LAN. */ if (igmp->igmp_type != IGMP_DVMRP && ip->ip_ttl != 1) { IGMPSTAT_INC(igps_rcv_badttl); m_freem(m); return (IPPROTO_DONE); } switch (igmp->igmp_type) { case IGMP_HOST_MEMBERSHIP_QUERY: if (igmplen == IGMP_MINLEN) { if (igmp->igmp_code == 0) queryver = IGMP_VERSION_1; else queryver = IGMP_VERSION_2; } else if (igmplen >= IGMP_V3_QUERY_MINLEN) { queryver = IGMP_VERSION_3; } else { IGMPSTAT_INC(igps_rcv_tooshort); m_freem(m); return (IPPROTO_DONE); } switch (queryver) { case IGMP_VERSION_1: IGMPSTAT_INC(igps_rcv_v1v2_queries); if (!V_igmp_v1enable) break; if (igmp_input_v1_query(ifp, ip, igmp) != 0) { m_freem(m); return (IPPROTO_DONE); } break; case IGMP_VERSION_2: IGMPSTAT_INC(igps_rcv_v1v2_queries); if (!V_igmp_v2enable) break; if (igmp_input_v2_query(ifp, ip, igmp) != 0) { m_freem(m); return (IPPROTO_DONE); } break; case IGMP_VERSION_3: { struct igmpv3 *igmpv3; uint16_t igmpv3len; uint16_t nsrc; IGMPSTAT_INC(igps_rcv_v3_queries); igmpv3 = (struct igmpv3 *)igmp; /* * Validate length based on source count. */ nsrc = ntohs(igmpv3->igmp_numsrc); if (nsrc * sizeof(in_addr_t) > UINT16_MAX - iphlen - IGMP_V3_QUERY_MINLEN) { IGMPSTAT_INC(igps_rcv_tooshort); m_freem(m); return (IPPROTO_DONE); } /* * m_pullup() may modify m, so pullup in * this scope. */ igmpv3len = iphlen + IGMP_V3_QUERY_MINLEN + sizeof(struct in_addr) * nsrc; if ((!M_WRITABLE(m) || m->m_len < igmpv3len) && (m = m_pullup(m, igmpv3len)) == NULL) { IGMPSTAT_INC(igps_rcv_tooshort); return (IPPROTO_DONE); } igmpv3 = (struct igmpv3 *)(mtod(m, uint8_t *) + iphlen); if (igmp_input_v3_query(ifp, ip, igmpv3) != 0) { m_freem(m); return (IPPROTO_DONE); } } break; } break; case IGMP_v1_HOST_MEMBERSHIP_REPORT: if (!V_igmp_v1enable) break; if (igmp_input_v1_report(ifp, ip, igmp) != 0) { m_freem(m); return (IPPROTO_DONE); } break; case IGMP_v2_HOST_MEMBERSHIP_REPORT: if (!V_igmp_v2enable) break; if (!ip_checkrouteralert(m)) IGMPSTAT_INC(igps_rcv_nora); if (igmp_input_v2_report(ifp, ip, igmp) != 0) { m_freem(m); return (IPPROTO_DONE); } break; case IGMP_v3_HOST_MEMBERSHIP_REPORT: /* * Hosts do not need to process IGMPv3 membership reports, * as report suppression is no longer required. */ if (!ip_checkrouteralert(m)) IGMPSTAT_INC(igps_rcv_nora); break; default: break; } /* * Pass all valid IGMP packets up to any process(es) listening on a * raw IGMP socket. */ *mp = m; return (rip_input(mp, offp, proto)); } /* * Fast timeout handler (global). * VIMAGE: Timeout handlers are expected to service all vimages. */ void igmp_fasttimo(void) { VNET_ITERATOR_DECL(vnet_iter); VNET_LIST_RLOCK_NOSLEEP(); VNET_FOREACH(vnet_iter) { CURVNET_SET(vnet_iter); igmp_fasttimo_vnet(); CURVNET_RESTORE(); } VNET_LIST_RUNLOCK_NOSLEEP(); } /* * Fast timeout handler (per-vnet). * Sends are shuffled off to a netisr to deal with Giant. * * VIMAGE: Assume caller has set up our curvnet. */ static void igmp_fasttimo_vnet(void) { struct mbufq scq; /* State-change packets */ struct mbufq qrq; /* Query response packets */ struct ifnet *ifp; struct igmp_ifsoftc *igi; struct ifmultiaddr *ifma, *next; struct in_multi *inm; struct in_multi_head inm_free_tmp; int loop, uri_fasthz; loop = 0; uri_fasthz = 0; /* * Quick check to see if any work needs to be done, in order to * minimize the overhead of fasttimo processing. * SMPng: XXX Unlocked reads. */ if (!V_current_state_timers_running && !V_interface_timers_running && !V_state_change_timers_running) return; SLIST_INIT(&inm_free_tmp); IN_MULTI_LIST_LOCK(); IGMP_LOCK(); /* * IGMPv3 General Query response timer processing. */ if (V_interface_timers_running) { CTR1(KTR_IGMPV3, "%s: interface timers running", __func__); V_interface_timers_running = 0; LIST_FOREACH(igi, &V_igi_head, igi_link) { if (igi->igi_v3_timer == 0) { /* Do nothing. */ } else if (--igi->igi_v3_timer == 0) { igmp_v3_dispatch_general_query(igi); } else { V_interface_timers_running = 1; } } } if (!V_current_state_timers_running && !V_state_change_timers_running) goto out_locked; V_current_state_timers_running = 0; V_state_change_timers_running = 0; CTR1(KTR_IGMPV3, "%s: state change timers running", __func__); /* * IGMPv1/v2/v3 host report and state-change timer processing. * Note: Processing a v3 group timer may remove a node. */ LIST_FOREACH(igi, &V_igi_head, igi_link) { ifp = igi->igi_ifp; if (igi->igi_version == IGMP_VERSION_3) { loop = (igi->igi_flags & IGIF_LOOPBACK) ? 1 : 0; uri_fasthz = IGMP_RANDOM_DELAY(igi->igi_uri * PR_FASTHZ); mbufq_init(&qrq, IGMP_MAX_G_GS_PACKETS); mbufq_init(&scq, IGMP_MAX_STATE_CHANGE_PACKETS); } IF_ADDR_WLOCK(ifp); restart: CK_STAILQ_FOREACH_SAFE(ifma, &ifp->if_multiaddrs, ifma_link, next) { if (ifma->ifma_addr->sa_family != AF_INET || ifma->ifma_protospec == NULL) continue; inm = (struct in_multi *)ifma->ifma_protospec; switch (igi->igi_version) { case IGMP_VERSION_1: case IGMP_VERSION_2: igmp_v1v2_process_group_timer(inm, igi->igi_version); break; case IGMP_VERSION_3: igmp_v3_process_group_timers(&inm_free_tmp, &qrq, &scq, inm, uri_fasthz); break; } if (__predict_false(ifma_restart)) { ifma_restart = false; goto restart; } } IF_ADDR_WUNLOCK(ifp); if (igi->igi_version == IGMP_VERSION_3) { igmp_dispatch_queue(&qrq, 0, loop); igmp_dispatch_queue(&scq, 0, loop); /* * Free the in_multi reference(s) for this * IGMP lifecycle. */ inm_release_list_deferred(&inm_free_tmp); } } out_locked: IGMP_UNLOCK(); IN_MULTI_LIST_UNLOCK(); } /* * Update host report group timer for IGMPv1/v2. * Will update the global pending timer flags. */ static void igmp_v1v2_process_group_timer(struct in_multi *inm, const int version) { int report_timer_expired; IN_MULTI_LIST_LOCK_ASSERT(); IGMP_LOCK_ASSERT(); if (inm->inm_timer == 0) { report_timer_expired = 0; } else if (--inm->inm_timer == 0) { report_timer_expired = 1; } else { V_current_state_timers_running = 1; return; } switch (inm->inm_state) { case IGMP_NOT_MEMBER: case IGMP_SILENT_MEMBER: case IGMP_IDLE_MEMBER: case IGMP_LAZY_MEMBER: case IGMP_SLEEPING_MEMBER: case IGMP_AWAKENING_MEMBER: break; case IGMP_REPORTING_MEMBER: if (report_timer_expired) { inm->inm_state = IGMP_IDLE_MEMBER; (void)igmp_v1v2_queue_report(inm, (version == IGMP_VERSION_2) ? IGMP_v2_HOST_MEMBERSHIP_REPORT : IGMP_v1_HOST_MEMBERSHIP_REPORT); } break; case IGMP_G_QUERY_PENDING_MEMBER: case IGMP_SG_QUERY_PENDING_MEMBER: case IGMP_LEAVING_MEMBER: break; } } /* * Update a group's timers for IGMPv3. * Will update the global pending timer flags. * Note: Unlocked read from igi. */ static void igmp_v3_process_group_timers(struct in_multi_head *inmh, struct mbufq *qrq, struct mbufq *scq, struct in_multi *inm, const int uri_fasthz) { int query_response_timer_expired; int state_change_retransmit_timer_expired; IN_MULTI_LIST_LOCK_ASSERT(); IGMP_LOCK_ASSERT(); query_response_timer_expired = 0; state_change_retransmit_timer_expired = 0; /* * During a transition from v1/v2 compatibility mode back to v3, * a group record in REPORTING state may still have its group * timer active. This is a no-op in this function; it is easier * to deal with it here than to complicate the slow-timeout path. */ if (inm->inm_timer == 0) { query_response_timer_expired = 0; } else if (--inm->inm_timer == 0) { query_response_timer_expired = 1; } else { V_current_state_timers_running = 1; } if (inm->inm_sctimer == 0) { state_change_retransmit_timer_expired = 0; } else if (--inm->inm_sctimer == 0) { state_change_retransmit_timer_expired = 1; } else { V_state_change_timers_running = 1; } /* We are in fasttimo, so be quick about it. */ if (!state_change_retransmit_timer_expired && !query_response_timer_expired) return; switch (inm->inm_state) { case IGMP_NOT_MEMBER: case IGMP_SILENT_MEMBER: case IGMP_SLEEPING_MEMBER: case IGMP_LAZY_MEMBER: case IGMP_AWAKENING_MEMBER: case IGMP_IDLE_MEMBER: break; case IGMP_G_QUERY_PENDING_MEMBER: case IGMP_SG_QUERY_PENDING_MEMBER: /* * Respond to a previously pending Group-Specific * or Group-and-Source-Specific query by enqueueing * the appropriate Current-State report for * immediate transmission. */ if (query_response_timer_expired) { int retval __unused; retval = igmp_v3_enqueue_group_record(qrq, inm, 0, 1, (inm->inm_state == IGMP_SG_QUERY_PENDING_MEMBER)); CTR2(KTR_IGMPV3, "%s: enqueue record = %d", __func__, retval); inm->inm_state = IGMP_REPORTING_MEMBER; /* XXX Clear recorded sources for next time. */ inm_clear_recorded(inm); } /* FALLTHROUGH */ case IGMP_REPORTING_MEMBER: case IGMP_LEAVING_MEMBER: if (state_change_retransmit_timer_expired) { /* * State-change retransmission timer fired. * If there are any further pending retransmissions, * set the global pending state-change flag, and * reset the timer. */ if (--inm->inm_scrv > 0) { inm->inm_sctimer = uri_fasthz; V_state_change_timers_running = 1; } /* * Retransmit the previously computed state-change * report. If there are no further pending * retransmissions, the mbuf queue will be consumed. * Update T0 state to T1 as we have now sent * a state-change. */ (void)igmp_v3_merge_state_changes(inm, scq); inm_commit(inm); CTR3(KTR_IGMPV3, "%s: T1 -> T0 for 0x%08x/%s", __func__, ntohl(inm->inm_addr.s_addr), inm->inm_ifp->if_xname); /* * If we are leaving the group for good, make sure * we release IGMP's reference to it. * This release must be deferred using a SLIST, * as we are called from a loop which traverses * the in_ifmultiaddr TAILQ. */ if (inm->inm_state == IGMP_LEAVING_MEMBER && inm->inm_scrv == 0) { inm->inm_state = IGMP_NOT_MEMBER; inm_rele_locked(inmh, inm); } } break; } } /* * Suppress a group's pending response to a group or source/group query. * * Do NOT suppress state changes. This leads to IGMPv3 inconsistency. * Do NOT update ST1/ST0 as this operation merely suppresses * the currently pending group record. * Do NOT suppress the response to a general query. It is possible but * it would require adding another state or flag. */ static void igmp_v3_suppress_group_record(struct in_multi *inm) { IN_MULTI_LIST_LOCK_ASSERT(); KASSERT(inm->inm_igi->igi_version == IGMP_VERSION_3, ("%s: not IGMPv3 mode on link", __func__)); if (inm->inm_state != IGMP_G_QUERY_PENDING_MEMBER || inm->inm_state != IGMP_SG_QUERY_PENDING_MEMBER) return; if (inm->inm_state == IGMP_SG_QUERY_PENDING_MEMBER) inm_clear_recorded(inm); inm->inm_timer = 0; inm->inm_state = IGMP_REPORTING_MEMBER; } /* * Switch to a different IGMP version on the given interface, * as per Section 7.2.1. */ static void igmp_set_version(struct igmp_ifsoftc *igi, const int version) { int old_version_timer; IGMP_LOCK_ASSERT(); CTR4(KTR_IGMPV3, "%s: switching to v%d on ifp %p(%s)", __func__, version, igi->igi_ifp, igi->igi_ifp->if_xname); if (version == IGMP_VERSION_1 || version == IGMP_VERSION_2) { /* * Compute the "Older Version Querier Present" timer as per * Section 8.12. */ old_version_timer = igi->igi_rv * igi->igi_qi + igi->igi_qri; old_version_timer *= PR_SLOWHZ; if (version == IGMP_VERSION_1) { igi->igi_v1_timer = old_version_timer; igi->igi_v2_timer = 0; } else if (version == IGMP_VERSION_2) { igi->igi_v1_timer = 0; igi->igi_v2_timer = old_version_timer; } } if (igi->igi_v1_timer == 0 && igi->igi_v2_timer > 0) { if (igi->igi_version != IGMP_VERSION_2) { igi->igi_version = IGMP_VERSION_2; igmp_v3_cancel_link_timers(igi); } } else if (igi->igi_v1_timer > 0) { if (igi->igi_version != IGMP_VERSION_1) { igi->igi_version = IGMP_VERSION_1; igmp_v3_cancel_link_timers(igi); } } } /* * Cancel pending IGMPv3 timers for the given link and all groups * joined on it; state-change, general-query, and group-query timers. * * Only ever called on a transition from v3 to Compatibility mode. Kill * the timers stone dead (this may be expensive for large N groups), they * will be restarted if Compatibility Mode deems that they must be due to * query processing. */ static void igmp_v3_cancel_link_timers(struct igmp_ifsoftc *igi) { struct ifmultiaddr *ifma, *ifmatmp; struct ifnet *ifp; struct in_multi *inm; struct in_multi_head inm_free_tmp; CTR3(KTR_IGMPV3, "%s: cancel v3 timers on ifp %p(%s)", __func__, igi->igi_ifp, igi->igi_ifp->if_xname); IN_MULTI_LIST_LOCK_ASSERT(); IGMP_LOCK_ASSERT(); NET_EPOCH_ASSERT(); SLIST_INIT(&inm_free_tmp); /* * Stop the v3 General Query Response on this link stone dead. * If fasttimo is woken up due to V_interface_timers_running, * the flag will be cleared if there are no pending link timers. */ igi->igi_v3_timer = 0; /* * Now clear the current-state and state-change report timers * for all memberships scoped to this link. */ ifp = igi->igi_ifp; IF_ADDR_WLOCK(ifp); CK_STAILQ_FOREACH_SAFE(ifma, &ifp->if_multiaddrs, ifma_link, ifmatmp) { if (ifma->ifma_addr->sa_family != AF_INET || ifma->ifma_protospec == NULL) continue; inm = (struct in_multi *)ifma->ifma_protospec; switch (inm->inm_state) { case IGMP_NOT_MEMBER: case IGMP_SILENT_MEMBER: case IGMP_IDLE_MEMBER: case IGMP_LAZY_MEMBER: case IGMP_SLEEPING_MEMBER: case IGMP_AWAKENING_MEMBER: /* * These states are either not relevant in v3 mode, * or are unreported. Do nothing. */ break; case IGMP_LEAVING_MEMBER: /* * If we are leaving the group and switching to * compatibility mode, we need to release the final * reference held for issuing the INCLUDE {}, and * transition to REPORTING to ensure the host leave * message is sent upstream to the old querier -- * transition to NOT would lose the leave and race. */ inm_rele_locked(&inm_free_tmp, inm); /* FALLTHROUGH */ case IGMP_G_QUERY_PENDING_MEMBER: case IGMP_SG_QUERY_PENDING_MEMBER: inm_clear_recorded(inm); /* FALLTHROUGH */ case IGMP_REPORTING_MEMBER: inm->inm_state = IGMP_REPORTING_MEMBER; break; } /* * Always clear state-change and group report timers. * Free any pending IGMPv3 state-change records. */ inm->inm_sctimer = 0; inm->inm_timer = 0; mbufq_drain(&inm->inm_scq); } IF_ADDR_WUNLOCK(ifp); inm_release_list_deferred(&inm_free_tmp); } /* * Update the Older Version Querier Present timers for a link. * See Section 7.2.1 of RFC 3376. */ static void igmp_v1v2_process_querier_timers(struct igmp_ifsoftc *igi) { IGMP_LOCK_ASSERT(); if (igi->igi_v1_timer == 0 && igi->igi_v2_timer == 0) { /* * IGMPv1 and IGMPv2 Querier Present timers expired. * * Revert to IGMPv3. */ if (igi->igi_version != IGMP_VERSION_3) { CTR5(KTR_IGMPV3, "%s: transition from v%d -> v%d on %p(%s)", __func__, igi->igi_version, IGMP_VERSION_3, igi->igi_ifp, igi->igi_ifp->if_xname); igi->igi_version = IGMP_VERSION_3; } } else if (igi->igi_v1_timer == 0 && igi->igi_v2_timer > 0) { /* * IGMPv1 Querier Present timer expired, * IGMPv2 Querier Present timer running. * If IGMPv2 was disabled since last timeout, * revert to IGMPv3. * If IGMPv2 is enabled, revert to IGMPv2. */ if (!V_igmp_v2enable) { CTR5(KTR_IGMPV3, "%s: transition from v%d -> v%d on %p(%s)", __func__, igi->igi_version, IGMP_VERSION_3, igi->igi_ifp, igi->igi_ifp->if_xname); igi->igi_v2_timer = 0; igi->igi_version = IGMP_VERSION_3; } else { --igi->igi_v2_timer; if (igi->igi_version != IGMP_VERSION_2) { CTR5(KTR_IGMPV3, "%s: transition from v%d -> v%d on %p(%s)", __func__, igi->igi_version, IGMP_VERSION_2, igi->igi_ifp, igi->igi_ifp->if_xname); igi->igi_version = IGMP_VERSION_2; igmp_v3_cancel_link_timers(igi); } } } else if (igi->igi_v1_timer > 0) { /* * IGMPv1 Querier Present timer running. * Stop IGMPv2 timer if running. * * If IGMPv1 was disabled since last timeout, * revert to IGMPv3. * If IGMPv1 is enabled, reset IGMPv2 timer if running. */ if (!V_igmp_v1enable) { CTR5(KTR_IGMPV3, "%s: transition from v%d -> v%d on %p(%s)", __func__, igi->igi_version, IGMP_VERSION_3, igi->igi_ifp, igi->igi_ifp->if_xname); igi->igi_v1_timer = 0; igi->igi_version = IGMP_VERSION_3; } else { --igi->igi_v1_timer; } if (igi->igi_v2_timer > 0) { CTR3(KTR_IGMPV3, "%s: cancel v2 timer on %p(%s)", __func__, igi->igi_ifp, igi->igi_ifp->if_xname); igi->igi_v2_timer = 0; } } } /* * Global slowtimo handler. * VIMAGE: Timeout handlers are expected to service all vimages. */ void igmp_slowtimo(void) { VNET_ITERATOR_DECL(vnet_iter); VNET_LIST_RLOCK_NOSLEEP(); VNET_FOREACH(vnet_iter) { CURVNET_SET(vnet_iter); igmp_slowtimo_vnet(); CURVNET_RESTORE(); } VNET_LIST_RUNLOCK_NOSLEEP(); } /* * Per-vnet slowtimo handler. */ static void igmp_slowtimo_vnet(void) { struct igmp_ifsoftc *igi; IGMP_LOCK(); LIST_FOREACH(igi, &V_igi_head, igi_link) { igmp_v1v2_process_querier_timers(igi); } IGMP_UNLOCK(); } /* * Dispatch an IGMPv1/v2 host report or leave message. * These are always small enough to fit inside a single mbuf. */ static int igmp_v1v2_queue_report(struct in_multi *inm, const int type) { struct epoch_tracker et; struct ifnet *ifp; struct igmp *igmp; struct ip *ip; struct mbuf *m; IN_MULTI_LIST_LOCK_ASSERT(); IGMP_LOCK_ASSERT(); ifp = inm->inm_ifp; m = m_gethdr(M_NOWAIT, MT_DATA); if (m == NULL) return (ENOMEM); M_ALIGN(m, sizeof(struct ip) + sizeof(struct igmp)); m->m_pkthdr.len = sizeof(struct ip) + sizeof(struct igmp); m->m_data += sizeof(struct ip); m->m_len = sizeof(struct igmp); igmp = mtod(m, struct igmp *); igmp->igmp_type = type; igmp->igmp_code = 0; igmp->igmp_group = inm->inm_addr; igmp->igmp_cksum = 0; igmp->igmp_cksum = in_cksum(m, sizeof(struct igmp)); m->m_data -= sizeof(struct ip); m->m_len += sizeof(struct ip); ip = mtod(m, struct ip *); ip->ip_tos = 0; ip->ip_len = htons(sizeof(struct ip) + sizeof(struct igmp)); ip->ip_off = 0; ip->ip_p = IPPROTO_IGMP; ip->ip_src.s_addr = INADDR_ANY; if (type == IGMP_HOST_LEAVE_MESSAGE) ip->ip_dst.s_addr = htonl(INADDR_ALLRTRS_GROUP); else ip->ip_dst = inm->inm_addr; igmp_save_context(m, ifp); m->m_flags |= M_IGMPV2; if (inm->inm_igi->igi_flags & IGIF_LOOPBACK) m->m_flags |= M_IGMP_LOOP; CTR2(KTR_IGMPV3, "%s: netisr_dispatch(NETISR_IGMP, %p)", __func__, m); NET_EPOCH_ENTER(et); netisr_dispatch(NETISR_IGMP, m); NET_EPOCH_EXIT(et); return (0); } /* * Process a state change from the upper layer for the given IPv4 group. * * Each socket holds a reference on the in_multi in its own ip_moptions. * The socket layer will have made the necessary updates to.the group * state, it is now up to IGMP to issue a state change report if there * has been any change between T0 (when the last state-change was issued) * and T1 (now). * * We use the IGMPv3 state machine at group level. The IGMP module * however makes the decision as to which IGMP protocol version to speak. * A state change *from* INCLUDE {} always means an initial join. * A state change *to* INCLUDE {} always means a final leave. * * FUTURE: If IGIF_V3LITE is enabled for this interface, then we can * save ourselves a bunch of work; any exclusive mode groups need not * compute source filter lists. * * VIMAGE: curvnet should have been set by caller, as this routine * is called from the socket option handlers. */ int igmp_change_state(struct in_multi *inm) { struct igmp_ifsoftc *igi; struct ifnet *ifp; int error; error = 0; IN_MULTI_LOCK_ASSERT(); /* * Try to detect if the upper layer just asked us to change state * for an interface which has now gone away. */ KASSERT(inm->inm_ifma != NULL, ("%s: no ifma", __func__)); ifp = inm->inm_ifma->ifma_ifp; /* * Sanity check that netinet's notion of ifp is the * same as net's. */ KASSERT(inm->inm_ifp == ifp, ("%s: bad ifp", __func__)); IGMP_LOCK(); igi = ((struct in_ifinfo *)ifp->if_afdata[AF_INET])->ii_igmp; KASSERT(igi != NULL, ("%s: no igmp_ifsoftc for ifp %p", __func__, ifp)); /* * If we detect a state transition to or from MCAST_UNDEFINED * for this group, then we are starting or finishing an IGMP * life cycle for this group. */ if (inm->inm_st[1].iss_fmode != inm->inm_st[0].iss_fmode) { CTR3(KTR_IGMPV3, "%s: inm transition %d -> %d", __func__, inm->inm_st[0].iss_fmode, inm->inm_st[1].iss_fmode); if (inm->inm_st[0].iss_fmode == MCAST_UNDEFINED) { CTR1(KTR_IGMPV3, "%s: initial join", __func__); error = igmp_initial_join(inm, igi); goto out_locked; } else if (inm->inm_st[1].iss_fmode == MCAST_UNDEFINED) { CTR1(KTR_IGMPV3, "%s: final leave", __func__); igmp_final_leave(inm, igi); goto out_locked; } } else { CTR1(KTR_IGMPV3, "%s: filter set change", __func__); } error = igmp_handle_state_change(inm, igi); out_locked: IGMP_UNLOCK(); return (error); } /* * Perform the initial join for an IGMP group. * * When joining a group: * If the group should have its IGMP traffic suppressed, do nothing. * IGMPv1 starts sending IGMPv1 host membership reports. * IGMPv2 starts sending IGMPv2 host membership reports. * IGMPv3 will schedule an IGMPv3 state-change report containing the * initial state of the membership. */ static int igmp_initial_join(struct in_multi *inm, struct igmp_ifsoftc *igi) { struct ifnet *ifp; struct mbufq *mq; int error, retval, syncstates; CTR4(KTR_IGMPV3, "%s: initial join 0x%08x on ifp %p(%s)", __func__, ntohl(inm->inm_addr.s_addr), inm->inm_ifp, inm->inm_ifp->if_xname); error = 0; syncstates = 1; ifp = inm->inm_ifp; IN_MULTI_LOCK_ASSERT(); IGMP_LOCK_ASSERT(); KASSERT(igi && igi->igi_ifp == ifp, ("%s: inconsistent ifp", __func__)); /* * Groups joined on loopback or marked as 'not reported', * e.g. 224.0.0.1, enter the IGMP_SILENT_MEMBER state and * are never reported in any IGMP protocol exchanges. * All other groups enter the appropriate IGMP state machine * for the version in use on this link. * A link marked as IGIF_SILENT causes IGMP to be completely * disabled for the link. */ if ((ifp->if_flags & IFF_LOOPBACK) || (igi->igi_flags & IGIF_SILENT) || !igmp_isgroupreported(inm->inm_addr)) { CTR1(KTR_IGMPV3, "%s: not kicking state machine for silent group", __func__); inm->inm_state = IGMP_SILENT_MEMBER; inm->inm_timer = 0; } else { /* * Deal with overlapping in_multi lifecycle. * If this group was LEAVING, then make sure * we drop the reference we picked up to keep the * group around for the final INCLUDE {} enqueue. */ if (igi->igi_version == IGMP_VERSION_3 && inm->inm_state == IGMP_LEAVING_MEMBER) { MPASS(inm->inm_refcount > 1); inm_rele_locked(NULL, inm); } inm->inm_state = IGMP_REPORTING_MEMBER; switch (igi->igi_version) { case IGMP_VERSION_1: case IGMP_VERSION_2: inm->inm_state = IGMP_IDLE_MEMBER; error = igmp_v1v2_queue_report(inm, (igi->igi_version == IGMP_VERSION_2) ? IGMP_v2_HOST_MEMBERSHIP_REPORT : IGMP_v1_HOST_MEMBERSHIP_REPORT); if (error == 0) { inm->inm_timer = IGMP_RANDOM_DELAY( IGMP_V1V2_MAX_RI * PR_FASTHZ); V_current_state_timers_running = 1; } break; case IGMP_VERSION_3: /* * Defer update of T0 to T1, until the first copy * of the state change has been transmitted. */ syncstates = 0; /* * Immediately enqueue a State-Change Report for * this interface, freeing any previous reports. * Don't kick the timers if there is nothing to do, * or if an error occurred. */ mq = &inm->inm_scq; mbufq_drain(mq); retval = igmp_v3_enqueue_group_record(mq, inm, 1, 0, 0); CTR2(KTR_IGMPV3, "%s: enqueue record = %d", __func__, retval); if (retval <= 0) { error = retval * -1; break; } /* * Schedule transmission of pending state-change * report up to RV times for this link. The timer * will fire at the next igmp_fasttimo (~200ms), * giving us an opportunity to merge the reports. */ if (igi->igi_flags & IGIF_LOOPBACK) { inm->inm_scrv = 1; } else { KASSERT(igi->igi_rv > 1, ("%s: invalid robustness %d", __func__, igi->igi_rv)); inm->inm_scrv = igi->igi_rv; } inm->inm_sctimer = 1; V_state_change_timers_running = 1; error = 0; break; } } /* * Only update the T0 state if state change is atomic, * i.e. we don't need to wait for a timer to fire before we * can consider the state change to have been communicated. */ if (syncstates) { inm_commit(inm); CTR3(KTR_IGMPV3, "%s: T1 -> T0 for 0x%08x/%s", __func__, ntohl(inm->inm_addr.s_addr), inm->inm_ifp->if_xname); } return (error); } /* * Issue an intermediate state change during the IGMP life-cycle. */ static int igmp_handle_state_change(struct in_multi *inm, struct igmp_ifsoftc *igi) { struct ifnet *ifp; int retval; CTR4(KTR_IGMPV3, "%s: state change for 0x%08x on ifp %p(%s)", __func__, ntohl(inm->inm_addr.s_addr), inm->inm_ifp, inm->inm_ifp->if_xname); ifp = inm->inm_ifp; IN_MULTI_LIST_LOCK_ASSERT(); IGMP_LOCK_ASSERT(); KASSERT(igi && igi->igi_ifp == ifp, ("%s: inconsistent ifp", __func__)); if ((ifp->if_flags & IFF_LOOPBACK) || (igi->igi_flags & IGIF_SILENT) || !igmp_isgroupreported(inm->inm_addr) || (igi->igi_version != IGMP_VERSION_3)) { if (!igmp_isgroupreported(inm->inm_addr)) { CTR1(KTR_IGMPV3, "%s: not kicking state machine for silent group", __func__); } CTR1(KTR_IGMPV3, "%s: nothing to do", __func__); inm_commit(inm); CTR3(KTR_IGMPV3, "%s: T1 -> T0 for 0x%08x/%s", __func__, ntohl(inm->inm_addr.s_addr), inm->inm_ifp->if_xname); return (0); } mbufq_drain(&inm->inm_scq); retval = igmp_v3_enqueue_group_record(&inm->inm_scq, inm, 1, 0, 0); CTR2(KTR_IGMPV3, "%s: enqueue record = %d", __func__, retval); if (retval <= 0) return (-retval); /* * If record(s) were enqueued, start the state-change * report timer for this group. */ inm->inm_scrv = ((igi->igi_flags & IGIF_LOOPBACK) ? 1 : igi->igi_rv); inm->inm_sctimer = 1; V_state_change_timers_running = 1; return (0); } /* * Perform the final leave for an IGMP group. * * When leaving a group: * IGMPv1 does nothing. * IGMPv2 sends a host leave message, if and only if we are the reporter. * IGMPv3 enqueues a state-change report containing a transition * to INCLUDE {} for immediate transmission. */ static void igmp_final_leave(struct in_multi *inm, struct igmp_ifsoftc *igi) { int syncstates; syncstates = 1; CTR4(KTR_IGMPV3, "%s: final leave 0x%08x on ifp %p(%s)", __func__, ntohl(inm->inm_addr.s_addr), inm->inm_ifp, inm->inm_ifp->if_xname); IN_MULTI_LIST_LOCK_ASSERT(); IGMP_LOCK_ASSERT(); switch (inm->inm_state) { case IGMP_NOT_MEMBER: case IGMP_SILENT_MEMBER: case IGMP_LEAVING_MEMBER: /* Already leaving or left; do nothing. */ CTR1(KTR_IGMPV3, "%s: not kicking state machine for silent group", __func__); break; case IGMP_REPORTING_MEMBER: case IGMP_IDLE_MEMBER: case IGMP_G_QUERY_PENDING_MEMBER: case IGMP_SG_QUERY_PENDING_MEMBER: if (igi->igi_version == IGMP_VERSION_2) { #ifdef INVARIANTS if (inm->inm_state == IGMP_G_QUERY_PENDING_MEMBER || inm->inm_state == IGMP_SG_QUERY_PENDING_MEMBER) panic("%s: IGMPv3 state reached, not IGMPv3 mode", __func__); #endif igmp_v1v2_queue_report(inm, IGMP_HOST_LEAVE_MESSAGE); inm->inm_state = IGMP_NOT_MEMBER; } else if (igi->igi_version == IGMP_VERSION_3) { /* * Stop group timer and all pending reports. * Immediately enqueue a state-change report * TO_IN {} to be sent on the next fast timeout, * giving us an opportunity to merge reports. */ mbufq_drain(&inm->inm_scq); inm->inm_timer = 0; if (igi->igi_flags & IGIF_LOOPBACK) { inm->inm_scrv = 1; } else { inm->inm_scrv = igi->igi_rv; } CTR4(KTR_IGMPV3, "%s: Leaving 0x%08x/%s with %d " "pending retransmissions.", __func__, ntohl(inm->inm_addr.s_addr), inm->inm_ifp->if_xname, inm->inm_scrv); if (inm->inm_scrv == 0) { inm->inm_state = IGMP_NOT_MEMBER; inm->inm_sctimer = 0; } else { int retval __unused; inm_acquire_locked(inm); retval = igmp_v3_enqueue_group_record( &inm->inm_scq, inm, 1, 0, 0); KASSERT(retval != 0, ("%s: enqueue record = %d", __func__, retval)); inm->inm_state = IGMP_LEAVING_MEMBER; inm->inm_sctimer = 1; V_state_change_timers_running = 1; syncstates = 0; } break; } break; case IGMP_LAZY_MEMBER: case IGMP_SLEEPING_MEMBER: case IGMP_AWAKENING_MEMBER: /* Our reports are suppressed; do nothing. */ break; } if (syncstates) { inm_commit(inm); CTR3(KTR_IGMPV3, "%s: T1 -> T0 for 0x%08x/%s", __func__, ntohl(inm->inm_addr.s_addr), inm->inm_ifp->if_xname); inm->inm_st[1].iss_fmode = MCAST_UNDEFINED; CTR3(KTR_IGMPV3, "%s: T1 now MCAST_UNDEFINED for 0x%08x/%s", __func__, ntohl(inm->inm_addr.s_addr), inm->inm_ifp->if_xname); } } /* * Enqueue an IGMPv3 group record to the given output queue. * * XXX This function could do with having the allocation code * split out, and the multiple-tree-walks coalesced into a single * routine as has been done in igmp_v3_enqueue_filter_change(). * * If is_state_change is zero, a current-state record is appended. * If is_state_change is non-zero, a state-change report is appended. * * If is_group_query is non-zero, an mbuf packet chain is allocated. * If is_group_query is zero, and if there is a packet with free space * at the tail of the queue, it will be appended to providing there * is enough free space. * Otherwise a new mbuf packet chain is allocated. * * If is_source_query is non-zero, each source is checked to see if * it was recorded for a Group-Source query, and will be omitted if * it is not both in-mode and recorded. * * The function will attempt to allocate leading space in the packet * for the IP/IGMP header to be prepended without fragmenting the chain. * * If successful the size of all data appended to the queue is returned, * otherwise an error code less than zero is returned, or zero if * no record(s) were appended. */ static int igmp_v3_enqueue_group_record(struct mbufq *mq, struct in_multi *inm, const int is_state_change, const int is_group_query, const int is_source_query) { struct igmp_grouprec ig; struct igmp_grouprec *pig; struct ifnet *ifp; struct ip_msource *ims, *nims; struct mbuf *m0, *m, *md; int is_filter_list_change; int minrec0len, m0srcs, msrcs, nbytes, off; int record_has_sources; int now; int type; in_addr_t naddr; uint8_t mode; IN_MULTI_LIST_LOCK_ASSERT(); ifp = inm->inm_ifp; is_filter_list_change = 0; m = NULL; m0 = NULL; m0srcs = 0; msrcs = 0; nbytes = 0; nims = NULL; record_has_sources = 1; pig = NULL; type = IGMP_DO_NOTHING; mode = inm->inm_st[1].iss_fmode; /* * If we did not transition out of ASM mode during t0->t1, * and there are no source nodes to process, we can skip * the generation of source records. */ if (inm->inm_st[0].iss_asm > 0 && inm->inm_st[1].iss_asm > 0 && inm->inm_nsrc == 0) record_has_sources = 0; if (is_state_change) { /* * Queue a state change record. * If the mode did not change, and there are non-ASM * listeners or source filters present, * we potentially need to issue two records for the group. * If we are transitioning to MCAST_UNDEFINED, we need * not send any sources. * If there are ASM listeners, and there was no filter * mode transition of any kind, do nothing. */ if (mode != inm->inm_st[0].iss_fmode) { if (mode == MCAST_EXCLUDE) { CTR1(KTR_IGMPV3, "%s: change to EXCLUDE", __func__); type = IGMP_CHANGE_TO_EXCLUDE_MODE; } else { CTR1(KTR_IGMPV3, "%s: change to INCLUDE", __func__); type = IGMP_CHANGE_TO_INCLUDE_MODE; if (mode == MCAST_UNDEFINED) record_has_sources = 0; } } else { if (record_has_sources) { is_filter_list_change = 1; } else { type = IGMP_DO_NOTHING; } } } else { /* * Queue a current state record. */ if (mode == MCAST_EXCLUDE) { type = IGMP_MODE_IS_EXCLUDE; } else if (mode == MCAST_INCLUDE) { type = IGMP_MODE_IS_INCLUDE; KASSERT(inm->inm_st[1].iss_asm == 0, ("%s: inm %p is INCLUDE but ASM count is %d", __func__, inm, inm->inm_st[1].iss_asm)); } } /* * Generate the filter list changes using a separate function. */ if (is_filter_list_change) return (igmp_v3_enqueue_filter_change(mq, inm)); if (type == IGMP_DO_NOTHING) { CTR3(KTR_IGMPV3, "%s: nothing to do for 0x%08x/%s", __func__, ntohl(inm->inm_addr.s_addr), inm->inm_ifp->if_xname); return (0); } /* * If any sources are present, we must be able to fit at least * one in the trailing space of the tail packet's mbuf, * ideally more. */ minrec0len = sizeof(struct igmp_grouprec); if (record_has_sources) minrec0len += sizeof(in_addr_t); CTR4(KTR_IGMPV3, "%s: queueing %s for 0x%08x/%s", __func__, igmp_rec_type_to_str(type), ntohl(inm->inm_addr.s_addr), inm->inm_ifp->if_xname); /* * Check if we have a packet in the tail of the queue for this * group into which the first group record for this group will fit. * Otherwise allocate a new packet. * Always allocate leading space for IP+RA_OPT+IGMP+REPORT. * Note: Group records for G/GSR query responses MUST be sent * in their own packet. */ m0 = mbufq_last(mq); if (!is_group_query && m0 != NULL && (m0->m_pkthdr.PH_vt.vt_nrecs + 1 <= IGMP_V3_REPORT_MAXRECS) && (m0->m_pkthdr.len + minrec0len) < (ifp->if_mtu - IGMP_LEADINGSPACE)) { m0srcs = (ifp->if_mtu - m0->m_pkthdr.len - sizeof(struct igmp_grouprec)) / sizeof(in_addr_t); m = m0; CTR1(KTR_IGMPV3, "%s: use existing packet", __func__); } else { if (mbufq_full(mq)) { CTR1(KTR_IGMPV3, "%s: outbound queue full", __func__); return (-ENOMEM); } m = NULL; m0srcs = (ifp->if_mtu - IGMP_LEADINGSPACE - sizeof(struct igmp_grouprec)) / sizeof(in_addr_t); if (!is_state_change && !is_group_query) { m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); if (m) m->m_data += IGMP_LEADINGSPACE; } if (m == NULL) { m = m_gethdr(M_NOWAIT, MT_DATA); if (m) M_ALIGN(m, IGMP_LEADINGSPACE); } if (m == NULL) return (-ENOMEM); igmp_save_context(m, ifp); CTR1(KTR_IGMPV3, "%s: allocated first packet", __func__); } /* * Append group record. * If we have sources, we don't know how many yet. */ ig.ig_type = type; ig.ig_datalen = 0; ig.ig_numsrc = 0; ig.ig_group = inm->inm_addr; if (!m_append(m, sizeof(struct igmp_grouprec), (void *)&ig)) { if (m != m0) m_freem(m); CTR1(KTR_IGMPV3, "%s: m_append() failed.", __func__); return (-ENOMEM); } nbytes += sizeof(struct igmp_grouprec); /* * Append as many sources as will fit in the first packet. * If we are appending to a new packet, the chain allocation * may potentially use clusters; use m_getptr() in this case. * If we are appending to an existing packet, we need to obtain * a pointer to the group record after m_append(), in case a new * mbuf was allocated. * Only append sources which are in-mode at t1. If we are * transitioning to MCAST_UNDEFINED state on the group, do not * include source entries. * Only report recorded sources in our filter set when responding * to a group-source query. */ if (record_has_sources) { if (m == m0) { md = m_last(m); pig = (struct igmp_grouprec *)(mtod(md, uint8_t *) + md->m_len - nbytes); } else { md = m_getptr(m, 0, &off); pig = (struct igmp_grouprec *)(mtod(md, uint8_t *) + off); } msrcs = 0; RB_FOREACH_SAFE(ims, ip_msource_tree, &inm->inm_srcs, nims) { CTR2(KTR_IGMPV3, "%s: visit node 0x%08x", __func__, ims->ims_haddr); now = ims_get_mode(inm, ims, 1); CTR2(KTR_IGMPV3, "%s: node is %d", __func__, now); if ((now != mode) || (now == mode && mode == MCAST_UNDEFINED)) { CTR1(KTR_IGMPV3, "%s: skip node", __func__); continue; } if (is_source_query && ims->ims_stp == 0) { CTR1(KTR_IGMPV3, "%s: skip unrecorded node", __func__); continue; } CTR1(KTR_IGMPV3, "%s: append node", __func__); naddr = htonl(ims->ims_haddr); if (!m_append(m, sizeof(in_addr_t), (void *)&naddr)) { if (m != m0) m_freem(m); CTR1(KTR_IGMPV3, "%s: m_append() failed.", __func__); return (-ENOMEM); } nbytes += sizeof(in_addr_t); ++msrcs; if (msrcs == m0srcs) break; } CTR2(KTR_IGMPV3, "%s: msrcs is %d this packet", __func__, msrcs); pig->ig_numsrc = htons(msrcs); nbytes += (msrcs * sizeof(in_addr_t)); } if (is_source_query && msrcs == 0) { CTR1(KTR_IGMPV3, "%s: no recorded sources to report", __func__); if (m != m0) m_freem(m); return (0); } /* * We are good to go with first packet. */ if (m != m0) { CTR1(KTR_IGMPV3, "%s: enqueueing first packet", __func__); m->m_pkthdr.PH_vt.vt_nrecs = 1; mbufq_enqueue(mq, m); } else m->m_pkthdr.PH_vt.vt_nrecs++; /* * No further work needed if no source list in packet(s). */ if (!record_has_sources) return (nbytes); /* * Whilst sources remain to be announced, we need to allocate * a new packet and fill out as many sources as will fit. * Always try for a cluster first. */ while (nims != NULL) { if (mbufq_full(mq)) { CTR1(KTR_IGMPV3, "%s: outbound queue full", __func__); return (-ENOMEM); } m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); if (m) m->m_data += IGMP_LEADINGSPACE; if (m == NULL) { m = m_gethdr(M_NOWAIT, MT_DATA); if (m) M_ALIGN(m, IGMP_LEADINGSPACE); } if (m == NULL) return (-ENOMEM); igmp_save_context(m, ifp); md = m_getptr(m, 0, &off); pig = (struct igmp_grouprec *)(mtod(md, uint8_t *) + off); CTR1(KTR_IGMPV3, "%s: allocated next packet", __func__); if (!m_append(m, sizeof(struct igmp_grouprec), (void *)&ig)) { if (m != m0) m_freem(m); CTR1(KTR_IGMPV3, "%s: m_append() failed.", __func__); return (-ENOMEM); } m->m_pkthdr.PH_vt.vt_nrecs = 1; nbytes += sizeof(struct igmp_grouprec); m0srcs = (ifp->if_mtu - IGMP_LEADINGSPACE - sizeof(struct igmp_grouprec)) / sizeof(in_addr_t); msrcs = 0; RB_FOREACH_FROM(ims, ip_msource_tree, nims) { CTR2(KTR_IGMPV3, "%s: visit node 0x%08x", __func__, ims->ims_haddr); now = ims_get_mode(inm, ims, 1); if ((now != mode) || (now == mode && mode == MCAST_UNDEFINED)) { CTR1(KTR_IGMPV3, "%s: skip node", __func__); continue; } if (is_source_query && ims->ims_stp == 0) { CTR1(KTR_IGMPV3, "%s: skip unrecorded node", __func__); continue; } CTR1(KTR_IGMPV3, "%s: append node", __func__); naddr = htonl(ims->ims_haddr); if (!m_append(m, sizeof(in_addr_t), (void *)&naddr)) { if (m != m0) m_freem(m); CTR1(KTR_IGMPV3, "%s: m_append() failed.", __func__); return (-ENOMEM); } ++msrcs; if (msrcs == m0srcs) break; } pig->ig_numsrc = htons(msrcs); nbytes += (msrcs * sizeof(in_addr_t)); CTR1(KTR_IGMPV3, "%s: enqueueing next packet", __func__); mbufq_enqueue(mq, m); } return (nbytes); } /* * Type used to mark record pass completion. * We exploit the fact we can cast to this easily from the * current filter modes on each ip_msource node. */ typedef enum { REC_NONE = 0x00, /* MCAST_UNDEFINED */ REC_ALLOW = 0x01, /* MCAST_INCLUDE */ REC_BLOCK = 0x02, /* MCAST_EXCLUDE */ REC_FULL = REC_ALLOW | REC_BLOCK } rectype_t; /* * Enqueue an IGMPv3 filter list change to the given output queue. * * Source list filter state is held in an RB-tree. When the filter list * for a group is changed without changing its mode, we need to compute * the deltas between T0 and T1 for each source in the filter set, * and enqueue the appropriate ALLOW_NEW/BLOCK_OLD records. * * As we may potentially queue two record types, and the entire R-B tree * needs to be walked at once, we break this out into its own function * so we can generate a tightly packed queue of packets. * * XXX This could be written to only use one tree walk, although that makes * serializing into the mbuf chains a bit harder. For now we do two walks * which makes things easier on us, and it may or may not be harder on * the L2 cache. * * If successful the size of all data appended to the queue is returned, * otherwise an error code less than zero is returned, or zero if * no record(s) were appended. */ static int igmp_v3_enqueue_filter_change(struct mbufq *mq, struct in_multi *inm) { static const int MINRECLEN = sizeof(struct igmp_grouprec) + sizeof(in_addr_t); struct ifnet *ifp; struct igmp_grouprec ig; struct igmp_grouprec *pig; struct ip_msource *ims, *nims; struct mbuf *m, *m0, *md; in_addr_t naddr; int m0srcs, nbytes, npbytes, off, rsrcs, schanged; int nallow, nblock; uint8_t mode, now, then; rectype_t crt, drt, nrt; IN_MULTI_LIST_LOCK_ASSERT(); if (inm->inm_nsrc == 0 || (inm->inm_st[0].iss_asm > 0 && inm->inm_st[1].iss_asm > 0)) return (0); ifp = inm->inm_ifp; /* interface */ mode = inm->inm_st[1].iss_fmode; /* filter mode at t1 */ crt = REC_NONE; /* current group record type */ drt = REC_NONE; /* mask of completed group record types */ nrt = REC_NONE; /* record type for current node */ m0srcs = 0; /* # source which will fit in current mbuf chain */ nbytes = 0; /* # of bytes appended to group's state-change queue */ npbytes = 0; /* # of bytes appended this packet */ rsrcs = 0; /* # sources encoded in current record */ schanged = 0; /* # nodes encoded in overall filter change */ nallow = 0; /* # of source entries in ALLOW_NEW */ nblock = 0; /* # of source entries in BLOCK_OLD */ nims = NULL; /* next tree node pointer */ /* * For each possible filter record mode. * The first kind of source we encounter tells us which * is the first kind of record we start appending. * If a node transitioned to UNDEFINED at t1, its mode is treated * as the inverse of the group's filter mode. */ while (drt != REC_FULL) { do { m0 = mbufq_last(mq); if (m0 != NULL && (m0->m_pkthdr.PH_vt.vt_nrecs + 1 <= IGMP_V3_REPORT_MAXRECS) && (m0->m_pkthdr.len + MINRECLEN) < (ifp->if_mtu - IGMP_LEADINGSPACE)) { m = m0; m0srcs = (ifp->if_mtu - m0->m_pkthdr.len - sizeof(struct igmp_grouprec)) / sizeof(in_addr_t); CTR1(KTR_IGMPV3, "%s: use previous packet", __func__); } else { m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); if (m) m->m_data += IGMP_LEADINGSPACE; if (m == NULL) { m = m_gethdr(M_NOWAIT, MT_DATA); if (m) M_ALIGN(m, IGMP_LEADINGSPACE); } if (m == NULL) { CTR1(KTR_IGMPV3, "%s: m_get*() failed", __func__); return (-ENOMEM); } m->m_pkthdr.PH_vt.vt_nrecs = 0; igmp_save_context(m, ifp); m0srcs = (ifp->if_mtu - IGMP_LEADINGSPACE - sizeof(struct igmp_grouprec)) / sizeof(in_addr_t); npbytes = 0; CTR1(KTR_IGMPV3, "%s: allocated new packet", __func__); } /* * Append the IGMP group record header to the * current packet's data area. * Recalculate pointer to free space for next * group record, in case m_append() allocated * a new mbuf or cluster. */ memset(&ig, 0, sizeof(ig)); ig.ig_group = inm->inm_addr; if (!m_append(m, sizeof(ig), (void *)&ig)) { if (m != m0) m_freem(m); CTR1(KTR_IGMPV3, "%s: m_append() failed", __func__); return (-ENOMEM); } npbytes += sizeof(struct igmp_grouprec); if (m != m0) { /* new packet; offset in c hain */ md = m_getptr(m, npbytes - sizeof(struct igmp_grouprec), &off); pig = (struct igmp_grouprec *)(mtod(md, uint8_t *) + off); } else { /* current packet; offset from last append */ md = m_last(m); pig = (struct igmp_grouprec *)(mtod(md, uint8_t *) + md->m_len - sizeof(struct igmp_grouprec)); } /* * Begin walking the tree for this record type * pass, or continue from where we left off * previously if we had to allocate a new packet. * Only report deltas in-mode at t1. * We need not report included sources as allowed * if we are in inclusive mode on the group, * however the converse is not true. */ rsrcs = 0; if (nims == NULL) nims = RB_MIN(ip_msource_tree, &inm->inm_srcs); RB_FOREACH_FROM(ims, ip_msource_tree, nims) { CTR2(KTR_IGMPV3, "%s: visit node 0x%08x", __func__, ims->ims_haddr); now = ims_get_mode(inm, ims, 1); then = ims_get_mode(inm, ims, 0); CTR3(KTR_IGMPV3, "%s: mode: t0 %d, t1 %d", __func__, then, now); if (now == then) { CTR1(KTR_IGMPV3, "%s: skip unchanged", __func__); continue; } if (mode == MCAST_EXCLUDE && now == MCAST_INCLUDE) { CTR1(KTR_IGMPV3, "%s: skip IN src on EX group", __func__); continue; } nrt = (rectype_t)now; if (nrt == REC_NONE) nrt = (rectype_t)(~mode & REC_FULL); if (schanged++ == 0) { crt = nrt; } else if (crt != nrt) continue; naddr = htonl(ims->ims_haddr); if (!m_append(m, sizeof(in_addr_t), (void *)&naddr)) { if (m != m0) m_freem(m); CTR1(KTR_IGMPV3, "%s: m_append() failed", __func__); return (-ENOMEM); } nallow += !!(crt == REC_ALLOW); nblock += !!(crt == REC_BLOCK); if (++rsrcs == m0srcs) break; } /* * If we did not append any tree nodes on this * pass, back out of allocations. */ if (rsrcs == 0) { npbytes -= sizeof(struct igmp_grouprec); if (m != m0) { CTR1(KTR_IGMPV3, "%s: m_free(m)", __func__); m_freem(m); } else { CTR1(KTR_IGMPV3, "%s: m_adj(m, -ig)", __func__); m_adj(m, -((int)sizeof( struct igmp_grouprec))); } continue; } npbytes += (rsrcs * sizeof(in_addr_t)); if (crt == REC_ALLOW) pig->ig_type = IGMP_ALLOW_NEW_SOURCES; else if (crt == REC_BLOCK) pig->ig_type = IGMP_BLOCK_OLD_SOURCES; pig->ig_numsrc = htons(rsrcs); /* * Count the new group record, and enqueue this * packet if it wasn't already queued. */ m->m_pkthdr.PH_vt.vt_nrecs++; if (m != m0) mbufq_enqueue(mq, m); nbytes += npbytes; } while (nims != NULL); drt |= crt; crt = (~crt & REC_FULL); } CTR3(KTR_IGMPV3, "%s: queued %d ALLOW_NEW, %d BLOCK_OLD", __func__, nallow, nblock); return (nbytes); } static int igmp_v3_merge_state_changes(struct in_multi *inm, struct mbufq *scq) { struct mbufq *gq; struct mbuf *m; /* pending state-change */ struct mbuf *m0; /* copy of pending state-change */ struct mbuf *mt; /* last state-change in packet */ int docopy, domerge; u_int recslen; docopy = 0; domerge = 0; recslen = 0; IN_MULTI_LIST_LOCK_ASSERT(); IGMP_LOCK_ASSERT(); /* * If there are further pending retransmissions, make a writable * copy of each queued state-change message before merging. */ if (inm->inm_scrv > 0) docopy = 1; gq = &inm->inm_scq; #ifdef KTR if (mbufq_first(gq) == NULL) { CTR2(KTR_IGMPV3, "%s: WARNING: queue for inm %p is empty", __func__, inm); } #endif m = mbufq_first(gq); while (m != NULL) { /* * Only merge the report into the current packet if * there is sufficient space to do so; an IGMPv3 report * packet may only contain 65,535 group records. * Always use a simple mbuf chain concatentation to do this, * as large state changes for single groups may have * allocated clusters. */ domerge = 0; mt = mbufq_last(scq); if (mt != NULL) { recslen = m_length(m, NULL); if ((mt->m_pkthdr.PH_vt.vt_nrecs + m->m_pkthdr.PH_vt.vt_nrecs <= IGMP_V3_REPORT_MAXRECS) && (mt->m_pkthdr.len + recslen <= (inm->inm_ifp->if_mtu - IGMP_LEADINGSPACE))) domerge = 1; } if (!domerge && mbufq_full(gq)) { CTR2(KTR_IGMPV3, "%s: outbound queue full, skipping whole packet %p", __func__, m); mt = m->m_nextpkt; if (!docopy) m_freem(m); m = mt; continue; } if (!docopy) { CTR2(KTR_IGMPV3, "%s: dequeueing %p", __func__, m); m0 = mbufq_dequeue(gq); m = m0->m_nextpkt; } else { CTR2(KTR_IGMPV3, "%s: copying %p", __func__, m); m0 = m_dup(m, M_NOWAIT); if (m0 == NULL) return (ENOMEM); m0->m_nextpkt = NULL; m = m->m_nextpkt; } if (!domerge) { CTR3(KTR_IGMPV3, "%s: queueing %p to scq %p)", __func__, m0, scq); mbufq_enqueue(scq, m0); } else { struct mbuf *mtl; /* last mbuf of packet mt */ CTR3(KTR_IGMPV3, "%s: merging %p with scq tail %p)", __func__, m0, mt); mtl = m_last(mt); m0->m_flags &= ~M_PKTHDR; mt->m_pkthdr.len += recslen; mt->m_pkthdr.PH_vt.vt_nrecs += m0->m_pkthdr.PH_vt.vt_nrecs; mtl->m_next = m0; } } return (0); } /* * Respond to a pending IGMPv3 General Query. */ static void igmp_v3_dispatch_general_query(struct igmp_ifsoftc *igi) { struct ifmultiaddr *ifma; struct ifnet *ifp; struct in_multi *inm; int retval __unused, loop; IN_MULTI_LIST_LOCK_ASSERT(); IGMP_LOCK_ASSERT(); NET_EPOCH_ASSERT(); KASSERT(igi->igi_version == IGMP_VERSION_3, ("%s: called when version %d", __func__, igi->igi_version)); /* * Check that there are some packets queued. If so, send them first. * For large number of groups the reply to general query can take * many packets, we should finish sending them before starting of * queuing the new reply. */ if (mbufq_len(&igi->igi_gq) != 0) goto send; ifp = igi->igi_ifp; CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { if (ifma->ifma_addr->sa_family != AF_INET || ifma->ifma_protospec == NULL) continue; inm = (struct in_multi *)ifma->ifma_protospec; KASSERT(ifp == inm->inm_ifp, ("%s: inconsistent ifp", __func__)); switch (inm->inm_state) { case IGMP_NOT_MEMBER: case IGMP_SILENT_MEMBER: break; case IGMP_REPORTING_MEMBER: case IGMP_IDLE_MEMBER: case IGMP_LAZY_MEMBER: case IGMP_SLEEPING_MEMBER: case IGMP_AWAKENING_MEMBER: inm->inm_state = IGMP_REPORTING_MEMBER; retval = igmp_v3_enqueue_group_record(&igi->igi_gq, inm, 0, 0, 0); CTR2(KTR_IGMPV3, "%s: enqueue record = %d", __func__, retval); break; case IGMP_G_QUERY_PENDING_MEMBER: case IGMP_SG_QUERY_PENDING_MEMBER: case IGMP_LEAVING_MEMBER: break; } } send: loop = (igi->igi_flags & IGIF_LOOPBACK) ? 1 : 0; igmp_dispatch_queue(&igi->igi_gq, IGMP_MAX_RESPONSE_BURST, loop); /* * Slew transmission of bursts over 500ms intervals. */ if (mbufq_first(&igi->igi_gq) != NULL) { igi->igi_v3_timer = 1 + IGMP_RANDOM_DELAY( IGMP_RESPONSE_BURST_INTERVAL); V_interface_timers_running = 1; } } /* * Transmit the next pending IGMP message in the output queue. * * We get called from netisr_processqueue(). A mutex private to igmpoq * will be acquired and released around this routine. * * VIMAGE: Needs to store/restore vnet pointer on a per-mbuf-chain basis. * MRT: Nothing needs to be done, as IGMP traffic is always local to * a link and uses a link-scope multicast address. */ static void igmp_intr(struct mbuf *m) { struct ip_moptions imo; struct ifnet *ifp; struct mbuf *ipopts, *m0; int error; uint32_t ifindex; CTR2(KTR_IGMPV3, "%s: transmit %p", __func__, m); /* * Set VNET image pointer from enqueued mbuf chain * before doing anything else. Whilst we use interface * indexes to guard against interface detach, they are * unique to each VIMAGE and must be retrieved. */ CURVNET_SET((struct vnet *)(m->m_pkthdr.PH_loc.ptr)); ifindex = igmp_restore_context(m); /* * Check if the ifnet still exists. This limits the scope of * any race in the absence of a global ifp lock for low cost * (an array lookup). */ ifp = ifnet_byindex(ifindex); if (ifp == NULL) { CTR3(KTR_IGMPV3, "%s: dropped %p as ifindex %u went away.", __func__, m, ifindex); m_freem(m); IPSTAT_INC(ips_noroute); goto out; } ipopts = V_igmp_sendra ? m_raopt : NULL; imo.imo_multicast_ttl = 1; imo.imo_multicast_vif = -1; imo.imo_multicast_loop = (V_ip_mrouter != NULL); /* * If the user requested that IGMP traffic be explicitly * redirected to the loopback interface (e.g. they are running a * MANET interface and the routing protocol needs to see the * updates), handle this now. */ if (m->m_flags & M_IGMP_LOOP) imo.imo_multicast_ifp = V_loif; else imo.imo_multicast_ifp = ifp; if (m->m_flags & M_IGMPV2) { m0 = m; } else { m0 = igmp_v3_encap_report(ifp, m); if (m0 == NULL) { CTR2(KTR_IGMPV3, "%s: dropped %p", __func__, m); m_freem(m); IPSTAT_INC(ips_odropped); goto out; } } igmp_scrub_context(m0); m_clrprotoflags(m); m0->m_pkthdr.rcvif = V_loif; #ifdef MAC mac_netinet_igmp_send(ifp, m0); #endif error = ip_output(m0, ipopts, NULL, 0, &imo, NULL); if (error) { CTR3(KTR_IGMPV3, "%s: ip_output(%p) = %d", __func__, m0, error); goto out; } IGMPSTAT_INC(igps_snd_reports); out: /* * We must restore the existing vnet pointer before * continuing as we are run from netisr context. */ CURVNET_RESTORE(); } /* * Encapsulate an IGMPv3 report. * * The internal mbuf flag M_IGMPV3_HDR is used to indicate that the mbuf * chain has already had its IP/IGMPv3 header prepended. In this case * the function will not attempt to prepend; the lengths and checksums * will however be re-computed. * * Returns a pointer to the new mbuf chain head, or NULL if the * allocation failed. */ static struct mbuf * igmp_v3_encap_report(struct ifnet *ifp, struct mbuf *m) { - struct rm_priotracker in_ifa_tracker; struct igmp_report *igmp; struct ip *ip; int hdrlen, igmpreclen; KASSERT((m->m_flags & M_PKTHDR), ("%s: mbuf chain %p is !M_PKTHDR", __func__, m)); igmpreclen = m_length(m, NULL); hdrlen = sizeof(struct ip) + sizeof(struct igmp_report); if (m->m_flags & M_IGMPV3_HDR) { igmpreclen -= hdrlen; } else { M_PREPEND(m, hdrlen, M_NOWAIT); if (m == NULL) return (NULL); m->m_flags |= M_IGMPV3_HDR; } CTR2(KTR_IGMPV3, "%s: igmpreclen is %d", __func__, igmpreclen); m->m_data += sizeof(struct ip); m->m_len -= sizeof(struct ip); igmp = mtod(m, struct igmp_report *); igmp->ir_type = IGMP_v3_HOST_MEMBERSHIP_REPORT; igmp->ir_rsv1 = 0; igmp->ir_rsv2 = 0; igmp->ir_numgrps = htons(m->m_pkthdr.PH_vt.vt_nrecs); igmp->ir_cksum = 0; igmp->ir_cksum = in_cksum(m, sizeof(struct igmp_report) + igmpreclen); m->m_pkthdr.PH_vt.vt_nrecs = 0; m->m_data -= sizeof(struct ip); m->m_len += sizeof(struct ip); ip = mtod(m, struct ip *); ip->ip_tos = IPTOS_PREC_INTERNETCONTROL; ip->ip_len = htons(hdrlen + igmpreclen); ip->ip_off = htons(IP_DF); ip->ip_p = IPPROTO_IGMP; ip->ip_sum = 0; ip->ip_src.s_addr = INADDR_ANY; if (m->m_flags & M_IGMP_LOOP) { struct in_ifaddr *ia; - IFP_TO_IA(ifp, ia, &in_ifa_tracker); + IFP_TO_IA(ifp, ia); if (ia != NULL) ip->ip_src = ia->ia_addr.sin_addr; } ip->ip_dst.s_addr = htonl(INADDR_ALLRPTS_GROUP); return (m); } #ifdef KTR static char * igmp_rec_type_to_str(const int type) { switch (type) { case IGMP_CHANGE_TO_EXCLUDE_MODE: return "TO_EX"; break; case IGMP_CHANGE_TO_INCLUDE_MODE: return "TO_IN"; break; case IGMP_MODE_IS_EXCLUDE: return "MODE_EX"; break; case IGMP_MODE_IS_INCLUDE: return "MODE_IN"; break; case IGMP_ALLOW_NEW_SOURCES: return "ALLOW_NEW"; break; case IGMP_BLOCK_OLD_SOURCES: return "BLOCK_OLD"; break; default: break; } return "unknown"; } #endif #ifdef VIMAGE static void vnet_igmp_init(const void *unused __unused) { netisr_register_vnet(&igmp_nh); } VNET_SYSINIT(vnet_igmp_init, SI_SUB_PROTO_MC, SI_ORDER_ANY, vnet_igmp_init, NULL); static void vnet_igmp_uninit(const void *unused __unused) { /* This can happen when we shutdown the entire network stack. */ CTR1(KTR_IGMPV3, "%s: tearing down", __func__); netisr_unregister_vnet(&igmp_nh); } VNET_SYSUNINIT(vnet_igmp_uninit, SI_SUB_PROTO_MC, SI_ORDER_ANY, vnet_igmp_uninit, NULL); #endif #ifdef DDB DB_SHOW_COMMAND(igi_list, db_show_igi_list) { struct igmp_ifsoftc *igi, *tigi; LIST_HEAD(_igi_list, igmp_ifsoftc) *igi_head; if (!have_addr) { db_printf("usage: show igi_list \n"); return; } igi_head = (struct _igi_list *)addr; LIST_FOREACH_SAFE(igi, igi_head, igi_link, tigi) { db_printf("igmp_ifsoftc %p:\n", igi); db_printf(" ifp %p\n", igi->igi_ifp); db_printf(" version %u\n", igi->igi_version); db_printf(" v1_timer %u\n", igi->igi_v1_timer); db_printf(" v2_timer %u\n", igi->igi_v2_timer); db_printf(" v3_timer %u\n", igi->igi_v3_timer); db_printf(" flags %#x\n", igi->igi_flags); db_printf(" rv %u\n", igi->igi_rv); db_printf(" qi %u\n", igi->igi_qi); db_printf(" qri %u\n", igi->igi_qri); db_printf(" uri %u\n", igi->igi_uri); /* struct mbufq igi_gq; */ db_printf("\n"); } } #endif static int igmp_modevent(module_t mod, int type, void *unused __unused) { switch (type) { case MOD_LOAD: CTR1(KTR_IGMPV3, "%s: initializing", __func__); IGMP_LOCK_INIT(); m_raopt = igmp_ra_alloc(); netisr_register(&igmp_nh); break; case MOD_UNLOAD: CTR1(KTR_IGMPV3, "%s: tearing down", __func__); netisr_unregister(&igmp_nh); m_free(m_raopt); m_raopt = NULL; IGMP_LOCK_DESTROY(); break; default: return (EOPNOTSUPP); } return (0); } static moduledata_t igmp_mod = { "igmp", igmp_modevent, 0 }; DECLARE_MODULE(igmp, igmp_mod, SI_SUB_PROTO_MC, SI_ORDER_MIDDLE); diff --git a/sys/netinet/in.c b/sys/netinet/in.c index b51f1111b88a..aa87546be2d4 100644 --- a/sys/netinet/in.c +++ b/sys/netinet/in.c @@ -1,1711 +1,1706 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 1982, 1986, 1991, 1993 * The Regents of the University of California. All rights reserved. * Copyright (C) 2001 WIDE Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)in.c 8.4 (Berkeley) 1/9/95 */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static int in_aifaddr_ioctl(u_long, caddr_t, struct ifnet *, struct thread *); static int in_difaddr_ioctl(u_long, caddr_t, struct ifnet *, struct thread *); static int in_gifaddr_ioctl(u_long, caddr_t, struct ifnet *, struct thread *); static void in_socktrim(struct sockaddr_in *); static void in_purgemaddrs(struct ifnet *); static bool ia_need_loopback_route(const struct in_ifaddr *); VNET_DEFINE_STATIC(int, nosameprefix); #define V_nosameprefix VNET(nosameprefix) SYSCTL_INT(_net_inet_ip, OID_AUTO, no_same_prefix, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(nosameprefix), 0, "Refuse to create same prefixes on different interfaces"); VNET_DEFINE_STATIC(bool, broadcast_lowest); #define V_broadcast_lowest VNET(broadcast_lowest) SYSCTL_BOOL(_net_inet_ip, OID_AUTO, broadcast_lowest, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(broadcast_lowest), 0, "Treat lowest address on a subnet (host 0) as broadcast"); VNET_DECLARE(struct inpcbinfo, ripcbinfo); #define V_ripcbinfo VNET(ripcbinfo) static struct sx in_control_sx; SX_SYSINIT(in_control_sx, &in_control_sx, "in_control"); /* * Return 1 if an internet address is for a ``local'' host * (one to which we have a connection). */ int in_localaddr(struct in_addr in) { - struct rm_priotracker in_ifa_tracker; u_long i = ntohl(in.s_addr); struct in_ifaddr *ia; - IN_IFADDR_RLOCK(&in_ifa_tracker); + NET_EPOCH_ASSERT(); + CK_STAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) { - if ((i & ia->ia_subnetmask) == ia->ia_subnet) { - IN_IFADDR_RUNLOCK(&in_ifa_tracker); + if ((i & ia->ia_subnetmask) == ia->ia_subnet) return (1); - } } - IN_IFADDR_RUNLOCK(&in_ifa_tracker); + return (0); } /* * Return 1 if an internet address is for the local host and configured * on one of its interfaces. */ int in_localip(struct in_addr in) { struct rm_priotracker in_ifa_tracker; struct in_ifaddr *ia; IN_IFADDR_RLOCK(&in_ifa_tracker); LIST_FOREACH(ia, INADDR_HASH(in.s_addr), ia_hash) { if (IA_SIN(ia)->sin_addr.s_addr == in.s_addr) { IN_IFADDR_RUNLOCK(&in_ifa_tracker); return (1); } } IN_IFADDR_RUNLOCK(&in_ifa_tracker); return (0); } /* * Return 1 if an internet address is configured on an interface. */ int in_ifhasaddr(struct ifnet *ifp, struct in_addr in) { struct ifaddr *ifa; struct in_ifaddr *ia; NET_EPOCH_ASSERT(); CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { if (ifa->ifa_addr->sa_family != AF_INET) continue; ia = (struct in_ifaddr *)ifa; if (ia->ia_addr.sin_addr.s_addr == in.s_addr) return (1); } return (0); } /* * Return a reference to the interface address which is different to * the supplied one but with same IP address value. */ static struct in_ifaddr * in_localip_more(struct in_ifaddr *original_ia) { struct rm_priotracker in_ifa_tracker; in_addr_t original_addr = IA_SIN(original_ia)->sin_addr.s_addr; uint32_t original_fib = original_ia->ia_ifa.ifa_ifp->if_fib; struct in_ifaddr *ia; IN_IFADDR_RLOCK(&in_ifa_tracker); LIST_FOREACH(ia, INADDR_HASH(original_addr), ia_hash) { in_addr_t addr = IA_SIN(ia)->sin_addr.s_addr; uint32_t fib = ia->ia_ifa.ifa_ifp->if_fib; if (!V_rt_add_addr_allfibs && (original_fib != fib)) continue; if ((original_ia != ia) && (original_addr == addr)) { ifa_ref(&ia->ia_ifa); IN_IFADDR_RUNLOCK(&in_ifa_tracker); return (ia); } } IN_IFADDR_RUNLOCK(&in_ifa_tracker); return (NULL); } /* * Tries to find first IPv4 address in the provided fib. * Prefers non-loopback addresses and return loopback IFF * @loopback_ok is set. * * Returns ifa or NULL. */ struct in_ifaddr * in_findlocal(uint32_t fibnum, bool loopback_ok) { - struct rm_priotracker in_ifa_tracker; struct in_ifaddr *ia = NULL, *ia_lo = NULL; NET_EPOCH_ASSERT(); - IN_IFADDR_RLOCK(&in_ifa_tracker); CK_STAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) { uint32_t ia_fib = ia->ia_ifa.ifa_ifp->if_fib; if (!V_rt_add_addr_allfibs && (fibnum != ia_fib)) continue; if (!IN_LOOPBACK(ntohl(IA_SIN(ia)->sin_addr.s_addr))) break; if (loopback_ok) ia_lo = ia; } - IN_IFADDR_RUNLOCK(&in_ifa_tracker); if (ia == NULL) ia = ia_lo; return (ia); } /* * Determine whether an IP address is in a reserved set of addresses * that may not be forwarded, or whether datagrams to that destination * may be forwarded. */ int in_canforward(struct in_addr in) { u_long i = ntohl(in.s_addr); if (IN_EXPERIMENTAL(i) || IN_MULTICAST(i) || IN_LINKLOCAL(i) || IN_ZERONET(i) || IN_LOOPBACK(i)) return (0); return (1); } /* * Trim a mask in a sockaddr */ static void in_socktrim(struct sockaddr_in *ap) { char *cplim = (char *) &ap->sin_addr; char *cp = (char *) (&ap->sin_addr + 1); ap->sin_len = 0; while (--cp >= cplim) if (*cp) { (ap)->sin_len = cp - (char *) (ap) + 1; break; } } /* * Generic internet control operations (ioctl's). */ int in_control(struct socket *so, u_long cmd, caddr_t data, struct ifnet *ifp, struct thread *td) { struct ifreq *ifr = (struct ifreq *)data; struct sockaddr_in *addr = (struct sockaddr_in *)&ifr->ifr_addr; struct epoch_tracker et; struct ifaddr *ifa; struct in_ifaddr *ia; int error; if (ifp == NULL) return (EADDRNOTAVAIL); /* * Filter out 4 ioctls we implement directly. Forward the rest * to specific functions and ifp->if_ioctl(). */ switch (cmd) { case SIOCGIFADDR: case SIOCGIFBRDADDR: case SIOCGIFDSTADDR: case SIOCGIFNETMASK: break; case SIOCGIFALIAS: sx_xlock(&in_control_sx); error = in_gifaddr_ioctl(cmd, data, ifp, td); sx_xunlock(&in_control_sx); return (error); case SIOCDIFADDR: sx_xlock(&in_control_sx); error = in_difaddr_ioctl(cmd, data, ifp, td); sx_xunlock(&in_control_sx); return (error); case OSIOCAIFADDR: /* 9.x compat */ case SIOCAIFADDR: sx_xlock(&in_control_sx); error = in_aifaddr_ioctl(cmd, data, ifp, td); sx_xunlock(&in_control_sx); return (error); case SIOCSIFADDR: case SIOCSIFBRDADDR: case SIOCSIFDSTADDR: case SIOCSIFNETMASK: /* We no longer support that old commands. */ return (EINVAL); default: if (ifp->if_ioctl == NULL) return (EOPNOTSUPP); return ((*ifp->if_ioctl)(ifp, cmd, data)); } if (addr->sin_addr.s_addr != INADDR_ANY && prison_check_ip4(td->td_ucred, &addr->sin_addr) != 0) return (EADDRNOTAVAIL); /* * Find address for this interface, if it exists. If an * address was specified, find that one instead of the * first one on the interface, if possible. */ NET_EPOCH_ENTER(et); CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { if (ifa->ifa_addr->sa_family != AF_INET) continue; ia = (struct in_ifaddr *)ifa; if (ia->ia_addr.sin_addr.s_addr == addr->sin_addr.s_addr) break; } if (ifa == NULL) CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) if (ifa->ifa_addr->sa_family == AF_INET) { ia = (struct in_ifaddr *)ifa; if (prison_check_ip4(td->td_ucred, &ia->ia_addr.sin_addr) == 0) break; } if (ifa == NULL) { NET_EPOCH_EXIT(et); return (EADDRNOTAVAIL); } error = 0; switch (cmd) { case SIOCGIFADDR: *addr = ia->ia_addr; break; case SIOCGIFBRDADDR: if ((ifp->if_flags & IFF_BROADCAST) == 0) { error = EINVAL; break; } *addr = ia->ia_broadaddr; break; case SIOCGIFDSTADDR: if ((ifp->if_flags & IFF_POINTOPOINT) == 0) { error = EINVAL; break; } *addr = ia->ia_dstaddr; break; case SIOCGIFNETMASK: *addr = ia->ia_sockmask; break; } NET_EPOCH_EXIT(et); return (error); } static int in_aifaddr_ioctl(u_long cmd, caddr_t data, struct ifnet *ifp, struct thread *td) { const struct in_aliasreq *ifra = (struct in_aliasreq *)data; const struct sockaddr_in *addr = &ifra->ifra_addr; const struct sockaddr_in *broadaddr = &ifra->ifra_broadaddr; const struct sockaddr_in *mask = &ifra->ifra_mask; const struct sockaddr_in *dstaddr = &ifra->ifra_dstaddr; const int vhid = (cmd == SIOCAIFADDR) ? ifra->ifra_vhid : 0; struct epoch_tracker et; struct ifaddr *ifa; struct in_ifaddr *ia; bool iaIsFirst; int error = 0; error = priv_check(td, PRIV_NET_ADDIFADDR); if (error) return (error); /* * ifra_addr must be present and be of INET family. * ifra_broadaddr/ifra_dstaddr and ifra_mask are optional. */ if (addr->sin_len != sizeof(struct sockaddr_in) || addr->sin_family != AF_INET) return (EINVAL); if (broadaddr->sin_len != 0 && (broadaddr->sin_len != sizeof(struct sockaddr_in) || broadaddr->sin_family != AF_INET)) return (EINVAL); if (mask->sin_len != 0 && (mask->sin_len != sizeof(struct sockaddr_in) || mask->sin_family != AF_INET)) return (EINVAL); if ((ifp->if_flags & IFF_POINTOPOINT) && (dstaddr->sin_len != sizeof(struct sockaddr_in) || dstaddr->sin_addr.s_addr == INADDR_ANY)) return (EDESTADDRREQ); if (vhid != 0 && carp_attach_p == NULL) return (EPROTONOSUPPORT); /* * See whether address already exist. */ iaIsFirst = true; ia = NULL; NET_EPOCH_ENTER(et); CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { struct in_ifaddr *it; if (ifa->ifa_addr->sa_family != AF_INET) continue; it = (struct in_ifaddr *)ifa; if (it->ia_addr.sin_addr.s_addr == addr->sin_addr.s_addr && prison_check_ip4(td->td_ucred, &addr->sin_addr) == 0) ia = it; else iaIsFirst = false; } NET_EPOCH_EXIT(et); if (ia != NULL) (void )in_difaddr_ioctl(cmd, data, ifp, td); ifa = ifa_alloc(sizeof(struct in_ifaddr), M_WAITOK); ia = (struct in_ifaddr *)ifa; ifa->ifa_addr = (struct sockaddr *)&ia->ia_addr; ifa->ifa_dstaddr = (struct sockaddr *)&ia->ia_dstaddr; ifa->ifa_netmask = (struct sockaddr *)&ia->ia_sockmask; callout_init_rw(&ia->ia_garp_timer, &ifp->if_addr_lock, CALLOUT_RETURNUNLOCKED); ia->ia_ifp = ifp; ia->ia_addr = *addr; if (mask->sin_len != 0) { ia->ia_sockmask = *mask; ia->ia_subnetmask = ntohl(ia->ia_sockmask.sin_addr.s_addr); } else { in_addr_t i = ntohl(addr->sin_addr.s_addr); /* * Be compatible with network classes, if netmask isn't * supplied, guess it based on classes. */ if (IN_CLASSA(i)) ia->ia_subnetmask = IN_CLASSA_NET; else if (IN_CLASSB(i)) ia->ia_subnetmask = IN_CLASSB_NET; else ia->ia_subnetmask = IN_CLASSC_NET; ia->ia_sockmask.sin_addr.s_addr = htonl(ia->ia_subnetmask); } ia->ia_subnet = ntohl(addr->sin_addr.s_addr) & ia->ia_subnetmask; in_socktrim(&ia->ia_sockmask); if (ifp->if_flags & IFF_BROADCAST) { if (broadaddr->sin_len != 0) { ia->ia_broadaddr = *broadaddr; } else if (ia->ia_subnetmask == IN_RFC3021_MASK) { ia->ia_broadaddr.sin_addr.s_addr = INADDR_BROADCAST; ia->ia_broadaddr.sin_len = sizeof(struct sockaddr_in); ia->ia_broadaddr.sin_family = AF_INET; } else { ia->ia_broadaddr.sin_addr.s_addr = htonl(ia->ia_subnet | ~ia->ia_subnetmask); ia->ia_broadaddr.sin_len = sizeof(struct sockaddr_in); ia->ia_broadaddr.sin_family = AF_INET; } } if (ifp->if_flags & IFF_POINTOPOINT) ia->ia_dstaddr = *dstaddr; if (vhid != 0) { error = (*carp_attach_p)(&ia->ia_ifa, vhid); if (error) return (error); } /* if_addrhead is already referenced by ifa_alloc() */ IF_ADDR_WLOCK(ifp); CK_STAILQ_INSERT_TAIL(&ifp->if_addrhead, ifa, ifa_link); IF_ADDR_WUNLOCK(ifp); ifa_ref(ifa); /* in_ifaddrhead */ IN_IFADDR_WLOCK(); CK_STAILQ_INSERT_TAIL(&V_in_ifaddrhead, ia, ia_link); LIST_INSERT_HEAD(INADDR_HASH(ia->ia_addr.sin_addr.s_addr), ia, ia_hash); IN_IFADDR_WUNLOCK(); /* * Give the interface a chance to initialize * if this is its first address, * and to validate the address if necessary. */ if (ifp->if_ioctl != NULL) { error = (*ifp->if_ioctl)(ifp, SIOCSIFADDR, (caddr_t)ia); if (error) goto fail1; } /* * Add route for the network. */ if (vhid == 0) { error = in_addprefix(ia); if (error) goto fail1; } /* * Add a loopback route to self. */ if (vhid == 0 && ia_need_loopback_route(ia)) { struct in_ifaddr *eia; eia = in_localip_more(ia); if (eia == NULL) { error = ifa_add_loopback_route((struct ifaddr *)ia, (struct sockaddr *)&ia->ia_addr); if (error) goto fail2; } else ifa_free(&eia->ia_ifa); } if (iaIsFirst && (ifp->if_flags & IFF_MULTICAST)) { struct in_addr allhosts_addr; struct in_ifinfo *ii; ii = ((struct in_ifinfo *)ifp->if_afdata[AF_INET]); allhosts_addr.s_addr = htonl(INADDR_ALLHOSTS_GROUP); error = in_joingroup(ifp, &allhosts_addr, NULL, &ii->ii_allhosts); } /* * Note: we don't need extra reference for ifa, since we called * with sx lock held, and ifaddr can not be deleted in concurrent * thread. */ EVENTHANDLER_INVOKE(ifaddr_event_ext, ifp, ifa, IFADDR_EVENT_ADD); return (error); fail2: if (vhid == 0) (void )in_scrubprefix(ia, LLE_STATIC); fail1: if (ia->ia_ifa.ifa_carp) (*carp_detach_p)(&ia->ia_ifa, false); IF_ADDR_WLOCK(ifp); CK_STAILQ_REMOVE(&ifp->if_addrhead, &ia->ia_ifa, ifaddr, ifa_link); IF_ADDR_WUNLOCK(ifp); ifa_free(&ia->ia_ifa); /* if_addrhead */ IN_IFADDR_WLOCK(); CK_STAILQ_REMOVE(&V_in_ifaddrhead, ia, in_ifaddr, ia_link); LIST_REMOVE(ia, ia_hash); IN_IFADDR_WUNLOCK(); ifa_free(&ia->ia_ifa); /* in_ifaddrhead */ return (error); } static int in_difaddr_ioctl(u_long cmd, caddr_t data, struct ifnet *ifp, struct thread *td) { const struct ifreq *ifr = (struct ifreq *)data; const struct sockaddr_in *addr = (const struct sockaddr_in *) &ifr->ifr_addr; struct ifaddr *ifa; struct in_ifaddr *ia; bool deleteAny, iaIsLast; int error; if (td != NULL) { error = priv_check(td, PRIV_NET_DELIFADDR); if (error) return (error); } if (addr->sin_len != sizeof(struct sockaddr_in) || addr->sin_family != AF_INET) deleteAny = true; else deleteAny = false; iaIsLast = true; ia = NULL; IF_ADDR_WLOCK(ifp); CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { struct in_ifaddr *it; if (ifa->ifa_addr->sa_family != AF_INET) continue; it = (struct in_ifaddr *)ifa; if (deleteAny && ia == NULL && (td == NULL || prison_check_ip4(td->td_ucred, &it->ia_addr.sin_addr) == 0)) ia = it; if (it->ia_addr.sin_addr.s_addr == addr->sin_addr.s_addr && (td == NULL || prison_check_ip4(td->td_ucred, &addr->sin_addr) == 0)) ia = it; if (it != ia) iaIsLast = false; } if (ia == NULL) { IF_ADDR_WUNLOCK(ifp); return (EADDRNOTAVAIL); } CK_STAILQ_REMOVE(&ifp->if_addrhead, &ia->ia_ifa, ifaddr, ifa_link); IF_ADDR_WUNLOCK(ifp); ifa_free(&ia->ia_ifa); /* if_addrhead */ IN_IFADDR_WLOCK(); CK_STAILQ_REMOVE(&V_in_ifaddrhead, ia, in_ifaddr, ia_link); LIST_REMOVE(ia, ia_hash); IN_IFADDR_WUNLOCK(); /* * in_scrubprefix() kills the interface route. */ in_scrubprefix(ia, LLE_STATIC); /* * in_ifadown gets rid of all the rest of * the routes. This is not quite the right * thing to do, but at least if we are running * a routing process they will come back. */ in_ifadown(&ia->ia_ifa, 1); if (ia->ia_ifa.ifa_carp) (*carp_detach_p)(&ia->ia_ifa, cmd == SIOCAIFADDR); /* * If this is the last IPv4 address configured on this * interface, leave the all-hosts group. * No state-change report need be transmitted. */ if (iaIsLast && (ifp->if_flags & IFF_MULTICAST)) { struct in_ifinfo *ii; ii = ((struct in_ifinfo *)ifp->if_afdata[AF_INET]); if (ii->ii_allhosts) { (void)in_leavegroup(ii->ii_allhosts, NULL); ii->ii_allhosts = NULL; } } IF_ADDR_WLOCK(ifp); if (callout_stop(&ia->ia_garp_timer) == 1) { ifa_free(&ia->ia_ifa); } IF_ADDR_WUNLOCK(ifp); EVENTHANDLER_INVOKE(ifaddr_event_ext, ifp, &ia->ia_ifa, IFADDR_EVENT_DEL); ifa_free(&ia->ia_ifa); /* in_ifaddrhead */ return (0); } static int in_gifaddr_ioctl(u_long cmd, caddr_t data, struct ifnet *ifp, struct thread *td) { struct in_aliasreq *ifra = (struct in_aliasreq *)data; const struct sockaddr_in *addr = &ifra->ifra_addr; struct epoch_tracker et; struct ifaddr *ifa; struct in_ifaddr *ia; /* * ifra_addr must be present and be of INET family. */ if (addr->sin_len != sizeof(struct sockaddr_in) || addr->sin_family != AF_INET) return (EINVAL); /* * See whether address exist. */ ia = NULL; NET_EPOCH_ENTER(et); CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { struct in_ifaddr *it; if (ifa->ifa_addr->sa_family != AF_INET) continue; it = (struct in_ifaddr *)ifa; if (it->ia_addr.sin_addr.s_addr == addr->sin_addr.s_addr && prison_check_ip4(td->td_ucred, &addr->sin_addr) == 0) { ia = it; break; } } if (ia == NULL) { NET_EPOCH_EXIT(et); return (EADDRNOTAVAIL); } ifra->ifra_mask = ia->ia_sockmask; if ((ifp->if_flags & IFF_POINTOPOINT) && ia->ia_dstaddr.sin_family == AF_INET) ifra->ifra_dstaddr = ia->ia_dstaddr; else if ((ifp->if_flags & IFF_BROADCAST) && ia->ia_broadaddr.sin_family == AF_INET) ifra->ifra_broadaddr = ia->ia_broadaddr; else memset(&ifra->ifra_broadaddr, 0, sizeof(ifra->ifra_broadaddr)); NET_EPOCH_EXIT(et); return (0); } static int in_match_ifaddr(const struct rtentry *rt, const struct nhop_object *nh, void *arg) { if (nh->nh_ifa == (struct ifaddr *)arg) return (1); return (0); } static int in_handle_prefix_route(uint32_t fibnum, int cmd, struct sockaddr_in *dst, struct sockaddr_in *netmask, struct ifaddr *ifa, struct ifnet *ifp) { NET_EPOCH_ASSERT(); /* Prepare gateway */ struct sockaddr_dl_short sdl = { .sdl_family = AF_LINK, .sdl_len = sizeof(struct sockaddr_dl_short), .sdl_type = ifa->ifa_ifp->if_type, .sdl_index = ifa->ifa_ifp->if_index, }; struct rt_addrinfo info = { .rti_ifa = ifa, .rti_ifp = ifp, .rti_flags = RTF_PINNED | ((netmask != NULL) ? 0 : RTF_HOST), .rti_info = { [RTAX_DST] = (struct sockaddr *)dst, [RTAX_NETMASK] = (struct sockaddr *)netmask, [RTAX_GATEWAY] = (struct sockaddr *)&sdl, }, /* Ensure we delete the prefix IFF prefix ifa matches */ .rti_filter = in_match_ifaddr, .rti_filterdata = ifa, }; return (rib_handle_ifaddr_info(fibnum, cmd, &info)); } /* * Routing table interaction with interface addresses. * * In general, two types of routes needs to be installed: * a) "interface" or "prefix" route, telling user that the addresses * behind the ifa prefix are reached directly. * b) "loopback" route installed for the ifa address, telling user that * the address belongs to local system. * * Handling for (a) and (b) differs in multi-fib aspects, hence they * are implemented in different functions below. * * The cases above may intersect - /32 interface aliases results in * the same prefix produced by (a) and (b). This blurs the definition * of the "loopback" route and complicate interactions. The interaction * table is defined below. The case numbers are used in the multiple * functions below to refer to the particular test case. * * There can be multiple options: * 1) Adding address with prefix on non-p2p/non-loopback interface. * Example: 192.0.2.1/24. Action: * * add "prefix" route towards 192.0.2.0/24 via @ia interface, * using @ia as an address source. * * add "loopback" route towards 192.0.2.1 via V_loif, saving * @ia ifp in the gateway and using @ia as an address source. * * 2) Adding address with /32 mask to non-p2p/non-loopback interface. * Example: 192.0.2.2/32. Action: * * add "prefix" host route via V_loif, using @ia as an address source. * * 3) Adding address with or without prefix to p2p interface. * Example: 10.0.0.1/24->10.0.0.2. Action: * * add "prefix" host route towards 10.0.0.2 via this interface, using @ia * as an address source. Note: no sense in installing full /24 as the interface * is point-to-point. * * add "loopback" route towards 10.0.9.1 via V_loif, saving * @ia ifp in the gateway and using @ia as an address source. * * 4) Adding address with or without prefix to loopback interface. * Example: 192.0.2.1/24. Action: * * add "prefix" host route via @ia interface, using @ia as an address source. * Note: Skip installing /24 prefix as it would introduce TTL loop * for the traffic destined to these addresses. */ /* * Checks if @ia needs to install loopback route to @ia address via * ifa_maintain_loopback_route(). * * Return true on success. */ static bool ia_need_loopback_route(const struct in_ifaddr *ia) { struct ifnet *ifp = ia->ia_ifp; /* Case 4: Skip loopback interfaces */ if ((ifp->if_flags & IFF_LOOPBACK) || (ia->ia_addr.sin_addr.s_addr == INADDR_ANY)) return (false); /* Clash avoidance: Skip p2p interfaces with both addresses are equal */ if ((ifp->if_flags & IFF_POINTOPOINT) && ia->ia_dstaddr.sin_addr.s_addr == ia->ia_addr.sin_addr.s_addr) return (false); /* Case 2: skip /32 prefixes */ if (!(ifp->if_flags & IFF_POINTOPOINT) && (ia->ia_sockmask.sin_addr.s_addr == INADDR_BROADCAST)) return (false); return (true); } /* * Calculate "prefix" route corresponding to @ia. */ static void ia_getrtprefix(const struct in_ifaddr *ia, struct in_addr *prefix, struct in_addr *mask) { if (ia->ia_ifp->if_flags & IFF_POINTOPOINT) { /* Case 3: return host route for dstaddr */ *prefix = ia->ia_dstaddr.sin_addr; mask->s_addr = INADDR_BROADCAST; } else if (ia->ia_ifp->if_flags & IFF_LOOPBACK) { /* Case 4: return host route for ifaddr */ *prefix = ia->ia_addr.sin_addr; mask->s_addr = INADDR_BROADCAST; } else { /* Cases 1,2: return actual ia prefix */ *prefix = ia->ia_addr.sin_addr; *mask = ia->ia_sockmask.sin_addr; prefix->s_addr &= mask->s_addr; } } /* * Adds or delete interface "prefix" route corresponding to @ifa. * Returns 0 on success or errno. */ int in_handle_ifaddr_route(int cmd, struct in_ifaddr *ia) { struct ifaddr *ifa = &ia->ia_ifa; struct in_addr daddr, maddr; struct sockaddr_in *pmask; struct epoch_tracker et; int error; ia_getrtprefix(ia, &daddr, &maddr); struct sockaddr_in mask = { .sin_family = AF_INET, .sin_len = sizeof(struct sockaddr_in), .sin_addr = maddr, }; pmask = (maddr.s_addr != INADDR_BROADCAST) ? &mask : NULL; struct sockaddr_in dst = { .sin_family = AF_INET, .sin_len = sizeof(struct sockaddr_in), .sin_addr.s_addr = daddr.s_addr & maddr.s_addr, }; struct ifnet *ifp = ia->ia_ifp; if ((maddr.s_addr == INADDR_BROADCAST) && (!(ia->ia_ifp->if_flags & (IFF_POINTOPOINT|IFF_LOOPBACK)))) { /* Case 2: host route on broadcast interface */ ifp = V_loif; } uint32_t fibnum = ifa->ifa_ifp->if_fib; NET_EPOCH_ENTER(et); error = in_handle_prefix_route(fibnum, cmd, &dst, pmask, ifa, ifp); NET_EPOCH_EXIT(et); return (error); } /* * Check if we have a route for the given prefix already. */ static bool in_hasrtprefix(struct in_ifaddr *target) { - struct rm_priotracker in_ifa_tracker; + struct epoch_tracker et; struct in_ifaddr *ia; struct in_addr prefix, mask, p, m; bool result = false; ia_getrtprefix(target, &prefix, &mask); - IN_IFADDR_RLOCK(&in_ifa_tracker); /* Look for an existing address with the same prefix, mask, and fib */ + NET_EPOCH_ENTER(et); CK_STAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) { ia_getrtprefix(ia, &p, &m); if (prefix.s_addr != p.s_addr || mask.s_addr != m.s_addr) continue; if (target->ia_ifp->if_fib != ia->ia_ifp->if_fib) continue; /* * If we got a matching prefix route inserted by other * interface address, we are done here. */ if (ia->ia_flags & IFA_ROUTE) { result = true; break; } } - IN_IFADDR_RUNLOCK(&in_ifa_tracker); + NET_EPOCH_EXIT(et); return (result); } int in_addprefix(struct in_ifaddr *target) { int error; if (in_hasrtprefix(target)) { if (V_nosameprefix) return (EEXIST); else { rt_addrmsg(RTM_ADD, &target->ia_ifa, target->ia_ifp->if_fib); return (0); } } /* * No-one seem to have this prefix route, so we try to insert it. */ rt_addrmsg(RTM_ADD, &target->ia_ifa, target->ia_ifp->if_fib); error = in_handle_ifaddr_route(RTM_ADD, target); if (!error) target->ia_flags |= IFA_ROUTE; return (error); } /* * Removes either all lle entries for given @ia, or lle * corresponding to @ia address. */ static void in_scrubprefixlle(struct in_ifaddr *ia, int all, u_int flags) { struct sockaddr_in addr, mask; struct sockaddr *saddr, *smask; struct ifnet *ifp; saddr = (struct sockaddr *)&addr; bzero(&addr, sizeof(addr)); addr.sin_len = sizeof(addr); addr.sin_family = AF_INET; smask = (struct sockaddr *)&mask; bzero(&mask, sizeof(mask)); mask.sin_len = sizeof(mask); mask.sin_family = AF_INET; mask.sin_addr.s_addr = ia->ia_subnetmask; ifp = ia->ia_ifp; if (all) { /* * Remove all L2 entries matching given prefix. * Convert address to host representation to avoid * doing this on every callback. ia_subnetmask is already * stored in host representation. */ addr.sin_addr.s_addr = ntohl(ia->ia_addr.sin_addr.s_addr); lltable_prefix_free(AF_INET, saddr, smask, flags); } else { /* Remove interface address only */ addr.sin_addr.s_addr = ia->ia_addr.sin_addr.s_addr; lltable_delete_addr(LLTABLE(ifp), LLE_IFADDR, saddr); } } /* * If there is no other address in the system that can serve a route to the * same prefix, remove the route. Hand over the route to the new address * otherwise. */ int in_scrubprefix(struct in_ifaddr *target, u_int flags) { - struct rm_priotracker in_ifa_tracker; + struct epoch_tracker et; struct in_ifaddr *ia; struct in_addr prefix, mask, p, m; int error = 0; /* * Remove the loopback route to the interface address. */ if (ia_need_loopback_route(target) && (flags & LLE_STATIC)) { struct in_ifaddr *eia; eia = in_localip_more(target); if (eia != NULL) { error = ifa_switch_loopback_route((struct ifaddr *)eia, (struct sockaddr *)&target->ia_addr); ifa_free(&eia->ia_ifa); } else { error = ifa_del_loopback_route((struct ifaddr *)target, (struct sockaddr *)&target->ia_addr); } } ia_getrtprefix(target, &prefix, &mask); if ((target->ia_flags & IFA_ROUTE) == 0) { rt_addrmsg(RTM_DELETE, &target->ia_ifa, target->ia_ifp->if_fib); /* * Removing address from !IFF_UP interface or * prefix which exists on other interface (along with route). * No entries should exist here except target addr. * Given that, delete this entry only. */ in_scrubprefixlle(target, 0, flags); return (0); } - IN_IFADDR_RLOCK(&in_ifa_tracker); + NET_EPOCH_ENTER(et); CK_STAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) { ia_getrtprefix(ia, &p, &m); if (prefix.s_addr != p.s_addr || mask.s_addr != m.s_addr) continue; if ((ia->ia_ifp->if_flags & IFF_UP) == 0) continue; /* * If we got a matching prefix address, move IFA_ROUTE and * the route itself to it. Make sure that routing daemons * get a heads-up. */ if ((ia->ia_flags & IFA_ROUTE) == 0) { ifa_ref(&ia->ia_ifa); - IN_IFADDR_RUNLOCK(&in_ifa_tracker); + NET_EPOCH_EXIT(et); error = in_handle_ifaddr_route(RTM_DELETE, target); if (error == 0) target->ia_flags &= ~IFA_ROUTE; else log(LOG_INFO, "in_scrubprefix: err=%d, old prefix delete failed\n", error); /* Scrub all entries IFF interface is different */ in_scrubprefixlle(target, target->ia_ifp != ia->ia_ifp, flags); error = in_handle_ifaddr_route(RTM_ADD, ia); if (error == 0) ia->ia_flags |= IFA_ROUTE; else log(LOG_INFO, "in_scrubprefix: err=%d, new prefix add failed\n", error); ifa_free(&ia->ia_ifa); return (error); } } - IN_IFADDR_RUNLOCK(&in_ifa_tracker); + NET_EPOCH_EXIT(et); /* * remove all L2 entries on the given prefix */ in_scrubprefixlle(target, 1, flags); /* * As no-one seem to have this prefix, we can remove the route. */ rt_addrmsg(RTM_DELETE, &target->ia_ifa, target->ia_ifp->if_fib); error = in_handle_ifaddr_route(RTM_DELETE, target); if (error == 0) target->ia_flags &= ~IFA_ROUTE; else log(LOG_INFO, "in_scrubprefix: err=%d, prefix delete failed\n", error); return (error); } void in_ifscrub_all(void) { struct ifnet *ifp; struct ifaddr *ifa, *nifa; struct ifaliasreq ifr; IFNET_RLOCK(); CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { /* Cannot lock here - lock recursion. */ /* NET_EPOCH_ENTER(et); */ CK_STAILQ_FOREACH_SAFE(ifa, &ifp->if_addrhead, ifa_link, nifa) { if (ifa->ifa_addr->sa_family != AF_INET) continue; /* * This is ugly but the only way for legacy IP to * cleanly remove addresses and everything attached. */ bzero(&ifr, sizeof(ifr)); ifr.ifra_addr = *ifa->ifa_addr; if (ifa->ifa_dstaddr) ifr.ifra_broadaddr = *ifa->ifa_dstaddr; (void)in_control(NULL, SIOCDIFADDR, (caddr_t)&ifr, ifp, NULL); } /* NET_EPOCH_EXIT(et); */ in_purgemaddrs(ifp); igmp_domifdetach(ifp); } IFNET_RUNLOCK(); } int in_ifaddr_broadcast(struct in_addr in, struct in_ifaddr *ia) { return ((in.s_addr == ia->ia_broadaddr.sin_addr.s_addr || /* * Optionally check for old-style (host 0) broadcast, but * taking into account that RFC 3021 obsoletes it. */ (V_broadcast_lowest && ia->ia_subnetmask != IN_RFC3021_MASK && ntohl(in.s_addr) == ia->ia_subnet)) && /* * Check for an all one subnetmask. These * only exist when an interface gets a secondary * address. */ ia->ia_subnetmask != (u_long)0xffffffff); } /* * Return 1 if the address might be a local broadcast address. */ int in_broadcast(struct in_addr in, struct ifnet *ifp) { struct ifaddr *ifa; int found; NET_EPOCH_ASSERT(); if (in.s_addr == INADDR_BROADCAST || in.s_addr == INADDR_ANY) return (1); if ((ifp->if_flags & IFF_BROADCAST) == 0) return (0); found = 0; /* * Look through the list of addresses for a match * with a broadcast address. */ CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) if (ifa->ifa_addr->sa_family == AF_INET && in_ifaddr_broadcast(in, (struct in_ifaddr *)ifa)) { found = 1; break; } return (found); } /* * On interface removal, clean up IPv4 data structures hung off of the ifnet. */ void in_ifdetach(struct ifnet *ifp) { IN_MULTI_LOCK(); in_pcbpurgeif0(&V_ripcbinfo, ifp); in_pcbpurgeif0(&V_udbinfo, ifp); in_pcbpurgeif0(&V_ulitecbinfo, ifp); in_purgemaddrs(ifp); IN_MULTI_UNLOCK(); /* * Make sure all multicast deletions invoking if_ioctl() are * completed before returning. Else we risk accessing a freed * ifnet structure pointer. */ inm_release_wait(NULL); } /* * Delete all IPv4 multicast address records, and associated link-layer * multicast address records, associated with ifp. * XXX It looks like domifdetach runs AFTER the link layer cleanup. * XXX This should not race with ifma_protospec being set during * a new allocation, if it does, we have bigger problems. */ static void in_purgemaddrs(struct ifnet *ifp) { struct in_multi_head purgeinms; struct in_multi *inm; struct ifmultiaddr *ifma, *next; SLIST_INIT(&purgeinms); IN_MULTI_LIST_LOCK(); /* * Extract list of in_multi associated with the detaching ifp * which the PF_INET layer is about to release. * We need to do this as IF_ADDR_LOCK() may be re-acquired * by code further down. */ IF_ADDR_WLOCK(ifp); restart: CK_STAILQ_FOREACH_SAFE(ifma, &ifp->if_multiaddrs, ifma_link, next) { if (ifma->ifma_addr->sa_family != AF_INET || ifma->ifma_protospec == NULL) continue; inm = (struct in_multi *)ifma->ifma_protospec; inm_rele_locked(&purgeinms, inm); if (__predict_false(ifma_restart)) { ifma_restart = true; goto restart; } } IF_ADDR_WUNLOCK(ifp); inm_release_list_deferred(&purgeinms); igmp_ifdetach(ifp); IN_MULTI_LIST_UNLOCK(); } struct in_llentry { struct llentry base; }; #define IN_LLTBL_DEFAULT_HSIZE 32 #define IN_LLTBL_HASH(k, h) \ (((((((k >> 8) ^ k) >> 8) ^ k) >> 8) ^ k) & ((h) - 1)) /* * Do actual deallocation of @lle. */ static void in_lltable_destroy_lle_unlocked(epoch_context_t ctx) { struct llentry *lle; lle = __containerof(ctx, struct llentry, lle_epoch_ctx); LLE_LOCK_DESTROY(lle); LLE_REQ_DESTROY(lle); free(lle, M_LLTABLE); } /* * Called by LLE_FREE_LOCKED when number of references * drops to zero. */ static void in_lltable_destroy_lle(struct llentry *lle) { LLE_WUNLOCK(lle); NET_EPOCH_CALL(in_lltable_destroy_lle_unlocked, &lle->lle_epoch_ctx); } static struct llentry * in_lltable_new(struct in_addr addr4, u_int flags) { struct in_llentry *lle; lle = malloc(sizeof(struct in_llentry), M_LLTABLE, M_NOWAIT | M_ZERO); if (lle == NULL) /* NB: caller generates msg */ return NULL; /* * For IPv4 this will trigger "arpresolve" to generate * an ARP request. */ lle->base.la_expire = time_uptime; /* mark expired */ lle->base.r_l3addr.addr4 = addr4; lle->base.lle_refcnt = 1; lle->base.lle_free = in_lltable_destroy_lle; LLE_LOCK_INIT(&lle->base); LLE_REQ_INIT(&lle->base); callout_init(&lle->base.lle_timer, 1); return (&lle->base); } #define IN_ARE_MASKED_ADDR_EQUAL(d, a, m) ( \ ((((d).s_addr ^ (a).s_addr) & (m).s_addr)) == 0 ) static int in_lltable_match_prefix(const struct sockaddr *saddr, const struct sockaddr *smask, u_int flags, struct llentry *lle) { struct in_addr addr, mask, lle_addr; addr = ((const struct sockaddr_in *)saddr)->sin_addr; mask = ((const struct sockaddr_in *)smask)->sin_addr; lle_addr.s_addr = ntohl(lle->r_l3addr.addr4.s_addr); if (IN_ARE_MASKED_ADDR_EQUAL(lle_addr, addr, mask) == 0) return (0); if (lle->la_flags & LLE_IFADDR) { /* * Delete LLE_IFADDR records IFF address & flag matches. * Note that addr is the interface address within prefix * being matched. * Note also we should handle 'ifdown' cases without removing * ifaddr macs. */ if (addr.s_addr == lle_addr.s_addr && (flags & LLE_STATIC) != 0) return (1); return (0); } /* flags & LLE_STATIC means deleting both dynamic and static entries */ if ((flags & LLE_STATIC) || !(lle->la_flags & LLE_STATIC)) return (1); return (0); } static void in_lltable_free_entry(struct lltable *llt, struct llentry *lle) { size_t pkts_dropped; LLE_WLOCK_ASSERT(lle); KASSERT(llt != NULL, ("lltable is NULL")); /* Unlink entry from table if not already */ if ((lle->la_flags & LLE_LINKED) != 0) { IF_AFDATA_WLOCK_ASSERT(llt->llt_ifp); lltable_unlink_entry(llt, lle); } /* Drop hold queue */ pkts_dropped = llentry_free(lle); ARPSTAT_ADD(dropped, pkts_dropped); } static int in_lltable_rtcheck(struct ifnet *ifp, u_int flags, const struct sockaddr *l3addr) { struct nhop_object *nh; struct in_addr addr; KASSERT(l3addr->sa_family == AF_INET, ("sin_family %d", l3addr->sa_family)); addr = ((const struct sockaddr_in *)l3addr)->sin_addr; nh = fib4_lookup(ifp->if_fib, addr, 0, NHR_NONE, 0); if (nh == NULL) return (EINVAL); /* * If the gateway for an existing host route matches the target L3 * address, which is a special route inserted by some implementation * such as MANET, and the interface is of the correct type, then * allow for ARP to proceed. */ if (nh->nh_flags & NHF_GATEWAY) { if (!(nh->nh_flags & NHF_HOST) || nh->nh_ifp->if_type != IFT_ETHER || (nh->nh_ifp->if_flags & (IFF_NOARP | IFF_STATICARP)) != 0 || memcmp(nh->gw_sa.sa_data, l3addr->sa_data, sizeof(in_addr_t)) != 0) { return (EINVAL); } } /* * Make sure that at least the destination address is covered * by the route. This is for handling the case where 2 or more * interfaces have the same prefix. An incoming packet arrives * on one interface and the corresponding outgoing packet leaves * another interface. */ if ((nh->nh_ifp != ifp) && (nh->nh_flags & NHF_HOST) == 0) { struct in_ifaddr *ia = (struct in_ifaddr *)ifaof_ifpforaddr(l3addr, ifp); struct in_addr dst_addr, mask_addr; if (ia == NULL) return (EINVAL); /* * ifaof_ifpforaddr() returns _best matching_ IFA. * It is possible that ifa prefix does not cover our address. * Explicitly verify and fail if that's the case. */ dst_addr = IA_SIN(ia)->sin_addr; mask_addr.s_addr = htonl(ia->ia_subnetmask); if (!IN_ARE_MASKED_ADDR_EQUAL(dst_addr, addr, mask_addr)) return (EINVAL); } return (0); } static inline uint32_t in_lltable_hash_dst(const struct in_addr dst, uint32_t hsize) { return (IN_LLTBL_HASH(dst.s_addr, hsize)); } static uint32_t in_lltable_hash(const struct llentry *lle, uint32_t hsize) { return (in_lltable_hash_dst(lle->r_l3addr.addr4, hsize)); } static void in_lltable_fill_sa_entry(const struct llentry *lle, struct sockaddr *sa) { struct sockaddr_in *sin; sin = (struct sockaddr_in *)sa; bzero(sin, sizeof(*sin)); sin->sin_family = AF_INET; sin->sin_len = sizeof(*sin); sin->sin_addr = lle->r_l3addr.addr4; } static inline struct llentry * in_lltable_find_dst(struct lltable *llt, struct in_addr dst) { struct llentry *lle; struct llentries *lleh; u_int hashidx; hashidx = in_lltable_hash_dst(dst, llt->llt_hsize); lleh = &llt->lle_head[hashidx]; CK_LIST_FOREACH(lle, lleh, lle_next) { if (lle->la_flags & LLE_DELETED) continue; if (lle->r_l3addr.addr4.s_addr == dst.s_addr) break; } return (lle); } static void in_lltable_delete_entry(struct lltable *llt, struct llentry *lle) { lle->la_flags |= LLE_DELETED; EVENTHANDLER_INVOKE(lle_event, lle, LLENTRY_DELETED); #ifdef DIAGNOSTIC log(LOG_INFO, "ifaddr cache = %p is deleted\n", lle); #endif llentry_free(lle); } static struct llentry * in_lltable_alloc(struct lltable *llt, u_int flags, const struct sockaddr *l3addr) { const struct sockaddr_in *sin = (const struct sockaddr_in *)l3addr; struct ifnet *ifp = llt->llt_ifp; struct llentry *lle; char linkhdr[LLE_MAX_LINKHDR]; size_t linkhdrsize; int lladdr_off; KASSERT(l3addr->sa_family == AF_INET, ("sin_family %d", l3addr->sa_family)); /* * A route that covers the given address must have * been installed 1st because we are doing a resolution, * verify this. */ if (!(flags & LLE_IFADDR) && in_lltable_rtcheck(ifp, flags, l3addr) != 0) return (NULL); lle = in_lltable_new(sin->sin_addr, flags); if (lle == NULL) { log(LOG_INFO, "lla_lookup: new lle malloc failed\n"); return (NULL); } lle->la_flags = flags; if (flags & LLE_STATIC) lle->r_flags |= RLLE_VALID; if ((flags & LLE_IFADDR) == LLE_IFADDR) { linkhdrsize = LLE_MAX_LINKHDR; if (lltable_calc_llheader(ifp, AF_INET, IF_LLADDR(ifp), linkhdr, &linkhdrsize, &lladdr_off) != 0) { NET_EPOCH_CALL(in_lltable_destroy_lle_unlocked, &lle->lle_epoch_ctx); return (NULL); } lltable_set_entry_addr(ifp, lle, linkhdr, linkhdrsize, lladdr_off); lle->la_flags |= LLE_STATIC; lle->r_flags |= (RLLE_VALID | RLLE_IFADDR); } return (lle); } /* * Return NULL if not found or marked for deletion. * If found return lle read locked. */ static struct llentry * in_lltable_lookup(struct lltable *llt, u_int flags, const struct sockaddr *l3addr) { const struct sockaddr_in *sin = (const struct sockaddr_in *)l3addr; struct llentry *lle; IF_AFDATA_LOCK_ASSERT(llt->llt_ifp); KASSERT(l3addr->sa_family == AF_INET, ("sin_family %d", l3addr->sa_family)); KASSERT((flags & (LLE_UNLOCKED | LLE_EXCLUSIVE)) != (LLE_UNLOCKED | LLE_EXCLUSIVE), ("wrong lle request flags: %#x", flags)); lle = in_lltable_find_dst(llt, sin->sin_addr); if (lle == NULL) return (NULL); if (flags & LLE_UNLOCKED) return (lle); if (flags & LLE_EXCLUSIVE) LLE_WLOCK(lle); else LLE_RLOCK(lle); /* * If the afdata lock is not held, the LLE may have been unlinked while * we were blocked on the LLE lock. Check for this case. */ if (__predict_false((lle->la_flags & LLE_LINKED) == 0)) { if (flags & LLE_EXCLUSIVE) LLE_WUNLOCK(lle); else LLE_RUNLOCK(lle); return (NULL); } return (lle); } static int in_lltable_dump_entry(struct lltable *llt, struct llentry *lle, struct sysctl_req *wr) { struct ifnet *ifp = llt->llt_ifp; /* XXX stack use */ struct { struct rt_msghdr rtm; struct sockaddr_in sin; struct sockaddr_dl sdl; } arpc; struct sockaddr_dl *sdl; int error; bzero(&arpc, sizeof(arpc)); /* skip deleted entries */ if ((lle->la_flags & LLE_DELETED) == LLE_DELETED) return (0); /* Skip if jailed and not a valid IP of the prison. */ lltable_fill_sa_entry(lle,(struct sockaddr *)&arpc.sin); if (prison_if(wr->td->td_ucred, (struct sockaddr *)&arpc.sin) != 0) return (0); /* * produce a msg made of: * struct rt_msghdr; * struct sockaddr_in; (IPv4) * struct sockaddr_dl; */ arpc.rtm.rtm_msglen = sizeof(arpc); arpc.rtm.rtm_version = RTM_VERSION; arpc.rtm.rtm_type = RTM_GET; arpc.rtm.rtm_flags = RTF_UP; arpc.rtm.rtm_addrs = RTA_DST | RTA_GATEWAY; /* publish */ if (lle->la_flags & LLE_PUB) arpc.rtm.rtm_flags |= RTF_ANNOUNCE; sdl = &arpc.sdl; sdl->sdl_family = AF_LINK; sdl->sdl_len = sizeof(*sdl); sdl->sdl_index = ifp->if_index; sdl->sdl_type = ifp->if_type; if ((lle->la_flags & LLE_VALID) == LLE_VALID) { sdl->sdl_alen = ifp->if_addrlen; bcopy(lle->ll_addr, LLADDR(sdl), ifp->if_addrlen); } else { sdl->sdl_alen = 0; bzero(LLADDR(sdl), ifp->if_addrlen); } arpc.rtm.rtm_rmx.rmx_expire = lle->la_flags & LLE_STATIC ? 0 : lle->la_expire; arpc.rtm.rtm_flags |= (RTF_HOST | RTF_LLDATA); if (lle->la_flags & LLE_STATIC) arpc.rtm.rtm_flags |= RTF_STATIC; if (lle->la_flags & LLE_IFADDR) arpc.rtm.rtm_flags |= RTF_PINNED; arpc.rtm.rtm_index = ifp->if_index; error = SYSCTL_OUT(wr, &arpc, sizeof(arpc)); return (error); } static struct lltable * in_lltattach(struct ifnet *ifp) { struct lltable *llt; llt = lltable_allocate_htbl(IN_LLTBL_DEFAULT_HSIZE); llt->llt_af = AF_INET; llt->llt_ifp = ifp; llt->llt_lookup = in_lltable_lookup; llt->llt_alloc_entry = in_lltable_alloc; llt->llt_delete_entry = in_lltable_delete_entry; llt->llt_dump_entry = in_lltable_dump_entry; llt->llt_hash = in_lltable_hash; llt->llt_fill_sa_entry = in_lltable_fill_sa_entry; llt->llt_free_entry = in_lltable_free_entry; llt->llt_match_prefix = in_lltable_match_prefix; llt->llt_mark_used = llentry_mark_used; lltable_link(llt); return (llt); } void * in_domifattach(struct ifnet *ifp) { struct in_ifinfo *ii; ii = malloc(sizeof(struct in_ifinfo), M_IFADDR, M_WAITOK|M_ZERO); ii->ii_llt = in_lltattach(ifp); ii->ii_igmp = igmp_domifattach(ifp); return (ii); } void in_domifdetach(struct ifnet *ifp, void *aux) { struct in_ifinfo *ii = (struct in_ifinfo *)aux; igmp_domifdetach(ifp); lltable_free(ii->ii_llt); free(ii, M_IFADDR); } diff --git a/sys/netinet/in_mcast.c b/sys/netinet/in_mcast.c index f0827fcf3451..ad2d7af799a5 100644 --- a/sys/netinet/in_mcast.c +++ b/sys/netinet/in_mcast.c @@ -1,3056 +1,3054 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 2007-2009 Bruce Simpson. * Copyright (c) 2005 Robert N. M. Watson. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote * products derived from this software without specific prior written * permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * IPv4 multicast socket, group, and socket option processing module. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifndef KTR_IGMPV3 #define KTR_IGMPV3 KTR_INET #endif #ifndef __SOCKUNION_DECLARED union sockunion { struct sockaddr_storage ss; struct sockaddr sa; struct sockaddr_dl sdl; struct sockaddr_in sin; }; typedef union sockunion sockunion_t; #define __SOCKUNION_DECLARED #endif /* __SOCKUNION_DECLARED */ static MALLOC_DEFINE(M_INMFILTER, "in_mfilter", "IPv4 multicast PCB-layer source filter"); static MALLOC_DEFINE(M_IPMADDR, "in_multi", "IPv4 multicast group"); static MALLOC_DEFINE(M_IPMOPTS, "ip_moptions", "IPv4 multicast options"); static MALLOC_DEFINE(M_IPMSOURCE, "ip_msource", "IPv4 multicast IGMP-layer source filter"); /* * Locking: * * - Lock order is: Giant, IN_MULTI_LOCK, INP_WLOCK, * IN_MULTI_LIST_LOCK, IGMP_LOCK, IF_ADDR_LOCK. * - The IF_ADDR_LOCK is implicitly taken by inm_lookup() earlier, however * it can be taken by code in net/if.c also. * - ip_moptions and in_mfilter are covered by the INP_WLOCK. * * struct in_multi is covered by IN_MULTI_LIST_LOCK. There isn't strictly * any need for in_multi itself to be virtualized -- it is bound to an ifp * anyway no matter what happens. */ struct mtx in_multi_list_mtx; MTX_SYSINIT(in_multi_mtx, &in_multi_list_mtx, "in_multi_list_mtx", MTX_DEF); struct mtx in_multi_free_mtx; MTX_SYSINIT(in_multi_free_mtx, &in_multi_free_mtx, "in_multi_free_mtx", MTX_DEF); struct sx in_multi_sx; SX_SYSINIT(in_multi_sx, &in_multi_sx, "in_multi_sx"); int ifma_restart; /* * Functions with non-static linkage defined in this file should be * declared in in_var.h: * imo_multi_filter() * in_joingroup() * in_joingroup_locked() * in_leavegroup() * in_leavegroup_locked() * and ip_var.h: * inp_freemoptions() * inp_getmoptions() * inp_setmoptions() */ static void imf_commit(struct in_mfilter *); static int imf_get_source(struct in_mfilter *imf, const struct sockaddr_in *psin, struct in_msource **); static struct in_msource * imf_graft(struct in_mfilter *, const uint8_t, const struct sockaddr_in *); static void imf_leave(struct in_mfilter *); static int imf_prune(struct in_mfilter *, const struct sockaddr_in *); static void imf_purge(struct in_mfilter *); static void imf_rollback(struct in_mfilter *); static void imf_reap(struct in_mfilter *); static struct in_mfilter * imo_match_group(const struct ip_moptions *, const struct ifnet *, const struct sockaddr *); static struct in_msource * imo_match_source(struct in_mfilter *, const struct sockaddr *); static void ims_merge(struct ip_msource *ims, const struct in_msource *lims, const int rollback); static int in_getmulti(struct ifnet *, const struct in_addr *, struct in_multi **); static int inm_get_source(struct in_multi *inm, const in_addr_t haddr, const int noalloc, struct ip_msource **pims); #ifdef KTR static int inm_is_ifp_detached(const struct in_multi *); #endif static int inm_merge(struct in_multi *, /*const*/ struct in_mfilter *); static void inm_purge(struct in_multi *); static void inm_reap(struct in_multi *); static void inm_release(struct in_multi *); static struct ip_moptions * inp_findmoptions(struct inpcb *); static int inp_get_source_filters(struct inpcb *, struct sockopt *); static int inp_join_group(struct inpcb *, struct sockopt *); static int inp_leave_group(struct inpcb *, struct sockopt *); static struct ifnet * inp_lookup_mcast_ifp(const struct inpcb *, const struct sockaddr_in *, const struct in_addr); static int inp_block_unblock_source(struct inpcb *, struct sockopt *); static int inp_set_multicast_if(struct inpcb *, struct sockopt *); static int inp_set_source_filters(struct inpcb *, struct sockopt *); static int sysctl_ip_mcast_filters(SYSCTL_HANDLER_ARGS); static SYSCTL_NODE(_net_inet_ip, OID_AUTO, mcast, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, "IPv4 multicast"); static u_long in_mcast_maxgrpsrc = IP_MAX_GROUP_SRC_FILTER; SYSCTL_ULONG(_net_inet_ip_mcast, OID_AUTO, maxgrpsrc, CTLFLAG_RWTUN, &in_mcast_maxgrpsrc, 0, "Max source filters per group"); static u_long in_mcast_maxsocksrc = IP_MAX_SOCK_SRC_FILTER; SYSCTL_ULONG(_net_inet_ip_mcast, OID_AUTO, maxsocksrc, CTLFLAG_RWTUN, &in_mcast_maxsocksrc, 0, "Max source filters per socket"); int in_mcast_loop = IP_DEFAULT_MULTICAST_LOOP; SYSCTL_INT(_net_inet_ip_mcast, OID_AUTO, loop, CTLFLAG_RWTUN, &in_mcast_loop, 0, "Loopback multicast datagrams by default"); static SYSCTL_NODE(_net_inet_ip_mcast, OID_AUTO, filters, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_ip_mcast_filters, "Per-interface stack-wide source filters"); #ifdef KTR /* * Inline function which wraps assertions for a valid ifp. * The ifnet layer will set the ifma's ifp pointer to NULL if the ifp * is detached. */ static int __inline inm_is_ifp_detached(const struct in_multi *inm) { struct ifnet *ifp; KASSERT(inm->inm_ifma != NULL, ("%s: no ifma", __func__)); ifp = inm->inm_ifma->ifma_ifp; if (ifp != NULL) { /* * Sanity check that netinet's notion of ifp is the * same as net's. */ KASSERT(inm->inm_ifp == ifp, ("%s: bad ifp", __func__)); } return (ifp == NULL); } #endif /* * Interface detach can happen in a taskqueue thread context, so we must use a * dedicated thread to avoid deadlocks when draining inm_release tasks. */ TASKQUEUE_DEFINE_THREAD(inm_free); static struct in_multi_head inm_free_list = SLIST_HEAD_INITIALIZER(); static void inm_release_task(void *arg __unused, int pending __unused); static struct task inm_free_task = TASK_INITIALIZER(0, inm_release_task, NULL); void inm_release_wait(void *arg __unused) { /* * Make sure all pending multicast addresses are freed before * the VNET or network device is destroyed: */ taskqueue_drain(taskqueue_inm_free, &inm_free_task); } #ifdef VIMAGE /* XXX-BZ FIXME, see D24914. */ VNET_SYSUNINIT(inm_release_wait, SI_SUB_PROTO_DOMAIN, SI_ORDER_FIRST, inm_release_wait, NULL); #endif void inm_release_list_deferred(struct in_multi_head *inmh) { if (SLIST_EMPTY(inmh)) return; mtx_lock(&in_multi_free_mtx); SLIST_CONCAT(&inm_free_list, inmh, in_multi, inm_nrele); mtx_unlock(&in_multi_free_mtx); taskqueue_enqueue(taskqueue_inm_free, &inm_free_task); } void inm_disconnect(struct in_multi *inm) { struct ifnet *ifp; struct ifmultiaddr *ifma, *ll_ifma; ifp = inm->inm_ifp; IF_ADDR_WLOCK_ASSERT(ifp); ifma = inm->inm_ifma; if_ref(ifp); if (ifma->ifma_flags & IFMA_F_ENQUEUED) { CK_STAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifmultiaddr, ifma_link); ifma->ifma_flags &= ~IFMA_F_ENQUEUED; } MCDPRINTF("removed ifma: %p from %s\n", ifma, ifp->if_xname); if ((ll_ifma = ifma->ifma_llifma) != NULL) { MPASS(ifma != ll_ifma); ifma->ifma_llifma = NULL; MPASS(ll_ifma->ifma_llifma == NULL); MPASS(ll_ifma->ifma_ifp == ifp); if (--ll_ifma->ifma_refcount == 0) { if (ll_ifma->ifma_flags & IFMA_F_ENQUEUED) { CK_STAILQ_REMOVE(&ifp->if_multiaddrs, ll_ifma, ifmultiaddr, ifma_link); ll_ifma->ifma_flags &= ~IFMA_F_ENQUEUED; } MCDPRINTF("removed ll_ifma: %p from %s\n", ll_ifma, ifp->if_xname); if_freemulti(ll_ifma); ifma_restart = true; } } } void inm_release_deferred(struct in_multi *inm) { struct in_multi_head tmp; IN_MULTI_LIST_LOCK_ASSERT(); MPASS(inm->inm_refcount > 0); if (--inm->inm_refcount == 0) { SLIST_INIT(&tmp); inm_disconnect(inm); inm->inm_ifma->ifma_protospec = NULL; SLIST_INSERT_HEAD(&tmp, inm, inm_nrele); inm_release_list_deferred(&tmp); } } static void inm_release_task(void *arg __unused, int pending __unused) { struct in_multi_head inm_free_tmp; struct in_multi *inm, *tinm; SLIST_INIT(&inm_free_tmp); mtx_lock(&in_multi_free_mtx); SLIST_CONCAT(&inm_free_tmp, &inm_free_list, in_multi, inm_nrele); mtx_unlock(&in_multi_free_mtx); IN_MULTI_LOCK(); SLIST_FOREACH_SAFE(inm, &inm_free_tmp, inm_nrele, tinm) { SLIST_REMOVE_HEAD(&inm_free_tmp, inm_nrele); MPASS(inm); inm_release(inm); } IN_MULTI_UNLOCK(); } /* * Initialize an in_mfilter structure to a known state at t0, t1 * with an empty source filter list. */ static __inline void imf_init(struct in_mfilter *imf, const int st0, const int st1) { memset(imf, 0, sizeof(struct in_mfilter)); RB_INIT(&imf->imf_sources); imf->imf_st[0] = st0; imf->imf_st[1] = st1; } struct in_mfilter * ip_mfilter_alloc(const int mflags, const int st0, const int st1) { struct in_mfilter *imf; imf = malloc(sizeof(*imf), M_INMFILTER, mflags); if (imf != NULL) imf_init(imf, st0, st1); return (imf); } void ip_mfilter_free(struct in_mfilter *imf) { imf_purge(imf); free(imf, M_INMFILTER); } /* * Function for looking up an in_multi record for an IPv4 multicast address * on a given interface. ifp must be valid. If no record found, return NULL. * The IN_MULTI_LIST_LOCK and IF_ADDR_LOCK on ifp must be held. */ struct in_multi * inm_lookup_locked(struct ifnet *ifp, const struct in_addr ina) { struct ifmultiaddr *ifma; struct in_multi *inm; IN_MULTI_LIST_LOCK_ASSERT(); IF_ADDR_LOCK_ASSERT(ifp); inm = NULL; CK_STAILQ_FOREACH(ifma, &((ifp)->if_multiaddrs), ifma_link) { if (ifma->ifma_addr->sa_family != AF_INET || ifma->ifma_protospec == NULL) continue; inm = (struct in_multi *)ifma->ifma_protospec; if (inm->inm_addr.s_addr == ina.s_addr) break; inm = NULL; } return (inm); } /* * Wrapper for inm_lookup_locked(). * The IF_ADDR_LOCK will be taken on ifp and released on return. */ struct in_multi * inm_lookup(struct ifnet *ifp, const struct in_addr ina) { struct epoch_tracker et; struct in_multi *inm; IN_MULTI_LIST_LOCK_ASSERT(); NET_EPOCH_ENTER(et); inm = inm_lookup_locked(ifp, ina); NET_EPOCH_EXIT(et); return (inm); } /* * Find an IPv4 multicast group entry for this ip_moptions instance * which matches the specified group, and optionally an interface. * Return its index into the array, or -1 if not found. */ static struct in_mfilter * imo_match_group(const struct ip_moptions *imo, const struct ifnet *ifp, const struct sockaddr *group) { const struct sockaddr_in *gsin; struct in_mfilter *imf; struct in_multi *inm; gsin = (const struct sockaddr_in *)group; IP_MFILTER_FOREACH(imf, &imo->imo_head) { inm = imf->imf_inm; if (inm == NULL) continue; if ((ifp == NULL || (inm->inm_ifp == ifp)) && in_hosteq(inm->inm_addr, gsin->sin_addr)) { break; } } return (imf); } /* * Find an IPv4 multicast source entry for this imo which matches * the given group index for this socket, and source address. * * NOTE: This does not check if the entry is in-mode, merely if * it exists, which may not be the desired behaviour. */ static struct in_msource * imo_match_source(struct in_mfilter *imf, const struct sockaddr *src) { struct ip_msource find; struct ip_msource *ims; const sockunion_t *psa; KASSERT(src->sa_family == AF_INET, ("%s: !AF_INET", __func__)); /* Source trees are keyed in host byte order. */ psa = (const sockunion_t *)src; find.ims_haddr = ntohl(psa->sin.sin_addr.s_addr); ims = RB_FIND(ip_msource_tree, &imf->imf_sources, &find); return ((struct in_msource *)ims); } /* * Perform filtering for multicast datagrams on a socket by group and source. * * Returns 0 if a datagram should be allowed through, or various error codes * if the socket was not a member of the group, or the source was muted, etc. */ int imo_multi_filter(const struct ip_moptions *imo, const struct ifnet *ifp, const struct sockaddr *group, const struct sockaddr *src) { struct in_mfilter *imf; struct in_msource *ims; int mode; KASSERT(ifp != NULL, ("%s: null ifp", __func__)); imf = imo_match_group(imo, ifp, group); if (imf == NULL) return (MCAST_NOTGMEMBER); /* * Check if the source was included in an (S,G) join. * Allow reception on exclusive memberships by default, * reject reception on inclusive memberships by default. * Exclude source only if an in-mode exclude filter exists. * Include source only if an in-mode include filter exists. * NOTE: We are comparing group state here at IGMP t1 (now) * with socket-layer t0 (since last downcall). */ mode = imf->imf_st[1]; ims = imo_match_source(imf, src); if ((ims == NULL && mode == MCAST_INCLUDE) || (ims != NULL && ims->imsl_st[0] != mode)) return (MCAST_NOTSMEMBER); return (MCAST_PASS); } /* * Find and return a reference to an in_multi record for (ifp, group), * and bump its reference count. * If one does not exist, try to allocate it, and update link-layer multicast * filters on ifp to listen for group. * Assumes the IN_MULTI lock is held across the call. * Return 0 if successful, otherwise return an appropriate error code. */ static int in_getmulti(struct ifnet *ifp, const struct in_addr *group, struct in_multi **pinm) { struct sockaddr_in gsin; struct ifmultiaddr *ifma; struct in_ifinfo *ii; struct in_multi *inm; int error; IN_MULTI_LOCK_ASSERT(); ii = (struct in_ifinfo *)ifp->if_afdata[AF_INET]; IN_MULTI_LIST_LOCK(); inm = inm_lookup(ifp, *group); if (inm != NULL) { /* * If we already joined this group, just bump the * refcount and return it. */ KASSERT(inm->inm_refcount >= 1, ("%s: bad refcount %d", __func__, inm->inm_refcount)); inm_acquire_locked(inm); *pinm = inm; } IN_MULTI_LIST_UNLOCK(); if (inm != NULL) return (0); memset(&gsin, 0, sizeof(gsin)); gsin.sin_family = AF_INET; gsin.sin_len = sizeof(struct sockaddr_in); gsin.sin_addr = *group; /* * Check if a link-layer group is already associated * with this network-layer group on the given ifnet. */ error = if_addmulti(ifp, (struct sockaddr *)&gsin, &ifma); if (error != 0) return (error); /* XXX ifma_protospec must be covered by IF_ADDR_LOCK */ IN_MULTI_LIST_LOCK(); IF_ADDR_WLOCK(ifp); /* * If something other than netinet is occupying the link-layer * group, print a meaningful error message and back out of * the allocation. * Otherwise, bump the refcount on the existing network-layer * group association and return it. */ if (ifma->ifma_protospec != NULL) { inm = (struct in_multi *)ifma->ifma_protospec; #ifdef INVARIANTS KASSERT(ifma->ifma_addr != NULL, ("%s: no ifma_addr", __func__)); KASSERT(ifma->ifma_addr->sa_family == AF_INET, ("%s: ifma not AF_INET", __func__)); KASSERT(inm != NULL, ("%s: no ifma_protospec", __func__)); if (inm->inm_ifma != ifma || inm->inm_ifp != ifp || !in_hosteq(inm->inm_addr, *group)) { char addrbuf[INET_ADDRSTRLEN]; panic("%s: ifma %p is inconsistent with %p (%s)", __func__, ifma, inm, inet_ntoa_r(*group, addrbuf)); } #endif inm_acquire_locked(inm); *pinm = inm; goto out_locked; } IF_ADDR_WLOCK_ASSERT(ifp); /* * A new in_multi record is needed; allocate and initialize it. * We DO NOT perform an IGMP join as the in_ layer may need to * push an initial source list down to IGMP to support SSM. * * The initial source filter state is INCLUDE, {} as per the RFC. */ inm = malloc(sizeof(*inm), M_IPMADDR, M_NOWAIT | M_ZERO); if (inm == NULL) { IF_ADDR_WUNLOCK(ifp); IN_MULTI_LIST_UNLOCK(); if_delmulti_ifma(ifma); return (ENOMEM); } inm->inm_addr = *group; inm->inm_ifp = ifp; inm->inm_igi = ii->ii_igmp; inm->inm_ifma = ifma; inm->inm_refcount = 1; inm->inm_state = IGMP_NOT_MEMBER; mbufq_init(&inm->inm_scq, IGMP_MAX_STATE_CHANGES); inm->inm_st[0].iss_fmode = MCAST_UNDEFINED; inm->inm_st[1].iss_fmode = MCAST_UNDEFINED; RB_INIT(&inm->inm_srcs); ifma->ifma_protospec = inm; *pinm = inm; out_locked: IF_ADDR_WUNLOCK(ifp); IN_MULTI_LIST_UNLOCK(); return (0); } /* * Drop a reference to an in_multi record. * * If the refcount drops to 0, free the in_multi record and * delete the underlying link-layer membership. */ static void inm_release(struct in_multi *inm) { struct ifmultiaddr *ifma; struct ifnet *ifp; CTR2(KTR_IGMPV3, "%s: refcount is %d", __func__, inm->inm_refcount); MPASS(inm->inm_refcount == 0); CTR2(KTR_IGMPV3, "%s: freeing inm %p", __func__, inm); ifma = inm->inm_ifma; ifp = inm->inm_ifp; /* XXX this access is not covered by IF_ADDR_LOCK */ CTR2(KTR_IGMPV3, "%s: purging ifma %p", __func__, ifma); if (ifp != NULL) { CURVNET_SET(ifp->if_vnet); inm_purge(inm); free(inm, M_IPMADDR); if_delmulti_ifma_flags(ifma, 1); CURVNET_RESTORE(); if_rele(ifp); } else { inm_purge(inm); free(inm, M_IPMADDR); if_delmulti_ifma_flags(ifma, 1); } } /* * Clear recorded source entries for a group. * Used by the IGMP code. Caller must hold the IN_MULTI lock. * FIXME: Should reap. */ void inm_clear_recorded(struct in_multi *inm) { struct ip_msource *ims; IN_MULTI_LIST_LOCK_ASSERT(); RB_FOREACH(ims, ip_msource_tree, &inm->inm_srcs) { if (ims->ims_stp) { ims->ims_stp = 0; --inm->inm_st[1].iss_rec; } } KASSERT(inm->inm_st[1].iss_rec == 0, ("%s: iss_rec %d not 0", __func__, inm->inm_st[1].iss_rec)); } /* * Record a source as pending for a Source-Group IGMPv3 query. * This lives here as it modifies the shared tree. * * inm is the group descriptor. * naddr is the address of the source to record in network-byte order. * * If the net.inet.igmp.sgalloc sysctl is non-zero, we will * lazy-allocate a source node in response to an SG query. * Otherwise, no allocation is performed. This saves some memory * with the trade-off that the source will not be reported to the * router if joined in the window between the query response and * the group actually being joined on the local host. * * VIMAGE: XXX: Currently the igmp_sgalloc feature has been removed. * This turns off the allocation of a recorded source entry if * the group has not been joined. * * Return 0 if the source didn't exist or was already marked as recorded. * Return 1 if the source was marked as recorded by this function. * Return <0 if any error occurred (negated errno code). */ int inm_record_source(struct in_multi *inm, const in_addr_t naddr) { struct ip_msource find; struct ip_msource *ims, *nims; IN_MULTI_LIST_LOCK_ASSERT(); find.ims_haddr = ntohl(naddr); ims = RB_FIND(ip_msource_tree, &inm->inm_srcs, &find); if (ims && ims->ims_stp) return (0); if (ims == NULL) { if (inm->inm_nsrc == in_mcast_maxgrpsrc) return (-ENOSPC); nims = malloc(sizeof(struct ip_msource), M_IPMSOURCE, M_NOWAIT | M_ZERO); if (nims == NULL) return (-ENOMEM); nims->ims_haddr = find.ims_haddr; RB_INSERT(ip_msource_tree, &inm->inm_srcs, nims); ++inm->inm_nsrc; ims = nims; } /* * Mark the source as recorded and update the recorded * source count. */ ++ims->ims_stp; ++inm->inm_st[1].iss_rec; return (1); } /* * Return a pointer to an in_msource owned by an in_mfilter, * given its source address. * Lazy-allocate if needed. If this is a new entry its filter state is * undefined at t0. * * imf is the filter set being modified. * haddr is the source address in *host* byte-order. * * SMPng: May be called with locks held; malloc must not block. */ static int imf_get_source(struct in_mfilter *imf, const struct sockaddr_in *psin, struct in_msource **plims) { struct ip_msource find; struct ip_msource *ims, *nims; struct in_msource *lims; int error; error = 0; ims = NULL; lims = NULL; /* key is host byte order */ find.ims_haddr = ntohl(psin->sin_addr.s_addr); ims = RB_FIND(ip_msource_tree, &imf->imf_sources, &find); lims = (struct in_msource *)ims; if (lims == NULL) { if (imf->imf_nsrc == in_mcast_maxsocksrc) return (ENOSPC); nims = malloc(sizeof(struct in_msource), M_INMFILTER, M_NOWAIT | M_ZERO); if (nims == NULL) return (ENOMEM); lims = (struct in_msource *)nims; lims->ims_haddr = find.ims_haddr; lims->imsl_st[0] = MCAST_UNDEFINED; RB_INSERT(ip_msource_tree, &imf->imf_sources, nims); ++imf->imf_nsrc; } *plims = lims; return (error); } /* * Graft a source entry into an existing socket-layer filter set, * maintaining any required invariants and checking allocations. * * The source is marked as being in the new filter mode at t1. * * Return the pointer to the new node, otherwise return NULL. */ static struct in_msource * imf_graft(struct in_mfilter *imf, const uint8_t st1, const struct sockaddr_in *psin) { struct ip_msource *nims; struct in_msource *lims; nims = malloc(sizeof(struct in_msource), M_INMFILTER, M_NOWAIT | M_ZERO); if (nims == NULL) return (NULL); lims = (struct in_msource *)nims; lims->ims_haddr = ntohl(psin->sin_addr.s_addr); lims->imsl_st[0] = MCAST_UNDEFINED; lims->imsl_st[1] = st1; RB_INSERT(ip_msource_tree, &imf->imf_sources, nims); ++imf->imf_nsrc; return (lims); } /* * Prune a source entry from an existing socket-layer filter set, * maintaining any required invariants and checking allocations. * * The source is marked as being left at t1, it is not freed. * * Return 0 if no error occurred, otherwise return an errno value. */ static int imf_prune(struct in_mfilter *imf, const struct sockaddr_in *psin) { struct ip_msource find; struct ip_msource *ims; struct in_msource *lims; /* key is host byte order */ find.ims_haddr = ntohl(psin->sin_addr.s_addr); ims = RB_FIND(ip_msource_tree, &imf->imf_sources, &find); if (ims == NULL) return (ENOENT); lims = (struct in_msource *)ims; lims->imsl_st[1] = MCAST_UNDEFINED; return (0); } /* * Revert socket-layer filter set deltas at t1 to t0 state. */ static void imf_rollback(struct in_mfilter *imf) { struct ip_msource *ims, *tims; struct in_msource *lims; RB_FOREACH_SAFE(ims, ip_msource_tree, &imf->imf_sources, tims) { lims = (struct in_msource *)ims; if (lims->imsl_st[0] == lims->imsl_st[1]) { /* no change at t1 */ continue; } else if (lims->imsl_st[0] != MCAST_UNDEFINED) { /* revert change to existing source at t1 */ lims->imsl_st[1] = lims->imsl_st[0]; } else { /* revert source added t1 */ CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims); RB_REMOVE(ip_msource_tree, &imf->imf_sources, ims); free(ims, M_INMFILTER); imf->imf_nsrc--; } } imf->imf_st[1] = imf->imf_st[0]; } /* * Mark socket-layer filter set as INCLUDE {} at t1. */ static void imf_leave(struct in_mfilter *imf) { struct ip_msource *ims; struct in_msource *lims; RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) { lims = (struct in_msource *)ims; lims->imsl_st[1] = MCAST_UNDEFINED; } imf->imf_st[1] = MCAST_INCLUDE; } /* * Mark socket-layer filter set deltas as committed. */ static void imf_commit(struct in_mfilter *imf) { struct ip_msource *ims; struct in_msource *lims; RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) { lims = (struct in_msource *)ims; lims->imsl_st[0] = lims->imsl_st[1]; } imf->imf_st[0] = imf->imf_st[1]; } /* * Reap unreferenced sources from socket-layer filter set. */ static void imf_reap(struct in_mfilter *imf) { struct ip_msource *ims, *tims; struct in_msource *lims; RB_FOREACH_SAFE(ims, ip_msource_tree, &imf->imf_sources, tims) { lims = (struct in_msource *)ims; if ((lims->imsl_st[0] == MCAST_UNDEFINED) && (lims->imsl_st[1] == MCAST_UNDEFINED)) { CTR2(KTR_IGMPV3, "%s: free lims %p", __func__, ims); RB_REMOVE(ip_msource_tree, &imf->imf_sources, ims); free(ims, M_INMFILTER); imf->imf_nsrc--; } } } /* * Purge socket-layer filter set. */ static void imf_purge(struct in_mfilter *imf) { struct ip_msource *ims, *tims; RB_FOREACH_SAFE(ims, ip_msource_tree, &imf->imf_sources, tims) { CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims); RB_REMOVE(ip_msource_tree, &imf->imf_sources, ims); free(ims, M_INMFILTER); imf->imf_nsrc--; } imf->imf_st[0] = imf->imf_st[1] = MCAST_UNDEFINED; KASSERT(RB_EMPTY(&imf->imf_sources), ("%s: imf_sources not empty", __func__)); } /* * Look up a source filter entry for a multicast group. * * inm is the group descriptor to work with. * haddr is the host-byte-order IPv4 address to look up. * noalloc may be non-zero to suppress allocation of sources. * *pims will be set to the address of the retrieved or allocated source. * * SMPng: NOTE: may be called with locks held. * Return 0 if successful, otherwise return a non-zero error code. */ static int inm_get_source(struct in_multi *inm, const in_addr_t haddr, const int noalloc, struct ip_msource **pims) { struct ip_msource find; struct ip_msource *ims, *nims; find.ims_haddr = haddr; ims = RB_FIND(ip_msource_tree, &inm->inm_srcs, &find); if (ims == NULL && !noalloc) { if (inm->inm_nsrc == in_mcast_maxgrpsrc) return (ENOSPC); nims = malloc(sizeof(struct ip_msource), M_IPMSOURCE, M_NOWAIT | M_ZERO); if (nims == NULL) return (ENOMEM); nims->ims_haddr = haddr; RB_INSERT(ip_msource_tree, &inm->inm_srcs, nims); ++inm->inm_nsrc; ims = nims; #ifdef KTR CTR3(KTR_IGMPV3, "%s: allocated 0x%08x as %p", __func__, haddr, ims); #endif } *pims = ims; return (0); } /* * Merge socket-layer source into IGMP-layer source. * If rollback is non-zero, perform the inverse of the merge. */ static void ims_merge(struct ip_msource *ims, const struct in_msource *lims, const int rollback) { int n = rollback ? -1 : 1; if (lims->imsl_st[0] == MCAST_EXCLUDE) { CTR3(KTR_IGMPV3, "%s: t1 ex -= %d on 0x%08x", __func__, n, ims->ims_haddr); ims->ims_st[1].ex -= n; } else if (lims->imsl_st[0] == MCAST_INCLUDE) { CTR3(KTR_IGMPV3, "%s: t1 in -= %d on 0x%08x", __func__, n, ims->ims_haddr); ims->ims_st[1].in -= n; } if (lims->imsl_st[1] == MCAST_EXCLUDE) { CTR3(KTR_IGMPV3, "%s: t1 ex += %d on 0x%08x", __func__, n, ims->ims_haddr); ims->ims_st[1].ex += n; } else if (lims->imsl_st[1] == MCAST_INCLUDE) { CTR3(KTR_IGMPV3, "%s: t1 in += %d on 0x%08x", __func__, n, ims->ims_haddr); ims->ims_st[1].in += n; } } /* * Atomically update the global in_multi state, when a membership's * filter list is being updated in any way. * * imf is the per-inpcb-membership group filter pointer. * A fake imf may be passed for in-kernel consumers. * * XXX This is a candidate for a set-symmetric-difference style loop * which would eliminate the repeated lookup from root of ims nodes, * as they share the same key space. * * If any error occurred this function will back out of refcounts * and return a non-zero value. */ static int inm_merge(struct in_multi *inm, /*const*/ struct in_mfilter *imf) { struct ip_msource *ims, *nims; struct in_msource *lims; int schanged, error; int nsrc0, nsrc1; schanged = 0; error = 0; nsrc1 = nsrc0 = 0; IN_MULTI_LIST_LOCK_ASSERT(); /* * Update the source filters first, as this may fail. * Maintain count of in-mode filters at t0, t1. These are * used to work out if we transition into ASM mode or not. * Maintain a count of source filters whose state was * actually modified by this operation. */ RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) { lims = (struct in_msource *)ims; if (lims->imsl_st[0] == imf->imf_st[0]) nsrc0++; if (lims->imsl_st[1] == imf->imf_st[1]) nsrc1++; if (lims->imsl_st[0] == lims->imsl_st[1]) continue; error = inm_get_source(inm, lims->ims_haddr, 0, &nims); ++schanged; if (error) break; ims_merge(nims, lims, 0); } if (error) { struct ip_msource *bims; RB_FOREACH_REVERSE_FROM(ims, ip_msource_tree, nims) { lims = (struct in_msource *)ims; if (lims->imsl_st[0] == lims->imsl_st[1]) continue; (void)inm_get_source(inm, lims->ims_haddr, 1, &bims); if (bims == NULL) continue; ims_merge(bims, lims, 1); } goto out_reap; } CTR3(KTR_IGMPV3, "%s: imf filters in-mode: %d at t0, %d at t1", __func__, nsrc0, nsrc1); /* Handle transition between INCLUDE {n} and INCLUDE {} on socket. */ if (imf->imf_st[0] == imf->imf_st[1] && imf->imf_st[1] == MCAST_INCLUDE) { if (nsrc1 == 0) { CTR1(KTR_IGMPV3, "%s: --in on inm at t1", __func__); --inm->inm_st[1].iss_in; } } /* Handle filter mode transition on socket. */ if (imf->imf_st[0] != imf->imf_st[1]) { CTR3(KTR_IGMPV3, "%s: imf transition %d to %d", __func__, imf->imf_st[0], imf->imf_st[1]); if (imf->imf_st[0] == MCAST_EXCLUDE) { CTR1(KTR_IGMPV3, "%s: --ex on inm at t1", __func__); --inm->inm_st[1].iss_ex; } else if (imf->imf_st[0] == MCAST_INCLUDE) { CTR1(KTR_IGMPV3, "%s: --in on inm at t1", __func__); --inm->inm_st[1].iss_in; } if (imf->imf_st[1] == MCAST_EXCLUDE) { CTR1(KTR_IGMPV3, "%s: ex++ on inm at t1", __func__); inm->inm_st[1].iss_ex++; } else if (imf->imf_st[1] == MCAST_INCLUDE && nsrc1 > 0) { CTR1(KTR_IGMPV3, "%s: in++ on inm at t1", __func__); inm->inm_st[1].iss_in++; } } /* * Track inm filter state in terms of listener counts. * If there are any exclusive listeners, stack-wide * membership is exclusive. * Otherwise, if only inclusive listeners, stack-wide is inclusive. * If no listeners remain, state is undefined at t1, * and the IGMP lifecycle for this group should finish. */ if (inm->inm_st[1].iss_ex > 0) { CTR1(KTR_IGMPV3, "%s: transition to EX", __func__); inm->inm_st[1].iss_fmode = MCAST_EXCLUDE; } else if (inm->inm_st[1].iss_in > 0) { CTR1(KTR_IGMPV3, "%s: transition to IN", __func__); inm->inm_st[1].iss_fmode = MCAST_INCLUDE; } else { CTR1(KTR_IGMPV3, "%s: transition to UNDEF", __func__); inm->inm_st[1].iss_fmode = MCAST_UNDEFINED; } /* Decrement ASM listener count on transition out of ASM mode. */ if (imf->imf_st[0] == MCAST_EXCLUDE && nsrc0 == 0) { if ((imf->imf_st[1] != MCAST_EXCLUDE) || (imf->imf_st[1] == MCAST_EXCLUDE && nsrc1 > 0)) { CTR1(KTR_IGMPV3, "%s: --asm on inm at t1", __func__); --inm->inm_st[1].iss_asm; } } /* Increment ASM listener count on transition to ASM mode. */ if (imf->imf_st[1] == MCAST_EXCLUDE && nsrc1 == 0) { CTR1(KTR_IGMPV3, "%s: asm++ on inm at t1", __func__); inm->inm_st[1].iss_asm++; } CTR3(KTR_IGMPV3, "%s: merged imf %p to inm %p", __func__, imf, inm); inm_print(inm); out_reap: if (schanged > 0) { CTR1(KTR_IGMPV3, "%s: sources changed; reaping", __func__); inm_reap(inm); } return (error); } /* * Mark an in_multi's filter set deltas as committed. * Called by IGMP after a state change has been enqueued. */ void inm_commit(struct in_multi *inm) { struct ip_msource *ims; CTR2(KTR_IGMPV3, "%s: commit inm %p", __func__, inm); CTR1(KTR_IGMPV3, "%s: pre commit:", __func__); inm_print(inm); RB_FOREACH(ims, ip_msource_tree, &inm->inm_srcs) { ims->ims_st[0] = ims->ims_st[1]; } inm->inm_st[0] = inm->inm_st[1]; } /* * Reap unreferenced nodes from an in_multi's filter set. */ static void inm_reap(struct in_multi *inm) { struct ip_msource *ims, *tims; RB_FOREACH_SAFE(ims, ip_msource_tree, &inm->inm_srcs, tims) { if (ims->ims_st[0].ex > 0 || ims->ims_st[0].in > 0 || ims->ims_st[1].ex > 0 || ims->ims_st[1].in > 0 || ims->ims_stp != 0) continue; CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims); RB_REMOVE(ip_msource_tree, &inm->inm_srcs, ims); free(ims, M_IPMSOURCE); inm->inm_nsrc--; } } /* * Purge all source nodes from an in_multi's filter set. */ static void inm_purge(struct in_multi *inm) { struct ip_msource *ims, *tims; RB_FOREACH_SAFE(ims, ip_msource_tree, &inm->inm_srcs, tims) { CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims); RB_REMOVE(ip_msource_tree, &inm->inm_srcs, ims); free(ims, M_IPMSOURCE); inm->inm_nsrc--; } } /* * Join a multicast group; unlocked entry point. * * SMPng: XXX: in_joingroup() is called from in_control() when Giant * is not held. Fortunately, ifp is unlikely to have been detached * at this point, so we assume it's OK to recurse. */ int in_joingroup(struct ifnet *ifp, const struct in_addr *gina, /*const*/ struct in_mfilter *imf, struct in_multi **pinm) { int error; IN_MULTI_LOCK(); error = in_joingroup_locked(ifp, gina, imf, pinm); IN_MULTI_UNLOCK(); return (error); } /* * Join a multicast group; real entry point. * * Only preserves atomicity at inm level. * NOTE: imf argument cannot be const due to sys/tree.h limitations. * * If the IGMP downcall fails, the group is not joined, and an error * code is returned. */ int in_joingroup_locked(struct ifnet *ifp, const struct in_addr *gina, /*const*/ struct in_mfilter *imf, struct in_multi **pinm) { struct in_mfilter timf; struct in_multi *inm; int error; IN_MULTI_LOCK_ASSERT(); IN_MULTI_LIST_UNLOCK_ASSERT(); CTR4(KTR_IGMPV3, "%s: join 0x%08x on %p(%s))", __func__, ntohl(gina->s_addr), ifp, ifp->if_xname); error = 0; inm = NULL; /* * If no imf was specified (i.e. kernel consumer), * fake one up and assume it is an ASM join. */ if (imf == NULL) { imf_init(&timf, MCAST_UNDEFINED, MCAST_EXCLUDE); imf = &timf; } error = in_getmulti(ifp, gina, &inm); if (error) { CTR1(KTR_IGMPV3, "%s: in_getmulti() failure", __func__); return (error); } IN_MULTI_LIST_LOCK(); CTR1(KTR_IGMPV3, "%s: merge inm state", __func__); error = inm_merge(inm, imf); if (error) { CTR1(KTR_IGMPV3, "%s: failed to merge inm state", __func__); goto out_inm_release; } CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__); error = igmp_change_state(inm); if (error) { CTR1(KTR_IGMPV3, "%s: failed to update source", __func__); goto out_inm_release; } out_inm_release: if (error) { CTR2(KTR_IGMPV3, "%s: dropping ref on %p", __func__, inm); IF_ADDR_WLOCK(ifp); inm_release_deferred(inm); IF_ADDR_WUNLOCK(ifp); } else { *pinm = inm; } IN_MULTI_LIST_UNLOCK(); return (error); } /* * Leave a multicast group; unlocked entry point. */ int in_leavegroup(struct in_multi *inm, /*const*/ struct in_mfilter *imf) { int error; IN_MULTI_LOCK(); error = in_leavegroup_locked(inm, imf); IN_MULTI_UNLOCK(); return (error); } /* * Leave a multicast group; real entry point. * All source filters will be expunged. * * Only preserves atomicity at inm level. * * Holding the write lock for the INP which contains imf * is highly advisable. We can't assert for it as imf does not * contain a back-pointer to the owning inp. * * Note: This is not the same as inm_release(*) as this function also * makes a state change downcall into IGMP. */ int in_leavegroup_locked(struct in_multi *inm, /*const*/ struct in_mfilter *imf) { struct in_mfilter timf; int error; IN_MULTI_LOCK_ASSERT(); IN_MULTI_LIST_UNLOCK_ASSERT(); error = 0; CTR5(KTR_IGMPV3, "%s: leave inm %p, 0x%08x/%s, imf %p", __func__, inm, ntohl(inm->inm_addr.s_addr), (inm_is_ifp_detached(inm) ? "null" : inm->inm_ifp->if_xname), imf); /* * If no imf was specified (i.e. kernel consumer), * fake one up and assume it is an ASM join. */ if (imf == NULL) { imf_init(&timf, MCAST_EXCLUDE, MCAST_UNDEFINED); imf = &timf; } /* * Begin state merge transaction at IGMP layer. * * As this particular invocation should not cause any memory * to be allocated, and there is no opportunity to roll back * the transaction, it MUST NOT fail. */ CTR1(KTR_IGMPV3, "%s: merge inm state", __func__); IN_MULTI_LIST_LOCK(); error = inm_merge(inm, imf); KASSERT(error == 0, ("%s: failed to merge inm state", __func__)); CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__); CURVNET_SET(inm->inm_ifp->if_vnet); error = igmp_change_state(inm); IF_ADDR_WLOCK(inm->inm_ifp); inm_release_deferred(inm); IF_ADDR_WUNLOCK(inm->inm_ifp); IN_MULTI_LIST_UNLOCK(); CURVNET_RESTORE(); if (error) CTR1(KTR_IGMPV3, "%s: failed igmp downcall", __func__); CTR2(KTR_IGMPV3, "%s: dropping ref on %p", __func__, inm); return (error); } /*#ifndef BURN_BRIDGES*/ /* * Block or unblock an ASM multicast source on an inpcb. * This implements the delta-based API described in RFC 3678. * * The delta-based API applies only to exclusive-mode memberships. * An IGMP downcall will be performed. * * SMPng: NOTE: Must take Giant as a join may create a new ifma. * * Return 0 if successful, otherwise return an appropriate error code. */ static int inp_block_unblock_source(struct inpcb *inp, struct sockopt *sopt) { struct group_source_req gsr; struct rm_priotracker in_ifa_tracker; sockunion_t *gsa, *ssa; struct ifnet *ifp; struct in_mfilter *imf; struct ip_moptions *imo; struct in_msource *ims; struct in_multi *inm; uint16_t fmode; int error, doblock; ifp = NULL; error = 0; doblock = 0; memset(&gsr, 0, sizeof(struct group_source_req)); gsa = (sockunion_t *)&gsr.gsr_group; ssa = (sockunion_t *)&gsr.gsr_source; switch (sopt->sopt_name) { case IP_BLOCK_SOURCE: case IP_UNBLOCK_SOURCE: { struct ip_mreq_source mreqs; error = sooptcopyin(sopt, &mreqs, sizeof(struct ip_mreq_source), sizeof(struct ip_mreq_source)); if (error) return (error); gsa->sin.sin_family = AF_INET; gsa->sin.sin_len = sizeof(struct sockaddr_in); gsa->sin.sin_addr = mreqs.imr_multiaddr; ssa->sin.sin_family = AF_INET; ssa->sin.sin_len = sizeof(struct sockaddr_in); ssa->sin.sin_addr = mreqs.imr_sourceaddr; if (!in_nullhost(mreqs.imr_interface)) { IN_IFADDR_RLOCK(&in_ifa_tracker); INADDR_TO_IFP(mreqs.imr_interface, ifp); IN_IFADDR_RUNLOCK(&in_ifa_tracker); } if (sopt->sopt_name == IP_BLOCK_SOURCE) doblock = 1; CTR3(KTR_IGMPV3, "%s: imr_interface = 0x%08x, ifp = %p", __func__, ntohl(mreqs.imr_interface.s_addr), ifp); break; } case MCAST_BLOCK_SOURCE: case MCAST_UNBLOCK_SOURCE: error = sooptcopyin(sopt, &gsr, sizeof(struct group_source_req), sizeof(struct group_source_req)); if (error) return (error); if (gsa->sin.sin_family != AF_INET || gsa->sin.sin_len != sizeof(struct sockaddr_in)) return (EINVAL); if (ssa->sin.sin_family != AF_INET || ssa->sin.sin_len != sizeof(struct sockaddr_in)) return (EINVAL); if (gsr.gsr_interface == 0 || V_if_index < gsr.gsr_interface) return (EADDRNOTAVAIL); ifp = ifnet_byindex(gsr.gsr_interface); if (sopt->sopt_name == MCAST_BLOCK_SOURCE) doblock = 1; break; default: CTR2(KTR_IGMPV3, "%s: unknown sopt_name %d", __func__, sopt->sopt_name); return (EOPNOTSUPP); break; } if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr))) return (EINVAL); IN_MULTI_LOCK(); /* * Check if we are actually a member of this group. */ imo = inp_findmoptions(inp); imf = imo_match_group(imo, ifp, &gsa->sa); if (imf == NULL) { error = EADDRNOTAVAIL; goto out_inp_locked; } inm = imf->imf_inm; /* * Attempting to use the delta-based API on an * non exclusive-mode membership is an error. */ fmode = imf->imf_st[0]; if (fmode != MCAST_EXCLUDE) { error = EINVAL; goto out_inp_locked; } /* * Deal with error cases up-front: * Asked to block, but already blocked; or * Asked to unblock, but nothing to unblock. * If adding a new block entry, allocate it. */ ims = imo_match_source(imf, &ssa->sa); if ((ims != NULL && doblock) || (ims == NULL && !doblock)) { CTR3(KTR_IGMPV3, "%s: source 0x%08x %spresent", __func__, ntohl(ssa->sin.sin_addr.s_addr), doblock ? "" : "not "); error = EADDRNOTAVAIL; goto out_inp_locked; } INP_WLOCK_ASSERT(inp); /* * Begin state merge transaction at socket layer. */ if (doblock) { CTR2(KTR_IGMPV3, "%s: %s source", __func__, "block"); ims = imf_graft(imf, fmode, &ssa->sin); if (ims == NULL) error = ENOMEM; } else { CTR2(KTR_IGMPV3, "%s: %s source", __func__, "allow"); error = imf_prune(imf, &ssa->sin); } if (error) { CTR1(KTR_IGMPV3, "%s: merge imf state failed", __func__); goto out_imf_rollback; } /* * Begin state merge transaction at IGMP layer. */ CTR1(KTR_IGMPV3, "%s: merge inm state", __func__); IN_MULTI_LIST_LOCK(); error = inm_merge(inm, imf); if (error) { CTR1(KTR_IGMPV3, "%s: failed to merge inm state", __func__); IN_MULTI_LIST_UNLOCK(); goto out_imf_rollback; } CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__); error = igmp_change_state(inm); IN_MULTI_LIST_UNLOCK(); if (error) CTR1(KTR_IGMPV3, "%s: failed igmp downcall", __func__); out_imf_rollback: if (error) imf_rollback(imf); else imf_commit(imf); imf_reap(imf); out_inp_locked: INP_WUNLOCK(inp); IN_MULTI_UNLOCK(); return (error); } /* * Given an inpcb, return its multicast options structure pointer. Accepts * an unlocked inpcb pointer, but will return it locked. May sleep. * * SMPng: NOTE: Potentially calls malloc(M_WAITOK) with Giant held. * SMPng: NOTE: Returns with the INP write lock held. */ static struct ip_moptions * inp_findmoptions(struct inpcb *inp) { struct ip_moptions *imo; INP_WLOCK(inp); if (inp->inp_moptions != NULL) return (inp->inp_moptions); INP_WUNLOCK(inp); imo = malloc(sizeof(*imo), M_IPMOPTS, M_WAITOK); imo->imo_multicast_ifp = NULL; imo->imo_multicast_addr.s_addr = INADDR_ANY; imo->imo_multicast_vif = -1; imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL; imo->imo_multicast_loop = in_mcast_loop; STAILQ_INIT(&imo->imo_head); INP_WLOCK(inp); if (inp->inp_moptions != NULL) { free(imo, M_IPMOPTS); return (inp->inp_moptions); } inp->inp_moptions = imo; return (imo); } static void inp_gcmoptions(struct ip_moptions *imo) { struct in_mfilter *imf; struct in_multi *inm; struct ifnet *ifp; while ((imf = ip_mfilter_first(&imo->imo_head)) != NULL) { ip_mfilter_remove(&imo->imo_head, imf); imf_leave(imf); if ((inm = imf->imf_inm) != NULL) { if ((ifp = inm->inm_ifp) != NULL) { CURVNET_SET(ifp->if_vnet); (void)in_leavegroup(inm, imf); CURVNET_RESTORE(); } else { (void)in_leavegroup(inm, imf); } } ip_mfilter_free(imf); } free(imo, M_IPMOPTS); } /* * Discard the IP multicast options (and source filters). To minimize * the amount of work done while holding locks such as the INP's * pcbinfo lock (which is used in the receive path), the free * operation is deferred to the epoch callback task. */ void inp_freemoptions(struct ip_moptions *imo) { if (imo == NULL) return; inp_gcmoptions(imo); } /* * Atomically get source filters on a socket for an IPv4 multicast group. * Called with INP lock held; returns with lock released. */ static int inp_get_source_filters(struct inpcb *inp, struct sockopt *sopt) { struct __msfilterreq msfr; sockunion_t *gsa; struct ifnet *ifp; struct ip_moptions *imo; struct in_mfilter *imf; struct ip_msource *ims; struct in_msource *lims; struct sockaddr_in *psin; struct sockaddr_storage *ptss; struct sockaddr_storage *tss; int error; size_t nsrcs, ncsrcs; INP_WLOCK_ASSERT(inp); imo = inp->inp_moptions; KASSERT(imo != NULL, ("%s: null ip_moptions", __func__)); INP_WUNLOCK(inp); error = sooptcopyin(sopt, &msfr, sizeof(struct __msfilterreq), sizeof(struct __msfilterreq)); if (error) return (error); if (msfr.msfr_ifindex == 0 || V_if_index < msfr.msfr_ifindex) return (EINVAL); ifp = ifnet_byindex(msfr.msfr_ifindex); if (ifp == NULL) return (EINVAL); INP_WLOCK(inp); /* * Lookup group on the socket. */ gsa = (sockunion_t *)&msfr.msfr_group; imf = imo_match_group(imo, ifp, &gsa->sa); if (imf == NULL) { INP_WUNLOCK(inp); return (EADDRNOTAVAIL); } /* * Ignore memberships which are in limbo. */ if (imf->imf_st[1] == MCAST_UNDEFINED) { INP_WUNLOCK(inp); return (EAGAIN); } msfr.msfr_fmode = imf->imf_st[1]; /* * If the user specified a buffer, copy out the source filter * entries to userland gracefully. * We only copy out the number of entries which userland * has asked for, but we always tell userland how big the * buffer really needs to be. */ if (msfr.msfr_nsrcs > in_mcast_maxsocksrc) msfr.msfr_nsrcs = in_mcast_maxsocksrc; tss = NULL; if (msfr.msfr_srcs != NULL && msfr.msfr_nsrcs > 0) { tss = malloc(sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs, M_TEMP, M_NOWAIT | M_ZERO); if (tss == NULL) { INP_WUNLOCK(inp); return (ENOBUFS); } } /* * Count number of sources in-mode at t0. * If buffer space exists and remains, copy out source entries. */ nsrcs = msfr.msfr_nsrcs; ncsrcs = 0; ptss = tss; RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) { lims = (struct in_msource *)ims; if (lims->imsl_st[0] == MCAST_UNDEFINED || lims->imsl_st[0] != imf->imf_st[0]) continue; ++ncsrcs; if (tss != NULL && nsrcs > 0) { psin = (struct sockaddr_in *)ptss; psin->sin_family = AF_INET; psin->sin_len = sizeof(struct sockaddr_in); psin->sin_addr.s_addr = htonl(lims->ims_haddr); psin->sin_port = 0; ++ptss; --nsrcs; } } INP_WUNLOCK(inp); if (tss != NULL) { error = copyout(tss, msfr.msfr_srcs, sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs); free(tss, M_TEMP); if (error) return (error); } msfr.msfr_nsrcs = ncsrcs; error = sooptcopyout(sopt, &msfr, sizeof(struct __msfilterreq)); return (error); } /* * Return the IP multicast options in response to user getsockopt(). */ int inp_getmoptions(struct inpcb *inp, struct sockopt *sopt) { - struct rm_priotracker in_ifa_tracker; struct ip_mreqn mreqn; struct ip_moptions *imo; struct ifnet *ifp; struct in_ifaddr *ia; int error, optval; u_char coptval; INP_WLOCK(inp); imo = inp->inp_moptions; /* * If socket is neither of type SOCK_RAW or SOCK_DGRAM, * or is a divert socket, reject it. */ if (inp->inp_socket->so_proto->pr_protocol == IPPROTO_DIVERT || (inp->inp_socket->so_proto->pr_type != SOCK_RAW && inp->inp_socket->so_proto->pr_type != SOCK_DGRAM)) { INP_WUNLOCK(inp); return (EOPNOTSUPP); } error = 0; switch (sopt->sopt_name) { case IP_MULTICAST_VIF: if (imo != NULL) optval = imo->imo_multicast_vif; else optval = -1; INP_WUNLOCK(inp); error = sooptcopyout(sopt, &optval, sizeof(int)); break; case IP_MULTICAST_IF: memset(&mreqn, 0, sizeof(struct ip_mreqn)); if (imo != NULL) { ifp = imo->imo_multicast_ifp; if (!in_nullhost(imo->imo_multicast_addr)) { mreqn.imr_address = imo->imo_multicast_addr; } else if (ifp != NULL) { struct epoch_tracker et; mreqn.imr_ifindex = ifp->if_index; NET_EPOCH_ENTER(et); - IFP_TO_IA(ifp, ia, &in_ifa_tracker); + IFP_TO_IA(ifp, ia); if (ia != NULL) mreqn.imr_address = IA_SIN(ia)->sin_addr; NET_EPOCH_EXIT(et); } } INP_WUNLOCK(inp); if (sopt->sopt_valsize == sizeof(struct ip_mreqn)) { error = sooptcopyout(sopt, &mreqn, sizeof(struct ip_mreqn)); } else { error = sooptcopyout(sopt, &mreqn.imr_address, sizeof(struct in_addr)); } break; case IP_MULTICAST_TTL: if (imo == NULL) optval = coptval = IP_DEFAULT_MULTICAST_TTL; else optval = coptval = imo->imo_multicast_ttl; INP_WUNLOCK(inp); if (sopt->sopt_valsize == sizeof(u_char)) error = sooptcopyout(sopt, &coptval, sizeof(u_char)); else error = sooptcopyout(sopt, &optval, sizeof(int)); break; case IP_MULTICAST_LOOP: if (imo == NULL) optval = coptval = IP_DEFAULT_MULTICAST_LOOP; else optval = coptval = imo->imo_multicast_loop; INP_WUNLOCK(inp); if (sopt->sopt_valsize == sizeof(u_char)) error = sooptcopyout(sopt, &coptval, sizeof(u_char)); else error = sooptcopyout(sopt, &optval, sizeof(int)); break; case IP_MSFILTER: if (imo == NULL) { error = EADDRNOTAVAIL; INP_WUNLOCK(inp); } else { error = inp_get_source_filters(inp, sopt); } break; default: INP_WUNLOCK(inp); error = ENOPROTOOPT; break; } INP_UNLOCK_ASSERT(inp); return (error); } /* * Look up the ifnet to use for a multicast group membership, * given the IPv4 address of an interface, and the IPv4 group address. * * This routine exists to support legacy multicast applications * which do not understand that multicast memberships are scoped to * specific physical links in the networking stack, or which need * to join link-scope groups before IPv4 addresses are configured. * * Use this socket's current FIB number for any required FIB lookup. * If ina is INADDR_ANY, look up the group address in the unicast FIB, * and use its ifp; usually, this points to the default next-hop. * * If the FIB lookup fails, attempt to use the first non-loopback * interface with multicast capability in the system as a * last resort. The legacy IPv4 ASM API requires that we do * this in order to allow groups to be joined when the routing * table has not yet been populated during boot. * * Returns NULL if no ifp could be found, otherwise return referenced ifp. * * FUTURE: Implement IPv4 source-address selection. */ static struct ifnet * inp_lookup_mcast_ifp(const struct inpcb *inp, const struct sockaddr_in *gsin, const struct in_addr ina) { struct rm_priotracker in_ifa_tracker; struct ifnet *ifp; struct nhop_object *nh; + NET_EPOCH_ASSERT(); KASSERT(inp != NULL, ("%s: inp must not be NULL", __func__)); KASSERT(gsin->sin_family == AF_INET, ("%s: not AF_INET", __func__)); KASSERT(IN_MULTICAST(ntohl(gsin->sin_addr.s_addr)), ("%s: not multicast", __func__)); ifp = NULL; if (!in_nullhost(ina)) { IN_IFADDR_RLOCK(&in_ifa_tracker); INADDR_TO_IFP(ina, ifp); if (ifp != NULL) if_ref(ifp); IN_IFADDR_RUNLOCK(&in_ifa_tracker); } else { nh = fib4_lookup(inp->inp_inc.inc_fibnum, gsin->sin_addr, 0, NHR_NONE, 0); if (nh != NULL) { ifp = nh->nh_ifp; if_ref(ifp); } else { struct in_ifaddr *ia; struct ifnet *mifp; mifp = NULL; - IN_IFADDR_RLOCK(&in_ifa_tracker); CK_STAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) { mifp = ia->ia_ifp; if (!(mifp->if_flags & IFF_LOOPBACK) && (mifp->if_flags & IFF_MULTICAST)) { ifp = mifp; if_ref(ifp); break; } } - IN_IFADDR_RUNLOCK(&in_ifa_tracker); } } return (ifp); } /* * Join an IPv4 multicast group, possibly with a source. */ static int inp_join_group(struct inpcb *inp, struct sockopt *sopt) { struct group_source_req gsr; sockunion_t *gsa, *ssa; struct ifnet *ifp; struct in_mfilter *imf; struct ip_moptions *imo; struct in_multi *inm; struct in_msource *lims; struct epoch_tracker et; int error, is_new; ifp = NULL; lims = NULL; error = 0; memset(&gsr, 0, sizeof(struct group_source_req)); gsa = (sockunion_t *)&gsr.gsr_group; gsa->ss.ss_family = AF_UNSPEC; ssa = (sockunion_t *)&gsr.gsr_source; ssa->ss.ss_family = AF_UNSPEC; switch (sopt->sopt_name) { case IP_ADD_MEMBERSHIP: { struct ip_mreqn mreqn; if (sopt->sopt_valsize == sizeof(struct ip_mreqn)) error = sooptcopyin(sopt, &mreqn, sizeof(struct ip_mreqn), sizeof(struct ip_mreqn)); else error = sooptcopyin(sopt, &mreqn, sizeof(struct ip_mreq), sizeof(struct ip_mreq)); if (error) return (error); gsa->sin.sin_family = AF_INET; gsa->sin.sin_len = sizeof(struct sockaddr_in); gsa->sin.sin_addr = mreqn.imr_multiaddr; if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr))) return (EINVAL); NET_EPOCH_ENTER(et); if (sopt->sopt_valsize == sizeof(struct ip_mreqn) && mreqn.imr_ifindex != 0) ifp = ifnet_byindex_ref(mreqn.imr_ifindex); else ifp = inp_lookup_mcast_ifp(inp, &gsa->sin, mreqn.imr_address); NET_EPOCH_EXIT(et); break; } case IP_ADD_SOURCE_MEMBERSHIP: { struct ip_mreq_source mreqs; error = sooptcopyin(sopt, &mreqs, sizeof(struct ip_mreq_source), sizeof(struct ip_mreq_source)); if (error) return (error); gsa->sin.sin_family = ssa->sin.sin_family = AF_INET; gsa->sin.sin_len = ssa->sin.sin_len = sizeof(struct sockaddr_in); gsa->sin.sin_addr = mreqs.imr_multiaddr; if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr))) return (EINVAL); ssa->sin.sin_addr = mreqs.imr_sourceaddr; NET_EPOCH_ENTER(et); ifp = inp_lookup_mcast_ifp(inp, &gsa->sin, mreqs.imr_interface); NET_EPOCH_EXIT(et); CTR3(KTR_IGMPV3, "%s: imr_interface = 0x%08x, ifp = %p", __func__, ntohl(mreqs.imr_interface.s_addr), ifp); break; } case MCAST_JOIN_GROUP: case MCAST_JOIN_SOURCE_GROUP: if (sopt->sopt_name == MCAST_JOIN_GROUP) { error = sooptcopyin(sopt, &gsr, sizeof(struct group_req), sizeof(struct group_req)); } else if (sopt->sopt_name == MCAST_JOIN_SOURCE_GROUP) { error = sooptcopyin(sopt, &gsr, sizeof(struct group_source_req), sizeof(struct group_source_req)); } if (error) return (error); if (gsa->sin.sin_family != AF_INET || gsa->sin.sin_len != sizeof(struct sockaddr_in)) return (EINVAL); /* * Overwrite the port field if present, as the sockaddr * being copied in may be matched with a binary comparison. */ gsa->sin.sin_port = 0; if (sopt->sopt_name == MCAST_JOIN_SOURCE_GROUP) { if (ssa->sin.sin_family != AF_INET || ssa->sin.sin_len != sizeof(struct sockaddr_in)) return (EINVAL); ssa->sin.sin_port = 0; } if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr))) return (EINVAL); if (gsr.gsr_interface == 0 || V_if_index < gsr.gsr_interface) return (EADDRNOTAVAIL); NET_EPOCH_ENTER(et); ifp = ifnet_byindex_ref(gsr.gsr_interface); NET_EPOCH_EXIT(et); break; default: CTR2(KTR_IGMPV3, "%s: unknown sopt_name %d", __func__, sopt->sopt_name); return (EOPNOTSUPP); break; } if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) { if (ifp != NULL) if_rele(ifp); return (EADDRNOTAVAIL); } IN_MULTI_LOCK(); /* * Find the membership in the membership list. */ imo = inp_findmoptions(inp); imf = imo_match_group(imo, ifp, &gsa->sa); if (imf == NULL) { is_new = 1; inm = NULL; if (ip_mfilter_count(&imo->imo_head) >= IP_MAX_MEMBERSHIPS) { error = ENOMEM; goto out_inp_locked; } } else { is_new = 0; inm = imf->imf_inm; if (ssa->ss.ss_family != AF_UNSPEC) { /* * MCAST_JOIN_SOURCE_GROUP on an exclusive membership * is an error. On an existing inclusive membership, * it just adds the source to the filter list. */ if (imf->imf_st[1] != MCAST_INCLUDE) { error = EINVAL; goto out_inp_locked; } /* * Throw out duplicates. * * XXX FIXME: This makes a naive assumption that * even if entries exist for *ssa in this imf, * they will be rejected as dupes, even if they * are not valid in the current mode (in-mode). * * in_msource is transactioned just as for anything * else in SSM -- but note naive use of inm_graft() * below for allocating new filter entries. * * This is only an issue if someone mixes the * full-state SSM API with the delta-based API, * which is discouraged in the relevant RFCs. */ lims = imo_match_source(imf, &ssa->sa); if (lims != NULL /*&& lims->imsl_st[1] == MCAST_INCLUDE*/) { error = EADDRNOTAVAIL; goto out_inp_locked; } } else { /* * MCAST_JOIN_GROUP on an existing exclusive * membership is an error; return EADDRINUSE * to preserve 4.4BSD API idempotence, and * avoid tedious detour to code below. * NOTE: This is bending RFC 3678 a bit. * * On an existing inclusive membership, this is also * an error; if you want to change filter mode, * you must use the userland API setsourcefilter(). * XXX We don't reject this for imf in UNDEFINED * state at t1, because allocation of a filter * is atomic with allocation of a membership. */ error = EINVAL; if (imf->imf_st[1] == MCAST_EXCLUDE) error = EADDRINUSE; goto out_inp_locked; } } /* * Begin state merge transaction at socket layer. */ INP_WLOCK_ASSERT(inp); /* * Graft new source into filter list for this inpcb's * membership of the group. The in_multi may not have * been allocated yet if this is a new membership, however, * the in_mfilter slot will be allocated and must be initialized. * * Note: Grafting of exclusive mode filters doesn't happen * in this path. * XXX: Should check for non-NULL lims (node exists but may * not be in-mode) for interop with full-state API. */ if (ssa->ss.ss_family != AF_UNSPEC) { /* Membership starts in IN mode */ if (is_new) { CTR1(KTR_IGMPV3, "%s: new join w/source", __func__); imf = ip_mfilter_alloc(M_NOWAIT, MCAST_UNDEFINED, MCAST_INCLUDE); if (imf == NULL) { error = ENOMEM; goto out_inp_locked; } } else { CTR2(KTR_IGMPV3, "%s: %s source", __func__, "allow"); } lims = imf_graft(imf, MCAST_INCLUDE, &ssa->sin); if (lims == NULL) { CTR1(KTR_IGMPV3, "%s: merge imf state failed", __func__); error = ENOMEM; goto out_inp_locked; } } else { /* No address specified; Membership starts in EX mode */ if (is_new) { CTR1(KTR_IGMPV3, "%s: new join w/o source", __func__); imf = ip_mfilter_alloc(M_NOWAIT, MCAST_UNDEFINED, MCAST_EXCLUDE); if (imf == NULL) { error = ENOMEM; goto out_inp_locked; } } } /* * Begin state merge transaction at IGMP layer. */ if (is_new) { in_pcbref(inp); INP_WUNLOCK(inp); error = in_joingroup_locked(ifp, &gsa->sin.sin_addr, imf, &imf->imf_inm); INP_WLOCK(inp); if (in_pcbrele_wlocked(inp)) { error = ENXIO; goto out_inp_unlocked; } if (error) { CTR1(KTR_IGMPV3, "%s: in_joingroup_locked failed", __func__); goto out_inp_locked; } /* * NOTE: Refcount from in_joingroup_locked() * is protecting membership. */ ip_mfilter_insert(&imo->imo_head, imf); } else { CTR1(KTR_IGMPV3, "%s: merge inm state", __func__); IN_MULTI_LIST_LOCK(); error = inm_merge(inm, imf); if (error) { CTR1(KTR_IGMPV3, "%s: failed to merge inm state", __func__); IN_MULTI_LIST_UNLOCK(); imf_rollback(imf); imf_reap(imf); goto out_inp_locked; } CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__); error = igmp_change_state(inm); IN_MULTI_LIST_UNLOCK(); if (error) { CTR1(KTR_IGMPV3, "%s: failed igmp downcall", __func__); imf_rollback(imf); imf_reap(imf); goto out_inp_locked; } } imf_commit(imf); imf = NULL; out_inp_locked: INP_WUNLOCK(inp); out_inp_unlocked: IN_MULTI_UNLOCK(); if (is_new && imf) { if (imf->imf_inm != NULL) { IN_MULTI_LIST_LOCK(); IF_ADDR_WLOCK(ifp); inm_release_deferred(imf->imf_inm); IF_ADDR_WUNLOCK(ifp); IN_MULTI_LIST_UNLOCK(); } ip_mfilter_free(imf); } if_rele(ifp); return (error); } /* * Leave an IPv4 multicast group on an inpcb, possibly with a source. */ static int inp_leave_group(struct inpcb *inp, struct sockopt *sopt) { struct group_source_req gsr; struct ip_mreq_source mreqs; struct rm_priotracker in_ifa_tracker; sockunion_t *gsa, *ssa; struct ifnet *ifp; struct in_mfilter *imf; struct ip_moptions *imo; struct in_msource *ims; struct in_multi *inm; int error; bool is_final; ifp = NULL; error = 0; is_final = true; memset(&gsr, 0, sizeof(struct group_source_req)); gsa = (sockunion_t *)&gsr.gsr_group; gsa->ss.ss_family = AF_UNSPEC; ssa = (sockunion_t *)&gsr.gsr_source; ssa->ss.ss_family = AF_UNSPEC; switch (sopt->sopt_name) { case IP_DROP_MEMBERSHIP: case IP_DROP_SOURCE_MEMBERSHIP: if (sopt->sopt_name == IP_DROP_MEMBERSHIP) { error = sooptcopyin(sopt, &mreqs, sizeof(struct ip_mreq), sizeof(struct ip_mreq)); /* * Swap interface and sourceaddr arguments, * as ip_mreq and ip_mreq_source are laid * out differently. */ mreqs.imr_interface = mreqs.imr_sourceaddr; mreqs.imr_sourceaddr.s_addr = INADDR_ANY; } else if (sopt->sopt_name == IP_DROP_SOURCE_MEMBERSHIP) { error = sooptcopyin(sopt, &mreqs, sizeof(struct ip_mreq_source), sizeof(struct ip_mreq_source)); } if (error) return (error); gsa->sin.sin_family = AF_INET; gsa->sin.sin_len = sizeof(struct sockaddr_in); gsa->sin.sin_addr = mreqs.imr_multiaddr; if (sopt->sopt_name == IP_DROP_SOURCE_MEMBERSHIP) { ssa->sin.sin_family = AF_INET; ssa->sin.sin_len = sizeof(struct sockaddr_in); ssa->sin.sin_addr = mreqs.imr_sourceaddr; } /* * Attempt to look up hinted ifp from interface address. * Fallthrough with null ifp iff lookup fails, to * preserve 4.4BSD mcast API idempotence. * XXX NOTE WELL: The RFC 3678 API is preferred because * using an IPv4 address as a key is racy. */ if (!in_nullhost(mreqs.imr_interface)) { IN_IFADDR_RLOCK(&in_ifa_tracker); INADDR_TO_IFP(mreqs.imr_interface, ifp); IN_IFADDR_RUNLOCK(&in_ifa_tracker); } CTR3(KTR_IGMPV3, "%s: imr_interface = 0x%08x, ifp = %p", __func__, ntohl(mreqs.imr_interface.s_addr), ifp); break; case MCAST_LEAVE_GROUP: case MCAST_LEAVE_SOURCE_GROUP: if (sopt->sopt_name == MCAST_LEAVE_GROUP) { error = sooptcopyin(sopt, &gsr, sizeof(struct group_req), sizeof(struct group_req)); } else if (sopt->sopt_name == MCAST_LEAVE_SOURCE_GROUP) { error = sooptcopyin(sopt, &gsr, sizeof(struct group_source_req), sizeof(struct group_source_req)); } if (error) return (error); if (gsa->sin.sin_family != AF_INET || gsa->sin.sin_len != sizeof(struct sockaddr_in)) return (EINVAL); if (sopt->sopt_name == MCAST_LEAVE_SOURCE_GROUP) { if (ssa->sin.sin_family != AF_INET || ssa->sin.sin_len != sizeof(struct sockaddr_in)) return (EINVAL); } if (gsr.gsr_interface == 0 || V_if_index < gsr.gsr_interface) return (EADDRNOTAVAIL); ifp = ifnet_byindex(gsr.gsr_interface); if (ifp == NULL) return (EADDRNOTAVAIL); break; default: CTR2(KTR_IGMPV3, "%s: unknown sopt_name %d", __func__, sopt->sopt_name); return (EOPNOTSUPP); break; } if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr))) return (EINVAL); IN_MULTI_LOCK(); /* * Find the membership in the membership list. */ imo = inp_findmoptions(inp); imf = imo_match_group(imo, ifp, &gsa->sa); if (imf == NULL) { error = EADDRNOTAVAIL; goto out_inp_locked; } inm = imf->imf_inm; if (ssa->ss.ss_family != AF_UNSPEC) is_final = false; /* * Begin state merge transaction at socket layer. */ INP_WLOCK_ASSERT(inp); /* * If we were instructed only to leave a given source, do so. * MCAST_LEAVE_SOURCE_GROUP is only valid for inclusive memberships. */ if (is_final) { ip_mfilter_remove(&imo->imo_head, imf); imf_leave(imf); /* * Give up the multicast address record to which * the membership points. */ (void) in_leavegroup_locked(imf->imf_inm, imf); } else { if (imf->imf_st[0] == MCAST_EXCLUDE) { error = EADDRNOTAVAIL; goto out_inp_locked; } ims = imo_match_source(imf, &ssa->sa); if (ims == NULL) { CTR3(KTR_IGMPV3, "%s: source 0x%08x %spresent", __func__, ntohl(ssa->sin.sin_addr.s_addr), "not "); error = EADDRNOTAVAIL; goto out_inp_locked; } CTR2(KTR_IGMPV3, "%s: %s source", __func__, "block"); error = imf_prune(imf, &ssa->sin); if (error) { CTR1(KTR_IGMPV3, "%s: merge imf state failed", __func__); goto out_inp_locked; } } /* * Begin state merge transaction at IGMP layer. */ if (!is_final) { CTR1(KTR_IGMPV3, "%s: merge inm state", __func__); IN_MULTI_LIST_LOCK(); error = inm_merge(inm, imf); if (error) { CTR1(KTR_IGMPV3, "%s: failed to merge inm state", __func__); IN_MULTI_LIST_UNLOCK(); imf_rollback(imf); imf_reap(imf); goto out_inp_locked; } CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__); error = igmp_change_state(inm); IN_MULTI_LIST_UNLOCK(); if (error) { CTR1(KTR_IGMPV3, "%s: failed igmp downcall", __func__); imf_rollback(imf); imf_reap(imf); goto out_inp_locked; } } imf_commit(imf); imf_reap(imf); out_inp_locked: INP_WUNLOCK(inp); if (is_final && imf) ip_mfilter_free(imf); IN_MULTI_UNLOCK(); return (error); } /* * Select the interface for transmitting IPv4 multicast datagrams. * * Either an instance of struct in_addr or an instance of struct ip_mreqn * may be passed to this socket option. An address of INADDR_ANY or an * interface index of 0 is used to remove a previous selection. * When no interface is selected, one is chosen for every send. */ static int inp_set_multicast_if(struct inpcb *inp, struct sockopt *sopt) { struct rm_priotracker in_ifa_tracker; struct in_addr addr; struct ip_mreqn mreqn; struct ifnet *ifp; struct ip_moptions *imo; int error; if (sopt->sopt_valsize == sizeof(struct ip_mreqn)) { /* * An interface index was specified using the * Linux-derived ip_mreqn structure. */ error = sooptcopyin(sopt, &mreqn, sizeof(struct ip_mreqn), sizeof(struct ip_mreqn)); if (error) return (error); if (mreqn.imr_ifindex < 0 || V_if_index < mreqn.imr_ifindex) return (EINVAL); if (mreqn.imr_ifindex == 0) { ifp = NULL; } else { ifp = ifnet_byindex(mreqn.imr_ifindex); if (ifp == NULL) return (EADDRNOTAVAIL); } } else { /* * An interface was specified by IPv4 address. * This is the traditional BSD usage. */ error = sooptcopyin(sopt, &addr, sizeof(struct in_addr), sizeof(struct in_addr)); if (error) return (error); if (in_nullhost(addr)) { ifp = NULL; } else { IN_IFADDR_RLOCK(&in_ifa_tracker); INADDR_TO_IFP(addr, ifp); IN_IFADDR_RUNLOCK(&in_ifa_tracker); if (ifp == NULL) return (EADDRNOTAVAIL); } CTR3(KTR_IGMPV3, "%s: ifp = %p, addr = 0x%08x", __func__, ifp, ntohl(addr.s_addr)); } /* Reject interfaces which do not support multicast. */ if (ifp != NULL && (ifp->if_flags & IFF_MULTICAST) == 0) return (EOPNOTSUPP); imo = inp_findmoptions(inp); imo->imo_multicast_ifp = ifp; imo->imo_multicast_addr.s_addr = INADDR_ANY; INP_WUNLOCK(inp); return (0); } /* * Atomically set source filters on a socket for an IPv4 multicast group. * * SMPng: NOTE: Potentially calls malloc(M_WAITOK) with Giant held. */ static int inp_set_source_filters(struct inpcb *inp, struct sockopt *sopt) { struct __msfilterreq msfr; sockunion_t *gsa; struct ifnet *ifp; struct in_mfilter *imf; struct ip_moptions *imo; struct in_multi *inm; int error; error = sooptcopyin(sopt, &msfr, sizeof(struct __msfilterreq), sizeof(struct __msfilterreq)); if (error) return (error); if (msfr.msfr_nsrcs > in_mcast_maxsocksrc) return (ENOBUFS); if ((msfr.msfr_fmode != MCAST_EXCLUDE && msfr.msfr_fmode != MCAST_INCLUDE)) return (EINVAL); if (msfr.msfr_group.ss_family != AF_INET || msfr.msfr_group.ss_len != sizeof(struct sockaddr_in)) return (EINVAL); gsa = (sockunion_t *)&msfr.msfr_group; if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr))) return (EINVAL); gsa->sin.sin_port = 0; /* ignore port */ if (msfr.msfr_ifindex == 0 || V_if_index < msfr.msfr_ifindex) return (EADDRNOTAVAIL); ifp = ifnet_byindex(msfr.msfr_ifindex); if (ifp == NULL) return (EADDRNOTAVAIL); IN_MULTI_LOCK(); /* * Take the INP write lock. * Check if this socket is a member of this group. */ imo = inp_findmoptions(inp); imf = imo_match_group(imo, ifp, &gsa->sa); if (imf == NULL) { error = EADDRNOTAVAIL; goto out_inp_locked; } inm = imf->imf_inm; /* * Begin state merge transaction at socket layer. */ INP_WLOCK_ASSERT(inp); imf->imf_st[1] = msfr.msfr_fmode; /* * Apply any new source filters, if present. * Make a copy of the user-space source vector so * that we may copy them with a single copyin. This * allows us to deal with page faults up-front. */ if (msfr.msfr_nsrcs > 0) { struct in_msource *lims; struct sockaddr_in *psin; struct sockaddr_storage *kss, *pkss; int i; INP_WUNLOCK(inp); CTR2(KTR_IGMPV3, "%s: loading %lu source list entries", __func__, (unsigned long)msfr.msfr_nsrcs); kss = malloc(sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs, M_TEMP, M_WAITOK); error = copyin(msfr.msfr_srcs, kss, sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs); if (error) { free(kss, M_TEMP); return (error); } INP_WLOCK(inp); /* * Mark all source filters as UNDEFINED at t1. * Restore new group filter mode, as imf_leave() * will set it to INCLUDE. */ imf_leave(imf); imf->imf_st[1] = msfr.msfr_fmode; /* * Update socket layer filters at t1, lazy-allocating * new entries. This saves a bunch of memory at the * cost of one RB_FIND() per source entry; duplicate * entries in the msfr_nsrcs vector are ignored. * If we encounter an error, rollback transaction. * * XXX This too could be replaced with a set-symmetric * difference like loop to avoid walking from root * every time, as the key space is common. */ for (i = 0, pkss = kss; i < msfr.msfr_nsrcs; i++, pkss++) { psin = (struct sockaddr_in *)pkss; if (psin->sin_family != AF_INET) { error = EAFNOSUPPORT; break; } if (psin->sin_len != sizeof(struct sockaddr_in)) { error = EINVAL; break; } error = imf_get_source(imf, psin, &lims); if (error) break; lims->imsl_st[1] = imf->imf_st[1]; } free(kss, M_TEMP); } if (error) goto out_imf_rollback; INP_WLOCK_ASSERT(inp); /* * Begin state merge transaction at IGMP layer. */ CTR1(KTR_IGMPV3, "%s: merge inm state", __func__); IN_MULTI_LIST_LOCK(); error = inm_merge(inm, imf); if (error) { CTR1(KTR_IGMPV3, "%s: failed to merge inm state", __func__); IN_MULTI_LIST_UNLOCK(); goto out_imf_rollback; } CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__); error = igmp_change_state(inm); IN_MULTI_LIST_UNLOCK(); if (error) CTR1(KTR_IGMPV3, "%s: failed igmp downcall", __func__); out_imf_rollback: if (error) imf_rollback(imf); else imf_commit(imf); imf_reap(imf); out_inp_locked: INP_WUNLOCK(inp); IN_MULTI_UNLOCK(); return (error); } /* * Set the IP multicast options in response to user setsockopt(). * * Many of the socket options handled in this function duplicate the * functionality of socket options in the regular unicast API. However, * it is not possible to merge the duplicate code, because the idempotence * of the IPv4 multicast part of the BSD Sockets API must be preserved; * the effects of these options must be treated as separate and distinct. * * SMPng: XXX: Unlocked read of inp_socket believed OK. * FUTURE: The IP_MULTICAST_VIF option may be eliminated if MROUTING * is refactored to no longer use vifs. */ int inp_setmoptions(struct inpcb *inp, struct sockopt *sopt) { struct ip_moptions *imo; int error; error = 0; /* * If socket is neither of type SOCK_RAW or SOCK_DGRAM, * or is a divert socket, reject it. */ if (inp->inp_socket->so_proto->pr_protocol == IPPROTO_DIVERT || (inp->inp_socket->so_proto->pr_type != SOCK_RAW && inp->inp_socket->so_proto->pr_type != SOCK_DGRAM)) return (EOPNOTSUPP); switch (sopt->sopt_name) { case IP_MULTICAST_VIF: { int vifi; /* * Select a multicast VIF for transmission. * Only useful if multicast forwarding is active. */ if (legal_vif_num == NULL) { error = EOPNOTSUPP; break; } error = sooptcopyin(sopt, &vifi, sizeof(int), sizeof(int)); if (error) break; if (!legal_vif_num(vifi) && (vifi != -1)) { error = EINVAL; break; } imo = inp_findmoptions(inp); imo->imo_multicast_vif = vifi; INP_WUNLOCK(inp); break; } case IP_MULTICAST_IF: error = inp_set_multicast_if(inp, sopt); break; case IP_MULTICAST_TTL: { u_char ttl; /* * Set the IP time-to-live for outgoing multicast packets. * The original multicast API required a char argument, * which is inconsistent with the rest of the socket API. * We allow either a char or an int. */ if (sopt->sopt_valsize == sizeof(u_char)) { error = sooptcopyin(sopt, &ttl, sizeof(u_char), sizeof(u_char)); if (error) break; } else { u_int ittl; error = sooptcopyin(sopt, &ittl, sizeof(u_int), sizeof(u_int)); if (error) break; if (ittl > 255) { error = EINVAL; break; } ttl = (u_char)ittl; } imo = inp_findmoptions(inp); imo->imo_multicast_ttl = ttl; INP_WUNLOCK(inp); break; } case IP_MULTICAST_LOOP: { u_char loop; /* * Set the loopback flag for outgoing multicast packets. * Must be zero or one. The original multicast API required a * char argument, which is inconsistent with the rest * of the socket API. We allow either a char or an int. */ if (sopt->sopt_valsize == sizeof(u_char)) { error = sooptcopyin(sopt, &loop, sizeof(u_char), sizeof(u_char)); if (error) break; } else { u_int iloop; error = sooptcopyin(sopt, &iloop, sizeof(u_int), sizeof(u_int)); if (error) break; loop = (u_char)iloop; } imo = inp_findmoptions(inp); imo->imo_multicast_loop = !!loop; INP_WUNLOCK(inp); break; } case IP_ADD_MEMBERSHIP: case IP_ADD_SOURCE_MEMBERSHIP: case MCAST_JOIN_GROUP: case MCAST_JOIN_SOURCE_GROUP: error = inp_join_group(inp, sopt); break; case IP_DROP_MEMBERSHIP: case IP_DROP_SOURCE_MEMBERSHIP: case MCAST_LEAVE_GROUP: case MCAST_LEAVE_SOURCE_GROUP: error = inp_leave_group(inp, sopt); break; case IP_BLOCK_SOURCE: case IP_UNBLOCK_SOURCE: case MCAST_BLOCK_SOURCE: case MCAST_UNBLOCK_SOURCE: error = inp_block_unblock_source(inp, sopt); break; case IP_MSFILTER: error = inp_set_source_filters(inp, sopt); break; default: error = EOPNOTSUPP; break; } INP_UNLOCK_ASSERT(inp); return (error); } /* * Expose IGMP's multicast filter mode and source list(s) to userland, * keyed by (ifindex, group). * The filter mode is written out as a uint32_t, followed by * 0..n of struct in_addr. * For use by ifmcstat(8). * SMPng: NOTE: unlocked read of ifindex space. */ static int sysctl_ip_mcast_filters(SYSCTL_HANDLER_ARGS) { struct in_addr src, group; struct epoch_tracker et; struct ifnet *ifp; struct ifmultiaddr *ifma; struct in_multi *inm; struct ip_msource *ims; int *name; int retval; u_int namelen; uint32_t fmode, ifindex; name = (int *)arg1; namelen = arg2; if (req->newptr != NULL) return (EPERM); if (namelen != 2) return (EINVAL); ifindex = name[0]; if (ifindex <= 0 || ifindex > V_if_index) { CTR2(KTR_IGMPV3, "%s: ifindex %u out of range", __func__, ifindex); return (ENOENT); } group.s_addr = name[1]; if (!IN_MULTICAST(ntohl(group.s_addr))) { CTR2(KTR_IGMPV3, "%s: group 0x%08x is not multicast", __func__, ntohl(group.s_addr)); return (EINVAL); } NET_EPOCH_ENTER(et); ifp = ifnet_byindex(ifindex); if (ifp == NULL) { NET_EPOCH_EXIT(et); CTR2(KTR_IGMPV3, "%s: no ifp for ifindex %u", __func__, ifindex); return (ENOENT); } retval = sysctl_wire_old_buffer(req, sizeof(uint32_t) + (in_mcast_maxgrpsrc * sizeof(struct in_addr))); if (retval) { NET_EPOCH_EXIT(et); return (retval); } IN_MULTI_LIST_LOCK(); CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { if (ifma->ifma_addr->sa_family != AF_INET || ifma->ifma_protospec == NULL) continue; inm = (struct in_multi *)ifma->ifma_protospec; if (!in_hosteq(inm->inm_addr, group)) continue; fmode = inm->inm_st[1].iss_fmode; retval = SYSCTL_OUT(req, &fmode, sizeof(uint32_t)); if (retval != 0) break; RB_FOREACH(ims, ip_msource_tree, &inm->inm_srcs) { CTR2(KTR_IGMPV3, "%s: visit node 0x%08x", __func__, ims->ims_haddr); /* * Only copy-out sources which are in-mode. */ if (fmode != ims_get_mode(inm, ims, 1)) { CTR1(KTR_IGMPV3, "%s: skip non-in-mode", __func__); continue; } src.s_addr = htonl(ims->ims_haddr); retval = SYSCTL_OUT(req, &src, sizeof(struct in_addr)); if (retval != 0) break; } } IN_MULTI_LIST_UNLOCK(); NET_EPOCH_EXIT(et); return (retval); } #if defined(KTR) && (KTR_COMPILE & KTR_IGMPV3) static const char *inm_modestrs[] = { [MCAST_UNDEFINED] = "un", [MCAST_INCLUDE] = "in", [MCAST_EXCLUDE] = "ex", }; _Static_assert(MCAST_UNDEFINED == 0 && MCAST_EXCLUDE + 1 == nitems(inm_modestrs), "inm_modestrs: no longer matches #defines"); static const char * inm_mode_str(const int mode) { if (mode >= MCAST_UNDEFINED && mode <= MCAST_EXCLUDE) return (inm_modestrs[mode]); return ("??"); } static const char *inm_statestrs[] = { [IGMP_NOT_MEMBER] = "not-member", [IGMP_SILENT_MEMBER] = "silent", [IGMP_REPORTING_MEMBER] = "reporting", [IGMP_IDLE_MEMBER] = "idle", [IGMP_LAZY_MEMBER] = "lazy", [IGMP_SLEEPING_MEMBER] = "sleeping", [IGMP_AWAKENING_MEMBER] = "awakening", [IGMP_G_QUERY_PENDING_MEMBER] = "query-pending", [IGMP_SG_QUERY_PENDING_MEMBER] = "sg-query-pending", [IGMP_LEAVING_MEMBER] = "leaving", }; _Static_assert(IGMP_NOT_MEMBER == 0 && IGMP_LEAVING_MEMBER + 1 == nitems(inm_statestrs), "inm_statetrs: no longer matches #defines"); static const char * inm_state_str(const int state) { if (state >= IGMP_NOT_MEMBER && state <= IGMP_LEAVING_MEMBER) return (inm_statestrs[state]); return ("??"); } /* * Dump an in_multi structure to the console. */ void inm_print(const struct in_multi *inm) { int t; char addrbuf[INET_ADDRSTRLEN]; if ((ktr_mask & KTR_IGMPV3) == 0) return; printf("%s: --- begin inm %p ---\n", __func__, inm); printf("addr %s ifp %p(%s) ifma %p\n", inet_ntoa_r(inm->inm_addr, addrbuf), inm->inm_ifp, inm->inm_ifp->if_xname, inm->inm_ifma); printf("timer %u state %s refcount %u scq.len %u\n", inm->inm_timer, inm_state_str(inm->inm_state), inm->inm_refcount, inm->inm_scq.mq_len); printf("igi %p nsrc %lu sctimer %u scrv %u\n", inm->inm_igi, inm->inm_nsrc, inm->inm_sctimer, inm->inm_scrv); for (t = 0; t < 2; t++) { printf("t%d: fmode %s asm %u ex %u in %u rec %u\n", t, inm_mode_str(inm->inm_st[t].iss_fmode), inm->inm_st[t].iss_asm, inm->inm_st[t].iss_ex, inm->inm_st[t].iss_in, inm->inm_st[t].iss_rec); } printf("%s: --- end inm %p ---\n", __func__, inm); } #else /* !KTR || !(KTR_COMPILE & KTR_IGMPV3) */ void inm_print(const struct in_multi *inm) { } #endif /* KTR && (KTR_COMPILE & KTR_IGMPV3) */ RB_GENERATE(ip_msource_tree, ip_msource, ims_link, ip_msource_cmp); diff --git a/sys/netinet/in_pcb.c b/sys/netinet/in_pcb.c index 04d34b022772..189f73028198 100644 --- a/sys/netinet/in_pcb.c +++ b/sys/netinet/in_pcb.c @@ -1,3582 +1,3574 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 1982, 1986, 1991, 1993, 1995 * The Regents of the University of California. * Copyright (c) 2007-2009 Robert N. M. Watson * Copyright (c) 2010-2011 Juniper Networks, Inc. * All rights reserved. * * Portions of this software were developed by Robert N. M. Watson under * contract to Juniper Networks, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)in_pcb.c 8.4 (Berkeley) 5/24/95 */ #include __FBSDID("$FreeBSD$"); #include "opt_ddb.h" #include "opt_ipsec.h" #include "opt_inet.h" #include "opt_inet6.h" #include "opt_ratelimit.h" #include "opt_pcbgroup.h" #include "opt_route.h" #include "opt_rss.h" #include #include #include #include #include #include #include #include #include -#include #include #include #include #include #include #include #include #include #include #include #ifdef DDB #include #endif #include #include #include #include #include #include #include #include #include #if defined(INET) || defined(INET6) #include #include #ifdef INET #include #include #endif #include #include #ifdef TCPHPTS #include #endif #include #include #ifdef INET6 #include #include #include #include #endif /* INET6 */ #include #endif #include #include #define INPCBLBGROUP_SIZMIN 8 #define INPCBLBGROUP_SIZMAX 256 static struct callout ipport_tick_callout; /* * These configure the range of local port addresses assigned to * "unspecified" outgoing connections/packets/whatever. */ VNET_DEFINE(int, ipport_lowfirstauto) = IPPORT_RESERVED - 1; /* 1023 */ VNET_DEFINE(int, ipport_lowlastauto) = IPPORT_RESERVEDSTART; /* 600 */ VNET_DEFINE(int, ipport_firstauto) = IPPORT_EPHEMERALFIRST; /* 10000 */ VNET_DEFINE(int, ipport_lastauto) = IPPORT_EPHEMERALLAST; /* 65535 */ VNET_DEFINE(int, ipport_hifirstauto) = IPPORT_HIFIRSTAUTO; /* 49152 */ VNET_DEFINE(int, ipport_hilastauto) = IPPORT_HILASTAUTO; /* 65535 */ /* * Reserved ports accessible only to root. There are significant * security considerations that must be accounted for when changing these, * but the security benefits can be great. Please be careful. */ VNET_DEFINE(int, ipport_reservedhigh) = IPPORT_RESERVED - 1; /* 1023 */ VNET_DEFINE(int, ipport_reservedlow); /* Variables dealing with random ephemeral port allocation. */ VNET_DEFINE(int, ipport_randomized) = 1; /* user controlled via sysctl */ VNET_DEFINE(int, ipport_randomcps) = 10; /* user controlled via sysctl */ VNET_DEFINE(int, ipport_randomtime) = 45; /* user controlled via sysctl */ VNET_DEFINE(int, ipport_stoprandom); /* toggled by ipport_tick */ VNET_DEFINE(int, ipport_tcpallocs); VNET_DEFINE_STATIC(int, ipport_tcplastcount); #define V_ipport_tcplastcount VNET(ipport_tcplastcount) static void in_pcbremlists(struct inpcb *inp); #ifdef INET static struct inpcb *in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags, struct ifnet *ifp, uint8_t numa_domain); #define RANGECHK(var, min, max) \ if ((var) < (min)) { (var) = (min); } \ else if ((var) > (max)) { (var) = (max); } static int sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS) { int error; error = sysctl_handle_int(oidp, arg1, arg2, req); if (error == 0) { RANGECHK(V_ipport_lowfirstauto, 1, IPPORT_RESERVED - 1); RANGECHK(V_ipport_lowlastauto, 1, IPPORT_RESERVED - 1); RANGECHK(V_ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX); RANGECHK(V_ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX); RANGECHK(V_ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX); RANGECHK(V_ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX); } return (error); } #undef RANGECHK static SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, "IP Ports"); SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst, CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &VNET_NAME(ipport_lowfirstauto), 0, &sysctl_net_ipport_check, "I", ""); SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast, CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &VNET_NAME(ipport_lowlastauto), 0, &sysctl_net_ipport_check, "I", ""); SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, first, CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &VNET_NAME(ipport_firstauto), 0, &sysctl_net_ipport_check, "I", ""); SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, last, CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &VNET_NAME(ipport_lastauto), 0, &sysctl_net_ipport_check, "I", ""); SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst, CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &VNET_NAME(ipport_hifirstauto), 0, &sysctl_net_ipport_check, "I", ""); SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hilast, CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &VNET_NAME(ipport_hilastauto), 0, &sysctl_net_ipport_check, "I", ""); SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh, CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE, &VNET_NAME(ipport_reservedhigh), 0, ""); SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow, CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedlow), 0, ""); SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomized, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ipport_randomized), 0, "Enable random port allocation"); SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomcps, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ipport_randomcps), 0, "Maximum number of random port " "allocations before switching to a sequental one"); SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomtime, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ipport_randomtime), 0, "Minimum time to keep sequental port " "allocation before switching to a random one"); #ifdef RATELIMIT counter_u64_t rate_limit_new; counter_u64_t rate_limit_chg; counter_u64_t rate_limit_active; counter_u64_t rate_limit_alloc_fail; counter_u64_t rate_limit_set_ok; static SYSCTL_NODE(_net_inet_ip, OID_AUTO, rl, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "IP Rate Limiting"); SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, active, CTLFLAG_RD, &rate_limit_active, "Active rate limited connections"); SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, alloc_fail, CTLFLAG_RD, &rate_limit_alloc_fail, "Rate limited connection failures"); SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, set_ok, CTLFLAG_RD, &rate_limit_set_ok, "Rate limited setting succeeded"); SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, newrl, CTLFLAG_RD, &rate_limit_new, "Total Rate limit new attempts"); SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, chgrl, CTLFLAG_RD, &rate_limit_chg, "Total Rate limited change attempts"); #endif /* RATELIMIT */ #endif /* INET */ /* * in_pcb.c: manage the Protocol Control Blocks. * * NOTE: It is assumed that most of these functions will be called with * the pcbinfo lock held, and often, the inpcb lock held, as these utility * functions often modify hash chains or addresses in pcbs. */ static struct inpcblbgroup * in_pcblbgroup_alloc(struct inpcblbgrouphead *hdr, u_char vflag, uint16_t port, const union in_dependaddr *addr, int size, uint8_t numa_domain) { struct inpcblbgroup *grp; size_t bytes; bytes = __offsetof(struct inpcblbgroup, il_inp[size]); grp = malloc(bytes, M_PCB, M_ZERO | M_NOWAIT); if (!grp) return (NULL); grp->il_vflag = vflag; grp->il_lport = port; grp->il_numa_domain = numa_domain; grp->il_dependladdr = *addr; grp->il_inpsiz = size; CK_LIST_INSERT_HEAD(hdr, grp, il_list); return (grp); } static void in_pcblbgroup_free_deferred(epoch_context_t ctx) { struct inpcblbgroup *grp; grp = __containerof(ctx, struct inpcblbgroup, il_epoch_ctx); free(grp, M_PCB); } static void in_pcblbgroup_free(struct inpcblbgroup *grp) { CK_LIST_REMOVE(grp, il_list); NET_EPOCH_CALL(in_pcblbgroup_free_deferred, &grp->il_epoch_ctx); } static struct inpcblbgroup * in_pcblbgroup_resize(struct inpcblbgrouphead *hdr, struct inpcblbgroup *old_grp, int size) { struct inpcblbgroup *grp; int i; grp = in_pcblbgroup_alloc(hdr, old_grp->il_vflag, old_grp->il_lport, &old_grp->il_dependladdr, size, old_grp->il_numa_domain); if (grp == NULL) return (NULL); KASSERT(old_grp->il_inpcnt < grp->il_inpsiz, ("invalid new local group size %d and old local group count %d", grp->il_inpsiz, old_grp->il_inpcnt)); for (i = 0; i < old_grp->il_inpcnt; ++i) grp->il_inp[i] = old_grp->il_inp[i]; grp->il_inpcnt = old_grp->il_inpcnt; in_pcblbgroup_free(old_grp); return (grp); } /* * PCB at index 'i' is removed from the group. Pull up the ones below il_inp[i] * and shrink group if possible. */ static void in_pcblbgroup_reorder(struct inpcblbgrouphead *hdr, struct inpcblbgroup **grpp, int i) { struct inpcblbgroup *grp, *new_grp; grp = *grpp; for (; i + 1 < grp->il_inpcnt; ++i) grp->il_inp[i] = grp->il_inp[i + 1]; grp->il_inpcnt--; if (grp->il_inpsiz > INPCBLBGROUP_SIZMIN && grp->il_inpcnt <= grp->il_inpsiz / 4) { /* Shrink this group. */ new_grp = in_pcblbgroup_resize(hdr, grp, grp->il_inpsiz / 2); if (new_grp != NULL) *grpp = new_grp; } } /* * Add PCB to load balance group for SO_REUSEPORT_LB option. */ static int in_pcbinslbgrouphash(struct inpcb *inp, uint8_t numa_domain) { const static struct timeval interval = { 60, 0 }; static struct timeval lastprint; struct inpcbinfo *pcbinfo; struct inpcblbgrouphead *hdr; struct inpcblbgroup *grp; uint32_t idx; pcbinfo = inp->inp_pcbinfo; INP_WLOCK_ASSERT(inp); INP_HASH_WLOCK_ASSERT(pcbinfo); /* * Don't allow jailed socket to join local group. */ if (inp->inp_socket != NULL && jailed(inp->inp_socket->so_cred)) return (0); #ifdef INET6 /* * Don't allow IPv4 mapped INET6 wild socket. */ if ((inp->inp_vflag & INP_IPV4) && inp->inp_laddr.s_addr == INADDR_ANY && INP_CHECK_SOCKAF(inp->inp_socket, AF_INET6)) { return (0); } #endif idx = INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask); hdr = &pcbinfo->ipi_lbgrouphashbase[idx]; CK_LIST_FOREACH(grp, hdr, il_list) { if (grp->il_vflag == inp->inp_vflag && grp->il_lport == inp->inp_lport && grp->il_numa_domain == numa_domain && memcmp(&grp->il_dependladdr, &inp->inp_inc.inc_ie.ie_dependladdr, sizeof(grp->il_dependladdr)) == 0) break; } if (grp == NULL) { /* Create new load balance group. */ grp = in_pcblbgroup_alloc(hdr, inp->inp_vflag, inp->inp_lport, &inp->inp_inc.inc_ie.ie_dependladdr, INPCBLBGROUP_SIZMIN, numa_domain); if (grp == NULL) return (ENOBUFS); } else if (grp->il_inpcnt == grp->il_inpsiz) { if (grp->il_inpsiz >= INPCBLBGROUP_SIZMAX) { if (ratecheck(&lastprint, &interval)) printf("lb group port %d, limit reached\n", ntohs(grp->il_lport)); return (0); } /* Expand this local group. */ grp = in_pcblbgroup_resize(hdr, grp, grp->il_inpsiz * 2); if (grp == NULL) return (ENOBUFS); } KASSERT(grp->il_inpcnt < grp->il_inpsiz, ("invalid local group size %d and count %d", grp->il_inpsiz, grp->il_inpcnt)); grp->il_inp[grp->il_inpcnt] = inp; grp->il_inpcnt++; return (0); } /* * Remove PCB from load balance group. */ static void in_pcbremlbgrouphash(struct inpcb *inp) { struct inpcbinfo *pcbinfo; struct inpcblbgrouphead *hdr; struct inpcblbgroup *grp; int i; pcbinfo = inp->inp_pcbinfo; INP_WLOCK_ASSERT(inp); INP_HASH_WLOCK_ASSERT(pcbinfo); hdr = &pcbinfo->ipi_lbgrouphashbase[ INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask)]; CK_LIST_FOREACH(grp, hdr, il_list) { for (i = 0; i < grp->il_inpcnt; ++i) { if (grp->il_inp[i] != inp) continue; if (grp->il_inpcnt == 1) { /* We are the last, free this local group. */ in_pcblbgroup_free(grp); } else { /* Pull up inpcbs, shrink group if possible. */ in_pcblbgroup_reorder(hdr, &grp, i); } return; } } } int in_pcblbgroup_numa(struct inpcb *inp, int arg) { struct inpcbinfo *pcbinfo; struct inpcblbgrouphead *hdr; struct inpcblbgroup *grp; int err, i; uint8_t numa_domain; switch (arg) { case TCP_REUSPORT_LB_NUMA_NODOM: numa_domain = M_NODOM; break; case TCP_REUSPORT_LB_NUMA_CURDOM: numa_domain = PCPU_GET(domain); break; default: if (arg < 0 || arg >= vm_ndomains) return (EINVAL); numa_domain = arg; } err = 0; pcbinfo = inp->inp_pcbinfo; INP_WLOCK_ASSERT(inp); INP_HASH_WLOCK(pcbinfo); hdr = &pcbinfo->ipi_lbgrouphashbase[ INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask)]; CK_LIST_FOREACH(grp, hdr, il_list) { for (i = 0; i < grp->il_inpcnt; ++i) { if (grp->il_inp[i] != inp) continue; if (grp->il_numa_domain == numa_domain) { goto abort_with_hash_wlock; } /* Remove it from the old group. */ in_pcbremlbgrouphash(inp); /* Add it to the new group based on numa domain. */ in_pcbinslbgrouphash(inp, numa_domain); goto abort_with_hash_wlock; } } err = ENOENT; abort_with_hash_wlock: INP_HASH_WUNLOCK(pcbinfo); return (err); } /* * Different protocols initialize their inpcbs differently - giving * different name to the lock. But they all are disposed the same. */ static void inpcb_fini(void *mem, int size) { struct inpcb *inp = mem; INP_LOCK_DESTROY(inp); } /* * Initialize an inpcbinfo -- we should be able to reduce the number of * arguments in time. */ void in_pcbinfo_init(struct inpcbinfo *pcbinfo, const char *name, struct inpcbhead *listhead, int hash_nelements, int porthash_nelements, char *inpcbzone_name, uma_init inpcbzone_init, u_int hashfields) { porthash_nelements = imin(porthash_nelements, IPPORT_MAX + 1); INP_INFO_LOCK_INIT(pcbinfo, name); INP_HASH_LOCK_INIT(pcbinfo, "pcbinfohash"); /* XXXRW: argument? */ INP_LIST_LOCK_INIT(pcbinfo, "pcbinfolist"); #ifdef VIMAGE pcbinfo->ipi_vnet = curvnet; #endif pcbinfo->ipi_listhead = listhead; CK_LIST_INIT(pcbinfo->ipi_listhead); pcbinfo->ipi_count = 0; pcbinfo->ipi_hashbase = hashinit(hash_nelements, M_PCB, &pcbinfo->ipi_hashmask); pcbinfo->ipi_porthashbase = hashinit(porthash_nelements, M_PCB, &pcbinfo->ipi_porthashmask); pcbinfo->ipi_lbgrouphashbase = hashinit(porthash_nelements, M_PCB, &pcbinfo->ipi_lbgrouphashmask); #ifdef PCBGROUP in_pcbgroup_init(pcbinfo, hashfields, hash_nelements); #endif pcbinfo->ipi_zone = uma_zcreate(inpcbzone_name, sizeof(struct inpcb), NULL, NULL, inpcbzone_init, inpcb_fini, UMA_ALIGN_PTR, 0); uma_zone_set_max(pcbinfo->ipi_zone, maxsockets); uma_zone_set_warning(pcbinfo->ipi_zone, "kern.ipc.maxsockets limit reached"); } /* * Destroy an inpcbinfo. */ void in_pcbinfo_destroy(struct inpcbinfo *pcbinfo) { KASSERT(pcbinfo->ipi_count == 0, ("%s: ipi_count = %u", __func__, pcbinfo->ipi_count)); hashdestroy(pcbinfo->ipi_hashbase, M_PCB, pcbinfo->ipi_hashmask); hashdestroy(pcbinfo->ipi_porthashbase, M_PCB, pcbinfo->ipi_porthashmask); hashdestroy(pcbinfo->ipi_lbgrouphashbase, M_PCB, pcbinfo->ipi_lbgrouphashmask); #ifdef PCBGROUP in_pcbgroup_destroy(pcbinfo); #endif uma_zdestroy(pcbinfo->ipi_zone); INP_LIST_LOCK_DESTROY(pcbinfo); INP_HASH_LOCK_DESTROY(pcbinfo); INP_INFO_LOCK_DESTROY(pcbinfo); } /* * Allocate a PCB and associate it with the socket. * On success return with the PCB locked. */ int in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo) { struct inpcb *inp; int error; error = 0; inp = uma_zalloc(pcbinfo->ipi_zone, M_NOWAIT); if (inp == NULL) return (ENOBUFS); bzero(&inp->inp_start_zero, inp_zero_size); #ifdef NUMA inp->inp_numa_domain = M_NODOM; #endif inp->inp_pcbinfo = pcbinfo; inp->inp_socket = so; inp->inp_cred = crhold(so->so_cred); inp->inp_inc.inc_fibnum = so->so_fibnum; #ifdef MAC error = mac_inpcb_init(inp, M_NOWAIT); if (error != 0) goto out; mac_inpcb_create(so, inp); #endif #if defined(IPSEC) || defined(IPSEC_SUPPORT) error = ipsec_init_pcbpolicy(inp); if (error != 0) { #ifdef MAC mac_inpcb_destroy(inp); #endif goto out; } #endif /*IPSEC*/ #ifdef INET6 if (INP_SOCKAF(so) == AF_INET6) { inp->inp_vflag |= INP_IPV6PROTO; if (V_ip6_v6only) inp->inp_flags |= IN6P_IPV6_V6ONLY; } #endif INP_WLOCK(inp); INP_LIST_WLOCK(pcbinfo); CK_LIST_INSERT_HEAD(pcbinfo->ipi_listhead, inp, inp_list); pcbinfo->ipi_count++; so->so_pcb = (caddr_t)inp; #ifdef INET6 if (V_ip6_auto_flowlabel) inp->inp_flags |= IN6P_AUTOFLOWLABEL; #endif inp->inp_gencnt = ++pcbinfo->ipi_gencnt; refcount_init(&inp->inp_refcount, 1); /* Reference from inpcbinfo */ /* * Routes in inpcb's can cache L2 as well; they are guaranteed * to be cleaned up. */ inp->inp_route.ro_flags = RT_LLE_CACHE; INP_LIST_WUNLOCK(pcbinfo); #if defined(IPSEC) || defined(IPSEC_SUPPORT) || defined(MAC) out: if (error != 0) { crfree(inp->inp_cred); uma_zfree(pcbinfo->ipi_zone, inp); } #endif return (error); } #ifdef INET int in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred) { int anonport, error; KASSERT(nam == NULL || nam->sa_family == AF_INET, ("%s: invalid address family for %p", __func__, nam)); KASSERT(nam == NULL || nam->sa_len == sizeof(struct sockaddr_in), ("%s: invalid address length for %p", __func__, nam)); INP_WLOCK_ASSERT(inp); INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY) return (EINVAL); anonport = nam == NULL || ((struct sockaddr_in *)nam)->sin_port == 0; error = in_pcbbind_setup(inp, nam, &inp->inp_laddr.s_addr, &inp->inp_lport, cred); if (error) return (error); if (in_pcbinshash(inp) != 0) { inp->inp_laddr.s_addr = INADDR_ANY; inp->inp_lport = 0; return (EAGAIN); } if (anonport) inp->inp_flags |= INP_ANONPORT; return (0); } #endif #if defined(INET) || defined(INET6) /* * Assign a local port like in_pcb_lport(), but also used with connect() * and a foreign address and port. If fsa is non-NULL, choose a local port * that is unused with those, otherwise one that is completely unused. * lsa can be NULL for IPv6. */ int in_pcb_lport_dest(struct inpcb *inp, struct sockaddr *lsa, u_short *lportp, struct sockaddr *fsa, u_short fport, struct ucred *cred, int lookupflags) { struct inpcbinfo *pcbinfo; struct inpcb *tmpinp; unsigned short *lastport; int count, dorandom, error; u_short aux, first, last, lport; #ifdef INET struct in_addr laddr, faddr; #endif #ifdef INET6 struct in6_addr *laddr6, *faddr6; #endif pcbinfo = inp->inp_pcbinfo; /* * Because no actual state changes occur here, a global write lock on * the pcbinfo isn't required. */ INP_LOCK_ASSERT(inp); INP_HASH_LOCK_ASSERT(pcbinfo); if (inp->inp_flags & INP_HIGHPORT) { first = V_ipport_hifirstauto; /* sysctl */ last = V_ipport_hilastauto; lastport = &pcbinfo->ipi_lasthi; } else if (inp->inp_flags & INP_LOWPORT) { error = priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT); if (error) return (error); first = V_ipport_lowfirstauto; /* 1023 */ last = V_ipport_lowlastauto; /* 600 */ lastport = &pcbinfo->ipi_lastlow; } else { first = V_ipport_firstauto; /* sysctl */ last = V_ipport_lastauto; lastport = &pcbinfo->ipi_lastport; } /* * For UDP(-Lite), use random port allocation as long as the user * allows it. For TCP (and as of yet unknown) connections, * use random port allocation only if the user allows it AND * ipport_tick() allows it. */ if (V_ipport_randomized && (!V_ipport_stoprandom || pcbinfo == &V_udbinfo || pcbinfo == &V_ulitecbinfo)) dorandom = 1; else dorandom = 0; /* * It makes no sense to do random port allocation if * we have the only port available. */ if (first == last) dorandom = 0; /* Make sure to not include UDP(-Lite) packets in the count. */ if (pcbinfo != &V_udbinfo || pcbinfo != &V_ulitecbinfo) V_ipport_tcpallocs++; /* * Instead of having two loops further down counting up or down * make sure that first is always <= last and go with only one * code path implementing all logic. */ if (first > last) { aux = first; first = last; last = aux; } #ifdef INET laddr.s_addr = INADDR_ANY; if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) { if (lsa != NULL) laddr = ((struct sockaddr_in *)lsa)->sin_addr; if (fsa != NULL) faddr = ((struct sockaddr_in *)fsa)->sin_addr; } #endif #ifdef INET6 laddr6 = NULL; if ((inp->inp_vflag & INP_IPV6) != 0) { if (lsa != NULL) laddr6 = &((struct sockaddr_in6 *)lsa)->sin6_addr; if (fsa != NULL) faddr6 = &((struct sockaddr_in6 *)fsa)->sin6_addr; } #endif tmpinp = NULL; lport = *lportp; if (dorandom) *lastport = first + (arc4random() % (last - first)); count = last - first; do { if (count-- < 0) /* completely used? */ return (EADDRNOTAVAIL); ++*lastport; if (*lastport < first || *lastport > last) *lastport = first; lport = htons(*lastport); if (fsa != NULL) { #ifdef INET if (lsa->sa_family == AF_INET) { tmpinp = in_pcblookup_hash_locked(pcbinfo, faddr, fport, laddr, lport, lookupflags, NULL, M_NODOM); } #endif #ifdef INET6 if (lsa->sa_family == AF_INET6) { tmpinp = in6_pcblookup_hash_locked(pcbinfo, faddr6, fport, laddr6, lport, lookupflags, NULL, M_NODOM); } #endif } else { #ifdef INET6 if ((inp->inp_vflag & INP_IPV6) != 0) tmpinp = in6_pcblookup_local(pcbinfo, &inp->in6p_laddr, lport, lookupflags, cred); #endif #if defined(INET) && defined(INET6) else #endif #ifdef INET tmpinp = in_pcblookup_local(pcbinfo, laddr, lport, lookupflags, cred); #endif } } while (tmpinp != NULL); *lportp = lport; return (0); } /* * Select a local port (number) to use. */ int in_pcb_lport(struct inpcb *inp, struct in_addr *laddrp, u_short *lportp, struct ucred *cred, int lookupflags) { struct sockaddr_in laddr; if (laddrp) { bzero(&laddr, sizeof(laddr)); laddr.sin_family = AF_INET; laddr.sin_addr = *laddrp; } return (in_pcb_lport_dest(inp, laddrp ? (struct sockaddr *) &laddr : NULL, lportp, NULL, 0, cred, lookupflags)); } /* * Return cached socket options. */ int inp_so_options(const struct inpcb *inp) { int so_options; so_options = 0; if ((inp->inp_flags2 & INP_REUSEPORT_LB) != 0) so_options |= SO_REUSEPORT_LB; if ((inp->inp_flags2 & INP_REUSEPORT) != 0) so_options |= SO_REUSEPORT; if ((inp->inp_flags2 & INP_REUSEADDR) != 0) so_options |= SO_REUSEADDR; return (so_options); } #endif /* INET || INET6 */ /* * Check if a new BINDMULTI socket is allowed to be created. * * ni points to the new inp. * oi points to the exisitng inp. * * This checks whether the existing inp also has BINDMULTI and * whether the credentials match. */ int in_pcbbind_check_bindmulti(const struct inpcb *ni, const struct inpcb *oi) { /* Check permissions match */ if ((ni->inp_flags2 & INP_BINDMULTI) && (ni->inp_cred->cr_uid != oi->inp_cred->cr_uid)) return (0); /* Check the existing inp has BINDMULTI set */ if ((ni->inp_flags2 & INP_BINDMULTI) && ((oi->inp_flags2 & INP_BINDMULTI) == 0)) return (0); /* * We're okay - either INP_BINDMULTI isn't set on ni, or * it is and it matches the checks. */ return (1); } #ifdef INET /* * Set up a bind operation on a PCB, performing port allocation * as required, but do not actually modify the PCB. Callers can * either complete the bind by setting inp_laddr/inp_lport and * calling in_pcbinshash(), or they can just use the resulting * port and address to authorise the sending of a once-off packet. * * On error, the values of *laddrp and *lportp are not changed. */ int in_pcbbind_setup(struct inpcb *inp, struct sockaddr *nam, in_addr_t *laddrp, u_short *lportp, struct ucred *cred) { struct socket *so = inp->inp_socket; struct sockaddr_in *sin; struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; struct in_addr laddr; u_short lport = 0; int lookupflags = 0, reuseport = (so->so_options & SO_REUSEPORT); int error; /* * XXX: Maybe we could let SO_REUSEPORT_LB set SO_REUSEPORT bit here * so that we don't have to add to the (already messy) code below. */ int reuseport_lb = (so->so_options & SO_REUSEPORT_LB); /* * No state changes, so read locks are sufficient here. */ INP_LOCK_ASSERT(inp); INP_HASH_LOCK_ASSERT(pcbinfo); if (CK_STAILQ_EMPTY(&V_in_ifaddrhead)) /* XXX broken! */ return (EADDRNOTAVAIL); laddr.s_addr = *laddrp; if (nam != NULL && laddr.s_addr != INADDR_ANY) return (EINVAL); if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT|SO_REUSEPORT_LB)) == 0) lookupflags = INPLOOKUP_WILDCARD; if (nam == NULL) { if ((error = prison_local_ip4(cred, &laddr)) != 0) return (error); } else { sin = (struct sockaddr_in *)nam; KASSERT(sin->sin_family == AF_INET, ("%s: invalid family for address %p", __func__, sin)); KASSERT(sin->sin_len == sizeof(*sin), ("%s: invalid length for address %p", __func__, sin)); error = prison_local_ip4(cred, &sin->sin_addr); if (error) return (error); if (sin->sin_port != *lportp) { /* Don't allow the port to change. */ if (*lportp != 0) return (EINVAL); lport = sin->sin_port; } /* NB: lport is left as 0 if the port isn't being changed. */ if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) { /* * Treat SO_REUSEADDR as SO_REUSEPORT for multicast; * allow complete duplication of binding if * SO_REUSEPORT is set, or if SO_REUSEADDR is set * and a multicast address is bound on both * new and duplicated sockets. */ if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) != 0) reuseport = SO_REUSEADDR|SO_REUSEPORT; /* * XXX: How to deal with SO_REUSEPORT_LB here? * Treat same as SO_REUSEPORT for now. */ if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT_LB)) != 0) reuseport_lb = SO_REUSEADDR|SO_REUSEPORT_LB; } else if (sin->sin_addr.s_addr != INADDR_ANY) { sin->sin_port = 0; /* yech... */ bzero(&sin->sin_zero, sizeof(sin->sin_zero)); /* * Is the address a local IP address? * If INP_BINDANY is set, then the socket may be bound * to any endpoint address, local or not. */ if ((inp->inp_flags & INP_BINDANY) == 0 && ifa_ifwithaddr_check((struct sockaddr *)sin) == 0) return (EADDRNOTAVAIL); } laddr = sin->sin_addr; if (lport) { struct inpcb *t; struct tcptw *tw; /* GROSS */ if (ntohs(lport) <= V_ipport_reservedhigh && ntohs(lport) >= V_ipport_reservedlow && priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT)) return (EACCES); if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) && priv_check_cred(inp->inp_cred, PRIV_NETINET_REUSEPORT) != 0) { t = in_pcblookup_local(pcbinfo, sin->sin_addr, lport, INPLOOKUP_WILDCARD, cred); /* * XXX * This entire block sorely needs a rewrite. */ if (t && ((inp->inp_flags2 & INP_BINDMULTI) == 0) && ((t->inp_flags & INP_TIMEWAIT) == 0) && (so->so_type != SOCK_STREAM || ntohl(t->inp_faddr.s_addr) == INADDR_ANY) && (ntohl(sin->sin_addr.s_addr) != INADDR_ANY || ntohl(t->inp_laddr.s_addr) != INADDR_ANY || (t->inp_flags2 & INP_REUSEPORT) || (t->inp_flags2 & INP_REUSEPORT_LB) == 0) && (inp->inp_cred->cr_uid != t->inp_cred->cr_uid)) return (EADDRINUSE); /* * If the socket is a BINDMULTI socket, then * the credentials need to match and the * original socket also has to have been bound * with BINDMULTI. */ if (t && (! in_pcbbind_check_bindmulti(inp, t))) return (EADDRINUSE); } t = in_pcblookup_local(pcbinfo, sin->sin_addr, lport, lookupflags, cred); if (t && (t->inp_flags & INP_TIMEWAIT)) { /* * XXXRW: If an incpb has had its timewait * state recycled, we treat the address as * being in use (for now). This is better * than a panic, but not desirable. */ tw = intotw(t); if (tw == NULL || ((reuseport & tw->tw_so_options) == 0 && (reuseport_lb & tw->tw_so_options) == 0)) { return (EADDRINUSE); } } else if (t && ((inp->inp_flags2 & INP_BINDMULTI) == 0) && (reuseport & inp_so_options(t)) == 0 && (reuseport_lb & inp_so_options(t)) == 0) { #ifdef INET6 if (ntohl(sin->sin_addr.s_addr) != INADDR_ANY || ntohl(t->inp_laddr.s_addr) != INADDR_ANY || (inp->inp_vflag & INP_IPV6PROTO) == 0 || (t->inp_vflag & INP_IPV6PROTO) == 0) #endif return (EADDRINUSE); if (t && (! in_pcbbind_check_bindmulti(inp, t))) return (EADDRINUSE); } } } if (*lportp != 0) lport = *lportp; if (lport == 0) { error = in_pcb_lport(inp, &laddr, &lport, cred, lookupflags); if (error != 0) return (error); } *laddrp = laddr.s_addr; *lportp = lport; return (0); } /* * Connect from a socket to a specified address. * Both address and port must be specified in argument sin. * If don't have a local address for this socket yet, * then pick one. */ int in_pcbconnect_mbuf(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred, struct mbuf *m, bool rehash) { u_short lport, fport; in_addr_t laddr, faddr; int anonport, error; INP_WLOCK_ASSERT(inp); INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); lport = inp->inp_lport; laddr = inp->inp_laddr.s_addr; anonport = (lport == 0); error = in_pcbconnect_setup(inp, nam, &laddr, &lport, &faddr, &fport, NULL, cred); if (error) return (error); /* Do the initial binding of the local address if required. */ if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) { KASSERT(rehash == true, ("Rehashing required for unbound inps")); inp->inp_lport = lport; inp->inp_laddr.s_addr = laddr; if (in_pcbinshash(inp) != 0) { inp->inp_laddr.s_addr = INADDR_ANY; inp->inp_lport = 0; return (EAGAIN); } } /* Commit the remaining changes. */ inp->inp_lport = lport; inp->inp_laddr.s_addr = laddr; inp->inp_faddr.s_addr = faddr; inp->inp_fport = fport; if (rehash) { in_pcbrehash_mbuf(inp, m); } else { in_pcbinshash_mbuf(inp, m); } if (anonport) inp->inp_flags |= INP_ANONPORT; return (0); } int in_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred) { return (in_pcbconnect_mbuf(inp, nam, cred, NULL, true)); } /* * Do proper source address selection on an unbound socket in case * of connect. Take jails into account as well. */ int in_pcbladdr(struct inpcb *inp, struct in_addr *faddr, struct in_addr *laddr, struct ucred *cred) { struct ifaddr *ifa; struct sockaddr *sa; struct sockaddr_in *sin, dst; struct nhop_object *nh; int error; NET_EPOCH_ASSERT(); KASSERT(laddr != NULL, ("%s: laddr NULL", __func__)); /* * Bypass source address selection and use the primary jail IP * if requested. */ if (cred != NULL && !prison_saddrsel_ip4(cred, laddr)) return (0); error = 0; nh = NULL; bzero(&dst, sizeof(dst)); sin = &dst; sin->sin_family = AF_INET; sin->sin_len = sizeof(struct sockaddr_in); sin->sin_addr.s_addr = faddr->s_addr; /* * If route is known our src addr is taken from the i/f, * else punt. * * Find out route to destination. */ if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0) nh = fib4_lookup(inp->inp_inc.inc_fibnum, *faddr, 0, NHR_NONE, 0); /* * If we found a route, use the address corresponding to * the outgoing interface. * * Otherwise assume faddr is reachable on a directly connected * network and try to find a corresponding interface to take * the source address from. */ if (nh == NULL || nh->nh_ifp == NULL) { struct in_ifaddr *ia; struct ifnet *ifp; ia = ifatoia(ifa_ifwithdstaddr((struct sockaddr *)sin, inp->inp_socket->so_fibnum)); if (ia == NULL) { ia = ifatoia(ifa_ifwithnet((struct sockaddr *)sin, 0, inp->inp_socket->so_fibnum)); } if (ia == NULL) { error = ENETUNREACH; goto done; } if (cred == NULL || !prison_flag(cred, PR_IP4)) { laddr->s_addr = ia->ia_addr.sin_addr.s_addr; goto done; } ifp = ia->ia_ifp; ia = NULL; CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { sa = ifa->ifa_addr; if (sa->sa_family != AF_INET) continue; sin = (struct sockaddr_in *)sa; if (prison_check_ip4(cred, &sin->sin_addr) == 0) { ia = (struct in_ifaddr *)ifa; break; } } if (ia != NULL) { laddr->s_addr = ia->ia_addr.sin_addr.s_addr; goto done; } /* 3. As a last resort return the 'default' jail address. */ error = prison_get_ip4(cred, laddr); goto done; } /* * If the outgoing interface on the route found is not * a loopback interface, use the address from that interface. * In case of jails do those three steps: * 1. check if the interface address belongs to the jail. If so use it. * 2. check if we have any address on the outgoing interface * belonging to this jail. If so use it. * 3. as a last resort return the 'default' jail address. */ if ((nh->nh_ifp->if_flags & IFF_LOOPBACK) == 0) { struct in_ifaddr *ia; struct ifnet *ifp; /* If not jailed, use the default returned. */ if (cred == NULL || !prison_flag(cred, PR_IP4)) { ia = (struct in_ifaddr *)nh->nh_ifa; laddr->s_addr = ia->ia_addr.sin_addr.s_addr; goto done; } /* Jailed. */ /* 1. Check if the iface address belongs to the jail. */ sin = (struct sockaddr_in *)nh->nh_ifa->ifa_addr; if (prison_check_ip4(cred, &sin->sin_addr) == 0) { ia = (struct in_ifaddr *)nh->nh_ifa; laddr->s_addr = ia->ia_addr.sin_addr.s_addr; goto done; } /* * 2. Check if we have any address on the outgoing interface * belonging to this jail. */ ia = NULL; ifp = nh->nh_ifp; CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { sa = ifa->ifa_addr; if (sa->sa_family != AF_INET) continue; sin = (struct sockaddr_in *)sa; if (prison_check_ip4(cred, &sin->sin_addr) == 0) { ia = (struct in_ifaddr *)ifa; break; } } if (ia != NULL) { laddr->s_addr = ia->ia_addr.sin_addr.s_addr; goto done; } /* 3. As a last resort return the 'default' jail address. */ error = prison_get_ip4(cred, laddr); goto done; } /* * The outgoing interface is marked with 'loopback net', so a route * to ourselves is here. * Try to find the interface of the destination address and then * take the address from there. That interface is not necessarily * a loopback interface. * In case of jails, check that it is an address of the jail * and if we cannot find, fall back to the 'default' jail address. */ if ((nh->nh_ifp->if_flags & IFF_LOOPBACK) != 0) { struct in_ifaddr *ia; ia = ifatoia(ifa_ifwithdstaddr(sintosa(&dst), inp->inp_socket->so_fibnum)); if (ia == NULL) ia = ifatoia(ifa_ifwithnet(sintosa(&dst), 0, inp->inp_socket->so_fibnum)); if (ia == NULL) ia = ifatoia(ifa_ifwithaddr(sintosa(&dst))); if (cred == NULL || !prison_flag(cred, PR_IP4)) { if (ia == NULL) { error = ENETUNREACH; goto done; } laddr->s_addr = ia->ia_addr.sin_addr.s_addr; goto done; } /* Jailed. */ if (ia != NULL) { struct ifnet *ifp; ifp = ia->ia_ifp; ia = NULL; CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { sa = ifa->ifa_addr; if (sa->sa_family != AF_INET) continue; sin = (struct sockaddr_in *)sa; if (prison_check_ip4(cred, &sin->sin_addr) == 0) { ia = (struct in_ifaddr *)ifa; break; } } if (ia != NULL) { laddr->s_addr = ia->ia_addr.sin_addr.s_addr; goto done; } } /* 3. As a last resort return the 'default' jail address. */ error = prison_get_ip4(cred, laddr); goto done; } done: return (error); } /* * Set up for a connect from a socket to the specified address. * On entry, *laddrp and *lportp should contain the current local * address and port for the PCB; these are updated to the values * that should be placed in inp_laddr and inp_lport to complete * the connect. * * On success, *faddrp and *fportp will be set to the remote address * and port. These are not updated in the error case. * * If the operation fails because the connection already exists, * *oinpp will be set to the PCB of that connection so that the * caller can decide to override it. In all other cases, *oinpp * is set to NULL. */ int in_pcbconnect_setup(struct inpcb *inp, struct sockaddr *nam, in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp, struct inpcb **oinpp, struct ucred *cred) { - struct rm_priotracker in_ifa_tracker; struct sockaddr_in *sin = (struct sockaddr_in *)nam; struct in_ifaddr *ia; struct inpcb *oinp; struct in_addr laddr, faddr; u_short lport, fport; int error; KASSERT(sin->sin_family == AF_INET, ("%s: invalid address family for %p", __func__, sin)); KASSERT(sin->sin_len == sizeof(*sin), ("%s: invalid address length for %p", __func__, sin)); /* * Because a global state change doesn't actually occur here, a read * lock is sufficient. */ NET_EPOCH_ASSERT(); INP_LOCK_ASSERT(inp); INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo); if (oinpp != NULL) *oinpp = NULL; if (sin->sin_port == 0) return (EADDRNOTAVAIL); laddr.s_addr = *laddrp; lport = *lportp; faddr = sin->sin_addr; fport = sin->sin_port; #ifdef ROUTE_MPATH if (CALC_FLOWID_OUTBOUND) { uint32_t hash_val, hash_type; hash_val = fib4_calc_software_hash(laddr, faddr, 0, fport, inp->inp_socket->so_proto->pr_protocol, &hash_type); inp->inp_flowid = hash_val; inp->inp_flowtype = hash_type; } #endif if (!CK_STAILQ_EMPTY(&V_in_ifaddrhead)) { /* * If the destination address is INADDR_ANY, * use the primary local address. * If the supplied address is INADDR_BROADCAST, * and the primary interface supports broadcast, * choose the broadcast address for that interface. */ if (faddr.s_addr == INADDR_ANY) { - IN_IFADDR_RLOCK(&in_ifa_tracker); faddr = IA_SIN(CK_STAILQ_FIRST(&V_in_ifaddrhead))->sin_addr; - IN_IFADDR_RUNLOCK(&in_ifa_tracker); if (cred != NULL && (error = prison_get_ip4(cred, &faddr)) != 0) return (error); } else if (faddr.s_addr == (u_long)INADDR_BROADCAST) { - IN_IFADDR_RLOCK(&in_ifa_tracker); if (CK_STAILQ_FIRST(&V_in_ifaddrhead)->ia_ifp->if_flags & IFF_BROADCAST) faddr = satosin(&CK_STAILQ_FIRST( &V_in_ifaddrhead)->ia_broadaddr)->sin_addr; - IN_IFADDR_RUNLOCK(&in_ifa_tracker); } } if (laddr.s_addr == INADDR_ANY) { error = in_pcbladdr(inp, &faddr, &laddr, cred); /* * If the destination address is multicast and an outgoing * interface has been set as a multicast option, prefer the * address of that interface as our source address. */ if (IN_MULTICAST(ntohl(faddr.s_addr)) && inp->inp_moptions != NULL) { struct ip_moptions *imo; struct ifnet *ifp; imo = inp->inp_moptions; if (imo->imo_multicast_ifp != NULL) { ifp = imo->imo_multicast_ifp; - IN_IFADDR_RLOCK(&in_ifa_tracker); CK_STAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) { if ((ia->ia_ifp == ifp) && (cred == NULL || prison_check_ip4(cred, &ia->ia_addr.sin_addr) == 0)) break; } if (ia == NULL) error = EADDRNOTAVAIL; else { laddr = ia->ia_addr.sin_addr; error = 0; } - IN_IFADDR_RUNLOCK(&in_ifa_tracker); } } if (error) return (error); } if (lport != 0) { oinp = in_pcblookup_hash_locked(inp->inp_pcbinfo, faddr, fport, laddr, lport, 0, NULL, M_NODOM); if (oinp != NULL) { if (oinpp != NULL) *oinpp = oinp; return (EADDRINUSE); } } else { struct sockaddr_in lsin, fsin; bzero(&lsin, sizeof(lsin)); bzero(&fsin, sizeof(fsin)); lsin.sin_family = AF_INET; lsin.sin_addr = laddr; fsin.sin_family = AF_INET; fsin.sin_addr = faddr; error = in_pcb_lport_dest(inp, (struct sockaddr *) &lsin, &lport, (struct sockaddr *)& fsin, fport, cred, INPLOOKUP_WILDCARD); if (error) return (error); } *laddrp = laddr.s_addr; *lportp = lport; *faddrp = faddr.s_addr; *fportp = fport; return (0); } void in_pcbdisconnect(struct inpcb *inp) { INP_WLOCK_ASSERT(inp); INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); inp->inp_faddr.s_addr = INADDR_ANY; inp->inp_fport = 0; in_pcbrehash(inp); } #endif /* INET */ /* * in_pcbdetach() is responsibe for disassociating a socket from an inpcb. * For most protocols, this will be invoked immediately prior to calling * in_pcbfree(). However, with TCP the inpcb may significantly outlive the * socket, in which case in_pcbfree() is deferred. */ void in_pcbdetach(struct inpcb *inp) { KASSERT(inp->inp_socket != NULL, ("%s: inp_socket == NULL", __func__)); #ifdef RATELIMIT if (inp->inp_snd_tag != NULL) in_pcbdetach_txrtlmt(inp); #endif inp->inp_socket->so_pcb = NULL; inp->inp_socket = NULL; } /* * in_pcbref() bumps the reference count on an inpcb in order to maintain * stability of an inpcb pointer despite the inpcb lock being released. This * is used in TCP when the inpcbinfo lock needs to be acquired or upgraded, * but where the inpcb lock may already held, or when acquiring a reference * via a pcbgroup. * * in_pcbref() should be used only to provide brief memory stability, and * must always be followed by a call to INP_WLOCK() and in_pcbrele() to * garbage collect the inpcb if it has been in_pcbfree()'d from another * context. Until in_pcbrele() has returned that the inpcb is still valid, * lock and rele are the *only* safe operations that may be performed on the * inpcb. * * While the inpcb will not be freed, releasing the inpcb lock means that the * connection's state may change, so the caller should be careful to * revalidate any cached state on reacquiring the lock. Drop the reference * using in_pcbrele(). */ void in_pcbref(struct inpcb *inp) { KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__)); refcount_acquire(&inp->inp_refcount); } /* * Drop a refcount on an inpcb elevated using in_pcbref(); because a call to * in_pcbfree() may have been made between in_pcbref() and in_pcbrele(), we * return a flag indicating whether or not the inpcb remains valid. If it is * valid, we return with the inpcb lock held. * * Notice that, unlike in_pcbref(), the inpcb lock must be held to drop a * reference on an inpcb. Historically more work was done here (actually, in * in_pcbfree_internal()) but has been moved to in_pcbfree() to avoid the * need for the pcbinfo lock in in_pcbrele(). Deferring the free is entirely * about memory stability (and continued use of the write lock). */ int in_pcbrele_rlocked(struct inpcb *inp) { struct inpcbinfo *pcbinfo; KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__)); INP_RLOCK_ASSERT(inp); if (refcount_release(&inp->inp_refcount) == 0) { /* * If the inpcb has been freed, let the caller know, even if * this isn't the last reference. */ if (inp->inp_flags2 & INP_FREED) { INP_RUNLOCK(inp); return (1); } return (0); } KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__)); #ifdef TCPHPTS if (inp->inp_in_hpts || inp->inp_in_input) { struct tcp_hpts_entry *hpts; /* * We should not be on the hpts at * this point in any form. we must * get the lock to be sure. */ hpts = tcp_hpts_lock(inp); if (inp->inp_in_hpts) panic("Hpts:%p inp:%p at free still on hpts", hpts, inp); mtx_unlock(&hpts->p_mtx); hpts = tcp_input_lock(inp); if (inp->inp_in_input) panic("Hpts:%p inp:%p at free still on input hpts", hpts, inp); mtx_unlock(&hpts->p_mtx); } #endif INP_RUNLOCK(inp); pcbinfo = inp->inp_pcbinfo; uma_zfree(pcbinfo->ipi_zone, inp); return (1); } int in_pcbrele_wlocked(struct inpcb *inp) { struct inpcbinfo *pcbinfo; KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__)); INP_WLOCK_ASSERT(inp); if (refcount_release(&inp->inp_refcount) == 0) { /* * If the inpcb has been freed, let the caller know, even if * this isn't the last reference. */ if (inp->inp_flags2 & INP_FREED) { INP_WUNLOCK(inp); return (1); } return (0); } KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__)); #ifdef TCPHPTS if (inp->inp_in_hpts || inp->inp_in_input) { struct tcp_hpts_entry *hpts; /* * We should not be on the hpts at * this point in any form. we must * get the lock to be sure. */ hpts = tcp_hpts_lock(inp); if (inp->inp_in_hpts) panic("Hpts:%p inp:%p at free still on hpts", hpts, inp); mtx_unlock(&hpts->p_mtx); hpts = tcp_input_lock(inp); if (inp->inp_in_input) panic("Hpts:%p inp:%p at free still on input hpts", hpts, inp); mtx_unlock(&hpts->p_mtx); } #endif INP_WUNLOCK(inp); pcbinfo = inp->inp_pcbinfo; uma_zfree(pcbinfo->ipi_zone, inp); return (1); } /* * Temporary wrapper. */ int in_pcbrele(struct inpcb *inp) { return (in_pcbrele_wlocked(inp)); } void in_pcblist_rele_rlocked(epoch_context_t ctx) { struct in_pcblist *il; struct inpcb *inp; struct inpcbinfo *pcbinfo; int i, n; il = __containerof(ctx, struct in_pcblist, il_epoch_ctx); pcbinfo = il->il_pcbinfo; n = il->il_count; INP_INFO_WLOCK(pcbinfo); for (i = 0; i < n; i++) { inp = il->il_inp_list[i]; INP_RLOCK(inp); if (!in_pcbrele_rlocked(inp)) INP_RUNLOCK(inp); } INP_INFO_WUNLOCK(pcbinfo); free(il, M_TEMP); } static void inpcbport_free(epoch_context_t ctx) { struct inpcbport *phd; phd = __containerof(ctx, struct inpcbport, phd_epoch_ctx); free(phd, M_PCB); } static void in_pcbfree_deferred(epoch_context_t ctx) { struct inpcb *inp; int released __unused; inp = __containerof(ctx, struct inpcb, inp_epoch_ctx); INP_WLOCK(inp); CURVNET_SET(inp->inp_vnet); #ifdef INET struct ip_moptions *imo = inp->inp_moptions; inp->inp_moptions = NULL; #endif /* XXXRW: Do as much as possible here. */ #if defined(IPSEC) || defined(IPSEC_SUPPORT) if (inp->inp_sp != NULL) ipsec_delete_pcbpolicy(inp); #endif #ifdef INET6 struct ip6_moptions *im6o = NULL; if (inp->inp_vflag & INP_IPV6PROTO) { ip6_freepcbopts(inp->in6p_outputopts); im6o = inp->in6p_moptions; inp->in6p_moptions = NULL; } #endif if (inp->inp_options) (void)m_free(inp->inp_options); inp->inp_vflag = 0; crfree(inp->inp_cred); #ifdef MAC mac_inpcb_destroy(inp); #endif released = in_pcbrele_wlocked(inp); MPASS(released); #ifdef INET6 ip6_freemoptions(im6o); #endif #ifdef INET inp_freemoptions(imo); #endif CURVNET_RESTORE(); } /* * Unconditionally schedule an inpcb to be freed by decrementing its * reference count, which should occur only after the inpcb has been detached * from its socket. If another thread holds a temporary reference (acquired * using in_pcbref()) then the free is deferred until that reference is * released using in_pcbrele(), but the inpcb is still unlocked. Almost all * work, including removal from global lists, is done in this context, where * the pcbinfo lock is held. */ void in_pcbfree(struct inpcb *inp) { struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__)); KASSERT((inp->inp_flags2 & INP_FREED) == 0, ("%s: called twice for pcb %p", __func__, inp)); if (inp->inp_flags2 & INP_FREED) { INP_WUNLOCK(inp); return; } INP_WLOCK_ASSERT(inp); INP_LIST_WLOCK(pcbinfo); in_pcbremlists(inp); INP_LIST_WUNLOCK(pcbinfo); RO_INVALIDATE_CACHE(&inp->inp_route); /* mark as destruction in progress */ inp->inp_flags2 |= INP_FREED; INP_WUNLOCK(inp); NET_EPOCH_CALL(in_pcbfree_deferred, &inp->inp_epoch_ctx); } /* * in_pcbdrop() removes an inpcb from hashed lists, releasing its address and * port reservation, and preventing it from being returned by inpcb lookups. * * It is used by TCP to mark an inpcb as unused and avoid future packet * delivery or event notification when a socket remains open but TCP has * closed. This might occur as a result of a shutdown()-initiated TCP close * or a RST on the wire, and allows the port binding to be reused while still * maintaining the invariant that so_pcb always points to a valid inpcb until * in_pcbdetach(). * * XXXRW: Possibly in_pcbdrop() should also prevent future notifications by * in_pcbnotifyall() and in_pcbpurgeif0()? */ void in_pcbdrop(struct inpcb *inp) { INP_WLOCK_ASSERT(inp); #ifdef INVARIANTS if (inp->inp_socket != NULL && inp->inp_ppcb != NULL) MPASS(inp->inp_refcount > 1); #endif /* * XXXRW: Possibly we should protect the setting of INP_DROPPED with * the hash lock...? */ inp->inp_flags |= INP_DROPPED; if (inp->inp_flags & INP_INHASHLIST) { struct inpcbport *phd = inp->inp_phd; INP_HASH_WLOCK(inp->inp_pcbinfo); in_pcbremlbgrouphash(inp); CK_LIST_REMOVE(inp, inp_hash); CK_LIST_REMOVE(inp, inp_portlist); if (CK_LIST_FIRST(&phd->phd_pcblist) == NULL) { CK_LIST_REMOVE(phd, phd_hash); NET_EPOCH_CALL(inpcbport_free, &phd->phd_epoch_ctx); } INP_HASH_WUNLOCK(inp->inp_pcbinfo); inp->inp_flags &= ~INP_INHASHLIST; #ifdef PCBGROUP in_pcbgroup_remove(inp); #endif } } #ifdef INET /* * Common routines to return the socket addresses associated with inpcbs. */ struct sockaddr * in_sockaddr(in_port_t port, struct in_addr *addr_p) { struct sockaddr_in *sin; sin = malloc(sizeof *sin, M_SONAME, M_WAITOK | M_ZERO); sin->sin_family = AF_INET; sin->sin_len = sizeof(*sin); sin->sin_addr = *addr_p; sin->sin_port = port; return (struct sockaddr *)sin; } int in_getsockaddr(struct socket *so, struct sockaddr **nam) { struct inpcb *inp; struct in_addr addr; in_port_t port; inp = sotoinpcb(so); KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL")); INP_RLOCK(inp); port = inp->inp_lport; addr = inp->inp_laddr; INP_RUNLOCK(inp); *nam = in_sockaddr(port, &addr); return 0; } int in_getpeeraddr(struct socket *so, struct sockaddr **nam) { struct inpcb *inp; struct in_addr addr; in_port_t port; inp = sotoinpcb(so); KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL")); INP_RLOCK(inp); port = inp->inp_fport; addr = inp->inp_faddr; INP_RUNLOCK(inp); *nam = in_sockaddr(port, &addr); return 0; } void in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, int errno, struct inpcb *(*notify)(struct inpcb *, int)) { struct inpcb *inp, *inp_temp; INP_INFO_WLOCK(pcbinfo); CK_LIST_FOREACH_SAFE(inp, pcbinfo->ipi_listhead, inp_list, inp_temp) { INP_WLOCK(inp); #ifdef INET6 if ((inp->inp_vflag & INP_IPV4) == 0) { INP_WUNLOCK(inp); continue; } #endif if (inp->inp_faddr.s_addr != faddr.s_addr || inp->inp_socket == NULL) { INP_WUNLOCK(inp); continue; } if ((*notify)(inp, errno)) INP_WUNLOCK(inp); } INP_INFO_WUNLOCK(pcbinfo); } void in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp) { struct inpcb *inp; struct in_multi *inm; struct in_mfilter *imf; struct ip_moptions *imo; INP_INFO_WLOCK(pcbinfo); CK_LIST_FOREACH(inp, pcbinfo->ipi_listhead, inp_list) { INP_WLOCK(inp); imo = inp->inp_moptions; if ((inp->inp_vflag & INP_IPV4) && imo != NULL) { /* * Unselect the outgoing interface if it is being * detached. */ if (imo->imo_multicast_ifp == ifp) imo->imo_multicast_ifp = NULL; /* * Drop multicast group membership if we joined * through the interface being detached. * * XXX This can all be deferred to an epoch_call */ restart: IP_MFILTER_FOREACH(imf, &imo->imo_head) { if ((inm = imf->imf_inm) == NULL) continue; if (inm->inm_ifp != ifp) continue; ip_mfilter_remove(&imo->imo_head, imf); IN_MULTI_LOCK_ASSERT(); in_leavegroup_locked(inm, NULL); ip_mfilter_free(imf); goto restart; } } INP_WUNLOCK(inp); } INP_INFO_WUNLOCK(pcbinfo); } /* * Lookup a PCB based on the local address and port. Caller must hold the * hash lock. No inpcb locks or references are acquired. */ #define INP_LOOKUP_MAPPED_PCB_COST 3 struct inpcb * in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr, u_short lport, int lookupflags, struct ucred *cred) { struct inpcb *inp; #ifdef INET6 int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST; #else int matchwild = 3; #endif int wildcard; KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0, ("%s: invalid lookup flags %d", __func__, lookupflags)); INP_HASH_LOCK_ASSERT(pcbinfo); if ((lookupflags & INPLOOKUP_WILDCARD) == 0) { struct inpcbhead *head; /* * Look for an unconnected (wildcard foreign addr) PCB that * matches the local address and port we're looking for. */ head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport, 0, pcbinfo->ipi_hashmask)]; CK_LIST_FOREACH(inp, head, inp_hash) { #ifdef INET6 /* XXX inp locking */ if ((inp->inp_vflag & INP_IPV4) == 0) continue; #endif if (inp->inp_faddr.s_addr == INADDR_ANY && inp->inp_laddr.s_addr == laddr.s_addr && inp->inp_lport == lport) { /* * Found? */ if (cred == NULL || prison_equal_ip4(cred->cr_prison, inp->inp_cred->cr_prison)) return (inp); } } /* * Not found. */ return (NULL); } else { struct inpcbporthead *porthash; struct inpcbport *phd; struct inpcb *match = NULL; /* * Best fit PCB lookup. * * First see if this local port is in use by looking on the * port hash list. */ porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport, pcbinfo->ipi_porthashmask)]; CK_LIST_FOREACH(phd, porthash, phd_hash) { if (phd->phd_port == lport) break; } if (phd != NULL) { /* * Port is in use by one or more PCBs. Look for best * fit. */ CK_LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) { wildcard = 0; if (cred != NULL && !prison_equal_ip4(inp->inp_cred->cr_prison, cred->cr_prison)) continue; #ifdef INET6 /* XXX inp locking */ if ((inp->inp_vflag & INP_IPV4) == 0) continue; /* * We never select the PCB that has * INP_IPV6 flag and is bound to :: if * we have another PCB which is bound * to 0.0.0.0. If a PCB has the * INP_IPV6 flag, then we set its cost * higher than IPv4 only PCBs. * * Note that the case only happens * when a socket is bound to ::, under * the condition that the use of the * mapped address is allowed. */ if ((inp->inp_vflag & INP_IPV6) != 0) wildcard += INP_LOOKUP_MAPPED_PCB_COST; #endif if (inp->inp_faddr.s_addr != INADDR_ANY) wildcard++; if (inp->inp_laddr.s_addr != INADDR_ANY) { if (laddr.s_addr == INADDR_ANY) wildcard++; else if (inp->inp_laddr.s_addr != laddr.s_addr) continue; } else { if (laddr.s_addr != INADDR_ANY) wildcard++; } if (wildcard < matchwild) { match = inp; matchwild = wildcard; if (matchwild == 0) break; } } } return (match); } } #undef INP_LOOKUP_MAPPED_PCB_COST static struct inpcb * in_pcblookup_lbgroup(const struct inpcbinfo *pcbinfo, const struct in_addr *laddr, uint16_t lport, const struct in_addr *faddr, uint16_t fport, int lookupflags, int numa_domain) { struct inpcb *local_wild, *numa_wild; const struct inpcblbgrouphead *hdr; struct inpcblbgroup *grp; uint32_t idx; INP_HASH_LOCK_ASSERT(pcbinfo); hdr = &pcbinfo->ipi_lbgrouphashbase[ INP_PCBPORTHASH(lport, pcbinfo->ipi_lbgrouphashmask)]; /* * Order of socket selection: * 1. non-wild. * 2. wild (if lookupflags contains INPLOOKUP_WILDCARD). * * NOTE: * - Load balanced group does not contain jailed sockets * - Load balanced group does not contain IPv4 mapped INET6 wild sockets */ local_wild = NULL; numa_wild = NULL; CK_LIST_FOREACH(grp, hdr, il_list) { #ifdef INET6 if (!(grp->il_vflag & INP_IPV4)) continue; #endif if (grp->il_lport != lport) continue; idx = INP_PCBLBGROUP_PKTHASH(faddr->s_addr, lport, fport) % grp->il_inpcnt; if (grp->il_laddr.s_addr == laddr->s_addr) { if (numa_domain == M_NODOM || grp->il_numa_domain == numa_domain) { return (grp->il_inp[idx]); } else { numa_wild = grp->il_inp[idx]; } } if (grp->il_laddr.s_addr == INADDR_ANY && (lookupflags & INPLOOKUP_WILDCARD) != 0 && (local_wild == NULL || numa_domain == M_NODOM || grp->il_numa_domain == numa_domain)) { local_wild = grp->il_inp[idx]; } } if (numa_wild != NULL) return (numa_wild); return (local_wild); } #ifdef PCBGROUP /* * Lookup PCB in hash list, using pcbgroup tables. */ static struct inpcb * in_pcblookup_group(struct inpcbinfo *pcbinfo, struct inpcbgroup *pcbgroup, struct in_addr faddr, u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags, struct ifnet *ifp) { struct inpcbhead *head; struct inpcb *inp, *tmpinp; u_short fport = fport_arg, lport = lport_arg; bool locked; /* * First look for an exact match. */ tmpinp = NULL; INP_GROUP_LOCK(pcbgroup); head = &pcbgroup->ipg_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport, pcbgroup->ipg_hashmask)]; CK_LIST_FOREACH(inp, head, inp_pcbgrouphash) { #ifdef INET6 /* XXX inp locking */ if ((inp->inp_vflag & INP_IPV4) == 0) continue; #endif if (inp->inp_faddr.s_addr == faddr.s_addr && inp->inp_laddr.s_addr == laddr.s_addr && inp->inp_fport == fport && inp->inp_lport == lport) { /* * XXX We should be able to directly return * the inp here, without any checks. * Well unless both bound with SO_REUSEPORT? */ if (prison_flag(inp->inp_cred, PR_IP4)) goto found; if (tmpinp == NULL) tmpinp = inp; } } if (tmpinp != NULL) { inp = tmpinp; goto found; } #ifdef RSS /* * For incoming connections, we may wish to do a wildcard * match for an RSS-local socket. */ if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { struct inpcb *local_wild = NULL, *local_exact = NULL; #ifdef INET6 struct inpcb *local_wild_mapped = NULL; #endif struct inpcb *jail_wild = NULL; struct inpcbhead *head; int injail; /* * Order of socket selection - we always prefer jails. * 1. jailed, non-wild. * 2. jailed, wild. * 3. non-jailed, non-wild. * 4. non-jailed, wild. */ head = &pcbgroup->ipg_hashbase[INP_PCBHASH(INADDR_ANY, lport, 0, pcbgroup->ipg_hashmask)]; CK_LIST_FOREACH(inp, head, inp_pcbgrouphash) { #ifdef INET6 /* XXX inp locking */ if ((inp->inp_vflag & INP_IPV4) == 0) continue; #endif if (inp->inp_faddr.s_addr != INADDR_ANY || inp->inp_lport != lport) continue; injail = prison_flag(inp->inp_cred, PR_IP4); if (injail) { if (prison_check_ip4(inp->inp_cred, &laddr) != 0) continue; } else { if (local_exact != NULL) continue; } if (inp->inp_laddr.s_addr == laddr.s_addr) { if (injail) goto found; else local_exact = inp; } else if (inp->inp_laddr.s_addr == INADDR_ANY) { #ifdef INET6 /* XXX inp locking, NULL check */ if (inp->inp_vflag & INP_IPV6PROTO) local_wild_mapped = inp; else #endif if (injail) jail_wild = inp; else local_wild = inp; } } /* LIST_FOREACH */ inp = jail_wild; if (inp == NULL) inp = local_exact; if (inp == NULL) inp = local_wild; #ifdef INET6 if (inp == NULL) inp = local_wild_mapped; #endif if (inp != NULL) goto found; } #endif /* * Then look for a wildcard match, if requested. */ if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { struct inpcb *local_wild = NULL, *local_exact = NULL; #ifdef INET6 struct inpcb *local_wild_mapped = NULL; #endif struct inpcb *jail_wild = NULL; struct inpcbhead *head; int injail; /* * Order of socket selection - we always prefer jails. * 1. jailed, non-wild. * 2. jailed, wild. * 3. non-jailed, non-wild. * 4. non-jailed, wild. */ head = &pcbinfo->ipi_wildbase[INP_PCBHASH(INADDR_ANY, lport, 0, pcbinfo->ipi_wildmask)]; CK_LIST_FOREACH(inp, head, inp_pcbgroup_wild) { #ifdef INET6 /* XXX inp locking */ if ((inp->inp_vflag & INP_IPV4) == 0) continue; #endif if (inp->inp_faddr.s_addr != INADDR_ANY || inp->inp_lport != lport) continue; injail = prison_flag(inp->inp_cred, PR_IP4); if (injail) { if (prison_check_ip4(inp->inp_cred, &laddr) != 0) continue; } else { if (local_exact != NULL) continue; } if (inp->inp_laddr.s_addr == laddr.s_addr) { if (injail) goto found; else local_exact = inp; } else if (inp->inp_laddr.s_addr == INADDR_ANY) { #ifdef INET6 /* XXX inp locking, NULL check */ if (inp->inp_vflag & INP_IPV6PROTO) local_wild_mapped = inp; else #endif if (injail) jail_wild = inp; else local_wild = inp; } } /* LIST_FOREACH */ inp = jail_wild; if (inp == NULL) inp = local_exact; if (inp == NULL) inp = local_wild; #ifdef INET6 if (inp == NULL) inp = local_wild_mapped; #endif if (inp != NULL) goto found; } /* if (lookupflags & INPLOOKUP_WILDCARD) */ INP_GROUP_UNLOCK(pcbgroup); return (NULL); found: if (lookupflags & INPLOOKUP_WLOCKPCB) locked = INP_TRY_WLOCK(inp); else if (lookupflags & INPLOOKUP_RLOCKPCB) locked = INP_TRY_RLOCK(inp); else panic("%s: locking bug", __func__); if (__predict_false(locked && (inp->inp_flags2 & INP_FREED))) { if (lookupflags & INPLOOKUP_WLOCKPCB) INP_WUNLOCK(inp); else INP_RUNLOCK(inp); return (NULL); } else if (!locked) in_pcbref(inp); INP_GROUP_UNLOCK(pcbgroup); if (!locked) { if (lookupflags & INPLOOKUP_WLOCKPCB) { INP_WLOCK(inp); if (in_pcbrele_wlocked(inp)) return (NULL); } else { INP_RLOCK(inp); if (in_pcbrele_rlocked(inp)) return (NULL); } } #ifdef INVARIANTS if (lookupflags & INPLOOKUP_WLOCKPCB) INP_WLOCK_ASSERT(inp); else INP_RLOCK_ASSERT(inp); #endif return (inp); } #endif /* PCBGROUP */ /* * Lookup PCB in hash list, using pcbinfo tables. This variation assumes * that the caller has locked the hash list, and will not perform any further * locking or reference operations on either the hash list or the connection. */ static struct inpcb * in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags, struct ifnet *ifp, uint8_t numa_domain) { struct inpcbhead *head; struct inpcb *inp, *tmpinp; u_short fport = fport_arg, lport = lport_arg; KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0, ("%s: invalid lookup flags %d", __func__, lookupflags)); INP_HASH_LOCK_ASSERT(pcbinfo); /* * First look for an exact match. */ tmpinp = NULL; head = &pcbinfo->ipi_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport, pcbinfo->ipi_hashmask)]; CK_LIST_FOREACH(inp, head, inp_hash) { #ifdef INET6 /* XXX inp locking */ if ((inp->inp_vflag & INP_IPV4) == 0) continue; #endif if (inp->inp_faddr.s_addr == faddr.s_addr && inp->inp_laddr.s_addr == laddr.s_addr && inp->inp_fport == fport && inp->inp_lport == lport) { /* * XXX We should be able to directly return * the inp here, without any checks. * Well unless both bound with SO_REUSEPORT? */ if (prison_flag(inp->inp_cred, PR_IP4)) return (inp); if (tmpinp == NULL) tmpinp = inp; } } if (tmpinp != NULL) return (tmpinp); /* * Then look in lb group (for wildcard match). */ if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { inp = in_pcblookup_lbgroup(pcbinfo, &laddr, lport, &faddr, fport, lookupflags, numa_domain); if (inp != NULL) return (inp); } /* * Then look for a wildcard match, if requested. */ if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { struct inpcb *local_wild = NULL, *local_exact = NULL; #ifdef INET6 struct inpcb *local_wild_mapped = NULL; #endif struct inpcb *jail_wild = NULL; int injail; /* * Order of socket selection - we always prefer jails. * 1. jailed, non-wild. * 2. jailed, wild. * 3. non-jailed, non-wild. * 4. non-jailed, wild. */ head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport, 0, pcbinfo->ipi_hashmask)]; CK_LIST_FOREACH(inp, head, inp_hash) { #ifdef INET6 /* XXX inp locking */ if ((inp->inp_vflag & INP_IPV4) == 0) continue; #endif if (inp->inp_faddr.s_addr != INADDR_ANY || inp->inp_lport != lport) continue; injail = prison_flag(inp->inp_cred, PR_IP4); if (injail) { if (prison_check_ip4(inp->inp_cred, &laddr) != 0) continue; } else { if (local_exact != NULL) continue; } if (inp->inp_laddr.s_addr == laddr.s_addr) { if (injail) return (inp); else local_exact = inp; } else if (inp->inp_laddr.s_addr == INADDR_ANY) { #ifdef INET6 /* XXX inp locking, NULL check */ if (inp->inp_vflag & INP_IPV6PROTO) local_wild_mapped = inp; else #endif if (injail) jail_wild = inp; else local_wild = inp; } } /* LIST_FOREACH */ if (jail_wild != NULL) return (jail_wild); if (local_exact != NULL) return (local_exact); if (local_wild != NULL) return (local_wild); #ifdef INET6 if (local_wild_mapped != NULL) return (local_wild_mapped); #endif } /* if ((lookupflags & INPLOOKUP_WILDCARD) != 0) */ return (NULL); } /* * Lookup PCB in hash list, using pcbinfo tables. This variation locks the * hash list lock, and will return the inpcb locked (i.e., requires * INPLOOKUP_LOCKPCB). */ static struct inpcb * in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport, struct in_addr laddr, u_int lport, int lookupflags, struct ifnet *ifp, uint8_t numa_domain) { struct inpcb *inp; inp = in_pcblookup_hash_locked(pcbinfo, faddr, fport, laddr, lport, lookupflags & INPLOOKUP_WILDCARD, ifp, numa_domain); if (inp != NULL) { if (lookupflags & INPLOOKUP_WLOCKPCB) { INP_WLOCK(inp); } else if (lookupflags & INPLOOKUP_RLOCKPCB) { INP_RLOCK(inp); } else panic("%s: locking bug", __func__); if (__predict_false(inp->inp_flags2 & INP_FREED)) { INP_UNLOCK(inp); inp = NULL; } } return (inp); } /* * Public inpcb lookup routines, accepting a 4-tuple, and optionally, an mbuf * from which a pre-calculated hash value may be extracted. * * Possibly more of this logic should be in in_pcbgroup.c. */ struct inpcb * in_pcblookup(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport, struct in_addr laddr, u_int lport, int lookupflags, struct ifnet *ifp) { #if defined(PCBGROUP) && !defined(RSS) struct inpcbgroup *pcbgroup; #endif KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0, ("%s: invalid lookup flags %d", __func__, lookupflags)); KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0, ("%s: LOCKPCB not set", __func__)); /* * When not using RSS, use connection groups in preference to the * reservation table when looking up 4-tuples. When using RSS, just * use the reservation table, due to the cost of the Toeplitz hash * in software. * * XXXRW: This policy belongs in the pcbgroup code, as in principle * we could be doing RSS with a non-Toeplitz hash that is affordable * in software. */ #if defined(PCBGROUP) && !defined(RSS) if (in_pcbgroup_enabled(pcbinfo)) { pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr, fport); return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport, laddr, lport, lookupflags, ifp)); } #endif return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport, lookupflags, ifp, M_NODOM)); } struct inpcb * in_pcblookup_mbuf(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport, struct in_addr laddr, u_int lport, int lookupflags, struct ifnet *ifp, struct mbuf *m) { #ifdef PCBGROUP struct inpcbgroup *pcbgroup; #endif KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0, ("%s: invalid lookup flags %d", __func__, lookupflags)); KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0, ("%s: LOCKPCB not set", __func__)); #ifdef PCBGROUP /* * If we can use a hardware-generated hash to look up the connection * group, use that connection group to find the inpcb. Otherwise * fall back on a software hash -- or the reservation table if we're * using RSS. * * XXXRW: As above, that policy belongs in the pcbgroup code. */ if (in_pcbgroup_enabled(pcbinfo) && !(M_HASHTYPE_TEST(m, M_HASHTYPE_NONE))) { pcbgroup = in_pcbgroup_byhash(pcbinfo, M_HASHTYPE_GET(m), m->m_pkthdr.flowid); if (pcbgroup != NULL) return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport, laddr, lport, lookupflags, ifp)); #ifndef RSS pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr, fport); return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport, laddr, lport, lookupflags, ifp)); #endif } #endif return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport, lookupflags, ifp, m->m_pkthdr.numa_domain)); } #endif /* INET */ /* * Insert PCB onto various hash lists. */ static int in_pcbinshash_internal(struct inpcb *inp, struct mbuf *m) { struct inpcbhead *pcbhash; struct inpcbporthead *pcbporthash; struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; struct inpcbport *phd; u_int32_t hashkey_faddr; int so_options; INP_WLOCK_ASSERT(inp); INP_HASH_WLOCK_ASSERT(pcbinfo); KASSERT((inp->inp_flags & INP_INHASHLIST) == 0, ("in_pcbinshash: INP_INHASHLIST")); #ifdef INET6 if (inp->inp_vflag & INP_IPV6) hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr); else #endif hashkey_faddr = inp->inp_faddr.s_addr; pcbhash = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr, inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; pcbporthash = &pcbinfo->ipi_porthashbase[ INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)]; /* * Add entry to load balance group. * Only do this if SO_REUSEPORT_LB is set. */ so_options = inp_so_options(inp); if (so_options & SO_REUSEPORT_LB) { int ret = in_pcbinslbgrouphash(inp, M_NODOM); if (ret) { /* pcb lb group malloc fail (ret=ENOBUFS). */ return (ret); } } /* * Go through port list and look for a head for this lport. */ CK_LIST_FOREACH(phd, pcbporthash, phd_hash) { if (phd->phd_port == inp->inp_lport) break; } /* * If none exists, malloc one and tack it on. */ if (phd == NULL) { phd = malloc(sizeof(struct inpcbport), M_PCB, M_NOWAIT); if (phd == NULL) { return (ENOBUFS); /* XXX */ } bzero(&phd->phd_epoch_ctx, sizeof(struct epoch_context)); phd->phd_port = inp->inp_lport; CK_LIST_INIT(&phd->phd_pcblist); CK_LIST_INSERT_HEAD(pcbporthash, phd, phd_hash); } inp->inp_phd = phd; CK_LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist); CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash); inp->inp_flags |= INP_INHASHLIST; #ifdef PCBGROUP if (m != NULL) { in_pcbgroup_update_mbuf(inp, m); } else { in_pcbgroup_update(inp); } #endif return (0); } int in_pcbinshash(struct inpcb *inp) { return (in_pcbinshash_internal(inp, NULL)); } int in_pcbinshash_mbuf(struct inpcb *inp, struct mbuf *m) { return (in_pcbinshash_internal(inp, m)); } /* * Move PCB to the proper hash bucket when { faddr, fport } have been * changed. NOTE: This does not handle the case of the lport changing (the * hashed port list would have to be updated as well), so the lport must * not change after in_pcbinshash() has been called. */ void in_pcbrehash_mbuf(struct inpcb *inp, struct mbuf *m) { struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; struct inpcbhead *head; u_int32_t hashkey_faddr; INP_WLOCK_ASSERT(inp); INP_HASH_WLOCK_ASSERT(pcbinfo); KASSERT(inp->inp_flags & INP_INHASHLIST, ("in_pcbrehash: !INP_INHASHLIST")); #ifdef INET6 if (inp->inp_vflag & INP_IPV6) hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr); else #endif hashkey_faddr = inp->inp_faddr.s_addr; head = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr, inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; CK_LIST_REMOVE(inp, inp_hash); CK_LIST_INSERT_HEAD(head, inp, inp_hash); #ifdef PCBGROUP if (m != NULL) in_pcbgroup_update_mbuf(inp, m); else in_pcbgroup_update(inp); #endif } void in_pcbrehash(struct inpcb *inp) { in_pcbrehash_mbuf(inp, NULL); } /* * Remove PCB from various lists. */ static void in_pcbremlists(struct inpcb *inp) { struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; INP_WLOCK_ASSERT(inp); INP_LIST_WLOCK_ASSERT(pcbinfo); inp->inp_gencnt = ++pcbinfo->ipi_gencnt; if (inp->inp_flags & INP_INHASHLIST) { struct inpcbport *phd = inp->inp_phd; INP_HASH_WLOCK(pcbinfo); /* XXX: Only do if SO_REUSEPORT_LB set? */ in_pcbremlbgrouphash(inp); CK_LIST_REMOVE(inp, inp_hash); CK_LIST_REMOVE(inp, inp_portlist); if (CK_LIST_FIRST(&phd->phd_pcblist) == NULL) { CK_LIST_REMOVE(phd, phd_hash); NET_EPOCH_CALL(inpcbport_free, &phd->phd_epoch_ctx); } INP_HASH_WUNLOCK(pcbinfo); inp->inp_flags &= ~INP_INHASHLIST; } CK_LIST_REMOVE(inp, inp_list); pcbinfo->ipi_count--; #ifdef PCBGROUP in_pcbgroup_remove(inp); #endif } /* * Check for alternatives when higher level complains * about service problems. For now, invalidate cached * routing information. If the route was created dynamically * (by a redirect), time to try a default gateway again. */ void in_losing(struct inpcb *inp) { RO_INVALIDATE_CACHE(&inp->inp_route); return; } /* * A set label operation has occurred at the socket layer, propagate the * label change into the in_pcb for the socket. */ void in_pcbsosetlabel(struct socket *so) { #ifdef MAC struct inpcb *inp; inp = sotoinpcb(so); KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL")); INP_WLOCK(inp); SOCK_LOCK(so); mac_inpcb_sosetlabel(so, inp); SOCK_UNLOCK(so); INP_WUNLOCK(inp); #endif } /* * ipport_tick runs once per second, determining if random port allocation * should be continued. If more than ipport_randomcps ports have been * allocated in the last second, then we return to sequential port * allocation. We return to random allocation only once we drop below * ipport_randomcps for at least ipport_randomtime seconds. */ static void ipport_tick(void *xtp) { VNET_ITERATOR_DECL(vnet_iter); VNET_LIST_RLOCK_NOSLEEP(); VNET_FOREACH(vnet_iter) { CURVNET_SET(vnet_iter); /* XXX appease INVARIANTS here */ if (V_ipport_tcpallocs <= V_ipport_tcplastcount + V_ipport_randomcps) { if (V_ipport_stoprandom > 0) V_ipport_stoprandom--; } else V_ipport_stoprandom = V_ipport_randomtime; V_ipport_tcplastcount = V_ipport_tcpallocs; CURVNET_RESTORE(); } VNET_LIST_RUNLOCK_NOSLEEP(); callout_reset(&ipport_tick_callout, hz, ipport_tick, NULL); } static void ip_fini(void *xtp) { callout_stop(&ipport_tick_callout); } /* * The ipport_callout should start running at about the time we attach the * inet or inet6 domains. */ static void ipport_tick_init(const void *unused __unused) { /* Start ipport_tick. */ callout_init(&ipport_tick_callout, 1); callout_reset(&ipport_tick_callout, 1, ipport_tick, NULL); EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL, SHUTDOWN_PRI_DEFAULT); } SYSINIT(ipport_tick_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_MIDDLE, ipport_tick_init, NULL); void inp_wlock(struct inpcb *inp) { INP_WLOCK(inp); } void inp_wunlock(struct inpcb *inp) { INP_WUNLOCK(inp); } void inp_rlock(struct inpcb *inp) { INP_RLOCK(inp); } void inp_runlock(struct inpcb *inp) { INP_RUNLOCK(inp); } #ifdef INVARIANT_SUPPORT void inp_lock_assert(struct inpcb *inp) { INP_WLOCK_ASSERT(inp); } void inp_unlock_assert(struct inpcb *inp) { INP_UNLOCK_ASSERT(inp); } #endif void inp_apply_all(void (*func)(struct inpcb *, void *), void *arg) { struct inpcb *inp; INP_INFO_WLOCK(&V_tcbinfo); CK_LIST_FOREACH(inp, V_tcbinfo.ipi_listhead, inp_list) { INP_WLOCK(inp); func(inp, arg); INP_WUNLOCK(inp); } INP_INFO_WUNLOCK(&V_tcbinfo); } struct socket * inp_inpcbtosocket(struct inpcb *inp) { INP_WLOCK_ASSERT(inp); return (inp->inp_socket); } struct tcpcb * inp_inpcbtotcpcb(struct inpcb *inp) { INP_WLOCK_ASSERT(inp); return ((struct tcpcb *)inp->inp_ppcb); } int inp_ip_tos_get(const struct inpcb *inp) { return (inp->inp_ip_tos); } void inp_ip_tos_set(struct inpcb *inp, int val) { inp->inp_ip_tos = val; } void inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp, uint32_t *faddr, uint16_t *fp) { INP_LOCK_ASSERT(inp); *laddr = inp->inp_laddr.s_addr; *faddr = inp->inp_faddr.s_addr; *lp = inp->inp_lport; *fp = inp->inp_fport; } struct inpcb * so_sotoinpcb(struct socket *so) { return (sotoinpcb(so)); } struct tcpcb * so_sototcpcb(struct socket *so) { return (sototcpcb(so)); } /* * Create an external-format (``xinpcb'') structure using the information in * the kernel-format in_pcb structure pointed to by inp. This is done to * reduce the spew of irrelevant information over this interface, to isolate * user code from changes in the kernel structure, and potentially to provide * information-hiding if we decide that some of this information should be * hidden from users. */ void in_pcbtoxinpcb(const struct inpcb *inp, struct xinpcb *xi) { bzero(xi, sizeof(*xi)); xi->xi_len = sizeof(struct xinpcb); if (inp->inp_socket) sotoxsocket(inp->inp_socket, &xi->xi_socket); bcopy(&inp->inp_inc, &xi->inp_inc, sizeof(struct in_conninfo)); xi->inp_gencnt = inp->inp_gencnt; xi->inp_ppcb = (uintptr_t)inp->inp_ppcb; xi->inp_flow = inp->inp_flow; xi->inp_flowid = inp->inp_flowid; xi->inp_flowtype = inp->inp_flowtype; xi->inp_flags = inp->inp_flags; xi->inp_flags2 = inp->inp_flags2; xi->inp_rss_listen_bucket = inp->inp_rss_listen_bucket; xi->in6p_cksum = inp->in6p_cksum; xi->in6p_hops = inp->in6p_hops; xi->inp_ip_tos = inp->inp_ip_tos; xi->inp_vflag = inp->inp_vflag; xi->inp_ip_ttl = inp->inp_ip_ttl; xi->inp_ip_p = inp->inp_ip_p; xi->inp_ip_minttl = inp->inp_ip_minttl; } #ifdef DDB static void db_print_indent(int indent) { int i; for (i = 0; i < indent; i++) db_printf(" "); } static void db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent) { char faddr_str[48], laddr_str[48]; db_print_indent(indent); db_printf("%s at %p\n", name, inc); indent += 2; #ifdef INET6 if (inc->inc_flags & INC_ISIPV6) { /* IPv6. */ ip6_sprintf(laddr_str, &inc->inc6_laddr); ip6_sprintf(faddr_str, &inc->inc6_faddr); } else #endif { /* IPv4. */ inet_ntoa_r(inc->inc_laddr, laddr_str); inet_ntoa_r(inc->inc_faddr, faddr_str); } db_print_indent(indent); db_printf("inc_laddr %s inc_lport %u\n", laddr_str, ntohs(inc->inc_lport)); db_print_indent(indent); db_printf("inc_faddr %s inc_fport %u\n", faddr_str, ntohs(inc->inc_fport)); } static void db_print_inpflags(int inp_flags) { int comma; comma = 0; if (inp_flags & INP_RECVOPTS) { db_printf("%sINP_RECVOPTS", comma ? ", " : ""); comma = 1; } if (inp_flags & INP_RECVRETOPTS) { db_printf("%sINP_RECVRETOPTS", comma ? ", " : ""); comma = 1; } if (inp_flags & INP_RECVDSTADDR) { db_printf("%sINP_RECVDSTADDR", comma ? ", " : ""); comma = 1; } if (inp_flags & INP_ORIGDSTADDR) { db_printf("%sINP_ORIGDSTADDR", comma ? ", " : ""); comma = 1; } if (inp_flags & INP_HDRINCL) { db_printf("%sINP_HDRINCL", comma ? ", " : ""); comma = 1; } if (inp_flags & INP_HIGHPORT) { db_printf("%sINP_HIGHPORT", comma ? ", " : ""); comma = 1; } if (inp_flags & INP_LOWPORT) { db_printf("%sINP_LOWPORT", comma ? ", " : ""); comma = 1; } if (inp_flags & INP_ANONPORT) { db_printf("%sINP_ANONPORT", comma ? ", " : ""); comma = 1; } if (inp_flags & INP_RECVIF) { db_printf("%sINP_RECVIF", comma ? ", " : ""); comma = 1; } if (inp_flags & INP_MTUDISC) { db_printf("%sINP_MTUDISC", comma ? ", " : ""); comma = 1; } if (inp_flags & INP_RECVTTL) { db_printf("%sINP_RECVTTL", comma ? ", " : ""); comma = 1; } if (inp_flags & INP_DONTFRAG) { db_printf("%sINP_DONTFRAG", comma ? ", " : ""); comma = 1; } if (inp_flags & INP_RECVTOS) { db_printf("%sINP_RECVTOS", comma ? ", " : ""); comma = 1; } if (inp_flags & IN6P_IPV6_V6ONLY) { db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : ""); comma = 1; } if (inp_flags & IN6P_PKTINFO) { db_printf("%sIN6P_PKTINFO", comma ? ", " : ""); comma = 1; } if (inp_flags & IN6P_HOPLIMIT) { db_printf("%sIN6P_HOPLIMIT", comma ? ", " : ""); comma = 1; } if (inp_flags & IN6P_HOPOPTS) { db_printf("%sIN6P_HOPOPTS", comma ? ", " : ""); comma = 1; } if (inp_flags & IN6P_DSTOPTS) { db_printf("%sIN6P_DSTOPTS", comma ? ", " : ""); comma = 1; } if (inp_flags & IN6P_RTHDR) { db_printf("%sIN6P_RTHDR", comma ? ", " : ""); comma = 1; } if (inp_flags & IN6P_RTHDRDSTOPTS) { db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : ""); comma = 1; } if (inp_flags & IN6P_TCLASS) { db_printf("%sIN6P_TCLASS", comma ? ", " : ""); comma = 1; } if (inp_flags & IN6P_AUTOFLOWLABEL) { db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : ""); comma = 1; } if (inp_flags & INP_TIMEWAIT) { db_printf("%sINP_TIMEWAIT", comma ? ", " : ""); comma = 1; } if (inp_flags & INP_ONESBCAST) { db_printf("%sINP_ONESBCAST", comma ? ", " : ""); comma = 1; } if (inp_flags & INP_DROPPED) { db_printf("%sINP_DROPPED", comma ? ", " : ""); comma = 1; } if (inp_flags & INP_SOCKREF) { db_printf("%sINP_SOCKREF", comma ? ", " : ""); comma = 1; } if (inp_flags & IN6P_RFC2292) { db_printf("%sIN6P_RFC2292", comma ? ", " : ""); comma = 1; } if (inp_flags & IN6P_MTU) { db_printf("IN6P_MTU%s", comma ? ", " : ""); comma = 1; } } static void db_print_inpvflag(u_char inp_vflag) { int comma; comma = 0; if (inp_vflag & INP_IPV4) { db_printf("%sINP_IPV4", comma ? ", " : ""); comma = 1; } if (inp_vflag & INP_IPV6) { db_printf("%sINP_IPV6", comma ? ", " : ""); comma = 1; } if (inp_vflag & INP_IPV6PROTO) { db_printf("%sINP_IPV6PROTO", comma ? ", " : ""); comma = 1; } } static void db_print_inpcb(struct inpcb *inp, const char *name, int indent) { db_print_indent(indent); db_printf("%s at %p\n", name, inp); indent += 2; db_print_indent(indent); db_printf("inp_flow: 0x%x\n", inp->inp_flow); db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent); db_print_indent(indent); db_printf("inp_ppcb: %p inp_pcbinfo: %p inp_socket: %p\n", inp->inp_ppcb, inp->inp_pcbinfo, inp->inp_socket); db_print_indent(indent); db_printf("inp_label: %p inp_flags: 0x%x (", inp->inp_label, inp->inp_flags); db_print_inpflags(inp->inp_flags); db_printf(")\n"); db_print_indent(indent); db_printf("inp_sp: %p inp_vflag: 0x%x (", inp->inp_sp, inp->inp_vflag); db_print_inpvflag(inp->inp_vflag); db_printf(")\n"); db_print_indent(indent); db_printf("inp_ip_ttl: %d inp_ip_p: %d inp_ip_minttl: %d\n", inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl); db_print_indent(indent); #ifdef INET6 if (inp->inp_vflag & INP_IPV6) { db_printf("in6p_options: %p in6p_outputopts: %p " "in6p_moptions: %p\n", inp->in6p_options, inp->in6p_outputopts, inp->in6p_moptions); db_printf("in6p_icmp6filt: %p in6p_cksum %d " "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum, inp->in6p_hops); } else #endif { db_printf("inp_ip_tos: %d inp_ip_options: %p " "inp_ip_moptions: %p\n", inp->inp_ip_tos, inp->inp_options, inp->inp_moptions); } db_print_indent(indent); db_printf("inp_phd: %p inp_gencnt: %ju\n", inp->inp_phd, (uintmax_t)inp->inp_gencnt); } DB_SHOW_COMMAND(inpcb, db_show_inpcb) { struct inpcb *inp; if (!have_addr) { db_printf("usage: show inpcb \n"); return; } inp = (struct inpcb *)addr; db_print_inpcb(inp, "inpcb", 0); } #endif /* DDB */ #ifdef RATELIMIT /* * Modify TX rate limit based on the existing "inp->inp_snd_tag", * if any. */ int in_pcbmodify_txrtlmt(struct inpcb *inp, uint32_t max_pacing_rate) { union if_snd_tag_modify_params params = { .rate_limit.max_rate = max_pacing_rate, .rate_limit.flags = M_NOWAIT, }; struct m_snd_tag *mst; int error; mst = inp->inp_snd_tag; if (mst == NULL) return (EINVAL); if (mst->sw->snd_tag_modify == NULL) { error = EOPNOTSUPP; } else { error = mst->sw->snd_tag_modify(mst, ¶ms); } return (error); } /* * Query existing TX rate limit based on the existing * "inp->inp_snd_tag", if any. */ int in_pcbquery_txrtlmt(struct inpcb *inp, uint32_t *p_max_pacing_rate) { union if_snd_tag_query_params params = { }; struct m_snd_tag *mst; int error; mst = inp->inp_snd_tag; if (mst == NULL) return (EINVAL); if (mst->sw->snd_tag_query == NULL) { error = EOPNOTSUPP; } else { error = mst->sw->snd_tag_query(mst, ¶ms); if (error == 0 && p_max_pacing_rate != NULL) *p_max_pacing_rate = params.rate_limit.max_rate; } return (error); } /* * Query existing TX queue level based on the existing * "inp->inp_snd_tag", if any. */ int in_pcbquery_txrlevel(struct inpcb *inp, uint32_t *p_txqueue_level) { union if_snd_tag_query_params params = { }; struct m_snd_tag *mst; int error; mst = inp->inp_snd_tag; if (mst == NULL) return (EINVAL); if (mst->sw->snd_tag_query == NULL) return (EOPNOTSUPP); error = mst->sw->snd_tag_query(mst, ¶ms); if (error == 0 && p_txqueue_level != NULL) *p_txqueue_level = params.rate_limit.queue_level; return (error); } /* * Allocate a new TX rate limit send tag from the network interface * given by the "ifp" argument and save it in "inp->inp_snd_tag": */ int in_pcbattach_txrtlmt(struct inpcb *inp, struct ifnet *ifp, uint32_t flowtype, uint32_t flowid, uint32_t max_pacing_rate, struct m_snd_tag **st) { union if_snd_tag_alloc_params params = { .rate_limit.hdr.type = (max_pacing_rate == -1U) ? IF_SND_TAG_TYPE_UNLIMITED : IF_SND_TAG_TYPE_RATE_LIMIT, .rate_limit.hdr.flowid = flowid, .rate_limit.hdr.flowtype = flowtype, .rate_limit.hdr.numa_domain = inp->inp_numa_domain, .rate_limit.max_rate = max_pacing_rate, .rate_limit.flags = M_NOWAIT, }; int error; INP_WLOCK_ASSERT(inp); /* * If there is already a send tag, or the INP is being torn * down, allocating a new send tag is not allowed. Else send * tags may leak. */ if (*st != NULL || (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) != 0) return (EINVAL); error = m_snd_tag_alloc(ifp, ¶ms, st); #ifdef INET if (error == 0) { counter_u64_add(rate_limit_set_ok, 1); counter_u64_add(rate_limit_active, 1); } else if (error != EOPNOTSUPP) counter_u64_add(rate_limit_alloc_fail, 1); #endif return (error); } void in_pcbdetach_tag(struct m_snd_tag *mst) { m_snd_tag_rele(mst); #ifdef INET counter_u64_add(rate_limit_active, -1); #endif } /* * Free an existing TX rate limit tag based on the "inp->inp_snd_tag", * if any: */ void in_pcbdetach_txrtlmt(struct inpcb *inp) { struct m_snd_tag *mst; INP_WLOCK_ASSERT(inp); mst = inp->inp_snd_tag; inp->inp_snd_tag = NULL; if (mst == NULL) return; m_snd_tag_rele(mst); #ifdef INET counter_u64_add(rate_limit_active, -1); #endif } int in_pcboutput_txrtlmt_locked(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb, uint32_t max_pacing_rate) { int error; /* * If the existing send tag is for the wrong interface due to * a route change, first drop the existing tag. Set the * CHANGED flag so that we will keep trying to allocate a new * tag if we fail to allocate one this time. */ if (inp->inp_snd_tag != NULL && inp->inp_snd_tag->ifp != ifp) { in_pcbdetach_txrtlmt(inp); inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; } /* * NOTE: When attaching to a network interface a reference is * made to ensure the network interface doesn't go away until * all ratelimit connections are gone. The network interface * pointers compared below represent valid network interfaces, * except when comparing towards NULL. */ if (max_pacing_rate == 0 && inp->inp_snd_tag == NULL) { error = 0; } else if (!(ifp->if_capenable & IFCAP_TXRTLMT)) { if (inp->inp_snd_tag != NULL) in_pcbdetach_txrtlmt(inp); error = 0; } else if (inp->inp_snd_tag == NULL) { /* * In order to utilize packet pacing with RSS, we need * to wait until there is a valid RSS hash before we * can proceed: */ if (M_HASHTYPE_GET(mb) == M_HASHTYPE_NONE) { error = EAGAIN; } else { error = in_pcbattach_txrtlmt(inp, ifp, M_HASHTYPE_GET(mb), mb->m_pkthdr.flowid, max_pacing_rate, &inp->inp_snd_tag); } } else { error = in_pcbmodify_txrtlmt(inp, max_pacing_rate); } if (error == 0 || error == EOPNOTSUPP) inp->inp_flags2 &= ~INP_RATE_LIMIT_CHANGED; return (error); } /* * This function should be called when the INP_RATE_LIMIT_CHANGED flag * is set in the fast path and will attach/detach/modify the TX rate * limit send tag based on the socket's so_max_pacing_rate value. */ void in_pcboutput_txrtlmt(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb) { struct socket *socket; uint32_t max_pacing_rate; bool did_upgrade; int error; if (inp == NULL) return; socket = inp->inp_socket; if (socket == NULL) return; if (!INP_WLOCKED(inp)) { /* * NOTE: If the write locking fails, we need to bail * out and use the non-ratelimited ring for the * transmit until there is a new chance to get the * write lock. */ if (!INP_TRY_UPGRADE(inp)) return; did_upgrade = 1; } else { did_upgrade = 0; } /* * NOTE: The so_max_pacing_rate value is read unlocked, * because atomic updates are not required since the variable * is checked at every mbuf we send. It is assumed that the * variable read itself will be atomic. */ max_pacing_rate = socket->so_max_pacing_rate; error = in_pcboutput_txrtlmt_locked(inp, ifp, mb, max_pacing_rate); if (did_upgrade) INP_DOWNGRADE(inp); } /* * Track route changes for TX rate limiting. */ void in_pcboutput_eagain(struct inpcb *inp) { bool did_upgrade; if (inp == NULL) return; if (inp->inp_snd_tag == NULL) return; if (!INP_WLOCKED(inp)) { /* * NOTE: If the write locking fails, we need to bail * out and use the non-ratelimited ring for the * transmit until there is a new chance to get the * write lock. */ if (!INP_TRY_UPGRADE(inp)) return; did_upgrade = 1; } else { did_upgrade = 0; } /* detach rate limiting */ in_pcbdetach_txrtlmt(inp); /* make sure new mbuf send tag allocation is made */ inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; if (did_upgrade) INP_DOWNGRADE(inp); } #ifdef INET static void rl_init(void *st) { rate_limit_new = counter_u64_alloc(M_WAITOK); rate_limit_chg = counter_u64_alloc(M_WAITOK); rate_limit_active = counter_u64_alloc(M_WAITOK); rate_limit_alloc_fail = counter_u64_alloc(M_WAITOK); rate_limit_set_ok = counter_u64_alloc(M_WAITOK); } SYSINIT(rl, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, rl_init, NULL); #endif #endif /* RATELIMIT */ diff --git a/sys/netinet/in_var.h b/sys/netinet/in_var.h index b42ca00d5ae7..c33098e2c79c 100644 --- a/sys/netinet/in_var.h +++ b/sys/netinet/in_var.h @@ -1,482 +1,479 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 1985, 1986, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)in_var.h 8.2 (Berkeley) 1/9/95 * $FreeBSD$ */ #ifndef _NETINET_IN_VAR_H_ #define _NETINET_IN_VAR_H_ /* * Argument structure for SIOCAIFADDR. */ struct in_aliasreq { char ifra_name[IFNAMSIZ]; /* if name, e.g. "en0" */ struct sockaddr_in ifra_addr; struct sockaddr_in ifra_broadaddr; #define ifra_dstaddr ifra_broadaddr struct sockaddr_in ifra_mask; int ifra_vhid; }; #ifdef _KERNEL #include #include #include struct igmp_ifsoftc; struct in_multi; struct lltable; SLIST_HEAD(in_multi_head, in_multi); /* * IPv4 per-interface state. */ struct in_ifinfo { struct lltable *ii_llt; /* ARP state */ struct igmp_ifsoftc *ii_igmp; /* IGMP state */ struct in_multi *ii_allhosts; /* 224.0.0.1 membership */ }; /* * Interface address, Internet version. One of these structures * is allocated for each Internet address on an interface. * The ifaddr structure contains the protocol-independent part * of the structure and is assumed to be first. */ struct in_ifaddr { struct ifaddr ia_ifa; /* protocol-independent info */ #define ia_ifp ia_ifa.ifa_ifp #define ia_flags ia_ifa.ifa_flags /* ia_subnet{,mask} in host order */ u_long ia_subnet; /* subnet address */ u_long ia_subnetmask; /* mask of subnet */ LIST_ENTRY(in_ifaddr) ia_hash; /* entry in bucket of inet addresses */ CK_STAILQ_ENTRY(in_ifaddr) ia_link; /* list of internet addresses */ struct sockaddr_in ia_addr; /* reserve space for interface name */ struct sockaddr_in ia_dstaddr; /* reserve space for broadcast addr */ #define ia_broadaddr ia_dstaddr struct sockaddr_in ia_sockmask; /* reserve space for general netmask */ struct callout ia_garp_timer; /* timer for retransmitting GARPs */ int ia_garp_count; /* count of retransmitted GARPs */ }; /* * Given a pointer to an in_ifaddr (ifaddr), * return a pointer to the addr as a sockaddr_in. */ #define IA_SIN(ia) (&(((struct in_ifaddr *)(ia))->ia_addr)) #define IA_DSTSIN(ia) (&(((struct in_ifaddr *)(ia))->ia_dstaddr)) #define IA_MASKSIN(ia) (&(((struct in_ifaddr *)(ia))->ia_sockmask)) #define IN_LNAOF(in, ifa) \ ((ntohl((in).s_addr) & ~((struct in_ifaddr *)(ifa)->ia_subnetmask)) extern u_char inetctlerrmap[]; #define LLTABLE(ifp) \ ((struct in_ifinfo *)(ifp)->if_afdata[AF_INET])->ii_llt /* * Hash table for IP addresses. */ CK_STAILQ_HEAD(in_ifaddrhead, in_ifaddr); LIST_HEAD(in_ifaddrhashhead, in_ifaddr); VNET_DECLARE(struct in_ifaddrhashhead *, in_ifaddrhashtbl); VNET_DECLARE(struct in_ifaddrhead, in_ifaddrhead); VNET_DECLARE(u_long, in_ifaddrhmask); /* mask for hash table */ #define V_in_ifaddrhashtbl VNET(in_ifaddrhashtbl) #define V_in_ifaddrhead VNET(in_ifaddrhead) #define V_in_ifaddrhmask VNET(in_ifaddrhmask) #define INADDR_NHASH_LOG2 9 #define INADDR_NHASH (1 << INADDR_NHASH_LOG2) #define INADDR_HASHVAL(x) fnv_32_buf((&(x)), sizeof(x), FNV1_32_INIT) #define INADDR_HASH(x) \ (&V_in_ifaddrhashtbl[INADDR_HASHVAL(x) & V_in_ifaddrhmask]) extern struct rmlock in_ifaddr_lock; #define IN_IFADDR_LOCK_ASSERT() rm_assert(&in_ifaddr_lock, RA_LOCKED) #define IN_IFADDR_RLOCK(t) rm_rlock(&in_ifaddr_lock, (t)) #define IN_IFADDR_RLOCK_ASSERT() rm_assert(&in_ifaddr_lock, RA_RLOCKED) #define IN_IFADDR_RUNLOCK(t) rm_runlock(&in_ifaddr_lock, (t)) #define IN_IFADDR_WLOCK() rm_wlock(&in_ifaddr_lock) #define IN_IFADDR_WLOCK_ASSERT() rm_assert(&in_ifaddr_lock, RA_WLOCKED) #define IN_IFADDR_WUNLOCK() rm_wunlock(&in_ifaddr_lock) /* * Macro for finding the internet address structure (in_ifaddr) * corresponding to one of our IP addresses (in_addr). */ #define INADDR_TO_IFADDR(addr, ia) \ /* struct in_addr addr; */ \ /* struct in_ifaddr *ia; */ \ do { \ \ LIST_FOREACH(ia, INADDR_HASH((addr).s_addr), ia_hash) \ if (IA_SIN(ia)->sin_addr.s_addr == (addr).s_addr) \ break; \ } while (0) /* * Macro for finding the interface (ifnet structure) corresponding to one * of our IP addresses. */ #define INADDR_TO_IFP(addr, ifp) \ /* struct in_addr addr; */ \ /* struct ifnet *ifp; */ \ { \ struct in_ifaddr *ia; \ \ INADDR_TO_IFADDR(addr, ia); \ (ifp) = (ia == NULL) ? NULL : ia->ia_ifp; \ } /* * Macro for finding the internet address structure (in_ifaddr) corresponding * to a given interface (ifnet structure). */ -#define IFP_TO_IA(ifp, ia, t) \ +#define IFP_TO_IA(ifp, ia) \ /* struct ifnet *ifp; */ \ /* struct in_ifaddr *ia; */ \ - /* struct rm_priotracker *t; */ \ do { \ NET_EPOCH_ASSERT(); \ - IN_IFADDR_RLOCK((t)); \ for ((ia) = CK_STAILQ_FIRST(&V_in_ifaddrhead); \ (ia) != NULL && (ia)->ia_ifp != (ifp); \ - (ia) = CK_STAILQ_NEXT((ia), ia_link)) \ + (ia) = CK_STAILQ_NEXT((ia), ia_link)) \ continue; \ - IN_IFADDR_RUNLOCK((t)); \ } while (0) /* * Legacy IPv4 IGMP per-link structure. */ struct router_info { struct ifnet *rti_ifp; int rti_type; /* type of router which is querier on this interface */ int rti_time; /* # of slow timeouts since last old query */ SLIST_ENTRY(router_info) rti_list; }; /* * IPv4 multicast IGMP-layer source entry. */ struct ip_msource { RB_ENTRY(ip_msource) ims_link; /* RB tree links */ in_addr_t ims_haddr; /* host byte order */ struct ims_st { uint16_t ex; /* # of exclusive members */ uint16_t in; /* # of inclusive members */ } ims_st[2]; /* state at t0, t1 */ uint8_t ims_stp; /* pending query */ }; /* * IPv4 multicast PCB-layer source entry. */ struct in_msource { RB_ENTRY(ip_msource) ims_link; /* RB tree links */ in_addr_t ims_haddr; /* host byte order */ uint8_t imsl_st[2]; /* state before/at commit */ }; RB_HEAD(ip_msource_tree, ip_msource); /* define struct ip_msource_tree */ static __inline int ip_msource_cmp(const struct ip_msource *a, const struct ip_msource *b) { if (a->ims_haddr < b->ims_haddr) return (-1); if (a->ims_haddr == b->ims_haddr) return (0); return (1); } RB_PROTOTYPE(ip_msource_tree, ip_msource, ims_link, ip_msource_cmp); /* * IPv4 multicast PCB-layer group filter descriptor. */ struct in_mfilter { struct ip_msource_tree imf_sources; /* source list for (S,G) */ u_long imf_nsrc; /* # of source entries */ uint8_t imf_st[2]; /* state before/at commit */ struct in_multi *imf_inm; /* associated multicast address */ STAILQ_ENTRY(in_mfilter) imf_entry; /* list entry */ }; /* * Helper types and functions for IPv4 multicast filters. */ STAILQ_HEAD(ip_mfilter_head, in_mfilter); struct in_mfilter *ip_mfilter_alloc(int mflags, int st0, int st1); void ip_mfilter_free(struct in_mfilter *); static inline void ip_mfilter_init(struct ip_mfilter_head *head) { STAILQ_INIT(head); } static inline struct in_mfilter * ip_mfilter_first(const struct ip_mfilter_head *head) { return (STAILQ_FIRST(head)); } static inline void ip_mfilter_insert(struct ip_mfilter_head *head, struct in_mfilter *imf) { STAILQ_INSERT_TAIL(head, imf, imf_entry); } static inline void ip_mfilter_remove(struct ip_mfilter_head *head, struct in_mfilter *imf) { STAILQ_REMOVE(head, imf, in_mfilter, imf_entry); } #define IP_MFILTER_FOREACH(imf, head) \ STAILQ_FOREACH(imf, head, imf_entry) static inline size_t ip_mfilter_count(struct ip_mfilter_head *head) { struct in_mfilter *imf; size_t num = 0; STAILQ_FOREACH(imf, head, imf_entry) num++; return (num); } /* * IPv4 group descriptor. * * For every entry on an ifnet's if_multiaddrs list which represents * an IP multicast group, there is one of these structures. * * If any source filters are present, then a node will exist in the RB-tree * to permit fast lookup by source whenever an operation takes place. * This permits pre-order traversal when we issue reports. * Source filter trees are kept separately from the socket layer to * greatly simplify locking. * * When IGMPv3 is active, inm_timer is the response to group query timer. * The state-change timer inm_sctimer is separate; whenever state changes * for the group the state change record is generated and transmitted, * and kept if retransmissions are necessary. * * FUTURE: inm_link is now only used when groups are being purged * on a detaching ifnet. It could be demoted to a SLIST_ENTRY, but * because it is at the very start of the struct, we can't do this * w/o breaking the ABI for ifmcstat. */ struct in_multi { LIST_ENTRY(in_multi) inm_link; /* to-be-released by in_ifdetach */ struct in_addr inm_addr; /* IP multicast address, convenience */ struct ifnet *inm_ifp; /* back pointer to ifnet */ struct ifmultiaddr *inm_ifma; /* back pointer to ifmultiaddr */ u_int inm_timer; /* IGMPv1/v2 group / v3 query timer */ u_int inm_state; /* state of the membership */ void *inm_rti; /* unused, legacy field */ u_int inm_refcount; /* reference count */ /* New fields for IGMPv3 follow. */ struct igmp_ifsoftc *inm_igi; /* IGMP info */ SLIST_ENTRY(in_multi) inm_nrele; /* to-be-released by IGMP */ struct ip_msource_tree inm_srcs; /* tree of sources */ u_long inm_nsrc; /* # of tree entries */ struct mbufq inm_scq; /* queue of pending * state-change packets */ struct timeval inm_lastgsrtv; /* Time of last G-S-R query */ uint16_t inm_sctimer; /* state-change timer */ uint16_t inm_scrv; /* state-change rexmit count */ /* * SSM state counters which track state at T0 (the time the last * state-change report's RV timer went to zero) and T1 * (time of pending report, i.e. now). * Used for computing IGMPv3 state-change reports. Several refcounts * are maintained here to optimize for common use-cases. */ struct inm_st { uint16_t iss_fmode; /* IGMP filter mode */ uint16_t iss_asm; /* # of ASM listeners */ uint16_t iss_ex; /* # of exclusive members */ uint16_t iss_in; /* # of inclusive members */ uint16_t iss_rec; /* # of recorded sources */ } inm_st[2]; /* state at t0, t1 */ }; /* * Helper function to derive the filter mode on a source entry * from its internal counters. Predicates are: * A source is only excluded if all listeners exclude it. * A source is only included if no listeners exclude it, * and at least one listener includes it. * May be used by ifmcstat(8). */ static __inline uint8_t ims_get_mode(const struct in_multi *inm, const struct ip_msource *ims, uint8_t t) { t = !!t; if (inm->inm_st[t].iss_ex > 0 && inm->inm_st[t].iss_ex == ims->ims_st[t].ex) return (MCAST_EXCLUDE); else if (ims->ims_st[t].in > 0 && ims->ims_st[t].ex == 0) return (MCAST_INCLUDE); return (MCAST_UNDEFINED); } #ifdef SYSCTL_DECL SYSCTL_DECL(_net_inet); SYSCTL_DECL(_net_inet_ip); SYSCTL_DECL(_net_inet_raw); #endif /* * Lock macros for IPv4 layer multicast address lists. IPv4 lock goes * before link layer multicast locks in the lock order. In most cases, * consumers of IN_*_MULTI() macros should acquire the locks before * calling them; users of the in_{add,del}multi() functions should not. */ extern struct mtx in_multi_list_mtx; extern struct sx in_multi_sx; #define IN_MULTI_LIST_LOCK() mtx_lock(&in_multi_list_mtx) #define IN_MULTI_LIST_UNLOCK() mtx_unlock(&in_multi_list_mtx) #define IN_MULTI_LIST_LOCK_ASSERT() mtx_assert(&in_multi_list_mtx, MA_OWNED) #define IN_MULTI_LIST_UNLOCK_ASSERT() mtx_assert(&in_multi_list_mtx, MA_NOTOWNED) #define IN_MULTI_LOCK() sx_xlock(&in_multi_sx) #define IN_MULTI_UNLOCK() sx_xunlock(&in_multi_sx) #define IN_MULTI_LOCK_ASSERT() sx_assert(&in_multi_sx, SA_XLOCKED) #define IN_MULTI_UNLOCK_ASSERT() sx_assert(&in_multi_sx, SA_XUNLOCKED) void inm_disconnect(struct in_multi *inm); extern int ifma_restart; /* Acquire an in_multi record. */ static __inline void inm_acquire_locked(struct in_multi *inm) { IN_MULTI_LIST_LOCK_ASSERT(); ++inm->inm_refcount; } static __inline void inm_acquire(struct in_multi *inm) { IN_MULTI_LIST_LOCK(); inm_acquire_locked(inm); IN_MULTI_LIST_UNLOCK(); } static __inline void inm_rele_locked(struct in_multi_head *inmh, struct in_multi *inm) { MPASS(inm->inm_refcount > 0); IN_MULTI_LIST_LOCK_ASSERT(); if (--inm->inm_refcount == 0) { MPASS(inmh != NULL); inm_disconnect(inm); inm->inm_ifma->ifma_protospec = NULL; SLIST_INSERT_HEAD(inmh, inm, inm_nrele); } } /* * Return values for imo_multi_filter(). */ #define MCAST_PASS 0 /* Pass */ #define MCAST_NOTGMEMBER 1 /* This host not a member of group */ #define MCAST_NOTSMEMBER 2 /* This host excluded source */ #define MCAST_MUTED 3 /* [deprecated] */ struct rib_head; struct ip_moptions; struct in_multi *inm_lookup_locked(struct ifnet *, const struct in_addr); struct in_multi *inm_lookup(struct ifnet *, const struct in_addr); int imo_multi_filter(const struct ip_moptions *, const struct ifnet *, const struct sockaddr *, const struct sockaddr *); void inm_commit(struct in_multi *); void inm_clear_recorded(struct in_multi *); void inm_print(const struct in_multi *); int inm_record_source(struct in_multi *inm, const in_addr_t); void inm_release_deferred(struct in_multi *); void inm_release_list_deferred(struct in_multi_head *); void inm_release_wait(void *); int in_joingroup(struct ifnet *, const struct in_addr *, /*const*/ struct in_mfilter *, struct in_multi **); int in_joingroup_locked(struct ifnet *, const struct in_addr *, /*const*/ struct in_mfilter *, struct in_multi **); int in_leavegroup(struct in_multi *, /*const*/ struct in_mfilter *); int in_leavegroup_locked(struct in_multi *, /*const*/ struct in_mfilter *); int in_control(struct socket *, u_long, caddr_t, struct ifnet *, struct thread *); int in_addprefix(struct in_ifaddr *); int in_scrubprefix(struct in_ifaddr *, u_int); void in_ifscrub_all(void); int in_handle_ifaddr_route(int, struct in_ifaddr *); void ip_input(struct mbuf *); void ip_direct_input(struct mbuf *); void in_ifadown(struct ifaddr *ifa, int); struct mbuf *ip_tryforward(struct mbuf *); void *in_domifattach(struct ifnet *); void in_domifdetach(struct ifnet *, void *); struct rib_head *in_inithead(uint32_t fibnum); #ifdef VIMAGE void in_detachhead(struct rib_head *rh); #endif #endif /* _KERNEL */ /* INET6 stuff */ #include #endif /* _NETINET_IN_VAR_H_ */ diff --git a/sys/netinet/ip_output.c b/sys/netinet/ip_output.c index ad41c9df0b8c..d850cf5b5167 100644 --- a/sys/netinet/ip_output.c +++ b/sys/netinet/ip_output.c @@ -1,1627 +1,1625 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 1982, 1986, 1988, 1990, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 */ #include __FBSDID("$FreeBSD$"); #include "opt_inet.h" #include "opt_ipsec.h" #include "opt_kern_tls.h" #include "opt_mbuf_stress_test.h" #include "opt_ratelimit.h" #include "opt_route.h" #include "opt_rss.h" #include "opt_sctp.h" #include #include #include #include #include #include #include #include #include #include -#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if defined(SCTP) || defined(SCTP_SUPPORT) #include #include #endif #include #include #include #ifdef MBUF_STRESS_TEST static int mbuf_frag_size = 0; SYSCTL_INT(_net_inet_ip, OID_AUTO, mbuf_frag_size, CTLFLAG_RW, &mbuf_frag_size, 0, "Fragment outgoing mbufs to this size"); #endif static void ip_mloopback(struct ifnet *, const struct mbuf *, int); extern int in_mcast_loop; extern struct protosw inetsw[]; static inline int ip_output_pfil(struct mbuf **mp, struct ifnet *ifp, int flags, struct inpcb *inp, struct sockaddr_in *dst, int *fibnum, int *error) { struct m_tag *fwd_tag = NULL; struct mbuf *m; struct in_addr odst; struct ip *ip; int pflags = PFIL_OUT; if (flags & IP_FORWARDING) pflags |= PFIL_FWD; m = *mp; ip = mtod(m, struct ip *); /* Run through list of hooks for output packets. */ odst.s_addr = ip->ip_dst.s_addr; switch (pfil_run_hooks(V_inet_pfil_head, mp, ifp, pflags, inp)) { case PFIL_DROPPED: *error = EACCES; /* FALLTHROUGH */ case PFIL_CONSUMED: return 1; /* Finished */ case PFIL_PASS: *error = 0; } m = *mp; ip = mtod(m, struct ip *); /* See if destination IP address was changed by packet filter. */ if (odst.s_addr != ip->ip_dst.s_addr) { m->m_flags |= M_SKIP_FIREWALL; /* If destination is now ourself drop to ip_input(). */ if (in_localip(ip->ip_dst)) { m->m_flags |= M_FASTFWD_OURS; if (m->m_pkthdr.rcvif == NULL) m->m_pkthdr.rcvif = V_loif; if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { m->m_pkthdr.csum_flags |= CSUM_DATA_VALID | CSUM_PSEUDO_HDR; m->m_pkthdr.csum_data = 0xffff; } m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED | CSUM_IP_VALID; #if defined(SCTP) || defined(SCTP_SUPPORT) if (m->m_pkthdr.csum_flags & CSUM_SCTP) m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; #endif *error = netisr_queue(NETISR_IP, m); return 1; /* Finished */ } bzero(dst, sizeof(*dst)); dst->sin_family = AF_INET; dst->sin_len = sizeof(*dst); dst->sin_addr = ip->ip_dst; return -1; /* Reloop */ } /* See if fib was changed by packet filter. */ if ((*fibnum) != M_GETFIB(m)) { m->m_flags |= M_SKIP_FIREWALL; *fibnum = M_GETFIB(m); return -1; /* Reloop for FIB change */ } /* See if local, if yes, send it to netisr with IP_FASTFWD_OURS. */ if (m->m_flags & M_FASTFWD_OURS) { if (m->m_pkthdr.rcvif == NULL) m->m_pkthdr.rcvif = V_loif; if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { m->m_pkthdr.csum_flags |= CSUM_DATA_VALID | CSUM_PSEUDO_HDR; m->m_pkthdr.csum_data = 0xffff; } #if defined(SCTP) || defined(SCTP_SUPPORT) if (m->m_pkthdr.csum_flags & CSUM_SCTP) m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; #endif m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED | CSUM_IP_VALID; *error = netisr_queue(NETISR_IP, m); return 1; /* Finished */ } /* Or forward to some other address? */ if ((m->m_flags & M_IP_NEXTHOP) && ((fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL)) { bcopy((fwd_tag+1), dst, sizeof(struct sockaddr_in)); m->m_flags |= M_SKIP_FIREWALL; m->m_flags &= ~M_IP_NEXTHOP; m_tag_delete(m, fwd_tag); return -1; /* Reloop for CHANGE of dst */ } return 0; } static int ip_output_send(struct inpcb *inp, struct ifnet *ifp, struct mbuf *m, const struct sockaddr *gw, struct route *ro, bool stamp_tag) { #ifdef KERN_TLS struct ktls_session *tls = NULL; #endif struct m_snd_tag *mst; int error; MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0); mst = NULL; #ifdef KERN_TLS /* * If this is an unencrypted TLS record, save a reference to * the record. This local reference is used to call * ktls_output_eagain after the mbuf has been freed (thus * dropping the mbuf's reference) in if_output. */ if (m->m_next != NULL && mbuf_has_tls_session(m->m_next)) { tls = ktls_hold(m->m_next->m_epg_tls); mst = tls->snd_tag; /* * If a TLS session doesn't have a valid tag, it must * have had an earlier ifp mismatch, so drop this * packet. */ if (mst == NULL) { error = EAGAIN; goto done; } /* * Always stamp tags that include NIC ktls. */ stamp_tag = true; } #endif #ifdef RATELIMIT if (inp != NULL && mst == NULL) { if ((inp->inp_flags2 & INP_RATE_LIMIT_CHANGED) != 0 || (inp->inp_snd_tag != NULL && inp->inp_snd_tag->ifp != ifp)) in_pcboutput_txrtlmt(inp, ifp, m); if (inp->inp_snd_tag != NULL) mst = inp->inp_snd_tag; } #endif if (stamp_tag && mst != NULL) { KASSERT(m->m_pkthdr.rcvif == NULL, ("trying to add a send tag to a forwarded packet")); if (mst->ifp != ifp) { error = EAGAIN; goto done; } /* stamp send tag on mbuf */ m->m_pkthdr.snd_tag = m_snd_tag_ref(mst); m->m_pkthdr.csum_flags |= CSUM_SND_TAG; } error = (*ifp->if_output)(ifp, m, gw, ro); done: /* Check for route change invalidating send tags. */ #ifdef KERN_TLS if (tls != NULL) { if (error == EAGAIN) error = ktls_output_eagain(inp, tls); ktls_free(tls); } #endif #ifdef RATELIMIT if (error == EAGAIN) in_pcboutput_eagain(inp); #endif return (error); } /* rte<>ro_flags translation */ static inline void rt_update_ro_flags(struct route *ro, const struct nhop_object *nh) { int nh_flags = nh->nh_flags; ro->ro_flags &= ~ (RT_REJECT|RT_BLACKHOLE|RT_HAS_GW); ro->ro_flags |= (nh_flags & NHF_REJECT) ? RT_REJECT : 0; ro->ro_flags |= (nh_flags & NHF_BLACKHOLE) ? RT_BLACKHOLE : 0; ro->ro_flags |= (nh_flags & NHF_GATEWAY) ? RT_HAS_GW : 0; } /* * IP output. The packet in mbuf chain m contains a skeletal IP * header (with len, off, ttl, proto, tos, src, dst). * The mbuf chain containing the packet will be freed. * The mbuf opt, if present, will not be freed. * If route ro is present and has ro_rt initialized, route lookup would be * skipped and ro->ro_rt would be used. If ro is present but ro->ro_rt is NULL, * then result of route lookup is stored in ro->ro_rt. * * In the IP forwarding case, the packet will arrive with options already * inserted, so must have a NULL opt pointer. */ int ip_output(struct mbuf *m, struct mbuf *opt, struct route *ro, int flags, struct ip_moptions *imo, struct inpcb *inp) { MROUTER_RLOCK_TRACKER; - struct rm_priotracker in_ifa_tracker; struct ip *ip; struct ifnet *ifp = NULL; /* keep compiler happy */ struct mbuf *m0; int hlen = sizeof (struct ip); int mtu = 0; int error = 0; int vlan_pcp = -1; struct sockaddr_in *dst; const struct sockaddr *gw; struct in_ifaddr *ia = NULL; struct in_addr src; int isbroadcast; uint16_t ip_len, ip_off; struct route iproute; uint32_t fibnum; #if defined(IPSEC) || defined(IPSEC_SUPPORT) int no_route_but_check_spd = 0; #endif M_ASSERTPKTHDR(m); NET_EPOCH_ASSERT(); if (inp != NULL) { INP_LOCK_ASSERT(inp); M_SETFIB(m, inp->inp_inc.inc_fibnum); if ((flags & IP_NODEFAULTFLOWID) == 0) { m->m_pkthdr.flowid = inp->inp_flowid; M_HASHTYPE_SET(m, inp->inp_flowtype); } if ((inp->inp_flags2 & INP_2PCP_SET) != 0) vlan_pcp = (inp->inp_flags2 & INP_2PCP_MASK) >> INP_2PCP_SHIFT; #ifdef NUMA m->m_pkthdr.numa_domain = inp->inp_numa_domain; #endif } if (opt) { int len = 0; m = ip_insertoptions(m, opt, &len); if (len != 0) hlen = len; /* ip->ip_hl is updated above */ } ip = mtod(m, struct ip *); ip_len = ntohs(ip->ip_len); ip_off = ntohs(ip->ip_off); if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) { ip->ip_v = IPVERSION; ip->ip_hl = hlen >> 2; ip_fillid(ip); } else { /* Header already set, fetch hlen from there */ hlen = ip->ip_hl << 2; } if ((flags & IP_FORWARDING) == 0) IPSTAT_INC(ips_localout); /* * dst/gw handling: * * gw is readonly but can point either to dst OR rt_gateway, * therefore we need restore gw if we're redoing lookup. */ fibnum = (inp != NULL) ? inp->inp_inc.inc_fibnum : M_GETFIB(m); if (ro == NULL) { ro = &iproute; bzero(ro, sizeof (*ro)); } dst = (struct sockaddr_in *)&ro->ro_dst; if (ro->ro_nh == NULL) { dst->sin_family = AF_INET; dst->sin_len = sizeof(*dst); dst->sin_addr = ip->ip_dst; } gw = (const struct sockaddr *)dst; again: /* * Validate route against routing table additions; * a better/more specific route might have been added. */ if (inp != NULL && ro->ro_nh != NULL) NH_VALIDATE(ro, &inp->inp_rt_cookie, fibnum); /* * If there is a cached route, * check that it is to the same destination * and is still up. If not, free it and try again. * The address family should also be checked in case of sharing the * cache with IPv6. * Also check whether routing cache needs invalidation. */ if (ro->ro_nh != NULL && ((!NH_IS_VALID(ro->ro_nh)) || dst->sin_family != AF_INET || dst->sin_addr.s_addr != ip->ip_dst.s_addr)) RO_INVALIDATE_CACHE(ro); ia = NULL; /* * If routing to interface only, short circuit routing lookup. * The use of an all-ones broadcast address implies this; an * interface is specified by the broadcast address of an interface, * or the destination address of a ptp interface. */ if (flags & IP_SENDONES) { if ((ia = ifatoia(ifa_ifwithbroadaddr(sintosa(dst), M_GETFIB(m)))) == NULL && (ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst), M_GETFIB(m)))) == NULL) { IPSTAT_INC(ips_noroute); error = ENETUNREACH; goto bad; } ip->ip_dst.s_addr = INADDR_BROADCAST; dst->sin_addr = ip->ip_dst; ifp = ia->ia_ifp; mtu = ifp->if_mtu; ip->ip_ttl = 1; isbroadcast = 1; src = IA_SIN(ia)->sin_addr; } else if (flags & IP_ROUTETOIF) { if ((ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst), M_GETFIB(m)))) == NULL && (ia = ifatoia(ifa_ifwithnet(sintosa(dst), 0, M_GETFIB(m)))) == NULL) { IPSTAT_INC(ips_noroute); error = ENETUNREACH; goto bad; } ifp = ia->ia_ifp; mtu = ifp->if_mtu; ip->ip_ttl = 1; isbroadcast = ifp->if_flags & IFF_BROADCAST ? in_ifaddr_broadcast(dst->sin_addr, ia) : 0; src = IA_SIN(ia)->sin_addr; } else if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) && imo != NULL && imo->imo_multicast_ifp != NULL) { /* * Bypass the normal routing lookup for multicast * packets if the interface is specified. */ ifp = imo->imo_multicast_ifp; mtu = ifp->if_mtu; - IFP_TO_IA(ifp, ia, &in_ifa_tracker); + IFP_TO_IA(ifp, ia); isbroadcast = 0; /* fool gcc */ /* Interface may have no addresses. */ if (ia != NULL) src = IA_SIN(ia)->sin_addr; else src.s_addr = INADDR_ANY; } else if (ro != &iproute) { if (ro->ro_nh == NULL) { /* * We want to do any cloning requested by the link * layer, as this is probably required in all cases * for correct operation (as it is for ARP). */ uint32_t flowid; flowid = m->m_pkthdr.flowid; ro->ro_nh = fib4_lookup(fibnum, dst->sin_addr, 0, NHR_REF, flowid); if (ro->ro_nh == NULL || (!NH_IS_VALID(ro->ro_nh))) { #if defined(IPSEC) || defined(IPSEC_SUPPORT) /* * There is no route for this packet, but it is * possible that a matching SPD entry exists. */ no_route_but_check_spd = 1; goto sendit; #endif IPSTAT_INC(ips_noroute); error = EHOSTUNREACH; goto bad; } } struct nhop_object *nh = ro->ro_nh; ia = ifatoia(nh->nh_ifa); ifp = nh->nh_ifp; counter_u64_add(nh->nh_pksent, 1); rt_update_ro_flags(ro, nh); if (nh->nh_flags & NHF_GATEWAY) gw = &nh->gw_sa; if (nh->nh_flags & NHF_HOST) isbroadcast = (nh->nh_flags & NHF_BROADCAST); else if ((ifp->if_flags & IFF_BROADCAST) && (gw->sa_family == AF_INET)) isbroadcast = in_ifaddr_broadcast(((const struct sockaddr_in *)gw)->sin_addr, ia); else isbroadcast = 0; mtu = nh->nh_mtu; src = IA_SIN(ia)->sin_addr; } else { struct nhop_object *nh; nh = fib4_lookup(M_GETFIB(m), ip->ip_dst, 0, NHR_NONE, m->m_pkthdr.flowid); if (nh == NULL) { #if defined(IPSEC) || defined(IPSEC_SUPPORT) /* * There is no route for this packet, but it is * possible that a matching SPD entry exists. */ no_route_but_check_spd = 1; goto sendit; #endif IPSTAT_INC(ips_noroute); error = EHOSTUNREACH; goto bad; } ifp = nh->nh_ifp; mtu = nh->nh_mtu; rt_update_ro_flags(ro, nh); if (nh->nh_flags & NHF_GATEWAY) gw = &nh->gw_sa; ia = ifatoia(nh->nh_ifa); src = IA_SIN(ia)->sin_addr; isbroadcast = (((nh->nh_flags & (NHF_HOST | NHF_BROADCAST)) == (NHF_HOST | NHF_BROADCAST)) || ((ifp->if_flags & IFF_BROADCAST) && (gw->sa_family == AF_INET) && in_ifaddr_broadcast(((const struct sockaddr_in *)gw)->sin_addr, ia))); } /* Catch a possible divide by zero later. */ KASSERT(mtu > 0, ("%s: mtu %d <= 0, ro=%p (nh_flags=0x%08x) ifp=%p", __func__, mtu, ro, (ro != NULL && ro->ro_nh != NULL) ? ro->ro_nh->nh_flags : 0, ifp)); if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) { m->m_flags |= M_MCAST; /* * IP destination address is multicast. Make sure "gw" * still points to the address in "ro". (It may have been * changed to point to a gateway address, above.) */ gw = (const struct sockaddr *)dst; /* * See if the caller provided any multicast options */ if (imo != NULL) { ip->ip_ttl = imo->imo_multicast_ttl; if (imo->imo_multicast_vif != -1) ip->ip_src.s_addr = ip_mcast_src ? ip_mcast_src(imo->imo_multicast_vif) : INADDR_ANY; } else ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL; /* * Confirm that the outgoing interface supports multicast. */ if ((imo == NULL) || (imo->imo_multicast_vif == -1)) { if ((ifp->if_flags & IFF_MULTICAST) == 0) { IPSTAT_INC(ips_noroute); error = ENETUNREACH; goto bad; } } /* * If source address not specified yet, use address * of outgoing interface. */ if (ip->ip_src.s_addr == INADDR_ANY) ip->ip_src = src; if ((imo == NULL && in_mcast_loop) || (imo && imo->imo_multicast_loop)) { /* * Loop back multicast datagram if not expressly * forbidden to do so, even if we are not a member * of the group; ip_input() will filter it later, * thus deferring a hash lookup and mutex acquisition * at the expense of a cheap copy using m_copym(). */ ip_mloopback(ifp, m, hlen); } else { /* * If we are acting as a multicast router, perform * multicast forwarding as if the packet had just * arrived on the interface to which we are about * to send. The multicast forwarding function * recursively calls this function, using the * IP_FORWARDING flag to prevent infinite recursion. * * Multicasts that are looped back by ip_mloopback(), * above, will be forwarded by the ip_input() routine, * if necessary. */ MROUTER_RLOCK(); if (V_ip_mrouter && (flags & IP_FORWARDING) == 0) { /* * If rsvp daemon is not running, do not * set ip_moptions. This ensures that the packet * is multicast and not just sent down one link * as prescribed by rsvpd. */ if (!V_rsvp_on) imo = NULL; if (ip_mforward && ip_mforward(ip, ifp, m, imo) != 0) { MROUTER_RUNLOCK(); m_freem(m); goto done; } } MROUTER_RUNLOCK(); } /* * Multicasts with a time-to-live of zero may be looped- * back, above, but must not be transmitted on a network. * Also, multicasts addressed to the loopback interface * are not sent -- the above call to ip_mloopback() will * loop back a copy. ip_input() will drop the copy if * this host does not belong to the destination group on * the loopback interface. */ if (ip->ip_ttl == 0 || ifp->if_flags & IFF_LOOPBACK) { m_freem(m); goto done; } goto sendit; } /* * If the source address is not specified yet, use the address * of the outoing interface. */ if (ip->ip_src.s_addr == INADDR_ANY) ip->ip_src = src; /* * Look for broadcast address and * verify user is allowed to send * such a packet. */ if (isbroadcast) { if ((ifp->if_flags & IFF_BROADCAST) == 0) { error = EADDRNOTAVAIL; goto bad; } if ((flags & IP_ALLOWBROADCAST) == 0) { error = EACCES; goto bad; } /* don't allow broadcast messages to be fragmented */ if (ip_len > mtu) { error = EMSGSIZE; goto bad; } m->m_flags |= M_BCAST; } else { m->m_flags &= ~M_BCAST; } sendit: #if defined(IPSEC) || defined(IPSEC_SUPPORT) if (IPSEC_ENABLED(ipv4)) { if ((error = IPSEC_OUTPUT(ipv4, m, inp)) != 0) { if (error == EINPROGRESS) error = 0; goto done; } } /* * Check if there was a route for this packet; return error if not. */ if (no_route_but_check_spd) { IPSTAT_INC(ips_noroute); error = EHOSTUNREACH; goto bad; } /* Update variables that are affected by ipsec4_output(). */ ip = mtod(m, struct ip *); hlen = ip->ip_hl << 2; #endif /* IPSEC */ /* Jump over all PFIL processing if hooks are not active. */ if (PFIL_HOOKED_OUT(V_inet_pfil_head)) { switch (ip_output_pfil(&m, ifp, flags, inp, dst, &fibnum, &error)) { case 1: /* Finished */ goto done; case 0: /* Continue normally */ ip = mtod(m, struct ip *); break; case -1: /* Need to try again */ /* Reset everything for a new round */ if (ro != NULL) { RO_NHFREE(ro); ro->ro_prepend = NULL; } gw = (const struct sockaddr *)dst; ip = mtod(m, struct ip *); goto again; } } if (vlan_pcp > -1) EVL_APPLY_PRI(m, vlan_pcp); /* IN_LOOPBACK must not appear on the wire - RFC1122. */ if (IN_LOOPBACK(ntohl(ip->ip_dst.s_addr)) || IN_LOOPBACK(ntohl(ip->ip_src.s_addr))) { if ((ifp->if_flags & IFF_LOOPBACK) == 0) { IPSTAT_INC(ips_badaddr); error = EADDRNOTAVAIL; goto bad; } } m->m_pkthdr.csum_flags |= CSUM_IP; if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) { m = mb_unmapped_to_ext(m); if (m == NULL) { IPSTAT_INC(ips_odropped); error = ENOBUFS; goto bad; } in_delayed_cksum(m); m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; } else if ((ifp->if_capenable & IFCAP_MEXTPG) == 0) { m = mb_unmapped_to_ext(m); if (m == NULL) { IPSTAT_INC(ips_odropped); error = ENOBUFS; goto bad; } } #if defined(SCTP) || defined(SCTP_SUPPORT) if (m->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) { m = mb_unmapped_to_ext(m); if (m == NULL) { IPSTAT_INC(ips_odropped); error = ENOBUFS; goto bad; } sctp_delayed_cksum(m, (uint32_t)(ip->ip_hl << 2)); m->m_pkthdr.csum_flags &= ~CSUM_SCTP; } #endif /* * If small enough for interface, or the interface will take * care of the fragmentation for us, we can just send directly. * Note that if_vxlan could have requested TSO even though the outer * frame is UDP. It is correct to not fragment such datagrams and * instead just pass them on to the driver. */ if (ip_len <= mtu || (m->m_pkthdr.csum_flags & ifp->if_hwassist & (CSUM_TSO | CSUM_INNER_TSO)) != 0) { ip->ip_sum = 0; if (m->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) { ip->ip_sum = in_cksum(m, hlen); m->m_pkthdr.csum_flags &= ~CSUM_IP; } /* * Record statistics for this interface address. * With CSUM_TSO the byte/packet count will be slightly * incorrect because we count the IP+TCP headers only * once instead of for every generated packet. */ if (!(flags & IP_FORWARDING) && ia) { if (m->m_pkthdr.csum_flags & (CSUM_TSO | CSUM_INNER_TSO)) counter_u64_add(ia->ia_ifa.ifa_opackets, m->m_pkthdr.len / m->m_pkthdr.tso_segsz); else counter_u64_add(ia->ia_ifa.ifa_opackets, 1); counter_u64_add(ia->ia_ifa.ifa_obytes, m->m_pkthdr.len); } #ifdef MBUF_STRESS_TEST if (mbuf_frag_size && m->m_pkthdr.len > mbuf_frag_size) m = m_fragment(m, M_NOWAIT, mbuf_frag_size); #endif /* * Reset layer specific mbuf flags * to avoid confusing lower layers. */ m_clrprotoflags(m); IP_PROBE(send, NULL, NULL, ip, ifp, ip, NULL); error = ip_output_send(inp, ifp, m, gw, ro, (flags & IP_NO_SND_TAG_RL) ? false : true); goto done; } /* Balk when DF bit is set or the interface didn't support TSO. */ if ((ip_off & IP_DF) || (m->m_pkthdr.csum_flags & (CSUM_TSO | CSUM_INNER_TSO))) { error = EMSGSIZE; IPSTAT_INC(ips_cantfrag); goto bad; } /* * Too large for interface; fragment if possible. If successful, * on return, m will point to a list of packets to be sent. */ error = ip_fragment(ip, &m, mtu, ifp->if_hwassist); if (error) goto bad; for (; m; m = m0) { m0 = m->m_nextpkt; m->m_nextpkt = 0; if (error == 0) { /* Record statistics for this interface address. */ if (ia != NULL) { counter_u64_add(ia->ia_ifa.ifa_opackets, 1); counter_u64_add(ia->ia_ifa.ifa_obytes, m->m_pkthdr.len); } /* * Reset layer specific mbuf flags * to avoid confusing upper layers. */ m_clrprotoflags(m); IP_PROBE(send, NULL, NULL, mtod(m, struct ip *), ifp, mtod(m, struct ip *), NULL); error = ip_output_send(inp, ifp, m, gw, ro, true); } else m_freem(m); } if (error == 0) IPSTAT_INC(ips_fragmented); done: return (error); bad: m_freem(m); goto done; } /* * Create a chain of fragments which fit the given mtu. m_frag points to the * mbuf to be fragmented; on return it points to the chain with the fragments. * Return 0 if no error. If error, m_frag may contain a partially built * chain of fragments that should be freed by the caller. * * if_hwassist_flags is the hw offload capabilities (see if_data.ifi_hwassist) */ int ip_fragment(struct ip *ip, struct mbuf **m_frag, int mtu, u_long if_hwassist_flags) { int error = 0; int hlen = ip->ip_hl << 2; int len = (mtu - hlen) & ~7; /* size of payload in each fragment */ int off; struct mbuf *m0 = *m_frag; /* the original packet */ int firstlen; struct mbuf **mnext; int nfrags; uint16_t ip_len, ip_off; ip_len = ntohs(ip->ip_len); ip_off = ntohs(ip->ip_off); if (ip_off & IP_DF) { /* Fragmentation not allowed */ IPSTAT_INC(ips_cantfrag); return EMSGSIZE; } /* * Must be able to put at least 8 bytes per fragment. */ if (len < 8) return EMSGSIZE; /* * If the interface will not calculate checksums on * fragmented packets, then do it here. */ if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { m0 = mb_unmapped_to_ext(m0); if (m0 == NULL) { error = ENOBUFS; IPSTAT_INC(ips_odropped); goto done; } in_delayed_cksum(m0); m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; } #if defined(SCTP) || defined(SCTP_SUPPORT) if (m0->m_pkthdr.csum_flags & CSUM_SCTP) { m0 = mb_unmapped_to_ext(m0); if (m0 == NULL) { error = ENOBUFS; IPSTAT_INC(ips_odropped); goto done; } sctp_delayed_cksum(m0, hlen); m0->m_pkthdr.csum_flags &= ~CSUM_SCTP; } #endif if (len > PAGE_SIZE) { /* * Fragment large datagrams such that each segment * contains a multiple of PAGE_SIZE amount of data, * plus headers. This enables a receiver to perform * page-flipping zero-copy optimizations. * * XXX When does this help given that sender and receiver * could have different page sizes, and also mtu could * be less than the receiver's page size ? */ int newlen; off = MIN(mtu, m0->m_pkthdr.len); /* * firstlen (off - hlen) must be aligned on an * 8-byte boundary */ if (off < hlen) goto smart_frag_failure; off = ((off - hlen) & ~7) + hlen; newlen = (~PAGE_MASK) & mtu; if ((newlen + sizeof (struct ip)) > mtu) { /* we failed, go back the default */ smart_frag_failure: newlen = len; off = hlen + len; } len = newlen; } else { off = hlen + len; } firstlen = off - hlen; mnext = &m0->m_nextpkt; /* pointer to next packet */ /* * Loop through length of segment after first fragment, * make new header and copy data of each part and link onto chain. * Here, m0 is the original packet, m is the fragment being created. * The fragments are linked off the m_nextpkt of the original * packet, which after processing serves as the first fragment. */ for (nfrags = 1; off < ip_len; off += len, nfrags++) { struct ip *mhip; /* ip header on the fragment */ struct mbuf *m; int mhlen = sizeof (struct ip); m = m_gethdr(M_NOWAIT, MT_DATA); if (m == NULL) { error = ENOBUFS; IPSTAT_INC(ips_odropped); goto done; } /* * Make sure the complete packet header gets copied * from the originating mbuf to the newly created * mbuf. This also ensures that existing firewall * classification(s), VLAN tags and so on get copied * to the resulting fragmented packet(s): */ if (m_dup_pkthdr(m, m0, M_NOWAIT) == 0) { m_free(m); error = ENOBUFS; IPSTAT_INC(ips_odropped); goto done; } /* * In the first mbuf, leave room for the link header, then * copy the original IP header including options. The payload * goes into an additional mbuf chain returned by m_copym(). */ m->m_data += max_linkhdr; mhip = mtod(m, struct ip *); *mhip = *ip; if (hlen > sizeof (struct ip)) { mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip); mhip->ip_v = IPVERSION; mhip->ip_hl = mhlen >> 2; } m->m_len = mhlen; /* XXX do we need to add ip_off below ? */ mhip->ip_off = ((off - hlen) >> 3) + ip_off; if (off + len >= ip_len) len = ip_len - off; else mhip->ip_off |= IP_MF; mhip->ip_len = htons((u_short)(len + mhlen)); m->m_next = m_copym(m0, off, len, M_NOWAIT); if (m->m_next == NULL) { /* copy failed */ m_free(m); error = ENOBUFS; /* ??? */ IPSTAT_INC(ips_odropped); goto done; } m->m_pkthdr.len = mhlen + len; #ifdef MAC mac_netinet_fragment(m0, m); #endif mhip->ip_off = htons(mhip->ip_off); mhip->ip_sum = 0; if (m->m_pkthdr.csum_flags & CSUM_IP & ~if_hwassist_flags) { mhip->ip_sum = in_cksum(m, mhlen); m->m_pkthdr.csum_flags &= ~CSUM_IP; } *mnext = m; mnext = &m->m_nextpkt; } IPSTAT_ADD(ips_ofragments, nfrags); /* * Update first fragment by trimming what's been copied out * and updating header. */ m_adj(m0, hlen + firstlen - ip_len); m0->m_pkthdr.len = hlen + firstlen; ip->ip_len = htons((u_short)m0->m_pkthdr.len); ip->ip_off = htons(ip_off | IP_MF); ip->ip_sum = 0; if (m0->m_pkthdr.csum_flags & CSUM_IP & ~if_hwassist_flags) { ip->ip_sum = in_cksum(m0, hlen); m0->m_pkthdr.csum_flags &= ~CSUM_IP; } done: *m_frag = m0; return error; } void in_delayed_cksum(struct mbuf *m) { struct ip *ip; struct udphdr *uh; uint16_t cklen, csum, offset; ip = mtod(m, struct ip *); offset = ip->ip_hl << 2 ; if (m->m_pkthdr.csum_flags & CSUM_UDP) { /* if udp header is not in the first mbuf copy udplen */ if (offset + sizeof(struct udphdr) > m->m_len) { m_copydata(m, offset + offsetof(struct udphdr, uh_ulen), sizeof(cklen), (caddr_t)&cklen); cklen = ntohs(cklen); } else { uh = (struct udphdr *)mtodo(m, offset); cklen = ntohs(uh->uh_ulen); } csum = in_cksum_skip(m, cklen + offset, offset); if (csum == 0) csum = 0xffff; } else { cklen = ntohs(ip->ip_len); csum = in_cksum_skip(m, cklen, offset); } offset += m->m_pkthdr.csum_data; /* checksum offset */ if (offset + sizeof(csum) > m->m_len) m_copyback(m, offset, sizeof(csum), (caddr_t)&csum); else *(u_short *)mtodo(m, offset) = csum; } /* * IP socket option processing. */ int ip_ctloutput(struct socket *so, struct sockopt *sopt) { struct inpcb *inp = sotoinpcb(so); int error, optval; #ifdef RSS uint32_t rss_bucket; int retval; #endif error = optval = 0; if (sopt->sopt_level != IPPROTO_IP) { error = EINVAL; if (sopt->sopt_level == SOL_SOCKET && sopt->sopt_dir == SOPT_SET) { switch (sopt->sopt_name) { case SO_REUSEADDR: INP_WLOCK(inp); if ((so->so_options & SO_REUSEADDR) != 0) inp->inp_flags2 |= INP_REUSEADDR; else inp->inp_flags2 &= ~INP_REUSEADDR; INP_WUNLOCK(inp); error = 0; break; case SO_REUSEPORT: INP_WLOCK(inp); if ((so->so_options & SO_REUSEPORT) != 0) inp->inp_flags2 |= INP_REUSEPORT; else inp->inp_flags2 &= ~INP_REUSEPORT; INP_WUNLOCK(inp); error = 0; break; case SO_REUSEPORT_LB: INP_WLOCK(inp); if ((so->so_options & SO_REUSEPORT_LB) != 0) inp->inp_flags2 |= INP_REUSEPORT_LB; else inp->inp_flags2 &= ~INP_REUSEPORT_LB; INP_WUNLOCK(inp); error = 0; break; case SO_SETFIB: INP_WLOCK(inp); inp->inp_inc.inc_fibnum = so->so_fibnum; INP_WUNLOCK(inp); error = 0; break; case SO_MAX_PACING_RATE: #ifdef RATELIMIT INP_WLOCK(inp); inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; INP_WUNLOCK(inp); error = 0; #else error = EOPNOTSUPP; #endif break; default: break; } } return (error); } switch (sopt->sopt_dir) { case SOPT_SET: switch (sopt->sopt_name) { case IP_OPTIONS: #ifdef notyet case IP_RETOPTS: #endif { struct mbuf *m; if (sopt->sopt_valsize > MLEN) { error = EMSGSIZE; break; } m = m_get(sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA); if (m == NULL) { error = ENOBUFS; break; } m->m_len = sopt->sopt_valsize; error = sooptcopyin(sopt, mtod(m, char *), m->m_len, m->m_len); if (error) { m_free(m); break; } INP_WLOCK(inp); error = ip_pcbopts(inp, sopt->sopt_name, m); INP_WUNLOCK(inp); return (error); } case IP_BINDANY: if (sopt->sopt_td != NULL) { error = priv_check(sopt->sopt_td, PRIV_NETINET_BINDANY); if (error) break; } /* FALLTHROUGH */ case IP_BINDMULTI: #ifdef RSS case IP_RSS_LISTEN_BUCKET: #endif case IP_TOS: case IP_TTL: case IP_MINTTL: case IP_RECVOPTS: case IP_RECVRETOPTS: case IP_ORIGDSTADDR: case IP_RECVDSTADDR: case IP_RECVTTL: case IP_RECVIF: case IP_ONESBCAST: case IP_DONTFRAG: case IP_RECVTOS: case IP_RECVFLOWID: #ifdef RSS case IP_RECVRSSBUCKETID: #endif case IP_VLAN_PCP: error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); if (error) break; switch (sopt->sopt_name) { case IP_TOS: inp->inp_ip_tos = optval; break; case IP_TTL: inp->inp_ip_ttl = optval; break; case IP_MINTTL: if (optval >= 0 && optval <= MAXTTL) inp->inp_ip_minttl = optval; else error = EINVAL; break; #define OPTSET(bit) do { \ INP_WLOCK(inp); \ if (optval) \ inp->inp_flags |= bit; \ else \ inp->inp_flags &= ~bit; \ INP_WUNLOCK(inp); \ } while (0) #define OPTSET2(bit, val) do { \ INP_WLOCK(inp); \ if (val) \ inp->inp_flags2 |= bit; \ else \ inp->inp_flags2 &= ~bit; \ INP_WUNLOCK(inp); \ } while (0) case IP_RECVOPTS: OPTSET(INP_RECVOPTS); break; case IP_RECVRETOPTS: OPTSET(INP_RECVRETOPTS); break; case IP_RECVDSTADDR: OPTSET(INP_RECVDSTADDR); break; case IP_ORIGDSTADDR: OPTSET2(INP_ORIGDSTADDR, optval); break; case IP_RECVTTL: OPTSET(INP_RECVTTL); break; case IP_RECVIF: OPTSET(INP_RECVIF); break; case IP_ONESBCAST: OPTSET(INP_ONESBCAST); break; case IP_DONTFRAG: OPTSET(INP_DONTFRAG); break; case IP_BINDANY: OPTSET(INP_BINDANY); break; case IP_RECVTOS: OPTSET(INP_RECVTOS); break; case IP_BINDMULTI: OPTSET2(INP_BINDMULTI, optval); break; case IP_RECVFLOWID: OPTSET2(INP_RECVFLOWID, optval); break; #ifdef RSS case IP_RSS_LISTEN_BUCKET: if ((optval >= 0) && (optval < rss_getnumbuckets())) { inp->inp_rss_listen_bucket = optval; OPTSET2(INP_RSS_BUCKET_SET, 1); } else { error = EINVAL; } break; case IP_RECVRSSBUCKETID: OPTSET2(INP_RECVRSSBUCKETID, optval); break; #endif case IP_VLAN_PCP: if ((optval >= -1) && (optval <= (INP_2PCP_MASK >> INP_2PCP_SHIFT))) { if (optval == -1) { INP_WLOCK(inp); inp->inp_flags2 &= ~(INP_2PCP_SET | INP_2PCP_MASK); INP_WUNLOCK(inp); } else { INP_WLOCK(inp); inp->inp_flags2 |= INP_2PCP_SET; inp->inp_flags2 &= ~INP_2PCP_MASK; inp->inp_flags2 |= optval << INP_2PCP_SHIFT; INP_WUNLOCK(inp); } } else error = EINVAL; break; } break; #undef OPTSET #undef OPTSET2 /* * Multicast socket options are processed by the in_mcast * module. */ case IP_MULTICAST_IF: case IP_MULTICAST_VIF: case IP_MULTICAST_TTL: case IP_MULTICAST_LOOP: case IP_ADD_MEMBERSHIP: case IP_DROP_MEMBERSHIP: case IP_ADD_SOURCE_MEMBERSHIP: case IP_DROP_SOURCE_MEMBERSHIP: case IP_BLOCK_SOURCE: case IP_UNBLOCK_SOURCE: case IP_MSFILTER: case MCAST_JOIN_GROUP: case MCAST_LEAVE_GROUP: case MCAST_JOIN_SOURCE_GROUP: case MCAST_LEAVE_SOURCE_GROUP: case MCAST_BLOCK_SOURCE: case MCAST_UNBLOCK_SOURCE: error = inp_setmoptions(inp, sopt); break; case IP_PORTRANGE: error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); if (error) break; INP_WLOCK(inp); switch (optval) { case IP_PORTRANGE_DEFAULT: inp->inp_flags &= ~(INP_LOWPORT); inp->inp_flags &= ~(INP_HIGHPORT); break; case IP_PORTRANGE_HIGH: inp->inp_flags &= ~(INP_LOWPORT); inp->inp_flags |= INP_HIGHPORT; break; case IP_PORTRANGE_LOW: inp->inp_flags &= ~(INP_HIGHPORT); inp->inp_flags |= INP_LOWPORT; break; default: error = EINVAL; break; } INP_WUNLOCK(inp); break; #if defined(IPSEC) || defined(IPSEC_SUPPORT) case IP_IPSEC_POLICY: if (IPSEC_ENABLED(ipv4)) { error = IPSEC_PCBCTL(ipv4, inp, sopt); break; } /* FALLTHROUGH */ #endif /* IPSEC */ default: error = ENOPROTOOPT; break; } break; case SOPT_GET: switch (sopt->sopt_name) { case IP_OPTIONS: case IP_RETOPTS: INP_RLOCK(inp); if (inp->inp_options) { struct mbuf *options; options = m_copym(inp->inp_options, 0, M_COPYALL, M_NOWAIT); INP_RUNLOCK(inp); if (options != NULL) { error = sooptcopyout(sopt, mtod(options, char *), options->m_len); m_freem(options); } else error = ENOMEM; } else { INP_RUNLOCK(inp); sopt->sopt_valsize = 0; } break; case IP_TOS: case IP_TTL: case IP_MINTTL: case IP_RECVOPTS: case IP_RECVRETOPTS: case IP_ORIGDSTADDR: case IP_RECVDSTADDR: case IP_RECVTTL: case IP_RECVIF: case IP_PORTRANGE: case IP_ONESBCAST: case IP_DONTFRAG: case IP_BINDANY: case IP_RECVTOS: case IP_BINDMULTI: case IP_FLOWID: case IP_FLOWTYPE: case IP_RECVFLOWID: #ifdef RSS case IP_RSSBUCKETID: case IP_RECVRSSBUCKETID: #endif case IP_VLAN_PCP: switch (sopt->sopt_name) { case IP_TOS: optval = inp->inp_ip_tos; break; case IP_TTL: optval = inp->inp_ip_ttl; break; case IP_MINTTL: optval = inp->inp_ip_minttl; break; #define OPTBIT(bit) (inp->inp_flags & bit ? 1 : 0) #define OPTBIT2(bit) (inp->inp_flags2 & bit ? 1 : 0) case IP_RECVOPTS: optval = OPTBIT(INP_RECVOPTS); break; case IP_RECVRETOPTS: optval = OPTBIT(INP_RECVRETOPTS); break; case IP_RECVDSTADDR: optval = OPTBIT(INP_RECVDSTADDR); break; case IP_ORIGDSTADDR: optval = OPTBIT2(INP_ORIGDSTADDR); break; case IP_RECVTTL: optval = OPTBIT(INP_RECVTTL); break; case IP_RECVIF: optval = OPTBIT(INP_RECVIF); break; case IP_PORTRANGE: if (inp->inp_flags & INP_HIGHPORT) optval = IP_PORTRANGE_HIGH; else if (inp->inp_flags & INP_LOWPORT) optval = IP_PORTRANGE_LOW; else optval = 0; break; case IP_ONESBCAST: optval = OPTBIT(INP_ONESBCAST); break; case IP_DONTFRAG: optval = OPTBIT(INP_DONTFRAG); break; case IP_BINDANY: optval = OPTBIT(INP_BINDANY); break; case IP_RECVTOS: optval = OPTBIT(INP_RECVTOS); break; case IP_FLOWID: optval = inp->inp_flowid; break; case IP_FLOWTYPE: optval = inp->inp_flowtype; break; case IP_RECVFLOWID: optval = OPTBIT2(INP_RECVFLOWID); break; #ifdef RSS case IP_RSSBUCKETID: retval = rss_hash2bucket(inp->inp_flowid, inp->inp_flowtype, &rss_bucket); if (retval == 0) optval = rss_bucket; else error = EINVAL; break; case IP_RECVRSSBUCKETID: optval = OPTBIT2(INP_RECVRSSBUCKETID); break; #endif case IP_BINDMULTI: optval = OPTBIT2(INP_BINDMULTI); break; case IP_VLAN_PCP: if (OPTBIT2(INP_2PCP_SET)) { optval = (inp->inp_flags2 & INP_2PCP_MASK) >> INP_2PCP_SHIFT; } else { optval = -1; } break; } error = sooptcopyout(sopt, &optval, sizeof optval); break; /* * Multicast socket options are processed by the in_mcast * module. */ case IP_MULTICAST_IF: case IP_MULTICAST_VIF: case IP_MULTICAST_TTL: case IP_MULTICAST_LOOP: case IP_MSFILTER: error = inp_getmoptions(inp, sopt); break; #if defined(IPSEC) || defined(IPSEC_SUPPORT) case IP_IPSEC_POLICY: if (IPSEC_ENABLED(ipv4)) { error = IPSEC_PCBCTL(ipv4, inp, sopt); break; } /* FALLTHROUGH */ #endif /* IPSEC */ default: error = ENOPROTOOPT; break; } break; } return (error); } /* * Routine called from ip_output() to loop back a copy of an IP multicast * packet to the input queue of a specified interface. Note that this * calls the output routine of the loopback "driver", but with an interface * pointer that might NOT be a loopback interface -- evil, but easier than * replicating that code here. */ static void ip_mloopback(struct ifnet *ifp, const struct mbuf *m, int hlen) { struct ip *ip; struct mbuf *copym; /* * Make a deep copy of the packet because we're going to * modify the pack in order to generate checksums. */ copym = m_dup(m, M_NOWAIT); if (copym != NULL && (!M_WRITABLE(copym) || copym->m_len < hlen)) copym = m_pullup(copym, hlen); if (copym != NULL) { /* If needed, compute the checksum and mark it as valid. */ if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { in_delayed_cksum(copym); copym->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; copym->m_pkthdr.csum_flags |= CSUM_DATA_VALID | CSUM_PSEUDO_HDR; copym->m_pkthdr.csum_data = 0xffff; } /* * We don't bother to fragment if the IP length is greater * than the interface's MTU. Can this possibly matter? */ ip = mtod(copym, struct ip *); ip->ip_sum = 0; ip->ip_sum = in_cksum(copym, hlen); if_simloop(ifp, copym, AF_INET, 0); } } diff --git a/sys/netinet/raw_ip.c b/sys/netinet/raw_ip.c index 00c95c451966..38ab5f4a8243 100644 --- a/sys/netinet/raw_ip.c +++ b/sys/netinet/raw_ip.c @@ -1,1214 +1,1206 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 1982, 1986, 1988, 1993 * The Regents of the University of California. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)raw_ip.c 8.7 (Berkeley) 5/15/95 */ #include __FBSDID("$FreeBSD$"); #include "opt_inet.h" #include "opt_inet6.h" #include "opt_ipsec.h" #include "opt_route.h" #include #include #include #include #include #include #include #include #include #include -#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include VNET_DEFINE(int, ip_defttl) = IPDEFTTL; SYSCTL_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ip_defttl), 0, "Maximum TTL on IP packets"); VNET_DEFINE(struct inpcbhead, ripcb); VNET_DEFINE(struct inpcbinfo, ripcbinfo); #define V_ripcb VNET(ripcb) #define V_ripcbinfo VNET(ripcbinfo) /* * Control and data hooks for ipfw, dummynet, divert and so on. * The data hooks are not used here but it is convenient * to keep them all in one place. */ VNET_DEFINE(ip_fw_chk_ptr_t, ip_fw_chk_ptr) = NULL; VNET_DEFINE(ip_fw_ctl_ptr_t, ip_fw_ctl_ptr) = NULL; int (*ip_dn_ctl_ptr)(struct sockopt *); int (*ip_dn_io_ptr)(struct mbuf **, struct ip_fw_args *); void (*ip_divert_ptr)(struct mbuf *, bool); int (*ng_ipfw_input_p)(struct mbuf **, struct ip_fw_args *, bool); #ifdef INET /* * Hooks for multicast routing. They all default to NULL, so leave them not * initialized and rely on BSS being set to 0. */ /* * The socket used to communicate with the multicast routing daemon. */ VNET_DEFINE(struct socket *, ip_mrouter); /* * The various mrouter and rsvp functions. */ int (*ip_mrouter_set)(struct socket *, struct sockopt *); int (*ip_mrouter_get)(struct socket *, struct sockopt *); int (*ip_mrouter_done)(void); int (*ip_mforward)(struct ip *, struct ifnet *, struct mbuf *, struct ip_moptions *); int (*mrt_ioctl)(u_long, caddr_t, int); int (*legal_vif_num)(int); u_long (*ip_mcast_src)(int); int (*rsvp_input_p)(struct mbuf **, int *, int); int (*ip_rsvp_vif)(struct socket *, struct sockopt *); void (*ip_rsvp_force_done)(struct socket *); #endif /* INET */ extern struct protosw inetsw[]; u_long rip_sendspace = 9216; SYSCTL_ULONG(_net_inet_raw, OID_AUTO, maxdgram, CTLFLAG_RW, &rip_sendspace, 0, "Maximum outgoing raw IP datagram size"); u_long rip_recvspace = 9216; SYSCTL_ULONG(_net_inet_raw, OID_AUTO, recvspace, CTLFLAG_RW, &rip_recvspace, 0, "Maximum space for incoming raw IP datagrams"); /* * Hash functions */ #define INP_PCBHASH_RAW_SIZE 256 #define INP_PCBHASH_RAW(proto, laddr, faddr, mask) \ (((proto) + (laddr) + (faddr)) % (mask) + 1) #ifdef INET static void rip_inshash(struct inpcb *inp) { struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; struct inpcbhead *pcbhash; int hash; INP_INFO_WLOCK_ASSERT(pcbinfo); INP_WLOCK_ASSERT(inp); if (inp->inp_ip_p != 0 && inp->inp_laddr.s_addr != INADDR_ANY && inp->inp_faddr.s_addr != INADDR_ANY) { hash = INP_PCBHASH_RAW(inp->inp_ip_p, inp->inp_laddr.s_addr, inp->inp_faddr.s_addr, pcbinfo->ipi_hashmask); } else hash = 0; pcbhash = &pcbinfo->ipi_hashbase[hash]; CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash); } static void rip_delhash(struct inpcb *inp) { INP_INFO_WLOCK_ASSERT(inp->inp_pcbinfo); INP_WLOCK_ASSERT(inp); CK_LIST_REMOVE(inp, inp_hash); } #endif /* INET */ /* * Raw interface to IP protocol. */ /* * Initialize raw connection block q. */ static void rip_zone_change(void *tag) { uma_zone_set_max(V_ripcbinfo.ipi_zone, maxsockets); } static int rip_inpcb_init(void *mem, int size, int flags) { struct inpcb *inp = mem; INP_LOCK_INIT(inp, "inp", "rawinp"); return (0); } void rip_init(void) { in_pcbinfo_init(&V_ripcbinfo, "rip", &V_ripcb, INP_PCBHASH_RAW_SIZE, 1, "ripcb", rip_inpcb_init, IPI_HASHFIELDS_NONE); EVENTHANDLER_REGISTER(maxsockets_change, rip_zone_change, NULL, EVENTHANDLER_PRI_ANY); } #ifdef VIMAGE static void rip_destroy(void *unused __unused) { in_pcbinfo_destroy(&V_ripcbinfo); } VNET_SYSUNINIT(raw_ip, SI_SUB_PROTO_DOMAIN, SI_ORDER_FOURTH, rip_destroy, NULL); #endif #ifdef INET static int rip_append(struct inpcb *last, struct ip *ip, struct mbuf *n, struct sockaddr_in *ripsrc) { int policyfail = 0; INP_LOCK_ASSERT(last); #if defined(IPSEC) || defined(IPSEC_SUPPORT) /* check AH/ESP integrity. */ if (IPSEC_ENABLED(ipv4)) { if (IPSEC_CHECK_POLICY(ipv4, n, last) != 0) policyfail = 1; } #endif /* IPSEC */ #ifdef MAC if (!policyfail && mac_inpcb_check_deliver(last, n) != 0) policyfail = 1; #endif /* Check the minimum TTL for socket. */ if (last->inp_ip_minttl && last->inp_ip_minttl > ip->ip_ttl) policyfail = 1; if (!policyfail) { struct mbuf *opts = NULL; struct socket *so; so = last->inp_socket; if ((last->inp_flags & INP_CONTROLOPTS) || (so->so_options & (SO_TIMESTAMP | SO_BINTIME))) ip_savecontrol(last, &opts, ip, n); SOCKBUF_LOCK(&so->so_rcv); if (sbappendaddr_locked(&so->so_rcv, (struct sockaddr *)ripsrc, n, opts) == 0) { soroverflow_locked(so); m_freem(n); if (opts) m_freem(opts); } else sorwakeup_locked(so); } else m_freem(n); return (policyfail); } /* * Setup generic address and protocol structures for raw_input routine, then * pass them along with mbuf chain. */ int rip_input(struct mbuf **mp, int *offp, int proto) { struct ifnet *ifp; struct mbuf *m = *mp; struct ip *ip = mtod(m, struct ip *); struct inpcb *inp, *last; struct sockaddr_in ripsrc; int hash; NET_EPOCH_ASSERT(); *mp = NULL; bzero(&ripsrc, sizeof(ripsrc)); ripsrc.sin_len = sizeof(ripsrc); ripsrc.sin_family = AF_INET; ripsrc.sin_addr = ip->ip_src; last = NULL; ifp = m->m_pkthdr.rcvif; hash = INP_PCBHASH_RAW(proto, ip->ip_src.s_addr, ip->ip_dst.s_addr, V_ripcbinfo.ipi_hashmask); CK_LIST_FOREACH(inp, &V_ripcbinfo.ipi_hashbase[hash], inp_hash) { if (inp->inp_ip_p != proto) continue; #ifdef INET6 /* XXX inp locking */ if ((inp->inp_vflag & INP_IPV4) == 0) continue; #endif if (inp->inp_laddr.s_addr != ip->ip_dst.s_addr) continue; if (inp->inp_faddr.s_addr != ip->ip_src.s_addr) continue; if (last != NULL) { struct mbuf *n; n = m_copym(m, 0, M_COPYALL, M_NOWAIT); if (n != NULL) (void) rip_append(last, ip, n, &ripsrc); /* XXX count dropped packet */ INP_RUNLOCK(last); last = NULL; } INP_RLOCK(inp); if (__predict_false(inp->inp_flags2 & INP_FREED)) goto skip_1; if (jailed_without_vnet(inp->inp_cred)) { /* * XXX: If faddr was bound to multicast group, * jailed raw socket will drop datagram. */ if (prison_check_ip4(inp->inp_cred, &ip->ip_dst) != 0) goto skip_1; } last = inp; continue; skip_1: INP_RUNLOCK(inp); } CK_LIST_FOREACH(inp, &V_ripcbinfo.ipi_hashbase[0], inp_hash) { if (inp->inp_ip_p && inp->inp_ip_p != proto) continue; #ifdef INET6 /* XXX inp locking */ if ((inp->inp_vflag & INP_IPV4) == 0) continue; #endif if (!in_nullhost(inp->inp_laddr) && !in_hosteq(inp->inp_laddr, ip->ip_dst)) continue; if (!in_nullhost(inp->inp_faddr) && !in_hosteq(inp->inp_faddr, ip->ip_src)) continue; if (last != NULL) { struct mbuf *n; n = m_copym(m, 0, M_COPYALL, M_NOWAIT); if (n != NULL) (void) rip_append(last, ip, n, &ripsrc); /* XXX count dropped packet */ INP_RUNLOCK(last); last = NULL; } INP_RLOCK(inp); if (__predict_false(inp->inp_flags2 & INP_FREED)) goto skip_2; if (jailed_without_vnet(inp->inp_cred)) { /* * Allow raw socket in jail to receive multicast; * assume process had PRIV_NETINET_RAW at attach, * and fall through into normal filter path if so. */ if (!IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) && prison_check_ip4(inp->inp_cred, &ip->ip_dst) != 0) goto skip_2; } /* * If this raw socket has multicast state, and we * have received a multicast, check if this socket * should receive it, as multicast filtering is now * the responsibility of the transport layer. */ if (inp->inp_moptions != NULL && IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) { /* * If the incoming datagram is for IGMP, allow it * through unconditionally to the raw socket. * * In the case of IGMPv2, we may not have explicitly * joined the group, and may have set IFF_ALLMULTI * on the interface. imo_multi_filter() may discard * control traffic we actually need to see. * * Userland multicast routing daemons should continue * filter the control traffic appropriately. */ int blocked; blocked = MCAST_PASS; if (proto != IPPROTO_IGMP) { struct sockaddr_in group; bzero(&group, sizeof(struct sockaddr_in)); group.sin_len = sizeof(struct sockaddr_in); group.sin_family = AF_INET; group.sin_addr = ip->ip_dst; blocked = imo_multi_filter(inp->inp_moptions, ifp, (struct sockaddr *)&group, (struct sockaddr *)&ripsrc); } if (blocked != MCAST_PASS) { IPSTAT_INC(ips_notmember); goto skip_2; } } last = inp; continue; skip_2: INP_RUNLOCK(inp); } if (last != NULL) { if (rip_append(last, ip, m, &ripsrc) != 0) IPSTAT_INC(ips_delivered); INP_RUNLOCK(last); } else { if (inetsw[ip_protox[ip->ip_p]].pr_input == rip_input) { IPSTAT_INC(ips_noproto); IPSTAT_DEC(ips_delivered); icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_PROTOCOL, 0, 0); } else { m_freem(m); } } return (IPPROTO_DONE); } /* * Generate IP header and pass packet to ip_output. Tack on options user may * have setup with control call. */ int rip_output(struct mbuf *m, struct socket *so, ...) { struct epoch_tracker et; struct ip *ip; int error; struct inpcb *inp = sotoinpcb(so); va_list ap; u_long dst; int flags = ((so->so_options & SO_DONTROUTE) ? IP_ROUTETOIF : 0) | IP_ALLOWBROADCAST; int cnt, hlen; u_char opttype, optlen, *cp; va_start(ap, so); dst = va_arg(ap, u_long); va_end(ap); /* * If the user handed us a complete IP packet, use it. Otherwise, * allocate an mbuf for a header and fill it in. */ if ((inp->inp_flags & INP_HDRINCL) == 0) { if (m->m_pkthdr.len + sizeof(struct ip) > IP_MAXPACKET) { m_freem(m); return(EMSGSIZE); } M_PREPEND(m, sizeof(struct ip), M_NOWAIT); if (m == NULL) return(ENOBUFS); INP_RLOCK(inp); ip = mtod(m, struct ip *); ip->ip_tos = inp->inp_ip_tos; if (inp->inp_flags & INP_DONTFRAG) ip->ip_off = htons(IP_DF); else ip->ip_off = htons(0); ip->ip_p = inp->inp_ip_p; ip->ip_len = htons(m->m_pkthdr.len); ip->ip_src = inp->inp_laddr; ip->ip_dst.s_addr = dst; #ifdef ROUTE_MPATH if (CALC_FLOWID_OUTBOUND) { uint32_t hash_type, hash_val; hash_val = fib4_calc_software_hash(ip->ip_src, ip->ip_dst, 0, 0, ip->ip_p, &hash_type); m->m_pkthdr.flowid = hash_val; M_HASHTYPE_SET(m, hash_type); flags |= IP_NODEFAULTFLOWID; } #endif if (jailed(inp->inp_cred)) { /* * prison_local_ip4() would be good enough but would * let a source of INADDR_ANY pass, which we do not * want to see from jails. */ if (ip->ip_src.s_addr == INADDR_ANY) { NET_EPOCH_ENTER(et); error = in_pcbladdr(inp, &ip->ip_dst, &ip->ip_src, inp->inp_cred); NET_EPOCH_EXIT(et); } else { error = prison_local_ip4(inp->inp_cred, &ip->ip_src); } if (error != 0) { INP_RUNLOCK(inp); m_freem(m); return (error); } } ip->ip_ttl = inp->inp_ip_ttl; } else { if (m->m_pkthdr.len > IP_MAXPACKET) { m_freem(m); return (EMSGSIZE); } if (m->m_pkthdr.len < sizeof(*ip)) { m_freem(m); return (EINVAL); } m = m_pullup(m, sizeof(*ip)); if (m == NULL) return (ENOMEM); ip = mtod(m, struct ip *); hlen = ip->ip_hl << 2; if (m->m_len < hlen) { m = m_pullup(m, hlen); if (m == NULL) return (EINVAL); ip = mtod(m, struct ip *); } #ifdef ROUTE_MPATH if (CALC_FLOWID_OUTBOUND) { uint32_t hash_type, hash_val; hash_val = fib4_calc_software_hash(ip->ip_dst, ip->ip_src, 0, 0, ip->ip_p, &hash_type); m->m_pkthdr.flowid = hash_val; M_HASHTYPE_SET(m, hash_type); flags |= IP_NODEFAULTFLOWID; } #endif INP_RLOCK(inp); /* * Don't allow both user specified and setsockopt options, * and don't allow packet length sizes that will crash. */ if ((hlen < sizeof (*ip)) || ((hlen > sizeof (*ip)) && inp->inp_options) || (ntohs(ip->ip_len) != m->m_pkthdr.len)) { INP_RUNLOCK(inp); m_freem(m); return (EINVAL); } error = prison_check_ip4(inp->inp_cred, &ip->ip_src); if (error != 0) { INP_RUNLOCK(inp); m_freem(m); return (error); } /* * Don't allow IP options which do not have the required * structure as specified in section 3.1 of RFC 791 on * pages 15-23. */ cp = (u_char *)(ip + 1); cnt = hlen - sizeof (struct ip); for (; cnt > 0; cnt -= optlen, cp += optlen) { opttype = cp[IPOPT_OPTVAL]; if (opttype == IPOPT_EOL) break; if (opttype == IPOPT_NOP) { optlen = 1; continue; } if (cnt < IPOPT_OLEN + sizeof(u_char)) { INP_RUNLOCK(inp); m_freem(m); return (EINVAL); } optlen = cp[IPOPT_OLEN]; if (optlen < IPOPT_OLEN + sizeof(u_char) || optlen > cnt) { INP_RUNLOCK(inp); m_freem(m); return (EINVAL); } } /* * This doesn't allow application to specify ID of zero, * but we got this limitation from the beginning of history. */ if (ip->ip_id == 0) ip_fillid(ip); /* * XXX prevent ip_output from overwriting header fields. */ flags |= IP_RAWOUTPUT; IPSTAT_INC(ips_rawout); } if (inp->inp_flags & INP_ONESBCAST) flags |= IP_SENDONES; #ifdef MAC mac_inpcb_create_mbuf(inp, m); #endif NET_EPOCH_ENTER(et); error = ip_output(m, inp->inp_options, NULL, flags, inp->inp_moptions, inp); NET_EPOCH_EXIT(et); INP_RUNLOCK(inp); return (error); } /* * Raw IP socket option processing. * * IMPORTANT NOTE regarding access control: Traditionally, raw sockets could * only be created by a privileged process, and as such, socket option * operations to manage system properties on any raw socket were allowed to * take place without explicit additional access control checks. However, * raw sockets can now also be created in jail(), and therefore explicit * checks are now required. Likewise, raw sockets can be used by a process * after it gives up privilege, so some caution is required. For options * passed down to the IP layer via ip_ctloutput(), checks are assumed to be * performed in ip_ctloutput() and therefore no check occurs here. * Unilaterally checking priv_check() here breaks normal IP socket option * operations on raw sockets. * * When adding new socket options here, make sure to add access control * checks here as necessary. * * XXX-BZ inp locking? */ int rip_ctloutput(struct socket *so, struct sockopt *sopt) { struct inpcb *inp = sotoinpcb(so); int error, optval; if (sopt->sopt_level != IPPROTO_IP) { if ((sopt->sopt_level == SOL_SOCKET) && (sopt->sopt_name == SO_SETFIB)) { inp->inp_inc.inc_fibnum = so->so_fibnum; return (0); } return (EINVAL); } error = 0; switch (sopt->sopt_dir) { case SOPT_GET: switch (sopt->sopt_name) { case IP_HDRINCL: optval = inp->inp_flags & INP_HDRINCL; error = sooptcopyout(sopt, &optval, sizeof optval); break; case IP_FW3: /* generic ipfw v.3 functions */ case IP_FW_ADD: /* ADD actually returns the body... */ case IP_FW_GET: case IP_FW_TABLE_GETSIZE: case IP_FW_TABLE_LIST: case IP_FW_NAT_GET_CONFIG: case IP_FW_NAT_GET_LOG: if (V_ip_fw_ctl_ptr != NULL) error = V_ip_fw_ctl_ptr(sopt); else error = ENOPROTOOPT; break; case IP_DUMMYNET3: /* generic dummynet v.3 functions */ case IP_DUMMYNET_GET: if (ip_dn_ctl_ptr != NULL) error = ip_dn_ctl_ptr(sopt); else error = ENOPROTOOPT; break ; case MRT_INIT: case MRT_DONE: case MRT_ADD_VIF: case MRT_DEL_VIF: case MRT_ADD_MFC: case MRT_DEL_MFC: case MRT_VERSION: case MRT_ASSERT: case MRT_API_SUPPORT: case MRT_API_CONFIG: case MRT_ADD_BW_UPCALL: case MRT_DEL_BW_UPCALL: error = priv_check(curthread, PRIV_NETINET_MROUTE); if (error != 0) return (error); error = ip_mrouter_get ? ip_mrouter_get(so, sopt) : EOPNOTSUPP; break; default: error = ip_ctloutput(so, sopt); break; } break; case SOPT_SET: switch (sopt->sopt_name) { case IP_HDRINCL: error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); if (error) break; if (optval) inp->inp_flags |= INP_HDRINCL; else inp->inp_flags &= ~INP_HDRINCL; break; case IP_FW3: /* generic ipfw v.3 functions */ case IP_FW_ADD: case IP_FW_DEL: case IP_FW_FLUSH: case IP_FW_ZERO: case IP_FW_RESETLOG: case IP_FW_TABLE_ADD: case IP_FW_TABLE_DEL: case IP_FW_TABLE_FLUSH: case IP_FW_NAT_CFG: case IP_FW_NAT_DEL: if (V_ip_fw_ctl_ptr != NULL) error = V_ip_fw_ctl_ptr(sopt); else error = ENOPROTOOPT; break; case IP_DUMMYNET3: /* generic dummynet v.3 functions */ case IP_DUMMYNET_CONFIGURE: case IP_DUMMYNET_DEL: case IP_DUMMYNET_FLUSH: if (ip_dn_ctl_ptr != NULL) error = ip_dn_ctl_ptr(sopt); else error = ENOPROTOOPT ; break ; case IP_RSVP_ON: error = priv_check(curthread, PRIV_NETINET_MROUTE); if (error != 0) return (error); error = ip_rsvp_init(so); break; case IP_RSVP_OFF: error = priv_check(curthread, PRIV_NETINET_MROUTE); if (error != 0) return (error); error = ip_rsvp_done(); break; case IP_RSVP_VIF_ON: case IP_RSVP_VIF_OFF: error = priv_check(curthread, PRIV_NETINET_MROUTE); if (error != 0) return (error); error = ip_rsvp_vif ? ip_rsvp_vif(so, sopt) : EINVAL; break; case MRT_INIT: case MRT_DONE: case MRT_ADD_VIF: case MRT_DEL_VIF: case MRT_ADD_MFC: case MRT_DEL_MFC: case MRT_VERSION: case MRT_ASSERT: case MRT_API_SUPPORT: case MRT_API_CONFIG: case MRT_ADD_BW_UPCALL: case MRT_DEL_BW_UPCALL: error = priv_check(curthread, PRIV_NETINET_MROUTE); if (error != 0) return (error); error = ip_mrouter_set ? ip_mrouter_set(so, sopt) : EOPNOTSUPP; break; default: error = ip_ctloutput(so, sopt); break; } break; } return (error); } /* * This function exists solely to receive the PRC_IFDOWN messages which are * sent by if_down(). It looks for an ifaddr whose ifa_addr is sa, and calls * in_ifadown() to remove all routes corresponding to that address. It also * receives the PRC_IFUP messages from if_up() and reinstalls the interface * routes. */ void rip_ctlinput(int cmd, struct sockaddr *sa, void *vip) { - struct rm_priotracker in_ifa_tracker; struct in_ifaddr *ia; struct ifnet *ifp; int err; int flags; + NET_EPOCH_ASSERT(); + switch (cmd) { case PRC_IFDOWN: - IN_IFADDR_RLOCK(&in_ifa_tracker); CK_STAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) { if (ia->ia_ifa.ifa_addr == sa && (ia->ia_flags & IFA_ROUTE)) { ifa_ref(&ia->ia_ifa); - IN_IFADDR_RUNLOCK(&in_ifa_tracker); /* * in_scrubprefix() kills the interface route. */ in_scrubprefix(ia, 0); /* * in_ifadown gets rid of all the rest of the * routes. This is not quite the right thing * to do, but at least if we are running a * routing process they will come back. */ in_ifadown(&ia->ia_ifa, 0); ifa_free(&ia->ia_ifa); break; } } - if (ia == NULL) /* If ia matched, already unlocked. */ - IN_IFADDR_RUNLOCK(&in_ifa_tracker); break; case PRC_IFUP: - IN_IFADDR_RLOCK(&in_ifa_tracker); CK_STAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) { if (ia->ia_ifa.ifa_addr == sa) break; } - if (ia == NULL || (ia->ia_flags & IFA_ROUTE)) { - IN_IFADDR_RUNLOCK(&in_ifa_tracker); + if (ia == NULL || (ia->ia_flags & IFA_ROUTE)) return; - } ifa_ref(&ia->ia_ifa); - IN_IFADDR_RUNLOCK(&in_ifa_tracker); flags = RTF_UP; ifp = ia->ia_ifa.ifa_ifp; if ((ifp->if_flags & IFF_LOOPBACK) || (ifp->if_flags & IFF_POINTOPOINT)) flags |= RTF_HOST; err = ifa_del_loopback_route((struct ifaddr *)ia, sa); rt_addrmsg(RTM_ADD, &ia->ia_ifa, ia->ia_ifp->if_fib); err = in_handle_ifaddr_route(RTM_ADD, ia); if (err == 0) ia->ia_flags |= IFA_ROUTE; err = ifa_add_loopback_route((struct ifaddr *)ia, sa); ifa_free(&ia->ia_ifa); break; #if defined(IPSEC) || defined(IPSEC_SUPPORT) case PRC_MSGSIZE: if (IPSEC_ENABLED(ipv4)) IPSEC_CTLINPUT(ipv4, cmd, sa, vip); break; #endif } } static int rip_attach(struct socket *so, int proto, struct thread *td) { struct inpcb *inp; int error; inp = sotoinpcb(so); KASSERT(inp == NULL, ("rip_attach: inp != NULL")); error = priv_check(td, PRIV_NETINET_RAW); if (error) return (error); if (proto >= IPPROTO_MAX || proto < 0) return EPROTONOSUPPORT; error = soreserve(so, rip_sendspace, rip_recvspace); if (error) return (error); INP_INFO_WLOCK(&V_ripcbinfo); error = in_pcballoc(so, &V_ripcbinfo); if (error) { INP_INFO_WUNLOCK(&V_ripcbinfo); return (error); } inp = (struct inpcb *)so->so_pcb; inp->inp_vflag |= INP_IPV4; inp->inp_ip_p = proto; inp->inp_ip_ttl = V_ip_defttl; rip_inshash(inp); INP_INFO_WUNLOCK(&V_ripcbinfo); INP_WUNLOCK(inp); return (0); } static void rip_detach(struct socket *so) { struct inpcb *inp; inp = sotoinpcb(so); KASSERT(inp != NULL, ("rip_detach: inp == NULL")); KASSERT(inp->inp_faddr.s_addr == INADDR_ANY, ("rip_detach: not closed")); INP_INFO_WLOCK(&V_ripcbinfo); INP_WLOCK(inp); rip_delhash(inp); if (so == V_ip_mrouter && ip_mrouter_done) ip_mrouter_done(); if (ip_rsvp_force_done) ip_rsvp_force_done(so); if (so == V_ip_rsvpd) ip_rsvp_done(); in_pcbdetach(inp); in_pcbfree(inp); INP_INFO_WUNLOCK(&V_ripcbinfo); } static void rip_dodisconnect(struct socket *so, struct inpcb *inp) { struct inpcbinfo *pcbinfo; pcbinfo = inp->inp_pcbinfo; INP_INFO_WLOCK(pcbinfo); INP_WLOCK(inp); rip_delhash(inp); inp->inp_faddr.s_addr = INADDR_ANY; rip_inshash(inp); SOCK_LOCK(so); so->so_state &= ~SS_ISCONNECTED; SOCK_UNLOCK(so); INP_WUNLOCK(inp); INP_INFO_WUNLOCK(pcbinfo); } static void rip_abort(struct socket *so) { struct inpcb *inp; inp = sotoinpcb(so); KASSERT(inp != NULL, ("rip_abort: inp == NULL")); rip_dodisconnect(so, inp); } static void rip_close(struct socket *so) { struct inpcb *inp; inp = sotoinpcb(so); KASSERT(inp != NULL, ("rip_close: inp == NULL")); rip_dodisconnect(so, inp); } static int rip_disconnect(struct socket *so) { struct inpcb *inp; if ((so->so_state & SS_ISCONNECTED) == 0) return (ENOTCONN); inp = sotoinpcb(so); KASSERT(inp != NULL, ("rip_disconnect: inp == NULL")); rip_dodisconnect(so, inp); return (0); } static int rip_bind(struct socket *so, struct sockaddr *nam, struct thread *td) { struct sockaddr_in *addr = (struct sockaddr_in *)nam; struct inpcb *inp; int error; if (nam->sa_family != AF_INET) return (EAFNOSUPPORT); if (nam->sa_len != sizeof(*addr)) return (EINVAL); error = prison_check_ip4(td->td_ucred, &addr->sin_addr); if (error != 0) return (error); inp = sotoinpcb(so); KASSERT(inp != NULL, ("rip_bind: inp == NULL")); if (CK_STAILQ_EMPTY(&V_ifnet) || (addr->sin_family != AF_INET && addr->sin_family != AF_IMPLINK) || (addr->sin_addr.s_addr && (inp->inp_flags & INP_BINDANY) == 0 && ifa_ifwithaddr_check((struct sockaddr *)addr) == 0)) return (EADDRNOTAVAIL); INP_INFO_WLOCK(&V_ripcbinfo); INP_WLOCK(inp); rip_delhash(inp); inp->inp_laddr = addr->sin_addr; rip_inshash(inp); INP_WUNLOCK(inp); INP_INFO_WUNLOCK(&V_ripcbinfo); return (0); } static int rip_connect(struct socket *so, struct sockaddr *nam, struct thread *td) { struct sockaddr_in *addr = (struct sockaddr_in *)nam; struct inpcb *inp; if (nam->sa_len != sizeof(*addr)) return (EINVAL); if (CK_STAILQ_EMPTY(&V_ifnet)) return (EADDRNOTAVAIL); if (addr->sin_family != AF_INET && addr->sin_family != AF_IMPLINK) return (EAFNOSUPPORT); inp = sotoinpcb(so); KASSERT(inp != NULL, ("rip_connect: inp == NULL")); INP_INFO_WLOCK(&V_ripcbinfo); INP_WLOCK(inp); rip_delhash(inp); inp->inp_faddr = addr->sin_addr; rip_inshash(inp); soisconnected(so); INP_WUNLOCK(inp); INP_INFO_WUNLOCK(&V_ripcbinfo); return (0); } static int rip_shutdown(struct socket *so) { struct inpcb *inp; inp = sotoinpcb(so); KASSERT(inp != NULL, ("rip_shutdown: inp == NULL")); INP_WLOCK(inp); socantsendmore(so); INP_WUNLOCK(inp); return (0); } static int rip_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam, struct mbuf *control, struct thread *td) { struct inpcb *inp; u_long dst; int error; inp = sotoinpcb(so); KASSERT(inp != NULL, ("rip_send: inp == NULL")); if (control != NULL) { m_freem(control); control = NULL; } /* * Note: 'dst' reads below are unlocked. */ if (so->so_state & SS_ISCONNECTED) { if (nam) { error = EISCONN; goto release; } dst = inp->inp_faddr.s_addr; /* Unlocked read. */ } else { error = 0; if (nam == NULL) error = ENOTCONN; else if (nam->sa_family != AF_INET) error = EAFNOSUPPORT; else if (nam->sa_len != sizeof(struct sockaddr_in)) error = EINVAL; if (error != 0) goto release; dst = ((struct sockaddr_in *)nam)->sin_addr.s_addr; } return (rip_output(m, so, dst)); release: m_freem(m); return (error); } #endif /* INET */ static int rip_pcblist(SYSCTL_HANDLER_ARGS) { struct xinpgen xig; struct epoch_tracker et; struct inpcb *inp; int error; if (req->newptr != 0) return (EPERM); if (req->oldptr == 0) { int n; n = V_ripcbinfo.ipi_count; n += imax(n / 8, 10); req->oldidx = 2 * (sizeof xig) + n * sizeof(struct xinpcb); return (0); } if ((error = sysctl_wire_old_buffer(req, 0)) != 0) return (error); bzero(&xig, sizeof(xig)); xig.xig_len = sizeof xig; xig.xig_count = V_ripcbinfo.ipi_count; xig.xig_gen = V_ripcbinfo.ipi_gencnt; xig.xig_sogen = so_gencnt; error = SYSCTL_OUT(req, &xig, sizeof xig); if (error) return (error); NET_EPOCH_ENTER(et); for (inp = CK_LIST_FIRST(V_ripcbinfo.ipi_listhead); inp != NULL; inp = CK_LIST_NEXT(inp, inp_list)) { INP_RLOCK(inp); if (inp->inp_gencnt <= xig.xig_gen && cr_canseeinpcb(req->td->td_ucred, inp) == 0) { struct xinpcb xi; in_pcbtoxinpcb(inp, &xi); INP_RUNLOCK(inp); error = SYSCTL_OUT(req, &xi, sizeof xi); if (error) break; } else INP_RUNLOCK(inp); } NET_EPOCH_EXIT(et); if (!error) { /* * Give the user an updated idea of our state. If the * generation differs from what we told her before, she knows * that something happened while we were processing this * request, and it might be necessary to retry. */ xig.xig_gen = V_ripcbinfo.ipi_gencnt; xig.xig_sogen = so_gencnt; xig.xig_count = V_ripcbinfo.ipi_count; error = SYSCTL_OUT(req, &xig, sizeof xig); } return (error); } SYSCTL_PROC(_net_inet_raw, OID_AUTO/*XXX*/, pcblist, CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0, rip_pcblist, "S,xinpcb", "List of active raw IP sockets"); #ifdef INET struct pr_usrreqs rip_usrreqs = { .pru_abort = rip_abort, .pru_attach = rip_attach, .pru_bind = rip_bind, .pru_connect = rip_connect, .pru_control = in_control, .pru_detach = rip_detach, .pru_disconnect = rip_disconnect, .pru_peeraddr = in_getpeeraddr, .pru_send = rip_send, .pru_shutdown = rip_shutdown, .pru_sockaddr = in_getsockaddr, .pru_sosetlabel = in_pcbsosetlabel, .pru_close = rip_close, }; #endif /* INET */