diff --git a/sys/cam/scsi/scsi_pass.c b/sys/cam/scsi/scsi_pass.c index 456eff641776..e9751e26d8ca 100644 --- a/sys/cam/scsi/scsi_pass.c +++ b/sys/cam/scsi/scsi_pass.c @@ -1,2242 +1,2254 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 1997, 1998, 2000 Justin T. Gibbs. * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification, immediately at the beginning of the file. * 2. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include typedef enum { PASS_FLAG_OPEN = 0x01, PASS_FLAG_LOCKED = 0x02, PASS_FLAG_INVALID = 0x04, PASS_FLAG_INITIAL_PHYSPATH = 0x08, PASS_FLAG_ZONE_INPROG = 0x10, PASS_FLAG_ZONE_VALID = 0x20, PASS_FLAG_UNMAPPED_CAPABLE = 0x40, PASS_FLAG_ABANDONED_REF_SET = 0x80 } pass_flags; typedef enum { PASS_STATE_NORMAL } pass_state; typedef enum { PASS_CCB_BUFFER_IO, PASS_CCB_QUEUED_IO } pass_ccb_types; #define ccb_type ppriv_field0 #define ccb_ioreq ppriv_ptr1 /* * The maximum number of memory segments we preallocate. */ #define PASS_MAX_SEGS 16 typedef enum { PASS_IO_NONE = 0x00, PASS_IO_USER_SEG_MALLOC = 0x01, PASS_IO_KERN_SEG_MALLOC = 0x02, PASS_IO_ABANDONED = 0x04 } pass_io_flags; struct pass_io_req { union ccb ccb; union ccb *alloced_ccb; union ccb *user_ccb_ptr; camq_entry user_periph_links; ccb_ppriv_area user_periph_priv; struct cam_periph_map_info mapinfo; pass_io_flags flags; ccb_flags data_flags; int num_user_segs; bus_dma_segment_t user_segs[PASS_MAX_SEGS]; int num_kern_segs; bus_dma_segment_t kern_segs[PASS_MAX_SEGS]; bus_dma_segment_t *user_segptr; bus_dma_segment_t *kern_segptr; int num_bufs; uint32_t dirs[CAM_PERIPH_MAXMAPS]; uint32_t lengths[CAM_PERIPH_MAXMAPS]; uint8_t *user_bufs[CAM_PERIPH_MAXMAPS]; uint8_t *kern_bufs[CAM_PERIPH_MAXMAPS]; struct bintime start_time; TAILQ_ENTRY(pass_io_req) links; }; struct pass_softc { pass_state state; pass_flags flags; u_int8_t pd_type; union ccb saved_ccb; int open_count; u_int maxio; struct devstat *device_stats; struct cdev *dev; struct cdev *alias_dev; struct task add_physpath_task; struct task shutdown_kqueue_task; struct selinfo read_select; TAILQ_HEAD(, pass_io_req) incoming_queue; TAILQ_HEAD(, pass_io_req) active_queue; TAILQ_HEAD(, pass_io_req) abandoned_queue; TAILQ_HEAD(, pass_io_req) done_queue; struct cam_periph *periph; char zone_name[12]; char io_zone_name[12]; uma_zone_t pass_zone; uma_zone_t pass_io_zone; size_t io_zone_size; }; static d_open_t passopen; static d_close_t passclose; static d_ioctl_t passioctl; static d_ioctl_t passdoioctl; static d_poll_t passpoll; static d_kqfilter_t passkqfilter; static void passreadfiltdetach(struct knote *kn); static int passreadfilt(struct knote *kn, long hint); static periph_init_t passinit; static periph_ctor_t passregister; static periph_oninv_t passoninvalidate; static periph_dtor_t passcleanup; static periph_start_t passstart; static void pass_shutdown_kqueue(void *context, int pending); static void pass_add_physpath(void *context, int pending); static void passasync(void *callback_arg, u_int32_t code, struct cam_path *path, void *arg); static void passdone(struct cam_periph *periph, union ccb *done_ccb); static int passcreatezone(struct cam_periph *periph); static void passiocleanup(struct pass_softc *softc, struct pass_io_req *io_req); static int passcopysglist(struct cam_periph *periph, struct pass_io_req *io_req, ccb_flags direction); static int passmemsetup(struct cam_periph *periph, struct pass_io_req *io_req); static int passmemdone(struct cam_periph *periph, struct pass_io_req *io_req); static int passerror(union ccb *ccb, u_int32_t cam_flags, u_int32_t sense_flags); static int passsendccb(struct cam_periph *periph, union ccb *ccb, union ccb *inccb); static struct periph_driver passdriver = { passinit, "pass", TAILQ_HEAD_INITIALIZER(passdriver.units), /* generation */ 0 }; PERIPHDRIVER_DECLARE(pass, passdriver); static struct cdevsw pass_cdevsw = { .d_version = D_VERSION, .d_flags = D_TRACKCLOSE, .d_open = passopen, .d_close = passclose, .d_ioctl = passioctl, .d_poll = passpoll, .d_kqfilter = passkqfilter, .d_name = "pass", }; static struct filterops passread_filtops = { .f_isfd = 1, .f_detach = passreadfiltdetach, .f_event = passreadfilt }; static MALLOC_DEFINE(M_SCSIPASS, "scsi_pass", "scsi passthrough buffers"); static void passinit(void) { cam_status status; /* * Install a global async callback. This callback will * receive async callbacks like "new device found". */ status = xpt_register_async(AC_FOUND_DEVICE, passasync, NULL, NULL); if (status != CAM_REQ_CMP) { printf("pass: Failed to attach master async callback " "due to status 0x%x!\n", status); } } static void passrejectios(struct cam_periph *periph) { struct pass_io_req *io_req, *io_req2; struct pass_softc *softc; softc = (struct pass_softc *)periph->softc; /* * The user can no longer get status for I/O on the done queue, so * clean up all outstanding I/O on the done queue. */ TAILQ_FOREACH_SAFE(io_req, &softc->done_queue, links, io_req2) { TAILQ_REMOVE(&softc->done_queue, io_req, links); passiocleanup(softc, io_req); uma_zfree(softc->pass_zone, io_req); } /* * The underlying device is gone, so we can't issue these I/Os. * The devfs node has been shut down, so we can't return status to * the user. Free any I/O left on the incoming queue. */ TAILQ_FOREACH_SAFE(io_req, &softc->incoming_queue, links, io_req2) { TAILQ_REMOVE(&softc->incoming_queue, io_req, links); passiocleanup(softc, io_req); uma_zfree(softc->pass_zone, io_req); } /* * Normally we would put I/Os on the abandoned queue and acquire a * reference when we saw the final close. But, the device went * away and devfs may have moved everything off to deadfs by the * time the I/O done callback is called; as a result, we won't see * any more closes. So, if we have any active I/Os, we need to put * them on the abandoned queue. When the abandoned queue is empty, * we'll release the remaining reference (see below) to the peripheral. */ TAILQ_FOREACH_SAFE(io_req, &softc->active_queue, links, io_req2) { TAILQ_REMOVE(&softc->active_queue, io_req, links); io_req->flags |= PASS_IO_ABANDONED; TAILQ_INSERT_TAIL(&softc->abandoned_queue, io_req, links); } /* * If we put any I/O on the abandoned queue, acquire a reference. */ if ((!TAILQ_EMPTY(&softc->abandoned_queue)) && ((softc->flags & PASS_FLAG_ABANDONED_REF_SET) == 0)) { cam_periph_doacquire(periph); softc->flags |= PASS_FLAG_ABANDONED_REF_SET; } } static void passdevgonecb(void *arg) { struct cam_periph *periph; struct mtx *mtx; struct pass_softc *softc; int i; periph = (struct cam_periph *)arg; mtx = cam_periph_mtx(periph); mtx_lock(mtx); softc = (struct pass_softc *)periph->softc; KASSERT(softc->open_count >= 0, ("Negative open count %d", softc->open_count)); /* * When we get this callback, we will get no more close calls from * devfs. So if we have any dangling opens, we need to release the * reference held for that particular context. */ for (i = 0; i < softc->open_count; i++) cam_periph_release_locked(periph); softc->open_count = 0; /* * Release the reference held for the device node, it is gone now. * Accordingly, inform all queued I/Os of their fate. */ cam_periph_release_locked(periph); passrejectios(periph); /* * We reference the SIM lock directly here, instead of using * cam_periph_unlock(). The reason is that the final call to * cam_periph_release_locked() above could result in the periph * getting freed. If that is the case, dereferencing the periph * with a cam_periph_unlock() call would cause a page fault. */ mtx_unlock(mtx); /* * We have to remove our kqueue context from a thread because it * may sleep. It would be nice if we could get a callback from * kqueue when it is done cleaning up resources. */ taskqueue_enqueue(taskqueue_thread, &softc->shutdown_kqueue_task); } static void passoninvalidate(struct cam_periph *periph) { struct pass_softc *softc; softc = (struct pass_softc *)periph->softc; /* * De-register any async callbacks. */ xpt_register_async(0, passasync, periph, periph->path); softc->flags |= PASS_FLAG_INVALID; /* * Tell devfs this device has gone away, and ask for a callback * when it has cleaned up its state. */ destroy_dev_sched_cb(softc->dev, passdevgonecb, periph); } static void passcleanup(struct cam_periph *periph) { struct pass_softc *softc; softc = (struct pass_softc *)periph->softc; cam_periph_assert(periph, MA_OWNED); KASSERT(TAILQ_EMPTY(&softc->active_queue), ("%s called when there are commands on the active queue!\n", __func__)); KASSERT(TAILQ_EMPTY(&softc->abandoned_queue), ("%s called when there are commands on the abandoned queue!\n", __func__)); KASSERT(TAILQ_EMPTY(&softc->incoming_queue), ("%s called when there are commands on the incoming queue!\n", __func__)); KASSERT(TAILQ_EMPTY(&softc->done_queue), ("%s called when there are commands on the done queue!\n", __func__)); devstat_remove_entry(softc->device_stats); cam_periph_unlock(periph); /* * We call taskqueue_drain() for the physpath task to make sure it * is complete. We drop the lock because this can potentially * sleep. XXX KDM that is bad. Need a way to get a callback when * a taskqueue is drained. * * Note that we don't drain the kqueue shutdown task queue. This * is because we hold a reference on the periph for kqueue, and * release that reference from the kqueue shutdown task queue. So * we cannot come into this routine unless we've released that * reference. Also, because that could be the last reference, we * could be called from the cam_periph_release() call in * pass_shutdown_kqueue(). In that case, the taskqueue_drain() * would deadlock. It would be preferable if we had a way to * get a callback when a taskqueue is done. */ taskqueue_drain(taskqueue_thread, &softc->add_physpath_task); + /* + * It should be safe to destroy the zones from here, because all + * of the references to this peripheral have been freed, and all + * I/O has been terminated and freed. We check the zones for NULL + * because they may not have been allocated yet if the device went + * away before any asynchronous I/O has been issued. + */ + if (softc->pass_zone != NULL) + uma_zdestroy(softc->pass_zone); + if (softc->pass_io_zone != NULL) + uma_zdestroy(softc->pass_io_zone); + cam_periph_lock(periph); free(softc, M_DEVBUF); } static void pass_shutdown_kqueue(void *context, int pending) { struct cam_periph *periph; struct pass_softc *softc; periph = context; softc = periph->softc; knlist_clear(&softc->read_select.si_note, /*is_locked*/ 0); knlist_destroy(&softc->read_select.si_note); /* * Release the reference we held for kqueue. */ cam_periph_release(periph); } static void pass_add_physpath(void *context, int pending) { struct cam_periph *periph; struct pass_softc *softc; struct mtx *mtx; char *physpath; /* * If we have one, create a devfs alias for our * physical path. */ periph = context; softc = periph->softc; physpath = malloc(MAXPATHLEN, M_DEVBUF, M_WAITOK); mtx = cam_periph_mtx(periph); mtx_lock(mtx); if (periph->flags & CAM_PERIPH_INVALID) goto out; if (xpt_getattr(physpath, MAXPATHLEN, "GEOM::physpath", periph->path) == 0 && strlen(physpath) != 0) { mtx_unlock(mtx); make_dev_physpath_alias(MAKEDEV_WAITOK, &softc->alias_dev, softc->dev, softc->alias_dev, physpath); mtx_lock(mtx); } out: /* * Now that we've made our alias, we no longer have to have a * reference to the device. */ if ((softc->flags & PASS_FLAG_INITIAL_PHYSPATH) == 0) softc->flags |= PASS_FLAG_INITIAL_PHYSPATH; /* * We always acquire a reference to the periph before queueing this * task queue function, so it won't go away before we run. */ while (pending-- > 0) cam_periph_release_locked(periph); mtx_unlock(mtx); free(physpath, M_DEVBUF); } static void passasync(void *callback_arg, u_int32_t code, struct cam_path *path, void *arg) { struct cam_periph *periph; periph = (struct cam_periph *)callback_arg; switch (code) { case AC_FOUND_DEVICE: { struct ccb_getdev *cgd; cam_status status; cgd = (struct ccb_getdev *)arg; if (cgd == NULL) break; /* * Allocate a peripheral instance for * this device and start the probe * process. */ status = cam_periph_alloc(passregister, passoninvalidate, passcleanup, passstart, "pass", CAM_PERIPH_BIO, path, passasync, AC_FOUND_DEVICE, cgd); if (status != CAM_REQ_CMP && status != CAM_REQ_INPROG) { const struct cam_status_entry *entry; entry = cam_fetch_status_entry(status); printf("passasync: Unable to attach new device " "due to status %#x: %s\n", status, entry ? entry->status_text : "Unknown"); } break; } case AC_ADVINFO_CHANGED: { uintptr_t buftype; buftype = (uintptr_t)arg; if (buftype == CDAI_TYPE_PHYS_PATH) { struct pass_softc *softc; softc = (struct pass_softc *)periph->softc; /* * Acquire a reference to the periph before we * start the taskqueue, so that we don't run into * a situation where the periph goes away before * the task queue has a chance to run. */ if (cam_periph_acquire(periph) != 0) break; taskqueue_enqueue(taskqueue_thread, &softc->add_physpath_task); } break; } default: cam_periph_async(periph, code, path, arg); break; } } static cam_status passregister(struct cam_periph *periph, void *arg) { struct pass_softc *softc; struct ccb_getdev *cgd; struct ccb_pathinq cpi; struct make_dev_args args; int error, no_tags; cgd = (struct ccb_getdev *)arg; if (cgd == NULL) { printf("%s: no getdev CCB, can't register device\n", __func__); return(CAM_REQ_CMP_ERR); } softc = (struct pass_softc *)malloc(sizeof(*softc), M_DEVBUF, M_NOWAIT); if (softc == NULL) { printf("%s: Unable to probe new device. " "Unable to allocate softc\n", __func__); return(CAM_REQ_CMP_ERR); } bzero(softc, sizeof(*softc)); softc->state = PASS_STATE_NORMAL; if (cgd->protocol == PROTO_SCSI || cgd->protocol == PROTO_ATAPI) softc->pd_type = SID_TYPE(&cgd->inq_data); else if (cgd->protocol == PROTO_SATAPM) softc->pd_type = T_ENCLOSURE; else softc->pd_type = T_DIRECT; periph->softc = softc; softc->periph = periph; TAILQ_INIT(&softc->incoming_queue); TAILQ_INIT(&softc->active_queue); TAILQ_INIT(&softc->abandoned_queue); TAILQ_INIT(&softc->done_queue); snprintf(softc->zone_name, sizeof(softc->zone_name), "%s%d", periph->periph_name, periph->unit_number); snprintf(softc->io_zone_name, sizeof(softc->io_zone_name), "%s%dIO", periph->periph_name, periph->unit_number); softc->io_zone_size = maxphys; knlist_init_mtx(&softc->read_select.si_note, cam_periph_mtx(periph)); xpt_path_inq(&cpi, periph->path); if (cpi.maxio == 0) softc->maxio = DFLTPHYS; /* traditional default */ else if (cpi.maxio > maxphys) softc->maxio = maxphys; /* for safety */ else softc->maxio = cpi.maxio; /* real value */ if (cpi.hba_misc & PIM_UNMAPPED) softc->flags |= PASS_FLAG_UNMAPPED_CAPABLE; /* * We pass in 0 for a blocksize, since we don't * know what the blocksize of this device is, if * it even has a blocksize. */ cam_periph_unlock(periph); no_tags = (cgd->inq_data.flags & SID_CmdQue) == 0; softc->device_stats = devstat_new_entry("pass", periph->unit_number, 0, DEVSTAT_NO_BLOCKSIZE | (no_tags ? DEVSTAT_NO_ORDERED_TAGS : 0), softc->pd_type | XPORT_DEVSTAT_TYPE(cpi.transport) | DEVSTAT_TYPE_PASS, DEVSTAT_PRIORITY_PASS); /* * Initialize the taskqueue handler for shutting down kqueue. */ TASK_INIT(&softc->shutdown_kqueue_task, /*priority*/ 0, pass_shutdown_kqueue, periph); /* * Acquire a reference to the periph that we can release once we've * cleaned up the kqueue. */ if (cam_periph_acquire(periph) != 0) { xpt_print(periph->path, "%s: lost periph during " "registration!\n", __func__); cam_periph_lock(periph); return (CAM_REQ_CMP_ERR); } /* * Acquire a reference to the periph before we create the devfs * instance for it. We'll release this reference once the devfs * instance has been freed. */ if (cam_periph_acquire(periph) != 0) { xpt_print(periph->path, "%s: lost periph during " "registration!\n", __func__); cam_periph_lock(periph); return (CAM_REQ_CMP_ERR); } /* Register the device */ make_dev_args_init(&args); args.mda_devsw = &pass_cdevsw; args.mda_unit = periph->unit_number; args.mda_uid = UID_ROOT; args.mda_gid = GID_OPERATOR; args.mda_mode = 0600; args.mda_si_drv1 = periph; args.mda_flags = MAKEDEV_NOWAIT; error = make_dev_s(&args, &softc->dev, "%s%d", periph->periph_name, periph->unit_number); if (error != 0) { cam_periph_lock(periph); cam_periph_release_locked(periph); return (CAM_REQ_CMP_ERR); } /* * Hold a reference to the periph before we create the physical * path alias so it can't go away. */ if (cam_periph_acquire(periph) != 0) { xpt_print(periph->path, "%s: lost periph during " "registration!\n", __func__); cam_periph_lock(periph); return (CAM_REQ_CMP_ERR); } cam_periph_lock(periph); TASK_INIT(&softc->add_physpath_task, /*priority*/0, pass_add_physpath, periph); /* * See if physical path information is already available. */ taskqueue_enqueue(taskqueue_thread, &softc->add_physpath_task); /* * Add an async callback so that we get notified if * this device goes away or its physical path * (stored in the advanced info data of the EDT) has * changed. */ xpt_register_async(AC_LOST_DEVICE | AC_ADVINFO_CHANGED, passasync, periph, periph->path); if (bootverbose) xpt_announce_periph(periph, NULL); return(CAM_REQ_CMP); } static int passopen(struct cdev *dev, int flags, int fmt, struct thread *td) { struct cam_periph *periph; struct pass_softc *softc; int error; periph = (struct cam_periph *)dev->si_drv1; if (cam_periph_acquire(periph) != 0) return (ENXIO); cam_periph_lock(periph); softc = (struct pass_softc *)periph->softc; if (softc->flags & PASS_FLAG_INVALID) { cam_periph_release_locked(periph); cam_periph_unlock(periph); return(ENXIO); } /* * Don't allow access when we're running at a high securelevel. */ error = securelevel_gt(td->td_ucred, 1); if (error) { cam_periph_release_locked(periph); cam_periph_unlock(periph); return(error); } /* * Only allow read-write access. */ if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0)) { cam_periph_release_locked(periph); cam_periph_unlock(periph); return(EPERM); } /* * We don't allow nonblocking access. */ if ((flags & O_NONBLOCK) != 0) { xpt_print(periph->path, "can't do nonblocking access\n"); cam_periph_release_locked(periph); cam_periph_unlock(periph); return(EINVAL); } softc->open_count++; cam_periph_unlock(periph); return (error); } static int passclose(struct cdev *dev, int flag, int fmt, struct thread *td) { struct cam_periph *periph; struct pass_softc *softc; struct mtx *mtx; periph = (struct cam_periph *)dev->si_drv1; mtx = cam_periph_mtx(periph); mtx_lock(mtx); softc = periph->softc; softc->open_count--; if (softc->open_count == 0) { struct pass_io_req *io_req, *io_req2; TAILQ_FOREACH_SAFE(io_req, &softc->done_queue, links, io_req2) { TAILQ_REMOVE(&softc->done_queue, io_req, links); passiocleanup(softc, io_req); uma_zfree(softc->pass_zone, io_req); } TAILQ_FOREACH_SAFE(io_req, &softc->incoming_queue, links, io_req2) { TAILQ_REMOVE(&softc->incoming_queue, io_req, links); passiocleanup(softc, io_req); uma_zfree(softc->pass_zone, io_req); } /* * If there are any active I/Os, we need to forcibly acquire a * reference to the peripheral so that we don't go away * before they complete. We'll release the reference when * the abandoned queue is empty. */ io_req = TAILQ_FIRST(&softc->active_queue); if ((io_req != NULL) && (softc->flags & PASS_FLAG_ABANDONED_REF_SET) == 0) { cam_periph_doacquire(periph); softc->flags |= PASS_FLAG_ABANDONED_REF_SET; } /* * Since the I/O in the active queue is not under our * control, just set a flag so that we can clean it up when * it completes and put it on the abandoned queue. This * will prevent our sending spurious completions in the * event that the device is opened again before these I/Os * complete. */ TAILQ_FOREACH_SAFE(io_req, &softc->active_queue, links, io_req2) { TAILQ_REMOVE(&softc->active_queue, io_req, links); io_req->flags |= PASS_IO_ABANDONED; TAILQ_INSERT_TAIL(&softc->abandoned_queue, io_req, links); } } cam_periph_release_locked(periph); /* * We reference the lock directly here, instead of using * cam_periph_unlock(). The reason is that the call to * cam_periph_release_locked() above could result in the periph * getting freed. If that is the case, dereferencing the periph * with a cam_periph_unlock() call would cause a page fault. * * cam_periph_release() avoids this problem using the same method, * but we're manually acquiring and dropping the lock here to * protect the open count and avoid another lock acquisition and * release. */ mtx_unlock(mtx); return (0); } static void passstart(struct cam_periph *periph, union ccb *start_ccb) { struct pass_softc *softc; softc = (struct pass_softc *)periph->softc; switch (softc->state) { case PASS_STATE_NORMAL: { struct pass_io_req *io_req; /* * Check for any queued I/O requests that require an * allocated slot. */ io_req = TAILQ_FIRST(&softc->incoming_queue); if (io_req == NULL) { xpt_release_ccb(start_ccb); break; } TAILQ_REMOVE(&softc->incoming_queue, io_req, links); TAILQ_INSERT_TAIL(&softc->active_queue, io_req, links); /* * Merge the user's CCB into the allocated CCB. */ xpt_merge_ccb(start_ccb, &io_req->ccb); start_ccb->ccb_h.ccb_type = PASS_CCB_QUEUED_IO; start_ccb->ccb_h.ccb_ioreq = io_req; start_ccb->ccb_h.cbfcnp = passdone; io_req->alloced_ccb = start_ccb; binuptime(&io_req->start_time); devstat_start_transaction(softc->device_stats, &io_req->start_time); xpt_action(start_ccb); /* * If we have any more I/O waiting, schedule ourselves again. */ if (!TAILQ_EMPTY(&softc->incoming_queue)) xpt_schedule(periph, CAM_PRIORITY_NORMAL); break; } default: break; } } static void passdone(struct cam_periph *periph, union ccb *done_ccb) { struct pass_softc *softc; struct ccb_scsiio *csio; softc = (struct pass_softc *)periph->softc; cam_periph_assert(periph, MA_OWNED); csio = &done_ccb->csio; switch (csio->ccb_h.ccb_type) { case PASS_CCB_QUEUED_IO: { struct pass_io_req *io_req; io_req = done_ccb->ccb_h.ccb_ioreq; #if 0 xpt_print(periph->path, "%s: called for user CCB %p\n", __func__, io_req->user_ccb_ptr); #endif if (((done_ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) && (done_ccb->ccb_h.flags & CAM_PASS_ERR_RECOVER) && ((io_req->flags & PASS_IO_ABANDONED) == 0)) { int error; error = passerror(done_ccb, CAM_RETRY_SELTO, SF_RETRY_UA | SF_NO_PRINT); if (error == ERESTART) { /* * A retry was scheduled, so * just return. */ return; } } /* * Copy the allocated CCB contents back to the malloced CCB * so we can give status back to the user when he requests it. */ bcopy(done_ccb, &io_req->ccb, sizeof(*done_ccb)); /* * Log data/transaction completion with devstat(9). */ switch (done_ccb->ccb_h.func_code) { case XPT_SCSI_IO: devstat_end_transaction(softc->device_stats, done_ccb->csio.dxfer_len - done_ccb->csio.resid, done_ccb->csio.tag_action & 0x3, ((done_ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) ? DEVSTAT_NO_DATA : (done_ccb->ccb_h.flags & CAM_DIR_OUT) ? DEVSTAT_WRITE : DEVSTAT_READ, NULL, &io_req->start_time); break; case XPT_ATA_IO: devstat_end_transaction(softc->device_stats, done_ccb->ataio.dxfer_len - done_ccb->ataio.resid, 0, /* Not used in ATA */ ((done_ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) ? DEVSTAT_NO_DATA : (done_ccb->ccb_h.flags & CAM_DIR_OUT) ? DEVSTAT_WRITE : DEVSTAT_READ, NULL, &io_req->start_time); break; case XPT_SMP_IO: /* * XXX KDM this isn't quite right, but there isn't * currently an easy way to represent a bidirectional * transfer in devstat. The only way to do it * and have the byte counts come out right would * mean that we would have to record two * transactions, one for the request and one for the * response. For now, so that we report something, * just treat the entire thing as a read. */ devstat_end_transaction(softc->device_stats, done_ccb->smpio.smp_request_len + done_ccb->smpio.smp_response_len, DEVSTAT_TAG_SIMPLE, DEVSTAT_READ, NULL, &io_req->start_time); break; default: devstat_end_transaction(softc->device_stats, 0, DEVSTAT_TAG_NONE, DEVSTAT_NO_DATA, NULL, &io_req->start_time); break; } /* * In the normal case, take the completed I/O off of the * active queue and put it on the done queue. Notitfy the * user that we have a completed I/O. */ if ((io_req->flags & PASS_IO_ABANDONED) == 0) { TAILQ_REMOVE(&softc->active_queue, io_req, links); TAILQ_INSERT_TAIL(&softc->done_queue, io_req, links); selwakeuppri(&softc->read_select, PRIBIO); KNOTE_LOCKED(&softc->read_select.si_note, 0); } else { /* * In the case of an abandoned I/O (final close * without fetching the I/O), take it off of the * abandoned queue and free it. */ TAILQ_REMOVE(&softc->abandoned_queue, io_req, links); passiocleanup(softc, io_req); uma_zfree(softc->pass_zone, io_req); /* * Release the done_ccb here, since we may wind up * freeing the peripheral when we decrement the * reference count below. */ xpt_release_ccb(done_ccb); /* * If the abandoned queue is empty, we can release * our reference to the periph since we won't have * any more completions coming. */ if ((TAILQ_EMPTY(&softc->abandoned_queue)) && (softc->flags & PASS_FLAG_ABANDONED_REF_SET)) { softc->flags &= ~PASS_FLAG_ABANDONED_REF_SET; cam_periph_release_locked(periph); } /* * We have already released the CCB, so we can * return. */ return; } break; } } xpt_release_ccb(done_ccb); } static int passcreatezone(struct cam_periph *periph) { struct pass_softc *softc; int error; error = 0; softc = (struct pass_softc *)periph->softc; cam_periph_assert(periph, MA_OWNED); KASSERT(((softc->flags & PASS_FLAG_ZONE_VALID) == 0), ("%s called when the pass(4) zone is valid!\n", __func__)); KASSERT((softc->pass_zone == NULL), ("%s called when the pass(4) zone is allocated!\n", __func__)); if ((softc->flags & PASS_FLAG_ZONE_INPROG) == 0) { /* * We're the first context through, so we need to create * the pass(4) UMA zone for I/O requests. */ softc->flags |= PASS_FLAG_ZONE_INPROG; /* * uma_zcreate() does a blocking (M_WAITOK) allocation, * so we cannot hold a mutex while we call it. */ cam_periph_unlock(periph); softc->pass_zone = uma_zcreate(softc->zone_name, sizeof(struct pass_io_req), NULL, NULL, NULL, NULL, /*align*/ 0, /*flags*/ 0); softc->pass_io_zone = uma_zcreate(softc->io_zone_name, softc->io_zone_size, NULL, NULL, NULL, NULL, /*align*/ 0, /*flags*/ 0); cam_periph_lock(periph); if ((softc->pass_zone == NULL) || (softc->pass_io_zone == NULL)) { if (softc->pass_zone == NULL) xpt_print(periph->path, "unable to allocate " "IO Req UMA zone\n"); else xpt_print(periph->path, "unable to allocate " "IO UMA zone\n"); softc->flags &= ~PASS_FLAG_ZONE_INPROG; goto bailout; } /* * Set the flags appropriately and notify any other waiters. */ - softc->flags &= PASS_FLAG_ZONE_INPROG; + softc->flags &= ~PASS_FLAG_ZONE_INPROG; softc->flags |= PASS_FLAG_ZONE_VALID; wakeup(&softc->pass_zone); } else { /* * In this case, the UMA zone has not yet been created, but * another context is in the process of creating it. We * need to sleep until the creation is either done or has * failed. */ while ((softc->flags & PASS_FLAG_ZONE_INPROG) && ((softc->flags & PASS_FLAG_ZONE_VALID) == 0)) { error = msleep(&softc->pass_zone, cam_periph_mtx(periph), PRIBIO, "paszon", 0); if (error != 0) goto bailout; } /* * If the zone creation failed, no luck for the user. */ if ((softc->flags & PASS_FLAG_ZONE_VALID) == 0){ error = ENOMEM; goto bailout; } } bailout: return (error); } static void passiocleanup(struct pass_softc *softc, struct pass_io_req *io_req) { union ccb *ccb; u_int8_t **data_ptrs[CAM_PERIPH_MAXMAPS]; int i, numbufs; ccb = &io_req->ccb; switch (ccb->ccb_h.func_code) { case XPT_DEV_MATCH: numbufs = min(io_req->num_bufs, 2); if (numbufs == 1) { data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches; } else { data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns; data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches; } break; case XPT_SCSI_IO: case XPT_CONT_TARGET_IO: data_ptrs[0] = &ccb->csio.data_ptr; numbufs = min(io_req->num_bufs, 1); break; case XPT_ATA_IO: data_ptrs[0] = &ccb->ataio.data_ptr; numbufs = min(io_req->num_bufs, 1); break; case XPT_SMP_IO: numbufs = min(io_req->num_bufs, 2); data_ptrs[0] = &ccb->smpio.smp_request; data_ptrs[1] = &ccb->smpio.smp_response; break; case XPT_DEV_ADVINFO: numbufs = min(io_req->num_bufs, 1); data_ptrs[0] = (uint8_t **)&ccb->cdai.buf; break; case XPT_NVME_IO: case XPT_NVME_ADMIN: data_ptrs[0] = &ccb->nvmeio.data_ptr; numbufs = min(io_req->num_bufs, 1); break; default: /* allow ourselves to be swapped once again */ return; break; /* NOTREACHED */ } if (io_req->flags & PASS_IO_USER_SEG_MALLOC) { free(io_req->user_segptr, M_SCSIPASS); io_req->user_segptr = NULL; } /* * We only want to free memory we malloced. */ if (io_req->data_flags == CAM_DATA_VADDR) { for (i = 0; i < io_req->num_bufs; i++) { if (io_req->kern_bufs[i] == NULL) continue; free(io_req->kern_bufs[i], M_SCSIPASS); io_req->kern_bufs[i] = NULL; } } else if (io_req->data_flags == CAM_DATA_SG) { for (i = 0; i < io_req->num_kern_segs; i++) { if ((uint8_t *)(uintptr_t) io_req->kern_segptr[i].ds_addr == NULL) continue; uma_zfree(softc->pass_io_zone, (uint8_t *)(uintptr_t) io_req->kern_segptr[i].ds_addr); io_req->kern_segptr[i].ds_addr = 0; } } if (io_req->flags & PASS_IO_KERN_SEG_MALLOC) { free(io_req->kern_segptr, M_SCSIPASS); io_req->kern_segptr = NULL; } if (io_req->data_flags != CAM_DATA_PADDR) { for (i = 0; i < numbufs; i++) { /* * Restore the user's buffer pointers to their * previous values. */ if (io_req->user_bufs[i] != NULL) *data_ptrs[i] = io_req->user_bufs[i]; } } } static int passcopysglist(struct cam_periph *periph, struct pass_io_req *io_req, ccb_flags direction) { bus_size_t kern_watermark, user_watermark, len_to_copy; bus_dma_segment_t *user_sglist, *kern_sglist; int i, j, error; error = 0; kern_watermark = 0; user_watermark = 0; len_to_copy = 0; user_sglist = io_req->user_segptr; kern_sglist = io_req->kern_segptr; for (i = 0, j = 0; i < io_req->num_user_segs && j < io_req->num_kern_segs;) { uint8_t *user_ptr, *kern_ptr; len_to_copy = min(user_sglist[i].ds_len -user_watermark, kern_sglist[j].ds_len - kern_watermark); user_ptr = (uint8_t *)(uintptr_t)user_sglist[i].ds_addr; user_ptr = user_ptr + user_watermark; kern_ptr = (uint8_t *)(uintptr_t)kern_sglist[j].ds_addr; kern_ptr = kern_ptr + kern_watermark; user_watermark += len_to_copy; kern_watermark += len_to_copy; if (direction == CAM_DIR_IN) { error = copyout(kern_ptr, user_ptr, len_to_copy); if (error != 0) { xpt_print(periph->path, "%s: copyout of %u " "bytes from %p to %p failed with " "error %d\n", __func__, len_to_copy, kern_ptr, user_ptr, error); goto bailout; } } else { error = copyin(user_ptr, kern_ptr, len_to_copy); if (error != 0) { xpt_print(periph->path, "%s: copyin of %u " "bytes from %p to %p failed with " "error %d\n", __func__, len_to_copy, user_ptr, kern_ptr, error); goto bailout; } } if (user_sglist[i].ds_len == user_watermark) { i++; user_watermark = 0; } if (kern_sglist[j].ds_len == kern_watermark) { j++; kern_watermark = 0; } } bailout: return (error); } static int passmemsetup(struct cam_periph *periph, struct pass_io_req *io_req) { union ccb *ccb; struct pass_softc *softc; int numbufs, i; uint8_t **data_ptrs[CAM_PERIPH_MAXMAPS]; uint32_t lengths[CAM_PERIPH_MAXMAPS]; uint32_t dirs[CAM_PERIPH_MAXMAPS]; uint32_t num_segs; uint16_t *seg_cnt_ptr; size_t maxmap; int error; cam_periph_assert(periph, MA_NOTOWNED); softc = periph->softc; error = 0; ccb = &io_req->ccb; maxmap = 0; num_segs = 0; seg_cnt_ptr = NULL; switch(ccb->ccb_h.func_code) { case XPT_DEV_MATCH: if (ccb->cdm.match_buf_len == 0) { printf("%s: invalid match buffer length 0\n", __func__); return(EINVAL); } if (ccb->cdm.pattern_buf_len > 0) { data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns; lengths[0] = ccb->cdm.pattern_buf_len; dirs[0] = CAM_DIR_OUT; data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches; lengths[1] = ccb->cdm.match_buf_len; dirs[1] = CAM_DIR_IN; numbufs = 2; } else { data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches; lengths[0] = ccb->cdm.match_buf_len; dirs[0] = CAM_DIR_IN; numbufs = 1; } io_req->data_flags = CAM_DATA_VADDR; break; case XPT_SCSI_IO: case XPT_CONT_TARGET_IO: if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) return(0); /* * The user shouldn't be able to supply a bio. */ if ((ccb->ccb_h.flags & CAM_DATA_MASK) == CAM_DATA_BIO) return (EINVAL); io_req->data_flags = ccb->ccb_h.flags & CAM_DATA_MASK; data_ptrs[0] = &ccb->csio.data_ptr; lengths[0] = ccb->csio.dxfer_len; dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; num_segs = ccb->csio.sglist_cnt; seg_cnt_ptr = &ccb->csio.sglist_cnt; numbufs = 1; maxmap = softc->maxio; break; case XPT_ATA_IO: if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) return(0); /* * We only support a single virtual address for ATA I/O. */ if ((ccb->ccb_h.flags & CAM_DATA_MASK) != CAM_DATA_VADDR) return (EINVAL); io_req->data_flags = CAM_DATA_VADDR; data_ptrs[0] = &ccb->ataio.data_ptr; lengths[0] = ccb->ataio.dxfer_len; dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; numbufs = 1; maxmap = softc->maxio; break; case XPT_SMP_IO: io_req->data_flags = CAM_DATA_VADDR; data_ptrs[0] = &ccb->smpio.smp_request; lengths[0] = ccb->smpio.smp_request_len; dirs[0] = CAM_DIR_OUT; data_ptrs[1] = &ccb->smpio.smp_response; lengths[1] = ccb->smpio.smp_response_len; dirs[1] = CAM_DIR_IN; numbufs = 2; maxmap = softc->maxio; break; case XPT_DEV_ADVINFO: if (ccb->cdai.bufsiz == 0) return (0); io_req->data_flags = CAM_DATA_VADDR; data_ptrs[0] = (uint8_t **)&ccb->cdai.buf; lengths[0] = ccb->cdai.bufsiz; dirs[0] = CAM_DIR_IN; numbufs = 1; break; case XPT_NVME_ADMIN: case XPT_NVME_IO: if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE) return (0); io_req->data_flags = ccb->ccb_h.flags & CAM_DATA_MASK; data_ptrs[0] = &ccb->nvmeio.data_ptr; lengths[0] = ccb->nvmeio.dxfer_len; dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK; num_segs = ccb->nvmeio.sglist_cnt; seg_cnt_ptr = &ccb->nvmeio.sglist_cnt; numbufs = 1; maxmap = softc->maxio; break; default: return(EINVAL); break; /* NOTREACHED */ } io_req->num_bufs = numbufs; /* * If there is a maximum, check to make sure that the user's * request fits within the limit. In general, we should only have * a maximum length for requests that go to hardware. Otherwise it * is whatever we're able to malloc. */ for (i = 0; i < numbufs; i++) { io_req->user_bufs[i] = *data_ptrs[i]; io_req->dirs[i] = dirs[i]; io_req->lengths[i] = lengths[i]; if (maxmap == 0) continue; if (lengths[i] <= maxmap) continue; xpt_print(periph->path, "%s: data length %u > max allowed %u " "bytes\n", __func__, lengths[i], maxmap); error = EINVAL; goto bailout; } switch (io_req->data_flags) { case CAM_DATA_VADDR: /* Map or copy the buffer into kernel address space */ for (i = 0; i < numbufs; i++) { uint8_t *tmp_buf; /* * If for some reason no length is specified, we * don't need to allocate anything. */ if (io_req->lengths[i] == 0) continue; tmp_buf = malloc(lengths[i], M_SCSIPASS, M_WAITOK | M_ZERO); io_req->kern_bufs[i] = tmp_buf; *data_ptrs[i] = tmp_buf; #if 0 xpt_print(periph->path, "%s: malloced %p len %u, user " "buffer %p, operation: %s\n", __func__, tmp_buf, lengths[i], io_req->user_bufs[i], (dirs[i] == CAM_DIR_IN) ? "read" : "write"); #endif /* * We only need to copy in if the user is writing. */ if (dirs[i] != CAM_DIR_OUT) continue; error = copyin(io_req->user_bufs[i], io_req->kern_bufs[i], lengths[i]); if (error != 0) { xpt_print(periph->path, "%s: copy of user " "buffer from %p to %p failed with " "error %d\n", __func__, io_req->user_bufs[i], io_req->kern_bufs[i], error); goto bailout; } } break; case CAM_DATA_PADDR: /* Pass down the pointer as-is */ break; case CAM_DATA_SG: { size_t sg_length, size_to_go, alloc_size; uint32_t num_segs_needed; /* * Copy the user S/G list in, and then copy in the * individual segments. */ /* * We shouldn't see this, but check just in case. */ if (numbufs != 1) { xpt_print(periph->path, "%s: cannot currently handle " "more than one S/G list per CCB\n", __func__); error = EINVAL; goto bailout; } /* * We have to have at least one segment. */ if (num_segs == 0) { xpt_print(periph->path, "%s: CAM_DATA_SG flag set, " "but sglist_cnt=0!\n", __func__); error = EINVAL; goto bailout; } /* * Make sure the user specified the total length and didn't * just leave it to us to decode the S/G list. */ if (lengths[0] == 0) { xpt_print(periph->path, "%s: no dxfer_len specified, " "but CAM_DATA_SG flag is set!\n", __func__); error = EINVAL; goto bailout; } /* * We allocate buffers in io_zone_size increments for an * S/G list. This will generally be maxphys. */ if (lengths[0] <= softc->io_zone_size) num_segs_needed = 1; else { num_segs_needed = lengths[0] / softc->io_zone_size; if ((lengths[0] % softc->io_zone_size) != 0) num_segs_needed++; } /* Figure out the size of the S/G list */ sg_length = num_segs * sizeof(bus_dma_segment_t); io_req->num_user_segs = num_segs; io_req->num_kern_segs = num_segs_needed; /* Save the user's S/G list pointer for later restoration */ io_req->user_bufs[0] = *data_ptrs[0]; /* * If we have enough segments allocated by default to handle * the length of the user's S/G list, */ if (num_segs > PASS_MAX_SEGS) { io_req->user_segptr = malloc(sizeof(bus_dma_segment_t) * num_segs, M_SCSIPASS, M_WAITOK | M_ZERO); io_req->flags |= PASS_IO_USER_SEG_MALLOC; } else io_req->user_segptr = io_req->user_segs; error = copyin(*data_ptrs[0], io_req->user_segptr, sg_length); if (error != 0) { xpt_print(periph->path, "%s: copy of user S/G list " "from %p to %p failed with error %d\n", __func__, *data_ptrs[0], io_req->user_segptr, error); goto bailout; } if (num_segs_needed > PASS_MAX_SEGS) { io_req->kern_segptr = malloc(sizeof(bus_dma_segment_t) * num_segs_needed, M_SCSIPASS, M_WAITOK | M_ZERO); io_req->flags |= PASS_IO_KERN_SEG_MALLOC; } else { io_req->kern_segptr = io_req->kern_segs; } /* * Allocate the kernel S/G list. */ for (size_to_go = lengths[0], i = 0; size_to_go > 0 && i < num_segs_needed; i++, size_to_go -= alloc_size) { uint8_t *kern_ptr; alloc_size = min(size_to_go, softc->io_zone_size); kern_ptr = uma_zalloc(softc->pass_io_zone, M_WAITOK); io_req->kern_segptr[i].ds_addr = (bus_addr_t)(uintptr_t)kern_ptr; io_req->kern_segptr[i].ds_len = alloc_size; } if (size_to_go > 0) { printf("%s: size_to_go = %zu, software error!\n", __func__, size_to_go); error = EINVAL; goto bailout; } *data_ptrs[0] = (uint8_t *)io_req->kern_segptr; *seg_cnt_ptr = io_req->num_kern_segs; /* * We only need to copy data here if the user is writing. */ if (dirs[0] == CAM_DIR_OUT) error = passcopysglist(periph, io_req, dirs[0]); break; } case CAM_DATA_SG_PADDR: { size_t sg_length; /* * We shouldn't see this, but check just in case. */ if (numbufs != 1) { printf("%s: cannot currently handle more than one " "S/G list per CCB\n", __func__); error = EINVAL; goto bailout; } /* * We have to have at least one segment. */ if (num_segs == 0) { xpt_print(periph->path, "%s: CAM_DATA_SG_PADDR flag " "set, but sglist_cnt=0!\n", __func__); error = EINVAL; goto bailout; } /* * Make sure the user specified the total length and didn't * just leave it to us to decode the S/G list. */ if (lengths[0] == 0) { xpt_print(periph->path, "%s: no dxfer_len specified, " "but CAM_DATA_SG flag is set!\n", __func__); error = EINVAL; goto bailout; } /* Figure out the size of the S/G list */ sg_length = num_segs * sizeof(bus_dma_segment_t); io_req->num_user_segs = num_segs; io_req->num_kern_segs = io_req->num_user_segs; /* Save the user's S/G list pointer for later restoration */ io_req->user_bufs[0] = *data_ptrs[0]; if (num_segs > PASS_MAX_SEGS) { io_req->user_segptr = malloc(sizeof(bus_dma_segment_t) * num_segs, M_SCSIPASS, M_WAITOK | M_ZERO); io_req->flags |= PASS_IO_USER_SEG_MALLOC; } else io_req->user_segptr = io_req->user_segs; io_req->kern_segptr = io_req->user_segptr; error = copyin(*data_ptrs[0], io_req->user_segptr, sg_length); if (error != 0) { xpt_print(periph->path, "%s: copy of user S/G list " "from %p to %p failed with error %d\n", __func__, *data_ptrs[0], io_req->user_segptr, error); goto bailout; } break; } default: case CAM_DATA_BIO: /* * A user shouldn't be attaching a bio to the CCB. It * isn't a user-accessible structure. */ error = EINVAL; break; } bailout: if (error != 0) passiocleanup(softc, io_req); return (error); } static int passmemdone(struct cam_periph *periph, struct pass_io_req *io_req) { struct pass_softc *softc; int error; int i; error = 0; softc = (struct pass_softc *)periph->softc; switch (io_req->data_flags) { case CAM_DATA_VADDR: /* * Copy back to the user buffer if this was a read. */ for (i = 0; i < io_req->num_bufs; i++) { if (io_req->dirs[i] != CAM_DIR_IN) continue; error = copyout(io_req->kern_bufs[i], io_req->user_bufs[i], io_req->lengths[i]); if (error != 0) { xpt_print(periph->path, "Unable to copy %u " "bytes from %p to user address %p\n", io_req->lengths[i], io_req->kern_bufs[i], io_req->user_bufs[i]); goto bailout; } } break; case CAM_DATA_PADDR: /* Do nothing. The pointer is a physical address already */ break; case CAM_DATA_SG: /* * Copy back to the user buffer if this was a read. * Restore the user's S/G list buffer pointer. */ if (io_req->dirs[0] == CAM_DIR_IN) error = passcopysglist(periph, io_req, io_req->dirs[0]); break; case CAM_DATA_SG_PADDR: /* * Restore the user's S/G list buffer pointer. No need to * copy. */ break; default: case CAM_DATA_BIO: error = EINVAL; break; } bailout: /* * Reset the user's pointers to their original values and free * allocated memory. */ passiocleanup(softc, io_req); return (error); } static int passioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) { int error; if ((error = passdoioctl(dev, cmd, addr, flag, td)) == ENOTTY) { error = cam_compat_ioctl(dev, cmd, addr, flag, td, passdoioctl); } return (error); } static int passdoioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) { struct cam_periph *periph; struct pass_softc *softc; int error; uint32_t priority; periph = (struct cam_periph *)dev->si_drv1; cam_periph_lock(periph); softc = (struct pass_softc *)periph->softc; error = 0; switch (cmd) { case CAMIOCOMMAND: { union ccb *inccb; union ccb *ccb; int ccb_malloced; inccb = (union ccb *)addr; #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING) if (inccb->ccb_h.func_code == XPT_SCSI_IO) inccb->csio.bio = NULL; #endif if (inccb->ccb_h.flags & CAM_UNLOCKED) { error = EINVAL; break; } /* * Some CCB types, like scan bus and scan lun can only go * through the transport layer device. */ if (inccb->ccb_h.func_code & XPT_FC_XPT_ONLY) { xpt_print(periph->path, "CCB function code %#x is " "restricted to the XPT device\n", inccb->ccb_h.func_code); error = ENODEV; break; } /* Compatibility for RL/priority-unaware code. */ priority = inccb->ccb_h.pinfo.priority; if (priority <= CAM_PRIORITY_OOB) priority += CAM_PRIORITY_OOB + 1; /* * Non-immediate CCBs need a CCB from the per-device pool * of CCBs, which is scheduled by the transport layer. * Immediate CCBs and user-supplied CCBs should just be * malloced. */ if ((inccb->ccb_h.func_code & XPT_FC_QUEUED) && ((inccb->ccb_h.func_code & XPT_FC_USER_CCB) == 0)) { ccb = cam_periph_getccb(periph, priority); ccb_malloced = 0; } else { ccb = xpt_alloc_ccb_nowait(); if (ccb != NULL) xpt_setup_ccb(&ccb->ccb_h, periph->path, priority); ccb_malloced = 1; } if (ccb == NULL) { xpt_print(periph->path, "unable to allocate CCB\n"); error = ENOMEM; break; } error = passsendccb(periph, ccb, inccb); if (ccb_malloced) xpt_free_ccb(ccb); else xpt_release_ccb(ccb); break; } case CAMIOQUEUE: { struct pass_io_req *io_req; union ccb **user_ccb, *ccb; xpt_opcode fc; #ifdef COMPAT_FREEBSD32 if (SV_PROC_FLAG(td->td_proc, SV_ILP32)) { error = ENOTTY; goto bailout; } #endif if ((softc->flags & PASS_FLAG_ZONE_VALID) == 0) { error = passcreatezone(periph); if (error != 0) goto bailout; } /* * We're going to do a blocking allocation for this I/O * request, so we have to drop the lock. */ cam_periph_unlock(periph); io_req = uma_zalloc(softc->pass_zone, M_WAITOK | M_ZERO); ccb = &io_req->ccb; user_ccb = (union ccb **)addr; /* * Unlike the CAMIOCOMMAND ioctl above, we only have a * pointer to the user's CCB, so we have to copy the whole * thing in to a buffer we have allocated (above) instead * of allowing the ioctl code to malloc a buffer and copy * it in. * * This is an advantage for this asynchronous interface, * since we don't want the memory to get freed while the * CCB is outstanding. */ #if 0 xpt_print(periph->path, "Copying user CCB %p to " "kernel address %p\n", *user_ccb, ccb); #endif error = copyin(*user_ccb, ccb, sizeof(*ccb)); if (error != 0) { xpt_print(periph->path, "Copy of user CCB %p to " "kernel address %p failed with error %d\n", *user_ccb, ccb, error); goto camioqueue_error; } #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING) if (ccb->ccb_h.func_code == XPT_SCSI_IO) ccb->csio.bio = NULL; #endif if (ccb->ccb_h.flags & CAM_UNLOCKED) { error = EINVAL; goto camioqueue_error; } if (ccb->ccb_h.flags & CAM_CDB_POINTER) { if (ccb->csio.cdb_len > IOCDBLEN) { error = EINVAL; goto camioqueue_error; } error = copyin(ccb->csio.cdb_io.cdb_ptr, ccb->csio.cdb_io.cdb_bytes, ccb->csio.cdb_len); if (error != 0) goto camioqueue_error; ccb->ccb_h.flags &= ~CAM_CDB_POINTER; } /* * Some CCB types, like scan bus and scan lun can only go * through the transport layer device. */ if (ccb->ccb_h.func_code & XPT_FC_XPT_ONLY) { xpt_print(periph->path, "CCB function code %#x is " "restricted to the XPT device\n", ccb->ccb_h.func_code); error = ENODEV; goto camioqueue_error; } /* * Save the user's CCB pointer as well as his linked list * pointers and peripheral private area so that we can * restore these later. */ io_req->user_ccb_ptr = *user_ccb; io_req->user_periph_links = ccb->ccb_h.periph_links; io_req->user_periph_priv = ccb->ccb_h.periph_priv; /* * Now that we've saved the user's values, we can set our * own peripheral private entry. */ ccb->ccb_h.ccb_ioreq = io_req; /* Compatibility for RL/priority-unaware code. */ priority = ccb->ccb_h.pinfo.priority; if (priority <= CAM_PRIORITY_OOB) priority += CAM_PRIORITY_OOB + 1; /* * Setup fields in the CCB like the path and the priority. * The path in particular cannot be done in userland, since * it is a pointer to a kernel data structure. */ xpt_setup_ccb_flags(&ccb->ccb_h, periph->path, priority, ccb->ccb_h.flags); /* * Setup our done routine. There is no way for the user to * have a valid pointer here. */ ccb->ccb_h.cbfcnp = passdone; fc = ccb->ccb_h.func_code; /* * If this function code has memory that can be mapped in * or out, we need to call passmemsetup(). */ if ((fc == XPT_SCSI_IO) || (fc == XPT_ATA_IO) || (fc == XPT_SMP_IO) || (fc == XPT_DEV_MATCH) || (fc == XPT_DEV_ADVINFO) || (fc == XPT_NVME_ADMIN) || (fc == XPT_NVME_IO)) { error = passmemsetup(periph, io_req); if (error != 0) goto camioqueue_error; } else io_req->mapinfo.num_bufs_used = 0; cam_periph_lock(periph); /* * Everything goes on the incoming queue initially. */ TAILQ_INSERT_TAIL(&softc->incoming_queue, io_req, links); /* * If the CCB is queued, and is not a user CCB, then * we need to allocate a slot for it. Call xpt_schedule() * so that our start routine will get called when a CCB is * available. */ if ((fc & XPT_FC_QUEUED) && ((fc & XPT_FC_USER_CCB) == 0)) { xpt_schedule(periph, priority); break; } /* * At this point, the CCB in question is either an * immediate CCB (like XPT_DEV_ADVINFO) or it is a user CCB * and therefore should be malloced, not allocated via a slot. * Remove the CCB from the incoming queue and add it to the * active queue. */ TAILQ_REMOVE(&softc->incoming_queue, io_req, links); TAILQ_INSERT_TAIL(&softc->active_queue, io_req, links); xpt_action(ccb); /* * If this is not a queued CCB (i.e. it is an immediate CCB), * then it is already done. We need to put it on the done * queue for the user to fetch. */ if ((fc & XPT_FC_QUEUED) == 0) { TAILQ_REMOVE(&softc->active_queue, io_req, links); TAILQ_INSERT_TAIL(&softc->done_queue, io_req, links); } break; camioqueue_error: uma_zfree(softc->pass_zone, io_req); cam_periph_lock(periph); break; } case CAMIOGET: { union ccb **user_ccb; struct pass_io_req *io_req; int old_error; #ifdef COMPAT_FREEBSD32 if (SV_PROC_FLAG(td->td_proc, SV_ILP32)) { error = ENOTTY; goto bailout; } #endif user_ccb = (union ccb **)addr; old_error = 0; io_req = TAILQ_FIRST(&softc->done_queue); if (io_req == NULL) { error = ENOENT; break; } /* * Remove the I/O from the done queue. */ TAILQ_REMOVE(&softc->done_queue, io_req, links); /* * We have to drop the lock during the copyout because the * copyout can result in VM faults that require sleeping. */ cam_periph_unlock(periph); /* * Do any needed copies (e.g. for reads) and revert the * pointers in the CCB back to the user's pointers. */ error = passmemdone(periph, io_req); old_error = error; io_req->ccb.ccb_h.periph_links = io_req->user_periph_links; io_req->ccb.ccb_h.periph_priv = io_req->user_periph_priv; #if 0 xpt_print(periph->path, "Copying to user CCB %p from " "kernel address %p\n", *user_ccb, &io_req->ccb); #endif error = copyout(&io_req->ccb, *user_ccb, sizeof(union ccb)); if (error != 0) { xpt_print(periph->path, "Copy to user CCB %p from " "kernel address %p failed with error %d\n", *user_ccb, &io_req->ccb, error); } /* * Prefer the first error we got back, and make sure we * don't overwrite bad status with good. */ if (old_error != 0) error = old_error; cam_periph_lock(periph); /* * At this point, if there was an error, we could potentially * re-queue the I/O and try again. But why? The error * would almost certainly happen again. We might as well * not leak memory. */ uma_zfree(softc->pass_zone, io_req); break; } default: error = cam_periph_ioctl(periph, cmd, addr, passerror); break; } bailout: cam_periph_unlock(periph); return(error); } static int passpoll(struct cdev *dev, int poll_events, struct thread *td) { struct cam_periph *periph; struct pass_softc *softc; int revents; periph = (struct cam_periph *)dev->si_drv1; softc = (struct pass_softc *)periph->softc; revents = poll_events & (POLLOUT | POLLWRNORM); if ((poll_events & (POLLIN | POLLRDNORM)) != 0) { cam_periph_lock(periph); if (!TAILQ_EMPTY(&softc->done_queue)) { revents |= poll_events & (POLLIN | POLLRDNORM); } cam_periph_unlock(periph); if (revents == 0) selrecord(td, &softc->read_select); } return (revents); } static int passkqfilter(struct cdev *dev, struct knote *kn) { struct cam_periph *periph; struct pass_softc *softc; periph = (struct cam_periph *)dev->si_drv1; softc = (struct pass_softc *)periph->softc; kn->kn_hook = (caddr_t)periph; kn->kn_fop = &passread_filtops; knlist_add(&softc->read_select.si_note, kn, 0); return (0); } static void passreadfiltdetach(struct knote *kn) { struct cam_periph *periph; struct pass_softc *softc; periph = (struct cam_periph *)kn->kn_hook; softc = (struct pass_softc *)periph->softc; knlist_remove(&softc->read_select.si_note, kn, 0); } static int passreadfilt(struct knote *kn, long hint) { struct cam_periph *periph; struct pass_softc *softc; int retval; periph = (struct cam_periph *)kn->kn_hook; softc = (struct pass_softc *)periph->softc; cam_periph_assert(periph, MA_OWNED); if (TAILQ_EMPTY(&softc->done_queue)) retval = 0; else retval = 1; return (retval); } /* * Generally, "ccb" should be the CCB supplied by the kernel. "inccb" * should be the CCB that is copied in from the user. */ static int passsendccb(struct cam_periph *periph, union ccb *ccb, union ccb *inccb) { struct pass_softc *softc; struct cam_periph_map_info mapinfo; uint8_t *cmd; xpt_opcode fc; int error; softc = (struct pass_softc *)periph->softc; /* * There are some fields in the CCB header that need to be * preserved, the rest we get from the user. */ xpt_merge_ccb(ccb, inccb); if (ccb->ccb_h.flags & CAM_CDB_POINTER) { cmd = __builtin_alloca(ccb->csio.cdb_len); error = copyin(ccb->csio.cdb_io.cdb_ptr, cmd, ccb->csio.cdb_len); if (error) return (error); ccb->csio.cdb_io.cdb_ptr = cmd; } /* * Let cam_periph_mapmem do a sanity check on the data pointer format. * Even if no data transfer is needed, it's a cheap check and it * simplifies the code. */ fc = ccb->ccb_h.func_code; if ((fc == XPT_SCSI_IO) || (fc == XPT_ATA_IO) || (fc == XPT_SMP_IO) || (fc == XPT_DEV_MATCH) || (fc == XPT_DEV_ADVINFO) || (fc == XPT_MMC_IO) || (fc == XPT_NVME_ADMIN) || (fc == XPT_NVME_IO)) { bzero(&mapinfo, sizeof(mapinfo)); /* * cam_periph_mapmem calls into proc and vm functions that can * sleep as well as trigger I/O, so we can't hold the lock. * Dropping it here is reasonably safe. */ cam_periph_unlock(periph); error = cam_periph_mapmem(ccb, &mapinfo, softc->maxio); cam_periph_lock(periph); /* * cam_periph_mapmem returned an error, we can't continue. * Return the error to the user. */ if (error) return(error); } else /* Ensure that the unmap call later on is a no-op. */ mapinfo.num_bufs_used = 0; /* * If the user wants us to perform any error recovery, then honor * that request. Otherwise, it's up to the user to perform any * error recovery. */ cam_periph_runccb(ccb, (ccb->ccb_h.flags & CAM_PASS_ERR_RECOVER) ? passerror : NULL, /* cam_flags */ CAM_RETRY_SELTO, /* sense_flags */ SF_RETRY_UA | SF_NO_PRINT, softc->device_stats); cam_periph_unlock(periph); cam_periph_unmapmem(ccb, &mapinfo); cam_periph_lock(periph); ccb->ccb_h.cbfcnp = NULL; ccb->ccb_h.periph_priv = inccb->ccb_h.periph_priv; bcopy(ccb, inccb, sizeof(union ccb)); return(0); } static int passerror(union ccb *ccb, u_int32_t cam_flags, u_int32_t sense_flags) { return(cam_periph_error(ccb, cam_flags, sense_flags)); }