diff --git a/lib/libc/sys/open.2 b/lib/libc/sys/open.2 index 876a4ce1e57d..db3e8f373ad7 100644 --- a/lib/libc/sys/open.2 +++ b/lib/libc/sys/open.2 @@ -1,680 +1,681 @@ .\" Copyright (c) 1980, 1991, 1993 .\" The Regents of the University of California. All rights reserved. .\" .\" Redistribution and use in source and binary forms, with or without .\" modification, are permitted provided that the following conditions .\" are met: .\" 1. Redistributions of source code must retain the above copyright .\" notice, this list of conditions and the following disclaimer. .\" 2. Redistributions in binary form must reproduce the above copyright .\" notice, this list of conditions and the following disclaimer in the .\" documentation and/or other materials provided with the distribution. .\" 3. Neither the name of the University nor the names of its contributors .\" may be used to endorse or promote products derived from this software .\" without specific prior written permission. .\" .\" THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND .\" ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE .\" IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE .\" ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE .\" FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL .\" DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS .\" OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) .\" HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT .\" LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY .\" OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF .\" SUCH DAMAGE. .\" .\" @(#)open.2 8.2 (Berkeley) 11/16/93 .\" $FreeBSD$ .\" -.Dd April 22, 2022 +.Dd May 29, 2023 .Dt OPEN 2 .Os .Sh NAME .Nm open , openat .Nd open or create a file for reading, writing or executing .Sh LIBRARY .Lb libc .Sh SYNOPSIS .In fcntl.h .Ft int .Fn open "const char *path" "int flags" "..." .Ft int .Fn openat "int fd" "const char *path" "int flags" "..." .Sh DESCRIPTION The file name specified by .Fa path is opened for either execution or reading and/or writing as specified by the argument .Fa flags and the file descriptor returned to the calling process. The .Fa flags argument may indicate the file is to be created if it does not exist (by specifying the .Dv O_CREAT flag). In this case .Fn open and .Fn openat require an additional argument .Fa "mode_t mode" , and the file is created with mode .Fa mode as described in .Xr chmod 2 and modified by the process' umask value (see .Xr umask 2 ) . .Pp The .Fn openat function is equivalent to the .Fn open function except in the case where the .Fa path specifies a relative path. For .Fn openat and relative .Fa path , the file to be opened is determined relative to the directory associated with the file descriptor .Fa fd instead of the current working directory. The .Fa flag parameter and the optional fourth parameter correspond exactly to the parameters of .Fn open . If .Fn openat is passed the special value .Dv AT_FDCWD in the .Fa fd parameter, the current working directory is used and the behavior is identical to a call to .Fn open . .Pp When .Fn openat is called with an absolute .Fa path , it ignores the .Fa fd argument. .Pp In .Xr capsicum 4 capability mode, .Fn open is not permitted. The .Fa path argument to .Fn openat must be strictly relative to a file descriptor .Fa fd . .Fa path must not be an absolute path and must not contain ".." components which cause the path resolution to escape the directory hierarchy starting at .Fa fd . Additionally, no symbolic link in .Fa path may target absolute path or contain escaping ".." components. .Fa fd must not be .Dv AT_FDCWD . .Pp If the .Dv vfs.lookup_cap_dotdot .Xr sysctl 3 MIB is set to zero, ".." components in the paths, used in capability mode, are completely disabled. If the .Dv vfs.lookup_cap_dotdot_nonlocal MIB is set to zero, ".." is not allowed if found on non-local filesystem. .Pp The flags specified are formed by .Em or Ns 'ing the following values .Pp .Bd -literal -offset indent -compact O_RDONLY open for reading only O_WRONLY open for writing only O_RDWR open for reading and writing O_EXEC open for execute only O_SEARCH open for search only, an alias for O_EXEC O_NONBLOCK do not block on open O_APPEND append on each write O_CREAT create file if it does not exist O_TRUNC truncate size to 0 O_EXCL error if create and file exists O_SHLOCK atomically obtain a shared lock O_EXLOCK atomically obtain an exclusive lock O_DIRECT eliminate or reduce cache effects O_FSYNC synchronous writes (historical synonym for O_SYNC) O_SYNC synchronous writes O_DSYNC synchronous data writes O_NOFOLLOW do not follow symlinks O_NOCTTY ignored O_TTY_INIT ignored O_DIRECTORY error if file is not a directory O_CLOEXEC set FD_CLOEXEC upon open O_VERIFY verify the contents of the file O_RESOLVE_BENEATH path resolution must not cross the fd directory O_PATH record only the target path in the opened descriptor O_EMPTY_PATH openat, open file referenced by fd if path is empty .Ed .Pp Opening a file with .Dv O_APPEND set causes each write on the file to be appended to the end. If .Dv O_TRUNC is specified and the file exists, the file is truncated to zero length. If .Dv O_EXCL is set with .Dv O_CREAT and the file already exists, .Fn open returns an error. This may be used to implement a simple exclusive access locking mechanism. If .Dv O_EXCL is set and the last component of the pathname is a symbolic link, .Fn open will fail even if the symbolic link points to a non-existent name. If the .Dv O_NONBLOCK flag is specified and the .Fn open system call would result in the process being blocked for some reason (e.g., waiting for carrier on a dialup line), .Fn open returns immediately. The descriptor remains in non-blocking mode for subsequent operations. .Pp If .Dv O_SYNC is used in the mask, all writes will immediately and synchronously be written to disk. .Dv O_FSYNC is an historical synonym for .Dv O_SYNC . .Pp If .Dv O_DSYNC is used in the mask, all data and metadata required to read the data will be synchronously written to disk, but changes to metadata such as file access and modification timestamps may be written later. .Pp If .Dv O_NOFOLLOW is used in the mask and the target file passed to .Fn open is a symbolic link then the .Fn open will fail. .Pp When opening a file, a lock with .Xr flock 2 semantics can be obtained by setting .Dv O_SHLOCK for a shared lock, or .Dv O_EXLOCK for an exclusive lock. If creating a file with .Dv O_CREAT , the request for the lock will never fail (provided that the underlying file system supports locking). .Pp .Dv O_DIRECT may be used to minimize or eliminate the cache effects of reading and writing. The system will attempt to avoid caching the data you read or write. If it cannot avoid caching the data, it will minimize the impact the data has on the cache. Use of this flag can drastically reduce performance if not used with care. .Pp .Dv O_NOCTTY may be used to ensure the OS does not assign this file as the controlling terminal when it opens a tty device. This is the default on .Fx , but is present for .Tn POSIX compatibility. The .Fn open system call will not assign controlling terminals on .Fx . .Pp .Dv O_TTY_INIT may be used to ensure the OS restores the terminal attributes when initially opening a TTY. This is the default on .Fx , but is present for .Tn POSIX compatibility. The initial call to .Fn open on a TTY will always restore default terminal attributes on .Fx . .Pp .Dv O_DIRECTORY may be used to ensure the resulting file descriptor refers to a directory. This flag can be used to prevent applications with elevated privileges from opening files which are even unsafe to open with .Dv O_RDONLY , such as device nodes. .Pp .Dv O_CLOEXEC may be used to set .Dv FD_CLOEXEC flag for the newly returned file descriptor. .Pp .Dv O_VERIFY may be used to indicate to the kernel that the contents of the file should be verified before allowing the open to proceed. The details of what .Dq verified means is implementation specific. The run-time linker (rtld) uses this flag to ensure shared objects have been verified before operating on them. .Pp .Dv O_RESOLVE_BENEATH returns .Er ENOTCAPABLE if any intermediate component of the specified relative path does not reside in the directory hierarchy beneath the starting directory. Absolute paths or even the temporal escape from beneath of the starting directory is not allowed. .Pp When .Fa fd is opened with .Dv O_SEARCH , execute permissions are checked at open time. The .Fa fd may not be used for any read operations like .Xr getdirentries 2 . The primary use for this descriptor will be as the lookup descriptor for the .Fn *at family of functions. .Pp .Dv O_PATH returns a file descriptor that can be used as a directory file descriptor for .Xr openat 2 and other system calls taking a file descriptor argument, like .Xr fstatat 2 and others. The other functionality of the returned file descriptor is limited to the descriptor-level operations. It can be used for .Bl -tag -width readlinkat(2) -offset indent -compact .It Xr fcntl 2 but advisory locking is not allowed .It Xr dup 2 .It Xr close 2 .It Xr fstat 2 .It Xr fexecve 2 .It Dv SCM_RIGHTS can be passed over a .Xr unix 4 socket using a .Dv SCM_RIGHTS message .It Xr kqueue 2 using for .Dv EVFILT_VNODE .It Xr readlinkat 2 +.It Xr __acl_get_fd 2 , Xr __alc_aclcheck_fd 2 .El But operations like .Xr read 2 , .Xr ftruncate 2 , and any other that operate on file and not on file descriptor (except .Xr fstat 2 ), are not allowed. .Pp A file descriptor created with the .Dv O_PATH flag can be opened into normal (operable) file descriptor by specifying it as the .Fa fd argument to .Fn openat with empty .Fa path and flag .Dv O_EMPTY_PATH . Such an open behaves as if the current path of the file referenced by .Fa fd is passed, except that the path walk permissions are not checked. See also the description of .Dv AT_EMPTY_PATH flag for .Xr fstatat 2 and related syscalls. .Pp If successful, .Fn open returns a non-negative integer, termed a file descriptor. It returns \-1 on failure. The file pointer used to mark the current position within the file is set to the beginning of the file. .Pp If a sleeping open of a device node from .Xr devfs 5 is interrupted by a signal, the call always fails with .Er EINTR , even if the .Dv SA_RESTART flag is set for the signal. A sleeping open of a fifo (see .Xr mkfifo 2 ) is restarted as normal. .Pp When a new file is created it is given the group of the directory which contains it. .Pp Unless .Dv O_CLOEXEC flag was specified, the new descriptor is set to remain open across .Xr execve 2 system calls; see .Xr close 2 , .Xr fcntl 2 and .Dv O_CLOEXEC description. .Pp The system imposes a limit on the number of file descriptors open simultaneously by one process. The .Xr getdtablesize 2 system call returns the current system limit. .Sh RETURN VALUES If successful, .Fn open and .Fn openat return a non-negative integer, termed a file descriptor. They return \-1 on failure, and set .Va errno to indicate the error. .Sh ERRORS The named file is opened unless: .Bl -tag -width Er .It Bq Er ENOTDIR A component of the path prefix is not a directory. .It Bq Er ENAMETOOLONG A component of a pathname exceeded 255 characters, or an entire path name exceeded 1023 characters. .It Bq Er ENOENT .Dv O_CREAT is not set and the named file does not exist. .It Bq Er ENOENT A component of the path name that must exist does not exist. .It Bq Er EACCES Search permission is denied for a component of the path prefix. .It Bq Er EACCES The required permissions (for reading and/or writing) are denied for the given flags. .It Bq Er EACCES .Dv O_TRUNC is specified and write permission is denied. .It Bq Er EACCES .Dv O_CREAT is specified, the file does not exist, and the directory in which it is to be created does not permit writing. .It Bq Er EPERM .Dv O_CREAT is specified, the file does not exist, and the directory in which it is to be created has its immutable flag set, see the .Xr chflags 2 manual page for more information. .It Bq Er EPERM The named file has its immutable flag set and the file is to be modified. .It Bq Er EPERM The named file has its append-only flag set, the file is to be modified, and .Dv O_TRUNC is specified or .Dv O_APPEND is not specified. .It Bq Er ELOOP Too many symbolic links were encountered in translating the pathname. .It Bq Er EISDIR The named file is a directory, and the arguments specify it is to be modified. .It Bq Er EISDIR The named file is a directory, and the flags specified .Dv O_CREAT without .Dv O_DIRECTORY . .It Bq Er EROFS The named file resides on a read-only file system, and the file is to be modified. .It Bq Er EROFS .Dv O_CREAT is specified and the named file would reside on a read-only file system. .It Bq Er EMFILE The process has already reached its limit for open file descriptors. .It Bq Er ENFILE The system file table is full. .It Bq Er EMLINK .Dv O_NOFOLLOW was specified and the target is a symbolic link. .It Bq Er ENXIO The named file is a character special or block special file, and the device associated with this special file does not exist. .It Bq Er ENXIO .Dv O_NONBLOCK is set, the named file is a fifo, .Dv O_WRONLY is set, and no process has the file open for reading. .It Bq Er EINTR The .Fn open operation was interrupted by a signal. .It Bq Er EOPNOTSUPP .Dv O_SHLOCK or .Dv O_EXLOCK is specified but the underlying file system does not support locking. .It Bq Er EOPNOTSUPP The named file is a special file mounted through a file system that does not support access to it (e.g.\& NFS). .It Bq Er EWOULDBLOCK .Dv O_NONBLOCK and one of .Dv O_SHLOCK or .Dv O_EXLOCK is specified and the file is locked. .It Bq Er ENOSPC .Dv O_CREAT is specified, the file does not exist, and the directory in which the entry for the new file is being placed cannot be extended because there is no space left on the file system containing the directory. .It Bq Er ENOSPC .Dv O_CREAT is specified, the file does not exist, and there are no free inodes on the file system on which the file is being created. .It Bq Er EDQUOT .Dv O_CREAT is specified, the file does not exist, and the directory in which the entry for the new file is being placed cannot be extended because the user's quota of disk blocks on the file system containing the directory has been exhausted. .It Bq Er EDQUOT .Dv O_CREAT is specified, the file does not exist, and the user's quota of inodes on the file system on which the file is being created has been exhausted. .It Bq Er EIO An I/O error occurred while making the directory entry or allocating the inode for .Dv O_CREAT . .It Bq Er EINTEGRITY Corrupted data was detected while reading from the file system. .It Bq Er ETXTBSY The file is a pure procedure (shared text) file that is being executed and the .Fn open system call requests write access. .It Bq Er EFAULT The .Fa path argument points outside the process's allocated address space. .It Bq Er EEXIST .Dv O_CREAT and .Dv O_EXCL were specified and the file exists. .It Bq Er EOPNOTSUPP An attempt was made to open a socket (not currently implemented). .It Bq Er EINVAL An attempt was made to open a descriptor with an illegal combination of .Dv O_RDONLY , .Dv O_WRONLY , or .Dv O_RDWR , and .Dv O_EXEC or .Dv O_SEARCH . .It Bq Er EINVAL The .Dv O_RESOLVE_BENEATH flag is specified and .Dv path is absolute. .It Bq Er EBADF The .Fa path argument does not specify an absolute path and the .Fa fd argument is neither .Dv AT_FDCWD nor a valid file descriptor open for searching. .It Bq Er ENOTDIR The .Fa path argument is not an absolute path and .Fa fd is neither .Dv AT_FDCWD nor a file descriptor associated with a directory. .It Bq Er ENOTDIR .Dv O_DIRECTORY is specified and the file is not a directory. .It Bq Er ECAPMODE .Dv AT_FDCWD is specified and the process is in capability mode. .It Bq Er ECAPMODE .Fn open was called and the process is in capability mode. .It Bq Er ENOTCAPABLE .Fa path is an absolute path, or contained a ".." component leading to a directory outside of the directory hierarchy specified by .Fa fd , and the process is in capability mode. .It Bq Er ENOTCAPABLE The .Dv O_RESOLVE_BENEATH flag was provided, and the relative .Fa path escapes the .Ar fd directory. .El .Sh SEE ALSO .Xr chmod 2 , .Xr close 2 , .Xr dup 2 , .Xr fexecve 2 , .Xr fhopen 2 , .Xr getdtablesize 2 , .Xr getfh 2 , .Xr lgetfh 2 , .Xr lseek 2 , .Xr read 2 , .Xr umask 2 , .Xr write 2 , .Xr fopen 3 , .Xr capsicum 4 .Sh STANDARDS These functions are specified by .St -p1003.1-2008 . .Fx sets .Va errno to .Er EMLINK instead of .Er ELOOP as specified by .Tn POSIX when .Dv O_NOFOLLOW is set in flags and the final component of pathname is a symbolic link to distinguish it from the case of too many symbolic link traversals in one of its non-final components. .Sh HISTORY The .Fn open function appeared in .At v1 . The .Fn openat function was introduced in .Fx 8.0 . .Dv O_DSYNC appeared in 13.0. .Sh BUGS The Open Group Extended API Set 2 specification requires that the test for whether .Fa fd is searchable is based on whether .Fa fd is open for searching, not whether the underlying directory currently permits searches. The present implementation of the .Fa openat checks the current permissions of directory instead. .Pp The .Fa mode argument is variadic and may result in different calling conventions than might otherwise be expected. diff --git a/sys/kern/vfs_acl.c b/sys/kern/vfs_acl.c index 596a26f8acea..dff1d9368f40 100644 --- a/sys/kern/vfs_acl.c +++ b/sys/kern/vfs_acl.c @@ -1,598 +1,598 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 1999-2006, 2016-2017 Robert N. M. Watson * All rights reserved. * * This software was developed by Robert Watson for the TrustedBSD Project. * * Portions of this software were developed by BAE Systems, the University of * Cambridge Computer Laboratory, and Memorial University under DARPA/AFRL * contract FA8650-15-C-7558 ("CADETS"), as part of the DARPA Transparent * Computing (TC) research program. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * Developed by the TrustedBSD Project. * * ACL system calls and other functions common across different ACL types. * Type-specific routines go into subr_acl_.c. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include CTASSERT(ACL_MAX_ENTRIES >= OLDACL_MAX_ENTRIES); MALLOC_DEFINE(M_ACL, "acl", "Access Control Lists"); static int kern___acl_aclcheck_path(struct thread *td, const char *path, acl_type_t type, struct acl *aclp, int follow); static int kern___acl_delete_path(struct thread *td, const char *path, acl_type_t type, int follow); static int kern___acl_get_path(struct thread *td, const char *path, acl_type_t type, struct acl *aclp, int follow); static int kern___acl_set_path(struct thread *td, const char *path, acl_type_t type, const struct acl *aclp, int follow); static int vacl_set_acl(struct thread *td, struct vnode *vp, acl_type_t type, const struct acl *aclp); static int vacl_get_acl(struct thread *td, struct vnode *vp, acl_type_t type, struct acl *aclp); static int vacl_aclcheck(struct thread *td, struct vnode *vp, acl_type_t type, const struct acl *aclp); int acl_copy_oldacl_into_acl(const struct oldacl *source, struct acl *dest) { int i; if (source->acl_cnt < 0 || source->acl_cnt > OLDACL_MAX_ENTRIES) return (EINVAL); bzero(dest, sizeof(*dest)); dest->acl_cnt = source->acl_cnt; dest->acl_maxcnt = ACL_MAX_ENTRIES; for (i = 0; i < dest->acl_cnt; i++) { dest->acl_entry[i].ae_tag = source->acl_entry[i].ae_tag; dest->acl_entry[i].ae_id = source->acl_entry[i].ae_id; dest->acl_entry[i].ae_perm = source->acl_entry[i].ae_perm; } return (0); } int acl_copy_acl_into_oldacl(const struct acl *source, struct oldacl *dest) { int i; if (source->acl_cnt > OLDACL_MAX_ENTRIES) return (EINVAL); bzero(dest, sizeof(*dest)); dest->acl_cnt = source->acl_cnt; for (i = 0; i < dest->acl_cnt; i++) { dest->acl_entry[i].ae_tag = source->acl_entry[i].ae_tag; dest->acl_entry[i].ae_id = source->acl_entry[i].ae_id; dest->acl_entry[i].ae_perm = source->acl_entry[i].ae_perm; } return (0); } /* * At one time, "struct ACL" was extended in order to add support for NFSv4 * ACLs. Instead of creating compatibility versions of all the ACL-related * syscalls, they were left intact. It's possible to find out what the code * calling these syscalls (libc) expects basing on "type" argument - if it's * either ACL_TYPE_ACCESS_OLD or ACL_TYPE_DEFAULT_OLD (which previously were * known as ACL_TYPE_ACCESS and ACL_TYPE_DEFAULT), then it's the "struct * oldacl". If it's something else, then it's the new "struct acl". In the * latter case, the routines below just copyin/copyout the contents. In the * former case, they copyin the "struct oldacl" and convert it to the new * format. */ static int acl_copyin(const void *user_acl, struct acl *kernel_acl, acl_type_t type) { int error; struct oldacl old; switch (type) { case ACL_TYPE_ACCESS_OLD: case ACL_TYPE_DEFAULT_OLD: error = copyin(user_acl, &old, sizeof(old)); if (error != 0) break; acl_copy_oldacl_into_acl(&old, kernel_acl); break; default: error = copyin(user_acl, kernel_acl, sizeof(*kernel_acl)); if (kernel_acl->acl_maxcnt != ACL_MAX_ENTRIES) return (EINVAL); } return (error); } static int acl_copyout(const struct acl *kernel_acl, void *user_acl, acl_type_t type) { uint32_t am; int error; struct oldacl old; switch (type) { case ACL_TYPE_ACCESS_OLD: case ACL_TYPE_DEFAULT_OLD: error = acl_copy_acl_into_oldacl(kernel_acl, &old); if (error != 0) break; error = copyout(&old, user_acl, sizeof(old)); break; default: error = fueword32((char *)user_acl + offsetof(struct acl, acl_maxcnt), &am); if (error == -1) return (EFAULT); if (am != ACL_MAX_ENTRIES) return (EINVAL); error = copyout(kernel_acl, user_acl, sizeof(*kernel_acl)); } return (error); } /* * Convert "old" type - ACL_TYPE_{ACCESS,DEFAULT}_OLD - into its "new" * counterpart. It's required for old (pre-NFSv4 ACLs) libc to work * with new kernel. Fixing 'type' for old binaries with new libc * is being done in lib/libc/posix1e/acl_support.c:_acl_type_unold(). */ static int acl_type_unold(int type) { switch (type) { case ACL_TYPE_ACCESS_OLD: return (ACL_TYPE_ACCESS); case ACL_TYPE_DEFAULT_OLD: return (ACL_TYPE_DEFAULT); default: return (type); } } /* * These calls wrap the real vnode operations, and are called by the syscall * code once the syscall has converted the path or file descriptor to a vnode * (unlocked). The aclp pointer is assumed still to point to userland, so * this should not be consumed within the kernel except by syscall code. * Other code should directly invoke VOP_{SET,GET}ACL. */ /* * Given a vnode, set its ACL. */ static int vacl_set_acl(struct thread *td, struct vnode *vp, acl_type_t type, const struct acl *aclp) { struct acl *inkernelacl; struct mount *mp; int error; AUDIT_ARG_VALUE(type); inkernelacl = acl_alloc(M_WAITOK); error = acl_copyin(aclp, inkernelacl, type); if (error != 0) goto out; error = vn_start_write(vp, &mp, V_WAIT | PCATCH); if (error != 0) goto out; vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); AUDIT_ARG_VNODE1(vp); #ifdef MAC error = mac_vnode_check_setacl(td->td_ucred, vp, type, inkernelacl); if (error != 0) goto out_unlock; #endif error = VOP_SETACL(vp, acl_type_unold(type), inkernelacl, td->td_ucred, td); #ifdef MAC out_unlock: #endif VOP_UNLOCK(vp); vn_finished_write(mp); out: acl_free(inkernelacl); return (error); } /* * Given a vnode, get its ACL. */ static int vacl_get_acl(struct thread *td, struct vnode *vp, acl_type_t type, struct acl *aclp) { struct acl *inkernelacl; int error; AUDIT_ARG_VALUE(type); inkernelacl = acl_alloc(M_WAITOK | M_ZERO); vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); AUDIT_ARG_VNODE1(vp); #ifdef MAC error = mac_vnode_check_getacl(td->td_ucred, vp, type); if (error != 0) goto out; #endif error = VOP_GETACL(vp, acl_type_unold(type), inkernelacl, td->td_ucred, td); #ifdef MAC out: #endif VOP_UNLOCK(vp); if (error == 0) error = acl_copyout(inkernelacl, aclp, type); acl_free(inkernelacl); return (error); } /* * Given a vnode, delete its ACL. */ static int vacl_delete(struct thread *td, struct vnode *vp, acl_type_t type) { struct mount *mp; int error; AUDIT_ARG_VALUE(type); error = vn_start_write(vp, &mp, V_WAIT | PCATCH); if (error != 0) return (error); vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); AUDIT_ARG_VNODE1(vp); #ifdef MAC error = mac_vnode_check_deleteacl(td->td_ucred, vp, type); if (error != 0) goto out; #endif error = VOP_SETACL(vp, acl_type_unold(type), 0, td->td_ucred, td); #ifdef MAC out: #endif VOP_UNLOCK(vp); vn_finished_write(mp); return (error); } /* * Given a vnode, check whether an ACL is appropriate for it * * XXXRW: No vnode lock held so can't audit vnode state...? */ static int vacl_aclcheck(struct thread *td, struct vnode *vp, acl_type_t type, const struct acl *aclp) { struct acl *inkernelacl; int error; inkernelacl = acl_alloc(M_WAITOK); error = acl_copyin(aclp, inkernelacl, type); if (error != 0) goto out; error = VOP_ACLCHECK(vp, acl_type_unold(type), inkernelacl, td->td_ucred, td); out: acl_free(inkernelacl); return (error); } /* * syscalls -- convert the path/fd to a vnode, and call vacl_whatever. Don't * need to lock, as the vacl_ code will get/release any locks required. */ /* * Given a file path, get an ACL for it */ int sys___acl_get_file(struct thread *td, struct __acl_get_file_args *uap) { return (kern___acl_get_path(td, uap->path, uap->type, uap->aclp, FOLLOW)); } /* * Given a file path, get an ACL for it; don't follow links. */ int sys___acl_get_link(struct thread *td, struct __acl_get_link_args *uap) { return(kern___acl_get_path(td, uap->path, uap->type, uap->aclp, NOFOLLOW)); } static int kern___acl_get_path(struct thread *td, const char *path, acl_type_t type, struct acl *aclp, int follow) { struct nameidata nd; int error; NDINIT(&nd, LOOKUP, follow | AUDITVNODE1, UIO_USERSPACE, path, td); error = namei(&nd); if (error == 0) { error = vacl_get_acl(td, nd.ni_vp, type, aclp); NDFREE(&nd, 0); } return (error); } /* * Given a file path, set an ACL for it. */ int sys___acl_set_file(struct thread *td, struct __acl_set_file_args *uap) { return(kern___acl_set_path(td, uap->path, uap->type, uap->aclp, FOLLOW)); } /* * Given a file path, set an ACL for it; don't follow links. */ int sys___acl_set_link(struct thread *td, struct __acl_set_link_args *uap) { return(kern___acl_set_path(td, uap->path, uap->type, uap->aclp, NOFOLLOW)); } static int kern___acl_set_path(struct thread *td, const char *path, acl_type_t type, const struct acl *aclp, int follow) { struct nameidata nd; int error; NDINIT(&nd, LOOKUP, follow | AUDITVNODE1, UIO_USERSPACE, path, td); error = namei(&nd); if (error == 0) { error = vacl_set_acl(td, nd.ni_vp, type, aclp); NDFREE(&nd, 0); } return (error); } /* * Given a file descriptor, get an ACL for it. */ int sys___acl_get_fd(struct thread *td, struct __acl_get_fd_args *uap) { struct file *fp; cap_rights_t rights; int error; AUDIT_ARG_FD(uap->filedes); - error = getvnode(td, uap->filedes, + error = getvnode_path(td, uap->filedes, cap_rights_init_one(&rights, CAP_ACL_GET), &fp); if (error == 0) { error = vacl_get_acl(td, fp->f_vnode, uap->type, uap->aclp); fdrop(fp, td); } return (error); } /* * Given a file descriptor, set an ACL for it. */ int sys___acl_set_fd(struct thread *td, struct __acl_set_fd_args *uap) { struct file *fp; cap_rights_t rights; int error; AUDIT_ARG_FD(uap->filedes); error = getvnode(td, uap->filedes, cap_rights_init_one(&rights, CAP_ACL_SET), &fp); if (error == 0) { error = vacl_set_acl(td, fp->f_vnode, uap->type, uap->aclp); fdrop(fp, td); } return (error); } /* * Given a file path, delete an ACL from it. */ int sys___acl_delete_file(struct thread *td, struct __acl_delete_file_args *uap) { return (kern___acl_delete_path(td, uap->path, uap->type, FOLLOW)); } /* * Given a file path, delete an ACL from it; don't follow links. */ int sys___acl_delete_link(struct thread *td, struct __acl_delete_link_args *uap) { return (kern___acl_delete_path(td, uap->path, uap->type, NOFOLLOW)); } static int kern___acl_delete_path(struct thread *td, const char *path, acl_type_t type, int follow) { struct nameidata nd; int error; NDINIT(&nd, LOOKUP, follow, UIO_USERSPACE, path, td); error = namei(&nd); if (error == 0) { error = vacl_delete(td, nd.ni_vp, type); NDFREE(&nd, 0); } return (error); } /* * Given a file path, delete an ACL from it. */ int sys___acl_delete_fd(struct thread *td, struct __acl_delete_fd_args *uap) { struct file *fp; cap_rights_t rights; int error; AUDIT_ARG_FD(uap->filedes); error = getvnode(td, uap->filedes, cap_rights_init_one(&rights, CAP_ACL_DELETE), &fp); if (error == 0) { error = vacl_delete(td, fp->f_vnode, uap->type); fdrop(fp, td); } return (error); } /* * Given a file path, check an ACL for it. */ int sys___acl_aclcheck_file(struct thread *td, struct __acl_aclcheck_file_args *uap) { return (kern___acl_aclcheck_path(td, uap->path, uap->type, uap->aclp, FOLLOW)); } /* * Given a file path, check an ACL for it; don't follow links. */ int sys___acl_aclcheck_link(struct thread *td, struct __acl_aclcheck_link_args *uap) { return (kern___acl_aclcheck_path(td, uap->path, uap->type, uap->aclp, NOFOLLOW)); } static int kern___acl_aclcheck_path(struct thread *td, const char *path, acl_type_t type, struct acl *aclp, int follow) { struct nameidata nd; int error; NDINIT(&nd, LOOKUP, follow, UIO_USERSPACE, path, td); error = namei(&nd); if (error == 0) { error = vacl_aclcheck(td, nd.ni_vp, type, aclp); NDFREE(&nd, 0); } return (error); } /* * Given a file descriptor, check an ACL for it. */ int sys___acl_aclcheck_fd(struct thread *td, struct __acl_aclcheck_fd_args *uap) { struct file *fp; cap_rights_t rights; int error; AUDIT_ARG_FD(uap->filedes); - error = getvnode(td, uap->filedes, + error = getvnode_path(td, uap->filedes, cap_rights_init_one(&rights, CAP_ACL_CHECK), &fp); if (error == 0) { error = vacl_aclcheck(td, fp->f_vnode, uap->type, uap->aclp); fdrop(fp, td); } return (error); } struct acl * acl_alloc(int flags) { struct acl *aclp; aclp = malloc(sizeof(*aclp), M_ACL, flags); if (aclp == NULL) return (NULL); aclp->acl_maxcnt = ACL_MAX_ENTRIES; return (aclp); } void acl_free(struct acl *aclp) { free(aclp, M_ACL); }