diff --git a/usr.sbin/cxgbetool/cxgbetool.8 b/usr.sbin/cxgbetool/cxgbetool.8 index 9e131368a0fa..e6b3d2847c75 100644 --- a/usr.sbin/cxgbetool/cxgbetool.8 +++ b/usr.sbin/cxgbetool/cxgbetool.8 @@ -1,788 +1,788 @@ .\" Copyright (c) 2015, 2018 Chelsio Inc .\" All rights reserved. .\" .\" Redistribution and use in source and binary forms, with or without .\" modification, are permitted provided that the following conditions are met: .\" .\" 1. Redistributions of source code must retain the above copyright notice, .\" this list of conditions and the following disclaimer. .\" .\" 2. Redistributions in binary form must reproduce the above copyright .\" notice, this list of conditions and the following disclaimer in the .\" documentation and/or other materials provided with the distribution. .\" .\" 3. Neither the name of the Chelsio Inc nor the names of its .\" contributors may be used to endorse or promote products derived from .\" this software without specific prior written permission. .\" .\" THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" .\" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE .\" IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE .\" ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE .\" LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR .\" CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF .\" SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS .\" INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN .\" CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) .\" ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE .\" POSSIBILITY OF SUCH DAMAGE. .\" .\" * Other names and brands may be claimed as the property of others. .\" .\" $FreeBSD$ .\" -.Dd Sep 18, 2018 +.Dd Sep 21, 2018 .Dt CXGBETOOL 8 .Os .Sh NAME .Nm cxgbetool .Nd Userspace companion to .Xr cxgbe 4 .Sh SYNOPSIS .Bl -item -compact .It .Nm Ar nexus command Op Ar parameter ... .Pp .It .Nm Ar nexus Cm clearstats Ar port_id .It .Nm Ar nexus Cm context Bro Cm ingress | egress | fl | cong Brc Ar cntxt_id .It .Nm Ar nexus Cm hashfilter mode .It .Nm Ar nexus Cm hashfilter Ar filter-specification .It .Nm Ar nexus Cm hashfilter Ar idx Cm delete .It .Nm Ar nexus Cm hashfilter list .It .Nm Ar nexus Cm filter mode .It .Nm Ar nexus Cm filter Ar idx Ar filter-specification .It .Nm Ar nexus Cm filter Ar idx Cm delete Op Cm prio Bro Cm 0 | 1 Brc .It .Nm Ar nexus Cm filter list .It .Nm Ar nexus Cm i2c Ar port_id devaddr addr Op Ar len .It .Nm Ar nexus Cm loadcfg Ar fw-config.txt .It .Nm Ar nexus Cm loadcfg clear .It .Nm Ar nexus Cm loadfw Ar fw-image.bin .It .Nm Ar nexus Cm memdump Ar addr len .It .Nm Ar nexus Cm policy Ar cop.txt .It .Nm Ar nexus Cm policy clear .It .Nm Ar nexus Bro Cm reg | reg64 Brc Ar addr Ns Op Ar =val .It .Nm Ar nexus Cm regdump Op Ar register-block ... .It .Nm Ar nexus Cm sched-class Ar sub-command Op Ar param Ar value .It .Nm Ar nexus Cm sched-queue Ar port Ar queue Ar class .It .Nm Ar nexus Cm stdio .It .Nm Ar nexus Cm tcb Ar tid .El .Sh DESCRIPTION .Nm provides command-line access to features and debug facilities exported by .Xr cxgbe 4 via private ioctls. The target nexus device, .Va t4nex%d , is always the first argument. (The parent nexus for an Ethernet port .Va cxgbe%d is listed in .Va dev.cxgbe.%d.%parent in the .Xr sysctl 8 MIB). The rest consists of a command and any parameters required by that command. .Ss Commands .Bl -ohang .It Cm clearstats Ar port_id Clear all transmit, receive, and error statistics of all queues associated with a port. The total number of ports attached to a nexus is listed in .Va dev.t4nex.%d.nports and the 0 based .Ar port_id identifies a port within this range. .Pp .Bl -item -compact .It .Cm context ingress Ar ingress_cntxt_id .It .Cm context cong Ar ingress_cntxt_id .It .Cm context egress Ar egress_cntxt_id .It .Cm context fl Ar flm_cntxt_id .El Display hardware context for an ingress queue, congestion manager, egress queue, or freelist manager. .Bl -tag -width ingress_cntxt_id -compact .It Ar ingress_cntxt_id context id of an ingress queue -- the value listed in one of .Va dev.t4nex.%d.fwq.cntxt_id Ns , .Va dev.cxgbe.%d.rxq.%d.cntxt_id Ns , or .Va dev.cxgbe.%d.ofld_rxq.%d.cntxt_id Ns . .It Ar egress_cntxt_id context id of an egress queue -- the value listed in one of .Va dev.t4nex.%d.mgmtq.cntxt_id Ns , .Va dev.cxgbe.%d.txq.%d.cntxt_id Ns , .Va dev.cxgbe.%d.ctrlq.%d.cntxt_id Ns , .Va dev.cxgbe.%d.ofld_txq.%d.cntxt_id Ns , .Va dev.cxgbe.%d.rxq.%d.fl.cntxt_id Ns , or .Va dev.cxgbe.%d.ofld_rxq.%d.fl.cntxt_id Ns . Note that freelists are egress queues too. .It Ar flm_cntxt_id context id of a freelist manager. The FLM context id is displayed in the egress context dump of a freelist as FLMcontextID. .El .Pp .Bl -item -compact .It .Cm hashfilter mode .It .Cm filter mode .El Display a list of match-criteria available for use in filter rules. A full list of match-criteria known to the chip is in the table below but not all can be used together and the firmware sets up the available parameters based on "filterMode" in the configuration file. Every filter must conform to the filter mode -- multiple match criteria per filter are allowed but only from among those in the current setting of the filter mode. The filter mode for hash filters is a subset of that for normal TCAM filters and depends on the "filterMask" setting in the firmware configuration file. Hash filters do not support masked matches and an exact value for every parameter in the output of "hashfilter mode" (except ipv4/ipv6) must be provided when creating a hash filter. .Pp (Note that .Ar mask defaults to all 1s when not provided explicitly. Hash filters do not support masked matches. Also note that many of the items being matched are discrete numeric values rather than bit fields and should be masked with caution.) .TS center expand; cb cb cbw(40m) cb l l. Criteria Usage Matches if ... _ ipv4 T{ .Cm type ipv4 T} T{ incoming packet is an IPv4 datagram. T} _ ipv6 T{ .Cm type ipv6 T} T{ incoming packet is an IPv6 datagram. T} _ sip T{ .Cm sip Ar addr Ns Op / Ns Ar mask T} T{ bitwise and of the source address in an incoming IP datagram with .Ar mask equals .Ar addr Ns . .Ar addr can be an IPv4 or IPv6 address. T} _ dip T{ .Cm dip Ar addr Ns Op / Ns Ar mask T} T{ bitwise and of the destination address in an incoming IP datagram with .Ar mask equals .Ar addr Ns . .Ar addr can be an IPv4 or IPv6 address. T} _ sport T{ .Cm sport Ar port Ns Op : Ns Ar mask T} T{ bitwise and of the source port in an incoming TCP or UDP datagram with .Ar mask equals .Ar port Ns . T} _ dport T{ .Cm dport Ar port Ns Op : Ns Ar mask T} T{ bitwise and of the destination port in an incoming TCP or UDP datagram with .Ar mask equals .Ar port Ns . T} _ fcoe T{ .Cm fcoe Brq 0 | 1 T} T{ incoming frame is Fibre Channel over Ethernet(1) or not(0). T} _ iport T{ .Cm iport Ar val Ns Op : Ns Ar mask T} T{ bitwise and of the ingress port with .Ar mask equals .Ar val Ns . The ingress port is a 3 bit number that identifies the port on which a frame arrived. Physical ports are numbered 0-3 and 4-7 are internal loopback paths within the chip. Note that ingress port is not a bit field so it is not always possible to match an arbitrary subset of ingress ports with a single filter rule. T} _ ovlan T{ .Cm ovlan Ar tag Ns Op : Ns Ar mask T} T{ bitwise and of the 16-bit outer VLAN tag of an incoming frame with .Ar mask equals .Ar tag Ns . T} _ vlan T{ .Cm vlan Ar tag Ns Op : Ns Ar mask T} T{ bitwise and of the 16-bit VLAN tag of an incoming QinQ frame with .Ar mask equals .Ar tag Ns . The inner VLAN tag is used if the incoming frame is QinQ. T} _ tos T{ .Cm tos Ar val Ns Op : Ns Ar mask T} T{ bitwise and of the 8-bit IP Type of Service/IPv6 Traffic Class in an incoming packet with .Ar mask equals .Ar val Ns . T} _ proto T{ .Cm proto Ar ipproto Ns Op : Ns Ar mask T} T{ bitwise and of the 8-bit IP protocol in an incoming packet with .Ar mask equals .Ar ipproto Ns . T} _ ethtype T{ .Cm ethtype Ar type Ns Op : Ns Ar mask T} T{ bitwise and of the 16-bit Ethernet type field of an incoming frame with .Ar mask equals .Ar type Ns . T} _ macidx T{ .Cm macidx Ar idx Ns Op : Ns Ar mask T} T{ bitwise and of the MAC Address Match Index of an incoming frame with .Ar mask equals .Ar idx Ns . The MAC Address Match Index refers to an entry in the MPS TCAM or in the MPS hash. See .Cm matchtype for more information. T} _ matchtype T{ .Cm matchtype Ar type Ns Op : Ns Ar mask T} T{ bitwise and of the Match Type of an incoming frame with .Ar mask equals .Ar idx Ns . Match Type is one of the following: .Bl -tag -width "n" -compact .It 0 destination MAC in incoming frame is a unicast L2 address that is programmed in the MPS TCAM. .Cm macidx can be used to match the index (and thus the MAC address) of the match in the TCAM. .It 1 destination MAC in incoming frame is a unicast L2 address that "hit" a hash entry in the MPS hash table. .Cm macidx can be used to match the index of the entry in the MPS hash table. .It 2 destination MAC in incoming frame is a multicast L2 address that is programmed in the MPS TCAM. .Cm macidx can be used to match the index (and thus the MAC address) of the match in the TCAM. .It 3 destination MAC in incoming frame is a multicast L2 address that "hit" an entry in the MPS hash table. .It 4 interface on which incoming frame was received is in promiscuous mode and the destination MAC in the frame is not a broadcast address, and does not match in the MPS TCAM or the MPS hash either. (The frame would have been discarded if the interface wasn't in promiscuous mode.) .It 5 interface on which incoming frame was received is in promiscuous mode and the destination MAC in the frame is not a broadcast address; it wasn't looked up in the MPS TCAM or the MPS hash because the chip is configured to give precedence to promiscuous mode classification. .It 6 destination MAC in incoming frame is a broadcast address. .It 7 Not documented. Do not use. .El T} _ frag T{ .Cm frag Brq 0 | 1 T} T{ incoming frame is part of a fragmented IP datagram(1) or not(0). T} .TE .Pp .Bl -item -compact .It .Cm hashfilter Ar filter-specification .It .Cm filter Ar idx Ar filter-specification .El Program a filter. .Pp TCAM filters: The number of available filters is in dev...nfilters. .Ar idx must be an unused index between 0 and nfilters - 1. IPv6 filters consume 4 consecutive entries on T4/T5 and 2 on T6 and .Ar idx must be aligned to 4 or 2 in this case. .Pp Hash filters: These reside in the card's memory instead of its TCAM and are enabled with a special configuration file that is selected with .Cm hw.cxgbe.config_file="hashfilter" in loader.conf. There are at least half a million filters available with the sample config shipped with the driver. Note that the hardware selects the index for a hashfilter and this index is displayed when the filter is created. Hash and TCAM filters can be used together. .Pp .Ar filter-specification consists of one or more matches (see Usage in the table above) to try against an incoming frame, an action to perform when all matches succeed, and some additional operational parameters. Hashfilters require an exact value for the 5-tuple (sip, dip, sport, dport, proto) and for any other match-criteria listed in "hashfilter mode". Possible filter actions are .Cm drop Ns , .Cm pass Ns , or .Cm switch Ns . .Pp .Bl -tag -width nat_dport -offset indent -compact Operational parameters that can be used with all filters: .It Cm hitcnts Count filter hits: 0 or 1 (default). .It Cm prio Filter has priority over active and server regions of TCAM: 0 (default) or 1. .El .Pp .Bl -tag -width nat_dport -offset indent -compact Operational parameters that can be used with filters with .Cm action pass Ns : .It Cm queue Context id of an ingress queue to which to deliver the packet. The context id is available in .Va dev.cxgbe.%d.rxq.%d.cntxt_id . By default, packets that hit a filter with action pass are delivered based on their RSS hash as usual. Use this to steer them to a particular queue. .It Cm rpttid Report the filter tid instead of the RSS hash in the rx descriptor. 0 (default) or 1. .It Cm tcbhash Select TCB hash information in rx descriptor. 0 (default) or 1 .El .Pp .Bl -tag -width nat_dport -offset indent -compact Operational parameters that can be used with filters with .Cm action switch Ns : .It Cm eport Egress port number on which to send the packet matching the filter. 0 to dev...nports - 1. .It Cm dmac Replace packet destination MAC address with the one provided before switching it out of eport. .It Cm smac Replace packet source MAC address with the one provided before switching it out of eport. .It Cm swapmac Swap packet source and destination MAC addresses before switching it out of eport. .It Cm vlan Insert, remove, or rewrite the VLAN tag before switching the packet out of eport. -.Cm vlan=none +.Cm none removes the tag, -.Cm vlan= Ns Ar tag +.Cm = Ns Ar tag replaces the existing tag with the one provided, and -.Cm vlan=+ Ns Ar tag +.Cm + Ns Ar tag inserts the given tag into the frame. .It Cm nat Specify the desired NAT mode. Valid NAT modes values are: .Bl -tag -width dip-dp-sip -compact .It Cm dip Perform NAT on destination IP. .It Cm dip-dp Perform NAT on destination IP, destination port. .It Cm dip-dp-sip Perform NAT on destination IP, destination port, source IP. .It Cm dip-dp-sp Perform NAT on destination IP, destination port, source port. .It Cm sip-sp Perform NAT on source IP, source port. .It Cm dip-sip-sp Perform NAT on destination IP, source IP, source port. .It Cm all Perform NAT on all 4-tuple fields. .El .It Cm natflag Perform NAT only on segments which do not have TCP FIN or RST set. .It Cm natseq Perform NAT only if incoming segment's sequence number + payload length is less than this supplied value. .It Cm nat_dip Perform NAT using this destination IP. .It Cm nat_sip Perform NAT using this source IP. .It Cm nat_dport Perform NAT using this destination port. .It Cm nat_sport Perform NAT using this source port. Perform NAT only if incoming segment's sequence number + payload length is less than this supplied value. .El .Pp .Bl -item -compact .It .Cm hashfilter Ar idx Cm delete .It .Cm filter Ar idx Cm delete .El Delete filter that is at the given index. .It Cm filter Cm list List all filters programmed into the hardware. .It Cm i2c Ar port_id devaddr addr Op Ar len .It Cm loadcfg Ar fw-config.txt Install the firmware configuration file contained in .Ar fw-config.txt to the card. Set hw.cxgbe.config_file="flash" in loader.conf to get .Xr cxgbe 4 to use the on-flash configuration. .It Cm loadcfg Cm clear Erase configuration file from the card. .It Cm loadfw Ar fw-image.bin Install the firmware contained in .Ar fw-image.bin to the card. .It Cm memdump Ar addr len Display .Ar len bytes of data of the card's memory starting at .Ar addr Ns . The card's memory map is available in .Va dev.t4nex.%d.misc.meminfo Ns . .It Cm policy Ar cop.txt Install the Connection Offload Policy (COP) in .Ar cop.txt Ns . A COP offers fine-grained control over which connections get offloaded and with what parameters. Set .Cm hw.cxgbe.cop_managed_offloading="1" in loader.conf to ensure that t4_tom will not offload any connection before a COP is installed. Note that t4_tom must be loaded and operational (IFCAP_TOE enabled) as always for any kind of offload based on the hardware TOE. .Bl -column -offset indent "COP installed" "cop_managed_offloading" "Behavior" .It Sy COP installed Ta Sy cop_managed_offloading Ta Sy Behavior .It NO Ta 0 Ta offload all [Default] .It NO Ta 1 Ta no offload .It YES Ta Don't Care Ta Rule based offload .El .Pp The policy file consists of empty lines, comments (lines begining with #) and any number of rules. Rules are applied in the order they appear in the file and processing stops at the first match. There is an implicit rule that disables offload for connections that do not match anything in the policy. .Pp Each rule consists of a filter part, which determines what connections the rule applies to, and a settings part, which determines whether whether matching connections will be offloaded and, if so, with what settings. The general form of a rule is .Bl -ohang -offset indent .It Cm \&[ Ar socket-type Cm \&] Ar pcap-filter Cm => Ar settings .Pp .Ar socket-type is one of the following. .Bl -tag -width "X" -compact .It Sy A Active open. Connection is being opened by this host. .It Sy P Passive open. Connection was requested by a peer. .It Sy L Listen called on a socket. Disabling offload in such a rule will prevent a hardware listener from being started. .It Sy D Don't care. Matches all of the above. .El .Pp .Ar pcap-filter is an expression that follows the .Xr pcap-filter 7 syntax, or it is the keyword .Cm all that matches everything. .Pp .Ar settings determine whether connections matching .Ar socket-type and .Ar pcap-filter are offloaded and optionally sets some per-connection properties if they are. A combination of the following is allowed. .Bl -tag -width "timestamp" -compact .It Cm offload Connection should be offloaded. Use .Cm !offload or .Cm not offload to disable offload instead. .It Cm coalesce Enable rx payload coalescing. Negate to disable. .It Cm timestamp Enable TCP timestamp option. Negate to disable. .It Cm sack Enable TCP Selective Acknowledgements (SACK). Negate to disable. .It Cm nagle Enable Nagle's algorithm. Negate to disable. .It Cm ecn Enable Explicit Congestion Notification (ECN). Negate to disable. .It Cm ddp Use Direct Data Placement (zero copy receive) and zero copy transmit on the connection to service AIO requests on the socket. Negate to disable. .It Cm tls Set ULP mode to ULP_MODE_TLS. .It Cm cong Ar algo Use the specified congestion control algorithm. .Ar algo must be one of .Cm reno Ns , Cm tahoe Ns , Cm newreno Ns , or Cm highspeed Ns . .It Cm class Ar sc Bind the connection to the specified tx scheduling class. Valid range is 0 to 14 (for T4) and 0 to 15 (T5 onwards). .It Cm rxq Ar qid Use the specified offload rx queue. .Ar qid should be between 0 and nofldrxq for the ifnet. .It Cm txq Ar qnum Use the specified offload tx queue. .Ar qid should be between 0 and nofldtxq for the ifnet. .It Cm bind Ar qnum Shorthand for .Cm rxq Ar qnum Cm txq Ar qnum Ns . Use only when nofldrxq is the same as nofldtxq. .It Cm mss Ar val Set the advertised TCP MSS in the SYN for this connection to .Ar val (in bytes). The hardware MTU table must already have an entry that is suitable for the MSS. .El .Pp .It Example of a COP. Note that hardware listener for port 22 will be IPv4 only because the rule before it will prevent any IPv6 servers other than the first two. Also note that outgoing connections to 192.168/16 are the only outgoing connections that will get offloaded. .Bd -literal [L] port 80 => offload [L] port 443 => offload [L] ip6 => !offload [L] port 22 => offload [P] dst port 80 => offload cong highspeed !sack !ecn [P] dst port 443 => offload tls [A] dst net 192.168/16 => offload [A] all => !offload [D] port 22 => offload !nagle .Ed .El .It Cm policy clear Remove the Connection Offload Policy (COP) if one is in use. .It Bro Cm reg | reg64 Brc Ar addr Ns Op Ar =val .It Cm regdump Op Ar register-block ... Display contents of device registers. One or more .Ar register-block can be specified to limit the registers displayed. The default is to display registers for all blocks. Registers with read side effects are not read during a .Cm regdump operation. .Ar register-block can be .Cm sge pci dbg mc ma edc0 edc1 cim tp ulp_rx ulp_tx pmrx pmtx mps cplsw .Cm smb i2c mi uart pmu sf pl le ncsi xgmac Ns . .It Cm sched-class config Op Ar param Ar value Configure optional feature capabilities for the TX scheduler. .Bl -ohang -offset indent .It Sy type Ar scheduler-type Use packet for the packet scheduler. .It Sy minmax Ar value A non-zero value will enable "minmax" mode; a zero value will disable "minmax" mode. .Pp NOTE: Many (most) of the parameters and constraints are adapter-specific - for instance the number of channels and classes which are available whether various modes are implemented, etc. Consult the adapter documentation for specific information on any limitations. .El .It Cm sched-class params Op Ar param Ar value Configure parameters for a scheduling class. .Bl -ohang -offset indent .It Sy type Ar scheduler-type Use packet for packet scheduler. .It Sy level Ar scheduler-hierarchy-level The "level" within the scheduling hierarchy which is being programed: .Pp .Bl -tag -width "cl-wrr" -compact -offset indent .It Sy cl-rl Class Rate Limiting. .Pp .It Sy cl-wrr Class Weighted Round Robin. .Pp .It Sy ch-rl Channel Rate Limiting. .El .It Sy mode Ar scheduler-mode The mode in which the scheduling class is going to operate: .Pp .Bl -tag -width "class" -compact -offset indent .It Sy class All of the "flows" bound to the scheduling class will be held to aggregate scheduling constraints. .Pp .It Sy flow Each of the "flows" bound to the scheduling class will be held to the scheduling constraints. .El .Pp E.g. if the scheduling class has a TX bandwidth of 10Mb/s, in .Cm class mode, all of the "flows" bound to the class would be limited to an aggregate bandwidth of 10Mb/s; but in .Cm flow mode, each of the "flows" bound to the scheduling class would be limited to 10Mb/s. .It Sy rate-unit Ar scheduler-rate-unit The units of the scheduler rate constraints: .Pp .Bl -tag -width "bits" -compact -offset indent .It Sy bits bit rate in Kb/s. .Pp .It Sy pkts packets/s. .El .It Sy rate-mode Ar scheduler-rate-mode The mode of the scheduler rate constraints: .Pp .Bl -tag -width "relative" -compact -offset indent .It Sy relative percent of port rate. .Pp .It Sy absolute Kb/s. .El .It Sy channel Ar scheduler-channel-index The scheduling channel to which the scheduling class will be bound. .It Sy class Ar scheduler-class-index The scheduling class being programmed. .It Sy min-rate Ar minimum-rate The minimum guaranteed rate to which a rate-limiting scheduling class hierarchy will have access. .It Sy max-rate Ar maximum-rate The maximum rate for a rate-limiting scheduling class hierarchy. .It Sy weight Ar round-robin-weight The weight to be used for a weighted-round-robin scheduling hierarchy. .It Sy pkt-size Ar average-packet-size The average packet size will be used to compute scheduler constraints for a rate-limited scheduler class hierarchy. .Pp NOTE: Many (most) of the parameters and constraints are adapter-specific - for instance the number of channels and classes which are available, whether various modes are implemented, etc. Consult the adapter documentation for specific information on any limitations. .El .It Cm sched-queue Ar port queue class Bind the indicated port's NIC TX .Ar queue to the specified TX Scheduler .Ar class. If the TX .Ar queue is .Cm all, * or any negative value, the binding will apply to all of the TX queues associated with the .Ar interface. If the class is .Cm unbind, clear or any negative value, the TX queue(s) will be unbound from any current TX Scheduler Class binding. .It Cm stdio Switch to interactive mode. .It Cm tcb Ar tid Display contents of the hardware TCB (TCP Control Block) for the connection identfied by .Ar tid Ns . .El .Sh FILES /sys/dev/cxgbe/t4_ioctl.h .Sh AUTHORS This manual page was written by .An Navdeep Parhar Aq np@FreeBSD.org . diff --git a/usr.sbin/cxgbetool/cxgbetool.c b/usr.sbin/cxgbetool/cxgbetool.c index be76948d4f01..a67e863ad1da 100644 --- a/usr.sbin/cxgbetool/cxgbetool.c +++ b/usr.sbin/cxgbetool/cxgbetool.c @@ -1,3629 +1,3622 @@ /*- * Copyright (c) 2011 Chelsio Communications, Inc. * All rights reserved. * Written by: Navdeep Parhar * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "t4_ioctl.h" #include "tcb_common.h" #define in_range(val, lo, hi) ( val < 0 || (val <= hi && val >= lo)) #define max(x, y) ((x) > (y) ? (x) : (y)) static const char *progname, *nexus; static int chip_id; /* 4 for T4, 5 for T5 */ struct reg_info { const char *name; uint32_t addr; uint32_t len; }; struct mod_regs { const char *name; const struct reg_info *ri; }; struct field_desc { const char *name; /* Field name */ unsigned short start; /* Start bit position */ unsigned short end; /* End bit position */ unsigned char shift; /* # of low order bits omitted and implicitly 0 */ unsigned char hex; /* Print field in hex instead of decimal */ unsigned char islog2; /* Field contains the base-2 log of the value */ }; #include "reg_defs_t4.c" #include "reg_defs_t5.c" #include "reg_defs_t6.c" #include "reg_defs_t4vf.c" static void usage(FILE *fp) { fprintf(fp, "Usage: %s [operation]\n", progname); fprintf(fp, "\tclearstats clear port statistics\n" "\tcontext show an SGE context\n" "\tdumpstate dump chip state\n" "\tfilter [ ] ... set a filter\n" "\tfilter delete|clear [prio 1] delete a filter\n" "\tfilter list list all filters\n" "\tfilter mode [] ... get/set global filter mode\n" "\thashfilter [ ] ... set a hashfilter\n" "\thashfilter delete|clear delete a hashfilter\n" "\thashfilter list list all hashfilters\n" "\thashfilter mode get global hashfilter mode\n" "\ti2c [] read from i2c device\n" "\tloadboot [pf|offset ] install boot image\n" "\tloadboot clear [pf|offset ] remove boot image\n" "\tloadboot-cfg install boot config\n" "\tloadboot-cfg clear remove boot config\n" "\tloadcfg install configuration file\n" "\tloadcfg clear remove configuration file\n" "\tloadfw install firmware\n" "\tmemdump dump a memory range\n" "\tmodinfo [raw] optics/cable information\n" "\tpolicy install offload policy\n" "\tpolicy clear remove offload policy\n" "\treg
[=] read/write register\n" "\treg64
[=] read/write 64 bit register\n" "\tregdump [] ... dump registers\n" "\tsched-class params .. configure TX scheduler class\n" "\tsched-queue bind NIC queues to TX Scheduling class\n" "\tstdio interactive mode\n" "\ttcb read TCB\n" "\ttracer tx|rx set and enable a tracer\n" "\ttracer disable|enable disable or enable a tracer\n" "\ttracer list list all tracers\n" ); } static inline unsigned int get_card_vers(unsigned int version) { return (version & 0x3ff); } static int real_doit(unsigned long cmd, void *data, const char *cmdstr) { static int fd = -1; int rc = 0; if (fd == -1) { char buf[64]; snprintf(buf, sizeof(buf), "/dev/%s", nexus); if ((fd = open(buf, O_RDWR)) < 0) { warn("open(%s)", nexus); rc = errno; return (rc); } } rc = ioctl(fd, cmd, data); if (rc < 0) { warn("%s", cmdstr); rc = errno; } return (rc); } #define doit(x, y) real_doit(x, y, #x) static char * str_to_number(const char *s, long *val, long long *vall) { char *p; if (vall) *vall = strtoll(s, &p, 0); else if (val) *val = strtol(s, &p, 0); else p = NULL; return (p); } static int read_reg(long addr, int size, long long *val) { struct t4_reg reg; int rc; reg.addr = (uint32_t) addr; reg.size = (uint32_t) size; reg.val = 0; rc = doit(CHELSIO_T4_GETREG, ®); *val = reg.val; return (rc); } static int write_reg(long addr, int size, long long val) { struct t4_reg reg; reg.addr = (uint32_t) addr; reg.size = (uint32_t) size; reg.val = (uint64_t) val; return doit(CHELSIO_T4_SETREG, ®); } static int register_io(int argc, const char *argv[], int size) { char *p, *v; long addr; long long val; int w = 0, rc; if (argc == 1) { /* OR = */ p = str_to_number(argv[0], &addr, NULL); if (*p) { if (*p != '=') { warnx("invalid register \"%s\"", argv[0]); return (EINVAL); } w = 1; v = p + 1; p = str_to_number(v, NULL, &val); if (*p) { warnx("invalid value \"%s\"", v); return (EINVAL); } } } else if (argc == 2) { /* */ w = 1; p = str_to_number(argv[0], &addr, NULL); if (*p) { warnx("invalid register \"%s\"", argv[0]); return (EINVAL); } p = str_to_number(argv[1], NULL, &val); if (*p) { warnx("invalid value \"%s\"", argv[1]); return (EINVAL); } } else { warnx("reg: invalid number of arguments (%d)", argc); return (EINVAL); } if (w) rc = write_reg(addr, size, val); else { rc = read_reg(addr, size, &val); if (rc == 0) printf("0x%llx [%llu]\n", val, val); } return (rc); } static inline uint32_t xtract(uint32_t val, int shift, int len) { return (val >> shift) & ((1 << len) - 1); } static int dump_block_regs(const struct reg_info *reg_array, const uint32_t *regs) { uint32_t reg_val = 0; for ( ; reg_array->name; ++reg_array) if (!reg_array->len) { reg_val = regs[reg_array->addr / 4]; printf("[%#7x] %-47s %#-10x %u\n", reg_array->addr, reg_array->name, reg_val, reg_val); } else { uint32_t v = xtract(reg_val, reg_array->addr, reg_array->len); printf(" %*u:%u %-47s %#-10x %u\n", reg_array->addr < 10 ? 3 : 2, reg_array->addr + reg_array->len - 1, reg_array->addr, reg_array->name, v, v); } return (1); } static int dump_regs_table(int argc, const char *argv[], const uint32_t *regs, const struct mod_regs *modtab, int nmodules) { int i, j, match; for (i = 0; i < argc; i++) { for (j = 0; j < nmodules; j++) { if (!strcmp(argv[i], modtab[j].name)) break; } if (j == nmodules) { warnx("invalid register block \"%s\"", argv[i]); fprintf(stderr, "\nAvailable blocks:"); for ( ; nmodules; nmodules--, modtab++) fprintf(stderr, " %s", modtab->name); fprintf(stderr, "\n"); return (EINVAL); } } for ( ; nmodules; nmodules--, modtab++) { match = argc == 0 ? 1 : 0; for (i = 0; !match && i < argc; i++) { if (!strcmp(argv[i], modtab->name)) match = 1; } if (match) dump_block_regs(modtab->ri, regs); } return (0); } #define T4_MODREGS(name) { #name, t4_##name##_regs } static int dump_regs_t4(int argc, const char *argv[], const uint32_t *regs) { static struct mod_regs t4_mod[] = { T4_MODREGS(sge), { "pci", t4_pcie_regs }, T4_MODREGS(dbg), T4_MODREGS(mc), T4_MODREGS(ma), { "edc0", t4_edc_0_regs }, { "edc1", t4_edc_1_regs }, T4_MODREGS(cim), T4_MODREGS(tp), T4_MODREGS(ulp_rx), T4_MODREGS(ulp_tx), { "pmrx", t4_pm_rx_regs }, { "pmtx", t4_pm_tx_regs }, T4_MODREGS(mps), { "cplsw", t4_cpl_switch_regs }, T4_MODREGS(smb), { "i2c", t4_i2cm_regs }, T4_MODREGS(mi), T4_MODREGS(uart), T4_MODREGS(pmu), T4_MODREGS(sf), T4_MODREGS(pl), T4_MODREGS(le), T4_MODREGS(ncsi), T4_MODREGS(xgmac) }; return dump_regs_table(argc, argv, regs, t4_mod, nitems(t4_mod)); } #undef T4_MODREGS #define T5_MODREGS(name) { #name, t5_##name##_regs } static int dump_regs_t5(int argc, const char *argv[], const uint32_t *regs) { static struct mod_regs t5_mod[] = { T5_MODREGS(sge), { "pci", t5_pcie_regs }, T5_MODREGS(dbg), { "mc0", t5_mc_0_regs }, { "mc1", t5_mc_1_regs }, T5_MODREGS(ma), { "edc0", t5_edc_t50_regs }, { "edc1", t5_edc_t51_regs }, T5_MODREGS(cim), T5_MODREGS(tp), { "ulprx", t5_ulp_rx_regs }, { "ulptx", t5_ulp_tx_regs }, { "pmrx", t5_pm_rx_regs }, { "pmtx", t5_pm_tx_regs }, T5_MODREGS(mps), { "cplsw", t5_cpl_switch_regs }, T5_MODREGS(smb), { "i2c", t5_i2cm_regs }, T5_MODREGS(mi), T5_MODREGS(uart), T5_MODREGS(pmu), T5_MODREGS(sf), T5_MODREGS(pl), T5_MODREGS(le), T5_MODREGS(ncsi), T5_MODREGS(mac), { "hma", t5_hma_t5_regs } }; return dump_regs_table(argc, argv, regs, t5_mod, nitems(t5_mod)); } #undef T5_MODREGS #define T6_MODREGS(name) { #name, t6_##name##_regs } static int dump_regs_t6(int argc, const char *argv[], const uint32_t *regs) { static struct mod_regs t6_mod[] = { T6_MODREGS(sge), { "pci", t6_pcie_regs }, T6_MODREGS(dbg), { "mc0", t6_mc_0_regs }, T6_MODREGS(ma), { "edc0", t6_edc_t60_regs }, { "edc1", t6_edc_t61_regs }, T6_MODREGS(cim), T6_MODREGS(tp), { "ulprx", t6_ulp_rx_regs }, { "ulptx", t6_ulp_tx_regs }, { "pmrx", t6_pm_rx_regs }, { "pmtx", t6_pm_tx_regs }, T6_MODREGS(mps), { "cplsw", t6_cpl_switch_regs }, T6_MODREGS(smb), { "i2c", t6_i2cm_regs }, T6_MODREGS(mi), T6_MODREGS(uart), T6_MODREGS(pmu), T6_MODREGS(sf), T6_MODREGS(pl), T6_MODREGS(le), T6_MODREGS(ncsi), T6_MODREGS(mac), { "hma", t6_hma_t6_regs } }; return dump_regs_table(argc, argv, regs, t6_mod, nitems(t6_mod)); } #undef T6_MODREGS static int dump_regs_t4vf(int argc, const char *argv[], const uint32_t *regs) { static struct mod_regs t4vf_mod[] = { { "sge", t4vf_sge_regs }, { "mps", t4vf_mps_regs }, { "pl", t4vf_pl_regs }, { "mbdata", t4vf_mbdata_regs }, { "cim", t4vf_cim_regs }, }; return dump_regs_table(argc, argv, regs, t4vf_mod, nitems(t4vf_mod)); } static int dump_regs_t5vf(int argc, const char *argv[], const uint32_t *regs) { static struct mod_regs t5vf_mod[] = { { "sge", t5vf_sge_regs }, { "mps", t4vf_mps_regs }, { "pl", t5vf_pl_regs }, { "mbdata", t4vf_mbdata_regs }, { "cim", t4vf_cim_regs }, }; return dump_regs_table(argc, argv, regs, t5vf_mod, nitems(t5vf_mod)); } static int dump_regs_t6vf(int argc, const char *argv[], const uint32_t *regs) { static struct mod_regs t6vf_mod[] = { { "sge", t5vf_sge_regs }, { "mps", t4vf_mps_regs }, { "pl", t6vf_pl_regs }, { "mbdata", t4vf_mbdata_regs }, { "cim", t4vf_cim_regs }, }; return dump_regs_table(argc, argv, regs, t6vf_mod, nitems(t6vf_mod)); } static int dump_regs(int argc, const char *argv[]) { int vers, revision, rc; struct t4_regdump regs; uint32_t len; len = max(T4_REGDUMP_SIZE, T5_REGDUMP_SIZE); regs.data = calloc(1, len); if (regs.data == NULL) { warnc(ENOMEM, "regdump"); return (ENOMEM); } regs.len = len; rc = doit(CHELSIO_T4_REGDUMP, ®s); if (rc != 0) return (rc); vers = get_card_vers(regs.version); revision = (regs.version >> 10) & 0x3f; if (vers == 4) { if (revision == 0x3f) rc = dump_regs_t4vf(argc, argv, regs.data); else rc = dump_regs_t4(argc, argv, regs.data); } else if (vers == 5) { if (revision == 0x3f) rc = dump_regs_t5vf(argc, argv, regs.data); else rc = dump_regs_t5(argc, argv, regs.data); } else if (vers == 6) { if (revision == 0x3f) rc = dump_regs_t6vf(argc, argv, regs.data); else rc = dump_regs_t6(argc, argv, regs.data); } else { warnx("%s (type %d, rev %d) is not a known card.", nexus, vers, revision); return (ENOTSUP); } free(regs.data); return (rc); } static void do_show_info_header(uint32_t mode) { uint32_t i; printf("%4s %8s", "Idx", "Hits"); for (i = T4_FILTER_FCoE; i <= T4_FILTER_IP_FRAGMENT; i <<= 1) { switch (mode & i) { case T4_FILTER_FCoE: printf(" FCoE"); break; case T4_FILTER_PORT: printf(" Port"); break; case T4_FILTER_VNIC: if (mode & T4_FILTER_IC_VNIC) printf(" VFvld:PF:VF"); else printf(" vld:oVLAN"); break; case T4_FILTER_VLAN: printf(" vld:VLAN"); break; case T4_FILTER_IP_TOS: printf(" TOS"); break; case T4_FILTER_IP_PROTO: printf(" Prot"); break; case T4_FILTER_ETH_TYPE: printf(" EthType"); break; case T4_FILTER_MAC_IDX: printf(" MACIdx"); break; case T4_FILTER_MPS_HIT_TYPE: printf(" MPS"); break; case T4_FILTER_IP_FRAGMENT: printf(" Frag"); break; default: /* compressed filter field not enabled */ break; } } printf(" %20s %20s %9s %9s %s\n", "DIP", "SIP", "DPORT", "SPORT", "Action"); } /* * Parse an argument sub-vector as a { [:] } * ordered tuple. If the parameter name in the argument sub-vector does not * match the passed in parameter name, then a zero is returned for the * function and no parsing is performed. If there is a match, then the value * and optional mask are parsed and returned in the provided return value * pointers. If no optional mask is specified, then a default mask of all 1s * will be returned. * * An error in parsing the value[:mask] will result in an error message and * program termination. */ static int parse_val_mask(const char *param, const char *args[], uint32_t *val, uint32_t *mask, int hashfilter) { long l; char *p; if (strcmp(param, args[0]) != 0) return (EINVAL); p = str_to_number(args[1], &l, NULL); if (l >= 0 && l <= UINT32_MAX) { *val = (uint32_t)l; if (p > args[1]) { if (p[0] == 0) { *mask = ~0; return (0); } if (p[0] == ':' && p[1] != 0) { if (hashfilter) { warnx("param %s: mask not allowed for " "hashfilter or nat params", param); return (EINVAL); } p = str_to_number(p + 1, &l, NULL); if (l >= 0 && l <= UINT32_MAX && p[0] == 0) { *mask = (uint32_t)l; return (0); } } } } warnx("parameter \"%s\" has bad \"value[:mask]\" %s", args[0], args[1]); return (EINVAL); } /* * Parse an argument sub-vector as a { [/] } * ordered tuple. If the parameter name in the argument sub-vector does not * match the passed in parameter name, then a zero is returned for the * function and no parsing is performed. If there is a match, then the value * and optional mask are parsed and returned in the provided return value * pointers. If no optional mask is specified, then a default mask of all 1s * will be returned. * * The value return parameter "afp" is used to specify the expected address * family -- IPv4 or IPv6 -- of the address[/mask] and return its actual * format. A passed in value of AF_UNSPEC indicates that either IPv4 or IPv6 * is acceptable; AF_INET means that only IPv4 addresses are acceptable; and * AF_INET6 means that only IPv6 are acceptable. AF_INET is returned for IPv4 * and AF_INET6 for IPv6 addresses, respectively. IPv4 address/mask pairs are * returned in the first four bytes of the address and mask return values with * the address A.B.C.D returned with { A, B, C, D } returned in addresses { 0, * 1, 2, 3}, respectively. * * An error in parsing the value[:mask] will result in an error message and * program termination. */ static int parse_ipaddr(const char *param, const char *args[], int *afp, uint8_t addr[], uint8_t mask[], int maskless) { const char *colon, *afn; char *slash; uint8_t *m; int af, ret; unsigned int masksize; /* * Is this our parameter? */ if (strcmp(param, args[0]) != 0) return (EINVAL); /* * Fundamental IPv4 versus IPv6 selection. */ colon = strchr(args[1], ':'); if (!colon) { afn = "IPv4"; af = AF_INET; masksize = 32; } else { afn = "IPv6"; af = AF_INET6; masksize = 128; } if (*afp == AF_UNSPEC) *afp = af; else if (*afp != af) { warnx("address %s is not of expected family %s", args[1], *afp == AF_INET ? "IP" : "IPv6"); return (EINVAL); } /* * Parse address (temporarily stripping off any "/mask" * specification). */ slash = strchr(args[1], '/'); if (slash) *slash = 0; ret = inet_pton(af, args[1], addr); if (slash) *slash = '/'; if (ret <= 0) { warnx("Cannot parse %s %s address %s", param, afn, args[1]); return (EINVAL); } /* * Parse optional mask specification. */ if (slash) { char *p; unsigned int prefix = strtoul(slash + 1, &p, 10); if (maskless) { warnx("mask cannot be provided for maskless specification"); return (EINVAL); } if (p == slash + 1) { warnx("missing address prefix for %s", param); return (EINVAL); } if (*p) { warnx("%s is not a valid address prefix", slash + 1); return (EINVAL); } if (prefix > masksize) { warnx("prefix %u is too long for an %s address", prefix, afn); return (EINVAL); } memset(mask, 0, masksize / 8); masksize = prefix; } if (mask != NULL) { /* * Fill in mask. */ for (m = mask; masksize >= 8; m++, masksize -= 8) *m = ~0; if (masksize) *m = ~0 << (8 - masksize); } return (0); } /* * Parse an argument sub-vector as a { } ordered * tuple. If the parameter name in the argument sub-vector does not match the * passed in parameter name, then a zero is returned for the function and no * parsing is performed. If there is a match, then the value is parsed and * returned in the provided return value pointer. */ static int parse_val(const char *param, const char *args[], uint32_t *val) { char *p; long l; if (strcmp(param, args[0]) != 0) return (EINVAL); p = str_to_number(args[1], &l, NULL); if (*p || l < 0 || l > UINT32_MAX) { warnx("parameter \"%s\" has bad \"value\" %s", args[0], args[1]); return (EINVAL); } *val = (uint32_t)l; return (0); } static void filters_show_ipaddr(int type, uint8_t *addr, uint8_t *addrm) { int noctets, octet; printf(" "); if (type == 0) { noctets = 4; printf("%3s", " "); } else noctets = 16; for (octet = 0; octet < noctets; octet++) printf("%02x", addr[octet]); printf("/"); for (octet = 0; octet < noctets; octet++) printf("%02x", addrm[octet]); } static void do_show_one_filter_info(struct t4_filter *t, uint32_t mode) { uint32_t i; printf("%4d", t->idx); if (t->hits == UINT64_MAX) printf(" %8s", "-"); else printf(" %8ju", t->hits); /* * Compressed header portion of filter. */ for (i = T4_FILTER_FCoE; i <= T4_FILTER_IP_FRAGMENT; i <<= 1) { switch (mode & i) { case T4_FILTER_FCoE: printf(" %1d/%1d", t->fs.val.fcoe, t->fs.mask.fcoe); break; case T4_FILTER_PORT: printf(" %1d/%1d", t->fs.val.iport, t->fs.mask.iport); break; case T4_FILTER_VNIC: if (mode & T4_FILTER_IC_VNIC) { printf(" %1d:%1x:%02x/%1d:%1x:%02x", t->fs.val.pfvf_vld, (t->fs.val.vnic >> 13) & 0x7, t->fs.val.vnic & 0x1fff, t->fs.mask.pfvf_vld, (t->fs.mask.vnic >> 13) & 0x7, t->fs.mask.vnic & 0x1fff); } else { printf(" %1d:%04x/%1d:%04x", t->fs.val.ovlan_vld, t->fs.val.vnic, t->fs.mask.ovlan_vld, t->fs.mask.vnic); } break; case T4_FILTER_VLAN: printf(" %1d:%04x/%1d:%04x", t->fs.val.vlan_vld, t->fs.val.vlan, t->fs.mask.vlan_vld, t->fs.mask.vlan); break; case T4_FILTER_IP_TOS: printf(" %02x/%02x", t->fs.val.tos, t->fs.mask.tos); break; case T4_FILTER_IP_PROTO: printf(" %02x/%02x", t->fs.val.proto, t->fs.mask.proto); break; case T4_FILTER_ETH_TYPE: printf(" %04x/%04x", t->fs.val.ethtype, t->fs.mask.ethtype); break; case T4_FILTER_MAC_IDX: printf(" %03x/%03x", t->fs.val.macidx, t->fs.mask.macidx); break; case T4_FILTER_MPS_HIT_TYPE: printf(" %1x/%1x", t->fs.val.matchtype, t->fs.mask.matchtype); break; case T4_FILTER_IP_FRAGMENT: printf(" %1d/%1d", t->fs.val.frag, t->fs.mask.frag); break; default: /* compressed filter field not enabled */ break; } } /* * Fixed portion of filter. */ filters_show_ipaddr(t->fs.type, t->fs.val.dip, t->fs.mask.dip); filters_show_ipaddr(t->fs.type, t->fs.val.sip, t->fs.mask.sip); printf(" %04x/%04x %04x/%04x", t->fs.val.dport, t->fs.mask.dport, t->fs.val.sport, t->fs.mask.sport); /* * Variable length filter action. */ if (t->fs.action == FILTER_DROP) printf(" Drop"); else if (t->fs.action == FILTER_SWITCH) { printf(" Switch: port=%d", t->fs.eport); if (t->fs.newdmac) printf( ", dmac=%02x:%02x:%02x:%02x:%02x:%02x " ", l2tidx=%d", t->fs.dmac[0], t->fs.dmac[1], t->fs.dmac[2], t->fs.dmac[3], t->fs.dmac[4], t->fs.dmac[5], t->l2tidx); if (t->fs.newsmac) printf( ", smac=%02x:%02x:%02x:%02x:%02x:%02x " ", smtidx=%d", t->fs.smac[0], t->fs.smac[1], t->fs.smac[2], t->fs.smac[3], t->fs.smac[4], t->fs.smac[5], t->smtidx); if (t->fs.newvlan == VLAN_REMOVE) printf(", vlan=none"); else if (t->fs.newvlan == VLAN_INSERT) printf(", vlan=insert(%x)", t->fs.vlan); else if (t->fs.newvlan == VLAN_REWRITE) printf(", vlan=rewrite(%x)", t->fs.vlan); } else { printf(" Pass: Q="); if (t->fs.dirsteer == 0) { printf("RSS"); if (t->fs.maskhash) printf("(TCB=hash)"); } else { printf("%d", t->fs.iq); if (t->fs.dirsteerhash == 0) printf("(QID)"); else printf("(hash)"); } } if (chip_id <= 5 && t->fs.prio) printf(" Prio"); if (t->fs.rpttid) printf(" RptTID"); printf("\n"); } static int show_filters(int hash) { uint32_t mode = 0, header, hpfilter = 0; struct t4_filter t; int rc; /* Get the global filter mode first */ rc = doit(CHELSIO_T4_GET_FILTER_MODE, &mode); if (rc != 0) return (rc); if (!hash && chip_id >= 6) { header = 0; bzero(&t, sizeof (t)); t.idx = 0; t.fs.hash = 0; t.fs.prio = 1; for (t.idx = 0; ; t.idx++) { rc = doit(CHELSIO_T4_GET_FILTER, &t); if (rc != 0 || t.idx == 0xffffffff) break; if (!header) { printf("High Priority TCAM Region:\n"); do_show_info_header(mode); header = 1; hpfilter = 1; } do_show_one_filter_info(&t, mode); } } header = 0; bzero(&t, sizeof (t)); t.idx = 0; t.fs.hash = hash; for (t.idx = 0; ; t.idx++) { rc = doit(CHELSIO_T4_GET_FILTER, &t); if (rc != 0 || t.idx == 0xffffffff) break; if (!header) { if (hpfilter) printf("\nNormal Priority TCAM Region:\n"); do_show_info_header(mode); header = 1; } do_show_one_filter_info(&t, mode); } return (rc); } static int get_filter_mode(int hashfilter) { uint32_t mode = hashfilter; int rc; rc = doit(CHELSIO_T4_GET_FILTER_MODE, &mode); if (rc != 0) return (rc); if (mode & T4_FILTER_IPv4) printf("ipv4 "); if (mode & T4_FILTER_IPv6) printf("ipv6 "); if (mode & T4_FILTER_IP_SADDR) printf("sip "); if (mode & T4_FILTER_IP_DADDR) printf("dip "); if (mode & T4_FILTER_IP_SPORT) printf("sport "); if (mode & T4_FILTER_IP_DPORT) printf("dport "); if (mode & T4_FILTER_IP_FRAGMENT) printf("frag "); if (mode & T4_FILTER_MPS_HIT_TYPE) printf("matchtype "); if (mode & T4_FILTER_MAC_IDX) printf("macidx "); if (mode & T4_FILTER_ETH_TYPE) printf("ethtype "); if (mode & T4_FILTER_IP_PROTO) printf("proto "); if (mode & T4_FILTER_IP_TOS) printf("tos "); if (mode & T4_FILTER_VLAN) printf("vlan "); if (mode & T4_FILTER_VNIC) { if (mode & T4_FILTER_IC_VNIC) printf("vnic_id "); else printf("ovlan "); } if (mode & T4_FILTER_PORT) printf("iport "); if (mode & T4_FILTER_FCoE) printf("fcoe "); printf("\n"); return (0); } static int set_filter_mode(int argc, const char *argv[]) { uint32_t mode = 0; int vnic = 0, ovlan = 0; for (; argc; argc--, argv++) { if (!strcmp(argv[0], "frag")) mode |= T4_FILTER_IP_FRAGMENT; if (!strcmp(argv[0], "matchtype")) mode |= T4_FILTER_MPS_HIT_TYPE; if (!strcmp(argv[0], "macidx")) mode |= T4_FILTER_MAC_IDX; if (!strcmp(argv[0], "ethtype")) mode |= T4_FILTER_ETH_TYPE; if (!strcmp(argv[0], "proto")) mode |= T4_FILTER_IP_PROTO; if (!strcmp(argv[0], "tos")) mode |= T4_FILTER_IP_TOS; if (!strcmp(argv[0], "vlan")) mode |= T4_FILTER_VLAN; if (!strcmp(argv[0], "ovlan")) { mode |= T4_FILTER_VNIC; ovlan++; } if (!strcmp(argv[0], "vnic_id")) { mode |= T4_FILTER_VNIC; mode |= T4_FILTER_IC_VNIC; vnic++; } if (!strcmp(argv[0], "iport")) mode |= T4_FILTER_PORT; if (!strcmp(argv[0], "fcoe")) mode |= T4_FILTER_FCoE; } if (vnic > 0 && ovlan > 0) { warnx("\"vnic_id\" and \"ovlan\" are mutually exclusive."); return (EINVAL); } return doit(CHELSIO_T4_SET_FILTER_MODE, &mode); } static int del_filter(uint32_t idx, int prio, int hashfilter) { struct t4_filter t; t.fs.prio = prio; t.fs.hash = hashfilter; t.idx = idx; return doit(CHELSIO_T4_DEL_FILTER, &t); } #define MAX_VLANID (4095) static int set_filter(uint32_t idx, int argc, const char *argv[], int hash) { int rc, af = AF_UNSPEC, start_arg = 0; struct t4_filter t; if (argc < 2) { warnc(EINVAL, "%s", __func__); return (EINVAL); }; bzero(&t, sizeof (t)); t.idx = idx; t.fs.hitcnts = 1; t.fs.hash = hash; for (start_arg = 0; start_arg + 2 <= argc; start_arg += 2) { const char **args = &argv[start_arg]; uint32_t val, mask; if (!strcmp(argv[start_arg], "type")) { int newaf; if (!strcasecmp(argv[start_arg + 1], "ipv4")) newaf = AF_INET; else if (!strcasecmp(argv[start_arg + 1], "ipv6")) newaf = AF_INET6; else { warnx("invalid type \"%s\"; " "must be one of \"ipv4\" or \"ipv6\"", argv[start_arg + 1]); return (EINVAL); } if (af != AF_UNSPEC && af != newaf) { warnx("conflicting IPv4/IPv6 specifications."); return (EINVAL); } af = newaf; } else if (!parse_val_mask("fcoe", args, &val, &mask, hash)) { t.fs.val.fcoe = val; t.fs.mask.fcoe = mask; } else if (!parse_val_mask("iport", args, &val, &mask, hash)) { t.fs.val.iport = val; t.fs.mask.iport = mask; } else if (!parse_val_mask("ovlan", args, &val, &mask, hash)) { t.fs.val.vnic = val; t.fs.mask.vnic = mask; t.fs.val.ovlan_vld = 1; t.fs.mask.ovlan_vld = 1; } else if (!parse_val_mask("ivlan", args, &val, &mask, hash)) { t.fs.val.vlan = val; t.fs.mask.vlan = mask; t.fs.val.vlan_vld = 1; t.fs.mask.vlan_vld = 1; } else if (!parse_val_mask("pf", args, &val, &mask, hash)) { t.fs.val.vnic &= 0x1fff; t.fs.val.vnic |= (val & 0x7) << 13; t.fs.mask.vnic &= 0x1fff; t.fs.mask.vnic |= (mask & 0x7) << 13; t.fs.val.pfvf_vld = 1; t.fs.mask.pfvf_vld = 1; } else if (!parse_val_mask("vf", args, &val, &mask, hash)) { t.fs.val.vnic &= 0xe000; t.fs.val.vnic |= val & 0x1fff; t.fs.mask.vnic &= 0xe000; t.fs.mask.vnic |= mask & 0x1fff; t.fs.val.pfvf_vld = 1; t.fs.mask.pfvf_vld = 1; } else if (!parse_val_mask("tos", args, &val, &mask, hash)) { t.fs.val.tos = val; t.fs.mask.tos = mask; } else if (!parse_val_mask("proto", args, &val, &mask, hash)) { t.fs.val.proto = val; t.fs.mask.proto = mask; } else if (!parse_val_mask("ethtype", args, &val, &mask, hash)) { t.fs.val.ethtype = val; t.fs.mask.ethtype = mask; } else if (!parse_val_mask("macidx", args, &val, &mask, hash)) { t.fs.val.macidx = val; t.fs.mask.macidx = mask; } else if (!parse_val_mask("matchtype", args, &val, &mask, hash)) { t.fs.val.matchtype = val; t.fs.mask.matchtype = mask; } else if (!parse_val_mask("frag", args, &val, &mask, hash)) { t.fs.val.frag = val; t.fs.mask.frag = mask; } else if (!parse_val_mask("dport", args, &val, &mask, hash)) { t.fs.val.dport = val; t.fs.mask.dport = mask; } else if (!parse_val_mask("sport", args, &val, &mask, hash)) { t.fs.val.sport = val; t.fs.mask.sport = mask; } else if (!parse_ipaddr("dip", args, &af, t.fs.val.dip, t.fs.mask.dip, hash)) { /* nada */; } else if (!parse_ipaddr("sip", args, &af, t.fs.val.sip, t.fs.mask.sip, hash)) { /* nada */; } else if (!parse_ipaddr("nat_dip", args, &af, t.fs.nat_dip, NULL, 1)) { /*nada*/; } else if (!parse_ipaddr("nat_sip", args, &af, t.fs.nat_sip, NULL, 1)) { /*nada*/ } else if (!parse_val_mask("nat_dport", args, &val, &mask, 1)) { t.fs.nat_dport = val; } else if (!parse_val_mask("nat_sport", args, &val, &mask, 1)) { t.fs.nat_sport = val; } else if (!strcmp(argv[start_arg], "action")) { if (!strcmp(argv[start_arg + 1], "pass")) t.fs.action = FILTER_PASS; else if (!strcmp(argv[start_arg + 1], "drop")) t.fs.action = FILTER_DROP; else if (!strcmp(argv[start_arg + 1], "switch")) t.fs.action = FILTER_SWITCH; else { warnx("invalid action \"%s\"; must be one of" " \"pass\", \"drop\" or \"switch\"", argv[start_arg + 1]); return (EINVAL); } } else if (!parse_val("hitcnts", args, &val)) { t.fs.hitcnts = val; } else if (!parse_val("prio", args, &val)) { if (hash) { warnx("Hashfilters doesn't support \"prio\"\n"); return (EINVAL); } if (val != 0 && val != 1) { warnx("invalid priority \"%s\"; must be" " \"0\" or \"1\"", argv[start_arg + 1]); return (EINVAL); } t.fs.prio = val; } else if (!parse_val("rpttid", args, &val)) { t.fs.rpttid = 1; } else if (!parse_val("queue", args, &val)) { t.fs.dirsteer = 1; t.fs.iq = val; } else if (!parse_val("tcbhash", args, &val)) { t.fs.maskhash = 1; t.fs.dirsteerhash = 1; } else if (!parse_val("eport", args, &val)) { t.fs.eport = val; } else if (!parse_val("swapmac", args, &val)) { t.fs.swapmac = 1; } else if (!strcmp(argv[start_arg], "nat")) { if (!strcmp(argv[start_arg + 1], "dip")) t.fs.nat_mode = NAT_MODE_DIP; else if (!strcmp(argv[start_arg + 1], "dip-dp")) t.fs.nat_mode = NAT_MODE_DIP_DP; else if (!strcmp(argv[start_arg + 1], "dip-dp-sip")) t.fs.nat_mode = NAT_MODE_DIP_DP_SIP; else if (!strcmp(argv[start_arg + 1], "dip-dp-sp")) t.fs.nat_mode = NAT_MODE_DIP_DP_SP; else if (!strcmp(argv[start_arg + 1], "sip-sp")) t.fs.nat_mode = NAT_MODE_SIP_SP; else if (!strcmp(argv[start_arg + 1], "dip-sip-sp")) t.fs.nat_mode = NAT_MODE_DIP_SIP_SP; else if (!strcmp(argv[start_arg + 1], "all")) t.fs.nat_mode = NAT_MODE_ALL; else { warnx("unknown nat type \"%s\"; known types are dip, " "dip-dp, dip-dp-sip, dip-dp-sp, sip-sp, " "dip-sip-sp, and all", argv[start_arg + 1]); return (EINVAL); } } else if (!parse_val("natseq", args, &val)) { t.fs.nat_seq_chk = val; } else if (!parse_val("natflag", args, &val)) { t.fs.nat_flag_chk = 1; } else if (!strcmp(argv[start_arg], "dmac")) { struct ether_addr *daddr; daddr = ether_aton(argv[start_arg + 1]); if (daddr == NULL) { warnx("invalid dmac address \"%s\"", argv[start_arg + 1]); return (EINVAL); } memcpy(t.fs.dmac, daddr, ETHER_ADDR_LEN); t.fs.newdmac = 1; } else if (!strcmp(argv[start_arg], "smac")) { struct ether_addr *saddr; saddr = ether_aton(argv[start_arg + 1]); if (saddr == NULL) { warnx("invalid smac address \"%s\"", argv[start_arg + 1]); return (EINVAL); } memcpy(t.fs.smac, saddr, ETHER_ADDR_LEN); t.fs.newsmac = 1; } else if (!strcmp(argv[start_arg], "vlan")) { char *p; if (!strcmp(argv[start_arg + 1], "none")) { t.fs.newvlan = VLAN_REMOVE; } else if (argv[start_arg + 1][0] == '=') { t.fs.newvlan = VLAN_REWRITE; } else if (argv[start_arg + 1][0] == '+') { t.fs.newvlan = VLAN_INSERT; - } else if (isdigit(argv[start_arg + 1][0]) && - !parse_val_mask("vlan", args, &val, &mask, hash)) { - t.fs.val.vlan = val; - t.fs.mask.vlan = mask; - t.fs.val.vlan_vld = 1; - t.fs.mask.vlan_vld = 1; } else { warnx("unknown vlan parameter \"%s\"; must" " be one of \"none\", \"=\", " - " \"+\", or \"\"", - argv[start_arg + 1]); + " \"+\"", argv[start_arg + 1]); return (EINVAL); } if (t.fs.newvlan == VLAN_REWRITE || t.fs.newvlan == VLAN_INSERT) { t.fs.vlan = strtoul(argv[start_arg + 1] + 1, &p, 0); if (p == argv[start_arg + 1] + 1 || p[0] != 0 || t.fs.vlan > MAX_VLANID) { warnx("invalid vlan \"%s\"", argv[start_arg + 1]); return (EINVAL); } } } else { warnx("invalid parameter \"%s\"", argv[start_arg]); return (EINVAL); } } if (start_arg != argc) { warnx("no value for \"%s\"", argv[start_arg]); return (EINVAL); } /* * Check basic sanity of option combinations. */ if (t.fs.action != FILTER_SWITCH && (t.fs.eport || t.fs.newdmac || t.fs.newsmac || t.fs.newvlan || t.fs.swapmac || t.fs.nat_mode)) { warnx("port, dmac, smac, vlan, and nat only make sense with" " \"action switch\""); return (EINVAL); } if (!t.fs.nat_mode && (t.fs.nat_seq_chk || t.fs.nat_flag_chk || *t.fs.nat_dip || *t.fs.nat_sip || t.fs.nat_dport || t.fs.nat_sport)) { warnx("nat params only make sense with valid nat mode"); return (EINVAL); } if (t.fs.action != FILTER_PASS && (t.fs.rpttid || t.fs.dirsteer || t.fs.maskhash)) { warnx("rpttid, queue and tcbhash don't make sense with" " action \"drop\" or \"switch\""); return (EINVAL); } if (t.fs.val.ovlan_vld && t.fs.val.pfvf_vld) { warnx("ovlan and vnic_id (pf/vf) are mutually exclusive"); return (EINVAL); } t.fs.type = (af == AF_INET6 ? 1 : 0); /* default IPv4 */ rc = doit(CHELSIO_T4_SET_FILTER, &t); if (hash && rc == 0) printf("%d\n", t.idx); return (rc); } static int filter_cmd(int argc, const char *argv[], int hashfilter) { long long val; uint32_t idx; char *s; if (argc == 0) { warnx("%sfilter: no arguments.", hashfilter ? "hash" : ""); return (EINVAL); }; /* list */ if (strcmp(argv[0], "list") == 0) { if (argc != 1) warnx("trailing arguments after \"list\" ignored."); return show_filters(hashfilter); } /* mode */ if (argc == 1 && strcmp(argv[0], "mode") == 0) return get_filter_mode(hashfilter); /* mode */ if (!hashfilter && strcmp(argv[0], "mode") == 0) return set_filter_mode(argc - 1, argv + 1); /* ... */ s = str_to_number(argv[0], NULL, &val); if (*s || val < 0 || val > 0xffffffffU) { if (hashfilter) { /* * No numeric index means this must be a request to * create a new hashfilter and we are already at the * paramter/value list. */ idx = (uint32_t) -1; goto setf; } warnx("\"%s\" is neither an index nor a filter subcommand.", argv[0]); return (EINVAL); } idx = (uint32_t) val; /* delete|clear [prio 0|1] */ if ((argc == 2 || argc == 4) && (strcmp(argv[1], "delete") == 0 || strcmp(argv[1], "clear") == 0)) { int prio = 0; if (argc == 4) { if (hashfilter) { warnx("stray arguments after \"%s\".", argv[1]); return (EINVAL); } if (strcmp(argv[2], "prio") != 0) { warnx("\"prio\" is the only valid keyword " "after \"%s\", found \"%s\" instead.", argv[1], argv[2]); return (EINVAL); } s = str_to_number(argv[3], NULL, &val); if (*s || val < 0 || val > 1) { warnx("%s \"%s\"; must be \"0\" or \"1\".", argv[2], argv[3]); return (EINVAL); } prio = (int)val; } return del_filter(idx, prio, hashfilter); } /* skip */ argc--; argv++; setf: /* [ ] ... */ return set_filter(idx, argc, argv, hashfilter); } /* * Shows the fields of a multi-word structure. The structure is considered to * consist of @nwords 32-bit words (i.e, it's an (@nwords * 32)-bit structure) * whose fields are described by @fd. The 32-bit words are given in @words * starting with the least significant 32-bit word. */ static void show_struct(const uint32_t *words, int nwords, const struct field_desc *fd) { unsigned int w = 0; const struct field_desc *p; for (p = fd; p->name; p++) w = max(w, strlen(p->name)); while (fd->name) { unsigned long long data; int first_word = fd->start / 32; int shift = fd->start % 32; int width = fd->end - fd->start + 1; unsigned long long mask = (1ULL << width) - 1; data = (words[first_word] >> shift) | ((uint64_t)words[first_word + 1] << (32 - shift)); if (shift) data |= ((uint64_t)words[first_word + 2] << (64 - shift)); data &= mask; if (fd->islog2) data = 1 << data; printf("%-*s ", w, fd->name); printf(fd->hex ? "%#llx\n" : "%llu\n", data << fd->shift); fd++; } } #define FIELD(name, start, end) { name, start, end, 0, 0, 0 } #define FIELD1(name, start) FIELD(name, start, start) static void show_t5t6_ctxt(const struct t4_sge_context *p, int vers) { static struct field_desc egress_t5[] = { FIELD("DCA_ST:", 181, 191), FIELD1("StatusPgNS:", 180), FIELD1("StatusPgRO:", 179), FIELD1("FetchNS:", 178), FIELD1("FetchRO:", 177), FIELD1("Valid:", 176), FIELD("PCIeDataChannel:", 174, 175), FIELD1("StatusPgTPHintEn:", 173), FIELD("StatusPgTPHint:", 171, 172), FIELD1("FetchTPHintEn:", 170), FIELD("FetchTPHint:", 168, 169), FIELD1("FCThreshOverride:", 167), { "WRLength:", 162, 166, 9, 0, 1 }, FIELD1("WRLengthKnown:", 161), FIELD1("ReschedulePending:", 160), FIELD1("OnChipQueue:", 159), FIELD1("FetchSizeMode:", 158), { "FetchBurstMin:", 156, 157, 4, 0, 1 }, FIELD1("FLMPacking:", 155), FIELD("FetchBurstMax:", 153, 154), FIELD("uPToken:", 133, 152), FIELD1("uPTokenEn:", 132), FIELD1("UserModeIO:", 131), FIELD("uPFLCredits:", 123, 130), FIELD1("uPFLCreditEn:", 122), FIELD("FID:", 111, 121), FIELD("HostFCMode:", 109, 110), FIELD1("HostFCOwner:", 108), { "CIDXFlushThresh:", 105, 107, 0, 0, 1 }, FIELD("CIDX:", 89, 104), FIELD("PIDX:", 73, 88), { "BaseAddress:", 18, 72, 9, 1 }, FIELD("QueueSize:", 2, 17), FIELD1("QueueType:", 1), FIELD1("CachePriority:", 0), { NULL } }; static struct field_desc egress_t6[] = { FIELD("DCA_ST:", 181, 191), FIELD1("StatusPgNS:", 180), FIELD1("StatusPgRO:", 179), FIELD1("FetchNS:", 178), FIELD1("FetchRO:", 177), FIELD1("Valid:", 176), FIELD1("ReschedulePending_1:", 175), FIELD1("PCIeDataChannel:", 174), FIELD1("StatusPgTPHintEn:", 173), FIELD("StatusPgTPHint:", 171, 172), FIELD1("FetchTPHintEn:", 170), FIELD("FetchTPHint:", 168, 169), FIELD1("FCThreshOverride:", 167), { "WRLength:", 162, 166, 9, 0, 1 }, FIELD1("WRLengthKnown:", 161), FIELD1("ReschedulePending:", 160), FIELD("TimerIx:", 157, 159), FIELD1("FetchBurstMin:", 156), FIELD1("FLMPacking:", 155), FIELD("FetchBurstMax:", 153, 154), FIELD("uPToken:", 133, 152), FIELD1("uPTokenEn:", 132), FIELD1("UserModeIO:", 131), FIELD("uPFLCredits:", 123, 130), FIELD1("uPFLCreditEn:", 122), FIELD("FID:", 111, 121), FIELD("HostFCMode:", 109, 110), FIELD1("HostFCOwner:", 108), { "CIDXFlushThresh:", 105, 107, 0, 0, 1 }, FIELD("CIDX:", 89, 104), FIELD("PIDX:", 73, 88), { "BaseAddress:", 18, 72, 9, 1 }, FIELD("QueueSize:", 2, 17), FIELD1("QueueType:", 1), FIELD1("FetchSizeMode:", 0), { NULL } }; static struct field_desc fl_t5[] = { FIELD("DCA_ST:", 181, 191), FIELD1("StatusPgNS:", 180), FIELD1("StatusPgRO:", 179), FIELD1("FetchNS:", 178), FIELD1("FetchRO:", 177), FIELD1("Valid:", 176), FIELD("PCIeDataChannel:", 174, 175), FIELD1("StatusPgTPHintEn:", 173), FIELD("StatusPgTPHint:", 171, 172), FIELD1("FetchTPHintEn:", 170), FIELD("FetchTPHint:", 168, 169), FIELD1("FCThreshOverride:", 167), FIELD1("ReschedulePending:", 160), FIELD1("OnChipQueue:", 159), FIELD1("FetchSizeMode:", 158), { "FetchBurstMin:", 156, 157, 4, 0, 1 }, FIELD1("FLMPacking:", 155), FIELD("FetchBurstMax:", 153, 154), FIELD1("FLMcongMode:", 152), FIELD("MaxuPFLCredits:", 144, 151), FIELD("FLMcontextID:", 133, 143), FIELD1("uPTokenEn:", 132), FIELD1("UserModeIO:", 131), FIELD("uPFLCredits:", 123, 130), FIELD1("uPFLCreditEn:", 122), FIELD("FID:", 111, 121), FIELD("HostFCMode:", 109, 110), FIELD1("HostFCOwner:", 108), { "CIDXFlushThresh:", 105, 107, 0, 0, 1 }, FIELD("CIDX:", 89, 104), FIELD("PIDX:", 73, 88), { "BaseAddress:", 18, 72, 9, 1 }, FIELD("QueueSize:", 2, 17), FIELD1("QueueType:", 1), FIELD1("CachePriority:", 0), { NULL } }; static struct field_desc ingress_t5[] = { FIELD("DCA_ST:", 143, 153), FIELD1("ISCSICoalescing:", 142), FIELD1("Queue_Valid:", 141), FIELD1("TimerPending:", 140), FIELD1("DropRSS:", 139), FIELD("PCIeChannel:", 137, 138), FIELD1("SEInterruptArmed:", 136), FIELD1("CongestionMgtEnable:", 135), FIELD1("NoSnoop:", 134), FIELD1("RelaxedOrdering:", 133), FIELD1("GTSmode:", 132), FIELD1("TPHintEn:", 131), FIELD("TPHint:", 129, 130), FIELD1("UpdateScheduling:", 128), FIELD("UpdateDelivery:", 126, 127), FIELD1("InterruptSent:", 125), FIELD("InterruptIDX:", 114, 124), FIELD1("InterruptDestination:", 113), FIELD1("InterruptArmed:", 112), FIELD("RxIntCounter:", 106, 111), FIELD("RxIntCounterThreshold:", 104, 105), FIELD1("Generation:", 103), { "BaseAddress:", 48, 102, 9, 1 }, FIELD("PIDX:", 32, 47), FIELD("CIDX:", 16, 31), { "QueueSize:", 4, 15, 4, 0 }, { "QueueEntrySize:", 2, 3, 4, 0, 1 }, FIELD1("QueueEntryOverride:", 1), FIELD1("CachePriority:", 0), { NULL } }; static struct field_desc ingress_t6[] = { FIELD1("SP_NS:", 158), FIELD1("SP_RO:", 157), FIELD1("SP_TPHintEn:", 156), FIELD("SP_TPHint:", 154, 155), FIELD("DCA_ST:", 143, 153), FIELD1("ISCSICoalescing:", 142), FIELD1("Queue_Valid:", 141), FIELD1("TimerPending:", 140), FIELD1("DropRSS:", 139), FIELD("PCIeChannel:", 137, 138), FIELD1("SEInterruptArmed:", 136), FIELD1("CongestionMgtEnable:", 135), FIELD1("NoSnoop:", 134), FIELD1("RelaxedOrdering:", 133), FIELD1("GTSmode:", 132), FIELD1("TPHintEn:", 131), FIELD("TPHint:", 129, 130), FIELD1("UpdateScheduling:", 128), FIELD("UpdateDelivery:", 126, 127), FIELD1("InterruptSent:", 125), FIELD("InterruptIDX:", 114, 124), FIELD1("InterruptDestination:", 113), FIELD1("InterruptArmed:", 112), FIELD("RxIntCounter:", 106, 111), FIELD("RxIntCounterThreshold:", 104, 105), FIELD1("Generation:", 103), { "BaseAddress:", 48, 102, 9, 1 }, FIELD("PIDX:", 32, 47), FIELD("CIDX:", 16, 31), { "QueueSize:", 4, 15, 4, 0 }, { "QueueEntrySize:", 2, 3, 4, 0, 1 }, FIELD1("QueueEntryOverride:", 1), FIELD1("CachePriority:", 0), { NULL } }; static struct field_desc flm_t5[] = { FIELD1("Valid:", 89), FIELD("SplitLenMode:", 87, 88), FIELD1("TPHintEn:", 86), FIELD("TPHint:", 84, 85), FIELD1("NoSnoop:", 83), FIELD1("RelaxedOrdering:", 82), FIELD("DCA_ST:", 71, 81), FIELD("EQid:", 54, 70), FIELD("SplitEn:", 52, 53), FIELD1("PadEn:", 51), FIELD1("PackEn:", 50), FIELD1("Cache_Lock :", 49), FIELD1("CongDrop:", 48), FIELD("PackOffset:", 16, 47), FIELD("CIDX:", 8, 15), FIELD("PIDX:", 0, 7), { NULL } }; static struct field_desc flm_t6[] = { FIELD1("Valid:", 89), FIELD("SplitLenMode:", 87, 88), FIELD1("TPHintEn:", 86), FIELD("TPHint:", 84, 85), FIELD1("NoSnoop:", 83), FIELD1("RelaxedOrdering:", 82), FIELD("DCA_ST:", 71, 81), FIELD("EQid:", 54, 70), FIELD("SplitEn:", 52, 53), FIELD1("PadEn:", 51), FIELD1("PackEn:", 50), FIELD1("Cache_Lock :", 49), FIELD1("CongDrop:", 48), FIELD1("Inflight:", 47), FIELD1("CongEn:", 46), FIELD1("CongMode:", 45), FIELD("PackOffset:", 20, 39), FIELD("CIDX:", 8, 15), FIELD("PIDX:", 0, 7), { NULL } }; static struct field_desc conm_t5[] = { FIELD1("CngMPSEnable:", 21), FIELD("CngTPMode:", 19, 20), FIELD1("CngDBPHdr:", 18), FIELD1("CngDBPData:", 17), FIELD1("CngIMSG:", 16), { "CngChMap:", 0, 15, 0, 1, 0 }, { NULL } }; if (p->mem_id == SGE_CONTEXT_EGRESS) { if (p->data[0] & 2) show_struct(p->data, 6, fl_t5); else if (vers == 5) show_struct(p->data, 6, egress_t5); else show_struct(p->data, 6, egress_t6); } else if (p->mem_id == SGE_CONTEXT_FLM) show_struct(p->data, 3, vers == 5 ? flm_t5 : flm_t6); else if (p->mem_id == SGE_CONTEXT_INGRESS) show_struct(p->data, 5, vers == 5 ? ingress_t5 : ingress_t6); else if (p->mem_id == SGE_CONTEXT_CNM) show_struct(p->data, 1, conm_t5); } static void show_t4_ctxt(const struct t4_sge_context *p) { static struct field_desc egress_t4[] = { FIELD1("StatusPgNS:", 180), FIELD1("StatusPgRO:", 179), FIELD1("FetchNS:", 178), FIELD1("FetchRO:", 177), FIELD1("Valid:", 176), FIELD("PCIeDataChannel:", 174, 175), FIELD1("DCAEgrQEn:", 173), FIELD("DCACPUID:", 168, 172), FIELD1("FCThreshOverride:", 167), FIELD("WRLength:", 162, 166), FIELD1("WRLengthKnown:", 161), FIELD1("ReschedulePending:", 160), FIELD1("OnChipQueue:", 159), FIELD1("FetchSizeMode", 158), { "FetchBurstMin:", 156, 157, 4, 0, 1 }, { "FetchBurstMax:", 153, 154, 6, 0, 1 }, FIELD("uPToken:", 133, 152), FIELD1("uPTokenEn:", 132), FIELD1("UserModeIO:", 131), FIELD("uPFLCredits:", 123, 130), FIELD1("uPFLCreditEn:", 122), FIELD("FID:", 111, 121), FIELD("HostFCMode:", 109, 110), FIELD1("HostFCOwner:", 108), { "CIDXFlushThresh:", 105, 107, 0, 0, 1 }, FIELD("CIDX:", 89, 104), FIELD("PIDX:", 73, 88), { "BaseAddress:", 18, 72, 9, 1 }, FIELD("QueueSize:", 2, 17), FIELD1("QueueType:", 1), FIELD1("CachePriority:", 0), { NULL } }; static struct field_desc fl_t4[] = { FIELD1("StatusPgNS:", 180), FIELD1("StatusPgRO:", 179), FIELD1("FetchNS:", 178), FIELD1("FetchRO:", 177), FIELD1("Valid:", 176), FIELD("PCIeDataChannel:", 174, 175), FIELD1("DCAEgrQEn:", 173), FIELD("DCACPUID:", 168, 172), FIELD1("FCThreshOverride:", 167), FIELD1("ReschedulePending:", 160), FIELD1("OnChipQueue:", 159), FIELD1("FetchSizeMode", 158), { "FetchBurstMin:", 156, 157, 4, 0, 1 }, { "FetchBurstMax:", 153, 154, 6, 0, 1 }, FIELD1("FLMcongMode:", 152), FIELD("MaxuPFLCredits:", 144, 151), FIELD("FLMcontextID:", 133, 143), FIELD1("uPTokenEn:", 132), FIELD1("UserModeIO:", 131), FIELD("uPFLCredits:", 123, 130), FIELD1("uPFLCreditEn:", 122), FIELD("FID:", 111, 121), FIELD("HostFCMode:", 109, 110), FIELD1("HostFCOwner:", 108), { "CIDXFlushThresh:", 105, 107, 0, 0, 1 }, FIELD("CIDX:", 89, 104), FIELD("PIDX:", 73, 88), { "BaseAddress:", 18, 72, 9, 1 }, FIELD("QueueSize:", 2, 17), FIELD1("QueueType:", 1), FIELD1("CachePriority:", 0), { NULL } }; static struct field_desc ingress_t4[] = { FIELD1("NoSnoop:", 145), FIELD1("RelaxedOrdering:", 144), FIELD1("GTSmode:", 143), FIELD1("ISCSICoalescing:", 142), FIELD1("Valid:", 141), FIELD1("TimerPending:", 140), FIELD1("DropRSS:", 139), FIELD("PCIeChannel:", 137, 138), FIELD1("SEInterruptArmed:", 136), FIELD1("CongestionMgtEnable:", 135), FIELD1("DCAIngQEnable:", 134), FIELD("DCACPUID:", 129, 133), FIELD1("UpdateScheduling:", 128), FIELD("UpdateDelivery:", 126, 127), FIELD1("InterruptSent:", 125), FIELD("InterruptIDX:", 114, 124), FIELD1("InterruptDestination:", 113), FIELD1("InterruptArmed:", 112), FIELD("RxIntCounter:", 106, 111), FIELD("RxIntCounterThreshold:", 104, 105), FIELD1("Generation:", 103), { "BaseAddress:", 48, 102, 9, 1 }, FIELD("PIDX:", 32, 47), FIELD("CIDX:", 16, 31), { "QueueSize:", 4, 15, 4, 0 }, { "QueueEntrySize:", 2, 3, 4, 0, 1 }, FIELD1("QueueEntryOverride:", 1), FIELD1("CachePriority:", 0), { NULL } }; static struct field_desc flm_t4[] = { FIELD1("NoSnoop:", 79), FIELD1("RelaxedOrdering:", 78), FIELD1("Valid:", 77), FIELD("DCACPUID:", 72, 76), FIELD1("DCAFLEn:", 71), FIELD("EQid:", 54, 70), FIELD("SplitEn:", 52, 53), FIELD1("PadEn:", 51), FIELD1("PackEn:", 50), FIELD1("DBpriority:", 48), FIELD("PackOffset:", 16, 47), FIELD("CIDX:", 8, 15), FIELD("PIDX:", 0, 7), { NULL } }; static struct field_desc conm_t4[] = { FIELD1("CngDBPHdr:", 6), FIELD1("CngDBPData:", 5), FIELD1("CngIMSG:", 4), { "CngChMap:", 0, 3, 0, 1, 0}, { NULL } }; if (p->mem_id == SGE_CONTEXT_EGRESS) show_struct(p->data, 6, (p->data[0] & 2) ? fl_t4 : egress_t4); else if (p->mem_id == SGE_CONTEXT_FLM) show_struct(p->data, 3, flm_t4); else if (p->mem_id == SGE_CONTEXT_INGRESS) show_struct(p->data, 5, ingress_t4); else if (p->mem_id == SGE_CONTEXT_CNM) show_struct(p->data, 1, conm_t4); } #undef FIELD #undef FIELD1 static int get_sge_context(int argc, const char *argv[]) { int rc; char *p; long cid; struct t4_sge_context cntxt = {0}; if (argc != 2) { warnx("sge_context: incorrect number of arguments."); return (EINVAL); } if (!strcmp(argv[0], "egress")) cntxt.mem_id = SGE_CONTEXT_EGRESS; else if (!strcmp(argv[0], "ingress")) cntxt.mem_id = SGE_CONTEXT_INGRESS; else if (!strcmp(argv[0], "fl")) cntxt.mem_id = SGE_CONTEXT_FLM; else if (!strcmp(argv[0], "cong")) cntxt.mem_id = SGE_CONTEXT_CNM; else { warnx("unknown context type \"%s\"; known types are egress, " "ingress, fl, and cong.", argv[0]); return (EINVAL); } p = str_to_number(argv[1], &cid, NULL); if (*p) { warnx("invalid context id \"%s\"", argv[1]); return (EINVAL); } cntxt.cid = cid; rc = doit(CHELSIO_T4_GET_SGE_CONTEXT, &cntxt); if (rc != 0) return (rc); if (chip_id == 4) show_t4_ctxt(&cntxt); else show_t5t6_ctxt(&cntxt, chip_id); return (0); } static int loadfw(int argc, const char *argv[]) { int rc, fd; struct t4_data data = {0}; const char *fname = argv[0]; struct stat st = {0}; if (argc != 1) { warnx("loadfw: incorrect number of arguments."); return (EINVAL); } fd = open(fname, O_RDONLY); if (fd < 0) { warn("open(%s)", fname); return (errno); } if (fstat(fd, &st) < 0) { warn("fstat"); close(fd); return (errno); } data.len = st.st_size; data.data = mmap(0, data.len, PROT_READ, MAP_PRIVATE, fd, 0); if (data.data == MAP_FAILED) { warn("mmap"); close(fd); return (errno); } rc = doit(CHELSIO_T4_LOAD_FW, &data); munmap(data.data, data.len); close(fd); return (rc); } static int loadcfg(int argc, const char *argv[]) { int rc, fd; struct t4_data data = {0}; const char *fname = argv[0]; struct stat st = {0}; if (argc != 1) { warnx("loadcfg: incorrect number of arguments."); return (EINVAL); } if (strcmp(fname, "clear") == 0) return (doit(CHELSIO_T4_LOAD_CFG, &data)); fd = open(fname, O_RDONLY); if (fd < 0) { warn("open(%s)", fname); return (errno); } if (fstat(fd, &st) < 0) { warn("fstat"); close(fd); return (errno); } data.len = st.st_size; data.len &= ~3; /* Clip off to make it a multiple of 4 */ data.data = mmap(0, data.len, PROT_READ, MAP_PRIVATE, fd, 0); if (data.data == MAP_FAILED) { warn("mmap"); close(fd); return (errno); } rc = doit(CHELSIO_T4_LOAD_CFG, &data); munmap(data.data, data.len); close(fd); return (rc); } static int dumpstate(int argc, const char *argv[]) { int rc, fd; struct t4_cudbg_dump dump = {0}; const char *fname = argv[0]; if (argc != 1) { warnx("dumpstate: incorrect number of arguments."); return (EINVAL); } dump.wr_flash = 0; memset(&dump.bitmap, 0xff, sizeof(dump.bitmap)); dump.len = 8 * 1024 * 1024; dump.data = malloc(dump.len); if (dump.data == NULL) { return (ENOMEM); } rc = doit(CHELSIO_T4_CUDBG_DUMP, &dump); if (rc != 0) goto done; fd = open(fname, O_CREAT | O_TRUNC | O_EXCL | O_WRONLY, S_IRUSR | S_IRGRP | S_IROTH); if (fd < 0) { warn("open(%s)", fname); rc = errno; goto done; } write(fd, dump.data, dump.len); close(fd); done: free(dump.data); return (rc); } static int read_mem(uint32_t addr, uint32_t len, void (*output)(uint32_t *, uint32_t)) { int rc; struct t4_mem_range mr; mr.addr = addr; mr.len = len; mr.data = malloc(mr.len); if (mr.data == 0) { warn("read_mem: malloc"); return (errno); } rc = doit(CHELSIO_T4_GET_MEM, &mr); if (rc != 0) goto done; if (output) (*output)(mr.data, mr.len); done: free(mr.data); return (rc); } static int loadboot(int argc, const char *argv[]) { int rc, fd; long l; char *p; struct t4_bootrom br = {0}; const char *fname = argv[0]; struct stat st = {0}; if (argc == 1) { br.pf_offset = 0; br.pfidx_addr = 0; } else if (argc == 3) { if (!strcmp(argv[1], "pf")) br.pf_offset = 0; else if (!strcmp(argv[1], "offset")) br.pf_offset = 1; else return (EINVAL); p = str_to_number(argv[2], &l, NULL); if (*p) return (EINVAL); br.pfidx_addr = l; } else { warnx("loadboot: incorrect number of arguments."); return (EINVAL); } if (strcmp(fname, "clear") == 0) return (doit(CHELSIO_T4_LOAD_BOOT, &br)); fd = open(fname, O_RDONLY); if (fd < 0) { warn("open(%s)", fname); return (errno); } if (fstat(fd, &st) < 0) { warn("fstat"); close(fd); return (errno); } br.len = st.st_size; br.data = mmap(0, br.len, PROT_READ, MAP_PRIVATE, fd, 0); if (br.data == MAP_FAILED) { warn("mmap"); close(fd); return (errno); } rc = doit(CHELSIO_T4_LOAD_BOOT, &br); munmap(br.data, br.len); close(fd); return (rc); } static int loadbootcfg(int argc, const char *argv[]) { int rc, fd; struct t4_data bc = {0}; const char *fname = argv[0]; struct stat st = {0}; if (argc != 1) { warnx("loadbootcfg: incorrect number of arguments."); return (EINVAL); } if (strcmp(fname, "clear") == 0) return (doit(CHELSIO_T4_LOAD_BOOTCFG, &bc)); fd = open(fname, O_RDONLY); if (fd < 0) { warn("open(%s)", fname); return (errno); } if (fstat(fd, &st) < 0) { warn("fstat"); close(fd); return (errno); } bc.len = st.st_size; bc.data = mmap(0, bc.len, PROT_READ, MAP_PRIVATE, fd, 0); if (bc.data == MAP_FAILED) { warn("mmap"); close(fd); return (errno); } rc = doit(CHELSIO_T4_LOAD_BOOTCFG, &bc); munmap(bc.data, bc.len); close(fd); return (rc); } /* * Display memory as list of 'n' 4-byte values per line. */ static void show_mem(uint32_t *buf, uint32_t len) { const char *s; int i, n = 8; while (len) { for (i = 0; len && i < n; i++, buf++, len -= 4) { s = i ? " " : ""; printf("%s%08x", s, htonl(*buf)); } printf("\n"); } } static int memdump(int argc, const char *argv[]) { char *p; long l; uint32_t addr, len; if (argc != 2) { warnx("incorrect number of arguments."); return (EINVAL); } p = str_to_number(argv[0], &l, NULL); if (*p) { warnx("invalid address \"%s\"", argv[0]); return (EINVAL); } addr = l; p = str_to_number(argv[1], &l, NULL); if (*p) { warnx("memdump: invalid length \"%s\"", argv[1]); return (EINVAL); } len = l; return (read_mem(addr, len, show_mem)); } /* * Display TCB as list of 'n' 4-byte values per line. */ static void show_tcb(uint32_t *buf, uint32_t len) { unsigned char *tcb = (unsigned char *)buf; const char *s; int i, n = 8; while (len) { for (i = 0; len && i < n; i++, buf++, len -= 4) { s = i ? " " : ""; printf("%s%08x", s, htonl(*buf)); } printf("\n"); } set_tcb_info(TIDTYPE_TCB, chip_id); set_print_style(PRNTSTYL_COMP); swizzle_tcb(tcb); parse_n_display_xcb(tcb); } #define A_TP_CMM_TCB_BASE 0x7d10 #define TCB_SIZE 128 static int read_tcb(int argc, const char *argv[]) { char *p; long l; long long val; unsigned int tid; uint32_t addr; int rc; if (argc != 1) { warnx("incorrect number of arguments."); return (EINVAL); } p = str_to_number(argv[0], &l, NULL); if (*p) { warnx("invalid tid \"%s\"", argv[0]); return (EINVAL); } tid = l; rc = read_reg(A_TP_CMM_TCB_BASE, 4, &val); if (rc != 0) return (rc); addr = val + tid * TCB_SIZE; return (read_mem(addr, TCB_SIZE, show_tcb)); } static int read_i2c(int argc, const char *argv[]) { char *p; long l; struct t4_i2c_data i2cd; int rc, i; if (argc < 3 || argc > 4) { warnx("incorrect number of arguments."); return (EINVAL); } p = str_to_number(argv[0], &l, NULL); if (*p || l > UCHAR_MAX) { warnx("invalid port id \"%s\"", argv[0]); return (EINVAL); } i2cd.port_id = l; p = str_to_number(argv[1], &l, NULL); if (*p || l > UCHAR_MAX) { warnx("invalid i2c device address \"%s\"", argv[1]); return (EINVAL); } i2cd.dev_addr = l; p = str_to_number(argv[2], &l, NULL); if (*p || l > UCHAR_MAX) { warnx("invalid byte offset \"%s\"", argv[2]); return (EINVAL); } i2cd.offset = l; if (argc == 4) { p = str_to_number(argv[3], &l, NULL); if (*p || l > sizeof(i2cd.data)) { warnx("invalid number of bytes \"%s\"", argv[3]); return (EINVAL); } i2cd.len = l; } else i2cd.len = 1; rc = doit(CHELSIO_T4_GET_I2C, &i2cd); if (rc != 0) return (rc); for (i = 0; i < i2cd.len; i++) printf("0x%x [%u]\n", i2cd.data[i], i2cd.data[i]); return (0); } static int clearstats(int argc, const char *argv[]) { char *p; long l; uint32_t port; if (argc != 1) { warnx("incorrect number of arguments."); return (EINVAL); } p = str_to_number(argv[0], &l, NULL); if (*p) { warnx("invalid port id \"%s\"", argv[0]); return (EINVAL); } port = l; return doit(CHELSIO_T4_CLEAR_STATS, &port); } static int show_tracers(void) { struct t4_tracer t; char *s; int rc, port_idx, i; long long val; /* Magic values: MPS_TRC_CFG = 0x9800. MPS_TRC_CFG[1:1] = TrcEn */ rc = read_reg(0x9800, 4, &val); if (rc != 0) return (rc); printf("tracing is %s\n", val & 2 ? "ENABLED" : "DISABLED"); t.idx = 0; for (t.idx = 0; ; t.idx++) { rc = doit(CHELSIO_T4_GET_TRACER, &t); if (rc != 0 || t.idx == 0xff) break; if (t.tp.port < 4) { s = "Rx"; port_idx = t.tp.port; } else if (t.tp.port < 8) { s = "Tx"; port_idx = t.tp.port - 4; } else if (t.tp.port < 12) { s = "loopback"; port_idx = t.tp.port - 8; } else if (t.tp.port < 16) { s = "MPS Rx"; port_idx = t.tp.port - 12; } else if (t.tp.port < 20) { s = "MPS Tx"; port_idx = t.tp.port - 16; } else { s = "unknown"; port_idx = t.tp.port; } printf("\ntracer %u (currently %s) captures ", t.idx, t.enabled ? "ENABLED" : "DISABLED"); if (t.tp.port < 8) printf("port %u %s, ", port_idx, s); else printf("%s %u, ", s, port_idx); printf("snap length: %u, min length: %u\n", t.tp.snap_len, t.tp.min_len); printf("packets captured %smatch filter\n", t.tp.invert ? "do not " : ""); if (t.tp.skip_ofst) { printf("filter pattern: "); for (i = 0; i < t.tp.skip_ofst * 2; i += 2) printf("%08x%08x", t.tp.data[i], t.tp.data[i + 1]); printf("/"); for (i = 0; i < t.tp.skip_ofst * 2; i += 2) printf("%08x%08x", t.tp.mask[i], t.tp.mask[i + 1]); printf("@0\n"); } printf("filter pattern: "); for (i = t.tp.skip_ofst * 2; i < T4_TRACE_LEN / 4; i += 2) printf("%08x%08x", t.tp.data[i], t.tp.data[i + 1]); printf("/"); for (i = t.tp.skip_ofst * 2; i < T4_TRACE_LEN / 4; i += 2) printf("%08x%08x", t.tp.mask[i], t.tp.mask[i + 1]); printf("@%u\n", (t.tp.skip_ofst + t.tp.skip_len) * 8); } return (rc); } static int tracer_onoff(uint8_t idx, int enabled) { struct t4_tracer t; t.idx = idx; t.enabled = enabled; t.valid = 0; return doit(CHELSIO_T4_SET_TRACER, &t); } static void create_tracing_ifnet() { char *cmd[] = { "/sbin/ifconfig", __DECONST(char *, nexus), "create", NULL }; char *env[] = {NULL}; if (vfork() == 0) { close(STDERR_FILENO); execve(cmd[0], cmd, env); _exit(0); } } /* * XXX: Allow user to specify snaplen, minlen, and pattern (including inverted * matching). Right now this is a quick-n-dirty implementation that traces the * first 128B of all tx or rx on a port */ static int set_tracer(uint8_t idx, int argc, const char *argv[]) { struct t4_tracer t; int len, port; bzero(&t, sizeof (t)); t.idx = idx; t.enabled = 1; t.valid = 1; if (argc != 1) { warnx("must specify tx or rx."); return (EINVAL); } len = strlen(argv[0]); if (len != 3) { warnx("argument must be 3 characters (tx or rx)"); return (EINVAL); } if (strncmp(argv[0], "tx", 2) == 0) { port = argv[0][2] - '0'; if (port < 0 || port > 3) { warnx("'%c' in %s is invalid", argv[0][2], argv[0]); return (EINVAL); } port += 4; } else if (strncmp(argv[0], "rx", 2) == 0) { port = argv[0][2] - '0'; if (port < 0 || port > 3) { warnx("'%c' in %s is invalid", argv[0][2], argv[0]); return (EINVAL); } } else { warnx("argument '%s' isn't tx or rx", argv[0]); return (EINVAL); } t.tp.snap_len = 128; t.tp.min_len = 0; t.tp.skip_ofst = 0; t.tp.skip_len = 0; t.tp.invert = 0; t.tp.port = port; create_tracing_ifnet(); return doit(CHELSIO_T4_SET_TRACER, &t); } static int tracer_cmd(int argc, const char *argv[]) { long long val; uint8_t idx; char *s; if (argc == 0) { warnx("tracer: no arguments."); return (EINVAL); }; /* list */ if (strcmp(argv[0], "list") == 0) { if (argc != 1) warnx("trailing arguments after \"list\" ignored."); return show_tracers(); } /* ... */ s = str_to_number(argv[0], NULL, &val); if (*s || val > 0xff) { warnx("\"%s\" is neither an index nor a tracer subcommand.", argv[0]); return (EINVAL); } idx = (int8_t)val; /* disable */ if (argc == 2 && strcmp(argv[1], "disable") == 0) return tracer_onoff(idx, 0); /* enable */ if (argc == 2 && strcmp(argv[1], "enable") == 0) return tracer_onoff(idx, 1); /* ... */ return set_tracer(idx, argc - 1, argv + 1); } static int modinfo_raw(int port_id) { uint8_t offset; struct t4_i2c_data i2cd; int rc; for (offset = 0; offset < 96; offset += sizeof(i2cd.data)) { bzero(&i2cd, sizeof(i2cd)); i2cd.port_id = port_id; i2cd.dev_addr = 0xa0; i2cd.offset = offset; i2cd.len = sizeof(i2cd.data); rc = doit(CHELSIO_T4_GET_I2C, &i2cd); if (rc != 0) return (rc); printf("%02x: %02x %02x %02x %02x %02x %02x %02x %02x", offset, i2cd.data[0], i2cd.data[1], i2cd.data[2], i2cd.data[3], i2cd.data[4], i2cd.data[5], i2cd.data[6], i2cd.data[7]); printf(" %c%c%c%c %c%c%c%c\n", isprint(i2cd.data[0]) ? i2cd.data[0] : '.', isprint(i2cd.data[1]) ? i2cd.data[1] : '.', isprint(i2cd.data[2]) ? i2cd.data[2] : '.', isprint(i2cd.data[3]) ? i2cd.data[3] : '.', isprint(i2cd.data[4]) ? i2cd.data[4] : '.', isprint(i2cd.data[5]) ? i2cd.data[5] : '.', isprint(i2cd.data[6]) ? i2cd.data[6] : '.', isprint(i2cd.data[7]) ? i2cd.data[7] : '.'); } return (0); } static int modinfo(int argc, const char *argv[]) { long port; char string[16], *p; struct t4_i2c_data i2cd; int rc, i; uint16_t temp, vcc, tx_bias, tx_power, rx_power; if (argc < 1) { warnx("must supply a port"); return (EINVAL); } if (argc > 2) { warnx("too many arguments"); return (EINVAL); } p = str_to_number(argv[0], &port, NULL); if (*p || port > UCHAR_MAX) { warnx("invalid port id \"%s\"", argv[0]); return (EINVAL); } if (argc == 2) { if (!strcmp(argv[1], "raw")) return (modinfo_raw(port)); else { warnx("second argument can only be \"raw\""); return (EINVAL); } } bzero(&i2cd, sizeof(i2cd)); i2cd.len = 1; i2cd.port_id = port; i2cd.dev_addr = SFF_8472_BASE; i2cd.offset = SFF_8472_ID; if ((rc = doit(CHELSIO_T4_GET_I2C, &i2cd)) != 0) goto fail; if (i2cd.data[0] > SFF_8472_ID_LAST) printf("Unknown ID\n"); else printf("ID: %s\n", sff_8472_id[i2cd.data[0]]); bzero(&string, sizeof(string)); for (i = SFF_8472_VENDOR_START; i < SFF_8472_VENDOR_END; i++) { i2cd.offset = i; if ((rc = doit(CHELSIO_T4_GET_I2C, &i2cd)) != 0) goto fail; string[i - SFF_8472_VENDOR_START] = i2cd.data[0]; } printf("Vendor %s\n", string); bzero(&string, sizeof(string)); for (i = SFF_8472_SN_START; i < SFF_8472_SN_END; i++) { i2cd.offset = i; if ((rc = doit(CHELSIO_T4_GET_I2C, &i2cd)) != 0) goto fail; string[i - SFF_8472_SN_START] = i2cd.data[0]; } printf("SN %s\n", string); bzero(&string, sizeof(string)); for (i = SFF_8472_PN_START; i < SFF_8472_PN_END; i++) { i2cd.offset = i; if ((rc = doit(CHELSIO_T4_GET_I2C, &i2cd)) != 0) goto fail; string[i - SFF_8472_PN_START] = i2cd.data[0]; } printf("PN %s\n", string); bzero(&string, sizeof(string)); for (i = SFF_8472_REV_START; i < SFF_8472_REV_END; i++) { i2cd.offset = i; if ((rc = doit(CHELSIO_T4_GET_I2C, &i2cd)) != 0) goto fail; string[i - SFF_8472_REV_START] = i2cd.data[0]; } printf("Rev %s\n", string); i2cd.offset = SFF_8472_DIAG_TYPE; if ((rc = doit(CHELSIO_T4_GET_I2C, &i2cd)) != 0) goto fail; if ((char )i2cd.data[0] & (SFF_8472_DIAG_IMPL | SFF_8472_DIAG_INTERNAL)) { /* Switch to reading from the Diagnostic address. */ i2cd.dev_addr = SFF_8472_DIAG; i2cd.len = 1; i2cd.offset = SFF_8472_TEMP; if ((rc = doit(CHELSIO_T4_GET_I2C, &i2cd)) != 0) goto fail; temp = i2cd.data[0] << 8; printf("Temp: "); if ((temp & SFF_8472_TEMP_SIGN) == SFF_8472_TEMP_SIGN) printf("-"); else printf("+"); printf("%dC\n", (temp & SFF_8472_TEMP_MSK) >> SFF_8472_TEMP_SHIFT); i2cd.offset = SFF_8472_VCC; if ((rc = doit(CHELSIO_T4_GET_I2C, &i2cd)) != 0) goto fail; vcc = i2cd.data[0] << 8; printf("Vcc %fV\n", vcc / SFF_8472_VCC_FACTOR); i2cd.offset = SFF_8472_TX_BIAS; if ((rc = doit(CHELSIO_T4_GET_I2C, &i2cd)) != 0) goto fail; tx_bias = i2cd.data[0] << 8; printf("TX Bias %fuA\n", tx_bias / SFF_8472_BIAS_FACTOR); i2cd.offset = SFF_8472_TX_POWER; if ((rc = doit(CHELSIO_T4_GET_I2C, &i2cd)) != 0) goto fail; tx_power = i2cd.data[0] << 8; printf("TX Power %fmW\n", tx_power / SFF_8472_POWER_FACTOR); i2cd.offset = SFF_8472_RX_POWER; if ((rc = doit(CHELSIO_T4_GET_I2C, &i2cd)) != 0) goto fail; rx_power = i2cd.data[0] << 8; printf("RX Power %fmW\n", rx_power / SFF_8472_POWER_FACTOR); } else printf("Diagnostics not supported.\n"); return(0); fail: if (rc == EPERM) warnx("No module/cable in port %ld", port); return (rc); } /* XXX: pass in a low/high and do range checks as well */ static int get_sched_param(const char *param, const char *args[], long *val) { char *p; if (strcmp(param, args[0]) != 0) return (EINVAL); p = str_to_number(args[1], val, NULL); if (*p) { warnx("parameter \"%s\" has bad value \"%s\"", args[0], args[1]); return (EINVAL); } return (0); } static int sched_class(int argc, const char *argv[]) { struct t4_sched_params op; int errs, i; memset(&op, 0xff, sizeof(op)); op.subcmd = -1; op.type = -1; if (argc == 0) { warnx("missing scheduling sub-command"); return (EINVAL); } if (!strcmp(argv[0], "config")) { op.subcmd = SCHED_CLASS_SUBCMD_CONFIG; op.u.config.minmax = -1; } else if (!strcmp(argv[0], "params")) { op.subcmd = SCHED_CLASS_SUBCMD_PARAMS; op.u.params.level = op.u.params.mode = op.u.params.rateunit = op.u.params.ratemode = op.u.params.channel = op.u.params.cl = op.u.params.minrate = op.u.params.maxrate = op.u.params.weight = op.u.params.pktsize = -1; } else { warnx("invalid scheduling sub-command \"%s\"", argv[0]); return (EINVAL); } /* Decode remaining arguments ... */ errs = 0; for (i = 1; i < argc; i += 2) { const char **args = &argv[i]; long l; if (i + 1 == argc) { warnx("missing argument for \"%s\"", args[0]); errs++; break; } if (!strcmp(args[0], "type")) { if (!strcmp(args[1], "packet")) op.type = SCHED_CLASS_TYPE_PACKET; else { warnx("invalid type parameter \"%s\"", args[1]); errs++; } continue; } if (op.subcmd == SCHED_CLASS_SUBCMD_CONFIG) { if(!get_sched_param("minmax", args, &l)) op.u.config.minmax = (int8_t)l; else { warnx("unknown scheduler config parameter " "\"%s\"", args[0]); errs++; } continue; } /* Rest applies only to SUBCMD_PARAMS */ if (op.subcmd != SCHED_CLASS_SUBCMD_PARAMS) continue; if (!strcmp(args[0], "level")) { if (!strcmp(args[1], "cl-rl")) op.u.params.level = SCHED_CLASS_LEVEL_CL_RL; else if (!strcmp(args[1], "cl-wrr")) op.u.params.level = SCHED_CLASS_LEVEL_CL_WRR; else if (!strcmp(args[1], "ch-rl")) op.u.params.level = SCHED_CLASS_LEVEL_CH_RL; else { warnx("invalid level parameter \"%s\"", args[1]); errs++; } } else if (!strcmp(args[0], "mode")) { if (!strcmp(args[1], "class")) op.u.params.mode = SCHED_CLASS_MODE_CLASS; else if (!strcmp(args[1], "flow")) op.u.params.mode = SCHED_CLASS_MODE_FLOW; else { warnx("invalid mode parameter \"%s\"", args[1]); errs++; } } else if (!strcmp(args[0], "rate-unit")) { if (!strcmp(args[1], "bits")) op.u.params.rateunit = SCHED_CLASS_RATEUNIT_BITS; else if (!strcmp(args[1], "pkts")) op.u.params.rateunit = SCHED_CLASS_RATEUNIT_PKTS; else { warnx("invalid rate-unit parameter \"%s\"", args[1]); errs++; } } else if (!strcmp(args[0], "rate-mode")) { if (!strcmp(args[1], "relative")) op.u.params.ratemode = SCHED_CLASS_RATEMODE_REL; else if (!strcmp(args[1], "absolute")) op.u.params.ratemode = SCHED_CLASS_RATEMODE_ABS; else { warnx("invalid rate-mode parameter \"%s\"", args[1]); errs++; } } else if (!get_sched_param("channel", args, &l)) op.u.params.channel = (int8_t)l; else if (!get_sched_param("class", args, &l)) op.u.params.cl = (int8_t)l; else if (!get_sched_param("min-rate", args, &l)) op.u.params.minrate = (int32_t)l; else if (!get_sched_param("max-rate", args, &l)) op.u.params.maxrate = (int32_t)l; else if (!get_sched_param("weight", args, &l)) op.u.params.weight = (int16_t)l; else if (!get_sched_param("pkt-size", args, &l)) op.u.params.pktsize = (int16_t)l; else { warnx("unknown scheduler parameter \"%s\"", args[0]); errs++; } } /* * Catch some logical fallacies in terms of argument combinations here * so we can offer more than just the EINVAL return from the driver. * The driver will be able to catch a lot more issues since it knows * the specifics of the device hardware capabilities like how many * channels, classes, etc. the device supports. */ if (op.type < 0) { warnx("sched \"type\" parameter missing"); errs++; } if (op.subcmd == SCHED_CLASS_SUBCMD_CONFIG) { if (op.u.config.minmax < 0) { warnx("sched config \"minmax\" parameter missing"); errs++; } } if (op.subcmd == SCHED_CLASS_SUBCMD_PARAMS) { if (op.u.params.level < 0) { warnx("sched params \"level\" parameter missing"); errs++; } if (op.u.params.mode < 0 && op.u.params.level == SCHED_CLASS_LEVEL_CL_RL) { warnx("sched params \"mode\" parameter missing"); errs++; } if (op.u.params.rateunit < 0 && (op.u.params.level == SCHED_CLASS_LEVEL_CL_RL || op.u.params.level == SCHED_CLASS_LEVEL_CH_RL)) { warnx("sched params \"rate-unit\" parameter missing"); errs++; } if (op.u.params.ratemode < 0 && (op.u.params.level == SCHED_CLASS_LEVEL_CL_RL || op.u.params.level == SCHED_CLASS_LEVEL_CH_RL)) { warnx("sched params \"rate-mode\" parameter missing"); errs++; } if (op.u.params.channel < 0) { warnx("sched params \"channel\" missing"); errs++; } if (op.u.params.cl < 0 && (op.u.params.level == SCHED_CLASS_LEVEL_CL_RL || op.u.params.level == SCHED_CLASS_LEVEL_CL_WRR)) { warnx("sched params \"class\" missing"); errs++; } if (op.u.params.maxrate < 0 && (op.u.params.level == SCHED_CLASS_LEVEL_CL_RL || op.u.params.level == SCHED_CLASS_LEVEL_CH_RL)) { warnx("sched params \"max-rate\" missing for " "rate-limit level"); errs++; } if (op.u.params.level == SCHED_CLASS_LEVEL_CL_WRR && (op.u.params.weight < 1 || op.u.params.weight > 99)) { warnx("sched params \"weight\" missing or invalid " "(not 1-99) for weighted-round-robin level"); errs++; } if (op.u.params.pktsize < 0 && op.u.params.level == SCHED_CLASS_LEVEL_CL_RL) { warnx("sched params \"pkt-size\" missing for " "rate-limit level"); errs++; } if (op.u.params.mode == SCHED_CLASS_MODE_FLOW && op.u.params.ratemode != SCHED_CLASS_RATEMODE_ABS) { warnx("sched params mode flow needs rate-mode absolute"); errs++; } if (op.u.params.ratemode == SCHED_CLASS_RATEMODE_REL && !in_range(op.u.params.maxrate, 1, 100)) { warnx("sched params \"max-rate\" takes " "percentage value(1-100) for rate-mode relative"); errs++; } if (op.u.params.ratemode == SCHED_CLASS_RATEMODE_ABS && !in_range(op.u.params.maxrate, 1, 100000000)) { warnx("sched params \"max-rate\" takes " "value(1-100000000) for rate-mode absolute"); errs++; } if (op.u.params.maxrate > 0 && op.u.params.maxrate < op.u.params.minrate) { warnx("sched params \"max-rate\" is less than " "\"min-rate\""); errs++; } } if (errs > 0) { warnx("%d error%s in sched-class command", errs, errs == 1 ? "" : "s"); return (EINVAL); } return doit(CHELSIO_T4_SCHED_CLASS, &op); } static int sched_queue(int argc, const char *argv[]) { struct t4_sched_queue op = {0}; char *p; long val; if (argc != 3) { /* need " */ warnx("incorrect number of arguments."); return (EINVAL); } p = str_to_number(argv[0], &val, NULL); if (*p || val > UCHAR_MAX) { warnx("invalid port id \"%s\"", argv[0]); return (EINVAL); } op.port = (uint8_t)val; if (!strcmp(argv[1], "all") || !strcmp(argv[1], "*")) op.queue = -1; else { p = str_to_number(argv[1], &val, NULL); if (*p || val < -1) { warnx("invalid queue \"%s\"", argv[1]); return (EINVAL); } op.queue = (int8_t)val; } if (!strcmp(argv[2], "unbind") || !strcmp(argv[2], "clear")) op.cl = -1; else { p = str_to_number(argv[2], &val, NULL); if (*p || val < -1) { warnx("invalid class \"%s\"", argv[2]); return (EINVAL); } op.cl = (int8_t)val; } return doit(CHELSIO_T4_SCHED_QUEUE, &op); } static int parse_offload_settings_word(const char *s, char **pnext, const char *ws, int *pneg, struct offload_settings *os) { while (*s == '!') { (*pneg)++; s++; } if (!strcmp(s, "not")) { (*pneg)++; return (0); } if (!strcmp(s, "offload")) { os->offload = (*pneg + 1) & 1; *pneg = 0; } else if (!strcmp(s , "coalesce")) { os->rx_coalesce = (*pneg + 1) & 1; *pneg = 0; } else if (!strcmp(s, "timestamp") || !strcmp(s, "tstamp")) { os->tstamp = (*pneg + 1) & 1; *pneg = 0; } else if (!strcmp(s, "sack")) { os->sack = (*pneg + 1) & 1; *pneg = 0; } else if (!strcmp(s, "nagle")) { os->nagle = (*pneg + 1) & 1; *pneg = 0; } else if (!strcmp(s, "ecn")) { os->ecn = (*pneg + 1) & 1; *pneg = 0; } else if (!strcmp(s, "ddp")) { os->ddp = (*pneg + 1) & 1; *pneg = 0; } else if (!strcmp(s, "tls")) { os->tls = (*pneg + 1) & 1; *pneg = 0; } else { char *param, *p; long val; /* Settings with additional parameter handled here. */ if (*pneg) { warnx("\"%s\" is not a valid keyword, or it does not " "support negation.", s); return (EINVAL); } while ((param = strsep(pnext, ws)) != NULL) { if (*param != '\0') break; } if (param == NULL) { warnx("\"%s\" is not a valid keyword, or it requires a " "parameter that has not been provided.", s); return (EINVAL); } if (!strcmp(s, "cong")) { if (!strcmp(param, "reno")) os->cong_algo = 0; else if (!strcmp(param, "tahoe")) os->cong_algo = 1; else if (!strcmp(param, "newreno")) os->cong_algo = 2; else if (!strcmp(param, "highspeed")) os->cong_algo = 3; else { warnx("unknown congestion algorithm \"%s\".", s); return (EINVAL); } } else if (!strcmp(s, "class")) { val = -1; p = str_to_number(param, &val, NULL); /* (nsched_cls - 1) is spelled 15 here. */ if (*p || val < 0 || val > 15) { warnx("invalid scheduling class \"%s\". " "\"class\" needs an integer value where " "0 <= value <= 15", param); return (EINVAL); } os->sched_class = val; } else if (!strcmp(s, "bind") || !strcmp(s, "txq") || !strcmp(s, "rxq")) { val = -1; if (strcmp(param, "random")) { p = str_to_number(param, &val, NULL); if (*p || val < 0 || val > 0xffff) { warnx("invalid queue specification " "\"%s\". \"%s\" needs an integer" " value, or \"random\".", param, s); return (EINVAL); } } if (!strcmp(s, "bind")) { os->txq = val; os->rxq = val; } else if (!strcmp(s, "txq")) { os->txq = val; } else if (!strcmp(s, "rxq")) { os->rxq = val; } else { return (EDOOFUS); } } else if (!strcmp(s, "mss")) { val = -1; p = str_to_number(param, &val, NULL); if (*p || val <= 0) { warnx("invalid MSS specification \"%s\". " "\"mss\" needs a positive integer value", param); return (EINVAL); } os->mss = val; } else { warnx("unknown settings keyword: \"%s\"", s); return (EINVAL); } } return (0); } static int parse_offload_settings(const char *settings_ro, struct offload_settings *os) { const char *ws = " \f\n\r\v\t"; char *settings, *s, *next; int rc, nsettings, neg; static const struct offload_settings default_settings = { .offload = 0, /* No settings imply !offload */ .rx_coalesce = -1, .cong_algo = -1, .sched_class = -1, .tstamp = -1, .sack = -1, .nagle = -1, .ecn = -1, .ddp = -1, .tls = -1, .txq = -1, .rxq = -1, .mss = -1, }; *os = default_settings; next = settings = strdup(settings_ro); if (settings == NULL) { warn (NULL); return (errno); } nsettings = 0; rc = 0; neg = 0; while ((s = strsep(&next, ws)) != NULL) { if (*s == '\0') continue; nsettings++; rc = parse_offload_settings_word(s, &next, ws, &neg, os); if (rc != 0) goto done; } if (nsettings == 0) { warnx("no settings provided"); rc = EINVAL; goto done; } if (neg > 0) { warnx("%d stray negation(s) at end of offload settings", neg); rc = EINVAL; goto done; } done: free(settings); return (rc); } static int isempty_line(char *line, size_t llen) { /* skip leading whitespace */ while (isspace(*line)) { line++; llen--; } if (llen == 0 || *line == '#' || *line == '\n') return (1); return (0); } static int special_offload_rule(char *str) { /* skip leading whitespaces */ while (isspace(*str)) str++; /* check for special strings: "-", "all", "any" */ if (*str == '-') { str++; } else if (!strncmp(str, "all", 3) || !strncmp(str, "any", 3)) { str += 3; } else { return (0); } /* skip trailing whitespaces */ while (isspace(*str)) str++; return (*str == '\0'); } /* * A rule has 3 parts: an open-type, a match expression, and offload settings. * * [] => */ static int parse_offload_policy_line(size_t lno, char *line, size_t llen, pcap_t *pd, struct offload_rule *r) { char *expr, *settings, *s; bzero(r, sizeof(*r)); /* Skip leading whitespace. */ while (isspace(*line)) line++; /* Trim trailing whitespace */ s = &line[llen - 1]; while (isspace(*s)) { *s-- = '\0'; llen--; } /* * First part of the rule: '[X]' where X = A/D/L/P */ if (*line++ != '[') { warnx("missing \"[\" on line %zd", lno); return (EINVAL); } switch (*line) { case 'A': case 'D': case 'L': case 'P': r->open_type = *line; break; default: warnx("invalid socket-type \"%c\" on line %zd.", *line, lno); return (EINVAL); } line++; if (*line++ != ']') { warnx("missing \"]\" after \"[%c\" on line %zd", r->open_type, lno); return (EINVAL); } /* Skip whitespace. */ while (isspace(*line)) line++; /* * Rest of the rule: => */ expr = line; s = strstr(line, "=>"); if (s == NULL) return (EINVAL); settings = s + 2; while (isspace(*settings)) settings++; *s = '\0'; /* * is either a special name (all, any) or a pcap-filter(7). * In case of a special name the bpf_prog stays all-zero. */ if (!special_offload_rule(expr)) { if (pcap_compile(pd, &r->bpf_prog, expr, 1, PCAP_NETMASK_UNKNOWN) < 0) { warnx("failed to compile \"%s\" on line %zd: %s", expr, lno, pcap_geterr(pd)); return (EINVAL); } } /* settings to apply on a match. */ if (parse_offload_settings(settings, &r->settings) != 0) { warnx("failed to parse offload settings \"%s\" on line %zd", settings, lno); pcap_freecode(&r->bpf_prog); return (EINVAL); } return (0); } /* * Note that op itself is not dynamically allocated. */ static void free_offload_policy(struct t4_offload_policy *op) { int i; for (i = 0; i < op->nrules; i++) { /* * pcap_freecode can cope with empty bpf_prog, which is the case * for an rule that matches on 'any/all/-'. */ pcap_freecode(&op->rule[i].bpf_prog); } free(op->rule); op->nrules = 0; op->rule = NULL; } #define REALLOC_STRIDE 32 /* * Fills up op->nrules and op->rule. */ static int parse_offload_policy(const char *fname, struct t4_offload_policy *op) { FILE *fp; char *line; int lno, maxrules, rc; size_t lcap, llen; struct offload_rule *r; pcap_t *pd; fp = fopen(fname, "r"); if (fp == NULL) { warn("Unable to open file \"%s\"", fname); return (errno); } pd = pcap_open_dead(DLT_EN10MB, 128); if (pd == NULL) { warnx("Failed to open pcap device"); fclose(fp); return (EIO); } rc = 0; lno = 0; lcap = 0; maxrules = 0; op->nrules = 0; op->rule = NULL; line = NULL; while ((llen = getline(&line, &lcap, fp)) != -1) { lno++; /* Skip empty lines. */ if (isempty_line(line, llen)) continue; if (op->nrules == maxrules) { maxrules += REALLOC_STRIDE; r = realloc(op->rule, maxrules * sizeof(struct offload_rule)); if (r == NULL) { warnx("failed to allocate memory for %d rules", maxrules); rc = ENOMEM; goto done; } op->rule = r; } r = &op->rule[op->nrules]; rc = parse_offload_policy_line(lno, line, llen, pd, r); if (rc != 0) { warnx("Error parsing line %d of \"%s\"", lno, fname); goto done; } op->nrules++; } free(line); if (!feof(fp)) { warn("Error while reading from file \"%s\" at line %d", fname, lno); rc = errno; goto done; } if (op->nrules == 0) { warnx("No valid rules found in \"%s\"", fname); rc = EINVAL; } done: pcap_close(pd); fclose(fp); if (rc != 0) { free_offload_policy(op); } return (rc); } static int load_offload_policy(int argc, const char *argv[]) { int rc = 0; const char *fname = argv[0]; struct t4_offload_policy op = {0}; if (argc != 1) { warnx("incorrect number of arguments."); return (EINVAL); } if (!strcmp(fname, "clear") || !strcmp(fname, "none")) { /* op.nrules is 0 and that means clear policy */ return (doit(CHELSIO_T4_SET_OFLD_POLICY, &op)); } rc = parse_offload_policy(fname, &op); if (rc != 0) { /* Error message displayed already */ return (EINVAL); } rc = doit(CHELSIO_T4_SET_OFLD_POLICY, &op); free_offload_policy(&op); return (rc); } static int run_cmd(int argc, const char *argv[]) { int rc = -1; const char *cmd = argv[0]; /* command */ argc--; argv++; if (!strcmp(cmd, "reg") || !strcmp(cmd, "reg32")) rc = register_io(argc, argv, 4); else if (!strcmp(cmd, "reg64")) rc = register_io(argc, argv, 8); else if (!strcmp(cmd, "regdump")) rc = dump_regs(argc, argv); else if (!strcmp(cmd, "filter")) rc = filter_cmd(argc, argv, 0); else if (!strcmp(cmd, "context")) rc = get_sge_context(argc, argv); else if (!strcmp(cmd, "loadfw")) rc = loadfw(argc, argv); else if (!strcmp(cmd, "memdump")) rc = memdump(argc, argv); else if (!strcmp(cmd, "tcb")) rc = read_tcb(argc, argv); else if (!strcmp(cmd, "i2c")) rc = read_i2c(argc, argv); else if (!strcmp(cmd, "clearstats")) rc = clearstats(argc, argv); else if (!strcmp(cmd, "tracer")) rc = tracer_cmd(argc, argv); else if (!strcmp(cmd, "modinfo")) rc = modinfo(argc, argv); else if (!strcmp(cmd, "sched-class")) rc = sched_class(argc, argv); else if (!strcmp(cmd, "sched-queue")) rc = sched_queue(argc, argv); else if (!strcmp(cmd, "loadcfg")) rc = loadcfg(argc, argv); else if (!strcmp(cmd, "loadboot")) rc = loadboot(argc, argv); else if (!strcmp(cmd, "loadboot-cfg")) rc = loadbootcfg(argc, argv); else if (!strcmp(cmd, "dumpstate")) rc = dumpstate(argc, argv); else if (!strcmp(cmd, "policy")) rc = load_offload_policy(argc, argv); else if (!strcmp(cmd, "hashfilter")) rc = filter_cmd(argc, argv, 1); else { rc = EINVAL; warnx("invalid command \"%s\"", cmd); } return (rc); } #define MAX_ARGS 15 static int run_cmd_loop(void) { int i, rc = 0; char buffer[128], *buf; const char *args[MAX_ARGS + 1]; /* * Simple loop: displays a "> " prompt and processes any input as a * cxgbetool command. You're supposed to enter only the part after * "cxgbetool t4nexX". Use "quit" or "exit" to exit. */ for (;;) { fprintf(stdout, "> "); fflush(stdout); buf = fgets(buffer, sizeof(buffer), stdin); if (buf == NULL) { if (ferror(stdin)) { warn("stdin error"); rc = errno; /* errno from fgets */ } break; } i = 0; while ((args[i] = strsep(&buf, " \t\n")) != NULL) { if (args[i][0] != 0 && ++i == MAX_ARGS) break; } args[i] = 0; if (i == 0) continue; /* skip empty line */ if (!strcmp(args[0], "quit") || !strcmp(args[0], "exit")) break; rc = run_cmd(i, args); } /* rc normally comes from the last command (not including quit/exit) */ return (rc); } int main(int argc, const char *argv[]) { int rc = -1; progname = argv[0]; if (argc == 2) { if (!strcmp(argv[1], "-h") || !strcmp(argv[1], "--help")) { usage(stdout); exit(0); } } if (argc < 3) { usage(stderr); exit(EINVAL); } nexus = argv[1]; chip_id = nexus[1] - '0'; /* progname and nexus */ argc -= 2; argv += 2; if (argc == 1 && !strcmp(argv[0], "stdio")) rc = run_cmd_loop(); else rc = run_cmd(argc, argv); return (rc); }