diff --git a/sys/netpfil/pf/pf_ioctl.c b/sys/netpfil/pf/pf_ioctl.c index 148a8a56f624..3a5a7601b51e 100644 --- a/sys/netpfil/pf/pf_ioctl.c +++ b/sys/netpfil/pf/pf_ioctl.c @@ -1,5576 +1,5577 @@ /*- * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 2001 Daniel Hartmeier * Copyright (c) 2002,2003 Henning Brauer * Copyright (c) 2012 Gleb Smirnoff * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * * Effort sponsored in part by the Defense Advanced Research Projects * Agency (DARPA) and Air Force Research Laboratory, Air Force * Materiel Command, USAF, under agreement number F30602-01-2-0537. * * $OpenBSD: pf_ioctl.c,v 1.213 2009/02/15 21:46:12 mbalmer Exp $ */ #include __FBSDID("$FreeBSD$"); #include "opt_inet.h" #include "opt_inet6.h" #include "opt_bpf.h" #include "opt_pf.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INET6 #include #endif /* INET6 */ #ifdef ALTQ #include #endif SDT_PROVIDER_DECLARE(pf); SDT_PROBE_DEFINE3(pf, ioctl, ioctl, error, "int", "int", "int"); SDT_PROBE_DEFINE3(pf, ioctl, function, error, "char *", "int", "int"); SDT_PROBE_DEFINE2(pf, ioctl, addrule, error, "int", "int"); SDT_PROBE_DEFINE2(pf, ioctl, nvchk, error, "int", "int"); static struct pf_kpool *pf_get_kpool(char *, u_int32_t, u_int8_t, u_int32_t, u_int8_t, u_int8_t, u_int8_t); static void pf_mv_kpool(struct pf_kpalist *, struct pf_kpalist *); static void pf_empty_kpool(struct pf_kpalist *); static int pfioctl(struct cdev *, u_long, caddr_t, int, struct thread *); #ifdef ALTQ static int pf_begin_altq(u_int32_t *); static int pf_rollback_altq(u_int32_t); static int pf_commit_altq(u_int32_t); static int pf_enable_altq(struct pf_altq *); static int pf_disable_altq(struct pf_altq *); static u_int32_t pf_qname2qid(char *); static void pf_qid_unref(u_int32_t); #endif /* ALTQ */ static int pf_begin_rules(u_int32_t *, int, const char *); static int pf_rollback_rules(u_int32_t, int, char *); static int pf_setup_pfsync_matching(struct pf_kruleset *); static void pf_hash_rule(MD5_CTX *, struct pf_krule *); static void pf_hash_rule_addr(MD5_CTX *, struct pf_rule_addr *); static int pf_commit_rules(u_int32_t, int, char *); static int pf_addr_setup(struct pf_kruleset *, struct pf_addr_wrap *, sa_family_t); static void pf_addr_copyout(struct pf_addr_wrap *); static void pf_src_node_copy(const struct pf_ksrc_node *, struct pf_src_node *); #ifdef ALTQ static int pf_export_kaltq(struct pf_altq *, struct pfioc_altq_v1 *, size_t); static int pf_import_kaltq(struct pfioc_altq_v1 *, struct pf_altq *, size_t); #endif /* ALTQ */ VNET_DEFINE(struct pf_krule, pf_default_rule); #ifdef ALTQ VNET_DEFINE_STATIC(int, pf_altq_running); #define V_pf_altq_running VNET(pf_altq_running) #endif #define TAGID_MAX 50000 struct pf_tagname { TAILQ_ENTRY(pf_tagname) namehash_entries; TAILQ_ENTRY(pf_tagname) taghash_entries; char name[PF_TAG_NAME_SIZE]; uint16_t tag; int ref; }; struct pf_tagset { TAILQ_HEAD(, pf_tagname) *namehash; TAILQ_HEAD(, pf_tagname) *taghash; unsigned int mask; uint32_t seed; BITSET_DEFINE(, TAGID_MAX) avail; }; VNET_DEFINE(struct pf_tagset, pf_tags); #define V_pf_tags VNET(pf_tags) static unsigned int pf_rule_tag_hashsize; #define PF_RULE_TAG_HASH_SIZE_DEFAULT 128 SYSCTL_UINT(_net_pf, OID_AUTO, rule_tag_hashsize, CTLFLAG_RDTUN, &pf_rule_tag_hashsize, PF_RULE_TAG_HASH_SIZE_DEFAULT, "Size of pf(4) rule tag hashtable"); #ifdef ALTQ VNET_DEFINE(struct pf_tagset, pf_qids); #define V_pf_qids VNET(pf_qids) static unsigned int pf_queue_tag_hashsize; #define PF_QUEUE_TAG_HASH_SIZE_DEFAULT 128 SYSCTL_UINT(_net_pf, OID_AUTO, queue_tag_hashsize, CTLFLAG_RDTUN, &pf_queue_tag_hashsize, PF_QUEUE_TAG_HASH_SIZE_DEFAULT, "Size of pf(4) queue tag hashtable"); #endif VNET_DEFINE(uma_zone_t, pf_tag_z); #define V_pf_tag_z VNET(pf_tag_z) static MALLOC_DEFINE(M_PFALTQ, "pf_altq", "pf(4) altq configuration db"); static MALLOC_DEFINE(M_PFRULE, "pf_rule", "pf(4) rules"); #if (PF_QNAME_SIZE != PF_TAG_NAME_SIZE) #error PF_QNAME_SIZE must be equal to PF_TAG_NAME_SIZE #endif static void pf_init_tagset(struct pf_tagset *, unsigned int *, unsigned int); static void pf_cleanup_tagset(struct pf_tagset *); static uint16_t tagname2hashindex(const struct pf_tagset *, const char *); static uint16_t tag2hashindex(const struct pf_tagset *, uint16_t); static u_int16_t tagname2tag(struct pf_tagset *, char *); static u_int16_t pf_tagname2tag(char *); static void tag_unref(struct pf_tagset *, u_int16_t); #define DPFPRINTF(n, x) if (V_pf_status.debug >= (n)) printf x struct cdev *pf_dev; /* * XXX - These are new and need to be checked when moveing to a new version */ static void pf_clear_all_states(void); static unsigned int pf_clear_states(const struct pf_kstate_kill *); static int pf_killstates(struct pf_kstate_kill *, unsigned int *); static int pf_killstates_row(struct pf_kstate_kill *, struct pf_idhash *); static int pf_killstates_nv(struct pfioc_nv *); static int pf_clearstates_nv(struct pfioc_nv *); static int pf_getstate(struct pfioc_nv *); static int pf_getstates(struct pfioc_nv *); static int pf_clear_tables(void); static void pf_clear_srcnodes(struct pf_ksrc_node *); static void pf_kill_srcnodes(struct pfioc_src_node_kill *); static int pf_keepcounters(struct pfioc_nv *); static void pf_tbladdr_copyout(struct pf_addr_wrap *); /* * Wrapper functions for pfil(9) hooks */ #ifdef INET static int pf_check_in(void *arg, struct mbuf **m, struct ifnet *ifp, int dir, int flags, struct inpcb *inp); static int pf_check_out(void *arg, struct mbuf **m, struct ifnet *ifp, int dir, int flags, struct inpcb *inp); #endif #ifdef INET6 static int pf_check6_in(void *arg, struct mbuf **m, struct ifnet *ifp, int dir, int flags, struct inpcb *inp); static int pf_check6_out(void *arg, struct mbuf **m, struct ifnet *ifp, int dir, int flags, struct inpcb *inp); #endif static int hook_pf(void); static int dehook_pf(void); static int shutdown_pf(void); static int pf_load(void); static void pf_unload(void); static struct cdevsw pf_cdevsw = { .d_ioctl = pfioctl, .d_name = PF_NAME, .d_version = D_VERSION, }; volatile VNET_DEFINE_STATIC(int, pf_pfil_hooked); #define V_pf_pfil_hooked VNET(pf_pfil_hooked) /* * We need a flag that is neither hooked nor running to know when * the VNET is "valid". We primarily need this to control (global) * external event, e.g., eventhandlers. */ VNET_DEFINE(int, pf_vnet_active); #define V_pf_vnet_active VNET(pf_vnet_active) int pf_end_threads; struct proc *pf_purge_proc; struct rmlock pf_rules_lock; struct sx pf_ioctl_lock; struct sx pf_end_lock; /* pfsync */ VNET_DEFINE(pfsync_state_import_t *, pfsync_state_import_ptr); VNET_DEFINE(pfsync_insert_state_t *, pfsync_insert_state_ptr); VNET_DEFINE(pfsync_update_state_t *, pfsync_update_state_ptr); VNET_DEFINE(pfsync_delete_state_t *, pfsync_delete_state_ptr); VNET_DEFINE(pfsync_clear_states_t *, pfsync_clear_states_ptr); VNET_DEFINE(pfsync_defer_t *, pfsync_defer_ptr); pfsync_detach_ifnet_t *pfsync_detach_ifnet_ptr; /* pflog */ pflog_packet_t *pflog_packet_ptr = NULL; extern u_long pf_ioctl_maxcount; static void pfattach_vnet(void) { u_int32_t *my_timeout = V_pf_default_rule.timeout; pf_initialize(); pfr_initialize(); pfi_initialize_vnet(); pf_normalize_init(); V_pf_limits[PF_LIMIT_STATES].limit = PFSTATE_HIWAT; V_pf_limits[PF_LIMIT_SRC_NODES].limit = PFSNODE_HIWAT; RB_INIT(&V_pf_anchors); pf_init_kruleset(&pf_main_ruleset); /* default rule should never be garbage collected */ V_pf_default_rule.entries.tqe_prev = &V_pf_default_rule.entries.tqe_next; #ifdef PF_DEFAULT_TO_DROP V_pf_default_rule.action = PF_DROP; #else V_pf_default_rule.action = PF_PASS; #endif V_pf_default_rule.nr = -1; V_pf_default_rule.rtableid = -1; V_pf_default_rule.evaluations = counter_u64_alloc(M_WAITOK); for (int i = 0; i < 2; i++) { V_pf_default_rule.packets[i] = counter_u64_alloc(M_WAITOK); V_pf_default_rule.bytes[i] = counter_u64_alloc(M_WAITOK); } V_pf_default_rule.states_cur = counter_u64_alloc(M_WAITOK); V_pf_default_rule.states_tot = counter_u64_alloc(M_WAITOK); V_pf_default_rule.src_nodes = counter_u64_alloc(M_WAITOK); /* initialize default timeouts */ my_timeout[PFTM_TCP_FIRST_PACKET] = PFTM_TCP_FIRST_PACKET_VAL; my_timeout[PFTM_TCP_OPENING] = PFTM_TCP_OPENING_VAL; my_timeout[PFTM_TCP_ESTABLISHED] = PFTM_TCP_ESTABLISHED_VAL; my_timeout[PFTM_TCP_CLOSING] = PFTM_TCP_CLOSING_VAL; my_timeout[PFTM_TCP_FIN_WAIT] = PFTM_TCP_FIN_WAIT_VAL; my_timeout[PFTM_TCP_CLOSED] = PFTM_TCP_CLOSED_VAL; my_timeout[PFTM_UDP_FIRST_PACKET] = PFTM_UDP_FIRST_PACKET_VAL; my_timeout[PFTM_UDP_SINGLE] = PFTM_UDP_SINGLE_VAL; my_timeout[PFTM_UDP_MULTIPLE] = PFTM_UDP_MULTIPLE_VAL; my_timeout[PFTM_ICMP_FIRST_PACKET] = PFTM_ICMP_FIRST_PACKET_VAL; my_timeout[PFTM_ICMP_ERROR_REPLY] = PFTM_ICMP_ERROR_REPLY_VAL; my_timeout[PFTM_OTHER_FIRST_PACKET] = PFTM_OTHER_FIRST_PACKET_VAL; my_timeout[PFTM_OTHER_SINGLE] = PFTM_OTHER_SINGLE_VAL; my_timeout[PFTM_OTHER_MULTIPLE] = PFTM_OTHER_MULTIPLE_VAL; my_timeout[PFTM_FRAG] = PFTM_FRAG_VAL; my_timeout[PFTM_INTERVAL] = PFTM_INTERVAL_VAL; my_timeout[PFTM_SRC_NODE] = PFTM_SRC_NODE_VAL; my_timeout[PFTM_TS_DIFF] = PFTM_TS_DIFF_VAL; my_timeout[PFTM_ADAPTIVE_START] = PFSTATE_ADAPT_START; my_timeout[PFTM_ADAPTIVE_END] = PFSTATE_ADAPT_END; bzero(&V_pf_status, sizeof(V_pf_status)); V_pf_status.debug = PF_DEBUG_URGENT; V_pf_pfil_hooked = 0; /* XXX do our best to avoid a conflict */ V_pf_status.hostid = arc4random(); for (int i = 0; i < PFRES_MAX; i++) V_pf_status.counters[i] = counter_u64_alloc(M_WAITOK); for (int i = 0; i < LCNT_MAX; i++) V_pf_status.lcounters[i] = counter_u64_alloc(M_WAITOK); for (int i = 0; i < FCNT_MAX; i++) V_pf_status.fcounters[i] = counter_u64_alloc(M_WAITOK); for (int i = 0; i < SCNT_MAX; i++) V_pf_status.scounters[i] = counter_u64_alloc(M_WAITOK); if (swi_add(&V_pf_swi_ie, "pf send", pf_intr, curvnet, SWI_NET, INTR_MPSAFE, &V_pf_swi_cookie) != 0) /* XXXGL: leaked all above. */ return; } static struct pf_kpool * pf_get_kpool(char *anchor, u_int32_t ticket, u_int8_t rule_action, u_int32_t rule_number, u_int8_t r_last, u_int8_t active, u_int8_t check_ticket) { struct pf_kruleset *ruleset; struct pf_krule *rule; int rs_num; ruleset = pf_find_kruleset(anchor); if (ruleset == NULL) return (NULL); rs_num = pf_get_ruleset_number(rule_action); if (rs_num >= PF_RULESET_MAX) return (NULL); if (active) { if (check_ticket && ticket != ruleset->rules[rs_num].active.ticket) return (NULL); if (r_last) rule = TAILQ_LAST(ruleset->rules[rs_num].active.ptr, pf_krulequeue); else rule = TAILQ_FIRST(ruleset->rules[rs_num].active.ptr); } else { if (check_ticket && ticket != ruleset->rules[rs_num].inactive.ticket) return (NULL); if (r_last) rule = TAILQ_LAST(ruleset->rules[rs_num].inactive.ptr, pf_krulequeue); else rule = TAILQ_FIRST(ruleset->rules[rs_num].inactive.ptr); } if (!r_last) { while ((rule != NULL) && (rule->nr != rule_number)) rule = TAILQ_NEXT(rule, entries); } if (rule == NULL) return (NULL); return (&rule->rpool); } static void pf_mv_kpool(struct pf_kpalist *poola, struct pf_kpalist *poolb) { struct pf_kpooladdr *mv_pool_pa; while ((mv_pool_pa = TAILQ_FIRST(poola)) != NULL) { TAILQ_REMOVE(poola, mv_pool_pa, entries); TAILQ_INSERT_TAIL(poolb, mv_pool_pa, entries); } } static void pf_empty_kpool(struct pf_kpalist *poola) { struct pf_kpooladdr *pa; while ((pa = TAILQ_FIRST(poola)) != NULL) { switch (pa->addr.type) { case PF_ADDR_DYNIFTL: pfi_dynaddr_remove(pa->addr.p.dyn); break; case PF_ADDR_TABLE: /* XXX: this could be unfinished pooladdr on pabuf */ if (pa->addr.p.tbl != NULL) pfr_detach_table(pa->addr.p.tbl); break; } if (pa->kif) pfi_kkif_unref(pa->kif); TAILQ_REMOVE(poola, pa, entries); free(pa, M_PFRULE); } } static void pf_unlink_rule(struct pf_krulequeue *rulequeue, struct pf_krule *rule) { PF_RULES_WASSERT(); TAILQ_REMOVE(rulequeue, rule, entries); PF_UNLNKDRULES_LOCK(); rule->rule_ref |= PFRULE_REFS; TAILQ_INSERT_TAIL(&V_pf_unlinked_rules, rule, entries); PF_UNLNKDRULES_UNLOCK(); } void pf_free_rule(struct pf_krule *rule) { PF_RULES_WASSERT(); if (rule->tag) tag_unref(&V_pf_tags, rule->tag); if (rule->match_tag) tag_unref(&V_pf_tags, rule->match_tag); #ifdef ALTQ if (rule->pqid != rule->qid) pf_qid_unref(rule->pqid); pf_qid_unref(rule->qid); #endif switch (rule->src.addr.type) { case PF_ADDR_DYNIFTL: pfi_dynaddr_remove(rule->src.addr.p.dyn); break; case PF_ADDR_TABLE: pfr_detach_table(rule->src.addr.p.tbl); break; } switch (rule->dst.addr.type) { case PF_ADDR_DYNIFTL: pfi_dynaddr_remove(rule->dst.addr.p.dyn); break; case PF_ADDR_TABLE: pfr_detach_table(rule->dst.addr.p.tbl); break; } if (rule->overload_tbl) pfr_detach_table(rule->overload_tbl); if (rule->kif) pfi_kkif_unref(rule->kif); pf_kanchor_remove(rule); pf_empty_kpool(&rule->rpool.list); pf_krule_free(rule); } static void pf_init_tagset(struct pf_tagset *ts, unsigned int *tunable_size, unsigned int default_size) { unsigned int i; unsigned int hashsize; if (*tunable_size == 0 || !powerof2(*tunable_size)) *tunable_size = default_size; hashsize = *tunable_size; ts->namehash = mallocarray(hashsize, sizeof(*ts->namehash), M_PFHASH, M_WAITOK); ts->taghash = mallocarray(hashsize, sizeof(*ts->taghash), M_PFHASH, M_WAITOK); ts->mask = hashsize - 1; ts->seed = arc4random(); for (i = 0; i < hashsize; i++) { TAILQ_INIT(&ts->namehash[i]); TAILQ_INIT(&ts->taghash[i]); } BIT_FILL(TAGID_MAX, &ts->avail); } static void pf_cleanup_tagset(struct pf_tagset *ts) { unsigned int i; unsigned int hashsize; struct pf_tagname *t, *tmp; /* * Only need to clean up one of the hashes as each tag is hashed * into each table. */ hashsize = ts->mask + 1; for (i = 0; i < hashsize; i++) TAILQ_FOREACH_SAFE(t, &ts->namehash[i], namehash_entries, tmp) uma_zfree(V_pf_tag_z, t); free(ts->namehash, M_PFHASH); free(ts->taghash, M_PFHASH); } static uint16_t tagname2hashindex(const struct pf_tagset *ts, const char *tagname) { size_t len; len = strnlen(tagname, PF_TAG_NAME_SIZE - 1); return (murmur3_32_hash(tagname, len, ts->seed) & ts->mask); } static uint16_t tag2hashindex(const struct pf_tagset *ts, uint16_t tag) { return (tag & ts->mask); } static u_int16_t tagname2tag(struct pf_tagset *ts, char *tagname) { struct pf_tagname *tag; u_int32_t index; u_int16_t new_tagid; PF_RULES_WASSERT(); index = tagname2hashindex(ts, tagname); TAILQ_FOREACH(tag, &ts->namehash[index], namehash_entries) if (strcmp(tagname, tag->name) == 0) { tag->ref++; return (tag->tag); } /* * new entry * * to avoid fragmentation, we do a linear search from the beginning * and take the first free slot we find. */ new_tagid = BIT_FFS(TAGID_MAX, &ts->avail); /* * Tags are 1-based, with valid tags in the range [1..TAGID_MAX]. * BIT_FFS() returns a 1-based bit number, with 0 indicating no bits * set. It may also return a bit number greater than TAGID_MAX due * to rounding of the number of bits in the vector up to a multiple * of the vector word size at declaration/allocation time. */ if ((new_tagid == 0) || (new_tagid > TAGID_MAX)) return (0); /* Mark the tag as in use. Bits are 0-based for BIT_CLR() */ BIT_CLR(TAGID_MAX, new_tagid - 1, &ts->avail); /* allocate and fill new struct pf_tagname */ tag = uma_zalloc(V_pf_tag_z, M_NOWAIT); if (tag == NULL) return (0); strlcpy(tag->name, tagname, sizeof(tag->name)); tag->tag = new_tagid; tag->ref = 1; /* Insert into namehash */ TAILQ_INSERT_TAIL(&ts->namehash[index], tag, namehash_entries); /* Insert into taghash */ index = tag2hashindex(ts, new_tagid); TAILQ_INSERT_TAIL(&ts->taghash[index], tag, taghash_entries); return (tag->tag); } static void tag_unref(struct pf_tagset *ts, u_int16_t tag) { struct pf_tagname *t; uint16_t index; PF_RULES_WASSERT(); index = tag2hashindex(ts, tag); TAILQ_FOREACH(t, &ts->taghash[index], taghash_entries) if (tag == t->tag) { if (--t->ref == 0) { TAILQ_REMOVE(&ts->taghash[index], t, taghash_entries); index = tagname2hashindex(ts, t->name); TAILQ_REMOVE(&ts->namehash[index], t, namehash_entries); /* Bits are 0-based for BIT_SET() */ BIT_SET(TAGID_MAX, tag - 1, &ts->avail); uma_zfree(V_pf_tag_z, t); } break; } } static u_int16_t pf_tagname2tag(char *tagname) { return (tagname2tag(&V_pf_tags, tagname)); } #ifdef ALTQ static u_int32_t pf_qname2qid(char *qname) { return ((u_int32_t)tagname2tag(&V_pf_qids, qname)); } static void pf_qid_unref(u_int32_t qid) { tag_unref(&V_pf_qids, (u_int16_t)qid); } static int pf_begin_altq(u_int32_t *ticket) { struct pf_altq *altq, *tmp; int error = 0; PF_RULES_WASSERT(); /* Purge the old altq lists */ TAILQ_FOREACH_SAFE(altq, V_pf_altq_ifs_inactive, entries, tmp) { if ((altq->local_flags & PFALTQ_FLAG_IF_REMOVED) == 0) { /* detach and destroy the discipline */ error = altq_remove(altq); } free(altq, M_PFALTQ); } TAILQ_INIT(V_pf_altq_ifs_inactive); TAILQ_FOREACH_SAFE(altq, V_pf_altqs_inactive, entries, tmp) { pf_qid_unref(altq->qid); free(altq, M_PFALTQ); } TAILQ_INIT(V_pf_altqs_inactive); if (error) return (error); *ticket = ++V_ticket_altqs_inactive; V_altqs_inactive_open = 1; return (0); } static int pf_rollback_altq(u_int32_t ticket) { struct pf_altq *altq, *tmp; int error = 0; PF_RULES_WASSERT(); if (!V_altqs_inactive_open || ticket != V_ticket_altqs_inactive) return (0); /* Purge the old altq lists */ TAILQ_FOREACH_SAFE(altq, V_pf_altq_ifs_inactive, entries, tmp) { if ((altq->local_flags & PFALTQ_FLAG_IF_REMOVED) == 0) { /* detach and destroy the discipline */ error = altq_remove(altq); } free(altq, M_PFALTQ); } TAILQ_INIT(V_pf_altq_ifs_inactive); TAILQ_FOREACH_SAFE(altq, V_pf_altqs_inactive, entries, tmp) { pf_qid_unref(altq->qid); free(altq, M_PFALTQ); } TAILQ_INIT(V_pf_altqs_inactive); V_altqs_inactive_open = 0; return (error); } static int pf_commit_altq(u_int32_t ticket) { struct pf_altqqueue *old_altqs, *old_altq_ifs; struct pf_altq *altq, *tmp; int err, error = 0; PF_RULES_WASSERT(); if (!V_altqs_inactive_open || ticket != V_ticket_altqs_inactive) return (EBUSY); /* swap altqs, keep the old. */ old_altqs = V_pf_altqs_active; old_altq_ifs = V_pf_altq_ifs_active; V_pf_altqs_active = V_pf_altqs_inactive; V_pf_altq_ifs_active = V_pf_altq_ifs_inactive; V_pf_altqs_inactive = old_altqs; V_pf_altq_ifs_inactive = old_altq_ifs; V_ticket_altqs_active = V_ticket_altqs_inactive; /* Attach new disciplines */ TAILQ_FOREACH(altq, V_pf_altq_ifs_active, entries) { if ((altq->local_flags & PFALTQ_FLAG_IF_REMOVED) == 0) { /* attach the discipline */ error = altq_pfattach(altq); if (error == 0 && V_pf_altq_running) error = pf_enable_altq(altq); if (error != 0) return (error); } } /* Purge the old altq lists */ TAILQ_FOREACH_SAFE(altq, V_pf_altq_ifs_inactive, entries, tmp) { if ((altq->local_flags & PFALTQ_FLAG_IF_REMOVED) == 0) { /* detach and destroy the discipline */ if (V_pf_altq_running) error = pf_disable_altq(altq); err = altq_pfdetach(altq); if (err != 0 && error == 0) error = err; err = altq_remove(altq); if (err != 0 && error == 0) error = err; } free(altq, M_PFALTQ); } TAILQ_INIT(V_pf_altq_ifs_inactive); TAILQ_FOREACH_SAFE(altq, V_pf_altqs_inactive, entries, tmp) { pf_qid_unref(altq->qid); free(altq, M_PFALTQ); } TAILQ_INIT(V_pf_altqs_inactive); V_altqs_inactive_open = 0; return (error); } static int pf_enable_altq(struct pf_altq *altq) { struct ifnet *ifp; struct tb_profile tb; int error = 0; if ((ifp = ifunit(altq->ifname)) == NULL) return (EINVAL); if (ifp->if_snd.altq_type != ALTQT_NONE) error = altq_enable(&ifp->if_snd); /* set tokenbucket regulator */ if (error == 0 && ifp != NULL && ALTQ_IS_ENABLED(&ifp->if_snd)) { tb.rate = altq->ifbandwidth; tb.depth = altq->tbrsize; error = tbr_set(&ifp->if_snd, &tb); } return (error); } static int pf_disable_altq(struct pf_altq *altq) { struct ifnet *ifp; struct tb_profile tb; int error; if ((ifp = ifunit(altq->ifname)) == NULL) return (EINVAL); /* * when the discipline is no longer referenced, it was overridden * by a new one. if so, just return. */ if (altq->altq_disc != ifp->if_snd.altq_disc) return (0); error = altq_disable(&ifp->if_snd); if (error == 0) { /* clear tokenbucket regulator */ tb.rate = 0; error = tbr_set(&ifp->if_snd, &tb); } return (error); } static int pf_altq_ifnet_event_add(struct ifnet *ifp, int remove, u_int32_t ticket, struct pf_altq *altq) { struct ifnet *ifp1; int error = 0; /* Deactivate the interface in question */ altq->local_flags &= ~PFALTQ_FLAG_IF_REMOVED; if ((ifp1 = ifunit(altq->ifname)) == NULL || (remove && ifp1 == ifp)) { altq->local_flags |= PFALTQ_FLAG_IF_REMOVED; } else { error = altq_add(ifp1, altq); if (ticket != V_ticket_altqs_inactive) error = EBUSY; if (error) free(altq, M_PFALTQ); } return (error); } void pf_altq_ifnet_event(struct ifnet *ifp, int remove) { struct pf_altq *a1, *a2, *a3; u_int32_t ticket; int error = 0; /* * No need to re-evaluate the configuration for events on interfaces * that do not support ALTQ, as it's not possible for such * interfaces to be part of the configuration. */ if (!ALTQ_IS_READY(&ifp->if_snd)) return; /* Interrupt userland queue modifications */ if (V_altqs_inactive_open) pf_rollback_altq(V_ticket_altqs_inactive); /* Start new altq ruleset */ if (pf_begin_altq(&ticket)) return; /* Copy the current active set */ TAILQ_FOREACH(a1, V_pf_altq_ifs_active, entries) { a2 = malloc(sizeof(*a2), M_PFALTQ, M_NOWAIT); if (a2 == NULL) { error = ENOMEM; break; } bcopy(a1, a2, sizeof(struct pf_altq)); error = pf_altq_ifnet_event_add(ifp, remove, ticket, a2); if (error) break; TAILQ_INSERT_TAIL(V_pf_altq_ifs_inactive, a2, entries); } if (error) goto out; TAILQ_FOREACH(a1, V_pf_altqs_active, entries) { a2 = malloc(sizeof(*a2), M_PFALTQ, M_NOWAIT); if (a2 == NULL) { error = ENOMEM; break; } bcopy(a1, a2, sizeof(struct pf_altq)); if ((a2->qid = pf_qname2qid(a2->qname)) == 0) { error = EBUSY; free(a2, M_PFALTQ); break; } a2->altq_disc = NULL; TAILQ_FOREACH(a3, V_pf_altq_ifs_inactive, entries) { if (strncmp(a3->ifname, a2->ifname, IFNAMSIZ) == 0) { a2->altq_disc = a3->altq_disc; break; } } error = pf_altq_ifnet_event_add(ifp, remove, ticket, a2); if (error) break; TAILQ_INSERT_TAIL(V_pf_altqs_inactive, a2, entries); } out: if (error != 0) pf_rollback_altq(ticket); else pf_commit_altq(ticket); } #endif /* ALTQ */ static int pf_begin_rules(u_int32_t *ticket, int rs_num, const char *anchor) { struct pf_kruleset *rs; struct pf_krule *rule; PF_RULES_WASSERT(); if (rs_num < 0 || rs_num >= PF_RULESET_MAX) return (EINVAL); rs = pf_find_or_create_kruleset(anchor); if (rs == NULL) return (EINVAL); while ((rule = TAILQ_FIRST(rs->rules[rs_num].inactive.ptr)) != NULL) { pf_unlink_rule(rs->rules[rs_num].inactive.ptr, rule); rs->rules[rs_num].inactive.rcount--; } *ticket = ++rs->rules[rs_num].inactive.ticket; rs->rules[rs_num].inactive.open = 1; return (0); } static int pf_rollback_rules(u_int32_t ticket, int rs_num, char *anchor) { struct pf_kruleset *rs; struct pf_krule *rule; PF_RULES_WASSERT(); if (rs_num < 0 || rs_num >= PF_RULESET_MAX) return (EINVAL); rs = pf_find_kruleset(anchor); if (rs == NULL || !rs->rules[rs_num].inactive.open || rs->rules[rs_num].inactive.ticket != ticket) return (0); while ((rule = TAILQ_FIRST(rs->rules[rs_num].inactive.ptr)) != NULL) { pf_unlink_rule(rs->rules[rs_num].inactive.ptr, rule); rs->rules[rs_num].inactive.rcount--; } rs->rules[rs_num].inactive.open = 0; return (0); } #define PF_MD5_UPD(st, elm) \ MD5Update(ctx, (u_int8_t *) &(st)->elm, sizeof((st)->elm)) #define PF_MD5_UPD_STR(st, elm) \ MD5Update(ctx, (u_int8_t *) (st)->elm, strlen((st)->elm)) #define PF_MD5_UPD_HTONL(st, elm, stor) do { \ (stor) = htonl((st)->elm); \ MD5Update(ctx, (u_int8_t *) &(stor), sizeof(u_int32_t));\ } while (0) #define PF_MD5_UPD_HTONS(st, elm, stor) do { \ (stor) = htons((st)->elm); \ MD5Update(ctx, (u_int8_t *) &(stor), sizeof(u_int16_t));\ } while (0) static void pf_hash_rule_addr(MD5_CTX *ctx, struct pf_rule_addr *pfr) { PF_MD5_UPD(pfr, addr.type); switch (pfr->addr.type) { case PF_ADDR_DYNIFTL: PF_MD5_UPD(pfr, addr.v.ifname); PF_MD5_UPD(pfr, addr.iflags); break; case PF_ADDR_TABLE: PF_MD5_UPD(pfr, addr.v.tblname); break; case PF_ADDR_ADDRMASK: /* XXX ignore af? */ PF_MD5_UPD(pfr, addr.v.a.addr.addr32); PF_MD5_UPD(pfr, addr.v.a.mask.addr32); break; } PF_MD5_UPD(pfr, port[0]); PF_MD5_UPD(pfr, port[1]); PF_MD5_UPD(pfr, neg); PF_MD5_UPD(pfr, port_op); } static void pf_hash_rule(MD5_CTX *ctx, struct pf_krule *rule) { u_int16_t x; u_int32_t y; pf_hash_rule_addr(ctx, &rule->src); pf_hash_rule_addr(ctx, &rule->dst); for (int i = 0; i < PF_RULE_MAX_LABEL_COUNT; i++) PF_MD5_UPD_STR(rule, label[i]); PF_MD5_UPD_STR(rule, ifname); PF_MD5_UPD_STR(rule, match_tagname); PF_MD5_UPD_HTONS(rule, match_tag, x); /* dup? */ PF_MD5_UPD_HTONL(rule, os_fingerprint, y); PF_MD5_UPD_HTONL(rule, prob, y); PF_MD5_UPD_HTONL(rule, uid.uid[0], y); PF_MD5_UPD_HTONL(rule, uid.uid[1], y); PF_MD5_UPD(rule, uid.op); PF_MD5_UPD_HTONL(rule, gid.gid[0], y); PF_MD5_UPD_HTONL(rule, gid.gid[1], y); PF_MD5_UPD(rule, gid.op); PF_MD5_UPD_HTONL(rule, rule_flag, y); PF_MD5_UPD(rule, action); PF_MD5_UPD(rule, direction); PF_MD5_UPD(rule, af); PF_MD5_UPD(rule, quick); PF_MD5_UPD(rule, ifnot); PF_MD5_UPD(rule, match_tag_not); PF_MD5_UPD(rule, natpass); PF_MD5_UPD(rule, keep_state); PF_MD5_UPD(rule, proto); PF_MD5_UPD(rule, type); PF_MD5_UPD(rule, code); PF_MD5_UPD(rule, flags); PF_MD5_UPD(rule, flagset); PF_MD5_UPD(rule, allow_opts); PF_MD5_UPD(rule, rt); PF_MD5_UPD(rule, tos); } static bool pf_krule_compare(struct pf_krule *a, struct pf_krule *b) { MD5_CTX ctx[2]; u_int8_t digest[2][PF_MD5_DIGEST_LENGTH]; MD5Init(&ctx[0]); MD5Init(&ctx[1]); pf_hash_rule(&ctx[0], a); pf_hash_rule(&ctx[1], b); MD5Final(digest[0], &ctx[0]); MD5Final(digest[1], &ctx[1]); return (memcmp(digest[0], digest[1], PF_MD5_DIGEST_LENGTH) == 0); } static int pf_commit_rules(u_int32_t ticket, int rs_num, char *anchor) { struct pf_kruleset *rs; struct pf_krule *rule, **old_array, *tail; struct pf_krulequeue *old_rules; int error; u_int32_t old_rcount; PF_RULES_WASSERT(); if (rs_num < 0 || rs_num >= PF_RULESET_MAX) return (EINVAL); rs = pf_find_kruleset(anchor); if (rs == NULL || !rs->rules[rs_num].inactive.open || ticket != rs->rules[rs_num].inactive.ticket) return (EBUSY); /* Calculate checksum for the main ruleset */ if (rs == &pf_main_ruleset) { error = pf_setup_pfsync_matching(rs); if (error != 0) return (error); } /* Swap rules, keep the old. */ old_rules = rs->rules[rs_num].active.ptr; old_rcount = rs->rules[rs_num].active.rcount; old_array = rs->rules[rs_num].active.ptr_array; rs->rules[rs_num].active.ptr = rs->rules[rs_num].inactive.ptr; rs->rules[rs_num].active.ptr_array = rs->rules[rs_num].inactive.ptr_array; rs->rules[rs_num].active.rcount = rs->rules[rs_num].inactive.rcount; /* Attempt to preserve counter information. */ if (V_pf_status.keep_counters) { TAILQ_FOREACH(rule, rs->rules[rs_num].active.ptr, entries) { tail = TAILQ_FIRST(old_rules); while ((tail != NULL) && ! pf_krule_compare(tail, rule)) tail = TAILQ_NEXT(tail, entries); if (tail != NULL) { counter_u64_add(rule->evaluations, counter_u64_fetch(tail->evaluations)); counter_u64_add(rule->packets[0], counter_u64_fetch(tail->packets[0])); counter_u64_add(rule->packets[1], counter_u64_fetch(tail->packets[1])); counter_u64_add(rule->bytes[0], counter_u64_fetch(tail->bytes[0])); counter_u64_add(rule->bytes[1], counter_u64_fetch(tail->bytes[1])); } } } rs->rules[rs_num].inactive.ptr = old_rules; rs->rules[rs_num].inactive.ptr_array = old_array; rs->rules[rs_num].inactive.rcount = old_rcount; rs->rules[rs_num].active.ticket = rs->rules[rs_num].inactive.ticket; pf_calc_skip_steps(rs->rules[rs_num].active.ptr); /* Purge the old rule list. */ while ((rule = TAILQ_FIRST(old_rules)) != NULL) pf_unlink_rule(old_rules, rule); if (rs->rules[rs_num].inactive.ptr_array) free(rs->rules[rs_num].inactive.ptr_array, M_TEMP); rs->rules[rs_num].inactive.ptr_array = NULL; rs->rules[rs_num].inactive.rcount = 0; rs->rules[rs_num].inactive.open = 0; pf_remove_if_empty_kruleset(rs); return (0); } static int pf_setup_pfsync_matching(struct pf_kruleset *rs) { MD5_CTX ctx; struct pf_krule *rule; int rs_cnt; u_int8_t digest[PF_MD5_DIGEST_LENGTH]; MD5Init(&ctx); for (rs_cnt = 0; rs_cnt < PF_RULESET_MAX; rs_cnt++) { /* XXX PF_RULESET_SCRUB as well? */ if (rs_cnt == PF_RULESET_SCRUB) continue; if (rs->rules[rs_cnt].inactive.ptr_array) free(rs->rules[rs_cnt].inactive.ptr_array, M_TEMP); rs->rules[rs_cnt].inactive.ptr_array = NULL; if (rs->rules[rs_cnt].inactive.rcount) { rs->rules[rs_cnt].inactive.ptr_array = malloc(sizeof(caddr_t) * rs->rules[rs_cnt].inactive.rcount, M_TEMP, M_NOWAIT); if (!rs->rules[rs_cnt].inactive.ptr_array) return (ENOMEM); } TAILQ_FOREACH(rule, rs->rules[rs_cnt].inactive.ptr, entries) { pf_hash_rule(&ctx, rule); (rs->rules[rs_cnt].inactive.ptr_array)[rule->nr] = rule; } } MD5Final(digest, &ctx); memcpy(V_pf_status.pf_chksum, digest, sizeof(V_pf_status.pf_chksum)); return (0); } static int pf_addr_setup(struct pf_kruleset *ruleset, struct pf_addr_wrap *addr, sa_family_t af) { int error = 0; switch (addr->type) { case PF_ADDR_TABLE: addr->p.tbl = pfr_attach_table(ruleset, addr->v.tblname); if (addr->p.tbl == NULL) error = ENOMEM; break; case PF_ADDR_DYNIFTL: error = pfi_dynaddr_setup(addr, af); break; } return (error); } static void pf_addr_copyout(struct pf_addr_wrap *addr) { switch (addr->type) { case PF_ADDR_DYNIFTL: pfi_dynaddr_copyout(addr); break; case PF_ADDR_TABLE: pf_tbladdr_copyout(addr); break; } } static void pf_src_node_copy(const struct pf_ksrc_node *in, struct pf_src_node *out) { int secs = time_uptime, diff; bzero(out, sizeof(struct pf_src_node)); bcopy(&in->addr, &out->addr, sizeof(struct pf_addr)); bcopy(&in->raddr, &out->raddr, sizeof(struct pf_addr)); if (in->rule.ptr != NULL) out->rule.nr = in->rule.ptr->nr; for (int i = 0; i < 2; i++) { out->bytes[i] = counter_u64_fetch(in->bytes[i]); out->packets[i] = counter_u64_fetch(in->packets[i]); } out->states = in->states; out->conn = in->conn; out->af = in->af; out->ruletype = in->ruletype; out->creation = secs - in->creation; if (out->expire > secs) out->expire -= secs; else out->expire = 0; /* Adjust the connection rate estimate. */ diff = secs - in->conn_rate.last; if (diff >= in->conn_rate.seconds) out->conn_rate.count = 0; else out->conn_rate.count -= in->conn_rate.count * diff / in->conn_rate.seconds; } #ifdef ALTQ /* * Handle export of struct pf_kaltq to user binaries that may be using any * version of struct pf_altq. */ static int pf_export_kaltq(struct pf_altq *q, struct pfioc_altq_v1 *pa, size_t ioc_size) { u_int32_t version; if (ioc_size == sizeof(struct pfioc_altq_v0)) version = 0; else version = pa->version; if (version > PFIOC_ALTQ_VERSION) return (EINVAL); #define ASSIGN(x) exported_q->x = q->x #define COPY(x) \ bcopy(&q->x, &exported_q->x, min(sizeof(q->x), sizeof(exported_q->x))) #define SATU16(x) (u_int32_t)uqmin((x), USHRT_MAX) #define SATU32(x) (u_int32_t)uqmin((x), UINT_MAX) switch (version) { case 0: { struct pf_altq_v0 *exported_q = &((struct pfioc_altq_v0 *)pa)->altq; COPY(ifname); ASSIGN(scheduler); ASSIGN(tbrsize); exported_q->tbrsize = SATU16(q->tbrsize); exported_q->ifbandwidth = SATU32(q->ifbandwidth); COPY(qname); COPY(parent); ASSIGN(parent_qid); exported_q->bandwidth = SATU32(q->bandwidth); ASSIGN(priority); ASSIGN(local_flags); ASSIGN(qlimit); ASSIGN(flags); if (q->scheduler == ALTQT_HFSC) { #define ASSIGN_OPT(x) exported_q->pq_u.hfsc_opts.x = q->pq_u.hfsc_opts.x #define ASSIGN_OPT_SATU32(x) exported_q->pq_u.hfsc_opts.x = \ SATU32(q->pq_u.hfsc_opts.x) ASSIGN_OPT_SATU32(rtsc_m1); ASSIGN_OPT(rtsc_d); ASSIGN_OPT_SATU32(rtsc_m2); ASSIGN_OPT_SATU32(lssc_m1); ASSIGN_OPT(lssc_d); ASSIGN_OPT_SATU32(lssc_m2); ASSIGN_OPT_SATU32(ulsc_m1); ASSIGN_OPT(ulsc_d); ASSIGN_OPT_SATU32(ulsc_m2); ASSIGN_OPT(flags); #undef ASSIGN_OPT #undef ASSIGN_OPT_SATU32 } else COPY(pq_u); ASSIGN(qid); break; } case 1: { struct pf_altq_v1 *exported_q = &((struct pfioc_altq_v1 *)pa)->altq; COPY(ifname); ASSIGN(scheduler); ASSIGN(tbrsize); ASSIGN(ifbandwidth); COPY(qname); COPY(parent); ASSIGN(parent_qid); ASSIGN(bandwidth); ASSIGN(priority); ASSIGN(local_flags); ASSIGN(qlimit); ASSIGN(flags); COPY(pq_u); ASSIGN(qid); break; } default: panic("%s: unhandled struct pfioc_altq version", __func__); break; } #undef ASSIGN #undef COPY #undef SATU16 #undef SATU32 return (0); } /* * Handle import to struct pf_kaltq of struct pf_altq from user binaries * that may be using any version of it. */ static int pf_import_kaltq(struct pfioc_altq_v1 *pa, struct pf_altq *q, size_t ioc_size) { u_int32_t version; if (ioc_size == sizeof(struct pfioc_altq_v0)) version = 0; else version = pa->version; if (version > PFIOC_ALTQ_VERSION) return (EINVAL); #define ASSIGN(x) q->x = imported_q->x #define COPY(x) \ bcopy(&imported_q->x, &q->x, min(sizeof(imported_q->x), sizeof(q->x))) switch (version) { case 0: { struct pf_altq_v0 *imported_q = &((struct pfioc_altq_v0 *)pa)->altq; COPY(ifname); ASSIGN(scheduler); ASSIGN(tbrsize); /* 16-bit -> 32-bit */ ASSIGN(ifbandwidth); /* 32-bit -> 64-bit */ COPY(qname); COPY(parent); ASSIGN(parent_qid); ASSIGN(bandwidth); /* 32-bit -> 64-bit */ ASSIGN(priority); ASSIGN(local_flags); ASSIGN(qlimit); ASSIGN(flags); if (imported_q->scheduler == ALTQT_HFSC) { #define ASSIGN_OPT(x) q->pq_u.hfsc_opts.x = imported_q->pq_u.hfsc_opts.x /* * The m1 and m2 parameters are being copied from * 32-bit to 64-bit. */ ASSIGN_OPT(rtsc_m1); ASSIGN_OPT(rtsc_d); ASSIGN_OPT(rtsc_m2); ASSIGN_OPT(lssc_m1); ASSIGN_OPT(lssc_d); ASSIGN_OPT(lssc_m2); ASSIGN_OPT(ulsc_m1); ASSIGN_OPT(ulsc_d); ASSIGN_OPT(ulsc_m2); ASSIGN_OPT(flags); #undef ASSIGN_OPT } else COPY(pq_u); ASSIGN(qid); break; } case 1: { struct pf_altq_v1 *imported_q = &((struct pfioc_altq_v1 *)pa)->altq; COPY(ifname); ASSIGN(scheduler); ASSIGN(tbrsize); ASSIGN(ifbandwidth); COPY(qname); COPY(parent); ASSIGN(parent_qid); ASSIGN(bandwidth); ASSIGN(priority); ASSIGN(local_flags); ASSIGN(qlimit); ASSIGN(flags); COPY(pq_u); ASSIGN(qid); break; } default: panic("%s: unhandled struct pfioc_altq version", __func__); break; } #undef ASSIGN #undef COPY return (0); } static struct pf_altq * pf_altq_get_nth_active(u_int32_t n) { struct pf_altq *altq; u_int32_t nr; nr = 0; TAILQ_FOREACH(altq, V_pf_altq_ifs_active, entries) { if (nr == n) return (altq); nr++; } TAILQ_FOREACH(altq, V_pf_altqs_active, entries) { if (nr == n) return (altq); nr++; } return (NULL); } #endif /* ALTQ */ void pf_krule_free(struct pf_krule *rule) { if (rule == NULL) return; counter_u64_free(rule->evaluations); for (int i = 0; i < 2; i++) { counter_u64_free(rule->packets[i]); counter_u64_free(rule->bytes[i]); } counter_u64_free(rule->states_cur); counter_u64_free(rule->states_tot); counter_u64_free(rule->src_nodes); free(rule, M_PFRULE); } static void pf_kpooladdr_to_pooladdr(const struct pf_kpooladdr *kpool, struct pf_pooladdr *pool) { bzero(pool, sizeof(*pool)); bcopy(&kpool->addr, &pool->addr, sizeof(pool->addr)); strlcpy(pool->ifname, kpool->ifname, sizeof(pool->ifname)); } static void pf_pooladdr_to_kpooladdr(const struct pf_pooladdr *pool, struct pf_kpooladdr *kpool) { bzero(kpool, sizeof(*kpool)); bcopy(&pool->addr, &kpool->addr, sizeof(kpool->addr)); strlcpy(kpool->ifname, pool->ifname, sizeof(kpool->ifname)); } static void pf_kpool_to_pool(const struct pf_kpool *kpool, struct pf_pool *pool) { bzero(pool, sizeof(*pool)); bcopy(&kpool->key, &pool->key, sizeof(pool->key)); bcopy(&kpool->counter, &pool->counter, sizeof(pool->counter)); pool->tblidx = kpool->tblidx; pool->proxy_port[0] = kpool->proxy_port[0]; pool->proxy_port[1] = kpool->proxy_port[1]; pool->opts = kpool->opts; } static int pf_pool_to_kpool(const struct pf_pool *pool, struct pf_kpool *kpool) { _Static_assert(sizeof(pool->key) == sizeof(kpool->key), ""); _Static_assert(sizeof(pool->counter) == sizeof(kpool->counter), ""); bzero(kpool, sizeof(*kpool)); bcopy(&pool->key, &kpool->key, sizeof(kpool->key)); bcopy(&pool->counter, &kpool->counter, sizeof(kpool->counter)); kpool->tblidx = pool->tblidx; kpool->proxy_port[0] = pool->proxy_port[0]; kpool->proxy_port[1] = pool->proxy_port[1]; kpool->opts = pool->opts; return (0); } static void pf_krule_to_rule(const struct pf_krule *krule, struct pf_rule *rule) { bzero(rule, sizeof(*rule)); bcopy(&krule->src, &rule->src, sizeof(rule->src)); bcopy(&krule->dst, &rule->dst, sizeof(rule->dst)); for (int i = 0; i < PF_SKIP_COUNT; ++i) { if (rule->skip[i].ptr == NULL) rule->skip[i].nr = -1; else rule->skip[i].nr = krule->skip[i].ptr->nr; } strlcpy(rule->label, krule->label[0], sizeof(rule->label)); strlcpy(rule->ifname, krule->ifname, sizeof(rule->ifname)); strlcpy(rule->qname, krule->qname, sizeof(rule->qname)); strlcpy(rule->pqname, krule->pqname, sizeof(rule->pqname)); strlcpy(rule->tagname, krule->tagname, sizeof(rule->tagname)); strlcpy(rule->match_tagname, krule->match_tagname, sizeof(rule->match_tagname)); strlcpy(rule->overload_tblname, krule->overload_tblname, sizeof(rule->overload_tblname)); pf_kpool_to_pool(&krule->rpool, &rule->rpool); rule->evaluations = counter_u64_fetch(krule->evaluations); for (int i = 0; i < 2; i++) { rule->packets[i] = counter_u64_fetch(krule->packets[i]); rule->bytes[i] = counter_u64_fetch(krule->bytes[i]); } /* kif, anchor, overload_tbl are not copied over. */ rule->os_fingerprint = krule->os_fingerprint; rule->rtableid = krule->rtableid; bcopy(krule->timeout, rule->timeout, sizeof(krule->timeout)); rule->max_states = krule->max_states; rule->max_src_nodes = krule->max_src_nodes; rule->max_src_states = krule->max_src_states; rule->max_src_conn = krule->max_src_conn; rule->max_src_conn_rate.limit = krule->max_src_conn_rate.limit; rule->max_src_conn_rate.seconds = krule->max_src_conn_rate.seconds; rule->qid = krule->qid; rule->pqid = krule->pqid; rule->nr = krule->nr; rule->prob = krule->prob; rule->cuid = krule->cuid; rule->cpid = krule->cpid; rule->return_icmp = krule->return_icmp; rule->return_icmp6 = krule->return_icmp6; rule->max_mss = krule->max_mss; rule->tag = krule->tag; rule->match_tag = krule->match_tag; rule->scrub_flags = krule->scrub_flags; bcopy(&krule->uid, &rule->uid, sizeof(krule->uid)); bcopy(&krule->gid, &rule->gid, sizeof(krule->gid)); rule->rule_flag = krule->rule_flag; rule->action = krule->action; rule->direction = krule->direction; rule->log = krule->log; rule->logif = krule->logif; rule->quick = krule->quick; rule->ifnot = krule->ifnot; rule->match_tag_not = krule->match_tag_not; rule->natpass = krule->natpass; rule->keep_state = krule->keep_state; rule->af = krule->af; rule->proto = krule->proto; rule->type = krule->type; rule->code = krule->code; rule->flags = krule->flags; rule->flagset = krule->flagset; rule->min_ttl = krule->min_ttl; rule->allow_opts = krule->allow_opts; rule->rt = krule->rt; rule->return_ttl = krule->return_ttl; rule->tos = krule->tos; rule->set_tos = krule->set_tos; rule->anchor_relative = krule->anchor_relative; rule->anchor_wildcard = krule->anchor_wildcard; rule->flush = krule->flush; rule->prio = krule->prio; rule->set_prio[0] = krule->set_prio[0]; rule->set_prio[1] = krule->set_prio[1]; bcopy(&krule->divert, &rule->divert, sizeof(krule->divert)); rule->u_states_cur = counter_u64_fetch(krule->states_cur); rule->u_states_tot = counter_u64_fetch(krule->states_tot); rule->u_src_nodes = counter_u64_fetch(krule->src_nodes); } static int pf_rule_to_krule(const struct pf_rule *rule, struct pf_krule *krule) { int ret; #ifndef INET if (rule->af == AF_INET) { return (EAFNOSUPPORT); } #endif /* INET */ #ifndef INET6 if (rule->af == AF_INET6) { return (EAFNOSUPPORT); } #endif /* INET6 */ ret = pf_check_rule_addr(&rule->src); if (ret != 0) return (ret); ret = pf_check_rule_addr(&rule->dst); if (ret != 0) return (ret); bzero(krule, sizeof(*krule)); bcopy(&rule->src, &krule->src, sizeof(rule->src)); bcopy(&rule->dst, &krule->dst, sizeof(rule->dst)); strlcpy(krule->label[0], rule->label, sizeof(rule->label)); strlcpy(krule->ifname, rule->ifname, sizeof(rule->ifname)); strlcpy(krule->qname, rule->qname, sizeof(rule->qname)); strlcpy(krule->pqname, rule->pqname, sizeof(rule->pqname)); strlcpy(krule->tagname, rule->tagname, sizeof(rule->tagname)); strlcpy(krule->match_tagname, rule->match_tagname, sizeof(rule->match_tagname)); strlcpy(krule->overload_tblname, rule->overload_tblname, sizeof(rule->overload_tblname)); ret = pf_pool_to_kpool(&rule->rpool, &krule->rpool); if (ret != 0) return (ret); /* Don't allow userspace to set evaulations, packets or bytes. */ /* kif, anchor, overload_tbl are not copied over. */ krule->os_fingerprint = rule->os_fingerprint; krule->rtableid = rule->rtableid; bcopy(rule->timeout, krule->timeout, sizeof(krule->timeout)); krule->max_states = rule->max_states; krule->max_src_nodes = rule->max_src_nodes; krule->max_src_states = rule->max_src_states; krule->max_src_conn = rule->max_src_conn; krule->max_src_conn_rate.limit = rule->max_src_conn_rate.limit; krule->max_src_conn_rate.seconds = rule->max_src_conn_rate.seconds; krule->qid = rule->qid; krule->pqid = rule->pqid; krule->nr = rule->nr; krule->prob = rule->prob; krule->cuid = rule->cuid; krule->cpid = rule->cpid; krule->return_icmp = rule->return_icmp; krule->return_icmp6 = rule->return_icmp6; krule->max_mss = rule->max_mss; krule->tag = rule->tag; krule->match_tag = rule->match_tag; krule->scrub_flags = rule->scrub_flags; bcopy(&rule->uid, &krule->uid, sizeof(krule->uid)); bcopy(&rule->gid, &krule->gid, sizeof(krule->gid)); krule->rule_flag = rule->rule_flag; krule->action = rule->action; krule->direction = rule->direction; krule->log = rule->log; krule->logif = rule->logif; krule->quick = rule->quick; krule->ifnot = rule->ifnot; krule->match_tag_not = rule->match_tag_not; krule->natpass = rule->natpass; krule->keep_state = rule->keep_state; krule->af = rule->af; krule->proto = rule->proto; krule->type = rule->type; krule->code = rule->code; krule->flags = rule->flags; krule->flagset = rule->flagset; krule->min_ttl = rule->min_ttl; krule->allow_opts = rule->allow_opts; krule->rt = rule->rt; krule->return_ttl = rule->return_ttl; krule->tos = rule->tos; krule->set_tos = rule->set_tos; krule->anchor_relative = rule->anchor_relative; krule->anchor_wildcard = rule->anchor_wildcard; krule->flush = rule->flush; krule->prio = rule->prio; krule->set_prio[0] = rule->set_prio[0]; krule->set_prio[1] = rule->set_prio[1]; bcopy(&rule->divert, &krule->divert, sizeof(krule->divert)); return (0); } static bool pf_label_match(const struct pf_krule *rule, const char *label) { int i = 0; while (*rule->label[i]) { if (strcmp(rule->label[i], label) == 0) return (true); i++; } return (false); } static unsigned int pf_kill_matching_state(struct pf_state_key_cmp *key, int dir) { struct pf_state *match; int more = 0; unsigned int killed = 0; /* Call with unlocked hashrow */ match = pf_find_state_all(key, dir, &more); if (match && !more) { pf_unlink_state(match, 0); killed++; } return (killed); } static int pf_killstates_row(struct pf_kstate_kill *psk, struct pf_idhash *ih) { struct pf_state *s; struct pf_state_key *sk; struct pf_addr *srcaddr, *dstaddr; struct pf_state_key_cmp match_key; int idx, killed = 0; unsigned int dir; u_int16_t srcport, dstport; struct pfi_kkif *kif; relock_DIOCKILLSTATES: PF_HASHROW_LOCK(ih); LIST_FOREACH(s, &ih->states, entry) { /* For floating states look at the original kif. */ kif = s->kif == V_pfi_all ? s->orig_kif : s->kif; sk = s->key[PF_SK_WIRE]; if (s->direction == PF_OUT) { srcaddr = &sk->addr[1]; dstaddr = &sk->addr[0]; srcport = sk->port[1]; dstport = sk->port[0]; } else { srcaddr = &sk->addr[0]; dstaddr = &sk->addr[1]; srcport = sk->port[0]; dstport = sk->port[1]; } if (psk->psk_af && sk->af != psk->psk_af) continue; if (psk->psk_proto && psk->psk_proto != sk->proto) continue; if (! PF_MATCHA(psk->psk_src.neg, &psk->psk_src.addr.v.a.addr, &psk->psk_src.addr.v.a.mask, srcaddr, sk->af)) continue; if (! PF_MATCHA(psk->psk_dst.neg, &psk->psk_dst.addr.v.a.addr, &psk->psk_dst.addr.v.a.mask, dstaddr, sk->af)) continue; if (! PF_MATCHA(psk->psk_rt_addr.neg, &psk->psk_rt_addr.addr.v.a.addr, &psk->psk_rt_addr.addr.v.a.mask, &s->rt_addr, sk->af)) continue; if (psk->psk_src.port_op != 0 && ! pf_match_port(psk->psk_src.port_op, psk->psk_src.port[0], psk->psk_src.port[1], srcport)) continue; if (psk->psk_dst.port_op != 0 && ! pf_match_port(psk->psk_dst.port_op, psk->psk_dst.port[0], psk->psk_dst.port[1], dstport)) continue; if (psk->psk_label[0] && ! pf_label_match(s->rule.ptr, psk->psk_label)) continue; if (psk->psk_ifname[0] && strcmp(psk->psk_ifname, kif->pfik_name)) continue; if (psk->psk_kill_match) { /* Create the key to find matching states, with lock * held. */ bzero(&match_key, sizeof(match_key)); if (s->direction == PF_OUT) { dir = PF_IN; idx = PF_SK_STACK; } else { dir = PF_OUT; idx = PF_SK_WIRE; } match_key.af = s->key[idx]->af; match_key.proto = s->key[idx]->proto; PF_ACPY(&match_key.addr[0], &s->key[idx]->addr[1], match_key.af); match_key.port[0] = s->key[idx]->port[1]; PF_ACPY(&match_key.addr[1], &s->key[idx]->addr[0], match_key.af); match_key.port[1] = s->key[idx]->port[0]; } pf_unlink_state(s, PF_ENTER_LOCKED); killed++; if (psk->psk_kill_match) killed += pf_kill_matching_state(&match_key, dir); goto relock_DIOCKILLSTATES; } PF_HASHROW_UNLOCK(ih); return (killed); } static int pf_state_kill_to_kstate_kill(const struct pfioc_state_kill *psk, struct pf_kstate_kill *kill) { bzero(kill, sizeof(*kill)); bcopy(&psk->psk_pfcmp, &kill->psk_pfcmp, sizeof(kill->psk_pfcmp)); kill->psk_af = psk->psk_af; kill->psk_proto = psk->psk_proto; bcopy(&psk->psk_src, &kill->psk_src, sizeof(kill->psk_src)); bcopy(&psk->psk_dst, &kill->psk_dst, sizeof(kill->psk_dst)); strlcpy(kill->psk_ifname, psk->psk_ifname, sizeof(kill->psk_ifname)); strlcpy(kill->psk_label, psk->psk_label, sizeof(kill->psk_label)); return (0); } static int pf_ioctl_addrule(struct pf_krule *rule, uint32_t ticket, uint32_t pool_ticket, const char *anchor, const char *anchor_call, struct thread *td) { struct pf_kruleset *ruleset; struct pf_krule *tail; struct pf_kpooladdr *pa; struct pfi_kkif *kif = NULL; int rs_num; int error = 0; if ((rule->return_icmp >> 8) > ICMP_MAXTYPE) { error = EINVAL; goto errout_unlocked; } #define ERROUT(x) ERROUT_FUNCTION(errout, x) if (rule->ifname[0]) kif = pf_kkif_create(M_WAITOK); rule->evaluations = counter_u64_alloc(M_WAITOK); for (int i = 0; i < 2; i++) { rule->packets[i] = counter_u64_alloc(M_WAITOK); rule->bytes[i] = counter_u64_alloc(M_WAITOK); } rule->states_cur = counter_u64_alloc(M_WAITOK); rule->states_tot = counter_u64_alloc(M_WAITOK); rule->src_nodes = counter_u64_alloc(M_WAITOK); rule->cuid = td->td_ucred->cr_ruid; rule->cpid = td->td_proc ? td->td_proc->p_pid : 0; TAILQ_INIT(&rule->rpool.list); PF_RULES_WLOCK(); ruleset = pf_find_kruleset(anchor); if (ruleset == NULL) ERROUT(EINVAL); rs_num = pf_get_ruleset_number(rule->action); if (rs_num >= PF_RULESET_MAX) ERROUT(EINVAL); if (ticket != ruleset->rules[rs_num].inactive.ticket) { DPFPRINTF(PF_DEBUG_MISC, ("ticket: %d != [%d]%d\n", ticket, rs_num, ruleset->rules[rs_num].inactive.ticket)); ERROUT(EBUSY); } if (pool_ticket != V_ticket_pabuf) { DPFPRINTF(PF_DEBUG_MISC, ("pool_ticket: %d != %d\n", pool_ticket, V_ticket_pabuf)); ERROUT(EBUSY); } tail = TAILQ_LAST(ruleset->rules[rs_num].inactive.ptr, pf_krulequeue); if (tail) rule->nr = tail->nr + 1; else rule->nr = 0; if (rule->ifname[0]) { rule->kif = pfi_kkif_attach(kif, rule->ifname); kif = NULL; pfi_kkif_ref(rule->kif); } else rule->kif = NULL; if (rule->rtableid > 0 && rule->rtableid >= rt_numfibs) error = EBUSY; #ifdef ALTQ /* set queue IDs */ if (rule->qname[0] != 0) { if ((rule->qid = pf_qname2qid(rule->qname)) == 0) error = EBUSY; else if (rule->pqname[0] != 0) { if ((rule->pqid = pf_qname2qid(rule->pqname)) == 0) error = EBUSY; } else rule->pqid = rule->qid; } #endif if (rule->tagname[0]) if ((rule->tag = pf_tagname2tag(rule->tagname)) == 0) error = EBUSY; if (rule->match_tagname[0]) if ((rule->match_tag = pf_tagname2tag(rule->match_tagname)) == 0) error = EBUSY; if (rule->rt && !rule->direction) error = EINVAL; if (!rule->log) rule->logif = 0; if (rule->logif >= PFLOGIFS_MAX) error = EINVAL; if (pf_addr_setup(ruleset, &rule->src.addr, rule->af)) error = ENOMEM; if (pf_addr_setup(ruleset, &rule->dst.addr, rule->af)) error = ENOMEM; if (pf_kanchor_setup(rule, ruleset, anchor_call)) error = EINVAL; if (rule->scrub_flags & PFSTATE_SETPRIO && (rule->set_prio[0] > PF_PRIO_MAX || rule->set_prio[1] > PF_PRIO_MAX)) error = EINVAL; TAILQ_FOREACH(pa, &V_pf_pabuf, entries) if (pa->addr.type == PF_ADDR_TABLE) { pa->addr.p.tbl = pfr_attach_table(ruleset, pa->addr.v.tblname); if (pa->addr.p.tbl == NULL) error = ENOMEM; } rule->overload_tbl = NULL; if (rule->overload_tblname[0]) { if ((rule->overload_tbl = pfr_attach_table(ruleset, rule->overload_tblname)) == NULL) error = EINVAL; else rule->overload_tbl->pfrkt_flags |= PFR_TFLAG_ACTIVE; } pf_mv_kpool(&V_pf_pabuf, &rule->rpool.list); if (((((rule->action == PF_NAT) || (rule->action == PF_RDR) || (rule->action == PF_BINAT)) && rule->anchor == NULL) || (rule->rt > PF_NOPFROUTE)) && (TAILQ_FIRST(&rule->rpool.list) == NULL)) error = EINVAL; if (error) { pf_free_rule(rule); rule = NULL; ERROUT(error); } rule->rpool.cur = TAILQ_FIRST(&rule->rpool.list); counter_u64_zero(rule->evaluations); for (int i = 0; i < 2; i++) { counter_u64_zero(rule->packets[i]); counter_u64_zero(rule->bytes[i]); } TAILQ_INSERT_TAIL(ruleset->rules[rs_num].inactive.ptr, rule, entries); ruleset->rules[rs_num].inactive.rcount++; PF_RULES_WUNLOCK(); return (0); #undef ERROUT errout: PF_RULES_WUNLOCK(); errout_unlocked: pf_kkif_free(kif); pf_krule_free(rule); return (error); } static int pfioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flags, struct thread *td) { int error = 0; PF_RULES_RLOCK_TRACKER; #define ERROUT_IOCTL(target, x) \ do { \ error = (x); \ SDT_PROBE3(pf, ioctl, ioctl, error, cmd, error, __LINE__); \ goto target; \ } while (0) /* XXX keep in sync with switch() below */ if (securelevel_gt(td->td_ucred, 2)) switch (cmd) { case DIOCGETRULES: case DIOCGETRULE: case DIOCGETRULENV: case DIOCGETADDRS: case DIOCGETADDR: case DIOCGETSTATE: case DIOCGETSTATENV: case DIOCSETSTATUSIF: case DIOCGETSTATUS: case DIOCCLRSTATUS: case DIOCNATLOOK: case DIOCSETDEBUG: case DIOCGETSTATES: case DIOCGETSTATESNV: case DIOCGETTIMEOUT: case DIOCCLRRULECTRS: case DIOCGETLIMIT: case DIOCGETALTQSV0: case DIOCGETALTQSV1: case DIOCGETALTQV0: case DIOCGETALTQV1: case DIOCGETQSTATSV0: case DIOCGETQSTATSV1: case DIOCGETRULESETS: case DIOCGETRULESET: case DIOCRGETTABLES: case DIOCRGETTSTATS: case DIOCRCLRTSTATS: case DIOCRCLRADDRS: case DIOCRADDADDRS: case DIOCRDELADDRS: case DIOCRSETADDRS: case DIOCRGETADDRS: case DIOCRGETASTATS: case DIOCRCLRASTATS: case DIOCRTSTADDRS: case DIOCOSFPGET: case DIOCGETSRCNODES: case DIOCCLRSRCNODES: case DIOCIGETIFACES: case DIOCGIFSPEEDV0: case DIOCGIFSPEEDV1: case DIOCSETIFFLAG: case DIOCCLRIFFLAG: break; case DIOCRCLRTABLES: case DIOCRADDTABLES: case DIOCRDELTABLES: case DIOCRSETTFLAGS: if (((struct pfioc_table *)addr)->pfrio_flags & PFR_FLAG_DUMMY) break; /* dummy operation ok */ return (EPERM); default: return (EPERM); } if (!(flags & FWRITE)) switch (cmd) { case DIOCGETRULES: case DIOCGETADDRS: case DIOCGETADDR: case DIOCGETSTATE: case DIOCGETSTATENV: case DIOCGETSTATUS: case DIOCGETSTATES: case DIOCGETSTATESNV: case DIOCGETTIMEOUT: case DIOCGETLIMIT: case DIOCGETALTQSV0: case DIOCGETALTQSV1: case DIOCGETALTQV0: case DIOCGETALTQV1: case DIOCGETQSTATSV0: case DIOCGETQSTATSV1: case DIOCGETRULESETS: case DIOCGETRULESET: case DIOCNATLOOK: case DIOCRGETTABLES: case DIOCRGETTSTATS: case DIOCRGETADDRS: case DIOCRGETASTATS: case DIOCRTSTADDRS: case DIOCOSFPGET: case DIOCGETSRCNODES: case DIOCIGETIFACES: case DIOCGIFSPEEDV1: case DIOCGIFSPEEDV0: case DIOCGETRULENV: break; case DIOCRCLRTABLES: case DIOCRADDTABLES: case DIOCRDELTABLES: case DIOCRCLRTSTATS: case DIOCRCLRADDRS: case DIOCRADDADDRS: case DIOCRDELADDRS: case DIOCRSETADDRS: case DIOCRSETTFLAGS: if (((struct pfioc_table *)addr)->pfrio_flags & PFR_FLAG_DUMMY) { flags |= FWRITE; /* need write lock for dummy */ break; /* dummy operation ok */ } return (EACCES); case DIOCGETRULE: if (((struct pfioc_rule *)addr)->action == PF_GET_CLR_CNTR) return (EACCES); break; default: return (EACCES); } CURVNET_SET(TD_TO_VNET(td)); switch (cmd) { case DIOCSTART: sx_xlock(&pf_ioctl_lock); if (V_pf_status.running) error = EEXIST; else { int cpu; error = hook_pf(); if (error) { DPFPRINTF(PF_DEBUG_MISC, ("pf: pfil registration failed\n")); break; } V_pf_status.running = 1; V_pf_status.since = time_second; CPU_FOREACH(cpu) V_pf_stateid[cpu] = time_second; DPFPRINTF(PF_DEBUG_MISC, ("pf: started\n")); } break; case DIOCSTOP: sx_xlock(&pf_ioctl_lock); if (!V_pf_status.running) error = ENOENT; else { V_pf_status.running = 0; error = dehook_pf(); if (error) { V_pf_status.running = 1; DPFPRINTF(PF_DEBUG_MISC, ("pf: pfil unregistration failed\n")); } V_pf_status.since = time_second; DPFPRINTF(PF_DEBUG_MISC, ("pf: stopped\n")); } break; case DIOCADDRULENV: { struct pfioc_nv *nv = (struct pfioc_nv *)addr; nvlist_t *nvl = NULL; void *nvlpacked = NULL; struct pf_krule *rule = NULL; const char *anchor = "", *anchor_call = ""; uint32_t ticket = 0, pool_ticket = 0; #define ERROUT(x) ERROUT_IOCTL(DIOCADDRULENV_error, x) if (nv->len > pf_ioctl_maxcount) ERROUT(ENOMEM); nvlpacked = malloc(nv->len, M_TEMP, M_WAITOK); error = copyin(nv->data, nvlpacked, nv->len); if (error) ERROUT(error); nvl = nvlist_unpack(nvlpacked, nv->len, 0); if (nvl == NULL) ERROUT(EBADMSG); if (! nvlist_exists_number(nvl, "ticket")) ERROUT(EINVAL); ticket = nvlist_get_number(nvl, "ticket"); if (! nvlist_exists_number(nvl, "pool_ticket")) ERROUT(EINVAL); pool_ticket = nvlist_get_number(nvl, "pool_ticket"); if (! nvlist_exists_nvlist(nvl, "rule")) ERROUT(EINVAL); rule = malloc(sizeof(*rule), M_PFRULE, M_WAITOK | M_ZERO); error = pf_nvrule_to_krule(nvlist_get_nvlist(nvl, "rule"), rule); if (error) ERROUT(error); if (nvlist_exists_string(nvl, "anchor")) anchor = nvlist_get_string(nvl, "anchor"); if (nvlist_exists_string(nvl, "anchor_call")) anchor_call = nvlist_get_string(nvl, "anchor_call"); if ((error = nvlist_error(nvl))) ERROUT(error); /* Frees rule on error */ error = pf_ioctl_addrule(rule, ticket, pool_ticket, anchor, anchor_call, td); nvlist_destroy(nvl); free(nvlpacked, M_TEMP); break; #undef ERROUT DIOCADDRULENV_error: pf_krule_free(rule); nvlist_destroy(nvl); free(nvlpacked, M_TEMP); break; } case DIOCADDRULE: { struct pfioc_rule *pr = (struct pfioc_rule *)addr; struct pf_krule *rule; rule = malloc(sizeof(*rule), M_PFRULE, M_WAITOK); error = pf_rule_to_krule(&pr->rule, rule); if (error != 0) { free(rule, M_PFRULE); break; } pr->anchor[sizeof(pr->anchor) - 1] = 0; /* Frees rule on error */ error = pf_ioctl_addrule(rule, pr->ticket, pr->pool_ticket, pr->anchor, pr->anchor_call, td); break; } case DIOCGETRULES: { struct pfioc_rule *pr = (struct pfioc_rule *)addr; struct pf_kruleset *ruleset; struct pf_krule *tail; int rs_num; PF_RULES_WLOCK(); pr->anchor[sizeof(pr->anchor) - 1] = 0; ruleset = pf_find_kruleset(pr->anchor); if (ruleset == NULL) { PF_RULES_WUNLOCK(); error = EINVAL; break; } rs_num = pf_get_ruleset_number(pr->rule.action); if (rs_num >= PF_RULESET_MAX) { PF_RULES_WUNLOCK(); error = EINVAL; break; } tail = TAILQ_LAST(ruleset->rules[rs_num].active.ptr, pf_krulequeue); if (tail) pr->nr = tail->nr + 1; else pr->nr = 0; pr->ticket = ruleset->rules[rs_num].active.ticket; PF_RULES_WUNLOCK(); break; } case DIOCGETRULE: { struct pfioc_rule *pr = (struct pfioc_rule *)addr; struct pf_kruleset *ruleset; struct pf_krule *rule; int rs_num; PF_RULES_WLOCK(); pr->anchor[sizeof(pr->anchor) - 1] = 0; ruleset = pf_find_kruleset(pr->anchor); if (ruleset == NULL) { PF_RULES_WUNLOCK(); error = EINVAL; break; } rs_num = pf_get_ruleset_number(pr->rule.action); if (rs_num >= PF_RULESET_MAX) { PF_RULES_WUNLOCK(); error = EINVAL; break; } if (pr->ticket != ruleset->rules[rs_num].active.ticket) { PF_RULES_WUNLOCK(); error = EBUSY; break; } rule = TAILQ_FIRST(ruleset->rules[rs_num].active.ptr); while ((rule != NULL) && (rule->nr != pr->nr)) rule = TAILQ_NEXT(rule, entries); if (rule == NULL) { PF_RULES_WUNLOCK(); error = EBUSY; break; } pf_krule_to_rule(rule, &pr->rule); if (pf_kanchor_copyout(ruleset, rule, pr)) { PF_RULES_WUNLOCK(); error = EBUSY; break; } pf_addr_copyout(&pr->rule.src.addr); pf_addr_copyout(&pr->rule.dst.addr); if (pr->action == PF_GET_CLR_CNTR) { counter_u64_zero(rule->evaluations); for (int i = 0; i < 2; i++) { counter_u64_zero(rule->packets[i]); counter_u64_zero(rule->bytes[i]); } counter_u64_zero(rule->states_tot); } PF_RULES_WUNLOCK(); break; } case DIOCGETRULENV: { struct pfioc_nv *nv = (struct pfioc_nv *)addr; nvlist_t *nvrule = NULL; nvlist_t *nvl = NULL; struct pf_kruleset *ruleset; struct pf_krule *rule; void *nvlpacked = NULL; int rs_num, nr; bool clear_counter = false; #define ERROUT(x) ERROUT_IOCTL(DIOCGETRULENV_error, x) if (nv->len > pf_ioctl_maxcount) ERROUT(ENOMEM); /* Copy the request in */ - nvlpacked = malloc(nv->len, M_TEMP, M_WAITOK); + nvlpacked = malloc(nv->len, M_NVLIST, M_WAITOK); if (nvlpacked == NULL) ERROUT(ENOMEM); error = copyin(nv->data, nvlpacked, nv->len); if (error) ERROUT(error); nvl = nvlist_unpack(nvlpacked, nv->len, 0); if (nvl == NULL) ERROUT(EBADMSG); if (! nvlist_exists_string(nvl, "anchor")) ERROUT(EBADMSG); if (! nvlist_exists_number(nvl, "ruleset")) ERROUT(EBADMSG); if (! nvlist_exists_number(nvl, "ticket")) ERROUT(EBADMSG); if (! nvlist_exists_number(nvl, "nr")) ERROUT(EBADMSG); if (nvlist_exists_bool(nvl, "clear_counter")) clear_counter = nvlist_get_bool(nvl, "clear_counter"); if (clear_counter && !(flags & FWRITE)) ERROUT(EACCES); nr = nvlist_get_number(nvl, "nr"); PF_RULES_WLOCK(); ruleset = pf_find_kruleset(nvlist_get_string(nvl, "anchor")); if (ruleset == NULL) { PF_RULES_WUNLOCK(); ERROUT(ENOENT); } rs_num = pf_get_ruleset_number(nvlist_get_number(nvl, "ruleset")); if (rs_num >= PF_RULESET_MAX) { PF_RULES_WUNLOCK(); ERROUT(EINVAL); } if (nvlist_get_number(nvl, "ticket") != ruleset->rules[rs_num].active.ticket) { PF_RULES_WUNLOCK(); ERROUT(EBUSY); } if ((error = nvlist_error(nvl))) { PF_RULES_WUNLOCK(); ERROUT(error); } rule = TAILQ_FIRST(ruleset->rules[rs_num].active.ptr); while ((rule != NULL) && (rule->nr != nr)) rule = TAILQ_NEXT(rule, entries); if (rule == NULL) { PF_RULES_WUNLOCK(); ERROUT(EBUSY); } nvrule = pf_krule_to_nvrule(rule); nvlist_destroy(nvl); nvl = nvlist_create(0); if (nvl == NULL) { PF_RULES_WUNLOCK(); ERROUT(ENOMEM); } nvlist_add_number(nvl, "nr", nr); nvlist_add_nvlist(nvl, "rule", nvrule); nvlist_destroy(nvrule); nvrule = NULL; if (pf_kanchor_nvcopyout(ruleset, rule, nvl)) { PF_RULES_WUNLOCK(); ERROUT(EBUSY); } - free(nvlpacked, M_TEMP); + free(nvlpacked, M_NVLIST); nvlpacked = nvlist_pack(nvl, &nv->len); if (nvlpacked == NULL) { PF_RULES_WUNLOCK(); ERROUT(ENOMEM); } if (nv->size == 0) { PF_RULES_WUNLOCK(); ERROUT(0); } else if (nv->size < nv->len) { PF_RULES_WUNLOCK(); ERROUT(ENOSPC); } error = copyout(nvlpacked, nv->data, nv->len); if (clear_counter) { counter_u64_zero(rule->evaluations); for (int i = 0; i < 2; i++) { counter_u64_zero(rule->packets[i]); counter_u64_zero(rule->bytes[i]); } counter_u64_zero(rule->states_tot); } PF_RULES_WUNLOCK(); #undef ERROUT DIOCGETRULENV_error: - free(nvlpacked, M_TEMP); + free(nvlpacked, M_NVLIST); nvlist_destroy(nvrule); nvlist_destroy(nvl); break; } case DIOCCHANGERULE: { struct pfioc_rule *pcr = (struct pfioc_rule *)addr; struct pf_kruleset *ruleset; struct pf_krule *oldrule = NULL, *newrule = NULL; struct pfi_kkif *kif = NULL; struct pf_kpooladdr *pa; u_int32_t nr = 0; int rs_num; if (pcr->action < PF_CHANGE_ADD_HEAD || pcr->action > PF_CHANGE_GET_TICKET) { error = EINVAL; break; } if (pcr->rule.return_icmp >> 8 > ICMP_MAXTYPE) { error = EINVAL; break; } if (pcr->action != PF_CHANGE_REMOVE) { newrule = malloc(sizeof(*newrule), M_PFRULE, M_WAITOK); error = pf_rule_to_krule(&pcr->rule, newrule); if (error != 0) { free(newrule, M_PFRULE); break; } if (newrule->ifname[0]) kif = pf_kkif_create(M_WAITOK); newrule->evaluations = counter_u64_alloc(M_WAITOK); for (int i = 0; i < 2; i++) { newrule->packets[i] = counter_u64_alloc(M_WAITOK); newrule->bytes[i] = counter_u64_alloc(M_WAITOK); } newrule->states_cur = counter_u64_alloc(M_WAITOK); newrule->states_tot = counter_u64_alloc(M_WAITOK); newrule->src_nodes = counter_u64_alloc(M_WAITOK); newrule->cuid = td->td_ucred->cr_ruid; newrule->cpid = td->td_proc ? td->td_proc->p_pid : 0; TAILQ_INIT(&newrule->rpool.list); } #define ERROUT(x) { error = (x); goto DIOCCHANGERULE_error; } PF_RULES_WLOCK(); if (!(pcr->action == PF_CHANGE_REMOVE || pcr->action == PF_CHANGE_GET_TICKET) && pcr->pool_ticket != V_ticket_pabuf) ERROUT(EBUSY); ruleset = pf_find_kruleset(pcr->anchor); if (ruleset == NULL) ERROUT(EINVAL); rs_num = pf_get_ruleset_number(pcr->rule.action); if (rs_num >= PF_RULESET_MAX) ERROUT(EINVAL); if (pcr->action == PF_CHANGE_GET_TICKET) { pcr->ticket = ++ruleset->rules[rs_num].active.ticket; ERROUT(0); } else if (pcr->ticket != ruleset->rules[rs_num].active.ticket) ERROUT(EINVAL); if (pcr->action != PF_CHANGE_REMOVE) { if (newrule->ifname[0]) { newrule->kif = pfi_kkif_attach(kif, newrule->ifname); kif = NULL; pfi_kkif_ref(newrule->kif); } else newrule->kif = NULL; if (newrule->rtableid > 0 && newrule->rtableid >= rt_numfibs) error = EBUSY; #ifdef ALTQ /* set queue IDs */ if (newrule->qname[0] != 0) { if ((newrule->qid = pf_qname2qid(newrule->qname)) == 0) error = EBUSY; else if (newrule->pqname[0] != 0) { if ((newrule->pqid = pf_qname2qid(newrule->pqname)) == 0) error = EBUSY; } else newrule->pqid = newrule->qid; } #endif /* ALTQ */ if (newrule->tagname[0]) if ((newrule->tag = pf_tagname2tag(newrule->tagname)) == 0) error = EBUSY; if (newrule->match_tagname[0]) if ((newrule->match_tag = pf_tagname2tag( newrule->match_tagname)) == 0) error = EBUSY; if (newrule->rt && !newrule->direction) error = EINVAL; if (!newrule->log) newrule->logif = 0; if (newrule->logif >= PFLOGIFS_MAX) error = EINVAL; if (pf_addr_setup(ruleset, &newrule->src.addr, newrule->af)) error = ENOMEM; if (pf_addr_setup(ruleset, &newrule->dst.addr, newrule->af)) error = ENOMEM; if (pf_kanchor_setup(newrule, ruleset, pcr->anchor_call)) error = EINVAL; TAILQ_FOREACH(pa, &V_pf_pabuf, entries) if (pa->addr.type == PF_ADDR_TABLE) { pa->addr.p.tbl = pfr_attach_table(ruleset, pa->addr.v.tblname); if (pa->addr.p.tbl == NULL) error = ENOMEM; } newrule->overload_tbl = NULL; if (newrule->overload_tblname[0]) { if ((newrule->overload_tbl = pfr_attach_table( ruleset, newrule->overload_tblname)) == NULL) error = EINVAL; else newrule->overload_tbl->pfrkt_flags |= PFR_TFLAG_ACTIVE; } pf_mv_kpool(&V_pf_pabuf, &newrule->rpool.list); if (((((newrule->action == PF_NAT) || (newrule->action == PF_RDR) || (newrule->action == PF_BINAT) || (newrule->rt > PF_NOPFROUTE)) && !newrule->anchor)) && (TAILQ_FIRST(&newrule->rpool.list) == NULL)) error = EINVAL; if (error) { pf_free_rule(newrule); PF_RULES_WUNLOCK(); break; } newrule->rpool.cur = TAILQ_FIRST(&newrule->rpool.list); } pf_empty_kpool(&V_pf_pabuf); if (pcr->action == PF_CHANGE_ADD_HEAD) oldrule = TAILQ_FIRST( ruleset->rules[rs_num].active.ptr); else if (pcr->action == PF_CHANGE_ADD_TAIL) oldrule = TAILQ_LAST( ruleset->rules[rs_num].active.ptr, pf_krulequeue); else { oldrule = TAILQ_FIRST( ruleset->rules[rs_num].active.ptr); while ((oldrule != NULL) && (oldrule->nr != pcr->nr)) oldrule = TAILQ_NEXT(oldrule, entries); if (oldrule == NULL) { if (newrule != NULL) pf_free_rule(newrule); PF_RULES_WUNLOCK(); error = EINVAL; break; } } if (pcr->action == PF_CHANGE_REMOVE) { pf_unlink_rule(ruleset->rules[rs_num].active.ptr, oldrule); ruleset->rules[rs_num].active.rcount--; } else { if (oldrule == NULL) TAILQ_INSERT_TAIL( ruleset->rules[rs_num].active.ptr, newrule, entries); else if (pcr->action == PF_CHANGE_ADD_HEAD || pcr->action == PF_CHANGE_ADD_BEFORE) TAILQ_INSERT_BEFORE(oldrule, newrule, entries); else TAILQ_INSERT_AFTER( ruleset->rules[rs_num].active.ptr, oldrule, newrule, entries); ruleset->rules[rs_num].active.rcount++; } nr = 0; TAILQ_FOREACH(oldrule, ruleset->rules[rs_num].active.ptr, entries) oldrule->nr = nr++; ruleset->rules[rs_num].active.ticket++; pf_calc_skip_steps(ruleset->rules[rs_num].active.ptr); pf_remove_if_empty_kruleset(ruleset); PF_RULES_WUNLOCK(); break; #undef ERROUT DIOCCHANGERULE_error: PF_RULES_WUNLOCK(); pf_krule_free(newrule); pf_kkif_free(kif); break; } case DIOCCLRSTATES: { struct pfioc_state_kill *psk = (struct pfioc_state_kill *)addr; struct pf_kstate_kill kill; error = pf_state_kill_to_kstate_kill(psk, &kill); if (error) break; psk->psk_killed = pf_clear_states(&kill); break; } case DIOCCLRSTATESNV: { error = pf_clearstates_nv((struct pfioc_nv *)addr); break; } case DIOCKILLSTATES: { struct pfioc_state_kill *psk = (struct pfioc_state_kill *)addr; struct pf_kstate_kill kill; error = pf_state_kill_to_kstate_kill(psk, &kill); if (error) break; psk->psk_killed = 0; error = pf_killstates(&kill, &psk->psk_killed); break; } case DIOCKILLSTATESNV: { error = pf_killstates_nv((struct pfioc_nv *)addr); break; } case DIOCADDSTATE: { struct pfioc_state *ps = (struct pfioc_state *)addr; struct pfsync_state *sp = &ps->state; if (sp->timeout >= PFTM_MAX) { error = EINVAL; break; } if (V_pfsync_state_import_ptr != NULL) { PF_RULES_RLOCK(); error = V_pfsync_state_import_ptr(sp, PFSYNC_SI_IOCTL); PF_RULES_RUNLOCK(); } else error = EOPNOTSUPP; break; } case DIOCGETSTATE: { struct pfioc_state *ps = (struct pfioc_state *)addr; struct pf_state *s; s = pf_find_state_byid(ps->state.id, ps->state.creatorid); if (s == NULL) { error = ENOENT; break; } pfsync_state_export(&ps->state, s); PF_STATE_UNLOCK(s); break; } case DIOCGETSTATENV: { error = pf_getstate((struct pfioc_nv *)addr); break; } case DIOCGETSTATES: { struct pfioc_states *ps = (struct pfioc_states *)addr; struct pf_state *s; struct pfsync_state *pstore, *p; int i, nr; if (ps->ps_len <= 0) { nr = uma_zone_get_cur(V_pf_state_z); ps->ps_len = sizeof(struct pfsync_state) * nr; break; } p = pstore = malloc(ps->ps_len, M_TEMP, M_WAITOK | M_ZERO); nr = 0; for (i = 0; i <= pf_hashmask; i++) { struct pf_idhash *ih = &V_pf_idhash[i]; PF_HASHROW_LOCK(ih); LIST_FOREACH(s, &ih->states, entry) { if (s->timeout == PFTM_UNLINKED) continue; if ((nr+1) * sizeof(*p) > ps->ps_len) { PF_HASHROW_UNLOCK(ih); goto DIOCGETSTATES_full; } pfsync_state_export(p, s); p++; nr++; } PF_HASHROW_UNLOCK(ih); } DIOCGETSTATES_full: error = copyout(pstore, ps->ps_states, sizeof(struct pfsync_state) * nr); if (error) { free(pstore, M_TEMP); break; } ps->ps_len = sizeof(struct pfsync_state) * nr; free(pstore, M_TEMP); break; } case DIOCGETSTATESNV: { error = pf_getstates((struct pfioc_nv *)addr); break; } case DIOCGETSTATUS: { struct pf_status *s = (struct pf_status *)addr; PF_RULES_RLOCK(); s->running = V_pf_status.running; s->since = V_pf_status.since; s->debug = V_pf_status.debug; s->hostid = V_pf_status.hostid; s->states = V_pf_status.states; s->src_nodes = V_pf_status.src_nodes; for (int i = 0; i < PFRES_MAX; i++) s->counters[i] = counter_u64_fetch(V_pf_status.counters[i]); for (int i = 0; i < LCNT_MAX; i++) s->lcounters[i] = counter_u64_fetch(V_pf_status.lcounters[i]); for (int i = 0; i < FCNT_MAX; i++) s->fcounters[i] = counter_u64_fetch(V_pf_status.fcounters[i]); for (int i = 0; i < SCNT_MAX; i++) s->scounters[i] = counter_u64_fetch(V_pf_status.scounters[i]); bcopy(V_pf_status.ifname, s->ifname, IFNAMSIZ); bcopy(V_pf_status.pf_chksum, s->pf_chksum, PF_MD5_DIGEST_LENGTH); pfi_update_status(s->ifname, s); PF_RULES_RUNLOCK(); break; } case DIOCSETSTATUSIF: { struct pfioc_if *pi = (struct pfioc_if *)addr; if (pi->ifname[0] == 0) { bzero(V_pf_status.ifname, IFNAMSIZ); break; } PF_RULES_WLOCK(); strlcpy(V_pf_status.ifname, pi->ifname, IFNAMSIZ); PF_RULES_WUNLOCK(); break; } case DIOCCLRSTATUS: { PF_RULES_WLOCK(); for (int i = 0; i < PFRES_MAX; i++) counter_u64_zero(V_pf_status.counters[i]); for (int i = 0; i < FCNT_MAX; i++) counter_u64_zero(V_pf_status.fcounters[i]); for (int i = 0; i < SCNT_MAX; i++) counter_u64_zero(V_pf_status.scounters[i]); for (int i = 0; i < LCNT_MAX; i++) counter_u64_zero(V_pf_status.lcounters[i]); V_pf_status.since = time_second; if (*V_pf_status.ifname) pfi_update_status(V_pf_status.ifname, NULL); PF_RULES_WUNLOCK(); break; } case DIOCNATLOOK: { struct pfioc_natlook *pnl = (struct pfioc_natlook *)addr; struct pf_state_key *sk; struct pf_state *state; struct pf_state_key_cmp key; int m = 0, direction = pnl->direction; int sidx, didx; /* NATLOOK src and dst are reversed, so reverse sidx/didx */ sidx = (direction == PF_IN) ? 1 : 0; didx = (direction == PF_IN) ? 0 : 1; if (!pnl->proto || PF_AZERO(&pnl->saddr, pnl->af) || PF_AZERO(&pnl->daddr, pnl->af) || ((pnl->proto == IPPROTO_TCP || pnl->proto == IPPROTO_UDP) && (!pnl->dport || !pnl->sport))) error = EINVAL; else { bzero(&key, sizeof(key)); key.af = pnl->af; key.proto = pnl->proto; PF_ACPY(&key.addr[sidx], &pnl->saddr, pnl->af); key.port[sidx] = pnl->sport; PF_ACPY(&key.addr[didx], &pnl->daddr, pnl->af); key.port[didx] = pnl->dport; state = pf_find_state_all(&key, direction, &m); if (m > 1) error = E2BIG; /* more than one state */ else if (state != NULL) { /* XXXGL: not locked read */ sk = state->key[sidx]; PF_ACPY(&pnl->rsaddr, &sk->addr[sidx], sk->af); pnl->rsport = sk->port[sidx]; PF_ACPY(&pnl->rdaddr, &sk->addr[didx], sk->af); pnl->rdport = sk->port[didx]; } else error = ENOENT; } break; } case DIOCSETTIMEOUT: { struct pfioc_tm *pt = (struct pfioc_tm *)addr; int old; if (pt->timeout < 0 || pt->timeout >= PFTM_MAX || pt->seconds < 0) { error = EINVAL; break; } PF_RULES_WLOCK(); old = V_pf_default_rule.timeout[pt->timeout]; if (pt->timeout == PFTM_INTERVAL && pt->seconds == 0) pt->seconds = 1; V_pf_default_rule.timeout[pt->timeout] = pt->seconds; if (pt->timeout == PFTM_INTERVAL && pt->seconds < old) wakeup(pf_purge_thread); pt->seconds = old; PF_RULES_WUNLOCK(); break; } case DIOCGETTIMEOUT: { struct pfioc_tm *pt = (struct pfioc_tm *)addr; if (pt->timeout < 0 || pt->timeout >= PFTM_MAX) { error = EINVAL; break; } PF_RULES_RLOCK(); pt->seconds = V_pf_default_rule.timeout[pt->timeout]; PF_RULES_RUNLOCK(); break; } case DIOCGETLIMIT: { struct pfioc_limit *pl = (struct pfioc_limit *)addr; if (pl->index < 0 || pl->index >= PF_LIMIT_MAX) { error = EINVAL; break; } PF_RULES_RLOCK(); pl->limit = V_pf_limits[pl->index].limit; PF_RULES_RUNLOCK(); break; } case DIOCSETLIMIT: { struct pfioc_limit *pl = (struct pfioc_limit *)addr; int old_limit; PF_RULES_WLOCK(); if (pl->index < 0 || pl->index >= PF_LIMIT_MAX || V_pf_limits[pl->index].zone == NULL) { PF_RULES_WUNLOCK(); error = EINVAL; break; } uma_zone_set_max(V_pf_limits[pl->index].zone, pl->limit); old_limit = V_pf_limits[pl->index].limit; V_pf_limits[pl->index].limit = pl->limit; pl->limit = old_limit; PF_RULES_WUNLOCK(); break; } case DIOCSETDEBUG: { u_int32_t *level = (u_int32_t *)addr; PF_RULES_WLOCK(); V_pf_status.debug = *level; PF_RULES_WUNLOCK(); break; } case DIOCCLRRULECTRS: { /* obsoleted by DIOCGETRULE with action=PF_GET_CLR_CNTR */ struct pf_kruleset *ruleset = &pf_main_ruleset; struct pf_krule *rule; PF_RULES_WLOCK(); TAILQ_FOREACH(rule, ruleset->rules[PF_RULESET_FILTER].active.ptr, entries) { counter_u64_zero(rule->evaluations); for (int i = 0; i < 2; i++) { counter_u64_zero(rule->packets[i]); counter_u64_zero(rule->bytes[i]); } } PF_RULES_WUNLOCK(); break; } case DIOCGIFSPEEDV0: case DIOCGIFSPEEDV1: { struct pf_ifspeed_v1 *psp = (struct pf_ifspeed_v1 *)addr; struct pf_ifspeed_v1 ps; struct ifnet *ifp; if (psp->ifname[0] != 0) { /* Can we completely trust user-land? */ strlcpy(ps.ifname, psp->ifname, IFNAMSIZ); ifp = ifunit(ps.ifname); if (ifp != NULL) { psp->baudrate32 = (u_int32_t)uqmin(ifp->if_baudrate, UINT_MAX); if (cmd == DIOCGIFSPEEDV1) psp->baudrate = ifp->if_baudrate; } else error = EINVAL; } else error = EINVAL; break; } #ifdef ALTQ case DIOCSTARTALTQ: { struct pf_altq *altq; PF_RULES_WLOCK(); /* enable all altq interfaces on active list */ TAILQ_FOREACH(altq, V_pf_altq_ifs_active, entries) { if ((altq->local_flags & PFALTQ_FLAG_IF_REMOVED) == 0) { error = pf_enable_altq(altq); if (error != 0) break; } } if (error == 0) V_pf_altq_running = 1; PF_RULES_WUNLOCK(); DPFPRINTF(PF_DEBUG_MISC, ("altq: started\n")); break; } case DIOCSTOPALTQ: { struct pf_altq *altq; PF_RULES_WLOCK(); /* disable all altq interfaces on active list */ TAILQ_FOREACH(altq, V_pf_altq_ifs_active, entries) { if ((altq->local_flags & PFALTQ_FLAG_IF_REMOVED) == 0) { error = pf_disable_altq(altq); if (error != 0) break; } } if (error == 0) V_pf_altq_running = 0; PF_RULES_WUNLOCK(); DPFPRINTF(PF_DEBUG_MISC, ("altq: stopped\n")); break; } case DIOCADDALTQV0: case DIOCADDALTQV1: { struct pfioc_altq_v1 *pa = (struct pfioc_altq_v1 *)addr; struct pf_altq *altq, *a; struct ifnet *ifp; altq = malloc(sizeof(*altq), M_PFALTQ, M_WAITOK | M_ZERO); error = pf_import_kaltq(pa, altq, IOCPARM_LEN(cmd)); if (error) break; altq->local_flags = 0; PF_RULES_WLOCK(); if (pa->ticket != V_ticket_altqs_inactive) { PF_RULES_WUNLOCK(); free(altq, M_PFALTQ); error = EBUSY; break; } /* * if this is for a queue, find the discipline and * copy the necessary fields */ if (altq->qname[0] != 0) { if ((altq->qid = pf_qname2qid(altq->qname)) == 0) { PF_RULES_WUNLOCK(); error = EBUSY; free(altq, M_PFALTQ); break; } altq->altq_disc = NULL; TAILQ_FOREACH(a, V_pf_altq_ifs_inactive, entries) { if (strncmp(a->ifname, altq->ifname, IFNAMSIZ) == 0) { altq->altq_disc = a->altq_disc; break; } } } if ((ifp = ifunit(altq->ifname)) == NULL) altq->local_flags |= PFALTQ_FLAG_IF_REMOVED; else error = altq_add(ifp, altq); if (error) { PF_RULES_WUNLOCK(); free(altq, M_PFALTQ); break; } if (altq->qname[0] != 0) TAILQ_INSERT_TAIL(V_pf_altqs_inactive, altq, entries); else TAILQ_INSERT_TAIL(V_pf_altq_ifs_inactive, altq, entries); /* version error check done on import above */ pf_export_kaltq(altq, pa, IOCPARM_LEN(cmd)); PF_RULES_WUNLOCK(); break; } case DIOCGETALTQSV0: case DIOCGETALTQSV1: { struct pfioc_altq_v1 *pa = (struct pfioc_altq_v1 *)addr; struct pf_altq *altq; PF_RULES_RLOCK(); pa->nr = 0; TAILQ_FOREACH(altq, V_pf_altq_ifs_active, entries) pa->nr++; TAILQ_FOREACH(altq, V_pf_altqs_active, entries) pa->nr++; pa->ticket = V_ticket_altqs_active; PF_RULES_RUNLOCK(); break; } case DIOCGETALTQV0: case DIOCGETALTQV1: { struct pfioc_altq_v1 *pa = (struct pfioc_altq_v1 *)addr; struct pf_altq *altq; PF_RULES_RLOCK(); if (pa->ticket != V_ticket_altqs_active) { PF_RULES_RUNLOCK(); error = EBUSY; break; } altq = pf_altq_get_nth_active(pa->nr); if (altq == NULL) { PF_RULES_RUNLOCK(); error = EBUSY; break; } pf_export_kaltq(altq, pa, IOCPARM_LEN(cmd)); PF_RULES_RUNLOCK(); break; } case DIOCCHANGEALTQV0: case DIOCCHANGEALTQV1: /* CHANGEALTQ not supported yet! */ error = ENODEV; break; case DIOCGETQSTATSV0: case DIOCGETQSTATSV1: { struct pfioc_qstats_v1 *pq = (struct pfioc_qstats_v1 *)addr; struct pf_altq *altq; int nbytes; u_int32_t version; PF_RULES_RLOCK(); if (pq->ticket != V_ticket_altqs_active) { PF_RULES_RUNLOCK(); error = EBUSY; break; } nbytes = pq->nbytes; altq = pf_altq_get_nth_active(pq->nr); if (altq == NULL) { PF_RULES_RUNLOCK(); error = EBUSY; break; } if ((altq->local_flags & PFALTQ_FLAG_IF_REMOVED) != 0) { PF_RULES_RUNLOCK(); error = ENXIO; break; } PF_RULES_RUNLOCK(); if (cmd == DIOCGETQSTATSV0) version = 0; /* DIOCGETQSTATSV0 means stats struct v0 */ else version = pq->version; error = altq_getqstats(altq, pq->buf, &nbytes, version); if (error == 0) { pq->scheduler = altq->scheduler; pq->nbytes = nbytes; } break; } #endif /* ALTQ */ case DIOCBEGINADDRS: { struct pfioc_pooladdr *pp = (struct pfioc_pooladdr *)addr; PF_RULES_WLOCK(); pf_empty_kpool(&V_pf_pabuf); pp->ticket = ++V_ticket_pabuf; PF_RULES_WUNLOCK(); break; } case DIOCADDADDR: { struct pfioc_pooladdr *pp = (struct pfioc_pooladdr *)addr; struct pf_kpooladdr *pa; struct pfi_kkif *kif = NULL; #ifndef INET if (pp->af == AF_INET) { error = EAFNOSUPPORT; break; } #endif /* INET */ #ifndef INET6 if (pp->af == AF_INET6) { error = EAFNOSUPPORT; break; } #endif /* INET6 */ if (pp->addr.addr.type != PF_ADDR_ADDRMASK && pp->addr.addr.type != PF_ADDR_DYNIFTL && pp->addr.addr.type != PF_ADDR_TABLE) { error = EINVAL; break; } if (pp->addr.addr.p.dyn != NULL) { error = EINVAL; break; } pa = malloc(sizeof(*pa), M_PFRULE, M_WAITOK); pf_pooladdr_to_kpooladdr(&pp->addr, pa); if (pa->ifname[0]) kif = pf_kkif_create(M_WAITOK); PF_RULES_WLOCK(); if (pp->ticket != V_ticket_pabuf) { PF_RULES_WUNLOCK(); if (pa->ifname[0]) pf_kkif_free(kif); free(pa, M_PFRULE); error = EBUSY; break; } if (pa->ifname[0]) { pa->kif = pfi_kkif_attach(kif, pa->ifname); kif = NULL; pfi_kkif_ref(pa->kif); } else pa->kif = NULL; if (pa->addr.type == PF_ADDR_DYNIFTL && ((error = pfi_dynaddr_setup(&pa->addr, pp->af)) != 0)) { if (pa->ifname[0]) pfi_kkif_unref(pa->kif); PF_RULES_WUNLOCK(); free(pa, M_PFRULE); break; } TAILQ_INSERT_TAIL(&V_pf_pabuf, pa, entries); PF_RULES_WUNLOCK(); break; } case DIOCGETADDRS: { struct pfioc_pooladdr *pp = (struct pfioc_pooladdr *)addr; struct pf_kpool *pool; struct pf_kpooladdr *pa; PF_RULES_RLOCK(); pp->nr = 0; pool = pf_get_kpool(pp->anchor, pp->ticket, pp->r_action, pp->r_num, 0, 1, 0); if (pool == NULL) { PF_RULES_RUNLOCK(); error = EBUSY; break; } TAILQ_FOREACH(pa, &pool->list, entries) pp->nr++; PF_RULES_RUNLOCK(); break; } case DIOCGETADDR: { struct pfioc_pooladdr *pp = (struct pfioc_pooladdr *)addr; struct pf_kpool *pool; struct pf_kpooladdr *pa; u_int32_t nr = 0; PF_RULES_RLOCK(); pool = pf_get_kpool(pp->anchor, pp->ticket, pp->r_action, pp->r_num, 0, 1, 1); if (pool == NULL) { PF_RULES_RUNLOCK(); error = EBUSY; break; } pa = TAILQ_FIRST(&pool->list); while ((pa != NULL) && (nr < pp->nr)) { pa = TAILQ_NEXT(pa, entries); nr++; } if (pa == NULL) { PF_RULES_RUNLOCK(); error = EBUSY; break; } pf_kpooladdr_to_pooladdr(pa, &pp->addr); pf_addr_copyout(&pp->addr.addr); PF_RULES_RUNLOCK(); break; } case DIOCCHANGEADDR: { struct pfioc_pooladdr *pca = (struct pfioc_pooladdr *)addr; struct pf_kpool *pool; struct pf_kpooladdr *oldpa = NULL, *newpa = NULL; struct pf_kruleset *ruleset; struct pfi_kkif *kif = NULL; if (pca->action < PF_CHANGE_ADD_HEAD || pca->action > PF_CHANGE_REMOVE) { error = EINVAL; break; } if (pca->addr.addr.type != PF_ADDR_ADDRMASK && pca->addr.addr.type != PF_ADDR_DYNIFTL && pca->addr.addr.type != PF_ADDR_TABLE) { error = EINVAL; break; } if (pca->addr.addr.p.dyn != NULL) { error = EINVAL; break; } if (pca->action != PF_CHANGE_REMOVE) { #ifndef INET if (pca->af == AF_INET) { error = EAFNOSUPPORT; break; } #endif /* INET */ #ifndef INET6 if (pca->af == AF_INET6) { error = EAFNOSUPPORT; break; } #endif /* INET6 */ newpa = malloc(sizeof(*newpa), M_PFRULE, M_WAITOK); bcopy(&pca->addr, newpa, sizeof(struct pf_pooladdr)); if (newpa->ifname[0]) kif = pf_kkif_create(M_WAITOK); newpa->kif = NULL; } #define ERROUT(x) ERROUT_IOCTL(DIOCCHANGEADDR_error, x) PF_RULES_WLOCK(); ruleset = pf_find_kruleset(pca->anchor); if (ruleset == NULL) ERROUT(EBUSY); pool = pf_get_kpool(pca->anchor, pca->ticket, pca->r_action, pca->r_num, pca->r_last, 1, 1); if (pool == NULL) ERROUT(EBUSY); if (pca->action != PF_CHANGE_REMOVE) { if (newpa->ifname[0]) { newpa->kif = pfi_kkif_attach(kif, newpa->ifname); pfi_kkif_ref(newpa->kif); kif = NULL; } switch (newpa->addr.type) { case PF_ADDR_DYNIFTL: error = pfi_dynaddr_setup(&newpa->addr, pca->af); break; case PF_ADDR_TABLE: newpa->addr.p.tbl = pfr_attach_table(ruleset, newpa->addr.v.tblname); if (newpa->addr.p.tbl == NULL) error = ENOMEM; break; } if (error) goto DIOCCHANGEADDR_error; } switch (pca->action) { case PF_CHANGE_ADD_HEAD: oldpa = TAILQ_FIRST(&pool->list); break; case PF_CHANGE_ADD_TAIL: oldpa = TAILQ_LAST(&pool->list, pf_kpalist); break; default: oldpa = TAILQ_FIRST(&pool->list); for (int i = 0; oldpa && i < pca->nr; i++) oldpa = TAILQ_NEXT(oldpa, entries); if (oldpa == NULL) ERROUT(EINVAL); } if (pca->action == PF_CHANGE_REMOVE) { TAILQ_REMOVE(&pool->list, oldpa, entries); switch (oldpa->addr.type) { case PF_ADDR_DYNIFTL: pfi_dynaddr_remove(oldpa->addr.p.dyn); break; case PF_ADDR_TABLE: pfr_detach_table(oldpa->addr.p.tbl); break; } if (oldpa->kif) pfi_kkif_unref(oldpa->kif); free(oldpa, M_PFRULE); } else { if (oldpa == NULL) TAILQ_INSERT_TAIL(&pool->list, newpa, entries); else if (pca->action == PF_CHANGE_ADD_HEAD || pca->action == PF_CHANGE_ADD_BEFORE) TAILQ_INSERT_BEFORE(oldpa, newpa, entries); else TAILQ_INSERT_AFTER(&pool->list, oldpa, newpa, entries); } pool->cur = TAILQ_FIRST(&pool->list); PF_ACPY(&pool->counter, &pool->cur->addr.v.a.addr, pca->af); PF_RULES_WUNLOCK(); break; #undef ERROUT DIOCCHANGEADDR_error: if (newpa != NULL) { if (newpa->kif) pfi_kkif_unref(newpa->kif); free(newpa, M_PFRULE); } PF_RULES_WUNLOCK(); pf_kkif_free(kif); break; } case DIOCGETRULESETS: { struct pfioc_ruleset *pr = (struct pfioc_ruleset *)addr; struct pf_kruleset *ruleset; struct pf_kanchor *anchor; PF_RULES_RLOCK(); pr->path[sizeof(pr->path) - 1] = 0; if ((ruleset = pf_find_kruleset(pr->path)) == NULL) { PF_RULES_RUNLOCK(); error = ENOENT; break; } pr->nr = 0; if (ruleset->anchor == NULL) { /* XXX kludge for pf_main_ruleset */ RB_FOREACH(anchor, pf_kanchor_global, &V_pf_anchors) if (anchor->parent == NULL) pr->nr++; } else { RB_FOREACH(anchor, pf_kanchor_node, &ruleset->anchor->children) pr->nr++; } PF_RULES_RUNLOCK(); break; } case DIOCGETRULESET: { struct pfioc_ruleset *pr = (struct pfioc_ruleset *)addr; struct pf_kruleset *ruleset; struct pf_kanchor *anchor; u_int32_t nr = 0; PF_RULES_RLOCK(); pr->path[sizeof(pr->path) - 1] = 0; if ((ruleset = pf_find_kruleset(pr->path)) == NULL) { PF_RULES_RUNLOCK(); error = ENOENT; break; } pr->name[0] = 0; if (ruleset->anchor == NULL) { /* XXX kludge for pf_main_ruleset */ RB_FOREACH(anchor, pf_kanchor_global, &V_pf_anchors) if (anchor->parent == NULL && nr++ == pr->nr) { strlcpy(pr->name, anchor->name, sizeof(pr->name)); break; } } else { RB_FOREACH(anchor, pf_kanchor_node, &ruleset->anchor->children) if (nr++ == pr->nr) { strlcpy(pr->name, anchor->name, sizeof(pr->name)); break; } } if (!pr->name[0]) error = EBUSY; PF_RULES_RUNLOCK(); break; } case DIOCRCLRTABLES: { struct pfioc_table *io = (struct pfioc_table *)addr; if (io->pfrio_esize != 0) { error = ENODEV; break; } PF_RULES_WLOCK(); error = pfr_clr_tables(&io->pfrio_table, &io->pfrio_ndel, io->pfrio_flags | PFR_FLAG_USERIOCTL); PF_RULES_WUNLOCK(); break; } case DIOCRADDTABLES: { struct pfioc_table *io = (struct pfioc_table *)addr; struct pfr_table *pfrts; size_t totlen; if (io->pfrio_esize != sizeof(struct pfr_table)) { error = ENODEV; break; } if (io->pfrio_size < 0 || io->pfrio_size > pf_ioctl_maxcount || WOULD_OVERFLOW(io->pfrio_size, sizeof(struct pfr_table))) { error = ENOMEM; break; } totlen = io->pfrio_size * sizeof(struct pfr_table); pfrts = mallocarray(io->pfrio_size, sizeof(struct pfr_table), M_TEMP, M_WAITOK); error = copyin(io->pfrio_buffer, pfrts, totlen); if (error) { free(pfrts, M_TEMP); break; } PF_RULES_WLOCK(); error = pfr_add_tables(pfrts, io->pfrio_size, &io->pfrio_nadd, io->pfrio_flags | PFR_FLAG_USERIOCTL); PF_RULES_WUNLOCK(); free(pfrts, M_TEMP); break; } case DIOCRDELTABLES: { struct pfioc_table *io = (struct pfioc_table *)addr; struct pfr_table *pfrts; size_t totlen; if (io->pfrio_esize != sizeof(struct pfr_table)) { error = ENODEV; break; } if (io->pfrio_size < 0 || io->pfrio_size > pf_ioctl_maxcount || WOULD_OVERFLOW(io->pfrio_size, sizeof(struct pfr_table))) { error = ENOMEM; break; } totlen = io->pfrio_size * sizeof(struct pfr_table); pfrts = mallocarray(io->pfrio_size, sizeof(struct pfr_table), M_TEMP, M_WAITOK); error = copyin(io->pfrio_buffer, pfrts, totlen); if (error) { free(pfrts, M_TEMP); break; } PF_RULES_WLOCK(); error = pfr_del_tables(pfrts, io->pfrio_size, &io->pfrio_ndel, io->pfrio_flags | PFR_FLAG_USERIOCTL); PF_RULES_WUNLOCK(); free(pfrts, M_TEMP); break; } case DIOCRGETTABLES: { struct pfioc_table *io = (struct pfioc_table *)addr; struct pfr_table *pfrts; size_t totlen; int n; if (io->pfrio_esize != sizeof(struct pfr_table)) { error = ENODEV; break; } PF_RULES_RLOCK(); n = pfr_table_count(&io->pfrio_table, io->pfrio_flags); if (n < 0) { PF_RULES_RUNLOCK(); error = EINVAL; break; } io->pfrio_size = min(io->pfrio_size, n); totlen = io->pfrio_size * sizeof(struct pfr_table); pfrts = mallocarray(io->pfrio_size, sizeof(struct pfr_table), M_TEMP, M_NOWAIT); if (pfrts == NULL) { error = ENOMEM; PF_RULES_RUNLOCK(); break; } error = pfr_get_tables(&io->pfrio_table, pfrts, &io->pfrio_size, io->pfrio_flags | PFR_FLAG_USERIOCTL); PF_RULES_RUNLOCK(); if (error == 0) error = copyout(pfrts, io->pfrio_buffer, totlen); free(pfrts, M_TEMP); break; } case DIOCRGETTSTATS: { struct pfioc_table *io = (struct pfioc_table *)addr; struct pfr_tstats *pfrtstats; size_t totlen; int n; if (io->pfrio_esize != sizeof(struct pfr_tstats)) { error = ENODEV; break; } PF_RULES_WLOCK(); n = pfr_table_count(&io->pfrio_table, io->pfrio_flags); if (n < 0) { PF_RULES_WUNLOCK(); error = EINVAL; break; } io->pfrio_size = min(io->pfrio_size, n); totlen = io->pfrio_size * sizeof(struct pfr_tstats); pfrtstats = mallocarray(io->pfrio_size, sizeof(struct pfr_tstats), M_TEMP, M_NOWAIT); if (pfrtstats == NULL) { error = ENOMEM; PF_RULES_WUNLOCK(); break; } error = pfr_get_tstats(&io->pfrio_table, pfrtstats, &io->pfrio_size, io->pfrio_flags | PFR_FLAG_USERIOCTL); PF_RULES_WUNLOCK(); if (error == 0) error = copyout(pfrtstats, io->pfrio_buffer, totlen); free(pfrtstats, M_TEMP); break; } case DIOCRCLRTSTATS: { struct pfioc_table *io = (struct pfioc_table *)addr; struct pfr_table *pfrts; size_t totlen; if (io->pfrio_esize != sizeof(struct pfr_table)) { error = ENODEV; break; } if (io->pfrio_size < 0 || io->pfrio_size > pf_ioctl_maxcount || WOULD_OVERFLOW(io->pfrio_size, sizeof(struct pfr_table))) { /* We used to count tables and use the minimum required * size, so we didn't fail on overly large requests. * Keep doing so. */ io->pfrio_size = pf_ioctl_maxcount; break; } totlen = io->pfrio_size * sizeof(struct pfr_table); pfrts = mallocarray(io->pfrio_size, sizeof(struct pfr_table), M_TEMP, M_NOWAIT); if (pfrts == NULL) { error = ENOMEM; break; } error = copyin(io->pfrio_buffer, pfrts, totlen); if (error) { free(pfrts, M_TEMP); break; } PF_RULES_WLOCK(); error = pfr_clr_tstats(pfrts, io->pfrio_size, &io->pfrio_nzero, io->pfrio_flags | PFR_FLAG_USERIOCTL); PF_RULES_WUNLOCK(); free(pfrts, M_TEMP); break; } case DIOCRSETTFLAGS: { struct pfioc_table *io = (struct pfioc_table *)addr; struct pfr_table *pfrts; size_t totlen; int n; if (io->pfrio_esize != sizeof(struct pfr_table)) { error = ENODEV; break; } PF_RULES_RLOCK(); n = pfr_table_count(&io->pfrio_table, io->pfrio_flags); if (n < 0) { PF_RULES_RUNLOCK(); error = EINVAL; break; } io->pfrio_size = min(io->pfrio_size, n); PF_RULES_RUNLOCK(); totlen = io->pfrio_size * sizeof(struct pfr_table); pfrts = mallocarray(io->pfrio_size, sizeof(struct pfr_table), M_TEMP, M_WAITOK); error = copyin(io->pfrio_buffer, pfrts, totlen); if (error) { free(pfrts, M_TEMP); break; } PF_RULES_WLOCK(); error = pfr_set_tflags(pfrts, io->pfrio_size, io->pfrio_setflag, io->pfrio_clrflag, &io->pfrio_nchange, &io->pfrio_ndel, io->pfrio_flags | PFR_FLAG_USERIOCTL); PF_RULES_WUNLOCK(); free(pfrts, M_TEMP); break; } case DIOCRCLRADDRS: { struct pfioc_table *io = (struct pfioc_table *)addr; if (io->pfrio_esize != 0) { error = ENODEV; break; } PF_RULES_WLOCK(); error = pfr_clr_addrs(&io->pfrio_table, &io->pfrio_ndel, io->pfrio_flags | PFR_FLAG_USERIOCTL); PF_RULES_WUNLOCK(); break; } case DIOCRADDADDRS: { struct pfioc_table *io = (struct pfioc_table *)addr; struct pfr_addr *pfras; size_t totlen; if (io->pfrio_esize != sizeof(struct pfr_addr)) { error = ENODEV; break; } if (io->pfrio_size < 0 || io->pfrio_size > pf_ioctl_maxcount || WOULD_OVERFLOW(io->pfrio_size, sizeof(struct pfr_addr))) { error = EINVAL; break; } totlen = io->pfrio_size * sizeof(struct pfr_addr); pfras = mallocarray(io->pfrio_size, sizeof(struct pfr_addr), M_TEMP, M_NOWAIT); if (! pfras) { error = ENOMEM; break; } error = copyin(io->pfrio_buffer, pfras, totlen); if (error) { free(pfras, M_TEMP); break; } PF_RULES_WLOCK(); error = pfr_add_addrs(&io->pfrio_table, pfras, io->pfrio_size, &io->pfrio_nadd, io->pfrio_flags | PFR_FLAG_USERIOCTL); PF_RULES_WUNLOCK(); if (error == 0 && io->pfrio_flags & PFR_FLAG_FEEDBACK) error = copyout(pfras, io->pfrio_buffer, totlen); free(pfras, M_TEMP); break; } case DIOCRDELADDRS: { struct pfioc_table *io = (struct pfioc_table *)addr; struct pfr_addr *pfras; size_t totlen; if (io->pfrio_esize != sizeof(struct pfr_addr)) { error = ENODEV; break; } if (io->pfrio_size < 0 || io->pfrio_size > pf_ioctl_maxcount || WOULD_OVERFLOW(io->pfrio_size, sizeof(struct pfr_addr))) { error = EINVAL; break; } totlen = io->pfrio_size * sizeof(struct pfr_addr); pfras = mallocarray(io->pfrio_size, sizeof(struct pfr_addr), M_TEMP, M_NOWAIT); if (! pfras) { error = ENOMEM; break; } error = copyin(io->pfrio_buffer, pfras, totlen); if (error) { free(pfras, M_TEMP); break; } PF_RULES_WLOCK(); error = pfr_del_addrs(&io->pfrio_table, pfras, io->pfrio_size, &io->pfrio_ndel, io->pfrio_flags | PFR_FLAG_USERIOCTL); PF_RULES_WUNLOCK(); if (error == 0 && io->pfrio_flags & PFR_FLAG_FEEDBACK) error = copyout(pfras, io->pfrio_buffer, totlen); free(pfras, M_TEMP); break; } case DIOCRSETADDRS: { struct pfioc_table *io = (struct pfioc_table *)addr; struct pfr_addr *pfras; size_t totlen, count; if (io->pfrio_esize != sizeof(struct pfr_addr)) { error = ENODEV; break; } if (io->pfrio_size < 0 || io->pfrio_size2 < 0) { error = EINVAL; break; } count = max(io->pfrio_size, io->pfrio_size2); if (count > pf_ioctl_maxcount || WOULD_OVERFLOW(count, sizeof(struct pfr_addr))) { error = EINVAL; break; } totlen = count * sizeof(struct pfr_addr); pfras = mallocarray(count, sizeof(struct pfr_addr), M_TEMP, M_NOWAIT); if (! pfras) { error = ENOMEM; break; } error = copyin(io->pfrio_buffer, pfras, totlen); if (error) { free(pfras, M_TEMP); break; } PF_RULES_WLOCK(); error = pfr_set_addrs(&io->pfrio_table, pfras, io->pfrio_size, &io->pfrio_size2, &io->pfrio_nadd, &io->pfrio_ndel, &io->pfrio_nchange, io->pfrio_flags | PFR_FLAG_USERIOCTL, 0); PF_RULES_WUNLOCK(); if (error == 0 && io->pfrio_flags & PFR_FLAG_FEEDBACK) error = copyout(pfras, io->pfrio_buffer, totlen); free(pfras, M_TEMP); break; } case DIOCRGETADDRS: { struct pfioc_table *io = (struct pfioc_table *)addr; struct pfr_addr *pfras; size_t totlen; if (io->pfrio_esize != sizeof(struct pfr_addr)) { error = ENODEV; break; } if (io->pfrio_size < 0 || io->pfrio_size > pf_ioctl_maxcount || WOULD_OVERFLOW(io->pfrio_size, sizeof(struct pfr_addr))) { error = EINVAL; break; } totlen = io->pfrio_size * sizeof(struct pfr_addr); pfras = mallocarray(io->pfrio_size, sizeof(struct pfr_addr), M_TEMP, M_NOWAIT); if (! pfras) { error = ENOMEM; break; } PF_RULES_RLOCK(); error = pfr_get_addrs(&io->pfrio_table, pfras, &io->pfrio_size, io->pfrio_flags | PFR_FLAG_USERIOCTL); PF_RULES_RUNLOCK(); if (error == 0) error = copyout(pfras, io->pfrio_buffer, totlen); free(pfras, M_TEMP); break; } case DIOCRGETASTATS: { struct pfioc_table *io = (struct pfioc_table *)addr; struct pfr_astats *pfrastats; size_t totlen; if (io->pfrio_esize != sizeof(struct pfr_astats)) { error = ENODEV; break; } if (io->pfrio_size < 0 || io->pfrio_size > pf_ioctl_maxcount || WOULD_OVERFLOW(io->pfrio_size, sizeof(struct pfr_astats))) { error = EINVAL; break; } totlen = io->pfrio_size * sizeof(struct pfr_astats); pfrastats = mallocarray(io->pfrio_size, sizeof(struct pfr_astats), M_TEMP, M_NOWAIT); if (! pfrastats) { error = ENOMEM; break; } PF_RULES_RLOCK(); error = pfr_get_astats(&io->pfrio_table, pfrastats, &io->pfrio_size, io->pfrio_flags | PFR_FLAG_USERIOCTL); PF_RULES_RUNLOCK(); if (error == 0) error = copyout(pfrastats, io->pfrio_buffer, totlen); free(pfrastats, M_TEMP); break; } case DIOCRCLRASTATS: { struct pfioc_table *io = (struct pfioc_table *)addr; struct pfr_addr *pfras; size_t totlen; if (io->pfrio_esize != sizeof(struct pfr_addr)) { error = ENODEV; break; } if (io->pfrio_size < 0 || io->pfrio_size > pf_ioctl_maxcount || WOULD_OVERFLOW(io->pfrio_size, sizeof(struct pfr_addr))) { error = EINVAL; break; } totlen = io->pfrio_size * sizeof(struct pfr_addr); pfras = mallocarray(io->pfrio_size, sizeof(struct pfr_addr), M_TEMP, M_NOWAIT); if (! pfras) { error = ENOMEM; break; } error = copyin(io->pfrio_buffer, pfras, totlen); if (error) { free(pfras, M_TEMP); break; } PF_RULES_WLOCK(); error = pfr_clr_astats(&io->pfrio_table, pfras, io->pfrio_size, &io->pfrio_nzero, io->pfrio_flags | PFR_FLAG_USERIOCTL); PF_RULES_WUNLOCK(); if (error == 0 && io->pfrio_flags & PFR_FLAG_FEEDBACK) error = copyout(pfras, io->pfrio_buffer, totlen); free(pfras, M_TEMP); break; } case DIOCRTSTADDRS: { struct pfioc_table *io = (struct pfioc_table *)addr; struct pfr_addr *pfras; size_t totlen; if (io->pfrio_esize != sizeof(struct pfr_addr)) { error = ENODEV; break; } if (io->pfrio_size < 0 || io->pfrio_size > pf_ioctl_maxcount || WOULD_OVERFLOW(io->pfrio_size, sizeof(struct pfr_addr))) { error = EINVAL; break; } totlen = io->pfrio_size * sizeof(struct pfr_addr); pfras = mallocarray(io->pfrio_size, sizeof(struct pfr_addr), M_TEMP, M_NOWAIT); if (! pfras) { error = ENOMEM; break; } error = copyin(io->pfrio_buffer, pfras, totlen); if (error) { free(pfras, M_TEMP); break; } PF_RULES_RLOCK(); error = pfr_tst_addrs(&io->pfrio_table, pfras, io->pfrio_size, &io->pfrio_nmatch, io->pfrio_flags | PFR_FLAG_USERIOCTL); PF_RULES_RUNLOCK(); if (error == 0) error = copyout(pfras, io->pfrio_buffer, totlen); free(pfras, M_TEMP); break; } case DIOCRINADEFINE: { struct pfioc_table *io = (struct pfioc_table *)addr; struct pfr_addr *pfras; size_t totlen; if (io->pfrio_esize != sizeof(struct pfr_addr)) { error = ENODEV; break; } if (io->pfrio_size < 0 || io->pfrio_size > pf_ioctl_maxcount || WOULD_OVERFLOW(io->pfrio_size, sizeof(struct pfr_addr))) { error = EINVAL; break; } totlen = io->pfrio_size * sizeof(struct pfr_addr); pfras = mallocarray(io->pfrio_size, sizeof(struct pfr_addr), M_TEMP, M_NOWAIT); if (! pfras) { error = ENOMEM; break; } error = copyin(io->pfrio_buffer, pfras, totlen); if (error) { free(pfras, M_TEMP); break; } PF_RULES_WLOCK(); error = pfr_ina_define(&io->pfrio_table, pfras, io->pfrio_size, &io->pfrio_nadd, &io->pfrio_naddr, io->pfrio_ticket, io->pfrio_flags | PFR_FLAG_USERIOCTL); PF_RULES_WUNLOCK(); free(pfras, M_TEMP); break; } case DIOCOSFPADD: { struct pf_osfp_ioctl *io = (struct pf_osfp_ioctl *)addr; PF_RULES_WLOCK(); error = pf_osfp_add(io); PF_RULES_WUNLOCK(); break; } case DIOCOSFPGET: { struct pf_osfp_ioctl *io = (struct pf_osfp_ioctl *)addr; PF_RULES_RLOCK(); error = pf_osfp_get(io); PF_RULES_RUNLOCK(); break; } case DIOCXBEGIN: { struct pfioc_trans *io = (struct pfioc_trans *)addr; struct pfioc_trans_e *ioes, *ioe; size_t totlen; int i; if (io->esize != sizeof(*ioe)) { error = ENODEV; break; } if (io->size < 0 || io->size > pf_ioctl_maxcount || WOULD_OVERFLOW(io->size, sizeof(struct pfioc_trans_e))) { error = EINVAL; break; } totlen = sizeof(struct pfioc_trans_e) * io->size; ioes = mallocarray(io->size, sizeof(struct pfioc_trans_e), M_TEMP, M_NOWAIT); if (! ioes) { error = ENOMEM; break; } error = copyin(io->array, ioes, totlen); if (error) { free(ioes, M_TEMP); break; } PF_RULES_WLOCK(); for (i = 0, ioe = ioes; i < io->size; i++, ioe++) { switch (ioe->rs_num) { #ifdef ALTQ case PF_RULESET_ALTQ: if (ioe->anchor[0]) { PF_RULES_WUNLOCK(); free(ioes, M_TEMP); error = EINVAL; goto fail; } if ((error = pf_begin_altq(&ioe->ticket))) { PF_RULES_WUNLOCK(); free(ioes, M_TEMP); goto fail; } break; #endif /* ALTQ */ case PF_RULESET_TABLE: { struct pfr_table table; bzero(&table, sizeof(table)); strlcpy(table.pfrt_anchor, ioe->anchor, sizeof(table.pfrt_anchor)); if ((error = pfr_ina_begin(&table, &ioe->ticket, NULL, 0))) { PF_RULES_WUNLOCK(); free(ioes, M_TEMP); goto fail; } break; } default: if ((error = pf_begin_rules(&ioe->ticket, ioe->rs_num, ioe->anchor))) { PF_RULES_WUNLOCK(); free(ioes, M_TEMP); goto fail; } break; } } PF_RULES_WUNLOCK(); error = copyout(ioes, io->array, totlen); free(ioes, M_TEMP); break; } case DIOCXROLLBACK: { struct pfioc_trans *io = (struct pfioc_trans *)addr; struct pfioc_trans_e *ioe, *ioes; size_t totlen; int i; if (io->esize != sizeof(*ioe)) { error = ENODEV; break; } if (io->size < 0 || io->size > pf_ioctl_maxcount || WOULD_OVERFLOW(io->size, sizeof(struct pfioc_trans_e))) { error = EINVAL; break; } totlen = sizeof(struct pfioc_trans_e) * io->size; ioes = mallocarray(io->size, sizeof(struct pfioc_trans_e), M_TEMP, M_NOWAIT); if (! ioes) { error = ENOMEM; break; } error = copyin(io->array, ioes, totlen); if (error) { free(ioes, M_TEMP); break; } PF_RULES_WLOCK(); for (i = 0, ioe = ioes; i < io->size; i++, ioe++) { switch (ioe->rs_num) { #ifdef ALTQ case PF_RULESET_ALTQ: if (ioe->anchor[0]) { PF_RULES_WUNLOCK(); free(ioes, M_TEMP); error = EINVAL; goto fail; } if ((error = pf_rollback_altq(ioe->ticket))) { PF_RULES_WUNLOCK(); free(ioes, M_TEMP); goto fail; /* really bad */ } break; #endif /* ALTQ */ case PF_RULESET_TABLE: { struct pfr_table table; bzero(&table, sizeof(table)); strlcpy(table.pfrt_anchor, ioe->anchor, sizeof(table.pfrt_anchor)); if ((error = pfr_ina_rollback(&table, ioe->ticket, NULL, 0))) { PF_RULES_WUNLOCK(); free(ioes, M_TEMP); goto fail; /* really bad */ } break; } default: if ((error = pf_rollback_rules(ioe->ticket, ioe->rs_num, ioe->anchor))) { PF_RULES_WUNLOCK(); free(ioes, M_TEMP); goto fail; /* really bad */ } break; } } PF_RULES_WUNLOCK(); free(ioes, M_TEMP); break; } case DIOCXCOMMIT: { struct pfioc_trans *io = (struct pfioc_trans *)addr; struct pfioc_trans_e *ioe, *ioes; struct pf_kruleset *rs; size_t totlen; int i; if (io->esize != sizeof(*ioe)) { error = ENODEV; break; } if (io->size < 0 || io->size > pf_ioctl_maxcount || WOULD_OVERFLOW(io->size, sizeof(struct pfioc_trans_e))) { error = EINVAL; break; } totlen = sizeof(struct pfioc_trans_e) * io->size; ioes = mallocarray(io->size, sizeof(struct pfioc_trans_e), M_TEMP, M_NOWAIT); if (ioes == NULL) { error = ENOMEM; break; } error = copyin(io->array, ioes, totlen); if (error) { free(ioes, M_TEMP); break; } PF_RULES_WLOCK(); /* First makes sure everything will succeed. */ for (i = 0, ioe = ioes; i < io->size; i++, ioe++) { switch (ioe->rs_num) { #ifdef ALTQ case PF_RULESET_ALTQ: if (ioe->anchor[0]) { PF_RULES_WUNLOCK(); free(ioes, M_TEMP); error = EINVAL; goto fail; } if (!V_altqs_inactive_open || ioe->ticket != V_ticket_altqs_inactive) { PF_RULES_WUNLOCK(); free(ioes, M_TEMP); error = EBUSY; goto fail; } break; #endif /* ALTQ */ case PF_RULESET_TABLE: rs = pf_find_kruleset(ioe->anchor); if (rs == NULL || !rs->topen || ioe->ticket != rs->tticket) { PF_RULES_WUNLOCK(); free(ioes, M_TEMP); error = EBUSY; goto fail; } break; default: if (ioe->rs_num < 0 || ioe->rs_num >= PF_RULESET_MAX) { PF_RULES_WUNLOCK(); free(ioes, M_TEMP); error = EINVAL; goto fail; } rs = pf_find_kruleset(ioe->anchor); if (rs == NULL || !rs->rules[ioe->rs_num].inactive.open || rs->rules[ioe->rs_num].inactive.ticket != ioe->ticket) { PF_RULES_WUNLOCK(); free(ioes, M_TEMP); error = EBUSY; goto fail; } break; } } /* Now do the commit - no errors should happen here. */ for (i = 0, ioe = ioes; i < io->size; i++, ioe++) { switch (ioe->rs_num) { #ifdef ALTQ case PF_RULESET_ALTQ: if ((error = pf_commit_altq(ioe->ticket))) { PF_RULES_WUNLOCK(); free(ioes, M_TEMP); goto fail; /* really bad */ } break; #endif /* ALTQ */ case PF_RULESET_TABLE: { struct pfr_table table; bzero(&table, sizeof(table)); strlcpy(table.pfrt_anchor, ioe->anchor, sizeof(table.pfrt_anchor)); if ((error = pfr_ina_commit(&table, ioe->ticket, NULL, NULL, 0))) { PF_RULES_WUNLOCK(); free(ioes, M_TEMP); goto fail; /* really bad */ } break; } default: if ((error = pf_commit_rules(ioe->ticket, ioe->rs_num, ioe->anchor))) { PF_RULES_WUNLOCK(); free(ioes, M_TEMP); goto fail; /* really bad */ } break; } } PF_RULES_WUNLOCK(); free(ioes, M_TEMP); break; } case DIOCGETSRCNODES: { struct pfioc_src_nodes *psn = (struct pfioc_src_nodes *)addr; struct pf_srchash *sh; struct pf_ksrc_node *n; struct pf_src_node *p, *pstore; uint32_t i, nr = 0; for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) { PF_HASHROW_LOCK(sh); LIST_FOREACH(n, &sh->nodes, entry) nr++; PF_HASHROW_UNLOCK(sh); } psn->psn_len = min(psn->psn_len, sizeof(struct pf_src_node) * nr); if (psn->psn_len == 0) { psn->psn_len = sizeof(struct pf_src_node) * nr; break; } nr = 0; p = pstore = malloc(psn->psn_len, M_TEMP, M_WAITOK | M_ZERO); for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) { PF_HASHROW_LOCK(sh); LIST_FOREACH(n, &sh->nodes, entry) { if ((nr + 1) * sizeof(*p) > (unsigned)psn->psn_len) break; pf_src_node_copy(n, p); p++; nr++; } PF_HASHROW_UNLOCK(sh); } error = copyout(pstore, psn->psn_src_nodes, sizeof(struct pf_src_node) * nr); if (error) { free(pstore, M_TEMP); break; } psn->psn_len = sizeof(struct pf_src_node) * nr; free(pstore, M_TEMP); break; } case DIOCCLRSRCNODES: { pf_clear_srcnodes(NULL); pf_purge_expired_src_nodes(); break; } case DIOCKILLSRCNODES: pf_kill_srcnodes((struct pfioc_src_node_kill *)addr); break; case DIOCKEEPCOUNTERS: error = pf_keepcounters((struct pfioc_nv *)addr); break; case DIOCSETHOSTID: { u_int32_t *hostid = (u_int32_t *)addr; PF_RULES_WLOCK(); if (*hostid == 0) V_pf_status.hostid = arc4random(); else V_pf_status.hostid = *hostid; PF_RULES_WUNLOCK(); break; } case DIOCOSFPFLUSH: PF_RULES_WLOCK(); pf_osfp_flush(); PF_RULES_WUNLOCK(); break; case DIOCIGETIFACES: { struct pfioc_iface *io = (struct pfioc_iface *)addr; struct pfi_kif *ifstore; size_t bufsiz; if (io->pfiio_esize != sizeof(struct pfi_kif)) { error = ENODEV; break; } if (io->pfiio_size < 0 || io->pfiio_size > pf_ioctl_maxcount || WOULD_OVERFLOW(io->pfiio_size, sizeof(struct pfi_kif))) { error = EINVAL; break; } bufsiz = io->pfiio_size * sizeof(struct pfi_kif); ifstore = mallocarray(io->pfiio_size, sizeof(struct pfi_kif), M_TEMP, M_NOWAIT); if (ifstore == NULL) { error = ENOMEM; break; } PF_RULES_RLOCK(); pfi_get_ifaces(io->pfiio_name, ifstore, &io->pfiio_size); PF_RULES_RUNLOCK(); error = copyout(ifstore, io->pfiio_buffer, bufsiz); free(ifstore, M_TEMP); break; } case DIOCSETIFFLAG: { struct pfioc_iface *io = (struct pfioc_iface *)addr; PF_RULES_WLOCK(); error = pfi_set_flags(io->pfiio_name, io->pfiio_flags); PF_RULES_WUNLOCK(); break; } case DIOCCLRIFFLAG: { struct pfioc_iface *io = (struct pfioc_iface *)addr; PF_RULES_WLOCK(); error = pfi_clear_flags(io->pfiio_name, io->pfiio_flags); PF_RULES_WUNLOCK(); break; } default: error = ENODEV; break; } fail: if (sx_xlocked(&pf_ioctl_lock)) sx_xunlock(&pf_ioctl_lock); CURVNET_RESTORE(); #undef ERROUT_IOCTL return (error); } void pfsync_state_export(struct pfsync_state *sp, struct pf_state *st) { bzero(sp, sizeof(struct pfsync_state)); /* copy from state key */ sp->key[PF_SK_WIRE].addr[0] = st->key[PF_SK_WIRE]->addr[0]; sp->key[PF_SK_WIRE].addr[1] = st->key[PF_SK_WIRE]->addr[1]; sp->key[PF_SK_WIRE].port[0] = st->key[PF_SK_WIRE]->port[0]; sp->key[PF_SK_WIRE].port[1] = st->key[PF_SK_WIRE]->port[1]; sp->key[PF_SK_STACK].addr[0] = st->key[PF_SK_STACK]->addr[0]; sp->key[PF_SK_STACK].addr[1] = st->key[PF_SK_STACK]->addr[1]; sp->key[PF_SK_STACK].port[0] = st->key[PF_SK_STACK]->port[0]; sp->key[PF_SK_STACK].port[1] = st->key[PF_SK_STACK]->port[1]; sp->proto = st->key[PF_SK_WIRE]->proto; sp->af = st->key[PF_SK_WIRE]->af; /* copy from state */ strlcpy(sp->ifname, st->kif->pfik_name, sizeof(sp->ifname)); bcopy(&st->rt_addr, &sp->rt_addr, sizeof(sp->rt_addr)); sp->creation = htonl(time_uptime - st->creation); sp->expire = pf_state_expires(st); if (sp->expire <= time_uptime) sp->expire = htonl(0); else sp->expire = htonl(sp->expire - time_uptime); sp->direction = st->direction; sp->log = st->log; sp->timeout = st->timeout; sp->state_flags = st->state_flags; if (st->src_node) sp->sync_flags |= PFSYNC_FLAG_SRCNODE; if (st->nat_src_node) sp->sync_flags |= PFSYNC_FLAG_NATSRCNODE; sp->id = st->id; sp->creatorid = st->creatorid; pf_state_peer_hton(&st->src, &sp->src); pf_state_peer_hton(&st->dst, &sp->dst); if (st->rule.ptr == NULL) sp->rule = htonl(-1); else sp->rule = htonl(st->rule.ptr->nr); if (st->anchor.ptr == NULL) sp->anchor = htonl(-1); else sp->anchor = htonl(st->anchor.ptr->nr); if (st->nat_rule.ptr == NULL) sp->nat_rule = htonl(-1); else sp->nat_rule = htonl(st->nat_rule.ptr->nr); pf_state_counter_hton(counter_u64_fetch(st->packets[0]), sp->packets[0]); pf_state_counter_hton(counter_u64_fetch(st->packets[1]), sp->packets[1]); pf_state_counter_hton(counter_u64_fetch(st->bytes[0]), sp->bytes[0]); pf_state_counter_hton(counter_u64_fetch(st->bytes[1]), sp->bytes[1]); } static void pf_tbladdr_copyout(struct pf_addr_wrap *aw) { struct pfr_ktable *kt; KASSERT(aw->type == PF_ADDR_TABLE, ("%s: type %u", __func__, aw->type)); kt = aw->p.tbl; if (!(kt->pfrkt_flags & PFR_TFLAG_ACTIVE) && kt->pfrkt_root != NULL) kt = kt->pfrkt_root; aw->p.tbl = NULL; aw->p.tblcnt = (kt->pfrkt_flags & PFR_TFLAG_ACTIVE) ? kt->pfrkt_cnt : -1; } /* * XXX - Check for version missmatch!!! */ static void pf_clear_all_states(void) { struct pf_state *s; u_int i; for (i = 0; i <= pf_hashmask; i++) { struct pf_idhash *ih = &V_pf_idhash[i]; relock: PF_HASHROW_LOCK(ih); LIST_FOREACH(s, &ih->states, entry) { s->timeout = PFTM_PURGE; /* Don't send out individual delete messages. */ s->state_flags |= PFSTATE_NOSYNC; pf_unlink_state(s, PF_ENTER_LOCKED); goto relock; } PF_HASHROW_UNLOCK(ih); } } static int pf_clear_tables(void) { struct pfioc_table io; int error; bzero(&io, sizeof(io)); error = pfr_clr_tables(&io.pfrio_table, &io.pfrio_ndel, io.pfrio_flags); return (error); } static void pf_clear_srcnodes(struct pf_ksrc_node *n) { struct pf_state *s; int i; for (i = 0; i <= pf_hashmask; i++) { struct pf_idhash *ih = &V_pf_idhash[i]; PF_HASHROW_LOCK(ih); LIST_FOREACH(s, &ih->states, entry) { if (n == NULL || n == s->src_node) s->src_node = NULL; if (n == NULL || n == s->nat_src_node) s->nat_src_node = NULL; } PF_HASHROW_UNLOCK(ih); } if (n == NULL) { struct pf_srchash *sh; for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) { PF_HASHROW_LOCK(sh); LIST_FOREACH(n, &sh->nodes, entry) { n->expire = 1; n->states = 0; } PF_HASHROW_UNLOCK(sh); } } else { /* XXX: hash slot should already be locked here. */ n->expire = 1; n->states = 0; } } static void pf_kill_srcnodes(struct pfioc_src_node_kill *psnk) { struct pf_ksrc_node_list kill; LIST_INIT(&kill); for (int i = 0; i <= pf_srchashmask; i++) { struct pf_srchash *sh = &V_pf_srchash[i]; struct pf_ksrc_node *sn, *tmp; PF_HASHROW_LOCK(sh); LIST_FOREACH_SAFE(sn, &sh->nodes, entry, tmp) if (PF_MATCHA(psnk->psnk_src.neg, &psnk->psnk_src.addr.v.a.addr, &psnk->psnk_src.addr.v.a.mask, &sn->addr, sn->af) && PF_MATCHA(psnk->psnk_dst.neg, &psnk->psnk_dst.addr.v.a.addr, &psnk->psnk_dst.addr.v.a.mask, &sn->raddr, sn->af)) { pf_unlink_src_node(sn); LIST_INSERT_HEAD(&kill, sn, entry); sn->expire = 1; } PF_HASHROW_UNLOCK(sh); } for (int i = 0; i <= pf_hashmask; i++) { struct pf_idhash *ih = &V_pf_idhash[i]; struct pf_state *s; PF_HASHROW_LOCK(ih); LIST_FOREACH(s, &ih->states, entry) { if (s->src_node && s->src_node->expire == 1) s->src_node = NULL; if (s->nat_src_node && s->nat_src_node->expire == 1) s->nat_src_node = NULL; } PF_HASHROW_UNLOCK(ih); } psnk->psnk_killed = pf_free_src_nodes(&kill); } static int pf_keepcounters(struct pfioc_nv *nv) { nvlist_t *nvl = NULL; void *nvlpacked = NULL; int error = 0; #define ERROUT(x) ERROUT_FUNCTION(on_error, x) if (nv->len > pf_ioctl_maxcount) ERROUT(ENOMEM); nvlpacked = malloc(nv->len, M_TEMP, M_WAITOK); if (nvlpacked == NULL) ERROUT(ENOMEM); error = copyin(nv->data, nvlpacked, nv->len); if (error) ERROUT(error); nvl = nvlist_unpack(nvlpacked, nv->len, 0); if (nvl == NULL) ERROUT(EBADMSG); if (! nvlist_exists_bool(nvl, "keep_counters")) ERROUT(EBADMSG); V_pf_status.keep_counters = nvlist_get_bool(nvl, "keep_counters"); on_error: nvlist_destroy(nvl); free(nvlpacked, M_TEMP); return (error); } static unsigned int pf_clear_states(const struct pf_kstate_kill *kill) { struct pf_state_key_cmp match_key; struct pf_state *s; struct pfi_kkif *kif; int idx; unsigned int killed = 0, dir; for (unsigned int i = 0; i <= pf_hashmask; i++) { struct pf_idhash *ih = &V_pf_idhash[i]; relock_DIOCCLRSTATES: PF_HASHROW_LOCK(ih); LIST_FOREACH(s, &ih->states, entry) { /* For floating states look at the original kif. */ kif = s->kif == V_pfi_all ? s->orig_kif : s->kif; if (kill->psk_ifname[0] && strcmp(kill->psk_ifname, kif->pfik_name)) continue; if (kill->psk_kill_match) { bzero(&match_key, sizeof(match_key)); if (s->direction == PF_OUT) { dir = PF_IN; idx = PF_SK_STACK; } else { dir = PF_OUT; idx = PF_SK_WIRE; } match_key.af = s->key[idx]->af; match_key.proto = s->key[idx]->proto; PF_ACPY(&match_key.addr[0], &s->key[idx]->addr[1], match_key.af); match_key.port[0] = s->key[idx]->port[1]; PF_ACPY(&match_key.addr[1], &s->key[idx]->addr[0], match_key.af); match_key.port[1] = s->key[idx]->port[0]; } /* * Don't send out individual * delete messages. */ s->state_flags |= PFSTATE_NOSYNC; pf_unlink_state(s, PF_ENTER_LOCKED); killed++; if (kill->psk_kill_match) killed += pf_kill_matching_state(&match_key, dir); goto relock_DIOCCLRSTATES; } PF_HASHROW_UNLOCK(ih); } if (V_pfsync_clear_states_ptr != NULL) V_pfsync_clear_states_ptr(V_pf_status.hostid, kill->psk_ifname); return (killed); } static int pf_killstates(struct pf_kstate_kill *kill, unsigned int *killed) { struct pf_state *s; if (kill->psk_pfcmp.id) { if (kill->psk_pfcmp.creatorid == 0) kill->psk_pfcmp.creatorid = V_pf_status.hostid; if ((s = pf_find_state_byid(kill->psk_pfcmp.id, kill->psk_pfcmp.creatorid))) { pf_unlink_state(s, PF_ENTER_LOCKED); *killed = 1; } return (0); } for (unsigned int i = 0; i <= pf_hashmask; i++) *killed += pf_killstates_row(kill, &V_pf_idhash[i]); return (0); } static int pf_killstates_nv(struct pfioc_nv *nv) { struct pf_kstate_kill kill; nvlist_t *nvl = NULL; void *nvlpacked = NULL; int error = 0; unsigned int killed = 0; #define ERROUT(x) ERROUT_FUNCTION(on_error, x) if (nv->len > pf_ioctl_maxcount) ERROUT(ENOMEM); - nvlpacked = malloc(nv->len, M_TEMP, M_WAITOK); + nvlpacked = malloc(nv->len, M_NVLIST, M_WAITOK); if (nvlpacked == NULL) ERROUT(ENOMEM); error = copyin(nv->data, nvlpacked, nv->len); if (error) ERROUT(error); nvl = nvlist_unpack(nvlpacked, nv->len, 0); if (nvl == NULL) ERROUT(EBADMSG); error = pf_nvstate_kill_to_kstate_kill(nvl, &kill); if (error) ERROUT(error); error = pf_killstates(&kill, &killed); - free(nvlpacked, M_TEMP); + free(nvlpacked, M_NVLIST); nvlpacked = NULL; nvlist_destroy(nvl); nvl = nvlist_create(0); if (nvl == NULL) ERROUT(ENOMEM); nvlist_add_number(nvl, "killed", killed); nvlpacked = nvlist_pack(nvl, &nv->len); if (nvlpacked == NULL) ERROUT(ENOMEM); if (nv->size == 0) ERROUT(0); else if (nv->size < nv->len) ERROUT(ENOSPC); error = copyout(nvlpacked, nv->data, nv->len); on_error: nvlist_destroy(nvl); - free(nvlpacked, M_TEMP); + free(nvlpacked, M_NVLIST); return (error); } static int pf_clearstates_nv(struct pfioc_nv *nv) { struct pf_kstate_kill kill; nvlist_t *nvl = NULL; void *nvlpacked = NULL; int error = 0; unsigned int killed; #define ERROUT(x) ERROUT_FUNCTION(on_error, x) if (nv->len > pf_ioctl_maxcount) ERROUT(ENOMEM); - nvlpacked = malloc(nv->len, M_TEMP, M_WAITOK); + nvlpacked = malloc(nv->len, M_NVLIST, M_WAITOK); if (nvlpacked == NULL) ERROUT(ENOMEM); error = copyin(nv->data, nvlpacked, nv->len); if (error) ERROUT(error); nvl = nvlist_unpack(nvlpacked, nv->len, 0); if (nvl == NULL) ERROUT(EBADMSG); error = pf_nvstate_kill_to_kstate_kill(nvl, &kill); if (error) ERROUT(error); killed = pf_clear_states(&kill); - free(nvlpacked, M_TEMP); + free(nvlpacked, M_NVLIST); nvlpacked = NULL; nvlist_destroy(nvl); nvl = nvlist_create(0); if (nvl == NULL) ERROUT(ENOMEM); nvlist_add_number(nvl, "killed", killed); nvlpacked = nvlist_pack(nvl, &nv->len); if (nvlpacked == NULL) ERROUT(ENOMEM); if (nv->size == 0) ERROUT(0); else if (nv->size < nv->len) ERROUT(ENOSPC); error = copyout(nvlpacked, nv->data, nv->len); #undef ERROUT on_error: nvlist_destroy(nvl); - free(nvlpacked, M_TEMP); + free(nvlpacked, M_NVLIST); return (error); } static int pf_getstate(struct pfioc_nv *nv) { nvlist_t *nvl = NULL, *nvls; void *nvlpacked = NULL; struct pf_state *s = NULL; int error = 0; uint64_t id, creatorid; #define ERROUT(x) ERROUT_FUNCTION(errout, x) if (nv->len > pf_ioctl_maxcount) ERROUT(ENOMEM); - nvlpacked = malloc(nv->len, M_TEMP, M_WAITOK); + nvlpacked = malloc(nv->len, M_NVLIST, M_WAITOK); if (nvlpacked == NULL) ERROUT(ENOMEM); error = copyin(nv->data, nvlpacked, nv->len); if (error) ERROUT(error); nvl = nvlist_unpack(nvlpacked, nv->len, 0); if (nvl == NULL) ERROUT(EBADMSG); PFNV_CHK(pf_nvuint64(nvl, "id", &id)); PFNV_CHK(pf_nvuint64(nvl, "creatorid", &creatorid)); s = pf_find_state_byid(id, creatorid); if (s == NULL) ERROUT(ENOENT); - free(nvlpacked, M_TEMP); + free(nvlpacked, M_NVLIST); nvlpacked = NULL; nvlist_destroy(nvl); nvl = nvlist_create(0); if (nvl == NULL) ERROUT(ENOMEM); nvls = pf_state_to_nvstate(s); if (nvls == NULL) ERROUT(ENOMEM); nvlist_add_nvlist(nvl, "state", nvls); nvlist_destroy(nvls); nvlpacked = nvlist_pack(nvl, &nv->len); if (nvlpacked == NULL) ERROUT(ENOMEM); if (nv->size == 0) ERROUT(0); else if (nv->size < nv->len) ERROUT(ENOSPC); error = copyout(nvlpacked, nv->data, nv->len); #undef ERROUT errout: if (s != NULL) PF_STATE_UNLOCK(s); - free(nvlpacked, M_TEMP); + free(nvlpacked, M_NVLIST); nvlist_destroy(nvl); return (error); } static int pf_getstates(struct pfioc_nv *nv) { nvlist_t *nvl = NULL, *nvls; void *nvlpacked = NULL; struct pf_state *s = NULL; int error = 0; uint64_t count = 0; #define ERROUT(x) ERROUT_FUNCTION(errout, x) nvl = nvlist_create(0); if (nvl == NULL) ERROUT(ENOMEM); nvlist_add_number(nvl, "count", uma_zone_get_cur(V_pf_state_z)); for (int i = 0; i < pf_hashmask; i++) { struct pf_idhash *ih = &V_pf_idhash[i]; PF_HASHROW_LOCK(ih); LIST_FOREACH(s, &ih->states, entry) { if (s->timeout == PFTM_UNLINKED) continue; nvls = pf_state_to_nvstate(s); if (nvls == NULL) { PF_HASHROW_UNLOCK(ih); ERROUT(ENOMEM); } if ((nvlist_size(nvl) + nvlist_size(nvls)) > nv->size) { /* We've run out of room for more states. */ nvlist_destroy(nvls); PF_HASHROW_UNLOCK(ih); goto DIOCGETSTATESNV_full; } nvlist_append_nvlist_array(nvl, "states", nvls); + nvlist_destroy(nvls); count++; } PF_HASHROW_UNLOCK(ih); } /* We've managed to put them all the available space. Let's make sure * 'count' matches our array (that's racy, because we don't hold a lock * over all states, only over each row individually. */ (void)nvlist_take_number(nvl, "count"); nvlist_add_number(nvl, "count", count); DIOCGETSTATESNV_full: nvlpacked = nvlist_pack(nvl, &nv->len); if (nvlpacked == NULL) ERROUT(ENOMEM); if (nv->size == 0) ERROUT(0); else if (nv->size < nv->len) ERROUT(ENOSPC); error = copyout(nvlpacked, nv->data, nv->len); #undef ERROUT errout: - free(nvlpacked, M_TEMP); + free(nvlpacked, M_NVLIST); nvlist_destroy(nvl); return (error); } /* * XXX - Check for version missmatch!!! */ /* * Duplicate pfctl -Fa operation to get rid of as much as we can. */ static int shutdown_pf(void) { int error = 0; u_int32_t t[5]; char nn = '\0'; do { if ((error = pf_begin_rules(&t[0], PF_RULESET_SCRUB, &nn)) != 0) { DPFPRINTF(PF_DEBUG_MISC, ("shutdown_pf: SCRUB\n")); break; } if ((error = pf_begin_rules(&t[1], PF_RULESET_FILTER, &nn)) != 0) { DPFPRINTF(PF_DEBUG_MISC, ("shutdown_pf: FILTER\n")); break; /* XXX: rollback? */ } if ((error = pf_begin_rules(&t[2], PF_RULESET_NAT, &nn)) != 0) { DPFPRINTF(PF_DEBUG_MISC, ("shutdown_pf: NAT\n")); break; /* XXX: rollback? */ } if ((error = pf_begin_rules(&t[3], PF_RULESET_BINAT, &nn)) != 0) { DPFPRINTF(PF_DEBUG_MISC, ("shutdown_pf: BINAT\n")); break; /* XXX: rollback? */ } if ((error = pf_begin_rules(&t[4], PF_RULESET_RDR, &nn)) != 0) { DPFPRINTF(PF_DEBUG_MISC, ("shutdown_pf: RDR\n")); break; /* XXX: rollback? */ } /* XXX: these should always succeed here */ pf_commit_rules(t[0], PF_RULESET_SCRUB, &nn); pf_commit_rules(t[1], PF_RULESET_FILTER, &nn); pf_commit_rules(t[2], PF_RULESET_NAT, &nn); pf_commit_rules(t[3], PF_RULESET_BINAT, &nn); pf_commit_rules(t[4], PF_RULESET_RDR, &nn); if ((error = pf_clear_tables()) != 0) break; #ifdef ALTQ if ((error = pf_begin_altq(&t[0])) != 0) { DPFPRINTF(PF_DEBUG_MISC, ("shutdown_pf: ALTQ\n")); break; } pf_commit_altq(t[0]); #endif pf_clear_all_states(); pf_clear_srcnodes(NULL); /* status does not use malloced mem so no need to cleanup */ /* fingerprints and interfaces have their own cleanup code */ } while(0); return (error); } #ifdef INET static int pf_check_in(void *arg, struct mbuf **m, struct ifnet *ifp, int dir, int flags, struct inpcb *inp) { int chk; chk = pf_test(PF_IN, flags, ifp, m, inp); if (chk && *m) { m_freem(*m); *m = NULL; } if (chk != PF_PASS) return (EACCES); return (0); } static int pf_check_out(void *arg, struct mbuf **m, struct ifnet *ifp, int dir, int flags, struct inpcb *inp) { int chk; chk = pf_test(PF_OUT, flags, ifp, m, inp); if (chk && *m) { m_freem(*m); *m = NULL; } if (chk != PF_PASS) return (EACCES); return (0); } #endif #ifdef INET6 static int pf_check6_in(void *arg, struct mbuf **m, struct ifnet *ifp, int dir, int flags, struct inpcb *inp) { int chk; /* * In case of loopback traffic IPv6 uses the real interface in * order to support scoped addresses. In order to support stateful * filtering we have change this to lo0 as it is the case in IPv4. */ CURVNET_SET(ifp->if_vnet); chk = pf_test6(PF_IN, flags, (*m)->m_flags & M_LOOP ? V_loif : ifp, m, inp); CURVNET_RESTORE(); if (chk && *m) { m_freem(*m); *m = NULL; } if (chk != PF_PASS) return (EACCES); return (0); } static int pf_check6_out(void *arg, struct mbuf **m, struct ifnet *ifp, int dir, int flags, struct inpcb *inp) { int chk; CURVNET_SET(ifp->if_vnet); chk = pf_test6(PF_OUT, flags, ifp, m, inp); CURVNET_RESTORE(); if (chk && *m) { m_freem(*m); *m = NULL; } if (chk != PF_PASS) return (EACCES); return (0); } #endif /* INET6 */ static int hook_pf(void) { #ifdef INET struct pfil_head *pfh_inet; #endif #ifdef INET6 struct pfil_head *pfh_inet6; #endif if (V_pf_pfil_hooked) return (0); #ifdef INET pfh_inet = pfil_head_get(PFIL_TYPE_AF, AF_INET); if (pfh_inet == NULL) return (ESRCH); /* XXX */ pfil_add_hook_flags(pf_check_in, NULL, PFIL_IN | PFIL_WAITOK, pfh_inet); pfil_add_hook_flags(pf_check_out, NULL, PFIL_OUT | PFIL_WAITOK, pfh_inet); #endif #ifdef INET6 pfh_inet6 = pfil_head_get(PFIL_TYPE_AF, AF_INET6); if (pfh_inet6 == NULL) { #ifdef INET pfil_remove_hook_flags(pf_check_in, NULL, PFIL_IN | PFIL_WAITOK, pfh_inet); pfil_remove_hook_flags(pf_check_out, NULL, PFIL_OUT | PFIL_WAITOK, pfh_inet); #endif return (ESRCH); /* XXX */ } pfil_add_hook_flags(pf_check6_in, NULL, PFIL_IN | PFIL_WAITOK, pfh_inet6); pfil_add_hook_flags(pf_check6_out, NULL, PFIL_OUT | PFIL_WAITOK, pfh_inet6); #endif V_pf_pfil_hooked = 1; return (0); } static int dehook_pf(void) { #ifdef INET struct pfil_head *pfh_inet; #endif #ifdef INET6 struct pfil_head *pfh_inet6; #endif if (V_pf_pfil_hooked == 0) return (0); #ifdef INET pfh_inet = pfil_head_get(PFIL_TYPE_AF, AF_INET); if (pfh_inet == NULL) return (ESRCH); /* XXX */ pfil_remove_hook_flags(pf_check_in, NULL, PFIL_IN | PFIL_WAITOK, pfh_inet); pfil_remove_hook_flags(pf_check_out, NULL, PFIL_OUT | PFIL_WAITOK, pfh_inet); #endif #ifdef INET6 pfh_inet6 = pfil_head_get(PFIL_TYPE_AF, AF_INET6); if (pfh_inet6 == NULL) return (ESRCH); /* XXX */ pfil_remove_hook_flags(pf_check6_in, NULL, PFIL_IN | PFIL_WAITOK, pfh_inet6); pfil_remove_hook_flags(pf_check6_out, NULL, PFIL_OUT | PFIL_WAITOK, pfh_inet6); #endif V_pf_pfil_hooked = 0; return (0); } static void pf_load_vnet(void) { V_pf_tag_z = uma_zcreate("pf tags", sizeof(struct pf_tagname), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); pf_init_tagset(&V_pf_tags, &pf_rule_tag_hashsize, PF_RULE_TAG_HASH_SIZE_DEFAULT); #ifdef ALTQ pf_init_tagset(&V_pf_qids, &pf_queue_tag_hashsize, PF_QUEUE_TAG_HASH_SIZE_DEFAULT); #endif pfattach_vnet(); V_pf_vnet_active = 1; } static int pf_load(void) { int error; rm_init(&pf_rules_lock, "pf rulesets"); sx_init(&pf_ioctl_lock, "pf ioctl"); sx_init(&pf_end_lock, "pf end thread"); pf_mtag_initialize(); pf_dev = make_dev(&pf_cdevsw, 0, 0, 0, 0600, PF_NAME); if (pf_dev == NULL) return (ENOMEM); pf_end_threads = 0; error = kproc_create(pf_purge_thread, NULL, &pf_purge_proc, 0, 0, "pf purge"); if (error != 0) return (error); pfi_initialize(); return (0); } static void pf_unload_vnet(void) { int error, ret; V_pf_vnet_active = 0; V_pf_status.running = 0; error = dehook_pf(); if (error) { /* * Should not happen! * XXX Due to error code ESRCH, kldunload will show * a message like 'No such process'. */ printf("%s : pfil unregisteration fail\n", __FUNCTION__); return; } PF_RULES_WLOCK(); shutdown_pf(); PF_RULES_WUNLOCK(); ret = swi_remove(V_pf_swi_cookie); MPASS(ret == 0); ret = intr_event_destroy(V_pf_swi_ie); MPASS(ret == 0); pf_unload_vnet_purge(); pf_normalize_cleanup(); PF_RULES_WLOCK(); pfi_cleanup_vnet(); PF_RULES_WUNLOCK(); pfr_cleanup(); pf_osfp_flush(); pf_cleanup(); if (IS_DEFAULT_VNET(curvnet)) pf_mtag_cleanup(); pf_cleanup_tagset(&V_pf_tags); #ifdef ALTQ pf_cleanup_tagset(&V_pf_qids); #endif uma_zdestroy(V_pf_tag_z); /* Free counters last as we updated them during shutdown. */ counter_u64_free(V_pf_default_rule.evaluations); for (int i = 0; i < 2; i++) { counter_u64_free(V_pf_default_rule.packets[i]); counter_u64_free(V_pf_default_rule.bytes[i]); } counter_u64_free(V_pf_default_rule.states_cur); counter_u64_free(V_pf_default_rule.states_tot); counter_u64_free(V_pf_default_rule.src_nodes); for (int i = 0; i < PFRES_MAX; i++) counter_u64_free(V_pf_status.counters[i]); for (int i = 0; i < LCNT_MAX; i++) counter_u64_free(V_pf_status.lcounters[i]); for (int i = 0; i < FCNT_MAX; i++) counter_u64_free(V_pf_status.fcounters[i]); for (int i = 0; i < SCNT_MAX; i++) counter_u64_free(V_pf_status.scounters[i]); } static void pf_unload(void) { sx_xlock(&pf_end_lock); pf_end_threads = 1; while (pf_end_threads < 2) { wakeup_one(pf_purge_thread); sx_sleep(pf_purge_proc, &pf_end_lock, 0, "pftmo", 0); } sx_xunlock(&pf_end_lock); if (pf_dev != NULL) destroy_dev(pf_dev); pfi_cleanup(); rm_destroy(&pf_rules_lock); sx_destroy(&pf_ioctl_lock); sx_destroy(&pf_end_lock); } static void vnet_pf_init(void *unused __unused) { pf_load_vnet(); } VNET_SYSINIT(vnet_pf_init, SI_SUB_PROTO_FIREWALL, SI_ORDER_THIRD, vnet_pf_init, NULL); static void vnet_pf_uninit(const void *unused __unused) { pf_unload_vnet(); } SYSUNINIT(pf_unload, SI_SUB_PROTO_FIREWALL, SI_ORDER_SECOND, pf_unload, NULL); VNET_SYSUNINIT(vnet_pf_uninit, SI_SUB_PROTO_FIREWALL, SI_ORDER_THIRD, vnet_pf_uninit, NULL); static int pf_modevent(module_t mod, int type, void *data) { int error = 0; switch(type) { case MOD_LOAD: error = pf_load(); break; case MOD_UNLOAD: /* Handled in SYSUNINIT(pf_unload) to ensure it's done after * the vnet_pf_uninit()s */ break; default: error = EINVAL; break; } return (error); } static moduledata_t pf_mod = { "pf", pf_modevent, 0 }; DECLARE_MODULE(pf, pf_mod, SI_SUB_PROTO_FIREWALL, SI_ORDER_SECOND); MODULE_VERSION(pf, PF_MODVER); diff --git a/sys/netpfil/pf/pf_nv.c b/sys/netpfil/pf/pf_nv.c index 863259dbf9aa..dab72f04d138 100644 --- a/sys/netpfil/pf/pf_nv.c +++ b/sys/netpfil/pf/pf_nv.c @@ -1,990 +1,991 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2021 Rubicon Communications, LLC (Netgate) * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * */ #include __FBSDID("$FreeBSD$"); #include "opt_inet.h" #include "opt_inet6.h" #include #include #include #include #include #include #define PF_NV_IMPL_UINT(fnname, type, max) \ int \ pf_nv ## fnname(const nvlist_t *nvl, const char *name, type *val) \ { \ uint64_t raw; \ if (! nvlist_exists_number(nvl, name)) \ return (EINVAL); \ raw = nvlist_get_number(nvl, name); \ if (raw > max) \ return (ERANGE); \ *val = (type)raw; \ return (0); \ } \ int \ pf_nv ## fnname ## _array(const nvlist_t *nvl, const char *name, \ type *array, size_t maxelems, size_t *nelems) \ { \ const uint64_t *n; \ size_t nitems; \ bzero(array, sizeof(type) * maxelems); \ if (! nvlist_exists_number_array(nvl, name)) \ return (EINVAL); \ n = nvlist_get_number_array(nvl, name, &nitems); \ if (nitems != maxelems) \ return (E2BIG); \ if (nelems != NULL) \ *nelems = nitems; \ for (size_t i = 0; i < nitems; i++) { \ if (n[i] > max) \ return (ERANGE); \ array[i] = (type)n[i]; \ } \ return (0); \ } \ void \ pf_ ## fnname ## _array_nv(nvlist_t *nvl, const char *name, \ const type *numbers, size_t count) \ { \ uint64_t tmp; \ for (size_t i = 0; i < count; i++) { \ tmp = numbers[i]; \ nvlist_append_number_array(nvl, name, tmp); \ } \ } int pf_nvbinary(const nvlist_t *nvl, const char *name, void *data, size_t expected_size) { const uint8_t *nvdata; size_t len; bzero(data, expected_size); if (! nvlist_exists_binary(nvl, name)) return (EINVAL); nvdata = (const uint8_t *)nvlist_get_binary(nvl, name, &len); if (len > expected_size) return (EINVAL); memcpy(data, nvdata, len); return (0); } PF_NV_IMPL_UINT(uint8, uint8_t, UINT8_MAX); PF_NV_IMPL_UINT(uint16, uint16_t, UINT16_MAX); PF_NV_IMPL_UINT(uint32, uint32_t, UINT32_MAX); PF_NV_IMPL_UINT(uint64, uint64_t, UINT64_MAX); int pf_nvint(const nvlist_t *nvl, const char *name, int *val) { int64_t raw; if (! nvlist_exists_number(nvl, name)) return (EINVAL); raw = nvlist_get_number(nvl, name); if (raw > INT_MAX || raw < INT_MIN) return (ERANGE); *val = (int)raw; return (0); } int pf_nvstring(const nvlist_t *nvl, const char *name, char *str, size_t maxlen) { int ret; if (! nvlist_exists_string(nvl, name)) return (EINVAL); ret = strlcpy(str, nvlist_get_string(nvl, name), maxlen); if (ret >= maxlen) return (EINVAL); return (0); } static int pf_nvaddr_to_addr(const nvlist_t *nvl, struct pf_addr *paddr) { return (pf_nvbinary(nvl, "addr", paddr, sizeof(*paddr))); } static nvlist_t * pf_addr_to_nvaddr(const struct pf_addr *paddr) { nvlist_t *nvl; nvl = nvlist_create(0); if (nvl == NULL) return (NULL); nvlist_add_binary(nvl, "addr", paddr, sizeof(*paddr)); return (nvl); } static int pf_nvmape_to_mape(const nvlist_t *nvl, struct pf_mape_portset *mape) { int error = 0; bzero(mape, sizeof(*mape)); PFNV_CHK(pf_nvuint8(nvl, "offset", &mape->offset)); PFNV_CHK(pf_nvuint8(nvl, "psidlen", &mape->psidlen)); PFNV_CHK(pf_nvuint16(nvl, "psid", &mape->psid)); errout: return (error); } static nvlist_t * pf_mape_to_nvmape(const struct pf_mape_portset *mape) { nvlist_t *nvl; nvl = nvlist_create(0); if (nvl == NULL) return (NULL); nvlist_add_number(nvl, "offset", mape->offset); nvlist_add_number(nvl, "psidlen", mape->psidlen); nvlist_add_number(nvl, "psid", mape->psid); return (nvl); } static int pf_nvpool_to_pool(const nvlist_t *nvl, struct pf_kpool *kpool) { int error = 0; bzero(kpool, sizeof(*kpool)); PFNV_CHK(pf_nvbinary(nvl, "key", &kpool->key, sizeof(kpool->key))); if (nvlist_exists_nvlist(nvl, "counter")) { PFNV_CHK(pf_nvaddr_to_addr(nvlist_get_nvlist(nvl, "counter"), &kpool->counter)); } PFNV_CHK(pf_nvint(nvl, "tblidx", &kpool->tblidx)); PFNV_CHK(pf_nvuint16_array(nvl, "proxy_port", kpool->proxy_port, 2, NULL)); PFNV_CHK(pf_nvuint8(nvl, "opts", &kpool->opts)); if (nvlist_exists_nvlist(nvl, "mape")) { PFNV_CHK(pf_nvmape_to_mape(nvlist_get_nvlist(nvl, "mape"), &kpool->mape)); } errout: return (error); } static nvlist_t * pf_pool_to_nvpool(const struct pf_kpool *pool) { nvlist_t *nvl; nvlist_t *tmp; nvl = nvlist_create(0); if (nvl == NULL) return (NULL); nvlist_add_binary(nvl, "key", &pool->key, sizeof(pool->key)); tmp = pf_addr_to_nvaddr(&pool->counter); if (tmp == NULL) goto error; nvlist_add_nvlist(nvl, "counter", tmp); nvlist_destroy(tmp); nvlist_add_number(nvl, "tblidx", pool->tblidx); pf_uint16_array_nv(nvl, "proxy_port", pool->proxy_port, 2); nvlist_add_number(nvl, "opts", pool->opts); tmp = pf_mape_to_nvmape(&pool->mape); if (tmp == NULL) goto error; nvlist_add_nvlist(nvl, "mape", tmp); nvlist_destroy(tmp); return (nvl); error: nvlist_destroy(nvl); return (NULL); } static int pf_nvaddr_wrap_to_addr_wrap(const nvlist_t *nvl, struct pf_addr_wrap *addr) { int error = 0; bzero(addr, sizeof(*addr)); PFNV_CHK(pf_nvuint8(nvl, "type", &addr->type)); PFNV_CHK(pf_nvuint8(nvl, "iflags", &addr->iflags)); if (addr->type == PF_ADDR_DYNIFTL) PFNV_CHK(pf_nvstring(nvl, "ifname", addr->v.ifname, sizeof(addr->v.ifname))); if (addr->type == PF_ADDR_TABLE) PFNV_CHK(pf_nvstring(nvl, "tblname", addr->v.tblname, sizeof(addr->v.tblname))); if (! nvlist_exists_nvlist(nvl, "addr")) return (EINVAL); PFNV_CHK(pf_nvaddr_to_addr(nvlist_get_nvlist(nvl, "addr"), &addr->v.a.addr)); if (! nvlist_exists_nvlist(nvl, "mask")) return (EINVAL); PFNV_CHK(pf_nvaddr_to_addr(nvlist_get_nvlist(nvl, "mask"), &addr->v.a.mask)); switch (addr->type) { case PF_ADDR_DYNIFTL: case PF_ADDR_TABLE: case PF_ADDR_RANGE: case PF_ADDR_ADDRMASK: case PF_ADDR_NOROUTE: case PF_ADDR_URPFFAILED: break; default: return (EINVAL); } errout: return (error); } static nvlist_t * pf_addr_wrap_to_nvaddr_wrap(const struct pf_addr_wrap *addr) { nvlist_t *nvl; nvlist_t *tmp; nvl = nvlist_create(0); if (nvl == NULL) return (NULL); nvlist_add_number(nvl, "type", addr->type); nvlist_add_number(nvl, "iflags", addr->iflags); if (addr->type == PF_ADDR_DYNIFTL) nvlist_add_string(nvl, "ifname", addr->v.ifname); if (addr->type == PF_ADDR_TABLE) nvlist_add_string(nvl, "tblname", addr->v.tblname); tmp = pf_addr_to_nvaddr(&addr->v.a.addr); if (tmp == NULL) goto error; nvlist_add_nvlist(nvl, "addr", tmp); nvlist_destroy(tmp); tmp = pf_addr_to_nvaddr(&addr->v.a.mask); if (tmp == NULL) goto error; nvlist_add_nvlist(nvl, "mask", tmp); nvlist_destroy(tmp); return (nvl); error: nvlist_destroy(nvl); return (NULL); } static int pf_validate_op(uint8_t op) { switch (op) { case PF_OP_NONE: case PF_OP_IRG: case PF_OP_EQ: case PF_OP_NE: case PF_OP_LT: case PF_OP_LE: case PF_OP_GT: case PF_OP_GE: case PF_OP_XRG: case PF_OP_RRG: break; default: return (EINVAL); } return (0); } static int pf_nvrule_addr_to_rule_addr(const nvlist_t *nvl, struct pf_rule_addr *addr) { int error = 0; if (! nvlist_exists_nvlist(nvl, "addr")) return (EINVAL); PFNV_CHK(pf_nvaddr_wrap_to_addr_wrap(nvlist_get_nvlist(nvl, "addr"), &addr->addr)); PFNV_CHK(pf_nvuint16_array(nvl, "port", addr->port, 2, NULL)); PFNV_CHK(pf_nvuint8(nvl, "neg", &addr->neg)); PFNV_CHK(pf_nvuint8(nvl, "port_op", &addr->port_op)); PFNV_CHK(pf_validate_op(addr->port_op)); errout: return (error); } static nvlist_t * pf_rule_addr_to_nvrule_addr(const struct pf_rule_addr *addr) { nvlist_t *nvl; nvlist_t *tmp; nvl = nvlist_create(0); if (nvl == NULL) return (NULL); tmp = pf_addr_wrap_to_nvaddr_wrap(&addr->addr); if (tmp == NULL) goto error; nvlist_add_nvlist(nvl, "addr", tmp); nvlist_destroy(tmp); pf_uint16_array_nv(nvl, "port", addr->port, 2); nvlist_add_number(nvl, "neg", addr->neg); nvlist_add_number(nvl, "port_op", addr->port_op); return (nvl); error: nvlist_destroy(nvl); return (NULL); } static int pf_nvrule_uid_to_rule_uid(const nvlist_t *nvl, struct pf_rule_uid *uid) { int error = 0; bzero(uid, sizeof(*uid)); PFNV_CHK(pf_nvuint32_array(nvl, "uid", uid->uid, 2, NULL)); PFNV_CHK(pf_nvuint8(nvl, "op", &uid->op)); PFNV_CHK(pf_validate_op(uid->op)); errout: return (error); } static nvlist_t * pf_rule_uid_to_nvrule_uid(const struct pf_rule_uid *uid) { nvlist_t *nvl; nvl = nvlist_create(0); if (nvl == NULL) return (NULL); pf_uint32_array_nv(nvl, "uid", uid->uid, 2); nvlist_add_number(nvl, "op", uid->op); return (nvl); } static int pf_nvrule_gid_to_rule_gid(const nvlist_t *nvl, struct pf_rule_gid *gid) { /* Cheat a little. These stucts are the same, other than the name of * the first field. */ return (pf_nvrule_uid_to_rule_uid(nvl, (struct pf_rule_uid *)gid)); } int pf_check_rule_addr(const struct pf_rule_addr *addr) { switch (addr->addr.type) { case PF_ADDR_ADDRMASK: case PF_ADDR_NOROUTE: case PF_ADDR_DYNIFTL: case PF_ADDR_TABLE: case PF_ADDR_URPFFAILED: case PF_ADDR_RANGE: break; default: return (EINVAL); } if (addr->addr.p.dyn != NULL) { return (EINVAL); } return (0); } int pf_nvrule_to_krule(const nvlist_t *nvl, struct pf_krule *rule) { int error = 0; #define ERROUT(x) ERROUT_FUNCTION(errout, x) PFNV_CHK(pf_nvuint32(nvl, "nr", &rule->nr)); if (! nvlist_exists_nvlist(nvl, "src")) ERROUT(EINVAL); error = pf_nvrule_addr_to_rule_addr(nvlist_get_nvlist(nvl, "src"), &rule->src); if (error != 0) ERROUT(error); if (! nvlist_exists_nvlist(nvl, "dst")) ERROUT(EINVAL); PFNV_CHK(pf_nvrule_addr_to_rule_addr(nvlist_get_nvlist(nvl, "dst"), &rule->dst)); if (nvlist_exists_string(nvl, "label")) { PFNV_CHK(pf_nvstring(nvl, "label", rule->label[0], sizeof(rule->label[0]))); } else if (nvlist_exists_string_array(nvl, "labels")) { const char *const *strs; size_t items; int ret; strs = nvlist_get_string_array(nvl, "labels", &items); if (items > PF_RULE_MAX_LABEL_COUNT) ERROUT(E2BIG); for (size_t i = 0; i < items; i++) { ret = strlcpy(rule->label[i], strs[i], sizeof(rule->label[0])); if (ret >= sizeof(rule->label[0])) ERROUT(E2BIG); } } PFNV_CHK(pf_nvstring(nvl, "ifname", rule->ifname, sizeof(rule->ifname))); PFNV_CHK(pf_nvstring(nvl, "qname", rule->qname, sizeof(rule->qname))); PFNV_CHK(pf_nvstring(nvl, "pqname", rule->pqname, sizeof(rule->pqname))); PFNV_CHK(pf_nvstring(nvl, "tagname", rule->tagname, sizeof(rule->tagname))); PFNV_CHK(pf_nvstring(nvl, "match_tagname", rule->match_tagname, sizeof(rule->match_tagname))); PFNV_CHK(pf_nvstring(nvl, "overload_tblname", rule->overload_tblname, sizeof(rule->overload_tblname))); if (! nvlist_exists_nvlist(nvl, "rpool")) ERROUT(EINVAL); PFNV_CHK(pf_nvpool_to_pool(nvlist_get_nvlist(nvl, "rpool"), &rule->rpool)); PFNV_CHK(pf_nvuint32(nvl, "os_fingerprint", &rule->os_fingerprint)); PFNV_CHK(pf_nvint(nvl, "rtableid", &rule->rtableid)); PFNV_CHK(pf_nvuint32_array(nvl, "timeout", rule->timeout, PFTM_MAX, NULL)); PFNV_CHK(pf_nvuint32(nvl, "max_states", &rule->max_states)); PFNV_CHK(pf_nvuint32(nvl, "max_src_nodes", &rule->max_src_nodes)); PFNV_CHK(pf_nvuint32(nvl, "max_src_states", &rule->max_src_states)); PFNV_CHK(pf_nvuint32(nvl, "max_src_conn", &rule->max_src_conn)); PFNV_CHK(pf_nvuint32(nvl, "max_src_conn_rate.limit", &rule->max_src_conn_rate.limit)); PFNV_CHK(pf_nvuint32(nvl, "max_src_conn_rate.seconds", &rule->max_src_conn_rate.seconds)); PFNV_CHK(pf_nvuint32(nvl, "prob", &rule->prob)); PFNV_CHK(pf_nvuint32(nvl, "cuid", &rule->cuid)); PFNV_CHK(pf_nvuint32(nvl, "cpid", &rule->cpid)); PFNV_CHK(pf_nvuint16(nvl, "return_icmp", &rule->return_icmp)); PFNV_CHK(pf_nvuint16(nvl, "return_icmp6", &rule->return_icmp6)); PFNV_CHK(pf_nvuint16(nvl, "max_mss", &rule->max_mss)); PFNV_CHK(pf_nvuint16(nvl, "scrub_flags", &rule->scrub_flags)); if (! nvlist_exists_nvlist(nvl, "uid")) ERROUT(EINVAL); PFNV_CHK(pf_nvrule_uid_to_rule_uid(nvlist_get_nvlist(nvl, "uid"), &rule->uid)); if (! nvlist_exists_nvlist(nvl, "gid")) ERROUT(EINVAL); PFNV_CHK(pf_nvrule_gid_to_rule_gid(nvlist_get_nvlist(nvl, "gid"), &rule->gid)); PFNV_CHK(pf_nvuint32(nvl, "rule_flag", &rule->rule_flag)); PFNV_CHK(pf_nvuint8(nvl, "action", &rule->action)); PFNV_CHK(pf_nvuint8(nvl, "direction", &rule->direction)); PFNV_CHK(pf_nvuint8(nvl, "log", &rule->log)); PFNV_CHK(pf_nvuint8(nvl, "logif", &rule->logif)); PFNV_CHK(pf_nvuint8(nvl, "quick", &rule->quick)); PFNV_CHK(pf_nvuint8(nvl, "ifnot", &rule->ifnot)); PFNV_CHK(pf_nvuint8(nvl, "match_tag_not", &rule->match_tag_not)); PFNV_CHK(pf_nvuint8(nvl, "natpass", &rule->natpass)); PFNV_CHK(pf_nvuint8(nvl, "keep_state", &rule->keep_state)); PFNV_CHK(pf_nvuint8(nvl, "af", &rule->af)); PFNV_CHK(pf_nvuint8(nvl, "proto", &rule->proto)); PFNV_CHK(pf_nvuint8(nvl, "type", &rule->type)); PFNV_CHK(pf_nvuint8(nvl, "code", &rule->code)); PFNV_CHK(pf_nvuint8(nvl, "flags", &rule->flags)); PFNV_CHK(pf_nvuint8(nvl, "flagset", &rule->flagset)); PFNV_CHK(pf_nvuint8(nvl, "min_ttl", &rule->min_ttl)); PFNV_CHK(pf_nvuint8(nvl, "allow_opts", &rule->allow_opts)); PFNV_CHK(pf_nvuint8(nvl, "rt", &rule->rt)); PFNV_CHK(pf_nvuint8(nvl, "return_ttl", &rule->return_ttl)); PFNV_CHK(pf_nvuint8(nvl, "tos", &rule->tos)); PFNV_CHK(pf_nvuint8(nvl, "set_tos", &rule->set_tos)); PFNV_CHK(pf_nvuint8(nvl, "anchor_relative", &rule->anchor_relative)); PFNV_CHK(pf_nvuint8(nvl, "anchor_wildcard", &rule->anchor_wildcard)); PFNV_CHK(pf_nvuint8(nvl, "flush", &rule->flush)); PFNV_CHK(pf_nvuint8(nvl, "prio", &rule->prio)); PFNV_CHK(pf_nvuint8_array(nvl, "set_prio", &rule->prio, 2, NULL)); if (nvlist_exists_nvlist(nvl, "divert")) { const nvlist_t *nvldivert = nvlist_get_nvlist(nvl, "divert"); if (! nvlist_exists_nvlist(nvldivert, "addr")) ERROUT(EINVAL); PFNV_CHK(pf_nvaddr_to_addr(nvlist_get_nvlist(nvldivert, "addr"), &rule->divert.addr)); PFNV_CHK(pf_nvuint16(nvldivert, "port", &rule->divert.port)); } /* Validation */ #ifndef INET if (rule->af == AF_INET) ERROUT(EAFNOSUPPORT); #endif /* INET */ #ifndef INET6 if (rule->af == AF_INET6) ERROUT(EAFNOSUPPORT); #endif /* INET6 */ PFNV_CHK(pf_check_rule_addr(&rule->src)); PFNV_CHK(pf_check_rule_addr(&rule->dst)); return (0); #undef ERROUT errout: return (error); } static nvlist_t * pf_divert_to_nvdivert(const struct pf_krule *rule) { nvlist_t *nvl; nvlist_t *tmp; nvl = nvlist_create(0); if (nvl == NULL) return (NULL); tmp = pf_addr_to_nvaddr(&rule->divert.addr); if (tmp == NULL) goto error; nvlist_add_nvlist(nvl, "addr", tmp); nvlist_destroy(tmp); nvlist_add_number(nvl, "port", rule->divert.port); return (nvl); error: nvlist_destroy(nvl); return (NULL); } nvlist_t * pf_krule_to_nvrule(const struct pf_krule *rule) { nvlist_t *nvl, *tmp; nvl = nvlist_create(0); if (nvl == NULL) return (nvl); nvlist_add_number(nvl, "nr", rule->nr); tmp = pf_rule_addr_to_nvrule_addr(&rule->src); if (tmp == NULL) goto error; nvlist_add_nvlist(nvl, "src", tmp); nvlist_destroy(tmp); tmp = pf_rule_addr_to_nvrule_addr(&rule->dst); if (tmp == NULL) goto error; nvlist_add_nvlist(nvl, "dst", tmp); nvlist_destroy(tmp); for (int i = 0; i < PF_SKIP_COUNT; i++) { nvlist_append_number_array(nvl, "skip", rule->skip[i].ptr ? rule->skip[i].ptr->nr : -1); } for (int i = 0; i < PF_RULE_MAX_LABEL_COUNT; i++) { nvlist_append_string_array(nvl, "labels", rule->label[i]); } nvlist_add_string(nvl, "label", rule->label[0]); nvlist_add_string(nvl, "ifname", rule->ifname); nvlist_add_string(nvl, "qname", rule->qname); nvlist_add_string(nvl, "pqname", rule->pqname); nvlist_add_string(nvl, "tagname", rule->tagname); nvlist_add_string(nvl, "match_tagname", rule->match_tagname); nvlist_add_string(nvl, "overload_tblname", rule->overload_tblname); tmp = pf_pool_to_nvpool(&rule->rpool); if (tmp == NULL) goto error; nvlist_add_nvlist(nvl, "rpool", tmp); nvlist_destroy(tmp); nvlist_add_number(nvl, "evaluations", counter_u64_fetch(rule->evaluations)); for (int i = 0; i < 2; i++) { nvlist_append_number_array(nvl, "packets", counter_u64_fetch(rule->packets[i])); nvlist_append_number_array(nvl, "bytes", counter_u64_fetch(rule->bytes[i])); } nvlist_add_number(nvl, "os_fingerprint", rule->os_fingerprint); nvlist_add_number(nvl, "rtableid", rule->rtableid); pf_uint32_array_nv(nvl, "timeout", rule->timeout, PFTM_MAX); nvlist_add_number(nvl, "max_states", rule->max_states); nvlist_add_number(nvl, "max_src_nodes", rule->max_src_nodes); nvlist_add_number(nvl, "max_src_states", rule->max_src_states); nvlist_add_number(nvl, "max_src_conn", rule->max_src_conn); nvlist_add_number(nvl, "max_src_conn_rate.limit", rule->max_src_conn_rate.limit); nvlist_add_number(nvl, "max_src_conn_rate.seconds", rule->max_src_conn_rate.seconds); nvlist_add_number(nvl, "qid", rule->qid); nvlist_add_number(nvl, "pqid", rule->pqid); nvlist_add_number(nvl, "prob", rule->prob); nvlist_add_number(nvl, "cuid", rule->cuid); nvlist_add_number(nvl, "cpid", rule->cpid); nvlist_add_number(nvl, "states_cur", counter_u64_fetch(rule->states_cur)); nvlist_add_number(nvl, "states_tot", counter_u64_fetch(rule->states_tot)); nvlist_add_number(nvl, "src_nodes", counter_u64_fetch(rule->src_nodes)); nvlist_add_number(nvl, "return_icmp", rule->return_icmp); nvlist_add_number(nvl, "return_icmp6", rule->return_icmp6); nvlist_add_number(nvl, "max_mss", rule->max_mss); nvlist_add_number(nvl, "scrub_flags", rule->scrub_flags); tmp = pf_rule_uid_to_nvrule_uid(&rule->uid); if (tmp == NULL) goto error; nvlist_add_nvlist(nvl, "uid", tmp); nvlist_destroy(tmp); tmp = pf_rule_uid_to_nvrule_uid((const struct pf_rule_uid *)&rule->gid); if (tmp == NULL) goto error; nvlist_add_nvlist(nvl, "gid", tmp); nvlist_destroy(tmp); nvlist_add_number(nvl, "rule_flag", rule->rule_flag); nvlist_add_number(nvl, "action", rule->action); nvlist_add_number(nvl, "direction", rule->direction); nvlist_add_number(nvl, "log", rule->log); nvlist_add_number(nvl, "logif", rule->logif); nvlist_add_number(nvl, "quick", rule->quick); nvlist_add_number(nvl, "ifnot", rule->ifnot); nvlist_add_number(nvl, "match_tag_not", rule->match_tag_not); nvlist_add_number(nvl, "natpass", rule->natpass); nvlist_add_number(nvl, "keep_state", rule->keep_state); nvlist_add_number(nvl, "af", rule->af); nvlist_add_number(nvl, "proto", rule->proto); nvlist_add_number(nvl, "type", rule->type); nvlist_add_number(nvl, "code", rule->code); nvlist_add_number(nvl, "flags", rule->flags); nvlist_add_number(nvl, "flagset", rule->flagset); nvlist_add_number(nvl, "min_ttl", rule->min_ttl); nvlist_add_number(nvl, "allow_opts", rule->allow_opts); nvlist_add_number(nvl, "rt", rule->rt); nvlist_add_number(nvl, "return_ttl", rule->return_ttl); nvlist_add_number(nvl, "tos", rule->tos); nvlist_add_number(nvl, "set_tos", rule->set_tos); nvlist_add_number(nvl, "anchor_relative", rule->anchor_relative); nvlist_add_number(nvl, "anchor_wildcard", rule->anchor_wildcard); nvlist_add_number(nvl, "flush", rule->flush); nvlist_add_number(nvl, "prio", rule->prio); pf_uint8_array_nv(nvl, "set_prio", &rule->prio, 2); tmp = pf_divert_to_nvdivert(rule); if (tmp == NULL) goto error; nvlist_add_nvlist(nvl, "divert", tmp); nvlist_destroy(tmp); return (nvl); error: nvlist_destroy(nvl); return (NULL); } static int pf_nvstate_cmp_to_state_cmp(const nvlist_t *nvl, struct pf_state_cmp *cmp) { int error = 0; bzero(cmp, sizeof(*cmp)); PFNV_CHK(pf_nvuint64(nvl, "id", &cmp->id)); PFNV_CHK(pf_nvuint32(nvl, "creatorid", &cmp->creatorid)); PFNV_CHK(pf_nvuint8(nvl, "direction", &cmp->direction)); errout: return (error); } int pf_nvstate_kill_to_kstate_kill(const nvlist_t *nvl, struct pf_kstate_kill *kill) { int error = 0; bzero(kill, sizeof(*kill)); if (! nvlist_exists_nvlist(nvl, "cmp")) return (EINVAL); PFNV_CHK(pf_nvstate_cmp_to_state_cmp(nvlist_get_nvlist(nvl, "cmp"), &kill->psk_pfcmp)); PFNV_CHK(pf_nvuint8(nvl, "af", &kill->psk_af)); PFNV_CHK(pf_nvint(nvl, "proto", &kill->psk_proto)); if (! nvlist_exists_nvlist(nvl, "src")) return (EINVAL); PFNV_CHK(pf_nvrule_addr_to_rule_addr(nvlist_get_nvlist(nvl, "src"), &kill->psk_src)); if (! nvlist_exists_nvlist(nvl, "dst")) return (EINVAL); PFNV_CHK(pf_nvrule_addr_to_rule_addr(nvlist_get_nvlist(nvl, "dst"), &kill->psk_dst)); if (nvlist_exists_nvlist(nvl, "rt_addr")) { PFNV_CHK(pf_nvrule_addr_to_rule_addr( nvlist_get_nvlist(nvl, "rt_addr"), &kill->psk_rt_addr)); } PFNV_CHK(pf_nvstring(nvl, "ifname", kill->psk_ifname, sizeof(kill->psk_ifname))); PFNV_CHK(pf_nvstring(nvl, "label", kill->psk_label, sizeof(kill->psk_label))); if (nvlist_exists_bool(nvl, "kill_match")) kill->psk_kill_match = nvlist_get_bool(nvl, "kill_match"); errout: return (error); } static nvlist_t * pf_state_key_to_nvstate_key(const struct pf_state_key *key) { nvlist_t *nvl, *tmp; nvl = nvlist_create(0); if (nvl == NULL) return (NULL); for (int i = 0; i < 2; i++) { tmp = pf_addr_to_nvaddr(&key->addr[i]); if (tmp == NULL) goto errout; nvlist_append_nvlist_array(nvl, "addr", tmp); + nvlist_destroy(tmp); nvlist_append_number_array(nvl, "port", key->port[i]); } nvlist_add_number(nvl, "af", key->af); nvlist_add_number(nvl, "proto", key->proto); return (nvl); errout: nvlist_destroy(nvl); return (NULL); } static nvlist_t * pf_state_scrub_to_nvstate_scrub(const struct pf_state_scrub *scrub) { nvlist_t *nvl; nvl = nvlist_create(0); if (nvl == NULL) return (NULL); nvlist_add_bool(nvl, "timestamp", scrub->pfss_flags & PFSS_TIMESTAMP); nvlist_add_number(nvl, "ttl", scrub->pfss_ttl); nvlist_add_number(nvl, "ts_mod", scrub->pfss_ts_mod); return (nvl); } static nvlist_t * pf_state_peer_to_nvstate_peer(const struct pf_state_peer *peer) { nvlist_t *nvl, *tmp; nvl = nvlist_create(0); if (nvl == NULL) return (NULL); if (peer->scrub) { tmp = pf_state_scrub_to_nvstate_scrub(peer->scrub); if (tmp == NULL) goto errout; nvlist_add_nvlist(nvl, "scrub", tmp); nvlist_destroy(tmp); } nvlist_add_number(nvl, "seqlo", peer->seqlo); nvlist_add_number(nvl, "seqhi", peer->seqhi); nvlist_add_number(nvl, "seqdiff", peer->seqdiff); nvlist_add_number(nvl, "max_win", peer->max_win); nvlist_add_number(nvl, "mss", peer->mss); nvlist_add_number(nvl, "state", peer->state); nvlist_add_number(nvl, "wscale", peer->wscale); return (nvl); errout: nvlist_destroy(nvl); return (NULL); } nvlist_t * pf_state_to_nvstate(const struct pf_state *s) { nvlist_t *nvl, *tmp; uint32_t expire, flags = 0; nvl = nvlist_create(0); if (nvl == NULL) return (NULL); nvlist_add_number(nvl, "id", s->id); nvlist_add_string(nvl, "ifname", s->kif->pfik_name); nvlist_add_string(nvl, "orig_ifname", s->orig_kif->pfik_name); tmp = pf_state_key_to_nvstate_key(s->key[PF_SK_STACK]); if (tmp == NULL) goto errout; nvlist_add_nvlist(nvl, "stack_key", tmp); nvlist_destroy(tmp); tmp = pf_state_key_to_nvstate_key(s->key[PF_SK_WIRE]); if (tmp == NULL) goto errout; nvlist_add_nvlist(nvl, "wire_key", tmp); nvlist_destroy(tmp); tmp = pf_state_peer_to_nvstate_peer(&s->src); if (tmp == NULL) goto errout; nvlist_add_nvlist(nvl, "src", tmp); nvlist_destroy(tmp); tmp = pf_state_peer_to_nvstate_peer(&s->dst); if (tmp == NULL) goto errout; nvlist_add_nvlist(nvl, "dst", tmp); nvlist_destroy(tmp); tmp = pf_addr_to_nvaddr(&s->rt_addr); if (tmp == NULL) goto errout; nvlist_add_nvlist(nvl, "rt_addr", tmp); nvlist_destroy(tmp); nvlist_add_number(nvl, "rule", s->rule.ptr ? s->rule.ptr->nr : -1); nvlist_add_number(nvl, "anchor", s->anchor.ptr ? s->anchor.ptr->nr : -1); nvlist_add_number(nvl, "nat_rule", s->nat_rule.ptr ? s->nat_rule.ptr->nr : -1); nvlist_add_number(nvl, "creation", s->creation); expire = pf_state_expires(s); if (expire <= time_uptime) expire = 0; else expire = expire - time_uptime; nvlist_add_number(nvl, "expire", expire); for (int i = 0; i < 2; i++) { nvlist_append_number_array(nvl, "packets", counter_u64_fetch(s->packets[i])); nvlist_append_number_array(nvl, "bytes", counter_u64_fetch(s->bytes[i])); } nvlist_add_number(nvl, "creatorid", s->creatorid); nvlist_add_number(nvl, "direction", s->direction); nvlist_add_number(nvl, "log", s->log); nvlist_add_number(nvl, "state_flags", s->state_flags); nvlist_add_number(nvl, "timeout", s->timeout); if (s->src_node) flags |= PFSYNC_FLAG_SRCNODE; if (s->nat_src_node) flags |= PFSYNC_FLAG_NATSRCNODE; nvlist_add_number(nvl, "sync_flags", flags); return (nvl); errout: nvlist_destroy(nvl); return (NULL); }