diff --git a/usr.sbin/cxgbetool/cxgbetool.c b/usr.sbin/cxgbetool/cxgbetool.c
index c02bc7fdc054..7b2b495a0292 100644
--- a/usr.sbin/cxgbetool/cxgbetool.c
+++ b/usr.sbin/cxgbetool/cxgbetool.c
@@ -1,3694 +1,3730 @@
 /*-
  * Copyright (c) 2011 Chelsio Communications, Inc.
  * All rights reserved.
  * Written by: Navdeep Parhar <np@FreeBSD.org>
  *
  * Redistribution and use in source and binary forms, with or without
  * modification, are permitted provided that the following conditions
  * are met:
  * 1. Redistributions of source code must retain the above copyright
  *    notice, this list of conditions and the following disclaimer.
  * 2. Redistributions in binary form must reproduce the above copyright
  *    notice, this list of conditions and the following disclaimer in the
  *    documentation and/or other materials provided with the distribution.
  *
  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  * SUCH DAMAGE.
  */
 
 #include <sys/cdefs.h>
 #include <sys/param.h>
 #include <sys/ioctl.h>
 #include <sys/mman.h>
 #include <sys/socket.h>
 #include <sys/stat.h>
 #include <sys/sysctl.h>
 
 #include <arpa/inet.h>
 #include <net/ethernet.h>
 #include <net/sff8472.h>
 #include <netinet/in.h>
 
 #include <ctype.h>
 #include <err.h>
 #include <errno.h>
 #include <fcntl.h>
 #include <limits.h>
+#include <stdbool.h>
 #include <stdint.h>
 #include <stdio.h>
 #include <stdlib.h>
 #include <string.h>
 #include <unistd.h>
 #include <pcap.h>
 
 #include "t4_ioctl.h"
 #include "tcb_common.h"
 
 #define in_range(val, lo, hi) ( val < 0 || (val <= hi && val >= lo))
 #define	max(x, y) ((x) > (y) ? (x) : (y))
 
-static const char *progname, *nexus;
-static int chip_id;	/* 4 for T4, 5 for T5, and so on. */
-static int inst;	/* instance of nexus device */
+static struct {
+	const char *progname, *nexus;
+	int chip_id;	/* 4 for T4, 5 for T5, and so on. */
+	int inst;	/* instance of nexus device */
+	int pf;		/* PF# of the nexus (if not VF). */
+	bool vf;	/* Nexus is a VF. */
+
+	int fd;
+	bool warn_on_ioctl_err;
+} g;
 
 struct reg_info {
 	const char *name;
 	uint32_t addr;
 	uint32_t len;
 };
 
 struct mod_regs {
 	const char *name;
 	const struct reg_info *ri;
 };
 
 struct field_desc {
 	const char *name;     /* Field name */
 	unsigned short start; /* Start bit position */
 	unsigned short end;   /* End bit position */
 	unsigned char shift;  /* # of low order bits omitted and implicitly 0 */
 	unsigned char hex;    /* Print field in hex instead of decimal */
 	unsigned char islog2; /* Field contains the base-2 log of the value */
 };
 
 #include "reg_defs_t4.c"
 #include "reg_defs_t5.c"
 #include "reg_defs_t6.c"
 #include "reg_defs_t4vf.c"
 
 static void
 usage(FILE *fp)
 {
-	fprintf(fp, "Usage: %s <nexus> [operation]\n", progname);
+	fprintf(fp, "Usage: %s <nexus> [operation]\n", g.progname);
 	fprintf(fp,
 	    "\tclearstats <port>                   clear port statistics\n"
 	    "\tclip hold|release <ip6>             hold/release an address\n"
 	    "\tclip list                           list the CLIP table\n"
 	    "\tcontext <type> <id>                 show an SGE context\n"
 	    "\tdumpstate <dump.bin>                dump chip state\n"
 	    "\tfilter <idx> [<param> <val>] ...    set a filter\n"
 	    "\tfilter <idx> delete|clear [prio 1]  delete a filter\n"
 	    "\tfilter list                         list all filters\n"
 	    "\tfilter mode [<match>] ...           get/set global filter mode\n"
 	    "\thashfilter [<param> <val>] ...      set a hashfilter\n"
 	    "\thashfilter <idx> delete|clear       delete a hashfilter\n"
 	    "\thashfilter list                     list all hashfilters\n"
 	    "\thashfilter mode [<match>] ...       get/set global hashfilter mode\n"
 	    "\ti2c <port> <devaddr> <addr> [<len>] read from i2c device\n"
 	    "\tloadboot <bi.bin> [pf|offset <val>] install boot image\n"
 	    "\tloadboot clear [pf|offset <val>]    remove boot image\n"
 	    "\tloadboot-cfg <bc.bin>               install boot config\n"
 	    "\tloadboot-cfg clear                  remove boot config\n"
 	    "\tloadcfg <fw-config.txt>             install configuration file\n"
 	    "\tloadcfg clear                       remove configuration file\n"
 	    "\tloadfw <fw-image.bin>               install firmware\n"
 	    "\tmemdump <addr> <len>                dump a memory range\n"
 	    "\tmodinfo <port> [raw]                optics/cable information\n"
 	    "\tpolicy <policy.txt>                 install offload policy\n"
 	    "\tpolicy clear                        remove offload policy\n"
 	    "\treg <address>[=<val>]               read/write register\n"
 	    "\treg64 <address>[=<val>]             read/write 64 bit register\n"
 	    "\tregdump [<module>] ...              dump registers\n"
 	    "\tsched-class params <param> <val> .. configure TX scheduler class\n"
 	    "\tsched-queue <port> <queue> <class>  bind NIC queues to TX Scheduling class\n"
 	    "\tstdio                               interactive mode\n"
 	    "\ttcb <tid>                           read TCB\n"
 	    "\ttracer <idx> tx<n>|rx<n>|lo<n>      set and enable a tracer\n"
 	    "\ttracer <idx> disable|enable         disable or enable a tracer\n"
 	    "\ttracer list                         list all tracers\n"
 	    );
 }
 
 static inline unsigned int
 get_card_vers(unsigned int version)
 {
 	return (version & 0x3ff);
 }
 
 static int
 real_doit(unsigned long cmd, void *data, const char *cmdstr)
 {
-	static int fd = -1;
-	int rc = 0;
-
-	if (fd == -1) {
-		char buf[64];
-
-		snprintf(buf, sizeof(buf), "/dev/%s", nexus);
-		if ((fd = open(buf, O_RDWR)) < 0) {
-			warn("open(%s)", nexus);
-			rc = errno;
-			return (rc);
-		}
-	}
-
-	rc = ioctl(fd, cmd, data);
-	if (rc < 0) {
-		warn("%s", cmdstr);
-		rc = errno;
+	if (ioctl(g.fd, cmd, data) < 0) {
+		if (g.warn_on_ioctl_err)
+			warn("%s", cmdstr);
+		return (errno);
 	}
-
-	return (rc);
+	return (0);
 }
 #define doit(x, y) real_doit(x, y, #x)
 
 static char *
 str_to_number(const char *s, long *val, long long *vall)
 {
 	char *p;
 
 	if (vall)
 		*vall = strtoll(s, &p, 0);
 	else if (val)
 		*val = strtol(s, &p, 0);
 	else
 		p = NULL;
 
 	return (p);
 }
 
 static int
 read_reg(long addr, int size, long long *val)
 {
 	struct t4_reg reg;
 	int rc;
 
 	reg.addr = (uint32_t) addr;
 	reg.size = (uint32_t) size;
 	reg.val = 0;
 
 	rc = doit(CHELSIO_T4_GETREG, &reg);
 
 	*val = reg.val;
 
 	return (rc);
 }
 
 static int
 write_reg(long addr, int size, long long val)
 {
 	struct t4_reg reg;
 
 	reg.addr = (uint32_t) addr;
 	reg.size = (uint32_t) size;
 	reg.val = (uint64_t) val;
 
 	return doit(CHELSIO_T4_SETREG, &reg);
 }
 
 static int
 register_io(int argc, const char *argv[], int size)
 {
 	char *p, *v;
 	long addr;
 	long long val;
 	int w = 0, rc;
 
 	if (argc == 1) {
 		/* <reg> OR <reg>=<value> */
 
 		p = str_to_number(argv[0], &addr, NULL);
 		if (*p) {
 			if (*p != '=') {
 				warnx("invalid register \"%s\"", argv[0]);
 				return (EINVAL);
 			}
 
 			w = 1;
 			v = p + 1;
 			p = str_to_number(v, NULL, &val);
 
 			if (*p) {
 				warnx("invalid value \"%s\"", v);
 				return (EINVAL);
 			}
 		}
 
 	} else if (argc == 2) {
 		/* <reg> <value> */
 
 		w = 1;
 
 		p = str_to_number(argv[0], &addr, NULL);
 		if (*p) {
 			warnx("invalid register \"%s\"", argv[0]);
 			return (EINVAL);
 		}
 
 		p = str_to_number(argv[1], NULL, &val);
 		if (*p) {
 			warnx("invalid value \"%s\"", argv[1]);
 			return (EINVAL);
 		}
 	} else {
 		warnx("reg: invalid number of arguments (%d)", argc);
 		return (EINVAL);
 	}
 
 	if (w)
 		rc = write_reg(addr, size, val);
 	else {
 		rc = read_reg(addr, size, &val);
 		if (rc == 0)
 			printf("0x%llx [%llu]\n", val, val);
 	}
 
 	return (rc);
 }
 
 static inline uint32_t
 xtract(uint32_t val, int shift, int len)
 {
 	return (val >> shift) & ((1 << len) - 1);
 }
 
 static int
 dump_block_regs(const struct reg_info *reg_array, const uint32_t *regs)
 {
 	uint32_t reg_val = 0;
 
 	for ( ; reg_array->name; ++reg_array)
 		if (!reg_array->len) {
 			reg_val = regs[reg_array->addr / 4];
 			printf("[%#7x] %-47s %#-10x %u\n", reg_array->addr,
 			       reg_array->name, reg_val, reg_val);
 		} else {
 			uint32_t v = xtract(reg_val, reg_array->addr,
 					    reg_array->len);
 
 			printf("    %*u:%u %-47s %#-10x %u\n",
 			       reg_array->addr < 10 ? 3 : 2,
 			       reg_array->addr + reg_array->len - 1,
 			       reg_array->addr, reg_array->name, v, v);
 		}
 
 	return (1);
 }
 
 static int
 dump_regs_table(int argc, const char *argv[], const uint32_t *regs,
     const struct mod_regs *modtab, int nmodules)
 {
 	int i, j, match;
 
 	for (i = 0; i < argc; i++) {
 		for (j = 0; j < nmodules; j++) {
 			if (!strcmp(argv[i], modtab[j].name))
 				break;
 		}
 
 		if (j == nmodules) {
 			warnx("invalid register block \"%s\"", argv[i]);
 			fprintf(stderr, "\nAvailable blocks:");
 			for ( ; nmodules; nmodules--, modtab++)
 				fprintf(stderr, " %s", modtab->name);
 			fprintf(stderr, "\n");
 			return (EINVAL);
 		}
 	}
 
 	for ( ; nmodules; nmodules--, modtab++) {
 
 		match = argc == 0 ? 1 : 0;
 		for (i = 0; !match && i < argc; i++) {
 			if (!strcmp(argv[i], modtab->name))
 				match = 1;
 		}
 
 		if (match)
 			dump_block_regs(modtab->ri, regs);
 	}
 
 	return (0);
 }
 
 #define T4_MODREGS(name) { #name, t4_##name##_regs }
 static int
 dump_regs_t4(int argc, const char *argv[], const uint32_t *regs)
 {
 	static struct mod_regs t4_mod[] = {
 		T4_MODREGS(sge),
 		{ "pci", t4_pcie_regs },
 		T4_MODREGS(dbg),
 		T4_MODREGS(mc),
 		T4_MODREGS(ma),
 		{ "edc0", t4_edc_0_regs },
 		{ "edc1", t4_edc_1_regs },
 		T4_MODREGS(cim),
 		T4_MODREGS(tp),
 		T4_MODREGS(ulp_rx),
 		T4_MODREGS(ulp_tx),
 		{ "pmrx", t4_pm_rx_regs },
 		{ "pmtx", t4_pm_tx_regs },
 		T4_MODREGS(mps),
 		{ "cplsw", t4_cpl_switch_regs },
 		T4_MODREGS(smb),
 		{ "i2c", t4_i2cm_regs },
 		T4_MODREGS(mi),
 		T4_MODREGS(uart),
 		T4_MODREGS(pmu),
 		T4_MODREGS(sf),
 		T4_MODREGS(pl),
 		T4_MODREGS(le),
 		T4_MODREGS(ncsi),
 		T4_MODREGS(xgmac)
 	};
 
 	return dump_regs_table(argc, argv, regs, t4_mod, nitems(t4_mod));
 }
 #undef T4_MODREGS
 
 #define T5_MODREGS(name) { #name, t5_##name##_regs }
 static int
 dump_regs_t5(int argc, const char *argv[], const uint32_t *regs)
 {
 	static struct mod_regs t5_mod[] = {
 		T5_MODREGS(sge),
 		{ "pci", t5_pcie_regs },
 		T5_MODREGS(dbg),
 		{ "mc0", t5_mc_0_regs },
 		{ "mc1", t5_mc_1_regs },
 		T5_MODREGS(ma),
 		{ "edc0", t5_edc_t50_regs },
 		{ "edc1", t5_edc_t51_regs },
 		T5_MODREGS(cim),
 		T5_MODREGS(tp),
 		{ "ulprx", t5_ulp_rx_regs },
 		{ "ulptx", t5_ulp_tx_regs },
 		{ "pmrx", t5_pm_rx_regs },
 		{ "pmtx", t5_pm_tx_regs },
 		T5_MODREGS(mps),
 		{ "cplsw", t5_cpl_switch_regs },
 		T5_MODREGS(smb),
 		{ "i2c", t5_i2cm_regs },
 		T5_MODREGS(mi),
 		T5_MODREGS(uart),
 		T5_MODREGS(pmu),
 		T5_MODREGS(sf),
 		T5_MODREGS(pl),
 		T5_MODREGS(le),
 		T5_MODREGS(ncsi),
 		T5_MODREGS(mac),
 		{ "hma", t5_hma_t5_regs }
 	};
 
 	return dump_regs_table(argc, argv, regs, t5_mod, nitems(t5_mod));
 }
 #undef T5_MODREGS
 
 #define T6_MODREGS(name) { #name, t6_##name##_regs }
 static int
 dump_regs_t6(int argc, const char *argv[], const uint32_t *regs)
 {
 	static struct mod_regs t6_mod[] = {
 		T6_MODREGS(sge),
 		{ "pci", t6_pcie_regs },
 		T6_MODREGS(dbg),
 		{ "mc0", t6_mc_0_regs },
 		T6_MODREGS(ma),
 		{ "edc0", t6_edc_t60_regs },
 		{ "edc1", t6_edc_t61_regs },
 		T6_MODREGS(cim),
 		T6_MODREGS(tp),
 		{ "ulprx", t6_ulp_rx_regs },
 		{ "ulptx", t6_ulp_tx_regs },
 		{ "pmrx", t6_pm_rx_regs },
 		{ "pmtx", t6_pm_tx_regs },
 		T6_MODREGS(mps),
 		{ "cplsw", t6_cpl_switch_regs },
 		T6_MODREGS(smb),
 		{ "i2c", t6_i2cm_regs },
 		T6_MODREGS(mi),
 		T6_MODREGS(uart),
 		T6_MODREGS(pmu),
 		T6_MODREGS(sf),
 		T6_MODREGS(pl),
 		T6_MODREGS(le),
 		T6_MODREGS(ncsi),
 		T6_MODREGS(mac),
 		{ "hma", t6_hma_t6_regs }
 	};
 
 	return dump_regs_table(argc, argv, regs, t6_mod, nitems(t6_mod));
 }
 #undef T6_MODREGS
 
 static int
 dump_regs_t4vf(int argc, const char *argv[], const uint32_t *regs)
 {
 	static struct mod_regs t4vf_mod[] = {
 		{ "sge", t4vf_sge_regs },
 		{ "mps", t4vf_mps_regs },
 		{ "pl", t4vf_pl_regs },
 		{ "mbdata", t4vf_mbdata_regs },
 		{ "cim", t4vf_cim_regs },
 	};
 
 	return dump_regs_table(argc, argv, regs, t4vf_mod, nitems(t4vf_mod));
 }
 
 static int
 dump_regs_t5vf(int argc, const char *argv[], const uint32_t *regs)
 {
 	static struct mod_regs t5vf_mod[] = {
 		{ "sge", t5vf_sge_regs },
 		{ "mps", t4vf_mps_regs },
 		{ "pl", t5vf_pl_regs },
 		{ "mbdata", t4vf_mbdata_regs },
 		{ "cim", t4vf_cim_regs },
 	};
 
 	return dump_regs_table(argc, argv, regs, t5vf_mod, nitems(t5vf_mod));
 }
 
 static int
 dump_regs_t6vf(int argc, const char *argv[], const uint32_t *regs)
 {
 	static struct mod_regs t6vf_mod[] = {
 		{ "sge", t5vf_sge_regs },
 		{ "mps", t4vf_mps_regs },
 		{ "pl", t6vf_pl_regs },
 		{ "mbdata", t4vf_mbdata_regs },
 		{ "cim", t4vf_cim_regs },
 	};
 
 	return dump_regs_table(argc, argv, regs, t6vf_mod, nitems(t6vf_mod));
 }
 
 static int
 dump_regs(int argc, const char *argv[])
 {
 	int vers, revision, rc;
 	struct t4_regdump regs;
 	uint32_t len;
 
 	len = max(T4_REGDUMP_SIZE, T5_REGDUMP_SIZE);
 	regs.data = calloc(1, len);
 	if (regs.data == NULL) {
 		warnc(ENOMEM, "regdump");
 		return (ENOMEM);
 	}
 
 	regs.len = len;
 	rc = doit(CHELSIO_T4_REGDUMP, &regs);
 	if (rc != 0)
 		return (rc);
 
 	vers = get_card_vers(regs.version);
 	revision = (regs.version >> 10) & 0x3f;
 
 	if (vers == 4) {
 		if (revision == 0x3f)
 			rc = dump_regs_t4vf(argc, argv, regs.data);
 		else
 			rc = dump_regs_t4(argc, argv, regs.data);
 	} else if (vers == 5) {
 		if (revision == 0x3f)
 			rc = dump_regs_t5vf(argc, argv, regs.data);
 		else
 			rc = dump_regs_t5(argc, argv, regs.data);
 	} else if (vers == 6) {
 		if (revision == 0x3f)
 			rc = dump_regs_t6vf(argc, argv, regs.data);
 		else
 			rc = dump_regs_t6(argc, argv, regs.data);
 	} else {
 		warnx("%s (type %d, rev %d) is not a known card.",
-		    nexus, vers, revision);
+		    g.nexus, vers, revision);
 		return (ENOTSUP);
 	}
 
 	free(regs.data);
 	return (rc);
 }
 
 static void
 do_show_info_header(uint32_t mode)
 {
 	uint32_t i;
 
 	printf("%4s %8s", "Idx", "Hits");
 	for (i = T4_FILTER_FCoE; i <= T4_FILTER_IP_FRAGMENT; i <<= 1) {
 		switch (mode & i) {
 		case T4_FILTER_FCoE:
 			printf(" FCoE");
 			break;
 		case T4_FILTER_PORT:
 			printf(" Port");
 			break;
 		case T4_FILTER_VNIC:
 			if (mode & T4_FILTER_IC_VNIC)
 				printf("   VFvld:PF:VF");
 			else
 				printf("     vld:oVLAN");
 			break;
 		case T4_FILTER_VLAN:
 			printf("      vld:VLAN");
 			break;
 		case T4_FILTER_IP_TOS:
 			printf("   TOS");
 			break;
 		case T4_FILTER_IP_PROTO:
 			printf("  Prot");
 			break;
 		case T4_FILTER_ETH_TYPE:
 			printf("   EthType");
 			break;
 		case T4_FILTER_MAC_IDX:
 			printf("  MACIdx");
 			break;
 		case T4_FILTER_MPS_HIT_TYPE:
 			printf(" MPS");
 			break;
 		case T4_FILTER_IP_FRAGMENT:
 			printf(" Frag");
 			break;
 		default:
 			/* compressed filter field not enabled */
 			break;
 		}
 	}
 	printf(" %20s %20s %9s %9s %s\n",
 	    "DIP", "SIP", "DPORT", "SPORT", "Action");
 }
 
 /*
  * Parse an argument sub-vector as a { <parameter name> <value>[:<mask>] }
  * ordered tuple.  If the parameter name in the argument sub-vector does not
  * match the passed in parameter name, then a zero is returned for the
  * function and no parsing is performed.  If there is a match, then the value
  * and optional mask are parsed and returned in the provided return value
  * pointers.  If no optional mask is specified, then a default mask of all 1s
  * will be returned.
  *
  * An error in parsing the value[:mask] will result in an error message and
  * program termination.
  */
 static int
 parse_val_mask(const char *param, const char *args[], uint32_t *val,
     uint32_t *mask, int hashfilter)
 {
 	long l;
 	char *p;
 
 	if (strcmp(param, args[0]) != 0)
 		return (EINVAL);
 
 	p = str_to_number(args[1], &l, NULL);
 	if (l >= 0 && l <= UINT32_MAX) {
 		*val = (uint32_t)l;
 		if (p > args[1]) {
 			if (p[0] == 0) {
 				*mask = ~0;
 				return (0);
 			}
 
 			if (p[0] == ':' && p[1] != 0) {
 				if (hashfilter) {
 					warnx("param %s: mask not allowed for "
 					    "hashfilter or nat params", param);
 					return (EINVAL);
 				}
 				p = str_to_number(p + 1, &l, NULL);
 				if (l >= 0 && l <= UINT32_MAX && p[0] == 0) {
 					*mask = (uint32_t)l;
 					return (0);
 				}
 			}
 		}
 	}
 
 	warnx("parameter \"%s\" has bad \"value[:mask]\" %s",
 	    args[0], args[1]);
 
 	return (EINVAL);
 }
 
 /*
  * Parse an argument sub-vector as a { <parameter name> <addr>[/<mask>] }
  * ordered tuple.  If the parameter name in the argument sub-vector does not
  * match the passed in parameter name, then a zero is returned for the
  * function and no parsing is performed.  If there is a match, then the value
  * and optional mask are parsed and returned in the provided return value
  * pointers.  If no optional mask is specified, then a default mask of all 1s
  * will be returned.
  *
  * The value return parameter "afp" is used to specify the expected address
  * family -- IPv4 or IPv6 -- of the address[/mask] and return its actual
  * format.  A passed in value of AF_UNSPEC indicates that either IPv4 or IPv6
  * is acceptable; AF_INET means that only IPv4 addresses are acceptable; and
  * AF_INET6 means that only IPv6 are acceptable.  AF_INET is returned for IPv4
  * and AF_INET6 for IPv6 addresses, respectively.  IPv4 address/mask pairs are
  * returned in the first four bytes of the address and mask return values with
  * the address A.B.C.D returned with { A, B, C, D } returned in addresses { 0,
  * 1, 2, 3}, respectively.
  *
  * An error in parsing the value[:mask] will result in an error message and
  * program termination.
  */
 static int
 parse_ipaddr(const char *param, const char *args[], int *afp, uint8_t addr[],
     uint8_t mask[], int maskless)
 {
 	const char *colon, *afn;
 	char *slash;
 	uint8_t *m;
 	int af, ret;
 	unsigned int masksize;
 
 	/*
 	 * Is this our parameter?
 	 */
 	if (strcmp(param, args[0]) != 0)
 		return (EINVAL);
 
 	/*
 	 * Fundamental IPv4 versus IPv6 selection.
 	 */
 	colon = strchr(args[1], ':');
 	if (!colon) {
 		afn = "IPv4";
 		af = AF_INET;
 		masksize = 32;
 	} else {
 		afn = "IPv6";
 		af = AF_INET6;
 		masksize = 128;
 	}
 	if (*afp == AF_UNSPEC)
 		*afp = af;
 	else if (*afp != af) {
 		warnx("address %s is not of expected family %s",
 		    args[1], *afp == AF_INET ? "IP" : "IPv6");
 		return (EINVAL);
 	}
 
 	/*
 	 * Parse address (temporarily stripping off any "/mask"
 	 * specification).
 	 */
 	slash = strchr(args[1], '/');
 	if (slash)
 		*slash = 0;
 	ret = inet_pton(af, args[1], addr);
 	if (slash)
 		*slash = '/';
 	if (ret <= 0) {
 		warnx("Cannot parse %s %s address %s", param, afn, args[1]);
 		return (EINVAL);
 	}
 
 	/*
 	 * Parse optional mask specification.
 	 */
 	if (slash) {
 		char *p;
 		unsigned int prefix = strtoul(slash + 1, &p, 10);
 
 		if (maskless) {
 			warnx("mask cannot be provided for maskless specification");
 			return (EINVAL);
 		}
 
 		if (p == slash + 1) {
 			warnx("missing address prefix for %s", param);
 			return (EINVAL);
 		}
 		if (*p) {
 			warnx("%s is not a valid address prefix", slash + 1);
 			return (EINVAL);
 		}
 		if (prefix > masksize) {
 			warnx("prefix %u is too long for an %s address",
 			     prefix, afn);
 			return (EINVAL);
 		}
 		memset(mask, 0, masksize / 8);
 		masksize = prefix;
 	}
 
 	if (mask != NULL) {
 		/*
 		 * Fill in mask.
 		 */
 		for (m = mask; masksize >= 8; m++, masksize -= 8)
 			*m = ~0;
 		if (masksize)
 			*m = ~0 << (8 - masksize);
 	}
 
 	return (0);
 }
 
 /*
  * Parse an argument sub-vector as a { <parameter name> <value> } ordered
  * tuple.  If the parameter name in the argument sub-vector does not match the
  * passed in parameter name, then a zero is returned for the function and no
  * parsing is performed.  If there is a match, then the value is parsed and
  * returned in the provided return value pointer.
  */
 static int
 parse_val(const char *param, const char *args[], uint32_t *val)
 {
 	char *p;
 	long l;
 
 	if (strcmp(param, args[0]) != 0)
 		return (EINVAL);
 
 	p = str_to_number(args[1], &l, NULL);
 	if (*p || l < 0 || l > UINT32_MAX) {
 		warnx("parameter \"%s\" has bad \"value\" %s", args[0], args[1]);
 		return (EINVAL);
 	}
 
 	*val = (uint32_t)l;
 	return (0);
 }
 
 static void
 filters_show_ipaddr(int type, uint8_t *addr, uint8_t *addrm)
 {
 	int noctets, octet;
 
 	printf(" ");
 	if (type == 0) {
 		noctets = 4;
 		printf("%3s", " ");
 	} else
 	noctets = 16;
 
 	for (octet = 0; octet < noctets; octet++)
 		printf("%02x", addr[octet]);
 	printf("/");
 	for (octet = 0; octet < noctets; octet++)
 		printf("%02x", addrm[octet]);
 }
 
 static void
 do_show_one_filter_info(struct t4_filter *t, uint32_t mode)
 {
 	uint32_t i;
 
 	printf("%4d", t->idx);
 	if (t->hits == UINT64_MAX)
 		printf(" %8s", "-");
 	else
 		printf(" %8ju", t->hits);
 
 	/*
 	 * Compressed header portion of filter.
 	 */
 	for (i = T4_FILTER_FCoE; i <= T4_FILTER_IP_FRAGMENT; i <<= 1) {
 		switch (mode & i) {
 		case T4_FILTER_FCoE:
 			printf("  %1d/%1d", t->fs.val.fcoe, t->fs.mask.fcoe);
 			break;
 		case T4_FILTER_PORT:
 			printf("  %1d/%1d", t->fs.val.iport, t->fs.mask.iport);
 			break;
 		case T4_FILTER_VNIC:
 			if (mode & T4_FILTER_IC_VNIC) {
 				printf(" %1d:%1x:%02x/%1d:%1x:%02x",
 				    t->fs.val.pfvf_vld,
 				    (t->fs.val.vnic >> 13) & 0x7,
 				    t->fs.val.vnic & 0x1fff,
 				    t->fs.mask.pfvf_vld,
 				    (t->fs.mask.vnic >> 13) & 0x7,
 				    t->fs.mask.vnic & 0x1fff);
 			} else {
 				printf(" %1d:%04x/%1d:%04x",
 				    t->fs.val.ovlan_vld, t->fs.val.vnic,
 				    t->fs.mask.ovlan_vld, t->fs.mask.vnic);
 			}
 			break;
 		case T4_FILTER_VLAN:
 			printf(" %1d:%04x/%1d:%04x",
 			    t->fs.val.vlan_vld, t->fs.val.vlan,
 			    t->fs.mask.vlan_vld, t->fs.mask.vlan);
 			break;
 		case T4_FILTER_IP_TOS:
 			printf(" %02x/%02x", t->fs.val.tos, t->fs.mask.tos);
 			break;
 		case T4_FILTER_IP_PROTO:
 			printf(" %02x/%02x", t->fs.val.proto, t->fs.mask.proto);
 			break;
 		case T4_FILTER_ETH_TYPE:
 			printf(" %04x/%04x", t->fs.val.ethtype,
 			    t->fs.mask.ethtype);
 			break;
 		case T4_FILTER_MAC_IDX:
 			printf(" %03x/%03x", t->fs.val.macidx,
 			    t->fs.mask.macidx);
 			break;
 		case T4_FILTER_MPS_HIT_TYPE:
 			printf(" %1x/%1x", t->fs.val.matchtype,
 			    t->fs.mask.matchtype);
 			break;
 		case T4_FILTER_IP_FRAGMENT:
 			printf("  %1d/%1d", t->fs.val.frag, t->fs.mask.frag);
 			break;
 		default:
 			/* compressed filter field not enabled */
 			break;
 		}
 	}
 
 	/*
 	 * Fixed portion of filter.
 	 */
 	filters_show_ipaddr(t->fs.type, t->fs.val.dip, t->fs.mask.dip);
 	filters_show_ipaddr(t->fs.type, t->fs.val.sip, t->fs.mask.sip);
 	printf(" %04x/%04x %04x/%04x",
 		 t->fs.val.dport, t->fs.mask.dport,
 		 t->fs.val.sport, t->fs.mask.sport);
 
 	/*
 	 * Variable length filter action.
 	 */
 	if (t->fs.action == FILTER_DROP)
 		printf(" Drop");
 	else if (t->fs.action == FILTER_SWITCH) {
 		printf(" Switch: port=%d", t->fs.eport);
 	if (t->fs.newdmac)
 		printf(
 			", dmac=%02x:%02x:%02x:%02x:%02x:%02x "
 			", l2tidx=%d",
 			t->fs.dmac[0], t->fs.dmac[1],
 			t->fs.dmac[2], t->fs.dmac[3],
 			t->fs.dmac[4], t->fs.dmac[5],
 			t->l2tidx);
 	if (t->fs.newsmac)
 		printf(
 			", smac=%02x:%02x:%02x:%02x:%02x:%02x "
 			", smtidx=%d",
 			t->fs.smac[0], t->fs.smac[1],
 			t->fs.smac[2], t->fs.smac[3],
 			t->fs.smac[4], t->fs.smac[5],
 			t->smtidx);
 	if (t->fs.newvlan == VLAN_REMOVE)
 		printf(", vlan=none");
 	else if (t->fs.newvlan == VLAN_INSERT)
 		printf(", vlan=insert(%x)", t->fs.vlan);
 	else if (t->fs.newvlan == VLAN_REWRITE)
 		printf(", vlan=rewrite(%x)", t->fs.vlan);
 	} else {
 		printf(" Pass: Q=");
 		if (t->fs.dirsteer == 0) {
 			printf("RSS");
 			if (t->fs.maskhash)
 				printf("(region %d)", t->fs.iq << 1);
 		} else {
 			printf("%d", t->fs.iq);
 			if (t->fs.dirsteerhash == 0)
 				printf("(QID)");
 			else
 				printf("(hash)");
 		}
 	}
-	if (chip_id <= 5 && t->fs.prio)
+	if (g.chip_id <= 5 && t->fs.prio)
 		printf(" Prio");
 	if (t->fs.rpttid)
 		printf(" RptTID");
 	printf("\n");
 }
 
 static int
 show_filters(int hash)
 {
 	uint32_t mode = 0, header, hpfilter = 0;
 	struct t4_filter t;
 	int rc;
 
 	/* Get the global filter mode first */
 	rc = doit(CHELSIO_T4_GET_FILTER_MODE, &mode);
 	if (rc != 0)
 		return (rc);
 
-	if (!hash && chip_id >= 6) {
+	if (!hash && g.chip_id >= 6) {
 		header = 0;
 		bzero(&t, sizeof (t));
 		t.idx = 0;
 		t.fs.hash = 0;
 		t.fs.prio = 1;
 		for (t.idx = 0; ; t.idx++) {
 			rc = doit(CHELSIO_T4_GET_FILTER, &t);
 			if (rc != 0 || t.idx == 0xffffffff)
 				break;
 
 			if (!header) {
 				printf("High Priority TCAM Region:\n");
 				do_show_info_header(mode);
 				header = 1;
 				hpfilter = 1;
 			}
 			do_show_one_filter_info(&t, mode);
 		}
 	}
 
 	header = 0;
 	bzero(&t, sizeof (t));
 	t.idx = 0;
 	t.fs.hash = hash;
 	for (t.idx = 0; ; t.idx++) {
 		rc = doit(CHELSIO_T4_GET_FILTER, &t);
 		if (rc != 0 || t.idx == 0xffffffff)
 			break;
 
 		if (!header) {
 			if (hpfilter)
 				printf("\nNormal Priority TCAM Region:\n");
 			do_show_info_header(mode);
 			header = 1;
 		}
 		do_show_one_filter_info(&t, mode);
 	}
 
 	return (rc);
 }
 
 static int
 get_filter_mode(int hashfilter)
 {
 	uint32_t mode = hashfilter;
 	int rc;
 
 	rc = doit(CHELSIO_T4_GET_FILTER_MODE, &mode);
 	if (rc != 0)
 		return (rc);
 
 	if (mode & T4_FILTER_IPv4)
 		printf("ipv4 ");
 	if (mode & T4_FILTER_IPv6)
 		printf("ipv6 ");
 	if (mode & T4_FILTER_IP_SADDR)
 		printf("sip ");
 	if (mode & T4_FILTER_IP_DADDR)
 		printf("dip ");
 	if (mode & T4_FILTER_IP_SPORT)
 		printf("sport ");
 	if (mode & T4_FILTER_IP_DPORT)
 		printf("dport ");
 	if (mode & T4_FILTER_IP_FRAGMENT)
 		printf("frag ");
 	if (mode & T4_FILTER_MPS_HIT_TYPE)
 		printf("matchtype ");
 	if (mode & T4_FILTER_MAC_IDX)
 		printf("macidx ");
 	if (mode & T4_FILTER_ETH_TYPE)
 		printf("ethtype ");
 	if (mode & T4_FILTER_IP_PROTO)
 		printf("proto ");
 	if (mode & T4_FILTER_IP_TOS)
 		printf("tos ");
 	if (mode & T4_FILTER_VLAN)
 		printf("vlan ");
 	if (mode & T4_FILTER_VNIC) {
 		if (mode & T4_FILTER_IC_VNIC)
 			printf("vnic_id ");
 		else if (mode & T4_FILTER_IC_ENCAP)
 			printf("encap ");
 		else
 			printf("ovlan ");
 	}
 	if (mode & T4_FILTER_PORT)
 		printf("iport ");
 	if (mode & T4_FILTER_FCoE)
 		printf("fcoe ");
 	printf("\n");
 
 	return (0);
 }
 
 static int
 set_filter_mode(int argc, const char *argv[], int hashfilter)
 {
 	uint32_t mode = 0;
 	int vnic = 0, ovlan = 0, invalid = 0;
 
 	for (; argc; argc--, argv++) {
 		if (!strcmp(argv[0], "ipv4") || !strcmp(argv[0], "ipv6") ||
 		    !strcmp(argv[0], "sip") || !strcmp(argv[0], "dip") ||
 		    !strcmp(argv[0], "sport") || !strcmp(argv[0], "dport")) {
 			/* These are always available and enabled. */
 			continue;
 		} else if (!strcmp(argv[0], "frag"))
 			mode |= T4_FILTER_IP_FRAGMENT;
 		else if (!strcmp(argv[0], "matchtype"))
 			mode |= T4_FILTER_MPS_HIT_TYPE;
 		else if (!strcmp(argv[0], "macidx"))
 			mode |= T4_FILTER_MAC_IDX;
 		else if (!strcmp(argv[0], "ethtype"))
 			mode |= T4_FILTER_ETH_TYPE;
 		else if (!strcmp(argv[0], "proto"))
 			mode |= T4_FILTER_IP_PROTO;
 		else if (!strcmp(argv[0], "tos"))
 			mode |= T4_FILTER_IP_TOS;
 		else if (!strcmp(argv[0], "vlan"))
 			mode |= T4_FILTER_VLAN;
 		else if (!strcmp(argv[0], "ovlan")) {
 			mode |= T4_FILTER_VNIC;
 			ovlan = 1;
 		} else if (!strcmp(argv[0], "vnic_id")) {
 			mode |= T4_FILTER_VNIC;
 			mode |= T4_FILTER_IC_VNIC;
 			vnic = 1;
 		}
 #ifdef notyet
 		else if (!strcmp(argv[0], "encap")) {
 			mode |= T4_FILTER_VNIC;
 			mode |= T4_FILTER_IC_ENCAP;
 			encap = 1;
 		}
 #endif
 		else if (!strcmp(argv[0], "iport"))
 			mode |= T4_FILTER_PORT;
 		else if (!strcmp(argv[0], "fcoe"))
 			mode |= T4_FILTER_FCoE;
 		else {
 			warnx("\"%s\" is not valid while setting filter mode.",
 			    argv[0]);
 			invalid++;
 		}
 	}
 
 	if (vnic + ovlan > 1) {
 		warnx("\"vnic_id\" and \"ovlan\" are mutually exclusive.");
 		invalid++;
 	}
 
 	if (invalid > 0)
 		return (EINVAL);
 
 	if (hashfilter)
 		return doit(CHELSIO_T4_SET_FILTER_MASK, &mode);
 	else
 		return doit(CHELSIO_T4_SET_FILTER_MODE, &mode);
 }
 
 static int
 del_filter(uint32_t idx, int prio, int hashfilter)
 {
 	struct t4_filter t;
 
 	t.fs.prio = prio;
 	t.fs.hash = hashfilter;
 	t.idx = idx;
 
 	return doit(CHELSIO_T4_DEL_FILTER, &t);
 }
 
 #define MAX_VLANID (4095)
 
 static int
 set_filter(uint32_t idx, int argc, const char *argv[], int hash)
 {
 	int rc, af = AF_UNSPEC, start_arg = 0;
 	struct t4_filter t;
 
 	if (argc < 2) {
 		warnc(EINVAL, "%s", __func__);
 		return (EINVAL);
 	};
 	bzero(&t, sizeof (t));
 	t.idx = idx;
 	t.fs.hitcnts = 1;
 	t.fs.hash = hash;
 
 	for (start_arg = 0; start_arg + 2 <= argc; start_arg += 2) {
 		const char **args = &argv[start_arg];
 		uint32_t val, mask;
 
 		if (!strcmp(argv[start_arg], "type")) {
 			int newaf;
 			if (!strcasecmp(argv[start_arg + 1], "ipv4"))
 				newaf = AF_INET;
 			else if (!strcasecmp(argv[start_arg + 1], "ipv6"))
 				newaf = AF_INET6;
 			else {
 				warnx("invalid type \"%s\"; "
 				    "must be one of \"ipv4\" or \"ipv6\"",
 				    argv[start_arg + 1]);
 				return (EINVAL);
 			}
 
 			if (af != AF_UNSPEC && af != newaf) {
 				warnx("conflicting IPv4/IPv6 specifications.");
 				return (EINVAL);
 			}
 			af = newaf;
 		} else if (!parse_val_mask("fcoe", args, &val, &mask, hash)) {
 			t.fs.val.fcoe = val;
 			t.fs.mask.fcoe = mask;
 		} else if (!parse_val_mask("iport", args, &val, &mask, hash)) {
 			t.fs.val.iport = val;
 			t.fs.mask.iport = mask;
 		} else if (!parse_val_mask("ovlan", args, &val, &mask, hash)) {
 			t.fs.val.vnic = val;
 			t.fs.mask.vnic = mask;
 			t.fs.val.ovlan_vld = 1;
 			t.fs.mask.ovlan_vld = 1;
 		} else if (!parse_val_mask("ivlan", args, &val, &mask, hash)) {
 			t.fs.val.vlan = val;
 			t.fs.mask.vlan = mask;
 			t.fs.val.vlan_vld = 1;
 			t.fs.mask.vlan_vld = 1;
 		} else if (!parse_val_mask("pf", args, &val, &mask, hash)) {
 			t.fs.val.vnic &= 0x1fff;
 			t.fs.val.vnic |= (val & 0x7) << 13;
 			t.fs.mask.vnic &= 0x1fff;
 			t.fs.mask.vnic |= (mask & 0x7) << 13;
 			t.fs.val.pfvf_vld = 1;
 			t.fs.mask.pfvf_vld = 1;
 		} else if (!parse_val_mask("vf", args, &val, &mask, hash)) {
 			t.fs.val.vnic &= 0xe000;
 			t.fs.val.vnic |= val & 0x1fff;
 			t.fs.mask.vnic &= 0xe000;
 			t.fs.mask.vnic |= mask & 0x1fff;
 			t.fs.val.pfvf_vld = 1;
 			t.fs.mask.pfvf_vld = 1;
 		} else if (!parse_val_mask("tos", args, &val, &mask, hash)) {
 			t.fs.val.tos = val;
 			t.fs.mask.tos = mask;
 		} else if (!parse_val_mask("proto", args, &val, &mask, hash)) {
 			t.fs.val.proto = val;
 			t.fs.mask.proto = mask;
 		} else if (!parse_val_mask("ethtype", args, &val, &mask, hash)) {
 			t.fs.val.ethtype = val;
 			t.fs.mask.ethtype = mask;
 		} else if (!parse_val_mask("macidx", args, &val, &mask, hash)) {
 			t.fs.val.macidx = val;
 			t.fs.mask.macidx = mask;
 		} else if (!parse_val_mask("matchtype", args, &val, &mask, hash)) {
 			t.fs.val.matchtype = val;
 			t.fs.mask.matchtype = mask;
 		} else if (!parse_val_mask("frag", args, &val, &mask, hash)) {
 			t.fs.val.frag = val;
 			t.fs.mask.frag = mask;
 		} else if (!parse_val_mask("dport", args, &val, &mask, hash)) {
 			t.fs.val.dport = val;
 			t.fs.mask.dport = mask;
 		} else if (!parse_val_mask("sport", args, &val, &mask, hash)) {
 			t.fs.val.sport = val;
 			t.fs.mask.sport = mask;
 		} else if (!parse_ipaddr("dip", args, &af, t.fs.val.dip,
 		    t.fs.mask.dip, hash)) {
 			/* nada */;
 		} else if (!parse_ipaddr("sip", args, &af, t.fs.val.sip,
 		    t.fs.mask.sip, hash)) {
 			/* nada */;
 		} else if (!parse_ipaddr("nat_dip", args, &af, t.fs.nat_dip, NULL, 1)) {
 			/*nada*/;
 		} else if (!parse_ipaddr("nat_sip", args, &af, t.fs.nat_sip, NULL, 1)) {
 			/*nada*/
 		} else if (!parse_val_mask("nat_dport", args, &val, &mask, 1)) {
 			t.fs.nat_dport = val;
 		} else if (!parse_val_mask("nat_sport", args, &val, &mask, 1)) {
 			t.fs.nat_sport = val;
 		} else if (!strcmp(argv[start_arg], "action")) {
 			if (!strcmp(argv[start_arg + 1], "pass"))
 				t.fs.action = FILTER_PASS;
 			else if (!strcmp(argv[start_arg + 1], "drop"))
 				t.fs.action = FILTER_DROP;
 			else if (!strcmp(argv[start_arg + 1], "switch"))
 				t.fs.action = FILTER_SWITCH;
 			else {
 				warnx("invalid action \"%s\"; must be one of"
 				     " \"pass\", \"drop\" or \"switch\"",
 				     argv[start_arg + 1]);
 				return (EINVAL);
 			}
 		} else if (!parse_val("hitcnts", args, &val)) {
 			t.fs.hitcnts = val;
 		} else if (!parse_val("prio", args, &val)) {
 			if (hash) {
 				warnx("Hashfilters doesn't support \"prio\"\n");
 				return (EINVAL);
 			}
 			if (val != 0 && val != 1) {
 				warnx("invalid priority \"%s\"; must be"
 				     " \"0\" or \"1\"", argv[start_arg + 1]);
 				return (EINVAL);
 			}
 			t.fs.prio = val;
 		} else if (!parse_val("rpttid", args, &val)) {
 			t.fs.rpttid = 1;
 		} else if (!parse_val("queue", args, &val)) {
 			t.fs.dirsteer = 1;	/* direct steer */
 			t.fs.iq = val;		/* to the iq with this cntxt_id */
 		} else if (!parse_val("tcbhash", args, &val)) {
 			t.fs.dirsteerhash = 1;	/* direct steer */
 			/* XXX: use (val << 1) as the rss_hash? */
 			t.fs.iq = val;
 		} else if (!parse_val("tcbrss", args, &val)) {
 			t.fs.maskhash = 1;	/* steer to RSS region */
 			/*
 			 * val = start idx of the region but the internal TCB
 			 * field is 10b only and is left shifted by 1 before use.
 			 */
 			t.fs.iq = val >> 1;
 		} else if (!parse_val("eport", args, &val)) {
 			t.fs.eport = val;
 		} else if (!parse_val("swapmac", args, &val)) {
 			t.fs.swapmac = 1;
 		} else if (!strcmp(argv[start_arg], "nat")) {
 			if (!strcmp(argv[start_arg + 1], "dip"))
 				t.fs.nat_mode = NAT_MODE_DIP;
 			else if (!strcmp(argv[start_arg + 1], "dip-dp"))
 				t.fs.nat_mode = NAT_MODE_DIP_DP;
 			else if (!strcmp(argv[start_arg + 1], "dip-dp-sip"))
 				t.fs.nat_mode = NAT_MODE_DIP_DP_SIP;
 			else if (!strcmp(argv[start_arg + 1], "dip-dp-sp"))
 				t.fs.nat_mode = NAT_MODE_DIP_DP_SP;
 			else if (!strcmp(argv[start_arg + 1], "sip-sp"))
 				t.fs.nat_mode = NAT_MODE_SIP_SP;
 			else if (!strcmp(argv[start_arg + 1], "dip-sip-sp"))
 				t.fs.nat_mode = NAT_MODE_DIP_SIP_SP;
 			else if (!strcmp(argv[start_arg + 1], "all"))
 				t.fs.nat_mode = NAT_MODE_ALL;
 			else {
 				warnx("unknown nat type \"%s\"; known types are dip, "
 				      "dip-dp, dip-dp-sip, dip-dp-sp, sip-sp, "
 				      "dip-sip-sp, and all", argv[start_arg + 1]);
 				return (EINVAL);
 			}
 		} else if (!parse_val("natseq", args, &val)) {
 			t.fs.nat_seq_chk = val;
 		} else if (!parse_val("natflag", args, &val)) {
 			t.fs.nat_flag_chk = 1;
 		} else if (!strcmp(argv[start_arg], "dmac")) {
 			struct ether_addr *daddr;
 
 			daddr = ether_aton(argv[start_arg + 1]);
 			if (daddr == NULL) {
 				warnx("invalid dmac address \"%s\"",
 				    argv[start_arg + 1]);
 				return (EINVAL);
 			}
 			memcpy(t.fs.dmac, daddr, ETHER_ADDR_LEN);
 			t.fs.newdmac = 1;
 		} else if (!strcmp(argv[start_arg], "smac")) {
 			struct ether_addr *saddr;
 
 			saddr = ether_aton(argv[start_arg + 1]);
 			if (saddr == NULL) {
 				warnx("invalid smac address \"%s\"",
 				    argv[start_arg + 1]);
 				return (EINVAL);
 			}
 			memcpy(t.fs.smac, saddr, ETHER_ADDR_LEN);
 			t.fs.newsmac = 1;
 		} else if (!strcmp(argv[start_arg], "vlan")) {
 			char *p;
 			if (!strcmp(argv[start_arg + 1], "none")) {
 				t.fs.newvlan = VLAN_REMOVE;
 			} else if (argv[start_arg + 1][0] == '=') {
 				t.fs.newvlan = VLAN_REWRITE;
 			} else if (argv[start_arg + 1][0] == '+') {
 				t.fs.newvlan = VLAN_INSERT;
 			} else {
 				warnx("unknown vlan parameter \"%s\"; must"
 				     " be one of \"none\", \"=<vlan>\", "
 				     " \"+<vlan>\"", argv[start_arg + 1]);
 				return (EINVAL);
 			}
 			if (t.fs.newvlan == VLAN_REWRITE ||
 			    t.fs.newvlan == VLAN_INSERT) {
 				t.fs.vlan = strtoul(argv[start_arg + 1] + 1,
 				    &p, 0);
 				if (p == argv[start_arg + 1] + 1 || p[0] != 0 ||
 				    t.fs.vlan > MAX_VLANID) {
 					warnx("invalid vlan \"%s\"",
 					     argv[start_arg + 1]);
 					return (EINVAL);
 				}
 			}
 		} else {
 			warnx("invalid parameter \"%s\"", argv[start_arg]);
 			return (EINVAL);
 		}
 	}
 	if (start_arg != argc) {
 		warnx("no value for \"%s\"", argv[start_arg]);
 		return (EINVAL);
 	}
 
 	/*
 	 * Check basic sanity of option combinations.
 	 */
 	if (t.fs.action != FILTER_SWITCH &&
 	    (t.fs.eport || t.fs.newdmac || t.fs.newsmac || t.fs.newvlan ||
 	    t.fs.swapmac || t.fs.nat_mode)) {
 		warnx("port, dmac, smac, vlan, and nat only make sense with"
 		     " \"action switch\"");
 		return (EINVAL);
 	}
 	if (!t.fs.nat_mode && (t.fs.nat_seq_chk || t.fs.nat_flag_chk ||
 	    *t.fs.nat_dip || *t.fs.nat_sip || t.fs.nat_dport || t.fs.nat_sport)) {
 		warnx("nat params only make sense with valid nat mode");
 		return (EINVAL);
 	}
 	if (t.fs.action != FILTER_PASS &&
 	    (t.fs.rpttid || t.fs.dirsteer || t.fs.maskhash)) {
 		warnx("rpttid, queue and tcbhash don't make sense with"
 		     " action \"drop\" or \"switch\"");
 		return (EINVAL);
 	}
 	if (t.fs.val.ovlan_vld && t.fs.val.pfvf_vld) {
 		warnx("ovlan and vnic_id (pf/vf) are mutually exclusive");
 		return (EINVAL);
 	}
 
 	t.fs.type = (af == AF_INET6 ? 1 : 0); /* default IPv4 */
 	rc = doit(CHELSIO_T4_SET_FILTER, &t);
 	if (hash && rc == 0)
 		printf("%d\n", t.idx);
 	return (rc);
 }
 
 static int
 filter_cmd(int argc, const char *argv[], int hashfilter)
 {
 	long long val;
 	uint32_t idx;
 	char *s;
 
 	if (argc == 0) {
 		warnx("%sfilter: no arguments.", hashfilter ? "hash" : "");
 		return (EINVAL);
 	};
 
 	/* list */
 	if (strcmp(argv[0], "list") == 0) {
 		if (argc != 1)
 			warnx("trailing arguments after \"list\" ignored.");
 
 		return show_filters(hashfilter);
 	}
 
 	/* mode */
 	if (argc == 1 && strcmp(argv[0], "mode") == 0)
 		return get_filter_mode(hashfilter);
 
 	/* mode <mode> */
 	if (strcmp(argv[0], "mode") == 0)
 		return set_filter_mode(argc - 1, argv + 1, hashfilter);
 
 	/* <idx> ... */
 	s = str_to_number(argv[0], NULL, &val);
 	if (*s || val < 0 || val > 0xffffffffU) {
 		if (hashfilter) {
 			/*
 			 * No numeric index means this must be a request to
 			 * create a new hashfilter and we are already at the
 			 * parameter/value list.
 			 */
 			idx = (uint32_t) -1;
 			goto setf;
 		}
 		warnx("\"%s\" is neither an index nor a filter subcommand.",
 		    argv[0]);
 		return (EINVAL);
 	}
 	idx = (uint32_t) val;
 
 	/* <idx> delete|clear [prio 0|1] */
 	if ((argc == 2 || argc == 4) &&
 	    (strcmp(argv[1], "delete") == 0 || strcmp(argv[1], "clear") == 0)) {
 		int prio = 0;
 
 		if (argc == 4) {
 			if (hashfilter) {
 				warnx("stray arguments after \"%s\".", argv[1]);
 				return (EINVAL);
 			}
 
 			if (strcmp(argv[2], "prio") != 0) {
 				warnx("\"prio\" is the only valid keyword "
 				    "after \"%s\", found \"%s\" instead.",
 				    argv[1], argv[2]);
 				return (EINVAL);
 			}
 
 			s = str_to_number(argv[3], NULL, &val);
 			if (*s || val < 0 || val > 1) {
 				warnx("%s \"%s\"; must be \"0\" or \"1\".",
 				    argv[2], argv[3]);
 				return (EINVAL);
 			}
 			prio = (int)val;
 		}
 		return del_filter(idx, prio, hashfilter);
 	}
 
 	/* skip <idx> */
 	argc--;
 	argv++;
 
 setf:
 	/* [<param> <val>] ... */
 	return set_filter(idx, argc, argv, hashfilter);
 }
 
 /*
  * Shows the fields of a multi-word structure.  The structure is considered to
  * consist of @nwords 32-bit words (i.e, it's an (@nwords * 32)-bit structure)
  * whose fields are described by @fd.  The 32-bit words are given in @words
  * starting with the least significant 32-bit word.
  */
 static void
 show_struct(const uint32_t *words, int nwords, const struct field_desc *fd)
 {
 	unsigned int w = 0;
 	const struct field_desc *p;
 
 	for (p = fd; p->name; p++)
 		w = max(w, strlen(p->name));
 
 	while (fd->name) {
 		unsigned long long data;
 		int first_word = fd->start / 32;
 		int shift = fd->start % 32;
 		int width = fd->end - fd->start + 1;
 		unsigned long long mask = (1ULL << width) - 1;
 
 		data = (words[first_word] >> shift) |
 		       ((uint64_t)words[first_word + 1] << (32 - shift));
 		if (shift)
 		       data |= ((uint64_t)words[first_word + 2] << (64 - shift));
 		data &= mask;
 		if (fd->islog2)
 			data = 1 << data;
 		printf("%-*s ", w, fd->name);
 		printf(fd->hex ? "%#llx\n" : "%llu\n", data << fd->shift);
 		fd++;
 	}
 }
 
 #define FIELD(name, start, end) { name, start, end, 0, 0, 0 }
 #define FIELD1(name, start) FIELD(name, start, start)
 
 static void
 show_t5t6_ctxt(const struct t4_sge_context *p, int vers)
 {
 	static struct field_desc egress_t5[] = {
 		FIELD("DCA_ST:", 181, 191),
 		FIELD1("StatusPgNS:", 180),
 		FIELD1("StatusPgRO:", 179),
 		FIELD1("FetchNS:", 178),
 		FIELD1("FetchRO:", 177),
 		FIELD1("Valid:", 176),
 		FIELD("PCIeDataChannel:", 174, 175),
 		FIELD1("StatusPgTPHintEn:", 173),
 		FIELD("StatusPgTPHint:", 171, 172),
 		FIELD1("FetchTPHintEn:", 170),
 		FIELD("FetchTPHint:", 168, 169),
 		FIELD1("FCThreshOverride:", 167),
 		{ "WRLength:", 162, 166, 9, 0, 1 },
 		FIELD1("WRLengthKnown:", 161),
 		FIELD1("ReschedulePending:", 160),
 		FIELD1("OnChipQueue:", 159),
 		FIELD1("FetchSizeMode:", 158),
 		{ "FetchBurstMin:", 156, 157, 4, 0, 1 },
 		FIELD1("FLMPacking:", 155),
 		FIELD("FetchBurstMax:", 153, 154),
 		FIELD("uPToken:", 133, 152),
 		FIELD1("uPTokenEn:", 132),
 		FIELD1("UserModeIO:", 131),
 		FIELD("uPFLCredits:", 123, 130),
 		FIELD1("uPFLCreditEn:", 122),
 		FIELD("FID:", 111, 121),
 		FIELD("HostFCMode:", 109, 110),
 		FIELD1("HostFCOwner:", 108),
 		{ "CIDXFlushThresh:", 105, 107, 0, 0, 1 },
 		FIELD("CIDX:", 89, 104),
 		FIELD("PIDX:", 73, 88),
 		{ "BaseAddress:", 18, 72, 9, 1 },
 		FIELD("QueueSize:", 2, 17),
 		FIELD1("QueueType:", 1),
 		FIELD1("CachePriority:", 0),
 		{ NULL }
 	};
 	static struct field_desc egress_t6[] = {
 		FIELD("DCA_ST:", 181, 191),
 		FIELD1("StatusPgNS:", 180),
 		FIELD1("StatusPgRO:", 179),
 		FIELD1("FetchNS:", 178),
 		FIELD1("FetchRO:", 177),
 		FIELD1("Valid:", 176),
 		FIELD1("ReschedulePending_1:", 175),
 		FIELD1("PCIeDataChannel:", 174),
 		FIELD1("StatusPgTPHintEn:", 173),
 		FIELD("StatusPgTPHint:", 171, 172),
 		FIELD1("FetchTPHintEn:", 170),
 		FIELD("FetchTPHint:", 168, 169),
 		FIELD1("FCThreshOverride:", 167),
 		{ "WRLength:", 162, 166, 9, 0, 1 },
 		FIELD1("WRLengthKnown:", 161),
 		FIELD1("ReschedulePending:", 160),
 		FIELD("TimerIx:", 157, 159),
 		FIELD1("FetchBurstMin:", 156),
 		FIELD1("FLMPacking:", 155),
 		FIELD("FetchBurstMax:", 153, 154),
 		FIELD("uPToken:", 133, 152),
 		FIELD1("uPTokenEn:", 132),
 		FIELD1("UserModeIO:", 131),
 		FIELD("uPFLCredits:", 123, 130),
 		FIELD1("uPFLCreditEn:", 122),
 		FIELD("FID:", 111, 121),
 		FIELD("HostFCMode:", 109, 110),
 		FIELD1("HostFCOwner:", 108),
 		{ "CIDXFlushThresh:", 105, 107, 0, 0, 1 },
 		FIELD("CIDX:", 89, 104),
 		FIELD("PIDX:", 73, 88),
 		{ "BaseAddress:", 18, 72, 9, 1 },
 		FIELD("QueueSize:", 2, 17),
 		FIELD1("QueueType:", 1),
 		FIELD1("FetchSizeMode:", 0),
 		{ NULL }
 	};
 	static struct field_desc fl_t5[] = {
 		FIELD("DCA_ST:", 181, 191),
 		FIELD1("StatusPgNS:", 180),
 		FIELD1("StatusPgRO:", 179),
 		FIELD1("FetchNS:", 178),
 		FIELD1("FetchRO:", 177),
 		FIELD1("Valid:", 176),
 		FIELD("PCIeDataChannel:", 174, 175),
 		FIELD1("StatusPgTPHintEn:", 173),
 		FIELD("StatusPgTPHint:", 171, 172),
 		FIELD1("FetchTPHintEn:", 170),
 		FIELD("FetchTPHint:", 168, 169),
 		FIELD1("FCThreshOverride:", 167),
 		FIELD1("ReschedulePending:", 160),
 		FIELD1("OnChipQueue:", 159),
 		FIELD1("FetchSizeMode:", 158),
 		{ "FetchBurstMin:", 156, 157, 4, 0, 1 },
 		FIELD1("FLMPacking:", 155),
 		FIELD("FetchBurstMax:", 153, 154),
 		FIELD1("FLMcongMode:", 152),
 		FIELD("MaxuPFLCredits:", 144, 151),
 		FIELD("FLMcontextID:", 133, 143),
 		FIELD1("uPTokenEn:", 132),
 		FIELD1("UserModeIO:", 131),
 		FIELD("uPFLCredits:", 123, 130),
 		FIELD1("uPFLCreditEn:", 122),
 		FIELD("FID:", 111, 121),
 		FIELD("HostFCMode:", 109, 110),
 		FIELD1("HostFCOwner:", 108),
 		{ "CIDXFlushThresh:", 105, 107, 0, 0, 1 },
 		FIELD("CIDX:", 89, 104),
 		FIELD("PIDX:", 73, 88),
 		{ "BaseAddress:", 18, 72, 9, 1 },
 		FIELD("QueueSize:", 2, 17),
 		FIELD1("QueueType:", 1),
 		FIELD1("CachePriority:", 0),
 		{ NULL }
 	};
 	static struct field_desc ingress_t5[] = {
 		FIELD("DCA_ST:", 143, 153),
 		FIELD1("ISCSICoalescing:", 142),
 		FIELD1("Queue_Valid:", 141),
 		FIELD1("TimerPending:", 140),
 		FIELD1("DropRSS:", 139),
 		FIELD("PCIeChannel:", 137, 138),
 		FIELD1("SEInterruptArmed:", 136),
 		FIELD1("CongestionMgtEnable:", 135),
 		FIELD1("NoSnoop:", 134),
 		FIELD1("RelaxedOrdering:", 133),
 		FIELD1("GTSmode:", 132),
 		FIELD1("TPHintEn:", 131),
 		FIELD("TPHint:", 129, 130),
 		FIELD1("UpdateScheduling:", 128),
 		FIELD("UpdateDelivery:", 126, 127),
 		FIELD1("InterruptSent:", 125),
 		FIELD("InterruptIDX:", 114, 124),
 		FIELD1("InterruptDestination:", 113),
 		FIELD1("InterruptArmed:", 112),
 		FIELD("RxIntCounter:", 106, 111),
 		FIELD("RxIntCounterThreshold:", 104, 105),
 		FIELD1("Generation:", 103),
 		{ "BaseAddress:", 48, 102, 9, 1 },
 		FIELD("PIDX:", 32, 47),
 		FIELD("CIDX:", 16, 31),
 		{ "QueueSize:", 4, 15, 4, 0 },
 		{ "QueueEntrySize:", 2, 3, 4, 0, 1 },
 		FIELD1("QueueEntryOverride:", 1),
 		FIELD1("CachePriority:", 0),
 		{ NULL }
 	};
 	static struct field_desc ingress_t6[] = {
 		FIELD1("SP_NS:", 158),
 		FIELD1("SP_RO:", 157),
 		FIELD1("SP_TPHintEn:", 156),
 		FIELD("SP_TPHint:", 154, 155),
 		FIELD("DCA_ST:", 143, 153),
 		FIELD1("ISCSICoalescing:", 142),
 		FIELD1("Queue_Valid:", 141),
 		FIELD1("TimerPending:", 140),
 		FIELD1("DropRSS:", 139),
 		FIELD("PCIeChannel:", 137, 138),
 		FIELD1("SEInterruptArmed:", 136),
 		FIELD1("CongestionMgtEnable:", 135),
 		FIELD1("NoSnoop:", 134),
 		FIELD1("RelaxedOrdering:", 133),
 		FIELD1("GTSmode:", 132),
 		FIELD1("TPHintEn:", 131),
 		FIELD("TPHint:", 129, 130),
 		FIELD1("UpdateScheduling:", 128),
 		FIELD("UpdateDelivery:", 126, 127),
 		FIELD1("InterruptSent:", 125),
 		FIELD("InterruptIDX:", 114, 124),
 		FIELD1("InterruptDestination:", 113),
 		FIELD1("InterruptArmed:", 112),
 		FIELD("RxIntCounter:", 106, 111),
 		FIELD("RxIntCounterThreshold:", 104, 105),
 		FIELD1("Generation:", 103),
 		{ "BaseAddress:", 48, 102, 9, 1 },
 		FIELD("PIDX:", 32, 47),
 		FIELD("CIDX:", 16, 31),
 		{ "QueueSize:", 4, 15, 4, 0 },
 		{ "QueueEntrySize:", 2, 3, 4, 0, 1 },
 		FIELD1("QueueEntryOverride:", 1),
 		FIELD1("CachePriority:", 0),
 		{ NULL }
 	};
 	static struct field_desc flm_t5[] = {
 		FIELD1("Valid:", 89),
 		FIELD("SplitLenMode:", 87, 88),
 		FIELD1("TPHintEn:", 86),
 		FIELD("TPHint:", 84, 85),
 		FIELD1("NoSnoop:", 83),
 		FIELD1("RelaxedOrdering:", 82),
 		FIELD("DCA_ST:", 71, 81),
 		FIELD("EQid:", 54, 70),
 		FIELD("SplitEn:", 52, 53),
 		FIELD1("PadEn:", 51),
 		FIELD1("PackEn:", 50),
 		FIELD1("Cache_Lock :", 49),
 		FIELD1("CongDrop:", 48),
 		FIELD("PackOffset:", 16, 47),
 		FIELD("CIDX:", 8, 15),
 		FIELD("PIDX:", 0, 7),
 		{ NULL }
 	};
 	static struct field_desc flm_t6[] = {
 		FIELD1("Valid:", 89),
 		FIELD("SplitLenMode:", 87, 88),
 		FIELD1("TPHintEn:", 86),
 		FIELD("TPHint:", 84, 85),
 		FIELD1("NoSnoop:", 83),
 		FIELD1("RelaxedOrdering:", 82),
 		FIELD("DCA_ST:", 71, 81),
 		FIELD("EQid:", 54, 70),
 		FIELD("SplitEn:", 52, 53),
 		FIELD1("PadEn:", 51),
 		FIELD1("PackEn:", 50),
 		FIELD1("Cache_Lock :", 49),
 		FIELD1("CongDrop:", 48),
 		FIELD1("Inflight:", 47),
 		FIELD1("CongEn:", 46),
 		FIELD1("CongMode:", 45),
 		FIELD("PackOffset:", 20, 39),
 		FIELD("CIDX:", 8, 15),
 		FIELD("PIDX:", 0, 7),
 		{ NULL }
 	};
 	static struct field_desc conm_t5[] = {
 		FIELD1("CngMPSEnable:", 21),
 		FIELD("CngTPMode:", 19, 20),
 		FIELD1("CngDBPHdr:", 18),
 		FIELD1("CngDBPData:", 17),
 		FIELD1("CngIMSG:", 16),
 		{ "CngChMap:", 0, 15, 0, 1, 0 },
 		{ NULL }
 	};
 
 	if (p->mem_id == SGE_CONTEXT_EGRESS) {
 		if (p->data[0] & 2)
 			show_struct(p->data, 6, fl_t5);
 		else if (vers == 5)
 			show_struct(p->data, 6, egress_t5);
 		else
 			show_struct(p->data, 6, egress_t6);
 	} else if (p->mem_id == SGE_CONTEXT_FLM)
 		show_struct(p->data, 3, vers == 5 ? flm_t5 : flm_t6);
 	else if (p->mem_id == SGE_CONTEXT_INGRESS)
 		show_struct(p->data, 5, vers == 5 ? ingress_t5 : ingress_t6);
 	else if (p->mem_id == SGE_CONTEXT_CNM)
 		show_struct(p->data, 1, conm_t5);
 }
 
 static void
 show_t4_ctxt(const struct t4_sge_context *p)
 {
 	static struct field_desc egress_t4[] = {
 		FIELD1("StatusPgNS:", 180),
 		FIELD1("StatusPgRO:", 179),
 		FIELD1("FetchNS:", 178),
 		FIELD1("FetchRO:", 177),
 		FIELD1("Valid:", 176),
 		FIELD("PCIeDataChannel:", 174, 175),
 		FIELD1("DCAEgrQEn:", 173),
 		FIELD("DCACPUID:", 168, 172),
 		FIELD1("FCThreshOverride:", 167),
 		FIELD("WRLength:", 162, 166),
 		FIELD1("WRLengthKnown:", 161),
 		FIELD1("ReschedulePending:", 160),
 		FIELD1("OnChipQueue:", 159),
 		FIELD1("FetchSizeMode", 158),
 		{ "FetchBurstMin:", 156, 157, 4, 0, 1 },
 		{ "FetchBurstMax:", 153, 154, 6, 0, 1 },
 		FIELD("uPToken:", 133, 152),
 		FIELD1("uPTokenEn:", 132),
 		FIELD1("UserModeIO:", 131),
 		FIELD("uPFLCredits:", 123, 130),
 		FIELD1("uPFLCreditEn:", 122),
 		FIELD("FID:", 111, 121),
 		FIELD("HostFCMode:", 109, 110),
 		FIELD1("HostFCOwner:", 108),
 		{ "CIDXFlushThresh:", 105, 107, 0, 0, 1 },
 		FIELD("CIDX:", 89, 104),
 		FIELD("PIDX:", 73, 88),
 		{ "BaseAddress:", 18, 72, 9, 1 },
 		FIELD("QueueSize:", 2, 17),
 		FIELD1("QueueType:", 1),
 		FIELD1("CachePriority:", 0),
 		{ NULL }
 	};
 	static struct field_desc fl_t4[] = {
 		FIELD1("StatusPgNS:", 180),
 		FIELD1("StatusPgRO:", 179),
 		FIELD1("FetchNS:", 178),
 		FIELD1("FetchRO:", 177),
 		FIELD1("Valid:", 176),
 		FIELD("PCIeDataChannel:", 174, 175),
 		FIELD1("DCAEgrQEn:", 173),
 		FIELD("DCACPUID:", 168, 172),
 		FIELD1("FCThreshOverride:", 167),
 		FIELD1("ReschedulePending:", 160),
 		FIELD1("OnChipQueue:", 159),
 		FIELD1("FetchSizeMode", 158),
 		{ "FetchBurstMin:", 156, 157, 4, 0, 1 },
 		{ "FetchBurstMax:", 153, 154, 6, 0, 1 },
 		FIELD1("FLMcongMode:", 152),
 		FIELD("MaxuPFLCredits:", 144, 151),
 		FIELD("FLMcontextID:", 133, 143),
 		FIELD1("uPTokenEn:", 132),
 		FIELD1("UserModeIO:", 131),
 		FIELD("uPFLCredits:", 123, 130),
 		FIELD1("uPFLCreditEn:", 122),
 		FIELD("FID:", 111, 121),
 		FIELD("HostFCMode:", 109, 110),
 		FIELD1("HostFCOwner:", 108),
 		{ "CIDXFlushThresh:", 105, 107, 0, 0, 1 },
 		FIELD("CIDX:", 89, 104),
 		FIELD("PIDX:", 73, 88),
 		{ "BaseAddress:", 18, 72, 9, 1 },
 		FIELD("QueueSize:", 2, 17),
 		FIELD1("QueueType:", 1),
 		FIELD1("CachePriority:", 0),
 		{ NULL }
 	};
 	static struct field_desc ingress_t4[] = {
 		FIELD1("NoSnoop:", 145),
 		FIELD1("RelaxedOrdering:", 144),
 		FIELD1("GTSmode:", 143),
 		FIELD1("ISCSICoalescing:", 142),
 		FIELD1("Valid:", 141),
 		FIELD1("TimerPending:", 140),
 		FIELD1("DropRSS:", 139),
 		FIELD("PCIeChannel:", 137, 138),
 		FIELD1("SEInterruptArmed:", 136),
 		FIELD1("CongestionMgtEnable:", 135),
 		FIELD1("DCAIngQEnable:", 134),
 		FIELD("DCACPUID:", 129, 133),
 		FIELD1("UpdateScheduling:", 128),
 		FIELD("UpdateDelivery:", 126, 127),
 		FIELD1("InterruptSent:", 125),
 		FIELD("InterruptIDX:", 114, 124),
 		FIELD1("InterruptDestination:", 113),
 		FIELD1("InterruptArmed:", 112),
 		FIELD("RxIntCounter:", 106, 111),
 		FIELD("RxIntCounterThreshold:", 104, 105),
 		FIELD1("Generation:", 103),
 		{ "BaseAddress:", 48, 102, 9, 1 },
 		FIELD("PIDX:", 32, 47),
 		FIELD("CIDX:", 16, 31),
 		{ "QueueSize:", 4, 15, 4, 0 },
 		{ "QueueEntrySize:", 2, 3, 4, 0, 1 },
 		FIELD1("QueueEntryOverride:", 1),
 		FIELD1("CachePriority:", 0),
 		{ NULL }
 	};
 	static struct field_desc flm_t4[] = {
 		FIELD1("NoSnoop:", 79),
 		FIELD1("RelaxedOrdering:", 78),
 		FIELD1("Valid:", 77),
 		FIELD("DCACPUID:", 72, 76),
 		FIELD1("DCAFLEn:", 71),
 		FIELD("EQid:", 54, 70),
 		FIELD("SplitEn:", 52, 53),
 		FIELD1("PadEn:", 51),
 		FIELD1("PackEn:", 50),
 		FIELD1("DBpriority:", 48),
 		FIELD("PackOffset:", 16, 47),
 		FIELD("CIDX:", 8, 15),
 		FIELD("PIDX:", 0, 7),
 		{ NULL }
 	};
 	static struct field_desc conm_t4[] = {
 		FIELD1("CngDBPHdr:", 6),
 		FIELD1("CngDBPData:", 5),
 		FIELD1("CngIMSG:", 4),
 		{ "CngChMap:", 0, 3, 0, 1, 0},
 		{ NULL }
 	};
 
 	if (p->mem_id == SGE_CONTEXT_EGRESS)
 		show_struct(p->data, 6, (p->data[0] & 2) ? fl_t4 : egress_t4);
 	else if (p->mem_id == SGE_CONTEXT_FLM)
 		show_struct(p->data, 3, flm_t4);
 	else if (p->mem_id == SGE_CONTEXT_INGRESS)
 		show_struct(p->data, 5, ingress_t4);
 	else if (p->mem_id == SGE_CONTEXT_CNM)
 		show_struct(p->data, 1, conm_t4);
 }
 
 #undef FIELD
 #undef FIELD1
 
 static int
 get_sge_context(int argc, const char *argv[])
 {
 	int rc;
 	char *p;
 	long cid;
 	struct t4_sge_context cntxt = {0};
 
 	if (argc != 2) {
 		warnx("sge_context: incorrect number of arguments.");
 		return (EINVAL);
 	}
 
 	if (!strcmp(argv[0], "egress"))
 		cntxt.mem_id = SGE_CONTEXT_EGRESS;
 	else if (!strcmp(argv[0], "ingress"))
 		cntxt.mem_id = SGE_CONTEXT_INGRESS;
 	else if (!strcmp(argv[0], "fl"))
 		cntxt.mem_id = SGE_CONTEXT_FLM;
 	else if (!strcmp(argv[0], "cong"))
 		cntxt.mem_id = SGE_CONTEXT_CNM;
 	else {
 		warnx("unknown context type \"%s\"; known types are egress, "
 		    "ingress, fl, and cong.", argv[0]);
 		return (EINVAL);
 	}
 
 	p = str_to_number(argv[1], &cid, NULL);
 	if (*p) {
 		warnx("invalid context id \"%s\"", argv[1]);
 		return (EINVAL);
 	}
 	cntxt.cid = cid;
 
 	rc = doit(CHELSIO_T4_GET_SGE_CONTEXT, &cntxt);
 	if (rc != 0)
 		return (rc);
 
-	if (chip_id == 4)
+	if (g.chip_id == 4)
 		show_t4_ctxt(&cntxt);
 	else
-		show_t5t6_ctxt(&cntxt, chip_id);
+		show_t5t6_ctxt(&cntxt, g.chip_id);
 
 	return (0);
 }
 
 static int
 loadfw(int argc, const char *argv[])
 {
 	int rc, fd;
 	struct t4_data data = {0};
 	const char *fname = argv[0];
 	struct stat st = {0};
 
 	if (argc != 1) {
 		warnx("loadfw: incorrect number of arguments.");
 		return (EINVAL);
 	}
 
 	fd = open(fname, O_RDONLY);
 	if (fd < 0) {
 		warn("open(%s)", fname);
 		return (errno);
 	}
 
 	if (fstat(fd, &st) < 0) {
 		warn("fstat");
 		close(fd);
 		return (errno);
 	}
 
 	data.len = st.st_size;
 	data.data = mmap(0, data.len, PROT_READ, MAP_PRIVATE, fd, 0);
 	if (data.data == MAP_FAILED) {
 		warn("mmap");
 		close(fd);
 		return (errno);
 	}
 
 	rc = doit(CHELSIO_T4_LOAD_FW, &data);
 	munmap(data.data, data.len);
 	close(fd);
 	return (rc);
 }
 
 static int
 loadcfg(int argc, const char *argv[])
 {
 	int rc, fd;
 	struct t4_data data = {0};
 	const char *fname = argv[0];
 	struct stat st = {0};
 
 	if (argc != 1) {
 		warnx("loadcfg: incorrect number of arguments.");
 		return (EINVAL);
 	}
 
 	if (strcmp(fname, "clear") == 0)
 		return (doit(CHELSIO_T4_LOAD_CFG, &data));
 
 	fd = open(fname, O_RDONLY);
 	if (fd < 0) {
 		warn("open(%s)", fname);
 		return (errno);
 	}
 
 	if (fstat(fd, &st) < 0) {
 		warn("fstat");
 		close(fd);
 		return (errno);
 	}
 
 	data.len = st.st_size;
 	data.len &= ~3;		/* Clip off to make it a multiple of 4 */
 	data.data = mmap(0, data.len, PROT_READ, MAP_PRIVATE, fd, 0);
 	if (data.data == MAP_FAILED) {
 		warn("mmap");
 		close(fd);
 		return (errno);
 	}
 
 	rc = doit(CHELSIO_T4_LOAD_CFG, &data);
 	munmap(data.data, data.len);
 	close(fd);
 	return (rc);
 }
 
 static int
 dumpstate(int argc, const char *argv[])
 {
 	int rc, fd;
 	struct t4_cudbg_dump dump = {0};
 	const char *fname = argv[0];
 
 	if (argc != 1) {
 		warnx("dumpstate: incorrect number of arguments.");
 		return (EINVAL);
 	}
 
 	dump.wr_flash = 0;
 	memset(&dump.bitmap, 0xff, sizeof(dump.bitmap));
 	dump.len = 8 * 1024 * 1024;
 	dump.data = malloc(dump.len);
 	if (dump.data == NULL) {
 		return (ENOMEM);
 	}
 
 	rc = doit(CHELSIO_T4_CUDBG_DUMP, &dump);
 	if (rc != 0)
 		goto done;
 
 	fd = open(fname, O_CREAT | O_TRUNC | O_EXCL | O_WRONLY,
 	    S_IRUSR | S_IRGRP | S_IROTH);
 	if (fd < 0) {
 		warn("open(%s)", fname);
 		rc = errno;
 		goto done;
 	}
 	write(fd, dump.data, dump.len);
 	close(fd);
 done:
 	free(dump.data);
 	return (rc);
 }
 
 static int
 read_mem(uint32_t addr, uint32_t len, void (*output)(uint32_t *, uint32_t))
 {
 	int rc;
 	struct t4_mem_range mr;
 
 	mr.addr = addr;
 	mr.len = len;
 	mr.data = malloc(mr.len);
 
 	if (mr.data == 0) {
 		warn("read_mem: malloc");
 		return (errno);
 	}
 
 	rc = doit(CHELSIO_T4_GET_MEM, &mr);
 	if (rc != 0)
 		goto done;
 
 	if (output)
 		(*output)(mr.data, mr.len);
 done:
 	free(mr.data);
 	return (rc);
 }
 
 static int
 loadboot(int argc, const char *argv[])
 {
 	int rc, fd;
 	long l;
 	char *p;
 	struct t4_bootrom br = {0};
 	const char *fname = argv[0];
 	struct stat st = {0};
 
 	if (argc == 1) {
 		br.pf_offset = 0;
 		br.pfidx_addr = 0;
 	} else if (argc == 3) {
 		if (!strcmp(argv[1], "pf"))
 			br.pf_offset = 0;
 		else if (!strcmp(argv[1], "offset"))
 			br.pf_offset = 1;
 		else
 			return (EINVAL);
 
 		p = str_to_number(argv[2], &l, NULL);
 		if (*p)
 			return (EINVAL);
 		br.pfidx_addr = l;
 	} else {
 		warnx("loadboot: incorrect number of arguments.");
 		return (EINVAL);
 	}
 
 	if (strcmp(fname, "clear") == 0)
 		return (doit(CHELSIO_T4_LOAD_BOOT, &br));
 
 	fd = open(fname, O_RDONLY);
 	if (fd < 0) {
 		warn("open(%s)", fname);
 		return (errno);
 	}
 
 	if (fstat(fd, &st) < 0) {
 		warn("fstat");
 		close(fd);
 		return (errno);
 	}
 
 	br.len = st.st_size;
 	br.data = mmap(0, br.len, PROT_READ, MAP_PRIVATE, fd, 0);
 	if (br.data == MAP_FAILED) {
 		warn("mmap");
 		close(fd);
 		return (errno);
 	}
 
 	rc = doit(CHELSIO_T4_LOAD_BOOT, &br);
 	munmap(br.data, br.len);
 	close(fd);
 	return (rc);
 }
 
 static int
 loadbootcfg(int argc, const char *argv[])
 {
 	int rc, fd;
 	struct t4_data bc = {0};
 	const char *fname = argv[0];
 	struct stat st = {0};
 
 	if (argc != 1) {
 		warnx("loadbootcfg: incorrect number of arguments.");
 		return (EINVAL);
 	}
 
 	if (strcmp(fname, "clear") == 0)
 		return (doit(CHELSIO_T4_LOAD_BOOTCFG, &bc));
 
 	fd = open(fname, O_RDONLY);
 	if (fd < 0) {
 		warn("open(%s)", fname);
 		return (errno);
 	}
 
 	if (fstat(fd, &st) < 0) {
 		warn("fstat");
 		close(fd);
 		return (errno);
 	}
 
 	bc.len = st.st_size;
 	bc.data = mmap(0, bc.len, PROT_READ, MAP_PRIVATE, fd, 0);
 	if (bc.data == MAP_FAILED) {
 		warn("mmap");
 		close(fd);
 		return (errno);
 	}
 
 	rc = doit(CHELSIO_T4_LOAD_BOOTCFG, &bc);
 	munmap(bc.data, bc.len);
 	close(fd);
 	return (rc);
 }
 
 /*
  * Display memory as list of 'n' 4-byte values per line.
  */
 static void
 show_mem(uint32_t *buf, uint32_t len)
 {
 	const char *s;
 	int i, n = 8;
 
 	while (len) {
 		for (i = 0; len && i < n; i++, buf++, len -= 4) {
 			s = i ? " " : "";
 			printf("%s%08x", s, htonl(*buf));
 		}
 		printf("\n");
 	}
 }
 
 static int
 memdump(int argc, const char *argv[])
 {
 	char *p;
 	long l;
 	uint32_t addr, len;
 
 	if (argc != 2) {
 		warnx("incorrect number of arguments.");
 		return (EINVAL);
 	}
 
 	p = str_to_number(argv[0], &l, NULL);
 	if (*p) {
 		warnx("invalid address \"%s\"", argv[0]);
 		return (EINVAL);
 	}
 	addr = l;
 
 	p = str_to_number(argv[1], &l, NULL);
 	if (*p) {
 		warnx("memdump: invalid length \"%s\"", argv[1]);
 		return (EINVAL);
 	}
 	len = l;
 
 	return (read_mem(addr, len, show_mem));
 }
 
 /*
  * Display TCB as list of 'n' 4-byte values per line.
  */
 static void
 show_tcb(uint32_t *buf, uint32_t len)
 {
 	unsigned char *tcb = (unsigned char *)buf;
 	const char *s;
 	int i, n = 8;
 
 	while (len) {
 		for (i = 0; len && i < n; i++, buf++, len -= 4) {
 			s = i ? " " : "";
 			printf("%s%08x", s, htonl(*buf));
 		}
 		printf("\n");
 	}
-	set_tcb_info(TIDTYPE_TCB, chip_id);
+	set_tcb_info(TIDTYPE_TCB, g.chip_id);
 	set_print_style(PRNTSTYL_COMP);
 	swizzle_tcb(tcb);
 	parse_n_display_xcb(tcb);
 }
 
 #define A_TP_CMM_TCB_BASE 0x7d10
 #define TCB_SIZE 128
 static int
 read_tcb(int argc, const char *argv[])
 {
 	char *p;
 	long l;
 	long long val;
 	unsigned int tid;
 	uint32_t addr;
 	int rc;
 
 	if (argc != 1) {
 		warnx("incorrect number of arguments.");
 		return (EINVAL);
 	}
 
 	p = str_to_number(argv[0], &l, NULL);
 	if (*p) {
 		warnx("invalid tid \"%s\"", argv[0]);
 		return (EINVAL);
 	}
 	tid = l;
 
 	rc = read_reg(A_TP_CMM_TCB_BASE, 4, &val);
 	if (rc != 0)
 		return (rc);
 
 	addr = val + tid * TCB_SIZE;
 
 	return (read_mem(addr, TCB_SIZE, show_tcb));
 }
 
 static int
 read_i2c(int argc, const char *argv[])
 {
 	char *p;
 	long l;
 	struct t4_i2c_data i2cd;
 	int rc, i;
 
 	if (argc < 3 || argc > 4) {
 		warnx("incorrect number of arguments.");
 		return (EINVAL);
 	}
 
 	p = str_to_number(argv[0], &l, NULL);
 	if (*p || l > UCHAR_MAX) {
 		warnx("invalid port id \"%s\"", argv[0]);
 		return (EINVAL);
 	}
 	i2cd.port_id = l;
 
 	p = str_to_number(argv[1], &l, NULL);
 	if (*p || l > UCHAR_MAX) {
 		warnx("invalid i2c device address \"%s\"", argv[1]);
 		return (EINVAL);
 	}
 	i2cd.dev_addr = l;
 
 	p = str_to_number(argv[2], &l, NULL);
 	if (*p || l > UCHAR_MAX) {
 		warnx("invalid byte offset \"%s\"", argv[2]);
 		return (EINVAL);
 	}
 	i2cd.offset = l;
 
 	if (argc == 4) {
 		p = str_to_number(argv[3], &l, NULL);
 		if (*p || l > sizeof(i2cd.data)) {
 			warnx("invalid number of bytes \"%s\"", argv[3]);
 			return (EINVAL);
 		}
 		i2cd.len = l;
 	} else
 		i2cd.len = 1;
 
 	rc = doit(CHELSIO_T4_GET_I2C, &i2cd);
 	if (rc != 0)
 		return (rc);
 
 	for (i = 0; i < i2cd.len; i++)
 		printf("0x%x [%u]\n", i2cd.data[i], i2cd.data[i]);
 
 	return (0);
 }
 
 static int
 clearstats(int argc, const char *argv[])
 {
 	char *p;
 	long l;
 	uint32_t port;
 
 	if (argc != 1) {
 		warnx("incorrect number of arguments.");
 		return (EINVAL);
 	}
 
 	p = str_to_number(argv[0], &l, NULL);
 	if (*p) {
 		warnx("invalid port id \"%s\"", argv[0]);
 		return (EINVAL);
 	}
 	port = l;
 
 	return doit(CHELSIO_T4_CLEAR_STATS, &port);
 }
 
 static int
 show_tracers(void)
 {
 	struct t4_tracer t;
 	char *s;
 	int rc, port_idx, i;
 	long long val;
 
 	/* Magic values: MPS_TRC_CFG = 0x9800. MPS_TRC_CFG[1:1] = TrcEn */
 	rc = read_reg(0x9800, 4, &val);
 	if (rc != 0)
 		return (rc);
 	printf("tracing is %s\n", val & 2 ? "ENABLED" : "DISABLED");
 
 	t.idx = 0;
 	for (t.idx = 0; ; t.idx++) {
 		rc = doit(CHELSIO_T4_GET_TRACER, &t);
 		if (rc != 0 || t.idx == 0xff)
 			break;
 
 		if (t.tp.port < 4) {
 			s = "Rx";
 			port_idx = t.tp.port;
 		} else if (t.tp.port < 8) {
 			s = "Tx";
 			port_idx = t.tp.port - 4;
 		} else if (t.tp.port < 12) {
 			s = "loopback";
 			port_idx = t.tp.port - 8;
 		} else if (t.tp.port < 16) {
 			s = "MPS Rx";
 			port_idx = t.tp.port - 12;
 		} else if (t.tp.port < 20) {
 			s = "MPS Tx";
 			port_idx = t.tp.port - 16;
 		} else {
 			s = "unknown";
 			port_idx = t.tp.port;
 		}
 
 		printf("\ntracer %u (currently %s) captures ", t.idx,
 		    t.enabled ? "ENABLED" : "DISABLED");
 		if (t.tp.port < 8)
 			printf("port %u %s, ", port_idx, s);
 		else
 			printf("%s %u, ", s, port_idx);
 		printf("snap length: %u, min length: %u\n", t.tp.snap_len,
 		    t.tp.min_len);
 		printf("packets captured %smatch filter\n",
 		    t.tp.invert ? "do not " : "");
 		if (t.tp.skip_ofst) {
 			printf("filter pattern: ");
 			for (i = 0; i < t.tp.skip_ofst * 2; i += 2)
 				printf("%08x%08x", t.tp.data[i],
 				    t.tp.data[i + 1]);
 			printf("/");
 			for (i = 0; i < t.tp.skip_ofst * 2; i += 2)
 				printf("%08x%08x", t.tp.mask[i],
 				    t.tp.mask[i + 1]);
 			printf("@0\n");
 		}
 		printf("filter pattern: ");
 		for (i = t.tp.skip_ofst * 2; i < T4_TRACE_LEN / 4; i += 2)
 			printf("%08x%08x", t.tp.data[i], t.tp.data[i + 1]);
 		printf("/");
 		for (i = t.tp.skip_ofst * 2; i < T4_TRACE_LEN / 4; i += 2)
 			printf("%08x%08x", t.tp.mask[i], t.tp.mask[i + 1]);
 		printf("@%u\n", (t.tp.skip_ofst + t.tp.skip_len) * 8);
 	}
 
 	return (rc);
 }
 
 static int
 tracer_onoff(uint8_t idx, int enabled)
 {
 	struct t4_tracer t;
 
 	t.idx = idx;
 	t.enabled = enabled;
 	t.valid = 0;
 
 	return doit(CHELSIO_T4_SET_TRACER, &t);
 }
 
 static void
 create_tracing_ifnet()
 {
 	char *cmd[] = {
-		"/sbin/ifconfig", __DECONST(char *, nexus), "create", NULL
+		"/sbin/ifconfig", __DECONST(char *, g.nexus), "create", NULL
 	};
 	char *env[] = {NULL};
 
 	if (vfork() == 0) {
 		close(STDERR_FILENO);
 		execve(cmd[0], cmd, env);
 		_exit(0);
 	}
 }
 
 /*
  * XXX: Allow user to specify snaplen, minlen, and pattern (including inverted
  * matching).  Right now this is a quick-n-dirty implementation that traces the
  * first 128B of all tx or rx on a port
  */
 static int
 set_tracer(uint8_t idx, int argc, const char *argv[])
 {
 	struct t4_tracer t;
 	int len, port;
 
 	bzero(&t, sizeof (t));
 	t.idx = idx;
 	t.enabled = 1;
 	t.valid = 1;
 
 	if (argc != 1) {
 		warnx("must specify one of tx/rx/lo<n>");
 		return (EINVAL);
 	}
 
 	len = strlen(argv[0]);
 	if (len != 3) {
 		warnx("argument must be 3 characters (tx/rx/lo<n>). eg. tx0");
 		return (EINVAL);
 	}
 
 	if (strncmp(argv[0], "lo", 2) == 0) {
 		port = argv[0][2] - '0';
 		if (port < 0 || port > 3) {
 			warnx("'%c' in %s is invalid", argv[0][2], argv[0]);
 			return (EINVAL);
 		}
 		port += 8;
 	} else if (strncmp(argv[0], "tx", 2) == 0) {
 		port = argv[0][2] - '0';
 		if (port < 0 || port > 3) {
 			warnx("'%c' in %s is invalid", argv[0][2], argv[0]);
 			return (EINVAL);
 		}
 		port += 4;
 	} else if (strncmp(argv[0], "rx", 2) == 0) {
 		port = argv[0][2] - '0';
 		if (port < 0 || port > 3) {
 			warnx("'%c' in %s is invalid", argv[0][2], argv[0]);
 			return (EINVAL);
 		}
 	} else {
 		warnx("argument '%s' isn't tx<n> or rx<n>", argv[0]);
 		return (EINVAL);
 	}
 
 	t.tp.snap_len = 128;
 	t.tp.min_len = 0;
 	t.tp.skip_ofst = 0;
 	t.tp.skip_len = 0;
 	t.tp.invert = 0;
 	t.tp.port = port;
 
 	create_tracing_ifnet();
 	return doit(CHELSIO_T4_SET_TRACER, &t);
 }
 
 static int
 tracer_cmd(int argc, const char *argv[])
 {
 	long long val;
 	uint8_t idx;
 	char *s;
 
 	if (argc == 0) {
 		warnx("tracer: no arguments.");
 		return (EINVAL);
 	};
 
 	/* list */
 	if (strcmp(argv[0], "list") == 0) {
 		if (argc != 1)
 			warnx("trailing arguments after \"list\" ignored.");
 
 		return show_tracers();
 	}
 
 	/* <idx> ... */
 	s = str_to_number(argv[0], NULL, &val);
 	if (*s || val > 0xff) {
 		warnx("\"%s\" is neither an index nor a tracer subcommand.",
 		    argv[0]);
 		return (EINVAL);
 	}
 	idx = (int8_t)val;
 
 	/* <idx> disable */
 	if (argc == 2 && strcmp(argv[1], "disable") == 0)
 		return tracer_onoff(idx, 0);
 
 	/* <idx> enable */
 	if (argc == 2 && strcmp(argv[1], "enable") == 0)
 		return tracer_onoff(idx, 1);
 
 	/* <idx> ... */
 	return set_tracer(idx, argc - 1, argv + 1);
 }
 
 static int
 modinfo_raw(int port_id)
 {
 	uint8_t offset;
 	struct t4_i2c_data i2cd;
 	int rc;
 
 	for (offset = 0; offset < 96; offset += sizeof(i2cd.data)) {
 		bzero(&i2cd, sizeof(i2cd));
 		i2cd.port_id = port_id;
 		i2cd.dev_addr = 0xa0;
 		i2cd.offset = offset;
 		i2cd.len = sizeof(i2cd.data);
 		rc = doit(CHELSIO_T4_GET_I2C, &i2cd);
 		if (rc != 0)
 			return (rc);
 		printf("%02x:  %02x %02x %02x %02x  %02x %02x %02x %02x",
 		    offset, i2cd.data[0], i2cd.data[1], i2cd.data[2],
 		    i2cd.data[3], i2cd.data[4], i2cd.data[5], i2cd.data[6],
 		    i2cd.data[7]);
 
 		printf("  %c%c%c%c %c%c%c%c\n",
 		    isprint(i2cd.data[0]) ? i2cd.data[0] : '.',
 		    isprint(i2cd.data[1]) ? i2cd.data[1] : '.',
 		    isprint(i2cd.data[2]) ? i2cd.data[2] : '.',
 		    isprint(i2cd.data[3]) ? i2cd.data[3] : '.',
 		    isprint(i2cd.data[4]) ? i2cd.data[4] : '.',
 		    isprint(i2cd.data[5]) ? i2cd.data[5] : '.',
 		    isprint(i2cd.data[6]) ? i2cd.data[6] : '.',
 		    isprint(i2cd.data[7]) ? i2cd.data[7] : '.');
 	}
 
 	return (0);
 }
 
 static int
 modinfo(int argc, const char *argv[])
 {
 	long port;
 	char string[16], *p;
 	struct t4_i2c_data i2cd;
 	int rc, i;
 	uint16_t temp, vcc, tx_bias, tx_power, rx_power;
 
 	if (argc < 1) {
 		warnx("must supply a port");
 		return (EINVAL);
 	}
 
 	if (argc > 2) {
 		warnx("too many arguments");
 		return (EINVAL);
 	}
 
 	p = str_to_number(argv[0], &port, NULL);
 	if (*p || port > UCHAR_MAX) {
 		warnx("invalid port id \"%s\"", argv[0]);
 		return (EINVAL);
 	}
 
 	if (argc == 2) {
 		if (!strcmp(argv[1], "raw"))
 			return (modinfo_raw(port));
 		else {
 			warnx("second argument can only be \"raw\"");
 			return (EINVAL);
 		}
 	}
 
 	bzero(&i2cd, sizeof(i2cd));
 	i2cd.len = 1;
 	i2cd.port_id = port;
 	i2cd.dev_addr = SFF_8472_BASE;
 
 	i2cd.offset = SFF_8472_ID;
 	if ((rc = doit(CHELSIO_T4_GET_I2C, &i2cd)) != 0)
 		goto fail;
 
 	if (i2cd.data[0] > SFF_8472_ID_LAST)
 		printf("Unknown ID\n");
 	else
 		printf("ID: %s\n", sff_8472_id[i2cd.data[0]]);
 
 	bzero(&string, sizeof(string));
 	for (i = SFF_8472_VENDOR_START; i < SFF_8472_VENDOR_END; i++) {
 		i2cd.offset = i;
 		if ((rc = doit(CHELSIO_T4_GET_I2C, &i2cd)) != 0)
 			goto fail;
 		string[i - SFF_8472_VENDOR_START] = i2cd.data[0];
 	}
 	printf("Vendor %s\n", string);
 
 	bzero(&string, sizeof(string));
 	for (i = SFF_8472_SN_START; i < SFF_8472_SN_END; i++) {
 		i2cd.offset = i;
 		if ((rc = doit(CHELSIO_T4_GET_I2C, &i2cd)) != 0)
 			goto fail;
 		string[i - SFF_8472_SN_START] = i2cd.data[0];
 	}
 	printf("SN %s\n", string);
 
 	bzero(&string, sizeof(string));
 	for (i = SFF_8472_PN_START; i < SFF_8472_PN_END; i++) {
 		i2cd.offset = i;
 		if ((rc = doit(CHELSIO_T4_GET_I2C, &i2cd)) != 0)
 			goto fail;
 		string[i - SFF_8472_PN_START] = i2cd.data[0];
 	}
 	printf("PN %s\n", string);
 
 	bzero(&string, sizeof(string));
 	for (i = SFF_8472_REV_START; i < SFF_8472_REV_END; i++) {
 		i2cd.offset = i;
 		if ((rc = doit(CHELSIO_T4_GET_I2C, &i2cd)) != 0)
 			goto fail;
 		string[i - SFF_8472_REV_START] = i2cd.data[0];
 	}
 	printf("Rev %s\n", string);
 
 	i2cd.offset = SFF_8472_DIAG_TYPE;
 	if ((rc = doit(CHELSIO_T4_GET_I2C, &i2cd)) != 0)
 		goto fail;
 
 	if ((char )i2cd.data[0] & (SFF_8472_DIAG_IMPL |
 				   SFF_8472_DIAG_INTERNAL)) {
 
 		/* Switch to reading from the Diagnostic address. */
 		i2cd.dev_addr = SFF_8472_DIAG;
 		i2cd.len = 1;
 
 		i2cd.offset = SFF_8472_TEMP;
 		if ((rc = doit(CHELSIO_T4_GET_I2C, &i2cd)) != 0)
 			goto fail;
 		temp = i2cd.data[0] << 8;
 		printf("Temp: ");
 		if ((temp & SFF_8472_TEMP_SIGN) == SFF_8472_TEMP_SIGN)
 			printf("-");
 		else
 			printf("+");
 		printf("%dC\n", (temp & SFF_8472_TEMP_MSK) >>
 		    SFF_8472_TEMP_SHIFT);
 
 		i2cd.offset = SFF_8472_VCC;
 		if ((rc = doit(CHELSIO_T4_GET_I2C, &i2cd)) != 0)
 			goto fail;
 		vcc = i2cd.data[0] << 8;
 		printf("Vcc %fV\n", vcc / SFF_8472_VCC_FACTOR);
 
 		i2cd.offset = SFF_8472_TX_BIAS;
 		if ((rc = doit(CHELSIO_T4_GET_I2C, &i2cd)) != 0)
 			goto fail;
 		tx_bias = i2cd.data[0] << 8;
 		printf("TX Bias %fuA\n", tx_bias / SFF_8472_BIAS_FACTOR);
 
 		i2cd.offset = SFF_8472_TX_POWER;
 		if ((rc = doit(CHELSIO_T4_GET_I2C, &i2cd)) != 0)
 			goto fail;
 		tx_power = i2cd.data[0] << 8;
 		printf("TX Power %fmW\n", tx_power / SFF_8472_POWER_FACTOR);
 
 		i2cd.offset = SFF_8472_RX_POWER;
 		if ((rc = doit(CHELSIO_T4_GET_I2C, &i2cd)) != 0)
 			goto fail;
 		rx_power = i2cd.data[0] << 8;
 		printf("RX Power %fmW\n", rx_power / SFF_8472_POWER_FACTOR);
 
 	} else
 		printf("Diagnostics not supported.\n");
 
 	return(0);
 
 fail:
 	if (rc == EPERM)
 		warnx("No module/cable in port %ld", port);
 	return (rc);
 
 }
 
 /* XXX: pass in a low/high and do range checks as well */
 static int
 get_sched_param(const char *param, const char *args[], long *val)
 {
 	char *p;
 
 	if (strcmp(param, args[0]) != 0)
 		return (EINVAL);
 
 	p = str_to_number(args[1], val, NULL);
 	if (*p) {
 		warnx("parameter \"%s\" has bad value \"%s\"", args[0],
 		    args[1]);
 		return (EINVAL);
 	}
 
 	return (0);
 }
 
 static int
 sched_class(int argc, const char *argv[])
 {
 	struct t4_sched_params op;
 	int errs, i;
 
 	memset(&op, 0xff, sizeof(op));
 	op.subcmd = -1;
 	op.type = -1;
 	if (argc == 0) {
 		warnx("missing scheduling sub-command");
 		return (EINVAL);
 	}
 	if (!strcmp(argv[0], "config")) {
 		op.subcmd = SCHED_CLASS_SUBCMD_CONFIG;
 		op.u.config.minmax = -1;
 	} else if (!strcmp(argv[0], "params")) {
 		op.subcmd = SCHED_CLASS_SUBCMD_PARAMS;
 		op.u.params.level = op.u.params.mode = op.u.params.rateunit =
 		    op.u.params.ratemode = op.u.params.channel =
 		    op.u.params.cl = op.u.params.minrate = op.u.params.maxrate =
 		    op.u.params.weight = op.u.params.pktsize = -1;
 	} else {
 		warnx("invalid scheduling sub-command \"%s\"", argv[0]);
 		return (EINVAL);
 	}
 
 	/* Decode remaining arguments ... */
 	errs = 0;
 	for (i = 1; i < argc; i += 2) {
 		const char **args = &argv[i];
 		long l;
 
 		if (i + 1 == argc) {
 			warnx("missing argument for \"%s\"", args[0]);
 			errs++;
 			break;
 		}
 
 		if (!strcmp(args[0], "type")) {
 			if (!strcmp(args[1], "packet"))
 				op.type = SCHED_CLASS_TYPE_PACKET;
 			else {
 				warnx("invalid type parameter \"%s\"", args[1]);
 				errs++;
 			}
 
 			continue;
 		}
 
 		if (op.subcmd == SCHED_CLASS_SUBCMD_CONFIG) {
 			if(!get_sched_param("minmax", args, &l))
 				op.u.config.minmax = (int8_t)l;
 			else {
 				warnx("unknown scheduler config parameter "
 				    "\"%s\"", args[0]);
 				errs++;
 			}
 
 			continue;
 		}
 
 		/* Rest applies only to SUBCMD_PARAMS */
 		if (op.subcmd != SCHED_CLASS_SUBCMD_PARAMS)
 			continue;
 
 		if (!strcmp(args[0], "level")) {
 			if (!strcmp(args[1], "cl-rl"))
 				op.u.params.level = SCHED_CLASS_LEVEL_CL_RL;
 			else if (!strcmp(args[1], "cl-wrr"))
 				op.u.params.level = SCHED_CLASS_LEVEL_CL_WRR;
 			else if (!strcmp(args[1], "ch-rl"))
 				op.u.params.level = SCHED_CLASS_LEVEL_CH_RL;
 			else {
 				warnx("invalid level parameter \"%s\"",
 				    args[1]);
 				errs++;
 			}
 		} else if (!strcmp(args[0], "mode")) {
 			if (!strcmp(args[1], "class"))
 				op.u.params.mode = SCHED_CLASS_MODE_CLASS;
 			else if (!strcmp(args[1], "flow"))
 				op.u.params.mode = SCHED_CLASS_MODE_FLOW;
 			else {
 				warnx("invalid mode parameter \"%s\"", args[1]);
 				errs++;
 			}
 		} else if (!strcmp(args[0], "rate-unit")) {
 			if (!strcmp(args[1], "bits"))
 				op.u.params.rateunit = SCHED_CLASS_RATEUNIT_BITS;
 			else if (!strcmp(args[1], "pkts"))
 				op.u.params.rateunit = SCHED_CLASS_RATEUNIT_PKTS;
 			else {
 				warnx("invalid rate-unit parameter \"%s\"",
 				    args[1]);
 				errs++;
 			}
 		} else if (!strcmp(args[0], "rate-mode")) {
 			if (!strcmp(args[1], "relative"))
 				op.u.params.ratemode = SCHED_CLASS_RATEMODE_REL;
 			else if (!strcmp(args[1], "absolute"))
 				op.u.params.ratemode = SCHED_CLASS_RATEMODE_ABS;
 			else {
 				warnx("invalid rate-mode parameter \"%s\"",
 				    args[1]);
 				errs++;
 			}
 		} else if (!get_sched_param("channel", args, &l))
 			op.u.params.channel = (int8_t)l;
 		else if (!get_sched_param("class", args, &l))
 			op.u.params.cl = (int8_t)l;
 		else if (!get_sched_param("min-rate", args, &l))
 			op.u.params.minrate = (int32_t)l;
 		else if (!get_sched_param("max-rate", args, &l))
 			op.u.params.maxrate = (int32_t)l;
 		else if (!get_sched_param("weight", args, &l))
 			op.u.params.weight = (int16_t)l;
 		else if (!get_sched_param("pkt-size", args, &l))
 			op.u.params.pktsize = (int16_t)l;
 		else {
 			warnx("unknown scheduler parameter \"%s\"", args[0]);
 			errs++;
 		}
 	}
 
 	/*
 	 * Catch some logical fallacies in terms of argument combinations here
 	 * so we can offer more than just the EINVAL return from the driver.
 	 * The driver will be able to catch a lot more issues since it knows
 	 * the specifics of the device hardware capabilities like how many
 	 * channels, classes, etc. the device supports.
 	 */
 	if (op.type < 0) {
 		warnx("sched \"type\" parameter missing");
 		errs++;
 	}
 	if (op.subcmd == SCHED_CLASS_SUBCMD_CONFIG) {
 		if (op.u.config.minmax < 0) {
 			warnx("sched config \"minmax\" parameter missing");
 			errs++;
 		}
 	}
 	if (op.subcmd == SCHED_CLASS_SUBCMD_PARAMS) {
 		if (op.u.params.level < 0) {
 			warnx("sched params \"level\" parameter missing");
 			errs++;
 		}
 		if (op.u.params.mode < 0 &&
 		    op.u.params.level == SCHED_CLASS_LEVEL_CL_RL) {
 			warnx("sched params \"mode\" parameter missing");
 			errs++;
 		}
 		if (op.u.params.rateunit < 0 &&
 		    (op.u.params.level == SCHED_CLASS_LEVEL_CL_RL ||
 		    op.u.params.level == SCHED_CLASS_LEVEL_CH_RL)) {
 			warnx("sched params \"rate-unit\" parameter missing");
 			errs++;
 		}
 		if (op.u.params.ratemode < 0 &&
 		    (op.u.params.level == SCHED_CLASS_LEVEL_CL_RL ||
 		    op.u.params.level == SCHED_CLASS_LEVEL_CH_RL)) {
 			warnx("sched params \"rate-mode\" parameter missing");
 			errs++;
 		}
 		if (op.u.params.channel < 0) {
 			warnx("sched params \"channel\" missing");
 			errs++;
 		}
 		if (op.u.params.cl < 0 &&
 		    (op.u.params.level == SCHED_CLASS_LEVEL_CL_RL ||
 		    op.u.params.level == SCHED_CLASS_LEVEL_CL_WRR)) {
 			warnx("sched params \"class\" missing");
 			errs++;
 		}
 		if (op.u.params.maxrate < 0 &&
 		    (op.u.params.level == SCHED_CLASS_LEVEL_CL_RL ||
 		    op.u.params.level == SCHED_CLASS_LEVEL_CH_RL)) {
 			warnx("sched params \"max-rate\" missing for "
 			    "rate-limit level");
 			errs++;
 		}
 		if (op.u.params.level == SCHED_CLASS_LEVEL_CL_WRR &&
 		    (op.u.params.weight < 1 || op.u.params.weight > 99)) {
 			warnx("sched params \"weight\" missing or invalid "
 			    "(not 1-99) for weighted-round-robin level");
 			errs++;
 		}
 		if (op.u.params.pktsize < 0 &&
 		    op.u.params.level == SCHED_CLASS_LEVEL_CL_RL) {
 			warnx("sched params \"pkt-size\" missing for "
 			    "rate-limit level");
 			errs++;
 		}
 		if (op.u.params.mode == SCHED_CLASS_MODE_FLOW &&
 		    op.u.params.ratemode != SCHED_CLASS_RATEMODE_ABS) {
 			warnx("sched params mode flow needs rate-mode absolute");
 			errs++;
 		}
 		if (op.u.params.ratemode == SCHED_CLASS_RATEMODE_REL &&
 		    !in_range(op.u.params.maxrate, 1, 100)) {
                         warnx("sched params \"max-rate\" takes "
 			    "percentage value(1-100) for rate-mode relative");
                         errs++;
                 }
                 if (op.u.params.ratemode == SCHED_CLASS_RATEMODE_ABS &&
 		    !in_range(op.u.params.maxrate, 1, 100000000)) {
                         warnx("sched params \"max-rate\" takes "
 			    "value(1-100000000) for rate-mode absolute");
                         errs++;
                 }
                 if (op.u.params.maxrate > 0 &&
 		    op.u.params.maxrate < op.u.params.minrate) {
                         warnx("sched params \"max-rate\" is less than "
 			    "\"min-rate\"");
                         errs++;
                 }
 	}
 
 	if (errs > 0) {
 		warnx("%d error%s in sched-class command", errs,
 		    errs == 1 ? "" : "s");
 		return (EINVAL);
 	}
 
 	return doit(CHELSIO_T4_SCHED_CLASS, &op);
 }
 
 static int
 sched_queue(int argc, const char *argv[])
 {
 	struct t4_sched_queue op = {0};
 	char *p;
 	long val;
 
 	if (argc != 3) {
 		/* need "<port> <queue> <class> */
 		warnx("incorrect number of arguments.");
 		return (EINVAL);
 	}
 
 	p = str_to_number(argv[0], &val, NULL);
 	if (*p || val > UCHAR_MAX) {
 		warnx("invalid port id \"%s\"", argv[0]);
 		return (EINVAL);
 	}
 	op.port = (uint8_t)val;
 
 	if (!strcmp(argv[1], "all") || !strcmp(argv[1], "*"))
 		op.queue = -1;
 	else {
 		p = str_to_number(argv[1], &val, NULL);
 		if (*p || val < -1) {
 			warnx("invalid queue \"%s\"", argv[1]);
 			return (EINVAL);
 		}
 		op.queue = (int8_t)val;
 	}
 
 	if (!strcmp(argv[2], "unbind") || !strcmp(argv[2], "clear"))
 		op.cl = -1;
 	else {
 		p = str_to_number(argv[2], &val, NULL);
 		if (*p || val < -1) {
 			warnx("invalid class \"%s\"", argv[2]);
 			return (EINVAL);
 		}
 		op.cl = (int8_t)val;
 	}
 
 	return doit(CHELSIO_T4_SCHED_QUEUE, &op);
 }
 
 static int
 parse_offload_settings_word(const char *s, char **pnext, const char *ws,
     int *pneg, struct offload_settings *os)
 {
 
 	while (*s == '!') {
 		(*pneg)++;
 		s++;
 	}
 
 	if (!strcmp(s, "not")) {
 		(*pneg)++;
 		return (0);
 	}
 
 	if (!strcmp(s, "offload")) {
 		os->offload = (*pneg + 1) & 1;
 		*pneg = 0;
 	} else if (!strcmp(s , "coalesce")) {
 		os->rx_coalesce = (*pneg + 1) & 1;
 		*pneg = 0;
 	} else if (!strcmp(s, "timestamp") || !strcmp(s, "tstamp")) {
 		os->tstamp = (*pneg + 1) & 1;
 		*pneg = 0;
 	} else if (!strcmp(s, "sack")) {
 		os->sack = (*pneg + 1) & 1;
 		*pneg = 0;
 	} else if (!strcmp(s, "nagle")) {
 		os->nagle = (*pneg + 1) & 1;
 		*pneg = 0;
 	} else if (!strcmp(s, "ecn")) {
 		os->ecn = (*pneg + 1) & 1;
 		*pneg = 0;
 	} else if (!strcmp(s, "ddp")) {
 		os->ddp = (*pneg + 1) & 1;
 		*pneg = 0;
 	} else if (!strcmp(s, "tls")) {
 		os->tls = (*pneg + 1) & 1;
 		*pneg = 0;
 	} else {
 		char *param, *p;
 		long val;
 
 		/* Settings with additional parameter handled here. */
 
 		if (*pneg) {
 			warnx("\"%s\" is not a valid keyword, or it does not "
 			    "support negation.", s);
 			return (EINVAL);
 		}
 
 		while ((param = strsep(pnext, ws)) != NULL) {
 			if (*param != '\0')
 				break;
 		}
 		if (param == NULL) {
 			warnx("\"%s\" is not a valid keyword, or it requires a "
 			    "parameter that has not been provided.", s);
 			return (EINVAL);
 		}
 
 		if (!strcmp(s, "cong")) {
 			if (!strcmp(param, "reno"))
 				os->cong_algo = 0;
 			else if (!strcmp(param, "tahoe"))
 				os->cong_algo = 1;
 			else if (!strcmp(param, "newreno"))
 				os->cong_algo = 2;
 			else if (!strcmp(param, "highspeed"))
 				os->cong_algo = 3;
 			else {
 				warnx("unknown congestion algorithm \"%s\".", s);
 				return (EINVAL);
 			}
 		} else if (!strcmp(s, "class")) {
 			val = -1;
 			p = str_to_number(param, &val, NULL);
 			/* (nsched_cls - 1) is spelled 15 here. */
 			if (*p || val < 0 || val > 15) {
 				warnx("invalid scheduling class \"%s\".  "
 				    "\"class\" needs an integer value where "
 				    "0 <= value <= 15", param);
 				return (EINVAL);
 			}
 			os->sched_class = val;
 		} else if (!strcmp(s, "bind") || !strcmp(s, "txq") ||
 		    !strcmp(s, "rxq")) {
 			if (!strcmp(param, "random")) {
 				val = QUEUE_RANDOM;
 			} else if (!strcmp(param, "roundrobin")) {
 				val = QUEUE_ROUNDROBIN;
 			} else {
 				p = str_to_number(param, &val, NULL);
 				if (*p || val < 0 || val > 0xffff) {
 					warnx("invalid queue specification "
 					    "\"%s\".  \"%s\" needs an integer"
 					    " value, \"random\", or "
 					    "\"roundrobin\".", param, s);
 					return (EINVAL);
 				}
 			}
 			if (!strcmp(s, "bind")) {
 				os->txq = val;
 				os->rxq = val;
 			} else if (!strcmp(s, "txq")) {
 				os->txq = val;
 			} else if (!strcmp(s, "rxq")) {
 				os->rxq = val;
 			} else {
 				return (EDOOFUS);
 			}
 		} else if (!strcmp(s, "mss")) {
 			val = -1;
 			p = str_to_number(param, &val, NULL);
 			if (*p || val <= 0) {
 				warnx("invalid MSS specification \"%s\".  "
 				    "\"mss\" needs a positive integer value",
 				    param);
 				return (EINVAL);
 			}
 			os->mss = val;
 		} else  {
 			warnx("unknown settings keyword: \"%s\"", s);
 			return (EINVAL);
 		}
 	}
 
 	return (0);
 }
 
 static int
 parse_offload_settings(const char *settings_ro, struct offload_settings *os)
 {
 	const char *ws = " \f\n\r\v\t";
 	char *settings, *s, *next;
 	int rc, nsettings, neg;
 	static const struct offload_settings default_settings = {
 		.offload = 0,	/* No settings imply !offload */
 		.rx_coalesce = -1,
 		.cong_algo = -1,
 		.sched_class = -1,
 		.tstamp = -1,
 		.sack = -1,
 		.nagle = -1,
 		.ecn = -1,
 		.ddp = -1,
 		.tls = -1,
 		.txq = QUEUE_RANDOM,
 		.rxq = QUEUE_RANDOM,
 		.mss = -1,
 	};
 
 	*os = default_settings;
 
 	next = settings = strdup(settings_ro);
 	if (settings == NULL) {
 		warn (NULL);
 		return (errno);
 	}
 
 	nsettings = 0;
 	rc = 0;
 	neg = 0;
 	while ((s = strsep(&next, ws)) != NULL) {
 		if (*s == '\0')
 			continue;
 		nsettings++;
 		rc = parse_offload_settings_word(s, &next, ws, &neg, os);
 		if (rc != 0)
 			goto done;
 	}
 	if (nsettings == 0) {
 		warnx("no settings provided");
 		rc = EINVAL;
 		goto done;
 	}
 	if (neg > 0) {
 		warnx("%d stray negation(s) at end of offload settings", neg);
 		rc = EINVAL;
 		goto done;
 	}
 done:
 	free(settings);
 	return (rc);
 }
 
 static int
 isempty_line(char *line, size_t llen)
 {
 
 	/* skip leading whitespace */
 	while (isspace(*line)) {
 		line++;
 		llen--;
 	}
 	if (llen == 0 || *line == '#' || *line == '\n')
 		return (1);
 
 	return (0);
 }
 
 static int
 special_offload_rule(char *str)
 {
 
 	/* skip leading whitespaces */
 	while (isspace(*str))
 		str++;
 
 	/* check for special strings: "-", "all", "any" */
 	if (*str == '-') {
 		str++;
 	} else if (!strncmp(str, "all", 3) || !strncmp(str, "any", 3)) {
 		str += 3;
 	} else {
 		return (0);
 	}
 
 	/* skip trailing whitespaces */
 	while (isspace(*str))
 		str++;
 
 	return (*str == '\0');
 }
 
 /*
  * A rule has 3 parts: an open-type, a match expression, and offload settings.
  *
  * [<open-type>] <expr> => <settings>
  */
 static int
 parse_offload_policy_line(size_t lno, char *line, size_t llen, pcap_t *pd,
     struct offload_rule *r)
 {
 	char *expr, *settings, *s;
 
 	bzero(r, sizeof(*r));
 
 	/* Skip leading whitespace. */
 	while (isspace(*line))
 		line++;
 	/* Trim trailing whitespace */
 	s = &line[llen - 1];
 	while (isspace(*s)) {
 		*s-- = '\0';
 		llen--;
 	}
 
 	/*
 	 * First part of the rule: '[X]' where X = A/D/L/P
 	 */
 	if (*line++ != '[') {
 		warnx("missing \"[\" on line %zd", lno);
 		return (EINVAL);
 	}
 	switch (*line) {
 	case 'A':
 	case 'D':
 	case 'L':
 	case 'P':
 		r->open_type = *line;
 		break;
 	default:
 		warnx("invalid socket-type \"%c\" on line %zd.", *line, lno);
 		return (EINVAL);
 	}
 	line++;
 	if (*line++ != ']') {
 		warnx("missing \"]\" after \"[%c\" on line %zd",
 		    r->open_type, lno);
 		return (EINVAL);
 	}
 
 	/* Skip whitespace. */
 	while (isspace(*line))
 		line++;
 
 	/*
 	 * Rest of the rule: <expr> => <settings>
 	 */
 	expr = line;
 	s = strstr(line, "=>");
 	if (s == NULL)
 		return (EINVAL);
 	settings = s + 2;
 	while (isspace(*settings))
 		settings++;
 	*s = '\0';
 
 	/*
 	 * <expr> is either a special name (all, any) or a pcap-filter(7).
 	 * In case of a special name the bpf_prog stays all-zero.
 	 */
 	if (!special_offload_rule(expr)) {
 		if (pcap_compile(pd, &r->bpf_prog, expr, 1,
 		    PCAP_NETMASK_UNKNOWN) < 0) {
 			warnx("failed to compile \"%s\" on line %zd: %s", expr,
 			    lno, pcap_geterr(pd));
 			return (EINVAL);
 		}
 	}
 
 	/* settings to apply on a match. */
 	if (parse_offload_settings(settings, &r->settings) != 0) {
 		warnx("failed to parse offload settings \"%s\" on line %zd",
 		    settings, lno);
 		pcap_freecode(&r->bpf_prog);
 		return (EINVAL);
 	}
 
 	return (0);
 
 }
 
 /*
  * Note that op itself is not dynamically allocated.
  */
 static void
 free_offload_policy(struct t4_offload_policy *op)
 {
 	int i;
 
 	for (i = 0; i < op->nrules; i++) {
 		/*
 		 * pcap_freecode can cope with empty bpf_prog, which is the case
 		 * for an rule that matches on 'any/all/-'.
 		 */
 		pcap_freecode(&op->rule[i].bpf_prog);
 	}
 	free(op->rule);
 	op->nrules = 0;
 	op->rule = NULL;
 }
 
 #define REALLOC_STRIDE 32
 
 /*
  * Fills up op->nrules and op->rule.
  */
 static int
 parse_offload_policy(const char *fname, struct t4_offload_policy *op)
 {
 	FILE *fp;
 	char *line;
 	int lno, maxrules, rc;
 	size_t lcap, llen;
 	struct offload_rule *r;
 	pcap_t *pd;
 
 	fp = fopen(fname, "r");
 	if (fp == NULL) {
 		warn("Unable to open file \"%s\"", fname);
 		return (errno);
 	}
 	pd = pcap_open_dead(DLT_EN10MB, 128);
 	if (pd == NULL) {
 		warnx("Failed to open pcap device");
 		fclose(fp);
 		return (EIO);
 	}
 
 	rc = 0;
 	lno = 0;
 	lcap = 0;
 	maxrules = 0;
 	op->nrules = 0;
 	op->rule = NULL;
 	line = NULL;
 
 	while ((llen = getline(&line, &lcap, fp)) != -1) {
 		lno++;
 
 		/* Skip empty lines. */
 		if (isempty_line(line, llen))
 			continue;
 
 		if (op->nrules == maxrules) {
 			maxrules += REALLOC_STRIDE;
 			r = realloc(op->rule,
 			    maxrules * sizeof(struct offload_rule));
 			if (r == NULL) {
 				warnx("failed to allocate memory for %d rules",
 				    maxrules);
 				rc = ENOMEM;
 				goto done;
 			}
 			op->rule = r;
 		}
 
 		r = &op->rule[op->nrules];
 		rc = parse_offload_policy_line(lno, line, llen, pd, r);
 		if (rc != 0) {
 			warnx("Error parsing line %d of \"%s\"", lno, fname);
 			goto done;
 		}
 
 		op->nrules++;
 	}
 	free(line);
 
 	if (!feof(fp)) {
 		warn("Error while reading from file \"%s\" at line %d",
 		    fname, lno);
 		rc = errno;
 		goto done;
 	}
 
 	if (op->nrules == 0) {
 		warnx("No valid rules found in \"%s\"", fname);
 		rc = EINVAL;
 	}
 done:
 	pcap_close(pd);
 	fclose(fp);
 	if (rc != 0) {
 		free_offload_policy(op);
 	}
 
 	return (rc);
 }
 
 static int
 load_offload_policy(int argc, const char *argv[])
 {
 	int rc = 0;
 	const char *fname = argv[0];
 	struct t4_offload_policy op = {0};
 
 	if (argc != 1) {
 		warnx("incorrect number of arguments.");
 		return (EINVAL);
 	}
 
 	if (!strcmp(fname, "clear") || !strcmp(fname, "none")) {
 		/* op.nrules is 0 and that means clear policy */
 		return (doit(CHELSIO_T4_SET_OFLD_POLICY, &op));
 	}
 
 	rc = parse_offload_policy(fname, &op);
 	if (rc != 0) {
 		/* Error message displayed already */
 		return (EINVAL);
 	}
 
 	rc = doit(CHELSIO_T4_SET_OFLD_POLICY, &op);
 	free_offload_policy(&op);
 
 	return (rc);
 }
 
 static int
 display_clip(void)
 {
 	size_t clip_buf_size = 4096;
 	char *buf, name[32];
 	int rc;
 
 	buf = malloc(clip_buf_size);
 	if (buf == NULL) {
 		warn("%s", __func__);
 		return (errno);
 	}
 
-	snprintf(name, sizeof(name), "dev.t%unex.%u.misc.clip", chip_id, inst);
+	snprintf(name, sizeof(name), "dev.t%unex.%u.misc.clip", g.chip_id, g.inst);
 	rc = sysctlbyname(name, buf, &clip_buf_size, NULL, 0);
 	if (rc != 0) {
 		warn("sysctl %s", name);
 		free(buf);
 		return (errno);
 	}
 
 	printf("%s\n", buf);
 	free(buf);
 	return (0);
 }
 
 static int
 clip_cmd(int argc, const char *argv[])
 {
 	int rc, af = AF_INET6, add;
 	struct t4_clip_addr ca = {0};
 
 	if (argc == 1 && !strcmp(argv[0], "list")) {
 		rc = display_clip();
 		return (rc);
 	}
 
 	if (argc != 2) {
 		warnx("incorrect number of arguments.");
 		return (EINVAL);
 	}
 
 	if (!strcmp(argv[0], "hold")) {
 		add = 1;
 	} else if (!strcmp(argv[0], "rel") || !strcmp(argv[0], "release")) {
 		add = 0;
 	} else {
 		warnx("first argument must be \"hold\" or \"release\"");
 		return (EINVAL);
 	}
 
 	rc = parse_ipaddr(argv[0], argv, &af, &ca.addr[0], &ca.mask[0], 1);
 	if (rc != 0)
 		return (rc);
 
 	if (add)
 		rc = doit(CHELSIO_T4_HOLD_CLIP_ADDR, &ca);
 	else
 		rc = doit(CHELSIO_T4_RELEASE_CLIP_ADDR, &ca);
 
 	return (rc);
 }
 
 static int
 run_cmd(int argc, const char *argv[])
 {
 	int rc = -1;
 	const char *cmd = argv[0];
 
 	/* command */
 	argc--;
 	argv++;
 
 	if (!strcmp(cmd, "reg") || !strcmp(cmd, "reg32"))
 		rc = register_io(argc, argv, 4);
 	else if (!strcmp(cmd, "reg64"))
 		rc = register_io(argc, argv, 8);
 	else if (!strcmp(cmd, "regdump"))
 		rc = dump_regs(argc, argv);
 	else if (!strcmp(cmd, "filter"))
 		rc = filter_cmd(argc, argv, 0);
 	else if (!strcmp(cmd, "context"))
 		rc = get_sge_context(argc, argv);
 	else if (!strcmp(cmd, "loadfw"))
 		rc = loadfw(argc, argv);
 	else if (!strcmp(cmd, "memdump"))
 		rc = memdump(argc, argv);
 	else if (!strcmp(cmd, "tcb"))
 		rc = read_tcb(argc, argv);
 	else if (!strcmp(cmd, "i2c"))
 		rc = read_i2c(argc, argv);
 	else if (!strcmp(cmd, "clearstats"))
 		rc = clearstats(argc, argv);
 	else if (!strcmp(cmd, "tracer"))
 		rc = tracer_cmd(argc, argv);
 	else if (!strcmp(cmd, "modinfo"))
 		rc = modinfo(argc, argv);
 	else if (!strcmp(cmd, "sched-class"))
 		rc = sched_class(argc, argv);
 	else if (!strcmp(cmd, "sched-queue"))
 		rc = sched_queue(argc, argv);
 	else if (!strcmp(cmd, "loadcfg"))
 		rc = loadcfg(argc, argv);
 	else if (!strcmp(cmd, "loadboot"))
 		rc = loadboot(argc, argv);
 	else if (!strcmp(cmd, "loadboot-cfg"))
 		rc = loadbootcfg(argc, argv);
 	else if (!strcmp(cmd, "dumpstate"))
 		rc = dumpstate(argc, argv);
 	else if (!strcmp(cmd, "policy"))
 		rc = load_offload_policy(argc, argv);
 	else if (!strcmp(cmd, "hashfilter"))
 		rc = filter_cmd(argc, argv, 1);
 	else if (!strcmp(cmd, "clip"))
 		rc = clip_cmd(argc, argv);
 	else {
 		rc = EINVAL;
 		warnx("invalid command \"%s\"", cmd);
 	}
 
 	return (rc);
 }
 
 #define MAX_ARGS 15
 static int
 run_cmd_loop(void)
 {
 	int i, rc = 0;
 	char buffer[128], *buf;
 	const char *args[MAX_ARGS + 1];
 
 	/*
 	 * Simple loop: displays a "> " prompt and processes any input as a
 	 * cxgbetool command.  You're supposed to enter only the part after
 	 * "cxgbetool t4nexX".  Use "quit" or "exit" to exit.
 	 */
 	for (;;) {
 		fprintf(stdout, "> ");
 		fflush(stdout);
 		buf = fgets(buffer, sizeof(buffer), stdin);
 		if (buf == NULL) {
 			if (ferror(stdin)) {
 				warn("stdin error");
 				rc = errno;	/* errno from fgets */
 			}
 			break;
 		}
 
 		i = 0;
 		while ((args[i] = strsep(&buf, " \t\n")) != NULL) {
 			if (args[i][0] != 0 && ++i == MAX_ARGS)
 				break;
 		}
 		args[i] = 0;
 
 		if (i == 0)
 			continue;	/* skip empty line */
 
 		if (!strcmp(args[0], "quit") || !strcmp(args[0], "exit"))
 			break;
 
 		rc = run_cmd(i, args);
 	}
 
 	/* rc normally comes from the last command (not including quit/exit) */
 	return (rc);
 }
 
+#define A_PL_WHOAMI 0x19400
+#define A_PL_REV 0x1943c
+#define A_PL_VF_WHOAMI 0x200
+#define A_PL_VF_REV 0x204
+
 static void
-parse_nexus_name(const char *s)
+open_nexus_device(const char *s)
 {
-	char junk;
-
-	if (sscanf(s, "t%unex%u%c", &chip_id, &inst, &junk) != 2)
-		errx(EINVAL, "invalid nexus \"%s\"", s);
-	nexus = s;
+	const int len = strlen(s);
+	long long val;
+	const char *num;
+	int rc;
+	u_int chip_id, whoami;
+	char buf[128];
+
+	if (len < 2 || isdigit(s[0]) || !isdigit(s[len - 1]))
+		errx(1, "invalid nexus name \"%s\"", s);
+	for (num = s + len - 1; isdigit(*num); num--)
+		continue;
+	g.inst = strtoll(num, NULL, 0);
+	g.nexus = s;
+	snprintf(buf, sizeof(buf), "/dev/%s", g.nexus);
+	if ((g.fd = open(buf, O_RDWR)) < 0)
+		err(1, "open(%s)", buf);
+
+	g.warn_on_ioctl_err = false;
+	rc = read_reg(A_PL_REV, 4, &val);
+	if (rc == 0) {
+		/* PF */
+		g.vf = false;
+		whoami = A_PL_WHOAMI;
+	} else {
+		rc = read_reg(A_PL_VF_REV, 4, &val);
+		if (rc != 0)
+			errx(1, "%s is not a Terminator device.", s);
+		/* VF */
+		g.vf = true;
+		whoami = A_PL_VF_WHOAMI;
+	}
+	chip_id = (val >> 4) & 0xf;
+	if (chip_id == 0)
+		chip_id = 4;
+	if (chip_id < 4 || chip_id > 7)
+		warnx("%s reports chip_id %d.", s, chip_id);
+	g.chip_id = chip_id;
+
+	rc = read_reg(whoami, 4, &val);
+	if (rc != 0)
+		errx(rc, "failed to read whoami(0x%x): %d", whoami, rc);
+	g.pf = g.chip_id > 5 ? (val >> 9) & 7 : (val >> 8) & 7;
+	g.warn_on_ioctl_err = true;
 }
 
 int
 main(int argc, const char *argv[])
 {
 	int rc = -1;
 
-	progname = argv[0];
+	g.progname = argv[0];
 
 	if (argc == 2) {
 		if (!strcmp(argv[1], "-h") || !strcmp(argv[1], "--help")) {
 			usage(stdout);
 			exit(0);
 		}
 	}
 
 	if (argc < 3) {
 		usage(stderr);
 		exit(EINVAL);
 	}
 
-	parse_nexus_name(argv[1]);
+	open_nexus_device(argv[1]);
 
 	/* progname and nexus */
 	argc -= 2;
 	argv += 2;
 
 	if (argc == 1 && !strcmp(argv[0], "stdio"))
 		rc = run_cmd_loop();
 	else
 		rc = run_cmd(argc, argv);
 
 	return (rc);
 }