diff --git a/sys/compat/linuxkpi/common/include/linux/pci.h b/sys/compat/linuxkpi/common/include/linux/pci.h index ed653361b6af..76c6df02bf19 100644 --- a/sys/compat/linuxkpi/common/include/linux/pci.h +++ b/sys/compat/linuxkpi/common/include/linux/pci.h @@ -1,1634 +1,1554 @@ /*- * Copyright (c) 2010 Isilon Systems, Inc. * Copyright (c) 2010 iX Systems, Inc. * Copyright (c) 2010 Panasas, Inc. * Copyright (c) 2013-2016 Mellanox Technologies, Ltd. * All rights reserved. * Copyright (c) 2020-2021 The FreeBSD Foundation * * Portions of this software were developed by Björn Zeeb * under sponsorship from the FreeBSD Foundation. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice unmodified, this list of conditions, and the following * disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * $FreeBSD$ */ #ifndef _LINUXKPI_LINUX_PCI_H_ #define _LINUXKPI_LINUX_PCI_H_ #define CONFIG_PCI_MSI #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include struct pci_device_id { uint32_t vendor; uint32_t device; uint32_t subvendor; uint32_t subdevice; uint32_t class; uint32_t class_mask; uintptr_t driver_data; }; /* Linux has an empty element at the end of the ID table -> nitems() - 1. */ #define MODULE_DEVICE_TABLE(_bus, _table) \ \ static device_method_t _ ## _bus ## _ ## _table ## _methods[] = { \ DEVMETHOD_END \ }; \ \ static driver_t _ ## _bus ## _ ## _table ## _driver = { \ "lkpi_" #_bus #_table, \ _ ## _bus ## _ ## _table ## _methods, \ 0 \ }; \ \ static devclass_t _ ## _bus ## _ ## _table ## _devclass; \ \ DRIVER_MODULE(lkpi_ ## _table, pci, _ ## _bus ## _ ## _table ## _driver,\ _ ## _bus ## _ ## _table ## _devclass, 0, 0); \ \ MODULE_PNP_INFO("U32:vendor;U32:device;V32:subvendor;V32:subdevice", \ _bus, lkpi_ ## _table, _table, nitems(_table) - 1) #define PCI_ANY_ID -1U #define PCI_DEVFN(slot, func) ((((slot) & 0x1f) << 3) | ((func) & 0x07)) #define PCI_SLOT(devfn) (((devfn) >> 3) & 0x1f) #define PCI_FUNC(devfn) ((devfn) & 0x07) #define PCI_BUS_NUM(devfn) (((devfn) >> 8) & 0xff) #define PCI_VDEVICE(_vendor, _device) \ .vendor = PCI_VENDOR_ID_##_vendor, .device = (_device), \ .subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID #define PCI_DEVICE(_vendor, _device) \ .vendor = (_vendor), .device = (_device), \ .subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID #define to_pci_dev(n) container_of(n, struct pci_dev, dev) #define PCI_VENDOR_ID PCIR_DEVVENDOR #define PCI_COMMAND PCIR_COMMAND #define PCI_COMMAND_INTX_DISABLE PCIM_CMD_INTxDIS #define PCI_EXP_DEVCTL PCIER_DEVICE_CTL /* Device Control */ #define PCI_EXP_LNKCTL PCIER_LINK_CTL /* Link Control */ #define PCI_EXP_LNKCTL_ASPM_L0S PCIEM_LINK_CTL_ASPMC_L0S #define PCI_EXP_LNKCTL_ASPM_L1 PCIEM_LINK_CTL_ASPMC_L1 #define PCI_EXP_LNKCTL_ASPMC PCIEM_LINK_CTL_ASPMC #define PCI_EXP_LNKCTL_CLKREQ_EN PCIEM_LINK_CTL_ECPM /* Enable clock PM */ #define PCI_EXP_LNKCTL_HAWD PCIEM_LINK_CTL_HAWD #define PCI_EXP_FLAGS_TYPE PCIEM_FLAGS_TYPE /* Device/Port type */ #define PCI_EXP_DEVCAP PCIER_DEVICE_CAP /* Device capabilities */ #define PCI_EXP_DEVSTA PCIER_DEVICE_STA /* Device Status */ #define PCI_EXP_LNKCAP PCIER_LINK_CAP /* Link Capabilities */ #define PCI_EXP_LNKSTA PCIER_LINK_STA /* Link Status */ #define PCI_EXP_SLTCAP PCIER_SLOT_CAP /* Slot Capabilities */ #define PCI_EXP_SLTCTL PCIER_SLOT_CTL /* Slot Control */ #define PCI_EXP_SLTSTA PCIER_SLOT_STA /* Slot Status */ #define PCI_EXP_RTCTL PCIER_ROOT_CTL /* Root Control */ #define PCI_EXP_RTCAP PCIER_ROOT_CAP /* Root Capabilities */ #define PCI_EXP_RTSTA PCIER_ROOT_STA /* Root Status */ #define PCI_EXP_DEVCAP2 PCIER_DEVICE_CAP2 /* Device Capabilities 2 */ #define PCI_EXP_DEVCTL2 PCIER_DEVICE_CTL2 /* Device Control 2 */ #define PCI_EXP_DEVCTL2_LTR_EN PCIEM_CTL2_LTR_ENABLE #define PCI_EXP_LNKCAP2 PCIER_LINK_CAP2 /* Link Capabilities 2 */ #define PCI_EXP_LNKCTL2 PCIER_LINK_CTL2 /* Link Control 2 */ #define PCI_EXP_LNKSTA2 PCIER_LINK_STA2 /* Link Status 2 */ #define PCI_EXP_FLAGS PCIER_FLAGS /* Capabilities register */ #define PCI_EXP_FLAGS_VERS PCIEM_FLAGS_VERSION /* Capability version */ #define PCI_EXP_TYPE_ROOT_PORT PCIEM_TYPE_ROOT_PORT /* Root Port */ #define PCI_EXP_TYPE_ENDPOINT PCIEM_TYPE_ENDPOINT /* Express Endpoint */ #define PCI_EXP_TYPE_LEG_END PCIEM_TYPE_LEGACY_ENDPOINT /* Legacy Endpoint */ #define PCI_EXP_TYPE_DOWNSTREAM PCIEM_TYPE_DOWNSTREAM_PORT /* Downstream Port */ #define PCI_EXP_FLAGS_SLOT PCIEM_FLAGS_SLOT /* Slot implemented */ #define PCI_EXP_TYPE_RC_EC PCIEM_TYPE_ROOT_EC /* Root Complex Event Collector */ #define PCI_EXP_LNKCAP_SLS_2_5GB 0x01 /* Supported Link Speed 2.5GT/s */ #define PCI_EXP_LNKCAP_SLS_5_0GB 0x02 /* Supported Link Speed 5.0GT/s */ #define PCI_EXP_LNKCAP_SLS_8_0GB 0x04 /* Supported Link Speed 8.0GT/s */ #define PCI_EXP_LNKCAP_SLS_16_0GB 0x08 /* Supported Link Speed 16.0GT/s */ #define PCI_EXP_LNKCAP_MLW 0x03f0 /* Maximum Link Width */ #define PCI_EXP_LNKCAP2_SLS_2_5GB 0x02 /* Supported Link Speed 2.5GT/s */ #define PCI_EXP_LNKCAP2_SLS_5_0GB 0x04 /* Supported Link Speed 5.0GT/s */ #define PCI_EXP_LNKCAP2_SLS_8_0GB 0x08 /* Supported Link Speed 8.0GT/s */ #define PCI_EXP_LNKCAP2_SLS_16_0GB 0x10 /* Supported Link Speed 16.0GT/s */ #define PCI_EXP_LNKCTL2_TLS 0x000f #define PCI_EXP_LNKCTL2_TLS_2_5GT 0x0001 /* Supported Speed 2.5GT/s */ #define PCI_EXP_LNKCTL2_TLS_5_0GT 0x0002 /* Supported Speed 5GT/s */ #define PCI_EXP_LNKCTL2_TLS_8_0GT 0x0003 /* Supported Speed 8GT/s */ #define PCI_EXP_LNKCTL2_TLS_16_0GT 0x0004 /* Supported Speed 16GT/s */ #define PCI_EXP_LNKCTL2_TLS_32_0GT 0x0005 /* Supported Speed 32GT/s */ #define PCI_EXP_LNKCTL2_ENTER_COMP 0x0010 /* Enter Compliance */ #define PCI_EXP_LNKCTL2_TX_MARGIN 0x0380 /* Transmit Margin */ #define PCI_EXP_LNKCAP_CLKPM 0x00040000 #define PCI_EXP_DEVSTA_TRPND 0x0020 #define IORESOURCE_MEM (1 << SYS_RES_MEMORY) #define IORESOURCE_IO (1 << SYS_RES_IOPORT) #define IORESOURCE_IRQ (1 << SYS_RES_IRQ) enum pci_bus_speed { PCI_SPEED_UNKNOWN = -1, PCIE_SPEED_2_5GT, PCIE_SPEED_5_0GT, PCIE_SPEED_8_0GT, PCIE_SPEED_16_0GT, }; enum pcie_link_width { PCIE_LNK_WIDTH_RESRV = 0x00, PCIE_LNK_X1 = 0x01, PCIE_LNK_X2 = 0x02, PCIE_LNK_X4 = 0x04, PCIE_LNK_X8 = 0x08, PCIE_LNK_X12 = 0x0c, PCIE_LNK_X16 = 0x10, PCIE_LNK_X32 = 0x20, PCIE_LNK_WIDTH_UNKNOWN = 0xff, }; #define PCIE_LINK_STATE_L0S 0x00000001 #define PCIE_LINK_STATE_L1 0x00000002 #define PCIE_LINK_STATE_CLKPM 0x00000004 typedef int pci_power_t; #define PCI_D0 PCI_POWERSTATE_D0 #define PCI_D1 PCI_POWERSTATE_D1 #define PCI_D2 PCI_POWERSTATE_D2 #define PCI_D3hot PCI_POWERSTATE_D3 #define PCI_D3cold 4 #define PCI_POWER_ERROR PCI_POWERSTATE_UNKNOWN #define PCI_ERR_ROOT_COMMAND PCIR_AER_ROOTERR_CMD #define PCI_ERR_ROOT_ERR_SRC PCIR_AER_COR_SOURCE_ID #define PCI_EXT_CAP_ID_ERR PCIZ_AER #define PCI_EXT_CAP_ID_L1SS PCIZ_L1PM #define PCI_L1SS_CTL1 0x8 #define PCI_L1SS_CTL1_L1SS_MASK 0xf #define PCI_IRQ_LEGACY 0x01 #define PCI_IRQ_MSI 0x02 #define PCI_IRQ_MSIX 0x04 struct pci_dev; struct pci_driver { struct list_head node; char *name; const struct pci_device_id *id_table; int (*probe)(struct pci_dev *dev, const struct pci_device_id *id); void (*remove)(struct pci_dev *dev); int (*suspend) (struct pci_dev *dev, pm_message_t state); /* Device suspended */ int (*resume) (struct pci_dev *dev); /* Device woken up */ void (*shutdown) (struct pci_dev *dev); /* Device shutdown */ driver_t bsddriver; devclass_t bsdclass; struct device_driver driver; const struct pci_error_handlers *err_handler; bool isdrm; int bsd_probe_return; int (*bsd_iov_init)(device_t dev, uint16_t num_vfs, const nvlist_t *pf_config); void (*bsd_iov_uninit)(device_t dev); int (*bsd_iov_add_vf)(device_t dev, uint16_t vfnum, const nvlist_t *vf_config); }; struct pci_bus { struct pci_dev *self; int domain; int number; }; extern struct list_head pci_drivers; extern struct list_head pci_devices; extern spinlock_t pci_lock; #define __devexit_p(x) x #define module_pci_driver(_driver) \ \ static inline int \ _pci_init(void) \ { \ \ return (linux_pci_register_driver(&_driver)); \ } \ \ static inline void \ _pci_exit(void) \ { \ \ linux_pci_unregister_driver(&_driver); \ } \ \ module_init(_pci_init); \ module_exit(_pci_exit) /* * If we find drivers accessing this from multiple KPIs we may have to * refcount objects of this structure. */ struct pci_mmio_region { TAILQ_ENTRY(pci_mmio_region) next; struct resource *res; int rid; int type; }; struct pci_dev { struct device dev; struct list_head links; struct pci_driver *pdrv; struct pci_bus *bus; struct pci_dev *root; uint16_t device; uint16_t vendor; uint16_t subsystem_vendor; uint16_t subsystem_device; unsigned int irq; unsigned int devfn; uint32_t class; uint8_t revision; bool managed; /* devres "pcim_*(). */ bool want_iomap_res; bool msi_enabled; bool msix_enabled; phys_addr_t rom; size_t romlen; TAILQ_HEAD(, pci_mmio_region) mmio; }; /* We need some meta-struct to keep track of these for devres. */ struct pci_devres { bool enable_io; /* PCIR_MAX_BAR_0 + 1 = 6 => BIT(0..5). */ uint8_t region_mask; struct resource *region_table[PCIR_MAX_BAR_0 + 1]; /* Not needed. */ }; struct pcim_iomap_devres { void *mmio_table[PCIR_MAX_BAR_0 + 1]; struct resource *res_table[PCIR_MAX_BAR_0 + 1]; }; +int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name); + /* Internal helper function(s). */ struct pci_dev *lkpinew_pci_dev(device_t); struct pci_devres *lkpi_pci_devres_get_alloc(struct pci_dev *pdev); void lkpi_pci_devres_release(struct device *, void *); +struct resource *_lkpi_pci_iomap(struct pci_dev *pdev, int bar, int mmio_size); void lkpi_pcim_iomap_table_release(struct device *, void *); static inline int pci_resource_type(struct pci_dev *pdev, int bar) { struct pci_map *pm; pm = pci_find_bar(pdev->dev.bsddev, PCIR_BAR(bar)); if (!pm) return (-1); if (PCI_BAR_IO(pm->pm_value)) return (SYS_RES_IOPORT); else return (SYS_RES_MEMORY); } struct resource_list_entry *linux_pci_reserve_bar(struct pci_dev *pdev, struct resource_list *rl, int type, int rid); static inline struct resource_list_entry * linux_pci_get_rle(struct pci_dev *pdev, int type, int rid, bool reserve_bar) { struct pci_devinfo *dinfo; struct resource_list *rl; struct resource_list_entry *rle; dinfo = device_get_ivars(pdev->dev.bsddev); rl = &dinfo->resources; rle = resource_list_find(rl, type, rid); /* Reserve resources for this BAR if needed. */ if (rle == NULL && reserve_bar) rle = linux_pci_reserve_bar(pdev, rl, type, rid); return (rle); } static inline struct resource_list_entry * linux_pci_get_bar(struct pci_dev *pdev, int bar, bool reserve) { int type; type = pci_resource_type(pdev, bar); if (type < 0) return (NULL); bar = PCIR_BAR(bar); return (linux_pci_get_rle(pdev, type, bar, reserve)); } static inline struct device * linux_pci_find_irq_dev(unsigned int irq) { struct pci_dev *pdev; struct device *found; found = NULL; spin_lock(&pci_lock); list_for_each_entry(pdev, &pci_devices, links) { if (irq == pdev->dev.irq || (irq >= pdev->dev.irq_start && irq < pdev->dev.irq_end)) { found = &pdev->dev; break; } } spin_unlock(&pci_lock); return (found); } /* * All drivers just seem to want to inspect the type not flags. */ static inline int pci_resource_flags(struct pci_dev *pdev, int bar) { int type; type = pci_resource_type(pdev, bar); if (type < 0) return (0); return (1 << type); } static inline const char * pci_name(struct pci_dev *d) { return device_get_desc(d->dev.bsddev); } static inline void * pci_get_drvdata(struct pci_dev *pdev) { return dev_get_drvdata(&pdev->dev); } static inline void pci_set_drvdata(struct pci_dev *pdev, void *data) { dev_set_drvdata(&pdev->dev, data); } static inline struct pci_dev * pci_dev_get(struct pci_dev *pdev) { if (pdev != NULL) get_device(&pdev->dev); return (pdev); } static __inline void pci_dev_put(struct pci_dev *pdev) { if (pdev != NULL) put_device(&pdev->dev); } static inline int pci_enable_device(struct pci_dev *pdev) { pci_enable_io(pdev->dev.bsddev, SYS_RES_IOPORT); pci_enable_io(pdev->dev.bsddev, SYS_RES_MEMORY); return (0); } static inline void pci_disable_device(struct pci_dev *pdev) { pci_disable_busmaster(pdev->dev.bsddev); } static inline int pci_set_master(struct pci_dev *pdev) { pci_enable_busmaster(pdev->dev.bsddev); return (0); } static inline int pci_set_power_state(struct pci_dev *pdev, int state) { pci_set_powerstate(pdev->dev.bsddev, state); return (0); } static inline int pci_clear_master(struct pci_dev *pdev) { pci_disable_busmaster(pdev->dev.bsddev); return (0); } static inline bool pci_is_root_bus(struct pci_bus *pbus) { return (pbus->self == NULL); } static inline struct pci_dev * pci_upstream_bridge(struct pci_dev *pdev) { if (pci_is_root_bus(pdev->bus)) return (NULL); /* * If we do not have a (proper) "upstream bridge" set, e.g., we point * to ourselves, try to handle this case on the fly like we do * for pcie_find_root_port(). */ if (pdev == pdev->bus->self) { device_t bridge; bridge = device_get_parent(pdev->dev.bsddev); if (bridge == NULL) goto done; bridge = device_get_parent(bridge); if (bridge == NULL) goto done; if (device_get_devclass(device_get_parent(bridge)) != devclass_find("pci")) goto done; /* * "bridge" is a PCI-to-PCI bridge. Create a Linux pci_dev * for it so it can be returned. */ pdev->bus->self = lkpinew_pci_dev(bridge); } done: return (pdev->bus->self); } static inline struct pci_devres * lkpi_pci_devres_find(struct pci_dev *pdev) { if (!pdev->managed) return (NULL); return (lkpi_pci_devres_get_alloc(pdev)); } -static inline int -pci_request_region(struct pci_dev *pdev, int bar, const char *res_name) -{ - struct resource *res; - struct pci_devres *dr; - struct pci_mmio_region *mmio; - int rid; - int type; - - type = pci_resource_type(pdev, bar); - if (type < 0) - return (-ENODEV); - rid = PCIR_BAR(bar); - res = bus_alloc_resource_any(pdev->dev.bsddev, type, &rid, - RF_ACTIVE|RF_SHAREABLE); - if (res == NULL) { - device_printf(pdev->dev.bsddev, "%s: failed to alloc " - "bar %d type %d rid %d\n", - __func__, bar, type, PCIR_BAR(bar)); - return (-ENODEV); - } - - /* - * It seems there is an implicit devres tracking on these if the device - * is managed; otherwise the resources are not automatiaclly freed on - * FreeBSD/LinuxKPI tough they should be/are expected to be by Linux - * drivers. - */ - dr = lkpi_pci_devres_find(pdev); - if (dr != NULL) { - dr->region_mask |= (1 << bar); - dr->region_table[bar] = res; - } - - /* Even if the device is not managed we need to track it for iomap. */ - mmio = malloc(sizeof(*mmio), M_DEVBUF, M_WAITOK | M_ZERO); - mmio->rid = PCIR_BAR(bar); - mmio->type = type; - mmio->res = res; - TAILQ_INSERT_TAIL(&pdev->mmio, mmio, next); - - return (0); -} - static inline void pci_release_region(struct pci_dev *pdev, int bar) { struct resource_list_entry *rle; struct pci_devres *dr; struct pci_mmio_region *mmio, *p; if ((rle = linux_pci_get_bar(pdev, bar, false)) == NULL) return; /* * As we implicitly track the requests we also need to clear them on * release. Do clear before resource release. */ dr = lkpi_pci_devres_find(pdev); if (dr != NULL) { KASSERT(dr->region_table[bar] == rle->res, ("%s: pdev %p bar %d" " region_table res %p != rel->res %p\n", __func__, pdev, bar, dr->region_table[bar], rle->res)); dr->region_table[bar] = NULL; dr->region_mask &= ~(1 << bar); } TAILQ_FOREACH_SAFE(mmio, &pdev->mmio, next, p) { if (rle->res != (void *)rman_get_bushandle(mmio->res)) continue; TAILQ_REMOVE(&pdev->mmio, mmio, next); free(mmio, M_DEVBUF); } bus_release_resource(pdev->dev.bsddev, rle->type, rle->rid, rle->res); } static inline void pci_release_regions(struct pci_dev *pdev) { int i; for (i = 0; i <= PCIR_MAX_BAR_0; i++) pci_release_region(pdev, i); } static inline int pci_request_regions(struct pci_dev *pdev, const char *res_name) { int error; int i; for (i = 0; i <= PCIR_MAX_BAR_0; i++) { error = pci_request_region(pdev, i, res_name); if (error && error != -ENODEV) { pci_release_regions(pdev); return (error); } } return (0); } static inline void lkpi_pci_disable_msix(struct pci_dev *pdev) { pci_release_msi(pdev->dev.bsddev); /* * The MSIX IRQ numbers associated with this PCI device are no * longer valid and might be re-assigned. Make sure * linux_pci_find_irq_dev() does no longer see them by * resetting their references to zero: */ pdev->dev.irq_start = 0; pdev->dev.irq_end = 0; pdev->msix_enabled = false; } /* Only for consistency. No conflict on that one. */ #define pci_disable_msix(pdev) lkpi_pci_disable_msix(pdev) static inline void lkpi_pci_disable_msi(struct pci_dev *pdev) { pci_release_msi(pdev->dev.bsddev); pdev->dev.irq_start = 0; pdev->dev.irq_end = 0; pdev->irq = pdev->dev.irq; pdev->msi_enabled = false; } #define pci_disable_msi(pdev) lkpi_pci_disable_msi(pdev) #define pci_free_irq_vectors(pdev) lkpi_pci_disable_msi(pdev) unsigned long pci_resource_start(struct pci_dev *pdev, int bar); unsigned long pci_resource_len(struct pci_dev *pdev, int bar); static inline bus_addr_t pci_bus_address(struct pci_dev *pdev, int bar) { return (pci_resource_start(pdev, bar)); } #define PCI_CAP_ID_EXP PCIY_EXPRESS #define PCI_CAP_ID_PCIX PCIY_PCIX #define PCI_CAP_ID_AGP PCIY_AGP #define PCI_CAP_ID_PM PCIY_PMG #define PCI_EXP_DEVCTL PCIER_DEVICE_CTL #define PCI_EXP_DEVCTL_PAYLOAD PCIEM_CTL_MAX_PAYLOAD #define PCI_EXP_DEVCTL_READRQ PCIEM_CTL_MAX_READ_REQUEST #define PCI_EXP_LNKCTL PCIER_LINK_CTL #define PCI_EXP_LNKSTA PCIER_LINK_STA static inline int pci_find_capability(struct pci_dev *pdev, int capid) { int reg; if (pci_find_cap(pdev->dev.bsddev, capid, ®)) return (0); return (reg); } static inline int pci_pcie_cap(struct pci_dev *dev) { return pci_find_capability(dev, PCI_CAP_ID_EXP); } static inline int pci_find_ext_capability(struct pci_dev *pdev, int capid) { int reg; if (pci_find_extcap(pdev->dev.bsddev, capid, ®)) return (0); return (reg); } #define PCIM_PCAP_PME_SHIFT 11 static __inline bool pci_pme_capable(struct pci_dev *pdev, uint32_t flag) { struct pci_devinfo *dinfo; pcicfgregs *cfg; if (flag > (PCIM_PCAP_D3PME_COLD >> PCIM_PCAP_PME_SHIFT)) return (false); dinfo = device_get_ivars(pdev->dev.bsddev); cfg = &dinfo->cfg; if (cfg->pp.pp_cap == 0) return (false); if ((cfg->pp.pp_cap & (1 << (PCIM_PCAP_PME_SHIFT + flag))) != 0) return (true); return (false); } static inline int pci_disable_link_state(struct pci_dev *pdev, uint32_t flags) { if (!pci_enable_aspm) return (-EPERM); return (-ENXIO); } static inline int pci_read_config_byte(const struct pci_dev *pdev, int where, u8 *val) { *val = (u8)pci_read_config(pdev->dev.bsddev, where, 1); return (0); } static inline int pci_read_config_word(const struct pci_dev *pdev, int where, u16 *val) { *val = (u16)pci_read_config(pdev->dev.bsddev, where, 2); return (0); } static inline int pci_read_config_dword(const struct pci_dev *pdev, int where, u32 *val) { *val = (u32)pci_read_config(pdev->dev.bsddev, where, 4); return (0); } static inline int pci_write_config_byte(const struct pci_dev *pdev, int where, u8 val) { pci_write_config(pdev->dev.bsddev, where, val, 1); return (0); } static inline int pci_write_config_word(const struct pci_dev *pdev, int where, u16 val) { pci_write_config(pdev->dev.bsddev, where, val, 2); return (0); } static inline int pci_write_config_dword(const struct pci_dev *pdev, int where, u32 val) { pci_write_config(pdev->dev.bsddev, where, val, 4); return (0); } int linux_pci_register_driver(struct pci_driver *pdrv); int linux_pci_register_drm_driver(struct pci_driver *pdrv); void linux_pci_unregister_driver(struct pci_driver *pdrv); void linux_pci_unregister_drm_driver(struct pci_driver *pdrv); #define pci_register_driver(pdrv) linux_pci_register_driver(pdrv) #define pci_unregister_driver(pdrv) linux_pci_unregister_driver(pdrv) struct msix_entry { int entry; int vector; }; /* * Enable msix, positive errors indicate actual number of available * vectors. Negative errors are failures. * * NB: define added to prevent this definition of pci_enable_msix from * clashing with the native FreeBSD version. */ #define pci_enable_msix(...) \ linux_pci_enable_msix(__VA_ARGS__) static inline int pci_enable_msix(struct pci_dev *pdev, struct msix_entry *entries, int nreq) { struct resource_list_entry *rle; int error; int avail; int i; avail = pci_msix_count(pdev->dev.bsddev); if (avail < nreq) { if (avail == 0) return -EINVAL; return avail; } avail = nreq; if ((error = -pci_alloc_msix(pdev->dev.bsddev, &avail)) != 0) return error; /* * Handle case where "pci_alloc_msix()" may allocate less * interrupts than available and return with no error: */ if (avail < nreq) { pci_release_msi(pdev->dev.bsddev); return avail; } rle = linux_pci_get_rle(pdev, SYS_RES_IRQ, 1, false); pdev->dev.irq_start = rle->start; pdev->dev.irq_end = rle->start + avail; for (i = 0; i < nreq; i++) entries[i].vector = pdev->dev.irq_start + i; pdev->msix_enabled = true; return (0); } #define pci_enable_msix_range(...) \ linux_pci_enable_msix_range(__VA_ARGS__) static inline int pci_enable_msix_range(struct pci_dev *dev, struct msix_entry *entries, int minvec, int maxvec) { int nvec = maxvec; int rc; if (maxvec < minvec) return (-ERANGE); do { rc = pci_enable_msix(dev, entries, nvec); if (rc < 0) { return (rc); } else if (rc > 0) { if (rc < minvec) return (-ENOSPC); nvec = rc; } } while (rc); return (nvec); } #define pci_enable_msi(pdev) \ linux_pci_enable_msi(pdev) static inline int pci_enable_msi(struct pci_dev *pdev) { struct resource_list_entry *rle; int error; int avail; avail = pci_msi_count(pdev->dev.bsddev); if (avail < 1) return -EINVAL; avail = 1; /* this function only enable one MSI IRQ */ if ((error = -pci_alloc_msi(pdev->dev.bsddev, &avail)) != 0) return error; rle = linux_pci_get_rle(pdev, SYS_RES_IRQ, 1, false); pdev->dev.irq_start = rle->start; pdev->dev.irq_end = rle->start + avail; pdev->irq = rle->start; pdev->msi_enabled = true; return (0); } static inline int pci_alloc_irq_vectors(struct pci_dev *pdev, int minv, int maxv, unsigned int flags) { int error; if (flags & PCI_IRQ_MSIX) { struct msix_entry *entries; int i; entries = kcalloc(maxv, sizeof(*entries), GFP_KERNEL); if (entries == NULL) { error = -ENOMEM; goto out; } for (i = 0; i < maxv; ++i) entries[i].entry = i; error = pci_enable_msix(pdev, entries, maxv); out: kfree(entries); if (error == 0 && pdev->msix_enabled) return (pdev->dev.irq_end - pdev->dev.irq_start); } if (flags & PCI_IRQ_MSI) { error = pci_enable_msi(pdev); if (error == 0 && pdev->msi_enabled) return (pdev->dev.irq_end - pdev->dev.irq_start); } if (flags & PCI_IRQ_LEGACY) { if (pdev->irq) return (1); } return (-EINVAL); } static inline int pci_channel_offline(struct pci_dev *pdev) { return (pci_read_config(pdev->dev.bsddev, PCIR_VENDOR, 2) == PCIV_INVALID); } static inline int pci_enable_sriov(struct pci_dev *dev, int nr_virtfn) { return -ENODEV; } -static inline void pci_disable_sriov(struct pci_dev *dev) -{ -} -static inline struct resource * -_lkpi_pci_iomap(struct pci_dev *pdev, int bar, int mmio_size __unused) +static inline void pci_disable_sriov(struct pci_dev *dev) { - struct pci_mmio_region *mmio, *p; - int type; - - type = pci_resource_type(pdev, bar); - if (type < 0) { - device_printf(pdev->dev.bsddev, "%s: bar %d type %d\n", - __func__, bar, type); - return (NULL); - } - - /* - * Check for duplicate mappings. - * This can happen if a driver calls pci_request_region() first. - */ - TAILQ_FOREACH_SAFE(mmio, &pdev->mmio, next, p) { - if (mmio->type == type && mmio->rid == PCIR_BAR(bar)) { - return (mmio->res); - } - } - - mmio = malloc(sizeof(*mmio), M_DEVBUF, M_WAITOK | M_ZERO); - mmio->rid = PCIR_BAR(bar); - mmio->type = type; - mmio->res = bus_alloc_resource_any(pdev->dev.bsddev, mmio->type, - &mmio->rid, RF_ACTIVE|RF_SHAREABLE); - if (mmio->res == NULL) { - device_printf(pdev->dev.bsddev, "%s: failed to alloc " - "bar %d type %d rid %d\n", - __func__, bar, type, PCIR_BAR(bar)); - free(mmio, M_DEVBUF); - return (NULL); - } - TAILQ_INSERT_TAIL(&pdev->mmio, mmio, next); - - return (mmio->res); } static inline void * pci_iomap(struct pci_dev *pdev, int mmio_bar, int mmio_size) { struct resource *res; res = _lkpi_pci_iomap(pdev, mmio_bar, mmio_size); if (res == NULL) return (NULL); /* This is a FreeBSD extension so we can use bus_*(). */ if (pdev->want_iomap_res) return (res); return ((void *)rman_get_bushandle(res)); } static inline void pci_iounmap(struct pci_dev *pdev, void *res) { struct pci_mmio_region *mmio, *p; TAILQ_FOREACH_SAFE(mmio, &pdev->mmio, next, p) { if (res != (void *)rman_get_bushandle(mmio->res)) continue; bus_release_resource(pdev->dev.bsddev, mmio->type, mmio->rid, mmio->res); TAILQ_REMOVE(&pdev->mmio, mmio, next); free(mmio, M_DEVBUF); return; } } static inline void lkpi_pci_save_state(struct pci_dev *pdev) { pci_save_state(pdev->dev.bsddev); } static inline void lkpi_pci_restore_state(struct pci_dev *pdev) { pci_restore_state(pdev->dev.bsddev); } #define pci_save_state(dev) lkpi_pci_save_state(dev) #define pci_restore_state(dev) lkpi_pci_restore_state(dev) #define DEFINE_PCI_DEVICE_TABLE(_table) \ const struct pci_device_id _table[] __devinitdata /* XXX This should not be necessary. */ #define pcix_set_mmrbc(d, v) 0 #define pcix_get_max_mmrbc(d) 0 #define pcie_set_readrq(d, v) pci_set_max_read_req((d)->dev.bsddev, (v)) #define PCI_DMA_BIDIRECTIONAL 0 #define PCI_DMA_TODEVICE 1 #define PCI_DMA_FROMDEVICE 2 #define PCI_DMA_NONE 3 #define pci_pool dma_pool #define pci_pool_destroy(...) dma_pool_destroy(__VA_ARGS__) #define pci_pool_alloc(...) dma_pool_alloc(__VA_ARGS__) #define pci_pool_free(...) dma_pool_free(__VA_ARGS__) #define pci_pool_create(_name, _pdev, _size, _align, _alloc) \ dma_pool_create(_name, &(_pdev)->dev, _size, _align, _alloc) #define pci_free_consistent(_hwdev, _size, _vaddr, _dma_handle) \ dma_free_coherent((_hwdev) == NULL ? NULL : &(_hwdev)->dev, \ _size, _vaddr, _dma_handle) #define pci_map_sg(_hwdev, _sg, _nents, _dir) \ dma_map_sg((_hwdev) == NULL ? NULL : &(_hwdev->dev), \ _sg, _nents, (enum dma_data_direction)_dir) #define pci_map_single(_hwdev, _ptr, _size, _dir) \ dma_map_single((_hwdev) == NULL ? NULL : &(_hwdev->dev), \ (_ptr), (_size), (enum dma_data_direction)_dir) #define pci_unmap_single(_hwdev, _addr, _size, _dir) \ dma_unmap_single((_hwdev) == NULL ? NULL : &(_hwdev)->dev, \ _addr, _size, (enum dma_data_direction)_dir) #define pci_unmap_sg(_hwdev, _sg, _nents, _dir) \ dma_unmap_sg((_hwdev) == NULL ? NULL : &(_hwdev)->dev, \ _sg, _nents, (enum dma_data_direction)_dir) #define pci_map_page(_hwdev, _page, _offset, _size, _dir) \ dma_map_page((_hwdev) == NULL ? NULL : &(_hwdev)->dev, _page,\ _offset, _size, (enum dma_data_direction)_dir) #define pci_unmap_page(_hwdev, _dma_address, _size, _dir) \ dma_unmap_page((_hwdev) == NULL ? NULL : &(_hwdev)->dev, \ _dma_address, _size, (enum dma_data_direction)_dir) #define pci_set_dma_mask(_pdev, mask) dma_set_mask(&(_pdev)->dev, (mask)) #define pci_dma_mapping_error(_pdev, _dma_addr) \ dma_mapping_error(&(_pdev)->dev, _dma_addr) #define pci_set_consistent_dma_mask(_pdev, _mask) \ dma_set_coherent_mask(&(_pdev)->dev, (_mask)) #define DECLARE_PCI_UNMAP_ADDR(x) DEFINE_DMA_UNMAP_ADDR(x); #define DECLARE_PCI_UNMAP_LEN(x) DEFINE_DMA_UNMAP_LEN(x); #define pci_unmap_addr dma_unmap_addr #define pci_unmap_addr_set dma_unmap_addr_set #define pci_unmap_len dma_unmap_len #define pci_unmap_len_set dma_unmap_len_set typedef unsigned int __bitwise pci_channel_state_t; typedef unsigned int __bitwise pci_ers_result_t; enum pci_channel_state { pci_channel_io_normal = 1, pci_channel_io_frozen = 2, pci_channel_io_perm_failure = 3, }; enum pci_ers_result { PCI_ERS_RESULT_NONE = 1, PCI_ERS_RESULT_CAN_RECOVER = 2, PCI_ERS_RESULT_NEED_RESET = 3, PCI_ERS_RESULT_DISCONNECT = 4, PCI_ERS_RESULT_RECOVERED = 5, }; /* PCI bus error event callbacks */ struct pci_error_handlers { pci_ers_result_t (*error_detected)(struct pci_dev *dev, enum pci_channel_state error); pci_ers_result_t (*mmio_enabled)(struct pci_dev *dev); pci_ers_result_t (*link_reset)(struct pci_dev *dev); pci_ers_result_t (*slot_reset)(struct pci_dev *dev); void (*resume)(struct pci_dev *dev); }; /* FreeBSD does not support SRIOV - yet */ static inline struct pci_dev *pci_physfn(struct pci_dev *dev) { return dev; } static inline bool pci_is_pcie(struct pci_dev *dev) { return !!pci_pcie_cap(dev); } static inline u16 pcie_flags_reg(struct pci_dev *dev) { int pos; u16 reg16; pos = pci_find_capability(dev, PCI_CAP_ID_EXP); if (!pos) return 0; pci_read_config_word(dev, pos + PCI_EXP_FLAGS, ®16); return reg16; } static inline int pci_pcie_type(struct pci_dev *dev) { return (pcie_flags_reg(dev) & PCI_EXP_FLAGS_TYPE) >> 4; } static inline int pcie_cap_version(struct pci_dev *dev) { return pcie_flags_reg(dev) & PCI_EXP_FLAGS_VERS; } static inline bool pcie_cap_has_lnkctl(struct pci_dev *dev) { int type = pci_pcie_type(dev); return pcie_cap_version(dev) > 1 || type == PCI_EXP_TYPE_ROOT_PORT || type == PCI_EXP_TYPE_ENDPOINT || type == PCI_EXP_TYPE_LEG_END; } static inline bool pcie_cap_has_devctl(const struct pci_dev *dev) { return true; } static inline bool pcie_cap_has_sltctl(struct pci_dev *dev) { int type = pci_pcie_type(dev); return pcie_cap_version(dev) > 1 || type == PCI_EXP_TYPE_ROOT_PORT || (type == PCI_EXP_TYPE_DOWNSTREAM && pcie_flags_reg(dev) & PCI_EXP_FLAGS_SLOT); } static inline bool pcie_cap_has_rtctl(struct pci_dev *dev) { int type = pci_pcie_type(dev); return pcie_cap_version(dev) > 1 || type == PCI_EXP_TYPE_ROOT_PORT || type == PCI_EXP_TYPE_RC_EC; } static bool pcie_capability_reg_implemented(struct pci_dev *dev, int pos) { if (!pci_is_pcie(dev)) return false; switch (pos) { case PCI_EXP_FLAGS_TYPE: return true; case PCI_EXP_DEVCAP: case PCI_EXP_DEVCTL: case PCI_EXP_DEVSTA: return pcie_cap_has_devctl(dev); case PCI_EXP_LNKCAP: case PCI_EXP_LNKCTL: case PCI_EXP_LNKSTA: return pcie_cap_has_lnkctl(dev); case PCI_EXP_SLTCAP: case PCI_EXP_SLTCTL: case PCI_EXP_SLTSTA: return pcie_cap_has_sltctl(dev); case PCI_EXP_RTCTL: case PCI_EXP_RTCAP: case PCI_EXP_RTSTA: return pcie_cap_has_rtctl(dev); case PCI_EXP_DEVCAP2: case PCI_EXP_DEVCTL2: case PCI_EXP_LNKCAP2: case PCI_EXP_LNKCTL2: case PCI_EXP_LNKSTA2: return pcie_cap_version(dev) > 1; default: return false; } } static inline int pcie_capability_read_dword(struct pci_dev *dev, int pos, u32 *dst) { if (pos & 3) return -EINVAL; if (!pcie_capability_reg_implemented(dev, pos)) return -EINVAL; return pci_read_config_dword(dev, pci_pcie_cap(dev) + pos, dst); } static inline int pcie_capability_read_word(struct pci_dev *dev, int pos, u16 *dst) { if (pos & 3) return -EINVAL; if (!pcie_capability_reg_implemented(dev, pos)) return -EINVAL; return pci_read_config_word(dev, pci_pcie_cap(dev) + pos, dst); } static inline int pcie_capability_write_word(struct pci_dev *dev, int pos, u16 val) { if (pos & 1) return -EINVAL; if (!pcie_capability_reg_implemented(dev, pos)) return 0; return pci_write_config_word(dev, pci_pcie_cap(dev) + pos, val); } static inline int pcie_get_minimum_link(struct pci_dev *dev, enum pci_bus_speed *speed, enum pcie_link_width *width) { *speed = PCI_SPEED_UNKNOWN; *width = PCIE_LNK_WIDTH_UNKNOWN; return (0); } static inline int pci_num_vf(struct pci_dev *dev) { return (0); } static inline enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev) { device_t root; uint32_t lnkcap, lnkcap2; int error, pos; root = device_get_parent(dev->dev.bsddev); if (root == NULL) return (PCI_SPEED_UNKNOWN); root = device_get_parent(root); if (root == NULL) return (PCI_SPEED_UNKNOWN); root = device_get_parent(root); if (root == NULL) return (PCI_SPEED_UNKNOWN); if (pci_get_vendor(root) == PCI_VENDOR_ID_VIA || pci_get_vendor(root) == PCI_VENDOR_ID_SERVERWORKS) return (PCI_SPEED_UNKNOWN); if ((error = pci_find_cap(root, PCIY_EXPRESS, &pos)) != 0) return (PCI_SPEED_UNKNOWN); lnkcap2 = pci_read_config(root, pos + PCIER_LINK_CAP2, 4); if (lnkcap2) { /* PCIe r3.0-compliant */ if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_2_5GB) return (PCIE_SPEED_2_5GT); if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_5_0GB) return (PCIE_SPEED_5_0GT); if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_8_0GB) return (PCIE_SPEED_8_0GT); if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_16_0GB) return (PCIE_SPEED_16_0GT); } else { /* pre-r3.0 */ lnkcap = pci_read_config(root, pos + PCIER_LINK_CAP, 4); if (lnkcap & PCI_EXP_LNKCAP_SLS_2_5GB) return (PCIE_SPEED_2_5GT); if (lnkcap & PCI_EXP_LNKCAP_SLS_5_0GB) return (PCIE_SPEED_5_0GT); if (lnkcap & PCI_EXP_LNKCAP_SLS_8_0GB) return (PCIE_SPEED_8_0GT); if (lnkcap & PCI_EXP_LNKCAP_SLS_16_0GB) return (PCIE_SPEED_16_0GT); } return (PCI_SPEED_UNKNOWN); } static inline enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev) { uint32_t lnkcap; pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap); if (lnkcap) return ((lnkcap & PCI_EXP_LNKCAP_MLW) >> 4); return (PCIE_LNK_WIDTH_UNKNOWN); } static inline int pcie_get_mps(struct pci_dev *dev) { return (pci_get_max_payload(dev->dev.bsddev)); } static inline uint32_t PCIE_SPEED2MBS_ENC(enum pci_bus_speed spd) { switch(spd) { case PCIE_SPEED_16_0GT: return (16000 * 128 / 130); case PCIE_SPEED_8_0GT: return (8000 * 128 / 130); case PCIE_SPEED_5_0GT: return (5000 * 8 / 10); case PCIE_SPEED_2_5GT: return (2500 * 8 / 10); default: return (0); } } static inline uint32_t pcie_bandwidth_available(struct pci_dev *pdev, struct pci_dev **limiting, enum pci_bus_speed *speed, enum pcie_link_width *width) { enum pci_bus_speed nspeed = pcie_get_speed_cap(pdev); enum pcie_link_width nwidth = pcie_get_width_cap(pdev); if (speed) *speed = nspeed; if (width) *width = nwidth; return (nwidth * PCIE_SPEED2MBS_ENC(nspeed)); } static inline struct pci_dev * pcie_find_root_port(struct pci_dev *pdev) { device_t root; if (pdev->root != NULL) return (pdev->root); root = pci_find_pcie_root_port(pdev->dev.bsddev); if (root == NULL) return (NULL); pdev->root = lkpinew_pci_dev(root); return (pdev->root); } /* This is needed when people rip out the device "HotPlug". */ static inline void pci_lock_rescan_remove(void) { } static inline void pci_unlock_rescan_remove(void) { } static __inline void pci_stop_and_remove_bus_device(struct pci_dev *pdev) { } /* * The following functions can be used to attach/detach the LinuxKPI's * PCI device runtime. The pci_driver and pci_device_id pointer is * allowed to be NULL. Other pointers must be all valid. * The pci_dev structure should be zero-initialized before passed * to the linux_pci_attach_device function. */ extern int linux_pci_attach_device(device_t, struct pci_driver *, const struct pci_device_id *, struct pci_dev *); extern int linux_pci_detach_device(struct pci_dev *); static inline int pci_dev_present(const struct pci_device_id *cur) { while (cur != NULL && (cur->vendor || cur->device)) { if (pci_find_device(cur->vendor, cur->device) != NULL) { return (1); } cur++; } return (0); } struct pci_dev *lkpi_pci_get_domain_bus_and_slot(int domain, unsigned int bus, unsigned int devfn); #define pci_get_domain_bus_and_slot(domain, bus, devfn) \ lkpi_pci_get_domain_bus_and_slot(domain, bus, devfn) static inline int pci_domain_nr(struct pci_bus *pbus) { return (pbus->domain); } static inline int pci_bus_read_config(struct pci_bus *bus, unsigned int devfn, int pos, uint32_t *val, int len) { *val = pci_read_config(bus->self->dev.bsddev, pos, len); return (0); } static inline int pci_bus_read_config_word(struct pci_bus *bus, unsigned int devfn, int pos, u16 *val) { uint32_t tmp; int ret; ret = pci_bus_read_config(bus, devfn, pos, &tmp, 2); *val = (u16)tmp; return (ret); } static inline int pci_bus_read_config_byte(struct pci_bus *bus, unsigned int devfn, int pos, u8 *val) { uint32_t tmp; int ret; ret = pci_bus_read_config(bus, devfn, pos, &tmp, 1); *val = (u8)tmp; return (ret); } static inline int pci_bus_write_config(struct pci_bus *bus, unsigned int devfn, int pos, uint32_t val, int size) { pci_write_config(bus->self->dev.bsddev, pos, val, size); return (0); } static inline int pci_bus_write_config_byte(struct pci_bus *bus, unsigned int devfn, int pos, uint8_t val) { return (pci_bus_write_config(bus, devfn, pos, val, 1)); } static inline int pci_bus_write_config_word(struct pci_bus *bus, unsigned int devfn, int pos, uint16_t val) { return (pci_bus_write_config(bus, devfn, pos, val, 2)); } struct pci_dev *lkpi_pci_get_class(unsigned int class, struct pci_dev *from); #define pci_get_class(class, from) lkpi_pci_get_class(class, from) /* -------------------------------------------------------------------------- */ static inline int pcim_enable_device(struct pci_dev *pdev) { struct pci_devres *dr; int error; /* Here we cannot run through the pdev->managed check. */ dr = lkpi_pci_devres_get_alloc(pdev); if (dr == NULL) return (-ENOMEM); /* If resources were enabled before do not do it again. */ if (dr->enable_io) return (0); error = pci_enable_device(pdev); if (error == 0) dr->enable_io = true; /* This device is not managed. */ pdev->managed = true; return (error); } static inline struct pcim_iomap_devres * lkpi_pcim_iomap_devres_find(struct pci_dev *pdev) { struct pcim_iomap_devres *dr; dr = lkpi_devres_find(&pdev->dev, lkpi_pcim_iomap_table_release, NULL, NULL); if (dr == NULL) { dr = lkpi_devres_alloc(lkpi_pcim_iomap_table_release, sizeof(*dr), GFP_KERNEL | __GFP_ZERO); if (dr != NULL) lkpi_devres_add(&pdev->dev, dr); } if (dr == NULL) device_printf(pdev->dev.bsddev, "%s: NULL\n", __func__); return (dr); } static inline void __iomem ** pcim_iomap_table(struct pci_dev *pdev) { struct pcim_iomap_devres *dr; dr = lkpi_pcim_iomap_devres_find(pdev); if (dr == NULL) return (NULL); /* * If the driver has manually set a flag to be able to request the * resource to use bus_read/write_, return the shadow table. */ if (pdev->want_iomap_res) return ((void **)dr->res_table); /* This is the Linux default. */ return (dr->mmio_table); } static inline int pcim_iomap_regions_request_all(struct pci_dev *pdev, uint32_t mask, char *name) { struct pcim_iomap_devres *dr; void *res; uint32_t mappings, requests, req_mask; int bar, error; dr = lkpi_pcim_iomap_devres_find(pdev); if (dr == NULL) return (-ENOMEM); /* Request all the BARs ("regions") we do not iomap. */ req_mask = ((1 << (PCIR_MAX_BAR_0 + 1)) - 1) & ~mask; for (bar = requests = 0; requests != req_mask; bar++) { if ((req_mask & (1 << bar)) == 0) continue; error = pci_request_region(pdev, bar, name); if (error != 0 && error != -ENODEV) goto err; requests |= (1 << bar); } /* Now iomap all the requested (by "mask") ones. */ for (bar = mappings = 0; mappings != mask; bar++) { if ((mask & (1 << bar)) == 0) continue; /* Request double is not allowed. */ if (dr->mmio_table[bar] != NULL) { device_printf(pdev->dev.bsddev, "%s: bar %d %p\n", __func__, bar, dr->mmio_table[bar]); goto err; } res = _lkpi_pci_iomap(pdev, bar, 0); if (res == NULL) goto err; dr->mmio_table[bar] = (void *)rman_get_bushandle(res); dr->res_table[bar] = res; mappings |= (1 << bar); } return (0); err: for (bar = PCIR_MAX_BAR_0; bar >= 0; bar--) { if ((mappings & (1 << bar)) != 0) { res = dr->mmio_table[bar]; if (res == NULL) continue; pci_iounmap(pdev, res); } else if ((requests & (1 << bar)) != 0) { pci_release_region(pdev, bar); } } return (-EINVAL); } /* This is a FreeBSD extension so we can use bus_*(). */ static inline void linuxkpi_pcim_want_to_use_bus_functions(struct pci_dev *pdev) { pdev->want_iomap_res = true; } #endif /* _LINUXKPI_LINUX_PCI_H_ */ diff --git a/sys/compat/linuxkpi/common/src/linux_pci.c b/sys/compat/linuxkpi/common/src/linux_pci.c index 5c94f4691a1d..43a8cf96d0e3 100644 --- a/sys/compat/linuxkpi/common/src/linux_pci.c +++ b/sys/compat/linuxkpi/common/src/linux_pci.c @@ -1,1364 +1,1448 @@ /*- * Copyright (c) 2015-2016 Mellanox Technologies, Ltd. * All rights reserved. * Copyright (c) 2020-2022 The FreeBSD Foundation * * Portions of this software were developed by Björn Zeeb * under sponsorship from the FreeBSD Foundation. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice unmodified, this list of conditions, and the following * disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "backlight_if.h" #include "pcib_if.h" /* Undef the linux function macro defined in linux/pci.h */ #undef pci_get_class extern int linuxkpi_debug; SYSCTL_DECL(_compat_linuxkpi); static counter_u64_t lkpi_pci_nseg1_fail; SYSCTL_COUNTER_U64(_compat_linuxkpi, OID_AUTO, lkpi_pci_nseg1_fail, CTLFLAG_RD, &lkpi_pci_nseg1_fail, "Count of busdma mapping failures of single-segment"); static device_probe_t linux_pci_probe; static device_attach_t linux_pci_attach; static device_detach_t linux_pci_detach; static device_suspend_t linux_pci_suspend; static device_resume_t linux_pci_resume; static device_shutdown_t linux_pci_shutdown; static pci_iov_init_t linux_pci_iov_init; static pci_iov_uninit_t linux_pci_iov_uninit; static pci_iov_add_vf_t linux_pci_iov_add_vf; static int linux_backlight_get_status(device_t dev, struct backlight_props *props); static int linux_backlight_update_status(device_t dev, struct backlight_props *props); static int linux_backlight_get_info(device_t dev, struct backlight_info *info); static device_method_t pci_methods[] = { DEVMETHOD(device_probe, linux_pci_probe), DEVMETHOD(device_attach, linux_pci_attach), DEVMETHOD(device_detach, linux_pci_detach), DEVMETHOD(device_suspend, linux_pci_suspend), DEVMETHOD(device_resume, linux_pci_resume), DEVMETHOD(device_shutdown, linux_pci_shutdown), DEVMETHOD(pci_iov_init, linux_pci_iov_init), DEVMETHOD(pci_iov_uninit, linux_pci_iov_uninit), DEVMETHOD(pci_iov_add_vf, linux_pci_iov_add_vf), /* backlight interface */ DEVMETHOD(backlight_update_status, linux_backlight_update_status), DEVMETHOD(backlight_get_status, linux_backlight_get_status), DEVMETHOD(backlight_get_info, linux_backlight_get_info), DEVMETHOD_END }; struct linux_dma_priv { uint64_t dma_mask; bus_dma_tag_t dmat; uint64_t dma_coherent_mask; bus_dma_tag_t dmat_coherent; struct mtx lock; struct pctrie ptree; }; #define DMA_PRIV_LOCK(priv) mtx_lock(&(priv)->lock) #define DMA_PRIV_UNLOCK(priv) mtx_unlock(&(priv)->lock) static int linux_pdev_dma_uninit(struct pci_dev *pdev) { struct linux_dma_priv *priv; priv = pdev->dev.dma_priv; if (priv->dmat) bus_dma_tag_destroy(priv->dmat); if (priv->dmat_coherent) bus_dma_tag_destroy(priv->dmat_coherent); mtx_destroy(&priv->lock); pdev->dev.dma_priv = NULL; free(priv, M_DEVBUF); return (0); } static int linux_pdev_dma_init(struct pci_dev *pdev) { struct linux_dma_priv *priv; int error; priv = malloc(sizeof(*priv), M_DEVBUF, M_WAITOK | M_ZERO); mtx_init(&priv->lock, "lkpi-priv-dma", NULL, MTX_DEF); pctrie_init(&priv->ptree); pdev->dev.dma_priv = priv; /* Create a default DMA tags. */ error = linux_dma_tag_init(&pdev->dev, DMA_BIT_MASK(64)); if (error != 0) goto err; /* Coherent is lower 32bit only by default in Linux. */ error = linux_dma_tag_init_coherent(&pdev->dev, DMA_BIT_MASK(32)); if (error != 0) goto err; return (error); err: linux_pdev_dma_uninit(pdev); return (error); } int linux_dma_tag_init(struct device *dev, u64 dma_mask) { struct linux_dma_priv *priv; int error; priv = dev->dma_priv; if (priv->dmat) { if (priv->dma_mask == dma_mask) return (0); bus_dma_tag_destroy(priv->dmat); } priv->dma_mask = dma_mask; error = bus_dma_tag_create(bus_get_dma_tag(dev->bsddev), 1, 0, /* alignment, boundary */ dma_mask, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filtfunc, filtfuncarg */ BUS_SPACE_MAXSIZE, /* maxsize */ 1, /* nsegments */ BUS_SPACE_MAXSIZE, /* maxsegsz */ 0, /* flags */ NULL, NULL, /* lockfunc, lockfuncarg */ &priv->dmat); return (-error); } int linux_dma_tag_init_coherent(struct device *dev, u64 dma_mask) { struct linux_dma_priv *priv; int error; priv = dev->dma_priv; if (priv->dmat_coherent) { if (priv->dma_coherent_mask == dma_mask) return (0); bus_dma_tag_destroy(priv->dmat_coherent); } priv->dma_coherent_mask = dma_mask; error = bus_dma_tag_create(bus_get_dma_tag(dev->bsddev), 1, 0, /* alignment, boundary */ dma_mask, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filtfunc, filtfuncarg */ BUS_SPACE_MAXSIZE, /* maxsize */ 1, /* nsegments */ BUS_SPACE_MAXSIZE, /* maxsegsz */ 0, /* flags */ NULL, NULL, /* lockfunc, lockfuncarg */ &priv->dmat_coherent); return (-error); } static struct pci_driver * linux_pci_find(device_t dev, const struct pci_device_id **idp) { const struct pci_device_id *id; struct pci_driver *pdrv; uint16_t vendor; uint16_t device; uint16_t subvendor; uint16_t subdevice; vendor = pci_get_vendor(dev); device = pci_get_device(dev); subvendor = pci_get_subvendor(dev); subdevice = pci_get_subdevice(dev); spin_lock(&pci_lock); list_for_each_entry(pdrv, &pci_drivers, node) { for (id = pdrv->id_table; id->vendor != 0; id++) { if (vendor == id->vendor && (PCI_ANY_ID == id->device || device == id->device) && (PCI_ANY_ID == id->subvendor || subvendor == id->subvendor) && (PCI_ANY_ID == id->subdevice || subdevice == id->subdevice)) { *idp = id; spin_unlock(&pci_lock); return (pdrv); } } } spin_unlock(&pci_lock); return (NULL); } static void lkpi_pci_dev_release(struct device *dev) { lkpi_devres_release_free_list(dev); spin_lock_destroy(&dev->devres_lock); } static void lkpifill_pci_dev(device_t dev, struct pci_dev *pdev) { pdev->devfn = PCI_DEVFN(pci_get_slot(dev), pci_get_function(dev)); pdev->vendor = pci_get_vendor(dev); pdev->device = pci_get_device(dev); pdev->subsystem_vendor = pci_get_subvendor(dev); pdev->subsystem_device = pci_get_subdevice(dev); pdev->class = pci_get_class(dev); pdev->revision = pci_get_revid(dev); pdev->bus = malloc(sizeof(*pdev->bus), M_DEVBUF, M_WAITOK | M_ZERO); /* * This should be the upstream bridge; pci_upstream_bridge() * handles that case on demand as otherwise we'll shadow the * entire PCI hierarchy. */ pdev->bus->self = pdev; pdev->bus->number = pci_get_bus(dev); pdev->bus->domain = pci_get_domain(dev); pdev->dev.bsddev = dev; pdev->dev.parent = &linux_root_device; pdev->dev.release = lkpi_pci_dev_release; INIT_LIST_HEAD(&pdev->dev.irqents); kobject_init(&pdev->dev.kobj, &linux_dev_ktype); kobject_set_name(&pdev->dev.kobj, device_get_nameunit(dev)); kobject_add(&pdev->dev.kobj, &linux_root_device.kobj, kobject_name(&pdev->dev.kobj)); spin_lock_init(&pdev->dev.devres_lock); INIT_LIST_HEAD(&pdev->dev.devres_head); } static void lkpinew_pci_dev_release(struct device *dev) { struct pci_dev *pdev; pdev = to_pci_dev(dev); if (pdev->root != NULL) pci_dev_put(pdev->root); if (pdev->bus->self != pdev) pci_dev_put(pdev->bus->self); free(pdev->bus, M_DEVBUF); free(pdev, M_DEVBUF); } struct pci_dev * lkpinew_pci_dev(device_t dev) { struct pci_dev *pdev; pdev = malloc(sizeof(*pdev), M_DEVBUF, M_WAITOK|M_ZERO); lkpifill_pci_dev(dev, pdev); pdev->dev.release = lkpinew_pci_dev_release; return (pdev); } struct pci_dev * lkpi_pci_get_class(unsigned int class, struct pci_dev *from) { device_t dev; device_t devfrom = NULL; struct pci_dev *pdev; if (from != NULL) devfrom = from->dev.bsddev; dev = pci_find_class_from(class >> 16, (class >> 8) & 0xFF, devfrom); if (dev == NULL) return (NULL); pdev = lkpinew_pci_dev(dev); return (pdev); } struct pci_dev * lkpi_pci_get_domain_bus_and_slot(int domain, unsigned int bus, unsigned int devfn) { device_t dev; struct pci_dev *pdev; dev = pci_find_dbsf(domain, bus, PCI_SLOT(devfn), PCI_FUNC(devfn)); if (dev == NULL) return (NULL); pdev = lkpinew_pci_dev(dev); return (pdev); } static int linux_pci_probe(device_t dev) { const struct pci_device_id *id; struct pci_driver *pdrv; if ((pdrv = linux_pci_find(dev, &id)) == NULL) return (ENXIO); if (device_get_driver(dev) != &pdrv->bsddriver) return (ENXIO); device_set_desc(dev, pdrv->name); /* Assume BSS initialized (should never return BUS_PROBE_SPECIFIC). */ if (pdrv->bsd_probe_return == 0) return (BUS_PROBE_DEFAULT); else return (pdrv->bsd_probe_return); } static int linux_pci_attach(device_t dev) { const struct pci_device_id *id; struct pci_driver *pdrv; struct pci_dev *pdev; pdrv = linux_pci_find(dev, &id); pdev = device_get_softc(dev); MPASS(pdrv != NULL); MPASS(pdev != NULL); return (linux_pci_attach_device(dev, pdrv, id, pdev)); } int linux_pci_attach_device(device_t dev, struct pci_driver *pdrv, const struct pci_device_id *id, struct pci_dev *pdev) { struct resource_list_entry *rle; device_t parent; uintptr_t rid; int error; bool isdrm; linux_set_current(curthread); parent = device_get_parent(dev); isdrm = pdrv != NULL && pdrv->isdrm; if (isdrm) { struct pci_devinfo *dinfo; dinfo = device_get_ivars(parent); device_set_ivars(dev, dinfo); } lkpifill_pci_dev(dev, pdev); if (isdrm) PCI_GET_ID(device_get_parent(parent), parent, PCI_ID_RID, &rid); else PCI_GET_ID(parent, dev, PCI_ID_RID, &rid); pdev->devfn = rid; pdev->pdrv = pdrv; rle = linux_pci_get_rle(pdev, SYS_RES_IRQ, 0, false); if (rle != NULL) pdev->dev.irq = rle->start; else pdev->dev.irq = LINUX_IRQ_INVALID; pdev->irq = pdev->dev.irq; error = linux_pdev_dma_init(pdev); if (error) goto out_dma_init; TAILQ_INIT(&pdev->mmio); spin_lock(&pci_lock); list_add(&pdev->links, &pci_devices); spin_unlock(&pci_lock); if (pdrv != NULL) { error = pdrv->probe(pdev, id); if (error) goto out_probe; } return (0); out_probe: free(pdev->bus, M_DEVBUF); linux_pdev_dma_uninit(pdev); out_dma_init: spin_lock(&pci_lock); list_del(&pdev->links); spin_unlock(&pci_lock); put_device(&pdev->dev); return (-error); } static int linux_pci_detach(device_t dev) { struct pci_dev *pdev; pdev = device_get_softc(dev); MPASS(pdev != NULL); device_set_desc(dev, NULL); return (linux_pci_detach_device(pdev)); } int linux_pci_detach_device(struct pci_dev *pdev) { linux_set_current(curthread); if (pdev->pdrv != NULL) pdev->pdrv->remove(pdev); if (pdev->root != NULL) pci_dev_put(pdev->root); free(pdev->bus, M_DEVBUF); linux_pdev_dma_uninit(pdev); spin_lock(&pci_lock); list_del(&pdev->links); spin_unlock(&pci_lock); put_device(&pdev->dev); return (0); } static int lkpi_pci_disable_dev(struct device *dev) { (void) pci_disable_io(dev->bsddev, SYS_RES_MEMORY); (void) pci_disable_io(dev->bsddev, SYS_RES_IOPORT); return (0); } struct pci_devres * lkpi_pci_devres_get_alloc(struct pci_dev *pdev) { struct pci_devres *dr; dr = lkpi_devres_find(&pdev->dev, lkpi_pci_devres_release, NULL, NULL); if (dr == NULL) { dr = lkpi_devres_alloc(lkpi_pci_devres_release, sizeof(*dr), GFP_KERNEL | __GFP_ZERO); if (dr != NULL) lkpi_devres_add(&pdev->dev, dr); } return (dr); } void lkpi_pci_devres_release(struct device *dev, void *p) { struct pci_devres *dr; struct pci_dev *pdev; int bar; pdev = to_pci_dev(dev); dr = p; if (pdev->msix_enabled) lkpi_pci_disable_msix(pdev); if (pdev->msi_enabled) lkpi_pci_disable_msi(pdev); if (dr->enable_io && lkpi_pci_disable_dev(dev) == 0) dr->enable_io = false; if (dr->region_mask == 0) return; for (bar = PCIR_MAX_BAR_0; bar >= 0; bar--) { if ((dr->region_mask & (1 << bar)) == 0) continue; pci_release_region(pdev, bar); } } void lkpi_pcim_iomap_table_release(struct device *dev, void *p) { struct pcim_iomap_devres *dr; struct pci_dev *pdev; int bar; dr = p; pdev = to_pci_dev(dev); for (bar = PCIR_MAX_BAR_0; bar >= 0; bar--) { if (dr->mmio_table[bar] == NULL) continue; pci_iounmap(pdev, dr->mmio_table[bar]); } } static int linux_pci_suspend(device_t dev) { const struct dev_pm_ops *pmops; struct pm_message pm = { }; struct pci_dev *pdev; int error; error = 0; linux_set_current(curthread); pdev = device_get_softc(dev); pmops = pdev->pdrv->driver.pm; if (pdev->pdrv->suspend != NULL) error = -pdev->pdrv->suspend(pdev, pm); else if (pmops != NULL && pmops->suspend != NULL) { error = -pmops->suspend(&pdev->dev); if (error == 0 && pmops->suspend_late != NULL) error = -pmops->suspend_late(&pdev->dev); } return (error); } static int linux_pci_resume(device_t dev) { const struct dev_pm_ops *pmops; struct pci_dev *pdev; int error; error = 0; linux_set_current(curthread); pdev = device_get_softc(dev); pmops = pdev->pdrv->driver.pm; if (pdev->pdrv->resume != NULL) error = -pdev->pdrv->resume(pdev); else if (pmops != NULL && pmops->resume != NULL) { if (pmops->resume_early != NULL) error = -pmops->resume_early(&pdev->dev); if (error == 0 && pmops->resume != NULL) error = -pmops->resume(&pdev->dev); } return (error); } static int linux_pci_shutdown(device_t dev) { struct pci_dev *pdev; linux_set_current(curthread); pdev = device_get_softc(dev); if (pdev->pdrv->shutdown != NULL) pdev->pdrv->shutdown(pdev); return (0); } static int linux_pci_iov_init(device_t dev, uint16_t num_vfs, const nvlist_t *pf_config) { struct pci_dev *pdev; int error; linux_set_current(curthread); pdev = device_get_softc(dev); if (pdev->pdrv->bsd_iov_init != NULL) error = pdev->pdrv->bsd_iov_init(dev, num_vfs, pf_config); else error = EINVAL; return (error); } static void linux_pci_iov_uninit(device_t dev) { struct pci_dev *pdev; linux_set_current(curthread); pdev = device_get_softc(dev); if (pdev->pdrv->bsd_iov_uninit != NULL) pdev->pdrv->bsd_iov_uninit(dev); } static int linux_pci_iov_add_vf(device_t dev, uint16_t vfnum, const nvlist_t *vf_config) { struct pci_dev *pdev; int error; linux_set_current(curthread); pdev = device_get_softc(dev); if (pdev->pdrv->bsd_iov_add_vf != NULL) error = pdev->pdrv->bsd_iov_add_vf(dev, vfnum, vf_config); else error = EINVAL; return (error); } static int _linux_pci_register_driver(struct pci_driver *pdrv, devclass_t dc) { int error; linux_set_current(curthread); spin_lock(&pci_lock); list_add(&pdrv->node, &pci_drivers); spin_unlock(&pci_lock); if (pdrv->bsddriver.name == NULL) pdrv->bsddriver.name = pdrv->name; pdrv->bsddriver.methods = pci_methods; pdrv->bsddriver.size = sizeof(struct pci_dev); bus_topo_lock(); error = devclass_add_driver(dc, &pdrv->bsddriver, BUS_PASS_DEFAULT, &pdrv->bsdclass); bus_topo_unlock(); return (-error); } int linux_pci_register_driver(struct pci_driver *pdrv) { devclass_t dc; dc = devclass_find("pci"); if (dc == NULL) return (-ENXIO); pdrv->isdrm = false; return (_linux_pci_register_driver(pdrv, dc)); } struct resource_list_entry * linux_pci_reserve_bar(struct pci_dev *pdev, struct resource_list *rl, int type, int rid) { device_t dev; struct resource *res; KASSERT(type == SYS_RES_IOPORT || type == SYS_RES_MEMORY, ("trying to reserve non-BAR type %d", type)); dev = pdev->pdrv != NULL && pdev->pdrv->isdrm ? device_get_parent(pdev->dev.bsddev) : pdev->dev.bsddev; res = pci_reserve_map(device_get_parent(dev), dev, type, &rid, 0, ~0, 1, 1, 0); if (res == NULL) return (NULL); return (resource_list_find(rl, type, rid)); } unsigned long pci_resource_start(struct pci_dev *pdev, int bar) { struct resource_list_entry *rle; rman_res_t newstart; device_t dev; int error; if ((rle = linux_pci_get_bar(pdev, bar, true)) == NULL) return (0); dev = pdev->pdrv != NULL && pdev->pdrv->isdrm ? device_get_parent(pdev->dev.bsddev) : pdev->dev.bsddev; error = bus_translate_resource(dev, rle->type, rle->start, &newstart); if (error != 0) { device_printf(pdev->dev.bsddev, "translate of %#jx failed: %d\n", (uintmax_t)rle->start, error); return (0); } return (newstart); } unsigned long pci_resource_len(struct pci_dev *pdev, int bar) { struct resource_list_entry *rle; if ((rle = linux_pci_get_bar(pdev, bar, true)) == NULL) return (0); return (rle->count); } +int +pci_request_region(struct pci_dev *pdev, int bar, const char *res_name) +{ + struct resource *res; + struct pci_devres *dr; + struct pci_mmio_region *mmio; + int rid; + int type; + + type = pci_resource_type(pdev, bar); + if (type < 0) + return (-ENODEV); + rid = PCIR_BAR(bar); + res = bus_alloc_resource_any(pdev->dev.bsddev, type, &rid, + RF_ACTIVE|RF_SHAREABLE); + if (res == NULL) { + device_printf(pdev->dev.bsddev, "%s: failed to alloc " + "bar %d type %d rid %d\n", + __func__, bar, type, PCIR_BAR(bar)); + return (-ENODEV); + } + + /* + * It seems there is an implicit devres tracking on these if the device + * is managed; otherwise the resources are not automatiaclly freed on + * FreeBSD/LinuxKPI tough they should be/are expected to be by Linux + * drivers. + */ + dr = lkpi_pci_devres_find(pdev); + if (dr != NULL) { + dr->region_mask |= (1 << bar); + dr->region_table[bar] = res; + } + + /* Even if the device is not managed we need to track it for iomap. */ + mmio = malloc(sizeof(*mmio), M_DEVBUF, M_WAITOK | M_ZERO); + mmio->rid = PCIR_BAR(bar); + mmio->type = type; + mmio->res = res; + TAILQ_INSERT_TAIL(&pdev->mmio, mmio, next); + + return (0); +} + +struct resource * +_lkpi_pci_iomap(struct pci_dev *pdev, int bar, int mmio_size __unused) +{ + struct pci_mmio_region *mmio, *p; + int type; + + type = pci_resource_type(pdev, bar); + if (type < 0) { + device_printf(pdev->dev.bsddev, "%s: bar %d type %d\n", + __func__, bar, type); + return (NULL); + } + + /* + * Check for duplicate mappings. + * This can happen if a driver calls pci_request_region() first. + */ + TAILQ_FOREACH_SAFE(mmio, &pdev->mmio, next, p) { + if (mmio->type == type && mmio->rid == PCIR_BAR(bar)) { + return (mmio->res); + } + } + + mmio = malloc(sizeof(*mmio), M_DEVBUF, M_WAITOK | M_ZERO); + mmio->rid = PCIR_BAR(bar); + mmio->type = type; + mmio->res = bus_alloc_resource_any(pdev->dev.bsddev, mmio->type, + &mmio->rid, RF_ACTIVE|RF_SHAREABLE); + if (mmio->res == NULL) { + device_printf(pdev->dev.bsddev, "%s: failed to alloc " + "bar %d type %d rid %d\n", + __func__, bar, type, PCIR_BAR(bar)); + free(mmio, M_DEVBUF); + return (NULL); + } + TAILQ_INSERT_TAIL(&pdev->mmio, mmio, next); + + return (mmio->res); +} + int linux_pci_register_drm_driver(struct pci_driver *pdrv) { devclass_t dc; dc = devclass_create("vgapci"); if (dc == NULL) return (-ENXIO); pdrv->isdrm = true; pdrv->name = "drmn"; return (_linux_pci_register_driver(pdrv, dc)); } void linux_pci_unregister_driver(struct pci_driver *pdrv) { devclass_t bus; bus = devclass_find("pci"); spin_lock(&pci_lock); list_del(&pdrv->node); spin_unlock(&pci_lock); bus_topo_lock(); if (bus != NULL) devclass_delete_driver(bus, &pdrv->bsddriver); bus_topo_unlock(); } void linux_pci_unregister_drm_driver(struct pci_driver *pdrv) { devclass_t bus; bus = devclass_find("vgapci"); spin_lock(&pci_lock); list_del(&pdrv->node); spin_unlock(&pci_lock); bus_topo_lock(); if (bus != NULL) devclass_delete_driver(bus, &pdrv->bsddriver); bus_topo_unlock(); } CTASSERT(sizeof(dma_addr_t) <= sizeof(uint64_t)); struct linux_dma_obj { void *vaddr; uint64_t dma_addr; bus_dmamap_t dmamap; bus_dma_tag_t dmat; }; static uma_zone_t linux_dma_trie_zone; static uma_zone_t linux_dma_obj_zone; static void linux_dma_init(void *arg) { linux_dma_trie_zone = uma_zcreate("linux_dma_pctrie", pctrie_node_size(), NULL, NULL, pctrie_zone_init, NULL, UMA_ALIGN_PTR, 0); linux_dma_obj_zone = uma_zcreate("linux_dma_object", sizeof(struct linux_dma_obj), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); lkpi_pci_nseg1_fail = counter_u64_alloc(M_WAITOK); } SYSINIT(linux_dma, SI_SUB_DRIVERS, SI_ORDER_THIRD, linux_dma_init, NULL); static void linux_dma_uninit(void *arg) { counter_u64_free(lkpi_pci_nseg1_fail); uma_zdestroy(linux_dma_obj_zone); uma_zdestroy(linux_dma_trie_zone); } SYSUNINIT(linux_dma, SI_SUB_DRIVERS, SI_ORDER_THIRD, linux_dma_uninit, NULL); static void * linux_dma_trie_alloc(struct pctrie *ptree) { return (uma_zalloc(linux_dma_trie_zone, M_NOWAIT)); } static void linux_dma_trie_free(struct pctrie *ptree, void *node) { uma_zfree(linux_dma_trie_zone, node); } PCTRIE_DEFINE(LINUX_DMA, linux_dma_obj, dma_addr, linux_dma_trie_alloc, linux_dma_trie_free); #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__) static dma_addr_t linux_dma_map_phys_common(struct device *dev, vm_paddr_t phys, size_t len, bus_dma_tag_t dmat) { struct linux_dma_priv *priv; struct linux_dma_obj *obj; int error, nseg; bus_dma_segment_t seg; priv = dev->dma_priv; /* * If the resultant mapping will be entirely 1:1 with the * physical address, short-circuit the remainder of the * bus_dma API. This avoids tracking collisions in the pctrie * with the additional benefit of reducing overhead. */ if (bus_dma_id_mapped(dmat, phys, len)) return (phys); obj = uma_zalloc(linux_dma_obj_zone, M_NOWAIT); if (obj == NULL) { return (0); } obj->dmat = dmat; DMA_PRIV_LOCK(priv); if (bus_dmamap_create(obj->dmat, 0, &obj->dmamap) != 0) { DMA_PRIV_UNLOCK(priv); uma_zfree(linux_dma_obj_zone, obj); return (0); } nseg = -1; if (_bus_dmamap_load_phys(obj->dmat, obj->dmamap, phys, len, BUS_DMA_NOWAIT, &seg, &nseg) != 0) { bus_dmamap_destroy(obj->dmat, obj->dmamap); DMA_PRIV_UNLOCK(priv); uma_zfree(linux_dma_obj_zone, obj); counter_u64_add(lkpi_pci_nseg1_fail, 1); if (linuxkpi_debug) dump_stack(); return (0); } KASSERT(++nseg == 1, ("More than one segment (nseg=%d)", nseg)); obj->dma_addr = seg.ds_addr; error = LINUX_DMA_PCTRIE_INSERT(&priv->ptree, obj); if (error != 0) { bus_dmamap_unload(obj->dmat, obj->dmamap); bus_dmamap_destroy(obj->dmat, obj->dmamap); DMA_PRIV_UNLOCK(priv); uma_zfree(linux_dma_obj_zone, obj); return (0); } DMA_PRIV_UNLOCK(priv); return (obj->dma_addr); } #else static dma_addr_t linux_dma_map_phys_common(struct device *dev __unused, vm_paddr_t phys, size_t len __unused, bus_dma_tag_t dmat __unused) { return (phys); } #endif dma_addr_t linux_dma_map_phys(struct device *dev, vm_paddr_t phys, size_t len) { struct linux_dma_priv *priv; priv = dev->dma_priv; return (linux_dma_map_phys_common(dev, phys, len, priv->dmat)); } #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__) void linux_dma_unmap(struct device *dev, dma_addr_t dma_addr, size_t len) { struct linux_dma_priv *priv; struct linux_dma_obj *obj; priv = dev->dma_priv; if (pctrie_is_empty(&priv->ptree)) return; DMA_PRIV_LOCK(priv); obj = LINUX_DMA_PCTRIE_LOOKUP(&priv->ptree, dma_addr); if (obj == NULL) { DMA_PRIV_UNLOCK(priv); return; } LINUX_DMA_PCTRIE_REMOVE(&priv->ptree, dma_addr); bus_dmamap_unload(obj->dmat, obj->dmamap); bus_dmamap_destroy(obj->dmat, obj->dmamap); DMA_PRIV_UNLOCK(priv); uma_zfree(linux_dma_obj_zone, obj); } #else void linux_dma_unmap(struct device *dev, dma_addr_t dma_addr, size_t len) { } #endif void * linux_dma_alloc_coherent(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t flag) { struct linux_dma_priv *priv; vm_paddr_t high; size_t align; void *mem; if (dev == NULL || dev->dma_priv == NULL) { *dma_handle = 0; return (NULL); } priv = dev->dma_priv; if (priv->dma_coherent_mask) high = priv->dma_coherent_mask; else /* Coherent is lower 32bit only by default in Linux. */ high = BUS_SPACE_MAXADDR_32BIT; align = PAGE_SIZE << get_order(size); /* Always zero the allocation. */ flag |= M_ZERO; mem = (void *)kmem_alloc_contig(size, flag & GFP_NATIVE_MASK, 0, high, align, 0, VM_MEMATTR_DEFAULT); if (mem != NULL) { *dma_handle = linux_dma_map_phys_common(dev, vtophys(mem), size, priv->dmat_coherent); if (*dma_handle == 0) { kmem_free((vm_offset_t)mem, size); mem = NULL; } } else { *dma_handle = 0; } return (mem); } void linuxkpi_dma_sync(struct device *dev, dma_addr_t dma_addr, size_t size, bus_dmasync_op_t op) { struct linux_dma_priv *priv; struct linux_dma_obj *obj; priv = dev->dma_priv; if (pctrie_is_empty(&priv->ptree)) return; DMA_PRIV_LOCK(priv); obj = LINUX_DMA_PCTRIE_LOOKUP(&priv->ptree, dma_addr); if (obj == NULL) { DMA_PRIV_UNLOCK(priv); return; } bus_dmamap_sync(obj->dmat, obj->dmamap, op); DMA_PRIV_UNLOCK(priv); } int linux_dma_map_sg_attrs(struct device *dev, struct scatterlist *sgl, int nents, enum dma_data_direction direction, unsigned long attrs __unused) { struct linux_dma_priv *priv; struct scatterlist *sg; int i, nseg; bus_dma_segment_t seg; priv = dev->dma_priv; DMA_PRIV_LOCK(priv); /* create common DMA map in the first S/G entry */ if (bus_dmamap_create(priv->dmat, 0, &sgl->dma_map) != 0) { DMA_PRIV_UNLOCK(priv); return (0); } /* load all S/G list entries */ for_each_sg(sgl, sg, nents, i) { nseg = -1; if (_bus_dmamap_load_phys(priv->dmat, sgl->dma_map, sg_phys(sg), sg->length, BUS_DMA_NOWAIT, &seg, &nseg) != 0) { bus_dmamap_unload(priv->dmat, sgl->dma_map); bus_dmamap_destroy(priv->dmat, sgl->dma_map); DMA_PRIV_UNLOCK(priv); return (0); } KASSERT(nseg == 0, ("More than one segment (nseg=%d)", nseg + 1)); sg_dma_address(sg) = seg.ds_addr; } switch (direction) { case DMA_BIDIRECTIONAL: bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_PREWRITE); break; case DMA_TO_DEVICE: bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_PREREAD); break; case DMA_FROM_DEVICE: bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_PREWRITE); break; default: break; } DMA_PRIV_UNLOCK(priv); return (nents); } void linux_dma_unmap_sg_attrs(struct device *dev, struct scatterlist *sgl, int nents __unused, enum dma_data_direction direction, unsigned long attrs __unused) { struct linux_dma_priv *priv; priv = dev->dma_priv; DMA_PRIV_LOCK(priv); switch (direction) { case DMA_BIDIRECTIONAL: bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_POSTREAD); bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_PREREAD); break; case DMA_TO_DEVICE: bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_POSTWRITE); break; case DMA_FROM_DEVICE: bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_POSTREAD); break; default: break; } bus_dmamap_unload(priv->dmat, sgl->dma_map); bus_dmamap_destroy(priv->dmat, sgl->dma_map); DMA_PRIV_UNLOCK(priv); } struct dma_pool { struct device *pool_device; uma_zone_t pool_zone; struct mtx pool_lock; bus_dma_tag_t pool_dmat; size_t pool_entry_size; struct pctrie pool_ptree; }; #define DMA_POOL_LOCK(pool) mtx_lock(&(pool)->pool_lock) #define DMA_POOL_UNLOCK(pool) mtx_unlock(&(pool)->pool_lock) static inline int dma_pool_obj_ctor(void *mem, int size, void *arg, int flags) { struct linux_dma_obj *obj = mem; struct dma_pool *pool = arg; int error, nseg; bus_dma_segment_t seg; nseg = -1; DMA_POOL_LOCK(pool); error = _bus_dmamap_load_phys(pool->pool_dmat, obj->dmamap, vtophys(obj->vaddr), pool->pool_entry_size, BUS_DMA_NOWAIT, &seg, &nseg); DMA_POOL_UNLOCK(pool); if (error != 0) { return (error); } KASSERT(++nseg == 1, ("More than one segment (nseg=%d)", nseg)); obj->dma_addr = seg.ds_addr; return (0); } static void dma_pool_obj_dtor(void *mem, int size, void *arg) { struct linux_dma_obj *obj = mem; struct dma_pool *pool = arg; DMA_POOL_LOCK(pool); bus_dmamap_unload(pool->pool_dmat, obj->dmamap); DMA_POOL_UNLOCK(pool); } static int dma_pool_obj_import(void *arg, void **store, int count, int domain __unused, int flags) { struct dma_pool *pool = arg; struct linux_dma_obj *obj; int error, i; for (i = 0; i < count; i++) { obj = uma_zalloc(linux_dma_obj_zone, flags); if (obj == NULL) break; error = bus_dmamem_alloc(pool->pool_dmat, &obj->vaddr, BUS_DMA_NOWAIT, &obj->dmamap); if (error!= 0) { uma_zfree(linux_dma_obj_zone, obj); break; } store[i] = obj; } return (i); } static void dma_pool_obj_release(void *arg, void **store, int count) { struct dma_pool *pool = arg; struct linux_dma_obj *obj; int i; for (i = 0; i < count; i++) { obj = store[i]; bus_dmamem_free(pool->pool_dmat, obj->vaddr, obj->dmamap); uma_zfree(linux_dma_obj_zone, obj); } } struct dma_pool * linux_dma_pool_create(char *name, struct device *dev, size_t size, size_t align, size_t boundary) { struct linux_dma_priv *priv; struct dma_pool *pool; priv = dev->dma_priv; pool = kzalloc(sizeof(*pool), GFP_KERNEL); pool->pool_device = dev; pool->pool_entry_size = size; if (bus_dma_tag_create(bus_get_dma_tag(dev->bsddev), align, boundary, /* alignment, boundary */ priv->dma_mask, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filtfunc, filtfuncarg */ size, /* maxsize */ 1, /* nsegments */ size, /* maxsegsz */ 0, /* flags */ NULL, NULL, /* lockfunc, lockfuncarg */ &pool->pool_dmat)) { kfree(pool); return (NULL); } pool->pool_zone = uma_zcache_create(name, -1, dma_pool_obj_ctor, dma_pool_obj_dtor, NULL, NULL, dma_pool_obj_import, dma_pool_obj_release, pool, 0); mtx_init(&pool->pool_lock, "lkpi-dma-pool", NULL, MTX_DEF); pctrie_init(&pool->pool_ptree); return (pool); } void linux_dma_pool_destroy(struct dma_pool *pool) { uma_zdestroy(pool->pool_zone); bus_dma_tag_destroy(pool->pool_dmat); mtx_destroy(&pool->pool_lock); kfree(pool); } void lkpi_dmam_pool_destroy(struct device *dev, void *p) { struct dma_pool *pool; pool = *(struct dma_pool **)p; LINUX_DMA_PCTRIE_RECLAIM(&pool->pool_ptree); linux_dma_pool_destroy(pool); } void * linux_dma_pool_alloc(struct dma_pool *pool, gfp_t mem_flags, dma_addr_t *handle) { struct linux_dma_obj *obj; obj = uma_zalloc_arg(pool->pool_zone, pool, mem_flags & GFP_NATIVE_MASK); if (obj == NULL) return (NULL); DMA_POOL_LOCK(pool); if (LINUX_DMA_PCTRIE_INSERT(&pool->pool_ptree, obj) != 0) { DMA_POOL_UNLOCK(pool); uma_zfree_arg(pool->pool_zone, obj, pool); return (NULL); } DMA_POOL_UNLOCK(pool); *handle = obj->dma_addr; return (obj->vaddr); } void linux_dma_pool_free(struct dma_pool *pool, void *vaddr, dma_addr_t dma_addr) { struct linux_dma_obj *obj; DMA_POOL_LOCK(pool); obj = LINUX_DMA_PCTRIE_LOOKUP(&pool->pool_ptree, dma_addr); if (obj == NULL) { DMA_POOL_UNLOCK(pool); return; } LINUX_DMA_PCTRIE_REMOVE(&pool->pool_ptree, dma_addr); DMA_POOL_UNLOCK(pool); uma_zfree_arg(pool->pool_zone, obj, pool); } static int linux_backlight_get_status(device_t dev, struct backlight_props *props) { struct pci_dev *pdev; linux_set_current(curthread); pdev = device_get_softc(dev); props->brightness = pdev->dev.bd->props.brightness; props->brightness = props->brightness * 100 / pdev->dev.bd->props.max_brightness; props->nlevels = 0; return (0); } static int linux_backlight_get_info(device_t dev, struct backlight_info *info) { struct pci_dev *pdev; linux_set_current(curthread); pdev = device_get_softc(dev); info->type = BACKLIGHT_TYPE_PANEL; strlcpy(info->name, pdev->dev.bd->name, BACKLIGHTMAXNAMELENGTH); return (0); } static int linux_backlight_update_status(device_t dev, struct backlight_props *props) { struct pci_dev *pdev; linux_set_current(curthread); pdev = device_get_softc(dev); pdev->dev.bd->props.brightness = pdev->dev.bd->props.max_brightness * props->brightness / 100; pdev->dev.bd->props.power = props->brightness == 0 ? 4/* FB_BLANK_POWERDOWN */ : 0/* FB_BLANK_UNBLANK */; return (pdev->dev.bd->ops->update_status(pdev->dev.bd)); } struct backlight_device * linux_backlight_device_register(const char *name, struct device *dev, void *data, const struct backlight_ops *ops, struct backlight_properties *props) { dev->bd = malloc(sizeof(*dev->bd), M_DEVBUF, M_WAITOK | M_ZERO); dev->bd->ops = ops; dev->bd->props.type = props->type; dev->bd->props.max_brightness = props->max_brightness; dev->bd->props.brightness = props->brightness; dev->bd->props.power = props->power; dev->bd->data = data; dev->bd->dev = dev; dev->bd->name = strdup(name, M_DEVBUF); dev->backlight_dev = backlight_register(name, dev->bsddev); return (dev->bd); } void linux_backlight_device_unregister(struct backlight_device *bd) { backlight_destroy(bd->dev->backlight_dev); free(bd->name, M_DEVBUF); free(bd, M_DEVBUF); }