diff --git a/sys/netinet6/in6.c b/sys/netinet6/in6.c index 48fa8dd2efc6..057c0ee91e02 100644 --- a/sys/netinet6/in6.c +++ b/sys/netinet6/in6.c @@ -1,2600 +1,2592 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the project nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $KAME: in6.c,v 1.259 2002/01/21 11:37:50 keiichi Exp $ */ /*- * Copyright (c) 1982, 1986, 1991, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)in.c 8.2 (Berkeley) 11/15/93 */ #include __FBSDID("$FreeBSD$"); #include "opt_inet.h" #include "opt_inet6.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * struct in6_ifreq and struct ifreq must be type punnable for common members * of ifr_ifru to allow accessors to be shared. */ _Static_assert(offsetof(struct in6_ifreq, ifr_ifru) == offsetof(struct ifreq, ifr_ifru), "struct in6_ifreq and struct ifreq are not type punnable"); VNET_DECLARE(int, icmp6_nodeinfo_oldmcprefix); #define V_icmp6_nodeinfo_oldmcprefix VNET(icmp6_nodeinfo_oldmcprefix) /* * Definitions of some costant IP6 addresses. */ const struct in6_addr in6addr_any = IN6ADDR_ANY_INIT; const struct in6_addr in6addr_loopback = IN6ADDR_LOOPBACK_INIT; const struct in6_addr in6addr_nodelocal_allnodes = IN6ADDR_NODELOCAL_ALLNODES_INIT; const struct in6_addr in6addr_linklocal_allnodes = IN6ADDR_LINKLOCAL_ALLNODES_INIT; const struct in6_addr in6addr_linklocal_allrouters = IN6ADDR_LINKLOCAL_ALLROUTERS_INIT; const struct in6_addr in6addr_linklocal_allv2routers = IN6ADDR_LINKLOCAL_ALLV2ROUTERS_INIT; const struct in6_addr in6mask0 = IN6MASK0; const struct in6_addr in6mask32 = IN6MASK32; const struct in6_addr in6mask64 = IN6MASK64; const struct in6_addr in6mask96 = IN6MASK96; const struct in6_addr in6mask128 = IN6MASK128; const struct sockaddr_in6 sa6_any = { sizeof(sa6_any), AF_INET6, 0, 0, IN6ADDR_ANY_INIT, 0 }; static int in6_notify_ifa(struct ifnet *, struct in6_ifaddr *, struct in6_aliasreq *, int); static void in6_unlink_ifa(struct in6_ifaddr *, struct ifnet *); static int in6_validate_ifra(struct ifnet *, struct in6_aliasreq *, struct in6_ifaddr *, int); static struct in6_ifaddr *in6_alloc_ifa(struct ifnet *, struct in6_aliasreq *, int flags); static int in6_update_ifa_internal(struct ifnet *, struct in6_aliasreq *, struct in6_ifaddr *, int, int); static int in6_broadcast_ifa(struct ifnet *, struct in6_aliasreq *, struct in6_ifaddr *, int); #define ifa2ia6(ifa) ((struct in6_ifaddr *)(ifa)) #define ia62ifa(ia6) (&((ia6)->ia_ifa)) void in6_newaddrmsg(struct in6_ifaddr *ia, int cmd) { struct rt_addrinfo info; struct ifaddr *ifa; struct sockaddr_dl gateway; int fibnum; ifa = &ia->ia_ifa; /* * Prepare info data for the host route. * This code mimics one from ifa_maintain_loopback_route(). */ bzero(&info, sizeof(struct rt_addrinfo)); info.rti_flags = ifa->ifa_flags | RTF_HOST | RTF_STATIC | RTF_PINNED; info.rti_info[RTAX_DST] = ifa->ifa_addr; info.rti_info[RTAX_GATEWAY] = (struct sockaddr *)&gateway; link_init_sdl(ifa->ifa_ifp, (struct sockaddr *)&gateway, ifa->ifa_ifp->if_type); if (cmd != RTM_DELETE) info.rti_ifp = V_loif; fibnum = ia62ifa(ia)->ifa_ifp->if_fib; if (cmd == RTM_ADD) { rt_addrmsg(cmd, &ia->ia_ifa, fibnum); rt_routemsg_info(cmd, &info, fibnum); } else if (cmd == RTM_DELETE) { rt_routemsg_info(cmd, &info, fibnum); rt_addrmsg(cmd, &ia->ia_ifa, fibnum); } } int in6_mask2len(struct in6_addr *mask, u_char *lim0) { int x = 0, y; u_char *lim = lim0, *p; /* ignore the scope_id part */ if (lim0 == NULL || lim0 - (u_char *)mask > sizeof(*mask)) lim = (u_char *)mask + sizeof(*mask); for (p = (u_char *)mask; p < lim; x++, p++) { if (*p != 0xff) break; } y = 0; if (p < lim) { for (y = 0; y < 8; y++) { if ((*p & (0x80 >> y)) == 0) break; } } /* * when the limit pointer is given, do a stricter check on the * remaining bits. */ if (p < lim) { if (y != 0 && (*p & (0x00ff >> y)) != 0) return (-1); for (p = p + 1; p < lim; p++) if (*p != 0) return (-1); } return x * 8 + y; } #ifdef COMPAT_FREEBSD32 struct in6_ndifreq32 { char ifname[IFNAMSIZ]; uint32_t ifindex; }; #define SIOCGDEFIFACE32_IN6 _IOWR('i', 86, struct in6_ndifreq32) #endif int in6_control(struct socket *so, u_long cmd, caddr_t data, struct ifnet *ifp, struct thread *td) { struct in6_ifreq *ifr = (struct in6_ifreq *)data; struct in6_ifaddr *ia = NULL; struct in6_aliasreq *ifra = (struct in6_aliasreq *)data; struct sockaddr_in6 *sa6; int carp_attached = 0; int error; u_long ocmd = cmd; /* * Compat to make pre-10.x ifconfig(8) operable. */ if (cmd == OSIOCAIFADDR_IN6) cmd = SIOCAIFADDR_IN6; switch (cmd) { case SIOCGETSGCNT_IN6: case SIOCGETMIFCNT_IN6: /* * XXX mrt_ioctl has a 3rd, unused, FIB argument in route.c. * We cannot see how that would be needed, so do not adjust the * KPI blindly; more likely should clean up the IPv4 variant. */ return (mrt6_ioctl ? mrt6_ioctl(cmd, data) : EOPNOTSUPP); } switch (cmd) { case SIOCAADDRCTL_POLICY: case SIOCDADDRCTL_POLICY: if (td != NULL) { error = priv_check(td, PRIV_NETINET_ADDRCTRL6); if (error) return (error); } return (in6_src_ioctl(cmd, data)); } if (ifp == NULL) return (EOPNOTSUPP); switch (cmd) { case SIOCSNDFLUSH_IN6: case SIOCSPFXFLUSH_IN6: case SIOCSRTRFLUSH_IN6: case SIOCSDEFIFACE_IN6: case SIOCSIFINFO_FLAGS: case SIOCSIFINFO_IN6: if (td != NULL) { error = priv_check(td, PRIV_NETINET_ND6); if (error) return (error); } /* FALLTHROUGH */ case OSIOCGIFINFO_IN6: case SIOCGIFINFO_IN6: case SIOCGNBRINFO_IN6: case SIOCGDEFIFACE_IN6: return (nd6_ioctl(cmd, data, ifp)); #ifdef COMPAT_FREEBSD32 case SIOCGDEFIFACE32_IN6: { struct in6_ndifreq ndif; struct in6_ndifreq32 *ndif32; error = nd6_ioctl(SIOCGDEFIFACE_IN6, (caddr_t)&ndif, ifp); if (error) return (error); ndif32 = (struct in6_ndifreq32 *)data; ndif32->ifindex = ndif.ifindex; return (0); } #endif } switch (cmd) { case SIOCSIFPREFIX_IN6: case SIOCDIFPREFIX_IN6: case SIOCAIFPREFIX_IN6: case SIOCCIFPREFIX_IN6: case SIOCSGIFPREFIX_IN6: case SIOCGIFPREFIX_IN6: log(LOG_NOTICE, "prefix ioctls are now invalidated. " "please use ifconfig.\n"); return (EOPNOTSUPP); } switch (cmd) { case SIOCSSCOPE6: if (td != NULL) { error = priv_check(td, PRIV_NETINET_SCOPE6); if (error) return (error); } /* FALLTHROUGH */ case SIOCGSCOPE6: case SIOCGSCOPE6DEF: return (scope6_ioctl(cmd, data, ifp)); } /* * Find address for this interface, if it exists. * * In netinet code, we have checked ifra_addr in SIOCSIF*ADDR operation * only, and used the first interface address as the target of other * operations (without checking ifra_addr). This was because netinet * code/API assumed at most 1 interface address per interface. * Since IPv6 allows a node to assign multiple addresses * on a single interface, we almost always look and check the * presence of ifra_addr, and reject invalid ones here. * It also decreases duplicated code among SIOC*_IN6 operations. */ switch (cmd) { case SIOCAIFADDR_IN6: case SIOCSIFPHYADDR_IN6: sa6 = &ifra->ifra_addr; break; case SIOCSIFADDR_IN6: case SIOCGIFADDR_IN6: case SIOCSIFDSTADDR_IN6: case SIOCSIFNETMASK_IN6: case SIOCGIFDSTADDR_IN6: case SIOCGIFNETMASK_IN6: case SIOCDIFADDR_IN6: case SIOCGIFPSRCADDR_IN6: case SIOCGIFPDSTADDR_IN6: case SIOCGIFAFLAG_IN6: case SIOCSNDFLUSH_IN6: case SIOCSPFXFLUSH_IN6: case SIOCSRTRFLUSH_IN6: case SIOCGIFALIFETIME_IN6: case SIOCGIFSTAT_IN6: case SIOCGIFSTAT_ICMP6: sa6 = &ifr->ifr_addr; break; case SIOCSIFADDR: case SIOCSIFBRDADDR: case SIOCSIFDSTADDR: case SIOCSIFNETMASK: /* * Although we should pass any non-INET6 ioctl requests * down to driver, we filter some legacy INET requests. * Drivers trust SIOCSIFADDR et al to come from an already * privileged layer, and do not perform any credentials * checks or input validation. */ return (EINVAL); default: sa6 = NULL; break; } if (sa6 && sa6->sin6_family == AF_INET6) { if (sa6->sin6_scope_id != 0) error = sa6_embedscope(sa6, 0); else error = in6_setscope(&sa6->sin6_addr, ifp, NULL); if (error != 0) return (error); if (td != NULL && (error = prison_check_ip6(td->td_ucred, &sa6->sin6_addr)) != 0) return (error); ia = in6ifa_ifpwithaddr(ifp, &sa6->sin6_addr); } else ia = NULL; switch (cmd) { case SIOCSIFADDR_IN6: case SIOCSIFDSTADDR_IN6: case SIOCSIFNETMASK_IN6: /* * Since IPv6 allows a node to assign multiple addresses * on a single interface, SIOCSIFxxx ioctls are deprecated. */ /* we decided to obsolete this command (20000704) */ error = EINVAL; goto out; case SIOCDIFADDR_IN6: /* * for IPv4, we look for existing in_ifaddr here to allow * "ifconfig if0 delete" to remove the first IPv4 address on * the interface. For IPv6, as the spec allows multiple * interface address from the day one, we consider "remove the * first one" semantics to be not preferable. */ if (ia == NULL) { error = EADDRNOTAVAIL; goto out; } /* FALLTHROUGH */ case SIOCAIFADDR_IN6: /* * We always require users to specify a valid IPv6 address for * the corresponding operation. */ if (ifra->ifra_addr.sin6_family != AF_INET6 || ifra->ifra_addr.sin6_len != sizeof(struct sockaddr_in6)) { error = EAFNOSUPPORT; goto out; } if (td != NULL) { error = priv_check(td, (cmd == SIOCDIFADDR_IN6) ? PRIV_NET_DELIFADDR : PRIV_NET_ADDIFADDR); if (error) goto out; } /* FALLTHROUGH */ case SIOCGIFSTAT_IN6: case SIOCGIFSTAT_ICMP6: if (ifp->if_afdata[AF_INET6] == NULL) { error = EPFNOSUPPORT; goto out; } break; case SIOCGIFADDR_IN6: /* This interface is basically deprecated. use SIOCGIFCONF. */ /* FALLTHROUGH */ case SIOCGIFAFLAG_IN6: case SIOCGIFNETMASK_IN6: case SIOCGIFDSTADDR_IN6: case SIOCGIFALIFETIME_IN6: /* must think again about its semantics */ if (ia == NULL) { error = EADDRNOTAVAIL; goto out; } break; } switch (cmd) { case SIOCGIFADDR_IN6: ifr->ifr_addr = ia->ia_addr; if ((error = sa6_recoverscope(&ifr->ifr_addr)) != 0) goto out; break; case SIOCGIFDSTADDR_IN6: if ((ifp->if_flags & IFF_POINTOPOINT) == 0) { error = EINVAL; goto out; } ifr->ifr_dstaddr = ia->ia_dstaddr; if ((error = sa6_recoverscope(&ifr->ifr_dstaddr)) != 0) goto out; break; case SIOCGIFNETMASK_IN6: ifr->ifr_addr = ia->ia_prefixmask; break; case SIOCGIFAFLAG_IN6: ifr->ifr_ifru.ifru_flags6 = ia->ia6_flags; break; case SIOCGIFSTAT_IN6: COUNTER_ARRAY_COPY(((struct in6_ifextra *) ifp->if_afdata[AF_INET6])->in6_ifstat, &ifr->ifr_ifru.ifru_stat, sizeof(struct in6_ifstat) / sizeof(uint64_t)); break; case SIOCGIFSTAT_ICMP6: COUNTER_ARRAY_COPY(((struct in6_ifextra *) ifp->if_afdata[AF_INET6])->icmp6_ifstat, &ifr->ifr_ifru.ifru_icmp6stat, sizeof(struct icmp6_ifstat) / sizeof(uint64_t)); break; case SIOCGIFALIFETIME_IN6: ifr->ifr_ifru.ifru_lifetime = ia->ia6_lifetime; if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) { time_t maxexpire; struct in6_addrlifetime *retlt = &ifr->ifr_ifru.ifru_lifetime; /* * XXX: adjust expiration time assuming time_t is * signed. */ maxexpire = (-1) & ~((time_t)1 << ((sizeof(maxexpire) * 8) - 1)); if (ia->ia6_lifetime.ia6t_vltime < maxexpire - ia->ia6_updatetime) { retlt->ia6t_expire = ia->ia6_updatetime + ia->ia6_lifetime.ia6t_vltime; } else retlt->ia6t_expire = maxexpire; } if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) { time_t maxexpire; struct in6_addrlifetime *retlt = &ifr->ifr_ifru.ifru_lifetime; /* * XXX: adjust expiration time assuming time_t is * signed. */ maxexpire = (-1) & ~((time_t)1 << ((sizeof(maxexpire) * 8) - 1)); if (ia->ia6_lifetime.ia6t_pltime < maxexpire - ia->ia6_updatetime) { retlt->ia6t_preferred = ia->ia6_updatetime + ia->ia6_lifetime.ia6t_pltime; } else retlt->ia6t_preferred = maxexpire; } break; case SIOCAIFADDR_IN6: { struct nd_prefixctl pr0; struct nd_prefix *pr; /* * first, make or update the interface address structure, * and link it to the list. */ if ((error = in6_update_ifa(ifp, ifra, ia, 0)) != 0) goto out; if (ia != NULL) { if (ia->ia_ifa.ifa_carp) (*carp_detach_p)(&ia->ia_ifa, true); ifa_free(&ia->ia_ifa); } if ((ia = in6ifa_ifpwithaddr(ifp, &ifra->ifra_addr.sin6_addr)) == NULL) { /* * this can happen when the user specify the 0 valid * lifetime. */ break; } if (cmd == ocmd && ifra->ifra_vhid > 0) { if (carp_attach_p != NULL) error = (*carp_attach_p)(&ia->ia_ifa, ifra->ifra_vhid); else error = EPROTONOSUPPORT; if (error) goto out; else carp_attached = 1; } /* * then, make the prefix on-link on the interface. * XXX: we'd rather create the prefix before the address, but * we need at least one address to install the corresponding * interface route, so we configure the address first. */ /* * convert mask to prefix length (prefixmask has already * been validated in in6_update_ifa(). */ bzero(&pr0, sizeof(pr0)); pr0.ndpr_ifp = ifp; pr0.ndpr_plen = in6_mask2len(&ifra->ifra_prefixmask.sin6_addr, NULL); if (pr0.ndpr_plen == 128) { /* we don't need to install a host route. */ goto aifaddr_out; } pr0.ndpr_prefix = ifra->ifra_addr; /* apply the mask for safety. */ IN6_MASK_ADDR(&pr0.ndpr_prefix.sin6_addr, &ifra->ifra_prefixmask.sin6_addr); /* * XXX: since we don't have an API to set prefix (not address) * lifetimes, we just use the same lifetimes as addresses. * The (temporarily) installed lifetimes can be overridden by * later advertised RAs (when accept_rtadv is non 0), which is * an intended behavior. */ pr0.ndpr_raf_onlink = 1; /* should be configurable? */ pr0.ndpr_raf_auto = ((ifra->ifra_flags & IN6_IFF_AUTOCONF) != 0); pr0.ndpr_vltime = ifra->ifra_lifetime.ia6t_vltime; pr0.ndpr_pltime = ifra->ifra_lifetime.ia6t_pltime; /* add the prefix if not yet. */ if ((pr = nd6_prefix_lookup(&pr0)) == NULL) { /* * nd6_prelist_add will install the corresponding * interface route. */ if ((error = nd6_prelist_add(&pr0, NULL, &pr)) != 0) { if (carp_attached) (*carp_detach_p)(&ia->ia_ifa, false); goto out; } } /* relate the address to the prefix */ if (ia->ia6_ndpr == NULL) { ia->ia6_ndpr = pr; pr->ndpr_addrcnt++; /* * If this is the first autoconf address from the * prefix, create a temporary address as well * (when required). */ if ((ia->ia6_flags & IN6_IFF_AUTOCONF) && V_ip6_use_tempaddr && pr->ndpr_addrcnt == 1) { int e; if ((e = in6_tmpifadd(ia, 1, 0)) != 0) { log(LOG_NOTICE, "in6_control: failed " "to create a temporary address, " "errno=%d\n", e); } } } nd6_prefix_rele(pr); /* * this might affect the status of autoconfigured addresses, * that is, this address might make other addresses detached. */ pfxlist_onlink_check(); aifaddr_out: /* * Try to clear the flag when a new IPv6 address is added * onto an IFDISABLED interface and it succeeds. */ if (ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) { struct in6_ndireq nd; memset(&nd, 0, sizeof(nd)); nd.ndi.flags = ND_IFINFO(ifp)->flags; nd.ndi.flags &= ~ND6_IFF_IFDISABLED; if (nd6_ioctl(SIOCSIFINFO_FLAGS, (caddr_t)&nd, ifp) < 0) log(LOG_NOTICE, "SIOCAIFADDR_IN6: " "SIOCSIFINFO_FLAGS for -ifdisabled " "failed."); /* * Ignore failure of clearing the flag intentionally. * The failure means address duplication was detected. */ } break; } case SIOCDIFADDR_IN6: in6_purgeifaddr(ia); EVENTHANDLER_INVOKE(ifaddr_event_ext, ifp, &ia->ia_ifa, IFADDR_EVENT_DEL); break; default: if (ifp->if_ioctl == NULL) { error = EOPNOTSUPP; goto out; } error = (*ifp->if_ioctl)(ifp, cmd, data); goto out; } error = 0; out: if (ia != NULL) ifa_free(&ia->ia_ifa); return (error); } static struct in6_multi_mship * in6_joingroup_legacy(struct ifnet *ifp, const struct in6_addr *mcaddr, int *errorp, int delay) { struct in6_multi_mship *imm; int error; imm = malloc(sizeof(*imm), M_IP6MADDR, M_NOWAIT); if (imm == NULL) { *errorp = ENOBUFS; return (NULL); } delay = (delay * PR_FASTHZ) / hz; error = in6_joingroup(ifp, mcaddr, NULL, &imm->i6mm_maddr, delay); if (error) { *errorp = error; free(imm, M_IP6MADDR); return (NULL); } return (imm); } /* * Join necessary multicast groups. Factored out from in6_update_ifa(). * This entire work should only be done once, for the default FIB. */ static int in6_update_ifa_join_mc(struct ifnet *ifp, struct in6_aliasreq *ifra, struct in6_ifaddr *ia, int flags, struct in6_multi **in6m_sol) { char ip6buf[INET6_ADDRSTRLEN]; struct in6_addr mltaddr; struct in6_multi_mship *imm; int delay, error; KASSERT(in6m_sol != NULL, ("%s: in6m_sol is NULL", __func__)); /* Join solicited multicast addr for new host id. */ bzero(&mltaddr, sizeof(struct in6_addr)); mltaddr.s6_addr32[0] = IPV6_ADDR_INT32_MLL; mltaddr.s6_addr32[2] = htonl(1); mltaddr.s6_addr32[3] = ifra->ifra_addr.sin6_addr.s6_addr32[3]; mltaddr.s6_addr8[12] = 0xff; if ((error = in6_setscope(&mltaddr, ifp, NULL)) != 0) { /* XXX: should not happen */ log(LOG_ERR, "%s: in6_setscope failed\n", __func__); goto cleanup; } delay = error = 0; if ((flags & IN6_IFAUPDATE_DADDELAY)) { /* * We need a random delay for DAD on the address being * configured. It also means delaying transmission of the * corresponding MLD report to avoid report collision. * [RFC 4861, Section 6.3.7] */ delay = arc4random() % (MAX_RTR_SOLICITATION_DELAY * hz); } imm = in6_joingroup_legacy(ifp, &mltaddr, &error, delay); if (imm == NULL) { nd6log((LOG_WARNING, "%s: in6_joingroup failed for %s on %s " "(errno=%d)\n", __func__, ip6_sprintf(ip6buf, &mltaddr), if_name(ifp), error)); goto cleanup; } LIST_INSERT_HEAD(&ia->ia6_memberships, imm, i6mm_chain); *in6m_sol = imm->i6mm_maddr; /* * Join link-local all-nodes address. */ mltaddr = in6addr_linklocal_allnodes; if ((error = in6_setscope(&mltaddr, ifp, NULL)) != 0) goto cleanup; /* XXX: should not fail */ imm = in6_joingroup_legacy(ifp, &mltaddr, &error, 0); if (imm == NULL) { nd6log((LOG_WARNING, "%s: in6_joingroup failed for %s on %s " "(errno=%d)\n", __func__, ip6_sprintf(ip6buf, &mltaddr), if_name(ifp), error)); goto cleanup; } LIST_INSERT_HEAD(&ia->ia6_memberships, imm, i6mm_chain); /* * Join node information group address. */ delay = 0; if ((flags & IN6_IFAUPDATE_DADDELAY)) { /* * The spec does not say anything about delay for this group, * but the same logic should apply. */ delay = arc4random() % (MAX_RTR_SOLICITATION_DELAY * hz); } if (in6_nigroup(ifp, NULL, -1, &mltaddr) == 0) { /* XXX jinmei */ imm = in6_joingroup_legacy(ifp, &mltaddr, &error, delay); if (imm == NULL) nd6log((LOG_WARNING, "%s: in6_joingroup failed for %s on %s " "(errno=%d)\n", __func__, ip6_sprintf(ip6buf, &mltaddr), if_name(ifp), error)); /* XXX not very fatal, go on... */ else LIST_INSERT_HEAD(&ia->ia6_memberships, imm, i6mm_chain); } if (V_icmp6_nodeinfo_oldmcprefix && in6_nigroup_oldmcprefix(ifp, NULL, -1, &mltaddr) == 0) { imm = in6_joingroup_legacy(ifp, &mltaddr, &error, delay); if (imm == NULL) nd6log((LOG_WARNING, "%s: in6_joingroup failed for %s on %s " "(errno=%d)\n", __func__, ip6_sprintf(ip6buf, &mltaddr), if_name(ifp), error)); /* XXX not very fatal, go on... */ else LIST_INSERT_HEAD(&ia->ia6_memberships, imm, i6mm_chain); } /* * Join interface-local all-nodes address. * (ff01::1%ifN, and ff01::%ifN/32) */ mltaddr = in6addr_nodelocal_allnodes; if ((error = in6_setscope(&mltaddr, ifp, NULL)) != 0) goto cleanup; /* XXX: should not fail */ imm = in6_joingroup_legacy(ifp, &mltaddr, &error, 0); if (imm == NULL) { nd6log((LOG_WARNING, "%s: in6_joingroup failed for %s on %s " "(errno=%d)\n", __func__, ip6_sprintf(ip6buf, &mltaddr), if_name(ifp), error)); goto cleanup; } LIST_INSERT_HEAD(&ia->ia6_memberships, imm, i6mm_chain); cleanup: return (error); } /* * Update parameters of an IPv6 interface address. * If necessary, a new entry is created and linked into address chains. * This function is separated from in6_control(). */ int in6_update_ifa(struct ifnet *ifp, struct in6_aliasreq *ifra, struct in6_ifaddr *ia, int flags) { int error, hostIsNew = 0; if ((error = in6_validate_ifra(ifp, ifra, ia, flags)) != 0) return (error); if (ia == NULL) { hostIsNew = 1; if ((ia = in6_alloc_ifa(ifp, ifra, flags)) == NULL) return (ENOBUFS); } error = in6_update_ifa_internal(ifp, ifra, ia, hostIsNew, flags); if (error != 0) { if (hostIsNew != 0) { in6_unlink_ifa(ia, ifp); ifa_free(&ia->ia_ifa); } return (error); } if (hostIsNew) error = in6_broadcast_ifa(ifp, ifra, ia, flags); return (error); } /* * Fill in basic IPv6 address request info. */ void in6_prepare_ifra(struct in6_aliasreq *ifra, const struct in6_addr *addr, const struct in6_addr *mask) { memset(ifra, 0, sizeof(struct in6_aliasreq)); ifra->ifra_addr.sin6_family = AF_INET6; ifra->ifra_addr.sin6_len = sizeof(struct sockaddr_in6); if (addr != NULL) ifra->ifra_addr.sin6_addr = *addr; ifra->ifra_prefixmask.sin6_family = AF_INET6; ifra->ifra_prefixmask.sin6_len = sizeof(struct sockaddr_in6); if (mask != NULL) ifra->ifra_prefixmask.sin6_addr = *mask; } static int in6_validate_ifra(struct ifnet *ifp, struct in6_aliasreq *ifra, struct in6_ifaddr *ia, int flags) { int plen = -1; struct sockaddr_in6 dst6; struct in6_addrlifetime *lt; char ip6buf[INET6_ADDRSTRLEN]; /* Validate parameters */ if (ifp == NULL || ifra == NULL) /* this maybe redundant */ return (EINVAL); /* * The destination address for a p2p link must have a family * of AF_UNSPEC or AF_INET6. */ if ((ifp->if_flags & IFF_POINTOPOINT) != 0 && ifra->ifra_dstaddr.sin6_family != AF_INET6 && ifra->ifra_dstaddr.sin6_family != AF_UNSPEC) return (EAFNOSUPPORT); /* * Validate address */ if (ifra->ifra_addr.sin6_len != sizeof(struct sockaddr_in6) || ifra->ifra_addr.sin6_family != AF_INET6) return (EINVAL); /* * validate ifra_prefixmask. don't check sin6_family, netmask * does not carry fields other than sin6_len. */ if (ifra->ifra_prefixmask.sin6_len > sizeof(struct sockaddr_in6)) return (EINVAL); /* * Because the IPv6 address architecture is classless, we require * users to specify a (non 0) prefix length (mask) for a new address. * We also require the prefix (when specified) mask is valid, and thus * reject a non-consecutive mask. */ if (ia == NULL && ifra->ifra_prefixmask.sin6_len == 0) return (EINVAL); if (ifra->ifra_prefixmask.sin6_len != 0) { plen = in6_mask2len(&ifra->ifra_prefixmask.sin6_addr, (u_char *)&ifra->ifra_prefixmask + ifra->ifra_prefixmask.sin6_len); if (plen <= 0) return (EINVAL); } else { /* * In this case, ia must not be NULL. We just use its prefix * length. */ plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL); } /* * If the destination address on a p2p interface is specified, * and the address is a scoped one, validate/set the scope * zone identifier. */ dst6 = ifra->ifra_dstaddr; if ((ifp->if_flags & (IFF_POINTOPOINT|IFF_LOOPBACK)) != 0 && (dst6.sin6_family == AF_INET6)) { struct in6_addr in6_tmp; u_int32_t zoneid; in6_tmp = dst6.sin6_addr; if (in6_setscope(&in6_tmp, ifp, &zoneid)) return (EINVAL); /* XXX: should be impossible */ if (dst6.sin6_scope_id != 0) { if (dst6.sin6_scope_id != zoneid) return (EINVAL); } else /* user omit to specify the ID. */ dst6.sin6_scope_id = zoneid; /* convert into the internal form */ if (sa6_embedscope(&dst6, 0)) return (EINVAL); /* XXX: should be impossible */ } /* Modify original ifra_dstaddr to reflect changes */ ifra->ifra_dstaddr = dst6; /* * The destination address can be specified only for a p2p or a * loopback interface. If specified, the corresponding prefix length * must be 128. */ if (ifra->ifra_dstaddr.sin6_family == AF_INET6) { if ((ifp->if_flags & (IFF_POINTOPOINT|IFF_LOOPBACK)) == 0) { /* XXX: noisy message */ nd6log((LOG_INFO, "in6_update_ifa: a destination can " "be specified for a p2p or a loopback IF only\n")); return (EINVAL); } if (plen != 128) { nd6log((LOG_INFO, "in6_update_ifa: prefixlen should " "be 128 when dstaddr is specified\n")); return (EINVAL); } } /* lifetime consistency check */ lt = &ifra->ifra_lifetime; if (lt->ia6t_pltime > lt->ia6t_vltime) return (EINVAL); if (lt->ia6t_vltime == 0) { /* * the following log might be noisy, but this is a typical * configuration mistake or a tool's bug. */ nd6log((LOG_INFO, "in6_update_ifa: valid lifetime is 0 for %s\n", ip6_sprintf(ip6buf, &ifra->ifra_addr.sin6_addr))); if (ia == NULL) return (0); /* there's nothing to do */ } /* Check prefix mask */ if (ia != NULL && ifra->ifra_prefixmask.sin6_len != 0) { /* * We prohibit changing the prefix length of an existing * address, because * + such an operation should be rare in IPv6, and * + the operation would confuse prefix management. */ if (ia->ia_prefixmask.sin6_len != 0 && in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL) != plen) { nd6log((LOG_INFO, "in6_validate_ifa: the prefix length " "of an existing %s address should not be changed\n", ip6_sprintf(ip6buf, &ia->ia_addr.sin6_addr))); return (EINVAL); } } return (0); } /* * Allocate a new ifaddr and link it into chains. */ static struct in6_ifaddr * in6_alloc_ifa(struct ifnet *ifp, struct in6_aliasreq *ifra, int flags) { struct in6_ifaddr *ia; /* * When in6_alloc_ifa() is called in a process of a received * RA, it is called under an interrupt context. So, we should * call malloc with M_NOWAIT. */ ia = (struct in6_ifaddr *)ifa_alloc(sizeof(*ia), M_NOWAIT); if (ia == NULL) return (NULL); LIST_INIT(&ia->ia6_memberships); /* Initialize the address and masks, and put time stamp */ ia->ia_ifa.ifa_addr = (struct sockaddr *)&ia->ia_addr; ia->ia_addr.sin6_family = AF_INET6; ia->ia_addr.sin6_len = sizeof(ia->ia_addr); /* XXX: Can we assign ,sin6_addr and skip the rest? */ ia->ia_addr = ifra->ifra_addr; ia->ia6_createtime = time_uptime; if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) != 0) { /* * Some functions expect that ifa_dstaddr is not * NULL for p2p interfaces. */ ia->ia_ifa.ifa_dstaddr = (struct sockaddr *)&ia->ia_dstaddr; } else { ia->ia_ifa.ifa_dstaddr = NULL; } /* set prefix mask if any */ ia->ia_ifa.ifa_netmask = (struct sockaddr *)&ia->ia_prefixmask; if (ifra->ifra_prefixmask.sin6_len != 0) { ia->ia_prefixmask.sin6_family = AF_INET6; ia->ia_prefixmask.sin6_len = ifra->ifra_prefixmask.sin6_len; ia->ia_prefixmask.sin6_addr = ifra->ifra_prefixmask.sin6_addr; } ia->ia_ifp = ifp; ifa_ref(&ia->ia_ifa); /* if_addrhead */ IF_ADDR_WLOCK(ifp); CK_STAILQ_INSERT_TAIL(&ifp->if_addrhead, &ia->ia_ifa, ifa_link); IF_ADDR_WUNLOCK(ifp); ifa_ref(&ia->ia_ifa); /* in6_ifaddrhead */ IN6_IFADDR_WLOCK(); CK_STAILQ_INSERT_TAIL(&V_in6_ifaddrhead, ia, ia_link); CK_LIST_INSERT_HEAD(IN6ADDR_HASH(&ia->ia_addr.sin6_addr), ia, ia6_hash); IN6_IFADDR_WUNLOCK(); return (ia); } /* * Update/configure interface address parameters: * * 1) Update lifetime * 2) Update interface metric ad flags * 3) Notify other subsystems */ static int in6_update_ifa_internal(struct ifnet *ifp, struct in6_aliasreq *ifra, struct in6_ifaddr *ia, int hostIsNew, int flags) { int error; /* update timestamp */ ia->ia6_updatetime = time_uptime; /* * Set lifetimes. We do not refer to ia6t_expire and ia6t_preferred * to see if the address is deprecated or invalidated, but initialize * these members for applications. */ ia->ia6_lifetime = ifra->ifra_lifetime; if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) { ia->ia6_lifetime.ia6t_expire = time_uptime + ia->ia6_lifetime.ia6t_vltime; } else ia->ia6_lifetime.ia6t_expire = 0; if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) { ia->ia6_lifetime.ia6t_preferred = time_uptime + ia->ia6_lifetime.ia6t_pltime; } else ia->ia6_lifetime.ia6t_preferred = 0; /* * backward compatibility - if IN6_IFF_DEPRECATED is set from the * userland, make it deprecated. */ if ((ifra->ifra_flags & IN6_IFF_DEPRECATED) != 0) { ia->ia6_lifetime.ia6t_pltime = 0; ia->ia6_lifetime.ia6t_preferred = time_uptime; } /* * configure address flags. */ ia->ia6_flags = ifra->ifra_flags; /* * Make the address tentative before joining multicast addresses, * so that corresponding MLD responses would not have a tentative * source address. */ ia->ia6_flags &= ~IN6_IFF_DUPLICATED; /* safety */ /* * DAD should be performed for an new address or addresses on * an interface with ND6_IFF_IFDISABLED. */ if (in6if_do_dad(ifp) && (hostIsNew || (ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED))) ia->ia6_flags |= IN6_IFF_TENTATIVE; /* notify other subsystems */ error = in6_notify_ifa(ifp, ia, ifra, hostIsNew); return (error); } /* * Do link-level ifa job: * 1) Add lle entry for added address * 2) Notifies routing socket users about new address * 3) join appropriate multicast group * 4) start DAD if enabled */ static int in6_broadcast_ifa(struct ifnet *ifp, struct in6_aliasreq *ifra, struct in6_ifaddr *ia, int flags) { struct in6_multi *in6m_sol; int error = 0; /* Add local address to lltable, if necessary (ex. on p2p link). */ if ((error = nd6_add_ifa_lle(ia)) != 0) { in6_purgeaddr(&ia->ia_ifa); ifa_free(&ia->ia_ifa); return (error); } /* Join necessary multicast groups. */ in6m_sol = NULL; if ((ifp->if_flags & IFF_MULTICAST) != 0) { error = in6_update_ifa_join_mc(ifp, ifra, ia, flags, &in6m_sol); if (error != 0) { in6_purgeaddr(&ia->ia_ifa); ifa_free(&ia->ia_ifa); return (error); } } /* Perform DAD, if the address is TENTATIVE. */ if ((ia->ia6_flags & IN6_IFF_TENTATIVE)) { int delay, mindelay, maxdelay; delay = 0; if ((flags & IN6_IFAUPDATE_DADDELAY)) { /* * We need to impose a delay before sending an NS * for DAD. Check if we also needed a delay for the * corresponding MLD message. If we did, the delay * should be larger than the MLD delay (this could be * relaxed a bit, but this simple logic is at least * safe). * XXX: Break data hiding guidelines and look at * state for the solicited multicast group. */ mindelay = 0; if (in6m_sol != NULL && in6m_sol->in6m_state == MLD_REPORTING_MEMBER) { mindelay = in6m_sol->in6m_timer; } maxdelay = MAX_RTR_SOLICITATION_DELAY * hz; if (maxdelay - mindelay == 0) delay = 0; else { delay = (arc4random() % (maxdelay - mindelay)) + mindelay; } } nd6_dad_start((struct ifaddr *)ia, delay); } in6_newaddrmsg(ia, RTM_ADD); ifa_free(&ia->ia_ifa); return (error); } /* * Adds or deletes interface route for p2p ifa. * Returns 0 on success or errno. */ static int in6_handle_dstaddr_rtrequest(int cmd, struct in6_ifaddr *ia) { struct epoch_tracker et; struct ifaddr *ifa = &ia->ia_ifa; int error; /* Prepare gateway */ struct sockaddr_dl_short sdl = { .sdl_family = AF_LINK, .sdl_len = sizeof(struct sockaddr_dl_short), .sdl_type = ifa->ifa_ifp->if_type, .sdl_index = ifa->ifa_ifp->if_index, }; struct sockaddr_in6 dst = { .sin6_family = AF_INET6, .sin6_len = sizeof(struct sockaddr_in6), .sin6_addr = ia->ia_dstaddr.sin6_addr, }; struct rt_addrinfo info = { .rti_ifa = ifa, .rti_flags = RTF_PINNED | RTF_HOST, .rti_info = { [RTAX_DST] = (struct sockaddr *)&dst, [RTAX_GATEWAY] = (struct sockaddr *)&sdl, }, }; /* Don't set additional per-gw filters on removal */ NET_EPOCH_ENTER(et); error = rib_handle_ifaddr_info(ifa->ifa_ifp->if_fib, cmd, &info); NET_EPOCH_EXIT(et); return (error); } void in6_purgeaddr(struct ifaddr *ifa) { struct ifnet *ifp = ifa->ifa_ifp; struct in6_ifaddr *ia = (struct in6_ifaddr *) ifa; struct in6_multi_mship *imm; int plen, error; if (ifa->ifa_carp) (*carp_detach_p)(ifa, false); /* * Remove the loopback route to the interface address. * The check for the current setting of "nd6_useloopback" * is not needed. */ if (ia->ia_flags & IFA_RTSELF) { error = ifa_del_loopback_route((struct ifaddr *)ia, (struct sockaddr *)&ia->ia_addr); if (error == 0) ia->ia_flags &= ~IFA_RTSELF; } /* stop DAD processing */ nd6_dad_stop(ifa); /* Leave multicast groups. */ while ((imm = LIST_FIRST(&ia->ia6_memberships)) != NULL) { LIST_REMOVE(imm, i6mm_chain); if (imm->i6mm_maddr != NULL) in6_leavegroup(imm->i6mm_maddr, NULL); free(imm, M_IP6MADDR); } /* Check if we need to remove p2p route */ plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL); /* XXX */ if (ia->ia_dstaddr.sin6_family != AF_INET6) plen = 0; if ((ia->ia_flags & IFA_ROUTE) && plen == 128) { error = in6_handle_dstaddr_rtrequest(RTM_DELETE, ia); if (error != 0) log(LOG_INFO, "%s: err=%d, destination address delete " "failed\n", __func__, error); ia->ia_flags &= ~IFA_ROUTE; } in6_newaddrmsg(ia, RTM_DELETE); in6_unlink_ifa(ia, ifp); } /* * Removes @ia from the corresponding interfaces and unlinks corresponding * prefix if no addresses are using it anymore. */ void in6_purgeifaddr(struct in6_ifaddr *ia) { struct nd_prefix *pr; /* * If the address being deleted is the only one that owns * the corresponding prefix, expire the prefix as well. * XXX: theoretically, we don't have to worry about such * relationship, since we separate the address management * and the prefix management. We do this, however, to provide * as much backward compatibility as possible in terms of * the ioctl operation. * Note that in6_purgeaddr() will decrement ndpr_addrcnt. */ pr = ia->ia6_ndpr; in6_purgeaddr(&ia->ia_ifa); if (pr != NULL && pr->ndpr_addrcnt == 0) { ND6_WLOCK(); nd6_prefix_unlink(pr, NULL); ND6_WUNLOCK(); nd6_prefix_del(pr); } } static void in6_unlink_ifa(struct in6_ifaddr *ia, struct ifnet *ifp) { char ip6buf[INET6_ADDRSTRLEN]; int remove_lle; IF_ADDR_WLOCK(ifp); CK_STAILQ_REMOVE(&ifp->if_addrhead, &ia->ia_ifa, ifaddr, ifa_link); IF_ADDR_WUNLOCK(ifp); ifa_free(&ia->ia_ifa); /* if_addrhead */ /* * Defer the release of what might be the last reference to the * in6_ifaddr so that it can't be freed before the remainder of the * cleanup. */ IN6_IFADDR_WLOCK(); CK_STAILQ_REMOVE(&V_in6_ifaddrhead, ia, in6_ifaddr, ia_link); CK_LIST_REMOVE(ia, ia6_hash); IN6_IFADDR_WUNLOCK(); /* * Release the reference to the base prefix. There should be a * positive reference. */ remove_lle = 0; if (ia->ia6_ndpr == NULL) { nd6log((LOG_NOTICE, "in6_unlink_ifa: autoconf'ed address " "%s has no prefix\n", ip6_sprintf(ip6buf, IA6_IN6(ia)))); } else { ia->ia6_ndpr->ndpr_addrcnt--; /* Do not delete lles within prefix if refcont != 0 */ if (ia->ia6_ndpr->ndpr_addrcnt == 0) remove_lle = 1; ia->ia6_ndpr = NULL; } nd6_rem_ifa_lle(ia, remove_lle); /* * Also, if the address being removed is autoconf'ed, call * pfxlist_onlink_check() since the release might affect the status of * other (detached) addresses. */ if ((ia->ia6_flags & IN6_IFF_AUTOCONF)) { pfxlist_onlink_check(); } ifa_free(&ia->ia_ifa); /* in6_ifaddrhead */ } /* * Notifies other subsystems about address change/arrival: * 1) Notifies device handler on the first IPv6 address assignment * 2) Handle routing table changes for P2P links and route * 3) Handle routing table changes for address host route */ static int in6_notify_ifa(struct ifnet *ifp, struct in6_ifaddr *ia, struct in6_aliasreq *ifra, int hostIsNew) { int error = 0, plen, ifacount = 0; struct ifaddr *ifa; struct sockaddr_in6 *pdst; char ip6buf[INET6_ADDRSTRLEN]; /* * Give the interface a chance to initialize * if this is its first address, */ if (hostIsNew != 0) { struct epoch_tracker et; NET_EPOCH_ENTER(et); CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { if (ifa->ifa_addr->sa_family != AF_INET6) continue; ifacount++; } NET_EPOCH_EXIT(et); } if (ifacount <= 1 && ifp->if_ioctl) { error = (*ifp->if_ioctl)(ifp, SIOCSIFADDR, (caddr_t)ia); if (error) goto done; } /* * If a new destination address is specified, scrub the old one and * install the new destination. Note that the interface must be * p2p or loopback. */ pdst = &ifra->ifra_dstaddr; if (pdst->sin6_family == AF_INET6 && !IN6_ARE_ADDR_EQUAL(&pdst->sin6_addr, &ia->ia_dstaddr.sin6_addr)) { if ((ia->ia_flags & IFA_ROUTE) != 0 && (in6_handle_dstaddr_rtrequest(RTM_DELETE, ia) != 0)) { nd6log((LOG_ERR, "in6_update_ifa_internal: failed to " "remove a route to the old destination: %s\n", ip6_sprintf(ip6buf, &ia->ia_addr.sin6_addr))); /* proceed anyway... */ } else ia->ia_flags &= ~IFA_ROUTE; ia->ia_dstaddr = *pdst; } /* * If a new destination address is specified for a point-to-point * interface, install a route to the destination as an interface * direct route. * XXX: the logic below rejects assigning multiple addresses on a p2p * interface that share the same destination. */ plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL); /* XXX */ if (!(ia->ia_flags & IFA_ROUTE) && plen == 128 && ia->ia_dstaddr.sin6_family == AF_INET6) { /* * Handle the case for ::1 . */ if (ifp->if_flags & IFF_LOOPBACK) ia->ia_flags |= IFA_RTSELF; error = in6_handle_dstaddr_rtrequest(RTM_ADD, ia); if (error) goto done; ia->ia_flags |= IFA_ROUTE; } /* * add a loopback route to self if not exists */ if (!(ia->ia_flags & IFA_RTSELF) && V_nd6_useloopback) { error = ifa_add_loopback_route((struct ifaddr *)ia, (struct sockaddr *)&ia->ia_addr); if (error == 0) ia->ia_flags |= IFA_RTSELF; } done: WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, "Invoking IPv6 network device address event may sleep"); ifa_ref(&ia->ia_ifa); EVENTHANDLER_INVOKE(ifaddr_event_ext, ifp, &ia->ia_ifa, IFADDR_EVENT_ADD); ifa_free(&ia->ia_ifa); return (error); } /* * Find an IPv6 interface link-local address specific to an interface. * ifaddr is returned referenced. */ struct in6_ifaddr * in6ifa_ifpforlinklocal(struct ifnet *ifp, int ignoreflags) { struct ifaddr *ifa; NET_EPOCH_ASSERT(); CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { if (ifa->ifa_addr->sa_family != AF_INET6) continue; if (IN6_IS_ADDR_LINKLOCAL(IFA_IN6(ifa))) { if ((((struct in6_ifaddr *)ifa)->ia6_flags & ignoreflags) != 0) continue; ifa_ref(ifa); break; } } return ((struct in6_ifaddr *)ifa); } /* * find the interface address corresponding to a given IPv6 address. * ifaddr is returned referenced. */ struct in6_ifaddr * in6ifa_ifwithaddr(const struct in6_addr *addr, uint32_t zoneid) { struct rm_priotracker in6_ifa_tracker; struct in6_ifaddr *ia; IN6_IFADDR_RLOCK(&in6_ifa_tracker); CK_LIST_FOREACH(ia, IN6ADDR_HASH(addr), ia6_hash) { if (IN6_ARE_ADDR_EQUAL(IA6_IN6(ia), addr)) { if (zoneid != 0 && zoneid != ia->ia_addr.sin6_scope_id) continue; ifa_ref(&ia->ia_ifa); break; } } IN6_IFADDR_RUNLOCK(&in6_ifa_tracker); return (ia); } /* * find the internet address corresponding to a given interface and address. * ifaddr is returned referenced. */ struct in6_ifaddr * in6ifa_ifpwithaddr(struct ifnet *ifp, const struct in6_addr *addr) { struct epoch_tracker et; struct ifaddr *ifa; NET_EPOCH_ENTER(et); CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { if (ifa->ifa_addr->sa_family != AF_INET6) continue; if (IN6_ARE_ADDR_EQUAL(addr, IFA_IN6(ifa))) { ifa_ref(ifa); break; } } NET_EPOCH_EXIT(et); return ((struct in6_ifaddr *)ifa); } /* * Find a link-local scoped address on ifp and return it if any. */ struct in6_ifaddr * in6ifa_llaonifp(struct ifnet *ifp) { struct epoch_tracker et; struct sockaddr_in6 *sin6; struct ifaddr *ifa; if (ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) return (NULL); NET_EPOCH_ENTER(et); CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { if (ifa->ifa_addr->sa_family != AF_INET6) continue; sin6 = (struct sockaddr_in6 *)ifa->ifa_addr; if (IN6_IS_SCOPE_LINKLOCAL(&sin6->sin6_addr) || IN6_IS_ADDR_MC_INTFACELOCAL(&sin6->sin6_addr) || IN6_IS_ADDR_MC_NODELOCAL(&sin6->sin6_addr)) break; } NET_EPOCH_EXIT(et); return ((struct in6_ifaddr *)ifa); } /* * Convert IP6 address to printable (loggable) representation. Caller * has to make sure that ip6buf is at least INET6_ADDRSTRLEN long. */ static char digits[] = "0123456789abcdef"; char * ip6_sprintf(char *ip6buf, const struct in6_addr *addr) { int i, cnt = 0, maxcnt = 0, idx = 0, index = 0; char *cp; const u_int16_t *a = (const u_int16_t *)addr; const u_int8_t *d; int dcolon = 0, zero = 0; cp = ip6buf; for (i = 0; i < 8; i++) { if (*(a + i) == 0) { cnt++; if (cnt == 1) idx = i; } else if (maxcnt < cnt) { maxcnt = cnt; index = idx; cnt = 0; } } if (maxcnt < cnt) { maxcnt = cnt; index = idx; } for (i = 0; i < 8; i++) { if (dcolon == 1) { if (*a == 0) { if (i == 7) *cp++ = ':'; a++; continue; } else dcolon = 2; } if (*a == 0) { if (dcolon == 0 && *(a + 1) == 0 && i == index) { if (i == 0) *cp++ = ':'; *cp++ = ':'; dcolon = 1; } else { *cp++ = '0'; *cp++ = ':'; } a++; continue; } d = (const u_char *)a; /* Try to eliminate leading zeros in printout like in :0001. */ zero = 1; *cp = digits[*d >> 4]; if (*cp != '0') { zero = 0; cp++; } *cp = digits[*d++ & 0xf]; if (zero == 0 || (*cp != '0')) { zero = 0; cp++; } *cp = digits[*d >> 4]; if (zero == 0 || (*cp != '0')) { zero = 0; cp++; } *cp++ = digits[*d & 0xf]; *cp++ = ':'; a++; } *--cp = '\0'; return (ip6buf); } int in6_localaddr(struct in6_addr *in6) { struct rm_priotracker in6_ifa_tracker; struct in6_ifaddr *ia; if (IN6_IS_ADDR_LOOPBACK(in6) || IN6_IS_ADDR_LINKLOCAL(in6)) return 1; IN6_IFADDR_RLOCK(&in6_ifa_tracker); CK_STAILQ_FOREACH(ia, &V_in6_ifaddrhead, ia_link) { if (IN6_ARE_MASKED_ADDR_EQUAL(in6, &ia->ia_addr.sin6_addr, &ia->ia_prefixmask.sin6_addr)) { IN6_IFADDR_RUNLOCK(&in6_ifa_tracker); return 1; } } IN6_IFADDR_RUNLOCK(&in6_ifa_tracker); return (0); } /* * Return 1 if an internet address is for the local host and configured * on one of its interfaces. */ int in6_localip(struct in6_addr *in6) { struct rm_priotracker in6_ifa_tracker; struct in6_ifaddr *ia; IN6_IFADDR_RLOCK(&in6_ifa_tracker); CK_LIST_FOREACH(ia, IN6ADDR_HASH(in6), ia6_hash) { if (IN6_ARE_ADDR_EQUAL(in6, &ia->ia_addr.sin6_addr)) { IN6_IFADDR_RUNLOCK(&in6_ifa_tracker); return (1); } } IN6_IFADDR_RUNLOCK(&in6_ifa_tracker); return (0); } /* * Return 1 if an internet address is configured on an interface. */ int in6_ifhasaddr(struct ifnet *ifp, struct in6_addr *addr) { struct in6_addr in6; struct ifaddr *ifa; struct in6_ifaddr *ia6; NET_EPOCH_ASSERT(); in6 = *addr; if (in6_clearscope(&in6)) return (0); in6_setscope(&in6, ifp, NULL); CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { if (ifa->ifa_addr->sa_family != AF_INET6) continue; ia6 = (struct in6_ifaddr *)ifa; if (IN6_ARE_ADDR_EQUAL(&ia6->ia_addr.sin6_addr, &in6)) return (1); } return (0); } int in6_is_addr_deprecated(struct sockaddr_in6 *sa6) { struct rm_priotracker in6_ifa_tracker; struct in6_ifaddr *ia; IN6_IFADDR_RLOCK(&in6_ifa_tracker); CK_LIST_FOREACH(ia, IN6ADDR_HASH(&sa6->sin6_addr), ia6_hash) { if (IN6_ARE_ADDR_EQUAL(IA6_IN6(ia), &sa6->sin6_addr)) { if (ia->ia6_flags & IN6_IFF_DEPRECATED) { IN6_IFADDR_RUNLOCK(&in6_ifa_tracker); return (1); /* true */ } break; } } IN6_IFADDR_RUNLOCK(&in6_ifa_tracker); return (0); /* false */ } /* * return length of part which dst and src are equal * hard coding... */ int in6_matchlen(struct in6_addr *src, struct in6_addr *dst) { int match = 0; u_char *s = (u_char *)src, *d = (u_char *)dst; u_char *lim = s + 16, r; while (s < lim) if ((r = (*d++ ^ *s++)) != 0) { while (r < 128) { match++; r <<= 1; } break; } else match += 8; return match; } /* XXX: to be scope conscious */ int in6_are_prefix_equal(struct in6_addr *p1, struct in6_addr *p2, int len) { int bytelen, bitlen; /* sanity check */ if (0 > len || len > 128) { log(LOG_ERR, "in6_are_prefix_equal: invalid prefix length(%d)\n", len); return (0); } bytelen = len / 8; bitlen = len % 8; if (bcmp(&p1->s6_addr, &p2->s6_addr, bytelen)) return (0); if (bitlen != 0 && p1->s6_addr[bytelen] >> (8 - bitlen) != p2->s6_addr[bytelen] >> (8 - bitlen)) return (0); return (1); } void in6_prefixlen2mask(struct in6_addr *maskp, int len) { u_char maskarray[8] = {0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, 0xff}; int bytelen, bitlen, i; /* sanity check */ if (0 > len || len > 128) { log(LOG_ERR, "in6_prefixlen2mask: invalid prefix length(%d)\n", len); return; } bzero(maskp, sizeof(*maskp)); bytelen = len / 8; bitlen = len % 8; for (i = 0; i < bytelen; i++) maskp->s6_addr[i] = 0xff; if (bitlen) maskp->s6_addr[bytelen] = maskarray[bitlen - 1]; } /* * return the best address out of the same scope. if no address was * found, return the first valid address from designated IF. */ struct in6_ifaddr * in6_ifawithifp(struct ifnet *ifp, struct in6_addr *dst) { int dst_scope = in6_addrscope(dst), blen = -1, tlen; struct ifaddr *ifa; struct in6_ifaddr *besta = NULL; struct in6_ifaddr *dep[2]; /* last-resort: deprecated */ NET_EPOCH_ASSERT(); dep[0] = dep[1] = NULL; /* * We first look for addresses in the same scope. * If there is one, return it. * If two or more, return one which matches the dst longest. * If none, return one of global addresses assigned other ifs. */ CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { if (ifa->ifa_addr->sa_family != AF_INET6) continue; if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_ANYCAST) continue; /* XXX: is there any case to allow anycast? */ if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_NOTREADY) continue; /* don't use this interface */ if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DETACHED) continue; if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DEPRECATED) { if (V_ip6_use_deprecated) dep[0] = (struct in6_ifaddr *)ifa; continue; } if (dst_scope == in6_addrscope(IFA_IN6(ifa))) { /* * call in6_matchlen() as few as possible */ if (besta) { if (blen == -1) blen = in6_matchlen(&besta->ia_addr.sin6_addr, dst); tlen = in6_matchlen(IFA_IN6(ifa), dst); if (tlen > blen) { blen = tlen; besta = (struct in6_ifaddr *)ifa; } } else besta = (struct in6_ifaddr *)ifa; } } - if (besta) { - ifa_ref(&besta->ia_ifa); + if (besta) return (besta); - } CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { if (ifa->ifa_addr->sa_family != AF_INET6) continue; if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_ANYCAST) continue; /* XXX: is there any case to allow anycast? */ if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_NOTREADY) continue; /* don't use this interface */ if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DETACHED) continue; if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DEPRECATED) { if (V_ip6_use_deprecated) dep[1] = (struct in6_ifaddr *)ifa; continue; } - if (ifa != NULL) - ifa_ref(ifa); return (struct in6_ifaddr *)ifa; } /* use the last-resort values, that are, deprecated addresses */ - if (dep[0]) { - ifa_ref((struct ifaddr *)dep[0]); + if (dep[0]) return dep[0]; - } - if (dep[1]) { - ifa_ref((struct ifaddr *)dep[1]); + if (dep[1]) return dep[1]; - } return NULL; } /* * perform DAD when interface becomes IFF_UP. */ void in6_if_up(struct ifnet *ifp) { struct epoch_tracker et; struct ifaddr *ifa; struct in6_ifaddr *ia; NET_EPOCH_ENTER(et); CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { if (ifa->ifa_addr->sa_family != AF_INET6) continue; ia = (struct in6_ifaddr *)ifa; if (ia->ia6_flags & IN6_IFF_TENTATIVE) { /* * The TENTATIVE flag was likely set by hand * beforehand, implicitly indicating the need for DAD. * We may be able to skip the random delay in this * case, but we impose delays just in case. */ nd6_dad_start(ifa, arc4random() % (MAX_RTR_SOLICITATION_DELAY * hz)); } } NET_EPOCH_EXIT(et); /* * special cases, like 6to4, are handled in in6_ifattach */ in6_ifattach(ifp, NULL); } int in6if_do_dad(struct ifnet *ifp) { if ((ifp->if_flags & IFF_LOOPBACK) != 0) return (0); if ((ifp->if_flags & IFF_MULTICAST) == 0) return (0); if ((ND_IFINFO(ifp)->flags & (ND6_IFF_IFDISABLED | ND6_IFF_NO_DAD)) != 0) return (0); return (1); } /* * Calculate max IPv6 MTU through all the interfaces and store it * to in6_maxmtu. */ void in6_setmaxmtu(void) { struct epoch_tracker et; unsigned long maxmtu = 0; struct ifnet *ifp; NET_EPOCH_ENTER(et); CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { /* this function can be called during ifnet initialization */ if (!ifp->if_afdata[AF_INET6]) continue; if ((ifp->if_flags & IFF_LOOPBACK) == 0 && IN6_LINKMTU(ifp) > maxmtu) maxmtu = IN6_LINKMTU(ifp); } NET_EPOCH_EXIT(et); if (maxmtu) /* update only when maxmtu is positive */ V_in6_maxmtu = maxmtu; } /* * Provide the length of interface identifiers to be used for the link attached * to the given interface. The length should be defined in "IPv6 over * xxx-link" document. Note that address architecture might also define * the length for a particular set of address prefixes, regardless of the * link type. As clarified in rfc2462bis, those two definitions should be * consistent, and those really are as of August 2004. */ int in6_if2idlen(struct ifnet *ifp) { switch (ifp->if_type) { case IFT_ETHER: /* RFC2464 */ case IFT_PROPVIRTUAL: /* XXX: no RFC. treat it as ether */ case IFT_L2VLAN: /* ditto */ case IFT_BRIDGE: /* bridge(4) only does Ethernet-like links */ case IFT_INFINIBAND: return (64); case IFT_PPP: /* RFC2472 */ return (64); case IFT_FRELAY: /* RFC2590 */ return (64); case IFT_IEEE1394: /* RFC3146 */ return (64); case IFT_GIF: return (64); /* draft-ietf-v6ops-mech-v2-07 */ case IFT_LOOP: return (64); /* XXX: is this really correct? */ default: /* * Unknown link type: * It might be controversial to use the today's common constant * of 64 for these cases unconditionally. For full compliance, * we should return an error in this case. On the other hand, * if we simply miss the standard for the link type or a new * standard is defined for a new link type, the IFID length * is very likely to be the common constant. As a compromise, * we always use the constant, but make an explicit notice * indicating the "unknown" case. */ printf("in6_if2idlen: unknown link type (%d)\n", ifp->if_type); return (64); } } struct in6_llentry { struct llentry base; }; #define IN6_LLTBL_DEFAULT_HSIZE 32 #define IN6_LLTBL_HASH(k, h) \ (((((((k >> 8) ^ k) >> 8) ^ k) >> 8) ^ k) & ((h) - 1)) /* * Do actual deallocation of @lle. */ static void in6_lltable_destroy_lle_unlocked(epoch_context_t ctx) { struct llentry *lle; lle = __containerof(ctx, struct llentry, lle_epoch_ctx); LLE_LOCK_DESTROY(lle); LLE_REQ_DESTROY(lle); free(lle, M_LLTABLE); } /* * Called by LLE_FREE_LOCKED when number of references * drops to zero. */ static void in6_lltable_destroy_lle(struct llentry *lle) { LLE_WUNLOCK(lle); NET_EPOCH_CALL(in6_lltable_destroy_lle_unlocked, &lle->lle_epoch_ctx); } static struct llentry * in6_lltable_new(const struct in6_addr *addr6, u_int flags) { struct in6_llentry *lle; lle = malloc(sizeof(struct in6_llentry), M_LLTABLE, M_NOWAIT | M_ZERO); if (lle == NULL) /* NB: caller generates msg */ return NULL; lle->base.r_l3addr.addr6 = *addr6; lle->base.lle_refcnt = 1; lle->base.lle_free = in6_lltable_destroy_lle; LLE_LOCK_INIT(&lle->base); LLE_REQ_INIT(&lle->base); callout_init(&lle->base.lle_timer, 1); return (&lle->base); } static int in6_lltable_match_prefix(const struct sockaddr *saddr, const struct sockaddr *smask, u_int flags, struct llentry *lle) { const struct in6_addr *addr, *mask, *lle_addr; addr = &((const struct sockaddr_in6 *)saddr)->sin6_addr; mask = &((const struct sockaddr_in6 *)smask)->sin6_addr; lle_addr = &lle->r_l3addr.addr6; if (IN6_ARE_MASKED_ADDR_EQUAL(lle_addr, addr, mask) == 0) return (0); if (lle->la_flags & LLE_IFADDR) { /* * Delete LLE_IFADDR records IFF address & flag matches. * Note that addr is the interface address within prefix * being matched. */ if (IN6_ARE_ADDR_EQUAL(addr, lle_addr) && (flags & LLE_STATIC) != 0) return (1); return (0); } /* flags & LLE_STATIC means deleting both dynamic and static entries */ if ((flags & LLE_STATIC) || !(lle->la_flags & LLE_STATIC)) return (1); return (0); } static void in6_lltable_free_entry(struct lltable *llt, struct llentry *lle) { struct ifnet *ifp; LLE_WLOCK_ASSERT(lle); KASSERT(llt != NULL, ("lltable is NULL")); /* Unlink entry from table */ if ((lle->la_flags & LLE_LINKED) != 0) { ifp = llt->llt_ifp; IF_AFDATA_WLOCK_ASSERT(ifp); lltable_unlink_entry(llt, lle); } llentry_free(lle); } static int in6_lltable_rtcheck(struct ifnet *ifp, u_int flags, const struct sockaddr *l3addr) { const struct sockaddr_in6 *sin6; struct nhop_object *nh; struct in6_addr dst; uint32_t scopeid; char ip6buf[INET6_ADDRSTRLEN]; int fibnum; NET_EPOCH_ASSERT(); KASSERT(l3addr->sa_family == AF_INET6, ("sin_family %d", l3addr->sa_family)); sin6 = (const struct sockaddr_in6 *)l3addr; in6_splitscope(&sin6->sin6_addr, &dst, &scopeid); fibnum = V_rt_add_addr_allfibs ? RT_DEFAULT_FIB : ifp->if_fib; nh = fib6_lookup(fibnum, &dst, scopeid, NHR_NONE, 0); if (nh && ((nh->nh_flags & NHF_GATEWAY) || nh->nh_ifp != ifp)) { struct ifaddr *ifa; /* * Create an ND6 cache for an IPv6 neighbor * that is not covered by our own prefix. */ ifa = ifaof_ifpforaddr(l3addr, ifp); if (ifa != NULL) { return 0; } log(LOG_INFO, "IPv6 address: \"%s\" is not on the network\n", ip6_sprintf(ip6buf, &sin6->sin6_addr)); return EINVAL; } return 0; } /* * Called by the datapath to indicate that the entry was used. */ static void in6_lltable_mark_used(struct llentry *lle) { LLE_REQ_LOCK(lle); lle->r_skip_req = 0; /* * Set the hit time so the callback function * can determine the remaining time before * transiting to the DELAY state. */ lle->lle_hittime = time_uptime; LLE_REQ_UNLOCK(lle); } static inline uint32_t in6_lltable_hash_dst(const struct in6_addr *dst, uint32_t hsize) { return (IN6_LLTBL_HASH(dst->s6_addr32[3], hsize)); } static uint32_t in6_lltable_hash(const struct llentry *lle, uint32_t hsize) { return (in6_lltable_hash_dst(&lle->r_l3addr.addr6, hsize)); } static void in6_lltable_fill_sa_entry(const struct llentry *lle, struct sockaddr *sa) { struct sockaddr_in6 *sin6; sin6 = (struct sockaddr_in6 *)sa; bzero(sin6, sizeof(*sin6)); sin6->sin6_family = AF_INET6; sin6->sin6_len = sizeof(*sin6); sin6->sin6_addr = lle->r_l3addr.addr6; } static inline struct llentry * in6_lltable_find_dst(struct lltable *llt, const struct in6_addr *dst) { struct llentry *lle; struct llentries *lleh; u_int hashidx; hashidx = in6_lltable_hash_dst(dst, llt->llt_hsize); lleh = &llt->lle_head[hashidx]; CK_LIST_FOREACH(lle, lleh, lle_next) { if (lle->la_flags & LLE_DELETED) continue; if (IN6_ARE_ADDR_EQUAL(&lle->r_l3addr.addr6, dst)) break; } return (lle); } static void in6_lltable_delete_entry(struct lltable *llt, struct llentry *lle) { lle->la_flags |= LLE_DELETED; EVENTHANDLER_INVOKE(lle_event, lle, LLENTRY_DELETED); #ifdef DIAGNOSTIC log(LOG_INFO, "ifaddr cache = %p is deleted\n", lle); #endif llentry_free(lle); } static struct llentry * in6_lltable_alloc(struct lltable *llt, u_int flags, const struct sockaddr *l3addr) { const struct sockaddr_in6 *sin6 = (const struct sockaddr_in6 *)l3addr; struct ifnet *ifp = llt->llt_ifp; struct llentry *lle; char linkhdr[LLE_MAX_LINKHDR]; size_t linkhdrsize; int lladdr_off; KASSERT(l3addr->sa_family == AF_INET6, ("sin_family %d", l3addr->sa_family)); /* * A route that covers the given address must have * been installed 1st because we are doing a resolution, * verify this. */ if (!(flags & LLE_IFADDR) && in6_lltable_rtcheck(ifp, flags, l3addr) != 0) return (NULL); lle = in6_lltable_new(&sin6->sin6_addr, flags); if (lle == NULL) { log(LOG_INFO, "lla_lookup: new lle malloc failed\n"); return (NULL); } lle->la_flags = flags; if ((flags & LLE_IFADDR) == LLE_IFADDR) { linkhdrsize = LLE_MAX_LINKHDR; if (lltable_calc_llheader(ifp, AF_INET6, IF_LLADDR(ifp), linkhdr, &linkhdrsize, &lladdr_off) != 0) { NET_EPOCH_CALL(in6_lltable_destroy_lle_unlocked, &lle->lle_epoch_ctx); return (NULL); } lltable_set_entry_addr(ifp, lle, linkhdr, linkhdrsize, lladdr_off); lle->la_flags |= LLE_STATIC; } if ((lle->la_flags & LLE_STATIC) != 0) lle->ln_state = ND6_LLINFO_REACHABLE; return (lle); } static struct llentry * in6_lltable_lookup(struct lltable *llt, u_int flags, const struct sockaddr *l3addr) { const struct sockaddr_in6 *sin6 = (const struct sockaddr_in6 *)l3addr; struct llentry *lle; IF_AFDATA_LOCK_ASSERT(llt->llt_ifp); KASSERT(l3addr->sa_family == AF_INET6, ("sin_family %d", l3addr->sa_family)); KASSERT((flags & (LLE_UNLOCKED | LLE_EXCLUSIVE)) != (LLE_UNLOCKED | LLE_EXCLUSIVE), ("wrong lle request flags: %#x", flags)); lle = in6_lltable_find_dst(llt, &sin6->sin6_addr); if (lle == NULL) return (NULL); if (flags & LLE_UNLOCKED) return (lle); if (flags & LLE_EXCLUSIVE) LLE_WLOCK(lle); else LLE_RLOCK(lle); /* * If the afdata lock is not held, the LLE may have been unlinked while * we were blocked on the LLE lock. Check for this case. */ if (__predict_false((lle->la_flags & LLE_LINKED) == 0)) { if (flags & LLE_EXCLUSIVE) LLE_WUNLOCK(lle); else LLE_RUNLOCK(lle); return (NULL); } return (lle); } static int in6_lltable_dump_entry(struct lltable *llt, struct llentry *lle, struct sysctl_req *wr) { struct ifnet *ifp = llt->llt_ifp; /* XXX stack use */ struct { struct rt_msghdr rtm; struct sockaddr_in6 sin6; /* * ndp.c assumes that sdl is word aligned */ #ifdef __LP64__ uint32_t pad; #endif struct sockaddr_dl sdl; } ndpc; struct sockaddr_dl *sdl; int error; bzero(&ndpc, sizeof(ndpc)); /* skip deleted entries */ if ((lle->la_flags & LLE_DELETED) == LLE_DELETED) return (0); /* Skip if jailed and not a valid IP of the prison. */ lltable_fill_sa_entry(lle, (struct sockaddr *)&ndpc.sin6); if (prison_if(wr->td->td_ucred, (struct sockaddr *)&ndpc.sin6) != 0) return (0); /* * produce a msg made of: * struct rt_msghdr; * struct sockaddr_in6 (IPv6) * struct sockaddr_dl; */ ndpc.rtm.rtm_msglen = sizeof(ndpc); ndpc.rtm.rtm_version = RTM_VERSION; ndpc.rtm.rtm_type = RTM_GET; ndpc.rtm.rtm_flags = RTF_UP; ndpc.rtm.rtm_addrs = RTA_DST | RTA_GATEWAY; sa6_recoverscope(&ndpc.sin6); /* publish */ if (lle->la_flags & LLE_PUB) ndpc.rtm.rtm_flags |= RTF_ANNOUNCE; sdl = &ndpc.sdl; sdl->sdl_family = AF_LINK; sdl->sdl_len = sizeof(*sdl); sdl->sdl_index = ifp->if_index; sdl->sdl_type = ifp->if_type; if ((lle->la_flags & LLE_VALID) == LLE_VALID) { sdl->sdl_alen = ifp->if_addrlen; bcopy(lle->ll_addr, LLADDR(sdl), ifp->if_addrlen); } else { sdl->sdl_alen = 0; bzero(LLADDR(sdl), ifp->if_addrlen); } if (lle->la_expire != 0) ndpc.rtm.rtm_rmx.rmx_expire = lle->la_expire + lle->lle_remtime / hz + time_second - time_uptime; ndpc.rtm.rtm_flags |= (RTF_HOST | RTF_LLDATA); if (lle->la_flags & LLE_STATIC) ndpc.rtm.rtm_flags |= RTF_STATIC; if (lle->la_flags & LLE_IFADDR) ndpc.rtm.rtm_flags |= RTF_PINNED; if (lle->ln_router != 0) ndpc.rtm.rtm_flags |= RTF_GATEWAY; ndpc.rtm.rtm_rmx.rmx_pksent = lle->la_asked; /* Store state in rmx_weight value */ ndpc.rtm.rtm_rmx.rmx_state = lle->ln_state; ndpc.rtm.rtm_index = ifp->if_index; error = SYSCTL_OUT(wr, &ndpc, sizeof(ndpc)); return (error); } static struct lltable * in6_lltattach(struct ifnet *ifp) { struct lltable *llt; llt = lltable_allocate_htbl(IN6_LLTBL_DEFAULT_HSIZE); llt->llt_af = AF_INET6; llt->llt_ifp = ifp; llt->llt_lookup = in6_lltable_lookup; llt->llt_alloc_entry = in6_lltable_alloc; llt->llt_delete_entry = in6_lltable_delete_entry; llt->llt_dump_entry = in6_lltable_dump_entry; llt->llt_hash = in6_lltable_hash; llt->llt_fill_sa_entry = in6_lltable_fill_sa_entry; llt->llt_free_entry = in6_lltable_free_entry; llt->llt_match_prefix = in6_lltable_match_prefix; llt->llt_mark_used = in6_lltable_mark_used; lltable_link(llt); return (llt); } void * in6_domifattach(struct ifnet *ifp) { struct in6_ifextra *ext; /* There are not IPv6-capable interfaces. */ switch (ifp->if_type) { case IFT_PFLOG: case IFT_PFSYNC: case IFT_USB: return (NULL); } ext = (struct in6_ifextra *)malloc(sizeof(*ext), M_IFADDR, M_WAITOK); bzero(ext, sizeof(*ext)); ext->in6_ifstat = malloc(sizeof(counter_u64_t) * sizeof(struct in6_ifstat) / sizeof(uint64_t), M_IFADDR, M_WAITOK); COUNTER_ARRAY_ALLOC(ext->in6_ifstat, sizeof(struct in6_ifstat) / sizeof(uint64_t), M_WAITOK); ext->icmp6_ifstat = malloc(sizeof(counter_u64_t) * sizeof(struct icmp6_ifstat) / sizeof(uint64_t), M_IFADDR, M_WAITOK); COUNTER_ARRAY_ALLOC(ext->icmp6_ifstat, sizeof(struct icmp6_ifstat) / sizeof(uint64_t), M_WAITOK); ext->nd_ifinfo = nd6_ifattach(ifp); ext->scope6_id = scope6_ifattach(ifp); ext->lltable = in6_lltattach(ifp); ext->mld_ifinfo = mld_domifattach(ifp); return ext; } int in6_domifmtu(struct ifnet *ifp) { if (ifp->if_afdata[AF_INET6] == NULL) return ifp->if_mtu; return (IN6_LINKMTU(ifp)); } void in6_domifdetach(struct ifnet *ifp, void *aux) { struct in6_ifextra *ext = (struct in6_ifextra *)aux; mld_domifdetach(ifp); scope6_ifdetach(ext->scope6_id); nd6_ifdetach(ifp, ext->nd_ifinfo); lltable_free(ext->lltable); COUNTER_ARRAY_FREE(ext->in6_ifstat, sizeof(struct in6_ifstat) / sizeof(uint64_t)); free(ext->in6_ifstat, M_IFADDR); COUNTER_ARRAY_FREE(ext->icmp6_ifstat, sizeof(struct icmp6_ifstat) / sizeof(uint64_t)); free(ext->icmp6_ifstat, M_IFADDR); free(ext, M_IFADDR); } /* * Convert sockaddr_in6 to sockaddr_in. Original sockaddr_in6 must be * v4 mapped addr or v4 compat addr */ void in6_sin6_2_sin(struct sockaddr_in *sin, struct sockaddr_in6 *sin6) { bzero(sin, sizeof(*sin)); sin->sin_len = sizeof(struct sockaddr_in); sin->sin_family = AF_INET; sin->sin_port = sin6->sin6_port; sin->sin_addr.s_addr = sin6->sin6_addr.s6_addr32[3]; } /* Convert sockaddr_in to sockaddr_in6 in v4 mapped addr format. */ void in6_sin_2_v4mapsin6(struct sockaddr_in *sin, struct sockaddr_in6 *sin6) { bzero(sin6, sizeof(*sin6)); sin6->sin6_len = sizeof(struct sockaddr_in6); sin6->sin6_family = AF_INET6; sin6->sin6_port = sin->sin_port; sin6->sin6_addr.s6_addr32[0] = 0; sin6->sin6_addr.s6_addr32[1] = 0; sin6->sin6_addr.s6_addr32[2] = IPV6_ADDR_INT32_SMP; sin6->sin6_addr.s6_addr32[3] = sin->sin_addr.s_addr; } /* Convert sockaddr_in6 into sockaddr_in. */ void in6_sin6_2_sin_in_sock(struct sockaddr *nam) { struct sockaddr_in *sin_p; struct sockaddr_in6 sin6; /* * Save original sockaddr_in6 addr and convert it * to sockaddr_in. */ sin6 = *(struct sockaddr_in6 *)nam; sin_p = (struct sockaddr_in *)nam; in6_sin6_2_sin(sin_p, &sin6); } /* Convert sockaddr_in into sockaddr_in6 in v4 mapped addr format. */ void in6_sin_2_v4mapsin6_in_sock(struct sockaddr **nam) { struct sockaddr_in *sin_p; struct sockaddr_in6 *sin6_p; sin6_p = malloc(sizeof *sin6_p, M_SONAME, M_WAITOK); sin_p = (struct sockaddr_in *)*nam; in6_sin_2_v4mapsin6(sin_p, sin6_p); free(*nam, M_SONAME); *nam = (struct sockaddr *)sin6_p; } diff --git a/sys/netinet6/ip6_output.c b/sys/netinet6/ip6_output.c index df1e9e6f2dcd..58334788b05b 100644 --- a/sys/netinet6/ip6_output.c +++ b/sys/netinet6/ip6_output.c @@ -1,3377 +1,3376 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the project nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $KAME: ip6_output.c,v 1.279 2002/01/26 06:12:30 jinmei Exp $ */ /*- * Copyright (c) 1982, 1986, 1988, 1990, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 */ #include __FBSDID("$FreeBSD$"); #include "opt_inet.h" #include "opt_inet6.h" #include "opt_ipsec.h" #include "opt_kern_tls.h" #include "opt_ratelimit.h" #include "opt_route.h" #include "opt_rss.h" #include "opt_sctp.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if defined(SCTP) || defined(SCTP_SUPPORT) #include #include #endif #include #include extern int in6_mcast_loop; struct ip6_exthdrs { struct mbuf *ip6e_ip6; struct mbuf *ip6e_hbh; struct mbuf *ip6e_dest1; struct mbuf *ip6e_rthdr; struct mbuf *ip6e_dest2; }; static MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options"); static int ip6_pcbopt(int, u_char *, int, struct ip6_pktopts **, struct ucred *, int); static int ip6_pcbopts(struct ip6_pktopts **, struct mbuf *, struct socket *, struct sockopt *); static int ip6_getpcbopt(struct inpcb *, int, struct sockopt *); static int ip6_setpktopt(int, u_char *, int, struct ip6_pktopts *, struct ucred *, int, int, int); static int ip6_copyexthdr(struct mbuf **, caddr_t, int); static int ip6_insertfraghdr(struct mbuf *, struct mbuf *, int, struct ip6_frag **); static int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t); static int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *); static int ip6_getpmtu(struct route_in6 *, int, struct ifnet *, const struct in6_addr *, u_long *, int *, u_int, u_int); static int ip6_calcmtu(struct ifnet *, const struct in6_addr *, u_long, u_long *, int *, u_int); static int ip6_getpmtu_ctl(u_int, const struct in6_addr *, u_long *); static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int); /* * Make an extension header from option data. hp is the source, * mp is the destination, and _ol is the optlen. */ #define MAKE_EXTHDR(hp, mp, _ol) \ do { \ if (hp) { \ struct ip6_ext *eh = (struct ip6_ext *)(hp); \ error = ip6_copyexthdr((mp), (caddr_t)(hp), \ ((eh)->ip6e_len + 1) << 3); \ if (error) \ goto freehdrs; \ (_ol) += (*(mp))->m_len; \ } \ } while (/*CONSTCOND*/ 0) /* * Form a chain of extension headers. * m is the extension header mbuf * mp is the previous mbuf in the chain * p is the next header * i is the type of option. */ #define MAKE_CHAIN(m, mp, p, i)\ do {\ if (m) {\ if (!hdrsplit) \ panic("%s:%d: assumption failed: "\ "hdr not split: hdrsplit %d exthdrs %p",\ __func__, __LINE__, hdrsplit, &exthdrs);\ *mtod((m), u_char *) = *(p);\ *(p) = (i);\ p = mtod((m), u_char *);\ (m)->m_next = (mp)->m_next;\ (mp)->m_next = (m);\ (mp) = (m);\ }\ } while (/*CONSTCOND*/ 0) void in6_delayed_cksum(struct mbuf *m, uint32_t plen, u_short offset) { u_short csum; csum = in_cksum_skip(m, offset + plen, offset); if (m->m_pkthdr.csum_flags & CSUM_UDP_IPV6 && csum == 0) csum = 0xffff; offset += m->m_pkthdr.csum_data; /* checksum offset */ if (offset + sizeof(csum) > m->m_len) m_copyback(m, offset, sizeof(csum), (caddr_t)&csum); else *(u_short *)mtodo(m, offset) = csum; } static int ip6_output_delayed_csum(struct mbuf *m, struct ifnet *ifp, int csum_flags, int plen, int optlen, bool frag) { KASSERT((plen >= optlen), ("%s:%d: plen %d < optlen %d, m %p, ifp %p " "csum_flags %#x frag %d\n", __func__, __LINE__, plen, optlen, m, ifp, csum_flags, frag)); if ((csum_flags & CSUM_DELAY_DATA_IPV6) || #if defined(SCTP) || defined(SCTP_SUPPORT) (csum_flags & CSUM_SCTP_IPV6) || #endif (!frag && (ifp->if_capenable & IFCAP_MEXTPG) == 0)) { m = mb_unmapped_to_ext(m); if (m == NULL) { if (frag) in6_ifstat_inc(ifp, ifs6_out_fragfail); else IP6STAT_INC(ip6s_odropped); return (ENOBUFS); } if (csum_flags & CSUM_DELAY_DATA_IPV6) { in6_delayed_cksum(m, plen - optlen, sizeof(struct ip6_hdr) + optlen); m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6; } #if defined(SCTP) || defined(SCTP_SUPPORT) if (csum_flags & CSUM_SCTP_IPV6) { sctp_delayed_cksum(m, sizeof(struct ip6_hdr) + optlen); m->m_pkthdr.csum_flags &= ~CSUM_SCTP_IPV6; } #endif } return (0); } int ip6_fragment(struct ifnet *ifp, struct mbuf *m0, int hlen, u_char nextproto, int fraglen , uint32_t id) { struct mbuf *m, **mnext, *m_frgpart; struct ip6_hdr *ip6, *mhip6; struct ip6_frag *ip6f; int off; int error; int tlen = m0->m_pkthdr.len; KASSERT((fraglen % 8 == 0), ("Fragment length must be a multiple of 8")); m = m0; ip6 = mtod(m, struct ip6_hdr *); mnext = &m->m_nextpkt; for (off = hlen; off < tlen; off += fraglen) { m = m_gethdr(M_NOWAIT, MT_DATA); if (!m) { IP6STAT_INC(ip6s_odropped); return (ENOBUFS); } /* * Make sure the complete packet header gets copied * from the originating mbuf to the newly created * mbuf. This also ensures that existing firewall * classification(s), VLAN tags and so on get copied * to the resulting fragmented packet(s): */ if (m_dup_pkthdr(m, m0, M_NOWAIT) == 0) { m_free(m); IP6STAT_INC(ip6s_odropped); return (ENOBUFS); } *mnext = m; mnext = &m->m_nextpkt; m->m_data += max_linkhdr; mhip6 = mtod(m, struct ip6_hdr *); *mhip6 = *ip6; m->m_len = sizeof(*mhip6); error = ip6_insertfraghdr(m0, m, hlen, &ip6f); if (error) { IP6STAT_INC(ip6s_odropped); return (error); } ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7)); if (off + fraglen >= tlen) fraglen = tlen - off; else ip6f->ip6f_offlg |= IP6F_MORE_FRAG; mhip6->ip6_plen = htons((u_short)(fraglen + hlen + sizeof(*ip6f) - sizeof(struct ip6_hdr))); if ((m_frgpart = m_copym(m0, off, fraglen, M_NOWAIT)) == NULL) { IP6STAT_INC(ip6s_odropped); return (ENOBUFS); } m_cat(m, m_frgpart); m->m_pkthdr.len = fraglen + hlen + sizeof(*ip6f); ip6f->ip6f_reserved = 0; ip6f->ip6f_ident = id; ip6f->ip6f_nxt = nextproto; IP6STAT_INC(ip6s_ofragments); in6_ifstat_inc(ifp, ifs6_out_fragcreat); } return (0); } static int ip6_output_send(struct inpcb *inp, struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m, struct sockaddr_in6 *dst, struct route_in6 *ro, bool stamp_tag) { #ifdef KERN_TLS struct ktls_session *tls = NULL; #endif struct m_snd_tag *mst; int error; MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0); mst = NULL; #ifdef KERN_TLS /* * If this is an unencrypted TLS record, save a reference to * the record. This local reference is used to call * ktls_output_eagain after the mbuf has been freed (thus * dropping the mbuf's reference) in if_output. */ if (m->m_next != NULL && mbuf_has_tls_session(m->m_next)) { tls = ktls_hold(m->m_next->m_epg_tls); mst = tls->snd_tag; /* * If a TLS session doesn't have a valid tag, it must * have had an earlier ifp mismatch, so drop this * packet. */ if (mst == NULL) { error = EAGAIN; goto done; } /* * Always stamp tags that include NIC ktls. */ stamp_tag = true; } #endif #ifdef RATELIMIT if (inp != NULL && mst == NULL) { if ((inp->inp_flags2 & INP_RATE_LIMIT_CHANGED) != 0 || (inp->inp_snd_tag != NULL && inp->inp_snd_tag->ifp != ifp)) in_pcboutput_txrtlmt(inp, ifp, m); if (inp->inp_snd_tag != NULL) mst = inp->inp_snd_tag; } #endif if (stamp_tag && mst != NULL) { KASSERT(m->m_pkthdr.rcvif == NULL, ("trying to add a send tag to a forwarded packet")); if (mst->ifp != ifp) { error = EAGAIN; goto done; } /* stamp send tag on mbuf */ m->m_pkthdr.snd_tag = m_snd_tag_ref(mst); m->m_pkthdr.csum_flags |= CSUM_SND_TAG; } error = nd6_output_ifp(ifp, origifp, m, dst, (struct route *)ro); done: /* Check for route change invalidating send tags. */ #ifdef KERN_TLS if (tls != NULL) { if (error == EAGAIN) error = ktls_output_eagain(inp, tls); ktls_free(tls); } #endif #ifdef RATELIMIT if (error == EAGAIN) in_pcboutput_eagain(inp); #endif return (error); } /* * IP6 output. * The packet in mbuf chain m contains a skeletal IP6 header (with pri, len, * nxt, hlim, src, dst). * This function may modify ver and hlim only. * The mbuf chain containing the packet will be freed. * The mbuf opt, if present, will not be freed. * If route_in6 ro is present and has ro_nh initialized, route lookup would be * skipped and ro->ro_nh would be used. If ro is present but ro->ro_nh is NULL, * then result of route lookup is stored in ro->ro_nh. * * Type of "mtu": rt_mtu is u_long, ifnet.ifr_mtu is int, and nd_ifinfo.linkmtu * is uint32_t. So we use u_long to hold largest one, which is rt_mtu. * * ifpp - XXX: just for statistics */ int ip6_output(struct mbuf *m0, struct ip6_pktopts *opt, struct route_in6 *ro, int flags, struct ip6_moptions *im6o, struct ifnet **ifpp, struct inpcb *inp) { struct ip6_hdr *ip6; struct ifnet *ifp, *origifp; struct mbuf *m = m0; struct mbuf *mprev; struct route_in6 *ro_pmtu; struct nhop_object *nh; struct sockaddr_in6 *dst, sin6, src_sa, dst_sa; struct in6_addr odst; u_char *nexthdrp; int tlen, len; int error = 0; int vlan_pcp = -1; struct in6_ifaddr *ia = NULL; u_long mtu; int alwaysfrag, dontfrag; u_int32_t optlen, plen = 0, unfragpartlen; struct ip6_exthdrs exthdrs; struct in6_addr src0, dst0; u_int32_t zone; bool hdrsplit; int sw_csum, tso; int needfiblookup; uint32_t fibnum; struct m_tag *fwd_tag = NULL; uint32_t id; NET_EPOCH_ASSERT(); if (inp != NULL) { INP_LOCK_ASSERT(inp); M_SETFIB(m, inp->inp_inc.inc_fibnum); if ((flags & IP_NODEFAULTFLOWID) == 0) { /* Unconditionally set flowid. */ m->m_pkthdr.flowid = inp->inp_flowid; M_HASHTYPE_SET(m, inp->inp_flowtype); } if ((inp->inp_flags2 & INP_2PCP_SET) != 0) vlan_pcp = (inp->inp_flags2 & INP_2PCP_MASK) >> INP_2PCP_SHIFT; #ifdef NUMA m->m_pkthdr.numa_domain = inp->inp_numa_domain; #endif } #if defined(IPSEC) || defined(IPSEC_SUPPORT) /* * IPSec checking which handles several cases. * FAST IPSEC: We re-injected the packet. * XXX: need scope argument. */ if (IPSEC_ENABLED(ipv6)) { if ((error = IPSEC_OUTPUT(ipv6, m, inp)) != 0) { if (error == EINPROGRESS) error = 0; goto done; } } #endif /* IPSEC */ /* Source address validation. */ ip6 = mtod(m, struct ip6_hdr *); if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) && (flags & IPV6_UNSPECSRC) == 0) { error = EOPNOTSUPP; IP6STAT_INC(ip6s_badscope); goto bad; } if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) { error = EOPNOTSUPP; IP6STAT_INC(ip6s_badscope); goto bad; } /* * If we are given packet options to add extension headers prepare them. * Calculate the total length of the extension header chain. * Keep the length of the unfragmentable part for fragmentation. */ bzero(&exthdrs, sizeof(exthdrs)); optlen = 0; unfragpartlen = sizeof(struct ip6_hdr); if (opt) { /* Hop-by-Hop options header. */ MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh, optlen); /* Destination options header (1st part). */ if (opt->ip6po_rthdr) { #ifndef RTHDR_SUPPORT_IMPLEMENTED /* * If there is a routing header, discard the packet * right away here. RH0/1 are obsolete and we do not * currently support RH2/3/4. * People trying to use RH253/254 may want to disable * this check. * The moment we do support any routing header (again) * this block should check the routing type more * selectively. */ error = EINVAL; goto bad; #endif /* * Destination options header (1st part). * This only makes sense with a routing header. * See Section 9.2 of RFC 3542. * Disabling this part just for MIP6 convenience is * a bad idea. We need to think carefully about a * way to make the advanced API coexist with MIP6 * options, which might automatically be inserted in * the kernel. */ MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1, optlen); } /* Routing header. */ MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr, optlen); unfragpartlen += optlen; /* * NOTE: we don't add AH/ESP length here (done in * ip6_ipsec_output()). */ /* Destination options header (2nd part). */ MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2, optlen); } /* * If there is at least one extension header, * separate IP6 header from the payload. */ hdrsplit = false; if (optlen) { if ((error = ip6_splithdr(m, &exthdrs)) != 0) { m = NULL; goto freehdrs; } m = exthdrs.ip6e_ip6; ip6 = mtod(m, struct ip6_hdr *); hdrsplit = true; } /* Adjust mbuf packet header length. */ m->m_pkthdr.len += optlen; plen = m->m_pkthdr.len - sizeof(*ip6); /* If this is a jumbo payload, insert a jumbo payload option. */ if (plen > IPV6_MAXPACKET) { if (!hdrsplit) { if ((error = ip6_splithdr(m, &exthdrs)) != 0) { m = NULL; goto freehdrs; } m = exthdrs.ip6e_ip6; ip6 = mtod(m, struct ip6_hdr *); hdrsplit = true; } if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0) goto freehdrs; ip6->ip6_plen = 0; } else ip6->ip6_plen = htons(plen); nexthdrp = &ip6->ip6_nxt; if (optlen) { /* * Concatenate headers and fill in next header fields. * Here we have, on "m" * IPv6 payload * and we insert headers accordingly. * Finally, we should be getting: * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload]. * * During the header composing process "m" points to IPv6 * header. "mprev" points to an extension header prior to esp. */ mprev = m; /* * We treat dest2 specially. This makes IPsec processing * much easier. The goal here is to make mprev point the * mbuf prior to dest2. * * Result: IPv6 dest2 payload. * m and mprev will point to IPv6 header. */ if (exthdrs.ip6e_dest2) { if (!hdrsplit) panic("%s:%d: assumption failed: " "hdr not split: hdrsplit %d exthdrs %p", __func__, __LINE__, hdrsplit, &exthdrs); exthdrs.ip6e_dest2->m_next = m->m_next; m->m_next = exthdrs.ip6e_dest2; *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt; ip6->ip6_nxt = IPPROTO_DSTOPTS; } /* * Result: IPv6 hbh dest1 rthdr dest2 payload. * m will point to IPv6 header. mprev will point to the * extension header prior to dest2 (rthdr in the above case). */ MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS); MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp, IPPROTO_DSTOPTS); MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp, IPPROTO_ROUTING); } IP6STAT_INC(ip6s_localout); /* Route packet. */ ro_pmtu = ro; if (opt && opt->ip6po_rthdr) ro = &opt->ip6po_route; if (ro != NULL) dst = (struct sockaddr_in6 *)&ro->ro_dst; else dst = &sin6; fibnum = (inp != NULL) ? inp->inp_inc.inc_fibnum : M_GETFIB(m); again: /* * If specified, try to fill in the traffic class field. * Do not override if a non-zero value is already set. * We check the diffserv field and the ECN field separately. */ if (opt && opt->ip6po_tclass >= 0) { int mask = 0; if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0) mask |= 0xfc; if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0) mask |= 0x03; if (mask != 0) ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20); } /* Fill in or override the hop limit field, if necessary. */ if (opt && opt->ip6po_hlim != -1) ip6->ip6_hlim = opt->ip6po_hlim & 0xff; else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { if (im6o != NULL) ip6->ip6_hlim = im6o->im6o_multicast_hlim; else ip6->ip6_hlim = V_ip6_defmcasthlim; } if (ro == NULL || ro->ro_nh == NULL) { bzero(dst, sizeof(*dst)); dst->sin6_family = AF_INET6; dst->sin6_len = sizeof(*dst); dst->sin6_addr = ip6->ip6_dst; } /* * Validate route against routing table changes. * Make sure that the address family is set in route. */ nh = NULL; ifp = NULL; mtu = 0; if (ro != NULL) { if (ro->ro_nh != NULL && inp != NULL) { ro->ro_dst.sin6_family = AF_INET6; /* XXX KASSERT? */ NH_VALIDATE((struct route *)ro, &inp->inp_rt_cookie, fibnum); } if (ro->ro_nh != NULL && fwd_tag == NULL && (!NH_IS_VALID(ro->ro_nh) || ro->ro_dst.sin6_family != AF_INET6 || !IN6_ARE_ADDR_EQUAL(&ro->ro_dst.sin6_addr, &ip6->ip6_dst))) RO_INVALIDATE_CACHE(ro); if (ro->ro_nh != NULL && fwd_tag == NULL && ro->ro_dst.sin6_family == AF_INET6 && IN6_ARE_ADDR_EQUAL(&ro->ro_dst.sin6_addr, &ip6->ip6_dst)) { nh = ro->ro_nh; ifp = nh->nh_ifp; } else { if (ro->ro_lle) LLE_FREE(ro->ro_lle); /* zeros ro_lle */ ro->ro_lle = NULL; if (fwd_tag == NULL) { bzero(&dst_sa, sizeof(dst_sa)); dst_sa.sin6_family = AF_INET6; dst_sa.sin6_len = sizeof(dst_sa); dst_sa.sin6_addr = ip6->ip6_dst; } error = in6_selectroute(&dst_sa, opt, im6o, ro, &ifp, &nh, fibnum, m->m_pkthdr.flowid); if (error != 0) { IP6STAT_INC(ip6s_noroute); if (ifp != NULL) in6_ifstat_inc(ifp, ifs6_out_discard); goto bad; } if (ifp != NULL) mtu = ifp->if_mtu; } if (nh == NULL) { /* * If in6_selectroute() does not return a nexthop * dst may not have been updated. */ *dst = dst_sa; /* XXX */ } else { if (nh->nh_flags & NHF_HOST) mtu = nh->nh_mtu; ia = (struct in6_ifaddr *)(nh->nh_ifa); counter_u64_add(nh->nh_pksent, 1); } } else { struct nhop_object *nh; struct in6_addr kdst; uint32_t scopeid; if (fwd_tag == NULL) { bzero(&dst_sa, sizeof(dst_sa)); dst_sa.sin6_family = AF_INET6; dst_sa.sin6_len = sizeof(dst_sa); dst_sa.sin6_addr = ip6->ip6_dst; } if (IN6_IS_ADDR_MULTICAST(&dst_sa.sin6_addr) && im6o != NULL && (ifp = im6o->im6o_multicast_ifp) != NULL) { /* We do not need a route lookup. */ *dst = dst_sa; /* XXX */ goto nonh6lookup; } in6_splitscope(&dst_sa.sin6_addr, &kdst, &scopeid); if (IN6_IS_ADDR_MC_LINKLOCAL(&dst_sa.sin6_addr) || IN6_IS_ADDR_MC_NODELOCAL(&dst_sa.sin6_addr)) { if (scopeid > 0) { ifp = in6_getlinkifnet(scopeid); if (ifp == NULL) { error = EHOSTUNREACH; goto bad; } *dst = dst_sa; /* XXX */ goto nonh6lookup; } } nh = fib6_lookup(fibnum, &kdst, scopeid, NHR_NONE, m->m_pkthdr.flowid); if (nh == NULL) { IP6STAT_INC(ip6s_noroute); /* No ifp in6_ifstat_inc(ifp, ifs6_out_discard); */ error = EHOSTUNREACH;; goto bad; } ifp = nh->nh_ifp; mtu = nh->nh_mtu; ia = ifatoia6(nh->nh_ifa); if (nh->nh_flags & NHF_GATEWAY) dst->sin6_addr = nh->gw6_sa.sin6_addr; nonh6lookup: ; } /* Then nh (for unicast) and ifp must be non-NULL valid values. */ if ((flags & IPV6_FORWARDING) == 0) { /* XXX: the FORWARDING flag can be set for mrouting. */ in6_ifstat_inc(ifp, ifs6_out_request); } /* Setup data structures for scope ID checks. */ src0 = ip6->ip6_src; bzero(&src_sa, sizeof(src_sa)); src_sa.sin6_family = AF_INET6; src_sa.sin6_len = sizeof(src_sa); src_sa.sin6_addr = ip6->ip6_src; dst0 = ip6->ip6_dst; /* Re-initialize to be sure. */ bzero(&dst_sa, sizeof(dst_sa)); dst_sa.sin6_family = AF_INET6; dst_sa.sin6_len = sizeof(dst_sa); dst_sa.sin6_addr = ip6->ip6_dst; /* Check for valid scope ID. */ if (in6_setscope(&src0, ifp, &zone) == 0 && sa6_recoverscope(&src_sa) == 0 && zone == src_sa.sin6_scope_id && in6_setscope(&dst0, ifp, &zone) == 0 && sa6_recoverscope(&dst_sa) == 0 && zone == dst_sa.sin6_scope_id) { /* * The outgoing interface is in the zone of the source * and destination addresses. * * Because the loopback interface cannot receive * packets with a different scope ID than its own, * there is a trick to pretend the outgoing packet * was received by the real network interface, by * setting "origifp" different from "ifp". This is * only allowed when "ifp" is a loopback network * interface. Refer to code in nd6_output_ifp() for * more details. */ origifp = ifp; /* * We should use ia_ifp to support the case of sending * packets to an address of our own. */ if (ia != NULL && ia->ia_ifp) ifp = ia->ia_ifp; } else if ((ifp->if_flags & IFF_LOOPBACK) == 0 || sa6_recoverscope(&src_sa) != 0 || sa6_recoverscope(&dst_sa) != 0 || dst_sa.sin6_scope_id == 0 || (src_sa.sin6_scope_id != 0 && src_sa.sin6_scope_id != dst_sa.sin6_scope_id) || (origifp = ifnet_byindex(dst_sa.sin6_scope_id)) == NULL) { /* * If the destination network interface is not a * loopback interface, or the destination network * address has no scope ID, or the source address has * a scope ID set which is different from the * destination address one, or there is no network * interface representing this scope ID, the address * pair is considered invalid. */ IP6STAT_INC(ip6s_badscope); in6_ifstat_inc(ifp, ifs6_out_discard); if (error == 0) error = EHOSTUNREACH; /* XXX */ goto bad; } /* All scope ID checks are successful. */ if (nh && !IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { if (opt && opt->ip6po_nextroute.ro_nh) { /* * The nexthop is explicitly specified by the * application. We assume the next hop is an IPv6 * address. */ dst = (struct sockaddr_in6 *)opt->ip6po_nexthop; } else if ((nh->nh_flags & NHF_GATEWAY)) dst = &nh->gw6_sa; } if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { m->m_flags &= ~(M_BCAST | M_MCAST); /* Just in case. */ } else { m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST; in6_ifstat_inc(ifp, ifs6_out_mcast); /* Confirm that the outgoing interface supports multicast. */ if (!(ifp->if_flags & IFF_MULTICAST)) { IP6STAT_INC(ip6s_noroute); in6_ifstat_inc(ifp, ifs6_out_discard); error = ENETUNREACH; goto bad; } if ((im6o == NULL && in6_mcast_loop) || (im6o && im6o->im6o_multicast_loop)) { /* * Loop back multicast datagram if not expressly * forbidden to do so, even if we have not joined * the address; protocols will filter it later, * thus deferring a hash lookup and lock acquisition * at the expense of an m_copym(). */ ip6_mloopback(ifp, m); } else { /* * If we are acting as a multicast router, perform * multicast forwarding as if the packet had just * arrived on the interface to which we are about * to send. The multicast forwarding function * recursively calls this function, using the * IPV6_FORWARDING flag to prevent infinite recursion. * * Multicasts that are looped back by ip6_mloopback(), * above, will be forwarded by the ip6_input() routine, * if necessary. */ if (V_ip6_mrouter && (flags & IPV6_FORWARDING) == 0) { /* * XXX: ip6_mforward expects that rcvif is NULL * when it is called from the originating path. * However, it may not always be the case. */ m->m_pkthdr.rcvif = NULL; if (ip6_mforward(ip6, ifp, m) != 0) { m_freem(m); goto done; } } } /* * Multicasts with a hoplimit of zero may be looped back, * above, but must not be transmitted on a network. * Also, multicasts addressed to the loopback interface * are not sent -- the above call to ip6_mloopback() will * loop back a copy if this host actually belongs to the * destination group on the loopback interface. */ if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) || IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) { m_freem(m); goto done; } } /* * Fill the outgoing inteface to tell the upper layer * to increment per-interface statistics. */ if (ifpp) *ifpp = ifp; /* Determine path MTU. */ if ((error = ip6_getpmtu(ro_pmtu, ro != ro_pmtu, ifp, &ip6->ip6_dst, &mtu, &alwaysfrag, fibnum, *nexthdrp)) != 0) goto bad; KASSERT(mtu > 0, ("%s:%d: mtu %ld, ro_pmtu %p ro %p ifp %p " "alwaysfrag %d fibnum %u\n", __func__, __LINE__, mtu, ro_pmtu, ro, ifp, alwaysfrag, fibnum)); /* * The caller of this function may specify to use the minimum MTU * in some cases. * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU * setting. The logic is a bit complicated; by default, unicast * packets will follow path MTU while multicast packets will be sent at * the minimum MTU. If IP6PO_MINMTU_ALL is specified, all packets * including unicast ones will be sent at the minimum MTU. Multicast * packets will always be sent at the minimum MTU unless * IP6PO_MINMTU_DISABLE is explicitly specified. * See RFC 3542 for more details. */ if (mtu > IPV6_MMTU) { if ((flags & IPV6_MINMTU)) mtu = IPV6_MMTU; else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL) mtu = IPV6_MMTU; else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) && (opt == NULL || opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) { mtu = IPV6_MMTU; } } /* * Clear embedded scope identifiers if necessary. * in6_clearscope() will touch the addresses only when necessary. */ in6_clearscope(&ip6->ip6_src); in6_clearscope(&ip6->ip6_dst); /* * If the outgoing packet contains a hop-by-hop options header, * it must be examined and processed even by the source node. * (RFC 2460, section 4.) */ if (exthdrs.ip6e_hbh) { struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *); u_int32_t dummy; /* XXX unused */ u_int32_t plen = 0; /* XXX: ip6_process will check the value */ #ifdef DIAGNOSTIC if ((hbh->ip6h_len + 1) << 3 > exthdrs.ip6e_hbh->m_len) panic("ip6e_hbh is not contiguous"); #endif /* * XXX: if we have to send an ICMPv6 error to the sender, * we need the M_LOOP flag since icmp6_error() expects * the IPv6 and the hop-by-hop options header are * contiguous unless the flag is set. */ m->m_flags |= M_LOOP; m->m_pkthdr.rcvif = ifp; if (ip6_process_hopopts(m, (u_int8_t *)(hbh + 1), ((hbh->ip6h_len + 1) << 3) - sizeof(struct ip6_hbh), &dummy, &plen) < 0) { /* m was already freed at this point. */ error = EINVAL;/* better error? */ goto done; } m->m_flags &= ~M_LOOP; /* XXX */ m->m_pkthdr.rcvif = NULL; } /* Jump over all PFIL processing if hooks are not active. */ if (!PFIL_HOOKED_OUT(V_inet6_pfil_head)) goto passout; odst = ip6->ip6_dst; /* Run through list of hooks for output packets. */ switch (pfil_run_hooks(V_inet6_pfil_head, &m, ifp, PFIL_OUT, inp)) { case PFIL_PASS: ip6 = mtod(m, struct ip6_hdr *); break; case PFIL_DROPPED: error = EACCES; /* FALLTHROUGH */ case PFIL_CONSUMED: goto done; } needfiblookup = 0; /* See if destination IP address was changed by packet filter. */ if (!IN6_ARE_ADDR_EQUAL(&odst, &ip6->ip6_dst)) { m->m_flags |= M_SKIP_FIREWALL; /* If destination is now ourself drop to ip6_input(). */ if (in6_localip(&ip6->ip6_dst)) { m->m_flags |= M_FASTFWD_OURS; if (m->m_pkthdr.rcvif == NULL) m->m_pkthdr.rcvif = V_loif; if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { m->m_pkthdr.csum_flags |= CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR; m->m_pkthdr.csum_data = 0xffff; } #if defined(SCTP) || defined(SCTP_SUPPORT) if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; #endif error = netisr_queue(NETISR_IPV6, m); goto done; } else { if (ro != NULL) RO_INVALIDATE_CACHE(ro); needfiblookup = 1; /* Redo the routing table lookup. */ } } /* See if fib was changed by packet filter. */ if (fibnum != M_GETFIB(m)) { m->m_flags |= M_SKIP_FIREWALL; fibnum = M_GETFIB(m); if (ro != NULL) RO_INVALIDATE_CACHE(ro); needfiblookup = 1; } if (needfiblookup) goto again; /* See if local, if yes, send it to netisr. */ if (m->m_flags & M_FASTFWD_OURS) { if (m->m_pkthdr.rcvif == NULL) m->m_pkthdr.rcvif = V_loif; if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { m->m_pkthdr.csum_flags |= CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR; m->m_pkthdr.csum_data = 0xffff; } #if defined(SCTP) || defined(SCTP_SUPPORT) if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; #endif error = netisr_queue(NETISR_IPV6, m); goto done; } /* Or forward to some other address? */ if ((m->m_flags & M_IP6_NEXTHOP) && (fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL) { if (ro != NULL) dst = (struct sockaddr_in6 *)&ro->ro_dst; else dst = &sin6; bcopy((fwd_tag+1), &dst_sa, sizeof(struct sockaddr_in6)); m->m_flags |= M_SKIP_FIREWALL; m->m_flags &= ~M_IP6_NEXTHOP; m_tag_delete(m, fwd_tag); goto again; } passout: if (vlan_pcp > -1) EVL_APPLY_PRI(m, vlan_pcp); /* * Send the packet to the outgoing interface. * If necessary, do IPv6 fragmentation before sending. * * The logic here is rather complex: * 1: normal case (dontfrag == 0, alwaysfrag == 0) * 1-a: send as is if tlen <= path mtu * 1-b: fragment if tlen > path mtu * * 2: if user asks us not to fragment (dontfrag == 1) * 2-a: send as is if tlen <= interface mtu * 2-b: error if tlen > interface mtu * * 3: if we always need to attach fragment header (alwaysfrag == 1) * always fragment * * 4: if dontfrag == 1 && alwaysfrag == 1 * error, as we cannot handle this conflicting request. */ sw_csum = m->m_pkthdr.csum_flags; if (!hdrsplit) { tso = ((sw_csum & ifp->if_hwassist & (CSUM_TSO | CSUM_INNER_TSO)) != 0) ? 1 : 0; sw_csum &= ~ifp->if_hwassist; } else tso = 0; /* * If we added extension headers, we will not do TSO and calculate the * checksums ourselves for now. * XXX-BZ Need a framework to know when the NIC can handle it, even * with ext. hdrs. */ error = ip6_output_delayed_csum(m, ifp, sw_csum, plen, optlen, false); if (error != 0) goto bad; /* XXX-BZ m->m_pkthdr.csum_flags &= ~ifp->if_hwassist; */ tlen = m->m_pkthdr.len; if ((opt && (opt->ip6po_flags & IP6PO_DONTFRAG)) || tso) dontfrag = 1; else dontfrag = 0; if (dontfrag && alwaysfrag) { /* Case 4. */ /* Conflicting request - can't transmit. */ error = EMSGSIZE; goto bad; } if (dontfrag && tlen > IN6_LINKMTU(ifp) && !tso) { /* Case 2-b. */ /* * Even if the DONTFRAG option is specified, we cannot send the * packet when the data length is larger than the MTU of the * outgoing interface. * Notify the error by sending IPV6_PATHMTU ancillary data if * application wanted to know the MTU value. Also return an * error code (this is not described in the API spec). */ if (inp != NULL) ip6_notify_pmtu(inp, &dst_sa, (u_int32_t)mtu); error = EMSGSIZE; goto bad; } /* Transmit packet without fragmentation. */ if (dontfrag || (!alwaysfrag && tlen <= mtu)) { /* Cases 1-a and 2-a. */ struct in6_ifaddr *ia6; ip6 = mtod(m, struct ip6_hdr *); ia6 = in6_ifawithifp(ifp, &ip6->ip6_src); if (ia6) { /* Record statistics for this interface address. */ counter_u64_add(ia6->ia_ifa.ifa_opackets, 1); counter_u64_add(ia6->ia_ifa.ifa_obytes, m->m_pkthdr.len); - ifa_free(&ia6->ia_ifa); } error = ip6_output_send(inp, ifp, origifp, m, dst, ro, (flags & IP_NO_SND_TAG_RL) ? false : true); goto done; } /* Try to fragment the packet. Cases 1-b and 3. */ if (mtu < IPV6_MMTU) { /* Path MTU cannot be less than IPV6_MMTU. */ error = EMSGSIZE; in6_ifstat_inc(ifp, ifs6_out_fragfail); goto bad; } else if (ip6->ip6_plen == 0) { /* Jumbo payload cannot be fragmented. */ error = EMSGSIZE; in6_ifstat_inc(ifp, ifs6_out_fragfail); goto bad; } else { u_char nextproto; /* * Too large for the destination or interface; * fragment if possible. * Must be able to put at least 8 bytes per fragment. */ if (mtu > IPV6_MAXPACKET) mtu = IPV6_MAXPACKET; len = (mtu - unfragpartlen - sizeof(struct ip6_frag)) & ~7; if (len < 8) { error = EMSGSIZE; in6_ifstat_inc(ifp, ifs6_out_fragfail); goto bad; } /* * If the interface will not calculate checksums on * fragmented packets, then do it here. * XXX-BZ handle the hw offloading case. Need flags. */ error = ip6_output_delayed_csum(m, ifp, m->m_pkthdr.csum_flags, plen, optlen, true); if (error != 0) goto bad; /* * Change the next header field of the last header in the * unfragmentable part. */ if (exthdrs.ip6e_rthdr) { nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *); *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT; } else if (exthdrs.ip6e_dest1) { nextproto = *mtod(exthdrs.ip6e_dest1, u_char *); *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT; } else if (exthdrs.ip6e_hbh) { nextproto = *mtod(exthdrs.ip6e_hbh, u_char *); *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT; } else { ip6 = mtod(m, struct ip6_hdr *); nextproto = ip6->ip6_nxt; ip6->ip6_nxt = IPPROTO_FRAGMENT; } /* * Loop through length of segment after first fragment, * make new header and copy data of each part and link onto * chain. */ m0 = m; id = htonl(ip6_randomid()); error = ip6_fragment(ifp, m, unfragpartlen, nextproto,len, id); if (error != 0) goto sendorfree; in6_ifstat_inc(ifp, ifs6_out_fragok); } /* Remove leading garbage. */ sendorfree: m = m0->m_nextpkt; m0->m_nextpkt = 0; m_freem(m0); for (; m; m = m0) { m0 = m->m_nextpkt; m->m_nextpkt = 0; if (error == 0) { /* Record statistics for this interface address. */ if (ia) { counter_u64_add(ia->ia_ifa.ifa_opackets, 1); counter_u64_add(ia->ia_ifa.ifa_obytes, m->m_pkthdr.len); } if (vlan_pcp > -1) EVL_APPLY_PRI(m, vlan_pcp); error = ip6_output_send(inp, ifp, origifp, m, dst, ro, true); } else m_freem(m); } if (error == 0) IP6STAT_INC(ip6s_fragmented); done: return (error); freehdrs: m_freem(exthdrs.ip6e_hbh); /* m_freem() checks if mbuf is NULL. */ m_freem(exthdrs.ip6e_dest1); m_freem(exthdrs.ip6e_rthdr); m_freem(exthdrs.ip6e_dest2); /* FALLTHROUGH */ bad: if (m) m_freem(m); goto done; } static int ip6_copyexthdr(struct mbuf **mp, caddr_t hdr, int hlen) { struct mbuf *m; if (hlen > MCLBYTES) return (ENOBUFS); /* XXX */ if (hlen > MLEN) m = m_getcl(M_NOWAIT, MT_DATA, 0); else m = m_get(M_NOWAIT, MT_DATA); if (m == NULL) return (ENOBUFS); m->m_len = hlen; if (hdr) bcopy(hdr, mtod(m, caddr_t), hlen); *mp = m; return (0); } /* * Insert jumbo payload option. */ static int ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen) { struct mbuf *mopt; u_char *optbuf; u_int32_t v; #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */ /* * If there is no hop-by-hop options header, allocate new one. * If there is one but it doesn't have enough space to store the * jumbo payload option, allocate a cluster to store the whole options. * Otherwise, use it to store the options. */ if (exthdrs->ip6e_hbh == NULL) { mopt = m_get(M_NOWAIT, MT_DATA); if (mopt == NULL) return (ENOBUFS); mopt->m_len = JUMBOOPTLEN; optbuf = mtod(mopt, u_char *); optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */ exthdrs->ip6e_hbh = mopt; } else { struct ip6_hbh *hbh; mopt = exthdrs->ip6e_hbh; if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) { /* * XXX assumption: * - exthdrs->ip6e_hbh is not referenced from places * other than exthdrs. * - exthdrs->ip6e_hbh is not an mbuf chain. */ int oldoptlen = mopt->m_len; struct mbuf *n; /* * XXX: give up if the whole (new) hbh header does * not fit even in an mbuf cluster. */ if (oldoptlen + JUMBOOPTLEN > MCLBYTES) return (ENOBUFS); /* * As a consequence, we must always prepare a cluster * at this point. */ n = m_getcl(M_NOWAIT, MT_DATA, 0); if (n == NULL) return (ENOBUFS); n->m_len = oldoptlen + JUMBOOPTLEN; bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t), oldoptlen); optbuf = mtod(n, caddr_t) + oldoptlen; m_freem(mopt); mopt = exthdrs->ip6e_hbh = n; } else { optbuf = mtod(mopt, u_char *) + mopt->m_len; mopt->m_len += JUMBOOPTLEN; } optbuf[0] = IP6OPT_PADN; optbuf[1] = 1; /* * Adjust the header length according to the pad and * the jumbo payload option. */ hbh = mtod(mopt, struct ip6_hbh *); hbh->ip6h_len += (JUMBOOPTLEN >> 3); } /* fill in the option. */ optbuf[2] = IP6OPT_JUMBO; optbuf[3] = 4; v = (u_int32_t)htonl(plen + JUMBOOPTLEN); bcopy(&v, &optbuf[4], sizeof(u_int32_t)); /* finally, adjust the packet header length */ exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN; return (0); #undef JUMBOOPTLEN } /* * Insert fragment header and copy unfragmentable header portions. */ static int ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen, struct ip6_frag **frghdrp) { struct mbuf *n, *mlast; if (hlen > sizeof(struct ip6_hdr)) { n = m_copym(m0, sizeof(struct ip6_hdr), hlen - sizeof(struct ip6_hdr), M_NOWAIT); if (n == NULL) return (ENOBUFS); m->m_next = n; } else n = m; /* Search for the last mbuf of unfragmentable part. */ for (mlast = n; mlast->m_next; mlast = mlast->m_next) ; if (M_WRITABLE(mlast) && M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) { /* use the trailing space of the last mbuf for the fragment hdr */ *frghdrp = (struct ip6_frag *)(mtod(mlast, caddr_t) + mlast->m_len); mlast->m_len += sizeof(struct ip6_frag); m->m_pkthdr.len += sizeof(struct ip6_frag); } else { /* allocate a new mbuf for the fragment header */ struct mbuf *mfrg; mfrg = m_get(M_NOWAIT, MT_DATA); if (mfrg == NULL) return (ENOBUFS); mfrg->m_len = sizeof(struct ip6_frag); *frghdrp = mtod(mfrg, struct ip6_frag *); mlast->m_next = mfrg; } return (0); } /* * Calculates IPv6 path mtu for destination @dst. * Resulting MTU is stored in @mtup. * * Returns 0 on success. */ static int ip6_getpmtu_ctl(u_int fibnum, const struct in6_addr *dst, u_long *mtup) { struct epoch_tracker et; struct nhop_object *nh; struct in6_addr kdst; uint32_t scopeid; int error; in6_splitscope(dst, &kdst, &scopeid); NET_EPOCH_ENTER(et); nh = fib6_lookup(fibnum, &kdst, scopeid, NHR_NONE, 0); if (nh != NULL) error = ip6_calcmtu(nh->nh_ifp, dst, nh->nh_mtu, mtup, NULL, 0); else error = EHOSTUNREACH; NET_EPOCH_EXIT(et); return (error); } /* * Calculates IPv6 path MTU for @dst based on transmit @ifp, * and cached data in @ro_pmtu. * MTU from (successful) route lookup is saved (along with dst) * inside @ro_pmtu to avoid subsequent route lookups after packet * filter processing. * * Stores mtu and always-frag value into @mtup and @alwaysfragp. * Returns 0 on success. */ static int ip6_getpmtu(struct route_in6 *ro_pmtu, int do_lookup, struct ifnet *ifp, const struct in6_addr *dst, u_long *mtup, int *alwaysfragp, u_int fibnum, u_int proto) { struct nhop_object *nh; struct in6_addr kdst; uint32_t scopeid; struct sockaddr_in6 *sa6_dst, sin6; u_long mtu; NET_EPOCH_ASSERT(); mtu = 0; if (ro_pmtu == NULL || do_lookup) { /* * Here ro_pmtu has final destination address, while * ro might represent immediate destination. * Use ro_pmtu destination since mtu might differ. */ if (ro_pmtu != NULL) { sa6_dst = (struct sockaddr_in6 *)&ro_pmtu->ro_dst; if (!IN6_ARE_ADDR_EQUAL(&sa6_dst->sin6_addr, dst)) ro_pmtu->ro_mtu = 0; } else sa6_dst = &sin6; if (ro_pmtu == NULL || ro_pmtu->ro_mtu == 0) { bzero(sa6_dst, sizeof(*sa6_dst)); sa6_dst->sin6_family = AF_INET6; sa6_dst->sin6_len = sizeof(struct sockaddr_in6); sa6_dst->sin6_addr = *dst; in6_splitscope(dst, &kdst, &scopeid); nh = fib6_lookup(fibnum, &kdst, scopeid, NHR_NONE, 0); if (nh != NULL) { mtu = nh->nh_mtu; if (ro_pmtu != NULL) ro_pmtu->ro_mtu = mtu; } } else mtu = ro_pmtu->ro_mtu; } if (ro_pmtu != NULL && ro_pmtu->ro_nh != NULL) mtu = ro_pmtu->ro_nh->nh_mtu; return (ip6_calcmtu(ifp, dst, mtu, mtup, alwaysfragp, proto)); } /* * Calculate MTU based on transmit @ifp, route mtu @rt_mtu and * hostcache data for @dst. * Stores mtu and always-frag value into @mtup and @alwaysfragp. * * Returns 0 on success. */ static int ip6_calcmtu(struct ifnet *ifp, const struct in6_addr *dst, u_long rt_mtu, u_long *mtup, int *alwaysfragp, u_int proto) { u_long mtu = 0; int alwaysfrag = 0; int error = 0; if (rt_mtu > 0) { u_int32_t ifmtu; struct in_conninfo inc; bzero(&inc, sizeof(inc)); inc.inc_flags |= INC_ISIPV6; inc.inc6_faddr = *dst; ifmtu = IN6_LINKMTU(ifp); /* TCP is known to react to pmtu changes so skip hc */ if (proto != IPPROTO_TCP) mtu = tcp_hc_getmtu(&inc); if (mtu) mtu = min(mtu, rt_mtu); else mtu = rt_mtu; if (mtu == 0) mtu = ifmtu; else if (mtu < IPV6_MMTU) { /* * RFC2460 section 5, last paragraph: * if we record ICMPv6 too big message with * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU * or smaller, with framgent header attached. * (fragment header is needed regardless from the * packet size, for translators to identify packets) */ alwaysfrag = 1; mtu = IPV6_MMTU; } } else if (ifp) { mtu = IN6_LINKMTU(ifp); } else error = EHOSTUNREACH; /* XXX */ *mtup = mtu; if (alwaysfragp) *alwaysfragp = alwaysfrag; return (error); } /* * IP6 socket option processing. */ int ip6_ctloutput(struct socket *so, struct sockopt *sopt) { int optdatalen, uproto; void *optdata; struct inpcb *inp = sotoinpcb(so); int error, optval; int level, op, optname; int optlen; struct thread *td; #ifdef RSS uint32_t rss_bucket; int retval; #endif /* * Don't use more than a quarter of mbuf clusters. N.B.: * nmbclusters is an int, but nmbclusters * MCLBYTES may overflow * on LP64 architectures, so cast to u_long to avoid undefined * behavior. ILP32 architectures cannot have nmbclusters * large enough to overflow for other reasons. */ #define IPV6_PKTOPTIONS_MBUF_LIMIT ((u_long)nmbclusters * MCLBYTES / 4) level = sopt->sopt_level; op = sopt->sopt_dir; optname = sopt->sopt_name; optlen = sopt->sopt_valsize; td = sopt->sopt_td; error = 0; optval = 0; uproto = (int)so->so_proto->pr_protocol; if (level != IPPROTO_IPV6) { error = EINVAL; if (sopt->sopt_level == SOL_SOCKET && sopt->sopt_dir == SOPT_SET) { switch (sopt->sopt_name) { case SO_REUSEADDR: INP_WLOCK(inp); if ((so->so_options & SO_REUSEADDR) != 0) inp->inp_flags2 |= INP_REUSEADDR; else inp->inp_flags2 &= ~INP_REUSEADDR; INP_WUNLOCK(inp); error = 0; break; case SO_REUSEPORT: INP_WLOCK(inp); if ((so->so_options & SO_REUSEPORT) != 0) inp->inp_flags2 |= INP_REUSEPORT; else inp->inp_flags2 &= ~INP_REUSEPORT; INP_WUNLOCK(inp); error = 0; break; case SO_REUSEPORT_LB: INP_WLOCK(inp); if ((so->so_options & SO_REUSEPORT_LB) != 0) inp->inp_flags2 |= INP_REUSEPORT_LB; else inp->inp_flags2 &= ~INP_REUSEPORT_LB; INP_WUNLOCK(inp); error = 0; break; case SO_SETFIB: INP_WLOCK(inp); inp->inp_inc.inc_fibnum = so->so_fibnum; INP_WUNLOCK(inp); error = 0; break; case SO_MAX_PACING_RATE: #ifdef RATELIMIT INP_WLOCK(inp); inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; INP_WUNLOCK(inp); error = 0; #else error = EOPNOTSUPP; #endif break; default: break; } } } else { /* level == IPPROTO_IPV6 */ switch (op) { case SOPT_SET: switch (optname) { case IPV6_2292PKTOPTIONS: #ifdef IPV6_PKTOPTIONS case IPV6_PKTOPTIONS: #endif { struct mbuf *m; if (optlen > IPV6_PKTOPTIONS_MBUF_LIMIT) { printf("ip6_ctloutput: mbuf limit hit\n"); error = ENOBUFS; break; } error = soopt_getm(sopt, &m); /* XXX */ if (error != 0) break; error = soopt_mcopyin(sopt, m); /* XXX */ if (error != 0) break; INP_WLOCK(inp); error = ip6_pcbopts(&inp->in6p_outputopts, m, so, sopt); INP_WUNLOCK(inp); m_freem(m); /* XXX */ break; } /* * Use of some Hop-by-Hop options or some * Destination options, might require special * privilege. That is, normal applications * (without special privilege) might be forbidden * from setting certain options in outgoing packets, * and might never see certain options in received * packets. [RFC 2292 Section 6] * KAME specific note: * KAME prevents non-privileged users from sending or * receiving ANY hbh/dst options in order to avoid * overhead of parsing options in the kernel. */ case IPV6_RECVHOPOPTS: case IPV6_RECVDSTOPTS: case IPV6_RECVRTHDRDSTOPTS: if (td != NULL) { error = priv_check(td, PRIV_NETINET_SETHDROPTS); if (error) break; } /* FALLTHROUGH */ case IPV6_UNICAST_HOPS: case IPV6_HOPLIMIT: case IPV6_RECVPKTINFO: case IPV6_RECVHOPLIMIT: case IPV6_RECVRTHDR: case IPV6_RECVPATHMTU: case IPV6_RECVTCLASS: case IPV6_RECVFLOWID: #ifdef RSS case IPV6_RECVRSSBUCKETID: #endif case IPV6_V6ONLY: case IPV6_AUTOFLOWLABEL: case IPV6_ORIGDSTADDR: case IPV6_BINDANY: case IPV6_BINDMULTI: #ifdef RSS case IPV6_RSS_LISTEN_BUCKET: #endif case IPV6_VLAN_PCP: if (optname == IPV6_BINDANY && td != NULL) { error = priv_check(td, PRIV_NETINET_BINDANY); if (error) break; } if (optlen != sizeof(int)) { error = EINVAL; break; } error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); if (error) break; switch (optname) { case IPV6_UNICAST_HOPS: if (optval < -1 || optval >= 256) error = EINVAL; else { /* -1 = kernel default */ inp->in6p_hops = optval; if ((inp->inp_vflag & INP_IPV4) != 0) inp->inp_ip_ttl = optval; } break; #define OPTSET(bit) \ do { \ INP_WLOCK(inp); \ if (optval) \ inp->inp_flags |= (bit); \ else \ inp->inp_flags &= ~(bit); \ INP_WUNLOCK(inp); \ } while (/*CONSTCOND*/ 0) #define OPTSET2292(bit) \ do { \ INP_WLOCK(inp); \ inp->inp_flags |= IN6P_RFC2292; \ if (optval) \ inp->inp_flags |= (bit); \ else \ inp->inp_flags &= ~(bit); \ INP_WUNLOCK(inp); \ } while (/*CONSTCOND*/ 0) #define OPTBIT(bit) (inp->inp_flags & (bit) ? 1 : 0) #define OPTSET2_N(bit, val) do { \ if (val) \ inp->inp_flags2 |= bit; \ else \ inp->inp_flags2 &= ~bit; \ } while (0) #define OPTSET2(bit, val) do { \ INP_WLOCK(inp); \ OPTSET2_N(bit, val); \ INP_WUNLOCK(inp); \ } while (0) #define OPTBIT2(bit) (inp->inp_flags2 & (bit) ? 1 : 0) #define OPTSET2292_EXCLUSIVE(bit) \ do { \ INP_WLOCK(inp); \ if (OPTBIT(IN6P_RFC2292)) { \ error = EINVAL; \ } else { \ if (optval) \ inp->inp_flags |= (bit); \ else \ inp->inp_flags &= ~(bit); \ } \ INP_WUNLOCK(inp); \ } while (/*CONSTCOND*/ 0) case IPV6_RECVPKTINFO: OPTSET2292_EXCLUSIVE(IN6P_PKTINFO); break; case IPV6_HOPLIMIT: { struct ip6_pktopts **optp; /* cannot mix with RFC2292 */ if (OPTBIT(IN6P_RFC2292)) { error = EINVAL; break; } INP_WLOCK(inp); if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { INP_WUNLOCK(inp); return (ECONNRESET); } optp = &inp->in6p_outputopts; error = ip6_pcbopt(IPV6_HOPLIMIT, (u_char *)&optval, sizeof(optval), optp, (td != NULL) ? td->td_ucred : NULL, uproto); INP_WUNLOCK(inp); break; } case IPV6_RECVHOPLIMIT: OPTSET2292_EXCLUSIVE(IN6P_HOPLIMIT); break; case IPV6_RECVHOPOPTS: OPTSET2292_EXCLUSIVE(IN6P_HOPOPTS); break; case IPV6_RECVDSTOPTS: OPTSET2292_EXCLUSIVE(IN6P_DSTOPTS); break; case IPV6_RECVRTHDRDSTOPTS: OPTSET2292_EXCLUSIVE(IN6P_RTHDRDSTOPTS); break; case IPV6_RECVRTHDR: OPTSET2292_EXCLUSIVE(IN6P_RTHDR); break; case IPV6_RECVPATHMTU: /* * We ignore this option for TCP * sockets. * (RFC3542 leaves this case * unspecified.) */ if (uproto != IPPROTO_TCP) OPTSET(IN6P_MTU); break; case IPV6_RECVFLOWID: OPTSET2(INP_RECVFLOWID, optval); break; #ifdef RSS case IPV6_RECVRSSBUCKETID: OPTSET2(INP_RECVRSSBUCKETID, optval); break; #endif case IPV6_V6ONLY: INP_WLOCK(inp); if (inp->inp_lport || !IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr)) { /* * The socket is already bound. */ INP_WUNLOCK(inp); error = EINVAL; break; } if (optval) { inp->inp_flags |= IN6P_IPV6_V6ONLY; inp->inp_vflag &= ~INP_IPV4; } else { inp->inp_flags &= ~IN6P_IPV6_V6ONLY; inp->inp_vflag |= INP_IPV4; } INP_WUNLOCK(inp); break; case IPV6_RECVTCLASS: /* cannot mix with RFC2292 XXX */ OPTSET2292_EXCLUSIVE(IN6P_TCLASS); break; case IPV6_AUTOFLOWLABEL: OPTSET(IN6P_AUTOFLOWLABEL); break; case IPV6_ORIGDSTADDR: OPTSET2(INP_ORIGDSTADDR, optval); break; case IPV6_BINDANY: OPTSET(INP_BINDANY); break; case IPV6_BINDMULTI: OPTSET2(INP_BINDMULTI, optval); break; #ifdef RSS case IPV6_RSS_LISTEN_BUCKET: if ((optval >= 0) && (optval < rss_getnumbuckets())) { INP_WLOCK(inp); inp->inp_rss_listen_bucket = optval; OPTSET2_N(INP_RSS_BUCKET_SET, 1); INP_WUNLOCK(inp); } else { error = EINVAL; } break; #endif case IPV6_VLAN_PCP: if ((optval >= -1) && (optval <= (INP_2PCP_MASK >> INP_2PCP_SHIFT))) { if (optval == -1) { INP_WLOCK(inp); inp->inp_flags2 &= ~(INP_2PCP_SET | INP_2PCP_MASK); INP_WUNLOCK(inp); } else { INP_WLOCK(inp); inp->inp_flags2 |= INP_2PCP_SET; inp->inp_flags2 &= ~INP_2PCP_MASK; inp->inp_flags2 |= optval << INP_2PCP_SHIFT; INP_WUNLOCK(inp); } } else error = EINVAL; break; } break; case IPV6_TCLASS: case IPV6_DONTFRAG: case IPV6_USE_MIN_MTU: case IPV6_PREFER_TEMPADDR: if (optlen != sizeof(optval)) { error = EINVAL; break; } error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); if (error) break; { struct ip6_pktopts **optp; INP_WLOCK(inp); if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { INP_WUNLOCK(inp); return (ECONNRESET); } optp = &inp->in6p_outputopts; error = ip6_pcbopt(optname, (u_char *)&optval, sizeof(optval), optp, (td != NULL) ? td->td_ucred : NULL, uproto); INP_WUNLOCK(inp); break; } case IPV6_2292PKTINFO: case IPV6_2292HOPLIMIT: case IPV6_2292HOPOPTS: case IPV6_2292DSTOPTS: case IPV6_2292RTHDR: /* RFC 2292 */ if (optlen != sizeof(int)) { error = EINVAL; break; } error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); if (error) break; switch (optname) { case IPV6_2292PKTINFO: OPTSET2292(IN6P_PKTINFO); break; case IPV6_2292HOPLIMIT: OPTSET2292(IN6P_HOPLIMIT); break; case IPV6_2292HOPOPTS: /* * Check super-user privilege. * See comments for IPV6_RECVHOPOPTS. */ if (td != NULL) { error = priv_check(td, PRIV_NETINET_SETHDROPTS); if (error) return (error); } OPTSET2292(IN6P_HOPOPTS); break; case IPV6_2292DSTOPTS: if (td != NULL) { error = priv_check(td, PRIV_NETINET_SETHDROPTS); if (error) return (error); } OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */ break; case IPV6_2292RTHDR: OPTSET2292(IN6P_RTHDR); break; } break; case IPV6_PKTINFO: case IPV6_HOPOPTS: case IPV6_RTHDR: case IPV6_DSTOPTS: case IPV6_RTHDRDSTOPTS: case IPV6_NEXTHOP: { /* new advanced API (RFC3542) */ u_char *optbuf; u_char optbuf_storage[MCLBYTES]; int optlen; struct ip6_pktopts **optp; /* cannot mix with RFC2292 */ if (OPTBIT(IN6P_RFC2292)) { error = EINVAL; break; } /* * We only ensure valsize is not too large * here. Further validation will be done * later. */ error = sooptcopyin(sopt, optbuf_storage, sizeof(optbuf_storage), 0); if (error) break; optlen = sopt->sopt_valsize; optbuf = optbuf_storage; INP_WLOCK(inp); if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { INP_WUNLOCK(inp); return (ECONNRESET); } optp = &inp->in6p_outputopts; error = ip6_pcbopt(optname, optbuf, optlen, optp, (td != NULL) ? td->td_ucred : NULL, uproto); INP_WUNLOCK(inp); break; } #undef OPTSET case IPV6_MULTICAST_IF: case IPV6_MULTICAST_HOPS: case IPV6_MULTICAST_LOOP: case IPV6_JOIN_GROUP: case IPV6_LEAVE_GROUP: case IPV6_MSFILTER: case MCAST_BLOCK_SOURCE: case MCAST_UNBLOCK_SOURCE: case MCAST_JOIN_GROUP: case MCAST_LEAVE_GROUP: case MCAST_JOIN_SOURCE_GROUP: case MCAST_LEAVE_SOURCE_GROUP: error = ip6_setmoptions(inp, sopt); break; case IPV6_PORTRANGE: error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); if (error) break; INP_WLOCK(inp); switch (optval) { case IPV6_PORTRANGE_DEFAULT: inp->inp_flags &= ~(INP_LOWPORT); inp->inp_flags &= ~(INP_HIGHPORT); break; case IPV6_PORTRANGE_HIGH: inp->inp_flags &= ~(INP_LOWPORT); inp->inp_flags |= INP_HIGHPORT; break; case IPV6_PORTRANGE_LOW: inp->inp_flags &= ~(INP_HIGHPORT); inp->inp_flags |= INP_LOWPORT; break; default: error = EINVAL; break; } INP_WUNLOCK(inp); break; #if defined(IPSEC) || defined(IPSEC_SUPPORT) case IPV6_IPSEC_POLICY: if (IPSEC_ENABLED(ipv6)) { error = IPSEC_PCBCTL(ipv6, inp, sopt); break; } /* FALLTHROUGH */ #endif /* IPSEC */ default: error = ENOPROTOOPT; break; } break; case SOPT_GET: switch (optname) { case IPV6_2292PKTOPTIONS: #ifdef IPV6_PKTOPTIONS case IPV6_PKTOPTIONS: #endif /* * RFC3542 (effectively) deprecated the * semantics of the 2292-style pktoptions. * Since it was not reliable in nature (i.e., * applications had to expect the lack of some * information after all), it would make sense * to simplify this part by always returning * empty data. */ sopt->sopt_valsize = 0; break; case IPV6_RECVHOPOPTS: case IPV6_RECVDSTOPTS: case IPV6_RECVRTHDRDSTOPTS: case IPV6_UNICAST_HOPS: case IPV6_RECVPKTINFO: case IPV6_RECVHOPLIMIT: case IPV6_RECVRTHDR: case IPV6_RECVPATHMTU: case IPV6_V6ONLY: case IPV6_PORTRANGE: case IPV6_RECVTCLASS: case IPV6_AUTOFLOWLABEL: case IPV6_BINDANY: case IPV6_FLOWID: case IPV6_FLOWTYPE: case IPV6_RECVFLOWID: #ifdef RSS case IPV6_RSSBUCKETID: case IPV6_RECVRSSBUCKETID: #endif case IPV6_BINDMULTI: case IPV6_VLAN_PCP: switch (optname) { case IPV6_RECVHOPOPTS: optval = OPTBIT(IN6P_HOPOPTS); break; case IPV6_RECVDSTOPTS: optval = OPTBIT(IN6P_DSTOPTS); break; case IPV6_RECVRTHDRDSTOPTS: optval = OPTBIT(IN6P_RTHDRDSTOPTS); break; case IPV6_UNICAST_HOPS: optval = inp->in6p_hops; break; case IPV6_RECVPKTINFO: optval = OPTBIT(IN6P_PKTINFO); break; case IPV6_RECVHOPLIMIT: optval = OPTBIT(IN6P_HOPLIMIT); break; case IPV6_RECVRTHDR: optval = OPTBIT(IN6P_RTHDR); break; case IPV6_RECVPATHMTU: optval = OPTBIT(IN6P_MTU); break; case IPV6_V6ONLY: optval = OPTBIT(IN6P_IPV6_V6ONLY); break; case IPV6_PORTRANGE: { int flags; flags = inp->inp_flags; if (flags & INP_HIGHPORT) optval = IPV6_PORTRANGE_HIGH; else if (flags & INP_LOWPORT) optval = IPV6_PORTRANGE_LOW; else optval = 0; break; } case IPV6_RECVTCLASS: optval = OPTBIT(IN6P_TCLASS); break; case IPV6_AUTOFLOWLABEL: optval = OPTBIT(IN6P_AUTOFLOWLABEL); break; case IPV6_ORIGDSTADDR: optval = OPTBIT2(INP_ORIGDSTADDR); break; case IPV6_BINDANY: optval = OPTBIT(INP_BINDANY); break; case IPV6_FLOWID: optval = inp->inp_flowid; break; case IPV6_FLOWTYPE: optval = inp->inp_flowtype; break; case IPV6_RECVFLOWID: optval = OPTBIT2(INP_RECVFLOWID); break; #ifdef RSS case IPV6_RSSBUCKETID: retval = rss_hash2bucket(inp->inp_flowid, inp->inp_flowtype, &rss_bucket); if (retval == 0) optval = rss_bucket; else error = EINVAL; break; case IPV6_RECVRSSBUCKETID: optval = OPTBIT2(INP_RECVRSSBUCKETID); break; #endif case IPV6_BINDMULTI: optval = OPTBIT2(INP_BINDMULTI); break; case IPV6_VLAN_PCP: if (OPTBIT2(INP_2PCP_SET)) { optval = (inp->inp_flags2 & INP_2PCP_MASK) >> INP_2PCP_SHIFT; } else { optval = -1; } break; } if (error) break; error = sooptcopyout(sopt, &optval, sizeof optval); break; case IPV6_PATHMTU: { u_long pmtu = 0; struct ip6_mtuinfo mtuinfo; struct in6_addr addr; if (!(so->so_state & SS_ISCONNECTED)) return (ENOTCONN); /* * XXX: we dot not consider the case of source * routing, or optional information to specify * the outgoing interface. * Copy faddr out of inp to avoid holding lock * on inp during route lookup. */ INP_RLOCK(inp); bcopy(&inp->in6p_faddr, &addr, sizeof(addr)); INP_RUNLOCK(inp); error = ip6_getpmtu_ctl(so->so_fibnum, &addr, &pmtu); if (error) break; if (pmtu > IPV6_MAXPACKET) pmtu = IPV6_MAXPACKET; bzero(&mtuinfo, sizeof(mtuinfo)); mtuinfo.ip6m_mtu = (u_int32_t)pmtu; optdata = (void *)&mtuinfo; optdatalen = sizeof(mtuinfo); error = sooptcopyout(sopt, optdata, optdatalen); break; } case IPV6_2292PKTINFO: case IPV6_2292HOPLIMIT: case IPV6_2292HOPOPTS: case IPV6_2292RTHDR: case IPV6_2292DSTOPTS: switch (optname) { case IPV6_2292PKTINFO: optval = OPTBIT(IN6P_PKTINFO); break; case IPV6_2292HOPLIMIT: optval = OPTBIT(IN6P_HOPLIMIT); break; case IPV6_2292HOPOPTS: optval = OPTBIT(IN6P_HOPOPTS); break; case IPV6_2292RTHDR: optval = OPTBIT(IN6P_RTHDR); break; case IPV6_2292DSTOPTS: optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); break; } error = sooptcopyout(sopt, &optval, sizeof optval); break; case IPV6_PKTINFO: case IPV6_HOPOPTS: case IPV6_RTHDR: case IPV6_DSTOPTS: case IPV6_RTHDRDSTOPTS: case IPV6_NEXTHOP: case IPV6_TCLASS: case IPV6_DONTFRAG: case IPV6_USE_MIN_MTU: case IPV6_PREFER_TEMPADDR: error = ip6_getpcbopt(inp, optname, sopt); break; case IPV6_MULTICAST_IF: case IPV6_MULTICAST_HOPS: case IPV6_MULTICAST_LOOP: case IPV6_MSFILTER: error = ip6_getmoptions(inp, sopt); break; #if defined(IPSEC) || defined(IPSEC_SUPPORT) case IPV6_IPSEC_POLICY: if (IPSEC_ENABLED(ipv6)) { error = IPSEC_PCBCTL(ipv6, inp, sopt); break; } /* FALLTHROUGH */ #endif /* IPSEC */ default: error = ENOPROTOOPT; break; } break; } } return (error); } int ip6_raw_ctloutput(struct socket *so, struct sockopt *sopt) { int error = 0, optval, optlen; const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum); struct inpcb *inp = sotoinpcb(so); int level, op, optname; level = sopt->sopt_level; op = sopt->sopt_dir; optname = sopt->sopt_name; optlen = sopt->sopt_valsize; if (level != IPPROTO_IPV6) { return (EINVAL); } switch (optname) { case IPV6_CHECKSUM: /* * For ICMPv6 sockets, no modification allowed for checksum * offset, permit "no change" values to help existing apps. * * RFC3542 says: "An attempt to set IPV6_CHECKSUM * for an ICMPv6 socket will fail." * The current behavior does not meet RFC3542. */ switch (op) { case SOPT_SET: if (optlen != sizeof(int)) { error = EINVAL; break; } error = sooptcopyin(sopt, &optval, sizeof(optval), sizeof(optval)); if (error) break; if (optval < -1 || (optval % 2) != 0) { /* * The API assumes non-negative even offset * values or -1 as a special value. */ error = EINVAL; } else if (so->so_proto->pr_protocol == IPPROTO_ICMPV6) { if (optval != icmp6off) error = EINVAL; } else inp->in6p_cksum = optval; break; case SOPT_GET: if (so->so_proto->pr_protocol == IPPROTO_ICMPV6) optval = icmp6off; else optval = inp->in6p_cksum; error = sooptcopyout(sopt, &optval, sizeof(optval)); break; default: error = EINVAL; break; } break; default: error = ENOPROTOOPT; break; } return (error); } /* * Set up IP6 options in pcb for insertion in output packets or * specifying behavior of outgoing packets. */ static int ip6_pcbopts(struct ip6_pktopts **pktopt, struct mbuf *m, struct socket *so, struct sockopt *sopt) { struct ip6_pktopts *opt = *pktopt; int error = 0; struct thread *td = sopt->sopt_td; /* turn off any old options. */ if (opt) { #ifdef DIAGNOSTIC if (opt->ip6po_pktinfo || opt->ip6po_nexthop || opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 || opt->ip6po_rhinfo.ip6po_rhi_rthdr) printf("ip6_pcbopts: all specified options are cleared.\n"); #endif ip6_clearpktopts(opt, -1); } else { opt = malloc(sizeof(*opt), M_IP6OPT, M_NOWAIT); if (opt == NULL) return (ENOMEM); } *pktopt = NULL; if (!m || m->m_len == 0) { /* * Only turning off any previous options, regardless of * whether the opt is just created or given. */ free(opt, M_IP6OPT); return (0); } /* set options specified by user. */ if ((error = ip6_setpktopts(m, opt, NULL, (td != NULL) ? td->td_ucred : NULL, so->so_proto->pr_protocol)) != 0) { ip6_clearpktopts(opt, -1); /* XXX: discard all options */ free(opt, M_IP6OPT); return (error); } *pktopt = opt; return (0); } /* * initialize ip6_pktopts. beware that there are non-zero default values in * the struct. */ void ip6_initpktopts(struct ip6_pktopts *opt) { bzero(opt, sizeof(*opt)); opt->ip6po_hlim = -1; /* -1 means default hop limit */ opt->ip6po_tclass = -1; /* -1 means default traffic class */ opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY; opt->ip6po_prefer_tempaddr = IP6PO_TEMPADDR_SYSTEM; } static int ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt, struct ucred *cred, int uproto) { struct ip6_pktopts *opt; if (*pktopt == NULL) { *pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT, M_NOWAIT); if (*pktopt == NULL) return (ENOBUFS); ip6_initpktopts(*pktopt); } opt = *pktopt; return (ip6_setpktopt(optname, buf, len, opt, cred, 1, 0, uproto)); } #define GET_PKTOPT_VAR(field, lenexpr) do { \ if (pktopt && pktopt->field) { \ INP_RUNLOCK(inp); \ optdata = malloc(sopt->sopt_valsize, M_TEMP, M_WAITOK); \ malloc_optdata = true; \ INP_RLOCK(inp); \ if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { \ INP_RUNLOCK(inp); \ free(optdata, M_TEMP); \ return (ECONNRESET); \ } \ pktopt = inp->in6p_outputopts; \ if (pktopt && pktopt->field) { \ optdatalen = min(lenexpr, sopt->sopt_valsize); \ bcopy(&pktopt->field, optdata, optdatalen); \ } else { \ free(optdata, M_TEMP); \ optdata = NULL; \ malloc_optdata = false; \ } \ } \ } while(0) #define GET_PKTOPT_EXT_HDR(field) GET_PKTOPT_VAR(field, \ (((struct ip6_ext *)pktopt->field)->ip6e_len + 1) << 3) #define GET_PKTOPT_SOCKADDR(field) GET_PKTOPT_VAR(field, \ pktopt->field->sa_len) static int ip6_getpcbopt(struct inpcb *inp, int optname, struct sockopt *sopt) { void *optdata = NULL; bool malloc_optdata = false; int optdatalen = 0; int error = 0; struct in6_pktinfo null_pktinfo; int deftclass = 0, on; int defminmtu = IP6PO_MINMTU_MCASTONLY; int defpreftemp = IP6PO_TEMPADDR_SYSTEM; struct ip6_pktopts *pktopt; INP_RLOCK(inp); pktopt = inp->in6p_outputopts; switch (optname) { case IPV6_PKTINFO: optdata = (void *)&null_pktinfo; if (pktopt && pktopt->ip6po_pktinfo) { bcopy(pktopt->ip6po_pktinfo, &null_pktinfo, sizeof(null_pktinfo)); in6_clearscope(&null_pktinfo.ipi6_addr); } else { /* XXX: we don't have to do this every time... */ bzero(&null_pktinfo, sizeof(null_pktinfo)); } optdatalen = sizeof(struct in6_pktinfo); break; case IPV6_TCLASS: if (pktopt && pktopt->ip6po_tclass >= 0) deftclass = pktopt->ip6po_tclass; optdata = (void *)&deftclass; optdatalen = sizeof(int); break; case IPV6_HOPOPTS: GET_PKTOPT_EXT_HDR(ip6po_hbh); break; case IPV6_RTHDR: GET_PKTOPT_EXT_HDR(ip6po_rthdr); break; case IPV6_RTHDRDSTOPTS: GET_PKTOPT_EXT_HDR(ip6po_dest1); break; case IPV6_DSTOPTS: GET_PKTOPT_EXT_HDR(ip6po_dest2); break; case IPV6_NEXTHOP: GET_PKTOPT_SOCKADDR(ip6po_nexthop); break; case IPV6_USE_MIN_MTU: if (pktopt) defminmtu = pktopt->ip6po_minmtu; optdata = (void *)&defminmtu; optdatalen = sizeof(int); break; case IPV6_DONTFRAG: if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG)) on = 1; else on = 0; optdata = (void *)&on; optdatalen = sizeof(on); break; case IPV6_PREFER_TEMPADDR: if (pktopt) defpreftemp = pktopt->ip6po_prefer_tempaddr; optdata = (void *)&defpreftemp; optdatalen = sizeof(int); break; default: /* should not happen */ #ifdef DIAGNOSTIC panic("ip6_getpcbopt: unexpected option\n"); #endif INP_RUNLOCK(inp); return (ENOPROTOOPT); } INP_RUNLOCK(inp); error = sooptcopyout(sopt, optdata, optdatalen); if (malloc_optdata) free(optdata, M_TEMP); return (error); } void ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname) { if (pktopt == NULL) return; if (optname == -1 || optname == IPV6_PKTINFO) { if (pktopt->ip6po_pktinfo) free(pktopt->ip6po_pktinfo, M_IP6OPT); pktopt->ip6po_pktinfo = NULL; } if (optname == -1 || optname == IPV6_HOPLIMIT) pktopt->ip6po_hlim = -1; if (optname == -1 || optname == IPV6_TCLASS) pktopt->ip6po_tclass = -1; if (optname == -1 || optname == IPV6_NEXTHOP) { if (pktopt->ip6po_nextroute.ro_nh) { NH_FREE(pktopt->ip6po_nextroute.ro_nh); pktopt->ip6po_nextroute.ro_nh = NULL; } if (pktopt->ip6po_nexthop) free(pktopt->ip6po_nexthop, M_IP6OPT); pktopt->ip6po_nexthop = NULL; } if (optname == -1 || optname == IPV6_HOPOPTS) { if (pktopt->ip6po_hbh) free(pktopt->ip6po_hbh, M_IP6OPT); pktopt->ip6po_hbh = NULL; } if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) { if (pktopt->ip6po_dest1) free(pktopt->ip6po_dest1, M_IP6OPT); pktopt->ip6po_dest1 = NULL; } if (optname == -1 || optname == IPV6_RTHDR) { if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr) free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT); pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL; if (pktopt->ip6po_route.ro_nh) { NH_FREE(pktopt->ip6po_route.ro_nh); pktopt->ip6po_route.ro_nh = NULL; } } if (optname == -1 || optname == IPV6_DSTOPTS) { if (pktopt->ip6po_dest2) free(pktopt->ip6po_dest2, M_IP6OPT); pktopt->ip6po_dest2 = NULL; } } #define PKTOPT_EXTHDRCPY(type) \ do {\ if (src->type) {\ int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\ dst->type = malloc(hlen, M_IP6OPT, canwait);\ if (dst->type == NULL)\ goto bad;\ bcopy(src->type, dst->type, hlen);\ }\ } while (/*CONSTCOND*/ 0) static int copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait) { if (dst == NULL || src == NULL) { printf("ip6_clearpktopts: invalid argument\n"); return (EINVAL); } dst->ip6po_hlim = src->ip6po_hlim; dst->ip6po_tclass = src->ip6po_tclass; dst->ip6po_flags = src->ip6po_flags; dst->ip6po_minmtu = src->ip6po_minmtu; dst->ip6po_prefer_tempaddr = src->ip6po_prefer_tempaddr; if (src->ip6po_pktinfo) { dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo), M_IP6OPT, canwait); if (dst->ip6po_pktinfo == NULL) goto bad; *dst->ip6po_pktinfo = *src->ip6po_pktinfo; } if (src->ip6po_nexthop) { dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len, M_IP6OPT, canwait); if (dst->ip6po_nexthop == NULL) goto bad; bcopy(src->ip6po_nexthop, dst->ip6po_nexthop, src->ip6po_nexthop->sa_len); } PKTOPT_EXTHDRCPY(ip6po_hbh); PKTOPT_EXTHDRCPY(ip6po_dest1); PKTOPT_EXTHDRCPY(ip6po_dest2); PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */ return (0); bad: ip6_clearpktopts(dst, -1); return (ENOBUFS); } #undef PKTOPT_EXTHDRCPY struct ip6_pktopts * ip6_copypktopts(struct ip6_pktopts *src, int canwait) { int error; struct ip6_pktopts *dst; dst = malloc(sizeof(*dst), M_IP6OPT, canwait); if (dst == NULL) return (NULL); ip6_initpktopts(dst); if ((error = copypktopts(dst, src, canwait)) != 0) { free(dst, M_IP6OPT); return (NULL); } return (dst); } void ip6_freepcbopts(struct ip6_pktopts *pktopt) { if (pktopt == NULL) return; ip6_clearpktopts(pktopt, -1); free(pktopt, M_IP6OPT); } /* * Set IPv6 outgoing packet options based on advanced API. */ int ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt, struct ip6_pktopts *stickyopt, struct ucred *cred, int uproto) { struct cmsghdr *cm = NULL; if (control == NULL || opt == NULL) return (EINVAL); ip6_initpktopts(opt); if (stickyopt) { int error; /* * If stickyopt is provided, make a local copy of the options * for this particular packet, then override them by ancillary * objects. * XXX: copypktopts() does not copy the cached route to a next * hop (if any). This is not very good in terms of efficiency, * but we can allow this since this option should be rarely * used. */ if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0) return (error); } /* * XXX: Currently, we assume all the optional information is stored * in a single mbuf. */ if (control->m_next) return (EINVAL); for (; control->m_len > 0; control->m_data += CMSG_ALIGN(cm->cmsg_len), control->m_len -= CMSG_ALIGN(cm->cmsg_len)) { int error; if (control->m_len < CMSG_LEN(0)) return (EINVAL); cm = mtod(control, struct cmsghdr *); if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len) return (EINVAL); if (cm->cmsg_level != IPPROTO_IPV6) continue; error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm), cm->cmsg_len - CMSG_LEN(0), opt, cred, 0, 1, uproto); if (error) return (error); } return (0); } /* * Set a particular packet option, as a sticky option or an ancillary data * item. "len" can be 0 only when it's a sticky option. * We have 4 cases of combination of "sticky" and "cmsg": * "sticky=0, cmsg=0": impossible * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data * "sticky=1, cmsg=0": RFC3542 socket option * "sticky=1, cmsg=1": RFC2292 socket option */ static int ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt, struct ucred *cred, int sticky, int cmsg, int uproto) { int minmtupolicy, preftemp; int error; if (!sticky && !cmsg) { #ifdef DIAGNOSTIC printf("ip6_setpktopt: impossible case\n"); #endif return (EINVAL); } /* * IPV6_2292xxx is for backward compatibility to RFC2292, and should * not be specified in the context of RFC3542. Conversely, * RFC3542 types should not be specified in the context of RFC2292. */ if (!cmsg) { switch (optname) { case IPV6_2292PKTINFO: case IPV6_2292HOPLIMIT: case IPV6_2292NEXTHOP: case IPV6_2292HOPOPTS: case IPV6_2292DSTOPTS: case IPV6_2292RTHDR: case IPV6_2292PKTOPTIONS: return (ENOPROTOOPT); } } if (sticky && cmsg) { switch (optname) { case IPV6_PKTINFO: case IPV6_HOPLIMIT: case IPV6_NEXTHOP: case IPV6_HOPOPTS: case IPV6_DSTOPTS: case IPV6_RTHDRDSTOPTS: case IPV6_RTHDR: case IPV6_USE_MIN_MTU: case IPV6_DONTFRAG: case IPV6_TCLASS: case IPV6_PREFER_TEMPADDR: /* XXX: not an RFC3542 option */ return (ENOPROTOOPT); } } switch (optname) { case IPV6_2292PKTINFO: case IPV6_PKTINFO: { struct ifnet *ifp = NULL; struct in6_pktinfo *pktinfo; if (len != sizeof(struct in6_pktinfo)) return (EINVAL); pktinfo = (struct in6_pktinfo *)buf; /* * An application can clear any sticky IPV6_PKTINFO option by * doing a "regular" setsockopt with ipi6_addr being * in6addr_any and ipi6_ifindex being zero. * [RFC 3542, Section 6] */ if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo && pktinfo->ipi6_ifindex == 0 && IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { ip6_clearpktopts(opt, optname); break; } if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO && sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { return (EINVAL); } if (IN6_IS_ADDR_MULTICAST(&pktinfo->ipi6_addr)) return (EINVAL); /* validate the interface index if specified. */ if (pktinfo->ipi6_ifindex > V_if_index) return (ENXIO); if (pktinfo->ipi6_ifindex) { ifp = ifnet_byindex(pktinfo->ipi6_ifindex); if (ifp == NULL) return (ENXIO); } if (ifp != NULL && (ifp->if_afdata[AF_INET6] == NULL || (ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) != 0)) return (ENETDOWN); if (ifp != NULL && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { struct in6_ifaddr *ia; in6_setscope(&pktinfo->ipi6_addr, ifp, NULL); ia = in6ifa_ifpwithaddr(ifp, &pktinfo->ipi6_addr); if (ia == NULL) return (EADDRNOTAVAIL); ifa_free(&ia->ia_ifa); } /* * We store the address anyway, and let in6_selectsrc() * validate the specified address. This is because ipi6_addr * may not have enough information about its scope zone, and * we may need additional information (such as outgoing * interface or the scope zone of a destination address) to * disambiguate the scope. * XXX: the delay of the validation may confuse the * application when it is used as a sticky option. */ if (opt->ip6po_pktinfo == NULL) { opt->ip6po_pktinfo = malloc(sizeof(*pktinfo), M_IP6OPT, M_NOWAIT); if (opt->ip6po_pktinfo == NULL) return (ENOBUFS); } bcopy(pktinfo, opt->ip6po_pktinfo, sizeof(*pktinfo)); break; } case IPV6_2292HOPLIMIT: case IPV6_HOPLIMIT: { int *hlimp; /* * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT * to simplify the ordering among hoplimit options. */ if (optname == IPV6_HOPLIMIT && sticky) return (ENOPROTOOPT); if (len != sizeof(int)) return (EINVAL); hlimp = (int *)buf; if (*hlimp < -1 || *hlimp > 255) return (EINVAL); opt->ip6po_hlim = *hlimp; break; } case IPV6_TCLASS: { int tclass; if (len != sizeof(int)) return (EINVAL); tclass = *(int *)buf; if (tclass < -1 || tclass > 255) return (EINVAL); opt->ip6po_tclass = tclass; break; } case IPV6_2292NEXTHOP: case IPV6_NEXTHOP: if (cred != NULL) { error = priv_check_cred(cred, PRIV_NETINET_SETHDROPTS); if (error) return (error); } if (len == 0) { /* just remove the option */ ip6_clearpktopts(opt, IPV6_NEXTHOP); break; } /* check if cmsg_len is large enough for sa_len */ if (len < sizeof(struct sockaddr) || len < *buf) return (EINVAL); switch (((struct sockaddr *)buf)->sa_family) { case AF_INET6: { struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf; int error; if (sa6->sin6_len != sizeof(struct sockaddr_in6)) return (EINVAL); if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) || IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) { return (EINVAL); } if ((error = sa6_embedscope(sa6, V_ip6_use_defzone)) != 0) { return (error); } break; } case AF_LINK: /* should eventually be supported */ default: return (EAFNOSUPPORT); } /* turn off the previous option, then set the new option. */ ip6_clearpktopts(opt, IPV6_NEXTHOP); opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT); if (opt->ip6po_nexthop == NULL) return (ENOBUFS); bcopy(buf, opt->ip6po_nexthop, *buf); break; case IPV6_2292HOPOPTS: case IPV6_HOPOPTS: { struct ip6_hbh *hbh; int hbhlen; /* * XXX: We don't allow a non-privileged user to set ANY HbH * options, since per-option restriction has too much * overhead. */ if (cred != NULL) { error = priv_check_cred(cred, PRIV_NETINET_SETHDROPTS); if (error) return (error); } if (len == 0) { ip6_clearpktopts(opt, IPV6_HOPOPTS); break; /* just remove the option */ } /* message length validation */ if (len < sizeof(struct ip6_hbh)) return (EINVAL); hbh = (struct ip6_hbh *)buf; hbhlen = (hbh->ip6h_len + 1) << 3; if (len != hbhlen) return (EINVAL); /* turn off the previous option, then set the new option. */ ip6_clearpktopts(opt, IPV6_HOPOPTS); opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT); if (opt->ip6po_hbh == NULL) return (ENOBUFS); bcopy(hbh, opt->ip6po_hbh, hbhlen); break; } case IPV6_2292DSTOPTS: case IPV6_DSTOPTS: case IPV6_RTHDRDSTOPTS: { struct ip6_dest *dest, **newdest = NULL; int destlen; if (cred != NULL) { /* XXX: see the comment for IPV6_HOPOPTS */ error = priv_check_cred(cred, PRIV_NETINET_SETHDROPTS); if (error) return (error); } if (len == 0) { ip6_clearpktopts(opt, optname); break; /* just remove the option */ } /* message length validation */ if (len < sizeof(struct ip6_dest)) return (EINVAL); dest = (struct ip6_dest *)buf; destlen = (dest->ip6d_len + 1) << 3; if (len != destlen) return (EINVAL); /* * Determine the position that the destination options header * should be inserted; before or after the routing header. */ switch (optname) { case IPV6_2292DSTOPTS: /* * The old advacned API is ambiguous on this point. * Our approach is to determine the position based * according to the existence of a routing header. * Note, however, that this depends on the order of the * extension headers in the ancillary data; the 1st * part of the destination options header must appear * before the routing header in the ancillary data, * too. * RFC3542 solved the ambiguity by introducing * separate ancillary data or option types. */ if (opt->ip6po_rthdr == NULL) newdest = &opt->ip6po_dest1; else newdest = &opt->ip6po_dest2; break; case IPV6_RTHDRDSTOPTS: newdest = &opt->ip6po_dest1; break; case IPV6_DSTOPTS: newdest = &opt->ip6po_dest2; break; } /* turn off the previous option, then set the new option. */ ip6_clearpktopts(opt, optname); *newdest = malloc(destlen, M_IP6OPT, M_NOWAIT); if (*newdest == NULL) return (ENOBUFS); bcopy(dest, *newdest, destlen); break; } case IPV6_2292RTHDR: case IPV6_RTHDR: { struct ip6_rthdr *rth; int rthlen; if (len == 0) { ip6_clearpktopts(opt, IPV6_RTHDR); break; /* just remove the option */ } /* message length validation */ if (len < sizeof(struct ip6_rthdr)) return (EINVAL); rth = (struct ip6_rthdr *)buf; rthlen = (rth->ip6r_len + 1) << 3; if (len != rthlen) return (EINVAL); switch (rth->ip6r_type) { case IPV6_RTHDR_TYPE_0: if (rth->ip6r_len == 0) /* must contain one addr */ return (EINVAL); if (rth->ip6r_len % 2) /* length must be even */ return (EINVAL); if (rth->ip6r_len / 2 != rth->ip6r_segleft) return (EINVAL); break; default: return (EINVAL); /* not supported */ } /* turn off the previous option */ ip6_clearpktopts(opt, IPV6_RTHDR); opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT); if (opt->ip6po_rthdr == NULL) return (ENOBUFS); bcopy(rth, opt->ip6po_rthdr, rthlen); break; } case IPV6_USE_MIN_MTU: if (len != sizeof(int)) return (EINVAL); minmtupolicy = *(int *)buf; if (minmtupolicy != IP6PO_MINMTU_MCASTONLY && minmtupolicy != IP6PO_MINMTU_DISABLE && minmtupolicy != IP6PO_MINMTU_ALL) { return (EINVAL); } opt->ip6po_minmtu = minmtupolicy; break; case IPV6_DONTFRAG: if (len != sizeof(int)) return (EINVAL); if (uproto == IPPROTO_TCP || *(int *)buf == 0) { /* * we ignore this option for TCP sockets. * (RFC3542 leaves this case unspecified.) */ opt->ip6po_flags &= ~IP6PO_DONTFRAG; } else opt->ip6po_flags |= IP6PO_DONTFRAG; break; case IPV6_PREFER_TEMPADDR: if (len != sizeof(int)) return (EINVAL); preftemp = *(int *)buf; if (preftemp != IP6PO_TEMPADDR_SYSTEM && preftemp != IP6PO_TEMPADDR_NOTPREFER && preftemp != IP6PO_TEMPADDR_PREFER) { return (EINVAL); } opt->ip6po_prefer_tempaddr = preftemp; break; default: return (ENOPROTOOPT); } /* end of switch */ return (0); } /* * Routine called from ip6_output() to loop back a copy of an IP6 multicast * packet to the input queue of a specified interface. Note that this * calls the output routine of the loopback "driver", but with an interface * pointer that might NOT be &loif -- easier than replicating that code here. */ void ip6_mloopback(struct ifnet *ifp, struct mbuf *m) { struct mbuf *copym; struct ip6_hdr *ip6; copym = m_copym(m, 0, M_COPYALL, M_NOWAIT); if (copym == NULL) return; /* * Make sure to deep-copy IPv6 header portion in case the data * is in an mbuf cluster, so that we can safely override the IPv6 * header portion later. */ if (!M_WRITABLE(copym) || copym->m_len < sizeof(struct ip6_hdr)) { copym = m_pullup(copym, sizeof(struct ip6_hdr)); if (copym == NULL) return; } ip6 = mtod(copym, struct ip6_hdr *); /* * clear embedded scope identifiers if necessary. * in6_clearscope will touch the addresses only when necessary. */ in6_clearscope(&ip6->ip6_src); in6_clearscope(&ip6->ip6_dst); if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { copym->m_pkthdr.csum_flags |= CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR; copym->m_pkthdr.csum_data = 0xffff; } if_simloop(ifp, copym, AF_INET6, 0); } /* * Chop IPv6 header off from the payload. */ static int ip6_splithdr(struct mbuf *m, struct ip6_exthdrs *exthdrs) { struct mbuf *mh; struct ip6_hdr *ip6; ip6 = mtod(m, struct ip6_hdr *); if (m->m_len > sizeof(*ip6)) { mh = m_gethdr(M_NOWAIT, MT_DATA); if (mh == NULL) { m_freem(m); return ENOBUFS; } m_move_pkthdr(mh, m); M_ALIGN(mh, sizeof(*ip6)); m->m_len -= sizeof(*ip6); m->m_data += sizeof(*ip6); mh->m_next = m; m = mh; m->m_len = sizeof(*ip6); bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6)); } exthdrs->ip6e_ip6 = m; return 0; } /* * Compute IPv6 extension header length. */ int ip6_optlen(struct inpcb *inp) { int len; if (!inp->in6p_outputopts) return 0; len = 0; #define elen(x) \ (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0) len += elen(inp->in6p_outputopts->ip6po_hbh); if (inp->in6p_outputopts->ip6po_rthdr) /* dest1 is valid with rthdr only */ len += elen(inp->in6p_outputopts->ip6po_dest1); len += elen(inp->in6p_outputopts->ip6po_rthdr); len += elen(inp->in6p_outputopts->ip6po_dest2); return len; #undef elen }