diff --git a/sys/contrib/openzfs/module/os/freebsd/zfs/zio_crypt.c b/sys/contrib/openzfs/module/os/freebsd/zfs/zio_crypt.c
index fdbe13dbb5e9..024a931d7816 100644
--- a/sys/contrib/openzfs/module/os/freebsd/zfs/zio_crypt.c
+++ b/sys/contrib/openzfs/module/os/freebsd/zfs/zio_crypt.c
@@ -1,1819 +1,1832 @@
 /*
  * CDDL HEADER START
  *
  * This file and its contents are supplied under the terms of the
  * Common Development and Distribution License ("CDDL"), version 1.0.
  * You may only use this file in accordance with the terms of version
  * 1.0 of the CDDL.
  *
  * A full copy of the text of the CDDL should have accompanied this
  * source.  A copy of the CDDL is also available via the Internet at
  * http://www.illumos.org/license/CDDL.
  *
  * CDDL HEADER END
  */
 
 /*
  * Copyright (c) 2017, Datto, Inc. All rights reserved.
  */
 
 #include <sys/zio_crypt.h>
 #include <sys/dmu.h>
 #include <sys/dmu_objset.h>
 #include <sys/dnode.h>
 #include <sys/fs/zfs.h>
 #include <sys/zio.h>
 #include <sys/zil.h>
 #include <sys/sha2.h>
 #include <sys/hkdf.h>
 
 /*
  * This file is responsible for handling all of the details of generating
  * encryption parameters and performing encryption and authentication.
  *
  * BLOCK ENCRYPTION PARAMETERS:
  * Encryption /Authentication Algorithm Suite (crypt):
  * The encryption algorithm, mode, and key length we are going to use. We
  * currently support AES in either GCM or CCM modes with 128, 192, and 256 bit
  * keys. All authentication is currently done with SHA512-HMAC.
  *
  * Plaintext:
  * The unencrypted data that we want to encrypt.
  *
  * Initialization Vector (IV):
  * An initialization vector for the encryption algorithms. This is used to
  * "tweak" the encryption algorithms so that two blocks of the same data are
  * encrypted into different ciphertext outputs, thus obfuscating block patterns.
  * The supported encryption modes (AES-GCM and AES-CCM) require that an IV is
  * never reused with the same encryption key. This value is stored unencrypted
  * and must simply be provided to the decryption function. We use a 96 bit IV
  * (as recommended by NIST) for all block encryption. For non-dedup blocks we
  * derive the IV randomly. The first 64 bits of the IV are stored in the second
  * word of DVA[2] and the remaining 32 bits are stored in the upper 32 bits of
  * blk_fill. This is safe because encrypted blocks can't use the upper 32 bits
  * of blk_fill. We only encrypt level 0 blocks, which normally have a fill count
  * of 1. The only exception is for DMU_OT_DNODE objects, where the fill count of
  * level 0 blocks is the number of allocated dnodes in that block. The on-disk
  * format supports at most 2^15 slots per L0 dnode block, because the maximum
  * block size is 16MB (2^24). In either case, for level 0 blocks this number
  * will still be smaller than UINT32_MAX so it is safe to store the IV in the
  * top 32 bits of blk_fill, while leaving the bottom 32 bits of the fill count
  * for the dnode code.
  *
  * Master key:
  * This is the most important secret data of an encrypted dataset. It is used
  * along with the salt to generate that actual encryption keys via HKDF. We
  * do not use the master key to directly encrypt any data because there are
  * theoretical limits on how much data can actually be safely encrypted with
  * any encryption mode. The master key is stored encrypted on disk with the
  * user's wrapping key. Its length is determined by the encryption algorithm.
  * For details on how this is stored see the block comment in dsl_crypt.c
  *
  * Salt:
  * Used as an input to the HKDF function, along with the master key. We use a
  * 64 bit salt, stored unencrypted in the first word of DVA[2]. Any given salt
  * can be used for encrypting many blocks, so we cache the current salt and the
  * associated derived key in zio_crypt_t so we do not need to derive it again
  * needlessly.
  *
  * Encryption Key:
  * A secret binary key, generated from an HKDF function used to encrypt and
  * decrypt data.
  *
  * Message Authentication Code (MAC)
  * The MAC is an output of authenticated encryption modes such as AES-GCM and
  * AES-CCM. Its purpose is to ensure that an attacker cannot modify encrypted
  * data on disk and return garbage to the application. Effectively, it is a
  * checksum that can not be reproduced by an attacker. We store the MAC in the
  * second 128 bits of blk_cksum, leaving the first 128 bits for a truncated
  * regular checksum of the ciphertext which can be used for scrubbing.
  *
  * OBJECT AUTHENTICATION:
  * Some object types, such as DMU_OT_MASTER_NODE cannot be encrypted because
  * they contain some info that always needs to be readable. To prevent this
  * data from being altered, we authenticate this data using SHA512-HMAC. This
  * will produce a MAC (similar to the one produced via encryption) which can
  * be used to verify the object was not modified. HMACs do not require key
  * rotation or IVs, so we can keep up to the full 3 copies of authenticated
  * data.
  *
  * ZIL ENCRYPTION:
  * ZIL blocks have their bp written to disk ahead of the associated data, so we
  * cannot store the MAC there as we normally do. For these blocks the MAC is
  * stored in the embedded checksum within the zil_chain_t header. The salt and
  * IV are generated for the block on bp allocation instead of at encryption
  * time. In addition, ZIL blocks have some pieces that must be left in plaintext
  * for claiming even though all of the sensitive user data still needs to be
  * encrypted. The function zio_crypt_init_uios_zil() handles parsing which
  * pieces of the block need to be encrypted. All data that is not encrypted is
  * authenticated using the AAD mechanisms that the supported encryption modes
  * provide for. In order to preserve the semantics of the ZIL for encrypted
  * datasets, the ZIL is not protected at the objset level as described below.
  *
  * DNODE ENCRYPTION:
  * Similarly to ZIL blocks, the core part of each dnode_phys_t needs to be left
  * in plaintext for scrubbing and claiming, but the bonus buffers might contain
  * sensitive user data. The function zio_crypt_init_uios_dnode() handles parsing
  * which pieces of the block need to be encrypted. For more details about
  * dnode authentication and encryption, see zio_crypt_init_uios_dnode().
  *
  * OBJECT SET AUTHENTICATION:
  * Up to this point, everything we have encrypted and authenticated has been
  * at level 0 (or -2 for the ZIL). If we did not do any further work the
  * on-disk format would be susceptible to attacks that deleted or rearranged
  * the order of level 0 blocks. Ideally, the cleanest solution would be to
  * maintain a tree of authentication MACs going up the bp tree. However, this
  * presents a problem for raw sends. Send files do not send information about
  * indirect blocks so there would be no convenient way to transfer the MACs and
  * they cannot be recalculated on the receive side without the master key which
  * would defeat one of the purposes of raw sends in the first place. Instead,
  * for the indirect levels of the bp tree, we use a regular SHA512 of the MACs
  * from the level below. We also include some portable fields from blk_prop such
  * as the lsize and compression algorithm to prevent the data from being
  * misinterpreted.
  *
  * At the objset level, we maintain 2 separate 256 bit MACs in the
  * objset_phys_t. The first one is "portable" and is the logical root of the
  * MAC tree maintained in the metadnode's bps. The second, is "local" and is
  * used as the root MAC for the user accounting objects, which are also not
  * transferred via "zfs send". The portable MAC is sent in the DRR_BEGIN payload
  * of the send file. The useraccounting code ensures that the useraccounting
  * info is not present upon a receive, so the local MAC can simply be cleared
  * out at that time. For more info about objset_phys_t authentication, see
  * zio_crypt_do_objset_hmacs().
  *
  * CONSIDERATIONS FOR DEDUP:
  * In order for dedup to work, blocks that we want to dedup with one another
  * need to use the same IV and encryption key, so that they will have the same
  * ciphertext. Normally, one should never reuse an IV with the same encryption
  * key or else AES-GCM and AES-CCM can both actually leak the plaintext of both
  * blocks. In this case, however, since we are using the same plaintext as
  * well all that we end up with is a duplicate of the original ciphertext we
  * already had. As a result, an attacker with read access to the raw disk will
  * be able to tell which blocks are the same but this information is given away
  * by dedup anyway. In order to get the same IVs and encryption keys for
  * equivalent blocks of data we use an HMAC of the plaintext. We use an HMAC
  * here so that a reproducible checksum of the plaintext is never available to
  * the attacker. The HMAC key is kept alongside the master key, encrypted on
  * disk. The first 64 bits of the HMAC are used in place of the random salt, and
  * the next 96 bits are used as the IV. As a result of this mechanism, dedup
  * will only work within a clone family since encrypted dedup requires use of
  * the same master and HMAC keys.
  */
 
 /*
  * After encrypting many blocks with the same key we may start to run up
  * against the theoretical limits of how much data can securely be encrypted
  * with a single key using the supported encryption modes. The most obvious
  * limitation is that our risk of generating 2 equivalent 96 bit IVs increases
  * the more IVs we generate (which both GCM and CCM modes strictly forbid).
  * This risk actually grows surprisingly quickly over time according to the
  * Birthday Problem. With a total IV space of 2^(96 bits), and assuming we have
  * generated n IVs with a cryptographically secure RNG, the approximate
  * probability p(n) of a collision is given as:
  *
  * p(n) ~= e^(-n*(n-1)/(2*(2^96)))
  *
  * [http://www.math.cornell.edu/~mec/2008-2009/TianyiZheng/Birthday.html]
  *
  * Assuming that we want to ensure that p(n) never goes over 1 / 1 trillion
  * we must not write more than 398,065,730 blocks with the same encryption key.
  * Therefore, we rotate our keys after 400,000,000 blocks have been written by
  * generating a new random 64 bit salt for our HKDF encryption key generation
  * function.
  */
 #define	ZFS_KEY_MAX_SALT_USES_DEFAULT	400000000
 #define	ZFS_CURRENT_MAX_SALT_USES	\
 	(MIN(zfs_key_max_salt_uses, ZFS_KEY_MAX_SALT_USES_DEFAULT))
 static unsigned long zfs_key_max_salt_uses = ZFS_KEY_MAX_SALT_USES_DEFAULT;
 
 typedef struct blkptr_auth_buf {
 	uint64_t bab_prop;			/* blk_prop - portable mask */
 	uint8_t bab_mac[ZIO_DATA_MAC_LEN];	/* MAC from blk_cksum */
 	uint64_t bab_pad;			/* reserved for future use */
 } blkptr_auth_buf_t;
 
 const zio_crypt_info_t zio_crypt_table[ZIO_CRYPT_FUNCTIONS] = {
 	{"",			ZC_TYPE_NONE,	0,	"inherit"},
 	{"",			ZC_TYPE_NONE,	0,	"on"},
 	{"",			ZC_TYPE_NONE,	0,	"off"},
 	{SUN_CKM_AES_CCM,	ZC_TYPE_CCM,	16,	"aes-128-ccm"},
 	{SUN_CKM_AES_CCM,	ZC_TYPE_CCM,	24,	"aes-192-ccm"},
 	{SUN_CKM_AES_CCM,	ZC_TYPE_CCM,	32,	"aes-256-ccm"},
 	{SUN_CKM_AES_GCM,	ZC_TYPE_GCM,	16,	"aes-128-gcm"},
 	{SUN_CKM_AES_GCM,	ZC_TYPE_GCM,	24,	"aes-192-gcm"},
 	{SUN_CKM_AES_GCM,	ZC_TYPE_GCM,	32,	"aes-256-gcm"}
 };
 
 static void
 zio_crypt_key_destroy_early(zio_crypt_key_t *key)
 {
 	rw_destroy(&key->zk_salt_lock);
 
 	/* free crypto templates */
 	memset(&key->zk_session, 0, sizeof (key->zk_session));
 
 	/* zero out sensitive data */
 	memset(key, 0, sizeof (zio_crypt_key_t));
 }
 
 void
 zio_crypt_key_destroy(zio_crypt_key_t *key)
 {
 
 	freebsd_crypt_freesession(&key->zk_session);
 	zio_crypt_key_destroy_early(key);
 }
 
 int
 zio_crypt_key_init(uint64_t crypt, zio_crypt_key_t *key)
 {
 	int ret;
 	crypto_mechanism_t mech __unused;
 	uint_t keydata_len;
 	const zio_crypt_info_t *ci = NULL;
 
 	ASSERT3P(key, !=, NULL);
 	ASSERT3U(crypt, <, ZIO_CRYPT_FUNCTIONS);
 
 	ci = &zio_crypt_table[crypt];
 	if (ci->ci_crypt_type != ZC_TYPE_GCM &&
 	    ci->ci_crypt_type != ZC_TYPE_CCM)
 		return (ENOTSUP);
 
 	keydata_len = zio_crypt_table[crypt].ci_keylen;
 	memset(key, 0, sizeof (zio_crypt_key_t));
 	rw_init(&key->zk_salt_lock, NULL, RW_DEFAULT, NULL);
 
 	/* fill keydata buffers and salt with random data */
 	ret = random_get_bytes((uint8_t *)&key->zk_guid, sizeof (uint64_t));
 	if (ret != 0)
 		goto error;
 
 	ret = random_get_bytes(key->zk_master_keydata, keydata_len);
 	if (ret != 0)
 		goto error;
 
 	ret = random_get_bytes(key->zk_hmac_keydata, SHA512_HMAC_KEYLEN);
 	if (ret != 0)
 		goto error;
 
 	ret = random_get_bytes(key->zk_salt, ZIO_DATA_SALT_LEN);
 	if (ret != 0)
 		goto error;
 
 	/* derive the current key from the master key */
 	ret = hkdf_sha512(key->zk_master_keydata, keydata_len, NULL, 0,
 	    key->zk_salt, ZIO_DATA_SALT_LEN, key->zk_current_keydata,
 	    keydata_len);
 	if (ret != 0)
 		goto error;
 
 	/* initialize keys for the ICP */
 	key->zk_current_key.ck_data = key->zk_current_keydata;
 	key->zk_current_key.ck_length = CRYPTO_BYTES2BITS(keydata_len);
 
 	key->zk_hmac_key.ck_data = &key->zk_hmac_key;
 	key->zk_hmac_key.ck_length = CRYPTO_BYTES2BITS(SHA512_HMAC_KEYLEN);
 
 	ci = &zio_crypt_table[crypt];
 	if (ci->ci_crypt_type != ZC_TYPE_GCM &&
 	    ci->ci_crypt_type != ZC_TYPE_CCM)
 		return (ENOTSUP);
 
 	ret = freebsd_crypt_newsession(&key->zk_session, ci,
 	    &key->zk_current_key);
 	if (ret)
 		goto error;
 
 	key->zk_crypt = crypt;
 	key->zk_version = ZIO_CRYPT_KEY_CURRENT_VERSION;
 	key->zk_salt_count = 0;
 
 	return (0);
 
 error:
 	zio_crypt_key_destroy_early(key);
 	return (ret);
 }
 
 static int
 zio_crypt_key_change_salt(zio_crypt_key_t *key)
 {
 	int ret = 0;
 	uint8_t salt[ZIO_DATA_SALT_LEN];
 	crypto_mechanism_t mech __unused;
 
 	uint_t keydata_len = zio_crypt_table[key->zk_crypt].ci_keylen;
 
 	/* generate a new salt */
 	ret = random_get_bytes(salt, ZIO_DATA_SALT_LEN);
 	if (ret != 0)
 		goto error;
 
 	rw_enter(&key->zk_salt_lock, RW_WRITER);
 
 	/* someone beat us to the salt rotation, just unlock and return */
 	if (key->zk_salt_count < ZFS_CURRENT_MAX_SALT_USES)
 		goto out_unlock;
 
 	/* derive the current key from the master key and the new salt */
 	ret = hkdf_sha512(key->zk_master_keydata, keydata_len, NULL, 0,
 	    salt, ZIO_DATA_SALT_LEN, key->zk_current_keydata, keydata_len);
 	if (ret != 0)
 		goto out_unlock;
 
 	/* assign the salt and reset the usage count */
 	memcpy(key->zk_salt, salt, ZIO_DATA_SALT_LEN);
 	key->zk_salt_count = 0;
 
 	freebsd_crypt_freesession(&key->zk_session);
 	ret = freebsd_crypt_newsession(&key->zk_session,
 	    &zio_crypt_table[key->zk_crypt], &key->zk_current_key);
 	if (ret != 0)
 		goto out_unlock;
 
 	rw_exit(&key->zk_salt_lock);
 
 	return (0);
 
 out_unlock:
 	rw_exit(&key->zk_salt_lock);
 error:
 	return (ret);
 }
 
 /* See comment above zfs_key_max_salt_uses definition for details */
 int
 zio_crypt_key_get_salt(zio_crypt_key_t *key, uint8_t *salt)
 {
 	int ret;
 	boolean_t salt_change;
 
 	rw_enter(&key->zk_salt_lock, RW_READER);
 
 	memcpy(salt, key->zk_salt, ZIO_DATA_SALT_LEN);
 	salt_change = (atomic_inc_64_nv(&key->zk_salt_count) >=
 	    ZFS_CURRENT_MAX_SALT_USES);
 
 	rw_exit(&key->zk_salt_lock);
 
 	if (salt_change) {
 		ret = zio_crypt_key_change_salt(key);
 		if (ret != 0)
 			goto error;
 	}
 
 	return (0);
 
 error:
 	return (ret);
 }
 
 void *failed_decrypt_buf;
 int failed_decrypt_size;
 
 /*
  * This function handles all encryption and decryption in zfs. When
  * encrypting it expects puio to reference the plaintext and cuio to
  * reference the ciphertext. cuio must have enough space for the
  * ciphertext + room for a MAC. datalen should be the length of the
  * plaintext / ciphertext alone.
  */
 /*
  * The implementation for FreeBSD's OpenCrypto.
  *
  * The big difference between ICP and FOC is that FOC uses a single
  * buffer for input and output.  This means that (for AES-GCM, the
  * only one supported right now) the source must be copied into the
  * destination, and the destination must have the AAD, and the tag/MAC,
  * already associated with it.  (Both implementations can use a uio.)
  *
  * Since the auth data is part of the iovec array, all we need to know
  * is the length:  0 means there's no AAD.
  *
  */
 static int
 zio_do_crypt_uio_opencrypto(boolean_t encrypt, freebsd_crypt_session_t *sess,
     uint64_t crypt, crypto_key_t *key, uint8_t *ivbuf, uint_t datalen,
     zfs_uio_t *uio, uint_t auth_len)
 {
 	const zio_crypt_info_t *ci = &zio_crypt_table[crypt];
 	if (ci->ci_crypt_type != ZC_TYPE_GCM &&
 	    ci->ci_crypt_type != ZC_TYPE_CCM)
 		return (ENOTSUP);
 
 
 	int ret = freebsd_crypt_uio(encrypt, sess, ci, uio, key, ivbuf,
 	    datalen, auth_len);
 	if (ret != 0) {
 #ifdef FCRYPTO_DEBUG
 		printf("%s(%d):  Returning error %s\n",
 		    __FUNCTION__, __LINE__, encrypt ? "EIO" : "ECKSUM");
 #endif
 		ret = SET_ERROR(encrypt ? EIO : ECKSUM);
 	}
 
 	return (ret);
 }
 
 int
 zio_crypt_key_wrap(crypto_key_t *cwkey, zio_crypt_key_t *key, uint8_t *iv,
     uint8_t *mac, uint8_t *keydata_out, uint8_t *hmac_keydata_out)
 {
 	int ret;
 	uint64_t aad[3];
 	/*
 	 * With OpenCrypto in FreeBSD, the same buffer is used for
 	 * input and output.  Also, the AAD (for AES-GMC at least)
 	 * needs to logically go in front.
 	 */
 	zfs_uio_t cuio;
 	struct uio cuio_s;
 	iovec_t iovecs[4];
 	uint64_t crypt = key->zk_crypt;
 	uint_t enc_len, keydata_len, aad_len;
 
 	ASSERT3U(crypt, <, ZIO_CRYPT_FUNCTIONS);
 
 	zfs_uio_init(&cuio, &cuio_s);
 
 	keydata_len = zio_crypt_table[crypt].ci_keylen;
 
 	/* generate iv for wrapping the master and hmac key */
 	ret = random_get_pseudo_bytes(iv, WRAPPING_IV_LEN);
 	if (ret != 0)
 		goto error;
 
 	/*
 	 * Since we only support one buffer, we need to copy
 	 * the plain text (source) to the cipher buffer (dest).
 	 * We set iovecs[0] -- the authentication data -- below.
 	 */
 	memcpy(keydata_out, key->zk_master_keydata, keydata_len);
 	memcpy(hmac_keydata_out, key->zk_hmac_keydata, SHA512_HMAC_KEYLEN);
 	iovecs[1].iov_base = keydata_out;
 	iovecs[1].iov_len = keydata_len;
 	iovecs[2].iov_base = hmac_keydata_out;
 	iovecs[2].iov_len = SHA512_HMAC_KEYLEN;
 	iovecs[3].iov_base = mac;
 	iovecs[3].iov_len = WRAPPING_MAC_LEN;
 
 	/*
 	 * Although we don't support writing to the old format, we do
 	 * support rewrapping the key so that the user can move and
 	 * quarantine datasets on the old format.
 	 */
 	if (key->zk_version == 0) {
 		aad_len = sizeof (uint64_t);
 		aad[0] = LE_64(key->zk_guid);
 	} else {
 		ASSERT3U(key->zk_version, ==, ZIO_CRYPT_KEY_CURRENT_VERSION);
 		aad_len = sizeof (uint64_t) * 3;
 		aad[0] = LE_64(key->zk_guid);
 		aad[1] = LE_64(crypt);
 		aad[2] = LE_64(key->zk_version);
 	}
 
 	iovecs[0].iov_base = aad;
 	iovecs[0].iov_len = aad_len;
 	enc_len = zio_crypt_table[crypt].ci_keylen + SHA512_HMAC_KEYLEN;
 
 	GET_UIO_STRUCT(&cuio)->uio_iov = iovecs;
 	zfs_uio_iovcnt(&cuio) = 4;
 	zfs_uio_segflg(&cuio) = UIO_SYSSPACE;
 
 	/* encrypt the keys and store the resulting ciphertext and mac */
 	ret = zio_do_crypt_uio_opencrypto(B_TRUE, NULL, crypt, cwkey,
 	    iv, enc_len, &cuio, aad_len);
 	if (ret != 0)
 		goto error;
 
 	return (0);
 
 error:
 	return (ret);
 }
 
 int
 zio_crypt_key_unwrap(crypto_key_t *cwkey, uint64_t crypt, uint64_t version,
     uint64_t guid, uint8_t *keydata, uint8_t *hmac_keydata, uint8_t *iv,
     uint8_t *mac, zio_crypt_key_t *key)
 {
 	int ret;
 	uint64_t aad[3];
 	/*
 	 * With OpenCrypto in FreeBSD, the same buffer is used for
 	 * input and output.  Also, the AAD (for AES-GMC at least)
 	 * needs to logically go in front.
 	 */
 	zfs_uio_t cuio;
 	struct uio cuio_s;
 	iovec_t iovecs[4];
 	void *src, *dst;
 	uint_t enc_len, keydata_len, aad_len;
 
 	ASSERT3U(crypt, <, ZIO_CRYPT_FUNCTIONS);
 
 	keydata_len = zio_crypt_table[crypt].ci_keylen;
 	rw_init(&key->zk_salt_lock, NULL, RW_DEFAULT, NULL);
 
 	zfs_uio_init(&cuio, &cuio_s);
 
 	/*
 	 * Since we only support one buffer, we need to copy
 	 * the encrypted buffer (source) to the plain buffer
 	 * (dest).  We set iovecs[0] -- the authentication data --
 	 * below.
 	 */
 	dst = key->zk_master_keydata;
 	src = keydata;
 	memcpy(dst, src, keydata_len);
 
 	dst = key->zk_hmac_keydata;
 	src = hmac_keydata;
 	memcpy(dst, src, SHA512_HMAC_KEYLEN);
 
 	iovecs[1].iov_base = key->zk_master_keydata;
 	iovecs[1].iov_len = keydata_len;
 	iovecs[2].iov_base = key->zk_hmac_keydata;
 	iovecs[2].iov_len = SHA512_HMAC_KEYLEN;
 	iovecs[3].iov_base = mac;
 	iovecs[3].iov_len = WRAPPING_MAC_LEN;
 
 	if (version == 0) {
 		aad_len = sizeof (uint64_t);
 		aad[0] = LE_64(guid);
 	} else {
 		ASSERT3U(version, ==, ZIO_CRYPT_KEY_CURRENT_VERSION);
 		aad_len = sizeof (uint64_t) * 3;
 		aad[0] = LE_64(guid);
 		aad[1] = LE_64(crypt);
 		aad[2] = LE_64(version);
 	}
 
 	enc_len = keydata_len + SHA512_HMAC_KEYLEN;
 	iovecs[0].iov_base = aad;
 	iovecs[0].iov_len = aad_len;
 
 	GET_UIO_STRUCT(&cuio)->uio_iov = iovecs;
 	zfs_uio_iovcnt(&cuio) = 4;
 	zfs_uio_segflg(&cuio) = UIO_SYSSPACE;
 
 	/* decrypt the keys and store the result in the output buffers */
 	ret = zio_do_crypt_uio_opencrypto(B_FALSE, NULL, crypt, cwkey,
 	    iv, enc_len, &cuio, aad_len);
 
 	if (ret != 0)
 		goto error;
 
 	/* generate a fresh salt */
 	ret = random_get_bytes(key->zk_salt, ZIO_DATA_SALT_LEN);
 	if (ret != 0)
 		goto error;
 
 	/* derive the current key from the master key */
 	ret = hkdf_sha512(key->zk_master_keydata, keydata_len, NULL, 0,
 	    key->zk_salt, ZIO_DATA_SALT_LEN, key->zk_current_keydata,
 	    keydata_len);
 	if (ret != 0)
 		goto error;
 
 	/* initialize keys for ICP */
 	key->zk_current_key.ck_data = key->zk_current_keydata;
 	key->zk_current_key.ck_length = CRYPTO_BYTES2BITS(keydata_len);
 
 	key->zk_hmac_key.ck_data = key->zk_hmac_keydata;
 	key->zk_hmac_key.ck_length = CRYPTO_BYTES2BITS(SHA512_HMAC_KEYLEN);
 
 	ret = freebsd_crypt_newsession(&key->zk_session,
 	    &zio_crypt_table[crypt], &key->zk_current_key);
 	if (ret != 0)
 		goto error;
 
 	key->zk_crypt = crypt;
 	key->zk_version = version;
 	key->zk_guid = guid;
 	key->zk_salt_count = 0;
 
 	return (0);
 
 error:
 	zio_crypt_key_destroy_early(key);
 	return (ret);
 }
 
 int
 zio_crypt_generate_iv(uint8_t *ivbuf)
 {
 	int ret;
 
 	/* randomly generate the IV */
 	ret = random_get_pseudo_bytes(ivbuf, ZIO_DATA_IV_LEN);
 	if (ret != 0)
 		goto error;
 
 	return (0);
 
 error:
 	memset(ivbuf, 0, ZIO_DATA_IV_LEN);
 	return (ret);
 }
 
 int
 zio_crypt_do_hmac(zio_crypt_key_t *key, uint8_t *data, uint_t datalen,
     uint8_t *digestbuf, uint_t digestlen)
 {
 	uint8_t raw_digestbuf[SHA512_DIGEST_LENGTH];
 
 	ASSERT3U(digestlen, <=, SHA512_DIGEST_LENGTH);
 
 	crypto_mac(&key->zk_hmac_key, data, datalen,
 	    raw_digestbuf, SHA512_DIGEST_LENGTH);
 
 	memcpy(digestbuf, raw_digestbuf, digestlen);
 
 	return (0);
 }
 
 int
 zio_crypt_generate_iv_salt_dedup(zio_crypt_key_t *key, uint8_t *data,
     uint_t datalen, uint8_t *ivbuf, uint8_t *salt)
 {
 	int ret;
 	uint8_t digestbuf[SHA512_DIGEST_LENGTH];
 
 	ret = zio_crypt_do_hmac(key, data, datalen,
 	    digestbuf, SHA512_DIGEST_LENGTH);
 	if (ret != 0)
 		return (ret);
 
 	memcpy(salt, digestbuf, ZIO_DATA_SALT_LEN);
 	memcpy(ivbuf, digestbuf + ZIO_DATA_SALT_LEN, ZIO_DATA_IV_LEN);
 
 	return (0);
 }
 
 /*
  * The following functions are used to encode and decode encryption parameters
  * into blkptr_t and zil_header_t. The ICP wants to use these parameters as
  * byte strings, which normally means that these strings would not need to deal
  * with byteswapping at all. However, both blkptr_t and zil_header_t may be
  * byteswapped by lower layers and so we must "undo" that byteswap here upon
  * decoding and encoding in a non-native byteorder. These functions require
  * that the byteorder bit is correct before being called.
  */
 void
 zio_crypt_encode_params_bp(blkptr_t *bp, uint8_t *salt, uint8_t *iv)
 {
 	uint64_t val64;
 	uint32_t val32;
 
 	ASSERT(BP_IS_ENCRYPTED(bp));
 
 	if (!BP_SHOULD_BYTESWAP(bp)) {
 		memcpy(&bp->blk_dva[2].dva_word[0], salt, sizeof (uint64_t));
 		memcpy(&bp->blk_dva[2].dva_word[1], iv, sizeof (uint64_t));
 		memcpy(&val32, iv + sizeof (uint64_t), sizeof (uint32_t));
 		BP_SET_IV2(bp, val32);
 	} else {
 		memcpy(&val64, salt, sizeof (uint64_t));
 		bp->blk_dva[2].dva_word[0] = BSWAP_64(val64);
 
 		memcpy(&val64, iv, sizeof (uint64_t));
 		bp->blk_dva[2].dva_word[1] = BSWAP_64(val64);
 
 		memcpy(&val32, iv + sizeof (uint64_t), sizeof (uint32_t));
 		BP_SET_IV2(bp, BSWAP_32(val32));
 	}
 }
 
 void
 zio_crypt_decode_params_bp(const blkptr_t *bp, uint8_t *salt, uint8_t *iv)
 {
 	uint64_t val64;
 	uint32_t val32;
 
 	ASSERT(BP_IS_PROTECTED(bp));
 
 	/* for convenience, so callers don't need to check */
 	if (BP_IS_AUTHENTICATED(bp)) {
 		memset(salt, 0, ZIO_DATA_SALT_LEN);
 		memset(iv, 0, ZIO_DATA_IV_LEN);
 		return;
 	}
 
 	if (!BP_SHOULD_BYTESWAP(bp)) {
 		memcpy(salt, &bp->blk_dva[2].dva_word[0], sizeof (uint64_t));
 		memcpy(iv, &bp->blk_dva[2].dva_word[1], sizeof (uint64_t));
 
 		val32 = (uint32_t)BP_GET_IV2(bp);
 		memcpy(iv + sizeof (uint64_t), &val32, sizeof (uint32_t));
 	} else {
 		val64 = BSWAP_64(bp->blk_dva[2].dva_word[0]);
 		memcpy(salt, &val64, sizeof (uint64_t));
 
 		val64 = BSWAP_64(bp->blk_dva[2].dva_word[1]);
 		memcpy(iv, &val64, sizeof (uint64_t));
 
 		val32 = BSWAP_32((uint32_t)BP_GET_IV2(bp));
 		memcpy(iv + sizeof (uint64_t), &val32, sizeof (uint32_t));
 	}
 }
 
 void
 zio_crypt_encode_mac_bp(blkptr_t *bp, uint8_t *mac)
 {
 	uint64_t val64;
 
 	ASSERT(BP_USES_CRYPT(bp));
 	ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_OBJSET);
 
 	if (!BP_SHOULD_BYTESWAP(bp)) {
 		memcpy(&bp->blk_cksum.zc_word[2], mac, sizeof (uint64_t));
 		memcpy(&bp->blk_cksum.zc_word[3], mac + sizeof (uint64_t),
 		    sizeof (uint64_t));
 	} else {
 		memcpy(&val64, mac, sizeof (uint64_t));
 		bp->blk_cksum.zc_word[2] = BSWAP_64(val64);
 
 		memcpy(&val64, mac + sizeof (uint64_t), sizeof (uint64_t));
 		bp->blk_cksum.zc_word[3] = BSWAP_64(val64);
 	}
 }
 
 void
 zio_crypt_decode_mac_bp(const blkptr_t *bp, uint8_t *mac)
 {
 	uint64_t val64;
 
 	ASSERT(BP_USES_CRYPT(bp) || BP_IS_HOLE(bp));
 
 	/* for convenience, so callers don't need to check */
 	if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) {
 		memset(mac, 0, ZIO_DATA_MAC_LEN);
 		return;
 	}
 
 	if (!BP_SHOULD_BYTESWAP(bp)) {
 		memcpy(mac, &bp->blk_cksum.zc_word[2], sizeof (uint64_t));
 		memcpy(mac + sizeof (uint64_t), &bp->blk_cksum.zc_word[3],
 		    sizeof (uint64_t));
 	} else {
 		val64 = BSWAP_64(bp->blk_cksum.zc_word[2]);
 		memcpy(mac, &val64, sizeof (uint64_t));
 
 		val64 = BSWAP_64(bp->blk_cksum.zc_word[3]);
 		memcpy(mac + sizeof (uint64_t), &val64, sizeof (uint64_t));
 	}
 }
 
 void
 zio_crypt_encode_mac_zil(void *data, uint8_t *mac)
 {
 	zil_chain_t *zilc = data;
 
 	memcpy(&zilc->zc_eck.zec_cksum.zc_word[2], mac, sizeof (uint64_t));
 	memcpy(&zilc->zc_eck.zec_cksum.zc_word[3], mac + sizeof (uint64_t),
 	    sizeof (uint64_t));
 }
 
 void
 zio_crypt_decode_mac_zil(const void *data, uint8_t *mac)
 {
 	/*
 	 * The ZIL MAC is embedded in the block it protects, which will
 	 * not have been byteswapped by the time this function has been called.
 	 * As a result, we don't need to worry about byteswapping the MAC.
 	 */
 	const zil_chain_t *zilc = data;
 
 	memcpy(mac, &zilc->zc_eck.zec_cksum.zc_word[2], sizeof (uint64_t));
 	memcpy(mac + sizeof (uint64_t), &zilc->zc_eck.zec_cksum.zc_word[3],
 	    sizeof (uint64_t));
 }
 
 /*
  * This routine takes a block of dnodes (src_abd) and copies only the bonus
  * buffers to the same offsets in the dst buffer. datalen should be the size
  * of both the src_abd and the dst buffer (not just the length of the bonus
  * buffers).
  */
 void
 zio_crypt_copy_dnode_bonus(abd_t *src_abd, uint8_t *dst, uint_t datalen)
 {
 	uint_t i, max_dnp = datalen >> DNODE_SHIFT;
 	uint8_t *src;
 	dnode_phys_t *dnp, *sdnp, *ddnp;
 
 	src = abd_borrow_buf_copy(src_abd, datalen);
 
 	sdnp = (dnode_phys_t *)src;
 	ddnp = (dnode_phys_t *)dst;
 
 	for (i = 0; i < max_dnp; i += sdnp[i].dn_extra_slots + 1) {
 		dnp = &sdnp[i];
 		if (dnp->dn_type != DMU_OT_NONE &&
 		    DMU_OT_IS_ENCRYPTED(dnp->dn_bonustype) &&
 		    dnp->dn_bonuslen != 0) {
 			memcpy(DN_BONUS(&ddnp[i]), DN_BONUS(dnp),
 			    DN_MAX_BONUS_LEN(dnp));
 		}
 	}
 
 	abd_return_buf(src_abd, src, datalen);
 }
 
 /*
  * This function decides what fields from blk_prop are included in
  * the on-disk various MAC algorithms.
  */
 static void
 zio_crypt_bp_zero_nonportable_blkprop(blkptr_t *bp, uint64_t version)
 {
 	int avoidlint = SPA_MINBLOCKSIZE;
 	/*
 	 * Version 0 did not properly zero out all non-portable fields
 	 * as it should have done. We maintain this code so that we can
 	 * do read-only imports of pools on this version.
 	 */
 	if (version == 0) {
 		BP_SET_DEDUP(bp, 0);
 		BP_SET_CHECKSUM(bp, 0);
 		BP_SET_PSIZE(bp, avoidlint);
 		return;
 	}
 
 	ASSERT3U(version, ==, ZIO_CRYPT_KEY_CURRENT_VERSION);
 
 	/*
 	 * The hole_birth feature might set these fields even if this bp
 	 * is a hole. We zero them out here to guarantee that raw sends
 	 * will function with or without the feature.
 	 */
 	if (BP_IS_HOLE(bp)) {
 		bp->blk_prop = 0ULL;
 		return;
 	}
 
 	/*
 	 * At L0 we want to verify these fields to ensure that data blocks
 	 * can not be reinterpreted. For instance, we do not want an attacker
 	 * to trick us into returning raw lz4 compressed data to the user
 	 * by modifying the compression bits. At higher levels, we cannot
 	 * enforce this policy since raw sends do not convey any information
 	 * about indirect blocks, so these values might be different on the
 	 * receive side. Fortunately, this does not open any new attack
 	 * vectors, since any alterations that can be made to a higher level
 	 * bp must still verify the correct order of the layer below it.
 	 */
 	if (BP_GET_LEVEL(bp) != 0) {
 		BP_SET_BYTEORDER(bp, 0);
 		BP_SET_COMPRESS(bp, 0);
 
 		/*
 		 * psize cannot be set to zero or it will trigger
 		 * asserts, but the value doesn't really matter as
 		 * long as it is constant.
 		 */
 		BP_SET_PSIZE(bp, avoidlint);
 	}
 
 	BP_SET_DEDUP(bp, 0);
 	BP_SET_CHECKSUM(bp, 0);
 }
 
 static void
 zio_crypt_bp_auth_init(uint64_t version, boolean_t should_bswap, blkptr_t *bp,
     blkptr_auth_buf_t *bab, uint_t *bab_len)
 {
 	blkptr_t tmpbp = *bp;
 
 	if (should_bswap)
 		byteswap_uint64_array(&tmpbp, sizeof (blkptr_t));
 
 	ASSERT(BP_USES_CRYPT(&tmpbp) || BP_IS_HOLE(&tmpbp));
 	ASSERT0(BP_IS_EMBEDDED(&tmpbp));
 
 	zio_crypt_decode_mac_bp(&tmpbp, bab->bab_mac);
 
 	/*
 	 * We always MAC blk_prop in LE to ensure portability. This
 	 * must be done after decoding the mac, since the endianness
 	 * will get zero'd out here.
 	 */
 	zio_crypt_bp_zero_nonportable_blkprop(&tmpbp, version);
 	bab->bab_prop = LE_64(tmpbp.blk_prop);
 	bab->bab_pad = 0ULL;
 
 	/* version 0 did not include the padding */
 	*bab_len = sizeof (blkptr_auth_buf_t);
 	if (version == 0)
 		*bab_len -= sizeof (uint64_t);
 }
 
 static int
 zio_crypt_bp_do_hmac_updates(crypto_context_t ctx, uint64_t version,
     boolean_t should_bswap, blkptr_t *bp)
 {
 	uint_t bab_len;
 	blkptr_auth_buf_t bab;
 
 	zio_crypt_bp_auth_init(version, should_bswap, bp, &bab, &bab_len);
 	crypto_mac_update(ctx, &bab, bab_len);
 
 	return (0);
 }
 
 static void
 zio_crypt_bp_do_indrect_checksum_updates(SHA2_CTX *ctx, uint64_t version,
     boolean_t should_bswap, blkptr_t *bp)
 {
 	uint_t bab_len;
 	blkptr_auth_buf_t bab;
 
 	zio_crypt_bp_auth_init(version, should_bswap, bp, &bab, &bab_len);
 	SHA2Update(ctx, &bab, bab_len);
 }
 
 static void
 zio_crypt_bp_do_aad_updates(uint8_t **aadp, uint_t *aad_len, uint64_t version,
     boolean_t should_bswap, blkptr_t *bp)
 {
 	uint_t bab_len;
 	blkptr_auth_buf_t bab;
 
 	zio_crypt_bp_auth_init(version, should_bswap, bp, &bab, &bab_len);
 	memcpy(*aadp, &bab, bab_len);
 	*aadp += bab_len;
 	*aad_len += bab_len;
 }
 
 static int
 zio_crypt_do_dnode_hmac_updates(crypto_context_t ctx, uint64_t version,
     boolean_t should_bswap, dnode_phys_t *dnp)
 {
 	int ret, i;
 	dnode_phys_t *adnp;
 	boolean_t le_bswap = (should_bswap == ZFS_HOST_BYTEORDER);
 	uint8_t tmp_dncore[offsetof(dnode_phys_t, dn_blkptr)];
 
 	/* authenticate the core dnode (masking out non-portable bits) */
 	memcpy(tmp_dncore, dnp, sizeof (tmp_dncore));
 	adnp = (dnode_phys_t *)tmp_dncore;
 	if (le_bswap) {
 		adnp->dn_datablkszsec = BSWAP_16(adnp->dn_datablkszsec);
 		adnp->dn_bonuslen = BSWAP_16(adnp->dn_bonuslen);
 		adnp->dn_maxblkid = BSWAP_64(adnp->dn_maxblkid);
 		adnp->dn_used = BSWAP_64(adnp->dn_used);
 	}
 	adnp->dn_flags &= DNODE_CRYPT_PORTABLE_FLAGS_MASK;
 	adnp->dn_used = 0;
 
 	crypto_mac_update(ctx, adnp, sizeof (tmp_dncore));
 
 	for (i = 0; i < dnp->dn_nblkptr; i++) {
 		ret = zio_crypt_bp_do_hmac_updates(ctx, version,
 		    should_bswap, &dnp->dn_blkptr[i]);
 		if (ret != 0)
 			goto error;
 	}
 
 	if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
 		ret = zio_crypt_bp_do_hmac_updates(ctx, version,
 		    should_bswap, DN_SPILL_BLKPTR(dnp));
 		if (ret != 0)
 			goto error;
 	}
 
 	return (0);
 
 error:
 	return (ret);
 }
 
 /*
  * objset_phys_t blocks introduce a number of exceptions to the normal
  * authentication process. objset_phys_t's contain 2 separate HMACS for
  * protecting the integrity of their data. The portable_mac protects the
  * metadnode. This MAC can be sent with a raw send and protects against
  * reordering of data within the metadnode. The local_mac protects the user
  * accounting objects which are not sent from one system to another.
  *
  * In addition, objset blocks are the only blocks that can be modified and
  * written to disk without the key loaded under certain circumstances. During
  * zil_claim() we need to be able to update the zil_header_t to complete
  * claiming log blocks and during raw receives we need to write out the
  * portable_mac from the send file. Both of these actions are possible
  * because these fields are not protected by either MAC so neither one will
  * need to modify the MACs without the key. However, when the modified blocks
  * are written out they will be byteswapped into the host machine's native
  * endianness which will modify fields protected by the MAC. As a result, MAC
  * calculation for objset blocks works slightly differently from other block
  * types. Where other block types MAC the data in whatever endianness is
  * written to disk, objset blocks always MAC little endian version of their
  * values. In the code, should_bswap is the value from BP_SHOULD_BYTESWAP()
  * and le_bswap indicates whether a byteswap is needed to get this block
  * into little endian format.
  */
 int
 zio_crypt_do_objset_hmacs(zio_crypt_key_t *key, void *data, uint_t datalen,
     boolean_t should_bswap, uint8_t *portable_mac, uint8_t *local_mac)
 {
 	int ret;
 	struct hmac_ctx hash_ctx;
 	struct hmac_ctx *ctx = &hash_ctx;
 	objset_phys_t *osp = data;
 	uint64_t intval;
 	boolean_t le_bswap = (should_bswap == ZFS_HOST_BYTEORDER);
 	uint8_t raw_portable_mac[SHA512_DIGEST_LENGTH];
 	uint8_t raw_local_mac[SHA512_DIGEST_LENGTH];
 
 
 	/* calculate the portable MAC from the portable fields and metadnode */
 	crypto_mac_init(ctx, &key->zk_hmac_key);
 
 	/* add in the os_type */
 	intval = (le_bswap) ? osp->os_type : BSWAP_64(osp->os_type);
 	crypto_mac_update(ctx, &intval, sizeof (uint64_t));
 
 	/* add in the portable os_flags */
 	intval = osp->os_flags;
 	if (should_bswap)
 		intval = BSWAP_64(intval);
 	intval &= OBJSET_CRYPT_PORTABLE_FLAGS_MASK;
 	if (!ZFS_HOST_BYTEORDER)
 		intval = BSWAP_64(intval);
 
 	crypto_mac_update(ctx, &intval, sizeof (uint64_t));
 
 	/* add in fields from the metadnode */
 	ret = zio_crypt_do_dnode_hmac_updates(ctx, key->zk_version,
 	    should_bswap, &osp->os_meta_dnode);
 	if (ret)
 		goto error;
 
 	crypto_mac_final(ctx, raw_portable_mac, SHA512_DIGEST_LENGTH);
 
 	memcpy(portable_mac, raw_portable_mac, ZIO_OBJSET_MAC_LEN);
 
 	/*
 	 * This is necessary here as we check next whether
 	 * OBJSET_FLAG_USERACCOUNTING_COMPLETE is set in order to
 	 * decide if the local_mac should be zeroed out. That flag will always
 	 * be set by dmu_objset_id_quota_upgrade_cb() and
 	 * dmu_objset_userspace_upgrade_cb() if useraccounting has been
 	 * completed.
 	 */
 	intval = osp->os_flags;
 	if (should_bswap)
 		intval = BSWAP_64(intval);
 	boolean_t uacct_incomplete =
 	    !(intval & OBJSET_FLAG_USERACCOUNTING_COMPLETE);
 
 	/*
 	 * The local MAC protects the user, group and project accounting.
 	 * If these objects are not present, the local MAC is zeroed out.
 	 */
 	if (uacct_incomplete ||
 	    (datalen >= OBJSET_PHYS_SIZE_V3 &&
 	    osp->os_userused_dnode.dn_type == DMU_OT_NONE &&
 	    osp->os_groupused_dnode.dn_type == DMU_OT_NONE &&
 	    osp->os_projectused_dnode.dn_type == DMU_OT_NONE) ||
 	    (datalen >= OBJSET_PHYS_SIZE_V2 &&
 	    osp->os_userused_dnode.dn_type == DMU_OT_NONE &&
 	    osp->os_groupused_dnode.dn_type == DMU_OT_NONE) ||
 	    (datalen <= OBJSET_PHYS_SIZE_V1)) {
 		memset(local_mac, 0, ZIO_OBJSET_MAC_LEN);
 		return (0);
 	}
 
 	/* calculate the local MAC from the userused and groupused dnodes */
 	crypto_mac_init(ctx, &key->zk_hmac_key);
 
 	/* add in the non-portable os_flags */
 	intval = osp->os_flags;
 	if (should_bswap)
 		intval = BSWAP_64(intval);
 	intval &= ~OBJSET_CRYPT_PORTABLE_FLAGS_MASK;
 	if (!ZFS_HOST_BYTEORDER)
 		intval = BSWAP_64(intval);
 
 	crypto_mac_update(ctx, &intval, sizeof (uint64_t));
 
 	/* XXX check dnode type ... */
 	/* add in fields from the user accounting dnodes */
 	if (osp->os_userused_dnode.dn_type != DMU_OT_NONE) {
 		ret = zio_crypt_do_dnode_hmac_updates(ctx, key->zk_version,
 		    should_bswap, &osp->os_userused_dnode);
 		if (ret)
 			goto error;
 	}
 
 	if (osp->os_groupused_dnode.dn_type != DMU_OT_NONE) {
 		ret = zio_crypt_do_dnode_hmac_updates(ctx, key->zk_version,
 		    should_bswap, &osp->os_groupused_dnode);
 		if (ret)
 			goto error;
 	}
 
 	if (osp->os_projectused_dnode.dn_type != DMU_OT_NONE &&
 	    datalen >= OBJSET_PHYS_SIZE_V3) {
 		ret = zio_crypt_do_dnode_hmac_updates(ctx, key->zk_version,
 		    should_bswap, &osp->os_projectused_dnode);
 		if (ret)
 			goto error;
 	}
 
 	crypto_mac_final(ctx, raw_local_mac, SHA512_DIGEST_LENGTH);
 
 	memcpy(local_mac, raw_local_mac, ZIO_OBJSET_MAC_LEN);
 
 	return (0);
 
 error:
 	memset(portable_mac, 0, ZIO_OBJSET_MAC_LEN);
 	memset(local_mac, 0, ZIO_OBJSET_MAC_LEN);
 	return (ret);
 }
 
 static void
 zio_crypt_destroy_uio(zfs_uio_t *uio)
 {
 	if (GET_UIO_STRUCT(uio)->uio_iov)
 		kmem_free(GET_UIO_STRUCT(uio)->uio_iov,
 		    zfs_uio_iovcnt(uio) * sizeof (iovec_t));
 }
 
 /*
  * This function parses an uncompressed indirect block and returns a checksum
  * of all the portable fields from all of the contained bps. The portable
  * fields are the MAC and all of the fields from blk_prop except for the dedup,
  * checksum, and psize bits. For an explanation of the purpose of this, see
  * the comment block on object set authentication.
  */
 static int
 zio_crypt_do_indirect_mac_checksum_impl(boolean_t generate, void *buf,
     uint_t datalen, uint64_t version, boolean_t byteswap, uint8_t *cksum)
 {
 	blkptr_t *bp;
 	int i, epb = datalen >> SPA_BLKPTRSHIFT;
 	SHA2_CTX ctx;
 	uint8_t digestbuf[SHA512_DIGEST_LENGTH];
 
 	/* checksum all of the MACs from the layer below */
 	SHA2Init(SHA512, &ctx);
 	for (i = 0, bp = buf; i < epb; i++, bp++) {
 		zio_crypt_bp_do_indrect_checksum_updates(&ctx, version,
 		    byteswap, bp);
 	}
 	SHA2Final(digestbuf, &ctx);
 
 	if (generate) {
 		memcpy(cksum, digestbuf, ZIO_DATA_MAC_LEN);
 		return (0);
 	}
 
 	if (memcmp(digestbuf, cksum, ZIO_DATA_MAC_LEN) != 0) {
 #ifdef FCRYPTO_DEBUG
 		printf("%s(%d): Setting ECKSUM\n", __FUNCTION__, __LINE__);
 #endif
 		return (SET_ERROR(ECKSUM));
 	}
 	return (0);
 }
 
 int
 zio_crypt_do_indirect_mac_checksum(boolean_t generate, void *buf,
     uint_t datalen, boolean_t byteswap, uint8_t *cksum)
 {
 	int ret;
 
 	/*
 	 * Unfortunately, callers of this function will not always have
 	 * easy access to the on-disk format version. This info is
 	 * normally found in the DSL Crypto Key, but the checksum-of-MACs
 	 * is expected to be verifiable even when the key isn't loaded.
 	 * Here, instead of doing a ZAP lookup for the version for each
 	 * zio, we simply try both existing formats.
 	 */
 	ret = zio_crypt_do_indirect_mac_checksum_impl(generate, buf,
 	    datalen, ZIO_CRYPT_KEY_CURRENT_VERSION, byteswap, cksum);
 	if (ret == ECKSUM) {
 		ASSERT(!generate);
 		ret = zio_crypt_do_indirect_mac_checksum_impl(generate,
 		    buf, datalen, 0, byteswap, cksum);
 	}
 
 	return (ret);
 }
 
 int
 zio_crypt_do_indirect_mac_checksum_abd(boolean_t generate, abd_t *abd,
     uint_t datalen, boolean_t byteswap, uint8_t *cksum)
 {
 	int ret;
 	void *buf;
 
 	buf = abd_borrow_buf_copy(abd, datalen);
 	ret = zio_crypt_do_indirect_mac_checksum(generate, buf, datalen,
 	    byteswap, cksum);
 	abd_return_buf(abd, buf, datalen);
 
 	return (ret);
 }
 
 /*
  * Special case handling routine for encrypting / decrypting ZIL blocks.
  * We do not check for the older ZIL chain because the encryption feature
  * was not available before the newer ZIL chain was introduced. The goal
  * here is to encrypt everything except the blkptr_t of a lr_write_t and
  * the zil_chain_t header. Everything that is not encrypted is authenticated.
  */
 /*
  * The OpenCrypto used in FreeBSD does not use separate source and
  * destination buffers; instead, the same buffer is used.  Further, to
  * accommodate some of the drivers, the authbuf needs to be logically before
  * the data.  This means that we need to copy the source to the destination,
  * and set up an extra iovec_t at the beginning to handle the authbuf.
  * It also means we'll only return one zfs_uio_t.
  */
 
 static int
 zio_crypt_init_uios_zil(boolean_t encrypt, uint8_t *plainbuf,
     uint8_t *cipherbuf, uint_t datalen, boolean_t byteswap, zfs_uio_t *puio,
     zfs_uio_t *out_uio, uint_t *enc_len, uint8_t **authbuf, uint_t *auth_len,
     boolean_t *no_crypt)
 {
 	(void) puio;
 	uint8_t *aadbuf = zio_buf_alloc(datalen);
 	uint8_t *src, *dst, *slrp, *dlrp, *blkend, *aadp;
 	iovec_t *dst_iovecs;
 	zil_chain_t *zilc;
 	lr_t *lr;
 	uint64_t txtype, lr_len;
 	uint_t crypt_len, nr_iovecs, vec;
 	uint_t aad_len = 0, total_len = 0;
 
 	if (encrypt) {
 		src = plainbuf;
 		dst = cipherbuf;
 	} else {
 		src = cipherbuf;
 		dst = plainbuf;
 	}
 	memcpy(dst, src, datalen);
 
 	/* Find the start and end record of the log block. */
 	zilc = (zil_chain_t *)src;
 	slrp = src + sizeof (zil_chain_t);
 	aadp = aadbuf;
 	blkend = src + ((byteswap) ? BSWAP_64(zilc->zc_nused) : zilc->zc_nused);
 
 	/*
 	 * Calculate the number of encrypted iovecs we will need.
 	 */
 
 	/* We need at least two iovecs -- one for the AAD, one for the MAC. */
 	nr_iovecs = 2;
 
 	for (; slrp < blkend; slrp += lr_len) {
 		lr = (lr_t *)slrp;
 
 		if (byteswap) {
 			txtype = BSWAP_64(lr->lrc_txtype);
 			lr_len = BSWAP_64(lr->lrc_reclen);
 		} else {
 			txtype = lr->lrc_txtype;
 			lr_len = lr->lrc_reclen;
 		}
 
 		nr_iovecs++;
 		if (txtype == TX_WRITE && lr_len != sizeof (lr_write_t))
 			nr_iovecs++;
 	}
 
 	dst_iovecs = kmem_alloc(nr_iovecs * sizeof (iovec_t), KM_SLEEP);
 
 	/*
 	 * Copy the plain zil header over and authenticate everything except
 	 * the checksum that will store our MAC. If we are writing the data
 	 * the embedded checksum will not have been calculated yet, so we don't
 	 * authenticate that.
 	 */
 	memcpy(aadp, src, sizeof (zil_chain_t) - sizeof (zio_eck_t));
 	aadp += sizeof (zil_chain_t) - sizeof (zio_eck_t);
 	aad_len += sizeof (zil_chain_t) - sizeof (zio_eck_t);
 
 	slrp = src + sizeof (zil_chain_t);
 	dlrp = dst + sizeof (zil_chain_t);
 
 	/*
 	 * Loop over records again, filling in iovecs.
 	 */
 
 	/* The first iovec will contain the authbuf. */
 	vec = 1;
 
 	for (; slrp < blkend; slrp += lr_len, dlrp += lr_len) {
 		lr = (lr_t *)slrp;
 
 		if (!byteswap) {
 			txtype = lr->lrc_txtype;
 			lr_len = lr->lrc_reclen;
 		} else {
 			txtype = BSWAP_64(lr->lrc_txtype);
 			lr_len = BSWAP_64(lr->lrc_reclen);
 		}
 
 		/* copy the common lr_t */
 		memcpy(dlrp, slrp, sizeof (lr_t));
 		memcpy(aadp, slrp, sizeof (lr_t));
 		aadp += sizeof (lr_t);
 		aad_len += sizeof (lr_t);
 
 		/*
 		 * If this is a TX_WRITE record we want to encrypt everything
 		 * except the bp if exists. If the bp does exist we want to
 		 * authenticate it.
 		 */
 		if (txtype == TX_WRITE) {
 			crypt_len = sizeof (lr_write_t) -
 			    sizeof (lr_t) - sizeof (blkptr_t);
 			dst_iovecs[vec].iov_base = (char *)dlrp +
 			    sizeof (lr_t);
 			dst_iovecs[vec].iov_len = crypt_len;
 
 			/* copy the bp now since it will not be encrypted */
 			memcpy(dlrp + sizeof (lr_write_t) - sizeof (blkptr_t),
 			    slrp + sizeof (lr_write_t) - sizeof (blkptr_t),
 			    sizeof (blkptr_t));
 			memcpy(aadp,
 			    slrp + sizeof (lr_write_t) - sizeof (blkptr_t),
 			    sizeof (blkptr_t));
 			aadp += sizeof (blkptr_t);
 			aad_len += sizeof (blkptr_t);
 			vec++;
 			total_len += crypt_len;
 
 			if (lr_len != sizeof (lr_write_t)) {
 				crypt_len = lr_len - sizeof (lr_write_t);
 				dst_iovecs[vec].iov_base = (char *)
 				    dlrp + sizeof (lr_write_t);
 				dst_iovecs[vec].iov_len = crypt_len;
 				vec++;
 				total_len += crypt_len;
 			}
+		} else if (txtype == TX_CLONE_RANGE) {
+			const size_t o = offsetof(lr_clone_range_t, lr_nbps);
+			crypt_len = o - sizeof (lr_t);
+			dst_iovecs[vec].iov_base = (char *)dlrp + sizeof (lr_t);
+			dst_iovecs[vec].iov_len = crypt_len;
+
+			/* copy the bps now since they will not be encrypted */
+			memcpy(dlrp + o, slrp + o, lr_len - o);
+			memcpy(aadp, slrp + o, lr_len - o);
+			aadp += lr_len - o;
+			aad_len += lr_len - o;
+			vec++;
+			total_len += crypt_len;
 		} else {
 			crypt_len = lr_len - sizeof (lr_t);
 			dst_iovecs[vec].iov_base = (char *)dlrp +
 			    sizeof (lr_t);
 			dst_iovecs[vec].iov_len = crypt_len;
 			vec++;
 			total_len += crypt_len;
 		}
 	}
 
 	/* The last iovec will contain the MAC. */
 	ASSERT3U(vec, ==, nr_iovecs - 1);
 
 	/* AAD */
 	dst_iovecs[0].iov_base = aadbuf;
 	dst_iovecs[0].iov_len = aad_len;
 	/* MAC */
 	dst_iovecs[vec].iov_base = 0;
 	dst_iovecs[vec].iov_len = 0;
 
 	*no_crypt = (vec == 1);
 	*enc_len = total_len;
 	*authbuf = aadbuf;
 	*auth_len = aad_len;
 	GET_UIO_STRUCT(out_uio)->uio_iov = dst_iovecs;
 	zfs_uio_iovcnt(out_uio) = nr_iovecs;
 
 	return (0);
 }
 
 /*
  * Special case handling routine for encrypting / decrypting dnode blocks.
  */
 static int
 zio_crypt_init_uios_dnode(boolean_t encrypt, uint64_t version,
     uint8_t *plainbuf, uint8_t *cipherbuf, uint_t datalen, boolean_t byteswap,
     zfs_uio_t *puio, zfs_uio_t *out_uio, uint_t *enc_len, uint8_t **authbuf,
     uint_t *auth_len, boolean_t *no_crypt)
 {
 	uint8_t *aadbuf = zio_buf_alloc(datalen);
 	uint8_t *src, *dst, *aadp;
 	dnode_phys_t *dnp, *adnp, *sdnp, *ddnp;
 	iovec_t *dst_iovecs;
 	uint_t nr_iovecs, crypt_len, vec;
 	uint_t aad_len = 0, total_len = 0;
 	uint_t i, j, max_dnp = datalen >> DNODE_SHIFT;
 
 	if (encrypt) {
 		src = plainbuf;
 		dst = cipherbuf;
 	} else {
 		src = cipherbuf;
 		dst = plainbuf;
 	}
 	memcpy(dst, src, datalen);
 
 	sdnp = (dnode_phys_t *)src;
 	ddnp = (dnode_phys_t *)dst;
 	aadp = aadbuf;
 
 	/*
 	 * Count the number of iovecs we will need to do the encryption by
 	 * counting the number of bonus buffers that need to be encrypted.
 	 */
 
 	/* We need at least two iovecs -- one for the AAD, one for the MAC. */
 	nr_iovecs = 2;
 
 	for (i = 0; i < max_dnp; i += sdnp[i].dn_extra_slots + 1) {
 		/*
 		 * This block may still be byteswapped. However, all of the
 		 * values we use are either uint8_t's (for which byteswapping
 		 * is a noop) or a * != 0 check, which will work regardless
 		 * of whether or not we byteswap.
 		 */
 		if (sdnp[i].dn_type != DMU_OT_NONE &&
 		    DMU_OT_IS_ENCRYPTED(sdnp[i].dn_bonustype) &&
 		    sdnp[i].dn_bonuslen != 0) {
 			nr_iovecs++;
 		}
 	}
 
 	dst_iovecs = kmem_alloc(nr_iovecs * sizeof (iovec_t), KM_SLEEP);
 
 	/*
 	 * Iterate through the dnodes again, this time filling in the uios
 	 * we allocated earlier. We also concatenate any data we want to
 	 * authenticate onto aadbuf.
 	 */
 
 	/* The first iovec will contain the authbuf. */
 	vec = 1;
 
 	for (i = 0; i < max_dnp; i += sdnp[i].dn_extra_slots + 1) {
 		dnp = &sdnp[i];
 
 		/* copy over the core fields and blkptrs (kept as plaintext) */
 		memcpy(&ddnp[i], dnp,
 		    (uint8_t *)DN_BONUS(dnp) - (uint8_t *)dnp);
 
 		if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
 			memcpy(DN_SPILL_BLKPTR(&ddnp[i]), DN_SPILL_BLKPTR(dnp),
 			    sizeof (blkptr_t));
 		}
 
 		/*
 		 * Handle authenticated data. We authenticate everything in
 		 * the dnode that can be brought over when we do a raw send.
 		 * This includes all of the core fields as well as the MACs
 		 * stored in the bp checksums and all of the portable bits
 		 * from blk_prop. We include the dnode padding here in case it
 		 * ever gets used in the future. Some dn_flags and dn_used are
 		 * not portable so we mask those out values out of the
 		 * authenticated data.
 		 */
 		crypt_len = offsetof(dnode_phys_t, dn_blkptr);
 		memcpy(aadp, dnp, crypt_len);
 		adnp = (dnode_phys_t *)aadp;
 		adnp->dn_flags &= DNODE_CRYPT_PORTABLE_FLAGS_MASK;
 		adnp->dn_used = 0;
 		aadp += crypt_len;
 		aad_len += crypt_len;
 
 		for (j = 0; j < dnp->dn_nblkptr; j++) {
 			zio_crypt_bp_do_aad_updates(&aadp, &aad_len,
 			    version, byteswap, &dnp->dn_blkptr[j]);
 		}
 
 		if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
 			zio_crypt_bp_do_aad_updates(&aadp, &aad_len,
 			    version, byteswap, DN_SPILL_BLKPTR(dnp));
 		}
 
 		/*
 		 * If this bonus buffer needs to be encrypted, we prepare an
 		 * iovec_t. The encryption / decryption functions will fill
 		 * this in for us with the encrypted or decrypted data.
 		 * Otherwise we add the bonus buffer to the authenticated
 		 * data buffer and copy it over to the destination. The
 		 * encrypted iovec extends to DN_MAX_BONUS_LEN(dnp) so that
 		 * we can guarantee alignment with the AES block size
 		 * (128 bits).
 		 */
 		crypt_len = DN_MAX_BONUS_LEN(dnp);
 		if (dnp->dn_type != DMU_OT_NONE &&
 		    DMU_OT_IS_ENCRYPTED(dnp->dn_bonustype) &&
 		    dnp->dn_bonuslen != 0) {
 			dst_iovecs[vec].iov_base = DN_BONUS(&ddnp[i]);
 			dst_iovecs[vec].iov_len = crypt_len;
 
 			vec++;
 			total_len += crypt_len;
 		} else {
 			memcpy(DN_BONUS(&ddnp[i]), DN_BONUS(dnp), crypt_len);
 			memcpy(aadp, DN_BONUS(dnp), crypt_len);
 			aadp += crypt_len;
 			aad_len += crypt_len;
 		}
 	}
 
 	/* The last iovec will contain the MAC. */
 	ASSERT3U(vec, ==, nr_iovecs - 1);
 
 	/* AAD */
 	dst_iovecs[0].iov_base = aadbuf;
 	dst_iovecs[0].iov_len = aad_len;
 	/* MAC */
 	dst_iovecs[vec].iov_base = 0;
 	dst_iovecs[vec].iov_len = 0;
 
 	*no_crypt = (vec == 1);
 	*enc_len = total_len;
 	*authbuf = aadbuf;
 	*auth_len = aad_len;
 	GET_UIO_STRUCT(out_uio)->uio_iov = dst_iovecs;
 	zfs_uio_iovcnt(out_uio) = nr_iovecs;
 
 	return (0);
 }
 
 static int
 zio_crypt_init_uios_normal(boolean_t encrypt, uint8_t *plainbuf,
     uint8_t *cipherbuf, uint_t datalen, zfs_uio_t *puio, zfs_uio_t *out_uio,
     uint_t *enc_len)
 {
 	(void) puio;
 	int ret;
 	uint_t nr_plain = 1, nr_cipher = 2;
 	iovec_t *plain_iovecs = NULL, *cipher_iovecs = NULL;
 	void *src, *dst;
 
 	cipher_iovecs = kmem_zalloc(nr_cipher * sizeof (iovec_t),
 	    KM_SLEEP);
 	if (!cipher_iovecs) {
 		ret = SET_ERROR(ENOMEM);
 		goto error;
 	}
 
 	if (encrypt) {
 		src = plainbuf;
 		dst = cipherbuf;
 	} else {
 		src = cipherbuf;
 		dst = plainbuf;
 	}
 	memcpy(dst, src, datalen);
 	cipher_iovecs[0].iov_base = dst;
 	cipher_iovecs[0].iov_len = datalen;
 
 	*enc_len = datalen;
 	GET_UIO_STRUCT(out_uio)->uio_iov = cipher_iovecs;
 	zfs_uio_iovcnt(out_uio) = nr_cipher;
 
 	return (0);
 
 error:
 	if (plain_iovecs != NULL)
 		kmem_free(plain_iovecs, nr_plain * sizeof (iovec_t));
 	if (cipher_iovecs != NULL)
 		kmem_free(cipher_iovecs, nr_cipher * sizeof (iovec_t));
 
 	*enc_len = 0;
 	GET_UIO_STRUCT(out_uio)->uio_iov = NULL;
 	zfs_uio_iovcnt(out_uio) = 0;
 
 	return (ret);
 }
 
 /*
  * This function builds up the plaintext (puio) and ciphertext (cuio) uios so
  * that they can be used for encryption and decryption by zio_do_crypt_uio().
  * Most blocks will use zio_crypt_init_uios_normal(), with ZIL and dnode blocks
  * requiring special handling to parse out pieces that are to be encrypted. The
  * authbuf is used by these special cases to store additional authenticated
  * data (AAD) for the encryption modes.
  */
 static int
 zio_crypt_init_uios(boolean_t encrypt, uint64_t version, dmu_object_type_t ot,
     uint8_t *plainbuf, uint8_t *cipherbuf, uint_t datalen, boolean_t byteswap,
     uint8_t *mac, zfs_uio_t *puio, zfs_uio_t *cuio, uint_t *enc_len,
     uint8_t **authbuf, uint_t *auth_len, boolean_t *no_crypt)
 {
 	int ret;
 	iovec_t *mac_iov;
 
 	ASSERT(DMU_OT_IS_ENCRYPTED(ot) || ot == DMU_OT_NONE);
 
 	/* route to handler */
 	switch (ot) {
 	case DMU_OT_INTENT_LOG:
 		ret = zio_crypt_init_uios_zil(encrypt, plainbuf, cipherbuf,
 		    datalen, byteswap, puio, cuio, enc_len, authbuf, auth_len,
 		    no_crypt);
 		break;
 	case DMU_OT_DNODE:
 		ret = zio_crypt_init_uios_dnode(encrypt, version, plainbuf,
 		    cipherbuf, datalen, byteswap, puio, cuio, enc_len, authbuf,
 		    auth_len, no_crypt);
 		break;
 	default:
 		ret = zio_crypt_init_uios_normal(encrypt, plainbuf, cipherbuf,
 		    datalen, puio, cuio, enc_len);
 		*authbuf = NULL;
 		*auth_len = 0;
 		*no_crypt = B_FALSE;
 		break;
 	}
 
 	if (ret != 0)
 		goto error;
 
 	/* populate the uios */
 	zfs_uio_segflg(cuio) = UIO_SYSSPACE;
 
 	mac_iov =
 	    ((iovec_t *)&(GET_UIO_STRUCT(cuio)->
 	    uio_iov[zfs_uio_iovcnt(cuio) - 1]));
 	mac_iov->iov_base = (void *)mac;
 	mac_iov->iov_len = ZIO_DATA_MAC_LEN;
 
 	return (0);
 
 error:
 	return (ret);
 }
 
 void *failed_decrypt_buf;
 int faile_decrypt_size;
 
 /*
  * Primary encryption / decryption entrypoint for zio data.
  */
 int
 zio_do_crypt_data(boolean_t encrypt, zio_crypt_key_t *key,
     dmu_object_type_t ot, boolean_t byteswap, uint8_t *salt, uint8_t *iv,
     uint8_t *mac, uint_t datalen, uint8_t *plainbuf, uint8_t *cipherbuf,
     boolean_t *no_crypt)
 {
 	int ret;
 	boolean_t locked = B_FALSE;
 	uint64_t crypt = key->zk_crypt;
 	uint_t keydata_len = zio_crypt_table[crypt].ci_keylen;
 	uint_t enc_len, auth_len;
 	zfs_uio_t puio, cuio;
 	struct uio puio_s, cuio_s;
 	uint8_t enc_keydata[MASTER_KEY_MAX_LEN];
 	crypto_key_t tmp_ckey, *ckey = NULL;
 	freebsd_crypt_session_t *tmpl = NULL;
 	uint8_t *authbuf = NULL;
 
 
 	zfs_uio_init(&puio, &puio_s);
 	zfs_uio_init(&cuio, &cuio_s);
 	memset(GET_UIO_STRUCT(&puio), 0, sizeof (struct uio));
 	memset(GET_UIO_STRUCT(&cuio), 0, sizeof (struct uio));
 
 #ifdef FCRYPTO_DEBUG
 	printf("%s(%s, %p, %p, %d, %p, %p, %u, %s, %p, %p, %p)\n",
 	    __FUNCTION__,
 	    encrypt ? "encrypt" : "decrypt",
 	    key, salt, ot, iv, mac, datalen,
 	    byteswap ? "byteswap" : "native_endian", plainbuf,
 	    cipherbuf, no_crypt);
 
 	printf("\tkey = {");
 	for (int i = 0; i < key->zk_current_key.ck_length/8; i++)
 		printf("%02x ", ((uint8_t *)key->zk_current_key.ck_data)[i]);
 	printf("}\n");
 #endif
 	/* create uios for encryption */
 	ret = zio_crypt_init_uios(encrypt, key->zk_version, ot, plainbuf,
 	    cipherbuf, datalen, byteswap, mac, &puio, &cuio, &enc_len,
 	    &authbuf, &auth_len, no_crypt);
 	if (ret != 0)
 		return (ret);
 
 	/*
 	 * If the needed key is the current one, just use it. Otherwise we
 	 * need to generate a temporary one from the given salt + master key.
 	 * If we are encrypting, we must return a copy of the current salt
 	 * so that it can be stored in the blkptr_t.
 	 */
 	rw_enter(&key->zk_salt_lock, RW_READER);
 	locked = B_TRUE;
 
 	if (memcmp(salt, key->zk_salt, ZIO_DATA_SALT_LEN) == 0) {
 		ckey = &key->zk_current_key;
 		tmpl = &key->zk_session;
 	} else {
 		rw_exit(&key->zk_salt_lock);
 		locked = B_FALSE;
 
 		ret = hkdf_sha512(key->zk_master_keydata, keydata_len, NULL, 0,
 		    salt, ZIO_DATA_SALT_LEN, enc_keydata, keydata_len);
 		if (ret != 0)
 			goto error;
 		tmp_ckey.ck_data = enc_keydata;
 		tmp_ckey.ck_length = CRYPTO_BYTES2BITS(keydata_len);
 
 		ckey = &tmp_ckey;
 		tmpl = NULL;
 	}
 
 	/* perform the encryption / decryption */
 	ret = zio_do_crypt_uio_opencrypto(encrypt, tmpl, key->zk_crypt,
 	    ckey, iv, enc_len, &cuio, auth_len);
 	if (ret != 0)
 		goto error;
 	if (locked) {
 		rw_exit(&key->zk_salt_lock);
 	}
 
 	if (authbuf != NULL)
 		zio_buf_free(authbuf, datalen);
 	if (ckey == &tmp_ckey)
 		memset(enc_keydata, 0, keydata_len);
 	zio_crypt_destroy_uio(&puio);
 	zio_crypt_destroy_uio(&cuio);
 
 	return (0);
 
 error:
 	if (!encrypt) {
 		if (failed_decrypt_buf != NULL)
 			kmem_free(failed_decrypt_buf, failed_decrypt_size);
 		failed_decrypt_buf = kmem_alloc(datalen, KM_SLEEP);
 		failed_decrypt_size = datalen;
 		memcpy(failed_decrypt_buf, cipherbuf, datalen);
 	}
 	if (locked)
 		rw_exit(&key->zk_salt_lock);
 	if (authbuf != NULL)
 		zio_buf_free(authbuf, datalen);
 	if (ckey == &tmp_ckey)
 		memset(enc_keydata, 0, keydata_len);
 	zio_crypt_destroy_uio(&puio);
 	zio_crypt_destroy_uio(&cuio);
 	return (SET_ERROR(ret));
 }
 
 /*
  * Simple wrapper around zio_do_crypt_data() to work with abd's instead of
  * linear buffers.
  */
 int
 zio_do_crypt_abd(boolean_t encrypt, zio_crypt_key_t *key, dmu_object_type_t ot,
     boolean_t byteswap, uint8_t *salt, uint8_t *iv, uint8_t *mac,
     uint_t datalen, abd_t *pabd, abd_t *cabd, boolean_t *no_crypt)
 {
 	int ret;
 	void *ptmp, *ctmp;
 
 	if (encrypt) {
 		ptmp = abd_borrow_buf_copy(pabd, datalen);
 		ctmp = abd_borrow_buf(cabd, datalen);
 	} else {
 		ptmp = abd_borrow_buf(pabd, datalen);
 		ctmp = abd_borrow_buf_copy(cabd, datalen);
 	}
 
 	ret = zio_do_crypt_data(encrypt, key, ot, byteswap, salt, iv, mac,
 	    datalen, ptmp, ctmp, no_crypt);
 	if (ret != 0)
 		goto error;
 
 	if (encrypt) {
 		abd_return_buf(pabd, ptmp, datalen);
 		abd_return_buf_copy(cabd, ctmp, datalen);
 	} else {
 		abd_return_buf_copy(pabd, ptmp, datalen);
 		abd_return_buf(cabd, ctmp, datalen);
 	}
 
 	return (0);
 
 error:
 	if (encrypt) {
 		abd_return_buf(pabd, ptmp, datalen);
 		abd_return_buf_copy(cabd, ctmp, datalen);
 	} else {
 		abd_return_buf_copy(pabd, ptmp, datalen);
 		abd_return_buf(cabd, ctmp, datalen);
 	}
 
 	return (SET_ERROR(ret));
 }
 
 #if defined(_KERNEL) && defined(HAVE_SPL)
 /* CSTYLED */
 module_param(zfs_key_max_salt_uses, ulong, 0644);
 MODULE_PARM_DESC(zfs_key_max_salt_uses, "Max number of times a salt value "
 	"can be used for generating encryption keys before it is rotated");
 #endif
diff --git a/sys/contrib/openzfs/module/os/linux/zfs/zio_crypt.c b/sys/contrib/openzfs/module/os/linux/zfs/zio_crypt.c
index 55554d09ee43..775ab8efbcdf 100644
--- a/sys/contrib/openzfs/module/os/linux/zfs/zio_crypt.c
+++ b/sys/contrib/openzfs/module/os/linux/zfs/zio_crypt.c
@@ -1,2064 +1,2079 @@
 /*
  * CDDL HEADER START
  *
  * This file and its contents are supplied under the terms of the
  * Common Development and Distribution License ("CDDL"), version 1.0.
  * You may only use this file in accordance with the terms of version
  * 1.0 of the CDDL.
  *
  * A full copy of the text of the CDDL should have accompanied this
  * source.  A copy of the CDDL is also available via the Internet at
  * http://www.illumos.org/license/CDDL.
  *
  * CDDL HEADER END
  */
 
 /*
  * Copyright (c) 2017, Datto, Inc. All rights reserved.
  */
 
 #include <sys/zio_crypt.h>
 #include <sys/dmu.h>
 #include <sys/dmu_objset.h>
 #include <sys/dnode.h>
 #include <sys/fs/zfs.h>
 #include <sys/zio.h>
 #include <sys/zil.h>
 #include <sys/sha2.h>
 #include <sys/hkdf.h>
 #include <sys/qat.h>
 
 /*
  * This file is responsible for handling all of the details of generating
  * encryption parameters and performing encryption and authentication.
  *
  * BLOCK ENCRYPTION PARAMETERS:
  * Encryption /Authentication Algorithm Suite (crypt):
  * The encryption algorithm, mode, and key length we are going to use. We
  * currently support AES in either GCM or CCM modes with 128, 192, and 256 bit
  * keys. All authentication is currently done with SHA512-HMAC.
  *
  * Plaintext:
  * The unencrypted data that we want to encrypt.
  *
  * Initialization Vector (IV):
  * An initialization vector for the encryption algorithms. This is used to
  * "tweak" the encryption algorithms so that two blocks of the same data are
  * encrypted into different ciphertext outputs, thus obfuscating block patterns.
  * The supported encryption modes (AES-GCM and AES-CCM) require that an IV is
  * never reused with the same encryption key. This value is stored unencrypted
  * and must simply be provided to the decryption function. We use a 96 bit IV
  * (as recommended by NIST) for all block encryption. For non-dedup blocks we
  * derive the IV randomly. The first 64 bits of the IV are stored in the second
  * word of DVA[2] and the remaining 32 bits are stored in the upper 32 bits of
  * blk_fill. This is safe because encrypted blocks can't use the upper 32 bits
  * of blk_fill. We only encrypt level 0 blocks, which normally have a fill count
  * of 1. The only exception is for DMU_OT_DNODE objects, where the fill count of
  * level 0 blocks is the number of allocated dnodes in that block. The on-disk
  * format supports at most 2^15 slots per L0 dnode block, because the maximum
  * block size is 16MB (2^24). In either case, for level 0 blocks this number
  * will still be smaller than UINT32_MAX so it is safe to store the IV in the
  * top 32 bits of blk_fill, while leaving the bottom 32 bits of the fill count
  * for the dnode code.
  *
  * Master key:
  * This is the most important secret data of an encrypted dataset. It is used
  * along with the salt to generate that actual encryption keys via HKDF. We
  * do not use the master key to directly encrypt any data because there are
  * theoretical limits on how much data can actually be safely encrypted with
  * any encryption mode. The master key is stored encrypted on disk with the
  * user's wrapping key. Its length is determined by the encryption algorithm.
  * For details on how this is stored see the block comment in dsl_crypt.c
  *
  * Salt:
  * Used as an input to the HKDF function, along with the master key. We use a
  * 64 bit salt, stored unencrypted in the first word of DVA[2]. Any given salt
  * can be used for encrypting many blocks, so we cache the current salt and the
  * associated derived key in zio_crypt_t so we do not need to derive it again
  * needlessly.
  *
  * Encryption Key:
  * A secret binary key, generated from an HKDF function used to encrypt and
  * decrypt data.
  *
  * Message Authentication Code (MAC)
  * The MAC is an output of authenticated encryption modes such as AES-GCM and
  * AES-CCM. Its purpose is to ensure that an attacker cannot modify encrypted
  * data on disk and return garbage to the application. Effectively, it is a
  * checksum that can not be reproduced by an attacker. We store the MAC in the
  * second 128 bits of blk_cksum, leaving the first 128 bits for a truncated
  * regular checksum of the ciphertext which can be used for scrubbing.
  *
  * OBJECT AUTHENTICATION:
  * Some object types, such as DMU_OT_MASTER_NODE cannot be encrypted because
  * they contain some info that always needs to be readable. To prevent this
  * data from being altered, we authenticate this data using SHA512-HMAC. This
  * will produce a MAC (similar to the one produced via encryption) which can
  * be used to verify the object was not modified. HMACs do not require key
  * rotation or IVs, so we can keep up to the full 3 copies of authenticated
  * data.
  *
  * ZIL ENCRYPTION:
  * ZIL blocks have their bp written to disk ahead of the associated data, so we
  * cannot store the MAC there as we normally do. For these blocks the MAC is
  * stored in the embedded checksum within the zil_chain_t header. The salt and
  * IV are generated for the block on bp allocation instead of at encryption
  * time. In addition, ZIL blocks have some pieces that must be left in plaintext
  * for claiming even though all of the sensitive user data still needs to be
  * encrypted. The function zio_crypt_init_uios_zil() handles parsing which
  * pieces of the block need to be encrypted. All data that is not encrypted is
  * authenticated using the AAD mechanisms that the supported encryption modes
  * provide for. In order to preserve the semantics of the ZIL for encrypted
  * datasets, the ZIL is not protected at the objset level as described below.
  *
  * DNODE ENCRYPTION:
  * Similarly to ZIL blocks, the core part of each dnode_phys_t needs to be left
  * in plaintext for scrubbing and claiming, but the bonus buffers might contain
  * sensitive user data. The function zio_crypt_init_uios_dnode() handles parsing
  * which pieces of the block need to be encrypted. For more details about
  * dnode authentication and encryption, see zio_crypt_init_uios_dnode().
  *
  * OBJECT SET AUTHENTICATION:
  * Up to this point, everything we have encrypted and authenticated has been
  * at level 0 (or -2 for the ZIL). If we did not do any further work the
  * on-disk format would be susceptible to attacks that deleted or rearranged
  * the order of level 0 blocks. Ideally, the cleanest solution would be to
  * maintain a tree of authentication MACs going up the bp tree. However, this
  * presents a problem for raw sends. Send files do not send information about
  * indirect blocks so there would be no convenient way to transfer the MACs and
  * they cannot be recalculated on the receive side without the master key which
  * would defeat one of the purposes of raw sends in the first place. Instead,
  * for the indirect levels of the bp tree, we use a regular SHA512 of the MACs
  * from the level below. We also include some portable fields from blk_prop such
  * as the lsize and compression algorithm to prevent the data from being
  * misinterpreted.
  *
  * At the objset level, we maintain 2 separate 256 bit MACs in the
  * objset_phys_t. The first one is "portable" and is the logical root of the
  * MAC tree maintained in the metadnode's bps. The second, is "local" and is
  * used as the root MAC for the user accounting objects, which are also not
  * transferred via "zfs send". The portable MAC is sent in the DRR_BEGIN payload
  * of the send file. The useraccounting code ensures that the useraccounting
  * info is not present upon a receive, so the local MAC can simply be cleared
  * out at that time. For more info about objset_phys_t authentication, see
  * zio_crypt_do_objset_hmacs().
  *
  * CONSIDERATIONS FOR DEDUP:
  * In order for dedup to work, blocks that we want to dedup with one another
  * need to use the same IV and encryption key, so that they will have the same
  * ciphertext. Normally, one should never reuse an IV with the same encryption
  * key or else AES-GCM and AES-CCM can both actually leak the plaintext of both
  * blocks. In this case, however, since we are using the same plaintext as
  * well all that we end up with is a duplicate of the original ciphertext we
  * already had. As a result, an attacker with read access to the raw disk will
  * be able to tell which blocks are the same but this information is given away
  * by dedup anyway. In order to get the same IVs and encryption keys for
  * equivalent blocks of data we use an HMAC of the plaintext. We use an HMAC
  * here so that a reproducible checksum of the plaintext is never available to
  * the attacker. The HMAC key is kept alongside the master key, encrypted on
  * disk. The first 64 bits of the HMAC are used in place of the random salt, and
  * the next 96 bits are used as the IV. As a result of this mechanism, dedup
  * will only work within a clone family since encrypted dedup requires use of
  * the same master and HMAC keys.
  */
 
 /*
  * After encrypting many blocks with the same key we may start to run up
  * against the theoretical limits of how much data can securely be encrypted
  * with a single key using the supported encryption modes. The most obvious
  * limitation is that our risk of generating 2 equivalent 96 bit IVs increases
  * the more IVs we generate (which both GCM and CCM modes strictly forbid).
  * This risk actually grows surprisingly quickly over time according to the
  * Birthday Problem. With a total IV space of 2^(96 bits), and assuming we have
  * generated n IVs with a cryptographically secure RNG, the approximate
  * probability p(n) of a collision is given as:
  *
  * p(n) ~= e^(-n*(n-1)/(2*(2^96)))
  *
  * [http://www.math.cornell.edu/~mec/2008-2009/TianyiZheng/Birthday.html]
  *
  * Assuming that we want to ensure that p(n) never goes over 1 / 1 trillion
  * we must not write more than 398,065,730 blocks with the same encryption key.
  * Therefore, we rotate our keys after 400,000,000 blocks have been written by
  * generating a new random 64 bit salt for our HKDF encryption key generation
  * function.
  */
 #define	ZFS_KEY_MAX_SALT_USES_DEFAULT	400000000
 #define	ZFS_CURRENT_MAX_SALT_USES	\
 	(MIN(zfs_key_max_salt_uses, ZFS_KEY_MAX_SALT_USES_DEFAULT))
 static unsigned long zfs_key_max_salt_uses = ZFS_KEY_MAX_SALT_USES_DEFAULT;
 
 typedef struct blkptr_auth_buf {
 	uint64_t bab_prop;			/* blk_prop - portable mask */
 	uint8_t bab_mac[ZIO_DATA_MAC_LEN];	/* MAC from blk_cksum */
 	uint64_t bab_pad;			/* reserved for future use */
 } blkptr_auth_buf_t;
 
 const zio_crypt_info_t zio_crypt_table[ZIO_CRYPT_FUNCTIONS] = {
 	{"",			ZC_TYPE_NONE,	0,	"inherit"},
 	{"",			ZC_TYPE_NONE,	0,	"on"},
 	{"",			ZC_TYPE_NONE,	0,	"off"},
 	{SUN_CKM_AES_CCM,	ZC_TYPE_CCM,	16,	"aes-128-ccm"},
 	{SUN_CKM_AES_CCM,	ZC_TYPE_CCM,	24,	"aes-192-ccm"},
 	{SUN_CKM_AES_CCM,	ZC_TYPE_CCM,	32,	"aes-256-ccm"},
 	{SUN_CKM_AES_GCM,	ZC_TYPE_GCM,	16,	"aes-128-gcm"},
 	{SUN_CKM_AES_GCM,	ZC_TYPE_GCM,	24,	"aes-192-gcm"},
 	{SUN_CKM_AES_GCM,	ZC_TYPE_GCM,	32,	"aes-256-gcm"}
 };
 
 void
 zio_crypt_key_destroy(zio_crypt_key_t *key)
 {
 	rw_destroy(&key->zk_salt_lock);
 
 	/* free crypto templates */
 	crypto_destroy_ctx_template(key->zk_current_tmpl);
 	crypto_destroy_ctx_template(key->zk_hmac_tmpl);
 
 	/* zero out sensitive data */
 	memset(key, 0, sizeof (zio_crypt_key_t));
 }
 
 int
 zio_crypt_key_init(uint64_t crypt, zio_crypt_key_t *key)
 {
 	int ret;
 	crypto_mechanism_t mech = {0};
 	uint_t keydata_len;
 
 	ASSERT(key != NULL);
 	ASSERT3U(crypt, <, ZIO_CRYPT_FUNCTIONS);
 
 /*
  * Workaround for GCC 12+ with UBSan enabled deficencies.
  *
  * GCC 12+ invoked with -fsanitize=undefined incorrectly reports the code
  * below as violating -Warray-bounds
  */
 #if defined(__GNUC__) && !defined(__clang__) && \
 	((!defined(_KERNEL) && defined(ZFS_UBSAN_ENABLED)) || \
 	    defined(CONFIG_UBSAN))
 #pragma GCC diagnostic push
 #pragma GCC diagnostic ignored "-Warray-bounds"
 #endif
 	keydata_len = zio_crypt_table[crypt].ci_keylen;
 #if defined(__GNUC__) && !defined(__clang__) && \
 	((!defined(_KERNEL) && defined(ZFS_UBSAN_ENABLED)) || \
 	    defined(CONFIG_UBSAN))
 #pragma GCC diagnostic pop
 #endif
 	memset(key, 0, sizeof (zio_crypt_key_t));
 	rw_init(&key->zk_salt_lock, NULL, RW_DEFAULT, NULL);
 
 	/* fill keydata buffers and salt with random data */
 	ret = random_get_bytes((uint8_t *)&key->zk_guid, sizeof (uint64_t));
 	if (ret != 0)
 		goto error;
 
 	ret = random_get_bytes(key->zk_master_keydata, keydata_len);
 	if (ret != 0)
 		goto error;
 
 	ret = random_get_bytes(key->zk_hmac_keydata, SHA512_HMAC_KEYLEN);
 	if (ret != 0)
 		goto error;
 
 	ret = random_get_bytes(key->zk_salt, ZIO_DATA_SALT_LEN);
 	if (ret != 0)
 		goto error;
 
 	/* derive the current key from the master key */
 	ret = hkdf_sha512(key->zk_master_keydata, keydata_len, NULL, 0,
 	    key->zk_salt, ZIO_DATA_SALT_LEN, key->zk_current_keydata,
 	    keydata_len);
 	if (ret != 0)
 		goto error;
 
 	/* initialize keys for the ICP */
 	key->zk_current_key.ck_data = key->zk_current_keydata;
 	key->zk_current_key.ck_length = CRYPTO_BYTES2BITS(keydata_len);
 
 	key->zk_hmac_key.ck_data = &key->zk_hmac_key;
 	key->zk_hmac_key.ck_length = CRYPTO_BYTES2BITS(SHA512_HMAC_KEYLEN);
 
 	/*
 	 * Initialize the crypto templates. It's ok if this fails because
 	 * this is just an optimization.
 	 */
 	mech.cm_type = crypto_mech2id(zio_crypt_table[crypt].ci_mechname);
 	ret = crypto_create_ctx_template(&mech, &key->zk_current_key,
 	    &key->zk_current_tmpl);
 	if (ret != CRYPTO_SUCCESS)
 		key->zk_current_tmpl = NULL;
 
 	mech.cm_type = crypto_mech2id(SUN_CKM_SHA512_HMAC);
 	ret = crypto_create_ctx_template(&mech, &key->zk_hmac_key,
 	    &key->zk_hmac_tmpl);
 	if (ret != CRYPTO_SUCCESS)
 		key->zk_hmac_tmpl = NULL;
 
 	key->zk_crypt = crypt;
 	key->zk_version = ZIO_CRYPT_KEY_CURRENT_VERSION;
 	key->zk_salt_count = 0;
 
 	return (0);
 
 error:
 	zio_crypt_key_destroy(key);
 	return (ret);
 }
 
 static int
 zio_crypt_key_change_salt(zio_crypt_key_t *key)
 {
 	int ret = 0;
 	uint8_t salt[ZIO_DATA_SALT_LEN];
 	crypto_mechanism_t mech;
 	uint_t keydata_len = zio_crypt_table[key->zk_crypt].ci_keylen;
 
 	/* generate a new salt */
 	ret = random_get_bytes(salt, ZIO_DATA_SALT_LEN);
 	if (ret != 0)
 		goto error;
 
 	rw_enter(&key->zk_salt_lock, RW_WRITER);
 
 	/* someone beat us to the salt rotation, just unlock and return */
 	if (key->zk_salt_count < ZFS_CURRENT_MAX_SALT_USES)
 		goto out_unlock;
 
 	/* derive the current key from the master key and the new salt */
 	ret = hkdf_sha512(key->zk_master_keydata, keydata_len, NULL, 0,
 	    salt, ZIO_DATA_SALT_LEN, key->zk_current_keydata, keydata_len);
 	if (ret != 0)
 		goto out_unlock;
 
 	/* assign the salt and reset the usage count */
 	memcpy(key->zk_salt, salt, ZIO_DATA_SALT_LEN);
 	key->zk_salt_count = 0;
 
 	/* destroy the old context template and create the new one */
 	crypto_destroy_ctx_template(key->zk_current_tmpl);
 	ret = crypto_create_ctx_template(&mech, &key->zk_current_key,
 	    &key->zk_current_tmpl);
 	if (ret != CRYPTO_SUCCESS)
 		key->zk_current_tmpl = NULL;
 
 	rw_exit(&key->zk_salt_lock);
 
 	return (0);
 
 out_unlock:
 	rw_exit(&key->zk_salt_lock);
 error:
 	return (ret);
 }
 
 /* See comment above zfs_key_max_salt_uses definition for details */
 int
 zio_crypt_key_get_salt(zio_crypt_key_t *key, uint8_t *salt)
 {
 	int ret;
 	boolean_t salt_change;
 
 	rw_enter(&key->zk_salt_lock, RW_READER);
 
 	memcpy(salt, key->zk_salt, ZIO_DATA_SALT_LEN);
 	salt_change = (atomic_inc_64_nv(&key->zk_salt_count) >=
 	    ZFS_CURRENT_MAX_SALT_USES);
 
 	rw_exit(&key->zk_salt_lock);
 
 	if (salt_change) {
 		ret = zio_crypt_key_change_salt(key);
 		if (ret != 0)
 			goto error;
 	}
 
 	return (0);
 
 error:
 	return (ret);
 }
 
 /*
  * This function handles all encryption and decryption in zfs. When
  * encrypting it expects puio to reference the plaintext and cuio to
  * reference the ciphertext. cuio must have enough space for the
  * ciphertext + room for a MAC. datalen should be the length of the
  * plaintext / ciphertext alone.
  */
 static int
 zio_do_crypt_uio(boolean_t encrypt, uint64_t crypt, crypto_key_t *key,
     crypto_ctx_template_t tmpl, uint8_t *ivbuf, uint_t datalen,
     zfs_uio_t *puio, zfs_uio_t *cuio, uint8_t *authbuf, uint_t auth_len)
 {
 	int ret;
 	crypto_data_t plaindata, cipherdata;
 	CK_AES_CCM_PARAMS ccmp;
 	CK_AES_GCM_PARAMS gcmp;
 	crypto_mechanism_t mech;
 	zio_crypt_info_t crypt_info;
 	uint_t plain_full_len, maclen;
 
 	ASSERT3U(crypt, <, ZIO_CRYPT_FUNCTIONS);
 
 	/* lookup the encryption info */
 	crypt_info = zio_crypt_table[crypt];
 
 	/* the mac will always be the last iovec_t in the cipher uio */
 	maclen = cuio->uio_iov[cuio->uio_iovcnt - 1].iov_len;
 
 	ASSERT(maclen <= ZIO_DATA_MAC_LEN);
 
 	/* setup encryption mechanism (same as crypt) */
 	mech.cm_type = crypto_mech2id(crypt_info.ci_mechname);
 
 	/*
 	 * Strangely, the ICP requires that plain_full_len must include
 	 * the MAC length when decrypting, even though the UIO does not
 	 * need to have the extra space allocated.
 	 */
 	if (encrypt) {
 		plain_full_len = datalen;
 	} else {
 		plain_full_len = datalen + maclen;
 	}
 
 	/*
 	 * setup encryption params (currently only AES CCM and AES GCM
 	 * are supported)
 	 */
 	if (crypt_info.ci_crypt_type == ZC_TYPE_CCM) {
 		ccmp.ulNonceSize = ZIO_DATA_IV_LEN;
 		ccmp.ulAuthDataSize = auth_len;
 		ccmp.authData = authbuf;
 		ccmp.ulMACSize = maclen;
 		ccmp.nonce = ivbuf;
 		ccmp.ulDataSize = plain_full_len;
 
 		mech.cm_param = (char *)(&ccmp);
 		mech.cm_param_len = sizeof (CK_AES_CCM_PARAMS);
 	} else {
 		gcmp.ulIvLen = ZIO_DATA_IV_LEN;
 		gcmp.ulIvBits = CRYPTO_BYTES2BITS(ZIO_DATA_IV_LEN);
 		gcmp.ulAADLen = auth_len;
 		gcmp.pAAD = authbuf;
 		gcmp.ulTagBits = CRYPTO_BYTES2BITS(maclen);
 		gcmp.pIv = ivbuf;
 
 		mech.cm_param = (char *)(&gcmp);
 		mech.cm_param_len = sizeof (CK_AES_GCM_PARAMS);
 	}
 
 	/* populate the cipher and plain data structs. */
 	plaindata.cd_format = CRYPTO_DATA_UIO;
 	plaindata.cd_offset = 0;
 	plaindata.cd_uio = puio;
 	plaindata.cd_length = plain_full_len;
 
 	cipherdata.cd_format = CRYPTO_DATA_UIO;
 	cipherdata.cd_offset = 0;
 	cipherdata.cd_uio = cuio;
 	cipherdata.cd_length = datalen + maclen;
 
 	/* perform the actual encryption */
 	if (encrypt) {
 		ret = crypto_encrypt(&mech, &plaindata, key, tmpl, &cipherdata);
 		if (ret != CRYPTO_SUCCESS) {
 			ret = SET_ERROR(EIO);
 			goto error;
 		}
 	} else {
 		ret = crypto_decrypt(&mech, &cipherdata, key, tmpl, &plaindata);
 		if (ret != CRYPTO_SUCCESS) {
 			ASSERT3U(ret, ==, CRYPTO_INVALID_MAC);
 			ret = SET_ERROR(ECKSUM);
 			goto error;
 		}
 	}
 
 	return (0);
 
 error:
 	return (ret);
 }
 
 int
 zio_crypt_key_wrap(crypto_key_t *cwkey, zio_crypt_key_t *key, uint8_t *iv,
     uint8_t *mac, uint8_t *keydata_out, uint8_t *hmac_keydata_out)
 {
 	int ret;
 	zfs_uio_t puio, cuio;
 	uint64_t aad[3];
 	iovec_t plain_iovecs[2], cipher_iovecs[3];
 	uint64_t crypt = key->zk_crypt;
 	uint_t enc_len, keydata_len, aad_len;
 
 	ASSERT3U(crypt, <, ZIO_CRYPT_FUNCTIONS);
 
 	keydata_len = zio_crypt_table[crypt].ci_keylen;
 
 	/* generate iv for wrapping the master and hmac key */
 	ret = random_get_pseudo_bytes(iv, WRAPPING_IV_LEN);
 	if (ret != 0)
 		goto error;
 
 	/* initialize zfs_uio_ts */
 	plain_iovecs[0].iov_base = key->zk_master_keydata;
 	plain_iovecs[0].iov_len = keydata_len;
 	plain_iovecs[1].iov_base = key->zk_hmac_keydata;
 	plain_iovecs[1].iov_len = SHA512_HMAC_KEYLEN;
 
 	cipher_iovecs[0].iov_base = keydata_out;
 	cipher_iovecs[0].iov_len = keydata_len;
 	cipher_iovecs[1].iov_base = hmac_keydata_out;
 	cipher_iovecs[1].iov_len = SHA512_HMAC_KEYLEN;
 	cipher_iovecs[2].iov_base = mac;
 	cipher_iovecs[2].iov_len = WRAPPING_MAC_LEN;
 
 	/*
 	 * Although we don't support writing to the old format, we do
 	 * support rewrapping the key so that the user can move and
 	 * quarantine datasets on the old format.
 	 */
 	if (key->zk_version == 0) {
 		aad_len = sizeof (uint64_t);
 		aad[0] = LE_64(key->zk_guid);
 	} else {
 		ASSERT3U(key->zk_version, ==, ZIO_CRYPT_KEY_CURRENT_VERSION);
 		aad_len = sizeof (uint64_t) * 3;
 		aad[0] = LE_64(key->zk_guid);
 		aad[1] = LE_64(crypt);
 		aad[2] = LE_64(key->zk_version);
 	}
 
 	enc_len = zio_crypt_table[crypt].ci_keylen + SHA512_HMAC_KEYLEN;
 	puio.uio_iov = plain_iovecs;
 	puio.uio_iovcnt = 2;
 	puio.uio_segflg = UIO_SYSSPACE;
 	cuio.uio_iov = cipher_iovecs;
 	cuio.uio_iovcnt = 3;
 	cuio.uio_segflg = UIO_SYSSPACE;
 
 	/* encrypt the keys and store the resulting ciphertext and mac */
 	ret = zio_do_crypt_uio(B_TRUE, crypt, cwkey, NULL, iv, enc_len,
 	    &puio, &cuio, (uint8_t *)aad, aad_len);
 	if (ret != 0)
 		goto error;
 
 	return (0);
 
 error:
 	return (ret);
 }
 
 int
 zio_crypt_key_unwrap(crypto_key_t *cwkey, uint64_t crypt, uint64_t version,
     uint64_t guid, uint8_t *keydata, uint8_t *hmac_keydata, uint8_t *iv,
     uint8_t *mac, zio_crypt_key_t *key)
 {
 	crypto_mechanism_t mech;
 	zfs_uio_t puio, cuio;
 	uint64_t aad[3];
 	iovec_t plain_iovecs[2], cipher_iovecs[3];
 	uint_t enc_len, keydata_len, aad_len;
 	int ret;
 
 	ASSERT3U(crypt, <, ZIO_CRYPT_FUNCTIONS);
 
 	rw_init(&key->zk_salt_lock, NULL, RW_DEFAULT, NULL);
 
 	keydata_len = zio_crypt_table[crypt].ci_keylen;
 
 	/* initialize zfs_uio_ts */
 	plain_iovecs[0].iov_base = key->zk_master_keydata;
 	plain_iovecs[0].iov_len = keydata_len;
 	plain_iovecs[1].iov_base = key->zk_hmac_keydata;
 	plain_iovecs[1].iov_len = SHA512_HMAC_KEYLEN;
 
 	cipher_iovecs[0].iov_base = keydata;
 	cipher_iovecs[0].iov_len = keydata_len;
 	cipher_iovecs[1].iov_base = hmac_keydata;
 	cipher_iovecs[1].iov_len = SHA512_HMAC_KEYLEN;
 	cipher_iovecs[2].iov_base = mac;
 	cipher_iovecs[2].iov_len = WRAPPING_MAC_LEN;
 
 	if (version == 0) {
 		aad_len = sizeof (uint64_t);
 		aad[0] = LE_64(guid);
 	} else {
 		ASSERT3U(version, ==, ZIO_CRYPT_KEY_CURRENT_VERSION);
 		aad_len = sizeof (uint64_t) * 3;
 		aad[0] = LE_64(guid);
 		aad[1] = LE_64(crypt);
 		aad[2] = LE_64(version);
 	}
 
 	enc_len = keydata_len + SHA512_HMAC_KEYLEN;
 	puio.uio_iov = plain_iovecs;
 	puio.uio_segflg = UIO_SYSSPACE;
 	puio.uio_iovcnt = 2;
 	cuio.uio_iov = cipher_iovecs;
 	cuio.uio_iovcnt = 3;
 	cuio.uio_segflg = UIO_SYSSPACE;
 
 	/* decrypt the keys and store the result in the output buffers */
 	ret = zio_do_crypt_uio(B_FALSE, crypt, cwkey, NULL, iv, enc_len,
 	    &puio, &cuio, (uint8_t *)aad, aad_len);
 	if (ret != 0)
 		goto error;
 
 	/* generate a fresh salt */
 	ret = random_get_bytes(key->zk_salt, ZIO_DATA_SALT_LEN);
 	if (ret != 0)
 		goto error;
 
 	/* derive the current key from the master key */
 	ret = hkdf_sha512(key->zk_master_keydata, keydata_len, NULL, 0,
 	    key->zk_salt, ZIO_DATA_SALT_LEN, key->zk_current_keydata,
 	    keydata_len);
 	if (ret != 0)
 		goto error;
 
 	/* initialize keys for ICP */
 	key->zk_current_key.ck_data = key->zk_current_keydata;
 	key->zk_current_key.ck_length = CRYPTO_BYTES2BITS(keydata_len);
 
 	key->zk_hmac_key.ck_data = key->zk_hmac_keydata;
 	key->zk_hmac_key.ck_length = CRYPTO_BYTES2BITS(SHA512_HMAC_KEYLEN);
 
 	/*
 	 * Initialize the crypto templates. It's ok if this fails because
 	 * this is just an optimization.
 	 */
 	mech.cm_type = crypto_mech2id(zio_crypt_table[crypt].ci_mechname);
 	ret = crypto_create_ctx_template(&mech, &key->zk_current_key,
 	    &key->zk_current_tmpl);
 	if (ret != CRYPTO_SUCCESS)
 		key->zk_current_tmpl = NULL;
 
 	mech.cm_type = crypto_mech2id(SUN_CKM_SHA512_HMAC);
 	ret = crypto_create_ctx_template(&mech, &key->zk_hmac_key,
 	    &key->zk_hmac_tmpl);
 	if (ret != CRYPTO_SUCCESS)
 		key->zk_hmac_tmpl = NULL;
 
 	key->zk_crypt = crypt;
 	key->zk_version = version;
 	key->zk_guid = guid;
 	key->zk_salt_count = 0;
 
 	return (0);
 
 error:
 	zio_crypt_key_destroy(key);
 	return (ret);
 }
 
 int
 zio_crypt_generate_iv(uint8_t *ivbuf)
 {
 	int ret;
 
 	/* randomly generate the IV */
 	ret = random_get_pseudo_bytes(ivbuf, ZIO_DATA_IV_LEN);
 	if (ret != 0)
 		goto error;
 
 	return (0);
 
 error:
 	memset(ivbuf, 0, ZIO_DATA_IV_LEN);
 	return (ret);
 }
 
 int
 zio_crypt_do_hmac(zio_crypt_key_t *key, uint8_t *data, uint_t datalen,
     uint8_t *digestbuf, uint_t digestlen)
 {
 	int ret;
 	crypto_mechanism_t mech;
 	crypto_data_t in_data, digest_data;
 	uint8_t raw_digestbuf[SHA512_DIGEST_LENGTH];
 
 	ASSERT3U(digestlen, <=, SHA512_DIGEST_LENGTH);
 
 	/* initialize sha512-hmac mechanism and crypto data */
 	mech.cm_type = crypto_mech2id(SUN_CKM_SHA512_HMAC);
 	mech.cm_param = NULL;
 	mech.cm_param_len = 0;
 
 	/* initialize the crypto data */
 	in_data.cd_format = CRYPTO_DATA_RAW;
 	in_data.cd_offset = 0;
 	in_data.cd_length = datalen;
 	in_data.cd_raw.iov_base = (char *)data;
 	in_data.cd_raw.iov_len = in_data.cd_length;
 
 	digest_data.cd_format = CRYPTO_DATA_RAW;
 	digest_data.cd_offset = 0;
 	digest_data.cd_length = SHA512_DIGEST_LENGTH;
 	digest_data.cd_raw.iov_base = (char *)raw_digestbuf;
 	digest_data.cd_raw.iov_len = digest_data.cd_length;
 
 	/* generate the hmac */
 	ret = crypto_mac(&mech, &in_data, &key->zk_hmac_key, key->zk_hmac_tmpl,
 	    &digest_data);
 	if (ret != CRYPTO_SUCCESS) {
 		ret = SET_ERROR(EIO);
 		goto error;
 	}
 
 	memcpy(digestbuf, raw_digestbuf, digestlen);
 
 	return (0);
 
 error:
 	memset(digestbuf, 0, digestlen);
 	return (ret);
 }
 
 int
 zio_crypt_generate_iv_salt_dedup(zio_crypt_key_t *key, uint8_t *data,
     uint_t datalen, uint8_t *ivbuf, uint8_t *salt)
 {
 	int ret;
 	uint8_t digestbuf[SHA512_DIGEST_LENGTH];
 
 	ret = zio_crypt_do_hmac(key, data, datalen,
 	    digestbuf, SHA512_DIGEST_LENGTH);
 	if (ret != 0)
 		return (ret);
 
 	memcpy(salt, digestbuf, ZIO_DATA_SALT_LEN);
 	memcpy(ivbuf, digestbuf + ZIO_DATA_SALT_LEN, ZIO_DATA_IV_LEN);
 
 	return (0);
 }
 
 /*
  * The following functions are used to encode and decode encryption parameters
  * into blkptr_t and zil_header_t. The ICP wants to use these parameters as
  * byte strings, which normally means that these strings would not need to deal
  * with byteswapping at all. However, both blkptr_t and zil_header_t may be
  * byteswapped by lower layers and so we must "undo" that byteswap here upon
  * decoding and encoding in a non-native byteorder. These functions require
  * that the byteorder bit is correct before being called.
  */
 void
 zio_crypt_encode_params_bp(blkptr_t *bp, uint8_t *salt, uint8_t *iv)
 {
 	uint64_t val64;
 	uint32_t val32;
 
 	ASSERT(BP_IS_ENCRYPTED(bp));
 
 	if (!BP_SHOULD_BYTESWAP(bp)) {
 		memcpy(&bp->blk_dva[2].dva_word[0], salt, sizeof (uint64_t));
 		memcpy(&bp->blk_dva[2].dva_word[1], iv, sizeof (uint64_t));
 		memcpy(&val32, iv + sizeof (uint64_t), sizeof (uint32_t));
 		BP_SET_IV2(bp, val32);
 	} else {
 		memcpy(&val64, salt, sizeof (uint64_t));
 		bp->blk_dva[2].dva_word[0] = BSWAP_64(val64);
 
 		memcpy(&val64, iv, sizeof (uint64_t));
 		bp->blk_dva[2].dva_word[1] = BSWAP_64(val64);
 
 		memcpy(&val32, iv + sizeof (uint64_t), sizeof (uint32_t));
 		BP_SET_IV2(bp, BSWAP_32(val32));
 	}
 }
 
 void
 zio_crypt_decode_params_bp(const blkptr_t *bp, uint8_t *salt, uint8_t *iv)
 {
 	uint64_t val64;
 	uint32_t val32;
 
 	ASSERT(BP_IS_PROTECTED(bp));
 
 	/* for convenience, so callers don't need to check */
 	if (BP_IS_AUTHENTICATED(bp)) {
 		memset(salt, 0, ZIO_DATA_SALT_LEN);
 		memset(iv, 0, ZIO_DATA_IV_LEN);
 		return;
 	}
 
 	if (!BP_SHOULD_BYTESWAP(bp)) {
 		memcpy(salt, &bp->blk_dva[2].dva_word[0], sizeof (uint64_t));
 		memcpy(iv, &bp->blk_dva[2].dva_word[1], sizeof (uint64_t));
 
 		val32 = (uint32_t)BP_GET_IV2(bp);
 		memcpy(iv + sizeof (uint64_t), &val32, sizeof (uint32_t));
 	} else {
 		val64 = BSWAP_64(bp->blk_dva[2].dva_word[0]);
 		memcpy(salt, &val64, sizeof (uint64_t));
 
 		val64 = BSWAP_64(bp->blk_dva[2].dva_word[1]);
 		memcpy(iv, &val64, sizeof (uint64_t));
 
 		val32 = BSWAP_32((uint32_t)BP_GET_IV2(bp));
 		memcpy(iv + sizeof (uint64_t), &val32, sizeof (uint32_t));
 	}
 }
 
 void
 zio_crypt_encode_mac_bp(blkptr_t *bp, uint8_t *mac)
 {
 	uint64_t val64;
 
 	ASSERT(BP_USES_CRYPT(bp));
 	ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_OBJSET);
 
 	if (!BP_SHOULD_BYTESWAP(bp)) {
 		memcpy(&bp->blk_cksum.zc_word[2], mac, sizeof (uint64_t));
 		memcpy(&bp->blk_cksum.zc_word[3], mac + sizeof (uint64_t),
 		    sizeof (uint64_t));
 	} else {
 		memcpy(&val64, mac, sizeof (uint64_t));
 		bp->blk_cksum.zc_word[2] = BSWAP_64(val64);
 
 		memcpy(&val64, mac + sizeof (uint64_t), sizeof (uint64_t));
 		bp->blk_cksum.zc_word[3] = BSWAP_64(val64);
 	}
 }
 
 void
 zio_crypt_decode_mac_bp(const blkptr_t *bp, uint8_t *mac)
 {
 	uint64_t val64;
 
 	ASSERT(BP_USES_CRYPT(bp) || BP_IS_HOLE(bp));
 
 	/* for convenience, so callers don't need to check */
 	if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) {
 		memset(mac, 0, ZIO_DATA_MAC_LEN);
 		return;
 	}
 
 	if (!BP_SHOULD_BYTESWAP(bp)) {
 		memcpy(mac, &bp->blk_cksum.zc_word[2], sizeof (uint64_t));
 		memcpy(mac + sizeof (uint64_t), &bp->blk_cksum.zc_word[3],
 		    sizeof (uint64_t));
 	} else {
 		val64 = BSWAP_64(bp->blk_cksum.zc_word[2]);
 		memcpy(mac, &val64, sizeof (uint64_t));
 
 		val64 = BSWAP_64(bp->blk_cksum.zc_word[3]);
 		memcpy(mac + sizeof (uint64_t), &val64, sizeof (uint64_t));
 	}
 }
 
 void
 zio_crypt_encode_mac_zil(void *data, uint8_t *mac)
 {
 	zil_chain_t *zilc = data;
 
 	memcpy(&zilc->zc_eck.zec_cksum.zc_word[2], mac, sizeof (uint64_t));
 	memcpy(&zilc->zc_eck.zec_cksum.zc_word[3], mac + sizeof (uint64_t),
 	    sizeof (uint64_t));
 }
 
 void
 zio_crypt_decode_mac_zil(const void *data, uint8_t *mac)
 {
 	/*
 	 * The ZIL MAC is embedded in the block it protects, which will
 	 * not have been byteswapped by the time this function has been called.
 	 * As a result, we don't need to worry about byteswapping the MAC.
 	 */
 	const zil_chain_t *zilc = data;
 
 	memcpy(mac, &zilc->zc_eck.zec_cksum.zc_word[2], sizeof (uint64_t));
 	memcpy(mac + sizeof (uint64_t), &zilc->zc_eck.zec_cksum.zc_word[3],
 	    sizeof (uint64_t));
 }
 
 /*
  * This routine takes a block of dnodes (src_abd) and copies only the bonus
  * buffers to the same offsets in the dst buffer. datalen should be the size
  * of both the src_abd and the dst buffer (not just the length of the bonus
  * buffers).
  */
 void
 zio_crypt_copy_dnode_bonus(abd_t *src_abd, uint8_t *dst, uint_t datalen)
 {
 	uint_t i, max_dnp = datalen >> DNODE_SHIFT;
 	uint8_t *src;
 	dnode_phys_t *dnp, *sdnp, *ddnp;
 
 	src = abd_borrow_buf_copy(src_abd, datalen);
 
 	sdnp = (dnode_phys_t *)src;
 	ddnp = (dnode_phys_t *)dst;
 
 	for (i = 0; i < max_dnp; i += sdnp[i].dn_extra_slots + 1) {
 		dnp = &sdnp[i];
 		if (dnp->dn_type != DMU_OT_NONE &&
 		    DMU_OT_IS_ENCRYPTED(dnp->dn_bonustype) &&
 		    dnp->dn_bonuslen != 0) {
 			memcpy(DN_BONUS(&ddnp[i]), DN_BONUS(dnp),
 			    DN_MAX_BONUS_LEN(dnp));
 		}
 	}
 
 	abd_return_buf(src_abd, src, datalen);
 }
 
 /*
  * This function decides what fields from blk_prop are included in
  * the on-disk various MAC algorithms.
  */
 static void
 zio_crypt_bp_zero_nonportable_blkprop(blkptr_t *bp, uint64_t version)
 {
 	/*
 	 * Version 0 did not properly zero out all non-portable fields
 	 * as it should have done. We maintain this code so that we can
 	 * do read-only imports of pools on this version.
 	 */
 	if (version == 0) {
 		BP_SET_DEDUP(bp, 0);
 		BP_SET_CHECKSUM(bp, 0);
 		BP_SET_PSIZE(bp, SPA_MINBLOCKSIZE);
 		return;
 	}
 
 	ASSERT3U(version, ==, ZIO_CRYPT_KEY_CURRENT_VERSION);
 
 	/*
 	 * The hole_birth feature might set these fields even if this bp
 	 * is a hole. We zero them out here to guarantee that raw sends
 	 * will function with or without the feature.
 	 */
 	if (BP_IS_HOLE(bp)) {
 		bp->blk_prop = 0ULL;
 		return;
 	}
 
 	/*
 	 * At L0 we want to verify these fields to ensure that data blocks
 	 * can not be reinterpreted. For instance, we do not want an attacker
 	 * to trick us into returning raw lz4 compressed data to the user
 	 * by modifying the compression bits. At higher levels, we cannot
 	 * enforce this policy since raw sends do not convey any information
 	 * about indirect blocks, so these values might be different on the
 	 * receive side. Fortunately, this does not open any new attack
 	 * vectors, since any alterations that can be made to a higher level
 	 * bp must still verify the correct order of the layer below it.
 	 */
 	if (BP_GET_LEVEL(bp) != 0) {
 		BP_SET_BYTEORDER(bp, 0);
 		BP_SET_COMPRESS(bp, 0);
 
 		/*
 		 * psize cannot be set to zero or it will trigger
 		 * asserts, but the value doesn't really matter as
 		 * long as it is constant.
 		 */
 		BP_SET_PSIZE(bp, SPA_MINBLOCKSIZE);
 	}
 
 	BP_SET_DEDUP(bp, 0);
 	BP_SET_CHECKSUM(bp, 0);
 }
 
 static void
 zio_crypt_bp_auth_init(uint64_t version, boolean_t should_bswap, blkptr_t *bp,
     blkptr_auth_buf_t *bab, uint_t *bab_len)
 {
 	blkptr_t tmpbp = *bp;
 
 	if (should_bswap)
 		byteswap_uint64_array(&tmpbp, sizeof (blkptr_t));
 
 	ASSERT(BP_USES_CRYPT(&tmpbp) || BP_IS_HOLE(&tmpbp));
 	ASSERT0(BP_IS_EMBEDDED(&tmpbp));
 
 	zio_crypt_decode_mac_bp(&tmpbp, bab->bab_mac);
 
 	/*
 	 * We always MAC blk_prop in LE to ensure portability. This
 	 * must be done after decoding the mac, since the endianness
 	 * will get zero'd out here.
 	 */
 	zio_crypt_bp_zero_nonportable_blkprop(&tmpbp, version);
 	bab->bab_prop = LE_64(tmpbp.blk_prop);
 	bab->bab_pad = 0ULL;
 
 	/* version 0 did not include the padding */
 	*bab_len = sizeof (blkptr_auth_buf_t);
 	if (version == 0)
 		*bab_len -= sizeof (uint64_t);
 }
 
 static int
 zio_crypt_bp_do_hmac_updates(crypto_context_t ctx, uint64_t version,
     boolean_t should_bswap, blkptr_t *bp)
 {
 	int ret;
 	uint_t bab_len;
 	blkptr_auth_buf_t bab;
 	crypto_data_t cd;
 
 	zio_crypt_bp_auth_init(version, should_bswap, bp, &bab, &bab_len);
 	cd.cd_format = CRYPTO_DATA_RAW;
 	cd.cd_offset = 0;
 	cd.cd_length = bab_len;
 	cd.cd_raw.iov_base = (char *)&bab;
 	cd.cd_raw.iov_len = cd.cd_length;
 
 	ret = crypto_mac_update(ctx, &cd);
 	if (ret != CRYPTO_SUCCESS) {
 		ret = SET_ERROR(EIO);
 		goto error;
 	}
 
 	return (0);
 
 error:
 	return (ret);
 }
 
 static void
 zio_crypt_bp_do_indrect_checksum_updates(SHA2_CTX *ctx, uint64_t version,
     boolean_t should_bswap, blkptr_t *bp)
 {
 	uint_t bab_len;
 	blkptr_auth_buf_t bab;
 
 	zio_crypt_bp_auth_init(version, should_bswap, bp, &bab, &bab_len);
 	SHA2Update(ctx, &bab, bab_len);
 }
 
 static void
 zio_crypt_bp_do_aad_updates(uint8_t **aadp, uint_t *aad_len, uint64_t version,
     boolean_t should_bswap, blkptr_t *bp)
 {
 	uint_t bab_len;
 	blkptr_auth_buf_t bab;
 
 	zio_crypt_bp_auth_init(version, should_bswap, bp, &bab, &bab_len);
 	memcpy(*aadp, &bab, bab_len);
 	*aadp += bab_len;
 	*aad_len += bab_len;
 }
 
 static int
 zio_crypt_do_dnode_hmac_updates(crypto_context_t ctx, uint64_t version,
     boolean_t should_bswap, dnode_phys_t *dnp)
 {
 	int ret, i;
 	dnode_phys_t *adnp, tmp_dncore;
 	size_t dn_core_size = offsetof(dnode_phys_t, dn_blkptr);
 	boolean_t le_bswap = (should_bswap == ZFS_HOST_BYTEORDER);
 	crypto_data_t cd;
 
 	cd.cd_format = CRYPTO_DATA_RAW;
 	cd.cd_offset = 0;
 
 	/*
 	 * Authenticate the core dnode (masking out non-portable bits).
 	 * We only copy the first 64 bytes we operate on to avoid the overhead
 	 * of copying 512-64 unneeded bytes. The compiler seems to be fine
 	 * with that.
 	 */
 	memcpy(&tmp_dncore, dnp, dn_core_size);
 	adnp = &tmp_dncore;
 
 	if (le_bswap) {
 		adnp->dn_datablkszsec = BSWAP_16(adnp->dn_datablkszsec);
 		adnp->dn_bonuslen = BSWAP_16(adnp->dn_bonuslen);
 		adnp->dn_maxblkid = BSWAP_64(adnp->dn_maxblkid);
 		adnp->dn_used = BSWAP_64(adnp->dn_used);
 	}
 	adnp->dn_flags &= DNODE_CRYPT_PORTABLE_FLAGS_MASK;
 	adnp->dn_used = 0;
 
 	cd.cd_length = dn_core_size;
 	cd.cd_raw.iov_base = (char *)adnp;
 	cd.cd_raw.iov_len = cd.cd_length;
 
 	ret = crypto_mac_update(ctx, &cd);
 	if (ret != CRYPTO_SUCCESS) {
 		ret = SET_ERROR(EIO);
 		goto error;
 	}
 
 	for (i = 0; i < dnp->dn_nblkptr; i++) {
 		ret = zio_crypt_bp_do_hmac_updates(ctx, version,
 		    should_bswap, &dnp->dn_blkptr[i]);
 		if (ret != 0)
 			goto error;
 	}
 
 	if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
 		ret = zio_crypt_bp_do_hmac_updates(ctx, version,
 		    should_bswap, DN_SPILL_BLKPTR(dnp));
 		if (ret != 0)
 			goto error;
 	}
 
 	return (0);
 
 error:
 	return (ret);
 }
 
 /*
  * objset_phys_t blocks introduce a number of exceptions to the normal
  * authentication process. objset_phys_t's contain 2 separate HMACS for
  * protecting the integrity of their data. The portable_mac protects the
  * metadnode. This MAC can be sent with a raw send and protects against
  * reordering of data within the metadnode. The local_mac protects the user
  * accounting objects which are not sent from one system to another.
  *
  * In addition, objset blocks are the only blocks that can be modified and
  * written to disk without the key loaded under certain circumstances. During
  * zil_claim() we need to be able to update the zil_header_t to complete
  * claiming log blocks and during raw receives we need to write out the
  * portable_mac from the send file. Both of these actions are possible
  * because these fields are not protected by either MAC so neither one will
  * need to modify the MACs without the key. However, when the modified blocks
  * are written out they will be byteswapped into the host machine's native
  * endianness which will modify fields protected by the MAC. As a result, MAC
  * calculation for objset blocks works slightly differently from other block
  * types. Where other block types MAC the data in whatever endianness is
  * written to disk, objset blocks always MAC little endian version of their
  * values. In the code, should_bswap is the value from BP_SHOULD_BYTESWAP()
  * and le_bswap indicates whether a byteswap is needed to get this block
  * into little endian format.
  */
 int
 zio_crypt_do_objset_hmacs(zio_crypt_key_t *key, void *data, uint_t datalen,
     boolean_t should_bswap, uint8_t *portable_mac, uint8_t *local_mac)
 {
 	int ret;
 	crypto_mechanism_t mech;
 	crypto_context_t ctx;
 	crypto_data_t cd;
 	objset_phys_t *osp = data;
 	uint64_t intval;
 	boolean_t le_bswap = (should_bswap == ZFS_HOST_BYTEORDER);
 	uint8_t raw_portable_mac[SHA512_DIGEST_LENGTH];
 	uint8_t raw_local_mac[SHA512_DIGEST_LENGTH];
 
 	/* initialize HMAC mechanism */
 	mech.cm_type = crypto_mech2id(SUN_CKM_SHA512_HMAC);
 	mech.cm_param = NULL;
 	mech.cm_param_len = 0;
 
 	cd.cd_format = CRYPTO_DATA_RAW;
 	cd.cd_offset = 0;
 
 	/* calculate the portable MAC from the portable fields and metadnode */
 	ret = crypto_mac_init(&mech, &key->zk_hmac_key, NULL, &ctx);
 	if (ret != CRYPTO_SUCCESS) {
 		ret = SET_ERROR(EIO);
 		goto error;
 	}
 
 	/* add in the os_type */
 	intval = (le_bswap) ? osp->os_type : BSWAP_64(osp->os_type);
 	cd.cd_length = sizeof (uint64_t);
 	cd.cd_raw.iov_base = (char *)&intval;
 	cd.cd_raw.iov_len = cd.cd_length;
 
 	ret = crypto_mac_update(ctx, &cd);
 	if (ret != CRYPTO_SUCCESS) {
 		ret = SET_ERROR(EIO);
 		goto error;
 	}
 
 	/* add in the portable os_flags */
 	intval = osp->os_flags;
 	if (should_bswap)
 		intval = BSWAP_64(intval);
 	intval &= OBJSET_CRYPT_PORTABLE_FLAGS_MASK;
 	if (!ZFS_HOST_BYTEORDER)
 		intval = BSWAP_64(intval);
 
 	cd.cd_length = sizeof (uint64_t);
 	cd.cd_raw.iov_base = (char *)&intval;
 	cd.cd_raw.iov_len = cd.cd_length;
 
 	ret = crypto_mac_update(ctx, &cd);
 	if (ret != CRYPTO_SUCCESS) {
 		ret = SET_ERROR(EIO);
 		goto error;
 	}
 
 	/* add in fields from the metadnode */
 	ret = zio_crypt_do_dnode_hmac_updates(ctx, key->zk_version,
 	    should_bswap, &osp->os_meta_dnode);
 	if (ret)
 		goto error;
 
 	/* store the final digest in a temporary buffer and copy what we need */
 	cd.cd_length = SHA512_DIGEST_LENGTH;
 	cd.cd_raw.iov_base = (char *)raw_portable_mac;
 	cd.cd_raw.iov_len = cd.cd_length;
 
 	ret = crypto_mac_final(ctx, &cd);
 	if (ret != CRYPTO_SUCCESS) {
 		ret = SET_ERROR(EIO);
 		goto error;
 	}
 
 	memcpy(portable_mac, raw_portable_mac, ZIO_OBJSET_MAC_LEN);
 
 	/*
 	 * This is necessary here as we check next whether
 	 * OBJSET_FLAG_USERACCOUNTING_COMPLETE is set in order to
 	 * decide if the local_mac should be zeroed out. That flag will always
 	 * be set by dmu_objset_id_quota_upgrade_cb() and
 	 * dmu_objset_userspace_upgrade_cb() if useraccounting has been
 	 * completed.
 	 */
 	intval = osp->os_flags;
 	if (should_bswap)
 		intval = BSWAP_64(intval);
 	boolean_t uacct_incomplete =
 	    !(intval & OBJSET_FLAG_USERACCOUNTING_COMPLETE);
 
 	/*
 	 * The local MAC protects the user, group and project accounting.
 	 * If these objects are not present, the local MAC is zeroed out.
 	 */
 	if (uacct_incomplete ||
 	    (datalen >= OBJSET_PHYS_SIZE_V3 &&
 	    osp->os_userused_dnode.dn_type == DMU_OT_NONE &&
 	    osp->os_groupused_dnode.dn_type == DMU_OT_NONE &&
 	    osp->os_projectused_dnode.dn_type == DMU_OT_NONE) ||
 	    (datalen >= OBJSET_PHYS_SIZE_V2 &&
 	    osp->os_userused_dnode.dn_type == DMU_OT_NONE &&
 	    osp->os_groupused_dnode.dn_type == DMU_OT_NONE) ||
 	    (datalen <= OBJSET_PHYS_SIZE_V1)) {
 		memset(local_mac, 0, ZIO_OBJSET_MAC_LEN);
 		return (0);
 	}
 
 	/* calculate the local MAC from the userused and groupused dnodes */
 	ret = crypto_mac_init(&mech, &key->zk_hmac_key, NULL, &ctx);
 	if (ret != CRYPTO_SUCCESS) {
 		ret = SET_ERROR(EIO);
 		goto error;
 	}
 
 	/* add in the non-portable os_flags */
 	intval = osp->os_flags;
 	if (should_bswap)
 		intval = BSWAP_64(intval);
 	intval &= ~OBJSET_CRYPT_PORTABLE_FLAGS_MASK;
 	if (!ZFS_HOST_BYTEORDER)
 		intval = BSWAP_64(intval);
 
 	cd.cd_length = sizeof (uint64_t);
 	cd.cd_raw.iov_base = (char *)&intval;
 	cd.cd_raw.iov_len = cd.cd_length;
 
 	ret = crypto_mac_update(ctx, &cd);
 	if (ret != CRYPTO_SUCCESS) {
 		ret = SET_ERROR(EIO);
 		goto error;
 	}
 
 	/* add in fields from the user accounting dnodes */
 	if (osp->os_userused_dnode.dn_type != DMU_OT_NONE) {
 		ret = zio_crypt_do_dnode_hmac_updates(ctx, key->zk_version,
 		    should_bswap, &osp->os_userused_dnode);
 		if (ret)
 			goto error;
 	}
 
 	if (osp->os_groupused_dnode.dn_type != DMU_OT_NONE) {
 		ret = zio_crypt_do_dnode_hmac_updates(ctx, key->zk_version,
 		    should_bswap, &osp->os_groupused_dnode);
 		if (ret)
 			goto error;
 	}
 
 	if (osp->os_projectused_dnode.dn_type != DMU_OT_NONE &&
 	    datalen >= OBJSET_PHYS_SIZE_V3) {
 		ret = zio_crypt_do_dnode_hmac_updates(ctx, key->zk_version,
 		    should_bswap, &osp->os_projectused_dnode);
 		if (ret)
 			goto error;
 	}
 
 	/* store the final digest in a temporary buffer and copy what we need */
 	cd.cd_length = SHA512_DIGEST_LENGTH;
 	cd.cd_raw.iov_base = (char *)raw_local_mac;
 	cd.cd_raw.iov_len = cd.cd_length;
 
 	ret = crypto_mac_final(ctx, &cd);
 	if (ret != CRYPTO_SUCCESS) {
 		ret = SET_ERROR(EIO);
 		goto error;
 	}
 
 	memcpy(local_mac, raw_local_mac, ZIO_OBJSET_MAC_LEN);
 
 	return (0);
 
 error:
 	memset(portable_mac, 0, ZIO_OBJSET_MAC_LEN);
 	memset(local_mac, 0, ZIO_OBJSET_MAC_LEN);
 	return (ret);
 }
 
 static void
 zio_crypt_destroy_uio(zfs_uio_t *uio)
 {
 	if (uio->uio_iov)
 		kmem_free(uio->uio_iov, uio->uio_iovcnt * sizeof (iovec_t));
 }
 
 /*
  * This function parses an uncompressed indirect block and returns a checksum
  * of all the portable fields from all of the contained bps. The portable
  * fields are the MAC and all of the fields from blk_prop except for the dedup,
  * checksum, and psize bits. For an explanation of the purpose of this, see
  * the comment block on object set authentication.
  */
 static int
 zio_crypt_do_indirect_mac_checksum_impl(boolean_t generate, void *buf,
     uint_t datalen, uint64_t version, boolean_t byteswap, uint8_t *cksum)
 {
 	blkptr_t *bp;
 	int i, epb = datalen >> SPA_BLKPTRSHIFT;
 	SHA2_CTX ctx;
 	uint8_t digestbuf[SHA512_DIGEST_LENGTH];
 
 	/* checksum all of the MACs from the layer below */
 	SHA2Init(SHA512, &ctx);
 	for (i = 0, bp = buf; i < epb; i++, bp++) {
 		zio_crypt_bp_do_indrect_checksum_updates(&ctx, version,
 		    byteswap, bp);
 	}
 	SHA2Final(digestbuf, &ctx);
 
 	if (generate) {
 		memcpy(cksum, digestbuf, ZIO_DATA_MAC_LEN);
 		return (0);
 	}
 
 	if (memcmp(digestbuf, cksum, ZIO_DATA_MAC_LEN) != 0)
 		return (SET_ERROR(ECKSUM));
 
 	return (0);
 }
 
 int
 zio_crypt_do_indirect_mac_checksum(boolean_t generate, void *buf,
     uint_t datalen, boolean_t byteswap, uint8_t *cksum)
 {
 	int ret;
 
 	/*
 	 * Unfortunately, callers of this function will not always have
 	 * easy access to the on-disk format version. This info is
 	 * normally found in the DSL Crypto Key, but the checksum-of-MACs
 	 * is expected to be verifiable even when the key isn't loaded.
 	 * Here, instead of doing a ZAP lookup for the version for each
 	 * zio, we simply try both existing formats.
 	 */
 	ret = zio_crypt_do_indirect_mac_checksum_impl(generate, buf,
 	    datalen, ZIO_CRYPT_KEY_CURRENT_VERSION, byteswap, cksum);
 	if (ret == ECKSUM) {
 		ASSERT(!generate);
 		ret = zio_crypt_do_indirect_mac_checksum_impl(generate,
 		    buf, datalen, 0, byteswap, cksum);
 	}
 
 	return (ret);
 }
 
 int
 zio_crypt_do_indirect_mac_checksum_abd(boolean_t generate, abd_t *abd,
     uint_t datalen, boolean_t byteswap, uint8_t *cksum)
 {
 	int ret;
 	void *buf;
 
 	buf = abd_borrow_buf_copy(abd, datalen);
 	ret = zio_crypt_do_indirect_mac_checksum(generate, buf, datalen,
 	    byteswap, cksum);
 	abd_return_buf(abd, buf, datalen);
 
 	return (ret);
 }
 
 /*
  * Special case handling routine for encrypting / decrypting ZIL blocks.
  * We do not check for the older ZIL chain because the encryption feature
  * was not available before the newer ZIL chain was introduced. The goal
  * here is to encrypt everything except the blkptr_t of a lr_write_t and
  * the zil_chain_t header. Everything that is not encrypted is authenticated.
  */
 static int
 zio_crypt_init_uios_zil(boolean_t encrypt, uint8_t *plainbuf,
     uint8_t *cipherbuf, uint_t datalen, boolean_t byteswap, zfs_uio_t *puio,
     zfs_uio_t *cuio, uint_t *enc_len, uint8_t **authbuf, uint_t *auth_len,
     boolean_t *no_crypt)
 {
 	int ret;
 	uint64_t txtype, lr_len;
 	uint_t nr_src, nr_dst, crypt_len;
 	uint_t aad_len = 0, nr_iovecs = 0, total_len = 0;
 	iovec_t *src_iovecs = NULL, *dst_iovecs = NULL;
 	uint8_t *src, *dst, *slrp, *dlrp, *blkend, *aadp;
 	zil_chain_t *zilc;
 	lr_t *lr;
 	uint8_t *aadbuf = zio_buf_alloc(datalen);
 
 	/* cipherbuf always needs an extra iovec for the MAC */
 	if (encrypt) {
 		src = plainbuf;
 		dst = cipherbuf;
 		nr_src = 0;
 		nr_dst = 1;
 	} else {
 		src = cipherbuf;
 		dst = plainbuf;
 		nr_src = 1;
 		nr_dst = 0;
 	}
 	memset(dst, 0, datalen);
 
 	/* find the start and end record of the log block */
 	zilc = (zil_chain_t *)src;
 	slrp = src + sizeof (zil_chain_t);
 	aadp = aadbuf;
 	blkend = src + ((byteswap) ? BSWAP_64(zilc->zc_nused) : zilc->zc_nused);
 
 	/* calculate the number of encrypted iovecs we will need */
 	for (; slrp < blkend; slrp += lr_len) {
 		lr = (lr_t *)slrp;
 
 		if (!byteswap) {
 			txtype = lr->lrc_txtype;
 			lr_len = lr->lrc_reclen;
 		} else {
 			txtype = BSWAP_64(lr->lrc_txtype);
 			lr_len = BSWAP_64(lr->lrc_reclen);
 		}
 
 		nr_iovecs++;
 		if (txtype == TX_WRITE && lr_len != sizeof (lr_write_t))
 			nr_iovecs++;
 	}
 
 	nr_src += nr_iovecs;
 	nr_dst += nr_iovecs;
 
 	/* allocate the iovec arrays */
 	if (nr_src != 0) {
 		src_iovecs = kmem_alloc(nr_src * sizeof (iovec_t), KM_SLEEP);
 		if (src_iovecs == NULL) {
 			ret = SET_ERROR(ENOMEM);
 			goto error;
 		}
 	}
 
 	if (nr_dst != 0) {
 		dst_iovecs = kmem_alloc(nr_dst * sizeof (iovec_t), KM_SLEEP);
 		if (dst_iovecs == NULL) {
 			ret = SET_ERROR(ENOMEM);
 			goto error;
 		}
 	}
 
 	/*
 	 * Copy the plain zil header over and authenticate everything except
 	 * the checksum that will store our MAC. If we are writing the data
 	 * the embedded checksum will not have been calculated yet, so we don't
 	 * authenticate that.
 	 */
 	memcpy(dst, src, sizeof (zil_chain_t));
 	memcpy(aadp, src, sizeof (zil_chain_t) - sizeof (zio_eck_t));
 	aadp += sizeof (zil_chain_t) - sizeof (zio_eck_t);
 	aad_len += sizeof (zil_chain_t) - sizeof (zio_eck_t);
 
 	/* loop over records again, filling in iovecs */
 	nr_iovecs = 0;
 	slrp = src + sizeof (zil_chain_t);
 	dlrp = dst + sizeof (zil_chain_t);
 
 	for (; slrp < blkend; slrp += lr_len, dlrp += lr_len) {
 		lr = (lr_t *)slrp;
 
 		if (!byteswap) {
 			txtype = lr->lrc_txtype;
 			lr_len = lr->lrc_reclen;
 		} else {
 			txtype = BSWAP_64(lr->lrc_txtype);
 			lr_len = BSWAP_64(lr->lrc_reclen);
 		}
 
 		/* copy the common lr_t */
 		memcpy(dlrp, slrp, sizeof (lr_t));
 		memcpy(aadp, slrp, sizeof (lr_t));
 		aadp += sizeof (lr_t);
 		aad_len += sizeof (lr_t);
 
 		ASSERT3P(src_iovecs, !=, NULL);
 		ASSERT3P(dst_iovecs, !=, NULL);
 
 		/*
 		 * If this is a TX_WRITE record we want to encrypt everything
 		 * except the bp if exists. If the bp does exist we want to
 		 * authenticate it.
 		 */
 		if (txtype == TX_WRITE) {
 			crypt_len = sizeof (lr_write_t) -
 			    sizeof (lr_t) - sizeof (blkptr_t);
 			src_iovecs[nr_iovecs].iov_base = slrp + sizeof (lr_t);
 			src_iovecs[nr_iovecs].iov_len = crypt_len;
 			dst_iovecs[nr_iovecs].iov_base = dlrp + sizeof (lr_t);
 			dst_iovecs[nr_iovecs].iov_len = crypt_len;
 
 			/* copy the bp now since it will not be encrypted */
 			memcpy(dlrp + sizeof (lr_write_t) - sizeof (blkptr_t),
 			    slrp + sizeof (lr_write_t) - sizeof (blkptr_t),
 			    sizeof (blkptr_t));
 			memcpy(aadp,
 			    slrp + sizeof (lr_write_t) - sizeof (blkptr_t),
 			    sizeof (blkptr_t));
 			aadp += sizeof (blkptr_t);
 			aad_len += sizeof (blkptr_t);
 			nr_iovecs++;
 			total_len += crypt_len;
 
 			if (lr_len != sizeof (lr_write_t)) {
 				crypt_len = lr_len - sizeof (lr_write_t);
 				src_iovecs[nr_iovecs].iov_base =
 				    slrp + sizeof (lr_write_t);
 				src_iovecs[nr_iovecs].iov_len = crypt_len;
 				dst_iovecs[nr_iovecs].iov_base =
 				    dlrp + sizeof (lr_write_t);
 				dst_iovecs[nr_iovecs].iov_len = crypt_len;
 				nr_iovecs++;
 				total_len += crypt_len;
 			}
+		} else if (txtype == TX_CLONE_RANGE) {
+			const size_t o = offsetof(lr_clone_range_t, lr_nbps);
+			crypt_len = o - sizeof (lr_t);
+			src_iovecs[nr_iovecs].iov_base = slrp + sizeof (lr_t);
+			src_iovecs[nr_iovecs].iov_len = crypt_len;
+			dst_iovecs[nr_iovecs].iov_base = dlrp + sizeof (lr_t);
+			dst_iovecs[nr_iovecs].iov_len = crypt_len;
+
+			/* copy the bps now since they will not be encrypted */
+			memcpy(dlrp + o, slrp + o, lr_len - o);
+			memcpy(aadp, slrp + o, lr_len - o);
+			aadp += lr_len - o;
+			aad_len += lr_len - o;
+			nr_iovecs++;
+			total_len += crypt_len;
 		} else {
 			crypt_len = lr_len - sizeof (lr_t);
 			src_iovecs[nr_iovecs].iov_base = slrp + sizeof (lr_t);
 			src_iovecs[nr_iovecs].iov_len = crypt_len;
 			dst_iovecs[nr_iovecs].iov_base = dlrp + sizeof (lr_t);
 			dst_iovecs[nr_iovecs].iov_len = crypt_len;
 			nr_iovecs++;
 			total_len += crypt_len;
 		}
 	}
 
 	*no_crypt = (nr_iovecs == 0);
 	*enc_len = total_len;
 	*authbuf = aadbuf;
 	*auth_len = aad_len;
 
 	if (encrypt) {
 		puio->uio_iov = src_iovecs;
 		puio->uio_iovcnt = nr_src;
 		cuio->uio_iov = dst_iovecs;
 		cuio->uio_iovcnt = nr_dst;
 	} else {
 		puio->uio_iov = dst_iovecs;
 		puio->uio_iovcnt = nr_dst;
 		cuio->uio_iov = src_iovecs;
 		cuio->uio_iovcnt = nr_src;
 	}
 
 	return (0);
 
 error:
 	zio_buf_free(aadbuf, datalen);
 	if (src_iovecs != NULL)
 		kmem_free(src_iovecs, nr_src * sizeof (iovec_t));
 	if (dst_iovecs != NULL)
 		kmem_free(dst_iovecs, nr_dst * sizeof (iovec_t));
 
 	*enc_len = 0;
 	*authbuf = NULL;
 	*auth_len = 0;
 	*no_crypt = B_FALSE;
 	puio->uio_iov = NULL;
 	puio->uio_iovcnt = 0;
 	cuio->uio_iov = NULL;
 	cuio->uio_iovcnt = 0;
 	return (ret);
 }
 
 /*
  * Special case handling routine for encrypting / decrypting dnode blocks.
  */
 static int
 zio_crypt_init_uios_dnode(boolean_t encrypt, uint64_t version,
     uint8_t *plainbuf, uint8_t *cipherbuf, uint_t datalen, boolean_t byteswap,
     zfs_uio_t *puio, zfs_uio_t *cuio, uint_t *enc_len, uint8_t **authbuf,
     uint_t *auth_len, boolean_t *no_crypt)
 {
 	int ret;
 	uint_t nr_src, nr_dst, crypt_len;
 	uint_t aad_len = 0, nr_iovecs = 0, total_len = 0;
 	uint_t i, j, max_dnp = datalen >> DNODE_SHIFT;
 	iovec_t *src_iovecs = NULL, *dst_iovecs = NULL;
 	uint8_t *src, *dst, *aadp;
 	dnode_phys_t *dnp, *adnp, *sdnp, *ddnp;
 	uint8_t *aadbuf = zio_buf_alloc(datalen);
 
 	if (encrypt) {
 		src = plainbuf;
 		dst = cipherbuf;
 		nr_src = 0;
 		nr_dst = 1;
 	} else {
 		src = cipherbuf;
 		dst = plainbuf;
 		nr_src = 1;
 		nr_dst = 0;
 	}
 
 	sdnp = (dnode_phys_t *)src;
 	ddnp = (dnode_phys_t *)dst;
 	aadp = aadbuf;
 
 	/*
 	 * Count the number of iovecs we will need to do the encryption by
 	 * counting the number of bonus buffers that need to be encrypted.
 	 */
 	for (i = 0; i < max_dnp; i += sdnp[i].dn_extra_slots + 1) {
 		/*
 		 * This block may still be byteswapped. However, all of the
 		 * values we use are either uint8_t's (for which byteswapping
 		 * is a noop) or a * != 0 check, which will work regardless
 		 * of whether or not we byteswap.
 		 */
 		if (sdnp[i].dn_type != DMU_OT_NONE &&
 		    DMU_OT_IS_ENCRYPTED(sdnp[i].dn_bonustype) &&
 		    sdnp[i].dn_bonuslen != 0) {
 			nr_iovecs++;
 		}
 	}
 
 	nr_src += nr_iovecs;
 	nr_dst += nr_iovecs;
 
 	if (nr_src != 0) {
 		src_iovecs = kmem_alloc(nr_src * sizeof (iovec_t), KM_SLEEP);
 		if (src_iovecs == NULL) {
 			ret = SET_ERROR(ENOMEM);
 			goto error;
 		}
 	}
 
 	if (nr_dst != 0) {
 		dst_iovecs = kmem_alloc(nr_dst * sizeof (iovec_t), KM_SLEEP);
 		if (dst_iovecs == NULL) {
 			ret = SET_ERROR(ENOMEM);
 			goto error;
 		}
 	}
 
 	nr_iovecs = 0;
 
 	/*
 	 * Iterate through the dnodes again, this time filling in the uios
 	 * we allocated earlier. We also concatenate any data we want to
 	 * authenticate onto aadbuf.
 	 */
 	for (i = 0; i < max_dnp; i += sdnp[i].dn_extra_slots + 1) {
 		dnp = &sdnp[i];
 
 		/* copy over the core fields and blkptrs (kept as plaintext) */
 		memcpy(&ddnp[i], dnp,
 		    (uint8_t *)DN_BONUS(dnp) - (uint8_t *)dnp);
 
 		if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
 			memcpy(DN_SPILL_BLKPTR(&ddnp[i]), DN_SPILL_BLKPTR(dnp),
 			    sizeof (blkptr_t));
 		}
 
 		/*
 		 * Handle authenticated data. We authenticate everything in
 		 * the dnode that can be brought over when we do a raw send.
 		 * This includes all of the core fields as well as the MACs
 		 * stored in the bp checksums and all of the portable bits
 		 * from blk_prop. We include the dnode padding here in case it
 		 * ever gets used in the future. Some dn_flags and dn_used are
 		 * not portable so we mask those out values out of the
 		 * authenticated data.
 		 */
 		crypt_len = offsetof(dnode_phys_t, dn_blkptr);
 		memcpy(aadp, dnp, crypt_len);
 		adnp = (dnode_phys_t *)aadp;
 		adnp->dn_flags &= DNODE_CRYPT_PORTABLE_FLAGS_MASK;
 		adnp->dn_used = 0;
 		aadp += crypt_len;
 		aad_len += crypt_len;
 
 		for (j = 0; j < dnp->dn_nblkptr; j++) {
 			zio_crypt_bp_do_aad_updates(&aadp, &aad_len,
 			    version, byteswap, &dnp->dn_blkptr[j]);
 		}
 
 		if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
 			zio_crypt_bp_do_aad_updates(&aadp, &aad_len,
 			    version, byteswap, DN_SPILL_BLKPTR(dnp));
 		}
 
 		/*
 		 * If this bonus buffer needs to be encrypted, we prepare an
 		 * iovec_t. The encryption / decryption functions will fill
 		 * this in for us with the encrypted or decrypted data.
 		 * Otherwise we add the bonus buffer to the authenticated
 		 * data buffer and copy it over to the destination. The
 		 * encrypted iovec extends to DN_MAX_BONUS_LEN(dnp) so that
 		 * we can guarantee alignment with the AES block size
 		 * (128 bits).
 		 */
 		crypt_len = DN_MAX_BONUS_LEN(dnp);
 		if (dnp->dn_type != DMU_OT_NONE &&
 		    DMU_OT_IS_ENCRYPTED(dnp->dn_bonustype) &&
 		    dnp->dn_bonuslen != 0) {
 			ASSERT3U(nr_iovecs, <, nr_src);
 			ASSERT3U(nr_iovecs, <, nr_dst);
 			ASSERT3P(src_iovecs, !=, NULL);
 			ASSERT3P(dst_iovecs, !=, NULL);
 			src_iovecs[nr_iovecs].iov_base = DN_BONUS(dnp);
 			src_iovecs[nr_iovecs].iov_len = crypt_len;
 			dst_iovecs[nr_iovecs].iov_base = DN_BONUS(&ddnp[i]);
 			dst_iovecs[nr_iovecs].iov_len = crypt_len;
 
 			nr_iovecs++;
 			total_len += crypt_len;
 		} else {
 			memcpy(DN_BONUS(&ddnp[i]), DN_BONUS(dnp), crypt_len);
 			memcpy(aadp, DN_BONUS(dnp), crypt_len);
 			aadp += crypt_len;
 			aad_len += crypt_len;
 		}
 	}
 
 	*no_crypt = (nr_iovecs == 0);
 	*enc_len = total_len;
 	*authbuf = aadbuf;
 	*auth_len = aad_len;
 
 	if (encrypt) {
 		puio->uio_iov = src_iovecs;
 		puio->uio_iovcnt = nr_src;
 		cuio->uio_iov = dst_iovecs;
 		cuio->uio_iovcnt = nr_dst;
 	} else {
 		puio->uio_iov = dst_iovecs;
 		puio->uio_iovcnt = nr_dst;
 		cuio->uio_iov = src_iovecs;
 		cuio->uio_iovcnt = nr_src;
 	}
 
 	return (0);
 
 error:
 	zio_buf_free(aadbuf, datalen);
 	if (src_iovecs != NULL)
 		kmem_free(src_iovecs, nr_src * sizeof (iovec_t));
 	if (dst_iovecs != NULL)
 		kmem_free(dst_iovecs, nr_dst * sizeof (iovec_t));
 
 	*enc_len = 0;
 	*authbuf = NULL;
 	*auth_len = 0;
 	*no_crypt = B_FALSE;
 	puio->uio_iov = NULL;
 	puio->uio_iovcnt = 0;
 	cuio->uio_iov = NULL;
 	cuio->uio_iovcnt = 0;
 	return (ret);
 }
 
 static int
 zio_crypt_init_uios_normal(boolean_t encrypt, uint8_t *plainbuf,
     uint8_t *cipherbuf, uint_t datalen, zfs_uio_t *puio, zfs_uio_t *cuio,
     uint_t *enc_len)
 {
 	(void) encrypt;
 	int ret;
 	uint_t nr_plain = 1, nr_cipher = 2;
 	iovec_t *plain_iovecs = NULL, *cipher_iovecs = NULL;
 
 	/* allocate the iovecs for the plain and cipher data */
 	plain_iovecs = kmem_alloc(nr_plain * sizeof (iovec_t),
 	    KM_SLEEP);
 	if (!plain_iovecs) {
 		ret = SET_ERROR(ENOMEM);
 		goto error;
 	}
 
 	cipher_iovecs = kmem_alloc(nr_cipher * sizeof (iovec_t),
 	    KM_SLEEP);
 	if (!cipher_iovecs) {
 		ret = SET_ERROR(ENOMEM);
 		goto error;
 	}
 
 	plain_iovecs[0].iov_base = plainbuf;
 	plain_iovecs[0].iov_len = datalen;
 	cipher_iovecs[0].iov_base = cipherbuf;
 	cipher_iovecs[0].iov_len = datalen;
 
 	*enc_len = datalen;
 	puio->uio_iov = plain_iovecs;
 	puio->uio_iovcnt = nr_plain;
 	cuio->uio_iov = cipher_iovecs;
 	cuio->uio_iovcnt = nr_cipher;
 
 	return (0);
 
 error:
 	if (plain_iovecs != NULL)
 		kmem_free(plain_iovecs, nr_plain * sizeof (iovec_t));
 	if (cipher_iovecs != NULL)
 		kmem_free(cipher_iovecs, nr_cipher * sizeof (iovec_t));
 
 	*enc_len = 0;
 	puio->uio_iov = NULL;
 	puio->uio_iovcnt = 0;
 	cuio->uio_iov = NULL;
 	cuio->uio_iovcnt = 0;
 	return (ret);
 }
 
 /*
  * This function builds up the plaintext (puio) and ciphertext (cuio) uios so
  * that they can be used for encryption and decryption by zio_do_crypt_uio().
  * Most blocks will use zio_crypt_init_uios_normal(), with ZIL and dnode blocks
  * requiring special handling to parse out pieces that are to be encrypted. The
  * authbuf is used by these special cases to store additional authenticated
  * data (AAD) for the encryption modes.
  */
 static int
 zio_crypt_init_uios(boolean_t encrypt, uint64_t version, dmu_object_type_t ot,
     uint8_t *plainbuf, uint8_t *cipherbuf, uint_t datalen, boolean_t byteswap,
     uint8_t *mac, zfs_uio_t *puio, zfs_uio_t *cuio, uint_t *enc_len,
     uint8_t **authbuf, uint_t *auth_len, boolean_t *no_crypt)
 {
 	int ret;
 	iovec_t *mac_iov;
 
 	ASSERT(DMU_OT_IS_ENCRYPTED(ot) || ot == DMU_OT_NONE);
 
 	/* route to handler */
 	switch (ot) {
 	case DMU_OT_INTENT_LOG:
 		ret = zio_crypt_init_uios_zil(encrypt, plainbuf, cipherbuf,
 		    datalen, byteswap, puio, cuio, enc_len, authbuf, auth_len,
 		    no_crypt);
 		break;
 	case DMU_OT_DNODE:
 		ret = zio_crypt_init_uios_dnode(encrypt, version, plainbuf,
 		    cipherbuf, datalen, byteswap, puio, cuio, enc_len, authbuf,
 		    auth_len, no_crypt);
 		break;
 	default:
 		ret = zio_crypt_init_uios_normal(encrypt, plainbuf, cipherbuf,
 		    datalen, puio, cuio, enc_len);
 		*authbuf = NULL;
 		*auth_len = 0;
 		*no_crypt = B_FALSE;
 		break;
 	}
 
 	if (ret != 0)
 		goto error;
 
 	/* populate the uios */
 	puio->uio_segflg = UIO_SYSSPACE;
 	cuio->uio_segflg = UIO_SYSSPACE;
 
 	mac_iov = ((iovec_t *)&cuio->uio_iov[cuio->uio_iovcnt - 1]);
 	mac_iov->iov_base = mac;
 	mac_iov->iov_len = ZIO_DATA_MAC_LEN;
 
 	return (0);
 
 error:
 	return (ret);
 }
 
 /*
  * Primary encryption / decryption entrypoint for zio data.
  */
 int
 zio_do_crypt_data(boolean_t encrypt, zio_crypt_key_t *key,
     dmu_object_type_t ot, boolean_t byteswap, uint8_t *salt, uint8_t *iv,
     uint8_t *mac, uint_t datalen, uint8_t *plainbuf, uint8_t *cipherbuf,
     boolean_t *no_crypt)
 {
 	int ret;
 	boolean_t locked = B_FALSE;
 	uint64_t crypt = key->zk_crypt;
 	uint_t keydata_len = zio_crypt_table[crypt].ci_keylen;
 	uint_t enc_len, auth_len;
 	zfs_uio_t puio, cuio;
 	uint8_t enc_keydata[MASTER_KEY_MAX_LEN];
 	crypto_key_t tmp_ckey, *ckey = NULL;
 	crypto_ctx_template_t tmpl;
 	uint8_t *authbuf = NULL;
 
 	memset(&puio, 0, sizeof (puio));
 	memset(&cuio, 0, sizeof (cuio));
 
 	/*
 	 * If the needed key is the current one, just use it. Otherwise we
 	 * need to generate a temporary one from the given salt + master key.
 	 * If we are encrypting, we must return a copy of the current salt
 	 * so that it can be stored in the blkptr_t.
 	 */
 	rw_enter(&key->zk_salt_lock, RW_READER);
 	locked = B_TRUE;
 
 	if (memcmp(salt, key->zk_salt, ZIO_DATA_SALT_LEN) == 0) {
 		ckey = &key->zk_current_key;
 		tmpl = key->zk_current_tmpl;
 	} else {
 		rw_exit(&key->zk_salt_lock);
 		locked = B_FALSE;
 
 		ret = hkdf_sha512(key->zk_master_keydata, keydata_len, NULL, 0,
 		    salt, ZIO_DATA_SALT_LEN, enc_keydata, keydata_len);
 		if (ret != 0)
 			goto error;
 
 		tmp_ckey.ck_data = enc_keydata;
 		tmp_ckey.ck_length = CRYPTO_BYTES2BITS(keydata_len);
 
 		ckey = &tmp_ckey;
 		tmpl = NULL;
 	}
 
 	/*
 	 * Attempt to use QAT acceleration if we can. We currently don't
 	 * do this for metadnode and ZIL blocks, since they have a much
 	 * more involved buffer layout and the qat_crypt() function only
 	 * works in-place.
 	 */
 	if (qat_crypt_use_accel(datalen) &&
 	    ot != DMU_OT_INTENT_LOG && ot != DMU_OT_DNODE) {
 		uint8_t *srcbuf, *dstbuf;
 
 		if (encrypt) {
 			srcbuf = plainbuf;
 			dstbuf = cipherbuf;
 		} else {
 			srcbuf = cipherbuf;
 			dstbuf = plainbuf;
 		}
 
 		ret = qat_crypt((encrypt) ? QAT_ENCRYPT : QAT_DECRYPT, srcbuf,
 		    dstbuf, NULL, 0, iv, mac, ckey, key->zk_crypt, datalen);
 		if (ret == CPA_STATUS_SUCCESS) {
 			if (locked) {
 				rw_exit(&key->zk_salt_lock);
 				locked = B_FALSE;
 			}
 
 			return (0);
 		}
 		/* If the hardware implementation fails fall back to software */
 	}
 
 	/* create uios for encryption */
 	ret = zio_crypt_init_uios(encrypt, key->zk_version, ot, plainbuf,
 	    cipherbuf, datalen, byteswap, mac, &puio, &cuio, &enc_len,
 	    &authbuf, &auth_len, no_crypt);
 	if (ret != 0)
 		goto error;
 
 	/* perform the encryption / decryption in software */
 	ret = zio_do_crypt_uio(encrypt, key->zk_crypt, ckey, tmpl, iv, enc_len,
 	    &puio, &cuio, authbuf, auth_len);
 	if (ret != 0)
 		goto error;
 
 	if (locked) {
 		rw_exit(&key->zk_salt_lock);
 	}
 
 	if (authbuf != NULL)
 		zio_buf_free(authbuf, datalen);
 	if (ckey == &tmp_ckey)
 		memset(enc_keydata, 0, keydata_len);
 	zio_crypt_destroy_uio(&puio);
 	zio_crypt_destroy_uio(&cuio);
 
 	return (0);
 
 error:
 	if (locked)
 		rw_exit(&key->zk_salt_lock);
 	if (authbuf != NULL)
 		zio_buf_free(authbuf, datalen);
 	if (ckey == &tmp_ckey)
 		memset(enc_keydata, 0, keydata_len);
 	zio_crypt_destroy_uio(&puio);
 	zio_crypt_destroy_uio(&cuio);
 
 	return (ret);
 }
 
 /*
  * Simple wrapper around zio_do_crypt_data() to work with abd's instead of
  * linear buffers.
  */
 int
 zio_do_crypt_abd(boolean_t encrypt, zio_crypt_key_t *key, dmu_object_type_t ot,
     boolean_t byteswap, uint8_t *salt, uint8_t *iv, uint8_t *mac,
     uint_t datalen, abd_t *pabd, abd_t *cabd, boolean_t *no_crypt)
 {
 	int ret;
 	void *ptmp, *ctmp;
 
 	if (encrypt) {
 		ptmp = abd_borrow_buf_copy(pabd, datalen);
 		ctmp = abd_borrow_buf(cabd, datalen);
 	} else {
 		ptmp = abd_borrow_buf(pabd, datalen);
 		ctmp = abd_borrow_buf_copy(cabd, datalen);
 	}
 
 	ret = zio_do_crypt_data(encrypt, key, ot, byteswap, salt, iv, mac,
 	    datalen, ptmp, ctmp, no_crypt);
 	if (ret != 0)
 		goto error;
 
 	if (encrypt) {
 		abd_return_buf(pabd, ptmp, datalen);
 		abd_return_buf_copy(cabd, ctmp, datalen);
 	} else {
 		abd_return_buf_copy(pabd, ptmp, datalen);
 		abd_return_buf(cabd, ctmp, datalen);
 	}
 
 	return (0);
 
 error:
 	if (encrypt) {
 		abd_return_buf(pabd, ptmp, datalen);
 		abd_return_buf_copy(cabd, ctmp, datalen);
 	} else {
 		abd_return_buf_copy(pabd, ptmp, datalen);
 		abd_return_buf(cabd, ctmp, datalen);
 	}
 
 	return (ret);
 }
 
 #if defined(_KERNEL)
 /* CSTYLED */
 module_param(zfs_key_max_salt_uses, ulong, 0644);
 MODULE_PARM_DESC(zfs_key_max_salt_uses, "Max number of times a salt value "
 	"can be used for generating encryption keys before it is rotated");
 #endif