diff --git a/lib/libcrypt/crypt-md5.c b/lib/libcrypt/crypt-md5.c index 3fb80c1ba540..5313f59a4098 100644 --- a/lib/libcrypt/crypt-md5.c +++ b/lib/libcrypt/crypt-md5.c @@ -1,147 +1,148 @@ /*- * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 2003 Poul-Henning Kamp * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include #include #include #include #include #include +#include #include #include "crypt.h" /* * UNIX password */ int crypt_md5(const char *pw, const char *salt, char *buffer) { MD5_CTX ctx,ctx1; unsigned long l; int sl, pl; u_int i; u_char final[MD5_SIZE]; const char *ep; static const char *magic = "$1$"; /* If the salt starts with the magic string, skip that. */ if (!strncmp(salt, magic, strlen(magic))) salt += strlen(magic); /* It stops at the first '$', max 8 chars */ for (ep = salt; *ep && *ep != '$' && ep < salt + 8; ep++) continue; /* get the length of the true salt */ sl = ep - salt; MD5Init(&ctx); /* The password first, since that is what is most unknown */ MD5Update(&ctx, (const u_char *)pw, strlen(pw)); /* Then our magic string */ MD5Update(&ctx, (const u_char *)magic, strlen(magic)); /* Then the raw salt */ MD5Update(&ctx, (const u_char *)salt, (u_int)sl); /* Then just as many characters of the MD5(pw,salt,pw) */ MD5Init(&ctx1); MD5Update(&ctx1, (const u_char *)pw, strlen(pw)); MD5Update(&ctx1, (const u_char *)salt, (u_int)sl); MD5Update(&ctx1, (const u_char *)pw, strlen(pw)); MD5Final(final, &ctx1); for(pl = (int)strlen(pw); pl > 0; pl -= MD5_SIZE) MD5Update(&ctx, (const u_char *)final, (u_int)(pl > MD5_SIZE ? MD5_SIZE : pl)); /* Don't leave anything around in vm they could use. */ - memset(final, 0, sizeof(final)); + explicit_bzero(final, sizeof(final)); /* Then something really weird... */ for (i = strlen(pw); i; i >>= 1) if(i & 1) MD5Update(&ctx, (const u_char *)final, 1); else MD5Update(&ctx, (const u_char *)pw, 1); /* Now make the output string */ buffer = stpcpy(buffer, magic); buffer = stpncpy(buffer, salt, (u_int)sl); *buffer++ = '$'; MD5Final(final, &ctx); /* * and now, just to make sure things don't run too fast * On a 60 Mhz Pentium this takes 34 msec, so you would * need 30 seconds to build a 1000 entry dictionary... */ for(i = 0; i < 1000; i++) { MD5Init(&ctx1); if(i & 1) MD5Update(&ctx1, (const u_char *)pw, strlen(pw)); else MD5Update(&ctx1, (const u_char *)final, MD5_SIZE); if(i % 3) MD5Update(&ctx1, (const u_char *)salt, (u_int)sl); if(i % 7) MD5Update(&ctx1, (const u_char *)pw, strlen(pw)); if(i & 1) MD5Update(&ctx1, (const u_char *)final, MD5_SIZE); else MD5Update(&ctx1, (const u_char *)pw, strlen(pw)); MD5Final(final, &ctx1); } l = (final[ 0]<<16) | (final[ 6]<<8) | final[12]; _crypt_to64(buffer, l, 4); buffer += 4; l = (final[ 1]<<16) | (final[ 7]<<8) | final[13]; _crypt_to64(buffer, l, 4); buffer += 4; l = (final[ 2]<<16) | (final[ 8]<<8) | final[14]; _crypt_to64(buffer, l, 4); buffer += 4; l = (final[ 3]<<16) | (final[ 9]<<8) | final[15]; _crypt_to64(buffer, l, 4); buffer += 4; l = (final[ 4]<<16) | (final[10]<<8) | final[ 5]; _crypt_to64(buffer, l, 4); buffer += 4; l = final[11]; _crypt_to64(buffer, l, 2); buffer += 2; *buffer = '\0'; /* Don't leave anything around in vm they could use. */ - memset(final, 0, sizeof(final)); + explicit_bzero(final, sizeof(final)); return (0); } diff --git a/lib/libcrypt/crypt-sha256.c b/lib/libcrypt/crypt-sha256.c index 35c36bf93f3d..6da1d518b12d 100644 --- a/lib/libcrypt/crypt-sha256.c +++ b/lib/libcrypt/crypt-sha256.c @@ -1,422 +1,423 @@ /*- * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 2011 The FreeBSD Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* Based on: * SHA256-based Unix crypt implementation. Released into the Public Domain by * Ulrich Drepper . */ #include #include #include #include #include #include #include #include #include #include #include +#include #include "crypt.h" /* Define our magic string to mark salt for SHA256 "encryption" replacement. */ static const char sha256_salt_prefix[] = "$5$"; /* Prefix for optional rounds specification. */ static const char sha256_rounds_prefix[] = "rounds="; /* Maximum salt string length. */ #define SALT_LEN_MAX 16 /* Default number of rounds if not explicitly specified. */ #define ROUNDS_DEFAULT 5000 /* Minimum number of rounds. */ #define ROUNDS_MIN 1000 /* Maximum number of rounds. */ #define ROUNDS_MAX 999999999 int crypt_sha256(const char *key, const char *salt, char *buffer) { u_long srounds; uint8_t alt_result[32], temp_result[32]; SHA256_CTX ctx, alt_ctx; size_t salt_len, key_len, cnt, rounds; char *cp, *p_bytes, *s_bytes, *endp; const char *num; bool rounds_custom; /* Default number of rounds. */ rounds = ROUNDS_DEFAULT; rounds_custom = false; /* Find beginning of salt string. The prefix should normally always * be present. Just in case it is not. */ if (strncmp(sha256_salt_prefix, salt, sizeof(sha256_salt_prefix) - 1) == 0) /* Skip salt prefix. */ salt += sizeof(sha256_salt_prefix) - 1; if (strncmp(salt, sha256_rounds_prefix, sizeof(sha256_rounds_prefix) - 1) == 0) { num = salt + sizeof(sha256_rounds_prefix) - 1; srounds = strtoul(num, &endp, 10); if (*endp == '$') { salt = endp + 1; rounds = MAX(ROUNDS_MIN, MIN(srounds, ROUNDS_MAX)); rounds_custom = true; } } salt_len = MIN(strcspn(salt, "$"), SALT_LEN_MAX); key_len = strlen(key); /* Prepare for the real work. */ SHA256_Init(&ctx); /* Add the key string. */ SHA256_Update(&ctx, key, key_len); /* The last part is the salt string. This must be at most 8 * characters and it ends at the first `$' character (for * compatibility with existing implementations). */ SHA256_Update(&ctx, salt, salt_len); /* Compute alternate SHA256 sum with input KEY, SALT, and KEY. The * final result will be added to the first context. */ SHA256_Init(&alt_ctx); /* Add key. */ SHA256_Update(&alt_ctx, key, key_len); /* Add salt. */ SHA256_Update(&alt_ctx, salt, salt_len); /* Add key again. */ SHA256_Update(&alt_ctx, key, key_len); /* Now get result of this (32 bytes) and add it to the other context. */ SHA256_Final(alt_result, &alt_ctx); /* Add for any character in the key one byte of the alternate sum. */ for (cnt = key_len; cnt > 32; cnt -= 32) SHA256_Update(&ctx, alt_result, 32); SHA256_Update(&ctx, alt_result, cnt); /* Take the binary representation of the length of the key and for * every 1 add the alternate sum, for every 0 the key. */ for (cnt = key_len; cnt > 0; cnt >>= 1) if ((cnt & 1) != 0) SHA256_Update(&ctx, alt_result, 32); else SHA256_Update(&ctx, key, key_len); /* Create intermediate result. */ SHA256_Final(alt_result, &ctx); /* Start computation of P byte sequence. */ SHA256_Init(&alt_ctx); /* For every character in the password add the entire password. */ for (cnt = 0; cnt < key_len; ++cnt) SHA256_Update(&alt_ctx, key, key_len); /* Finish the digest. */ SHA256_Final(temp_result, &alt_ctx); /* Create byte sequence P. */ cp = p_bytes = alloca(key_len); for (cnt = key_len; cnt >= 32; cnt -= 32) { memcpy(cp, temp_result, 32); cp += 32; } memcpy(cp, temp_result, cnt); /* Start computation of S byte sequence. */ SHA256_Init(&alt_ctx); /* For every character in the password add the entire password. */ for (cnt = 0; cnt < 16 + alt_result[0]; ++cnt) SHA256_Update(&alt_ctx, salt, salt_len); /* Finish the digest. */ SHA256_Final(temp_result, &alt_ctx); /* Create byte sequence S. */ cp = s_bytes = alloca(salt_len); for (cnt = salt_len; cnt >= 32; cnt -= 32) { memcpy(cp, temp_result, 32); cp += 32; } memcpy(cp, temp_result, cnt); /* Repeatedly run the collected hash value through SHA256 to burn CPU * cycles. */ for (cnt = 0; cnt < rounds; ++cnt) { /* New context. */ SHA256_Init(&ctx); /* Add key or last result. */ if ((cnt & 1) != 0) SHA256_Update(&ctx, p_bytes, key_len); else SHA256_Update(&ctx, alt_result, 32); /* Add salt for numbers not divisible by 3. */ if (cnt % 3 != 0) SHA256_Update(&ctx, s_bytes, salt_len); /* Add key for numbers not divisible by 7. */ if (cnt % 7 != 0) SHA256_Update(&ctx, p_bytes, key_len); /* Add key or last result. */ if ((cnt & 1) != 0) SHA256_Update(&ctx, alt_result, 32); else SHA256_Update(&ctx, p_bytes, key_len); /* Create intermediate result. */ SHA256_Final(alt_result, &ctx); } /* Now we can construct the result string. It consists of three * parts. */ cp = stpcpy(buffer, sha256_salt_prefix); if (rounds_custom) cp += sprintf(cp, "%s%zu$", sha256_rounds_prefix, rounds); cp = stpncpy(cp, salt, salt_len); *cp++ = '$'; b64_from_24bit(alt_result[0], alt_result[10], alt_result[20], 4, &cp); b64_from_24bit(alt_result[21], alt_result[1], alt_result[11], 4, &cp); b64_from_24bit(alt_result[12], alt_result[22], alt_result[2], 4, &cp); b64_from_24bit(alt_result[3], alt_result[13], alt_result[23], 4, &cp); b64_from_24bit(alt_result[24], alt_result[4], alt_result[14], 4, &cp); b64_from_24bit(alt_result[15], alt_result[25], alt_result[5], 4, &cp); b64_from_24bit(alt_result[6], alt_result[16], alt_result[26], 4, &cp); b64_from_24bit(alt_result[27], alt_result[7], alt_result[17], 4, &cp); b64_from_24bit(alt_result[18], alt_result[28], alt_result[8], 4, &cp); b64_from_24bit(alt_result[9], alt_result[19], alt_result[29], 4, &cp); b64_from_24bit(0, alt_result[31], alt_result[30], 3, &cp); *cp = '\0'; /* Terminate the string. */ /* Clear the buffer for the intermediate result so that people * attaching to processes or reading core dumps cannot get any * information. We do it in this way to clear correct_words[] inside * the SHA256 implementation as well. */ SHA256_Init(&ctx); SHA256_Final(alt_result, &ctx); - memset(temp_result, '\0', sizeof(temp_result)); - memset(p_bytes, '\0', key_len); - memset(s_bytes, '\0', salt_len); + explicit_bzero(temp_result, sizeof(temp_result)); + explicit_bzero(p_bytes, key_len); + explicit_bzero(s_bytes, salt_len); return (0); } #ifdef TEST static const struct { const char *input; const char result[32]; } tests[] = { /* Test vectors from FIPS 180-2: appendix B.1. */ { "abc", "\xba\x78\x16\xbf\x8f\x01\xcf\xea\x41\x41\x40\xde\x5d\xae\x22\x23" "\xb0\x03\x61\xa3\x96\x17\x7a\x9c\xb4\x10\xff\x61\xf2\x00\x15\xad" }, /* Test vectors from FIPS 180-2: appendix B.2. */ { "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq", "\x24\x8d\x6a\x61\xd2\x06\x38\xb8\xe5\xc0\x26\x93\x0c\x3e\x60\x39" "\xa3\x3c\xe4\x59\x64\xff\x21\x67\xf6\xec\xed\xd4\x19\xdb\x06\xc1" }, /* Test vectors from the NESSIE project. */ { "", "\xe3\xb0\xc4\x42\x98\xfc\x1c\x14\x9a\xfb\xf4\xc8\x99\x6f\xb9\x24" "\x27\xae\x41\xe4\x64\x9b\x93\x4c\xa4\x95\x99\x1b\x78\x52\xb8\x55" }, { "a", "\xca\x97\x81\x12\xca\x1b\xbd\xca\xfa\xc2\x31\xb3\x9a\x23\xdc\x4d" "\xa7\x86\xef\xf8\x14\x7c\x4e\x72\xb9\x80\x77\x85\xaf\xee\x48\xbb" }, { "message digest", "\xf7\x84\x6f\x55\xcf\x23\xe1\x4e\xeb\xea\xb5\xb4\xe1\x55\x0c\xad" "\x5b\x50\x9e\x33\x48\xfb\xc4\xef\xa3\xa1\x41\x3d\x39\x3c\xb6\x50" }, { "abcdefghijklmnopqrstuvwxyz", "\x71\xc4\x80\xdf\x93\xd6\xae\x2f\x1e\xfa\xd1\x44\x7c\x66\xc9\x52" "\x5e\x31\x62\x18\xcf\x51\xfc\x8d\x9e\xd8\x32\xf2\xda\xf1\x8b\x73" }, { "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq", "\x24\x8d\x6a\x61\xd2\x06\x38\xb8\xe5\xc0\x26\x93\x0c\x3e\x60\x39" "\xa3\x3c\xe4\x59\x64\xff\x21\x67\xf6\xec\xed\xd4\x19\xdb\x06\xc1" }, { "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789", "\xdb\x4b\xfc\xbd\x4d\xa0\xcd\x85\xa6\x0c\x3c\x37\xd3\xfb\xd8\x80" "\x5c\x77\xf1\x5f\xc6\xb1\xfd\xfe\x61\x4e\xe0\xa7\xc8\xfd\xb4\xc0" }, { "123456789012345678901234567890123456789012345678901234567890" "12345678901234567890", "\xf3\x71\xbc\x4a\x31\x1f\x2b\x00\x9e\xef\x95\x2d\xd8\x3c\xa8\x0e" "\x2b\x60\x02\x6c\x8e\x93\x55\x92\xd0\xf9\xc3\x08\x45\x3c\x81\x3e" } }; #define ntests (sizeof (tests) / sizeof (tests[0])) static const struct { const char *salt; const char *input; const char *expected; } tests2[] = { { "$5$saltstring", "Hello world!", "$5$saltstring$5B8vYYiY.CVt1RlTTf8KbXBH3hsxY/GNooZaBBGWEc5" }, { "$5$rounds=10000$saltstringsaltstring", "Hello world!", "$5$rounds=10000$saltstringsaltst$3xv.VbSHBb41AL9AvLeujZkZRBAwqFMz2." "opqey6IcA" }, { "$5$rounds=5000$toolongsaltstring", "This is just a test", "$5$rounds=5000$toolongsaltstrin$Un/5jzAHMgOGZ5.mWJpuVolil07guHPvOW8" "mGRcvxa5" }, { "$5$rounds=1400$anotherlongsaltstring", "a very much longer text to encrypt. This one even stretches over more" "than one line.", "$5$rounds=1400$anotherlongsalts$Rx.j8H.h8HjEDGomFU8bDkXm3XIUnzyxf12" "oP84Bnq1" }, { "$5$rounds=77777$short", "we have a short salt string but not a short password", "$5$rounds=77777$short$JiO1O3ZpDAxGJeaDIuqCoEFysAe1mZNJRs3pw0KQRd/" }, { "$5$rounds=123456$asaltof16chars..", "a short string", "$5$rounds=123456$asaltof16chars..$gP3VQ/6X7UUEW3HkBn2w1/Ptq2jxPyzV/" "cZKmF/wJvD" }, { "$5$rounds=10$roundstoolow", "the minimum number is still observed", "$5$rounds=1000$roundstoolow$yfvwcWrQ8l/K0DAWyuPMDNHpIVlTQebY9l/gL97" "2bIC" }, }; #define ntests2 (sizeof (tests2) / sizeof (tests2[0])) int main(void) { SHA256_CTX ctx; uint8_t sum[32]; int result = 0; int i, cnt; for (cnt = 0; cnt < (int)ntests; ++cnt) { SHA256_Init(&ctx); SHA256_Update(&ctx, tests[cnt].input, strlen(tests[cnt].input)); SHA256_Final(sum, &ctx); if (memcmp(tests[cnt].result, sum, 32) != 0) { for (i = 0; i < 32; i++) printf("%02X", tests[cnt].result[i]); printf("\n"); for (i = 0; i < 32; i++) printf("%02X", sum[i]); printf("\n"); printf("test %d run %d failed\n", cnt, 1); result = 1; } SHA256_Init(&ctx); for (i = 0; tests[cnt].input[i] != '\0'; ++i) SHA256_Update(&ctx, &tests[cnt].input[i], 1); SHA256_Final(sum, &ctx); if (memcmp(tests[cnt].result, sum, 32) != 0) { for (i = 0; i < 32; i++) printf("%02X", tests[cnt].result[i]); printf("\n"); for (i = 0; i < 32; i++) printf("%02X", sum[i]); printf("\n"); printf("test %d run %d failed\n", cnt, 2); result = 1; } } /* Test vector from FIPS 180-2: appendix B.3. */ char buf[1000]; memset(buf, 'a', sizeof(buf)); SHA256_Init(&ctx); for (i = 0; i < 1000; ++i) SHA256_Update(&ctx, buf, sizeof(buf)); SHA256_Final(sum, &ctx); static const char expected[32] = "\xcd\xc7\x6e\x5c\x99\x14\xfb\x92\x81\xa1\xc7\xe2\x84\xd7\x3e\x67" "\xf1\x80\x9a\x48\xa4\x97\x20\x0e\x04\x6d\x39\xcc\xc7\x11\x2c\xd0"; if (memcmp(expected, sum, 32) != 0) { printf("test %d failed\n", cnt); result = 1; } for (cnt = 0; cnt < ntests2; ++cnt) { char *cp = crypt_sha256(tests2[cnt].input, tests2[cnt].salt); if (strcmp(cp, tests2[cnt].expected) != 0) { printf("test %d: expected \"%s\", got \"%s\"\n", cnt, tests2[cnt].expected, cp); result = 1; } } if (result == 0) puts("all tests OK"); return result; } #endif /* TEST */ diff --git a/lib/libcrypt/crypt-sha512.c b/lib/libcrypt/crypt-sha512.c index 640398afadc4..b760623b5d8d 100644 --- a/lib/libcrypt/crypt-sha512.c +++ b/lib/libcrypt/crypt-sha512.c @@ -1,445 +1,446 @@ /*- * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 2011 The FreeBSD Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* Based on: * SHA512-based Unix crypt implementation. Released into the Public Domain by * Ulrich Drepper . */ #include #include #include #include #include #include #include #include #include #include #include +#include #include "crypt.h" /* Define our magic string to mark salt for SHA512 "encryption" replacement. */ static const char sha512_salt_prefix[] = "$6$"; /* Prefix for optional rounds specification. */ static const char sha512_rounds_prefix[] = "rounds="; /* Maximum salt string length. */ #define SALT_LEN_MAX 16 /* Default number of rounds if not explicitly specified. */ #define ROUNDS_DEFAULT 5000 /* Minimum number of rounds. */ #define ROUNDS_MIN 1000 /* Maximum number of rounds. */ #define ROUNDS_MAX 999999999 int crypt_sha512(const char *key, const char *salt, char *buffer) { u_long srounds; uint8_t alt_result[64], temp_result[64]; SHA512_CTX ctx, alt_ctx; size_t salt_len, key_len, cnt, rounds; char *cp, *p_bytes, *s_bytes, *endp; const char *num; bool rounds_custom; /* Default number of rounds. */ rounds = ROUNDS_DEFAULT; rounds_custom = false; /* Find beginning of salt string. The prefix should normally always * be present. Just in case it is not. */ if (strncmp(sha512_salt_prefix, salt, sizeof(sha512_salt_prefix) - 1) == 0) /* Skip salt prefix. */ salt += sizeof(sha512_salt_prefix) - 1; if (strncmp(salt, sha512_rounds_prefix, sizeof(sha512_rounds_prefix) - 1) == 0) { num = salt + sizeof(sha512_rounds_prefix) - 1; srounds = strtoul(num, &endp, 10); if (*endp == '$') { salt = endp + 1; rounds = MAX(ROUNDS_MIN, MIN(srounds, ROUNDS_MAX)); rounds_custom = true; } } salt_len = MIN(strcspn(salt, "$"), SALT_LEN_MAX); key_len = strlen(key); /* Prepare for the real work. */ SHA512_Init(&ctx); /* Add the key string. */ SHA512_Update(&ctx, key, key_len); /* The last part is the salt string. This must be at most 8 * characters and it ends at the first `$' character (for * compatibility with existing implementations). */ SHA512_Update(&ctx, salt, salt_len); /* Compute alternate SHA512 sum with input KEY, SALT, and KEY. The * final result will be added to the first context. */ SHA512_Init(&alt_ctx); /* Add key. */ SHA512_Update(&alt_ctx, key, key_len); /* Add salt. */ SHA512_Update(&alt_ctx, salt, salt_len); /* Add key again. */ SHA512_Update(&alt_ctx, key, key_len); /* Now get result of this (64 bytes) and add it to the other context. */ SHA512_Final(alt_result, &alt_ctx); /* Add for any character in the key one byte of the alternate sum. */ for (cnt = key_len; cnt > 64; cnt -= 64) SHA512_Update(&ctx, alt_result, 64); SHA512_Update(&ctx, alt_result, cnt); /* Take the binary representation of the length of the key and for * every 1 add the alternate sum, for every 0 the key. */ for (cnt = key_len; cnt > 0; cnt >>= 1) if ((cnt & 1) != 0) SHA512_Update(&ctx, alt_result, 64); else SHA512_Update(&ctx, key, key_len); /* Create intermediate result. */ SHA512_Final(alt_result, &ctx); /* Start computation of P byte sequence. */ SHA512_Init(&alt_ctx); /* For every character in the password add the entire password. */ for (cnt = 0; cnt < key_len; ++cnt) SHA512_Update(&alt_ctx, key, key_len); /* Finish the digest. */ SHA512_Final(temp_result, &alt_ctx); /* Create byte sequence P. */ cp = p_bytes = alloca(key_len); for (cnt = key_len; cnt >= 64; cnt -= 64) { memcpy(cp, temp_result, 64); cp += 64; } memcpy(cp, temp_result, cnt); /* Start computation of S byte sequence. */ SHA512_Init(&alt_ctx); /* For every character in the password add the entire password. */ for (cnt = 0; cnt < 16 + alt_result[0]; ++cnt) SHA512_Update(&alt_ctx, salt, salt_len); /* Finish the digest. */ SHA512_Final(temp_result, &alt_ctx); /* Create byte sequence S. */ cp = s_bytes = alloca(salt_len); for (cnt = salt_len; cnt >= 64; cnt -= 64) { memcpy(cp, temp_result, 64); cp += 64; } memcpy(cp, temp_result, cnt); /* Repeatedly run the collected hash value through SHA512 to burn CPU * cycles. */ for (cnt = 0; cnt < rounds; ++cnt) { /* New context. */ SHA512_Init(&ctx); /* Add key or last result. */ if ((cnt & 1) != 0) SHA512_Update(&ctx, p_bytes, key_len); else SHA512_Update(&ctx, alt_result, 64); /* Add salt for numbers not divisible by 3. */ if (cnt % 3 != 0) SHA512_Update(&ctx, s_bytes, salt_len); /* Add key for numbers not divisible by 7. */ if (cnt % 7 != 0) SHA512_Update(&ctx, p_bytes, key_len); /* Add key or last result. */ if ((cnt & 1) != 0) SHA512_Update(&ctx, alt_result, 64); else SHA512_Update(&ctx, p_bytes, key_len); /* Create intermediate result. */ SHA512_Final(alt_result, &ctx); } /* Now we can construct the result string. It consists of three * parts. */ cp = stpcpy(buffer, sha512_salt_prefix); if (rounds_custom) cp += sprintf(cp, "%s%zu$", sha512_rounds_prefix, rounds); cp = stpncpy(cp, salt, salt_len); *cp++ = '$'; b64_from_24bit(alt_result[0], alt_result[21], alt_result[42], 4, &cp); b64_from_24bit(alt_result[22], alt_result[43], alt_result[1], 4, &cp); b64_from_24bit(alt_result[44], alt_result[2], alt_result[23], 4, &cp); b64_from_24bit(alt_result[3], alt_result[24], alt_result[45], 4, &cp); b64_from_24bit(alt_result[25], alt_result[46], alt_result[4], 4, &cp); b64_from_24bit(alt_result[47], alt_result[5], alt_result[26], 4, &cp); b64_from_24bit(alt_result[6], alt_result[27], alt_result[48], 4, &cp); b64_from_24bit(alt_result[28], alt_result[49], alt_result[7], 4, &cp); b64_from_24bit(alt_result[50], alt_result[8], alt_result[29], 4, &cp); b64_from_24bit(alt_result[9], alt_result[30], alt_result[51], 4, &cp); b64_from_24bit(alt_result[31], alt_result[52], alt_result[10], 4, &cp); b64_from_24bit(alt_result[53], alt_result[11], alt_result[32], 4, &cp); b64_from_24bit(alt_result[12], alt_result[33], alt_result[54], 4, &cp); b64_from_24bit(alt_result[34], alt_result[55], alt_result[13], 4, &cp); b64_from_24bit(alt_result[56], alt_result[14], alt_result[35], 4, &cp); b64_from_24bit(alt_result[15], alt_result[36], alt_result[57], 4, &cp); b64_from_24bit(alt_result[37], alt_result[58], alt_result[16], 4, &cp); b64_from_24bit(alt_result[59], alt_result[17], alt_result[38], 4, &cp); b64_from_24bit(alt_result[18], alt_result[39], alt_result[60], 4, &cp); b64_from_24bit(alt_result[40], alt_result[61], alt_result[19], 4, &cp); b64_from_24bit(alt_result[62], alt_result[20], alt_result[41], 4, &cp); b64_from_24bit(0, 0, alt_result[63], 2, &cp); *cp = '\0'; /* Terminate the string. */ /* Clear the buffer for the intermediate result so that people * attaching to processes or reading core dumps cannot get any * information. We do it in this way to clear correct_words[] inside * the SHA512 implementation as well. */ SHA512_Init(&ctx); SHA512_Final(alt_result, &ctx); - memset(temp_result, '\0', sizeof(temp_result)); - memset(p_bytes, '\0', key_len); - memset(s_bytes, '\0', salt_len); + explicit_bzero(temp_result, sizeof(temp_result)); + explicit_bzero(p_bytes, key_len); + explicit_bzero(s_bytes, salt_len); return (0); } #ifdef TEST static const struct { const char *input; const char result[64]; } tests[] = { /* Test vectors from FIPS 180-2: appendix C.1. */ { "abc", "\xdd\xaf\x35\xa1\x93\x61\x7a\xba\xcc\x41\x73\x49\xae\x20\x41\x31" "\x12\xe6\xfa\x4e\x89\xa9\x7e\xa2\x0a\x9e\xee\xe6\x4b\x55\xd3\x9a" "\x21\x92\x99\x2a\x27\x4f\xc1\xa8\x36\xba\x3c\x23\xa3\xfe\xeb\xbd" "\x45\x4d\x44\x23\x64\x3c\xe8\x0e\x2a\x9a\xc9\x4f\xa5\x4c\xa4\x9f" }, /* Test vectors from FIPS 180-2: appendix C.2. */ { "abcdefghbcdefghicdefghijdefghijkefghijklfghijklmghijklmn" "hijklmnoijklmnopjklmnopqklmnopqrlmnopqrsmnopqrstnopqrstu", "\x8e\x95\x9b\x75\xda\xe3\x13\xda\x8c\xf4\xf7\x28\x14\xfc\x14\x3f" "\x8f\x77\x79\xc6\xeb\x9f\x7f\xa1\x72\x99\xae\xad\xb6\x88\x90\x18" "\x50\x1d\x28\x9e\x49\x00\xf7\xe4\x33\x1b\x99\xde\xc4\xb5\x43\x3a" "\xc7\xd3\x29\xee\xb6\xdd\x26\x54\x5e\x96\xe5\x5b\x87\x4b\xe9\x09" }, /* Test vectors from the NESSIE project. */ { "", "\xcf\x83\xe1\x35\x7e\xef\xb8\xbd\xf1\x54\x28\x50\xd6\x6d\x80\x07" "\xd6\x20\xe4\x05\x0b\x57\x15\xdc\x83\xf4\xa9\x21\xd3\x6c\xe9\xce" "\x47\xd0\xd1\x3c\x5d\x85\xf2\xb0\xff\x83\x18\xd2\x87\x7e\xec\x2f" "\x63\xb9\x31\xbd\x47\x41\x7a\x81\xa5\x38\x32\x7a\xf9\x27\xda\x3e" }, { "a", "\x1f\x40\xfc\x92\xda\x24\x16\x94\x75\x09\x79\xee\x6c\xf5\x82\xf2" "\xd5\xd7\xd2\x8e\x18\x33\x5d\xe0\x5a\xbc\x54\xd0\x56\x0e\x0f\x53" "\x02\x86\x0c\x65\x2b\xf0\x8d\x56\x02\x52\xaa\x5e\x74\x21\x05\x46" "\xf3\x69\xfb\xbb\xce\x8c\x12\xcf\xc7\x95\x7b\x26\x52\xfe\x9a\x75" }, { "message digest", "\x10\x7d\xbf\x38\x9d\x9e\x9f\x71\xa3\xa9\x5f\x6c\x05\x5b\x92\x51" "\xbc\x52\x68\xc2\xbe\x16\xd6\xc1\x34\x92\xea\x45\xb0\x19\x9f\x33" "\x09\xe1\x64\x55\xab\x1e\x96\x11\x8e\x8a\x90\x5d\x55\x97\xb7\x20" "\x38\xdd\xb3\x72\xa8\x98\x26\x04\x6d\xe6\x66\x87\xbb\x42\x0e\x7c" }, { "abcdefghijklmnopqrstuvwxyz", "\x4d\xbf\xf8\x6c\xc2\xca\x1b\xae\x1e\x16\x46\x8a\x05\xcb\x98\x81" "\xc9\x7f\x17\x53\xbc\xe3\x61\x90\x34\x89\x8f\xaa\x1a\xab\xe4\x29" "\x95\x5a\x1b\xf8\xec\x48\x3d\x74\x21\xfe\x3c\x16\x46\x61\x3a\x59" "\xed\x54\x41\xfb\x0f\x32\x13\x89\xf7\x7f\x48\xa8\x79\xc7\xb1\xf1" }, { "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq", "\x20\x4a\x8f\xc6\xdd\xa8\x2f\x0a\x0c\xed\x7b\xeb\x8e\x08\xa4\x16" "\x57\xc1\x6e\xf4\x68\xb2\x28\xa8\x27\x9b\xe3\x31\xa7\x03\xc3\x35" "\x96\xfd\x15\xc1\x3b\x1b\x07\xf9\xaa\x1d\x3b\xea\x57\x78\x9c\xa0" "\x31\xad\x85\xc7\xa7\x1d\xd7\x03\x54\xec\x63\x12\x38\xca\x34\x45" }, { "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789", "\x1e\x07\xbe\x23\xc2\x6a\x86\xea\x37\xea\x81\x0c\x8e\xc7\x80\x93" "\x52\x51\x5a\x97\x0e\x92\x53\xc2\x6f\x53\x6c\xfc\x7a\x99\x96\xc4" "\x5c\x83\x70\x58\x3e\x0a\x78\xfa\x4a\x90\x04\x1d\x71\xa4\xce\xab" "\x74\x23\xf1\x9c\x71\xb9\xd5\xa3\xe0\x12\x49\xf0\xbe\xbd\x58\x94" }, { "123456789012345678901234567890123456789012345678901234567890" "12345678901234567890", "\x72\xec\x1e\xf1\x12\x4a\x45\xb0\x47\xe8\xb7\xc7\x5a\x93\x21\x95" "\x13\x5b\xb6\x1d\xe2\x4e\xc0\xd1\x91\x40\x42\x24\x6e\x0a\xec\x3a" "\x23\x54\xe0\x93\xd7\x6f\x30\x48\xb4\x56\x76\x43\x46\x90\x0c\xb1" "\x30\xd2\xa4\xfd\x5d\xd1\x6a\xbb\x5e\x30\xbc\xb8\x50\xde\xe8\x43" } }; #define ntests (sizeof (tests) / sizeof (tests[0])) static const struct { const char *salt; const char *input; const char *expected; } tests2[] = { { "$6$saltstring", "Hello world!", "$6$saltstring$svn8UoSVapNtMuq1ukKS4tPQd8iKwSMHWjl/O817G3uBnIFNjnQJu" "esI68u4OTLiBFdcbYEdFCoEOfaS35inz1" }, { "$6$rounds=10000$saltstringsaltstring", "Hello world!", "$6$rounds=10000$saltstringsaltst$OW1/O6BYHV6BcXZu8QVeXbDWra3Oeqh0sb" "HbbMCVNSnCM/UrjmM0Dp8vOuZeHBy/YTBmSK6H9qs/y3RnOaw5v." }, { "$6$rounds=5000$toolongsaltstring", "This is just a test", "$6$rounds=5000$toolongsaltstrin$lQ8jolhgVRVhY4b5pZKaysCLi0QBxGoNeKQ" "zQ3glMhwllF7oGDZxUhx1yxdYcz/e1JSbq3y6JMxxl8audkUEm0" }, { "$6$rounds=1400$anotherlongsaltstring", "a very much longer text to encrypt. This one even stretches over more" "than one line.", "$6$rounds=1400$anotherlongsalts$POfYwTEok97VWcjxIiSOjiykti.o/pQs.wP" "vMxQ6Fm7I6IoYN3CmLs66x9t0oSwbtEW7o7UmJEiDwGqd8p4ur1" }, { "$6$rounds=77777$short", "we have a short salt string but not a short password", "$6$rounds=77777$short$WuQyW2YR.hBNpjjRhpYD/ifIw05xdfeEyQoMxIXbkvr0g" "ge1a1x3yRULJ5CCaUeOxFmtlcGZelFl5CxtgfiAc0" }, { "$6$rounds=123456$asaltof16chars..", "a short string", "$6$rounds=123456$asaltof16chars..$BtCwjqMJGx5hrJhZywWvt0RLE8uZ4oPwc" "elCjmw2kSYu.Ec6ycULevoBK25fs2xXgMNrCzIMVcgEJAstJeonj1" }, { "$6$rounds=10$roundstoolow", "the minimum number is still observed", "$6$rounds=1000$roundstoolow$kUMsbe306n21p9R.FRkW3IGn.S9NPN0x50YhH1x" "hLsPuWGsUSklZt58jaTfF4ZEQpyUNGc0dqbpBYYBaHHrsX." }, }; #define ntests2 (sizeof (tests2) / sizeof (tests2[0])) int main(void) { SHA512_CTX ctx; uint8_t sum[64]; int result = 0; int i, cnt; for (cnt = 0; cnt < (int)ntests; ++cnt) { SHA512_Init(&ctx); SHA512_Update(&ctx, tests[cnt].input, strlen(tests[cnt].input)); SHA512_Final(sum, &ctx); if (memcmp(tests[cnt].result, sum, 64) != 0) { printf("test %d run %d failed\n", cnt, 1); result = 1; } SHA512_Init(&ctx); for (i = 0; tests[cnt].input[i] != '\0'; ++i) SHA512_Update(&ctx, &tests[cnt].input[i], 1); SHA512_Final(sum, &ctx); if (memcmp(tests[cnt].result, sum, 64) != 0) { printf("test %d run %d failed\n", cnt, 2); result = 1; } } /* Test vector from FIPS 180-2: appendix C.3. */ char buf[1000]; memset(buf, 'a', sizeof(buf)); SHA512_Init(&ctx); for (i = 0; i < 1000; ++i) SHA512_Update(&ctx, buf, sizeof(buf)); SHA512_Final(sum, &ctx); static const char expected[64] = "\xe7\x18\x48\x3d\x0c\xe7\x69\x64\x4e\x2e\x42\xc7\xbc\x15\xb4\x63" "\x8e\x1f\x98\xb1\x3b\x20\x44\x28\x56\x32\xa8\x03\xaf\xa9\x73\xeb" "\xde\x0f\xf2\x44\x87\x7e\xa6\x0a\x4c\xb0\x43\x2c\xe5\x77\xc3\x1b" "\xeb\x00\x9c\x5c\x2c\x49\xaa\x2e\x4e\xad\xb2\x17\xad\x8c\xc0\x9b"; if (memcmp(expected, sum, 64) != 0) { printf("test %d failed\n", cnt); result = 1; } for (cnt = 0; cnt < ntests2; ++cnt) { char *cp = crypt_sha512(tests2[cnt].input, tests2[cnt].salt); if (strcmp(cp, tests2[cnt].expected) != 0) { printf("test %d: expected \"%s\", got \"%s\"\n", cnt, tests2[cnt].expected, cp); result = 1; } } if (result == 0) puts("all tests OK"); return result; } #endif /* TEST */