diff --git a/sys/dev/sound/pci/hda/hdac.c b/sys/dev/sound/pci/hda/hdac.c
index beed29e955d2..92af1a79ccd2 100644
--- a/sys/dev/sound/pci/hda/hdac.c
+++ b/sys/dev/sound/pci/hda/hdac.c
@@ -1,2168 +1,2168 @@
 /*-
  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
  *
  * Copyright (c) 2006 Stephane E. Potvin <sepotvin@videotron.ca>
  * Copyright (c) 2006 Ariff Abdullah <ariff@FreeBSD.org>
  * Copyright (c) 2008-2012 Alexander Motin <mav@FreeBSD.org>
  * All rights reserved.
  *
  * Redistribution and use in source and binary forms, with or without
  * modification, are permitted provided that the following conditions
  * are met:
  * 1. Redistributions of source code must retain the above copyright
  *    notice, this list of conditions and the following disclaimer.
  * 2. Redistributions in binary form must reproduce the above copyright
  *    notice, this list of conditions and the following disclaimer in the
  *    documentation and/or other materials provided with the distribution.
  *
  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  * SUCH DAMAGE.
  */
 
 /*
  * Intel High Definition Audio (Controller) driver for FreeBSD.
  */
 
 #ifdef HAVE_KERNEL_OPTION_HEADERS
 #include "opt_snd.h"
 #endif
 
 #include <dev/sound/pcm/sound.h>
 #include <dev/pci/pcireg.h>
 #include <dev/pci/pcivar.h>
 
 #include <sys/ctype.h>
 #include <sys/endian.h>
 #include <sys/taskqueue.h>
 
 #include <dev/sound/pci/hda/hdac_private.h>
 #include <dev/sound/pci/hda/hdac_reg.h>
 #include <dev/sound/pci/hda/hda_reg.h>
 #include <dev/sound/pci/hda/hdac.h>
 
 #define HDA_DRV_TEST_REV	"20120126_0002"
 
 SND_DECLARE_FILE("$FreeBSD$");
 
 #define hdac_lock(sc)		snd_mtxlock((sc)->lock)
 #define hdac_unlock(sc)		snd_mtxunlock((sc)->lock)
 #define hdac_lockassert(sc)	snd_mtxassert((sc)->lock)
 
 #define HDAC_QUIRK_64BIT	(1 << 0)
 #define HDAC_QUIRK_DMAPOS	(1 << 1)
 #define HDAC_QUIRK_MSI		(1 << 2)
 
 static const struct {
 	const char *key;
 	uint32_t value;
 } hdac_quirks_tab[] = {
 	{ "64bit", HDAC_QUIRK_64BIT },
 	{ "dmapos", HDAC_QUIRK_DMAPOS },
 	{ "msi", HDAC_QUIRK_MSI },
 };
 
 MALLOC_DEFINE(M_HDAC, "hdac", "HDA Controller");
 
 static const struct {
 	uint32_t	model;
 	const char	*desc;
 	char		quirks_on;
 	char		quirks_off;
 } hdac_devices[] = {
 	{ HDA_INTEL_OAK,     "Intel Oaktrail",	0, 0 },
 	{ HDA_INTEL_CMLKLP,  "Intel Comet Lake-LP",	0, 0 },
 	{ HDA_INTEL_CMLKH,   "Intel Comet Lake-H",	0, 0 },
 	{ HDA_INTEL_BAY,     "Intel BayTrail",	0, 0 },
 	{ HDA_INTEL_HSW1,    "Intel Haswell",	0, 0 },
 	{ HDA_INTEL_HSW2,    "Intel Haswell",	0, 0 },
 	{ HDA_INTEL_HSW3,    "Intel Haswell",	0, 0 },
 	{ HDA_INTEL_BDW1,    "Intel Broadwell",	0, 0 },
 	{ HDA_INTEL_BDW2,    "Intel Broadwell",	0, 0 },
 	{ HDA_INTEL_BXTNT,   "Intel Broxton-T",	0, 0 },
 	{ HDA_INTEL_CPT,     "Intel Cougar Point",	0, 0 },
 	{ HDA_INTEL_PATSBURG,"Intel Patsburg",  0, 0 },
 	{ HDA_INTEL_PPT1,    "Intel Panther Point",	0, 0 },
 	{ HDA_INTEL_BR,      "Intel Braswell",	0, 0 },
 	{ HDA_INTEL_LPT1,    "Intel Lynx Point",	0, 0 },
 	{ HDA_INTEL_LPT2,    "Intel Lynx Point",	0, 0 },
 	{ HDA_INTEL_WCPT,    "Intel Wildcat Point",	0, 0 },
 	{ HDA_INTEL_WELLS1,  "Intel Wellsburg",	0, 0 },
 	{ HDA_INTEL_WELLS2,  "Intel Wellsburg",	0, 0 },
 	{ HDA_INTEL_LPTLP1,  "Intel Lynx Point-LP",	0, 0 },
 	{ HDA_INTEL_LPTLP2,  "Intel Lynx Point-LP",	0, 0 },
 	{ HDA_INTEL_SRPTLP,  "Intel Sunrise Point-LP",	0, 0 },
 	{ HDA_INTEL_KBLKLP,  "Intel Kaby Lake-LP",	0, 0 },
 	{ HDA_INTEL_SRPT,    "Intel Sunrise Point",	0, 0 },
 	{ HDA_INTEL_KBLK,    "Intel Kaby Lake",	0, 0 },
 	{ HDA_INTEL_KBLKH,   "Intel Kaby Lake-H",	0, 0 },
 	{ HDA_INTEL_CFLK,    "Intel Coffee Lake",	0, 0 },
 	{ HDA_INTEL_CMLKS,   "Intel Comet Lake-S",	0, 0 },
 	{ HDA_INTEL_CNLK,    "Intel Cannon Lake",	0, 0 },
 	{ HDA_INTEL_ICLK,    "Intel Ice Lake",		0, 0 },
 	{ HDA_INTEL_CMLKLP,  "Intel Comet Lake-LP",	0, 0 },
 	{ HDA_INTEL_CMLKH,   "Intel Comet Lake-H",	0, 0 },
 	{ HDA_INTEL_TGLK,    "Intel Tiger Lake",	0, 0 },
 	{ HDA_INTEL_GMLK,    "Intel Gemini Lake",	0, 0 },
 	{ HDA_INTEL_ALLK,    "Intel Alder Lake",	0, 0 },
 	{ HDA_INTEL_82801F,  "Intel 82801F",	0, 0 },
 	{ HDA_INTEL_63XXESB, "Intel 631x/632xESB",	0, 0 },
 	{ HDA_INTEL_82801G,  "Intel 82801G",	0, 0 },
 	{ HDA_INTEL_82801H,  "Intel 82801H",	0, 0 },
 	{ HDA_INTEL_82801I,  "Intel 82801I",	0, 0 },
 	{ HDA_INTEL_JLK,     "Intel Jasper Lake",	0, 0 },
 	{ HDA_INTEL_82801JI, "Intel 82801JI",	0, 0 },
 	{ HDA_INTEL_82801JD, "Intel 82801JD",	0, 0 },
 	{ HDA_INTEL_PCH,     "Intel Ibex Peak",	0, 0 },
 	{ HDA_INTEL_PCH2,    "Intel Ibex Peak",	0, 0 },
 	{ HDA_INTEL_ELLK,    "Intel Elkhart Lake",	0, 0 },
 	{ HDA_INTEL_JLK2,    "Intel Jasper Lake",	0, 0 },
 	{ HDA_INTEL_BXTNP,   "Intel Broxton-P",	0, 0 },
 	{ HDA_INTEL_SCH,     "Intel SCH",	0, 0 },
 	{ HDA_NVIDIA_MCP51,  "NVIDIA MCP51",	0, HDAC_QUIRK_MSI },
 	{ HDA_NVIDIA_MCP55,  "NVIDIA MCP55",	0, HDAC_QUIRK_MSI },
 	{ HDA_NVIDIA_MCP61_1, "NVIDIA MCP61",	0, 0 },
 	{ HDA_NVIDIA_MCP61_2, "NVIDIA MCP61",	0, 0 },
 	{ HDA_NVIDIA_MCP65_1, "NVIDIA MCP65",	0, 0 },
 	{ HDA_NVIDIA_MCP65_2, "NVIDIA MCP65",	0, 0 },
 	{ HDA_NVIDIA_MCP67_1, "NVIDIA MCP67",	0, 0 },
 	{ HDA_NVIDIA_MCP67_2, "NVIDIA MCP67",	0, 0 },
 	{ HDA_NVIDIA_MCP73_1, "NVIDIA MCP73",	0, 0 },
 	{ HDA_NVIDIA_MCP73_2, "NVIDIA MCP73",	0, 0 },
 	{ HDA_NVIDIA_MCP78_1, "NVIDIA MCP78",	0, HDAC_QUIRK_64BIT },
 	{ HDA_NVIDIA_MCP78_2, "NVIDIA MCP78",	0, HDAC_QUIRK_64BIT },
 	{ HDA_NVIDIA_MCP78_3, "NVIDIA MCP78",	0, HDAC_QUIRK_64BIT },
 	{ HDA_NVIDIA_MCP78_4, "NVIDIA MCP78",	0, HDAC_QUIRK_64BIT },
 	{ HDA_NVIDIA_MCP79_1, "NVIDIA MCP79",	0, 0 },
 	{ HDA_NVIDIA_MCP79_2, "NVIDIA MCP79",	0, 0 },
 	{ HDA_NVIDIA_MCP79_3, "NVIDIA MCP79",	0, 0 },
 	{ HDA_NVIDIA_MCP79_4, "NVIDIA MCP79",	0, 0 },
 	{ HDA_NVIDIA_MCP89_1, "NVIDIA MCP89",	0, 0 },
 	{ HDA_NVIDIA_MCP89_2, "NVIDIA MCP89",	0, 0 },
 	{ HDA_NVIDIA_MCP89_3, "NVIDIA MCP89",	0, 0 },
 	{ HDA_NVIDIA_MCP89_4, "NVIDIA MCP89",	0, 0 },
 	{ HDA_NVIDIA_0BE2,   "NVIDIA (0x0be2)",	0, HDAC_QUIRK_MSI },
 	{ HDA_NVIDIA_0BE3,   "NVIDIA (0x0be3)",	0, HDAC_QUIRK_MSI },
 	{ HDA_NVIDIA_0BE4,   "NVIDIA (0x0be4)",	0, HDAC_QUIRK_MSI },
 	{ HDA_NVIDIA_GT100,  "NVIDIA GT100",	0, HDAC_QUIRK_MSI },
 	{ HDA_NVIDIA_GT104,  "NVIDIA GT104",	0, HDAC_QUIRK_MSI },
 	{ HDA_NVIDIA_GT106,  "NVIDIA GT106",	0, HDAC_QUIRK_MSI },
 	{ HDA_NVIDIA_GT108,  "NVIDIA GT108",	0, HDAC_QUIRK_MSI },
 	{ HDA_NVIDIA_GT116,  "NVIDIA GT116",	0, HDAC_QUIRK_MSI },
 	{ HDA_NVIDIA_GF119,  "NVIDIA GF119",	0, 0 },
 	{ HDA_NVIDIA_GF110_1, "NVIDIA GF110",	0, HDAC_QUIRK_MSI },
 	{ HDA_NVIDIA_GF110_2, "NVIDIA GF110",	0, HDAC_QUIRK_MSI },
 	{ HDA_ATI_SB450,     "ATI SB450",	0, 0 },
 	{ HDA_ATI_SB600,     "ATI SB600",	0, 0 },
 	{ HDA_ATI_RS600,     "ATI RS600",	0, 0 },
 	{ HDA_ATI_RS690,     "ATI RS690",	0, 0 },
 	{ HDA_ATI_RS780,     "ATI RS780",	0, 0 },
 	{ HDA_ATI_RS880,     "ATI RS880",	0, 0 },
 	{ HDA_ATI_R600,      "ATI R600",	0, 0 },
 	{ HDA_ATI_RV610,     "ATI RV610",	0, 0 },
 	{ HDA_ATI_RV620,     "ATI RV620",	0, 0 },
 	{ HDA_ATI_RV630,     "ATI RV630",	0, 0 },
 	{ HDA_ATI_RV635,     "ATI RV635",	0, 0 },
 	{ HDA_ATI_RV710,     "ATI RV710",	0, 0 },
 	{ HDA_ATI_RV730,     "ATI RV730",	0, 0 },
 	{ HDA_ATI_RV740,     "ATI RV740",	0, 0 },
 	{ HDA_ATI_RV770,     "ATI RV770",	0, 0 },
 	{ HDA_ATI_RV810,     "ATI RV810",	0, 0 },
 	{ HDA_ATI_RV830,     "ATI RV830",	0, 0 },
 	{ HDA_ATI_RV840,     "ATI RV840",	0, 0 },
 	{ HDA_ATI_RV870,     "ATI RV870",	0, 0 },
 	{ HDA_ATI_RV910,     "ATI RV910",	0, 0 },
 	{ HDA_ATI_RV930,     "ATI RV930",	0, 0 },
 	{ HDA_ATI_RV940,     "ATI RV940",	0, 0 },
 	{ HDA_ATI_RV970,     "ATI RV970",	0, 0 },
 	{ HDA_ATI_R1000,     "ATI R1000",	0, 0 },
 	{ HDA_ATI_KABINI,    "ATI Kabini",	0, 0 },
 	{ HDA_ATI_TRINITY,   "ATI Trinity",	0, 0 },
 	{ HDA_AMD_X370,      "AMD X370",	0, 0 },
 	{ HDA_AMD_X570,      "AMD X570",	0, 0 },
 	{ HDA_AMD_STONEY,    "AMD Stoney",	0, 0 },
 	{ HDA_AMD_RAVEN,     "AMD Raven",	0, 0 },
 	{ HDA_AMD_HUDSON2,   "AMD Hudson-2",	0, 0 },
 	{ HDA_RDC_M3010,     "RDC M3010",	0, 0 },
 	{ HDA_VIA_VT82XX,    "VIA VT8251/8237A",0, 0 },
 	{ HDA_SIS_966,       "SiS 966/968",	0, 0 },
 	{ HDA_ULI_M5461,     "ULI M5461",	0, 0 },
 	/* Unknown */
 	{ HDA_INTEL_ALL,  "Intel",		0, 0 },
 	{ HDA_NVIDIA_ALL, "NVIDIA",		0, 0 },
 	{ HDA_ATI_ALL,    "ATI",		0, 0 },
 	{ HDA_AMD_ALL,    "AMD",		0, 0 },
 	{ HDA_CREATIVE_ALL,    "Creative",	0, 0 },
 	{ HDA_VIA_ALL,    "VIA",		0, 0 },
 	{ HDA_SIS_ALL,    "SiS",		0, 0 },
 	{ HDA_ULI_ALL,    "ULI",		0, 0 },
 };
 
 static const struct {
 	uint16_t vendor;
 	uint8_t reg;
 	uint8_t mask;
 	uint8_t enable;
 } hdac_pcie_snoop[] = {
 	{  INTEL_VENDORID, 0x00, 0x00, 0x00 },
 	{    ATI_VENDORID, 0x42, 0xf8, 0x02 },
 	{    AMD_VENDORID, 0x42, 0xf8, 0x02 },
 	{ NVIDIA_VENDORID, 0x4e, 0xf0, 0x0f },
 };
 
 /****************************************************************************
  * Function prototypes
  ****************************************************************************/
 static void	hdac_intr_handler(void *);
 static int	hdac_reset(struct hdac_softc *, bool);
 static int	hdac_get_capabilities(struct hdac_softc *);
 static void	hdac_dma_cb(void *, bus_dma_segment_t *, int, int);
 static int	hdac_dma_alloc(struct hdac_softc *,
 					struct hdac_dma *, bus_size_t);
 static void	hdac_dma_free(struct hdac_softc *, struct hdac_dma *);
 static int	hdac_mem_alloc(struct hdac_softc *);
 static void	hdac_mem_free(struct hdac_softc *);
 static int	hdac_irq_alloc(struct hdac_softc *);
 static void	hdac_irq_free(struct hdac_softc *);
 static void	hdac_corb_init(struct hdac_softc *);
 static void	hdac_rirb_init(struct hdac_softc *);
 static void	hdac_corb_start(struct hdac_softc *);
 static void	hdac_rirb_start(struct hdac_softc *);
 
 static void	hdac_attach2(void *);
 
 static uint32_t	hdac_send_command(struct hdac_softc *, nid_t, uint32_t);
 
 static int	hdac_probe(device_t);
 static int	hdac_attach(device_t);
 static int	hdac_detach(device_t);
 static int	hdac_suspend(device_t);
 static int	hdac_resume(device_t);
 
 static int	hdac_rirb_flush(struct hdac_softc *sc);
 static int	hdac_unsolq_flush(struct hdac_softc *sc);
 
 /* This function surely going to make its way into upper level someday. */
 static void
 hdac_config_fetch(struct hdac_softc *sc, uint32_t *on, uint32_t *off)
 {
 	const char *res = NULL;
 	int i = 0, j, k, len, inv;
 
 	if (resource_string_value(device_get_name(sc->dev),
 	    device_get_unit(sc->dev), "config", &res) != 0)
 		return;
 	if (!(res != NULL && strlen(res) > 0))
 		return;
 	HDA_BOOTVERBOSE(
 		device_printf(sc->dev, "Config options:");
 	);
 	for (;;) {
 		while (res[i] != '\0' &&
 		    (res[i] == ',' || isspace(res[i]) != 0))
 			i++;
 		if (res[i] == '\0') {
 			HDA_BOOTVERBOSE(
 				printf("\n");
 			);
 			return;
 		}
 		j = i;
 		while (res[j] != '\0' &&
 		    !(res[j] == ',' || isspace(res[j]) != 0))
 			j++;
 		len = j - i;
 		if (len > 2 && strncmp(res + i, "no", 2) == 0)
 			inv = 2;
 		else
 			inv = 0;
 		for (k = 0; len > inv && k < nitems(hdac_quirks_tab); k++) {
 			if (strncmp(res + i + inv,
 			    hdac_quirks_tab[k].key, len - inv) != 0)
 				continue;
 			if (len - inv != strlen(hdac_quirks_tab[k].key))
 				continue;
 			HDA_BOOTVERBOSE(
 				printf(" %s%s", (inv != 0) ? "no" : "",
 				    hdac_quirks_tab[k].key);
 			);
 			if (inv == 0) {
 				*on |= hdac_quirks_tab[k].value;
 				*off &= ~hdac_quirks_tab[k].value;
 			} else if (inv != 0) {
 				*off |= hdac_quirks_tab[k].value;
 				*on &= ~hdac_quirks_tab[k].value;
 			}
 			break;
 		}
 		i = j;
 	}
 }
 
 static void
 hdac_one_intr(struct hdac_softc *sc, uint32_t intsts)
 {
 	device_t dev;
 	uint8_t rirbsts;
 	int i;
 
 	/* Was this a controller interrupt? */
 	if (intsts & HDAC_INTSTS_CIS) {
 		/*
 		 * Placeholder: if we ever enable any bits in HDAC_WAKEEN, then
 		 * we will need to check and clear HDAC_STATESTS.
 		 * That event is used to report codec status changes such as
 		 * a reset or a wake-up event.
 		 */
 		/*
 		 * Placeholder: if we ever enable HDAC_CORBCTL_CMEIE, then we
 		 * will need to check and clear HDAC_CORBSTS_CMEI in
 		 * HDAC_CORBSTS.
 		 * That event is used to report CORB memory errors.
 		 */
 		/*
 		 * Placeholder: if we ever enable HDAC_RIRBCTL_RIRBOIC, then we
 		 * will need to check and clear HDAC_RIRBSTS_RIRBOIS in
 		 * HDAC_RIRBSTS.
 		 * That event is used to report response FIFO overruns.
 		 */
 
 		/* Get as many responses that we can */
 		rirbsts = HDAC_READ_1(&sc->mem, HDAC_RIRBSTS);
 		while (rirbsts & HDAC_RIRBSTS_RINTFL) {
 			HDAC_WRITE_1(&sc->mem,
 			    HDAC_RIRBSTS, HDAC_RIRBSTS_RINTFL);
 			hdac_rirb_flush(sc);
 			rirbsts = HDAC_READ_1(&sc->mem, HDAC_RIRBSTS);
 		}
 		if (sc->unsolq_rp != sc->unsolq_wp)
 			taskqueue_enqueue(taskqueue_thread, &sc->unsolq_task);
 	}
 
 	if (intsts & HDAC_INTSTS_SIS_MASK) {
 		for (i = 0; i < sc->num_ss; i++) {
 			if ((intsts & (1 << i)) == 0)
 				continue;
 			HDAC_WRITE_1(&sc->mem, (i << 5) + HDAC_SDSTS,
 			    HDAC_SDSTS_DESE | HDAC_SDSTS_FIFOE | HDAC_SDSTS_BCIS);
 			if ((dev = sc->streams[i].dev) != NULL) {
 				HDAC_STREAM_INTR(dev,
 				    sc->streams[i].dir, sc->streams[i].stream);
 			}
 		}
 	}
 }
 
 /****************************************************************************
  * void hdac_intr_handler(void *)
  *
  * Interrupt handler. Processes interrupts received from the hdac.
  ****************************************************************************/
 static void
 hdac_intr_handler(void *context)
 {
 	struct hdac_softc *sc;
 	uint32_t intsts;
 
 	sc = (struct hdac_softc *)context;
 
 	/*
 	 * Loop until HDAC_INTSTS_GIS gets clear.
 	 * It is plausible that hardware interrupts a host only when GIS goes
 	 * from zero to one.  GIS is formed by OR-ing multiple hardware
 	 * statuses, so it's possible that a previously cleared status gets set
 	 * again while another status has not been cleared yet.  Thus, there
 	 * will be no new interrupt as GIS always stayed set.  If we don't
 	 * re-examine GIS then we can leave it set and never get an interrupt
 	 * again.
 	 */
+	hdac_lock(sc);
 	intsts = HDAC_READ_4(&sc->mem, HDAC_INTSTS);
-	while ((intsts & HDAC_INTSTS_GIS) != 0) {
-		hdac_lock(sc);
+	while (intsts != 0xffffffff && (intsts & HDAC_INTSTS_GIS) != 0) {
 		hdac_one_intr(sc, intsts);
-		hdac_unlock(sc);
 		intsts = HDAC_READ_4(&sc->mem, HDAC_INTSTS);
 	}
+	hdac_unlock(sc);
 }
 
 static void
 hdac_poll_callback(void *arg)
 {
 	struct hdac_softc *sc = arg;
 
 	if (sc == NULL)
 		return;
 
 	hdac_lock(sc);
 	if (sc->polling == 0) {
 		hdac_unlock(sc);
 		return;
 	}
 	callout_reset(&sc->poll_callout, sc->poll_ival, hdac_poll_callback, sc);
 	hdac_unlock(sc);
 
 	hdac_intr_handler(sc);
 }
 
 /****************************************************************************
  * int hdac_reset(hdac_softc *, bool)
  *
  * Reset the hdac to a quiescent and known state.
  ****************************************************************************/
 static int
 hdac_reset(struct hdac_softc *sc, bool wakeup)
 {
 	uint32_t gctl;
 	int count, i;
 
 	/*
 	 * Stop all Streams DMA engine
 	 */
 	for (i = 0; i < sc->num_iss; i++)
 		HDAC_WRITE_4(&sc->mem, HDAC_ISDCTL(sc, i), 0x0);
 	for (i = 0; i < sc->num_oss; i++)
 		HDAC_WRITE_4(&sc->mem, HDAC_OSDCTL(sc, i), 0x0);
 	for (i = 0; i < sc->num_bss; i++)
 		HDAC_WRITE_4(&sc->mem, HDAC_BSDCTL(sc, i), 0x0);
 
 	/*
 	 * Stop Control DMA engines.
 	 */
 	HDAC_WRITE_1(&sc->mem, HDAC_CORBCTL, 0x0);
 	HDAC_WRITE_1(&sc->mem, HDAC_RIRBCTL, 0x0);
 
 	/*
 	 * Reset DMA position buffer.
 	 */
 	HDAC_WRITE_4(&sc->mem, HDAC_DPIBLBASE, 0x0);
 	HDAC_WRITE_4(&sc->mem, HDAC_DPIBUBASE, 0x0);
 
 	/*
 	 * Reset the controller. The reset must remain asserted for
 	 * a minimum of 100us.
 	 */
 	gctl = HDAC_READ_4(&sc->mem, HDAC_GCTL);
 	HDAC_WRITE_4(&sc->mem, HDAC_GCTL, gctl & ~HDAC_GCTL_CRST);
 	count = 10000;
 	do {
 		gctl = HDAC_READ_4(&sc->mem, HDAC_GCTL);
 		if (!(gctl & HDAC_GCTL_CRST))
 			break;
 		DELAY(10);
 	} while (--count);
 	if (gctl & HDAC_GCTL_CRST) {
 		device_printf(sc->dev, "Unable to put hdac in reset\n");
 		return (ENXIO);
 	}
 
 	/* If wakeup is not requested - leave the controller in reset state. */
 	if (!wakeup)
 		return (0);
 
 	DELAY(100);
 	gctl = HDAC_READ_4(&sc->mem, HDAC_GCTL);
 	HDAC_WRITE_4(&sc->mem, HDAC_GCTL, gctl | HDAC_GCTL_CRST);
 	count = 10000;
 	do {
 		gctl = HDAC_READ_4(&sc->mem, HDAC_GCTL);
 		if (gctl & HDAC_GCTL_CRST)
 			break;
 		DELAY(10);
 	} while (--count);
 	if (!(gctl & HDAC_GCTL_CRST)) {
 		device_printf(sc->dev, "Device stuck in reset\n");
 		return (ENXIO);
 	}
 
 	/*
 	 * Wait for codecs to finish their own reset sequence. The delay here
 	 * must be at least 521us (HDA 1.0a section 4.3 Codec Discovery).
 	 */
 	DELAY(1000);
 
 	return (0);
 }
 
 /****************************************************************************
  * int hdac_get_capabilities(struct hdac_softc *);
  *
  * Retreive the general capabilities of the hdac;
  *	Number of Input Streams
  *	Number of Output Streams
  *	Number of bidirectional Streams
  *	64bit ready
  *	CORB and RIRB sizes
  ****************************************************************************/
 static int
 hdac_get_capabilities(struct hdac_softc *sc)
 {
 	uint16_t gcap;
 	uint8_t corbsize, rirbsize;
 
 	gcap = HDAC_READ_2(&sc->mem, HDAC_GCAP);
 	sc->num_iss = HDAC_GCAP_ISS(gcap);
 	sc->num_oss = HDAC_GCAP_OSS(gcap);
 	sc->num_bss = HDAC_GCAP_BSS(gcap);
 	sc->num_ss = sc->num_iss + sc->num_oss + sc->num_bss;
 	sc->num_sdo = HDAC_GCAP_NSDO(gcap);
 	sc->support_64bit = (gcap & HDAC_GCAP_64OK) != 0;
 	if (sc->quirks_on & HDAC_QUIRK_64BIT)
 		sc->support_64bit = 1;
 	else if (sc->quirks_off & HDAC_QUIRK_64BIT)
 		sc->support_64bit = 0;
 
 	corbsize = HDAC_READ_1(&sc->mem, HDAC_CORBSIZE);
 	if ((corbsize & HDAC_CORBSIZE_CORBSZCAP_256) ==
 	    HDAC_CORBSIZE_CORBSZCAP_256)
 		sc->corb_size = 256;
 	else if ((corbsize & HDAC_CORBSIZE_CORBSZCAP_16) ==
 	    HDAC_CORBSIZE_CORBSZCAP_16)
 		sc->corb_size = 16;
 	else if ((corbsize & HDAC_CORBSIZE_CORBSZCAP_2) ==
 	    HDAC_CORBSIZE_CORBSZCAP_2)
 		sc->corb_size = 2;
 	else {
 		device_printf(sc->dev, "%s: Invalid corb size (%x)\n",
 		    __func__, corbsize);
 		return (ENXIO);
 	}
 
 	rirbsize = HDAC_READ_1(&sc->mem, HDAC_RIRBSIZE);
 	if ((rirbsize & HDAC_RIRBSIZE_RIRBSZCAP_256) ==
 	    HDAC_RIRBSIZE_RIRBSZCAP_256)
 		sc->rirb_size = 256;
 	else if ((rirbsize & HDAC_RIRBSIZE_RIRBSZCAP_16) ==
 	    HDAC_RIRBSIZE_RIRBSZCAP_16)
 		sc->rirb_size = 16;
 	else if ((rirbsize & HDAC_RIRBSIZE_RIRBSZCAP_2) ==
 	    HDAC_RIRBSIZE_RIRBSZCAP_2)
 		sc->rirb_size = 2;
 	else {
 		device_printf(sc->dev, "%s: Invalid rirb size (%x)\n",
 		    __func__, rirbsize);
 		return (ENXIO);
 	}
 
 	HDA_BOOTVERBOSE(
 		device_printf(sc->dev, "Caps: OSS %d, ISS %d, BSS %d, "
 		    "NSDO %d%s, CORB %d, RIRB %d\n",
 		    sc->num_oss, sc->num_iss, sc->num_bss, 1 << sc->num_sdo,
 		    sc->support_64bit ? ", 64bit" : "",
 		    sc->corb_size, sc->rirb_size);
 	);
 
 	return (0);
 }
 
 /****************************************************************************
  * void hdac_dma_cb
  *
  * This function is called by bus_dmamap_load when the mapping has been
  * established. We just record the physical address of the mapping into
  * the struct hdac_dma passed in.
  ****************************************************************************/
 static void
 hdac_dma_cb(void *callback_arg, bus_dma_segment_t *segs, int nseg, int error)
 {
 	struct hdac_dma *dma;
 
 	if (error == 0) {
 		dma = (struct hdac_dma *)callback_arg;
 		dma->dma_paddr = segs[0].ds_addr;
 	}
 }
 
 /****************************************************************************
  * int hdac_dma_alloc
  *
  * This function allocate and setup a dma region (struct hdac_dma).
  * It must be freed by a corresponding hdac_dma_free.
  ****************************************************************************/
 static int
 hdac_dma_alloc(struct hdac_softc *sc, struct hdac_dma *dma, bus_size_t size)
 {
 	bus_size_t roundsz;
 	int result;
 
 	roundsz = roundup2(size, HDA_DMA_ALIGNMENT);
 	bzero(dma, sizeof(*dma));
 
 	/*
 	 * Create a DMA tag
 	 */
 	result = bus_dma_tag_create(
 	    bus_get_dma_tag(sc->dev),		/* parent */
 	    HDA_DMA_ALIGNMENT,			/* alignment */
 	    0,					/* boundary */
 	    (sc->support_64bit) ? BUS_SPACE_MAXADDR :
 		BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
 	    BUS_SPACE_MAXADDR,			/* highaddr */
 	    NULL,				/* filtfunc */
 	    NULL,				/* fistfuncarg */
 	    roundsz,				/* maxsize */
 	    1,					/* nsegments */
 	    roundsz,				/* maxsegsz */
 	    0,					/* flags */
 	    NULL,				/* lockfunc */
 	    NULL,				/* lockfuncarg */
 	    &dma->dma_tag);			/* dmat */
 	if (result != 0) {
 		device_printf(sc->dev, "%s: bus_dma_tag_create failed (%d)\n",
 		    __func__, result);
 		goto hdac_dma_alloc_fail;
 	}
 
 	/*
 	 * Allocate DMA memory
 	 */
 	result = bus_dmamem_alloc(dma->dma_tag, (void **)&dma->dma_vaddr,
 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO |
 	    ((sc->flags & HDAC_F_DMA_NOCACHE) ? BUS_DMA_NOCACHE :
 	     BUS_DMA_COHERENT),
 	    &dma->dma_map);
 	if (result != 0) {
 		device_printf(sc->dev, "%s: bus_dmamem_alloc failed (%d)\n",
 		    __func__, result);
 		goto hdac_dma_alloc_fail;
 	}
 
 	dma->dma_size = roundsz;
 
 	/*
 	 * Map the memory
 	 */
 	result = bus_dmamap_load(dma->dma_tag, dma->dma_map,
 	    (void *)dma->dma_vaddr, roundsz, hdac_dma_cb, (void *)dma, 0);
 	if (result != 0 || dma->dma_paddr == 0) {
 		if (result == 0)
 			result = ENOMEM;
 		device_printf(sc->dev, "%s: bus_dmamem_load failed (%d)\n",
 		    __func__, result);
 		goto hdac_dma_alloc_fail;
 	}
 
 	HDA_BOOTHVERBOSE(
 		device_printf(sc->dev, "%s: size=%ju -> roundsz=%ju\n",
 		    __func__, (uintmax_t)size, (uintmax_t)roundsz);
 	);
 
 	return (0);
 
 hdac_dma_alloc_fail:
 	hdac_dma_free(sc, dma);
 
 	return (result);
 }
 
 /****************************************************************************
  * void hdac_dma_free(struct hdac_softc *, struct hdac_dma *)
  *
  * Free a struct hdac_dma that has been previously allocated via the
  * hdac_dma_alloc function.
  ****************************************************************************/
 static void
 hdac_dma_free(struct hdac_softc *sc, struct hdac_dma *dma)
 {
 	if (dma->dma_paddr != 0) {
 		/* Flush caches */
 		bus_dmamap_sync(dma->dma_tag, dma->dma_map,
 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
 		bus_dmamap_unload(dma->dma_tag, dma->dma_map);
 		dma->dma_paddr = 0;
 	}
 	if (dma->dma_vaddr != NULL) {
 		bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
 		dma->dma_vaddr = NULL;
 	}
 	if (dma->dma_tag != NULL) {
 		bus_dma_tag_destroy(dma->dma_tag);
 		dma->dma_tag = NULL;
 	}
 	dma->dma_size = 0;
 }
 
 /****************************************************************************
  * int hdac_mem_alloc(struct hdac_softc *)
  *
  * Allocate all the bus resources necessary to speak with the physical
  * controller.
  ****************************************************************************/
 static int
 hdac_mem_alloc(struct hdac_softc *sc)
 {
 	struct hdac_mem *mem;
 
 	mem = &sc->mem;
 	mem->mem_rid = PCIR_BAR(0);
 	mem->mem_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
 	    &mem->mem_rid, RF_ACTIVE);
 	if (mem->mem_res == NULL) {
 		device_printf(sc->dev,
 		    "%s: Unable to allocate memory resource\n", __func__);
 		return (ENOMEM);
 	}
 	mem->mem_tag = rman_get_bustag(mem->mem_res);
 	mem->mem_handle = rman_get_bushandle(mem->mem_res);
 
 	return (0);
 }
 
 /****************************************************************************
  * void hdac_mem_free(struct hdac_softc *)
  *
  * Free up resources previously allocated by hdac_mem_alloc.
  ****************************************************************************/
 static void
 hdac_mem_free(struct hdac_softc *sc)
 {
 	struct hdac_mem *mem;
 
 	mem = &sc->mem;
 	if (mem->mem_res != NULL)
 		bus_release_resource(sc->dev, SYS_RES_MEMORY, mem->mem_rid,
 		    mem->mem_res);
 	mem->mem_res = NULL;
 }
 
 /****************************************************************************
  * int hdac_irq_alloc(struct hdac_softc *)
  *
  * Allocate and setup the resources necessary for interrupt handling.
  ****************************************************************************/
 static int
 hdac_irq_alloc(struct hdac_softc *sc)
 {
 	struct hdac_irq *irq;
 	int result;
 
 	irq = &sc->irq;
 	irq->irq_rid = 0x0;
 
 	if ((sc->quirks_off & HDAC_QUIRK_MSI) == 0 &&
 	    (result = pci_msi_count(sc->dev)) == 1 &&
 	    pci_alloc_msi(sc->dev, &result) == 0)
 		irq->irq_rid = 0x1;
 
 	irq->irq_res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ,
 	    &irq->irq_rid, RF_SHAREABLE | RF_ACTIVE);
 	if (irq->irq_res == NULL) {
 		device_printf(sc->dev, "%s: Unable to allocate irq\n",
 		    __func__);
 		goto hdac_irq_alloc_fail;
 	}
 	result = bus_setup_intr(sc->dev, irq->irq_res, INTR_MPSAFE | INTR_TYPE_AV,
 	    NULL, hdac_intr_handler, sc, &irq->irq_handle);
 	if (result != 0) {
 		device_printf(sc->dev,
 		    "%s: Unable to setup interrupt handler (%d)\n",
 		    __func__, result);
 		goto hdac_irq_alloc_fail;
 	}
 
 	return (0);
 
 hdac_irq_alloc_fail:
 	hdac_irq_free(sc);
 
 	return (ENXIO);
 }
 
 /****************************************************************************
  * void hdac_irq_free(struct hdac_softc *)
  *
  * Free up resources previously allocated by hdac_irq_alloc.
  ****************************************************************************/
 static void
 hdac_irq_free(struct hdac_softc *sc)
 {
 	struct hdac_irq *irq;
 
 	irq = &sc->irq;
 	if (irq->irq_res != NULL && irq->irq_handle != NULL)
 		bus_teardown_intr(sc->dev, irq->irq_res, irq->irq_handle);
 	if (irq->irq_res != NULL)
 		bus_release_resource(sc->dev, SYS_RES_IRQ, irq->irq_rid,
 		    irq->irq_res);
 	if (irq->irq_rid == 0x1)
 		pci_release_msi(sc->dev);
 	irq->irq_handle = NULL;
 	irq->irq_res = NULL;
 	irq->irq_rid = 0x0;
 }
 
 /****************************************************************************
  * void hdac_corb_init(struct hdac_softc *)
  *
  * Initialize the corb registers for operations but do not start it up yet.
  * The CORB engine must not be running when this function is called.
  ****************************************************************************/
 static void
 hdac_corb_init(struct hdac_softc *sc)
 {
 	uint8_t corbsize;
 	uint64_t corbpaddr;
 
 	/* Setup the CORB size. */
 	switch (sc->corb_size) {
 	case 256:
 		corbsize = HDAC_CORBSIZE_CORBSIZE(HDAC_CORBSIZE_CORBSIZE_256);
 		break;
 	case 16:
 		corbsize = HDAC_CORBSIZE_CORBSIZE(HDAC_CORBSIZE_CORBSIZE_16);
 		break;
 	case 2:
 		corbsize = HDAC_CORBSIZE_CORBSIZE(HDAC_CORBSIZE_CORBSIZE_2);
 		break;
 	default:
 		panic("%s: Invalid CORB size (%x)\n", __func__, sc->corb_size);
 	}
 	HDAC_WRITE_1(&sc->mem, HDAC_CORBSIZE, corbsize);
 
 	/* Setup the CORB Address in the hdac */
 	corbpaddr = (uint64_t)sc->corb_dma.dma_paddr;
 	HDAC_WRITE_4(&sc->mem, HDAC_CORBLBASE, (uint32_t)corbpaddr);
 	HDAC_WRITE_4(&sc->mem, HDAC_CORBUBASE, (uint32_t)(corbpaddr >> 32));
 
 	/* Set the WP and RP */
 	sc->corb_wp = 0;
 	HDAC_WRITE_2(&sc->mem, HDAC_CORBWP, sc->corb_wp);
 	HDAC_WRITE_2(&sc->mem, HDAC_CORBRP, HDAC_CORBRP_CORBRPRST);
 	/*
 	 * The HDA specification indicates that the CORBRPRST bit will always
 	 * read as zero. Unfortunately, it seems that at least the 82801G
 	 * doesn't reset the bit to zero, which stalls the corb engine.
 	 * manually reset the bit to zero before continuing.
 	 */
 	HDAC_WRITE_2(&sc->mem, HDAC_CORBRP, 0x0);
 
 	/* Enable CORB error reporting */
 #if 0
 	HDAC_WRITE_1(&sc->mem, HDAC_CORBCTL, HDAC_CORBCTL_CMEIE);
 #endif
 }
 
 /****************************************************************************
  * void hdac_rirb_init(struct hdac_softc *)
  *
  * Initialize the rirb registers for operations but do not start it up yet.
  * The RIRB engine must not be running when this function is called.
  ****************************************************************************/
 static void
 hdac_rirb_init(struct hdac_softc *sc)
 {
 	uint8_t rirbsize;
 	uint64_t rirbpaddr;
 
 	/* Setup the RIRB size. */
 	switch (sc->rirb_size) {
 	case 256:
 		rirbsize = HDAC_RIRBSIZE_RIRBSIZE(HDAC_RIRBSIZE_RIRBSIZE_256);
 		break;
 	case 16:
 		rirbsize = HDAC_RIRBSIZE_RIRBSIZE(HDAC_RIRBSIZE_RIRBSIZE_16);
 		break;
 	case 2:
 		rirbsize = HDAC_RIRBSIZE_RIRBSIZE(HDAC_RIRBSIZE_RIRBSIZE_2);
 		break;
 	default:
 		panic("%s: Invalid RIRB size (%x)\n", __func__, sc->rirb_size);
 	}
 	HDAC_WRITE_1(&sc->mem, HDAC_RIRBSIZE, rirbsize);
 
 	/* Setup the RIRB Address in the hdac */
 	rirbpaddr = (uint64_t)sc->rirb_dma.dma_paddr;
 	HDAC_WRITE_4(&sc->mem, HDAC_RIRBLBASE, (uint32_t)rirbpaddr);
 	HDAC_WRITE_4(&sc->mem, HDAC_RIRBUBASE, (uint32_t)(rirbpaddr >> 32));
 
 	/* Setup the WP and RP */
 	sc->rirb_rp = 0;
 	HDAC_WRITE_2(&sc->mem, HDAC_RIRBWP, HDAC_RIRBWP_RIRBWPRST);
 
 	/* Setup the interrupt threshold */
 	HDAC_WRITE_2(&sc->mem, HDAC_RINTCNT, sc->rirb_size / 2);
 
 	/* Enable Overrun and response received reporting */
 #if 0
 	HDAC_WRITE_1(&sc->mem, HDAC_RIRBCTL,
 	    HDAC_RIRBCTL_RIRBOIC | HDAC_RIRBCTL_RINTCTL);
 #else
 	HDAC_WRITE_1(&sc->mem, HDAC_RIRBCTL, HDAC_RIRBCTL_RINTCTL);
 #endif
 
 	/*
 	 * Make sure that the Host CPU cache doesn't contain any dirty
 	 * cache lines that falls in the rirb. If I understood correctly, it
 	 * should be sufficient to do this only once as the rirb is purely
 	 * read-only from now on.
 	 */
 	bus_dmamap_sync(sc->rirb_dma.dma_tag, sc->rirb_dma.dma_map,
 	    BUS_DMASYNC_PREREAD);
 }
 
 /****************************************************************************
  * void hdac_corb_start(hdac_softc *)
  *
  * Startup the corb DMA engine
  ****************************************************************************/
 static void
 hdac_corb_start(struct hdac_softc *sc)
 {
 	uint32_t corbctl;
 
 	corbctl = HDAC_READ_1(&sc->mem, HDAC_CORBCTL);
 	corbctl |= HDAC_CORBCTL_CORBRUN;
 	HDAC_WRITE_1(&sc->mem, HDAC_CORBCTL, corbctl);
 }
 
 /****************************************************************************
  * void hdac_rirb_start(hdac_softc *)
  *
  * Startup the rirb DMA engine
  ****************************************************************************/
 static void
 hdac_rirb_start(struct hdac_softc *sc)
 {
 	uint32_t rirbctl;
 
 	rirbctl = HDAC_READ_1(&sc->mem, HDAC_RIRBCTL);
 	rirbctl |= HDAC_RIRBCTL_RIRBDMAEN;
 	HDAC_WRITE_1(&sc->mem, HDAC_RIRBCTL, rirbctl);
 }
 
 static int
 hdac_rirb_flush(struct hdac_softc *sc)
 {
 	struct hdac_rirb *rirb_base, *rirb;
 	nid_t cad;
 	uint32_t resp, resp_ex;
 	uint8_t rirbwp;
 	int ret;
 
 	rirb_base = (struct hdac_rirb *)sc->rirb_dma.dma_vaddr;
 	rirbwp = HDAC_READ_1(&sc->mem, HDAC_RIRBWP);
 	bus_dmamap_sync(sc->rirb_dma.dma_tag, sc->rirb_dma.dma_map,
 	    BUS_DMASYNC_POSTREAD);
 
 	ret = 0;
 	while (sc->rirb_rp != rirbwp) {
 		sc->rirb_rp++;
 		sc->rirb_rp %= sc->rirb_size;
 		rirb = &rirb_base[sc->rirb_rp];
 		resp = le32toh(rirb->response);
 		resp_ex = le32toh(rirb->response_ex);
 		cad = HDAC_RIRB_RESPONSE_EX_SDATA_IN(resp_ex);
 		if (resp_ex & HDAC_RIRB_RESPONSE_EX_UNSOLICITED) {
 			sc->unsolq[sc->unsolq_wp++] = resp;
 			sc->unsolq_wp %= HDAC_UNSOLQ_MAX;
 			sc->unsolq[sc->unsolq_wp++] = cad;
 			sc->unsolq_wp %= HDAC_UNSOLQ_MAX;
 		} else if (sc->codecs[cad].pending <= 0) {
 			device_printf(sc->dev, "Unexpected unsolicited "
 			    "response from address %d: %08x\n", cad, resp);
 		} else {
 			sc->codecs[cad].response = resp;
 			sc->codecs[cad].pending--;
 		}
 		ret++;
 	}
 
 	bus_dmamap_sync(sc->rirb_dma.dma_tag, sc->rirb_dma.dma_map,
 	    BUS_DMASYNC_PREREAD);
 	return (ret);
 }
 
 static int
 hdac_unsolq_flush(struct hdac_softc *sc)
 {
 	device_t child;
 	nid_t cad;
 	uint32_t resp;
 	int ret = 0;
 
 	if (sc->unsolq_st == HDAC_UNSOLQ_READY) {
 		sc->unsolq_st = HDAC_UNSOLQ_BUSY;
 		while (sc->unsolq_rp != sc->unsolq_wp) {
 			resp = sc->unsolq[sc->unsolq_rp++];
 			sc->unsolq_rp %= HDAC_UNSOLQ_MAX;
 			cad = sc->unsolq[sc->unsolq_rp++];
 			sc->unsolq_rp %= HDAC_UNSOLQ_MAX;
 			if ((child = sc->codecs[cad].dev) != NULL &&
 			    device_is_attached(child))
 				HDAC_UNSOL_INTR(child, resp);
 			ret++;
 		}
 		sc->unsolq_st = HDAC_UNSOLQ_READY;
 	}
 
 	return (ret);
 }
 
 /****************************************************************************
  * uint32_t hdac_send_command
  *
  * Wrapper function that sends only one command to a given codec
  ****************************************************************************/
 static uint32_t
 hdac_send_command(struct hdac_softc *sc, nid_t cad, uint32_t verb)
 {
 	int timeout;
 	uint32_t *corb;
 
 	hdac_lockassert(sc);
 	verb &= ~HDA_CMD_CAD_MASK;
 	verb |= ((uint32_t)cad) << HDA_CMD_CAD_SHIFT;
 	sc->codecs[cad].response = HDA_INVALID;
 
 	sc->codecs[cad].pending++;
 	sc->corb_wp++;
 	sc->corb_wp %= sc->corb_size;
 	corb = (uint32_t *)sc->corb_dma.dma_vaddr;
 	bus_dmamap_sync(sc->corb_dma.dma_tag,
 	    sc->corb_dma.dma_map, BUS_DMASYNC_PREWRITE);
 	corb[sc->corb_wp] = htole32(verb);
 	bus_dmamap_sync(sc->corb_dma.dma_tag,
 	    sc->corb_dma.dma_map, BUS_DMASYNC_POSTWRITE);
 	HDAC_WRITE_2(&sc->mem, HDAC_CORBWP, sc->corb_wp);
 
 	timeout = 10000;
 	do {
 		if (hdac_rirb_flush(sc) == 0)
 			DELAY(10);
 	} while (sc->codecs[cad].pending != 0 && --timeout);
 
 	if (sc->codecs[cad].pending != 0) {
 		device_printf(sc->dev, "Command 0x%08x timeout on address %d\n",
 		    verb, cad);
 		sc->codecs[cad].pending = 0;
 	}
 
 	if (sc->unsolq_rp != sc->unsolq_wp)
 		taskqueue_enqueue(taskqueue_thread, &sc->unsolq_task);
 	return (sc->codecs[cad].response);
 }
 
 /****************************************************************************
  * Device Methods
  ****************************************************************************/
 
 /****************************************************************************
  * int hdac_probe(device_t)
  *
  * Probe for the presence of an hdac. If none is found, check for a generic
  * match using the subclass of the device.
  ****************************************************************************/
 static int
 hdac_probe(device_t dev)
 {
 	int i, result;
 	uint32_t model;
 	uint16_t class, subclass;
 	char desc[64];
 
 	model = (uint32_t)pci_get_device(dev) << 16;
 	model |= (uint32_t)pci_get_vendor(dev) & 0x0000ffff;
 	class = pci_get_class(dev);
 	subclass = pci_get_subclass(dev);
 
 	bzero(desc, sizeof(desc));
 	result = ENXIO;
 	for (i = 0; i < nitems(hdac_devices); i++) {
 		if (hdac_devices[i].model == model) {
 			strlcpy(desc, hdac_devices[i].desc, sizeof(desc));
 			result = BUS_PROBE_DEFAULT;
 			break;
 		}
 		if (HDA_DEV_MATCH(hdac_devices[i].model, model) &&
 		    class == PCIC_MULTIMEDIA &&
 		    subclass == PCIS_MULTIMEDIA_HDA) {
 			snprintf(desc, sizeof(desc), "%s (0x%04x)",
 			    hdac_devices[i].desc, pci_get_device(dev));
 			result = BUS_PROBE_GENERIC;
 			break;
 		}
 	}
 	if (result == ENXIO && class == PCIC_MULTIMEDIA &&
 	    subclass == PCIS_MULTIMEDIA_HDA) {
 		snprintf(desc, sizeof(desc), "Generic (0x%08x)", model);
 		result = BUS_PROBE_GENERIC;
 	}
 	if (result != ENXIO) {
 		strlcat(desc, " HDA Controller", sizeof(desc));
 		device_set_desc_copy(dev, desc);
 	}
 
 	return (result);
 }
 
 static void
 hdac_unsolq_task(void *context, int pending)
 {
 	struct hdac_softc *sc;
 
 	sc = (struct hdac_softc *)context;
 
 	hdac_lock(sc);
 	hdac_unsolq_flush(sc);
 	hdac_unlock(sc);
 }
 
 /****************************************************************************
  * int hdac_attach(device_t)
  *
  * Attach the device into the kernel. Interrupts usually won't be enabled
  * when this function is called. Setup everything that doesn't require
  * interrupts and defer probing of codecs until interrupts are enabled.
  ****************************************************************************/
 static int
 hdac_attach(device_t dev)
 {
 	struct hdac_softc *sc;
 	int result;
 	int i, devid = -1;
 	uint32_t model;
 	uint16_t class, subclass;
 	uint16_t vendor;
 	uint8_t v;
 
 	sc = device_get_softc(dev);
 	HDA_BOOTVERBOSE(
 		device_printf(dev, "PCI card vendor: 0x%04x, device: 0x%04x\n",
 		    pci_get_subvendor(dev), pci_get_subdevice(dev));
 		device_printf(dev, "HDA Driver Revision: %s\n",
 		    HDA_DRV_TEST_REV);
 	);
 
 	model = (uint32_t)pci_get_device(dev) << 16;
 	model |= (uint32_t)pci_get_vendor(dev) & 0x0000ffff;
 	class = pci_get_class(dev);
 	subclass = pci_get_subclass(dev);
 
 	for (i = 0; i < nitems(hdac_devices); i++) {
 		if (hdac_devices[i].model == model) {
 			devid = i;
 			break;
 		}
 		if (HDA_DEV_MATCH(hdac_devices[i].model, model) &&
 		    class == PCIC_MULTIMEDIA &&
 		    subclass == PCIS_MULTIMEDIA_HDA) {
 			devid = i;
 			break;
 		}
 	}
 
 	sc->lock = snd_mtxcreate(device_get_nameunit(dev), "HDA driver mutex");
 	sc->dev = dev;
 	TASK_INIT(&sc->unsolq_task, 0, hdac_unsolq_task, sc);
 	callout_init(&sc->poll_callout, 1);
 	for (i = 0; i < HDAC_CODEC_MAX; i++)
 		sc->codecs[i].dev = NULL;
 	if (devid >= 0) {
 		sc->quirks_on = hdac_devices[devid].quirks_on;
 		sc->quirks_off = hdac_devices[devid].quirks_off;
 	} else {
 		sc->quirks_on = 0;
 		sc->quirks_off = 0;
 	}
 	if (resource_int_value(device_get_name(dev),
 	    device_get_unit(dev), "msi", &i) == 0) {
 		if (i == 0)
 			sc->quirks_off |= HDAC_QUIRK_MSI;
 		else {
 			sc->quirks_on |= HDAC_QUIRK_MSI;
 			sc->quirks_off |= ~HDAC_QUIRK_MSI;
 		}
 	}
 	hdac_config_fetch(sc, &sc->quirks_on, &sc->quirks_off);
 	HDA_BOOTVERBOSE(
 		device_printf(sc->dev,
 		    "Config options: on=0x%08x off=0x%08x\n",
 		    sc->quirks_on, sc->quirks_off);
 	);
 	sc->poll_ival = hz;
 	if (resource_int_value(device_get_name(dev),
 	    device_get_unit(dev), "polling", &i) == 0 && i != 0)
 		sc->polling = 1;
 	else
 		sc->polling = 0;
 
 	pci_enable_busmaster(dev);
 
 	vendor = pci_get_vendor(dev);
 	if (vendor == INTEL_VENDORID) {
 		/* TCSEL -> TC0 */
 		v = pci_read_config(dev, 0x44, 1);
 		pci_write_config(dev, 0x44, v & 0xf8, 1);
 		HDA_BOOTHVERBOSE(
 			device_printf(dev, "TCSEL: 0x%02d -> 0x%02d\n", v,
 			    pci_read_config(dev, 0x44, 1));
 		);
 	}
 
 #if defined(__i386__) || defined(__amd64__)
 	sc->flags |= HDAC_F_DMA_NOCACHE;
 
 	if (resource_int_value(device_get_name(dev),
 	    device_get_unit(dev), "snoop", &i) == 0 && i != 0) {
 #else
 	sc->flags &= ~HDAC_F_DMA_NOCACHE;
 #endif
 		/*
 		 * Try to enable PCIe snoop to avoid messing around with
 		 * uncacheable DMA attribute. Since PCIe snoop register
 		 * config is pretty much vendor specific, there are no
 		 * general solutions on how to enable it, forcing us (even
 		 * Microsoft) to enable uncacheable or write combined DMA
 		 * by default.
 		 *
 		 * http://msdn2.microsoft.com/en-us/library/ms790324.aspx
 		 */
 		for (i = 0; i < nitems(hdac_pcie_snoop); i++) {
 			if (hdac_pcie_snoop[i].vendor != vendor)
 				continue;
 			sc->flags &= ~HDAC_F_DMA_NOCACHE;
 			if (hdac_pcie_snoop[i].reg == 0x00)
 				break;
 			v = pci_read_config(dev, hdac_pcie_snoop[i].reg, 1);
 			if ((v & hdac_pcie_snoop[i].enable) ==
 			    hdac_pcie_snoop[i].enable)
 				break;
 			v &= hdac_pcie_snoop[i].mask;
 			v |= hdac_pcie_snoop[i].enable;
 			pci_write_config(dev, hdac_pcie_snoop[i].reg, v, 1);
 			v = pci_read_config(dev, hdac_pcie_snoop[i].reg, 1);
 			if ((v & hdac_pcie_snoop[i].enable) !=
 			    hdac_pcie_snoop[i].enable) {
 				HDA_BOOTVERBOSE(
 					device_printf(dev,
 					    "WARNING: Failed to enable PCIe "
 					    "snoop!\n");
 				);
 #if defined(__i386__) || defined(__amd64__)
 				sc->flags |= HDAC_F_DMA_NOCACHE;
 #endif
 			}
 			break;
 		}
 #if defined(__i386__) || defined(__amd64__)
 	}
 #endif
 
 	HDA_BOOTHVERBOSE(
 		device_printf(dev, "DMA Coherency: %s / vendor=0x%04x\n",
 		    (sc->flags & HDAC_F_DMA_NOCACHE) ?
 		    "Uncacheable" : "PCIe snoop", vendor);
 	);
 
 	/* Allocate resources */
 	result = hdac_mem_alloc(sc);
 	if (result != 0)
 		goto hdac_attach_fail;
 	result = hdac_irq_alloc(sc);
 	if (result != 0)
 		goto hdac_attach_fail;
 
 	/* Get Capabilities */
 	result = hdac_get_capabilities(sc);
 	if (result != 0)
 		goto hdac_attach_fail;
 
 	/* Allocate CORB, RIRB, POS and BDLs dma memory */
 	result = hdac_dma_alloc(sc, &sc->corb_dma,
 	    sc->corb_size * sizeof(uint32_t));
 	if (result != 0)
 		goto hdac_attach_fail;
 	result = hdac_dma_alloc(sc, &sc->rirb_dma,
 	    sc->rirb_size * sizeof(struct hdac_rirb));
 	if (result != 0)
 		goto hdac_attach_fail;
 	sc->streams = malloc(sizeof(struct hdac_stream) * sc->num_ss,
 	    M_HDAC, M_ZERO | M_WAITOK);
 	for (i = 0; i < sc->num_ss; i++) {
 		result = hdac_dma_alloc(sc, &sc->streams[i].bdl,
 		    sizeof(struct hdac_bdle) * HDA_BDL_MAX);
 		if (result != 0)
 			goto hdac_attach_fail;
 	}
 	if (sc->quirks_on & HDAC_QUIRK_DMAPOS) {
 		if (hdac_dma_alloc(sc, &sc->pos_dma, (sc->num_ss) * 8) != 0) {
 			HDA_BOOTVERBOSE(
 				device_printf(dev, "Failed to "
 				    "allocate DMA pos buffer "
 				    "(non-fatal)\n");
 			);
 		} else {
 			uint64_t addr = sc->pos_dma.dma_paddr;
 
 			HDAC_WRITE_4(&sc->mem, HDAC_DPIBUBASE, addr >> 32);
 			HDAC_WRITE_4(&sc->mem, HDAC_DPIBLBASE,
 			    (addr & HDAC_DPLBASE_DPLBASE_MASK) |
 			    HDAC_DPLBASE_DPLBASE_DMAPBE);
 		}
 	}
 
 	result = bus_dma_tag_create(
 	    bus_get_dma_tag(sc->dev),		/* parent */
 	    HDA_DMA_ALIGNMENT,			/* alignment */
 	    0,					/* boundary */
 	    (sc->support_64bit) ? BUS_SPACE_MAXADDR :
 		BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
 	    BUS_SPACE_MAXADDR,			/* highaddr */
 	    NULL,				/* filtfunc */
 	    NULL,				/* fistfuncarg */
 	    HDA_BUFSZ_MAX,			/* maxsize */
 	    1,					/* nsegments */
 	    HDA_BUFSZ_MAX,			/* maxsegsz */
 	    0,					/* flags */
 	    NULL,				/* lockfunc */
 	    NULL,				/* lockfuncarg */
 	    &sc->chan_dmat);			/* dmat */
 	if (result != 0) {
 		device_printf(dev, "%s: bus_dma_tag_create failed (%d)\n",
 		     __func__, result);
 		goto hdac_attach_fail;
 	}
 
 	/* Quiesce everything */
 	HDA_BOOTHVERBOSE(
 		device_printf(dev, "Reset controller...\n");
 	);
 	hdac_reset(sc, true);
 
 	/* Initialize the CORB and RIRB */
 	hdac_corb_init(sc);
 	hdac_rirb_init(sc);
 
 	/* Defer remaining of initialization until interrupts are enabled */
 	sc->intrhook.ich_func = hdac_attach2;
 	sc->intrhook.ich_arg = (void *)sc;
 	if (cold == 0 || config_intrhook_establish(&sc->intrhook) != 0) {
 		sc->intrhook.ich_func = NULL;
 		hdac_attach2((void *)sc);
 	}
 
 	return (0);
 
 hdac_attach_fail:
 	hdac_irq_free(sc);
 	if (sc->streams != NULL)
 		for (i = 0; i < sc->num_ss; i++)
 			hdac_dma_free(sc, &sc->streams[i].bdl);
 	free(sc->streams, M_HDAC);
 	hdac_dma_free(sc, &sc->rirb_dma);
 	hdac_dma_free(sc, &sc->corb_dma);
 	hdac_mem_free(sc);
 	snd_mtxfree(sc->lock);
 
 	return (ENXIO);
 }
 
 static int
 sysctl_hdac_pindump(SYSCTL_HANDLER_ARGS)
 {
 	struct hdac_softc *sc;
 	device_t *devlist;
 	device_t dev;
 	int devcount, i, err, val;
 
 	dev = oidp->oid_arg1;
 	sc = device_get_softc(dev);
 	if (sc == NULL)
 		return (EINVAL);
 	val = 0;
 	err = sysctl_handle_int(oidp, &val, 0, req);
 	if (err != 0 || req->newptr == NULL || val == 0)
 		return (err);
 
 	/* XXX: Temporary. For debugging. */
 	if (val == 100) {
 		hdac_suspend(dev);
 		return (0);
 	} else if (val == 101) {
 		hdac_resume(dev);
 		return (0);
 	}
 
 	if ((err = device_get_children(dev, &devlist, &devcount)) != 0)
 		return (err);
 	hdac_lock(sc);
 	for (i = 0; i < devcount; i++)
 		HDAC_PINDUMP(devlist[i]);
 	hdac_unlock(sc);
 	free(devlist, M_TEMP);
 	return (0);
 }
 
 static int
 hdac_mdata_rate(uint16_t fmt)
 {
 	static const int mbits[8] = { 8, 16, 32, 32, 32, 32, 32, 32 };
 	int rate, bits;
 
 	if (fmt & (1 << 14))
 		rate = 44100;
 	else
 		rate = 48000;
 	rate *= ((fmt >> 11) & 0x07) + 1;
 	rate /= ((fmt >> 8) & 0x07) + 1;
 	bits = mbits[(fmt >> 4) & 0x03];
 	bits *= (fmt & 0x0f) + 1;
 	return (rate * bits);
 }
 
 static int
 hdac_bdata_rate(uint16_t fmt, int output)
 {
 	static const int bbits[8] = { 8, 16, 20, 24, 32, 32, 32, 32 };
 	int rate, bits;
 
 	rate = 48000;
 	rate *= ((fmt >> 11) & 0x07) + 1;
 	bits = bbits[(fmt >> 4) & 0x03];
 	bits *= (fmt & 0x0f) + 1;
 	if (!output)
 		bits = ((bits + 7) & ~0x07) + 10;
 	return (rate * bits);
 }
 
 static void
 hdac_poll_reinit(struct hdac_softc *sc)
 {
 	int i, pollticks, min = 1000000;
 	struct hdac_stream *s;
 
 	if (sc->polling == 0)
 		return;
 	if (sc->unsol_registered > 0)
 		min = hz / 2;
 	for (i = 0; i < sc->num_ss; i++) {
 		s = &sc->streams[i];
 		if (s->running == 0)
 			continue;
 		pollticks = ((uint64_t)hz * s->blksz) /
 		    (hdac_mdata_rate(s->format) / 8);
 		pollticks >>= 1;
 		if (pollticks > hz)
 			pollticks = hz;
 		if (pollticks < 1)
 			pollticks = 1;
 		if (min > pollticks)
 			min = pollticks;
 	}
 	sc->poll_ival = min;
 	if (min == 1000000)
 		callout_stop(&sc->poll_callout);
 	else
 		callout_reset(&sc->poll_callout, 1, hdac_poll_callback, sc);
 }
 
 static int
 sysctl_hdac_polling(SYSCTL_HANDLER_ARGS)
 {
 	struct hdac_softc *sc;
 	device_t dev;
 	uint32_t ctl;
 	int err, val;
 
 	dev = oidp->oid_arg1;
 	sc = device_get_softc(dev);
 	if (sc == NULL)
 		return (EINVAL);
 	hdac_lock(sc);
 	val = sc->polling;
 	hdac_unlock(sc);
 	err = sysctl_handle_int(oidp, &val, 0, req);
 
 	if (err != 0 || req->newptr == NULL)
 		return (err);
 	if (val < 0 || val > 1)
 		return (EINVAL);
 
 	hdac_lock(sc);
 	if (val != sc->polling) {
 		if (val == 0) {
 			callout_stop(&sc->poll_callout);
 			hdac_unlock(sc);
 			callout_drain(&sc->poll_callout);
 			hdac_lock(sc);
 			sc->polling = 0;
 			ctl = HDAC_READ_4(&sc->mem, HDAC_INTCTL);
 			ctl |= HDAC_INTCTL_GIE;
 			HDAC_WRITE_4(&sc->mem, HDAC_INTCTL, ctl);
 		} else {
 			ctl = HDAC_READ_4(&sc->mem, HDAC_INTCTL);
 			ctl &= ~HDAC_INTCTL_GIE;
 			HDAC_WRITE_4(&sc->mem, HDAC_INTCTL, ctl);
 			sc->polling = 1;
 			hdac_poll_reinit(sc);
 		}
 	}
 	hdac_unlock(sc);
 
 	return (err);
 }
 
 static void
 hdac_attach2(void *arg)
 {
 	struct hdac_softc *sc;
 	device_t child;
 	uint32_t vendorid, revisionid;
 	int i;
 	uint16_t statests;
 
 	sc = (struct hdac_softc *)arg;
 
 	hdac_lock(sc);
 
 	/* Remove ourselves from the config hooks */
 	if (sc->intrhook.ich_func != NULL) {
 		config_intrhook_disestablish(&sc->intrhook);
 		sc->intrhook.ich_func = NULL;
 	}
 
 	HDA_BOOTHVERBOSE(
 		device_printf(sc->dev, "Starting CORB Engine...\n");
 	);
 	hdac_corb_start(sc);
 	HDA_BOOTHVERBOSE(
 		device_printf(sc->dev, "Starting RIRB Engine...\n");
 	);
 	hdac_rirb_start(sc);
 
 	/*
 	 * Clear HDAC_WAKEEN as at present we have no use for SDI wake
 	 * (status change) interrupts.  The documentation says that we
 	 * should not make any assumptions about the state of this register
 	 * and set it explicitly.
 	 * NB: this needs to be done before the interrupt is enabled as
 	 * the handler does not expect this interrupt source.
 	 */
 	HDAC_WRITE_2(&sc->mem, HDAC_WAKEEN, 0);
 
 	/*
 	 * Read and clear post-reset SDI wake status.
 	 * Each set bit corresponds to a codec that came out of reset.
 	 */
 	statests = HDAC_READ_2(&sc->mem, HDAC_STATESTS);
 	HDAC_WRITE_2(&sc->mem, HDAC_STATESTS, statests);
 
 	HDA_BOOTHVERBOSE(
 		device_printf(sc->dev,
 		    "Enabling controller interrupt...\n");
 	);
 	HDAC_WRITE_4(&sc->mem, HDAC_GCTL, HDAC_READ_4(&sc->mem, HDAC_GCTL) |
 	    HDAC_GCTL_UNSOL);
 	if (sc->polling == 0) {
 		HDAC_WRITE_4(&sc->mem, HDAC_INTCTL,
 		    HDAC_INTCTL_CIE | HDAC_INTCTL_GIE);
 	}
 	DELAY(1000);
 
 	HDA_BOOTHVERBOSE(
 		device_printf(sc->dev, "Scanning HDA codecs ...\n");
 	);
 	hdac_unlock(sc);
 	for (i = 0; i < HDAC_CODEC_MAX; i++) {
 		if (HDAC_STATESTS_SDIWAKE(statests, i)) {
 			HDA_BOOTHVERBOSE(
 				device_printf(sc->dev,
 				    "Found CODEC at address %d\n", i);
 			);
 			hdac_lock(sc);
 			vendorid = hdac_send_command(sc, i,
 			    HDA_CMD_GET_PARAMETER(0, 0x0, HDA_PARAM_VENDOR_ID));
 			revisionid = hdac_send_command(sc, i,
 			    HDA_CMD_GET_PARAMETER(0, 0x0, HDA_PARAM_REVISION_ID));
 			hdac_unlock(sc);
 			if (vendorid == HDA_INVALID &&
 			    revisionid == HDA_INVALID) {
 				device_printf(sc->dev,
 				    "CODEC at address %d not responding!\n", i);
 				continue;
 			}
 			sc->codecs[i].vendor_id =
 			    HDA_PARAM_VENDOR_ID_VENDOR_ID(vendorid);
 			sc->codecs[i].device_id =
 			    HDA_PARAM_VENDOR_ID_DEVICE_ID(vendorid);
 			sc->codecs[i].revision_id =
 			    HDA_PARAM_REVISION_ID_REVISION_ID(revisionid);
 			sc->codecs[i].stepping_id =
 			    HDA_PARAM_REVISION_ID_STEPPING_ID(revisionid);
 			child = device_add_child(sc->dev, "hdacc", -1);
 			if (child == NULL) {
 				device_printf(sc->dev,
 				    "Failed to add CODEC device\n");
 				continue;
 			}
 			device_set_ivars(child, (void *)(intptr_t)i);
 			sc->codecs[i].dev = child;
 		}
 	}
 	bus_generic_attach(sc->dev);
 
 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->dev),
 	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO,
 	    "pindump", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc->dev,
 	    sizeof(sc->dev), sysctl_hdac_pindump, "I", "Dump pin states/data");
 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->dev),
 	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO,
 	    "polling", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc->dev,
 	    sizeof(sc->dev), sysctl_hdac_polling, "I", "Enable polling mode");
 }
 
 /****************************************************************************
  * int hdac_suspend(device_t)
  *
  * Suspend and power down HDA bus and codecs.
  ****************************************************************************/
 static int
 hdac_suspend(device_t dev)
 {
 	struct hdac_softc *sc = device_get_softc(dev);
 
 	HDA_BOOTHVERBOSE(
 		device_printf(dev, "Suspend...\n");
 	);
 	bus_generic_suspend(dev);
 
 	hdac_lock(sc);
 	HDA_BOOTHVERBOSE(
 		device_printf(dev, "Reset controller...\n");
 	);
 	callout_stop(&sc->poll_callout);
 	hdac_reset(sc, false);
 	hdac_unlock(sc);
 	callout_drain(&sc->poll_callout);
 	taskqueue_drain(taskqueue_thread, &sc->unsolq_task);
 	HDA_BOOTHVERBOSE(
 		device_printf(dev, "Suspend done\n");
 	);
 	return (0);
 }
 
 /****************************************************************************
  * int hdac_resume(device_t)
  *
  * Powerup and restore HDA bus and codecs state.
  ****************************************************************************/
 static int
 hdac_resume(device_t dev)
 {
 	struct hdac_softc *sc = device_get_softc(dev);
 	int error;
 
 	HDA_BOOTHVERBOSE(
 		device_printf(dev, "Resume...\n");
 	);
 	hdac_lock(sc);
 
 	/* Quiesce everything */
 	HDA_BOOTHVERBOSE(
 		device_printf(dev, "Reset controller...\n");
 	);
 	hdac_reset(sc, true);
 
 	/* Initialize the CORB and RIRB */
 	hdac_corb_init(sc);
 	hdac_rirb_init(sc);
 
 	HDA_BOOTHVERBOSE(
 		device_printf(dev, "Starting CORB Engine...\n");
 	);
 	hdac_corb_start(sc);
 	HDA_BOOTHVERBOSE(
 		device_printf(dev, "Starting RIRB Engine...\n");
 	);
 	hdac_rirb_start(sc);
 
 	/*
 	 * Clear HDAC_WAKEEN as at present we have no use for SDI wake
 	 * (status change) events.  The documentation says that we should
 	 * not make any assumptions about the state of this register and
 	 * set it explicitly.
 	 * Also, clear HDAC_STATESTS.
 	 * NB: this needs to be done before the interrupt is enabled as
 	 * the handler does not expect this interrupt source.
 	 */
 	HDAC_WRITE_2(&sc->mem, HDAC_WAKEEN, 0);
 	HDAC_WRITE_2(&sc->mem, HDAC_STATESTS, HDAC_STATESTS_SDIWAKE_MASK);
 
 	HDA_BOOTHVERBOSE(
 		device_printf(dev, "Enabling controller interrupt...\n");
 	);
 	HDAC_WRITE_4(&sc->mem, HDAC_GCTL, HDAC_READ_4(&sc->mem, HDAC_GCTL) |
 	    HDAC_GCTL_UNSOL);
 	HDAC_WRITE_4(&sc->mem, HDAC_INTCTL, HDAC_INTCTL_CIE | HDAC_INTCTL_GIE);
 	DELAY(1000);
 	hdac_poll_reinit(sc);
 	hdac_unlock(sc);
 
 	error = bus_generic_resume(dev);
 	HDA_BOOTHVERBOSE(
 		device_printf(dev, "Resume done\n");
 	);
 	return (error);
 }
 
 /****************************************************************************
  * int hdac_detach(device_t)
  *
  * Detach and free up resources utilized by the hdac device.
  ****************************************************************************/
 static int
 hdac_detach(device_t dev)
 {
 	struct hdac_softc *sc = device_get_softc(dev);
 	device_t *devlist;
 	int cad, i, devcount, error;
 
 	if ((error = device_get_children(dev, &devlist, &devcount)) != 0)
 		return (error);
 	for (i = 0; i < devcount; i++) {
 		cad = (intptr_t)device_get_ivars(devlist[i]);
 		if ((error = device_delete_child(dev, devlist[i])) != 0) {
 			free(devlist, M_TEMP);
 			return (error);
 		}
 		sc->codecs[cad].dev = NULL;
 	}
 	free(devlist, M_TEMP);
 
 	hdac_lock(sc);
 	hdac_reset(sc, false);
 	hdac_unlock(sc);
 	taskqueue_drain(taskqueue_thread, &sc->unsolq_task);
 	hdac_irq_free(sc);
 
 	for (i = 0; i < sc->num_ss; i++)
 		hdac_dma_free(sc, &sc->streams[i].bdl);
 	free(sc->streams, M_HDAC);
 	hdac_dma_free(sc, &sc->pos_dma);
 	hdac_dma_free(sc, &sc->rirb_dma);
 	hdac_dma_free(sc, &sc->corb_dma);
 	if (sc->chan_dmat != NULL) {
 		bus_dma_tag_destroy(sc->chan_dmat);
 		sc->chan_dmat = NULL;
 	}
 	hdac_mem_free(sc);
 	snd_mtxfree(sc->lock);
 	return (0);
 }
 
 static bus_dma_tag_t
 hdac_get_dma_tag(device_t dev, device_t child)
 {
 	struct hdac_softc *sc = device_get_softc(dev);
 
 	return (sc->chan_dmat);
 }
 
 static int
 hdac_print_child(device_t dev, device_t child)
 {
 	int retval;
 
 	retval = bus_print_child_header(dev, child);
 	retval += printf(" at cad %d", (int)(intptr_t)device_get_ivars(child));
 	retval += bus_print_child_footer(dev, child);
 
 	return (retval);
 }
 
 static int
 hdac_child_location_str(device_t dev, device_t child, char *buf, size_t buflen)
 {
 
 	snprintf(buf, buflen, "cad=%d", (int)(intptr_t)device_get_ivars(child));
 	return (0);
 }
 
 static int
 hdac_child_pnpinfo_str_method(device_t dev, device_t child, char *buf,
     size_t buflen)
 {
 	struct hdac_softc *sc = device_get_softc(dev);
 	nid_t cad = (uintptr_t)device_get_ivars(child);
 
 	snprintf(buf, buflen,
 	    "vendor=0x%04x device=0x%04x revision=0x%02x stepping=0x%02x",
 	    sc->codecs[cad].vendor_id, sc->codecs[cad].device_id,
 	    sc->codecs[cad].revision_id, sc->codecs[cad].stepping_id);
 	return (0);
 }
 
 static int
 hdac_read_ivar(device_t dev, device_t child, int which, uintptr_t *result)
 {
 	struct hdac_softc *sc = device_get_softc(dev);
 	nid_t cad = (uintptr_t)device_get_ivars(child);
 
 	switch (which) {
 	case HDA_IVAR_CODEC_ID:
 		*result = cad;
 		break;
 	case HDA_IVAR_VENDOR_ID:
 		*result = sc->codecs[cad].vendor_id;
 		break;
 	case HDA_IVAR_DEVICE_ID:
 		*result = sc->codecs[cad].device_id;
 		break;
 	case HDA_IVAR_REVISION_ID:
 		*result = sc->codecs[cad].revision_id;
 		break;
 	case HDA_IVAR_STEPPING_ID:
 		*result = sc->codecs[cad].stepping_id;
 		break;
 	case HDA_IVAR_SUBVENDOR_ID:
 		*result = pci_get_subvendor(dev);
 		break;
 	case HDA_IVAR_SUBDEVICE_ID:
 		*result = pci_get_subdevice(dev);
 		break;
 	case HDA_IVAR_DMA_NOCACHE:
 		*result = (sc->flags & HDAC_F_DMA_NOCACHE) != 0;
 		break;
 	case HDA_IVAR_STRIPES_MASK:
 		*result = (1 << (1 << sc->num_sdo)) - 1;
 		break;
 	default:
 		return (ENOENT);
 	}
 	return (0);
 }
 
 static struct mtx *
 hdac_get_mtx(device_t dev, device_t child)
 {
 	struct hdac_softc *sc = device_get_softc(dev);
 
 	return (sc->lock);
 }
 
 static uint32_t
 hdac_codec_command(device_t dev, device_t child, uint32_t verb)
 {
 
 	return (hdac_send_command(device_get_softc(dev),
 	    (intptr_t)device_get_ivars(child), verb));
 }
 
 static int
 hdac_find_stream(struct hdac_softc *sc, int dir, int stream)
 {
 	int i, ss;
 
 	ss = -1;
 	/* Allocate ISS/OSS first. */
 	if (dir == 0) {
 		for (i = 0; i < sc->num_iss; i++) {
 			if (sc->streams[i].stream == stream) {
 				ss = i;
 				break;
 			}
 		}
 	} else {
 		for (i = 0; i < sc->num_oss; i++) {
 			if (sc->streams[i + sc->num_iss].stream == stream) {
 				ss = i + sc->num_iss;
 				break;
 			}
 		}
 	}
 	/* Fallback to BSS. */
 	if (ss == -1) {
 		for (i = 0; i < sc->num_bss; i++) {
 			if (sc->streams[i + sc->num_iss + sc->num_oss].stream
 			    == stream) {
 				ss = i + sc->num_iss + sc->num_oss;
 				break;
 			}
 		}
 	}
 	return (ss);
 }
 
 static int
 hdac_stream_alloc(device_t dev, device_t child, int dir, int format, int stripe,
     uint32_t **dmapos)
 {
 	struct hdac_softc *sc = device_get_softc(dev);
 	nid_t cad = (uintptr_t)device_get_ivars(child);
 	int stream, ss, bw, maxbw, prevbw;
 
 	/* Look for empty stream. */
 	ss = hdac_find_stream(sc, dir, 0);
 
 	/* Return if found nothing. */
 	if (ss < 0)
 		return (0);
 
 	/* Check bus bandwidth. */
 	bw = hdac_bdata_rate(format, dir);
 	if (dir == 1) {
 		bw *= 1 << (sc->num_sdo - stripe);
 		prevbw = sc->sdo_bw_used;
 		maxbw = 48000 * 960 * (1 << sc->num_sdo);
 	} else {
 		prevbw = sc->codecs[cad].sdi_bw_used;
 		maxbw = 48000 * 464;
 	}
 	HDA_BOOTHVERBOSE(
 		device_printf(dev, "%dKbps of %dKbps bandwidth used%s\n",
 		    (bw + prevbw) / 1000, maxbw / 1000,
 		    bw + prevbw > maxbw ? " -- OVERFLOW!" : "");
 	);
 	if (bw + prevbw > maxbw)
 		return (0);
 	if (dir == 1)
 		sc->sdo_bw_used += bw;
 	else
 		sc->codecs[cad].sdi_bw_used += bw;
 
 	/* Allocate stream number */
 	if (ss >= sc->num_iss + sc->num_oss)
 		stream = 15 - (ss - sc->num_iss - sc->num_oss);
 	else if (ss >= sc->num_iss)
 		stream = ss - sc->num_iss + 1;
 	else
 		stream = ss + 1;
 
 	sc->streams[ss].dev = child;
 	sc->streams[ss].dir = dir;
 	sc->streams[ss].stream = stream;
 	sc->streams[ss].bw = bw;
 	sc->streams[ss].format = format;
 	sc->streams[ss].stripe = stripe;
 	if (dmapos != NULL) {
 		if (sc->pos_dma.dma_vaddr != NULL)
 			*dmapos = (uint32_t *)(sc->pos_dma.dma_vaddr + ss * 8);
 		else
 			*dmapos = NULL;
 	}
 	return (stream);
 }
 
 static void
 hdac_stream_free(device_t dev, device_t child, int dir, int stream)
 {
 	struct hdac_softc *sc = device_get_softc(dev);
 	nid_t cad = (uintptr_t)device_get_ivars(child);
 	int ss;
 
 	ss = hdac_find_stream(sc, dir, stream);
 	KASSERT(ss >= 0,
 	    ("Free for not allocated stream (%d/%d)\n", dir, stream));
 	if (dir == 1)
 		sc->sdo_bw_used -= sc->streams[ss].bw;
 	else
 		sc->codecs[cad].sdi_bw_used -= sc->streams[ss].bw;
 	sc->streams[ss].stream = 0;
 	sc->streams[ss].dev = NULL;
 }
 
 static int
 hdac_stream_start(device_t dev, device_t child, int dir, int stream,
     bus_addr_t buf, int blksz, int blkcnt)
 {
 	struct hdac_softc *sc = device_get_softc(dev);
 	struct hdac_bdle *bdle;
 	uint64_t addr;
 	int i, ss, off;
 	uint32_t ctl;
 
 	ss = hdac_find_stream(sc, dir, stream);
 	KASSERT(ss >= 0,
 	    ("Start for not allocated stream (%d/%d)\n", dir, stream));
 
 	addr = (uint64_t)buf;
 	bdle = (struct hdac_bdle *)sc->streams[ss].bdl.dma_vaddr;
 	for (i = 0; i < blkcnt; i++, bdle++) {
 		bdle->addrl = htole32((uint32_t)addr);
 		bdle->addrh = htole32((uint32_t)(addr >> 32));
 		bdle->len = htole32(blksz);
 		bdle->ioc = htole32(1);
 		addr += blksz;
 	}
 
 	bus_dmamap_sync(sc->streams[ss].bdl.dma_tag,
 	    sc->streams[ss].bdl.dma_map, BUS_DMASYNC_PREWRITE);
 
 	off = ss << 5;
 	HDAC_WRITE_4(&sc->mem, off + HDAC_SDCBL, blksz * blkcnt);
 	HDAC_WRITE_2(&sc->mem, off + HDAC_SDLVI, blkcnt - 1);
 	addr = sc->streams[ss].bdl.dma_paddr;
 	HDAC_WRITE_4(&sc->mem, off + HDAC_SDBDPL, (uint32_t)addr);
 	HDAC_WRITE_4(&sc->mem, off + HDAC_SDBDPU, (uint32_t)(addr >> 32));
 
 	ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL2);
 	if (dir)
 		ctl |= HDAC_SDCTL2_DIR;
 	else
 		ctl &= ~HDAC_SDCTL2_DIR;
 	ctl &= ~HDAC_SDCTL2_STRM_MASK;
 	ctl |= stream << HDAC_SDCTL2_STRM_SHIFT;
 	ctl &= ~HDAC_SDCTL2_STRIPE_MASK;
 	ctl |= sc->streams[ss].stripe << HDAC_SDCTL2_STRIPE_SHIFT;
 	HDAC_WRITE_1(&sc->mem, off + HDAC_SDCTL2, ctl);
 
 	HDAC_WRITE_2(&sc->mem, off + HDAC_SDFMT, sc->streams[ss].format);
 
 	ctl = HDAC_READ_4(&sc->mem, HDAC_INTCTL);
 	ctl |= 1 << ss;
 	HDAC_WRITE_4(&sc->mem, HDAC_INTCTL, ctl);
 
 	HDAC_WRITE_1(&sc->mem, off + HDAC_SDSTS,
 	    HDAC_SDSTS_DESE | HDAC_SDSTS_FIFOE | HDAC_SDSTS_BCIS);
 	ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL0);
 	ctl |= HDAC_SDCTL_IOCE | HDAC_SDCTL_FEIE | HDAC_SDCTL_DEIE |
 	    HDAC_SDCTL_RUN;
 	HDAC_WRITE_1(&sc->mem, off + HDAC_SDCTL0, ctl);
 
 	sc->streams[ss].blksz = blksz;
 	sc->streams[ss].running = 1;
 	hdac_poll_reinit(sc);
 	return (0);
 }
 
 static void
 hdac_stream_stop(device_t dev, device_t child, int dir, int stream)
 {
 	struct hdac_softc *sc = device_get_softc(dev);
 	int ss, off;
 	uint32_t ctl;
 
 	ss = hdac_find_stream(sc, dir, stream);
 	KASSERT(ss >= 0,
 	    ("Stop for not allocated stream (%d/%d)\n", dir, stream));
 
 	bus_dmamap_sync(sc->streams[ss].bdl.dma_tag,
 	    sc->streams[ss].bdl.dma_map, BUS_DMASYNC_POSTWRITE);
 
 	off = ss << 5;
 	ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL0);
 	ctl &= ~(HDAC_SDCTL_IOCE | HDAC_SDCTL_FEIE | HDAC_SDCTL_DEIE |
 	    HDAC_SDCTL_RUN);
 	HDAC_WRITE_1(&sc->mem, off + HDAC_SDCTL0, ctl);
 
 	ctl = HDAC_READ_4(&sc->mem, HDAC_INTCTL);
 	ctl &= ~(1 << ss);
 	HDAC_WRITE_4(&sc->mem, HDAC_INTCTL, ctl);
 
 	sc->streams[ss].running = 0;
 	hdac_poll_reinit(sc);
 }
 
 static void
 hdac_stream_reset(device_t dev, device_t child, int dir, int stream)
 {
 	struct hdac_softc *sc = device_get_softc(dev);
 	int timeout = 1000;
 	int to = timeout;
 	int ss, off;
 	uint32_t ctl;
 
 	ss = hdac_find_stream(sc, dir, stream);
 	KASSERT(ss >= 0,
 	    ("Reset for not allocated stream (%d/%d)\n", dir, stream));
 
 	off = ss << 5;
 	ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL0);
 	ctl |= HDAC_SDCTL_SRST;
 	HDAC_WRITE_1(&sc->mem, off + HDAC_SDCTL0, ctl);
 	do {
 		ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL0);
 		if (ctl & HDAC_SDCTL_SRST)
 			break;
 		DELAY(10);
 	} while (--to);
 	if (!(ctl & HDAC_SDCTL_SRST))
 		device_printf(dev, "Reset setting timeout\n");
 	ctl &= ~HDAC_SDCTL_SRST;
 	HDAC_WRITE_1(&sc->mem, off + HDAC_SDCTL0, ctl);
 	to = timeout;
 	do {
 		ctl = HDAC_READ_1(&sc->mem, off + HDAC_SDCTL0);
 		if (!(ctl & HDAC_SDCTL_SRST))
 			break;
 		DELAY(10);
 	} while (--to);
 	if (ctl & HDAC_SDCTL_SRST)
 		device_printf(dev, "Reset timeout!\n");
 }
 
 static uint32_t
 hdac_stream_getptr(device_t dev, device_t child, int dir, int stream)
 {
 	struct hdac_softc *sc = device_get_softc(dev);
 	int ss, off;
 
 	ss = hdac_find_stream(sc, dir, stream);
 	KASSERT(ss >= 0,
 	    ("Reset for not allocated stream (%d/%d)\n", dir, stream));
 
 	off = ss << 5;
 	return (HDAC_READ_4(&sc->mem, off + HDAC_SDLPIB));
 }
 
 static int
 hdac_unsol_alloc(device_t dev, device_t child, int tag)
 {
 	struct hdac_softc *sc = device_get_softc(dev);
 
 	sc->unsol_registered++;
 	hdac_poll_reinit(sc);
 	return (tag);
 }
 
 static void
 hdac_unsol_free(device_t dev, device_t child, int tag)
 {
 	struct hdac_softc *sc = device_get_softc(dev);
 
 	sc->unsol_registered--;
 	hdac_poll_reinit(sc);
 }
 
 static device_method_t hdac_methods[] = {
 	/* device interface */
 	DEVMETHOD(device_probe,		hdac_probe),
 	DEVMETHOD(device_attach,	hdac_attach),
 	DEVMETHOD(device_detach,	hdac_detach),
 	DEVMETHOD(device_suspend,	hdac_suspend),
 	DEVMETHOD(device_resume,	hdac_resume),
 	/* Bus interface */
 	DEVMETHOD(bus_get_dma_tag,	hdac_get_dma_tag),
 	DEVMETHOD(bus_print_child,	hdac_print_child),
 	DEVMETHOD(bus_child_location_str, hdac_child_location_str),
 	DEVMETHOD(bus_child_pnpinfo_str, hdac_child_pnpinfo_str_method),
 	DEVMETHOD(bus_read_ivar,	hdac_read_ivar),
 	DEVMETHOD(hdac_get_mtx,		hdac_get_mtx),
 	DEVMETHOD(hdac_codec_command,	hdac_codec_command),
 	DEVMETHOD(hdac_stream_alloc,	hdac_stream_alloc),
 	DEVMETHOD(hdac_stream_free,	hdac_stream_free),
 	DEVMETHOD(hdac_stream_start,	hdac_stream_start),
 	DEVMETHOD(hdac_stream_stop,	hdac_stream_stop),
 	DEVMETHOD(hdac_stream_reset,	hdac_stream_reset),
 	DEVMETHOD(hdac_stream_getptr,	hdac_stream_getptr),
 	DEVMETHOD(hdac_unsol_alloc,	hdac_unsol_alloc),
 	DEVMETHOD(hdac_unsol_free,	hdac_unsol_free),
 	DEVMETHOD_END
 };
 
 static driver_t hdac_driver = {
 	"hdac",
 	hdac_methods,
 	sizeof(struct hdac_softc),
 };
 
 static devclass_t hdac_devclass;
 
 DRIVER_MODULE(snd_hda, pci, hdac_driver, hdac_devclass, NULL, NULL);