diff --git a/sys/kern/kern_proc.c b/sys/kern/kern_proc.c index 4cd13234a10b..032bea6cfc9b 100644 --- a/sys/kern/kern_proc.c +++ b/sys/kern/kern_proc.c @@ -1,3638 +1,3636 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 1982, 1986, 1989, 1991, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include #include "opt_ddb.h" #include "opt_ktrace.h" #include "opt_kstack_pages.h" #include "opt_stack.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef KTRACE #include #endif #ifdef DDB #include #endif #include #include #include #include #include #include #include #include #include #ifdef COMPAT_FREEBSD32 #include #include #endif SDT_PROVIDER_DEFINE(proc); MALLOC_DEFINE(M_SESSION, "session", "session header"); static MALLOC_DEFINE(M_PROC, "proc", "Proc structures"); MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures"); static void doenterpgrp(struct proc *, struct pgrp *); static void orphanpg(struct pgrp *pg); static void fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp); static void fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp); static void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, int preferthread); static void pgdelete(struct pgrp *); static int pgrp_init(void *mem, int size, int flags); static int proc_ctor(void *mem, int size, void *arg, int flags); static void proc_dtor(void *mem, int size, void *arg); static int proc_init(void *mem, int size, int flags); static void proc_fini(void *mem, int size); static void pargs_free(struct pargs *pa); /* * Other process lists */ struct pidhashhead *pidhashtbl = NULL; struct sx *pidhashtbl_lock; u_long pidhash; u_long pidhashlock; struct pgrphashhead *pgrphashtbl; u_long pgrphash; struct proclist allproc = LIST_HEAD_INITIALIZER(allproc); struct sx __exclusive_cache_line allproc_lock; struct sx __exclusive_cache_line proctree_lock; struct mtx __exclusive_cache_line ppeers_lock; struct mtx __exclusive_cache_line procid_lock; uma_zone_t proc_zone; uma_zone_t pgrp_zone; /* * The offset of various fields in struct proc and struct thread. * These are used by kernel debuggers to enumerate kernel threads and * processes. */ const int proc_off_p_pid = offsetof(struct proc, p_pid); const int proc_off_p_comm = offsetof(struct proc, p_comm); const int proc_off_p_list = offsetof(struct proc, p_list); const int proc_off_p_hash = offsetof(struct proc, p_hash); const int proc_off_p_threads = offsetof(struct proc, p_threads); const int thread_off_td_tid = offsetof(struct thread, td_tid); const int thread_off_td_name = offsetof(struct thread, td_name); const int thread_off_td_oncpu = offsetof(struct thread, td_oncpu); const int thread_off_td_pcb = offsetof(struct thread, td_pcb); const int thread_off_td_plist = offsetof(struct thread, td_plist); EVENTHANDLER_LIST_DEFINE(process_ctor); EVENTHANDLER_LIST_DEFINE(process_dtor); EVENTHANDLER_LIST_DEFINE(process_init); EVENTHANDLER_LIST_DEFINE(process_fini); EVENTHANDLER_LIST_DEFINE(process_exit); EVENTHANDLER_LIST_DEFINE(process_fork); EVENTHANDLER_LIST_DEFINE(process_exec); int kstack_pages = KSTACK_PAGES; SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &kstack_pages, 0, "Kernel stack size in pages"); static int vmmap_skip_res_cnt = 0; SYSCTL_INT(_kern, OID_AUTO, proc_vmmap_skip_resident_count, CTLFLAG_RW, &vmmap_skip_res_cnt, 0, "Skip calculation of the pages resident count in kern.proc.vmmap"); CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE); #ifdef COMPAT_FREEBSD32 CTASSERT(sizeof(struct kinfo_proc32) == KINFO_PROC32_SIZE); #endif /* * Initialize global process hashing structures. */ void procinit(void) { u_long i; sx_init(&allproc_lock, "allproc"); sx_init(&proctree_lock, "proctree"); mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF); mtx_init(&procid_lock, "procid", NULL, MTX_DEF); pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash); pidhashlock = (pidhash + 1) / 64; if (pidhashlock > 0) pidhashlock--; pidhashtbl_lock = malloc(sizeof(*pidhashtbl_lock) * (pidhashlock + 1), M_PROC, M_WAITOK | M_ZERO); for (i = 0; i < pidhashlock + 1; i++) sx_init_flags(&pidhashtbl_lock[i], "pidhash", SX_DUPOK); pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash); proc_zone = uma_zcreate("PROC", sched_sizeof_proc(), proc_ctor, proc_dtor, proc_init, proc_fini, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); pgrp_zone = uma_zcreate("PGRP", sizeof(struct pgrp), NULL, NULL, pgrp_init, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); uihashinit(); } /* * Prepare a proc for use. */ static int proc_ctor(void *mem, int size, void *arg, int flags) { struct proc *p; struct thread *td; p = (struct proc *)mem; #ifdef KDTRACE_HOOKS kdtrace_proc_ctor(p); #endif EVENTHANDLER_DIRECT_INVOKE(process_ctor, p); td = FIRST_THREAD_IN_PROC(p); if (td != NULL) { /* Make sure all thread constructors are executed */ EVENTHANDLER_DIRECT_INVOKE(thread_ctor, td); } return (0); } /* * Reclaim a proc after use. */ static void proc_dtor(void *mem, int size, void *arg) { struct proc *p; struct thread *td; /* INVARIANTS checks go here */ p = (struct proc *)mem; td = FIRST_THREAD_IN_PROC(p); if (td != NULL) { #ifdef INVARIANTS KASSERT((p->p_numthreads == 1), ("bad number of threads in exiting process")); KASSERT(STAILQ_EMPTY(&p->p_ktr), ("proc_dtor: non-empty p_ktr")); #endif /* Free all OSD associated to this thread. */ osd_thread_exit(td); ast_kclear(td); /* Make sure all thread destructors are executed */ EVENTHANDLER_DIRECT_INVOKE(thread_dtor, td); } EVENTHANDLER_DIRECT_INVOKE(process_dtor, p); #ifdef KDTRACE_HOOKS kdtrace_proc_dtor(p); #endif if (p->p_ksi != NULL) KASSERT(! KSI_ONQ(p->p_ksi), ("SIGCHLD queue")); } /* * Initialize type-stable parts of a proc (when newly created). */ static int proc_init(void *mem, int size, int flags) { struct proc *p; p = (struct proc *)mem; mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK | MTX_NEW); mtx_init(&p->p_slock, "process slock", NULL, MTX_SPIN | MTX_NEW); mtx_init(&p->p_statmtx, "pstatl", NULL, MTX_SPIN | MTX_NEW); mtx_init(&p->p_itimmtx, "pitiml", NULL, MTX_SPIN | MTX_NEW); mtx_init(&p->p_profmtx, "pprofl", NULL, MTX_SPIN | MTX_NEW); cv_init(&p->p_pwait, "ppwait"); TAILQ_INIT(&p->p_threads); /* all threads in proc */ EVENTHANDLER_DIRECT_INVOKE(process_init, p); p->p_stats = pstats_alloc(); p->p_pgrp = NULL; TAILQ_INIT(&p->p_kqtim_stop); return (0); } /* * UMA should ensure that this function is never called. * Freeing a proc structure would violate type stability. */ static void proc_fini(void *mem, int size) { #ifdef notnow struct proc *p; p = (struct proc *)mem; EVENTHANDLER_DIRECT_INVOKE(process_fini, p); pstats_free(p->p_stats); thread_free(FIRST_THREAD_IN_PROC(p)); mtx_destroy(&p->p_mtx); if (p->p_ksi != NULL) ksiginfo_free(p->p_ksi); #else panic("proc reclaimed"); #endif } static int pgrp_init(void *mem, int size, int flags) { struct pgrp *pg; pg = mem; mtx_init(&pg->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK); sx_init(&pg->pg_killsx, "killpg racer"); return (0); } /* * PID space management. * * These bitmaps are used by fork_findpid. */ bitstr_t bit_decl(proc_id_pidmap, PID_MAX); bitstr_t bit_decl(proc_id_grpidmap, PID_MAX); bitstr_t bit_decl(proc_id_sessidmap, PID_MAX); bitstr_t bit_decl(proc_id_reapmap, PID_MAX); static bitstr_t *proc_id_array[] = { proc_id_pidmap, proc_id_grpidmap, proc_id_sessidmap, proc_id_reapmap, }; void proc_id_set(int type, pid_t id) { KASSERT(type >= 0 && type < nitems(proc_id_array), ("invalid type %d\n", type)); mtx_lock(&procid_lock); KASSERT(bit_test(proc_id_array[type], id) == 0, ("bit %d already set in %d\n", id, type)); bit_set(proc_id_array[type], id); mtx_unlock(&procid_lock); } void proc_id_set_cond(int type, pid_t id) { KASSERT(type >= 0 && type < nitems(proc_id_array), ("invalid type %d\n", type)); if (bit_test(proc_id_array[type], id)) return; mtx_lock(&procid_lock); bit_set(proc_id_array[type], id); mtx_unlock(&procid_lock); } void proc_id_clear(int type, pid_t id) { KASSERT(type >= 0 && type < nitems(proc_id_array), ("invalid type %d\n", type)); mtx_lock(&procid_lock); KASSERT(bit_test(proc_id_array[type], id) != 0, ("bit %d not set in %d\n", id, type)); bit_clear(proc_id_array[type], id); mtx_unlock(&procid_lock); } /* * Is p an inferior of the current process? */ int inferior(struct proc *p) { sx_assert(&proctree_lock, SX_LOCKED); PROC_LOCK_ASSERT(p, MA_OWNED); for (; p != curproc; p = proc_realparent(p)) { if (p->p_pid == 0) return (0); } return (1); } /* * Shared lock all the pid hash lists. */ void pidhash_slockall(void) { u_long i; for (i = 0; i < pidhashlock + 1; i++) sx_slock(&pidhashtbl_lock[i]); } /* * Shared unlock all the pid hash lists. */ void pidhash_sunlockall(void) { u_long i; for (i = 0; i < pidhashlock + 1; i++) sx_sunlock(&pidhashtbl_lock[i]); } /* * Similar to pfind_any(), this function finds zombies. */ struct proc * pfind_any_locked(pid_t pid) { struct proc *p; sx_assert(PIDHASHLOCK(pid), SX_LOCKED); LIST_FOREACH(p, PIDHASH(pid), p_hash) { if (p->p_pid == pid) { PROC_LOCK(p); if (p->p_state == PRS_NEW) { PROC_UNLOCK(p); p = NULL; } break; } } return (p); } /* * Locate a process by number. * * By not returning processes in the PRS_NEW state, we allow callers to avoid * testing for that condition to avoid dereferencing p_ucred, et al. */ static __always_inline struct proc * _pfind(pid_t pid, bool zombie) { struct proc *p; p = curproc; if (p->p_pid == pid) { PROC_LOCK(p); return (p); } sx_slock(PIDHASHLOCK(pid)); LIST_FOREACH(p, PIDHASH(pid), p_hash) { if (p->p_pid == pid) { PROC_LOCK(p); if (p->p_state == PRS_NEW || (!zombie && p->p_state == PRS_ZOMBIE)) { PROC_UNLOCK(p); p = NULL; } break; } } sx_sunlock(PIDHASHLOCK(pid)); return (p); } struct proc * pfind(pid_t pid) { return (_pfind(pid, false)); } /* * Same as pfind but allow zombies. */ struct proc * pfind_any(pid_t pid) { return (_pfind(pid, true)); } /* * Locate a process group by number. * The caller must hold proctree_lock. */ struct pgrp * pgfind(pid_t pgid) { struct pgrp *pgrp; sx_assert(&proctree_lock, SX_LOCKED); LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) { if (pgrp->pg_id == pgid) { PGRP_LOCK(pgrp); return (pgrp); } } return (NULL); } /* * Locate process and do additional manipulations, depending on flags. */ int pget(pid_t pid, int flags, struct proc **pp) { struct proc *p; struct thread *td1; int error; p = curproc; if (p->p_pid == pid) { PROC_LOCK(p); } else { p = NULL; if (pid <= PID_MAX) { if ((flags & PGET_NOTWEXIT) == 0) p = pfind_any(pid); else p = pfind(pid); } else if ((flags & PGET_NOTID) == 0) { td1 = tdfind(pid, -1); if (td1 != NULL) p = td1->td_proc; } if (p == NULL) return (ESRCH); if ((flags & PGET_CANSEE) != 0) { error = p_cansee(curthread, p); if (error != 0) goto errout; } } if ((flags & PGET_CANDEBUG) != 0) { error = p_candebug(curthread, p); if (error != 0) goto errout; } if ((flags & PGET_ISCURRENT) != 0 && curproc != p) { error = EPERM; goto errout; } if ((flags & PGET_NOTWEXIT) != 0 && (p->p_flag & P_WEXIT) != 0) { error = ESRCH; goto errout; } if ((flags & PGET_NOTINEXEC) != 0 && (p->p_flag & P_INEXEC) != 0) { /* * XXXRW: Not clear ESRCH is the right error during proc * execve(). */ error = ESRCH; goto errout; } if ((flags & PGET_HOLD) != 0) { _PHOLD(p); PROC_UNLOCK(p); } *pp = p; return (0); errout: PROC_UNLOCK(p); return (error); } /* * Create a new process group. * pgid must be equal to the pid of p. * Begin a new session if required. */ int enterpgrp(struct proc *p, pid_t pgid, struct pgrp *pgrp, struct session *sess) { struct pgrp *old_pgrp; sx_assert(&proctree_lock, SX_XLOCKED); KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL")); KASSERT(p->p_pid == pgid, ("enterpgrp: new pgrp and pid != pgid")); KASSERT(pgfind(pgid) == NULL, ("enterpgrp: pgrp with pgid exists")); KASSERT(!SESS_LEADER(p), ("enterpgrp: session leader attempted setpgrp")); old_pgrp = p->p_pgrp; if (!sx_try_xlock(&old_pgrp->pg_killsx)) { sx_xunlock(&proctree_lock); sx_xlock(&old_pgrp->pg_killsx); sx_xunlock(&old_pgrp->pg_killsx); return (ERESTART); } MPASS(old_pgrp == p->p_pgrp); if (sess != NULL) { /* * new session */ mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF); PROC_LOCK(p); p->p_flag &= ~P_CONTROLT; PROC_UNLOCK(p); PGRP_LOCK(pgrp); sess->s_leader = p; sess->s_sid = p->p_pid; proc_id_set(PROC_ID_SESSION, p->p_pid); refcount_init(&sess->s_count, 1); sess->s_ttyvp = NULL; sess->s_ttydp = NULL; sess->s_ttyp = NULL; bcopy(p->p_session->s_login, sess->s_login, sizeof(sess->s_login)); pgrp->pg_session = sess; KASSERT(p == curproc, ("enterpgrp: mksession and p != curproc")); } else { pgrp->pg_session = p->p_session; sess_hold(pgrp->pg_session); PGRP_LOCK(pgrp); } pgrp->pg_id = pgid; proc_id_set(PROC_ID_GROUP, p->p_pid); LIST_INIT(&pgrp->pg_members); pgrp->pg_flags = 0; /* * As we have an exclusive lock of proctree_lock, * this should not deadlock. */ LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash); SLIST_INIT(&pgrp->pg_sigiolst); PGRP_UNLOCK(pgrp); doenterpgrp(p, pgrp); sx_xunlock(&old_pgrp->pg_killsx); return (0); } /* * Move p to an existing process group */ int enterthispgrp(struct proc *p, struct pgrp *pgrp) { struct pgrp *old_pgrp; sx_assert(&proctree_lock, SX_XLOCKED); PROC_LOCK_ASSERT(p, MA_NOTOWNED); PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); KASSERT(pgrp->pg_session == p->p_session, ("%s: pgrp's session %p, p->p_session %p proc %p\n", __func__, pgrp->pg_session, p->p_session, p)); KASSERT(pgrp != p->p_pgrp, ("%s: p %p belongs to pgrp %p", __func__, p, pgrp)); old_pgrp = p->p_pgrp; if (!sx_try_xlock(&old_pgrp->pg_killsx)) { sx_xunlock(&proctree_lock); sx_xlock(&old_pgrp->pg_killsx); sx_xunlock(&old_pgrp->pg_killsx); return (ERESTART); } MPASS(old_pgrp == p->p_pgrp); if (!sx_try_xlock(&pgrp->pg_killsx)) { sx_xunlock(&old_pgrp->pg_killsx); sx_xunlock(&proctree_lock); sx_xlock(&pgrp->pg_killsx); sx_xunlock(&pgrp->pg_killsx); return (ERESTART); } doenterpgrp(p, pgrp); sx_xunlock(&pgrp->pg_killsx); sx_xunlock(&old_pgrp->pg_killsx); return (0); } /* * If true, any child of q which belongs to group pgrp, qualifies the * process group pgrp as not orphaned. */ static bool isjobproc(struct proc *q, struct pgrp *pgrp) { sx_assert(&proctree_lock, SX_LOCKED); return (q->p_pgrp != pgrp && q->p_pgrp->pg_session == pgrp->pg_session); } static struct proc * jobc_reaper(struct proc *p) { struct proc *pp; sx_assert(&proctree_lock, SA_LOCKED); for (pp = p;;) { pp = pp->p_reaper; if (pp->p_reaper == pp || (pp->p_treeflag & P_TREE_GRPEXITED) == 0) return (pp); } } static struct proc * jobc_parent(struct proc *p, struct proc *p_exiting) { struct proc *pp; sx_assert(&proctree_lock, SA_LOCKED); pp = proc_realparent(p); if (pp->p_pptr == NULL || pp == p_exiting || (pp->p_treeflag & P_TREE_GRPEXITED) == 0) return (pp); return (jobc_reaper(pp)); } static int pgrp_calc_jobc(struct pgrp *pgrp) { struct proc *q; int cnt; #ifdef INVARIANTS if (!mtx_owned(&pgrp->pg_mtx)) sx_assert(&proctree_lock, SA_LOCKED); #endif cnt = 0; LIST_FOREACH(q, &pgrp->pg_members, p_pglist) { if ((q->p_treeflag & P_TREE_GRPEXITED) != 0 || q->p_pptr == NULL) continue; if (isjobproc(jobc_parent(q, NULL), pgrp)) cnt++; } return (cnt); } /* * Move p to a process group */ static void doenterpgrp(struct proc *p, struct pgrp *pgrp) { struct pgrp *savepgrp; struct proc *pp; sx_assert(&proctree_lock, SX_XLOCKED); PROC_LOCK_ASSERT(p, MA_NOTOWNED); PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); savepgrp = p->p_pgrp; pp = jobc_parent(p, NULL); PGRP_LOCK(pgrp); PGRP_LOCK(savepgrp); if (isjobproc(pp, savepgrp) && pgrp_calc_jobc(savepgrp) == 1) orphanpg(savepgrp); PROC_LOCK(p); LIST_REMOVE(p, p_pglist); p->p_pgrp = pgrp; PROC_UNLOCK(p); LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist); if (isjobproc(pp, pgrp)) pgrp->pg_flags &= ~PGRP_ORPHANED; PGRP_UNLOCK(savepgrp); PGRP_UNLOCK(pgrp); if (LIST_EMPTY(&savepgrp->pg_members)) pgdelete(savepgrp); } /* * remove process from process group */ int leavepgrp(struct proc *p) { struct pgrp *savepgrp; sx_assert(&proctree_lock, SX_XLOCKED); savepgrp = p->p_pgrp; PGRP_LOCK(savepgrp); PROC_LOCK(p); LIST_REMOVE(p, p_pglist); p->p_pgrp = NULL; PROC_UNLOCK(p); PGRP_UNLOCK(savepgrp); if (LIST_EMPTY(&savepgrp->pg_members)) pgdelete(savepgrp); return (0); } /* * delete a process group */ static void pgdelete(struct pgrp *pgrp) { struct session *savesess; struct tty *tp; sx_assert(&proctree_lock, SX_XLOCKED); PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); /* * Reset any sigio structures pointing to us as a result of * F_SETOWN with our pgid. The proctree lock ensures that * new sigio structures will not be added after this point. */ funsetownlst(&pgrp->pg_sigiolst); PGRP_LOCK(pgrp); tp = pgrp->pg_session->s_ttyp; LIST_REMOVE(pgrp, pg_hash); savesess = pgrp->pg_session; PGRP_UNLOCK(pgrp); /* Remove the reference to the pgrp before deallocating it. */ if (tp != NULL) { tty_lock(tp); tty_rel_pgrp(tp, pgrp); } proc_id_clear(PROC_ID_GROUP, pgrp->pg_id); uma_zfree(pgrp_zone, pgrp); sess_release(savesess); } static void fixjobc_kill(struct proc *p) { struct proc *q; struct pgrp *pgrp; sx_assert(&proctree_lock, SX_LOCKED); PROC_LOCK_ASSERT(p, MA_NOTOWNED); pgrp = p->p_pgrp; PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); /* * p no longer affects process group orphanage for children. * It is marked by the flag because p is only physically * removed from its process group on wait(2). */ MPASS((p->p_treeflag & P_TREE_GRPEXITED) == 0); p->p_treeflag |= P_TREE_GRPEXITED; /* * Check if exiting p orphans its own group. */ pgrp = p->p_pgrp; if (isjobproc(jobc_parent(p, NULL), pgrp)) { PGRP_LOCK(pgrp); if (pgrp_calc_jobc(pgrp) == 0) orphanpg(pgrp); PGRP_UNLOCK(pgrp); } /* * Check this process' children to see whether they qualify * their process groups after reparenting to reaper. */ LIST_FOREACH(q, &p->p_children, p_sibling) { pgrp = q->p_pgrp; PGRP_LOCK(pgrp); if (pgrp_calc_jobc(pgrp) == 0) { /* * We want to handle exactly the children that * has p as realparent. Then, when calculating * jobc_parent for children, we should ignore * P_TREE_GRPEXITED flag already set on p. */ if (jobc_parent(q, p) == p && isjobproc(p, pgrp)) orphanpg(pgrp); } else pgrp->pg_flags &= ~PGRP_ORPHANED; PGRP_UNLOCK(pgrp); } LIST_FOREACH(q, &p->p_orphans, p_orphan) { pgrp = q->p_pgrp; PGRP_LOCK(pgrp); if (pgrp_calc_jobc(pgrp) == 0) { if (isjobproc(p, pgrp)) orphanpg(pgrp); } else pgrp->pg_flags &= ~PGRP_ORPHANED; PGRP_UNLOCK(pgrp); } } void killjobc(void) { struct session *sp; struct tty *tp; struct proc *p; struct vnode *ttyvp; p = curproc; MPASS(p->p_flag & P_WEXIT); sx_assert(&proctree_lock, SX_LOCKED); if (SESS_LEADER(p)) { sp = p->p_session; /* * s_ttyp is not zero'd; we use this to indicate that * the session once had a controlling terminal. (for * logging and informational purposes) */ SESS_LOCK(sp); ttyvp = sp->s_ttyvp; tp = sp->s_ttyp; sp->s_ttyvp = NULL; sp->s_ttydp = NULL; sp->s_leader = NULL; SESS_UNLOCK(sp); /* * Signal foreground pgrp and revoke access to * controlling terminal if it has not been revoked * already. * * Because the TTY may have been revoked in the mean * time and could already have a new session associated * with it, make sure we don't send a SIGHUP to a * foreground process group that does not belong to this * session. */ if (tp != NULL) { tty_lock(tp); if (tp->t_session == sp) tty_signal_pgrp(tp, SIGHUP); tty_unlock(tp); } if (ttyvp != NULL) { sx_xunlock(&proctree_lock); if (vn_lock(ttyvp, LK_EXCLUSIVE) == 0) { VOP_REVOKE(ttyvp, REVOKEALL); VOP_UNLOCK(ttyvp); } devfs_ctty_unref(ttyvp); sx_xlock(&proctree_lock); } } fixjobc_kill(p); } /* * A process group has become orphaned, mark it as such for signal * delivery code. If there are any stopped processes in the group, * hang-up all process in that group. */ static void orphanpg(struct pgrp *pg) { struct proc *p; PGRP_LOCK_ASSERT(pg, MA_OWNED); pg->pg_flags |= PGRP_ORPHANED; LIST_FOREACH(p, &pg->pg_members, p_pglist) { PROC_LOCK(p); if (P_SHOULDSTOP(p) == P_STOPPED_SIG) { PROC_UNLOCK(p); LIST_FOREACH(p, &pg->pg_members, p_pglist) { PROC_LOCK(p); kern_psignal(p, SIGHUP); kern_psignal(p, SIGCONT); PROC_UNLOCK(p); } return; } PROC_UNLOCK(p); } } void sess_hold(struct session *s) { refcount_acquire(&s->s_count); } void sess_release(struct session *s) { if (refcount_release(&s->s_count)) { if (s->s_ttyp != NULL) { tty_lock(s->s_ttyp); tty_rel_sess(s->s_ttyp, s); } proc_id_clear(PROC_ID_SESSION, s->s_sid); mtx_destroy(&s->s_mtx); free(s, M_SESSION); } } #ifdef DDB static void db_print_pgrp_one(struct pgrp *pgrp, struct proc *p) { db_printf( " pid %d at %p pr %d pgrp %p e %d jc %d\n", p->p_pid, p, p->p_pptr == NULL ? -1 : p->p_pptr->p_pid, p->p_pgrp, (p->p_treeflag & P_TREE_GRPEXITED) != 0, p->p_pptr == NULL ? 0 : isjobproc(p->p_pptr, pgrp)); } DB_SHOW_COMMAND_FLAGS(pgrpdump, pgrpdump, DB_CMD_MEMSAFE) { struct pgrp *pgrp; struct proc *p; int i; for (i = 0; i <= pgrphash; i++) { if (!LIST_EMPTY(&pgrphashtbl[i])) { db_printf("indx %d\n", i); LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) { db_printf( " pgrp %p, pgid %d, sess %p, sesscnt %d, mem %p\n", pgrp, (int)pgrp->pg_id, pgrp->pg_session, pgrp->pg_session->s_count, LIST_FIRST(&pgrp->pg_members)); LIST_FOREACH(p, &pgrp->pg_members, p_pglist) db_print_pgrp_one(pgrp, p); } } } } #endif /* DDB */ /* * Calculate the kinfo_proc members which contain process-wide * informations. * Must be called with the target process locked. */ static void fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp) { struct thread *td; PROC_LOCK_ASSERT(p, MA_OWNED); kp->ki_estcpu = 0; kp->ki_pctcpu = 0; FOREACH_THREAD_IN_PROC(p, td) { thread_lock(td); kp->ki_pctcpu += sched_pctcpu(td); kp->ki_estcpu += sched_estcpu(td); thread_unlock(td); } } /* * Fill in any information that is common to all threads in the process. * Must be called with the target process locked. */ static void fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp) { struct thread *td0; struct ucred *cred; struct sigacts *ps; struct timeval boottime; PROC_LOCK_ASSERT(p, MA_OWNED); kp->ki_structsize = sizeof(*kp); kp->ki_paddr = p; kp->ki_addr =/* p->p_addr; */0; /* XXX */ kp->ki_args = p->p_args; kp->ki_textvp = p->p_textvp; #ifdef KTRACE kp->ki_tracep = ktr_get_tracevp(p, false); kp->ki_traceflag = p->p_traceflag; #endif kp->ki_fd = p->p_fd; kp->ki_pd = p->p_pd; kp->ki_vmspace = p->p_vmspace; kp->ki_flag = p->p_flag; kp->ki_flag2 = p->p_flag2; cred = p->p_ucred; if (cred) { kp->ki_uid = cred->cr_uid; kp->ki_ruid = cred->cr_ruid; kp->ki_svuid = cred->cr_svuid; kp->ki_cr_flags = 0; if (cred->cr_flags & CRED_FLAG_CAPMODE) kp->ki_cr_flags |= KI_CRF_CAPABILITY_MODE; /* XXX bde doesn't like KI_NGROUPS */ if (cred->cr_ngroups > KI_NGROUPS) { kp->ki_ngroups = KI_NGROUPS; kp->ki_cr_flags |= KI_CRF_GRP_OVERFLOW; } else kp->ki_ngroups = cred->cr_ngroups; bcopy(cred->cr_groups, kp->ki_groups, kp->ki_ngroups * sizeof(gid_t)); kp->ki_rgid = cred->cr_rgid; kp->ki_svgid = cred->cr_svgid; /* If jailed(cred), emulate the old P_JAILED flag. */ if (jailed(cred)) { kp->ki_flag |= P_JAILED; /* If inside the jail, use 0 as a jail ID. */ if (cred->cr_prison != curthread->td_ucred->cr_prison) kp->ki_jid = cred->cr_prison->pr_id; } strlcpy(kp->ki_loginclass, cred->cr_loginclass->lc_name, sizeof(kp->ki_loginclass)); } ps = p->p_sigacts; if (ps) { mtx_lock(&ps->ps_mtx); kp->ki_sigignore = ps->ps_sigignore; kp->ki_sigcatch = ps->ps_sigcatch; mtx_unlock(&ps->ps_mtx); } if (p->p_state != PRS_NEW && p->p_state != PRS_ZOMBIE && p->p_vmspace != NULL) { struct vmspace *vm = p->p_vmspace; kp->ki_size = vm->vm_map.size; kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/ FOREACH_THREAD_IN_PROC(p, td0) kp->ki_rssize += td0->td_kstack_pages; kp->ki_swrss = vm->vm_swrss; kp->ki_tsize = vm->vm_tsize; kp->ki_dsize = vm->vm_dsize; kp->ki_ssize = vm->vm_ssize; } else if (p->p_state == PRS_ZOMBIE) kp->ki_stat = SZOMB; kp->ki_sflag = PS_INMEM; /* Calculate legacy swtime as seconds since 'swtick'. */ kp->ki_swtime = (ticks - p->p_swtick) / hz; kp->ki_pid = p->p_pid; kp->ki_nice = p->p_nice; kp->ki_fibnum = p->p_fibnum; kp->ki_start = p->p_stats->p_start; getboottime(&boottime); timevaladd(&kp->ki_start, &boottime); PROC_STATLOCK(p); rufetch(p, &kp->ki_rusage); kp->ki_runtime = cputick2usec(p->p_rux.rux_runtime); calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime); PROC_STATUNLOCK(p); calccru(p, &kp->ki_childutime, &kp->ki_childstime); /* Some callers want child times in a single value. */ kp->ki_childtime = kp->ki_childstime; timevaladd(&kp->ki_childtime, &kp->ki_childutime); FOREACH_THREAD_IN_PROC(p, td0) kp->ki_cow += td0->td_cow; if (p->p_comm[0] != '\0') strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm)); if (p->p_sysent && p->p_sysent->sv_name != NULL && p->p_sysent->sv_name[0] != '\0') strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul)); kp->ki_siglist = p->p_siglist; kp->ki_xstat = KW_EXITCODE(p->p_xexit, p->p_xsig); kp->ki_acflag = p->p_acflag; kp->ki_lock = p->p_lock; if (p->p_pptr) { kp->ki_ppid = p->p_oppid; if (p->p_flag & P_TRACED) kp->ki_tracer = p->p_pptr->p_pid; } } /* * Fill job-related process information. */ static void fill_kinfo_proc_pgrp(struct proc *p, struct kinfo_proc *kp) { struct tty *tp; struct session *sp; struct pgrp *pgrp; sx_assert(&proctree_lock, SA_LOCKED); PROC_LOCK_ASSERT(p, MA_OWNED); pgrp = p->p_pgrp; if (pgrp == NULL) return; kp->ki_pgid = pgrp->pg_id; kp->ki_jobc = pgrp_calc_jobc(pgrp); sp = pgrp->pg_session; tp = NULL; if (sp != NULL) { kp->ki_sid = sp->s_sid; SESS_LOCK(sp); strlcpy(kp->ki_login, sp->s_login, sizeof(kp->ki_login)); if (sp->s_ttyvp) kp->ki_kiflag |= KI_CTTY; if (SESS_LEADER(p)) kp->ki_kiflag |= KI_SLEADER; tp = sp->s_ttyp; SESS_UNLOCK(sp); } if ((p->p_flag & P_CONTROLT) && tp != NULL) { kp->ki_tdev = tty_udev(tp); kp->ki_tdev_freebsd11 = kp->ki_tdev; /* truncate */ kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID; if (tp->t_session) kp->ki_tsid = tp->t_session->s_sid; } else { kp->ki_tdev = NODEV; kp->ki_tdev_freebsd11 = kp->ki_tdev; /* truncate */ } } /* * Fill in information that is thread specific. Must be called with * target process locked. If 'preferthread' is set, overwrite certain * process-related fields that are maintained for both threads and * processes. */ static void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, int preferthread) { struct proc *p; p = td->td_proc; kp->ki_tdaddr = td; PROC_LOCK_ASSERT(p, MA_OWNED); if (preferthread) PROC_STATLOCK(p); thread_lock(td); if (td->td_wmesg != NULL) strlcpy(kp->ki_wmesg, td->td_wmesg, sizeof(kp->ki_wmesg)); else bzero(kp->ki_wmesg, sizeof(kp->ki_wmesg)); if (strlcpy(kp->ki_tdname, td->td_name, sizeof(kp->ki_tdname)) >= sizeof(kp->ki_tdname)) { strlcpy(kp->ki_moretdname, td->td_name + sizeof(kp->ki_tdname) - 1, sizeof(kp->ki_moretdname)); } else { bzero(kp->ki_moretdname, sizeof(kp->ki_moretdname)); } if (TD_ON_LOCK(td)) { kp->ki_kiflag |= KI_LOCKBLOCK; strlcpy(kp->ki_lockname, td->td_lockname, sizeof(kp->ki_lockname)); } else { kp->ki_kiflag &= ~KI_LOCKBLOCK; bzero(kp->ki_lockname, sizeof(kp->ki_lockname)); } if (p->p_state == PRS_NORMAL) { /* approximate. */ if (TD_ON_RUNQ(td) || TD_CAN_RUN(td) || TD_IS_RUNNING(td)) { kp->ki_stat = SRUN; } else if (P_SHOULDSTOP(p)) { kp->ki_stat = SSTOP; } else if (TD_IS_SLEEPING(td)) { kp->ki_stat = SSLEEP; } else if (TD_ON_LOCK(td)) { kp->ki_stat = SLOCK; } else { kp->ki_stat = SWAIT; } } else if (p->p_state == PRS_ZOMBIE) { kp->ki_stat = SZOMB; } else { kp->ki_stat = SIDL; } /* Things in the thread */ kp->ki_wchan = td->td_wchan; kp->ki_pri.pri_level = td->td_priority; kp->ki_pri.pri_native = td->td_base_pri; /* * Note: legacy fields; clamp at the old NOCPU value and/or * the maximum u_char CPU value. */ if (td->td_lastcpu == NOCPU) kp->ki_lastcpu_old = NOCPU_OLD; else if (td->td_lastcpu > MAXCPU_OLD) kp->ki_lastcpu_old = MAXCPU_OLD; else kp->ki_lastcpu_old = td->td_lastcpu; if (td->td_oncpu == NOCPU) kp->ki_oncpu_old = NOCPU_OLD; else if (td->td_oncpu > MAXCPU_OLD) kp->ki_oncpu_old = MAXCPU_OLD; else kp->ki_oncpu_old = td->td_oncpu; kp->ki_lastcpu = td->td_lastcpu; kp->ki_oncpu = td->td_oncpu; kp->ki_tdflags = td->td_flags; kp->ki_tid = td->td_tid; kp->ki_numthreads = p->p_numthreads; kp->ki_pcb = td->td_pcb; kp->ki_kstack = (void *)td->td_kstack; kp->ki_slptime = (ticks - td->td_slptick) / hz; kp->ki_pri.pri_class = td->td_pri_class; kp->ki_pri.pri_user = td->td_user_pri; if (preferthread) { rufetchtd(td, &kp->ki_rusage); kp->ki_runtime = cputick2usec(td->td_rux.rux_runtime); kp->ki_pctcpu = sched_pctcpu(td); kp->ki_estcpu = sched_estcpu(td); kp->ki_cow = td->td_cow; } /* We can't get this anymore but ps etc never used it anyway. */ kp->ki_rqindex = 0; if (preferthread) kp->ki_siglist = td->td_siglist; kp->ki_sigmask = td->td_sigmask; thread_unlock(td); if (preferthread) PROC_STATUNLOCK(p); } /* * Fill in a kinfo_proc structure for the specified process. * Must be called with the target process locked. */ void fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp) { MPASS(FIRST_THREAD_IN_PROC(p) != NULL); bzero(kp, sizeof(*kp)); fill_kinfo_proc_pgrp(p,kp); fill_kinfo_proc_only(p, kp); fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp, 0); fill_kinfo_aggregate(p, kp); } struct pstats * pstats_alloc(void) { return (malloc(sizeof(struct pstats), M_SUBPROC, M_ZERO|M_WAITOK)); } /* * Copy parts of p_stats; zero the rest of p_stats (statistics). */ void pstats_fork(struct pstats *src, struct pstats *dst) { bzero(&dst->pstat_startzero, __rangeof(struct pstats, pstat_startzero, pstat_endzero)); bcopy(&src->pstat_startcopy, &dst->pstat_startcopy, __rangeof(struct pstats, pstat_startcopy, pstat_endcopy)); } void pstats_free(struct pstats *ps) { free(ps, M_SUBPROC); } #ifdef COMPAT_FREEBSD32 /* * This function is typically used to copy out the kernel address, so * it can be replaced by assignment of zero. */ static inline uint32_t ptr32_trim(const void *ptr) { uintptr_t uptr; uptr = (uintptr_t)ptr; return ((uptr > UINT_MAX) ? 0 : uptr); } #define PTRTRIM_CP(src,dst,fld) \ do { (dst).fld = ptr32_trim((src).fld); } while (0) static void freebsd32_kinfo_proc_out(const struct kinfo_proc *ki, struct kinfo_proc32 *ki32) { int i; bzero(ki32, sizeof(struct kinfo_proc32)); ki32->ki_structsize = sizeof(struct kinfo_proc32); CP(*ki, *ki32, ki_layout); PTRTRIM_CP(*ki, *ki32, ki_args); PTRTRIM_CP(*ki, *ki32, ki_paddr); PTRTRIM_CP(*ki, *ki32, ki_addr); PTRTRIM_CP(*ki, *ki32, ki_tracep); PTRTRIM_CP(*ki, *ki32, ki_textvp); PTRTRIM_CP(*ki, *ki32, ki_fd); PTRTRIM_CP(*ki, *ki32, ki_vmspace); PTRTRIM_CP(*ki, *ki32, ki_wchan); CP(*ki, *ki32, ki_pid); CP(*ki, *ki32, ki_ppid); CP(*ki, *ki32, ki_pgid); CP(*ki, *ki32, ki_tpgid); CP(*ki, *ki32, ki_sid); CP(*ki, *ki32, ki_tsid); CP(*ki, *ki32, ki_jobc); CP(*ki, *ki32, ki_tdev); CP(*ki, *ki32, ki_tdev_freebsd11); CP(*ki, *ki32, ki_siglist); CP(*ki, *ki32, ki_sigmask); CP(*ki, *ki32, ki_sigignore); CP(*ki, *ki32, ki_sigcatch); CP(*ki, *ki32, ki_uid); CP(*ki, *ki32, ki_ruid); CP(*ki, *ki32, ki_svuid); CP(*ki, *ki32, ki_rgid); CP(*ki, *ki32, ki_svgid); CP(*ki, *ki32, ki_ngroups); for (i = 0; i < KI_NGROUPS; i++) CP(*ki, *ki32, ki_groups[i]); CP(*ki, *ki32, ki_size); CP(*ki, *ki32, ki_rssize); CP(*ki, *ki32, ki_swrss); CP(*ki, *ki32, ki_tsize); CP(*ki, *ki32, ki_dsize); CP(*ki, *ki32, ki_ssize); CP(*ki, *ki32, ki_xstat); CP(*ki, *ki32, ki_acflag); CP(*ki, *ki32, ki_pctcpu); CP(*ki, *ki32, ki_estcpu); CP(*ki, *ki32, ki_slptime); CP(*ki, *ki32, ki_swtime); CP(*ki, *ki32, ki_cow); CP(*ki, *ki32, ki_runtime); TV_CP(*ki, *ki32, ki_start); TV_CP(*ki, *ki32, ki_childtime); CP(*ki, *ki32, ki_flag); CP(*ki, *ki32, ki_kiflag); CP(*ki, *ki32, ki_traceflag); CP(*ki, *ki32, ki_stat); CP(*ki, *ki32, ki_nice); CP(*ki, *ki32, ki_lock); CP(*ki, *ki32, ki_rqindex); CP(*ki, *ki32, ki_oncpu); CP(*ki, *ki32, ki_lastcpu); /* XXX TODO: wrap cpu value as appropriate */ CP(*ki, *ki32, ki_oncpu_old); CP(*ki, *ki32, ki_lastcpu_old); bcopy(ki->ki_tdname, ki32->ki_tdname, TDNAMLEN + 1); bcopy(ki->ki_wmesg, ki32->ki_wmesg, WMESGLEN + 1); bcopy(ki->ki_login, ki32->ki_login, LOGNAMELEN + 1); bcopy(ki->ki_lockname, ki32->ki_lockname, LOCKNAMELEN + 1); bcopy(ki->ki_comm, ki32->ki_comm, COMMLEN + 1); bcopy(ki->ki_emul, ki32->ki_emul, KI_EMULNAMELEN + 1); bcopy(ki->ki_loginclass, ki32->ki_loginclass, LOGINCLASSLEN + 1); bcopy(ki->ki_moretdname, ki32->ki_moretdname, MAXCOMLEN - TDNAMLEN + 1); CP(*ki, *ki32, ki_tracer); CP(*ki, *ki32, ki_flag2); CP(*ki, *ki32, ki_fibnum); CP(*ki, *ki32, ki_cr_flags); CP(*ki, *ki32, ki_jid); CP(*ki, *ki32, ki_numthreads); CP(*ki, *ki32, ki_tid); CP(*ki, *ki32, ki_pri); freebsd32_rusage_out(&ki->ki_rusage, &ki32->ki_rusage); freebsd32_rusage_out(&ki->ki_rusage_ch, &ki32->ki_rusage_ch); PTRTRIM_CP(*ki, *ki32, ki_pcb); PTRTRIM_CP(*ki, *ki32, ki_kstack); PTRTRIM_CP(*ki, *ki32, ki_udata); PTRTRIM_CP(*ki, *ki32, ki_tdaddr); CP(*ki, *ki32, ki_sflag); CP(*ki, *ki32, ki_tdflags); } #endif static ssize_t kern_proc_out_size(struct proc *p, int flags) { ssize_t size = 0; PROC_LOCK_ASSERT(p, MA_OWNED); if ((flags & KERN_PROC_NOTHREADS) != 0) { #ifdef COMPAT_FREEBSD32 if ((flags & KERN_PROC_MASK32) != 0) { size += sizeof(struct kinfo_proc32); } else #endif size += sizeof(struct kinfo_proc); } else { #ifdef COMPAT_FREEBSD32 if ((flags & KERN_PROC_MASK32) != 0) size += sizeof(struct kinfo_proc32) * p->p_numthreads; else #endif size += sizeof(struct kinfo_proc) * p->p_numthreads; } PROC_UNLOCK(p); return (size); } int kern_proc_out(struct proc *p, struct sbuf *sb, int flags) { struct thread *td; struct kinfo_proc ki; #ifdef COMPAT_FREEBSD32 struct kinfo_proc32 ki32; #endif int error; PROC_LOCK_ASSERT(p, MA_OWNED); MPASS(FIRST_THREAD_IN_PROC(p) != NULL); error = 0; fill_kinfo_proc(p, &ki); if ((flags & KERN_PROC_NOTHREADS) != 0) { #ifdef COMPAT_FREEBSD32 if ((flags & KERN_PROC_MASK32) != 0) { freebsd32_kinfo_proc_out(&ki, &ki32); if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0) error = ENOMEM; } else #endif if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0) error = ENOMEM; } else { FOREACH_THREAD_IN_PROC(p, td) { fill_kinfo_thread(td, &ki, 1); #ifdef COMPAT_FREEBSD32 if ((flags & KERN_PROC_MASK32) != 0) { freebsd32_kinfo_proc_out(&ki, &ki32); if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0) error = ENOMEM; } else #endif if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0) error = ENOMEM; if (error != 0) break; } } PROC_UNLOCK(p); return (error); } static int sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags) { struct sbuf sb; struct kinfo_proc ki; int error, error2; if (req->oldptr == NULL) return (SYSCTL_OUT(req, 0, kern_proc_out_size(p, flags))); sbuf_new_for_sysctl(&sb, (char *)&ki, sizeof(ki), req); sbuf_clear_flags(&sb, SBUF_INCLUDENUL); error = kern_proc_out(p, &sb, flags); error2 = sbuf_finish(&sb); sbuf_delete(&sb); if (error != 0) return (error); else if (error2 != 0) return (error2); return (0); } int proc_iterate(int (*cb)(struct proc *, void *), void *cbarg) { struct proc *p; int error, i, j; for (i = 0; i < pidhashlock + 1; i++) { sx_slock(&proctree_lock); sx_slock(&pidhashtbl_lock[i]); for (j = i; j <= pidhash; j += pidhashlock + 1) { LIST_FOREACH(p, &pidhashtbl[j], p_hash) { if (p->p_state == PRS_NEW) continue; error = cb(p, cbarg); PROC_LOCK_ASSERT(p, MA_NOTOWNED); if (error != 0) { sx_sunlock(&pidhashtbl_lock[i]); sx_sunlock(&proctree_lock); return (error); } } } sx_sunlock(&pidhashtbl_lock[i]); sx_sunlock(&proctree_lock); } return (0); } struct kern_proc_out_args { struct sysctl_req *req; int flags; int oid_number; int *name; }; static int sysctl_kern_proc_iterate(struct proc *p, void *origarg) { struct kern_proc_out_args *arg = origarg; int *name = arg->name; int oid_number = arg->oid_number; int flags = arg->flags; struct sysctl_req *req = arg->req; int error = 0; PROC_LOCK(p); KASSERT(p->p_ucred != NULL, ("process credential is NULL for non-NEW proc")); /* * Show a user only appropriate processes. */ if (p_cansee(curthread, p)) goto skip; /* * TODO - make more efficient (see notes below). * do by session. */ switch (oid_number) { case KERN_PROC_GID: if (p->p_ucred->cr_gid != (gid_t)name[0]) goto skip; break; case KERN_PROC_PGRP: /* could do this by traversing pgrp */ if (p->p_pgrp == NULL || p->p_pgrp->pg_id != (pid_t)name[0]) goto skip; break; case KERN_PROC_RGID: if (p->p_ucred->cr_rgid != (gid_t)name[0]) goto skip; break; case KERN_PROC_SESSION: if (p->p_session == NULL || p->p_session->s_sid != (pid_t)name[0]) goto skip; break; case KERN_PROC_TTY: if ((p->p_flag & P_CONTROLT) == 0 || p->p_session == NULL) goto skip; /* XXX proctree_lock */ SESS_LOCK(p->p_session); if (p->p_session->s_ttyp == NULL || tty_udev(p->p_session->s_ttyp) != (dev_t)name[0]) { SESS_UNLOCK(p->p_session); goto skip; } SESS_UNLOCK(p->p_session); break; case KERN_PROC_UID: if (p->p_ucred->cr_uid != (uid_t)name[0]) goto skip; break; case KERN_PROC_RUID: if (p->p_ucred->cr_ruid != (uid_t)name[0]) goto skip; break; case KERN_PROC_PROC: break; default: break; } error = sysctl_out_proc(p, req, flags); PROC_LOCK_ASSERT(p, MA_NOTOWNED); return (error); skip: PROC_UNLOCK(p); return (0); } static int sysctl_kern_proc(SYSCTL_HANDLER_ARGS) { struct kern_proc_out_args iterarg; int *name = (int *)arg1; u_int namelen = arg2; struct proc *p; int flags, oid_number; int error = 0; oid_number = oidp->oid_number; if (oid_number != KERN_PROC_ALL && (oid_number & KERN_PROC_INC_THREAD) == 0) flags = KERN_PROC_NOTHREADS; else { flags = 0; oid_number &= ~KERN_PROC_INC_THREAD; } #ifdef COMPAT_FREEBSD32 if (req->flags & SCTL_MASK32) flags |= KERN_PROC_MASK32; #endif if (oid_number == KERN_PROC_PID) { if (namelen != 1) return (EINVAL); error = sysctl_wire_old_buffer(req, 0); if (error) return (error); sx_slock(&proctree_lock); error = pget((pid_t)name[0], PGET_CANSEE, &p); if (error == 0) error = sysctl_out_proc(p, req, flags); sx_sunlock(&proctree_lock); return (error); } switch (oid_number) { case KERN_PROC_ALL: if (namelen != 0) return (EINVAL); break; case KERN_PROC_PROC: if (namelen != 0 && namelen != 1) return (EINVAL); break; default: if (namelen != 1) return (EINVAL); break; } if (req->oldptr == NULL) { /* overestimate by 5 procs */ error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5); if (error) return (error); } else { error = sysctl_wire_old_buffer(req, 0); if (error != 0) return (error); } iterarg.flags = flags; iterarg.oid_number = oid_number; iterarg.req = req; iterarg.name = name; error = proc_iterate(sysctl_kern_proc_iterate, &iterarg); return (error); } struct pargs * pargs_alloc(int len) { struct pargs *pa; pa = malloc(sizeof(struct pargs) + len, M_PARGS, M_WAITOK); refcount_init(&pa->ar_ref, 1); pa->ar_length = len; return (pa); } static void pargs_free(struct pargs *pa) { free(pa, M_PARGS); } void pargs_hold(struct pargs *pa) { if (pa == NULL) return; refcount_acquire(&pa->ar_ref); } void pargs_drop(struct pargs *pa) { if (pa == NULL) return; if (refcount_release(&pa->ar_ref)) pargs_free(pa); } static int proc_read_string(struct thread *td, struct proc *p, const char *sptr, char *buf, size_t len) { ssize_t n; /* * This may return a short read if the string is shorter than the chunk * and is aligned at the end of the page, and the following page is not * mapped. */ n = proc_readmem(td, p, (vm_offset_t)sptr, buf, len); if (n <= 0) return (ENOMEM); return (0); } #define PROC_AUXV_MAX 256 /* Safety limit on auxv size. */ enum proc_vector_type { PROC_ARG, PROC_ENV, PROC_AUX, }; #ifdef COMPAT_FREEBSD32 static int get_proc_vector32(struct thread *td, struct proc *p, char ***proc_vectorp, size_t *vsizep, enum proc_vector_type type) { struct freebsd32_ps_strings pss; Elf32_Auxinfo aux; vm_offset_t vptr, ptr; uint32_t *proc_vector32; char **proc_vector; size_t vsize, size; int i, error; error = 0; if (proc_readmem(td, p, PROC_PS_STRINGS(p), &pss, sizeof(pss)) != sizeof(pss)) return (ENOMEM); switch (type) { case PROC_ARG: vptr = (vm_offset_t)PTRIN(pss.ps_argvstr); vsize = pss.ps_nargvstr; if (vsize > ARG_MAX) return (ENOEXEC); size = vsize * sizeof(int32_t); break; case PROC_ENV: vptr = (vm_offset_t)PTRIN(pss.ps_envstr); vsize = pss.ps_nenvstr; if (vsize > ARG_MAX) return (ENOEXEC); size = vsize * sizeof(int32_t); break; case PROC_AUX: vptr = (vm_offset_t)PTRIN(pss.ps_envstr) + (pss.ps_nenvstr + 1) * sizeof(int32_t); if (vptr % 4 != 0) return (ENOEXEC); for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) { if (proc_readmem(td, p, ptr, &aux, sizeof(aux)) != sizeof(aux)) return (ENOMEM); if (aux.a_type == AT_NULL) break; ptr += sizeof(aux); } if (aux.a_type != AT_NULL) return (ENOEXEC); vsize = i + 1; size = vsize * sizeof(aux); break; default: KASSERT(0, ("Wrong proc vector type: %d", type)); return (EINVAL); } proc_vector32 = malloc(size, M_TEMP, M_WAITOK); if (proc_readmem(td, p, vptr, proc_vector32, size) != size) { error = ENOMEM; goto done; } if (type == PROC_AUX) { *proc_vectorp = (char **)proc_vector32; *vsizep = vsize; return (0); } proc_vector = malloc(vsize * sizeof(char *), M_TEMP, M_WAITOK); for (i = 0; i < (int)vsize; i++) proc_vector[i] = PTRIN(proc_vector32[i]); *proc_vectorp = proc_vector; *vsizep = vsize; done: free(proc_vector32, M_TEMP); return (error); } #endif static int get_proc_vector(struct thread *td, struct proc *p, char ***proc_vectorp, size_t *vsizep, enum proc_vector_type type) { struct ps_strings pss; Elf_Auxinfo aux; vm_offset_t vptr, ptr; char **proc_vector; size_t vsize, size; int i; #ifdef COMPAT_FREEBSD32 if (SV_PROC_FLAG(p, SV_ILP32) != 0) return (get_proc_vector32(td, p, proc_vectorp, vsizep, type)); #endif if (proc_readmem(td, p, PROC_PS_STRINGS(p), &pss, sizeof(pss)) != sizeof(pss)) return (ENOMEM); switch (type) { case PROC_ARG: vptr = (vm_offset_t)pss.ps_argvstr; vsize = pss.ps_nargvstr; if (vsize > ARG_MAX) return (ENOEXEC); size = vsize * sizeof(char *); break; case PROC_ENV: vptr = (vm_offset_t)pss.ps_envstr; vsize = pss.ps_nenvstr; if (vsize > ARG_MAX) return (ENOEXEC); size = vsize * sizeof(char *); break; case PROC_AUX: /* * The aux array is just above env array on the stack. Check * that the address is naturally aligned. */ vptr = (vm_offset_t)pss.ps_envstr + (pss.ps_nenvstr + 1) * sizeof(char *); #if __ELF_WORD_SIZE == 64 if (vptr % sizeof(uint64_t) != 0) #else if (vptr % sizeof(uint32_t) != 0) #endif return (ENOEXEC); /* * We count the array size reading the aux vectors from the * stack until AT_NULL vector is returned. So (to keep the code * simple) we read the process stack twice: the first time here * to find the size and the second time when copying the vectors * to the allocated proc_vector. */ for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) { if (proc_readmem(td, p, ptr, &aux, sizeof(aux)) != sizeof(aux)) return (ENOMEM); if (aux.a_type == AT_NULL) break; ptr += sizeof(aux); } /* * If the PROC_AUXV_MAX entries are iterated over, and we have * not reached AT_NULL, it is most likely we are reading wrong * data: either the process doesn't have auxv array or data has * been modified. Return the error in this case. */ if (aux.a_type != AT_NULL) return (ENOEXEC); vsize = i + 1; size = vsize * sizeof(aux); break; default: KASSERT(0, ("Wrong proc vector type: %d", type)); return (EINVAL); /* In case we are built without INVARIANTS. */ } proc_vector = malloc(size, M_TEMP, M_WAITOK); if (proc_readmem(td, p, vptr, proc_vector, size) != size) { free(proc_vector, M_TEMP); return (ENOMEM); } *proc_vectorp = proc_vector; *vsizep = vsize; return (0); } #define GET_PS_STRINGS_CHUNK_SZ 256 /* Chunk size (bytes) for ps_strings operations. */ static int get_ps_strings(struct thread *td, struct proc *p, struct sbuf *sb, enum proc_vector_type type) { size_t done, len, nchr, vsize; int error, i; char **proc_vector, *sptr; char pss_string[GET_PS_STRINGS_CHUNK_SZ]; PROC_ASSERT_HELD(p); /* * We are not going to read more than 2 * (PATH_MAX + ARG_MAX) bytes. */ nchr = 2 * (PATH_MAX + ARG_MAX); error = get_proc_vector(td, p, &proc_vector, &vsize, type); if (error != 0) return (error); for (done = 0, i = 0; i < (int)vsize && done < nchr; i++) { /* * The program may have scribbled into its argv array, e.g. to * remove some arguments. If that has happened, break out * before trying to read from NULL. */ if (proc_vector[i] == NULL) break; for (sptr = proc_vector[i]; ; sptr += GET_PS_STRINGS_CHUNK_SZ) { error = proc_read_string(td, p, sptr, pss_string, sizeof(pss_string)); if (error != 0) goto done; len = strnlen(pss_string, GET_PS_STRINGS_CHUNK_SZ); if (done + len >= nchr) len = nchr - done - 1; sbuf_bcat(sb, pss_string, len); if (len != GET_PS_STRINGS_CHUNK_SZ) break; done += GET_PS_STRINGS_CHUNK_SZ; } sbuf_bcat(sb, "", 1); done += len + 1; } done: free(proc_vector, M_TEMP); return (error); } int proc_getargv(struct thread *td, struct proc *p, struct sbuf *sb) { return (get_ps_strings(curthread, p, sb, PROC_ARG)); } int proc_getenvv(struct thread *td, struct proc *p, struct sbuf *sb) { return (get_ps_strings(curthread, p, sb, PROC_ENV)); } int proc_getauxv(struct thread *td, struct proc *p, struct sbuf *sb) { size_t vsize, size; char **auxv; int error; error = get_proc_vector(td, p, &auxv, &vsize, PROC_AUX); if (error == 0) { #ifdef COMPAT_FREEBSD32 if (SV_PROC_FLAG(p, SV_ILP32) != 0) size = vsize * sizeof(Elf32_Auxinfo); else #endif size = vsize * sizeof(Elf_Auxinfo); if (sbuf_bcat(sb, auxv, size) != 0) error = ENOMEM; free(auxv, M_TEMP); } return (error); } /* * This sysctl allows a process to retrieve the argument list or process * title for another process without groping around in the address space * of the other process. It also allow a process to set its own "process * title to a string of its own choice. */ static int sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS) { int *name = (int *)arg1; u_int namelen = arg2; struct pargs *newpa, *pa; struct proc *p; struct sbuf sb; int flags, error = 0, error2; pid_t pid; if (namelen != 1) return (EINVAL); p = curproc; pid = (pid_t)name[0]; if (pid == -1) { pid = p->p_pid; } /* * If the query is for this process and it is single-threaded, there * is nobody to modify pargs, thus we can just read. */ if (pid == p->p_pid && p->p_numthreads == 1 && req->newptr == NULL && (pa = p->p_args) != NULL) return (SYSCTL_OUT(req, pa->ar_args, pa->ar_length)); flags = PGET_CANSEE; if (req->newptr != NULL) flags |= PGET_ISCURRENT; error = pget(pid, flags, &p); if (error) return (error); pa = p->p_args; if (pa != NULL) { pargs_hold(pa); PROC_UNLOCK(p); error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length); pargs_drop(pa); } else if ((p->p_flag & (P_WEXIT | P_SYSTEM)) == 0) { _PHOLD(p); PROC_UNLOCK(p); sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); sbuf_clear_flags(&sb, SBUF_INCLUDENUL); error = proc_getargv(curthread, p, &sb); error2 = sbuf_finish(&sb); PRELE(p); sbuf_delete(&sb); if (error == 0 && error2 != 0) error = error2; } else { PROC_UNLOCK(p); } if (error != 0 || req->newptr == NULL) return (error); if (req->newlen > ps_arg_cache_limit - sizeof(struct pargs)) return (ENOMEM); if (req->newlen == 0) { /* * Clear the argument pointer, so that we'll fetch arguments * with proc_getargv() until further notice. */ newpa = NULL; } else { newpa = pargs_alloc(req->newlen); error = SYSCTL_IN(req, newpa->ar_args, req->newlen); if (error != 0) { pargs_free(newpa); return (error); } } PROC_LOCK(p); pa = p->p_args; p->p_args = newpa; PROC_UNLOCK(p); pargs_drop(pa); return (0); } /* * This sysctl allows a process to retrieve environment of another process. */ static int sysctl_kern_proc_env(SYSCTL_HANDLER_ARGS) { int *name = (int *)arg1; u_int namelen = arg2; struct proc *p; struct sbuf sb; int error, error2; if (namelen != 1) return (EINVAL); error = pget((pid_t)name[0], PGET_WANTREAD, &p); if (error != 0) return (error); if ((p->p_flag & P_SYSTEM) != 0) { PRELE(p); return (0); } sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); sbuf_clear_flags(&sb, SBUF_INCLUDENUL); error = proc_getenvv(curthread, p, &sb); error2 = sbuf_finish(&sb); PRELE(p); sbuf_delete(&sb); return (error != 0 ? error : error2); } /* * This sysctl allows a process to retrieve ELF auxiliary vector of * another process. */ static int sysctl_kern_proc_auxv(SYSCTL_HANDLER_ARGS) { int *name = (int *)arg1; u_int namelen = arg2; struct proc *p; struct sbuf sb; int error, error2; if (namelen != 1) return (EINVAL); error = pget((pid_t)name[0], PGET_WANTREAD, &p); if (error != 0) return (error); if ((p->p_flag & P_SYSTEM) != 0) { PRELE(p); return (0); } sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); sbuf_clear_flags(&sb, SBUF_INCLUDENUL); error = proc_getauxv(curthread, p, &sb); error2 = sbuf_finish(&sb); PRELE(p); sbuf_delete(&sb); return (error != 0 ? error : error2); } /* * Look up the canonical executable path running in the specified process. * It tries to return the same hardlink name as was used for execve(2). * This allows the programs that modify their behavior based on their progname, * to operate correctly. * * Result is returned in retbuf, it must not be freed, similar to vn_fullpath() * calling conventions. * binname is a pointer to temporary string buffer of length MAXPATHLEN, * allocated and freed by caller. * freebuf should be freed by caller, from the M_TEMP malloc type. */ int proc_get_binpath(struct proc *p, char *binname, char **retbuf, char **freebuf) { struct nameidata nd; struct vnode *vp, *dvp; size_t freepath_size; int error; bool do_fullpath; PROC_LOCK_ASSERT(p, MA_OWNED); vp = p->p_textvp; if (vp == NULL) { PROC_UNLOCK(p); *retbuf = ""; *freebuf = NULL; return (0); } vref(vp); dvp = p->p_textdvp; if (dvp != NULL) vref(dvp); if (p->p_binname != NULL) strlcpy(binname, p->p_binname, MAXPATHLEN); PROC_UNLOCK(p); do_fullpath = true; *freebuf = NULL; if (dvp != NULL && binname[0] != '\0') { freepath_size = MAXPATHLEN; if (vn_fullpath_hardlink(vp, dvp, binname, strlen(binname), retbuf, freebuf, &freepath_size) == 0) { /* * Recheck the looked up path. The binary * might have been renamed or replaced, in * which case we should not report old name. */ NDINIT(&nd, LOOKUP, FOLLOW, UIO_SYSSPACE, *retbuf); error = namei(&nd); if (error == 0) { if (nd.ni_vp == vp) do_fullpath = false; vrele(nd.ni_vp); NDFREE_PNBUF(&nd); } } } if (do_fullpath) { free(*freebuf, M_TEMP); *freebuf = NULL; error = vn_fullpath(vp, retbuf, freebuf); } vrele(vp); if (dvp != NULL) vrele(dvp); return (error); } /* * This sysctl allows a process to retrieve the path of the executable for * itself or another process. */ static int sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS) { pid_t *pidp = (pid_t *)arg1; unsigned int arglen = arg2; struct proc *p; char *retbuf, *freebuf, *binname; int error; if (arglen != 1) return (EINVAL); binname = malloc(MAXPATHLEN, M_TEMP, M_WAITOK); binname[0] = '\0'; if (*pidp == -1) { /* -1 means this process */ error = 0; p = req->td->td_proc; PROC_LOCK(p); } else { error = pget(*pidp, PGET_CANSEE, &p); } if (error == 0) error = proc_get_binpath(p, binname, &retbuf, &freebuf); free(binname, M_TEMP); if (error != 0) return (error); error = SYSCTL_OUT(req, retbuf, strlen(retbuf) + 1); free(freebuf, M_TEMP); return (error); } static int sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS) { struct proc *p; char *sv_name; int *name; int namelen; int error; namelen = arg2; if (namelen != 1) return (EINVAL); name = (int *)arg1; error = pget((pid_t)name[0], PGET_CANSEE, &p); if (error != 0) return (error); sv_name = p->p_sysent->sv_name; PROC_UNLOCK(p); return (sysctl_handle_string(oidp, sv_name, 0, req)); } #ifdef KINFO_OVMENTRY_SIZE CTASSERT(sizeof(struct kinfo_ovmentry) == KINFO_OVMENTRY_SIZE); #endif #ifdef COMPAT_FREEBSD7 static int sysctl_kern_proc_ovmmap(SYSCTL_HANDLER_ARGS) { vm_map_entry_t entry, tmp_entry; unsigned int last_timestamp, namelen; char *fullpath, *freepath; struct kinfo_ovmentry *kve; struct vattr va; struct ucred *cred; int error, *name; struct vnode *vp; struct proc *p; vm_map_t map; struct vmspace *vm; namelen = arg2; if (namelen != 1) return (EINVAL); name = (int *)arg1; error = pget((pid_t)name[0], PGET_WANTREAD, &p); if (error != 0) return (error); vm = vmspace_acquire_ref(p); if (vm == NULL) { PRELE(p); return (ESRCH); } kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK); map = &vm->vm_map; vm_map_lock_read(map); VM_MAP_ENTRY_FOREACH(entry, map) { vm_object_t obj, tobj, lobj; vm_offset_t addr; if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) continue; bzero(kve, sizeof(*kve)); kve->kve_structsize = sizeof(*kve); kve->kve_private_resident = 0; obj = entry->object.vm_object; if (obj != NULL) { VM_OBJECT_RLOCK(obj); if (obj->shadow_count == 1) kve->kve_private_resident = obj->resident_page_count; } kve->kve_resident = 0; addr = entry->start; while (addr < entry->end) { if (pmap_extract(map->pmap, addr)) kve->kve_resident++; addr += PAGE_SIZE; } for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) { if (tobj != obj) { VM_OBJECT_RLOCK(tobj); kve->kve_offset += tobj->backing_object_offset; } if (lobj != obj) VM_OBJECT_RUNLOCK(lobj); lobj = tobj; } kve->kve_start = (void*)entry->start; kve->kve_end = (void*)entry->end; kve->kve_offset += (off_t)entry->offset; if (entry->protection & VM_PROT_READ) kve->kve_protection |= KVME_PROT_READ; if (entry->protection & VM_PROT_WRITE) kve->kve_protection |= KVME_PROT_WRITE; if (entry->protection & VM_PROT_EXECUTE) kve->kve_protection |= KVME_PROT_EXEC; if (entry->eflags & MAP_ENTRY_COW) kve->kve_flags |= KVME_FLAG_COW; if (entry->eflags & MAP_ENTRY_NEEDS_COPY) kve->kve_flags |= KVME_FLAG_NEEDS_COPY; if (entry->eflags & MAP_ENTRY_NOCOREDUMP) kve->kve_flags |= KVME_FLAG_NOCOREDUMP; last_timestamp = map->timestamp; vm_map_unlock_read(map); kve->kve_fileid = 0; kve->kve_fsid = 0; freepath = NULL; fullpath = ""; if (lobj) { kve->kve_type = vm_object_kvme_type(lobj, &vp); if (kve->kve_type == KVME_TYPE_MGTDEVICE) kve->kve_type = KVME_TYPE_UNKNOWN; if (vp != NULL) vref(vp); if (lobj != obj) VM_OBJECT_RUNLOCK(lobj); kve->kve_ref_count = obj->ref_count; kve->kve_shadow_count = obj->shadow_count; VM_OBJECT_RUNLOCK(obj); if (vp != NULL) { vn_fullpath(vp, &fullpath, &freepath); cred = curthread->td_ucred; vn_lock(vp, LK_SHARED | LK_RETRY); if (VOP_GETATTR(vp, &va, cred) == 0) { kve->kve_fileid = va.va_fileid; /* truncate */ kve->kve_fsid = va.va_fsid; } vput(vp); } } else { kve->kve_type = KVME_TYPE_NONE; kve->kve_ref_count = 0; kve->kve_shadow_count = 0; } strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path)); if (freepath != NULL) free(freepath, M_TEMP); error = SYSCTL_OUT(req, kve, sizeof(*kve)); vm_map_lock_read(map); if (error) break; if (last_timestamp != map->timestamp) { vm_map_lookup_entry(map, addr - 1, &tmp_entry); entry = tmp_entry; } } vm_map_unlock_read(map); vmspace_free(vm); PRELE(p); free(kve, M_TEMP); return (error); } #endif /* COMPAT_FREEBSD7 */ #ifdef KINFO_VMENTRY_SIZE CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE); #endif void kern_proc_vmmap_resident(vm_map_t map, vm_map_entry_t entry, int *resident_count, bool *super) { vm_object_t obj, tobj; vm_page_t m, m_adv; vm_offset_t addr; vm_paddr_t pa; vm_pindex_t pi, pi_adv, pindex; int incore; *super = false; *resident_count = 0; if (vmmap_skip_res_cnt) return; pa = 0; obj = entry->object.vm_object; addr = entry->start; m_adv = NULL; pi = OFF_TO_IDX(entry->offset); for (; addr < entry->end; addr += IDX_TO_OFF(pi_adv), pi += pi_adv) { if (m_adv != NULL) { m = m_adv; } else { pi_adv = atop(entry->end - addr); pindex = pi; for (tobj = obj;; tobj = tobj->backing_object) { m = vm_page_find_least(tobj, pindex); if (m != NULL) { if (m->pindex == pindex) break; if (pi_adv > m->pindex - pindex) { pi_adv = m->pindex - pindex; m_adv = m; } } if (tobj->backing_object == NULL) goto next; pindex += OFF_TO_IDX(tobj-> backing_object_offset); } } m_adv = NULL; if (m->psind != 0 && addr + pagesizes[1] <= entry->end && (addr & (pagesizes[1] - 1)) == 0 && (incore = pmap_mincore(map->pmap, addr, &pa) & MINCORE_SUPER) != 0) { *super = true; /* * The virtual page might be smaller than the physical * page, so we use the page size reported by the pmap * rather than m->psind. */ pi_adv = atop(pagesizes[incore >> MINCORE_PSIND_SHIFT]); } else { /* * We do not test the found page on validity. * Either the page is busy and being paged in, * or it was invalidated. The first case * should be counted as resident, the second * is not so clear; we do account both. */ pi_adv = 1; } *resident_count += pi_adv; next:; } } /* * Must be called with the process locked and will return unlocked. */ int kern_proc_vmmap_out(struct proc *p, struct sbuf *sb, ssize_t maxlen, int flags) { vm_map_entry_t entry, tmp_entry; struct vattr va; vm_map_t map; vm_object_t lobj, nobj, obj, tobj; char *fullpath, *freepath; struct kinfo_vmentry *kve; struct ucred *cred; struct vnode *vp; struct vmspace *vm; struct cdev *cdev; struct cdevsw *csw; vm_offset_t addr; unsigned int last_timestamp; int error, ref; key_t key; unsigned short seq; bool guard, super; PROC_LOCK_ASSERT(p, MA_OWNED); _PHOLD(p); PROC_UNLOCK(p); vm = vmspace_acquire_ref(p); if (vm == NULL) { PRELE(p); return (ESRCH); } kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK | M_ZERO); error = 0; map = &vm->vm_map; vm_map_lock_read(map); VM_MAP_ENTRY_FOREACH(entry, map) { if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) continue; addr = entry->end; bzero(kve, sizeof(*kve)); obj = entry->object.vm_object; if (obj != NULL) { if ((obj->flags & OBJ_ANON) != 0) kve->kve_obj = (uintptr_t)obj; for (tobj = obj; tobj != NULL; tobj = tobj->backing_object) { VM_OBJECT_RLOCK(tobj); kve->kve_offset += tobj->backing_object_offset; lobj = tobj; } if (obj->backing_object == NULL) kve->kve_private_resident = obj->resident_page_count; kern_proc_vmmap_resident(map, entry, &kve->kve_resident, &super); if (super) kve->kve_flags |= KVME_FLAG_SUPER; for (tobj = obj; tobj != NULL; tobj = nobj) { nobj = tobj->backing_object; if (tobj != obj && tobj != lobj) VM_OBJECT_RUNLOCK(tobj); } } else { lobj = NULL; } kve->kve_start = entry->start; kve->kve_end = entry->end; kve->kve_offset += entry->offset; if (entry->protection & VM_PROT_READ) kve->kve_protection |= KVME_PROT_READ; if (entry->protection & VM_PROT_WRITE) kve->kve_protection |= KVME_PROT_WRITE; if (entry->protection & VM_PROT_EXECUTE) kve->kve_protection |= KVME_PROT_EXEC; if (entry->max_protection & VM_PROT_READ) kve->kve_protection |= KVME_MAX_PROT_READ; if (entry->max_protection & VM_PROT_WRITE) kve->kve_protection |= KVME_MAX_PROT_WRITE; if (entry->max_protection & VM_PROT_EXECUTE) kve->kve_protection |= KVME_MAX_PROT_EXEC; if (entry->eflags & MAP_ENTRY_COW) kve->kve_flags |= KVME_FLAG_COW; if (entry->eflags & MAP_ENTRY_NEEDS_COPY) kve->kve_flags |= KVME_FLAG_NEEDS_COPY; if (entry->eflags & MAP_ENTRY_NOCOREDUMP) kve->kve_flags |= KVME_FLAG_NOCOREDUMP; - if (entry->eflags & MAP_ENTRY_GROWS_UP) - kve->kve_flags |= KVME_FLAG_GROWS_UP; if (entry->eflags & MAP_ENTRY_GROWS_DOWN) kve->kve_flags |= KVME_FLAG_GROWS_DOWN; if (entry->eflags & MAP_ENTRY_USER_WIRED) kve->kve_flags |= KVME_FLAG_USER_WIRED; guard = (entry->eflags & MAP_ENTRY_GUARD) != 0; last_timestamp = map->timestamp; vm_map_unlock_read(map); freepath = NULL; fullpath = ""; if (lobj != NULL) { kve->kve_type = vm_object_kvme_type(lobj, &vp); if (vp != NULL) vref(vp); if (lobj != obj) VM_OBJECT_RUNLOCK(lobj); kve->kve_ref_count = obj->ref_count; kve->kve_shadow_count = obj->shadow_count; if ((obj->type == OBJT_DEVICE || obj->type == OBJT_MGTDEVICE) && (obj->flags & OBJ_CDEVH) != 0) { cdev = obj->un_pager.devp.handle; if (cdev != NULL) { csw = dev_refthread(cdev, &ref); if (csw != NULL) { strlcpy(kve->kve_path, cdev->si_name, sizeof( kve->kve_path)); dev_relthread(cdev, ref); } } } VM_OBJECT_RUNLOCK(obj); if ((lobj->flags & OBJ_SYSVSHM) != 0) { kve->kve_flags |= KVME_FLAG_SYSVSHM; shmobjinfo(lobj, &key, &seq); kve->kve_vn_fileid = key; kve->kve_vn_fsid_freebsd11 = seq; } if ((lobj->flags & OBJ_POSIXSHM) != 0) { kve->kve_flags |= KVME_FLAG_POSIXSHM; shm_get_path(lobj, kve->kve_path, sizeof(kve->kve_path)); } if (vp != NULL) { vn_fullpath(vp, &fullpath, &freepath); kve->kve_vn_type = vntype_to_kinfo(vp->v_type); cred = curthread->td_ucred; vn_lock(vp, LK_SHARED | LK_RETRY); if (VOP_GETATTR(vp, &va, cred) == 0) { kve->kve_vn_fileid = va.va_fileid; kve->kve_vn_fsid = va.va_fsid; kve->kve_vn_fsid_freebsd11 = kve->kve_vn_fsid; /* truncate */ kve->kve_vn_mode = MAKEIMODE(va.va_type, va.va_mode); kve->kve_vn_size = va.va_size; kve->kve_vn_rdev = va.va_rdev; kve->kve_vn_rdev_freebsd11 = kve->kve_vn_rdev; /* truncate */ kve->kve_status = KF_ATTR_VALID; } vput(vp); strlcpy(kve->kve_path, fullpath, sizeof( kve->kve_path)); free(freepath, M_TEMP); } } else { kve->kve_type = guard ? KVME_TYPE_GUARD : KVME_TYPE_NONE; kve->kve_ref_count = 0; kve->kve_shadow_count = 0; } /* Pack record size down */ if ((flags & KERN_VMMAP_PACK_KINFO) != 0) kve->kve_structsize = offsetof(struct kinfo_vmentry, kve_path) + strlen(kve->kve_path) + 1; else kve->kve_structsize = sizeof(*kve); kve->kve_structsize = roundup(kve->kve_structsize, sizeof(uint64_t)); /* Halt filling and truncate rather than exceeding maxlen */ if (maxlen != -1 && maxlen < kve->kve_structsize) { error = 0; vm_map_lock_read(map); break; } else if (maxlen != -1) maxlen -= kve->kve_structsize; if (sbuf_bcat(sb, kve, kve->kve_structsize) != 0) error = ENOMEM; vm_map_lock_read(map); if (error != 0) break; if (last_timestamp != map->timestamp) { vm_map_lookup_entry(map, addr - 1, &tmp_entry); entry = tmp_entry; } } vm_map_unlock_read(map); vmspace_free(vm); PRELE(p); free(kve, M_TEMP); return (error); } static int sysctl_kern_proc_vmmap(SYSCTL_HANDLER_ARGS) { struct proc *p; struct sbuf sb; u_int namelen; int error, error2, *name; namelen = arg2; if (namelen != 1) return (EINVAL); name = (int *)arg1; sbuf_new_for_sysctl(&sb, NULL, sizeof(struct kinfo_vmentry), req); sbuf_clear_flags(&sb, SBUF_INCLUDENUL); error = pget((pid_t)name[0], PGET_CANDEBUG | PGET_NOTWEXIT, &p); if (error != 0) { sbuf_delete(&sb); return (error); } error = kern_proc_vmmap_out(p, &sb, -1, KERN_VMMAP_PACK_KINFO); error2 = sbuf_finish(&sb); sbuf_delete(&sb); return (error != 0 ? error : error2); } #if defined(STACK) || defined(DDB) static int sysctl_kern_proc_kstack(SYSCTL_HANDLER_ARGS) { struct kinfo_kstack *kkstp; int error, i, *name, numthreads; lwpid_t *lwpidarray; struct thread *td; struct stack *st; struct sbuf sb; struct proc *p; u_int namelen; namelen = arg2; if (namelen != 1) return (EINVAL); name = (int *)arg1; error = pget((pid_t)name[0], PGET_NOTINEXEC | PGET_WANTREAD, &p); if (error != 0) return (error); kkstp = malloc(sizeof(*kkstp), M_TEMP, M_WAITOK); st = stack_create(M_WAITOK); lwpidarray = NULL; PROC_LOCK(p); do { if (lwpidarray != NULL) { free(lwpidarray, M_TEMP); lwpidarray = NULL; } numthreads = p->p_numthreads; PROC_UNLOCK(p); lwpidarray = malloc(sizeof(*lwpidarray) * numthreads, M_TEMP, M_WAITOK | M_ZERO); PROC_LOCK(p); } while (numthreads < p->p_numthreads); /* * XXXRW: During the below loop, execve(2) and countless other sorts * of changes could have taken place. Should we check to see if the * vmspace has been replaced, or the like, in order to prevent * giving a snapshot that spans, say, execve(2), with some threads * before and some after? Among other things, the credentials could * have changed, in which case the right to extract debug info might * no longer be assured. */ i = 0; FOREACH_THREAD_IN_PROC(p, td) { KASSERT(i < numthreads, ("sysctl_kern_proc_kstack: numthreads")); lwpidarray[i] = td->td_tid; i++; } PROC_UNLOCK(p); numthreads = i; for (i = 0; i < numthreads; i++) { td = tdfind(lwpidarray[i], p->p_pid); if (td == NULL) { continue; } bzero(kkstp, sizeof(*kkstp)); (void)sbuf_new(&sb, kkstp->kkst_trace, sizeof(kkstp->kkst_trace), SBUF_FIXEDLEN); thread_lock(td); kkstp->kkst_tid = td->td_tid; if (stack_save_td(st, td) == 0) kkstp->kkst_state = KKST_STATE_STACKOK; else kkstp->kkst_state = KKST_STATE_RUNNING; thread_unlock(td); PROC_UNLOCK(p); stack_sbuf_print(&sb, st); sbuf_finish(&sb); sbuf_delete(&sb); error = SYSCTL_OUT(req, kkstp, sizeof(*kkstp)); if (error) break; } PRELE(p); if (lwpidarray != NULL) free(lwpidarray, M_TEMP); stack_destroy(st); free(kkstp, M_TEMP); return (error); } #endif /* * This sysctl allows a process to retrieve the full list of groups from * itself or another process. */ static int sysctl_kern_proc_groups(SYSCTL_HANDLER_ARGS) { pid_t *pidp = (pid_t *)arg1; unsigned int arglen = arg2; struct proc *p; struct ucred *cred; int error; if (arglen != 1) return (EINVAL); if (*pidp == -1) { /* -1 means this process */ p = req->td->td_proc; PROC_LOCK(p); } else { error = pget(*pidp, PGET_CANSEE, &p); if (error != 0) return (error); } cred = crhold(p->p_ucred); PROC_UNLOCK(p); error = SYSCTL_OUT(req, cred->cr_groups, cred->cr_ngroups * sizeof(gid_t)); crfree(cred); return (error); } /* * This sysctl allows a process to retrieve or/and set the resource limit for * another process. */ static int sysctl_kern_proc_rlimit(SYSCTL_HANDLER_ARGS) { int *name = (int *)arg1; u_int namelen = arg2; struct rlimit rlim; struct proc *p; u_int which; int flags, error; if (namelen != 2) return (EINVAL); which = (u_int)name[1]; if (which >= RLIM_NLIMITS) return (EINVAL); if (req->newptr != NULL && req->newlen != sizeof(rlim)) return (EINVAL); flags = PGET_HOLD | PGET_NOTWEXIT; if (req->newptr != NULL) flags |= PGET_CANDEBUG; else flags |= PGET_CANSEE; error = pget((pid_t)name[0], flags, &p); if (error != 0) return (error); /* * Retrieve limit. */ if (req->oldptr != NULL) { PROC_LOCK(p); lim_rlimit_proc(p, which, &rlim); PROC_UNLOCK(p); } error = SYSCTL_OUT(req, &rlim, sizeof(rlim)); if (error != 0) goto errout; /* * Set limit. */ if (req->newptr != NULL) { error = SYSCTL_IN(req, &rlim, sizeof(rlim)); if (error == 0) error = kern_proc_setrlimit(curthread, p, which, &rlim); } errout: PRELE(p); return (error); } /* * This sysctl allows a process to retrieve ps_strings structure location of * another process. */ static int sysctl_kern_proc_ps_strings(SYSCTL_HANDLER_ARGS) { int *name = (int *)arg1; u_int namelen = arg2; struct proc *p; vm_offset_t ps_strings; int error; #ifdef COMPAT_FREEBSD32 uint32_t ps_strings32; #endif if (namelen != 1) return (EINVAL); error = pget((pid_t)name[0], PGET_CANDEBUG, &p); if (error != 0) return (error); #ifdef COMPAT_FREEBSD32 if ((req->flags & SCTL_MASK32) != 0) { /* * We return 0 if the 32 bit emulation request is for a 64 bit * process. */ ps_strings32 = SV_PROC_FLAG(p, SV_ILP32) != 0 ? PTROUT(PROC_PS_STRINGS(p)) : 0; PROC_UNLOCK(p); error = SYSCTL_OUT(req, &ps_strings32, sizeof(ps_strings32)); return (error); } #endif ps_strings = PROC_PS_STRINGS(p); PROC_UNLOCK(p); error = SYSCTL_OUT(req, &ps_strings, sizeof(ps_strings)); return (error); } /* * This sysctl allows a process to retrieve umask of another process. */ static int sysctl_kern_proc_umask(SYSCTL_HANDLER_ARGS) { int *name = (int *)arg1; u_int namelen = arg2; struct proc *p; int error; u_short cmask; pid_t pid; if (namelen != 1) return (EINVAL); pid = (pid_t)name[0]; p = curproc; if (pid == p->p_pid || pid == 0) { cmask = p->p_pd->pd_cmask; goto out; } error = pget(pid, PGET_WANTREAD, &p); if (error != 0) return (error); cmask = p->p_pd->pd_cmask; PRELE(p); out: error = SYSCTL_OUT(req, &cmask, sizeof(cmask)); return (error); } /* * This sysctl allows a process to set and retrieve binary osreldate of * another process. */ static int sysctl_kern_proc_osrel(SYSCTL_HANDLER_ARGS) { int *name = (int *)arg1; u_int namelen = arg2; struct proc *p; int flags, error, osrel; if (namelen != 1) return (EINVAL); if (req->newptr != NULL && req->newlen != sizeof(osrel)) return (EINVAL); flags = PGET_HOLD | PGET_NOTWEXIT; if (req->newptr != NULL) flags |= PGET_CANDEBUG; else flags |= PGET_CANSEE; error = pget((pid_t)name[0], flags, &p); if (error != 0) return (error); error = SYSCTL_OUT(req, &p->p_osrel, sizeof(p->p_osrel)); if (error != 0) goto errout; if (req->newptr != NULL) { error = SYSCTL_IN(req, &osrel, sizeof(osrel)); if (error != 0) goto errout; if (osrel < 0) { error = EINVAL; goto errout; } p->p_osrel = osrel; } errout: PRELE(p); return (error); } static int sysctl_kern_proc_sigtramp(SYSCTL_HANDLER_ARGS) { int *name = (int *)arg1; u_int namelen = arg2; struct proc *p; struct kinfo_sigtramp kst; const struct sysentvec *sv; int error; #ifdef COMPAT_FREEBSD32 struct kinfo_sigtramp32 kst32; #endif if (namelen != 1) return (EINVAL); error = pget((pid_t)name[0], PGET_CANDEBUG, &p); if (error != 0) return (error); sv = p->p_sysent; #ifdef COMPAT_FREEBSD32 if ((req->flags & SCTL_MASK32) != 0) { bzero(&kst32, sizeof(kst32)); if (SV_PROC_FLAG(p, SV_ILP32)) { if (PROC_HAS_SHP(p)) { kst32.ksigtramp_start = PROC_SIGCODE(p); kst32.ksigtramp_end = kst32.ksigtramp_start + ((sv->sv_flags & SV_DSO_SIG) == 0 ? *sv->sv_szsigcode : (uintptr_t)sv->sv_szsigcode); } else { kst32.ksigtramp_start = PROC_PS_STRINGS(p) - *sv->sv_szsigcode; kst32.ksigtramp_end = PROC_PS_STRINGS(p); } } PROC_UNLOCK(p); error = SYSCTL_OUT(req, &kst32, sizeof(kst32)); return (error); } #endif bzero(&kst, sizeof(kst)); if (PROC_HAS_SHP(p)) { kst.ksigtramp_start = (char *)PROC_SIGCODE(p); kst.ksigtramp_end = (char *)kst.ksigtramp_start + ((sv->sv_flags & SV_DSO_SIG) == 0 ? *sv->sv_szsigcode : (uintptr_t)sv->sv_szsigcode); } else { kst.ksigtramp_start = (char *)PROC_PS_STRINGS(p) - *sv->sv_szsigcode; kst.ksigtramp_end = (char *)PROC_PS_STRINGS(p); } PROC_UNLOCK(p); error = SYSCTL_OUT(req, &kst, sizeof(kst)); return (error); } static int sysctl_kern_proc_sigfastblk(SYSCTL_HANDLER_ARGS) { int *name = (int *)arg1; u_int namelen = arg2; pid_t pid; struct proc *p; struct thread *td1; uintptr_t addr; #ifdef COMPAT_FREEBSD32 uint32_t addr32; #endif int error; if (namelen != 1 || req->newptr != NULL) return (EINVAL); pid = (pid_t)name[0]; error = pget(pid, PGET_HOLD | PGET_NOTWEXIT | PGET_CANDEBUG, &p); if (error != 0) return (error); PROC_LOCK(p); #ifdef COMPAT_FREEBSD32 if (SV_CURPROC_FLAG(SV_ILP32)) { if (!SV_PROC_FLAG(p, SV_ILP32)) { error = EINVAL; goto errlocked; } } #endif if (pid <= PID_MAX) { td1 = FIRST_THREAD_IN_PROC(p); } else { FOREACH_THREAD_IN_PROC(p, td1) { if (td1->td_tid == pid) break; } } if (td1 == NULL) { error = ESRCH; goto errlocked; } /* * The access to the private thread flags. It is fine as far * as no out-of-thin-air values are read from td_pflags, and * usermode read of the td_sigblock_ptr is racy inherently, * since target process might have already changed it * meantime. */ if ((td1->td_pflags & TDP_SIGFASTBLOCK) != 0) addr = (uintptr_t)td1->td_sigblock_ptr; else error = ENOTTY; errlocked: _PRELE(p); PROC_UNLOCK(p); if (error != 0) return (error); #ifdef COMPAT_FREEBSD32 if (SV_CURPROC_FLAG(SV_ILP32)) { addr32 = addr; error = SYSCTL_OUT(req, &addr32, sizeof(addr32)); } else #endif error = SYSCTL_OUT(req, &addr, sizeof(addr)); return (error); } static int sysctl_kern_proc_vm_layout(SYSCTL_HANDLER_ARGS) { struct kinfo_vm_layout kvm; struct proc *p; struct vmspace *vmspace; int error, *name; name = (int *)arg1; if ((u_int)arg2 != 1) return (EINVAL); error = pget((pid_t)name[0], PGET_CANDEBUG, &p); if (error != 0) return (error); #ifdef COMPAT_FREEBSD32 if (SV_CURPROC_FLAG(SV_ILP32)) { if (!SV_PROC_FLAG(p, SV_ILP32)) { PROC_UNLOCK(p); return (EINVAL); } } #endif vmspace = vmspace_acquire_ref(p); PROC_UNLOCK(p); memset(&kvm, 0, sizeof(kvm)); kvm.kvm_min_user_addr = vm_map_min(&vmspace->vm_map); kvm.kvm_max_user_addr = vm_map_max(&vmspace->vm_map); kvm.kvm_text_addr = (uintptr_t)vmspace->vm_taddr; kvm.kvm_text_size = vmspace->vm_tsize; kvm.kvm_data_addr = (uintptr_t)vmspace->vm_daddr; kvm.kvm_data_size = vmspace->vm_dsize; kvm.kvm_stack_addr = (uintptr_t)vmspace->vm_maxsaddr; kvm.kvm_stack_size = vmspace->vm_ssize; kvm.kvm_shp_addr = vmspace->vm_shp_base; kvm.kvm_shp_size = p->p_sysent->sv_shared_page_len; if ((vmspace->vm_map.flags & MAP_WIREFUTURE) != 0) kvm.kvm_map_flags |= KMAP_FLAG_WIREFUTURE; if ((vmspace->vm_map.flags & MAP_ASLR) != 0) kvm.kvm_map_flags |= KMAP_FLAG_ASLR; if ((vmspace->vm_map.flags & MAP_ASLR_IGNSTART) != 0) kvm.kvm_map_flags |= KMAP_FLAG_ASLR_IGNSTART; if ((vmspace->vm_map.flags & MAP_WXORX) != 0) kvm.kvm_map_flags |= KMAP_FLAG_WXORX; if ((vmspace->vm_map.flags & MAP_ASLR_STACK) != 0) kvm.kvm_map_flags |= KMAP_FLAG_ASLR_STACK; if (vmspace->vm_shp_base != p->p_sysent->sv_shared_page_base && PROC_HAS_SHP(p)) kvm.kvm_map_flags |= KMAP_FLAG_ASLR_SHARED_PAGE; #ifdef COMPAT_FREEBSD32 if (SV_CURPROC_FLAG(SV_ILP32)) { struct kinfo_vm_layout32 kvm32; memset(&kvm32, 0, sizeof(kvm32)); kvm32.kvm_min_user_addr = (uint32_t)kvm.kvm_min_user_addr; kvm32.kvm_max_user_addr = (uint32_t)kvm.kvm_max_user_addr; kvm32.kvm_text_addr = (uint32_t)kvm.kvm_text_addr; kvm32.kvm_text_size = (uint32_t)kvm.kvm_text_size; kvm32.kvm_data_addr = (uint32_t)kvm.kvm_data_addr; kvm32.kvm_data_size = (uint32_t)kvm.kvm_data_size; kvm32.kvm_stack_addr = (uint32_t)kvm.kvm_stack_addr; kvm32.kvm_stack_size = (uint32_t)kvm.kvm_stack_size; kvm32.kvm_shp_addr = (uint32_t)kvm.kvm_shp_addr; kvm32.kvm_shp_size = (uint32_t)kvm.kvm_shp_size; kvm32.kvm_map_flags = kvm.kvm_map_flags; error = SYSCTL_OUT(req, &kvm32, sizeof(kvm32)); goto out; } #endif error = SYSCTL_OUT(req, &kvm, sizeof(kvm)); #ifdef COMPAT_FREEBSD32 out: #endif vmspace_free(vmspace); return (error); } SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "Process table"); SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT| CTLFLAG_MPSAFE, 0, 0, sysctl_kern_proc, "S,proc", "Return entire process table"); static SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); static SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); static SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); static SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); static SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); static SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); static SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); static SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); static SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Return process table, no threads"); static SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args, CTLFLAG_RW | CTLFLAG_CAPWR | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_args, "Process argument list"); static SYSCTL_NODE(_kern_proc, KERN_PROC_ENV, env, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc_env, "Process environment"); static SYSCTL_NODE(_kern_proc, KERN_PROC_AUXV, auxv, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc_auxv, "Process ELF auxiliary vector"); static SYSCTL_NODE(_kern_proc, KERN_PROC_PATHNAME, pathname, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc_pathname, "Process executable path"); static SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc_sv_name, "Process syscall vector name (ABI type)"); static SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); static SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); static SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); static SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD), sid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); static SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); static SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); static SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); static SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); static SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Return process table, including threads"); #ifdef COMPAT_FREEBSD7 static SYSCTL_NODE(_kern_proc, KERN_PROC_OVMMAP, ovmmap, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc_ovmmap, "Old Process vm map entries"); #endif static SYSCTL_NODE(_kern_proc, KERN_PROC_VMMAP, vmmap, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc_vmmap, "Process vm map entries"); #if defined(STACK) || defined(DDB) static SYSCTL_NODE(_kern_proc, KERN_PROC_KSTACK, kstack, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc_kstack, "Process kernel stacks"); #endif static SYSCTL_NODE(_kern_proc, KERN_PROC_GROUPS, groups, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc_groups, "Process groups"); static SYSCTL_NODE(_kern_proc, KERN_PROC_RLIMIT, rlimit, CTLFLAG_RW | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_rlimit, "Process resource limits"); static SYSCTL_NODE(_kern_proc, KERN_PROC_PS_STRINGS, ps_strings, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc_ps_strings, "Process ps_strings location"); static SYSCTL_NODE(_kern_proc, KERN_PROC_UMASK, umask, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc_umask, "Process umask"); static SYSCTL_NODE(_kern_proc, KERN_PROC_OSREL, osrel, CTLFLAG_RW | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_osrel, "Process binary osreldate"); static SYSCTL_NODE(_kern_proc, KERN_PROC_SIGTRAMP, sigtramp, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc_sigtramp, "Process signal trampoline location"); static SYSCTL_NODE(_kern_proc, KERN_PROC_SIGFASTBLK, sigfastblk, CTLFLAG_RD | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_sigfastblk, "Thread sigfastblock address"); static SYSCTL_NODE(_kern_proc, KERN_PROC_VM_LAYOUT, vm_layout, CTLFLAG_RD | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_vm_layout, "Process virtual address space layout info"); static struct sx stop_all_proc_blocker; SX_SYSINIT(stop_all_proc_blocker, &stop_all_proc_blocker, "sapblk"); bool stop_all_proc_block(void) { return (sx_xlock_sig(&stop_all_proc_blocker) == 0); } void stop_all_proc_unblock(void) { sx_xunlock(&stop_all_proc_blocker); } int allproc_gen; /* * stop_all_proc() purpose is to stop all process which have usermode, * except current process for obvious reasons. This makes it somewhat * unreliable when invoked from multithreaded process. The service * must not be user-callable anyway. */ void stop_all_proc(void) { struct proc *cp, *p; int r, gen; bool restart, seen_stopped, seen_exiting, stopped_some; if (!stop_all_proc_block()) return; cp = curproc; allproc_loop: sx_xlock(&allproc_lock); gen = allproc_gen; seen_exiting = seen_stopped = stopped_some = restart = false; LIST_REMOVE(cp, p_list); LIST_INSERT_HEAD(&allproc, cp, p_list); for (;;) { p = LIST_NEXT(cp, p_list); if (p == NULL) break; LIST_REMOVE(cp, p_list); LIST_INSERT_AFTER(p, cp, p_list); PROC_LOCK(p); if ((p->p_flag & (P_KPROC | P_SYSTEM | P_TOTAL_STOP | P_STOPPED_SIG)) != 0) { PROC_UNLOCK(p); continue; } if ((p->p_flag2 & P2_WEXIT) != 0) { seen_exiting = true; PROC_UNLOCK(p); continue; } if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) { /* * Stopped processes are tolerated when there * are no other processes which might continue * them. P_STOPPED_SINGLE but not * P_TOTAL_STOP process still has at least one * thread running. */ seen_stopped = true; PROC_UNLOCK(p); continue; } if ((p->p_flag & P_TRACED) != 0) { /* * thread_single() below cannot stop traced p, * so skip it. OTOH, we cannot require * restart because debugger might be either * already stopped or traced as well. */ PROC_UNLOCK(p); continue; } sx_xunlock(&allproc_lock); _PHOLD(p); r = thread_single(p, SINGLE_ALLPROC); if (r != 0) restart = true; else stopped_some = true; _PRELE(p); PROC_UNLOCK(p); sx_xlock(&allproc_lock); } /* Catch forked children we did not see in iteration. */ if (gen != allproc_gen) restart = true; sx_xunlock(&allproc_lock); if (restart || stopped_some || seen_exiting || seen_stopped) { kern_yield(PRI_USER); goto allproc_loop; } } void resume_all_proc(void) { struct proc *cp, *p; cp = curproc; sx_xlock(&allproc_lock); again: LIST_REMOVE(cp, p_list); LIST_INSERT_HEAD(&allproc, cp, p_list); for (;;) { p = LIST_NEXT(cp, p_list); if (p == NULL) break; LIST_REMOVE(cp, p_list); LIST_INSERT_AFTER(p, cp, p_list); PROC_LOCK(p); if ((p->p_flag & P_TOTAL_STOP) != 0) { sx_xunlock(&allproc_lock); _PHOLD(p); thread_single_end(p, SINGLE_ALLPROC); _PRELE(p); PROC_UNLOCK(p); sx_xlock(&allproc_lock); } else { PROC_UNLOCK(p); } } /* Did the loop above missed any stopped process ? */ FOREACH_PROC_IN_SYSTEM(p) { /* No need for proc lock. */ if ((p->p_flag & P_TOTAL_STOP) != 0) goto again; } sx_xunlock(&allproc_lock); stop_all_proc_unblock(); } /* #define TOTAL_STOP_DEBUG 1 */ #ifdef TOTAL_STOP_DEBUG volatile static int ap_resume; #include static int sysctl_debug_stop_all_proc(SYSCTL_HANDLER_ARGS) { int error, val; val = 0; ap_resume = 0; error = sysctl_handle_int(oidp, &val, 0, req); if (error != 0 || req->newptr == NULL) return (error); if (val != 0) { stop_all_proc(); syncer_suspend(); while (ap_resume == 0) ; syncer_resume(); resume_all_proc(); } return (0); } SYSCTL_PROC(_debug, OID_AUTO, stop_all_proc, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, __DEVOLATILE(int *, &ap_resume), 0, sysctl_debug_stop_all_proc, "I", ""); #endif diff --git a/sys/vm/vm_map.c b/sys/vm/vm_map.c index 3d82f0835c09..d48b2cb8b73f 100644 --- a/sys/vm/vm_map.c +++ b/sys/vm/vm_map.c @@ -1,5499 +1,5429 @@ /*- * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU) * * Copyright (c) 1991, 1993 * The Regents of the University of California. All rights reserved. * * This code is derived from software contributed to Berkeley by * The Mach Operating System project at Carnegie-Mellon University. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * * Copyright (c) 1987, 1990 Carnegie-Mellon University. * All rights reserved. * * Authors: Avadis Tevanian, Jr., Michael Wayne Young * * Permission to use, copy, modify and distribute this software and * its documentation is hereby granted, provided that both the copyright * notice and this permission notice appear in all copies of the * software, derivative works or modified versions, and any portions * thereof, and that both notices appear in supporting documentation. * * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. * * Carnegie Mellon requests users of this software to return to * * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU * School of Computer Science * Carnegie Mellon University * Pittsburgh PA 15213-3890 * * any improvements or extensions that they make and grant Carnegie the * rights to redistribute these changes. */ /* * Virtual memory mapping module. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * Virtual memory maps provide for the mapping, protection, * and sharing of virtual memory objects. In addition, * this module provides for an efficient virtual copy of * memory from one map to another. * * Synchronization is required prior to most operations. * * Maps consist of an ordered doubly-linked list of simple * entries; a self-adjusting binary search tree of these * entries is used to speed up lookups. * * Since portions of maps are specified by start/end addresses, * which may not align with existing map entries, all * routines merely "clip" entries to these start/end values. * [That is, an entry is split into two, bordering at a * start or end value.] Note that these clippings may not * always be necessary (as the two resulting entries are then * not changed); however, the clipping is done for convenience. * * As mentioned above, virtual copy operations are performed * by copying VM object references from one map to * another, and then marking both regions as copy-on-write. */ static struct mtx map_sleep_mtx; static uma_zone_t mapentzone; static uma_zone_t kmapentzone; static uma_zone_t vmspace_zone; static int vmspace_zinit(void *mem, int size, int flags); static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max); static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map); static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry); static void vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry); static int vm_map_growstack(vm_map_t map, vm_offset_t addr, vm_map_entry_t gap_entry); static void vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot, vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags); #ifdef INVARIANTS static void vmspace_zdtor(void *mem, int size, void *arg); #endif static int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow); static void vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry, vm_offset_t failed_addr); #define CONTAINS_BITS(set, bits) ((~(set) & (bits)) == 0) #define ENTRY_CHARGED(e) ((e)->cred != NULL || \ ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \ !((e)->eflags & MAP_ENTRY_NEEDS_COPY))) /* * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type * stable. */ #define PROC_VMSPACE_LOCK(p) do { } while (0) #define PROC_VMSPACE_UNLOCK(p) do { } while (0) /* * VM_MAP_RANGE_CHECK: [ internal use only ] * * Asserts that the starting and ending region * addresses fall within the valid range of the map. */ #define VM_MAP_RANGE_CHECK(map, start, end) \ { \ if (start < vm_map_min(map)) \ start = vm_map_min(map); \ if (end > vm_map_max(map)) \ end = vm_map_max(map); \ if (start > end) \ start = end; \ } #ifndef UMA_USE_DMAP /* * Allocate a new slab for kernel map entries. The kernel map may be locked or * unlocked, depending on whether the request is coming from the kernel map or a * submap. This function allocates a virtual address range directly from the * kernel map instead of the kmem_* layer to avoid recursion on the kernel map * lock and also to avoid triggering allocator recursion in the vmem boundary * tag allocator. */ static void * kmapent_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, int wait) { vm_offset_t addr; int error, locked; *pflag = UMA_SLAB_PRIV; if (!(locked = vm_map_locked(kernel_map))) vm_map_lock(kernel_map); addr = vm_map_findspace(kernel_map, vm_map_min(kernel_map), bytes); if (addr + bytes < addr || addr + bytes > vm_map_max(kernel_map)) panic("%s: kernel map is exhausted", __func__); error = vm_map_insert(kernel_map, NULL, 0, addr, addr + bytes, VM_PROT_RW, VM_PROT_RW, MAP_NOFAULT); if (error != KERN_SUCCESS) panic("%s: vm_map_insert() failed: %d", __func__, error); if (!locked) vm_map_unlock(kernel_map); error = kmem_back_domain(domain, kernel_object, addr, bytes, M_NOWAIT | M_USE_RESERVE | (wait & M_ZERO)); if (error == KERN_SUCCESS) { return ((void *)addr); } else { if (!locked) vm_map_lock(kernel_map); vm_map_delete(kernel_map, addr, bytes); if (!locked) vm_map_unlock(kernel_map); return (NULL); } } static void kmapent_free(void *item, vm_size_t size, uint8_t pflag) { vm_offset_t addr; int error __diagused; if ((pflag & UMA_SLAB_PRIV) == 0) /* XXX leaked */ return; addr = (vm_offset_t)item; kmem_unback(kernel_object, addr, size); error = vm_map_remove(kernel_map, addr, addr + size); KASSERT(error == KERN_SUCCESS, ("%s: vm_map_remove failed: %d", __func__, error)); } /* * The worst-case upper bound on the number of kernel map entries that may be * created before the zone must be replenished in _vm_map_unlock(). */ #define KMAPENT_RESERVE 1 #endif /* !UMD_MD_SMALL_ALLOC */ /* * vm_map_startup: * * Initialize the vm_map module. Must be called before any other vm_map * routines. * * User map and entry structures are allocated from the general purpose * memory pool. Kernel maps are statically defined. Kernel map entries * require special handling to avoid recursion; see the comments above * kmapent_alloc() and in vm_map_entry_create(). */ void vm_map_startup(void) { mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF); /* * Disable the use of per-CPU buckets: map entry allocation is * serialized by the kernel map lock. */ kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOBUCKET); #ifndef UMA_USE_DMAP /* Reserve an extra map entry for use when replenishing the reserve. */ uma_zone_reserve(kmapentzone, KMAPENT_RESERVE + 1); uma_prealloc(kmapentzone, KMAPENT_RESERVE + 1); uma_zone_set_allocf(kmapentzone, kmapent_alloc); uma_zone_set_freef(kmapentzone, kmapent_free); #endif mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL, #ifdef INVARIANTS vmspace_zdtor, #else NULL, #endif vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); } static int vmspace_zinit(void *mem, int size, int flags) { struct vmspace *vm; vm_map_t map; vm = (struct vmspace *)mem; map = &vm->vm_map; memset(map, 0, sizeof(*map)); mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | MTX_DUPOK); sx_init(&map->lock, "vm map (user)"); PMAP_LOCK_INIT(vmspace_pmap(vm)); return (0); } #ifdef INVARIANTS static void vmspace_zdtor(void *mem, int size, void *arg) { struct vmspace *vm; vm = (struct vmspace *)mem; KASSERT(vm->vm_map.nentries == 0, ("vmspace %p nentries == %d on free", vm, vm->vm_map.nentries)); KASSERT(vm->vm_map.size == 0, ("vmspace %p size == %ju on free", vm, (uintmax_t)vm->vm_map.size)); } #endif /* INVARIANTS */ /* * Allocate a vmspace structure, including a vm_map and pmap, * and initialize those structures. The refcnt is set to 1. */ struct vmspace * vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit) { struct vmspace *vm; vm = uma_zalloc(vmspace_zone, M_WAITOK); KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL")); if (!pinit(vmspace_pmap(vm))) { uma_zfree(vmspace_zone, vm); return (NULL); } CTR1(KTR_VM, "vmspace_alloc: %p", vm); _vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max); refcount_init(&vm->vm_refcnt, 1); vm->vm_shm = NULL; vm->vm_swrss = 0; vm->vm_tsize = 0; vm->vm_dsize = 0; vm->vm_ssize = 0; vm->vm_taddr = 0; vm->vm_daddr = 0; vm->vm_maxsaddr = 0; return (vm); } #ifdef RACCT static void vmspace_container_reset(struct proc *p) { PROC_LOCK(p); racct_set(p, RACCT_DATA, 0); racct_set(p, RACCT_STACK, 0); racct_set(p, RACCT_RSS, 0); racct_set(p, RACCT_MEMLOCK, 0); racct_set(p, RACCT_VMEM, 0); PROC_UNLOCK(p); } #endif static inline void vmspace_dofree(struct vmspace *vm) { CTR1(KTR_VM, "vmspace_free: %p", vm); /* * Make sure any SysV shm is freed, it might not have been in * exit1(). */ shmexit(vm); /* * Lock the map, to wait out all other references to it. * Delete all of the mappings and pages they hold, then call * the pmap module to reclaim anything left. */ (void)vm_map_remove(&vm->vm_map, vm_map_min(&vm->vm_map), vm_map_max(&vm->vm_map)); pmap_release(vmspace_pmap(vm)); vm->vm_map.pmap = NULL; uma_zfree(vmspace_zone, vm); } void vmspace_free(struct vmspace *vm) { WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, "vmspace_free() called"); if (refcount_release(&vm->vm_refcnt)) vmspace_dofree(vm); } void vmspace_exitfree(struct proc *p) { struct vmspace *vm; PROC_VMSPACE_LOCK(p); vm = p->p_vmspace; p->p_vmspace = NULL; PROC_VMSPACE_UNLOCK(p); KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace")); vmspace_free(vm); } void vmspace_exit(struct thread *td) { struct vmspace *vm; struct proc *p; bool released; p = td->td_proc; vm = p->p_vmspace; /* * Prepare to release the vmspace reference. The thread that releases * the last reference is responsible for tearing down the vmspace. * However, threads not releasing the final reference must switch to the * kernel's vmspace0 before the decrement so that the subsequent pmap * deactivation does not modify a freed vmspace. */ refcount_acquire(&vmspace0.vm_refcnt); if (!(released = refcount_release_if_last(&vm->vm_refcnt))) { if (p->p_vmspace != &vmspace0) { PROC_VMSPACE_LOCK(p); p->p_vmspace = &vmspace0; PROC_VMSPACE_UNLOCK(p); pmap_activate(td); } released = refcount_release(&vm->vm_refcnt); } if (released) { /* * pmap_remove_pages() expects the pmap to be active, so switch * back first if necessary. */ if (p->p_vmspace != vm) { PROC_VMSPACE_LOCK(p); p->p_vmspace = vm; PROC_VMSPACE_UNLOCK(p); pmap_activate(td); } pmap_remove_pages(vmspace_pmap(vm)); PROC_VMSPACE_LOCK(p); p->p_vmspace = &vmspace0; PROC_VMSPACE_UNLOCK(p); pmap_activate(td); vmspace_dofree(vm); } #ifdef RACCT if (racct_enable) vmspace_container_reset(p); #endif } /* Acquire reference to vmspace owned by another process. */ struct vmspace * vmspace_acquire_ref(struct proc *p) { struct vmspace *vm; PROC_VMSPACE_LOCK(p); vm = p->p_vmspace; if (vm == NULL || !refcount_acquire_if_not_zero(&vm->vm_refcnt)) { PROC_VMSPACE_UNLOCK(p); return (NULL); } if (vm != p->p_vmspace) { PROC_VMSPACE_UNLOCK(p); vmspace_free(vm); return (NULL); } PROC_VMSPACE_UNLOCK(p); return (vm); } /* * Switch between vmspaces in an AIO kernel process. * * The new vmspace is either the vmspace of a user process obtained * from an active AIO request or the initial vmspace of the AIO kernel * process (when it is idling). Because user processes will block to * drain any active AIO requests before proceeding in exit() or * execve(), the reference count for vmspaces from AIO requests can * never be 0. Similarly, AIO kernel processes hold an extra * reference on their initial vmspace for the life of the process. As * a result, the 'newvm' vmspace always has a non-zero reference * count. This permits an additional reference on 'newvm' to be * acquired via a simple atomic increment rather than the loop in * vmspace_acquire_ref() above. */ void vmspace_switch_aio(struct vmspace *newvm) { struct vmspace *oldvm; /* XXX: Need some way to assert that this is an aio daemon. */ KASSERT(refcount_load(&newvm->vm_refcnt) > 0, ("vmspace_switch_aio: newvm unreferenced")); oldvm = curproc->p_vmspace; if (oldvm == newvm) return; /* * Point to the new address space and refer to it. */ curproc->p_vmspace = newvm; refcount_acquire(&newvm->vm_refcnt); /* Activate the new mapping. */ pmap_activate(curthread); vmspace_free(oldvm); } void _vm_map_lock(vm_map_t map, const char *file, int line) { if (map->system_map) mtx_lock_flags_(&map->system_mtx, 0, file, line); else sx_xlock_(&map->lock, file, line); map->timestamp++; } void vm_map_entry_set_vnode_text(vm_map_entry_t entry, bool add) { vm_object_t object; struct vnode *vp; bool vp_held; if ((entry->eflags & MAP_ENTRY_VN_EXEC) == 0) return; KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0, ("Submap with execs")); object = entry->object.vm_object; KASSERT(object != NULL, ("No object for text, entry %p", entry)); if ((object->flags & OBJ_ANON) != 0) object = object->handle; else KASSERT(object->backing_object == NULL, ("non-anon object %p shadows", object)); KASSERT(object != NULL, ("No content object for text, entry %p obj %p", entry, entry->object.vm_object)); /* * Mostly, we do not lock the backing object. It is * referenced by the entry we are processing, so it cannot go * away. */ vm_pager_getvp(object, &vp, &vp_held); if (vp != NULL) { if (add) { VOP_SET_TEXT_CHECKED(vp); } else { vn_lock(vp, LK_SHARED | LK_RETRY); VOP_UNSET_TEXT_CHECKED(vp); VOP_UNLOCK(vp); } if (vp_held) vdrop(vp); } } /* * Use a different name for this vm_map_entry field when it's use * is not consistent with its use as part of an ordered search tree. */ #define defer_next right static void vm_map_process_deferred(void) { struct thread *td; vm_map_entry_t entry, next; vm_object_t object; td = curthread; entry = td->td_map_def_user; td->td_map_def_user = NULL; while (entry != NULL) { next = entry->defer_next; MPASS((entry->eflags & (MAP_ENTRY_WRITECNT | MAP_ENTRY_VN_EXEC)) != (MAP_ENTRY_WRITECNT | MAP_ENTRY_VN_EXEC)); if ((entry->eflags & MAP_ENTRY_WRITECNT) != 0) { /* * Decrement the object's writemappings and * possibly the vnode's v_writecount. */ KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0, ("Submap with writecount")); object = entry->object.vm_object; KASSERT(object != NULL, ("No object for writecount")); vm_pager_release_writecount(object, entry->start, entry->end); } vm_map_entry_set_vnode_text(entry, false); vm_map_entry_deallocate(entry, FALSE); entry = next; } } #ifdef INVARIANTS static void _vm_map_assert_locked(vm_map_t map, const char *file, int line) { if (map->system_map) mtx_assert_(&map->system_mtx, MA_OWNED, file, line); else sx_assert_(&map->lock, SA_XLOCKED, file, line); } #define VM_MAP_ASSERT_LOCKED(map) \ _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE) enum { VMMAP_CHECK_NONE, VMMAP_CHECK_UNLOCK, VMMAP_CHECK_ALL }; #ifdef DIAGNOSTIC static int enable_vmmap_check = VMMAP_CHECK_UNLOCK; #else static int enable_vmmap_check = VMMAP_CHECK_NONE; #endif SYSCTL_INT(_debug, OID_AUTO, vmmap_check, CTLFLAG_RWTUN, &enable_vmmap_check, 0, "Enable vm map consistency checking"); static void _vm_map_assert_consistent(vm_map_t map, int check); #define VM_MAP_ASSERT_CONSISTENT(map) \ _vm_map_assert_consistent(map, VMMAP_CHECK_ALL) #ifdef DIAGNOSTIC #define VM_MAP_UNLOCK_CONSISTENT(map) do { \ if (map->nupdates > map->nentries) { \ _vm_map_assert_consistent(map, VMMAP_CHECK_UNLOCK); \ map->nupdates = 0; \ } \ } while (0) #else #define VM_MAP_UNLOCK_CONSISTENT(map) #endif #else #define VM_MAP_ASSERT_LOCKED(map) #define VM_MAP_ASSERT_CONSISTENT(map) #define VM_MAP_UNLOCK_CONSISTENT(map) #endif /* INVARIANTS */ void _vm_map_unlock(vm_map_t map, const char *file, int line) { VM_MAP_UNLOCK_CONSISTENT(map); if (map->system_map) { #ifndef UMA_USE_DMAP if (map == kernel_map && (map->flags & MAP_REPLENISH) != 0) { uma_prealloc(kmapentzone, 1); map->flags &= ~MAP_REPLENISH; } #endif mtx_unlock_flags_(&map->system_mtx, 0, file, line); } else { sx_xunlock_(&map->lock, file, line); vm_map_process_deferred(); } } void _vm_map_lock_read(vm_map_t map, const char *file, int line) { if (map->system_map) mtx_lock_flags_(&map->system_mtx, 0, file, line); else sx_slock_(&map->lock, file, line); } void _vm_map_unlock_read(vm_map_t map, const char *file, int line) { if (map->system_map) { KASSERT((map->flags & MAP_REPLENISH) == 0, ("%s: MAP_REPLENISH leaked", __func__)); mtx_unlock_flags_(&map->system_mtx, 0, file, line); } else { sx_sunlock_(&map->lock, file, line); vm_map_process_deferred(); } } int _vm_map_trylock(vm_map_t map, const char *file, int line) { int error; error = map->system_map ? !mtx_trylock_flags_(&map->system_mtx, 0, file, line) : !sx_try_xlock_(&map->lock, file, line); if (error == 0) map->timestamp++; return (error == 0); } int _vm_map_trylock_read(vm_map_t map, const char *file, int line) { int error; error = map->system_map ? !mtx_trylock_flags_(&map->system_mtx, 0, file, line) : !sx_try_slock_(&map->lock, file, line); return (error == 0); } /* * _vm_map_lock_upgrade: [ internal use only ] * * Tries to upgrade a read (shared) lock on the specified map to a write * (exclusive) lock. Returns the value "0" if the upgrade succeeds and a * non-zero value if the upgrade fails. If the upgrade fails, the map is * returned without a read or write lock held. * * Requires that the map be read locked. */ int _vm_map_lock_upgrade(vm_map_t map, const char *file, int line) { unsigned int last_timestamp; if (map->system_map) { mtx_assert_(&map->system_mtx, MA_OWNED, file, line); } else { if (!sx_try_upgrade_(&map->lock, file, line)) { last_timestamp = map->timestamp; sx_sunlock_(&map->lock, file, line); vm_map_process_deferred(); /* * If the map's timestamp does not change while the * map is unlocked, then the upgrade succeeds. */ sx_xlock_(&map->lock, file, line); if (last_timestamp != map->timestamp) { sx_xunlock_(&map->lock, file, line); return (1); } } } map->timestamp++; return (0); } void _vm_map_lock_downgrade(vm_map_t map, const char *file, int line) { if (map->system_map) { KASSERT((map->flags & MAP_REPLENISH) == 0, ("%s: MAP_REPLENISH leaked", __func__)); mtx_assert_(&map->system_mtx, MA_OWNED, file, line); } else { VM_MAP_UNLOCK_CONSISTENT(map); sx_downgrade_(&map->lock, file, line); } } /* * vm_map_locked: * * Returns a non-zero value if the caller holds a write (exclusive) lock * on the specified map and the value "0" otherwise. */ int vm_map_locked(vm_map_t map) { if (map->system_map) return (mtx_owned(&map->system_mtx)); else return (sx_xlocked(&map->lock)); } /* * _vm_map_unlock_and_wait: * * Atomically releases the lock on the specified map and puts the calling * thread to sleep. The calling thread will remain asleep until either * vm_map_wakeup() is performed on the map or the specified timeout is * exceeded. * * WARNING! This function does not perform deferred deallocations of * objects and map entries. Therefore, the calling thread is expected to * reacquire the map lock after reawakening and later perform an ordinary * unlock operation, such as vm_map_unlock(), before completing its * operation on the map. */ int _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line) { VM_MAP_UNLOCK_CONSISTENT(map); mtx_lock(&map_sleep_mtx); if (map->system_map) { KASSERT((map->flags & MAP_REPLENISH) == 0, ("%s: MAP_REPLENISH leaked", __func__)); mtx_unlock_flags_(&map->system_mtx, 0, file, line); } else { sx_xunlock_(&map->lock, file, line); } return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps", timo)); } /* * vm_map_wakeup: * * Awaken any threads that have slept on the map using * vm_map_unlock_and_wait(). */ void vm_map_wakeup(vm_map_t map) { /* * Acquire and release map_sleep_mtx to prevent a wakeup() * from being performed (and lost) between the map unlock * and the msleep() in _vm_map_unlock_and_wait(). */ mtx_lock(&map_sleep_mtx); mtx_unlock(&map_sleep_mtx); wakeup(&map->root); } void vm_map_busy(vm_map_t map) { VM_MAP_ASSERT_LOCKED(map); map->busy++; } void vm_map_unbusy(vm_map_t map) { VM_MAP_ASSERT_LOCKED(map); KASSERT(map->busy, ("vm_map_unbusy: not busy")); if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) { vm_map_modflags(map, 0, MAP_BUSY_WAKEUP); wakeup(&map->busy); } } void vm_map_wait_busy(vm_map_t map) { VM_MAP_ASSERT_LOCKED(map); while (map->busy) { vm_map_modflags(map, MAP_BUSY_WAKEUP, 0); if (map->system_map) msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0); else sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0); } map->timestamp++; } long vmspace_resident_count(struct vmspace *vmspace) { return pmap_resident_count(vmspace_pmap(vmspace)); } /* * Initialize an existing vm_map structure * such as that in the vmspace structure. */ static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max) { map->header.eflags = MAP_ENTRY_HEADER; map->needs_wakeup = FALSE; map->system_map = 0; map->pmap = pmap; map->header.end = min; map->header.start = max; map->flags = 0; map->header.left = map->header.right = &map->header; map->root = NULL; map->timestamp = 0; map->busy = 0; map->anon_loc = 0; #ifdef DIAGNOSTIC map->nupdates = 0; #endif } void vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max) { _vm_map_init(map, pmap, min, max); mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | MTX_DUPOK); sx_init(&map->lock, "vm map (user)"); } /* * vm_map_entry_dispose: [ internal use only ] * * Inverse of vm_map_entry_create. */ static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry) { uma_zfree(map->system_map ? kmapentzone : mapentzone, entry); } /* * vm_map_entry_create: [ internal use only ] * * Allocates a VM map entry for insertion. * No entry fields are filled in. */ static vm_map_entry_t vm_map_entry_create(vm_map_t map) { vm_map_entry_t new_entry; #ifndef UMA_USE_DMAP if (map == kernel_map) { VM_MAP_ASSERT_LOCKED(map); /* * A new slab of kernel map entries cannot be allocated at this * point because the kernel map has not yet been updated to * reflect the caller's request. Therefore, we allocate a new * map entry, dipping into the reserve if necessary, and set a * flag indicating that the reserve must be replenished before * the map is unlocked. */ new_entry = uma_zalloc(kmapentzone, M_NOWAIT | M_NOVM); if (new_entry == NULL) { new_entry = uma_zalloc(kmapentzone, M_NOWAIT | M_NOVM | M_USE_RESERVE); kernel_map->flags |= MAP_REPLENISH; } } else #endif if (map->system_map) { new_entry = uma_zalloc(kmapentzone, M_NOWAIT); } else { new_entry = uma_zalloc(mapentzone, M_WAITOK); } KASSERT(new_entry != NULL, ("vm_map_entry_create: kernel resources exhausted")); return (new_entry); } /* * vm_map_entry_set_behavior: * * Set the expected access behavior, either normal, random, or * sequential. */ static inline void vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior) { entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) | (behavior & MAP_ENTRY_BEHAV_MASK); } /* * vm_map_entry_max_free_{left,right}: * * Compute the size of the largest free gap between two entries, * one the root of a tree and the other the ancestor of that root * that is the least or greatest ancestor found on the search path. */ static inline vm_size_t vm_map_entry_max_free_left(vm_map_entry_t root, vm_map_entry_t left_ancestor) { return (root->left != left_ancestor ? root->left->max_free : root->start - left_ancestor->end); } static inline vm_size_t vm_map_entry_max_free_right(vm_map_entry_t root, vm_map_entry_t right_ancestor) { return (root->right != right_ancestor ? root->right->max_free : right_ancestor->start - root->end); } /* * vm_map_entry_{pred,succ}: * * Find the {predecessor, successor} of the entry by taking one step * in the appropriate direction and backtracking as much as necessary. * vm_map_entry_succ is defined in vm_map.h. */ static inline vm_map_entry_t vm_map_entry_pred(vm_map_entry_t entry) { vm_map_entry_t prior; prior = entry->left; if (prior->right->start < entry->start) { do prior = prior->right; while (prior->right != entry); } return (prior); } static inline vm_size_t vm_size_max(vm_size_t a, vm_size_t b) { return (a > b ? a : b); } #define SPLAY_LEFT_STEP(root, y, llist, rlist, test) do { \ vm_map_entry_t z; \ vm_size_t max_free; \ \ /* \ * Infer root->right->max_free == root->max_free when \ * y->max_free < root->max_free || root->max_free == 0. \ * Otherwise, look right to find it. \ */ \ y = root->left; \ max_free = root->max_free; \ KASSERT(max_free == vm_size_max( \ vm_map_entry_max_free_left(root, llist), \ vm_map_entry_max_free_right(root, rlist)), \ ("%s: max_free invariant fails", __func__)); \ if (max_free - 1 < vm_map_entry_max_free_left(root, llist)) \ max_free = vm_map_entry_max_free_right(root, rlist); \ if (y != llist && (test)) { \ /* Rotate right and make y root. */ \ z = y->right; \ if (z != root) { \ root->left = z; \ y->right = root; \ if (max_free < y->max_free) \ root->max_free = max_free = \ vm_size_max(max_free, z->max_free); \ } else if (max_free < y->max_free) \ root->max_free = max_free = \ vm_size_max(max_free, root->start - y->end);\ root = y; \ y = root->left; \ } \ /* Copy right->max_free. Put root on rlist. */ \ root->max_free = max_free; \ KASSERT(max_free == vm_map_entry_max_free_right(root, rlist), \ ("%s: max_free not copied from right", __func__)); \ root->left = rlist; \ rlist = root; \ root = y != llist ? y : NULL; \ } while (0) #define SPLAY_RIGHT_STEP(root, y, llist, rlist, test) do { \ vm_map_entry_t z; \ vm_size_t max_free; \ \ /* \ * Infer root->left->max_free == root->max_free when \ * y->max_free < root->max_free || root->max_free == 0. \ * Otherwise, look left to find it. \ */ \ y = root->right; \ max_free = root->max_free; \ KASSERT(max_free == vm_size_max( \ vm_map_entry_max_free_left(root, llist), \ vm_map_entry_max_free_right(root, rlist)), \ ("%s: max_free invariant fails", __func__)); \ if (max_free - 1 < vm_map_entry_max_free_right(root, rlist)) \ max_free = vm_map_entry_max_free_left(root, llist); \ if (y != rlist && (test)) { \ /* Rotate left and make y root. */ \ z = y->left; \ if (z != root) { \ root->right = z; \ y->left = root; \ if (max_free < y->max_free) \ root->max_free = max_free = \ vm_size_max(max_free, z->max_free); \ } else if (max_free < y->max_free) \ root->max_free = max_free = \ vm_size_max(max_free, y->start - root->end);\ root = y; \ y = root->right; \ } \ /* Copy left->max_free. Put root on llist. */ \ root->max_free = max_free; \ KASSERT(max_free == vm_map_entry_max_free_left(root, llist), \ ("%s: max_free not copied from left", __func__)); \ root->right = llist; \ llist = root; \ root = y != rlist ? y : NULL; \ } while (0) /* * Walk down the tree until we find addr or a gap where addr would go, breaking * off left and right subtrees of nodes less than, or greater than addr. Treat * subtrees with root->max_free < length as empty trees. llist and rlist are * the two sides in reverse order (bottom-up), with llist linked by the right * pointer and rlist linked by the left pointer in the vm_map_entry, and both * lists terminated by &map->header. This function, and the subsequent call to * vm_map_splay_merge_{left,right,pred,succ}, rely on the start and end address * values in &map->header. */ static __always_inline vm_map_entry_t vm_map_splay_split(vm_map_t map, vm_offset_t addr, vm_size_t length, vm_map_entry_t *llist, vm_map_entry_t *rlist) { vm_map_entry_t left, right, root, y; left = right = &map->header; root = map->root; while (root != NULL && root->max_free >= length) { KASSERT(left->end <= root->start && root->end <= right->start, ("%s: root not within tree bounds", __func__)); if (addr < root->start) { SPLAY_LEFT_STEP(root, y, left, right, y->max_free >= length && addr < y->start); } else if (addr >= root->end) { SPLAY_RIGHT_STEP(root, y, left, right, y->max_free >= length && addr >= y->end); } else break; } *llist = left; *rlist = right; return (root); } static __always_inline void vm_map_splay_findnext(vm_map_entry_t root, vm_map_entry_t *rlist) { vm_map_entry_t hi, right, y; right = *rlist; hi = root->right == right ? NULL : root->right; if (hi == NULL) return; do SPLAY_LEFT_STEP(hi, y, root, right, true); while (hi != NULL); *rlist = right; } static __always_inline void vm_map_splay_findprev(vm_map_entry_t root, vm_map_entry_t *llist) { vm_map_entry_t left, lo, y; left = *llist; lo = root->left == left ? NULL : root->left; if (lo == NULL) return; do SPLAY_RIGHT_STEP(lo, y, left, root, true); while (lo != NULL); *llist = left; } static inline void vm_map_entry_swap(vm_map_entry_t *a, vm_map_entry_t *b) { vm_map_entry_t tmp; tmp = *b; *b = *a; *a = tmp; } /* * Walk back up the two spines, flip the pointers and set max_free. The * subtrees of the root go at the bottom of llist and rlist. */ static vm_size_t vm_map_splay_merge_left_walk(vm_map_entry_t header, vm_map_entry_t root, vm_map_entry_t tail, vm_size_t max_free, vm_map_entry_t llist) { do { /* * The max_free values of the children of llist are in * llist->max_free and max_free. Update with the * max value. */ llist->max_free = max_free = vm_size_max(llist->max_free, max_free); vm_map_entry_swap(&llist->right, &tail); vm_map_entry_swap(&tail, &llist); } while (llist != header); root->left = tail; return (max_free); } /* * When llist is known to be the predecessor of root. */ static inline vm_size_t vm_map_splay_merge_pred(vm_map_entry_t header, vm_map_entry_t root, vm_map_entry_t llist) { vm_size_t max_free; max_free = root->start - llist->end; if (llist != header) { max_free = vm_map_splay_merge_left_walk(header, root, root, max_free, llist); } else { root->left = header; header->right = root; } return (max_free); } /* * When llist may or may not be the predecessor of root. */ static inline vm_size_t vm_map_splay_merge_left(vm_map_entry_t header, vm_map_entry_t root, vm_map_entry_t llist) { vm_size_t max_free; max_free = vm_map_entry_max_free_left(root, llist); if (llist != header) { max_free = vm_map_splay_merge_left_walk(header, root, root->left == llist ? root : root->left, max_free, llist); } return (max_free); } static vm_size_t vm_map_splay_merge_right_walk(vm_map_entry_t header, vm_map_entry_t root, vm_map_entry_t tail, vm_size_t max_free, vm_map_entry_t rlist) { do { /* * The max_free values of the children of rlist are in * rlist->max_free and max_free. Update with the * max value. */ rlist->max_free = max_free = vm_size_max(rlist->max_free, max_free); vm_map_entry_swap(&rlist->left, &tail); vm_map_entry_swap(&tail, &rlist); } while (rlist != header); root->right = tail; return (max_free); } /* * When rlist is known to be the succecessor of root. */ static inline vm_size_t vm_map_splay_merge_succ(vm_map_entry_t header, vm_map_entry_t root, vm_map_entry_t rlist) { vm_size_t max_free; max_free = rlist->start - root->end; if (rlist != header) { max_free = vm_map_splay_merge_right_walk(header, root, root, max_free, rlist); } else { root->right = header; header->left = root; } return (max_free); } /* * When rlist may or may not be the succecessor of root. */ static inline vm_size_t vm_map_splay_merge_right(vm_map_entry_t header, vm_map_entry_t root, vm_map_entry_t rlist) { vm_size_t max_free; max_free = vm_map_entry_max_free_right(root, rlist); if (rlist != header) { max_free = vm_map_splay_merge_right_walk(header, root, root->right == rlist ? root : root->right, max_free, rlist); } return (max_free); } /* * vm_map_splay: * * The Sleator and Tarjan top-down splay algorithm with the * following variation. Max_free must be computed bottom-up, so * on the downward pass, maintain the left and right spines in * reverse order. Then, make a second pass up each side to fix * the pointers and compute max_free. The time bound is O(log n) * amortized. * * The tree is threaded, which means that there are no null pointers. * When a node has no left child, its left pointer points to its * predecessor, which the last ancestor on the search path from the root * where the search branched right. Likewise, when a node has no right * child, its right pointer points to its successor. The map header node * is the predecessor of the first map entry, and the successor of the * last. * * The new root is the vm_map_entry containing "addr", or else an * adjacent entry (lower if possible) if addr is not in the tree. * * The map must be locked, and leaves it so. * * Returns: the new root. */ static vm_map_entry_t vm_map_splay(vm_map_t map, vm_offset_t addr) { vm_map_entry_t header, llist, rlist, root; vm_size_t max_free_left, max_free_right; header = &map->header; root = vm_map_splay_split(map, addr, 0, &llist, &rlist); if (root != NULL) { max_free_left = vm_map_splay_merge_left(header, root, llist); max_free_right = vm_map_splay_merge_right(header, root, rlist); } else if (llist != header) { /* * Recover the greatest node in the left * subtree and make it the root. */ root = llist; llist = root->right; max_free_left = vm_map_splay_merge_left(header, root, llist); max_free_right = vm_map_splay_merge_succ(header, root, rlist); } else if (rlist != header) { /* * Recover the least node in the right * subtree and make it the root. */ root = rlist; rlist = root->left; max_free_left = vm_map_splay_merge_pred(header, root, llist); max_free_right = vm_map_splay_merge_right(header, root, rlist); } else { /* There is no root. */ return (NULL); } root->max_free = vm_size_max(max_free_left, max_free_right); map->root = root; VM_MAP_ASSERT_CONSISTENT(map); return (root); } /* * vm_map_entry_{un,}link: * * Insert/remove entries from maps. On linking, if new entry clips * existing entry, trim existing entry to avoid overlap, and manage * offsets. On unlinking, merge disappearing entry with neighbor, if * called for, and manage offsets. Callers should not modify fields in * entries already mapped. */ static void vm_map_entry_link(vm_map_t map, vm_map_entry_t entry) { vm_map_entry_t header, llist, rlist, root; vm_size_t max_free_left, max_free_right; CTR3(KTR_VM, "vm_map_entry_link: map %p, nentries %d, entry %p", map, map->nentries, entry); VM_MAP_ASSERT_LOCKED(map); map->nentries++; header = &map->header; root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist); if (root == NULL) { /* * The new entry does not overlap any existing entry in the * map, so it becomes the new root of the map tree. */ max_free_left = vm_map_splay_merge_pred(header, entry, llist); max_free_right = vm_map_splay_merge_succ(header, entry, rlist); } else if (entry->start == root->start) { /* * The new entry is a clone of root, with only the end field * changed. The root entry will be shrunk to abut the new * entry, and will be the right child of the new root entry in * the modified map. */ KASSERT(entry->end < root->end, ("%s: clip_start not within entry", __func__)); vm_map_splay_findprev(root, &llist); - if ((root->eflags & (MAP_ENTRY_STACK_GAP_DN | - MAP_ENTRY_STACK_GAP_UP)) == 0) + if ((root->eflags & MAP_ENTRY_STACK_GAP_DN) == 0) root->offset += entry->end - root->start; root->start = entry->end; max_free_left = vm_map_splay_merge_pred(header, entry, llist); max_free_right = root->max_free = vm_size_max( vm_map_splay_merge_pred(entry, root, entry), vm_map_splay_merge_right(header, root, rlist)); } else { /* * The new entry is a clone of root, with only the start field * changed. The root entry will be shrunk to abut the new * entry, and will be the left child of the new root entry in * the modified map. */ KASSERT(entry->end == root->end, ("%s: clip_start not within entry", __func__)); vm_map_splay_findnext(root, &rlist); - if ((entry->eflags & (MAP_ENTRY_STACK_GAP_DN | - MAP_ENTRY_STACK_GAP_UP)) == 0) + if ((entry->eflags & MAP_ENTRY_STACK_GAP_DN) == 0) entry->offset += entry->start - root->start; root->end = entry->start; max_free_left = root->max_free = vm_size_max( vm_map_splay_merge_left(header, root, llist), vm_map_splay_merge_succ(entry, root, entry)); max_free_right = vm_map_splay_merge_succ(header, entry, rlist); } entry->max_free = vm_size_max(max_free_left, max_free_right); map->root = entry; VM_MAP_ASSERT_CONSISTENT(map); } enum unlink_merge_type { UNLINK_MERGE_NONE, UNLINK_MERGE_NEXT }; static void vm_map_entry_unlink(vm_map_t map, vm_map_entry_t entry, enum unlink_merge_type op) { vm_map_entry_t header, llist, rlist, root; vm_size_t max_free_left, max_free_right; VM_MAP_ASSERT_LOCKED(map); header = &map->header; root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist); KASSERT(root != NULL, ("vm_map_entry_unlink: unlink object not mapped")); vm_map_splay_findprev(root, &llist); vm_map_splay_findnext(root, &rlist); if (op == UNLINK_MERGE_NEXT) { rlist->start = root->start; - MPASS((rlist->eflags & (MAP_ENTRY_STACK_GAP_DN | - MAP_ENTRY_STACK_GAP_UP)) == 0); + MPASS((rlist->eflags & MAP_ENTRY_STACK_GAP_DN) == 0); rlist->offset = root->offset; } if (llist != header) { root = llist; llist = root->right; max_free_left = vm_map_splay_merge_left(header, root, llist); max_free_right = vm_map_splay_merge_succ(header, root, rlist); } else if (rlist != header) { root = rlist; rlist = root->left; max_free_left = vm_map_splay_merge_pred(header, root, llist); max_free_right = vm_map_splay_merge_right(header, root, rlist); } else { header->left = header->right = header; root = NULL; } if (root != NULL) root->max_free = vm_size_max(max_free_left, max_free_right); map->root = root; VM_MAP_ASSERT_CONSISTENT(map); map->nentries--; CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map, map->nentries, entry); } /* * vm_map_entry_resize: * * Resize a vm_map_entry, recompute the amount of free space that * follows it and propagate that value up the tree. * * The map must be locked, and leaves it so. */ static void vm_map_entry_resize(vm_map_t map, vm_map_entry_t entry, vm_size_t grow_amount) { vm_map_entry_t header, llist, rlist, root; VM_MAP_ASSERT_LOCKED(map); header = &map->header; root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist); KASSERT(root != NULL, ("%s: resize object not mapped", __func__)); vm_map_splay_findnext(root, &rlist); entry->end += grow_amount; root->max_free = vm_size_max( vm_map_splay_merge_left(header, root, llist), vm_map_splay_merge_succ(header, root, rlist)); map->root = root; VM_MAP_ASSERT_CONSISTENT(map); CTR4(KTR_VM, "%s: map %p, nentries %d, entry %p", __func__, map, map->nentries, entry); } /* * vm_map_lookup_entry: [ internal use only ] * * Finds the map entry containing (or * immediately preceding) the specified address * in the given map; the entry is returned * in the "entry" parameter. The boolean * result indicates whether the address is * actually contained in the map. */ boolean_t vm_map_lookup_entry( vm_map_t map, vm_offset_t address, vm_map_entry_t *entry) /* OUT */ { vm_map_entry_t cur, header, lbound, ubound; boolean_t locked; /* * If the map is empty, then the map entry immediately preceding * "address" is the map's header. */ header = &map->header; cur = map->root; if (cur == NULL) { *entry = header; return (FALSE); } if (address >= cur->start && cur->end > address) { *entry = cur; return (TRUE); } if ((locked = vm_map_locked(map)) || sx_try_upgrade(&map->lock)) { /* * Splay requires a write lock on the map. However, it only * restructures the binary search tree; it does not otherwise * change the map. Thus, the map's timestamp need not change * on a temporary upgrade. */ cur = vm_map_splay(map, address); if (!locked) { VM_MAP_UNLOCK_CONSISTENT(map); sx_downgrade(&map->lock); } /* * If "address" is contained within a map entry, the new root * is that map entry. Otherwise, the new root is a map entry * immediately before or after "address". */ if (address < cur->start) { *entry = header; return (FALSE); } *entry = cur; return (address < cur->end); } /* * Since the map is only locked for read access, perform a * standard binary search tree lookup for "address". */ lbound = ubound = header; for (;;) { if (address < cur->start) { ubound = cur; cur = cur->left; if (cur == lbound) break; } else if (cur->end <= address) { lbound = cur; cur = cur->right; if (cur == ubound) break; } else { *entry = cur; return (TRUE); } } *entry = lbound; return (FALSE); } /* * vm_map_insert1() is identical to vm_map_insert() except that it * returns the newly inserted map entry in '*res'. In case the new * entry is coalesced with a neighbor or an existing entry was * resized, that entry is returned. In any case, the returned entry * covers the specified address range. */ static int vm_map_insert1(vm_map_t map, vm_object_t object, vm_ooffset_t offset, vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow, vm_map_entry_t *res) { vm_map_entry_t new_entry, next_entry, prev_entry; struct ucred *cred; vm_eflags_t protoeflags; vm_inherit_t inheritance; u_long bdry; u_int bidx; VM_MAP_ASSERT_LOCKED(map); KASSERT(object != kernel_object || (cow & MAP_COPY_ON_WRITE) == 0, ("vm_map_insert: kernel object and COW")); KASSERT(object == NULL || (cow & MAP_NOFAULT) == 0 || (cow & MAP_SPLIT_BOUNDARY_MASK) != 0, ("vm_map_insert: paradoxical MAP_NOFAULT request, obj %p cow %#x", object, cow)); KASSERT((prot & ~max) == 0, ("prot %#x is not subset of max_prot %#x", prot, max)); /* * Check that the start and end points are not bogus. */ if (start == end || !vm_map_range_valid(map, start, end)) return (KERN_INVALID_ADDRESS); if ((map->flags & MAP_WXORX) != 0 && (prot & (VM_PROT_WRITE | VM_PROT_EXECUTE)) == (VM_PROT_WRITE | VM_PROT_EXECUTE)) return (KERN_PROTECTION_FAILURE); /* * Find the entry prior to the proposed starting address; if it's part * of an existing entry, this range is bogus. */ if (vm_map_lookup_entry(map, start, &prev_entry)) return (KERN_NO_SPACE); /* * Assert that the next entry doesn't overlap the end point. */ next_entry = vm_map_entry_succ(prev_entry); if (next_entry->start < end) return (KERN_NO_SPACE); if ((cow & MAP_CREATE_GUARD) != 0 && (object != NULL || max != VM_PROT_NONE)) return (KERN_INVALID_ARGUMENT); protoeflags = 0; if (cow & MAP_COPY_ON_WRITE) protoeflags |= MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY; if (cow & MAP_NOFAULT) protoeflags |= MAP_ENTRY_NOFAULT; if (cow & MAP_DISABLE_SYNCER) protoeflags |= MAP_ENTRY_NOSYNC; if (cow & MAP_DISABLE_COREDUMP) protoeflags |= MAP_ENTRY_NOCOREDUMP; if (cow & MAP_STACK_GROWS_DOWN) protoeflags |= MAP_ENTRY_GROWS_DOWN; - if (cow & MAP_STACK_GROWS_UP) - protoeflags |= MAP_ENTRY_GROWS_UP; if (cow & MAP_WRITECOUNT) protoeflags |= MAP_ENTRY_WRITECNT; if (cow & MAP_VN_EXEC) protoeflags |= MAP_ENTRY_VN_EXEC; if ((cow & MAP_CREATE_GUARD) != 0) protoeflags |= MAP_ENTRY_GUARD; if ((cow & MAP_CREATE_STACK_GAP_DN) != 0) protoeflags |= MAP_ENTRY_STACK_GAP_DN; - if ((cow & MAP_CREATE_STACK_GAP_UP) != 0) - protoeflags |= MAP_ENTRY_STACK_GAP_UP; if (cow & MAP_INHERIT_SHARE) inheritance = VM_INHERIT_SHARE; else inheritance = VM_INHERIT_DEFAULT; if ((cow & MAP_SPLIT_BOUNDARY_MASK) != 0) { /* This magically ignores index 0, for usual page size. */ bidx = (cow & MAP_SPLIT_BOUNDARY_MASK) >> MAP_SPLIT_BOUNDARY_SHIFT; if (bidx >= MAXPAGESIZES) return (KERN_INVALID_ARGUMENT); bdry = pagesizes[bidx] - 1; if ((start & bdry) != 0 || (end & bdry) != 0) return (KERN_INVALID_ARGUMENT); protoeflags |= bidx << MAP_ENTRY_SPLIT_BOUNDARY_SHIFT; } cred = NULL; if ((cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT | MAP_CREATE_GUARD)) != 0) goto charged; if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) && ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) { if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start)) return (KERN_RESOURCE_SHORTAGE); KASSERT(object == NULL || (protoeflags & MAP_ENTRY_NEEDS_COPY) != 0 || object->cred == NULL, ("overcommit: vm_map_insert o %p", object)); cred = curthread->td_ucred; } charged: /* Expand the kernel pmap, if necessary. */ if (map == kernel_map && end > kernel_vm_end) pmap_growkernel(end); if (object != NULL) { /* * OBJ_ONEMAPPING must be cleared unless this mapping * is trivially proven to be the only mapping for any * of the object's pages. (Object granularity * reference counting is insufficient to recognize * aliases with precision.) */ if ((object->flags & OBJ_ANON) != 0) { VM_OBJECT_WLOCK(object); if (object->ref_count > 1 || object->shadow_count != 0) vm_object_clear_flag(object, OBJ_ONEMAPPING); VM_OBJECT_WUNLOCK(object); } } else if ((prev_entry->eflags & ~MAP_ENTRY_USER_WIRED) == protoeflags && - (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP | - MAP_VN_EXEC)) == 0 && + (cow & (MAP_STACK_GROWS_DOWN | MAP_VN_EXEC)) == 0 && prev_entry->end == start && (prev_entry->cred == cred || (prev_entry->object.vm_object != NULL && prev_entry->object.vm_object->cred == cred)) && vm_object_coalesce(prev_entry->object.vm_object, prev_entry->offset, (vm_size_t)(prev_entry->end - prev_entry->start), (vm_size_t)(end - prev_entry->end), cred != NULL && (protoeflags & MAP_ENTRY_NEEDS_COPY) == 0)) { /* * We were able to extend the object. Determine if we * can extend the previous map entry to include the * new range as well. */ if (prev_entry->inheritance == inheritance && prev_entry->protection == prot && prev_entry->max_protection == max && prev_entry->wired_count == 0) { KASSERT((prev_entry->eflags & MAP_ENTRY_USER_WIRED) == 0, ("prev_entry %p has incoherent wiring", prev_entry)); if ((prev_entry->eflags & MAP_ENTRY_GUARD) == 0) map->size += end - prev_entry->end; vm_map_entry_resize(map, prev_entry, end - prev_entry->end); *res = vm_map_try_merge_entries(map, prev_entry, next_entry); return (KERN_SUCCESS); } /* * If we can extend the object but cannot extend the * map entry, we have to create a new map entry. We * must bump the ref count on the extended object to * account for it. object may be NULL. */ object = prev_entry->object.vm_object; offset = prev_entry->offset + (prev_entry->end - prev_entry->start); vm_object_reference(object); if (cred != NULL && object != NULL && object->cred != NULL && !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { /* Object already accounts for this uid. */ cred = NULL; } } if (cred != NULL) crhold(cred); /* * Create a new entry */ new_entry = vm_map_entry_create(map); new_entry->start = start; new_entry->end = end; new_entry->cred = NULL; new_entry->eflags = protoeflags; new_entry->object.vm_object = object; new_entry->offset = offset; new_entry->inheritance = inheritance; new_entry->protection = prot; new_entry->max_protection = max; new_entry->wired_count = 0; new_entry->wiring_thread = NULL; new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT; new_entry->next_read = start; KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry), ("overcommit: vm_map_insert leaks vm_map %p", new_entry)); new_entry->cred = cred; /* * Insert the new entry into the list */ vm_map_entry_link(map, new_entry); if ((new_entry->eflags & MAP_ENTRY_GUARD) == 0) map->size += new_entry->end - new_entry->start; /* * Try to coalesce the new entry with both the previous and next * entries in the list. Previously, we only attempted to coalesce * with the previous entry when object is NULL. Here, we handle the * other cases, which are less common. */ vm_map_try_merge_entries(map, prev_entry, new_entry); *res = vm_map_try_merge_entries(map, new_entry, next_entry); if ((cow & (MAP_PREFAULT | MAP_PREFAULT_PARTIAL)) != 0) { vm_map_pmap_enter(map, start, prot, object, OFF_TO_IDX(offset), end - start, cow & MAP_PREFAULT_PARTIAL); } return (KERN_SUCCESS); } /* * vm_map_insert: * * Inserts the given VM object into the target map at the * specified address range. * * Requires that the map be locked, and leaves it so. * * If object is non-NULL, ref count must be bumped by caller * prior to making call to account for the new entry. */ int vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset, vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow) { vm_map_entry_t res; return (vm_map_insert1(map, object, offset, start, end, prot, max, cow, &res)); } /* * vm_map_findspace: * * Find the first fit (lowest VM address) for "length" free bytes * beginning at address >= start in the given map. * * In a vm_map_entry, "max_free" is the maximum amount of * contiguous free space between an entry in its subtree and a * neighbor of that entry. This allows finding a free region in * one path down the tree, so O(log n) amortized with splay * trees. * * The map must be locked, and leaves it so. * * Returns: starting address if sufficient space, * vm_map_max(map)-length+1 if insufficient space. */ vm_offset_t vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length) { vm_map_entry_t header, llist, rlist, root, y; vm_size_t left_length, max_free_left, max_free_right; vm_offset_t gap_end; VM_MAP_ASSERT_LOCKED(map); /* * Request must fit within min/max VM address and must avoid * address wrap. */ start = MAX(start, vm_map_min(map)); if (start >= vm_map_max(map) || length > vm_map_max(map) - start) return (vm_map_max(map) - length + 1); /* Empty tree means wide open address space. */ if (map->root == NULL) return (start); /* * After splay_split, if start is within an entry, push it to the start * of the following gap. If rlist is at the end of the gap containing * start, save the end of that gap in gap_end to see if the gap is big * enough; otherwise set gap_end to start skip gap-checking and move * directly to a search of the right subtree. */ header = &map->header; root = vm_map_splay_split(map, start, length, &llist, &rlist); gap_end = rlist->start; if (root != NULL) { start = root->end; if (root->right != rlist) gap_end = start; max_free_left = vm_map_splay_merge_left(header, root, llist); max_free_right = vm_map_splay_merge_right(header, root, rlist); } else if (rlist != header) { root = rlist; rlist = root->left; max_free_left = vm_map_splay_merge_pred(header, root, llist); max_free_right = vm_map_splay_merge_right(header, root, rlist); } else { root = llist; llist = root->right; max_free_left = vm_map_splay_merge_left(header, root, llist); max_free_right = vm_map_splay_merge_succ(header, root, rlist); } root->max_free = vm_size_max(max_free_left, max_free_right); map->root = root; VM_MAP_ASSERT_CONSISTENT(map); if (length <= gap_end - start) return (start); /* With max_free, can immediately tell if no solution. */ if (root->right == header || length > root->right->max_free) return (vm_map_max(map) - length + 1); /* * Splay for the least large-enough gap in the right subtree. */ llist = rlist = header; for (left_length = 0;; left_length = vm_map_entry_max_free_left(root, llist)) { if (length <= left_length) SPLAY_LEFT_STEP(root, y, llist, rlist, length <= vm_map_entry_max_free_left(y, llist)); else SPLAY_RIGHT_STEP(root, y, llist, rlist, length > vm_map_entry_max_free_left(y, root)); if (root == NULL) break; } root = llist; llist = root->right; max_free_left = vm_map_splay_merge_left(header, root, llist); if (rlist == header) { root->max_free = vm_size_max(max_free_left, vm_map_splay_merge_succ(header, root, rlist)); } else { y = rlist; rlist = y->left; y->max_free = vm_size_max( vm_map_splay_merge_pred(root, y, root), vm_map_splay_merge_right(header, y, rlist)); root->max_free = vm_size_max(max_free_left, y->max_free); } map->root = root; VM_MAP_ASSERT_CONSISTENT(map); return (root->end); } int vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset, vm_offset_t start, vm_size_t length, vm_prot_t prot, vm_prot_t max, int cow) { vm_offset_t end; int result; end = start + length; - KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 || - object == NULL, + KASSERT((cow & MAP_STACK_GROWS_DOWN) == 0 || object == NULL, ("vm_map_fixed: non-NULL backing object for stack")); vm_map_lock(map); VM_MAP_RANGE_CHECK(map, start, end); if ((cow & MAP_CHECK_EXCL) == 0) { result = vm_map_delete(map, start, end); if (result != KERN_SUCCESS) goto out; } - if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) { + if ((cow & MAP_STACK_GROWS_DOWN) != 0) { result = vm_map_stack_locked(map, start, length, sgrowsiz, prot, max, cow); } else { result = vm_map_insert(map, object, offset, start, end, prot, max, cow); } out: vm_map_unlock(map); return (result); } #if VM_NRESERVLEVEL <= 1 static const int aslr_pages_rnd_64[2] = {0x1000, 0x10}; static const int aslr_pages_rnd_32[2] = {0x100, 0x4}; #elif VM_NRESERVLEVEL == 2 static const int aslr_pages_rnd_64[3] = {0x1000, 0x1000, 0x10}; static const int aslr_pages_rnd_32[3] = {0x100, 0x100, 0x4}; #else #error "Unsupported VM_NRESERVLEVEL" #endif static int cluster_anon = 1; SYSCTL_INT(_vm, OID_AUTO, cluster_anon, CTLFLAG_RW, &cluster_anon, 0, "Cluster anonymous mappings: 0 = no, 1 = yes if no hint, 2 = always"); static bool clustering_anon_allowed(vm_offset_t addr, int cow) { switch (cluster_anon) { case 0: return (false); case 1: return (addr == 0 || (cow & MAP_NO_HINT) != 0); case 2: default: return (true); } } static long aslr_restarts; SYSCTL_LONG(_vm, OID_AUTO, aslr_restarts, CTLFLAG_RD, &aslr_restarts, 0, "Number of aslr failures"); /* * Searches for the specified amount of free space in the given map with the * specified alignment. Performs an address-ordered, first-fit search from * the given address "*addr", with an optional upper bound "max_addr". If the * parameter "alignment" is zero, then the alignment is computed from the * given (object, offset) pair so as to enable the greatest possible use of * superpage mappings. Returns KERN_SUCCESS and the address of the free space * in "*addr" if successful. Otherwise, returns KERN_NO_SPACE. * * The map must be locked. Initially, there must be at least "length" bytes * of free space at the given address. */ static int vm_map_alignspace(vm_map_t map, vm_object_t object, vm_ooffset_t offset, vm_offset_t *addr, vm_size_t length, vm_offset_t max_addr, vm_offset_t alignment) { vm_offset_t aligned_addr, free_addr; VM_MAP_ASSERT_LOCKED(map); free_addr = *addr; KASSERT(free_addr == vm_map_findspace(map, free_addr, length), ("caller failed to provide space %#jx at address %p", (uintmax_t)length, (void *)free_addr)); for (;;) { /* * At the start of every iteration, the free space at address * "*addr" is at least "length" bytes. */ if (alignment == 0) pmap_align_superpage(object, offset, addr, length); else *addr = roundup2(*addr, alignment); aligned_addr = *addr; if (aligned_addr == free_addr) { /* * Alignment did not change "*addr", so "*addr" must * still provide sufficient free space. */ return (KERN_SUCCESS); } /* * Test for address wrap on "*addr". A wrapped "*addr" could * be a valid address, in which case vm_map_findspace() cannot * be relied upon to fail. */ if (aligned_addr < free_addr) return (KERN_NO_SPACE); *addr = vm_map_findspace(map, aligned_addr, length); if (*addr + length > vm_map_max(map) || (max_addr != 0 && *addr + length > max_addr)) return (KERN_NO_SPACE); free_addr = *addr; if (free_addr == aligned_addr) { /* * If a successful call to vm_map_findspace() did not * change "*addr", then "*addr" must still be aligned * and provide sufficient free space. */ return (KERN_SUCCESS); } } } int vm_map_find_aligned(vm_map_t map, vm_offset_t *addr, vm_size_t length, vm_offset_t max_addr, vm_offset_t alignment) { /* XXXKIB ASLR eh ? */ *addr = vm_map_findspace(map, *addr, length); if (*addr + length > vm_map_max(map) || (max_addr != 0 && *addr + length > max_addr)) return (KERN_NO_SPACE); return (vm_map_alignspace(map, NULL, 0, addr, length, max_addr, alignment)); } /* * vm_map_find finds an unallocated region in the target address * map with the given length. The search is defined to be * first-fit from the specified address; the region found is * returned in the same parameter. * * If object is non-NULL, ref count must be bumped by caller * prior to making call to account for the new entry. */ int vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset, vm_offset_t *addr, /* IN/OUT */ vm_size_t length, vm_offset_t max_addr, int find_space, vm_prot_t prot, vm_prot_t max, int cow) { int rv; vm_map_lock(map); rv = vm_map_find_locked(map, object, offset, addr, length, max_addr, find_space, prot, max, cow); vm_map_unlock(map); return (rv); } int vm_map_find_locked(vm_map_t map, vm_object_t object, vm_ooffset_t offset, vm_offset_t *addr, /* IN/OUT */ vm_size_t length, vm_offset_t max_addr, int find_space, vm_prot_t prot, vm_prot_t max, int cow) { vm_offset_t alignment, curr_min_addr, min_addr; int gap, pidx, rv, try; bool cluster, en_aslr, update_anon; - KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 || - object == NULL, + KASSERT((cow & MAP_STACK_GROWS_DOWN) == 0 || object == NULL, ("non-NULL backing object for stack")); MPASS((cow & MAP_REMAP) == 0 || (find_space == VMFS_NO_SPACE && - (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0)); + (cow & MAP_STACK_GROWS_DOWN) == 0)); if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL || (object->flags & OBJ_COLORED) == 0)) find_space = VMFS_ANY_SPACE; if (find_space >> 8 != 0) { KASSERT((find_space & 0xff) == 0, ("bad VMFS flags")); alignment = (vm_offset_t)1 << (find_space >> 8); } else alignment = 0; en_aslr = (map->flags & MAP_ASLR) != 0; update_anon = cluster = clustering_anon_allowed(*addr, cow) && (map->flags & MAP_IS_SUB_MAP) == 0 && max_addr == 0 && find_space != VMFS_NO_SPACE && object == NULL && - (cow & (MAP_INHERIT_SHARE | MAP_STACK_GROWS_UP | - MAP_STACK_GROWS_DOWN)) == 0 && prot != PROT_NONE; + (cow & (MAP_INHERIT_SHARE | MAP_STACK_GROWS_DOWN)) == 0 && + prot != PROT_NONE; curr_min_addr = min_addr = *addr; if (en_aslr && min_addr == 0 && !cluster && find_space != VMFS_NO_SPACE && (map->flags & MAP_ASLR_IGNSTART) != 0) curr_min_addr = min_addr = vm_map_min(map); try = 0; if (cluster) { curr_min_addr = map->anon_loc; if (curr_min_addr == 0) cluster = false; } if (find_space != VMFS_NO_SPACE) { KASSERT(find_space == VMFS_ANY_SPACE || find_space == VMFS_OPTIMAL_SPACE || find_space == VMFS_SUPER_SPACE || alignment != 0, ("unexpected VMFS flag")); again: /* * When creating an anonymous mapping, try clustering * with an existing anonymous mapping first. * * We make up to two attempts to find address space * for a given find_space value. The first attempt may * apply randomization or may cluster with an existing * anonymous mapping. If this first attempt fails, * perform a first-fit search of the available address * space. * * If all tries failed, and find_space is * VMFS_OPTIMAL_SPACE, fallback to VMFS_ANY_SPACE. * Again enable clustering and randomization. */ try++; MPASS(try <= 2); if (try == 2) { /* * Second try: we failed either to find a * suitable region for randomizing the * allocation, or to cluster with an existing * mapping. Retry with free run. */ curr_min_addr = (map->flags & MAP_ASLR_IGNSTART) != 0 ? vm_map_min(map) : min_addr; atomic_add_long(&aslr_restarts, 1); } if (try == 1 && en_aslr && !cluster) { /* * Find space for allocation, including * gap needed for later randomization. */ pidx = 0; #if VM_NRESERVLEVEL > 0 if ((find_space == VMFS_SUPER_SPACE || find_space == VMFS_OPTIMAL_SPACE) && pagesizes[VM_NRESERVLEVEL] != 0) { /* * Do not pointlessly increase the space that * is requested from vm_map_findspace(). * pmap_align_superpage() will only change a * mapping's alignment if that mapping is at * least a superpage in size. */ pidx = VM_NRESERVLEVEL; while (pidx > 0 && length < pagesizes[pidx]) pidx--; } #endif gap = vm_map_max(map) > MAP_32BIT_MAX_ADDR && (max_addr == 0 || max_addr > MAP_32BIT_MAX_ADDR) ? aslr_pages_rnd_64[pidx] : aslr_pages_rnd_32[pidx]; *addr = vm_map_findspace(map, curr_min_addr, length + gap * pagesizes[pidx]); if (*addr + length + gap * pagesizes[pidx] > vm_map_max(map)) goto again; /* And randomize the start address. */ *addr += (arc4random() % gap) * pagesizes[pidx]; if (max_addr != 0 && *addr + length > max_addr) goto again; } else { *addr = vm_map_findspace(map, curr_min_addr, length); if (*addr + length > vm_map_max(map) || (max_addr != 0 && *addr + length > max_addr)) { if (cluster) { cluster = false; MPASS(try == 1); goto again; } return (KERN_NO_SPACE); } } if (find_space != VMFS_ANY_SPACE && (rv = vm_map_alignspace(map, object, offset, addr, length, max_addr, alignment)) != KERN_SUCCESS) { if (find_space == VMFS_OPTIMAL_SPACE) { find_space = VMFS_ANY_SPACE; curr_min_addr = min_addr; cluster = update_anon; try = 0; goto again; } return (rv); } } else if ((cow & MAP_REMAP) != 0) { if (!vm_map_range_valid(map, *addr, *addr + length)) return (KERN_INVALID_ADDRESS); rv = vm_map_delete(map, *addr, *addr + length); if (rv != KERN_SUCCESS) return (rv); } - if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) { + if ((cow & MAP_STACK_GROWS_DOWN) != 0) { rv = vm_map_stack_locked(map, *addr, length, sgrowsiz, prot, max, cow); } else { rv = vm_map_insert(map, object, offset, *addr, *addr + length, prot, max, cow); } /* * Update the starting address for clustered anonymous memory mappings * if a starting address was not previously defined or an ASLR restart * placed an anonymous memory mapping at a lower address. */ if (update_anon && rv == KERN_SUCCESS && (map->anon_loc == 0 || *addr < map->anon_loc)) map->anon_loc = *addr; return (rv); } /* * vm_map_find_min() is a variant of vm_map_find() that takes an * additional parameter ("default_addr") and treats the given address * ("*addr") differently. Specifically, it treats "*addr" as a hint * and not as the minimum address where the mapping is created. * * This function works in two phases. First, it tries to * allocate above the hint. If that fails and the hint is * greater than "default_addr", it performs a second pass, replacing * the hint with "default_addr" as the minimum address for the * allocation. */ int vm_map_find_min(vm_map_t map, vm_object_t object, vm_ooffset_t offset, vm_offset_t *addr, vm_size_t length, vm_offset_t default_addr, vm_offset_t max_addr, int find_space, vm_prot_t prot, vm_prot_t max, int cow) { vm_offset_t hint; int rv; hint = *addr; if (hint == 0) { cow |= MAP_NO_HINT; *addr = hint = default_addr; } for (;;) { rv = vm_map_find(map, object, offset, addr, length, max_addr, find_space, prot, max, cow); if (rv == KERN_SUCCESS || default_addr >= hint) return (rv); *addr = hint = default_addr; } } /* * A map entry with any of the following flags set must not be merged with * another entry. */ -#define MAP_ENTRY_NOMERGE_MASK (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP | \ +#define MAP_ENTRY_NOMERGE_MASK (MAP_ENTRY_GROWS_DOWN | \ MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP | MAP_ENTRY_VN_EXEC | \ - MAP_ENTRY_STACK_GAP_UP | MAP_ENTRY_STACK_GAP_DN) + MAP_ENTRY_STACK_GAP_DN) static bool vm_map_mergeable_neighbors(vm_map_entry_t prev, vm_map_entry_t entry) { KASSERT((prev->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 || (entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0, ("vm_map_mergeable_neighbors: neither %p nor %p are mergeable", prev, entry)); return (prev->end == entry->start && prev->object.vm_object == entry->object.vm_object && (prev->object.vm_object == NULL || prev->offset + (prev->end - prev->start) == entry->offset) && prev->eflags == entry->eflags && prev->protection == entry->protection && prev->max_protection == entry->max_protection && prev->inheritance == entry->inheritance && prev->wired_count == entry->wired_count && prev->cred == entry->cred); } static void vm_map_merged_neighbor_dispose(vm_map_t map, vm_map_entry_t entry) { /* * If the backing object is a vnode object, vm_object_deallocate() * calls vrele(). However, vrele() does not lock the vnode because * the vnode has additional references. Thus, the map lock can be * kept without causing a lock-order reversal with the vnode lock. * * Since we count the number of virtual page mappings in * object->un_pager.vnp.writemappings, the writemappings value * should not be adjusted when the entry is disposed of. */ if (entry->object.vm_object != NULL) vm_object_deallocate(entry->object.vm_object); if (entry->cred != NULL) crfree(entry->cred); vm_map_entry_dispose(map, entry); } /* * vm_map_try_merge_entries: * * Compare two map entries that represent consecutive ranges. If * the entries can be merged, expand the range of the second to * cover the range of the first and delete the first. Then return * the map entry that includes the first range. * * The map must be locked. */ vm_map_entry_t vm_map_try_merge_entries(vm_map_t map, vm_map_entry_t prev_entry, vm_map_entry_t entry) { VM_MAP_ASSERT_LOCKED(map); if ((entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 && vm_map_mergeable_neighbors(prev_entry, entry)) { vm_map_entry_unlink(map, prev_entry, UNLINK_MERGE_NEXT); vm_map_merged_neighbor_dispose(map, prev_entry); return (entry); } return (prev_entry); } /* * vm_map_entry_back: * * Allocate an object to back a map entry. */ static inline void vm_map_entry_back(vm_map_entry_t entry) { vm_object_t object; KASSERT(entry->object.vm_object == NULL, ("map entry %p has backing object", entry)); KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0, ("map entry %p is a submap", entry)); object = vm_object_allocate_anon(atop(entry->end - entry->start), NULL, entry->cred, entry->end - entry->start); entry->object.vm_object = object; entry->offset = 0; entry->cred = NULL; } /* * vm_map_entry_charge_object * * If there is no object backing this entry, create one. Otherwise, if * the entry has cred, give it to the backing object. */ static inline void vm_map_entry_charge_object(vm_map_t map, vm_map_entry_t entry) { VM_MAP_ASSERT_LOCKED(map); KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0, ("map entry %p is a submap", entry)); if (entry->object.vm_object == NULL && !map->system_map && (entry->eflags & MAP_ENTRY_GUARD) == 0) vm_map_entry_back(entry); else if (entry->object.vm_object != NULL && ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) && entry->cred != NULL) { VM_OBJECT_WLOCK(entry->object.vm_object); KASSERT(entry->object.vm_object->cred == NULL, ("OVERCOMMIT: %s: both cred e %p", __func__, entry)); entry->object.vm_object->cred = entry->cred; entry->object.vm_object->charge = entry->end - entry->start; VM_OBJECT_WUNLOCK(entry->object.vm_object); entry->cred = NULL; } } /* * vm_map_entry_clone * * Create a duplicate map entry for clipping. */ static vm_map_entry_t vm_map_entry_clone(vm_map_t map, vm_map_entry_t entry) { vm_map_entry_t new_entry; VM_MAP_ASSERT_LOCKED(map); /* * Create a backing object now, if none exists, so that more individual * objects won't be created after the map entry is split. */ vm_map_entry_charge_object(map, entry); /* Clone the entry. */ new_entry = vm_map_entry_create(map); *new_entry = *entry; if (new_entry->cred != NULL) crhold(entry->cred); if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { vm_object_reference(new_entry->object.vm_object); vm_map_entry_set_vnode_text(new_entry, true); /* * The object->un_pager.vnp.writemappings for the object of * MAP_ENTRY_WRITECNT type entry shall be kept as is here. The * virtual pages are re-distributed among the clipped entries, * so the sum is left the same. */ } return (new_entry); } /* * vm_map_clip_start: [ internal use only ] * * Asserts that the given entry begins at or after * the specified address; if necessary, * it splits the entry into two. */ static int vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t startaddr) { vm_map_entry_t new_entry; int bdry_idx; if (!map->system_map) WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, "%s: map %p entry %p start 0x%jx", __func__, map, entry, (uintmax_t)startaddr); if (startaddr <= entry->start) return (KERN_SUCCESS); VM_MAP_ASSERT_LOCKED(map); KASSERT(entry->end > startaddr && entry->start < startaddr, ("%s: invalid clip of entry %p", __func__, entry)); bdry_idx = MAP_ENTRY_SPLIT_BOUNDARY_INDEX(entry); if (bdry_idx != 0) { if ((startaddr & (pagesizes[bdry_idx] - 1)) != 0) return (KERN_INVALID_ARGUMENT); } new_entry = vm_map_entry_clone(map, entry); /* * Split off the front portion. Insert the new entry BEFORE this one, * so that this entry has the specified starting address. */ new_entry->end = startaddr; vm_map_entry_link(map, new_entry); return (KERN_SUCCESS); } /* * vm_map_lookup_clip_start: * * Find the entry at or just after 'start', and clip it if 'start' is in * the interior of the entry. Return entry after 'start', and in * prev_entry set the entry before 'start'. */ static int vm_map_lookup_clip_start(vm_map_t map, vm_offset_t start, vm_map_entry_t *res_entry, vm_map_entry_t *prev_entry) { vm_map_entry_t entry; int rv; if (!map->system_map) WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, "%s: map %p start 0x%jx prev %p", __func__, map, (uintmax_t)start, prev_entry); if (vm_map_lookup_entry(map, start, prev_entry)) { entry = *prev_entry; rv = vm_map_clip_start(map, entry, start); if (rv != KERN_SUCCESS) return (rv); *prev_entry = vm_map_entry_pred(entry); } else entry = vm_map_entry_succ(*prev_entry); *res_entry = entry; return (KERN_SUCCESS); } /* * vm_map_clip_end: [ internal use only ] * * Asserts that the given entry ends at or before * the specified address; if necessary, * it splits the entry into two. */ static int vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t endaddr) { vm_map_entry_t new_entry; int bdry_idx; if (!map->system_map) WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, "%s: map %p entry %p end 0x%jx", __func__, map, entry, (uintmax_t)endaddr); if (endaddr >= entry->end) return (KERN_SUCCESS); VM_MAP_ASSERT_LOCKED(map); KASSERT(entry->start < endaddr && entry->end > endaddr, ("%s: invalid clip of entry %p", __func__, entry)); bdry_idx = MAP_ENTRY_SPLIT_BOUNDARY_INDEX(entry); if (bdry_idx != 0) { if ((endaddr & (pagesizes[bdry_idx] - 1)) != 0) return (KERN_INVALID_ARGUMENT); } new_entry = vm_map_entry_clone(map, entry); /* * Split off the back portion. Insert the new entry AFTER this one, * so that this entry has the specified ending address. */ new_entry->start = endaddr; vm_map_entry_link(map, new_entry); return (KERN_SUCCESS); } /* * vm_map_submap: [ kernel use only ] * * Mark the given range as handled by a subordinate map. * * This range must have been created with vm_map_find, * and no other operations may have been performed on this * range prior to calling vm_map_submap. * * Only a limited number of operations can be performed * within this rage after calling vm_map_submap: * vm_fault * [Don't try vm_map_copy!] * * To remove a submapping, one must first remove the * range from the superior map, and then destroy the * submap (if desired). [Better yet, don't try it.] */ int vm_map_submap( vm_map_t map, vm_offset_t start, vm_offset_t end, vm_map_t submap) { vm_map_entry_t entry; int result; result = KERN_INVALID_ARGUMENT; vm_map_lock(submap); submap->flags |= MAP_IS_SUB_MAP; vm_map_unlock(submap); vm_map_lock(map); VM_MAP_RANGE_CHECK(map, start, end); if (vm_map_lookup_entry(map, start, &entry) && entry->end >= end && (entry->eflags & MAP_ENTRY_COW) == 0 && entry->object.vm_object == NULL) { result = vm_map_clip_start(map, entry, start); if (result != KERN_SUCCESS) goto unlock; result = vm_map_clip_end(map, entry, end); if (result != KERN_SUCCESS) goto unlock; entry->object.sub_map = submap; entry->eflags |= MAP_ENTRY_IS_SUB_MAP; result = KERN_SUCCESS; } unlock: vm_map_unlock(map); if (result != KERN_SUCCESS) { vm_map_lock(submap); submap->flags &= ~MAP_IS_SUB_MAP; vm_map_unlock(submap); } return (result); } /* * The maximum number of pages to map if MAP_PREFAULT_PARTIAL is specified */ #define MAX_INIT_PT 96 /* * vm_map_pmap_enter: * * Preload the specified map's pmap with mappings to the specified * object's memory-resident pages. No further physical pages are * allocated, and no further virtual pages are retrieved from secondary * storage. If the specified flags include MAP_PREFAULT_PARTIAL, then a * limited number of page mappings are created at the low-end of the * specified address range. (For this purpose, a superpage mapping * counts as one page mapping.) Otherwise, all resident pages within * the specified address range are mapped. */ static void vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot, vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags) { vm_offset_t start; vm_page_t p, p_start; vm_pindex_t mask, psize, threshold, tmpidx; int psind; if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL) return; if (object->type == OBJT_DEVICE || object->type == OBJT_SG) { VM_OBJECT_WLOCK(object); if (object->type == OBJT_DEVICE || object->type == OBJT_SG) { pmap_object_init_pt(map->pmap, addr, object, pindex, size); VM_OBJECT_WUNLOCK(object); return; } VM_OBJECT_LOCK_DOWNGRADE(object); } else VM_OBJECT_RLOCK(object); psize = atop(size); if (psize + pindex > object->size) { if (pindex >= object->size) { VM_OBJECT_RUNLOCK(object); return; } psize = object->size - pindex; } start = 0; p_start = NULL; threshold = MAX_INIT_PT; p = vm_page_find_least(object, pindex); /* * Assert: the variable p is either (1) the page with the * least pindex greater than or equal to the parameter pindex * or (2) NULL. */ for (; p != NULL && (tmpidx = p->pindex - pindex) < psize; p = TAILQ_NEXT(p, listq)) { /* * don't allow an madvise to blow away our really * free pages allocating pv entries. */ if (((flags & MAP_PREFAULT_MADVISE) != 0 && vm_page_count_severe()) || ((flags & MAP_PREFAULT_PARTIAL) != 0 && tmpidx >= threshold)) { psize = tmpidx; break; } if (vm_page_all_valid(p)) { if (p_start == NULL) { start = addr + ptoa(tmpidx); p_start = p; } /* Jump ahead if a superpage mapping is possible. */ for (psind = p->psind; psind > 0; psind--) { if (((addr + ptoa(tmpidx)) & (pagesizes[psind] - 1)) == 0) { mask = atop(pagesizes[psind]) - 1; if (tmpidx + mask < psize && vm_page_ps_test(p, psind, PS_ALL_VALID, NULL)) { p += mask; threshold += mask; break; } } } } else if (p_start != NULL) { pmap_enter_object(map->pmap, start, addr + ptoa(tmpidx), p_start, prot); p_start = NULL; } } if (p_start != NULL) pmap_enter_object(map->pmap, start, addr + ptoa(psize), p_start, prot); VM_OBJECT_RUNLOCK(object); } static void vm_map_protect_guard(vm_map_entry_t entry, vm_prot_t new_prot, vm_prot_t new_maxprot, int flags) { vm_prot_t old_prot; MPASS((entry->eflags & MAP_ENTRY_GUARD) != 0); - if ((entry->eflags & (MAP_ENTRY_STACK_GAP_UP | - MAP_ENTRY_STACK_GAP_DN)) == 0) + if ((entry->eflags & MAP_ENTRY_STACK_GAP_DN) == 0) return; old_prot = PROT_EXTRACT(entry->offset); if ((flags & VM_MAP_PROTECT_SET_MAXPROT) != 0) { entry->offset = PROT_MAX(new_maxprot) | (new_maxprot & old_prot); } if ((flags & VM_MAP_PROTECT_SET_PROT) != 0) { entry->offset = new_prot | PROT_MAX( PROT_MAX_EXTRACT(entry->offset)); } } /* * vm_map_protect: * * Sets the protection and/or the maximum protection of the * specified address region in the target map. */ int vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end, vm_prot_t new_prot, vm_prot_t new_maxprot, int flags) { vm_map_entry_t entry, first_entry, in_tran, prev_entry; vm_object_t obj; struct ucred *cred; vm_offset_t orig_start; vm_prot_t check_prot, max_prot, old_prot; int rv; if (start == end) return (KERN_SUCCESS); if (CONTAINS_BITS(flags, VM_MAP_PROTECT_SET_PROT | VM_MAP_PROTECT_SET_MAXPROT) && !CONTAINS_BITS(new_maxprot, new_prot)) return (KERN_OUT_OF_BOUNDS); orig_start = start; again: in_tran = NULL; start = orig_start; vm_map_lock(map); if ((map->flags & MAP_WXORX) != 0 && (flags & VM_MAP_PROTECT_SET_PROT) != 0 && CONTAINS_BITS(new_prot, VM_PROT_WRITE | VM_PROT_EXECUTE)) { vm_map_unlock(map); return (KERN_PROTECTION_FAILURE); } /* * Ensure that we are not concurrently wiring pages. vm_map_wire() may * need to fault pages into the map and will drop the map lock while * doing so, and the VM object may end up in an inconsistent state if we * update the protection on the map entry in between faults. */ vm_map_wait_busy(map); VM_MAP_RANGE_CHECK(map, start, end); if (!vm_map_lookup_entry(map, start, &first_entry)) first_entry = vm_map_entry_succ(first_entry); if ((flags & VM_MAP_PROTECT_GROWSDOWN) != 0 && (first_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0) { /* * Handle Linux's PROT_GROWSDOWN flag. * It means that protection is applied down to the * whole stack, including the specified range of the * mapped region, and the grow down region (AKA * guard). */ while (!CONTAINS_BITS(first_entry->eflags, MAP_ENTRY_GUARD | MAP_ENTRY_STACK_GAP_DN) && first_entry != vm_map_entry_first(map)) first_entry = vm_map_entry_pred(first_entry); start = first_entry->start; } /* * Make a first pass to check for protection violations. */ check_prot = 0; if ((flags & VM_MAP_PROTECT_SET_PROT) != 0) check_prot |= new_prot; if ((flags & VM_MAP_PROTECT_SET_MAXPROT) != 0) check_prot |= new_maxprot; for (entry = first_entry; entry->start < end; entry = vm_map_entry_succ(entry)) { if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) { vm_map_unlock(map); return (KERN_INVALID_ARGUMENT); } if ((entry->eflags & (MAP_ENTRY_GUARD | - MAP_ENTRY_STACK_GAP_DN | MAP_ENTRY_STACK_GAP_UP)) == - MAP_ENTRY_GUARD) + MAP_ENTRY_STACK_GAP_DN)) == MAP_ENTRY_GUARD) continue; - max_prot = (entry->eflags & (MAP_ENTRY_STACK_GAP_DN | - MAP_ENTRY_STACK_GAP_UP)) != 0 ? + max_prot = (entry->eflags & MAP_ENTRY_STACK_GAP_DN) != 0 ? PROT_MAX_EXTRACT(entry->offset) : entry->max_protection; if (!CONTAINS_BITS(max_prot, check_prot)) { vm_map_unlock(map); return (KERN_PROTECTION_FAILURE); } if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0) in_tran = entry; } /* * Postpone the operation until all in-transition map entries have * stabilized. An in-transition entry might already have its pages * wired and wired_count incremented, but not yet have its * MAP_ENTRY_USER_WIRED flag set. In which case, we would fail to call * vm_fault_copy_entry() in the final loop below. */ if (in_tran != NULL) { in_tran->eflags |= MAP_ENTRY_NEEDS_WAKEUP; vm_map_unlock_and_wait(map, 0); goto again; } /* * Before changing the protections, try to reserve swap space for any * private (i.e., copy-on-write) mappings that are transitioning from * read-only to read/write access. If a reservation fails, break out * of this loop early and let the next loop simplify the entries, since * some may now be mergeable. */ rv = vm_map_clip_start(map, first_entry, start); if (rv != KERN_SUCCESS) { vm_map_unlock(map); return (rv); } for (entry = first_entry; entry->start < end; entry = vm_map_entry_succ(entry)) { rv = vm_map_clip_end(map, entry, end); if (rv != KERN_SUCCESS) { vm_map_unlock(map); return (rv); } if ((flags & VM_MAP_PROTECT_SET_PROT) == 0 || ((new_prot & ~entry->protection) & VM_PROT_WRITE) == 0 || ENTRY_CHARGED(entry) || (entry->eflags & MAP_ENTRY_GUARD) != 0) continue; cred = curthread->td_ucred; obj = entry->object.vm_object; if (obj == NULL || (entry->eflags & MAP_ENTRY_NEEDS_COPY) != 0) { if (!swap_reserve(entry->end - entry->start)) { rv = KERN_RESOURCE_SHORTAGE; end = entry->end; break; } crhold(cred); entry->cred = cred; continue; } VM_OBJECT_WLOCK(obj); if ((obj->flags & OBJ_SWAP) == 0) { VM_OBJECT_WUNLOCK(obj); continue; } /* * Charge for the whole object allocation now, since * we cannot distinguish between non-charged and * charged clipped mapping of the same object later. */ KASSERT(obj->charge == 0, ("vm_map_protect: object %p overcharged (entry %p)", obj, entry)); if (!swap_reserve(ptoa(obj->size))) { VM_OBJECT_WUNLOCK(obj); rv = KERN_RESOURCE_SHORTAGE; end = entry->end; break; } crhold(cred); obj->cred = cred; obj->charge = ptoa(obj->size); VM_OBJECT_WUNLOCK(obj); } /* * If enough swap space was available, go back and fix up protections. * Otherwise, just simplify entries, since some may have been modified. * [Note that clipping is not necessary the second time.] */ for (prev_entry = vm_map_entry_pred(first_entry), entry = first_entry; entry->start < end; vm_map_try_merge_entries(map, prev_entry, entry), prev_entry = entry, entry = vm_map_entry_succ(entry)) { if (rv != KERN_SUCCESS) continue; if ((entry->eflags & MAP_ENTRY_GUARD) != 0) { vm_map_protect_guard(entry, new_prot, new_maxprot, flags); continue; } old_prot = entry->protection; if ((flags & VM_MAP_PROTECT_SET_MAXPROT) != 0) { entry->max_protection = new_maxprot; entry->protection = new_maxprot & old_prot; } if ((flags & VM_MAP_PROTECT_SET_PROT) != 0) entry->protection = new_prot; /* * For user wired map entries, the normal lazy evaluation of * write access upgrades through soft page faults is * undesirable. Instead, immediately copy any pages that are * copy-on-write and enable write access in the physical map. */ if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0 && (entry->protection & VM_PROT_WRITE) != 0 && (old_prot & VM_PROT_WRITE) == 0) vm_fault_copy_entry(map, map, entry, entry, NULL); /* * When restricting access, update the physical map. Worry * about copy-on-write here. */ if ((old_prot & ~entry->protection) != 0) { #define MASK(entry) (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \ VM_PROT_ALL) pmap_protect(map->pmap, entry->start, entry->end, entry->protection & MASK(entry)); #undef MASK } } vm_map_try_merge_entries(map, prev_entry, entry); vm_map_unlock(map); return (rv); } /* * vm_map_madvise: * * This routine traverses a processes map handling the madvise * system call. Advisories are classified as either those effecting * the vm_map_entry structure, or those effecting the underlying * objects. */ int vm_map_madvise( vm_map_t map, vm_offset_t start, vm_offset_t end, int behav) { vm_map_entry_t entry, prev_entry; int rv; bool modify_map; /* * Some madvise calls directly modify the vm_map_entry, in which case * we need to use an exclusive lock on the map and we need to perform * various clipping operations. Otherwise we only need a read-lock * on the map. */ switch(behav) { case MADV_NORMAL: case MADV_SEQUENTIAL: case MADV_RANDOM: case MADV_NOSYNC: case MADV_AUTOSYNC: case MADV_NOCORE: case MADV_CORE: if (start == end) return (0); modify_map = true; vm_map_lock(map); break; case MADV_WILLNEED: case MADV_DONTNEED: case MADV_FREE: if (start == end) return (0); modify_map = false; vm_map_lock_read(map); break; default: return (EINVAL); } /* * Locate starting entry and clip if necessary. */ VM_MAP_RANGE_CHECK(map, start, end); if (modify_map) { /* * madvise behaviors that are implemented in the vm_map_entry. * * We clip the vm_map_entry so that behavioral changes are * limited to the specified address range. */ rv = vm_map_lookup_clip_start(map, start, &entry, &prev_entry); if (rv != KERN_SUCCESS) { vm_map_unlock(map); return (vm_mmap_to_errno(rv)); } for (; entry->start < end; prev_entry = entry, entry = vm_map_entry_succ(entry)) { if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) continue; rv = vm_map_clip_end(map, entry, end); if (rv != KERN_SUCCESS) { vm_map_unlock(map); return (vm_mmap_to_errno(rv)); } switch (behav) { case MADV_NORMAL: vm_map_entry_set_behavior(entry, MAP_ENTRY_BEHAV_NORMAL); break; case MADV_SEQUENTIAL: vm_map_entry_set_behavior(entry, MAP_ENTRY_BEHAV_SEQUENTIAL); break; case MADV_RANDOM: vm_map_entry_set_behavior(entry, MAP_ENTRY_BEHAV_RANDOM); break; case MADV_NOSYNC: entry->eflags |= MAP_ENTRY_NOSYNC; break; case MADV_AUTOSYNC: entry->eflags &= ~MAP_ENTRY_NOSYNC; break; case MADV_NOCORE: entry->eflags |= MAP_ENTRY_NOCOREDUMP; break; case MADV_CORE: entry->eflags &= ~MAP_ENTRY_NOCOREDUMP; break; default: break; } vm_map_try_merge_entries(map, prev_entry, entry); } vm_map_try_merge_entries(map, prev_entry, entry); vm_map_unlock(map); } else { vm_pindex_t pstart, pend; /* * madvise behaviors that are implemented in the underlying * vm_object. * * Since we don't clip the vm_map_entry, we have to clip * the vm_object pindex and count. */ if (!vm_map_lookup_entry(map, start, &entry)) entry = vm_map_entry_succ(entry); for (; entry->start < end; entry = vm_map_entry_succ(entry)) { vm_offset_t useEnd, useStart; if ((entry->eflags & (MAP_ENTRY_IS_SUB_MAP | MAP_ENTRY_GUARD)) != 0) continue; /* * MADV_FREE would otherwise rewind time to * the creation of the shadow object. Because * we hold the VM map read-locked, neither the * entry's object nor the presence of a * backing object can change. */ if (behav == MADV_FREE && entry->object.vm_object != NULL && entry->object.vm_object->backing_object != NULL) continue; pstart = OFF_TO_IDX(entry->offset); pend = pstart + atop(entry->end - entry->start); useStart = entry->start; useEnd = entry->end; if (entry->start < start) { pstart += atop(start - entry->start); useStart = start; } if (entry->end > end) { pend -= atop(entry->end - end); useEnd = end; } if (pstart >= pend) continue; /* * Perform the pmap_advise() before clearing * PGA_REFERENCED in vm_page_advise(). Otherwise, a * concurrent pmap operation, such as pmap_remove(), * could clear a reference in the pmap and set * PGA_REFERENCED on the page before the pmap_advise() * had completed. Consequently, the page would appear * referenced based upon an old reference that * occurred before this pmap_advise() ran. */ if (behav == MADV_DONTNEED || behav == MADV_FREE) pmap_advise(map->pmap, useStart, useEnd, behav); vm_object_madvise(entry->object.vm_object, pstart, pend, behav); /* * Pre-populate paging structures in the * WILLNEED case. For wired entries, the * paging structures are already populated. */ if (behav == MADV_WILLNEED && entry->wired_count == 0) { vm_map_pmap_enter(map, useStart, entry->protection, entry->object.vm_object, pstart, ptoa(pend - pstart), MAP_PREFAULT_MADVISE ); } } vm_map_unlock_read(map); } return (0); } /* * vm_map_inherit: * * Sets the inheritance of the specified address * range in the target map. Inheritance * affects how the map will be shared with * child maps at the time of vmspace_fork. */ int vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end, vm_inherit_t new_inheritance) { vm_map_entry_t entry, lentry, prev_entry, start_entry; int rv; switch (new_inheritance) { case VM_INHERIT_NONE: case VM_INHERIT_COPY: case VM_INHERIT_SHARE: case VM_INHERIT_ZERO: break; default: return (KERN_INVALID_ARGUMENT); } if (start == end) return (KERN_SUCCESS); vm_map_lock(map); VM_MAP_RANGE_CHECK(map, start, end); rv = vm_map_lookup_clip_start(map, start, &start_entry, &prev_entry); if (rv != KERN_SUCCESS) goto unlock; if (vm_map_lookup_entry(map, end - 1, &lentry)) { rv = vm_map_clip_end(map, lentry, end); if (rv != KERN_SUCCESS) goto unlock; } if (new_inheritance == VM_INHERIT_COPY) { for (entry = start_entry; entry->start < end; prev_entry = entry, entry = vm_map_entry_succ(entry)) { if ((entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) != 0) { rv = KERN_INVALID_ARGUMENT; goto unlock; } } } for (entry = start_entry; entry->start < end; prev_entry = entry, entry = vm_map_entry_succ(entry)) { KASSERT(entry->end <= end, ("non-clipped entry %p end %jx %jx", entry, (uintmax_t)entry->end, (uintmax_t)end)); if ((entry->eflags & MAP_ENTRY_GUARD) == 0 || new_inheritance != VM_INHERIT_ZERO) entry->inheritance = new_inheritance; vm_map_try_merge_entries(map, prev_entry, entry); } vm_map_try_merge_entries(map, prev_entry, entry); unlock: vm_map_unlock(map); return (rv); } /* * vm_map_entry_in_transition: * * Release the map lock, and sleep until the entry is no longer in * transition. Awake and acquire the map lock. If the map changed while * another held the lock, lookup a possibly-changed entry at or after the * 'start' position of the old entry. */ static vm_map_entry_t vm_map_entry_in_transition(vm_map_t map, vm_offset_t in_start, vm_offset_t *io_end, bool holes_ok, vm_map_entry_t in_entry) { vm_map_entry_t entry; vm_offset_t start; u_int last_timestamp; VM_MAP_ASSERT_LOCKED(map); KASSERT((in_entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0, ("not in-tranition map entry %p", in_entry)); /* * We have not yet clipped the entry. */ start = MAX(in_start, in_entry->start); in_entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; last_timestamp = map->timestamp; if (vm_map_unlock_and_wait(map, 0)) { /* * Allow interruption of user wiring/unwiring? */ } vm_map_lock(map); if (last_timestamp + 1 == map->timestamp) return (in_entry); /* * Look again for the entry because the map was modified while it was * unlocked. Specifically, the entry may have been clipped, merged, or * deleted. */ if (!vm_map_lookup_entry(map, start, &entry)) { if (!holes_ok) { *io_end = start; return (NULL); } entry = vm_map_entry_succ(entry); } return (entry); } /* * vm_map_unwire: * * Implements both kernel and user unwiring. */ int vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags) { vm_map_entry_t entry, first_entry, next_entry, prev_entry; int rv; bool holes_ok, need_wakeup, user_unwire; if (start == end) return (KERN_SUCCESS); holes_ok = (flags & VM_MAP_WIRE_HOLESOK) != 0; user_unwire = (flags & VM_MAP_WIRE_USER) != 0; vm_map_lock(map); VM_MAP_RANGE_CHECK(map, start, end); if (!vm_map_lookup_entry(map, start, &first_entry)) { if (holes_ok) first_entry = vm_map_entry_succ(first_entry); else { vm_map_unlock(map); return (KERN_INVALID_ADDRESS); } } rv = KERN_SUCCESS; for (entry = first_entry; entry->start < end; entry = next_entry) { if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { /* * We have not yet clipped the entry. */ next_entry = vm_map_entry_in_transition(map, start, &end, holes_ok, entry); if (next_entry == NULL) { if (entry == first_entry) { vm_map_unlock(map); return (KERN_INVALID_ADDRESS); } rv = KERN_INVALID_ADDRESS; break; } first_entry = (entry == first_entry) ? next_entry : NULL; continue; } rv = vm_map_clip_start(map, entry, start); if (rv != KERN_SUCCESS) break; rv = vm_map_clip_end(map, entry, end); if (rv != KERN_SUCCESS) break; /* * Mark the entry in case the map lock is released. (See * above.) */ KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 && entry->wiring_thread == NULL, ("owned map entry %p", entry)); entry->eflags |= MAP_ENTRY_IN_TRANSITION; entry->wiring_thread = curthread; next_entry = vm_map_entry_succ(entry); /* * Check the map for holes in the specified region. * If holes_ok, skip this check. */ if (!holes_ok && entry->end < end && next_entry->start > entry->end) { end = entry->end; rv = KERN_INVALID_ADDRESS; break; } /* * If system unwiring, require that the entry is system wired. */ if (!user_unwire && vm_map_entry_system_wired_count(entry) == 0) { end = entry->end; rv = KERN_INVALID_ARGUMENT; break; } } need_wakeup = false; if (first_entry == NULL && !vm_map_lookup_entry(map, start, &first_entry)) { KASSERT(holes_ok, ("vm_map_unwire: lookup failed")); prev_entry = first_entry; entry = vm_map_entry_succ(first_entry); } else { prev_entry = vm_map_entry_pred(first_entry); entry = first_entry; } for (; entry->start < end; prev_entry = entry, entry = vm_map_entry_succ(entry)) { /* * If holes_ok was specified, an empty * space in the unwired region could have been mapped * while the map lock was dropped for draining * MAP_ENTRY_IN_TRANSITION. Moreover, another thread * could be simultaneously wiring this new mapping * entry. Detect these cases and skip any entries * marked as in transition by us. */ if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 || entry->wiring_thread != curthread) { KASSERT(holes_ok, ("vm_map_unwire: !HOLESOK and new/changed entry")); continue; } if (rv == KERN_SUCCESS && (!user_unwire || (entry->eflags & MAP_ENTRY_USER_WIRED))) { if (entry->wired_count == 1) vm_map_entry_unwire(map, entry); else entry->wired_count--; if (user_unwire) entry->eflags &= ~MAP_ENTRY_USER_WIRED; } KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0, ("vm_map_unwire: in-transition flag missing %p", entry)); KASSERT(entry->wiring_thread == curthread, ("vm_map_unwire: alien wire %p", entry)); entry->eflags &= ~MAP_ENTRY_IN_TRANSITION; entry->wiring_thread = NULL; if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; need_wakeup = true; } vm_map_try_merge_entries(map, prev_entry, entry); } vm_map_try_merge_entries(map, prev_entry, entry); vm_map_unlock(map); if (need_wakeup) vm_map_wakeup(map); return (rv); } static void vm_map_wire_user_count_sub(u_long npages) { atomic_subtract_long(&vm_user_wire_count, npages); } static bool vm_map_wire_user_count_add(u_long npages) { u_long wired; wired = vm_user_wire_count; do { if (npages + wired > vm_page_max_user_wired) return (false); } while (!atomic_fcmpset_long(&vm_user_wire_count, &wired, npages + wired)); return (true); } /* * vm_map_wire_entry_failure: * * Handle a wiring failure on the given entry. * * The map should be locked. */ static void vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry, vm_offset_t failed_addr) { VM_MAP_ASSERT_LOCKED(map); KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 && entry->wired_count == 1, ("vm_map_wire_entry_failure: entry %p isn't being wired", entry)); KASSERT(failed_addr < entry->end, ("vm_map_wire_entry_failure: entry %p was fully wired", entry)); /* * If any pages at the start of this entry were successfully wired, * then unwire them. */ if (failed_addr > entry->start) { pmap_unwire(map->pmap, entry->start, failed_addr); vm_object_unwire(entry->object.vm_object, entry->offset, failed_addr - entry->start, PQ_ACTIVE); } /* * Assign an out-of-range value to represent the failure to wire this * entry. */ entry->wired_count = -1; } int vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags) { int rv; vm_map_lock(map); rv = vm_map_wire_locked(map, start, end, flags); vm_map_unlock(map); return (rv); } /* * vm_map_wire_locked: * * Implements both kernel and user wiring. Returns with the map locked, * the map lock may be dropped. */ int vm_map_wire_locked(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags) { vm_map_entry_t entry, first_entry, next_entry, prev_entry; vm_offset_t faddr, saved_end, saved_start; u_long incr, npages; u_int bidx, last_timestamp; int rv; bool holes_ok, need_wakeup, user_wire; vm_prot_t prot; VM_MAP_ASSERT_LOCKED(map); if (start == end) return (KERN_SUCCESS); prot = 0; if (flags & VM_MAP_WIRE_WRITE) prot |= VM_PROT_WRITE; holes_ok = (flags & VM_MAP_WIRE_HOLESOK) != 0; user_wire = (flags & VM_MAP_WIRE_USER) != 0; VM_MAP_RANGE_CHECK(map, start, end); if (!vm_map_lookup_entry(map, start, &first_entry)) { if (holes_ok) first_entry = vm_map_entry_succ(first_entry); else return (KERN_INVALID_ADDRESS); } for (entry = first_entry; entry->start < end; entry = next_entry) { if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { /* * We have not yet clipped the entry. */ next_entry = vm_map_entry_in_transition(map, start, &end, holes_ok, entry); if (next_entry == NULL) { if (entry == first_entry) return (KERN_INVALID_ADDRESS); rv = KERN_INVALID_ADDRESS; goto done; } first_entry = (entry == first_entry) ? next_entry : NULL; continue; } rv = vm_map_clip_start(map, entry, start); if (rv != KERN_SUCCESS) goto done; rv = vm_map_clip_end(map, entry, end); if (rv != KERN_SUCCESS) goto done; /* * Mark the entry in case the map lock is released. (See * above.) */ KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 && entry->wiring_thread == NULL, ("owned map entry %p", entry)); entry->eflags |= MAP_ENTRY_IN_TRANSITION; entry->wiring_thread = curthread; if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || (entry->protection & prot) != prot) { entry->eflags |= MAP_ENTRY_WIRE_SKIPPED; if (!holes_ok) { end = entry->end; rv = KERN_INVALID_ADDRESS; goto done; } } else if (entry->wired_count == 0) { entry->wired_count++; npages = atop(entry->end - entry->start); if (user_wire && !vm_map_wire_user_count_add(npages)) { vm_map_wire_entry_failure(map, entry, entry->start); end = entry->end; rv = KERN_RESOURCE_SHORTAGE; goto done; } /* * Release the map lock, relying on the in-transition * mark. Mark the map busy for fork. */ saved_start = entry->start; saved_end = entry->end; last_timestamp = map->timestamp; bidx = MAP_ENTRY_SPLIT_BOUNDARY_INDEX(entry); incr = pagesizes[bidx]; vm_map_busy(map); vm_map_unlock(map); for (faddr = saved_start; faddr < saved_end; faddr += incr) { /* * Simulate a fault to get the page and enter * it into the physical map. */ rv = vm_fault(map, faddr, VM_PROT_NONE, VM_FAULT_WIRE, NULL); if (rv != KERN_SUCCESS) break; } vm_map_lock(map); vm_map_unbusy(map); if (last_timestamp + 1 != map->timestamp) { /* * Look again for the entry because the map was * modified while it was unlocked. The entry * may have been clipped, but NOT merged or * deleted. */ if (!vm_map_lookup_entry(map, saved_start, &next_entry)) KASSERT(false, ("vm_map_wire: lookup failed")); first_entry = (entry == first_entry) ? next_entry : NULL; for (entry = next_entry; entry->end < saved_end; entry = vm_map_entry_succ(entry)) { /* * In case of failure, handle entries * that were not fully wired here; * fully wired entries are handled * later. */ if (rv != KERN_SUCCESS && faddr < entry->end) vm_map_wire_entry_failure(map, entry, faddr); } } if (rv != KERN_SUCCESS) { vm_map_wire_entry_failure(map, entry, faddr); if (user_wire) vm_map_wire_user_count_sub(npages); end = entry->end; goto done; } } else if (!user_wire || (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) { entry->wired_count++; } /* * Check the map for holes in the specified region. * If holes_ok was specified, skip this check. */ next_entry = vm_map_entry_succ(entry); if (!holes_ok && entry->end < end && next_entry->start > entry->end) { end = entry->end; rv = KERN_INVALID_ADDRESS; goto done; } } rv = KERN_SUCCESS; done: need_wakeup = false; if (first_entry == NULL && !vm_map_lookup_entry(map, start, &first_entry)) { KASSERT(holes_ok, ("vm_map_wire: lookup failed")); prev_entry = first_entry; entry = vm_map_entry_succ(first_entry); } else { prev_entry = vm_map_entry_pred(first_entry); entry = first_entry; } for (; entry->start < end; prev_entry = entry, entry = vm_map_entry_succ(entry)) { /* * If holes_ok was specified, an empty * space in the unwired region could have been mapped * while the map lock was dropped for faulting in the * pages or draining MAP_ENTRY_IN_TRANSITION. * Moreover, another thread could be simultaneously * wiring this new mapping entry. Detect these cases * and skip any entries marked as in transition not by us. * * Another way to get an entry not marked with * MAP_ENTRY_IN_TRANSITION is after failed clipping, * which set rv to KERN_INVALID_ARGUMENT. */ if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 || entry->wiring_thread != curthread) { KASSERT(holes_ok || rv == KERN_INVALID_ARGUMENT, ("vm_map_wire: !HOLESOK and new/changed entry")); continue; } if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0) { /* do nothing */ } else if (rv == KERN_SUCCESS) { if (user_wire) entry->eflags |= MAP_ENTRY_USER_WIRED; } else if (entry->wired_count == -1) { /* * Wiring failed on this entry. Thus, unwiring is * unnecessary. */ entry->wired_count = 0; } else if (!user_wire || (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) { /* * Undo the wiring. Wiring succeeded on this entry * but failed on a later entry. */ if (entry->wired_count == 1) { vm_map_entry_unwire(map, entry); if (user_wire) vm_map_wire_user_count_sub( atop(entry->end - entry->start)); } else entry->wired_count--; } KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0, ("vm_map_wire: in-transition flag missing %p", entry)); KASSERT(entry->wiring_thread == curthread, ("vm_map_wire: alien wire %p", entry)); entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_WIRE_SKIPPED); entry->wiring_thread = NULL; if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; need_wakeup = true; } vm_map_try_merge_entries(map, prev_entry, entry); } vm_map_try_merge_entries(map, prev_entry, entry); if (need_wakeup) vm_map_wakeup(map); return (rv); } /* * vm_map_sync * * Push any dirty cached pages in the address range to their pager. * If syncio is TRUE, dirty pages are written synchronously. * If invalidate is TRUE, any cached pages are freed as well. * * If the size of the region from start to end is zero, we are * supposed to flush all modified pages within the region containing * start. Unfortunately, a region can be split or coalesced with * neighboring regions, making it difficult to determine what the * original region was. Therefore, we approximate this requirement by * flushing the current region containing start. * * Returns an error if any part of the specified range is not mapped. */ int vm_map_sync( vm_map_t map, vm_offset_t start, vm_offset_t end, boolean_t syncio, boolean_t invalidate) { vm_map_entry_t entry, first_entry, next_entry; vm_size_t size; vm_object_t object; vm_ooffset_t offset; unsigned int last_timestamp; int bdry_idx; boolean_t failed; vm_map_lock_read(map); VM_MAP_RANGE_CHECK(map, start, end); if (!vm_map_lookup_entry(map, start, &first_entry)) { vm_map_unlock_read(map); return (KERN_INVALID_ADDRESS); } else if (start == end) { start = first_entry->start; end = first_entry->end; } /* * Make a first pass to check for user-wired memory, holes, * and partial invalidation of largepage mappings. */ for (entry = first_entry; entry->start < end; entry = next_entry) { if (invalidate) { if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0) { vm_map_unlock_read(map); return (KERN_INVALID_ARGUMENT); } bdry_idx = MAP_ENTRY_SPLIT_BOUNDARY_INDEX(entry); if (bdry_idx != 0 && ((start & (pagesizes[bdry_idx] - 1)) != 0 || (end & (pagesizes[bdry_idx] - 1)) != 0)) { vm_map_unlock_read(map); return (KERN_INVALID_ARGUMENT); } } next_entry = vm_map_entry_succ(entry); if (end > entry->end && entry->end != next_entry->start) { vm_map_unlock_read(map); return (KERN_INVALID_ADDRESS); } } if (invalidate) pmap_remove(map->pmap, start, end); failed = FALSE; /* * Make a second pass, cleaning/uncaching pages from the indicated * objects as we go. */ for (entry = first_entry; entry->start < end;) { offset = entry->offset + (start - entry->start); size = (end <= entry->end ? end : entry->end) - start; if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) { vm_map_t smap; vm_map_entry_t tentry; vm_size_t tsize; smap = entry->object.sub_map; vm_map_lock_read(smap); (void) vm_map_lookup_entry(smap, offset, &tentry); tsize = tentry->end - offset; if (tsize < size) size = tsize; object = tentry->object.vm_object; offset = tentry->offset + (offset - tentry->start); vm_map_unlock_read(smap); } else { object = entry->object.vm_object; } vm_object_reference(object); last_timestamp = map->timestamp; vm_map_unlock_read(map); if (!vm_object_sync(object, offset, size, syncio, invalidate)) failed = TRUE; start += size; vm_object_deallocate(object); vm_map_lock_read(map); if (last_timestamp == map->timestamp || !vm_map_lookup_entry(map, start, &entry)) entry = vm_map_entry_succ(entry); } vm_map_unlock_read(map); return (failed ? KERN_FAILURE : KERN_SUCCESS); } /* * vm_map_entry_unwire: [ internal use only ] * * Make the region specified by this entry pageable. * * The map in question should be locked. * [This is the reason for this routine's existence.] */ static void vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry) { vm_size_t size; VM_MAP_ASSERT_LOCKED(map); KASSERT(entry->wired_count > 0, ("vm_map_entry_unwire: entry %p isn't wired", entry)); size = entry->end - entry->start; if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0) vm_map_wire_user_count_sub(atop(size)); pmap_unwire(map->pmap, entry->start, entry->end); vm_object_unwire(entry->object.vm_object, entry->offset, size, PQ_ACTIVE); entry->wired_count = 0; } static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map) { if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) vm_object_deallocate(entry->object.vm_object); uma_zfree(system_map ? kmapentzone : mapentzone, entry); } /* * vm_map_entry_delete: [ internal use only ] * * Deallocate the given entry from the target map. */ static void vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry) { vm_object_t object; vm_pindex_t offidxstart, offidxend, size1; vm_size_t size; vm_map_entry_unlink(map, entry, UNLINK_MERGE_NONE); object = entry->object.vm_object; if ((entry->eflags & MAP_ENTRY_GUARD) != 0) { MPASS(entry->cred == NULL); MPASS((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0); MPASS(object == NULL); vm_map_entry_deallocate(entry, map->system_map); return; } size = entry->end - entry->start; map->size -= size; if (entry->cred != NULL) { swap_release_by_cred(size, entry->cred); crfree(entry->cred); } if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 || object == NULL) { entry->object.vm_object = NULL; } else if ((object->flags & OBJ_ANON) != 0 || object == kernel_object) { KASSERT(entry->cred == NULL || object->cred == NULL || (entry->eflags & MAP_ENTRY_NEEDS_COPY), ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry)); offidxstart = OFF_TO_IDX(entry->offset); offidxend = offidxstart + atop(size); VM_OBJECT_WLOCK(object); if (object->ref_count != 1 && ((object->flags & OBJ_ONEMAPPING) != 0 || object == kernel_object)) { vm_object_collapse(object); /* * The option OBJPR_NOTMAPPED can be passed here * because vm_map_delete() already performed * pmap_remove() on the only mapping to this range * of pages. */ vm_object_page_remove(object, offidxstart, offidxend, OBJPR_NOTMAPPED); if (offidxend >= object->size && offidxstart < object->size) { size1 = object->size; object->size = offidxstart; if (object->cred != NULL) { size1 -= object->size; KASSERT(object->charge >= ptoa(size1), ("object %p charge < 0", object)); swap_release_by_cred(ptoa(size1), object->cred); object->charge -= ptoa(size1); } } } VM_OBJECT_WUNLOCK(object); } if (map->system_map) vm_map_entry_deallocate(entry, TRUE); else { entry->defer_next = curthread->td_map_def_user; curthread->td_map_def_user = entry; } } /* * vm_map_delete: [ internal use only ] * * Deallocates the given address range from the target * map. */ int vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end) { vm_map_entry_t entry, next_entry, scratch_entry; int rv; VM_MAP_ASSERT_LOCKED(map); if (start == end) return (KERN_SUCCESS); /* * Find the start of the region, and clip it. * Step through all entries in this region. */ rv = vm_map_lookup_clip_start(map, start, &entry, &scratch_entry); if (rv != KERN_SUCCESS) return (rv); for (; entry->start < end; entry = next_entry) { /* * Wait for wiring or unwiring of an entry to complete. * Also wait for any system wirings to disappear on * user maps. */ if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 || (vm_map_pmap(map) != kernel_pmap && vm_map_entry_system_wired_count(entry) != 0)) { unsigned int last_timestamp; vm_offset_t saved_start; saved_start = entry->start; entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; last_timestamp = map->timestamp; (void) vm_map_unlock_and_wait(map, 0); vm_map_lock(map); if (last_timestamp + 1 != map->timestamp) { /* * Look again for the entry because the map was * modified while it was unlocked. * Specifically, the entry may have been * clipped, merged, or deleted. */ rv = vm_map_lookup_clip_start(map, saved_start, &next_entry, &scratch_entry); if (rv != KERN_SUCCESS) break; } else next_entry = entry; continue; } /* XXXKIB or delete to the upper superpage boundary ? */ rv = vm_map_clip_end(map, entry, end); if (rv != KERN_SUCCESS) break; next_entry = vm_map_entry_succ(entry); /* * Unwire before removing addresses from the pmap; otherwise, * unwiring will put the entries back in the pmap. */ if (entry->wired_count != 0) vm_map_entry_unwire(map, entry); /* * Remove mappings for the pages, but only if the * mappings could exist. For instance, it does not * make sense to call pmap_remove() for guard entries. */ if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 || entry->object.vm_object != NULL) pmap_map_delete(map->pmap, entry->start, entry->end); /* * Delete the entry only after removing all pmap * entries pointing to its pages. (Otherwise, its * page frames may be reallocated, and any modify bits * will be set in the wrong object!) */ vm_map_entry_delete(map, entry); } return (rv); } /* * vm_map_remove: * * Remove the given address range from the target map. * This is the exported form of vm_map_delete. */ int vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end) { int result; vm_map_lock(map); VM_MAP_RANGE_CHECK(map, start, end); result = vm_map_delete(map, start, end); vm_map_unlock(map); return (result); } /* * vm_map_check_protection: * * Assert that the target map allows the specified privilege on the * entire address region given. The entire region must be allocated. * * WARNING! This code does not and should not check whether the * contents of the region is accessible. For example a smaller file * might be mapped into a larger address space. * * NOTE! This code is also called by munmap(). * * The map must be locked. A read lock is sufficient. */ boolean_t vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end, vm_prot_t protection) { vm_map_entry_t entry; vm_map_entry_t tmp_entry; if (!vm_map_lookup_entry(map, start, &tmp_entry)) return (FALSE); entry = tmp_entry; while (start < end) { /* * No holes allowed! */ if (start < entry->start) return (FALSE); /* * Check protection associated with entry. */ if ((entry->protection & protection) != protection) return (FALSE); /* go to next entry */ start = entry->end; entry = vm_map_entry_succ(entry); } return (TRUE); } /* * * vm_map_copy_swap_object: * * Copies a swap-backed object from an existing map entry to a * new one. Carries forward the swap charge. May change the * src object on return. */ static void vm_map_copy_swap_object(vm_map_entry_t src_entry, vm_map_entry_t dst_entry, vm_offset_t size, vm_ooffset_t *fork_charge) { vm_object_t src_object; struct ucred *cred; int charged; src_object = src_entry->object.vm_object; charged = ENTRY_CHARGED(src_entry); if ((src_object->flags & OBJ_ANON) != 0) { VM_OBJECT_WLOCK(src_object); vm_object_collapse(src_object); if ((src_object->flags & OBJ_ONEMAPPING) != 0) { vm_object_split(src_entry); src_object = src_entry->object.vm_object; } vm_object_reference_locked(src_object); vm_object_clear_flag(src_object, OBJ_ONEMAPPING); VM_OBJECT_WUNLOCK(src_object); } else vm_object_reference(src_object); if (src_entry->cred != NULL && !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { KASSERT(src_object->cred == NULL, ("OVERCOMMIT: vm_map_copy_anon_entry: cred %p", src_object)); src_object->cred = src_entry->cred; src_object->charge = size; } dst_entry->object.vm_object = src_object; if (charged) { cred = curthread->td_ucred; crhold(cred); dst_entry->cred = cred; *fork_charge += size; if (!(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { crhold(cred); src_entry->cred = cred; *fork_charge += size; } } } /* * vm_map_copy_entry: * * Copies the contents of the source entry to the destination * entry. The entries *must* be aligned properly. */ static void vm_map_copy_entry( vm_map_t src_map, vm_map_t dst_map, vm_map_entry_t src_entry, vm_map_entry_t dst_entry, vm_ooffset_t *fork_charge) { vm_object_t src_object; vm_map_entry_t fake_entry; vm_offset_t size; VM_MAP_ASSERT_LOCKED(dst_map); if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP) return; if (src_entry->wired_count == 0 || (src_entry->protection & VM_PROT_WRITE) == 0) { /* * If the source entry is marked needs_copy, it is already * write-protected. */ if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 && (src_entry->protection & VM_PROT_WRITE) != 0) { pmap_protect(src_map->pmap, src_entry->start, src_entry->end, src_entry->protection & ~VM_PROT_WRITE); } /* * Make a copy of the object. */ size = src_entry->end - src_entry->start; if ((src_object = src_entry->object.vm_object) != NULL) { if ((src_object->flags & OBJ_SWAP) != 0) { vm_map_copy_swap_object(src_entry, dst_entry, size, fork_charge); /* May have split/collapsed, reload obj. */ src_object = src_entry->object.vm_object; } else { vm_object_reference(src_object); dst_entry->object.vm_object = src_object; } src_entry->eflags |= MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY; dst_entry->eflags |= MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY; dst_entry->offset = src_entry->offset; if (src_entry->eflags & MAP_ENTRY_WRITECNT) { /* * MAP_ENTRY_WRITECNT cannot * indicate write reference from * src_entry, since the entry is * marked as needs copy. Allocate a * fake entry that is used to * decrement object->un_pager writecount * at the appropriate time. Attach * fake_entry to the deferred list. */ fake_entry = vm_map_entry_create(dst_map); fake_entry->eflags = MAP_ENTRY_WRITECNT; src_entry->eflags &= ~MAP_ENTRY_WRITECNT; vm_object_reference(src_object); fake_entry->object.vm_object = src_object; fake_entry->start = src_entry->start; fake_entry->end = src_entry->end; fake_entry->defer_next = curthread->td_map_def_user; curthread->td_map_def_user = fake_entry; } pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start, dst_entry->end - dst_entry->start, src_entry->start); } else { dst_entry->object.vm_object = NULL; if ((dst_entry->eflags & MAP_ENTRY_GUARD) == 0) dst_entry->offset = 0; if (src_entry->cred != NULL) { dst_entry->cred = curthread->td_ucred; crhold(dst_entry->cred); *fork_charge += size; } } } else { /* * We don't want to make writeable wired pages copy-on-write. * Immediately copy these pages into the new map by simulating * page faults. The new pages are pageable. */ vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry, fork_charge); } } /* * vmspace_map_entry_forked: * Update the newly-forked vmspace each time a map entry is inherited * or copied. The values for vm_dsize and vm_tsize are approximate * (and mostly-obsolete ideas in the face of mmap(2) et al.) */ static void vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2, vm_map_entry_t entry) { vm_size_t entrysize; vm_offset_t newend; if ((entry->eflags & MAP_ENTRY_GUARD) != 0) return; entrysize = entry->end - entry->start; vm2->vm_map.size += entrysize; - if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) { + if ((entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0) { vm2->vm_ssize += btoc(entrysize); } else if (entry->start >= (vm_offset_t)vm1->vm_daddr && entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) { newend = MIN(entry->end, (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)); vm2->vm_dsize += btoc(newend - entry->start); } else if (entry->start >= (vm_offset_t)vm1->vm_taddr && entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) { newend = MIN(entry->end, (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)); vm2->vm_tsize += btoc(newend - entry->start); } } /* * vmspace_fork: * Create a new process vmspace structure and vm_map * based on those of an existing process. The new map * is based on the old map, according to the inheritance * values on the regions in that map. * * XXX It might be worth coalescing the entries added to the new vmspace. * * The source map must not be locked. */ struct vmspace * vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge) { struct vmspace *vm2; vm_map_t new_map, old_map; vm_map_entry_t new_entry, old_entry; vm_object_t object; int error, locked __diagused; vm_inherit_t inh; old_map = &vm1->vm_map; /* Copy immutable fields of vm1 to vm2. */ vm2 = vmspace_alloc(vm_map_min(old_map), vm_map_max(old_map), pmap_pinit); if (vm2 == NULL) return (NULL); vm2->vm_taddr = vm1->vm_taddr; vm2->vm_daddr = vm1->vm_daddr; vm2->vm_maxsaddr = vm1->vm_maxsaddr; vm2->vm_stacktop = vm1->vm_stacktop; vm2->vm_shp_base = vm1->vm_shp_base; vm_map_lock(old_map); if (old_map->busy) vm_map_wait_busy(old_map); new_map = &vm2->vm_map; locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */ KASSERT(locked, ("vmspace_fork: lock failed")); error = pmap_vmspace_copy(new_map->pmap, old_map->pmap); if (error != 0) { sx_xunlock(&old_map->lock); sx_xunlock(&new_map->lock); vm_map_process_deferred(); vmspace_free(vm2); return (NULL); } new_map->anon_loc = old_map->anon_loc; new_map->flags |= old_map->flags & (MAP_ASLR | MAP_ASLR_IGNSTART | MAP_ASLR_STACK | MAP_WXORX); VM_MAP_ENTRY_FOREACH(old_entry, old_map) { if ((old_entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) panic("vm_map_fork: encountered a submap"); inh = old_entry->inheritance; if ((old_entry->eflags & MAP_ENTRY_GUARD) != 0 && inh != VM_INHERIT_NONE) inh = VM_INHERIT_COPY; switch (inh) { case VM_INHERIT_NONE: break; case VM_INHERIT_SHARE: /* * Clone the entry, creating the shared object if * necessary. */ object = old_entry->object.vm_object; if (object == NULL) { vm_map_entry_back(old_entry); object = old_entry->object.vm_object; } /* * Add the reference before calling vm_object_shadow * to insure that a shadow object is created. */ vm_object_reference(object); if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) { vm_object_shadow(&old_entry->object.vm_object, &old_entry->offset, old_entry->end - old_entry->start, old_entry->cred, /* Transfer the second reference too. */ true); old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; old_entry->cred = NULL; /* * As in vm_map_merged_neighbor_dispose(), * the vnode lock will not be acquired in * this call to vm_object_deallocate(). */ vm_object_deallocate(object); object = old_entry->object.vm_object; } else { VM_OBJECT_WLOCK(object); vm_object_clear_flag(object, OBJ_ONEMAPPING); if (old_entry->cred != NULL) { KASSERT(object->cred == NULL, ("vmspace_fork both cred")); object->cred = old_entry->cred; object->charge = old_entry->end - old_entry->start; old_entry->cred = NULL; } /* * Assert the correct state of the vnode * v_writecount while the object is locked, to * not relock it later for the assertion * correctness. */ if (old_entry->eflags & MAP_ENTRY_WRITECNT && object->type == OBJT_VNODE) { KASSERT(((struct vnode *)object-> handle)->v_writecount > 0, ("vmspace_fork: v_writecount %p", object)); KASSERT(object->un_pager.vnp. writemappings > 0, ("vmspace_fork: vnp.writecount %p", object)); } VM_OBJECT_WUNLOCK(object); } /* * Clone the entry, referencing the shared object. */ new_entry = vm_map_entry_create(new_map); *new_entry = *old_entry; new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED | MAP_ENTRY_IN_TRANSITION); new_entry->wiring_thread = NULL; new_entry->wired_count = 0; if (new_entry->eflags & MAP_ENTRY_WRITECNT) { vm_pager_update_writecount(object, new_entry->start, new_entry->end); } vm_map_entry_set_vnode_text(new_entry, true); /* * Insert the entry into the new map -- we know we're * inserting at the end of the new map. */ vm_map_entry_link(new_map, new_entry); vmspace_map_entry_forked(vm1, vm2, new_entry); /* * Update the physical map */ pmap_copy(new_map->pmap, old_map->pmap, new_entry->start, (old_entry->end - old_entry->start), old_entry->start); break; case VM_INHERIT_COPY: /* * Clone the entry and link into the map. */ new_entry = vm_map_entry_create(new_map); *new_entry = *old_entry; /* * Copied entry is COW over the old object. */ new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED | MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_WRITECNT); new_entry->wiring_thread = NULL; new_entry->wired_count = 0; new_entry->object.vm_object = NULL; new_entry->cred = NULL; vm_map_entry_link(new_map, new_entry); vmspace_map_entry_forked(vm1, vm2, new_entry); vm_map_copy_entry(old_map, new_map, old_entry, new_entry, fork_charge); vm_map_entry_set_vnode_text(new_entry, true); break; case VM_INHERIT_ZERO: /* * Create a new anonymous mapping entry modelled from * the old one. */ new_entry = vm_map_entry_create(new_map); memset(new_entry, 0, sizeof(*new_entry)); new_entry->start = old_entry->start; new_entry->end = old_entry->end; new_entry->eflags = old_entry->eflags & ~(MAP_ENTRY_USER_WIRED | MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_WRITECNT | MAP_ENTRY_VN_EXEC | MAP_ENTRY_SPLIT_BOUNDARY_MASK); new_entry->protection = old_entry->protection; new_entry->max_protection = old_entry->max_protection; new_entry->inheritance = VM_INHERIT_ZERO; vm_map_entry_link(new_map, new_entry); vmspace_map_entry_forked(vm1, vm2, new_entry); new_entry->cred = curthread->td_ucred; crhold(new_entry->cred); *fork_charge += (new_entry->end - new_entry->start); break; } } /* * Use inlined vm_map_unlock() to postpone handling the deferred * map entries, which cannot be done until both old_map and * new_map locks are released. */ sx_xunlock(&old_map->lock); sx_xunlock(&new_map->lock); vm_map_process_deferred(); return (vm2); } /* * Create a process's stack for exec_new_vmspace(). This function is never * asked to wire the newly created stack. */ int vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize, vm_prot_t prot, vm_prot_t max, int cow) { vm_size_t growsize, init_ssize; rlim_t vmemlim; int rv; MPASS((map->flags & MAP_WIREFUTURE) == 0); growsize = sgrowsiz; init_ssize = (max_ssize < growsize) ? max_ssize : growsize; vm_map_lock(map); vmemlim = lim_cur(curthread, RLIMIT_VMEM); /* If we would blow our VMEM resource limit, no go */ if (map->size + init_ssize > vmemlim) { rv = KERN_NO_SPACE; goto out; } rv = vm_map_stack_locked(map, addrbos, max_ssize, growsize, prot, max, cow); out: vm_map_unlock(map); return (rv); } static int stack_guard_page = 1; SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RWTUN, &stack_guard_page, 0, "Specifies the number of guard pages for a stack that grows"); static int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow) { vm_map_entry_t gap_entry, new_entry, prev_entry; vm_offset_t bot, gap_bot, gap_top, top; vm_size_t init_ssize, sgp; - int orient, rv; + int rv; - /* - * The stack orientation is piggybacked with the cow argument. - * Extract it into orient and mask the cow argument so that we - * don't pass it around further. - */ - orient = cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP); - KASSERT(orient != 0, ("No stack grow direction")); - KASSERT(orient != (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP), - ("bi-dir stack")); + KASSERT((cow & MAP_STACK_GROWS_DOWN) != 0, + ("New mapping is not a stack")); if (max_ssize == 0 || !vm_map_range_valid(map, addrbos, addrbos + max_ssize)) return (KERN_INVALID_ADDRESS); sgp = ((curproc->p_flag2 & P2_STKGAP_DISABLE) != 0 || (curproc->p_fctl0 & NT_FREEBSD_FCTL_STKGAP_DISABLE) != 0) ? 0 : (vm_size_t)stack_guard_page * PAGE_SIZE; if (sgp >= max_ssize) return (KERN_INVALID_ARGUMENT); init_ssize = growsize; if (max_ssize < init_ssize + sgp) init_ssize = max_ssize - sgp; /* If addr is already mapped, no go */ if (vm_map_lookup_entry(map, addrbos, &prev_entry)) return (KERN_NO_SPACE); /* * If we can't accommodate max_ssize in the current mapping, no go. */ if (vm_map_entry_succ(prev_entry)->start < addrbos + max_ssize) return (KERN_NO_SPACE); /* - * We initially map a stack of only init_ssize. We will grow as - * needed later. Depending on the orientation of the stack (i.e. - * the grow direction) we either map at the top of the range, the - * bottom of the range or in the middle. + * We initially map a stack of only init_ssize, at the top of + * the range. We will grow as needed later. * * Note: we would normally expect prot and max to be VM_PROT_ALL, * and cow to be 0. Possibly we should eliminate these as input * parameters, and just pass these values here in the insert call. */ - if (orient == MAP_STACK_GROWS_DOWN) { - bot = addrbos + max_ssize - init_ssize; - top = bot + init_ssize; - gap_bot = addrbos; - gap_top = bot; - } else /* if (orient == MAP_STACK_GROWS_UP) */ { - bot = addrbos; - top = bot + init_ssize; - gap_bot = top; - gap_top = addrbos + max_ssize; - } + bot = addrbos + max_ssize - init_ssize; + top = bot + init_ssize; + gap_bot = addrbos; + gap_top = bot; rv = vm_map_insert1(map, NULL, 0, bot, top, prot, max, cow, &new_entry); if (rv != KERN_SUCCESS) return (rv); KASSERT(new_entry->end == top || new_entry->start == bot, ("Bad entry start/end for new stack entry")); - KASSERT((orient & MAP_STACK_GROWS_DOWN) == 0 || - (new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0, + KASSERT((new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0, ("new entry lacks MAP_ENTRY_GROWS_DOWN")); - KASSERT((orient & MAP_STACK_GROWS_UP) == 0 || - (new_entry->eflags & MAP_ENTRY_GROWS_UP) != 0, - ("new entry lacks MAP_ENTRY_GROWS_UP")); if (gap_bot == gap_top) return (KERN_SUCCESS); rv = vm_map_insert1(map, NULL, 0, gap_bot, gap_top, VM_PROT_NONE, - VM_PROT_NONE, MAP_CREATE_GUARD | (orient == MAP_STACK_GROWS_DOWN ? - MAP_CREATE_STACK_GAP_DN : MAP_CREATE_STACK_GAP_UP), &gap_entry); + VM_PROT_NONE, MAP_CREATE_GUARD | MAP_CREATE_STACK_GAP_DN, + &gap_entry); if (rv == KERN_SUCCESS) { KASSERT((gap_entry->eflags & MAP_ENTRY_GUARD) != 0, ("entry %p not gap %#x", gap_entry, gap_entry->eflags)); - KASSERT((gap_entry->eflags & (MAP_ENTRY_STACK_GAP_DN | - MAP_ENTRY_STACK_GAP_UP)) != 0, + KASSERT((gap_entry->eflags & MAP_ENTRY_STACK_GAP_DN) != 0, ("entry %p not stack gap %#x", gap_entry, gap_entry->eflags)); /* * Gap can never successfully handle a fault, so * read-ahead logic is never used for it. Re-use * next_read of the gap entry to store * stack_guard_page for vm_map_growstack(). * Similarly, since a gap cannot have a backing object, * store the original stack protections in the * object offset. */ gap_entry->next_read = sgp; gap_entry->offset = prot | PROT_MAX(max); } else { (void)vm_map_delete(map, bot, top); } return (rv); } /* * Attempts to grow a vm stack entry. Returns KERN_SUCCESS if we * successfully grow the stack. */ static int vm_map_growstack(vm_map_t map, vm_offset_t addr, vm_map_entry_t gap_entry) { vm_map_entry_t stack_entry; struct proc *p; struct vmspace *vm; - struct ucred *cred; vm_offset_t gap_end, gap_start, grow_start; vm_size_t grow_amount, guard, max_grow, sgp; vm_prot_t prot, max; rlim_t lmemlim, stacklim, vmemlim; int rv, rv1 __diagused; - bool gap_deleted, grow_down, is_procstack; + bool gap_deleted, is_procstack; #ifdef notyet uint64_t limit; #endif #ifdef RACCT int error __diagused; #endif p = curproc; vm = p->p_vmspace; /* * Disallow stack growth when the access is performed by a * debugger or AIO daemon. The reason is that the wrong * resource limits are applied. */ if (p != initproc && (map != &p->p_vmspace->vm_map || p->p_textvp == NULL)) return (KERN_FAILURE); MPASS(!map->system_map); lmemlim = lim_cur(curthread, RLIMIT_MEMLOCK); stacklim = lim_cur(curthread, RLIMIT_STACK); vmemlim = lim_cur(curthread, RLIMIT_VMEM); retry: /* If addr is not in a hole for a stack grow area, no need to grow. */ if (gap_entry == NULL && !vm_map_lookup_entry(map, addr, &gap_entry)) return (KERN_FAILURE); if ((gap_entry->eflags & MAP_ENTRY_GUARD) == 0) return (KERN_SUCCESS); if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_DN) != 0) { stack_entry = vm_map_entry_succ(gap_entry); if ((stack_entry->eflags & MAP_ENTRY_GROWS_DOWN) == 0 || stack_entry->start != gap_entry->end) return (KERN_FAILURE); grow_amount = round_page(stack_entry->start - addr); - grow_down = true; - } else if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_UP) != 0) { - stack_entry = vm_map_entry_pred(gap_entry); - if ((stack_entry->eflags & MAP_ENTRY_GROWS_UP) == 0 || - stack_entry->end != gap_entry->start) - return (KERN_FAILURE); - grow_amount = round_page(addr + 1 - stack_entry->end); - grow_down = false; } else { return (KERN_FAILURE); } guard = ((curproc->p_flag2 & P2_STKGAP_DISABLE) != 0 || (curproc->p_fctl0 & NT_FREEBSD_FCTL_STKGAP_DISABLE) != 0) ? 0 : gap_entry->next_read; max_grow = gap_entry->end - gap_entry->start; if (guard > max_grow) return (KERN_NO_SPACE); max_grow -= guard; if (grow_amount > max_grow) return (KERN_NO_SPACE); /* * If this is the main process stack, see if we're over the stack * limit. */ is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr && addr < (vm_offset_t)vm->vm_stacktop; if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) return (KERN_NO_SPACE); #ifdef RACCT if (racct_enable) { PROC_LOCK(p); if (is_procstack && racct_set(p, RACCT_STACK, ctob(vm->vm_ssize) + grow_amount)) { PROC_UNLOCK(p); return (KERN_NO_SPACE); } PROC_UNLOCK(p); } #endif grow_amount = roundup(grow_amount, sgrowsiz); if (grow_amount > max_grow) grow_amount = max_grow; if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) { grow_amount = trunc_page((vm_size_t)stacklim) - ctob(vm->vm_ssize); } #ifdef notyet PROC_LOCK(p); limit = racct_get_available(p, RACCT_STACK); PROC_UNLOCK(p); if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit)) grow_amount = limit - ctob(vm->vm_ssize); #endif if (!old_mlock && (map->flags & MAP_WIREFUTURE) != 0) { if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) { rv = KERN_NO_SPACE; goto out; } #ifdef RACCT if (racct_enable) { PROC_LOCK(p); if (racct_set(p, RACCT_MEMLOCK, ptoa(pmap_wired_count(map->pmap)) + grow_amount)) { PROC_UNLOCK(p); rv = KERN_NO_SPACE; goto out; } PROC_UNLOCK(p); } #endif } /* If we would blow our VMEM resource limit, no go */ if (map->size + grow_amount > vmemlim) { rv = KERN_NO_SPACE; goto out; } #ifdef RACCT if (racct_enable) { PROC_LOCK(p); if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) { PROC_UNLOCK(p); rv = KERN_NO_SPACE; goto out; } PROC_UNLOCK(p); } #endif if (vm_map_lock_upgrade(map)) { gap_entry = NULL; vm_map_lock_read(map); goto retry; } - if (grow_down) { - /* - * The gap_entry "offset" field is overloaded. See - * vm_map_stack_locked(). - */ - prot = PROT_EXTRACT(gap_entry->offset); - max = PROT_MAX_EXTRACT(gap_entry->offset); - sgp = gap_entry->next_read; - - grow_start = gap_entry->end - grow_amount; - if (gap_entry->start + grow_amount == gap_entry->end) { - gap_start = gap_entry->start; - gap_end = gap_entry->end; - vm_map_entry_delete(map, gap_entry); - gap_deleted = true; + /* + * The gap_entry "offset" field is overloaded. See + * vm_map_stack_locked(). + */ + prot = PROT_EXTRACT(gap_entry->offset); + max = PROT_MAX_EXTRACT(gap_entry->offset); + sgp = gap_entry->next_read; + + grow_start = gap_entry->end - grow_amount; + if (gap_entry->start + grow_amount == gap_entry->end) { + gap_start = gap_entry->start; + gap_end = gap_entry->end; + vm_map_entry_delete(map, gap_entry); + gap_deleted = true; + } else { + MPASS(gap_entry->start < gap_entry->end - grow_amount); + vm_map_entry_resize(map, gap_entry, -grow_amount); + gap_deleted = false; + } + rv = vm_map_insert(map, NULL, 0, grow_start, + grow_start + grow_amount, prot, max, MAP_STACK_GROWS_DOWN); + if (rv != KERN_SUCCESS) { + if (gap_deleted) { + rv1 = vm_map_insert1(map, NULL, 0, gap_start, + gap_end, VM_PROT_NONE, VM_PROT_NONE, + MAP_CREATE_GUARD | MAP_CREATE_STACK_GAP_DN, + &gap_entry); + MPASS(rv1 == KERN_SUCCESS); + gap_entry->next_read = sgp; + gap_entry->offset = prot | PROT_MAX(max); } else { - MPASS(gap_entry->start < gap_entry->end - grow_amount); - vm_map_entry_resize(map, gap_entry, -grow_amount); - gap_deleted = false; - } - rv = vm_map_insert(map, NULL, 0, grow_start, - grow_start + grow_amount, prot, max, MAP_STACK_GROWS_DOWN); - if (rv != KERN_SUCCESS) { - if (gap_deleted) { - rv1 = vm_map_insert1(map, NULL, 0, gap_start, - gap_end, VM_PROT_NONE, VM_PROT_NONE, - MAP_CREATE_GUARD | MAP_CREATE_STACK_GAP_DN, - &gap_entry); - MPASS(rv1 == KERN_SUCCESS); - gap_entry->next_read = sgp; - gap_entry->offset = prot | PROT_MAX(max); - } else - vm_map_entry_resize(map, gap_entry, - grow_amount); + vm_map_entry_resize(map, gap_entry, + grow_amount); } - } else { - grow_start = stack_entry->end; - cred = stack_entry->cred; - if (cred == NULL && stack_entry->object.vm_object != NULL) - cred = stack_entry->object.vm_object->cred; - if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred)) - rv = KERN_NO_SPACE; - /* Grow the underlying object if applicable. */ - else if (stack_entry->object.vm_object == NULL || - vm_object_coalesce(stack_entry->object.vm_object, - stack_entry->offset, - (vm_size_t)(stack_entry->end - stack_entry->start), - grow_amount, cred != NULL)) { - if (gap_entry->start + grow_amount == gap_entry->end) { - vm_map_entry_delete(map, gap_entry); - vm_map_entry_resize(map, stack_entry, - grow_amount); - } else { - gap_entry->start += grow_amount; - stack_entry->end += grow_amount; - } - map->size += grow_amount; - rv = KERN_SUCCESS; - } else - rv = KERN_FAILURE; } if (rv == KERN_SUCCESS && is_procstack) vm->vm_ssize += btoc(grow_amount); /* * Heed the MAP_WIREFUTURE flag if it was set for this process. */ if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE) != 0) { rv = vm_map_wire_locked(map, grow_start, grow_start + grow_amount, VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES); } vm_map_lock_downgrade(map); out: #ifdef RACCT if (racct_enable && rv != KERN_SUCCESS) { PROC_LOCK(p); error = racct_set(p, RACCT_VMEM, map->size); KASSERT(error == 0, ("decreasing RACCT_VMEM failed")); if (!old_mlock) { error = racct_set(p, RACCT_MEMLOCK, ptoa(pmap_wired_count(map->pmap))); KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed")); } error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize)); KASSERT(error == 0, ("decreasing RACCT_STACK failed")); PROC_UNLOCK(p); } #endif return (rv); } /* * Unshare the specified VM space for exec. If other processes are * mapped to it, then create a new one. The new vmspace is null. */ int vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser) { struct vmspace *oldvmspace = p->p_vmspace; struct vmspace *newvmspace; KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0, ("vmspace_exec recursed")); newvmspace = vmspace_alloc(minuser, maxuser, pmap_pinit); if (newvmspace == NULL) return (ENOMEM); newvmspace->vm_swrss = oldvmspace->vm_swrss; /* * This code is written like this for prototype purposes. The * goal is to avoid running down the vmspace here, but let the * other process's that are still using the vmspace to finally * run it down. Even though there is little or no chance of blocking * here, it is a good idea to keep this form for future mods. */ PROC_VMSPACE_LOCK(p); p->p_vmspace = newvmspace; PROC_VMSPACE_UNLOCK(p); if (p == curthread->td_proc) pmap_activate(curthread); curthread->td_pflags |= TDP_EXECVMSPC; return (0); } /* * Unshare the specified VM space for forcing COW. This * is called by rfork, for the (RFMEM|RFPROC) == 0 case. */ int vmspace_unshare(struct proc *p) { struct vmspace *oldvmspace = p->p_vmspace; struct vmspace *newvmspace; vm_ooffset_t fork_charge; /* * The caller is responsible for ensuring that the reference count * cannot concurrently transition 1 -> 2. */ if (refcount_load(&oldvmspace->vm_refcnt) == 1) return (0); fork_charge = 0; newvmspace = vmspace_fork(oldvmspace, &fork_charge); if (newvmspace == NULL) return (ENOMEM); if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) { vmspace_free(newvmspace); return (ENOMEM); } PROC_VMSPACE_LOCK(p); p->p_vmspace = newvmspace; PROC_VMSPACE_UNLOCK(p); if (p == curthread->td_proc) pmap_activate(curthread); vmspace_free(oldvmspace); return (0); } /* * vm_map_lookup: * * Finds the VM object, offset, and * protection for a given virtual address in the * specified map, assuming a page fault of the * type specified. * * Leaves the map in question locked for read; return * values are guaranteed until a vm_map_lookup_done * call is performed. Note that the map argument * is in/out; the returned map must be used in * the call to vm_map_lookup_done. * * A handle (out_entry) is returned for use in * vm_map_lookup_done, to make that fast. * * If a lookup is requested with "write protection" * specified, the map may be changed to perform virtual * copying operations, although the data referenced will * remain the same. */ int vm_map_lookup(vm_map_t *var_map, /* IN/OUT */ vm_offset_t vaddr, vm_prot_t fault_typea, vm_map_entry_t *out_entry, /* OUT */ vm_object_t *object, /* OUT */ vm_pindex_t *pindex, /* OUT */ vm_prot_t *out_prot, /* OUT */ boolean_t *wired) /* OUT */ { vm_map_entry_t entry; vm_map_t map = *var_map; vm_prot_t prot; vm_prot_t fault_type; vm_object_t eobject; vm_size_t size; struct ucred *cred; RetryLookup: vm_map_lock_read(map); RetryLookupLocked: /* * Lookup the faulting address. */ if (!vm_map_lookup_entry(map, vaddr, out_entry)) { vm_map_unlock_read(map); return (KERN_INVALID_ADDRESS); } entry = *out_entry; /* * Handle submaps. */ if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { vm_map_t old_map = map; *var_map = map = entry->object.sub_map; vm_map_unlock_read(old_map); goto RetryLookup; } /* * Check whether this task is allowed to have this page. */ prot = entry->protection; if ((fault_typea & VM_PROT_FAULT_LOOKUP) != 0) { fault_typea &= ~VM_PROT_FAULT_LOOKUP; if (prot == VM_PROT_NONE && map != kernel_map && (entry->eflags & MAP_ENTRY_GUARD) != 0 && - (entry->eflags & (MAP_ENTRY_STACK_GAP_DN | - MAP_ENTRY_STACK_GAP_UP)) != 0 && + (entry->eflags & MAP_ENTRY_STACK_GAP_DN) != 0 && vm_map_growstack(map, vaddr, entry) == KERN_SUCCESS) goto RetryLookupLocked; } fault_type = fault_typea & VM_PROT_ALL; if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) { vm_map_unlock_read(map); return (KERN_PROTECTION_FAILURE); } KASSERT((prot & VM_PROT_WRITE) == 0 || (entry->eflags & (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY)) != (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY), ("entry %p flags %x", entry, entry->eflags)); if ((fault_typea & VM_PROT_COPY) != 0 && (entry->max_protection & VM_PROT_WRITE) == 0 && (entry->eflags & MAP_ENTRY_COW) == 0) { vm_map_unlock_read(map); return (KERN_PROTECTION_FAILURE); } /* * If this page is not pageable, we have to get it for all possible * accesses. */ *wired = (entry->wired_count != 0); if (*wired) fault_type = entry->protection; size = entry->end - entry->start; /* * If the entry was copy-on-write, we either ... */ if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { /* * If we want to write the page, we may as well handle that * now since we've got the map locked. * * If we don't need to write the page, we just demote the * permissions allowed. */ if ((fault_type & VM_PROT_WRITE) != 0 || (fault_typea & VM_PROT_COPY) != 0) { /* * Make a new object, and place it in the object * chain. Note that no new references have appeared * -- one just moved from the map to the new * object. */ if (vm_map_lock_upgrade(map)) goto RetryLookup; if (entry->cred == NULL) { /* * The debugger owner is charged for * the memory. */ cred = curthread->td_ucred; crhold(cred); if (!swap_reserve_by_cred(size, cred)) { crfree(cred); vm_map_unlock(map); return (KERN_RESOURCE_SHORTAGE); } entry->cred = cred; } eobject = entry->object.vm_object; vm_object_shadow(&entry->object.vm_object, &entry->offset, size, entry->cred, false); if (eobject == entry->object.vm_object) { /* * The object was not shadowed. */ swap_release_by_cred(size, entry->cred); crfree(entry->cred); } entry->cred = NULL; entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; vm_map_lock_downgrade(map); } else { /* * We're attempting to read a copy-on-write page -- * don't allow writes. */ prot &= ~VM_PROT_WRITE; } } /* * Create an object if necessary. */ if (entry->object.vm_object == NULL && !map->system_map) { if (vm_map_lock_upgrade(map)) goto RetryLookup; entry->object.vm_object = vm_object_allocate_anon(atop(size), NULL, entry->cred, size); entry->offset = 0; entry->cred = NULL; vm_map_lock_downgrade(map); } /* * Return the object/offset from this entry. If the entry was * copy-on-write or empty, it has been fixed up. */ *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); *object = entry->object.vm_object; *out_prot = prot; return (KERN_SUCCESS); } /* * vm_map_lookup_locked: * * Lookup the faulting address. A version of vm_map_lookup that returns * KERN_FAILURE instead of blocking on map lock or memory allocation. */ int vm_map_lookup_locked(vm_map_t *var_map, /* IN/OUT */ vm_offset_t vaddr, vm_prot_t fault_typea, vm_map_entry_t *out_entry, /* OUT */ vm_object_t *object, /* OUT */ vm_pindex_t *pindex, /* OUT */ vm_prot_t *out_prot, /* OUT */ boolean_t *wired) /* OUT */ { vm_map_entry_t entry; vm_map_t map = *var_map; vm_prot_t prot; vm_prot_t fault_type = fault_typea; /* * Lookup the faulting address. */ if (!vm_map_lookup_entry(map, vaddr, out_entry)) return (KERN_INVALID_ADDRESS); entry = *out_entry; /* * Fail if the entry refers to a submap. */ if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) return (KERN_FAILURE); /* * Check whether this task is allowed to have this page. */ prot = entry->protection; fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE; if ((fault_type & prot) != fault_type) return (KERN_PROTECTION_FAILURE); /* * If this page is not pageable, we have to get it for all possible * accesses. */ *wired = (entry->wired_count != 0); if (*wired) fault_type = entry->protection; if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { /* * Fail if the entry was copy-on-write for a write fault. */ if (fault_type & VM_PROT_WRITE) return (KERN_FAILURE); /* * We're attempting to read a copy-on-write page -- * don't allow writes. */ prot &= ~VM_PROT_WRITE; } /* * Fail if an object should be created. */ if (entry->object.vm_object == NULL && !map->system_map) return (KERN_FAILURE); /* * Return the object/offset from this entry. If the entry was * copy-on-write or empty, it has been fixed up. */ *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); *object = entry->object.vm_object; *out_prot = prot; return (KERN_SUCCESS); } /* * vm_map_lookup_done: * * Releases locks acquired by a vm_map_lookup * (according to the handle returned by that lookup). */ void vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry) { /* * Unlock the main-level map */ vm_map_unlock_read(map); } vm_offset_t vm_map_max_KBI(const struct vm_map *map) { return (vm_map_max(map)); } vm_offset_t vm_map_min_KBI(const struct vm_map *map) { return (vm_map_min(map)); } pmap_t vm_map_pmap_KBI(vm_map_t map) { return (map->pmap); } bool vm_map_range_valid_KBI(vm_map_t map, vm_offset_t start, vm_offset_t end) { return (vm_map_range_valid(map, start, end)); } #ifdef INVARIANTS static void _vm_map_assert_consistent(vm_map_t map, int check) { vm_map_entry_t entry, prev; vm_map_entry_t cur, header, lbound, ubound; vm_size_t max_left, max_right; #ifdef DIAGNOSTIC ++map->nupdates; #endif if (enable_vmmap_check != check) return; header = prev = &map->header; VM_MAP_ENTRY_FOREACH(entry, map) { KASSERT(prev->end <= entry->start, ("map %p prev->end = %jx, start = %jx", map, (uintmax_t)prev->end, (uintmax_t)entry->start)); KASSERT(entry->start < entry->end, ("map %p start = %jx, end = %jx", map, (uintmax_t)entry->start, (uintmax_t)entry->end)); KASSERT(entry->left == header || entry->left->start < entry->start, ("map %p left->start = %jx, start = %jx", map, (uintmax_t)entry->left->start, (uintmax_t)entry->start)); KASSERT(entry->right == header || entry->start < entry->right->start, ("map %p start = %jx, right->start = %jx", map, (uintmax_t)entry->start, (uintmax_t)entry->right->start)); cur = map->root; lbound = ubound = header; for (;;) { if (entry->start < cur->start) { ubound = cur; cur = cur->left; KASSERT(cur != lbound, ("map %p cannot find %jx", map, (uintmax_t)entry->start)); } else if (cur->end <= entry->start) { lbound = cur; cur = cur->right; KASSERT(cur != ubound, ("map %p cannot find %jx", map, (uintmax_t)entry->start)); } else { KASSERT(cur == entry, ("map %p cannot find %jx", map, (uintmax_t)entry->start)); break; } } max_left = vm_map_entry_max_free_left(entry, lbound); max_right = vm_map_entry_max_free_right(entry, ubound); KASSERT(entry->max_free == vm_size_max(max_left, max_right), ("map %p max = %jx, max_left = %jx, max_right = %jx", map, (uintmax_t)entry->max_free, (uintmax_t)max_left, (uintmax_t)max_right)); prev = entry; } KASSERT(prev->end <= entry->start, ("map %p prev->end = %jx, start = %jx", map, (uintmax_t)prev->end, (uintmax_t)entry->start)); } #endif #include "opt_ddb.h" #ifdef DDB #include #include static void vm_map_print(vm_map_t map) { vm_map_entry_t entry, prev; db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n", (void *)map, (void *)map->pmap, map->nentries, map->timestamp); db_indent += 2; prev = &map->header; VM_MAP_ENTRY_FOREACH(entry, map) { db_iprintf("map entry %p: start=%p, end=%p, eflags=%#x, \n", (void *)entry, (void *)entry->start, (void *)entry->end, entry->eflags); { static const char * const inheritance_name[4] = {"share", "copy", "none", "donate_copy"}; db_iprintf(" prot=%x/%x/%s", entry->protection, entry->max_protection, inheritance_name[(int)(unsigned char) entry->inheritance]); if (entry->wired_count != 0) db_printf(", wired"); } if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { db_printf(", share=%p, offset=0x%jx\n", (void *)entry->object.sub_map, (uintmax_t)entry->offset); if (prev == &map->header || prev->object.sub_map != entry->object.sub_map) { db_indent += 2; vm_map_print((vm_map_t)entry->object.sub_map); db_indent -= 2; } } else { if (entry->cred != NULL) db_printf(", ruid %d", entry->cred->cr_ruid); db_printf(", object=%p, offset=0x%jx", (void *)entry->object.vm_object, (uintmax_t)entry->offset); if (entry->object.vm_object && entry->object.vm_object->cred) db_printf(", obj ruid %d charge %jx", entry->object.vm_object->cred->cr_ruid, (uintmax_t)entry->object.vm_object->charge); if (entry->eflags & MAP_ENTRY_COW) db_printf(", copy (%s)", (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done"); db_printf("\n"); if (prev == &map->header || prev->object.vm_object != entry->object.vm_object) { db_indent += 2; vm_object_print((db_expr_t)(intptr_t) entry->object.vm_object, 0, 0, (char *)0); db_indent -= 2; } } prev = entry; } db_indent -= 2; } DB_SHOW_COMMAND(map, map) { if (!have_addr) { db_printf("usage: show map \n"); return; } vm_map_print((vm_map_t)addr); } DB_SHOW_COMMAND(procvm, procvm) { struct proc *p; if (have_addr) { p = db_lookup_proc(addr); } else { p = curproc; } db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n", (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map, (void *)vmspace_pmap(p->p_vmspace)); vm_map_print((vm_map_t)&p->p_vmspace->vm_map); } #endif /* DDB */ diff --git a/sys/vm/vm_map.h b/sys/vm/vm_map.h index a226f9adaa9a..cd30a4268efa 100644 --- a/sys/vm/vm_map.h +++ b/sys/vm/vm_map.h @@ -1,543 +1,543 @@ /*- * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU) * * Copyright (c) 1991, 1993 * The Regents of the University of California. All rights reserved. * * This code is derived from software contributed to Berkeley by * The Mach Operating System project at Carnegie-Mellon University. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * * Copyright (c) 1987, 1990 Carnegie-Mellon University. * All rights reserved. * * Authors: Avadis Tevanian, Jr., Michael Wayne Young * * Permission to use, copy, modify and distribute this software and * its documentation is hereby granted, provided that both the copyright * notice and this permission notice appear in all copies of the * software, derivative works or modified versions, and any portions * thereof, and that both notices appear in supporting documentation. * * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. * * Carnegie Mellon requests users of this software to return to * * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU * School of Computer Science * Carnegie Mellon University * Pittsburgh PA 15213-3890 * * any improvements or extensions that they make and grant Carnegie the * rights to redistribute these changes. */ /* * Virtual memory map module definitions. */ #ifndef _VM_MAP_ #define _VM_MAP_ #include #include #include /* * Types defined: * * vm_map_t the high-level address map data structure. * vm_map_entry_t an entry in an address map. */ typedef u_char vm_flags_t; typedef u_int vm_eflags_t; /* * Objects which live in maps may be either VM objects, or * another map (called a "sharing map") which denotes read-write * sharing with other maps. */ union vm_map_object { struct vm_object *vm_object; /* object object */ struct vm_map *sub_map; /* belongs to another map */ }; /* * Address map entries consist of start and end addresses, * a VM object (or sharing map) and offset into that object, * and user-exported inheritance and protection information. * Also included is control information for virtual copy operations. * - * For stack gap map entries (MAP_ENTRY_GUARD | MAP_ENTRY_GROWS_DOWN - * or UP), the next_read member is reused as the stack_guard_page - * storage, and offset is the stack protection. + * For stack gap map entries (MAP_ENTRY_GUARD | MAP_ENTRY_STACK_GAP), + * the next_read member is reused as the stack_guard_page storage, and + * offset is the stack protection. */ struct vm_map_entry { struct vm_map_entry *left; /* left child or previous entry */ struct vm_map_entry *right; /* right child or next entry */ vm_offset_t start; /* start address */ vm_offset_t end; /* end address */ vm_offset_t next_read; /* vaddr of the next sequential read */ vm_size_t max_free; /* max free space in subtree */ union vm_map_object object; /* object I point to */ vm_ooffset_t offset; /* offset into object */ vm_eflags_t eflags; /* map entry flags */ vm_prot_t protection; /* protection code */ vm_prot_t max_protection; /* maximum protection */ vm_inherit_t inheritance; /* inheritance */ uint8_t read_ahead; /* pages in the read-ahead window */ int wired_count; /* can be paged if = 0 */ struct ucred *cred; /* tmp storage for creator ref */ struct thread *wiring_thread; }; #define MAP_ENTRY_NOSYNC 0x00000001 #define MAP_ENTRY_IS_SUB_MAP 0x00000002 #define MAP_ENTRY_COW 0x00000004 #define MAP_ENTRY_NEEDS_COPY 0x00000008 #define MAP_ENTRY_NOFAULT 0x00000010 #define MAP_ENTRY_USER_WIRED 0x00000020 #define MAP_ENTRY_BEHAV_NORMAL 0x00000000 /* default behavior */ #define MAP_ENTRY_BEHAV_SEQUENTIAL 0x00000040 /* expect sequential access */ #define MAP_ENTRY_BEHAV_RANDOM 0x00000080 /* expect random access */ #define MAP_ENTRY_BEHAV_RESERVED 0x000000c0 /* future use */ #define MAP_ENTRY_BEHAV_MASK 0x000000c0 #define MAP_ENTRY_IN_TRANSITION 0x00000100 /* entry being changed */ #define MAP_ENTRY_NEEDS_WAKEUP 0x00000200 /* waiters in transition */ #define MAP_ENTRY_NOCOREDUMP 0x00000400 /* don't include in a core */ #define MAP_ENTRY_VN_EXEC 0x00000800 /* text vnode mapping */ #define MAP_ENTRY_GROWS_DOWN 0x00001000 /* top-down stacks */ -#define MAP_ENTRY_GROWS_UP 0x00002000 /* bottom-up stacks */ +#define MAP_ENTRY_UNUSED0 0x00002000 #define MAP_ENTRY_WIRE_SKIPPED 0x00004000 #define MAP_ENTRY_WRITECNT 0x00008000 /* tracked writeable mapping */ #define MAP_ENTRY_GUARD 0x00010000 #define MAP_ENTRY_STACK_GAP_DN 0x00020000 -#define MAP_ENTRY_STACK_GAP_UP 0x00040000 +#define MAP_ENTRY_UNUSED1 0x00040000 #define MAP_ENTRY_HEADER 0x00080000 #define MAP_ENTRY_SPLIT_BOUNDARY_MASK 0x00300000 #define MAP_ENTRY_SPLIT_BOUNDARY_SHIFT 20 #define MAP_ENTRY_SPLIT_BOUNDARY_INDEX(entry) \ (((entry)->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) >> \ MAP_ENTRY_SPLIT_BOUNDARY_SHIFT) #ifdef _KERNEL static __inline u_char vm_map_entry_behavior(vm_map_entry_t entry) { return (entry->eflags & MAP_ENTRY_BEHAV_MASK); } static __inline int vm_map_entry_user_wired_count(vm_map_entry_t entry) { if (entry->eflags & MAP_ENTRY_USER_WIRED) return (1); return (0); } static __inline int vm_map_entry_system_wired_count(vm_map_entry_t entry) { return (entry->wired_count - vm_map_entry_user_wired_count(entry)); } #endif /* _KERNEL */ /* * A map is a set of map entries. These map entries are * organized as a threaded binary search tree. The tree is * ordered based upon the start and end addresses contained * within each map entry. The largest gap between an entry in a * subtree and one of its neighbors is saved in the max_free * field, and that field is updated when the tree is restructured. * * Sleator and Tarjan's top-down splay algorithm is employed to * control height imbalance in the binary search tree. * * The map's min offset value is stored in map->header.end, and * its max offset value is stored in map->header.start. These * values act as sentinels for any forward or backward address * scan of the list. The right and left fields of the map * header point to the first and list map entries. The map * header has a special value for the eflags field, * MAP_ENTRY_HEADER, that is set initially, is never changed, * and prevents an eflags match of the header with any other map * entry. * * List of locks * (c) const until freed */ struct vm_map { struct vm_map_entry header; /* List of entries */ struct sx lock; /* Lock for map data */ struct mtx system_mtx; int nentries; /* Number of entries */ vm_size_t size; /* virtual size */ u_int timestamp; /* Version number */ u_char needs_wakeup; u_char system_map; /* (c) Am I a system map? */ vm_flags_t flags; /* flags for this vm_map */ vm_map_entry_t root; /* Root of a binary search tree */ pmap_t pmap; /* (c) Physical map */ vm_offset_t anon_loc; int busy; #ifdef DIAGNOSTIC int nupdates; #endif }; /* * vm_flags_t values */ #define MAP_WIREFUTURE 0x01 /* wire all future pages */ #define MAP_BUSY_WAKEUP 0x02 /* thread(s) waiting on busy state */ #define MAP_IS_SUB_MAP 0x04 /* has parent */ #define MAP_ASLR 0x08 /* enabled ASLR */ #define MAP_ASLR_IGNSTART 0x10 /* ASLR ignores data segment */ #define MAP_REPLENISH 0x20 /* kmapent zone needs to be refilled */ #define MAP_WXORX 0x40 /* enforce W^X */ #define MAP_ASLR_STACK 0x80 /* stack location is randomized */ #ifdef _KERNEL #if defined(KLD_MODULE) && !defined(KLD_TIED) #define vm_map_max(map) vm_map_max_KBI((map)) #define vm_map_min(map) vm_map_min_KBI((map)) #define vm_map_pmap(map) vm_map_pmap_KBI((map)) #define vm_map_range_valid(map, start, end) \ vm_map_range_valid_KBI((map), (start), (end)) #else static __inline vm_offset_t vm_map_max(const struct vm_map *map) { return (map->header.start); } static __inline vm_offset_t vm_map_min(const struct vm_map *map) { return (map->header.end); } static __inline pmap_t vm_map_pmap(vm_map_t map) { return (map->pmap); } static __inline void vm_map_modflags(vm_map_t map, vm_flags_t set, vm_flags_t clear) { map->flags = (map->flags | set) & ~clear; } static inline bool vm_map_range_valid(vm_map_t map, vm_offset_t start, vm_offset_t end) { if (end < start) return (false); if (start < vm_map_min(map) || end > vm_map_max(map)) return (false); return (true); } #endif /* KLD_MODULE */ #endif /* _KERNEL */ /* * Shareable process virtual address space. * * List of locks * (c) const until freed */ struct vmspace { struct vm_map vm_map; /* VM address map */ struct shmmap_state *vm_shm; /* SYS5 shared memory private data XXX */ segsz_t vm_swrss; /* resident set size before last swap */ segsz_t vm_tsize; /* text size (pages) XXX */ segsz_t vm_dsize; /* data size (pages) XXX */ segsz_t vm_ssize; /* stack size (pages) */ caddr_t vm_taddr; /* (c) user virtual address of text */ caddr_t vm_daddr; /* (c) user virtual address of data */ caddr_t vm_maxsaddr; /* user VA at max stack growth */ vm_offset_t vm_stacktop; /* top of the stack, may not be page-aligned */ vm_offset_t vm_shp_base; /* shared page address */ u_int vm_refcnt; /* number of references */ /* * Keep the PMAP last, so that CPU-specific variations of that * structure on a single architecture don't result in offset * variations of the machine-independent fields in the vmspace. */ struct pmap vm_pmap; /* private physical map */ }; #ifdef _KERNEL static __inline pmap_t vmspace_pmap(struct vmspace *vmspace) { return &vmspace->vm_pmap; } #endif /* _KERNEL */ #ifdef _KERNEL /* * Macros: vm_map_lock, etc. * Function: * Perform locking on the data portion of a map. Note that * these macros mimic procedure calls returning void. The * semicolon is supplied by the user of these macros, not * by the macros themselves. The macros can safely be used * as unbraced elements in a higher level statement. */ void _vm_map_lock(vm_map_t map, const char *file, int line); void _vm_map_unlock(vm_map_t map, const char *file, int line); int _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line); void _vm_map_lock_read(vm_map_t map, const char *file, int line); void _vm_map_unlock_read(vm_map_t map, const char *file, int line); int _vm_map_trylock(vm_map_t map, const char *file, int line); int _vm_map_trylock_read(vm_map_t map, const char *file, int line); int _vm_map_lock_upgrade(vm_map_t map, const char *file, int line); void _vm_map_lock_downgrade(vm_map_t map, const char *file, int line); int vm_map_locked(vm_map_t map); void vm_map_wakeup(vm_map_t map); void vm_map_busy(vm_map_t map); void vm_map_unbusy(vm_map_t map); void vm_map_wait_busy(vm_map_t map); vm_offset_t vm_map_max_KBI(const struct vm_map *map); vm_offset_t vm_map_min_KBI(const struct vm_map *map); pmap_t vm_map_pmap_KBI(vm_map_t map); bool vm_map_range_valid_KBI(vm_map_t map, vm_offset_t start, vm_offset_t end); #define vm_map_lock(map) _vm_map_lock(map, LOCK_FILE, LOCK_LINE) #define vm_map_unlock(map) _vm_map_unlock(map, LOCK_FILE, LOCK_LINE) #define vm_map_unlock_and_wait(map, timo) \ _vm_map_unlock_and_wait(map, timo, LOCK_FILE, LOCK_LINE) #define vm_map_lock_read(map) _vm_map_lock_read(map, LOCK_FILE, LOCK_LINE) #define vm_map_unlock_read(map) _vm_map_unlock_read(map, LOCK_FILE, LOCK_LINE) #define vm_map_trylock(map) _vm_map_trylock(map, LOCK_FILE, LOCK_LINE) #define vm_map_trylock_read(map) \ _vm_map_trylock_read(map, LOCK_FILE, LOCK_LINE) #define vm_map_lock_upgrade(map) \ _vm_map_lock_upgrade(map, LOCK_FILE, LOCK_LINE) #define vm_map_lock_downgrade(map) \ _vm_map_lock_downgrade(map, LOCK_FILE, LOCK_LINE) long vmspace_resident_count(struct vmspace *vmspace); #endif /* _KERNEL */ /* * Copy-on-write flags for vm_map operations */ #define MAP_INHERIT_SHARE 0x00000001 #define MAP_COPY_ON_WRITE 0x00000002 #define MAP_NOFAULT 0x00000004 #define MAP_PREFAULT 0x00000008 #define MAP_PREFAULT_PARTIAL 0x00000010 #define MAP_DISABLE_SYNCER 0x00000020 #define MAP_CHECK_EXCL 0x00000040 #define MAP_CREATE_GUARD 0x00000080 #define MAP_DISABLE_COREDUMP 0x00000100 #define MAP_PREFAULT_MADVISE 0x00000200 /* from (user) madvise request */ #define MAP_WRITECOUNT 0x00000400 #define MAP_REMAP 0x00000800 #define MAP_STACK_GROWS_DOWN 0x00001000 -#define MAP_STACK_GROWS_UP 0x00002000 +#define MAP_COW_UNUSED0 0x00002000 #define MAP_ACC_CHARGED 0x00004000 #define MAP_ACC_NO_CHARGE 0x00008000 -#define MAP_CREATE_STACK_GAP_UP 0x00010000 +#define MAP_COW_UNUSED1 0x00010000 #define MAP_CREATE_STACK_GAP_DN 0x00020000 #define MAP_VN_EXEC 0x00040000 #define MAP_SPLIT_BOUNDARY_MASK 0x00180000 #define MAP_NO_HINT 0x00200000 #define MAP_SPLIT_BOUNDARY_SHIFT 19 /* * vm_fault option flags */ #define VM_FAULT_NORMAL 0x00 /* Nothing special */ #define VM_FAULT_WIRE 0x01 /* Wire the mapped page */ #define VM_FAULT_DIRTY 0x02 /* Dirty the page; use w/VM_PROT_COPY */ #define VM_FAULT_NOFILL 0x04 /* Fail if the pager doesn't have a copy */ /* * Initially, mappings are slightly sequential. The maximum window size must * account for the map entry's "read_ahead" field being defined as an uint8_t. */ #define VM_FAULT_READ_AHEAD_MIN 7 #define VM_FAULT_READ_AHEAD_INIT 15 #define VM_FAULT_READ_AHEAD_MAX min(atop(maxphys) - 1, UINT8_MAX) /* * The following "find_space" options are supported by vm_map_find(). * * For VMFS_ALIGNED_SPACE, the desired alignment is specified to * the macro argument as log base 2 of the desired alignment. */ #define VMFS_NO_SPACE 0 /* don't find; use the given range */ #define VMFS_ANY_SPACE 1 /* find a range with any alignment */ #define VMFS_OPTIMAL_SPACE 2 /* find a range with optimal alignment*/ #define VMFS_SUPER_SPACE 3 /* find a superpage-aligned range */ #define VMFS_ALIGNED_SPACE(x) ((x) << 8) /* find a range with fixed alignment */ /* * vm_map_wire and vm_map_unwire option flags */ #define VM_MAP_WIRE_SYSTEM 0 /* wiring in a kernel map */ #define VM_MAP_WIRE_USER 1 /* wiring in a user map */ #define VM_MAP_WIRE_NOHOLES 0 /* region must not have holes */ #define VM_MAP_WIRE_HOLESOK 2 /* region may have holes */ #define VM_MAP_WIRE_WRITE 4 /* Validate writable. */ typedef int vm_map_entry_reader(void *token, vm_map_entry_t addr, vm_map_entry_t dest); #ifndef _KERNEL /* * Find the successor of a map_entry, using a reader to dereference pointers. * '*clone' is a copy of a vm_map entry. 'reader' is used to copy a map entry * at some address into '*clone'. Change *clone to a copy of the next map * entry, and return the address of that entry, or NULL if copying has failed. * * This function is made available to user-space code that needs to traverse * map entries. */ static inline vm_map_entry_t vm_map_entry_read_succ(void *token, struct vm_map_entry *const clone, vm_map_entry_reader reader) { vm_map_entry_t after, backup; vm_offset_t start; after = clone->right; start = clone->start; if (!reader(token, after, clone)) return (NULL); backup = clone->left; if (!reader(token, backup, clone)) return (NULL); if (clone->start > start) { do { after = backup; backup = clone->left; if (!reader(token, backup, clone)) return (NULL); } while (clone->start != start); } if (!reader(token, after, clone)) return (NULL); return (after); } #endif /* ! _KERNEL */ #ifdef _KERNEL boolean_t vm_map_check_protection (vm_map_t, vm_offset_t, vm_offset_t, vm_prot_t); int vm_map_delete(vm_map_t, vm_offset_t, vm_offset_t); int vm_map_find(vm_map_t, vm_object_t, vm_ooffset_t, vm_offset_t *, vm_size_t, vm_offset_t, int, vm_prot_t, vm_prot_t, int); int vm_map_find_locked(vm_map_t, vm_object_t, vm_ooffset_t, vm_offset_t *, vm_size_t, vm_offset_t, int, vm_prot_t, vm_prot_t, int); int vm_map_find_min(vm_map_t, vm_object_t, vm_ooffset_t, vm_offset_t *, vm_size_t, vm_offset_t, vm_offset_t, int, vm_prot_t, vm_prot_t, int); int vm_map_find_aligned(vm_map_t map, vm_offset_t *addr, vm_size_t length, vm_offset_t max_addr, vm_offset_t alignment); int vm_map_fixed(vm_map_t, vm_object_t, vm_ooffset_t, vm_offset_t, vm_size_t, vm_prot_t, vm_prot_t, int); vm_offset_t vm_map_findspace(vm_map_t, vm_offset_t, vm_size_t); int vm_map_inherit (vm_map_t, vm_offset_t, vm_offset_t, vm_inherit_t); void vm_map_init(vm_map_t, pmap_t, vm_offset_t, vm_offset_t); int vm_map_insert (vm_map_t, vm_object_t, vm_ooffset_t, vm_offset_t, vm_offset_t, vm_prot_t, vm_prot_t, int); int vm_map_lookup (vm_map_t *, vm_offset_t, vm_prot_t, vm_map_entry_t *, vm_object_t *, vm_pindex_t *, vm_prot_t *, boolean_t *); int vm_map_lookup_locked(vm_map_t *, vm_offset_t, vm_prot_t, vm_map_entry_t *, vm_object_t *, vm_pindex_t *, vm_prot_t *, boolean_t *); void vm_map_lookup_done (vm_map_t, vm_map_entry_t); boolean_t vm_map_lookup_entry (vm_map_t, vm_offset_t, vm_map_entry_t *); static inline vm_map_entry_t vm_map_entry_first(vm_map_t map) { return (map->header.right); } static inline vm_map_entry_t vm_map_entry_succ(vm_map_entry_t entry) { vm_map_entry_t after; after = entry->right; if (after->left->start > entry->start) { do after = after->left; while (after->left != entry); } return (after); } #define VM_MAP_ENTRY_FOREACH(it, map) \ for ((it) = vm_map_entry_first(map); \ (it) != &(map)->header; \ (it) = vm_map_entry_succ(it)) #define VM_MAP_PROTECT_SET_PROT 0x0001 #define VM_MAP_PROTECT_SET_MAXPROT 0x0002 #define VM_MAP_PROTECT_GROWSDOWN 0x0004 int vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end, vm_prot_t new_prot, vm_prot_t new_maxprot, int flags); int vm_map_remove (vm_map_t, vm_offset_t, vm_offset_t); vm_map_entry_t vm_map_try_merge_entries(vm_map_t map, vm_map_entry_t prev, vm_map_entry_t entry); void vm_map_startup (void); int vm_map_submap (vm_map_t, vm_offset_t, vm_offset_t, vm_map_t); int vm_map_sync(vm_map_t, vm_offset_t, vm_offset_t, boolean_t, boolean_t); int vm_map_madvise (vm_map_t, vm_offset_t, vm_offset_t, int); int vm_map_stack (vm_map_t, vm_offset_t, vm_size_t, vm_prot_t, vm_prot_t, int); int vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags); int vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags); int vm_map_wire_locked(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags); long vmspace_swap_count(struct vmspace *vmspace); void vm_map_entry_set_vnode_text(vm_map_entry_t entry, bool add); #endif /* _KERNEL */ #endif /* _VM_MAP_ */