diff --git a/sys/kern/kern_ktrace.c b/sys/kern/kern_ktrace.c
index 142aa790a908..868885898d0c 100644
--- a/sys/kern/kern_ktrace.c
+++ b/sys/kern/kern_ktrace.c
@@ -1,1418 +1,1418 @@
 /*-
  * SPDX-License-Identifier: BSD-3-Clause
  *
  * Copyright (c) 1989, 1993
  *	The Regents of the University of California.
  * Copyright (c) 2005 Robert N. M. Watson
  * All rights reserved.
  *
  * Redistribution and use in source and binary forms, with or without
  * modification, are permitted provided that the following conditions
  * are met:
  * 1. Redistributions of source code must retain the above copyright
  *    notice, this list of conditions and the following disclaimer.
  * 2. Redistributions in binary form must reproduce the above copyright
  *    notice, this list of conditions and the following disclaimer in the
  *    documentation and/or other materials provided with the distribution.
  * 3. Neither the name of the University nor the names of its contributors
  *    may be used to endorse or promote products derived from this software
  *    without specific prior written permission.
  *
  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  * SUCH DAMAGE.
  */
 
 #include <sys/cdefs.h>
 #include "opt_ktrace.h"
 
 #include <sys/param.h>
 #include <sys/capsicum.h>
 #include <sys/systm.h>
 #include <sys/fcntl.h>
 #include <sys/kernel.h>
 #include <sys/kthread.h>
 #include <sys/lock.h>
 #include <sys/mutex.h>
 #include <sys/malloc.h>
 #include <sys/mount.h>
 #include <sys/namei.h>
 #include <sys/priv.h>
 #include <sys/proc.h>
 #include <sys/resourcevar.h>
 #include <sys/unistd.h>
 #include <sys/vnode.h>
 #include <sys/socket.h>
 #include <sys/stat.h>
 #include <sys/ktrace.h>
 #include <sys/sx.h>
 #include <sys/sysctl.h>
 #include <sys/sysent.h>
 #include <sys/syslog.h>
 #include <sys/sysproto.h>
 
 #include <security/mac/mac_framework.h>
 
 /*
  * The ktrace facility allows the tracing of certain key events in user space
  * processes, such as system calls, signal delivery, context switches, and
  * user generated events using utrace(2).  It works by streaming event
  * records and data to a vnode associated with the process using the
  * ktrace(2) system call.  In general, records can be written directly from
  * the context that generates the event.  One important exception to this is
  * during a context switch, where sleeping is not permitted.  To handle this
  * case, trace events are generated using in-kernel ktr_request records, and
  * then delivered to disk at a convenient moment -- either immediately, the
  * next traceable event, at system call return, or at process exit.
  *
  * When dealing with multiple threads or processes writing to the same event
  * log, ordering guarantees are weak: specifically, if an event has multiple
  * records (i.e., system call enter and return), they may be interlaced with
  * records from another event.  Process and thread ID information is provided
  * in the record, and user applications can de-interlace events if required.
  */
 
 static MALLOC_DEFINE(M_KTRACE, "KTRACE", "KTRACE");
 
 #ifdef KTRACE
 
 FEATURE(ktrace, "Kernel support for system-call tracing");
 
 #ifndef KTRACE_REQUEST_POOL
 #define	KTRACE_REQUEST_POOL	100
 #endif
 
 struct ktr_request {
 	struct	ktr_header ktr_header;
 	void	*ktr_buffer;
 	union {
 		struct	ktr_proc_ctor ktr_proc_ctor;
 		struct	ktr_cap_fail ktr_cap_fail;
 		struct	ktr_syscall ktr_syscall;
 		struct	ktr_sysret ktr_sysret;
 		struct	ktr_genio ktr_genio;
 		struct	ktr_psig ktr_psig;
 		struct	ktr_csw ktr_csw;
 		struct	ktr_fault ktr_fault;
 		struct	ktr_faultend ktr_faultend;
 		struct  ktr_struct_array ktr_struct_array;
 	} ktr_data;
 	STAILQ_ENTRY(ktr_request) ktr_list;
 };
 
 static const int data_lengths[] = {
 	[KTR_SYSCALL] = offsetof(struct ktr_syscall, ktr_args),
 	[KTR_SYSRET] = sizeof(struct ktr_sysret),
 	[KTR_NAMEI] = 0,
 	[KTR_GENIO] = sizeof(struct ktr_genio),
 	[KTR_PSIG] = sizeof(struct ktr_psig),
 	[KTR_CSW] = sizeof(struct ktr_csw),
 	[KTR_USER] = 0,
 	[KTR_STRUCT] = 0,
 	[KTR_SYSCTL] = 0,
 	[KTR_PROCCTOR] = sizeof(struct ktr_proc_ctor),
 	[KTR_PROCDTOR] = 0,
 	[KTR_CAPFAIL] = sizeof(struct ktr_cap_fail),
 	[KTR_FAULT] = sizeof(struct ktr_fault),
 	[KTR_FAULTEND] = sizeof(struct ktr_faultend),
 	[KTR_STRUCT_ARRAY] = sizeof(struct ktr_struct_array),
 };
 
 static STAILQ_HEAD(, ktr_request) ktr_free;
 
 static SYSCTL_NODE(_kern, OID_AUTO, ktrace, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
     "KTRACE options");
 
 static u_int ktr_requestpool = KTRACE_REQUEST_POOL;
 TUNABLE_INT("kern.ktrace.request_pool", &ktr_requestpool);
 
 u_int ktr_geniosize = PAGE_SIZE;
 SYSCTL_UINT(_kern_ktrace, OID_AUTO, genio_size, CTLFLAG_RWTUN, &ktr_geniosize,
     0, "Maximum size of genio event payload");
 
 /*
  * Allow to not to send signal to traced process, in which context the
  * ktr record is written.  The limit is applied from the process that
  * set up ktrace, so killing the traced process is not completely fair.
  */
 int ktr_filesize_limit_signal = 0;
 SYSCTL_INT(_kern_ktrace, OID_AUTO, filesize_limit_signal, CTLFLAG_RWTUN,
     &ktr_filesize_limit_signal, 0,
     "Send SIGXFSZ to the traced process when the log size limit is exceeded");
 
 static int print_message = 1;
 static struct mtx ktrace_mtx;
 static struct sx ktrace_sx;
 
 struct ktr_io_params {
 	struct vnode	*vp;
 	struct ucred	*cr;
 	off_t		lim;
 	u_int		refs;
 };
 
 static void ktrace_init(void *dummy);
 static int sysctl_kern_ktrace_request_pool(SYSCTL_HANDLER_ARGS);
 static u_int ktrace_resize_pool(u_int oldsize, u_int newsize);
 static struct ktr_request *ktr_getrequest_entered(struct thread *td, int type);
 static struct ktr_request *ktr_getrequest(int type);
 static void ktr_submitrequest(struct thread *td, struct ktr_request *req);
 static struct ktr_io_params *ktr_freeproc(struct proc *p);
 static void ktr_freerequest(struct ktr_request *req);
 static void ktr_freerequest_locked(struct ktr_request *req);
 static void ktr_writerequest(struct thread *td, struct ktr_request *req);
 static int ktrcanset(struct thread *,struct proc *);
 static int ktrsetchildren(struct thread *, struct proc *, int, int,
     struct ktr_io_params *);
 static int ktrops(struct thread *, struct proc *, int, int,
     struct ktr_io_params *);
 static void ktrprocctor_entered(struct thread *, struct proc *);
 
 /*
  * ktrace itself generates events, such as context switches, which we do not
  * wish to trace.  Maintain a flag, TDP_INKTRACE, on each thread to determine
  * whether or not it is in a region where tracing of events should be
  * suppressed.
  */
 static void
 ktrace_enter(struct thread *td)
 {
 
 	KASSERT(!(td->td_pflags & TDP_INKTRACE), ("ktrace_enter: flag set"));
 	td->td_pflags |= TDP_INKTRACE;
 }
 
 static void
 ktrace_exit(struct thread *td)
 {
 
 	KASSERT(td->td_pflags & TDP_INKTRACE, ("ktrace_exit: flag not set"));
 	td->td_pflags &= ~TDP_INKTRACE;
 }
 
 static void
 ktrace_assert(struct thread *td)
 {
 
 	KASSERT(td->td_pflags & TDP_INKTRACE, ("ktrace_assert: flag not set"));
 }
 
 static void
 ast_ktrace(struct thread *td, int tda __unused)
 {
 	KTRUSERRET(td);
 }
 
 static void
 ktrace_init(void *dummy)
 {
 	struct ktr_request *req;
 	int i;
 
 	mtx_init(&ktrace_mtx, "ktrace", NULL, MTX_DEF | MTX_QUIET);
 	sx_init(&ktrace_sx, "ktrace_sx");
 	STAILQ_INIT(&ktr_free);
 	for (i = 0; i < ktr_requestpool; i++) {
 		req = malloc(sizeof(struct ktr_request), M_KTRACE, M_WAITOK |
 		    M_ZERO);
 		STAILQ_INSERT_HEAD(&ktr_free, req, ktr_list);
 	}
 	ast_register(TDA_KTRACE, ASTR_ASTF_REQUIRED, 0, ast_ktrace);
 }
 SYSINIT(ktrace_init, SI_SUB_KTRACE, SI_ORDER_ANY, ktrace_init, NULL);
 
 static int
 sysctl_kern_ktrace_request_pool(SYSCTL_HANDLER_ARGS)
 {
 	struct thread *td;
 	u_int newsize, oldsize, wantsize;
 	int error;
 
 	/* Handle easy read-only case first to avoid warnings from GCC. */
 	if (!req->newptr) {
 		oldsize = ktr_requestpool;
 		return (SYSCTL_OUT(req, &oldsize, sizeof(u_int)));
 	}
 
 	error = SYSCTL_IN(req, &wantsize, sizeof(u_int));
 	if (error)
 		return (error);
 	td = curthread;
 	ktrace_enter(td);
 	oldsize = ktr_requestpool;
 	newsize = ktrace_resize_pool(oldsize, wantsize);
 	ktrace_exit(td);
 	error = SYSCTL_OUT(req, &oldsize, sizeof(u_int));
 	if (error)
 		return (error);
 	if (wantsize > oldsize && newsize < wantsize)
 		return (ENOSPC);
 	return (0);
 }
 SYSCTL_PROC(_kern_ktrace, OID_AUTO, request_pool,
     CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &ktr_requestpool, 0,
     sysctl_kern_ktrace_request_pool, "IU",
     "Pool buffer size for ktrace(1)");
 
 static u_int
 ktrace_resize_pool(u_int oldsize, u_int newsize)
 {
 	STAILQ_HEAD(, ktr_request) ktr_new;
 	struct ktr_request *req;
 	int bound;
 
 	print_message = 1;
 	bound = newsize - oldsize;
 	if (bound == 0)
 		return (ktr_requestpool);
 	if (bound < 0) {
 		mtx_lock(&ktrace_mtx);
 		/* Shrink pool down to newsize if possible. */
 		while (bound++ < 0) {
 			req = STAILQ_FIRST(&ktr_free);
 			if (req == NULL)
 				break;
 			STAILQ_REMOVE_HEAD(&ktr_free, ktr_list);
 			ktr_requestpool--;
 			free(req, M_KTRACE);
 		}
 	} else {
 		/* Grow pool up to newsize. */
 		STAILQ_INIT(&ktr_new);
 		while (bound-- > 0) {
 			req = malloc(sizeof(struct ktr_request), M_KTRACE,
 			    M_WAITOK | M_ZERO);
 			STAILQ_INSERT_HEAD(&ktr_new, req, ktr_list);
 		}
 		mtx_lock(&ktrace_mtx);
 		STAILQ_CONCAT(&ktr_free, &ktr_new);
 		ktr_requestpool += (newsize - oldsize);
 	}
 	mtx_unlock(&ktrace_mtx);
 	return (ktr_requestpool);
 }
 
 /* ktr_getrequest() assumes that ktr_comm[] is the same size as td_name[]. */
 CTASSERT(sizeof(((struct ktr_header *)NULL)->ktr_comm) ==
     (sizeof((struct thread *)NULL)->td_name));
 
 static struct ktr_request *
 ktr_getrequest_entered(struct thread *td, int type)
 {
 	struct ktr_request *req;
 	struct proc *p = td->td_proc;
 	int pm;
 
 	mtx_lock(&ktrace_mtx);
 	if (!KTRCHECK(td, type)) {
 		mtx_unlock(&ktrace_mtx);
 		return (NULL);
 	}
 	req = STAILQ_FIRST(&ktr_free);
 	if (req != NULL) {
 		STAILQ_REMOVE_HEAD(&ktr_free, ktr_list);
 		req->ktr_header.ktr_type = type;
 		if (p->p_traceflag & KTRFAC_DROP) {
 			req->ktr_header.ktr_type |= KTR_DROP;
 			p->p_traceflag &= ~KTRFAC_DROP;
 		}
 		mtx_unlock(&ktrace_mtx);
 		nanotime(&req->ktr_header.ktr_time);
 		req->ktr_header.ktr_type |= KTR_VERSIONED;
 		req->ktr_header.ktr_pid = p->p_pid;
 		req->ktr_header.ktr_tid = td->td_tid;
 		req->ktr_header.ktr_cpu = PCPU_GET(cpuid);
 		req->ktr_header.ktr_version = KTR_VERSION1;
 		bcopy(td->td_name, req->ktr_header.ktr_comm,
 		    sizeof(req->ktr_header.ktr_comm));
 		req->ktr_buffer = NULL;
 		req->ktr_header.ktr_len = 0;
 	} else {
 		p->p_traceflag |= KTRFAC_DROP;
 		pm = print_message;
 		print_message = 0;
 		mtx_unlock(&ktrace_mtx);
 		if (pm)
 			printf("Out of ktrace request objects.\n");
 	}
 	return (req);
 }
 
 static struct ktr_request *
 ktr_getrequest(int type)
 {
 	struct thread *td = curthread;
 	struct ktr_request *req;
 
 	ktrace_enter(td);
 	req = ktr_getrequest_entered(td, type);
 	if (req == NULL)
 		ktrace_exit(td);
 
 	return (req);
 }
 
 /*
  * Some trace generation environments don't permit direct access to VFS,
  * such as during a context switch where sleeping is not allowed.  Under these
  * circumstances, queue a request to the thread to be written asynchronously
  * later.
  */
 static void
 ktr_enqueuerequest(struct thread *td, struct ktr_request *req)
 {
 
 	mtx_lock(&ktrace_mtx);
 	STAILQ_INSERT_TAIL(&td->td_proc->p_ktr, req, ktr_list);
 	mtx_unlock(&ktrace_mtx);
 	ast_sched(td, TDA_KTRACE);
 }
 
 /*
  * Drain any pending ktrace records from the per-thread queue to disk.  This
  * is used both internally before committing other records, and also on
  * system call return.  We drain all the ones we can find at the time when
  * drain is requested, but don't keep draining after that as those events
  * may be approximately "after" the current event.
  */
 static void
 ktr_drain(struct thread *td)
 {
 	struct ktr_request *queued_req;
 	STAILQ_HEAD(, ktr_request) local_queue;
 
 	ktrace_assert(td);
 	sx_assert(&ktrace_sx, SX_XLOCKED);
 
 	STAILQ_INIT(&local_queue);
 
 	if (!STAILQ_EMPTY(&td->td_proc->p_ktr)) {
 		mtx_lock(&ktrace_mtx);
 		STAILQ_CONCAT(&local_queue, &td->td_proc->p_ktr);
 		mtx_unlock(&ktrace_mtx);
 
 		while ((queued_req = STAILQ_FIRST(&local_queue))) {
 			STAILQ_REMOVE_HEAD(&local_queue, ktr_list);
 			ktr_writerequest(td, queued_req);
 			ktr_freerequest(queued_req);
 		}
 	}
 }
 
 /*
  * Submit a trace record for immediate commit to disk -- to be used only
  * where entering VFS is OK.  First drain any pending records that may have
  * been cached in the thread.
  */
 static void
 ktr_submitrequest(struct thread *td, struct ktr_request *req)
 {
 
 	ktrace_assert(td);
 
 	sx_xlock(&ktrace_sx);
 	ktr_drain(td);
 	ktr_writerequest(td, req);
 	ktr_freerequest(req);
 	sx_xunlock(&ktrace_sx);
 	ktrace_exit(td);
 }
 
 static void
 ktr_freerequest(struct ktr_request *req)
 {
 
 	mtx_lock(&ktrace_mtx);
 	ktr_freerequest_locked(req);
 	mtx_unlock(&ktrace_mtx);
 }
 
 static void
 ktr_freerequest_locked(struct ktr_request *req)
 {
 
 	mtx_assert(&ktrace_mtx, MA_OWNED);
 	if (req->ktr_buffer != NULL)
 		free(req->ktr_buffer, M_KTRACE);
 	STAILQ_INSERT_HEAD(&ktr_free, req, ktr_list);
 }
 
 static void
 ktr_io_params_ref(struct ktr_io_params *kiop)
 {
 	mtx_assert(&ktrace_mtx, MA_OWNED);
 	kiop->refs++;
 }
 
 static struct ktr_io_params *
 ktr_io_params_rele(struct ktr_io_params *kiop)
 {
 	mtx_assert(&ktrace_mtx, MA_OWNED);
 	if (kiop == NULL)
 		return (NULL);
 	KASSERT(kiop->refs > 0, ("kiop ref == 0 %p", kiop));
 	return (--(kiop->refs) == 0 ? kiop : NULL);
 }
 
 void
 ktr_io_params_free(struct ktr_io_params *kiop)
 {
 	if (kiop == NULL)
 		return;
 
 	MPASS(kiop->refs == 0);
 	vn_close(kiop->vp, FWRITE, kiop->cr, curthread);
 	crfree(kiop->cr);
 	free(kiop, M_KTRACE);
 }
 
 static struct ktr_io_params *
 ktr_io_params_alloc(struct thread *td, struct vnode *vp)
 {
 	struct ktr_io_params *res;
 
 	res = malloc(sizeof(struct ktr_io_params), M_KTRACE, M_WAITOK);
 	res->vp = vp;
 	res->cr = crhold(td->td_ucred);
 	res->lim = lim_cur(td, RLIMIT_FSIZE);
 	res->refs = 1;
 	return (res);
 }
 
 /*
  * Disable tracing for a process and release all associated resources.
  * The caller is responsible for releasing a reference on the returned
  * vnode and credentials.
  */
 static struct ktr_io_params *
 ktr_freeproc(struct proc *p)
 {
 	struct ktr_io_params *kiop;
 	struct ktr_request *req;
 
 	PROC_LOCK_ASSERT(p, MA_OWNED);
 	mtx_assert(&ktrace_mtx, MA_OWNED);
 	kiop = ktr_io_params_rele(p->p_ktrioparms);
 	p->p_ktrioparms = NULL;
 	p->p_traceflag = 0;
 	while ((req = STAILQ_FIRST(&p->p_ktr)) != NULL) {
 		STAILQ_REMOVE_HEAD(&p->p_ktr, ktr_list);
 		ktr_freerequest_locked(req);
 	}
 	return (kiop);
 }
 
 struct vnode *
 ktr_get_tracevp(struct proc *p, bool ref)
 {
 	struct vnode *vp;
 
 	PROC_LOCK_ASSERT(p, MA_OWNED);
 
 	if (p->p_ktrioparms != NULL) {
 		vp = p->p_ktrioparms->vp;
 		if (ref)
 			vrefact(vp);
 	} else {
 		vp = NULL;
 	}
 	return (vp);
 }
 
 void
 ktrsyscall(int code, int narg, syscallarg_t args[])
 {
 	struct ktr_request *req;
 	struct ktr_syscall *ktp;
 	size_t buflen;
 	char *buf = NULL;
 
 	if (__predict_false(curthread->td_pflags & TDP_INKTRACE))
 		return;
 
 	buflen = sizeof(register_t) * narg;
 	if (buflen > 0) {
 		buf = malloc(buflen, M_KTRACE, M_WAITOK);
 		bcopy(args, buf, buflen);
 	}
 	req = ktr_getrequest(KTR_SYSCALL);
 	if (req == NULL) {
 		if (buf != NULL)
 			free(buf, M_KTRACE);
 		return;
 	}
 	ktp = &req->ktr_data.ktr_syscall;
 	ktp->ktr_code = code;
 	ktp->ktr_narg = narg;
 	if (buflen > 0) {
 		req->ktr_header.ktr_len = buflen;
 		req->ktr_buffer = buf;
 	}
 	ktr_submitrequest(curthread, req);
 }
 
 void
 ktrsysret(int code, int error, register_t retval)
 {
 	struct ktr_request *req;
 	struct ktr_sysret *ktp;
 
 	if (__predict_false(curthread->td_pflags & TDP_INKTRACE))
 		return;
 
 	req = ktr_getrequest(KTR_SYSRET);
 	if (req == NULL)
 		return;
 	ktp = &req->ktr_data.ktr_sysret;
 	ktp->ktr_code = code;
 	ktp->ktr_error = error;
 	ktp->ktr_retval = ((error == 0) ? retval: 0);		/* what about val2 ? */
 	ktr_submitrequest(curthread, req);
 }
 
 /*
  * When a setuid process execs, disable tracing.
  *
  * XXX: We toss any pending asynchronous records.
  */
 struct ktr_io_params *
 ktrprocexec(struct proc *p)
 {
 	struct ktr_io_params *kiop;
 
 	PROC_LOCK_ASSERT(p, MA_OWNED);
 
 	kiop = p->p_ktrioparms;
-	if (kiop == NULL || priv_check_cred(kiop->cr, PRIV_DEBUG_DIFFCRED))
+	if (kiop == NULL || priv_check_cred(kiop->cr, PRIV_DEBUG_DIFFCRED) == 0)
 		return (NULL);
 
 	mtx_lock(&ktrace_mtx);
 	kiop = ktr_freeproc(p);
 	mtx_unlock(&ktrace_mtx);
 	return (kiop);
 }
 
 /*
  * When a process exits, drain per-process asynchronous trace records
  * and disable tracing.
  */
 void
 ktrprocexit(struct thread *td)
 {
 	struct ktr_request *req;
 	struct proc *p;
 	struct ktr_io_params *kiop;
 
 	p = td->td_proc;
 	if (p->p_traceflag == 0)
 		return;
 
 	ktrace_enter(td);
 	req = ktr_getrequest_entered(td, KTR_PROCDTOR);
 	if (req != NULL)
 		ktr_enqueuerequest(td, req);
 	sx_xlock(&ktrace_sx);
 	ktr_drain(td);
 	sx_xunlock(&ktrace_sx);
 	PROC_LOCK(p);
 	mtx_lock(&ktrace_mtx);
 	kiop = ktr_freeproc(p);
 	mtx_unlock(&ktrace_mtx);
 	PROC_UNLOCK(p);
 	ktr_io_params_free(kiop);
 	ktrace_exit(td);
 }
 
 static void
 ktrprocctor_entered(struct thread *td, struct proc *p)
 {
 	struct ktr_proc_ctor *ktp;
 	struct ktr_request *req;
 	struct thread *td2;
 
 	ktrace_assert(td);
 	td2 = FIRST_THREAD_IN_PROC(p);
 	req = ktr_getrequest_entered(td2, KTR_PROCCTOR);
 	if (req == NULL)
 		return;
 	ktp = &req->ktr_data.ktr_proc_ctor;
 	ktp->sv_flags = p->p_sysent->sv_flags;
 	ktr_enqueuerequest(td2, req);
 }
 
 void
 ktrprocctor(struct proc *p)
 {
 	struct thread *td = curthread;
 
 	if ((p->p_traceflag & KTRFAC_MASK) == 0)
 		return;
 
 	ktrace_enter(td);
 	ktrprocctor_entered(td, p);
 	ktrace_exit(td);
 }
 
 /*
  * When a process forks, enable tracing in the new process if needed.
  */
 void
 ktrprocfork(struct proc *p1, struct proc *p2)
 {
 
 	MPASS(p2->p_ktrioparms == NULL);
 	MPASS(p2->p_traceflag == 0);
 
 	if (p1->p_traceflag == 0)
 		return;
 
 	PROC_LOCK(p1);
 	mtx_lock(&ktrace_mtx);
 	if (p1->p_traceflag & KTRFAC_INHERIT) {
 		p2->p_traceflag = p1->p_traceflag;
 		if ((p2->p_ktrioparms = p1->p_ktrioparms) != NULL)
 			p1->p_ktrioparms->refs++;
 	}
 	mtx_unlock(&ktrace_mtx);
 	PROC_UNLOCK(p1);
 
 	ktrprocctor(p2);
 }
 
 /*
  * When a thread returns, drain any asynchronous records generated by the
  * system call.
  */
 void
 ktruserret(struct thread *td)
 {
 
 	ktrace_enter(td);
 	sx_xlock(&ktrace_sx);
 	ktr_drain(td);
 	sx_xunlock(&ktrace_sx);
 	ktrace_exit(td);
 }
 
 void
 ktrnamei(const char *path)
 {
 	struct ktr_request *req;
 	int namelen;
 	char *buf = NULL;
 
 	namelen = strlen(path);
 	if (namelen > 0) {
 		buf = malloc(namelen, M_KTRACE, M_WAITOK);
 		bcopy(path, buf, namelen);
 	}
 	req = ktr_getrequest(KTR_NAMEI);
 	if (req == NULL) {
 		if (buf != NULL)
 			free(buf, M_KTRACE);
 		return;
 	}
 	if (namelen > 0) {
 		req->ktr_header.ktr_len = namelen;
 		req->ktr_buffer = buf;
 	}
 	ktr_submitrequest(curthread, req);
 }
 
 void
 ktrsysctl(int *name, u_int namelen)
 {
 	struct ktr_request *req;
 	u_int mib[CTL_MAXNAME + 2];
 	char *mibname;
 	size_t mibnamelen;
 	int error;
 
 	/* Lookup name of mib. */    
 	KASSERT(namelen <= CTL_MAXNAME, ("sysctl MIB too long"));
 	mib[0] = 0;
 	mib[1] = 1;
 	bcopy(name, mib + 2, namelen * sizeof(*name));
 	mibnamelen = 128;
 	mibname = malloc(mibnamelen, M_KTRACE, M_WAITOK);
 	error = kernel_sysctl(curthread, mib, namelen + 2, mibname, &mibnamelen,
 	    NULL, 0, &mibnamelen, 0);
 	if (error) {
 		free(mibname, M_KTRACE);
 		return;
 	}
 	req = ktr_getrequest(KTR_SYSCTL);
 	if (req == NULL) {
 		free(mibname, M_KTRACE);
 		return;
 	}
 	req->ktr_header.ktr_len = mibnamelen;
 	req->ktr_buffer = mibname;
 	ktr_submitrequest(curthread, req);
 }
 
 void
 ktrgenio(int fd, enum uio_rw rw, struct uio *uio, int error)
 {
 	struct ktr_request *req;
 	struct ktr_genio *ktg;
 	int datalen;
 	char *buf;
 
 	if (error != 0 && (rw == UIO_READ || error == EFAULT)) {
 		freeuio(uio);
 		return;
 	}
 	uio->uio_offset = 0;
 	uio->uio_rw = UIO_WRITE;
 	datalen = MIN(uio->uio_resid, ktr_geniosize);
 	buf = malloc(datalen, M_KTRACE, M_WAITOK);
 	error = uiomove(buf, datalen, uio);
 	freeuio(uio);
 	if (error) {
 		free(buf, M_KTRACE);
 		return;
 	}
 	req = ktr_getrequest(KTR_GENIO);
 	if (req == NULL) {
 		free(buf, M_KTRACE);
 		return;
 	}
 	ktg = &req->ktr_data.ktr_genio;
 	ktg->ktr_fd = fd;
 	ktg->ktr_rw = rw;
 	req->ktr_header.ktr_len = datalen;
 	req->ktr_buffer = buf;
 	ktr_submitrequest(curthread, req);
 }
 
 void
 ktrpsig(int sig, sig_t action, sigset_t *mask, int code)
 {
 	struct thread *td = curthread;
 	struct ktr_request *req;
 	struct ktr_psig	*kp;
 
 	req = ktr_getrequest(KTR_PSIG);
 	if (req == NULL)
 		return;
 	kp = &req->ktr_data.ktr_psig;
 	kp->signo = (char)sig;
 	kp->action = action;
 	kp->mask = *mask;
 	kp->code = code;
 	ktr_enqueuerequest(td, req);
 	ktrace_exit(td);
 }
 
 void
 ktrcsw(int out, int user, const char *wmesg)
 {
 	struct thread *td = curthread;
 	struct ktr_request *req;
 	struct ktr_csw *kc;
 
 	if (__predict_false(curthread->td_pflags & TDP_INKTRACE))
 		return;
 
 	req = ktr_getrequest(KTR_CSW);
 	if (req == NULL)
 		return;
 	kc = &req->ktr_data.ktr_csw;
 	kc->out = out;
 	kc->user = user;
 	if (wmesg != NULL)
 		strlcpy(kc->wmesg, wmesg, sizeof(kc->wmesg));
 	else
 		bzero(kc->wmesg, sizeof(kc->wmesg));
 	ktr_enqueuerequest(td, req);
 	ktrace_exit(td);
 }
 
 void
 ktrstruct(const char *name, const void *data, size_t datalen)
 {
 	struct ktr_request *req;
 	char *buf;
 	size_t buflen, namelen;
 
 	if (__predict_false(curthread->td_pflags & TDP_INKTRACE))
 		return;
 
 	if (data == NULL)
 		datalen = 0;
 	namelen = strlen(name) + 1;
 	buflen = namelen + datalen;
 	buf = malloc(buflen, M_KTRACE, M_WAITOK);
 	strcpy(buf, name);
 	bcopy(data, buf + namelen, datalen);
 	if ((req = ktr_getrequest(KTR_STRUCT)) == NULL) {
 		free(buf, M_KTRACE);
 		return;
 	}
 	req->ktr_buffer = buf;
 	req->ktr_header.ktr_len = buflen;
 	ktr_submitrequest(curthread, req);
 }
 
 void
 ktrstruct_error(const char *name, const void *data, size_t datalen, int error)
 {
 
 	if (error == 0)
 		ktrstruct(name, data, datalen);
 }
 
 void
 ktrstructarray(const char *name, enum uio_seg seg, const void *data,
     int num_items, size_t struct_size)
 {
 	struct ktr_request *req;
 	struct ktr_struct_array *ksa;
 	char *buf;
 	size_t buflen, datalen, namelen;
 	int max_items;
 
 	if (__predict_false(curthread->td_pflags & TDP_INKTRACE))
 		return;
 	if (num_items < 0)
 		return;
 
 	/* Trim array length to genio size. */
 	max_items = ktr_geniosize / struct_size;
 	if (num_items > max_items) {
 		if (max_items == 0)
 			num_items = 1;
 		else
 			num_items = max_items;
 	}
 	datalen = num_items * struct_size;
 
 	if (data == NULL)
 		datalen = 0;
 
 	namelen = strlen(name) + 1;
 	buflen = namelen + datalen;
 	buf = malloc(buflen, M_KTRACE, M_WAITOK);
 	strcpy(buf, name);
 	if (seg == UIO_SYSSPACE)
 		bcopy(data, buf + namelen, datalen);
 	else {
 		if (copyin(data, buf + namelen, datalen) != 0) {
 			free(buf, M_KTRACE);
 			return;
 		}
 	}
 	if ((req = ktr_getrequest(KTR_STRUCT_ARRAY)) == NULL) {
 		free(buf, M_KTRACE);
 		return;
 	}
 	ksa = &req->ktr_data.ktr_struct_array;
 	ksa->struct_size = struct_size;
 	req->ktr_buffer = buf;
 	req->ktr_header.ktr_len = buflen;
 	ktr_submitrequest(curthread, req);
 }
 
 void
 ktrcapfail(enum ktr_cap_violation type, const void *data)
 {
 	struct thread *td = curthread;
 	struct ktr_request *req;
 	struct ktr_cap_fail *kcf;
 	union ktr_cap_data *kcd;
 
 	if (__predict_false(td->td_pflags & TDP_INKTRACE))
 		return;
 	if (type != CAPFAIL_SYSCALL &&
 	    (td->td_sa.callp->sy_flags & SYF_CAPENABLED) == 0)
 		return;
 
 	req = ktr_getrequest(KTR_CAPFAIL);
 	if (req == NULL)
 		return;
 	kcf = &req->ktr_data.ktr_cap_fail;
 	kcf->cap_type = type;
 	kcf->cap_code = td->td_sa.code;
 	kcf->cap_svflags = td->td_proc->p_sysent->sv_flags;
 	if (data != NULL) {
 		kcd = &kcf->cap_data;
 		switch (type) {
 		case CAPFAIL_NOTCAPABLE:
 		case CAPFAIL_INCREASE:
 			kcd->cap_needed = *(const cap_rights_t *)data;
 			kcd->cap_held = *((const cap_rights_t *)data + 1);
 			break;
 		case CAPFAIL_SYSCALL:
 		case CAPFAIL_SIGNAL:
 		case CAPFAIL_PROTO:
 			kcd->cap_int = *(const int *)data;
 			break;
 		case CAPFAIL_SOCKADDR:
 			kcd->cap_sockaddr = *(const struct sockaddr *)data;
 			break;
 		case CAPFAIL_NAMEI:
 			strlcpy(kcd->cap_path, data, MAXPATHLEN);
 			break;
 		case CAPFAIL_CPUSET:
 		default:
 			break;
 		}
 	}
 	ktr_enqueuerequest(td, req);
 	ktrace_exit(td);
 }
 
 void
 ktrfault(vm_offset_t vaddr, int type)
 {
 	struct thread *td = curthread;
 	struct ktr_request *req;
 	struct ktr_fault *kf;
 
 	if (__predict_false(curthread->td_pflags & TDP_INKTRACE))
 		return;
 
 	req = ktr_getrequest(KTR_FAULT);
 	if (req == NULL)
 		return;
 	kf = &req->ktr_data.ktr_fault;
 	kf->vaddr = vaddr;
 	kf->type = type;
 	ktr_enqueuerequest(td, req);
 	ktrace_exit(td);
 }
 
 void
 ktrfaultend(int result)
 {
 	struct thread *td = curthread;
 	struct ktr_request *req;
 	struct ktr_faultend *kf;
 
 	if (__predict_false(curthread->td_pflags & TDP_INKTRACE))
 		return;
 
 	req = ktr_getrequest(KTR_FAULTEND);
 	if (req == NULL)
 		return;
 	kf = &req->ktr_data.ktr_faultend;
 	kf->result = result;
 	ktr_enqueuerequest(td, req);
 	ktrace_exit(td);
 }
 #endif /* KTRACE */
 
 /* Interface and common routines */
 
 #ifndef _SYS_SYSPROTO_H_
 struct ktrace_args {
 	char	*fname;
 	int	ops;
 	int	facs;
 	int	pid;
 };
 #endif
 /* ARGSUSED */
 int
 sys_ktrace(struct thread *td, struct ktrace_args *uap)
 {
 #ifdef KTRACE
 	struct vnode *vp = NULL;
 	struct proc *p;
 	struct pgrp *pg;
 	int facs = uap->facs & ~KTRFAC_ROOT;
 	int ops = KTROP(uap->ops);
 	int descend = uap->ops & KTRFLAG_DESCEND;
 	int ret = 0;
 	int flags, error = 0;
 	struct nameidata nd;
 	struct ktr_io_params *kiop, *old_kiop;
 
 	/*
 	 * Need something to (un)trace.
 	 */
 	if (ops != KTROP_CLEARFILE && facs == 0)
 		return (EINVAL);
 
 	kiop = NULL;
 	if (ops != KTROP_CLEAR) {
 		/*
 		 * an operation which requires a file argument.
 		 */
 		NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_USERSPACE, uap->fname);
 		flags = FREAD | FWRITE | O_NOFOLLOW;
 		error = vn_open(&nd, &flags, 0, NULL);
 		if (error)
 			return (error);
 		NDFREE_PNBUF(&nd);
 		vp = nd.ni_vp;
 		VOP_UNLOCK(vp);
 		if (vp->v_type != VREG) {
 			(void)vn_close(vp, FREAD|FWRITE, td->td_ucred, td);
 			return (EACCES);
 		}
 		kiop = ktr_io_params_alloc(td, vp);
 	}
 
 	/*
 	 * Clear all uses of the tracefile.
 	 */
 	ktrace_enter(td);
 	if (ops == KTROP_CLEARFILE) {
 restart:
 		sx_slock(&allproc_lock);
 		FOREACH_PROC_IN_SYSTEM(p) {
 			old_kiop = NULL;
 			PROC_LOCK(p);
 			if (p->p_ktrioparms != NULL &&
 			    p->p_ktrioparms->vp == vp) {
 				if (ktrcanset(td, p)) {
 					mtx_lock(&ktrace_mtx);
 					old_kiop = ktr_freeproc(p);
 					mtx_unlock(&ktrace_mtx);
 				} else
 					error = EPERM;
 			}
 			PROC_UNLOCK(p);
 			if (old_kiop != NULL) {
 				sx_sunlock(&allproc_lock);
 				ktr_io_params_free(old_kiop);
 				goto restart;
 			}
 		}
 		sx_sunlock(&allproc_lock);
 		goto done;
 	}
 	/*
 	 * do it
 	 */
 	sx_slock(&proctree_lock);
 	if (uap->pid < 0) {
 		/*
 		 * by process group
 		 */
 		pg = pgfind(-uap->pid);
 		if (pg == NULL) {
 			sx_sunlock(&proctree_lock);
 			error = ESRCH;
 			goto done;
 		}
 
 		/*
 		 * ktrops() may call vrele(). Lock pg_members
 		 * by the proctree_lock rather than pg_mtx.
 		 */
 		PGRP_UNLOCK(pg);
 		if (LIST_EMPTY(&pg->pg_members)) {
 			sx_sunlock(&proctree_lock);
 			error = ESRCH;
 			goto done;
 		}
 		LIST_FOREACH(p, &pg->pg_members, p_pglist) {
 			PROC_LOCK(p);
 			if (descend)
 				ret |= ktrsetchildren(td, p, ops, facs, kiop);
 			else
 				ret |= ktrops(td, p, ops, facs, kiop);
 		}
 	} else {
 		/*
 		 * by pid
 		 */
 		p = pfind(uap->pid);
 		if (p == NULL) {
 			error = ESRCH;
 			sx_sunlock(&proctree_lock);
 			goto done;
 		}
 		if (descend)
 			ret |= ktrsetchildren(td, p, ops, facs, kiop);
 		else
 			ret |= ktrops(td, p, ops, facs, kiop);
 	}
 	sx_sunlock(&proctree_lock);
 	if (!ret)
 		error = EPERM;
 done:
 	if (kiop != NULL) {
 		mtx_lock(&ktrace_mtx);
 		kiop = ktr_io_params_rele(kiop);
 		mtx_unlock(&ktrace_mtx);
 		ktr_io_params_free(kiop);
 	}
 	ktrace_exit(td);
 	return (error);
 #else /* !KTRACE */
 	return (ENOSYS);
 #endif /* KTRACE */
 }
 
 /* ARGSUSED */
 int
 sys_utrace(struct thread *td, struct utrace_args *uap)
 {
 
 #ifdef KTRACE
 	struct ktr_request *req;
 	void *cp;
 	int error;
 
 	if (!KTRPOINT(td, KTR_USER))
 		return (0);
 	if (uap->len > KTR_USER_MAXLEN)
 		return (EINVAL);
 	cp = malloc(uap->len, M_KTRACE, M_WAITOK);
 	error = copyin(uap->addr, cp, uap->len);
 	if (error) {
 		free(cp, M_KTRACE);
 		return (error);
 	}
 	req = ktr_getrequest(KTR_USER);
 	if (req == NULL) {
 		free(cp, M_KTRACE);
 		return (ENOMEM);
 	}
 	req->ktr_buffer = cp;
 	req->ktr_header.ktr_len = uap->len;
 	ktr_submitrequest(td, req);
 	return (0);
 #else /* !KTRACE */
 	return (ENOSYS);
 #endif /* KTRACE */
 }
 
 #ifdef KTRACE
 static int
 ktrops(struct thread *td, struct proc *p, int ops, int facs,
     struct ktr_io_params *new_kiop)
 {
 	struct ktr_io_params *old_kiop;
 
 	PROC_LOCK_ASSERT(p, MA_OWNED);
 	if (!ktrcanset(td, p)) {
 		PROC_UNLOCK(p);
 		return (0);
 	}
 	if ((ops == KTROP_SET && p->p_state == PRS_NEW) ||
 	    p_cansee(td, p) != 0) {
 		/*
 		 * Disallow setting trace points if the process is being born.
 		 * This avoids races with trace point inheritance in
 		 * ktrprocfork().
 		 */
 		PROC_UNLOCK(p);
 		return (0);
 	}
 	if ((p->p_flag & P_WEXIT) != 0) {
 		/*
 		 * There's nothing to do if the process is exiting, but avoid
 		 * signaling an error.
 		 */
 		PROC_UNLOCK(p);
 		return (1);
 	}
 	old_kiop = NULL;
 	mtx_lock(&ktrace_mtx);
 	if (ops == KTROP_SET) {
 		if (p->p_ktrioparms != NULL &&
 		    p->p_ktrioparms->vp != new_kiop->vp) {
 			/* if trace file already in use, relinquish below */
 			old_kiop = ktr_io_params_rele(p->p_ktrioparms);
 			p->p_ktrioparms = NULL;
 		}
 		if (p->p_ktrioparms == NULL) {
 			p->p_ktrioparms = new_kiop;
 			ktr_io_params_ref(new_kiop);
 		}
 		p->p_traceflag |= facs;
 		if (priv_check(td, PRIV_KTRACE) == 0)
 			p->p_traceflag |= KTRFAC_ROOT;
 	} else {
 		/* KTROP_CLEAR */
 		if (((p->p_traceflag &= ~facs) & KTRFAC_MASK) == 0)
 			/* no more tracing */
 			old_kiop = ktr_freeproc(p);
 	}
 	mtx_unlock(&ktrace_mtx);
 	if ((p->p_traceflag & KTRFAC_MASK) != 0)
 		ktrprocctor_entered(td, p);
 	PROC_UNLOCK(p);
 	ktr_io_params_free(old_kiop);
 
 	return (1);
 }
 
 static int
 ktrsetchildren(struct thread *td, struct proc *top, int ops, int facs,
     struct ktr_io_params *new_kiop)
 {
 	struct proc *p;
 	int ret = 0;
 
 	p = top;
 	PROC_LOCK_ASSERT(p, MA_OWNED);
 	sx_assert(&proctree_lock, SX_LOCKED);
 	for (;;) {
 		ret |= ktrops(td, p, ops, facs, new_kiop);
 		/*
 		 * If this process has children, descend to them next,
 		 * otherwise do any siblings, and if done with this level,
 		 * follow back up the tree (but not past top).
 		 */
 		if (!LIST_EMPTY(&p->p_children))
 			p = LIST_FIRST(&p->p_children);
 		else for (;;) {
 			if (p == top)
 				return (ret);
 			if (LIST_NEXT(p, p_sibling)) {
 				p = LIST_NEXT(p, p_sibling);
 				break;
 			}
 			p = p->p_pptr;
 		}
 		PROC_LOCK(p);
 	}
 	/*NOTREACHED*/
 }
 
 static void
 ktr_writerequest(struct thread *td, struct ktr_request *req)
 {
 	struct ktr_io_params *kiop, *kiop1;
 	struct ktr_header *kth;
 	struct vnode *vp;
 	struct proc *p;
 	struct ucred *cred;
 	struct uio auio;
 	struct iovec aiov[3];
 	struct mount *mp;
 	off_t lim;
 	int datalen, buflen;
 	int error;
 
 	p = td->td_proc;
 
 	/*
 	 * We reference the kiop for use in I/O in case ktrace is
 	 * disabled on the process as we write out the request.
 	 */
 	mtx_lock(&ktrace_mtx);
 	kiop = p->p_ktrioparms;
 
 	/*
 	 * If kiop is NULL, it has been cleared out from under this
 	 * request, so just drop it.
 	 */
 	if (kiop == NULL) {
 		mtx_unlock(&ktrace_mtx);
 		return;
 	}
 
 	ktr_io_params_ref(kiop);
 	vp = kiop->vp;
 	cred = kiop->cr;
 	lim = kiop->lim;
 
 	KASSERT(cred != NULL, ("ktr_writerequest: cred == NULL"));
 	mtx_unlock(&ktrace_mtx);
 
 	kth = &req->ktr_header;
 	KASSERT(((u_short)kth->ktr_type & ~KTR_TYPE) < nitems(data_lengths),
 	    ("data_lengths array overflow"));
 	datalen = data_lengths[(u_short)kth->ktr_type & ~KTR_TYPE];
 	buflen = kth->ktr_len;
 	auio.uio_iov = &aiov[0];
 	auio.uio_offset = 0;
 	auio.uio_segflg = UIO_SYSSPACE;
 	auio.uio_rw = UIO_WRITE;
 	aiov[0].iov_base = (caddr_t)kth;
 	aiov[0].iov_len = sizeof(struct ktr_header);
 	auio.uio_resid = sizeof(struct ktr_header);
 	auio.uio_iovcnt = 1;
 	auio.uio_td = td;
 	if (datalen != 0) {
 		aiov[1].iov_base = (caddr_t)&req->ktr_data;
 		aiov[1].iov_len = datalen;
 		auio.uio_resid += datalen;
 		auio.uio_iovcnt++;
 		kth->ktr_len += datalen;
 	}
 	if (buflen != 0) {
 		KASSERT(req->ktr_buffer != NULL, ("ktrace: nothing to write"));
 		aiov[auio.uio_iovcnt].iov_base = req->ktr_buffer;
 		aiov[auio.uio_iovcnt].iov_len = buflen;
 		auio.uio_resid += buflen;
 		auio.uio_iovcnt++;
 	}
 
 	vn_start_write(vp, &mp, V_WAIT);
 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
 	td->td_ktr_io_lim = lim;
 #ifdef MAC
 	error = mac_vnode_check_write(cred, NOCRED, vp);
 	if (error == 0)
 #endif
 		error = VOP_WRITE(vp, &auio, IO_UNIT | IO_APPEND, cred);
 	VOP_UNLOCK(vp);
 	vn_finished_write(mp);
 	if (error == 0) {
 		mtx_lock(&ktrace_mtx);
 		kiop = ktr_io_params_rele(kiop);
 		mtx_unlock(&ktrace_mtx);
 		ktr_io_params_free(kiop);
 		return;
 	}
 
 	/*
 	 * If error encountered, give up tracing on this vnode on this
 	 * process.  Other processes might still be suitable for
 	 * writes to this vnode.
 	 */
 	log(LOG_NOTICE,
 	    "ktrace write failed, errno %d, tracing stopped for pid %d\n",
 	    error, p->p_pid);
 
 	kiop1 = NULL;
 	PROC_LOCK(p);
 	mtx_lock(&ktrace_mtx);
 	if (p->p_ktrioparms != NULL && p->p_ktrioparms->vp == vp)
 		kiop1 = ktr_freeproc(p);
 	kiop = ktr_io_params_rele(kiop);
 	mtx_unlock(&ktrace_mtx);
 	PROC_UNLOCK(p);
 	ktr_io_params_free(kiop1);
 	ktr_io_params_free(kiop);
 }
 
 /*
  * Return true if caller has permission to set the ktracing state
  * of target.  Essentially, the target can't possess any
  * more permissions than the caller.  KTRFAC_ROOT signifies that
  * root previously set the tracing status on the target process, and
  * so, only root may further change it.
  */
 static int
 ktrcanset(struct thread *td, struct proc *targetp)
 {
 
 	PROC_LOCK_ASSERT(targetp, MA_OWNED);
 	if (targetp->p_traceflag & KTRFAC_ROOT &&
 	    priv_check(td, PRIV_KTRACE))
 		return (0);
 
 	if (p_candebug(td, targetp) != 0)
 		return (0);
 
 	return (1);
 }
 
 #endif /* KTRACE */