diff --git a/sys/kern/kern_descrip.c b/sys/kern/kern_descrip.c
index ab08ca434dec..dbf4ab1828de 100644
--- a/sys/kern/kern_descrip.c
+++ b/sys/kern/kern_descrip.c
@@ -1,5387 +1,5394 @@
 /*-
  * SPDX-License-Identifier: BSD-3-Clause
  *
  * Copyright (c) 1982, 1986, 1989, 1991, 1993
  *	The Regents of the University of California.  All rights reserved.
  * (c) UNIX System Laboratories, Inc.
  * All or some portions of this file are derived from material licensed
  * to the University of California by American Telephone and Telegraph
  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
  * the permission of UNIX System Laboratories, Inc.
  *
  * Redistribution and use in source and binary forms, with or without
  * modification, are permitted provided that the following conditions
  * are met:
  * 1. Redistributions of source code must retain the above copyright
  *    notice, this list of conditions and the following disclaimer.
  * 2. Redistributions in binary form must reproduce the above copyright
  *    notice, this list of conditions and the following disclaimer in the
  *    documentation and/or other materials provided with the distribution.
  * 3. Neither the name of the University nor the names of its contributors
  *    may be used to endorse or promote products derived from this software
  *    without specific prior written permission.
  *
  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  * SUCH DAMAGE.
  *
  *	@(#)kern_descrip.c	8.6 (Berkeley) 4/19/94
  */
 
 #include <sys/cdefs.h>
 #include "opt_capsicum.h"
 #include "opt_ddb.h"
 #include "opt_ktrace.h"
 
 #include <sys/param.h>
 #include <sys/systm.h>
 
 #include <sys/capsicum.h>
 #include <sys/conf.h>
 #include <sys/fcntl.h>
 #include <sys/file.h>
 #include <sys/filedesc.h>
 #include <sys/filio.h>
 #include <sys/jail.h>
 #include <sys/kernel.h>
 #include <sys/limits.h>
 #include <sys/lock.h>
 #include <sys/malloc.h>
 #include <sys/mount.h>
 #include <sys/mutex.h>
 #include <sys/namei.h>
 #include <sys/selinfo.h>
 #include <sys/poll.h>
 #include <sys/priv.h>
 #include <sys/proc.h>
 #include <sys/protosw.h>
 #include <sys/racct.h>
 #include <sys/resourcevar.h>
 #include <sys/sbuf.h>
 #include <sys/signalvar.h>
 #include <sys/kdb.h>
 #include <sys/smr.h>
 #include <sys/stat.h>
 #include <sys/sx.h>
 #include <sys/syscallsubr.h>
 #include <sys/sysctl.h>
 #include <sys/sysproto.h>
 #include <sys/unistd.h>
 #include <sys/user.h>
 #include <sys/vnode.h>
 #include <sys/ktrace.h>
 
 #include <net/vnet.h>
 
 #include <security/audit/audit.h>
 
 #include <vm/uma.h>
 #include <vm/vm.h>
 
 #include <ddb/ddb.h>
 
 static MALLOC_DEFINE(M_FILEDESC, "filedesc", "Open file descriptor table");
 static MALLOC_DEFINE(M_PWD, "pwd", "Descriptor table vnodes");
 static MALLOC_DEFINE(M_PWDDESC, "pwddesc", "Pwd descriptors");
 static MALLOC_DEFINE(M_FILEDESC_TO_LEADER, "filedesc_to_leader",
     "file desc to leader structures");
 static MALLOC_DEFINE(M_SIGIO, "sigio", "sigio structures");
 MALLOC_DEFINE(M_FILECAPS, "filecaps", "descriptor capabilities");
 
 MALLOC_DECLARE(M_FADVISE);
 
 static __read_mostly uma_zone_t file_zone;
 static __read_mostly uma_zone_t filedesc0_zone;
 __read_mostly uma_zone_t pwd_zone;
 VFS_SMR_DECLARE;
 
 static int	closefp(struct filedesc *fdp, int fd, struct file *fp,
 		    struct thread *td, bool holdleaders, bool audit);
 static void	export_file_to_kinfo(struct file *fp, int fd,
 		    cap_rights_t *rightsp, struct kinfo_file *kif,
 		    struct filedesc *fdp, int flags);
 static int	fd_first_free(struct filedesc *fdp, int low, int size);
 static void	fdgrowtable(struct filedesc *fdp, int nfd);
 static void	fdgrowtable_exp(struct filedesc *fdp, int nfd);
 static void	fdunused(struct filedesc *fdp, int fd);
 static void	fdused(struct filedesc *fdp, int fd);
 static int	fget_unlocked_seq(struct filedesc *fdp, int fd,
 		    cap_rights_t *needrightsp, struct file **fpp, seqc_t *seqp);
 static int	getmaxfd(struct thread *td);
 static u_long	*filecaps_copy_prep(const struct filecaps *src);
 static void	filecaps_copy_finish(const struct filecaps *src,
 		    struct filecaps *dst, u_long *ioctls);
 static u_long 	*filecaps_free_prep(struct filecaps *fcaps);
 static void	filecaps_free_finish(u_long *ioctls);
 
 static struct pwd *pwd_alloc(void);
 
 /*
  * Each process has:
  *
  * - An array of open file descriptors (fd_ofiles)
  * - An array of file flags (fd_ofileflags)
  * - A bitmap recording which descriptors are in use (fd_map)
  *
  * A process starts out with NDFILE descriptors.  The value of NDFILE has
  * been selected based the historical limit of 20 open files, and an
  * assumption that the majority of processes, especially short-lived
  * processes like shells, will never need more.
  *
  * If this initial allocation is exhausted, a larger descriptor table and
  * map are allocated dynamically, and the pointers in the process's struct
  * filedesc are updated to point to those.  This is repeated every time
  * the process runs out of file descriptors (provided it hasn't hit its
  * resource limit).
  *
  * Since threads may hold references to individual descriptor table
  * entries, the tables are never freed.  Instead, they are placed on a
  * linked list and freed only when the struct filedesc is released.
  */
 #define NDFILE		20
 #define NDSLOTSIZE	sizeof(NDSLOTTYPE)
 #define	NDENTRIES	(NDSLOTSIZE * __CHAR_BIT)
 #define NDSLOT(x)	((x) / NDENTRIES)
 #define NDBIT(x)	((NDSLOTTYPE)1 << ((x) % NDENTRIES))
 #define	NDSLOTS(x)	(((x) + NDENTRIES - 1) / NDENTRIES)
 
 /*
  * SLIST entry used to keep track of ofiles which must be reclaimed when
  * the process exits.
  */
 struct freetable {
 	struct fdescenttbl *ft_table;
 	SLIST_ENTRY(freetable) ft_next;
 };
 
 /*
  * Initial allocation: a filedesc structure + the head of SLIST used to
  * keep track of old ofiles + enough space for NDFILE descriptors.
  */
 
 struct fdescenttbl0 {
 	int	fdt_nfiles;
 	struct	filedescent fdt_ofiles[NDFILE];
 };
 
 struct filedesc0 {
 	struct filedesc fd_fd;
 	SLIST_HEAD(, freetable) fd_free;
 	struct	fdescenttbl0 fd_dfiles;
 	NDSLOTTYPE fd_dmap[NDSLOTS(NDFILE)];
 };
 
 /*
  * Descriptor management.
  */
 static int __exclusive_cache_line openfiles; /* actual number of open files */
 struct mtx sigio_lock;		/* mtx to protect pointers to sigio */
 void __read_mostly (*mq_fdclose)(struct thread *td, int fd, struct file *fp);
 
 /*
  * If low >= size, just return low. Otherwise find the first zero bit in the
  * given bitmap, starting at low and not exceeding size - 1. Return size if
  * not found.
  */
 static int
 fd_first_free(struct filedesc *fdp, int low, int size)
 {
 	NDSLOTTYPE *map = fdp->fd_map;
 	NDSLOTTYPE mask;
 	int off, maxoff;
 
 	if (low >= size)
 		return (low);
 
 	off = NDSLOT(low);
 	if (low % NDENTRIES) {
 		mask = ~(~(NDSLOTTYPE)0 >> (NDENTRIES - (low % NDENTRIES)));
 		if ((mask &= ~map[off]) != 0UL)
 			return (off * NDENTRIES + ffsl(mask) - 1);
 		++off;
 	}
 	for (maxoff = NDSLOTS(size); off < maxoff; ++off)
 		if (map[off] != ~0UL)
 			return (off * NDENTRIES + ffsl(~map[off]) - 1);
 	return (size);
 }
 
 /*
  * Find the last used fd.
  *
  * Call this variant if fdp can't be modified by anyone else (e.g, during exec).
  * Otherwise use fdlastfile.
  */
 int
 fdlastfile_single(struct filedesc *fdp)
 {
 	NDSLOTTYPE *map = fdp->fd_map;
 	int off, minoff;
 
 	off = NDSLOT(fdp->fd_nfiles - 1);
 	for (minoff = NDSLOT(0); off >= minoff; --off)
 		if (map[off] != 0)
 			return (off * NDENTRIES + flsl(map[off]) - 1);
 	return (-1);
 }
 
 int
 fdlastfile(struct filedesc *fdp)
 {
 
 	FILEDESC_LOCK_ASSERT(fdp);
 	return (fdlastfile_single(fdp));
 }
 
 static int
 fdisused(struct filedesc *fdp, int fd)
 {
 
 	KASSERT(fd >= 0 && fd < fdp->fd_nfiles,
 	    ("file descriptor %d out of range (0, %d)", fd, fdp->fd_nfiles));
 
 	return ((fdp->fd_map[NDSLOT(fd)] & NDBIT(fd)) != 0);
 }
 
 /*
  * Mark a file descriptor as used.
  */
 static void
 fdused_init(struct filedesc *fdp, int fd)
 {
 
 	KASSERT(!fdisused(fdp, fd), ("fd=%d is already used", fd));
 
 	fdp->fd_map[NDSLOT(fd)] |= NDBIT(fd);
 }
 
 static void
 fdused(struct filedesc *fdp, int fd)
 {
 
 	FILEDESC_XLOCK_ASSERT(fdp);
 
 	fdused_init(fdp, fd);
 	if (fd == fdp->fd_freefile)
 		fdp->fd_freefile++;
 }
 
 /*
  * Mark a file descriptor as unused.
  */
 static void
 fdunused(struct filedesc *fdp, int fd)
 {
 
 	FILEDESC_XLOCK_ASSERT(fdp);
 
 	KASSERT(fdisused(fdp, fd), ("fd=%d is already unused", fd));
 	KASSERT(fdp->fd_ofiles[fd].fde_file == NULL,
 	    ("fd=%d is still in use", fd));
 
 	fdp->fd_map[NDSLOT(fd)] &= ~NDBIT(fd);
 	if (fd < fdp->fd_freefile)
 		fdp->fd_freefile = fd;
 }
 
 /*
  * Free a file descriptor.
  *
  * Avoid some work if fdp is about to be destroyed.
  */
 static inline void
 fdefree_last(struct filedescent *fde)
 {
 
 	filecaps_free(&fde->fde_caps);
 }
 
 static inline void
 fdfree(struct filedesc *fdp, int fd)
 {
 	struct filedescent *fde;
 
 	FILEDESC_XLOCK_ASSERT(fdp);
 	fde = &fdp->fd_ofiles[fd];
 #ifdef CAPABILITIES
 	seqc_write_begin(&fde->fde_seqc);
 #endif
 	fde->fde_file = NULL;
 #ifdef CAPABILITIES
 	seqc_write_end(&fde->fde_seqc);
 #endif
 	fdefree_last(fde);
 	fdunused(fdp, fd);
 }
 
 /*
  * System calls on descriptors.
  */
 #ifndef _SYS_SYSPROTO_H_
 struct getdtablesize_args {
 	int	dummy;
 };
 #endif
 /* ARGSUSED */
 int
 sys_getdtablesize(struct thread *td, struct getdtablesize_args *uap)
 {
 #ifdef	RACCT
 	uint64_t lim;
 #endif
 
 	td->td_retval[0] = getmaxfd(td);
 #ifdef	RACCT
 	PROC_LOCK(td->td_proc);
 	lim = racct_get_limit(td->td_proc, RACCT_NOFILE);
 	PROC_UNLOCK(td->td_proc);
 	if (lim < td->td_retval[0])
 		td->td_retval[0] = lim;
 #endif
 	return (0);
 }
 
 /*
  * Duplicate a file descriptor to a particular value.
  *
  * Note: keep in mind that a potential race condition exists when closing
  * descriptors from a shared descriptor table (via rfork).
  */
 #ifndef _SYS_SYSPROTO_H_
 struct dup2_args {
 	u_int	from;
 	u_int	to;
 };
 #endif
 /* ARGSUSED */
 int
 sys_dup2(struct thread *td, struct dup2_args *uap)
 {
 
 	return (kern_dup(td, FDDUP_FIXED, 0, (int)uap->from, (int)uap->to));
 }
 
 /*
  * Duplicate a file descriptor.
  */
 #ifndef _SYS_SYSPROTO_H_
 struct dup_args {
 	u_int	fd;
 };
 #endif
 /* ARGSUSED */
 int
 sys_dup(struct thread *td, struct dup_args *uap)
 {
 
 	return (kern_dup(td, FDDUP_NORMAL, 0, (int)uap->fd, 0));
 }
 
 /*
  * The file control system call.
  */
 #ifndef _SYS_SYSPROTO_H_
 struct fcntl_args {
 	int	fd;
 	int	cmd;
 	long	arg;
 };
 #endif
 /* ARGSUSED */
 int
 sys_fcntl(struct thread *td, struct fcntl_args *uap)
 {
 
 	return (kern_fcntl_freebsd(td, uap->fd, uap->cmd, uap->arg));
 }
 
 int
 kern_fcntl_freebsd(struct thread *td, int fd, int cmd, long arg)
 {
 	struct flock fl;
 	struct __oflock ofl;
 	intptr_t arg1;
 	int error, newcmd;
 
 	error = 0;
 	newcmd = cmd;
 	switch (cmd) {
 	case F_OGETLK:
 	case F_OSETLK:
 	case F_OSETLKW:
 		/*
 		 * Convert old flock structure to new.
 		 */
 		error = copyin((void *)(intptr_t)arg, &ofl, sizeof(ofl));
 		fl.l_start = ofl.l_start;
 		fl.l_len = ofl.l_len;
 		fl.l_pid = ofl.l_pid;
 		fl.l_type = ofl.l_type;
 		fl.l_whence = ofl.l_whence;
 		fl.l_sysid = 0;
 
 		switch (cmd) {
 		case F_OGETLK:
 			newcmd = F_GETLK;
 			break;
 		case F_OSETLK:
 			newcmd = F_SETLK;
 			break;
 		case F_OSETLKW:
 			newcmd = F_SETLKW;
 			break;
 		}
 		arg1 = (intptr_t)&fl;
 		break;
 	case F_GETLK:
 	case F_SETLK:
 	case F_SETLKW:
 	case F_SETLK_REMOTE:
 		error = copyin((void *)(intptr_t)arg, &fl, sizeof(fl));
 		arg1 = (intptr_t)&fl;
 		break;
 	default:
 		arg1 = arg;
 		break;
 	}
 	if (error)
 		return (error);
 	error = kern_fcntl(td, fd, newcmd, arg1);
 	if (error)
 		return (error);
 	if (cmd == F_OGETLK) {
 		ofl.l_start = fl.l_start;
 		ofl.l_len = fl.l_len;
 		ofl.l_pid = fl.l_pid;
 		ofl.l_type = fl.l_type;
 		ofl.l_whence = fl.l_whence;
 		error = copyout(&ofl, (void *)(intptr_t)arg, sizeof(ofl));
 	} else if (cmd == F_GETLK) {
 		error = copyout(&fl, (void *)(intptr_t)arg, sizeof(fl));
 	}
 	return (error);
 }
 
 int
 kern_fcntl(struct thread *td, int fd, int cmd, intptr_t arg)
 {
 	struct filedesc *fdp;
 	struct flock *flp;
 	struct file *fp, *fp2;
 	struct filedescent *fde;
 	struct proc *p;
 	struct vnode *vp;
 	struct mount *mp;
 	struct kinfo_file *kif;
-	int error, flg, kif_sz, seals, tmp;
+	int error, flg, kif_sz, seals, tmp, got_set, got_cleared;
 	uint64_t bsize;
 	off_t foffset;
 
 	error = 0;
 	flg = F_POSIX;
 	p = td->td_proc;
 	fdp = p->p_fd;
 
 	AUDIT_ARG_FD(cmd);
 	AUDIT_ARG_CMD(cmd);
 	switch (cmd) {
 	case F_DUPFD:
 		tmp = arg;
 		error = kern_dup(td, FDDUP_FCNTL, 0, fd, tmp);
 		break;
 
 	case F_DUPFD_CLOEXEC:
 		tmp = arg;
 		error = kern_dup(td, FDDUP_FCNTL, FDDUP_FLAG_CLOEXEC, fd, tmp);
 		break;
 
 	case F_DUP2FD:
 		tmp = arg;
 		error = kern_dup(td, FDDUP_FIXED, 0, fd, tmp);
 		break;
 
 	case F_DUP2FD_CLOEXEC:
 		tmp = arg;
 		error = kern_dup(td, FDDUP_FIXED, FDDUP_FLAG_CLOEXEC, fd, tmp);
 		break;
 
 	case F_GETFD:
 		error = EBADF;
 		FILEDESC_SLOCK(fdp);
 		fde = fdeget_locked(fdp, fd);
 		if (fde != NULL) {
 			td->td_retval[0] =
 			    (fde->fde_flags & UF_EXCLOSE) ? FD_CLOEXEC : 0;
 			error = 0;
 		}
 		FILEDESC_SUNLOCK(fdp);
 		break;
 
 	case F_SETFD:
 		error = EBADF;
 		FILEDESC_XLOCK(fdp);
 		fde = fdeget_locked(fdp, fd);
 		if (fde != NULL) {
 			fde->fde_flags = (fde->fde_flags & ~UF_EXCLOSE) |
 			    (arg & FD_CLOEXEC ? UF_EXCLOSE : 0);
 			error = 0;
 		}
 		FILEDESC_XUNLOCK(fdp);
 		break;
 
 	case F_GETFL:
 		error = fget_fcntl(td, fd, &cap_fcntl_rights, F_GETFL, &fp);
 		if (error != 0)
 			break;
 		td->td_retval[0] = OFLAGS(fp->f_flag);
 		fdrop(fp, td);
 		break;
 
 	case F_SETFL:
 		error = fget_fcntl(td, fd, &cap_fcntl_rights, F_SETFL, &fp);
 		if (error != 0)
 			break;
 		if (fp->f_ops == &path_fileops) {
 			fdrop(fp, td);
 			error = EBADF;
 			break;
 		}
 		do {
 			tmp = flg = fp->f_flag;
 			tmp &= ~FCNTLFLAGS;
 			tmp |= FFLAGS(arg & ~O_ACCMODE) & FCNTLFLAGS;
 		} while (atomic_cmpset_int(&fp->f_flag, flg, tmp) == 0);
+		got_set = tmp & ~flg;
+		got_cleared = flg & ~tmp;
 		tmp = fp->f_flag & FNONBLOCK;
 		error = fo_ioctl(fp, FIONBIO, &tmp, td->td_ucred, td);
-		if (error != 0) {
-			fdrop(fp, td);
-			break;
-		}
+		if (error != 0)
+			goto revert_f_setfl;
 		tmp = fp->f_flag & FASYNC;
 		error = fo_ioctl(fp, FIOASYNC, &tmp, td->td_ucred, td);
 		if (error == 0) {
 			fdrop(fp, td);
 			break;
 		}
 		atomic_clear_int(&fp->f_flag, FNONBLOCK);
 		tmp = 0;
 		(void)fo_ioctl(fp, FIONBIO, &tmp, td->td_ucred, td);
+revert_f_setfl:
+		do {
+			tmp = flg = fp->f_flag;
+			tmp &= ~FCNTLFLAGS;
+			tmp |= got_cleared;
+			tmp &= ~got_set;
+		} while (atomic_cmpset_int(&fp->f_flag, flg, tmp) == 0);
 		fdrop(fp, td);
 		break;
 
 	case F_GETOWN:
 		error = fget_fcntl(td, fd, &cap_fcntl_rights, F_GETOWN, &fp);
 		if (error != 0)
 			break;
 		error = fo_ioctl(fp, FIOGETOWN, &tmp, td->td_ucred, td);
 		if (error == 0)
 			td->td_retval[0] = tmp;
 		fdrop(fp, td);
 		break;
 
 	case F_SETOWN:
 		error = fget_fcntl(td, fd, &cap_fcntl_rights, F_SETOWN, &fp);
 		if (error != 0)
 			break;
 		tmp = arg;
 		error = fo_ioctl(fp, FIOSETOWN, &tmp, td->td_ucred, td);
 		fdrop(fp, td);
 		break;
 
 	case F_SETLK_REMOTE:
 		error = priv_check(td, PRIV_NFS_LOCKD);
 		if (error != 0)
 			return (error);
 		flg = F_REMOTE;
 		goto do_setlk;
 
 	case F_SETLKW:
 		flg |= F_WAIT;
 		/* FALLTHROUGH F_SETLK */
 
 	case F_SETLK:
 	do_setlk:
 		flp = (struct flock *)arg;
 		if ((flg & F_REMOTE) != 0 && flp->l_sysid == 0) {
 			error = EINVAL;
 			break;
 		}
 
 		error = fget_unlocked(fdp, fd, &cap_flock_rights, &fp);
 		if (error != 0)
 			break;
 		if (fp->f_type != DTYPE_VNODE || fp->f_ops == &path_fileops) {
 			error = EBADF;
 			fdrop(fp, td);
 			break;
 		}
 
 		if (flp->l_whence == SEEK_CUR) {
 			foffset = foffset_get(fp);
 			if (foffset < 0 ||
 			    (flp->l_start > 0 &&
 			     foffset > OFF_MAX - flp->l_start)) {
 				error = EOVERFLOW;
 				fdrop(fp, td);
 				break;
 			}
 			flp->l_start += foffset;
 		}
 
 		vp = fp->f_vnode;
 		switch (flp->l_type) {
 		case F_RDLCK:
 			if ((fp->f_flag & FREAD) == 0) {
 				error = EBADF;
 				break;
 			}
 			if ((p->p_leader->p_flag & P_ADVLOCK) == 0) {
 				PROC_LOCK(p->p_leader);
 				p->p_leader->p_flag |= P_ADVLOCK;
 				PROC_UNLOCK(p->p_leader);
 			}
 			error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_SETLK,
 			    flp, flg);
 			break;
 		case F_WRLCK:
 			if ((fp->f_flag & FWRITE) == 0) {
 				error = EBADF;
 				break;
 			}
 			if ((p->p_leader->p_flag & P_ADVLOCK) == 0) {
 				PROC_LOCK(p->p_leader);
 				p->p_leader->p_flag |= P_ADVLOCK;
 				PROC_UNLOCK(p->p_leader);
 			}
 			error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_SETLK,
 			    flp, flg);
 			break;
 		case F_UNLCK:
 			error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_UNLCK,
 			    flp, flg);
 			break;
 		case F_UNLCKSYS:
 			if (flg != F_REMOTE) {
 				error = EINVAL;
 				break;
 			}
 			error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader,
 			    F_UNLCKSYS, flp, flg);
 			break;
 		default:
 			error = EINVAL;
 			break;
 		}
 		if (error != 0 || flp->l_type == F_UNLCK ||
 		    flp->l_type == F_UNLCKSYS) {
 			fdrop(fp, td);
 			break;
 		}
 
 		/*
 		 * Check for a race with close.
 		 *
 		 * The vnode is now advisory locked (or unlocked, but this case
 		 * is not really important) as the caller requested.
 		 * We had to drop the filedesc lock, so we need to recheck if
 		 * the descriptor is still valid, because if it was closed
 		 * in the meantime we need to remove advisory lock from the
 		 * vnode - close on any descriptor leading to an advisory
 		 * locked vnode, removes that lock.
 		 * We will return 0 on purpose in that case, as the result of
 		 * successful advisory lock might have been externally visible
 		 * already. This is fine - effectively we pretend to the caller
 		 * that the closing thread was a bit slower and that the
 		 * advisory lock succeeded before the close.
 		 */
 		error = fget_unlocked(fdp, fd, &cap_no_rights, &fp2);
 		if (error != 0) {
 			fdrop(fp, td);
 			break;
 		}
 		if (fp != fp2) {
 			flp->l_whence = SEEK_SET;
 			flp->l_start = 0;
 			flp->l_len = 0;
 			flp->l_type = F_UNLCK;
 			(void) VOP_ADVLOCK(vp, (caddr_t)p->p_leader,
 			    F_UNLCK, flp, F_POSIX);
 		}
 		fdrop(fp, td);
 		fdrop(fp2, td);
 		break;
 
 	case F_GETLK:
 		error = fget_unlocked(fdp, fd, &cap_flock_rights, &fp);
 		if (error != 0)
 			break;
 		if (fp->f_type != DTYPE_VNODE || fp->f_ops == &path_fileops) {
 			error = EBADF;
 			fdrop(fp, td);
 			break;
 		}
 		flp = (struct flock *)arg;
 		if (flp->l_type != F_RDLCK && flp->l_type != F_WRLCK &&
 		    flp->l_type != F_UNLCK) {
 			error = EINVAL;
 			fdrop(fp, td);
 			break;
 		}
 		if (flp->l_whence == SEEK_CUR) {
 			foffset = foffset_get(fp);
 			if ((flp->l_start > 0 &&
 			    foffset > OFF_MAX - flp->l_start) ||
 			    (flp->l_start < 0 &&
 			    foffset < OFF_MIN - flp->l_start)) {
 				error = EOVERFLOW;
 				fdrop(fp, td);
 				break;
 			}
 			flp->l_start += foffset;
 		}
 		vp = fp->f_vnode;
 		error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_GETLK, flp,
 		    F_POSIX);
 		fdrop(fp, td);
 		break;
 
 	case F_ADD_SEALS:
 		error = fget_unlocked(fdp, fd, &cap_no_rights, &fp);
 		if (error != 0)
 			break;
 		error = fo_add_seals(fp, arg);
 		fdrop(fp, td);
 		break;
 
 	case F_GET_SEALS:
 		error = fget_unlocked(fdp, fd, &cap_no_rights, &fp);
 		if (error != 0)
 			break;
 		if (fo_get_seals(fp, &seals) == 0)
 			td->td_retval[0] = seals;
 		else
 			error = EINVAL;
 		fdrop(fp, td);
 		break;
 
 	case F_RDAHEAD:
 		arg = arg ? 128 * 1024: 0;
 		/* FALLTHROUGH */
 	case F_READAHEAD:
 		error = fget_unlocked(fdp, fd, &cap_no_rights, &fp);
 		if (error != 0)
 			break;
 		if (fp->f_type != DTYPE_VNODE || fp->f_ops == &path_fileops) {
 			fdrop(fp, td);
 			error = EBADF;
 			break;
 		}
 		vp = fp->f_vnode;
 		if (vp->v_type != VREG) {
 			fdrop(fp, td);
 			error = ENOTTY;
 			break;
 		}
 
 		/*
 		 * Exclusive lock synchronizes against f_seqcount reads and
 		 * writes in sequential_heuristic().
 		 */
 		error = vn_lock(vp, LK_EXCLUSIVE);
 		if (error != 0) {
 			fdrop(fp, td);
 			break;
 		}
 		if (arg >= 0) {
 			bsize = fp->f_vnode->v_mount->mnt_stat.f_iosize;
 			arg = MIN(arg, INT_MAX - bsize + 1);
 			fp->f_seqcount[UIO_READ] = MIN(IO_SEQMAX,
 			    (arg + bsize - 1) / bsize);
 			atomic_set_int(&fp->f_flag, FRDAHEAD);
 		} else {
 			atomic_clear_int(&fp->f_flag, FRDAHEAD);
 		}
 		VOP_UNLOCK(vp);
 		fdrop(fp, td);
 		break;
 
 	case F_ISUNIONSTACK:
 		/*
 		 * Check if the vnode is part of a union stack (either the
 		 * "union" flag from mount(2) or unionfs).
 		 *
 		 * Prior to introduction of this op libc's readdir would call
 		 * fstatfs(2), in effect unnecessarily copying kilobytes of
 		 * data just to check fs name and a mount flag.
 		 *
 		 * Fixing the code to handle everything in the kernel instead
 		 * is a non-trivial endeavor and has low priority, thus this
 		 * horrible kludge facilitates the current behavior in a much
 		 * cheaper manner until someone(tm) sorts this out.
 		 */
 		error = fget_unlocked(fdp, fd, &cap_no_rights, &fp);
 		if (error != 0)
 			break;
 		if (fp->f_type != DTYPE_VNODE) {
 			fdrop(fp, td);
 			error = EBADF;
 			break;
 		}
 		vp = fp->f_vnode;
 		/*
 		 * Since we don't prevent dooming the vnode even non-null mp
 		 * found can become immediately stale. This is tolerable since
 		 * mount points are type-stable (providing safe memory access)
 		 * and any vfs op on this vnode going forward will return an
 		 * error (meaning return value in this case is meaningless).
 		 */
 		mp = atomic_load_ptr(&vp->v_mount);
 		if (__predict_false(mp == NULL)) {
 			fdrop(fp, td);
 			error = EBADF;
 			break;
 		}
 		td->td_retval[0] = 0;
 		if (mp->mnt_kern_flag & MNTK_UNIONFS ||
 		    mp->mnt_flag & MNT_UNION)
 			td->td_retval[0] = 1;
 		fdrop(fp, td);
 		break;
 
 	case F_KINFO:
 #ifdef CAPABILITY_MODE
 		if (IN_CAPABILITY_MODE(td)) {
 			error = ECAPMODE;
 			break;
 		}
 #endif
 		error = copyin((void *)arg, &kif_sz, sizeof(kif_sz));
 		if (error != 0)
 			break;
 		if (kif_sz != sizeof(*kif)) {
 			error = EINVAL;
 			break;
 		}
 		kif = malloc(sizeof(*kif), M_TEMP, M_WAITOK | M_ZERO);
 		FILEDESC_SLOCK(fdp);
 		error = fget_cap_locked(fdp, fd, &cap_fcntl_rights, &fp, NULL);
 		if (error == 0 && fhold(fp)) {
 			export_file_to_kinfo(fp, fd, NULL, kif, fdp, 0);
 			FILEDESC_SUNLOCK(fdp);
 			fdrop(fp, td);
 			if ((kif->kf_status & KF_ATTR_VALID) != 0) {
 				kif->kf_structsize = sizeof(*kif);
 				error = copyout(kif, (void *)arg, sizeof(*kif));
 			} else {
 				error = EBADF;
 			}
 		} else {
 			FILEDESC_SUNLOCK(fdp);
 			if (error == 0)
 				error = EBADF;
 		}
 		free(kif, M_TEMP);
 		break;
 
 	default:
 		error = EINVAL;
 		break;
 	}
 	return (error);
 }
 
 static int
 getmaxfd(struct thread *td)
 {
 
 	return (min((int)lim_cur(td, RLIMIT_NOFILE), maxfilesperproc));
 }
 
 /*
  * Common code for dup, dup2, fcntl(F_DUPFD) and fcntl(F_DUP2FD).
  */
 int
 kern_dup(struct thread *td, u_int mode, int flags, int old, int new)
 {
 	struct filedesc *fdp;
 	struct filedescent *oldfde, *newfde;
 	struct proc *p;
 	struct file *delfp, *oldfp;
 	u_long *oioctls, *nioctls;
 	int error, maxfd;
 
 	p = td->td_proc;
 	fdp = p->p_fd;
 	oioctls = NULL;
 
 	MPASS((flags & ~(FDDUP_FLAG_CLOEXEC)) == 0);
 	MPASS(mode < FDDUP_LASTMODE);
 
 	AUDIT_ARG_FD(old);
 	/* XXXRW: if (flags & FDDUP_FIXED) AUDIT_ARG_FD2(new); */
 
 	/*
 	 * Verify we have a valid descriptor to dup from and possibly to
 	 * dup to. Unlike dup() and dup2(), fcntl()'s F_DUPFD should
 	 * return EINVAL when the new descriptor is out of bounds.
 	 */
 	if (old < 0)
 		return (EBADF);
 	if (new < 0)
 		return (mode == FDDUP_FCNTL ? EINVAL : EBADF);
 	maxfd = getmaxfd(td);
 	if (new >= maxfd)
 		return (mode == FDDUP_FCNTL ? EINVAL : EBADF);
 
 	error = EBADF;
 	FILEDESC_XLOCK(fdp);
 	if (fget_locked(fdp, old) == NULL)
 		goto unlock;
 	if ((mode == FDDUP_FIXED || mode == FDDUP_MUSTREPLACE) && old == new) {
 		td->td_retval[0] = new;
 		if (flags & FDDUP_FLAG_CLOEXEC)
 			fdp->fd_ofiles[new].fde_flags |= UF_EXCLOSE;
 		error = 0;
 		goto unlock;
 	}
 
 	oldfde = &fdp->fd_ofiles[old];
 	oldfp = oldfde->fde_file;
 	if (!fhold(oldfp))
 		goto unlock;
 
 	/*
 	 * If the caller specified a file descriptor, make sure the file
 	 * table is large enough to hold it, and grab it.  Otherwise, just
 	 * allocate a new descriptor the usual way.
 	 */
 	switch (mode) {
 	case FDDUP_NORMAL:
 	case FDDUP_FCNTL:
 		if ((error = fdalloc(td, new, &new)) != 0) {
 			fdrop(oldfp, td);
 			goto unlock;
 		}
 		break;
 	case FDDUP_MUSTREPLACE:
 		/* Target file descriptor must exist. */
 		if (fget_locked(fdp, new) == NULL) {
 			fdrop(oldfp, td);
 			goto unlock;
 		}
 		break;
 	case FDDUP_FIXED:
 		if (new >= fdp->fd_nfiles) {
 			/*
 			 * The resource limits are here instead of e.g.
 			 * fdalloc(), because the file descriptor table may be
 			 * shared between processes, so we can't really use
 			 * racct_add()/racct_sub().  Instead of counting the
 			 * number of actually allocated descriptors, just put
 			 * the limit on the size of the file descriptor table.
 			 */
 #ifdef RACCT
 			if (RACCT_ENABLED()) {
 				error = racct_set_unlocked(p, RACCT_NOFILE, new + 1);
 				if (error != 0) {
 					error = EMFILE;
 					fdrop(oldfp, td);
 					goto unlock;
 				}
 			}
 #endif
 			fdgrowtable_exp(fdp, new + 1);
 		}
 		if (!fdisused(fdp, new))
 			fdused(fdp, new);
 		break;
 	default:
 		KASSERT(0, ("%s unsupported mode %d", __func__, mode));
 	}
 
 	KASSERT(old != new, ("new fd is same as old"));
 
 	/* Refetch oldfde because the table may have grown and old one freed. */
 	oldfde = &fdp->fd_ofiles[old];
 	KASSERT(oldfp == oldfde->fde_file,
 	    ("fdt_ofiles shift from growth observed at fd %d",
 	    old));
 
 	newfde = &fdp->fd_ofiles[new];
 	delfp = newfde->fde_file;
 
 	nioctls = filecaps_copy_prep(&oldfde->fde_caps);
 
 	/*
 	 * Duplicate the source descriptor.
 	 */
 #ifdef CAPABILITIES
 	seqc_write_begin(&newfde->fde_seqc);
 #endif
 	oioctls = filecaps_free_prep(&newfde->fde_caps);
 	memcpy(newfde, oldfde, fde_change_size);
 	filecaps_copy_finish(&oldfde->fde_caps, &newfde->fde_caps,
 	    nioctls);
 	if ((flags & FDDUP_FLAG_CLOEXEC) != 0)
 		newfde->fde_flags = oldfde->fde_flags | UF_EXCLOSE;
 	else
 		newfde->fde_flags = oldfde->fde_flags & ~UF_EXCLOSE;
 #ifdef CAPABILITIES
 	seqc_write_end(&newfde->fde_seqc);
 #endif
 	td->td_retval[0] = new;
 
 	error = 0;
 
 	if (delfp != NULL) {
 		(void) closefp(fdp, new, delfp, td, true, false);
 		FILEDESC_UNLOCK_ASSERT(fdp);
 	} else {
 unlock:
 		FILEDESC_XUNLOCK(fdp);
 	}
 
 	filecaps_free_finish(oioctls);
 	return (error);
 }
 
 static void
 sigiofree(struct sigio *sigio)
 {
 	crfree(sigio->sio_ucred);
 	free(sigio, M_SIGIO);
 }
 
 static struct sigio *
 funsetown_locked(struct sigio *sigio)
 {
 	struct proc *p;
 	struct pgrp *pg;
 
 	SIGIO_ASSERT_LOCKED();
 
 	if (sigio == NULL)
 		return (NULL);
 	*sigio->sio_myref = NULL;
 	if (sigio->sio_pgid < 0) {
 		pg = sigio->sio_pgrp;
 		PGRP_LOCK(pg);
 		SLIST_REMOVE(&pg->pg_sigiolst, sigio, sigio, sio_pgsigio);
 		PGRP_UNLOCK(pg);
 	} else {
 		p = sigio->sio_proc;
 		PROC_LOCK(p);
 		SLIST_REMOVE(&p->p_sigiolst, sigio, sigio, sio_pgsigio);
 		PROC_UNLOCK(p);
 	}
 	return (sigio);
 }
 
 /*
  * If sigio is on the list associated with a process or process group,
  * disable signalling from the device, remove sigio from the list and
  * free sigio.
  */
 void
 funsetown(struct sigio **sigiop)
 {
 	struct sigio *sigio;
 
 	/* Racy check, consumers must provide synchronization. */
 	if (*sigiop == NULL)
 		return;
 
 	SIGIO_LOCK();
 	sigio = funsetown_locked(*sigiop);
 	SIGIO_UNLOCK();
 	if (sigio != NULL)
 		sigiofree(sigio);
 }
 
 /*
  * Free a list of sigio structures.  The caller must ensure that new sigio
  * structures cannot be added after this point.  For process groups this is
  * guaranteed using the proctree lock; for processes, the P_WEXIT flag serves
  * as an interlock.
  */
 void
 funsetownlst(struct sigiolst *sigiolst)
 {
 	struct proc *p;
 	struct pgrp *pg;
 	struct sigio *sigio, *tmp;
 
 	/* Racy check. */
 	sigio = SLIST_FIRST(sigiolst);
 	if (sigio == NULL)
 		return;
 
 	p = NULL;
 	pg = NULL;
 
 	SIGIO_LOCK();
 	sigio = SLIST_FIRST(sigiolst);
 	if (sigio == NULL) {
 		SIGIO_UNLOCK();
 		return;
 	}
 
 	/*
 	 * Every entry of the list should belong to a single proc or pgrp.
 	 */
 	if (sigio->sio_pgid < 0) {
 		pg = sigio->sio_pgrp;
 		sx_assert(&proctree_lock, SX_XLOCKED);
 		PGRP_LOCK(pg);
 	} else /* if (sigio->sio_pgid > 0) */ {
 		p = sigio->sio_proc;
 		PROC_LOCK(p);
 		KASSERT((p->p_flag & P_WEXIT) != 0,
 		    ("%s: process %p is not exiting", __func__, p));
 	}
 
 	SLIST_FOREACH(sigio, sigiolst, sio_pgsigio) {
 		*sigio->sio_myref = NULL;
 		if (pg != NULL) {
 			KASSERT(sigio->sio_pgid < 0,
 			    ("Proc sigio in pgrp sigio list"));
 			KASSERT(sigio->sio_pgrp == pg,
 			    ("Bogus pgrp in sigio list"));
 		} else /* if (p != NULL) */ {
 			KASSERT(sigio->sio_pgid > 0,
 			    ("Pgrp sigio in proc sigio list"));
 			KASSERT(sigio->sio_proc == p,
 			    ("Bogus proc in sigio list"));
 		}
 	}
 
 	if (pg != NULL)
 		PGRP_UNLOCK(pg);
 	else
 		PROC_UNLOCK(p);
 	SIGIO_UNLOCK();
 
 	SLIST_FOREACH_SAFE(sigio, sigiolst, sio_pgsigio, tmp)
 		sigiofree(sigio);
 }
 
 /*
  * This is common code for FIOSETOWN ioctl called by fcntl(fd, F_SETOWN, arg).
  *
  * After permission checking, add a sigio structure to the sigio list for
  * the process or process group.
  */
 int
 fsetown(pid_t pgid, struct sigio **sigiop)
 {
 	struct proc *proc;
 	struct pgrp *pgrp;
 	struct sigio *osigio, *sigio;
 	int ret;
 
 	if (pgid == 0) {
 		funsetown(sigiop);
 		return (0);
 	}
 
 	sigio = malloc(sizeof(struct sigio), M_SIGIO, M_WAITOK);
 	sigio->sio_pgid = pgid;
 	sigio->sio_ucred = crhold(curthread->td_ucred);
 	sigio->sio_myref = sigiop;
 
 	ret = 0;
 	if (pgid > 0) {
 		ret = pget(pgid, PGET_NOTWEXIT | PGET_NOTID | PGET_HOLD, &proc);
 		SIGIO_LOCK();
 		osigio = funsetown_locked(*sigiop);
 		if (ret == 0) {
 			PROC_LOCK(proc);
 			_PRELE(proc);
 			if ((proc->p_flag & P_WEXIT) != 0) {
 				ret = ESRCH;
 			} else if (proc->p_session !=
 			    curthread->td_proc->p_session) {
 				/*
 				 * Policy - Don't allow a process to FSETOWN a
 				 * process in another session.
 				 *
 				 * Remove this test to allow maximum flexibility
 				 * or restrict FSETOWN to the current process or
 				 * process group for maximum safety.
 				 */
 				ret = EPERM;
 			} else {
 				sigio->sio_proc = proc;
 				SLIST_INSERT_HEAD(&proc->p_sigiolst, sigio,
 				    sio_pgsigio);
 			}
 			PROC_UNLOCK(proc);
 		}
 	} else /* if (pgid < 0) */ {
 		sx_slock(&proctree_lock);
 		SIGIO_LOCK();
 		osigio = funsetown_locked(*sigiop);
 		pgrp = pgfind(-pgid);
 		if (pgrp == NULL) {
 			ret = ESRCH;
 		} else {
 			if (pgrp->pg_session != curthread->td_proc->p_session) {
 				/*
 				 * Policy - Don't allow a process to FSETOWN a
 				 * process in another session.
 				 *
 				 * Remove this test to allow maximum flexibility
 				 * or restrict FSETOWN to the current process or
 				 * process group for maximum safety.
 				 */
 				ret = EPERM;
 			} else {
 				sigio->sio_pgrp = pgrp;
 				SLIST_INSERT_HEAD(&pgrp->pg_sigiolst, sigio,
 				    sio_pgsigio);
 			}
 			PGRP_UNLOCK(pgrp);
 		}
 		sx_sunlock(&proctree_lock);
 	}
 	if (ret == 0)
 		*sigiop = sigio;
 	SIGIO_UNLOCK();
 	if (osigio != NULL)
 		sigiofree(osigio);
 	return (ret);
 }
 
 /*
  * This is common code for FIOGETOWN ioctl called by fcntl(fd, F_GETOWN, arg).
  */
 pid_t
 fgetown(struct sigio **sigiop)
 {
 	pid_t pgid;
 
 	SIGIO_LOCK();
 	pgid = (*sigiop != NULL) ? (*sigiop)->sio_pgid : 0;
 	SIGIO_UNLOCK();
 	return (pgid);
 }
 
 static int
 closefp_impl(struct filedesc *fdp, int fd, struct file *fp, struct thread *td,
     bool audit)
 {
 	int error;
 
 	FILEDESC_XLOCK_ASSERT(fdp);
 
 	/*
 	 * We now hold the fp reference that used to be owned by the
 	 * descriptor array.  We have to unlock the FILEDESC *AFTER*
 	 * knote_fdclose to prevent a race of the fd getting opened, a knote
 	 * added, and deleteing a knote for the new fd.
 	 */
 	if (__predict_false(!TAILQ_EMPTY(&fdp->fd_kqlist)))
 		knote_fdclose(td, fd);
 
 	/*
 	 * We need to notify mqueue if the object is of type mqueue.
 	 */
 	if (__predict_false(fp->f_type == DTYPE_MQUEUE))
 		mq_fdclose(td, fd, fp);
 	FILEDESC_XUNLOCK(fdp);
 
 #ifdef AUDIT
 	if (AUDITING_TD(td) && audit)
 		audit_sysclose(td, fd, fp);
 #endif
 	error = closef(fp, td);
 
 	/*
 	 * All paths leading up to closefp() will have already removed or
 	 * replaced the fd in the filedesc table, so a restart would not
 	 * operate on the same file.
 	 */
 	if (error == ERESTART)
 		error = EINTR;
 
 	return (error);
 }
 
 static int
 closefp_hl(struct filedesc *fdp, int fd, struct file *fp, struct thread *td,
     bool holdleaders, bool audit)
 {
 	int error;
 
 	FILEDESC_XLOCK_ASSERT(fdp);
 
 	if (holdleaders) {
 		if (td->td_proc->p_fdtol != NULL) {
 			/*
 			 * Ask fdfree() to sleep to ensure that all relevant
 			 * process leaders can be traversed in closef().
 			 */
 			fdp->fd_holdleaderscount++;
 		} else {
 			holdleaders = false;
 		}
 	}
 
 	error = closefp_impl(fdp, fd, fp, td, audit);
 	if (holdleaders) {
 		FILEDESC_XLOCK(fdp);
 		fdp->fd_holdleaderscount--;
 		if (fdp->fd_holdleaderscount == 0 &&
 		    fdp->fd_holdleaderswakeup != 0) {
 			fdp->fd_holdleaderswakeup = 0;
 			wakeup(&fdp->fd_holdleaderscount);
 		}
 		FILEDESC_XUNLOCK(fdp);
 	}
 	return (error);
 }
 
 static int
 closefp(struct filedesc *fdp, int fd, struct file *fp, struct thread *td,
     bool holdleaders, bool audit)
 {
 
 	FILEDESC_XLOCK_ASSERT(fdp);
 
 	if (__predict_false(td->td_proc->p_fdtol != NULL)) {
 		return (closefp_hl(fdp, fd, fp, td, holdleaders, audit));
 	} else {
 		return (closefp_impl(fdp, fd, fp, td, audit));
 	}
 }
 
 /*
  * Close a file descriptor.
  */
 #ifndef _SYS_SYSPROTO_H_
 struct close_args {
 	int     fd;
 };
 #endif
 /* ARGSUSED */
 int
 sys_close(struct thread *td, struct close_args *uap)
 {
 
 	return (kern_close(td, uap->fd));
 }
 
 int
 kern_close(struct thread *td, int fd)
 {
 	struct filedesc *fdp;
 	struct file *fp;
 
 	fdp = td->td_proc->p_fd;
 
 	FILEDESC_XLOCK(fdp);
 	if ((fp = fget_locked(fdp, fd)) == NULL) {
 		FILEDESC_XUNLOCK(fdp);
 		return (EBADF);
 	}
 	fdfree(fdp, fd);
 
 	/* closefp() drops the FILEDESC lock for us. */
 	return (closefp(fdp, fd, fp, td, true, true));
 }
 
 static int
 close_range_cloexec(struct thread *td, u_int lowfd, u_int highfd)
 {
 	struct filedesc *fdp;
 	struct fdescenttbl *fdt;
 	struct filedescent *fde;
 	int fd;
 
 	fdp = td->td_proc->p_fd;
 	FILEDESC_XLOCK(fdp);
 	fdt = atomic_load_ptr(&fdp->fd_files);
 	highfd = MIN(highfd, fdt->fdt_nfiles - 1);
 	fd = lowfd;
 	if (__predict_false(fd > highfd)) {
 		goto out_locked;
 	}
 	for (; fd <= highfd; fd++) {
 		fde = &fdt->fdt_ofiles[fd];
 		if (fde->fde_file != NULL)
 			fde->fde_flags |= UF_EXCLOSE;
 	}
 out_locked:
 	FILEDESC_XUNLOCK(fdp);
 	return (0);
 }
 
 static int
 close_range_impl(struct thread *td, u_int lowfd, u_int highfd)
 {
 	struct filedesc *fdp;
 	const struct fdescenttbl *fdt;
 	struct file *fp;
 	int fd;
 
 	fdp = td->td_proc->p_fd;
 	FILEDESC_XLOCK(fdp);
 	fdt = atomic_load_ptr(&fdp->fd_files);
 	highfd = MIN(highfd, fdt->fdt_nfiles - 1);
 	fd = lowfd;
 	if (__predict_false(fd > highfd)) {
 		goto out_locked;
 	}
 	for (;;) {
 		fp = fdt->fdt_ofiles[fd].fde_file;
 		if (fp == NULL) {
 			if (fd == highfd)
 				goto out_locked;
 		} else {
 			fdfree(fdp, fd);
 			(void) closefp(fdp, fd, fp, td, true, true);
 			if (fd == highfd)
 				goto out_unlocked;
 			FILEDESC_XLOCK(fdp);
 			fdt = atomic_load_ptr(&fdp->fd_files);
 		}
 		fd++;
 	}
 out_locked:
 	FILEDESC_XUNLOCK(fdp);
 out_unlocked:
 	return (0);
 }
 
 int
 kern_close_range(struct thread *td, int flags, u_int lowfd, u_int highfd)
 {
 
 	/*
 	 * Check this prior to clamping; closefrom(3) with only fd 0, 1, and 2
 	 * open should not be a usage error.  From a close_range() perspective,
 	 * close_range(3, ~0U, 0) in the same scenario should also likely not
 	 * be a usage error as all fd above 3 are in-fact already closed.
 	 */
 	if (highfd < lowfd) {
 		return (EINVAL);
 	}
 
 	if ((flags & CLOSE_RANGE_CLOEXEC) != 0)
 		return (close_range_cloexec(td, lowfd, highfd));
 
 	return (close_range_impl(td, lowfd, highfd));
 }
 
 #ifndef _SYS_SYSPROTO_H_
 struct close_range_args {
 	u_int	lowfd;
 	u_int	highfd;
 	int	flags;
 };
 #endif
 int
 sys_close_range(struct thread *td, struct close_range_args *uap)
 {
 
 	AUDIT_ARG_FD(uap->lowfd);
 	AUDIT_ARG_CMD(uap->highfd);
 	AUDIT_ARG_FFLAGS(uap->flags);
 
 	if ((uap->flags & ~(CLOSE_RANGE_CLOEXEC)) != 0)
 		return (EINVAL);
 	return (kern_close_range(td, uap->flags, uap->lowfd, uap->highfd));
 }
 
 #ifdef COMPAT_FREEBSD12
 /*
  * Close open file descriptors.
  */
 #ifndef _SYS_SYSPROTO_H_
 struct freebsd12_closefrom_args {
 	int	lowfd;
 };
 #endif
 /* ARGSUSED */
 int
 freebsd12_closefrom(struct thread *td, struct freebsd12_closefrom_args *uap)
 {
 	u_int lowfd;
 
 	AUDIT_ARG_FD(uap->lowfd);
 
 	/*
 	 * Treat negative starting file descriptor values identical to
 	 * closefrom(0) which closes all files.
 	 */
 	lowfd = MAX(0, uap->lowfd);
 	return (kern_close_range(td, 0, lowfd, ~0U));
 }
 #endif	/* COMPAT_FREEBSD12 */
 
 #if defined(COMPAT_43)
 /*
  * Return status information about a file descriptor.
  */
 #ifndef _SYS_SYSPROTO_H_
 struct ofstat_args {
 	int	fd;
 	struct	ostat *sb;
 };
 #endif
 /* ARGSUSED */
 int
 ofstat(struct thread *td, struct ofstat_args *uap)
 {
 	struct ostat oub;
 	struct stat ub;
 	int error;
 
 	error = kern_fstat(td, uap->fd, &ub);
 	if (error == 0) {
 		cvtstat(&ub, &oub);
 		error = copyout(&oub, uap->sb, sizeof(oub));
 	}
 	return (error);
 }
 #endif /* COMPAT_43 */
 
 #if defined(COMPAT_FREEBSD11)
 int
 freebsd11_fstat(struct thread *td, struct freebsd11_fstat_args *uap)
 {
 	struct stat sb;
 	struct freebsd11_stat osb;
 	int error;
 
 	error = kern_fstat(td, uap->fd, &sb);
 	if (error != 0)
 		return (error);
 	error = freebsd11_cvtstat(&sb, &osb);
 	if (error == 0)
 		error = copyout(&osb, uap->sb, sizeof(osb));
 	return (error);
 }
 #endif	/* COMPAT_FREEBSD11 */
 
 /*
  * Return status information about a file descriptor.
  */
 #ifndef _SYS_SYSPROTO_H_
 struct fstat_args {
 	int	fd;
 	struct	stat *sb;
 };
 #endif
 /* ARGSUSED */
 int
 sys_fstat(struct thread *td, struct fstat_args *uap)
 {
 	struct stat ub;
 	int error;
 
 	error = kern_fstat(td, uap->fd, &ub);
 	if (error == 0)
 		error = copyout(&ub, uap->sb, sizeof(ub));
 	return (error);
 }
 
 int
 kern_fstat(struct thread *td, int fd, struct stat *sbp)
 {
 	struct file *fp;
 	int error;
 
 	AUDIT_ARG_FD(fd);
 
 	error = fget(td, fd, &cap_fstat_rights, &fp);
 	if (__predict_false(error != 0))
 		return (error);
 
 	AUDIT_ARG_FILE(td->td_proc, fp);
 
 	error = fo_stat(fp, sbp, td->td_ucred, td);
 	fdrop(fp, td);
 #ifdef __STAT_TIME_T_EXT
 	sbp->st_atim_ext = 0;
 	sbp->st_mtim_ext = 0;
 	sbp->st_ctim_ext = 0;
 	sbp->st_btim_ext = 0;
 #endif
 #ifdef KTRACE
 	if (KTRPOINT(td, KTR_STRUCT))
 		ktrstat_error(sbp, error);
 #endif
 	return (error);
 }
 
 #if defined(COMPAT_FREEBSD11)
 /*
  * Return status information about a file descriptor.
  */
 #ifndef _SYS_SYSPROTO_H_
 struct freebsd11_nfstat_args {
 	int	fd;
 	struct	nstat *sb;
 };
 #endif
 /* ARGSUSED */
 int
 freebsd11_nfstat(struct thread *td, struct freebsd11_nfstat_args *uap)
 {
 	struct nstat nub;
 	struct stat ub;
 	int error;
 
 	error = kern_fstat(td, uap->fd, &ub);
 	if (error == 0) {
 		freebsd11_cvtnstat(&ub, &nub);
 		error = copyout(&nub, uap->sb, sizeof(nub));
 	}
 	return (error);
 }
 #endif /* COMPAT_FREEBSD11 */
 
 /*
  * Return pathconf information about a file descriptor.
  */
 #ifndef _SYS_SYSPROTO_H_
 struct fpathconf_args {
 	int	fd;
 	int	name;
 };
 #endif
 /* ARGSUSED */
 int
 sys_fpathconf(struct thread *td, struct fpathconf_args *uap)
 {
 	long value;
 	int error;
 
 	error = kern_fpathconf(td, uap->fd, uap->name, &value);
 	if (error == 0)
 		td->td_retval[0] = value;
 	return (error);
 }
 
 int
 kern_fpathconf(struct thread *td, int fd, int name, long *valuep)
 {
 	struct file *fp;
 	struct vnode *vp;
 	int error;
 
 	error = fget(td, fd, &cap_fpathconf_rights, &fp);
 	if (error != 0)
 		return (error);
 
 	if (name == _PC_ASYNC_IO) {
 		*valuep = _POSIX_ASYNCHRONOUS_IO;
 		goto out;
 	}
 	vp = fp->f_vnode;
 	if (vp != NULL) {
 		vn_lock(vp, LK_SHARED | LK_RETRY);
 		error = VOP_PATHCONF(vp, name, valuep);
 		VOP_UNLOCK(vp);
 	} else if (fp->f_type == DTYPE_PIPE || fp->f_type == DTYPE_SOCKET) {
 		if (name != _PC_PIPE_BUF) {
 			error = EINVAL;
 		} else {
 			*valuep = PIPE_BUF;
 			error = 0;
 		}
 	} else {
 		error = EOPNOTSUPP;
 	}
 out:
 	fdrop(fp, td);
 	return (error);
 }
 
 /*
  * Copy filecaps structure allocating memory for ioctls array if needed.
  *
  * The last parameter indicates whether the fdtable is locked. If it is not and
  * ioctls are encountered, copying fails and the caller must lock the table.
  *
  * Note that if the table was not locked, the caller has to check the relevant
  * sequence counter to determine whether the operation was successful.
  */
 bool
 filecaps_copy(const struct filecaps *src, struct filecaps *dst, bool locked)
 {
 	size_t size;
 
 	if (src->fc_ioctls != NULL && !locked)
 		return (false);
 	memcpy(dst, src, sizeof(*src));
 	if (src->fc_ioctls == NULL)
 		return (true);
 
 	KASSERT(src->fc_nioctls > 0,
 	    ("fc_ioctls != NULL, but fc_nioctls=%hd", src->fc_nioctls));
 
 	size = sizeof(src->fc_ioctls[0]) * src->fc_nioctls;
 	dst->fc_ioctls = malloc(size, M_FILECAPS, M_WAITOK);
 	memcpy(dst->fc_ioctls, src->fc_ioctls, size);
 	return (true);
 }
 
 static u_long *
 filecaps_copy_prep(const struct filecaps *src)
 {
 	u_long *ioctls;
 	size_t size;
 
 	if (__predict_true(src->fc_ioctls == NULL))
 		return (NULL);
 
 	KASSERT(src->fc_nioctls > 0,
 	    ("fc_ioctls != NULL, but fc_nioctls=%hd", src->fc_nioctls));
 
 	size = sizeof(src->fc_ioctls[0]) * src->fc_nioctls;
 	ioctls = malloc(size, M_FILECAPS, M_WAITOK);
 	return (ioctls);
 }
 
 static void
 filecaps_copy_finish(const struct filecaps *src, struct filecaps *dst,
     u_long *ioctls)
 {
 	size_t size;
 
 	*dst = *src;
 	if (__predict_true(src->fc_ioctls == NULL)) {
 		MPASS(ioctls == NULL);
 		return;
 	}
 
 	size = sizeof(src->fc_ioctls[0]) * src->fc_nioctls;
 	dst->fc_ioctls = ioctls;
 	bcopy(src->fc_ioctls, dst->fc_ioctls, size);
 }
 
 /*
  * Move filecaps structure to the new place and clear the old place.
  */
 void
 filecaps_move(struct filecaps *src, struct filecaps *dst)
 {
 
 	*dst = *src;
 	bzero(src, sizeof(*src));
 }
 
 /*
  * Fill the given filecaps structure with full rights.
  */
 static void
 filecaps_fill(struct filecaps *fcaps)
 {
 
 	CAP_ALL(&fcaps->fc_rights);
 	fcaps->fc_ioctls = NULL;
 	fcaps->fc_nioctls = -1;
 	fcaps->fc_fcntls = CAP_FCNTL_ALL;
 }
 
 /*
  * Free memory allocated within filecaps structure.
  */
 static void
 filecaps_free_ioctl(struct filecaps *fcaps)
 {
 
 	free(fcaps->fc_ioctls, M_FILECAPS);
 	fcaps->fc_ioctls = NULL;
 }
 
 void
 filecaps_free(struct filecaps *fcaps)
 {
 
 	filecaps_free_ioctl(fcaps);
 	bzero(fcaps, sizeof(*fcaps));
 }
 
 static u_long *
 filecaps_free_prep(struct filecaps *fcaps)
 {
 	u_long *ioctls;
 
 	ioctls = fcaps->fc_ioctls;
 	bzero(fcaps, sizeof(*fcaps));
 	return (ioctls);
 }
 
 static void
 filecaps_free_finish(u_long *ioctls)
 {
 
 	free(ioctls, M_FILECAPS);
 }
 
 /*
  * Validate the given filecaps structure.
  */
 static void
 filecaps_validate(const struct filecaps *fcaps, const char *func)
 {
 
 	KASSERT(cap_rights_is_valid(&fcaps->fc_rights),
 	    ("%s: invalid rights", func));
 	KASSERT((fcaps->fc_fcntls & ~CAP_FCNTL_ALL) == 0,
 	    ("%s: invalid fcntls", func));
 	KASSERT(fcaps->fc_fcntls == 0 ||
 	    cap_rights_is_set(&fcaps->fc_rights, CAP_FCNTL),
 	    ("%s: fcntls without CAP_FCNTL", func));
 	/*
 	 * open calls without WANTIOCTLCAPS free caps but leave the counter
 	 */
 #if 0
 	KASSERT(fcaps->fc_ioctls != NULL ? fcaps->fc_nioctls > 0 :
 	    (fcaps->fc_nioctls == -1 || fcaps->fc_nioctls == 0),
 	    ("%s: invalid ioctls", func));
 #endif
 	KASSERT(fcaps->fc_nioctls == 0 ||
 	    cap_rights_is_set(&fcaps->fc_rights, CAP_IOCTL),
 	    ("%s: ioctls without CAP_IOCTL", func));
 }
 
 static void
 fdgrowtable_exp(struct filedesc *fdp, int nfd)
 {
 	int nfd1;
 
 	FILEDESC_XLOCK_ASSERT(fdp);
 
 	nfd1 = fdp->fd_nfiles * 2;
 	if (nfd1 < nfd)
 		nfd1 = nfd;
 	fdgrowtable(fdp, nfd1);
 }
 
 /*
  * Grow the file table to accommodate (at least) nfd descriptors.
  */
 static void
 fdgrowtable(struct filedesc *fdp, int nfd)
 {
 	struct filedesc0 *fdp0;
 	struct freetable *ft;
 	struct fdescenttbl *ntable;
 	struct fdescenttbl *otable;
 	int nnfiles, onfiles;
 	NDSLOTTYPE *nmap, *omap;
 
 	KASSERT(fdp->fd_nfiles > 0, ("zero-length file table"));
 
 	/* save old values */
 	onfiles = fdp->fd_nfiles;
 	otable = fdp->fd_files;
 	omap = fdp->fd_map;
 
 	/* compute the size of the new table */
 	nnfiles = NDSLOTS(nfd) * NDENTRIES; /* round up */
 	if (nnfiles <= onfiles)
 		/* the table is already large enough */
 		return;
 
 	/*
 	 * Allocate a new table.  We need enough space for the number of
 	 * entries, file entries themselves and the struct freetable we will use
 	 * when we decommission the table and place it on the freelist.
 	 * We place the struct freetable in the middle so we don't have
 	 * to worry about padding.
 	 */
 	ntable = malloc(offsetof(struct fdescenttbl, fdt_ofiles) +
 	    nnfiles * sizeof(ntable->fdt_ofiles[0]) +
 	    sizeof(struct freetable),
 	    M_FILEDESC, M_ZERO | M_WAITOK);
 	/* copy the old data */
 	ntable->fdt_nfiles = nnfiles;
 	memcpy(ntable->fdt_ofiles, otable->fdt_ofiles,
 	    onfiles * sizeof(ntable->fdt_ofiles[0]));
 
 	/*
 	 * Allocate a new map only if the old is not large enough.  It will
 	 * grow at a slower rate than the table as it can map more
 	 * entries than the table can hold.
 	 */
 	if (NDSLOTS(nnfiles) > NDSLOTS(onfiles)) {
 		nmap = malloc(NDSLOTS(nnfiles) * NDSLOTSIZE, M_FILEDESC,
 		    M_ZERO | M_WAITOK);
 		/* copy over the old data and update the pointer */
 		memcpy(nmap, omap, NDSLOTS(onfiles) * sizeof(*omap));
 		fdp->fd_map = nmap;
 	}
 
 	/*
 	 * Make sure that ntable is correctly initialized before we replace
 	 * fd_files poiner. Otherwise fget_unlocked() may see inconsistent
 	 * data.
 	 */
 	atomic_store_rel_ptr((volatile void *)&fdp->fd_files, (uintptr_t)ntable);
 
 	/*
 	 * Free the old file table when not shared by other threads or processes.
 	 * The old file table is considered to be shared when either are true:
 	 * - The process has more than one thread.
 	 * - The file descriptor table has been shared via fdshare().
 	 *
 	 * When shared, the old file table will be placed on a freelist
 	 * which will be processed when the struct filedesc is released.
 	 *
 	 * Note that if onfiles == NDFILE, we're dealing with the original
 	 * static allocation contained within (struct filedesc0 *)fdp,
 	 * which must not be freed.
 	 */
 	if (onfiles > NDFILE) {
 		/*
 		 * Note we may be called here from fdinit while allocating a
 		 * table for a new process in which case ->p_fd points
 		 * elsewhere.
 		 */
 		if (curproc->p_fd != fdp || FILEDESC_IS_ONLY_USER(fdp)) {
 			free(otable, M_FILEDESC);
 		} else {
 			ft = (struct freetable *)&otable->fdt_ofiles[onfiles];
 			fdp0 = (struct filedesc0 *)fdp;
 			ft->ft_table = otable;
 			SLIST_INSERT_HEAD(&fdp0->fd_free, ft, ft_next);
 		}
 	}
 	/*
 	 * The map does not have the same possibility of threads still
 	 * holding references to it.  So always free it as long as it
 	 * does not reference the original static allocation.
 	 */
 	if (NDSLOTS(onfiles) > NDSLOTS(NDFILE))
 		free(omap, M_FILEDESC);
 }
 
 /*
  * Allocate a file descriptor for the process.
  */
 int
 fdalloc(struct thread *td, int minfd, int *result)
 {
 	struct proc *p = td->td_proc;
 	struct filedesc *fdp = p->p_fd;
 	int fd, maxfd, allocfd;
 #ifdef RACCT
 	int error;
 #endif
 
 	FILEDESC_XLOCK_ASSERT(fdp);
 
 	if (fdp->fd_freefile > minfd)
 		minfd = fdp->fd_freefile;
 
 	maxfd = getmaxfd(td);
 
 	/*
 	 * Search the bitmap for a free descriptor starting at minfd.
 	 * If none is found, grow the file table.
 	 */
 	fd = fd_first_free(fdp, minfd, fdp->fd_nfiles);
 	if (__predict_false(fd >= maxfd))
 		return (EMFILE);
 	if (__predict_false(fd >= fdp->fd_nfiles)) {
 		allocfd = min(fd * 2, maxfd);
 #ifdef RACCT
 		if (RACCT_ENABLED()) {
 			error = racct_set_unlocked(p, RACCT_NOFILE, allocfd);
 			if (error != 0)
 				return (EMFILE);
 		}
 #endif
 		/*
 		 * fd is already equal to first free descriptor >= minfd, so
 		 * we only need to grow the table and we are done.
 		 */
 		fdgrowtable_exp(fdp, allocfd);
 	}
 
 	/*
 	 * Perform some sanity checks, then mark the file descriptor as
 	 * used and return it to the caller.
 	 */
 	KASSERT(fd >= 0 && fd < min(maxfd, fdp->fd_nfiles),
 	    ("invalid descriptor %d", fd));
 	KASSERT(!fdisused(fdp, fd),
 	    ("fd_first_free() returned non-free descriptor"));
 	KASSERT(fdp->fd_ofiles[fd].fde_file == NULL,
 	    ("file descriptor isn't free"));
 	fdused(fdp, fd);
 	*result = fd;
 	return (0);
 }
 
 /*
  * Allocate n file descriptors for the process.
  */
 int
 fdallocn(struct thread *td, int minfd, int *fds, int n)
 {
 	struct proc *p = td->td_proc;
 	struct filedesc *fdp = p->p_fd;
 	int i;
 
 	FILEDESC_XLOCK_ASSERT(fdp);
 
 	for (i = 0; i < n; i++)
 		if (fdalloc(td, 0, &fds[i]) != 0)
 			break;
 
 	if (i < n) {
 		for (i--; i >= 0; i--)
 			fdunused(fdp, fds[i]);
 		return (EMFILE);
 	}
 
 	return (0);
 }
 
 /*
  * Create a new open file structure and allocate a file descriptor for the
  * process that refers to it.  We add one reference to the file for the
  * descriptor table and one reference for resultfp. This is to prevent us
  * being preempted and the entry in the descriptor table closed after we
  * release the FILEDESC lock.
  */
 int
 falloc_caps(struct thread *td, struct file **resultfp, int *resultfd, int flags,
     struct filecaps *fcaps)
 {
 	struct file *fp;
 	int error, fd;
 
 	MPASS(resultfp != NULL);
 	MPASS(resultfd != NULL);
 
 	error = _falloc_noinstall(td, &fp, 2);
 	if (__predict_false(error != 0)) {
 		return (error);
 	}
 
 	error = finstall_refed(td, fp, &fd, flags, fcaps);
 	if (__predict_false(error != 0)) {
 		falloc_abort(td, fp);
 		return (error);
 	}
 
 	*resultfp = fp;
 	*resultfd = fd;
 
 	return (0);
 }
 
 /*
  * Create a new open file structure without allocating a file descriptor.
  */
 int
 _falloc_noinstall(struct thread *td, struct file **resultfp, u_int n)
 {
 	struct file *fp;
 	int maxuserfiles = maxfiles - (maxfiles / 20);
 	int openfiles_new;
 	static struct timeval lastfail;
 	static int curfail;
 
 	KASSERT(resultfp != NULL, ("%s: resultfp == NULL", __func__));
 	MPASS(n > 0);
 
 	openfiles_new = atomic_fetchadd_int(&openfiles, 1) + 1;
 	if ((openfiles_new >= maxuserfiles &&
 	    priv_check(td, PRIV_MAXFILES) != 0) ||
 	    openfiles_new >= maxfiles) {
 		atomic_subtract_int(&openfiles, 1);
 		if (ppsratecheck(&lastfail, &curfail, 1)) {
 			printf("kern.maxfiles limit exceeded by uid %i, (%s) "
 			    "please see tuning(7).\n", td->td_ucred->cr_ruid, td->td_proc->p_comm);
 		}
 		return (ENFILE);
 	}
 	fp = uma_zalloc(file_zone, M_WAITOK);
 	bzero(fp, sizeof(*fp));
 	refcount_init(&fp->f_count, n);
 	fp->f_cred = crhold(td->td_ucred);
 	fp->f_ops = &badfileops;
 	*resultfp = fp;
 	return (0);
 }
 
 void
 falloc_abort(struct thread *td, struct file *fp)
 {
 
 	/*
 	 * For assertion purposes.
 	 */
 	refcount_init(&fp->f_count, 0);
 	_fdrop(fp, td);
 }
 
 /*
  * Install a file in a file descriptor table.
  */
 void
 _finstall(struct filedesc *fdp, struct file *fp, int fd, int flags,
     struct filecaps *fcaps)
 {
 	struct filedescent *fde;
 
 	MPASS(fp != NULL);
 	if (fcaps != NULL)
 		filecaps_validate(fcaps, __func__);
 	FILEDESC_XLOCK_ASSERT(fdp);
 
 	fde = &fdp->fd_ofiles[fd];
 #ifdef CAPABILITIES
 	seqc_write_begin(&fde->fde_seqc);
 #endif
 	fde->fde_file = fp;
 	fde->fde_flags = (flags & O_CLOEXEC) != 0 ? UF_EXCLOSE : 0;
 	if (fcaps != NULL)
 		filecaps_move(fcaps, &fde->fde_caps);
 	else
 		filecaps_fill(&fde->fde_caps);
 #ifdef CAPABILITIES
 	seqc_write_end(&fde->fde_seqc);
 #endif
 }
 
 int
 finstall_refed(struct thread *td, struct file *fp, int *fd, int flags,
     struct filecaps *fcaps)
 {
 	struct filedesc *fdp = td->td_proc->p_fd;
 	int error;
 
 	MPASS(fd != NULL);
 
 	FILEDESC_XLOCK(fdp);
 	error = fdalloc(td, 0, fd);
 	if (__predict_true(error == 0)) {
 		_finstall(fdp, fp, *fd, flags, fcaps);
 	}
 	FILEDESC_XUNLOCK(fdp);
 	return (error);
 }
 
 int
 finstall(struct thread *td, struct file *fp, int *fd, int flags,
     struct filecaps *fcaps)
 {
 	int error;
 
 	MPASS(fd != NULL);
 
 	if (!fhold(fp))
 		return (EBADF);
 	error = finstall_refed(td, fp, fd, flags, fcaps);
 	if (__predict_false(error != 0)) {
 		fdrop(fp, td);
 	}
 	return (error);
 }
 
 /*
  * Build a new filedesc structure from another.
  *
  * If fdp is not NULL, return with it shared locked.
  */
 struct filedesc *
 fdinit(struct filedesc *fdp, bool prepfiles, int *lastfile)
 {
 	struct filedesc0 *newfdp0;
 	struct filedesc *newfdp;
 
 	if (prepfiles)
 		MPASS(lastfile != NULL);
 	else
 		MPASS(lastfile == NULL);
 
 	newfdp0 = uma_zalloc(filedesc0_zone, M_WAITOK | M_ZERO);
 	newfdp = &newfdp0->fd_fd;
 
 	/* Create the file descriptor table. */
 	FILEDESC_LOCK_INIT(newfdp);
 	refcount_init(&newfdp->fd_refcnt, 1);
 	refcount_init(&newfdp->fd_holdcnt, 1);
 	newfdp->fd_map = newfdp0->fd_dmap;
 	newfdp->fd_files = (struct fdescenttbl *)&newfdp0->fd_dfiles;
 	newfdp->fd_files->fdt_nfiles = NDFILE;
 
 	if (fdp == NULL)
 		return (newfdp);
 
 	FILEDESC_SLOCK(fdp);
 	if (!prepfiles) {
 		FILEDESC_SUNLOCK(fdp);
 		return (newfdp);
 	}
 
 	for (;;) {
 		*lastfile = fdlastfile(fdp);
 		if (*lastfile < newfdp->fd_nfiles)
 			break;
 		FILEDESC_SUNLOCK(fdp);
 		fdgrowtable(newfdp, *lastfile + 1);
 		FILEDESC_SLOCK(fdp);
 	}
 
 	return (newfdp);
 }
 
 /*
  * Build a pwddesc structure from another.
  * Copy the current, root, and jail root vnode references.
  *
  * If pdp is not NULL, return with it shared locked.
  */
 struct pwddesc *
 pdinit(struct pwddesc *pdp, bool keeplock)
 {
 	struct pwddesc *newpdp;
 	struct pwd *newpwd;
 
 	newpdp = malloc(sizeof(*newpdp), M_PWDDESC, M_WAITOK | M_ZERO);
 
 	PWDDESC_LOCK_INIT(newpdp);
 	refcount_init(&newpdp->pd_refcount, 1);
 	newpdp->pd_cmask = CMASK;
 
 	if (pdp == NULL) {
 		newpwd = pwd_alloc();
 		smr_serialized_store(&newpdp->pd_pwd, newpwd, true);
 		return (newpdp);
 	}
 
 	PWDDESC_XLOCK(pdp);
 	newpwd = pwd_hold_pwddesc(pdp);
 	smr_serialized_store(&newpdp->pd_pwd, newpwd, true);
 	if (!keeplock)
 		PWDDESC_XUNLOCK(pdp);
 	return (newpdp);
 }
 
 /*
  * Hold either filedesc or pwddesc of the passed process.
  *
  * The process lock is used to synchronize against the target exiting and
  * freeing the data.
  *
  * Clearing can be ilustrated in 3 steps:
  * 1. set the pointer to NULL. Either routine can race against it, hence
  *   atomic_load_ptr.
  * 2. observe the process lock as not taken. Until then fdhold/pdhold can
  *   race to either still see the pointer or find NULL. It is still safe to
  *   grab a reference as clearing is stalled.
  * 3. after the lock is observed as not taken, any fdhold/pdhold calls are
  *   guaranteed to see NULL, making it safe to finish clearing
  */
 static struct filedesc *
 fdhold(struct proc *p)
 {
 	struct filedesc *fdp;
 
 	PROC_LOCK_ASSERT(p, MA_OWNED);
 	fdp = atomic_load_ptr(&p->p_fd);
 	if (fdp != NULL)
 		refcount_acquire(&fdp->fd_holdcnt);
 	return (fdp);
 }
 
 static struct pwddesc *
 pdhold(struct proc *p)
 {
 	struct pwddesc *pdp;
 
 	PROC_LOCK_ASSERT(p, MA_OWNED);
 	pdp = atomic_load_ptr(&p->p_pd);
 	if (pdp != NULL)
 		refcount_acquire(&pdp->pd_refcount);
 	return (pdp);
 }
 
 static void
 fddrop(struct filedesc *fdp)
 {
 
 	if (refcount_load(&fdp->fd_holdcnt) > 1) {
 		if (refcount_release(&fdp->fd_holdcnt) == 0)
 			return;
 	}
 
 	FILEDESC_LOCK_DESTROY(fdp);
 	uma_zfree(filedesc0_zone, fdp);
 }
 
 static void
 pddrop(struct pwddesc *pdp)
 {
 	struct pwd *pwd;
 
 	if (refcount_release_if_not_last(&pdp->pd_refcount))
 		return;
 
 	PWDDESC_XLOCK(pdp);
 	if (refcount_release(&pdp->pd_refcount) == 0) {
 		PWDDESC_XUNLOCK(pdp);
 		return;
 	}
 	pwd = PWDDESC_XLOCKED_LOAD_PWD(pdp);
 	pwd_set(pdp, NULL);
 	PWDDESC_XUNLOCK(pdp);
 	pwd_drop(pwd);
 
 	PWDDESC_LOCK_DESTROY(pdp);
 	free(pdp, M_PWDDESC);
 }
 
 /*
  * Share a filedesc structure.
  */
 struct filedesc *
 fdshare(struct filedesc *fdp)
 {
 
 	refcount_acquire(&fdp->fd_refcnt);
 	return (fdp);
 }
 
 /*
  * Share a pwddesc structure.
  */
 struct pwddesc *
 pdshare(struct pwddesc *pdp)
 {
 	refcount_acquire(&pdp->pd_refcount);
 	return (pdp);
 }
 
 /*
  * Unshare a filedesc structure, if necessary by making a copy
  */
 void
 fdunshare(struct thread *td)
 {
 	struct filedesc *tmp;
 	struct proc *p = td->td_proc;
 
 	if (refcount_load(&p->p_fd->fd_refcnt) == 1)
 		return;
 
 	tmp = fdcopy(p->p_fd);
 	fdescfree(td);
 	p->p_fd = tmp;
 }
 
 /*
  * Unshare a pwddesc structure.
  */
 void
 pdunshare(struct thread *td)
 {
 	struct pwddesc *pdp;
 	struct proc *p;
 
 	p = td->td_proc;
 	/* Not shared. */
 	if (p->p_pd->pd_refcount == 1)
 		return;
 
 	pdp = pdcopy(p->p_pd);
 	pdescfree(td);
 	p->p_pd = pdp;
 }
 
 void
 fdinstall_remapped(struct thread *td, struct filedesc *fdp)
 {
 
 	fdescfree(td);
 	td->td_proc->p_fd = fdp;
 }
 
 /*
  * Copy a filedesc structure.  A NULL pointer in returns a NULL reference,
  * this is to ease callers, not catch errors.
  */
 struct filedesc *
 fdcopy(struct filedesc *fdp)
 {
 	struct filedesc *newfdp;
 	struct filedescent *nfde, *ofde;
 	int i, lastfile;
 
 	MPASS(fdp != NULL);
 
 	newfdp = fdinit(fdp, true, &lastfile);
 	/* copy all passable descriptors (i.e. not kqueue) */
 	newfdp->fd_freefile = -1;
 	for (i = 0; i <= lastfile; ++i) {
 		ofde = &fdp->fd_ofiles[i];
 		if (ofde->fde_file == NULL ||
 		    (ofde->fde_file->f_ops->fo_flags & DFLAG_PASSABLE) == 0 ||
 		    !fhold(ofde->fde_file)) {
 			if (newfdp->fd_freefile == -1)
 				newfdp->fd_freefile = i;
 			continue;
 		}
 		nfde = &newfdp->fd_ofiles[i];
 		*nfde = *ofde;
 		filecaps_copy(&ofde->fde_caps, &nfde->fde_caps, true);
 		fdused_init(newfdp, i);
 	}
 	if (newfdp->fd_freefile == -1)
 		newfdp->fd_freefile = i;
 	FILEDESC_SUNLOCK(fdp);
 	return (newfdp);
 }
 
 /*
  * Copy a pwddesc structure.
  */
 struct pwddesc *
 pdcopy(struct pwddesc *pdp)
 {
 	struct pwddesc *newpdp;
 
 	MPASS(pdp != NULL);
 
 	newpdp = pdinit(pdp, true);
 	newpdp->pd_cmask = pdp->pd_cmask;
 	PWDDESC_XUNLOCK(pdp);
 	return (newpdp);
 }
 
 /*
  * Copies a filedesc structure, while remapping all file descriptors
  * stored inside using a translation table.
  *
  * File descriptors are copied over to the new file descriptor table,
  * regardless of whether the close-on-exec flag is set.
  */
 int
 fdcopy_remapped(struct filedesc *fdp, const int *fds, size_t nfds,
     struct filedesc **ret)
 {
 	struct filedesc *newfdp;
 	struct filedescent *nfde, *ofde;
 	int error, i, lastfile;
 
 	MPASS(fdp != NULL);
 
 	newfdp = fdinit(fdp, true, &lastfile);
 	if (nfds > lastfile + 1) {
 		/* New table cannot be larger than the old one. */
 		error = E2BIG;
 		goto bad;
 	}
 	/* Copy all passable descriptors (i.e. not kqueue). */
 	newfdp->fd_freefile = nfds;
 	for (i = 0; i < nfds; ++i) {
 		if (fds[i] < 0 || fds[i] > lastfile) {
 			/* File descriptor out of bounds. */
 			error = EBADF;
 			goto bad;
 		}
 		ofde = &fdp->fd_ofiles[fds[i]];
 		if (ofde->fde_file == NULL) {
 			/* Unused file descriptor. */
 			error = EBADF;
 			goto bad;
 		}
 		if ((ofde->fde_file->f_ops->fo_flags & DFLAG_PASSABLE) == 0) {
 			/* File descriptor cannot be passed. */
 			error = EINVAL;
 			goto bad;
 		}
 		if (!fhold(ofde->fde_file)) {
 			error = EBADF;
 			goto bad;
 		}
 		nfde = &newfdp->fd_ofiles[i];
 		*nfde = *ofde;
 		filecaps_copy(&ofde->fde_caps, &nfde->fde_caps, true);
 		fdused_init(newfdp, i);
 	}
 	FILEDESC_SUNLOCK(fdp);
 	*ret = newfdp;
 	return (0);
 bad:
 	FILEDESC_SUNLOCK(fdp);
 	fdescfree_remapped(newfdp);
 	return (error);
 }
 
 /*
  * Clear POSIX style locks. This is only used when fdp looses a reference (i.e.
  * one of processes using it exits) and the table used to be shared.
  */
 static void
 fdclearlocks(struct thread *td)
 {
 	struct filedesc *fdp;
 	struct filedesc_to_leader *fdtol;
 	struct flock lf;
 	struct file *fp;
 	struct proc *p;
 	struct vnode *vp;
 	int i, lastfile;
 
 	p = td->td_proc;
 	fdp = p->p_fd;
 	fdtol = p->p_fdtol;
 	MPASS(fdtol != NULL);
 
 	FILEDESC_XLOCK(fdp);
 	KASSERT(fdtol->fdl_refcount > 0,
 	    ("filedesc_to_refcount botch: fdl_refcount=%d",
 	    fdtol->fdl_refcount));
 	if (fdtol->fdl_refcount == 1 &&
 	    (p->p_leader->p_flag & P_ADVLOCK) != 0) {
 		lastfile = fdlastfile(fdp);
 		for (i = 0; i <= lastfile; i++) {
 			fp = fdp->fd_ofiles[i].fde_file;
 			if (fp == NULL || fp->f_type != DTYPE_VNODE ||
 			    !fhold(fp))
 				continue;
 			FILEDESC_XUNLOCK(fdp);
 			lf.l_whence = SEEK_SET;
 			lf.l_start = 0;
 			lf.l_len = 0;
 			lf.l_type = F_UNLCK;
 			vp = fp->f_vnode;
 			(void) VOP_ADVLOCK(vp,
 			    (caddr_t)p->p_leader, F_UNLCK,
 			    &lf, F_POSIX);
 			FILEDESC_XLOCK(fdp);
 			fdrop(fp, td);
 		}
 	}
 retry:
 	if (fdtol->fdl_refcount == 1) {
 		if (fdp->fd_holdleaderscount > 0 &&
 		    (p->p_leader->p_flag & P_ADVLOCK) != 0) {
 			/*
 			 * close() or kern_dup() has cleared a reference
 			 * in a shared file descriptor table.
 			 */
 			fdp->fd_holdleaderswakeup = 1;
 			sx_sleep(&fdp->fd_holdleaderscount,
 			    FILEDESC_LOCK(fdp), PLOCK, "fdlhold", 0);
 			goto retry;
 		}
 		if (fdtol->fdl_holdcount > 0) {
 			/*
 			 * Ensure that fdtol->fdl_leader remains
 			 * valid in closef().
 			 */
 			fdtol->fdl_wakeup = 1;
 			sx_sleep(fdtol, FILEDESC_LOCK(fdp), PLOCK,
 			    "fdlhold", 0);
 			goto retry;
 		}
 	}
 	fdtol->fdl_refcount--;
 	if (fdtol->fdl_refcount == 0 &&
 	    fdtol->fdl_holdcount == 0) {
 		fdtol->fdl_next->fdl_prev = fdtol->fdl_prev;
 		fdtol->fdl_prev->fdl_next = fdtol->fdl_next;
 	} else
 		fdtol = NULL;
 	p->p_fdtol = NULL;
 	FILEDESC_XUNLOCK(fdp);
 	if (fdtol != NULL)
 		free(fdtol, M_FILEDESC_TO_LEADER);
 }
 
 /*
  * Release a filedesc structure.
  */
 static void
 fdescfree_fds(struct thread *td, struct filedesc *fdp, bool needclose)
 {
 	struct filedesc0 *fdp0;
 	struct freetable *ft, *tft;
 	struct filedescent *fde;
 	struct file *fp;
 	int i, lastfile;
 
 	KASSERT(refcount_load(&fdp->fd_refcnt) == 0,
 	    ("%s: fd table %p carries references", __func__, fdp));
 
 	/*
 	 * Serialize with threads iterating over the table, if any.
 	 */
 	if (refcount_load(&fdp->fd_holdcnt) > 1) {
 		FILEDESC_XLOCK(fdp);
 		FILEDESC_XUNLOCK(fdp);
 	}
 
 	lastfile = fdlastfile_single(fdp);
 	for (i = 0; i <= lastfile; i++) {
 		fde = &fdp->fd_ofiles[i];
 		fp = fde->fde_file;
 		if (fp != NULL) {
 			fdefree_last(fde);
 			if (needclose)
 				(void) closef(fp, td);
 			else
 				fdrop(fp, td);
 		}
 	}
 
 	if (NDSLOTS(fdp->fd_nfiles) > NDSLOTS(NDFILE))
 		free(fdp->fd_map, M_FILEDESC);
 	if (fdp->fd_nfiles > NDFILE)
 		free(fdp->fd_files, M_FILEDESC);
 
 	fdp0 = (struct filedesc0 *)fdp;
 	SLIST_FOREACH_SAFE(ft, &fdp0->fd_free, ft_next, tft)
 		free(ft->ft_table, M_FILEDESC);
 
 	fddrop(fdp);
 }
 
 void
 fdescfree(struct thread *td)
 {
 	struct proc *p;
 	struct filedesc *fdp;
 
 	p = td->td_proc;
 	fdp = p->p_fd;
 	MPASS(fdp != NULL);
 
 #ifdef RACCT
 	if (RACCT_ENABLED())
 		racct_set_unlocked(p, RACCT_NOFILE, 0);
 #endif
 
 	if (p->p_fdtol != NULL)
 		fdclearlocks(td);
 
 	/*
 	 * Check fdhold for an explanation.
 	 */
 	atomic_store_ptr(&p->p_fd, NULL);
 	atomic_thread_fence_seq_cst();
 	PROC_WAIT_UNLOCKED(p);
 
 	if (refcount_release(&fdp->fd_refcnt) == 0)
 		return;
 
 	fdescfree_fds(td, fdp, 1);
 }
 
 void
 pdescfree(struct thread *td)
 {
 	struct proc *p;
 	struct pwddesc *pdp;
 
 	p = td->td_proc;
 	pdp = p->p_pd;
 	MPASS(pdp != NULL);
 
 	/*
 	 * Check pdhold for an explanation.
 	 */
 	atomic_store_ptr(&p->p_pd, NULL);
 	atomic_thread_fence_seq_cst();
 	PROC_WAIT_UNLOCKED(p);
 
 	pddrop(pdp);
 }
 
 void
 fdescfree_remapped(struct filedesc *fdp)
 {
 #ifdef INVARIANTS
 	/* fdescfree_fds() asserts that fd_refcnt == 0. */
 	if (!refcount_release(&fdp->fd_refcnt))
 		panic("%s: fd table %p has extra references", __func__, fdp);
 #endif
 	fdescfree_fds(curthread, fdp, 0);
 }
 
 /*
  * For setugid programs, we don't want to people to use that setugidness
  * to generate error messages which write to a file which otherwise would
  * otherwise be off-limits to the process.  We check for filesystems where
  * the vnode can change out from under us after execve (like [lin]procfs).
  *
  * Since fdsetugidsafety calls this only for fd 0, 1 and 2, this check is
  * sufficient.  We also don't check for setugidness since we know we are.
  */
 static bool
 is_unsafe(struct file *fp)
 {
 	struct vnode *vp;
 
 	if (fp->f_type != DTYPE_VNODE)
 		return (false);
 
 	vp = fp->f_vnode;
 	return ((vp->v_vflag & VV_PROCDEP) != 0);
 }
 
 /*
  * Make this setguid thing safe, if at all possible.
  */
 void
 fdsetugidsafety(struct thread *td)
 {
 	struct filedesc *fdp;
 	struct file *fp;
 	int i;
 
 	fdp = td->td_proc->p_fd;
 	KASSERT(refcount_load(&fdp->fd_refcnt) == 1,
 	    ("the fdtable should not be shared"));
 	MPASS(fdp->fd_nfiles >= 3);
 	for (i = 0; i <= 2; i++) {
 		fp = fdp->fd_ofiles[i].fde_file;
 		if (fp != NULL && is_unsafe(fp)) {
 			FILEDESC_XLOCK(fdp);
 			knote_fdclose(td, i);
 			/*
 			 * NULL-out descriptor prior to close to avoid
 			 * a race while close blocks.
 			 */
 			fdfree(fdp, i);
 			FILEDESC_XUNLOCK(fdp);
 			(void) closef(fp, td);
 		}
 	}
 }
 
 /*
  * If a specific file object occupies a specific file descriptor, close the
  * file descriptor entry and drop a reference on the file object.  This is a
  * convenience function to handle a subsequent error in a function that calls
  * falloc() that handles the race that another thread might have closed the
  * file descriptor out from under the thread creating the file object.
  */
 void
 fdclose(struct thread *td, struct file *fp, int idx)
 {
 	struct filedesc *fdp = td->td_proc->p_fd;
 
 	FILEDESC_XLOCK(fdp);
 	if (fdp->fd_ofiles[idx].fde_file == fp) {
 		fdfree(fdp, idx);
 		FILEDESC_XUNLOCK(fdp);
 		fdrop(fp, td);
 	} else
 		FILEDESC_XUNLOCK(fdp);
 }
 
 /*
  * Close any files on exec?
  */
 void
 fdcloseexec(struct thread *td)
 {
 	struct filedesc *fdp;
 	struct filedescent *fde;
 	struct file *fp;
 	int i, lastfile;
 
 	fdp = td->td_proc->p_fd;
 	KASSERT(refcount_load(&fdp->fd_refcnt) == 1,
 	    ("the fdtable should not be shared"));
 	lastfile = fdlastfile_single(fdp);
 	for (i = 0; i <= lastfile; i++) {
 		fde = &fdp->fd_ofiles[i];
 		fp = fde->fde_file;
 		if (fp != NULL && (fp->f_type == DTYPE_MQUEUE ||
 		    (fde->fde_flags & UF_EXCLOSE))) {
 			FILEDESC_XLOCK(fdp);
 			fdfree(fdp, i);
 			(void) closefp(fdp, i, fp, td, false, false);
 			FILEDESC_UNLOCK_ASSERT(fdp);
 		}
 	}
 }
 
 /*
  * It is unsafe for set[ug]id processes to be started with file
  * descriptors 0..2 closed, as these descriptors are given implicit
  * significance in the Standard C library.  fdcheckstd() will create a
  * descriptor referencing /dev/null for each of stdin, stdout, and
  * stderr that is not already open.
  */
 int
 fdcheckstd(struct thread *td)
 {
 	struct filedesc *fdp;
 	register_t save;
 	int i, error, devnull;
 
 	fdp = td->td_proc->p_fd;
 	KASSERT(refcount_load(&fdp->fd_refcnt) == 1,
 	    ("the fdtable should not be shared"));
 	MPASS(fdp->fd_nfiles >= 3);
 	devnull = -1;
 	for (i = 0; i <= 2; i++) {
 		if (fdp->fd_ofiles[i].fde_file != NULL)
 			continue;
 
 		save = td->td_retval[0];
 		if (devnull != -1) {
 			error = kern_dup(td, FDDUP_FIXED, 0, devnull, i);
 		} else {
 			error = kern_openat(td, AT_FDCWD, "/dev/null",
 			    UIO_SYSSPACE, O_RDWR, 0);
 			if (error == 0) {
 				devnull = td->td_retval[0];
 				KASSERT(devnull == i, ("we didn't get our fd"));
 			}
 		}
 		td->td_retval[0] = save;
 		if (error != 0)
 			return (error);
 	}
 	return (0);
 }
 
 /*
  * Internal form of close.  Decrement reference count on file structure.
  * Note: td may be NULL when closing a file that was being passed in a
  * message.
  */
 int
 closef(struct file *fp, struct thread *td)
 {
 	struct vnode *vp;
 	struct flock lf;
 	struct filedesc_to_leader *fdtol;
 	struct filedesc *fdp;
 
 	MPASS(td != NULL);
 
 	/*
 	 * POSIX record locking dictates that any close releases ALL
 	 * locks owned by this process.  This is handled by setting
 	 * a flag in the unlock to free ONLY locks obeying POSIX
 	 * semantics, and not to free BSD-style file locks.
 	 * If the descriptor was in a message, POSIX-style locks
 	 * aren't passed with the descriptor, and the thread pointer
 	 * will be NULL.  Callers should be careful only to pass a
 	 * NULL thread pointer when there really is no owning
 	 * context that might have locks, or the locks will be
 	 * leaked.
 	 */
 	if (fp->f_type == DTYPE_VNODE) {
 		vp = fp->f_vnode;
 		if ((td->td_proc->p_leader->p_flag & P_ADVLOCK) != 0) {
 			lf.l_whence = SEEK_SET;
 			lf.l_start = 0;
 			lf.l_len = 0;
 			lf.l_type = F_UNLCK;
 			(void) VOP_ADVLOCK(vp, (caddr_t)td->td_proc->p_leader,
 			    F_UNLCK, &lf, F_POSIX);
 		}
 		fdtol = td->td_proc->p_fdtol;
 		if (fdtol != NULL) {
 			/*
 			 * Handle special case where file descriptor table is
 			 * shared between multiple process leaders.
 			 */
 			fdp = td->td_proc->p_fd;
 			FILEDESC_XLOCK(fdp);
 			for (fdtol = fdtol->fdl_next;
 			    fdtol != td->td_proc->p_fdtol;
 			    fdtol = fdtol->fdl_next) {
 				if ((fdtol->fdl_leader->p_flag &
 				    P_ADVLOCK) == 0)
 					continue;
 				fdtol->fdl_holdcount++;
 				FILEDESC_XUNLOCK(fdp);
 				lf.l_whence = SEEK_SET;
 				lf.l_start = 0;
 				lf.l_len = 0;
 				lf.l_type = F_UNLCK;
 				vp = fp->f_vnode;
 				(void) VOP_ADVLOCK(vp,
 				    (caddr_t)fdtol->fdl_leader, F_UNLCK, &lf,
 				    F_POSIX);
 				FILEDESC_XLOCK(fdp);
 				fdtol->fdl_holdcount--;
 				if (fdtol->fdl_holdcount == 0 &&
 				    fdtol->fdl_wakeup != 0) {
 					fdtol->fdl_wakeup = 0;
 					wakeup(fdtol);
 				}
 			}
 			FILEDESC_XUNLOCK(fdp);
 		}
 	}
 	return (fdrop_close(fp, td));
 }
 
 /*
  * Hack for file descriptor passing code.
  */
 void
 closef_nothread(struct file *fp)
 {
 
 	fdrop(fp, NULL);
 }
 
 /*
  * Initialize the file pointer with the specified properties.
  *
  * The ops are set with release semantics to be certain that the flags, type,
  * and data are visible when ops is.  This is to prevent ops methods from being
  * called with bad data.
  */
 void
 finit(struct file *fp, u_int flag, short type, void *data, struct fileops *ops)
 {
 	fp->f_data = data;
 	fp->f_flag = flag;
 	fp->f_type = type;
 	atomic_store_rel_ptr((volatile uintptr_t *)&fp->f_ops, (uintptr_t)ops);
 }
 
 void
 finit_vnode(struct file *fp, u_int flag, void *data, struct fileops *ops)
 {
 	fp->f_seqcount[UIO_READ] = 1;
 	fp->f_seqcount[UIO_WRITE] = 1;
 	finit(fp, (flag & FMASK) | (fp->f_flag & FHASLOCK), DTYPE_VNODE,
 	    data, ops);
 }
 
 int
 fget_cap_locked(struct filedesc *fdp, int fd, cap_rights_t *needrightsp,
     struct file **fpp, struct filecaps *havecapsp)
 {
 	struct filedescent *fde;
 	int error;
 
 	FILEDESC_LOCK_ASSERT(fdp);
 
 	*fpp = NULL;
 	fde = fdeget_locked(fdp, fd);
 	if (fde == NULL) {
 		error = EBADF;
 		goto out;
 	}
 
 #ifdef CAPABILITIES
 	error = cap_check(cap_rights_fde_inline(fde), needrightsp);
 	if (error != 0)
 		goto out;
 #endif
 
 	if (havecapsp != NULL)
 		filecaps_copy(&fde->fde_caps, havecapsp, true);
 
 	*fpp = fde->fde_file;
 
 	error = 0;
 out:
 	return (error);
 }
 
 int
 fget_cap(struct thread *td, int fd, cap_rights_t *needrightsp,
     struct file **fpp, struct filecaps *havecapsp)
 {
 	struct filedesc *fdp = td->td_proc->p_fd;
 	int error;
 #ifndef CAPABILITIES
 	error = fget_unlocked(fdp, fd, needrightsp, fpp);
 	if (havecapsp != NULL && error == 0)
 		filecaps_fill(havecapsp);
 #else
 	struct file *fp;
 	seqc_t seq;
 
 	*fpp = NULL;
 	for (;;) {
 		error = fget_unlocked_seq(fdp, fd, needrightsp, &fp, &seq);
 		if (error != 0)
 			return (error);
 
 		if (havecapsp != NULL) {
 			if (!filecaps_copy(&fdp->fd_ofiles[fd].fde_caps,
 			    havecapsp, false)) {
 				fdrop(fp, td);
 				goto get_locked;
 			}
 		}
 
 		if (!fd_modified(fdp, fd, seq))
 			break;
 		fdrop(fp, td);
 	}
 
 	*fpp = fp;
 	return (0);
 
 get_locked:
 	FILEDESC_SLOCK(fdp);
 	error = fget_cap_locked(fdp, fd, needrightsp, fpp, havecapsp);
 	if (error == 0 && !fhold(*fpp))
 		error = EBADF;
 	FILEDESC_SUNLOCK(fdp);
 #endif
 	return (error);
 }
 
 #ifdef CAPABILITIES
 int
 fgetvp_lookup_smr(int fd, struct nameidata *ndp, struct vnode **vpp, bool *fsearch)
 {
 	const struct filedescent *fde;
 	const struct fdescenttbl *fdt;
 	struct filedesc *fdp;
 	struct file *fp;
 	struct vnode *vp;
 	const cap_rights_t *haverights;
 	cap_rights_t rights;
 	seqc_t seq;
 
 	VFS_SMR_ASSERT_ENTERED();
 
 	rights = *ndp->ni_rightsneeded;
 	cap_rights_set_one(&rights, CAP_LOOKUP);
 
 	fdp = curproc->p_fd;
 	fdt = fdp->fd_files;
 	if (__predict_false((u_int)fd >= fdt->fdt_nfiles))
 		return (EBADF);
 	seq = seqc_read_notmodify(fd_seqc(fdt, fd));
 	fde = &fdt->fdt_ofiles[fd];
 	haverights = cap_rights_fde_inline(fde);
 	fp = fde->fde_file;
 	if (__predict_false(fp == NULL))
 		return (EAGAIN);
 	if (__predict_false(cap_check_inline_transient(haverights, &rights)))
 		return (EAGAIN);
 	*fsearch = ((fp->f_flag & FSEARCH) != 0);
 	vp = fp->f_vnode;
 	if (__predict_false(vp == NULL)) {
 		return (EAGAIN);
 	}
 	if (!filecaps_copy(&fde->fde_caps, &ndp->ni_filecaps, false)) {
 		return (EAGAIN);
 	}
 	/*
 	 * Use an acquire barrier to force re-reading of fdt so it is
 	 * refreshed for verification.
 	 */
 	atomic_thread_fence_acq();
 	fdt = fdp->fd_files;
 	if (__predict_false(!seqc_consistent_nomb(fd_seqc(fdt, fd), seq)))
 		return (EAGAIN);
 	/*
 	 * If file descriptor doesn't have all rights,
 	 * all lookups relative to it must also be
 	 * strictly relative.
 	 *
 	 * Not yet supported by fast path.
 	 */
 	CAP_ALL(&rights);
 	if (!cap_rights_contains(&ndp->ni_filecaps.fc_rights, &rights) ||
 	    ndp->ni_filecaps.fc_fcntls != CAP_FCNTL_ALL ||
 	    ndp->ni_filecaps.fc_nioctls != -1) {
 #ifdef notyet
 		ndp->ni_lcf |= NI_LCF_STRICTRELATIVE;
 #else
 		return (EAGAIN);
 #endif
 	}
 	*vpp = vp;
 	return (0);
 }
 #else
 int
 fgetvp_lookup_smr(int fd, struct nameidata *ndp, struct vnode **vpp, bool *fsearch)
 {
 	const struct fdescenttbl *fdt;
 	struct filedesc *fdp;
 	struct file *fp;
 	struct vnode *vp;
 
 	VFS_SMR_ASSERT_ENTERED();
 
 	fdp = curproc->p_fd;
 	fdt = fdp->fd_files;
 	if (__predict_false((u_int)fd >= fdt->fdt_nfiles))
 		return (EBADF);
 	fp = fdt->fdt_ofiles[fd].fde_file;
 	if (__predict_false(fp == NULL))
 		return (EAGAIN);
 	*fsearch = ((fp->f_flag & FSEARCH) != 0);
 	vp = fp->f_vnode;
 	if (__predict_false(vp == NULL || vp->v_type != VDIR)) {
 		return (EAGAIN);
 	}
 	/*
 	 * Use an acquire barrier to force re-reading of fdt so it is
 	 * refreshed for verification.
 	 */
 	atomic_thread_fence_acq();
 	fdt = fdp->fd_files;
 	if (__predict_false(fp != fdt->fdt_ofiles[fd].fde_file))
 		return (EAGAIN);
 	filecaps_fill(&ndp->ni_filecaps);
 	*vpp = vp;
 	return (0);
 }
 #endif
 
 int
 fgetvp_lookup(int fd, struct nameidata *ndp, struct vnode **vpp)
 {
 	struct thread *td;
 	struct file *fp;
 	struct vnode *vp;
 	struct componentname *cnp;
 	cap_rights_t rights;
 	int error;
 
 	td = curthread;
 	rights = *ndp->ni_rightsneeded;
 	cap_rights_set_one(&rights, CAP_LOOKUP);
 	cnp = &ndp->ni_cnd;
 
 	error = fget_cap(td, ndp->ni_dirfd, &rights, &fp, &ndp->ni_filecaps);
 	if (__predict_false(error != 0))
 		return (error);
 	if (__predict_false(fp->f_ops == &badfileops)) {
 		error = EBADF;
 		goto out_free;
 	}
 	vp = fp->f_vnode;
 	if (__predict_false(vp == NULL)) {
 		error = ENOTDIR;
 		goto out_free;
 	}
 	vrefact(vp);
 	/*
 	 * XXX does not check for VDIR, handled by namei_setup
 	 */
 	if ((fp->f_flag & FSEARCH) != 0)
 		cnp->cn_flags |= NOEXECCHECK;
 	fdrop(fp, td);
 
 #ifdef CAPABILITIES
 	/*
 	 * If file descriptor doesn't have all rights,
 	 * all lookups relative to it must also be
 	 * strictly relative.
 	 */
 	CAP_ALL(&rights);
 	if (!cap_rights_contains(&ndp->ni_filecaps.fc_rights, &rights) ||
 	    ndp->ni_filecaps.fc_fcntls != CAP_FCNTL_ALL ||
 	    ndp->ni_filecaps.fc_nioctls != -1) {
 		ndp->ni_lcf |= NI_LCF_STRICTRELATIVE;
 		ndp->ni_resflags |= NIRES_STRICTREL;
 	}
 #endif
 
 	/*
 	 * TODO: avoid copying ioctl caps if it can be helped to begin with
 	 */
 	if ((cnp->cn_flags & WANTIOCTLCAPS) == 0)
 		filecaps_free_ioctl(&ndp->ni_filecaps);
 
 	*vpp = vp;
 	return (0);
 
 out_free:
 	filecaps_free(&ndp->ni_filecaps);
 	fdrop(fp, td);
 	return (error);
 }
 
 static int
 fget_unlocked_seq(struct filedesc *fdp, int fd, cap_rights_t *needrightsp,
     struct file **fpp, seqc_t *seqp)
 {
 #ifdef CAPABILITIES
 	const struct filedescent *fde;
 #endif
 	const struct fdescenttbl *fdt;
 	struct file *fp;
 #ifdef CAPABILITIES
 	seqc_t seq;
 	cap_rights_t haverights;
 	int error;
 #endif
 
 	fdt = fdp->fd_files;
 	if (__predict_false((u_int)fd >= fdt->fdt_nfiles))
 		return (EBADF);
 	/*
 	 * Fetch the descriptor locklessly.  We avoid fdrop() races by
 	 * never raising a refcount above 0.  To accomplish this we have
 	 * to use a cmpset loop rather than an atomic_add.  The descriptor
 	 * must be re-verified once we acquire a reference to be certain
 	 * that the identity is still correct and we did not lose a race
 	 * due to preemption.
 	 */
 	for (;;) {
 #ifdef CAPABILITIES
 		seq = seqc_read_notmodify(fd_seqc(fdt, fd));
 		fde = &fdt->fdt_ofiles[fd];
 		haverights = *cap_rights_fde_inline(fde);
 		fp = fde->fde_file;
 		if (!seqc_consistent(fd_seqc(fdt, fd), seq))
 			continue;
 #else
 		fp = fdt->fdt_ofiles[fd].fde_file;
 #endif
 		if (fp == NULL)
 			return (EBADF);
 #ifdef CAPABILITIES
 		error = cap_check_inline(&haverights, needrightsp);
 		if (error != 0)
 			return (error);
 #endif
 		if (__predict_false(!refcount_acquire_if_not_zero(&fp->f_count))) {
 			/*
 			 * Force a reload. Other thread could reallocate the
 			 * table before this fd was closed, so it is possible
 			 * that there is a stale fp pointer in cached version.
 			 */
 			fdt = atomic_load_ptr(&fdp->fd_files);
 			continue;
 		}
 		/*
 		 * Use an acquire barrier to force re-reading of fdt so it is
 		 * refreshed for verification.
 		 */
 		atomic_thread_fence_acq();
 		fdt = fdp->fd_files;
 #ifdef	CAPABILITIES
 		if (seqc_consistent_nomb(fd_seqc(fdt, fd), seq))
 #else
 		if (fp == fdt->fdt_ofiles[fd].fde_file)
 #endif
 			break;
 		fdrop(fp, curthread);
 	}
 	*fpp = fp;
 	if (seqp != NULL) {
 #ifdef CAPABILITIES
 		*seqp = seq;
 #endif
 	}
 	return (0);
 }
 
 /*
  * See the comments in fget_unlocked_seq for an explanation of how this works.
  *
  * This is a simplified variant which bails out to the aforementioned routine
  * if anything goes wrong. In practice this only happens when userspace is
  * racing with itself.
  */
 int
 fget_unlocked(struct filedesc *fdp, int fd, cap_rights_t *needrightsp,
     struct file **fpp)
 {
 #ifdef CAPABILITIES
 	const struct filedescent *fde;
 #endif
 	const struct fdescenttbl *fdt;
 	struct file *fp;
 #ifdef CAPABILITIES
 	seqc_t seq;
 	const cap_rights_t *haverights;
 #endif
 
 	fdt = fdp->fd_files;
 	if (__predict_false((u_int)fd >= fdt->fdt_nfiles)) {
 		*fpp = NULL;
 		return (EBADF);
 	}
 #ifdef CAPABILITIES
 	seq = seqc_read_notmodify(fd_seqc(fdt, fd));
 	fde = &fdt->fdt_ofiles[fd];
 	haverights = cap_rights_fde_inline(fde);
 	fp = fde->fde_file;
 #else
 	fp = fdt->fdt_ofiles[fd].fde_file;
 #endif
 	if (__predict_false(fp == NULL))
 		goto out_fallback;
 #ifdef CAPABILITIES
 	if (__predict_false(cap_check_inline_transient(haverights, needrightsp)))
 		goto out_fallback;
 #endif
 	if (__predict_false(!refcount_acquire_if_not_zero(&fp->f_count)))
 		goto out_fallback;
 
 	/*
 	 * Use an acquire barrier to force re-reading of fdt so it is
 	 * refreshed for verification.
 	 */
 	atomic_thread_fence_acq();
 	fdt = fdp->fd_files;
 #ifdef	CAPABILITIES
 	if (__predict_false(!seqc_consistent_nomb(fd_seqc(fdt, fd), seq)))
 #else
 	if (__predict_false(fp != fdt->fdt_ofiles[fd].fde_file))
 #endif
 		goto out_fdrop;
 	*fpp = fp;
 	return (0);
 out_fdrop:
 	fdrop(fp, curthread);
 out_fallback:
 	*fpp = NULL;
 	return (fget_unlocked_seq(fdp, fd, needrightsp, fpp, NULL));
 }
 
 /*
  * Translate fd -> file when the caller guarantees the file descriptor table
  * can't be changed by others.
  *
  * Note this does not mean the file object itself is only visible to the caller,
  * merely that it wont disappear without having to be referenced.
  *
  * Must be paired with fput_only_user.
  */
 #ifdef	CAPABILITIES
 int
 fget_only_user(struct filedesc *fdp, int fd, cap_rights_t *needrightsp,
     struct file **fpp)
 {
 	const struct filedescent *fde;
 	const struct fdescenttbl *fdt;
 	const cap_rights_t *haverights;
 	struct file *fp;
 	int error;
 
 	MPASS(FILEDESC_IS_ONLY_USER(fdp));
 
 	*fpp = NULL;
 	if (__predict_false(fd >= fdp->fd_nfiles))
 		return (EBADF);
 
 	fdt = fdp->fd_files;
 	fde = &fdt->fdt_ofiles[fd];
 	fp = fde->fde_file;
 	if (__predict_false(fp == NULL))
 		return (EBADF);
 	MPASS(refcount_load(&fp->f_count) > 0);
 	haverights = cap_rights_fde_inline(fde);
 	error = cap_check_inline(haverights, needrightsp);
 	if (__predict_false(error != 0))
 		return (error);
 	*fpp = fp;
 	return (0);
 }
 #else
 int
 fget_only_user(struct filedesc *fdp, int fd, cap_rights_t *needrightsp,
     struct file **fpp)
 {
 	struct file *fp;
 
 	MPASS(FILEDESC_IS_ONLY_USER(fdp));
 
 	*fpp = NULL;
 	if (__predict_false(fd >= fdp->fd_nfiles))
 		return (EBADF);
 
 	fp = fdp->fd_ofiles[fd].fde_file;
 	if (__predict_false(fp == NULL))
 		return (EBADF);
 
 	MPASS(refcount_load(&fp->f_count) > 0);
 	*fpp = fp;
 	return (0);
 }
 #endif
 
 /*
  * Extract the file pointer associated with the specified descriptor for the
  * current user process.
  *
  * If the descriptor doesn't exist or doesn't match 'flags', EBADF is
  * returned.
  *
  * File's rights will be checked against the capability rights mask.
  *
  * If an error occurred the non-zero error is returned and *fpp is set to
  * NULL.  Otherwise *fpp is held and set and zero is returned.  Caller is
  * responsible for fdrop().
  */
 static __inline int
 _fget(struct thread *td, int fd, struct file **fpp, int flags,
     cap_rights_t *needrightsp)
 {
 	struct filedesc *fdp;
 	struct file *fp;
 	int error;
 
 	*fpp = NULL;
 	fdp = td->td_proc->p_fd;
 	error = fget_unlocked(fdp, fd, needrightsp, &fp);
 	if (__predict_false(error != 0))
 		return (error);
 	if (__predict_false(fp->f_ops == &badfileops)) {
 		fdrop(fp, td);
 		return (EBADF);
 	}
 
 	/*
 	 * FREAD and FWRITE failure return EBADF as per POSIX.
 	 */
 	error = 0;
 	switch (flags) {
 	case FREAD:
 	case FWRITE:
 		if ((fp->f_flag & flags) == 0)
 			error = EBADF;
 		break;
 	case FEXEC:
 		if (fp->f_ops != &path_fileops &&
 		    ((fp->f_flag & (FREAD | FEXEC)) == 0 ||
 		    (fp->f_flag & FWRITE) != 0))
 			error = EBADF;
 		break;
 	case 0:
 		break;
 	default:
 		KASSERT(0, ("wrong flags"));
 	}
 
 	if (error != 0) {
 		fdrop(fp, td);
 		return (error);
 	}
 
 	*fpp = fp;
 	return (0);
 }
 
 int
 fget(struct thread *td, int fd, cap_rights_t *rightsp, struct file **fpp)
 {
 
 	return (_fget(td, fd, fpp, 0, rightsp));
 }
 
 int
 fget_mmap(struct thread *td, int fd, cap_rights_t *rightsp, vm_prot_t *maxprotp,
     struct file **fpp)
 {
 	int error;
 #ifndef CAPABILITIES
 	error = _fget(td, fd, fpp, 0, rightsp);
 	if (maxprotp != NULL)
 		*maxprotp = VM_PROT_ALL;
 	return (error);
 #else
 	cap_rights_t fdrights;
 	struct filedesc *fdp;
 	struct file *fp;
 	seqc_t seq;
 
 	*fpp = NULL;
 	fdp = td->td_proc->p_fd;
 	MPASS(cap_rights_is_set(rightsp, CAP_MMAP));
 	for (;;) {
 		error = fget_unlocked_seq(fdp, fd, rightsp, &fp, &seq);
 		if (__predict_false(error != 0))
 			return (error);
 		if (__predict_false(fp->f_ops == &badfileops)) {
 			fdrop(fp, td);
 			return (EBADF);
 		}
 		if (maxprotp != NULL)
 			fdrights = *cap_rights(fdp, fd);
 		if (!fd_modified(fdp, fd, seq))
 			break;
 		fdrop(fp, td);
 	}
 
 	/*
 	 * If requested, convert capability rights to access flags.
 	 */
 	if (maxprotp != NULL)
 		*maxprotp = cap_rights_to_vmprot(&fdrights);
 	*fpp = fp;
 	return (0);
 #endif
 }
 
 int
 fget_read(struct thread *td, int fd, cap_rights_t *rightsp, struct file **fpp)
 {
 
 	return (_fget(td, fd, fpp, FREAD, rightsp));
 }
 
 int
 fget_write(struct thread *td, int fd, cap_rights_t *rightsp, struct file **fpp)
 {
 
 	return (_fget(td, fd, fpp, FWRITE, rightsp));
 }
 
 int
 fget_fcntl(struct thread *td, int fd, cap_rights_t *rightsp, int needfcntl,
     struct file **fpp)
 {
 	struct filedesc *fdp = td->td_proc->p_fd;
 #ifndef CAPABILITIES
 	return (fget_unlocked(fdp, fd, rightsp, fpp));
 #else
 	struct file *fp;
 	int error;
 	seqc_t seq;
 
 	*fpp = NULL;
 	MPASS(cap_rights_is_set(rightsp, CAP_FCNTL));
 	for (;;) {
 		error = fget_unlocked_seq(fdp, fd, rightsp, &fp, &seq);
 		if (error != 0)
 			return (error);
 		error = cap_fcntl_check(fdp, fd, needfcntl);
 		if (!fd_modified(fdp, fd, seq))
 			break;
 		fdrop(fp, td);
 	}
 	if (error != 0) {
 		fdrop(fp, td);
 		return (error);
 	}
 	*fpp = fp;
 	return (0);
 #endif
 }
 
 /*
  * Like fget() but loads the underlying vnode, or returns an error if the
  * descriptor does not represent a vnode.  Note that pipes use vnodes but
  * never have VM objects.  The returned vnode will be vref()'d.
  *
  * XXX: what about the unused flags ?
  */
 static __inline int
 _fgetvp(struct thread *td, int fd, int flags, cap_rights_t *needrightsp,
     struct vnode **vpp)
 {
 	struct file *fp;
 	int error;
 
 	*vpp = NULL;
 	error = _fget(td, fd, &fp, flags, needrightsp);
 	if (error != 0)
 		return (error);
 	if (fp->f_vnode == NULL) {
 		error = EINVAL;
 	} else {
 		*vpp = fp->f_vnode;
 		vrefact(*vpp);
 	}
 	fdrop(fp, td);
 
 	return (error);
 }
 
 int
 fgetvp(struct thread *td, int fd, cap_rights_t *rightsp, struct vnode **vpp)
 {
 
 	return (_fgetvp(td, fd, 0, rightsp, vpp));
 }
 
 int
 fgetvp_rights(struct thread *td, int fd, cap_rights_t *needrightsp,
     struct filecaps *havecaps, struct vnode **vpp)
 {
 	struct filecaps caps;
 	struct file *fp;
 	int error;
 
 	error = fget_cap(td, fd, needrightsp, &fp, &caps);
 	if (error != 0)
 		return (error);
 	if (fp->f_ops == &badfileops) {
 		error = EBADF;
 		goto out;
 	}
 	if (fp->f_vnode == NULL) {
 		error = EINVAL;
 		goto out;
 	}
 
 	*havecaps = caps;
 	*vpp = fp->f_vnode;
 	vrefact(*vpp);
 	fdrop(fp, td);
 
 	return (0);
 out:
 	filecaps_free(&caps);
 	fdrop(fp, td);
 	return (error);
 }
 
 int
 fgetvp_read(struct thread *td, int fd, cap_rights_t *rightsp, struct vnode **vpp)
 {
 
 	return (_fgetvp(td, fd, FREAD, rightsp, vpp));
 }
 
 int
 fgetvp_exec(struct thread *td, int fd, cap_rights_t *rightsp, struct vnode **vpp)
 {
 
 	return (_fgetvp(td, fd, FEXEC, rightsp, vpp));
 }
 
 #ifdef notyet
 int
 fgetvp_write(struct thread *td, int fd, cap_rights_t *rightsp,
     struct vnode **vpp)
 {
 
 	return (_fgetvp(td, fd, FWRITE, rightsp, vpp));
 }
 #endif
 
 /*
  * Handle the last reference to a file being closed.
  *
  * Without the noinline attribute clang keeps inlining the func thorough this
  * file when fdrop is used.
  */
 int __noinline
 _fdrop(struct file *fp, struct thread *td)
 {
 	int error;
 #ifdef INVARIANTS
 	int count;
 
 	count = refcount_load(&fp->f_count);
 	if (count != 0)
 		panic("fdrop: fp %p count %d", fp, count);
 #endif
 	error = fo_close(fp, td);
 	atomic_subtract_int(&openfiles, 1);
 	crfree(fp->f_cred);
 	free(fp->f_advice, M_FADVISE);
 	uma_zfree(file_zone, fp);
 
 	return (error);
 }
 
 /*
  * Apply an advisory lock on a file descriptor.
  *
  * Just attempt to get a record lock of the requested type on the entire file
  * (l_whence = SEEK_SET, l_start = 0, l_len = 0).
  */
 #ifndef _SYS_SYSPROTO_H_
 struct flock_args {
 	int	fd;
 	int	how;
 };
 #endif
 /* ARGSUSED */
 int
 sys_flock(struct thread *td, struct flock_args *uap)
 {
 	struct file *fp;
 	struct vnode *vp;
 	struct flock lf;
 	int error;
 
 	error = fget(td, uap->fd, &cap_flock_rights, &fp);
 	if (error != 0)
 		return (error);
 	error = EOPNOTSUPP;
 	if (fp->f_type != DTYPE_VNODE && fp->f_type != DTYPE_FIFO) {
 		goto done;
 	}
 	if (fp->f_ops == &path_fileops) {
 		goto done;
 	}
 
 	error = 0;
 	vp = fp->f_vnode;
 	lf.l_whence = SEEK_SET;
 	lf.l_start = 0;
 	lf.l_len = 0;
 	if (uap->how & LOCK_UN) {
 		lf.l_type = F_UNLCK;
 		atomic_clear_int(&fp->f_flag, FHASLOCK);
 		error = VOP_ADVLOCK(vp, (caddr_t)fp, F_UNLCK, &lf, F_FLOCK);
 		goto done;
 	}
 	if (uap->how & LOCK_EX)
 		lf.l_type = F_WRLCK;
 	else if (uap->how & LOCK_SH)
 		lf.l_type = F_RDLCK;
 	else {
 		error = EBADF;
 		goto done;
 	}
 	atomic_set_int(&fp->f_flag, FHASLOCK);
 	error = VOP_ADVLOCK(vp, (caddr_t)fp, F_SETLK, &lf,
 	    (uap->how & LOCK_NB) ? F_FLOCK : F_FLOCK | F_WAIT);
 done:
 	fdrop(fp, td);
 	return (error);
 }
 /*
  * Duplicate the specified descriptor to a free descriptor.
  */
 int
 dupfdopen(struct thread *td, struct filedesc *fdp, int dfd, int mode,
     int openerror, int *indxp)
 {
 	struct filedescent *newfde, *oldfde;
 	struct file *fp;
 	u_long *ioctls;
 	int error, indx;
 
 	KASSERT(openerror == ENODEV || openerror == ENXIO,
 	    ("unexpected error %d in %s", openerror, __func__));
 
 	/*
 	 * If the to-be-dup'd fd number is greater than the allowed number
 	 * of file descriptors, or the fd to be dup'd has already been
 	 * closed, then reject.
 	 */
 	FILEDESC_XLOCK(fdp);
 	if ((fp = fget_locked(fdp, dfd)) == NULL) {
 		FILEDESC_XUNLOCK(fdp);
 		return (EBADF);
 	}
 
 	error = fdalloc(td, 0, &indx);
 	if (error != 0) {
 		FILEDESC_XUNLOCK(fdp);
 		return (error);
 	}
 
 	/*
 	 * There are two cases of interest here.
 	 *
 	 * For ENODEV simply dup (dfd) to file descriptor (indx) and return.
 	 *
 	 * For ENXIO steal away the file structure from (dfd) and store it in
 	 * (indx).  (dfd) is effectively closed by this operation.
 	 */
 	switch (openerror) {
 	case ENODEV:
 		/*
 		 * Check that the mode the file is being opened for is a
 		 * subset of the mode of the existing descriptor.
 		 */
 		if (((mode & (FREAD|FWRITE)) | fp->f_flag) != fp->f_flag) {
 			fdunused(fdp, indx);
 			FILEDESC_XUNLOCK(fdp);
 			return (EACCES);
 		}
 		if (!fhold(fp)) {
 			fdunused(fdp, indx);
 			FILEDESC_XUNLOCK(fdp);
 			return (EBADF);
 		}
 		newfde = &fdp->fd_ofiles[indx];
 		oldfde = &fdp->fd_ofiles[dfd];
 		ioctls = filecaps_copy_prep(&oldfde->fde_caps);
 #ifdef CAPABILITIES
 		seqc_write_begin(&newfde->fde_seqc);
 #endif
 		memcpy(newfde, oldfde, fde_change_size);
 		filecaps_copy_finish(&oldfde->fde_caps, &newfde->fde_caps,
 		    ioctls);
 #ifdef CAPABILITIES
 		seqc_write_end(&newfde->fde_seqc);
 #endif
 		break;
 	case ENXIO:
 		/*
 		 * Steal away the file pointer from dfd and stuff it into indx.
 		 */
 		newfde = &fdp->fd_ofiles[indx];
 		oldfde = &fdp->fd_ofiles[dfd];
 #ifdef CAPABILITIES
 		seqc_write_begin(&newfde->fde_seqc);
 #endif
 		memcpy(newfde, oldfde, fde_change_size);
 		oldfde->fde_file = NULL;
 		fdunused(fdp, dfd);
 #ifdef CAPABILITIES
 		seqc_write_end(&newfde->fde_seqc);
 #endif
 		break;
 	}
 	FILEDESC_XUNLOCK(fdp);
 	*indxp = indx;
 	return (0);
 }
 
 /*
  * This sysctl determines if we will allow a process to chroot(2) if it
  * has a directory open:
  *	0: disallowed for all processes.
  *	1: allowed for processes that were not already chroot(2)'ed.
  *	2: allowed for all processes.
  */
 
 static int chroot_allow_open_directories = 1;
 
 SYSCTL_INT(_kern, OID_AUTO, chroot_allow_open_directories, CTLFLAG_RW,
     &chroot_allow_open_directories, 0,
     "Allow a process to chroot(2) if it has a directory open");
 
 /*
  * Helper function for raised chroot(2) security function:  Refuse if
  * any filedescriptors are open directories.
  */
 static int
 chroot_refuse_vdir_fds(struct filedesc *fdp)
 {
 	struct vnode *vp;
 	struct file *fp;
 	int fd, lastfile;
 
 	FILEDESC_LOCK_ASSERT(fdp);
 
 	lastfile = fdlastfile(fdp);
 	for (fd = 0; fd <= lastfile; fd++) {
 		fp = fget_locked(fdp, fd);
 		if (fp == NULL)
 			continue;
 		if (fp->f_type == DTYPE_VNODE) {
 			vp = fp->f_vnode;
 			if (vp->v_type == VDIR)
 				return (EPERM);
 		}
 	}
 	return (0);
 }
 
 static void
 pwd_fill(struct pwd *oldpwd, struct pwd *newpwd)
 {
 
 	if (newpwd->pwd_cdir == NULL && oldpwd->pwd_cdir != NULL) {
 		vrefact(oldpwd->pwd_cdir);
 		newpwd->pwd_cdir = oldpwd->pwd_cdir;
 	}
 
 	if (newpwd->pwd_rdir == NULL && oldpwd->pwd_rdir != NULL) {
 		vrefact(oldpwd->pwd_rdir);
 		newpwd->pwd_rdir = oldpwd->pwd_rdir;
 	}
 
 	if (newpwd->pwd_jdir == NULL && oldpwd->pwd_jdir != NULL) {
 		vrefact(oldpwd->pwd_jdir);
 		newpwd->pwd_jdir = oldpwd->pwd_jdir;
 	}
 }
 
 struct pwd *
 pwd_hold_pwddesc(struct pwddesc *pdp)
 {
 	struct pwd *pwd;
 
 	PWDDESC_ASSERT_XLOCKED(pdp);
 	pwd = PWDDESC_XLOCKED_LOAD_PWD(pdp);
 	if (pwd != NULL)
 		refcount_acquire(&pwd->pwd_refcount);
 	return (pwd);
 }
 
 bool
 pwd_hold_smr(struct pwd *pwd)
 {
 
 	MPASS(pwd != NULL);
 	if (__predict_true(refcount_acquire_if_not_zero(&pwd->pwd_refcount))) {
 		return (true);
 	}
 	return (false);
 }
 
 struct pwd *
 pwd_hold(struct thread *td)
 {
 	struct pwddesc *pdp;
 	struct pwd *pwd;
 
 	pdp = td->td_proc->p_pd;
 
 	vfs_smr_enter();
 	pwd = vfs_smr_entered_load(&pdp->pd_pwd);
 	if (pwd_hold_smr(pwd)) {
 		vfs_smr_exit();
 		return (pwd);
 	}
 	vfs_smr_exit();
 	PWDDESC_XLOCK(pdp);
 	pwd = pwd_hold_pwddesc(pdp);
 	MPASS(pwd != NULL);
 	PWDDESC_XUNLOCK(pdp);
 	return (pwd);
 }
 
 struct pwd *
 pwd_hold_proc(struct proc *p)
 {
 	struct pwddesc *pdp;
 	struct pwd *pwd;
 
 	PROC_ASSERT_HELD(p);
 	PROC_LOCK(p);
 	pdp = pdhold(p);
 	MPASS(pdp != NULL);
 	PROC_UNLOCK(p);
 
 	PWDDESC_XLOCK(pdp);
 	pwd = pwd_hold_pwddesc(pdp);
 	MPASS(pwd != NULL);
 	PWDDESC_XUNLOCK(pdp);
 	pddrop(pdp);
 	return (pwd);
 }
 
 static struct pwd *
 pwd_alloc(void)
 {
 	struct pwd *pwd;
 
 	pwd = uma_zalloc_smr(pwd_zone, M_WAITOK);
 	bzero(pwd, sizeof(*pwd));
 	refcount_init(&pwd->pwd_refcount, 1);
 	return (pwd);
 }
 
 void
 pwd_drop(struct pwd *pwd)
 {
 
 	if (!refcount_release(&pwd->pwd_refcount))
 		return;
 
 	if (pwd->pwd_cdir != NULL)
 		vrele(pwd->pwd_cdir);
 	if (pwd->pwd_rdir != NULL)
 		vrele(pwd->pwd_rdir);
 	if (pwd->pwd_jdir != NULL)
 		vrele(pwd->pwd_jdir);
 	uma_zfree_smr(pwd_zone, pwd);
 }
 
 /*
 * The caller is responsible for invoking priv_check() and
 * mac_vnode_check_chroot() to authorize this operation.
 */
 int
 pwd_chroot(struct thread *td, struct vnode *vp)
 {
 	struct pwddesc *pdp;
 	struct filedesc *fdp;
 	struct pwd *newpwd, *oldpwd;
 	int error;
 
 	fdp = td->td_proc->p_fd;
 	pdp = td->td_proc->p_pd;
 	newpwd = pwd_alloc();
 	FILEDESC_SLOCK(fdp);
 	PWDDESC_XLOCK(pdp);
 	oldpwd = PWDDESC_XLOCKED_LOAD_PWD(pdp);
 	if (chroot_allow_open_directories == 0 ||
 	    (chroot_allow_open_directories == 1 &&
 	    oldpwd->pwd_rdir != rootvnode)) {
 		error = chroot_refuse_vdir_fds(fdp);
 		FILEDESC_SUNLOCK(fdp);
 		if (error != 0) {
 			PWDDESC_XUNLOCK(pdp);
 			pwd_drop(newpwd);
 			return (error);
 		}
 	} else {
 		FILEDESC_SUNLOCK(fdp);
 	}
 
 	vrefact(vp);
 	newpwd->pwd_rdir = vp;
 	if (oldpwd->pwd_jdir == NULL) {
 		vrefact(vp);
 		newpwd->pwd_jdir = vp;
 	}
 	pwd_fill(oldpwd, newpwd);
 	pwd_set(pdp, newpwd);
 	PWDDESC_XUNLOCK(pdp);
 	pwd_drop(oldpwd);
 	return (0);
 }
 
 void
 pwd_chdir(struct thread *td, struct vnode *vp)
 {
 	struct pwddesc *pdp;
 	struct pwd *newpwd, *oldpwd;
 
 	VNPASS(vp->v_usecount > 0, vp);
 
 	newpwd = pwd_alloc();
 	pdp = td->td_proc->p_pd;
 	PWDDESC_XLOCK(pdp);
 	oldpwd = PWDDESC_XLOCKED_LOAD_PWD(pdp);
 	newpwd->pwd_cdir = vp;
 	pwd_fill(oldpwd, newpwd);
 	pwd_set(pdp, newpwd);
 	PWDDESC_XUNLOCK(pdp);
 	pwd_drop(oldpwd);
 }
 
 /*
  * jail_attach(2) changes both root and working directories.
  */
 int
 pwd_chroot_chdir(struct thread *td, struct vnode *vp)
 {
 	struct pwddesc *pdp;
 	struct filedesc *fdp;
 	struct pwd *newpwd, *oldpwd;
 	int error;
 
 	fdp = td->td_proc->p_fd;
 	pdp = td->td_proc->p_pd;
 	newpwd = pwd_alloc();
 	FILEDESC_SLOCK(fdp);
 	PWDDESC_XLOCK(pdp);
 	oldpwd = PWDDESC_XLOCKED_LOAD_PWD(pdp);
 	error = chroot_refuse_vdir_fds(fdp);
 	FILEDESC_SUNLOCK(fdp);
 	if (error != 0) {
 		PWDDESC_XUNLOCK(pdp);
 		pwd_drop(newpwd);
 		return (error);
 	}
 
 	vrefact(vp);
 	newpwd->pwd_rdir = vp;
 	vrefact(vp);
 	newpwd->pwd_cdir = vp;
 	if (oldpwd->pwd_jdir == NULL) {
 		vrefact(vp);
 		newpwd->pwd_jdir = vp;
 	}
 	pwd_fill(oldpwd, newpwd);
 	pwd_set(pdp, newpwd);
 	PWDDESC_XUNLOCK(pdp);
 	pwd_drop(oldpwd);
 	return (0);
 }
 
 void
 pwd_ensure_dirs(void)
 {
 	struct pwddesc *pdp;
 	struct pwd *oldpwd, *newpwd;
 
 	pdp = curproc->p_pd;
 	PWDDESC_XLOCK(pdp);
 	oldpwd = PWDDESC_XLOCKED_LOAD_PWD(pdp);
 	if (oldpwd->pwd_cdir != NULL && oldpwd->pwd_rdir != NULL) {
 		PWDDESC_XUNLOCK(pdp);
 		return;
 	}
 	PWDDESC_XUNLOCK(pdp);
 
 	newpwd = pwd_alloc();
 	PWDDESC_XLOCK(pdp);
 	oldpwd = PWDDESC_XLOCKED_LOAD_PWD(pdp);
 	pwd_fill(oldpwd, newpwd);
 	if (newpwd->pwd_cdir == NULL) {
 		vrefact(rootvnode);
 		newpwd->pwd_cdir = rootvnode;
 	}
 	if (newpwd->pwd_rdir == NULL) {
 		vrefact(rootvnode);
 		newpwd->pwd_rdir = rootvnode;
 	}
 	pwd_set(pdp, newpwd);
 	PWDDESC_XUNLOCK(pdp);
 	pwd_drop(oldpwd);
 }
 
 void
 pwd_set_rootvnode(void)
 {
 	struct pwddesc *pdp;
 	struct pwd *oldpwd, *newpwd;
 
 	pdp = curproc->p_pd;
 
 	newpwd = pwd_alloc();
 	PWDDESC_XLOCK(pdp);
 	oldpwd = PWDDESC_XLOCKED_LOAD_PWD(pdp);
 	vrefact(rootvnode);
 	newpwd->pwd_cdir = rootvnode;
 	vrefact(rootvnode);
 	newpwd->pwd_rdir = rootvnode;
 	pwd_fill(oldpwd, newpwd);
 	pwd_set(pdp, newpwd);
 	PWDDESC_XUNLOCK(pdp);
 	pwd_drop(oldpwd);
 }
 
 /*
  * Scan all active processes and prisons to see if any of them have a current
  * or root directory of `olddp'. If so, replace them with the new mount point.
  */
 void
 mountcheckdirs(struct vnode *olddp, struct vnode *newdp)
 {
 	struct pwddesc *pdp;
 	struct pwd *newpwd, *oldpwd;
 	struct prison *pr;
 	struct proc *p;
 	int nrele;
 
 	if (vrefcnt(olddp) == 1)
 		return;
 	nrele = 0;
 	newpwd = pwd_alloc();
 	sx_slock(&allproc_lock);
 	FOREACH_PROC_IN_SYSTEM(p) {
 		PROC_LOCK(p);
 		pdp = pdhold(p);
 		PROC_UNLOCK(p);
 		if (pdp == NULL)
 			continue;
 		PWDDESC_XLOCK(pdp);
 		oldpwd = PWDDESC_XLOCKED_LOAD_PWD(pdp);
 		if (oldpwd == NULL ||
 		    (oldpwd->pwd_cdir != olddp &&
 		    oldpwd->pwd_rdir != olddp &&
 		    oldpwd->pwd_jdir != olddp)) {
 			PWDDESC_XUNLOCK(pdp);
 			pddrop(pdp);
 			continue;
 		}
 		if (oldpwd->pwd_cdir == olddp) {
 			vrefact(newdp);
 			newpwd->pwd_cdir = newdp;
 		}
 		if (oldpwd->pwd_rdir == olddp) {
 			vrefact(newdp);
 			newpwd->pwd_rdir = newdp;
 		}
 		if (oldpwd->pwd_jdir == olddp) {
 			vrefact(newdp);
 			newpwd->pwd_jdir = newdp;
 		}
 		pwd_fill(oldpwd, newpwd);
 		pwd_set(pdp, newpwd);
 		PWDDESC_XUNLOCK(pdp);
 		pwd_drop(oldpwd);
 		pddrop(pdp);
 		newpwd = pwd_alloc();
 	}
 	sx_sunlock(&allproc_lock);
 	pwd_drop(newpwd);
 	if (rootvnode == olddp) {
 		vrefact(newdp);
 		rootvnode = newdp;
 		nrele++;
 	}
 	mtx_lock(&prison0.pr_mtx);
 	if (prison0.pr_root == olddp) {
 		vrefact(newdp);
 		prison0.pr_root = newdp;
 		nrele++;
 	}
 	mtx_unlock(&prison0.pr_mtx);
 	sx_slock(&allprison_lock);
 	TAILQ_FOREACH(pr, &allprison, pr_list) {
 		mtx_lock(&pr->pr_mtx);
 		if (pr->pr_root == olddp) {
 			vrefact(newdp);
 			pr->pr_root = newdp;
 			nrele++;
 		}
 		mtx_unlock(&pr->pr_mtx);
 	}
 	sx_sunlock(&allprison_lock);
 	while (nrele--)
 		vrele(olddp);
 }
 
 int
 descrip_check_write_mp(struct filedesc *fdp, struct mount *mp)
 {
 	struct file *fp;
 	struct vnode *vp;
 	int error, i, lastfile;
 
 	error = 0;
 	FILEDESC_SLOCK(fdp);
 	lastfile = fdlastfile(fdp);
 	for (i = 0; i <= lastfile; i++) {
 		fp = fdp->fd_ofiles[i].fde_file;
 		if (fp->f_type != DTYPE_VNODE ||
 		    (atomic_load_int(&fp->f_flag) & FWRITE) == 0)
 			continue;
 		vp = fp->f_vnode;
 		if (vp->v_mount == mp) {
 			error = EDEADLK;
 			break;
 		}
 	}
 	FILEDESC_SUNLOCK(fdp);
 	return (error);
 }
 
 struct filedesc_to_leader *
 filedesc_to_leader_alloc(struct filedesc_to_leader *old, struct filedesc *fdp,
     struct proc *leader)
 {
 	struct filedesc_to_leader *fdtol;
 
 	fdtol = malloc(sizeof(struct filedesc_to_leader),
 	    M_FILEDESC_TO_LEADER, M_WAITOK);
 	fdtol->fdl_refcount = 1;
 	fdtol->fdl_holdcount = 0;
 	fdtol->fdl_wakeup = 0;
 	fdtol->fdl_leader = leader;
 	if (old != NULL) {
 		FILEDESC_XLOCK(fdp);
 		fdtol->fdl_next = old->fdl_next;
 		fdtol->fdl_prev = old;
 		old->fdl_next = fdtol;
 		fdtol->fdl_next->fdl_prev = fdtol;
 		FILEDESC_XUNLOCK(fdp);
 	} else {
 		fdtol->fdl_next = fdtol;
 		fdtol->fdl_prev = fdtol;
 	}
 	return (fdtol);
 }
 
 struct filedesc_to_leader *
 filedesc_to_leader_share(struct filedesc_to_leader *fdtol, struct filedesc *fdp)
 {
 	FILEDESC_XLOCK(fdp);
 	fdtol->fdl_refcount++;
 	FILEDESC_XUNLOCK(fdp);
 	return (fdtol);
 }
 
 static int
 sysctl_kern_proc_nfds(SYSCTL_HANDLER_ARGS)
 {
 	NDSLOTTYPE *map;
 	struct filedesc *fdp;
 	u_int namelen;
 	int count, off, minoff;
 
 	namelen = arg2;
 	if (namelen != 1)
 		return (EINVAL);
 
 	if (*(int *)arg1 != 0)
 		return (EINVAL);
 
 	fdp = curproc->p_fd;
 	count = 0;
 	FILEDESC_SLOCK(fdp);
 	map = fdp->fd_map;
 	off = NDSLOT(fdp->fd_nfiles - 1);
 	for (minoff = NDSLOT(0); off >= minoff; --off)
 		count += bitcountl(map[off]);
 	FILEDESC_SUNLOCK(fdp);
 
 	return (SYSCTL_OUT(req, &count, sizeof(count)));
 }
 
 static SYSCTL_NODE(_kern_proc, KERN_PROC_NFDS, nfds,
     CTLFLAG_RD|CTLFLAG_CAPRD|CTLFLAG_MPSAFE, sysctl_kern_proc_nfds,
     "Number of open file descriptors");
 
 /*
  * Get file structures globally.
  */
 static int
 sysctl_kern_file(SYSCTL_HANDLER_ARGS)
 {
 	struct xfile xf;
 	struct filedesc *fdp;
 	struct file *fp;
 	struct proc *p;
 	int error, n, lastfile;
 
 	error = sysctl_wire_old_buffer(req, 0);
 	if (error != 0)
 		return (error);
 	if (req->oldptr == NULL) {
 		n = 0;
 		sx_slock(&allproc_lock);
 		FOREACH_PROC_IN_SYSTEM(p) {
 			PROC_LOCK(p);
 			if (p->p_state == PRS_NEW) {
 				PROC_UNLOCK(p);
 				continue;
 			}
 			fdp = fdhold(p);
 			PROC_UNLOCK(p);
 			if (fdp == NULL)
 				continue;
 			/* overestimates sparse tables. */
 			n += fdp->fd_nfiles;
 			fddrop(fdp);
 		}
 		sx_sunlock(&allproc_lock);
 		return (SYSCTL_OUT(req, 0, n * sizeof(xf)));
 	}
 	error = 0;
 	bzero(&xf, sizeof(xf));
 	xf.xf_size = sizeof(xf);
 	sx_slock(&allproc_lock);
 	FOREACH_PROC_IN_SYSTEM(p) {
 		PROC_LOCK(p);
 		if (p->p_state == PRS_NEW) {
 			PROC_UNLOCK(p);
 			continue;
 		}
 		if (p_cansee(req->td, p) != 0) {
 			PROC_UNLOCK(p);
 			continue;
 		}
 		xf.xf_pid = p->p_pid;
 		xf.xf_uid = p->p_ucred->cr_uid;
 		fdp = fdhold(p);
 		PROC_UNLOCK(p);
 		if (fdp == NULL)
 			continue;
 		FILEDESC_SLOCK(fdp);
 		if (refcount_load(&fdp->fd_refcnt) == 0)
 			goto nextproc;
 		lastfile = fdlastfile(fdp);
 		for (n = 0; refcount_load(&fdp->fd_refcnt) > 0 && n <= lastfile;
 		    n++) {
 			if ((fp = fdp->fd_ofiles[n].fde_file) == NULL)
 				continue;
 			xf.xf_fd = n;
 			xf.xf_file = (uintptr_t)fp;
 			xf.xf_data = (uintptr_t)fp->f_data;
 			xf.xf_vnode = (uintptr_t)fp->f_vnode;
 			xf.xf_type = (uintptr_t)fp->f_type;
 			xf.xf_count = refcount_load(&fp->f_count);
 			xf.xf_msgcount = 0;
 			xf.xf_offset = foffset_get(fp);
 			xf.xf_flag = fp->f_flag;
 			error = SYSCTL_OUT(req, &xf, sizeof(xf));
 
 			/*
 			 * There is no need to re-check the fdtable refcount
 			 * here since the filedesc lock is not dropped in the
 			 * loop body.
 			 */
 			if (error != 0)
 				break;
 		}
 nextproc:
 		FILEDESC_SUNLOCK(fdp);
 		fddrop(fdp);
 		if (error)
 			break;
 	}
 	sx_sunlock(&allproc_lock);
 	return (error);
 }
 
 SYSCTL_PROC(_kern, KERN_FILE, file, CTLTYPE_OPAQUE|CTLFLAG_RD|CTLFLAG_MPSAFE,
     0, 0, sysctl_kern_file, "S,xfile", "Entire file table");
 
 #ifdef KINFO_FILE_SIZE
 CTASSERT(sizeof(struct kinfo_file) == KINFO_FILE_SIZE);
 #endif
 
 static int
 xlate_fflags(int fflags)
 {
 	static const struct {
 		int	fflag;
 		int	kf_fflag;
 	} fflags_table[] = {
 		{ FAPPEND, KF_FLAG_APPEND },
 		{ FASYNC, KF_FLAG_ASYNC },
 		{ FFSYNC, KF_FLAG_FSYNC },
 		{ FHASLOCK, KF_FLAG_HASLOCK },
 		{ FNONBLOCK, KF_FLAG_NONBLOCK },
 		{ FREAD, KF_FLAG_READ },
 		{ FWRITE, KF_FLAG_WRITE },
 		{ O_CREAT, KF_FLAG_CREAT },
 		{ O_DIRECT, KF_FLAG_DIRECT },
 		{ O_EXCL, KF_FLAG_EXCL },
 		{ O_EXEC, KF_FLAG_EXEC },
 		{ O_EXLOCK, KF_FLAG_EXLOCK },
 		{ O_NOFOLLOW, KF_FLAG_NOFOLLOW },
 		{ O_SHLOCK, KF_FLAG_SHLOCK },
 		{ O_TRUNC, KF_FLAG_TRUNC }
 	};
 	unsigned int i;
 	int kflags;
 
 	kflags = 0;
 	for (i = 0; i < nitems(fflags_table); i++)
 		if (fflags & fflags_table[i].fflag)
 			kflags |=  fflags_table[i].kf_fflag;
 	return (kflags);
 }
 
 /* Trim unused data from kf_path by truncating the structure size. */
 void
 pack_kinfo(struct kinfo_file *kif)
 {
 
 	kif->kf_structsize = offsetof(struct kinfo_file, kf_path) +
 	    strlen(kif->kf_path) + 1;
 	kif->kf_structsize = roundup(kif->kf_structsize, sizeof(uint64_t));
 }
 
 static void
 export_file_to_kinfo(struct file *fp, int fd, cap_rights_t *rightsp,
     struct kinfo_file *kif, struct filedesc *fdp, int flags)
 {
 	int error;
 
 	bzero(kif, sizeof(*kif));
 
 	/* Set a default type to allow for empty fill_kinfo() methods. */
 	kif->kf_type = KF_TYPE_UNKNOWN;
 	kif->kf_flags = xlate_fflags(fp->f_flag);
 	if (rightsp != NULL)
 		kif->kf_cap_rights = *rightsp;
 	else
 		cap_rights_init_zero(&kif->kf_cap_rights);
 	kif->kf_fd = fd;
 	kif->kf_ref_count = refcount_load(&fp->f_count);
 	kif->kf_offset = foffset_get(fp);
 
 	/*
 	 * This may drop the filedesc lock, so the 'fp' cannot be
 	 * accessed after this call.
 	 */
 	error = fo_fill_kinfo(fp, kif, fdp);
 	if (error == 0)
 		kif->kf_status |= KF_ATTR_VALID;
 	if ((flags & KERN_FILEDESC_PACK_KINFO) != 0)
 		pack_kinfo(kif);
 	else
 		kif->kf_structsize = roundup2(sizeof(*kif), sizeof(uint64_t));
 }
 
 static void
 export_vnode_to_kinfo(struct vnode *vp, int fd, int fflags,
     struct kinfo_file *kif, int flags)
 {
 	int error;
 
 	bzero(kif, sizeof(*kif));
 
 	kif->kf_type = KF_TYPE_VNODE;
 	error = vn_fill_kinfo_vnode(vp, kif);
 	if (error == 0)
 		kif->kf_status |= KF_ATTR_VALID;
 	kif->kf_flags = xlate_fflags(fflags);
 	cap_rights_init_zero(&kif->kf_cap_rights);
 	kif->kf_fd = fd;
 	kif->kf_ref_count = -1;
 	kif->kf_offset = -1;
 	if ((flags & KERN_FILEDESC_PACK_KINFO) != 0)
 		pack_kinfo(kif);
 	else
 		kif->kf_structsize = roundup2(sizeof(*kif), sizeof(uint64_t));
 	vrele(vp);
 }
 
 struct export_fd_buf {
 	struct filedesc		*fdp;
 	struct pwddesc	*pdp;
 	struct sbuf 		*sb;
 	ssize_t			remainder;
 	struct kinfo_file	kif;
 	int			flags;
 };
 
 static int
 export_kinfo_to_sb(struct export_fd_buf *efbuf)
 {
 	struct kinfo_file *kif;
 
 	kif = &efbuf->kif;
 	if (efbuf->remainder != -1) {
 		if (efbuf->remainder < kif->kf_structsize)
 			return (ENOMEM);
 		efbuf->remainder -= kif->kf_structsize;
 	}
 	if (sbuf_bcat(efbuf->sb, kif, kif->kf_structsize) != 0)
 		return (sbuf_error(efbuf->sb));
 	return (0);
 }
 
 static int
 export_file_to_sb(struct file *fp, int fd, cap_rights_t *rightsp,
     struct export_fd_buf *efbuf)
 {
 	int error;
 
 	if (efbuf->remainder == 0)
 		return (ENOMEM);
 	export_file_to_kinfo(fp, fd, rightsp, &efbuf->kif, efbuf->fdp,
 	    efbuf->flags);
 	FILEDESC_SUNLOCK(efbuf->fdp);
 	error = export_kinfo_to_sb(efbuf);
 	FILEDESC_SLOCK(efbuf->fdp);
 	return (error);
 }
 
 static int
 export_vnode_to_sb(struct vnode *vp, int fd, int fflags,
     struct export_fd_buf *efbuf)
 {
 	int error;
 
 	if (efbuf->remainder == 0)
 		return (ENOMEM);
 	if (efbuf->pdp != NULL)
 		PWDDESC_XUNLOCK(efbuf->pdp);
 	export_vnode_to_kinfo(vp, fd, fflags, &efbuf->kif, efbuf->flags);
 	error = export_kinfo_to_sb(efbuf);
 	if (efbuf->pdp != NULL)
 		PWDDESC_XLOCK(efbuf->pdp);
 	return (error);
 }
 
 /*
  * Store a process file descriptor information to sbuf.
  *
  * Takes a locked proc as argument, and returns with the proc unlocked.
  */
 int
 kern_proc_filedesc_out(struct proc *p,  struct sbuf *sb, ssize_t maxlen,
     int flags)
 {
 	struct file *fp;
 	struct filedesc *fdp;
 	struct pwddesc *pdp;
 	struct export_fd_buf *efbuf;
 	struct vnode *cttyvp, *textvp, *tracevp;
 	struct pwd *pwd;
 	int error, i, lastfile;
 	cap_rights_t rights;
 
 	PROC_LOCK_ASSERT(p, MA_OWNED);
 
 	/* ktrace vnode */
 	tracevp = ktr_get_tracevp(p, true);
 	/* text vnode */
 	textvp = p->p_textvp;
 	if (textvp != NULL)
 		vrefact(textvp);
 	/* Controlling tty. */
 	cttyvp = NULL;
 	if (p->p_pgrp != NULL && p->p_pgrp->pg_session != NULL) {
 		cttyvp = p->p_pgrp->pg_session->s_ttyvp;
 		if (cttyvp != NULL)
 			vrefact(cttyvp);
 	}
 	fdp = fdhold(p);
 	pdp = pdhold(p);
 	PROC_UNLOCK(p);
 
 	efbuf = malloc(sizeof(*efbuf), M_TEMP, M_WAITOK);
 	efbuf->fdp = NULL;
 	efbuf->pdp = NULL;
 	efbuf->sb = sb;
 	efbuf->remainder = maxlen;
 	efbuf->flags = flags;
 
 	error = 0;
 	if (tracevp != NULL)
 		error = export_vnode_to_sb(tracevp, KF_FD_TYPE_TRACE,
 		    FREAD | FWRITE, efbuf);
 	if (error == 0 && textvp != NULL)
 		error = export_vnode_to_sb(textvp, KF_FD_TYPE_TEXT, FREAD,
 		    efbuf);
 	if (error == 0 && cttyvp != NULL)
 		error = export_vnode_to_sb(cttyvp, KF_FD_TYPE_CTTY,
 		    FREAD | FWRITE, efbuf);
 	if (error != 0 || pdp == NULL || fdp == NULL)
 		goto fail;
 	efbuf->fdp = fdp;
 	efbuf->pdp = pdp;
 	PWDDESC_XLOCK(pdp);
 	pwd = pwd_hold_pwddesc(pdp);
 	if (pwd != NULL) {
 		/* working directory */
 		if (pwd->pwd_cdir != NULL) {
 			vrefact(pwd->pwd_cdir);
 			error = export_vnode_to_sb(pwd->pwd_cdir,
 			    KF_FD_TYPE_CWD, FREAD, efbuf);
 		}
 		/* root directory */
 		if (error == 0 && pwd->pwd_rdir != NULL) {
 			vrefact(pwd->pwd_rdir);
 			error = export_vnode_to_sb(pwd->pwd_rdir,
 			    KF_FD_TYPE_ROOT, FREAD, efbuf);
 		}
 		/* jail directory */
 		if (error == 0 && pwd->pwd_jdir != NULL) {
 			vrefact(pwd->pwd_jdir);
 			error = export_vnode_to_sb(pwd->pwd_jdir,
 			    KF_FD_TYPE_JAIL, FREAD, efbuf);
 		}
 	}
 	PWDDESC_XUNLOCK(pdp);
 	if (error != 0)
 		goto fail;
 	if (pwd != NULL)
 		pwd_drop(pwd);
 	FILEDESC_SLOCK(fdp);
 	if (refcount_load(&fdp->fd_refcnt) == 0)
 		goto skip;
 	lastfile = fdlastfile(fdp);
 	for (i = 0; i <= lastfile; i++) {
 		if ((fp = fdp->fd_ofiles[i].fde_file) == NULL)
 			continue;
 #ifdef CAPABILITIES
 		rights = *cap_rights(fdp, i);
 #else /* !CAPABILITIES */
 		rights = cap_no_rights;
 #endif
 		/*
 		 * Create sysctl entry.  It is OK to drop the filedesc
 		 * lock inside of export_file_to_sb() as we will
 		 * re-validate and re-evaluate its properties when the
 		 * loop continues.
 		 */
 		error = export_file_to_sb(fp, i, &rights, efbuf);
 		if (error != 0 || refcount_load(&fdp->fd_refcnt) == 0)
 			break;
 	}
 skip:
 	FILEDESC_SUNLOCK(fdp);
 fail:
 	if (fdp != NULL)
 		fddrop(fdp);
 	if (pdp != NULL)
 		pddrop(pdp);
 	free(efbuf, M_TEMP);
 	return (error);
 }
 
 #define FILEDESC_SBUF_SIZE	(sizeof(struct kinfo_file) * 5)
 
 /*
  * Get per-process file descriptors for use by procstat(1), et al.
  */
 static int
 sysctl_kern_proc_filedesc(SYSCTL_HANDLER_ARGS)
 {
 	struct sbuf sb;
 	struct proc *p;
 	ssize_t maxlen;
 	u_int namelen;
 	int error, error2, *name;
 
 	namelen = arg2;
 	if (namelen != 1)
 		return (EINVAL);
 
 	name = (int *)arg1;
 
 	sbuf_new_for_sysctl(&sb, NULL, FILEDESC_SBUF_SIZE, req);
 	sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
 	error = pget((pid_t)name[0], PGET_CANDEBUG | PGET_NOTWEXIT, &p);
 	if (error != 0) {
 		sbuf_delete(&sb);
 		return (error);
 	}
 	maxlen = req->oldptr != NULL ? req->oldlen : -1;
 	error = kern_proc_filedesc_out(p, &sb, maxlen,
 	    KERN_FILEDESC_PACK_KINFO);
 	error2 = sbuf_finish(&sb);
 	sbuf_delete(&sb);
 	return (error != 0 ? error : error2);
 }
 
 #ifdef COMPAT_FREEBSD7
 #ifdef KINFO_OFILE_SIZE
 CTASSERT(sizeof(struct kinfo_ofile) == KINFO_OFILE_SIZE);
 #endif
 
 static void
 kinfo_to_okinfo(struct kinfo_file *kif, struct kinfo_ofile *okif)
 {
 
 	okif->kf_structsize = sizeof(*okif);
 	okif->kf_type = kif->kf_type;
 	okif->kf_fd = kif->kf_fd;
 	okif->kf_ref_count = kif->kf_ref_count;
 	okif->kf_flags = kif->kf_flags & (KF_FLAG_READ | KF_FLAG_WRITE |
 	    KF_FLAG_APPEND | KF_FLAG_ASYNC | KF_FLAG_FSYNC | KF_FLAG_NONBLOCK |
 	    KF_FLAG_DIRECT | KF_FLAG_HASLOCK);
 	okif->kf_offset = kif->kf_offset;
 	if (kif->kf_type == KF_TYPE_VNODE)
 		okif->kf_vnode_type = kif->kf_un.kf_file.kf_file_type;
 	else
 		okif->kf_vnode_type = KF_VTYPE_VNON;
 	strlcpy(okif->kf_path, kif->kf_path, sizeof(okif->kf_path));
 	if (kif->kf_type == KF_TYPE_SOCKET) {
 		okif->kf_sock_domain = kif->kf_un.kf_sock.kf_sock_domain0;
 		okif->kf_sock_type = kif->kf_un.kf_sock.kf_sock_type0;
 		okif->kf_sock_protocol = kif->kf_un.kf_sock.kf_sock_protocol0;
 		okif->kf_sa_local = kif->kf_un.kf_sock.kf_sa_local;
 		okif->kf_sa_peer = kif->kf_un.kf_sock.kf_sa_peer;
 	} else {
 		okif->kf_sa_local.ss_family = AF_UNSPEC;
 		okif->kf_sa_peer.ss_family = AF_UNSPEC;
 	}
 }
 
 static int
 export_vnode_for_osysctl(struct vnode *vp, int type, struct kinfo_file *kif,
     struct kinfo_ofile *okif, struct pwddesc *pdp, struct sysctl_req *req)
 {
 	int error;
 
 	vrefact(vp);
 	PWDDESC_XUNLOCK(pdp);
 	export_vnode_to_kinfo(vp, type, 0, kif, KERN_FILEDESC_PACK_KINFO);
 	kinfo_to_okinfo(kif, okif);
 	error = SYSCTL_OUT(req, okif, sizeof(*okif));
 	PWDDESC_XLOCK(pdp);
 	return (error);
 }
 
 /*
  * Get per-process file descriptors for use by procstat(1), et al.
  */
 static int
 sysctl_kern_proc_ofiledesc(SYSCTL_HANDLER_ARGS)
 {
 	struct kinfo_ofile *okif;
 	struct kinfo_file *kif;
 	struct filedesc *fdp;
 	struct pwddesc *pdp;
 	struct pwd *pwd;
 	u_int namelen;
 	int error, i, lastfile, *name;
 	struct file *fp;
 	struct proc *p;
 
 	namelen = arg2;
 	if (namelen != 1)
 		return (EINVAL);
 
 	name = (int *)arg1;
 	error = pget((pid_t)name[0], PGET_CANDEBUG | PGET_NOTWEXIT, &p);
 	if (error != 0)
 		return (error);
 	fdp = fdhold(p);
 	if (fdp != NULL)
 		pdp = pdhold(p);
 	PROC_UNLOCK(p);
 	if (fdp == NULL || pdp == NULL) {
 		if (fdp != NULL)
 			fddrop(fdp);
 		return (ENOENT);
 	}
 	kif = malloc(sizeof(*kif), M_TEMP, M_WAITOK);
 	okif = malloc(sizeof(*okif), M_TEMP, M_WAITOK);
 	PWDDESC_XLOCK(pdp);
 	pwd = pwd_hold_pwddesc(pdp);
 	if (pwd != NULL) {
 		if (pwd->pwd_cdir != NULL)
 			export_vnode_for_osysctl(pwd->pwd_cdir, KF_FD_TYPE_CWD, kif,
 			    okif, pdp, req);
 		if (pwd->pwd_rdir != NULL)
 			export_vnode_for_osysctl(pwd->pwd_rdir, KF_FD_TYPE_ROOT, kif,
 			    okif, pdp, req);
 		if (pwd->pwd_jdir != NULL)
 			export_vnode_for_osysctl(pwd->pwd_jdir, KF_FD_TYPE_JAIL, kif,
 			    okif, pdp, req);
 	}
 	PWDDESC_XUNLOCK(pdp);
 	if (pwd != NULL)
 		pwd_drop(pwd);
 	FILEDESC_SLOCK(fdp);
 	if (refcount_load(&fdp->fd_refcnt) == 0)
 		goto skip;
 	lastfile = fdlastfile(fdp);
 	for (i = 0; i <= lastfile; i++) {
 		if ((fp = fdp->fd_ofiles[i].fde_file) == NULL)
 			continue;
 		export_file_to_kinfo(fp, i, NULL, kif, fdp,
 		    KERN_FILEDESC_PACK_KINFO);
 		FILEDESC_SUNLOCK(fdp);
 		kinfo_to_okinfo(kif, okif);
 		error = SYSCTL_OUT(req, okif, sizeof(*okif));
 		FILEDESC_SLOCK(fdp);
 		if (error != 0 || refcount_load(&fdp->fd_refcnt) == 0)
 			break;
 	}
 skip:
 	FILEDESC_SUNLOCK(fdp);
 	fddrop(fdp);
 	pddrop(pdp);
 	free(kif, M_TEMP);
 	free(okif, M_TEMP);
 	return (0);
 }
 
 static SYSCTL_NODE(_kern_proc, KERN_PROC_OFILEDESC, ofiledesc,
     CTLFLAG_RD|CTLFLAG_MPSAFE, sysctl_kern_proc_ofiledesc,
     "Process ofiledesc entries");
 #endif	/* COMPAT_FREEBSD7 */
 
 int
 vntype_to_kinfo(int vtype)
 {
 	struct {
 		int	vtype;
 		int	kf_vtype;
 	} vtypes_table[] = {
 		{ VBAD, KF_VTYPE_VBAD },
 		{ VBLK, KF_VTYPE_VBLK },
 		{ VCHR, KF_VTYPE_VCHR },
 		{ VDIR, KF_VTYPE_VDIR },
 		{ VFIFO, KF_VTYPE_VFIFO },
 		{ VLNK, KF_VTYPE_VLNK },
 		{ VNON, KF_VTYPE_VNON },
 		{ VREG, KF_VTYPE_VREG },
 		{ VSOCK, KF_VTYPE_VSOCK }
 	};
 	unsigned int i;
 
 	/*
 	 * Perform vtype translation.
 	 */
 	for (i = 0; i < nitems(vtypes_table); i++)
 		if (vtypes_table[i].vtype == vtype)
 			return (vtypes_table[i].kf_vtype);
 
 	return (KF_VTYPE_UNKNOWN);
 }
 
 static SYSCTL_NODE(_kern_proc, KERN_PROC_FILEDESC, filedesc,
     CTLFLAG_RD|CTLFLAG_MPSAFE, sysctl_kern_proc_filedesc,
     "Process filedesc entries");
 
 /*
  * Store a process current working directory information to sbuf.
  *
  * Takes a locked proc as argument, and returns with the proc unlocked.
  */
 int
 kern_proc_cwd_out(struct proc *p,  struct sbuf *sb, ssize_t maxlen)
 {
 	struct pwddesc *pdp;
 	struct pwd *pwd;
 	struct export_fd_buf *efbuf;
 	struct vnode *cdir;
 	int error;
 
 	PROC_LOCK_ASSERT(p, MA_OWNED);
 
 	pdp = pdhold(p);
 	PROC_UNLOCK(p);
 	if (pdp == NULL)
 		return (EINVAL);
 
 	efbuf = malloc(sizeof(*efbuf), M_TEMP, M_WAITOK);
 	efbuf->fdp = NULL;
 	efbuf->pdp = pdp;
 	efbuf->sb = sb;
 	efbuf->remainder = maxlen;
 	efbuf->flags = 0;
 
 	PWDDESC_XLOCK(pdp);
 	pwd = PWDDESC_XLOCKED_LOAD_PWD(pdp);
 	cdir = pwd->pwd_cdir;
 	if (cdir == NULL) {
 		error = EINVAL;
 	} else {
 		vrefact(cdir);
 		error = export_vnode_to_sb(cdir, KF_FD_TYPE_CWD, FREAD, efbuf);
 	}
 	PWDDESC_XUNLOCK(pdp);
 	pddrop(pdp);
 	free(efbuf, M_TEMP);
 	return (error);
 }
 
 /*
  * Get per-process current working directory.
  */
 static int
 sysctl_kern_proc_cwd(SYSCTL_HANDLER_ARGS)
 {
 	struct sbuf sb;
 	struct proc *p;
 	ssize_t maxlen;
 	u_int namelen;
 	int error, error2, *name;
 
 	namelen = arg2;
 	if (namelen != 1)
 		return (EINVAL);
 
 	name = (int *)arg1;
 
 	sbuf_new_for_sysctl(&sb, NULL, sizeof(struct kinfo_file), req);
 	sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
 	error = pget((pid_t)name[0], PGET_CANDEBUG | PGET_NOTWEXIT, &p);
 	if (error != 0) {
 		sbuf_delete(&sb);
 		return (error);
 	}
 	maxlen = req->oldptr != NULL ? req->oldlen : -1;
 	error = kern_proc_cwd_out(p, &sb, maxlen);
 	error2 = sbuf_finish(&sb);
 	sbuf_delete(&sb);
 	return (error != 0 ? error : error2);
 }
 
 static SYSCTL_NODE(_kern_proc, KERN_PROC_CWD, cwd, CTLFLAG_RD|CTLFLAG_MPSAFE,
     sysctl_kern_proc_cwd, "Process current working directory");
 
 #ifdef DDB
 /*
  * For the purposes of debugging, generate a human-readable string for the
  * file type.
  */
 static const char *
 file_type_to_name(short type)
 {
 
 	switch (type) {
 	case 0:
 		return ("zero");
 	case DTYPE_VNODE:
 		return ("vnode");
 	case DTYPE_SOCKET:
 		return ("socket");
 	case DTYPE_PIPE:
 		return ("pipe");
 	case DTYPE_FIFO:
 		return ("fifo");
 	case DTYPE_KQUEUE:
 		return ("kqueue");
 	case DTYPE_CRYPTO:
 		return ("crypto");
 	case DTYPE_MQUEUE:
 		return ("mqueue");
 	case DTYPE_SHM:
 		return ("shm");
 	case DTYPE_SEM:
 		return ("ksem");
 	case DTYPE_PTS:
 		return ("pts");
 	case DTYPE_DEV:
 		return ("dev");
 	case DTYPE_PROCDESC:
 		return ("proc");
 	case DTYPE_EVENTFD:
 		return ("eventfd");
 	case DTYPE_LINUXTFD:
 		return ("ltimer");
 	default:
 		return ("unkn");
 	}
 }
 
 /*
  * For the purposes of debugging, identify a process (if any, perhaps one of
  * many) that references the passed file in its file descriptor array. Return
  * NULL if none.
  */
 static struct proc *
 file_to_first_proc(struct file *fp)
 {
 	struct filedesc *fdp;
 	struct proc *p;
 	int n;
 
 	FOREACH_PROC_IN_SYSTEM(p) {
 		if (p->p_state == PRS_NEW)
 			continue;
 		fdp = p->p_fd;
 		if (fdp == NULL)
 			continue;
 		for (n = 0; n < fdp->fd_nfiles; n++) {
 			if (fp == fdp->fd_ofiles[n].fde_file)
 				return (p);
 		}
 	}
 	return (NULL);
 }
 
 static void
 db_print_file(struct file *fp, int header)
 {
 #define XPTRWIDTH ((int)howmany(sizeof(void *) * NBBY, 4))
 	struct proc *p;
 
 	if (header)
 		db_printf("%*s %6s %*s %8s %4s %5s %6s %*s %5s %s\n",
 		    XPTRWIDTH, "File", "Type", XPTRWIDTH, "Data", "Flag",
 		    "GCFl", "Count", "MCount", XPTRWIDTH, "Vnode", "FPID",
 		    "FCmd");
 	p = file_to_first_proc(fp);
 	db_printf("%*p %6s %*p %08x %04x %5d %6d %*p %5d %s\n", XPTRWIDTH,
 	    fp, file_type_to_name(fp->f_type), XPTRWIDTH, fp->f_data,
 	    fp->f_flag, 0, refcount_load(&fp->f_count), 0, XPTRWIDTH, fp->f_vnode,
 	    p != NULL ? p->p_pid : -1, p != NULL ? p->p_comm : "-");
 
 #undef XPTRWIDTH
 }
 
 DB_SHOW_COMMAND(file, db_show_file)
 {
 	struct file *fp;
 
 	if (!have_addr) {
 		db_printf("usage: show file <addr>\n");
 		return;
 	}
 	fp = (struct file *)addr;
 	db_print_file(fp, 1);
 }
 
 DB_SHOW_COMMAND(files, db_show_files)
 {
 	struct filedesc *fdp;
 	struct file *fp;
 	struct proc *p;
 	int header;
 	int n;
 
 	header = 1;
 	FOREACH_PROC_IN_SYSTEM(p) {
 		if (p->p_state == PRS_NEW)
 			continue;
 		if ((fdp = p->p_fd) == NULL)
 			continue;
 		for (n = 0; n < fdp->fd_nfiles; ++n) {
 			if ((fp = fdp->fd_ofiles[n].fde_file) == NULL)
 				continue;
 			db_print_file(fp, header);
 			header = 0;
 		}
 	}
 }
 #endif
 
 SYSCTL_INT(_kern, KERN_MAXFILESPERPROC, maxfilesperproc, CTLFLAG_RW,
     &maxfilesperproc, 0, "Maximum files allowed open per process");
 
 SYSCTL_INT(_kern, KERN_MAXFILES, maxfiles, CTLFLAG_RW,
     &maxfiles, 0, "Maximum number of files");
 
 SYSCTL_INT(_kern, OID_AUTO, openfiles, CTLFLAG_RD,
     &openfiles, 0, "System-wide number of open files");
 
 /* ARGSUSED*/
 static void
 filelistinit(void *dummy)
 {
 
 	file_zone = uma_zcreate("Files", sizeof(struct file), NULL, NULL,
 	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
 	filedesc0_zone = uma_zcreate("filedesc0", sizeof(struct filedesc0),
 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
 	pwd_zone = uma_zcreate("PWD", sizeof(struct pwd), NULL, NULL,
 	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_SMR);
 	/*
 	 * XXXMJG this is a temporary hack due to boot ordering issues against
 	 * the vnode zone.
 	 */
 	vfs_smr = uma_zone_get_smr(pwd_zone);
 	mtx_init(&sigio_lock, "sigio lock", NULL, MTX_DEF);
 }
 SYSINIT(select, SI_SUB_LOCK, SI_ORDER_FIRST, filelistinit, NULL);
 
 /*-------------------------------------------------------------------*/
 
 static int
 badfo_readwrite(struct file *fp, struct uio *uio, struct ucred *active_cred,
     int flags, struct thread *td)
 {
 
 	return (EBADF);
 }
 
 static int
 badfo_truncate(struct file *fp, off_t length, struct ucred *active_cred,
     struct thread *td)
 {
 
 	return (EINVAL);
 }
 
 static int
 badfo_ioctl(struct file *fp, u_long com, void *data, struct ucred *active_cred,
     struct thread *td)
 {
 
 	return (EBADF);
 }
 
 static int
 badfo_poll(struct file *fp, int events, struct ucred *active_cred,
     struct thread *td)
 {
 
 	return (0);
 }
 
 static int
 badfo_kqfilter(struct file *fp, struct knote *kn)
 {
 
 	return (EBADF);
 }
 
 static int
 badfo_stat(struct file *fp, struct stat *sb, struct ucred *active_cred,
     struct thread *td)
 {
 
 	return (EBADF);
 }
 
 static int
 badfo_close(struct file *fp, struct thread *td)
 {
 
 	return (0);
 }
 
 static int
 badfo_chmod(struct file *fp, mode_t mode, struct ucred *active_cred,
     struct thread *td)
 {
 
 	return (EBADF);
 }
 
 static int
 badfo_chown(struct file *fp, uid_t uid, gid_t gid, struct ucred *active_cred,
     struct thread *td)
 {
 
 	return (EBADF);
 }
 
 static int
 badfo_sendfile(struct file *fp, int sockfd, struct uio *hdr_uio,
     struct uio *trl_uio, off_t offset, size_t nbytes, off_t *sent, int flags,
     struct thread *td)
 {
 
 	return (EBADF);
 }
 
 static int
 badfo_fill_kinfo(struct file *fp, struct kinfo_file *kif, struct filedesc *fdp)
 {
 
 	return (0);
 }
 
 struct fileops badfileops = {
 	.fo_read = badfo_readwrite,
 	.fo_write = badfo_readwrite,
 	.fo_truncate = badfo_truncate,
 	.fo_ioctl = badfo_ioctl,
 	.fo_poll = badfo_poll,
 	.fo_kqfilter = badfo_kqfilter,
 	.fo_stat = badfo_stat,
 	.fo_close = badfo_close,
 	.fo_chmod = badfo_chmod,
 	.fo_chown = badfo_chown,
 	.fo_sendfile = badfo_sendfile,
 	.fo_fill_kinfo = badfo_fill_kinfo,
 };
 
 static int
 path_poll(struct file *fp, int events, struct ucred *active_cred,
     struct thread *td)
 {
 	return (POLLNVAL);
 }
 
 static int
 path_close(struct file *fp, struct thread *td)
 {
 	MPASS(fp->f_type == DTYPE_VNODE);
 	fp->f_ops = &badfileops;
 	vrele(fp->f_vnode);
 	return (0);
 }
 
 struct fileops path_fileops = {
 	.fo_read = badfo_readwrite,
 	.fo_write = badfo_readwrite,
 	.fo_truncate = badfo_truncate,
 	.fo_ioctl = badfo_ioctl,
 	.fo_poll = path_poll,
 	.fo_kqfilter = vn_kqfilter_opath,
 	.fo_stat = vn_statfile,
 	.fo_close = path_close,
 	.fo_chmod = badfo_chmod,
 	.fo_chown = badfo_chown,
 	.fo_sendfile = badfo_sendfile,
 	.fo_fill_kinfo = vn_fill_kinfo,
 	.fo_flags = DFLAG_PASSABLE,
 };
 
 int
 invfo_rdwr(struct file *fp, struct uio *uio, struct ucred *active_cred,
     int flags, struct thread *td)
 {
 
 	return (EOPNOTSUPP);
 }
 
 int
 invfo_truncate(struct file *fp, off_t length, struct ucred *active_cred,
     struct thread *td)
 {
 
 	return (EINVAL);
 }
 
 int
 invfo_ioctl(struct file *fp, u_long com, void *data,
     struct ucred *active_cred, struct thread *td)
 {
 
 	return (ENOTTY);
 }
 
 int
 invfo_poll(struct file *fp, int events, struct ucred *active_cred,
     struct thread *td)
 {
 
 	return (poll_no_poll(events));
 }
 
 int
 invfo_kqfilter(struct file *fp, struct knote *kn)
 {
 
 	return (EINVAL);
 }
 
 int
 invfo_chmod(struct file *fp, mode_t mode, struct ucred *active_cred,
     struct thread *td)
 {
 
 	return (EINVAL);
 }
 
 int
 invfo_chown(struct file *fp, uid_t uid, gid_t gid, struct ucred *active_cred,
     struct thread *td)
 {
 
 	return (EINVAL);
 }
 
 int
 invfo_sendfile(struct file *fp, int sockfd, struct uio *hdr_uio,
     struct uio *trl_uio, off_t offset, size_t nbytes, off_t *sent, int flags,
     struct thread *td)
 {
 
 	return (EINVAL);
 }
 
 /*-------------------------------------------------------------------*/
 
 /*
  * File Descriptor pseudo-device driver (/dev/fd/).
  *
  * Opening minor device N dup()s the file (if any) connected to file
  * descriptor N belonging to the calling process.  Note that this driver
  * consists of only the ``open()'' routine, because all subsequent
  * references to this file will be direct to the other driver.
  *
  * XXX: we could give this one a cloning event handler if necessary.
  */
 
 /* ARGSUSED */
 static int
 fdopen(struct cdev *dev, int mode, int type, struct thread *td)
 {
 
 	/*
 	 * XXX Kludge: set curthread->td_dupfd to contain the value of the
 	 * the file descriptor being sought for duplication. The error
 	 * return ensures that the vnode for this device will be released
 	 * by vn_open. Open will detect this special error and take the
 	 * actions in dupfdopen below. Other callers of vn_open or VOP_OPEN
 	 * will simply report the error.
 	 */
 	td->td_dupfd = dev2unit(dev);
 	return (ENODEV);
 }
 
 static struct cdevsw fildesc_cdevsw = {
 	.d_version =	D_VERSION,
 	.d_open =	fdopen,
 	.d_name =	"FD",
 };
 
 static void
 fildesc_drvinit(void *unused)
 {
 	struct cdev *dev;
 
 	dev = make_dev_credf(MAKEDEV_ETERNAL, &fildesc_cdevsw, 0, NULL,
 	    UID_ROOT, GID_WHEEL, 0666, "fd/0");
 	make_dev_alias(dev, "stdin");
 	dev = make_dev_credf(MAKEDEV_ETERNAL, &fildesc_cdevsw, 1, NULL,
 	    UID_ROOT, GID_WHEEL, 0666, "fd/1");
 	make_dev_alias(dev, "stdout");
 	dev = make_dev_credf(MAKEDEV_ETERNAL, &fildesc_cdevsw, 2, NULL,
 	    UID_ROOT, GID_WHEEL, 0666, "fd/2");
 	make_dev_alias(dev, "stderr");
 }
 
 SYSINIT(fildescdev, SI_SUB_DRIVERS, SI_ORDER_MIDDLE, fildesc_drvinit, NULL);