diff --git a/module/zfs/metaslab.c b/module/zfs/metaslab.c
index d50225fc3f6d..3876b1014973 100644
--- a/module/zfs/metaslab.c
+++ b/module/zfs/metaslab.c
@@ -1,6233 +1,6236 @@
 /*
  * CDDL HEADER START
  *
  * The contents of this file are subject to the terms of the
  * Common Development and Distribution License (the "License").
  * You may not use this file except in compliance with the License.
  *
  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
  * or https://opensource.org/licenses/CDDL-1.0.
  * See the License for the specific language governing permissions
  * and limitations under the License.
  *
  * When distributing Covered Code, include this CDDL HEADER in each
  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  * If applicable, add the following below this CDDL HEADER, with the
  * fields enclosed by brackets "[]" replaced with your own identifying
  * information: Portions Copyright [yyyy] [name of copyright owner]
  *
  * CDDL HEADER END
  */
 /*
  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
  * Copyright (c) 2011, 2019 by Delphix. All rights reserved.
  * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
  * Copyright (c) 2015, Nexenta Systems, Inc. All rights reserved.
  * Copyright (c) 2017, Intel Corporation.
  */
 
 #include <sys/zfs_context.h>
 #include <sys/dmu.h>
 #include <sys/dmu_tx.h>
 #include <sys/space_map.h>
 #include <sys/metaslab_impl.h>
 #include <sys/vdev_impl.h>
 #include <sys/vdev_draid.h>
 #include <sys/zio.h>
 #include <sys/spa_impl.h>
 #include <sys/zfeature.h>
 #include <sys/vdev_indirect_mapping.h>
 #include <sys/zap.h>
 #include <sys/btree.h>
 
 #define	WITH_DF_BLOCK_ALLOCATOR
 
 #define	GANG_ALLOCATION(flags) \
 	((flags) & (METASLAB_GANG_CHILD | METASLAB_GANG_HEADER))
 
 /*
  * Metaslab granularity, in bytes. This is roughly similar to what would be
  * referred to as the "stripe size" in traditional RAID arrays. In normal
  * operation, we will try to write this amount of data to each disk before
  * moving on to the next top-level vdev.
  */
 static uint64_t metaslab_aliquot = 1024 * 1024;
 
 /*
  * For testing, make some blocks above a certain size be gang blocks.
  */
 uint64_t metaslab_force_ganging = SPA_MAXBLOCKSIZE + 1;
 
 /*
  * Of blocks of size >= metaslab_force_ganging, actually gang them this often.
  */
 uint_t metaslab_force_ganging_pct = 3;
 
 /*
  * In pools where the log space map feature is not enabled we touch
  * multiple metaslabs (and their respective space maps) with each
  * transaction group. Thus, we benefit from having a small space map
  * block size since it allows us to issue more I/O operations scattered
  * around the disk. So a sane default for the space map block size
  * is 8~16K.
  */
 int zfs_metaslab_sm_blksz_no_log = (1 << 14);
 
 /*
  * When the log space map feature is enabled, we accumulate a lot of
  * changes per metaslab that are flushed once in a while so we benefit
  * from a bigger block size like 128K for the metaslab space maps.
  */
 int zfs_metaslab_sm_blksz_with_log = (1 << 17);
 
 /*
  * The in-core space map representation is more compact than its on-disk form.
  * The zfs_condense_pct determines how much more compact the in-core
  * space map representation must be before we compact it on-disk.
  * Values should be greater than or equal to 100.
  */
 uint_t zfs_condense_pct = 200;
 
 /*
  * Condensing a metaslab is not guaranteed to actually reduce the amount of
  * space used on disk. In particular, a space map uses data in increments of
  * MAX(1 << ashift, space_map_blksz), so a metaslab might use the
  * same number of blocks after condensing. Since the goal of condensing is to
  * reduce the number of IOPs required to read the space map, we only want to
  * condense when we can be sure we will reduce the number of blocks used by the
  * space map. Unfortunately, we cannot precisely compute whether or not this is
  * the case in metaslab_should_condense since we are holding ms_lock. Instead,
  * we apply the following heuristic: do not condense a spacemap unless the
  * uncondensed size consumes greater than zfs_metaslab_condense_block_threshold
  * blocks.
  */
 static const int zfs_metaslab_condense_block_threshold = 4;
 
 /*
  * The zfs_mg_noalloc_threshold defines which metaslab groups should
  * be eligible for allocation. The value is defined as a percentage of
  * free space. Metaslab groups that have more free space than
  * zfs_mg_noalloc_threshold are always eligible for allocations. Once
  * a metaslab group's free space is less than or equal to the
  * zfs_mg_noalloc_threshold the allocator will avoid allocating to that
  * group unless all groups in the pool have reached zfs_mg_noalloc_threshold.
  * Once all groups in the pool reach zfs_mg_noalloc_threshold then all
  * groups are allowed to accept allocations. Gang blocks are always
  * eligible to allocate on any metaslab group. The default value of 0 means
  * no metaslab group will be excluded based on this criterion.
  */
 static uint_t zfs_mg_noalloc_threshold = 0;
 
 /*
  * Metaslab groups are considered eligible for allocations if their
  * fragmentation metric (measured as a percentage) is less than or
  * equal to zfs_mg_fragmentation_threshold. If a metaslab group
  * exceeds this threshold then it will be skipped unless all metaslab
  * groups within the metaslab class have also crossed this threshold.
  *
  * This tunable was introduced to avoid edge cases where we continue
  * allocating from very fragmented disks in our pool while other, less
  * fragmented disks, exists. On the other hand, if all disks in the
  * pool are uniformly approaching the threshold, the threshold can
  * be a speed bump in performance, where we keep switching the disks
  * that we allocate from (e.g. we allocate some segments from disk A
  * making it bypassing the threshold while freeing segments from disk
  * B getting its fragmentation below the threshold).
  *
  * Empirically, we've seen that our vdev selection for allocations is
  * good enough that fragmentation increases uniformly across all vdevs
  * the majority of the time. Thus we set the threshold percentage high
  * enough to avoid hitting the speed bump on pools that are being pushed
  * to the edge.
  */
 static uint_t zfs_mg_fragmentation_threshold = 95;
 
 /*
  * Allow metaslabs to keep their active state as long as their fragmentation
  * percentage is less than or equal to zfs_metaslab_fragmentation_threshold. An
  * active metaslab that exceeds this threshold will no longer keep its active
  * status allowing better metaslabs to be selected.
  */
 static uint_t zfs_metaslab_fragmentation_threshold = 70;
 
 /*
  * When set will load all metaslabs when pool is first opened.
  */
 int metaslab_debug_load = B_FALSE;
 
 /*
  * When set will prevent metaslabs from being unloaded.
  */
 static int metaslab_debug_unload = B_FALSE;
 
 /*
  * Minimum size which forces the dynamic allocator to change
  * it's allocation strategy.  Once the space map cannot satisfy
  * an allocation of this size then it switches to using more
  * aggressive strategy (i.e search by size rather than offset).
  */
 uint64_t metaslab_df_alloc_threshold = SPA_OLD_MAXBLOCKSIZE;
 
 /*
  * The minimum free space, in percent, which must be available
  * in a space map to continue allocations in a first-fit fashion.
  * Once the space map's free space drops below this level we dynamically
  * switch to using best-fit allocations.
  */
 uint_t metaslab_df_free_pct = 4;
 
 /*
  * Maximum distance to search forward from the last offset. Without this
  * limit, fragmented pools can see >100,000 iterations and
  * metaslab_block_picker() becomes the performance limiting factor on
  * high-performance storage.
  *
  * With the default setting of 16MB, we typically see less than 500
  * iterations, even with very fragmented, ashift=9 pools. The maximum number
  * of iterations possible is:
  *     metaslab_df_max_search / (2 * (1<<ashift))
  * With the default setting of 16MB this is 16*1024 (with ashift=9) or
  * 2048 (with ashift=12).
  */
 static uint_t metaslab_df_max_search = 16 * 1024 * 1024;
 
 /*
  * Forces the metaslab_block_picker function to search for at least this many
  * segments forwards until giving up on finding a segment that the allocation
  * will fit into.
  */
 static const uint32_t metaslab_min_search_count = 100;
 
 /*
  * If we are not searching forward (due to metaslab_df_max_search,
  * metaslab_df_free_pct, or metaslab_df_alloc_threshold), this tunable
  * controls what segment is used.  If it is set, we will use the largest free
  * segment.  If it is not set, we will use a segment of exactly the requested
  * size (or larger).
  */
 static int metaslab_df_use_largest_segment = B_FALSE;
 
 /*
  * These tunables control how long a metaslab will remain loaded after the
  * last allocation from it.  A metaslab can't be unloaded until at least
  * metaslab_unload_delay TXG's and metaslab_unload_delay_ms milliseconds
  * have elapsed.  However, zfs_metaslab_mem_limit may cause it to be
  * unloaded sooner.  These settings are intended to be generous -- to keep
  * metaslabs loaded for a long time, reducing the rate of metaslab loading.
  */
 static uint_t metaslab_unload_delay = 32;
 static uint_t metaslab_unload_delay_ms = 10 * 60 * 1000; /* ten minutes */
 
 /*
  * Max number of metaslabs per group to preload.
  */
 uint_t metaslab_preload_limit = 10;
 
 /*
  * Enable/disable preloading of metaslab.
  */
 static int metaslab_preload_enabled = B_TRUE;
 
 /*
  * Enable/disable fragmentation weighting on metaslabs.
  */
 static int metaslab_fragmentation_factor_enabled = B_TRUE;
 
 /*
  * Enable/disable lba weighting (i.e. outer tracks are given preference).
  */
 static int metaslab_lba_weighting_enabled = B_TRUE;
 
 /*
  * Enable/disable metaslab group biasing.
  */
 static int metaslab_bias_enabled = B_TRUE;
 
 /*
  * Enable/disable remapping of indirect DVAs to their concrete vdevs.
  */
 static const boolean_t zfs_remap_blkptr_enable = B_TRUE;
 
 /*
  * Enable/disable segment-based metaslab selection.
  */
 static int zfs_metaslab_segment_weight_enabled = B_TRUE;
 
 /*
  * When using segment-based metaslab selection, we will continue
  * allocating from the active metaslab until we have exhausted
  * zfs_metaslab_switch_threshold of its buckets.
  */
 static int zfs_metaslab_switch_threshold = 2;
 
 /*
  * Internal switch to enable/disable the metaslab allocation tracing
  * facility.
  */
 static const boolean_t metaslab_trace_enabled = B_FALSE;
 
 /*
  * Maximum entries that the metaslab allocation tracing facility will keep
  * in a given list when running in non-debug mode. We limit the number
  * of entries in non-debug mode to prevent us from using up too much memory.
  * The limit should be sufficiently large that we don't expect any allocation
  * to every exceed this value. In debug mode, the system will panic if this
  * limit is ever reached allowing for further investigation.
  */
 static const uint64_t metaslab_trace_max_entries = 5000;
 
 /*
  * Maximum number of metaslabs per group that can be disabled
  * simultaneously.
  */
 static const int max_disabled_ms = 3;
 
 /*
  * Time (in seconds) to respect ms_max_size when the metaslab is not loaded.
  * To avoid 64-bit overflow, don't set above UINT32_MAX.
  */
 static uint64_t zfs_metaslab_max_size_cache_sec = 1 * 60 * 60; /* 1 hour */
 
 /*
  * Maximum percentage of memory to use on storing loaded metaslabs. If loading
  * a metaslab would take it over this percentage, the oldest selected metaslab
  * is automatically unloaded.
  */
 static uint_t zfs_metaslab_mem_limit = 25;
 
 /*
  * Force the per-metaslab range trees to use 64-bit integers to store
  * segments. Used for debugging purposes.
  */
 static const boolean_t zfs_metaslab_force_large_segs = B_FALSE;
 
 /*
  * By default we only store segments over a certain size in the size-sorted
  * metaslab trees (ms_allocatable_by_size and
  * ms_unflushed_frees_by_size). This dramatically reduces memory usage and
  * improves load and unload times at the cost of causing us to use slightly
  * larger segments than we would otherwise in some cases.
  */
 static const uint32_t metaslab_by_size_min_shift = 14;
 
 /*
  * If not set, we will first try normal allocation.  If that fails then
  * we will do a gang allocation.  If that fails then we will do a "try hard"
  * gang allocation.  If that fails then we will have a multi-layer gang
  * block.
  *
  * If set, we will first try normal allocation.  If that fails then
  * we will do a "try hard" allocation.  If that fails we will do a gang
  * allocation.  If that fails we will do a "try hard" gang allocation.  If
  * that fails then we will have a multi-layer gang block.
  */
 static int zfs_metaslab_try_hard_before_gang = B_FALSE;
 
 /*
  * When not trying hard, we only consider the best zfs_metaslab_find_max_tries
  * metaslabs.  This improves performance, especially when there are many
  * metaslabs per vdev and the allocation can't actually be satisfied (so we
  * would otherwise iterate all the metaslabs).  If there is a metaslab with a
  * worse weight but it can actually satisfy the allocation, we won't find it
  * until trying hard.  This may happen if the worse metaslab is not loaded
  * (and the true weight is better than we have calculated), or due to weight
  * bucketization.  E.g. we are looking for a 60K segment, and the best
  * metaslabs all have free segments in the 32-63K bucket, but the best
  * zfs_metaslab_find_max_tries metaslabs have ms_max_size <60KB, and a
  * subsequent metaslab has ms_max_size >60KB (but fewer segments in this
  * bucket, and therefore a lower weight).
  */
 static uint_t zfs_metaslab_find_max_tries = 100;
 
 static uint64_t metaslab_weight(metaslab_t *, boolean_t);
 static void metaslab_set_fragmentation(metaslab_t *, boolean_t);
 static void metaslab_free_impl(vdev_t *, uint64_t, uint64_t, boolean_t);
 static void metaslab_check_free_impl(vdev_t *, uint64_t, uint64_t);
 
 static void metaslab_passivate(metaslab_t *msp, uint64_t weight);
 static uint64_t metaslab_weight_from_range_tree(metaslab_t *msp);
 static void metaslab_flush_update(metaslab_t *, dmu_tx_t *);
 static unsigned int metaslab_idx_func(multilist_t *, void *);
 static void metaslab_evict(metaslab_t *, uint64_t);
 static void metaslab_rt_add(range_tree_t *rt, range_seg_t *rs, void *arg);
 kmem_cache_t *metaslab_alloc_trace_cache;
 
 typedef struct metaslab_stats {
 	kstat_named_t metaslabstat_trace_over_limit;
 	kstat_named_t metaslabstat_reload_tree;
 	kstat_named_t metaslabstat_too_many_tries;
 	kstat_named_t metaslabstat_try_hard;
 } metaslab_stats_t;
 
 static metaslab_stats_t metaslab_stats = {
 	{ "trace_over_limit",		KSTAT_DATA_UINT64 },
 	{ "reload_tree",		KSTAT_DATA_UINT64 },
 	{ "too_many_tries",		KSTAT_DATA_UINT64 },
 	{ "try_hard",			KSTAT_DATA_UINT64 },
 };
 
 #define	METASLABSTAT_BUMP(stat) \
 	atomic_inc_64(&metaslab_stats.stat.value.ui64);
 
 
 static kstat_t *metaslab_ksp;
 
 void
 metaslab_stat_init(void)
 {
 	ASSERT(metaslab_alloc_trace_cache == NULL);
 	metaslab_alloc_trace_cache = kmem_cache_create(
 	    "metaslab_alloc_trace_cache", sizeof (metaslab_alloc_trace_t),
 	    0, NULL, NULL, NULL, NULL, NULL, 0);
 	metaslab_ksp = kstat_create("zfs", 0, "metaslab_stats",
 	    "misc", KSTAT_TYPE_NAMED, sizeof (metaslab_stats) /
 	    sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
 	if (metaslab_ksp != NULL) {
 		metaslab_ksp->ks_data = &metaslab_stats;
 		kstat_install(metaslab_ksp);
 	}
 }
 
 void
 metaslab_stat_fini(void)
 {
 	if (metaslab_ksp != NULL) {
 		kstat_delete(metaslab_ksp);
 		metaslab_ksp = NULL;
 	}
 
 	kmem_cache_destroy(metaslab_alloc_trace_cache);
 	metaslab_alloc_trace_cache = NULL;
 }
 
 /*
  * ==========================================================================
  * Metaslab classes
  * ==========================================================================
  */
 metaslab_class_t *
 metaslab_class_create(spa_t *spa, const metaslab_ops_t *ops)
 {
 	metaslab_class_t *mc;
 
 	mc = kmem_zalloc(offsetof(metaslab_class_t,
 	    mc_allocator[spa->spa_alloc_count]), KM_SLEEP);
 
 	mc->mc_spa = spa;
 	mc->mc_ops = ops;
 	mutex_init(&mc->mc_lock, NULL, MUTEX_DEFAULT, NULL);
 	multilist_create(&mc->mc_metaslab_txg_list, sizeof (metaslab_t),
 	    offsetof(metaslab_t, ms_class_txg_node), metaslab_idx_func);
 	for (int i = 0; i < spa->spa_alloc_count; i++) {
 		metaslab_class_allocator_t *mca = &mc->mc_allocator[i];
 		mca->mca_rotor = NULL;
 		zfs_refcount_create_tracked(&mca->mca_alloc_slots);
 	}
 
 	return (mc);
 }
 
 void
 metaslab_class_destroy(metaslab_class_t *mc)
 {
 	spa_t *spa = mc->mc_spa;
 
 	ASSERT(mc->mc_alloc == 0);
 	ASSERT(mc->mc_deferred == 0);
 	ASSERT(mc->mc_space == 0);
 	ASSERT(mc->mc_dspace == 0);
 
 	for (int i = 0; i < spa->spa_alloc_count; i++) {
 		metaslab_class_allocator_t *mca = &mc->mc_allocator[i];
 		ASSERT(mca->mca_rotor == NULL);
 		zfs_refcount_destroy(&mca->mca_alloc_slots);
 	}
 	mutex_destroy(&mc->mc_lock);
 	multilist_destroy(&mc->mc_metaslab_txg_list);
 	kmem_free(mc, offsetof(metaslab_class_t,
 	    mc_allocator[spa->spa_alloc_count]));
 }
 
 int
 metaslab_class_validate(metaslab_class_t *mc)
 {
 	metaslab_group_t *mg;
 	vdev_t *vd;
 
 	/*
 	 * Must hold one of the spa_config locks.
 	 */
 	ASSERT(spa_config_held(mc->mc_spa, SCL_ALL, RW_READER) ||
 	    spa_config_held(mc->mc_spa, SCL_ALL, RW_WRITER));
 
 	if ((mg = mc->mc_allocator[0].mca_rotor) == NULL)
 		return (0);
 
 	do {
 		vd = mg->mg_vd;
 		ASSERT(vd->vdev_mg != NULL);
 		ASSERT3P(vd->vdev_top, ==, vd);
 		ASSERT3P(mg->mg_class, ==, mc);
 		ASSERT3P(vd->vdev_ops, !=, &vdev_hole_ops);
 	} while ((mg = mg->mg_next) != mc->mc_allocator[0].mca_rotor);
 
 	return (0);
 }
 
 static void
 metaslab_class_space_update(metaslab_class_t *mc, int64_t alloc_delta,
     int64_t defer_delta, int64_t space_delta, int64_t dspace_delta)
 {
 	atomic_add_64(&mc->mc_alloc, alloc_delta);
 	atomic_add_64(&mc->mc_deferred, defer_delta);
 	atomic_add_64(&mc->mc_space, space_delta);
 	atomic_add_64(&mc->mc_dspace, dspace_delta);
 }
 
 uint64_t
 metaslab_class_get_alloc(metaslab_class_t *mc)
 {
 	return (mc->mc_alloc);
 }
 
 uint64_t
 metaslab_class_get_deferred(metaslab_class_t *mc)
 {
 	return (mc->mc_deferred);
 }
 
 uint64_t
 metaslab_class_get_space(metaslab_class_t *mc)
 {
 	return (mc->mc_space);
 }
 
 uint64_t
 metaslab_class_get_dspace(metaslab_class_t *mc)
 {
 	return (spa_deflate(mc->mc_spa) ? mc->mc_dspace : mc->mc_space);
 }
 
 void
 metaslab_class_histogram_verify(metaslab_class_t *mc)
 {
 	spa_t *spa = mc->mc_spa;
 	vdev_t *rvd = spa->spa_root_vdev;
 	uint64_t *mc_hist;
 	int i;
 
 	if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0)
 		return;
 
 	mc_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE,
 	    KM_SLEEP);
 
 	mutex_enter(&mc->mc_lock);
 	for (int c = 0; c < rvd->vdev_children; c++) {
 		vdev_t *tvd = rvd->vdev_child[c];
 		metaslab_group_t *mg = vdev_get_mg(tvd, mc);
 
 		/*
 		 * Skip any holes, uninitialized top-levels, or
 		 * vdevs that are not in this metalab class.
 		 */
 		if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 ||
 		    mg->mg_class != mc) {
 			continue;
 		}
 
 		IMPLY(mg == mg->mg_vd->vdev_log_mg,
 		    mc == spa_embedded_log_class(mg->mg_vd->vdev_spa));
 
 		for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
 			mc_hist[i] += mg->mg_histogram[i];
 	}
 
 	for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
 		VERIFY3U(mc_hist[i], ==, mc->mc_histogram[i]);
 	}
 
 	mutex_exit(&mc->mc_lock);
 	kmem_free(mc_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE);
 }
 
 /*
  * Calculate the metaslab class's fragmentation metric. The metric
  * is weighted based on the space contribution of each metaslab group.
  * The return value will be a number between 0 and 100 (inclusive), or
  * ZFS_FRAG_INVALID if the metric has not been set. See comment above the
  * zfs_frag_table for more information about the metric.
  */
 uint64_t
 metaslab_class_fragmentation(metaslab_class_t *mc)
 {
 	vdev_t *rvd = mc->mc_spa->spa_root_vdev;
 	uint64_t fragmentation = 0;
 
 	spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER);
 
 	for (int c = 0; c < rvd->vdev_children; c++) {
 		vdev_t *tvd = rvd->vdev_child[c];
 		metaslab_group_t *mg = tvd->vdev_mg;
 
 		/*
 		 * Skip any holes, uninitialized top-levels,
 		 * or vdevs that are not in this metalab class.
 		 */
 		if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 ||
 		    mg->mg_class != mc) {
 			continue;
 		}
 
 		/*
 		 * If a metaslab group does not contain a fragmentation
 		 * metric then just bail out.
 		 */
 		if (mg->mg_fragmentation == ZFS_FRAG_INVALID) {
 			spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
 			return (ZFS_FRAG_INVALID);
 		}
 
 		/*
 		 * Determine how much this metaslab_group is contributing
 		 * to the overall pool fragmentation metric.
 		 */
 		fragmentation += mg->mg_fragmentation *
 		    metaslab_group_get_space(mg);
 	}
 	fragmentation /= metaslab_class_get_space(mc);
 
 	ASSERT3U(fragmentation, <=, 100);
 	spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
 	return (fragmentation);
 }
 
 /*
  * Calculate the amount of expandable space that is available in
  * this metaslab class. If a device is expanded then its expandable
  * space will be the amount of allocatable space that is currently not
  * part of this metaslab class.
  */
 uint64_t
 metaslab_class_expandable_space(metaslab_class_t *mc)
 {
 	vdev_t *rvd = mc->mc_spa->spa_root_vdev;
 	uint64_t space = 0;
 
 	spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER);
 	for (int c = 0; c < rvd->vdev_children; c++) {
 		vdev_t *tvd = rvd->vdev_child[c];
 		metaslab_group_t *mg = tvd->vdev_mg;
 
 		if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 ||
 		    mg->mg_class != mc) {
 			continue;
 		}
 
 		/*
 		 * Calculate if we have enough space to add additional
 		 * metaslabs. We report the expandable space in terms
 		 * of the metaslab size since that's the unit of expansion.
 		 */
 		space += P2ALIGN_TYPED(tvd->vdev_max_asize - tvd->vdev_asize,
 		    1ULL << tvd->vdev_ms_shift, uint64_t);
 	}
 	spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
 	return (space);
 }
 
 void
 metaslab_class_evict_old(metaslab_class_t *mc, uint64_t txg)
 {
 	multilist_t *ml = &mc->mc_metaslab_txg_list;
+	hrtime_t now = gethrtime();
 	for (int i = 0; i < multilist_get_num_sublists(ml); i++) {
 		multilist_sublist_t *mls = multilist_sublist_lock_idx(ml, i);
 		metaslab_t *msp = multilist_sublist_head(mls);
 		multilist_sublist_unlock(mls);
 		while (msp != NULL) {
 			mutex_enter(&msp->ms_lock);
 
 			/*
 			 * If the metaslab has been removed from the list
 			 * (which could happen if we were at the memory limit
 			 * and it was evicted during this loop), then we can't
 			 * proceed and we should restart the sublist.
 			 */
 			if (!multilist_link_active(&msp->ms_class_txg_node)) {
 				mutex_exit(&msp->ms_lock);
 				i--;
 				break;
 			}
 			mls = multilist_sublist_lock_idx(ml, i);
 			metaslab_t *next_msp = multilist_sublist_next(mls, msp);
 			multilist_sublist_unlock(mls);
 			if (txg >
 			    msp->ms_selected_txg + metaslab_unload_delay &&
-			    gethrtime() > msp->ms_selected_time +
-			    (uint64_t)MSEC2NSEC(metaslab_unload_delay_ms)) {
+			    now > msp->ms_selected_time +
+			    MSEC2NSEC(metaslab_unload_delay_ms) &&
+			    (msp->ms_allocator == -1 ||
+			    !metaslab_preload_enabled)) {
 				metaslab_evict(msp, txg);
 			} else {
 				/*
 				 * Once we've hit a metaslab selected too
 				 * recently to evict, we're done evicting for
 				 * now.
 				 */
 				mutex_exit(&msp->ms_lock);
 				break;
 			}
 			mutex_exit(&msp->ms_lock);
 			msp = next_msp;
 		}
 	}
 }
 
 static int
 metaslab_compare(const void *x1, const void *x2)
 {
 	const metaslab_t *m1 = (const metaslab_t *)x1;
 	const metaslab_t *m2 = (const metaslab_t *)x2;
 
 	int sort1 = 0;
 	int sort2 = 0;
 	if (m1->ms_allocator != -1 && m1->ms_primary)
 		sort1 = 1;
 	else if (m1->ms_allocator != -1 && !m1->ms_primary)
 		sort1 = 2;
 	if (m2->ms_allocator != -1 && m2->ms_primary)
 		sort2 = 1;
 	else if (m2->ms_allocator != -1 && !m2->ms_primary)
 		sort2 = 2;
 
 	/*
 	 * Sort inactive metaslabs first, then primaries, then secondaries. When
 	 * selecting a metaslab to allocate from, an allocator first tries its
 	 * primary, then secondary active metaslab. If it doesn't have active
 	 * metaslabs, or can't allocate from them, it searches for an inactive
 	 * metaslab to activate. If it can't find a suitable one, it will steal
 	 * a primary or secondary metaslab from another allocator.
 	 */
 	if (sort1 < sort2)
 		return (-1);
 	if (sort1 > sort2)
 		return (1);
 
 	int cmp = TREE_CMP(m2->ms_weight, m1->ms_weight);
 	if (likely(cmp))
 		return (cmp);
 
 	IMPLY(TREE_CMP(m1->ms_start, m2->ms_start) == 0, m1 == m2);
 
 	return (TREE_CMP(m1->ms_start, m2->ms_start));
 }
 
 /*
  * ==========================================================================
  * Metaslab groups
  * ==========================================================================
  */
 /*
  * Update the allocatable flag and the metaslab group's capacity.
  * The allocatable flag is set to true if the capacity is below
  * the zfs_mg_noalloc_threshold or has a fragmentation value that is
  * greater than zfs_mg_fragmentation_threshold. If a metaslab group
  * transitions from allocatable to non-allocatable or vice versa then the
  * metaslab group's class is updated to reflect the transition.
  */
 static void
 metaslab_group_alloc_update(metaslab_group_t *mg)
 {
 	vdev_t *vd = mg->mg_vd;
 	metaslab_class_t *mc = mg->mg_class;
 	vdev_stat_t *vs = &vd->vdev_stat;
 	boolean_t was_allocatable;
 	boolean_t was_initialized;
 
 	ASSERT(vd == vd->vdev_top);
 	ASSERT3U(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_READER), ==,
 	    SCL_ALLOC);
 
 	mutex_enter(&mg->mg_lock);
 	was_allocatable = mg->mg_allocatable;
 	was_initialized = mg->mg_initialized;
 
 	mg->mg_free_capacity = ((vs->vs_space - vs->vs_alloc) * 100) /
 	    (vs->vs_space + 1);
 
 	mutex_enter(&mc->mc_lock);
 
 	/*
 	 * If the metaslab group was just added then it won't
 	 * have any space until we finish syncing out this txg.
 	 * At that point we will consider it initialized and available
 	 * for allocations.  We also don't consider non-activated
 	 * metaslab groups (e.g. vdevs that are in the middle of being removed)
 	 * to be initialized, because they can't be used for allocation.
 	 */
 	mg->mg_initialized = metaslab_group_initialized(mg);
 	if (!was_initialized && mg->mg_initialized) {
 		mc->mc_groups++;
 	} else if (was_initialized && !mg->mg_initialized) {
 		ASSERT3U(mc->mc_groups, >, 0);
 		mc->mc_groups--;
 	}
 	if (mg->mg_initialized)
 		mg->mg_no_free_space = B_FALSE;
 
 	/*
 	 * A metaslab group is considered allocatable if it has plenty
 	 * of free space or is not heavily fragmented. We only take
 	 * fragmentation into account if the metaslab group has a valid
 	 * fragmentation metric (i.e. a value between 0 and 100).
 	 */
 	mg->mg_allocatable = (mg->mg_activation_count > 0 &&
 	    mg->mg_free_capacity > zfs_mg_noalloc_threshold &&
 	    (mg->mg_fragmentation == ZFS_FRAG_INVALID ||
 	    mg->mg_fragmentation <= zfs_mg_fragmentation_threshold));
 
 	/*
 	 * The mc_alloc_groups maintains a count of the number of
 	 * groups in this metaslab class that are still above the
 	 * zfs_mg_noalloc_threshold. This is used by the allocating
 	 * threads to determine if they should avoid allocations to
 	 * a given group. The allocator will avoid allocations to a group
 	 * if that group has reached or is below the zfs_mg_noalloc_threshold
 	 * and there are still other groups that are above the threshold.
 	 * When a group transitions from allocatable to non-allocatable or
 	 * vice versa we update the metaslab class to reflect that change.
 	 * When the mc_alloc_groups value drops to 0 that means that all
 	 * groups have reached the zfs_mg_noalloc_threshold making all groups
 	 * eligible for allocations. This effectively means that all devices
 	 * are balanced again.
 	 */
 	if (was_allocatable && !mg->mg_allocatable)
 		mc->mc_alloc_groups--;
 	else if (!was_allocatable && mg->mg_allocatable)
 		mc->mc_alloc_groups++;
 	mutex_exit(&mc->mc_lock);
 
 	mutex_exit(&mg->mg_lock);
 }
 
 int
 metaslab_sort_by_flushed(const void *va, const void *vb)
 {
 	const metaslab_t *a = va;
 	const metaslab_t *b = vb;
 
 	int cmp = TREE_CMP(a->ms_unflushed_txg, b->ms_unflushed_txg);
 	if (likely(cmp))
 		return (cmp);
 
 	uint64_t a_vdev_id = a->ms_group->mg_vd->vdev_id;
 	uint64_t b_vdev_id = b->ms_group->mg_vd->vdev_id;
 	cmp = TREE_CMP(a_vdev_id, b_vdev_id);
 	if (cmp)
 		return (cmp);
 
 	return (TREE_CMP(a->ms_id, b->ms_id));
 }
 
 metaslab_group_t *
 metaslab_group_create(metaslab_class_t *mc, vdev_t *vd, int allocators)
 {
 	metaslab_group_t *mg;
 
 	mg = kmem_zalloc(offsetof(metaslab_group_t,
 	    mg_allocator[allocators]), KM_SLEEP);
 	mutex_init(&mg->mg_lock, NULL, MUTEX_DEFAULT, NULL);
 	mutex_init(&mg->mg_ms_disabled_lock, NULL, MUTEX_DEFAULT, NULL);
 	cv_init(&mg->mg_ms_disabled_cv, NULL, CV_DEFAULT, NULL);
 	avl_create(&mg->mg_metaslab_tree, metaslab_compare,
 	    sizeof (metaslab_t), offsetof(metaslab_t, ms_group_node));
 	mg->mg_vd = vd;
 	mg->mg_class = mc;
 	mg->mg_activation_count = 0;
 	mg->mg_initialized = B_FALSE;
 	mg->mg_no_free_space = B_TRUE;
 	mg->mg_allocators = allocators;
 
 	for (int i = 0; i < allocators; i++) {
 		metaslab_group_allocator_t *mga = &mg->mg_allocator[i];
 		zfs_refcount_create_tracked(&mga->mga_alloc_queue_depth);
 	}
 
 	return (mg);
 }
 
 void
 metaslab_group_destroy(metaslab_group_t *mg)
 {
 	ASSERT(mg->mg_prev == NULL);
 	ASSERT(mg->mg_next == NULL);
 	/*
 	 * We may have gone below zero with the activation count
 	 * either because we never activated in the first place or
 	 * because we're done, and possibly removing the vdev.
 	 */
 	ASSERT(mg->mg_activation_count <= 0);
 
 	avl_destroy(&mg->mg_metaslab_tree);
 	mutex_destroy(&mg->mg_lock);
 	mutex_destroy(&mg->mg_ms_disabled_lock);
 	cv_destroy(&mg->mg_ms_disabled_cv);
 
 	for (int i = 0; i < mg->mg_allocators; i++) {
 		metaslab_group_allocator_t *mga = &mg->mg_allocator[i];
 		zfs_refcount_destroy(&mga->mga_alloc_queue_depth);
 	}
 	kmem_free(mg, offsetof(metaslab_group_t,
 	    mg_allocator[mg->mg_allocators]));
 }
 
 void
 metaslab_group_activate(metaslab_group_t *mg)
 {
 	metaslab_class_t *mc = mg->mg_class;
 	spa_t *spa = mc->mc_spa;
 	metaslab_group_t *mgprev, *mgnext;
 
 	ASSERT3U(spa_config_held(spa, SCL_ALLOC, RW_WRITER), !=, 0);
 
 	ASSERT(mg->mg_prev == NULL);
 	ASSERT(mg->mg_next == NULL);
 	ASSERT(mg->mg_activation_count <= 0);
 
 	if (++mg->mg_activation_count <= 0)
 		return;
 
 	mg->mg_aliquot = metaslab_aliquot * MAX(1,
 	    vdev_get_ndisks(mg->mg_vd) - vdev_get_nparity(mg->mg_vd));
 	metaslab_group_alloc_update(mg);
 
 	if ((mgprev = mc->mc_allocator[0].mca_rotor) == NULL) {
 		mg->mg_prev = mg;
 		mg->mg_next = mg;
 	} else {
 		mgnext = mgprev->mg_next;
 		mg->mg_prev = mgprev;
 		mg->mg_next = mgnext;
 		mgprev->mg_next = mg;
 		mgnext->mg_prev = mg;
 	}
 	for (int i = 0; i < spa->spa_alloc_count; i++) {
 		mc->mc_allocator[i].mca_rotor = mg;
 		mg = mg->mg_next;
 	}
 }
 
 /*
  * Passivate a metaslab group and remove it from the allocation rotor.
  * Callers must hold both the SCL_ALLOC and SCL_ZIO lock prior to passivating
  * a metaslab group. This function will momentarily drop spa_config_locks
  * that are lower than the SCL_ALLOC lock (see comment below).
  */
 void
 metaslab_group_passivate(metaslab_group_t *mg)
 {
 	metaslab_class_t *mc = mg->mg_class;
 	spa_t *spa = mc->mc_spa;
 	metaslab_group_t *mgprev, *mgnext;
 	int locks = spa_config_held(spa, SCL_ALL, RW_WRITER);
 
 	ASSERT3U(spa_config_held(spa, SCL_ALLOC | SCL_ZIO, RW_WRITER), ==,
 	    (SCL_ALLOC | SCL_ZIO));
 
 	if (--mg->mg_activation_count != 0) {
 		for (int i = 0; i < spa->spa_alloc_count; i++)
 			ASSERT(mc->mc_allocator[i].mca_rotor != mg);
 		ASSERT(mg->mg_prev == NULL);
 		ASSERT(mg->mg_next == NULL);
 		ASSERT(mg->mg_activation_count < 0);
 		return;
 	}
 
 	/*
 	 * The spa_config_lock is an array of rwlocks, ordered as
 	 * follows (from highest to lowest):
 	 *	SCL_CONFIG > SCL_STATE > SCL_L2ARC > SCL_ALLOC >
 	 *	SCL_ZIO > SCL_FREE > SCL_VDEV
 	 * (For more information about the spa_config_lock see spa_misc.c)
 	 * The higher the lock, the broader its coverage. When we passivate
 	 * a metaslab group, we must hold both the SCL_ALLOC and the SCL_ZIO
 	 * config locks. However, the metaslab group's taskq might be trying
 	 * to preload metaslabs so we must drop the SCL_ZIO lock and any
 	 * lower locks to allow the I/O to complete. At a minimum,
 	 * we continue to hold the SCL_ALLOC lock, which prevents any future
 	 * allocations from taking place and any changes to the vdev tree.
 	 */
 	spa_config_exit(spa, locks & ~(SCL_ZIO - 1), spa);
 	taskq_wait_outstanding(spa->spa_metaslab_taskq, 0);
 	spa_config_enter(spa, locks & ~(SCL_ZIO - 1), spa, RW_WRITER);
 	metaslab_group_alloc_update(mg);
 	for (int i = 0; i < mg->mg_allocators; i++) {
 		metaslab_group_allocator_t *mga = &mg->mg_allocator[i];
 		metaslab_t *msp = mga->mga_primary;
 		if (msp != NULL) {
 			mutex_enter(&msp->ms_lock);
 			metaslab_passivate(msp,
 			    metaslab_weight_from_range_tree(msp));
 			mutex_exit(&msp->ms_lock);
 		}
 		msp = mga->mga_secondary;
 		if (msp != NULL) {
 			mutex_enter(&msp->ms_lock);
 			metaslab_passivate(msp,
 			    metaslab_weight_from_range_tree(msp));
 			mutex_exit(&msp->ms_lock);
 		}
 	}
 
 	mgprev = mg->mg_prev;
 	mgnext = mg->mg_next;
 
 	if (mg == mgnext) {
 		mgnext = NULL;
 	} else {
 		mgprev->mg_next = mgnext;
 		mgnext->mg_prev = mgprev;
 	}
 	for (int i = 0; i < spa->spa_alloc_count; i++) {
 		if (mc->mc_allocator[i].mca_rotor == mg)
 			mc->mc_allocator[i].mca_rotor = mgnext;
 	}
 
 	mg->mg_prev = NULL;
 	mg->mg_next = NULL;
 }
 
 boolean_t
 metaslab_group_initialized(metaslab_group_t *mg)
 {
 	vdev_t *vd = mg->mg_vd;
 	vdev_stat_t *vs = &vd->vdev_stat;
 
 	return (vs->vs_space != 0 && mg->mg_activation_count > 0);
 }
 
 uint64_t
 metaslab_group_get_space(metaslab_group_t *mg)
 {
 	/*
 	 * Note that the number of nodes in mg_metaslab_tree may be one less
 	 * than vdev_ms_count, due to the embedded log metaslab.
 	 */
 	mutex_enter(&mg->mg_lock);
 	uint64_t ms_count = avl_numnodes(&mg->mg_metaslab_tree);
 	mutex_exit(&mg->mg_lock);
 	return ((1ULL << mg->mg_vd->vdev_ms_shift) * ms_count);
 }
 
 void
 metaslab_group_histogram_verify(metaslab_group_t *mg)
 {
 	uint64_t *mg_hist;
 	avl_tree_t *t = &mg->mg_metaslab_tree;
 	uint64_t ashift = mg->mg_vd->vdev_ashift;
 
 	if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0)
 		return;
 
 	mg_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE,
 	    KM_SLEEP);
 
 	ASSERT3U(RANGE_TREE_HISTOGRAM_SIZE, >=,
 	    SPACE_MAP_HISTOGRAM_SIZE + ashift);
 
 	mutex_enter(&mg->mg_lock);
 	for (metaslab_t *msp = avl_first(t);
 	    msp != NULL; msp = AVL_NEXT(t, msp)) {
 		VERIFY3P(msp->ms_group, ==, mg);
 		/* skip if not active */
 		if (msp->ms_sm == NULL)
 			continue;
 
 		for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
 			mg_hist[i + ashift] +=
 			    msp->ms_sm->sm_phys->smp_histogram[i];
 		}
 	}
 
 	for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i ++)
 		VERIFY3U(mg_hist[i], ==, mg->mg_histogram[i]);
 
 	mutex_exit(&mg->mg_lock);
 
 	kmem_free(mg_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE);
 }
 
 static void
 metaslab_group_histogram_add(metaslab_group_t *mg, metaslab_t *msp)
 {
 	metaslab_class_t *mc = mg->mg_class;
 	uint64_t ashift = mg->mg_vd->vdev_ashift;
 
 	ASSERT(MUTEX_HELD(&msp->ms_lock));
 	if (msp->ms_sm == NULL)
 		return;
 
 	mutex_enter(&mg->mg_lock);
 	mutex_enter(&mc->mc_lock);
 	for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
 		IMPLY(mg == mg->mg_vd->vdev_log_mg,
 		    mc == spa_embedded_log_class(mg->mg_vd->vdev_spa));
 		mg->mg_histogram[i + ashift] +=
 		    msp->ms_sm->sm_phys->smp_histogram[i];
 		mc->mc_histogram[i + ashift] +=
 		    msp->ms_sm->sm_phys->smp_histogram[i];
 	}
 	mutex_exit(&mc->mc_lock);
 	mutex_exit(&mg->mg_lock);
 }
 
 void
 metaslab_group_histogram_remove(metaslab_group_t *mg, metaslab_t *msp)
 {
 	metaslab_class_t *mc = mg->mg_class;
 	uint64_t ashift = mg->mg_vd->vdev_ashift;
 
 	ASSERT(MUTEX_HELD(&msp->ms_lock));
 	if (msp->ms_sm == NULL)
 		return;
 
 	mutex_enter(&mg->mg_lock);
 	mutex_enter(&mc->mc_lock);
 	for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
 		ASSERT3U(mg->mg_histogram[i + ashift], >=,
 		    msp->ms_sm->sm_phys->smp_histogram[i]);
 		ASSERT3U(mc->mc_histogram[i + ashift], >=,
 		    msp->ms_sm->sm_phys->smp_histogram[i]);
 		IMPLY(mg == mg->mg_vd->vdev_log_mg,
 		    mc == spa_embedded_log_class(mg->mg_vd->vdev_spa));
 
 		mg->mg_histogram[i + ashift] -=
 		    msp->ms_sm->sm_phys->smp_histogram[i];
 		mc->mc_histogram[i + ashift] -=
 		    msp->ms_sm->sm_phys->smp_histogram[i];
 	}
 	mutex_exit(&mc->mc_lock);
 	mutex_exit(&mg->mg_lock);
 }
 
 static void
 metaslab_group_add(metaslab_group_t *mg, metaslab_t *msp)
 {
 	ASSERT(msp->ms_group == NULL);
 	mutex_enter(&mg->mg_lock);
 	msp->ms_group = mg;
 	msp->ms_weight = 0;
 	avl_add(&mg->mg_metaslab_tree, msp);
 	mutex_exit(&mg->mg_lock);
 
 	mutex_enter(&msp->ms_lock);
 	metaslab_group_histogram_add(mg, msp);
 	mutex_exit(&msp->ms_lock);
 }
 
 static void
 metaslab_group_remove(metaslab_group_t *mg, metaslab_t *msp)
 {
 	mutex_enter(&msp->ms_lock);
 	metaslab_group_histogram_remove(mg, msp);
 	mutex_exit(&msp->ms_lock);
 
 	mutex_enter(&mg->mg_lock);
 	ASSERT(msp->ms_group == mg);
 	avl_remove(&mg->mg_metaslab_tree, msp);
 
 	metaslab_class_t *mc = msp->ms_group->mg_class;
 	multilist_sublist_t *mls =
 	    multilist_sublist_lock_obj(&mc->mc_metaslab_txg_list, msp);
 	if (multilist_link_active(&msp->ms_class_txg_node))
 		multilist_sublist_remove(mls, msp);
 	multilist_sublist_unlock(mls);
 
 	msp->ms_group = NULL;
 	mutex_exit(&mg->mg_lock);
 }
 
 static void
 metaslab_group_sort_impl(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight)
 {
 	ASSERT(MUTEX_HELD(&msp->ms_lock));
 	ASSERT(MUTEX_HELD(&mg->mg_lock));
 	ASSERT(msp->ms_group == mg);
 
 	avl_remove(&mg->mg_metaslab_tree, msp);
 	msp->ms_weight = weight;
 	avl_add(&mg->mg_metaslab_tree, msp);
 
 }
 
 static void
 metaslab_group_sort(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight)
 {
 	/*
 	 * Although in principle the weight can be any value, in
 	 * practice we do not use values in the range [1, 511].
 	 */
 	ASSERT(weight >= SPA_MINBLOCKSIZE || weight == 0);
 	ASSERT(MUTEX_HELD(&msp->ms_lock));
 
 	mutex_enter(&mg->mg_lock);
 	metaslab_group_sort_impl(mg, msp, weight);
 	mutex_exit(&mg->mg_lock);
 }
 
 /*
  * Calculate the fragmentation for a given metaslab group. We can use
  * a simple average here since all metaslabs within the group must have
  * the same size. The return value will be a value between 0 and 100
  * (inclusive), or ZFS_FRAG_INVALID if less than half of the metaslab in this
  * group have a fragmentation metric.
  */
 uint64_t
 metaslab_group_fragmentation(metaslab_group_t *mg)
 {
 	vdev_t *vd = mg->mg_vd;
 	uint64_t fragmentation = 0;
 	uint64_t valid_ms = 0;
 
 	for (int m = 0; m < vd->vdev_ms_count; m++) {
 		metaslab_t *msp = vd->vdev_ms[m];
 
 		if (msp->ms_fragmentation == ZFS_FRAG_INVALID)
 			continue;
 		if (msp->ms_group != mg)
 			continue;
 
 		valid_ms++;
 		fragmentation += msp->ms_fragmentation;
 	}
 
 	if (valid_ms <= mg->mg_vd->vdev_ms_count / 2)
 		return (ZFS_FRAG_INVALID);
 
 	fragmentation /= valid_ms;
 	ASSERT3U(fragmentation, <=, 100);
 	return (fragmentation);
 }
 
 /*
  * Determine if a given metaslab group should skip allocations. A metaslab
  * group should avoid allocations if its free capacity is less than the
  * zfs_mg_noalloc_threshold or its fragmentation metric is greater than
  * zfs_mg_fragmentation_threshold and there is at least one metaslab group
  * that can still handle allocations. If the allocation throttle is enabled
  * then we skip allocations to devices that have reached their maximum
  * allocation queue depth unless the selected metaslab group is the only
  * eligible group remaining.
  */
 static boolean_t
 metaslab_group_allocatable(metaslab_group_t *mg, metaslab_group_t *rotor,
     int flags, uint64_t psize, int allocator, int d)
 {
 	spa_t *spa = mg->mg_vd->vdev_spa;
 	metaslab_class_t *mc = mg->mg_class;
 
 	/*
 	 * We can only consider skipping this metaslab group if it's
 	 * in the normal metaslab class and there are other metaslab
 	 * groups to select from. Otherwise, we always consider it eligible
 	 * for allocations.
 	 */
 	if ((mc != spa_normal_class(spa) &&
 	    mc != spa_special_class(spa) &&
 	    mc != spa_dedup_class(spa)) ||
 	    mc->mc_groups <= 1)
 		return (B_TRUE);
 
 	/*
 	 * If the metaslab group's mg_allocatable flag is set (see comments
 	 * in metaslab_group_alloc_update() for more information) and
 	 * the allocation throttle is disabled then allow allocations to this
 	 * device. However, if the allocation throttle is enabled then
 	 * check if we have reached our allocation limit (mga_alloc_queue_depth)
 	 * to determine if we should allow allocations to this metaslab group.
 	 * If all metaslab groups are no longer considered allocatable
 	 * (mc_alloc_groups == 0) or we're trying to allocate the smallest
 	 * gang block size then we allow allocations on this metaslab group
 	 * regardless of the mg_allocatable or throttle settings.
 	 */
 	if (mg->mg_allocatable) {
 		metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
 		int64_t qdepth;
 		uint64_t qmax = mga->mga_cur_max_alloc_queue_depth;
 
 		if (!mc->mc_alloc_throttle_enabled)
 			return (B_TRUE);
 
 		/*
 		 * If this metaslab group does not have any free space, then
 		 * there is no point in looking further.
 		 */
 		if (mg->mg_no_free_space)
 			return (B_FALSE);
 
 		/*
 		 * Some allocations (e.g., those coming from device removal
 		 * where the * allocations are not even counted in the
 		 * metaslab * allocation queues) are allowed to bypass
 		 * the throttle.
 		 */
 		if (flags & METASLAB_DONT_THROTTLE)
 			return (B_TRUE);
 
 		/*
 		 * Relax allocation throttling for ditto blocks.  Due to
 		 * random imbalances in allocation it tends to push copies
 		 * to one vdev, that looks a bit better at the moment.
 		 */
 		qmax = qmax * (4 + d) / 4;
 
 		qdepth = zfs_refcount_count(&mga->mga_alloc_queue_depth);
 
 		/*
 		 * If this metaslab group is below its qmax or it's
 		 * the only allocatable metaslab group, then attempt
 		 * to allocate from it.
 		 */
 		if (qdepth < qmax || mc->mc_alloc_groups == 1)
 			return (B_TRUE);
 		ASSERT3U(mc->mc_alloc_groups, >, 1);
 
 		/*
 		 * Since this metaslab group is at or over its qmax, we
 		 * need to determine if there are metaslab groups after this
 		 * one that might be able to handle this allocation. This is
 		 * racy since we can't hold the locks for all metaslab
 		 * groups at the same time when we make this check.
 		 */
 		for (metaslab_group_t *mgp = mg->mg_next;
 		    mgp != rotor; mgp = mgp->mg_next) {
 			metaslab_group_allocator_t *mgap =
 			    &mgp->mg_allocator[allocator];
 			qmax = mgap->mga_cur_max_alloc_queue_depth;
 			qmax = qmax * (4 + d) / 4;
 			qdepth =
 			    zfs_refcount_count(&mgap->mga_alloc_queue_depth);
 
 			/*
 			 * If there is another metaslab group that
 			 * might be able to handle the allocation, then
 			 * we return false so that we skip this group.
 			 */
 			if (qdepth < qmax && !mgp->mg_no_free_space)
 				return (B_FALSE);
 		}
 
 		/*
 		 * We didn't find another group to handle the allocation
 		 * so we can't skip this metaslab group even though
 		 * we are at or over our qmax.
 		 */
 		return (B_TRUE);
 
 	} else if (mc->mc_alloc_groups == 0 || psize == SPA_MINBLOCKSIZE) {
 		return (B_TRUE);
 	}
 	return (B_FALSE);
 }
 
 /*
  * ==========================================================================
  * Range tree callbacks
  * ==========================================================================
  */
 
 /*
  * Comparison function for the private size-ordered tree using 32-bit
  * ranges. Tree is sorted by size, larger sizes at the end of the tree.
  */
 __attribute__((always_inline)) inline
 static int
 metaslab_rangesize32_compare(const void *x1, const void *x2)
 {
 	const range_seg32_t *r1 = x1;
 	const range_seg32_t *r2 = x2;
 
 	uint64_t rs_size1 = r1->rs_end - r1->rs_start;
 	uint64_t rs_size2 = r2->rs_end - r2->rs_start;
 
 	int cmp = TREE_CMP(rs_size1, rs_size2);
 
 	return (cmp + !cmp * TREE_CMP(r1->rs_start, r2->rs_start));
 }
 
 /*
  * Comparison function for the private size-ordered tree using 64-bit
  * ranges. Tree is sorted by size, larger sizes at the end of the tree.
  */
 __attribute__((always_inline)) inline
 static int
 metaslab_rangesize64_compare(const void *x1, const void *x2)
 {
 	const range_seg64_t *r1 = x1;
 	const range_seg64_t *r2 = x2;
 
 	uint64_t rs_size1 = r1->rs_end - r1->rs_start;
 	uint64_t rs_size2 = r2->rs_end - r2->rs_start;
 
 	int cmp = TREE_CMP(rs_size1, rs_size2);
 
 	return (cmp + !cmp * TREE_CMP(r1->rs_start, r2->rs_start));
 }
 
 typedef struct metaslab_rt_arg {
 	zfs_btree_t *mra_bt;
 	uint32_t mra_floor_shift;
 } metaslab_rt_arg_t;
 
 struct mssa_arg {
 	range_tree_t *rt;
 	metaslab_rt_arg_t *mra;
 };
 
 static void
 metaslab_size_sorted_add(void *arg, uint64_t start, uint64_t size)
 {
 	struct mssa_arg *mssap = arg;
 	range_tree_t *rt = mssap->rt;
 	metaslab_rt_arg_t *mrap = mssap->mra;
 	range_seg_max_t seg = {0};
 	rs_set_start(&seg, rt, start);
 	rs_set_end(&seg, rt, start + size);
 	metaslab_rt_add(rt, &seg, mrap);
 }
 
 static void
 metaslab_size_tree_full_load(range_tree_t *rt)
 {
 	metaslab_rt_arg_t *mrap = rt->rt_arg;
 	METASLABSTAT_BUMP(metaslabstat_reload_tree);
 	ASSERT0(zfs_btree_numnodes(mrap->mra_bt));
 	mrap->mra_floor_shift = 0;
 	struct mssa_arg arg = {0};
 	arg.rt = rt;
 	arg.mra = mrap;
 	range_tree_walk(rt, metaslab_size_sorted_add, &arg);
 }
 
 
 ZFS_BTREE_FIND_IN_BUF_FUNC(metaslab_rt_find_rangesize32_in_buf,
     range_seg32_t, metaslab_rangesize32_compare)
 
 ZFS_BTREE_FIND_IN_BUF_FUNC(metaslab_rt_find_rangesize64_in_buf,
     range_seg64_t, metaslab_rangesize64_compare)
 
 /*
  * Create any block allocator specific components. The current allocators
  * rely on using both a size-ordered range_tree_t and an array of uint64_t's.
  */
 static void
 metaslab_rt_create(range_tree_t *rt, void *arg)
 {
 	metaslab_rt_arg_t *mrap = arg;
 	zfs_btree_t *size_tree = mrap->mra_bt;
 
 	size_t size;
 	int (*compare) (const void *, const void *);
 	bt_find_in_buf_f bt_find;
 	switch (rt->rt_type) {
 	case RANGE_SEG32:
 		size = sizeof (range_seg32_t);
 		compare = metaslab_rangesize32_compare;
 		bt_find = metaslab_rt_find_rangesize32_in_buf;
 		break;
 	case RANGE_SEG64:
 		size = sizeof (range_seg64_t);
 		compare = metaslab_rangesize64_compare;
 		bt_find = metaslab_rt_find_rangesize64_in_buf;
 		break;
 	default:
 		panic("Invalid range seg type %d", rt->rt_type);
 	}
 	zfs_btree_create(size_tree, compare, bt_find, size);
 	mrap->mra_floor_shift = metaslab_by_size_min_shift;
 }
 
 static void
 metaslab_rt_destroy(range_tree_t *rt, void *arg)
 {
 	(void) rt;
 	metaslab_rt_arg_t *mrap = arg;
 	zfs_btree_t *size_tree = mrap->mra_bt;
 
 	zfs_btree_destroy(size_tree);
 	kmem_free(mrap, sizeof (*mrap));
 }
 
 static void
 metaslab_rt_add(range_tree_t *rt, range_seg_t *rs, void *arg)
 {
 	metaslab_rt_arg_t *mrap = arg;
 	zfs_btree_t *size_tree = mrap->mra_bt;
 
 	if (rs_get_end(rs, rt) - rs_get_start(rs, rt) <
 	    (1ULL << mrap->mra_floor_shift))
 		return;
 
 	zfs_btree_add(size_tree, rs);
 }
 
 static void
 metaslab_rt_remove(range_tree_t *rt, range_seg_t *rs, void *arg)
 {
 	metaslab_rt_arg_t *mrap = arg;
 	zfs_btree_t *size_tree = mrap->mra_bt;
 
 	if (rs_get_end(rs, rt) - rs_get_start(rs, rt) < (1ULL <<
 	    mrap->mra_floor_shift))
 		return;
 
 	zfs_btree_remove(size_tree, rs);
 }
 
 static void
 metaslab_rt_vacate(range_tree_t *rt, void *arg)
 {
 	metaslab_rt_arg_t *mrap = arg;
 	zfs_btree_t *size_tree = mrap->mra_bt;
 	zfs_btree_clear(size_tree);
 	zfs_btree_destroy(size_tree);
 
 	metaslab_rt_create(rt, arg);
 }
 
 static const range_tree_ops_t metaslab_rt_ops = {
 	.rtop_create = metaslab_rt_create,
 	.rtop_destroy = metaslab_rt_destroy,
 	.rtop_add = metaslab_rt_add,
 	.rtop_remove = metaslab_rt_remove,
 	.rtop_vacate = metaslab_rt_vacate
 };
 
 /*
  * ==========================================================================
  * Common allocator routines
  * ==========================================================================
  */
 
 /*
  * Return the maximum contiguous segment within the metaslab.
  */
 uint64_t
 metaslab_largest_allocatable(metaslab_t *msp)
 {
 	zfs_btree_t *t = &msp->ms_allocatable_by_size;
 	range_seg_t *rs;
 
 	if (t == NULL)
 		return (0);
 	if (zfs_btree_numnodes(t) == 0)
 		metaslab_size_tree_full_load(msp->ms_allocatable);
 
 	rs = zfs_btree_last(t, NULL);
 	if (rs == NULL)
 		return (0);
 
 	return (rs_get_end(rs, msp->ms_allocatable) - rs_get_start(rs,
 	    msp->ms_allocatable));
 }
 
 /*
  * Return the maximum contiguous segment within the unflushed frees of this
  * metaslab.
  */
 static uint64_t
 metaslab_largest_unflushed_free(metaslab_t *msp)
 {
 	ASSERT(MUTEX_HELD(&msp->ms_lock));
 
 	if (msp->ms_unflushed_frees == NULL)
 		return (0);
 
 	if (zfs_btree_numnodes(&msp->ms_unflushed_frees_by_size) == 0)
 		metaslab_size_tree_full_load(msp->ms_unflushed_frees);
 	range_seg_t *rs = zfs_btree_last(&msp->ms_unflushed_frees_by_size,
 	    NULL);
 	if (rs == NULL)
 		return (0);
 
 	/*
 	 * When a range is freed from the metaslab, that range is added to
 	 * both the unflushed frees and the deferred frees. While the block
 	 * will eventually be usable, if the metaslab were loaded the range
 	 * would not be added to the ms_allocatable tree until TXG_DEFER_SIZE
 	 * txgs had passed.  As a result, when attempting to estimate an upper
 	 * bound for the largest currently-usable free segment in the
 	 * metaslab, we need to not consider any ranges currently in the defer
 	 * trees. This algorithm approximates the largest available chunk in
 	 * the largest range in the unflushed_frees tree by taking the first
 	 * chunk.  While this may be a poor estimate, it should only remain so
 	 * briefly and should eventually self-correct as frees are no longer
 	 * deferred. Similar logic applies to the ms_freed tree. See
 	 * metaslab_load() for more details.
 	 *
 	 * There are two primary sources of inaccuracy in this estimate. Both
 	 * are tolerated for performance reasons. The first source is that we
 	 * only check the largest segment for overlaps. Smaller segments may
 	 * have more favorable overlaps with the other trees, resulting in
 	 * larger usable chunks.  Second, we only look at the first chunk in
 	 * the largest segment; there may be other usable chunks in the
 	 * largest segment, but we ignore them.
 	 */
 	uint64_t rstart = rs_get_start(rs, msp->ms_unflushed_frees);
 	uint64_t rsize = rs_get_end(rs, msp->ms_unflushed_frees) - rstart;
 	for (int t = 0; t < TXG_DEFER_SIZE; t++) {
 		uint64_t start = 0;
 		uint64_t size = 0;
 		boolean_t found = range_tree_find_in(msp->ms_defer[t], rstart,
 		    rsize, &start, &size);
 		if (found) {
 			if (rstart == start)
 				return (0);
 			rsize = start - rstart;
 		}
 	}
 
 	uint64_t start = 0;
 	uint64_t size = 0;
 	boolean_t found = range_tree_find_in(msp->ms_freed, rstart,
 	    rsize, &start, &size);
 	if (found)
 		rsize = start - rstart;
 
 	return (rsize);
 }
 
 static range_seg_t *
 metaslab_block_find(zfs_btree_t *t, range_tree_t *rt, uint64_t start,
     uint64_t size, zfs_btree_index_t *where)
 {
 	range_seg_t *rs;
 	range_seg_max_t rsearch;
 
 	rs_set_start(&rsearch, rt, start);
 	rs_set_end(&rsearch, rt, start + size);
 
 	rs = zfs_btree_find(t, &rsearch, where);
 	if (rs == NULL) {
 		rs = zfs_btree_next(t, where, where);
 	}
 
 	return (rs);
 }
 
 #if defined(WITH_DF_BLOCK_ALLOCATOR) || \
     defined(WITH_CF_BLOCK_ALLOCATOR)
 
 /*
  * This is a helper function that can be used by the allocator to find a
  * suitable block to allocate. This will search the specified B-tree looking
  * for a block that matches the specified criteria.
  */
 static uint64_t
 metaslab_block_picker(range_tree_t *rt, uint64_t *cursor, uint64_t size,
     uint64_t max_search)
 {
 	if (*cursor == 0)
 		*cursor = rt->rt_start;
 	zfs_btree_t *bt = &rt->rt_root;
 	zfs_btree_index_t where;
 	range_seg_t *rs = metaslab_block_find(bt, rt, *cursor, size, &where);
 	uint64_t first_found;
 	int count_searched = 0;
 
 	if (rs != NULL)
 		first_found = rs_get_start(rs, rt);
 
 	while (rs != NULL && (rs_get_start(rs, rt) - first_found <=
 	    max_search || count_searched < metaslab_min_search_count)) {
 		uint64_t offset = rs_get_start(rs, rt);
 		if (offset + size <= rs_get_end(rs, rt)) {
 			*cursor = offset + size;
 			return (offset);
 		}
 		rs = zfs_btree_next(bt, &where, &where);
 		count_searched++;
 	}
 
 	*cursor = 0;
 	return (-1ULL);
 }
 #endif /* WITH_DF/CF_BLOCK_ALLOCATOR */
 
 #if defined(WITH_DF_BLOCK_ALLOCATOR)
 /*
  * ==========================================================================
  * Dynamic Fit (df) block allocator
  *
  * Search for a free chunk of at least this size, starting from the last
  * offset (for this alignment of block) looking for up to
  * metaslab_df_max_search bytes (16MB).  If a large enough free chunk is not
  * found within 16MB, then return a free chunk of exactly the requested size (or
  * larger).
  *
  * If it seems like searching from the last offset will be unproductive, skip
  * that and just return a free chunk of exactly the requested size (or larger).
  * This is based on metaslab_df_alloc_threshold and metaslab_df_free_pct.  This
  * mechanism is probably not very useful and may be removed in the future.
  *
  * The behavior when not searching can be changed to return the largest free
  * chunk, instead of a free chunk of exactly the requested size, by setting
  * metaslab_df_use_largest_segment.
  * ==========================================================================
  */
 static uint64_t
 metaslab_df_alloc(metaslab_t *msp, uint64_t size)
 {
 	/*
 	 * Find the largest power of 2 block size that evenly divides the
 	 * requested size. This is used to try to allocate blocks with similar
 	 * alignment from the same area of the metaslab (i.e. same cursor
 	 * bucket) but it does not guarantee that other allocations sizes
 	 * may exist in the same region.
 	 */
 	uint64_t align = size & -size;
 	uint64_t *cursor = &msp->ms_lbas[highbit64(align) - 1];
 	range_tree_t *rt = msp->ms_allocatable;
 	uint_t free_pct = range_tree_space(rt) * 100 / msp->ms_size;
 	uint64_t offset;
 
 	ASSERT(MUTEX_HELD(&msp->ms_lock));
 
 	/*
 	 * If we're running low on space, find a segment based on size,
 	 * rather than iterating based on offset.
 	 */
 	if (metaslab_largest_allocatable(msp) < metaslab_df_alloc_threshold ||
 	    free_pct < metaslab_df_free_pct) {
 		offset = -1;
 	} else {
 		offset = metaslab_block_picker(rt,
 		    cursor, size, metaslab_df_max_search);
 	}
 
 	if (offset == -1) {
 		range_seg_t *rs;
 		if (zfs_btree_numnodes(&msp->ms_allocatable_by_size) == 0)
 			metaslab_size_tree_full_load(msp->ms_allocatable);
 
 		if (metaslab_df_use_largest_segment) {
 			/* use largest free segment */
 			rs = zfs_btree_last(&msp->ms_allocatable_by_size, NULL);
 		} else {
 			zfs_btree_index_t where;
 			/* use segment of this size, or next largest */
 			rs = metaslab_block_find(&msp->ms_allocatable_by_size,
 			    rt, msp->ms_start, size, &where);
 		}
 		if (rs != NULL && rs_get_start(rs, rt) + size <= rs_get_end(rs,
 		    rt)) {
 			offset = rs_get_start(rs, rt);
 			*cursor = offset + size;
 		}
 	}
 
 	return (offset);
 }
 
 const metaslab_ops_t zfs_metaslab_ops = {
 	metaslab_df_alloc
 };
 #endif /* WITH_DF_BLOCK_ALLOCATOR */
 
 #if defined(WITH_CF_BLOCK_ALLOCATOR)
 /*
  * ==========================================================================
  * Cursor fit block allocator -
  * Select the largest region in the metaslab, set the cursor to the beginning
  * of the range and the cursor_end to the end of the range. As allocations
  * are made advance the cursor. Continue allocating from the cursor until
  * the range is exhausted and then find a new range.
  * ==========================================================================
  */
 static uint64_t
 metaslab_cf_alloc(metaslab_t *msp, uint64_t size)
 {
 	range_tree_t *rt = msp->ms_allocatable;
 	zfs_btree_t *t = &msp->ms_allocatable_by_size;
 	uint64_t *cursor = &msp->ms_lbas[0];
 	uint64_t *cursor_end = &msp->ms_lbas[1];
 	uint64_t offset = 0;
 
 	ASSERT(MUTEX_HELD(&msp->ms_lock));
 
 	ASSERT3U(*cursor_end, >=, *cursor);
 
 	if ((*cursor + size) > *cursor_end) {
 		range_seg_t *rs;
 
 		if (zfs_btree_numnodes(t) == 0)
 			metaslab_size_tree_full_load(msp->ms_allocatable);
 		rs = zfs_btree_last(t, NULL);
 		if (rs == NULL || (rs_get_end(rs, rt) - rs_get_start(rs, rt)) <
 		    size)
 			return (-1ULL);
 
 		*cursor = rs_get_start(rs, rt);
 		*cursor_end = rs_get_end(rs, rt);
 	}
 
 	offset = *cursor;
 	*cursor += size;
 
 	return (offset);
 }
 
 const metaslab_ops_t zfs_metaslab_ops = {
 	metaslab_cf_alloc
 };
 #endif /* WITH_CF_BLOCK_ALLOCATOR */
 
 #if defined(WITH_NDF_BLOCK_ALLOCATOR)
 /*
  * ==========================================================================
  * New dynamic fit allocator -
  * Select a region that is large enough to allocate 2^metaslab_ndf_clump_shift
  * contiguous blocks. If no region is found then just use the largest segment
  * that remains.
  * ==========================================================================
  */
 
 /*
  * Determines desired number of contiguous blocks (2^metaslab_ndf_clump_shift)
  * to request from the allocator.
  */
 uint64_t metaslab_ndf_clump_shift = 4;
 
 static uint64_t
 metaslab_ndf_alloc(metaslab_t *msp, uint64_t size)
 {
 	zfs_btree_t *t = &msp->ms_allocatable->rt_root;
 	range_tree_t *rt = msp->ms_allocatable;
 	zfs_btree_index_t where;
 	range_seg_t *rs;
 	range_seg_max_t rsearch;
 	uint64_t hbit = highbit64(size);
 	uint64_t *cursor = &msp->ms_lbas[hbit - 1];
 	uint64_t max_size = metaslab_largest_allocatable(msp);
 
 	ASSERT(MUTEX_HELD(&msp->ms_lock));
 
 	if (max_size < size)
 		return (-1ULL);
 
 	rs_set_start(&rsearch, rt, *cursor);
 	rs_set_end(&rsearch, rt, *cursor + size);
 
 	rs = zfs_btree_find(t, &rsearch, &where);
 	if (rs == NULL || (rs_get_end(rs, rt) - rs_get_start(rs, rt)) < size) {
 		t = &msp->ms_allocatable_by_size;
 
 		rs_set_start(&rsearch, rt, 0);
 		rs_set_end(&rsearch, rt, MIN(max_size, 1ULL << (hbit +
 		    metaslab_ndf_clump_shift)));
 
 		rs = zfs_btree_find(t, &rsearch, &where);
 		if (rs == NULL)
 			rs = zfs_btree_next(t, &where, &where);
 		ASSERT(rs != NULL);
 	}
 
 	if ((rs_get_end(rs, rt) - rs_get_start(rs, rt)) >= size) {
 		*cursor = rs_get_start(rs, rt) + size;
 		return (rs_get_start(rs, rt));
 	}
 	return (-1ULL);
 }
 
 const metaslab_ops_t zfs_metaslab_ops = {
 	metaslab_ndf_alloc
 };
 #endif /* WITH_NDF_BLOCK_ALLOCATOR */
 
 
 /*
  * ==========================================================================
  * Metaslabs
  * ==========================================================================
  */
 
 /*
  * Wait for any in-progress metaslab loads to complete.
  */
 static void
 metaslab_load_wait(metaslab_t *msp)
 {
 	ASSERT(MUTEX_HELD(&msp->ms_lock));
 
 	while (msp->ms_loading) {
 		ASSERT(!msp->ms_loaded);
 		cv_wait(&msp->ms_load_cv, &msp->ms_lock);
 	}
 }
 
 /*
  * Wait for any in-progress flushing to complete.
  */
 static void
 metaslab_flush_wait(metaslab_t *msp)
 {
 	ASSERT(MUTEX_HELD(&msp->ms_lock));
 
 	while (msp->ms_flushing)
 		cv_wait(&msp->ms_flush_cv, &msp->ms_lock);
 }
 
 static unsigned int
 metaslab_idx_func(multilist_t *ml, void *arg)
 {
 	metaslab_t *msp = arg;
 
 	/*
 	 * ms_id values are allocated sequentially, so full 64bit
 	 * division would be a waste of time, so limit it to 32 bits.
 	 */
 	return ((unsigned int)msp->ms_id % multilist_get_num_sublists(ml));
 }
 
 uint64_t
 metaslab_allocated_space(metaslab_t *msp)
 {
 	return (msp->ms_allocated_space);
 }
 
 /*
  * Verify that the space accounting on disk matches the in-core range_trees.
  */
 static void
 metaslab_verify_space(metaslab_t *msp, uint64_t txg)
 {
 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
 	uint64_t allocating = 0;
 	uint64_t sm_free_space, msp_free_space;
 
 	ASSERT(MUTEX_HELD(&msp->ms_lock));
 	ASSERT(!msp->ms_condensing);
 
 	if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0)
 		return;
 
 	/*
 	 * We can only verify the metaslab space when we're called
 	 * from syncing context with a loaded metaslab that has an
 	 * allocated space map. Calling this in non-syncing context
 	 * does not provide a consistent view of the metaslab since
 	 * we're performing allocations in the future.
 	 */
 	if (txg != spa_syncing_txg(spa) || msp->ms_sm == NULL ||
 	    !msp->ms_loaded)
 		return;
 
 	/*
 	 * Even though the smp_alloc field can get negative,
 	 * when it comes to a metaslab's space map, that should
 	 * never be the case.
 	 */
 	ASSERT3S(space_map_allocated(msp->ms_sm), >=, 0);
 
 	ASSERT3U(space_map_allocated(msp->ms_sm), >=,
 	    range_tree_space(msp->ms_unflushed_frees));
 
 	ASSERT3U(metaslab_allocated_space(msp), ==,
 	    space_map_allocated(msp->ms_sm) +
 	    range_tree_space(msp->ms_unflushed_allocs) -
 	    range_tree_space(msp->ms_unflushed_frees));
 
 	sm_free_space = msp->ms_size - metaslab_allocated_space(msp);
 
 	/*
 	 * Account for future allocations since we would have
 	 * already deducted that space from the ms_allocatable.
 	 */
 	for (int t = 0; t < TXG_CONCURRENT_STATES; t++) {
 		allocating +=
 		    range_tree_space(msp->ms_allocating[(txg + t) & TXG_MASK]);
 	}
 	ASSERT3U(allocating + msp->ms_allocated_this_txg, ==,
 	    msp->ms_allocating_total);
 
 	ASSERT3U(msp->ms_deferspace, ==,
 	    range_tree_space(msp->ms_defer[0]) +
 	    range_tree_space(msp->ms_defer[1]));
 
 	msp_free_space = range_tree_space(msp->ms_allocatable) + allocating +
 	    msp->ms_deferspace + range_tree_space(msp->ms_freed);
 
 	VERIFY3U(sm_free_space, ==, msp_free_space);
 }
 
 static void
 metaslab_aux_histograms_clear(metaslab_t *msp)
 {
 	/*
 	 * Auxiliary histograms are only cleared when resetting them,
 	 * which can only happen while the metaslab is loaded.
 	 */
 	ASSERT(msp->ms_loaded);
 
 	memset(msp->ms_synchist, 0, sizeof (msp->ms_synchist));
 	for (int t = 0; t < TXG_DEFER_SIZE; t++)
 		memset(msp->ms_deferhist[t], 0, sizeof (msp->ms_deferhist[t]));
 }
 
 static void
 metaslab_aux_histogram_add(uint64_t *histogram, uint64_t shift,
     range_tree_t *rt)
 {
 	/*
 	 * This is modeled after space_map_histogram_add(), so refer to that
 	 * function for implementation details. We want this to work like
 	 * the space map histogram, and not the range tree histogram, as we
 	 * are essentially constructing a delta that will be later subtracted
 	 * from the space map histogram.
 	 */
 	int idx = 0;
 	for (int i = shift; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
 		ASSERT3U(i, >=, idx + shift);
 		histogram[idx] += rt->rt_histogram[i] << (i - idx - shift);
 
 		if (idx < SPACE_MAP_HISTOGRAM_SIZE - 1) {
 			ASSERT3U(idx + shift, ==, i);
 			idx++;
 			ASSERT3U(idx, <, SPACE_MAP_HISTOGRAM_SIZE);
 		}
 	}
 }
 
 /*
  * Called at every sync pass that the metaslab gets synced.
  *
  * The reason is that we want our auxiliary histograms to be updated
  * wherever the metaslab's space map histogram is updated. This way
  * we stay consistent on which parts of the metaslab space map's
  * histogram are currently not available for allocations (e.g because
  * they are in the defer, freed, and freeing trees).
  */
 static void
 metaslab_aux_histograms_update(metaslab_t *msp)
 {
 	space_map_t *sm = msp->ms_sm;
 	ASSERT(sm != NULL);
 
 	/*
 	 * This is similar to the metaslab's space map histogram updates
 	 * that take place in metaslab_sync(). The only difference is that
 	 * we only care about segments that haven't made it into the
 	 * ms_allocatable tree yet.
 	 */
 	if (msp->ms_loaded) {
 		metaslab_aux_histograms_clear(msp);
 
 		metaslab_aux_histogram_add(msp->ms_synchist,
 		    sm->sm_shift, msp->ms_freed);
 
 		for (int t = 0; t < TXG_DEFER_SIZE; t++) {
 			metaslab_aux_histogram_add(msp->ms_deferhist[t],
 			    sm->sm_shift, msp->ms_defer[t]);
 		}
 	}
 
 	metaslab_aux_histogram_add(msp->ms_synchist,
 	    sm->sm_shift, msp->ms_freeing);
 }
 
 /*
  * Called every time we are done syncing (writing to) the metaslab,
  * i.e. at the end of each sync pass.
  * [see the comment in metaslab_impl.h for ms_synchist, ms_deferhist]
  */
 static void
 metaslab_aux_histograms_update_done(metaslab_t *msp, boolean_t defer_allowed)
 {
 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
 	space_map_t *sm = msp->ms_sm;
 
 	if (sm == NULL) {
 		/*
 		 * We came here from metaslab_init() when creating/opening a
 		 * pool, looking at a metaslab that hasn't had any allocations
 		 * yet.
 		 */
 		return;
 	}
 
 	/*
 	 * This is similar to the actions that we take for the ms_freed
 	 * and ms_defer trees in metaslab_sync_done().
 	 */
 	uint64_t hist_index = spa_syncing_txg(spa) % TXG_DEFER_SIZE;
 	if (defer_allowed) {
 		memcpy(msp->ms_deferhist[hist_index], msp->ms_synchist,
 		    sizeof (msp->ms_synchist));
 	} else {
 		memset(msp->ms_deferhist[hist_index], 0,
 		    sizeof (msp->ms_deferhist[hist_index]));
 	}
 	memset(msp->ms_synchist, 0, sizeof (msp->ms_synchist));
 }
 
 /*
  * Ensure that the metaslab's weight and fragmentation are consistent
  * with the contents of the histogram (either the range tree's histogram
  * or the space map's depending whether the metaslab is loaded).
  */
 static void
 metaslab_verify_weight_and_frag(metaslab_t *msp)
 {
 	ASSERT(MUTEX_HELD(&msp->ms_lock));
 
 	if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0)
 		return;
 
 	/*
 	 * We can end up here from vdev_remove_complete(), in which case we
 	 * cannot do these assertions because we hold spa config locks and
 	 * thus we are not allowed to read from the DMU.
 	 *
 	 * We check if the metaslab group has been removed and if that's
 	 * the case we return immediately as that would mean that we are
 	 * here from the aforementioned code path.
 	 */
 	if (msp->ms_group == NULL)
 		return;
 
 	/*
 	 * Devices being removed always return a weight of 0 and leave
 	 * fragmentation and ms_max_size as is - there is nothing for
 	 * us to verify here.
 	 */
 	vdev_t *vd = msp->ms_group->mg_vd;
 	if (vd->vdev_removing)
 		return;
 
 	/*
 	 * If the metaslab is dirty it probably means that we've done
 	 * some allocations or frees that have changed our histograms
 	 * and thus the weight.
 	 */
 	for (int t = 0; t < TXG_SIZE; t++) {
 		if (txg_list_member(&vd->vdev_ms_list, msp, t))
 			return;
 	}
 
 	/*
 	 * This verification checks that our in-memory state is consistent
 	 * with what's on disk. If the pool is read-only then there aren't
 	 * any changes and we just have the initially-loaded state.
 	 */
 	if (!spa_writeable(msp->ms_group->mg_vd->vdev_spa))
 		return;
 
 	/* some extra verification for in-core tree if you can */
 	if (msp->ms_loaded) {
 		range_tree_stat_verify(msp->ms_allocatable);
 		VERIFY(space_map_histogram_verify(msp->ms_sm,
 		    msp->ms_allocatable));
 	}
 
 	uint64_t weight = msp->ms_weight;
 	uint64_t was_active = msp->ms_weight & METASLAB_ACTIVE_MASK;
 	boolean_t space_based = WEIGHT_IS_SPACEBASED(msp->ms_weight);
 	uint64_t frag = msp->ms_fragmentation;
 	uint64_t max_segsize = msp->ms_max_size;
 
 	msp->ms_weight = 0;
 	msp->ms_fragmentation = 0;
 
 	/*
 	 * This function is used for verification purposes and thus should
 	 * not introduce any side-effects/mutations on the system's state.
 	 *
 	 * Regardless of whether metaslab_weight() thinks this metaslab
 	 * should be active or not, we want to ensure that the actual weight
 	 * (and therefore the value of ms_weight) would be the same if it
 	 * was to be recalculated at this point.
 	 *
 	 * In addition we set the nodirty flag so metaslab_weight() does
 	 * not dirty the metaslab for future TXGs (e.g. when trying to
 	 * force condensing to upgrade the metaslab spacemaps).
 	 */
 	msp->ms_weight = metaslab_weight(msp, B_TRUE) | was_active;
 
 	VERIFY3U(max_segsize, ==, msp->ms_max_size);
 
 	/*
 	 * If the weight type changed then there is no point in doing
 	 * verification. Revert fields to their original values.
 	 */
 	if ((space_based && !WEIGHT_IS_SPACEBASED(msp->ms_weight)) ||
 	    (!space_based && WEIGHT_IS_SPACEBASED(msp->ms_weight))) {
 		msp->ms_fragmentation = frag;
 		msp->ms_weight = weight;
 		return;
 	}
 
 	VERIFY3U(msp->ms_fragmentation, ==, frag);
 	VERIFY3U(msp->ms_weight, ==, weight);
 }
 
 /*
  * If we're over the zfs_metaslab_mem_limit, select the loaded metaslab from
  * this class that was used longest ago, and attempt to unload it.  We don't
  * want to spend too much time in this loop to prevent performance
  * degradation, and we expect that most of the time this operation will
  * succeed. Between that and the normal unloading processing during txg sync,
  * we expect this to keep the metaslab memory usage under control.
  */
 static void
 metaslab_potentially_evict(metaslab_class_t *mc)
 {
 #ifdef _KERNEL
 	uint64_t allmem = arc_all_memory();
 	uint64_t inuse = spl_kmem_cache_inuse(zfs_btree_leaf_cache);
 	uint64_t size =	spl_kmem_cache_entry_size(zfs_btree_leaf_cache);
 	uint_t tries = 0;
 	for (; allmem * zfs_metaslab_mem_limit / 100 < inuse * size &&
 	    tries < multilist_get_num_sublists(&mc->mc_metaslab_txg_list) * 2;
 	    tries++) {
 		unsigned int idx = multilist_get_random_index(
 		    &mc->mc_metaslab_txg_list);
 		multilist_sublist_t *mls =
 		    multilist_sublist_lock_idx(&mc->mc_metaslab_txg_list, idx);
 		metaslab_t *msp = multilist_sublist_head(mls);
 		multilist_sublist_unlock(mls);
 		while (msp != NULL && allmem * zfs_metaslab_mem_limit / 100 <
 		    inuse * size) {
 			VERIFY3P(mls, ==, multilist_sublist_lock_idx(
 			    &mc->mc_metaslab_txg_list, idx));
 			ASSERT3U(idx, ==,
 			    metaslab_idx_func(&mc->mc_metaslab_txg_list, msp));
 
 			if (!multilist_link_active(&msp->ms_class_txg_node)) {
 				multilist_sublist_unlock(mls);
 				break;
 			}
 			metaslab_t *next_msp = multilist_sublist_next(mls, msp);
 			multilist_sublist_unlock(mls);
 			/*
 			 * If the metaslab is currently loading there are two
 			 * cases. If it's the metaslab we're evicting, we
 			 * can't continue on or we'll panic when we attempt to
 			 * recursively lock the mutex. If it's another
 			 * metaslab that's loading, it can be safely skipped,
 			 * since we know it's very new and therefore not a
 			 * good eviction candidate. We check later once the
 			 * lock is held that the metaslab is fully loaded
 			 * before actually unloading it.
 			 */
 			if (msp->ms_loading) {
 				msp = next_msp;
 				inuse =
 				    spl_kmem_cache_inuse(zfs_btree_leaf_cache);
 				continue;
 			}
 			/*
 			 * We can't unload metaslabs with no spacemap because
 			 * they're not ready to be unloaded yet. We can't
 			 * unload metaslabs with outstanding allocations
 			 * because doing so could cause the metaslab's weight
 			 * to decrease while it's unloaded, which violates an
 			 * invariant that we use to prevent unnecessary
 			 * loading. We also don't unload metaslabs that are
 			 * currently active because they are high-weight
 			 * metaslabs that are likely to be used in the near
 			 * future.
 			 */
 			mutex_enter(&msp->ms_lock);
 			if (msp->ms_allocator == -1 && msp->ms_sm != NULL &&
 			    msp->ms_allocating_total == 0) {
 				metaslab_unload(msp);
 			}
 			mutex_exit(&msp->ms_lock);
 			msp = next_msp;
 			inuse = spl_kmem_cache_inuse(zfs_btree_leaf_cache);
 		}
 	}
 #else
 	(void) mc, (void) zfs_metaslab_mem_limit;
 #endif
 }
 
 static int
 metaslab_load_impl(metaslab_t *msp)
 {
 	int error = 0;
 
 	ASSERT(MUTEX_HELD(&msp->ms_lock));
 	ASSERT(msp->ms_loading);
 	ASSERT(!msp->ms_condensing);
 
 	/*
 	 * We temporarily drop the lock to unblock other operations while we
 	 * are reading the space map. Therefore, metaslab_sync() and
 	 * metaslab_sync_done() can run at the same time as we do.
 	 *
 	 * If we are using the log space maps, metaslab_sync() can't write to
 	 * the metaslab's space map while we are loading as we only write to
 	 * it when we are flushing the metaslab, and that can't happen while
 	 * we are loading it.
 	 *
 	 * If we are not using log space maps though, metaslab_sync() can
 	 * append to the space map while we are loading. Therefore we load
 	 * only entries that existed when we started the load. Additionally,
 	 * metaslab_sync_done() has to wait for the load to complete because
 	 * there are potential races like metaslab_load() loading parts of the
 	 * space map that are currently being appended by metaslab_sync(). If
 	 * we didn't, the ms_allocatable would have entries that
 	 * metaslab_sync_done() would try to re-add later.
 	 *
 	 * That's why before dropping the lock we remember the synced length
 	 * of the metaslab and read up to that point of the space map,
 	 * ignoring entries appended by metaslab_sync() that happen after we
 	 * drop the lock.
 	 */
 	uint64_t length = msp->ms_synced_length;
 	mutex_exit(&msp->ms_lock);
 
 	hrtime_t load_start = gethrtime();
 	metaslab_rt_arg_t *mrap;
 	if (msp->ms_allocatable->rt_arg == NULL) {
 		mrap = kmem_zalloc(sizeof (*mrap), KM_SLEEP);
 	} else {
 		mrap = msp->ms_allocatable->rt_arg;
 		msp->ms_allocatable->rt_ops = NULL;
 		msp->ms_allocatable->rt_arg = NULL;
 	}
 	mrap->mra_bt = &msp->ms_allocatable_by_size;
 	mrap->mra_floor_shift = metaslab_by_size_min_shift;
 
 	if (msp->ms_sm != NULL) {
 		error = space_map_load_length(msp->ms_sm, msp->ms_allocatable,
 		    SM_FREE, length);
 
 		/* Now, populate the size-sorted tree. */
 		metaslab_rt_create(msp->ms_allocatable, mrap);
 		msp->ms_allocatable->rt_ops = &metaslab_rt_ops;
 		msp->ms_allocatable->rt_arg = mrap;
 
 		struct mssa_arg arg = {0};
 		arg.rt = msp->ms_allocatable;
 		arg.mra = mrap;
 		range_tree_walk(msp->ms_allocatable, metaslab_size_sorted_add,
 		    &arg);
 	} else {
 		/*
 		 * Add the size-sorted tree first, since we don't need to load
 		 * the metaslab from the spacemap.
 		 */
 		metaslab_rt_create(msp->ms_allocatable, mrap);
 		msp->ms_allocatable->rt_ops = &metaslab_rt_ops;
 		msp->ms_allocatable->rt_arg = mrap;
 		/*
 		 * The space map has not been allocated yet, so treat
 		 * all the space in the metaslab as free and add it to the
 		 * ms_allocatable tree.
 		 */
 		range_tree_add(msp->ms_allocatable,
 		    msp->ms_start, msp->ms_size);
 
 		if (msp->ms_new) {
 			/*
 			 * If the ms_sm doesn't exist, this means that this
 			 * metaslab hasn't gone through metaslab_sync() and
 			 * thus has never been dirtied. So we shouldn't
 			 * expect any unflushed allocs or frees from previous
 			 * TXGs.
 			 */
 			ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs));
 			ASSERT(range_tree_is_empty(msp->ms_unflushed_frees));
 		}
 	}
 
 	/*
 	 * We need to grab the ms_sync_lock to prevent metaslab_sync() from
 	 * changing the ms_sm (or log_sm) and the metaslab's range trees
 	 * while we are about to use them and populate the ms_allocatable.
 	 * The ms_lock is insufficient for this because metaslab_sync() doesn't
 	 * hold the ms_lock while writing the ms_checkpointing tree to disk.
 	 */
 	mutex_enter(&msp->ms_sync_lock);
 	mutex_enter(&msp->ms_lock);
 
 	ASSERT(!msp->ms_condensing);
 	ASSERT(!msp->ms_flushing);
 
 	if (error != 0) {
 		mutex_exit(&msp->ms_sync_lock);
 		return (error);
 	}
 
 	ASSERT3P(msp->ms_group, !=, NULL);
 	msp->ms_loaded = B_TRUE;
 
 	/*
 	 * Apply all the unflushed changes to ms_allocatable right
 	 * away so any manipulations we do below have a clear view
 	 * of what is allocated and what is free.
 	 */
 	range_tree_walk(msp->ms_unflushed_allocs,
 	    range_tree_remove, msp->ms_allocatable);
 	range_tree_walk(msp->ms_unflushed_frees,
 	    range_tree_add, msp->ms_allocatable);
 
 	ASSERT3P(msp->ms_group, !=, NULL);
 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
 	if (spa_syncing_log_sm(spa) != NULL) {
 		ASSERT(spa_feature_is_enabled(spa,
 		    SPA_FEATURE_LOG_SPACEMAP));
 
 		/*
 		 * If we use a log space map we add all the segments
 		 * that are in ms_unflushed_frees so they are available
 		 * for allocation.
 		 *
 		 * ms_allocatable needs to contain all free segments
 		 * that are ready for allocations (thus not segments
 		 * from ms_freeing, ms_freed, and the ms_defer trees).
 		 * But if we grab the lock in this code path at a sync
 		 * pass later that 1, then it also contains the
 		 * segments of ms_freed (they were added to it earlier
 		 * in this path through ms_unflushed_frees). So we
 		 * need to remove all the segments that exist in
 		 * ms_freed from ms_allocatable as they will be added
 		 * later in metaslab_sync_done().
 		 *
 		 * When there's no log space map, the ms_allocatable
 		 * correctly doesn't contain any segments that exist
 		 * in ms_freed [see ms_synced_length].
 		 */
 		range_tree_walk(msp->ms_freed,
 		    range_tree_remove, msp->ms_allocatable);
 	}
 
 	/*
 	 * If we are not using the log space map, ms_allocatable
 	 * contains the segments that exist in the ms_defer trees
 	 * [see ms_synced_length]. Thus we need to remove them
 	 * from ms_allocatable as they will be added again in
 	 * metaslab_sync_done().
 	 *
 	 * If we are using the log space map, ms_allocatable still
 	 * contains the segments that exist in the ms_defer trees.
 	 * Not because it read them through the ms_sm though. But
 	 * because these segments are part of ms_unflushed_frees
 	 * whose segments we add to ms_allocatable earlier in this
 	 * code path.
 	 */
 	for (int t = 0; t < TXG_DEFER_SIZE; t++) {
 		range_tree_walk(msp->ms_defer[t],
 		    range_tree_remove, msp->ms_allocatable);
 	}
 
 	/*
 	 * Call metaslab_recalculate_weight_and_sort() now that the
 	 * metaslab is loaded so we get the metaslab's real weight.
 	 *
 	 * Unless this metaslab was created with older software and
 	 * has not yet been converted to use segment-based weight, we
 	 * expect the new weight to be better or equal to the weight
 	 * that the metaslab had while it was not loaded. This is
 	 * because the old weight does not take into account the
 	 * consolidation of adjacent segments between TXGs. [see
 	 * comment for ms_synchist and ms_deferhist[] for more info]
 	 */
 	uint64_t weight = msp->ms_weight;
 	uint64_t max_size = msp->ms_max_size;
 	metaslab_recalculate_weight_and_sort(msp);
 	if (!WEIGHT_IS_SPACEBASED(weight))
 		ASSERT3U(weight, <=, msp->ms_weight);
 	msp->ms_max_size = metaslab_largest_allocatable(msp);
 	ASSERT3U(max_size, <=, msp->ms_max_size);
 	hrtime_t load_end = gethrtime();
 	msp->ms_load_time = load_end;
 	zfs_dbgmsg("metaslab_load: txg %llu, spa %s, vdev_id %llu, "
 	    "ms_id %llu, smp_length %llu, "
 	    "unflushed_allocs %llu, unflushed_frees %llu, "
 	    "freed %llu, defer %llu + %llu, unloaded time %llu ms, "
 	    "loading_time %lld ms, ms_max_size %llu, "
 	    "max size error %lld, "
 	    "old_weight %llx, new_weight %llx",
 	    (u_longlong_t)spa_syncing_txg(spa), spa_name(spa),
 	    (u_longlong_t)msp->ms_group->mg_vd->vdev_id,
 	    (u_longlong_t)msp->ms_id,
 	    (u_longlong_t)space_map_length(msp->ms_sm),
 	    (u_longlong_t)range_tree_space(msp->ms_unflushed_allocs),
 	    (u_longlong_t)range_tree_space(msp->ms_unflushed_frees),
 	    (u_longlong_t)range_tree_space(msp->ms_freed),
 	    (u_longlong_t)range_tree_space(msp->ms_defer[0]),
 	    (u_longlong_t)range_tree_space(msp->ms_defer[1]),
 	    (longlong_t)((load_start - msp->ms_unload_time) / 1000000),
 	    (longlong_t)((load_end - load_start) / 1000000),
 	    (u_longlong_t)msp->ms_max_size,
 	    (u_longlong_t)msp->ms_max_size - max_size,
 	    (u_longlong_t)weight, (u_longlong_t)msp->ms_weight);
 
 	metaslab_verify_space(msp, spa_syncing_txg(spa));
 	mutex_exit(&msp->ms_sync_lock);
 	return (0);
 }
 
 int
 metaslab_load(metaslab_t *msp)
 {
 	ASSERT(MUTEX_HELD(&msp->ms_lock));
 
 	/*
 	 * There may be another thread loading the same metaslab, if that's
 	 * the case just wait until the other thread is done and return.
 	 */
 	metaslab_load_wait(msp);
 	if (msp->ms_loaded)
 		return (0);
 	VERIFY(!msp->ms_loading);
 	ASSERT(!msp->ms_condensing);
 
 	/*
 	 * We set the loading flag BEFORE potentially dropping the lock to
 	 * wait for an ongoing flush (see ms_flushing below). This way other
 	 * threads know that there is already a thread that is loading this
 	 * metaslab.
 	 */
 	msp->ms_loading = B_TRUE;
 
 	/*
 	 * Wait for any in-progress flushing to finish as we drop the ms_lock
 	 * both here (during space_map_load()) and in metaslab_flush() (when
 	 * we flush our changes to the ms_sm).
 	 */
 	if (msp->ms_flushing)
 		metaslab_flush_wait(msp);
 
 	/*
 	 * In the possibility that we were waiting for the metaslab to be
 	 * flushed (where we temporarily dropped the ms_lock), ensure that
 	 * no one else loaded the metaslab somehow.
 	 */
 	ASSERT(!msp->ms_loaded);
 
 	/*
 	 * If we're loading a metaslab in the normal class, consider evicting
 	 * another one to keep our memory usage under the limit defined by the
 	 * zfs_metaslab_mem_limit tunable.
 	 */
 	if (spa_normal_class(msp->ms_group->mg_class->mc_spa) ==
 	    msp->ms_group->mg_class) {
 		metaslab_potentially_evict(msp->ms_group->mg_class);
 	}
 
 	int error = metaslab_load_impl(msp);
 
 	ASSERT(MUTEX_HELD(&msp->ms_lock));
 	msp->ms_loading = B_FALSE;
 	cv_broadcast(&msp->ms_load_cv);
 
 	return (error);
 }
 
 void
 metaslab_unload(metaslab_t *msp)
 {
 	ASSERT(MUTEX_HELD(&msp->ms_lock));
 
 	/*
 	 * This can happen if a metaslab is selected for eviction (in
 	 * metaslab_potentially_evict) and then unloaded during spa_sync (via
 	 * metaslab_class_evict_old).
 	 */
 	if (!msp->ms_loaded)
 		return;
 
 	range_tree_vacate(msp->ms_allocatable, NULL, NULL);
 	msp->ms_loaded = B_FALSE;
 	msp->ms_unload_time = gethrtime();
 
 	msp->ms_activation_weight = 0;
 	msp->ms_weight &= ~METASLAB_ACTIVE_MASK;
 
 	if (msp->ms_group != NULL) {
 		metaslab_class_t *mc = msp->ms_group->mg_class;
 		multilist_sublist_t *mls =
 		    multilist_sublist_lock_obj(&mc->mc_metaslab_txg_list, msp);
 		if (multilist_link_active(&msp->ms_class_txg_node))
 			multilist_sublist_remove(mls, msp);
 		multilist_sublist_unlock(mls);
 
 		spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
 		zfs_dbgmsg("metaslab_unload: txg %llu, spa %s, vdev_id %llu, "
 		    "ms_id %llu, weight %llx, "
 		    "selected txg %llu (%llu ms ago), alloc_txg %llu, "
 		    "loaded %llu ms ago, max_size %llu",
 		    (u_longlong_t)spa_syncing_txg(spa), spa_name(spa),
 		    (u_longlong_t)msp->ms_group->mg_vd->vdev_id,
 		    (u_longlong_t)msp->ms_id,
 		    (u_longlong_t)msp->ms_weight,
 		    (u_longlong_t)msp->ms_selected_txg,
 		    (u_longlong_t)(msp->ms_unload_time -
 		    msp->ms_selected_time) / 1000 / 1000,
 		    (u_longlong_t)msp->ms_alloc_txg,
 		    (u_longlong_t)(msp->ms_unload_time -
 		    msp->ms_load_time) / 1000 / 1000,
 		    (u_longlong_t)msp->ms_max_size);
 	}
 
 	/*
 	 * We explicitly recalculate the metaslab's weight based on its space
 	 * map (as it is now not loaded). We want unload metaslabs to always
 	 * have their weights calculated from the space map histograms, while
 	 * loaded ones have it calculated from their in-core range tree
 	 * [see metaslab_load()]. This way, the weight reflects the information
 	 * available in-core, whether it is loaded or not.
 	 *
 	 * If ms_group == NULL means that we came here from metaslab_fini(),
 	 * at which point it doesn't make sense for us to do the recalculation
 	 * and the sorting.
 	 */
 	if (msp->ms_group != NULL)
 		metaslab_recalculate_weight_and_sort(msp);
 }
 
 /*
  * We want to optimize the memory use of the per-metaslab range
  * trees. To do this, we store the segments in the range trees in
  * units of sectors, zero-indexing from the start of the metaslab. If
  * the vdev_ms_shift - the vdev_ashift is less than 32, we can store
  * the ranges using two uint32_ts, rather than two uint64_ts.
  */
 range_seg_type_t
 metaslab_calculate_range_tree_type(vdev_t *vdev, metaslab_t *msp,
     uint64_t *start, uint64_t *shift)
 {
 	if (vdev->vdev_ms_shift - vdev->vdev_ashift < 32 &&
 	    !zfs_metaslab_force_large_segs) {
 		*shift = vdev->vdev_ashift;
 		*start = msp->ms_start;
 		return (RANGE_SEG32);
 	} else {
 		*shift = 0;
 		*start = 0;
 		return (RANGE_SEG64);
 	}
 }
 
 void
 metaslab_set_selected_txg(metaslab_t *msp, uint64_t txg)
 {
 	ASSERT(MUTEX_HELD(&msp->ms_lock));
 	metaslab_class_t *mc = msp->ms_group->mg_class;
 	multilist_sublist_t *mls =
 	    multilist_sublist_lock_obj(&mc->mc_metaslab_txg_list, msp);
 	if (multilist_link_active(&msp->ms_class_txg_node))
 		multilist_sublist_remove(mls, msp);
 	msp->ms_selected_txg = txg;
 	msp->ms_selected_time = gethrtime();
 	multilist_sublist_insert_tail(mls, msp);
 	multilist_sublist_unlock(mls);
 }
 
 void
 metaslab_space_update(vdev_t *vd, metaslab_class_t *mc, int64_t alloc_delta,
     int64_t defer_delta, int64_t space_delta)
 {
 	vdev_space_update(vd, alloc_delta, defer_delta, space_delta);
 
 	ASSERT3P(vd->vdev_spa->spa_root_vdev, ==, vd->vdev_parent);
 	ASSERT(vd->vdev_ms_count != 0);
 
 	metaslab_class_space_update(mc, alloc_delta, defer_delta, space_delta,
 	    vdev_deflated_space(vd, space_delta));
 }
 
 int
 metaslab_init(metaslab_group_t *mg, uint64_t id, uint64_t object,
     uint64_t txg, metaslab_t **msp)
 {
 	vdev_t *vd = mg->mg_vd;
 	spa_t *spa = vd->vdev_spa;
 	objset_t *mos = spa->spa_meta_objset;
 	metaslab_t *ms;
 	int error;
 
 	ms = kmem_zalloc(sizeof (metaslab_t), KM_SLEEP);
 	mutex_init(&ms->ms_lock, NULL, MUTEX_DEFAULT, NULL);
 	mutex_init(&ms->ms_sync_lock, NULL, MUTEX_DEFAULT, NULL);
 	cv_init(&ms->ms_load_cv, NULL, CV_DEFAULT, NULL);
 	cv_init(&ms->ms_flush_cv, NULL, CV_DEFAULT, NULL);
 	multilist_link_init(&ms->ms_class_txg_node);
 
 	ms->ms_id = id;
 	ms->ms_start = id << vd->vdev_ms_shift;
 	ms->ms_size = 1ULL << vd->vdev_ms_shift;
 	ms->ms_allocator = -1;
 	ms->ms_new = B_TRUE;
 
 	vdev_ops_t *ops = vd->vdev_ops;
 	if (ops->vdev_op_metaslab_init != NULL)
 		ops->vdev_op_metaslab_init(vd, &ms->ms_start, &ms->ms_size);
 
 	/*
 	 * We only open space map objects that already exist. All others
 	 * will be opened when we finally allocate an object for it. For
 	 * readonly pools there is no need to open the space map object.
 	 *
 	 * Note:
 	 * When called from vdev_expand(), we can't call into the DMU as
 	 * we are holding the spa_config_lock as a writer and we would
 	 * deadlock [see relevant comment in vdev_metaslab_init()]. in
 	 * that case, the object parameter is zero though, so we won't
 	 * call into the DMU.
 	 */
 	if (object != 0 && !(spa->spa_mode == SPA_MODE_READ &&
 	    !spa->spa_read_spacemaps)) {
 		error = space_map_open(&ms->ms_sm, mos, object, ms->ms_start,
 		    ms->ms_size, vd->vdev_ashift);
 
 		if (error != 0) {
 			kmem_free(ms, sizeof (metaslab_t));
 			return (error);
 		}
 
 		ASSERT(ms->ms_sm != NULL);
 		ms->ms_allocated_space = space_map_allocated(ms->ms_sm);
 	}
 
 	uint64_t shift, start;
 	range_seg_type_t type =
 	    metaslab_calculate_range_tree_type(vd, ms, &start, &shift);
 
 	ms->ms_allocatable = range_tree_create(NULL, type, NULL, start, shift);
 	for (int t = 0; t < TXG_SIZE; t++) {
 		ms->ms_allocating[t] = range_tree_create(NULL, type,
 		    NULL, start, shift);
 	}
 	ms->ms_freeing = range_tree_create(NULL, type, NULL, start, shift);
 	ms->ms_freed = range_tree_create(NULL, type, NULL, start, shift);
 	for (int t = 0; t < TXG_DEFER_SIZE; t++) {
 		ms->ms_defer[t] = range_tree_create(NULL, type, NULL,
 		    start, shift);
 	}
 	ms->ms_checkpointing =
 	    range_tree_create(NULL, type, NULL, start, shift);
 	ms->ms_unflushed_allocs =
 	    range_tree_create(NULL, type, NULL, start, shift);
 
 	metaslab_rt_arg_t *mrap = kmem_zalloc(sizeof (*mrap), KM_SLEEP);
 	mrap->mra_bt = &ms->ms_unflushed_frees_by_size;
 	mrap->mra_floor_shift = metaslab_by_size_min_shift;
 	ms->ms_unflushed_frees = range_tree_create(&metaslab_rt_ops,
 	    type, mrap, start, shift);
 
 	ms->ms_trim = range_tree_create(NULL, type, NULL, start, shift);
 
 	metaslab_group_add(mg, ms);
 	metaslab_set_fragmentation(ms, B_FALSE);
 
 	/*
 	 * If we're opening an existing pool (txg == 0) or creating
 	 * a new one (txg == TXG_INITIAL), all space is available now.
 	 * If we're adding space to an existing pool, the new space
 	 * does not become available until after this txg has synced.
 	 * The metaslab's weight will also be initialized when we sync
 	 * out this txg. This ensures that we don't attempt to allocate
 	 * from it before we have initialized it completely.
 	 */
 	if (txg <= TXG_INITIAL) {
 		metaslab_sync_done(ms, 0);
 		metaslab_space_update(vd, mg->mg_class,
 		    metaslab_allocated_space(ms), 0, 0);
 	}
 
 	if (txg != 0) {
 		vdev_dirty(vd, 0, NULL, txg);
 		vdev_dirty(vd, VDD_METASLAB, ms, txg);
 	}
 
 	*msp = ms;
 
 	return (0);
 }
 
 static void
 metaslab_fini_flush_data(metaslab_t *msp)
 {
 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
 
 	if (metaslab_unflushed_txg(msp) == 0) {
 		ASSERT3P(avl_find(&spa->spa_metaslabs_by_flushed, msp, NULL),
 		    ==, NULL);
 		return;
 	}
 	ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP));
 
 	mutex_enter(&spa->spa_flushed_ms_lock);
 	avl_remove(&spa->spa_metaslabs_by_flushed, msp);
 	mutex_exit(&spa->spa_flushed_ms_lock);
 
 	spa_log_sm_decrement_mscount(spa, metaslab_unflushed_txg(msp));
 	spa_log_summary_decrement_mscount(spa, metaslab_unflushed_txg(msp),
 	    metaslab_unflushed_dirty(msp));
 }
 
 uint64_t
 metaslab_unflushed_changes_memused(metaslab_t *ms)
 {
 	return ((range_tree_numsegs(ms->ms_unflushed_allocs) +
 	    range_tree_numsegs(ms->ms_unflushed_frees)) *
 	    ms->ms_unflushed_allocs->rt_root.bt_elem_size);
 }
 
 void
 metaslab_fini(metaslab_t *msp)
 {
 	metaslab_group_t *mg = msp->ms_group;
 	vdev_t *vd = mg->mg_vd;
 	spa_t *spa = vd->vdev_spa;
 
 	metaslab_fini_flush_data(msp);
 
 	metaslab_group_remove(mg, msp);
 
 	mutex_enter(&msp->ms_lock);
 	VERIFY(msp->ms_group == NULL);
 
 	/*
 	 * If this metaslab hasn't been through metaslab_sync_done() yet its
 	 * space hasn't been accounted for in its vdev and doesn't need to be
 	 * subtracted.
 	 */
 	if (!msp->ms_new) {
 		metaslab_space_update(vd, mg->mg_class,
 		    -metaslab_allocated_space(msp), 0, -msp->ms_size);
 
 	}
 	space_map_close(msp->ms_sm);
 	msp->ms_sm = NULL;
 
 	metaslab_unload(msp);
 
 	range_tree_destroy(msp->ms_allocatable);
 	range_tree_destroy(msp->ms_freeing);
 	range_tree_destroy(msp->ms_freed);
 
 	ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=,
 	    metaslab_unflushed_changes_memused(msp));
 	spa->spa_unflushed_stats.sus_memused -=
 	    metaslab_unflushed_changes_memused(msp);
 	range_tree_vacate(msp->ms_unflushed_allocs, NULL, NULL);
 	range_tree_destroy(msp->ms_unflushed_allocs);
 	range_tree_destroy(msp->ms_checkpointing);
 	range_tree_vacate(msp->ms_unflushed_frees, NULL, NULL);
 	range_tree_destroy(msp->ms_unflushed_frees);
 
 	for (int t = 0; t < TXG_SIZE; t++) {
 		range_tree_destroy(msp->ms_allocating[t]);
 	}
 	for (int t = 0; t < TXG_DEFER_SIZE; t++) {
 		range_tree_destroy(msp->ms_defer[t]);
 	}
 	ASSERT0(msp->ms_deferspace);
 
 	for (int t = 0; t < TXG_SIZE; t++)
 		ASSERT(!txg_list_member(&vd->vdev_ms_list, msp, t));
 
 	range_tree_vacate(msp->ms_trim, NULL, NULL);
 	range_tree_destroy(msp->ms_trim);
 
 	mutex_exit(&msp->ms_lock);
 	cv_destroy(&msp->ms_load_cv);
 	cv_destroy(&msp->ms_flush_cv);
 	mutex_destroy(&msp->ms_lock);
 	mutex_destroy(&msp->ms_sync_lock);
 	ASSERT3U(msp->ms_allocator, ==, -1);
 
 	kmem_free(msp, sizeof (metaslab_t));
 }
 
 #define	FRAGMENTATION_TABLE_SIZE	17
 
 /*
  * This table defines a segment size based fragmentation metric that will
  * allow each metaslab to derive its own fragmentation value. This is done
  * by calculating the space in each bucket of the spacemap histogram and
  * multiplying that by the fragmentation metric in this table. Doing
  * this for all buckets and dividing it by the total amount of free
  * space in this metaslab (i.e. the total free space in all buckets) gives
  * us the fragmentation metric. This means that a high fragmentation metric
  * equates to most of the free space being comprised of small segments.
  * Conversely, if the metric is low, then most of the free space is in
  * large segments. A 10% change in fragmentation equates to approximately
  * double the number of segments.
  *
  * This table defines 0% fragmented space using 16MB segments. Testing has
  * shown that segments that are greater than or equal to 16MB do not suffer
  * from drastic performance problems. Using this value, we derive the rest
  * of the table. Since the fragmentation value is never stored on disk, it
  * is possible to change these calculations in the future.
  */
 static const int zfs_frag_table[FRAGMENTATION_TABLE_SIZE] = {
 	100,	/* 512B	*/
 	100,	/* 1K	*/
 	98,	/* 2K	*/
 	95,	/* 4K	*/
 	90,	/* 8K	*/
 	80,	/* 16K	*/
 	70,	/* 32K	*/
 	60,	/* 64K	*/
 	50,	/* 128K	*/
 	40,	/* 256K	*/
 	30,	/* 512K	*/
 	20,	/* 1M	*/
 	15,	/* 2M	*/
 	10,	/* 4M	*/
 	5,	/* 8M	*/
 	0	/* 16M	*/
 };
 
 /*
  * Calculate the metaslab's fragmentation metric and set ms_fragmentation.
  * Setting this value to ZFS_FRAG_INVALID means that the metaslab has not
  * been upgraded and does not support this metric. Otherwise, the return
  * value should be in the range [0, 100].
  */
 static void
 metaslab_set_fragmentation(metaslab_t *msp, boolean_t nodirty)
 {
 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
 	uint64_t fragmentation = 0;
 	uint64_t total = 0;
 	boolean_t feature_enabled = spa_feature_is_enabled(spa,
 	    SPA_FEATURE_SPACEMAP_HISTOGRAM);
 
 	if (!feature_enabled) {
 		msp->ms_fragmentation = ZFS_FRAG_INVALID;
 		return;
 	}
 
 	/*
 	 * A null space map means that the entire metaslab is free
 	 * and thus is not fragmented.
 	 */
 	if (msp->ms_sm == NULL) {
 		msp->ms_fragmentation = 0;
 		return;
 	}
 
 	/*
 	 * If this metaslab's space map has not been upgraded, flag it
 	 * so that we upgrade next time we encounter it.
 	 */
 	if (msp->ms_sm->sm_dbuf->db_size != sizeof (space_map_phys_t)) {
 		uint64_t txg = spa_syncing_txg(spa);
 		vdev_t *vd = msp->ms_group->mg_vd;
 
 		/*
 		 * If we've reached the final dirty txg, then we must
 		 * be shutting down the pool. We don't want to dirty
 		 * any data past this point so skip setting the condense
 		 * flag. We can retry this action the next time the pool
 		 * is imported. We also skip marking this metaslab for
 		 * condensing if the caller has explicitly set nodirty.
 		 */
 		if (!nodirty &&
 		    spa_writeable(spa) && txg < spa_final_dirty_txg(spa)) {
 			msp->ms_condense_wanted = B_TRUE;
 			vdev_dirty(vd, VDD_METASLAB, msp, txg + 1);
 			zfs_dbgmsg("txg %llu, requesting force condense: "
 			    "ms_id %llu, vdev_id %llu", (u_longlong_t)txg,
 			    (u_longlong_t)msp->ms_id,
 			    (u_longlong_t)vd->vdev_id);
 		}
 		msp->ms_fragmentation = ZFS_FRAG_INVALID;
 		return;
 	}
 
 	for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
 		uint64_t space = 0;
 		uint8_t shift = msp->ms_sm->sm_shift;
 
 		int idx = MIN(shift - SPA_MINBLOCKSHIFT + i,
 		    FRAGMENTATION_TABLE_SIZE - 1);
 
 		if (msp->ms_sm->sm_phys->smp_histogram[i] == 0)
 			continue;
 
 		space = msp->ms_sm->sm_phys->smp_histogram[i] << (i + shift);
 		total += space;
 
 		ASSERT3U(idx, <, FRAGMENTATION_TABLE_SIZE);
 		fragmentation += space * zfs_frag_table[idx];
 	}
 
 	if (total > 0)
 		fragmentation /= total;
 	ASSERT3U(fragmentation, <=, 100);
 
 	msp->ms_fragmentation = fragmentation;
 }
 
 /*
  * Compute a weight -- a selection preference value -- for the given metaslab.
  * This is based on the amount of free space, the level of fragmentation,
  * the LBA range, and whether the metaslab is loaded.
  */
 static uint64_t
 metaslab_space_weight(metaslab_t *msp)
 {
 	metaslab_group_t *mg = msp->ms_group;
 	vdev_t *vd = mg->mg_vd;
 	uint64_t weight, space;
 
 	ASSERT(MUTEX_HELD(&msp->ms_lock));
 
 	/*
 	 * The baseline weight is the metaslab's free space.
 	 */
 	space = msp->ms_size - metaslab_allocated_space(msp);
 
 	if (metaslab_fragmentation_factor_enabled &&
 	    msp->ms_fragmentation != ZFS_FRAG_INVALID) {
 		/*
 		 * Use the fragmentation information to inversely scale
 		 * down the baseline weight. We need to ensure that we
 		 * don't exclude this metaslab completely when it's 100%
 		 * fragmented. To avoid this we reduce the fragmented value
 		 * by 1.
 		 */
 		space = (space * (100 - (msp->ms_fragmentation - 1))) / 100;
 
 		/*
 		 * If space < SPA_MINBLOCKSIZE, then we will not allocate from
 		 * this metaslab again. The fragmentation metric may have
 		 * decreased the space to something smaller than
 		 * SPA_MINBLOCKSIZE, so reset the space to SPA_MINBLOCKSIZE
 		 * so that we can consume any remaining space.
 		 */
 		if (space > 0 && space < SPA_MINBLOCKSIZE)
 			space = SPA_MINBLOCKSIZE;
 	}
 	weight = space;
 
 	/*
 	 * Modern disks have uniform bit density and constant angular velocity.
 	 * Therefore, the outer recording zones are faster (higher bandwidth)
 	 * than the inner zones by the ratio of outer to inner track diameter,
 	 * which is typically around 2:1.  We account for this by assigning
 	 * higher weight to lower metaslabs (multiplier ranging from 2x to 1x).
 	 * In effect, this means that we'll select the metaslab with the most
 	 * free bandwidth rather than simply the one with the most free space.
 	 */
 	if (!vd->vdev_nonrot && metaslab_lba_weighting_enabled) {
 		weight = 2 * weight - (msp->ms_id * weight) / vd->vdev_ms_count;
 		ASSERT(weight >= space && weight <= 2 * space);
 	}
 
 	/*
 	 * If this metaslab is one we're actively using, adjust its
 	 * weight to make it preferable to any inactive metaslab so
 	 * we'll polish it off. If the fragmentation on this metaslab
 	 * has exceed our threshold, then don't mark it active.
 	 */
 	if (msp->ms_loaded && msp->ms_fragmentation != ZFS_FRAG_INVALID &&
 	    msp->ms_fragmentation <= zfs_metaslab_fragmentation_threshold) {
 		weight |= (msp->ms_weight & METASLAB_ACTIVE_MASK);
 	}
 
 	WEIGHT_SET_SPACEBASED(weight);
 	return (weight);
 }
 
 /*
  * Return the weight of the specified metaslab, according to the segment-based
  * weighting algorithm. The metaslab must be loaded. This function can
  * be called within a sync pass since it relies only on the metaslab's
  * range tree which is always accurate when the metaslab is loaded.
  */
 static uint64_t
 metaslab_weight_from_range_tree(metaslab_t *msp)
 {
 	uint64_t weight = 0;
 	uint32_t segments = 0;
 
 	ASSERT(msp->ms_loaded);
 
 	for (int i = RANGE_TREE_HISTOGRAM_SIZE - 1; i >= SPA_MINBLOCKSHIFT;
 	    i--) {
 		uint8_t shift = msp->ms_group->mg_vd->vdev_ashift;
 		int max_idx = SPACE_MAP_HISTOGRAM_SIZE + shift - 1;
 
 		segments <<= 1;
 		segments += msp->ms_allocatable->rt_histogram[i];
 
 		/*
 		 * The range tree provides more precision than the space map
 		 * and must be downgraded so that all values fit within the
 		 * space map's histogram. This allows us to compare loaded
 		 * vs. unloaded metaslabs to determine which metaslab is
 		 * considered "best".
 		 */
 		if (i > max_idx)
 			continue;
 
 		if (segments != 0) {
 			WEIGHT_SET_COUNT(weight, segments);
 			WEIGHT_SET_INDEX(weight, i);
 			WEIGHT_SET_ACTIVE(weight, 0);
 			break;
 		}
 	}
 	return (weight);
 }
 
 /*
  * Calculate the weight based on the on-disk histogram. Should be applied
  * only to unloaded metaslabs  (i.e no incoming allocations) in-order to
  * give results consistent with the on-disk state
  */
 static uint64_t
 metaslab_weight_from_spacemap(metaslab_t *msp)
 {
 	space_map_t *sm = msp->ms_sm;
 	ASSERT(!msp->ms_loaded);
 	ASSERT(sm != NULL);
 	ASSERT3U(space_map_object(sm), !=, 0);
 	ASSERT3U(sm->sm_dbuf->db_size, ==, sizeof (space_map_phys_t));
 
 	/*
 	 * Create a joint histogram from all the segments that have made
 	 * it to the metaslab's space map histogram, that are not yet
 	 * available for allocation because they are still in the freeing
 	 * pipeline (e.g. freeing, freed, and defer trees). Then subtract
 	 * these segments from the space map's histogram to get a more
 	 * accurate weight.
 	 */
 	uint64_t deferspace_histogram[SPACE_MAP_HISTOGRAM_SIZE] = {0};
 	for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++)
 		deferspace_histogram[i] += msp->ms_synchist[i];
 	for (int t = 0; t < TXG_DEFER_SIZE; t++) {
 		for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
 			deferspace_histogram[i] += msp->ms_deferhist[t][i];
 		}
 	}
 
 	uint64_t weight = 0;
 	for (int i = SPACE_MAP_HISTOGRAM_SIZE - 1; i >= 0; i--) {
 		ASSERT3U(sm->sm_phys->smp_histogram[i], >=,
 		    deferspace_histogram[i]);
 		uint64_t count =
 		    sm->sm_phys->smp_histogram[i] - deferspace_histogram[i];
 		if (count != 0) {
 			WEIGHT_SET_COUNT(weight, count);
 			WEIGHT_SET_INDEX(weight, i + sm->sm_shift);
 			WEIGHT_SET_ACTIVE(weight, 0);
 			break;
 		}
 	}
 	return (weight);
 }
 
 /*
  * Compute a segment-based weight for the specified metaslab. The weight
  * is determined by highest bucket in the histogram. The information
  * for the highest bucket is encoded into the weight value.
  */
 static uint64_t
 metaslab_segment_weight(metaslab_t *msp)
 {
 	metaslab_group_t *mg = msp->ms_group;
 	uint64_t weight = 0;
 	uint8_t shift = mg->mg_vd->vdev_ashift;
 
 	ASSERT(MUTEX_HELD(&msp->ms_lock));
 
 	/*
 	 * The metaslab is completely free.
 	 */
 	if (metaslab_allocated_space(msp) == 0) {
 		int idx = highbit64(msp->ms_size) - 1;
 		int max_idx = SPACE_MAP_HISTOGRAM_SIZE + shift - 1;
 
 		if (idx < max_idx) {
 			WEIGHT_SET_COUNT(weight, 1ULL);
 			WEIGHT_SET_INDEX(weight, idx);
 		} else {
 			WEIGHT_SET_COUNT(weight, 1ULL << (idx - max_idx));
 			WEIGHT_SET_INDEX(weight, max_idx);
 		}
 		WEIGHT_SET_ACTIVE(weight, 0);
 		ASSERT(!WEIGHT_IS_SPACEBASED(weight));
 		return (weight);
 	}
 
 	ASSERT3U(msp->ms_sm->sm_dbuf->db_size, ==, sizeof (space_map_phys_t));
 
 	/*
 	 * If the metaslab is fully allocated then just make the weight 0.
 	 */
 	if (metaslab_allocated_space(msp) == msp->ms_size)
 		return (0);
 	/*
 	 * If the metaslab is already loaded, then use the range tree to
 	 * determine the weight. Otherwise, we rely on the space map information
 	 * to generate the weight.
 	 */
 	if (msp->ms_loaded) {
 		weight = metaslab_weight_from_range_tree(msp);
 	} else {
 		weight = metaslab_weight_from_spacemap(msp);
 	}
 
 	/*
 	 * If the metaslab was active the last time we calculated its weight
 	 * then keep it active. We want to consume the entire region that
 	 * is associated with this weight.
 	 */
 	if (msp->ms_activation_weight != 0 && weight != 0)
 		WEIGHT_SET_ACTIVE(weight, WEIGHT_GET_ACTIVE(msp->ms_weight));
 	return (weight);
 }
 
 /*
  * Determine if we should attempt to allocate from this metaslab. If the
  * metaslab is loaded, then we can determine if the desired allocation
  * can be satisfied by looking at the size of the maximum free segment
  * on that metaslab. Otherwise, we make our decision based on the metaslab's
  * weight. For segment-based weighting we can determine the maximum
  * allocation based on the index encoded in its value. For space-based
  * weights we rely on the entire weight (excluding the weight-type bit).
  */
 static boolean_t
 metaslab_should_allocate(metaslab_t *msp, uint64_t asize, boolean_t try_hard)
 {
 	/*
 	 * This case will usually but not always get caught by the checks below;
 	 * metaslabs can be loaded by various means, including the trim and
 	 * initialize code. Once that happens, without this check they are
 	 * allocatable even before they finish their first txg sync.
 	 */
 	if (unlikely(msp->ms_new))
 		return (B_FALSE);
 
 	/*
 	 * If the metaslab is loaded, ms_max_size is definitive and we can use
 	 * the fast check. If it's not, the ms_max_size is a lower bound (once
 	 * set), and we should use the fast check as long as we're not in
 	 * try_hard and it's been less than zfs_metaslab_max_size_cache_sec
 	 * seconds since the metaslab was unloaded.
 	 */
 	if (msp->ms_loaded ||
 	    (msp->ms_max_size != 0 && !try_hard && gethrtime() <
 	    msp->ms_unload_time + SEC2NSEC(zfs_metaslab_max_size_cache_sec)))
 		return (msp->ms_max_size >= asize);
 
 	boolean_t should_allocate;
 	if (!WEIGHT_IS_SPACEBASED(msp->ms_weight)) {
 		/*
 		 * The metaslab segment weight indicates segments in the
 		 * range [2^i, 2^(i+1)), where i is the index in the weight.
 		 * Since the asize might be in the middle of the range, we
 		 * should attempt the allocation if asize < 2^(i+1).
 		 */
 		should_allocate = (asize <
 		    1ULL << (WEIGHT_GET_INDEX(msp->ms_weight) + 1));
 	} else {
 		should_allocate = (asize <=
 		    (msp->ms_weight & ~METASLAB_WEIGHT_TYPE));
 	}
 
 	return (should_allocate);
 }
 
 static uint64_t
 metaslab_weight(metaslab_t *msp, boolean_t nodirty)
 {
 	vdev_t *vd = msp->ms_group->mg_vd;
 	spa_t *spa = vd->vdev_spa;
 	uint64_t weight;
 
 	ASSERT(MUTEX_HELD(&msp->ms_lock));
 
 	metaslab_set_fragmentation(msp, nodirty);
 
 	/*
 	 * Update the maximum size. If the metaslab is loaded, this will
 	 * ensure that we get an accurate maximum size if newly freed space
 	 * has been added back into the free tree. If the metaslab is
 	 * unloaded, we check if there's a larger free segment in the
 	 * unflushed frees. This is a lower bound on the largest allocatable
 	 * segment size. Coalescing of adjacent entries may reveal larger
 	 * allocatable segments, but we aren't aware of those until loading
 	 * the space map into a range tree.
 	 */
 	if (msp->ms_loaded) {
 		msp->ms_max_size = metaslab_largest_allocatable(msp);
 	} else {
 		msp->ms_max_size = MAX(msp->ms_max_size,
 		    metaslab_largest_unflushed_free(msp));
 	}
 
 	/*
 	 * Segment-based weighting requires space map histogram support.
 	 */
 	if (zfs_metaslab_segment_weight_enabled &&
 	    spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM) &&
 	    (msp->ms_sm == NULL || msp->ms_sm->sm_dbuf->db_size ==
 	    sizeof (space_map_phys_t))) {
 		weight = metaslab_segment_weight(msp);
 	} else {
 		weight = metaslab_space_weight(msp);
 	}
 	return (weight);
 }
 
 void
 metaslab_recalculate_weight_and_sort(metaslab_t *msp)
 {
 	ASSERT(MUTEX_HELD(&msp->ms_lock));
 
 	/* note: we preserve the mask (e.g. indication of primary, etc..) */
 	uint64_t was_active = msp->ms_weight & METASLAB_ACTIVE_MASK;
 	metaslab_group_sort(msp->ms_group, msp,
 	    metaslab_weight(msp, B_FALSE) | was_active);
 }
 
 static int
 metaslab_activate_allocator(metaslab_group_t *mg, metaslab_t *msp,
     int allocator, uint64_t activation_weight)
 {
 	metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
 	ASSERT(MUTEX_HELD(&msp->ms_lock));
 
 	/*
 	 * If we're activating for the claim code, we don't want to actually
 	 * set the metaslab up for a specific allocator.
 	 */
 	if (activation_weight == METASLAB_WEIGHT_CLAIM) {
 		ASSERT0(msp->ms_activation_weight);
 		msp->ms_activation_weight = msp->ms_weight;
 		metaslab_group_sort(mg, msp, msp->ms_weight |
 		    activation_weight);
 		return (0);
 	}
 
 	metaslab_t **mspp = (activation_weight == METASLAB_WEIGHT_PRIMARY ?
 	    &mga->mga_primary : &mga->mga_secondary);
 
 	mutex_enter(&mg->mg_lock);
 	if (*mspp != NULL) {
 		mutex_exit(&mg->mg_lock);
 		return (EEXIST);
 	}
 
 	*mspp = msp;
 	ASSERT3S(msp->ms_allocator, ==, -1);
 	msp->ms_allocator = allocator;
 	msp->ms_primary = (activation_weight == METASLAB_WEIGHT_PRIMARY);
 
 	ASSERT0(msp->ms_activation_weight);
 	msp->ms_activation_weight = msp->ms_weight;
 	metaslab_group_sort_impl(mg, msp,
 	    msp->ms_weight | activation_weight);
 	mutex_exit(&mg->mg_lock);
 
 	return (0);
 }
 
 static int
 metaslab_activate(metaslab_t *msp, int allocator, uint64_t activation_weight)
 {
 	ASSERT(MUTEX_HELD(&msp->ms_lock));
 
 	/*
 	 * The current metaslab is already activated for us so there
 	 * is nothing to do. Already activated though, doesn't mean
 	 * that this metaslab is activated for our allocator nor our
 	 * requested activation weight. The metaslab could have started
 	 * as an active one for our allocator but changed allocators
 	 * while we were waiting to grab its ms_lock or we stole it
 	 * [see find_valid_metaslab()]. This means that there is a
 	 * possibility of passivating a metaslab of another allocator
 	 * or from a different activation mask, from this thread.
 	 */
 	if ((msp->ms_weight & METASLAB_ACTIVE_MASK) != 0) {
 		ASSERT(msp->ms_loaded);
 		return (0);
 	}
 
 	int error = metaslab_load(msp);
 	if (error != 0) {
 		metaslab_group_sort(msp->ms_group, msp, 0);
 		return (error);
 	}
 
 	/*
 	 * When entering metaslab_load() we may have dropped the
 	 * ms_lock because we were loading this metaslab, or we
 	 * were waiting for another thread to load it for us. In
 	 * that scenario, we recheck the weight of the metaslab
 	 * to see if it was activated by another thread.
 	 *
 	 * If the metaslab was activated for another allocator or
 	 * it was activated with a different activation weight (e.g.
 	 * we wanted to make it a primary but it was activated as
 	 * secondary) we return error (EBUSY).
 	 *
 	 * If the metaslab was activated for the same allocator
 	 * and requested activation mask, skip activating it.
 	 */
 	if ((msp->ms_weight & METASLAB_ACTIVE_MASK) != 0) {
 		if (msp->ms_allocator != allocator)
 			return (EBUSY);
 
 		if ((msp->ms_weight & activation_weight) == 0)
 			return (SET_ERROR(EBUSY));
 
 		EQUIV((activation_weight == METASLAB_WEIGHT_PRIMARY),
 		    msp->ms_primary);
 		return (0);
 	}
 
 	/*
 	 * If the metaslab has literally 0 space, it will have weight 0. In
 	 * that case, don't bother activating it. This can happen if the
 	 * metaslab had space during find_valid_metaslab, but another thread
 	 * loaded it and used all that space while we were waiting to grab the
 	 * lock.
 	 */
 	if (msp->ms_weight == 0) {
 		ASSERT0(range_tree_space(msp->ms_allocatable));
 		return (SET_ERROR(ENOSPC));
 	}
 
 	if ((error = metaslab_activate_allocator(msp->ms_group, msp,
 	    allocator, activation_weight)) != 0) {
 		return (error);
 	}
 
 	ASSERT(msp->ms_loaded);
 	ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
 
 	return (0);
 }
 
 static void
 metaslab_passivate_allocator(metaslab_group_t *mg, metaslab_t *msp,
     uint64_t weight)
 {
 	ASSERT(MUTEX_HELD(&msp->ms_lock));
 	ASSERT(msp->ms_loaded);
 
 	if (msp->ms_weight & METASLAB_WEIGHT_CLAIM) {
 		metaslab_group_sort(mg, msp, weight);
 		return;
 	}
 
 	mutex_enter(&mg->mg_lock);
 	ASSERT3P(msp->ms_group, ==, mg);
 	ASSERT3S(0, <=, msp->ms_allocator);
 	ASSERT3U(msp->ms_allocator, <, mg->mg_allocators);
 
 	metaslab_group_allocator_t *mga = &mg->mg_allocator[msp->ms_allocator];
 	if (msp->ms_primary) {
 		ASSERT3P(mga->mga_primary, ==, msp);
 		ASSERT(msp->ms_weight & METASLAB_WEIGHT_PRIMARY);
 		mga->mga_primary = NULL;
 	} else {
 		ASSERT3P(mga->mga_secondary, ==, msp);
 		ASSERT(msp->ms_weight & METASLAB_WEIGHT_SECONDARY);
 		mga->mga_secondary = NULL;
 	}
 	msp->ms_allocator = -1;
 	metaslab_group_sort_impl(mg, msp, weight);
 	mutex_exit(&mg->mg_lock);
 }
 
 static void
 metaslab_passivate(metaslab_t *msp, uint64_t weight)
 {
 	uint64_t size __maybe_unused = weight & ~METASLAB_WEIGHT_TYPE;
 
 	/*
 	 * If size < SPA_MINBLOCKSIZE, then we will not allocate from
 	 * this metaslab again.  In that case, it had better be empty,
 	 * or we would be leaving space on the table.
 	 */
 	ASSERT(!WEIGHT_IS_SPACEBASED(msp->ms_weight) ||
 	    size >= SPA_MINBLOCKSIZE ||
 	    range_tree_space(msp->ms_allocatable) == 0);
 	ASSERT0(weight & METASLAB_ACTIVE_MASK);
 
 	ASSERT(msp->ms_activation_weight != 0);
 	msp->ms_activation_weight = 0;
 	metaslab_passivate_allocator(msp->ms_group, msp, weight);
 	ASSERT0(msp->ms_weight & METASLAB_ACTIVE_MASK);
 }
 
 /*
  * Segment-based metaslabs are activated once and remain active until
  * we either fail an allocation attempt (similar to space-based metaslabs)
  * or have exhausted the free space in zfs_metaslab_switch_threshold
  * buckets since the metaslab was activated. This function checks to see
  * if we've exhausted the zfs_metaslab_switch_threshold buckets in the
  * metaslab and passivates it proactively. This will allow us to select a
  * metaslab with a larger contiguous region, if any, remaining within this
  * metaslab group. If we're in sync pass > 1, then we continue using this
  * metaslab so that we don't dirty more block and cause more sync passes.
  */
 static void
 metaslab_segment_may_passivate(metaslab_t *msp)
 {
 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
 
 	if (WEIGHT_IS_SPACEBASED(msp->ms_weight) || spa_sync_pass(spa) > 1)
 		return;
 
 	/*
 	 * Since we are in the middle of a sync pass, the most accurate
 	 * information that is accessible to us is the in-core range tree
 	 * histogram; calculate the new weight based on that information.
 	 */
 	uint64_t weight = metaslab_weight_from_range_tree(msp);
 	int activation_idx = WEIGHT_GET_INDEX(msp->ms_activation_weight);
 	int current_idx = WEIGHT_GET_INDEX(weight);
 
 	if (current_idx <= activation_idx - zfs_metaslab_switch_threshold)
 		metaslab_passivate(msp, weight);
 }
 
 static void
 metaslab_preload(void *arg)
 {
 	metaslab_t *msp = arg;
 	metaslab_class_t *mc = msp->ms_group->mg_class;
 	spa_t *spa = mc->mc_spa;
 	fstrans_cookie_t cookie = spl_fstrans_mark();
 
 	ASSERT(!MUTEX_HELD(&msp->ms_group->mg_lock));
 
 	mutex_enter(&msp->ms_lock);
 	(void) metaslab_load(msp);
 	metaslab_set_selected_txg(msp, spa_syncing_txg(spa));
 	mutex_exit(&msp->ms_lock);
 	spl_fstrans_unmark(cookie);
 }
 
 static void
 metaslab_group_preload(metaslab_group_t *mg)
 {
 	spa_t *spa = mg->mg_vd->vdev_spa;
 	metaslab_t *msp;
 	avl_tree_t *t = &mg->mg_metaslab_tree;
 	int m = 0;
 
 	if (spa_shutting_down(spa) || !metaslab_preload_enabled)
 		return;
 
 	mutex_enter(&mg->mg_lock);
 
 	/*
 	 * Load the next potential metaslabs
 	 */
 	for (msp = avl_first(t); msp != NULL; msp = AVL_NEXT(t, msp)) {
 		ASSERT3P(msp->ms_group, ==, mg);
 
 		/*
 		 * We preload only the maximum number of metaslabs specified
 		 * by metaslab_preload_limit. If a metaslab is being forced
 		 * to condense then we preload it too. This will ensure
 		 * that force condensing happens in the next txg.
 		 */
 		if (++m > metaslab_preload_limit && !msp->ms_condense_wanted) {
 			continue;
 		}
 
 		VERIFY(taskq_dispatch(spa->spa_metaslab_taskq, metaslab_preload,
 		    msp, TQ_SLEEP | (m <= mg->mg_allocators ? TQ_FRONT : 0))
 		    != TASKQID_INVALID);
 	}
 	mutex_exit(&mg->mg_lock);
 }
 
 /*
  * Determine if the space map's on-disk footprint is past our tolerance for
  * inefficiency. We would like to use the following criteria to make our
  * decision:
  *
  * 1. Do not condense if the size of the space map object would dramatically
  *    increase as a result of writing out the free space range tree.
  *
  * 2. Condense if the on on-disk space map representation is at least
  *    zfs_condense_pct/100 times the size of the optimal representation
  *    (i.e. zfs_condense_pct = 110 and in-core = 1MB, optimal = 1.1MB).
  *
  * 3. Do not condense if the on-disk size of the space map does not actually
  *    decrease.
  *
  * Unfortunately, we cannot compute the on-disk size of the space map in this
  * context because we cannot accurately compute the effects of compression, etc.
  * Instead, we apply the heuristic described in the block comment for
  * zfs_metaslab_condense_block_threshold - we only condense if the space used
  * is greater than a threshold number of blocks.
  */
 static boolean_t
 metaslab_should_condense(metaslab_t *msp)
 {
 	space_map_t *sm = msp->ms_sm;
 	vdev_t *vd = msp->ms_group->mg_vd;
 	uint64_t vdev_blocksize = 1ULL << vd->vdev_ashift;
 
 	ASSERT(MUTEX_HELD(&msp->ms_lock));
 	ASSERT(msp->ms_loaded);
 	ASSERT(sm != NULL);
 	ASSERT3U(spa_sync_pass(vd->vdev_spa), ==, 1);
 
 	/*
 	 * We always condense metaslabs that are empty and metaslabs for
 	 * which a condense request has been made.
 	 */
 	if (range_tree_numsegs(msp->ms_allocatable) == 0 ||
 	    msp->ms_condense_wanted)
 		return (B_TRUE);
 
 	uint64_t record_size = MAX(sm->sm_blksz, vdev_blocksize);
 	uint64_t object_size = space_map_length(sm);
 	uint64_t optimal_size = space_map_estimate_optimal_size(sm,
 	    msp->ms_allocatable, SM_NO_VDEVID);
 
 	return (object_size >= (optimal_size * zfs_condense_pct / 100) &&
 	    object_size > zfs_metaslab_condense_block_threshold * record_size);
 }
 
 /*
  * Condense the on-disk space map representation to its minimized form.
  * The minimized form consists of a small number of allocations followed
  * by the entries of the free range tree (ms_allocatable). The condensed
  * spacemap contains all the entries of previous TXGs (including those in
  * the pool-wide log spacemaps; thus this is effectively a superset of
  * metaslab_flush()), but this TXG's entries still need to be written.
  */
 static void
 metaslab_condense(metaslab_t *msp, dmu_tx_t *tx)
 {
 	range_tree_t *condense_tree;
 	space_map_t *sm = msp->ms_sm;
 	uint64_t txg = dmu_tx_get_txg(tx);
 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
 
 	ASSERT(MUTEX_HELD(&msp->ms_lock));
 	ASSERT(msp->ms_loaded);
 	ASSERT(msp->ms_sm != NULL);
 
 	/*
 	 * In order to condense the space map, we need to change it so it
 	 * only describes which segments are currently allocated and free.
 	 *
 	 * All the current free space resides in the ms_allocatable, all
 	 * the ms_defer trees, and all the ms_allocating trees. We ignore
 	 * ms_freed because it is empty because we're in sync pass 1. We
 	 * ignore ms_freeing because these changes are not yet reflected
 	 * in the spacemap (they will be written later this txg).
 	 *
 	 * So to truncate the space map to represent all the entries of
 	 * previous TXGs we do the following:
 	 *
 	 * 1] We create a range tree (condense tree) that is 100% empty.
 	 * 2] We add to it all segments found in the ms_defer trees
 	 *    as those segments are marked as free in the original space
 	 *    map. We do the same with the ms_allocating trees for the same
 	 *    reason. Adding these segments should be a relatively
 	 *    inexpensive operation since we expect these trees to have a
 	 *    small number of nodes.
 	 * 3] We vacate any unflushed allocs, since they are not frees we
 	 *    need to add to the condense tree. Then we vacate any
 	 *    unflushed frees as they should already be part of ms_allocatable.
 	 * 4] At this point, we would ideally like to add all segments
 	 *    in the ms_allocatable tree from the condense tree. This way
 	 *    we would write all the entries of the condense tree as the
 	 *    condensed space map, which would only contain freed
 	 *    segments with everything else assumed to be allocated.
 	 *
 	 *    Doing so can be prohibitively expensive as ms_allocatable can
 	 *    be large, and therefore computationally expensive to add to
 	 *    the condense_tree. Instead we first sync out an entry marking
 	 *    everything as allocated, then the condense_tree and then the
 	 *    ms_allocatable, in the condensed space map. While this is not
 	 *    optimal, it is typically close to optimal and more importantly
 	 *    much cheaper to compute.
 	 *
 	 * 5] Finally, as both of the unflushed trees were written to our
 	 *    new and condensed metaslab space map, we basically flushed
 	 *    all the unflushed changes to disk, thus we call
 	 *    metaslab_flush_update().
 	 */
 	ASSERT3U(spa_sync_pass(spa), ==, 1);
 	ASSERT(range_tree_is_empty(msp->ms_freed)); /* since it is pass 1 */
 
 	zfs_dbgmsg("condensing: txg %llu, msp[%llu] %px, vdev id %llu, "
 	    "spa %s, smp size %llu, segments %llu, forcing condense=%s",
 	    (u_longlong_t)txg, (u_longlong_t)msp->ms_id, msp,
 	    (u_longlong_t)msp->ms_group->mg_vd->vdev_id,
 	    spa->spa_name, (u_longlong_t)space_map_length(msp->ms_sm),
 	    (u_longlong_t)range_tree_numsegs(msp->ms_allocatable),
 	    msp->ms_condense_wanted ? "TRUE" : "FALSE");
 
 	msp->ms_condense_wanted = B_FALSE;
 
 	range_seg_type_t type;
 	uint64_t shift, start;
 	type = metaslab_calculate_range_tree_type(msp->ms_group->mg_vd, msp,
 	    &start, &shift);
 
 	condense_tree = range_tree_create(NULL, type, NULL, start, shift);
 
 	for (int t = 0; t < TXG_DEFER_SIZE; t++) {
 		range_tree_walk(msp->ms_defer[t],
 		    range_tree_add, condense_tree);
 	}
 
 	for (int t = 0; t < TXG_CONCURRENT_STATES; t++) {
 		range_tree_walk(msp->ms_allocating[(txg + t) & TXG_MASK],
 		    range_tree_add, condense_tree);
 	}
 
 	ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=,
 	    metaslab_unflushed_changes_memused(msp));
 	spa->spa_unflushed_stats.sus_memused -=
 	    metaslab_unflushed_changes_memused(msp);
 	range_tree_vacate(msp->ms_unflushed_allocs, NULL, NULL);
 	range_tree_vacate(msp->ms_unflushed_frees, NULL, NULL);
 
 	/*
 	 * We're about to drop the metaslab's lock thus allowing other
 	 * consumers to change it's content. Set the metaslab's ms_condensing
 	 * flag to ensure that allocations on this metaslab do not occur
 	 * while we're in the middle of committing it to disk. This is only
 	 * critical for ms_allocatable as all other range trees use per TXG
 	 * views of their content.
 	 */
 	msp->ms_condensing = B_TRUE;
 
 	mutex_exit(&msp->ms_lock);
 	uint64_t object = space_map_object(msp->ms_sm);
 	space_map_truncate(sm,
 	    spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP) ?
 	    zfs_metaslab_sm_blksz_with_log : zfs_metaslab_sm_blksz_no_log, tx);
 
 	/*
 	 * space_map_truncate() may have reallocated the spacemap object.
 	 * If so, update the vdev_ms_array.
 	 */
 	if (space_map_object(msp->ms_sm) != object) {
 		object = space_map_object(msp->ms_sm);
 		dmu_write(spa->spa_meta_objset,
 		    msp->ms_group->mg_vd->vdev_ms_array, sizeof (uint64_t) *
 		    msp->ms_id, sizeof (uint64_t), &object, tx);
 	}
 
 	/*
 	 * Note:
 	 * When the log space map feature is enabled, each space map will
 	 * always have ALLOCS followed by FREES for each sync pass. This is
 	 * typically true even when the log space map feature is disabled,
 	 * except from the case where a metaslab goes through metaslab_sync()
 	 * and gets condensed. In that case the metaslab's space map will have
 	 * ALLOCS followed by FREES (due to condensing) followed by ALLOCS
 	 * followed by FREES (due to space_map_write() in metaslab_sync()) for
 	 * sync pass 1.
 	 */
 	range_tree_t *tmp_tree = range_tree_create(NULL, type, NULL, start,
 	    shift);
 	range_tree_add(tmp_tree, msp->ms_start, msp->ms_size);
 	space_map_write(sm, tmp_tree, SM_ALLOC, SM_NO_VDEVID, tx);
 	space_map_write(sm, msp->ms_allocatable, SM_FREE, SM_NO_VDEVID, tx);
 	space_map_write(sm, condense_tree, SM_FREE, SM_NO_VDEVID, tx);
 
 	range_tree_vacate(condense_tree, NULL, NULL);
 	range_tree_destroy(condense_tree);
 	range_tree_vacate(tmp_tree, NULL, NULL);
 	range_tree_destroy(tmp_tree);
 	mutex_enter(&msp->ms_lock);
 
 	msp->ms_condensing = B_FALSE;
 	metaslab_flush_update(msp, tx);
 }
 
 static void
 metaslab_unflushed_add(metaslab_t *msp, dmu_tx_t *tx)
 {
 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
 	ASSERT(spa_syncing_log_sm(spa) != NULL);
 	ASSERT(msp->ms_sm != NULL);
 	ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs));
 	ASSERT(range_tree_is_empty(msp->ms_unflushed_frees));
 
 	mutex_enter(&spa->spa_flushed_ms_lock);
 	metaslab_set_unflushed_txg(msp, spa_syncing_txg(spa), tx);
 	metaslab_set_unflushed_dirty(msp, B_TRUE);
 	avl_add(&spa->spa_metaslabs_by_flushed, msp);
 	mutex_exit(&spa->spa_flushed_ms_lock);
 
 	spa_log_sm_increment_current_mscount(spa);
 	spa_log_summary_add_flushed_metaslab(spa, B_TRUE);
 }
 
 void
 metaslab_unflushed_bump(metaslab_t *msp, dmu_tx_t *tx, boolean_t dirty)
 {
 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
 	ASSERT(spa_syncing_log_sm(spa) != NULL);
 	ASSERT(msp->ms_sm != NULL);
 	ASSERT(metaslab_unflushed_txg(msp) != 0);
 	ASSERT3P(avl_find(&spa->spa_metaslabs_by_flushed, msp, NULL), ==, msp);
 	ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs));
 	ASSERT(range_tree_is_empty(msp->ms_unflushed_frees));
 
 	VERIFY3U(tx->tx_txg, <=, spa_final_dirty_txg(spa));
 
 	/* update metaslab's position in our flushing tree */
 	uint64_t ms_prev_flushed_txg = metaslab_unflushed_txg(msp);
 	boolean_t ms_prev_flushed_dirty = metaslab_unflushed_dirty(msp);
 	mutex_enter(&spa->spa_flushed_ms_lock);
 	avl_remove(&spa->spa_metaslabs_by_flushed, msp);
 	metaslab_set_unflushed_txg(msp, spa_syncing_txg(spa), tx);
 	metaslab_set_unflushed_dirty(msp, dirty);
 	avl_add(&spa->spa_metaslabs_by_flushed, msp);
 	mutex_exit(&spa->spa_flushed_ms_lock);
 
 	/* update metaslab counts of spa_log_sm_t nodes */
 	spa_log_sm_decrement_mscount(spa, ms_prev_flushed_txg);
 	spa_log_sm_increment_current_mscount(spa);
 
 	/* update log space map summary */
 	spa_log_summary_decrement_mscount(spa, ms_prev_flushed_txg,
 	    ms_prev_flushed_dirty);
 	spa_log_summary_add_flushed_metaslab(spa, dirty);
 
 	/* cleanup obsolete logs if any */
 	spa_cleanup_old_sm_logs(spa, tx);
 }
 
 /*
  * Called when the metaslab has been flushed (its own spacemap now reflects
  * all the contents of the pool-wide spacemap log). Updates the metaslab's
  * metadata and any pool-wide related log space map data (e.g. summary,
  * obsolete logs, etc..) to reflect that.
  */
 static void
 metaslab_flush_update(metaslab_t *msp, dmu_tx_t *tx)
 {
 	metaslab_group_t *mg = msp->ms_group;
 	spa_t *spa = mg->mg_vd->vdev_spa;
 
 	ASSERT(MUTEX_HELD(&msp->ms_lock));
 
 	ASSERT3U(spa_sync_pass(spa), ==, 1);
 
 	/*
 	 * Just because a metaslab got flushed, that doesn't mean that
 	 * it will pass through metaslab_sync_done(). Thus, make sure to
 	 * update ms_synced_length here in case it doesn't.
 	 */
 	msp->ms_synced_length = space_map_length(msp->ms_sm);
 
 	/*
 	 * We may end up here from metaslab_condense() without the
 	 * feature being active. In that case this is a no-op.
 	 */
 	if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP) ||
 	    metaslab_unflushed_txg(msp) == 0)
 		return;
 
 	metaslab_unflushed_bump(msp, tx, B_FALSE);
 }
 
 boolean_t
 metaslab_flush(metaslab_t *msp, dmu_tx_t *tx)
 {
 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
 
 	ASSERT(MUTEX_HELD(&msp->ms_lock));
 	ASSERT3U(spa_sync_pass(spa), ==, 1);
 	ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP));
 
 	ASSERT(msp->ms_sm != NULL);
 	ASSERT(metaslab_unflushed_txg(msp) != 0);
 	ASSERT(avl_find(&spa->spa_metaslabs_by_flushed, msp, NULL) != NULL);
 
 	/*
 	 * There is nothing wrong with flushing the same metaslab twice, as
 	 * this codepath should work on that case. However, the current
 	 * flushing scheme makes sure to avoid this situation as we would be
 	 * making all these calls without having anything meaningful to write
 	 * to disk. We assert this behavior here.
 	 */
 	ASSERT3U(metaslab_unflushed_txg(msp), <, dmu_tx_get_txg(tx));
 
 	/*
 	 * We can not flush while loading, because then we would
 	 * not load the ms_unflushed_{allocs,frees}.
 	 */
 	if (msp->ms_loading)
 		return (B_FALSE);
 
 	metaslab_verify_space(msp, dmu_tx_get_txg(tx));
 	metaslab_verify_weight_and_frag(msp);
 
 	/*
 	 * Metaslab condensing is effectively flushing. Therefore if the
 	 * metaslab can be condensed we can just condense it instead of
 	 * flushing it.
 	 *
 	 * Note that metaslab_condense() does call metaslab_flush_update()
 	 * so we can just return immediately after condensing. We also
 	 * don't need to care about setting ms_flushing or broadcasting
 	 * ms_flush_cv, even if we temporarily drop the ms_lock in
 	 * metaslab_condense(), as the metaslab is already loaded.
 	 */
 	if (msp->ms_loaded && metaslab_should_condense(msp)) {
 		metaslab_group_t *mg = msp->ms_group;
 
 		/*
 		 * For all histogram operations below refer to the
 		 * comments of metaslab_sync() where we follow a
 		 * similar procedure.
 		 */
 		metaslab_group_histogram_verify(mg);
 		metaslab_class_histogram_verify(mg->mg_class);
 		metaslab_group_histogram_remove(mg, msp);
 
 		metaslab_condense(msp, tx);
 
 		space_map_histogram_clear(msp->ms_sm);
 		space_map_histogram_add(msp->ms_sm, msp->ms_allocatable, tx);
 		ASSERT(range_tree_is_empty(msp->ms_freed));
 		for (int t = 0; t < TXG_DEFER_SIZE; t++) {
 			space_map_histogram_add(msp->ms_sm,
 			    msp->ms_defer[t], tx);
 		}
 		metaslab_aux_histograms_update(msp);
 
 		metaslab_group_histogram_add(mg, msp);
 		metaslab_group_histogram_verify(mg);
 		metaslab_class_histogram_verify(mg->mg_class);
 
 		metaslab_verify_space(msp, dmu_tx_get_txg(tx));
 
 		/*
 		 * Since we recreated the histogram (and potentially
 		 * the ms_sm too while condensing) ensure that the
 		 * weight is updated too because we are not guaranteed
 		 * that this metaslab is dirty and will go through
 		 * metaslab_sync_done().
 		 */
 		metaslab_recalculate_weight_and_sort(msp);
 		return (B_TRUE);
 	}
 
 	msp->ms_flushing = B_TRUE;
 	uint64_t sm_len_before = space_map_length(msp->ms_sm);
 
 	mutex_exit(&msp->ms_lock);
 	space_map_write(msp->ms_sm, msp->ms_unflushed_allocs, SM_ALLOC,
 	    SM_NO_VDEVID, tx);
 	space_map_write(msp->ms_sm, msp->ms_unflushed_frees, SM_FREE,
 	    SM_NO_VDEVID, tx);
 	mutex_enter(&msp->ms_lock);
 
 	uint64_t sm_len_after = space_map_length(msp->ms_sm);
 	if (zfs_flags & ZFS_DEBUG_LOG_SPACEMAP) {
 		zfs_dbgmsg("flushing: txg %llu, spa %s, vdev_id %llu, "
 		    "ms_id %llu, unflushed_allocs %llu, unflushed_frees %llu, "
 		    "appended %llu bytes", (u_longlong_t)dmu_tx_get_txg(tx),
 		    spa_name(spa),
 		    (u_longlong_t)msp->ms_group->mg_vd->vdev_id,
 		    (u_longlong_t)msp->ms_id,
 		    (u_longlong_t)range_tree_space(msp->ms_unflushed_allocs),
 		    (u_longlong_t)range_tree_space(msp->ms_unflushed_frees),
 		    (u_longlong_t)(sm_len_after - sm_len_before));
 	}
 
 	ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=,
 	    metaslab_unflushed_changes_memused(msp));
 	spa->spa_unflushed_stats.sus_memused -=
 	    metaslab_unflushed_changes_memused(msp);
 	range_tree_vacate(msp->ms_unflushed_allocs, NULL, NULL);
 	range_tree_vacate(msp->ms_unflushed_frees, NULL, NULL);
 
 	metaslab_verify_space(msp, dmu_tx_get_txg(tx));
 	metaslab_verify_weight_and_frag(msp);
 
 	metaslab_flush_update(msp, tx);
 
 	metaslab_verify_space(msp, dmu_tx_get_txg(tx));
 	metaslab_verify_weight_and_frag(msp);
 
 	msp->ms_flushing = B_FALSE;
 	cv_broadcast(&msp->ms_flush_cv);
 	return (B_TRUE);
 }
 
 /*
  * Write a metaslab to disk in the context of the specified transaction group.
  */
 void
 metaslab_sync(metaslab_t *msp, uint64_t txg)
 {
 	metaslab_group_t *mg = msp->ms_group;
 	vdev_t *vd = mg->mg_vd;
 	spa_t *spa = vd->vdev_spa;
 	objset_t *mos = spa_meta_objset(spa);
 	range_tree_t *alloctree = msp->ms_allocating[txg & TXG_MASK];
 	dmu_tx_t *tx;
 
 	ASSERT(!vd->vdev_ishole);
 
 	/*
 	 * This metaslab has just been added so there's no work to do now.
 	 */
 	if (msp->ms_new) {
 		ASSERT0(range_tree_space(alloctree));
 		ASSERT0(range_tree_space(msp->ms_freeing));
 		ASSERT0(range_tree_space(msp->ms_freed));
 		ASSERT0(range_tree_space(msp->ms_checkpointing));
 		ASSERT0(range_tree_space(msp->ms_trim));
 		return;
 	}
 
 	/*
 	 * Normally, we don't want to process a metaslab if there are no
 	 * allocations or frees to perform. However, if the metaslab is being
 	 * forced to condense, it's loaded and we're not beyond the final
 	 * dirty txg, we need to let it through. Not condensing beyond the
 	 * final dirty txg prevents an issue where metaslabs that need to be
 	 * condensed but were loaded for other reasons could cause a panic
 	 * here. By only checking the txg in that branch of the conditional,
 	 * we preserve the utility of the VERIFY statements in all other
 	 * cases.
 	 */
 	if (range_tree_is_empty(alloctree) &&
 	    range_tree_is_empty(msp->ms_freeing) &&
 	    range_tree_is_empty(msp->ms_checkpointing) &&
 	    !(msp->ms_loaded && msp->ms_condense_wanted &&
 	    txg <= spa_final_dirty_txg(spa)))
 		return;
 
 
 	VERIFY3U(txg, <=, spa_final_dirty_txg(spa));
 
 	/*
 	 * The only state that can actually be changing concurrently
 	 * with metaslab_sync() is the metaslab's ms_allocatable. No
 	 * other thread can be modifying this txg's alloc, freeing,
 	 * freed, or space_map_phys_t.  We drop ms_lock whenever we
 	 * could call into the DMU, because the DMU can call down to
 	 * us (e.g. via zio_free()) at any time.
 	 *
 	 * The spa_vdev_remove_thread() can be reading metaslab state
 	 * concurrently, and it is locked out by the ms_sync_lock.
 	 * Note that the ms_lock is insufficient for this, because it
 	 * is dropped by space_map_write().
 	 */
 	tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
 
 	/*
 	 * Generate a log space map if one doesn't exist already.
 	 */
 	spa_generate_syncing_log_sm(spa, tx);
 
 	if (msp->ms_sm == NULL) {
 		uint64_t new_object = space_map_alloc(mos,
 		    spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP) ?
 		    zfs_metaslab_sm_blksz_with_log :
 		    zfs_metaslab_sm_blksz_no_log, tx);
 		VERIFY3U(new_object, !=, 0);
 
 		dmu_write(mos, vd->vdev_ms_array, sizeof (uint64_t) *
 		    msp->ms_id, sizeof (uint64_t), &new_object, tx);
 
 		VERIFY0(space_map_open(&msp->ms_sm, mos, new_object,
 		    msp->ms_start, msp->ms_size, vd->vdev_ashift));
 		ASSERT(msp->ms_sm != NULL);
 
 		ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs));
 		ASSERT(range_tree_is_empty(msp->ms_unflushed_frees));
 		ASSERT0(metaslab_allocated_space(msp));
 	}
 
 	if (!range_tree_is_empty(msp->ms_checkpointing) &&
 	    vd->vdev_checkpoint_sm == NULL) {
 		ASSERT(spa_has_checkpoint(spa));
 
 		uint64_t new_object = space_map_alloc(mos,
 		    zfs_vdev_standard_sm_blksz, tx);
 		VERIFY3U(new_object, !=, 0);
 
 		VERIFY0(space_map_open(&vd->vdev_checkpoint_sm,
 		    mos, new_object, 0, vd->vdev_asize, vd->vdev_ashift));
 		ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
 
 		/*
 		 * We save the space map object as an entry in vdev_top_zap
 		 * so it can be retrieved when the pool is reopened after an
 		 * export or through zdb.
 		 */
 		VERIFY0(zap_add(vd->vdev_spa->spa_meta_objset,
 		    vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM,
 		    sizeof (new_object), 1, &new_object, tx));
 	}
 
 	mutex_enter(&msp->ms_sync_lock);
 	mutex_enter(&msp->ms_lock);
 
 	/*
 	 * Note: metaslab_condense() clears the space map's histogram.
 	 * Therefore we must verify and remove this histogram before
 	 * condensing.
 	 */
 	metaslab_group_histogram_verify(mg);
 	metaslab_class_histogram_verify(mg->mg_class);
 	metaslab_group_histogram_remove(mg, msp);
 
 	if (spa->spa_sync_pass == 1 && msp->ms_loaded &&
 	    metaslab_should_condense(msp))
 		metaslab_condense(msp, tx);
 
 	/*
 	 * We'll be going to disk to sync our space accounting, thus we
 	 * drop the ms_lock during that time so allocations coming from
 	 * open-context (ZIL) for future TXGs do not block.
 	 */
 	mutex_exit(&msp->ms_lock);
 	space_map_t *log_sm = spa_syncing_log_sm(spa);
 	if (log_sm != NULL) {
 		ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP));
 		if (metaslab_unflushed_txg(msp) == 0)
 			metaslab_unflushed_add(msp, tx);
 		else if (!metaslab_unflushed_dirty(msp))
 			metaslab_unflushed_bump(msp, tx, B_TRUE);
 
 		space_map_write(log_sm, alloctree, SM_ALLOC,
 		    vd->vdev_id, tx);
 		space_map_write(log_sm, msp->ms_freeing, SM_FREE,
 		    vd->vdev_id, tx);
 		mutex_enter(&msp->ms_lock);
 
 		ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=,
 		    metaslab_unflushed_changes_memused(msp));
 		spa->spa_unflushed_stats.sus_memused -=
 		    metaslab_unflushed_changes_memused(msp);
 		range_tree_remove_xor_add(alloctree,
 		    msp->ms_unflushed_frees, msp->ms_unflushed_allocs);
 		range_tree_remove_xor_add(msp->ms_freeing,
 		    msp->ms_unflushed_allocs, msp->ms_unflushed_frees);
 		spa->spa_unflushed_stats.sus_memused +=
 		    metaslab_unflushed_changes_memused(msp);
 	} else {
 		ASSERT(!spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP));
 
 		space_map_write(msp->ms_sm, alloctree, SM_ALLOC,
 		    SM_NO_VDEVID, tx);
 		space_map_write(msp->ms_sm, msp->ms_freeing, SM_FREE,
 		    SM_NO_VDEVID, tx);
 		mutex_enter(&msp->ms_lock);
 	}
 
 	msp->ms_allocated_space += range_tree_space(alloctree);
 	ASSERT3U(msp->ms_allocated_space, >=,
 	    range_tree_space(msp->ms_freeing));
 	msp->ms_allocated_space -= range_tree_space(msp->ms_freeing);
 
 	if (!range_tree_is_empty(msp->ms_checkpointing)) {
 		ASSERT(spa_has_checkpoint(spa));
 		ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
 
 		/*
 		 * Since we are doing writes to disk and the ms_checkpointing
 		 * tree won't be changing during that time, we drop the
 		 * ms_lock while writing to the checkpoint space map, for the
 		 * same reason mentioned above.
 		 */
 		mutex_exit(&msp->ms_lock);
 		space_map_write(vd->vdev_checkpoint_sm,
 		    msp->ms_checkpointing, SM_FREE, SM_NO_VDEVID, tx);
 		mutex_enter(&msp->ms_lock);
 
 		spa->spa_checkpoint_info.sci_dspace +=
 		    range_tree_space(msp->ms_checkpointing);
 		vd->vdev_stat.vs_checkpoint_space +=
 		    range_tree_space(msp->ms_checkpointing);
 		ASSERT3U(vd->vdev_stat.vs_checkpoint_space, ==,
 		    -space_map_allocated(vd->vdev_checkpoint_sm));
 
 		range_tree_vacate(msp->ms_checkpointing, NULL, NULL);
 	}
 
 	if (msp->ms_loaded) {
 		/*
 		 * When the space map is loaded, we have an accurate
 		 * histogram in the range tree. This gives us an opportunity
 		 * to bring the space map's histogram up-to-date so we clear
 		 * it first before updating it.
 		 */
 		space_map_histogram_clear(msp->ms_sm);
 		space_map_histogram_add(msp->ms_sm, msp->ms_allocatable, tx);
 
 		/*
 		 * Since we've cleared the histogram we need to add back
 		 * any free space that has already been processed, plus
 		 * any deferred space. This allows the on-disk histogram
 		 * to accurately reflect all free space even if some space
 		 * is not yet available for allocation (i.e. deferred).
 		 */
 		space_map_histogram_add(msp->ms_sm, msp->ms_freed, tx);
 
 		/*
 		 * Add back any deferred free space that has not been
 		 * added back into the in-core free tree yet. This will
 		 * ensure that we don't end up with a space map histogram
 		 * that is completely empty unless the metaslab is fully
 		 * allocated.
 		 */
 		for (int t = 0; t < TXG_DEFER_SIZE; t++) {
 			space_map_histogram_add(msp->ms_sm,
 			    msp->ms_defer[t], tx);
 		}
 	}
 
 	/*
 	 * Always add the free space from this sync pass to the space
 	 * map histogram. We want to make sure that the on-disk histogram
 	 * accounts for all free space. If the space map is not loaded,
 	 * then we will lose some accuracy but will correct it the next
 	 * time we load the space map.
 	 */
 	space_map_histogram_add(msp->ms_sm, msp->ms_freeing, tx);
 	metaslab_aux_histograms_update(msp);
 
 	metaslab_group_histogram_add(mg, msp);
 	metaslab_group_histogram_verify(mg);
 	metaslab_class_histogram_verify(mg->mg_class);
 
 	/*
 	 * For sync pass 1, we avoid traversing this txg's free range tree
 	 * and instead will just swap the pointers for freeing and freed.
 	 * We can safely do this since the freed_tree is guaranteed to be
 	 * empty on the initial pass.
 	 *
 	 * Keep in mind that even if we are currently using a log spacemap
 	 * we want current frees to end up in the ms_allocatable (but not
 	 * get appended to the ms_sm) so their ranges can be reused as usual.
 	 */
 	if (spa_sync_pass(spa) == 1) {
 		range_tree_swap(&msp->ms_freeing, &msp->ms_freed);
 		ASSERT0(msp->ms_allocated_this_txg);
 	} else {
 		range_tree_vacate(msp->ms_freeing,
 		    range_tree_add, msp->ms_freed);
 	}
 	msp->ms_allocated_this_txg += range_tree_space(alloctree);
 	range_tree_vacate(alloctree, NULL, NULL);
 
 	ASSERT0(range_tree_space(msp->ms_allocating[txg & TXG_MASK]));
 	ASSERT0(range_tree_space(msp->ms_allocating[TXG_CLEAN(txg)
 	    & TXG_MASK]));
 	ASSERT0(range_tree_space(msp->ms_freeing));
 	ASSERT0(range_tree_space(msp->ms_checkpointing));
 
 	mutex_exit(&msp->ms_lock);
 
 	/*
 	 * Verify that the space map object ID has been recorded in the
 	 * vdev_ms_array.
 	 */
 	uint64_t object;
 	VERIFY0(dmu_read(mos, vd->vdev_ms_array,
 	    msp->ms_id * sizeof (uint64_t), sizeof (uint64_t), &object, 0));
 	VERIFY3U(object, ==, space_map_object(msp->ms_sm));
 
 	mutex_exit(&msp->ms_sync_lock);
 	dmu_tx_commit(tx);
 }
 
 static void
 metaslab_evict(metaslab_t *msp, uint64_t txg)
 {
 	if (!msp->ms_loaded || msp->ms_disabled != 0)
 		return;
 
 	for (int t = 1; t < TXG_CONCURRENT_STATES; t++) {
 		VERIFY0(range_tree_space(
 		    msp->ms_allocating[(txg + t) & TXG_MASK]));
 	}
 	if (msp->ms_allocator != -1)
 		metaslab_passivate(msp, msp->ms_weight & ~METASLAB_ACTIVE_MASK);
 
 	if (!metaslab_debug_unload)
 		metaslab_unload(msp);
 }
 
 /*
  * Called after a transaction group has completely synced to mark
  * all of the metaslab's free space as usable.
  */
 void
 metaslab_sync_done(metaslab_t *msp, uint64_t txg)
 {
 	metaslab_group_t *mg = msp->ms_group;
 	vdev_t *vd = mg->mg_vd;
 	spa_t *spa = vd->vdev_spa;
 	range_tree_t **defer_tree;
 	int64_t alloc_delta, defer_delta;
 	boolean_t defer_allowed = B_TRUE;
 
 	ASSERT(!vd->vdev_ishole);
 
 	mutex_enter(&msp->ms_lock);
 
 	if (msp->ms_new) {
 		/* this is a new metaslab, add its capacity to the vdev */
 		metaslab_space_update(vd, mg->mg_class, 0, 0, msp->ms_size);
 
 		/* there should be no allocations nor frees at this point */
 		VERIFY0(msp->ms_allocated_this_txg);
 		VERIFY0(range_tree_space(msp->ms_freed));
 	}
 
 	ASSERT0(range_tree_space(msp->ms_freeing));
 	ASSERT0(range_tree_space(msp->ms_checkpointing));
 
 	defer_tree = &msp->ms_defer[txg % TXG_DEFER_SIZE];
 
 	uint64_t free_space = metaslab_class_get_space(spa_normal_class(spa)) -
 	    metaslab_class_get_alloc(spa_normal_class(spa));
 	if (free_space <= spa_get_slop_space(spa) || vd->vdev_removing) {
 		defer_allowed = B_FALSE;
 	}
 
 	defer_delta = 0;
 	alloc_delta = msp->ms_allocated_this_txg -
 	    range_tree_space(msp->ms_freed);
 
 	if (defer_allowed) {
 		defer_delta = range_tree_space(msp->ms_freed) -
 		    range_tree_space(*defer_tree);
 	} else {
 		defer_delta -= range_tree_space(*defer_tree);
 	}
 	metaslab_space_update(vd, mg->mg_class, alloc_delta + defer_delta,
 	    defer_delta, 0);
 
 	if (spa_syncing_log_sm(spa) == NULL) {
 		/*
 		 * If there's a metaslab_load() in progress and we don't have
 		 * a log space map, it means that we probably wrote to the
 		 * metaslab's space map. If this is the case, we need to
 		 * make sure that we wait for the load to complete so that we
 		 * have a consistent view at the in-core side of the metaslab.
 		 */
 		metaslab_load_wait(msp);
 	} else {
 		ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP));
 	}
 
 	/*
 	 * When auto-trimming is enabled, free ranges which are added to
 	 * ms_allocatable are also be added to ms_trim.  The ms_trim tree is
 	 * periodically consumed by the vdev_autotrim_thread() which issues
 	 * trims for all ranges and then vacates the tree.  The ms_trim tree
 	 * can be discarded at any time with the sole consequence of recent
 	 * frees not being trimmed.
 	 */
 	if (spa_get_autotrim(spa) == SPA_AUTOTRIM_ON) {
 		range_tree_walk(*defer_tree, range_tree_add, msp->ms_trim);
 		if (!defer_allowed) {
 			range_tree_walk(msp->ms_freed, range_tree_add,
 			    msp->ms_trim);
 		}
 	} else {
 		range_tree_vacate(msp->ms_trim, NULL, NULL);
 	}
 
 	/*
 	 * Move the frees from the defer_tree back to the free
 	 * range tree (if it's loaded). Swap the freed_tree and
 	 * the defer_tree -- this is safe to do because we've
 	 * just emptied out the defer_tree.
 	 */
 	range_tree_vacate(*defer_tree,
 	    msp->ms_loaded ? range_tree_add : NULL, msp->ms_allocatable);
 	if (defer_allowed) {
 		range_tree_swap(&msp->ms_freed, defer_tree);
 	} else {
 		range_tree_vacate(msp->ms_freed,
 		    msp->ms_loaded ? range_tree_add : NULL,
 		    msp->ms_allocatable);
 	}
 
 	msp->ms_synced_length = space_map_length(msp->ms_sm);
 
 	msp->ms_deferspace += defer_delta;
 	ASSERT3S(msp->ms_deferspace, >=, 0);
 	ASSERT3S(msp->ms_deferspace, <=, msp->ms_size);
 	if (msp->ms_deferspace != 0) {
 		/*
 		 * Keep syncing this metaslab until all deferred frees
 		 * are back in circulation.
 		 */
 		vdev_dirty(vd, VDD_METASLAB, msp, txg + 1);
 	}
 	metaslab_aux_histograms_update_done(msp, defer_allowed);
 
 	if (msp->ms_new) {
 		msp->ms_new = B_FALSE;
 		mutex_enter(&mg->mg_lock);
 		mg->mg_ms_ready++;
 		mutex_exit(&mg->mg_lock);
 	}
 
 	/*
 	 * Re-sort metaslab within its group now that we've adjusted
 	 * its allocatable space.
 	 */
 	metaslab_recalculate_weight_and_sort(msp);
 
 	ASSERT0(range_tree_space(msp->ms_allocating[txg & TXG_MASK]));
 	ASSERT0(range_tree_space(msp->ms_freeing));
 	ASSERT0(range_tree_space(msp->ms_freed));
 	ASSERT0(range_tree_space(msp->ms_checkpointing));
 	msp->ms_allocating_total -= msp->ms_allocated_this_txg;
 	msp->ms_allocated_this_txg = 0;
 	mutex_exit(&msp->ms_lock);
 }
 
 void
 metaslab_sync_reassess(metaslab_group_t *mg)
 {
 	spa_t *spa = mg->mg_class->mc_spa;
 
 	spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
 	metaslab_group_alloc_update(mg);
 	mg->mg_fragmentation = metaslab_group_fragmentation(mg);
 
 	/*
 	 * Preload the next potential metaslabs but only on active
 	 * metaslab groups. We can get into a state where the metaslab
 	 * is no longer active since we dirty metaslabs as we remove a
 	 * a device, thus potentially making the metaslab group eligible
 	 * for preloading.
 	 */
 	if (mg->mg_activation_count > 0) {
 		metaslab_group_preload(mg);
 	}
 	spa_config_exit(spa, SCL_ALLOC, FTAG);
 }
 
 /*
  * When writing a ditto block (i.e. more than one DVA for a given BP) on
  * the same vdev as an existing DVA of this BP, then try to allocate it
  * on a different metaslab than existing DVAs (i.e. a unique metaslab).
  */
 static boolean_t
 metaslab_is_unique(metaslab_t *msp, dva_t *dva)
 {
 	uint64_t dva_ms_id;
 
 	if (DVA_GET_ASIZE(dva) == 0)
 		return (B_TRUE);
 
 	if (msp->ms_group->mg_vd->vdev_id != DVA_GET_VDEV(dva))
 		return (B_TRUE);
 
 	dva_ms_id = DVA_GET_OFFSET(dva) >> msp->ms_group->mg_vd->vdev_ms_shift;
 
 	return (msp->ms_id != dva_ms_id);
 }
 
 /*
  * ==========================================================================
  * Metaslab allocation tracing facility
  * ==========================================================================
  */
 
 /*
  * Add an allocation trace element to the allocation tracing list.
  */
 static void
 metaslab_trace_add(zio_alloc_list_t *zal, metaslab_group_t *mg,
     metaslab_t *msp, uint64_t psize, uint32_t dva_id, uint64_t offset,
     int allocator)
 {
 	metaslab_alloc_trace_t *mat;
 
 	if (!metaslab_trace_enabled)
 		return;
 
 	/*
 	 * When the tracing list reaches its maximum we remove
 	 * the second element in the list before adding a new one.
 	 * By removing the second element we preserve the original
 	 * entry as a clue to what allocations steps have already been
 	 * performed.
 	 */
 	if (zal->zal_size == metaslab_trace_max_entries) {
 		metaslab_alloc_trace_t *mat_next;
 #ifdef ZFS_DEBUG
 		panic("too many entries in allocation list");
 #endif
 		METASLABSTAT_BUMP(metaslabstat_trace_over_limit);
 		zal->zal_size--;
 		mat_next = list_next(&zal->zal_list, list_head(&zal->zal_list));
 		list_remove(&zal->zal_list, mat_next);
 		kmem_cache_free(metaslab_alloc_trace_cache, mat_next);
 	}
 
 	mat = kmem_cache_alloc(metaslab_alloc_trace_cache, KM_SLEEP);
 	list_link_init(&mat->mat_list_node);
 	mat->mat_mg = mg;
 	mat->mat_msp = msp;
 	mat->mat_size = psize;
 	mat->mat_dva_id = dva_id;
 	mat->mat_offset = offset;
 	mat->mat_weight = 0;
 	mat->mat_allocator = allocator;
 
 	if (msp != NULL)
 		mat->mat_weight = msp->ms_weight;
 
 	/*
 	 * The list is part of the zio so locking is not required. Only
 	 * a single thread will perform allocations for a given zio.
 	 */
 	list_insert_tail(&zal->zal_list, mat);
 	zal->zal_size++;
 
 	ASSERT3U(zal->zal_size, <=, metaslab_trace_max_entries);
 }
 
 void
 metaslab_trace_init(zio_alloc_list_t *zal)
 {
 	list_create(&zal->zal_list, sizeof (metaslab_alloc_trace_t),
 	    offsetof(metaslab_alloc_trace_t, mat_list_node));
 	zal->zal_size = 0;
 }
 
 void
 metaslab_trace_fini(zio_alloc_list_t *zal)
 {
 	metaslab_alloc_trace_t *mat;
 
 	while ((mat = list_remove_head(&zal->zal_list)) != NULL)
 		kmem_cache_free(metaslab_alloc_trace_cache, mat);
 	list_destroy(&zal->zal_list);
 	zal->zal_size = 0;
 }
 
 /*
  * ==========================================================================
  * Metaslab block operations
  * ==========================================================================
  */
 
 static void
 metaslab_group_alloc_increment(spa_t *spa, uint64_t vdev, const void *tag,
     int flags, int allocator)
 {
 	if (!(flags & METASLAB_ASYNC_ALLOC) ||
 	    (flags & METASLAB_DONT_THROTTLE))
 		return;
 
 	metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg;
 	if (!mg->mg_class->mc_alloc_throttle_enabled)
 		return;
 
 	metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
 	(void) zfs_refcount_add(&mga->mga_alloc_queue_depth, tag);
 }
 
 static void
 metaslab_group_increment_qdepth(metaslab_group_t *mg, int allocator)
 {
 	metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
 	metaslab_class_allocator_t *mca =
 	    &mg->mg_class->mc_allocator[allocator];
 	uint64_t max = mg->mg_max_alloc_queue_depth;
 	uint64_t cur = mga->mga_cur_max_alloc_queue_depth;
 	while (cur < max) {
 		if (atomic_cas_64(&mga->mga_cur_max_alloc_queue_depth,
 		    cur, cur + 1) == cur) {
 			atomic_inc_64(&mca->mca_alloc_max_slots);
 			return;
 		}
 		cur = mga->mga_cur_max_alloc_queue_depth;
 	}
 }
 
 void
 metaslab_group_alloc_decrement(spa_t *spa, uint64_t vdev, const void *tag,
     int flags, int allocator, boolean_t io_complete)
 {
 	if (!(flags & METASLAB_ASYNC_ALLOC) ||
 	    (flags & METASLAB_DONT_THROTTLE))
 		return;
 
 	metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg;
 	if (!mg->mg_class->mc_alloc_throttle_enabled)
 		return;
 
 	metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
 	(void) zfs_refcount_remove(&mga->mga_alloc_queue_depth, tag);
 	if (io_complete)
 		metaslab_group_increment_qdepth(mg, allocator);
 }
 
 void
 metaslab_group_alloc_verify(spa_t *spa, const blkptr_t *bp, const void *tag,
     int allocator)
 {
 #ifdef ZFS_DEBUG
 	const dva_t *dva = bp->blk_dva;
 	int ndvas = BP_GET_NDVAS(bp);
 
 	for (int d = 0; d < ndvas; d++) {
 		uint64_t vdev = DVA_GET_VDEV(&dva[d]);
 		metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg;
 		metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
 		VERIFY(zfs_refcount_not_held(&mga->mga_alloc_queue_depth, tag));
 	}
 #endif
 }
 
 static uint64_t
 metaslab_block_alloc(metaslab_t *msp, uint64_t size, uint64_t txg)
 {
 	uint64_t start;
 	range_tree_t *rt = msp->ms_allocatable;
 	metaslab_class_t *mc = msp->ms_group->mg_class;
 
 	ASSERT(MUTEX_HELD(&msp->ms_lock));
 	VERIFY(!msp->ms_condensing);
 	VERIFY0(msp->ms_disabled);
 
 	start = mc->mc_ops->msop_alloc(msp, size);
 	if (start != -1ULL) {
 		metaslab_group_t *mg = msp->ms_group;
 		vdev_t *vd = mg->mg_vd;
 
 		VERIFY0(P2PHASE(start, 1ULL << vd->vdev_ashift));
 		VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
 		VERIFY3U(range_tree_space(rt) - size, <=, msp->ms_size);
 		range_tree_remove(rt, start, size);
 		range_tree_clear(msp->ms_trim, start, size);
 
 		if (range_tree_is_empty(msp->ms_allocating[txg & TXG_MASK]))
 			vdev_dirty(mg->mg_vd, VDD_METASLAB, msp, txg);
 
 		range_tree_add(msp->ms_allocating[txg & TXG_MASK], start, size);
 		msp->ms_allocating_total += size;
 
 		/* Track the last successful allocation */
 		msp->ms_alloc_txg = txg;
 		metaslab_verify_space(msp, txg);
 	}
 
 	/*
 	 * Now that we've attempted the allocation we need to update the
 	 * metaslab's maximum block size since it may have changed.
 	 */
 	msp->ms_max_size = metaslab_largest_allocatable(msp);
 	return (start);
 }
 
 /*
  * Find the metaslab with the highest weight that is less than what we've
  * already tried.  In the common case, this means that we will examine each
  * metaslab at most once. Note that concurrent callers could reorder metaslabs
  * by activation/passivation once we have dropped the mg_lock. If a metaslab is
  * activated by another thread, and we fail to allocate from the metaslab we
  * have selected, we may not try the newly-activated metaslab, and instead
  * activate another metaslab.  This is not optimal, but generally does not cause
  * any problems (a possible exception being if every metaslab is completely full
  * except for the newly-activated metaslab which we fail to examine).
  */
 static metaslab_t *
 find_valid_metaslab(metaslab_group_t *mg, uint64_t activation_weight,
     dva_t *dva, int d, boolean_t want_unique, uint64_t asize, int allocator,
     boolean_t try_hard, zio_alloc_list_t *zal, metaslab_t *search,
     boolean_t *was_active)
 {
 	avl_index_t idx;
 	avl_tree_t *t = &mg->mg_metaslab_tree;
 	metaslab_t *msp = avl_find(t, search, &idx);
 	if (msp == NULL)
 		msp = avl_nearest(t, idx, AVL_AFTER);
 
 	uint_t tries = 0;
 	for (; msp != NULL; msp = AVL_NEXT(t, msp)) {
 		int i;
 
 		if (!try_hard && tries > zfs_metaslab_find_max_tries) {
 			METASLABSTAT_BUMP(metaslabstat_too_many_tries);
 			return (NULL);
 		}
 		tries++;
 
 		if (!metaslab_should_allocate(msp, asize, try_hard)) {
 			metaslab_trace_add(zal, mg, msp, asize, d,
 			    TRACE_TOO_SMALL, allocator);
 			continue;
 		}
 
 		/*
 		 * If the selected metaslab is condensing or disabled,
 		 * skip it.
 		 */
 		if (msp->ms_condensing || msp->ms_disabled > 0)
 			continue;
 
 		*was_active = msp->ms_allocator != -1;
 		/*
 		 * If we're activating as primary, this is our first allocation
 		 * from this disk, so we don't need to check how close we are.
 		 * If the metaslab under consideration was already active,
 		 * we're getting desperate enough to steal another allocator's
 		 * metaslab, so we still don't care about distances.
 		 */
 		if (activation_weight == METASLAB_WEIGHT_PRIMARY || *was_active)
 			break;
 
 		for (i = 0; i < d; i++) {
 			if (want_unique &&
 			    !metaslab_is_unique(msp, &dva[i]))
 				break;  /* try another metaslab */
 		}
 		if (i == d)
 			break;
 	}
 
 	if (msp != NULL) {
 		search->ms_weight = msp->ms_weight;
 		search->ms_start = msp->ms_start + 1;
 		search->ms_allocator = msp->ms_allocator;
 		search->ms_primary = msp->ms_primary;
 	}
 	return (msp);
 }
 
 static void
 metaslab_active_mask_verify(metaslab_t *msp)
 {
 	ASSERT(MUTEX_HELD(&msp->ms_lock));
 
 	if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0)
 		return;
 
 	if ((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0)
 		return;
 
 	if (msp->ms_weight & METASLAB_WEIGHT_PRIMARY) {
 		VERIFY0(msp->ms_weight & METASLAB_WEIGHT_SECONDARY);
 		VERIFY0(msp->ms_weight & METASLAB_WEIGHT_CLAIM);
 		VERIFY3S(msp->ms_allocator, !=, -1);
 		VERIFY(msp->ms_primary);
 		return;
 	}
 
 	if (msp->ms_weight & METASLAB_WEIGHT_SECONDARY) {
 		VERIFY0(msp->ms_weight & METASLAB_WEIGHT_PRIMARY);
 		VERIFY0(msp->ms_weight & METASLAB_WEIGHT_CLAIM);
 		VERIFY3S(msp->ms_allocator, !=, -1);
 		VERIFY(!msp->ms_primary);
 		return;
 	}
 
 	if (msp->ms_weight & METASLAB_WEIGHT_CLAIM) {
 		VERIFY0(msp->ms_weight & METASLAB_WEIGHT_PRIMARY);
 		VERIFY0(msp->ms_weight & METASLAB_WEIGHT_SECONDARY);
 		VERIFY3S(msp->ms_allocator, ==, -1);
 		return;
 	}
 }
 
 static uint64_t
 metaslab_group_alloc_normal(metaslab_group_t *mg, zio_alloc_list_t *zal,
     uint64_t asize, uint64_t txg, boolean_t want_unique, dva_t *dva, int d,
     int allocator, boolean_t try_hard)
 {
 	metaslab_t *msp = NULL;
 	uint64_t offset = -1ULL;
 
 	uint64_t activation_weight = METASLAB_WEIGHT_PRIMARY;
 	for (int i = 0; i < d; i++) {
 		if (activation_weight == METASLAB_WEIGHT_PRIMARY &&
 		    DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) {
 			activation_weight = METASLAB_WEIGHT_SECONDARY;
 		} else if (activation_weight == METASLAB_WEIGHT_SECONDARY &&
 		    DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) {
 			activation_weight = METASLAB_WEIGHT_CLAIM;
 			break;
 		}
 	}
 
 	/*
 	 * If we don't have enough metaslabs active to fill the entire array, we
 	 * just use the 0th slot.
 	 */
 	if (mg->mg_ms_ready < mg->mg_allocators * 3)
 		allocator = 0;
 	metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
 
 	ASSERT3U(mg->mg_vd->vdev_ms_count, >=, 2);
 
 	metaslab_t *search = kmem_alloc(sizeof (*search), KM_SLEEP);
 	search->ms_weight = UINT64_MAX;
 	search->ms_start = 0;
 	/*
 	 * At the end of the metaslab tree are the already-active metaslabs,
 	 * first the primaries, then the secondaries. When we resume searching
 	 * through the tree, we need to consider ms_allocator and ms_primary so
 	 * we start in the location right after where we left off, and don't
 	 * accidentally loop forever considering the same metaslabs.
 	 */
 	search->ms_allocator = -1;
 	search->ms_primary = B_TRUE;
 	for (;;) {
 		boolean_t was_active = B_FALSE;
 
 		mutex_enter(&mg->mg_lock);
 
 		if (activation_weight == METASLAB_WEIGHT_PRIMARY &&
 		    mga->mga_primary != NULL) {
 			msp = mga->mga_primary;
 
 			/*
 			 * Even though we don't hold the ms_lock for the
 			 * primary metaslab, those fields should not
 			 * change while we hold the mg_lock. Thus it is
 			 * safe to make assertions on them.
 			 */
 			ASSERT(msp->ms_primary);
 			ASSERT3S(msp->ms_allocator, ==, allocator);
 			ASSERT(msp->ms_loaded);
 
 			was_active = B_TRUE;
 			ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
 		} else if (activation_weight == METASLAB_WEIGHT_SECONDARY &&
 		    mga->mga_secondary != NULL) {
 			msp = mga->mga_secondary;
 
 			/*
 			 * See comment above about the similar assertions
 			 * for the primary metaslab.
 			 */
 			ASSERT(!msp->ms_primary);
 			ASSERT3S(msp->ms_allocator, ==, allocator);
 			ASSERT(msp->ms_loaded);
 
 			was_active = B_TRUE;
 			ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
 		} else {
 			msp = find_valid_metaslab(mg, activation_weight, dva, d,
 			    want_unique, asize, allocator, try_hard, zal,
 			    search, &was_active);
 		}
 
 		mutex_exit(&mg->mg_lock);
 		if (msp == NULL) {
 			kmem_free(search, sizeof (*search));
 			return (-1ULL);
 		}
 		mutex_enter(&msp->ms_lock);
 
 		metaslab_active_mask_verify(msp);
 
 		/*
 		 * This code is disabled out because of issues with
 		 * tracepoints in non-gpl kernel modules.
 		 */
 #if 0
 		DTRACE_PROBE3(ms__activation__attempt,
 		    metaslab_t *, msp, uint64_t, activation_weight,
 		    boolean_t, was_active);
 #endif
 
 		/*
 		 * Ensure that the metaslab we have selected is still
 		 * capable of handling our request. It's possible that
 		 * another thread may have changed the weight while we
 		 * were blocked on the metaslab lock. We check the
 		 * active status first to see if we need to set_selected_txg
 		 * a new metaslab.
 		 */
 		if (was_active && !(msp->ms_weight & METASLAB_ACTIVE_MASK)) {
 			ASSERT3S(msp->ms_allocator, ==, -1);
 			mutex_exit(&msp->ms_lock);
 			continue;
 		}
 
 		/*
 		 * If the metaslab was activated for another allocator
 		 * while we were waiting in the ms_lock above, or it's
 		 * a primary and we're seeking a secondary (or vice versa),
 		 * we go back and select a new metaslab.
 		 */
 		if (!was_active && (msp->ms_weight & METASLAB_ACTIVE_MASK) &&
 		    (msp->ms_allocator != -1) &&
 		    (msp->ms_allocator != allocator || ((activation_weight ==
 		    METASLAB_WEIGHT_PRIMARY) != msp->ms_primary))) {
 			ASSERT(msp->ms_loaded);
 			ASSERT((msp->ms_weight & METASLAB_WEIGHT_CLAIM) ||
 			    msp->ms_allocator != -1);
 			mutex_exit(&msp->ms_lock);
 			continue;
 		}
 
 		/*
 		 * This metaslab was used for claiming regions allocated
 		 * by the ZIL during pool import. Once these regions are
 		 * claimed we don't need to keep the CLAIM bit set
 		 * anymore. Passivate this metaslab to zero its activation
 		 * mask.
 		 */
 		if (msp->ms_weight & METASLAB_WEIGHT_CLAIM &&
 		    activation_weight != METASLAB_WEIGHT_CLAIM) {
 			ASSERT(msp->ms_loaded);
 			ASSERT3S(msp->ms_allocator, ==, -1);
 			metaslab_passivate(msp, msp->ms_weight &
 			    ~METASLAB_WEIGHT_CLAIM);
 			mutex_exit(&msp->ms_lock);
 			continue;
 		}
 
 		metaslab_set_selected_txg(msp, txg);
 
 		int activation_error =
 		    metaslab_activate(msp, allocator, activation_weight);
 		metaslab_active_mask_verify(msp);
 
 		/*
 		 * If the metaslab was activated by another thread for
 		 * another allocator or activation_weight (EBUSY), or it
 		 * failed because another metaslab was assigned as primary
 		 * for this allocator (EEXIST) we continue using this
 		 * metaslab for our allocation, rather than going on to a
 		 * worse metaslab (we waited for that metaslab to be loaded
 		 * after all).
 		 *
 		 * If the activation failed due to an I/O error or ENOSPC we
 		 * skip to the next metaslab.
 		 */
 		boolean_t activated;
 		if (activation_error == 0) {
 			activated = B_TRUE;
 		} else if (activation_error == EBUSY ||
 		    activation_error == EEXIST) {
 			activated = B_FALSE;
 		} else {
 			mutex_exit(&msp->ms_lock);
 			continue;
 		}
 		ASSERT(msp->ms_loaded);
 
 		/*
 		 * Now that we have the lock, recheck to see if we should
 		 * continue to use this metaslab for this allocation. The
 		 * the metaslab is now loaded so metaslab_should_allocate()
 		 * can accurately determine if the allocation attempt should
 		 * proceed.
 		 */
 		if (!metaslab_should_allocate(msp, asize, try_hard)) {
 			/* Passivate this metaslab and select a new one. */
 			metaslab_trace_add(zal, mg, msp, asize, d,
 			    TRACE_TOO_SMALL, allocator);
 			goto next;
 		}
 
 		/*
 		 * If this metaslab is currently condensing then pick again
 		 * as we can't manipulate this metaslab until it's committed
 		 * to disk. If this metaslab is being initialized, we shouldn't
 		 * allocate from it since the allocated region might be
 		 * overwritten after allocation.
 		 */
 		if (msp->ms_condensing) {
 			metaslab_trace_add(zal, mg, msp, asize, d,
 			    TRACE_CONDENSING, allocator);
 			if (activated) {
 				metaslab_passivate(msp, msp->ms_weight &
 				    ~METASLAB_ACTIVE_MASK);
 			}
 			mutex_exit(&msp->ms_lock);
 			continue;
 		} else if (msp->ms_disabled > 0) {
 			metaslab_trace_add(zal, mg, msp, asize, d,
 			    TRACE_DISABLED, allocator);
 			if (activated) {
 				metaslab_passivate(msp, msp->ms_weight &
 				    ~METASLAB_ACTIVE_MASK);
 			}
 			mutex_exit(&msp->ms_lock);
 			continue;
 		}
 
 		offset = metaslab_block_alloc(msp, asize, txg);
 		metaslab_trace_add(zal, mg, msp, asize, d, offset, allocator);
 
 		if (offset != -1ULL) {
 			/* Proactively passivate the metaslab, if needed */
 			if (activated)
 				metaslab_segment_may_passivate(msp);
 			break;
 		}
 next:
 		ASSERT(msp->ms_loaded);
 
 		/*
 		 * This code is disabled out because of issues with
 		 * tracepoints in non-gpl kernel modules.
 		 */
 #if 0
 		DTRACE_PROBE2(ms__alloc__failure, metaslab_t *, msp,
 		    uint64_t, asize);
 #endif
 
 		/*
 		 * We were unable to allocate from this metaslab so determine
 		 * a new weight for this metaslab. Now that we have loaded
 		 * the metaslab we can provide a better hint to the metaslab
 		 * selector.
 		 *
 		 * For space-based metaslabs, we use the maximum block size.
 		 * This information is only available when the metaslab
 		 * is loaded and is more accurate than the generic free
 		 * space weight that was calculated by metaslab_weight().
 		 * This information allows us to quickly compare the maximum
 		 * available allocation in the metaslab to the allocation
 		 * size being requested.
 		 *
 		 * For segment-based metaslabs, determine the new weight
 		 * based on the highest bucket in the range tree. We
 		 * explicitly use the loaded segment weight (i.e. the range
 		 * tree histogram) since it contains the space that is
 		 * currently available for allocation and is accurate
 		 * even within a sync pass.
 		 */
 		uint64_t weight;
 		if (WEIGHT_IS_SPACEBASED(msp->ms_weight)) {
 			weight = metaslab_largest_allocatable(msp);
 			WEIGHT_SET_SPACEBASED(weight);
 		} else {
 			weight = metaslab_weight_from_range_tree(msp);
 		}
 
 		if (activated) {
 			metaslab_passivate(msp, weight);
 		} else {
 			/*
 			 * For the case where we use the metaslab that is
 			 * active for another allocator we want to make
 			 * sure that we retain the activation mask.
 			 *
 			 * Note that we could attempt to use something like
 			 * metaslab_recalculate_weight_and_sort() that
 			 * retains the activation mask here. That function
 			 * uses metaslab_weight() to set the weight though
 			 * which is not as accurate as the calculations
 			 * above.
 			 */
 			weight |= msp->ms_weight & METASLAB_ACTIVE_MASK;
 			metaslab_group_sort(mg, msp, weight);
 		}
 		metaslab_active_mask_verify(msp);
 
 		/*
 		 * We have just failed an allocation attempt, check
 		 * that metaslab_should_allocate() agrees. Otherwise,
 		 * we may end up in an infinite loop retrying the same
 		 * metaslab.
 		 */
 		ASSERT(!metaslab_should_allocate(msp, asize, try_hard));
 
 		mutex_exit(&msp->ms_lock);
 	}
 	mutex_exit(&msp->ms_lock);
 	kmem_free(search, sizeof (*search));
 	return (offset);
 }
 
 static uint64_t
 metaslab_group_alloc(metaslab_group_t *mg, zio_alloc_list_t *zal,
     uint64_t asize, uint64_t txg, boolean_t want_unique, dva_t *dva, int d,
     int allocator, boolean_t try_hard)
 {
 	uint64_t offset;
 
 	offset = metaslab_group_alloc_normal(mg, zal, asize, txg, want_unique,
 	    dva, d, allocator, try_hard);
 
 	mutex_enter(&mg->mg_lock);
 	if (offset == -1ULL) {
 		mg->mg_failed_allocations++;
 		metaslab_trace_add(zal, mg, NULL, asize, d,
 		    TRACE_GROUP_FAILURE, allocator);
 		if (asize == SPA_GANGBLOCKSIZE) {
 			/*
 			 * This metaslab group was unable to allocate
 			 * the minimum gang block size so it must be out of
 			 * space. We must notify the allocation throttle
 			 * to start skipping allocation attempts to this
 			 * metaslab group until more space becomes available.
 			 * Note: this failure cannot be caused by the
 			 * allocation throttle since the allocation throttle
 			 * is only responsible for skipping devices and
 			 * not failing block allocations.
 			 */
 			mg->mg_no_free_space = B_TRUE;
 		}
 	}
 	mg->mg_allocations++;
 	mutex_exit(&mg->mg_lock);
 	return (offset);
 }
 
 /*
  * Allocate a block for the specified i/o.
  */
 int
 metaslab_alloc_dva(spa_t *spa, metaslab_class_t *mc, uint64_t psize,
     dva_t *dva, int d, dva_t *hintdva, uint64_t txg, int flags,
     zio_alloc_list_t *zal, int allocator)
 {
 	metaslab_class_allocator_t *mca = &mc->mc_allocator[allocator];
 	metaslab_group_t *mg, *rotor;
 	vdev_t *vd;
 	boolean_t try_hard = B_FALSE;
 
 	ASSERT(!DVA_IS_VALID(&dva[d]));
 
 	/*
 	 * For testing, make some blocks above a certain size be gang blocks.
 	 * This will result in more split blocks when using device removal,
 	 * and a large number of split blocks coupled with ztest-induced
 	 * damage can result in extremely long reconstruction times.  This
 	 * will also test spilling from special to normal.
 	 */
 	if (psize >= metaslab_force_ganging &&
 	    metaslab_force_ganging_pct > 0 &&
 	    (random_in_range(100) < MIN(metaslab_force_ganging_pct, 100))) {
 		metaslab_trace_add(zal, NULL, NULL, psize, d, TRACE_FORCE_GANG,
 		    allocator);
 		return (SET_ERROR(ENOSPC));
 	}
 
 	/*
 	 * Start at the rotor and loop through all mgs until we find something.
 	 * Note that there's no locking on mca_rotor or mca_aliquot because
 	 * nothing actually breaks if we miss a few updates -- we just won't
 	 * allocate quite as evenly.  It all balances out over time.
 	 *
 	 * If we are doing ditto or log blocks, try to spread them across
 	 * consecutive vdevs.  If we're forced to reuse a vdev before we've
 	 * allocated all of our ditto blocks, then try and spread them out on
 	 * that vdev as much as possible.  If it turns out to not be possible,
 	 * gradually lower our standards until anything becomes acceptable.
 	 * Also, allocating on consecutive vdevs (as opposed to random vdevs)
 	 * gives us hope of containing our fault domains to something we're
 	 * able to reason about.  Otherwise, any two top-level vdev failures
 	 * will guarantee the loss of data.  With consecutive allocation,
 	 * only two adjacent top-level vdev failures will result in data loss.
 	 *
 	 * If we are doing gang blocks (hintdva is non-NULL), try to keep
 	 * ourselves on the same vdev as our gang block header.  That
 	 * way, we can hope for locality in vdev_cache, plus it makes our
 	 * fault domains something tractable.
 	 */
 	if (hintdva) {
 		vd = vdev_lookup_top(spa, DVA_GET_VDEV(&hintdva[d]));
 
 		/*
 		 * It's possible the vdev we're using as the hint no
 		 * longer exists or its mg has been closed (e.g. by
 		 * device removal).  Consult the rotor when
 		 * all else fails.
 		 */
 		if (vd != NULL && vd->vdev_mg != NULL) {
 			mg = vdev_get_mg(vd, mc);
 
 			if (flags & METASLAB_HINTBP_AVOID)
 				mg = mg->mg_next;
 		} else {
 			mg = mca->mca_rotor;
 		}
 	} else if (d != 0) {
 		vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d - 1]));
 		mg = vd->vdev_mg->mg_next;
 	} else {
 		ASSERT(mca->mca_rotor != NULL);
 		mg = mca->mca_rotor;
 	}
 
 	/*
 	 * If the hint put us into the wrong metaslab class, or into a
 	 * metaslab group that has been passivated, just follow the rotor.
 	 */
 	if (mg->mg_class != mc || mg->mg_activation_count <= 0)
 		mg = mca->mca_rotor;
 
 	rotor = mg;
 top:
 	do {
 		boolean_t allocatable;
 
 		ASSERT(mg->mg_activation_count == 1);
 		vd = mg->mg_vd;
 
 		/*
 		 * Don't allocate from faulted devices.
 		 */
 		if (try_hard) {
 			spa_config_enter(spa, SCL_ZIO, FTAG, RW_READER);
 			allocatable = vdev_allocatable(vd);
 			spa_config_exit(spa, SCL_ZIO, FTAG);
 		} else {
 			allocatable = vdev_allocatable(vd);
 		}
 
 		/*
 		 * Determine if the selected metaslab group is eligible
 		 * for allocations. If we're ganging then don't allow
 		 * this metaslab group to skip allocations since that would
 		 * inadvertently return ENOSPC and suspend the pool
 		 * even though space is still available.
 		 */
 		if (allocatable && !GANG_ALLOCATION(flags) && !try_hard) {
 			allocatable = metaslab_group_allocatable(mg, rotor,
 			    flags, psize, allocator, d);
 		}
 
 		if (!allocatable) {
 			metaslab_trace_add(zal, mg, NULL, psize, d,
 			    TRACE_NOT_ALLOCATABLE, allocator);
 			goto next;
 		}
 
 		/*
 		 * Avoid writing single-copy data to an unhealthy,
 		 * non-redundant vdev, unless we've already tried all
 		 * other vdevs.
 		 */
 		if (vd->vdev_state < VDEV_STATE_HEALTHY &&
 		    d == 0 && !try_hard && vd->vdev_children == 0) {
 			metaslab_trace_add(zal, mg, NULL, psize, d,
 			    TRACE_VDEV_ERROR, allocator);
 			goto next;
 		}
 
 		ASSERT(mg->mg_class == mc);
 
 		uint64_t asize = vdev_psize_to_asize(vd, psize);
 		ASSERT(P2PHASE(asize, 1ULL << vd->vdev_ashift) == 0);
 
 		/*
 		 * If we don't need to try hard, then require that the
 		 * block be on a different metaslab from any other DVAs
 		 * in this BP (unique=true).  If we are trying hard, then
 		 * allow any metaslab to be used (unique=false).
 		 */
 		uint64_t offset = metaslab_group_alloc(mg, zal, asize, txg,
 		    !try_hard, dva, d, allocator, try_hard);
 
 		if (offset != -1ULL) {
 			/*
 			 * If we've just selected this metaslab group,
 			 * figure out whether the corresponding vdev is
 			 * over- or under-used relative to the pool,
 			 * and set an allocation bias to even it out.
 			 *
 			 * Bias is also used to compensate for unequally
 			 * sized vdevs so that space is allocated fairly.
 			 */
 			if (mca->mca_aliquot == 0 && metaslab_bias_enabled) {
 				vdev_stat_t *vs = &vd->vdev_stat;
 				int64_t vs_free = vs->vs_space - vs->vs_alloc;
 				int64_t mc_free = mc->mc_space - mc->mc_alloc;
 				int64_t ratio;
 
 				/*
 				 * Calculate how much more or less we should
 				 * try to allocate from this device during
 				 * this iteration around the rotor.
 				 *
 				 * This basically introduces a zero-centered
 				 * bias towards the devices with the most
 				 * free space, while compensating for vdev
 				 * size differences.
 				 *
 				 * Examples:
 				 *  vdev V1 = 16M/128M
 				 *  vdev V2 = 16M/128M
 				 *  ratio(V1) = 100% ratio(V2) = 100%
 				 *
 				 *  vdev V1 = 16M/128M
 				 *  vdev V2 = 64M/128M
 				 *  ratio(V1) = 127% ratio(V2) =  72%
 				 *
 				 *  vdev V1 = 16M/128M
 				 *  vdev V2 = 64M/512M
 				 *  ratio(V1) =  40% ratio(V2) = 160%
 				 */
 				ratio = (vs_free * mc->mc_alloc_groups * 100) /
 				    (mc_free + 1);
 				mg->mg_bias = ((ratio - 100) *
 				    (int64_t)mg->mg_aliquot) / 100;
 			} else if (!metaslab_bias_enabled) {
 				mg->mg_bias = 0;
 			}
 
 			if ((flags & METASLAB_ZIL) ||
 			    atomic_add_64_nv(&mca->mca_aliquot, asize) >=
 			    mg->mg_aliquot + mg->mg_bias) {
 				mca->mca_rotor = mg->mg_next;
 				mca->mca_aliquot = 0;
 			}
 
 			DVA_SET_VDEV(&dva[d], vd->vdev_id);
 			DVA_SET_OFFSET(&dva[d], offset);
 			DVA_SET_GANG(&dva[d],
 			    ((flags & METASLAB_GANG_HEADER) ? 1 : 0));
 			DVA_SET_ASIZE(&dva[d], asize);
 
 			return (0);
 		}
 next:
 		mca->mca_rotor = mg->mg_next;
 		mca->mca_aliquot = 0;
 	} while ((mg = mg->mg_next) != rotor);
 
 	/*
 	 * If we haven't tried hard, perhaps do so now.
 	 */
 	if (!try_hard && (zfs_metaslab_try_hard_before_gang ||
 	    GANG_ALLOCATION(flags) || (flags & METASLAB_ZIL) != 0 ||
 	    psize <= 1 << spa->spa_min_ashift)) {
 		METASLABSTAT_BUMP(metaslabstat_try_hard);
 		try_hard = B_TRUE;
 		goto top;
 	}
 
 	memset(&dva[d], 0, sizeof (dva_t));
 
 	metaslab_trace_add(zal, rotor, NULL, psize, d, TRACE_ENOSPC, allocator);
 	return (SET_ERROR(ENOSPC));
 }
 
 void
 metaslab_free_concrete(vdev_t *vd, uint64_t offset, uint64_t asize,
     boolean_t checkpoint)
 {
 	metaslab_t *msp;
 	spa_t *spa = vd->vdev_spa;
 
 	ASSERT(vdev_is_concrete(vd));
 	ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
 	ASSERT3U(offset >> vd->vdev_ms_shift, <, vd->vdev_ms_count);
 
 	msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
 
 	VERIFY(!msp->ms_condensing);
 	VERIFY3U(offset, >=, msp->ms_start);
 	VERIFY3U(offset + asize, <=, msp->ms_start + msp->ms_size);
 	VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
 	VERIFY0(P2PHASE(asize, 1ULL << vd->vdev_ashift));
 
 	metaslab_check_free_impl(vd, offset, asize);
 
 	mutex_enter(&msp->ms_lock);
 	if (range_tree_is_empty(msp->ms_freeing) &&
 	    range_tree_is_empty(msp->ms_checkpointing)) {
 		vdev_dirty(vd, VDD_METASLAB, msp, spa_syncing_txg(spa));
 	}
 
 	if (checkpoint) {
 		ASSERT(spa_has_checkpoint(spa));
 		range_tree_add(msp->ms_checkpointing, offset, asize);
 	} else {
 		range_tree_add(msp->ms_freeing, offset, asize);
 	}
 	mutex_exit(&msp->ms_lock);
 }
 
 void
 metaslab_free_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
     uint64_t size, void *arg)
 {
 	(void) inner_offset;
 	boolean_t *checkpoint = arg;
 
 	ASSERT3P(checkpoint, !=, NULL);
 
 	if (vd->vdev_ops->vdev_op_remap != NULL)
 		vdev_indirect_mark_obsolete(vd, offset, size);
 	else
 		metaslab_free_impl(vd, offset, size, *checkpoint);
 }
 
 static void
 metaslab_free_impl(vdev_t *vd, uint64_t offset, uint64_t size,
     boolean_t checkpoint)
 {
 	spa_t *spa = vd->vdev_spa;
 
 	ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
 
 	if (spa_syncing_txg(spa) > spa_freeze_txg(spa))
 		return;
 
 	if (spa->spa_vdev_removal != NULL &&
 	    spa->spa_vdev_removal->svr_vdev_id == vd->vdev_id &&
 	    vdev_is_concrete(vd)) {
 		/*
 		 * Note: we check if the vdev is concrete because when
 		 * we complete the removal, we first change the vdev to be
 		 * an indirect vdev (in open context), and then (in syncing
 		 * context) clear spa_vdev_removal.
 		 */
 		free_from_removing_vdev(vd, offset, size);
 	} else if (vd->vdev_ops->vdev_op_remap != NULL) {
 		vdev_indirect_mark_obsolete(vd, offset, size);
 		vd->vdev_ops->vdev_op_remap(vd, offset, size,
 		    metaslab_free_impl_cb, &checkpoint);
 	} else {
 		metaslab_free_concrete(vd, offset, size, checkpoint);
 	}
 }
 
 typedef struct remap_blkptr_cb_arg {
 	blkptr_t *rbca_bp;
 	spa_remap_cb_t rbca_cb;
 	vdev_t *rbca_remap_vd;
 	uint64_t rbca_remap_offset;
 	void *rbca_cb_arg;
 } remap_blkptr_cb_arg_t;
 
 static void
 remap_blkptr_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
     uint64_t size, void *arg)
 {
 	remap_blkptr_cb_arg_t *rbca = arg;
 	blkptr_t *bp = rbca->rbca_bp;
 
 	/* We can not remap split blocks. */
 	if (size != DVA_GET_ASIZE(&bp->blk_dva[0]))
 		return;
 	ASSERT0(inner_offset);
 
 	if (rbca->rbca_cb != NULL) {
 		/*
 		 * At this point we know that we are not handling split
 		 * blocks and we invoke the callback on the previous
 		 * vdev which must be indirect.
 		 */
 		ASSERT3P(rbca->rbca_remap_vd->vdev_ops, ==, &vdev_indirect_ops);
 
 		rbca->rbca_cb(rbca->rbca_remap_vd->vdev_id,
 		    rbca->rbca_remap_offset, size, rbca->rbca_cb_arg);
 
 		/* set up remap_blkptr_cb_arg for the next call */
 		rbca->rbca_remap_vd = vd;
 		rbca->rbca_remap_offset = offset;
 	}
 
 	/*
 	 * The phys birth time is that of dva[0].  This ensures that we know
 	 * when each dva was written, so that resilver can determine which
 	 * blocks need to be scrubbed (i.e. those written during the time
 	 * the vdev was offline).  It also ensures that the key used in
 	 * the ARC hash table is unique (i.e. dva[0] + phys_birth).  If
 	 * we didn't change the phys_birth, a lookup in the ARC for a
 	 * remapped BP could find the data that was previously stored at
 	 * this vdev + offset.
 	 */
 	vdev_t *oldvd = vdev_lookup_top(vd->vdev_spa,
 	    DVA_GET_VDEV(&bp->blk_dva[0]));
 	vdev_indirect_births_t *vib = oldvd->vdev_indirect_births;
 	bp->blk_phys_birth = vdev_indirect_births_physbirth(vib,
 	    DVA_GET_OFFSET(&bp->blk_dva[0]), DVA_GET_ASIZE(&bp->blk_dva[0]));
 
 	DVA_SET_VDEV(&bp->blk_dva[0], vd->vdev_id);
 	DVA_SET_OFFSET(&bp->blk_dva[0], offset);
 }
 
 /*
  * If the block pointer contains any indirect DVAs, modify them to refer to
  * concrete DVAs.  Note that this will sometimes not be possible, leaving
  * the indirect DVA in place.  This happens if the indirect DVA spans multiple
  * segments in the mapping (i.e. it is a "split block").
  *
  * If the BP was remapped, calls the callback on the original dva (note the
  * callback can be called multiple times if the original indirect DVA refers
  * to another indirect DVA, etc).
  *
  * Returns TRUE if the BP was remapped.
  */
 boolean_t
 spa_remap_blkptr(spa_t *spa, blkptr_t *bp, spa_remap_cb_t callback, void *arg)
 {
 	remap_blkptr_cb_arg_t rbca;
 
 	if (!zfs_remap_blkptr_enable)
 		return (B_FALSE);
 
 	if (!spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS))
 		return (B_FALSE);
 
 	/*
 	 * Dedup BP's can not be remapped, because ddt_phys_select() depends
 	 * on DVA[0] being the same in the BP as in the DDT (dedup table).
 	 */
 	if (BP_GET_DEDUP(bp))
 		return (B_FALSE);
 
 	/*
 	 * Gang blocks can not be remapped, because
 	 * zio_checksum_gang_verifier() depends on the DVA[0] that's in
 	 * the BP used to read the gang block header (GBH) being the same
 	 * as the DVA[0] that we allocated for the GBH.
 	 */
 	if (BP_IS_GANG(bp))
 		return (B_FALSE);
 
 	/*
 	 * Embedded BP's have no DVA to remap.
 	 */
 	if (BP_GET_NDVAS(bp) < 1)
 		return (B_FALSE);
 
 	/*
 	 * Note: we only remap dva[0].  If we remapped other dvas, we
 	 * would no longer know what their phys birth txg is.
 	 */
 	dva_t *dva = &bp->blk_dva[0];
 
 	uint64_t offset = DVA_GET_OFFSET(dva);
 	uint64_t size = DVA_GET_ASIZE(dva);
 	vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
 
 	if (vd->vdev_ops->vdev_op_remap == NULL)
 		return (B_FALSE);
 
 	rbca.rbca_bp = bp;
 	rbca.rbca_cb = callback;
 	rbca.rbca_remap_vd = vd;
 	rbca.rbca_remap_offset = offset;
 	rbca.rbca_cb_arg = arg;
 
 	/*
 	 * remap_blkptr_cb() will be called in order for each level of
 	 * indirection, until a concrete vdev is reached or a split block is
 	 * encountered. old_vd and old_offset are updated within the callback
 	 * as we go from the one indirect vdev to the next one (either concrete
 	 * or indirect again) in that order.
 	 */
 	vd->vdev_ops->vdev_op_remap(vd, offset, size, remap_blkptr_cb, &rbca);
 
 	/* Check if the DVA wasn't remapped because it is a split block */
 	if (DVA_GET_VDEV(&rbca.rbca_bp->blk_dva[0]) == vd->vdev_id)
 		return (B_FALSE);
 
 	return (B_TRUE);
 }
 
 /*
  * Undo the allocation of a DVA which happened in the given transaction group.
  */
 void
 metaslab_unalloc_dva(spa_t *spa, const dva_t *dva, uint64_t txg)
 {
 	metaslab_t *msp;
 	vdev_t *vd;
 	uint64_t vdev = DVA_GET_VDEV(dva);
 	uint64_t offset = DVA_GET_OFFSET(dva);
 	uint64_t size = DVA_GET_ASIZE(dva);
 
 	ASSERT(DVA_IS_VALID(dva));
 	ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
 
 	if (txg > spa_freeze_txg(spa))
 		return;
 
 	if ((vd = vdev_lookup_top(spa, vdev)) == NULL || !DVA_IS_VALID(dva) ||
 	    (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count) {
 		zfs_panic_recover("metaslab_free_dva(): bad DVA %llu:%llu:%llu",
 		    (u_longlong_t)vdev, (u_longlong_t)offset,
 		    (u_longlong_t)size);
 		return;
 	}
 
 	ASSERT(!vd->vdev_removing);
 	ASSERT(vdev_is_concrete(vd));
 	ASSERT0(vd->vdev_indirect_config.vic_mapping_object);
 	ASSERT3P(vd->vdev_indirect_mapping, ==, NULL);
 
 	if (DVA_GET_GANG(dva))
 		size = vdev_gang_header_asize(vd);
 
 	msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
 
 	mutex_enter(&msp->ms_lock);
 	range_tree_remove(msp->ms_allocating[txg & TXG_MASK],
 	    offset, size);
 	msp->ms_allocating_total -= size;
 
 	VERIFY(!msp->ms_condensing);
 	VERIFY3U(offset, >=, msp->ms_start);
 	VERIFY3U(offset + size, <=, msp->ms_start + msp->ms_size);
 	VERIFY3U(range_tree_space(msp->ms_allocatable) + size, <=,
 	    msp->ms_size);
 	VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
 	VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
 	range_tree_add(msp->ms_allocatable, offset, size);
 	mutex_exit(&msp->ms_lock);
 }
 
 /*
  * Free the block represented by the given DVA.
  */
 void
 metaslab_free_dva(spa_t *spa, const dva_t *dva, boolean_t checkpoint)
 {
 	uint64_t vdev = DVA_GET_VDEV(dva);
 	uint64_t offset = DVA_GET_OFFSET(dva);
 	uint64_t size = DVA_GET_ASIZE(dva);
 	vdev_t *vd = vdev_lookup_top(spa, vdev);
 
 	ASSERT(DVA_IS_VALID(dva));
 	ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
 
 	if (DVA_GET_GANG(dva)) {
 		size = vdev_gang_header_asize(vd);
 	}
 
 	metaslab_free_impl(vd, offset, size, checkpoint);
 }
 
 /*
  * Reserve some allocation slots. The reservation system must be called
  * before we call into the allocator. If there aren't any available slots
  * then the I/O will be throttled until an I/O completes and its slots are
  * freed up. The function returns true if it was successful in placing
  * the reservation.
  */
 boolean_t
 metaslab_class_throttle_reserve(metaslab_class_t *mc, int slots, int allocator,
     zio_t *zio, int flags)
 {
 	metaslab_class_allocator_t *mca = &mc->mc_allocator[allocator];
 	uint64_t max = mca->mca_alloc_max_slots;
 
 	ASSERT(mc->mc_alloc_throttle_enabled);
 	if (GANG_ALLOCATION(flags) || (flags & METASLAB_MUST_RESERVE) ||
 	    zfs_refcount_count(&mca->mca_alloc_slots) + slots <= max) {
 		/*
 		 * The potential race between _count() and _add() is covered
 		 * by the allocator lock in most cases, or irrelevant due to
 		 * GANG_ALLOCATION() or METASLAB_MUST_RESERVE set in others.
 		 * But even if we assume some other non-existing scenario, the
 		 * worst that can happen is few more I/Os get to allocation
 		 * earlier, that is not a problem.
 		 *
 		 * We reserve the slots individually so that we can unreserve
 		 * them individually when an I/O completes.
 		 */
 		zfs_refcount_add_few(&mca->mca_alloc_slots, slots, zio);
 		zio->io_flags |= ZIO_FLAG_IO_ALLOCATING;
 		return (B_TRUE);
 	}
 	return (B_FALSE);
 }
 
 void
 metaslab_class_throttle_unreserve(metaslab_class_t *mc, int slots,
     int allocator, zio_t *zio)
 {
 	metaslab_class_allocator_t *mca = &mc->mc_allocator[allocator];
 
 	ASSERT(mc->mc_alloc_throttle_enabled);
 	zfs_refcount_remove_few(&mca->mca_alloc_slots, slots, zio);
 }
 
 static int
 metaslab_claim_concrete(vdev_t *vd, uint64_t offset, uint64_t size,
     uint64_t txg)
 {
 	metaslab_t *msp;
 	spa_t *spa = vd->vdev_spa;
 	int error = 0;
 
 	if (offset >> vd->vdev_ms_shift >= vd->vdev_ms_count)
 		return (SET_ERROR(ENXIO));
 
 	ASSERT3P(vd->vdev_ms, !=, NULL);
 	msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
 
 	mutex_enter(&msp->ms_lock);
 
 	if ((txg != 0 && spa_writeable(spa)) || !msp->ms_loaded) {
 		error = metaslab_activate(msp, 0, METASLAB_WEIGHT_CLAIM);
 		if (error == EBUSY) {
 			ASSERT(msp->ms_loaded);
 			ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
 			error = 0;
 		}
 	}
 
 	if (error == 0 &&
 	    !range_tree_contains(msp->ms_allocatable, offset, size))
 		error = SET_ERROR(ENOENT);
 
 	if (error || txg == 0) {	/* txg == 0 indicates dry run */
 		mutex_exit(&msp->ms_lock);
 		return (error);
 	}
 
 	VERIFY(!msp->ms_condensing);
 	VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
 	VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
 	VERIFY3U(range_tree_space(msp->ms_allocatable) - size, <=,
 	    msp->ms_size);
 	range_tree_remove(msp->ms_allocatable, offset, size);
 	range_tree_clear(msp->ms_trim, offset, size);
 
 	if (spa_writeable(spa)) {	/* don't dirty if we're zdb(8) */
 		metaslab_class_t *mc = msp->ms_group->mg_class;
 		multilist_sublist_t *mls =
 		    multilist_sublist_lock_obj(&mc->mc_metaslab_txg_list, msp);
 		if (!multilist_link_active(&msp->ms_class_txg_node)) {
 			msp->ms_selected_txg = txg;
 			multilist_sublist_insert_head(mls, msp);
 		}
 		multilist_sublist_unlock(mls);
 
 		if (range_tree_is_empty(msp->ms_allocating[txg & TXG_MASK]))
 			vdev_dirty(vd, VDD_METASLAB, msp, txg);
 		range_tree_add(msp->ms_allocating[txg & TXG_MASK],
 		    offset, size);
 		msp->ms_allocating_total += size;
 	}
 
 	mutex_exit(&msp->ms_lock);
 
 	return (0);
 }
 
 typedef struct metaslab_claim_cb_arg_t {
 	uint64_t	mcca_txg;
 	int		mcca_error;
 } metaslab_claim_cb_arg_t;
 
 static void
 metaslab_claim_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
     uint64_t size, void *arg)
 {
 	(void) inner_offset;
 	metaslab_claim_cb_arg_t *mcca_arg = arg;
 
 	if (mcca_arg->mcca_error == 0) {
 		mcca_arg->mcca_error = metaslab_claim_concrete(vd, offset,
 		    size, mcca_arg->mcca_txg);
 	}
 }
 
 int
 metaslab_claim_impl(vdev_t *vd, uint64_t offset, uint64_t size, uint64_t txg)
 {
 	if (vd->vdev_ops->vdev_op_remap != NULL) {
 		metaslab_claim_cb_arg_t arg;
 
 		/*
 		 * Only zdb(8) can claim on indirect vdevs.  This is used
 		 * to detect leaks of mapped space (that are not accounted
 		 * for in the obsolete counts, spacemap, or bpobj).
 		 */
 		ASSERT(!spa_writeable(vd->vdev_spa));
 		arg.mcca_error = 0;
 		arg.mcca_txg = txg;
 
 		vd->vdev_ops->vdev_op_remap(vd, offset, size,
 		    metaslab_claim_impl_cb, &arg);
 
 		if (arg.mcca_error == 0) {
 			arg.mcca_error = metaslab_claim_concrete(vd,
 			    offset, size, txg);
 		}
 		return (arg.mcca_error);
 	} else {
 		return (metaslab_claim_concrete(vd, offset, size, txg));
 	}
 }
 
 /*
  * Intent log support: upon opening the pool after a crash, notify the SPA
  * of blocks that the intent log has allocated for immediate write, but
  * which are still considered free by the SPA because the last transaction
  * group didn't commit yet.
  */
 static int
 metaslab_claim_dva(spa_t *spa, const dva_t *dva, uint64_t txg)
 {
 	uint64_t vdev = DVA_GET_VDEV(dva);
 	uint64_t offset = DVA_GET_OFFSET(dva);
 	uint64_t size = DVA_GET_ASIZE(dva);
 	vdev_t *vd;
 
 	if ((vd = vdev_lookup_top(spa, vdev)) == NULL) {
 		return (SET_ERROR(ENXIO));
 	}
 
 	ASSERT(DVA_IS_VALID(dva));
 
 	if (DVA_GET_GANG(dva))
 		size = vdev_gang_header_asize(vd);
 
 	return (metaslab_claim_impl(vd, offset, size, txg));
 }
 
 int
 metaslab_alloc(spa_t *spa, metaslab_class_t *mc, uint64_t psize, blkptr_t *bp,
     int ndvas, uint64_t txg, blkptr_t *hintbp, int flags,
     zio_alloc_list_t *zal, zio_t *zio, int allocator)
 {
 	dva_t *dva = bp->blk_dva;
 	dva_t *hintdva = (hintbp != NULL) ? hintbp->blk_dva : NULL;
 	int error = 0;
 
 	ASSERT(bp->blk_birth == 0);
 	ASSERT(BP_PHYSICAL_BIRTH(bp) == 0);
 
 	spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
 
 	if (mc->mc_allocator[allocator].mca_rotor == NULL) {
 		/* no vdevs in this class */
 		spa_config_exit(spa, SCL_ALLOC, FTAG);
 		return (SET_ERROR(ENOSPC));
 	}
 
 	ASSERT(ndvas > 0 && ndvas <= spa_max_replication(spa));
 	ASSERT(BP_GET_NDVAS(bp) == 0);
 	ASSERT(hintbp == NULL || ndvas <= BP_GET_NDVAS(hintbp));
 	ASSERT3P(zal, !=, NULL);
 
 	for (int d = 0; d < ndvas; d++) {
 		error = metaslab_alloc_dva(spa, mc, psize, dva, d, hintdva,
 		    txg, flags, zal, allocator);
 		if (error != 0) {
 			for (d--; d >= 0; d--) {
 				metaslab_unalloc_dva(spa, &dva[d], txg);
 				metaslab_group_alloc_decrement(spa,
 				    DVA_GET_VDEV(&dva[d]), zio, flags,
 				    allocator, B_FALSE);
 				memset(&dva[d], 0, sizeof (dva_t));
 			}
 			spa_config_exit(spa, SCL_ALLOC, FTAG);
 			return (error);
 		} else {
 			/*
 			 * Update the metaslab group's queue depth
 			 * based on the newly allocated dva.
 			 */
 			metaslab_group_alloc_increment(spa,
 			    DVA_GET_VDEV(&dva[d]), zio, flags, allocator);
 		}
 	}
 	ASSERT(error == 0);
 	ASSERT(BP_GET_NDVAS(bp) == ndvas);
 
 	spa_config_exit(spa, SCL_ALLOC, FTAG);
 
 	BP_SET_BIRTH(bp, txg, 0);
 
 	return (0);
 }
 
 void
 metaslab_free(spa_t *spa, const blkptr_t *bp, uint64_t txg, boolean_t now)
 {
 	const dva_t *dva = bp->blk_dva;
 	int ndvas = BP_GET_NDVAS(bp);
 
 	ASSERT(!BP_IS_HOLE(bp));
 	ASSERT(!now || bp->blk_birth >= spa_syncing_txg(spa));
 
 	/*
 	 * If we have a checkpoint for the pool we need to make sure that
 	 * the blocks that we free that are part of the checkpoint won't be
 	 * reused until the checkpoint is discarded or we revert to it.
 	 *
 	 * The checkpoint flag is passed down the metaslab_free code path
 	 * and is set whenever we want to add a block to the checkpoint's
 	 * accounting. That is, we "checkpoint" blocks that existed at the
 	 * time the checkpoint was created and are therefore referenced by
 	 * the checkpointed uberblock.
 	 *
 	 * Note that, we don't checkpoint any blocks if the current
 	 * syncing txg <= spa_checkpoint_txg. We want these frees to sync
 	 * normally as they will be referenced by the checkpointed uberblock.
 	 */
 	boolean_t checkpoint = B_FALSE;
 	if (bp->blk_birth <= spa->spa_checkpoint_txg &&
 	    spa_syncing_txg(spa) > spa->spa_checkpoint_txg) {
 		/*
 		 * At this point, if the block is part of the checkpoint
 		 * there is no way it was created in the current txg.
 		 */
 		ASSERT(!now);
 		ASSERT3U(spa_syncing_txg(spa), ==, txg);
 		checkpoint = B_TRUE;
 	}
 
 	spa_config_enter(spa, SCL_FREE, FTAG, RW_READER);
 
 	for (int d = 0; d < ndvas; d++) {
 		if (now) {
 			metaslab_unalloc_dva(spa, &dva[d], txg);
 		} else {
 			ASSERT3U(txg, ==, spa_syncing_txg(spa));
 			metaslab_free_dva(spa, &dva[d], checkpoint);
 		}
 	}
 
 	spa_config_exit(spa, SCL_FREE, FTAG);
 }
 
 int
 metaslab_claim(spa_t *spa, const blkptr_t *bp, uint64_t txg)
 {
 	const dva_t *dva = bp->blk_dva;
 	int ndvas = BP_GET_NDVAS(bp);
 	int error = 0;
 
 	ASSERT(!BP_IS_HOLE(bp));
 
 	if (txg != 0) {
 		/*
 		 * First do a dry run to make sure all DVAs are claimable,
 		 * so we don't have to unwind from partial failures below.
 		 */
 		if ((error = metaslab_claim(spa, bp, 0)) != 0)
 			return (error);
 	}
 
 	spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
 
 	for (int d = 0; d < ndvas; d++) {
 		error = metaslab_claim_dva(spa, &dva[d], txg);
 		if (error != 0)
 			break;
 	}
 
 	spa_config_exit(spa, SCL_ALLOC, FTAG);
 
 	ASSERT(error == 0 || txg == 0);
 
 	return (error);
 }
 
 static void
 metaslab_check_free_impl_cb(uint64_t inner, vdev_t *vd, uint64_t offset,
     uint64_t size, void *arg)
 {
 	(void) inner, (void) arg;
 
 	if (vd->vdev_ops == &vdev_indirect_ops)
 		return;
 
 	metaslab_check_free_impl(vd, offset, size);
 }
 
 static void
 metaslab_check_free_impl(vdev_t *vd, uint64_t offset, uint64_t size)
 {
 	metaslab_t *msp;
 	spa_t *spa __maybe_unused = vd->vdev_spa;
 
 	if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0)
 		return;
 
 	if (vd->vdev_ops->vdev_op_remap != NULL) {
 		vd->vdev_ops->vdev_op_remap(vd, offset, size,
 		    metaslab_check_free_impl_cb, NULL);
 		return;
 	}
 
 	ASSERT(vdev_is_concrete(vd));
 	ASSERT3U(offset >> vd->vdev_ms_shift, <, vd->vdev_ms_count);
 	ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
 
 	msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
 
 	mutex_enter(&msp->ms_lock);
 	if (msp->ms_loaded) {
 		range_tree_verify_not_present(msp->ms_allocatable,
 		    offset, size);
 	}
 
 	/*
 	 * Check all segments that currently exist in the freeing pipeline.
 	 *
 	 * It would intuitively make sense to also check the current allocating
 	 * tree since metaslab_unalloc_dva() exists for extents that are
 	 * allocated and freed in the same sync pass within the same txg.
 	 * Unfortunately there are places (e.g. the ZIL) where we allocate a
 	 * segment but then we free part of it within the same txg
 	 * [see zil_sync()]. Thus, we don't call range_tree_verify() in the
 	 * current allocating tree.
 	 */
 	range_tree_verify_not_present(msp->ms_freeing, offset, size);
 	range_tree_verify_not_present(msp->ms_checkpointing, offset, size);
 	range_tree_verify_not_present(msp->ms_freed, offset, size);
 	for (int j = 0; j < TXG_DEFER_SIZE; j++)
 		range_tree_verify_not_present(msp->ms_defer[j], offset, size);
 	range_tree_verify_not_present(msp->ms_trim, offset, size);
 	mutex_exit(&msp->ms_lock);
 }
 
 void
 metaslab_check_free(spa_t *spa, const blkptr_t *bp)
 {
 	if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0)
 		return;
 
 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
 	for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
 		uint64_t vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
 		vdev_t *vd = vdev_lookup_top(spa, vdev);
 		uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]);
 		uint64_t size = DVA_GET_ASIZE(&bp->blk_dva[i]);
 
 		if (DVA_GET_GANG(&bp->blk_dva[i]))
 			size = vdev_gang_header_asize(vd);
 
 		ASSERT3P(vd, !=, NULL);
 
 		metaslab_check_free_impl(vd, offset, size);
 	}
 	spa_config_exit(spa, SCL_VDEV, FTAG);
 }
 
 static void
 metaslab_group_disable_wait(metaslab_group_t *mg)
 {
 	ASSERT(MUTEX_HELD(&mg->mg_ms_disabled_lock));
 	while (mg->mg_disabled_updating) {
 		cv_wait(&mg->mg_ms_disabled_cv, &mg->mg_ms_disabled_lock);
 	}
 }
 
 static void
 metaslab_group_disabled_increment(metaslab_group_t *mg)
 {
 	ASSERT(MUTEX_HELD(&mg->mg_ms_disabled_lock));
 	ASSERT(mg->mg_disabled_updating);
 
 	while (mg->mg_ms_disabled >= max_disabled_ms) {
 		cv_wait(&mg->mg_ms_disabled_cv, &mg->mg_ms_disabled_lock);
 	}
 	mg->mg_ms_disabled++;
 	ASSERT3U(mg->mg_ms_disabled, <=, max_disabled_ms);
 }
 
 /*
  * Mark the metaslab as disabled to prevent any allocations on this metaslab.
  * We must also track how many metaslabs are currently disabled within a
  * metaslab group and limit them to prevent allocation failures from
  * occurring because all metaslabs are disabled.
  */
 void
 metaslab_disable(metaslab_t *msp)
 {
 	ASSERT(!MUTEX_HELD(&msp->ms_lock));
 	metaslab_group_t *mg = msp->ms_group;
 
 	mutex_enter(&mg->mg_ms_disabled_lock);
 
 	/*
 	 * To keep an accurate count of how many threads have disabled
 	 * a specific metaslab group, we only allow one thread to mark
 	 * the metaslab group at a time. This ensures that the value of
 	 * ms_disabled will be accurate when we decide to mark a metaslab
 	 * group as disabled. To do this we force all other threads
 	 * to wait till the metaslab's mg_disabled_updating flag is no
 	 * longer set.
 	 */
 	metaslab_group_disable_wait(mg);
 	mg->mg_disabled_updating = B_TRUE;
 	if (msp->ms_disabled == 0) {
 		metaslab_group_disabled_increment(mg);
 	}
 	mutex_enter(&msp->ms_lock);
 	msp->ms_disabled++;
 	mutex_exit(&msp->ms_lock);
 
 	mg->mg_disabled_updating = B_FALSE;
 	cv_broadcast(&mg->mg_ms_disabled_cv);
 	mutex_exit(&mg->mg_ms_disabled_lock);
 }
 
 void
 metaslab_enable(metaslab_t *msp, boolean_t sync, boolean_t unload)
 {
 	metaslab_group_t *mg = msp->ms_group;
 	spa_t *spa = mg->mg_vd->vdev_spa;
 
 	/*
 	 * Wait for the outstanding IO to be synced to prevent newly
 	 * allocated blocks from being overwritten.  This used by
 	 * initialize and TRIM which are modifying unallocated space.
 	 */
 	if (sync)
 		txg_wait_synced(spa_get_dsl(spa), 0);
 
 	mutex_enter(&mg->mg_ms_disabled_lock);
 	mutex_enter(&msp->ms_lock);
 	if (--msp->ms_disabled == 0) {
 		mg->mg_ms_disabled--;
 		cv_broadcast(&mg->mg_ms_disabled_cv);
 		if (unload)
 			metaslab_unload(msp);
 	}
 	mutex_exit(&msp->ms_lock);
 	mutex_exit(&mg->mg_ms_disabled_lock);
 }
 
 void
 metaslab_set_unflushed_dirty(metaslab_t *ms, boolean_t dirty)
 {
 	ms->ms_unflushed_dirty = dirty;
 }
 
 static void
 metaslab_update_ondisk_flush_data(metaslab_t *ms, dmu_tx_t *tx)
 {
 	vdev_t *vd = ms->ms_group->mg_vd;
 	spa_t *spa = vd->vdev_spa;
 	objset_t *mos = spa_meta_objset(spa);
 
 	ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP));
 
 	metaslab_unflushed_phys_t entry = {
 		.msp_unflushed_txg = metaslab_unflushed_txg(ms),
 	};
 	uint64_t entry_size = sizeof (entry);
 	uint64_t entry_offset = ms->ms_id * entry_size;
 
 	uint64_t object = 0;
 	int err = zap_lookup(mos, vd->vdev_top_zap,
 	    VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1,
 	    &object);
 	if (err == ENOENT) {
 		object = dmu_object_alloc(mos, DMU_OTN_UINT64_METADATA,
 		    SPA_OLD_MAXBLOCKSIZE, DMU_OT_NONE, 0, tx);
 		VERIFY0(zap_add(mos, vd->vdev_top_zap,
 		    VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1,
 		    &object, tx));
 	} else {
 		VERIFY0(err);
 	}
 
 	dmu_write(spa_meta_objset(spa), object, entry_offset, entry_size,
 	    &entry, tx);
 }
 
 void
 metaslab_set_unflushed_txg(metaslab_t *ms, uint64_t txg, dmu_tx_t *tx)
 {
 	ms->ms_unflushed_txg = txg;
 	metaslab_update_ondisk_flush_data(ms, tx);
 }
 
 boolean_t
 metaslab_unflushed_dirty(metaslab_t *ms)
 {
 	return (ms->ms_unflushed_dirty);
 }
 
 uint64_t
 metaslab_unflushed_txg(metaslab_t *ms)
 {
 	return (ms->ms_unflushed_txg);
 }
 
 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, aliquot, U64, ZMOD_RW,
 	"Allocation granularity (a.k.a. stripe size)");
 
 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, debug_load, INT, ZMOD_RW,
 	"Load all metaslabs when pool is first opened");
 
 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, debug_unload, INT, ZMOD_RW,
 	"Prevent metaslabs from being unloaded");
 
 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, preload_enabled, INT, ZMOD_RW,
 	"Preload potential metaslabs during reassessment");
 
 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, preload_limit, UINT, ZMOD_RW,
 	"Max number of metaslabs per group to preload");
 
 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, unload_delay, UINT, ZMOD_RW,
 	"Delay in txgs after metaslab was last used before unloading");
 
 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, unload_delay_ms, UINT, ZMOD_RW,
 	"Delay in milliseconds after metaslab was last used before unloading");
 
 /* BEGIN CSTYLED */
 ZFS_MODULE_PARAM(zfs_mg, zfs_mg_, noalloc_threshold, UINT, ZMOD_RW,
 	"Percentage of metaslab group size that should be free to make it "
 	"eligible for allocation");
 
 ZFS_MODULE_PARAM(zfs_mg, zfs_mg_, fragmentation_threshold, UINT, ZMOD_RW,
 	"Percentage of metaslab group size that should be considered eligible "
 	"for allocations unless all metaslab groups within the metaslab class "
 	"have also crossed this threshold");
 
 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, fragmentation_factor_enabled, INT,
 	ZMOD_RW,
 	"Use the fragmentation metric to prefer less fragmented metaslabs");
 /* END CSTYLED */
 
 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, fragmentation_threshold, UINT,
 	ZMOD_RW, "Fragmentation for metaslab to allow allocation");
 
 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, lba_weighting_enabled, INT, ZMOD_RW,
 	"Prefer metaslabs with lower LBAs");
 
 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, bias_enabled, INT, ZMOD_RW,
 	"Enable metaslab group biasing");
 
 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, segment_weight_enabled, INT,
 	ZMOD_RW, "Enable segment-based metaslab selection");
 
 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, switch_threshold, INT, ZMOD_RW,
 	"Segment-based metaslab selection maximum buckets before switching");
 
 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, force_ganging, U64, ZMOD_RW,
 	"Blocks larger than this size are sometimes forced to be gang blocks");
 
 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, force_ganging_pct, UINT, ZMOD_RW,
 	"Percentage of large blocks that will be forced to be gang blocks");
 
 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, df_max_search, UINT, ZMOD_RW,
 	"Max distance (bytes) to search forward before using size tree");
 
 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, df_use_largest_segment, INT, ZMOD_RW,
 	"When looking in size tree, use largest segment instead of exact fit");
 
 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, max_size_cache_sec, U64,
 	ZMOD_RW, "How long to trust the cached max chunk size of a metaslab");
 
 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, mem_limit, UINT, ZMOD_RW,
 	"Percentage of memory that can be used to store metaslab range trees");
 
 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, try_hard_before_gang, INT,
 	ZMOD_RW, "Try hard to allocate before ganging");
 
 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, find_max_tries, UINT, ZMOD_RW,
 	"Normally only consider this many of the best metaslabs in each vdev");
diff --git a/module/zfs/spa.c b/module/zfs/spa.c
index fc7cf000f0cd..886867b739f0 100644
--- a/module/zfs/spa.c
+++ b/module/zfs/spa.c
@@ -1,10604 +1,10607 @@
 /*
  * CDDL HEADER START
  *
  * The contents of this file are subject to the terms of the
  * Common Development and Distribution License (the "License").
  * You may not use this file except in compliance with the License.
  *
  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
  * or https://opensource.org/licenses/CDDL-1.0.
  * See the License for the specific language governing permissions
  * and limitations under the License.
  *
  * When distributing Covered Code, include this CDDL HEADER in each
  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  * If applicable, add the following below this CDDL HEADER, with the
  * fields enclosed by brackets "[]" replaced with your own identifying
  * information: Portions Copyright [yyyy] [name of copyright owner]
  *
  * CDDL HEADER END
  */
 
 /*
  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
  * Copyright (c) 2011, 2024 by Delphix. All rights reserved.
  * Copyright (c) 2018, Nexenta Systems, Inc.  All rights reserved.
  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
  * Copyright 2013 Saso Kiselkov. All rights reserved.
  * Copyright (c) 2014 Integros [integros.com]
  * Copyright 2016 Toomas Soome <tsoome@me.com>
  * Copyright (c) 2016 Actifio, Inc. All rights reserved.
  * Copyright 2018 Joyent, Inc.
  * Copyright (c) 2017, 2019, Datto Inc. All rights reserved.
  * Copyright 2017 Joyent, Inc.
  * Copyright (c) 2017, Intel Corporation.
  * Copyright (c) 2021, Colm Buckley <colm@tuatha.org>
  * Copyright (c) 2023 Hewlett Packard Enterprise Development LP.
  */
 
 /*
  * SPA: Storage Pool Allocator
  *
  * This file contains all the routines used when modifying on-disk SPA state.
  * This includes opening, importing, destroying, exporting a pool, and syncing a
  * pool.
  */
 
 #include <sys/zfs_context.h>
 #include <sys/fm/fs/zfs.h>
 #include <sys/spa_impl.h>
 #include <sys/zio.h>
 #include <sys/zio_checksum.h>
 #include <sys/dmu.h>
 #include <sys/dmu_tx.h>
 #include <sys/zap.h>
 #include <sys/zil.h>
 #include <sys/brt.h>
 #include <sys/ddt.h>
 #include <sys/vdev_impl.h>
 #include <sys/vdev_removal.h>
 #include <sys/vdev_indirect_mapping.h>
 #include <sys/vdev_indirect_births.h>
 #include <sys/vdev_initialize.h>
 #include <sys/vdev_rebuild.h>
 #include <sys/vdev_trim.h>
 #include <sys/vdev_disk.h>
 #include <sys/vdev_draid.h>
 #include <sys/metaslab.h>
 #include <sys/metaslab_impl.h>
 #include <sys/mmp.h>
 #include <sys/uberblock_impl.h>
 #include <sys/txg.h>
 #include <sys/avl.h>
 #include <sys/bpobj.h>
 #include <sys/dmu_traverse.h>
 #include <sys/dmu_objset.h>
 #include <sys/unique.h>
 #include <sys/dsl_pool.h>
 #include <sys/dsl_dataset.h>
 #include <sys/dsl_dir.h>
 #include <sys/dsl_prop.h>
 #include <sys/dsl_synctask.h>
 #include <sys/fs/zfs.h>
 #include <sys/arc.h>
 #include <sys/callb.h>
 #include <sys/systeminfo.h>
 #include <sys/zfs_ioctl.h>
 #include <sys/dsl_scan.h>
 #include <sys/zfeature.h>
 #include <sys/dsl_destroy.h>
 #include <sys/zvol.h>
 
 #ifdef	_KERNEL
 #include <sys/fm/protocol.h>
 #include <sys/fm/util.h>
 #include <sys/callb.h>
 #include <sys/zone.h>
 #include <sys/vmsystm.h>
 #endif	/* _KERNEL */
 
 #include "zfs_prop.h"
 #include "zfs_comutil.h"
 
 /*
  * The interval, in seconds, at which failed configuration cache file writes
  * should be retried.
  */
 int zfs_ccw_retry_interval = 300;
 
 typedef enum zti_modes {
 	ZTI_MODE_FIXED,			/* value is # of threads (min 1) */
 	ZTI_MODE_BATCH,			/* cpu-intensive; value is ignored */
 	ZTI_MODE_SCALE,			/* Taskqs scale with CPUs. */
 	ZTI_MODE_NULL,			/* don't create a taskq */
 	ZTI_NMODES
 } zti_modes_t;
 
 #define	ZTI_P(n, q)	{ ZTI_MODE_FIXED, (n), (q) }
 #define	ZTI_PCT(n)	{ ZTI_MODE_ONLINE_PERCENT, (n), 1 }
 #define	ZTI_BATCH	{ ZTI_MODE_BATCH, 0, 1 }
 #define	ZTI_SCALE	{ ZTI_MODE_SCALE, 0, 1 }
 #define	ZTI_NULL	{ ZTI_MODE_NULL, 0, 0 }
 
 #define	ZTI_N(n)	ZTI_P(n, 1)
 #define	ZTI_ONE		ZTI_N(1)
 
 typedef struct zio_taskq_info {
 	zti_modes_t zti_mode;
 	uint_t zti_value;
 	uint_t zti_count;
 } zio_taskq_info_t;
 
 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
 	"iss", "iss_h", "int", "int_h"
 };
 
 /*
  * This table defines the taskq settings for each ZFS I/O type. When
  * initializing a pool, we use this table to create an appropriately sized
  * taskq. Some operations are low volume and therefore have a small, static
  * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
  * macros. Other operations process a large amount of data; the ZTI_BATCH
  * macro causes us to create a taskq oriented for throughput. Some operations
  * are so high frequency and short-lived that the taskq itself can become a
  * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
  * additional degree of parallelism specified by the number of threads per-
  * taskq and the number of taskqs; when dispatching an event in this case, the
  * particular taskq is chosen at random. ZTI_SCALE is similar to ZTI_BATCH,
  * but with number of taskqs also scaling with number of CPUs.
  *
  * The different taskq priorities are to handle the different contexts (issue
  * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
  * need to be handled with minimum delay.
  */
 static zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
 	/* ISSUE	ISSUE_HIGH	INTR		INTR_HIGH */
 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* NULL */
 	{ ZTI_N(8),	ZTI_NULL,	ZTI_SCALE,	ZTI_NULL }, /* READ */
 	{ ZTI_BATCH,	ZTI_N(5),	ZTI_SCALE,	ZTI_N(5) }, /* WRITE */
 	{ ZTI_SCALE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* FREE */
 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* CLAIM */
 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* IOCTL */
 	{ ZTI_N(4),	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* TRIM */
 };
 
 static void spa_sync_version(void *arg, dmu_tx_t *tx);
 static void spa_sync_props(void *arg, dmu_tx_t *tx);
 static boolean_t spa_has_active_shared_spare(spa_t *spa);
 static int spa_load_impl(spa_t *spa, spa_import_type_t type,
     const char **ereport);
 static void spa_vdev_resilver_done(spa_t *spa);
 
 /*
  * Percentage of all CPUs that can be used by the metaslab preload taskq.
  */
 static uint_t metaslab_preload_pct = 50;
 
 static uint_t	zio_taskq_batch_pct = 80;	  /* 1 thread per cpu in pset */
 static uint_t	zio_taskq_batch_tpq;		  /* threads per taskq */
 static const boolean_t	zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */
 static const uint_t	zio_taskq_basedc = 80;	  /* base duty cycle */
 
 static const boolean_t spa_create_process = B_TRUE; /* no process => no sysdc */
 
 /*
  * Report any spa_load_verify errors found, but do not fail spa_load.
  * This is used by zdb to analyze non-idle pools.
  */
 boolean_t	spa_load_verify_dryrun = B_FALSE;
 
 /*
  * Allow read spacemaps in case of readonly import (spa_mode == SPA_MODE_READ).
  * This is used by zdb for spacemaps verification.
  */
 boolean_t	spa_mode_readable_spacemaps = B_FALSE;
 
 /*
  * This (illegal) pool name is used when temporarily importing a spa_t in order
  * to get the vdev stats associated with the imported devices.
  */
 #define	TRYIMPORT_NAME	"$import"
 
 /*
  * For debugging purposes: print out vdev tree during pool import.
  */
 static int		spa_load_print_vdev_tree = B_FALSE;
 
 /*
  * A non-zero value for zfs_max_missing_tvds means that we allow importing
  * pools with missing top-level vdevs. This is strictly intended for advanced
  * pool recovery cases since missing data is almost inevitable. Pools with
  * missing devices can only be imported read-only for safety reasons, and their
  * fail-mode will be automatically set to "continue".
  *
  * With 1 missing vdev we should be able to import the pool and mount all
  * datasets. User data that was not modified after the missing device has been
  * added should be recoverable. This means that snapshots created prior to the
  * addition of that device should be completely intact.
  *
  * With 2 missing vdevs, some datasets may fail to mount since there are
  * dataset statistics that are stored as regular metadata. Some data might be
  * recoverable if those vdevs were added recently.
  *
  * With 3 or more missing vdevs, the pool is severely damaged and MOS entries
  * may be missing entirely. Chances of data recovery are very low. Note that
  * there are also risks of performing an inadvertent rewind as we might be
  * missing all the vdevs with the latest uberblocks.
  */
 uint64_t	zfs_max_missing_tvds = 0;
 
 /*
  * The parameters below are similar to zfs_max_missing_tvds but are only
  * intended for a preliminary open of the pool with an untrusted config which
  * might be incomplete or out-dated.
  *
  * We are more tolerant for pools opened from a cachefile since we could have
  * an out-dated cachefile where a device removal was not registered.
  * We could have set the limit arbitrarily high but in the case where devices
  * are really missing we would want to return the proper error codes; we chose
  * SPA_DVAS_PER_BP - 1 so that some copies of the MOS would still be available
  * and we get a chance to retrieve the trusted config.
  */
 uint64_t	zfs_max_missing_tvds_cachefile = SPA_DVAS_PER_BP - 1;
 
 /*
  * In the case where config was assembled by scanning device paths (/dev/dsks
  * by default) we are less tolerant since all the existing devices should have
  * been detected and we want spa_load to return the right error codes.
  */
 uint64_t	zfs_max_missing_tvds_scan = 0;
 
 /*
  * Debugging aid that pauses spa_sync() towards the end.
  */
 static const boolean_t	zfs_pause_spa_sync = B_FALSE;
 
 /*
  * Variables to indicate the livelist condense zthr func should wait at certain
  * points for the livelist to be removed - used to test condense/destroy races
  */
 static int zfs_livelist_condense_zthr_pause = 0;
 static int zfs_livelist_condense_sync_pause = 0;
 
 /*
  * Variables to track whether or not condense cancellation has been
  * triggered in testing.
  */
 static int zfs_livelist_condense_sync_cancel = 0;
 static int zfs_livelist_condense_zthr_cancel = 0;
 
 /*
  * Variable to track whether or not extra ALLOC blkptrs were added to a
  * livelist entry while it was being condensed (caused by the way we track
  * remapped blkptrs in dbuf_remap_impl)
  */
 static int zfs_livelist_condense_new_alloc = 0;
 
 /*
  * ==========================================================================
  * SPA properties routines
  * ==========================================================================
  */
 
 /*
  * Add a (source=src, propname=propval) list to an nvlist.
  */
 static void
 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, const char *strval,
     uint64_t intval, zprop_source_t src)
 {
 	const char *propname = zpool_prop_to_name(prop);
 	nvlist_t *propval;
 
 	propval = fnvlist_alloc();
 	fnvlist_add_uint64(propval, ZPROP_SOURCE, src);
 
 	if (strval != NULL)
 		fnvlist_add_string(propval, ZPROP_VALUE, strval);
 	else
 		fnvlist_add_uint64(propval, ZPROP_VALUE, intval);
 
 	fnvlist_add_nvlist(nvl, propname, propval);
 	nvlist_free(propval);
 }
 
 /*
  * Add a user property (source=src, propname=propval) to an nvlist.
  */
 static void
 spa_prop_add_user(nvlist_t *nvl, const char *propname, char *strval,
     zprop_source_t src)
 {
 	nvlist_t *propval;
 
 	VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
 	VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
 	VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
 	VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
 	nvlist_free(propval);
 }
 
 /*
  * Get property values from the spa configuration.
  */
 static void
 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
 {
 	vdev_t *rvd = spa->spa_root_vdev;
 	dsl_pool_t *pool = spa->spa_dsl_pool;
 	uint64_t size, alloc, cap, version;
 	const zprop_source_t src = ZPROP_SRC_NONE;
 	spa_config_dirent_t *dp;
 	metaslab_class_t *mc = spa_normal_class(spa);
 
 	ASSERT(MUTEX_HELD(&spa->spa_props_lock));
 
 	if (rvd != NULL) {
 		alloc = metaslab_class_get_alloc(mc);
 		alloc += metaslab_class_get_alloc(spa_special_class(spa));
 		alloc += metaslab_class_get_alloc(spa_dedup_class(spa));
 		alloc += metaslab_class_get_alloc(spa_embedded_log_class(spa));
 
 		size = metaslab_class_get_space(mc);
 		size += metaslab_class_get_space(spa_special_class(spa));
 		size += metaslab_class_get_space(spa_dedup_class(spa));
 		size += metaslab_class_get_space(spa_embedded_log_class(spa));
 
 		spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
 		spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
 		spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
 		    size - alloc, src);
 		spa_prop_add_list(*nvp, ZPOOL_PROP_CHECKPOINT, NULL,
 		    spa->spa_checkpoint_info.sci_dspace, src);
 
 		spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL,
 		    metaslab_class_fragmentation(mc), src);
 		spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL,
 		    metaslab_class_expandable_space(mc), src);
 		spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
 		    (spa_mode(spa) == SPA_MODE_READ), src);
 
 		cap = (size == 0) ? 0 : (alloc * 100 / size);
 		spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
 
 		spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
 		    ddt_get_pool_dedup_ratio(spa), src);
 		spa_prop_add_list(*nvp, ZPOOL_PROP_BCLONEUSED, NULL,
 		    brt_get_used(spa), src);
 		spa_prop_add_list(*nvp, ZPOOL_PROP_BCLONESAVED, NULL,
 		    brt_get_saved(spa), src);
 		spa_prop_add_list(*nvp, ZPOOL_PROP_BCLONERATIO, NULL,
 		    brt_get_ratio(spa), src);
 
 		spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
 		    rvd->vdev_state, src);
 
 		version = spa_version(spa);
 		if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) {
 			spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL,
 			    version, ZPROP_SRC_DEFAULT);
 		} else {
 			spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL,
 			    version, ZPROP_SRC_LOCAL);
 		}
 		spa_prop_add_list(*nvp, ZPOOL_PROP_LOAD_GUID,
 		    NULL, spa_load_guid(spa), src);
 	}
 
 	if (pool != NULL) {
 		/*
 		 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
 		 * when opening pools before this version freedir will be NULL.
 		 */
 		if (pool->dp_free_dir != NULL) {
 			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
 			    dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes,
 			    src);
 		} else {
 			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
 			    NULL, 0, src);
 		}
 
 		if (pool->dp_leak_dir != NULL) {
 			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL,
 			    dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes,
 			    src);
 		} else {
 			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED,
 			    NULL, 0, src);
 		}
 	}
 
 	spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
 
 	if (spa->spa_comment != NULL) {
 		spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
 		    0, ZPROP_SRC_LOCAL);
 	}
 
 	if (spa->spa_compatibility != NULL) {
 		spa_prop_add_list(*nvp, ZPOOL_PROP_COMPATIBILITY,
 		    spa->spa_compatibility, 0, ZPROP_SRC_LOCAL);
 	}
 
 	if (spa->spa_root != NULL)
 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
 		    0, ZPROP_SRC_LOCAL);
 
 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
 		    MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE);
 	} else {
 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
 		    SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE);
 	}
 
 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE)) {
 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL,
 		    DNODE_MAX_SIZE, ZPROP_SRC_NONE);
 	} else {
 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL,
 		    DNODE_MIN_SIZE, ZPROP_SRC_NONE);
 	}
 
 	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
 		if (dp->scd_path == NULL) {
 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
 			    "none", 0, ZPROP_SRC_LOCAL);
 		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
 			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
 		}
 	}
 }
 
 /*
  * Get zpool property values.
  */
 int
 spa_prop_get(spa_t *spa, nvlist_t **nvp)
 {
 	objset_t *mos = spa->spa_meta_objset;
 	zap_cursor_t zc;
 	zap_attribute_t za;
 	dsl_pool_t *dp;
 	int err;
 
 	err = nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP);
 	if (err)
 		return (err);
 
 	dp = spa_get_dsl(spa);
 	dsl_pool_config_enter(dp, FTAG);
 	mutex_enter(&spa->spa_props_lock);
 
 	/*
 	 * Get properties from the spa config.
 	 */
 	spa_prop_get_config(spa, nvp);
 
 	/* If no pool property object, no more prop to get. */
 	if (mos == NULL || spa->spa_pool_props_object == 0)
 		goto out;
 
 	/*
 	 * Get properties from the MOS pool property object.
 	 */
 	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
 	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
 	    zap_cursor_advance(&zc)) {
 		uint64_t intval = 0;
 		char *strval = NULL;
 		zprop_source_t src = ZPROP_SRC_DEFAULT;
 		zpool_prop_t prop;
 
 		if ((prop = zpool_name_to_prop(za.za_name)) ==
 		    ZPOOL_PROP_INVAL && !zfs_prop_user(za.za_name))
 			continue;
 
 		switch (za.za_integer_length) {
 		case 8:
 			/* integer property */
 			if (za.za_first_integer !=
 			    zpool_prop_default_numeric(prop))
 				src = ZPROP_SRC_LOCAL;
 
 			if (prop == ZPOOL_PROP_BOOTFS) {
 				dsl_dataset_t *ds = NULL;
 
 				err = dsl_dataset_hold_obj(dp,
 				    za.za_first_integer, FTAG, &ds);
 				if (err != 0)
 					break;
 
 				strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN,
 				    KM_SLEEP);
 				dsl_dataset_name(ds, strval);
 				dsl_dataset_rele(ds, FTAG);
 			} else {
 				strval = NULL;
 				intval = za.za_first_integer;
 			}
 
 			spa_prop_add_list(*nvp, prop, strval, intval, src);
 
 			if (strval != NULL)
 				kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN);
 
 			break;
 
 		case 1:
 			/* string property */
 			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
 			err = zap_lookup(mos, spa->spa_pool_props_object,
 			    za.za_name, 1, za.za_num_integers, strval);
 			if (err) {
 				kmem_free(strval, za.za_num_integers);
 				break;
 			}
 			if (prop != ZPOOL_PROP_INVAL) {
 				spa_prop_add_list(*nvp, prop, strval, 0, src);
 			} else {
 				src = ZPROP_SRC_LOCAL;
 				spa_prop_add_user(*nvp, za.za_name, strval,
 				    src);
 			}
 			kmem_free(strval, za.za_num_integers);
 			break;
 
 		default:
 			break;
 		}
 	}
 	zap_cursor_fini(&zc);
 out:
 	mutex_exit(&spa->spa_props_lock);
 	dsl_pool_config_exit(dp, FTAG);
 	if (err && err != ENOENT) {
 		nvlist_free(*nvp);
 		*nvp = NULL;
 		return (err);
 	}
 
 	return (0);
 }
 
 /*
  * Validate the given pool properties nvlist and modify the list
  * for the property values to be set.
  */
 static int
 spa_prop_validate(spa_t *spa, nvlist_t *props)
 {
 	nvpair_t *elem;
 	int error = 0, reset_bootfs = 0;
 	uint64_t objnum = 0;
 	boolean_t has_feature = B_FALSE;
 
 	elem = NULL;
 	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
 		uint64_t intval;
 		const char *strval, *slash, *check, *fname;
 		const char *propname = nvpair_name(elem);
 		zpool_prop_t prop = zpool_name_to_prop(propname);
 
 		switch (prop) {
 		case ZPOOL_PROP_INVAL:
 			/*
 			 * Sanitize the input.
 			 */
 			if (zfs_prop_user(propname)) {
 				if (strlen(propname) >= ZAP_MAXNAMELEN) {
 					error = SET_ERROR(ENAMETOOLONG);
 					break;
 				}
 
 				if (strlen(fnvpair_value_string(elem)) >=
 				    ZAP_MAXVALUELEN) {
 					error = SET_ERROR(E2BIG);
 					break;
 				}
 			} else if (zpool_prop_feature(propname)) {
 				if (nvpair_type(elem) != DATA_TYPE_UINT64) {
 					error = SET_ERROR(EINVAL);
 					break;
 				}
 
 				if (nvpair_value_uint64(elem, &intval) != 0) {
 					error = SET_ERROR(EINVAL);
 					break;
 				}
 
 				if (intval != 0) {
 					error = SET_ERROR(EINVAL);
 					break;
 				}
 
 				fname = strchr(propname, '@') + 1;
 				if (zfeature_lookup_name(fname, NULL) != 0) {
 					error = SET_ERROR(EINVAL);
 					break;
 				}
 
 				has_feature = B_TRUE;
 			} else {
 				error = SET_ERROR(EINVAL);
 				break;
 			}
 			break;
 
 		case ZPOOL_PROP_VERSION:
 			error = nvpair_value_uint64(elem, &intval);
 			if (!error &&
 			    (intval < spa_version(spa) ||
 			    intval > SPA_VERSION_BEFORE_FEATURES ||
 			    has_feature))
 				error = SET_ERROR(EINVAL);
 			break;
 
 		case ZPOOL_PROP_DELEGATION:
 		case ZPOOL_PROP_AUTOREPLACE:
 		case ZPOOL_PROP_LISTSNAPS:
 		case ZPOOL_PROP_AUTOEXPAND:
 		case ZPOOL_PROP_AUTOTRIM:
 			error = nvpair_value_uint64(elem, &intval);
 			if (!error && intval > 1)
 				error = SET_ERROR(EINVAL);
 			break;
 
 		case ZPOOL_PROP_MULTIHOST:
 			error = nvpair_value_uint64(elem, &intval);
 			if (!error && intval > 1)
 				error = SET_ERROR(EINVAL);
 
 			if (!error) {
 				uint32_t hostid = zone_get_hostid(NULL);
 				if (hostid)
 					spa->spa_hostid = hostid;
 				else
 					error = SET_ERROR(ENOTSUP);
 			}
 
 			break;
 
 		case ZPOOL_PROP_BOOTFS:
 			/*
 			 * If the pool version is less than SPA_VERSION_BOOTFS,
 			 * or the pool is still being created (version == 0),
 			 * the bootfs property cannot be set.
 			 */
 			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
 				error = SET_ERROR(ENOTSUP);
 				break;
 			}
 
 			/*
 			 * Make sure the vdev config is bootable
 			 */
 			if (!vdev_is_bootable(spa->spa_root_vdev)) {
 				error = SET_ERROR(ENOTSUP);
 				break;
 			}
 
 			reset_bootfs = 1;
 
 			error = nvpair_value_string(elem, &strval);
 
 			if (!error) {
 				objset_t *os;
 
 				if (strval == NULL || strval[0] == '\0') {
 					objnum = zpool_prop_default_numeric(
 					    ZPOOL_PROP_BOOTFS);
 					break;
 				}
 
 				error = dmu_objset_hold(strval, FTAG, &os);
 				if (error != 0)
 					break;
 
 				/* Must be ZPL. */
 				if (dmu_objset_type(os) != DMU_OST_ZFS) {
 					error = SET_ERROR(ENOTSUP);
 				} else {
 					objnum = dmu_objset_id(os);
 				}
 				dmu_objset_rele(os, FTAG);
 			}
 			break;
 
 		case ZPOOL_PROP_FAILUREMODE:
 			error = nvpair_value_uint64(elem, &intval);
 			if (!error && intval > ZIO_FAILURE_MODE_PANIC)
 				error = SET_ERROR(EINVAL);
 
 			/*
 			 * This is a special case which only occurs when
 			 * the pool has completely failed. This allows
 			 * the user to change the in-core failmode property
 			 * without syncing it out to disk (I/Os might
 			 * currently be blocked). We do this by returning
 			 * EIO to the caller (spa_prop_set) to trick it
 			 * into thinking we encountered a property validation
 			 * error.
 			 */
 			if (!error && spa_suspended(spa)) {
 				spa->spa_failmode = intval;
 				error = SET_ERROR(EIO);
 			}
 			break;
 
 		case ZPOOL_PROP_CACHEFILE:
 			if ((error = nvpair_value_string(elem, &strval)) != 0)
 				break;
 
 			if (strval[0] == '\0')
 				break;
 
 			if (strcmp(strval, "none") == 0)
 				break;
 
 			if (strval[0] != '/') {
 				error = SET_ERROR(EINVAL);
 				break;
 			}
 
 			slash = strrchr(strval, '/');
 			ASSERT(slash != NULL);
 
 			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
 			    strcmp(slash, "/..") == 0)
 				error = SET_ERROR(EINVAL);
 			break;
 
 		case ZPOOL_PROP_COMMENT:
 			if ((error = nvpair_value_string(elem, &strval)) != 0)
 				break;
 			for (check = strval; *check != '\0'; check++) {
 				if (!isprint(*check)) {
 					error = SET_ERROR(EINVAL);
 					break;
 				}
 			}
 			if (strlen(strval) > ZPROP_MAX_COMMENT)
 				error = SET_ERROR(E2BIG);
 			break;
 
 		default:
 			break;
 		}
 
 		if (error)
 			break;
 	}
 
 	(void) nvlist_remove_all(props,
 	    zpool_prop_to_name(ZPOOL_PROP_DEDUPDITTO));
 
 	if (!error && reset_bootfs) {
 		error = nvlist_remove(props,
 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
 
 		if (!error) {
 			error = nvlist_add_uint64(props,
 			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
 		}
 	}
 
 	return (error);
 }
 
 void
 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
 {
 	const char *cachefile;
 	spa_config_dirent_t *dp;
 
 	if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
 	    &cachefile) != 0)
 		return;
 
 	dp = kmem_alloc(sizeof (spa_config_dirent_t),
 	    KM_SLEEP);
 
 	if (cachefile[0] == '\0')
 		dp->scd_path = spa_strdup(spa_config_path);
 	else if (strcmp(cachefile, "none") == 0)
 		dp->scd_path = NULL;
 	else
 		dp->scd_path = spa_strdup(cachefile);
 
 	list_insert_head(&spa->spa_config_list, dp);
 	if (need_sync)
 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
 }
 
 int
 spa_prop_set(spa_t *spa, nvlist_t *nvp)
 {
 	int error;
 	nvpair_t *elem = NULL;
 	boolean_t need_sync = B_FALSE;
 
 	if ((error = spa_prop_validate(spa, nvp)) != 0)
 		return (error);
 
 	while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
 		zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
 
 		if (prop == ZPOOL_PROP_CACHEFILE ||
 		    prop == ZPOOL_PROP_ALTROOT ||
 		    prop == ZPOOL_PROP_READONLY)
 			continue;
 
 		if (prop == ZPOOL_PROP_INVAL &&
 		    zfs_prop_user(nvpair_name(elem))) {
 			need_sync = B_TRUE;
 			break;
 		}
 
 		if (prop == ZPOOL_PROP_VERSION || prop == ZPOOL_PROP_INVAL) {
 			uint64_t ver = 0;
 
 			if (prop == ZPOOL_PROP_VERSION) {
 				VERIFY(nvpair_value_uint64(elem, &ver) == 0);
 			} else {
 				ASSERT(zpool_prop_feature(nvpair_name(elem)));
 				ver = SPA_VERSION_FEATURES;
 				need_sync = B_TRUE;
 			}
 
 			/* Save time if the version is already set. */
 			if (ver == spa_version(spa))
 				continue;
 
 			/*
 			 * In addition to the pool directory object, we might
 			 * create the pool properties object, the features for
 			 * read object, the features for write object, or the
 			 * feature descriptions object.
 			 */
 			error = dsl_sync_task(spa->spa_name, NULL,
 			    spa_sync_version, &ver,
 			    6, ZFS_SPACE_CHECK_RESERVED);
 			if (error)
 				return (error);
 			continue;
 		}
 
 		need_sync = B_TRUE;
 		break;
 	}
 
 	if (need_sync) {
 		return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
 		    nvp, 6, ZFS_SPACE_CHECK_RESERVED));
 	}
 
 	return (0);
 }
 
 /*
  * If the bootfs property value is dsobj, clear it.
  */
 void
 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
 {
 	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
 		VERIFY(zap_remove(spa->spa_meta_objset,
 		    spa->spa_pool_props_object,
 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
 		spa->spa_bootfs = 0;
 	}
 }
 
 static int
 spa_change_guid_check(void *arg, dmu_tx_t *tx)
 {
 	uint64_t *newguid __maybe_unused = arg;
 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
 	vdev_t *rvd = spa->spa_root_vdev;
 	uint64_t vdev_state;
 
 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
 		int error = (spa_has_checkpoint(spa)) ?
 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
 		return (SET_ERROR(error));
 	}
 
 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
 	vdev_state = rvd->vdev_state;
 	spa_config_exit(spa, SCL_STATE, FTAG);
 
 	if (vdev_state != VDEV_STATE_HEALTHY)
 		return (SET_ERROR(ENXIO));
 
 	ASSERT3U(spa_guid(spa), !=, *newguid);
 
 	return (0);
 }
 
 static void
 spa_change_guid_sync(void *arg, dmu_tx_t *tx)
 {
 	uint64_t *newguid = arg;
 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
 	uint64_t oldguid;
 	vdev_t *rvd = spa->spa_root_vdev;
 
 	oldguid = spa_guid(spa);
 
 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
 	rvd->vdev_guid = *newguid;
 	rvd->vdev_guid_sum += (*newguid - oldguid);
 	vdev_config_dirty(rvd);
 	spa_config_exit(spa, SCL_STATE, FTAG);
 
 	spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
 	    (u_longlong_t)oldguid, (u_longlong_t)*newguid);
 }
 
 /*
  * Change the GUID for the pool.  This is done so that we can later
  * re-import a pool built from a clone of our own vdevs.  We will modify
  * the root vdev's guid, our own pool guid, and then mark all of our
  * vdevs dirty.  Note that we must make sure that all our vdevs are
  * online when we do this, or else any vdevs that weren't present
  * would be orphaned from our pool.  We are also going to issue a
  * sysevent to update any watchers.
  */
 int
 spa_change_guid(spa_t *spa)
 {
 	int error;
 	uint64_t guid;
 
 	mutex_enter(&spa->spa_vdev_top_lock);
 	mutex_enter(&spa_namespace_lock);
 	guid = spa_generate_guid(NULL);
 
 	error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
 	    spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
 
 	if (error == 0) {
 		/*
 		 * Clear the kobj flag from all the vdevs to allow
 		 * vdev_cache_process_kobj_evt() to post events to all the
 		 * vdevs since GUID is updated.
 		 */
 		vdev_clear_kobj_evt(spa->spa_root_vdev);
 		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
 			vdev_clear_kobj_evt(spa->spa_l2cache.sav_vdevs[i]);
 
 		spa_write_cachefile(spa, B_FALSE, B_TRUE, B_TRUE);
 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_REGUID);
 	}
 
 	mutex_exit(&spa_namespace_lock);
 	mutex_exit(&spa->spa_vdev_top_lock);
 
 	return (error);
 }
 
 /*
  * ==========================================================================
  * SPA state manipulation (open/create/destroy/import/export)
  * ==========================================================================
  */
 
 static int
 spa_error_entry_compare(const void *a, const void *b)
 {
 	const spa_error_entry_t *sa = (const spa_error_entry_t *)a;
 	const spa_error_entry_t *sb = (const spa_error_entry_t *)b;
 	int ret;
 
 	ret = memcmp(&sa->se_bookmark, &sb->se_bookmark,
 	    sizeof (zbookmark_phys_t));
 
 	return (TREE_ISIGN(ret));
 }
 
 /*
  * Utility function which retrieves copies of the current logs and
  * re-initializes them in the process.
  */
 void
 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
 {
 	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
 
 	memcpy(last, &spa->spa_errlist_last, sizeof (avl_tree_t));
 	memcpy(scrub, &spa->spa_errlist_scrub, sizeof (avl_tree_t));
 
 	avl_create(&spa->spa_errlist_scrub,
 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
 	    offsetof(spa_error_entry_t, se_avl));
 	avl_create(&spa->spa_errlist_last,
 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
 	    offsetof(spa_error_entry_t, se_avl));
 }
 
 static void
 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
 {
 	const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
 	enum zti_modes mode = ztip->zti_mode;
 	uint_t value = ztip->zti_value;
 	uint_t count = ztip->zti_count;
 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
 	uint_t cpus, flags = TASKQ_DYNAMIC;
 	boolean_t batch = B_FALSE;
 
 	switch (mode) {
 	case ZTI_MODE_FIXED:
 		ASSERT3U(value, >, 0);
 		break;
 
 	case ZTI_MODE_BATCH:
 		batch = B_TRUE;
 		flags |= TASKQ_THREADS_CPU_PCT;
 		value = MIN(zio_taskq_batch_pct, 100);
 		break;
 
 	case ZTI_MODE_SCALE:
 		flags |= TASKQ_THREADS_CPU_PCT;
 		/*
 		 * We want more taskqs to reduce lock contention, but we want
 		 * less for better request ordering and CPU utilization.
 		 */
 		cpus = MAX(1, boot_ncpus * zio_taskq_batch_pct / 100);
 		if (zio_taskq_batch_tpq > 0) {
 			count = MAX(1, (cpus + zio_taskq_batch_tpq / 2) /
 			    zio_taskq_batch_tpq);
 		} else {
 			/*
 			 * Prefer 6 threads per taskq, but no more taskqs
 			 * than threads in them on large systems. For 80%:
 			 *
 			 *                 taskq   taskq   total
 			 * cpus    taskqs  percent threads threads
 			 * ------- ------- ------- ------- -------
 			 * 1       1       80%     1       1
 			 * 2       1       80%     1       1
 			 * 4       1       80%     3       3
 			 * 8       2       40%     3       6
 			 * 16      3       27%     4       12
 			 * 32      5       16%     5       25
 			 * 64      7       11%     7       49
 			 * 128     10      8%      10      100
 			 * 256     14      6%      15      210
 			 */
 			count = 1 + cpus / 6;
 			while (count * count > cpus)
 				count--;
 		}
 		/* Limit each taskq within 100% to not trigger assertion. */
 		count = MAX(count, (zio_taskq_batch_pct + 99) / 100);
 		value = (zio_taskq_batch_pct + count / 2) / count;
 		break;
 
 	case ZTI_MODE_NULL:
 		tqs->stqs_count = 0;
 		tqs->stqs_taskq = NULL;
 		return;
 
 	default:
 		panic("unrecognized mode for %s_%s taskq (%u:%u) in "
 		    "spa_activate()",
 		    zio_type_name[t], zio_taskq_types[q], mode, value);
 		break;
 	}
 
 	ASSERT3U(count, >, 0);
 	tqs->stqs_count = count;
 	tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
 
 	for (uint_t i = 0; i < count; i++) {
 		taskq_t *tq;
 		char name[32];
 
 		if (count > 1)
 			(void) snprintf(name, sizeof (name), "%s_%s_%u",
 			    zio_type_name[t], zio_taskq_types[q], i);
 		else
 			(void) snprintf(name, sizeof (name), "%s_%s",
 			    zio_type_name[t], zio_taskq_types[q]);
 
 		if (zio_taskq_sysdc && spa->spa_proc != &p0) {
 			if (batch)
 				flags |= TASKQ_DC_BATCH;
 
 			(void) zio_taskq_basedc;
 			tq = taskq_create_sysdc(name, value, 50, INT_MAX,
 			    spa->spa_proc, zio_taskq_basedc, flags);
 		} else {
 			pri_t pri = maxclsyspri;
 			/*
 			 * The write issue taskq can be extremely CPU
 			 * intensive.  Run it at slightly less important
 			 * priority than the other taskqs.
 			 *
 			 * Under Linux and FreeBSD this means incrementing
 			 * the priority value as opposed to platforms like
 			 * illumos where it should be decremented.
 			 *
 			 * On FreeBSD, if priorities divided by four (RQ_PPQ)
 			 * are equal then a difference between them is
 			 * insignificant.
 			 */
 			if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE) {
 #if defined(__linux__)
 				pri++;
 #elif defined(__FreeBSD__)
 				pri += 4;
 #else
 #error "unknown OS"
 #endif
 			}
 			tq = taskq_create_proc(name, value, pri, 50,
 			    INT_MAX, spa->spa_proc, flags);
 		}
 
 		tqs->stqs_taskq[i] = tq;
 	}
 }
 
 static void
 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
 {
 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
 
 	if (tqs->stqs_taskq == NULL) {
 		ASSERT3U(tqs->stqs_count, ==, 0);
 		return;
 	}
 
 	for (uint_t i = 0; i < tqs->stqs_count; i++) {
 		ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
 		taskq_destroy(tqs->stqs_taskq[i]);
 	}
 
 	kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
 	tqs->stqs_taskq = NULL;
 }
 
 #ifdef _KERNEL
 /*
  * The READ and WRITE rows of zio_taskqs are configurable at module load time
  * by setting zio_taskq_read or zio_taskq_write.
  *
  * Example (the defaults for READ and WRITE)
  *   zio_taskq_read='fixed,1,8 null scale null'
  *   zio_taskq_write='batch fixed,1,5 scale fixed,1,5'
  *
  * Each sets the entire row at a time.
  *
  * 'fixed' is parameterised: fixed,Q,T where Q is number of taskqs, T is number
  * of threads per taskq.
  *
  * 'null' can only be set on the high-priority queues (queue selection for
  * high-priority queues will fall back to the regular queue if the high-pri
  * is NULL.
  */
 static const char *const modes[ZTI_NMODES] = {
 	"fixed", "batch", "scale", "null"
 };
 
 /* Parse the incoming config string. Modifies cfg */
 static int
 spa_taskq_param_set(zio_type_t t, char *cfg)
 {
 	int err = 0;
 
 	zio_taskq_info_t row[ZIO_TASKQ_TYPES] = {{0}};
 
 	char *next = cfg, *tok, *c;
 
 	/*
 	 * Parse out each element from the string and fill `row`. The entire
 	 * row has to be set at once, so any errors are flagged by just
 	 * breaking out of this loop early.
 	 */
 	uint_t q;
 	for (q = 0; q < ZIO_TASKQ_TYPES; q++) {
 		/* `next` is the start of the config */
 		if (next == NULL)
 			break;
 
 		/* Eat up leading space */
 		while (isspace(*next))
 			next++;
 		if (*next == '\0')
 			break;
 
 		/* Mode ends at space or end of string */
 		tok = next;
 		next = strchr(tok, ' ');
 		if (next != NULL) *next++ = '\0';
 
 		/* Parameters start after a comma */
 		c = strchr(tok, ',');
 		if (c != NULL) *c++ = '\0';
 
 		/* Match mode string */
 		uint_t mode;
 		for (mode = 0; mode < ZTI_NMODES; mode++)
 			if (strcmp(tok, modes[mode]) == 0)
 				break;
 		if (mode == ZTI_NMODES)
 			break;
 
 		/* Invalid canary */
 		row[q].zti_mode = ZTI_NMODES;
 
 		/* Per-mode setup */
 		switch (mode) {
 
 		/*
 		 * FIXED is parameterised: number of queues, and number of
 		 * threads per queue.
 		 */
 		case ZTI_MODE_FIXED: {
 			/* No parameters? */
 			if (c == NULL || *c == '\0')
 				break;
 
 			/* Find next parameter */
 			tok = c;
 			c = strchr(tok, ',');
 			if (c == NULL)
 				break;
 
 			/* Take digits and convert */
 			unsigned long long nq;
 			if (!(isdigit(*tok)))
 				break;
 			err = ddi_strtoull(tok, &tok, 10, &nq);
 			/* Must succeed and also end at the next param sep */
 			if (err != 0 || tok != c)
 				break;
 
 			/* Move past the comma */
 			tok++;
 			/* Need another number */
 			if (!(isdigit(*tok)))
 				break;
 			/* Remember start to make sure we moved */
 			c = tok;
 
 			/* Take digits */
 			unsigned long long ntpq;
 			err = ddi_strtoull(tok, &tok, 10, &ntpq);
 			/* Must succeed, and moved forward */
 			if (err != 0 || tok == c || *tok != '\0')
 				break;
 
 			/*
 			 * sanity; zero queues/threads make no sense, and
 			 * 16K is almost certainly more than anyone will ever
 			 * need and avoids silly numbers like UINT32_MAX
 			 */
 			if (nq == 0 || nq >= 16384 ||
 			    ntpq == 0 || ntpq >= 16384)
 				break;
 
 			const zio_taskq_info_t zti = ZTI_P(ntpq, nq);
 			row[q] = zti;
 			break;
 		}
 
 		case ZTI_MODE_BATCH: {
 			const zio_taskq_info_t zti = ZTI_BATCH;
 			row[q] = zti;
 			break;
 		}
 
 		case ZTI_MODE_SCALE: {
 			const zio_taskq_info_t zti = ZTI_SCALE;
 			row[q] = zti;
 			break;
 		}
 
 		case ZTI_MODE_NULL: {
 			/*
 			 * Can only null the high-priority queues; the general-
 			 * purpose ones have to exist.
 			 */
 			if (q != ZIO_TASKQ_ISSUE_HIGH &&
 			    q != ZIO_TASKQ_INTERRUPT_HIGH)
 				break;
 
 			const zio_taskq_info_t zti = ZTI_NULL;
 			row[q] = zti;
 			break;
 		}
 
 		default:
 			break;
 		}
 
 		/* Ensure we set a mode */
 		if (row[q].zti_mode == ZTI_NMODES)
 			break;
 	}
 
 	/* Didn't get a full row, fail */
 	if (q < ZIO_TASKQ_TYPES)
 		return (SET_ERROR(EINVAL));
 
 	/* Eat trailing space */
 	if (next != NULL)
 		while (isspace(*next))
 			next++;
 
 	/* If there's anything left over then fail */
 	if (next != NULL && *next != '\0')
 		return (SET_ERROR(EINVAL));
 
 	/* Success! Copy it into the real config */
 	for (q = 0; q < ZIO_TASKQ_TYPES; q++)
 		zio_taskqs[t][q] = row[q];
 
 	return (0);
 }
 
 static int
 spa_taskq_param_get(zio_type_t t, char *buf, boolean_t add_newline)
 {
 	int pos = 0;
 
 	/* Build paramater string from live config */
 	const char *sep = "";
 	for (uint_t q = 0; q < ZIO_TASKQ_TYPES; q++) {
 		const zio_taskq_info_t *zti = &zio_taskqs[t][q];
 		if (zti->zti_mode == ZTI_MODE_FIXED)
 			pos += sprintf(&buf[pos], "%s%s,%u,%u", sep,
 			    modes[zti->zti_mode], zti->zti_count,
 			    zti->zti_value);
 		else
 			pos += sprintf(&buf[pos], "%s%s", sep,
 			    modes[zti->zti_mode]);
 		sep = " ";
 	}
 
 	if (add_newline)
 		buf[pos++] = '\n';
 	buf[pos] = '\0';
 
 	return (pos);
 }
 
 #ifdef __linux__
 static int
 spa_taskq_read_param_set(const char *val, zfs_kernel_param_t *kp)
 {
 	char *cfg = kmem_strdup(val);
 	int err = spa_taskq_param_set(ZIO_TYPE_READ, cfg);
 	kmem_free(cfg, strlen(val)+1);
 	return (-err);
 }
 static int
 spa_taskq_read_param_get(char *buf, zfs_kernel_param_t *kp)
 {
 	return (spa_taskq_param_get(ZIO_TYPE_READ, buf, TRUE));
 }
 
 static int
 spa_taskq_write_param_set(const char *val, zfs_kernel_param_t *kp)
 {
 	char *cfg = kmem_strdup(val);
 	int err = spa_taskq_param_set(ZIO_TYPE_WRITE, cfg);
 	kmem_free(cfg, strlen(val)+1);
 	return (-err);
 }
 static int
 spa_taskq_write_param_get(char *buf, zfs_kernel_param_t *kp)
 {
 	return (spa_taskq_param_get(ZIO_TYPE_WRITE, buf, TRUE));
 }
 #else
 /*
  * On FreeBSD load-time parameters can be set up before malloc() is available,
  * so we have to do all the parsing work on the stack.
  */
 #define	SPA_TASKQ_PARAM_MAX	(128)
 
 static int
 spa_taskq_read_param(ZFS_MODULE_PARAM_ARGS)
 {
 	char buf[SPA_TASKQ_PARAM_MAX];
 	int err;
 
 	(void) spa_taskq_param_get(ZIO_TYPE_READ, buf, FALSE);
 	err = sysctl_handle_string(oidp, buf, sizeof (buf), req);
 	if (err || req->newptr == NULL)
 		return (err);
 	return (spa_taskq_param_set(ZIO_TYPE_READ, buf));
 }
 
 static int
 spa_taskq_write_param(ZFS_MODULE_PARAM_ARGS)
 {
 	char buf[SPA_TASKQ_PARAM_MAX];
 	int err;
 
 	(void) spa_taskq_param_get(ZIO_TYPE_WRITE, buf, FALSE);
 	err = sysctl_handle_string(oidp, buf, sizeof (buf), req);
 	if (err || req->newptr == NULL)
 		return (err);
 	return (spa_taskq_param_set(ZIO_TYPE_WRITE, buf));
 }
 #endif
 #endif /* _KERNEL */
 
 /*
  * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
  * Note that a type may have multiple discrete taskqs to avoid lock contention
  * on the taskq itself. In that case we choose which taskq at random by using
  * the low bits of gethrtime().
  */
 void
 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
     task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
 {
 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
 	taskq_t *tq;
 
 	ASSERT3P(tqs->stqs_taskq, !=, NULL);
 	ASSERT3U(tqs->stqs_count, !=, 0);
 
 	if (tqs->stqs_count == 1) {
 		tq = tqs->stqs_taskq[0];
 	} else {
 		tq = tqs->stqs_taskq[((uint64_t)gethrtime()) % tqs->stqs_count];
 	}
 
 	taskq_dispatch_ent(tq, func, arg, flags, ent);
 }
 
 /*
  * Same as spa_taskq_dispatch_ent() but block on the task until completion.
  */
 void
 spa_taskq_dispatch_sync(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
     task_func_t *func, void *arg, uint_t flags)
 {
 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
 	taskq_t *tq;
 	taskqid_t id;
 
 	ASSERT3P(tqs->stqs_taskq, !=, NULL);
 	ASSERT3U(tqs->stqs_count, !=, 0);
 
 	if (tqs->stqs_count == 1) {
 		tq = tqs->stqs_taskq[0];
 	} else {
 		tq = tqs->stqs_taskq[((uint64_t)gethrtime()) % tqs->stqs_count];
 	}
 
 	id = taskq_dispatch(tq, func, arg, flags);
 	if (id)
 		taskq_wait_id(tq, id);
 }
 
 static void
 spa_create_zio_taskqs(spa_t *spa)
 {
 	for (int t = 0; t < ZIO_TYPES; t++) {
 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
 			spa_taskqs_init(spa, t, q);
 		}
 	}
 }
 
 /*
  * Disabled until spa_thread() can be adapted for Linux.
  */
 #undef HAVE_SPA_THREAD
 
 #if defined(_KERNEL) && defined(HAVE_SPA_THREAD)
 static void
 spa_thread(void *arg)
 {
 	psetid_t zio_taskq_psrset_bind = PS_NONE;
 	callb_cpr_t cprinfo;
 
 	spa_t *spa = arg;
 	user_t *pu = PTOU(curproc);
 
 	CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
 	    spa->spa_name);
 
 	ASSERT(curproc != &p0);
 	(void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
 	    "zpool-%s", spa->spa_name);
 	(void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
 
 	/* bind this thread to the requested psrset */
 	if (zio_taskq_psrset_bind != PS_NONE) {
 		pool_lock();
 		mutex_enter(&cpu_lock);
 		mutex_enter(&pidlock);
 		mutex_enter(&curproc->p_lock);
 
 		if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
 		    0, NULL, NULL) == 0)  {
 			curthread->t_bind_pset = zio_taskq_psrset_bind;
 		} else {
 			cmn_err(CE_WARN,
 			    "Couldn't bind process for zfs pool \"%s\" to "
 			    "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
 		}
 
 		mutex_exit(&curproc->p_lock);
 		mutex_exit(&pidlock);
 		mutex_exit(&cpu_lock);
 		pool_unlock();
 	}
 
 	if (zio_taskq_sysdc) {
 		sysdc_thread_enter(curthread, 100, 0);
 	}
 
 	spa->spa_proc = curproc;
 	spa->spa_did = curthread->t_did;
 
 	spa_create_zio_taskqs(spa);
 
 	mutex_enter(&spa->spa_proc_lock);
 	ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
 
 	spa->spa_proc_state = SPA_PROC_ACTIVE;
 	cv_broadcast(&spa->spa_proc_cv);
 
 	CALLB_CPR_SAFE_BEGIN(&cprinfo);
 	while (spa->spa_proc_state == SPA_PROC_ACTIVE)
 		cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
 	CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
 
 	ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
 	spa->spa_proc_state = SPA_PROC_GONE;
 	spa->spa_proc = &p0;
 	cv_broadcast(&spa->spa_proc_cv);
 	CALLB_CPR_EXIT(&cprinfo);	/* drops spa_proc_lock */
 
 	mutex_enter(&curproc->p_lock);
 	lwp_exit();
 }
 #endif
 
 /*
  * Activate an uninitialized pool.
  */
 static void
 spa_activate(spa_t *spa, spa_mode_t mode)
 {
 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
 
 	spa->spa_state = POOL_STATE_ACTIVE;
 	spa->spa_mode = mode;
 	spa->spa_read_spacemaps = spa_mode_readable_spacemaps;
 
 	spa->spa_normal_class = metaslab_class_create(spa, &zfs_metaslab_ops);
 	spa->spa_log_class = metaslab_class_create(spa, &zfs_metaslab_ops);
 	spa->spa_embedded_log_class =
 	    metaslab_class_create(spa, &zfs_metaslab_ops);
 	spa->spa_special_class = metaslab_class_create(spa, &zfs_metaslab_ops);
 	spa->spa_dedup_class = metaslab_class_create(spa, &zfs_metaslab_ops);
 
 	/* Try to create a covering process */
 	mutex_enter(&spa->spa_proc_lock);
 	ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
 	ASSERT(spa->spa_proc == &p0);
 	spa->spa_did = 0;
 
 	(void) spa_create_process;
 #ifdef HAVE_SPA_THREAD
 	/* Only create a process if we're going to be around a while. */
 	if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
 		if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
 		    NULL, 0) == 0) {
 			spa->spa_proc_state = SPA_PROC_CREATED;
 			while (spa->spa_proc_state == SPA_PROC_CREATED) {
 				cv_wait(&spa->spa_proc_cv,
 				    &spa->spa_proc_lock);
 			}
 			ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
 			ASSERT(spa->spa_proc != &p0);
 			ASSERT(spa->spa_did != 0);
 		} else {
 #ifdef _KERNEL
 			cmn_err(CE_WARN,
 			    "Couldn't create process for zfs pool \"%s\"\n",
 			    spa->spa_name);
 #endif
 		}
 	}
 #endif /* HAVE_SPA_THREAD */
 	mutex_exit(&spa->spa_proc_lock);
 
 	/* If we didn't create a process, we need to create our taskqs. */
 	if (spa->spa_proc == &p0) {
 		spa_create_zio_taskqs(spa);
 	}
 
 	for (size_t i = 0; i < TXG_SIZE; i++) {
 		spa->spa_txg_zio[i] = zio_root(spa, NULL, NULL,
 		    ZIO_FLAG_CANFAIL);
 	}
 
 	list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
 	    offsetof(vdev_t, vdev_config_dirty_node));
 	list_create(&spa->spa_evicting_os_list, sizeof (objset_t),
 	    offsetof(objset_t, os_evicting_node));
 	list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
 	    offsetof(vdev_t, vdev_state_dirty_node));
 
 	txg_list_create(&spa->spa_vdev_txg_list, spa,
 	    offsetof(struct vdev, vdev_txg_node));
 
 	avl_create(&spa->spa_errlist_scrub,
 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
 	    offsetof(spa_error_entry_t, se_avl));
 	avl_create(&spa->spa_errlist_last,
 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
 	    offsetof(spa_error_entry_t, se_avl));
 	avl_create(&spa->spa_errlist_healed,
 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
 	    offsetof(spa_error_entry_t, se_avl));
 
 	spa_activate_os(spa);
 
 	spa_keystore_init(&spa->spa_keystore);
 
 	/*
 	 * This taskq is used to perform zvol-minor-related tasks
 	 * asynchronously. This has several advantages, including easy
 	 * resolution of various deadlocks.
 	 *
 	 * The taskq must be single threaded to ensure tasks are always
 	 * processed in the order in which they were dispatched.
 	 *
 	 * A taskq per pool allows one to keep the pools independent.
 	 * This way if one pool is suspended, it will not impact another.
 	 *
 	 * The preferred location to dispatch a zvol minor task is a sync
 	 * task. In this context, there is easy access to the spa_t and minimal
 	 * error handling is required because the sync task must succeed.
 	 */
 	spa->spa_zvol_taskq = taskq_create("z_zvol", 1, defclsyspri,
 	    1, INT_MAX, 0);
 
 	/*
 	 * The taskq to preload metaslabs.
 	 */
 	spa->spa_metaslab_taskq = taskq_create("z_metaslab",
 	    metaslab_preload_pct, maxclsyspri, 1, INT_MAX,
 	    TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT);
 
 	/*
 	 * Taskq dedicated to prefetcher threads: this is used to prevent the
 	 * pool traverse code from monopolizing the global (and limited)
 	 * system_taskq by inappropriately scheduling long running tasks on it.
 	 */
 	spa->spa_prefetch_taskq = taskq_create("z_prefetch", 100,
 	    defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT);
 
 	/*
 	 * The taskq to upgrade datasets in this pool. Currently used by
 	 * feature SPA_FEATURE_USEROBJ_ACCOUNTING/SPA_FEATURE_PROJECT_QUOTA.
 	 */
 	spa->spa_upgrade_taskq = taskq_create("z_upgrade", 100,
 	    defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT);
 }
 
 /*
  * Opposite of spa_activate().
  */
 static void
 spa_deactivate(spa_t *spa)
 {
 	ASSERT(spa->spa_sync_on == B_FALSE);
 	ASSERT(spa->spa_dsl_pool == NULL);
 	ASSERT(spa->spa_root_vdev == NULL);
 	ASSERT(spa->spa_async_zio_root == NULL);
 	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
 
 	spa_evicting_os_wait(spa);
 
 	if (spa->spa_zvol_taskq) {
 		taskq_destroy(spa->spa_zvol_taskq);
 		spa->spa_zvol_taskq = NULL;
 	}
 
 	if (spa->spa_metaslab_taskq) {
 		taskq_destroy(spa->spa_metaslab_taskq);
 		spa->spa_metaslab_taskq = NULL;
 	}
 
 	if (spa->spa_prefetch_taskq) {
 		taskq_destroy(spa->spa_prefetch_taskq);
 		spa->spa_prefetch_taskq = NULL;
 	}
 
 	if (spa->spa_upgrade_taskq) {
 		taskq_destroy(spa->spa_upgrade_taskq);
 		spa->spa_upgrade_taskq = NULL;
 	}
 
 	txg_list_destroy(&spa->spa_vdev_txg_list);
 
 	list_destroy(&spa->spa_config_dirty_list);
 	list_destroy(&spa->spa_evicting_os_list);
 	list_destroy(&spa->spa_state_dirty_list);
 
 	taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
 
 	for (int t = 0; t < ZIO_TYPES; t++) {
 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
 			spa_taskqs_fini(spa, t, q);
 		}
 	}
 
 	for (size_t i = 0; i < TXG_SIZE; i++) {
 		ASSERT3P(spa->spa_txg_zio[i], !=, NULL);
 		VERIFY0(zio_wait(spa->spa_txg_zio[i]));
 		spa->spa_txg_zio[i] = NULL;
 	}
 
 	metaslab_class_destroy(spa->spa_normal_class);
 	spa->spa_normal_class = NULL;
 
 	metaslab_class_destroy(spa->spa_log_class);
 	spa->spa_log_class = NULL;
 
 	metaslab_class_destroy(spa->spa_embedded_log_class);
 	spa->spa_embedded_log_class = NULL;
 
 	metaslab_class_destroy(spa->spa_special_class);
 	spa->spa_special_class = NULL;
 
 	metaslab_class_destroy(spa->spa_dedup_class);
 	spa->spa_dedup_class = NULL;
 
 	/*
 	 * If this was part of an import or the open otherwise failed, we may
 	 * still have errors left in the queues.  Empty them just in case.
 	 */
 	spa_errlog_drain(spa);
 	avl_destroy(&spa->spa_errlist_scrub);
 	avl_destroy(&spa->spa_errlist_last);
 	avl_destroy(&spa->spa_errlist_healed);
 
 	spa_keystore_fini(&spa->spa_keystore);
 
 	spa->spa_state = POOL_STATE_UNINITIALIZED;
 
 	mutex_enter(&spa->spa_proc_lock);
 	if (spa->spa_proc_state != SPA_PROC_NONE) {
 		ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
 		spa->spa_proc_state = SPA_PROC_DEACTIVATE;
 		cv_broadcast(&spa->spa_proc_cv);
 		while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
 			ASSERT(spa->spa_proc != &p0);
 			cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
 		}
 		ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
 		spa->spa_proc_state = SPA_PROC_NONE;
 	}
 	ASSERT(spa->spa_proc == &p0);
 	mutex_exit(&spa->spa_proc_lock);
 
 	/*
 	 * We want to make sure spa_thread() has actually exited the ZFS
 	 * module, so that the module can't be unloaded out from underneath
 	 * it.
 	 */
 	if (spa->spa_did != 0) {
 		thread_join(spa->spa_did);
 		spa->spa_did = 0;
 	}
 
 	spa_deactivate_os(spa);
 
 }
 
 /*
  * Verify a pool configuration, and construct the vdev tree appropriately.  This
  * will create all the necessary vdevs in the appropriate layout, with each vdev
  * in the CLOSED state.  This will prep the pool before open/creation/import.
  * All vdev validation is done by the vdev_alloc() routine.
  */
 int
 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
     uint_t id, int atype)
 {
 	nvlist_t **child;
 	uint_t children;
 	int error;
 
 	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
 		return (error);
 
 	if ((*vdp)->vdev_ops->vdev_op_leaf)
 		return (0);
 
 	error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
 	    &child, &children);
 
 	if (error == ENOENT)
 		return (0);
 
 	if (error) {
 		vdev_free(*vdp);
 		*vdp = NULL;
 		return (SET_ERROR(EINVAL));
 	}
 
 	for (int c = 0; c < children; c++) {
 		vdev_t *vd;
 		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
 		    atype)) != 0) {
 			vdev_free(*vdp);
 			*vdp = NULL;
 			return (error);
 		}
 	}
 
 	ASSERT(*vdp != NULL);
 
 	return (0);
 }
 
 static boolean_t
 spa_should_flush_logs_on_unload(spa_t *spa)
 {
 	if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))
 		return (B_FALSE);
 
 	if (!spa_writeable(spa))
 		return (B_FALSE);
 
 	if (!spa->spa_sync_on)
 		return (B_FALSE);
 
 	if (spa_state(spa) != POOL_STATE_EXPORTED)
 		return (B_FALSE);
 
 	if (zfs_keep_log_spacemaps_at_export)
 		return (B_FALSE);
 
 	return (B_TRUE);
 }
 
 /*
  * Opens a transaction that will set the flag that will instruct
  * spa_sync to attempt to flush all the metaslabs for that txg.
  */
 static void
 spa_unload_log_sm_flush_all(spa_t *spa)
 {
 	dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
 
 	ASSERT3U(spa->spa_log_flushall_txg, ==, 0);
 	spa->spa_log_flushall_txg = dmu_tx_get_txg(tx);
 
 	dmu_tx_commit(tx);
 	txg_wait_synced(spa_get_dsl(spa), spa->spa_log_flushall_txg);
 }
 
 static void
 spa_unload_log_sm_metadata(spa_t *spa)
 {
 	void *cookie = NULL;
 	spa_log_sm_t *sls;
 	log_summary_entry_t *e;
 
 	while ((sls = avl_destroy_nodes(&spa->spa_sm_logs_by_txg,
 	    &cookie)) != NULL) {
 		VERIFY0(sls->sls_mscount);
 		kmem_free(sls, sizeof (spa_log_sm_t));
 	}
 
 	while ((e = list_remove_head(&spa->spa_log_summary)) != NULL) {
 		VERIFY0(e->lse_mscount);
 		kmem_free(e, sizeof (log_summary_entry_t));
 	}
 
 	spa->spa_unflushed_stats.sus_nblocks = 0;
 	spa->spa_unflushed_stats.sus_memused = 0;
 	spa->spa_unflushed_stats.sus_blocklimit = 0;
 }
 
 static void
 spa_destroy_aux_threads(spa_t *spa)
 {
 	if (spa->spa_condense_zthr != NULL) {
 		zthr_destroy(spa->spa_condense_zthr);
 		spa->spa_condense_zthr = NULL;
 	}
 	if (spa->spa_checkpoint_discard_zthr != NULL) {
 		zthr_destroy(spa->spa_checkpoint_discard_zthr);
 		spa->spa_checkpoint_discard_zthr = NULL;
 	}
 	if (spa->spa_livelist_delete_zthr != NULL) {
 		zthr_destroy(spa->spa_livelist_delete_zthr);
 		spa->spa_livelist_delete_zthr = NULL;
 	}
 	if (spa->spa_livelist_condense_zthr != NULL) {
 		zthr_destroy(spa->spa_livelist_condense_zthr);
 		spa->spa_livelist_condense_zthr = NULL;
 	}
 }
 
 /*
  * Opposite of spa_load().
  */
 static void
 spa_unload(spa_t *spa)
 {
 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
 	ASSERT(spa_state(spa) != POOL_STATE_UNINITIALIZED);
 
 	spa_import_progress_remove(spa_guid(spa));
 	spa_load_note(spa, "UNLOADING");
 
 	spa_wake_waiters(spa);
 
 	/*
 	 * If we have set the spa_final_txg, we have already performed the
 	 * tasks below in spa_export_common(). We should not redo it here since
 	 * we delay the final TXGs beyond what spa_final_txg is set at.
 	 */
 	if (spa->spa_final_txg == UINT64_MAX) {
 		/*
 		 * If the log space map feature is enabled and the pool is
 		 * getting exported (but not destroyed), we want to spend some
 		 * time flushing as many metaslabs as we can in an attempt to
 		 * destroy log space maps and save import time.
 		 */
 		if (spa_should_flush_logs_on_unload(spa))
 			spa_unload_log_sm_flush_all(spa);
 
 		/*
 		 * Stop async tasks.
 		 */
 		spa_async_suspend(spa);
 
 		if (spa->spa_root_vdev) {
 			vdev_t *root_vdev = spa->spa_root_vdev;
 			vdev_initialize_stop_all(root_vdev,
 			    VDEV_INITIALIZE_ACTIVE);
 			vdev_trim_stop_all(root_vdev, VDEV_TRIM_ACTIVE);
 			vdev_autotrim_stop_all(spa);
 			vdev_rebuild_stop_all(spa);
 		}
 	}
 
 	/*
 	 * Stop syncing.
 	 */
 	if (spa->spa_sync_on) {
 		txg_sync_stop(spa->spa_dsl_pool);
 		spa->spa_sync_on = B_FALSE;
 	}
 
 	/*
 	 * This ensures that there is no async metaslab prefetching
 	 * while we attempt to unload the spa.
 	 */
 	taskq_wait(spa->spa_metaslab_taskq);
 
 	if (spa->spa_mmp.mmp_thread)
 		mmp_thread_stop(spa);
 
 	/*
 	 * Wait for any outstanding async I/O to complete.
 	 */
 	if (spa->spa_async_zio_root != NULL) {
 		for (int i = 0; i < max_ncpus; i++)
 			(void) zio_wait(spa->spa_async_zio_root[i]);
 		kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *));
 		spa->spa_async_zio_root = NULL;
 	}
 
 	if (spa->spa_vdev_removal != NULL) {
 		spa_vdev_removal_destroy(spa->spa_vdev_removal);
 		spa->spa_vdev_removal = NULL;
 	}
 
 	spa_destroy_aux_threads(spa);
 
 	spa_condense_fini(spa);
 
 	bpobj_close(&spa->spa_deferred_bpobj);
 
 	spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
 
 	/*
 	 * Close all vdevs.
 	 */
 	if (spa->spa_root_vdev)
 		vdev_free(spa->spa_root_vdev);
 	ASSERT(spa->spa_root_vdev == NULL);
 
 	/*
 	 * Close the dsl pool.
 	 */
 	if (spa->spa_dsl_pool) {
 		dsl_pool_close(spa->spa_dsl_pool);
 		spa->spa_dsl_pool = NULL;
 		spa->spa_meta_objset = NULL;
 	}
 
 	ddt_unload(spa);
 	brt_unload(spa);
 	spa_unload_log_sm_metadata(spa);
 
 	/*
 	 * Drop and purge level 2 cache
 	 */
 	spa_l2cache_drop(spa);
 
 	if (spa->spa_spares.sav_vdevs) {
 		for (int i = 0; i < spa->spa_spares.sav_count; i++)
 			vdev_free(spa->spa_spares.sav_vdevs[i]);
 		kmem_free(spa->spa_spares.sav_vdevs,
 		    spa->spa_spares.sav_count * sizeof (void *));
 		spa->spa_spares.sav_vdevs = NULL;
 	}
 	if (spa->spa_spares.sav_config) {
 		nvlist_free(spa->spa_spares.sav_config);
 		spa->spa_spares.sav_config = NULL;
 	}
 	spa->spa_spares.sav_count = 0;
 
 	if (spa->spa_l2cache.sav_vdevs) {
 		for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
 			vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
 			vdev_free(spa->spa_l2cache.sav_vdevs[i]);
 		}
 		kmem_free(spa->spa_l2cache.sav_vdevs,
 		    spa->spa_l2cache.sav_count * sizeof (void *));
 		spa->spa_l2cache.sav_vdevs = NULL;
 	}
 	if (spa->spa_l2cache.sav_config) {
 		nvlist_free(spa->spa_l2cache.sav_config);
 		spa->spa_l2cache.sav_config = NULL;
 	}
 	spa->spa_l2cache.sav_count = 0;
 
 	spa->spa_async_suspended = 0;
 
 	spa->spa_indirect_vdevs_loaded = B_FALSE;
 
 	if (spa->spa_comment != NULL) {
 		spa_strfree(spa->spa_comment);
 		spa->spa_comment = NULL;
 	}
 	if (spa->spa_compatibility != NULL) {
 		spa_strfree(spa->spa_compatibility);
 		spa->spa_compatibility = NULL;
 	}
 
 	spa_config_exit(spa, SCL_ALL, spa);
 }
 
 /*
  * Load (or re-load) the current list of vdevs describing the active spares for
  * this pool.  When this is called, we have some form of basic information in
  * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
  * then re-generate a more complete list including status information.
  */
 void
 spa_load_spares(spa_t *spa)
 {
 	nvlist_t **spares;
 	uint_t nspares;
 	int i;
 	vdev_t *vd, *tvd;
 
 #ifndef _KERNEL
 	/*
 	 * zdb opens both the current state of the pool and the
 	 * checkpointed state (if present), with a different spa_t.
 	 *
 	 * As spare vdevs are shared among open pools, we skip loading
 	 * them when we load the checkpointed state of the pool.
 	 */
 	if (!spa_writeable(spa))
 		return;
 #endif
 
 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
 
 	/*
 	 * First, close and free any existing spare vdevs.
 	 */
 	if (spa->spa_spares.sav_vdevs) {
 		for (i = 0; i < spa->spa_spares.sav_count; i++) {
 			vd = spa->spa_spares.sav_vdevs[i];
 
 			/* Undo the call to spa_activate() below */
 			if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
 			    B_FALSE)) != NULL && tvd->vdev_isspare)
 				spa_spare_remove(tvd);
 			vdev_close(vd);
 			vdev_free(vd);
 		}
 
 		kmem_free(spa->spa_spares.sav_vdevs,
 		    spa->spa_spares.sav_count * sizeof (void *));
 	}
 
 	if (spa->spa_spares.sav_config == NULL)
 		nspares = 0;
 	else
 		VERIFY0(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
 		    ZPOOL_CONFIG_SPARES, &spares, &nspares));
 
 	spa->spa_spares.sav_count = (int)nspares;
 	spa->spa_spares.sav_vdevs = NULL;
 
 	if (nspares == 0)
 		return;
 
 	/*
 	 * Construct the array of vdevs, opening them to get status in the
 	 * process.   For each spare, there is potentially two different vdev_t
 	 * structures associated with it: one in the list of spares (used only
 	 * for basic validation purposes) and one in the active vdev
 	 * configuration (if it's spared in).  During this phase we open and
 	 * validate each vdev on the spare list.  If the vdev also exists in the
 	 * active configuration, then we also mark this vdev as an active spare.
 	 */
 	spa->spa_spares.sav_vdevs = kmem_zalloc(nspares * sizeof (void *),
 	    KM_SLEEP);
 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
 		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
 		    VDEV_ALLOC_SPARE) == 0);
 		ASSERT(vd != NULL);
 
 		spa->spa_spares.sav_vdevs[i] = vd;
 
 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
 		    B_FALSE)) != NULL) {
 			if (!tvd->vdev_isspare)
 				spa_spare_add(tvd);
 
 			/*
 			 * We only mark the spare active if we were successfully
 			 * able to load the vdev.  Otherwise, importing a pool
 			 * with a bad active spare would result in strange
 			 * behavior, because multiple pool would think the spare
 			 * is actively in use.
 			 *
 			 * There is a vulnerability here to an equally bizarre
 			 * circumstance, where a dead active spare is later
 			 * brought back to life (onlined or otherwise).  Given
 			 * the rarity of this scenario, and the extra complexity
 			 * it adds, we ignore the possibility.
 			 */
 			if (!vdev_is_dead(tvd))
 				spa_spare_activate(tvd);
 		}
 
 		vd->vdev_top = vd;
 		vd->vdev_aux = &spa->spa_spares;
 
 		if (vdev_open(vd) != 0)
 			continue;
 
 		if (vdev_validate_aux(vd) == 0)
 			spa_spare_add(vd);
 	}
 
 	/*
 	 * Recompute the stashed list of spares, with status information
 	 * this time.
 	 */
 	fnvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES);
 
 	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
 	    KM_SLEEP);
 	for (i = 0; i < spa->spa_spares.sav_count; i++)
 		spares[i] = vdev_config_generate(spa,
 		    spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
 	fnvlist_add_nvlist_array(spa->spa_spares.sav_config,
 	    ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares,
 	    spa->spa_spares.sav_count);
 	for (i = 0; i < spa->spa_spares.sav_count; i++)
 		nvlist_free(spares[i]);
 	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
 }
 
 /*
  * Load (or re-load) the current list of vdevs describing the active l2cache for
  * this pool.  When this is called, we have some form of basic information in
  * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
  * then re-generate a more complete list including status information.
  * Devices which are already active have their details maintained, and are
  * not re-opened.
  */
 void
 spa_load_l2cache(spa_t *spa)
 {
 	nvlist_t **l2cache = NULL;
 	uint_t nl2cache;
 	int i, j, oldnvdevs;
 	uint64_t guid;
 	vdev_t *vd, **oldvdevs, **newvdevs;
 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
 
 #ifndef _KERNEL
 	/*
 	 * zdb opens both the current state of the pool and the
 	 * checkpointed state (if present), with a different spa_t.
 	 *
 	 * As L2 caches are part of the ARC which is shared among open
 	 * pools, we skip loading them when we load the checkpointed
 	 * state of the pool.
 	 */
 	if (!spa_writeable(spa))
 		return;
 #endif
 
 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
 
 	oldvdevs = sav->sav_vdevs;
 	oldnvdevs = sav->sav_count;
 	sav->sav_vdevs = NULL;
 	sav->sav_count = 0;
 
 	if (sav->sav_config == NULL) {
 		nl2cache = 0;
 		newvdevs = NULL;
 		goto out;
 	}
 
 	VERIFY0(nvlist_lookup_nvlist_array(sav->sav_config,
 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache));
 	newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
 
 	/*
 	 * Process new nvlist of vdevs.
 	 */
 	for (i = 0; i < nl2cache; i++) {
 		guid = fnvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID);
 
 		newvdevs[i] = NULL;
 		for (j = 0; j < oldnvdevs; j++) {
 			vd = oldvdevs[j];
 			if (vd != NULL && guid == vd->vdev_guid) {
 				/*
 				 * Retain previous vdev for add/remove ops.
 				 */
 				newvdevs[i] = vd;
 				oldvdevs[j] = NULL;
 				break;
 			}
 		}
 
 		if (newvdevs[i] == NULL) {
 			/*
 			 * Create new vdev
 			 */
 			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
 			    VDEV_ALLOC_L2CACHE) == 0);
 			ASSERT(vd != NULL);
 			newvdevs[i] = vd;
 
 			/*
 			 * Commit this vdev as an l2cache device,
 			 * even if it fails to open.
 			 */
 			spa_l2cache_add(vd);
 
 			vd->vdev_top = vd;
 			vd->vdev_aux = sav;
 
 			spa_l2cache_activate(vd);
 
 			if (vdev_open(vd) != 0)
 				continue;
 
 			(void) vdev_validate_aux(vd);
 
 			if (!vdev_is_dead(vd))
 				l2arc_add_vdev(spa, vd);
 
 			/*
 			 * Upon cache device addition to a pool or pool
 			 * creation with a cache device or if the header
 			 * of the device is invalid we issue an async
 			 * TRIM command for the whole device which will
 			 * execute if l2arc_trim_ahead > 0.
 			 */
 			spa_async_request(spa, SPA_ASYNC_L2CACHE_TRIM);
 		}
 	}
 
 	sav->sav_vdevs = newvdevs;
 	sav->sav_count = (int)nl2cache;
 
 	/*
 	 * Recompute the stashed list of l2cache devices, with status
 	 * information this time.
 	 */
 	fnvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE);
 
 	if (sav->sav_count > 0)
 		l2cache = kmem_alloc(sav->sav_count * sizeof (void *),
 		    KM_SLEEP);
 	for (i = 0; i < sav->sav_count; i++)
 		l2cache[i] = vdev_config_generate(spa,
 		    sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
 	fnvlist_add_nvlist_array(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
 	    (const nvlist_t * const *)l2cache, sav->sav_count);
 
 out:
 	/*
 	 * Purge vdevs that were dropped
 	 */
 	if (oldvdevs) {
 		for (i = 0; i < oldnvdevs; i++) {
 			uint64_t pool;
 
 			vd = oldvdevs[i];
 			if (vd != NULL) {
 				ASSERT(vd->vdev_isl2cache);
 
 				if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
 				    pool != 0ULL && l2arc_vdev_present(vd))
 					l2arc_remove_vdev(vd);
 				vdev_clear_stats(vd);
 				vdev_free(vd);
 			}
 		}
 
 		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
 	}
 
 	for (i = 0; i < sav->sav_count; i++)
 		nvlist_free(l2cache[i]);
 	if (sav->sav_count)
 		kmem_free(l2cache, sav->sav_count * sizeof (void *));
 }
 
 static int
 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
 {
 	dmu_buf_t *db;
 	char *packed = NULL;
 	size_t nvsize = 0;
 	int error;
 	*value = NULL;
 
 	error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
 	if (error)
 		return (error);
 
 	nvsize = *(uint64_t *)db->db_data;
 	dmu_buf_rele(db, FTAG);
 
 	packed = vmem_alloc(nvsize, KM_SLEEP);
 	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
 	    DMU_READ_PREFETCH);
 	if (error == 0)
 		error = nvlist_unpack(packed, nvsize, value, 0);
 	vmem_free(packed, nvsize);
 
 	return (error);
 }
 
 /*
  * Concrete top-level vdevs that are not missing and are not logs. At every
  * spa_sync we write new uberblocks to at least SPA_SYNC_MIN_VDEVS core tvds.
  */
 static uint64_t
 spa_healthy_core_tvds(spa_t *spa)
 {
 	vdev_t *rvd = spa->spa_root_vdev;
 	uint64_t tvds = 0;
 
 	for (uint64_t i = 0; i < rvd->vdev_children; i++) {
 		vdev_t *vd = rvd->vdev_child[i];
 		if (vd->vdev_islog)
 			continue;
 		if (vdev_is_concrete(vd) && !vdev_is_dead(vd))
 			tvds++;
 	}
 
 	return (tvds);
 }
 
 /*
  * Checks to see if the given vdev could not be opened, in which case we post a
  * sysevent to notify the autoreplace code that the device has been removed.
  */
 static void
 spa_check_removed(vdev_t *vd)
 {
 	for (uint64_t c = 0; c < vd->vdev_children; c++)
 		spa_check_removed(vd->vdev_child[c]);
 
 	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
 	    vdev_is_concrete(vd)) {
 		zfs_post_autoreplace(vd->vdev_spa, vd);
 		spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_CHECK);
 	}
 }
 
 static int
 spa_check_for_missing_logs(spa_t *spa)
 {
 	vdev_t *rvd = spa->spa_root_vdev;
 
 	/*
 	 * If we're doing a normal import, then build up any additional
 	 * diagnostic information about missing log devices.
 	 * We'll pass this up to the user for further processing.
 	 */
 	if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
 		nvlist_t **child, *nv;
 		uint64_t idx = 0;
 
 		child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t *),
 		    KM_SLEEP);
 		nv = fnvlist_alloc();
 
 		for (uint64_t c = 0; c < rvd->vdev_children; c++) {
 			vdev_t *tvd = rvd->vdev_child[c];
 
 			/*
 			 * We consider a device as missing only if it failed
 			 * to open (i.e. offline or faulted is not considered
 			 * as missing).
 			 */
 			if (tvd->vdev_islog &&
 			    tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
 				child[idx++] = vdev_config_generate(spa, tvd,
 				    B_FALSE, VDEV_CONFIG_MISSING);
 			}
 		}
 
 		if (idx > 0) {
 			fnvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
 			    (const nvlist_t * const *)child, idx);
 			fnvlist_add_nvlist(spa->spa_load_info,
 			    ZPOOL_CONFIG_MISSING_DEVICES, nv);
 
 			for (uint64_t i = 0; i < idx; i++)
 				nvlist_free(child[i]);
 		}
 		nvlist_free(nv);
 		kmem_free(child, rvd->vdev_children * sizeof (char **));
 
 		if (idx > 0) {
 			spa_load_failed(spa, "some log devices are missing");
 			vdev_dbgmsg_print_tree(rvd, 2);
 			return (SET_ERROR(ENXIO));
 		}
 	} else {
 		for (uint64_t c = 0; c < rvd->vdev_children; c++) {
 			vdev_t *tvd = rvd->vdev_child[c];
 
 			if (tvd->vdev_islog &&
 			    tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
 				spa_set_log_state(spa, SPA_LOG_CLEAR);
 				spa_load_note(spa, "some log devices are "
 				    "missing, ZIL is dropped.");
 				vdev_dbgmsg_print_tree(rvd, 2);
 				break;
 			}
 		}
 	}
 
 	return (0);
 }
 
 /*
  * Check for missing log devices
  */
 static boolean_t
 spa_check_logs(spa_t *spa)
 {
 	boolean_t rv = B_FALSE;
 	dsl_pool_t *dp = spa_get_dsl(spa);
 
 	switch (spa->spa_log_state) {
 	default:
 		break;
 	case SPA_LOG_MISSING:
 		/* need to recheck in case slog has been restored */
 	case SPA_LOG_UNKNOWN:
 		rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
 		    zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0);
 		if (rv)
 			spa_set_log_state(spa, SPA_LOG_MISSING);
 		break;
 	}
 	return (rv);
 }
 
 /*
  * Passivate any log vdevs (note, does not apply to embedded log metaslabs).
  */
 static boolean_t
 spa_passivate_log(spa_t *spa)
 {
 	vdev_t *rvd = spa->spa_root_vdev;
 	boolean_t slog_found = B_FALSE;
 
 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
 
 	for (int c = 0; c < rvd->vdev_children; c++) {
 		vdev_t *tvd = rvd->vdev_child[c];
 
 		if (tvd->vdev_islog) {
 			ASSERT3P(tvd->vdev_log_mg, ==, NULL);
 			metaslab_group_passivate(tvd->vdev_mg);
 			slog_found = B_TRUE;
 		}
 	}
 
 	return (slog_found);
 }
 
 /*
  * Activate any log vdevs (note, does not apply to embedded log metaslabs).
  */
 static void
 spa_activate_log(spa_t *spa)
 {
 	vdev_t *rvd = spa->spa_root_vdev;
 
 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
 
 	for (int c = 0; c < rvd->vdev_children; c++) {
 		vdev_t *tvd = rvd->vdev_child[c];
 
 		if (tvd->vdev_islog) {
 			ASSERT3P(tvd->vdev_log_mg, ==, NULL);
 			metaslab_group_activate(tvd->vdev_mg);
 		}
 	}
 }
 
 int
 spa_reset_logs(spa_t *spa)
 {
 	int error;
 
 	error = dmu_objset_find(spa_name(spa), zil_reset,
 	    NULL, DS_FIND_CHILDREN);
 	if (error == 0) {
 		/*
 		 * We successfully offlined the log device, sync out the
 		 * current txg so that the "stubby" block can be removed
 		 * by zil_sync().
 		 */
 		txg_wait_synced(spa->spa_dsl_pool, 0);
 	}
 	return (error);
 }
 
 static void
 spa_aux_check_removed(spa_aux_vdev_t *sav)
 {
 	for (int i = 0; i < sav->sav_count; i++)
 		spa_check_removed(sav->sav_vdevs[i]);
 }
 
 void
 spa_claim_notify(zio_t *zio)
 {
 	spa_t *spa = zio->io_spa;
 
 	if (zio->io_error)
 		return;
 
 	mutex_enter(&spa->spa_props_lock);	/* any mutex will do */
 	if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
 		spa->spa_claim_max_txg = zio->io_bp->blk_birth;
 	mutex_exit(&spa->spa_props_lock);
 }
 
 typedef struct spa_load_error {
 	boolean_t	sle_verify_data;
 	uint64_t	sle_meta_count;
 	uint64_t	sle_data_count;
 } spa_load_error_t;
 
 static void
 spa_load_verify_done(zio_t *zio)
 {
 	blkptr_t *bp = zio->io_bp;
 	spa_load_error_t *sle = zio->io_private;
 	dmu_object_type_t type = BP_GET_TYPE(bp);
 	int error = zio->io_error;
 	spa_t *spa = zio->io_spa;
 
 	abd_free(zio->io_abd);
 	if (error) {
 		if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
 		    type != DMU_OT_INTENT_LOG)
 			atomic_inc_64(&sle->sle_meta_count);
 		else
 			atomic_inc_64(&sle->sle_data_count);
 	}
 
 	mutex_enter(&spa->spa_scrub_lock);
 	spa->spa_load_verify_bytes -= BP_GET_PSIZE(bp);
 	cv_broadcast(&spa->spa_scrub_io_cv);
 	mutex_exit(&spa->spa_scrub_lock);
 }
 
 /*
  * Maximum number of inflight bytes is the log2 fraction of the arc size.
  * By default, we set it to 1/16th of the arc.
  */
 static uint_t spa_load_verify_shift = 4;
 static int spa_load_verify_metadata = B_TRUE;
 static int spa_load_verify_data = B_TRUE;
 
 static int
 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
     const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
 {
 	zio_t *rio = arg;
 	spa_load_error_t *sle = rio->io_private;
 
 	(void) zilog, (void) dnp;
 
 	/*
 	 * Note: normally this routine will not be called if
 	 * spa_load_verify_metadata is not set.  However, it may be useful
 	 * to manually set the flag after the traversal has begun.
 	 */
 	if (!spa_load_verify_metadata)
 		return (0);
 
 	/*
 	 * Sanity check the block pointer in order to detect obvious damage
 	 * before using the contents in subsequent checks or in zio_read().
 	 * When damaged consider it to be a metadata error since we cannot
 	 * trust the BP_GET_TYPE and BP_GET_LEVEL values.
 	 */
 	if (!zfs_blkptr_verify(spa, bp, BLK_CONFIG_NEEDED, BLK_VERIFY_LOG)) {
 		atomic_inc_64(&sle->sle_meta_count);
 		return (0);
 	}
 
 	if (zb->zb_level == ZB_DNODE_LEVEL || BP_IS_HOLE(bp) ||
 	    BP_IS_EMBEDDED(bp) || BP_IS_REDACTED(bp))
 		return (0);
 
 	if (!BP_IS_METADATA(bp) &&
 	    (!spa_load_verify_data || !sle->sle_verify_data))
 		return (0);
 
 	uint64_t maxinflight_bytes =
 	    arc_target_bytes() >> spa_load_verify_shift;
 	size_t size = BP_GET_PSIZE(bp);
 
 	mutex_enter(&spa->spa_scrub_lock);
 	while (spa->spa_load_verify_bytes >= maxinflight_bytes)
 		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
 	spa->spa_load_verify_bytes += size;
 	mutex_exit(&spa->spa_scrub_lock);
 
 	zio_nowait(zio_read(rio, spa, bp, abd_alloc_for_io(size, B_FALSE), size,
 	    spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
 	    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
 	    ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
 	return (0);
 }
 
 static int
 verify_dataset_name_len(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
 {
 	(void) dp, (void) arg;
 
 	if (dsl_dataset_namelen(ds) >= ZFS_MAX_DATASET_NAME_LEN)
 		return (SET_ERROR(ENAMETOOLONG));
 
 	return (0);
 }
 
 static int
 spa_load_verify(spa_t *spa)
 {
 	zio_t *rio;
 	spa_load_error_t sle = { 0 };
 	zpool_load_policy_t policy;
 	boolean_t verify_ok = B_FALSE;
 	int error = 0;
 
 	zpool_get_load_policy(spa->spa_config, &policy);
 
 	if (policy.zlp_rewind & ZPOOL_NEVER_REWIND ||
 	    policy.zlp_maxmeta == UINT64_MAX)
 		return (0);
 
 	dsl_pool_config_enter(spa->spa_dsl_pool, FTAG);
 	error = dmu_objset_find_dp(spa->spa_dsl_pool,
 	    spa->spa_dsl_pool->dp_root_dir_obj, verify_dataset_name_len, NULL,
 	    DS_FIND_CHILDREN);
 	dsl_pool_config_exit(spa->spa_dsl_pool, FTAG);
 	if (error != 0)
 		return (error);
 
 	/*
 	 * Verify data only if we are rewinding or error limit was set.
 	 * Otherwise nothing except dbgmsg care about it to waste time.
 	 */
 	sle.sle_verify_data = (policy.zlp_rewind & ZPOOL_REWIND_MASK) ||
 	    (policy.zlp_maxdata < UINT64_MAX);
 
 	rio = zio_root(spa, NULL, &sle,
 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
 
 	if (spa_load_verify_metadata) {
 		if (spa->spa_extreme_rewind) {
 			spa_load_note(spa, "performing a complete scan of the "
 			    "pool since extreme rewind is on. This may take "
 			    "a very long time.\n  (spa_load_verify_data=%u, "
 			    "spa_load_verify_metadata=%u)",
 			    spa_load_verify_data, spa_load_verify_metadata);
 		}
 
 		error = traverse_pool(spa, spa->spa_verify_min_txg,
 		    TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA |
 		    TRAVERSE_NO_DECRYPT, spa_load_verify_cb, rio);
 	}
 
 	(void) zio_wait(rio);
 	ASSERT0(spa->spa_load_verify_bytes);
 
 	spa->spa_load_meta_errors = sle.sle_meta_count;
 	spa->spa_load_data_errors = sle.sle_data_count;
 
 	if (sle.sle_meta_count != 0 || sle.sle_data_count != 0) {
 		spa_load_note(spa, "spa_load_verify found %llu metadata errors "
 		    "and %llu data errors", (u_longlong_t)sle.sle_meta_count,
 		    (u_longlong_t)sle.sle_data_count);
 	}
 
 	if (spa_load_verify_dryrun ||
 	    (!error && sle.sle_meta_count <= policy.zlp_maxmeta &&
 	    sle.sle_data_count <= policy.zlp_maxdata)) {
 		int64_t loss = 0;
 
 		verify_ok = B_TRUE;
 		spa->spa_load_txg = spa->spa_uberblock.ub_txg;
 		spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
 
 		loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
 		fnvlist_add_uint64(spa->spa_load_info, ZPOOL_CONFIG_LOAD_TIME,
 		    spa->spa_load_txg_ts);
 		fnvlist_add_int64(spa->spa_load_info, ZPOOL_CONFIG_REWIND_TIME,
 		    loss);
 		fnvlist_add_uint64(spa->spa_load_info,
 		    ZPOOL_CONFIG_LOAD_META_ERRORS, sle.sle_meta_count);
 		fnvlist_add_uint64(spa->spa_load_info,
 		    ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count);
 	} else {
 		spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
 	}
 
 	if (spa_load_verify_dryrun)
 		return (0);
 
 	if (error) {
 		if (error != ENXIO && error != EIO)
 			error = SET_ERROR(EIO);
 		return (error);
 	}
 
 	return (verify_ok ? 0 : EIO);
 }
 
 /*
  * Find a value in the pool props object.
  */
 static void
 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
 {
 	(void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
 	    zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
 }
 
 /*
  * Find a value in the pool directory object.
  */
 static int
 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val, boolean_t log_enoent)
 {
 	int error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
 	    name, sizeof (uint64_t), 1, val);
 
 	if (error != 0 && (error != ENOENT || log_enoent)) {
 		spa_load_failed(spa, "couldn't get '%s' value in MOS directory "
 		    "[error=%d]", name, error);
 	}
 
 	return (error);
 }
 
 static int
 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
 {
 	vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
 	return (SET_ERROR(err));
 }
 
 boolean_t
 spa_livelist_delete_check(spa_t *spa)
 {
 	return (spa->spa_livelists_to_delete != 0);
 }
 
 static boolean_t
 spa_livelist_delete_cb_check(void *arg, zthr_t *z)
 {
 	(void) z;
 	spa_t *spa = arg;
 	return (spa_livelist_delete_check(spa));
 }
 
 static int
 delete_blkptr_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
 {
 	spa_t *spa = arg;
 	zio_free(spa, tx->tx_txg, bp);
 	dsl_dir_diduse_space(tx->tx_pool->dp_free_dir, DD_USED_HEAD,
 	    -bp_get_dsize_sync(spa, bp),
 	    -BP_GET_PSIZE(bp), -BP_GET_UCSIZE(bp), tx);
 	return (0);
 }
 
 static int
 dsl_get_next_livelist_obj(objset_t *os, uint64_t zap_obj, uint64_t *llp)
 {
 	int err;
 	zap_cursor_t zc;
 	zap_attribute_t za;
 	zap_cursor_init(&zc, os, zap_obj);
 	err = zap_cursor_retrieve(&zc, &za);
 	zap_cursor_fini(&zc);
 	if (err == 0)
 		*llp = za.za_first_integer;
 	return (err);
 }
 
 /*
  * Components of livelist deletion that must be performed in syncing
  * context: freeing block pointers and updating the pool-wide data
  * structures to indicate how much work is left to do
  */
 typedef struct sublist_delete_arg {
 	spa_t *spa;
 	dsl_deadlist_t *ll;
 	uint64_t key;
 	bplist_t *to_free;
 } sublist_delete_arg_t;
 
 static void
 sublist_delete_sync(void *arg, dmu_tx_t *tx)
 {
 	sublist_delete_arg_t *sda = arg;
 	spa_t *spa = sda->spa;
 	dsl_deadlist_t *ll = sda->ll;
 	uint64_t key = sda->key;
 	bplist_t *to_free = sda->to_free;
 
 	bplist_iterate(to_free, delete_blkptr_cb, spa, tx);
 	dsl_deadlist_remove_entry(ll, key, tx);
 }
 
 typedef struct livelist_delete_arg {
 	spa_t *spa;
 	uint64_t ll_obj;
 	uint64_t zap_obj;
 } livelist_delete_arg_t;
 
 static void
 livelist_delete_sync(void *arg, dmu_tx_t *tx)
 {
 	livelist_delete_arg_t *lda = arg;
 	spa_t *spa = lda->spa;
 	uint64_t ll_obj = lda->ll_obj;
 	uint64_t zap_obj = lda->zap_obj;
 	objset_t *mos = spa->spa_meta_objset;
 	uint64_t count;
 
 	/* free the livelist and decrement the feature count */
 	VERIFY0(zap_remove_int(mos, zap_obj, ll_obj, tx));
 	dsl_deadlist_free(mos, ll_obj, tx);
 	spa_feature_decr(spa, SPA_FEATURE_LIVELIST, tx);
 	VERIFY0(zap_count(mos, zap_obj, &count));
 	if (count == 0) {
 		/* no more livelists to delete */
 		VERIFY0(zap_remove(mos, DMU_POOL_DIRECTORY_OBJECT,
 		    DMU_POOL_DELETED_CLONES, tx));
 		VERIFY0(zap_destroy(mos, zap_obj, tx));
 		spa->spa_livelists_to_delete = 0;
 		spa_notify_waiters(spa);
 	}
 }
 
 /*
  * Load in the value for the livelist to be removed and open it. Then,
  * load its first sublist and determine which block pointers should actually
  * be freed. Then, call a synctask which performs the actual frees and updates
  * the pool-wide livelist data.
  */
 static void
 spa_livelist_delete_cb(void *arg, zthr_t *z)
 {
 	spa_t *spa = arg;
 	uint64_t ll_obj = 0, count;
 	objset_t *mos = spa->spa_meta_objset;
 	uint64_t zap_obj = spa->spa_livelists_to_delete;
 	/*
 	 * Determine the next livelist to delete. This function should only
 	 * be called if there is at least one deleted clone.
 	 */
 	VERIFY0(dsl_get_next_livelist_obj(mos, zap_obj, &ll_obj));
 	VERIFY0(zap_count(mos, ll_obj, &count));
 	if (count > 0) {
 		dsl_deadlist_t *ll;
 		dsl_deadlist_entry_t *dle;
 		bplist_t to_free;
 		ll = kmem_zalloc(sizeof (dsl_deadlist_t), KM_SLEEP);
 		dsl_deadlist_open(ll, mos, ll_obj);
 		dle = dsl_deadlist_first(ll);
 		ASSERT3P(dle, !=, NULL);
 		bplist_create(&to_free);
 		int err = dsl_process_sub_livelist(&dle->dle_bpobj, &to_free,
 		    z, NULL);
 		if (err == 0) {
 			sublist_delete_arg_t sync_arg = {
 			    .spa = spa,
 			    .ll = ll,
 			    .key = dle->dle_mintxg,
 			    .to_free = &to_free
 			};
 			zfs_dbgmsg("deleting sublist (id %llu) from"
 			    " livelist %llu, %lld remaining",
 			    (u_longlong_t)dle->dle_bpobj.bpo_object,
 			    (u_longlong_t)ll_obj, (longlong_t)count - 1);
 			VERIFY0(dsl_sync_task(spa_name(spa), NULL,
 			    sublist_delete_sync, &sync_arg, 0,
 			    ZFS_SPACE_CHECK_DESTROY));
 		} else {
 			VERIFY3U(err, ==, EINTR);
 		}
 		bplist_clear(&to_free);
 		bplist_destroy(&to_free);
 		dsl_deadlist_close(ll);
 		kmem_free(ll, sizeof (dsl_deadlist_t));
 	} else {
 		livelist_delete_arg_t sync_arg = {
 		    .spa = spa,
 		    .ll_obj = ll_obj,
 		    .zap_obj = zap_obj
 		};
 		zfs_dbgmsg("deletion of livelist %llu completed",
 		    (u_longlong_t)ll_obj);
 		VERIFY0(dsl_sync_task(spa_name(spa), NULL, livelist_delete_sync,
 		    &sync_arg, 0, ZFS_SPACE_CHECK_DESTROY));
 	}
 }
 
 static void
 spa_start_livelist_destroy_thread(spa_t *spa)
 {
 	ASSERT3P(spa->spa_livelist_delete_zthr, ==, NULL);
 	spa->spa_livelist_delete_zthr =
 	    zthr_create("z_livelist_destroy",
 	    spa_livelist_delete_cb_check, spa_livelist_delete_cb, spa,
 	    minclsyspri);
 }
 
 typedef struct livelist_new_arg {
 	bplist_t *allocs;
 	bplist_t *frees;
 } livelist_new_arg_t;
 
 static int
 livelist_track_new_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
     dmu_tx_t *tx)
 {
 	ASSERT(tx == NULL);
 	livelist_new_arg_t *lna = arg;
 	if (bp_freed) {
 		bplist_append(lna->frees, bp);
 	} else {
 		bplist_append(lna->allocs, bp);
 		zfs_livelist_condense_new_alloc++;
 	}
 	return (0);
 }
 
 typedef struct livelist_condense_arg {
 	spa_t *spa;
 	bplist_t to_keep;
 	uint64_t first_size;
 	uint64_t next_size;
 } livelist_condense_arg_t;
 
 static void
 spa_livelist_condense_sync(void *arg, dmu_tx_t *tx)
 {
 	livelist_condense_arg_t *lca = arg;
 	spa_t *spa = lca->spa;
 	bplist_t new_frees;
 	dsl_dataset_t *ds = spa->spa_to_condense.ds;
 
 	/* Have we been cancelled? */
 	if (spa->spa_to_condense.cancelled) {
 		zfs_livelist_condense_sync_cancel++;
 		goto out;
 	}
 
 	dsl_deadlist_entry_t *first = spa->spa_to_condense.first;
 	dsl_deadlist_entry_t *next = spa->spa_to_condense.next;
 	dsl_deadlist_t *ll = &ds->ds_dir->dd_livelist;
 
 	/*
 	 * It's possible that the livelist was changed while the zthr was
 	 * running. Therefore, we need to check for new blkptrs in the two
 	 * entries being condensed and continue to track them in the livelist.
 	 * Because of the way we handle remapped blkptrs (see dbuf_remap_impl),
 	 * it's possible that the newly added blkptrs are FREEs or ALLOCs so
 	 * we need to sort them into two different bplists.
 	 */
 	uint64_t first_obj = first->dle_bpobj.bpo_object;
 	uint64_t next_obj = next->dle_bpobj.bpo_object;
 	uint64_t cur_first_size = first->dle_bpobj.bpo_phys->bpo_num_blkptrs;
 	uint64_t cur_next_size = next->dle_bpobj.bpo_phys->bpo_num_blkptrs;
 
 	bplist_create(&new_frees);
 	livelist_new_arg_t new_bps = {
 	    .allocs = &lca->to_keep,
 	    .frees = &new_frees,
 	};
 
 	if (cur_first_size > lca->first_size) {
 		VERIFY0(livelist_bpobj_iterate_from_nofree(&first->dle_bpobj,
 		    livelist_track_new_cb, &new_bps, lca->first_size));
 	}
 	if (cur_next_size > lca->next_size) {
 		VERIFY0(livelist_bpobj_iterate_from_nofree(&next->dle_bpobj,
 		    livelist_track_new_cb, &new_bps, lca->next_size));
 	}
 
 	dsl_deadlist_clear_entry(first, ll, tx);
 	ASSERT(bpobj_is_empty(&first->dle_bpobj));
 	dsl_deadlist_remove_entry(ll, next->dle_mintxg, tx);
 
 	bplist_iterate(&lca->to_keep, dsl_deadlist_insert_alloc_cb, ll, tx);
 	bplist_iterate(&new_frees, dsl_deadlist_insert_free_cb, ll, tx);
 	bplist_destroy(&new_frees);
 
 	char dsname[ZFS_MAX_DATASET_NAME_LEN];
 	dsl_dataset_name(ds, dsname);
 	zfs_dbgmsg("txg %llu condensing livelist of %s (id %llu), bpobj %llu "
 	    "(%llu blkptrs) and bpobj %llu (%llu blkptrs) -> bpobj %llu "
 	    "(%llu blkptrs)", (u_longlong_t)tx->tx_txg, dsname,
 	    (u_longlong_t)ds->ds_object, (u_longlong_t)first_obj,
 	    (u_longlong_t)cur_first_size, (u_longlong_t)next_obj,
 	    (u_longlong_t)cur_next_size,
 	    (u_longlong_t)first->dle_bpobj.bpo_object,
 	    (u_longlong_t)first->dle_bpobj.bpo_phys->bpo_num_blkptrs);
 out:
 	dmu_buf_rele(ds->ds_dbuf, spa);
 	spa->spa_to_condense.ds = NULL;
 	bplist_clear(&lca->to_keep);
 	bplist_destroy(&lca->to_keep);
 	kmem_free(lca, sizeof (livelist_condense_arg_t));
 	spa->spa_to_condense.syncing = B_FALSE;
 }
 
 static void
 spa_livelist_condense_cb(void *arg, zthr_t *t)
 {
 	while (zfs_livelist_condense_zthr_pause &&
 	    !(zthr_has_waiters(t) || zthr_iscancelled(t)))
 		delay(1);
 
 	spa_t *spa = arg;
 	dsl_deadlist_entry_t *first = spa->spa_to_condense.first;
 	dsl_deadlist_entry_t *next = spa->spa_to_condense.next;
 	uint64_t first_size, next_size;
 
 	livelist_condense_arg_t *lca =
 	    kmem_alloc(sizeof (livelist_condense_arg_t), KM_SLEEP);
 	bplist_create(&lca->to_keep);
 
 	/*
 	 * Process the livelists (matching FREEs and ALLOCs) in open context
 	 * so we have minimal work in syncing context to condense.
 	 *
 	 * We save bpobj sizes (first_size and next_size) to use later in
 	 * syncing context to determine if entries were added to these sublists
 	 * while in open context. This is possible because the clone is still
 	 * active and open for normal writes and we want to make sure the new,
 	 * unprocessed blockpointers are inserted into the livelist normally.
 	 *
 	 * Note that dsl_process_sub_livelist() both stores the size number of
 	 * blockpointers and iterates over them while the bpobj's lock held, so
 	 * the sizes returned to us are consistent which what was actually
 	 * processed.
 	 */
 	int err = dsl_process_sub_livelist(&first->dle_bpobj, &lca->to_keep, t,
 	    &first_size);
 	if (err == 0)
 		err = dsl_process_sub_livelist(&next->dle_bpobj, &lca->to_keep,
 		    t, &next_size);
 
 	if (err == 0) {
 		while (zfs_livelist_condense_sync_pause &&
 		    !(zthr_has_waiters(t) || zthr_iscancelled(t)))
 			delay(1);
 
 		dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
 		dmu_tx_mark_netfree(tx);
 		dmu_tx_hold_space(tx, 1);
 		err = dmu_tx_assign(tx, TXG_NOWAIT | TXG_NOTHROTTLE);
 		if (err == 0) {
 			/*
 			 * Prevent the condense zthr restarting before
 			 * the synctask completes.
 			 */
 			spa->spa_to_condense.syncing = B_TRUE;
 			lca->spa = spa;
 			lca->first_size = first_size;
 			lca->next_size = next_size;
 			dsl_sync_task_nowait(spa_get_dsl(spa),
 			    spa_livelist_condense_sync, lca, tx);
 			dmu_tx_commit(tx);
 			return;
 		}
 	}
 	/*
 	 * Condensing can not continue: either it was externally stopped or
 	 * we were unable to assign to a tx because the pool has run out of
 	 * space. In the second case, we'll just end up trying to condense
 	 * again in a later txg.
 	 */
 	ASSERT(err != 0);
 	bplist_clear(&lca->to_keep);
 	bplist_destroy(&lca->to_keep);
 	kmem_free(lca, sizeof (livelist_condense_arg_t));
 	dmu_buf_rele(spa->spa_to_condense.ds->ds_dbuf, spa);
 	spa->spa_to_condense.ds = NULL;
 	if (err == EINTR)
 		zfs_livelist_condense_zthr_cancel++;
 }
 
 /*
  * Check that there is something to condense but that a condense is not
  * already in progress and that condensing has not been cancelled.
  */
 static boolean_t
 spa_livelist_condense_cb_check(void *arg, zthr_t *z)
 {
 	(void) z;
 	spa_t *spa = arg;
 	if ((spa->spa_to_condense.ds != NULL) &&
 	    (spa->spa_to_condense.syncing == B_FALSE) &&
 	    (spa->spa_to_condense.cancelled == B_FALSE)) {
 		return (B_TRUE);
 	}
 	return (B_FALSE);
 }
 
 static void
 spa_start_livelist_condensing_thread(spa_t *spa)
 {
 	spa->spa_to_condense.ds = NULL;
 	spa->spa_to_condense.first = NULL;
 	spa->spa_to_condense.next = NULL;
 	spa->spa_to_condense.syncing = B_FALSE;
 	spa->spa_to_condense.cancelled = B_FALSE;
 
 	ASSERT3P(spa->spa_livelist_condense_zthr, ==, NULL);
 	spa->spa_livelist_condense_zthr =
 	    zthr_create("z_livelist_condense",
 	    spa_livelist_condense_cb_check,
 	    spa_livelist_condense_cb, spa, minclsyspri);
 }
 
 static void
 spa_spawn_aux_threads(spa_t *spa)
 {
 	ASSERT(spa_writeable(spa));
 
 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
 
 	spa_start_indirect_condensing_thread(spa);
 	spa_start_livelist_destroy_thread(spa);
 	spa_start_livelist_condensing_thread(spa);
 
 	ASSERT3P(spa->spa_checkpoint_discard_zthr, ==, NULL);
 	spa->spa_checkpoint_discard_zthr =
 	    zthr_create("z_checkpoint_discard",
 	    spa_checkpoint_discard_thread_check,
 	    spa_checkpoint_discard_thread, spa, minclsyspri);
 }
 
 /*
  * Fix up config after a partly-completed split.  This is done with the
  * ZPOOL_CONFIG_SPLIT nvlist.  Both the splitting pool and the split-off
  * pool have that entry in their config, but only the splitting one contains
  * a list of all the guids of the vdevs that are being split off.
  *
  * This function determines what to do with that list: either rejoin
  * all the disks to the pool, or complete the splitting process.  To attempt
  * the rejoin, each disk that is offlined is marked online again, and
  * we do a reopen() call.  If the vdev label for every disk that was
  * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
  * then we call vdev_split() on each disk, and complete the split.
  *
  * Otherwise we leave the config alone, with all the vdevs in place in
  * the original pool.
  */
 static void
 spa_try_repair(spa_t *spa, nvlist_t *config)
 {
 	uint_t extracted;
 	uint64_t *glist;
 	uint_t i, gcount;
 	nvlist_t *nvl;
 	vdev_t **vd;
 	boolean_t attempt_reopen;
 
 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
 		return;
 
 	/* check that the config is complete */
 	if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
 	    &glist, &gcount) != 0)
 		return;
 
 	vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
 
 	/* attempt to online all the vdevs & validate */
 	attempt_reopen = B_TRUE;
 	for (i = 0; i < gcount; i++) {
 		if (glist[i] == 0)	/* vdev is hole */
 			continue;
 
 		vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
 		if (vd[i] == NULL) {
 			/*
 			 * Don't bother attempting to reopen the disks;
 			 * just do the split.
 			 */
 			attempt_reopen = B_FALSE;
 		} else {
 			/* attempt to re-online it */
 			vd[i]->vdev_offline = B_FALSE;
 		}
 	}
 
 	if (attempt_reopen) {
 		vdev_reopen(spa->spa_root_vdev);
 
 		/* check each device to see what state it's in */
 		for (extracted = 0, i = 0; i < gcount; i++) {
 			if (vd[i] != NULL &&
 			    vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
 				break;
 			++extracted;
 		}
 	}
 
 	/*
 	 * If every disk has been moved to the new pool, or if we never
 	 * even attempted to look at them, then we split them off for
 	 * good.
 	 */
 	if (!attempt_reopen || gcount == extracted) {
 		for (i = 0; i < gcount; i++)
 			if (vd[i] != NULL)
 				vdev_split(vd[i]);
 		vdev_reopen(spa->spa_root_vdev);
 	}
 
 	kmem_free(vd, gcount * sizeof (vdev_t *));
 }
 
 static int
 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type)
 {
 	const char *ereport = FM_EREPORT_ZFS_POOL;
 	int error;
 
 	spa->spa_load_state = state;
 	(void) spa_import_progress_set_state(spa_guid(spa),
 	    spa_load_state(spa));
 	spa_import_progress_set_notes(spa, "spa_load()");
 
 	gethrestime(&spa->spa_loaded_ts);
 	error = spa_load_impl(spa, type, &ereport);
 
 	/*
 	 * Don't count references from objsets that are already closed
 	 * and are making their way through the eviction process.
 	 */
 	spa_evicting_os_wait(spa);
 	spa->spa_minref = zfs_refcount_count(&spa->spa_refcount);
 	if (error) {
 		if (error != EEXIST) {
 			spa->spa_loaded_ts.tv_sec = 0;
 			spa->spa_loaded_ts.tv_nsec = 0;
 		}
 		if (error != EBADF) {
 			(void) zfs_ereport_post(ereport, spa,
 			    NULL, NULL, NULL, 0);
 		}
 	}
 	spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
 	spa->spa_ena = 0;
 
 	(void) spa_import_progress_set_state(spa_guid(spa),
 	    spa_load_state(spa));
 
 	return (error);
 }
 
 #ifdef ZFS_DEBUG
 /*
  * Count the number of per-vdev ZAPs associated with all of the vdevs in the
  * vdev tree rooted in the given vd, and ensure that each ZAP is present in the
  * spa's per-vdev ZAP list.
  */
 static uint64_t
 vdev_count_verify_zaps(vdev_t *vd)
 {
 	spa_t *spa = vd->vdev_spa;
 	uint64_t total = 0;
 
 	if (spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_AVZ_V2) &&
 	    vd->vdev_root_zap != 0) {
 		total++;
 		ASSERT0(zap_lookup_int(spa->spa_meta_objset,
 		    spa->spa_all_vdev_zaps, vd->vdev_root_zap));
 	}
 	if (vd->vdev_top_zap != 0) {
 		total++;
 		ASSERT0(zap_lookup_int(spa->spa_meta_objset,
 		    spa->spa_all_vdev_zaps, vd->vdev_top_zap));
 	}
 	if (vd->vdev_leaf_zap != 0) {
 		total++;
 		ASSERT0(zap_lookup_int(spa->spa_meta_objset,
 		    spa->spa_all_vdev_zaps, vd->vdev_leaf_zap));
 	}
 
 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
 		total += vdev_count_verify_zaps(vd->vdev_child[i]);
 	}
 
 	return (total);
 }
 #else
 #define	vdev_count_verify_zaps(vd) ((void) sizeof (vd), 0)
 #endif
 
 /*
  * Determine whether the activity check is required.
  */
 static boolean_t
 spa_activity_check_required(spa_t *spa, uberblock_t *ub, nvlist_t *label,
     nvlist_t *config)
 {
 	uint64_t state = 0;
 	uint64_t hostid = 0;
 	uint64_t tryconfig_txg = 0;
 	uint64_t tryconfig_timestamp = 0;
 	uint16_t tryconfig_mmp_seq = 0;
 	nvlist_t *nvinfo;
 
 	if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
 		nvinfo = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_LOAD_INFO);
 		(void) nvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG,
 		    &tryconfig_txg);
 		(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
 		    &tryconfig_timestamp);
 		(void) nvlist_lookup_uint16(nvinfo, ZPOOL_CONFIG_MMP_SEQ,
 		    &tryconfig_mmp_seq);
 	}
 
 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, &state);
 
 	/*
 	 * Disable the MMP activity check - This is used by zdb which
 	 * is intended to be used on potentially active pools.
 	 */
 	if (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP)
 		return (B_FALSE);
 
 	/*
 	 * Skip the activity check when the MMP feature is disabled.
 	 */
 	if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay == 0)
 		return (B_FALSE);
 
 	/*
 	 * If the tryconfig_ values are nonzero, they are the results of an
 	 * earlier tryimport.  If they all match the uberblock we just found,
 	 * then the pool has not changed and we return false so we do not test
 	 * a second time.
 	 */
 	if (tryconfig_txg && tryconfig_txg == ub->ub_txg &&
 	    tryconfig_timestamp && tryconfig_timestamp == ub->ub_timestamp &&
 	    tryconfig_mmp_seq && tryconfig_mmp_seq ==
 	    (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0))
 		return (B_FALSE);
 
 	/*
 	 * Allow the activity check to be skipped when importing the pool
 	 * on the same host which last imported it.  Since the hostid from
 	 * configuration may be stale use the one read from the label.
 	 */
 	if (nvlist_exists(label, ZPOOL_CONFIG_HOSTID))
 		hostid = fnvlist_lookup_uint64(label, ZPOOL_CONFIG_HOSTID);
 
 	if (hostid == spa_get_hostid(spa))
 		return (B_FALSE);
 
 	/*
 	 * Skip the activity test when the pool was cleanly exported.
 	 */
 	if (state != POOL_STATE_ACTIVE)
 		return (B_FALSE);
 
 	return (B_TRUE);
 }
 
 /*
  * Nanoseconds the activity check must watch for changes on-disk.
  */
 static uint64_t
 spa_activity_check_duration(spa_t *spa, uberblock_t *ub)
 {
 	uint64_t import_intervals = MAX(zfs_multihost_import_intervals, 1);
 	uint64_t multihost_interval = MSEC2NSEC(
 	    MMP_INTERVAL_OK(zfs_multihost_interval));
 	uint64_t import_delay = MAX(NANOSEC, import_intervals *
 	    multihost_interval);
 
 	/*
 	 * Local tunables determine a minimum duration except for the case
 	 * where we know when the remote host will suspend the pool if MMP
 	 * writes do not land.
 	 *
 	 * See Big Theory comment at the top of mmp.c for the reasoning behind
 	 * these cases and times.
 	 */
 
 	ASSERT(MMP_IMPORT_SAFETY_FACTOR >= 100);
 
 	if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) &&
 	    MMP_FAIL_INT(ub) > 0) {
 
 		/* MMP on remote host will suspend pool after failed writes */
 		import_delay = MMP_FAIL_INT(ub) * MSEC2NSEC(MMP_INTERVAL(ub)) *
 		    MMP_IMPORT_SAFETY_FACTOR / 100;
 
 		zfs_dbgmsg("fail_intvals>0 import_delay=%llu ub_mmp "
 		    "mmp_fails=%llu ub_mmp mmp_interval=%llu "
 		    "import_intervals=%llu", (u_longlong_t)import_delay,
 		    (u_longlong_t)MMP_FAIL_INT(ub),
 		    (u_longlong_t)MMP_INTERVAL(ub),
 		    (u_longlong_t)import_intervals);
 
 	} else if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) &&
 	    MMP_FAIL_INT(ub) == 0) {
 
 		/* MMP on remote host will never suspend pool */
 		import_delay = MAX(import_delay, (MSEC2NSEC(MMP_INTERVAL(ub)) +
 		    ub->ub_mmp_delay) * import_intervals);
 
 		zfs_dbgmsg("fail_intvals=0 import_delay=%llu ub_mmp "
 		    "mmp_interval=%llu ub_mmp_delay=%llu "
 		    "import_intervals=%llu", (u_longlong_t)import_delay,
 		    (u_longlong_t)MMP_INTERVAL(ub),
 		    (u_longlong_t)ub->ub_mmp_delay,
 		    (u_longlong_t)import_intervals);
 
 	} else if (MMP_VALID(ub)) {
 		/*
 		 * zfs-0.7 compatibility case
 		 */
 
 		import_delay = MAX(import_delay, (multihost_interval +
 		    ub->ub_mmp_delay) * import_intervals);
 
 		zfs_dbgmsg("import_delay=%llu ub_mmp_delay=%llu "
 		    "import_intervals=%llu leaves=%u",
 		    (u_longlong_t)import_delay,
 		    (u_longlong_t)ub->ub_mmp_delay,
 		    (u_longlong_t)import_intervals,
 		    vdev_count_leaves(spa));
 	} else {
 		/* Using local tunings is the only reasonable option */
 		zfs_dbgmsg("pool last imported on non-MMP aware "
 		    "host using import_delay=%llu multihost_interval=%llu "
 		    "import_intervals=%llu", (u_longlong_t)import_delay,
 		    (u_longlong_t)multihost_interval,
 		    (u_longlong_t)import_intervals);
 	}
 
 	return (import_delay);
 }
 
 /*
  * Remote host activity check.
  *
  * error results:
  *          0 - no activity detected
  *  EREMOTEIO - remote activity detected
  *      EINTR - user canceled the operation
  */
 static int
 spa_activity_check(spa_t *spa, uberblock_t *ub, nvlist_t *config,
     boolean_t importing)
 {
 	uint64_t txg = ub->ub_txg;
 	uint64_t timestamp = ub->ub_timestamp;
 	uint64_t mmp_config = ub->ub_mmp_config;
 	uint16_t mmp_seq = MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0;
 	uint64_t import_delay;
 	hrtime_t import_expire, now;
 	nvlist_t *mmp_label = NULL;
 	vdev_t *rvd = spa->spa_root_vdev;
 	kcondvar_t cv;
 	kmutex_t mtx;
 	int error = 0;
 
 	cv_init(&cv, NULL, CV_DEFAULT, NULL);
 	mutex_init(&mtx, NULL, MUTEX_DEFAULT, NULL);
 	mutex_enter(&mtx);
 
 	/*
 	 * If ZPOOL_CONFIG_MMP_TXG is present an activity check was performed
 	 * during the earlier tryimport.  If the txg recorded there is 0 then
 	 * the pool is known to be active on another host.
 	 *
 	 * Otherwise, the pool might be in use on another host.  Check for
 	 * changes in the uberblocks on disk if necessary.
 	 */
 	if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
 		nvlist_t *nvinfo = fnvlist_lookup_nvlist(config,
 		    ZPOOL_CONFIG_LOAD_INFO);
 
 		if (nvlist_exists(nvinfo, ZPOOL_CONFIG_MMP_TXG) &&
 		    fnvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG) == 0) {
 			vdev_uberblock_load(rvd, ub, &mmp_label);
 			error = SET_ERROR(EREMOTEIO);
 			goto out;
 		}
 	}
 
 	import_delay = spa_activity_check_duration(spa, ub);
 
 	/* Add a small random factor in case of simultaneous imports (0-25%) */
 	import_delay += import_delay * random_in_range(250) / 1000;
 
 	import_expire = gethrtime() + import_delay;
 
 	if (importing) {
 		spa_import_progress_set_notes(spa, "Checking MMP activity, "
 		    "waiting %llu ms", (u_longlong_t)NSEC2MSEC(import_delay));
 	}
 
 	int iterations = 0;
 	while ((now = gethrtime()) < import_expire) {
 		if (importing && iterations++ % 30 == 0) {
 			spa_import_progress_set_notes(spa, "Checking MMP "
 			    "activity, %llu ms remaining",
 			    (u_longlong_t)NSEC2MSEC(import_expire - now));
 		}
 
 		if (importing) {
 			(void) spa_import_progress_set_mmp_check(spa_guid(spa),
 			    NSEC2SEC(import_expire - gethrtime()));
 		}
 
 		vdev_uberblock_load(rvd, ub, &mmp_label);
 
 		if (txg != ub->ub_txg || timestamp != ub->ub_timestamp ||
 		    mmp_seq != (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0)) {
 			zfs_dbgmsg("multihost activity detected "
 			    "txg %llu ub_txg  %llu "
 			    "timestamp %llu ub_timestamp  %llu "
 			    "mmp_config %#llx ub_mmp_config %#llx",
 			    (u_longlong_t)txg, (u_longlong_t)ub->ub_txg,
 			    (u_longlong_t)timestamp,
 			    (u_longlong_t)ub->ub_timestamp,
 			    (u_longlong_t)mmp_config,
 			    (u_longlong_t)ub->ub_mmp_config);
 
 			error = SET_ERROR(EREMOTEIO);
 			break;
 		}
 
 		if (mmp_label) {
 			nvlist_free(mmp_label);
 			mmp_label = NULL;
 		}
 
 		error = cv_timedwait_sig(&cv, &mtx, ddi_get_lbolt() + hz);
 		if (error != -1) {
 			error = SET_ERROR(EINTR);
 			break;
 		}
 		error = 0;
 	}
 
 out:
 	mutex_exit(&mtx);
 	mutex_destroy(&mtx);
 	cv_destroy(&cv);
 
 	/*
 	 * If the pool is determined to be active store the status in the
 	 * spa->spa_load_info nvlist.  If the remote hostname or hostid are
 	 * available from configuration read from disk store them as well.
 	 * This allows 'zpool import' to generate a more useful message.
 	 *
 	 * ZPOOL_CONFIG_MMP_STATE    - observed pool status (mandatory)
 	 * ZPOOL_CONFIG_MMP_HOSTNAME - hostname from the active pool
 	 * ZPOOL_CONFIG_MMP_HOSTID   - hostid from the active pool
 	 */
 	if (error == EREMOTEIO) {
 		const char *hostname = "<unknown>";
 		uint64_t hostid = 0;
 
 		if (mmp_label) {
 			if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTNAME)) {
 				hostname = fnvlist_lookup_string(mmp_label,
 				    ZPOOL_CONFIG_HOSTNAME);
 				fnvlist_add_string(spa->spa_load_info,
 				    ZPOOL_CONFIG_MMP_HOSTNAME, hostname);
 			}
 
 			if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTID)) {
 				hostid = fnvlist_lookup_uint64(mmp_label,
 				    ZPOOL_CONFIG_HOSTID);
 				fnvlist_add_uint64(spa->spa_load_info,
 				    ZPOOL_CONFIG_MMP_HOSTID, hostid);
 			}
 		}
 
 		fnvlist_add_uint64(spa->spa_load_info,
 		    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_ACTIVE);
 		fnvlist_add_uint64(spa->spa_load_info,
 		    ZPOOL_CONFIG_MMP_TXG, 0);
 
 		error = spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO);
 	}
 
 	if (mmp_label)
 		nvlist_free(mmp_label);
 
 	return (error);
 }
 
 /*
  * Called from zfs_ioc_clear for a pool that was suspended
  * after failing mmp write checks.
  */
 boolean_t
 spa_mmp_remote_host_activity(spa_t *spa)
 {
 	ASSERT(spa_multihost(spa) && spa_suspended(spa));
 
 	nvlist_t *best_label;
 	uberblock_t best_ub;
 
 	/*
 	 * Locate the best uberblock on disk
 	 */
 	vdev_uberblock_load(spa->spa_root_vdev, &best_ub, &best_label);
 	if (best_label) {
 		/*
 		 * confirm that the best hostid matches our hostid
 		 */
 		if (nvlist_exists(best_label, ZPOOL_CONFIG_HOSTID) &&
 		    spa_get_hostid(spa) !=
 		    fnvlist_lookup_uint64(best_label, ZPOOL_CONFIG_HOSTID)) {
 			nvlist_free(best_label);
 			return (B_TRUE);
 		}
 		nvlist_free(best_label);
 	} else {
 		return (B_TRUE);
 	}
 
 	if (!MMP_VALID(&best_ub) ||
 	    !MMP_FAIL_INT_VALID(&best_ub) ||
 	    MMP_FAIL_INT(&best_ub) == 0) {
 		return (B_TRUE);
 	}
 
 	if (best_ub.ub_txg != spa->spa_uberblock.ub_txg ||
 	    best_ub.ub_timestamp != spa->spa_uberblock.ub_timestamp) {
 		zfs_dbgmsg("txg mismatch detected during pool clear "
 		    "txg %llu ub_txg %llu timestamp %llu ub_timestamp %llu",
 		    (u_longlong_t)spa->spa_uberblock.ub_txg,
 		    (u_longlong_t)best_ub.ub_txg,
 		    (u_longlong_t)spa->spa_uberblock.ub_timestamp,
 		    (u_longlong_t)best_ub.ub_timestamp);
 		return (B_TRUE);
 	}
 
 	/*
 	 * Perform an activity check looking for any remote writer
 	 */
 	return (spa_activity_check(spa, &spa->spa_uberblock, spa->spa_config,
 	    B_FALSE) != 0);
 }
 
 static int
 spa_verify_host(spa_t *spa, nvlist_t *mos_config)
 {
 	uint64_t hostid;
 	const char *hostname;
 	uint64_t myhostid = 0;
 
 	if (!spa_is_root(spa) && nvlist_lookup_uint64(mos_config,
 	    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
 		hostname = fnvlist_lookup_string(mos_config,
 		    ZPOOL_CONFIG_HOSTNAME);
 
 		myhostid = zone_get_hostid(NULL);
 
 		if (hostid != 0 && myhostid != 0 && hostid != myhostid) {
 			cmn_err(CE_WARN, "pool '%s' could not be "
 			    "loaded as it was last accessed by "
 			    "another system (host: %s hostid: 0x%llx). "
 			    "See: https://openzfs.github.io/openzfs-docs/msg/"
 			    "ZFS-8000-EY",
 			    spa_name(spa), hostname, (u_longlong_t)hostid);
 			spa_load_failed(spa, "hostid verification failed: pool "
 			    "last accessed by host: %s (hostid: 0x%llx)",
 			    hostname, (u_longlong_t)hostid);
 			return (SET_ERROR(EBADF));
 		}
 	}
 
 	return (0);
 }
 
 static int
 spa_ld_parse_config(spa_t *spa, spa_import_type_t type)
 {
 	int error = 0;
 	nvlist_t *nvtree, *nvl, *config = spa->spa_config;
 	int parse;
 	vdev_t *rvd;
 	uint64_t pool_guid;
 	const char *comment;
 	const char *compatibility;
 
 	/*
 	 * Versioning wasn't explicitly added to the label until later, so if
 	 * it's not present treat it as the initial version.
 	 */
 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
 	    &spa->spa_ubsync.ub_version) != 0)
 		spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
 
 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) {
 		spa_load_failed(spa, "invalid config provided: '%s' missing",
 		    ZPOOL_CONFIG_POOL_GUID);
 		return (SET_ERROR(EINVAL));
 	}
 
 	/*
 	 * If we are doing an import, ensure that the pool is not already
 	 * imported by checking if its pool guid already exists in the
 	 * spa namespace.
 	 *
 	 * The only case that we allow an already imported pool to be
 	 * imported again, is when the pool is checkpointed and we want to
 	 * look at its checkpointed state from userland tools like zdb.
 	 */
 #ifdef _KERNEL
 	if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
 	    spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
 	    spa_guid_exists(pool_guid, 0)) {
 #else
 	if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
 	    spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
 	    spa_guid_exists(pool_guid, 0) &&
 	    !spa_importing_readonly_checkpoint(spa)) {
 #endif
 		spa_load_failed(spa, "a pool with guid %llu is already open",
 		    (u_longlong_t)pool_guid);
 		return (SET_ERROR(EEXIST));
 	}
 
 	spa->spa_config_guid = pool_guid;
 
 	nvlist_free(spa->spa_load_info);
 	spa->spa_load_info = fnvlist_alloc();
 
 	ASSERT(spa->spa_comment == NULL);
 	if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
 		spa->spa_comment = spa_strdup(comment);
 
 	ASSERT(spa->spa_compatibility == NULL);
 	if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMPATIBILITY,
 	    &compatibility) == 0)
 		spa->spa_compatibility = spa_strdup(compatibility);
 
 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
 	    &spa->spa_config_txg);
 
 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) == 0)
 		spa->spa_config_splitting = fnvlist_dup(nvl);
 
 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvtree)) {
 		spa_load_failed(spa, "invalid config provided: '%s' missing",
 		    ZPOOL_CONFIG_VDEV_TREE);
 		return (SET_ERROR(EINVAL));
 	}
 
 	/*
 	 * Create "The Godfather" zio to hold all async IOs
 	 */
 	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
 	    KM_SLEEP);
 	for (int i = 0; i < max_ncpus; i++) {
 		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
 		    ZIO_FLAG_GODFATHER);
 	}
 
 	/*
 	 * Parse the configuration into a vdev tree.  We explicitly set the
 	 * value that will be returned by spa_version() since parsing the
 	 * configuration requires knowing the version number.
 	 */
 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
 	parse = (type == SPA_IMPORT_EXISTING ?
 	    VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
 	error = spa_config_parse(spa, &rvd, nvtree, NULL, 0, parse);
 	spa_config_exit(spa, SCL_ALL, FTAG);
 
 	if (error != 0) {
 		spa_load_failed(spa, "unable to parse config [error=%d]",
 		    error);
 		return (error);
 	}
 
 	ASSERT(spa->spa_root_vdev == rvd);
 	ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
 	ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT);
 
 	if (type != SPA_IMPORT_ASSEMBLE) {
 		ASSERT(spa_guid(spa) == pool_guid);
 	}
 
 	return (0);
 }
 
 /*
  * Recursively open all vdevs in the vdev tree. This function is called twice:
  * first with the untrusted config, then with the trusted config.
  */
 static int
 spa_ld_open_vdevs(spa_t *spa)
 {
 	int error = 0;
 
 	/*
 	 * spa_missing_tvds_allowed defines how many top-level vdevs can be
 	 * missing/unopenable for the root vdev to be still considered openable.
 	 */
 	if (spa->spa_trust_config) {
 		spa->spa_missing_tvds_allowed = zfs_max_missing_tvds;
 	} else if (spa->spa_config_source == SPA_CONFIG_SRC_CACHEFILE) {
 		spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_cachefile;
 	} else if (spa->spa_config_source == SPA_CONFIG_SRC_SCAN) {
 		spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_scan;
 	} else {
 		spa->spa_missing_tvds_allowed = 0;
 	}
 
 	spa->spa_missing_tvds_allowed =
 	    MAX(zfs_max_missing_tvds, spa->spa_missing_tvds_allowed);
 
 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
 	error = vdev_open(spa->spa_root_vdev);
 	spa_config_exit(spa, SCL_ALL, FTAG);
 
 	if (spa->spa_missing_tvds != 0) {
 		spa_load_note(spa, "vdev tree has %lld missing top-level "
 		    "vdevs.", (u_longlong_t)spa->spa_missing_tvds);
 		if (spa->spa_trust_config && (spa->spa_mode & SPA_MODE_WRITE)) {
 			/*
 			 * Although theoretically we could allow users to open
 			 * incomplete pools in RW mode, we'd need to add a lot
 			 * of extra logic (e.g. adjust pool space to account
 			 * for missing vdevs).
 			 * This limitation also prevents users from accidentally
 			 * opening the pool in RW mode during data recovery and
 			 * damaging it further.
 			 */
 			spa_load_note(spa, "pools with missing top-level "
 			    "vdevs can only be opened in read-only mode.");
 			error = SET_ERROR(ENXIO);
 		} else {
 			spa_load_note(spa, "current settings allow for maximum "
 			    "%lld missing top-level vdevs at this stage.",
 			    (u_longlong_t)spa->spa_missing_tvds_allowed);
 		}
 	}
 	if (error != 0) {
 		spa_load_failed(spa, "unable to open vdev tree [error=%d]",
 		    error);
 	}
 	if (spa->spa_missing_tvds != 0 || error != 0)
 		vdev_dbgmsg_print_tree(spa->spa_root_vdev, 2);
 
 	return (error);
 }
 
 /*
  * We need to validate the vdev labels against the configuration that
  * we have in hand. This function is called twice: first with an untrusted
  * config, then with a trusted config. The validation is more strict when the
  * config is trusted.
  */
 static int
 spa_ld_validate_vdevs(spa_t *spa)
 {
 	int error = 0;
 	vdev_t *rvd = spa->spa_root_vdev;
 
 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
 	error = vdev_validate(rvd);
 	spa_config_exit(spa, SCL_ALL, FTAG);
 
 	if (error != 0) {
 		spa_load_failed(spa, "vdev_validate failed [error=%d]", error);
 		return (error);
 	}
 
 	if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
 		spa_load_failed(spa, "cannot open vdev tree after invalidating "
 		    "some vdevs");
 		vdev_dbgmsg_print_tree(rvd, 2);
 		return (SET_ERROR(ENXIO));
 	}
 
 	return (0);
 }
 
 static void
 spa_ld_select_uberblock_done(spa_t *spa, uberblock_t *ub)
 {
 	spa->spa_state = POOL_STATE_ACTIVE;
 	spa->spa_ubsync = spa->spa_uberblock;
 	spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
 	    TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
 	spa->spa_first_txg = spa->spa_last_ubsync_txg ?
 	    spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
 	spa->spa_claim_max_txg = spa->spa_first_txg;
 	spa->spa_prev_software_version = ub->ub_software_version;
 }
 
 static int
 spa_ld_select_uberblock(spa_t *spa, spa_import_type_t type)
 {
 	vdev_t *rvd = spa->spa_root_vdev;
 	nvlist_t *label;
 	uberblock_t *ub = &spa->spa_uberblock;
 	boolean_t activity_check = B_FALSE;
 
 	/*
 	 * If we are opening the checkpointed state of the pool by
 	 * rewinding to it, at this point we will have written the
 	 * checkpointed uberblock to the vdev labels, so searching
 	 * the labels will find the right uberblock.  However, if
 	 * we are opening the checkpointed state read-only, we have
 	 * not modified the labels. Therefore, we must ignore the
 	 * labels and continue using the spa_uberblock that was set
 	 * by spa_ld_checkpoint_rewind.
 	 *
 	 * Note that it would be fine to ignore the labels when
 	 * rewinding (opening writeable) as well. However, if we
 	 * crash just after writing the labels, we will end up
 	 * searching the labels. Doing so in the common case means
 	 * that this code path gets exercised normally, rather than
 	 * just in the edge case.
 	 */
 	if (ub->ub_checkpoint_txg != 0 &&
 	    spa_importing_readonly_checkpoint(spa)) {
 		spa_ld_select_uberblock_done(spa, ub);
 		return (0);
 	}
 
 	/*
 	 * Find the best uberblock.
 	 */
 	vdev_uberblock_load(rvd, ub, &label);
 
 	/*
 	 * If we weren't able to find a single valid uberblock, return failure.
 	 */
 	if (ub->ub_txg == 0) {
 		nvlist_free(label);
 		spa_load_failed(spa, "no valid uberblock found");
 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
 	}
 
 	if (spa->spa_load_max_txg != UINT64_MAX) {
 		(void) spa_import_progress_set_max_txg(spa_guid(spa),
 		    (u_longlong_t)spa->spa_load_max_txg);
 	}
 	spa_load_note(spa, "using uberblock with txg=%llu",
 	    (u_longlong_t)ub->ub_txg);
 
 
 	/*
 	 * For pools which have the multihost property on determine if the
 	 * pool is truly inactive and can be safely imported.  Prevent
 	 * hosts which don't have a hostid set from importing the pool.
 	 */
 	activity_check = spa_activity_check_required(spa, ub, label,
 	    spa->spa_config);
 	if (activity_check) {
 		if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay &&
 		    spa_get_hostid(spa) == 0) {
 			nvlist_free(label);
 			fnvlist_add_uint64(spa->spa_load_info,
 			    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID);
 			return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO));
 		}
 
 		int error =
 		    spa_activity_check(spa, ub, spa->spa_config, B_TRUE);
 		if (error) {
 			nvlist_free(label);
 			return (error);
 		}
 
 		fnvlist_add_uint64(spa->spa_load_info,
 		    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_INACTIVE);
 		fnvlist_add_uint64(spa->spa_load_info,
 		    ZPOOL_CONFIG_MMP_TXG, ub->ub_txg);
 		fnvlist_add_uint16(spa->spa_load_info,
 		    ZPOOL_CONFIG_MMP_SEQ,
 		    (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0));
 	}
 
 	/*
 	 * If the pool has an unsupported version we can't open it.
 	 */
 	if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
 		nvlist_free(label);
 		spa_load_failed(spa, "version %llu is not supported",
 		    (u_longlong_t)ub->ub_version);
 		return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
 	}
 
 	if (ub->ub_version >= SPA_VERSION_FEATURES) {
 		nvlist_t *features;
 
 		/*
 		 * If we weren't able to find what's necessary for reading the
 		 * MOS in the label, return failure.
 		 */
 		if (label == NULL) {
 			spa_load_failed(spa, "label config unavailable");
 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
 			    ENXIO));
 		}
 
 		if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_FEATURES_FOR_READ,
 		    &features) != 0) {
 			nvlist_free(label);
 			spa_load_failed(spa, "invalid label: '%s' missing",
 			    ZPOOL_CONFIG_FEATURES_FOR_READ);
 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
 			    ENXIO));
 		}
 
 		/*
 		 * Update our in-core representation with the definitive values
 		 * from the label.
 		 */
 		nvlist_free(spa->spa_label_features);
 		spa->spa_label_features = fnvlist_dup(features);
 	}
 
 	nvlist_free(label);
 
 	/*
 	 * Look through entries in the label nvlist's features_for_read. If
 	 * there is a feature listed there which we don't understand then we
 	 * cannot open a pool.
 	 */
 	if (ub->ub_version >= SPA_VERSION_FEATURES) {
 		nvlist_t *unsup_feat;
 
 		unsup_feat = fnvlist_alloc();
 
 		for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
 		    NULL); nvp != NULL;
 		    nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
 			if (!zfeature_is_supported(nvpair_name(nvp))) {
 				fnvlist_add_string(unsup_feat,
 				    nvpair_name(nvp), "");
 			}
 		}
 
 		if (!nvlist_empty(unsup_feat)) {
 			fnvlist_add_nvlist(spa->spa_load_info,
 			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
 			nvlist_free(unsup_feat);
 			spa_load_failed(spa, "some features are unsupported");
 			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
 			    ENOTSUP));
 		}
 
 		nvlist_free(unsup_feat);
 	}
 
 	if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
 		spa_try_repair(spa, spa->spa_config);
 		spa_config_exit(spa, SCL_ALL, FTAG);
 		nvlist_free(spa->spa_config_splitting);
 		spa->spa_config_splitting = NULL;
 	}
 
 	/*
 	 * Initialize internal SPA structures.
 	 */
 	spa_ld_select_uberblock_done(spa, ub);
 
 	return (0);
 }
 
 static int
 spa_ld_open_rootbp(spa_t *spa)
 {
 	int error = 0;
 	vdev_t *rvd = spa->spa_root_vdev;
 
 	error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
 	if (error != 0) {
 		spa_load_failed(spa, "unable to open rootbp in dsl_pool_init "
 		    "[error=%d]", error);
 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
 	}
 	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
 
 	return (0);
 }
 
 static int
 spa_ld_trusted_config(spa_t *spa, spa_import_type_t type,
     boolean_t reloading)
 {
 	vdev_t *mrvd, *rvd = spa->spa_root_vdev;
 	nvlist_t *nv, *mos_config, *policy;
 	int error = 0, copy_error;
 	uint64_t healthy_tvds, healthy_tvds_mos;
 	uint64_t mos_config_txg;
 
 	if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object, B_TRUE)
 	    != 0)
 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
 
 	/*
 	 * If we're assembling a pool from a split, the config provided is
 	 * already trusted so there is nothing to do.
 	 */
 	if (type == SPA_IMPORT_ASSEMBLE)
 		return (0);
 
 	healthy_tvds = spa_healthy_core_tvds(spa);
 
 	if (load_nvlist(spa, spa->spa_config_object, &mos_config)
 	    != 0) {
 		spa_load_failed(spa, "unable to retrieve MOS config");
 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
 	}
 
 	/*
 	 * If we are doing an open, pool owner wasn't verified yet, thus do
 	 * the verification here.
 	 */
 	if (spa->spa_load_state == SPA_LOAD_OPEN) {
 		error = spa_verify_host(spa, mos_config);
 		if (error != 0) {
 			nvlist_free(mos_config);
 			return (error);
 		}
 	}
 
 	nv = fnvlist_lookup_nvlist(mos_config, ZPOOL_CONFIG_VDEV_TREE);
 
 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
 
 	/*
 	 * Build a new vdev tree from the trusted config
 	 */
 	error = spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD);
 	if (error != 0) {
 		nvlist_free(mos_config);
 		spa_config_exit(spa, SCL_ALL, FTAG);
 		spa_load_failed(spa, "spa_config_parse failed [error=%d]",
 		    error);
 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
 	}
 
 	/*
 	 * Vdev paths in the MOS may be obsolete. If the untrusted config was
 	 * obtained by scanning /dev/dsk, then it will have the right vdev
 	 * paths. We update the trusted MOS config with this information.
 	 * We first try to copy the paths with vdev_copy_path_strict, which
 	 * succeeds only when both configs have exactly the same vdev tree.
 	 * If that fails, we fall back to a more flexible method that has a
 	 * best effort policy.
 	 */
 	copy_error = vdev_copy_path_strict(rvd, mrvd);
 	if (copy_error != 0 || spa_load_print_vdev_tree) {
 		spa_load_note(spa, "provided vdev tree:");
 		vdev_dbgmsg_print_tree(rvd, 2);
 		spa_load_note(spa, "MOS vdev tree:");
 		vdev_dbgmsg_print_tree(mrvd, 2);
 	}
 	if (copy_error != 0) {
 		spa_load_note(spa, "vdev_copy_path_strict failed, falling "
 		    "back to vdev_copy_path_relaxed");
 		vdev_copy_path_relaxed(rvd, mrvd);
 	}
 
 	vdev_close(rvd);
 	vdev_free(rvd);
 	spa->spa_root_vdev = mrvd;
 	rvd = mrvd;
 	spa_config_exit(spa, SCL_ALL, FTAG);
 
 	/*
 	 * If 'zpool import' used a cached config, then the on-disk hostid and
 	 * hostname may be different to the cached config in ways that should
 	 * prevent import.  Userspace can't discover this without a scan, but
 	 * we know, so we add these values to LOAD_INFO so the caller can know
 	 * the difference.
 	 *
 	 * Note that we have to do this before the config is regenerated,
 	 * because the new config will have the hostid and hostname for this
 	 * host, in readiness for import.
 	 */
 	if (nvlist_exists(mos_config, ZPOOL_CONFIG_HOSTID))
 		fnvlist_add_uint64(spa->spa_load_info, ZPOOL_CONFIG_HOSTID,
 		    fnvlist_lookup_uint64(mos_config, ZPOOL_CONFIG_HOSTID));
 	if (nvlist_exists(mos_config, ZPOOL_CONFIG_HOSTNAME))
 		fnvlist_add_string(spa->spa_load_info, ZPOOL_CONFIG_HOSTNAME,
 		    fnvlist_lookup_string(mos_config, ZPOOL_CONFIG_HOSTNAME));
 
 	/*
 	 * We will use spa_config if we decide to reload the spa or if spa_load
 	 * fails and we rewind. We must thus regenerate the config using the
 	 * MOS information with the updated paths. ZPOOL_LOAD_POLICY is used to
 	 * pass settings on how to load the pool and is not stored in the MOS.
 	 * We copy it over to our new, trusted config.
 	 */
 	mos_config_txg = fnvlist_lookup_uint64(mos_config,
 	    ZPOOL_CONFIG_POOL_TXG);
 	nvlist_free(mos_config);
 	mos_config = spa_config_generate(spa, NULL, mos_config_txg, B_FALSE);
 	if (nvlist_lookup_nvlist(spa->spa_config, ZPOOL_LOAD_POLICY,
 	    &policy) == 0)
 		fnvlist_add_nvlist(mos_config, ZPOOL_LOAD_POLICY, policy);
 	spa_config_set(spa, mos_config);
 	spa->spa_config_source = SPA_CONFIG_SRC_MOS;
 
 	/*
 	 * Now that we got the config from the MOS, we should be more strict
 	 * in checking blkptrs and can make assumptions about the consistency
 	 * of the vdev tree. spa_trust_config must be set to true before opening
 	 * vdevs in order for them to be writeable.
 	 */
 	spa->spa_trust_config = B_TRUE;
 
 	/*
 	 * Open and validate the new vdev tree
 	 */
 	error = spa_ld_open_vdevs(spa);
 	if (error != 0)
 		return (error);
 
 	error = spa_ld_validate_vdevs(spa);
 	if (error != 0)
 		return (error);
 
 	if (copy_error != 0 || spa_load_print_vdev_tree) {
 		spa_load_note(spa, "final vdev tree:");
 		vdev_dbgmsg_print_tree(rvd, 2);
 	}
 
 	if (spa->spa_load_state != SPA_LOAD_TRYIMPORT &&
 	    !spa->spa_extreme_rewind && zfs_max_missing_tvds == 0) {
 		/*
 		 * Sanity check to make sure that we are indeed loading the
 		 * latest uberblock. If we missed SPA_SYNC_MIN_VDEVS tvds
 		 * in the config provided and they happened to be the only ones
 		 * to have the latest uberblock, we could involuntarily perform
 		 * an extreme rewind.
 		 */
 		healthy_tvds_mos = spa_healthy_core_tvds(spa);
 		if (healthy_tvds_mos - healthy_tvds >=
 		    SPA_SYNC_MIN_VDEVS) {
 			spa_load_note(spa, "config provided misses too many "
 			    "top-level vdevs compared to MOS (%lld vs %lld). ",
 			    (u_longlong_t)healthy_tvds,
 			    (u_longlong_t)healthy_tvds_mos);
 			spa_load_note(spa, "vdev tree:");
 			vdev_dbgmsg_print_tree(rvd, 2);
 			if (reloading) {
 				spa_load_failed(spa, "config was already "
 				    "provided from MOS. Aborting.");
 				return (spa_vdev_err(rvd,
 				    VDEV_AUX_CORRUPT_DATA, EIO));
 			}
 			spa_load_note(spa, "spa must be reloaded using MOS "
 			    "config");
 			return (SET_ERROR(EAGAIN));
 		}
 	}
 
 	error = spa_check_for_missing_logs(spa);
 	if (error != 0)
 		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
 
 	if (rvd->vdev_guid_sum != spa->spa_uberblock.ub_guid_sum) {
 		spa_load_failed(spa, "uberblock guid sum doesn't match MOS "
 		    "guid sum (%llu != %llu)",
 		    (u_longlong_t)spa->spa_uberblock.ub_guid_sum,
 		    (u_longlong_t)rvd->vdev_guid_sum);
 		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
 		    ENXIO));
 	}
 
 	return (0);
 }
 
 static int
 spa_ld_open_indirect_vdev_metadata(spa_t *spa)
 {
 	int error = 0;
 	vdev_t *rvd = spa->spa_root_vdev;
 
 	/*
 	 * Everything that we read before spa_remove_init() must be stored
 	 * on concreted vdevs.  Therefore we do this as early as possible.
 	 */
 	error = spa_remove_init(spa);
 	if (error != 0) {
 		spa_load_failed(spa, "spa_remove_init failed [error=%d]",
 		    error);
 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
 	}
 
 	/*
 	 * Retrieve information needed to condense indirect vdev mappings.
 	 */
 	error = spa_condense_init(spa);
 	if (error != 0) {
 		spa_load_failed(spa, "spa_condense_init failed [error=%d]",
 		    error);
 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
 	}
 
 	return (0);
 }
 
 static int
 spa_ld_check_features(spa_t *spa, boolean_t *missing_feat_writep)
 {
 	int error = 0;
 	vdev_t *rvd = spa->spa_root_vdev;
 
 	if (spa_version(spa) >= SPA_VERSION_FEATURES) {
 		boolean_t missing_feat_read = B_FALSE;
 		nvlist_t *unsup_feat, *enabled_feat;
 
 		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
 		    &spa->spa_feat_for_read_obj, B_TRUE) != 0) {
 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
 		}
 
 		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
 		    &spa->spa_feat_for_write_obj, B_TRUE) != 0) {
 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
 		}
 
 		if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
 		    &spa->spa_feat_desc_obj, B_TRUE) != 0) {
 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
 		}
 
 		enabled_feat = fnvlist_alloc();
 		unsup_feat = fnvlist_alloc();
 
 		if (!spa_features_check(spa, B_FALSE,
 		    unsup_feat, enabled_feat))
 			missing_feat_read = B_TRUE;
 
 		if (spa_writeable(spa) ||
 		    spa->spa_load_state == SPA_LOAD_TRYIMPORT) {
 			if (!spa_features_check(spa, B_TRUE,
 			    unsup_feat, enabled_feat)) {
 				*missing_feat_writep = B_TRUE;
 			}
 		}
 
 		fnvlist_add_nvlist(spa->spa_load_info,
 		    ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
 
 		if (!nvlist_empty(unsup_feat)) {
 			fnvlist_add_nvlist(spa->spa_load_info,
 			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
 		}
 
 		fnvlist_free(enabled_feat);
 		fnvlist_free(unsup_feat);
 
 		if (!missing_feat_read) {
 			fnvlist_add_boolean(spa->spa_load_info,
 			    ZPOOL_CONFIG_CAN_RDONLY);
 		}
 
 		/*
 		 * If the state is SPA_LOAD_TRYIMPORT, our objective is
 		 * twofold: to determine whether the pool is available for
 		 * import in read-write mode and (if it is not) whether the
 		 * pool is available for import in read-only mode. If the pool
 		 * is available for import in read-write mode, it is displayed
 		 * as available in userland; if it is not available for import
 		 * in read-only mode, it is displayed as unavailable in
 		 * userland. If the pool is available for import in read-only
 		 * mode but not read-write mode, it is displayed as unavailable
 		 * in userland with a special note that the pool is actually
 		 * available for open in read-only mode.
 		 *
 		 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
 		 * missing a feature for write, we must first determine whether
 		 * the pool can be opened read-only before returning to
 		 * userland in order to know whether to display the
 		 * abovementioned note.
 		 */
 		if (missing_feat_read || (*missing_feat_writep &&
 		    spa_writeable(spa))) {
 			spa_load_failed(spa, "pool uses unsupported features");
 			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
 			    ENOTSUP));
 		}
 
 		/*
 		 * Load refcounts for ZFS features from disk into an in-memory
 		 * cache during SPA initialization.
 		 */
 		for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
 			uint64_t refcount;
 
 			error = feature_get_refcount_from_disk(spa,
 			    &spa_feature_table[i], &refcount);
 			if (error == 0) {
 				spa->spa_feat_refcount_cache[i] = refcount;
 			} else if (error == ENOTSUP) {
 				spa->spa_feat_refcount_cache[i] =
 				    SPA_FEATURE_DISABLED;
 			} else {
 				spa_load_failed(spa, "error getting refcount "
 				    "for feature %s [error=%d]",
 				    spa_feature_table[i].fi_guid, error);
 				return (spa_vdev_err(rvd,
 				    VDEV_AUX_CORRUPT_DATA, EIO));
 			}
 		}
 	}
 
 	if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
 		if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
 		    &spa->spa_feat_enabled_txg_obj, B_TRUE) != 0)
 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
 	}
 
 	/*
 	 * Encryption was added before bookmark_v2, even though bookmark_v2
 	 * is now a dependency. If this pool has encryption enabled without
 	 * bookmark_v2, trigger an errata message.
 	 */
 	if (spa_feature_is_enabled(spa, SPA_FEATURE_ENCRYPTION) &&
 	    !spa_feature_is_enabled(spa, SPA_FEATURE_BOOKMARK_V2)) {
 		spa->spa_errata = ZPOOL_ERRATA_ZOL_8308_ENCRYPTION;
 	}
 
 	return (0);
 }
 
 static int
 spa_ld_load_special_directories(spa_t *spa)
 {
 	int error = 0;
 	vdev_t *rvd = spa->spa_root_vdev;
 
 	spa->spa_is_initializing = B_TRUE;
 	error = dsl_pool_open(spa->spa_dsl_pool);
 	spa->spa_is_initializing = B_FALSE;
 	if (error != 0) {
 		spa_load_failed(spa, "dsl_pool_open failed [error=%d]", error);
 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
 	}
 
 	return (0);
 }
 
 static int
 spa_ld_get_props(spa_t *spa)
 {
 	int error = 0;
 	uint64_t obj;
 	vdev_t *rvd = spa->spa_root_vdev;
 
 	/* Grab the checksum salt from the MOS. */
 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
 	    DMU_POOL_CHECKSUM_SALT, 1,
 	    sizeof (spa->spa_cksum_salt.zcs_bytes),
 	    spa->spa_cksum_salt.zcs_bytes);
 	if (error == ENOENT) {
 		/* Generate a new salt for subsequent use */
 		(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
 		    sizeof (spa->spa_cksum_salt.zcs_bytes));
 	} else if (error != 0) {
 		spa_load_failed(spa, "unable to retrieve checksum salt from "
 		    "MOS [error=%d]", error);
 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
 	}
 
 	if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj, B_TRUE) != 0)
 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
 	error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
 	if (error != 0) {
 		spa_load_failed(spa, "error opening deferred-frees bpobj "
 		    "[error=%d]", error);
 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
 	}
 
 	/*
 	 * Load the bit that tells us to use the new accounting function
 	 * (raid-z deflation).  If we have an older pool, this will not
 	 * be present.
 	 */
 	error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate, B_FALSE);
 	if (error != 0 && error != ENOENT)
 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
 
 	error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
 	    &spa->spa_creation_version, B_FALSE);
 	if (error != 0 && error != ENOENT)
 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
 
 	/*
 	 * Load the persistent error log.  If we have an older pool, this will
 	 * not be present.
 	 */
 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last,
 	    B_FALSE);
 	if (error != 0 && error != ENOENT)
 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
 
 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
 	    &spa->spa_errlog_scrub, B_FALSE);
 	if (error != 0 && error != ENOENT)
 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
 
 	/*
 	 * Load the livelist deletion field. If a livelist is queued for
 	 * deletion, indicate that in the spa
 	 */
 	error = spa_dir_prop(spa, DMU_POOL_DELETED_CLONES,
 	    &spa->spa_livelists_to_delete, B_FALSE);
 	if (error != 0 && error != ENOENT)
 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
 
 	/*
 	 * Load the history object.  If we have an older pool, this
 	 * will not be present.
 	 */
 	error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history, B_FALSE);
 	if (error != 0 && error != ENOENT)
 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
 
 	/*
 	 * Load the per-vdev ZAP map. If we have an older pool, this will not
 	 * be present; in this case, defer its creation to a later time to
 	 * avoid dirtying the MOS this early / out of sync context. See
 	 * spa_sync_config_object.
 	 */
 
 	/* The sentinel is only available in the MOS config. */
 	nvlist_t *mos_config;
 	if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0) {
 		spa_load_failed(spa, "unable to retrieve MOS config");
 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
 	}
 
 	error = spa_dir_prop(spa, DMU_POOL_VDEV_ZAP_MAP,
 	    &spa->spa_all_vdev_zaps, B_FALSE);
 
 	if (error == ENOENT) {
 		VERIFY(!nvlist_exists(mos_config,
 		    ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
 		spa->spa_avz_action = AVZ_ACTION_INITIALIZE;
 		ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
 	} else if (error != 0) {
 		nvlist_free(mos_config);
 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
 	} else if (!nvlist_exists(mos_config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)) {
 		/*
 		 * An older version of ZFS overwrote the sentinel value, so
 		 * we have orphaned per-vdev ZAPs in the MOS. Defer their
 		 * destruction to later; see spa_sync_config_object.
 		 */
 		spa->spa_avz_action = AVZ_ACTION_DESTROY;
 		/*
 		 * We're assuming that no vdevs have had their ZAPs created
 		 * before this. Better be sure of it.
 		 */
 		ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
 	}
 	nvlist_free(mos_config);
 
 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
 
 	error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object,
 	    B_FALSE);
 	if (error && error != ENOENT)
 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
 
 	if (error == 0) {
 		uint64_t autoreplace = 0;
 
 		spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
 		spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
 		spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
 		spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
 		spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
 		spa_prop_find(spa, ZPOOL_PROP_MULTIHOST, &spa->spa_multihost);
 		spa_prop_find(spa, ZPOOL_PROP_AUTOTRIM, &spa->spa_autotrim);
 		spa->spa_autoreplace = (autoreplace != 0);
 	}
 
 	/*
 	 * If we are importing a pool with missing top-level vdevs,
 	 * we enforce that the pool doesn't panic or get suspended on
 	 * error since the likelihood of missing data is extremely high.
 	 */
 	if (spa->spa_missing_tvds > 0 &&
 	    spa->spa_failmode != ZIO_FAILURE_MODE_CONTINUE &&
 	    spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
 		spa_load_note(spa, "forcing failmode to 'continue' "
 		    "as some top level vdevs are missing");
 		spa->spa_failmode = ZIO_FAILURE_MODE_CONTINUE;
 	}
 
 	return (0);
 }
 
 static int
 spa_ld_open_aux_vdevs(spa_t *spa, spa_import_type_t type)
 {
 	int error = 0;
 	vdev_t *rvd = spa->spa_root_vdev;
 
 	/*
 	 * If we're assembling the pool from the split-off vdevs of
 	 * an existing pool, we don't want to attach the spares & cache
 	 * devices.
 	 */
 
 	/*
 	 * Load any hot spares for this pool.
 	 */
 	error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object,
 	    B_FALSE);
 	if (error != 0 && error != ENOENT)
 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
 		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
 		if (load_nvlist(spa, spa->spa_spares.sav_object,
 		    &spa->spa_spares.sav_config) != 0) {
 			spa_load_failed(spa, "error loading spares nvlist");
 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
 		}
 
 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
 		spa_load_spares(spa);
 		spa_config_exit(spa, SCL_ALL, FTAG);
 	} else if (error == 0) {
 		spa->spa_spares.sav_sync = B_TRUE;
 	}
 
 	/*
 	 * Load any level 2 ARC devices for this pool.
 	 */
 	error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
 	    &spa->spa_l2cache.sav_object, B_FALSE);
 	if (error != 0 && error != ENOENT)
 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
 		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
 		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
 		    &spa->spa_l2cache.sav_config) != 0) {
 			spa_load_failed(spa, "error loading l2cache nvlist");
 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
 		}
 
 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
 		spa_load_l2cache(spa);
 		spa_config_exit(spa, SCL_ALL, FTAG);
 	} else if (error == 0) {
 		spa->spa_l2cache.sav_sync = B_TRUE;
 	}
 
 	return (0);
 }
 
 static int
 spa_ld_load_vdev_metadata(spa_t *spa)
 {
 	int error = 0;
 	vdev_t *rvd = spa->spa_root_vdev;
 
 	/*
 	 * If the 'multihost' property is set, then never allow a pool to
 	 * be imported when the system hostid is zero.  The exception to
 	 * this rule is zdb which is always allowed to access pools.
 	 */
 	if (spa_multihost(spa) && spa_get_hostid(spa) == 0 &&
 	    (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP) == 0) {
 		fnvlist_add_uint64(spa->spa_load_info,
 		    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID);
 		return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO));
 	}
 
 	/*
 	 * If the 'autoreplace' property is set, then post a resource notifying
 	 * the ZFS DE that it should not issue any faults for unopenable
 	 * devices.  We also iterate over the vdevs, and post a sysevent for any
 	 * unopenable vdevs so that the normal autoreplace handler can take
 	 * over.
 	 */
 	if (spa->spa_autoreplace && spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
 		spa_check_removed(spa->spa_root_vdev);
 		/*
 		 * For the import case, this is done in spa_import(), because
 		 * at this point we're using the spare definitions from
 		 * the MOS config, not necessarily from the userland config.
 		 */
 		if (spa->spa_load_state != SPA_LOAD_IMPORT) {
 			spa_aux_check_removed(&spa->spa_spares);
 			spa_aux_check_removed(&spa->spa_l2cache);
 		}
 	}
 
 	/*
 	 * Load the vdev metadata such as metaslabs, DTLs, spacemap object, etc.
 	 */
 	error = vdev_load(rvd);
 	if (error != 0) {
 		spa_load_failed(spa, "vdev_load failed [error=%d]", error);
 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
 	}
 
 	error = spa_ld_log_spacemaps(spa);
 	if (error != 0) {
 		spa_load_failed(spa, "spa_ld_log_spacemaps failed [error=%d]",
 		    error);
 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
 	}
 
 	/*
 	 * Propagate the leaf DTLs we just loaded all the way up the vdev tree.
 	 */
 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
 	vdev_dtl_reassess(rvd, 0, 0, B_FALSE, B_FALSE);
 	spa_config_exit(spa, SCL_ALL, FTAG);
 
 	return (0);
 }
 
 static int
 spa_ld_load_dedup_tables(spa_t *spa)
 {
 	int error = 0;
 	vdev_t *rvd = spa->spa_root_vdev;
 
 	error = ddt_load(spa);
 	if (error != 0) {
 		spa_load_failed(spa, "ddt_load failed [error=%d]", error);
 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
 	}
 
 	return (0);
 }
 
 static int
 spa_ld_load_brt(spa_t *spa)
 {
 	int error = 0;
 	vdev_t *rvd = spa->spa_root_vdev;
 
 	error = brt_load(spa);
 	if (error != 0) {
 		spa_load_failed(spa, "brt_load failed [error=%d]", error);
 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
 	}
 
 	return (0);
 }
 
 static int
 spa_ld_verify_logs(spa_t *spa, spa_import_type_t type, const char **ereport)
 {
 	vdev_t *rvd = spa->spa_root_vdev;
 
 	if (type != SPA_IMPORT_ASSEMBLE && spa_writeable(spa)) {
 		boolean_t missing = spa_check_logs(spa);
 		if (missing) {
 			if (spa->spa_missing_tvds != 0) {
 				spa_load_note(spa, "spa_check_logs failed "
 				    "so dropping the logs");
 			} else {
 				*ereport = FM_EREPORT_ZFS_LOG_REPLAY;
 				spa_load_failed(spa, "spa_check_logs failed");
 				return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG,
 				    ENXIO));
 			}
 		}
 	}
 
 	return (0);
 }
 
 static int
 spa_ld_verify_pool_data(spa_t *spa)
 {
 	int error = 0;
 	vdev_t *rvd = spa->spa_root_vdev;
 
 	/*
 	 * We've successfully opened the pool, verify that we're ready
 	 * to start pushing transactions.
 	 */
 	if (spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
 		error = spa_load_verify(spa);
 		if (error != 0) {
 			spa_load_failed(spa, "spa_load_verify failed "
 			    "[error=%d]", error);
 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
 			    error));
 		}
 	}
 
 	return (0);
 }
 
 static void
 spa_ld_claim_log_blocks(spa_t *spa)
 {
 	dmu_tx_t *tx;
 	dsl_pool_t *dp = spa_get_dsl(spa);
 
 	/*
 	 * Claim log blocks that haven't been committed yet.
 	 * This must all happen in a single txg.
 	 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
 	 * invoked from zil_claim_log_block()'s i/o done callback.
 	 * Price of rollback is that we abandon the log.
 	 */
 	spa->spa_claiming = B_TRUE;
 
 	tx = dmu_tx_create_assigned(dp, spa_first_txg(spa));
 	(void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
 	    zil_claim, tx, DS_FIND_CHILDREN);
 	dmu_tx_commit(tx);
 
 	spa->spa_claiming = B_FALSE;
 
 	spa_set_log_state(spa, SPA_LOG_GOOD);
 }
 
 static void
 spa_ld_check_for_config_update(spa_t *spa, uint64_t config_cache_txg,
     boolean_t update_config_cache)
 {
 	vdev_t *rvd = spa->spa_root_vdev;
 	int need_update = B_FALSE;
 
 	/*
 	 * If the config cache is stale, or we have uninitialized
 	 * metaslabs (see spa_vdev_add()), then update the config.
 	 *
 	 * If this is a verbatim import, trust the current
 	 * in-core spa_config and update the disk labels.
 	 */
 	if (update_config_cache || config_cache_txg != spa->spa_config_txg ||
 	    spa->spa_load_state == SPA_LOAD_IMPORT ||
 	    spa->spa_load_state == SPA_LOAD_RECOVER ||
 	    (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
 		need_update = B_TRUE;
 
 	for (int c = 0; c < rvd->vdev_children; c++)
 		if (rvd->vdev_child[c]->vdev_ms_array == 0)
 			need_update = B_TRUE;
 
 	/*
 	 * Update the config cache asynchronously in case we're the
 	 * root pool, in which case the config cache isn't writable yet.
 	 */
 	if (need_update)
 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
 }
 
 static void
 spa_ld_prepare_for_reload(spa_t *spa)
 {
 	spa_mode_t mode = spa->spa_mode;
 	int async_suspended = spa->spa_async_suspended;
 
 	spa_unload(spa);
 	spa_deactivate(spa);
 	spa_activate(spa, mode);
 
 	/*
 	 * We save the value of spa_async_suspended as it gets reset to 0 by
 	 * spa_unload(). We want to restore it back to the original value before
 	 * returning as we might be calling spa_async_resume() later.
 	 */
 	spa->spa_async_suspended = async_suspended;
 }
 
 static int
 spa_ld_read_checkpoint_txg(spa_t *spa)
 {
 	uberblock_t checkpoint;
 	int error = 0;
 
 	ASSERT0(spa->spa_checkpoint_txg);
 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
 
 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
 	    DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
 	    sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
 
 	if (error == ENOENT)
 		return (0);
 
 	if (error != 0)
 		return (error);
 
 	ASSERT3U(checkpoint.ub_txg, !=, 0);
 	ASSERT3U(checkpoint.ub_checkpoint_txg, !=, 0);
 	ASSERT3U(checkpoint.ub_timestamp, !=, 0);
 	spa->spa_checkpoint_txg = checkpoint.ub_txg;
 	spa->spa_checkpoint_info.sci_timestamp = checkpoint.ub_timestamp;
 
 	return (0);
 }
 
 static int
 spa_ld_mos_init(spa_t *spa, spa_import_type_t type)
 {
 	int error = 0;
 
 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
 	ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
 
 	/*
 	 * Never trust the config that is provided unless we are assembling
 	 * a pool following a split.
 	 * This means don't trust blkptrs and the vdev tree in general. This
 	 * also effectively puts the spa in read-only mode since
 	 * spa_writeable() checks for spa_trust_config to be true.
 	 * We will later load a trusted config from the MOS.
 	 */
 	if (type != SPA_IMPORT_ASSEMBLE)
 		spa->spa_trust_config = B_FALSE;
 
 	/*
 	 * Parse the config provided to create a vdev tree.
 	 */
 	error = spa_ld_parse_config(spa, type);
 	if (error != 0)
 		return (error);
 
 	spa_import_progress_add(spa);
 
 	/*
 	 * Now that we have the vdev tree, try to open each vdev. This involves
 	 * opening the underlying physical device, retrieving its geometry and
 	 * probing the vdev with a dummy I/O. The state of each vdev will be set
 	 * based on the success of those operations. After this we'll be ready
 	 * to read from the vdevs.
 	 */
 	error = spa_ld_open_vdevs(spa);
 	if (error != 0)
 		return (error);
 
 	/*
 	 * Read the label of each vdev and make sure that the GUIDs stored
 	 * there match the GUIDs in the config provided.
 	 * If we're assembling a new pool that's been split off from an
 	 * existing pool, the labels haven't yet been updated so we skip
 	 * validation for now.
 	 */
 	if (type != SPA_IMPORT_ASSEMBLE) {
 		error = spa_ld_validate_vdevs(spa);
 		if (error != 0)
 			return (error);
 	}
 
 	/*
 	 * Read all vdev labels to find the best uberblock (i.e. latest,
 	 * unless spa_load_max_txg is set) and store it in spa_uberblock. We
 	 * get the list of features required to read blkptrs in the MOS from
 	 * the vdev label with the best uberblock and verify that our version
 	 * of zfs supports them all.
 	 */
 	error = spa_ld_select_uberblock(spa, type);
 	if (error != 0)
 		return (error);
 
 	/*
 	 * Pass that uberblock to the dsl_pool layer which will open the root
 	 * blkptr. This blkptr points to the latest version of the MOS and will
 	 * allow us to read its contents.
 	 */
 	error = spa_ld_open_rootbp(spa);
 	if (error != 0)
 		return (error);
 
 	return (0);
 }
 
 static int
 spa_ld_checkpoint_rewind(spa_t *spa)
 {
 	uberblock_t checkpoint;
 	int error = 0;
 
 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
 	ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
 
 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
 	    DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
 	    sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
 
 	if (error != 0) {
 		spa_load_failed(spa, "unable to retrieve checkpointed "
 		    "uberblock from the MOS config [error=%d]", error);
 
 		if (error == ENOENT)
 			error = ZFS_ERR_NO_CHECKPOINT;
 
 		return (error);
 	}
 
 	ASSERT3U(checkpoint.ub_txg, <, spa->spa_uberblock.ub_txg);
 	ASSERT3U(checkpoint.ub_txg, ==, checkpoint.ub_checkpoint_txg);
 
 	/*
 	 * We need to update the txg and timestamp of the checkpointed
 	 * uberblock to be higher than the latest one. This ensures that
 	 * the checkpointed uberblock is selected if we were to close and
 	 * reopen the pool right after we've written it in the vdev labels.
 	 * (also see block comment in vdev_uberblock_compare)
 	 */
 	checkpoint.ub_txg = spa->spa_uberblock.ub_txg + 1;
 	checkpoint.ub_timestamp = gethrestime_sec();
 
 	/*
 	 * Set current uberblock to be the checkpointed uberblock.
 	 */
 	spa->spa_uberblock = checkpoint;
 
 	/*
 	 * If we are doing a normal rewind, then the pool is open for
 	 * writing and we sync the "updated" checkpointed uberblock to
 	 * disk. Once this is done, we've basically rewound the whole
 	 * pool and there is no way back.
 	 *
 	 * There are cases when we don't want to attempt and sync the
 	 * checkpointed uberblock to disk because we are opening a
 	 * pool as read-only. Specifically, verifying the checkpointed
 	 * state with zdb, and importing the checkpointed state to get
 	 * a "preview" of its content.
 	 */
 	if (spa_writeable(spa)) {
 		vdev_t *rvd = spa->spa_root_vdev;
 
 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
 		vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
 		int svdcount = 0;
 		int children = rvd->vdev_children;
 		int c0 = random_in_range(children);
 
 		for (int c = 0; c < children; c++) {
 			vdev_t *vd = rvd->vdev_child[(c0 + c) % children];
 
 			/* Stop when revisiting the first vdev */
 			if (c > 0 && svd[0] == vd)
 				break;
 
 			if (vd->vdev_ms_array == 0 || vd->vdev_islog ||
 			    !vdev_is_concrete(vd))
 				continue;
 
 			svd[svdcount++] = vd;
 			if (svdcount == SPA_SYNC_MIN_VDEVS)
 				break;
 		}
 		error = vdev_config_sync(svd, svdcount, spa->spa_first_txg);
 		if (error == 0)
 			spa->spa_last_synced_guid = rvd->vdev_guid;
 		spa_config_exit(spa, SCL_ALL, FTAG);
 
 		if (error != 0) {
 			spa_load_failed(spa, "failed to write checkpointed "
 			    "uberblock to the vdev labels [error=%d]", error);
 			return (error);
 		}
 	}
 
 	return (0);
 }
 
 static int
 spa_ld_mos_with_trusted_config(spa_t *spa, spa_import_type_t type,
     boolean_t *update_config_cache)
 {
 	int error;
 
 	/*
 	 * Parse the config for pool, open and validate vdevs,
 	 * select an uberblock, and use that uberblock to open
 	 * the MOS.
 	 */
 	error = spa_ld_mos_init(spa, type);
 	if (error != 0)
 		return (error);
 
 	/*
 	 * Retrieve the trusted config stored in the MOS and use it to create
 	 * a new, exact version of the vdev tree, then reopen all vdevs.
 	 */
 	error = spa_ld_trusted_config(spa, type, B_FALSE);
 	if (error == EAGAIN) {
 		if (update_config_cache != NULL)
 			*update_config_cache = B_TRUE;
 
 		/*
 		 * Redo the loading process with the trusted config if it is
 		 * too different from the untrusted config.
 		 */
 		spa_ld_prepare_for_reload(spa);
 		spa_load_note(spa, "RELOADING");
 		error = spa_ld_mos_init(spa, type);
 		if (error != 0)
 			return (error);
 
 		error = spa_ld_trusted_config(spa, type, B_TRUE);
 		if (error != 0)
 			return (error);
 
 	} else if (error != 0) {
 		return (error);
 	}
 
 	return (0);
 }
 
 /*
  * Load an existing storage pool, using the config provided. This config
  * describes which vdevs are part of the pool and is later validated against
  * partial configs present in each vdev's label and an entire copy of the
  * config stored in the MOS.
  */
 static int
 spa_load_impl(spa_t *spa, spa_import_type_t type, const char **ereport)
 {
 	int error = 0;
 	boolean_t missing_feat_write = B_FALSE;
 	boolean_t checkpoint_rewind =
 	    (spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
 	boolean_t update_config_cache = B_FALSE;
 
 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
 	ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
 
 	spa_load_note(spa, "LOADING");
 
 	error = spa_ld_mos_with_trusted_config(spa, type, &update_config_cache);
 	if (error != 0)
 		return (error);
 
 	/*
 	 * If we are rewinding to the checkpoint then we need to repeat
 	 * everything we've done so far in this function but this time
 	 * selecting the checkpointed uberblock and using that to open
 	 * the MOS.
 	 */
 	if (checkpoint_rewind) {
 		/*
 		 * If we are rewinding to the checkpoint update config cache
 		 * anyway.
 		 */
 		update_config_cache = B_TRUE;
 
 		/*
 		 * Extract the checkpointed uberblock from the current MOS
 		 * and use this as the pool's uberblock from now on. If the
 		 * pool is imported as writeable we also write the checkpoint
 		 * uberblock to the labels, making the rewind permanent.
 		 */
 		error = spa_ld_checkpoint_rewind(spa);
 		if (error != 0)
 			return (error);
 
 		/*
 		 * Redo the loading process again with the
 		 * checkpointed uberblock.
 		 */
 		spa_ld_prepare_for_reload(spa);
 		spa_load_note(spa, "LOADING checkpointed uberblock");
 		error = spa_ld_mos_with_trusted_config(spa, type, NULL);
 		if (error != 0)
 			return (error);
 	}
 
 	/*
 	 * Retrieve the checkpoint txg if the pool has a checkpoint.
 	 */
 	spa_import_progress_set_notes(spa, "Loading checkpoint txg");
 	error = spa_ld_read_checkpoint_txg(spa);
 	if (error != 0)
 		return (error);
 
 	/*
 	 * Retrieve the mapping of indirect vdevs. Those vdevs were removed
 	 * from the pool and their contents were re-mapped to other vdevs. Note
 	 * that everything that we read before this step must have been
 	 * rewritten on concrete vdevs after the last device removal was
 	 * initiated. Otherwise we could be reading from indirect vdevs before
 	 * we have loaded their mappings.
 	 */
 	spa_import_progress_set_notes(spa, "Loading indirect vdev metadata");
 	error = spa_ld_open_indirect_vdev_metadata(spa);
 	if (error != 0)
 		return (error);
 
 	/*
 	 * Retrieve the full list of active features from the MOS and check if
 	 * they are all supported.
 	 */
 	spa_import_progress_set_notes(spa, "Checking feature flags");
 	error = spa_ld_check_features(spa, &missing_feat_write);
 	if (error != 0)
 		return (error);
 
 	/*
 	 * Load several special directories from the MOS needed by the dsl_pool
 	 * layer.
 	 */
 	spa_import_progress_set_notes(spa, "Loading special MOS directories");
 	error = spa_ld_load_special_directories(spa);
 	if (error != 0)
 		return (error);
 
 	/*
 	 * Retrieve pool properties from the MOS.
 	 */
 	spa_import_progress_set_notes(spa, "Loading properties");
 	error = spa_ld_get_props(spa);
 	if (error != 0)
 		return (error);
 
 	/*
 	 * Retrieve the list of auxiliary devices - cache devices and spares -
 	 * and open them.
 	 */
 	spa_import_progress_set_notes(spa, "Loading AUX vdevs");
 	error = spa_ld_open_aux_vdevs(spa, type);
 	if (error != 0)
 		return (error);
 
 	/*
 	 * Load the metadata for all vdevs. Also check if unopenable devices
 	 * should be autoreplaced.
 	 */
 	spa_import_progress_set_notes(spa, "Loading vdev metadata");
 	error = spa_ld_load_vdev_metadata(spa);
 	if (error != 0)
 		return (error);
 
 	spa_import_progress_set_notes(spa, "Loading dedup tables");
 	error = spa_ld_load_dedup_tables(spa);
 	if (error != 0)
 		return (error);
 
 	spa_import_progress_set_notes(spa, "Loading BRT");
 	error = spa_ld_load_brt(spa);
 	if (error != 0)
 		return (error);
 
 	/*
 	 * Verify the logs now to make sure we don't have any unexpected errors
 	 * when we claim log blocks later.
 	 */
 	spa_import_progress_set_notes(spa, "Verifying Log Devices");
 	error = spa_ld_verify_logs(spa, type, ereport);
 	if (error != 0)
 		return (error);
 
 	if (missing_feat_write) {
 		ASSERT(spa->spa_load_state == SPA_LOAD_TRYIMPORT);
 
 		/*
 		 * At this point, we know that we can open the pool in
 		 * read-only mode but not read-write mode. We now have enough
 		 * information and can return to userland.
 		 */
 		return (spa_vdev_err(spa->spa_root_vdev, VDEV_AUX_UNSUP_FEAT,
 		    ENOTSUP));
 	}
 
 	/*
 	 * Traverse the last txgs to make sure the pool was left off in a safe
 	 * state. When performing an extreme rewind, we verify the whole pool,
 	 * which can take a very long time.
 	 */
 	spa_import_progress_set_notes(spa, "Verifying pool data");
 	error = spa_ld_verify_pool_data(spa);
 	if (error != 0)
 		return (error);
 
 	/*
 	 * Calculate the deflated space for the pool. This must be done before
 	 * we write anything to the pool because we'd need to update the space
 	 * accounting using the deflated sizes.
 	 */
 	spa_import_progress_set_notes(spa, "Calculating deflated space");
 	spa_update_dspace(spa);
 
 	/*
 	 * We have now retrieved all the information we needed to open the
 	 * pool. If we are importing the pool in read-write mode, a few
 	 * additional steps must be performed to finish the import.
 	 */
 	spa_import_progress_set_notes(spa, "Starting import");
 	if (spa_writeable(spa) && (spa->spa_load_state == SPA_LOAD_RECOVER ||
 	    spa->spa_load_max_txg == UINT64_MAX)) {
 		uint64_t config_cache_txg = spa->spa_config_txg;
 
 		ASSERT(spa->spa_load_state != SPA_LOAD_TRYIMPORT);
 
 		/*
 		 * In case of a checkpoint rewind, log the original txg
 		 * of the checkpointed uberblock.
 		 */
 		if (checkpoint_rewind) {
 			spa_history_log_internal(spa, "checkpoint rewind",
 			    NULL, "rewound state to txg=%llu",
 			    (u_longlong_t)spa->spa_uberblock.ub_checkpoint_txg);
 		}
 
 		spa_import_progress_set_notes(spa, "Claiming ZIL blocks");
 		/*
 		 * Traverse the ZIL and claim all blocks.
 		 */
 		spa_ld_claim_log_blocks(spa);
 
 		/*
 		 * Kick-off the syncing thread.
 		 */
 		spa->spa_sync_on = B_TRUE;
 		txg_sync_start(spa->spa_dsl_pool);
 		mmp_thread_start(spa);
 
 		/*
 		 * Wait for all claims to sync.  We sync up to the highest
 		 * claimed log block birth time so that claimed log blocks
 		 * don't appear to be from the future.  spa_claim_max_txg
 		 * will have been set for us by ZIL traversal operations
 		 * performed above.
 		 */
 		spa_import_progress_set_notes(spa, "Syncing ZIL claims");
 		txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
 
 		/*
 		 * Check if we need to request an update of the config. On the
 		 * next sync, we would update the config stored in vdev labels
 		 * and the cachefile (by default /etc/zfs/zpool.cache).
 		 */
 		spa_import_progress_set_notes(spa, "Updating configs");
 		spa_ld_check_for_config_update(spa, config_cache_txg,
 		    update_config_cache);
 
 		/*
 		 * Check if a rebuild was in progress and if so resume it.
 		 * Then check all DTLs to see if anything needs resilvering.
 		 * The resilver will be deferred if a rebuild was started.
 		 */
 		spa_import_progress_set_notes(spa, "Starting resilvers");
 		if (vdev_rebuild_active(spa->spa_root_vdev)) {
 			vdev_rebuild_restart(spa);
 		} else if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
 		    vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
 			spa_async_request(spa, SPA_ASYNC_RESILVER);
 		}
 
 		/*
 		 * Log the fact that we booted up (so that we can detect if
 		 * we rebooted in the middle of an operation).
 		 */
 		spa_history_log_version(spa, "open", NULL);
 
 		spa_import_progress_set_notes(spa,
 		    "Restarting device removals");
 		spa_restart_removal(spa);
 		spa_spawn_aux_threads(spa);
 
 		/*
 		 * Delete any inconsistent datasets.
 		 *
 		 * Note:
 		 * Since we may be issuing deletes for clones here,
 		 * we make sure to do so after we've spawned all the
 		 * auxiliary threads above (from which the livelist
 		 * deletion zthr is part of).
 		 */
 		spa_import_progress_set_notes(spa,
 		    "Cleaning up inconsistent objsets");
 		(void) dmu_objset_find(spa_name(spa),
 		    dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
 
 		/*
 		 * Clean up any stale temporary dataset userrefs.
 		 */
 		spa_import_progress_set_notes(spa,
 		    "Cleaning up temporary userrefs");
 		dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
 
 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
 		spa_import_progress_set_notes(spa, "Restarting initialize");
 		vdev_initialize_restart(spa->spa_root_vdev);
 		spa_import_progress_set_notes(spa, "Restarting TRIM");
 		vdev_trim_restart(spa->spa_root_vdev);
 		vdev_autotrim_restart(spa);
 		spa_config_exit(spa, SCL_CONFIG, FTAG);
 		spa_import_progress_set_notes(spa, "Finished importing");
 	}
 
 	spa_import_progress_remove(spa_guid(spa));
 	spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD);
 
 	spa_load_note(spa, "LOADED");
 
 	return (0);
 }
 
 static int
 spa_load_retry(spa_t *spa, spa_load_state_t state)
 {
 	spa_mode_t mode = spa->spa_mode;
 
 	spa_unload(spa);
 	spa_deactivate(spa);
 
 	spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
 
 	spa_activate(spa, mode);
 	spa_async_suspend(spa);
 
 	spa_load_note(spa, "spa_load_retry: rewind, max txg: %llu",
 	    (u_longlong_t)spa->spa_load_max_txg);
 
 	return (spa_load(spa, state, SPA_IMPORT_EXISTING));
 }
 
 /*
  * If spa_load() fails this function will try loading prior txg's. If
  * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
  * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
  * function will not rewind the pool and will return the same error as
  * spa_load().
  */
 static int
 spa_load_best(spa_t *spa, spa_load_state_t state, uint64_t max_request,
     int rewind_flags)
 {
 	nvlist_t *loadinfo = NULL;
 	nvlist_t *config = NULL;
 	int load_error, rewind_error;
 	uint64_t safe_rewind_txg;
 	uint64_t min_txg;
 
 	if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
 		spa->spa_load_max_txg = spa->spa_load_txg;
 		spa_set_log_state(spa, SPA_LOG_CLEAR);
 	} else {
 		spa->spa_load_max_txg = max_request;
 		if (max_request != UINT64_MAX)
 			spa->spa_extreme_rewind = B_TRUE;
 	}
 
 	load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING);
 	if (load_error == 0)
 		return (0);
 	if (load_error == ZFS_ERR_NO_CHECKPOINT) {
 		/*
 		 * When attempting checkpoint-rewind on a pool with no
 		 * checkpoint, we should not attempt to load uberblocks
 		 * from previous txgs when spa_load fails.
 		 */
 		ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
 		spa_import_progress_remove(spa_guid(spa));
 		return (load_error);
 	}
 
 	if (spa->spa_root_vdev != NULL)
 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
 
 	spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
 	spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
 
 	if (rewind_flags & ZPOOL_NEVER_REWIND) {
 		nvlist_free(config);
 		spa_import_progress_remove(spa_guid(spa));
 		return (load_error);
 	}
 
 	if (state == SPA_LOAD_RECOVER) {
 		/* Price of rolling back is discarding txgs, including log */
 		spa_set_log_state(spa, SPA_LOG_CLEAR);
 	} else {
 		/*
 		 * If we aren't rolling back save the load info from our first
 		 * import attempt so that we can restore it after attempting
 		 * to rewind.
 		 */
 		loadinfo = spa->spa_load_info;
 		spa->spa_load_info = fnvlist_alloc();
 	}
 
 	spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
 	safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
 	min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
 	    TXG_INITIAL : safe_rewind_txg;
 
 	/*
 	 * Continue as long as we're finding errors, we're still within
 	 * the acceptable rewind range, and we're still finding uberblocks
 	 */
 	while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
 	    spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
 		if (spa->spa_load_max_txg < safe_rewind_txg)
 			spa->spa_extreme_rewind = B_TRUE;
 		rewind_error = spa_load_retry(spa, state);
 	}
 
 	spa->spa_extreme_rewind = B_FALSE;
 	spa->spa_load_max_txg = UINT64_MAX;
 
 	if (config && (rewind_error || state != SPA_LOAD_RECOVER))
 		spa_config_set(spa, config);
 	else
 		nvlist_free(config);
 
 	if (state == SPA_LOAD_RECOVER) {
 		ASSERT3P(loadinfo, ==, NULL);
 		spa_import_progress_remove(spa_guid(spa));
 		return (rewind_error);
 	} else {
 		/* Store the rewind info as part of the initial load info */
 		fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
 		    spa->spa_load_info);
 
 		/* Restore the initial load info */
 		fnvlist_free(spa->spa_load_info);
 		spa->spa_load_info = loadinfo;
 
 		spa_import_progress_remove(spa_guid(spa));
 		return (load_error);
 	}
 }
 
 /*
  * Pool Open/Import
  *
  * The import case is identical to an open except that the configuration is sent
  * down from userland, instead of grabbed from the configuration cache.  For the
  * case of an open, the pool configuration will exist in the
  * POOL_STATE_UNINITIALIZED state.
  *
  * The stats information (gen/count/ustats) is used to gather vdev statistics at
  * the same time open the pool, without having to keep around the spa_t in some
  * ambiguous state.
  */
 static int
 spa_open_common(const char *pool, spa_t **spapp, const void *tag,
     nvlist_t *nvpolicy, nvlist_t **config)
 {
 	spa_t *spa;
 	spa_load_state_t state = SPA_LOAD_OPEN;
 	int error;
 	int locked = B_FALSE;
 	int firstopen = B_FALSE;
 
 	*spapp = NULL;
 
 	/*
 	 * As disgusting as this is, we need to support recursive calls to this
 	 * function because dsl_dir_open() is called during spa_load(), and ends
 	 * up calling spa_open() again.  The real fix is to figure out how to
 	 * avoid dsl_dir_open() calling this in the first place.
 	 */
 	if (MUTEX_NOT_HELD(&spa_namespace_lock)) {
 		mutex_enter(&spa_namespace_lock);
 		locked = B_TRUE;
 	}
 
 	if ((spa = spa_lookup(pool)) == NULL) {
 		if (locked)
 			mutex_exit(&spa_namespace_lock);
 		return (SET_ERROR(ENOENT));
 	}
 
 	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
 		zpool_load_policy_t policy;
 
 		firstopen = B_TRUE;
 
 		zpool_get_load_policy(nvpolicy ? nvpolicy : spa->spa_config,
 		    &policy);
 		if (policy.zlp_rewind & ZPOOL_DO_REWIND)
 			state = SPA_LOAD_RECOVER;
 
 		spa_activate(spa, spa_mode_global);
 
 		if (state != SPA_LOAD_RECOVER)
 			spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
 		spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
 
 		zfs_dbgmsg("spa_open_common: opening %s", pool);
 		error = spa_load_best(spa, state, policy.zlp_txg,
 		    policy.zlp_rewind);
 
 		if (error == EBADF) {
 			/*
 			 * If vdev_validate() returns failure (indicated by
 			 * EBADF), it indicates that one of the vdevs indicates
 			 * that the pool has been exported or destroyed.  If
 			 * this is the case, the config cache is out of sync and
 			 * we should remove the pool from the namespace.
 			 */
 			spa_unload(spa);
 			spa_deactivate(spa);
 			spa_write_cachefile(spa, B_TRUE, B_TRUE, B_FALSE);
 			spa_remove(spa);
 			if (locked)
 				mutex_exit(&spa_namespace_lock);
 			return (SET_ERROR(ENOENT));
 		}
 
 		if (error) {
 			/*
 			 * We can't open the pool, but we still have useful
 			 * information: the state of each vdev after the
 			 * attempted vdev_open().  Return this to the user.
 			 */
 			if (config != NULL && spa->spa_config) {
 				*config = fnvlist_dup(spa->spa_config);
 				fnvlist_add_nvlist(*config,
 				    ZPOOL_CONFIG_LOAD_INFO,
 				    spa->spa_load_info);
 			}
 			spa_unload(spa);
 			spa_deactivate(spa);
 			spa->spa_last_open_failed = error;
 			if (locked)
 				mutex_exit(&spa_namespace_lock);
 			*spapp = NULL;
 			return (error);
 		}
 	}
 
 	spa_open_ref(spa, tag);
 
 	if (config != NULL)
 		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
 
 	/*
 	 * If we've recovered the pool, pass back any information we
 	 * gathered while doing the load.
 	 */
 	if (state == SPA_LOAD_RECOVER && config != NULL) {
 		fnvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
 		    spa->spa_load_info);
 	}
 
 	if (locked) {
 		spa->spa_last_open_failed = 0;
 		spa->spa_last_ubsync_txg = 0;
 		spa->spa_load_txg = 0;
 		mutex_exit(&spa_namespace_lock);
 	}
 
 	if (firstopen)
 		zvol_create_minors_recursive(spa_name(spa));
 
 	*spapp = spa;
 
 	return (0);
 }
 
 int
 spa_open_rewind(const char *name, spa_t **spapp, const void *tag,
     nvlist_t *policy, nvlist_t **config)
 {
 	return (spa_open_common(name, spapp, tag, policy, config));
 }
 
 int
 spa_open(const char *name, spa_t **spapp, const void *tag)
 {
 	return (spa_open_common(name, spapp, tag, NULL, NULL));
 }
 
 /*
  * Lookup the given spa_t, incrementing the inject count in the process,
  * preventing it from being exported or destroyed.
  */
 spa_t *
 spa_inject_addref(char *name)
 {
 	spa_t *spa;
 
 	mutex_enter(&spa_namespace_lock);
 	if ((spa = spa_lookup(name)) == NULL) {
 		mutex_exit(&spa_namespace_lock);
 		return (NULL);
 	}
 	spa->spa_inject_ref++;
 	mutex_exit(&spa_namespace_lock);
 
 	return (spa);
 }
 
 void
 spa_inject_delref(spa_t *spa)
 {
 	mutex_enter(&spa_namespace_lock);
 	spa->spa_inject_ref--;
 	mutex_exit(&spa_namespace_lock);
 }
 
 /*
  * Add spares device information to the nvlist.
  */
 static void
 spa_add_spares(spa_t *spa, nvlist_t *config)
 {
 	nvlist_t **spares;
 	uint_t i, nspares;
 	nvlist_t *nvroot;
 	uint64_t guid;
 	vdev_stat_t *vs;
 	uint_t vsc;
 	uint64_t pool;
 
 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
 
 	if (spa->spa_spares.sav_count == 0)
 		return;
 
 	nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE);
 	VERIFY0(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
 	    ZPOOL_CONFIG_SPARES, &spares, &nspares));
 	if (nspares != 0) {
 		fnvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
 		    (const nvlist_t * const *)spares, nspares);
 		VERIFY0(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
 		    &spares, &nspares));
 
 		/*
 		 * Go through and find any spares which have since been
 		 * repurposed as an active spare.  If this is the case, update
 		 * their status appropriately.
 		 */
 		for (i = 0; i < nspares; i++) {
 			guid = fnvlist_lookup_uint64(spares[i],
 			    ZPOOL_CONFIG_GUID);
 			VERIFY0(nvlist_lookup_uint64_array(spares[i],
 			    ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc));
 			if (spa_spare_exists(guid, &pool, NULL) &&
 			    pool != 0ULL) {
 				vs->vs_state = VDEV_STATE_CANT_OPEN;
 				vs->vs_aux = VDEV_AUX_SPARED;
 			} else {
 				vs->vs_state =
 				    spa->spa_spares.sav_vdevs[i]->vdev_state;
 			}
 		}
 	}
 }
 
 /*
  * Add l2cache device information to the nvlist, including vdev stats.
  */
 static void
 spa_add_l2cache(spa_t *spa, nvlist_t *config)
 {
 	nvlist_t **l2cache;
 	uint_t i, j, nl2cache;
 	nvlist_t *nvroot;
 	uint64_t guid;
 	vdev_t *vd;
 	vdev_stat_t *vs;
 	uint_t vsc;
 
 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
 
 	if (spa->spa_l2cache.sav_count == 0)
 		return;
 
 	nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE);
 	VERIFY0(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache));
 	if (nl2cache != 0) {
 		fnvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
 		    (const nvlist_t * const *)l2cache, nl2cache);
 		VERIFY0(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
 		    &l2cache, &nl2cache));
 
 		/*
 		 * Update level 2 cache device stats.
 		 */
 
 		for (i = 0; i < nl2cache; i++) {
 			guid = fnvlist_lookup_uint64(l2cache[i],
 			    ZPOOL_CONFIG_GUID);
 
 			vd = NULL;
 			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
 				if (guid ==
 				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
 					vd = spa->spa_l2cache.sav_vdevs[j];
 					break;
 				}
 			}
 			ASSERT(vd != NULL);
 
 			VERIFY0(nvlist_lookup_uint64_array(l2cache[i],
 			    ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc));
 			vdev_get_stats(vd, vs);
 			vdev_config_generate_stats(vd, l2cache[i]);
 
 		}
 	}
 }
 
 static void
 spa_feature_stats_from_disk(spa_t *spa, nvlist_t *features)
 {
 	zap_cursor_t zc;
 	zap_attribute_t za;
 
 	if (spa->spa_feat_for_read_obj != 0) {
 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
 		    spa->spa_feat_for_read_obj);
 		    zap_cursor_retrieve(&zc, &za) == 0;
 		    zap_cursor_advance(&zc)) {
 			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
 			    za.za_num_integers == 1);
 			VERIFY0(nvlist_add_uint64(features, za.za_name,
 			    za.za_first_integer));
 		}
 		zap_cursor_fini(&zc);
 	}
 
 	if (spa->spa_feat_for_write_obj != 0) {
 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
 		    spa->spa_feat_for_write_obj);
 		    zap_cursor_retrieve(&zc, &za) == 0;
 		    zap_cursor_advance(&zc)) {
 			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
 			    za.za_num_integers == 1);
 			VERIFY0(nvlist_add_uint64(features, za.za_name,
 			    za.za_first_integer));
 		}
 		zap_cursor_fini(&zc);
 	}
 }
 
 static void
 spa_feature_stats_from_cache(spa_t *spa, nvlist_t *features)
 {
 	int i;
 
 	for (i = 0; i < SPA_FEATURES; i++) {
 		zfeature_info_t feature = spa_feature_table[i];
 		uint64_t refcount;
 
 		if (feature_get_refcount(spa, &feature, &refcount) != 0)
 			continue;
 
 		VERIFY0(nvlist_add_uint64(features, feature.fi_guid, refcount));
 	}
 }
 
 /*
  * Store a list of pool features and their reference counts in the
  * config.
  *
  * The first time this is called on a spa, allocate a new nvlist, fetch
  * the pool features and reference counts from disk, then save the list
  * in the spa. In subsequent calls on the same spa use the saved nvlist
  * and refresh its values from the cached reference counts.  This
  * ensures we don't block here on I/O on a suspended pool so 'zpool
  * clear' can resume the pool.
  */
 static void
 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
 {
 	nvlist_t *features;
 
 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
 
 	mutex_enter(&spa->spa_feat_stats_lock);
 	features = spa->spa_feat_stats;
 
 	if (features != NULL) {
 		spa_feature_stats_from_cache(spa, features);
 	} else {
 		VERIFY0(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP));
 		spa->spa_feat_stats = features;
 		spa_feature_stats_from_disk(spa, features);
 	}
 
 	VERIFY0(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
 	    features));
 
 	mutex_exit(&spa->spa_feat_stats_lock);
 }
 
 int
 spa_get_stats(const char *name, nvlist_t **config,
     char *altroot, size_t buflen)
 {
 	int error;
 	spa_t *spa;
 
 	*config = NULL;
 	error = spa_open_common(name, &spa, FTAG, NULL, config);
 
 	if (spa != NULL) {
 		/*
 		 * This still leaves a window of inconsistency where the spares
 		 * or l2cache devices could change and the config would be
 		 * self-inconsistent.
 		 */
 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
 
 		if (*config != NULL) {
 			uint64_t loadtimes[2];
 
 			loadtimes[0] = spa->spa_loaded_ts.tv_sec;
 			loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
 			fnvlist_add_uint64_array(*config,
 			    ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2);
 
 			fnvlist_add_uint64(*config,
 			    ZPOOL_CONFIG_ERRCOUNT,
 			    spa_approx_errlog_size(spa));
 
 			if (spa_suspended(spa)) {
 				fnvlist_add_uint64(*config,
 				    ZPOOL_CONFIG_SUSPENDED,
 				    spa->spa_failmode);
 				fnvlist_add_uint64(*config,
 				    ZPOOL_CONFIG_SUSPENDED_REASON,
 				    spa->spa_suspended);
 			}
 
 			spa_add_spares(spa, *config);
 			spa_add_l2cache(spa, *config);
 			spa_add_feature_stats(spa, *config);
 		}
 	}
 
 	/*
 	 * We want to get the alternate root even for faulted pools, so we cheat
 	 * and call spa_lookup() directly.
 	 */
 	if (altroot) {
 		if (spa == NULL) {
 			mutex_enter(&spa_namespace_lock);
 			spa = spa_lookup(name);
 			if (spa)
 				spa_altroot(spa, altroot, buflen);
 			else
 				altroot[0] = '\0';
 			spa = NULL;
 			mutex_exit(&spa_namespace_lock);
 		} else {
 			spa_altroot(spa, altroot, buflen);
 		}
 	}
 
 	if (spa != NULL) {
 		spa_config_exit(spa, SCL_CONFIG, FTAG);
 		spa_close(spa, FTAG);
 	}
 
 	return (error);
 }
 
 /*
  * Validate that the auxiliary device array is well formed.  We must have an
  * array of nvlists, each which describes a valid leaf vdev.  If this is an
  * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
  * specified, as long as they are well-formed.
  */
 static int
 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
     spa_aux_vdev_t *sav, const char *config, uint64_t version,
     vdev_labeltype_t label)
 {
 	nvlist_t **dev;
 	uint_t i, ndev;
 	vdev_t *vd;
 	int error;
 
 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
 
 	/*
 	 * It's acceptable to have no devs specified.
 	 */
 	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
 		return (0);
 
 	if (ndev == 0)
 		return (SET_ERROR(EINVAL));
 
 	/*
 	 * Make sure the pool is formatted with a version that supports this
 	 * device type.
 	 */
 	if (spa_version(spa) < version)
 		return (SET_ERROR(ENOTSUP));
 
 	/*
 	 * Set the pending device list so we correctly handle device in-use
 	 * checking.
 	 */
 	sav->sav_pending = dev;
 	sav->sav_npending = ndev;
 
 	for (i = 0; i < ndev; i++) {
 		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
 		    mode)) != 0)
 			goto out;
 
 		if (!vd->vdev_ops->vdev_op_leaf) {
 			vdev_free(vd);
 			error = SET_ERROR(EINVAL);
 			goto out;
 		}
 
 		vd->vdev_top = vd;
 
 		if ((error = vdev_open(vd)) == 0 &&
 		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
 			fnvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
 			    vd->vdev_guid);
 		}
 
 		vdev_free(vd);
 
 		if (error &&
 		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
 			goto out;
 		else
 			error = 0;
 	}
 
 out:
 	sav->sav_pending = NULL;
 	sav->sav_npending = 0;
 	return (error);
 }
 
 static int
 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
 {
 	int error;
 
 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
 
 	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
 	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
 	    VDEV_LABEL_SPARE)) != 0) {
 		return (error);
 	}
 
 	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
 	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
 	    VDEV_LABEL_L2CACHE));
 }
 
 static void
 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
     const char *config)
 {
 	int i;
 
 	if (sav->sav_config != NULL) {
 		nvlist_t **olddevs;
 		uint_t oldndevs;
 		nvlist_t **newdevs;
 
 		/*
 		 * Generate new dev list by concatenating with the
 		 * current dev list.
 		 */
 		VERIFY0(nvlist_lookup_nvlist_array(sav->sav_config, config,
 		    &olddevs, &oldndevs));
 
 		newdevs = kmem_alloc(sizeof (void *) *
 		    (ndevs + oldndevs), KM_SLEEP);
 		for (i = 0; i < oldndevs; i++)
 			newdevs[i] = fnvlist_dup(olddevs[i]);
 		for (i = 0; i < ndevs; i++)
 			newdevs[i + oldndevs] = fnvlist_dup(devs[i]);
 
 		fnvlist_remove(sav->sav_config, config);
 
 		fnvlist_add_nvlist_array(sav->sav_config, config,
 		    (const nvlist_t * const *)newdevs, ndevs + oldndevs);
 		for (i = 0; i < oldndevs + ndevs; i++)
 			nvlist_free(newdevs[i]);
 		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
 	} else {
 		/*
 		 * Generate a new dev list.
 		 */
 		sav->sav_config = fnvlist_alloc();
 		fnvlist_add_nvlist_array(sav->sav_config, config,
 		    (const nvlist_t * const *)devs, ndevs);
 	}
 }
 
 /*
  * Stop and drop level 2 ARC devices
  */
 void
 spa_l2cache_drop(spa_t *spa)
 {
 	vdev_t *vd;
 	int i;
 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
 
 	for (i = 0; i < sav->sav_count; i++) {
 		uint64_t pool;
 
 		vd = sav->sav_vdevs[i];
 		ASSERT(vd != NULL);
 
 		if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
 		    pool != 0ULL && l2arc_vdev_present(vd))
 			l2arc_remove_vdev(vd);
 	}
 }
 
 /*
  * Verify encryption parameters for spa creation. If we are encrypting, we must
  * have the encryption feature flag enabled.
  */
 static int
 spa_create_check_encryption_params(dsl_crypto_params_t *dcp,
     boolean_t has_encryption)
 {
 	if (dcp->cp_crypt != ZIO_CRYPT_OFF &&
 	    dcp->cp_crypt != ZIO_CRYPT_INHERIT &&
 	    !has_encryption)
 		return (SET_ERROR(ENOTSUP));
 
 	return (dmu_objset_create_crypt_check(NULL, dcp, NULL));
 }
 
 /*
  * Pool Creation
  */
 int
 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
     nvlist_t *zplprops, dsl_crypto_params_t *dcp)
 {
 	spa_t *spa;
 	const char *altroot = NULL;
 	vdev_t *rvd;
 	dsl_pool_t *dp;
 	dmu_tx_t *tx;
 	int error = 0;
 	uint64_t txg = TXG_INITIAL;
 	nvlist_t **spares, **l2cache;
 	uint_t nspares, nl2cache;
 	uint64_t version, obj, ndraid = 0;
 	boolean_t has_features;
 	boolean_t has_encryption;
 	boolean_t has_allocclass;
 	spa_feature_t feat;
 	const char *feat_name;
 	const char *poolname;
 	nvlist_t *nvl;
 
 	if (props == NULL ||
 	    nvlist_lookup_string(props, "tname", &poolname) != 0)
 		poolname = (char *)pool;
 
 	/*
 	 * If this pool already exists, return failure.
 	 */
 	mutex_enter(&spa_namespace_lock);
 	if (spa_lookup(poolname) != NULL) {
 		mutex_exit(&spa_namespace_lock);
 		return (SET_ERROR(EEXIST));
 	}
 
 	/*
 	 * Allocate a new spa_t structure.
 	 */
 	nvl = fnvlist_alloc();
 	fnvlist_add_string(nvl, ZPOOL_CONFIG_POOL_NAME, pool);
 	(void) nvlist_lookup_string(props,
 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
 	spa = spa_add(poolname, nvl, altroot);
 	fnvlist_free(nvl);
 	spa_activate(spa, spa_mode_global);
 
 	if (props && (error = spa_prop_validate(spa, props))) {
 		spa_deactivate(spa);
 		spa_remove(spa);
 		mutex_exit(&spa_namespace_lock);
 		return (error);
 	}
 
 	/*
 	 * Temporary pool names should never be written to disk.
 	 */
 	if (poolname != pool)
 		spa->spa_import_flags |= ZFS_IMPORT_TEMP_NAME;
 
 	has_features = B_FALSE;
 	has_encryption = B_FALSE;
 	has_allocclass = B_FALSE;
 	for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
 	    elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
 		if (zpool_prop_feature(nvpair_name(elem))) {
 			has_features = B_TRUE;
 
 			feat_name = strchr(nvpair_name(elem), '@') + 1;
 			VERIFY0(zfeature_lookup_name(feat_name, &feat));
 			if (feat == SPA_FEATURE_ENCRYPTION)
 				has_encryption = B_TRUE;
 			if (feat == SPA_FEATURE_ALLOCATION_CLASSES)
 				has_allocclass = B_TRUE;
 		}
 	}
 
 	/* verify encryption params, if they were provided */
 	if (dcp != NULL) {
 		error = spa_create_check_encryption_params(dcp, has_encryption);
 		if (error != 0) {
 			spa_deactivate(spa);
 			spa_remove(spa);
 			mutex_exit(&spa_namespace_lock);
 			return (error);
 		}
 	}
 	if (!has_allocclass && zfs_special_devs(nvroot, NULL)) {
 		spa_deactivate(spa);
 		spa_remove(spa);
 		mutex_exit(&spa_namespace_lock);
 		return (ENOTSUP);
 	}
 
 	if (has_features || nvlist_lookup_uint64(props,
 	    zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
 		version = SPA_VERSION;
 	}
 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
 
 	spa->spa_first_txg = txg;
 	spa->spa_uberblock.ub_txg = txg - 1;
 	spa->spa_uberblock.ub_version = version;
 	spa->spa_ubsync = spa->spa_uberblock;
 	spa->spa_load_state = SPA_LOAD_CREATE;
 	spa->spa_removing_phys.sr_state = DSS_NONE;
 	spa->spa_removing_phys.sr_removing_vdev = -1;
 	spa->spa_removing_phys.sr_prev_indirect_vdev = -1;
 	spa->spa_indirect_vdevs_loaded = B_TRUE;
 
 	/*
 	 * Create "The Godfather" zio to hold all async IOs
 	 */
 	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
 	    KM_SLEEP);
 	for (int i = 0; i < max_ncpus; i++) {
 		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
 		    ZIO_FLAG_GODFATHER);
 	}
 
 	/*
 	 * Create the root vdev.
 	 */
 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
 
 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
 
 	ASSERT(error != 0 || rvd != NULL);
 	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
 
 	if (error == 0 && !zfs_allocatable_devs(nvroot))
 		error = SET_ERROR(EINVAL);
 
 	if (error == 0 &&
 	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
 	    (error = vdev_draid_spare_create(nvroot, rvd, &ndraid, 0)) == 0 &&
 	    (error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) == 0) {
 		/*
 		 * instantiate the metaslab groups (this will dirty the vdevs)
 		 * we can no longer error exit past this point
 		 */
 		for (int c = 0; error == 0 && c < rvd->vdev_children; c++) {
 			vdev_t *vd = rvd->vdev_child[c];
 
 			vdev_metaslab_set_size(vd);
 			vdev_expand(vd, txg);
 		}
 	}
 
 	spa_config_exit(spa, SCL_ALL, FTAG);
 
 	if (error != 0) {
 		spa_unload(spa);
 		spa_deactivate(spa);
 		spa_remove(spa);
 		mutex_exit(&spa_namespace_lock);
 		return (error);
 	}
 
 	/*
 	 * Get the list of spares, if specified.
 	 */
 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
 	    &spares, &nspares) == 0) {
 		spa->spa_spares.sav_config = fnvlist_alloc();
 		fnvlist_add_nvlist_array(spa->spa_spares.sav_config,
 		    ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares,
 		    nspares);
 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
 		spa_load_spares(spa);
 		spa_config_exit(spa, SCL_ALL, FTAG);
 		spa->spa_spares.sav_sync = B_TRUE;
 	}
 
 	/*
 	 * Get the list of level 2 cache devices, if specified.
 	 */
 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
 	    &l2cache, &nl2cache) == 0) {
 		VERIFY0(nvlist_alloc(&spa->spa_l2cache.sav_config,
 		    NV_UNIQUE_NAME, KM_SLEEP));
 		fnvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
 		    ZPOOL_CONFIG_L2CACHE, (const nvlist_t * const *)l2cache,
 		    nl2cache);
 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
 		spa_load_l2cache(spa);
 		spa_config_exit(spa, SCL_ALL, FTAG);
 		spa->spa_l2cache.sav_sync = B_TRUE;
 	}
 
 	spa->spa_is_initializing = B_TRUE;
 	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, dcp, txg);
 	spa->spa_is_initializing = B_FALSE;
 
 	/*
 	 * Create DDTs (dedup tables).
 	 */
 	ddt_create(spa);
 	/*
 	 * Create BRT table and BRT table object.
 	 */
 	brt_create(spa);
 
 	spa_update_dspace(spa);
 
 	tx = dmu_tx_create_assigned(dp, txg);
 
 	/*
 	 * Create the pool's history object.
 	 */
 	if (version >= SPA_VERSION_ZPOOL_HISTORY && !spa->spa_history)
 		spa_history_create_obj(spa, tx);
 
 	spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_CREATE);
 	spa_history_log_version(spa, "create", tx);
 
 	/*
 	 * Create the pool config object.
 	 */
 	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
 	    DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
 	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
 
 	if (zap_add(spa->spa_meta_objset,
 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
 	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
 		cmn_err(CE_PANIC, "failed to add pool config");
 	}
 
 	if (zap_add(spa->spa_meta_objset,
 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
 	    sizeof (uint64_t), 1, &version, tx) != 0) {
 		cmn_err(CE_PANIC, "failed to add pool version");
 	}
 
 	/* Newly created pools with the right version are always deflated. */
 	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
 		spa->spa_deflate = TRUE;
 		if (zap_add(spa->spa_meta_objset,
 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
 		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
 			cmn_err(CE_PANIC, "failed to add deflate");
 		}
 	}
 
 	/*
 	 * Create the deferred-free bpobj.  Turn off compression
 	 * because sync-to-convergence takes longer if the blocksize
 	 * keeps changing.
 	 */
 	obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
 	dmu_object_set_compress(spa->spa_meta_objset, obj,
 	    ZIO_COMPRESS_OFF, tx);
 	if (zap_add(spa->spa_meta_objset,
 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
 	    sizeof (uint64_t), 1, &obj, tx) != 0) {
 		cmn_err(CE_PANIC, "failed to add bpobj");
 	}
 	VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
 	    spa->spa_meta_objset, obj));
 
 	/*
 	 * Generate some random noise for salted checksums to operate on.
 	 */
 	(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
 	    sizeof (spa->spa_cksum_salt.zcs_bytes));
 
 	/*
 	 * Set pool properties.
 	 */
 	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
 	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
 	spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
 	spa->spa_multihost = zpool_prop_default_numeric(ZPOOL_PROP_MULTIHOST);
 	spa->spa_autotrim = zpool_prop_default_numeric(ZPOOL_PROP_AUTOTRIM);
 
 	if (props != NULL) {
 		spa_configfile_set(spa, props, B_FALSE);
 		spa_sync_props(props, tx);
 	}
 
 	for (int i = 0; i < ndraid; i++)
 		spa_feature_incr(spa, SPA_FEATURE_DRAID, tx);
 
 	dmu_tx_commit(tx);
 
 	spa->spa_sync_on = B_TRUE;
 	txg_sync_start(dp);
 	mmp_thread_start(spa);
 	txg_wait_synced(dp, txg);
 
 	spa_spawn_aux_threads(spa);
 
 	spa_write_cachefile(spa, B_FALSE, B_TRUE, B_TRUE);
 
 	/*
 	 * Don't count references from objsets that are already closed
 	 * and are making their way through the eviction process.
 	 */
 	spa_evicting_os_wait(spa);
 	spa->spa_minref = zfs_refcount_count(&spa->spa_refcount);
 	spa->spa_load_state = SPA_LOAD_NONE;
 
 	spa_import_os(spa);
 
 	mutex_exit(&spa_namespace_lock);
 
 	return (0);
 }
 
 /*
  * Import a non-root pool into the system.
  */
 int
 spa_import(char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
 {
 	spa_t *spa;
 	const char *altroot = NULL;
 	spa_load_state_t state = SPA_LOAD_IMPORT;
 	zpool_load_policy_t policy;
 	spa_mode_t mode = spa_mode_global;
 	uint64_t readonly = B_FALSE;
 	int error;
 	nvlist_t *nvroot;
 	nvlist_t **spares, **l2cache;
 	uint_t nspares, nl2cache;
 
 	/*
 	 * If a pool with this name exists, return failure.
 	 */
 	mutex_enter(&spa_namespace_lock);
 	if (spa_lookup(pool) != NULL) {
 		mutex_exit(&spa_namespace_lock);
 		return (SET_ERROR(EEXIST));
 	}
 
 	/*
 	 * Create and initialize the spa structure.
 	 */
 	(void) nvlist_lookup_string(props,
 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
 	(void) nvlist_lookup_uint64(props,
 	    zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
 	if (readonly)
 		mode = SPA_MODE_READ;
 	spa = spa_add(pool, config, altroot);
 	spa->spa_import_flags = flags;
 
 	/*
 	 * Verbatim import - Take a pool and insert it into the namespace
 	 * as if it had been loaded at boot.
 	 */
 	if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
 		if (props != NULL)
 			spa_configfile_set(spa, props, B_FALSE);
 
 		spa_write_cachefile(spa, B_FALSE, B_TRUE, B_FALSE);
 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
 		zfs_dbgmsg("spa_import: verbatim import of %s", pool);
 		mutex_exit(&spa_namespace_lock);
 		return (0);
 	}
 
 	spa_activate(spa, mode);
 
 	/*
 	 * Don't start async tasks until we know everything is healthy.
 	 */
 	spa_async_suspend(spa);
 
 	zpool_get_load_policy(config, &policy);
 	if (policy.zlp_rewind & ZPOOL_DO_REWIND)
 		state = SPA_LOAD_RECOVER;
 
 	spa->spa_config_source = SPA_CONFIG_SRC_TRYIMPORT;
 
 	if (state != SPA_LOAD_RECOVER) {
 		spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
 		zfs_dbgmsg("spa_import: importing %s", pool);
 	} else {
 		zfs_dbgmsg("spa_import: importing %s, max_txg=%lld "
 		    "(RECOVERY MODE)", pool, (longlong_t)policy.zlp_txg);
 	}
 	error = spa_load_best(spa, state, policy.zlp_txg, policy.zlp_rewind);
 
 	/*
 	 * Propagate anything learned while loading the pool and pass it
 	 * back to caller (i.e. rewind info, missing devices, etc).
 	 */
 	fnvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, spa->spa_load_info);
 
 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
 	/*
 	 * Toss any existing sparelist, as it doesn't have any validity
 	 * anymore, and conflicts with spa_has_spare().
 	 */
 	if (spa->spa_spares.sav_config) {
 		nvlist_free(spa->spa_spares.sav_config);
 		spa->spa_spares.sav_config = NULL;
 		spa_load_spares(spa);
 	}
 	if (spa->spa_l2cache.sav_config) {
 		nvlist_free(spa->spa_l2cache.sav_config);
 		spa->spa_l2cache.sav_config = NULL;
 		spa_load_l2cache(spa);
 	}
 
 	nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE);
 	spa_config_exit(spa, SCL_ALL, FTAG);
 
 	if (props != NULL)
 		spa_configfile_set(spa, props, B_FALSE);
 
 	if (error != 0 || (props && spa_writeable(spa) &&
 	    (error = spa_prop_set(spa, props)))) {
 		spa_unload(spa);
 		spa_deactivate(spa);
 		spa_remove(spa);
 		mutex_exit(&spa_namespace_lock);
 		return (error);
 	}
 
 	spa_async_resume(spa);
 
 	/*
 	 * Override any spares and level 2 cache devices as specified by
 	 * the user, as these may have correct device names/devids, etc.
 	 */
 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
 	    &spares, &nspares) == 0) {
 		if (spa->spa_spares.sav_config)
 			fnvlist_remove(spa->spa_spares.sav_config,
 			    ZPOOL_CONFIG_SPARES);
 		else
 			spa->spa_spares.sav_config = fnvlist_alloc();
 		fnvlist_add_nvlist_array(spa->spa_spares.sav_config,
 		    ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares,
 		    nspares);
 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
 		spa_load_spares(spa);
 		spa_config_exit(spa, SCL_ALL, FTAG);
 		spa->spa_spares.sav_sync = B_TRUE;
 	}
 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
 	    &l2cache, &nl2cache) == 0) {
 		if (spa->spa_l2cache.sav_config)
 			fnvlist_remove(spa->spa_l2cache.sav_config,
 			    ZPOOL_CONFIG_L2CACHE);
 		else
 			spa->spa_l2cache.sav_config = fnvlist_alloc();
 		fnvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
 		    ZPOOL_CONFIG_L2CACHE, (const nvlist_t * const *)l2cache,
 		    nl2cache);
 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
 		spa_load_l2cache(spa);
 		spa_config_exit(spa, SCL_ALL, FTAG);
 		spa->spa_l2cache.sav_sync = B_TRUE;
 	}
 
 	/*
 	 * Check for any removed devices.
 	 */
 	if (spa->spa_autoreplace) {
 		spa_aux_check_removed(&spa->spa_spares);
 		spa_aux_check_removed(&spa->spa_l2cache);
 	}
 
 	if (spa_writeable(spa)) {
 		/*
 		 * Update the config cache to include the newly-imported pool.
 		 */
 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
 	}
 
 	/*
 	 * It's possible that the pool was expanded while it was exported.
 	 * We kick off an async task to handle this for us.
 	 */
 	spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
 
 	spa_history_log_version(spa, "import", NULL);
 
 	spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
 
 	mutex_exit(&spa_namespace_lock);
 
 	zvol_create_minors_recursive(pool);
 
 	spa_import_os(spa);
 
 	return (0);
 }
 
 nvlist_t *
 spa_tryimport(nvlist_t *tryconfig)
 {
 	nvlist_t *config = NULL;
 	const char *poolname, *cachefile;
 	spa_t *spa;
 	uint64_t state;
 	int error;
 	zpool_load_policy_t policy;
 
 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
 		return (NULL);
 
 	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
 		return (NULL);
 
 	/*
 	 * Create and initialize the spa structure.
 	 */
 	mutex_enter(&spa_namespace_lock);
 	spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
 	spa_activate(spa, SPA_MODE_READ);
 
 	/*
 	 * Rewind pool if a max txg was provided.
 	 */
 	zpool_get_load_policy(spa->spa_config, &policy);
 	if (policy.zlp_txg != UINT64_MAX) {
 		spa->spa_load_max_txg = policy.zlp_txg;
 		spa->spa_extreme_rewind = B_TRUE;
 		zfs_dbgmsg("spa_tryimport: importing %s, max_txg=%lld",
 		    poolname, (longlong_t)policy.zlp_txg);
 	} else {
 		zfs_dbgmsg("spa_tryimport: importing %s", poolname);
 	}
 
 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_CACHEFILE, &cachefile)
 	    == 0) {
 		zfs_dbgmsg("spa_tryimport: using cachefile '%s'", cachefile);
 		spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
 	} else {
 		spa->spa_config_source = SPA_CONFIG_SRC_SCAN;
 	}
 
 	/*
 	 * spa_import() relies on a pool config fetched by spa_try_import()
 	 * for spare/cache devices. Import flags are not passed to
 	 * spa_tryimport(), which makes it return early due to a missing log
 	 * device and missing retrieving the cache device and spare eventually.
 	 * Passing ZFS_IMPORT_MISSING_LOG to spa_tryimport() makes it fetch
 	 * the correct configuration regardless of the missing log device.
 	 */
 	spa->spa_import_flags |= ZFS_IMPORT_MISSING_LOG;
 
 	error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING);
 
 	/*
 	 * If 'tryconfig' was at least parsable, return the current config.
 	 */
 	if (spa->spa_root_vdev != NULL) {
 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
 		fnvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, poolname);
 		fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, state);
 		fnvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
 		    spa->spa_uberblock.ub_timestamp);
 		fnvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
 		    spa->spa_load_info);
 		fnvlist_add_uint64(config, ZPOOL_CONFIG_ERRATA,
 		    spa->spa_errata);
 
 		/*
 		 * If the bootfs property exists on this pool then we
 		 * copy it out so that external consumers can tell which
 		 * pools are bootable.
 		 */
 		if ((!error || error == EEXIST) && spa->spa_bootfs) {
 			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
 
 			/*
 			 * We have to play games with the name since the
 			 * pool was opened as TRYIMPORT_NAME.
 			 */
 			if (dsl_dsobj_to_dsname(spa_name(spa),
 			    spa->spa_bootfs, tmpname) == 0) {
 				char *cp;
 				char *dsname;
 
 				dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
 
 				cp = strchr(tmpname, '/');
 				if (cp == NULL) {
 					(void) strlcpy(dsname, tmpname,
 					    MAXPATHLEN);
 				} else {
 					(void) snprintf(dsname, MAXPATHLEN,
 					    "%s/%s", poolname, ++cp);
 				}
 				fnvlist_add_string(config, ZPOOL_CONFIG_BOOTFS,
 				    dsname);
 				kmem_free(dsname, MAXPATHLEN);
 			}
 			kmem_free(tmpname, MAXPATHLEN);
 		}
 
 		/*
 		 * Add the list of hot spares and level 2 cache devices.
 		 */
 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
 		spa_add_spares(spa, config);
 		spa_add_l2cache(spa, config);
 		spa_config_exit(spa, SCL_CONFIG, FTAG);
 	}
 
 	spa_unload(spa);
 	spa_deactivate(spa);
 	spa_remove(spa);
 	mutex_exit(&spa_namespace_lock);
 
 	return (config);
 }
 
 /*
  * Pool export/destroy
  *
  * The act of destroying or exporting a pool is very simple.  We make sure there
  * is no more pending I/O and any references to the pool are gone.  Then, we
  * update the pool state and sync all the labels to disk, removing the
  * configuration from the cache afterwards. If the 'hardforce' flag is set, then
  * we don't sync the labels or remove the configuration cache.
  */
 static int
 spa_export_common(const char *pool, int new_state, nvlist_t **oldconfig,
     boolean_t force, boolean_t hardforce)
 {
 	int error;
 	spa_t *spa;
 
 	if (oldconfig)
 		*oldconfig = NULL;
 
 	if (!(spa_mode_global & SPA_MODE_WRITE))
 		return (SET_ERROR(EROFS));
 
 	mutex_enter(&spa_namespace_lock);
 	if ((spa = spa_lookup(pool)) == NULL) {
 		mutex_exit(&spa_namespace_lock);
 		return (SET_ERROR(ENOENT));
 	}
 
 	if (spa->spa_is_exporting) {
 		/* the pool is being exported by another thread */
 		mutex_exit(&spa_namespace_lock);
 		return (SET_ERROR(ZFS_ERR_EXPORT_IN_PROGRESS));
 	}
 	spa->spa_is_exporting = B_TRUE;
 
 	/*
 	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
 	 * reacquire the namespace lock, and see if we can export.
 	 */
 	spa_open_ref(spa, FTAG);
 	mutex_exit(&spa_namespace_lock);
 	spa_async_suspend(spa);
 	if (spa->spa_zvol_taskq) {
 		zvol_remove_minors(spa, spa_name(spa), B_TRUE);
 		taskq_wait(spa->spa_zvol_taskq);
 	}
 	mutex_enter(&spa_namespace_lock);
 	spa_close(spa, FTAG);
 
 	if (spa->spa_state == POOL_STATE_UNINITIALIZED)
 		goto export_spa;
 	/*
 	 * The pool will be in core if it's openable, in which case we can
 	 * modify its state.  Objsets may be open only because they're dirty,
 	 * so we have to force it to sync before checking spa_refcnt.
 	 */
 	if (spa->spa_sync_on) {
 		txg_wait_synced(spa->spa_dsl_pool, 0);
 		spa_evicting_os_wait(spa);
 	}
 
 	/*
 	 * A pool cannot be exported or destroyed if there are active
 	 * references.  If we are resetting a pool, allow references by
 	 * fault injection handlers.
 	 */
 	if (!spa_refcount_zero(spa) || (spa->spa_inject_ref != 0)) {
 		error = SET_ERROR(EBUSY);
 		goto fail;
 	}
 
 	if (spa->spa_sync_on) {
 		vdev_t *rvd = spa->spa_root_vdev;
 		/*
 		 * A pool cannot be exported if it has an active shared spare.
 		 * This is to prevent other pools stealing the active spare
 		 * from an exported pool. At user's own will, such pool can
 		 * be forcedly exported.
 		 */
 		if (!force && new_state == POOL_STATE_EXPORTED &&
 		    spa_has_active_shared_spare(spa)) {
 			error = SET_ERROR(EXDEV);
 			goto fail;
 		}
 
 		/*
 		 * We're about to export or destroy this pool. Make sure
 		 * we stop all initialization and trim activity here before
 		 * we set the spa_final_txg. This will ensure that all
 		 * dirty data resulting from the initialization is
 		 * committed to disk before we unload the pool.
 		 */
 		vdev_initialize_stop_all(rvd, VDEV_INITIALIZE_ACTIVE);
 		vdev_trim_stop_all(rvd, VDEV_TRIM_ACTIVE);
 		vdev_autotrim_stop_all(spa);
 		vdev_rebuild_stop_all(spa);
 
 		/*
 		 * We want this to be reflected on every label,
 		 * so mark them all dirty.  spa_unload() will do the
 		 * final sync that pushes these changes out.
 		 */
 		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
 			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
 			spa->spa_state = new_state;
 			vdev_config_dirty(rvd);
 			spa_config_exit(spa, SCL_ALL, FTAG);
 		}
 
 		/*
 		 * If the log space map feature is enabled and the pool is
 		 * getting exported (but not destroyed), we want to spend some
 		 * time flushing as many metaslabs as we can in an attempt to
 		 * destroy log space maps and save import time. This has to be
 		 * done before we set the spa_final_txg, otherwise
 		 * spa_sync() -> spa_flush_metaslabs() may dirty the final TXGs.
 		 * spa_should_flush_logs_on_unload() should be called after
 		 * spa_state has been set to the new_state.
 		 */
 		if (spa_should_flush_logs_on_unload(spa))
 			spa_unload_log_sm_flush_all(spa);
 
 		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
 			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
 			spa->spa_final_txg = spa_last_synced_txg(spa) +
 			    TXG_DEFER_SIZE + 1;
 			spa_config_exit(spa, SCL_ALL, FTAG);
 		}
 	}
 
 export_spa:
 	spa_export_os(spa);
 
 	if (new_state == POOL_STATE_DESTROYED)
 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_DESTROY);
 	else if (new_state == POOL_STATE_EXPORTED)
 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_EXPORT);
 
 	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
 		spa_unload(spa);
 		spa_deactivate(spa);
 	}
 
 	if (oldconfig && spa->spa_config)
 		*oldconfig = fnvlist_dup(spa->spa_config);
 
 	if (new_state != POOL_STATE_UNINITIALIZED) {
 		if (!hardforce)
 			spa_write_cachefile(spa, B_TRUE, B_TRUE, B_FALSE);
 		spa_remove(spa);
 	} else {
 		/*
 		 * If spa_remove() is not called for this spa_t and
 		 * there is any possibility that it can be reused,
 		 * we make sure to reset the exporting flag.
 		 */
 		spa->spa_is_exporting = B_FALSE;
 	}
 
 	mutex_exit(&spa_namespace_lock);
 	return (0);
 
 fail:
 	spa->spa_is_exporting = B_FALSE;
 	spa_async_resume(spa);
 	mutex_exit(&spa_namespace_lock);
 	return (error);
 }
 
 /*
  * Destroy a storage pool.
  */
 int
 spa_destroy(const char *pool)
 {
 	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
 	    B_FALSE, B_FALSE));
 }
 
 /*
  * Export a storage pool.
  */
 int
 spa_export(const char *pool, nvlist_t **oldconfig, boolean_t force,
     boolean_t hardforce)
 {
 	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
 	    force, hardforce));
 }
 
 /*
  * Similar to spa_export(), this unloads the spa_t without actually removing it
  * from the namespace in any way.
  */
 int
 spa_reset(const char *pool)
 {
 	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
 	    B_FALSE, B_FALSE));
 }
 
 /*
  * ==========================================================================
  * Device manipulation
  * ==========================================================================
  */
 
 /*
  * This is called as a synctask to increment the draid feature flag
  */
 static void
 spa_draid_feature_incr(void *arg, dmu_tx_t *tx)
 {
 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
 	int draid = (int)(uintptr_t)arg;
 
 	for (int c = 0; c < draid; c++)
 		spa_feature_incr(spa, SPA_FEATURE_DRAID, tx);
 }
 
 /*
  * Add a device to a storage pool.
  */
 int
 spa_vdev_add(spa_t *spa, nvlist_t *nvroot, boolean_t check_ashift)
 {
 	uint64_t txg, ndraid = 0;
 	int error;
 	vdev_t *rvd = spa->spa_root_vdev;
 	vdev_t *vd, *tvd;
 	nvlist_t **spares, **l2cache;
 	uint_t nspares, nl2cache;
 
 	ASSERT(spa_writeable(spa));
 
 	txg = spa_vdev_enter(spa);
 
 	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
 	    VDEV_ALLOC_ADD)) != 0)
 		return (spa_vdev_exit(spa, NULL, txg, error));
 
 	spa->spa_pending_vdev = vd;	/* spa_vdev_exit() will clear this */
 
 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
 	    &nspares) != 0)
 		nspares = 0;
 
 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
 	    &nl2cache) != 0)
 		nl2cache = 0;
 
 	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
 		return (spa_vdev_exit(spa, vd, txg, EINVAL));
 
 	if (vd->vdev_children != 0 &&
 	    (error = vdev_create(vd, txg, B_FALSE)) != 0) {
 		return (spa_vdev_exit(spa, vd, txg, error));
 	}
 
 	/*
 	 * The virtual dRAID spares must be added after vdev tree is created
 	 * and the vdev guids are generated.  The guid of their associated
 	 * dRAID is stored in the config and used when opening the spare.
 	 */
 	if ((error = vdev_draid_spare_create(nvroot, vd, &ndraid,
 	    rvd->vdev_children)) == 0) {
 		if (ndraid > 0 && nvlist_lookup_nvlist_array(nvroot,
 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) != 0)
 			nspares = 0;
 	} else {
 		return (spa_vdev_exit(spa, vd, txg, error));
 	}
 
 	/*
 	 * We must validate the spares and l2cache devices after checking the
 	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
 	 */
 	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
 		return (spa_vdev_exit(spa, vd, txg, error));
 
 	/*
 	 * If we are in the middle of a device removal, we can only add
 	 * devices which match the existing devices in the pool.
 	 * If we are in the middle of a removal, or have some indirect
 	 * vdevs, we can not add raidz or dRAID top levels.
 	 */
 	if (spa->spa_vdev_removal != NULL ||
 	    spa->spa_removing_phys.sr_prev_indirect_vdev != -1) {
 		for (int c = 0; c < vd->vdev_children; c++) {
 			tvd = vd->vdev_child[c];
 			if (spa->spa_vdev_removal != NULL &&
 			    tvd->vdev_ashift != spa->spa_max_ashift) {
 				return (spa_vdev_exit(spa, vd, txg, EINVAL));
 			}
 			/* Fail if top level vdev is raidz or a dRAID */
 			if (vdev_get_nparity(tvd) != 0)
 				return (spa_vdev_exit(spa, vd, txg, EINVAL));
 
 			/*
 			 * Need the top level mirror to be
 			 * a mirror of leaf vdevs only
 			 */
 			if (tvd->vdev_ops == &vdev_mirror_ops) {
 				for (uint64_t cid = 0;
 				    cid < tvd->vdev_children; cid++) {
 					vdev_t *cvd = tvd->vdev_child[cid];
 					if (!cvd->vdev_ops->vdev_op_leaf) {
 						return (spa_vdev_exit(spa, vd,
 						    txg, EINVAL));
 					}
 				}
 			}
 		}
 	}
 
 	if (check_ashift && spa->spa_max_ashift == spa->spa_min_ashift) {
 		for (int c = 0; c < vd->vdev_children; c++) {
 			tvd = vd->vdev_child[c];
 			if (tvd->vdev_ashift != spa->spa_max_ashift) {
 				return (spa_vdev_exit(spa, vd, txg,
 				    ZFS_ERR_ASHIFT_MISMATCH));
 			}
 		}
 	}
 
 	for (int c = 0; c < vd->vdev_children; c++) {
 		tvd = vd->vdev_child[c];
 		vdev_remove_child(vd, tvd);
 		tvd->vdev_id = rvd->vdev_children;
 		vdev_add_child(rvd, tvd);
 		vdev_config_dirty(tvd);
 	}
 
 	if (nspares != 0) {
 		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
 		    ZPOOL_CONFIG_SPARES);
 		spa_load_spares(spa);
 		spa->spa_spares.sav_sync = B_TRUE;
 	}
 
 	if (nl2cache != 0) {
 		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
 		    ZPOOL_CONFIG_L2CACHE);
 		spa_load_l2cache(spa);
 		spa->spa_l2cache.sav_sync = B_TRUE;
 	}
 
 	/*
 	 * We can't increment a feature while holding spa_vdev so we
 	 * have to do it in a synctask.
 	 */
 	if (ndraid != 0) {
 		dmu_tx_t *tx;
 
 		tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
 		dsl_sync_task_nowait(spa->spa_dsl_pool, spa_draid_feature_incr,
 		    (void *)(uintptr_t)ndraid, tx);
 		dmu_tx_commit(tx);
 	}
 
 	/*
 	 * We have to be careful when adding new vdevs to an existing pool.
 	 * If other threads start allocating from these vdevs before we
 	 * sync the config cache, and we lose power, then upon reboot we may
 	 * fail to open the pool because there are DVAs that the config cache
 	 * can't translate.  Therefore, we first add the vdevs without
 	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
 	 * and then let spa_config_update() initialize the new metaslabs.
 	 *
 	 * spa_load() checks for added-but-not-initialized vdevs, so that
 	 * if we lose power at any point in this sequence, the remaining
 	 * steps will be completed the next time we load the pool.
 	 */
 	(void) spa_vdev_exit(spa, vd, txg, 0);
 
 	mutex_enter(&spa_namespace_lock);
 	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
 	spa_event_notify(spa, NULL, NULL, ESC_ZFS_VDEV_ADD);
 	mutex_exit(&spa_namespace_lock);
 
 	return (0);
 }
 
 /*
  * Attach a device to a mirror.  The arguments are the path to any device
  * in the mirror, and the nvroot for the new device.  If the path specifies
  * a device that is not mirrored, we automatically insert the mirror vdev.
  *
  * If 'replacing' is specified, the new device is intended to replace the
  * existing device; in this case the two devices are made into their own
  * mirror using the 'replacing' vdev, which is functionally identical to
  * the mirror vdev (it actually reuses all the same ops) but has a few
  * extra rules: you can't attach to it after it's been created, and upon
  * completion of resilvering, the first disk (the one being replaced)
  * is automatically detached.
  *
  * If 'rebuild' is specified, then sequential reconstruction (a.ka. rebuild)
  * should be performed instead of traditional healing reconstruction.  From
  * an administrators perspective these are both resilver operations.
  */
 int
 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing,
     int rebuild)
 {
 	uint64_t txg, dtl_max_txg;
 	vdev_t *rvd = spa->spa_root_vdev;
 	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
 	vdev_ops_t *pvops;
 	char *oldvdpath, *newvdpath;
 	int newvd_isspare;
 	int error;
 
 	ASSERT(spa_writeable(spa));
 
 	txg = spa_vdev_enter(spa);
 
 	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
 
 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
 		error = (spa_has_checkpoint(spa)) ?
 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
 		return (spa_vdev_exit(spa, NULL, txg, error));
 	}
 
 	if (rebuild) {
 		if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REBUILD))
 			return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
 
 		if (dsl_scan_resilvering(spa_get_dsl(spa)) ||
 		    dsl_scan_resilver_scheduled(spa_get_dsl(spa))) {
 			return (spa_vdev_exit(spa, NULL, txg,
 			    ZFS_ERR_RESILVER_IN_PROGRESS));
 		}
 	} else {
 		if (vdev_rebuild_active(rvd))
 			return (spa_vdev_exit(spa, NULL, txg,
 			    ZFS_ERR_REBUILD_IN_PROGRESS));
 	}
 
 	if (spa->spa_vdev_removal != NULL)
 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
 
 	if (oldvd == NULL)
 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
 
 	if (!oldvd->vdev_ops->vdev_op_leaf)
 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
 
 	pvd = oldvd->vdev_parent;
 
 	if (spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
 	    VDEV_ALLOC_ATTACH) != 0)
 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
 
 	if (newrootvd->vdev_children != 1)
 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
 
 	newvd = newrootvd->vdev_child[0];
 
 	if (!newvd->vdev_ops->vdev_op_leaf)
 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
 
 	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
 		return (spa_vdev_exit(spa, newrootvd, txg, error));
 
 	/*
 	 * log, dedup and special vdevs should not be replaced by spares.
 	 */
 	if ((oldvd->vdev_top->vdev_alloc_bias != VDEV_BIAS_NONE ||
 	    oldvd->vdev_top->vdev_islog) && newvd->vdev_isspare) {
 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
 	}
 
 	/*
 	 * A dRAID spare can only replace a child of its parent dRAID vdev.
 	 */
 	if (newvd->vdev_ops == &vdev_draid_spare_ops &&
 	    oldvd->vdev_top != vdev_draid_spare_get_parent(newvd)) {
 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
 	}
 
 	if (rebuild) {
 		/*
 		 * For rebuilds, the top vdev must support reconstruction
 		 * using only space maps.  This means the only allowable
 		 * vdevs types are the root vdev, a mirror, or dRAID.
 		 */
 		tvd = pvd;
 		if (pvd->vdev_top != NULL)
 			tvd = pvd->vdev_top;
 
 		if (tvd->vdev_ops != &vdev_mirror_ops &&
 		    tvd->vdev_ops != &vdev_root_ops &&
 		    tvd->vdev_ops != &vdev_draid_ops) {
 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
 		}
 	}
 
 	if (!replacing) {
 		/*
 		 * For attach, the only allowable parent is a mirror or the root
 		 * vdev.
 		 */
 		if (pvd->vdev_ops != &vdev_mirror_ops &&
 		    pvd->vdev_ops != &vdev_root_ops)
 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
 
 		pvops = &vdev_mirror_ops;
 	} else {
 		/*
 		 * Active hot spares can only be replaced by inactive hot
 		 * spares.
 		 */
 		if (pvd->vdev_ops == &vdev_spare_ops &&
 		    oldvd->vdev_isspare &&
 		    !spa_has_spare(spa, newvd->vdev_guid))
 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
 
 		/*
 		 * If the source is a hot spare, and the parent isn't already a
 		 * spare, then we want to create a new hot spare.  Otherwise, we
 		 * want to create a replacing vdev.  The user is not allowed to
 		 * attach to a spared vdev child unless the 'isspare' state is
 		 * the same (spare replaces spare, non-spare replaces
 		 * non-spare).
 		 */
 		if (pvd->vdev_ops == &vdev_replacing_ops &&
 		    spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
 		} else if (pvd->vdev_ops == &vdev_spare_ops &&
 		    newvd->vdev_isspare != oldvd->vdev_isspare) {
 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
 		}
 
 		if (newvd->vdev_isspare)
 			pvops = &vdev_spare_ops;
 		else
 			pvops = &vdev_replacing_ops;
 	}
 
 	/*
 	 * Make sure the new device is big enough.
 	 */
 	if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
 		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
 
 	/*
 	 * The new device cannot have a higher alignment requirement
 	 * than the top-level vdev.
 	 */
 	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
 
 	/*
 	 * If this is an in-place replacement, update oldvd's path and devid
 	 * to make it distinguishable from newvd, and unopenable from now on.
 	 */
 	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
 		spa_strfree(oldvd->vdev_path);
 		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
 		    KM_SLEEP);
 		(void) snprintf(oldvd->vdev_path, strlen(newvd->vdev_path) + 5,
 		    "%s/%s", newvd->vdev_path, "old");
 		if (oldvd->vdev_devid != NULL) {
 			spa_strfree(oldvd->vdev_devid);
 			oldvd->vdev_devid = NULL;
 		}
 	}
 
 	/*
 	 * If the parent is not a mirror, or if we're replacing, insert the new
 	 * mirror/replacing/spare vdev above oldvd.
 	 */
 	if (pvd->vdev_ops != pvops)
 		pvd = vdev_add_parent(oldvd, pvops);
 
 	ASSERT(pvd->vdev_top->vdev_parent == rvd);
 	ASSERT(pvd->vdev_ops == pvops);
 	ASSERT(oldvd->vdev_parent == pvd);
 
 	/*
 	 * Extract the new device from its root and add it to pvd.
 	 */
 	vdev_remove_child(newrootvd, newvd);
 	newvd->vdev_id = pvd->vdev_children;
 	newvd->vdev_crtxg = oldvd->vdev_crtxg;
 	vdev_add_child(pvd, newvd);
 
 	/*
 	 * Reevaluate the parent vdev state.
 	 */
 	vdev_propagate_state(pvd);
 
 	tvd = newvd->vdev_top;
 	ASSERT(pvd->vdev_top == tvd);
 	ASSERT(tvd->vdev_parent == rvd);
 
 	vdev_config_dirty(tvd);
 
 	/*
 	 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
 	 * for any dmu_sync-ed blocks.  It will propagate upward when
 	 * spa_vdev_exit() calls vdev_dtl_reassess().
 	 */
 	dtl_max_txg = txg + TXG_CONCURRENT_STATES;
 
 	vdev_dtl_dirty(newvd, DTL_MISSING,
 	    TXG_INITIAL, dtl_max_txg - TXG_INITIAL);
 
 	if (newvd->vdev_isspare) {
 		spa_spare_activate(newvd);
 		spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_SPARE);
 	}
 
 	oldvdpath = spa_strdup(oldvd->vdev_path);
 	newvdpath = spa_strdup(newvd->vdev_path);
 	newvd_isspare = newvd->vdev_isspare;
 
 	/*
 	 * Mark newvd's DTL dirty in this txg.
 	 */
 	vdev_dirty(tvd, VDD_DTL, newvd, txg);
 
 	/*
 	 * Schedule the resilver or rebuild to restart in the future. We do
 	 * this to ensure that dmu_sync-ed blocks have been stitched into the
 	 * respective datasets.
 	 */
 	if (rebuild) {
 		newvd->vdev_rebuild_txg = txg;
 
 		vdev_rebuild(tvd);
 	} else {
 		newvd->vdev_resilver_txg = txg;
 
 		if (dsl_scan_resilvering(spa_get_dsl(spa)) &&
 		    spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER)) {
 			vdev_defer_resilver(newvd);
 		} else {
 			dsl_scan_restart_resilver(spa->spa_dsl_pool,
 			    dtl_max_txg);
 		}
 	}
 
 	if (spa->spa_bootfs)
 		spa_event_notify(spa, newvd, NULL, ESC_ZFS_BOOTFS_VDEV_ATTACH);
 
 	spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_ATTACH);
 
 	/*
 	 * Commit the config
 	 */
 	(void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
 
 	spa_history_log_internal(spa, "vdev attach", NULL,
 	    "%s vdev=%s %s vdev=%s",
 	    replacing && newvd_isspare ? "spare in" :
 	    replacing ? "replace" : "attach", newvdpath,
 	    replacing ? "for" : "to", oldvdpath);
 
 	spa_strfree(oldvdpath);
 	spa_strfree(newvdpath);
 
 	return (0);
 }
 
 /*
  * Detach a device from a mirror or replacing vdev.
  *
  * If 'replace_done' is specified, only detach if the parent
  * is a replacing or a spare vdev.
  */
 int
 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
 {
 	uint64_t txg;
 	int error;
 	vdev_t *rvd __maybe_unused = spa->spa_root_vdev;
 	vdev_t *vd, *pvd, *cvd, *tvd;
 	boolean_t unspare = B_FALSE;
 	uint64_t unspare_guid = 0;
 	char *vdpath;
 
 	ASSERT(spa_writeable(spa));
 
 	txg = spa_vdev_detach_enter(spa, guid);
 
 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
 
 	/*
 	 * Besides being called directly from the userland through the
 	 * ioctl interface, spa_vdev_detach() can be potentially called
 	 * at the end of spa_vdev_resilver_done().
 	 *
 	 * In the regular case, when we have a checkpoint this shouldn't
 	 * happen as we never empty the DTLs of a vdev during the scrub
 	 * [see comment in dsl_scan_done()]. Thus spa_vdev_resilvering_done()
 	 * should never get here when we have a checkpoint.
 	 *
 	 * That said, even in a case when we checkpoint the pool exactly
 	 * as spa_vdev_resilver_done() calls this function everything
 	 * should be fine as the resilver will return right away.
 	 */
 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
 		error = (spa_has_checkpoint(spa)) ?
 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
 		return (spa_vdev_exit(spa, NULL, txg, error));
 	}
 
 	if (vd == NULL)
 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
 
 	if (!vd->vdev_ops->vdev_op_leaf)
 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
 
 	pvd = vd->vdev_parent;
 
 	/*
 	 * If the parent/child relationship is not as expected, don't do it.
 	 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
 	 * vdev that's replacing B with C.  The user's intent in replacing
 	 * is to go from M(A,B) to M(A,C).  If the user decides to cancel
 	 * the replace by detaching C, the expected behavior is to end up
 	 * M(A,B).  But suppose that right after deciding to detach C,
 	 * the replacement of B completes.  We would have M(A,C), and then
 	 * ask to detach C, which would leave us with just A -- not what
 	 * the user wanted.  To prevent this, we make sure that the
 	 * parent/child relationship hasn't changed -- in this example,
 	 * that C's parent is still the replacing vdev R.
 	 */
 	if (pvd->vdev_guid != pguid && pguid != 0)
 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
 
 	/*
 	 * Only 'replacing' or 'spare' vdevs can be replaced.
 	 */
 	if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
 	    pvd->vdev_ops != &vdev_spare_ops)
 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
 
 	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
 	    spa_version(spa) >= SPA_VERSION_SPARES);
 
 	/*
 	 * Only mirror, replacing, and spare vdevs support detach.
 	 */
 	if (pvd->vdev_ops != &vdev_replacing_ops &&
 	    pvd->vdev_ops != &vdev_mirror_ops &&
 	    pvd->vdev_ops != &vdev_spare_ops)
 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
 
 	/*
 	 * If this device has the only valid copy of some data,
 	 * we cannot safely detach it.
 	 */
 	if (vdev_dtl_required(vd))
 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
 
 	ASSERT(pvd->vdev_children >= 2);
 
 	/*
 	 * If we are detaching the second disk from a replacing vdev, then
 	 * check to see if we changed the original vdev's path to have "/old"
 	 * at the end in spa_vdev_attach().  If so, undo that change now.
 	 */
 	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
 	    vd->vdev_path != NULL) {
 		size_t len = strlen(vd->vdev_path);
 
 		for (int c = 0; c < pvd->vdev_children; c++) {
 			cvd = pvd->vdev_child[c];
 
 			if (cvd == vd || cvd->vdev_path == NULL)
 				continue;
 
 			if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
 			    strcmp(cvd->vdev_path + len, "/old") == 0) {
 				spa_strfree(cvd->vdev_path);
 				cvd->vdev_path = spa_strdup(vd->vdev_path);
 				break;
 			}
 		}
 	}
 
 	/*
 	 * If we are detaching the original disk from a normal spare, then it
 	 * implies that the spare should become a real disk, and be removed
 	 * from the active spare list for the pool.  dRAID spares on the
 	 * other hand are coupled to the pool and thus should never be removed
 	 * from the spares list.
 	 */
 	if (pvd->vdev_ops == &vdev_spare_ops && vd->vdev_id == 0) {
 		vdev_t *last_cvd = pvd->vdev_child[pvd->vdev_children - 1];
 
 		if (last_cvd->vdev_isspare &&
 		    last_cvd->vdev_ops != &vdev_draid_spare_ops) {
 			unspare = B_TRUE;
 		}
 	}
 
 	/*
 	 * Erase the disk labels so the disk can be used for other things.
 	 * This must be done after all other error cases are handled,
 	 * but before we disembowel vd (so we can still do I/O to it).
 	 * But if we can't do it, don't treat the error as fatal --
 	 * it may be that the unwritability of the disk is the reason
 	 * it's being detached!
 	 */
 	(void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
 
 	/*
 	 * Remove vd from its parent and compact the parent's children.
 	 */
 	vdev_remove_child(pvd, vd);
 	vdev_compact_children(pvd);
 
 	/*
 	 * Remember one of the remaining children so we can get tvd below.
 	 */
 	cvd = pvd->vdev_child[pvd->vdev_children - 1];
 
 	/*
 	 * If we need to remove the remaining child from the list of hot spares,
 	 * do it now, marking the vdev as no longer a spare in the process.
 	 * We must do this before vdev_remove_parent(), because that can
 	 * change the GUID if it creates a new toplevel GUID.  For a similar
 	 * reason, we must remove the spare now, in the same txg as the detach;
 	 * otherwise someone could attach a new sibling, change the GUID, and
 	 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
 	 */
 	if (unspare) {
 		ASSERT(cvd->vdev_isspare);
 		spa_spare_remove(cvd);
 		unspare_guid = cvd->vdev_guid;
 		(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
 		cvd->vdev_unspare = B_TRUE;
 	}
 
 	/*
 	 * If the parent mirror/replacing vdev only has one child,
 	 * the parent is no longer needed.  Remove it from the tree.
 	 */
 	if (pvd->vdev_children == 1) {
 		if (pvd->vdev_ops == &vdev_spare_ops)
 			cvd->vdev_unspare = B_FALSE;
 		vdev_remove_parent(cvd);
 	}
 
 	/*
 	 * We don't set tvd until now because the parent we just removed
 	 * may have been the previous top-level vdev.
 	 */
 	tvd = cvd->vdev_top;
 	ASSERT(tvd->vdev_parent == rvd);
 
 	/*
 	 * Reevaluate the parent vdev state.
 	 */
 	vdev_propagate_state(cvd);
 
 	/*
 	 * If the 'autoexpand' property is set on the pool then automatically
 	 * try to expand the size of the pool. For example if the device we
 	 * just detached was smaller than the others, it may be possible to
 	 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
 	 * first so that we can obtain the updated sizes of the leaf vdevs.
 	 */
 	if (spa->spa_autoexpand) {
 		vdev_reopen(tvd);
 		vdev_expand(tvd, txg);
 	}
 
 	vdev_config_dirty(tvd);
 
 	/*
 	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
 	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
 	 * But first make sure we're not on any *other* txg's DTL list, to
 	 * prevent vd from being accessed after it's freed.
 	 */
 	vdpath = spa_strdup(vd->vdev_path ? vd->vdev_path : "none");
 	for (int t = 0; t < TXG_SIZE; t++)
 		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
 	vd->vdev_detached = B_TRUE;
 	vdev_dirty(tvd, VDD_DTL, vd, txg);
 
 	spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE);
 	spa_notify_waiters(spa);
 
 	/* hang on to the spa before we release the lock */
 	spa_open_ref(spa, FTAG);
 
 	error = spa_vdev_exit(spa, vd, txg, 0);
 
 	spa_history_log_internal(spa, "detach", NULL,
 	    "vdev=%s", vdpath);
 	spa_strfree(vdpath);
 
 	/*
 	 * If this was the removal of the original device in a hot spare vdev,
 	 * then we want to go through and remove the device from the hot spare
 	 * list of every other pool.
 	 */
 	if (unspare) {
 		spa_t *altspa = NULL;
 
 		mutex_enter(&spa_namespace_lock);
 		while ((altspa = spa_next(altspa)) != NULL) {
 			if (altspa->spa_state != POOL_STATE_ACTIVE ||
 			    altspa == spa)
 				continue;
 
 			spa_open_ref(altspa, FTAG);
 			mutex_exit(&spa_namespace_lock);
 			(void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
 			mutex_enter(&spa_namespace_lock);
 			spa_close(altspa, FTAG);
 		}
 		mutex_exit(&spa_namespace_lock);
 
 		/* search the rest of the vdevs for spares to remove */
 		spa_vdev_resilver_done(spa);
 	}
 
 	/* all done with the spa; OK to release */
 	mutex_enter(&spa_namespace_lock);
 	spa_close(spa, FTAG);
 	mutex_exit(&spa_namespace_lock);
 
 	return (error);
 }
 
 static int
 spa_vdev_initialize_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type,
     list_t *vd_list)
 {
 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
 
 	spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
 
 	/* Look up vdev and ensure it's a leaf. */
 	vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
 	if (vd == NULL || vd->vdev_detached) {
 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
 		return (SET_ERROR(ENODEV));
 	} else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) {
 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
 		return (SET_ERROR(EINVAL));
 	} else if (!vdev_writeable(vd)) {
 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
 		return (SET_ERROR(EROFS));
 	}
 	mutex_enter(&vd->vdev_initialize_lock);
 	spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
 
 	/*
 	 * When we activate an initialize action we check to see
 	 * if the vdev_initialize_thread is NULL. We do this instead
 	 * of using the vdev_initialize_state since there might be
 	 * a previous initialization process which has completed but
 	 * the thread is not exited.
 	 */
 	if (cmd_type == POOL_INITIALIZE_START &&
 	    (vd->vdev_initialize_thread != NULL ||
 	    vd->vdev_top->vdev_removing)) {
 		mutex_exit(&vd->vdev_initialize_lock);
 		return (SET_ERROR(EBUSY));
 	} else if (cmd_type == POOL_INITIALIZE_CANCEL &&
 	    (vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE &&
 	    vd->vdev_initialize_state != VDEV_INITIALIZE_SUSPENDED)) {
 		mutex_exit(&vd->vdev_initialize_lock);
 		return (SET_ERROR(ESRCH));
 	} else if (cmd_type == POOL_INITIALIZE_SUSPEND &&
 	    vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE) {
 		mutex_exit(&vd->vdev_initialize_lock);
 		return (SET_ERROR(ESRCH));
 	} else if (cmd_type == POOL_INITIALIZE_UNINIT &&
 	    vd->vdev_initialize_thread != NULL) {
 		mutex_exit(&vd->vdev_initialize_lock);
 		return (SET_ERROR(EBUSY));
 	}
 
 	switch (cmd_type) {
 	case POOL_INITIALIZE_START:
 		vdev_initialize(vd);
 		break;
 	case POOL_INITIALIZE_CANCEL:
 		vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED, vd_list);
 		break;
 	case POOL_INITIALIZE_SUSPEND:
 		vdev_initialize_stop(vd, VDEV_INITIALIZE_SUSPENDED, vd_list);
 		break;
 	case POOL_INITIALIZE_UNINIT:
 		vdev_uninitialize(vd);
 		break;
 	default:
 		panic("invalid cmd_type %llu", (unsigned long long)cmd_type);
 	}
 	mutex_exit(&vd->vdev_initialize_lock);
 
 	return (0);
 }
 
 int
 spa_vdev_initialize(spa_t *spa, nvlist_t *nv, uint64_t cmd_type,
     nvlist_t *vdev_errlist)
 {
 	int total_errors = 0;
 	list_t vd_list;
 
 	list_create(&vd_list, sizeof (vdev_t),
 	    offsetof(vdev_t, vdev_initialize_node));
 
 	/*
 	 * We hold the namespace lock through the whole function
 	 * to prevent any changes to the pool while we're starting or
 	 * stopping initialization. The config and state locks are held so that
 	 * we can properly assess the vdev state before we commit to
 	 * the initializing operation.
 	 */
 	mutex_enter(&spa_namespace_lock);
 
 	for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL);
 	    pair != NULL; pair = nvlist_next_nvpair(nv, pair)) {
 		uint64_t vdev_guid = fnvpair_value_uint64(pair);
 
 		int error = spa_vdev_initialize_impl(spa, vdev_guid, cmd_type,
 		    &vd_list);
 		if (error != 0) {
 			char guid_as_str[MAXNAMELEN];
 
 			(void) snprintf(guid_as_str, sizeof (guid_as_str),
 			    "%llu", (unsigned long long)vdev_guid);
 			fnvlist_add_int64(vdev_errlist, guid_as_str, error);
 			total_errors++;
 		}
 	}
 
 	/* Wait for all initialize threads to stop. */
 	vdev_initialize_stop_wait(spa, &vd_list);
 
 	/* Sync out the initializing state */
 	txg_wait_synced(spa->spa_dsl_pool, 0);
 	mutex_exit(&spa_namespace_lock);
 
 	list_destroy(&vd_list);
 
 	return (total_errors);
 }
 
 static int
 spa_vdev_trim_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type,
     uint64_t rate, boolean_t partial, boolean_t secure, list_t *vd_list)
 {
 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
 
 	spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
 
 	/* Look up vdev and ensure it's a leaf. */
 	vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
 	if (vd == NULL || vd->vdev_detached) {
 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
 		return (SET_ERROR(ENODEV));
 	} else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) {
 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
 		return (SET_ERROR(EINVAL));
 	} else if (!vdev_writeable(vd)) {
 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
 		return (SET_ERROR(EROFS));
 	} else if (!vd->vdev_has_trim) {
 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
 		return (SET_ERROR(EOPNOTSUPP));
 	} else if (secure && !vd->vdev_has_securetrim) {
 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
 		return (SET_ERROR(EOPNOTSUPP));
 	}
 	mutex_enter(&vd->vdev_trim_lock);
 	spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
 
 	/*
 	 * When we activate a TRIM action we check to see if the
 	 * vdev_trim_thread is NULL. We do this instead of using the
 	 * vdev_trim_state since there might be a previous TRIM process
 	 * which has completed but the thread is not exited.
 	 */
 	if (cmd_type == POOL_TRIM_START &&
 	    (vd->vdev_trim_thread != NULL || vd->vdev_top->vdev_removing)) {
 		mutex_exit(&vd->vdev_trim_lock);
 		return (SET_ERROR(EBUSY));
 	} else if (cmd_type == POOL_TRIM_CANCEL &&
 	    (vd->vdev_trim_state != VDEV_TRIM_ACTIVE &&
 	    vd->vdev_trim_state != VDEV_TRIM_SUSPENDED)) {
 		mutex_exit(&vd->vdev_trim_lock);
 		return (SET_ERROR(ESRCH));
 	} else if (cmd_type == POOL_TRIM_SUSPEND &&
 	    vd->vdev_trim_state != VDEV_TRIM_ACTIVE) {
 		mutex_exit(&vd->vdev_trim_lock);
 		return (SET_ERROR(ESRCH));
 	}
 
 	switch (cmd_type) {
 	case POOL_TRIM_START:
 		vdev_trim(vd, rate, partial, secure);
 		break;
 	case POOL_TRIM_CANCEL:
 		vdev_trim_stop(vd, VDEV_TRIM_CANCELED, vd_list);
 		break;
 	case POOL_TRIM_SUSPEND:
 		vdev_trim_stop(vd, VDEV_TRIM_SUSPENDED, vd_list);
 		break;
 	default:
 		panic("invalid cmd_type %llu", (unsigned long long)cmd_type);
 	}
 	mutex_exit(&vd->vdev_trim_lock);
 
 	return (0);
 }
 
 /*
  * Initiates a manual TRIM for the requested vdevs. This kicks off individual
  * TRIM threads for each child vdev.  These threads pass over all of the free
  * space in the vdev's metaslabs and issues TRIM commands for that space.
  */
 int
 spa_vdev_trim(spa_t *spa, nvlist_t *nv, uint64_t cmd_type, uint64_t rate,
     boolean_t partial, boolean_t secure, nvlist_t *vdev_errlist)
 {
 	int total_errors = 0;
 	list_t vd_list;
 
 	list_create(&vd_list, sizeof (vdev_t),
 	    offsetof(vdev_t, vdev_trim_node));
 
 	/*
 	 * We hold the namespace lock through the whole function
 	 * to prevent any changes to the pool while we're starting or
 	 * stopping TRIM. The config and state locks are held so that
 	 * we can properly assess the vdev state before we commit to
 	 * the TRIM operation.
 	 */
 	mutex_enter(&spa_namespace_lock);
 
 	for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL);
 	    pair != NULL; pair = nvlist_next_nvpair(nv, pair)) {
 		uint64_t vdev_guid = fnvpair_value_uint64(pair);
 
 		int error = spa_vdev_trim_impl(spa, vdev_guid, cmd_type,
 		    rate, partial, secure, &vd_list);
 		if (error != 0) {
 			char guid_as_str[MAXNAMELEN];
 
 			(void) snprintf(guid_as_str, sizeof (guid_as_str),
 			    "%llu", (unsigned long long)vdev_guid);
 			fnvlist_add_int64(vdev_errlist, guid_as_str, error);
 			total_errors++;
 		}
 	}
 
 	/* Wait for all TRIM threads to stop. */
 	vdev_trim_stop_wait(spa, &vd_list);
 
 	/* Sync out the TRIM state */
 	txg_wait_synced(spa->spa_dsl_pool, 0);
 	mutex_exit(&spa_namespace_lock);
 
 	list_destroy(&vd_list);
 
 	return (total_errors);
 }
 
 /*
  * Split a set of devices from their mirrors, and create a new pool from them.
  */
 int
 spa_vdev_split_mirror(spa_t *spa, const char *newname, nvlist_t *config,
     nvlist_t *props, boolean_t exp)
 {
 	int error = 0;
 	uint64_t txg, *glist;
 	spa_t *newspa;
 	uint_t c, children, lastlog;
 	nvlist_t **child, *nvl, *tmp;
 	dmu_tx_t *tx;
 	const char *altroot = NULL;
 	vdev_t *rvd, **vml = NULL;			/* vdev modify list */
 	boolean_t activate_slog;
 
 	ASSERT(spa_writeable(spa));
 
 	txg = spa_vdev_enter(spa);
 
 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
 		error = (spa_has_checkpoint(spa)) ?
 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
 		return (spa_vdev_exit(spa, NULL, txg, error));
 	}
 
 	/* clear the log and flush everything up to now */
 	activate_slog = spa_passivate_log(spa);
 	(void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
 	error = spa_reset_logs(spa);
 	txg = spa_vdev_config_enter(spa);
 
 	if (activate_slog)
 		spa_activate_log(spa);
 
 	if (error != 0)
 		return (spa_vdev_exit(spa, NULL, txg, error));
 
 	/* check new spa name before going any further */
 	if (spa_lookup(newname) != NULL)
 		return (spa_vdev_exit(spa, NULL, txg, EEXIST));
 
 	/*
 	 * scan through all the children to ensure they're all mirrors
 	 */
 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
 	    nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
 	    &children) != 0)
 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
 
 	/* first, check to ensure we've got the right child count */
 	rvd = spa->spa_root_vdev;
 	lastlog = 0;
 	for (c = 0; c < rvd->vdev_children; c++) {
 		vdev_t *vd = rvd->vdev_child[c];
 
 		/* don't count the holes & logs as children */
 		if (vd->vdev_islog || (vd->vdev_ops != &vdev_indirect_ops &&
 		    !vdev_is_concrete(vd))) {
 			if (lastlog == 0)
 				lastlog = c;
 			continue;
 		}
 
 		lastlog = 0;
 	}
 	if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
 
 	/* next, ensure no spare or cache devices are part of the split */
 	if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
 	    nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
 
 	vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
 	glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
 
 	/* then, loop over each vdev and validate it */
 	for (c = 0; c < children; c++) {
 		uint64_t is_hole = 0;
 
 		(void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
 		    &is_hole);
 
 		if (is_hole != 0) {
 			if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
 			    spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
 				continue;
 			} else {
 				error = SET_ERROR(EINVAL);
 				break;
 			}
 		}
 
 		/* deal with indirect vdevs */
 		if (spa->spa_root_vdev->vdev_child[c]->vdev_ops ==
 		    &vdev_indirect_ops)
 			continue;
 
 		/* which disk is going to be split? */
 		if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
 		    &glist[c]) != 0) {
 			error = SET_ERROR(EINVAL);
 			break;
 		}
 
 		/* look it up in the spa */
 		vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
 		if (vml[c] == NULL) {
 			error = SET_ERROR(ENODEV);
 			break;
 		}
 
 		/* make sure there's nothing stopping the split */
 		if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
 		    vml[c]->vdev_islog ||
 		    !vdev_is_concrete(vml[c]) ||
 		    vml[c]->vdev_isspare ||
 		    vml[c]->vdev_isl2cache ||
 		    !vdev_writeable(vml[c]) ||
 		    vml[c]->vdev_children != 0 ||
 		    vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
 		    c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
 			error = SET_ERROR(EINVAL);
 			break;
 		}
 
 		if (vdev_dtl_required(vml[c]) ||
 		    vdev_resilver_needed(vml[c], NULL, NULL)) {
 			error = SET_ERROR(EBUSY);
 			break;
 		}
 
 		/* we need certain info from the top level */
 		fnvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
 		    vml[c]->vdev_top->vdev_ms_array);
 		fnvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
 		    vml[c]->vdev_top->vdev_ms_shift);
 		fnvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
 		    vml[c]->vdev_top->vdev_asize);
 		fnvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
 		    vml[c]->vdev_top->vdev_ashift);
 
 		/* transfer per-vdev ZAPs */
 		ASSERT3U(vml[c]->vdev_leaf_zap, !=, 0);
 		VERIFY0(nvlist_add_uint64(child[c],
 		    ZPOOL_CONFIG_VDEV_LEAF_ZAP, vml[c]->vdev_leaf_zap));
 
 		ASSERT3U(vml[c]->vdev_top->vdev_top_zap, !=, 0);
 		VERIFY0(nvlist_add_uint64(child[c],
 		    ZPOOL_CONFIG_VDEV_TOP_ZAP,
 		    vml[c]->vdev_parent->vdev_top_zap));
 	}
 
 	if (error != 0) {
 		kmem_free(vml, children * sizeof (vdev_t *));
 		kmem_free(glist, children * sizeof (uint64_t));
 		return (spa_vdev_exit(spa, NULL, txg, error));
 	}
 
 	/* stop writers from using the disks */
 	for (c = 0; c < children; c++) {
 		if (vml[c] != NULL)
 			vml[c]->vdev_offline = B_TRUE;
 	}
 	vdev_reopen(spa->spa_root_vdev);
 
 	/*
 	 * Temporarily record the splitting vdevs in the spa config.  This
 	 * will disappear once the config is regenerated.
 	 */
 	nvl = fnvlist_alloc();
 	fnvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, glist, children);
 	kmem_free(glist, children * sizeof (uint64_t));
 
 	mutex_enter(&spa->spa_props_lock);
 	fnvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT, nvl);
 	mutex_exit(&spa->spa_props_lock);
 	spa->spa_config_splitting = nvl;
 	vdev_config_dirty(spa->spa_root_vdev);
 
 	/* configure and create the new pool */
 	fnvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname);
 	fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
 	    exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE);
 	fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, spa_version(spa));
 	fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG, spa->spa_config_txg);
 	fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
 	    spa_generate_guid(NULL));
 	VERIFY0(nvlist_add_boolean(config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
 	(void) nvlist_lookup_string(props,
 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
 
 	/* add the new pool to the namespace */
 	newspa = spa_add(newname, config, altroot);
 	newspa->spa_avz_action = AVZ_ACTION_REBUILD;
 	newspa->spa_config_txg = spa->spa_config_txg;
 	spa_set_log_state(newspa, SPA_LOG_CLEAR);
 
 	/* release the spa config lock, retaining the namespace lock */
 	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
 
 	if (zio_injection_enabled)
 		zio_handle_panic_injection(spa, FTAG, 1);
 
 	spa_activate(newspa, spa_mode_global);
 	spa_async_suspend(newspa);
 
 	/*
 	 * Temporarily stop the initializing and TRIM activity.  We set the
 	 * state to ACTIVE so that we know to resume initializing or TRIM
 	 * once the split has completed.
 	 */
 	list_t vd_initialize_list;
 	list_create(&vd_initialize_list, sizeof (vdev_t),
 	    offsetof(vdev_t, vdev_initialize_node));
 
 	list_t vd_trim_list;
 	list_create(&vd_trim_list, sizeof (vdev_t),
 	    offsetof(vdev_t, vdev_trim_node));
 
 	for (c = 0; c < children; c++) {
 		if (vml[c] != NULL && vml[c]->vdev_ops != &vdev_indirect_ops) {
 			mutex_enter(&vml[c]->vdev_initialize_lock);
 			vdev_initialize_stop(vml[c],
 			    VDEV_INITIALIZE_ACTIVE, &vd_initialize_list);
 			mutex_exit(&vml[c]->vdev_initialize_lock);
 
 			mutex_enter(&vml[c]->vdev_trim_lock);
 			vdev_trim_stop(vml[c], VDEV_TRIM_ACTIVE, &vd_trim_list);
 			mutex_exit(&vml[c]->vdev_trim_lock);
 		}
 	}
 
 	vdev_initialize_stop_wait(spa, &vd_initialize_list);
 	vdev_trim_stop_wait(spa, &vd_trim_list);
 
 	list_destroy(&vd_initialize_list);
 	list_destroy(&vd_trim_list);
 
 	newspa->spa_config_source = SPA_CONFIG_SRC_SPLIT;
 	newspa->spa_is_splitting = B_TRUE;
 
 	/* create the new pool from the disks of the original pool */
 	error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE);
 	if (error)
 		goto out;
 
 	/* if that worked, generate a real config for the new pool */
 	if (newspa->spa_root_vdev != NULL) {
 		newspa->spa_config_splitting = fnvlist_alloc();
 		fnvlist_add_uint64(newspa->spa_config_splitting,
 		    ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa));
 		spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
 		    B_TRUE));
 	}
 
 	/* set the props */
 	if (props != NULL) {
 		spa_configfile_set(newspa, props, B_FALSE);
 		error = spa_prop_set(newspa, props);
 		if (error)
 			goto out;
 	}
 
 	/* flush everything */
 	txg = spa_vdev_config_enter(newspa);
 	vdev_config_dirty(newspa->spa_root_vdev);
 	(void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
 
 	if (zio_injection_enabled)
 		zio_handle_panic_injection(spa, FTAG, 2);
 
 	spa_async_resume(newspa);
 
 	/* finally, update the original pool's config */
 	txg = spa_vdev_config_enter(spa);
 	tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
 	error = dmu_tx_assign(tx, TXG_WAIT);
 	if (error != 0)
 		dmu_tx_abort(tx);
 	for (c = 0; c < children; c++) {
 		if (vml[c] != NULL && vml[c]->vdev_ops != &vdev_indirect_ops) {
 			vdev_t *tvd = vml[c]->vdev_top;
 
 			/*
 			 * Need to be sure the detachable VDEV is not
 			 * on any *other* txg's DTL list to prevent it
 			 * from being accessed after it's freed.
 			 */
 			for (int t = 0; t < TXG_SIZE; t++) {
 				(void) txg_list_remove_this(
 				    &tvd->vdev_dtl_list, vml[c], t);
 			}
 
 			vdev_split(vml[c]);
 			if (error == 0)
 				spa_history_log_internal(spa, "detach", tx,
 				    "vdev=%s", vml[c]->vdev_path);
 
 			vdev_free(vml[c]);
 		}
 	}
 	spa->spa_avz_action = AVZ_ACTION_REBUILD;
 	vdev_config_dirty(spa->spa_root_vdev);
 	spa->spa_config_splitting = NULL;
 	nvlist_free(nvl);
 	if (error == 0)
 		dmu_tx_commit(tx);
 	(void) spa_vdev_exit(spa, NULL, txg, 0);
 
 	if (zio_injection_enabled)
 		zio_handle_panic_injection(spa, FTAG, 3);
 
 	/* split is complete; log a history record */
 	spa_history_log_internal(newspa, "split", NULL,
 	    "from pool %s", spa_name(spa));
 
 	newspa->spa_is_splitting = B_FALSE;
 	kmem_free(vml, children * sizeof (vdev_t *));
 
 	/* if we're not going to mount the filesystems in userland, export */
 	if (exp)
 		error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
 		    B_FALSE, B_FALSE);
 
 	return (error);
 
 out:
 	spa_unload(newspa);
 	spa_deactivate(newspa);
 	spa_remove(newspa);
 
 	txg = spa_vdev_config_enter(spa);
 
 	/* re-online all offlined disks */
 	for (c = 0; c < children; c++) {
 		if (vml[c] != NULL)
 			vml[c]->vdev_offline = B_FALSE;
 	}
 
 	/* restart initializing or trimming disks as necessary */
 	spa_async_request(spa, SPA_ASYNC_INITIALIZE_RESTART);
 	spa_async_request(spa, SPA_ASYNC_TRIM_RESTART);
 	spa_async_request(spa, SPA_ASYNC_AUTOTRIM_RESTART);
 
 	vdev_reopen(spa->spa_root_vdev);
 
 	nvlist_free(spa->spa_config_splitting);
 	spa->spa_config_splitting = NULL;
 	(void) spa_vdev_exit(spa, NULL, txg, error);
 
 	kmem_free(vml, children * sizeof (vdev_t *));
 	return (error);
 }
 
 /*
  * Find any device that's done replacing, or a vdev marked 'unspare' that's
  * currently spared, so we can detach it.
  */
 static vdev_t *
 spa_vdev_resilver_done_hunt(vdev_t *vd)
 {
 	vdev_t *newvd, *oldvd;
 
 	for (int c = 0; c < vd->vdev_children; c++) {
 		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
 		if (oldvd != NULL)
 			return (oldvd);
 	}
 
 	/*
 	 * Check for a completed replacement.  We always consider the first
 	 * vdev in the list to be the oldest vdev, and the last one to be
 	 * the newest (see spa_vdev_attach() for how that works).  In
 	 * the case where the newest vdev is faulted, we will not automatically
 	 * remove it after a resilver completes.  This is OK as it will require
 	 * user intervention to determine which disk the admin wishes to keep.
 	 */
 	if (vd->vdev_ops == &vdev_replacing_ops) {
 		ASSERT(vd->vdev_children > 1);
 
 		newvd = vd->vdev_child[vd->vdev_children - 1];
 		oldvd = vd->vdev_child[0];
 
 		if (vdev_dtl_empty(newvd, DTL_MISSING) &&
 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
 		    !vdev_dtl_required(oldvd))
 			return (oldvd);
 	}
 
 	/*
 	 * Check for a completed resilver with the 'unspare' flag set.
 	 * Also potentially update faulted state.
 	 */
 	if (vd->vdev_ops == &vdev_spare_ops) {
 		vdev_t *first = vd->vdev_child[0];
 		vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
 
 		if (last->vdev_unspare) {
 			oldvd = first;
 			newvd = last;
 		} else if (first->vdev_unspare) {
 			oldvd = last;
 			newvd = first;
 		} else {
 			oldvd = NULL;
 		}
 
 		if (oldvd != NULL &&
 		    vdev_dtl_empty(newvd, DTL_MISSING) &&
 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
 		    !vdev_dtl_required(oldvd))
 			return (oldvd);
 
 		vdev_propagate_state(vd);
 
 		/*
 		 * If there are more than two spares attached to a disk,
 		 * and those spares are not required, then we want to
 		 * attempt to free them up now so that they can be used
 		 * by other pools.  Once we're back down to a single
 		 * disk+spare, we stop removing them.
 		 */
 		if (vd->vdev_children > 2) {
 			newvd = vd->vdev_child[1];
 
 			if (newvd->vdev_isspare && last->vdev_isspare &&
 			    vdev_dtl_empty(last, DTL_MISSING) &&
 			    vdev_dtl_empty(last, DTL_OUTAGE) &&
 			    !vdev_dtl_required(newvd))
 				return (newvd);
 		}
 	}
 
 	return (NULL);
 }
 
 static void
 spa_vdev_resilver_done(spa_t *spa)
 {
 	vdev_t *vd, *pvd, *ppvd;
 	uint64_t guid, sguid, pguid, ppguid;
 
 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
 
 	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
 		pvd = vd->vdev_parent;
 		ppvd = pvd->vdev_parent;
 		guid = vd->vdev_guid;
 		pguid = pvd->vdev_guid;
 		ppguid = ppvd->vdev_guid;
 		sguid = 0;
 		/*
 		 * If we have just finished replacing a hot spared device, then
 		 * we need to detach the parent's first child (the original hot
 		 * spare) as well.
 		 */
 		if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
 		    ppvd->vdev_children == 2) {
 			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
 			sguid = ppvd->vdev_child[1]->vdev_guid;
 		}
 		ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
 
 		spa_config_exit(spa, SCL_ALL, FTAG);
 		if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
 			return;
 		if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
 			return;
 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
 	}
 
 	spa_config_exit(spa, SCL_ALL, FTAG);
 
 	/*
 	 * If a detach was not performed above replace waiters will not have
 	 * been notified.  In which case we must do so now.
 	 */
 	spa_notify_waiters(spa);
 }
 
 /*
  * Update the stored path or FRU for this vdev.
  */
 static int
 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
     boolean_t ispath)
 {
 	vdev_t *vd;
 	boolean_t sync = B_FALSE;
 
 	ASSERT(spa_writeable(spa));
 
 	spa_vdev_state_enter(spa, SCL_ALL);
 
 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
 		return (spa_vdev_state_exit(spa, NULL, ENOENT));
 
 	if (!vd->vdev_ops->vdev_op_leaf)
 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
 
 	if (ispath) {
 		if (strcmp(value, vd->vdev_path) != 0) {
 			spa_strfree(vd->vdev_path);
 			vd->vdev_path = spa_strdup(value);
 			sync = B_TRUE;
 		}
 	} else {
 		if (vd->vdev_fru == NULL) {
 			vd->vdev_fru = spa_strdup(value);
 			sync = B_TRUE;
 		} else if (strcmp(value, vd->vdev_fru) != 0) {
 			spa_strfree(vd->vdev_fru);
 			vd->vdev_fru = spa_strdup(value);
 			sync = B_TRUE;
 		}
 	}
 
 	return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
 }
 
 int
 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
 {
 	return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
 }
 
 int
 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
 {
 	return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
 }
 
 /*
  * ==========================================================================
  * SPA Scanning
  * ==========================================================================
  */
 int
 spa_scrub_pause_resume(spa_t *spa, pool_scrub_cmd_t cmd)
 {
 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
 
 	if (dsl_scan_resilvering(spa->spa_dsl_pool))
 		return (SET_ERROR(EBUSY));
 
 	return (dsl_scrub_set_pause_resume(spa->spa_dsl_pool, cmd));
 }
 
 int
 spa_scan_stop(spa_t *spa)
 {
 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
 	if (dsl_scan_resilvering(spa->spa_dsl_pool))
 		return (SET_ERROR(EBUSY));
 
 	return (dsl_scan_cancel(spa->spa_dsl_pool));
 }
 
 int
 spa_scan(spa_t *spa, pool_scan_func_t func)
 {
 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
 
 	if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
 		return (SET_ERROR(ENOTSUP));
 
 	if (func == POOL_SCAN_RESILVER &&
 	    !spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER))
 		return (SET_ERROR(ENOTSUP));
 
 	/*
 	 * If a resilver was requested, but there is no DTL on a
 	 * writeable leaf device, we have nothing to do.
 	 */
 	if (func == POOL_SCAN_RESILVER &&
 	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
 		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
 		return (0);
 	}
 
 	if (func == POOL_SCAN_ERRORSCRUB &&
 	    !spa_feature_is_enabled(spa, SPA_FEATURE_HEAD_ERRLOG))
 		return (SET_ERROR(ENOTSUP));
 
 	return (dsl_scan(spa->spa_dsl_pool, func));
 }
 
 /*
  * ==========================================================================
  * SPA async task processing
  * ==========================================================================
  */
 
 static void
 spa_async_remove(spa_t *spa, vdev_t *vd)
 {
 	if (vd->vdev_remove_wanted) {
 		vd->vdev_remove_wanted = B_FALSE;
 		vd->vdev_delayed_close = B_FALSE;
 		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
 
 		/*
 		 * We want to clear the stats, but we don't want to do a full
 		 * vdev_clear() as that will cause us to throw away
 		 * degraded/faulted state as well as attempt to reopen the
 		 * device, all of which is a waste.
 		 */
 		vd->vdev_stat.vs_read_errors = 0;
 		vd->vdev_stat.vs_write_errors = 0;
 		vd->vdev_stat.vs_checksum_errors = 0;
 
 		vdev_state_dirty(vd->vdev_top);
 
 		/* Tell userspace that the vdev is gone. */
 		zfs_post_remove(spa, vd);
 	}
 
 	for (int c = 0; c < vd->vdev_children; c++)
 		spa_async_remove(spa, vd->vdev_child[c]);
 }
 
 static void
 spa_async_fault_vdev(spa_t *spa, vdev_t *vd)
 {
 	if (vd->vdev_fault_wanted) {
 		vd->vdev_fault_wanted = B_FALSE;
 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
 		    VDEV_AUX_ERR_EXCEEDED);
 	}
 
 	for (int c = 0; c < vd->vdev_children; c++)
 		spa_async_fault_vdev(spa, vd->vdev_child[c]);
 }
 
 static void
 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
 {
 	if (!spa->spa_autoexpand)
 		return;
 
 	for (int c = 0; c < vd->vdev_children; c++) {
 		vdev_t *cvd = vd->vdev_child[c];
 		spa_async_autoexpand(spa, cvd);
 	}
 
 	if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
 		return;
 
 	spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_AUTOEXPAND);
 }
 
 static __attribute__((noreturn)) void
 spa_async_thread(void *arg)
 {
 	spa_t *spa = (spa_t *)arg;
 	dsl_pool_t *dp = spa->spa_dsl_pool;
 	int tasks;
 
 	ASSERT(spa->spa_sync_on);
 
 	mutex_enter(&spa->spa_async_lock);
 	tasks = spa->spa_async_tasks;
 	spa->spa_async_tasks = 0;
 	mutex_exit(&spa->spa_async_lock);
 
 	/*
 	 * See if the config needs to be updated.
 	 */
 	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
 		uint64_t old_space, new_space;
 
 		mutex_enter(&spa_namespace_lock);
 		old_space = metaslab_class_get_space(spa_normal_class(spa));
 		old_space += metaslab_class_get_space(spa_special_class(spa));
 		old_space += metaslab_class_get_space(spa_dedup_class(spa));
 		old_space += metaslab_class_get_space(
 		    spa_embedded_log_class(spa));
 
 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
 
 		new_space = metaslab_class_get_space(spa_normal_class(spa));
 		new_space += metaslab_class_get_space(spa_special_class(spa));
 		new_space += metaslab_class_get_space(spa_dedup_class(spa));
 		new_space += metaslab_class_get_space(
 		    spa_embedded_log_class(spa));
 		mutex_exit(&spa_namespace_lock);
 
 		/*
 		 * If the pool grew as a result of the config update,
 		 * then log an internal history event.
 		 */
 		if (new_space != old_space) {
 			spa_history_log_internal(spa, "vdev online", NULL,
 			    "pool '%s' size: %llu(+%llu)",
 			    spa_name(spa), (u_longlong_t)new_space,
 			    (u_longlong_t)(new_space - old_space));
 		}
 	}
 
 	/*
 	 * See if any devices need to be marked REMOVED.
 	 */
 	if (tasks & SPA_ASYNC_REMOVE) {
 		spa_vdev_state_enter(spa, SCL_NONE);
 		spa_async_remove(spa, spa->spa_root_vdev);
 		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
 			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
 		for (int i = 0; i < spa->spa_spares.sav_count; i++)
 			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
 		(void) spa_vdev_state_exit(spa, NULL, 0);
 	}
 
 	if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
 		spa_async_autoexpand(spa, spa->spa_root_vdev);
 		spa_config_exit(spa, SCL_CONFIG, FTAG);
 	}
 
 	/*
 	 * See if any devices need to be marked faulted.
 	 */
 	if (tasks & SPA_ASYNC_FAULT_VDEV) {
 		spa_vdev_state_enter(spa, SCL_NONE);
 		spa_async_fault_vdev(spa, spa->spa_root_vdev);
 		(void) spa_vdev_state_exit(spa, NULL, 0);
 	}
 
 	/*
 	 * If any devices are done replacing, detach them.
 	 */
 	if (tasks & SPA_ASYNC_RESILVER_DONE ||
 	    tasks & SPA_ASYNC_REBUILD_DONE ||
 	    tasks & SPA_ASYNC_DETACH_SPARE) {
 		spa_vdev_resilver_done(spa);
 	}
 
 	/*
 	 * Kick off a resilver.
 	 */
 	if (tasks & SPA_ASYNC_RESILVER &&
 	    !vdev_rebuild_active(spa->spa_root_vdev) &&
 	    (!dsl_scan_resilvering(dp) ||
 	    !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER)))
 		dsl_scan_restart_resilver(dp, 0);
 
 	if (tasks & SPA_ASYNC_INITIALIZE_RESTART) {
 		mutex_enter(&spa_namespace_lock);
 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
 		vdev_initialize_restart(spa->spa_root_vdev);
 		spa_config_exit(spa, SCL_CONFIG, FTAG);
 		mutex_exit(&spa_namespace_lock);
 	}
 
 	if (tasks & SPA_ASYNC_TRIM_RESTART) {
 		mutex_enter(&spa_namespace_lock);
 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
 		vdev_trim_restart(spa->spa_root_vdev);
 		spa_config_exit(spa, SCL_CONFIG, FTAG);
 		mutex_exit(&spa_namespace_lock);
 	}
 
 	if (tasks & SPA_ASYNC_AUTOTRIM_RESTART) {
 		mutex_enter(&spa_namespace_lock);
 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
 		vdev_autotrim_restart(spa);
 		spa_config_exit(spa, SCL_CONFIG, FTAG);
 		mutex_exit(&spa_namespace_lock);
 	}
 
 	/*
 	 * Kick off L2 cache whole device TRIM.
 	 */
 	if (tasks & SPA_ASYNC_L2CACHE_TRIM) {
 		mutex_enter(&spa_namespace_lock);
 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
 		vdev_trim_l2arc(spa);
 		spa_config_exit(spa, SCL_CONFIG, FTAG);
 		mutex_exit(&spa_namespace_lock);
 	}
 
 	/*
 	 * Kick off L2 cache rebuilding.
 	 */
 	if (tasks & SPA_ASYNC_L2CACHE_REBUILD) {
 		mutex_enter(&spa_namespace_lock);
 		spa_config_enter(spa, SCL_L2ARC, FTAG, RW_READER);
 		l2arc_spa_rebuild_start(spa);
 		spa_config_exit(spa, SCL_L2ARC, FTAG);
 		mutex_exit(&spa_namespace_lock);
 	}
 
 	/*
 	 * Let the world know that we're done.
 	 */
 	mutex_enter(&spa->spa_async_lock);
 	spa->spa_async_thread = NULL;
 	cv_broadcast(&spa->spa_async_cv);
 	mutex_exit(&spa->spa_async_lock);
 	thread_exit();
 }
 
 void
 spa_async_suspend(spa_t *spa)
 {
 	mutex_enter(&spa->spa_async_lock);
 	spa->spa_async_suspended++;
 	while (spa->spa_async_thread != NULL)
 		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
 	mutex_exit(&spa->spa_async_lock);
 
 	spa_vdev_remove_suspend(spa);
 
 	zthr_t *condense_thread = spa->spa_condense_zthr;
 	if (condense_thread != NULL)
 		zthr_cancel(condense_thread);
 
 	zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
 	if (discard_thread != NULL)
 		zthr_cancel(discard_thread);
 
 	zthr_t *ll_delete_thread = spa->spa_livelist_delete_zthr;
 	if (ll_delete_thread != NULL)
 		zthr_cancel(ll_delete_thread);
 
 	zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr;
 	if (ll_condense_thread != NULL)
 		zthr_cancel(ll_condense_thread);
 }
 
 void
 spa_async_resume(spa_t *spa)
 {
 	mutex_enter(&spa->spa_async_lock);
 	ASSERT(spa->spa_async_suspended != 0);
 	spa->spa_async_suspended--;
 	mutex_exit(&spa->spa_async_lock);
 	spa_restart_removal(spa);
 
 	zthr_t *condense_thread = spa->spa_condense_zthr;
 	if (condense_thread != NULL)
 		zthr_resume(condense_thread);
 
 	zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
 	if (discard_thread != NULL)
 		zthr_resume(discard_thread);
 
 	zthr_t *ll_delete_thread = spa->spa_livelist_delete_zthr;
 	if (ll_delete_thread != NULL)
 		zthr_resume(ll_delete_thread);
 
 	zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr;
 	if (ll_condense_thread != NULL)
 		zthr_resume(ll_condense_thread);
 }
 
 static boolean_t
 spa_async_tasks_pending(spa_t *spa)
 {
 	uint_t non_config_tasks;
 	uint_t config_task;
 	boolean_t config_task_suspended;
 
 	non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE;
 	config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
 	if (spa->spa_ccw_fail_time == 0) {
 		config_task_suspended = B_FALSE;
 	} else {
 		config_task_suspended =
 		    (gethrtime() - spa->spa_ccw_fail_time) <
 		    ((hrtime_t)zfs_ccw_retry_interval * NANOSEC);
 	}
 
 	return (non_config_tasks || (config_task && !config_task_suspended));
 }
 
 static void
 spa_async_dispatch(spa_t *spa)
 {
 	mutex_enter(&spa->spa_async_lock);
 	if (spa_async_tasks_pending(spa) &&
 	    !spa->spa_async_suspended &&
 	    spa->spa_async_thread == NULL)
 		spa->spa_async_thread = thread_create(NULL, 0,
 		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
 	mutex_exit(&spa->spa_async_lock);
 }
 
 void
 spa_async_request(spa_t *spa, int task)
 {
 	zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
 	mutex_enter(&spa->spa_async_lock);
 	spa->spa_async_tasks |= task;
 	mutex_exit(&spa->spa_async_lock);
 }
 
 int
 spa_async_tasks(spa_t *spa)
 {
 	return (spa->spa_async_tasks);
 }
 
 /*
  * ==========================================================================
  * SPA syncing routines
  * ==========================================================================
  */
 
 
 static int
 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
     dmu_tx_t *tx)
 {
 	bpobj_t *bpo = arg;
 	bpobj_enqueue(bpo, bp, bp_freed, tx);
 	return (0);
 }
 
 int
 bpobj_enqueue_alloc_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
 {
 	return (bpobj_enqueue_cb(arg, bp, B_FALSE, tx));
 }
 
 int
 bpobj_enqueue_free_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
 {
 	return (bpobj_enqueue_cb(arg, bp, B_TRUE, tx));
 }
 
 static int
 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
 {
 	zio_t *pio = arg;
 
 	zio_nowait(zio_free_sync(pio, pio->io_spa, dmu_tx_get_txg(tx), bp,
 	    pio->io_flags));
 	return (0);
 }
 
 static int
 bpobj_spa_free_sync_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
     dmu_tx_t *tx)
 {
 	ASSERT(!bp_freed);
 	return (spa_free_sync_cb(arg, bp, tx));
 }
 
 /*
  * Note: this simple function is not inlined to make it easier to dtrace the
  * amount of time spent syncing frees.
  */
 static void
 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
 {
 	zio_t *zio = zio_root(spa, NULL, NULL, 0);
 	bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
 	VERIFY(zio_wait(zio) == 0);
 }
 
 /*
  * Note: this simple function is not inlined to make it easier to dtrace the
  * amount of time spent syncing deferred frees.
  */
 static void
 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
 {
 	if (spa_sync_pass(spa) != 1)
 		return;
 
 	/*
 	 * Note:
 	 * If the log space map feature is active, we stop deferring
 	 * frees to the next TXG and therefore running this function
 	 * would be considered a no-op as spa_deferred_bpobj should
 	 * not have any entries.
 	 *
 	 * That said we run this function anyway (instead of returning
 	 * immediately) for the edge-case scenario where we just
 	 * activated the log space map feature in this TXG but we have
 	 * deferred frees from the previous TXG.
 	 */
 	zio_t *zio = zio_root(spa, NULL, NULL, 0);
 	VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
 	    bpobj_spa_free_sync_cb, zio, tx), ==, 0);
 	VERIFY0(zio_wait(zio));
 }
 
 static void
 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
 {
 	char *packed = NULL;
 	size_t bufsize;
 	size_t nvsize = 0;
 	dmu_buf_t *db;
 
 	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
 
 	/*
 	 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
 	 * information.  This avoids the dmu_buf_will_dirty() path and
 	 * saves us a pre-read to get data we don't actually care about.
 	 */
 	bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
 	packed = vmem_alloc(bufsize, KM_SLEEP);
 
 	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
 	    KM_SLEEP) == 0);
 	memset(packed + nvsize, 0, bufsize - nvsize);
 
 	dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
 
 	vmem_free(packed, bufsize);
 
 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
 	dmu_buf_will_dirty(db, tx);
 	*(uint64_t *)db->db_data = nvsize;
 	dmu_buf_rele(db, FTAG);
 }
 
 static void
 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
     const char *config, const char *entry)
 {
 	nvlist_t *nvroot;
 	nvlist_t **list;
 	int i;
 
 	if (!sav->sav_sync)
 		return;
 
 	/*
 	 * Update the MOS nvlist describing the list of available devices.
 	 * spa_validate_aux() will have already made sure this nvlist is
 	 * valid and the vdevs are labeled appropriately.
 	 */
 	if (sav->sav_object == 0) {
 		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
 		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
 		    sizeof (uint64_t), tx);
 		VERIFY(zap_update(spa->spa_meta_objset,
 		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
 		    &sav->sav_object, tx) == 0);
 	}
 
 	nvroot = fnvlist_alloc();
 	if (sav->sav_count == 0) {
 		fnvlist_add_nvlist_array(nvroot, config,
 		    (const nvlist_t * const *)NULL, 0);
 	} else {
 		list = kmem_alloc(sav->sav_count*sizeof (void *), KM_SLEEP);
 		for (i = 0; i < sav->sav_count; i++)
 			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
 			    B_FALSE, VDEV_CONFIG_L2CACHE);
 		fnvlist_add_nvlist_array(nvroot, config,
 		    (const nvlist_t * const *)list, sav->sav_count);
 		for (i = 0; i < sav->sav_count; i++)
 			nvlist_free(list[i]);
 		kmem_free(list, sav->sav_count * sizeof (void *));
 	}
 
 	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
 	nvlist_free(nvroot);
 
 	sav->sav_sync = B_FALSE;
 }
 
 /*
  * Rebuild spa's all-vdev ZAP from the vdev ZAPs indicated in each vdev_t.
  * The all-vdev ZAP must be empty.
  */
 static void
 spa_avz_build(vdev_t *vd, uint64_t avz, dmu_tx_t *tx)
 {
 	spa_t *spa = vd->vdev_spa;
 
 	if (vd->vdev_root_zap != 0 &&
 	    spa_feature_is_active(spa, SPA_FEATURE_AVZ_V2)) {
 		VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
 		    vd->vdev_root_zap, tx));
 	}
 	if (vd->vdev_top_zap != 0) {
 		VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
 		    vd->vdev_top_zap, tx));
 	}
 	if (vd->vdev_leaf_zap != 0) {
 		VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
 		    vd->vdev_leaf_zap, tx));
 	}
 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
 		spa_avz_build(vd->vdev_child[i], avz, tx);
 	}
 }
 
 static void
 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
 {
 	nvlist_t *config;
 
 	/*
 	 * If the pool is being imported from a pre-per-vdev-ZAP version of ZFS,
 	 * its config may not be dirty but we still need to build per-vdev ZAPs.
 	 * Similarly, if the pool is being assembled (e.g. after a split), we
 	 * need to rebuild the AVZ although the config may not be dirty.
 	 */
 	if (list_is_empty(&spa->spa_config_dirty_list) &&
 	    spa->spa_avz_action == AVZ_ACTION_NONE)
 		return;
 
 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
 
 	ASSERT(spa->spa_avz_action == AVZ_ACTION_NONE ||
 	    spa->spa_avz_action == AVZ_ACTION_INITIALIZE ||
 	    spa->spa_all_vdev_zaps != 0);
 
 	if (spa->spa_avz_action == AVZ_ACTION_REBUILD) {
 		/* Make and build the new AVZ */
 		uint64_t new_avz = zap_create(spa->spa_meta_objset,
 		    DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx);
 		spa_avz_build(spa->spa_root_vdev, new_avz, tx);
 
 		/* Diff old AVZ with new one */
 		zap_cursor_t zc;
 		zap_attribute_t za;
 
 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
 		    spa->spa_all_vdev_zaps);
 		    zap_cursor_retrieve(&zc, &za) == 0;
 		    zap_cursor_advance(&zc)) {
 			uint64_t vdzap = za.za_first_integer;
 			if (zap_lookup_int(spa->spa_meta_objset, new_avz,
 			    vdzap) == ENOENT) {
 				/*
 				 * ZAP is listed in old AVZ but not in new one;
 				 * destroy it
 				 */
 				VERIFY0(zap_destroy(spa->spa_meta_objset, vdzap,
 				    tx));
 			}
 		}
 
 		zap_cursor_fini(&zc);
 
 		/* Destroy the old AVZ */
 		VERIFY0(zap_destroy(spa->spa_meta_objset,
 		    spa->spa_all_vdev_zaps, tx));
 
 		/* Replace the old AVZ in the dir obj with the new one */
 		VERIFY0(zap_update(spa->spa_meta_objset,
 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP,
 		    sizeof (new_avz), 1, &new_avz, tx));
 
 		spa->spa_all_vdev_zaps = new_avz;
 	} else if (spa->spa_avz_action == AVZ_ACTION_DESTROY) {
 		zap_cursor_t zc;
 		zap_attribute_t za;
 
 		/* Walk through the AVZ and destroy all listed ZAPs */
 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
 		    spa->spa_all_vdev_zaps);
 		    zap_cursor_retrieve(&zc, &za) == 0;
 		    zap_cursor_advance(&zc)) {
 			uint64_t zap = za.za_first_integer;
 			VERIFY0(zap_destroy(spa->spa_meta_objset, zap, tx));
 		}
 
 		zap_cursor_fini(&zc);
 
 		/* Destroy and unlink the AVZ itself */
 		VERIFY0(zap_destroy(spa->spa_meta_objset,
 		    spa->spa_all_vdev_zaps, tx));
 		VERIFY0(zap_remove(spa->spa_meta_objset,
 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, tx));
 		spa->spa_all_vdev_zaps = 0;
 	}
 
 	if (spa->spa_all_vdev_zaps == 0) {
 		spa->spa_all_vdev_zaps = zap_create_link(spa->spa_meta_objset,
 		    DMU_OTN_ZAP_METADATA, DMU_POOL_DIRECTORY_OBJECT,
 		    DMU_POOL_VDEV_ZAP_MAP, tx);
 	}
 	spa->spa_avz_action = AVZ_ACTION_NONE;
 
 	/* Create ZAPs for vdevs that don't have them. */
 	vdev_construct_zaps(spa->spa_root_vdev, tx);
 
 	config = spa_config_generate(spa, spa->spa_root_vdev,
 	    dmu_tx_get_txg(tx), B_FALSE);
 
 	/*
 	 * If we're upgrading the spa version then make sure that
 	 * the config object gets updated with the correct version.
 	 */
 	if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
 		fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
 		    spa->spa_uberblock.ub_version);
 
 	spa_config_exit(spa, SCL_STATE, FTAG);
 
 	nvlist_free(spa->spa_config_syncing);
 	spa->spa_config_syncing = config;
 
 	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
 }
 
 static void
 spa_sync_version(void *arg, dmu_tx_t *tx)
 {
 	uint64_t *versionp = arg;
 	uint64_t version = *versionp;
 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
 
 	/*
 	 * Setting the version is special cased when first creating the pool.
 	 */
 	ASSERT(tx->tx_txg != TXG_INITIAL);
 
 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
 	ASSERT(version >= spa_version(spa));
 
 	spa->spa_uberblock.ub_version = version;
 	vdev_config_dirty(spa->spa_root_vdev);
 	spa_history_log_internal(spa, "set", tx, "version=%lld",
 	    (longlong_t)version);
 }
 
 /*
  * Set zpool properties.
  */
 static void
 spa_sync_props(void *arg, dmu_tx_t *tx)
 {
 	nvlist_t *nvp = arg;
 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
 	objset_t *mos = spa->spa_meta_objset;
 	nvpair_t *elem = NULL;
 
 	mutex_enter(&spa->spa_props_lock);
 
 	while ((elem = nvlist_next_nvpair(nvp, elem))) {
 		uint64_t intval;
 		const char *strval, *fname;
 		zpool_prop_t prop;
 		const char *propname;
 		const char *elemname = nvpair_name(elem);
 		zprop_type_t proptype;
 		spa_feature_t fid;
 
 		switch (prop = zpool_name_to_prop(elemname)) {
 		case ZPOOL_PROP_VERSION:
 			intval = fnvpair_value_uint64(elem);
 			/*
 			 * The version is synced separately before other
 			 * properties and should be correct by now.
 			 */
 			ASSERT3U(spa_version(spa), >=, intval);
 			break;
 
 		case ZPOOL_PROP_ALTROOT:
 			/*
 			 * 'altroot' is a non-persistent property. It should
 			 * have been set temporarily at creation or import time.
 			 */
 			ASSERT(spa->spa_root != NULL);
 			break;
 
 		case ZPOOL_PROP_READONLY:
 		case ZPOOL_PROP_CACHEFILE:
 			/*
 			 * 'readonly' and 'cachefile' are also non-persistent
 			 * properties.
 			 */
 			break;
 		case ZPOOL_PROP_COMMENT:
 			strval = fnvpair_value_string(elem);
 			if (spa->spa_comment != NULL)
 				spa_strfree(spa->spa_comment);
 			spa->spa_comment = spa_strdup(strval);
 			/*
 			 * We need to dirty the configuration on all the vdevs
 			 * so that their labels get updated.  We also need to
 			 * update the cache file to keep it in sync with the
 			 * MOS version. It's unnecessary to do this for pool
 			 * creation since the vdev's configuration has already
 			 * been dirtied.
 			 */
 			if (tx->tx_txg != TXG_INITIAL) {
 				vdev_config_dirty(spa->spa_root_vdev);
 				spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
 			}
 			spa_history_log_internal(spa, "set", tx,
 			    "%s=%s", elemname, strval);
 			break;
 		case ZPOOL_PROP_COMPATIBILITY:
 			strval = fnvpair_value_string(elem);
 			if (spa->spa_compatibility != NULL)
 				spa_strfree(spa->spa_compatibility);
 			spa->spa_compatibility = spa_strdup(strval);
 			/*
 			 * Dirty the configuration on vdevs as above.
 			 */
 			if (tx->tx_txg != TXG_INITIAL) {
 				vdev_config_dirty(spa->spa_root_vdev);
 				spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
 			}
 
 			spa_history_log_internal(spa, "set", tx,
 			    "%s=%s", nvpair_name(elem), strval);
 			break;
 
 		case ZPOOL_PROP_INVAL:
 			if (zpool_prop_feature(elemname)) {
 				fname = strchr(elemname, '@') + 1;
 				VERIFY0(zfeature_lookup_name(fname, &fid));
 
 				spa_feature_enable(spa, fid, tx);
 				spa_history_log_internal(spa, "set", tx,
 				    "%s=enabled", elemname);
 				break;
 			} else if (!zfs_prop_user(elemname)) {
 				ASSERT(zpool_prop_feature(elemname));
 				break;
 			}
 			zfs_fallthrough;
 		default:
 			/*
 			 * Set pool property values in the poolprops mos object.
 			 */
 			if (spa->spa_pool_props_object == 0) {
 				spa->spa_pool_props_object =
 				    zap_create_link(mos, DMU_OT_POOL_PROPS,
 				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
 				    tx);
 			}
 
 			/* normalize the property name */
 			if (prop == ZPOOL_PROP_INVAL) {
 				propname = elemname;
 				proptype = PROP_TYPE_STRING;
 			} else {
 				propname = zpool_prop_to_name(prop);
 				proptype = zpool_prop_get_type(prop);
 			}
 
 			if (nvpair_type(elem) == DATA_TYPE_STRING) {
 				ASSERT(proptype == PROP_TYPE_STRING);
 				strval = fnvpair_value_string(elem);
 				VERIFY0(zap_update(mos,
 				    spa->spa_pool_props_object, propname,
 				    1, strlen(strval) + 1, strval, tx));
 				spa_history_log_internal(spa, "set", tx,
 				    "%s=%s", elemname, strval);
 			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
 				intval = fnvpair_value_uint64(elem);
 
 				if (proptype == PROP_TYPE_INDEX) {
 					const char *unused;
 					VERIFY0(zpool_prop_index_to_string(
 					    prop, intval, &unused));
 				}
 				VERIFY0(zap_update(mos,
 				    spa->spa_pool_props_object, propname,
 				    8, 1, &intval, tx));
 				spa_history_log_internal(spa, "set", tx,
 				    "%s=%lld", elemname,
 				    (longlong_t)intval);
 
 				switch (prop) {
 				case ZPOOL_PROP_DELEGATION:
 					spa->spa_delegation = intval;
 					break;
 				case ZPOOL_PROP_BOOTFS:
 					spa->spa_bootfs = intval;
 					break;
 				case ZPOOL_PROP_FAILUREMODE:
 					spa->spa_failmode = intval;
 					break;
 				case ZPOOL_PROP_AUTOTRIM:
 					spa->spa_autotrim = intval;
 					spa_async_request(spa,
 					    SPA_ASYNC_AUTOTRIM_RESTART);
 					break;
 				case ZPOOL_PROP_AUTOEXPAND:
 					spa->spa_autoexpand = intval;
 					if (tx->tx_txg != TXG_INITIAL)
 						spa_async_request(spa,
 						    SPA_ASYNC_AUTOEXPAND);
 					break;
 				case ZPOOL_PROP_MULTIHOST:
 					spa->spa_multihost = intval;
 					break;
 				default:
 					break;
 				}
 			} else {
 				ASSERT(0); /* not allowed */
 			}
 		}
 
 	}
 
 	mutex_exit(&spa->spa_props_lock);
 }
 
 /*
  * Perform one-time upgrade on-disk changes.  spa_version() does not
  * reflect the new version this txg, so there must be no changes this
  * txg to anything that the upgrade code depends on after it executes.
  * Therefore this must be called after dsl_pool_sync() does the sync
  * tasks.
  */
 static void
 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
 {
 	if (spa_sync_pass(spa) != 1)
 		return;
 
 	dsl_pool_t *dp = spa->spa_dsl_pool;
 	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
 
 	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
 	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
 		dsl_pool_create_origin(dp, tx);
 
 		/* Keeping the origin open increases spa_minref */
 		spa->spa_minref += 3;
 	}
 
 	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
 	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
 		dsl_pool_upgrade_clones(dp, tx);
 	}
 
 	if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
 	    spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
 		dsl_pool_upgrade_dir_clones(dp, tx);
 
 		/* Keeping the freedir open increases spa_minref */
 		spa->spa_minref += 3;
 	}
 
 	if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
 	    spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
 		spa_feature_create_zap_objects(spa, tx);
 	}
 
 	/*
 	 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
 	 * when possibility to use lz4 compression for metadata was added
 	 * Old pools that have this feature enabled must be upgraded to have
 	 * this feature active
 	 */
 	if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
 		boolean_t lz4_en = spa_feature_is_enabled(spa,
 		    SPA_FEATURE_LZ4_COMPRESS);
 		boolean_t lz4_ac = spa_feature_is_active(spa,
 		    SPA_FEATURE_LZ4_COMPRESS);
 
 		if (lz4_en && !lz4_ac)
 			spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
 	}
 
 	/*
 	 * If we haven't written the salt, do so now.  Note that the
 	 * feature may not be activated yet, but that's fine since
 	 * the presence of this ZAP entry is backwards compatible.
 	 */
 	if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
 	    DMU_POOL_CHECKSUM_SALT) == ENOENT) {
 		VERIFY0(zap_add(spa->spa_meta_objset,
 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1,
 		    sizeof (spa->spa_cksum_salt.zcs_bytes),
 		    spa->spa_cksum_salt.zcs_bytes, tx));
 	}
 
 	rrw_exit(&dp->dp_config_rwlock, FTAG);
 }
 
 static void
 vdev_indirect_state_sync_verify(vdev_t *vd)
 {
 	vdev_indirect_mapping_t *vim __maybe_unused = vd->vdev_indirect_mapping;
 	vdev_indirect_births_t *vib __maybe_unused = vd->vdev_indirect_births;
 
 	if (vd->vdev_ops == &vdev_indirect_ops) {
 		ASSERT(vim != NULL);
 		ASSERT(vib != NULL);
 	}
 
 	uint64_t obsolete_sm_object = 0;
 	ASSERT0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
 	if (obsolete_sm_object != 0) {
 		ASSERT(vd->vdev_obsolete_sm != NULL);
 		ASSERT(vd->vdev_removing ||
 		    vd->vdev_ops == &vdev_indirect_ops);
 		ASSERT(vdev_indirect_mapping_num_entries(vim) > 0);
 		ASSERT(vdev_indirect_mapping_bytes_mapped(vim) > 0);
 		ASSERT3U(obsolete_sm_object, ==,
 		    space_map_object(vd->vdev_obsolete_sm));
 		ASSERT3U(vdev_indirect_mapping_bytes_mapped(vim), >=,
 		    space_map_allocated(vd->vdev_obsolete_sm));
 	}
 	ASSERT(vd->vdev_obsolete_segments != NULL);
 
 	/*
 	 * Since frees / remaps to an indirect vdev can only
 	 * happen in syncing context, the obsolete segments
 	 * tree must be empty when we start syncing.
 	 */
 	ASSERT0(range_tree_space(vd->vdev_obsolete_segments));
 }
 
 /*
  * Set the top-level vdev's max queue depth. Evaluate each top-level's
  * async write queue depth in case it changed. The max queue depth will
  * not change in the middle of syncing out this txg.
  */
 static void
 spa_sync_adjust_vdev_max_queue_depth(spa_t *spa)
 {
 	ASSERT(spa_writeable(spa));
 
 	vdev_t *rvd = spa->spa_root_vdev;
 	uint32_t max_queue_depth = zfs_vdev_async_write_max_active *
 	    zfs_vdev_queue_depth_pct / 100;
 	metaslab_class_t *normal = spa_normal_class(spa);
 	metaslab_class_t *special = spa_special_class(spa);
 	metaslab_class_t *dedup = spa_dedup_class(spa);
 
 	uint64_t slots_per_allocator = 0;
 	for (int c = 0; c < rvd->vdev_children; c++) {
 		vdev_t *tvd = rvd->vdev_child[c];
 
 		metaslab_group_t *mg = tvd->vdev_mg;
 		if (mg == NULL || !metaslab_group_initialized(mg))
 			continue;
 
 		metaslab_class_t *mc = mg->mg_class;
 		if (mc != normal && mc != special && mc != dedup)
 			continue;
 
 		/*
 		 * It is safe to do a lock-free check here because only async
 		 * allocations look at mg_max_alloc_queue_depth, and async
 		 * allocations all happen from spa_sync().
 		 */
 		for (int i = 0; i < mg->mg_allocators; i++) {
 			ASSERT0(zfs_refcount_count(
 			    &(mg->mg_allocator[i].mga_alloc_queue_depth)));
 		}
 		mg->mg_max_alloc_queue_depth = max_queue_depth;
 
 		for (int i = 0; i < mg->mg_allocators; i++) {
 			mg->mg_allocator[i].mga_cur_max_alloc_queue_depth =
 			    zfs_vdev_def_queue_depth;
 		}
 		slots_per_allocator += zfs_vdev_def_queue_depth;
 	}
 
 	for (int i = 0; i < spa->spa_alloc_count; i++) {
 		ASSERT0(zfs_refcount_count(&normal->mc_allocator[i].
 		    mca_alloc_slots));
 		ASSERT0(zfs_refcount_count(&special->mc_allocator[i].
 		    mca_alloc_slots));
 		ASSERT0(zfs_refcount_count(&dedup->mc_allocator[i].
 		    mca_alloc_slots));
 		normal->mc_allocator[i].mca_alloc_max_slots =
 		    slots_per_allocator;
 		special->mc_allocator[i].mca_alloc_max_slots =
 		    slots_per_allocator;
 		dedup->mc_allocator[i].mca_alloc_max_slots =
 		    slots_per_allocator;
 	}
 	normal->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
 	special->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
 	dedup->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
 }
 
 static void
 spa_sync_condense_indirect(spa_t *spa, dmu_tx_t *tx)
 {
 	ASSERT(spa_writeable(spa));
 
 	vdev_t *rvd = spa->spa_root_vdev;
 	for (int c = 0; c < rvd->vdev_children; c++) {
 		vdev_t *vd = rvd->vdev_child[c];
 		vdev_indirect_state_sync_verify(vd);
 
 		if (vdev_indirect_should_condense(vd)) {
 			spa_condense_indirect_start_sync(vd, tx);
 			break;
 		}
 	}
 }
 
 static void
 spa_sync_iterate_to_convergence(spa_t *spa, dmu_tx_t *tx)
 {
 	objset_t *mos = spa->spa_meta_objset;
 	dsl_pool_t *dp = spa->spa_dsl_pool;
 	uint64_t txg = tx->tx_txg;
 	bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
 
 	do {
 		int pass = ++spa->spa_sync_pass;
 
 		spa_sync_config_object(spa, tx);
 		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
 		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
 		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
 		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
 		spa_errlog_sync(spa, txg);
 		dsl_pool_sync(dp, txg);
 
 		if (pass < zfs_sync_pass_deferred_free ||
 		    spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) {
 			/*
 			 * If the log space map feature is active we don't
 			 * care about deferred frees and the deferred bpobj
 			 * as the log space map should effectively have the
 			 * same results (i.e. appending only to one object).
 			 */
 			spa_sync_frees(spa, free_bpl, tx);
 		} else {
 			/*
 			 * We can not defer frees in pass 1, because
 			 * we sync the deferred frees later in pass 1.
 			 */
 			ASSERT3U(pass, >, 1);
 			bplist_iterate(free_bpl, bpobj_enqueue_alloc_cb,
 			    &spa->spa_deferred_bpobj, tx);
 		}
 
 		brt_sync(spa, txg);
 		ddt_sync(spa, txg);
 		dsl_scan_sync(dp, tx);
 		dsl_errorscrub_sync(dp, tx);
 		svr_sync(spa, tx);
 		spa_sync_upgrades(spa, tx);
 
 		spa_flush_metaslabs(spa, tx);
 
 		vdev_t *vd = NULL;
 		while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
 		    != NULL)
 			vdev_sync(vd, txg);
 
 		/*
 		 * Note: We need to check if the MOS is dirty because we could
 		 * have marked the MOS dirty without updating the uberblock
 		 * (e.g. if we have sync tasks but no dirty user data). We need
 		 * to check the uberblock's rootbp because it is updated if we
 		 * have synced out dirty data (though in this case the MOS will
 		 * most likely also be dirty due to second order effects, we
 		 * don't want to rely on that here).
 		 */
 		if (pass == 1 &&
 		    spa->spa_uberblock.ub_rootbp.blk_birth < txg &&
 		    !dmu_objset_is_dirty(mos, txg)) {
 			/*
 			 * Nothing changed on the first pass, therefore this
 			 * TXG is a no-op. Avoid syncing deferred frees, so
 			 * that we can keep this TXG as a no-op.
 			 */
 			ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
 			ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
 			ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg));
 			ASSERT(txg_list_empty(&dp->dp_early_sync_tasks, txg));
 			break;
 		}
 
 		spa_sync_deferred_frees(spa, tx);
 	} while (dmu_objset_is_dirty(mos, txg));
 }
 
 /*
  * Rewrite the vdev configuration (which includes the uberblock) to
  * commit the transaction group.
  *
  * If there are no dirty vdevs, we sync the uberblock to a few random
  * top-level vdevs that are known to be visible in the config cache
  * (see spa_vdev_add() for a complete description). If there *are* dirty
  * vdevs, sync the uberblock to all vdevs.
  */
 static void
 spa_sync_rewrite_vdev_config(spa_t *spa, dmu_tx_t *tx)
 {
 	vdev_t *rvd = spa->spa_root_vdev;
 	uint64_t txg = tx->tx_txg;
 
 	for (;;) {
 		int error = 0;
 
 		/*
 		 * We hold SCL_STATE to prevent vdev open/close/etc.
 		 * while we're attempting to write the vdev labels.
 		 */
 		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
 
 		if (list_is_empty(&spa->spa_config_dirty_list)) {
 			vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
 			int svdcount = 0;
 			int children = rvd->vdev_children;
 			int c0 = random_in_range(children);
 
 			for (int c = 0; c < children; c++) {
 				vdev_t *vd =
 				    rvd->vdev_child[(c0 + c) % children];
 
 				/* Stop when revisiting the first vdev */
 				if (c > 0 && svd[0] == vd)
 					break;
 
 				if (vd->vdev_ms_array == 0 ||
 				    vd->vdev_islog ||
 				    !vdev_is_concrete(vd))
 					continue;
 
 				svd[svdcount++] = vd;
 				if (svdcount == SPA_SYNC_MIN_VDEVS)
 					break;
 			}
 			error = vdev_config_sync(svd, svdcount, txg);
 		} else {
 			error = vdev_config_sync(rvd->vdev_child,
 			    rvd->vdev_children, txg);
 		}
 
 		if (error == 0)
 			spa->spa_last_synced_guid = rvd->vdev_guid;
 
 		spa_config_exit(spa, SCL_STATE, FTAG);
 
 		if (error == 0)
 			break;
 		zio_suspend(spa, NULL, ZIO_SUSPEND_IOERR);
 		zio_resume_wait(spa);
 	}
 }
 
 /*
  * Sync the specified transaction group.  New blocks may be dirtied as
  * part of the process, so we iterate until it converges.
  */
 void
 spa_sync(spa_t *spa, uint64_t txg)
 {
 	vdev_t *vd = NULL;
 
 	VERIFY(spa_writeable(spa));
 
 	/*
 	 * Wait for i/os issued in open context that need to complete
 	 * before this txg syncs.
 	 */
 	(void) zio_wait(spa->spa_txg_zio[txg & TXG_MASK]);
 	spa->spa_txg_zio[txg & TXG_MASK] = zio_root(spa, NULL, NULL,
 	    ZIO_FLAG_CANFAIL);
 
 	/*
 	 * Now that there can be no more cloning in this transaction group,
 	 * but we are still before issuing frees, we can process pending BRT
 	 * updates.
 	 */
 	brt_pending_apply(spa, txg);
 
 	/*
 	 * Lock out configuration changes.
 	 */
 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
 
 	spa->spa_syncing_txg = txg;
 	spa->spa_sync_pass = 0;
 
 	for (int i = 0; i < spa->spa_alloc_count; i++) {
 		mutex_enter(&spa->spa_allocs[i].spaa_lock);
 		VERIFY0(avl_numnodes(&spa->spa_allocs[i].spaa_tree));
 		mutex_exit(&spa->spa_allocs[i].spaa_lock);
 	}
 
 	/*
 	 * If there are any pending vdev state changes, convert them
 	 * into config changes that go out with this transaction group.
 	 */
 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
 	while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
 		/* Avoid holding the write lock unless actually necessary */
 		if (vd->vdev_aux == NULL) {
 			vdev_state_clean(vd);
 			vdev_config_dirty(vd);
 			continue;
 		}
 		/*
 		 * We need the write lock here because, for aux vdevs,
 		 * calling vdev_config_dirty() modifies sav_config.
 		 * This is ugly and will become unnecessary when we
 		 * eliminate the aux vdev wart by integrating all vdevs
 		 * into the root vdev tree.
 		 */
 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
 		while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
 			vdev_state_clean(vd);
 			vdev_config_dirty(vd);
 		}
 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
 	}
 	spa_config_exit(spa, SCL_STATE, FTAG);
 
 	dsl_pool_t *dp = spa->spa_dsl_pool;
 	dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg);
 
 	spa->spa_sync_starttime = gethrtime();
 	taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
 	spa->spa_deadman_tqid = taskq_dispatch_delay(system_delay_taskq,
 	    spa_deadman, spa, TQ_SLEEP, ddi_get_lbolt() +
 	    NSEC_TO_TICK(spa->spa_deadman_synctime));
 
 	/*
 	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
 	 * set spa_deflate if we have no raid-z vdevs.
 	 */
 	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
 	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
 		vdev_t *rvd = spa->spa_root_vdev;
 
 		int i;
 		for (i = 0; i < rvd->vdev_children; i++) {
 			vd = rvd->vdev_child[i];
 			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
 				break;
 		}
 		if (i == rvd->vdev_children) {
 			spa->spa_deflate = TRUE;
 			VERIFY0(zap_add(spa->spa_meta_objset,
 			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
 			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
 		}
 	}
 
 	spa_sync_adjust_vdev_max_queue_depth(spa);
 
 	spa_sync_condense_indirect(spa, tx);
 
 	spa_sync_iterate_to_convergence(spa, tx);
 
 #ifdef ZFS_DEBUG
 	if (!list_is_empty(&spa->spa_config_dirty_list)) {
 	/*
 	 * Make sure that the number of ZAPs for all the vdevs matches
 	 * the number of ZAPs in the per-vdev ZAP list. This only gets
 	 * called if the config is dirty; otherwise there may be
 	 * outstanding AVZ operations that weren't completed in
 	 * spa_sync_config_object.
 	 */
 		uint64_t all_vdev_zap_entry_count;
 		ASSERT0(zap_count(spa->spa_meta_objset,
 		    spa->spa_all_vdev_zaps, &all_vdev_zap_entry_count));
 		ASSERT3U(vdev_count_verify_zaps(spa->spa_root_vdev), ==,
 		    all_vdev_zap_entry_count);
 	}
 #endif
 
 	if (spa->spa_vdev_removal != NULL) {
 		ASSERT0(spa->spa_vdev_removal->svr_bytes_done[txg & TXG_MASK]);
 	}
 
 	spa_sync_rewrite_vdev_config(spa, tx);
 	dmu_tx_commit(tx);
 
 	taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
 	spa->spa_deadman_tqid = 0;
 
 	/*
 	 * Clear the dirty config list.
 	 */
 	while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
 		vdev_config_clean(vd);
 
 	/*
 	 * Now that the new config has synced transactionally,
 	 * let it become visible to the config cache.
 	 */
 	if (spa->spa_config_syncing != NULL) {
 		spa_config_set(spa, spa->spa_config_syncing);
 		spa->spa_config_txg = txg;
 		spa->spa_config_syncing = NULL;
 	}
 
 	dsl_pool_sync_done(dp, txg);
 
 	for (int i = 0; i < spa->spa_alloc_count; i++) {
 		mutex_enter(&spa->spa_allocs[i].spaa_lock);
 		VERIFY0(avl_numnodes(&spa->spa_allocs[i].spaa_tree));
 		mutex_exit(&spa->spa_allocs[i].spaa_lock);
 	}
 
 	/*
 	 * Update usable space statistics.
 	 */
 	while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
 	    != NULL)
 		vdev_sync_done(vd, txg);
 
 	metaslab_class_evict_old(spa->spa_normal_class, txg);
 	metaslab_class_evict_old(spa->spa_log_class, txg);
+	/* spa_embedded_log_class has only one metaslab per vdev. */
+	metaslab_class_evict_old(spa->spa_special_class, txg);
+	metaslab_class_evict_old(spa->spa_dedup_class, txg);
 
 	spa_sync_close_syncing_log_sm(spa);
 
 	spa_update_dspace(spa);
 
 	if (spa_get_autotrim(spa) == SPA_AUTOTRIM_ON)
 		vdev_autotrim_kick(spa);
 
 	/*
 	 * It had better be the case that we didn't dirty anything
 	 * since vdev_config_sync().
 	 */
 	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
 	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
 	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
 
 	while (zfs_pause_spa_sync)
 		delay(1);
 
 	spa->spa_sync_pass = 0;
 
 	/*
 	 * Update the last synced uberblock here. We want to do this at
 	 * the end of spa_sync() so that consumers of spa_last_synced_txg()
 	 * will be guaranteed that all the processing associated with
 	 * that txg has been completed.
 	 */
 	spa->spa_ubsync = spa->spa_uberblock;
 	spa_config_exit(spa, SCL_CONFIG, FTAG);
 
 	spa_handle_ignored_writes(spa);
 
 	/*
 	 * If any async tasks have been requested, kick them off.
 	 */
 	spa_async_dispatch(spa);
 }
 
 /*
  * Sync all pools.  We don't want to hold the namespace lock across these
  * operations, so we take a reference on the spa_t and drop the lock during the
  * sync.
  */
 void
 spa_sync_allpools(void)
 {
 	spa_t *spa = NULL;
 	mutex_enter(&spa_namespace_lock);
 	while ((spa = spa_next(spa)) != NULL) {
 		if (spa_state(spa) != POOL_STATE_ACTIVE ||
 		    !spa_writeable(spa) || spa_suspended(spa))
 			continue;
 		spa_open_ref(spa, FTAG);
 		mutex_exit(&spa_namespace_lock);
 		txg_wait_synced(spa_get_dsl(spa), 0);
 		mutex_enter(&spa_namespace_lock);
 		spa_close(spa, FTAG);
 	}
 	mutex_exit(&spa_namespace_lock);
 }
 
 /*
  * ==========================================================================
  * Miscellaneous routines
  * ==========================================================================
  */
 
 /*
  * Remove all pools in the system.
  */
 void
 spa_evict_all(void)
 {
 	spa_t *spa;
 
 	/*
 	 * Remove all cached state.  All pools should be closed now,
 	 * so every spa in the AVL tree should be unreferenced.
 	 */
 	mutex_enter(&spa_namespace_lock);
 	while ((spa = spa_next(NULL)) != NULL) {
 		/*
 		 * Stop async tasks.  The async thread may need to detach
 		 * a device that's been replaced, which requires grabbing
 		 * spa_namespace_lock, so we must drop it here.
 		 */
 		spa_open_ref(spa, FTAG);
 		mutex_exit(&spa_namespace_lock);
 		spa_async_suspend(spa);
 		mutex_enter(&spa_namespace_lock);
 		spa_close(spa, FTAG);
 
 		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
 			spa_unload(spa);
 			spa_deactivate(spa);
 		}
 		spa_remove(spa);
 	}
 	mutex_exit(&spa_namespace_lock);
 }
 
 vdev_t *
 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
 {
 	vdev_t *vd;
 	int i;
 
 	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
 		return (vd);
 
 	if (aux) {
 		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
 			vd = spa->spa_l2cache.sav_vdevs[i];
 			if (vd->vdev_guid == guid)
 				return (vd);
 		}
 
 		for (i = 0; i < spa->spa_spares.sav_count; i++) {
 			vd = spa->spa_spares.sav_vdevs[i];
 			if (vd->vdev_guid == guid)
 				return (vd);
 		}
 	}
 
 	return (NULL);
 }
 
 void
 spa_upgrade(spa_t *spa, uint64_t version)
 {
 	ASSERT(spa_writeable(spa));
 
 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
 
 	/*
 	 * This should only be called for a non-faulted pool, and since a
 	 * future version would result in an unopenable pool, this shouldn't be
 	 * possible.
 	 */
 	ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
 	ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
 
 	spa->spa_uberblock.ub_version = version;
 	vdev_config_dirty(spa->spa_root_vdev);
 
 	spa_config_exit(spa, SCL_ALL, FTAG);
 
 	txg_wait_synced(spa_get_dsl(spa), 0);
 }
 
 static boolean_t
 spa_has_aux_vdev(spa_t *spa, uint64_t guid, spa_aux_vdev_t *sav)
 {
 	(void) spa;
 	int i;
 	uint64_t vdev_guid;
 
 	for (i = 0; i < sav->sav_count; i++)
 		if (sav->sav_vdevs[i]->vdev_guid == guid)
 			return (B_TRUE);
 
 	for (i = 0; i < sav->sav_npending; i++) {
 		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
 		    &vdev_guid) == 0 && vdev_guid == guid)
 			return (B_TRUE);
 	}
 
 	return (B_FALSE);
 }
 
 boolean_t
 spa_has_l2cache(spa_t *spa, uint64_t guid)
 {
 	return (spa_has_aux_vdev(spa, guid, &spa->spa_l2cache));
 }
 
 boolean_t
 spa_has_spare(spa_t *spa, uint64_t guid)
 {
 	return (spa_has_aux_vdev(spa, guid, &spa->spa_spares));
 }
 
 /*
  * Check if a pool has an active shared spare device.
  * Note: reference count of an active spare is 2, as a spare and as a replace
  */
 static boolean_t
 spa_has_active_shared_spare(spa_t *spa)
 {
 	int i, refcnt;
 	uint64_t pool;
 	spa_aux_vdev_t *sav = &spa->spa_spares;
 
 	for (i = 0; i < sav->sav_count; i++) {
 		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
 		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
 		    refcnt > 2)
 			return (B_TRUE);
 	}
 
 	return (B_FALSE);
 }
 
 uint64_t
 spa_total_metaslabs(spa_t *spa)
 {
 	vdev_t *rvd = spa->spa_root_vdev;
 
 	uint64_t m = 0;
 	for (uint64_t c = 0; c < rvd->vdev_children; c++) {
 		vdev_t *vd = rvd->vdev_child[c];
 		if (!vdev_is_concrete(vd))
 			continue;
 		m += vd->vdev_ms_count;
 	}
 	return (m);
 }
 
 /*
  * Notify any waiting threads that some activity has switched from being in-
  * progress to not-in-progress so that the thread can wake up and determine
  * whether it is finished waiting.
  */
 void
 spa_notify_waiters(spa_t *spa)
 {
 	/*
 	 * Acquiring spa_activities_lock here prevents the cv_broadcast from
 	 * happening between the waiting thread's check and cv_wait.
 	 */
 	mutex_enter(&spa->spa_activities_lock);
 	cv_broadcast(&spa->spa_activities_cv);
 	mutex_exit(&spa->spa_activities_lock);
 }
 
 /*
  * Notify any waiting threads that the pool is exporting, and then block until
  * they are finished using the spa_t.
  */
 void
 spa_wake_waiters(spa_t *spa)
 {
 	mutex_enter(&spa->spa_activities_lock);
 	spa->spa_waiters_cancel = B_TRUE;
 	cv_broadcast(&spa->spa_activities_cv);
 	while (spa->spa_waiters != 0)
 		cv_wait(&spa->spa_waiters_cv, &spa->spa_activities_lock);
 	spa->spa_waiters_cancel = B_FALSE;
 	mutex_exit(&spa->spa_activities_lock);
 }
 
 /* Whether the vdev or any of its descendants are being initialized/trimmed. */
 static boolean_t
 spa_vdev_activity_in_progress_impl(vdev_t *vd, zpool_wait_activity_t activity)
 {
 	spa_t *spa = vd->vdev_spa;
 
 	ASSERT(spa_config_held(spa, SCL_CONFIG | SCL_STATE, RW_READER));
 	ASSERT(MUTEX_HELD(&spa->spa_activities_lock));
 	ASSERT(activity == ZPOOL_WAIT_INITIALIZE ||
 	    activity == ZPOOL_WAIT_TRIM);
 
 	kmutex_t *lock = activity == ZPOOL_WAIT_INITIALIZE ?
 	    &vd->vdev_initialize_lock : &vd->vdev_trim_lock;
 
 	mutex_exit(&spa->spa_activities_lock);
 	mutex_enter(lock);
 	mutex_enter(&spa->spa_activities_lock);
 
 	boolean_t in_progress = (activity == ZPOOL_WAIT_INITIALIZE) ?
 	    (vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) :
 	    (vd->vdev_trim_state == VDEV_TRIM_ACTIVE);
 	mutex_exit(lock);
 
 	if (in_progress)
 		return (B_TRUE);
 
 	for (int i = 0; i < vd->vdev_children; i++) {
 		if (spa_vdev_activity_in_progress_impl(vd->vdev_child[i],
 		    activity))
 			return (B_TRUE);
 	}
 
 	return (B_FALSE);
 }
 
 /*
  * If use_guid is true, this checks whether the vdev specified by guid is
  * being initialized/trimmed. Otherwise, it checks whether any vdev in the pool
  * is being initialized/trimmed. The caller must hold the config lock and
  * spa_activities_lock.
  */
 static int
 spa_vdev_activity_in_progress(spa_t *spa, boolean_t use_guid, uint64_t guid,
     zpool_wait_activity_t activity, boolean_t *in_progress)
 {
 	mutex_exit(&spa->spa_activities_lock);
 	spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
 	mutex_enter(&spa->spa_activities_lock);
 
 	vdev_t *vd;
 	if (use_guid) {
 		vd = spa_lookup_by_guid(spa, guid, B_FALSE);
 		if (vd == NULL || !vd->vdev_ops->vdev_op_leaf) {
 			spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
 			return (EINVAL);
 		}
 	} else {
 		vd = spa->spa_root_vdev;
 	}
 
 	*in_progress = spa_vdev_activity_in_progress_impl(vd, activity);
 
 	spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
 	return (0);
 }
 
 /*
  * Locking for waiting threads
  * ---------------------------
  *
  * Waiting threads need a way to check whether a given activity is in progress,
  * and then, if it is, wait for it to complete. Each activity will have some
  * in-memory representation of the relevant on-disk state which can be used to
  * determine whether or not the activity is in progress. The in-memory state and
  * the locking used to protect it will be different for each activity, and may
  * not be suitable for use with a cvar (e.g., some state is protected by the
  * config lock). To allow waiting threads to wait without any races, another
  * lock, spa_activities_lock, is used.
  *
  * When the state is checked, both the activity-specific lock (if there is one)
  * and spa_activities_lock are held. In some cases, the activity-specific lock
  * is acquired explicitly (e.g. the config lock). In others, the locking is
  * internal to some check (e.g. bpobj_is_empty). After checking, the waiting
  * thread releases the activity-specific lock and, if the activity is in
  * progress, then cv_waits using spa_activities_lock.
  *
  * The waiting thread is woken when another thread, one completing some
  * activity, updates the state of the activity and then calls
  * spa_notify_waiters, which will cv_broadcast. This 'completing' thread only
  * needs to hold its activity-specific lock when updating the state, and this
  * lock can (but doesn't have to) be dropped before calling spa_notify_waiters.
  *
  * Because spa_notify_waiters acquires spa_activities_lock before broadcasting,
  * and because it is held when the waiting thread checks the state of the
  * activity, it can never be the case that the completing thread both updates
  * the activity state and cv_broadcasts in between the waiting thread's check
  * and cv_wait. Thus, a waiting thread can never miss a wakeup.
  *
  * In order to prevent deadlock, when the waiting thread does its check, in some
  * cases it will temporarily drop spa_activities_lock in order to acquire the
  * activity-specific lock. The order in which spa_activities_lock and the
  * activity specific lock are acquired in the waiting thread is determined by
  * the order in which they are acquired in the completing thread; if the
  * completing thread calls spa_notify_waiters with the activity-specific lock
  * held, then the waiting thread must also acquire the activity-specific lock
  * first.
  */
 
 static int
 spa_activity_in_progress(spa_t *spa, zpool_wait_activity_t activity,
     boolean_t use_tag, uint64_t tag, boolean_t *in_progress)
 {
 	int error = 0;
 
 	ASSERT(MUTEX_HELD(&spa->spa_activities_lock));
 
 	switch (activity) {
 	case ZPOOL_WAIT_CKPT_DISCARD:
 		*in_progress =
 		    (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT) &&
 		    zap_contains(spa_meta_objset(spa),
 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ZPOOL_CHECKPOINT) ==
 		    ENOENT);
 		break;
 	case ZPOOL_WAIT_FREE:
 		*in_progress = ((spa_version(spa) >= SPA_VERSION_DEADLISTS &&
 		    !bpobj_is_empty(&spa->spa_dsl_pool->dp_free_bpobj)) ||
 		    spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY) ||
 		    spa_livelist_delete_check(spa));
 		break;
 	case ZPOOL_WAIT_INITIALIZE:
 	case ZPOOL_WAIT_TRIM:
 		error = spa_vdev_activity_in_progress(spa, use_tag, tag,
 		    activity, in_progress);
 		break;
 	case ZPOOL_WAIT_REPLACE:
 		mutex_exit(&spa->spa_activities_lock);
 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
 		mutex_enter(&spa->spa_activities_lock);
 
 		*in_progress = vdev_replace_in_progress(spa->spa_root_vdev);
 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
 		break;
 	case ZPOOL_WAIT_REMOVE:
 		*in_progress = (spa->spa_removing_phys.sr_state ==
 		    DSS_SCANNING);
 		break;
 	case ZPOOL_WAIT_RESILVER:
 		if ((*in_progress = vdev_rebuild_active(spa->spa_root_vdev)))
 			break;
 		zfs_fallthrough;
 	case ZPOOL_WAIT_SCRUB:
 	{
 		boolean_t scanning, paused, is_scrub;
 		dsl_scan_t *scn =  spa->spa_dsl_pool->dp_scan;
 
 		is_scrub = (scn->scn_phys.scn_func == POOL_SCAN_SCRUB);
 		scanning = (scn->scn_phys.scn_state == DSS_SCANNING);
 		paused = dsl_scan_is_paused_scrub(scn);
 		*in_progress = (scanning && !paused &&
 		    is_scrub == (activity == ZPOOL_WAIT_SCRUB));
 		break;
 	}
 	default:
 		panic("unrecognized value for activity %d", activity);
 	}
 
 	return (error);
 }
 
 static int
 spa_wait_common(const char *pool, zpool_wait_activity_t activity,
     boolean_t use_tag, uint64_t tag, boolean_t *waited)
 {
 	/*
 	 * The tag is used to distinguish between instances of an activity.
 	 * 'initialize' and 'trim' are the only activities that we use this for.
 	 * The other activities can only have a single instance in progress in a
 	 * pool at one time, making the tag unnecessary.
 	 *
 	 * There can be multiple devices being replaced at once, but since they
 	 * all finish once resilvering finishes, we don't bother keeping track
 	 * of them individually, we just wait for them all to finish.
 	 */
 	if (use_tag && activity != ZPOOL_WAIT_INITIALIZE &&
 	    activity != ZPOOL_WAIT_TRIM)
 		return (EINVAL);
 
 	if (activity < 0 || activity >= ZPOOL_WAIT_NUM_ACTIVITIES)
 		return (EINVAL);
 
 	spa_t *spa;
 	int error = spa_open(pool, &spa, FTAG);
 	if (error != 0)
 		return (error);
 
 	/*
 	 * Increment the spa's waiter count so that we can call spa_close and
 	 * still ensure that the spa_t doesn't get freed before this thread is
 	 * finished with it when the pool is exported. We want to call spa_close
 	 * before we start waiting because otherwise the additional ref would
 	 * prevent the pool from being exported or destroyed throughout the
 	 * potentially long wait.
 	 */
 	mutex_enter(&spa->spa_activities_lock);
 	spa->spa_waiters++;
 	spa_close(spa, FTAG);
 
 	*waited = B_FALSE;
 	for (;;) {
 		boolean_t in_progress;
 		error = spa_activity_in_progress(spa, activity, use_tag, tag,
 		    &in_progress);
 
 		if (error || !in_progress || spa->spa_waiters_cancel)
 			break;
 
 		*waited = B_TRUE;
 
 		if (cv_wait_sig(&spa->spa_activities_cv,
 		    &spa->spa_activities_lock) == 0) {
 			error = EINTR;
 			break;
 		}
 	}
 
 	spa->spa_waiters--;
 	cv_signal(&spa->spa_waiters_cv);
 	mutex_exit(&spa->spa_activities_lock);
 
 	return (error);
 }
 
 /*
  * Wait for a particular instance of the specified activity to complete, where
  * the instance is identified by 'tag'
  */
 int
 spa_wait_tag(const char *pool, zpool_wait_activity_t activity, uint64_t tag,
     boolean_t *waited)
 {
 	return (spa_wait_common(pool, activity, B_TRUE, tag, waited));
 }
 
 /*
  * Wait for all instances of the specified activity complete
  */
 int
 spa_wait(const char *pool, zpool_wait_activity_t activity, boolean_t *waited)
 {
 
 	return (spa_wait_common(pool, activity, B_FALSE, 0, waited));
 }
 
 sysevent_t *
 spa_event_create(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
 {
 	sysevent_t *ev = NULL;
 #ifdef _KERNEL
 	nvlist_t *resource;
 
 	resource = zfs_event_create(spa, vd, FM_SYSEVENT_CLASS, name, hist_nvl);
 	if (resource) {
 		ev = kmem_alloc(sizeof (sysevent_t), KM_SLEEP);
 		ev->resource = resource;
 	}
 #else
 	(void) spa, (void) vd, (void) hist_nvl, (void) name;
 #endif
 	return (ev);
 }
 
 void
 spa_event_post(sysevent_t *ev)
 {
 #ifdef _KERNEL
 	if (ev) {
 		zfs_zevent_post(ev->resource, NULL, zfs_zevent_post_cb);
 		kmem_free(ev, sizeof (*ev));
 	}
 #else
 	(void) ev;
 #endif
 }
 
 /*
  * Post a zevent corresponding to the given sysevent.   The 'name' must be one
  * of the event definitions in sys/sysevent/eventdefs.h.  The payload will be
  * filled in from the spa and (optionally) the vdev.  This doesn't do anything
  * in the userland libzpool, as we don't want consumers to misinterpret ztest
  * or zdb as real changes.
  */
 void
 spa_event_notify(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
 {
 	spa_event_post(spa_event_create(spa, vd, hist_nvl, name));
 }
 
 /* state manipulation functions */
 EXPORT_SYMBOL(spa_open);
 EXPORT_SYMBOL(spa_open_rewind);
 EXPORT_SYMBOL(spa_get_stats);
 EXPORT_SYMBOL(spa_create);
 EXPORT_SYMBOL(spa_import);
 EXPORT_SYMBOL(spa_tryimport);
 EXPORT_SYMBOL(spa_destroy);
 EXPORT_SYMBOL(spa_export);
 EXPORT_SYMBOL(spa_reset);
 EXPORT_SYMBOL(spa_async_request);
 EXPORT_SYMBOL(spa_async_suspend);
 EXPORT_SYMBOL(spa_async_resume);
 EXPORT_SYMBOL(spa_inject_addref);
 EXPORT_SYMBOL(spa_inject_delref);
 EXPORT_SYMBOL(spa_scan_stat_init);
 EXPORT_SYMBOL(spa_scan_get_stats);
 
 /* device manipulation */
 EXPORT_SYMBOL(spa_vdev_add);
 EXPORT_SYMBOL(spa_vdev_attach);
 EXPORT_SYMBOL(spa_vdev_detach);
 EXPORT_SYMBOL(spa_vdev_setpath);
 EXPORT_SYMBOL(spa_vdev_setfru);
 EXPORT_SYMBOL(spa_vdev_split_mirror);
 
 /* spare statech is global across all pools) */
 EXPORT_SYMBOL(spa_spare_add);
 EXPORT_SYMBOL(spa_spare_remove);
 EXPORT_SYMBOL(spa_spare_exists);
 EXPORT_SYMBOL(spa_spare_activate);
 
 /* L2ARC statech is global across all pools) */
 EXPORT_SYMBOL(spa_l2cache_add);
 EXPORT_SYMBOL(spa_l2cache_remove);
 EXPORT_SYMBOL(spa_l2cache_exists);
 EXPORT_SYMBOL(spa_l2cache_activate);
 EXPORT_SYMBOL(spa_l2cache_drop);
 
 /* scanning */
 EXPORT_SYMBOL(spa_scan);
 EXPORT_SYMBOL(spa_scan_stop);
 
 /* spa syncing */
 EXPORT_SYMBOL(spa_sync); /* only for DMU use */
 EXPORT_SYMBOL(spa_sync_allpools);
 
 /* properties */
 EXPORT_SYMBOL(spa_prop_set);
 EXPORT_SYMBOL(spa_prop_get);
 EXPORT_SYMBOL(spa_prop_clear_bootfs);
 
 /* asynchronous event notification */
 EXPORT_SYMBOL(spa_event_notify);
 
 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, preload_pct, UINT, ZMOD_RW,
 	"Percentage of CPUs to run a metaslab preload taskq");
 
 /* BEGIN CSTYLED */
 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_shift, UINT, ZMOD_RW,
 	"log2 fraction of arc that can be used by inflight I/Os when "
 	"verifying pool during import");
 /* END CSTYLED */
 
 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_metadata, INT, ZMOD_RW,
 	"Set to traverse metadata on pool import");
 
 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_data, INT, ZMOD_RW,
 	"Set to traverse data on pool import");
 
 ZFS_MODULE_PARAM(zfs_spa, spa_, load_print_vdev_tree, INT, ZMOD_RW,
 	"Print vdev tree to zfs_dbgmsg during pool import");
 
 ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_batch_pct, UINT, ZMOD_RW,
 	"Percentage of CPUs to run an IO worker thread");
 
 ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_batch_tpq, UINT, ZMOD_RW,
 	"Number of threads per IO worker taskqueue");
 
 /* BEGIN CSTYLED */
 ZFS_MODULE_PARAM(zfs, zfs_, max_missing_tvds, U64, ZMOD_RW,
 	"Allow importing pool with up to this number of missing top-level "
 	"vdevs (in read-only mode)");
 /* END CSTYLED */
 
 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, zthr_pause, INT,
 	ZMOD_RW, "Set the livelist condense zthr to pause");
 
 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, sync_pause, INT,
 	ZMOD_RW, "Set the livelist condense synctask to pause");
 
 /* BEGIN CSTYLED */
 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, sync_cancel,
 	INT, ZMOD_RW,
 	"Whether livelist condensing was canceled in the synctask");
 
 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, zthr_cancel,
 	INT, ZMOD_RW,
 	"Whether livelist condensing was canceled in the zthr function");
 
 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, new_alloc, INT,
 	ZMOD_RW,
 	"Whether extra ALLOC blkptrs were added to a livelist entry while it "
 	"was being condensed");
 
 #ifdef _KERNEL
 ZFS_MODULE_VIRTUAL_PARAM_CALL(zfs_zio, zio_, taskq_read,
 	spa_taskq_read_param_set, spa_taskq_read_param_get, ZMOD_RW,
 	"Configure IO queues for read IO");
 ZFS_MODULE_VIRTUAL_PARAM_CALL(zfs_zio, zio_, taskq_write,
 	spa_taskq_write_param_set, spa_taskq_write_param_get, ZMOD_RW,
 	"Configure IO queues for write IO");
 #endif
 /* END CSTYLED */