diff --git a/sbin/growfs/growfs.c b/sbin/growfs/growfs.c index d1e42ed7c3d0..c47352e64079 100644 --- a/sbin/growfs/growfs.c +++ b/sbin/growfs/growfs.c @@ -1,1745 +1,1748 @@ /*- * SPDX-License-Identifier: BSD-4-Clause * * Copyright (c) 1980, 1989, 1993 The Regents of the University of California. * Copyright (c) 2000 Christoph Herrmann, Thomas-Henning von Kamptz * Copyright (c) 2012 The FreeBSD Foundation * All rights reserved. * * This code is derived from software contributed to Berkeley by * Christoph Herrmann and Thomas-Henning von Kamptz, Munich and Frankfurt. * * Portions of this software were developed by Edward Tomasz Napierala * under sponsorship from the FreeBSD Foundation. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgment: * This product includes software developed by the University of * California, Berkeley and its contributors, as well as Christoph * Herrmann and Thomas-Henning von Kamptz. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $TSHeader: src/sbin/growfs/growfs.c,v 1.5 2000/12/12 19:31:00 tomsoft Exp $ * */ #ifndef lint static const char copyright[] = "@(#) Copyright (c) 2000 Christoph Herrmann, Thomas-Henning von Kamptz\n\ Copyright (c) 1980, 1989, 1993 The Regents of the University of California.\n\ All rights reserved.\n"; #endif /* not lint */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "debug.h" #ifdef FS_DEBUG int _dbg_lvl_ = (DL_INFO); /* DL_TRC */ #endif /* FS_DEBUG */ static union { struct fs fs; char pad[SBLOCKSIZE]; } fsun1, fsun2; #define sblock fsun1.fs /* the new superblock */ #define osblock fsun2.fs /* the old superblock */ static union { struct cg cg; char pad[MAXBSIZE]; } cgun1, cgun2; #define acg cgun1.cg /* a cylinder cgroup (new) */ #define aocg cgun2.cg /* an old cylinder group */ static struct csum *fscs; /* cylinder summary */ static void growfs(int, int, unsigned int); static void rdfs(ufs2_daddr_t, size_t, void *, int); static void wtfs(ufs2_daddr_t, size_t, void *, int, unsigned int); static int charsperline(void); static void usage(void); static int isblock(struct fs *, unsigned char *, int); static void clrblock(struct fs *, unsigned char *, int); static void setblock(struct fs *, unsigned char *, int); static void initcg(int, time_t, int, unsigned int); static void updjcg(int, time_t, int, int, unsigned int); static void updcsloc(time_t, int, int, unsigned int); static void frag_adjust(ufs2_daddr_t, int); static void updclst(int); static void mount_reload(const struct statfs *stfs); static void cgckhash(struct cg *); /* * Here we actually start growing the file system. We basically read the * cylinder summary from the first cylinder group as we want to update * this on the fly during our various operations. First we handle the * changes in the former last cylinder group. Afterwards we create all new * cylinder groups. Now we handle the cylinder group containing the * cylinder summary which might result in a relocation of the whole * structure. In the end we write back the updated cylinder summary, the * new superblock, and slightly patched versions of the super block * copies. */ static void growfs(int fsi, int fso, unsigned int Nflag) { DBG_FUNC("growfs") time_t modtime; uint cylno; int i, j, width; char tmpbuf[100]; DBG_ENTER; time(&modtime); /* * Get the cylinder summary into the memory. */ fscs = (struct csum *)calloc((size_t)1, (size_t)sblock.fs_cssize); if (fscs == NULL) errx(1, "calloc failed"); memcpy(fscs, osblock.fs_csp, osblock.fs_cssize); free(osblock.fs_csp); osblock.fs_csp = NULL; sblock.fs_csp = fscs; #ifdef FS_DEBUG { struct csum *dbg_csp; u_int32_t dbg_csc; char dbg_line[80]; dbg_csp = fscs; for (dbg_csc = 0; dbg_csc < osblock.fs_ncg; dbg_csc++) { snprintf(dbg_line, sizeof(dbg_line), "%d. old csum in old location", dbg_csc); DBG_DUMP_CSUM(&osblock, dbg_line, dbg_csp++); } } #endif /* FS_DEBUG */ DBG_PRINT0("fscs read\n"); /* * Do all needed changes in the former last cylinder group. */ updjcg(osblock.fs_ncg - 1, modtime, fsi, fso, Nflag); /* * Dump out summary information about file system. */ #ifdef FS_DEBUG #define B2MBFACTOR (1 / (1024.0 * 1024.0)) printf("growfs: %.1fMB (%jd sectors) block size %d, fragment size %d\n", (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR, (intmax_t)fsbtodb(&sblock, sblock.fs_size), sblock.fs_bsize, sblock.fs_fsize); printf("\tusing %d cylinder groups of %.2fMB, %d blks, %d inodes.\n", sblock.fs_ncg, (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR, sblock.fs_fpg / sblock.fs_frag, sblock.fs_ipg); if (sblock.fs_flags & FS_DOSOFTDEP) printf("\twith soft updates\n"); #undef B2MBFACTOR #endif /* FS_DEBUG */ /* * Now build the cylinders group blocks and * then print out indices of cylinder groups. */ printf("super-block backups (for fsck_ffs -b #) at:\n"); i = 0; width = charsperline(); /* * Iterate for only the new cylinder groups. */ for (cylno = osblock.fs_ncg; cylno < sblock.fs_ncg; cylno++) { initcg(cylno, modtime, fso, Nflag); j = sprintf(tmpbuf, " %jd%s", (intmax_t)fsbtodb(&sblock, cgsblock(&sblock, cylno)), cylno < (sblock.fs_ncg - 1) ? "," : "" ); if (i + j >= width) { printf("\n"); i = 0; } i += j; printf("%s", tmpbuf); fflush(stdout); } printf("\n"); /* * Do all needed changes in the first cylinder group. * allocate blocks in new location */ updcsloc(modtime, fsi, fso, Nflag); /* * Clean up the dynamic fields in our superblock. * * XXX * The following fields are currently distributed from the superblock * to the copies: * fs_minfree * fs_rotdelay * fs_maxcontig * fs_maxbpg * fs_minfree, * fs_optim * fs_flags * * We probably should rather change the summary for the cylinder group * statistics here to the value of what would be in there, if the file * system were created initially with the new size. Therefor we still * need to find an easy way of calculating that. * Possibly we can try to read the first superblock copy and apply the * "diffed" stats between the old and new superblock by still copying * certain parameters onto that. */ sblock.fs_time = modtime; sblock.fs_fmod = 0; sblock.fs_clean = 1; sblock.fs_ronly = 0; sblock.fs_cgrotor = 0; sblock.fs_state = 0; memset((void *)&sblock.fs_fsmnt, 0, sizeof(sblock.fs_fsmnt)); /* * Now write the new superblock, its summary information, * and all the alternates back to disk. */ if (!Nflag && sbput(fso, &sblock, sblock.fs_ncg) != 0) errc(2, EIO, "could not write updated superblock"); DBG_PRINT0("fscs written\n"); #ifdef FS_DEBUG { struct csum *dbg_csp; u_int32_t dbg_csc; char dbg_line[80]; dbg_csp = fscs; for (dbg_csc = 0; dbg_csc < sblock.fs_ncg; dbg_csc++) { snprintf(dbg_line, sizeof(dbg_line), "%d. new csum in new location", dbg_csc); DBG_DUMP_CSUM(&sblock, dbg_line, dbg_csp++); } } #endif /* FS_DEBUG */ DBG_PRINT0("sblock written\n"); DBG_DUMP_FS(&sblock, "new initial sblock"); DBG_PRINT0("sblock copies written\n"); DBG_DUMP_FS(&sblock, "new other sblocks"); DBG_LEAVE; return; } /* * This creates a new cylinder group structure, for more details please see * the source of newfs(8), as this function is taken over almost unchanged. * As this is never called for the first cylinder group, the special * provisions for that case are removed here. */ static void initcg(int cylno, time_t modtime, int fso, unsigned int Nflag) { DBG_FUNC("initcg") static caddr_t iobuf; long blkno, start; ino_t ino; ufs2_daddr_t i, cbase, dmax; struct ufs1_dinode *dp1; struct csum *cs; uint j, d, dupper, dlower; if (iobuf == NULL && (iobuf = malloc(sblock.fs_bsize * 3)) == NULL) errx(37, "panic: cannot allocate I/O buffer"); /* * Determine block bounds for cylinder group. * Allow space for super block summary information in first * cylinder group. */ cbase = cgbase(&sblock, cylno); dmax = cbase + sblock.fs_fpg; if (dmax > sblock.fs_size) dmax = sblock.fs_size; dlower = cgsblock(&sblock, cylno) - cbase; dupper = cgdmin(&sblock, cylno) - cbase; if (cylno == 0) /* XXX fscs may be relocated */ dupper += howmany(sblock.fs_cssize, sblock.fs_fsize); cs = &fscs[cylno]; memset(&acg, 0, sblock.fs_cgsize); acg.cg_time = modtime; acg.cg_magic = CG_MAGIC; acg.cg_cgx = cylno; acg.cg_niblk = sblock.fs_ipg; acg.cg_initediblk = MIN(sblock.fs_ipg, 2 * INOPB(&sblock)); acg.cg_ndblk = dmax - cbase; if (sblock.fs_contigsumsize > 0) acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag; start = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield); if (sblock.fs_magic == FS_UFS2_MAGIC) { acg.cg_iusedoff = start; } else { acg.cg_old_ncyl = sblock.fs_old_cpg; acg.cg_old_time = acg.cg_time; acg.cg_time = 0; acg.cg_old_niblk = acg.cg_niblk; acg.cg_niblk = 0; acg.cg_initediblk = 0; acg.cg_old_btotoff = start; acg.cg_old_boff = acg.cg_old_btotoff + sblock.fs_old_cpg * sizeof(int32_t); acg.cg_iusedoff = acg.cg_old_boff + sblock.fs_old_cpg * sizeof(u_int16_t); } acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, CHAR_BIT); acg.cg_nextfreeoff = acg.cg_freeoff + howmany(sblock.fs_fpg, CHAR_BIT); if (sblock.fs_contigsumsize > 0) { acg.cg_clustersumoff = roundup(acg.cg_nextfreeoff, sizeof(u_int32_t)); acg.cg_clustersumoff -= sizeof(u_int32_t); acg.cg_clusteroff = acg.cg_clustersumoff + (sblock.fs_contigsumsize + 1) * sizeof(u_int32_t); acg.cg_nextfreeoff = acg.cg_clusteroff + howmany(fragstoblks(&sblock, sblock.fs_fpg), CHAR_BIT); } if (acg.cg_nextfreeoff > (unsigned)sblock.fs_cgsize) { /* * This should never happen as we would have had that panic * already on file system creation */ errx(37, "panic: cylinder group too big"); } acg.cg_cs.cs_nifree += sblock.fs_ipg; if (cylno == 0) for (ino = 0; ino < UFS_ROOTINO; ino++) { setbit(cg_inosused(&acg), ino); acg.cg_cs.cs_nifree--; } /* * For the old file system, we have to initialize all the inodes. */ if (sblock.fs_magic == FS_UFS1_MAGIC) { bzero(iobuf, sblock.fs_bsize); for (i = 0; i < sblock.fs_ipg / INOPF(&sblock); i += sblock.fs_frag) { dp1 = (struct ufs1_dinode *)(void *)iobuf; for (j = 0; j < INOPB(&sblock); j++) { dp1->di_gen = arc4random(); dp1++; } wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i), sblock.fs_bsize, iobuf, fso, Nflag); } } if (cylno > 0) { /* * In cylno 0, beginning space is reserved * for boot and super blocks. */ for (d = 0; d < dlower; d += sblock.fs_frag) { blkno = d / sblock.fs_frag; setblock(&sblock, cg_blksfree(&acg), blkno); if (sblock.fs_contigsumsize > 0) setbit(cg_clustersfree(&acg), blkno); acg.cg_cs.cs_nbfree++; } sblock.fs_dsize += dlower; } sblock.fs_dsize += acg.cg_ndblk - dupper; if ((i = dupper % sblock.fs_frag)) { acg.cg_frsum[sblock.fs_frag - i]++; for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) { setbit(cg_blksfree(&acg), dupper); acg.cg_cs.cs_nffree++; } } for (d = dupper; d + sblock.fs_frag <= acg.cg_ndblk; d += sblock.fs_frag) { blkno = d / sblock.fs_frag; setblock(&sblock, cg_blksfree(&acg), blkno); if (sblock.fs_contigsumsize > 0) setbit(cg_clustersfree(&acg), blkno); acg.cg_cs.cs_nbfree++; } if (d < acg.cg_ndblk) { acg.cg_frsum[acg.cg_ndblk - d]++; for (; d < acg.cg_ndblk; d++) { setbit(cg_blksfree(&acg), d); acg.cg_cs.cs_nffree++; } } if (sblock.fs_contigsumsize > 0) { int32_t *sump = cg_clustersum(&acg); u_char *mapp = cg_clustersfree(&acg); int map = *mapp++; int bit = 1; int run = 0; for (i = 0; i < acg.cg_nclusterblks; i++) { if ((map & bit) != 0) run++; else if (run != 0) { if (run > sblock.fs_contigsumsize) run = sblock.fs_contigsumsize; sump[run]++; run = 0; } if ((i & (CHAR_BIT - 1)) != CHAR_BIT - 1) bit <<= 1; else { map = *mapp++; bit = 1; } } if (run != 0) { if (run > sblock.fs_contigsumsize) run = sblock.fs_contigsumsize; sump[run]++; } } sblock.fs_cstotal.cs_ndir += acg.cg_cs.cs_ndir; sblock.fs_cstotal.cs_nffree += acg.cg_cs.cs_nffree; sblock.fs_cstotal.cs_nbfree += acg.cg_cs.cs_nbfree; sblock.fs_cstotal.cs_nifree += acg.cg_cs.cs_nifree; *cs = acg.cg_cs; cgckhash(&acg); memcpy(iobuf, &acg, sblock.fs_cgsize); memset(iobuf + sblock.fs_cgsize, '\0', sblock.fs_bsize * 3 - sblock.fs_cgsize); wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)), sblock.fs_bsize * 3, iobuf, fso, Nflag); DBG_DUMP_CG(&sblock, "new cg", &acg); DBG_LEAVE; return; } /* * Here we add or subtract (sign +1/-1) the available fragments in a given * block to or from the fragment statistics. By subtracting before and adding * after an operation on the free frag map we can easy update the fragment * statistic, which seems to be otherwise a rather complex operation. */ static void frag_adjust(ufs2_daddr_t frag, int sign) { DBG_FUNC("frag_adjust") int fragsize; int f; DBG_ENTER; fragsize = 0; /* * Here frag only needs to point to any fragment in the block we want * to examine. */ for (f = rounddown(frag, sblock.fs_frag); f < roundup(frag + 1, sblock.fs_frag); f++) { /* * Count contiguous free fragments. */ if (isset(cg_blksfree(&acg), f)) { fragsize++; } else { if (fragsize && fragsize < sblock.fs_frag) { /* * We found something in between. */ acg.cg_frsum[fragsize] += sign; DBG_PRINT2("frag_adjust [%d]+=%d\n", fragsize, sign); } fragsize = 0; } } if (fragsize && fragsize < sblock.fs_frag) { /* * We found something. */ acg.cg_frsum[fragsize] += sign; DBG_PRINT2("frag_adjust [%d]+=%d\n", fragsize, sign); } DBG_PRINT2("frag_adjust [[%d]]+=%d\n", fragsize, sign); DBG_LEAVE; return; } /* * Here we do all needed work for the former last cylinder group. It has to be * changed in any case, even if the file system ended exactly on the end of * this group, as there is some slightly inconsistent handling of the number * of cylinders in the cylinder group. We start again by reading the cylinder * group from disk. If the last block was not fully available, we first handle * the missing fragments, then we handle all new full blocks in that file * system and finally we handle the new last fragmented block in the file * system. We again have to handle the fragment statistics rotational layout * tables and cluster summary during all those operations. */ static void updjcg(int cylno, time_t modtime, int fsi, int fso, unsigned int Nflag) { DBG_FUNC("updjcg") ufs2_daddr_t cbase, dmax, dupper; struct csum *cs; int i, k; int j = 0; DBG_ENTER; /* * Read the former last (joining) cylinder group from disk, and make * a copy. */ rdfs(fsbtodb(&osblock, cgtod(&osblock, cylno)), (size_t)osblock.fs_cgsize, (void *)&aocg, fsi); DBG_PRINT0("jcg read\n"); DBG_DUMP_CG(&sblock, "old joining cg", &aocg); memcpy((void *)&cgun1, (void *)&cgun2, sizeof(cgun2)); /* * If the cylinder group had already its new final size almost * nothing is to be done ... except: * For some reason the value of cg_ncyl in the last cylinder group has * to be zero instead of fs_cpg. As this is now no longer the last * cylinder group we have to change that value now to fs_cpg. */ if (cgbase(&osblock, cylno + 1) == osblock.fs_size) { if (sblock.fs_magic == FS_UFS1_MAGIC) acg.cg_old_ncyl = sblock.fs_old_cpg; cgckhash(&acg); wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)), (size_t)sblock.fs_cgsize, (void *)&acg, fso, Nflag); DBG_PRINT0("jcg written\n"); DBG_DUMP_CG(&sblock, "new joining cg", &acg); DBG_LEAVE; return; } /* * Set up some variables needed later. */ cbase = cgbase(&sblock, cylno); dmax = cbase + sblock.fs_fpg; if (dmax > sblock.fs_size) dmax = sblock.fs_size; dupper = cgdmin(&sblock, cylno) - cbase; if (cylno == 0) /* XXX fscs may be relocated */ dupper += howmany(sblock.fs_cssize, sblock.fs_fsize); /* * Set pointer to the cylinder summary for our cylinder group. */ cs = fscs + cylno; /* * Touch the cylinder group, update all fields in the cylinder group as * needed, update the free space in the superblock. */ acg.cg_time = modtime; if ((unsigned)cylno == sblock.fs_ncg - 1) { /* * This is still the last cylinder group. */ if (sblock.fs_magic == FS_UFS1_MAGIC) acg.cg_old_ncyl = sblock.fs_old_ncyl % sblock.fs_old_cpg; } else { acg.cg_old_ncyl = sblock.fs_old_cpg; } DBG_PRINT2("jcg dbg: %d %u", cylno, sblock.fs_ncg); #ifdef FS_DEBUG if (sblock.fs_magic == FS_UFS1_MAGIC) DBG_PRINT2("%d %u", acg.cg_old_ncyl, sblock.fs_old_cpg); #endif DBG_PRINT0("\n"); acg.cg_ndblk = dmax - cbase; sblock.fs_dsize += acg.cg_ndblk - aocg.cg_ndblk; if (sblock.fs_contigsumsize > 0) acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag; /* * Now we have to update the free fragment bitmap for our new free * space. There again we have to handle the fragmentation and also * the rotational layout tables and the cluster summary. This is * also done per fragment for the first new block if the old file * system end was not on a block boundary, per fragment for the new * last block if the new file system end is not on a block boundary, * and per block for all space in between. * * Handle the first new block here if it was partially available * before. */ if (osblock.fs_size % sblock.fs_frag) { if (roundup(osblock.fs_size, sblock.fs_frag) <= sblock.fs_size) { /* * The new space is enough to fill at least this * block */ j = 0; for (i = roundup(osblock.fs_size - cbase, sblock.fs_frag) - 1; i >= osblock.fs_size - cbase; i--) { setbit(cg_blksfree(&acg), i); acg.cg_cs.cs_nffree++; j++; } /* * Check if the fragment just created could join an * already existing fragment at the former end of the * file system. */ if (isblock(&sblock, cg_blksfree(&acg), ((osblock.fs_size - cgbase(&sblock, cylno)) / sblock.fs_frag))) { /* * The block is now completely available. */ DBG_PRINT0("block was\n"); acg.cg_frsum[osblock.fs_size % sblock.fs_frag]--; acg.cg_cs.cs_nbfree++; acg.cg_cs.cs_nffree -= sblock.fs_frag; k = rounddown(osblock.fs_size - cbase, sblock.fs_frag); updclst((osblock.fs_size - cbase) / sblock.fs_frag); } else { /* * Lets rejoin a possible partially growed * fragment. */ k = 0; while (isset(cg_blksfree(&acg), i) && (i >= rounddown(osblock.fs_size - cbase, sblock.fs_frag))) { i--; k++; } if (k) acg.cg_frsum[k]--; acg.cg_frsum[k + j]++; } } else { /* * We only grow by some fragments within this last * block. */ for (i = sblock.fs_size - cbase - 1; i >= osblock.fs_size - cbase; i--) { setbit(cg_blksfree(&acg), i); acg.cg_cs.cs_nffree++; j++; } /* * Lets rejoin a possible partially growed fragment. */ k = 0; while (isset(cg_blksfree(&acg), i) && (i >= rounddown(osblock.fs_size - cbase, sblock.fs_frag))) { i--; k++; } if (k) acg.cg_frsum[k]--; acg.cg_frsum[k + j]++; } } /* * Handle all new complete blocks here. */ for (i = roundup(osblock.fs_size - cbase, sblock.fs_frag); i + sblock.fs_frag <= dmax - cbase; /* XXX <= or only < ? */ i += sblock.fs_frag) { j = i / sblock.fs_frag; setblock(&sblock, cg_blksfree(&acg), j); updclst(j); acg.cg_cs.cs_nbfree++; } /* * Handle the last new block if there are stll some new fragments left. * Here we don't have to bother about the cluster summary or the even * the rotational layout table. */ if (i < (dmax - cbase)) { acg.cg_frsum[dmax - cbase - i]++; for (; i < dmax - cbase; i++) { setbit(cg_blksfree(&acg), i); acg.cg_cs.cs_nffree++; } } sblock.fs_cstotal.cs_nffree += (acg.cg_cs.cs_nffree - aocg.cg_cs.cs_nffree); sblock.fs_cstotal.cs_nbfree += (acg.cg_cs.cs_nbfree - aocg.cg_cs.cs_nbfree); /* * The following statistics are not changed here: * sblock.fs_cstotal.cs_ndir * sblock.fs_cstotal.cs_nifree * As the statistics for this cylinder group are ready, copy it to * the summary information array. */ *cs = acg.cg_cs; /* * Write the updated "joining" cylinder group back to disk. */ cgckhash(&acg); wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)), (size_t)sblock.fs_cgsize, (void *)&acg, fso, Nflag); DBG_PRINT0("jcg written\n"); DBG_DUMP_CG(&sblock, "new joining cg", &acg); DBG_LEAVE; return; } /* * Here we update the location of the cylinder summary. We have two possible * ways of growing the cylinder summary: * (1) We can try to grow the summary in the current location, and relocate * possibly used blocks within the current cylinder group. * (2) Alternatively we can relocate the whole cylinder summary to the first * new completely empty cylinder group. Once the cylinder summary is no * longer in the beginning of the first cylinder group you should never * use a version of fsck which is not aware of the possibility to have * this structure in a non standard place. * Option (2) is considered to be less intrusive to the structure of the file- * system, so that's the one being used. */ static void updcsloc(time_t modtime, int fsi, int fso, unsigned int Nflag) { DBG_FUNC("updcsloc") struct csum *cs; int ocscg, ncscg; ufs2_daddr_t d; int lcs = 0; int block; DBG_ENTER; if (howmany(sblock.fs_cssize, sblock.fs_fsize) == howmany(osblock.fs_cssize, osblock.fs_fsize)) { /* * No new fragment needed. */ DBG_LEAVE; return; } ocscg = dtog(&osblock, osblock.fs_csaddr); cs = fscs + ocscg; /* * Read original cylinder group from disk, and make a copy. * XXX If Nflag is set in some very rare cases we now miss * some changes done in updjcg by reading the unmodified * block from disk. */ rdfs(fsbtodb(&osblock, cgtod(&osblock, ocscg)), (size_t)osblock.fs_cgsize, (void *)&aocg, fsi); DBG_PRINT0("oscg read\n"); DBG_DUMP_CG(&sblock, "old summary cg", &aocg); memcpy((void *)&cgun1, (void *)&cgun2, sizeof(cgun2)); /* * Touch the cylinder group, set up local variables needed later * and update the superblock. */ acg.cg_time = modtime; /* * XXX In the case of having active snapshots we may need much more * blocks for the copy on write. We need each block twice, and * also up to 8*3 blocks for indirect blocks for all possible * references. */ /* * There is not enough space in the old cylinder group to * relocate all blocks as needed, so we relocate the whole * cylinder group summary to a new group. We try to use the * first complete new cylinder group just created. Within the * cylinder group we align the area immediately after the * cylinder group information location in order to be as * close as possible to the original implementation of ffs. * * First we have to make sure we'll find enough space in the * new cylinder group. If not, then we currently give up. * We start with freeing everything which was used by the * fragments of the old cylinder summary in the current group. * Now we write back the group meta data, read in the needed * meta data from the new cylinder group, and start allocating * within that group. Here we can assume, the group to be * completely empty. Which makes the handling of fragments and * clusters a lot easier. */ DBG_TRC; if (sblock.fs_ncg - osblock.fs_ncg < 2) errx(2, "panic: not enough space"); /* * Point "d" to the first fragment not used by the cylinder * summary. */ d = osblock.fs_csaddr + (osblock.fs_cssize / osblock.fs_fsize); /* * Set up last cluster size ("lcs") already here. Calculate * the size for the trailing cluster just behind where "d" * points to. */ if (sblock.fs_contigsumsize > 0) { for (block = howmany(d % sblock.fs_fpg, sblock.fs_frag), lcs = 0; lcs < sblock.fs_contigsumsize; block++, lcs++) { if (isclr(cg_clustersfree(&acg), block)) break; } } /* * Point "d" to the last frag used by the cylinder summary. */ d--; DBG_PRINT1("d=%jd\n", (intmax_t)d); if ((d + 1) % sblock.fs_frag) { /* * The end of the cylinder summary is not a complete * block. */ DBG_TRC; frag_adjust(d % sblock.fs_fpg, -1); for (; (d + 1) % sblock.fs_frag; d--) { DBG_PRINT1("d=%jd\n", (intmax_t)d); setbit(cg_blksfree(&acg), d % sblock.fs_fpg); acg.cg_cs.cs_nffree++; sblock.fs_cstotal.cs_nffree++; } /* * Point "d" to the last fragment of the last * (incomplete) block of the cylinder summary. */ d++; frag_adjust(d % sblock.fs_fpg, 1); if (isblock(&sblock, cg_blksfree(&acg), (d % sblock.fs_fpg) / sblock.fs_frag)) { DBG_PRINT1("d=%jd\n", (intmax_t)d); acg.cg_cs.cs_nffree -= sblock.fs_frag; acg.cg_cs.cs_nbfree++; sblock.fs_cstotal.cs_nffree -= sblock.fs_frag; sblock.fs_cstotal.cs_nbfree++; if (sblock.fs_contigsumsize > 0) { setbit(cg_clustersfree(&acg), (d % sblock.fs_fpg) / sblock.fs_frag); if (lcs < sblock.fs_contigsumsize) { if (lcs) cg_clustersum(&acg)[lcs]--; lcs++; cg_clustersum(&acg)[lcs]++; } } } /* * Point "d" to the first fragment of the block before * the last incomplete block. */ d--; } DBG_PRINT1("d=%jd\n", (intmax_t)d); for (d = rounddown(d, sblock.fs_frag); d >= osblock.fs_csaddr; d -= sblock.fs_frag) { DBG_TRC; DBG_PRINT1("d=%jd\n", (intmax_t)d); setblock(&sblock, cg_blksfree(&acg), (d % sblock.fs_fpg) / sblock.fs_frag); acg.cg_cs.cs_nbfree++; sblock.fs_cstotal.cs_nbfree++; if (sblock.fs_contigsumsize > 0) { setbit(cg_clustersfree(&acg), (d % sblock.fs_fpg) / sblock.fs_frag); /* * The last cluster size is already set up. */ if (lcs < sblock.fs_contigsumsize) { if (lcs) cg_clustersum(&acg)[lcs]--; lcs++; cg_clustersum(&acg)[lcs]++; } } } *cs = acg.cg_cs; /* * Now write the former cylinder group containing the cylinder * summary back to disk. */ cgckhash(&acg); wtfs(fsbtodb(&sblock, cgtod(&sblock, ocscg)), (size_t)sblock.fs_cgsize, (void *)&acg, fso, Nflag); DBG_PRINT0("oscg written\n"); DBG_DUMP_CG(&sblock, "old summary cg", &acg); /* * Find the beginning of the new cylinder group containing the * cylinder summary. */ sblock.fs_csaddr = cgdmin(&sblock, osblock.fs_ncg); ncscg = dtog(&sblock, sblock.fs_csaddr); cs = fscs + ncscg; /* * If Nflag is specified, we would now read random data instead * of an empty cg structure from disk. So we can't simulate that * part for now. */ if (Nflag) { DBG_PRINT0("nscg update skipped\n"); DBG_LEAVE; return; } /* * Read the future cylinder group containing the cylinder * summary from disk, and make a copy. */ rdfs(fsbtodb(&sblock, cgtod(&sblock, ncscg)), (size_t)sblock.fs_cgsize, (void *)&aocg, fsi); DBG_PRINT0("nscg read\n"); DBG_DUMP_CG(&sblock, "new summary cg", &aocg); memcpy((void *)&cgun1, (void *)&cgun2, sizeof(cgun2)); /* * Allocate all complete blocks used by the new cylinder * summary. */ for (d = sblock.fs_csaddr; d + sblock.fs_frag <= sblock.fs_csaddr + (sblock.fs_cssize / sblock.fs_fsize); d += sblock.fs_frag) { clrblock(&sblock, cg_blksfree(&acg), (d % sblock.fs_fpg) / sblock.fs_frag); acg.cg_cs.cs_nbfree--; sblock.fs_cstotal.cs_nbfree--; if (sblock.fs_contigsumsize > 0) { clrbit(cg_clustersfree(&acg), (d % sblock.fs_fpg) / sblock.fs_frag); } } /* * Allocate all fragments used by the cylinder summary in the * last block. */ if (d < sblock.fs_csaddr + (sblock.fs_cssize / sblock.fs_fsize)) { for (; d - sblock.fs_csaddr < sblock.fs_cssize/sblock.fs_fsize; d++) { clrbit(cg_blksfree(&acg), d % sblock.fs_fpg); acg.cg_cs.cs_nffree--; sblock.fs_cstotal.cs_nffree--; } acg.cg_cs.cs_nbfree--; acg.cg_cs.cs_nffree += sblock.fs_frag; sblock.fs_cstotal.cs_nbfree--; sblock.fs_cstotal.cs_nffree += sblock.fs_frag; if (sblock.fs_contigsumsize > 0) clrbit(cg_clustersfree(&acg), (d % sblock.fs_fpg) / sblock.fs_frag); frag_adjust(d % sblock.fs_fpg, 1); } /* * XXX Handle the cluster statistics here in the case this * cylinder group is now almost full, and the remaining * space is less then the maximum cluster size. This is * probably not needed, as you would hardly find a file * system which has only MAXCSBUFS+FS_MAXCONTIG of free * space right behind the cylinder group information in * any new cylinder group. */ /* * Update our statistics in the cylinder summary. */ *cs = acg.cg_cs; /* * Write the new cylinder group containing the cylinder summary * back to disk. */ cgckhash(&acg); wtfs(fsbtodb(&sblock, cgtod(&sblock, ncscg)), (size_t)sblock.fs_cgsize, (void *)&acg, fso, Nflag); DBG_PRINT0("nscg written\n"); DBG_DUMP_CG(&sblock, "new summary cg", &acg); DBG_LEAVE; return; } /* * Here we read some block(s) from disk. */ static void rdfs(ufs2_daddr_t bno, size_t size, void *bf, int fsi) { DBG_FUNC("rdfs") ssize_t n; DBG_ENTER; if (bno < 0) err(32, "rdfs: attempting to read negative block number"); if (lseek(fsi, (off_t)bno * DEV_BSIZE, 0) < 0) err(33, "rdfs: seek error: %jd", (intmax_t)bno); n = read(fsi, bf, size); if (n != (ssize_t)size) err(34, "rdfs: read error: %jd", (intmax_t)bno); DBG_LEAVE; return; } /* * Here we write some block(s) to disk. */ static void wtfs(ufs2_daddr_t bno, size_t size, void *bf, int fso, unsigned int Nflag) { DBG_FUNC("wtfs") ssize_t n; DBG_ENTER; if (Nflag) { DBG_LEAVE; return; } if (lseek(fso, (off_t)bno * DEV_BSIZE, SEEK_SET) < 0) err(35, "wtfs: seek error: %ld", (long)bno); n = write(fso, bf, size); if (n != (ssize_t)size) err(36, "wtfs: write error: %ld", (long)bno); DBG_LEAVE; return; } /* * Here we check if all frags of a block are free. For more details again * please see the source of newfs(8), as this function is taken over almost * unchanged. */ static int isblock(struct fs *fs, unsigned char *cp, int h) { DBG_FUNC("isblock") unsigned char mask; DBG_ENTER; switch (fs->fs_frag) { case 8: DBG_LEAVE; return (cp[h] == 0xff); case 4: mask = 0x0f << ((h & 0x1) << 2); DBG_LEAVE; return ((cp[h >> 1] & mask) == mask); case 2: mask = 0x03 << ((h & 0x3) << 1); DBG_LEAVE; return ((cp[h >> 2] & mask) == mask); case 1: mask = 0x01 << (h & 0x7); DBG_LEAVE; return ((cp[h >> 3] & mask) == mask); default: fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag); DBG_LEAVE; return (0); } } /* * Here we allocate a complete block in the block map. For more details again * please see the source of newfs(8), as this function is taken over almost * unchanged. */ static void clrblock(struct fs *fs, unsigned char *cp, int h) { DBG_FUNC("clrblock") DBG_ENTER; switch ((fs)->fs_frag) { case 8: cp[h] = 0; break; case 4: cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2)); break; case 2: cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1)); break; case 1: cp[h >> 3] &= ~(0x01 << (h & 0x7)); break; default: warnx("clrblock bad fs_frag %d", fs->fs_frag); break; } DBG_LEAVE; return; } /* * Here we free a complete block in the free block map. For more details again * please see the source of newfs(8), as this function is taken over almost * unchanged. */ static void setblock(struct fs *fs, unsigned char *cp, int h) { DBG_FUNC("setblock") DBG_ENTER; switch (fs->fs_frag) { case 8: cp[h] = 0xff; break; case 4: cp[h >> 1] |= (0x0f << ((h & 0x1) << 2)); break; case 2: cp[h >> 2] |= (0x03 << ((h & 0x3) << 1)); break; case 1: cp[h >> 3] |= (0x01 << (h & 0x7)); break; default: warnx("setblock bad fs_frag %d", fs->fs_frag); break; } DBG_LEAVE; return; } /* * Figure out how many lines our current terminal has. For more details again * please see the source of newfs(8), as this function is taken over almost * unchanged. */ static int charsperline(void) { DBG_FUNC("charsperline") int columns; char *cp; struct winsize ws; DBG_ENTER; columns = 0; if (ioctl(0, TIOCGWINSZ, &ws) != -1) columns = ws.ws_col; if (columns == 0 && (cp = getenv("COLUMNS"))) columns = atoi(cp); if (columns == 0) columns = 80; /* last resort */ DBG_LEAVE; return (columns); } static int is_dev(const char *name) { struct stat devstat; if (stat(name, &devstat) != 0) return (0); if (!S_ISCHR(devstat.st_mode)) return (0); return (1); } /* * Return mountpoint on which the device is currently mounted. */ static const struct statfs * dev_to_statfs(const char *dev) { struct stat devstat, mntdevstat; struct statfs *mntbuf, *statfsp; char device[MAXPATHLEN]; char *mntdevname; int i, mntsize; /* * First check the mounted filesystems. */ if (stat(dev, &devstat) != 0) return (NULL); if (!S_ISCHR(devstat.st_mode) && !S_ISBLK(devstat.st_mode)) return (NULL); mntsize = getmntinfo(&mntbuf, MNT_NOWAIT); for (i = 0; i < mntsize; i++) { statfsp = &mntbuf[i]; mntdevname = statfsp->f_mntfromname; if (*mntdevname != '/') { strcpy(device, _PATH_DEV); strcat(device, mntdevname); mntdevname = device; } if (stat(mntdevname, &mntdevstat) == 0 && mntdevstat.st_rdev == devstat.st_rdev) return (statfsp); } return (NULL); } static const char * mountpoint_to_dev(const char *mountpoint) { struct statfs *mntbuf, *statfsp; struct fstab *fs; int i, mntsize; /* * First check the mounted filesystems. */ mntsize = getmntinfo(&mntbuf, MNT_NOWAIT); for (i = 0; i < mntsize; i++) { statfsp = &mntbuf[i]; if (strcmp(statfsp->f_mntonname, mountpoint) == 0) return (statfsp->f_mntfromname); } /* * Check the fstab. */ fs = getfsfile(mountpoint); if (fs != NULL) return (fs->fs_spec); return (NULL); } static const char * getdev(const char *name) { static char device[MAXPATHLEN]; const char *cp, *dev; if (is_dev(name)) return (name); cp = strrchr(name, '/'); if (cp == NULL) { snprintf(device, sizeof(device), "%s%s", _PATH_DEV, name); if (is_dev(device)) return (device); } dev = mountpoint_to_dev(name); if (dev != NULL && is_dev(dev)) return (dev); return (NULL); } /* * growfs(8) is a utility which allows to increase the size of an existing * ufs file system. Currently this can only be done on unmounted file system. * It recognizes some command line options to specify the new desired size, * and it does some basic checkings. The old file system size is determined * and after some more checks like we can really access the new last block * on the disk etc. we calculate the new parameters for the superblock. After * having done this we just call growfs() which will do the work. * We still have to provide support for snapshots. Therefore we first have to * understand what data structures are always replicated in the snapshot on * creation, for all other blocks we touch during our procedure, we have to * keep the old blocks unchanged somewhere available for the snapshots. If we * are lucky, then we only have to handle our blocks to be relocated in that * way. * Also we have to consider in what order we actually update the critical * data structures of the file system to make sure, that in case of a disaster * fsck(8) is still able to restore any lost data. * The foreseen last step then will be to provide for growing even mounted * file systems. There we have to extend the mount() system call to provide * userland access to the file system locking facility. */ int main(int argc, char **argv) { DBG_FUNC("main") struct fs *fs; const char *device; const struct statfs *statfsp; uint64_t size = 0; off_t mediasize; int error, j, fsi, fso, ch, ret, Nflag = 0, yflag = 0; char *p, reply[5], oldsizebuf[6], newsizebuf[6]; void *testbuf; DBG_ENTER; while ((ch = getopt(argc, argv, "Ns:vy")) != -1) { switch(ch) { case 'N': Nflag = 1; break; case 's': size = (off_t)strtoumax(optarg, &p, 0); if (p == NULL || *p == '\0') size *= DEV_BSIZE; else if (*p == 'b' || *p == 'B') ; /* do nothing */ else if (*p == 'k' || *p == 'K') size <<= 10; else if (*p == 'm' || *p == 'M') size <<= 20; else if (*p == 'g' || *p == 'G') size <<= 30; else if (*p == 't' || *p == 'T') { size <<= 30; size <<= 10; } else errx(1, "unknown suffix on -s argument"); break; case 'v': /* for compatibility to newfs */ break; case 'y': yflag = 1; break; case '?': /* FALLTHROUGH */ default: usage(); } } argc -= optind; argv += optind; if (argc != 1) usage(); /* * Now try to guess the device name. */ device = getdev(*argv); if (device == NULL) errx(1, "cannot find special device for %s", *argv); statfsp = dev_to_statfs(device); fsi = open(device, O_RDONLY); if (fsi < 0) err(1, "%s", device); /* * Try to guess the slice size if not specified. */ if (ioctl(fsi, DIOCGMEDIASIZE, &mediasize) == -1) err(1,"DIOCGMEDIASIZE"); /* * Check if that partition is suitable for growing a file system. */ if (mediasize < 1) errx(1, "partition is unavailable"); /* * Read the current superblock, and take a backup. */ if ((ret = sbget(fsi, &fs, -1)) != 0) { switch (ret) { case ENOENT: errx(1, "superblock not recognized"); default: errc(1, ret, "unable to read superblock"); } } /* * Check for filesystem that was unclean at mount time. */ if ((fs->fs_flags & (FS_UNCLEAN | FS_NEEDSFSCK)) != 0) errx(1, "%s is not clean - run fsck.\n", *argv); memcpy(&osblock, fs, fs->fs_sbsize); free(fs); memcpy((void *)&fsun1, (void *)&fsun2, osblock.fs_sbsize); DBG_OPEN("/tmp/growfs.debug"); /* already here we need a superblock */ DBG_DUMP_FS(&sblock, "old sblock"); /* * Determine size to grow to. Default to the device size. */ if (size == 0) size = mediasize; else { if (size > (uint64_t)mediasize) { humanize_number(oldsizebuf, sizeof(oldsizebuf), size, "B", HN_AUTOSCALE, HN_B | HN_NOSPACE | HN_DECIMAL); humanize_number(newsizebuf, sizeof(newsizebuf), mediasize, "B", HN_AUTOSCALE, HN_B | HN_NOSPACE | HN_DECIMAL); errx(1, "requested size %s is larger " "than the available %s", oldsizebuf, newsizebuf); } } /* * Make sure the new size is a multiple of fs_fsize; /dev/ufssuspend * only supports fragment-aligned IO requests. */ size -= size % osblock.fs_fsize; if (size <= (uint64_t)(osblock.fs_size * osblock.fs_fsize)) { humanize_number(oldsizebuf, sizeof(oldsizebuf), osblock.fs_size * osblock.fs_fsize, "B", HN_AUTOSCALE, HN_B | HN_NOSPACE | HN_DECIMAL); humanize_number(newsizebuf, sizeof(newsizebuf), size, "B", HN_AUTOSCALE, HN_B | HN_NOSPACE | HN_DECIMAL); - errx(1, "requested size %s is not larger than the current " + if (size == (uint64_t)(osblock.fs_size * osblock.fs_fsize)) + errx(0, "requested size %s is equal to the current " + "filesystem size %s", newsizebuf, oldsizebuf); + errx(1, "requested size %s is smaller than the current " "filesystem size %s", newsizebuf, oldsizebuf); } sblock.fs_size = dbtofsb(&osblock, size / DEV_BSIZE); sblock.fs_providersize = dbtofsb(&osblock, mediasize / DEV_BSIZE); /* * Are we really growing? */ if (osblock.fs_size >= sblock.fs_size) { errx(1, "we are not growing (%jd->%jd)", (intmax_t)osblock.fs_size, (intmax_t)sblock.fs_size); } /* * Check if we find an active snapshot. */ if (yflag == 0) { for (j = 0; j < FSMAXSNAP; j++) { if (sblock.fs_snapinum[j]) { errx(1, "active snapshot found in file system; " "please remove all snapshots before " "using growfs"); } if (!sblock.fs_snapinum[j]) /* list is dense */ break; } } if (yflag == 0 && Nflag == 0) { if (statfsp != NULL && (statfsp->f_flags & MNT_RDONLY) == 0) printf("Device is mounted read-write; resizing will " "result in temporary write suspension for %s.\n", statfsp->f_mntonname); printf("It's strongly recommended to make a backup " "before growing the file system.\n" "OK to grow filesystem on %s", device); if (statfsp != NULL) printf(", mounted on %s,", statfsp->f_mntonname); humanize_number(oldsizebuf, sizeof(oldsizebuf), osblock.fs_size * osblock.fs_fsize, "B", HN_AUTOSCALE, HN_B | HN_NOSPACE | HN_DECIMAL); humanize_number(newsizebuf, sizeof(newsizebuf), sblock.fs_size * sblock.fs_fsize, "B", HN_AUTOSCALE, HN_B | HN_NOSPACE | HN_DECIMAL); printf(" from %s to %s? [yes/no] ", oldsizebuf, newsizebuf); fflush(stdout); fgets(reply, (int)sizeof(reply), stdin); if (strcasecmp(reply, "yes\n")){ printf("Response other than \"yes\"; aborting\n"); exit(0); } } /* * Try to access our device for writing. If it's not mounted, * or mounted read-only, simply open it; otherwise, use UFS * suspension mechanism. */ if (Nflag) { fso = -1; } else { if (statfsp != NULL && (statfsp->f_flags & MNT_RDONLY) == 0) { fso = open(_PATH_UFSSUSPEND, O_RDWR); if (fso == -1) err(1, "unable to open %s", _PATH_UFSSUSPEND); error = ioctl(fso, UFSSUSPEND, &statfsp->f_fsid); if (error != 0) err(1, "UFSSUSPEND"); } else { fso = open(device, O_WRONLY); if (fso < 0) err(1, "%s", device); } } /* * Try to access our new last block in the file system. */ testbuf = malloc(sblock.fs_fsize); if (testbuf == NULL) err(1, "malloc"); rdfs((ufs2_daddr_t)((size - sblock.fs_fsize) / DEV_BSIZE), sblock.fs_fsize, testbuf, fsi); wtfs((ufs2_daddr_t)((size - sblock.fs_fsize) / DEV_BSIZE), sblock.fs_fsize, testbuf, fso, Nflag); free(testbuf); /* * Now calculate new superblock values and check for reasonable * bound for new file system size: * fs_size: is derived from user input * fs_dsize: should get updated in the routines creating or * updating the cylinder groups on the fly * fs_cstotal: should get updated in the routines creating or * updating the cylinder groups */ /* * Update the number of cylinders and cylinder groups in the file system. */ if (sblock.fs_magic == FS_UFS1_MAGIC) { sblock.fs_old_ncyl = sblock.fs_size * sblock.fs_old_nspf / sblock.fs_old_spc; if (sblock.fs_size * sblock.fs_old_nspf > sblock.fs_old_ncyl * sblock.fs_old_spc) sblock.fs_old_ncyl++; } sblock.fs_ncg = howmany(sblock.fs_size, sblock.fs_fpg); /* * Allocate last cylinder group only if there is enough room * for at least one data block. */ if (sblock.fs_size % sblock.fs_fpg != 0 && sblock.fs_size <= cgdmin(&sblock, sblock.fs_ncg - 1)) { humanize_number(oldsizebuf, sizeof(oldsizebuf), (sblock.fs_size % sblock.fs_fpg) * sblock.fs_fsize, "B", HN_AUTOSCALE, HN_B | HN_NOSPACE | HN_DECIMAL); warnx("no room to allocate last cylinder group; " "leaving %s unused", oldsizebuf); sblock.fs_ncg--; if (sblock.fs_magic == FS_UFS1_MAGIC) sblock.fs_old_ncyl = sblock.fs_ncg * sblock.fs_old_cpg; sblock.fs_size = sblock.fs_ncg * sblock.fs_fpg; } /* * Update the space for the cylinder group summary information in the * respective cylinder group data area. */ sblock.fs_cssize = fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum)); if (osblock.fs_size >= sblock.fs_size) errx(1, "not enough new space"); DBG_PRINT0("sblock calculated\n"); /* * Ok, everything prepared, so now let's do the tricks. */ growfs(fsi, fso, Nflag); close(fsi); if (fso > -1) { if (statfsp != NULL && (statfsp->f_flags & MNT_RDONLY) == 0) { error = ioctl(fso, UFSRESUME); if (error != 0) err(1, "UFSRESUME"); } error = close(fso); if (error != 0) err(1, "close"); if (statfsp != NULL && (statfsp->f_flags & MNT_RDONLY) != 0) mount_reload(statfsp); } DBG_CLOSE; DBG_LEAVE; return (0); } /* * Dump a line of usage. */ static void usage(void) { DBG_FUNC("usage") DBG_ENTER; fprintf(stderr, "usage: growfs [-Ny] [-s size] special | filesystem\n"); DBG_LEAVE; exit(1); } /* * This updates most parameters and the bitmap related to cluster. We have to * assume that sblock, osblock, acg are set up. */ static void updclst(int block) { DBG_FUNC("updclst") static int lcs = 0; DBG_ENTER; if (sblock.fs_contigsumsize < 1) /* no clustering */ return; /* * update cluster allocation map */ setbit(cg_clustersfree(&acg), block); /* * update cluster summary table */ if (!lcs) { /* * calculate size for the trailing cluster */ for (block--; lcs < sblock.fs_contigsumsize; block--, lcs++ ) { if (isclr(cg_clustersfree(&acg), block)) break; } } if (lcs < sblock.fs_contigsumsize) { if (lcs) cg_clustersum(&acg)[lcs]--; lcs++; cg_clustersum(&acg)[lcs]++; } DBG_LEAVE; return; } static void mount_reload(const struct statfs *stfs) { char errmsg[255]; struct iovec *iov; int iovlen; iov = NULL; iovlen = 0; *errmsg = '\0'; build_iovec(&iov, &iovlen, "fstype", __DECONST(char *, "ffs"), 4); build_iovec(&iov, &iovlen, "fspath", __DECONST(char *, stfs->f_mntonname), (size_t)-1); build_iovec(&iov, &iovlen, "errmsg", errmsg, sizeof(errmsg)); build_iovec(&iov, &iovlen, "update", NULL, 0); build_iovec(&iov, &iovlen, "reload", NULL, 0); if (nmount(iov, iovlen, stfs->f_flags) < 0) { errmsg[sizeof(errmsg) - 1] = '\0'; err(9, "%s: cannot reload filesystem%s%s", stfs->f_mntonname, *errmsg != '\0' ? ": " : "", errmsg); } } /* * Calculate the check-hash of the cylinder group. */ static void cgckhash(struct cg *cgp) { if ((sblock.fs_metackhash & CK_CYLGRP) == 0) return; cgp->cg_ckhash = 0; cgp->cg_ckhash = calculate_crc32c(~0L, (void *)cgp, sblock.fs_cgsize); }