diff --git a/sys/dev/ocs_fc/ocs_cam.c b/sys/dev/ocs_fc/ocs_cam.c index 4da1b6669047..0fa94083e898 100644 --- a/sys/dev/ocs_fc/ocs_cam.c +++ b/sys/dev/ocs_fc/ocs_cam.c @@ -1,2860 +1,2941 @@ /*- * Copyright (c) 2017 Broadcom. All rights reserved. * The term "Broadcom" refers to Broadcom Limited and/or its subsidiaries. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /** * @defgroup scsi_api_target SCSI Target API * @defgroup scsi_api_initiator SCSI Initiator API * @defgroup cam_api Common Access Method (CAM) API * @defgroup cam_io CAM IO */ /** * @file * Provides CAM functionality. */ #include "ocs.h" #include "ocs_scsi.h" #include "ocs_device.h" +#include /* Default IO timeout value for initiators is 30 seconds */ #define OCS_CAM_IO_TIMEOUT 30 typedef struct { ocs_scsi_sgl_t *sgl; uint32_t sgl_max; uint32_t sgl_count; int32_t rc; } ocs_dmamap_load_arg_t; +struct ocs_scsi_status_desc { + ocs_scsi_io_status_e status; + const char *desc; +} ocs_status_desc[] = { + { OCS_SCSI_STATUS_GOOD, "Good" }, + { OCS_SCSI_STATUS_ABORTED, "Aborted" }, + { OCS_SCSI_STATUS_ERROR, "Error" }, + { OCS_SCSI_STATUS_DIF_GUARD_ERROR, "DIF Guard Error" }, + { OCS_SCSI_STATUS_DIF_REF_TAG_ERROR, "DIF REF Tag Error" }, + { OCS_SCSI_STATUS_DIF_APP_TAG_ERROR, "DIF App Tag Error" }, + { OCS_SCSI_STATUS_DIF_UNKNOWN_ERROR, "DIF Unknown Error" }, + { OCS_SCSI_STATUS_PROTOCOL_CRC_ERROR, "Proto CRC Error" }, + { OCS_SCSI_STATUS_NO_IO, "No IO" }, + { OCS_SCSI_STATUS_ABORT_IN_PROGRESS, "Abort in Progress" }, + { OCS_SCSI_STATUS_CHECK_RESPONSE, "Check Response" }, + { OCS_SCSI_STATUS_COMMAND_TIMEOUT, "Command Timeout" }, + { OCS_SCSI_STATUS_TIMEDOUT_AND_ABORTED, "Timed out and Aborted" }, + { OCS_SCSI_STATUS_SHUTDOWN, "Shutdown" }, + { OCS_SCSI_STATUS_NEXUS_LOST, "Nexus Lost" } +}; + static void ocs_action(struct cam_sim *, union ccb *); static void ocs_poll(struct cam_sim *); static ocs_tgt_resource_t *ocs_tgt_resource_get(ocs_fcport *, struct ccb_hdr *, uint32_t *); static int32_t ocs_tgt_resource_abort(struct ocs_softc *, ocs_tgt_resource_t *); static uint32_t ocs_abort_initiator_io(struct ocs_softc *ocs, union ccb *accb); static void ocs_abort_inot(struct ocs_softc *ocs, union ccb *ccb); static void ocs_abort_atio(struct ocs_softc *ocs, union ccb *ccb); static int32_t ocs_target_tmf_cb(ocs_io_t *, ocs_scsi_io_status_e, uint32_t, void *); static int32_t ocs_io_abort_cb(ocs_io_t *, ocs_scsi_io_status_e, uint32_t, void *); static int32_t ocs_task_set_full_or_busy(ocs_io_t *io); static int32_t ocs_initiator_tmf_cb(ocs_io_t *, ocs_scsi_io_status_e, ocs_scsi_cmd_resp_t *, uint32_t, void *); static uint32_t ocs_fcp_change_role(struct ocs_softc *ocs, ocs_fcport *fcp, uint32_t new_role); static void ocs_ldt(void *arg); static void ocs_ldt_task(void *arg, int pending); static void ocs_delete_target(ocs_t *ocs, ocs_fcport *fcp, int tgt); uint32_t ocs_add_new_tgt(ocs_node_t *node, ocs_fcport *fcp); uint32_t ocs_update_tgt(ocs_node_t *node, ocs_fcport *fcp, uint32_t tgt_id); int32_t ocs_tgt_find(ocs_fcport *fcp, ocs_node_t *node); static inline ocs_io_t *ocs_scsi_find_io(struct ocs_softc *ocs, uint32_t tag) { return ocs_io_get_instance(ocs, tag); } static inline void ocs_target_io_free(ocs_io_t *io) { io->tgt_io.state = OCS_CAM_IO_FREE; io->tgt_io.flags = 0; io->tgt_io.app = NULL; ocs_scsi_io_complete(io); if(io->ocs->io_in_use != 0) atomic_subtract_acq_32(&io->ocs->io_in_use, 1); } static int32_t ocs_attach_port(ocs_t *ocs, int chan) { struct cam_sim *sim = NULL; struct cam_path *path = NULL; uint32_t max_io = ocs_scsi_get_property(ocs, OCS_SCSI_MAX_IOS); ocs_fcport *fcp = FCPORT(ocs, chan); if (NULL == (sim = cam_sim_alloc(ocs_action, ocs_poll, device_get_name(ocs->dev), ocs, device_get_unit(ocs->dev), &ocs->sim_lock, max_io, max_io, ocs->devq))) { device_printf(ocs->dev, "Can't allocate SIM\n"); return 1; } mtx_lock(&ocs->sim_lock); if (CAM_SUCCESS != xpt_bus_register(sim, ocs->dev, chan)) { device_printf(ocs->dev, "Can't register bus %d\n", 0); mtx_unlock(&ocs->sim_lock); cam_sim_free(sim, FALSE); return 1; } mtx_unlock(&ocs->sim_lock); if (CAM_REQ_CMP != xpt_create_path(&path, NULL, cam_sim_path(sim), CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD)) { device_printf(ocs->dev, "Can't create path\n"); xpt_bus_deregister(cam_sim_path(sim)); mtx_unlock(&ocs->sim_lock); cam_sim_free(sim, FALSE); return 1; } fcp->ocs = ocs; fcp->sim = sim; fcp->path = path; callout_init_mtx(&fcp->ldt, &ocs->sim_lock, 0); TASK_INIT(&fcp->ltask, 1, ocs_ldt_task, fcp); return 0; } static int32_t ocs_detach_port(ocs_t *ocs, int32_t chan) { ocs_fcport *fcp = NULL; struct cam_sim *sim = NULL; struct cam_path *path = NULL; fcp = FCPORT(ocs, chan); sim = fcp->sim; path = fcp->path; callout_drain(&fcp->ldt); ocs_ldt_task(fcp, 0); if (fcp->sim) { mtx_lock(&ocs->sim_lock); ocs_tgt_resource_abort(ocs, &fcp->targ_rsrc_wildcard); if (path) { xpt_async(AC_LOST_DEVICE, path, NULL); xpt_free_path(path); fcp->path = NULL; } xpt_bus_deregister(cam_sim_path(sim)); cam_sim_free(sim, FALSE); fcp->sim = NULL; mtx_unlock(&ocs->sim_lock); } return 0; } int32_t ocs_cam_attach(ocs_t *ocs) { struct cam_devq *devq = NULL; int i = 0; uint32_t max_io = ocs_scsi_get_property(ocs, OCS_SCSI_MAX_IOS); if (NULL == (devq = cam_simq_alloc(max_io))) { device_printf(ocs->dev, "Can't allocate SIMQ\n"); return -1; } ocs->devq = devq; if (mtx_initialized(&ocs->sim_lock) == 0) { mtx_init(&ocs->sim_lock, "ocs_sim_lock", NULL, MTX_DEF); } for (i = 0; i < (ocs->num_vports + 1); i++) { if (ocs_attach_port(ocs, i)) { ocs_log_err(ocs, "Attach port failed for chan: %d\n", i); goto detach_port; } } ocs->io_high_watermark = max_io; ocs->io_in_use = 0; return 0; detach_port: while (--i >= 0) { ocs_detach_port(ocs, i); } cam_simq_free(ocs->devq); if (mtx_initialized(&ocs->sim_lock)) mtx_destroy(&ocs->sim_lock); return 1; } int32_t ocs_cam_detach(ocs_t *ocs) { int i = 0; for (i = (ocs->num_vports); i >= 0; i--) { ocs_detach_port(ocs, i); } cam_simq_free(ocs->devq); if (mtx_initialized(&ocs->sim_lock)) mtx_destroy(&ocs->sim_lock); return 0; } /*************************************************************************** * Functions required by SCSI base driver API */ /** * @ingroup scsi_api_target * @brief Attach driver to the BSD SCSI layer (a.k.a CAM) * * Allocates + initializes CAM related resources and attaches to the CAM * * @param ocs the driver instance's software context * * @return 0 on success, non-zero otherwise */ int32_t ocs_scsi_tgt_new_device(ocs_t *ocs) { ocs->enable_task_set_full = ocs_scsi_get_property(ocs, OCS_SCSI_ENABLE_TASK_SET_FULL); ocs_log_debug(ocs, "task set full processing is %s\n", ocs->enable_task_set_full ? "enabled" : "disabled"); return 0; } /** * @ingroup scsi_api_target * @brief Tears down target members of ocs structure. * * Called by OS code when device is removed. * * @param ocs pointer to ocs * * @return returns 0 for success, a negative error code value for failure. */ int32_t ocs_scsi_tgt_del_device(ocs_t *ocs) { return 0; } /** * @ingroup scsi_api_target * @brief accept new domain notification * * Called by base drive when new domain is discovered. A target-server * will use this call to prepare for new remote node notifications * arising from ocs_scsi_new_initiator(). * * The domain context has an element ocs_scsi_tgt_domain_t tgt_domain * which is declared by the target-server code and is used for target-server * private data. * * This function will only be called if the base-driver has been enabled for * target capability. * * Note that this call is made to target-server backends, * the ocs_scsi_ini_new_domain() function is called to initiator-client backends. * * @param domain pointer to domain * * @return returns 0 for success, a negative error code value for failure. */ int32_t ocs_scsi_tgt_new_domain(ocs_domain_t *domain) { return 0; } /** * @ingroup scsi_api_target * @brief accept domain lost notification * * Called by base-driver when a domain goes away. A target-server will * use this call to clean up all domain scoped resources. * * Note that this call is made to target-server backends, * the ocs_scsi_ini_del_domain() function is called to initiator-client backends. * * @param domain pointer to domain * * @return returns 0 for success, a negative error code value for failure. */ void ocs_scsi_tgt_del_domain(ocs_domain_t *domain) { } /** * @ingroup scsi_api_target * @brief accept new sli port (sport) notification * * Called by base drive when new sport is discovered. A target-server * will use this call to prepare for new remote node notifications * arising from ocs_scsi_new_initiator(). * * The domain context has an element ocs_scsi_tgt_sport_t tgt_sport * which is declared by the target-server code and is used for * target-server private data. * * This function will only be called if the base-driver has been enabled for * target capability. * * Note that this call is made to target-server backends, * the ocs_scsi_tgt_new_domain() is called to initiator-client backends. * * @param sport pointer to SLI port * * @return returns 0 for success, a negative error code value for failure. */ int32_t ocs_scsi_tgt_new_sport(ocs_sport_t *sport) { ocs_t *ocs = sport->ocs; if(!sport->is_vport) { sport->tgt_data = FCPORT(ocs, 0); } return 0; } /** * @ingroup scsi_api_target * @brief accept SLI port gone notification * * Called by base-driver when a sport goes away. A target-server will * use this call to clean up all sport scoped resources. * * Note that this call is made to target-server backends, * the ocs_scsi_ini_del_sport() is called to initiator-client backends. * * @param sport pointer to SLI port * * @return returns 0 for success, a negative error code value for failure. */ void ocs_scsi_tgt_del_sport(ocs_sport_t *sport) { return; } /** * @ingroup scsi_api_target * @brief receive notification of a new SCSI initiator node * * Sent by base driver to notify a target-server of the presense of a new * remote initiator. The target-server may use this call to prepare for * inbound IO from this node. * * The ocs_node_t structure has and elment of type ocs_scsi_tgt_node_t named * tgt_node that is declared and used by a target-server for private * information. * * This function is only called if the target capability is enabled in driver. * * @param node pointer to new remote initiator node * * @return returns 0 for success, a negative error code value for failure. * * @note */ int32_t ocs_scsi_new_initiator(ocs_node_t *node) { ocs_t *ocs = node->ocs; struct ac_contract ac; struct ac_device_changed *adc; ocs_fcport *fcp = NULL; fcp = node->sport->tgt_data; if (fcp == NULL) { ocs_log_err(ocs, "FCP is NULL \n"); return 1; } /* * Update the IO watermark by decrementing it by the * number of IOs reserved for each initiator. */ atomic_subtract_acq_32(&ocs->io_high_watermark, OCS_RSVD_INI_IO); ac.contract_number = AC_CONTRACT_DEV_CHG; adc = (struct ac_device_changed *) ac.contract_data; adc->wwpn = ocs_node_get_wwpn(node); adc->port = node->rnode.fc_id; adc->target = node->instance_index; adc->arrived = 1; xpt_async(AC_CONTRACT, fcp->path, &ac); return 0; } /** * @ingroup scsi_api_target * @brief validate new initiator * * Sent by base driver to validate a remote initiatiator. The target-server * returns TRUE if this initiator should be accepted. * * This function is only called if the target capability is enabled in driver. * * @param node pointer to remote initiator node to validate * * @return TRUE if initiator should be accepted, FALSE if it should be rejected * * @note */ int32_t ocs_scsi_validate_initiator(ocs_node_t *node) { return 1; } /** * @ingroup scsi_api_target * @brief Delete a SCSI initiator node * * Sent by base driver to notify a target-server that a remote initiator * is now gone. The base driver will have terminated all outstanding IOs * and the target-server will receive appropriate completions. * * This function is only called if the base driver is enabled for * target capability. * * @param node pointer node being deleted * @param reason Reason why initiator is gone. * * @return OCS_SCSI_CALL_COMPLETE to indicate that all work was completed * * @note */ int32_t ocs_scsi_del_initiator(ocs_node_t *node, ocs_scsi_del_initiator_reason_e reason) { ocs_t *ocs = node->ocs; struct ac_contract ac; struct ac_device_changed *adc; ocs_fcport *fcp = NULL; fcp = node->sport->tgt_data; if (fcp == NULL) { ocs_log_err(ocs, "FCP is NULL \n"); return 1; } ac.contract_number = AC_CONTRACT_DEV_CHG; adc = (struct ac_device_changed *) ac.contract_data; adc->wwpn = ocs_node_get_wwpn(node); adc->port = node->rnode.fc_id; adc->target = node->instance_index; adc->arrived = 0; xpt_async(AC_CONTRACT, fcp->path, &ac); if (reason == OCS_SCSI_INITIATOR_MISSING) { return OCS_SCSI_CALL_COMPLETE; } /* * Update the IO watermark by incrementing it by the * number of IOs reserved for each initiator. */ atomic_add_acq_32(&ocs->io_high_watermark, OCS_RSVD_INI_IO); return OCS_SCSI_CALL_COMPLETE; } /** * @ingroup scsi_api_target * @brief receive FCP SCSI Command * * Called by the base driver when a new SCSI command has been received. The * target-server will process the command, and issue data and/or response phase * requests to the base driver. * * The IO context (ocs_io_t) structure has and element of type * ocs_scsi_tgt_io_t named tgt_io that is declared and used by * a target-server for private information. * * @param io pointer to IO context * @param lun LUN for this IO * @param cdb pointer to SCSI CDB * @param cdb_len length of CDB in bytes * @param flags command flags * * @return returns 0 for success, a negative error code value for failure. */ int32_t ocs_scsi_recv_cmd(ocs_io_t *io, uint64_t lun, uint8_t *cdb, uint32_t cdb_len, uint32_t flags) { ocs_t *ocs = io->ocs; struct ccb_accept_tio *atio = NULL; ocs_node_t *node = io->node; ocs_tgt_resource_t *trsrc = NULL; int32_t rc = -1; ocs_fcport *fcp = NULL; fcp = node->sport->tgt_data; if (fcp == NULL) { ocs_log_err(ocs, "FCP is NULL \n"); return 1; } atomic_add_acq_32(&ocs->io_in_use, 1); /* set target io timeout */ io->timeout = ocs->target_io_timer_sec; if (ocs->enable_task_set_full && (ocs->io_in_use >= ocs->io_high_watermark)) { return ocs_task_set_full_or_busy(io); } else { atomic_store_rel_32(&io->node->tgt_node.busy_sent, FALSE); } if ((lun < OCS_MAX_LUN) && fcp->targ_rsrc[lun].enabled) { trsrc = &fcp->targ_rsrc[lun]; } else if (fcp->targ_rsrc_wildcard.enabled) { trsrc = &fcp->targ_rsrc_wildcard; } if (trsrc) { atio = (struct ccb_accept_tio *)STAILQ_FIRST(&trsrc->atio); } if (atio) { STAILQ_REMOVE_HEAD(&trsrc->atio, sim_links.stqe); atio->ccb_h.status = CAM_CDB_RECVD; atio->ccb_h.target_lun = lun; atio->sense_len = 0; atio->init_id = node->instance_index; atio->tag_id = io->tag; atio->ccb_h.ccb_io_ptr = io; if (flags & OCS_SCSI_CMD_SIMPLE) atio->tag_action = MSG_SIMPLE_Q_TAG; else if (flags & OCS_SCSI_CMD_HEAD_OF_QUEUE) atio->tag_action = MSG_HEAD_OF_Q_TAG; else if (flags & OCS_SCSI_CMD_ORDERED) atio->tag_action = MSG_ORDERED_Q_TAG; else if (flags & OCS_SCSI_CMD_ACA) atio->tag_action = MSG_ACA_TASK; else atio->tag_action = CAM_TAG_ACTION_NONE; atio->priority = (flags & OCS_SCSI_PRIORITY_MASK) >> OCS_SCSI_PRIORITY_SHIFT; atio->cdb_len = cdb_len; ocs_memcpy(atio->cdb_io.cdb_bytes, cdb, cdb_len); io->tgt_io.flags = 0; io->tgt_io.state = OCS_CAM_IO_COMMAND; io->tgt_io.lun = lun; xpt_done((union ccb *)atio); rc = 0; } else { device_printf( ocs->dev, "%s: no ATIO for LUN %lx (en=%s) OX_ID %#x\n", __func__, (unsigned long)lun, trsrc ? (trsrc->enabled ? "T" : "F") : "X", be16toh(io->init_task_tag)); io->tgt_io.state = OCS_CAM_IO_MAX; ocs_target_io_free(io); } return rc; } /** * @ingroup scsi_api_target * @brief receive FCP SCSI Command with first burst data. * * Receive a new FCP SCSI command from the base driver with first burst data. * * @param io pointer to IO context * @param lun LUN for this IO * @param cdb pointer to SCSI CDB * @param cdb_len length of CDB in bytes * @param flags command flags * @param first_burst_buffers first burst buffers * @param first_burst_buffer_count The number of bytes received in the first burst * * @return returns 0 for success, a negative error code value for failure. */ int32_t ocs_scsi_recv_cmd_first_burst(ocs_io_t *io, uint64_t lun, uint8_t *cdb, uint32_t cdb_len, uint32_t flags, ocs_dma_t first_burst_buffers[], uint32_t first_burst_buffer_count) { return -1; } /** * @ingroup scsi_api_target * @brief receive a TMF command IO * * Called by the base driver when a SCSI TMF command has been received. The * target-server will process the command, aborting commands as needed, and post * a response using ocs_scsi_send_resp() * * The IO context (ocs_io_t) structure has and element of type ocs_scsi_tgt_io_t named * tgt_io that is declared and used by a target-server for private information. * * If the target-server walks the nodes active_ios linked list, and starts IO * abort processing, the code must be sure not to abort the IO passed into the * ocs_scsi_recv_tmf() command. * * @param tmfio pointer to IO context * @param lun logical unit value * @param cmd command request * @param abortio pointer to IO object to abort for TASK_ABORT (NULL for all other TMF) * @param flags flags * * @return returns 0 for success, a negative error code value for failure. */ int32_t ocs_scsi_recv_tmf(ocs_io_t *tmfio, uint64_t lun, ocs_scsi_tmf_cmd_e cmd, ocs_io_t *abortio, uint32_t flags) { ocs_t *ocs = tmfio->ocs; ocs_node_t *node = tmfio->node; ocs_tgt_resource_t *trsrc = NULL; struct ccb_immediate_notify *inot = NULL; int32_t rc = -1; ocs_fcport *fcp = NULL; fcp = node->sport->tgt_data; if (fcp == NULL) { ocs_log_err(ocs, "FCP is NULL \n"); return 1; } if ((lun < OCS_MAX_LUN) && fcp->targ_rsrc[lun].enabled) { trsrc = &fcp->targ_rsrc[lun]; } else if (fcp->targ_rsrc_wildcard.enabled) { trsrc = &fcp->targ_rsrc_wildcard; } device_printf(tmfio->ocs->dev, "%s: io=%p cmd=%#x LU=%lx en=%s\n", __func__, tmfio, cmd, (unsigned long)lun, trsrc ? (trsrc->enabled ? "T" : "F") : "X"); if (trsrc) { inot = (struct ccb_immediate_notify *)STAILQ_FIRST(&trsrc->inot); } if (!inot) { device_printf( ocs->dev, "%s: no INOT for LUN %llx (en=%s) OX_ID %#x\n", __func__, (unsigned long long)lun, trsrc ? (trsrc->enabled ? "T" : "F") : "X", be16toh(tmfio->init_task_tag)); if (abortio) { ocs_scsi_io_complete(abortio); } ocs_scsi_io_complete(tmfio); goto ocs_scsi_recv_tmf_out; } tmfio->tgt_io.app = abortio; STAILQ_REMOVE_HEAD(&trsrc->inot, sim_links.stqe); inot->tag_id = tmfio->tag; inot->seq_id = tmfio->tag; if ((lun < OCS_MAX_LUN) && fcp->targ_rsrc[lun].enabled) { inot->initiator_id = node->instance_index; } else { inot->initiator_id = CAM_TARGET_WILDCARD; } inot->ccb_h.status = CAM_MESSAGE_RECV; inot->ccb_h.target_lun = lun; switch (cmd) { case OCS_SCSI_TMF_ABORT_TASK: inot->arg = MSG_ABORT_TASK; inot->seq_id = abortio->tag; device_printf(ocs->dev, "%s: ABTS IO.%#x st=%#x\n", __func__, abortio->tag, abortio->tgt_io.state); abortio->tgt_io.flags |= OCS_CAM_IO_F_ABORT_RECV; abortio->tgt_io.flags |= OCS_CAM_IO_F_ABORT_NOTIFY; break; case OCS_SCSI_TMF_QUERY_TASK_SET: device_printf(ocs->dev, "%s: OCS_SCSI_TMF_QUERY_TASK_SET not supported\n", __func__); STAILQ_INSERT_TAIL(&trsrc->inot, &inot->ccb_h, sim_links.stqe); ocs_scsi_io_complete(tmfio); goto ocs_scsi_recv_tmf_out; break; case OCS_SCSI_TMF_ABORT_TASK_SET: inot->arg = MSG_ABORT_TASK_SET; break; case OCS_SCSI_TMF_CLEAR_TASK_SET: inot->arg = MSG_CLEAR_TASK_SET; break; case OCS_SCSI_TMF_QUERY_ASYNCHRONOUS_EVENT: inot->arg = MSG_QUERY_ASYNC_EVENT; break; case OCS_SCSI_TMF_LOGICAL_UNIT_RESET: inot->arg = MSG_LOGICAL_UNIT_RESET; break; case OCS_SCSI_TMF_CLEAR_ACA: inot->arg = MSG_CLEAR_ACA; break; case OCS_SCSI_TMF_TARGET_RESET: inot->arg = MSG_TARGET_RESET; break; default: device_printf(ocs->dev, "%s: unsupported TMF %#x\n", __func__, cmd); STAILQ_INSERT_TAIL(&trsrc->inot, &inot->ccb_h, sim_links.stqe); goto ocs_scsi_recv_tmf_out; } rc = 0; xpt_print(inot->ccb_h.path, "%s: func=%#x stat=%#x id=%#x lun=%#x" " flags=%#x tag=%#x seq=%#x ini=%#x arg=%#x\n", __func__, inot->ccb_h.func_code, inot->ccb_h.status, inot->ccb_h.target_id, (unsigned int)inot->ccb_h.target_lun, inot->ccb_h.flags, inot->tag_id, inot->seq_id, inot->initiator_id, inot->arg); xpt_done((union ccb *)inot); if (abortio) { abortio->tgt_io.flags |= OCS_CAM_IO_F_ABORT_DEV; rc = ocs_scsi_tgt_abort_io(abortio, ocs_io_abort_cb, tmfio); } ocs_scsi_recv_tmf_out: return rc; } /** * @ingroup scsi_api_initiator * @brief Initializes any initiator fields on the ocs structure. * * Called by OS initialization code when a new device is discovered. * * @param ocs pointer to ocs * * @return returns 0 for success, a negative error code value for failure. */ int32_t ocs_scsi_ini_new_device(ocs_t *ocs) { return 0; } /** * @ingroup scsi_api_initiator * @brief Tears down initiator members of ocs structure. * * Called by OS code when device is removed. * * @param ocs pointer to ocs * * @return returns 0 for success, a negative error code value for failure. */ int32_t ocs_scsi_ini_del_device(ocs_t *ocs) { return 0; } /** * @ingroup scsi_api_initiator * @brief accept new domain notification * * Called by base drive when new domain is discovered. An initiator-client * will accept this call to prepare for new remote node notifications * arising from ocs_scsi_new_target(). * * The domain context has the element ocs_scsi_ini_domain_t ini_domain * which is declared by the initiator-client code and is used for * initiator-client private data. * * This function will only be called if the base-driver has been enabled for * initiator capability. * * Note that this call is made to initiator-client backends, * the ocs_scsi_tgt_new_domain() function is called to target-server backends. * * @param domain pointer to domain * * @return returns 0 for success, a negative error code value for failure. */ int32_t ocs_scsi_ini_new_domain(ocs_domain_t *domain) { return 0; } /** * @ingroup scsi_api_initiator * @brief accept domain lost notification * * Called by base-driver when a domain goes away. An initiator-client will * use this call to clean up all domain scoped resources. * * This function will only be called if the base-driver has been enabled for * initiator capability. * * Note that this call is made to initiator-client backends, * the ocs_scsi_tgt_del_domain() function is called to target-server backends. * * @param domain pointer to domain * * @return returns 0 for success, a negative error code value for failure. */ void ocs_scsi_ini_del_domain(ocs_domain_t *domain) { } /** * @ingroup scsi_api_initiator * @brief accept new sli port notification * * Called by base drive when new sli port (sport) is discovered. * A target-server will use this call to prepare for new remote node * notifications arising from ocs_scsi_new_initiator(). * * This function will only be called if the base-driver has been enabled for * target capability. * * Note that this call is made to target-server backends, * the ocs_scsi_ini_new_sport() function is called to initiator-client backends. * * @param sport pointer to sport * * @return returns 0 for success, a negative error code value for failure. */ int32_t ocs_scsi_ini_new_sport(ocs_sport_t *sport) { ocs_t *ocs = sport->ocs; ocs_fcport *fcp = FCPORT(ocs, 0); if (!sport->is_vport) { sport->tgt_data = fcp; fcp->fc_id = sport->fc_id; } return 0; } /** * @ingroup scsi_api_initiator * @brief accept sli port gone notification * * Called by base-driver when a sport goes away. A target-server will * use this call to clean up all sport scoped resources. * * Note that this call is made to target-server backends, * the ocs_scsi_ini_del_sport() function is called to initiator-client backends. * * @param sport pointer to SLI port * * @return returns 0 for success, a negative error code value for failure. */ void ocs_scsi_ini_del_sport(ocs_sport_t *sport) { ocs_t *ocs = sport->ocs; ocs_fcport *fcp = FCPORT(ocs, 0); if (!sport->is_vport) { fcp->fc_id = 0; } } void ocs_scsi_sport_deleted(ocs_sport_t *sport) { ocs_t *ocs = sport->ocs; ocs_fcport *fcp = NULL; ocs_xport_stats_t value; if (!sport->is_vport) { return; } fcp = sport->tgt_data; ocs_xport_status(ocs->xport, OCS_XPORT_PORT_STATUS, &value); if (value.value == 0) { ocs_log_debug(ocs, "PORT offline,.. skipping\n"); return; } if ((fcp->role != KNOB_ROLE_NONE)) { if(fcp->vport->sport != NULL) { ocs_log_debug(ocs,"sport is not NULL, skipping\n"); return; } ocs_sport_vport_alloc(ocs->domain, fcp->vport); return; } } int32_t ocs_tgt_find(ocs_fcport *fcp, ocs_node_t *node) { ocs_fc_target_t *tgt = NULL; uint32_t i; for (i = 0; i < OCS_MAX_TARGETS; i++) { tgt = &fcp->tgt[i]; if (tgt->state == OCS_TGT_STATE_NONE) continue; if (ocs_node_get_wwpn(node) == tgt->wwpn) { return i; } } return -1; } /** * @ingroup scsi_api_initiator * @brief receive notification of a new SCSI target node * * Sent by base driver to notify an initiator-client of the presense of a new * remote target. The initiator-server may use this call to prepare for * inbound IO from this node. * * This function is only called if the base driver is enabled for * initiator capability. * * @param node pointer to new remote initiator node * * @return none * * @note */ uint32_t ocs_update_tgt(ocs_node_t *node, ocs_fcport *fcp, uint32_t tgt_id) { ocs_fc_target_t *tgt = NULL; tgt = &fcp->tgt[tgt_id]; tgt->node_id = node->instance_index; tgt->state = OCS_TGT_STATE_VALID; tgt->port_id = node->rnode.fc_id; tgt->wwpn = ocs_node_get_wwpn(node); tgt->wwnn = ocs_node_get_wwnn(node); return 0; } uint32_t ocs_add_new_tgt(ocs_node_t *node, ocs_fcport *fcp) { uint32_t i; struct ocs_softc *ocs = node->ocs; union ccb *ccb = NULL; for (i = 0; i < OCS_MAX_TARGETS; i++) { if (fcp->tgt[i].state == OCS_TGT_STATE_NONE) break; } if (NULL == (ccb = xpt_alloc_ccb_nowait())) { device_printf(ocs->dev, "%s: ccb allocation failed\n", __func__); return -1; } if (CAM_REQ_CMP != xpt_create_path(&ccb->ccb_h.path, xpt_periph, cam_sim_path(fcp->sim), i, CAM_LUN_WILDCARD)) { device_printf( ocs->dev, "%s: target path creation failed\n", __func__); xpt_free_ccb(ccb); return -1; } ocs_update_tgt(node, fcp, i); xpt_rescan(ccb); return 0; } int32_t ocs_scsi_new_target(ocs_node_t *node) { ocs_fcport *fcp = NULL; int32_t i; fcp = node->sport->tgt_data; if (fcp == NULL) { printf("%s:FCP is NULL \n", __func__); return 0; } i = ocs_tgt_find(fcp, node); if (i < 0) { ocs_add_new_tgt(node, fcp); return 0; } ocs_update_tgt(node, fcp, i); return 0; } static void ocs_delete_target(ocs_t *ocs, ocs_fcport *fcp, int tgt) { struct cam_path *cpath = NULL; if (!fcp->sim) { device_printf(ocs->dev, "%s: calling with NULL sim\n", __func__); return; } if (CAM_REQ_CMP == xpt_create_path(&cpath, NULL, cam_sim_path(fcp->sim), tgt, CAM_LUN_WILDCARD)) { xpt_async(AC_LOST_DEVICE, cpath, NULL); xpt_free_path(cpath); } } /* * Device Lost Timer Function- when we have decided that a device was lost, * we wait a specific period of time prior to telling the OS about lost device. * * This timer function gets activated when the device was lost. * This function fires once a second and then scans the port database * for devices that are marked dead but still have a virtual target assigned. * We decrement a counter for that port database entry, and when it hits zero, * we tell the OS the device was lost. Timer will be stopped when the device * comes back active or removed from the OS. */ static void ocs_ldt(void *arg) { ocs_fcport *fcp = arg; taskqueue_enqueue(taskqueue_thread, &fcp->ltask); } static void ocs_ldt_task(void *arg, int pending) { ocs_fcport *fcp = arg; ocs_t *ocs = fcp->ocs; int i, more_to_do = 0; ocs_fc_target_t *tgt = NULL; for (i = 0; i < OCS_MAX_TARGETS; i++) { tgt = &fcp->tgt[i]; if (tgt->state != OCS_TGT_STATE_LOST) { continue; } if ((tgt->gone_timer != 0) && (ocs->attached)){ tgt->gone_timer -= 1; more_to_do++; continue; } ocs_delete_target(ocs, fcp, i); tgt->state = OCS_TGT_STATE_NONE; } if (more_to_do) { callout_reset(&fcp->ldt, hz, ocs_ldt, fcp); } else { callout_deactivate(&fcp->ldt); } } /** * @ingroup scsi_api_initiator * @brief Delete a SCSI target node * * Sent by base driver to notify a initiator-client that a remote target * is now gone. The base driver will have terminated all outstanding IOs * and the initiator-client will receive appropriate completions. * * The ocs_node_t structure has and elment of type ocs_scsi_ini_node_t named * ini_node that is declared and used by a target-server for private * information. * * This function is only called if the base driver is enabled for * initiator capability. * * @param node pointer node being deleted * @param reason reason for deleting the target * * @return Returns OCS_SCSI_CALL_ASYNC if target delete is queued for async * completion and OCS_SCSI_CALL_COMPLETE if call completed or error. * * @note */ int32_t ocs_scsi_del_target(ocs_node_t *node, ocs_scsi_del_target_reason_e reason) { struct ocs_softc *ocs = node->ocs; ocs_fcport *fcp = NULL; ocs_fc_target_t *tgt = NULL; int32_t tgt_id; if (ocs == NULL) { ocs_log_err(ocs,"OCS is NULL \n"); return -1; } fcp = node->sport->tgt_data; if (fcp == NULL) { ocs_log_err(ocs,"FCP is NULL \n"); return -1; } tgt_id = ocs_tgt_find(fcp, node); if (tgt_id == -1) { ocs_log_err(ocs,"target is invalid\n"); return -1; } tgt = &fcp->tgt[tgt_id]; // IF in shutdown delete target. if(!ocs->attached) { ocs_delete_target(ocs, fcp, tgt_id); } else { tgt->state = OCS_TGT_STATE_LOST; tgt->gone_timer = 30; if (!callout_active(&fcp->ldt)) { callout_reset(&fcp->ldt, hz, ocs_ldt, fcp); } } return 0; } /** * @brief Initialize SCSI IO * * Initialize SCSI IO, this function is called once per IO during IO pool * allocation so that the target server may initialize any of its own private * data. * * @param io pointer to SCSI IO object * * @return returns 0 for success, a negative error code value for failure. */ int32_t ocs_scsi_tgt_io_init(ocs_io_t *io) { return 0; } /** * @brief Uninitialize SCSI IO * * Uninitialize target server private data in a SCSI io object * * @param io pointer to SCSI IO object * * @return returns 0 for success, a negative error code value for failure. */ int32_t ocs_scsi_tgt_io_exit(ocs_io_t *io) { return 0; } /** * @brief Initialize SCSI IO * * Initialize SCSI IO, this function is called once per IO during IO pool * allocation so that the initiator client may initialize any of its own private * data. * * @param io pointer to SCSI IO object * * @return returns 0 for success, a negative error code value for failure. */ int32_t ocs_scsi_ini_io_init(ocs_io_t *io) { return 0; } /** * @brief Uninitialize SCSI IO * * Uninitialize initiator client private data in a SCSI io object * * @param io pointer to SCSI IO object * * @return returns 0 for success, a negative error code value for failure. */ int32_t ocs_scsi_ini_io_exit(ocs_io_t *io) { return 0; } /* * End of functions required by SCSI base driver API ***************************************************************************/ static __inline void ocs_set_ccb_status(union ccb *ccb, cam_status status) { ccb->ccb_h.status &= ~CAM_STATUS_MASK; ccb->ccb_h.status |= status; } static int32_t ocs_task_set_full_or_busy_cb(ocs_io_t *io, ocs_scsi_io_status_e scsi_status, uint32_t flags, void *arg) { ocs_target_io_free(io); return 0; } /** * @brief send SCSI task set full or busy status * * A SCSI task set full or busy response is sent depending on whether * another IO is already active on the LUN. * * @param io pointer to IO context * * @return returns 0 for success, a negative error code value for failure. */ static int32_t ocs_task_set_full_or_busy(ocs_io_t *io) { ocs_scsi_cmd_resp_t rsp = { 0 }; ocs_t *ocs = io->ocs; /* * If there is another command for the LUN, then send task set full, * if this is the first one, then send the busy status. * * if 'busy sent' is FALSE, set it to TRUE and send BUSY * otherwise send FULL */ if (atomic_cmpset_acq_32(&io->node->tgt_node.busy_sent, FALSE, TRUE)) { rsp.scsi_status = SCSI_STATUS_BUSY; /* Busy */ printf("%s: busy [%s] tag=%x iiu=%d ihw=%d\n", __func__, io->node->display_name, io->tag, io->ocs->io_in_use, io->ocs->io_high_watermark); } else { rsp.scsi_status = SCSI_STATUS_TASK_SET_FULL; /* Task set full */ printf("%s: full tag=%x iiu=%d\n", __func__, io->tag, io->ocs->io_in_use); } /* Log a message here indicating a busy or task set full state */ if (OCS_LOG_ENABLE_Q_FULL_BUSY_MSG(ocs)) { /* Log Task Set Full */ if (rsp.scsi_status == SCSI_STATUS_TASK_SET_FULL) { /* Task Set Full Message */ ocs_log_info(ocs, "OCS CAM TASK SET FULL. Tasks >= %d\n", ocs->io_high_watermark); } else if (rsp.scsi_status == SCSI_STATUS_BUSY) { /* Log Busy Message */ ocs_log_info(ocs, "OCS CAM SCSI BUSY\n"); } } /* Send the response */ return ocs_scsi_send_resp(io, 0, &rsp, ocs_task_set_full_or_busy_cb, NULL); } /** * @ingroup cam_io * @brief Process target IO completions * * @param io * @param scsi_status did the IO complete successfully * @param flags * @param arg application specific pointer provided in the call to ocs_target_io() * * @todo */ static int32_t ocs_scsi_target_io_cb(ocs_io_t *io, ocs_scsi_io_status_e scsi_status, uint32_t flags, void *arg) { union ccb *ccb = arg; struct ccb_scsiio *csio = &ccb->csio; struct ocs_softc *ocs = csio->ccb_h.ccb_ocs_ptr; uint32_t cam_dir = ccb->ccb_h.flags & CAM_DIR_MASK; uint32_t io_is_done = (ccb->ccb_h.flags & CAM_SEND_STATUS) == CAM_SEND_STATUS; ccb->ccb_h.status &= ~CAM_SIM_QUEUED; if (CAM_DIR_NONE != cam_dir) { bus_dmasync_op_t op; if (CAM_DIR_IN == cam_dir) { op = BUS_DMASYNC_POSTREAD; } else { op = BUS_DMASYNC_POSTWRITE; } /* Synchronize the DMA memory with the CPU and free the mapping */ bus_dmamap_sync(ocs->buf_dmat, io->tgt_io.dmap, op); if (io->tgt_io.flags & OCS_CAM_IO_F_DMAPPED) { bus_dmamap_unload(ocs->buf_dmat, io->tgt_io.dmap); } } if (io->tgt_io.sendresp) { io->tgt_io.sendresp = 0; ocs_scsi_cmd_resp_t resp = { 0 }; io->tgt_io.state = OCS_CAM_IO_RESP; resp.scsi_status = scsi_status; if (ccb->ccb_h.flags & CAM_SEND_SENSE) { resp.sense_data = (uint8_t *)&csio->sense_data; resp.sense_data_length = csio->sense_len; } resp.residual = io->exp_xfer_len - io->transferred; return ocs_scsi_send_resp(io, 0, &resp, ocs_scsi_target_io_cb, ccb); } switch (scsi_status) { case OCS_SCSI_STATUS_GOOD: ocs_set_ccb_status(ccb, CAM_REQ_CMP); break; case OCS_SCSI_STATUS_ABORTED: ocs_set_ccb_status(ccb, CAM_REQ_ABORTED); break; default: ocs_set_ccb_status(ccb, CAM_REQ_CMP_ERR); } if (io_is_done) { if ((io->tgt_io.flags & OCS_CAM_IO_F_ABORT_NOTIFY) == 0) { ocs_target_io_free(io); } } else { io->tgt_io.state = OCS_CAM_IO_DATA_DONE; /*device_printf(ocs->dev, "%s: CTIO state=%d tag=%#x\n", __func__, io->tgt_io.state, io->tag);*/ } xpt_done(ccb); return 0; } /** * @note 1. Since the CCB is assigned to the ocs_io_t on an XPT_CONT_TARGET_IO * action, if an initiator aborts a command prior to the SIM receiving * a CTIO, the IO's CCB will be NULL. */ static int32_t ocs_io_abort_cb(ocs_io_t *io, ocs_scsi_io_status_e scsi_status, uint32_t flags, void *arg) { struct ocs_softc *ocs = NULL; ocs_io_t *tmfio = arg; ocs_scsi_tmf_resp_e tmf_resp = OCS_SCSI_TMF_FUNCTION_COMPLETE; int32_t rc = 0; ocs = io->ocs; io->tgt_io.flags &= ~OCS_CAM_IO_F_ABORT_DEV; /* A good status indicates the IO was aborted and will be completed in * the IO's completion handler. Handle the other cases here. */ switch (scsi_status) { case OCS_SCSI_STATUS_GOOD: break; case OCS_SCSI_STATUS_NO_IO: break; default: device_printf(ocs->dev, "%s: unhandled status %d\n", __func__, scsi_status); tmf_resp = OCS_SCSI_TMF_FUNCTION_REJECTED; rc = -1; } ocs_scsi_send_tmf_resp(tmfio, tmf_resp, NULL, ocs_target_tmf_cb, NULL); return rc; } /** * @ingroup cam_io * @brief Process initiator IO completions * * @param io * @param scsi_status did the IO complete successfully * @param rsp pointer to response buffer * @param flags * @param arg application specific pointer provided in the call to ocs_target_io() * * @todo */ static int32_t ocs_scsi_initiator_io_cb(ocs_io_t *io, ocs_scsi_io_status_e scsi_status, ocs_scsi_cmd_resp_t *rsp, uint32_t flags, void *arg) { union ccb *ccb = arg; struct ccb_scsiio *csio = &ccb->csio; struct ocs_softc *ocs = csio->ccb_h.ccb_ocs_ptr; uint32_t cam_dir = ccb->ccb_h.flags & CAM_DIR_MASK; cam_status ccb_status= CAM_REQ_CMP_ERR; if (CAM_DIR_NONE != cam_dir) { bus_dmasync_op_t op; if (CAM_DIR_IN == cam_dir) { op = BUS_DMASYNC_POSTREAD; } else { op = BUS_DMASYNC_POSTWRITE; } /* Synchronize the DMA memory with the CPU and free the mapping */ bus_dmamap_sync(ocs->buf_dmat, io->tgt_io.dmap, op); if (io->tgt_io.flags & OCS_CAM_IO_F_DMAPPED) { bus_dmamap_unload(ocs->buf_dmat, io->tgt_io.dmap); } } if (scsi_status == OCS_SCSI_STATUS_CHECK_RESPONSE) { csio->scsi_status = rsp->scsi_status; if (SCSI_STATUS_OK != rsp->scsi_status) ccb_status = CAM_SCSI_STATUS_ERROR; else ccb_status = CAM_REQ_CMP; csio->resid = rsp->residual; /* * If we've already got a SCSI error, prefer that because it * will have more detail. */ - if ((rsp->residual < 0) && (ccb_status == CAM_REQ_CMP)) { + if ((rsp->residual < 0) && (ccb_status == CAM_REQ_CMP)) { ccb_status = CAM_DATA_RUN_ERR; } if ((rsp->sense_data_length) && !(ccb->ccb_h.flags & (CAM_SENSE_PHYS | CAM_SENSE_PTR))) { uint32_t sense_len = 0; ccb->ccb_h.status |= CAM_AUTOSNS_VALID; if (rsp->sense_data_length < csio->sense_len) { csio->sense_resid = csio->sense_len - rsp->sense_data_length; sense_len = rsp->sense_data_length; } else { csio->sense_resid = 0; sense_len = csio->sense_len; } ocs_memcpy(&csio->sense_data, rsp->sense_data, sense_len); } } else if (scsi_status != OCS_SCSI_STATUS_GOOD) { - ccb_status = CAM_REQ_CMP_ERR; + const char *err_desc = NULL; + char path_str[64]; + char err_str[224]; + struct sbuf sb; + size_t i; + + sbuf_new(&sb, err_str, sizeof(err_str), 0); + + xpt_path_string(ccb->ccb_h.path, path_str, sizeof(path_str)); + sbuf_cat(&sb, path_str); + + for (i = 0; i < (sizeof(ocs_status_desc) / + sizeof(ocs_status_desc[0])); i++) { + if (scsi_status == ocs_status_desc[i].status) { + err_desc = ocs_status_desc[i].desc; + break; + } + } + if (ccb->ccb_h.func_code == XPT_SCSI_IO) { + scsi_command_string(&ccb->csio, &sb); + sbuf_printf(&sb, "length %d ", ccb->csio.dxfer_len); + } + sbuf_printf(&sb, "error status %d (%s)\n", scsi_status, + (err_desc != NULL) ? err_desc : "Unknown"); + sbuf_finish(&sb); + printf("%s", sbuf_data(&sb)); + + switch (scsi_status) { + case OCS_SCSI_STATUS_ABORTED: + case OCS_SCSI_STATUS_ABORT_IN_PROGRESS: + ccb_status = CAM_REQ_ABORTED; + break; + case OCS_SCSI_STATUS_DIF_GUARD_ERROR: + case OCS_SCSI_STATUS_DIF_REF_TAG_ERROR: + case OCS_SCSI_STATUS_DIF_APP_TAG_ERROR: + case OCS_SCSI_STATUS_DIF_UNKNOWN_ERROR: + case OCS_SCSI_STATUS_PROTOCOL_CRC_ERROR: + ccb_status = CAM_IDE; + break; + case OCS_SCSI_STATUS_ERROR: + case OCS_SCSI_STATUS_NO_IO: + ccb_status = CAM_REQ_CMP_ERR; + break; + case OCS_SCSI_STATUS_COMMAND_TIMEOUT: + case OCS_SCSI_STATUS_TIMEDOUT_AND_ABORTED: + ccb_status = CAM_CMD_TIMEOUT; + break; + case OCS_SCSI_STATUS_SHUTDOWN: + case OCS_SCSI_STATUS_NEXUS_LOST: + ccb_status = CAM_SCSI_IT_NEXUS_LOST; + break; + default: + ccb_status = CAM_REQ_CMP_ERR; + break; + } + } else { ccb_status = CAM_REQ_CMP; } ocs_set_ccb_status(ccb, ccb_status); ocs_scsi_io_free(io); csio->ccb_h.ccb_io_ptr = NULL; csio->ccb_h.ccb_ocs_ptr = NULL; ccb->ccb_h.status &= ~CAM_SIM_QUEUED; if ((ccb_status != CAM_REQ_CMP) && ((ccb->ccb_h.status & CAM_DEV_QFRZN) == 0)) { ccb->ccb_h.status |= CAM_DEV_QFRZN; xpt_freeze_devq(ccb->ccb_h.path, 1); } xpt_done(ccb); return 0; } /** * @brief Load scatter-gather list entries into an IO * * This routine relies on the driver instance's software context pointer and * the IO object pointer having been already assigned to hooks in the CCB. * Although the routine does not return success/fail, callers can look at the * n_sge member to determine if the mapping failed (0 on failure). * * @param arg pointer to the CAM ccb for this IO * @param seg DMA address/length pairs * @param nseg number of DMA address/length pairs * @param error any errors while mapping the IO */ static void ocs_scsi_dmamap_load(void *arg, bus_dma_segment_t *seg, int nseg, int error) { ocs_dmamap_load_arg_t *sglarg = (ocs_dmamap_load_arg_t*) arg; if (error) { printf("%s: seg=%p nseg=%d error=%d\n", __func__, seg, nseg, error); sglarg->rc = -1; } else { uint32_t i = 0; uint32_t c = 0; if ((sglarg->sgl_count + nseg) > sglarg->sgl_max) { printf("%s: sgl_count=%d nseg=%d max=%d\n", __func__, sglarg->sgl_count, nseg, sglarg->sgl_max); sglarg->rc = -2; return; } for (i = 0, c = sglarg->sgl_count; i < nseg; i++, c++) { sglarg->sgl[c].addr = seg[i].ds_addr; sglarg->sgl[c].len = seg[i].ds_len; } sglarg->sgl_count = c; sglarg->rc = 0; } } /** * @brief Build a scatter-gather list from a CAM CCB * * @param ocs the driver instance's software context * @param ccb pointer to the CCB * @param io pointer to the previously allocated IO object * @param sgl pointer to SGL * @param sgl_max number of entries in sgl * * @return 0 on success, non-zero otherwise */ static int32_t ocs_build_scsi_sgl(struct ocs_softc *ocs, union ccb *ccb, ocs_io_t *io, ocs_scsi_sgl_t *sgl, uint32_t sgl_max) { ocs_dmamap_load_arg_t dmaarg; int32_t err = 0; if (!ocs || !ccb || !io || !sgl) { printf("%s: bad param o=%p c=%p i=%p s=%p\n", __func__, ocs, ccb, io, sgl); return -1; } io->tgt_io.flags &= ~OCS_CAM_IO_F_DMAPPED; dmaarg.sgl = sgl; dmaarg.sgl_count = 0; dmaarg.sgl_max = sgl_max; dmaarg.rc = 0; err = bus_dmamap_load_ccb(ocs->buf_dmat, io->tgt_io.dmap, ccb, ocs_scsi_dmamap_load, &dmaarg, 0); if (err || dmaarg.rc) { device_printf( ocs->dev, "%s: bus_dmamap_load_ccb error (%d %d)\n", __func__, err, dmaarg.rc); return -1; } io->tgt_io.flags |= OCS_CAM_IO_F_DMAPPED; return dmaarg.sgl_count; } /** * @ingroup cam_io * @brief Send a target IO * * @param ocs the driver instance's software context * @param ccb pointer to the CCB * * @return 0 on success, non-zero otherwise */ static int32_t ocs_target_io(struct ocs_softc *ocs, union ccb *ccb) { struct ccb_scsiio *csio = &ccb->csio; ocs_io_t *io = NULL; uint32_t cam_dir = ccb->ccb_h.flags & CAM_DIR_MASK; bool sendstatus = ccb->ccb_h.flags & CAM_SEND_STATUS; uint32_t xferlen = csio->dxfer_len; int32_t rc = 0; io = ocs_scsi_find_io(ocs, csio->tag_id); if (io == NULL) { ocs_set_ccb_status(ccb, CAM_REQ_CMP_ERR); panic("bad tag value"); return 1; } /* Received an ABORT TASK for this IO */ if (io->tgt_io.flags & OCS_CAM_IO_F_ABORT_RECV) { /*device_printf(ocs->dev, "%s: XPT_CONT_TARGET_IO state=%d tag=%#x xid=%#x flags=%#x\n", __func__, io->tgt_io.state, io->tag, io->init_task_tag, io->tgt_io.flags);*/ io->tgt_io.flags |= OCS_CAM_IO_F_ABORT_CAM; if (ccb->ccb_h.flags & CAM_SEND_STATUS) { ocs_set_ccb_status(ccb, CAM_REQ_CMP); ocs_target_io_free(io); return 1; } ocs_set_ccb_status(ccb, CAM_REQ_ABORTED); return 1; } io->tgt_io.app = ccb; ocs_set_ccb_status(ccb, CAM_REQ_INPROG); ccb->ccb_h.status |= CAM_SIM_QUEUED; csio->ccb_h.ccb_ocs_ptr = ocs; csio->ccb_h.ccb_io_ptr = io; if ((sendstatus && (xferlen == 0))) { ocs_scsi_cmd_resp_t resp = { 0 }; ocs_assert(ccb->ccb_h.flags & CAM_SEND_STATUS, -1); io->tgt_io.state = OCS_CAM_IO_RESP; resp.scsi_status = csio->scsi_status; if (ccb->ccb_h.flags & CAM_SEND_SENSE) { resp.sense_data = (uint8_t *)&csio->sense_data; resp.sense_data_length = csio->sense_len; } resp.residual = io->exp_xfer_len - io->transferred; rc = ocs_scsi_send_resp(io, 0, &resp, ocs_scsi_target_io_cb, ccb); } else if (xferlen != 0) { ocs_scsi_sgl_t *sgl; int32_t sgl_count = 0; io->tgt_io.state = OCS_CAM_IO_DATA; if (sendstatus) io->tgt_io.sendresp = 1; sgl = io->sgl; sgl_count = ocs_build_scsi_sgl(ocs, ccb, io, sgl, io->sgl_allocated); if (sgl_count > 0) { if (cam_dir == CAM_DIR_IN) { rc = ocs_scsi_send_rd_data(io, 0, NULL, sgl, sgl_count, csio->dxfer_len, ocs_scsi_target_io_cb, ccb); } else if (cam_dir == CAM_DIR_OUT) { rc = ocs_scsi_recv_wr_data(io, 0, NULL, sgl, sgl_count, csio->dxfer_len, ocs_scsi_target_io_cb, ccb); } else { device_printf(ocs->dev, "%s:" " unknown CAM direction %#x\n", __func__, cam_dir); ocs_set_ccb_status(ccb, CAM_REQ_INVALID); rc = 1; } } else { device_printf(ocs->dev, "%s: building SGL failed\n", __func__); ocs_set_ccb_status(ccb, CAM_REQ_CMP_ERR); rc = 1; } } else { device_printf(ocs->dev, "%s: Wrong value xfer and sendstatus" " are 0 \n", __func__); ocs_set_ccb_status(ccb, CAM_REQ_INVALID); rc = 1; } if (rc) { ocs_set_ccb_status(ccb, CAM_REQ_CMP_ERR); ccb->ccb_h.status &= ~CAM_SIM_QUEUED; io->tgt_io.state = OCS_CAM_IO_DATA_DONE; device_printf(ocs->dev, "%s: CTIO state=%d tag=%#x\n", __func__, io->tgt_io.state, io->tag); if ((sendstatus && (xferlen == 0))) { ocs_target_io_free(io); } } return rc; } static int32_t ocs_target_tmf_cb(ocs_io_t *io, ocs_scsi_io_status_e scsi_status, uint32_t flags, void *arg) { /*device_printf(io->ocs->dev, "%s: tag=%x io=%p s=%#x\n", __func__, io->tag, io, scsi_status);*/ ocs_scsi_io_complete(io); return 0; } /** * @ingroup cam_io * @brief Send an initiator IO * * @param ocs the driver instance's software context * @param ccb pointer to the CCB * * @return 0 on success, non-zero otherwise */ static int32_t ocs_initiator_io(struct ocs_softc *ocs, union ccb *ccb) { int32_t rc; struct ccb_scsiio *csio = &ccb->csio; struct ccb_hdr *ccb_h = &csio->ccb_h; ocs_node_t *node = NULL; ocs_io_t *io = NULL; ocs_scsi_sgl_t *sgl; int32_t flags, sgl_count; ocs_fcport *fcp; fcp = FCPORT(ocs, cam_sim_bus(xpt_path_sim((ccb)->ccb_h.path))); if (fcp->tgt[ccb_h->target_id].state == OCS_TGT_STATE_LOST) { device_printf(ocs->dev, "%s: device LOST %d\n", __func__, ccb_h->target_id); return CAM_REQUEUE_REQ; } if (fcp->tgt[ccb_h->target_id].state == OCS_TGT_STATE_NONE) { device_printf(ocs->dev, "%s: device not ready %d\n", __func__, ccb_h->target_id); return CAM_SEL_TIMEOUT; } node = ocs_node_get_instance(ocs, fcp->tgt[ccb_h->target_id].node_id); if (node == NULL) { device_printf(ocs->dev, "%s: no device %d\n", __func__, ccb_h->target_id); return CAM_SEL_TIMEOUT; } if (!node->targ) { device_printf(ocs->dev, "%s: not target device %d\n", __func__, ccb_h->target_id); return CAM_SEL_TIMEOUT; } io = ocs_scsi_io_alloc(node, OCS_SCSI_IO_ROLE_ORIGINATOR); if (io == NULL) { device_printf(ocs->dev, "%s: unable to alloc IO\n", __func__); return -1; } /* eventhough this is INI, use target structure as ocs_build_scsi_sgl * only references the tgt_io part of an ocs_io_t */ io->tgt_io.app = ccb; csio->ccb_h.ccb_ocs_ptr = ocs; csio->ccb_h.ccb_io_ptr = io; sgl = io->sgl; sgl_count = ocs_build_scsi_sgl(ocs, ccb, io, sgl, io->sgl_allocated); if (sgl_count < 0) { ocs_scsi_io_free(io); device_printf(ocs->dev, "%s: building SGL failed\n", __func__); return -1; } if (ccb->ccb_h.timeout == CAM_TIME_INFINITY) { io->timeout = 0; } else if (ccb->ccb_h.timeout == CAM_TIME_DEFAULT) { io->timeout = OCS_CAM_IO_TIMEOUT; } else { - io->timeout = ccb->ccb_h.timeout; + if (ccb->ccb_h.timeout < 1000) + io->timeout = 1; + else { + io->timeout = ccb->ccb_h.timeout / 1000; + } } switch (csio->tag_action) { case MSG_HEAD_OF_Q_TAG: flags = OCS_SCSI_CMD_HEAD_OF_QUEUE; break; case MSG_ORDERED_Q_TAG: flags = OCS_SCSI_CMD_ORDERED; break; case MSG_ACA_TASK: flags = OCS_SCSI_CMD_ACA; break; case CAM_TAG_ACTION_NONE: case MSG_SIMPLE_Q_TAG: default: flags = OCS_SCSI_CMD_SIMPLE; break; } flags |= (csio->priority << OCS_SCSI_PRIORITY_SHIFT) & OCS_SCSI_PRIORITY_MASK; switch (ccb->ccb_h.flags & CAM_DIR_MASK) { case CAM_DIR_NONE: rc = ocs_scsi_send_nodata_io(node, io, ccb_h->target_lun, ccb->ccb_h.flags & CAM_CDB_POINTER ? csio->cdb_io.cdb_ptr: csio->cdb_io.cdb_bytes, csio->cdb_len, ocs_scsi_initiator_io_cb, ccb, flags); break; case CAM_DIR_IN: rc = ocs_scsi_send_rd_io(node, io, ccb_h->target_lun, ccb->ccb_h.flags & CAM_CDB_POINTER ? csio->cdb_io.cdb_ptr: csio->cdb_io.cdb_bytes, csio->cdb_len, NULL, sgl, sgl_count, csio->dxfer_len, ocs_scsi_initiator_io_cb, ccb, flags); break; case CAM_DIR_OUT: rc = ocs_scsi_send_wr_io(node, io, ccb_h->target_lun, ccb->ccb_h.flags & CAM_CDB_POINTER ? csio->cdb_io.cdb_ptr: csio->cdb_io.cdb_bytes, csio->cdb_len, NULL, sgl, sgl_count, csio->dxfer_len, ocs_scsi_initiator_io_cb, ccb, flags); break; default: panic("%s invalid data direction %08x\n", __func__, ccb->ccb_h.flags); break; } return rc; } static uint32_t ocs_fcp_change_role(struct ocs_softc *ocs, ocs_fcport *fcp, uint32_t new_role) { uint32_t rc = 0, was = 0, i = 0; ocs_vport_spec_t *vport = fcp->vport; for (was = 0, i = 0; i < (ocs->num_vports + 1); i++) { if (FCPORT(ocs, i)->role != KNOB_ROLE_NONE) was++; } // Physical port if ((was == 0) || (vport == NULL)) { fcp->role = new_role; if (vport == NULL) { ocs->enable_ini = (new_role & KNOB_ROLE_INITIATOR)? 1:0; ocs->enable_tgt = (new_role & KNOB_ROLE_TARGET)? 1:0; } else { vport->enable_ini = (new_role & KNOB_ROLE_INITIATOR)? 1:0; vport->enable_tgt = (new_role & KNOB_ROLE_TARGET)? 1:0; } rc = ocs_xport_control(ocs->xport, OCS_XPORT_PORT_OFFLINE); if (rc) { ocs_log_debug(ocs, "port offline failed : %d\n", rc); } rc = ocs_xport_control(ocs->xport, OCS_XPORT_PORT_ONLINE); if (rc) { ocs_log_debug(ocs, "port online failed : %d\n", rc); } return 0; } if ((fcp->role != KNOB_ROLE_NONE)){ fcp->role = new_role; vport->enable_ini = (new_role & KNOB_ROLE_INITIATOR)? 1:0; vport->enable_tgt = (new_role & KNOB_ROLE_TARGET)? 1:0; /* New Sport will be created in sport deleted cb */ return ocs_sport_vport_del(ocs, ocs->domain, vport->wwpn, vport->wwnn); } fcp->role = new_role; vport->enable_ini = (new_role & KNOB_ROLE_INITIATOR)? 1:0; vport->enable_tgt = (new_role & KNOB_ROLE_TARGET)? 1:0; if (fcp->role != KNOB_ROLE_NONE) { return ocs_sport_vport_alloc(ocs->domain, vport); } return (0); } /** * @ingroup cam_api * @brief Process CAM actions * * The driver supplies this routine to the CAM during intialization and * is the main entry point for processing CAM Control Blocks (CCB) * * @param sim pointer to the SCSI Interface Module * @param ccb CAM control block * * @todo * - populate path inquiry data via info retrieved from SLI port */ static void ocs_action(struct cam_sim *sim, union ccb *ccb) { struct ocs_softc *ocs = (struct ocs_softc *)cam_sim_softc(sim); struct ccb_hdr *ccb_h = &ccb->ccb_h; int32_t rc, bus; bus = cam_sim_bus(sim); switch (ccb_h->func_code) { case XPT_SCSI_IO: if ((ccb->ccb_h.flags & CAM_CDB_POINTER) != 0) { if ((ccb->ccb_h.flags & CAM_CDB_PHYS) != 0) { ccb->ccb_h.status = CAM_REQ_INVALID; xpt_done(ccb); break; } } rc = ocs_initiator_io(ocs, ccb); if (0 == rc) { ocs_set_ccb_status(ccb, CAM_REQ_INPROG | CAM_SIM_QUEUED); break; } else { if (rc == CAM_REQUEUE_REQ) { cam_freeze_devq(ccb->ccb_h.path); cam_release_devq(ccb->ccb_h.path, RELSIM_RELEASE_AFTER_TIMEOUT, 0, 100, 0); ccb->ccb_h.status = CAM_REQUEUE_REQ; xpt_done(ccb); break; } ccb->ccb_h.status &= ~CAM_SIM_QUEUED; if (rc > 0) { ocs_set_ccb_status(ccb, rc); } else { ocs_set_ccb_status(ccb, CAM_SEL_TIMEOUT); } } xpt_done(ccb); break; case XPT_PATH_INQ: { struct ccb_pathinq *cpi = &ccb->cpi; struct ccb_pathinq_settings_fc *fc = &cpi->xport_specific.fc; ocs_fcport *fcp = FCPORT(ocs, bus); uint64_t wwn = 0; ocs_xport_stats_t value; cpi->version_num = 1; cpi->protocol = PROTO_SCSI; cpi->protocol_version = SCSI_REV_SPC; if (ocs->ocs_xport == OCS_XPORT_FC) { cpi->transport = XPORT_FC; } else { cpi->transport = XPORT_UNKNOWN; } cpi->transport_version = 0; /* Set the transport parameters of the SIM */ ocs_xport_status(ocs->xport, OCS_XPORT_LINK_SPEED, &value); fc->bitrate = value.value * 1000; /* speed in Mbps */ wwn = *((uint64_t *)ocs_scsi_get_property_ptr(ocs, OCS_SCSI_WWPN)); fc->wwpn = be64toh(wwn); wwn = *((uint64_t *)ocs_scsi_get_property_ptr(ocs, OCS_SCSI_WWNN)); fc->wwnn = be64toh(wwn); fc->port = fcp->fc_id; if (ocs->config_tgt) { cpi->target_sprt = PIT_PROCESSOR | PIT_DISCONNECT | PIT_TERM_IO; } cpi->hba_misc = PIM_NOBUSRESET | PIM_UNMAPPED; cpi->hba_misc |= PIM_EXTLUNS | PIM_NOSCAN; cpi->hba_inquiry = PI_TAG_ABLE; cpi->max_target = OCS_MAX_TARGETS; cpi->initiator_id = ocs->max_remote_nodes + 1; if (!ocs->enable_ini) { cpi->hba_misc |= PIM_NOINITIATOR; } cpi->max_lun = OCS_MAX_LUN; cpi->bus_id = cam_sim_bus(sim); /* Need to supply a base transfer speed prior to linking up * Worst case, this would be FC 1Gbps */ cpi->base_transfer_speed = 1 * 1000 * 1000; /* Calculate the max IO supported * Worst case would be an OS page per SGL entry */ cpi->maxio = PAGE_SIZE * (ocs_scsi_get_property(ocs, OCS_SCSI_MAX_SGL) - 1); strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN); strncpy(cpi->hba_vid, "Emulex", HBA_IDLEN); strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN); cpi->unit_number = cam_sim_unit(sim); cpi->ccb_h.status = CAM_REQ_CMP; xpt_done(ccb); break; } case XPT_GET_TRAN_SETTINGS: { struct ccb_trans_settings *cts = &ccb->cts; struct ccb_trans_settings_scsi *scsi = &cts->proto_specific.scsi; struct ccb_trans_settings_fc *fc = &cts->xport_specific.fc; ocs_xport_stats_t value; ocs_fcport *fcp = FCPORT(ocs, bus); ocs_fc_target_t *tgt = NULL; if (ocs->ocs_xport != OCS_XPORT_FC) { ocs_set_ccb_status(ccb, CAM_REQ_INVALID); xpt_done(ccb); break; } if (cts->ccb_h.target_id > OCS_MAX_TARGETS) { ocs_set_ccb_status(ccb, CAM_DEV_NOT_THERE); xpt_done(ccb); break; } tgt = &fcp->tgt[cts->ccb_h.target_id]; if (tgt->state == OCS_TGT_STATE_NONE) { ocs_set_ccb_status(ccb, CAM_DEV_NOT_THERE); xpt_done(ccb); break; } cts->protocol = PROTO_SCSI; cts->protocol_version = SCSI_REV_SPC2; cts->transport = XPORT_FC; cts->transport_version = 2; scsi->valid = CTS_SCSI_VALID_TQ; scsi->flags = CTS_SCSI_FLAGS_TAG_ENB; /* speed in Mbps */ ocs_xport_status(ocs->xport, OCS_XPORT_LINK_SPEED, &value); fc->bitrate = value.value * 100; fc->wwpn = tgt->wwpn; fc->wwnn = tgt->wwnn; fc->port = tgt->port_id; fc->valid = CTS_FC_VALID_SPEED | CTS_FC_VALID_WWPN | CTS_FC_VALID_WWNN | CTS_FC_VALID_PORT; ocs_set_ccb_status(ccb, CAM_REQ_CMP); xpt_done(ccb); break; } case XPT_SET_TRAN_SETTINGS: ocs_set_ccb_status(ccb, CAM_REQ_CMP); xpt_done(ccb); break; case XPT_CALC_GEOMETRY: cam_calc_geometry(&ccb->ccg, TRUE); xpt_done(ccb); break; case XPT_GET_SIM_KNOB: { struct ccb_sim_knob *knob = &ccb->knob; uint64_t wwn = 0; ocs_fcport *fcp = FCPORT(ocs, bus); if (ocs->ocs_xport != OCS_XPORT_FC) { ocs_set_ccb_status(ccb, CAM_REQ_INVALID); xpt_done(ccb); break; } if (bus == 0) { wwn = *((uint64_t *)ocs_scsi_get_property_ptr(ocs, OCS_SCSI_WWNN)); knob->xport_specific.fc.wwnn = be64toh(wwn); wwn = *((uint64_t *)ocs_scsi_get_property_ptr(ocs, OCS_SCSI_WWPN)); knob->xport_specific.fc.wwpn = be64toh(wwn); } else { knob->xport_specific.fc.wwnn = fcp->vport->wwnn; knob->xport_specific.fc.wwpn = fcp->vport->wwpn; } knob->xport_specific.fc.role = fcp->role; knob->xport_specific.fc.valid = KNOB_VALID_ADDRESS | KNOB_VALID_ROLE; ocs_set_ccb_status(ccb, CAM_REQ_CMP); xpt_done(ccb); break; } case XPT_SET_SIM_KNOB: { struct ccb_sim_knob *knob = &ccb->knob; bool role_changed = FALSE; ocs_fcport *fcp = FCPORT(ocs, bus); if (ocs->ocs_xport != OCS_XPORT_FC) { ocs_set_ccb_status(ccb, CAM_REQ_INVALID); xpt_done(ccb); break; } if (knob->xport_specific.fc.valid & KNOB_VALID_ADDRESS) { device_printf(ocs->dev, "%s: XPT_SET_SIM_KNOB wwnn=%llx wwpn=%llx\n", __func__, (unsigned long long)knob->xport_specific.fc.wwnn, (unsigned long long)knob->xport_specific.fc.wwpn); } if (knob->xport_specific.fc.valid & KNOB_VALID_ROLE) { switch (knob->xport_specific.fc.role) { case KNOB_ROLE_NONE: if (fcp->role != KNOB_ROLE_NONE) { role_changed = TRUE; } break; case KNOB_ROLE_TARGET: if (fcp->role != KNOB_ROLE_TARGET) { role_changed = TRUE; } break; case KNOB_ROLE_INITIATOR: if (fcp->role != KNOB_ROLE_INITIATOR) { role_changed = TRUE; } break; case KNOB_ROLE_BOTH: if (fcp->role != KNOB_ROLE_BOTH) { role_changed = TRUE; } break; default: device_printf(ocs->dev, "%s: XPT_SET_SIM_KNOB unsupported role: %d\n", __func__, knob->xport_specific.fc.role); } if (role_changed) { device_printf(ocs->dev, "BUS:%d XPT_SET_SIM_KNOB old_role: %d new_role: %d\n", bus, fcp->role, knob->xport_specific.fc.role); ocs_fcp_change_role(ocs, fcp, knob->xport_specific.fc.role); } } ocs_set_ccb_status(ccb, CAM_REQ_CMP); xpt_done(ccb); break; } case XPT_ABORT: { union ccb *accb = ccb->cab.abort_ccb; switch (accb->ccb_h.func_code) { case XPT_ACCEPT_TARGET_IO: ocs_abort_atio(ocs, ccb); break; case XPT_IMMEDIATE_NOTIFY: ocs_abort_inot(ocs, ccb); break; case XPT_SCSI_IO: rc = ocs_abort_initiator_io(ocs, accb); if (rc) { ccb->ccb_h.status = CAM_UA_ABORT; } else { ccb->ccb_h.status = CAM_REQ_CMP; } break; default: printf("abort of unknown func %#x\n", accb->ccb_h.func_code); ccb->ccb_h.status = CAM_REQ_INVALID; break; } break; } case XPT_RESET_BUS: if (ocs_xport_control(ocs->xport, OCS_XPORT_PORT_OFFLINE) == 0) { rc = ocs_xport_control(ocs->xport, OCS_XPORT_PORT_ONLINE); if (rc) { ocs_log_debug(ocs, "Failed to bring port online" " : %d\n", rc); } ocs_set_ccb_status(ccb, CAM_REQ_CMP); } else { ocs_set_ccb_status(ccb, CAM_REQ_CMP_ERR); } xpt_done(ccb); break; case XPT_RESET_DEV: { ocs_node_t *node = NULL; ocs_io_t *io = NULL; int32_t rc = 0; ocs_fcport *fcp = FCPORT(ocs, bus); node = ocs_node_get_instance(ocs, fcp->tgt[ccb_h->target_id].node_id); if (node == NULL) { device_printf(ocs->dev, "%s: no device %d\n", __func__, ccb_h->target_id); ocs_set_ccb_status(ccb, CAM_DEV_NOT_THERE); xpt_done(ccb); break; } io = ocs_scsi_io_alloc(node, OCS_SCSI_IO_ROLE_ORIGINATOR); if (io == NULL) { device_printf(ocs->dev, "%s: unable to alloc IO\n", __func__); ocs_set_ccb_status(ccb, CAM_REQ_CMP_ERR); xpt_done(ccb); break; } rc = ocs_scsi_send_tmf(node, io, NULL, ccb_h->target_lun, OCS_SCSI_TMF_LOGICAL_UNIT_RESET, NULL, 0, 0, /* sgl, sgl_count, length */ ocs_initiator_tmf_cb, NULL/*arg*/); if (rc) { ocs_set_ccb_status(ccb, CAM_REQ_CMP_ERR); } else { ocs_set_ccb_status(ccb, CAM_REQ_CMP); } if (node->fcp2device) { ocs_reset_crn(node, ccb_h->target_lun); } xpt_done(ccb); break; } case XPT_EN_LUN: /* target support */ { ocs_tgt_resource_t *trsrc = NULL; uint32_t status = 0; ocs_fcport *fcp = FCPORT(ocs, bus); device_printf(ocs->dev, "XPT_EN_LUN %sable %d:%d\n", ccb->cel.enable ? "en" : "dis", ccb->ccb_h.target_id, (unsigned int)ccb->ccb_h.target_lun); trsrc = ocs_tgt_resource_get(fcp, &ccb->ccb_h, &status); if (trsrc) { trsrc->enabled = ccb->cel.enable; /* Abort all ATIO/INOT on LUN disable */ if (trsrc->enabled == FALSE) { ocs_tgt_resource_abort(ocs, trsrc); } else { STAILQ_INIT(&trsrc->atio); STAILQ_INIT(&trsrc->inot); } status = CAM_REQ_CMP; } ocs_set_ccb_status(ccb, status); xpt_done(ccb); break; } /* * The flow of target IOs in CAM is: * - CAM supplies a number of CCBs to the driver used for received * commands. * - when the driver receives a command, it copies the relevant * information to the CCB and returns it to the CAM using xpt_done() * - after the target server processes the request, it creates * a new CCB containing information on how to continue the IO and * passes that to the driver * - the driver processes the "continue IO" (a.k.a CTIO) CCB * - once the IO completes, the driver returns the CTIO to the CAM * using xpt_done() */ case XPT_ACCEPT_TARGET_IO: /* used to inform upper layer of received CDB (a.k.a. ATIO) */ case XPT_IMMEDIATE_NOTIFY: /* used to inform upper layer of other event (a.k.a. INOT) */ { ocs_tgt_resource_t *trsrc = NULL; uint32_t status = 0; ocs_fcport *fcp = FCPORT(ocs, bus); /*printf("XPT_%s %p\n", ccb_h->func_code == XPT_ACCEPT_TARGET_IO ? "ACCEPT_TARGET_IO" : "IMMEDIATE_NOTIFY", ccb);*/ trsrc = ocs_tgt_resource_get(fcp, &ccb->ccb_h, &status); if (trsrc == NULL) { ocs_set_ccb_status(ccb, CAM_DEV_NOT_THERE); xpt_done(ccb); break; } if (XPT_ACCEPT_TARGET_IO == ccb->ccb_h.func_code) { struct ccb_accept_tio *atio = NULL; atio = (struct ccb_accept_tio *)ccb; atio->init_id = 0x0badbeef; atio->tag_id = 0xdeadc0de; STAILQ_INSERT_TAIL(&trsrc->atio, &ccb->ccb_h, sim_links.stqe); } else { STAILQ_INSERT_TAIL(&trsrc->inot, &ccb->ccb_h, sim_links.stqe); } ccb->ccb_h.ccb_io_ptr = NULL; ccb->ccb_h.ccb_ocs_ptr = ocs; ocs_set_ccb_status(ccb, CAM_REQ_INPROG); /* * These actions give resources to the target driver. * If we didn't return here, this function would call * xpt_done(), signaling to the upper layers that an * IO or other event had arrived. */ break; } case XPT_NOTIFY_ACKNOWLEDGE: { ocs_io_t *io = NULL; ocs_io_t *abortio = NULL; /* Get the IO reference for this tag */ io = ocs_scsi_find_io(ocs, ccb->cna2.tag_id); if (io == NULL) { device_printf(ocs->dev, "%s: XPT_NOTIFY_ACKNOWLEDGE no IO with tag %#x\n", __func__, ccb->cna2.tag_id); ocs_set_ccb_status(ccb, CAM_REQ_CMP_ERR); xpt_done(ccb); break; } abortio = io->tgt_io.app; if (abortio) { abortio->tgt_io.flags &= ~OCS_CAM_IO_F_ABORT_NOTIFY; device_printf(ocs->dev, "%s: XPT_NOTIFY_ACK state=%d tag=%#x xid=%#x" " flags=%#x\n", __func__, abortio->tgt_io.state, abortio->tag, abortio->init_task_tag, abortio->tgt_io.flags); /* TMF response was sent in abort callback */ } else { ocs_scsi_send_tmf_resp(io, OCS_SCSI_TMF_FUNCTION_COMPLETE, NULL, ocs_target_tmf_cb, NULL); } ocs_set_ccb_status(ccb, CAM_REQ_CMP); xpt_done(ccb); break; } case XPT_CONT_TARGET_IO: /* continue target IO, sending data/response (a.k.a. CTIO) */ if (ocs_target_io(ocs, ccb)) { device_printf(ocs->dev, "XPT_CONT_TARGET_IO failed flags=%x tag=%#x\n", ccb->ccb_h.flags, ccb->csio.tag_id); xpt_done(ccb); } break; default: device_printf(ocs->dev, "unhandled func_code = %#x\n", ccb_h->func_code); ccb_h->status = CAM_REQ_INVALID; xpt_done(ccb); break; } } /** * @ingroup cam_api * @brief Process events * * @param sim pointer to the SCSI Interface Module * */ static void ocs_poll(struct cam_sim *sim) { printf("%s\n", __func__); } static int32_t ocs_initiator_tmf_cb(ocs_io_t *io, ocs_scsi_io_status_e scsi_status, ocs_scsi_cmd_resp_t *rsp, uint32_t flags, void *arg) { int32_t rc = 0; switch (scsi_status) { case OCS_SCSI_STATUS_GOOD: case OCS_SCSI_STATUS_NO_IO: break; case OCS_SCSI_STATUS_CHECK_RESPONSE: if (rsp->response_data_length == 0) { ocs_log_test(io->ocs, "check response without data?!?\n"); rc = -1; break; } if (rsp->response_data[3] != 0) { ocs_log_test(io->ocs, "TMF status %08x\n", be32toh(*((uint32_t *)rsp->response_data))); rc = -1; break; } break; default: ocs_log_test(io->ocs, "status=%#x\n", scsi_status); rc = -1; } ocs_scsi_io_free(io); return rc; } /** * @brief lookup target resource structure * * Arbitrarily support * - wildcard target ID + LU * - 0 target ID + non-wildcard LU * * @param ocs the driver instance's software context * @param ccb_h pointer to the CCB header * @param status returned status value * * @return pointer to the target resource, NULL if none available (e.g. if LU * is not enabled) */ static ocs_tgt_resource_t *ocs_tgt_resource_get(ocs_fcport *fcp, struct ccb_hdr *ccb_h, uint32_t *status) { target_id_t tid = ccb_h->target_id; lun_id_t lun = ccb_h->target_lun; if (CAM_TARGET_WILDCARD == tid) { if (CAM_LUN_WILDCARD != lun) { *status = CAM_LUN_INVALID; return NULL; } return &fcp->targ_rsrc_wildcard; } else { if (lun < OCS_MAX_LUN) { return &fcp->targ_rsrc[lun]; } else { *status = CAM_LUN_INVALID; return NULL; } } } static int32_t ocs_tgt_resource_abort(struct ocs_softc *ocs, ocs_tgt_resource_t *trsrc) { union ccb *ccb = NULL; do { ccb = (union ccb *)STAILQ_FIRST(&trsrc->atio); if (ccb) { STAILQ_REMOVE_HEAD(&trsrc->atio, sim_links.stqe); ccb->ccb_h.status = CAM_REQ_ABORTED; xpt_done(ccb); } } while (ccb); do { ccb = (union ccb *)STAILQ_FIRST(&trsrc->inot); if (ccb) { STAILQ_REMOVE_HEAD(&trsrc->inot, sim_links.stqe); ccb->ccb_h.status = CAM_REQ_ABORTED; xpt_done(ccb); } } while (ccb); return 0; } static void ocs_abort_atio(struct ocs_softc *ocs, union ccb *ccb) { ocs_io_t *aio = NULL; ocs_tgt_resource_t *trsrc = NULL; uint32_t status = CAM_REQ_INVALID; struct ccb_hdr *cur = NULL; union ccb *accb = ccb->cab.abort_ccb; int bus = cam_sim_bus(xpt_path_sim((ccb)->ccb_h.path)); ocs_fcport *fcp = FCPORT(ocs, bus); trsrc = ocs_tgt_resource_get(fcp, &accb->ccb_h, &status); if (trsrc != NULL) { STAILQ_FOREACH(cur, &trsrc->atio, sim_links.stqe) { if (cur != &accb->ccb_h) continue; STAILQ_REMOVE(&trsrc->atio, cur, ccb_hdr, sim_links.stqe); accb->ccb_h.status = CAM_REQ_ABORTED; xpt_done(accb); ocs_set_ccb_status(ccb, CAM_REQ_CMP); return; } } /* if the ATIO has a valid IO pointer, CAM is telling * the driver that the ATIO (which represents the entire * exchange) has been aborted. */ aio = accb->ccb_h.ccb_io_ptr; if (aio == NULL) { ccb->ccb_h.status = CAM_UA_ABORT; return; } device_printf(ocs->dev, "%s: XPT_ABORT ATIO state=%d tag=%#x" " xid=%#x flags=%#x\n", __func__, aio->tgt_io.state, aio->tag, aio->init_task_tag, aio->tgt_io.flags); /* Expectations are: * - abort task was received * - already aborted IO in the DEVICE * - already received NOTIFY ACKNOWLEDGE */ if ((aio->tgt_io.flags & OCS_CAM_IO_F_ABORT_RECV) == 0) { device_printf(ocs->dev, "%s: abort not received or io completed \n", __func__); ocs_set_ccb_status(ccb, CAM_REQ_CMP); return; } aio->tgt_io.flags |= OCS_CAM_IO_F_ABORT_CAM; ocs_target_io_free(aio); ocs_set_ccb_status(ccb, CAM_REQ_CMP); return; } static void ocs_abort_inot(struct ocs_softc *ocs, union ccb *ccb) { ocs_tgt_resource_t *trsrc = NULL; uint32_t status = CAM_REQ_INVALID; struct ccb_hdr *cur = NULL; union ccb *accb = ccb->cab.abort_ccb; int bus = cam_sim_bus(xpt_path_sim((ccb)->ccb_h.path)); ocs_fcport *fcp = FCPORT(ocs, bus); trsrc = ocs_tgt_resource_get(fcp, &accb->ccb_h, &status); if (trsrc) { STAILQ_FOREACH(cur, &trsrc->inot, sim_links.stqe) { if (cur != &accb->ccb_h) continue; STAILQ_REMOVE(&trsrc->inot, cur, ccb_hdr, sim_links.stqe); accb->ccb_h.status = CAM_REQ_ABORTED; xpt_done(accb); ocs_set_ccb_status(ccb, CAM_REQ_CMP); return; } } ocs_set_ccb_status(ccb, CAM_UA_ABORT); return; } static uint32_t ocs_abort_initiator_io(struct ocs_softc *ocs, union ccb *accb) { ocs_node_t *node = NULL; ocs_io_t *io = NULL; int32_t rc = 0; struct ccb_scsiio *csio = &accb->csio; ocs_fcport *fcp = FCPORT(ocs, cam_sim_bus(xpt_path_sim((accb)->ccb_h.path))); node = ocs_node_get_instance(ocs, fcp->tgt[accb->ccb_h.target_id].node_id); if (node == NULL) { device_printf(ocs->dev, "%s: no device %d\n", __func__, accb->ccb_h.target_id); ocs_set_ccb_status(accb, CAM_DEV_NOT_THERE); xpt_done(accb); return (-1); } io = ocs_scsi_io_alloc(node, OCS_SCSI_IO_ROLE_ORIGINATOR); if (io == NULL) { device_printf(ocs->dev, "%s: unable to alloc IO\n", __func__); ocs_set_ccb_status(accb, CAM_REQ_CMP_ERR); xpt_done(accb); return (-1); } rc = ocs_scsi_send_tmf(node, io, (ocs_io_t *)csio->ccb_h.ccb_io_ptr, accb->ccb_h.target_lun, OCS_SCSI_TMF_ABORT_TASK, NULL, 0, 0, ocs_initiator_tmf_cb, NULL/*arg*/); return rc; } void ocs_scsi_ini_ddump(ocs_textbuf_t *textbuf, ocs_scsi_ddump_type_e type, void *obj) { switch(type) { case OCS_SCSI_DDUMP_DEVICE: { //ocs_t *ocs = obj; break; } case OCS_SCSI_DDUMP_DOMAIN: { //ocs_domain_t *domain = obj; break; } case OCS_SCSI_DDUMP_SPORT: { //ocs_sport_t *sport = obj; break; } case OCS_SCSI_DDUMP_NODE: { //ocs_node_t *node = obj; break; } case OCS_SCSI_DDUMP_IO: { //ocs_io_t *io = obj; break; } default: { break; } } } void ocs_scsi_tgt_ddump(ocs_textbuf_t *textbuf, ocs_scsi_ddump_type_e type, void *obj) { switch(type) { case OCS_SCSI_DDUMP_DEVICE: { //ocs_t *ocs = obj; break; } case OCS_SCSI_DDUMP_DOMAIN: { //ocs_domain_t *domain = obj; break; } case OCS_SCSI_DDUMP_SPORT: { //ocs_sport_t *sport = obj; break; } case OCS_SCSI_DDUMP_NODE: { //ocs_node_t *node = obj; break; } case OCS_SCSI_DDUMP_IO: { ocs_io_t *io = obj; char *state_str = NULL; switch (io->tgt_io.state) { case OCS_CAM_IO_FREE: state_str = "FREE"; break; case OCS_CAM_IO_COMMAND: state_str = "COMMAND"; break; case OCS_CAM_IO_DATA: state_str = "DATA"; break; case OCS_CAM_IO_DATA_DONE: state_str = "DATA_DONE"; break; case OCS_CAM_IO_RESP: state_str = "RESP"; break; default: state_str = "xxx BAD xxx"; } ocs_ddump_value(textbuf, "cam_st", "%s", state_str); if (io->tgt_io.app) { ocs_ddump_value(textbuf, "cam_flags", "%#x", ((union ccb *)(io->tgt_io.app))->ccb_h.flags); ocs_ddump_value(textbuf, "cam_status", "%#x", ((union ccb *)(io->tgt_io.app))->ccb_h.status); } break; } default: { break; } } } int32_t ocs_scsi_get_block_vaddr(ocs_io_t *io, uint64_t blocknumber, ocs_scsi_vaddr_len_t addrlen[], uint32_t max_addrlen, void **dif_vaddr) { return -1; } uint32_t ocs_get_crn(ocs_node_t *node, uint8_t *crn, uint64_t lun) { uint32_t idx; struct ocs_lun_crn *lcrn = NULL; idx = lun % OCS_MAX_LUN; lcrn = node->ini_node.lun_crn[idx]; if (lcrn == NULL) { lcrn = ocs_malloc(node->ocs, sizeof(struct ocs_lun_crn), M_ZERO|M_NOWAIT); if (lcrn == NULL) { return (1); } lcrn->lun = lun; node->ini_node.lun_crn[idx] = lcrn; } if (lcrn->lun != lun) { return (1); } if (lcrn->crnseed == 0) lcrn->crnseed = 1; *crn = lcrn->crnseed++; return (0); } void ocs_del_crn(ocs_node_t *node) { uint32_t i; struct ocs_lun_crn *lcrn = NULL; for(i = 0; i < OCS_MAX_LUN; i++) { lcrn = node->ini_node.lun_crn[i]; if (lcrn) { ocs_free(node->ocs, lcrn, sizeof(*lcrn)); } } return; } void ocs_reset_crn(ocs_node_t *node, uint64_t lun) { uint32_t idx; struct ocs_lun_crn *lcrn = NULL; idx = lun % OCS_MAX_LUN; lcrn = node->ini_node.lun_crn[idx]; if (lcrn) lcrn->crnseed = 0; return; } diff --git a/sys/dev/ocs_fc/ocs_hw.c b/sys/dev/ocs_fc/ocs_hw.c index 097228d12bfb..186b04b8b129 100644 --- a/sys/dev/ocs_fc/ocs_hw.c +++ b/sys/dev/ocs_fc/ocs_hw.c @@ -1,12684 +1,12702 @@ /*- * Copyright (c) 2017 Broadcom. All rights reserved. * The term "Broadcom" refers to Broadcom Limited and/or its subsidiaries. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /** * @file * Defines and implements the Hardware Abstraction Layer (HW). * All interaction with the hardware is performed through the HW, which abstracts * the details of the underlying SLI-4 implementation. */ /** * @defgroup devInitShutdown Device Initialization and Shutdown * @defgroup domain Domain Functions * @defgroup port Port Functions * @defgroup node Remote Node Functions * @defgroup io IO Functions * @defgroup interrupt Interrupt handling * @defgroup os OS Required Functions */ #include "ocs.h" #include "ocs_os.h" #include "ocs_hw.h" #include "ocs_hw_queues.h" #define OCS_HW_MQ_DEPTH 128 #define OCS_HW_READ_FCF_SIZE 4096 #define OCS_HW_DEFAULT_AUTO_XFER_RDY_IOS 256 #define OCS_HW_WQ_TIMER_PERIOD_MS 500 /* values used for setting the auto xfer rdy parameters */ #define OCS_HW_AUTO_XFER_RDY_BLK_SIZE_DEFAULT 0 /* 512 bytes */ #define OCS_HW_AUTO_XFER_RDY_REF_TAG_IS_LBA_DEFAULT TRUE #define OCS_HW_AUTO_XFER_RDY_APP_TAG_VALID_DEFAULT FALSE #define OCS_HW_AUTO_XFER_RDY_APP_TAG_VALUE_DEFAULT 0 #define OCS_HW_REQUE_XRI_REGTAG 65534 /* max command and response buffer lengths -- arbitrary at the moment */ #define OCS_HW_DMTF_CLP_CMD_MAX 256 #define OCS_HW_DMTF_CLP_RSP_MAX 256 /* HW global data */ ocs_hw_global_t hw_global; static void ocs_hw_queue_hash_add(ocs_queue_hash_t *, uint16_t, uint16_t); static void ocs_hw_adjust_wqs(ocs_hw_t *hw); static uint32_t ocs_hw_get_num_chutes(ocs_hw_t *hw); static int32_t ocs_hw_cb_link(void *, void *); static int32_t ocs_hw_cb_fip(void *, void *); static int32_t ocs_hw_command_process(ocs_hw_t *, int32_t, uint8_t *, size_t); static int32_t ocs_hw_mq_process(ocs_hw_t *, int32_t, sli4_queue_t *); static int32_t ocs_hw_cb_read_fcf(ocs_hw_t *, int32_t, uint8_t *, void *); static int32_t ocs_hw_cb_node_attach(ocs_hw_t *, int32_t, uint8_t *, void *); static int32_t ocs_hw_cb_node_free(ocs_hw_t *, int32_t, uint8_t *, void *); static int32_t ocs_hw_cb_node_free_all(ocs_hw_t *, int32_t, uint8_t *, void *); static ocs_hw_rtn_e ocs_hw_setup_io(ocs_hw_t *); static ocs_hw_rtn_e ocs_hw_init_io(ocs_hw_t *); static int32_t ocs_hw_flush(ocs_hw_t *); static int32_t ocs_hw_command_cancel(ocs_hw_t *); static int32_t ocs_hw_io_cancel(ocs_hw_t *); static void ocs_hw_io_quarantine(ocs_hw_t *hw, hw_wq_t *wq, ocs_hw_io_t *io); static void ocs_hw_io_restore_sgl(ocs_hw_t *, ocs_hw_io_t *); static int32_t ocs_hw_io_ini_sge(ocs_hw_t *, ocs_hw_io_t *, ocs_dma_t *, uint32_t, ocs_dma_t *); static ocs_hw_rtn_e ocs_hw_firmware_write_lancer(ocs_hw_t *hw, ocs_dma_t *dma, uint32_t size, uint32_t offset, int last, ocs_hw_fw_cb_t cb, void *arg); static int32_t ocs_hw_cb_fw_write(ocs_hw_t *, int32_t, uint8_t *, void *); static int32_t ocs_hw_cb_sfp(ocs_hw_t *, int32_t, uint8_t *, void *); static int32_t ocs_hw_cb_temp(ocs_hw_t *, int32_t, uint8_t *, void *); static int32_t ocs_hw_cb_link_stat(ocs_hw_t *, int32_t, uint8_t *, void *); static int32_t ocs_hw_cb_host_stat(ocs_hw_t *hw, int32_t status, uint8_t *mqe, void *arg); static void ocs_hw_dmtf_clp_cb(ocs_hw_t *hw, int32_t status, uint8_t *mqe, void *arg); static int32_t ocs_hw_clp_resp_get_value(ocs_hw_t *hw, const char *keyword, char *value, uint32_t value_len, const char *resp, uint32_t resp_len); typedef void (*ocs_hw_dmtf_clp_cb_t)(ocs_hw_t *hw, int32_t status, uint32_t result_len, void *arg); static ocs_hw_rtn_e ocs_hw_exec_dmtf_clp_cmd(ocs_hw_t *hw, ocs_dma_t *dma_cmd, ocs_dma_t *dma_resp, uint32_t opts, ocs_hw_dmtf_clp_cb_t cb, void *arg); static void ocs_hw_linkcfg_dmtf_clp_cb(ocs_hw_t *hw, int32_t status, uint32_t result_len, void *arg); static int32_t __ocs_read_topology_cb(ocs_hw_t *, int32_t, uint8_t *, void *); static ocs_hw_rtn_e ocs_hw_get_linkcfg(ocs_hw_t *, uint32_t, ocs_hw_port_control_cb_t, void *); static ocs_hw_rtn_e ocs_hw_get_linkcfg_lancer(ocs_hw_t *, uint32_t, ocs_hw_port_control_cb_t, void *); static ocs_hw_rtn_e ocs_hw_get_linkcfg_skyhawk(ocs_hw_t *, uint32_t, ocs_hw_port_control_cb_t, void *); static ocs_hw_rtn_e ocs_hw_set_linkcfg(ocs_hw_t *, ocs_hw_linkcfg_e, uint32_t, ocs_hw_port_control_cb_t, void *); static ocs_hw_rtn_e ocs_hw_set_linkcfg_lancer(ocs_hw_t *, ocs_hw_linkcfg_e, uint32_t, ocs_hw_port_control_cb_t, void *); static ocs_hw_rtn_e ocs_hw_set_linkcfg_skyhawk(ocs_hw_t *, ocs_hw_linkcfg_e, uint32_t, ocs_hw_port_control_cb_t, void *); static void ocs_hw_init_linkcfg_cb(int32_t status, uintptr_t value, void *arg); static ocs_hw_rtn_e ocs_hw_set_eth_license(ocs_hw_t *hw, uint32_t license); static ocs_hw_rtn_e ocs_hw_set_dif_seed(ocs_hw_t *hw); static ocs_hw_rtn_e ocs_hw_set_dif_mode(ocs_hw_t *hw); static void ocs_hw_io_free_internal(void *arg); static void ocs_hw_io_free_port_owned(void *arg); static ocs_hw_rtn_e ocs_hw_config_auto_xfer_rdy_t10pi(ocs_hw_t *hw, uint8_t *buf); static ocs_hw_rtn_e ocs_hw_config_set_fdt_xfer_hint(ocs_hw_t *hw, uint32_t fdt_xfer_hint); static void ocs_hw_wq_process_abort(void *arg, uint8_t *cqe, int32_t status); static int32_t ocs_hw_config_mrq(ocs_hw_t *hw, uint8_t, uint16_t, uint16_t); static ocs_hw_rtn_e ocs_hw_config_watchdog_timer(ocs_hw_t *hw); static ocs_hw_rtn_e ocs_hw_config_sli_port_health_check(ocs_hw_t *hw, uint8_t query, uint8_t enable); /* HW domain database operations */ static int32_t ocs_hw_domain_add(ocs_hw_t *, ocs_domain_t *); static int32_t ocs_hw_domain_del(ocs_hw_t *, ocs_domain_t *); /* Port state machine */ static void *__ocs_hw_port_alloc_init(ocs_sm_ctx_t *, ocs_sm_event_t, void *); static void *__ocs_hw_port_alloc_read_sparm64(ocs_sm_ctx_t *, ocs_sm_event_t, void *); static void *__ocs_hw_port_alloc_init_vpi(ocs_sm_ctx_t *, ocs_sm_event_t, void *); static void *__ocs_hw_port_done(ocs_sm_ctx_t *, ocs_sm_event_t, void *); static void *__ocs_hw_port_free_unreg_vpi(ocs_sm_ctx_t *, ocs_sm_event_t, void *); /* Domain state machine */ static void *__ocs_hw_domain_init(ocs_sm_ctx_t *, ocs_sm_event_t, void *); static void *__ocs_hw_domain_alloc_reg_fcfi(ocs_sm_ctx_t *, ocs_sm_event_t, void *); static void * __ocs_hw_domain_alloc_init_vfi(ocs_sm_ctx_t *, ocs_sm_event_t, void *); static void *__ocs_hw_domain_free_unreg_vfi(ocs_sm_ctx_t *, ocs_sm_event_t, void *); static void *__ocs_hw_domain_free_unreg_fcfi(ocs_sm_ctx_t *ctx, ocs_sm_event_t evt, void *data); static int32_t __ocs_hw_domain_cb(ocs_hw_t *, int32_t, uint8_t *, void *); static int32_t __ocs_hw_port_cb(ocs_hw_t *, int32_t, uint8_t *, void *); static int32_t __ocs_hw_port_realloc_cb(ocs_hw_t *hw, int32_t status, uint8_t *mqe, void *arg); /* BZ 161832 */ static void ocs_hw_check_sec_hio_list(ocs_hw_t *hw); /* WQE timeouts */ static void target_wqe_timer_cb(void *arg); static void shutdown_target_wqe_timer(ocs_hw_t *hw); +/* WQE timeout for initiator IOs */ +static inline uint8_t +ocs_hw_set_io_wqe_timeout(ocs_hw_io_t *io, uint32_t timeout) +{ + if (timeout > 255) { + io->wqe_timeout = timeout; + return 0; + } else { + return timeout; + } +} + static inline void ocs_hw_add_io_timed_wqe(ocs_hw_t *hw, ocs_hw_io_t *io) { - if (hw->config.emulate_tgt_wqe_timeout && io->tgt_wqe_timeout) { + if (hw->config.emulate_wqe_timeout && io->wqe_timeout) { /* * Active WQE list currently only used for * target WQE timeouts. */ ocs_lock(&hw->io_lock); ocs_list_add_tail(&hw->io_timed_wqe, io); - io->submit_ticks = ocs_get_os_ticks(); + getmicrouptime(&io->submit_time); ocs_unlock(&hw->io_lock); } } static inline void ocs_hw_remove_io_timed_wqe(ocs_hw_t *hw, ocs_hw_io_t *io) { - if (hw->config.emulate_tgt_wqe_timeout) { + if (hw->config.emulate_wqe_timeout) { /* * If target wqe timeouts are enabled, * remove from active wqe list. */ ocs_lock(&hw->io_lock); if (ocs_list_on_list(&io->wqe_link)) { ocs_list_remove(&hw->io_timed_wqe, io); } ocs_unlock(&hw->io_lock); } } static uint8_t ocs_hw_iotype_is_originator(uint16_t io_type) { switch (io_type) { case OCS_HW_IO_INITIATOR_READ: case OCS_HW_IO_INITIATOR_WRITE: case OCS_HW_IO_INITIATOR_NODATA: case OCS_HW_FC_CT: case OCS_HW_ELS_REQ: return 1; default: return 0; } } static uint8_t ocs_hw_wcqe_abort_needed(uint16_t status, uint8_t ext, uint8_t xb) { /* if exchange not active, nothing to abort */ if (!xb) { return FALSE; } if (status == SLI4_FC_WCQE_STATUS_LOCAL_REJECT) { switch (ext) { /* exceptions where abort is not needed */ case SLI4_FC_LOCAL_REJECT_INVALID_RPI: /* lancer returns this after unreg_rpi */ case SLI4_FC_LOCAL_REJECT_ABORT_REQUESTED: /* abort already in progress */ return FALSE; default: break; } } return TRUE; } /** * @brief Determine the number of chutes on the device. * * @par Description * Some devices require queue resources allocated per protocol processor * (chute). This function returns the number of chutes on this device. * * @param hw Hardware context allocated by the caller. * * @return Returns the number of chutes on the device for protocol. */ static uint32_t ocs_hw_get_num_chutes(ocs_hw_t *hw) { uint32_t num_chutes = 1; if (sli_get_is_dual_ulp_capable(&hw->sli) && sli_get_is_ulp_enabled(&hw->sli, 0) && sli_get_is_ulp_enabled(&hw->sli, 1)) { num_chutes = 2; } return num_chutes; } static ocs_hw_rtn_e ocs_hw_link_event_init(ocs_hw_t *hw) { ocs_hw_assert(hw); hw->link.status = SLI_LINK_STATUS_MAX; hw->link.topology = SLI_LINK_TOPO_NONE; hw->link.medium = SLI_LINK_MEDIUM_MAX; hw->link.speed = 0; hw->link.loop_map = NULL; hw->link.fc_id = UINT32_MAX; return OCS_HW_RTN_SUCCESS; } /** * @ingroup devInitShutdown * @brief If this is physical port 0, then read the max dump size. * * @par Description * Queries the FW for the maximum dump size * * @param hw Hardware context allocated by the caller. * * @return Returns 0 on success, or a non-zero value on failure. */ static ocs_hw_rtn_e ocs_hw_read_max_dump_size(ocs_hw_t *hw) { uint8_t buf[SLI4_BMBX_SIZE]; uint8_t bus, dev, func; int rc; /* lancer only */ if ((SLI4_IF_TYPE_LANCER_FC_ETH != sli_get_if_type(&hw->sli)) && (SLI4_IF_TYPE_LANCER_G7 != sli_get_if_type(&hw->sli))) { ocs_log_debug(hw->os, "Function only supported for I/F type 2\n"); return OCS_HW_RTN_ERROR; } /* * Make sure the FW is new enough to support this command. If the FW * is too old, the FW will UE. */ if (hw->workaround.disable_dump_loc) { ocs_log_test(hw->os, "FW version is too old for this feature\n"); return OCS_HW_RTN_ERROR; } /* attempt to detemine the dump size for function 0 only. */ ocs_get_bus_dev_func(hw->os, &bus, &dev, &func); if (func == 0) { if (sli_cmd_common_set_dump_location(&hw->sli, buf, SLI4_BMBX_SIZE, 1, 0, NULL, 0)) { sli4_res_common_set_dump_location_t *rsp = (sli4_res_common_set_dump_location_t *) (buf + offsetof(sli4_cmd_sli_config_t, payload.embed)); rc = ocs_hw_command(hw, buf, OCS_CMD_POLL, NULL, NULL); if (rc != OCS_HW_RTN_SUCCESS) { ocs_log_test(hw->os, "set dump location command failed\n"); return rc; } else { hw->dump_size = rsp->buffer_length; ocs_log_debug(hw->os, "Dump size %x\n", rsp->buffer_length); } } } return OCS_HW_RTN_SUCCESS; } /** * @ingroup devInitShutdown * @brief Set up the Hardware Abstraction Layer module. * * @par Description * Calls set up to configure the hardware. * * @param hw Hardware context allocated by the caller. * @param os Device abstraction. * @param port_type Protocol type of port, such as FC and NIC. * * @todo Why is port_type a parameter? * * @return Returns 0 on success, or a non-zero value on failure. */ ocs_hw_rtn_e ocs_hw_setup(ocs_hw_t *hw, ocs_os_handle_t os, sli4_port_type_e port_type) { uint32_t i; char prop_buf[32]; if (hw == NULL) { ocs_log_err(os, "bad parameter(s) hw=%p\n", hw); return OCS_HW_RTN_ERROR; } if (hw->hw_setup_called) { /* Setup run-time workarounds. * Call for each setup, to allow for hw_war_version */ ocs_hw_workaround_setup(hw); return OCS_HW_RTN_SUCCESS; } /* * ocs_hw_init() relies on NULL pointers indicating that a structure * needs allocation. If a structure is non-NULL, ocs_hw_init() won't * free/realloc that memory */ ocs_memset(hw, 0, sizeof(ocs_hw_t)); hw->hw_setup_called = TRUE; hw->os = os; ocs_lock_init(hw->os, &hw->cmd_lock, "HW_cmd_lock[%d]", ocs_instance(hw->os)); ocs_list_init(&hw->cmd_head, ocs_command_ctx_t, link); ocs_list_init(&hw->cmd_pending, ocs_command_ctx_t, link); hw->cmd_head_count = 0; ocs_lock_init(hw->os, &hw->io_lock, "HW_io_lock[%d]", ocs_instance(hw->os)); ocs_lock_init(hw->os, &hw->io_abort_lock, "HW_io_abort_lock[%d]", ocs_instance(hw->os)); ocs_atomic_init(&hw->io_alloc_failed_count, 0); hw->config.speed = FC_LINK_SPEED_AUTO_16_8_4; hw->config.dif_seed = 0; hw->config.auto_xfer_rdy_blk_size_chip = OCS_HW_AUTO_XFER_RDY_BLK_SIZE_DEFAULT; hw->config.auto_xfer_rdy_ref_tag_is_lba = OCS_HW_AUTO_XFER_RDY_REF_TAG_IS_LBA_DEFAULT; hw->config.auto_xfer_rdy_app_tag_valid = OCS_HW_AUTO_XFER_RDY_APP_TAG_VALID_DEFAULT; hw->config.auto_xfer_rdy_app_tag_value = OCS_HW_AUTO_XFER_RDY_APP_TAG_VALUE_DEFAULT; if (sli_setup(&hw->sli, hw->os, port_type)) { ocs_log_err(hw->os, "SLI setup failed\n"); return OCS_HW_RTN_ERROR; } ocs_memset(hw->domains, 0, sizeof(hw->domains)); ocs_memset(hw->fcf_index_fcfi, 0, sizeof(hw->fcf_index_fcfi)); ocs_hw_link_event_init(hw); sli_callback(&hw->sli, SLI4_CB_LINK, ocs_hw_cb_link, hw); sli_callback(&hw->sli, SLI4_CB_FIP, ocs_hw_cb_fip, hw); /* * Set all the queue sizes to the maximum allowed. These values may * be changes later by the adjust and workaround functions. */ for (i = 0; i < ARRAY_SIZE(hw->num_qentries); i++) { hw->num_qentries[i] = sli_get_max_qentries(&hw->sli, i); } /* * The RQ assignment for RQ pair mode. */ hw->config.rq_default_buffer_size = OCS_HW_RQ_SIZE_PAYLOAD; hw->config.n_io = sli_get_max_rsrc(&hw->sli, SLI_RSRC_FCOE_XRI); if (ocs_get_property("auto_xfer_rdy_xri_cnt", prop_buf, sizeof(prop_buf)) == 0) { hw->config.auto_xfer_rdy_xri_cnt = ocs_strtoul(prop_buf, 0, 0); } /* by default, enable initiator-only auto-ABTS emulation */ hw->config.i_only_aab = TRUE; /* Setup run-time workarounds */ ocs_hw_workaround_setup(hw); /* HW_WORKAROUND_OVERRIDE_FCFI_IN_SRB */ if (hw->workaround.override_fcfi) { hw->first_domain_idx = -1; } /* Must be done after the workaround setup */ if ((SLI4_IF_TYPE_LANCER_FC_ETH == sli_get_if_type(&hw->sli)) || (SLI4_IF_TYPE_LANCER_G7 == sli_get_if_type(&hw->sli))) { (void)ocs_hw_read_max_dump_size(hw); } /* calculate the number of WQs required. */ ocs_hw_adjust_wqs(hw); /* Set the default dif mode */ if (! sli_is_dif_inline_capable(&hw->sli)) { ocs_log_test(hw->os, "not inline capable, setting mode to separate\n"); hw->config.dif_mode = OCS_HW_DIF_MODE_SEPARATE; } /* Workaround: BZ 161832 */ if (hw->workaround.use_dif_sec_xri) { ocs_list_init(&hw->sec_hio_wait_list, ocs_hw_io_t, link); } /* * Figure out the starting and max ULP to spread the WQs across the * ULPs. */ if (sli_get_is_dual_ulp_capable(&hw->sli)) { if (sli_get_is_ulp_enabled(&hw->sli, 0) && sli_get_is_ulp_enabled(&hw->sli, 1)) { hw->ulp_start = 0; hw->ulp_max = 1; } else if (sli_get_is_ulp_enabled(&hw->sli, 0)) { hw->ulp_start = 0; hw->ulp_max = 0; } else { hw->ulp_start = 1; hw->ulp_max = 1; } } else { if (sli_get_is_ulp_enabled(&hw->sli, 0)) { hw->ulp_start = 0; hw->ulp_max = 0; } else { hw->ulp_start = 1; hw->ulp_max = 1; } } ocs_log_debug(hw->os, "ulp_start %d, ulp_max %d\n", hw->ulp_start, hw->ulp_max); hw->config.queue_topology = hw_global.queue_topology_string; hw->qtop = ocs_hw_qtop_parse(hw, hw->config.queue_topology); hw->config.n_eq = hw->qtop->entry_counts[QTOP_EQ]; hw->config.n_cq = hw->qtop->entry_counts[QTOP_CQ]; hw->config.n_rq = hw->qtop->entry_counts[QTOP_RQ]; hw->config.n_wq = hw->qtop->entry_counts[QTOP_WQ]; hw->config.n_mq = hw->qtop->entry_counts[QTOP_MQ]; /* Verify qtop configuration against driver supported configuration */ if (hw->config.n_rq > OCE_HW_MAX_NUM_MRQ_PAIRS) { ocs_log_crit(hw->os, "Max supported MRQ pairs = %d\n", OCE_HW_MAX_NUM_MRQ_PAIRS); return OCS_HW_RTN_ERROR; } if (hw->config.n_eq > OCS_HW_MAX_NUM_EQ) { ocs_log_crit(hw->os, "Max supported EQs = %d\n", OCS_HW_MAX_NUM_EQ); return OCS_HW_RTN_ERROR; } if (hw->config.n_cq > OCS_HW_MAX_NUM_CQ) { ocs_log_crit(hw->os, "Max supported CQs = %d\n", OCS_HW_MAX_NUM_CQ); return OCS_HW_RTN_ERROR; } if (hw->config.n_wq > OCS_HW_MAX_NUM_WQ) { ocs_log_crit(hw->os, "Max supported WQs = %d\n", OCS_HW_MAX_NUM_WQ); return OCS_HW_RTN_ERROR; } if (hw->config.n_mq > OCS_HW_MAX_NUM_MQ) { ocs_log_crit(hw->os, "Max supported MQs = %d\n", OCS_HW_MAX_NUM_MQ); return OCS_HW_RTN_ERROR; } return OCS_HW_RTN_SUCCESS; } /** * @ingroup devInitShutdown * @brief Allocate memory structures to prepare for the device operation. * * @par Description * Allocates memory structures needed by the device and prepares the device * for operation. * @n @n @b Note: This function may be called more than once (for example, at * initialization and then after a reset), but the size of the internal resources * may not be changed without tearing down the HW (ocs_hw_teardown()). * * @param hw Hardware context allocated by the caller. * * @return Returns 0 on success, or a non-zero value on failure. */ ocs_hw_rtn_e ocs_hw_init(ocs_hw_t *hw) { ocs_hw_rtn_e rc; uint32_t i = 0; uint8_t buf[SLI4_BMBX_SIZE]; uint32_t max_rpi; int rem_count; int written_size = 0; uint32_t count; char prop_buf[32]; uint32_t ramdisc_blocksize = 512; uint32_t q_count = 0; /* * Make sure the command lists are empty. If this is start-of-day, * they'll be empty since they were just initialized in ocs_hw_setup. * If we've just gone through a reset, the command and command pending * lists should have been cleaned up as part of the reset (ocs_hw_reset()). */ ocs_lock(&hw->cmd_lock); if (!ocs_list_empty(&hw->cmd_head)) { ocs_log_test(hw->os, "command found on cmd list\n"); ocs_unlock(&hw->cmd_lock); return OCS_HW_RTN_ERROR; } if (!ocs_list_empty(&hw->cmd_pending)) { ocs_log_test(hw->os, "command found on pending list\n"); ocs_unlock(&hw->cmd_lock); return OCS_HW_RTN_ERROR; } ocs_unlock(&hw->cmd_lock); /* Free RQ buffers if prevously allocated */ ocs_hw_rx_free(hw); /* * The IO queues must be initialized here for the reset case. The * ocs_hw_init_io() function will re-add the IOs to the free list. * The cmd_head list should be OK since we free all entries in * ocs_hw_command_cancel() that is called in the ocs_hw_reset(). */ /* If we are in this function due to a reset, there may be stale items * on lists that need to be removed. Clean them up. */ rem_count=0; if (ocs_list_valid(&hw->io_wait_free)) { while ((!ocs_list_empty(&hw->io_wait_free))) { rem_count++; ocs_list_remove_head(&hw->io_wait_free); } if (rem_count > 0) { ocs_log_debug(hw->os, "removed %d items from io_wait_free list\n", rem_count); } } rem_count=0; if (ocs_list_valid(&hw->io_inuse)) { while ((!ocs_list_empty(&hw->io_inuse))) { rem_count++; ocs_list_remove_head(&hw->io_inuse); } if (rem_count > 0) { ocs_log_debug(hw->os, "removed %d items from io_inuse list\n", rem_count); } } rem_count=0; if (ocs_list_valid(&hw->io_free)) { while ((!ocs_list_empty(&hw->io_free))) { rem_count++; ocs_list_remove_head(&hw->io_free); } if (rem_count > 0) { ocs_log_debug(hw->os, "removed %d items from io_free list\n", rem_count); } } if (ocs_list_valid(&hw->io_port_owned)) { while ((!ocs_list_empty(&hw->io_port_owned))) { ocs_list_remove_head(&hw->io_port_owned); } } ocs_list_init(&hw->io_inuse, ocs_hw_io_t, link); ocs_list_init(&hw->io_free, ocs_hw_io_t, link); ocs_list_init(&hw->io_port_owned, ocs_hw_io_t, link); ocs_list_init(&hw->io_wait_free, ocs_hw_io_t, link); ocs_list_init(&hw->io_timed_wqe, ocs_hw_io_t, wqe_link); ocs_list_init(&hw->io_port_dnrx, ocs_hw_io_t, dnrx_link); /* If MRQ not required, Make sure we dont request feature. */ if (hw->config.n_rq == 1) { hw->sli.config.features.flag.mrqp = FALSE; } if (sli_init(&hw->sli)) { ocs_log_err(hw->os, "SLI failed to initialize\n"); return OCS_HW_RTN_ERROR; } /* * Enable the auto xfer rdy feature if requested. */ hw->auto_xfer_rdy_enabled = FALSE; if (sli_get_auto_xfer_rdy_capable(&hw->sli) && hw->config.auto_xfer_rdy_size > 0) { if (hw->config.esoc){ if (ocs_get_property("ramdisc_blocksize", prop_buf, sizeof(prop_buf)) == 0) { ramdisc_blocksize = ocs_strtoul(prop_buf, 0, 0); } written_size = sli_cmd_config_auto_xfer_rdy_hp(&hw->sli, buf, SLI4_BMBX_SIZE, hw->config.auto_xfer_rdy_size, 1, ramdisc_blocksize); } else { written_size = sli_cmd_config_auto_xfer_rdy(&hw->sli, buf, SLI4_BMBX_SIZE, hw->config.auto_xfer_rdy_size); } if (written_size) { rc = ocs_hw_command(hw, buf, OCS_CMD_POLL, NULL, NULL); if (rc != OCS_HW_RTN_SUCCESS) { ocs_log_err(hw->os, "config auto xfer rdy failed\n"); return rc; } } hw->auto_xfer_rdy_enabled = TRUE; if (hw->config.auto_xfer_rdy_t10_enable) { rc = ocs_hw_config_auto_xfer_rdy_t10pi(hw, buf); if (rc != OCS_HW_RTN_SUCCESS) { ocs_log_err(hw->os, "set parameters auto xfer rdy T10 PI failed\n"); return rc; } } } if(hw->sliport_healthcheck) { rc = ocs_hw_config_sli_port_health_check(hw, 0, 1); if (rc != OCS_HW_RTN_SUCCESS) { ocs_log_err(hw->os, "Enabling Sliport Health check failed \n"); return rc; } } /* * Set FDT transfer hint, only works on Lancer */ if ((hw->sli.if_type == SLI4_IF_TYPE_LANCER_FC_ETH) && (OCS_HW_FDT_XFER_HINT != 0)) { /* * Non-fatal error. In particular, we can disregard failure to set OCS_HW_FDT_XFER_HINT on * devices with legacy firmware that do not support OCS_HW_FDT_XFER_HINT feature. */ ocs_hw_config_set_fdt_xfer_hint(hw, OCS_HW_FDT_XFER_HINT); } /* * Verify that we have not exceeded any queue sizes */ q_count = MIN(sli_get_max_queue(&hw->sli, SLI_QTYPE_EQ), OCS_HW_MAX_NUM_EQ); if (hw->config.n_eq > q_count) { ocs_log_err(hw->os, "requested %d EQ but %d allowed\n", hw->config.n_eq, q_count); return OCS_HW_RTN_ERROR; } q_count = MIN(sli_get_max_queue(&hw->sli, SLI_QTYPE_CQ), OCS_HW_MAX_NUM_CQ); if (hw->config.n_cq > q_count) { ocs_log_err(hw->os, "requested %d CQ but %d allowed\n", hw->config.n_cq, q_count); return OCS_HW_RTN_ERROR; } q_count = MIN(sli_get_max_queue(&hw->sli, SLI_QTYPE_MQ), OCS_HW_MAX_NUM_MQ); if (hw->config.n_mq > q_count) { ocs_log_err(hw->os, "requested %d MQ but %d allowed\n", hw->config.n_mq, q_count); return OCS_HW_RTN_ERROR; } q_count = MIN(sli_get_max_queue(&hw->sli, SLI_QTYPE_RQ), OCS_HW_MAX_NUM_RQ); if (hw->config.n_rq > q_count) { ocs_log_err(hw->os, "requested %d RQ but %d allowed\n", hw->config.n_rq, q_count); return OCS_HW_RTN_ERROR; } q_count = MIN(sli_get_max_queue(&hw->sli, SLI_QTYPE_WQ), OCS_HW_MAX_NUM_WQ); if (hw->config.n_wq > q_count) { ocs_log_err(hw->os, "requested %d WQ but %d allowed\n", hw->config.n_wq, q_count); return OCS_HW_RTN_ERROR; } /* zero the hashes */ ocs_memset(hw->cq_hash, 0, sizeof(hw->cq_hash)); ocs_log_debug(hw->os, "Max CQs %d, hash size = %d\n", OCS_HW_MAX_NUM_CQ, OCS_HW_Q_HASH_SIZE); ocs_memset(hw->rq_hash, 0, sizeof(hw->rq_hash)); ocs_log_debug(hw->os, "Max RQs %d, hash size = %d\n", OCS_HW_MAX_NUM_RQ, OCS_HW_Q_HASH_SIZE); ocs_memset(hw->wq_hash, 0, sizeof(hw->wq_hash)); ocs_log_debug(hw->os, "Max WQs %d, hash size = %d\n", OCS_HW_MAX_NUM_WQ, OCS_HW_Q_HASH_SIZE); rc = ocs_hw_init_queues(hw, hw->qtop); if (rc != OCS_HW_RTN_SUCCESS) { return rc; } max_rpi = sli_get_max_rsrc(&hw->sli, SLI_RSRC_FCOE_RPI); i = sli_fc_get_rpi_requirements(&hw->sli, max_rpi); if (i) { ocs_dma_t payload_memory; rc = OCS_HW_RTN_ERROR; if (hw->rnode_mem.size) { ocs_dma_free(hw->os, &hw->rnode_mem); } if (ocs_dma_alloc(hw->os, &hw->rnode_mem, i, 4096)) { ocs_log_err(hw->os, "remote node memory allocation fail\n"); return OCS_HW_RTN_NO_MEMORY; } payload_memory.size = 0; if (sli_cmd_fcoe_post_hdr_templates(&hw->sli, buf, SLI4_BMBX_SIZE, &hw->rnode_mem, UINT16_MAX, &payload_memory)) { rc = ocs_hw_command(hw, buf, OCS_CMD_POLL, NULL, NULL); if (payload_memory.size != 0) { /* The command was non-embedded - need to free the dma buffer */ ocs_dma_free(hw->os, &payload_memory); } } if (rc != OCS_HW_RTN_SUCCESS) { ocs_log_err(hw->os, "header template registration failed\n"); return rc; } } /* Allocate and post RQ buffers */ rc = ocs_hw_rx_allocate(hw); if (rc) { ocs_log_err(hw->os, "rx_allocate failed\n"); return rc; } /* Populate hw->seq_free_list */ if (hw->seq_pool == NULL) { uint32_t count = 0; uint32_t i; /* Sum up the total number of RQ entries, to use to allocate the sequence object pool */ for (i = 0; i < hw->hw_rq_count; i++) { count += hw->hw_rq[i]->entry_count; } hw->seq_pool = ocs_array_alloc(hw->os, sizeof(ocs_hw_sequence_t), count); if (hw->seq_pool == NULL) { ocs_log_err(hw->os, "malloc seq_pool failed\n"); return OCS_HW_RTN_NO_MEMORY; } } if(ocs_hw_rx_post(hw)) { ocs_log_err(hw->os, "WARNING - error posting RQ buffers\n"); } /* Allocate rpi_ref if not previously allocated */ if (hw->rpi_ref == NULL) { hw->rpi_ref = ocs_malloc(hw->os, max_rpi * sizeof(*hw->rpi_ref), OCS_M_ZERO | OCS_M_NOWAIT); if (hw->rpi_ref == NULL) { ocs_log_err(hw->os, "rpi_ref allocation failure (%d)\n", i); return OCS_HW_RTN_NO_MEMORY; } } for (i = 0; i < max_rpi; i ++) { ocs_atomic_init(&hw->rpi_ref[i].rpi_count, 0); ocs_atomic_init(&hw->rpi_ref[i].rpi_attached, 0); } ocs_memset(hw->domains, 0, sizeof(hw->domains)); /* HW_WORKAROUND_OVERRIDE_FCFI_IN_SRB */ if (hw->workaround.override_fcfi) { hw->first_domain_idx = -1; } ocs_memset(hw->fcf_index_fcfi, 0, sizeof(hw->fcf_index_fcfi)); /* Register a FCFI to allow unsolicited frames to be routed to the driver */ if (sli_get_medium(&hw->sli) == SLI_LINK_MEDIUM_FC) { if (hw->hw_mrq_count) { ocs_log_debug(hw->os, "using REG_FCFI MRQ\n"); rc = ocs_hw_config_mrq(hw, SLI4_CMD_REG_FCFI_SET_FCFI_MODE, 0, 0); if (rc != OCS_HW_RTN_SUCCESS) { ocs_log_err(hw->os, "REG_FCFI_MRQ FCFI registration failed\n"); return rc; } rc = ocs_hw_config_mrq(hw, SLI4_CMD_REG_FCFI_SET_MRQ_MODE, 0, 0); if (rc != OCS_HW_RTN_SUCCESS) { ocs_log_err(hw->os, "REG_FCFI_MRQ MRQ registration failed\n"); return rc; } } else { sli4_cmd_rq_cfg_t rq_cfg[SLI4_CMD_REG_FCFI_NUM_RQ_CFG]; ocs_log_debug(hw->os, "using REG_FCFI standard\n"); /* Set the filter match/mask values from hw's filter_def values */ for (i = 0; i < SLI4_CMD_REG_FCFI_NUM_RQ_CFG; i++) { rq_cfg[i].rq_id = 0xffff; rq_cfg[i].r_ctl_mask = (uint8_t) hw->config.filter_def[i]; rq_cfg[i].r_ctl_match = (uint8_t) (hw->config.filter_def[i] >> 8); rq_cfg[i].type_mask = (uint8_t) (hw->config.filter_def[i] >> 16); rq_cfg[i].type_match = (uint8_t) (hw->config.filter_def[i] >> 24); } /* * Update the rq_id's of the FCF configuration (don't update more than the number * of rq_cfg elements) */ for (i = 0; i < OCS_MIN(hw->hw_rq_count, SLI4_CMD_REG_FCFI_NUM_RQ_CFG); i++) { hw_rq_t *rq = hw->hw_rq[i]; uint32_t j; for (j = 0; j < SLI4_CMD_REG_FCFI_NUM_RQ_CFG; j++) { uint32_t mask = (rq->filter_mask != 0) ? rq->filter_mask : 1; if (mask & (1U << j)) { rq_cfg[j].rq_id = rq->hdr->id; ocs_log_debug(hw->os, "REG_FCFI: filter[%d] %08X -> RQ[%d] id=%d\n", j, hw->config.filter_def[j], i, rq->hdr->id); } } } rc = OCS_HW_RTN_ERROR; if (sli_cmd_reg_fcfi(&hw->sli, buf, SLI4_BMBX_SIZE, 0, rq_cfg, 0)) { rc = ocs_hw_command(hw, buf, OCS_CMD_POLL, NULL, NULL); } if (rc != OCS_HW_RTN_SUCCESS) { ocs_log_err(hw->os, "FCFI registration failed\n"); return rc; } hw->fcf_indicator = ((sli4_cmd_reg_fcfi_t *)buf)->fcfi; } } /* * Allocate the WQ request tag pool, if not previously allocated (the request tag value is 16 bits, * thus the pool allocation size of 64k) */ rc = ocs_hw_reqtag_init(hw); if (rc) { ocs_log_err(hw->os, "ocs_pool_alloc hw_wq_callback_t failed: %d\n", rc); return rc; } rc = ocs_hw_setup_io(hw); if (rc) { ocs_log_err(hw->os, "IO allocation failure\n"); return rc; } rc = ocs_hw_init_io(hw); if (rc) { ocs_log_err(hw->os, "IO initialization failure\n"); return rc; } ocs_queue_history_init(hw->os, &hw->q_hist); /* get hw link config; polling, so callback will be called immediately */ hw->linkcfg = OCS_HW_LINKCFG_NA; ocs_hw_get_linkcfg(hw, OCS_CMD_POLL, ocs_hw_init_linkcfg_cb, hw); /* if lancer ethernet, ethernet ports need to be enabled */ if ((hw->sli.if_type == SLI4_IF_TYPE_LANCER_FC_ETH) && (sli_get_medium(&hw->sli) == SLI_LINK_MEDIUM_ETHERNET)) { if (ocs_hw_set_eth_license(hw, hw->eth_license)) { /* log warning but continue */ ocs_log_err(hw->os, "Failed to set ethernet license\n"); } } /* Set the DIF seed - only for lancer right now */ if (SLI4_IF_TYPE_LANCER_FC_ETH == sli_get_if_type(&hw->sli) && ocs_hw_set_dif_seed(hw) != OCS_HW_RTN_SUCCESS) { ocs_log_err(hw->os, "Failed to set DIF seed value\n"); return rc; } /* Set the DIF mode - skyhawk only */ if (SLI4_IF_TYPE_BE3_SKH_PF == sli_get_if_type(&hw->sli) && sli_get_dif_capable(&hw->sli)) { rc = ocs_hw_set_dif_mode(hw); if (rc != OCS_HW_RTN_SUCCESS) { ocs_log_err(hw->os, "Failed to set DIF mode value\n"); return rc; } } /* * Arming the EQ allows (e.g.) interrupts when CQ completions write EQ entries */ for (i = 0; i < hw->eq_count; i++) { sli_queue_arm(&hw->sli, &hw->eq[i], TRUE); } /* * Initialize RQ hash */ for (i = 0; i < hw->rq_count; i++) { ocs_hw_queue_hash_add(hw->rq_hash, hw->rq[i].id, i); } /* * Initialize WQ hash */ for (i = 0; i < hw->wq_count; i++) { ocs_hw_queue_hash_add(hw->wq_hash, hw->wq[i].id, i); } /* * Arming the CQ allows (e.g.) MQ completions to write CQ entries */ for (i = 0; i < hw->cq_count; i++) { ocs_hw_queue_hash_add(hw->cq_hash, hw->cq[i].id, i); sli_queue_arm(&hw->sli, &hw->cq[i], TRUE); } /* record the fact that the queues are functional */ hw->state = OCS_HW_STATE_ACTIVE; /* Note: Must be after the IOs are setup and the state is active*/ if (ocs_hw_rqpair_init(hw)) { ocs_log_err(hw->os, "WARNING - error initializing RQ pair\n"); } /* finally kick off periodic timer to check for timed out target WQEs */ - if (hw->config.emulate_tgt_wqe_timeout) { + if (hw->config.emulate_wqe_timeout) { ocs_setup_timer(hw->os, &hw->wqe_timer, target_wqe_timer_cb, hw, OCS_HW_WQ_TIMER_PERIOD_MS); } /* * Allocate a HW IOs for send frame. Allocate one for each Class 1 WQ, or if there * are none of those, allocate one for WQ[0] */ if ((count = ocs_varray_get_count(hw->wq_class_array[1])) > 0) { for (i = 0; i < count; i++) { hw_wq_t *wq = ocs_varray_iter_next(hw->wq_class_array[1]); wq->send_frame_io = ocs_hw_io_alloc(hw); if (wq->send_frame_io == NULL) { ocs_log_err(hw->os, "ocs_hw_io_alloc for send_frame_io failed\n"); } } } else { hw->hw_wq[0]->send_frame_io = ocs_hw_io_alloc(hw); if (hw->hw_wq[0]->send_frame_io == NULL) { ocs_log_err(hw->os, "ocs_hw_io_alloc for send_frame_io failed\n"); } } /* Initialize send frame frame sequence id */ ocs_atomic_init(&hw->send_frame_seq_id, 0); /* Initialize watchdog timer if enabled by user */ hw->expiration_logged = 0; if(hw->watchdog_timeout) { if((hw->watchdog_timeout < 1) || (hw->watchdog_timeout > 65534)) { ocs_log_err(hw->os, "watchdog_timeout out of range: Valid range is 1 - 65534\n"); }else if(!ocs_hw_config_watchdog_timer(hw)) { ocs_log_info(hw->os, "watchdog timer configured with timeout = %d seconds \n", hw->watchdog_timeout); } } if (ocs_dma_alloc(hw->os, &hw->domain_dmem, 112, 4)) { ocs_log_err(hw->os, "domain node memory allocation fail\n"); return OCS_HW_RTN_NO_MEMORY; } if (ocs_dma_alloc(hw->os, &hw->fcf_dmem, OCS_HW_READ_FCF_SIZE, OCS_HW_READ_FCF_SIZE)) { ocs_log_err(hw->os, "domain fcf memory allocation fail\n"); return OCS_HW_RTN_NO_MEMORY; } if ((0 == hw->loop_map.size) && ocs_dma_alloc(hw->os, &hw->loop_map, SLI4_MIN_LOOP_MAP_BYTES, 4)) { ocs_log_err(hw->os, "Loop dma alloc failed size:%d \n", hw->loop_map.size); } return OCS_HW_RTN_SUCCESS; } /** * @brief Configure Multi-RQ * * @param hw Hardware context allocated by the caller. * @param mode 1 to set MRQ filters and 0 to set FCFI index * @param vlanid valid in mode 0 * @param fcf_index valid in mode 0 * * @return Returns 0 on success, or a non-zero value on failure. */ static int32_t ocs_hw_config_mrq(ocs_hw_t *hw, uint8_t mode, uint16_t vlanid, uint16_t fcf_index) { uint8_t buf[SLI4_BMBX_SIZE], mrq_bitmask = 0; hw_rq_t *rq; sli4_cmd_reg_fcfi_mrq_t *rsp = NULL; uint32_t i, j; sli4_cmd_rq_cfg_t rq_filter[SLI4_CMD_REG_FCFI_MRQ_NUM_RQ_CFG]; int32_t rc; if (mode == SLI4_CMD_REG_FCFI_SET_FCFI_MODE) { goto issue_cmd; } /* Set the filter match/mask values from hw's filter_def values */ for (i = 0; i < SLI4_CMD_REG_FCFI_NUM_RQ_CFG; i++) { rq_filter[i].rq_id = 0xffff; rq_filter[i].r_ctl_mask = (uint8_t) hw->config.filter_def[i]; rq_filter[i].r_ctl_match = (uint8_t) (hw->config.filter_def[i] >> 8); rq_filter[i].type_mask = (uint8_t) (hw->config.filter_def[i] >> 16); rq_filter[i].type_match = (uint8_t) (hw->config.filter_def[i] >> 24); } /* Accumulate counts for each filter type used, build rq_ids[] list */ for (i = 0; i < hw->hw_rq_count; i++) { rq = hw->hw_rq[i]; for (j = 0; j < SLI4_CMD_REG_FCFI_MRQ_NUM_RQ_CFG; j++) { if (rq->filter_mask & (1U << j)) { if (rq_filter[j].rq_id != 0xffff) { /* Already used. Bailout ifts not RQset case */ if (!rq->is_mrq || (rq_filter[j].rq_id != rq->base_mrq_id)) { ocs_log_err(hw->os, "Wrong queue topology.\n"); return OCS_HW_RTN_ERROR; } continue; } if (rq->is_mrq) { rq_filter[j].rq_id = rq->base_mrq_id; mrq_bitmask |= (1U << j); } else { rq_filter[j].rq_id = rq->hdr->id; } } } } issue_cmd: /* Invoke REG_FCFI_MRQ */ rc = sli_cmd_reg_fcfi_mrq(&hw->sli, buf, /* buf */ SLI4_BMBX_SIZE, /* size */ mode, /* mode 1 */ fcf_index, /* fcf_index */ vlanid, /* vlan_id */ hw->config.rq_selection_policy, /* RQ selection policy*/ mrq_bitmask, /* MRQ bitmask */ hw->hw_mrq_count, /* num_mrqs */ rq_filter); /* RQ filter */ if (rc == 0) { ocs_log_err(hw->os, "sli_cmd_reg_fcfi_mrq() failed: %d\n", rc); return OCS_HW_RTN_ERROR; } rc = ocs_hw_command(hw, buf, OCS_CMD_POLL, NULL, NULL); rsp = (sli4_cmd_reg_fcfi_mrq_t *)buf; if ((rc != OCS_HW_RTN_SUCCESS) || (rsp->hdr.status)) { ocs_log_err(hw->os, "FCFI MRQ registration failed. cmd = %x status = %x\n", rsp->hdr.command, rsp->hdr.status); return OCS_HW_RTN_ERROR; } if (mode == SLI4_CMD_REG_FCFI_SET_FCFI_MODE) { hw->fcf_indicator = rsp->fcfi; } return 0; } /** * @brief Callback function for getting linkcfg during HW initialization. * * @param status Status of the linkcfg get operation. * @param value Link configuration enum to which the link configuration is set. * @param arg Callback argument (ocs_hw_t *). * * @return None. */ static void ocs_hw_init_linkcfg_cb(int32_t status, uintptr_t value, void *arg) { ocs_hw_t *hw = (ocs_hw_t *)arg; if (status == 0) { hw->linkcfg = (ocs_hw_linkcfg_e)value; } else { hw->linkcfg = OCS_HW_LINKCFG_NA; } ocs_log_debug(hw->os, "linkcfg=%d\n", hw->linkcfg); } /** * @ingroup devInitShutdown * @brief Tear down the Hardware Abstraction Layer module. * * @par Description * Frees memory structures needed by the device, and shuts down the device. Does * not free the HW context memory (which is done by the caller). * * @param hw Hardware context allocated by the caller. * * @return Returns 0 on success, or a non-zero value on failure. */ ocs_hw_rtn_e ocs_hw_teardown(ocs_hw_t *hw) { uint32_t i = 0; uint32_t iters = 10;/*XXX*/ uint32_t max_rpi; uint32_t destroy_queues; uint32_t free_memory; if (!hw) { ocs_log_err(NULL, "bad parameter(s) hw=%p\n", hw); return OCS_HW_RTN_ERROR; } destroy_queues = (hw->state == OCS_HW_STATE_ACTIVE); free_memory = (hw->state != OCS_HW_STATE_UNINITIALIZED); /* shutdown target wqe timer */ shutdown_target_wqe_timer(hw); /* Cancel watchdog timer if enabled */ if(hw->watchdog_timeout) { hw->watchdog_timeout = 0; ocs_hw_config_watchdog_timer(hw); } /* Cancel Sliport Healthcheck */ if(hw->sliport_healthcheck) { hw->sliport_healthcheck = 0; ocs_hw_config_sli_port_health_check(hw, 0, 0); } if (hw->state != OCS_HW_STATE_QUEUES_ALLOCATED) { hw->state = OCS_HW_STATE_TEARDOWN_IN_PROGRESS; ocs_hw_flush(hw); /* If there are outstanding commands, wait for them to complete */ while (!ocs_list_empty(&hw->cmd_head) && iters) { ocs_udelay(10000); ocs_hw_flush(hw); iters--; } if (ocs_list_empty(&hw->cmd_head)) { ocs_log_debug(hw->os, "All commands completed on MQ queue\n"); } else { ocs_log_debug(hw->os, "Some commands still pending on MQ queue\n"); } /* Cancel any remaining commands */ ocs_hw_command_cancel(hw); } else { hw->state = OCS_HW_STATE_TEARDOWN_IN_PROGRESS; } ocs_lock_free(&hw->cmd_lock); /* Free unregistered RPI if workaround is in force */ if (hw->workaround.use_unregistered_rpi) { sli_resource_free(&hw->sli, SLI_RSRC_FCOE_RPI, hw->workaround.unregistered_rid); } max_rpi = sli_get_max_rsrc(&hw->sli, SLI_RSRC_FCOE_RPI); if (hw->rpi_ref) { for (i = 0; i < max_rpi; i++) { if (ocs_atomic_read(&hw->rpi_ref[i].rpi_count)) { ocs_log_debug(hw->os, "non-zero ref [%d]=%d\n", i, ocs_atomic_read(&hw->rpi_ref[i].rpi_count)); } } ocs_free(hw->os, hw->rpi_ref, max_rpi * sizeof(*hw->rpi_ref)); hw->rpi_ref = NULL; } ocs_dma_free(hw->os, &hw->rnode_mem); if (hw->io) { for (i = 0; i < hw->config.n_io; i++) { if (hw->io[i] && (hw->io[i]->sgl != NULL) && (hw->io[i]->sgl->virt != NULL)) { if(hw->io[i]->is_port_owned) { ocs_lock_free(&hw->io[i]->axr_lock); } ocs_dma_free(hw->os, hw->io[i]->sgl); } ocs_free(hw->os, hw->io[i], sizeof(ocs_hw_io_t)); hw->io[i] = NULL; } ocs_free(hw->os, hw->wqe_buffs, hw->config.n_io * hw->sli.config.wqe_size); hw->wqe_buffs = NULL; ocs_free(hw->os, hw->io, hw->config.n_io * sizeof(ocs_hw_io_t *)); hw->io = NULL; } ocs_dma_free(hw->os, &hw->xfer_rdy); ocs_dma_free(hw->os, &hw->dump_sges); ocs_dma_free(hw->os, &hw->loop_map); ocs_lock_free(&hw->io_lock); ocs_lock_free(&hw->io_abort_lock); for (i = 0; i < hw->wq_count; i++) { sli_queue_free(&hw->sli, &hw->wq[i], destroy_queues, free_memory); } for (i = 0; i < hw->rq_count; i++) { sli_queue_free(&hw->sli, &hw->rq[i], destroy_queues, free_memory); } for (i = 0; i < hw->mq_count; i++) { sli_queue_free(&hw->sli, &hw->mq[i], destroy_queues, free_memory); } for (i = 0; i < hw->cq_count; i++) { sli_queue_free(&hw->sli, &hw->cq[i], destroy_queues, free_memory); } for (i = 0; i < hw->eq_count; i++) { sli_queue_free(&hw->sli, &hw->eq[i], destroy_queues, free_memory); } ocs_hw_qtop_free(hw->qtop); /* Free rq buffers */ ocs_hw_rx_free(hw); hw_queue_teardown(hw); ocs_hw_rqpair_teardown(hw); if (sli_teardown(&hw->sli)) { ocs_log_err(hw->os, "SLI teardown failed\n"); } ocs_queue_history_free(&hw->q_hist); /* record the fact that the queues are non-functional */ hw->state = OCS_HW_STATE_UNINITIALIZED; /* free sequence free pool */ ocs_array_free(hw->seq_pool); hw->seq_pool = NULL; /* free hw_wq_callback pool */ ocs_pool_free(hw->wq_reqtag_pool); ocs_dma_free(hw->os, &hw->domain_dmem); ocs_dma_free(hw->os, &hw->fcf_dmem); /* Mark HW setup as not having been called */ hw->hw_setup_called = FALSE; return OCS_HW_RTN_SUCCESS; } ocs_hw_rtn_e ocs_hw_reset(ocs_hw_t *hw, ocs_hw_reset_e reset) { uint32_t i; ocs_hw_rtn_e rc = OCS_HW_RTN_SUCCESS; uint32_t iters; ocs_hw_state_e prev_state = hw->state; if (hw->state != OCS_HW_STATE_ACTIVE) { ocs_log_test(hw->os, "HW state %d is not active\n", hw->state); } hw->state = OCS_HW_STATE_RESET_IN_PROGRESS; /* shutdown target wqe timer */ shutdown_target_wqe_timer(hw); ocs_hw_flush(hw); /* * If an mailbox command requiring a DMA is outstanding (i.e. SFP/DDM), * then the FW will UE when the reset is issued. So attempt to complete * all mailbox commands. */ iters = 10; while (!ocs_list_empty(&hw->cmd_head) && iters) { ocs_udelay(10000); ocs_hw_flush(hw); iters--; } if (ocs_list_empty(&hw->cmd_head)) { ocs_log_debug(hw->os, "All commands completed on MQ queue\n"); } else { ocs_log_debug(hw->os, "Some commands still pending on MQ queue\n"); } /* Reset the chip */ switch(reset) { case OCS_HW_RESET_FUNCTION: ocs_log_debug(hw->os, "issuing function level reset\n"); if (sli_reset(&hw->sli)) { ocs_log_err(hw->os, "sli_reset failed\n"); rc = OCS_HW_RTN_ERROR; } break; case OCS_HW_RESET_FIRMWARE: ocs_log_debug(hw->os, "issuing firmware reset\n"); if (sli_fw_reset(&hw->sli)) { ocs_log_err(hw->os, "sli_soft_reset failed\n"); rc = OCS_HW_RTN_ERROR; } /* * Because the FW reset leaves the FW in a non-running state, * follow that with a regular reset. */ ocs_log_debug(hw->os, "issuing function level reset\n"); if (sli_reset(&hw->sli)) { ocs_log_err(hw->os, "sli_reset failed\n"); rc = OCS_HW_RTN_ERROR; } break; default: ocs_log_test(hw->os, "unknown reset type - no reset performed\n"); hw->state = prev_state; return OCS_HW_RTN_ERROR; } /* Not safe to walk command/io lists unless they've been initialized */ if (prev_state != OCS_HW_STATE_UNINITIALIZED) { ocs_hw_command_cancel(hw); /* Clean up the inuse list, the free list and the wait free list */ ocs_hw_io_cancel(hw); ocs_memset(hw->domains, 0, sizeof(hw->domains)); ocs_memset(hw->fcf_index_fcfi, 0, sizeof(hw->fcf_index_fcfi)); ocs_hw_link_event_init(hw); ocs_lock(&hw->io_lock); /* The io lists should be empty, but remove any that didn't get cleaned up. */ while (!ocs_list_empty(&hw->io_timed_wqe)) { ocs_list_remove_head(&hw->io_timed_wqe); } /* Don't clean up the io_inuse list, the backend will do that when it finishes the IO */ while (!ocs_list_empty(&hw->io_free)) { ocs_list_remove_head(&hw->io_free); } while (!ocs_list_empty(&hw->io_wait_free)) { ocs_list_remove_head(&hw->io_wait_free); } /* Reset the request tag pool, the HW IO request tags are reassigned in ocs_hw_setup_io() */ ocs_hw_reqtag_reset(hw); ocs_unlock(&hw->io_lock); } if (prev_state != OCS_HW_STATE_UNINITIALIZED) { for (i = 0; i < hw->wq_count; i++) { sli_queue_reset(&hw->sli, &hw->wq[i]); } for (i = 0; i < hw->rq_count; i++) { sli_queue_reset(&hw->sli, &hw->rq[i]); } for (i = 0; i < hw->hw_rq_count; i++) { hw_rq_t *rq = hw->hw_rq[i]; if (rq->rq_tracker != NULL) { uint32_t j; for (j = 0; j < rq->entry_count; j++) { rq->rq_tracker[j] = NULL; } } } for (i = 0; i < hw->mq_count; i++) { sli_queue_reset(&hw->sli, &hw->mq[i]); } for (i = 0; i < hw->cq_count; i++) { sli_queue_reset(&hw->sli, &hw->cq[i]); } for (i = 0; i < hw->eq_count; i++) { sli_queue_reset(&hw->sli, &hw->eq[i]); } /* Free rq buffers */ ocs_hw_rx_free(hw); /* Teardown the HW queue topology */ hw_queue_teardown(hw); } else { /* Free rq buffers */ ocs_hw_rx_free(hw); } /* * Re-apply the run-time workarounds after clearing the SLI config * fields in sli_reset. */ ocs_hw_workaround_setup(hw); hw->state = OCS_HW_STATE_QUEUES_ALLOCATED; return rc; } int32_t ocs_hw_get_num_eq(ocs_hw_t *hw) { return hw->eq_count; } static int32_t ocs_hw_get_fw_timed_out(ocs_hw_t *hw) { /* The error values below are taken from LOWLEVEL_SET_WATCHDOG_TIMER_rev1.pdf * No further explanation is given in the document. * */ return (sli_reg_read(&hw->sli, SLI4_REG_SLIPORT_ERROR1) == 0x2 && sli_reg_read(&hw->sli, SLI4_REG_SLIPORT_ERROR2) == 0x10); } ocs_hw_rtn_e ocs_hw_get(ocs_hw_t *hw, ocs_hw_property_e prop, uint32_t *value) { ocs_hw_rtn_e rc = OCS_HW_RTN_SUCCESS; int32_t tmp; if (!value) { return OCS_HW_RTN_ERROR; } *value = 0; switch (prop) { case OCS_HW_N_IO: *value = hw->config.n_io; break; case OCS_HW_N_SGL: *value = (hw->config.n_sgl - SLI4_SGE_MAX_RESERVED); break; case OCS_HW_MAX_IO: *value = sli_get_max_rsrc(&hw->sli, SLI_RSRC_FCOE_XRI); break; case OCS_HW_MAX_NODES: *value = sli_get_max_rsrc(&hw->sli, SLI_RSRC_FCOE_RPI); break; case OCS_HW_MAX_RQ_ENTRIES: *value = hw->num_qentries[SLI_QTYPE_RQ]; break; case OCS_HW_RQ_DEFAULT_BUFFER_SIZE: *value = hw->config.rq_default_buffer_size; break; case OCS_HW_AUTO_XFER_RDY_CAPABLE: *value = sli_get_auto_xfer_rdy_capable(&hw->sli); break; case OCS_HW_AUTO_XFER_RDY_XRI_CNT: *value = hw->config.auto_xfer_rdy_xri_cnt; break; case OCS_HW_AUTO_XFER_RDY_SIZE: *value = hw->config.auto_xfer_rdy_size; break; case OCS_HW_AUTO_XFER_RDY_BLK_SIZE: switch (hw->config.auto_xfer_rdy_blk_size_chip) { case 0: *value = 512; break; case 1: *value = 1024; break; case 2: *value = 2048; break; case 3: *value = 4096; break; case 4: *value = 520; break; default: *value = 0; rc = OCS_HW_RTN_ERROR; break; } break; case OCS_HW_AUTO_XFER_RDY_T10_ENABLE: *value = hw->config.auto_xfer_rdy_t10_enable; break; case OCS_HW_AUTO_XFER_RDY_P_TYPE: *value = hw->config.auto_xfer_rdy_p_type; break; case OCS_HW_AUTO_XFER_RDY_REF_TAG_IS_LBA: *value = hw->config.auto_xfer_rdy_ref_tag_is_lba; break; case OCS_HW_AUTO_XFER_RDY_APP_TAG_VALID: *value = hw->config.auto_xfer_rdy_app_tag_valid; break; case OCS_HW_AUTO_XFER_RDY_APP_TAG_VALUE: *value = hw->config.auto_xfer_rdy_app_tag_value; break; case OCS_HW_MAX_SGE: *value = sli_get_max_sge(&hw->sli); break; case OCS_HW_MAX_SGL: *value = sli_get_max_sgl(&hw->sli); break; case OCS_HW_TOPOLOGY: /* * Infer link.status based on link.speed. * Report OCS_HW_TOPOLOGY_NONE if the link is down. */ if (hw->link.speed == 0) { *value = OCS_HW_TOPOLOGY_NONE; break; } switch (hw->link.topology) { case SLI_LINK_TOPO_NPORT: *value = OCS_HW_TOPOLOGY_NPORT; break; case SLI_LINK_TOPO_LOOP: *value = OCS_HW_TOPOLOGY_LOOP; break; case SLI_LINK_TOPO_NONE: *value = OCS_HW_TOPOLOGY_NONE; break; default: ocs_log_test(hw->os, "unsupported topology %#x\n", hw->link.topology); rc = OCS_HW_RTN_ERROR; break; } break; case OCS_HW_CONFIG_TOPOLOGY: *value = hw->config.topology; break; case OCS_HW_LINK_SPEED: *value = hw->link.speed; break; case OCS_HW_LINK_CONFIG_SPEED: switch (hw->config.speed) { case FC_LINK_SPEED_10G: *value = 10000; break; case FC_LINK_SPEED_AUTO_16_8_4: *value = 0; break; case FC_LINK_SPEED_2G: *value = 2000; break; case FC_LINK_SPEED_4G: *value = 4000; break; case FC_LINK_SPEED_8G: *value = 8000; break; case FC_LINK_SPEED_16G: *value = 16000; break; case FC_LINK_SPEED_32G: *value = 32000; break; default: ocs_log_test(hw->os, "unsupported speed %#x\n", hw->config.speed); rc = OCS_HW_RTN_ERROR; break; } break; case OCS_HW_IF_TYPE: *value = sli_get_if_type(&hw->sli); break; case OCS_HW_SLI_REV: *value = sli_get_sli_rev(&hw->sli); break; case OCS_HW_SLI_FAMILY: *value = sli_get_sli_family(&hw->sli); break; case OCS_HW_DIF_CAPABLE: *value = sli_get_dif_capable(&hw->sli); break; case OCS_HW_DIF_SEED: *value = hw->config.dif_seed; break; case OCS_HW_DIF_MODE: *value = hw->config.dif_mode; break; case OCS_HW_DIF_MULTI_SEPARATE: /* Lancer supports multiple DIF separates */ if (hw->sli.if_type == SLI4_IF_TYPE_LANCER_FC_ETH) { *value = TRUE; } else { *value = FALSE; } break; case OCS_HW_DUMP_MAX_SIZE: *value = hw->dump_size; break; case OCS_HW_DUMP_READY: *value = sli_dump_is_ready(&hw->sli); break; case OCS_HW_DUMP_PRESENT: *value = sli_dump_is_present(&hw->sli); break; case OCS_HW_RESET_REQUIRED: tmp = sli_reset_required(&hw->sli); if(tmp < 0) { rc = OCS_HW_RTN_ERROR; } else { *value = tmp; } break; case OCS_HW_FW_ERROR: *value = sli_fw_error_status(&hw->sli); break; case OCS_HW_FW_READY: *value = sli_fw_ready(&hw->sli); break; case OCS_HW_FW_TIMED_OUT: *value = ocs_hw_get_fw_timed_out(hw); break; case OCS_HW_HIGH_LOGIN_MODE: *value = sli_get_hlm_capable(&hw->sli); break; case OCS_HW_PREREGISTER_SGL: *value = sli_get_sgl_preregister_required(&hw->sli); break; case OCS_HW_HW_REV1: *value = sli_get_hw_revision(&hw->sli, 0); break; case OCS_HW_HW_REV2: *value = sli_get_hw_revision(&hw->sli, 1); break; case OCS_HW_HW_REV3: *value = sli_get_hw_revision(&hw->sli, 2); break; case OCS_HW_LINKCFG: *value = hw->linkcfg; break; case OCS_HW_ETH_LICENSE: *value = hw->eth_license; break; case OCS_HW_LINK_MODULE_TYPE: *value = sli_get_link_module_type(&hw->sli); break; case OCS_HW_NUM_CHUTES: *value = ocs_hw_get_num_chutes(hw); break; case OCS_HW_DISABLE_AR_TGT_DIF: *value = hw->workaround.disable_ar_tgt_dif; break; case OCS_HW_EMULATE_I_ONLY_AAB: *value = hw->config.i_only_aab; break; - case OCS_HW_EMULATE_TARGET_WQE_TIMEOUT: - *value = hw->config.emulate_tgt_wqe_timeout; + case OCS_HW_EMULATE_WQE_TIMEOUT: + *value = hw->config.emulate_wqe_timeout; break; case OCS_HW_VPD_LEN: *value = sli_get_vpd_len(&hw->sli); break; case OCS_HW_SGL_CHAINING_CAPABLE: *value = sli_get_is_sgl_chaining_capable(&hw->sli) || hw->workaround.sglc_misreported; break; case OCS_HW_SGL_CHAINING_ALLOWED: /* * SGL Chaining is allowed in the following cases: * 1. Lancer with host SGL Lists * 2. Skyhawk with pre-registered SGL Lists */ *value = FALSE; if ((sli_get_is_sgl_chaining_capable(&hw->sli) || hw->workaround.sglc_misreported) && !sli_get_sgl_preregister(&hw->sli) && SLI4_IF_TYPE_LANCER_FC_ETH == sli_get_if_type(&hw->sli)) { *value = TRUE; } if ((sli_get_is_sgl_chaining_capable(&hw->sli) || hw->workaround.sglc_misreported) && sli_get_sgl_preregister(&hw->sli) && ((SLI4_IF_TYPE_BE3_SKH_PF == sli_get_if_type(&hw->sli)) || (SLI4_IF_TYPE_BE3_SKH_VF == sli_get_if_type(&hw->sli)))) { *value = TRUE; } break; case OCS_HW_SGL_CHAINING_HOST_ALLOCATED: /* Only lancer supports host allocated SGL Chaining buffers. */ *value = ((sli_get_is_sgl_chaining_capable(&hw->sli) || hw->workaround.sglc_misreported) && (SLI4_IF_TYPE_LANCER_FC_ETH == sli_get_if_type(&hw->sli))); break; case OCS_HW_SEND_FRAME_CAPABLE: if (hw->workaround.ignore_send_frame) { *value = 0; } else { /* Only lancer is capable */ *value = sli_get_if_type(&hw->sli) == SLI4_IF_TYPE_LANCER_FC_ETH; } break; case OCS_HW_RQ_SELECTION_POLICY: *value = hw->config.rq_selection_policy; break; case OCS_HW_RR_QUANTA: *value = hw->config.rr_quanta; break; case OCS_HW_MAX_VPORTS: *value = sli_get_max_rsrc(&hw->sli, SLI_RSRC_FCOE_VPI); break; default: ocs_log_test(hw->os, "unsupported property %#x\n", prop); rc = OCS_HW_RTN_ERROR; } return rc; } void * ocs_hw_get_ptr(ocs_hw_t *hw, ocs_hw_property_e prop) { void *rc = NULL; switch (prop) { case OCS_HW_WWN_NODE: rc = sli_get_wwn_node(&hw->sli); break; case OCS_HW_WWN_PORT: rc = sli_get_wwn_port(&hw->sli); break; case OCS_HW_VPD: /* make sure VPD length is non-zero */ if (sli_get_vpd_len(&hw->sli)) { rc = sli_get_vpd(&hw->sli); } break; case OCS_HW_FW_REV: rc = sli_get_fw_name(&hw->sli, 0); break; case OCS_HW_FW_REV2: rc = sli_get_fw_name(&hw->sli, 1); break; case OCS_HW_IPL: rc = sli_get_ipl_name(&hw->sli); break; case OCS_HW_PORTNUM: rc = sli_get_portnum(&hw->sli); break; case OCS_HW_BIOS_VERSION_STRING: rc = sli_get_bios_version_string(&hw->sli); break; default: ocs_log_test(hw->os, "unsupported property %#x\n", prop); } return rc; } ocs_hw_rtn_e ocs_hw_set(ocs_hw_t *hw, ocs_hw_property_e prop, uint32_t value) { ocs_hw_rtn_e rc = OCS_HW_RTN_SUCCESS; switch (prop) { case OCS_HW_N_IO: if (value > sli_get_max_rsrc(&hw->sli, SLI_RSRC_FCOE_XRI) || value == 0) { ocs_log_test(hw->os, "IO value out of range %d vs %d\n", value, sli_get_max_rsrc(&hw->sli, SLI_RSRC_FCOE_XRI)); rc = OCS_HW_RTN_ERROR; } else { hw->config.n_io = value; } break; case OCS_HW_N_SGL: value += SLI4_SGE_MAX_RESERVED; if (value > sli_get_max_sgl(&hw->sli)) { ocs_log_test(hw->os, "SGL value out of range %d vs %d\n", value, sli_get_max_sgl(&hw->sli)); rc = OCS_HW_RTN_ERROR; } else { hw->config.n_sgl = value; } break; case OCS_HW_TOPOLOGY: if ((sli_get_medium(&hw->sli) != SLI_LINK_MEDIUM_FC) && (value != OCS_HW_TOPOLOGY_AUTO)) { ocs_log_test(hw->os, "unsupported topology=%#x medium=%#x\n", value, sli_get_medium(&hw->sli)); rc = OCS_HW_RTN_ERROR; break; } switch (value) { case OCS_HW_TOPOLOGY_AUTO: if (sli_get_medium(&hw->sli) == SLI_LINK_MEDIUM_FC) { sli_set_topology(&hw->sli, SLI4_READ_CFG_TOPO_FC); } else { sli_set_topology(&hw->sli, SLI4_READ_CFG_TOPO_FCOE); } break; case OCS_HW_TOPOLOGY_NPORT: sli_set_topology(&hw->sli, SLI4_READ_CFG_TOPO_FC_DA); break; case OCS_HW_TOPOLOGY_LOOP: sli_set_topology(&hw->sli, SLI4_READ_CFG_TOPO_FC_AL); break; default: ocs_log_test(hw->os, "unsupported topology %#x\n", value); rc = OCS_HW_RTN_ERROR; } hw->config.topology = value; break; case OCS_HW_LINK_SPEED: if (sli_get_medium(&hw->sli) != SLI_LINK_MEDIUM_FC) { switch (value) { case 0: /* Auto-speed negotiation */ case 10000: /* FCoE speed */ hw->config.speed = FC_LINK_SPEED_10G; break; default: ocs_log_test(hw->os, "unsupported speed=%#x medium=%#x\n", value, sli_get_medium(&hw->sli)); rc = OCS_HW_RTN_ERROR; } break; } switch (value) { case 0: /* Auto-speed negotiation */ hw->config.speed = FC_LINK_SPEED_AUTO_16_8_4; break; case 2000: /* FC speeds */ hw->config.speed = FC_LINK_SPEED_2G; break; case 4000: hw->config.speed = FC_LINK_SPEED_4G; break; case 8000: hw->config.speed = FC_LINK_SPEED_8G; break; case 16000: hw->config.speed = FC_LINK_SPEED_16G; break; case 32000: hw->config.speed = FC_LINK_SPEED_32G; break; default: ocs_log_test(hw->os, "unsupported speed %d\n", value); rc = OCS_HW_RTN_ERROR; } break; case OCS_HW_DIF_SEED: /* Set the DIF seed - only for lancer right now */ if (SLI4_IF_TYPE_LANCER_FC_ETH != sli_get_if_type(&hw->sli)) { ocs_log_test(hw->os, "DIF seed not supported for this device\n"); rc = OCS_HW_RTN_ERROR; } else { hw->config.dif_seed = value; } break; case OCS_HW_DIF_MODE: switch (value) { case OCS_HW_DIF_MODE_INLINE: /* * Make sure we support inline DIF. * * Note: Having both bits clear means that we have old * FW that doesn't set the bits. */ if (sli_is_dif_inline_capable(&hw->sli)) { hw->config.dif_mode = value; } else { ocs_log_test(hw->os, "chip does not support DIF inline\n"); rc = OCS_HW_RTN_ERROR; } break; case OCS_HW_DIF_MODE_SEPARATE: /* Make sure we support DIF separates. */ if (sli_is_dif_separate_capable(&hw->sli)) { hw->config.dif_mode = value; } else { ocs_log_test(hw->os, "chip does not support DIF separate\n"); rc = OCS_HW_RTN_ERROR; } } break; case OCS_HW_RQ_PROCESS_LIMIT: { hw_rq_t *rq; uint32_t i; /* For each hw_rq object, set its parent CQ limit value */ for (i = 0; i < hw->hw_rq_count; i++) { rq = hw->hw_rq[i]; hw->cq[rq->cq->instance].proc_limit = value; } break; } case OCS_HW_RQ_DEFAULT_BUFFER_SIZE: hw->config.rq_default_buffer_size = value; break; case OCS_HW_AUTO_XFER_RDY_XRI_CNT: hw->config.auto_xfer_rdy_xri_cnt = value; break; case OCS_HW_AUTO_XFER_RDY_SIZE: hw->config.auto_xfer_rdy_size = value; break; case OCS_HW_AUTO_XFER_RDY_BLK_SIZE: switch (value) { case 512: hw->config.auto_xfer_rdy_blk_size_chip = 0; break; case 1024: hw->config.auto_xfer_rdy_blk_size_chip = 1; break; case 2048: hw->config.auto_xfer_rdy_blk_size_chip = 2; break; case 4096: hw->config.auto_xfer_rdy_blk_size_chip = 3; break; case 520: hw->config.auto_xfer_rdy_blk_size_chip = 4; break; default: ocs_log_err(hw->os, "Invalid block size %d\n", value); rc = OCS_HW_RTN_ERROR; } break; case OCS_HW_AUTO_XFER_RDY_T10_ENABLE: hw->config.auto_xfer_rdy_t10_enable = value; break; case OCS_HW_AUTO_XFER_RDY_P_TYPE: hw->config.auto_xfer_rdy_p_type = value; break; case OCS_HW_AUTO_XFER_RDY_REF_TAG_IS_LBA: hw->config.auto_xfer_rdy_ref_tag_is_lba = value; break; case OCS_HW_AUTO_XFER_RDY_APP_TAG_VALID: hw->config.auto_xfer_rdy_app_tag_valid = value; break; case OCS_HW_AUTO_XFER_RDY_APP_TAG_VALUE: hw->config.auto_xfer_rdy_app_tag_value = value; break; case OCS_ESOC: hw->config.esoc = value; break; case OCS_HW_HIGH_LOGIN_MODE: rc = sli_set_hlm(&hw->sli, value); break; case OCS_HW_PREREGISTER_SGL: rc = sli_set_sgl_preregister(&hw->sli, value); break; case OCS_HW_ETH_LICENSE: hw->eth_license = value; break; case OCS_HW_EMULATE_I_ONLY_AAB: hw->config.i_only_aab = value; break; - case OCS_HW_EMULATE_TARGET_WQE_TIMEOUT: - hw->config.emulate_tgt_wqe_timeout = value; + case OCS_HW_EMULATE_WQE_TIMEOUT: + hw->config.emulate_wqe_timeout = value; break; case OCS_HW_BOUNCE: hw->config.bounce = value; break; case OCS_HW_RQ_SELECTION_POLICY: hw->config.rq_selection_policy = value; break; case OCS_HW_RR_QUANTA: hw->config.rr_quanta = value; break; default: ocs_log_test(hw->os, "unsupported property %#x\n", prop); rc = OCS_HW_RTN_ERROR; } return rc; } ocs_hw_rtn_e ocs_hw_set_ptr(ocs_hw_t *hw, ocs_hw_property_e prop, void *value) { ocs_hw_rtn_e rc = OCS_HW_RTN_SUCCESS; switch (prop) { case OCS_HW_WAR_VERSION: hw->hw_war_version = value; break; case OCS_HW_FILTER_DEF: { char *p = value; uint32_t idx = 0; for (idx = 0; idx < ARRAY_SIZE(hw->config.filter_def); idx++) { hw->config.filter_def[idx] = 0; } for (idx = 0; (idx < ARRAY_SIZE(hw->config.filter_def)) && (p != NULL) && *p; ) { hw->config.filter_def[idx++] = ocs_strtoul(p, 0, 0); p = ocs_strchr(p, ','); if (p != NULL) { p++; } } break; } default: ocs_log_test(hw->os, "unsupported property %#x\n", prop); rc = OCS_HW_RTN_ERROR; break; } return rc; } /** * @ingroup interrupt * @brief Check for the events associated with the interrupt vector. * * @param hw Hardware context. * @param vector Zero-based interrupt vector number. * * @return Returns 0 on success, or a non-zero value on failure. */ int32_t ocs_hw_event_check(ocs_hw_t *hw, uint32_t vector) { int32_t rc = 0; if (!hw) { ocs_log_err(NULL, "HW context NULL?!?\n"); return -1; } if (vector > hw->eq_count) { ocs_log_err(hw->os, "vector %d. max %d\n", vector, hw->eq_count); return -1; } /* * The caller should disable interrupts if they wish to prevent us * from processing during a shutdown. The following states are defined: * OCS_HW_STATE_UNINITIALIZED - No queues allocated * OCS_HW_STATE_QUEUES_ALLOCATED - The state after a chip reset, * queues are cleared. * OCS_HW_STATE_ACTIVE - Chip and queues are operational * OCS_HW_STATE_RESET_IN_PROGRESS - reset, we still want completions * OCS_HW_STATE_TEARDOWN_IN_PROGRESS - We still want mailbox * completions. */ if (hw->state != OCS_HW_STATE_UNINITIALIZED) { rc = sli_queue_is_empty(&hw->sli, &hw->eq[vector]); /* Re-arm queue if there are no entries */ if (rc != 0) { sli_queue_arm(&hw->sli, &hw->eq[vector], TRUE); } } return rc; } void ocs_hw_unsol_process_bounce(void *arg) { ocs_hw_sequence_t *seq = arg; ocs_hw_t *hw = seq->hw; ocs_hw_assert(hw != NULL); ocs_hw_assert(hw->callback.unsolicited != NULL); hw->callback.unsolicited(hw->args.unsolicited, seq); } int32_t ocs_hw_process(ocs_hw_t *hw, uint32_t vector, uint32_t max_isr_time_msec) { hw_eq_t *eq; int32_t rc = 0; CPUTRACE(""); /* * The caller should disable interrupts if they wish to prevent us * from processing during a shutdown. The following states are defined: * OCS_HW_STATE_UNINITIALIZED - No queues allocated * OCS_HW_STATE_QUEUES_ALLOCATED - The state after a chip reset, * queues are cleared. * OCS_HW_STATE_ACTIVE - Chip and queues are operational * OCS_HW_STATE_RESET_IN_PROGRESS - reset, we still want completions * OCS_HW_STATE_TEARDOWN_IN_PROGRESS - We still want mailbox * completions. */ if (hw->state == OCS_HW_STATE_UNINITIALIZED) { return 0; } /* Get pointer to hw_eq_t */ eq = hw->hw_eq[vector]; OCS_STAT(eq->use_count++); rc = ocs_hw_eq_process(hw, eq, max_isr_time_msec); return rc; } /** * @ingroup interrupt * @brief Process events associated with an EQ. * * @par Description * Loop termination: * @n @n Without a mechanism to terminate the completion processing loop, it * is possible under some workload conditions for the loop to never terminate * (or at least take longer than the OS is happy to have an interrupt handler * or kernel thread context hold a CPU without yielding). * @n @n The approach taken here is to periodically check how much time * we have been in this * processing loop, and if we exceed a predetermined time (multiple seconds), the * loop is terminated, and ocs_hw_process() returns. * * @param hw Hardware context. * @param eq Pointer to HW EQ object. * @param max_isr_time_msec Maximum time in msec to stay in this function. * * @return Returns 0 on success, or a non-zero value on failure. */ int32_t ocs_hw_eq_process(ocs_hw_t *hw, hw_eq_t *eq, uint32_t max_isr_time_msec) { uint8_t eqe[sizeof(sli4_eqe_t)] = { 0 }; uint32_t done = FALSE; uint32_t tcheck_count; time_t tstart; time_t telapsed; tcheck_count = OCS_HW_TIMECHECK_ITERATIONS; tstart = ocs_msectime(); CPUTRACE(""); while (!done && !sli_queue_read(&hw->sli, eq->queue, eqe)) { uint16_t cq_id = 0; int32_t rc; rc = sli_eq_parse(&hw->sli, eqe, &cq_id); if (unlikely(rc)) { if (rc > 0) { uint32_t i; /* * Received a sentinel EQE indicating the EQ is full. * Process all CQs */ for (i = 0; i < hw->cq_count; i++) { ocs_hw_cq_process(hw, hw->hw_cq[i]); } continue; } else { return rc; } } else { int32_t index = ocs_hw_queue_hash_find(hw->cq_hash, cq_id); if (likely(index >= 0)) { ocs_hw_cq_process(hw, hw->hw_cq[index]); } else { ocs_log_err(hw->os, "bad CQ_ID %#06x\n", cq_id); } } if (eq->queue->n_posted > (eq->queue->posted_limit)) { sli_queue_arm(&hw->sli, eq->queue, FALSE); } if (tcheck_count && (--tcheck_count == 0)) { tcheck_count = OCS_HW_TIMECHECK_ITERATIONS; telapsed = ocs_msectime() - tstart; if (telapsed >= max_isr_time_msec) { done = TRUE; } } } sli_queue_eq_arm(&hw->sli, eq->queue, TRUE); return 0; } /** * @brief Submit queued (pending) mbx commands. * * @par Description * Submit queued mailbox commands. * --- Assumes that hw->cmd_lock is held --- * * @param hw Hardware context. * * @return Returns 0 on success, or a negative error code value on failure. */ static int32_t ocs_hw_cmd_submit_pending(ocs_hw_t *hw) { ocs_command_ctx_t *ctx; int32_t rc = 0; /* Assumes lock held */ /* Only submit MQE if there's room */ while (hw->cmd_head_count < (OCS_HW_MQ_DEPTH - 1)) { ctx = ocs_list_remove_head(&hw->cmd_pending); if (ctx == NULL) { break; } ocs_list_add_tail(&hw->cmd_head, ctx); hw->cmd_head_count++; if (sli_queue_write(&hw->sli, hw->mq, ctx->buf) < 0) { ocs_log_test(hw->os, "sli_queue_write failed: %d\n", rc); rc = -1; break; } } return rc; } /** * @ingroup io * @brief Issue a SLI command. * * @par Description * Send a mailbox command to the hardware, and either wait for a completion * (OCS_CMD_POLL) or get an optional asynchronous completion (OCS_CMD_NOWAIT). * * @param hw Hardware context. * @param cmd Buffer containing a formatted command and results. * @param opts Command options: * - OCS_CMD_POLL - Command executes synchronously and busy-waits for the completion. * - OCS_CMD_NOWAIT - Command executes asynchronously. Uses callback. * @param cb Function callback used for asynchronous mode. May be NULL. * @n Prototype is (*cb)(void *arg, uint8_t *cmd). * @n @n @b Note: If the * callback function pointer is NULL, the results of the command are silently * discarded, allowing this pointer to exist solely on the stack. * @param arg Argument passed to an asynchronous callback. * * @return Returns 0 on success, or a non-zero value on failure. */ ocs_hw_rtn_e ocs_hw_command(ocs_hw_t *hw, uint8_t *cmd, uint32_t opts, void *cb, void *arg) { ocs_hw_rtn_e rc = OCS_HW_RTN_ERROR; /* * If the chip is in an error state (UE'd) then reject this mailbox * command. */ if (sli_fw_error_status(&hw->sli) > 0) { uint32_t err1 = sli_reg_read(&hw->sli, SLI4_REG_SLIPORT_ERROR1); uint32_t err2 = sli_reg_read(&hw->sli, SLI4_REG_SLIPORT_ERROR2); if (hw->expiration_logged == 0 && err1 == 0x2 && err2 == 0x10) { hw->expiration_logged = 1; ocs_log_crit(hw->os,"Emulex: Heartbeat expired after %d seconds\n", hw->watchdog_timeout); } ocs_log_crit(hw->os, "Chip is in an error state - reset needed\n"); ocs_log_crit(hw->os, "status=%#x error1=%#x error2=%#x\n", sli_reg_read(&hw->sli, SLI4_REG_SLIPORT_STATUS), err1, err2); return OCS_HW_RTN_ERROR; } if (OCS_CMD_POLL == opts) { ocs_lock(&hw->cmd_lock); if (hw->mq->length && !sli_queue_is_empty(&hw->sli, hw->mq)) { /* * Can't issue Boot-strap mailbox command with other * mail-queue commands pending as this interaction is * undefined */ rc = OCS_HW_RTN_ERROR; } else { void *bmbx = hw->sli.bmbx.virt; ocs_memset(bmbx, 0, SLI4_BMBX_SIZE); ocs_memcpy(bmbx, cmd, SLI4_BMBX_SIZE); if (sli_bmbx_command(&hw->sli) == 0) { rc = OCS_HW_RTN_SUCCESS; ocs_memcpy(cmd, bmbx, SLI4_BMBX_SIZE); } } ocs_unlock(&hw->cmd_lock); } else if (OCS_CMD_NOWAIT == opts) { ocs_command_ctx_t *ctx = NULL; ctx = ocs_malloc(hw->os, sizeof(ocs_command_ctx_t), OCS_M_ZERO | OCS_M_NOWAIT); if (!ctx) { ocs_log_err(hw->os, "can't allocate command context\n"); return OCS_HW_RTN_NO_RESOURCES; } if (hw->state != OCS_HW_STATE_ACTIVE) { ocs_log_err(hw->os, "Can't send command, HW state=%d\n", hw->state); ocs_free(hw->os, ctx, sizeof(*ctx)); return OCS_HW_RTN_ERROR; } if (cb) { ctx->cb = cb; ctx->arg = arg; } ctx->buf = cmd; ctx->ctx = hw; ocs_lock(&hw->cmd_lock); /* Add to pending list */ ocs_list_add_tail(&hw->cmd_pending, ctx); /* Submit as much of the pending list as we can */ if (ocs_hw_cmd_submit_pending(hw) == 0) { rc = OCS_HW_RTN_SUCCESS; } ocs_unlock(&hw->cmd_lock); } return rc; } /** * @ingroup devInitShutdown * @brief Register a callback for the given event. * * @param hw Hardware context. * @param which Event of interest. * @param func Function to call when the event occurs. * @param arg Argument passed to the callback function. * * @return Returns 0 on success, or a non-zero value on failure. */ ocs_hw_rtn_e ocs_hw_callback(ocs_hw_t *hw, ocs_hw_callback_e which, void *func, void *arg) { if (!hw || !func || (which >= OCS_HW_CB_MAX)) { ocs_log_err(NULL, "bad parameter hw=%p which=%#x func=%p\n", hw, which, func); return OCS_HW_RTN_ERROR; } switch (which) { case OCS_HW_CB_DOMAIN: hw->callback.domain = func; hw->args.domain = arg; break; case OCS_HW_CB_PORT: hw->callback.port = func; hw->args.port = arg; break; case OCS_HW_CB_UNSOLICITED: hw->callback.unsolicited = func; hw->args.unsolicited = arg; break; case OCS_HW_CB_REMOTE_NODE: hw->callback.rnode = func; hw->args.rnode = arg; break; case OCS_HW_CB_BOUNCE: hw->callback.bounce = func; hw->args.bounce = arg; break; default: ocs_log_test(hw->os, "unknown callback %#x\n", which); return OCS_HW_RTN_ERROR; } return OCS_HW_RTN_SUCCESS; } /** * @ingroup port * @brief Allocate a port object. * * @par Description * This function allocates a VPI object for the port and stores it in the * indicator field of the port object. * * @param hw Hardware context. * @param sport SLI port object used to connect to the domain. * @param domain Domain object associated with this port (may be NULL). * @param wwpn Port's WWPN in big-endian order, or NULL to use default. * * @return Returns 0 on success, or a non-zero value on failure. */ ocs_hw_rtn_e ocs_hw_port_alloc(ocs_hw_t *hw, ocs_sli_port_t *sport, ocs_domain_t *domain, uint8_t *wwpn) { uint8_t *cmd = NULL; ocs_hw_rtn_e rc = OCS_HW_RTN_SUCCESS; uint32_t index; sport->indicator = UINT32_MAX; sport->hw = hw; sport->ctx.app = sport; sport->sm_free_req_pending = 0; /* * Check if the chip is in an error state (UE'd) before proceeding. */ if (sli_fw_error_status(&hw->sli) > 0) { ocs_log_crit(hw->os, "Chip is in an error state - reset needed\n"); return OCS_HW_RTN_ERROR; } if (wwpn) { ocs_memcpy(&sport->sli_wwpn, wwpn, sizeof(sport->sli_wwpn)); } if (sli_resource_alloc(&hw->sli, SLI_RSRC_FCOE_VPI, &sport->indicator, &index)) { ocs_log_err(hw->os, "FCOE_VPI allocation failure\n"); return OCS_HW_RTN_ERROR; } if (domain != NULL) { ocs_sm_function_t next = NULL; cmd = ocs_malloc(hw->os, SLI4_BMBX_SIZE, OCS_M_ZERO | OCS_M_NOWAIT); if (!cmd) { ocs_log_err(hw->os, "command memory allocation failed\n"); rc = OCS_HW_RTN_NO_MEMORY; goto ocs_hw_port_alloc_out; } /* If the WWPN is NULL, fetch the default WWPN and WWNN before * initializing the VPI */ if (!wwpn) { next = __ocs_hw_port_alloc_read_sparm64; } else { next = __ocs_hw_port_alloc_init_vpi; } ocs_sm_transition(&sport->ctx, next, cmd); } else if (!wwpn) { /* This is the convention for the HW, not SLI */ ocs_log_test(hw->os, "need WWN for physical port\n"); rc = OCS_HW_RTN_ERROR; } else { /* domain NULL and wwpn non-NULL */ ocs_sm_transition(&sport->ctx, __ocs_hw_port_alloc_init, NULL); } ocs_hw_port_alloc_out: if (rc != OCS_HW_RTN_SUCCESS) { ocs_free(hw->os, cmd, SLI4_BMBX_SIZE); sli_resource_free(&hw->sli, SLI_RSRC_FCOE_VPI, sport->indicator); } return rc; } /** * @ingroup port * @brief Attach a physical/virtual SLI port to a domain. * * @par Description * This function registers a previously-allocated VPI with the * device. * * @param hw Hardware context. * @param sport Pointer to the SLI port object. * @param fc_id Fibre Channel ID to associate with this port. * * @return Returns OCS_HW_RTN_SUCCESS on success, or an error code on failure. */ ocs_hw_rtn_e ocs_hw_port_attach(ocs_hw_t *hw, ocs_sli_port_t *sport, uint32_t fc_id) { uint8_t *buf = NULL; ocs_hw_rtn_e rc = OCS_HW_RTN_SUCCESS; if (!hw || !sport) { ocs_log_err(hw ? hw->os : NULL, "bad parameter(s) hw=%p sport=%p\n", hw, sport); return OCS_HW_RTN_ERROR; } /* * Check if the chip is in an error state (UE'd) before proceeding. */ if (sli_fw_error_status(&hw->sli) > 0) { ocs_log_crit(hw->os, "Chip is in an error state - reset needed\n"); return OCS_HW_RTN_ERROR; } buf = ocs_malloc(hw->os, SLI4_BMBX_SIZE, OCS_M_NOWAIT); if (!buf) { ocs_log_err(hw->os, "no buffer for command\n"); return OCS_HW_RTN_NO_MEMORY; } sport->fc_id = fc_id; ocs_sm_post_event(&sport->ctx, OCS_EVT_HW_PORT_REQ_ATTACH, buf); return rc; } /** * @brief Called when the port control command completes. * * @par Description * We only need to free the mailbox command buffer. * * @param hw Hardware context. * @param status Status field from the mbox completion. * @param mqe Mailbox response structure. * @param arg Pointer to a callback function that signals the caller that the command is done. * * @return Returns 0. */ static int32_t ocs_hw_cb_port_control(ocs_hw_t *hw, int32_t status, uint8_t *mqe, void *arg) { ocs_free(hw->os, mqe, SLI4_BMBX_SIZE); return 0; } /** * @ingroup port * @brief Control a port (initialize, shutdown, or set link configuration). * * @par Description * This function controls a port depending on the @c ctrl parameter: * - @b OCS_HW_PORT_INIT - * Issues the CONFIG_LINK and INIT_LINK commands for the specified port. * The HW generates an OCS_HW_DOMAIN_FOUND event when the link comes up. * . * - @b OCS_HW_PORT_SHUTDOWN - * Issues the DOWN_LINK command for the specified port. * The HW generates an OCS_HW_DOMAIN_LOST event when the link is down. * . * - @b OCS_HW_PORT_SET_LINK_CONFIG - * Sets the link configuration. * * @param hw Hardware context. * @param ctrl Specifies the operation: * - OCS_HW_PORT_INIT * - OCS_HW_PORT_SHUTDOWN * - OCS_HW_PORT_SET_LINK_CONFIG * * @param value Operation-specific value. * - OCS_HW_PORT_INIT - Selective reset AL_PA * - OCS_HW_PORT_SHUTDOWN - N/A * - OCS_HW_PORT_SET_LINK_CONFIG - An enum #ocs_hw_linkcfg_e value. * * @param cb Callback function to invoke the following operation. * - OCS_HW_PORT_INIT/OCS_HW_PORT_SHUTDOWN - NULL (link events * are handled by the OCS_HW_CB_DOMAIN callbacks). * - OCS_HW_PORT_SET_LINK_CONFIG - Invoked after linkcfg mailbox command * completes. * * @param arg Callback argument invoked after the command completes. * - OCS_HW_PORT_INIT/OCS_HW_PORT_SHUTDOWN - NULL (link events * are handled by the OCS_HW_CB_DOMAIN callbacks). * - OCS_HW_PORT_SET_LINK_CONFIG - Invoked after linkcfg mailbox command * completes. * * @return Returns 0 on success, or a non-zero value on failure. */ ocs_hw_rtn_e ocs_hw_port_control(ocs_hw_t *hw, ocs_hw_port_e ctrl, uintptr_t value, ocs_hw_port_control_cb_t cb, void *arg) { ocs_hw_rtn_e rc = OCS_HW_RTN_ERROR; switch (ctrl) { case OCS_HW_PORT_INIT: { uint8_t *init_link; uint32_t speed = 0; uint8_t reset_alpa = 0; if (SLI_LINK_MEDIUM_FC == sli_get_medium(&hw->sli)) { uint8_t *cfg_link; cfg_link = ocs_malloc(hw->os, SLI4_BMBX_SIZE, OCS_M_NOWAIT); if (cfg_link == NULL) { ocs_log_err(hw->os, "no buffer for command\n"); return OCS_HW_RTN_NO_MEMORY; } if (sli_cmd_config_link(&hw->sli, cfg_link, SLI4_BMBX_SIZE)) { rc = ocs_hw_command(hw, cfg_link, OCS_CMD_NOWAIT, ocs_hw_cb_port_control, NULL); } if (rc != OCS_HW_RTN_SUCCESS) { ocs_free(hw->os, cfg_link, SLI4_BMBX_SIZE); ocs_log_err(hw->os, "CONFIG_LINK failed\n"); break; } speed = hw->config.speed; reset_alpa = (uint8_t)(value & 0xff); } else { speed = FC_LINK_SPEED_10G; } /* * Bring link up, unless FW version is not supported */ if (hw->workaround.fw_version_too_low) { if (SLI4_IF_TYPE_LANCER_FC_ETH == hw->sli.if_type) { ocs_log_err(hw->os, "Cannot bring up link. Please update firmware to %s or later (current version is %s)\n", OCS_FW_VER_STR(OCS_MIN_FW_VER_LANCER), (char *) sli_get_fw_name(&hw->sli,0)); } else { ocs_log_err(hw->os, "Cannot bring up link. Please update firmware to %s or later (current version is %s)\n", OCS_FW_VER_STR(OCS_MIN_FW_VER_SKYHAWK), (char *) sli_get_fw_name(&hw->sli, 0)); } return OCS_HW_RTN_ERROR; } rc = OCS_HW_RTN_ERROR; /* Allocate a new buffer for the init_link command */ init_link = ocs_malloc(hw->os, SLI4_BMBX_SIZE, OCS_M_NOWAIT); if (init_link == NULL) { ocs_log_err(hw->os, "no buffer for command\n"); return OCS_HW_RTN_NO_MEMORY; } if (sli_cmd_init_link(&hw->sli, init_link, SLI4_BMBX_SIZE, speed, reset_alpa)) { rc = ocs_hw_command(hw, init_link, OCS_CMD_NOWAIT, ocs_hw_cb_port_control, NULL); } /* Free buffer on error, since no callback is coming */ if (rc != OCS_HW_RTN_SUCCESS) { ocs_free(hw->os, init_link, SLI4_BMBX_SIZE); ocs_log_err(hw->os, "INIT_LINK failed\n"); } break; } case OCS_HW_PORT_SHUTDOWN: { uint8_t *down_link; down_link = ocs_malloc(hw->os, SLI4_BMBX_SIZE, OCS_M_NOWAIT); if (down_link == NULL) { ocs_log_err(hw->os, "no buffer for command\n"); return OCS_HW_RTN_NO_MEMORY; } if (sli_cmd_down_link(&hw->sli, down_link, SLI4_BMBX_SIZE)) { rc = ocs_hw_command(hw, down_link, OCS_CMD_NOWAIT, ocs_hw_cb_port_control, NULL); } /* Free buffer on error, since no callback is coming */ if (rc != OCS_HW_RTN_SUCCESS) { ocs_free(hw->os, down_link, SLI4_BMBX_SIZE); ocs_log_err(hw->os, "DOWN_LINK failed\n"); } break; } case OCS_HW_PORT_SET_LINK_CONFIG: rc = ocs_hw_set_linkcfg(hw, (ocs_hw_linkcfg_e)value, OCS_CMD_NOWAIT, cb, arg); break; default: ocs_log_test(hw->os, "unhandled control %#x\n", ctrl); break; } return rc; } /** * @ingroup port * @brief Free port resources. * * @par Description * Issue the UNREG_VPI command to free the assigned VPI context. * * @param hw Hardware context. * @param sport SLI port object used to connect to the domain. * * @return Returns 0 on success, or a non-zero value on failure. */ ocs_hw_rtn_e ocs_hw_port_free(ocs_hw_t *hw, ocs_sli_port_t *sport) { ocs_hw_rtn_e rc = OCS_HW_RTN_SUCCESS; if (!hw || !sport) { ocs_log_err(hw ? hw->os : NULL, "bad parameter(s) hw=%p sport=%p\n", hw, sport); return OCS_HW_RTN_ERROR; } /* * Check if the chip is in an error state (UE'd) before proceeding. */ if (sli_fw_error_status(&hw->sli) > 0) { ocs_log_crit(hw->os, "Chip is in an error state - reset needed\n"); return OCS_HW_RTN_ERROR; } ocs_sm_post_event(&sport->ctx, OCS_EVT_HW_PORT_REQ_FREE, NULL); return rc; } /** * @ingroup domain * @brief Allocate a fabric domain object. * * @par Description * This function starts a series of commands needed to connect to the domain, including * - REG_FCFI * - INIT_VFI * - READ_SPARMS * . * @b Note: Not all SLI interface types use all of the above commands. * @n @n Upon successful allocation, the HW generates a OCS_HW_DOMAIN_ALLOC_OK * event. On failure, it generates a OCS_HW_DOMAIN_ALLOC_FAIL event. * * @param hw Hardware context. * @param domain Pointer to the domain object. * @param fcf FCF index. * @param vlan VLAN ID. * * @return Returns 0 on success, or a non-zero value on failure. */ ocs_hw_rtn_e ocs_hw_domain_alloc(ocs_hw_t *hw, ocs_domain_t *domain, uint32_t fcf, uint32_t vlan) { uint8_t *cmd = NULL; uint32_t index; if (!hw || !domain || !domain->sport) { ocs_log_err(NULL, "bad parameter(s) hw=%p domain=%p sport=%p\n", hw, domain, domain ? domain->sport : NULL); return OCS_HW_RTN_ERROR; } /* * Check if the chip is in an error state (UE'd) before proceeding. */ if (sli_fw_error_status(&hw->sli) > 0) { ocs_log_crit(hw->os, "Chip is in an error state - reset needed\n"); return OCS_HW_RTN_ERROR; } cmd = ocs_malloc(hw->os, SLI4_BMBX_SIZE, OCS_M_ZERO | OCS_M_NOWAIT); if (!cmd) { ocs_log_err(hw->os, "command memory allocation failed\n"); return OCS_HW_RTN_NO_MEMORY; } domain->dma = hw->domain_dmem; domain->hw = hw; domain->sm.app = domain; domain->fcf = fcf; domain->fcf_indicator = UINT32_MAX; domain->vlan_id = vlan; domain->indicator = UINT32_MAX; if (sli_resource_alloc(&hw->sli, SLI_RSRC_FCOE_VFI, &domain->indicator, &index)) { ocs_log_err(hw->os, "FCOE_VFI allocation failure\n"); ocs_free(hw->os, cmd, SLI4_BMBX_SIZE); return OCS_HW_RTN_ERROR; } ocs_sm_transition(&domain->sm, __ocs_hw_domain_init, cmd); return OCS_HW_RTN_SUCCESS; } /** * @ingroup domain * @brief Attach a SLI port to a domain. * * @param hw Hardware context. * @param domain Pointer to the domain object. * @param fc_id Fibre Channel ID to associate with this port. * * @return Returns 0 on success, or a non-zero value on failure. */ ocs_hw_rtn_e ocs_hw_domain_attach(ocs_hw_t *hw, ocs_domain_t *domain, uint32_t fc_id) { uint8_t *buf = NULL; ocs_hw_rtn_e rc = OCS_HW_RTN_SUCCESS; if (!hw || !domain) { ocs_log_err(hw ? hw->os : NULL, "bad parameter(s) hw=%p domain=%p\n", hw, domain); return OCS_HW_RTN_ERROR; } /* * Check if the chip is in an error state (UE'd) before proceeding. */ if (sli_fw_error_status(&hw->sli) > 0) { ocs_log_crit(hw->os, "Chip is in an error state - reset needed\n"); return OCS_HW_RTN_ERROR; } buf = ocs_malloc(hw->os, SLI4_BMBX_SIZE, OCS_M_NOWAIT); if (!buf) { ocs_log_err(hw->os, "no buffer for command\n"); return OCS_HW_RTN_NO_MEMORY; } domain->sport->fc_id = fc_id; ocs_sm_post_event(&domain->sm, OCS_EVT_HW_DOMAIN_REQ_ATTACH, buf); return rc; } /** * @ingroup domain * @brief Free a fabric domain object. * * @par Description * Free both the driver and SLI port resources associated with the domain. * * @param hw Hardware context. * @param domain Pointer to the domain object. * * @return Returns 0 on success, or a non-zero value on failure. */ ocs_hw_rtn_e ocs_hw_domain_free(ocs_hw_t *hw, ocs_domain_t *domain) { ocs_hw_rtn_e rc = OCS_HW_RTN_SUCCESS; if (!hw || !domain) { ocs_log_err(hw ? hw->os : NULL, "bad parameter(s) hw=%p domain=%p\n", hw, domain); return OCS_HW_RTN_ERROR; } /* * Check if the chip is in an error state (UE'd) before proceeding. */ if (sli_fw_error_status(&hw->sli) > 0) { ocs_log_crit(hw->os, "Chip is in an error state - reset needed\n"); return OCS_HW_RTN_ERROR; } ocs_sm_post_event(&domain->sm, OCS_EVT_HW_DOMAIN_REQ_FREE, NULL); return rc; } /** * @ingroup domain * @brief Free a fabric domain object. * * @par Description * Free the driver resources associated with the domain. The difference between * this call and ocs_hw_domain_free() is that this call assumes resources no longer * exist on the SLI port, due to a reset or after some error conditions. * * @param hw Hardware context. * @param domain Pointer to the domain object. * * @return Returns 0 on success, or a non-zero value on failure. */ ocs_hw_rtn_e ocs_hw_domain_force_free(ocs_hw_t *hw, ocs_domain_t *domain) { if (!hw || !domain) { ocs_log_err(NULL, "bad parameter(s) hw=%p domain=%p\n", hw, domain); return OCS_HW_RTN_ERROR; } sli_resource_free(&hw->sli, SLI_RSRC_FCOE_VFI, domain->indicator); return OCS_HW_RTN_SUCCESS; } /** * @ingroup node * @brief Allocate a remote node object. * * @param hw Hardware context. * @param rnode Allocated remote node object to initialize. * @param fc_addr FC address of the remote node. * @param sport SLI port used to connect to remote node. * * @return Returns 0 on success, or a non-zero value on failure. */ ocs_hw_rtn_e ocs_hw_node_alloc(ocs_hw_t *hw, ocs_remote_node_t *rnode, uint32_t fc_addr, ocs_sli_port_t *sport) { /* Check for invalid indicator */ if (UINT32_MAX != rnode->indicator) { ocs_log_err(hw->os, "FCOE_RPI allocation failure addr=%#x rpi=%#x\n", fc_addr, rnode->indicator); return OCS_HW_RTN_ERROR; } /* * Check if the chip is in an error state (UE'd) before proceeding. */ if (sli_fw_error_status(&hw->sli) > 0) { ocs_log_crit(hw->os, "Chip is in an error state - reset needed\n"); return OCS_HW_RTN_ERROR; } /* NULL SLI port indicates an unallocated remote node */ rnode->sport = NULL; if (sli_resource_alloc(&hw->sli, SLI_RSRC_FCOE_RPI, &rnode->indicator, &rnode->index)) { ocs_log_err(hw->os, "FCOE_RPI allocation failure addr=%#x\n", fc_addr); return OCS_HW_RTN_ERROR; } rnode->fc_id = fc_addr; rnode->sport = sport; return OCS_HW_RTN_SUCCESS; } /** * @ingroup node * @brief Update a remote node object with the remote port's service parameters. * * @param hw Hardware context. * @param rnode Allocated remote node object to initialize. * @param sparms DMA buffer containing the remote port's service parameters. * * @return Returns 0 on success, or a non-zero value on failure. */ ocs_hw_rtn_e ocs_hw_node_attach(ocs_hw_t *hw, ocs_remote_node_t *rnode, ocs_dma_t *sparms) { ocs_hw_rtn_e rc = OCS_HW_RTN_ERROR; uint8_t *buf = NULL; uint32_t count = 0; if (!hw || !rnode || !sparms) { ocs_log_err(NULL, "bad parameter(s) hw=%p rnode=%p sparms=%p\n", hw, rnode, sparms); return OCS_HW_RTN_ERROR; } /* * Check if the chip is in an error state (UE'd) before proceeding. */ if (sli_fw_error_status(&hw->sli) > 0) { ocs_log_crit(hw->os, "Chip is in an error state - reset needed\n"); return OCS_HW_RTN_ERROR; } buf = ocs_malloc(hw->os, SLI4_BMBX_SIZE, OCS_M_NOWAIT); if (!buf) { ocs_log_err(hw->os, "no buffer for command\n"); return OCS_HW_RTN_NO_MEMORY; } /* * If the attach count is non-zero, this RPI has already been registered. * Otherwise, register the RPI */ if (rnode->index == UINT32_MAX) { ocs_log_err(NULL, "bad parameter rnode->index invalid\n"); ocs_free(hw->os, buf, SLI4_BMBX_SIZE); return OCS_HW_RTN_ERROR; } count = ocs_atomic_add_return(&hw->rpi_ref[rnode->index].rpi_count, 1); if (count) { /* * Can't attach multiple FC_ID's to a node unless High Login * Mode is enabled */ if (sli_get_hlm(&hw->sli) == FALSE) { ocs_log_test(hw->os, "attach to already attached node HLM=%d count=%d\n", sli_get_hlm(&hw->sli), count); rc = OCS_HW_RTN_SUCCESS; } else { rnode->node_group = TRUE; rnode->attached = ocs_atomic_read(&hw->rpi_ref[rnode->index].rpi_attached); rc = rnode->attached ? OCS_HW_RTN_SUCCESS_SYNC : OCS_HW_RTN_SUCCESS; } } else { rnode->node_group = FALSE; ocs_display_sparams("", "reg rpi", 0, NULL, sparms->virt); if (sli_cmd_reg_rpi(&hw->sli, buf, SLI4_BMBX_SIZE, rnode->fc_id, rnode->indicator, rnode->sport->indicator, sparms, 0, (hw->auto_xfer_rdy_enabled && hw->config.auto_xfer_rdy_t10_enable))) { rc = ocs_hw_command(hw, buf, OCS_CMD_NOWAIT, ocs_hw_cb_node_attach, rnode); } } if (count || rc) { if (rc < OCS_HW_RTN_SUCCESS) { ocs_atomic_sub_return(&hw->rpi_ref[rnode->index].rpi_count, 1); ocs_log_err(hw->os, "%s error\n", count ? "HLM" : "REG_RPI"); } ocs_free(hw->os, buf, SLI4_BMBX_SIZE); } return rc; } /** * @ingroup node * @brief Free a remote node resource. * * @param hw Hardware context. * @param rnode Remote node object to free. * * @return Returns 0 on success, or a non-zero value on failure. */ ocs_hw_rtn_e ocs_hw_node_free_resources(ocs_hw_t *hw, ocs_remote_node_t *rnode) { ocs_hw_rtn_e rc = OCS_HW_RTN_SUCCESS; if (!hw || !rnode) { ocs_log_err(NULL, "bad parameter(s) hw=%p rnode=%p\n", hw, rnode); return OCS_HW_RTN_ERROR; } if (rnode->sport) { if (!rnode->attached) { if (rnode->indicator != UINT32_MAX) { if (sli_resource_free(&hw->sli, SLI_RSRC_FCOE_RPI, rnode->indicator)) { ocs_log_err(hw->os, "FCOE_RPI free failure RPI %d addr=%#x\n", rnode->indicator, rnode->fc_id); rc = OCS_HW_RTN_ERROR; } else { rnode->node_group = FALSE; rnode->indicator = UINT32_MAX; rnode->index = UINT32_MAX; rnode->free_group = FALSE; } } } else { ocs_log_err(hw->os, "Error: rnode is still attached\n"); rc = OCS_HW_RTN_ERROR; } } return rc; } /** * @ingroup node * @brief Free a remote node object. * * @param hw Hardware context. * @param rnode Remote node object to free. * * @return Returns 0 on success, or a non-zero value on failure. */ ocs_hw_rtn_e ocs_hw_node_detach(ocs_hw_t *hw, ocs_remote_node_t *rnode) { uint8_t *buf = NULL; ocs_hw_rtn_e rc = OCS_HW_RTN_SUCCESS_SYNC; uint32_t index = UINT32_MAX; if (!hw || !rnode) { ocs_log_err(NULL, "bad parameter(s) hw=%p rnode=%p\n", hw, rnode); return OCS_HW_RTN_ERROR; } /* * Check if the chip is in an error state (UE'd) before proceeding. */ if (sli_fw_error_status(&hw->sli) > 0) { ocs_log_crit(hw->os, "Chip is in an error state - reset needed\n"); return OCS_HW_RTN_ERROR; } index = rnode->index; if (rnode->sport) { uint32_t count = 0; uint32_t fc_id; if (!rnode->attached) { return OCS_HW_RTN_SUCCESS_SYNC; } buf = ocs_malloc(hw->os, SLI4_BMBX_SIZE, OCS_M_NOWAIT); if (!buf) { ocs_log_err(hw->os, "no buffer for command\n"); return OCS_HW_RTN_NO_MEMORY; } count = ocs_atomic_sub_return(&hw->rpi_ref[index].rpi_count, 1); if (count <= 1) { /* There are no other references to this RPI * so unregister it and free the resource. */ fc_id = UINT32_MAX; rnode->node_group = FALSE; rnode->free_group = TRUE; } else { if (sli_get_hlm(&hw->sli) == FALSE) { ocs_log_test(hw->os, "Invalid count with HLM disabled, count=%d\n", count); } fc_id = rnode->fc_id & 0x00ffffff; } rc = OCS_HW_RTN_ERROR; if (sli_cmd_unreg_rpi(&hw->sli, buf, SLI4_BMBX_SIZE, rnode->indicator, SLI_RSRC_FCOE_RPI, fc_id)) { rc = ocs_hw_command(hw, buf, OCS_CMD_NOWAIT, ocs_hw_cb_node_free, rnode); } if (rc != OCS_HW_RTN_SUCCESS) { ocs_log_err(hw->os, "UNREG_RPI failed\n"); ocs_free(hw->os, buf, SLI4_BMBX_SIZE); rc = OCS_HW_RTN_ERROR; } } return rc; } /** * @ingroup node * @brief Free all remote node objects. * * @param hw Hardware context. * * @return Returns 0 on success, or a non-zero value on failure. */ ocs_hw_rtn_e ocs_hw_node_free_all(ocs_hw_t *hw) { uint8_t *buf = NULL; ocs_hw_rtn_e rc = OCS_HW_RTN_ERROR; if (!hw) { ocs_log_err(NULL, "bad parameter hw=%p\n", hw); return OCS_HW_RTN_ERROR; } /* * Check if the chip is in an error state (UE'd) before proceeding. */ if (sli_fw_error_status(&hw->sli) > 0) { ocs_log_crit(hw->os, "Chip is in an error state - reset needed\n"); return OCS_HW_RTN_ERROR; } buf = ocs_malloc(hw->os, SLI4_BMBX_SIZE, OCS_M_NOWAIT); if (!buf) { ocs_log_err(hw->os, "no buffer for command\n"); return OCS_HW_RTN_NO_MEMORY; } if (sli_cmd_unreg_rpi(&hw->sli, buf, SLI4_BMBX_SIZE, 0xffff, SLI_RSRC_FCOE_FCFI, UINT32_MAX)) { rc = ocs_hw_command(hw, buf, OCS_CMD_NOWAIT, ocs_hw_cb_node_free_all, NULL); } if (rc != OCS_HW_RTN_SUCCESS) { ocs_log_err(hw->os, "UNREG_RPI failed\n"); ocs_free(hw->os, buf, SLI4_BMBX_SIZE); rc = OCS_HW_RTN_ERROR; } return rc; } ocs_hw_rtn_e ocs_hw_node_group_alloc(ocs_hw_t *hw, ocs_remote_node_group_t *ngroup) { if (!hw || !ngroup) { ocs_log_err(NULL, "bad parameter hw=%p ngroup=%p\n", hw, ngroup); return OCS_HW_RTN_ERROR; } if (sli_resource_alloc(&hw->sli, SLI_RSRC_FCOE_RPI, &ngroup->indicator, &ngroup->index)) { ocs_log_err(hw->os, "FCOE_RPI allocation failure addr=%#x\n", ngroup->indicator); return OCS_HW_RTN_ERROR; } return OCS_HW_RTN_SUCCESS; } ocs_hw_rtn_e ocs_hw_node_group_attach(ocs_hw_t *hw, ocs_remote_node_group_t *ngroup, ocs_remote_node_t *rnode) { if (!hw || !ngroup || !rnode) { ocs_log_err(NULL, "bad parameter hw=%p ngroup=%p rnode=%p\n", hw, ngroup, rnode); return OCS_HW_RTN_ERROR; } if (rnode->attached) { ocs_log_err(hw->os, "node already attached RPI=%#x addr=%#x\n", rnode->indicator, rnode->fc_id); return OCS_HW_RTN_ERROR; } if (sli_resource_free(&hw->sli, SLI_RSRC_FCOE_RPI, rnode->indicator)) { ocs_log_err(hw->os, "FCOE_RPI free failure RPI=%#x\n", rnode->indicator); return OCS_HW_RTN_ERROR; } rnode->indicator = ngroup->indicator; rnode->index = ngroup->index; return OCS_HW_RTN_SUCCESS; } ocs_hw_rtn_e ocs_hw_node_group_free(ocs_hw_t *hw, ocs_remote_node_group_t *ngroup) { int ref; if (!hw || !ngroup) { ocs_log_err(NULL, "bad parameter hw=%p ngroup=%p\n", hw, ngroup); return OCS_HW_RTN_ERROR; } ref = ocs_atomic_read(&hw->rpi_ref[ngroup->index].rpi_count); if (ref) { /* Hmmm, the reference count is non-zero */ ocs_log_debug(hw->os, "node group reference=%d (RPI=%#x)\n", ref, ngroup->indicator); if (sli_resource_free(&hw->sli, SLI_RSRC_FCOE_RPI, ngroup->indicator)) { ocs_log_err(hw->os, "FCOE_RPI free failure RPI=%#x\n", ngroup->indicator); return OCS_HW_RTN_ERROR; } ocs_atomic_set(&hw->rpi_ref[ngroup->index].rpi_count, 0); } ngroup->indicator = UINT32_MAX; ngroup->index = UINT32_MAX; return OCS_HW_RTN_SUCCESS; } /** * @brief Initialize IO fields on each free call. * * @n @b Note: This is done on each free call (as opposed to each * alloc call) because port-owned XRIs are not * allocated with ocs_hw_io_alloc() but are freed with this * function. * * @param io Pointer to HW IO. */ static inline void ocs_hw_init_free_io(ocs_hw_io_t *io) { /* * Set io->done to NULL, to avoid any callbacks, should * a completion be received for one of these IOs */ io->done = NULL; io->abort_done = NULL; io->status_saved = 0; io->abort_in_progress = FALSE; io->port_owned_abort_count = 0; io->rnode = NULL; io->type = 0xFFFF; io->wq = NULL; io->ul_io = NULL; - io->tgt_wqe_timeout = 0; + io->wqe_timeout = 0; } /** * @ingroup io * @brief Lockless allocate a HW IO object. * * @par Description * Assume that hw->ocs_lock is held. This function is only used if * use_dif_sec_xri workaround is being used. * * @param hw Hardware context. * * @return Returns a pointer to an object on success, or NULL on failure. */ static inline ocs_hw_io_t * _ocs_hw_io_alloc(ocs_hw_t *hw) { ocs_hw_io_t *io = NULL; if (NULL != (io = ocs_list_remove_head(&hw->io_free))) { ocs_list_add_tail(&hw->io_inuse, io); io->state = OCS_HW_IO_STATE_INUSE; io->quarantine = FALSE; io->quarantine_first_phase = TRUE; io->abort_reqtag = UINT32_MAX; ocs_ref_init(&io->ref, ocs_hw_io_free_internal, io); } else { ocs_atomic_add_return(&hw->io_alloc_failed_count, 1); } return io; } /** * @ingroup io * @brief Allocate a HW IO object. * * @par Description * @n @b Note: This function applies to non-port owned XRIs * only. * * @param hw Hardware context. * * @return Returns a pointer to an object on success, or NULL on failure. */ ocs_hw_io_t * ocs_hw_io_alloc(ocs_hw_t *hw) { ocs_hw_io_t *io = NULL; ocs_lock(&hw->io_lock); io = _ocs_hw_io_alloc(hw); ocs_unlock(&hw->io_lock); return io; } /** * @ingroup io * @brief Allocate/Activate a port owned HW IO object. * * @par Description * This function is called by the transport layer when an XRI is * allocated by the SLI-Port. This will "activate" the HW IO * associated with the XRI received from the SLI-Port to mirror * the state of the XRI. * @n @n @b Note: This function applies to port owned XRIs only. * * @param hw Hardware context. * @param io Pointer HW IO to activate/allocate. * * @return Returns a pointer to an object on success, or NULL on failure. */ ocs_hw_io_t * ocs_hw_io_activate_port_owned(ocs_hw_t *hw, ocs_hw_io_t *io) { if (ocs_ref_read_count(&io->ref) > 0) { ocs_log_err(hw->os, "Bad parameter: refcount > 0\n"); return NULL; } if (io->wq != NULL) { ocs_log_err(hw->os, "XRI %x already in use\n", io->indicator); return NULL; } ocs_ref_init(&io->ref, ocs_hw_io_free_port_owned, io); io->xbusy = TRUE; return io; } /** * @ingroup io * @brief When an IO is freed, depending on the exchange busy flag, and other * workarounds, move it to the correct list. * * @par Description * @n @b Note: Assumes that the hw->io_lock is held and the item has been removed * from the busy or wait_free list. * * @param hw Hardware context. * @param io Pointer to the IO object to move. */ static void ocs_hw_io_free_move_correct_list(ocs_hw_t *hw, ocs_hw_io_t *io) { if (io->xbusy) { /* add to wait_free list and wait for XRI_ABORTED CQEs to clean up */ ocs_list_add_tail(&hw->io_wait_free, io); io->state = OCS_HW_IO_STATE_WAIT_FREE; } else { /* IO not busy, add to free list */ ocs_list_add_tail(&hw->io_free, io); io->state = OCS_HW_IO_STATE_FREE; } /* BZ 161832 workaround */ if (hw->workaround.use_dif_sec_xri) { ocs_hw_check_sec_hio_list(hw); } } /** * @ingroup io * @brief Free a HW IO object. Perform cleanup common to * port and host-owned IOs. * * @param hw Hardware context. * @param io Pointer to the HW IO object. */ static inline void ocs_hw_io_free_common(ocs_hw_t *hw, ocs_hw_io_t *io) { /* initialize IO fields */ ocs_hw_init_free_io(io); /* Restore default SGL */ ocs_hw_io_restore_sgl(hw, io); } /** * @ingroup io * @brief Free a HW IO object associated with a port-owned XRI. * * @param arg Pointer to the HW IO object. */ static void ocs_hw_io_free_port_owned(void *arg) { ocs_hw_io_t *io = (ocs_hw_io_t *)arg; ocs_hw_t *hw = io->hw; /* * For auto xfer rdy, if the dnrx bit is set, then add it to the list of XRIs * waiting for buffers. */ if (io->auto_xfer_rdy_dnrx) { ocs_lock(&hw->io_lock); /* take a reference count because we still own the IO until the buffer is posted */ ocs_ref_init(&io->ref, ocs_hw_io_free_port_owned, io); ocs_list_add_tail(&hw->io_port_dnrx, io); ocs_unlock(&hw->io_lock); } /* perform common cleanup */ ocs_hw_io_free_common(hw, io); } /** * @ingroup io * @brief Free a previously-allocated HW IO object. Called when * IO refcount goes to zero (host-owned IOs only). * * @param arg Pointer to the HW IO object. */ static void ocs_hw_io_free_internal(void *arg) { ocs_hw_io_t *io = (ocs_hw_io_t *)arg; ocs_hw_t *hw = io->hw; /* perform common cleanup */ ocs_hw_io_free_common(hw, io); ocs_lock(&hw->io_lock); /* remove from in-use list */ ocs_list_remove(&hw->io_inuse, io); ocs_hw_io_free_move_correct_list(hw, io); ocs_unlock(&hw->io_lock); } /** * @ingroup io * @brief Free a previously-allocated HW IO object. * * @par Description * @n @b Note: This function applies to port and host owned XRIs. * * @param hw Hardware context. * @param io Pointer to the HW IO object. * * @return Returns a non-zero value if HW IO was freed, 0 if references * on the IO still exist, or a negative value if an error occurred. */ int32_t ocs_hw_io_free(ocs_hw_t *hw, ocs_hw_io_t *io) { /* just put refcount */ if (ocs_ref_read_count(&io->ref) <= 0) { ocs_log_err(hw->os, "Bad parameter: refcount <= 0 xri=%x tag=%x\n", io->indicator, io->reqtag); return -1; } return ocs_ref_put(&io->ref); /* ocs_ref_get(): ocs_hw_io_alloc() */ } /** * @ingroup io * @brief Check if given HW IO is in-use * * @par Description * This function returns TRUE if the given HW IO has been * allocated and is in-use, and FALSE otherwise. It applies to * port and host owned XRIs. * * @param hw Hardware context. * @param io Pointer to the HW IO object. * * @return TRUE if an IO is in use, or FALSE otherwise. */ uint8_t ocs_hw_io_inuse(ocs_hw_t *hw, ocs_hw_io_t *io) { return (ocs_ref_read_count(&io->ref) > 0); } /** * @brief Write a HW IO to a work queue. * * @par Description * A HW IO is written to a work queue. * * @param wq Pointer to work queue. * @param wqe Pointer to WQ entry. * * @n @b Note: Assumes the SLI-4 queue lock is held. * * @return Returns 0 on success, or a negative error code value on failure. */ static int32_t _hw_wq_write(hw_wq_t *wq, ocs_hw_wqe_t *wqe) { int32_t rc; int32_t queue_rc; /* Every so often, set the wqec bit to generate comsummed completions */ if (wq->wqec_count) { wq->wqec_count--; } if (wq->wqec_count == 0) { sli4_generic_wqe_t *genwqe = (void*)wqe->wqebuf; genwqe->wqec = 1; wq->wqec_count = wq->wqec_set_count; } /* Decrement WQ free count */ wq->free_count--; queue_rc = _sli_queue_write(&wq->hw->sli, wq->queue, wqe->wqebuf); if (queue_rc < 0) { rc = -1; } else { rc = 0; ocs_queue_history_wq(&wq->hw->q_hist, (void *) wqe->wqebuf, wq->queue->id, queue_rc); } return rc; } /** * @brief Write a HW IO to a work queue. * * @par Description * A HW IO is written to a work queue. * * @param wq Pointer to work queue. * @param wqe Pointer to WQE entry. * * @n @b Note: Takes the SLI-4 queue lock. * * @return Returns 0 on success, or a negative error code value on failure. */ int32_t hw_wq_write(hw_wq_t *wq, ocs_hw_wqe_t *wqe) { int32_t rc = 0; sli_queue_lock(wq->queue); if ( ! ocs_list_empty(&wq->pending_list)) { ocs_list_add_tail(&wq->pending_list, wqe); OCS_STAT(wq->wq_pending_count++;) while ((wq->free_count > 0) && ((wqe = ocs_list_remove_head(&wq->pending_list)) != NULL)) { rc = _hw_wq_write(wq, wqe); if (rc < 0) { break; } if (wqe->abort_wqe_submit_needed) { wqe->abort_wqe_submit_needed = 0; sli_abort_wqe(&wq->hw->sli, wqe->wqebuf, wq->hw->sli.config.wqe_size, SLI_ABORT_XRI, wqe->send_abts, wqe->id, 0, wqe->abort_reqtag, SLI4_CQ_DEFAULT ); ocs_list_add_tail(&wq->pending_list, wqe); OCS_STAT(wq->wq_pending_count++;) } } } else { if (wq->free_count > 0) { rc = _hw_wq_write(wq, wqe); } else { ocs_list_add_tail(&wq->pending_list, wqe); OCS_STAT(wq->wq_pending_count++;) } } sli_queue_unlock(wq->queue); return rc; } /** * @brief Update free count and submit any pending HW IOs * * @par Description * The WQ free count is updated, and any pending HW IOs are submitted that * will fit in the queue. * * @param wq Pointer to work queue. * @param update_free_count Value added to WQs free count. * * @return None. */ static void hw_wq_submit_pending(hw_wq_t *wq, uint32_t update_free_count) { ocs_hw_wqe_t *wqe; sli_queue_lock(wq->queue); /* Update free count with value passed in */ wq->free_count += update_free_count; while ((wq->free_count > 0) && ((wqe = ocs_list_remove_head(&wq->pending_list)) != NULL)) { _hw_wq_write(wq, wqe); if (wqe->abort_wqe_submit_needed) { wqe->abort_wqe_submit_needed = 0; sli_abort_wqe(&wq->hw->sli, wqe->wqebuf, wq->hw->sli.config.wqe_size, SLI_ABORT_XRI, wqe->send_abts, wqe->id, 0, wqe->abort_reqtag, SLI4_CQ_DEFAULT); ocs_list_add_tail(&wq->pending_list, wqe); OCS_STAT(wq->wq_pending_count++;) } } sli_queue_unlock(wq->queue); } /** * @brief Check to see if there are any BZ 161832 workaround waiting IOs * * @par Description * Checks hw->sec_hio_wait_list, if an IO is waiting for a HW IO, then try * to allocate a secondary HW io, and dispatch it. * * @n @b Note: hw->io_lock MUST be taken when called. * * @param hw pointer to HW object * * @return none */ static void ocs_hw_check_sec_hio_list(ocs_hw_t *hw) { ocs_hw_io_t *io; ocs_hw_io_t *sec_io; int rc = 0; while (!ocs_list_empty(&hw->sec_hio_wait_list)) { uint16_t flags; sec_io = _ocs_hw_io_alloc(hw); if (sec_io == NULL) { break; } io = ocs_list_remove_head(&hw->sec_hio_wait_list); ocs_list_add_tail(&hw->io_inuse, io); io->state = OCS_HW_IO_STATE_INUSE; io->sec_hio = sec_io; /* mark secondary XRI for second and subsequent data phase as quarantine */ if (io->xbusy) { sec_io->quarantine = TRUE; } flags = io->sec_iparam.fcp_tgt.flags; if (io->xbusy) { flags |= SLI4_IO_CONTINUATION; } else { flags &= ~SLI4_IO_CONTINUATION; } - io->tgt_wqe_timeout = io->sec_iparam.fcp_tgt.timeout; + io->wqe_timeout = io->sec_iparam.fcp_tgt.timeout; /* Complete (continue) TRECV IO */ if (io->xbusy) { if (sli_fcp_cont_treceive64_wqe(&hw->sli, io->wqe.wqebuf, hw->sli.config.wqe_size, &io->def_sgl, io->first_data_sge, io->sec_iparam.fcp_tgt.offset, io->sec_len, io->indicator, io->sec_hio->indicator, io->reqtag, SLI4_CQ_DEFAULT, io->sec_iparam.fcp_tgt.ox_id, io->rnode->indicator, io->rnode, flags, io->sec_iparam.fcp_tgt.dif_oper, io->sec_iparam.fcp_tgt.blk_size, io->sec_iparam.fcp_tgt.cs_ctl, io->sec_iparam.fcp_tgt.app_id)) { ocs_log_test(hw->os, "TRECEIVE WQE error\n"); break; } } else { if (sli_fcp_treceive64_wqe(&hw->sli, io->wqe.wqebuf, hw->sli.config.wqe_size, &io->def_sgl, io->first_data_sge, io->sec_iparam.fcp_tgt.offset, io->sec_len, io->indicator, io->reqtag, SLI4_CQ_DEFAULT, io->sec_iparam.fcp_tgt.ox_id, io->rnode->indicator, io->rnode, flags, io->sec_iparam.fcp_tgt.dif_oper, io->sec_iparam.fcp_tgt.blk_size, io->sec_iparam.fcp_tgt.cs_ctl, io->sec_iparam.fcp_tgt.app_id)) { ocs_log_test(hw->os, "TRECEIVE WQE error\n"); break; } } if (io->wq == NULL) { io->wq = ocs_hw_queue_next_wq(hw, io); ocs_hw_assert(io->wq != NULL); } io->xbusy = TRUE; /* * Add IO to active io wqe list before submitting, in case the * wcqe processing preempts this thread. */ ocs_hw_add_io_timed_wqe(hw, io); rc = hw_wq_write(io->wq, &io->wqe); if (rc >= 0) { /* non-negative return is success */ rc = 0; } else { /* failed to write wqe, remove from active wqe list */ ocs_log_err(hw->os, "sli_queue_write failed: %d\n", rc); io->xbusy = FALSE; ocs_hw_remove_io_timed_wqe(hw, io); } } } /** * @ingroup io * @brief Send a Single Request/Response Sequence (SRRS). * * @par Description * This routine supports communication sequences consisting of a single * request and single response between two endpoints. Examples include: * - Sending an ELS request. * - Sending an ELS response - To send an ELS reponse, the caller must provide * the OX_ID from the received request. * - Sending a FC Common Transport (FC-CT) request - To send a FC-CT request, * the caller must provide the R_CTL, TYPE, and DF_CTL * values to place in the FC frame header. * . * @n @b Note: The caller is expected to provide both send and receive * buffers for requests. In the case of sending a response, no receive buffer * is necessary and the caller may pass in a NULL pointer. * * @param hw Hardware context. * @param type Type of sequence (ELS request/response, FC-CT). * @param io Previously-allocated HW IO object. * @param send DMA memory holding data to send (for example, ELS request, BLS response). * @param len Length, in bytes, of data to send. * @param receive Optional DMA memory to hold a response. * @param rnode Destination of data (that is, a remote node). * @param iparam IO parameters (ELS response and FC-CT). * @param cb Function call upon completion of sending the data (may be NULL). * @param arg Argument to pass to IO completion function. * * @return Returns 0 on success, or a non-zero on failure. */ ocs_hw_rtn_e ocs_hw_srrs_send(ocs_hw_t *hw, ocs_hw_io_type_e type, ocs_hw_io_t *io, ocs_dma_t *send, uint32_t len, ocs_dma_t *receive, ocs_remote_node_t *rnode, ocs_hw_io_param_t *iparam, ocs_hw_srrs_cb_t cb, void *arg) { sli4_sge_t *sge = NULL; ocs_hw_rtn_e rc = OCS_HW_RTN_SUCCESS; uint16_t local_flags = 0; if (!hw || !io || !rnode || !iparam) { ocs_log_err(NULL, "bad parm hw=%p io=%p send=%p receive=%p rnode=%p iparam=%p\n", hw, io, send, receive, rnode, iparam); return OCS_HW_RTN_ERROR; } if (hw->state != OCS_HW_STATE_ACTIVE) { ocs_log_test(hw->os, "cannot send SRRS, HW state=%d\n", hw->state); return OCS_HW_RTN_ERROR; } if (ocs_hw_is_xri_port_owned(hw, io->indicator)) { /* We must set the XC bit for port owned XRIs */ local_flags |= SLI4_IO_CONTINUATION; } io->rnode = rnode; io->type = type; io->done = cb; io->arg = arg; sge = io->sgl->virt; /* clear both SGE */ ocs_memset(io->sgl->virt, 0, 2 * sizeof(sli4_sge_t)); if (send) { sge[0].buffer_address_high = ocs_addr32_hi(send->phys); sge[0].buffer_address_low = ocs_addr32_lo(send->phys); sge[0].sge_type = SLI4_SGE_TYPE_DATA; sge[0].buffer_length = len; } if ((OCS_HW_ELS_REQ == type) || (OCS_HW_FC_CT == type)) { sge[1].buffer_address_high = ocs_addr32_hi(receive->phys); sge[1].buffer_address_low = ocs_addr32_lo(receive->phys); sge[1].sge_type = SLI4_SGE_TYPE_DATA; sge[1].buffer_length = receive->size; sge[1].last = TRUE; } else { sge[0].last = TRUE; } switch (type) { case OCS_HW_ELS_REQ: if ( (!send) || sli_els_request64_wqe(&hw->sli, io->wqe.wqebuf, hw->sli.config.wqe_size, io->sgl, *((uint8_t *)(send->virt)), /* req_type */ len, receive->size, iparam->els.timeout, io->indicator, io->reqtag, SLI4_CQ_DEFAULT, rnode)) { ocs_log_err(hw->os, "REQ WQE error\n"); rc = OCS_HW_RTN_ERROR; } break; case OCS_HW_ELS_RSP: if ( (!send) || sli_xmit_els_rsp64_wqe(&hw->sli, io->wqe.wqebuf, hw->sli.config.wqe_size, send, len, io->indicator, io->reqtag, SLI4_CQ_DEFAULT, iparam->els.ox_id, rnode, local_flags, UINT32_MAX)) { ocs_log_err(hw->os, "RSP WQE error\n"); rc = OCS_HW_RTN_ERROR; } break; case OCS_HW_ELS_RSP_SID: if ( (!send) || sli_xmit_els_rsp64_wqe(&hw->sli, io->wqe.wqebuf, hw->sli.config.wqe_size, send, len, io->indicator, io->reqtag, SLI4_CQ_DEFAULT, iparam->els_sid.ox_id, rnode, local_flags, iparam->els_sid.s_id)) { ocs_log_err(hw->os, "RSP (SID) WQE error\n"); rc = OCS_HW_RTN_ERROR; } break; case OCS_HW_FC_CT: if ( (!send) || sli_gen_request64_wqe(&hw->sli, io->wqe.wqebuf, hw->sli.config.wqe_size, io->sgl, len, receive->size, iparam->fc_ct.timeout, io->indicator, io->reqtag, SLI4_CQ_DEFAULT, rnode, iparam->fc_ct.r_ctl, iparam->fc_ct.type, iparam->fc_ct.df_ctl)) { ocs_log_err(hw->os, "GEN WQE error\n"); rc = OCS_HW_RTN_ERROR; } break; case OCS_HW_FC_CT_RSP: if ( (!send) || sli_xmit_sequence64_wqe(&hw->sli, io->wqe.wqebuf, hw->sli.config.wqe_size, io->sgl, len, iparam->fc_ct_rsp.timeout, iparam->fc_ct_rsp.ox_id, io->indicator, io->reqtag, rnode, iparam->fc_ct_rsp.r_ctl, iparam->fc_ct_rsp.type, iparam->fc_ct_rsp.df_ctl)) { ocs_log_err(hw->os, "XMIT SEQ WQE error\n"); rc = OCS_HW_RTN_ERROR; } break; case OCS_HW_BLS_ACC: case OCS_HW_BLS_RJT: { sli_bls_payload_t bls; if (OCS_HW_BLS_ACC == type) { bls.type = SLI_BLS_ACC; ocs_memcpy(&bls.u.acc, iparam->bls.payload, sizeof(bls.u.acc)); } else { bls.type = SLI_BLS_RJT; ocs_memcpy(&bls.u.rjt, iparam->bls.payload, sizeof(bls.u.rjt)); } bls.ox_id = iparam->bls.ox_id; bls.rx_id = iparam->bls.rx_id; if (sli_xmit_bls_rsp64_wqe(&hw->sli, io->wqe.wqebuf, hw->sli.config.wqe_size, &bls, io->indicator, io->reqtag, SLI4_CQ_DEFAULT, rnode, UINT32_MAX)) { ocs_log_err(hw->os, "XMIT_BLS_RSP64 WQE error\n"); rc = OCS_HW_RTN_ERROR; } break; } case OCS_HW_BLS_ACC_SID: { sli_bls_payload_t bls; bls.type = SLI_BLS_ACC; ocs_memcpy(&bls.u.acc, iparam->bls_sid.payload, sizeof(bls.u.acc)); bls.ox_id = iparam->bls_sid.ox_id; bls.rx_id = iparam->bls_sid.rx_id; if (sli_xmit_bls_rsp64_wqe(&hw->sli, io->wqe.wqebuf, hw->sli.config.wqe_size, &bls, io->indicator, io->reqtag, SLI4_CQ_DEFAULT, rnode, iparam->bls_sid.s_id)) { ocs_log_err(hw->os, "XMIT_BLS_RSP64 WQE SID error\n"); rc = OCS_HW_RTN_ERROR; } break; } case OCS_HW_BCAST: if ( (!send) || sli_xmit_bcast64_wqe(&hw->sli, io->wqe.wqebuf, hw->sli.config.wqe_size, send, len, iparam->bcast.timeout, io->indicator, io->reqtag, SLI4_CQ_DEFAULT, rnode, iparam->bcast.r_ctl, iparam->bcast.type, iparam->bcast.df_ctl)) { ocs_log_err(hw->os, "XMIT_BCAST64 WQE error\n"); rc = OCS_HW_RTN_ERROR; } break; default: ocs_log_err(hw->os, "bad SRRS type %#x\n", type); rc = OCS_HW_RTN_ERROR; } if (OCS_HW_RTN_SUCCESS == rc) { if (io->wq == NULL) { io->wq = ocs_hw_queue_next_wq(hw, io); ocs_hw_assert(io->wq != NULL); } io->xbusy = TRUE; /* * Add IO to active io wqe list before submitting, in case the * wcqe processing preempts this thread. */ OCS_STAT(io->wq->use_count++); ocs_hw_add_io_timed_wqe(hw, io); rc = hw_wq_write(io->wq, &io->wqe); if (rc >= 0) { /* non-negative return is success */ rc = 0; } else { /* failed to write wqe, remove from active wqe list */ ocs_log_err(hw->os, "sli_queue_write failed: %d\n", rc); io->xbusy = FALSE; ocs_hw_remove_io_timed_wqe(hw, io); } } return rc; } /** * @ingroup io * @brief Send a read, write, or response IO. * * @par Description * This routine supports sending a higher-level IO (for example, FCP) between two endpoints * as a target or initiator. Examples include: * - Sending read data and good response (target). * - Sending a response (target with no data or after receiving write data). * . * This routine assumes all IOs use the SGL associated with the HW IO. Prior to * calling this routine, the data should be loaded using ocs_hw_io_add_sge(). * * @param hw Hardware context. * @param type Type of IO (target read, target response, and so on). * @param io Previously-allocated HW IO object. * @param len Length, in bytes, of data to send. * @param iparam IO parameters. * @param rnode Destination of data (that is, a remote node). * @param cb Function call upon completion of sending data (may be NULL). * @param arg Argument to pass to IO completion function. * * @return Returns 0 on success, or a non-zero value on failure. * * @todo * - Support specifiying relative offset. * - Use a WQ other than 0. */ ocs_hw_rtn_e ocs_hw_io_send(ocs_hw_t *hw, ocs_hw_io_type_e type, ocs_hw_io_t *io, uint32_t len, ocs_hw_io_param_t *iparam, ocs_remote_node_t *rnode, void *cb, void *arg) { ocs_hw_rtn_e rc = OCS_HW_RTN_SUCCESS; uint32_t rpi; uint8_t send_wqe = TRUE; + uint8_t timeout = 0; CPUTRACE(""); if (!hw || !io || !rnode || !iparam) { ocs_log_err(NULL, "bad parm hw=%p io=%p iparam=%p rnode=%p\n", hw, io, iparam, rnode); return OCS_HW_RTN_ERROR; } if (hw->state != OCS_HW_STATE_ACTIVE) { ocs_log_err(hw->os, "cannot send IO, HW state=%d\n", hw->state); return OCS_HW_RTN_ERROR; } rpi = rnode->indicator; if (hw->workaround.use_unregistered_rpi && (rpi == UINT32_MAX)) { rpi = hw->workaround.unregistered_rid; ocs_log_test(hw->os, "using unregistered RPI: %d\n", rpi); } /* * Save state needed during later stages */ io->rnode = rnode; io->type = type; io->done = cb; io->arg = arg; /* * Format the work queue entry used to send the IO */ switch (type) { case OCS_HW_IO_INITIATOR_READ: + timeout = ocs_hw_set_io_wqe_timeout(io, iparam->fcp_ini.timeout); + /* * If use_dif_quarantine workaround is in effect, and dif_separates then mark the * initiator read IO for quarantine */ if (hw->workaround.use_dif_quarantine && (hw->config.dif_mode == OCS_HW_DIF_MODE_SEPARATE) && (iparam->fcp_tgt.dif_oper != OCS_HW_DIF_OPER_DISABLED)) { io->quarantine = TRUE; } ocs_hw_io_ini_sge(hw, io, iparam->fcp_ini.cmnd, iparam->fcp_ini.cmnd_size, iparam->fcp_ini.rsp); if (sli_fcp_iread64_wqe(&hw->sli, io->wqe.wqebuf, hw->sli.config.wqe_size, &io->def_sgl, io->first_data_sge, len, io->indicator, io->reqtag, SLI4_CQ_DEFAULT, rpi, rnode, iparam->fcp_ini.dif_oper, iparam->fcp_ini.blk_size, - iparam->fcp_ini.timeout)) { + timeout)) { ocs_log_err(hw->os, "IREAD WQE error\n"); rc = OCS_HW_RTN_ERROR; } break; case OCS_HW_IO_INITIATOR_WRITE: + timeout = ocs_hw_set_io_wqe_timeout(io, iparam->fcp_ini.timeout); + ocs_hw_io_ini_sge(hw, io, iparam->fcp_ini.cmnd, iparam->fcp_ini.cmnd_size, iparam->fcp_ini.rsp); if (sli_fcp_iwrite64_wqe(&hw->sli, io->wqe.wqebuf, hw->sli.config.wqe_size, &io->def_sgl, io->first_data_sge, len, iparam->fcp_ini.first_burst, io->indicator, io->reqtag, SLI4_CQ_DEFAULT, rpi, rnode, iparam->fcp_ini.dif_oper, iparam->fcp_ini.blk_size, - iparam->fcp_ini.timeout)) { + timeout)) { ocs_log_err(hw->os, "IWRITE WQE error\n"); rc = OCS_HW_RTN_ERROR; } break; case OCS_HW_IO_INITIATOR_NODATA: + timeout = ocs_hw_set_io_wqe_timeout(io, iparam->fcp_ini.timeout); + ocs_hw_io_ini_sge(hw, io, iparam->fcp_ini.cmnd, iparam->fcp_ini.cmnd_size, iparam->fcp_ini.rsp); if (sli_fcp_icmnd64_wqe(&hw->sli, io->wqe.wqebuf, hw->sli.config.wqe_size, &io->def_sgl, io->indicator, io->reqtag, SLI4_CQ_DEFAULT, - rpi, rnode, iparam->fcp_ini.timeout)) { + rpi, rnode, timeout)) { ocs_log_err(hw->os, "ICMND WQE error\n"); rc = OCS_HW_RTN_ERROR; } break; case OCS_HW_IO_TARGET_WRITE: { uint16_t flags = iparam->fcp_tgt.flags; fcp_xfer_rdy_iu_t *xfer = io->xfer_rdy.virt; /* * Fill in the XFER_RDY for IF_TYPE 0 devices */ *((uint32_t *)xfer->fcp_data_ro) = ocs_htobe32(iparam->fcp_tgt.offset); *((uint32_t *)xfer->fcp_burst_len) = ocs_htobe32(len); *((uint32_t *)xfer->rsvd) = 0; if (io->xbusy) { flags |= SLI4_IO_CONTINUATION; } else { flags &= ~SLI4_IO_CONTINUATION; } - io->tgt_wqe_timeout = iparam->fcp_tgt.timeout; + io->wqe_timeout = iparam->fcp_tgt.timeout; /* * If use_dif_quarantine workaround is in effect, and this is a DIF enabled IO * then mark the target write IO for quarantine */ if (hw->workaround.use_dif_quarantine && (hw->config.dif_mode == OCS_HW_DIF_MODE_SEPARATE) && (iparam->fcp_tgt.dif_oper != OCS_HW_DIF_OPER_DISABLED)) { io->quarantine = TRUE; } /* * BZ 161832 Workaround: * Check for use_dif_sec_xri workaround. Note, even though the first dataphase * doesn't really need a secondary XRI, we allocate one anyway, as this avoids the * potential for deadlock where all XRI's are allocated as primaries to IOs that * are on hw->sec_hio_wait_list. If this secondary XRI is not for the first * data phase, it is marked for quarantine. */ if (hw->workaround.use_dif_sec_xri && (iparam->fcp_tgt.dif_oper != OCS_HW_DIF_OPER_DISABLED)) { /* * If we have allocated a chained SGL for skyhawk, then * we can re-use this for the sec_hio. */ if (io->ovfl_io != NULL) { io->sec_hio = io->ovfl_io; io->sec_hio->quarantine = TRUE; } else { io->sec_hio = ocs_hw_io_alloc(hw); } if (io->sec_hio == NULL) { /* Failed to allocate, so save full request context and put * this IO on the wait list */ io->sec_iparam = *iparam; io->sec_len = len; ocs_lock(&hw->io_lock); ocs_list_remove(&hw->io_inuse, io); ocs_list_add_tail(&hw->sec_hio_wait_list, io); io->state = OCS_HW_IO_STATE_WAIT_SEC_HIO; hw->sec_hio_wait_count++; ocs_unlock(&hw->io_lock); send_wqe = FALSE; /* Done */ break; } /* We quarantine the secondary IO if this is the second or subsequent data phase */ if (io->xbusy) { io->sec_hio->quarantine = TRUE; } } /* * If not the first data phase, and io->sec_hio has been allocated, then issue * FCP_CONT_TRECEIVE64 WQE, otherwise use the usual FCP_TRECEIVE64 WQE */ if (io->xbusy && (io->sec_hio != NULL)) { if (sli_fcp_cont_treceive64_wqe(&hw->sli, io->wqe.wqebuf, hw->sli.config.wqe_size, &io->def_sgl, io->first_data_sge, iparam->fcp_tgt.offset, len, io->indicator, io->sec_hio->indicator, io->reqtag, SLI4_CQ_DEFAULT, iparam->fcp_tgt.ox_id, rpi, rnode, flags, iparam->fcp_tgt.dif_oper, iparam->fcp_tgt.blk_size, iparam->fcp_tgt.cs_ctl, iparam->fcp_tgt.app_id)) { ocs_log_err(hw->os, "TRECEIVE WQE error\n"); rc = OCS_HW_RTN_ERROR; } } else { if (sli_fcp_treceive64_wqe(&hw->sli, io->wqe.wqebuf, hw->sli.config.wqe_size, &io->def_sgl, io->first_data_sge, iparam->fcp_tgt.offset, len, io->indicator, io->reqtag, SLI4_CQ_DEFAULT, iparam->fcp_tgt.ox_id, rpi, rnode, flags, iparam->fcp_tgt.dif_oper, iparam->fcp_tgt.blk_size, iparam->fcp_tgt.cs_ctl, iparam->fcp_tgt.app_id)) { ocs_log_err(hw->os, "TRECEIVE WQE error\n"); rc = OCS_HW_RTN_ERROR; } } break; } case OCS_HW_IO_TARGET_READ: { uint16_t flags = iparam->fcp_tgt.flags; if (io->xbusy) { flags |= SLI4_IO_CONTINUATION; } else { flags &= ~SLI4_IO_CONTINUATION; } - io->tgt_wqe_timeout = iparam->fcp_tgt.timeout; + io->wqe_timeout = iparam->fcp_tgt.timeout; if (sli_fcp_tsend64_wqe(&hw->sli, io->wqe.wqebuf, hw->sli.config.wqe_size, &io->def_sgl, io->first_data_sge, iparam->fcp_tgt.offset, len, io->indicator, io->reqtag, SLI4_CQ_DEFAULT, iparam->fcp_tgt.ox_id, rpi, rnode, flags, iparam->fcp_tgt.dif_oper, iparam->fcp_tgt.blk_size, iparam->fcp_tgt.cs_ctl, iparam->fcp_tgt.app_id)) { ocs_log_err(hw->os, "TSEND WQE error\n"); rc = OCS_HW_RTN_ERROR; } else if (hw->workaround.retain_tsend_io_length) { io->length = len; } break; } case OCS_HW_IO_TARGET_RSP: { uint16_t flags = iparam->fcp_tgt.flags; if (io->xbusy) { flags |= SLI4_IO_CONTINUATION; } else { flags &= ~SLI4_IO_CONTINUATION; } /* post a new auto xfer ready buffer */ if (hw->auto_xfer_rdy_enabled && io->is_port_owned) { if ((io->auto_xfer_rdy_dnrx = ocs_hw_rqpair_auto_xfer_rdy_buffer_post(hw, io, 1))) { flags |= SLI4_IO_DNRX; } } - io->tgt_wqe_timeout = iparam->fcp_tgt.timeout; + io->wqe_timeout = iparam->fcp_tgt.timeout; if (sli_fcp_trsp64_wqe(&hw->sli, io->wqe.wqebuf, hw->sli.config.wqe_size, &io->def_sgl, len, io->indicator, io->reqtag, SLI4_CQ_DEFAULT, iparam->fcp_tgt.ox_id, rpi, rnode, flags, iparam->fcp_tgt.cs_ctl, io->is_port_owned, iparam->fcp_tgt.app_id)) { ocs_log_err(hw->os, "TRSP WQE error\n"); rc = OCS_HW_RTN_ERROR; } break; } default: ocs_log_err(hw->os, "unsupported IO type %#x\n", type); rc = OCS_HW_RTN_ERROR; } if (send_wqe && (OCS_HW_RTN_SUCCESS == rc)) { if (io->wq == NULL) { io->wq = ocs_hw_queue_next_wq(hw, io); ocs_hw_assert(io->wq != NULL); } io->xbusy = TRUE; /* * Add IO to active io wqe list before submitting, in case the * wcqe processing preempts this thread. */ OCS_STAT(hw->tcmd_wq_submit[io->wq->instance]++); OCS_STAT(io->wq->use_count++); ocs_hw_add_io_timed_wqe(hw, io); rc = hw_wq_write(io->wq, &io->wqe); if (rc >= 0) { /* non-negative return is success */ rc = 0; } else { /* failed to write wqe, remove from active wqe list */ ocs_log_err(hw->os, "sli_queue_write failed: %d\n", rc); io->xbusy = FALSE; ocs_hw_remove_io_timed_wqe(hw, io); } } return rc; } /** * @brief Send a raw frame * * @par Description * Using the SEND_FRAME_WQE, a frame consisting of header and payload is sent. * * @param hw Pointer to HW object. * @param hdr Pointer to a little endian formatted FC header. * @param sof Value to use as the frame SOF. * @param eof Value to use as the frame EOF. * @param payload Pointer to payload DMA buffer. * @param ctx Pointer to caller provided send frame context. * @param callback Callback function. * @param arg Callback function argument. * * @return Returns 0 on success, or a negative error code value on failure. */ ocs_hw_rtn_e ocs_hw_send_frame(ocs_hw_t *hw, fc_header_le_t *hdr, uint8_t sof, uint8_t eof, ocs_dma_t *payload, ocs_hw_send_frame_context_t *ctx, void (*callback)(void *arg, uint8_t *cqe, int32_t status), void *arg) { int32_t rc; ocs_hw_wqe_t *wqe; uint32_t xri; hw_wq_t *wq; wqe = &ctx->wqe; /* populate the callback object */ ctx->hw = hw; /* Fetch and populate request tag */ ctx->wqcb = ocs_hw_reqtag_alloc(hw, callback, arg); if (ctx->wqcb == NULL) { ocs_log_err(hw->os, "can't allocate request tag\n"); return OCS_HW_RTN_NO_RESOURCES; } /* Choose a work queue, first look for a class[1] wq, otherwise just use wq[0] */ wq = ocs_varray_iter_next(hw->wq_class_array[1]); if (wq == NULL) { wq = hw->hw_wq[0]; } /* Set XRI and RX_ID in the header based on which WQ, and which send_frame_io we are using */ xri = wq->send_frame_io->indicator; /* Build the send frame WQE */ rc = sli_send_frame_wqe(&hw->sli, wqe->wqebuf, hw->sli.config.wqe_size, sof, eof, (uint32_t*) hdr, payload, payload->len, OCS_HW_SEND_FRAME_TIMEOUT, xri, ctx->wqcb->instance_index); if (rc) { ocs_log_err(hw->os, "sli_send_frame_wqe failed: %d\n", rc); return OCS_HW_RTN_ERROR; } /* Write to WQ */ rc = hw_wq_write(wq, wqe); if (rc) { ocs_log_err(hw->os, "hw_wq_write failed: %d\n", rc); return OCS_HW_RTN_ERROR; } OCS_STAT(wq->use_count++); return OCS_HW_RTN_SUCCESS; } ocs_hw_rtn_e ocs_hw_io_register_sgl(ocs_hw_t *hw, ocs_hw_io_t *io, ocs_dma_t *sgl, uint32_t sgl_count) { if (sli_get_sgl_preregister(&hw->sli)) { ocs_log_err(hw->os, "can't use temporary SGL with pre-registered SGLs\n"); return OCS_HW_RTN_ERROR; } io->ovfl_sgl = sgl; io->ovfl_sgl_count = sgl_count; io->ovfl_io = NULL; return OCS_HW_RTN_SUCCESS; } static void ocs_hw_io_restore_sgl(ocs_hw_t *hw, ocs_hw_io_t *io) { /* Restore the default */ io->sgl = &io->def_sgl; io->sgl_count = io->def_sgl_count; /* * For skyhawk, we need to free the IO allocated for the chained * SGL. For all devices, clear the overflow fields on the IO. * * Note: For DIF IOs, we may be using the same XRI for the sec_hio and * the chained SGLs. If so, then we clear the ovfl_io field * when the sec_hio is freed. */ if (io->ovfl_io != NULL) { ocs_hw_io_free(hw, io->ovfl_io); io->ovfl_io = NULL; } /* Clear the overflow SGL */ io->ovfl_sgl = NULL; io->ovfl_sgl_count = 0; io->ovfl_lsp = NULL; } /** * @ingroup io * @brief Initialize the scatter gather list entries of an IO. * * @param hw Hardware context. * @param io Previously-allocated HW IO object. * @param type Type of IO (target read, target response, and so on). * * @return Returns 0 on success, or a non-zero value on failure. */ ocs_hw_rtn_e ocs_hw_io_init_sges(ocs_hw_t *hw, ocs_hw_io_t *io, ocs_hw_io_type_e type) { sli4_sge_t *data = NULL; uint32_t i = 0; uint32_t skips = 0; if (!hw || !io) { ocs_log_err(hw ? hw->os : NULL, "bad parameter hw=%p io=%p\n", hw, io); return OCS_HW_RTN_ERROR; } /* Clear / reset the scatter-gather list */ io->sgl = &io->def_sgl; io->sgl_count = io->def_sgl_count; io->first_data_sge = 0; ocs_memset(io->sgl->virt, 0, 2 * sizeof(sli4_sge_t)); io->n_sge = 0; io->sge_offset = 0; io->type = type; data = io->sgl->virt; /* * Some IO types have underlying hardware requirements on the order * of SGEs. Process all special entries here. */ switch (type) { case OCS_HW_IO_INITIATOR_READ: case OCS_HW_IO_INITIATOR_WRITE: case OCS_HW_IO_INITIATOR_NODATA: /* * No skips, 2 special for initiator I/Os * The addresses and length are written later */ /* setup command pointer */ data->sge_type = SLI4_SGE_TYPE_DATA; data++; /* setup response pointer */ data->sge_type = SLI4_SGE_TYPE_DATA; if (OCS_HW_IO_INITIATOR_NODATA == type) { data->last = TRUE; } data++; io->n_sge = 2; break; case OCS_HW_IO_TARGET_WRITE: #define OCS_TARGET_WRITE_SKIPS 2 skips = OCS_TARGET_WRITE_SKIPS; /* populate host resident XFER_RDY buffer */ data->sge_type = SLI4_SGE_TYPE_DATA; data->buffer_address_high = ocs_addr32_hi(io->xfer_rdy.phys); data->buffer_address_low = ocs_addr32_lo(io->xfer_rdy.phys); data->buffer_length = io->xfer_rdy.size; data++; skips--; io->n_sge = 1; break; case OCS_HW_IO_TARGET_READ: /* * For FCP_TSEND64, the first 2 entries are SKIP SGE's */ #define OCS_TARGET_READ_SKIPS 2 skips = OCS_TARGET_READ_SKIPS; break; case OCS_HW_IO_TARGET_RSP: /* * No skips, etc. for FCP_TRSP64 */ break; default: ocs_log_err(hw->os, "unsupported IO type %#x\n", type); return OCS_HW_RTN_ERROR; } /* * Write skip entries */ for (i = 0; i < skips; i++) { data->sge_type = SLI4_SGE_TYPE_SKIP; data++; } io->n_sge += skips; /* * Set last */ data->last = TRUE; return OCS_HW_RTN_SUCCESS; } /** * @ingroup io * @brief Add a T10 PI seed scatter gather list entry. * * @param hw Hardware context. * @param io Previously-allocated HW IO object. * @param dif_info Pointer to T10 DIF fields, or NULL if no DIF. * * @return Returns 0 on success, or a non-zero value on failure. */ ocs_hw_rtn_e ocs_hw_io_add_seed_sge(ocs_hw_t *hw, ocs_hw_io_t *io, ocs_hw_dif_info_t *dif_info) { sli4_sge_t *data = NULL; sli4_diseed_sge_t *dif_seed; /* If no dif_info, or dif_oper is disabled, then just return success */ if ((dif_info == NULL) || (dif_info->dif_oper == OCS_HW_DIF_OPER_DISABLED)) { return OCS_HW_RTN_SUCCESS; } if (!hw || !io) { ocs_log_err(hw ? hw->os : NULL, "bad parameter hw=%p io=%p dif_info=%p\n", hw, io, dif_info); return OCS_HW_RTN_ERROR; } data = io->sgl->virt; data += io->n_sge; /* If we are doing T10 DIF add the DIF Seed SGE */ ocs_memset(data, 0, sizeof(sli4_diseed_sge_t)); dif_seed = (sli4_diseed_sge_t *)data; dif_seed->ref_tag_cmp = dif_info->ref_tag_cmp; dif_seed->ref_tag_repl = dif_info->ref_tag_repl; dif_seed->app_tag_repl = dif_info->app_tag_repl; dif_seed->repl_app_tag = dif_info->repl_app_tag; if (SLI4_IF_TYPE_LANCER_FC_ETH != hw->sli.if_type) { dif_seed->atrt = dif_info->disable_app_ref_ffff; dif_seed->at = dif_info->disable_app_ffff; } dif_seed->sge_type = SLI4_SGE_TYPE_DISEED; /* Workaround for SKH (BZ157233) */ if (((io->type == OCS_HW_IO_TARGET_WRITE) || (io->type == OCS_HW_IO_INITIATOR_READ)) && (SLI4_IF_TYPE_LANCER_FC_ETH != hw->sli.if_type) && dif_info->dif_separate) { dif_seed->sge_type = SLI4_SGE_TYPE_SKIP; } dif_seed->app_tag_cmp = dif_info->app_tag_cmp; dif_seed->dif_blk_size = dif_info->blk_size; dif_seed->auto_incr_ref_tag = dif_info->auto_incr_ref_tag; dif_seed->check_app_tag = dif_info->check_app_tag; dif_seed->check_ref_tag = dif_info->check_ref_tag; dif_seed->check_crc = dif_info->check_guard; dif_seed->new_ref_tag = dif_info->repl_ref_tag; switch(dif_info->dif_oper) { case OCS_HW_SGE_DIF_OP_IN_NODIF_OUT_CRC: dif_seed->dif_op_rx = SLI4_SGE_DIF_OP_IN_NODIF_OUT_CRC; dif_seed->dif_op_tx = SLI4_SGE_DIF_OP_IN_NODIF_OUT_CRC; break; case OCS_HW_SGE_DIF_OP_IN_CRC_OUT_NODIF: dif_seed->dif_op_rx = SLI4_SGE_DIF_OP_IN_CRC_OUT_NODIF; dif_seed->dif_op_tx = SLI4_SGE_DIF_OP_IN_CRC_OUT_NODIF; break; case OCS_HW_SGE_DIF_OP_IN_NODIF_OUT_CHKSUM: dif_seed->dif_op_rx = SLI4_SGE_DIF_OP_IN_NODIF_OUT_CHKSUM; dif_seed->dif_op_tx = SLI4_SGE_DIF_OP_IN_NODIF_OUT_CHKSUM; break; case OCS_HW_SGE_DIF_OP_IN_CHKSUM_OUT_NODIF: dif_seed->dif_op_rx = SLI4_SGE_DIF_OP_IN_CHKSUM_OUT_NODIF; dif_seed->dif_op_tx = SLI4_SGE_DIF_OP_IN_CHKSUM_OUT_NODIF; break; case OCS_HW_SGE_DIF_OP_IN_CRC_OUT_CRC: dif_seed->dif_op_rx = SLI4_SGE_DIF_OP_IN_CRC_OUT_CRC; dif_seed->dif_op_tx = SLI4_SGE_DIF_OP_IN_CRC_OUT_CRC; break; case OCS_HW_SGE_DIF_OP_IN_CHKSUM_OUT_CHKSUM: dif_seed->dif_op_rx = SLI4_SGE_DIF_OP_IN_CHKSUM_OUT_CHKSUM; dif_seed->dif_op_tx = SLI4_SGE_DIF_OP_IN_CHKSUM_OUT_CHKSUM; break; case OCS_HW_SGE_DIF_OP_IN_CRC_OUT_CHKSUM: dif_seed->dif_op_rx = SLI4_SGE_DIF_OP_IN_CRC_OUT_CHKSUM; dif_seed->dif_op_tx = SLI4_SGE_DIF_OP_IN_CRC_OUT_CHKSUM; break; case OCS_HW_SGE_DIF_OP_IN_CHKSUM_OUT_CRC: dif_seed->dif_op_rx = SLI4_SGE_DIF_OP_IN_CHKSUM_OUT_CRC; dif_seed->dif_op_tx = SLI4_SGE_DIF_OP_IN_CHKSUM_OUT_CRC; break; case OCS_HW_SGE_DIF_OP_IN_RAW_OUT_RAW: dif_seed->dif_op_rx = SLI4_SGE_DIF_OP_IN_RAW_OUT_RAW; dif_seed->dif_op_tx = SLI4_SGE_DIF_OP_IN_RAW_OUT_RAW; break; default: ocs_log_err(hw->os, "unsupported DIF operation %#x\n", dif_info->dif_oper); return OCS_HW_RTN_ERROR; } /* * Set last, clear previous last */ data->last = TRUE; if (io->n_sge) { data[-1].last = FALSE; } io->n_sge++; return OCS_HW_RTN_SUCCESS; } static ocs_hw_rtn_e ocs_hw_io_overflow_sgl(ocs_hw_t *hw, ocs_hw_io_t *io) { sli4_lsp_sge_t *lsp; /* fail if we're already pointing to the overflow SGL */ if (io->sgl == io->ovfl_sgl) { return OCS_HW_RTN_ERROR; } /* * For skyhawk, we can use another SGL to extend the SGL list. The * Chained entry must not be in the first 4 entries. * * Note: For DIF enabled IOs, we will use the ovfl_io for the sec_hio. */ if (sli_get_sgl_preregister(&hw->sli) && io->def_sgl_count > 4 && io->ovfl_io == NULL && ((SLI4_IF_TYPE_BE3_SKH_PF == sli_get_if_type(&hw->sli)) || (SLI4_IF_TYPE_BE3_SKH_VF == sli_get_if_type(&hw->sli)))) { io->ovfl_io = ocs_hw_io_alloc(hw); if (io->ovfl_io != NULL) { /* * Note: We can't call ocs_hw_io_register_sgl() here * because it checks that SGLs are not pre-registered * and for shyhawk, preregistered SGLs are required. */ io->ovfl_sgl = &io->ovfl_io->def_sgl; io->ovfl_sgl_count = io->ovfl_io->def_sgl_count; } } /* fail if we don't have an overflow SGL registered */ if (io->ovfl_io == NULL || io->ovfl_sgl == NULL) { return OCS_HW_RTN_ERROR; } /* * Overflow, we need to put a link SGE in the last location of the current SGL, after * copying the the last SGE to the overflow SGL */ ((sli4_sge_t*)io->ovfl_sgl->virt)[0] = ((sli4_sge_t*)io->sgl->virt)[io->n_sge - 1]; lsp = &((sli4_lsp_sge_t*)io->sgl->virt)[io->n_sge - 1]; ocs_memset(lsp, 0, sizeof(*lsp)); if ((SLI4_IF_TYPE_BE3_SKH_PF == sli_get_if_type(&hw->sli)) || (SLI4_IF_TYPE_BE3_SKH_VF == sli_get_if_type(&hw->sli))) { sli_skh_chain_sge_build(&hw->sli, (sli4_sge_t*)lsp, io->ovfl_io->indicator, 0, /* frag_num */ 0); /* offset */ } else { lsp->buffer_address_high = ocs_addr32_hi(io->ovfl_sgl->phys); lsp->buffer_address_low = ocs_addr32_lo(io->ovfl_sgl->phys); lsp->sge_type = SLI4_SGE_TYPE_LSP; lsp->last = 0; io->ovfl_lsp = lsp; io->ovfl_lsp->segment_length = sizeof(sli4_sge_t); } /* Update the current SGL pointer, and n_sgl */ io->sgl = io->ovfl_sgl; io->sgl_count = io->ovfl_sgl_count; io->n_sge = 1; return OCS_HW_RTN_SUCCESS; } /** * @ingroup io * @brief Add a scatter gather list entry to an IO. * * @param hw Hardware context. * @param io Previously-allocated HW IO object. * @param addr Physical address. * @param length Length of memory pointed to by @c addr. * * @return Returns 0 on success, or a non-zero value on failure. */ ocs_hw_rtn_e ocs_hw_io_add_sge(ocs_hw_t *hw, ocs_hw_io_t *io, uintptr_t addr, uint32_t length) { sli4_sge_t *data = NULL; if (!hw || !io || !addr || !length) { ocs_log_err(hw ? hw->os : NULL, "bad parameter hw=%p io=%p addr=%lx length=%u\n", hw, io, addr, length); return OCS_HW_RTN_ERROR; } if ((length != 0) && (io->n_sge + 1) > io->sgl_count) { if (ocs_hw_io_overflow_sgl(hw, io) != OCS_HW_RTN_SUCCESS) { ocs_log_err(hw->os, "SGL full (%d)\n", io->n_sge); return OCS_HW_RTN_ERROR; } } if (length > sli_get_max_sge(&hw->sli)) { ocs_log_err(hw->os, "length of SGE %d bigger than allowed %d\n", length, sli_get_max_sge(&hw->sli)); return OCS_HW_RTN_ERROR; } data = io->sgl->virt; data += io->n_sge; data->sge_type = SLI4_SGE_TYPE_DATA; data->buffer_address_high = ocs_addr32_hi(addr); data->buffer_address_low = ocs_addr32_lo(addr); data->buffer_length = length; data->data_offset = io->sge_offset; /* * Always assume this is the last entry and mark as such. * If this is not the first entry unset the "last SGE" * indication for the previous entry */ data->last = TRUE; if (io->n_sge) { data[-1].last = FALSE; } /* Set first_data_bde if not previously set */ if (io->first_data_sge == 0) { io->first_data_sge = io->n_sge; } io->sge_offset += length; io->n_sge++; /* Update the linked segment length (only executed after overflow has begun) */ if (io->ovfl_lsp != NULL) { io->ovfl_lsp->segment_length = io->n_sge * sizeof(sli4_sge_t); } return OCS_HW_RTN_SUCCESS; } /** * @ingroup io * @brief Add a T10 DIF scatter gather list entry to an IO. * * @param hw Hardware context. * @param io Previously-allocated HW IO object. * @param addr DIF physical address. * * @return Returns 0 on success, or a non-zero value on failure. */ ocs_hw_rtn_e ocs_hw_io_add_dif_sge(ocs_hw_t *hw, ocs_hw_io_t *io, uintptr_t addr) { sli4_dif_sge_t *data = NULL; if (!hw || !io || !addr) { ocs_log_err(hw ? hw->os : NULL, "bad parameter hw=%p io=%p addr=%lx\n", hw, io, addr); return OCS_HW_RTN_ERROR; } if ((io->n_sge + 1) > hw->config.n_sgl) { if (ocs_hw_io_overflow_sgl(hw, io) != OCS_HW_RTN_ERROR) { ocs_log_err(hw->os, "SGL full (%d)\n", io->n_sge); return OCS_HW_RTN_ERROR; } } data = io->sgl->virt; data += io->n_sge; data->sge_type = SLI4_SGE_TYPE_DIF; /* Workaround for SKH (BZ157233) */ if (((io->type == OCS_HW_IO_TARGET_WRITE) || (io->type == OCS_HW_IO_INITIATOR_READ)) && (SLI4_IF_TYPE_LANCER_FC_ETH != hw->sli.if_type)) { data->sge_type = SLI4_SGE_TYPE_SKIP; } data->buffer_address_high = ocs_addr32_hi(addr); data->buffer_address_low = ocs_addr32_lo(addr); /* * Always assume this is the last entry and mark as such. * If this is not the first entry unset the "last SGE" * indication for the previous entry */ data->last = TRUE; if (io->n_sge) { data[-1].last = FALSE; } io->n_sge++; return OCS_HW_RTN_SUCCESS; } /** * @ingroup io * @brief Abort a previously-started IO. * * @param hw Hardware context. * @param io_to_abort The IO to abort. * @param send_abts Boolean to have the hardware automatically * generate an ABTS. * @param cb Function call upon completion of the abort (may be NULL). * @param arg Argument to pass to abort completion function. * * @return Returns 0 on success, or a non-zero value on failure. */ ocs_hw_rtn_e ocs_hw_io_abort(ocs_hw_t *hw, ocs_hw_io_t *io_to_abort, uint32_t send_abts, void *cb, void *arg) { sli4_abort_type_e atype = SLI_ABORT_MAX; uint32_t id = 0, mask = 0; ocs_hw_rtn_e rc = OCS_HW_RTN_SUCCESS; hw_wq_callback_t *wqcb; if (!hw || !io_to_abort) { ocs_log_err(hw ? hw->os : NULL, "bad parameter hw=%p io=%p\n", hw, io_to_abort); return OCS_HW_RTN_ERROR; } if (hw->state != OCS_HW_STATE_ACTIVE) { ocs_log_err(hw->os, "cannot send IO abort, HW state=%d\n", hw->state); return OCS_HW_RTN_ERROR; } /* take a reference on IO being aborted */ if (ocs_ref_get_unless_zero(&io_to_abort->ref) == 0) { /* command no longer active */ ocs_log_test(hw ? hw->os : NULL, "io not active xri=0x%x tag=0x%x\n", io_to_abort->indicator, io_to_abort->reqtag); return OCS_HW_RTN_IO_NOT_ACTIVE; } /* non-port owned XRI checks */ /* Must have a valid WQ reference */ if (io_to_abort->wq == NULL) { ocs_log_test(hw->os, "io_to_abort xri=0x%x not active on WQ\n", io_to_abort->indicator); ocs_ref_put(&io_to_abort->ref); /* ocs_ref_get(): same function */ return OCS_HW_RTN_IO_NOT_ACTIVE; } /* Validation checks complete; now check to see if already being aborted */ ocs_lock(&hw->io_abort_lock); if (io_to_abort->abort_in_progress) { ocs_unlock(&hw->io_abort_lock); ocs_ref_put(&io_to_abort->ref); /* ocs_ref_get(): same function */ ocs_log_debug(hw ? hw->os : NULL, "io already being aborted xri=0x%x tag=0x%x\n", io_to_abort->indicator, io_to_abort->reqtag); return OCS_HW_RTN_IO_ABORT_IN_PROGRESS; } /* * This IO is not already being aborted. Set flag so we won't try to * abort it again. After all, we only have one abort_done callback. */ io_to_abort->abort_in_progress = 1; ocs_unlock(&hw->io_abort_lock); /* * If we got here, the possibilities are: * - host owned xri * - io_to_abort->wq_index != UINT32_MAX * - submit ABORT_WQE to same WQ * - port owned xri: * - rxri: io_to_abort->wq_index == UINT32_MAX * - submit ABORT_WQE to any WQ * - non-rxri * - io_to_abort->index != UINT32_MAX * - submit ABORT_WQE to same WQ * - io_to_abort->index == UINT32_MAX * - submit ABORT_WQE to any WQ */ io_to_abort->abort_done = cb; io_to_abort->abort_arg = arg; atype = SLI_ABORT_XRI; id = io_to_abort->indicator; /* Allocate a request tag for the abort portion of this IO */ wqcb = ocs_hw_reqtag_alloc(hw, ocs_hw_wq_process_abort, io_to_abort); if (wqcb == NULL) { ocs_log_err(hw->os, "can't allocate request tag\n"); return OCS_HW_RTN_NO_RESOURCES; } io_to_abort->abort_reqtag = wqcb->instance_index; /* * If the wqe is on the pending list, then set this wqe to be * aborted when the IO's wqe is removed from the list. */ if (io_to_abort->wq != NULL) { sli_queue_lock(io_to_abort->wq->queue); if (ocs_list_on_list(&io_to_abort->wqe.link)) { io_to_abort->wqe.abort_wqe_submit_needed = 1; io_to_abort->wqe.send_abts = send_abts; io_to_abort->wqe.id = id; io_to_abort->wqe.abort_reqtag = io_to_abort->abort_reqtag; sli_queue_unlock(io_to_abort->wq->queue); return 0; } sli_queue_unlock(io_to_abort->wq->queue); } if (sli_abort_wqe(&hw->sli, io_to_abort->wqe.wqebuf, hw->sli.config.wqe_size, atype, send_abts, id, mask, io_to_abort->abort_reqtag, SLI4_CQ_DEFAULT)) { ocs_log_err(hw->os, "ABORT WQE error\n"); io_to_abort->abort_reqtag = UINT32_MAX; ocs_hw_reqtag_free(hw, wqcb); rc = OCS_HW_RTN_ERROR; } if (OCS_HW_RTN_SUCCESS == rc) { if (io_to_abort->wq == NULL) { io_to_abort->wq = ocs_hw_queue_next_wq(hw, io_to_abort); ocs_hw_assert(io_to_abort->wq != NULL); } /* ABORT_WQE does not actually utilize an XRI on the Port, * therefore, keep xbusy as-is to track the exchange's state, * not the ABORT_WQE's state */ rc = hw_wq_write(io_to_abort->wq, &io_to_abort->wqe); if (rc > 0) { /* non-negative return is success */ rc = 0; /* can't abort an abort so skip adding to timed wqe list */ } } if (OCS_HW_RTN_SUCCESS != rc) { ocs_lock(&hw->io_abort_lock); io_to_abort->abort_in_progress = 0; ocs_unlock(&hw->io_abort_lock); ocs_ref_put(&io_to_abort->ref); /* ocs_ref_get(): same function */ } return rc; } /** * @ingroup io * @brief Return the OX_ID/RX_ID of the IO. * * @param hw Hardware context. * @param io HW IO object. * * @return Returns X_ID on success, or -1 on failure. */ int32_t ocs_hw_io_get_xid(ocs_hw_t *hw, ocs_hw_io_t *io) { if (!hw || !io) { ocs_log_err(hw ? hw->os : NULL, "bad parameter hw=%p io=%p\n", hw, io); return -1; } return io->indicator; } typedef struct ocs_hw_fw_write_cb_arg { ocs_hw_fw_cb_t cb; void *arg; } ocs_hw_fw_write_cb_arg_t; typedef struct ocs_hw_sfp_cb_arg { ocs_hw_sfp_cb_t cb; void *arg; ocs_dma_t payload; } ocs_hw_sfp_cb_arg_t; typedef struct ocs_hw_temp_cb_arg { ocs_hw_temp_cb_t cb; void *arg; } ocs_hw_temp_cb_arg_t; typedef struct ocs_hw_link_stat_cb_arg { ocs_hw_link_stat_cb_t cb; void *arg; } ocs_hw_link_stat_cb_arg_t; typedef struct ocs_hw_host_stat_cb_arg { ocs_hw_host_stat_cb_t cb; void *arg; } ocs_hw_host_stat_cb_arg_t; typedef struct ocs_hw_dump_get_cb_arg { ocs_hw_dump_get_cb_t cb; void *arg; void *mbox_cmd; } ocs_hw_dump_get_cb_arg_t; typedef struct ocs_hw_dump_clear_cb_arg { ocs_hw_dump_clear_cb_t cb; void *arg; void *mbox_cmd; } ocs_hw_dump_clear_cb_arg_t; /** * @brief Write a portion of a firmware image to the device. * * @par Description * Calls the correct firmware write function based on the device type. * * @param hw Hardware context. * @param dma DMA structure containing the firmware image chunk. * @param size Size of the firmware image chunk. * @param offset Offset, in bytes, from the beginning of the firmware image. * @param last True if this is the last chunk of the image. * Causes the image to be committed to flash. * @param cb Pointer to a callback function that is called when the command completes. * The callback function prototype is * void cb(int32_t status, uint32_t bytes_written, void *arg). * @param arg Pointer to be passed to the callback function. * * @return Returns 0 on success, or a non-zero value on failure. */ ocs_hw_rtn_e ocs_hw_firmware_write(ocs_hw_t *hw, ocs_dma_t *dma, uint32_t size, uint32_t offset, int last, ocs_hw_fw_cb_t cb, void *arg) { if (hw->sli.if_type == SLI4_IF_TYPE_LANCER_FC_ETH) { return ocs_hw_firmware_write_lancer(hw, dma, size, offset, last, cb, arg); } else { /* Write firmware_write for BE3/Skyhawk not supported */ return -1; } } /** * @brief Write a portion of a firmware image to the Emulex XE201 ASIC (Lancer). * * @par Description * Creates a SLI_CONFIG mailbox command, fills it with the correct values to write a * firmware image chunk, and then sends the command with ocs_hw_command(). On completion, * the callback function ocs_hw_fw_write_cb() gets called to free the mailbox * and to signal the caller that the write has completed. * * @param hw Hardware context. * @param dma DMA structure containing the firmware image chunk. * @param size Size of the firmware image chunk. * @param offset Offset, in bytes, from the beginning of the firmware image. * @param last True if this is the last chunk of the image. Causes the image to be committed to flash. * @param cb Pointer to a callback function that is called when the command completes. * The callback function prototype is * void cb(int32_t status, uint32_t bytes_written, void *arg). * @param arg Pointer to be passed to the callback function. * * @return Returns 0 on success, or a non-zero value on failure. */ ocs_hw_rtn_e ocs_hw_firmware_write_lancer(ocs_hw_t *hw, ocs_dma_t *dma, uint32_t size, uint32_t offset, int last, ocs_hw_fw_cb_t cb, void *arg) { ocs_hw_rtn_e rc = OCS_HW_RTN_ERROR; uint8_t *mbxdata; ocs_hw_fw_write_cb_arg_t *cb_arg; int noc=0; /* No Commit bit - set to 1 for testing */ if (SLI4_IF_TYPE_LANCER_FC_ETH != sli_get_if_type(&hw->sli)) { ocs_log_test(hw->os, "Function only supported for I/F type 2\n"); return OCS_HW_RTN_ERROR; } mbxdata = ocs_malloc(hw->os, SLI4_BMBX_SIZE, OCS_M_ZERO | OCS_M_NOWAIT); if (mbxdata == NULL) { ocs_log_err(hw->os, "failed to malloc mbox\n"); return OCS_HW_RTN_NO_MEMORY; } cb_arg = ocs_malloc(hw->os, sizeof(ocs_hw_fw_write_cb_arg_t), OCS_M_NOWAIT); if (cb_arg == NULL) { ocs_log_err(hw->os, "failed to malloc cb_arg\n"); ocs_free(hw->os, mbxdata, SLI4_BMBX_SIZE); return OCS_HW_RTN_NO_MEMORY; } cb_arg->cb = cb; cb_arg->arg = arg; if (sli_cmd_common_write_object(&hw->sli, mbxdata, SLI4_BMBX_SIZE, noc, last, size, offset, "/prg/", dma)) { rc = ocs_hw_command(hw, mbxdata, OCS_CMD_NOWAIT, ocs_hw_cb_fw_write, cb_arg); } if (rc != OCS_HW_RTN_SUCCESS) { ocs_log_test(hw->os, "COMMON_WRITE_OBJECT failed\n"); ocs_free(hw->os, mbxdata, SLI4_BMBX_SIZE); ocs_free(hw->os, cb_arg, sizeof(ocs_hw_fw_write_cb_arg_t)); } return rc; } /** * @brief Called when the WRITE OBJECT command completes. * * @par Description * Get the number of bytes actually written out of the response, free the mailbox * that was malloc'd by ocs_hw_firmware_write(), * then call the callback and pass the status and bytes written. * * @param hw Hardware context. * @param status Status field from the mbox completion. * @param mqe Mailbox response structure. * @param arg Pointer to a callback function that signals the caller that the command is done. * The callback function prototype is void cb(int32_t status, uint32_t bytes_written). * * @return Returns 0. */ static int32_t ocs_hw_cb_fw_write(ocs_hw_t *hw, int32_t status, uint8_t *mqe, void *arg) { sli4_cmd_sli_config_t* mbox_rsp = (sli4_cmd_sli_config_t*) mqe; sli4_res_common_write_object_t* wr_obj_rsp = (sli4_res_common_write_object_t*) &(mbox_rsp->payload.embed); ocs_hw_fw_write_cb_arg_t *cb_arg = arg; uint32_t bytes_written; uint16_t mbox_status; uint32_t change_status; bytes_written = wr_obj_rsp->actual_write_length; mbox_status = mbox_rsp->hdr.status; change_status = wr_obj_rsp->change_status; ocs_free(hw->os, mqe, SLI4_BMBX_SIZE); if (cb_arg) { if (cb_arg->cb) { if ((status == 0) && mbox_status) { status = mbox_status; } cb_arg->cb(status, bytes_written, change_status, cb_arg->arg); } ocs_free(hw->os, cb_arg, sizeof(ocs_hw_fw_write_cb_arg_t)); } return 0; } /** * @brief Called when the READ_TRANSCEIVER_DATA command completes. * * @par Description * Get the number of bytes read out of the response, free the mailbox that was malloc'd * by ocs_hw_get_sfp(), then call the callback and pass the status and bytes written. * * @param hw Hardware context. * @param status Status field from the mbox completion. * @param mqe Mailbox response structure. * @param arg Pointer to a callback function that signals the caller that the command is done. * The callback function prototype is * void cb(int32_t status, uint32_t bytes_written, uint32_t *data, void *arg). * * @return Returns 0. */ static int32_t ocs_hw_cb_sfp(ocs_hw_t *hw, int32_t status, uint8_t *mqe, void *arg) { ocs_hw_sfp_cb_arg_t *cb_arg = arg; ocs_dma_t *payload = NULL; sli4_res_common_read_transceiver_data_t* mbox_rsp = NULL; uint32_t bytes_written; if (cb_arg) { payload = &(cb_arg->payload); if (cb_arg->cb) { mbox_rsp = (sli4_res_common_read_transceiver_data_t*) payload->virt; bytes_written = mbox_rsp->hdr.response_length; if ((status == 0) && mbox_rsp->hdr.status) { status = mbox_rsp->hdr.status; } cb_arg->cb(hw->os, status, bytes_written, mbox_rsp->page_data, cb_arg->arg); } ocs_dma_free(hw->os, &cb_arg->payload); ocs_free(hw->os, cb_arg, sizeof(ocs_hw_sfp_cb_arg_t)); } ocs_free(hw->os, mqe, SLI4_BMBX_SIZE); return 0; } /** * @ingroup io * @brief Function to retrieve the SFP information. * * @param hw Hardware context. * @param page The page of SFP data to retrieve (0xa0 or 0xa2). * @param cb Function call upon completion of sending the data (may be NULL). * @param arg Argument to pass to IO completion function. * * @return Returns OCS_HW_RTN_SUCCESS, OCS_HW_RTN_ERROR, or OCS_HW_RTN_NO_MEMORY. */ ocs_hw_rtn_e ocs_hw_get_sfp(ocs_hw_t *hw, uint16_t page, ocs_hw_sfp_cb_t cb, void *arg) { ocs_hw_rtn_e rc = OCS_HW_RTN_ERROR; ocs_hw_sfp_cb_arg_t *cb_arg; uint8_t *mbxdata; /* mbxdata holds the header of the command */ mbxdata = ocs_malloc(hw->os, SLI4_BMBX_SIZE, OCS_M_ZERO | OCS_M_NOWAIT); if (mbxdata == NULL) { ocs_log_err(hw->os, "failed to malloc mbox\n"); return OCS_HW_RTN_NO_MEMORY; } /* cb_arg holds the data that will be passed to the callback on completion */ cb_arg = ocs_malloc(hw->os, sizeof(ocs_hw_sfp_cb_arg_t), OCS_M_NOWAIT); if (cb_arg == NULL) { ocs_log_err(hw->os, "failed to malloc cb_arg\n"); ocs_free(hw->os, mbxdata, SLI4_BMBX_SIZE); return OCS_HW_RTN_NO_MEMORY; } cb_arg->cb = cb; cb_arg->arg = arg; /* payload holds the non-embedded portion */ if (ocs_dma_alloc(hw->os, &cb_arg->payload, sizeof(sli4_res_common_read_transceiver_data_t), OCS_MIN_DMA_ALIGNMENT)) { ocs_log_err(hw->os, "Failed to allocate DMA buffer\n"); ocs_free(hw->os, cb_arg, sizeof(ocs_hw_sfp_cb_arg_t)); ocs_free(hw->os, mbxdata, SLI4_BMBX_SIZE); return OCS_HW_RTN_NO_MEMORY; } /* Send the HW command */ if (sli_cmd_common_read_transceiver_data(&hw->sli, mbxdata, SLI4_BMBX_SIZE, page, &cb_arg->payload)) { rc = ocs_hw_command(hw, mbxdata, OCS_CMD_NOWAIT, ocs_hw_cb_sfp, cb_arg); } if (rc != OCS_HW_RTN_SUCCESS) { ocs_log_test(hw->os, "READ_TRANSCEIVER_DATA failed with status %d\n", rc); ocs_dma_free(hw->os, &cb_arg->payload); ocs_free(hw->os, cb_arg, sizeof(ocs_hw_sfp_cb_arg_t)); ocs_free(hw->os, mbxdata, SLI4_BMBX_SIZE); } return rc; } /** * @brief Function to retrieve the temperature information. * * @param hw Hardware context. * @param cb Function call upon completion of sending the data (may be NULL). * @param arg Argument to pass to IO completion function. * * @return Returns OCS_HW_RTN_SUCCESS, OCS_HW_RTN_ERROR, or OCS_HW_RTN_NO_MEMORY. */ ocs_hw_rtn_e ocs_hw_get_temperature(ocs_hw_t *hw, ocs_hw_temp_cb_t cb, void *arg) { ocs_hw_rtn_e rc = OCS_HW_RTN_ERROR; ocs_hw_temp_cb_arg_t *cb_arg; uint8_t *mbxdata; mbxdata = ocs_malloc(hw->os, SLI4_BMBX_SIZE, OCS_M_ZERO | OCS_M_NOWAIT); if (mbxdata == NULL) { ocs_log_err(hw->os, "failed to malloc mbox"); return OCS_HW_RTN_NO_MEMORY; } cb_arg = ocs_malloc(hw->os, sizeof(ocs_hw_temp_cb_arg_t), OCS_M_NOWAIT); if (cb_arg == NULL) { ocs_log_err(hw->os, "failed to malloc cb_arg"); ocs_free(hw->os, mbxdata, SLI4_BMBX_SIZE); return OCS_HW_RTN_NO_MEMORY; } cb_arg->cb = cb; cb_arg->arg = arg; if (sli_cmd_dump_type4(&hw->sli, mbxdata, SLI4_BMBX_SIZE, SLI4_WKI_TAG_SAT_TEM)) { rc = ocs_hw_command(hw, mbxdata, OCS_CMD_NOWAIT, ocs_hw_cb_temp, cb_arg); } if (rc != OCS_HW_RTN_SUCCESS) { ocs_log_test(hw->os, "DUMP_TYPE4 failed\n"); ocs_free(hw->os, mbxdata, SLI4_BMBX_SIZE); ocs_free(hw->os, cb_arg, sizeof(ocs_hw_temp_cb_arg_t)); } return rc; } /** * @brief Called when the DUMP command completes. * * @par Description * Get the temperature data out of the response, free the mailbox that was malloc'd * by ocs_hw_get_temperature(), then call the callback and pass the status and data. * * @param hw Hardware context. * @param status Status field from the mbox completion. * @param mqe Mailbox response structure. * @param arg Pointer to a callback function that signals the caller that the command is done. * The callback function prototype is defined by ocs_hw_temp_cb_t. * * @return Returns 0. */ static int32_t ocs_hw_cb_temp(ocs_hw_t *hw, int32_t status, uint8_t *mqe, void *arg) { sli4_cmd_dump4_t* mbox_rsp = (sli4_cmd_dump4_t*) mqe; ocs_hw_temp_cb_arg_t *cb_arg = arg; uint32_t curr_temp = mbox_rsp->resp_data[0]; /* word 5 */ uint32_t crit_temp_thrshld = mbox_rsp->resp_data[1]; /* word 6*/ uint32_t warn_temp_thrshld = mbox_rsp->resp_data[2]; /* word 7 */ uint32_t norm_temp_thrshld = mbox_rsp->resp_data[3]; /* word 8 */ uint32_t fan_off_thrshld = mbox_rsp->resp_data[4]; /* word 9 */ uint32_t fan_on_thrshld = mbox_rsp->resp_data[5]; /* word 10 */ if (cb_arg) { if (cb_arg->cb) { if ((status == 0) && mbox_rsp->hdr.status) { status = mbox_rsp->hdr.status; } cb_arg->cb(status, curr_temp, crit_temp_thrshld, warn_temp_thrshld, norm_temp_thrshld, fan_off_thrshld, fan_on_thrshld, cb_arg->arg); } ocs_free(hw->os, cb_arg, sizeof(ocs_hw_temp_cb_arg_t)); } ocs_free(hw->os, mqe, SLI4_BMBX_SIZE); return 0; } /** * @brief Function to retrieve the link statistics. * * @param hw Hardware context. * @param req_ext_counters If TRUE, then the extended counters will be requested. * @param clear_overflow_flags If TRUE, then overflow flags will be cleared. * @param clear_all_counters If TRUE, the counters will be cleared. * @param cb Function call upon completion of sending the data (may be NULL). * @param arg Argument to pass to IO completion function. * * @return Returns OCS_HW_RTN_SUCCESS, OCS_HW_RTN_ERROR, or OCS_HW_RTN_NO_MEMORY. */ ocs_hw_rtn_e ocs_hw_get_link_stats(ocs_hw_t *hw, uint8_t req_ext_counters, uint8_t clear_overflow_flags, uint8_t clear_all_counters, ocs_hw_link_stat_cb_t cb, void *arg) { ocs_hw_rtn_e rc = OCS_HW_RTN_ERROR; ocs_hw_link_stat_cb_arg_t *cb_arg; uint8_t *mbxdata; mbxdata = ocs_malloc(hw->os, SLI4_BMBX_SIZE, OCS_M_ZERO | OCS_M_NOWAIT); if (mbxdata == NULL) { ocs_log_err(hw->os, "failed to malloc mbox"); return OCS_HW_RTN_NO_MEMORY; } cb_arg = ocs_malloc(hw->os, sizeof(ocs_hw_link_stat_cb_arg_t), OCS_M_NOWAIT); if (cb_arg == NULL) { ocs_log_err(hw->os, "failed to malloc cb_arg"); ocs_free(hw->os, mbxdata, SLI4_BMBX_SIZE); return OCS_HW_RTN_NO_MEMORY; } cb_arg->cb = cb; cb_arg->arg = arg; if (sli_cmd_read_link_stats(&hw->sli, mbxdata, SLI4_BMBX_SIZE, req_ext_counters, clear_overflow_flags, clear_all_counters)) { rc = ocs_hw_command(hw, mbxdata, OCS_CMD_NOWAIT, ocs_hw_cb_link_stat, cb_arg); } if (rc != OCS_HW_RTN_SUCCESS) { ocs_log_test(hw->os, "READ_LINK_STATS failed\n"); ocs_free(hw->os, mbxdata, SLI4_BMBX_SIZE); ocs_free(hw->os, cb_arg, sizeof(ocs_hw_link_stat_cb_arg_t)); } return rc; } /** * @brief Called when the READ_LINK_STAT command completes. * * @par Description * Get the counters out of the response, free the mailbox that was malloc'd * by ocs_hw_get_link_stats(), then call the callback and pass the status and data. * * @param hw Hardware context. * @param status Status field from the mbox completion. * @param mqe Mailbox response structure. * @param arg Pointer to a callback function that signals the caller that the command is done. * The callback function prototype is defined by ocs_hw_link_stat_cb_t. * * @return Returns 0. */ static int32_t ocs_hw_cb_link_stat(ocs_hw_t *hw, int32_t status, uint8_t *mqe, void *arg) { sli4_cmd_read_link_stats_t* mbox_rsp = (sli4_cmd_read_link_stats_t*) mqe; ocs_hw_link_stat_cb_arg_t *cb_arg = arg; ocs_hw_link_stat_counts_t counts[OCS_HW_LINK_STAT_MAX]; uint32_t num_counters = (mbox_rsp->gec ? 20 : 13); ocs_memset(counts, 0, sizeof(ocs_hw_link_stat_counts_t) * OCS_HW_LINK_STAT_MAX); counts[OCS_HW_LINK_STAT_LINK_FAILURE_COUNT].overflow = mbox_rsp->w02of; counts[OCS_HW_LINK_STAT_LOSS_OF_SYNC_COUNT].overflow = mbox_rsp->w03of; counts[OCS_HW_LINK_STAT_LOSS_OF_SIGNAL_COUNT].overflow = mbox_rsp->w04of; counts[OCS_HW_LINK_STAT_PRIMITIVE_SEQ_COUNT].overflow = mbox_rsp->w05of; counts[OCS_HW_LINK_STAT_INVALID_XMIT_WORD_COUNT].overflow = mbox_rsp->w06of; counts[OCS_HW_LINK_STAT_CRC_COUNT].overflow = mbox_rsp->w07of; counts[OCS_HW_LINK_STAT_PRIMITIVE_SEQ_TIMEOUT_COUNT].overflow = mbox_rsp->w08of; counts[OCS_HW_LINK_STAT_ELASTIC_BUFFER_OVERRUN_COUNT].overflow = mbox_rsp->w09of; counts[OCS_HW_LINK_STAT_ARB_TIMEOUT_COUNT].overflow = mbox_rsp->w10of; counts[OCS_HW_LINK_STAT_ADVERTISED_RCV_B2B_CREDIT].overflow = mbox_rsp->w11of; counts[OCS_HW_LINK_STAT_CURR_RCV_B2B_CREDIT].overflow = mbox_rsp->w12of; counts[OCS_HW_LINK_STAT_ADVERTISED_XMIT_B2B_CREDIT].overflow = mbox_rsp->w13of; counts[OCS_HW_LINK_STAT_CURR_XMIT_B2B_CREDIT].overflow = mbox_rsp->w14of; counts[OCS_HW_LINK_STAT_RCV_EOFA_COUNT].overflow = mbox_rsp->w15of; counts[OCS_HW_LINK_STAT_RCV_EOFDTI_COUNT].overflow = mbox_rsp->w16of; counts[OCS_HW_LINK_STAT_RCV_EOFNI_COUNT].overflow = mbox_rsp->w17of; counts[OCS_HW_LINK_STAT_RCV_SOFF_COUNT].overflow = mbox_rsp->w18of; counts[OCS_HW_LINK_STAT_RCV_DROPPED_NO_AER_COUNT].overflow = mbox_rsp->w19of; counts[OCS_HW_LINK_STAT_RCV_DROPPED_NO_RPI_COUNT].overflow = mbox_rsp->w20of; counts[OCS_HW_LINK_STAT_RCV_DROPPED_NO_XRI_COUNT].overflow = mbox_rsp->w21of; counts[OCS_HW_LINK_STAT_LINK_FAILURE_COUNT].counter = mbox_rsp->link_failure_error_count; counts[OCS_HW_LINK_STAT_LOSS_OF_SYNC_COUNT].counter = mbox_rsp->loss_of_sync_error_count; counts[OCS_HW_LINK_STAT_LOSS_OF_SIGNAL_COUNT].counter = mbox_rsp->loss_of_signal_error_count; counts[OCS_HW_LINK_STAT_PRIMITIVE_SEQ_COUNT].counter = mbox_rsp->primitive_sequence_error_count; counts[OCS_HW_LINK_STAT_INVALID_XMIT_WORD_COUNT].counter = mbox_rsp->invalid_transmission_word_error_count; counts[OCS_HW_LINK_STAT_CRC_COUNT].counter = mbox_rsp->crc_error_count; counts[OCS_HW_LINK_STAT_PRIMITIVE_SEQ_TIMEOUT_COUNT].counter = mbox_rsp->primitive_sequence_event_timeout_count; counts[OCS_HW_LINK_STAT_ELASTIC_BUFFER_OVERRUN_COUNT].counter = mbox_rsp->elastic_buffer_overrun_error_count; counts[OCS_HW_LINK_STAT_ARB_TIMEOUT_COUNT].counter = mbox_rsp->arbitration_fc_al_timout_count; counts[OCS_HW_LINK_STAT_ADVERTISED_RCV_B2B_CREDIT].counter = mbox_rsp->advertised_receive_bufftor_to_buffer_credit; counts[OCS_HW_LINK_STAT_CURR_RCV_B2B_CREDIT].counter = mbox_rsp->current_receive_buffer_to_buffer_credit; counts[OCS_HW_LINK_STAT_ADVERTISED_XMIT_B2B_CREDIT].counter = mbox_rsp->advertised_transmit_buffer_to_buffer_credit; counts[OCS_HW_LINK_STAT_CURR_XMIT_B2B_CREDIT].counter = mbox_rsp->current_transmit_buffer_to_buffer_credit; counts[OCS_HW_LINK_STAT_RCV_EOFA_COUNT].counter = mbox_rsp->received_eofa_count; counts[OCS_HW_LINK_STAT_RCV_EOFDTI_COUNT].counter = mbox_rsp->received_eofdti_count; counts[OCS_HW_LINK_STAT_RCV_EOFNI_COUNT].counter = mbox_rsp->received_eofni_count; counts[OCS_HW_LINK_STAT_RCV_SOFF_COUNT].counter = mbox_rsp->received_soff_count; counts[OCS_HW_LINK_STAT_RCV_DROPPED_NO_AER_COUNT].counter = mbox_rsp->received_dropped_no_aer_count; counts[OCS_HW_LINK_STAT_RCV_DROPPED_NO_RPI_COUNT].counter = mbox_rsp->received_dropped_no_available_rpi_resources_count; counts[OCS_HW_LINK_STAT_RCV_DROPPED_NO_XRI_COUNT].counter = mbox_rsp->received_dropped_no_available_xri_resources_count; if (cb_arg) { if (cb_arg->cb) { if ((status == 0) && mbox_rsp->hdr.status) { status = mbox_rsp->hdr.status; } cb_arg->cb(status, num_counters, counts, cb_arg->arg); } ocs_free(hw->os, cb_arg, sizeof(ocs_hw_link_stat_cb_arg_t)); } ocs_free(hw->os, mqe, SLI4_BMBX_SIZE); return 0; } /** * @brief Function to retrieve the link and host statistics. * * @param hw Hardware context. * @param cc clear counters, if TRUE all counters will be cleared. * @param cb Function call upon completion of receiving the data. * @param arg Argument to pass to pointer fc hosts statistics structure. * * @return Returns OCS_HW_RTN_SUCCESS, OCS_HW_RTN_ERROR, or OCS_HW_RTN_NO_MEMORY. */ ocs_hw_rtn_e ocs_hw_get_host_stats(ocs_hw_t *hw, uint8_t cc, ocs_hw_host_stat_cb_t cb, void *arg) { ocs_hw_rtn_e rc = OCS_HW_RTN_ERROR; ocs_hw_host_stat_cb_arg_t *cb_arg; uint8_t *mbxdata; mbxdata = ocs_malloc(hw->os, SLI4_BMBX_SIZE, OCS_M_ZERO); if (mbxdata == NULL) { ocs_log_err(hw->os, "failed to malloc mbox"); return OCS_HW_RTN_NO_MEMORY; } cb_arg = ocs_malloc(hw->os, sizeof(ocs_hw_host_stat_cb_arg_t), 0); if (cb_arg == NULL) { ocs_log_err(hw->os, "failed to malloc cb_arg"); ocs_free(hw->os, mbxdata, SLI4_BMBX_SIZE); return OCS_HW_RTN_NO_MEMORY; } cb_arg->cb = cb; cb_arg->arg = arg; /* Send the HW command to get the host stats */ if (sli_cmd_read_status(&hw->sli, mbxdata, SLI4_BMBX_SIZE, cc)) { rc = ocs_hw_command(hw, mbxdata, OCS_CMD_NOWAIT, ocs_hw_cb_host_stat, cb_arg); } if (rc != OCS_HW_RTN_SUCCESS) { ocs_log_test(hw->os, "READ_HOST_STATS failed\n"); ocs_free(hw->os, mbxdata, SLI4_BMBX_SIZE); ocs_free(hw->os, cb_arg, sizeof(ocs_hw_host_stat_cb_arg_t)); } return rc; } /** * @brief Called when the READ_STATUS command completes. * * @par Description * Get the counters out of the response, free the mailbox that was malloc'd * by ocs_hw_get_host_stats(), then call the callback and pass * the status and data. * * @param hw Hardware context. * @param status Status field from the mbox completion. * @param mqe Mailbox response structure. * @param arg Pointer to a callback function that signals the caller that the command is done. * The callback function prototype is defined by * ocs_hw_host_stat_cb_t. * * @return Returns 0. */ static int32_t ocs_hw_cb_host_stat(ocs_hw_t *hw, int32_t status, uint8_t *mqe, void *arg) { sli4_cmd_read_status_t* mbox_rsp = (sli4_cmd_read_status_t*) mqe; ocs_hw_host_stat_cb_arg_t *cb_arg = arg; ocs_hw_host_stat_counts_t counts[OCS_HW_HOST_STAT_MAX]; uint32_t num_counters = OCS_HW_HOST_STAT_MAX; ocs_memset(counts, 0, sizeof(ocs_hw_host_stat_counts_t) * OCS_HW_HOST_STAT_MAX); counts[OCS_HW_HOST_STAT_TX_KBYTE_COUNT].counter = mbox_rsp->transmit_kbyte_count; counts[OCS_HW_HOST_STAT_RX_KBYTE_COUNT].counter = mbox_rsp->receive_kbyte_count; counts[OCS_HW_HOST_STAT_TX_FRAME_COUNT].counter = mbox_rsp->transmit_frame_count; counts[OCS_HW_HOST_STAT_RX_FRAME_COUNT].counter = mbox_rsp->receive_frame_count; counts[OCS_HW_HOST_STAT_TX_SEQ_COUNT].counter = mbox_rsp->transmit_sequence_count; counts[OCS_HW_HOST_STAT_RX_SEQ_COUNT].counter = mbox_rsp->receive_sequence_count; counts[OCS_HW_HOST_STAT_TOTAL_EXCH_ORIG].counter = mbox_rsp->total_exchanges_originator; counts[OCS_HW_HOST_STAT_TOTAL_EXCH_RESP].counter = mbox_rsp->total_exchanges_responder; counts[OCS_HW_HOSY_STAT_RX_P_BSY_COUNT].counter = mbox_rsp->receive_p_bsy_count; counts[OCS_HW_HOST_STAT_RX_F_BSY_COUNT].counter = mbox_rsp->receive_f_bsy_count; counts[OCS_HW_HOST_STAT_DROP_FRM_DUE_TO_NO_RQ_BUF_COUNT].counter = mbox_rsp->dropped_frames_due_to_no_rq_buffer_count; counts[OCS_HW_HOST_STAT_EMPTY_RQ_TIMEOUT_COUNT].counter = mbox_rsp->empty_rq_timeout_count; counts[OCS_HW_HOST_STAT_DROP_FRM_DUE_TO_NO_XRI_COUNT].counter = mbox_rsp->dropped_frames_due_to_no_xri_count; counts[OCS_HW_HOST_STAT_EMPTY_XRI_POOL_COUNT].counter = mbox_rsp->empty_xri_pool_count; if (cb_arg) { if (cb_arg->cb) { if ((status == 0) && mbox_rsp->hdr.status) { status = mbox_rsp->hdr.status; } cb_arg->cb(status, num_counters, counts, cb_arg->arg); } ocs_free(hw->os, cb_arg, sizeof(ocs_hw_host_stat_cb_arg_t)); } ocs_free(hw->os, mqe, SLI4_BMBX_SIZE); return 0; } /** * @brief HW link configuration enum to the CLP string value mapping. * * This structure provides a mapping from the ocs_hw_linkcfg_e * enum (enum exposed for the OCS_HW_PORT_SET_LINK_CONFIG port * control) to the CLP string that is used * in the DMTF_CLP_CMD mailbox command. */ typedef struct ocs_hw_linkcfg_map_s { ocs_hw_linkcfg_e linkcfg; const char *clp_str; } ocs_hw_linkcfg_map_t; /** * @brief Mapping from the HW linkcfg enum to the CLP command value * string. */ static ocs_hw_linkcfg_map_t linkcfg_map[] = { {OCS_HW_LINKCFG_4X10G, "ELX_4x10G"}, {OCS_HW_LINKCFG_1X40G, "ELX_1x40G"}, {OCS_HW_LINKCFG_2X16G, "ELX_2x16G"}, {OCS_HW_LINKCFG_4X8G, "ELX_4x8G"}, {OCS_HW_LINKCFG_4X1G, "ELX_4x1G"}, {OCS_HW_LINKCFG_2X10G, "ELX_2x10G"}, {OCS_HW_LINKCFG_2X10G_2X8G, "ELX_2x10G_2x8G"}}; /** * @brief HW link configuration enum to Skyhawk link config ID mapping. * * This structure provides a mapping from the ocs_hw_linkcfg_e * enum (enum exposed for the OCS_HW_PORT_SET_LINK_CONFIG port * control) to the link config ID numbers used by Skyhawk */ typedef struct ocs_hw_skyhawk_linkcfg_map_s { ocs_hw_linkcfg_e linkcfg; uint32_t config_id; } ocs_hw_skyhawk_linkcfg_map_t; /** * @brief Mapping from the HW linkcfg enum to the Skyhawk link config IDs */ static ocs_hw_skyhawk_linkcfg_map_t skyhawk_linkcfg_map[] = { {OCS_HW_LINKCFG_4X10G, 0x0a}, {OCS_HW_LINKCFG_1X40G, 0x09}, }; /** * @brief Helper function for getting the HW linkcfg enum from the CLP * string value * * @param clp_str CLP string value from OEMELX_LinkConfig. * * @return Returns the HW linkcfg enum corresponding to clp_str. */ static ocs_hw_linkcfg_e ocs_hw_linkcfg_from_clp(const char *clp_str) { uint32_t i; for (i = 0; i < ARRAY_SIZE(linkcfg_map); i++) { if (ocs_strncmp(linkcfg_map[i].clp_str, clp_str, ocs_strlen(clp_str)) == 0) { return linkcfg_map[i].linkcfg; } } return OCS_HW_LINKCFG_NA; } /** * @brief Helper function for getting the CLP string value from the HW * linkcfg enum. * * @param linkcfg HW linkcfg enum. * * @return Returns the OEMELX_LinkConfig CLP string value corresponding to * given linkcfg. */ static const char * ocs_hw_clp_from_linkcfg(ocs_hw_linkcfg_e linkcfg) { uint32_t i; for (i = 0; i < ARRAY_SIZE(linkcfg_map); i++) { if (linkcfg_map[i].linkcfg == linkcfg) { return linkcfg_map[i].clp_str; } } return NULL; } /** * @brief Helper function for getting a Skyhawk link config ID from the HW * linkcfg enum. * * @param linkcfg HW linkcfg enum. * * @return Returns the Skyhawk link config ID corresponding to * given linkcfg. */ static uint32_t ocs_hw_config_id_from_linkcfg(ocs_hw_linkcfg_e linkcfg) { uint32_t i; for (i = 0; i < ARRAY_SIZE(skyhawk_linkcfg_map); i++) { if (skyhawk_linkcfg_map[i].linkcfg == linkcfg) { return skyhawk_linkcfg_map[i].config_id; } } return 0; } /** * @brief Helper function for getting the HW linkcfg enum from a * Skyhawk config ID. * * @param config_id Skyhawk link config ID. * * @return Returns the HW linkcfg enum corresponding to config_id. */ static ocs_hw_linkcfg_e ocs_hw_linkcfg_from_config_id(const uint32_t config_id) { uint32_t i; for (i = 0; i < ARRAY_SIZE(skyhawk_linkcfg_map); i++) { if (skyhawk_linkcfg_map[i].config_id == config_id) { return skyhawk_linkcfg_map[i].linkcfg; } } return OCS_HW_LINKCFG_NA; } /** * @brief Link configuration callback argument. */ typedef struct ocs_hw_linkcfg_cb_arg_s { ocs_hw_port_control_cb_t cb; void *arg; uint32_t opts; int32_t status; ocs_dma_t dma_cmd; ocs_dma_t dma_resp; uint32_t result_len; } ocs_hw_linkcfg_cb_arg_t; /** * @brief Set link configuration. * * @param hw Hardware context. * @param value Link configuration enum to which the link configuration is * set. * @param opts Mailbox command options (OCS_CMD_NOWAIT/POLL). * @param cb Callback function to invoke following mbx command. * @param arg Callback argument. * * @return Returns OCS_HW_RTN_SUCCESS on success. */ static ocs_hw_rtn_e ocs_hw_set_linkcfg(ocs_hw_t *hw, ocs_hw_linkcfg_e value, uint32_t opts, ocs_hw_port_control_cb_t cb, void *arg) { if (!sli_link_is_configurable(&hw->sli)) { ocs_log_debug(hw->os, "Function not supported\n"); return OCS_HW_RTN_ERROR; } if (SLI4_IF_TYPE_LANCER_FC_ETH == sli_get_if_type(&hw->sli)) { return ocs_hw_set_linkcfg_lancer(hw, value, opts, cb, arg); } else if ((SLI4_IF_TYPE_BE3_SKH_PF == sli_get_if_type(&hw->sli)) || (SLI4_IF_TYPE_BE3_SKH_VF == sli_get_if_type(&hw->sli))) { return ocs_hw_set_linkcfg_skyhawk(hw, value, opts, cb, arg); } else { ocs_log_test(hw->os, "Function not supported for this IF_TYPE\n"); return OCS_HW_RTN_ERROR; } } /** * @brief Set link configuration for Lancer * * @param hw Hardware context. * @param value Link configuration enum to which the link configuration is * set. * @param opts Mailbox command options (OCS_CMD_NOWAIT/POLL). * @param cb Callback function to invoke following mbx command. * @param arg Callback argument. * * @return Returns OCS_HW_RTN_SUCCESS on success. */ static ocs_hw_rtn_e ocs_hw_set_linkcfg_lancer(ocs_hw_t *hw, ocs_hw_linkcfg_e value, uint32_t opts, ocs_hw_port_control_cb_t cb, void *arg) { char cmd[OCS_HW_DMTF_CLP_CMD_MAX]; ocs_hw_linkcfg_cb_arg_t *cb_arg; const char *value_str = NULL; ocs_hw_rtn_e rc = OCS_HW_RTN_SUCCESS; /* translate ocs_hw_linkcfg_e to CLP string */ value_str = ocs_hw_clp_from_linkcfg(value); /* allocate memory for callback argument */ cb_arg = ocs_malloc(hw->os, sizeof(*cb_arg), OCS_M_NOWAIT); if (cb_arg == NULL) { ocs_log_err(hw->os, "failed to malloc cb_arg"); return OCS_HW_RTN_NO_MEMORY; } ocs_snprintf(cmd, OCS_HW_DMTF_CLP_CMD_MAX, "set / OEMELX_LinkConfig=%s", value_str); /* allocate DMA for command */ if (ocs_dma_alloc(hw->os, &cb_arg->dma_cmd, ocs_strlen(cmd)+1, 4096)) { ocs_log_err(hw->os, "malloc failed\n"); ocs_free(hw->os, cb_arg, sizeof(*cb_arg)); return OCS_HW_RTN_NO_MEMORY; } ocs_memset(cb_arg->dma_cmd.virt, 0, ocs_strlen(cmd)+1); ocs_memcpy(cb_arg->dma_cmd.virt, cmd, ocs_strlen(cmd)); /* allocate DMA for response */ if (ocs_dma_alloc(hw->os, &cb_arg->dma_resp, OCS_HW_DMTF_CLP_RSP_MAX, 4096)) { ocs_log_err(hw->os, "malloc failed\n"); ocs_dma_free(hw->os, &cb_arg->dma_cmd); ocs_free(hw->os, cb_arg, sizeof(*cb_arg)); return OCS_HW_RTN_NO_MEMORY; } cb_arg->cb = cb; cb_arg->arg = arg; cb_arg->opts = opts; rc = ocs_hw_exec_dmtf_clp_cmd(hw, &cb_arg->dma_cmd, &cb_arg->dma_resp, opts, ocs_hw_linkcfg_dmtf_clp_cb, cb_arg); if (opts == OCS_CMD_POLL || rc != OCS_HW_RTN_SUCCESS) { /* if failed, or polling, free memory here; if success and not * polling, will free in callback function */ if (rc) { ocs_log_test(hw->os, "CLP cmd=\"%s\" failed\n", (char *)cb_arg->dma_cmd.virt); } ocs_dma_free(hw->os, &cb_arg->dma_cmd); ocs_dma_free(hw->os, &cb_arg->dma_resp); ocs_free(hw->os, cb_arg, sizeof(*cb_arg)); } return rc; } /** * @brief Callback for ocs_hw_set_linkcfg_skyhawk * * @param hw Hardware context. * @param status Status from the RECONFIG_GET_LINK_INFO command. * @param mqe Mailbox response structure. * @param arg Pointer to a callback argument. * * @return none */ static void ocs_hw_set_active_link_config_cb(ocs_hw_t *hw, int32_t status, uint8_t *mqe, void *arg) { ocs_hw_linkcfg_cb_arg_t *cb_arg = (ocs_hw_linkcfg_cb_arg_t *)arg; if (status) { ocs_log_test(hw->os, "SET_RECONFIG_LINK_ID failed, status=%d\n", status); } /* invoke callback */ if (cb_arg->cb) { cb_arg->cb(status, 0, cb_arg->arg); } /* if polling, will free memory in calling function */ if (cb_arg->opts != OCS_CMD_POLL) { ocs_free(hw->os, cb_arg, sizeof(*cb_arg)); } } /** * @brief Set link configuration for a Skyhawk * * @param hw Hardware context. * @param value Link configuration enum to which the link configuration is * set. * @param opts Mailbox command options (OCS_CMD_NOWAIT/POLL). * @param cb Callback function to invoke following mbx command. * @param arg Callback argument. * * @return Returns OCS_HW_RTN_SUCCESS on success. */ static ocs_hw_rtn_e ocs_hw_set_linkcfg_skyhawk(ocs_hw_t *hw, ocs_hw_linkcfg_e value, uint32_t opts, ocs_hw_port_control_cb_t cb, void *arg) { uint8_t *mbxdata; ocs_hw_linkcfg_cb_arg_t *cb_arg; ocs_hw_rtn_e rc = OCS_HW_RTN_SUCCESS; uint32_t config_id; config_id = ocs_hw_config_id_from_linkcfg(value); if (config_id == 0) { ocs_log_test(hw->os, "Link config %d not supported by Skyhawk\n", value); return OCS_HW_RTN_ERROR; } /* mbxdata holds the header of the command */ mbxdata = ocs_malloc(hw->os, SLI4_BMBX_SIZE, OCS_M_ZERO | OCS_M_NOWAIT); if (mbxdata == NULL) { ocs_log_err(hw->os, "failed to malloc mbox\n"); return OCS_HW_RTN_NO_MEMORY; } /* cb_arg holds the data that will be passed to the callback on completion */ cb_arg = ocs_malloc(hw->os, sizeof(ocs_hw_linkcfg_cb_arg_t), OCS_M_NOWAIT); if (cb_arg == NULL) { ocs_log_err(hw->os, "failed to malloc cb_arg\n"); ocs_free(hw->os, mbxdata, SLI4_BMBX_SIZE); return OCS_HW_RTN_NO_MEMORY; } cb_arg->cb = cb; cb_arg->arg = arg; if (sli_cmd_common_set_reconfig_link_id(&hw->sli, mbxdata, SLI4_BMBX_SIZE, NULL, 0, config_id)) { rc = ocs_hw_command(hw, mbxdata, opts, ocs_hw_set_active_link_config_cb, cb_arg); } if (rc != OCS_HW_RTN_SUCCESS) { ocs_log_err(hw->os, "SET_RECONFIG_LINK_ID failed\n"); ocs_free(hw->os, mbxdata, SLI4_BMBX_SIZE); ocs_free(hw->os, cb_arg, sizeof(ocs_hw_linkcfg_cb_arg_t)); } else if (opts == OCS_CMD_POLL) { /* if we're polling we have to call the callback here. */ ocs_hw_set_active_link_config_cb(hw, 0, mbxdata, cb_arg); ocs_free(hw->os, mbxdata, SLI4_BMBX_SIZE); ocs_free(hw->os, cb_arg, sizeof(ocs_hw_linkcfg_cb_arg_t)); } else { /* We weren't poling, so the callback got called */ ocs_free(hw->os, mbxdata, SLI4_BMBX_SIZE); } return rc; } /** * @brief Get link configuration. * * @param hw Hardware context. * @param opts Mailbox command options (OCS_CMD_NOWAIT/POLL). * @param cb Callback function to invoke following mbx command. * @param arg Callback argument. * * @return Returns OCS_HW_RTN_SUCCESS on success. */ static ocs_hw_rtn_e ocs_hw_get_linkcfg(ocs_hw_t *hw, uint32_t opts, ocs_hw_port_control_cb_t cb, void *arg) { if (!sli_link_is_configurable(&hw->sli)) { ocs_log_debug(hw->os, "Function not supported\n"); return OCS_HW_RTN_ERROR; } if ((SLI4_IF_TYPE_LANCER_FC_ETH == sli_get_if_type(&hw->sli)) || (SLI4_IF_TYPE_LANCER_G7 == sli_get_if_type(&hw->sli))){ return ocs_hw_get_linkcfg_lancer(hw, opts, cb, arg); } else if ((SLI4_IF_TYPE_BE3_SKH_PF == sli_get_if_type(&hw->sli)) || (SLI4_IF_TYPE_BE3_SKH_VF == sli_get_if_type(&hw->sli))) { return ocs_hw_get_linkcfg_skyhawk(hw, opts, cb, arg); } else { ocs_log_test(hw->os, "Function not supported for this IF_TYPE\n"); return OCS_HW_RTN_ERROR; } } /** * @brief Get link configuration for a Lancer * * @param hw Hardware context. * @param opts Mailbox command options (OCS_CMD_NOWAIT/POLL). * @param cb Callback function to invoke following mbx command. * @param arg Callback argument. * * @return Returns OCS_HW_RTN_SUCCESS on success. */ static ocs_hw_rtn_e ocs_hw_get_linkcfg_lancer(ocs_hw_t *hw, uint32_t opts, ocs_hw_port_control_cb_t cb, void *arg) { char cmd[OCS_HW_DMTF_CLP_CMD_MAX]; ocs_hw_linkcfg_cb_arg_t *cb_arg; ocs_hw_rtn_e rc = OCS_HW_RTN_SUCCESS; /* allocate memory for callback argument */ cb_arg = ocs_malloc(hw->os, sizeof(*cb_arg), OCS_M_NOWAIT); if (cb_arg == NULL) { ocs_log_err(hw->os, "failed to malloc cb_arg"); return OCS_HW_RTN_NO_MEMORY; } ocs_snprintf(cmd, OCS_HW_DMTF_CLP_CMD_MAX, "show / OEMELX_LinkConfig"); /* allocate DMA for command */ if (ocs_dma_alloc(hw->os, &cb_arg->dma_cmd, ocs_strlen(cmd)+1, 4096)) { ocs_log_err(hw->os, "malloc failed\n"); ocs_free(hw->os, cb_arg, sizeof(*cb_arg)); return OCS_HW_RTN_NO_MEMORY; } /* copy CLP command to DMA command */ ocs_memset(cb_arg->dma_cmd.virt, 0, ocs_strlen(cmd)+1); ocs_memcpy(cb_arg->dma_cmd.virt, cmd, ocs_strlen(cmd)); /* allocate DMA for response */ if (ocs_dma_alloc(hw->os, &cb_arg->dma_resp, OCS_HW_DMTF_CLP_RSP_MAX, 4096)) { ocs_log_err(hw->os, "malloc failed\n"); ocs_dma_free(hw->os, &cb_arg->dma_cmd); ocs_free(hw->os, cb_arg, sizeof(*cb_arg)); return OCS_HW_RTN_NO_MEMORY; } cb_arg->cb = cb; cb_arg->arg = arg; cb_arg->opts = opts; rc = ocs_hw_exec_dmtf_clp_cmd(hw, &cb_arg->dma_cmd, &cb_arg->dma_resp, opts, ocs_hw_linkcfg_dmtf_clp_cb, cb_arg); if (opts == OCS_CMD_POLL || rc != OCS_HW_RTN_SUCCESS) { /* if failed or polling, free memory here; if not polling and success, * will free in callback function */ if (rc) { ocs_log_test(hw->os, "CLP cmd=\"%s\" failed\n", (char *)cb_arg->dma_cmd.virt); } ocs_dma_free(hw->os, &cb_arg->dma_cmd); ocs_dma_free(hw->os, &cb_arg->dma_resp); ocs_free(hw->os, cb_arg, sizeof(*cb_arg)); } return rc; } /** * @brief Get the link configuration callback. * * @param hw Hardware context. * @param status Status from the RECONFIG_GET_LINK_INFO command. * @param mqe Mailbox response structure. * @param arg Pointer to a callback argument. * * @return none */ static void ocs_hw_get_active_link_config_cb(ocs_hw_t *hw, int32_t status, uint8_t *mqe, void *arg) { ocs_hw_linkcfg_cb_arg_t *cb_arg = (ocs_hw_linkcfg_cb_arg_t *)arg; sli4_res_common_get_reconfig_link_info_t *rsp = cb_arg->dma_cmd.virt; ocs_hw_linkcfg_e value = OCS_HW_LINKCFG_NA; if (status) { ocs_log_test(hw->os, "GET_RECONFIG_LINK_INFO failed, status=%d\n", status); } else { /* Call was successful */ value = ocs_hw_linkcfg_from_config_id(rsp->active_link_config_id); } /* invoke callback */ if (cb_arg->cb) { cb_arg->cb(status, value, cb_arg->arg); } /* if polling, will free memory in calling function */ if (cb_arg->opts != OCS_CMD_POLL) { ocs_dma_free(hw->os, &cb_arg->dma_cmd); ocs_free(hw->os, cb_arg, sizeof(*cb_arg)); } } /** * @brief Get link configuration for a Skyhawk. * * @param hw Hardware context. * @param opts Mailbox command options (OCS_CMD_NOWAIT/POLL). * @param cb Callback function to invoke following mbx command. * @param arg Callback argument. * * @return Returns OCS_HW_RTN_SUCCESS on success. */ static ocs_hw_rtn_e ocs_hw_get_linkcfg_skyhawk(ocs_hw_t *hw, uint32_t opts, ocs_hw_port_control_cb_t cb, void *arg) { uint8_t *mbxdata; ocs_hw_linkcfg_cb_arg_t *cb_arg; ocs_hw_rtn_e rc = OCS_HW_RTN_SUCCESS; /* mbxdata holds the header of the command */ mbxdata = ocs_malloc(hw->os, SLI4_BMBX_SIZE, OCS_M_ZERO | OCS_M_NOWAIT); if (mbxdata == NULL) { ocs_log_err(hw->os, "failed to malloc mbox\n"); return OCS_HW_RTN_NO_MEMORY; } /* cb_arg holds the data that will be passed to the callback on completion */ cb_arg = ocs_malloc(hw->os, sizeof(ocs_hw_linkcfg_cb_arg_t), OCS_M_NOWAIT); if (cb_arg == NULL) { ocs_log_err(hw->os, "failed to malloc cb_arg\n"); ocs_free(hw->os, mbxdata, SLI4_BMBX_SIZE); return OCS_HW_RTN_NO_MEMORY; } cb_arg->cb = cb; cb_arg->arg = arg; cb_arg->opts = opts; /* dma_mem holds the non-embedded portion */ if (ocs_dma_alloc(hw->os, &cb_arg->dma_cmd, sizeof(sli4_res_common_get_reconfig_link_info_t), 4)) { ocs_log_err(hw->os, "Failed to allocate DMA buffer\n"); ocs_free(hw->os, mbxdata, SLI4_BMBX_SIZE); ocs_free(hw->os, cb_arg, sizeof(ocs_hw_linkcfg_cb_arg_t)); return OCS_HW_RTN_NO_MEMORY; } if (sli_cmd_common_get_reconfig_link_info(&hw->sli, mbxdata, SLI4_BMBX_SIZE, &cb_arg->dma_cmd)) { rc = ocs_hw_command(hw, mbxdata, opts, ocs_hw_get_active_link_config_cb, cb_arg); } if (rc != OCS_HW_RTN_SUCCESS) { ocs_log_err(hw->os, "GET_RECONFIG_LINK_INFO failed\n"); ocs_free(hw->os, mbxdata, SLI4_BMBX_SIZE); ocs_dma_free(hw->os, &cb_arg->dma_cmd); ocs_free(hw->os, cb_arg, sizeof(ocs_hw_linkcfg_cb_arg_t)); } else if (opts == OCS_CMD_POLL) { /* if we're polling we have to call the callback here. */ ocs_hw_get_active_link_config_cb(hw, 0, mbxdata, cb_arg); ocs_free(hw->os, mbxdata, SLI4_BMBX_SIZE); ocs_dma_free(hw->os, &cb_arg->dma_cmd); ocs_free(hw->os, cb_arg, sizeof(ocs_hw_linkcfg_cb_arg_t)); } else { /* We weren't poling, so the callback got called */ ocs_free(hw->os, mbxdata, SLI4_BMBX_SIZE); } return rc; } /** * @brief Sets the DIF seed value. * * @param hw Hardware context. * * @return Returns OCS_HW_RTN_SUCCESS on success. */ static ocs_hw_rtn_e ocs_hw_set_dif_seed(ocs_hw_t *hw) { ocs_hw_rtn_e rc = OCS_HW_RTN_SUCCESS; uint8_t buf[SLI4_BMBX_SIZE]; sli4_req_common_set_features_dif_seed_t seed_param; ocs_memset(&seed_param, 0, sizeof(seed_param)); seed_param.seed = hw->config.dif_seed; /* send set_features command */ if (sli_cmd_common_set_features(&hw->sli, buf, SLI4_BMBX_SIZE, SLI4_SET_FEATURES_DIF_SEED, 4, (uint32_t*)&seed_param)) { rc = ocs_hw_command(hw, buf, OCS_CMD_POLL, NULL, NULL); if (rc) { ocs_log_err(hw->os, "ocs_hw_command returns %d\n", rc); } else { ocs_log_debug(hw->os, "DIF seed set to 0x%x\n", hw->config.dif_seed); } } else { ocs_log_err(hw->os, "sli_cmd_common_set_features failed\n"); rc = OCS_HW_RTN_ERROR; } return rc; } /** * @brief Sets the DIF mode value. * * @param hw Hardware context. * * @return Returns OCS_HW_RTN_SUCCESS on success. */ static ocs_hw_rtn_e ocs_hw_set_dif_mode(ocs_hw_t *hw) { ocs_hw_rtn_e rc = OCS_HW_RTN_SUCCESS; uint8_t buf[SLI4_BMBX_SIZE]; sli4_req_common_set_features_t10_pi_mem_model_t mode_param; ocs_memset(&mode_param, 0, sizeof(mode_param)); mode_param.tmm = (hw->config.dif_mode == OCS_HW_DIF_MODE_INLINE ? 0 : 1); /* send set_features command */ if (sli_cmd_common_set_features(&hw->sli, buf, SLI4_BMBX_SIZE, SLI4_SET_FEATURES_DIF_MEMORY_MODE, sizeof(mode_param), (uint32_t*)&mode_param)) { rc = ocs_hw_command(hw, buf, OCS_CMD_POLL, NULL, NULL); if (rc) { ocs_log_err(hw->os, "ocs_hw_command returns %d\n", rc); } else { ocs_log_test(hw->os, "DIF mode set to %s\n", (hw->config.dif_mode == OCS_HW_DIF_MODE_INLINE ? "inline" : "separate")); } } else { ocs_log_err(hw->os, "sli_cmd_common_set_features failed\n"); rc = OCS_HW_RTN_ERROR; } return rc; } static void ocs_hw_watchdog_timer_cb(void *arg) { ocs_hw_t *hw = (ocs_hw_t *)arg; ocs_hw_config_watchdog_timer(hw); return; } static void ocs_hw_cb_cfg_watchdog(ocs_hw_t *hw, int32_t status, uint8_t *mqe, void *arg) { uint16_t timeout = hw->watchdog_timeout; if (status != 0) { ocs_log_err(hw->os, "config watchdog timer failed, rc = %d\n", status); } else { if(timeout != 0) { /* keeping callback 500ms before timeout to keep heartbeat alive */ ocs_setup_timer(hw->os, &hw->watchdog_timer, ocs_hw_watchdog_timer_cb, hw, (timeout*1000 - 500) ); }else { ocs_del_timer(&hw->watchdog_timer); } } ocs_free(hw->os, mqe, SLI4_BMBX_SIZE); return; } /** * @brief Set configuration parameters for watchdog timer feature. * * @param hw Hardware context. * @param timeout Timeout for watchdog timer in seconds * * @return Returns OCS_HW_RTN_SUCCESS on success. */ static ocs_hw_rtn_e ocs_hw_config_watchdog_timer(ocs_hw_t *hw) { ocs_hw_rtn_e rc = OCS_HW_RTN_SUCCESS; uint8_t *buf = ocs_malloc(hw->os, SLI4_BMBX_SIZE, OCS_M_NOWAIT); if (!buf) { ocs_log_err(hw->os, "no buffer for command\n"); return OCS_HW_RTN_NO_MEMORY; } sli4_cmd_lowlevel_set_watchdog(&hw->sli, buf, SLI4_BMBX_SIZE, hw->watchdog_timeout); rc = ocs_hw_command(hw, buf, OCS_CMD_NOWAIT, ocs_hw_cb_cfg_watchdog, NULL); if (rc) { ocs_free(hw->os, buf, SLI4_BMBX_SIZE); ocs_log_err(hw->os, "config watchdog timer failed, rc = %d\n", rc); } return rc; } /** * @brief Set configuration parameters for auto-generate xfer_rdy T10 PI feature. * * @param hw Hardware context. * @param buf Pointer to a mailbox buffer area. * * @return Returns OCS_HW_RTN_SUCCESS on success. */ static ocs_hw_rtn_e ocs_hw_config_auto_xfer_rdy_t10pi(ocs_hw_t *hw, uint8_t *buf) { ocs_hw_rtn_e rc = OCS_HW_RTN_SUCCESS; sli4_req_common_set_features_xfer_rdy_t10pi_t param; ocs_memset(¶m, 0, sizeof(param)); param.rtc = (hw->config.auto_xfer_rdy_ref_tag_is_lba ? 0 : 1); param.atv = (hw->config.auto_xfer_rdy_app_tag_valid ? 1 : 0); param.tmm = ((hw->config.dif_mode == OCS_HW_DIF_MODE_INLINE) ? 0 : 1); param.app_tag = hw->config.auto_xfer_rdy_app_tag_value; param.blk_size = hw->config.auto_xfer_rdy_blk_size_chip; switch (hw->config.auto_xfer_rdy_p_type) { case 1: param.p_type = 0; break; case 3: param.p_type = 2; break; default: ocs_log_err(hw->os, "unsupported p_type %d\n", hw->config.auto_xfer_rdy_p_type); return OCS_HW_RTN_ERROR; } /* build the set_features command */ sli_cmd_common_set_features(&hw->sli, buf, SLI4_BMBX_SIZE, SLI4_SET_FEATURES_SET_CONFIG_AUTO_XFER_RDY_T10PI, sizeof(param), ¶m); rc = ocs_hw_command(hw, buf, OCS_CMD_POLL, NULL, NULL); if (rc) { ocs_log_err(hw->os, "ocs_hw_command returns %d\n", rc); } else { ocs_log_test(hw->os, "Auto XFER RDY T10 PI configured rtc:%d atv:%d p_type:%d app_tag:%x blk_size:%d\n", param.rtc, param.atv, param.p_type, param.app_tag, param.blk_size); } return rc; } /** * @brief enable sli port health check * * @param hw Hardware context. * @param buf Pointer to a mailbox buffer area. * @param query current status of the health check feature enabled/disabled * @param enable if 1: enable 0: disable * @param buf Pointer to a mailbox buffer area. * * @return Returns OCS_HW_RTN_SUCCESS on success. */ static ocs_hw_rtn_e ocs_hw_config_sli_port_health_check(ocs_hw_t *hw, uint8_t query, uint8_t enable) { ocs_hw_rtn_e rc = OCS_HW_RTN_SUCCESS; uint8_t buf[SLI4_BMBX_SIZE]; sli4_req_common_set_features_health_check_t param; ocs_memset(¶m, 0, sizeof(param)); param.hck = enable; param.qry = query; /* build the set_features command */ sli_cmd_common_set_features(&hw->sli, buf, SLI4_BMBX_SIZE, SLI4_SET_FEATURES_SLI_PORT_HEALTH_CHECK, sizeof(param), ¶m); rc = ocs_hw_command(hw, buf, OCS_CMD_POLL, NULL, NULL); if (rc) { ocs_log_err(hw->os, "ocs_hw_command returns %d\n", rc); } else { ocs_log_test(hw->os, "SLI Port Health Check is enabled \n"); } return rc; } /** * @brief Set FTD transfer hint feature * * @param hw Hardware context. * @param fdt_xfer_hint size in bytes where read requests are segmented. * * @return Returns OCS_HW_RTN_SUCCESS on success. */ static ocs_hw_rtn_e ocs_hw_config_set_fdt_xfer_hint(ocs_hw_t *hw, uint32_t fdt_xfer_hint) { ocs_hw_rtn_e rc = OCS_HW_RTN_SUCCESS; uint8_t buf[SLI4_BMBX_SIZE]; sli4_req_common_set_features_set_fdt_xfer_hint_t param; ocs_memset(¶m, 0, sizeof(param)); param.fdt_xfer_hint = fdt_xfer_hint; /* build the set_features command */ sli_cmd_common_set_features(&hw->sli, buf, SLI4_BMBX_SIZE, SLI4_SET_FEATURES_SET_FTD_XFER_HINT, sizeof(param), ¶m); rc = ocs_hw_command(hw, buf, OCS_CMD_POLL, NULL, NULL); if (rc) { ocs_log_warn(hw->os, "set FDT hint %d failed: %d\n", fdt_xfer_hint, rc); } else { ocs_log_debug(hw->os, "Set FTD transfer hint to %d\n", param.fdt_xfer_hint); } return rc; } /** * @brief Get the link configuration callback. * * @param hw Hardware context. * @param status Status from the DMTF CLP command. * @param result_len Length, in bytes, of the DMTF CLP result. * @param arg Pointer to a callback argument. * * @return Returns OCS_HW_RTN_SUCCESS on success. */ static void ocs_hw_linkcfg_dmtf_clp_cb(ocs_hw_t *hw, int32_t status, uint32_t result_len, void *arg) { int32_t rval; char retdata_str[64]; ocs_hw_linkcfg_cb_arg_t *cb_arg = (ocs_hw_linkcfg_cb_arg_t *)arg; ocs_hw_linkcfg_e linkcfg = OCS_HW_LINKCFG_NA; if (status) { ocs_log_test(hw->os, "CLP cmd failed, status=%d\n", status); } else { /* parse CLP response to get return data */ rval = ocs_hw_clp_resp_get_value(hw, "retdata", retdata_str, sizeof(retdata_str), cb_arg->dma_resp.virt, result_len); if (rval <= 0) { ocs_log_err(hw->os, "failed to get retdata %d\n", result_len); } else { /* translate string into hw enum */ linkcfg = ocs_hw_linkcfg_from_clp(retdata_str); } } /* invoke callback */ if (cb_arg->cb) { cb_arg->cb(status, linkcfg, cb_arg->arg); } /* if polling, will free memory in calling function */ if (cb_arg->opts != OCS_CMD_POLL) { ocs_dma_free(hw->os, &cb_arg->dma_cmd); ocs_dma_free(hw->os, &cb_arg->dma_resp); ocs_free(hw->os, cb_arg, sizeof(*cb_arg)); } } /** * @brief Set the Lancer dump location * @par Description * This function tells a Lancer chip to use a specific DMA * buffer as a dump location rather than the internal flash. * * @param hw Hardware context. * @param num_buffers The number of DMA buffers to hold the dump (1..n). * @param dump_buffers DMA buffers to hold the dump. * * @return Returns OCS_HW_RTN_SUCCESS on success. */ ocs_hw_rtn_e ocs_hw_set_dump_location(ocs_hw_t *hw, uint32_t num_buffers, ocs_dma_t *dump_buffers, uint8_t fdb) { uint8_t bus, dev, func; ocs_hw_rtn_e rc = OCS_HW_RTN_SUCCESS; uint8_t buf[SLI4_BMBX_SIZE]; /* * Make sure the FW is new enough to support this command. If the FW * is too old, the FW will UE. */ if (hw->workaround.disable_dump_loc) { ocs_log_test(hw->os, "FW version is too old for this feature\n"); return OCS_HW_RTN_ERROR; } /* This command is only valid for physical port 0 */ ocs_get_bus_dev_func(hw->os, &bus, &dev, &func); if (fdb == 0 && func != 0) { ocs_log_test(hw->os, "function only valid for pci function 0, %d passed\n", func); return OCS_HW_RTN_ERROR; } /* * If a single buffer is used, then it may be passed as is to the chip. For multiple buffers, * We must allocate a SGL list and then pass the address of the list to the chip. */ if (num_buffers > 1) { uint32_t sge_size = num_buffers * sizeof(sli4_sge_t); sli4_sge_t *sge; uint32_t i; if (hw->dump_sges.size < sge_size) { ocs_dma_free(hw->os, &hw->dump_sges); if (ocs_dma_alloc(hw->os, &hw->dump_sges, sge_size, OCS_MIN_DMA_ALIGNMENT)) { ocs_log_err(hw->os, "SGE DMA allocation failed\n"); return OCS_HW_RTN_NO_MEMORY; } } /* build the SGE list */ ocs_memset(hw->dump_sges.virt, 0, hw->dump_sges.size); hw->dump_sges.len = sge_size; sge = hw->dump_sges.virt; for (i = 0; i < num_buffers; i++) { sge[i].buffer_address_high = ocs_addr32_hi(dump_buffers[i].phys); sge[i].buffer_address_low = ocs_addr32_lo(dump_buffers[i].phys); sge[i].last = (i == num_buffers - 1 ? 1 : 0); sge[i].buffer_length = dump_buffers[i].size; } rc = sli_cmd_common_set_dump_location(&hw->sli, (void *)buf, SLI4_BMBX_SIZE, FALSE, TRUE, &hw->dump_sges, fdb); } else { dump_buffers->len = dump_buffers->size; rc = sli_cmd_common_set_dump_location(&hw->sli, (void *)buf, SLI4_BMBX_SIZE, FALSE, FALSE, dump_buffers, fdb); } if (rc) { rc = ocs_hw_command(hw, buf, OCS_CMD_POLL, NULL, NULL); if (rc) { ocs_log_err(hw->os, "ocs_hw_command returns %d\n", rc); } } else { ocs_log_err(hw->os, "sli_cmd_common_set_dump_location failed\n"); rc = OCS_HW_RTN_ERROR; } return rc; } /** * @brief Set the Ethernet license. * * @par Description * This function sends the appropriate mailbox command (DMTF * CLP) to set the Ethernet license to the given license value. * Since it is used during the time of ocs_hw_init(), the mailbox * command is sent via polling (the BMBX route). * * @param hw Hardware context. * @param license 32-bit license value. * * @return Returns OCS_HW_RTN_SUCCESS on success. */ static ocs_hw_rtn_e ocs_hw_set_eth_license(ocs_hw_t *hw, uint32_t license) { ocs_hw_rtn_e rc = OCS_HW_RTN_SUCCESS; char cmd[OCS_HW_DMTF_CLP_CMD_MAX]; ocs_dma_t dma_cmd; ocs_dma_t dma_resp; /* only for lancer right now */ if (SLI4_IF_TYPE_LANCER_FC_ETH != sli_get_if_type(&hw->sli)) { ocs_log_test(hw->os, "Function only supported for I/F type 2\n"); return OCS_HW_RTN_ERROR; } ocs_snprintf(cmd, OCS_HW_DMTF_CLP_CMD_MAX, "set / OEMELX_Ethernet_License=%X", license); /* allocate DMA for command */ if (ocs_dma_alloc(hw->os, &dma_cmd, ocs_strlen(cmd)+1, 4096)) { ocs_log_err(hw->os, "malloc failed\n"); return OCS_HW_RTN_NO_MEMORY; } ocs_memset(dma_cmd.virt, 0, ocs_strlen(cmd)+1); ocs_memcpy(dma_cmd.virt, cmd, ocs_strlen(cmd)); /* allocate DMA for response */ if (ocs_dma_alloc(hw->os, &dma_resp, OCS_HW_DMTF_CLP_RSP_MAX, 4096)) { ocs_log_err(hw->os, "malloc failed\n"); ocs_dma_free(hw->os, &dma_cmd); return OCS_HW_RTN_NO_MEMORY; } /* send DMTF CLP command mbx and poll */ if (ocs_hw_exec_dmtf_clp_cmd(hw, &dma_cmd, &dma_resp, OCS_CMD_POLL, NULL, NULL)) { ocs_log_err(hw->os, "CLP cmd=\"%s\" failed\n", (char *)dma_cmd.virt); rc = OCS_HW_RTN_ERROR; } ocs_dma_free(hw->os, &dma_cmd); ocs_dma_free(hw->os, &dma_resp); return rc; } /** * @brief Callback argument structure for the DMTF CLP commands. */ typedef struct ocs_hw_clp_cb_arg_s { ocs_hw_dmtf_clp_cb_t cb; ocs_dma_t *dma_resp; int32_t status; uint32_t opts; void *arg; } ocs_hw_clp_cb_arg_t; /** * @brief Execute the DMTF CLP command. * * @param hw Hardware context. * @param dma_cmd DMA buffer containing the CLP command. * @param dma_resp DMA buffer that will contain the response (if successful). * @param opts Mailbox command options (such as OCS_CMD_NOWAIT and POLL). * @param cb Callback function. * @param arg Callback argument. * * @return Returns the number of bytes written to the response * buffer on success, or a negative value if failed. */ static ocs_hw_rtn_e ocs_hw_exec_dmtf_clp_cmd(ocs_hw_t *hw, ocs_dma_t *dma_cmd, ocs_dma_t *dma_resp, uint32_t opts, ocs_hw_dmtf_clp_cb_t cb, void *arg) { ocs_hw_rtn_e rc = OCS_HW_RTN_ERROR; ocs_hw_clp_cb_arg_t *cb_arg; uint8_t *mbxdata; /* allocate DMA for mailbox */ mbxdata = ocs_malloc(hw->os, SLI4_BMBX_SIZE, OCS_M_ZERO | OCS_M_NOWAIT); if (mbxdata == NULL) { ocs_log_err(hw->os, "failed to malloc mbox\n"); return OCS_HW_RTN_NO_MEMORY; } /* allocate memory for callback argument */ cb_arg = ocs_malloc(hw->os, sizeof(*cb_arg), OCS_M_NOWAIT); if (cb_arg == NULL) { ocs_log_err(hw->os, "failed to malloc cb_arg"); ocs_free(hw->os, mbxdata, SLI4_BMBX_SIZE); return OCS_HW_RTN_NO_MEMORY; } cb_arg->cb = cb; cb_arg->arg = arg; cb_arg->dma_resp = dma_resp; cb_arg->opts = opts; /* Send the HW command */ if (sli_cmd_dmtf_exec_clp_cmd(&hw->sli, mbxdata, SLI4_BMBX_SIZE, dma_cmd, dma_resp)) { rc = ocs_hw_command(hw, mbxdata, opts, ocs_hw_dmtf_clp_cb, cb_arg); if (opts == OCS_CMD_POLL && rc == OCS_HW_RTN_SUCCESS) { /* if we're polling, copy response and invoke callback to * parse result */ ocs_memcpy(mbxdata, hw->sli.bmbx.virt, SLI4_BMBX_SIZE); ocs_hw_dmtf_clp_cb(hw, 0, mbxdata, cb_arg); /* set rc to resulting or "parsed" status */ rc = cb_arg->status; } /* if failed, or polling, free memory here */ if (opts == OCS_CMD_POLL || rc != OCS_HW_RTN_SUCCESS) { if (rc != OCS_HW_RTN_SUCCESS) { ocs_log_test(hw->os, "ocs_hw_command failed\n"); } ocs_free(hw->os, mbxdata, SLI4_BMBX_SIZE); ocs_free(hw->os, cb_arg, sizeof(*cb_arg)); } } else { ocs_log_test(hw->os, "sli_cmd_dmtf_exec_clp_cmd failed\n"); rc = OCS_HW_RTN_ERROR; ocs_free(hw->os, mbxdata, SLI4_BMBX_SIZE); ocs_free(hw->os, cb_arg, sizeof(*cb_arg)); } return rc; } /** * @brief Called when the DMTF CLP command completes. * * @param hw Hardware context. * @param status Status field from the mbox completion. * @param mqe Mailbox response structure. * @param arg Pointer to a callback argument. * * @return None. * */ static void ocs_hw_dmtf_clp_cb(ocs_hw_t *hw, int32_t status, uint8_t *mqe, void *arg) { int32_t cb_status = 0; sli4_cmd_sli_config_t* mbox_rsp = (sli4_cmd_sli_config_t*) mqe; sli4_res_dmtf_exec_clp_cmd_t *clp_rsp = (sli4_res_dmtf_exec_clp_cmd_t *) mbox_rsp->payload.embed; ocs_hw_clp_cb_arg_t *cb_arg = arg; uint32_t result_len = 0; int32_t stat_len; char stat_str[8]; /* there are several status codes here, check them all and condense * into a single callback status */ if (status || mbox_rsp->hdr.status || clp_rsp->clp_status) { ocs_log_debug(hw->os, "status=x%x/x%x/x%x addl=x%x clp=x%x detail=x%x\n", status, mbox_rsp->hdr.status, clp_rsp->hdr.status, clp_rsp->hdr.additional_status, clp_rsp->clp_status, clp_rsp->clp_detailed_status); if (status) { cb_status = status; } else if (mbox_rsp->hdr.status) { cb_status = mbox_rsp->hdr.status; } else { cb_status = clp_rsp->clp_status; } } else { result_len = clp_rsp->resp_length; } if (cb_status) { goto ocs_hw_cb_dmtf_clp_done; } if ((result_len == 0) || (cb_arg->dma_resp->size < result_len)) { ocs_log_test(hw->os, "Invalid response length: resp_len=%zu result len=%d\n", cb_arg->dma_resp->size, result_len); cb_status = -1; goto ocs_hw_cb_dmtf_clp_done; } /* parse CLP response to get status */ stat_len = ocs_hw_clp_resp_get_value(hw, "status", stat_str, sizeof(stat_str), cb_arg->dma_resp->virt, result_len); if (stat_len <= 0) { ocs_log_test(hw->os, "failed to get status %d\n", stat_len); cb_status = -1; goto ocs_hw_cb_dmtf_clp_done; } if (ocs_strcmp(stat_str, "0") != 0) { ocs_log_test(hw->os, "CLP status indicates failure=%s\n", stat_str); cb_status = -1; goto ocs_hw_cb_dmtf_clp_done; } ocs_hw_cb_dmtf_clp_done: /* save status in cb_arg for callers with NULL cb's + polling */ cb_arg->status = cb_status; if (cb_arg->cb) { cb_arg->cb(hw, cb_status, result_len, cb_arg->arg); } /* if polling, caller will free memory */ if (cb_arg->opts != OCS_CMD_POLL) { ocs_free(hw->os, cb_arg, sizeof(*cb_arg)); ocs_free(hw->os, mqe, SLI4_BMBX_SIZE); } } /** * @brief Parse the CLP result and get the value corresponding to the given * keyword. * * @param hw Hardware context. * @param keyword CLP keyword for which the value is returned. * @param value Location to which the resulting value is copied. * @param value_len Length of the value parameter. * @param resp Pointer to the response buffer that is searched * for the keyword and value. * @param resp_len Length of response buffer passed in. * * @return Returns the number of bytes written to the value * buffer on success, or a negative vaue on failure. */ static int32_t ocs_hw_clp_resp_get_value(ocs_hw_t *hw, const char *keyword, char *value, uint32_t value_len, const char *resp, uint32_t resp_len) { char *start = NULL; char *end = NULL; /* look for specified keyword in string */ start = ocs_strstr(resp, keyword); if (start == NULL) { ocs_log_test(hw->os, "could not find keyword=%s in CLP response\n", keyword); return -1; } /* now look for '=' and go one past */ start = ocs_strchr(start, '='); if (start == NULL) { ocs_log_test(hw->os, "could not find \'=\' in CLP response for keyword=%s\n", keyword); return -1; } start++; /* \r\n terminates value */ end = ocs_strstr(start, "\r\n"); if (end == NULL) { ocs_log_test(hw->os, "could not find \\r\\n for keyword=%s in CLP response\n", keyword); return -1; } /* make sure given result array is big enough */ if ((end - start + 1) > value_len) { ocs_log_test(hw->os, "value len=%d not large enough for actual=%ld\n", value_len, (end-start)); return -1; } ocs_strncpy(value, start, (end - start)); value[end-start] = '\0'; return (end-start+1); } /** * @brief Cause chip to enter an unrecoverable error state. * * @par Description * Cause chip to enter an unrecoverable error state. This is * used when detecting unexpected FW behavior so that the FW can be * hwted from the driver as soon as the error is detected. * * @param hw Hardware context. * @param dump Generate dump as part of reset. * * @return Returns 0 on success, or a non-zero value on failure. * */ ocs_hw_rtn_e ocs_hw_raise_ue(ocs_hw_t *hw, uint8_t dump) { ocs_hw_rtn_e rc = OCS_HW_RTN_SUCCESS; if (sli_raise_ue(&hw->sli, dump) != 0) { rc = OCS_HW_RTN_ERROR; } else { if (hw->state != OCS_HW_STATE_UNINITIALIZED) { hw->state = OCS_HW_STATE_QUEUES_ALLOCATED; } } return rc; } /** * @brief Called when the OBJECT_GET command completes. * * @par Description * Get the number of bytes actually written out of the response, free the mailbox * that was malloc'd by ocs_hw_dump_get(), then call the callback * and pass the status and bytes read. * * @param hw Hardware context. * @param status Status field from the mbox completion. * @param mqe Mailbox response structure. * @param arg Pointer to a callback function that signals the caller that the command is done. * The callback function prototype is void cb(int32_t status, uint32_t bytes_read). * * @return Returns 0. */ static int32_t ocs_hw_cb_dump_get(ocs_hw_t *hw, int32_t status, uint8_t *mqe, void *arg) { sli4_cmd_sli_config_t* mbox_rsp = (sli4_cmd_sli_config_t*) mqe; sli4_res_common_read_object_t* rd_obj_rsp = (sli4_res_common_read_object_t*) mbox_rsp->payload.embed; ocs_hw_dump_get_cb_arg_t *cb_arg = arg; uint32_t bytes_read; uint8_t eof; bytes_read = rd_obj_rsp->actual_read_length; eof = rd_obj_rsp->eof; if (cb_arg) { if (cb_arg->cb) { if ((status == 0) && mbox_rsp->hdr.status) { status = mbox_rsp->hdr.status; } cb_arg->cb(status, bytes_read, eof, cb_arg->arg); } ocs_free(hw->os, cb_arg->mbox_cmd, SLI4_BMBX_SIZE); ocs_free(hw->os, cb_arg, sizeof(ocs_hw_dump_get_cb_arg_t)); } return 0; } /** * @brief Read a dump image to the host. * * @par Description * Creates a SLI_CONFIG mailbox command, fills in the correct values to read a * dump image chunk, then sends the command with the ocs_hw_command(). On completion, * the callback function ocs_hw_cb_dump_get() gets called to free the mailbox * and signal the caller that the read has completed. * * @param hw Hardware context. * @param dma DMA structure to transfer the dump chunk into. * @param size Size of the dump chunk. * @param offset Offset, in bytes, from the beginning of the dump. * @param cb Pointer to a callback function that is called when the command completes. * The callback function prototype is * void cb(int32_t status, uint32_t bytes_read, uint8_t eof, void *arg). * @param arg Pointer to be passed to the callback function. * * @return Returns 0 on success, or a non-zero value on failure. */ ocs_hw_rtn_e ocs_hw_dump_get(ocs_hw_t *hw, ocs_dma_t *dma, uint32_t size, uint32_t offset, ocs_hw_dump_get_cb_t cb, void *arg) { ocs_hw_rtn_e rc = OCS_HW_RTN_ERROR; uint8_t *mbxdata; ocs_hw_dump_get_cb_arg_t *cb_arg; uint32_t opts = (hw->state == OCS_HW_STATE_ACTIVE ? OCS_CMD_NOWAIT : OCS_CMD_POLL); if (SLI4_IF_TYPE_LANCER_FC_ETH != sli_get_if_type(&hw->sli)) { ocs_log_test(hw->os, "Function only supported for I/F type 2\n"); return OCS_HW_RTN_ERROR; } if (1 != sli_dump_is_present(&hw->sli)) { ocs_log_test(hw->os, "No dump is present\n"); return OCS_HW_RTN_ERROR; } if (1 == sli_reset_required(&hw->sli)) { ocs_log_test(hw->os, "device reset required\n"); return OCS_HW_RTN_ERROR; } mbxdata = ocs_malloc(hw->os, SLI4_BMBX_SIZE, OCS_M_ZERO | OCS_M_NOWAIT); if (mbxdata == NULL) { ocs_log_err(hw->os, "failed to malloc mbox\n"); return OCS_HW_RTN_NO_MEMORY; } cb_arg = ocs_malloc(hw->os, sizeof(ocs_hw_dump_get_cb_arg_t), OCS_M_NOWAIT); if (cb_arg == NULL) { ocs_log_err(hw->os, "failed to malloc cb_arg\n"); ocs_free(hw->os, mbxdata, SLI4_BMBX_SIZE); return OCS_HW_RTN_NO_MEMORY; } cb_arg->cb = cb; cb_arg->arg = arg; cb_arg->mbox_cmd = mbxdata; if (sli_cmd_common_read_object(&hw->sli, mbxdata, SLI4_BMBX_SIZE, size, offset, "/dbg/dump.bin", dma)) { rc = ocs_hw_command(hw, mbxdata, opts, ocs_hw_cb_dump_get, cb_arg); if (rc == 0 && opts == OCS_CMD_POLL) { ocs_memcpy(mbxdata, hw->sli.bmbx.virt, SLI4_BMBX_SIZE); rc = ocs_hw_cb_dump_get(hw, 0, mbxdata, cb_arg); } } if (rc != OCS_HW_RTN_SUCCESS) { ocs_log_test(hw->os, "COMMON_READ_OBJECT failed\n"); ocs_free(hw->os, mbxdata, SLI4_BMBX_SIZE); ocs_free(hw->os, cb_arg, sizeof(ocs_hw_dump_get_cb_arg_t)); } return rc; } /** * @brief Called when the OBJECT_DELETE command completes. * * @par Description * Free the mailbox that was malloc'd * by ocs_hw_dump_clear(), then call the callback and pass the status. * * @param hw Hardware context. * @param status Status field from the mbox completion. * @param mqe Mailbox response structure. * @param arg Pointer to a callback function that signals the caller that the command is done. * The callback function prototype is void cb(int32_t status, void *arg). * * @return Returns 0. */ static int32_t ocs_hw_cb_dump_clear(ocs_hw_t *hw, int32_t status, uint8_t *mqe, void *arg) { ocs_hw_dump_clear_cb_arg_t *cb_arg = arg; sli4_cmd_sli_config_t* mbox_rsp = (sli4_cmd_sli_config_t*) mqe; if (cb_arg) { if (cb_arg->cb) { if ((status == 0) && mbox_rsp->hdr.status) { status = mbox_rsp->hdr.status; } cb_arg->cb(status, cb_arg->arg); } ocs_free(hw->os, cb_arg->mbox_cmd, SLI4_BMBX_SIZE); ocs_free(hw->os, cb_arg, sizeof(ocs_hw_dump_clear_cb_arg_t)); } return 0; } /** * @brief Clear a dump image from the device. * * @par Description * Creates a SLI_CONFIG mailbox command, fills it with the correct values to clear * the dump, then sends the command with ocs_hw_command(). On completion, * the callback function ocs_hw_cb_dump_clear() gets called to free the mailbox * and to signal the caller that the write has completed. * * @param hw Hardware context. * @param cb Pointer to a callback function that is called when the command completes. * The callback function prototype is * void cb(int32_t status, uint32_t bytes_written, void *arg). * @param arg Pointer to be passed to the callback function. * * @return Returns 0 on success, or a non-zero value on failure. */ ocs_hw_rtn_e ocs_hw_dump_clear(ocs_hw_t *hw, ocs_hw_dump_clear_cb_t cb, void *arg) { ocs_hw_rtn_e rc = OCS_HW_RTN_ERROR; uint8_t *mbxdata; ocs_hw_dump_clear_cb_arg_t *cb_arg; uint32_t opts = (hw->state == OCS_HW_STATE_ACTIVE ? OCS_CMD_NOWAIT : OCS_CMD_POLL); if (SLI4_IF_TYPE_LANCER_FC_ETH != sli_get_if_type(&hw->sli)) { ocs_log_test(hw->os, "Function only supported for I/F type 2\n"); return OCS_HW_RTN_ERROR; } mbxdata = ocs_malloc(hw->os, SLI4_BMBX_SIZE, OCS_M_ZERO | OCS_M_NOWAIT); if (mbxdata == NULL) { ocs_log_err(hw->os, "failed to malloc mbox\n"); return OCS_HW_RTN_NO_MEMORY; } cb_arg = ocs_malloc(hw->os, sizeof(ocs_hw_dump_clear_cb_arg_t), OCS_M_NOWAIT); if (cb_arg == NULL) { ocs_log_err(hw->os, "failed to malloc cb_arg\n"); ocs_free(hw->os, mbxdata, SLI4_BMBX_SIZE); return OCS_HW_RTN_NO_MEMORY; } cb_arg->cb = cb; cb_arg->arg = arg; cb_arg->mbox_cmd = mbxdata; if (sli_cmd_common_delete_object(&hw->sli, mbxdata, SLI4_BMBX_SIZE, "/dbg/dump.bin")) { rc = ocs_hw_command(hw, mbxdata, opts, ocs_hw_cb_dump_clear, cb_arg); if (rc == 0 && opts == OCS_CMD_POLL) { ocs_memcpy(mbxdata, hw->sli.bmbx.virt, SLI4_BMBX_SIZE); rc = ocs_hw_cb_dump_clear(hw, 0, mbxdata, cb_arg); } } if (rc != OCS_HW_RTN_SUCCESS) { ocs_log_test(hw->os, "COMMON_DELETE_OBJECT failed\n"); ocs_free(hw->os, mbxdata, SLI4_BMBX_SIZE); ocs_free(hw->os, cb_arg, sizeof(ocs_hw_dump_clear_cb_arg_t)); } return rc; } typedef struct ocs_hw_get_port_protocol_cb_arg_s { ocs_get_port_protocol_cb_t cb; void *arg; uint32_t pci_func; ocs_dma_t payload; } ocs_hw_get_port_protocol_cb_arg_t; /** * @brief Called for the completion of get_port_profile for a * user request. * * @param hw Hardware context. * @param status The status from the MQE. * @param mqe Pointer to mailbox command buffer. * @param arg Pointer to a callback argument. * * @return Returns 0 on success, or a non-zero value on failure. */ static int32_t ocs_hw_get_port_protocol_cb(ocs_hw_t *hw, int32_t status, uint8_t *mqe, void *arg) { ocs_hw_get_port_protocol_cb_arg_t *cb_arg = arg; ocs_dma_t *payload = &(cb_arg->payload); sli4_res_common_get_profile_config_t* response = (sli4_res_common_get_profile_config_t*) payload->virt; ocs_hw_port_protocol_e port_protocol; int num_descriptors; sli4_resource_descriptor_v1_t *desc_p; sli4_pcie_resource_descriptor_v1_t *pcie_desc_p; int i; port_protocol = OCS_HW_PORT_PROTOCOL_OTHER; num_descriptors = response->desc_count; desc_p = (sli4_resource_descriptor_v1_t *)response->desc; for (i=0; idescriptor_type == SLI4_RESOURCE_DESCRIPTOR_TYPE_PCIE) { pcie_desc_p = (sli4_pcie_resource_descriptor_v1_t*) desc_p; if (pcie_desc_p->pf_number == cb_arg->pci_func) { switch(pcie_desc_p->pf_type) { case 0x02: port_protocol = OCS_HW_PORT_PROTOCOL_ISCSI; break; case 0x04: port_protocol = OCS_HW_PORT_PROTOCOL_FCOE; break; case 0x10: port_protocol = OCS_HW_PORT_PROTOCOL_FC; break; default: port_protocol = OCS_HW_PORT_PROTOCOL_OTHER; break; } } } desc_p = (sli4_resource_descriptor_v1_t *) ((uint8_t *)desc_p + desc_p->descriptor_length); } if (cb_arg->cb) { cb_arg->cb(status, port_protocol, cb_arg->arg); } ocs_dma_free(hw->os, &cb_arg->payload); ocs_free(hw->os, cb_arg, sizeof(ocs_hw_get_port_protocol_cb_arg_t)); ocs_free(hw->os, mqe, SLI4_BMBX_SIZE); return 0; } /** * @ingroup io * @brief Get the current port protocol. * @par Description * Issues a SLI4 COMMON_GET_PROFILE_CONFIG mailbox. When the * command completes the provided mgmt callback function is * called. * * @param hw Hardware context. * @param pci_func PCI function to query for current protocol. * @param cb Callback function to be called when the command completes. * @param ul_arg An argument that is passed to the callback function. * * @return * - OCS_HW_RTN_SUCCESS on success. * - OCS_HW_RTN_NO_MEMORY if a malloc fails. * - OCS_HW_RTN_NO_RESOURCES if unable to get a command * context. * - OCS_HW_RTN_ERROR on any other error. */ ocs_hw_rtn_e ocs_hw_get_port_protocol(ocs_hw_t *hw, uint32_t pci_func, ocs_get_port_protocol_cb_t cb, void* ul_arg) { uint8_t *mbxdata; ocs_hw_get_port_protocol_cb_arg_t *cb_arg; ocs_hw_rtn_e rc = OCS_HW_RTN_SUCCESS; /* Only supported on Skyhawk */ if (sli_get_if_type(&hw->sli) != SLI4_IF_TYPE_BE3_SKH_PF) { return OCS_HW_RTN_ERROR; } /* mbxdata holds the header of the command */ mbxdata = ocs_malloc(hw->os, SLI4_BMBX_SIZE, OCS_M_ZERO | OCS_M_NOWAIT); if (mbxdata == NULL) { ocs_log_err(hw->os, "failed to malloc mbox\n"); return OCS_HW_RTN_NO_MEMORY; } /* cb_arg holds the data that will be passed to the callback on completion */ cb_arg = ocs_malloc(hw->os, sizeof(ocs_hw_get_port_protocol_cb_arg_t), OCS_M_NOWAIT); if (cb_arg == NULL) { ocs_log_err(hw->os, "failed to malloc cb_arg\n"); ocs_free(hw->os, mbxdata, SLI4_BMBX_SIZE); return OCS_HW_RTN_NO_MEMORY; } cb_arg->cb = cb; cb_arg->arg = ul_arg; cb_arg->pci_func = pci_func; /* dma_mem holds the non-embedded portion */ if (ocs_dma_alloc(hw->os, &cb_arg->payload, 4096, 4)) { ocs_log_err(hw->os, "Failed to allocate DMA buffer\n"); ocs_free(hw->os, mbxdata, SLI4_BMBX_SIZE); ocs_free(hw->os, cb_arg, sizeof(ocs_hw_get_port_protocol_cb_arg_t)); return OCS_HW_RTN_NO_MEMORY; } if (sli_cmd_common_get_profile_config(&hw->sli, mbxdata, SLI4_BMBX_SIZE, &cb_arg->payload)) { rc = ocs_hw_command(hw, mbxdata, OCS_CMD_NOWAIT, ocs_hw_get_port_protocol_cb, cb_arg); } if (rc != OCS_HW_RTN_SUCCESS) { ocs_log_test(hw->os, "GET_PROFILE_CONFIG failed\n"); ocs_free(hw->os, mbxdata, SLI4_BMBX_SIZE); ocs_free(hw->os, cb_arg, sizeof(ocs_hw_fw_write_cb_arg_t)); ocs_dma_free(hw->os, &cb_arg->payload); } return rc; } typedef struct ocs_hw_set_port_protocol_cb_arg_s { ocs_set_port_protocol_cb_t cb; void *arg; ocs_dma_t payload; uint32_t new_protocol; uint32_t pci_func; } ocs_hw_set_port_protocol_cb_arg_t; /** * @brief Called for the completion of set_port_profile for a * user request. * * @par Description * This is the second of two callbacks for the set_port_protocol * function. The set operation is a read-modify-write. This * callback is called when the write (SET_PROFILE_CONFIG) * completes. * * @param hw Hardware context. * @param status The status from the MQE. * @param mqe Pointer to mailbox command buffer. * @param arg Pointer to a callback argument. * * @return 0 on success, non-zero otherwise */ static int32_t ocs_hw_set_port_protocol_cb2(ocs_hw_t *hw, int32_t status, uint8_t *mqe, void *arg) { ocs_hw_set_port_protocol_cb_arg_t *cb_arg = arg; if (cb_arg->cb) { cb_arg->cb( status, cb_arg->arg); } ocs_dma_free(hw->os, &(cb_arg->payload)); ocs_free(hw->os, mqe, SLI4_BMBX_SIZE); ocs_free(hw->os, arg, sizeof(ocs_hw_set_port_protocol_cb_arg_t)); return 0; } /** * @brief Called for the completion of set_port_profile for a * user request. * * @par Description * This is the first of two callbacks for the set_port_protocol * function. The set operation is a read-modify-write. This * callback is called when the read completes * (GET_PROFILE_CONFG). It will updated the resource * descriptors, then queue the write (SET_PROFILE_CONFIG). * * On entry there are three memory areas that were allocated by * ocs_hw_set_port_protocol. If a failure is detected in this * function those need to be freed. If this function succeeds * it allocates three more areas. * * @param hw Hardware context. * @param status The status from the MQE * @param mqe Pointer to mailbox command buffer. * @param arg Pointer to a callback argument. * * @return Returns 0 on success, or a non-zero value otherwise. */ static int32_t ocs_hw_set_port_protocol_cb1(ocs_hw_t *hw, int32_t status, uint8_t *mqe, void *arg) { ocs_hw_set_port_protocol_cb_arg_t *cb_arg = arg; ocs_dma_t *payload = &(cb_arg->payload); sli4_res_common_get_profile_config_t* response = (sli4_res_common_get_profile_config_t*) payload->virt; int num_descriptors; sli4_resource_descriptor_v1_t *desc_p; sli4_pcie_resource_descriptor_v1_t *pcie_desc_p; int i; ocs_hw_set_port_protocol_cb_arg_t *new_cb_arg; ocs_hw_port_protocol_e new_protocol; uint8_t *dst; sli4_isap_resouce_descriptor_v1_t *isap_desc_p; uint8_t *mbxdata; int pci_descriptor_count; ocs_hw_rtn_e rc = OCS_HW_RTN_SUCCESS; int num_fcoe_ports = 0; int num_iscsi_ports = 0; new_protocol = (ocs_hw_port_protocol_e)cb_arg->new_protocol; num_descriptors = response->desc_count; /* Count PCI descriptors */ pci_descriptor_count = 0; desc_p = (sli4_resource_descriptor_v1_t *)response->desc; for (i=0; idescriptor_type == SLI4_RESOURCE_DESCRIPTOR_TYPE_PCIE) { ++pci_descriptor_count; } desc_p = (sli4_resource_descriptor_v1_t *) ((uint8_t *)desc_p + desc_p->descriptor_length); } /* mbxdata holds the header of the command */ mbxdata = ocs_malloc(hw->os, SLI4_BMBX_SIZE, OCS_M_ZERO | OCS_M_NOWAIT); if (mbxdata == NULL) { ocs_log_err(hw->os, "failed to malloc mbox\n"); return OCS_HW_RTN_NO_MEMORY; } /* cb_arg holds the data that will be passed to the callback on completion */ new_cb_arg = ocs_malloc(hw->os, sizeof(ocs_hw_set_port_protocol_cb_arg_t), OCS_M_NOWAIT); if (new_cb_arg == NULL) { ocs_log_err(hw->os, "failed to malloc cb_arg\n"); ocs_free(hw->os, mbxdata, SLI4_BMBX_SIZE); return OCS_HW_RTN_NO_MEMORY; } new_cb_arg->cb = cb_arg->cb; new_cb_arg->arg = cb_arg->arg; /* Allocate memory for the descriptors we're going to send. This is * one for each PCI descriptor plus one ISAP descriptor. */ if (ocs_dma_alloc(hw->os, &new_cb_arg->payload, sizeof(sli4_req_common_set_profile_config_t) + (pci_descriptor_count * sizeof(sli4_pcie_resource_descriptor_v1_t)) + sizeof(sli4_isap_resouce_descriptor_v1_t), 4)) { ocs_log_err(hw->os, "Failed to allocate DMA buffer\n"); ocs_free(hw->os, mbxdata, SLI4_BMBX_SIZE); ocs_free(hw->os, new_cb_arg, sizeof(ocs_hw_set_port_protocol_cb_arg_t)); return OCS_HW_RTN_NO_MEMORY; } sli_cmd_common_set_profile_config(&hw->sli, mbxdata, SLI4_BMBX_SIZE, &new_cb_arg->payload, 0, pci_descriptor_count+1, 1); /* Point dst to the first descriptor entry in the SET_PROFILE_CONFIG command */ dst = (uint8_t *)&(((sli4_req_common_set_profile_config_t *) new_cb_arg->payload.virt)->desc); /* Loop over all descriptors. If the descriptor is a PCIe descriptor, copy it * to the SET_PROFILE_CONFIG command to be written back. If it's the descriptor * that we're trying to change also set its pf_type. */ desc_p = (sli4_resource_descriptor_v1_t *)response->desc; for (i=0; idescriptor_type == SLI4_RESOURCE_DESCRIPTOR_TYPE_PCIE) { pcie_desc_p = (sli4_pcie_resource_descriptor_v1_t*) desc_p; if (pcie_desc_p->pf_number == cb_arg->pci_func) { /* This is the PCIe descriptor for this OCS instance. * Update it with the new pf_type */ switch(new_protocol) { case OCS_HW_PORT_PROTOCOL_FC: pcie_desc_p->pf_type = SLI4_PROTOCOL_FC; break; case OCS_HW_PORT_PROTOCOL_FCOE: pcie_desc_p->pf_type = SLI4_PROTOCOL_FCOE; break; case OCS_HW_PORT_PROTOCOL_ISCSI: pcie_desc_p->pf_type = SLI4_PROTOCOL_ISCSI; break; default: pcie_desc_p->pf_type = SLI4_PROTOCOL_DEFAULT; break; } } if (pcie_desc_p->pf_type == SLI4_PROTOCOL_FCOE) { ++num_fcoe_ports; } if (pcie_desc_p->pf_type == SLI4_PROTOCOL_ISCSI) { ++num_iscsi_ports; } ocs_memcpy(dst, pcie_desc_p, sizeof(sli4_pcie_resource_descriptor_v1_t)); dst += sizeof(sli4_pcie_resource_descriptor_v1_t); } desc_p = (sli4_resource_descriptor_v1_t *) ((uint8_t *)desc_p + desc_p->descriptor_length); } /* Create an ISAP resource descriptor */ isap_desc_p = (sli4_isap_resouce_descriptor_v1_t*)dst; isap_desc_p->descriptor_type = SLI4_RESOURCE_DESCRIPTOR_TYPE_ISAP; isap_desc_p->descriptor_length = sizeof(sli4_isap_resouce_descriptor_v1_t); if (num_iscsi_ports > 0) { isap_desc_p->iscsi_tgt = 1; isap_desc_p->iscsi_ini = 1; isap_desc_p->iscsi_dif = 1; } if (num_fcoe_ports > 0) { isap_desc_p->fcoe_tgt = 1; isap_desc_p->fcoe_ini = 1; isap_desc_p->fcoe_dif = 1; } /* At this point we're done with the memory allocated by ocs_port_set_protocol */ ocs_dma_free(hw->os, &cb_arg->payload); ocs_free(hw->os, mqe, SLI4_BMBX_SIZE); ocs_free(hw->os, cb_arg, sizeof(ocs_hw_set_port_protocol_cb_arg_t)); /* Send a SET_PROFILE_CONFIG mailbox command with the new descriptors */ rc = ocs_hw_command(hw, mbxdata, OCS_CMD_NOWAIT, ocs_hw_set_port_protocol_cb2, new_cb_arg); if (rc) { ocs_log_err(hw->os, "Error posting COMMON_SET_PROFILE_CONFIG\n"); /* Call the upper level callback to report a failure */ if (new_cb_arg->cb) { new_cb_arg->cb( rc, new_cb_arg->arg); } /* Free the memory allocated by this function */ ocs_dma_free(hw->os, &new_cb_arg->payload); ocs_free(hw->os, mbxdata, SLI4_BMBX_SIZE); ocs_free(hw->os, new_cb_arg, sizeof(ocs_hw_set_port_protocol_cb_arg_t)); } return rc; } /** * @ingroup io * @brief Set the port protocol. * @par Description * Setting the port protocol is a read-modify-write operation. * This function submits a GET_PROFILE_CONFIG command to read * the current settings. The callback function will modify the * settings and issue the write. * * On successful completion this function will have allocated * two regular memory areas and one dma area which will need to * get freed later in the callbacks. * * @param hw Hardware context. * @param new_protocol New protocol to use. * @param pci_func PCI function to configure. * @param cb Callback function to be called when the command completes. * @param ul_arg An argument that is passed to the callback function. * * @return * - OCS_HW_RTN_SUCCESS on success. * - OCS_HW_RTN_NO_MEMORY if a malloc fails. * - OCS_HW_RTN_NO_RESOURCES if unable to get a command * context. * - OCS_HW_RTN_ERROR on any other error. */ ocs_hw_rtn_e ocs_hw_set_port_protocol(ocs_hw_t *hw, ocs_hw_port_protocol_e new_protocol, uint32_t pci_func, ocs_set_port_protocol_cb_t cb, void *ul_arg) { uint8_t *mbxdata; ocs_hw_set_port_protocol_cb_arg_t *cb_arg; ocs_hw_rtn_e rc = OCS_HW_RTN_ERROR; /* Only supported on Skyhawk */ if (sli_get_if_type(&hw->sli) != SLI4_IF_TYPE_BE3_SKH_PF) { return OCS_HW_RTN_ERROR; } /* mbxdata holds the header of the command */ mbxdata = ocs_malloc(hw->os, SLI4_BMBX_SIZE, OCS_M_ZERO | OCS_M_NOWAIT); if (mbxdata == NULL) { ocs_log_err(hw->os, "failed to malloc mbox\n"); return OCS_HW_RTN_NO_MEMORY; } /* cb_arg holds the data that will be passed to the callback on completion */ cb_arg = ocs_malloc(hw->os, sizeof(ocs_hw_set_port_protocol_cb_arg_t), OCS_M_NOWAIT); if (cb_arg == NULL) { ocs_log_err(hw->os, "failed to malloc cb_arg\n"); ocs_free(hw->os, mbxdata, SLI4_BMBX_SIZE); return OCS_HW_RTN_NO_MEMORY; } cb_arg->cb = cb; cb_arg->arg = ul_arg; cb_arg->new_protocol = new_protocol; cb_arg->pci_func = pci_func; /* dma_mem holds the non-embedded portion */ if (ocs_dma_alloc(hw->os, &cb_arg->payload, 4096, 4)) { ocs_log_err(hw->os, "Failed to allocate DMA buffer\n"); ocs_free(hw->os, mbxdata, SLI4_BMBX_SIZE); ocs_free(hw->os, cb_arg, sizeof(ocs_hw_get_port_protocol_cb_arg_t)); return OCS_HW_RTN_NO_MEMORY; } if (sli_cmd_common_get_profile_config(&hw->sli, mbxdata, SLI4_BMBX_SIZE, &cb_arg->payload)) { rc = ocs_hw_command(hw, mbxdata, OCS_CMD_NOWAIT, ocs_hw_set_port_protocol_cb1, cb_arg); } if (rc != OCS_HW_RTN_SUCCESS) { ocs_log_test(hw->os, "GET_PROFILE_CONFIG failed\n"); ocs_free(hw->os, mbxdata, SLI4_BMBX_SIZE); ocs_free(hw->os, cb_arg, sizeof(ocs_hw_fw_write_cb_arg_t)); ocs_dma_free(hw->os, &cb_arg->payload); } return rc; } typedef struct ocs_hw_get_profile_list_cb_arg_s { ocs_get_profile_list_cb_t cb; void *arg; ocs_dma_t payload; } ocs_hw_get_profile_list_cb_arg_t; /** * @brief Called for the completion of get_profile_list for a * user request. * @par Description * This function is called when the COMMMON_GET_PROFILE_LIST * mailbox completes. The response will be in * ctx->non_embedded_mem.virt. This function parses the * response and creates a ocs_hw_profile_list, then calls the * mgmt_cb callback function and passes that list to it. * * @param hw Hardware context. * @param status The status from the MQE * @param mqe Pointer to mailbox command buffer. * @param arg Pointer to a callback argument. * * @return Returns 0 on success, or a non-zero value on failure. */ static int32_t ocs_hw_get_profile_list_cb(ocs_hw_t *hw, int32_t status, uint8_t *mqe, void *arg) { ocs_hw_profile_list_t *list; ocs_hw_get_profile_list_cb_arg_t *cb_arg = arg; ocs_dma_t *payload = &(cb_arg->payload); sli4_res_common_get_profile_list_t *response = (sli4_res_common_get_profile_list_t *)payload->virt; int i; int num_descriptors; list = ocs_malloc(hw->os, sizeof(ocs_hw_profile_list_t), OCS_M_ZERO); if (list == NULL) { ocs_log_err(hw->os, "failed to malloc list\n"); return OCS_HW_RTN_NO_MEMORY; } list->num_descriptors = response->profile_descriptor_count; num_descriptors = list->num_descriptors; if (num_descriptors > OCS_HW_MAX_PROFILES) { num_descriptors = OCS_HW_MAX_PROFILES; } for (i=0; idescriptors[i].profile_id = response->profile_descriptor[i].profile_id; list->descriptors[i].profile_index = response->profile_descriptor[i].profile_index; ocs_strcpy(list->descriptors[i].profile_description, (char *)response->profile_descriptor[i].profile_description); } if (cb_arg->cb) { cb_arg->cb(status, list, cb_arg->arg); } else { ocs_free(hw->os, list, sizeof(*list)); } ocs_free(hw->os, mqe, SLI4_BMBX_SIZE); ocs_dma_free(hw->os, &cb_arg->payload); ocs_free(hw->os, cb_arg, sizeof(ocs_hw_get_profile_list_cb_arg_t)); return 0; } /** * @ingroup io * @brief Get a list of available profiles. * @par Description * Issues a SLI-4 COMMON_GET_PROFILE_LIST mailbox. When the * command completes the provided mgmt callback function is * called. * * @param hw Hardware context. * @param cb Callback function to be called when the * command completes. * @param ul_arg An argument that is passed to the callback * function. * * @return * - OCS_HW_RTN_SUCCESS on success. * - OCS_HW_RTN_NO_MEMORY if a malloc fails. * - OCS_HW_RTN_NO_RESOURCES if unable to get a command * context. * - OCS_HW_RTN_ERROR on any other error. */ ocs_hw_rtn_e ocs_hw_get_profile_list(ocs_hw_t *hw, ocs_get_profile_list_cb_t cb, void* ul_arg) { uint8_t *mbxdata; ocs_hw_get_profile_list_cb_arg_t *cb_arg; ocs_hw_rtn_e rc = OCS_HW_RTN_SUCCESS; /* Only supported on Skyhawk */ if (sli_get_if_type(&hw->sli) != SLI4_IF_TYPE_BE3_SKH_PF) { return OCS_HW_RTN_ERROR; } /* mbxdata holds the header of the command */ mbxdata = ocs_malloc(hw->os, SLI4_BMBX_SIZE, OCS_M_ZERO | OCS_M_NOWAIT); if (mbxdata == NULL) { ocs_log_err(hw->os, "failed to malloc mbox\n"); return OCS_HW_RTN_NO_MEMORY; } /* cb_arg holds the data that will be passed to the callback on completion */ cb_arg = ocs_malloc(hw->os, sizeof(ocs_hw_get_profile_list_cb_arg_t), OCS_M_NOWAIT); if (cb_arg == NULL) { ocs_log_err(hw->os, "failed to malloc cb_arg\n"); ocs_free(hw->os, mbxdata, SLI4_BMBX_SIZE); return OCS_HW_RTN_NO_MEMORY; } cb_arg->cb = cb; cb_arg->arg = ul_arg; /* dma_mem holds the non-embedded portion */ if (ocs_dma_alloc(hw->os, &cb_arg->payload, sizeof(sli4_res_common_get_profile_list_t), 4)) { ocs_log_err(hw->os, "Failed to allocate DMA buffer\n"); ocs_free(hw->os, mbxdata, SLI4_BMBX_SIZE); ocs_free(hw->os, cb_arg, sizeof(ocs_hw_get_profile_list_cb_arg_t)); return OCS_HW_RTN_NO_MEMORY; } if (sli_cmd_common_get_profile_list(&hw->sli, mbxdata, SLI4_BMBX_SIZE, 0, &cb_arg->payload)) { rc = ocs_hw_command(hw, mbxdata, OCS_CMD_NOWAIT, ocs_hw_get_profile_list_cb, cb_arg); } if (rc != OCS_HW_RTN_SUCCESS) { ocs_log_test(hw->os, "GET_PROFILE_LIST failed\n"); ocs_free(hw->os, mbxdata, SLI4_BMBX_SIZE); ocs_dma_free(hw->os, &cb_arg->payload); ocs_free(hw->os, cb_arg, sizeof(ocs_hw_get_profile_list_cb_arg_t)); } return rc; } typedef struct ocs_hw_get_active_profile_cb_arg_s { ocs_get_active_profile_cb_t cb; void *arg; } ocs_hw_get_active_profile_cb_arg_t; /** * @brief Called for the completion of get_active_profile for a * user request. * * @param hw Hardware context. * @param status The status from the MQE * @param mqe Pointer to mailbox command buffer. * @param arg Pointer to a callback argument. * * @return Returns 0 on success, or a non-zero value on failure. */ static int32_t ocs_hw_get_active_profile_cb(ocs_hw_t *hw, int32_t status, uint8_t *mqe, void *arg) { ocs_hw_get_active_profile_cb_arg_t *cb_arg = arg; sli4_cmd_sli_config_t* mbox_rsp = (sli4_cmd_sli_config_t*) mqe; sli4_res_common_get_active_profile_t* response = (sli4_res_common_get_active_profile_t*) mbox_rsp->payload.embed; uint32_t active_profile; active_profile = response->active_profile_id; if (cb_arg->cb) { cb_arg->cb(status, active_profile, cb_arg->arg); } ocs_free(hw->os, mqe, SLI4_BMBX_SIZE); ocs_free(hw->os, cb_arg, sizeof(ocs_hw_get_active_profile_cb_arg_t)); return 0; } /** * @ingroup io * @brief Get the currently active profile. * @par Description * Issues a SLI-4 COMMON_GET_ACTIVE_PROFILE mailbox. When the * command completes the provided mgmt callback function is * called. * * @param hw Hardware context. * @param cb Callback function to be called when the * command completes. * @param ul_arg An argument that is passed to the callback * function. * * @return * - OCS_HW_RTN_SUCCESS on success. * - OCS_HW_RTN_NO_MEMORY if a malloc fails. * - OCS_HW_RTN_NO_RESOURCES if unable to get a command * context. * - OCS_HW_RTN_ERROR on any other error. */ int32_t ocs_hw_get_active_profile(ocs_hw_t *hw, ocs_get_active_profile_cb_t cb, void* ul_arg) { uint8_t *mbxdata; ocs_hw_get_active_profile_cb_arg_t *cb_arg; ocs_hw_rtn_e rc = OCS_HW_RTN_SUCCESS; /* Only supported on Skyhawk */ if (sli_get_if_type(&hw->sli) != SLI4_IF_TYPE_BE3_SKH_PF) { return OCS_HW_RTN_ERROR; } /* mbxdata holds the header of the command */ mbxdata = ocs_malloc(hw->os, SLI4_BMBX_SIZE, OCS_M_ZERO | OCS_M_NOWAIT); if (mbxdata == NULL) { ocs_log_err(hw->os, "failed to malloc mbox\n"); return OCS_HW_RTN_NO_MEMORY; } /* cb_arg holds the data that will be passed to the callback on completion */ cb_arg = ocs_malloc(hw->os, sizeof(ocs_hw_get_active_profile_cb_arg_t), OCS_M_NOWAIT); if (cb_arg == NULL) { ocs_log_err(hw->os, "failed to malloc cb_arg\n"); ocs_free(hw->os, mbxdata, SLI4_BMBX_SIZE); return OCS_HW_RTN_NO_MEMORY; } cb_arg->cb = cb; cb_arg->arg = ul_arg; if (sli_cmd_common_get_active_profile(&hw->sli, mbxdata, SLI4_BMBX_SIZE)) { rc = ocs_hw_command(hw, mbxdata, OCS_CMD_NOWAIT, ocs_hw_get_active_profile_cb, cb_arg); } if (rc != OCS_HW_RTN_SUCCESS) { ocs_log_test(hw->os, "GET_ACTIVE_PROFILE failed\n"); ocs_free(hw->os, mbxdata, SLI4_BMBX_SIZE); ocs_free(hw->os, cb_arg, sizeof(ocs_hw_get_active_profile_cb_arg_t)); } return rc; } typedef struct ocs_hw_get_nvparms_cb_arg_s { ocs_get_nvparms_cb_t cb; void *arg; } ocs_hw_get_nvparms_cb_arg_t; /** * @brief Called for the completion of get_nvparms for a * user request. * * @param hw Hardware context. * @param status The status from the MQE. * @param mqe Pointer to mailbox command buffer. * @param arg Pointer to a callback argument. * * @return 0 on success, non-zero otherwise */ static int32_t ocs_hw_get_nvparms_cb(ocs_hw_t *hw, int32_t status, uint8_t *mqe, void *arg) { ocs_hw_get_nvparms_cb_arg_t *cb_arg = arg; sli4_cmd_read_nvparms_t* mbox_rsp = (sli4_cmd_read_nvparms_t*) mqe; if (cb_arg->cb) { cb_arg->cb(status, mbox_rsp->wwpn, mbox_rsp->wwnn, mbox_rsp->hard_alpa, mbox_rsp->preferred_d_id, cb_arg->arg); } ocs_free(hw->os, mqe, SLI4_BMBX_SIZE); ocs_free(hw->os, cb_arg, sizeof(ocs_hw_get_nvparms_cb_arg_t)); return 0; } /** * @ingroup io * @brief Read non-volatile parms. * @par Description * Issues a SLI-4 READ_NVPARMS mailbox. When the * command completes the provided mgmt callback function is * called. * * @param hw Hardware context. * @param cb Callback function to be called when the * command completes. * @param ul_arg An argument that is passed to the callback * function. * * @return * - OCS_HW_RTN_SUCCESS on success. * - OCS_HW_RTN_NO_MEMORY if a malloc fails. * - OCS_HW_RTN_NO_RESOURCES if unable to get a command * context. * - OCS_HW_RTN_ERROR on any other error. */ int32_t ocs_hw_get_nvparms(ocs_hw_t *hw, ocs_get_nvparms_cb_t cb, void* ul_arg) { uint8_t *mbxdata; ocs_hw_get_nvparms_cb_arg_t *cb_arg; ocs_hw_rtn_e rc = OCS_HW_RTN_SUCCESS; /* mbxdata holds the header of the command */ mbxdata = ocs_malloc(hw->os, SLI4_BMBX_SIZE, OCS_M_ZERO | OCS_M_NOWAIT); if (mbxdata == NULL) { ocs_log_err(hw->os, "failed to malloc mbox\n"); return OCS_HW_RTN_NO_MEMORY; } /* cb_arg holds the data that will be passed to the callback on completion */ cb_arg = ocs_malloc(hw->os, sizeof(ocs_hw_get_nvparms_cb_arg_t), OCS_M_NOWAIT); if (cb_arg == NULL) { ocs_log_err(hw->os, "failed to malloc cb_arg\n"); ocs_free(hw->os, mbxdata, SLI4_BMBX_SIZE); return OCS_HW_RTN_NO_MEMORY; } cb_arg->cb = cb; cb_arg->arg = ul_arg; if (sli_cmd_read_nvparms(&hw->sli, mbxdata, SLI4_BMBX_SIZE)) { rc = ocs_hw_command(hw, mbxdata, OCS_CMD_NOWAIT, ocs_hw_get_nvparms_cb, cb_arg); } if (rc != OCS_HW_RTN_SUCCESS) { ocs_log_test(hw->os, "READ_NVPARMS failed\n"); ocs_free(hw->os, mbxdata, SLI4_BMBX_SIZE); ocs_free(hw->os, cb_arg, sizeof(ocs_hw_get_nvparms_cb_arg_t)); } return rc; } typedef struct ocs_hw_set_nvparms_cb_arg_s { ocs_set_nvparms_cb_t cb; void *arg; } ocs_hw_set_nvparms_cb_arg_t; /** * @brief Called for the completion of set_nvparms for a * user request. * * @param hw Hardware context. * @param status The status from the MQE. * @param mqe Pointer to mailbox command buffer. * @param arg Pointer to a callback argument. * * @return Returns 0 on success, or a non-zero value on failure. */ static int32_t ocs_hw_set_nvparms_cb(ocs_hw_t *hw, int32_t status, uint8_t *mqe, void *arg) { ocs_hw_set_nvparms_cb_arg_t *cb_arg = arg; if (cb_arg->cb) { cb_arg->cb(status, cb_arg->arg); } ocs_free(hw->os, mqe, SLI4_BMBX_SIZE); ocs_free(hw->os, cb_arg, sizeof(ocs_hw_set_nvparms_cb_arg_t)); return 0; } /** * @ingroup io * @brief Write non-volatile parms. * @par Description * Issues a SLI-4 WRITE_NVPARMS mailbox. When the * command completes the provided mgmt callback function is * called. * * @param hw Hardware context. * @param cb Callback function to be called when the * command completes. * @param wwpn Port's WWPN in big-endian order, or NULL to use default. * @param wwnn Port's WWNN in big-endian order, or NULL to use default. * @param hard_alpa A hard AL_PA address setting used during loop * initialization. If no hard AL_PA is required, set to 0. * @param preferred_d_id A preferred D_ID address setting * that may be overridden with the CONFIG_LINK mailbox command. * If there is no preference, set to 0. * @param ul_arg An argument that is passed to the callback * function. * * @return * - OCS_HW_RTN_SUCCESS on success. * - OCS_HW_RTN_NO_MEMORY if a malloc fails. * - OCS_HW_RTN_NO_RESOURCES if unable to get a command * context. * - OCS_HW_RTN_ERROR on any other error. */ int32_t ocs_hw_set_nvparms(ocs_hw_t *hw, ocs_set_nvparms_cb_t cb, uint8_t *wwpn, uint8_t *wwnn, uint8_t hard_alpa, uint32_t preferred_d_id, void* ul_arg) { uint8_t *mbxdata; ocs_hw_set_nvparms_cb_arg_t *cb_arg; ocs_hw_rtn_e rc = OCS_HW_RTN_SUCCESS; /* mbxdata holds the header of the command */ mbxdata = ocs_malloc(hw->os, SLI4_BMBX_SIZE, OCS_M_ZERO | OCS_M_NOWAIT); if (mbxdata == NULL) { ocs_log_err(hw->os, "failed to malloc mbox\n"); return OCS_HW_RTN_NO_MEMORY; } /* cb_arg holds the data that will be passed to the callback on completion */ cb_arg = ocs_malloc(hw->os, sizeof(ocs_hw_set_nvparms_cb_arg_t), OCS_M_NOWAIT); if (cb_arg == NULL) { ocs_log_err(hw->os, "failed to malloc cb_arg\n"); ocs_free(hw->os, mbxdata, SLI4_BMBX_SIZE); return OCS_HW_RTN_NO_MEMORY; } cb_arg->cb = cb; cb_arg->arg = ul_arg; if (sli_cmd_write_nvparms(&hw->sli, mbxdata, SLI4_BMBX_SIZE, wwpn, wwnn, hard_alpa, preferred_d_id)) { rc = ocs_hw_command(hw, mbxdata, OCS_CMD_NOWAIT, ocs_hw_set_nvparms_cb, cb_arg); } if (rc != OCS_HW_RTN_SUCCESS) { ocs_log_test(hw->os, "SET_NVPARMS failed\n"); ocs_free(hw->os, mbxdata, SLI4_BMBX_SIZE); ocs_free(hw->os, cb_arg, sizeof(ocs_hw_set_nvparms_cb_arg_t)); } return rc; } /** * @brief Called to obtain the count for the specified type. * * @param hw Hardware context. * @param io_count_type IO count type (inuse, free, wait_free). * * @return Returns the number of IOs on the specified list type. */ uint32_t ocs_hw_io_get_count(ocs_hw_t *hw, ocs_hw_io_count_type_e io_count_type) { ocs_hw_io_t *io = NULL; uint32_t count = 0; ocs_lock(&hw->io_lock); switch (io_count_type) { case OCS_HW_IO_INUSE_COUNT : ocs_list_foreach(&hw->io_inuse, io) { count++; } break; case OCS_HW_IO_FREE_COUNT : ocs_list_foreach(&hw->io_free, io) { count++; } break; case OCS_HW_IO_WAIT_FREE_COUNT : ocs_list_foreach(&hw->io_wait_free, io) { count++; } break; case OCS_HW_IO_PORT_OWNED_COUNT: ocs_list_foreach(&hw->io_port_owned, io) { count++; } break; case OCS_HW_IO_N_TOTAL_IO_COUNT : count = hw->config.n_io; break; } ocs_unlock(&hw->io_lock); return count; } /** * @brief Called to obtain the count of produced RQs. * * @param hw Hardware context. * * @return Returns the number of RQs produced. */ uint32_t ocs_hw_get_rqes_produced_count(ocs_hw_t *hw) { uint32_t count = 0; uint32_t i; uint32_t j; for (i = 0; i < hw->hw_rq_count; i++) { hw_rq_t *rq = hw->hw_rq[i]; if (rq->rq_tracker != NULL) { for (j = 0; j < rq->entry_count; j++) { if (rq->rq_tracker[j] != NULL) { count++; } } } } return count; } typedef struct ocs_hw_set_active_profile_cb_arg_s { ocs_set_active_profile_cb_t cb; void *arg; } ocs_hw_set_active_profile_cb_arg_t; /** * @brief Called for the completion of set_active_profile for a * user request. * * @param hw Hardware context. * @param status The status from the MQE * @param mqe Pointer to mailbox command buffer. * @param arg Pointer to a callback argument. * * @return Returns 0 on success, or a non-zero value on failure. */ static int32_t ocs_hw_set_active_profile_cb(ocs_hw_t *hw, int32_t status, uint8_t *mqe, void *arg) { ocs_hw_set_active_profile_cb_arg_t *cb_arg = arg; if (cb_arg->cb) { cb_arg->cb(status, cb_arg->arg); } ocs_free(hw->os, mqe, SLI4_BMBX_SIZE); ocs_free(hw->os, cb_arg, sizeof(ocs_hw_get_active_profile_cb_arg_t)); return 0; } /** * @ingroup io * @brief Set the currently active profile. * @par Description * Issues a SLI4 COMMON_GET_ACTIVE_PROFILE mailbox. When the * command completes the provided mgmt callback function is * called. * * @param hw Hardware context. * @param profile_id Profile ID to activate. * @param cb Callback function to be called when the command completes. * @param ul_arg An argument that is passed to the callback function. * * @return * - OCS_HW_RTN_SUCCESS on success. * - OCS_HW_RTN_NO_MEMORY if a malloc fails. * - OCS_HW_RTN_NO_RESOURCES if unable to get a command * context. * - OCS_HW_RTN_ERROR on any other error. */ int32_t ocs_hw_set_active_profile(ocs_hw_t *hw, ocs_set_active_profile_cb_t cb, uint32_t profile_id, void* ul_arg) { uint8_t *mbxdata; ocs_hw_set_active_profile_cb_arg_t *cb_arg; ocs_hw_rtn_e rc = OCS_HW_RTN_SUCCESS; /* Only supported on Skyhawk */ if (sli_get_if_type(&hw->sli) != SLI4_IF_TYPE_BE3_SKH_PF) { return OCS_HW_RTN_ERROR; } /* mbxdata holds the header of the command */ mbxdata = ocs_malloc(hw->os, SLI4_BMBX_SIZE, OCS_M_ZERO | OCS_M_NOWAIT); if (mbxdata == NULL) { ocs_log_err(hw->os, "failed to malloc mbox\n"); return OCS_HW_RTN_NO_MEMORY; } /* cb_arg holds the data that will be passed to the callback on completion */ cb_arg = ocs_malloc(hw->os, sizeof(ocs_hw_set_active_profile_cb_arg_t), OCS_M_NOWAIT); if (cb_arg == NULL) { ocs_log_err(hw->os, "failed to malloc cb_arg\n"); ocs_free(hw->os, mbxdata, SLI4_BMBX_SIZE); return OCS_HW_RTN_NO_MEMORY; } cb_arg->cb = cb; cb_arg->arg = ul_arg; if (sli_cmd_common_set_active_profile(&hw->sli, mbxdata, SLI4_BMBX_SIZE, 0, profile_id)) { rc = ocs_hw_command(hw, mbxdata, OCS_CMD_NOWAIT, ocs_hw_set_active_profile_cb, cb_arg); } if (rc != OCS_HW_RTN_SUCCESS) { ocs_log_test(hw->os, "SET_ACTIVE_PROFILE failed\n"); ocs_free(hw->os, mbxdata, SLI4_BMBX_SIZE); ocs_free(hw->os, cb_arg, sizeof(ocs_hw_set_active_profile_cb_arg_t)); } return rc; } /* * Private functions */ /** * @brief Update the queue hash with the ID and index. * * @param hash Pointer to hash table. * @param id ID that was created. * @param index The index into the hash object. */ static void ocs_hw_queue_hash_add(ocs_queue_hash_t *hash, uint16_t id, uint16_t index) { uint32_t hash_index = id & (OCS_HW_Q_HASH_SIZE - 1); /* * Since the hash is always bigger than the number of queues, then we * never have to worry about an infinite loop. */ while(hash[hash_index].in_use) { hash_index = (hash_index + 1) & (OCS_HW_Q_HASH_SIZE - 1); } /* not used, claim the entry */ hash[hash_index].id = id; hash[hash_index].in_use = 1; hash[hash_index].index = index; } /** * @brief Find index given queue ID. * * @param hash Pointer to hash table. * @param id ID to find. * * @return Returns the index into the HW cq array or -1 if not found. */ int32_t ocs_hw_queue_hash_find(ocs_queue_hash_t *hash, uint16_t id) { int32_t rc = -1; int32_t index = id & (OCS_HW_Q_HASH_SIZE - 1); /* * Since the hash is always bigger than the maximum number of Qs, then we * never have to worry about an infinite loop. We will always find an * unused entry. */ do { if (hash[index].in_use && hash[index].id == id) { rc = hash[index].index; } else { index = (index + 1) & (OCS_HW_Q_HASH_SIZE - 1); } } while(rc == -1 && hash[index].in_use); return rc; } static int32_t ocs_hw_domain_add(ocs_hw_t *hw, ocs_domain_t *domain) { int32_t rc = OCS_HW_RTN_ERROR; uint16_t fcfi = UINT16_MAX; if ((hw == NULL) || (domain == NULL)) { ocs_log_err(NULL, "bad parameter hw=%p domain=%p\n", hw, domain); return OCS_HW_RTN_ERROR; } fcfi = domain->fcf_indicator; if (fcfi < SLI4_MAX_FCFI) { uint16_t fcf_index = UINT16_MAX; ocs_log_debug(hw->os, "adding domain %p @ %#x\n", domain, fcfi); hw->domains[fcfi] = domain; /* HW_WORKAROUND_OVERRIDE_FCFI_IN_SRB */ if (hw->workaround.override_fcfi) { if (hw->first_domain_idx < 0) { hw->first_domain_idx = fcfi; } } fcf_index = domain->fcf; if (fcf_index < SLI4_MAX_FCF_INDEX) { ocs_log_debug(hw->os, "adding map of FCF index %d to FCFI %d\n", fcf_index, fcfi); hw->fcf_index_fcfi[fcf_index] = fcfi; rc = OCS_HW_RTN_SUCCESS; } else { ocs_log_test(hw->os, "FCF index %d out of range (max %d)\n", fcf_index, SLI4_MAX_FCF_INDEX); hw->domains[fcfi] = NULL; } } else { ocs_log_test(hw->os, "FCFI %#x out of range (max %#x)\n", fcfi, SLI4_MAX_FCFI); } return rc; } static int32_t ocs_hw_domain_del(ocs_hw_t *hw, ocs_domain_t *domain) { int32_t rc = OCS_HW_RTN_ERROR; uint16_t fcfi = UINT16_MAX; if ((hw == NULL) || (domain == NULL)) { ocs_log_err(NULL, "bad parameter hw=%p domain=%p\n", hw, domain); return OCS_HW_RTN_ERROR; } fcfi = domain->fcf_indicator; if (fcfi < SLI4_MAX_FCFI) { uint16_t fcf_index = UINT16_MAX; ocs_log_debug(hw->os, "deleting domain %p @ %#x\n", domain, fcfi); if (domain != hw->domains[fcfi]) { ocs_log_test(hw->os, "provided domain %p does not match stored domain %p\n", domain, hw->domains[fcfi]); return OCS_HW_RTN_ERROR; } hw->domains[fcfi] = NULL; /* HW_WORKAROUND_OVERRIDE_FCFI_IN_SRB */ if (hw->workaround.override_fcfi) { if (hw->first_domain_idx == fcfi) { hw->first_domain_idx = -1; } } fcf_index = domain->fcf; if (fcf_index < SLI4_MAX_FCF_INDEX) { if (hw->fcf_index_fcfi[fcf_index] == fcfi) { hw->fcf_index_fcfi[fcf_index] = 0; rc = OCS_HW_RTN_SUCCESS; } else { ocs_log_test(hw->os, "indexed FCFI %#x doesn't match provided %#x @ %d\n", hw->fcf_index_fcfi[fcf_index], fcfi, fcf_index); } } else { ocs_log_test(hw->os, "FCF index %d out of range (max %d)\n", fcf_index, SLI4_MAX_FCF_INDEX); } } else { ocs_log_test(hw->os, "FCFI %#x out of range (max %#x)\n", fcfi, SLI4_MAX_FCFI); } return rc; } ocs_domain_t * ocs_hw_domain_get(ocs_hw_t *hw, uint16_t fcfi) { if (hw == NULL) { ocs_log_err(NULL, "bad parameter hw=%p\n", hw); return NULL; } if (fcfi < SLI4_MAX_FCFI) { return hw->domains[fcfi]; } else { ocs_log_test(hw->os, "FCFI %#x out of range (max %#x)\n", fcfi, SLI4_MAX_FCFI); return NULL; } } static ocs_domain_t * ocs_hw_domain_get_indexed(ocs_hw_t *hw, uint16_t fcf_index) { if (hw == NULL) { ocs_log_err(NULL, "bad parameter hw=%p\n", hw); return NULL; } if (fcf_index < SLI4_MAX_FCF_INDEX) { return ocs_hw_domain_get(hw, hw->fcf_index_fcfi[fcf_index]); } else { ocs_log_test(hw->os, "FCF index %d out of range (max %d)\n", fcf_index, SLI4_MAX_FCF_INDEX); return NULL; } } /** * @brief Quaratine an IO by taking a reference count and adding it to the * quarantine list. When the IO is popped from the list then the * count is released and the IO MAY be freed depending on whether * it is still referenced by the IO. * * @n @b Note: BZ 160124 - If this is a target write or an initiator read using * DIF, then we must add the XRI to a quarantine list until we receive * 4 more completions of this same type. * * @param hw Hardware context. * @param wq Pointer to the WQ associated with the IO object to quarantine. * @param io Pointer to the io object to quarantine. */ static void ocs_hw_io_quarantine(ocs_hw_t *hw, hw_wq_t *wq, ocs_hw_io_t *io) { ocs_quarantine_info_t *q_info = &wq->quarantine_info; uint32_t index; ocs_hw_io_t *free_io = NULL; /* return if the QX bit was clear */ if (!io->quarantine) { return; } /* increment the IO refcount to prevent it from being freed before the quarantine is over */ if (ocs_ref_get_unless_zero(&io->ref) == 0) { /* command no longer active */ ocs_log_debug(hw ? hw->os : NULL, "io not active xri=0x%x tag=0x%x\n", io->indicator, io->reqtag); return; } sli_queue_lock(wq->queue); index = q_info->quarantine_index; free_io = q_info->quarantine_ios[index]; q_info->quarantine_ios[index] = io; q_info->quarantine_index = (index + 1) % OCS_HW_QUARANTINE_QUEUE_DEPTH; sli_queue_unlock(wq->queue); if (free_io != NULL) { ocs_ref_put(&free_io->ref); /* ocs_ref_get(): same function */ } } /** * @brief Process entries on the given completion queue. * * @param hw Hardware context. * @param cq Pointer to the HW completion queue object. * * @return None. */ void ocs_hw_cq_process(ocs_hw_t *hw, hw_cq_t *cq) { uint8_t cqe[sizeof(sli4_mcqe_t)]; uint16_t rid = UINT16_MAX; sli4_qentry_e ctype; /* completion type */ int32_t status; uint32_t n_processed = 0; time_t tstart; time_t telapsed; tstart = ocs_msectime(); while (!sli_queue_read(&hw->sli, cq->queue, cqe)) { status = sli_cq_parse(&hw->sli, cq->queue, cqe, &ctype, &rid); /* * The sign of status is significant. If status is: * == 0 : call completed correctly and the CQE indicated success * > 0 : call completed correctly and the CQE indicated an error * < 0 : call failed and no information is available about the CQE */ if (status < 0) { if (status == -2) { /* Notification that an entry was consumed, but not completed */ continue; } break; } switch (ctype) { case SLI_QENTRY_ASYNC: CPUTRACE("async"); sli_cqe_async(&hw->sli, cqe); break; case SLI_QENTRY_MQ: /* * Process MQ entry. Note there is no way to determine * the MQ_ID from the completion entry. */ CPUTRACE("mq"); ocs_hw_mq_process(hw, status, hw->mq); break; case SLI_QENTRY_OPT_WRITE_CMD: ocs_hw_rqpair_process_auto_xfr_rdy_cmd(hw, cq, cqe); break; case SLI_QENTRY_OPT_WRITE_DATA: ocs_hw_rqpair_process_auto_xfr_rdy_data(hw, cq, cqe); break; case SLI_QENTRY_WQ: CPUTRACE("wq"); ocs_hw_wq_process(hw, cq, cqe, status, rid); break; case SLI_QENTRY_WQ_RELEASE: { uint32_t wq_id = rid; int32_t index = ocs_hw_queue_hash_find(hw->wq_hash, wq_id); if (unlikely(index < 0)) { ocs_log_err(hw->os, "unknown idx=%#x rid=%#x\n", index, rid); break; } hw_wq_t *wq = hw->hw_wq[index]; /* Submit any HW IOs that are on the WQ pending list */ hw_wq_submit_pending(wq, wq->wqec_set_count); break; } case SLI_QENTRY_RQ: CPUTRACE("rq"); ocs_hw_rqpair_process_rq(hw, cq, cqe); break; case SLI_QENTRY_XABT: { CPUTRACE("xabt"); ocs_hw_xabt_process(hw, cq, cqe, rid); break; } default: ocs_log_test(hw->os, "unhandled ctype=%#x rid=%#x\n", ctype, rid); break; } n_processed++; if (n_processed == cq->queue->proc_limit) { break; } if (cq->queue->n_posted >= (cq->queue->posted_limit)) { sli_queue_arm(&hw->sli, cq->queue, FALSE); } } sli_queue_arm(&hw->sli, cq->queue, TRUE); if (n_processed > cq->queue->max_num_processed) { cq->queue->max_num_processed = n_processed; } telapsed = ocs_msectime() - tstart; if (telapsed > cq->queue->max_process_time) { cq->queue->max_process_time = telapsed; } } /** * @brief Process WQ completion queue entries. * * @param hw Hardware context. * @param cq Pointer to the HW completion queue object. * @param cqe Pointer to WQ completion queue. * @param status Completion status. * @param rid Resource ID (IO tag). * * @return none */ void ocs_hw_wq_process(ocs_hw_t *hw, hw_cq_t *cq, uint8_t *cqe, int32_t status, uint16_t rid) { hw_wq_callback_t *wqcb; ocs_queue_history_cqe(&hw->q_hist, SLI_QENTRY_WQ, (void *)cqe, ((sli4_fc_wcqe_t *)cqe)->status, cq->queue->id, ((cq->queue->index - 1) & (cq->queue->length - 1))); if(rid == OCS_HW_REQUE_XRI_REGTAG) { if(status) { ocs_log_err(hw->os, "reque xri failed, status = %d \n", status); } return; } wqcb = ocs_hw_reqtag_get_instance(hw, rid); if (wqcb == NULL) { ocs_log_err(hw->os, "invalid request tag: x%x\n", rid); return; } if (wqcb->callback == NULL) { ocs_log_err(hw->os, "wqcb callback is NULL\n"); return; } (*wqcb->callback)(wqcb->arg, cqe, status); } /** * @brief Process WQ completions for IO requests * * @param arg Generic callback argument * @param cqe Pointer to completion queue entry * @param status Completion status * * @par Description * @n @b Note: Regarding io->reqtag, the reqtag is assigned once when HW IOs are initialized * in ocs_hw_setup_io(), and don't need to be returned to the hw->wq_reqtag_pool. * * @return None. */ static void ocs_hw_wq_process_io(void *arg, uint8_t *cqe, int32_t status) { ocs_hw_io_t *io = arg; ocs_hw_t *hw = io->hw; sli4_fc_wcqe_t *wcqe = (void *)cqe; uint32_t len = 0; uint32_t ext = 0; uint8_t out_of_order_axr_cmd = 0; uint8_t out_of_order_axr_data = 0; uint8_t lock_taken = 0; #if defined(OCS_DISC_SPIN_DELAY) uint32_t delay = 0; char prop_buf[32]; #endif /* * For the primary IO, this will also be used for the * response. So it is important to only set/clear this * flag on the first data phase of the IO because * subsequent phases will be done on the secondary XRI. */ if (io->quarantine && io->quarantine_first_phase) { io->quarantine = (wcqe->qx == 1); ocs_hw_io_quarantine(hw, io->wq, io); } io->quarantine_first_phase = FALSE; /* BZ 161832 - free secondary HW IO */ if (io->sec_hio != NULL && io->sec_hio->quarantine) { /* * If the quarantine flag is set on the * IO, then set it on the secondary IO * based on the quarantine XRI (QX) bit * sent by the FW. */ io->sec_hio->quarantine = (wcqe->qx == 1); /* use the primary io->wq because it is not set on the secondary IO. */ ocs_hw_io_quarantine(hw, io->wq, io->sec_hio); } ocs_hw_remove_io_timed_wqe(hw, io); /* clear xbusy flag if WCQE[XB] is clear */ if (io->xbusy && wcqe->xb == 0) { io->xbusy = FALSE; } /* get extended CQE status */ switch (io->type) { case OCS_HW_BLS_ACC: case OCS_HW_BLS_ACC_SID: break; case OCS_HW_ELS_REQ: sli_fc_els_did(&hw->sli, cqe, &ext); len = sli_fc_response_length(&hw->sli, cqe); break; case OCS_HW_ELS_RSP: case OCS_HW_ELS_RSP_SID: case OCS_HW_FC_CT_RSP: break; case OCS_HW_FC_CT: len = sli_fc_response_length(&hw->sli, cqe); break; case OCS_HW_IO_TARGET_WRITE: len = sli_fc_io_length(&hw->sli, cqe); #if defined(OCS_DISC_SPIN_DELAY) if (ocs_get_property("disk_spin_delay", prop_buf, sizeof(prop_buf)) == 0) { delay = ocs_strtoul(prop_buf, 0, 0); ocs_udelay(delay); } #endif break; case OCS_HW_IO_TARGET_READ: len = sli_fc_io_length(&hw->sli, cqe); /* * if_type == 2 seems to return 0 "total length placed" on * FCP_TSEND64_WQE completions. If this appears to happen, * use the CTIO data transfer length instead. */ if (hw->workaround.retain_tsend_io_length && !len && !status) { len = io->length; } break; case OCS_HW_IO_TARGET_RSP: if(io->is_port_owned) { ocs_lock(&io->axr_lock); lock_taken = 1; if(io->axr_buf->call_axr_cmd) { out_of_order_axr_cmd = 1; } if(io->axr_buf->call_axr_data) { out_of_order_axr_data = 1; } } break; case OCS_HW_IO_INITIATOR_READ: len = sli_fc_io_length(&hw->sli, cqe); break; case OCS_HW_IO_INITIATOR_WRITE: len = sli_fc_io_length(&hw->sli, cqe); break; case OCS_HW_IO_INITIATOR_NODATA: break; case OCS_HW_IO_DNRX_REQUEUE: /* release the count for re-posting the buffer */ //ocs_hw_io_free(hw, io); break; default: ocs_log_test(hw->os, "XXX unhandled io type %#x for XRI 0x%x\n", io->type, io->indicator); break; } if (status) { ext = sli_fc_ext_status(&hw->sli, cqe); /* Emulate IAAB=0 for initiator WQEs only; i.e. automatically * abort exchange if an error occurred and exchange is still busy. */ if (hw->config.i_only_aab && (ocs_hw_iotype_is_originator(io->type)) && (ocs_hw_wcqe_abort_needed(status, ext, wcqe->xb))) { ocs_hw_rtn_e rc; ocs_log_debug(hw->os, "aborting xri=%#x tag=%#x\n", io->indicator, io->reqtag); /* * Because the initiator will not issue another IO phase, then it is OK to issue the * callback on the abort completion, but for consistency with the target, wait for the * XRI_ABORTED CQE to issue the IO callback. */ rc = ocs_hw_io_abort(hw, io, TRUE, NULL, NULL); if (rc == OCS_HW_RTN_SUCCESS) { /* latch status to return after abort is complete */ io->status_saved = 1; io->saved_status = status; io->saved_ext = ext; io->saved_len = len; goto exit_ocs_hw_wq_process_io; } else if (rc == OCS_HW_RTN_IO_ABORT_IN_PROGRESS) { /* * Already being aborted by someone else (ABTS * perhaps). Just fall through and return original * error. */ ocs_log_debug(hw->os, "abort in progress xri=%#x tag=%#x\n", io->indicator, io->reqtag); } else { /* Failed to abort for some other reason, log error */ ocs_log_test(hw->os, "Failed to abort xri=%#x tag=%#x rc=%d\n", io->indicator, io->reqtag, rc); } } /* * If we're not an originator IO, and XB is set, then issue abort for the IO from within the HW */ if ( (! ocs_hw_iotype_is_originator(io->type)) && wcqe->xb) { ocs_hw_rtn_e rc; ocs_log_debug(hw->os, "aborting xri=%#x tag=%#x\n", io->indicator, io->reqtag); /* * Because targets may send a response when the IO completes using the same XRI, we must * wait for the XRI_ABORTED CQE to issue the IO callback */ rc = ocs_hw_io_abort(hw, io, FALSE, NULL, NULL); if (rc == OCS_HW_RTN_SUCCESS) { /* latch status to return after abort is complete */ io->status_saved = 1; io->saved_status = status; io->saved_ext = ext; io->saved_len = len; goto exit_ocs_hw_wq_process_io; } else if (rc == OCS_HW_RTN_IO_ABORT_IN_PROGRESS) { /* * Already being aborted by someone else (ABTS * perhaps). Just fall through and return original * error. */ ocs_log_debug(hw->os, "abort in progress xri=%#x tag=%#x\n", io->indicator, io->reqtag); } else { /* Failed to abort for some other reason, log error */ ocs_log_test(hw->os, "Failed to abort xri=%#x tag=%#x rc=%d\n", io->indicator, io->reqtag, rc); } } } /* BZ 161832 - free secondary HW IO */ if (io->sec_hio != NULL) { ocs_hw_io_free(hw, io->sec_hio); io->sec_hio = NULL; } if (io->done != NULL) { ocs_hw_done_t done = io->done; void *arg = io->arg; io->done = NULL; if (io->status_saved) { /* use latched status if exists */ status = io->saved_status; len = io->saved_len; ext = io->saved_ext; io->status_saved = 0; } /* Restore default SGL */ ocs_hw_io_restore_sgl(hw, io); done(io, io->rnode, len, status, ext, arg); } if(out_of_order_axr_cmd) { /* bounce enabled, single RQ, we snoop the ox_id to choose the cpuidx */ if (hw->config.bounce) { fc_header_t *hdr = io->axr_buf->cmd_seq->header->dma.virt; uint32_t s_id = fc_be24toh(hdr->s_id); uint32_t d_id = fc_be24toh(hdr->d_id); uint32_t ox_id = ocs_be16toh(hdr->ox_id); if (hw->callback.bounce != NULL) { (*hw->callback.bounce)(ocs_hw_unsol_process_bounce, io->axr_buf->cmd_seq, s_id, d_id, ox_id); } }else { hw->callback.unsolicited(hw->args.unsolicited, io->axr_buf->cmd_seq); } if(out_of_order_axr_data) { /* bounce enabled, single RQ, we snoop the ox_id to choose the cpuidx */ if (hw->config.bounce) { fc_header_t *hdr = io->axr_buf->seq.header->dma.virt; uint32_t s_id = fc_be24toh(hdr->s_id); uint32_t d_id = fc_be24toh(hdr->d_id); uint32_t ox_id = ocs_be16toh(hdr->ox_id); if (hw->callback.bounce != NULL) { (*hw->callback.bounce)(ocs_hw_unsol_process_bounce, &io->axr_buf->seq, s_id, d_id, ox_id); } }else { hw->callback.unsolicited(hw->args.unsolicited, &io->axr_buf->seq); } } } exit_ocs_hw_wq_process_io: if(lock_taken) { ocs_unlock(&io->axr_lock); } } /** * @brief Process WQ completions for abort requests. * * @param arg Generic callback argument. * @param cqe Pointer to completion queue entry. * @param status Completion status. * * @return None. */ static void ocs_hw_wq_process_abort(void *arg, uint8_t *cqe, int32_t status) { ocs_hw_io_t *io = arg; ocs_hw_t *hw = io->hw; uint32_t ext = 0; uint32_t len = 0; hw_wq_callback_t *wqcb; /* * For IOs that were aborted internally, we may need to issue the callback here depending * on whether a XRI_ABORTED CQE is expected ot not. If the status is Local Reject/No XRI, then * issue the callback now. */ ext = sli_fc_ext_status(&hw->sli, cqe); if (status == SLI4_FC_WCQE_STATUS_LOCAL_REJECT && ext == SLI4_FC_LOCAL_REJECT_NO_XRI && io->done != NULL) { ocs_hw_done_t done = io->done; void *arg = io->arg; io->done = NULL; /* * Use latched status as this is always saved for an internal abort * * Note: We wont have both a done and abort_done function, so don't worry about * clobbering the len, status and ext fields. */ status = io->saved_status; len = io->saved_len; ext = io->saved_ext; io->status_saved = 0; done(io, io->rnode, len, status, ext, arg); } if (io->abort_done != NULL) { ocs_hw_done_t done = io->abort_done; void *arg = io->abort_arg; io->abort_done = NULL; done(io, io->rnode, len, status, ext, arg); } ocs_lock(&hw->io_abort_lock); /* clear abort bit to indicate abort is complete */ io->abort_in_progress = 0; ocs_unlock(&hw->io_abort_lock); /* Free the WQ callback */ ocs_hw_assert(io->abort_reqtag != UINT32_MAX); wqcb = ocs_hw_reqtag_get_instance(hw, io->abort_reqtag); ocs_hw_reqtag_free(hw, wqcb); /* * Call ocs_hw_io_free() because this releases the WQ reservation as * well as doing the refcount put. Don't duplicate the code here. */ (void)ocs_hw_io_free(hw, io); } /** * @brief Process XABT completions * * @param hw Hardware context. * @param cq Pointer to the HW completion queue object. * @param cqe Pointer to WQ completion queue. * @param rid Resource ID (IO tag). * * * @return None. */ void ocs_hw_xabt_process(ocs_hw_t *hw, hw_cq_t *cq, uint8_t *cqe, uint16_t rid) { /* search IOs wait free list */ ocs_hw_io_t *io = NULL; io = ocs_hw_io_lookup(hw, rid); ocs_queue_history_cqe(&hw->q_hist, SLI_QENTRY_XABT, (void *)cqe, 0, cq->queue->id, ((cq->queue->index - 1) & (cq->queue->length - 1))); if (io == NULL) { /* IO lookup failure should never happen */ ocs_log_err(hw->os, "Error: xabt io lookup failed rid=%#x\n", rid); return; } if (!io->xbusy) { ocs_log_debug(hw->os, "xabt io not busy rid=%#x\n", rid); } else { /* mark IO as no longer busy */ io->xbusy = FALSE; } if (io->is_port_owned) { ocs_lock(&hw->io_lock); /* Take reference so that below callback will not free io before reque */ ocs_ref_get(&io->ref); ocs_unlock(&hw->io_lock); } /* For IOs that were aborted internally, we need to issue any pending callback here. */ if (io->done != NULL) { ocs_hw_done_t done = io->done; void *arg = io->arg; /* Use latched status as this is always saved for an internal abort */ int32_t status = io->saved_status; uint32_t len = io->saved_len; uint32_t ext = io->saved_ext; io->done = NULL; io->status_saved = 0; done(io, io->rnode, len, status, ext, arg); } /* Check to see if this is a port owned XRI */ if (io->is_port_owned) { ocs_lock(&hw->io_lock); ocs_hw_reque_xri(hw, io); ocs_unlock(&hw->io_lock); /* Not hanlding reque xri completion, free io */ ocs_hw_io_free(hw, io); return; } ocs_lock(&hw->io_lock); if ((io->state == OCS_HW_IO_STATE_INUSE) || (io->state == OCS_HW_IO_STATE_WAIT_FREE)) { /* if on wait_free list, caller has already freed IO; * remove from wait_free list and add to free list. * if on in-use list, already marked as no longer busy; * just leave there and wait for caller to free. */ if (io->state == OCS_HW_IO_STATE_WAIT_FREE) { io->state = OCS_HW_IO_STATE_FREE; ocs_list_remove(&hw->io_wait_free, io); ocs_hw_io_free_move_correct_list(hw, io); } } ocs_unlock(&hw->io_lock); } /** * @brief Adjust the number of WQs and CQs within the HW. * * @par Description * Calculates the number of WQs and associated CQs needed in the HW based on * the number of IOs. Calculates the starting CQ index for each WQ, RQ and * MQ. * * @param hw Hardware context allocated by the caller. */ static void ocs_hw_adjust_wqs(ocs_hw_t *hw) { uint32_t max_wq_num = sli_get_max_queue(&hw->sli, SLI_QTYPE_WQ); uint32_t max_wq_entries = hw->num_qentries[SLI_QTYPE_WQ]; uint32_t max_cq_entries = hw->num_qentries[SLI_QTYPE_CQ]; /* * possibly adjust the the size of the WQs so that the CQ is twice as * big as the WQ to allow for 2 completions per IO. This allows us to * handle multi-phase as well as aborts. */ if (max_cq_entries < max_wq_entries * 2) { max_wq_entries = hw->num_qentries[SLI_QTYPE_WQ] = max_cq_entries / 2; } /* * Calculate the number of WQs to use base on the number of IOs. * * Note: We need to reserve room for aborts which must be sent down * the same WQ as the IO. So we allocate enough WQ space to * handle 2 times the number of IOs. Half of the space will be * used for normal IOs and the other hwf is reserved for aborts. */ hw->config.n_wq = ((hw->config.n_io * 2) + (max_wq_entries - 1)) / max_wq_entries; /* * For performance reasons, it is best to use use a minimum of 4 WQs * for BE3 and Skyhawk. */ if (hw->config.n_wq < 4 && SLI4_IF_TYPE_BE3_SKH_PF == sli_get_if_type(&hw->sli)) { hw->config.n_wq = 4; } /* * For dual-chute support, we need to have at least one WQ per chute. */ if (hw->config.n_wq < 2 && ocs_hw_get_num_chutes(hw) > 1) { hw->config.n_wq = 2; } /* make sure we haven't exceeded the max supported in the HW */ if (hw->config.n_wq > OCS_HW_MAX_NUM_WQ) { hw->config.n_wq = OCS_HW_MAX_NUM_WQ; } /* make sure we haven't exceeded the chip maximum */ if (hw->config.n_wq > max_wq_num) { hw->config.n_wq = max_wq_num; } /* * Using Queue Topology string, we divide by number of chutes */ hw->config.n_wq /= ocs_hw_get_num_chutes(hw); } static int32_t ocs_hw_command_process(ocs_hw_t *hw, int32_t status, uint8_t *mqe, size_t size) { ocs_command_ctx_t *ctx = NULL; ocs_lock(&hw->cmd_lock); if (NULL == (ctx = ocs_list_remove_head(&hw->cmd_head))) { ocs_log_err(hw->os, "XXX no command context?!?\n"); ocs_unlock(&hw->cmd_lock); return -1; } hw->cmd_head_count--; /* Post any pending requests */ ocs_hw_cmd_submit_pending(hw); ocs_unlock(&hw->cmd_lock); if (ctx->cb) { if (ctx->buf) { ocs_memcpy(ctx->buf, mqe, size); } ctx->cb(hw, status, ctx->buf, ctx->arg); } ocs_memset(ctx, 0, sizeof(ocs_command_ctx_t)); ocs_free(hw->os, ctx, sizeof(ocs_command_ctx_t)); return 0; } /** * @brief Process entries on the given mailbox queue. * * @param hw Hardware context. * @param status CQE status. * @param mq Pointer to the mailbox queue object. * * @return Returns 0 on success, or a non-zero value on failure. */ static int32_t ocs_hw_mq_process(ocs_hw_t *hw, int32_t status, sli4_queue_t *mq) { uint8_t mqe[SLI4_BMBX_SIZE]; if (!sli_queue_read(&hw->sli, mq, mqe)) { ocs_hw_command_process(hw, status, mqe, mq->size); } return 0; } /** * @brief Read a FCF table entry. * * @param hw Hardware context. * @param index Table index to read. Use SLI4_FCOE_FCF_TABLE_FIRST for the first * read and the next_index field from the FCOE_READ_FCF_TABLE command * for subsequent reads. * * @return Returns 0 on success, or a non-zero value on failure. */ static ocs_hw_rtn_e ocs_hw_read_fcf(ocs_hw_t *hw, uint32_t index) { uint8_t *buf = NULL; int32_t rc = OCS_HW_RTN_ERROR; buf = ocs_malloc(hw->os, SLI4_BMBX_SIZE, OCS_M_NOWAIT); if (!buf) { ocs_log_err(hw->os, "no buffer for command\n"); return OCS_HW_RTN_NO_MEMORY; } if (sli_cmd_fcoe_read_fcf_table(&hw->sli, buf, SLI4_BMBX_SIZE, &hw->fcf_dmem, index)) { rc = ocs_hw_command(hw, buf, OCS_CMD_NOWAIT, ocs_hw_cb_read_fcf, &hw->fcf_dmem); } if (rc != OCS_HW_RTN_SUCCESS) { ocs_log_test(hw->os, "FCOE_READ_FCF_TABLE failed\n"); ocs_free(hw->os, buf, SLI4_BMBX_SIZE); } return rc; } /** * @brief Callback function for the FCOE_READ_FCF_TABLE command. * * @par Description * Note that the caller has allocated: * - DMA memory to hold the table contents * - DMA memory structure * - Command/results buffer * . * Each of these must be freed here. * * @param hw Hardware context. * @param status Hardware status. * @param mqe Pointer to the mailbox command/results buffer. * @param arg Pointer to the DMA memory structure. * * @return Returns 0 on success, or a non-zero value on failure. */ static int32_t ocs_hw_cb_read_fcf(ocs_hw_t *hw, int32_t status, uint8_t *mqe, void *arg) { ocs_dma_t *dma = arg; sli4_mbox_command_header_t *hdr = (sli4_mbox_command_header_t *)mqe; if (status || hdr->status) { ocs_log_test(hw->os, "bad status cqe=%#x mqe=%#x\n", status, hdr->status); } else if (dma->virt) { sli4_res_fcoe_read_fcf_table_t *read_fcf = dma->virt; /* if FC or FCOE and FCF entry valid, process it */ if (read_fcf->fcf_entry.fc || (read_fcf->fcf_entry.val && !read_fcf->fcf_entry.sol)) { if (hw->callback.domain != NULL) { ocs_domain_record_t drec = {0}; if (read_fcf->fcf_entry.fc) { /* * This is a pseudo FCF entry. Create a domain * record based on the read topology information */ drec.speed = hw->link.speed; drec.fc_id = hw->link.fc_id; drec.is_fc = TRUE; if (SLI_LINK_TOPO_LOOP == hw->link.topology) { drec.is_loop = TRUE; ocs_memcpy(drec.map.loop, hw->link.loop_map, sizeof(drec.map.loop)); } else if (SLI_LINK_TOPO_NPORT == hw->link.topology) { drec.is_nport = TRUE; } } else { drec.index = read_fcf->fcf_entry.fcf_index; drec.priority = read_fcf->fcf_entry.fip_priority; /* copy address, wwn and vlan_bitmap */ ocs_memcpy(drec.address, read_fcf->fcf_entry.fcf_mac_address, sizeof(drec.address)); ocs_memcpy(drec.wwn, read_fcf->fcf_entry.fabric_name_id, sizeof(drec.wwn)); ocs_memcpy(drec.map.vlan, read_fcf->fcf_entry.vlan_bitmap, sizeof(drec.map.vlan)); drec.is_ethernet = TRUE; drec.is_nport = TRUE; } hw->callback.domain(hw->args.domain, OCS_HW_DOMAIN_FOUND, &drec); } } else { /* if FCOE and FCF is not valid, ignore it */ ocs_log_test(hw->os, "ignore invalid FCF entry\n"); } if (SLI4_FCOE_FCF_TABLE_LAST != read_fcf->next_index) { ocs_hw_read_fcf(hw, read_fcf->next_index); } } ocs_free(hw->os, mqe, SLI4_BMBX_SIZE); //ocs_dma_free(hw->os, dma); //ocs_free(hw->os, dma, sizeof(ocs_dma_t)); return 0; } /** * @brief Callback function for the SLI link events. * * @par Description * This function allocates memory which must be freed in its callback. * * @param ctx Hardware context pointer (that is, ocs_hw_t *). * @param e Event structure pointer (that is, sli4_link_event_t *). * * @return Returns 0 on success, or a non-zero value on failure. */ static int32_t ocs_hw_cb_link(void *ctx, void *e) { ocs_hw_t *hw = ctx; sli4_link_event_t *event = e; ocs_domain_t *d = NULL; uint32_t i = 0; int32_t rc = OCS_HW_RTN_ERROR; ocs_t *ocs = hw->os; ocs_hw_link_event_init(hw); switch (event->status) { case SLI_LINK_STATUS_UP: hw->link = *event; if (SLI_LINK_TOPO_NPORT == event->topology) { device_printf(ocs->dev, "Link Up, NPORT, speed is %d\n", event->speed); ocs_hw_read_fcf(hw, SLI4_FCOE_FCF_TABLE_FIRST); } else if (SLI_LINK_TOPO_LOOP == event->topology) { uint8_t *buf = NULL; device_printf(ocs->dev, "Link Up, LOOP, speed is %d\n", event->speed); buf = ocs_malloc(hw->os, SLI4_BMBX_SIZE, OCS_M_NOWAIT); if (!buf) { ocs_log_err(hw->os, "no buffer for command\n"); break; } if (sli_cmd_read_topology(&hw->sli, buf, SLI4_BMBX_SIZE, &hw->loop_map)) { rc = ocs_hw_command(hw, buf, OCS_CMD_NOWAIT, __ocs_read_topology_cb, NULL); } if (rc != OCS_HW_RTN_SUCCESS) { ocs_log_test(hw->os, "READ_TOPOLOGY failed\n"); ocs_free(hw->os, buf, SLI4_BMBX_SIZE); } } else { device_printf(ocs->dev, "Link Up, unsupported topology (%#x), speed is %d\n", event->topology, event->speed); } break; case SLI_LINK_STATUS_DOWN: device_printf(ocs->dev, "Link Down\n"); hw->link.status = event->status; for (i = 0; i < SLI4_MAX_FCFI; i++) { d = hw->domains[i]; if (d != NULL && hw->callback.domain != NULL) { hw->callback.domain(hw->args.domain, OCS_HW_DOMAIN_LOST, d); } } break; default: ocs_log_test(hw->os, "unhandled link status %#x\n", event->status); break; } return 0; } static int32_t ocs_hw_cb_fip(void *ctx, void *e) { ocs_hw_t *hw = ctx; ocs_domain_t *domain = NULL; sli4_fip_event_t *event = e; ocs_hw_assert(event); ocs_hw_assert(hw); /* Find the associated domain object */ if (event->type == SLI4_FCOE_FIP_FCF_CLEAR_VLINK) { ocs_domain_t *d = NULL; uint32_t i = 0; /* Clear VLINK is different from the other FIP events as it passes back * a VPI instead of a FCF index. Check all attached SLI ports for a * matching VPI */ for (i = 0; i < SLI4_MAX_FCFI; i++) { d = hw->domains[i]; if (d != NULL) { ocs_sport_t *sport = NULL; ocs_list_foreach(&d->sport_list, sport) { if (sport->indicator == event->index) { domain = d; break; } } if (domain != NULL) { break; } } } } else { domain = ocs_hw_domain_get_indexed(hw, event->index); } switch (event->type) { case SLI4_FCOE_FIP_FCF_DISCOVERED: ocs_hw_read_fcf(hw, event->index); break; case SLI4_FCOE_FIP_FCF_DEAD: if (domain != NULL && hw->callback.domain != NULL) { hw->callback.domain(hw->args.domain, OCS_HW_DOMAIN_LOST, domain); } break; case SLI4_FCOE_FIP_FCF_CLEAR_VLINK: if (domain != NULL && hw->callback.domain != NULL) { /* * We will want to issue rediscover FCF when this domain is free'd in order * to invalidate the FCF table */ domain->req_rediscover_fcf = TRUE; hw->callback.domain(hw->args.domain, OCS_HW_DOMAIN_LOST, domain); } break; case SLI4_FCOE_FIP_FCF_MODIFIED: if (domain != NULL && hw->callback.domain != NULL) { hw->callback.domain(hw->args.domain, OCS_HW_DOMAIN_LOST, domain); } ocs_hw_read_fcf(hw, event->index); break; default: ocs_log_test(hw->os, "unsupported event %#x\n", event->type); } return 0; } static int32_t ocs_hw_cb_node_attach(ocs_hw_t *hw, int32_t status, uint8_t *mqe, void *arg) { ocs_remote_node_t *rnode = arg; sli4_mbox_command_header_t *hdr = (sli4_mbox_command_header_t *)mqe; ocs_hw_remote_node_event_e evt = 0; if (status || hdr->status) { ocs_log_debug(hw->os, "bad status cqe=%#x mqe=%#x\n", status, hdr->status); ocs_atomic_sub_return(&hw->rpi_ref[rnode->index].rpi_count, 1); rnode->attached = FALSE; ocs_atomic_set(&hw->rpi_ref[rnode->index].rpi_attached, 0); evt = OCS_HW_NODE_ATTACH_FAIL; } else { rnode->attached = TRUE; ocs_atomic_set(&hw->rpi_ref[rnode->index].rpi_attached, 1); evt = OCS_HW_NODE_ATTACH_OK; } if (hw->callback.rnode != NULL) { hw->callback.rnode(hw->args.rnode, evt, rnode); } ocs_free(hw->os, mqe, SLI4_BMBX_SIZE); return 0; } static int32_t ocs_hw_cb_node_free(ocs_hw_t *hw, int32_t status, uint8_t *mqe, void *arg) { ocs_remote_node_t *rnode = arg; sli4_mbox_command_header_t *hdr = (sli4_mbox_command_header_t *)mqe; ocs_hw_remote_node_event_e evt = OCS_HW_NODE_FREE_FAIL; int32_t rc = 0; if (status || hdr->status) { ocs_log_debug(hw->os, "bad status cqe=%#x mqe=%#x\n", status, hdr->status); /* * In certain cases, a non-zero MQE status is OK (all must be true): * - node is attached * - if High Login Mode is enabled, node is part of a node group * - status is 0x1400 */ if (!rnode->attached || ((sli_get_hlm(&hw->sli) == TRUE) && !rnode->node_group) || (hdr->status != SLI4_MBOX_STATUS_RPI_NOT_REG)) { rc = -1; } } if (rc == 0) { rnode->node_group = FALSE; rnode->attached = FALSE; if (ocs_atomic_read(&hw->rpi_ref[rnode->index].rpi_count) == 0) { ocs_atomic_set(&hw->rpi_ref[rnode->index].rpi_attached, 0); } evt = OCS_HW_NODE_FREE_OK; } if (hw->callback.rnode != NULL) { hw->callback.rnode(hw->args.rnode, evt, rnode); } ocs_free(hw->os, mqe, SLI4_BMBX_SIZE); return rc; } static int32_t ocs_hw_cb_node_free_all(ocs_hw_t *hw, int32_t status, uint8_t *mqe, void *arg) { sli4_mbox_command_header_t *hdr = (sli4_mbox_command_header_t *)mqe; ocs_hw_remote_node_event_e evt = OCS_HW_NODE_FREE_FAIL; int32_t rc = 0; uint32_t i; if (status || hdr->status) { ocs_log_debug(hw->os, "bad status cqe=%#x mqe=%#x\n", status, hdr->status); } else { evt = OCS_HW_NODE_FREE_ALL_OK; } if (evt == OCS_HW_NODE_FREE_ALL_OK) { for (i = 0; i < sli_get_max_rsrc(&hw->sli, SLI_RSRC_FCOE_RPI); i++) { ocs_atomic_set(&hw->rpi_ref[i].rpi_count, 0); } if (sli_resource_reset(&hw->sli, SLI_RSRC_FCOE_RPI)) { ocs_log_test(hw->os, "FCOE_RPI free all failure\n"); rc = -1; } } if (hw->callback.rnode != NULL) { hw->callback.rnode(hw->args.rnode, evt, NULL); } ocs_free(hw->os, mqe, SLI4_BMBX_SIZE); return rc; } /** * @brief Initialize the pool of HW IO objects. * * @param hw Hardware context. * * @return Returns 0 on success, or a non-zero value on failure. */ static ocs_hw_rtn_e ocs_hw_setup_io(ocs_hw_t *hw) { uint32_t i = 0; ocs_hw_io_t *io = NULL; uintptr_t xfer_virt = 0; uintptr_t xfer_phys = 0; uint32_t index; uint8_t new_alloc = TRUE; if (NULL == hw->io) { hw->io = ocs_malloc(hw->os, hw->config.n_io * sizeof(ocs_hw_io_t *), OCS_M_ZERO | OCS_M_NOWAIT); if (NULL == hw->io) { ocs_log_err(hw->os, "IO pointer memory allocation failed, %d Ios at size %zu\n", hw->config.n_io, sizeof(ocs_hw_io_t *)); return OCS_HW_RTN_NO_MEMORY; } for (i = 0; i < hw->config.n_io; i++) { hw->io[i] = ocs_malloc(hw->os, sizeof(ocs_hw_io_t), OCS_M_ZERO | OCS_M_NOWAIT); if (hw->io[i] == NULL) { ocs_log_err(hw->os, "IO(%d) memory allocation failed\n", i); goto error; } } /* Create WQE buffs for IO */ hw->wqe_buffs = ocs_malloc(hw->os, hw->config.n_io * hw->sli.config.wqe_size, OCS_M_ZERO | OCS_M_NOWAIT); if (NULL == hw->wqe_buffs) { ocs_free(hw->os, hw->io, hw->config.n_io * sizeof(ocs_hw_io_t)); ocs_log_err(hw->os, "%s: IO WQE buff allocation failed, %d Ios at size %zu\n", __func__, hw->config.n_io, hw->sli.config.wqe_size); return OCS_HW_RTN_NO_MEMORY; } } else { /* re-use existing IOs, including SGLs */ new_alloc = FALSE; } if (new_alloc) { if (ocs_dma_alloc(hw->os, &hw->xfer_rdy, sizeof(fcp_xfer_rdy_iu_t) * hw->config.n_io, 4/*XXX what does this need to be? */)) { ocs_log_err(hw->os, "XFER_RDY buffer allocation failed\n"); return OCS_HW_RTN_NO_MEMORY; } } xfer_virt = (uintptr_t)hw->xfer_rdy.virt; xfer_phys = hw->xfer_rdy.phys; for (i = 0; i < hw->config.n_io; i++) { hw_wq_callback_t *wqcb; io = hw->io[i]; /* initialize IO fields */ io->hw = hw; /* Assign a WQE buff */ io->wqe.wqebuf = &hw->wqe_buffs[i * hw->sli.config.wqe_size]; /* Allocate the request tag for this IO */ wqcb = ocs_hw_reqtag_alloc(hw, ocs_hw_wq_process_io, io); if (wqcb == NULL) { ocs_log_err(hw->os, "can't allocate request tag\n"); return OCS_HW_RTN_NO_RESOURCES; } io->reqtag = wqcb->instance_index; /* Now for the fields that are initialized on each free */ ocs_hw_init_free_io(io); /* The XB flag isn't cleared on IO free, so initialize it to zero here */ io->xbusy = 0; if (sli_resource_alloc(&hw->sli, SLI_RSRC_FCOE_XRI, &io->indicator, &index)) { ocs_log_err(hw->os, "sli_resource_alloc failed @ %d\n", i); return OCS_HW_RTN_NO_MEMORY; } if (new_alloc && ocs_dma_alloc(hw->os, &io->def_sgl, hw->config.n_sgl * sizeof(sli4_sge_t), 64)) { ocs_log_err(hw->os, "ocs_dma_alloc failed @ %d\n", i); ocs_memset(&io->def_sgl, 0, sizeof(ocs_dma_t)); return OCS_HW_RTN_NO_MEMORY; } io->def_sgl_count = hw->config.n_sgl; io->sgl = &io->def_sgl; io->sgl_count = io->def_sgl_count; if (hw->xfer_rdy.size) { io->xfer_rdy.virt = (void *)xfer_virt; io->xfer_rdy.phys = xfer_phys; io->xfer_rdy.size = sizeof(fcp_xfer_rdy_iu_t); xfer_virt += sizeof(fcp_xfer_rdy_iu_t); xfer_phys += sizeof(fcp_xfer_rdy_iu_t); } } return OCS_HW_RTN_SUCCESS; error: for (i = 0; i < hw->config.n_io && hw->io[i]; i++) { ocs_free(hw->os, hw->io[i], sizeof(ocs_hw_io_t)); hw->io[i] = NULL; } return OCS_HW_RTN_NO_MEMORY; } static ocs_hw_rtn_e ocs_hw_init_io(ocs_hw_t *hw) { uint32_t i = 0, io_index = 0; uint32_t prereg = 0; ocs_hw_io_t *io = NULL; uint8_t cmd[SLI4_BMBX_SIZE]; ocs_hw_rtn_e rc = OCS_HW_RTN_SUCCESS; uint32_t nremaining; uint32_t n = 0; uint32_t sgls_per_request = 256; ocs_dma_t **sgls = NULL; ocs_dma_t reqbuf = { 0 }; prereg = sli_get_sgl_preregister(&hw->sli); if (prereg) { sgls = ocs_malloc(hw->os, sizeof(*sgls) * sgls_per_request, OCS_M_NOWAIT); if (sgls == NULL) { ocs_log_err(hw->os, "ocs_malloc sgls failed\n"); return OCS_HW_RTN_NO_MEMORY; } rc = ocs_dma_alloc(hw->os, &reqbuf, 32 + sgls_per_request*16, OCS_MIN_DMA_ALIGNMENT); if (rc) { ocs_log_err(hw->os, "ocs_dma_alloc reqbuf failed\n"); ocs_free(hw->os, sgls, sizeof(*sgls) * sgls_per_request); return OCS_HW_RTN_NO_MEMORY; } } io = hw->io[io_index]; for (nremaining = hw->config.n_io; nremaining; nremaining -= n) { if (prereg) { /* Copy address of SGL's into local sgls[] array, break out if the xri * is not contiguous. */ for (n = 0; n < MIN(sgls_per_request, nremaining); n++) { /* Check that we have contiguous xri values */ if (n > 0) { if (hw->io[io_index + n]->indicator != (hw->io[io_index + n-1]->indicator+1)) { break; } } sgls[n] = hw->io[io_index + n]->sgl; } if (sli_cmd_fcoe_post_sgl_pages(&hw->sli, cmd, sizeof(cmd), io->indicator, n, sgls, NULL, &reqbuf)) { if (ocs_hw_command(hw, cmd, OCS_CMD_POLL, NULL, NULL)) { rc = OCS_HW_RTN_ERROR; ocs_log_err(hw->os, "SGL post failed\n"); break; } } } else { n = nremaining; } /* Add to tail if successful */ for (i = 0; i < n; i ++) { io->is_port_owned = 0; io->state = OCS_HW_IO_STATE_FREE; ocs_list_add_tail(&hw->io_free, io); io = hw->io[io_index+1]; io_index++; } } if (prereg) { ocs_dma_free(hw->os, &reqbuf); ocs_free(hw->os, sgls, sizeof(*sgls) * sgls_per_request); } return rc; } static int32_t ocs_hw_flush(ocs_hw_t *hw) { uint32_t i = 0; /* Process any remaining completions */ for (i = 0; i < hw->eq_count; i++) { ocs_hw_process(hw, i, ~0); } return 0; } static int32_t ocs_hw_command_cancel(ocs_hw_t *hw) { ocs_lock(&hw->cmd_lock); /* * Manually clean up remaining commands. Note: since this calls * ocs_hw_command_process(), we'll also process the cmd_pending * list, so no need to manually clean that out. */ while (!ocs_list_empty(&hw->cmd_head)) { uint8_t mqe[SLI4_BMBX_SIZE] = { 0 }; ocs_command_ctx_t *ctx = ocs_list_get_head(&hw->cmd_head); ocs_log_test(hw->os, "hung command %08x\n", NULL == ctx ? UINT32_MAX : (NULL == ctx->buf ? UINT32_MAX : *((uint32_t *)ctx->buf))); ocs_unlock(&hw->cmd_lock); ocs_hw_command_process(hw, -1/*Bad status*/, mqe, SLI4_BMBX_SIZE); ocs_lock(&hw->cmd_lock); } ocs_unlock(&hw->cmd_lock); return 0; } /** * @brief Find IO given indicator (xri). * * @param hw Hal context. * @param indicator Indicator (xri) to look for. * * @return Returns io if found, NULL otherwise. */ ocs_hw_io_t * ocs_hw_io_lookup(ocs_hw_t *hw, uint32_t xri) { uint32_t ioindex; ioindex = xri - hw->sli.config.extent[SLI_RSRC_FCOE_XRI].base[0]; return hw->io[ioindex]; } /** * @brief Issue any pending callbacks for an IO and remove off the timer and pending lists. * * @param hw Hal context. * @param io Pointer to the IO to cleanup. */ static void ocs_hw_io_cancel_cleanup(ocs_hw_t *hw, ocs_hw_io_t *io) { ocs_hw_done_t done = io->done; ocs_hw_done_t abort_done = io->abort_done; /* first check active_wqe list and remove if there */ if (ocs_list_on_list(&io->wqe_link)) { ocs_list_remove(&hw->io_timed_wqe, io); } /* Remove from WQ pending list */ if ((io->wq != NULL) && ocs_list_on_list(&io->wq->pending_list)) { ocs_list_remove(&io->wq->pending_list, io); } if (io->done) { void *arg = io->arg; io->done = NULL; ocs_unlock(&hw->io_lock); done(io, io->rnode, 0, SLI4_FC_WCQE_STATUS_SHUTDOWN, 0, arg); ocs_lock(&hw->io_lock); } if (io->abort_done != NULL) { void *abort_arg = io->abort_arg; io->abort_done = NULL; ocs_unlock(&hw->io_lock); abort_done(io, io->rnode, 0, SLI4_FC_WCQE_STATUS_SHUTDOWN, 0, abort_arg); ocs_lock(&hw->io_lock); } } static int32_t ocs_hw_io_cancel(ocs_hw_t *hw) { ocs_hw_io_t *io = NULL; ocs_hw_io_t *tmp_io = NULL; uint32_t iters = 100; /* One second limit */ /* * Manually clean up outstanding IO. * Only walk through list once: the backend will cleanup any IOs when done/abort_done is called. */ ocs_lock(&hw->io_lock); ocs_list_foreach_safe(&hw->io_inuse, io, tmp_io) { ocs_hw_done_t done = io->done; ocs_hw_done_t abort_done = io->abort_done; ocs_hw_io_cancel_cleanup(hw, io); /* * Since this is called in a reset/shutdown * case, If there is no callback, then just * free the IO. * * Note: A port owned XRI cannot be on * the in use list. We cannot call * ocs_hw_io_free() because we already * hold the io_lock. */ if (done == NULL && abort_done == NULL) { /* * Since this is called in a reset/shutdown * case, If there is no callback, then just * free the IO. */ ocs_hw_io_free_common(hw, io); ocs_list_remove(&hw->io_inuse, io); ocs_hw_io_free_move_correct_list(hw, io); } } /* * For port owned XRIs, they are not on the in use list, so * walk though XRIs and issue any callbacks. */ ocs_list_foreach_safe(&hw->io_port_owned, io, tmp_io) { /* check list and remove if there */ if (ocs_list_on_list(&io->dnrx_link)) { ocs_list_remove(&hw->io_port_dnrx, io); ocs_ref_put(&io->ref); /* ocs_ref_get(): same function */ } ocs_hw_io_cancel_cleanup(hw, io); ocs_list_remove(&hw->io_port_owned, io); ocs_hw_io_free_common(hw, io); } ocs_unlock(&hw->io_lock); /* Give time for the callbacks to complete */ do { ocs_udelay(10000); iters--; } while (!ocs_list_empty(&hw->io_inuse) && iters); /* Leave a breadcrumb that cleanup is not yet complete. */ if (!ocs_list_empty(&hw->io_inuse)) { ocs_log_test(hw->os, "io_inuse list is not empty\n"); } return 0; } static int32_t ocs_hw_io_ini_sge(ocs_hw_t *hw, ocs_hw_io_t *io, ocs_dma_t *cmnd, uint32_t cmnd_size, ocs_dma_t *rsp) { sli4_sge_t *data = NULL; if (!hw || !io) { ocs_log_err(NULL, "bad parm hw=%p io=%p\n", hw, io); return OCS_HW_RTN_ERROR; } data = io->def_sgl.virt; /* setup command pointer */ data->buffer_address_high = ocs_addr32_hi(cmnd->phys); data->buffer_address_low = ocs_addr32_lo(cmnd->phys); data->buffer_length = cmnd_size; data++; /* setup response pointer */ data->buffer_address_high = ocs_addr32_hi(rsp->phys); data->buffer_address_low = ocs_addr32_lo(rsp->phys); data->buffer_length = rsp->size; return 0; } static int32_t __ocs_read_topology_cb(ocs_hw_t *hw, int32_t status, uint8_t *mqe, void *arg) { sli4_cmd_read_topology_t *read_topo = (sli4_cmd_read_topology_t *)mqe; if (status || read_topo->hdr.status) { ocs_log_debug(hw->os, "bad status cqe=%#x mqe=%#x\n", status, read_topo->hdr.status); ocs_free(hw->os, mqe, SLI4_BMBX_SIZE); return -1; } switch (read_topo->attention_type) { case SLI4_READ_TOPOLOGY_LINK_UP: hw->link.status = SLI_LINK_STATUS_UP; break; case SLI4_READ_TOPOLOGY_LINK_DOWN: hw->link.status = SLI_LINK_STATUS_DOWN; break; case SLI4_READ_TOPOLOGY_LINK_NO_ALPA: hw->link.status = SLI_LINK_STATUS_NO_ALPA; break; default: hw->link.status = SLI_LINK_STATUS_MAX; break; } switch (read_topo->topology) { case SLI4_READ_TOPOLOGY_NPORT: hw->link.topology = SLI_LINK_TOPO_NPORT; break; case SLI4_READ_TOPOLOGY_FC_AL: hw->link.topology = SLI_LINK_TOPO_LOOP; if (SLI_LINK_STATUS_UP == hw->link.status) { hw->link.loop_map = hw->loop_map.virt; } hw->link.fc_id = read_topo->acquired_al_pa; break; default: hw->link.topology = SLI_LINK_TOPO_MAX; break; } hw->link.medium = SLI_LINK_MEDIUM_FC; switch (read_topo->link_current.link_speed) { case SLI4_READ_TOPOLOGY_SPEED_1G: hw->link.speed = 1 * 1000; break; case SLI4_READ_TOPOLOGY_SPEED_2G: hw->link.speed = 2 * 1000; break; case SLI4_READ_TOPOLOGY_SPEED_4G: hw->link.speed = 4 * 1000; break; case SLI4_READ_TOPOLOGY_SPEED_8G: hw->link.speed = 8 * 1000; break; case SLI4_READ_TOPOLOGY_SPEED_16G: hw->link.speed = 16 * 1000; hw->link.loop_map = NULL; break; case SLI4_READ_TOPOLOGY_SPEED_32G: hw->link.speed = 32 * 1000; hw->link.loop_map = NULL; break; } ocs_free(hw->os, mqe, SLI4_BMBX_SIZE); ocs_hw_read_fcf(hw, SLI4_FCOE_FCF_TABLE_FIRST); return 0; } static int32_t __ocs_hw_port_common(const char *funcname, ocs_sm_ctx_t *ctx, ocs_sm_event_t evt, void *data) { ocs_sli_port_t *sport = ctx->app; ocs_hw_t *hw = sport->hw; smtrace("port"); switch (evt) { case OCS_EVT_EXIT: /* ignore */ break; case OCS_EVT_HW_PORT_REQ_FREE: case OCS_EVT_HW_PORT_REQ_ATTACH: if (data != NULL) { ocs_free(hw->os, data, SLI4_BMBX_SIZE); } /* fall through */ default: ocs_log_test(hw->os, "%s %-20s not handled\n", funcname, ocs_sm_event_name(evt)); break; } return 0; } static void * __ocs_hw_port_free_report_fail(ocs_sm_ctx_t *ctx, ocs_sm_event_t evt, void *data) { ocs_sli_port_t *sport = ctx->app; ocs_hw_t *hw = sport->hw; smtrace("port"); switch (evt) { case OCS_EVT_ENTER: if (data != NULL) { ocs_free(hw->os, data, SLI4_BMBX_SIZE); } if (hw->callback.port != NULL) { hw->callback.port(hw->args.port, OCS_HW_PORT_FREE_FAIL, sport); } break; default: break; } return NULL; } static void * __ocs_hw_port_freed(ocs_sm_ctx_t *ctx, ocs_sm_event_t evt, void *data) { ocs_sli_port_t *sport = ctx->app; ocs_hw_t *hw = sport->hw; smtrace("port"); switch (evt) { case OCS_EVT_ENTER: /* free SLI resource */ if (sli_resource_free(&hw->sli, SLI_RSRC_FCOE_VPI, sport->indicator)) { ocs_log_err(hw->os, "FCOE_VPI free failure addr=%#x\n", sport->fc_id); } /* free mailbox buffer */ if (data != NULL) { ocs_free(hw->os, data, SLI4_BMBX_SIZE); } if (hw->callback.port != NULL) { hw->callback.port(hw->args.port, OCS_HW_PORT_FREE_OK, sport); } break; default: break; } return NULL; } static void * __ocs_hw_port_attach_report_fail(ocs_sm_ctx_t *ctx, ocs_sm_event_t evt, void *data) { ocs_sli_port_t *sport = ctx->app; ocs_hw_t *hw = sport->hw; smtrace("port"); switch (evt) { case OCS_EVT_ENTER: /* free SLI resource */ sli_resource_free(&hw->sli, SLI_RSRC_FCOE_VPI, sport->indicator); /* free mailbox buffer */ if (data != NULL) { ocs_free(hw->os, data, SLI4_BMBX_SIZE); } if (hw->callback.port != NULL) { hw->callback.port(hw->args.port, OCS_HW_PORT_ATTACH_FAIL, sport); } if (sport->sm_free_req_pending) { ocs_sm_transition(ctx, __ocs_hw_port_free_unreg_vpi, NULL); } break; default: __ocs_hw_port_common(__func__, ctx, evt, data); break; } return NULL; } static void * __ocs_hw_port_free_unreg_vpi(ocs_sm_ctx_t *ctx, ocs_sm_event_t evt, void *data) { ocs_sli_port_t *sport = ctx->app; ocs_hw_t *hw = sport->hw; uint8_t *cmd = NULL; smtrace("port"); switch (evt) { case OCS_EVT_ENTER: /* allocate memory and send unreg_vpi */ cmd = ocs_malloc(hw->os, SLI4_BMBX_SIZE, OCS_M_ZERO | OCS_M_NOWAIT); if (!cmd) { ocs_sm_post_event(ctx, OCS_EVT_ERROR, NULL); break; } if (0 == sli_cmd_unreg_vpi(&hw->sli, cmd, SLI4_BMBX_SIZE, sport->indicator, SLI4_UNREG_TYPE_PORT)) { ocs_log_err(hw->os, "UNREG_VPI format failure\n"); ocs_free(hw->os, cmd, SLI4_BMBX_SIZE); ocs_sm_post_event(ctx, OCS_EVT_ERROR, NULL); break; } if (ocs_hw_command(hw, cmd, OCS_CMD_NOWAIT, __ocs_hw_port_cb, sport)) { ocs_log_err(hw->os, "UNREG_VPI command failure\n"); ocs_free(hw->os, cmd, SLI4_BMBX_SIZE); ocs_sm_post_event(ctx, OCS_EVT_ERROR, NULL); break; } break; case OCS_EVT_RESPONSE: ocs_sm_transition(ctx, __ocs_hw_port_freed, data); break; case OCS_EVT_ERROR: ocs_sm_transition(ctx, __ocs_hw_port_free_report_fail, data); break; default: __ocs_hw_port_common(__func__, ctx, evt, data); break; } return NULL; } static void * __ocs_hw_port_free_nop(ocs_sm_ctx_t *ctx, ocs_sm_event_t evt, void *data) { ocs_sli_port_t *sport = ctx->app; ocs_hw_t *hw = sport->hw; smtrace("port"); switch (evt) { case OCS_EVT_ENTER: /* Forward to execute in mailbox completion processing context */ if (ocs_hw_async_call(hw, __ocs_hw_port_realloc_cb, sport)) { ocs_log_err(hw->os, "ocs_hw_async_call failed\n"); } break; case OCS_EVT_RESPONSE: ocs_sm_transition(ctx, __ocs_hw_port_freed, data); break; case OCS_EVT_ERROR: ocs_sm_transition(ctx, __ocs_hw_port_free_report_fail, data); break; default: break; } return NULL; } static void * __ocs_hw_port_attached(ocs_sm_ctx_t *ctx, ocs_sm_event_t evt, void *data) { ocs_sli_port_t *sport = ctx->app; ocs_hw_t *hw = sport->hw; smtrace("port"); switch (evt) { case OCS_EVT_ENTER: if (data != NULL) { ocs_free(hw->os, data, SLI4_BMBX_SIZE); } if (hw->callback.port != NULL) { hw->callback.port(hw->args.port, OCS_HW_PORT_ATTACH_OK, sport); } if (sport->sm_free_req_pending) { ocs_sm_transition(ctx, __ocs_hw_port_free_unreg_vpi, NULL); } break; case OCS_EVT_HW_PORT_REQ_FREE: /* virtual/physical port request free */ ocs_sm_transition(ctx, __ocs_hw_port_free_unreg_vpi, NULL); break; default: __ocs_hw_port_common(__func__, ctx, evt, data); break; } return NULL; } static void * __ocs_hw_port_attach_reg_vpi(ocs_sm_ctx_t *ctx, ocs_sm_event_t evt, void *data) { ocs_sli_port_t *sport = ctx->app; ocs_hw_t *hw = sport->hw; smtrace("port"); switch (evt) { case OCS_EVT_ENTER: if (0 == sli_cmd_reg_vpi(&hw->sli, data, SLI4_BMBX_SIZE, sport, FALSE)) { ocs_log_err(hw->os, "REG_VPI format failure\n"); ocs_sm_post_event(ctx, OCS_EVT_ERROR, NULL); break; } if (ocs_hw_command(hw, data, OCS_CMD_NOWAIT, __ocs_hw_port_cb, sport)) { ocs_log_err(hw->os, "REG_VPI command failure\n"); ocs_sm_post_event(ctx, OCS_EVT_ERROR, NULL); break; } break; case OCS_EVT_RESPONSE: ocs_sm_transition(ctx, __ocs_hw_port_attached, data); break; case OCS_EVT_ERROR: ocs_sm_transition(ctx, __ocs_hw_port_attach_report_fail, data); break; case OCS_EVT_HW_PORT_REQ_FREE: /* Wait for attach response and then free */ sport->sm_free_req_pending = 1; break; default: __ocs_hw_port_common(__func__, ctx, evt, data); break; } return NULL; } static void * __ocs_hw_port_done(ocs_sm_ctx_t *ctx, ocs_sm_event_t evt, void *data) { ocs_sli_port_t *sport = ctx->app; ocs_hw_t *hw = sport->hw; smtrace("port"); switch (evt) { case OCS_EVT_ENTER: /* free SLI resource */ sli_resource_free(&hw->sli, SLI_RSRC_FCOE_VPI, sport->indicator); /* free mailbox buffer */ if (data != NULL) { ocs_free(hw->os, data, SLI4_BMBX_SIZE); } break; default: __ocs_hw_port_common(__func__, ctx, evt, data); break; } return NULL; } static void * __ocs_hw_port_allocated(ocs_sm_ctx_t *ctx, ocs_sm_event_t evt, void *data) { ocs_sli_port_t *sport = ctx->app; ocs_hw_t *hw = sport->hw; smtrace("port"); switch (evt) { case OCS_EVT_ENTER: if (data != NULL) { ocs_free(hw->os, data, SLI4_BMBX_SIZE); } if (hw->callback.port != NULL) { hw->callback.port(hw->args.port, OCS_HW_PORT_ALLOC_OK, sport); } /* If there is a pending free request, then handle it now */ if (sport->sm_free_req_pending) { ocs_sm_transition(ctx, __ocs_hw_port_free_unreg_vpi, NULL); } break; case OCS_EVT_HW_PORT_REQ_ATTACH: /* virtual port requests attach */ ocs_sm_transition(ctx, __ocs_hw_port_attach_reg_vpi, data); break; case OCS_EVT_HW_PORT_ATTACH_OK: /* physical port attached (as part of attaching domain) */ ocs_sm_transition(ctx, __ocs_hw_port_attached, data); break; case OCS_EVT_HW_PORT_REQ_FREE: /* virtual port request free */ if (SLI4_IF_TYPE_LANCER_FC_ETH == sli_get_if_type(&hw->sli)) { ocs_sm_transition(ctx, __ocs_hw_port_free_unreg_vpi, NULL); } else { /* * Note: BE3/Skyhawk will respond with a status of 0x20 * unless the reg_vpi has been issued, so we can * skip the unreg_vpi for these adapters. * * Send a nop to make sure that free doesn't occur in * same context */ ocs_sm_transition(ctx, __ocs_hw_port_free_nop, NULL); } break; default: __ocs_hw_port_common(__func__, ctx, evt, data); break; } return NULL; } static void * __ocs_hw_port_alloc_report_fail(ocs_sm_ctx_t *ctx, ocs_sm_event_t evt, void *data) { ocs_sli_port_t *sport = ctx->app; ocs_hw_t *hw = sport->hw; smtrace("port"); switch (evt) { case OCS_EVT_ENTER: /* free SLI resource */ sli_resource_free(&hw->sli, SLI_RSRC_FCOE_VPI, sport->indicator); /* free mailbox buffer */ if (data != NULL) { ocs_free(hw->os, data, SLI4_BMBX_SIZE); } if (hw->callback.port != NULL) { hw->callback.port(hw->args.port, OCS_HW_PORT_ALLOC_FAIL, sport); } /* If there is a pending free request, then handle it now */ if (sport->sm_free_req_pending) { ocs_sm_transition(ctx, __ocs_hw_port_free_unreg_vpi, NULL); } break; default: __ocs_hw_port_common(__func__, ctx, evt, data); break; } return NULL; } static void * __ocs_hw_port_alloc_read_sparm64(ocs_sm_ctx_t *ctx, ocs_sm_event_t evt, void *data) { ocs_sli_port_t *sport = ctx->app; ocs_hw_t *hw = sport->hw; uint8_t *payload = NULL; smtrace("port"); switch (evt) { case OCS_EVT_ENTER: /* allocate memory for the service parameters */ if (ocs_dma_alloc(hw->os, &sport->dma, 112, 4)) { ocs_log_err(hw->os, "Failed to allocate DMA memory\n"); ocs_sm_transition(ctx, __ocs_hw_port_done, data); break; } if (0 == sli_cmd_read_sparm64(&hw->sli, data, SLI4_BMBX_SIZE, &sport->dma, sport->indicator)) { ocs_log_err(hw->os, "READ_SPARM64 allocation failure\n"); ocs_dma_free(hw->os, &sport->dma); ocs_sm_transition(ctx, __ocs_hw_port_done, data); break; } if (ocs_hw_command(hw, data, OCS_CMD_NOWAIT, __ocs_hw_port_cb, sport)) { ocs_log_err(hw->os, "READ_SPARM64 command failure\n"); ocs_dma_free(hw->os, &sport->dma); ocs_sm_transition(ctx, __ocs_hw_port_done, data); break; } break; case OCS_EVT_RESPONSE: payload = sport->dma.virt; ocs_display_sparams(sport->display_name, "sport sparm64", 0, NULL, payload); ocs_memcpy(&sport->sli_wwpn, payload + SLI4_READ_SPARM64_WWPN_OFFSET, sizeof(sport->sli_wwpn)); ocs_memcpy(&sport->sli_wwnn, payload + SLI4_READ_SPARM64_WWNN_OFFSET, sizeof(sport->sli_wwnn)); ocs_dma_free(hw->os, &sport->dma); ocs_sm_transition(ctx, __ocs_hw_port_alloc_init_vpi, data); break; case OCS_EVT_ERROR: ocs_dma_free(hw->os, &sport->dma); ocs_sm_transition(ctx, __ocs_hw_port_alloc_report_fail, data); break; case OCS_EVT_HW_PORT_REQ_FREE: /* Wait for attach response and then free */ sport->sm_free_req_pending = 1; break; case OCS_EVT_EXIT: break; default: __ocs_hw_port_common(__func__, ctx, evt, data); break; } return NULL; } static void * __ocs_hw_port_alloc_init(ocs_sm_ctx_t *ctx, ocs_sm_event_t evt, void *data) { ocs_sli_port_t *sport = ctx->app; smtrace("port"); switch (evt) { case OCS_EVT_ENTER: /* no-op */ break; case OCS_EVT_HW_PORT_ALLOC_OK: ocs_sm_transition(ctx, __ocs_hw_port_allocated, NULL); break; case OCS_EVT_HW_PORT_ALLOC_FAIL: ocs_sm_transition(ctx, __ocs_hw_port_alloc_report_fail, NULL); break; case OCS_EVT_HW_PORT_REQ_FREE: /* Wait for attach response and then free */ sport->sm_free_req_pending = 1; break; default: __ocs_hw_port_common(__func__, ctx, evt, data); break; } return NULL; } static void * __ocs_hw_port_alloc_init_vpi(ocs_sm_ctx_t *ctx, ocs_sm_event_t evt, void *data) { ocs_sli_port_t *sport = ctx->app; ocs_hw_t *hw = sport->hw; smtrace("port"); switch (evt) { case OCS_EVT_ENTER: /* If there is a pending free request, then handle it now */ if (sport->sm_free_req_pending) { ocs_sm_transition(ctx, __ocs_hw_port_freed, NULL); return NULL; } /* TODO XXX transitioning to done only works if this is called * directly from ocs_hw_port_alloc BUT not if called from * read_sparm64. In the later case, we actually want to go * through report_ok/fail */ if (0 == sli_cmd_init_vpi(&hw->sli, data, SLI4_BMBX_SIZE, sport->indicator, sport->domain->indicator)) { ocs_log_err(hw->os, "INIT_VPI allocation failure\n"); ocs_sm_transition(ctx, __ocs_hw_port_done, data); break; } if (ocs_hw_command(hw, data, OCS_CMD_NOWAIT, __ocs_hw_port_cb, sport)) { ocs_log_err(hw->os, "INIT_VPI command failure\n"); ocs_sm_transition(ctx, __ocs_hw_port_done, data); break; } break; case OCS_EVT_RESPONSE: ocs_sm_transition(ctx, __ocs_hw_port_allocated, data); break; case OCS_EVT_ERROR: ocs_sm_transition(ctx, __ocs_hw_port_alloc_report_fail, data); break; case OCS_EVT_HW_PORT_REQ_FREE: /* Wait for attach response and then free */ sport->sm_free_req_pending = 1; break; case OCS_EVT_EXIT: break; default: __ocs_hw_port_common(__func__, ctx, evt, data); break; } return NULL; } static int32_t __ocs_hw_port_cb(ocs_hw_t *hw, int32_t status, uint8_t *mqe, void *arg) { ocs_sli_port_t *sport = arg; sli4_mbox_command_header_t *hdr = (sli4_mbox_command_header_t *)mqe; ocs_sm_event_t evt; if (status || hdr->status) { ocs_log_debug(hw->os, "bad status vpi=%#x st=%x hdr=%x\n", sport->indicator, status, hdr->status); evt = OCS_EVT_ERROR; } else { evt = OCS_EVT_RESPONSE; } ocs_sm_post_event(&sport->ctx, evt, mqe); return 0; } static int32_t __ocs_hw_port_realloc_cb(ocs_hw_t *hw, int32_t status, uint8_t *mqe, void *arg) { ocs_sli_port_t *sport = arg; sli4_mbox_command_header_t *hdr = (sli4_mbox_command_header_t *)mqe; ocs_sm_event_t evt; uint8_t *mqecpy; if (status || hdr->status) { ocs_log_debug(hw->os, "bad status vpi=%#x st=%x hdr=%x\n", sport->indicator, status, hdr->status); evt = OCS_EVT_ERROR; } else { evt = OCS_EVT_RESPONSE; } /* * In this case we have to malloc a mailbox command buffer, as it is reused * in the state machine post event call, and eventually freed */ mqecpy = ocs_malloc(hw->os, SLI4_BMBX_SIZE, OCS_M_ZERO | OCS_M_NOWAIT); if (mqecpy == NULL) { ocs_log_err(hw->os, "malloc mqecpy failed\n"); return -1; } ocs_memcpy(mqecpy, mqe, SLI4_BMBX_SIZE); ocs_sm_post_event(&sport->ctx, evt, mqecpy); return 0; } /*************************************************************************** * Domain state machine */ static int32_t __ocs_hw_domain_common(const char *funcname, ocs_sm_ctx_t *ctx, ocs_sm_event_t evt, void *data) { ocs_domain_t *domain = ctx->app; ocs_hw_t *hw = domain->hw; smtrace("domain"); switch (evt) { case OCS_EVT_EXIT: /* ignore */ break; default: ocs_log_test(hw->os, "%s %-20s not handled\n", funcname, ocs_sm_event_name(evt)); break; } return 0; } static void * __ocs_hw_domain_alloc_report_fail(ocs_sm_ctx_t *ctx, ocs_sm_event_t evt, void *data) { ocs_domain_t *domain = ctx->app; ocs_hw_t *hw = domain->hw; smtrace("domain"); switch (evt) { case OCS_EVT_ENTER: /* free command buffer */ if (data != NULL) { ocs_free(hw->os, data, SLI4_BMBX_SIZE); } /* free SLI resources */ sli_resource_free(&hw->sli, SLI_RSRC_FCOE_VFI, domain->indicator); /* TODO how to free FCFI (or do we at all)? */ if (hw->callback.domain != NULL) { hw->callback.domain(hw->args.domain, OCS_HW_DOMAIN_ALLOC_FAIL, domain); } break; default: __ocs_hw_domain_common(__func__, ctx, evt, data); break; } return NULL; } static void * __ocs_hw_domain_attached(ocs_sm_ctx_t *ctx, ocs_sm_event_t evt, void *data) { ocs_domain_t *domain = ctx->app; ocs_hw_t *hw = domain->hw; smtrace("domain"); switch (evt) { case OCS_EVT_ENTER: /* free mailbox buffer and send alloc ok to physical sport */ ocs_free(hw->os, data, SLI4_BMBX_SIZE); ocs_sm_post_event(&domain->sport->ctx, OCS_EVT_HW_PORT_ATTACH_OK, NULL); /* now inform registered callbacks */ if (hw->callback.domain != NULL) { hw->callback.domain(hw->args.domain, OCS_HW_DOMAIN_ATTACH_OK, domain); } break; case OCS_EVT_HW_DOMAIN_REQ_FREE: ocs_sm_transition(ctx, __ocs_hw_domain_free_unreg_vfi, NULL); break; default: __ocs_hw_domain_common(__func__, ctx, evt, data); break; } return NULL; } static void * __ocs_hw_domain_attach_report_fail(ocs_sm_ctx_t *ctx, ocs_sm_event_t evt, void *data) { ocs_domain_t *domain = ctx->app; ocs_hw_t *hw = domain->hw; smtrace("domain"); switch (evt) { case OCS_EVT_ENTER: if (data != NULL) { ocs_free(hw->os, data, SLI4_BMBX_SIZE); } /* free SLI resources */ sli_resource_free(&hw->sli, SLI_RSRC_FCOE_VFI, domain->indicator); /* TODO how to free FCFI (or do we at all)? */ if (hw->callback.domain != NULL) { hw->callback.domain(hw->args.domain, OCS_HW_DOMAIN_ATTACH_FAIL, domain); } break; case OCS_EVT_EXIT: break; default: __ocs_hw_domain_common(__func__, ctx, evt, data); break; } return NULL; } static void * __ocs_hw_domain_attach_reg_vfi(ocs_sm_ctx_t *ctx, ocs_sm_event_t evt, void *data) { ocs_domain_t *domain = ctx->app; ocs_hw_t *hw = domain->hw; smtrace("domain"); switch (evt) { case OCS_EVT_ENTER: ocs_display_sparams("", "reg vpi", 0, NULL, domain->dma.virt); if (0 == sli_cmd_reg_vfi(&hw->sli, data, SLI4_BMBX_SIZE, domain)) { ocs_log_err(hw->os, "REG_VFI format failure\n"); ocs_sm_post_event(ctx, OCS_EVT_ERROR, NULL); break; } if (ocs_hw_command(hw, data, OCS_CMD_NOWAIT, __ocs_hw_domain_cb, domain)) { ocs_log_err(hw->os, "REG_VFI command failure\n"); ocs_sm_post_event(ctx, OCS_EVT_ERROR, NULL); break; } break; case OCS_EVT_RESPONSE: ocs_sm_transition(ctx, __ocs_hw_domain_attached, data); break; case OCS_EVT_ERROR: ocs_sm_transition(ctx, __ocs_hw_domain_attach_report_fail, data); break; default: __ocs_hw_domain_common(__func__, ctx, evt, data); break; } return NULL; } static void * __ocs_hw_domain_allocated(ocs_sm_ctx_t *ctx, ocs_sm_event_t evt, void *data) { ocs_domain_t *domain = ctx->app; ocs_hw_t *hw = domain->hw; smtrace("domain"); switch (evt) { case OCS_EVT_ENTER: /* free mailbox buffer and send alloc ok to physical sport */ ocs_free(hw->os, data, SLI4_BMBX_SIZE); ocs_sm_post_event(&domain->sport->ctx, OCS_EVT_HW_PORT_ALLOC_OK, NULL); ocs_hw_domain_add(hw, domain); /* now inform registered callbacks */ if (hw->callback.domain != NULL) { hw->callback.domain(hw->args.domain, OCS_HW_DOMAIN_ALLOC_OK, domain); } break; case OCS_EVT_HW_DOMAIN_REQ_ATTACH: ocs_sm_transition(ctx, __ocs_hw_domain_attach_reg_vfi, data); break; case OCS_EVT_HW_DOMAIN_REQ_FREE: /* unreg_fcfi/vfi */ if (SLI4_IF_TYPE_BE3_SKH_PF == sli_get_if_type(&hw->sli)) { ocs_sm_transition(ctx, __ocs_hw_domain_free_unreg_fcfi, NULL); } else { ocs_sm_transition(ctx, __ocs_hw_domain_free_unreg_vfi, NULL); } break; default: __ocs_hw_domain_common(__func__, ctx, evt, data); break; } return NULL; } static void * __ocs_hw_domain_alloc_read_sparm64(ocs_sm_ctx_t *ctx, ocs_sm_event_t evt, void *data) { ocs_domain_t *domain = ctx->app; ocs_hw_t *hw = domain->hw; smtrace("domain"); switch (evt) { case OCS_EVT_ENTER: if (0 == sli_cmd_read_sparm64(&hw->sli, data, SLI4_BMBX_SIZE, &domain->dma, SLI4_READ_SPARM64_VPI_DEFAULT)) { ocs_log_err(hw->os, "READ_SPARM64 format failure\n"); ocs_sm_post_event(ctx, OCS_EVT_ERROR, NULL); break; } if (ocs_hw_command(hw, data, OCS_CMD_NOWAIT, __ocs_hw_domain_cb, domain)) { ocs_log_err(hw->os, "READ_SPARM64 command failure\n"); ocs_sm_post_event(ctx, OCS_EVT_ERROR, NULL); break; } break; case OCS_EVT_EXIT: break; case OCS_EVT_RESPONSE: ocs_display_sparams(domain->display_name, "domain sparm64", 0, NULL, domain->dma.virt); ocs_sm_transition(ctx, __ocs_hw_domain_allocated, data); break; case OCS_EVT_ERROR: ocs_sm_transition(ctx, __ocs_hw_domain_alloc_report_fail, data); break; default: __ocs_hw_domain_common(__func__, ctx, evt, data); break; } return NULL; } static void * __ocs_hw_domain_alloc_init_vfi(ocs_sm_ctx_t *ctx, ocs_sm_event_t evt, void *data) { ocs_domain_t *domain = ctx->app; ocs_sli_port_t *sport = domain->sport; ocs_hw_t *hw = domain->hw; smtrace("domain"); switch (evt) { case OCS_EVT_ENTER: if (0 == sli_cmd_init_vfi(&hw->sli, data, SLI4_BMBX_SIZE, domain->indicator, domain->fcf_indicator, sport->indicator)) { ocs_log_err(hw->os, "INIT_VFI format failure\n"); ocs_sm_post_event(ctx, OCS_EVT_ERROR, NULL); break; } if (ocs_hw_command(hw, data, OCS_CMD_NOWAIT, __ocs_hw_domain_cb, domain)) { ocs_log_err(hw->os, "INIT_VFI command failure\n"); ocs_sm_post_event(ctx, OCS_EVT_ERROR, NULL); break; } break; case OCS_EVT_EXIT: break; case OCS_EVT_RESPONSE: ocs_sm_transition(ctx, __ocs_hw_domain_alloc_read_sparm64, data); break; case OCS_EVT_ERROR: ocs_sm_transition(ctx, __ocs_hw_domain_alloc_report_fail, data); break; default: __ocs_hw_domain_common(__func__, ctx, evt, data); break; } return NULL; } static void * __ocs_hw_domain_alloc_reg_fcfi(ocs_sm_ctx_t *ctx, ocs_sm_event_t evt, void *data) { ocs_domain_t *domain = ctx->app; ocs_hw_t *hw = domain->hw; smtrace("domain"); switch (evt) { case OCS_EVT_ENTER: { sli4_cmd_rq_cfg_t rq_cfg[SLI4_CMD_REG_FCFI_NUM_RQ_CFG]; uint32_t i; /* Set the filter match/mask values from hw's filter_def values */ for (i = 0; i < SLI4_CMD_REG_FCFI_NUM_RQ_CFG; i++) { rq_cfg[i].rq_id = 0xffff; rq_cfg[i].r_ctl_mask = (uint8_t) hw->config.filter_def[i]; rq_cfg[i].r_ctl_match = (uint8_t) (hw->config.filter_def[i] >> 8); rq_cfg[i].type_mask = (uint8_t) (hw->config.filter_def[i] >> 16); rq_cfg[i].type_match = (uint8_t) (hw->config.filter_def[i] >> 24); } /* Set the rq_id for each, in order of RQ definition */ for (i = 0; i < hw->hw_rq_count; i++) { if (i >= ARRAY_SIZE(rq_cfg)) { ocs_log_warn(hw->os, "more RQs than REG_FCFI filter entries\n"); break; } rq_cfg[i].rq_id = hw->hw_rq[i]->hdr->id; } if (!data) { ocs_sm_post_event(ctx, OCS_EVT_ERROR, NULL); break; } if (hw->hw_mrq_count) { if (OCS_HW_RTN_SUCCESS != ocs_hw_config_mrq(hw, SLI4_CMD_REG_FCFI_SET_FCFI_MODE, domain->vlan_id, domain->fcf)) { ocs_log_err(hw->os, "REG_FCFI_MRQ format failure\n"); ocs_sm_post_event(ctx, OCS_EVT_ERROR, NULL); break; } } else { if (0 == sli_cmd_reg_fcfi(&hw->sli, data, SLI4_BMBX_SIZE, domain->fcf, rq_cfg, domain->vlan_id)) { ocs_log_err(hw->os, "REG_FCFI format failure\n"); ocs_sm_post_event(ctx, OCS_EVT_ERROR, NULL); break; } } if (ocs_hw_command(hw, data, OCS_CMD_NOWAIT, __ocs_hw_domain_cb, domain)) { ocs_log_err(hw->os, "REG_FCFI command failure\n"); ocs_sm_post_event(ctx, OCS_EVT_ERROR, NULL); break; } break; } case OCS_EVT_EXIT: break; case OCS_EVT_RESPONSE: if (!data) { ocs_sm_post_event(ctx, OCS_EVT_ERROR, NULL); break; } domain->fcf_indicator = ((sli4_cmd_reg_fcfi_t *)data)->fcfi; /* * IF_TYPE 0 devices do not support explicit VFI and VPI initialization * and instead rely on implicit initialization during VFI registration. * Short circuit normal processing here for those devices. */ if (SLI4_IF_TYPE_BE3_SKH_PF == sli_get_if_type(&hw->sli)) { ocs_sm_transition(ctx, __ocs_hw_domain_alloc_read_sparm64, data); } else { ocs_sm_transition(ctx, __ocs_hw_domain_alloc_init_vfi, data); } break; case OCS_EVT_ERROR: ocs_sm_transition(ctx, __ocs_hw_domain_alloc_report_fail, data); break; default: __ocs_hw_domain_common(__func__, ctx, evt, data); break; } return NULL; } static void * __ocs_hw_domain_init(ocs_sm_ctx_t *ctx, ocs_sm_event_t evt, void *data) { ocs_domain_t *domain = ctx->app; ocs_hw_t *hw = domain->hw; smtrace("domain"); switch (evt) { case OCS_EVT_ENTER: if (sli_get_medium(&hw->sli) == SLI_LINK_MEDIUM_FC) { /* * For FC, the HW alread registered a FCFI * Copy FCF information into the domain and jump to INIT_VFI */ domain->fcf_indicator = hw->fcf_indicator; ocs_sm_transition(&domain->sm, __ocs_hw_domain_alloc_init_vfi, data); } else { ocs_sm_transition(&domain->sm, __ocs_hw_domain_alloc_reg_fcfi, data); } break; default: __ocs_hw_domain_common(__func__, ctx, evt, data); break; } return NULL; } static void * __ocs_hw_domain_free_report_fail(ocs_sm_ctx_t *ctx, ocs_sm_event_t evt, void *data) { ocs_domain_t *domain = ctx->app; smtrace("domain"); switch (evt) { case OCS_EVT_ENTER: if (domain != NULL) { ocs_hw_t *hw = domain->hw; ocs_hw_domain_del(hw, domain); if (hw->callback.domain != NULL) { hw->callback.domain(hw->args.domain, OCS_HW_DOMAIN_FREE_FAIL, domain); } } /* free command buffer */ if (data != NULL) { ocs_free(domain != NULL ? domain->hw->os : NULL, data, SLI4_BMBX_SIZE); } break; case OCS_EVT_EXIT: break; default: __ocs_hw_domain_common(__func__, ctx, evt, data); break; } return NULL; } static void * __ocs_hw_domain_freed(ocs_sm_ctx_t *ctx, ocs_sm_event_t evt, void *data) { ocs_domain_t *domain = ctx->app; smtrace("domain"); switch (evt) { case OCS_EVT_ENTER: /* Free DMA and mailbox buffer */ if (domain != NULL) { ocs_hw_t *hw = domain->hw; /* free VFI resource */ sli_resource_free(&hw->sli, SLI_RSRC_FCOE_VFI, domain->indicator); ocs_hw_domain_del(hw, domain); /* inform registered callbacks */ if (hw->callback.domain != NULL) { hw->callback.domain(hw->args.domain, OCS_HW_DOMAIN_FREE_OK, domain); } } if (data != NULL) { ocs_free(NULL, data, SLI4_BMBX_SIZE); } break; case OCS_EVT_EXIT: break; default: __ocs_hw_domain_common(__func__, ctx, evt, data); break; } return NULL; } static void * __ocs_hw_domain_free_redisc_fcf(ocs_sm_ctx_t *ctx, ocs_sm_event_t evt, void *data) { ocs_domain_t *domain = ctx->app; ocs_hw_t *hw = domain->hw; smtrace("domain"); switch (evt) { case OCS_EVT_ENTER: /* if we're in the middle of a teardown, skip sending rediscover */ if (hw->state == OCS_HW_STATE_TEARDOWN_IN_PROGRESS) { ocs_sm_transition(ctx, __ocs_hw_domain_freed, data); break; } if (0 == sli_cmd_fcoe_rediscover_fcf(&hw->sli, data, SLI4_BMBX_SIZE, domain->fcf)) { ocs_log_err(hw->os, "REDISCOVER_FCF format failure\n"); ocs_sm_post_event(ctx, OCS_EVT_ERROR, NULL); break; } if (ocs_hw_command(hw, data, OCS_CMD_NOWAIT, __ocs_hw_domain_cb, domain)) { ocs_log_err(hw->os, "REDISCOVER_FCF command failure\n"); ocs_sm_post_event(ctx, OCS_EVT_ERROR, NULL); } break; case OCS_EVT_RESPONSE: case OCS_EVT_ERROR: /* REDISCOVER_FCF can fail if none exist */ ocs_sm_transition(ctx, __ocs_hw_domain_freed, data); break; case OCS_EVT_EXIT: break; default: __ocs_hw_domain_common(__func__, ctx, evt, data); break; } return NULL; } static void * __ocs_hw_domain_free_unreg_fcfi(ocs_sm_ctx_t *ctx, ocs_sm_event_t evt, void *data) { ocs_domain_t *domain = ctx->app; ocs_hw_t *hw = domain->hw; smtrace("domain"); switch (evt) { case OCS_EVT_ENTER: if (data == NULL) { data = ocs_malloc(hw->os, SLI4_BMBX_SIZE, OCS_M_ZERO | OCS_M_NOWAIT); if (!data) { ocs_sm_post_event(ctx, OCS_EVT_ERROR, NULL); break; } } if (0 == sli_cmd_unreg_fcfi(&hw->sli, data, SLI4_BMBX_SIZE, domain->fcf_indicator)) { ocs_log_err(hw->os, "UNREG_FCFI format failure\n"); ocs_free(hw->os, data, SLI4_BMBX_SIZE); ocs_sm_post_event(ctx, OCS_EVT_ERROR, NULL); break; } if (ocs_hw_command(hw, data, OCS_CMD_NOWAIT, __ocs_hw_domain_cb, domain)) { ocs_log_err(hw->os, "UNREG_FCFI command failure\n"); ocs_free(hw->os, data, SLI4_BMBX_SIZE); ocs_sm_post_event(ctx, OCS_EVT_ERROR, NULL); break; } break; case OCS_EVT_RESPONSE: if (domain->req_rediscover_fcf) { domain->req_rediscover_fcf = FALSE; ocs_sm_transition(ctx, __ocs_hw_domain_free_redisc_fcf, data); } else { ocs_sm_transition(ctx, __ocs_hw_domain_freed, data); } break; case OCS_EVT_ERROR: ocs_sm_transition(ctx, __ocs_hw_domain_free_report_fail, data); break; case OCS_EVT_EXIT: break; default: __ocs_hw_domain_common(__func__, ctx, evt, data); break; } return NULL; } static void * __ocs_hw_domain_free_unreg_vfi(ocs_sm_ctx_t *ctx, ocs_sm_event_t evt, void *data) { ocs_domain_t *domain = ctx->app; ocs_hw_t *hw = domain->hw; uint8_t is_fc = FALSE; smtrace("domain"); is_fc = (sli_get_medium(&hw->sli) == SLI_LINK_MEDIUM_FC); switch (evt) { case OCS_EVT_ENTER: if (data == NULL) { data = ocs_malloc(hw->os, SLI4_BMBX_SIZE, OCS_M_ZERO | OCS_M_NOWAIT); if (!data) { ocs_sm_post_event(ctx, OCS_EVT_ERROR, NULL); break; } } if (0 == sli_cmd_unreg_vfi(&hw->sli, data, SLI4_BMBX_SIZE, domain, SLI4_UNREG_TYPE_DOMAIN)) { ocs_log_err(hw->os, "UNREG_VFI format failure\n"); ocs_free(hw->os, data, SLI4_BMBX_SIZE); ocs_sm_post_event(ctx, OCS_EVT_ERROR, NULL); break; } if (ocs_hw_command(hw, data, OCS_CMD_NOWAIT, __ocs_hw_domain_cb, domain)) { ocs_log_err(hw->os, "UNREG_VFI command failure\n"); ocs_free(hw->os, data, SLI4_BMBX_SIZE); ocs_sm_post_event(ctx, OCS_EVT_ERROR, NULL); break; } break; case OCS_EVT_ERROR: if (is_fc) { ocs_sm_transition(ctx, __ocs_hw_domain_free_report_fail, data); } else { ocs_sm_transition(ctx, __ocs_hw_domain_free_unreg_fcfi, data); } break; case OCS_EVT_RESPONSE: if (is_fc) { ocs_sm_transition(ctx, __ocs_hw_domain_freed, data); } else { ocs_sm_transition(ctx, __ocs_hw_domain_free_unreg_fcfi, data); } break; default: __ocs_hw_domain_common(__func__, ctx, evt, data); break; } return NULL; } /* callback for domain alloc/attach/free */ static int32_t __ocs_hw_domain_cb(ocs_hw_t *hw, int32_t status, uint8_t *mqe, void *arg) { ocs_domain_t *domain = arg; sli4_mbox_command_header_t *hdr = (sli4_mbox_command_header_t *)mqe; ocs_sm_event_t evt; if (status || hdr->status) { ocs_log_debug(hw->os, "bad status vfi=%#x st=%x hdr=%x\n", domain->indicator, status, hdr->status); evt = OCS_EVT_ERROR; } else { evt = OCS_EVT_RESPONSE; } ocs_sm_post_event(&domain->sm, evt, mqe); return 0; } static int32_t target_wqe_timer_nop_cb(ocs_hw_t *hw, int32_t status, uint8_t *mqe, void *arg) { ocs_hw_io_t *io = NULL; ocs_hw_io_t *io_next = NULL; - uint64_t ticks_current = ocs_get_os_ticks(); - uint32_t sec_elapsed; ocs_hw_rtn_e rc; + struct timeval cur_time; sli4_mbox_command_header_t *hdr = (sli4_mbox_command_header_t *)mqe; if (status || hdr->status) { ocs_log_debug(hw->os, "bad status st=%x hdr=%x\n", status, hdr->status); /* go ahead and proceed with wqe timer checks... */ } /* loop through active WQE list and check for timeouts */ ocs_lock(&hw->io_lock); ocs_list_foreach_safe(&hw->io_timed_wqe, io, io_next) { - sec_elapsed = ((ticks_current - io->submit_ticks) / ocs_get_os_tick_freq()); /* * If elapsed time > timeout, abort it. No need to check type since * it wouldn't be on this list unless it was a target WQE */ - if (sec_elapsed > io->tgt_wqe_timeout) { - ocs_log_test(hw->os, "IO timeout xri=0x%x tag=0x%x type=%d\n", - io->indicator, io->reqtag, io->type); + getmicrouptime(&cur_time); + timevalsub(&cur_time, &io->submit_time); + if (cur_time.tv_sec > io->wqe_timeout) { + ocs_log_info(hw->os, "IO timeout xri=0x%x tag=0x%x type=%d elasped time:%u\n", + io->indicator, io->reqtag, io->type, cur_time.tv_sec); /* remove from active_wqe list so won't try to abort again */ ocs_list_remove(&hw->io_timed_wqe, io); /* save status of "timed out" for when abort completes */ io->status_saved = 1; - io->saved_status = SLI4_FC_WCQE_STATUS_TARGET_WQE_TIMEOUT; + io->saved_status = SLI4_FC_WCQE_STATUS_WQE_TIMEOUT; io->saved_ext = 0; io->saved_len = 0; /* now abort outstanding IO */ - rc = ocs_hw_io_abort(hw, io, FALSE, NULL, NULL); + rc = ocs_hw_io_abort(hw, io, TRUE, NULL, NULL); if (rc) { ocs_log_test(hw->os, "abort failed xri=%#x tag=%#x rc=%d\n", io->indicator, io->reqtag, rc); } } /* * need to go through entire list since each IO could have a * different timeout value */ } ocs_unlock(&hw->io_lock); /* if we're not in the middle of shutting down, schedule next timer */ if (!hw->active_wqe_timer_shutdown) { ocs_setup_timer(hw->os, &hw->wqe_timer, target_wqe_timer_cb, hw, OCS_HW_WQ_TIMER_PERIOD_MS); } hw->in_active_wqe_timer = FALSE; return 0; } static void target_wqe_timer_cb(void *arg) { ocs_hw_t *hw = (ocs_hw_t *)arg; /* delete existing timer; will kick off new timer after checking wqe timeouts */ hw->in_active_wqe_timer = TRUE; - ocs_del_timer(&hw->wqe_timer); /* Forward timer callback to execute in the mailbox completion processing context */ if (ocs_hw_async_call(hw, target_wqe_timer_nop_cb, hw)) { ocs_log_test(hw->os, "ocs_hw_async_call failed\n"); } } static void shutdown_target_wqe_timer(ocs_hw_t *hw) { uint32_t iters = 100; - if (hw->config.emulate_tgt_wqe_timeout) { + if (hw->config.emulate_wqe_timeout) { /* request active wqe timer shutdown, then wait for it to complete */ hw->active_wqe_timer_shutdown = TRUE; /* delete WQE timer and wait for timer handler to complete (if necessary) */ ocs_del_timer(&hw->wqe_timer); /* now wait for timer handler to complete (if necessary) */ while (hw->in_active_wqe_timer && iters) { /* * if we happen to have just sent NOP mailbox command, make sure * completions are being processed */ ocs_hw_flush(hw); iters--; } if (iters == 0) { ocs_log_test(hw->os, "Failed to shutdown active wqe timer\n"); } } } /** * @brief Determine if HW IO is owned by the port. * * @par Description * Determines if the given HW IO has been posted to the chip. * * @param hw Hardware context allocated by the caller. * @param io HW IO. * * @return Returns TRUE if given HW IO is port-owned. */ uint8_t ocs_hw_is_io_port_owned(ocs_hw_t *hw, ocs_hw_io_t *io) { /* Check to see if this is a port owned XRI */ return io->is_port_owned; } /** * @brief Return TRUE if exchange is port-owned. * * @par Description * Test to see if the xri is a port-owned xri. * * @param hw Hardware context. * @param xri Exchange indicator. * * @return Returns TRUE if XRI is a port owned XRI. */ uint8_t ocs_hw_is_xri_port_owned(ocs_hw_t *hw, uint32_t xri) { ocs_hw_io_t *io = ocs_hw_io_lookup(hw, xri); return (io == NULL ? FALSE : io->is_port_owned); } /** * @brief Returns an XRI from the port owned list to the host. * * @par Description * Used when the POST_XRI command fails as well as when the RELEASE_XRI completes. * * @param hw Hardware context. * @param xri_base The starting XRI number. * @param xri_count The number of XRIs to free from the base. */ static void ocs_hw_reclaim_xri(ocs_hw_t *hw, uint16_t xri_base, uint16_t xri_count) { ocs_hw_io_t *io; uint32_t i; for (i = 0; i < xri_count; i++) { io = ocs_hw_io_lookup(hw, xri_base + i); /* * if this is an auto xfer rdy XRI, then we need to release any * buffer attached to the XRI before moving the XRI back to the free pool. */ if (hw->auto_xfer_rdy_enabled) { ocs_hw_rqpair_auto_xfer_rdy_move_to_host(hw, io); } ocs_lock(&hw->io_lock); ocs_list_remove(&hw->io_port_owned, io); io->is_port_owned = 0; ocs_list_add_tail(&hw->io_free, io); ocs_unlock(&hw->io_lock); } } /** * @brief Called when the POST_XRI command completes. * * @par Description * Free the mailbox command buffer and reclaim the XRIs on failure. * * @param hw Hardware context. * @param status Status field from the mbox completion. * @param mqe Mailbox response structure. * @param arg Pointer to a callback function that signals the caller that the command is done. * * @return Returns 0. */ static int32_t ocs_hw_cb_post_xri(ocs_hw_t *hw, int32_t status, uint8_t *mqe, void *arg) { sli4_cmd_post_xri_t *post_xri = (sli4_cmd_post_xri_t*)mqe; /* Reclaim the XRIs as host owned if the command fails */ if (status != 0) { ocs_log_debug(hw->os, "Status 0x%x for XRI base 0x%x, cnt =x%x\n", status, post_xri->xri_base, post_xri->xri_count); ocs_hw_reclaim_xri(hw, post_xri->xri_base, post_xri->xri_count); } ocs_free(hw->os, mqe, SLI4_BMBX_SIZE); return 0; } /** * @brief Issues a mailbox command to move XRIs from the host-controlled pool to the port. * * @param hw Hardware context. * @param xri_start The starting XRI to post. * @param num_to_post The number of XRIs to post. * * @return Returns OCS_HW_RTN_NO_MEMORY, OCS_HW_RTN_ERROR, or OCS_HW_RTN_SUCCESS. */ static ocs_hw_rtn_e ocs_hw_post_xri(ocs_hw_t *hw, uint32_t xri_start, uint32_t num_to_post) { uint8_t *post_xri; ocs_hw_rtn_e rc = OCS_HW_RTN_ERROR; /* Since we need to allocate for mailbox queue, just always allocate */ post_xri = ocs_malloc(hw->os, SLI4_BMBX_SIZE, OCS_M_NOWAIT); if (post_xri == NULL) { ocs_log_err(hw->os, "no buffer for command\n"); return OCS_HW_RTN_NO_MEMORY; } /* Register the XRIs */ if (sli_cmd_post_xri(&hw->sli, post_xri, SLI4_BMBX_SIZE, xri_start, num_to_post)) { rc = ocs_hw_command(hw, post_xri, OCS_CMD_NOWAIT, ocs_hw_cb_post_xri, NULL); if (rc != OCS_HW_RTN_SUCCESS) { ocs_free(hw->os, post_xri, SLI4_BMBX_SIZE); ocs_log_err(hw->os, "post_xri failed\n"); } } return rc; } /** * @brief Move XRIs from the host-controlled pool to the port. * * @par Description * Removes IOs from the free list and moves them to the port. * * @param hw Hardware context. * @param num_xri The number of XRIs being requested to move to the chip. * * @return Returns the number of XRIs that were moved. */ uint32_t ocs_hw_xri_move_to_port_owned(ocs_hw_t *hw, uint32_t num_xri) { ocs_hw_io_t *io; uint32_t i; uint32_t num_posted = 0; /* * Note: We cannot use ocs_hw_io_alloc() because that would place the * IO on the io_inuse list. We need to move from the io_free to * the io_port_owned list. */ ocs_lock(&hw->io_lock); for (i = 0; i < num_xri; i++) { if (NULL != (io = ocs_list_remove_head(&hw->io_free))) { ocs_hw_rtn_e rc; /* * if this is an auto xfer rdy XRI, then we need to attach a * buffer to the XRI before submitting it to the chip. If a * buffer is unavailable, then we cannot post it, so return it * to the free pool. */ if (hw->auto_xfer_rdy_enabled) { /* Note: uses the IO lock to get the auto xfer rdy buffer */ ocs_unlock(&hw->io_lock); rc = ocs_hw_rqpair_auto_xfer_rdy_move_to_port(hw, io); ocs_lock(&hw->io_lock); if (rc != OCS_HW_RTN_SUCCESS) { ocs_list_add_head(&hw->io_free, io); break; } } ocs_lock_init(hw->os, &io->axr_lock, "HW_axr_lock[%d]", io->indicator); io->is_port_owned = 1; ocs_list_add_tail(&hw->io_port_owned, io); /* Post XRI */ if (ocs_hw_post_xri(hw, io->indicator, 1) != OCS_HW_RTN_SUCCESS ) { ocs_hw_reclaim_xri(hw, io->indicator, i); break; } num_posted++; } else { /* no more free XRIs */ break; } } ocs_unlock(&hw->io_lock); return num_posted; } /** * @brief Called when the RELEASE_XRI command completes. * * @par Description * Move the IOs back to the free pool on success. * * @param hw Hardware context. * @param status Status field from the mbox completion. * @param mqe Mailbox response structure. * @param arg Pointer to a callback function that signals the caller that the command is done. * * @return Returns 0. */ static int32_t ocs_hw_cb_release_xri(ocs_hw_t *hw, int32_t status, uint8_t *mqe, void *arg) { sli4_cmd_release_xri_t *release_xri = (sli4_cmd_release_xri_t*)mqe; uint8_t i; /* Reclaim the XRIs as host owned if the command fails */ if (status != 0) { ocs_log_err(hw->os, "Status 0x%x\n", status); } else { for (i = 0; i < release_xri->released_xri_count; i++) { uint16_t xri = ((i & 1) == 0 ? release_xri->xri_tbl[i/2].xri_tag0 : release_xri->xri_tbl[i/2].xri_tag1); ocs_hw_reclaim_xri(hw, xri, 1); } } ocs_free(hw->os, mqe, SLI4_BMBX_SIZE); return 0; } /** * @brief Move XRIs from the port-controlled pool to the host. * * Requests XRIs from the FW to return to the host-owned pool. * * @param hw Hardware context. * @param num_xri The number of XRIs being requested to moved from the chip. * * @return Returns 0 for success, or a negative error code value for failure. */ ocs_hw_rtn_e ocs_hw_xri_move_to_host_owned(ocs_hw_t *hw, uint8_t num_xri) { uint8_t *release_xri; ocs_hw_rtn_e rc = OCS_HW_RTN_ERROR; /* non-local buffer required for mailbox queue */ release_xri = ocs_malloc(hw->os, SLI4_BMBX_SIZE, OCS_M_NOWAIT); if (release_xri == NULL) { ocs_log_err(hw->os, "no buffer for command\n"); return OCS_HW_RTN_NO_MEMORY; } /* release the XRIs */ if (sli_cmd_release_xri(&hw->sli, release_xri, SLI4_BMBX_SIZE, num_xri)) { rc = ocs_hw_command(hw, release_xri, OCS_CMD_NOWAIT, ocs_hw_cb_release_xri, NULL); if (rc != OCS_HW_RTN_SUCCESS) { ocs_log_err(hw->os, "release_xri failed\n"); } } /* If we are polling or an error occurred, then free the mailbox buffer */ if (release_xri != NULL && rc != OCS_HW_RTN_SUCCESS) { ocs_free(hw->os, release_xri, SLI4_BMBX_SIZE); } return rc; } /** * @brief Allocate an ocs_hw_rx_buffer_t array. * * @par Description * An ocs_hw_rx_buffer_t array is allocated, along with the required DMA memory. * * @param hw Pointer to HW object. * @param rqindex RQ index for this buffer. * @param count Count of buffers in array. * @param size Size of buffer. * * @return Returns the pointer to the allocated ocs_hw_rq_buffer_t array. */ static ocs_hw_rq_buffer_t * ocs_hw_rx_buffer_alloc(ocs_hw_t *hw, uint32_t rqindex, uint32_t count, uint32_t size) { ocs_t *ocs = hw->os; ocs_hw_rq_buffer_t *rq_buf = NULL; ocs_hw_rq_buffer_t *prq; uint32_t i; if (count != 0) { rq_buf = ocs_malloc(hw->os, sizeof(*rq_buf) * count, OCS_M_NOWAIT | OCS_M_ZERO); if (rq_buf == NULL) { ocs_log_err(hw->os, "Failure to allocate unsolicited DMA trackers\n"); return NULL; } for (i = 0, prq = rq_buf; i < count; i ++, prq++) { prq->rqindex = rqindex; if (ocs_dma_alloc(ocs, &prq->dma, size, OCS_MIN_DMA_ALIGNMENT)) { ocs_log_err(hw->os, "DMA allocation failed\n"); ocs_free(hw->os, rq_buf, sizeof(*rq_buf) * count); rq_buf = NULL; break; } } } return rq_buf; } /** * @brief Free an ocs_hw_rx_buffer_t array. * * @par Description * The ocs_hw_rx_buffer_t array is freed, along with allocated DMA memory. * * @param hw Pointer to HW object. * @param rq_buf Pointer to ocs_hw_rx_buffer_t array. * @param count Count of buffers in array. * * @return None. */ static void ocs_hw_rx_buffer_free(ocs_hw_t *hw, ocs_hw_rq_buffer_t *rq_buf, uint32_t count) { ocs_t *ocs = hw->os; uint32_t i; ocs_hw_rq_buffer_t *prq; if (rq_buf != NULL) { for (i = 0, prq = rq_buf; i < count; i++, prq++) { ocs_dma_free(ocs, &prq->dma); } ocs_free(hw->os, rq_buf, sizeof(*rq_buf) * count); } } /** * @brief Allocate the RQ data buffers. * * @param hw Pointer to HW object. * * @return Returns 0 on success, or a non-zero value on failure. */ ocs_hw_rtn_e ocs_hw_rx_allocate(ocs_hw_t *hw) { ocs_t *ocs = hw->os; uint32_t i; int32_t rc = OCS_HW_RTN_SUCCESS; uint32_t rqindex = 0; hw_rq_t *rq; uint32_t hdr_size = OCS_HW_RQ_SIZE_HDR; uint32_t payload_size = hw->config.rq_default_buffer_size; rqindex = 0; for (i = 0; i < hw->hw_rq_count; i++) { rq = hw->hw_rq[i]; /* Allocate header buffers */ rq->hdr_buf = ocs_hw_rx_buffer_alloc(hw, rqindex, rq->entry_count, hdr_size); if (rq->hdr_buf == NULL) { ocs_log_err(ocs, "ocs_hw_rx_buffer_alloc hdr_buf failed\n"); rc = OCS_HW_RTN_ERROR; break; } ocs_log_debug(hw->os, "rq[%2d] rq_id %02d header %4d by %4d bytes\n", i, rq->hdr->id, rq->entry_count, hdr_size); rqindex++; /* Allocate payload buffers */ rq->payload_buf = ocs_hw_rx_buffer_alloc(hw, rqindex, rq->entry_count, payload_size); if (rq->payload_buf == NULL) { ocs_log_err(ocs, "ocs_hw_rx_buffer_alloc fb_buf failed\n"); rc = OCS_HW_RTN_ERROR; break; } ocs_log_debug(hw->os, "rq[%2d] rq_id %02d default %4d by %4d bytes\n", i, rq->data->id, rq->entry_count, payload_size); rqindex++; } return rc ? OCS_HW_RTN_ERROR : OCS_HW_RTN_SUCCESS; } /** * @brief Post the RQ data buffers to the chip. * * @param hw Pointer to HW object. * * @return Returns 0 on success, or a non-zero value on failure. */ ocs_hw_rtn_e ocs_hw_rx_post(ocs_hw_t *hw) { uint32_t i; uint32_t idx; uint32_t rq_idx; int32_t rc = 0; /* * In RQ pair mode, we MUST post the header and payload buffer at the * same time. */ for (rq_idx = 0, idx = 0; rq_idx < hw->hw_rq_count; rq_idx++) { hw_rq_t *rq = hw->hw_rq[rq_idx]; for (i = 0; i < rq->entry_count-1; i++) { ocs_hw_sequence_t *seq = ocs_array_get(hw->seq_pool, idx++); ocs_hw_assert(seq != NULL); seq->header = &rq->hdr_buf[i]; seq->payload = &rq->payload_buf[i]; rc = ocs_hw_sequence_free(hw, seq); if (rc) { break; } } if (rc) { break; } } return rc; } /** * @brief Free the RQ data buffers. * * @param hw Pointer to HW object. * */ void ocs_hw_rx_free(ocs_hw_t *hw) { hw_rq_t *rq; uint32_t i; /* Free hw_rq buffers */ for (i = 0; i < hw->hw_rq_count; i++) { rq = hw->hw_rq[i]; if (rq != NULL) { ocs_hw_rx_buffer_free(hw, rq->hdr_buf, rq->entry_count); rq->hdr_buf = NULL; ocs_hw_rx_buffer_free(hw, rq->payload_buf, rq->entry_count); rq->payload_buf = NULL; } } } /** * @brief HW async call context structure. */ typedef struct { ocs_hw_async_cb_t callback; void *arg; uint8_t cmd[SLI4_BMBX_SIZE]; } ocs_hw_async_call_ctx_t; /** * @brief HW async callback handler * * @par Description * This function is called when the NOP mailbox command completes. The callback stored * in the requesting context is invoked. * * @param hw Pointer to HW object. * @param status Completion status. * @param mqe Pointer to mailbox completion queue entry. * @param arg Caller-provided argument. * * @return None. */ static void ocs_hw_async_cb(ocs_hw_t *hw, int32_t status, uint8_t *mqe, void *arg) { ocs_hw_async_call_ctx_t *ctx = arg; if (ctx != NULL) { if (ctx->callback != NULL) { (*ctx->callback)(hw, status, mqe, ctx->arg); } ocs_free(hw->os, ctx, sizeof(*ctx)); } } /** * @brief Make an async callback using NOP mailbox command * * @par Description * Post a NOP mailbox command; the callback with argument is invoked upon completion * while in the event processing context. * * @param hw Pointer to HW object. * @param callback Pointer to callback function. * @param arg Caller-provided callback. * * @return Returns 0 on success, or a negative error code value on failure. */ int32_t ocs_hw_async_call(ocs_hw_t *hw, ocs_hw_async_cb_t callback, void *arg) { ocs_hw_async_call_ctx_t *ctx; /* * Allocate a callback context (which includes the mailbox command buffer), we need * this to be persistent as the mailbox command submission may be queued and executed later * execution. */ ctx = ocs_malloc(hw->os, sizeof(*ctx), OCS_M_ZERO | OCS_M_NOWAIT); if (ctx == NULL) { ocs_log_err(hw->os, "failed to malloc async call context\n"); return OCS_HW_RTN_NO_MEMORY; } ctx->callback = callback; ctx->arg = arg; /* Build and send a NOP mailbox command */ if (sli_cmd_common_nop(&hw->sli, ctx->cmd, sizeof(ctx->cmd), 0) == 0) { ocs_log_err(hw->os, "COMMON_NOP format failure\n"); ocs_free(hw->os, ctx, sizeof(*ctx)); return OCS_HW_RTN_ERROR; } if (ocs_hw_command(hw, ctx->cmd, OCS_CMD_NOWAIT, ocs_hw_async_cb, ctx)) { ocs_log_err(hw->os, "COMMON_NOP command failure\n"); ocs_free(hw->os, ctx, sizeof(*ctx)); return OCS_HW_RTN_ERROR; } return OCS_HW_RTN_SUCCESS; } /** * @brief Initialize the reqtag pool. * * @par Description * The WQ request tag pool is initialized. * * @param hw Pointer to HW object. * * @return Returns 0 on success, or a negative error code value on failure. */ ocs_hw_rtn_e ocs_hw_reqtag_init(ocs_hw_t *hw) { if (hw->wq_reqtag_pool == NULL) { hw->wq_reqtag_pool = ocs_pool_alloc(hw->os, sizeof(hw_wq_callback_t), 65536, TRUE); if (hw->wq_reqtag_pool == NULL) { ocs_log_err(hw->os, "ocs_pool_alloc hw_wq_callback_t failed\n"); return OCS_HW_RTN_NO_MEMORY; } } ocs_hw_reqtag_reset(hw); return OCS_HW_RTN_SUCCESS; } /** * @brief Allocate a WQ request tag. * * Allocate and populate a WQ request tag from the WQ request tag pool. * * @param hw Pointer to HW object. * @param callback Callback function. * @param arg Pointer to callback argument. * * @return Returns pointer to allocated WQ request tag, or NULL if object cannot be allocated. */ hw_wq_callback_t * ocs_hw_reqtag_alloc(ocs_hw_t *hw, void (*callback)(void *arg, uint8_t *cqe, int32_t status), void *arg) { hw_wq_callback_t *wqcb; ocs_hw_assert(callback != NULL); wqcb = ocs_pool_get(hw->wq_reqtag_pool); if (wqcb != NULL) { ocs_hw_assert(wqcb->callback == NULL); wqcb->callback = callback; wqcb->arg = arg; } return wqcb; } /** * @brief Free a WQ request tag. * * Free the passed in WQ request tag. * * @param hw Pointer to HW object. * @param wqcb Pointer to WQ request tag object to free. * * @return None. */ void ocs_hw_reqtag_free(ocs_hw_t *hw, hw_wq_callback_t *wqcb) { ocs_hw_assert(wqcb->callback != NULL); wqcb->callback = NULL; wqcb->arg = NULL; ocs_pool_put(hw->wq_reqtag_pool, wqcb); } /** * @brief Return WQ request tag by index. * * @par Description * Return pointer to WQ request tag object given an index. * * @param hw Pointer to HW object. * @param instance_index Index of WQ request tag to return. * * @return Pointer to WQ request tag, or NULL. */ hw_wq_callback_t * ocs_hw_reqtag_get_instance(ocs_hw_t *hw, uint32_t instance_index) { hw_wq_callback_t *wqcb; wqcb = ocs_pool_get_instance(hw->wq_reqtag_pool, instance_index); if (wqcb == NULL) { ocs_log_err(hw->os, "wqcb for instance %d is null\n", instance_index); } return wqcb; } /** * @brief Reset the WQ request tag pool. * * @par Description * Reset the WQ request tag pool, returning all to the free list. * * @param hw pointer to HW object. * * @return None. */ void ocs_hw_reqtag_reset(ocs_hw_t *hw) { hw_wq_callback_t *wqcb; uint32_t i; /* Remove all from freelist */ while(ocs_pool_get(hw->wq_reqtag_pool) != NULL) { ; } /* Put them all back */ for (i = 0; ((wqcb = ocs_pool_get_instance(hw->wq_reqtag_pool, i)) != NULL); i++) { wqcb->instance_index = i; wqcb->callback = NULL; wqcb->arg = NULL; ocs_pool_put(hw->wq_reqtag_pool, wqcb); } } /** * @brief Handle HW assertion * * HW assert, display diagnostic message, and abort. * * @param cond string describing failing assertion condition * @param filename file name * @param linenum line number * * @return none */ void _ocs_hw_assert(const char *cond, const char *filename, int linenum) { ocs_printf("%s(%d): HW assertion (%s) failed\n", filename, linenum, cond); ocs_abort(); /* no return */ } /** * @brief Handle HW verify * * HW verify, display diagnostic message, dump stack and return. * * @param cond string describing failing verify condition * @param filename file name * @param linenum line number * * @return none */ void _ocs_hw_verify(const char *cond, const char *filename, int linenum) { ocs_printf("%s(%d): HW verify (%s) failed\n", filename, linenum, cond); ocs_print_stack(); } /** * @brief Reque XRI * * @par Description * Reque XRI * * @param hw Pointer to HW object. * @param io Pointer to HW IO * * @return Return 0 if successful else returns -1 */ int32_t ocs_hw_reque_xri( ocs_hw_t *hw, ocs_hw_io_t *io ) { int32_t rc = 0; rc = ocs_hw_rqpair_auto_xfer_rdy_buffer_post(hw, io, 1); if (rc) { ocs_list_add_tail(&hw->io_port_dnrx, io); rc = -1; goto exit_ocs_hw_reque_xri; } io->auto_xfer_rdy_dnrx = 0; io->type = OCS_HW_IO_DNRX_REQUEUE; if (sli_requeue_xri_wqe(&hw->sli, io->wqe.wqebuf, hw->sli.config.wqe_size, io->indicator, OCS_HW_REQUE_XRI_REGTAG, SLI4_CQ_DEFAULT)) { /* Clear buffer from XRI */ ocs_pool_put(hw->auto_xfer_rdy_buf_pool, io->axr_buf); io->axr_buf = NULL; ocs_log_err(hw->os, "requeue_xri WQE error\n"); ocs_list_add_tail(&hw->io_port_dnrx, io); rc = -1; goto exit_ocs_hw_reque_xri; } if (io->wq == NULL) { io->wq = ocs_hw_queue_next_wq(hw, io); ocs_hw_assert(io->wq != NULL); } /* * Add IO to active io wqe list before submitting, in case the * wcqe processing preempts this thread. */ OCS_STAT(hw->tcmd_wq_submit[io->wq->instance]++); OCS_STAT(io->wq->use_count++); rc = hw_wq_write(io->wq, &io->wqe); if (rc < 0) { ocs_log_err(hw->os, "sli_queue_write reque xri failed: %d\n", rc); rc = -1; } exit_ocs_hw_reque_xri: return 0; } uint32_t ocs_hw_get_def_wwn(ocs_t *ocs, uint32_t chan, uint64_t *wwpn, uint64_t *wwnn) { sli4_t *sli4 = &ocs->hw.sli; ocs_dma_t dma; uint8_t *payload = NULL; int indicator = sli4->config.extent[SLI_RSRC_FCOE_VPI].base[0] + chan; /* allocate memory for the service parameters */ if (ocs_dma_alloc(ocs, &dma, 112, 4)) { ocs_log_err(ocs, "Failed to allocate DMA memory\n"); return 1; } if (0 == sli_cmd_read_sparm64(sli4, sli4->bmbx.virt, SLI4_BMBX_SIZE, &dma, indicator)) { ocs_log_err(ocs, "READ_SPARM64 allocation failure\n"); ocs_dma_free(ocs, &dma); return 1; } if (sli_bmbx_command(sli4)) { ocs_log_err(ocs, "READ_SPARM64 command failure\n"); ocs_dma_free(ocs, &dma); return 1; } payload = dma.virt; ocs_memcpy(wwpn, payload + SLI4_READ_SPARM64_WWPN_OFFSET, sizeof(*wwpn)); ocs_memcpy(wwnn, payload + SLI4_READ_SPARM64_WWNN_OFFSET, sizeof(*wwnn)); ocs_dma_free(ocs, &dma); return 0; } uint32_t ocs_hw_get_config_persistent_topology(ocs_hw_t *hw) { uint32_t topology = OCS_HW_TOPOLOGY_AUTO; sli4_t *sli = &hw->sli; if (!sli_persist_topology_enabled(sli)) return topology; switch (sli->config.pt) { case SLI4_INIT_LINK_F_P2P_ONLY: topology = OCS_HW_TOPOLOGY_NPORT; break; case SLI4_INIT_LINK_F_FCAL_ONLY: topology = OCS_HW_TOPOLOGY_LOOP; break; default: break; } return topology; } /* * @brief Persistent topology configuration callback argument. */ typedef struct ocs_hw_persistent_topo_cb_arg { ocs_sem_t semaphore; int32_t status; } ocs_hw_persistent_topo_cb_arg_t; /* * @brief Called after the completion of set persistent topology request * * @par Description * This is callback fn for the set_persistent_topology * function. This callback is called when the common feature mbx cmd * completes. * * @param hw Hardware context. * @param status The status from the MQE. * @param mqe Pointer to mailbox command buffer. * @param arg Pointer to a callback argument. * * @return 0 on success, non-zero otherwise */ static int32_t ocs_hw_set_persistent_topolgy_cb(ocs_hw_t *hw, int32_t status, uint8_t *mqe, void *arg) { ocs_hw_persistent_topo_cb_arg_t *req = (ocs_hw_persistent_topo_cb_arg_t *)arg; req->status = status; ocs_sem_v(&req->semaphore); return 0; } /** * @brief Set persistent topology * * Sets the persistent topology(PT) feature using * COMMON_SET_FEATURES cmd. If mbx cmd succeeds, update the * topology into sli config. PT stores the value to be set into link_flags * of the cmd INIT_LINK, to bring up the link. * * SLI specs defines following for PT: * When TF is set to 0: * 0 Reserved * 1 Attempt point-to-point initialization (direct attach or Fabric topology). * 2 Attempt FC-AL loop initialization. * 3 Reserved * * When TF is set to 1: * 0 Attempt FC-AL loop initialization; if it fails, attempt point-to-point initialization. * 1 Attempt point-to-point initialization; if it fails, attempt FC-AL loop initialization. * 2 Reserved * 3 Reserved * * Note: Topology failover is only available on Lancer G5. This command will fail * if TF is set to 1 on any other ASICs * * @param hw Pointer to hw * @param topology topology value to be set, provided through * elxsdkutil set-topology cmd * * @return Returns 0 on success, or a non-zero value on failure. */ ocs_hw_rtn_e ocs_hw_set_persistent_topology(ocs_hw_t *hw, uint32_t topology, uint32_t opts) { ocs_hw_rtn_e rc = OCS_HW_RTN_SUCCESS; uint8_t buf[SLI4_BMBX_SIZE]; sli4_req_common_set_features_persistent_topo_param_t param; ocs_hw_persistent_topo_cb_arg_t request; ocs_memset(¶m, 0, sizeof(param)); param.persistent_topo = topology; switch (topology) { case OCS_HW_TOPOLOGY_AUTO: if (sli_get_asic_type(&hw->sli) == SLI4_ASIC_TYPE_LANCER) { param.persistent_topo = SLI4_INIT_LINK_F_P2P_FAIL_OVER; param.topo_failover = 1; } else { param.persistent_topo = SLI4_INIT_LINK_F_P2P_ONLY;; param.topo_failover = 0; } break; case OCS_HW_TOPOLOGY_NPORT: param.persistent_topo = SLI4_INIT_LINK_F_P2P_ONLY; param.topo_failover = 0; break; case OCS_HW_TOPOLOGY_LOOP: param.persistent_topo = SLI4_INIT_LINK_F_FCAL_ONLY; param.topo_failover = 0; break; default: ocs_log_err(hw->os, "unsupported topology %#x\n", topology); return -1; } ocs_sem_init(&request.semaphore, 0, "set_persistent_topo"); /* build the set_features command */ sli_cmd_common_set_features(&hw->sli, buf, SLI4_BMBX_SIZE, SLI4_SET_FEATURES_PERSISTENT_TOPOLOGY, sizeof(param), ¶m); if (opts == OCS_CMD_POLL) { rc = ocs_hw_command(hw, buf, OCS_CMD_POLL, NULL, NULL); if (rc) { ocs_log_err(hw->os, "Failed to set persistent topology, rc: %#x\n", rc); return rc; } } else { // there's no response for this feature command rc = ocs_hw_command(hw, buf, OCS_CMD_NOWAIT, ocs_hw_set_persistent_topolgy_cb, &request); if (rc) { ocs_log_err(hw->os, "Failed to set persistent topology, rc: %#x\n", rc); return rc; } if (ocs_sem_p(&request.semaphore, OCS_SEM_FOREVER)) { ocs_log_err(hw->os, "ocs_sem_p failed\n"); return -ENXIO; } if (request.status) { ocs_log_err(hw->os, "set persistent topology failed; status: %d\n", request.status); return -EFAULT; } } sli_config_persistent_topology(&hw->sli, ¶m); return rc; } /** * @page fc_hw_api_overview HW APIs * - @ref devInitShutdown * - @ref domain * - @ref port * - @ref node * - @ref io * - @ref interrupt * *
* The Hardware Abstraction Layer (HW) insulates the higher-level code from the SLI-4 * message details, but the higher level code must still manage domains, ports, * IT nexuses, and IOs. The HW API is designed to help the higher level manage * these objects.

* * The HW uses function callbacks to notify the higher-level code of events * that are received from the chip. There are currently three types of * functions that may be registered: * *
  • domain – This function is called whenever a domain event is generated * within the HW. Examples include a new FCF is discovered, a connection * to a domain is disrupted, and allocation callbacks.
  • *
  • unsolicited – This function is called whenever new data is received in * the SLI-4 receive queue.
  • *
  • rnode – This function is called for remote node events, such as attach status * and allocation callbacks.
* * Upper layer functions may be registered by using the ocs_hw_callback() function. * * FC/FCoE HW *

FC/FCoE HW API

* The FC/FCoE HW component builds upon the SLI-4 component to establish a flexible * interface for creating the necessary common objects and sending I/Os. It may be used * “as is” in customer implementations or it can serve as an example of typical interactions * between a driver and the SLI-4 hardware. The broad categories of functionality include: * *
  • Setting-up and tearing-down of the HW.
  • *
  • Allocating and using the common objects (SLI Port, domain, remote node).
  • *
  • Sending and receiving I/Os.
* *

HW Setup

* To set up the HW: * *
    *
  1. Set up the HW object using ocs_hw_setup().
    * This step performs a basic configuration of the SLI-4 component and the HW to * enable querying the hardware for its capabilities. At this stage, the HW is not * capable of general operations (such as, receiving events or sending I/Os).


  2. *
  3. Configure the HW according to the driver requirements.
    * The HW provides functions to discover hardware capabilities (ocs_hw_get()), as * well as configures the amount of resources required (ocs_hw_set()). The driver * must also register callback functions (ocs_hw_callback()) to receive notification of * various asynchronous events.

    * @b Note: Once configured, the driver must initialize the HW (ocs_hw_init()). This * step creates the underlying queues, commits resources to the hardware, and * prepares the hardware for operation. While the hardware is operational, the * port is not online, and cannot send or receive data.


  4. *

    *
  5. Finally, the driver can bring the port online (ocs_hw_port_control()).
    * When the link comes up, the HW determines if a domain is present and notifies the * driver using the domain callback function. This is the starting point of the driver's * interaction with the common objects.

    * @b Note: For FCoE, there may be more than one domain available and, therefore, * more than one callback.
  6. *
* *

Allocating and Using Common Objects

* Common objects provide a mechanism through which the various OneCore Storage * driver components share and track information. These data structures are primarily * used to track SLI component information but can be extended by other components, if * needed. The main objects are: * *
  • DMA – the ocs_dma_t object describes a memory region suitable for direct * memory access (DMA) transactions.
  • *
  • SCSI domain – the ocs_domain_t object represents the SCSI domain, including * any infrastructure devices such as FC switches and FC forwarders. The domain * object contains both an FCFI and a VFI.
  • *
  • SLI Port (sport) – the ocs_sli_port_t object represents the connection between * the driver and the SCSI domain. The SLI Port object contains a VPI.
  • *
  • Remote node – the ocs_remote_node_t represents a connection between the SLI * Port and another device in the SCSI domain. The node object contains an RPI.
* * Before the driver can send I/Os, it must allocate the SCSI domain, SLI Port, and remote * node common objects and establish the connections between them. The goal is to * connect the driver to the SCSI domain to exchange I/Os with other devices. These * common object connections are shown in the following figure, FC Driver Common Objects: * FC Driver Common Objects * * The first step is to create a connection to the domain by allocating an SLI Port object. * The SLI Port object represents a particular FC ID and must be initialized with one. With * the SLI Port object, the driver can discover the available SCSI domain(s). On identifying * a domain, the driver allocates a domain object and attaches to it using the previous SLI * port object.

* * @b Note: In some cases, the driver may need to negotiate service parameters (that is, * FLOGI) with the domain before attaching.

* * Once attached to the domain, the driver can discover and attach to other devices * (remote nodes). The exact discovery method depends on the driver, but it typically * includes using a position map, querying the fabric name server, or an out-of-band * method. In most cases, it is necessary to log in with devices before performing I/Os. * Prior to sending login-related ELS commands (ocs_hw_srrs_send()), the driver must * allocate a remote node object (ocs_hw_node_alloc()). If the login negotiation is * successful, the driver must attach the nodes (ocs_hw_node_attach()) to the SLI Port * before exchanging FCP I/O.

* * @b Note: The HW manages both the well known fabric address and the name server as * nodes in the domain. Therefore, the driver must allocate node objects prior to * communicating with either of these entities. * *

Sending and Receiving I/Os

* The HW provides separate interfaces for sending BLS/ ELS/ FC-CT and FCP, but the * commands are conceptually similar. Since the commands complete asynchronously, * the caller must provide a HW I/O object that maintains the I/O state, as well as * provide a callback function. The driver may use the same callback function for all I/O * operations, but each operation must use a unique HW I/O object. In the SLI-4 * architecture, there is a direct association between the HW I/O object and the SGL used * to describe the data. Therefore, a driver typically performs the following operations: * *
  • Allocates a HW I/O object (ocs_hw_io_alloc()).
  • *
  • Formats the SGL, specifying both the HW I/O object and the SGL. * (ocs_hw_io_init_sges() and ocs_hw_io_add_sge()).
  • *
  • Sends the HW I/O (ocs_hw_io_send()).
* *

HW Tear Down

* To tear-down the HW: * *
  1. Take the port offline (ocs_hw_port_control()) to prevent receiving further * data andevents.
  2. *
  3. Destroy the HW object (ocs_hw_teardown()).
  4. *
  5. Free any memory used by the HW, such as buffers for unsolicited data.
*
*
* */ /** * This contains all hw runtime workaround code. Based on the asic type, * asic revision, and range of fw revisions, a particular workaround may be enabled. * * A workaround may consist of overriding a particular HW/SLI4 value that was initialized * during ocs_hw_setup() (for example the MAX_QUEUE overrides for mis-reported queue * sizes). Or if required, elements of the ocs_hw_workaround_t structure may be set to * control specific runtime behavior. * * It is intended that the controls in ocs_hw_workaround_t be defined functionally. So we * would have the driver look like: "if (hw->workaround.enable_xxx) then ...", rather than * what we might previously see as "if this is a BE3, then do xxx" * */ #define HW_FWREV_ZERO (0ull) #define HW_FWREV_MAX (~0ull) #define SLI4_ASIC_TYPE_ANY 0 #define SLI4_ASIC_REV_ANY 0 /** * @brief Internal definition of workarounds */ typedef enum { HW_WORKAROUND_TEST = 1, HW_WORKAROUND_MAX_QUEUE, /**< Limits all queues */ HW_WORKAROUND_MAX_RQ, /**< Limits only the RQ */ HW_WORKAROUND_RETAIN_TSEND_IO_LENGTH, HW_WORKAROUND_WQE_COUNT_METHOD, HW_WORKAROUND_RQE_COUNT_METHOD, HW_WORKAROUND_USE_UNREGISTERD_RPI, HW_WORKAROUND_DISABLE_AR_TGT_DIF, /**< Disable of auto-response target DIF */ HW_WORKAROUND_DISABLE_SET_DUMP_LOC, HW_WORKAROUND_USE_DIF_QUARANTINE, HW_WORKAROUND_USE_DIF_SEC_XRI, /**< Use secondary xri for multiple data phases */ HW_WORKAROUND_OVERRIDE_FCFI_IN_SRB, /**< FCFI reported in SRB not correct, use "first" registered domain */ HW_WORKAROUND_FW_VERSION_TOO_LOW, /**< The FW version is not the min version supported by this driver */ HW_WORKAROUND_SGLC_MISREPORTED, /**< Chip supports SGL Chaining but SGLC is not set in SLI4_PARAMS */ HW_WORKAROUND_IGNORE_SEND_FRAME_CAPABLE, /**< Don't use SEND_FRAME capable if FW version is too old */ } hw_workaround_e; /** * @brief Internal workaround structure instance */ typedef struct { sli4_asic_type_e asic_type; sli4_asic_rev_e asic_rev; uint64_t fwrev_low; uint64_t fwrev_high; hw_workaround_e workaround; uint32_t value; } hw_workaround_t; static hw_workaround_t hw_workarounds[] = { {SLI4_ASIC_TYPE_ANY, SLI4_ASIC_REV_ANY, HW_FWREV_ZERO, HW_FWREV_MAX, HW_WORKAROUND_TEST, 999}, /* Bug: 127585: if_type == 2 returns 0 for total length placed on * FCP_TSEND64_WQE completions. Note, original driver code enables this * workaround for all asic types */ {SLI4_ASIC_TYPE_ANY, SLI4_ASIC_REV_ANY, HW_FWREV_ZERO, HW_FWREV_MAX, HW_WORKAROUND_RETAIN_TSEND_IO_LENGTH, 0}, /* Bug: unknown, Lancer A0 has mis-reported max queue depth */ {SLI4_ASIC_TYPE_LANCER, SLI4_ASIC_REV_A0, HW_FWREV_ZERO, HW_FWREV_MAX, HW_WORKAROUND_MAX_QUEUE, 2048}, /* Bug: 143399, BE3 has mis-reported max RQ queue depth */ {SLI4_ASIC_TYPE_BE3, SLI4_ASIC_REV_ANY, HW_FWREV_ZERO, HW_FWREV(4,6,293,0), HW_WORKAROUND_MAX_RQ, 2048}, /* Bug: 143399, skyhawk has mis-reported max RQ queue depth */ {SLI4_ASIC_TYPE_SKYHAWK, SLI4_ASIC_REV_ANY, HW_FWREV_ZERO, HW_FWREV(10,0,594,0), HW_WORKAROUND_MAX_RQ, 2048}, /* Bug: 103487, BE3 before f/w 4.2.314.0 has mis-reported WQE count method */ {SLI4_ASIC_TYPE_BE3, SLI4_ASIC_REV_ANY, HW_FWREV_ZERO, HW_FWREV(4,2,314,0), HW_WORKAROUND_WQE_COUNT_METHOD, 1}, /* Bug: 103487, BE3 before f/w 4.2.314.0 has mis-reported RQE count method */ {SLI4_ASIC_TYPE_BE3, SLI4_ASIC_REV_ANY, HW_FWREV_ZERO, HW_FWREV(4,2,314,0), HW_WORKAROUND_RQE_COUNT_METHOD, 1}, /* Bug: 142968, BE3 UE with RPI == 0xffff */ {SLI4_ASIC_TYPE_BE3, SLI4_ASIC_REV_ANY, HW_FWREV_ZERO, HW_FWREV_MAX, HW_WORKAROUND_USE_UNREGISTERD_RPI, 0}, /* Bug: unknown, Skyhawk won't support auto-response on target T10-PI */ {SLI4_ASIC_TYPE_SKYHAWK, SLI4_ASIC_REV_ANY, HW_FWREV_ZERO, HW_FWREV_MAX, HW_WORKAROUND_DISABLE_AR_TGT_DIF, 0}, {SLI4_ASIC_TYPE_LANCER, SLI4_ASIC_REV_ANY, HW_FWREV_ZERO, HW_FWREV(1,1,65,0), HW_WORKAROUND_DISABLE_SET_DUMP_LOC, 0}, /* Bug: 160124, Skyhawk quarantine DIF XRIs */ {SLI4_ASIC_TYPE_SKYHAWK, SLI4_ASIC_REV_ANY, HW_FWREV_ZERO, HW_FWREV_MAX, HW_WORKAROUND_USE_DIF_QUARANTINE, 0}, /* Bug: 161832, Skyhawk use secondary XRI for multiple data phase TRECV */ {SLI4_ASIC_TYPE_SKYHAWK, SLI4_ASIC_REV_ANY, HW_FWREV_ZERO, HW_FWREV_MAX, HW_WORKAROUND_USE_DIF_SEC_XRI, 0}, /* Bug: xxxxxx, FCFI reported in SRB not corrrect */ {SLI4_ASIC_TYPE_LANCER, SLI4_ASIC_REV_ANY, HW_FWREV_ZERO, HW_FWREV_MAX, HW_WORKAROUND_OVERRIDE_FCFI_IN_SRB, 0}, #if 0 /* Bug: 165642, FW version check for driver */ {SLI4_ASIC_TYPE_LANCER, SLI4_ASIC_REV_ANY, HW_FWREV_ZERO, HW_FWREV_1(OCS_MIN_FW_VER_LANCER), HW_WORKAROUND_FW_VERSION_TOO_LOW, 0}, #endif {SLI4_ASIC_TYPE_SKYHAWK, SLI4_ASIC_REV_ANY, HW_FWREV_ZERO, HW_FWREV_1(OCS_MIN_FW_VER_SKYHAWK), HW_WORKAROUND_FW_VERSION_TOO_LOW, 0}, /* Bug 177061, Lancer FW does not set the SGLC bit */ {SLI4_ASIC_TYPE_LANCER, SLI4_ASIC_REV_ANY, HW_FWREV_ZERO, HW_FWREV_MAX, HW_WORKAROUND_SGLC_MISREPORTED, 0}, /* BZ 181208/183914, enable this workaround for ALL revisions */ {SLI4_ASIC_TYPE_ANY, SLI4_ASIC_REV_ANY, HW_FWREV_ZERO, HW_FWREV_MAX, HW_WORKAROUND_IGNORE_SEND_FRAME_CAPABLE, 0}, }; /** * @brief Function prototypes */ static int32_t ocs_hw_workaround_match(ocs_hw_t *hw, hw_workaround_t *w); /** * @brief Parse the firmware version (name) * * Parse a string of the form a.b.c.d, returning a uint64_t packed as defined * by the HW_FWREV() macro * * @param fwrev_string pointer to the firmware string * * @return packed firmware revision value */ static uint64_t parse_fw_version(const char *fwrev_string) { int v[4] = {0}; const char *p; int i; for (p = fwrev_string, i = 0; *p && (i < 4); i ++) { v[i] = ocs_strtoul(p, 0, 0); while(*p && *p != '.') { p ++; } if (*p) { p ++; } } /* Special case for bootleg releases with f/w rev 0.0.9999.0, set to max value */ if (v[2] == 9999) { return HW_FWREV_MAX; } else { return HW_FWREV(v[0], v[1], v[2], v[3]); } } /** * @brief Test for a workaround match * * Looks at the asic type, asic revision, and fw revision, and returns TRUE if match. * * @param hw Pointer to the HW structure * @param w Pointer to a workaround structure entry * * @return Return TRUE for a match */ static int32_t ocs_hw_workaround_match(ocs_hw_t *hw, hw_workaround_t *w) { return (((w->asic_type == SLI4_ASIC_TYPE_ANY) || (w->asic_type == hw->sli.asic_type)) && ((w->asic_rev == SLI4_ASIC_REV_ANY) || (w->asic_rev == hw->sli.asic_rev)) && (w->fwrev_low <= hw->workaround.fwrev) && ((w->fwrev_high == HW_FWREV_MAX) || (hw->workaround.fwrev < w->fwrev_high))); } /** * @brief Setup HW runtime workarounds * * The function is called at the end of ocs_hw_setup() to setup any runtime workarounds * based on the HW/SLI setup. * * @param hw Pointer to HW structure * * @return none */ void ocs_hw_workaround_setup(struct ocs_hw_s *hw) { hw_workaround_t *w; sli4_t *sli4 = &hw->sli; uint32_t i; /* Initialize the workaround settings */ ocs_memset(&hw->workaround, 0, sizeof(hw->workaround)); /* If hw_war_version is non-null, then its a value that was set by a module parameter * (sorry for the break in abstraction, but workarounds are ... well, workarounds) */ if (hw->hw_war_version) { hw->workaround.fwrev = parse_fw_version(hw->hw_war_version); } else { hw->workaround.fwrev = parse_fw_version((char*) sli4->config.fw_name[0]); } /* Walk the workaround list, if a match is found, then handle it */ for (i = 0, w = hw_workarounds; i < ARRAY_SIZE(hw_workarounds); i++, w++) { if (ocs_hw_workaround_match(hw, w)) { switch(w->workaround) { case HW_WORKAROUND_TEST: { ocs_log_debug(hw->os, "Override: test: %d\n", w->value); break; } case HW_WORKAROUND_RETAIN_TSEND_IO_LENGTH: { ocs_log_debug(hw->os, "HW Workaround: retain TSEND IO length\n"); hw->workaround.retain_tsend_io_length = 1; break; } case HW_WORKAROUND_MAX_QUEUE: { sli4_qtype_e q; ocs_log_debug(hw->os, "HW Workaround: override max_qentries: %d\n", w->value); for (q = SLI_QTYPE_EQ; q < SLI_QTYPE_MAX; q++) { if (hw->num_qentries[q] > w->value) { hw->num_qentries[q] = w->value; } } break; } case HW_WORKAROUND_MAX_RQ: { ocs_log_debug(hw->os, "HW Workaround: override RQ max_qentries: %d\n", w->value); if (hw->num_qentries[SLI_QTYPE_RQ] > w->value) { hw->num_qentries[SLI_QTYPE_RQ] = w->value; } break; } case HW_WORKAROUND_WQE_COUNT_METHOD: { ocs_log_debug(hw->os, "HW Workaround: set WQE count method=%d\n", w->value); sli4->config.count_method[SLI_QTYPE_WQ] = w->value; sli_calc_max_qentries(sli4); break; } case HW_WORKAROUND_RQE_COUNT_METHOD: { ocs_log_debug(hw->os, "HW Workaround: set RQE count method=%d\n", w->value); sli4->config.count_method[SLI_QTYPE_RQ] = w->value; sli_calc_max_qentries(sli4); break; } case HW_WORKAROUND_USE_UNREGISTERD_RPI: ocs_log_debug(hw->os, "HW Workaround: use unreg'd RPI if rnode->indicator == 0xFFFF\n"); hw->workaround.use_unregistered_rpi = TRUE; /* * Allocate an RPI that is never registered, to be used in the case where * a node has been unregistered, and its indicator (RPI) value is set to 0xFFFF */ if (sli_resource_alloc(&hw->sli, SLI_RSRC_FCOE_RPI, &hw->workaround.unregistered_rid, &hw->workaround.unregistered_index)) { ocs_log_err(hw->os, "sli_resource_alloc unregistered RPI failed\n"); hw->workaround.use_unregistered_rpi = FALSE; } break; case HW_WORKAROUND_DISABLE_AR_TGT_DIF: ocs_log_debug(hw->os, "HW Workaround: disable AR on T10-PI TSEND\n"); hw->workaround.disable_ar_tgt_dif = TRUE; break; case HW_WORKAROUND_DISABLE_SET_DUMP_LOC: ocs_log_debug(hw->os, "HW Workaround: disable set_dump_loc\n"); hw->workaround.disable_dump_loc = TRUE; break; case HW_WORKAROUND_USE_DIF_QUARANTINE: ocs_log_debug(hw->os, "HW Workaround: use DIF quarantine\n"); hw->workaround.use_dif_quarantine = TRUE; break; case HW_WORKAROUND_USE_DIF_SEC_XRI: ocs_log_debug(hw->os, "HW Workaround: use DIF secondary xri\n"); hw->workaround.use_dif_sec_xri = TRUE; break; case HW_WORKAROUND_OVERRIDE_FCFI_IN_SRB: ocs_log_debug(hw->os, "HW Workaround: override FCFI in SRB\n"); hw->workaround.override_fcfi = TRUE; break; case HW_WORKAROUND_FW_VERSION_TOO_LOW: ocs_log_debug(hw->os, "HW Workaround: fw version is below the minimum for this driver\n"); hw->workaround.fw_version_too_low = TRUE; break; case HW_WORKAROUND_SGLC_MISREPORTED: ocs_log_debug(hw->os, "HW Workaround: SGLC misreported - chaining is enabled\n"); hw->workaround.sglc_misreported = TRUE; break; case HW_WORKAROUND_IGNORE_SEND_FRAME_CAPABLE: ocs_log_debug(hw->os, "HW Workaround: not SEND_FRAME capable - disabled\n"); hw->workaround.ignore_send_frame = TRUE; break; } /* switch(w->workaround) */ } } } diff --git a/sys/dev/ocs_fc/ocs_hw.h b/sys/dev/ocs_fc/ocs_hw.h index d4ee85c3f52a..671aa40871f2 100644 --- a/sys/dev/ocs_fc/ocs_hw.h +++ b/sys/dev/ocs_fc/ocs_hw.h @@ -1,1533 +1,1533 @@ /*- * Copyright (c) 2017 Broadcom. All rights reserved. * The term "Broadcom" refers to Broadcom Limited and/or its subsidiaries. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /** * @file * Defines the Hardware Abstraction Layer (HW) interface functions. */ #ifndef _OCS_HW_H #define _OCS_HW_H #include "sli4.h" #include "ocs_hw.h" #include "ocs_stats.h" #include "ocs_utils.h" typedef struct ocs_hw_io_s ocs_hw_io_t; #if defined(OCS_INCLUDE_DEBUG) #else #define ocs_queue_history_wq(...) #define ocs_queue_history_cqe(...) #define ocs_queue_history_init(...) #define ocs_queue_history_free(...) #endif /** * @brief HW queue forward declarations */ typedef struct hw_eq_s hw_eq_t; typedef struct hw_cq_s hw_cq_t; typedef struct hw_mq_s hw_mq_t; typedef struct hw_wq_s hw_wq_t; typedef struct hw_rq_s hw_rq_t; typedef struct hw_rq_grp_s hw_rq_grp_t; /* HW asserts/verify * */ extern void _ocs_hw_assert(const char *cond, const char *filename, int linenum); extern void _ocs_hw_verify(const char *cond, const char *filename, int linenum); #if defined(HW_NDEBUG) #define ocs_hw_assert(cond) #define ocs_hw_verify(cond, ...) #else #define ocs_hw_assert(cond) \ do { \ if ((!(cond))) { \ _ocs_hw_assert(#cond, __FILE__, __LINE__); \ } \ } while (0) #define ocs_hw_verify(cond, ...) \ do { \ if ((!(cond))) { \ _ocs_hw_verify(#cond, __FILE__, __LINE__); \ return __VA_ARGS__; \ } \ } while (0) #endif #define ocs_hw_verify_arg(cond) ocs_hw_verify(cond, OCS_HW_RTN_INVALID_ARG) /* * HW completion loop control parameters. * * The HW completion loop must terminate periodically to keep the OS happy. The * loop terminates when a predefined time has elapsed, but to keep the overhead of * computing time down, the time is only checked after a number of loop iterations * has completed. * * OCS_HW_TIMECHECK_ITERATIONS number of loop iterations between time checks * */ #define OCS_HW_TIMECHECK_ITERATIONS 100 #define OCS_HW_MAX_NUM_MQ 1 #define OCS_HW_MAX_NUM_RQ 32 #define OCS_HW_MAX_NUM_EQ 16 #define OCS_HW_MAX_NUM_WQ 32 #define OCE_HW_MAX_NUM_MRQ_PAIRS 16 #define OCS_HW_MAX_WQ_CLASS 4 #define OCS_HW_MAX_WQ_CPU 128 /* * A CQ will be assinged to each WQ (CQ must have 2X entries of the WQ for abort * processing), plus a separate one for each RQ PAIR and one for MQ */ #define OCS_HW_MAX_NUM_CQ ((OCS_HW_MAX_NUM_WQ*2) + 1 + (OCE_HW_MAX_NUM_MRQ_PAIRS * 2)) /* * Q hash - size is the maximum of all the queue sizes, rounded up to the next * power of 2 */ #define OCS_HW_Q_HASH_SIZE B32_NEXT_POWER_OF_2(OCS_MAX(OCS_HW_MAX_NUM_MQ, OCS_MAX(OCS_HW_MAX_NUM_RQ, \ OCS_MAX(OCS_HW_MAX_NUM_EQ, OCS_MAX(OCS_HW_MAX_NUM_WQ, \ OCS_HW_MAX_NUM_CQ))))) #define OCS_HW_RQ_HEADER_SIZE 128 #define OCS_HW_RQ_HEADER_INDEX 0 /** * @brief Options for ocs_hw_command(). */ enum { OCS_CMD_POLL, /**< command executes synchronously and busy-waits for completion */ OCS_CMD_NOWAIT, /**< command executes asynchronously. Uses callback */ }; typedef enum { OCS_HW_RTN_SUCCESS = 0, OCS_HW_RTN_SUCCESS_SYNC = 1, OCS_HW_RTN_ERROR = -1, OCS_HW_RTN_NO_RESOURCES = -2, OCS_HW_RTN_NO_MEMORY = -3, OCS_HW_RTN_IO_NOT_ACTIVE = -4, OCS_HW_RTN_IO_ABORT_IN_PROGRESS = -5, OCS_HW_RTN_IO_PORT_OWNED_ALREADY_ABORTED = -6, OCS_HW_RTN_INVALID_ARG = -7, } ocs_hw_rtn_e; #define OCS_HW_RTN_IS_ERROR(e) ((e) < 0) typedef enum { OCS_HW_RESET_FUNCTION, OCS_HW_RESET_FIRMWARE, OCS_HW_RESET_MAX } ocs_hw_reset_e; typedef enum { OCS_HW_N_IO, OCS_HW_N_SGL, OCS_HW_MAX_IO, OCS_HW_MAX_SGE, OCS_HW_MAX_SGL, OCS_HW_MAX_NODES, OCS_HW_MAX_RQ_ENTRIES, OCS_HW_TOPOLOGY, /**< auto, nport, loop */ OCS_HW_WWN_NODE, OCS_HW_WWN_PORT, OCS_HW_FW_REV, OCS_HW_FW_REV2, OCS_HW_IPL, OCS_HW_VPD, OCS_HW_VPD_LEN, OCS_HW_MODE, /**< initiator, target, both */ OCS_HW_LINK_SPEED, OCS_HW_IF_TYPE, OCS_HW_SLI_REV, OCS_HW_SLI_FAMILY, OCS_HW_RQ_PROCESS_LIMIT, OCS_HW_RQ_DEFAULT_BUFFER_SIZE, OCS_HW_AUTO_XFER_RDY_CAPABLE, OCS_HW_AUTO_XFER_RDY_XRI_CNT, OCS_HW_AUTO_XFER_RDY_SIZE, OCS_HW_AUTO_XFER_RDY_BLK_SIZE, OCS_HW_AUTO_XFER_RDY_T10_ENABLE, OCS_HW_AUTO_XFER_RDY_P_TYPE, OCS_HW_AUTO_XFER_RDY_REF_TAG_IS_LBA, OCS_HW_AUTO_XFER_RDY_APP_TAG_VALID, OCS_HW_AUTO_XFER_RDY_APP_TAG_VALUE, OCS_HW_DIF_CAPABLE, OCS_HW_DIF_SEED, OCS_HW_DIF_MODE, OCS_HW_DIF_MULTI_SEPARATE, OCS_HW_DUMP_MAX_SIZE, OCS_HW_DUMP_READY, OCS_HW_DUMP_PRESENT, OCS_HW_RESET_REQUIRED, OCS_HW_FW_ERROR, OCS_HW_FW_READY, OCS_HW_HIGH_LOGIN_MODE, OCS_HW_PREREGISTER_SGL, OCS_HW_HW_REV1, OCS_HW_HW_REV2, OCS_HW_HW_REV3, OCS_HW_LINKCFG, OCS_HW_ETH_LICENSE, OCS_HW_LINK_MODULE_TYPE, OCS_HW_NUM_CHUTES, OCS_HW_WAR_VERSION, OCS_HW_DISABLE_AR_TGT_DIF, OCS_HW_EMULATE_I_ONLY_AAB, /**< emulate IAAB=0 for initiator-commands only */ - OCS_HW_EMULATE_TARGET_WQE_TIMEOUT, /**< enable driver timeouts for target WQEs */ + OCS_HW_EMULATE_WQE_TIMEOUT, /**< enable driver timeouts for WQEs */ OCS_HW_LINK_CONFIG_SPEED, OCS_HW_CONFIG_TOPOLOGY, OCS_HW_BOUNCE, OCS_HW_PORTNUM, OCS_HW_BIOS_VERSION_STRING, OCS_HW_RQ_SELECT_POLICY, OCS_HW_SGL_CHAINING_CAPABLE, OCS_HW_SGL_CHAINING_ALLOWED, OCS_HW_SGL_CHAINING_HOST_ALLOCATED, OCS_HW_SEND_FRAME_CAPABLE, OCS_HW_RQ_SELECTION_POLICY, OCS_HW_RR_QUANTA, OCS_HW_FILTER_DEF, OCS_HW_MAX_VPORTS, OCS_ESOC, OCS_HW_FW_TIMED_OUT, } ocs_hw_property_e; enum { OCS_HW_TOPOLOGY_AUTO, OCS_HW_TOPOLOGY_NPORT, OCS_HW_TOPOLOGY_LOOP, OCS_HW_TOPOLOGY_NONE, OCS_HW_TOPOLOGY_MAX }; enum { OCS_HW_MODE_INITIATOR, OCS_HW_MODE_TARGET, OCS_HW_MODE_BOTH, OCS_HW_MODE_MAX }; /** * @brief Port protocols */ typedef enum { OCS_HW_PORT_PROTOCOL_ISCSI, OCS_HW_PORT_PROTOCOL_FCOE, OCS_HW_PORT_PROTOCOL_FC, OCS_HW_PORT_PROTOCOL_OTHER, } ocs_hw_port_protocol_e; #define OCS_HW_MAX_PROFILES 40 /** * @brief A Profile Descriptor */ typedef struct { uint32_t profile_index; uint32_t profile_id; char profile_description[512]; } ocs_hw_profile_descriptor_t; /** * @brief A Profile List */ typedef struct { uint32_t num_descriptors; ocs_hw_profile_descriptor_t descriptors[OCS_HW_MAX_PROFILES]; } ocs_hw_profile_list_t; /** * @brief Defines DIF operation modes */ enum { OCS_HW_DIF_MODE_INLINE, OCS_HW_DIF_MODE_SEPARATE, }; /** * @brief Defines the type of RQ buffer */ typedef enum { OCS_HW_RQ_BUFFER_TYPE_HDR, OCS_HW_RQ_BUFFER_TYPE_PAYLOAD, OCS_HW_RQ_BUFFER_TYPE_MAX, } ocs_hw_rq_buffer_type_e; /** * @brief Defines a wrapper for the RQ payload buffers so that we can place it * back on the proper queue. */ typedef struct { uint16_t rqindex; ocs_dma_t dma; } ocs_hw_rq_buffer_t; /** * @brief T10 DIF operations. */ typedef enum { OCS_HW_DIF_OPER_DISABLED, OCS_HW_SGE_DIF_OP_IN_NODIF_OUT_CRC, OCS_HW_SGE_DIF_OP_IN_CRC_OUT_NODIF, OCS_HW_SGE_DIF_OP_IN_NODIF_OUT_CHKSUM, OCS_HW_SGE_DIF_OP_IN_CHKSUM_OUT_NODIF, OCS_HW_SGE_DIF_OP_IN_CRC_OUT_CRC, OCS_HW_SGE_DIF_OP_IN_CHKSUM_OUT_CHKSUM, OCS_HW_SGE_DIF_OP_IN_CRC_OUT_CHKSUM, OCS_HW_SGE_DIF_OP_IN_CHKSUM_OUT_CRC, OCS_HW_SGE_DIF_OP_IN_RAW_OUT_RAW, } ocs_hw_dif_oper_e; #define OCS_HW_DIF_OPER_PASS_THRU OCS_HW_SGE_DIF_OP_IN_CRC_OUT_CRC #define OCS_HW_DIF_OPER_STRIP OCS_HW_SGE_DIF_OP_IN_CRC_OUT_NODIF #define OCS_HW_DIF_OPER_INSERT OCS_HW_SGE_DIF_OP_IN_NODIF_OUT_CRC /** * @brief T10 DIF block sizes. */ typedef enum { OCS_HW_DIF_BK_SIZE_512, OCS_HW_DIF_BK_SIZE_1024, OCS_HW_DIF_BK_SIZE_2048, OCS_HW_DIF_BK_SIZE_4096, OCS_HW_DIF_BK_SIZE_520, OCS_HW_DIF_BK_SIZE_4104, OCS_HW_DIF_BK_SIZE_NA = 0 } ocs_hw_dif_blk_size_e; /** * @brief Link configurations. */ typedef enum { OCS_HW_LINKCFG_4X10G = 0, OCS_HW_LINKCFG_1X40G, OCS_HW_LINKCFG_2X16G, OCS_HW_LINKCFG_4X8G, OCS_HW_LINKCFG_4X1G, OCS_HW_LINKCFG_2X10G, OCS_HW_LINKCFG_2X10G_2X8G, /* must be last */ OCS_HW_LINKCFG_NA, } ocs_hw_linkcfg_e; /** * @brief link module types * * (note: these just happen to match SLI4 values) */ enum { OCS_HW_LINK_MODULE_TYPE_1GB = 0x0004, OCS_HW_LINK_MODULE_TYPE_2GB = 0x0008, OCS_HW_LINK_MODULE_TYPE_4GB = 0x0040, OCS_HW_LINK_MODULE_TYPE_8GB = 0x0080, OCS_HW_LINK_MODULE_TYPE_10GB = 0x0100, OCS_HW_LINK_MODULE_TYPE_16GB = 0x0200, OCS_HW_LINK_MODULE_TYPE_32GB = 0x0400, }; /** * @brief T10 DIF information passed to the transport. */ typedef struct ocs_hw_dif_info_s { ocs_hw_dif_oper_e dif_oper; ocs_hw_dif_blk_size_e blk_size; uint32_t ref_tag_cmp; uint32_t ref_tag_repl; uint32_t app_tag_cmp:16, app_tag_repl:16; uint32_t check_ref_tag:1, check_app_tag:1, check_guard:1, auto_incr_ref_tag:1, repl_app_tag:1, repl_ref_tag:1, dif:2, dif_separate:1, /* If the APP TAG is 0xFFFF, disable checking the REF TAG and CRC fields */ disable_app_ffff:1, /* if the APP TAG is 0xFFFF and REF TAG is 0xFFFF_FFFF, disable checking the received CRC field. */ disable_app_ref_ffff:1, :21; uint16_t dif_seed; } ocs_hw_dif_info_t; typedef enum { OCS_HW_ELS_REQ, /**< ELS request */ OCS_HW_ELS_RSP, /**< ELS response */ OCS_HW_ELS_RSP_SID, /**< ELS response, override the S_ID */ OCS_HW_FC_CT, /**< FC Common Transport */ OCS_HW_FC_CT_RSP, /**< FC Common Transport Response */ OCS_HW_BLS_ACC, /**< BLS accept (BA_ACC) */ OCS_HW_BLS_ACC_SID, /**< BLS accept (BA_ACC), override the S_ID */ OCS_HW_BLS_RJT, /**< BLS reject (BA_RJT) */ OCS_HW_BCAST, /**< Class 3 broadcast sequence */ OCS_HW_IO_TARGET_READ, OCS_HW_IO_TARGET_WRITE, OCS_HW_IO_TARGET_RSP, OCS_HW_IO_INITIATOR_READ, OCS_HW_IO_INITIATOR_WRITE, OCS_HW_IO_INITIATOR_NODATA, OCS_HW_IO_DNRX_REQUEUE, OCS_HW_IO_MAX, } ocs_hw_io_type_e; typedef enum { OCS_HW_IO_STATE_FREE, OCS_HW_IO_STATE_INUSE, OCS_HW_IO_STATE_WAIT_FREE, OCS_HW_IO_STATE_WAIT_SEC_HIO, } ocs_hw_io_state_e; /* Descriptive strings for the HW IO request types (note: these must always * match up with the ocs_hw_io_type_e declaration) */ #define OCS_HW_IO_TYPE_STRINGS \ "ELS request", \ "ELS response", \ "ELS response(set SID)", \ "FC CT request", \ "BLS accept", \ "BLS accept(set SID)", \ "BLS reject", \ "target read", \ "target write", \ "target response", \ "initiator read", \ "initiator write", \ "initiator nodata", /** * @brief HW command context. * * Stores the state for the asynchronous commands sent to the hardware. */ typedef struct ocs_command_ctx_s { ocs_list_t link; /**< Callback function */ int32_t (*cb)(struct ocs_hw_s *, int32_t, uint8_t *, void *); void *arg; /**< Argument for callback */ uint8_t *buf; /**< buffer holding command / results */ void *ctx; /**< upper layer context */ } ocs_command_ctx_t; typedef struct ocs_hw_sgl_s { uintptr_t addr; size_t len; } ocs_hw_sgl_t; /** * @brief HW callback type * * Typedef for HW "done" callback. */ typedef int32_t (*ocs_hw_done_t)(struct ocs_hw_io_s *, ocs_remote_node_t *, uint32_t len, int32_t status, uint32_t ext, void *ul_arg); typedef union ocs_hw_io_param_u { struct { uint16_t ox_id; uint16_t rx_id; uint8_t payload[12]; /**< big enough for ABTS BA_ACC */ } bls; struct { uint32_t s_id; uint16_t ox_id; uint16_t rx_id; uint8_t payload[12]; /**< big enough for ABTS BA_ACC */ } bls_sid; struct { uint8_t r_ctl; uint8_t type; uint8_t df_ctl; uint8_t timeout; } bcast; struct { uint16_t ox_id; uint8_t timeout; } els; struct { uint32_t s_id; uint16_t ox_id; uint8_t timeout; } els_sid; struct { uint8_t r_ctl; uint8_t type; uint8_t df_ctl; uint8_t timeout; } fc_ct; struct { uint8_t r_ctl; uint8_t type; uint8_t df_ctl; uint8_t timeout; uint16_t ox_id; } fc_ct_rsp; struct { uint32_t offset; uint16_t ox_id; uint16_t flags; uint8_t cs_ctl; ocs_hw_dif_oper_e dif_oper; ocs_hw_dif_blk_size_e blk_size; uint8_t timeout; uint32_t app_id; } fcp_tgt; struct { ocs_dma_t *cmnd; ocs_dma_t *rsp; ocs_hw_dif_oper_e dif_oper; ocs_hw_dif_blk_size_e blk_size; uint32_t cmnd_size; uint16_t flags; - uint8_t timeout; + uint32_t timeout; uint32_t first_burst; } fcp_ini; } ocs_hw_io_param_t; /** * @brief WQ steering mode */ typedef enum { OCS_HW_WQ_STEERING_CLASS, OCS_HW_WQ_STEERING_REQUEST, OCS_HW_WQ_STEERING_CPU, } ocs_hw_wq_steering_e; /** * @brief HW wqe object */ typedef struct { uint32_t abort_wqe_submit_needed:1, /**< set if abort wqe needs to be submitted */ send_abts:1, /**< set to 1 to have hardware to automatically send ABTS */ auto_xfer_rdy_dnrx:1, /**< TRUE if DNRX was set on this IO */ :29; uint32_t id; uint32_t abort_reqtag; ocs_list_link_t link; uint8_t *wqebuf; /**< work queue entry buffer */ } ocs_hw_wqe_t; /** * @brief HW IO object. * * Stores the per-IO information necessary for both the lower (SLI) and upper * layers (ocs). */ struct ocs_hw_io_s { /* Owned by HW */ ocs_list_link_t link; /**< used for busy, wait_free, free lists */ ocs_list_link_t wqe_link; /**< used for timed_wqe list */ ocs_list_link_t dnrx_link; /**< used for io posted dnrx list */ ocs_hw_io_state_e state; /**< state of IO: free, busy, wait_free */ ocs_hw_wqe_t wqe; /**< Work queue object, with link for pending */ ocs_lock_t axr_lock; /**< Lock to synchronize TRSP and AXT Data/Cmd Cqes */ ocs_hw_t *hw; /**< pointer back to hardware context */ ocs_remote_node_t *rnode; struct ocs_hw_auto_xfer_rdy_buffer_s *axr_buf; ocs_dma_t xfer_rdy; uint16_t type; uint32_t port_owned_abort_count; /**< IO abort count */ hw_wq_t *wq; /**< WQ assigned to the exchange */ uint32_t xbusy; /**< Exchange is active in FW */ ocs_hw_done_t done; /**< Function called on IO completion */ void *arg; /**< argument passed to "IO done" callback */ ocs_hw_done_t abort_done; /**< Function called on abort completion */ void *abort_arg; /**< argument passed to "abort done" callback */ ocs_ref_t ref; /**< refcount object */ size_t length; /**< needed for bug O127585: length of IO */ - uint8_t tgt_wqe_timeout; /**< timeout value for target WQEs */ - uint64_t submit_ticks; /**< timestamp when current WQE was submitted */ + uint32_t wqe_timeout; /**< timeout value for WQEs */ + struct timeval submit_time; /**< timestamp when current WQE was submitted */ uint32_t status_saved:1, /**< if TRUE, latched status should be returned */ abort_in_progress:1, /**< if TRUE, abort is in progress */ quarantine:1, /**< set if IO to be quarantined */ quarantine_first_phase:1, /**< set if first phase of IO */ is_port_owned:1, /**< set if POST_XRI was used to send XRI to th chip */ auto_xfer_rdy_dnrx:1, /**< TRUE if DNRX was set on this IO */ :26; uint32_t saved_status; /**< latched status */ uint32_t saved_len; /**< latched length */ uint32_t saved_ext; /**< latched extended status */ hw_eq_t *eq; /**< EQ that this HIO came up on */ ocs_hw_wq_steering_e wq_steering; /**< WQ steering mode request */ uint8_t wq_class; /**< WQ class if steering mode is Class */ /* Owned by SLI layer */ uint16_t reqtag; /**< request tag for this HW IO */ uint32_t abort_reqtag; /**< request tag for an abort of this HW IO (note: this is a 32 bit value to allow us to use UINT32_MAX as an uninitialized value) */ uint32_t indicator; /**< XRI */ ocs_dma_t def_sgl; /**< default scatter gather list */ uint32_t def_sgl_count; /**< count of SGEs in default SGL */ ocs_dma_t *sgl; /**< pointer to current active SGL */ uint32_t sgl_count; /**< count of SGEs in io->sgl */ uint32_t first_data_sge; /**< index of first data SGE */ ocs_dma_t *ovfl_sgl; /**< overflow SGL */ uint32_t ovfl_sgl_count; /**< count of SGEs in default SGL */ sli4_lsp_sge_t *ovfl_lsp; /**< pointer to overflow segment length */ ocs_hw_io_t *ovfl_io; /**< Used for SGL chaining on skyhawk */ uint32_t n_sge; /**< number of active SGEs */ uint32_t sge_offset; /* BZ 161832 Workaround: */ struct ocs_hw_io_s *sec_hio; /**< Secondary HW IO context */ ocs_hw_io_param_t sec_iparam; /**< Secondary HW IO context saved iparam */ uint32_t sec_len; /**< Secondary HW IO context saved len */ /* Owned by upper layer */ void *ul_io; /**< where upper layer can store reference to its IO */ }; typedef enum { OCS_HW_PORT_INIT, OCS_HW_PORT_SHUTDOWN, OCS_HW_PORT_SET_LINK_CONFIG, } ocs_hw_port_e; /** * @brief Fabric/Domain events */ typedef enum { OCS_HW_DOMAIN_ALLOC_OK, /**< domain successfully allocated */ OCS_HW_DOMAIN_ALLOC_FAIL, /**< domain allocation failed */ OCS_HW_DOMAIN_ATTACH_OK, /**< successfully attached to domain */ OCS_HW_DOMAIN_ATTACH_FAIL, /**< domain attach failed */ OCS_HW_DOMAIN_FREE_OK, /**< successfully freed domain */ OCS_HW_DOMAIN_FREE_FAIL, /**< domain free failed */ OCS_HW_DOMAIN_LOST, /**< previously discovered domain no longer available */ OCS_HW_DOMAIN_FOUND, /**< new domain discovered */ OCS_HW_DOMAIN_CHANGED, /**< previously discovered domain properties have changed */ } ocs_hw_domain_event_e; typedef enum { OCS_HW_PORT_ALLOC_OK, /**< port successfully allocated */ OCS_HW_PORT_ALLOC_FAIL, /**< port allocation failed */ OCS_HW_PORT_ATTACH_OK, /**< successfully attached to port */ OCS_HW_PORT_ATTACH_FAIL, /**< port attach failed */ OCS_HW_PORT_FREE_OK, /**< successfully freed port */ OCS_HW_PORT_FREE_FAIL, /**< port free failed */ } ocs_hw_port_event_e; typedef enum { OCS_HW_NODE_ATTACH_OK, OCS_HW_NODE_ATTACH_FAIL, OCS_HW_NODE_FREE_OK, OCS_HW_NODE_FREE_FAIL, OCS_HW_NODE_FREE_ALL_OK, OCS_HW_NODE_FREE_ALL_FAIL, } ocs_hw_remote_node_event_e; typedef enum { OCS_HW_CB_DOMAIN, OCS_HW_CB_PORT, OCS_HW_CB_REMOTE_NODE, OCS_HW_CB_UNSOLICITED, OCS_HW_CB_BOUNCE, OCS_HW_CB_MAX, /**< must be last */ } ocs_hw_callback_e; /** * @brief HW unsolicited callback status */ typedef enum { OCS_HW_UNSOL_SUCCESS, OCS_HW_UNSOL_ERROR, OCS_HW_UNSOL_ABTS_RCVD, OCS_HW_UNSOL_MAX, /**< must be last */ } ocs_hw_unsol_status_e; /** * @brief Node group rpi reference */ typedef struct { ocs_atomic_t rpi_count; ocs_atomic_t rpi_attached; } ocs_hw_rpi_ref_t; /** * @brief HW link stat types */ typedef enum { OCS_HW_LINK_STAT_LINK_FAILURE_COUNT, OCS_HW_LINK_STAT_LOSS_OF_SYNC_COUNT, OCS_HW_LINK_STAT_LOSS_OF_SIGNAL_COUNT, OCS_HW_LINK_STAT_PRIMITIVE_SEQ_COUNT, OCS_HW_LINK_STAT_INVALID_XMIT_WORD_COUNT, OCS_HW_LINK_STAT_CRC_COUNT, OCS_HW_LINK_STAT_PRIMITIVE_SEQ_TIMEOUT_COUNT, OCS_HW_LINK_STAT_ELASTIC_BUFFER_OVERRUN_COUNT, OCS_HW_LINK_STAT_ARB_TIMEOUT_COUNT, OCS_HW_LINK_STAT_ADVERTISED_RCV_B2B_CREDIT, OCS_HW_LINK_STAT_CURR_RCV_B2B_CREDIT, OCS_HW_LINK_STAT_ADVERTISED_XMIT_B2B_CREDIT, OCS_HW_LINK_STAT_CURR_XMIT_B2B_CREDIT, OCS_HW_LINK_STAT_RCV_EOFA_COUNT, OCS_HW_LINK_STAT_RCV_EOFDTI_COUNT, OCS_HW_LINK_STAT_RCV_EOFNI_COUNT, OCS_HW_LINK_STAT_RCV_SOFF_COUNT, OCS_HW_LINK_STAT_RCV_DROPPED_NO_AER_COUNT, OCS_HW_LINK_STAT_RCV_DROPPED_NO_RPI_COUNT, OCS_HW_LINK_STAT_RCV_DROPPED_NO_XRI_COUNT, OCS_HW_LINK_STAT_MAX, /**< must be last */ } ocs_hw_link_stat_e; typedef enum { OCS_HW_HOST_STAT_TX_KBYTE_COUNT, OCS_HW_HOST_STAT_RX_KBYTE_COUNT, OCS_HW_HOST_STAT_TX_FRAME_COUNT, OCS_HW_HOST_STAT_RX_FRAME_COUNT, OCS_HW_HOST_STAT_TX_SEQ_COUNT, OCS_HW_HOST_STAT_RX_SEQ_COUNT, OCS_HW_HOST_STAT_TOTAL_EXCH_ORIG, OCS_HW_HOST_STAT_TOTAL_EXCH_RESP, OCS_HW_HOSY_STAT_RX_P_BSY_COUNT, OCS_HW_HOST_STAT_RX_F_BSY_COUNT, OCS_HW_HOST_STAT_DROP_FRM_DUE_TO_NO_RQ_BUF_COUNT, OCS_HW_HOST_STAT_EMPTY_RQ_TIMEOUT_COUNT, OCS_HW_HOST_STAT_DROP_FRM_DUE_TO_NO_XRI_COUNT, OCS_HW_HOST_STAT_EMPTY_XRI_POOL_COUNT, OCS_HW_HOST_STAT_MAX /* MUST BE LAST */ } ocs_hw_host_stat_e; typedef enum { OCS_HW_STATE_UNINITIALIZED, /* power-on, no allocations, no initializations */ OCS_HW_STATE_QUEUES_ALLOCATED, /* chip is reset, allocations are complete (queues not registered) */ OCS_HW_STATE_ACTIVE, /* chip is up an running */ OCS_HW_STATE_RESET_IN_PROGRESS, /* chip is being reset */ OCS_HW_STATE_TEARDOWN_IN_PROGRESS, /* teardown has been started */ } ocs_hw_state_e; /** * @brief Defines a general FC sequence object, consisting of a header, payload buffers * and a HW IO in the case of port owned XRI */ typedef struct { ocs_hw_t *hw; /**< HW that owns this sequence */ /* sequence information */ uint8_t fcfi; /**< FCFI associated with sequence */ uint8_t auto_xrdy; /**< If auto XFER_RDY was generated */ uint8_t out_of_xris; /**< If IO would have been assisted if XRIs were available */ ocs_hw_rq_buffer_t *header; ocs_hw_rq_buffer_t *payload; /**< received frame payload buffer */ /* other "state" information from the SRB (sequence coalescing) */ ocs_hw_unsol_status_e status; uint32_t xri; /**< XRI associated with sequence; sequence coalescing only */ ocs_hw_io_t *hio; /**< HW IO */ ocs_list_link_t link; void *hw_priv; /**< HW private context */ } ocs_hw_sequence_t; /** * @brief Structure to track optimized write buffers posted to chip owned XRIs. * * Note: The rqindex will be set the following "fake" indexes. This will be used * when the buffer is returned via ocs_seq_free() to make the buffer available * for re-use on another XRI. * * The dma->alloc pointer on the dummy header will be used to get back to this structure when the buffer is freed. * * More of these object may be allocated on the fly if more XRIs are pushed to the chip. */ #define OCS_HW_RQ_INDEX_DUMMY_HDR 0xFF00 #define OCS_HW_RQ_INDEX_DUMMY_DATA 0xFF01 typedef struct ocs_hw_auto_xfer_rdy_buffer_s { fc_header_t hdr; /**< used to build a dummy data header for unsolicited processing */ ocs_hw_rq_buffer_t header; /**< Points to the dummy data header */ ocs_hw_rq_buffer_t payload; /**< received frame payload buffer */ ocs_hw_sequence_t seq; /**< sequence for passing the buffers */ uint8_t data_cqe; uint8_t cmd_cqe; /* fields saved from the command header that are needed when the data arrives */ uint8_t fcfi; /* To handle outof order completions save AXR cmd and data cqes */ uint8_t call_axr_cmd; uint8_t call_axr_data; ocs_hw_sequence_t *cmd_seq; } ocs_hw_auto_xfer_rdy_buffer_t; /** * @brief Node group rpi reference */ typedef struct { uint8_t overflow; uint32_t counter; } ocs_hw_link_stat_counts_t; /** * @brief HW object describing fc host stats */ typedef struct { uint32_t counter; } ocs_hw_host_stat_counts_t; #define TID_HASH_BITS 8 #define TID_HASH_LEN (1U << TID_HASH_BITS) typedef struct ocs_hw_iopt_s { char name[32]; uint32_t instance_index; ocs_thread_t iopt_thread; ocs_cbuf_t *iopt_free_queue; /* multiple reader, multiple writer */ ocs_cbuf_t *iopt_work_queue; ocs_array_t *iopt_cmd_array; } ocs_hw_iopt_t; typedef enum { HW_CQ_HANDLER_LOCAL, HW_CQ_HANDLER_THREAD, } hw_cq_handler_e; #include "ocs_hw_queues.h" /** * @brief Stucture used for the hash lookup of queue IDs */ typedef struct { uint32_t id:16, in_use:1, index:15; } ocs_queue_hash_t; /** * @brief Define the fields required to implement the skyhawk DIF quarantine. */ #define OCS_HW_QUARANTINE_QUEUE_DEPTH 4 typedef struct { uint32_t quarantine_index; ocs_hw_io_t *quarantine_ios[OCS_HW_QUARANTINE_QUEUE_DEPTH]; } ocs_quarantine_info_t; /** * @brief Define the WQ callback object */ typedef struct { uint16_t instance_index; /**< use for request tag */ void (*callback)(void *arg, uint8_t *cqe, int32_t status); void *arg; } hw_wq_callback_t; typedef struct { uint64_t fwrev; /* Control Declarations here ...*/ uint8_t retain_tsend_io_length; /* Use unregistered RPI */ uint8_t use_unregistered_rpi; uint32_t unregistered_rid; uint32_t unregistered_index; uint8_t disable_ar_tgt_dif; /* Disable auto response if target DIF */ uint8_t disable_dump_loc; uint8_t use_dif_quarantine; uint8_t use_dif_sec_xri; uint8_t override_fcfi; uint8_t fw_version_too_low; uint8_t sglc_misreported; uint8_t ignore_send_frame; } ocs_hw_workaround_t; /** * @brief HW object */ struct ocs_hw_s { ocs_os_handle_t os; sli4_t sli; uint16_t ulp_start; uint16_t ulp_max; uint32_t dump_size; ocs_hw_state_e state; uint8_t hw_setup_called; uint8_t sliport_healthcheck; uint16_t watchdog_timeout; ocs_lock_t watchdog_lock; /** HW configuration, subject to ocs_hw_set() */ struct { uint32_t n_eq; /**< number of event queues */ uint32_t n_cq; /**< number of completion queues */ uint32_t n_mq; /**< number of mailbox queues */ uint32_t n_rq; /**< number of receive queues */ uint32_t n_wq; /**< number of work queues */ uint32_t n_io; /**< total number of IO objects */ uint32_t n_sgl;/**< length of SGL */ uint32_t speed; /** requested link speed in Mbps */ uint32_t topology; /** requested link topology */ uint32_t rq_default_buffer_size; /** size of the buffers for first burst */ uint32_t auto_xfer_rdy_xri_cnt; /** Initial XRIs to post to chip at initialization */ uint32_t auto_xfer_rdy_size; /** max size IO to use with this feature */ uint8_t auto_xfer_rdy_blk_size_chip; /** block size to use with this feature */ uint8_t esoc; uint16_t dif_seed; /** The seed for the DIF CRC calculation */ uint16_t auto_xfer_rdy_app_tag_value; uint8_t dif_mode; /**< DIF mode to use */ uint8_t i_only_aab; /** Enable initiator-only auto-abort */ - uint8_t emulate_tgt_wqe_timeout; /** Enable driver target wqe timeouts */ + uint8_t emulate_wqe_timeout; /** Enable driver wqe timeouts */ uint32_t bounce:1; const char *queue_topology; /**< Queue topology string */ uint8_t auto_xfer_rdy_t10_enable; /** Enable t10 PI for auto xfer ready */ uint8_t auto_xfer_rdy_p_type; /** p_type for auto xfer ready */ uint8_t auto_xfer_rdy_ref_tag_is_lba; uint8_t auto_xfer_rdy_app_tag_valid; uint8_t rq_selection_policy; /** MRQ RQ selection policy */ uint8_t rr_quanta; /** RQ quanta if rq_selection_policy == 2 */ uint32_t filter_def[SLI4_CMD_REG_FCFI_NUM_RQ_CFG]; } config; /* calculated queue sizes for each type */ uint32_t num_qentries[SLI_QTYPE_MAX]; /* Storage for SLI queue objects */ sli4_queue_t wq[OCS_HW_MAX_NUM_WQ]; sli4_queue_t rq[OCS_HW_MAX_NUM_RQ]; uint16_t hw_rq_lookup[OCS_HW_MAX_NUM_RQ]; sli4_queue_t mq[OCS_HW_MAX_NUM_MQ]; sli4_queue_t cq[OCS_HW_MAX_NUM_CQ]; sli4_queue_t eq[OCS_HW_MAX_NUM_EQ]; /* HW queue */ uint32_t eq_count; uint32_t cq_count; uint32_t mq_count; uint32_t wq_count; uint32_t rq_count; /**< count of SLI RQs */ ocs_list_t eq_list; ocs_queue_hash_t cq_hash[OCS_HW_Q_HASH_SIZE]; ocs_queue_hash_t rq_hash[OCS_HW_Q_HASH_SIZE]; ocs_queue_hash_t wq_hash[OCS_HW_Q_HASH_SIZE]; /* Storage for HW queue objects */ hw_wq_t *hw_wq[OCS_HW_MAX_NUM_WQ]; hw_rq_t *hw_rq[OCS_HW_MAX_NUM_RQ]; hw_mq_t *hw_mq[OCS_HW_MAX_NUM_MQ]; hw_cq_t *hw_cq[OCS_HW_MAX_NUM_CQ]; hw_eq_t *hw_eq[OCS_HW_MAX_NUM_EQ]; uint32_t hw_rq_count; /**< count of hw_rq[] entries */ uint32_t hw_mrq_count; /**< count of multirq RQs */ ocs_varray_t *wq_class_array[OCS_HW_MAX_WQ_CLASS]; /**< pool per class WQs */ ocs_varray_t *wq_cpu_array[OCS_HW_MAX_WQ_CPU]; /**< pool per CPU WQs */ /* Sequence objects used in incoming frame processing */ ocs_array_t *seq_pool; /* Auto XFER RDY Buffers - protect with io_lock */ uint32_t auto_xfer_rdy_enabled:1, /**< TRUE if auto xfer rdy is enabled */ :31; ocs_pool_t *auto_xfer_rdy_buf_pool; /**< pool of ocs_hw_auto_xfer_rdy_buffer_t objects */ /** Maintain an ordered, linked list of outstanding HW commands. */ ocs_lock_t cmd_lock; ocs_list_t cmd_head; ocs_list_t cmd_pending; uint32_t cmd_head_count; sli4_link_event_t link; ocs_hw_linkcfg_e linkcfg; /**< link configuration setting */ uint32_t eth_license; /**< Ethernet license; to enable FCoE on Lancer */ struct { /** * Function + argument used to notify upper layer of domain events. * * The final argument to the callback is a generic data pointer: * - ocs_domain_record_t on OCS_HW_DOMAIN_FOUND * - ocs_domain_t on OCS_HW_DOMAIN_ALLOC_FAIL, OCS_HW_DOMAIN_ALLOC_OK, * OCS_HW_DOMAIN_FREE_FAIL, OCS_HW_DOMAIN_FREE_OK, * OCS_HW_DOMAIN_ATTACH_FAIL, OCS_HW_DOMAIN_ATTACH_OK, and * OCS_HW_DOMAIN_LOST. */ int32_t (*domain)(void *, ocs_hw_domain_event_e, void *); /** * Function + argument used to notify upper layers of port events. * * The final argument to the callback is a pointer to the effected * SLI port for all events. */ int32_t (*port)(void *, ocs_hw_port_event_e, void *); /** Function + argument used to announce arrival of unsolicited frames */ int32_t (*unsolicited)(void *, ocs_hw_sequence_t *); int32_t (*rnode)(void *, ocs_hw_remote_node_event_e, void *); int32_t (*bounce)(void (*)(void *arg), void *arg, uint32_t s_id, uint32_t d_id, uint32_t ox_id); } callback; struct { void *domain; void *port; void *unsolicited; void *rnode; void *bounce; } args; /* OCS domain objects index by FCFI */ int32_t first_domain_idx; /* Workaround for srb->fcfi == 0 */ ocs_domain_t *domains[SLI4_MAX_FCFI]; /* Table of FCFI values index by FCF_index */ uint16_t fcf_index_fcfi[SLI4_MAX_FCF_INDEX]; uint16_t fcf_indicator; ocs_hw_io_t **io; /**< pointer array of IO objects */ uint8_t *wqe_buffs; /**< array of WQE buffs mapped to IO objects */ ocs_lock_t io_lock; /**< IO lock to synchronize list access */ ocs_lock_t io_abort_lock; /**< IO lock to synchronize IO aborting */ ocs_list_t io_inuse; /**< List of IO objects in use */ ocs_list_t io_timed_wqe; /**< List of IO objects with a timed target WQE */ ocs_list_t io_wait_free; /**< List of IO objects waiting to be freed */ ocs_list_t io_free; /**< List of IO objects available for allocation */ ocs_list_t io_port_owned; /**< List of IO objects posted for chip use */ ocs_list_t io_port_dnrx; /**< List of IO objects needing auto xfer rdy buffers */ ocs_dma_t loop_map; ocs_dma_t xfer_rdy; ocs_dma_t dump_sges; ocs_dma_t rnode_mem; ocs_dma_t domain_dmem; /*domain dma mem for service params */ ocs_dma_t fcf_dmem; /*dma men for fcf */ ocs_hw_rpi_ref_t *rpi_ref; char *hw_war_version; ocs_hw_workaround_t workaround; ocs_atomic_t io_alloc_failed_count; #if defined(OCS_DEBUG_QUEUE_HISTORY) ocs_hw_q_hist_t q_hist; #endif ocs_list_t sec_hio_wait_list; /**< BZ 161832 Workaround: Secondary HW IO context wait list */ uint32_t sec_hio_wait_count; /**< BZ 161832 Workaround: Count of IOs that were put on the * Secondary HW IO wait list */ #define HW_MAX_TCMD_THREADS 16 ocs_hw_qtop_t *qtop; /**< pointer to queue topology */ uint32_t tcmd_wq_submit[OCS_HW_MAX_NUM_WQ]; /**< stat: wq sumbit count */ uint32_t tcmd_wq_complete[OCS_HW_MAX_NUM_WQ]; /**< stat: wq complete count */ ocs_timer_t wqe_timer; /**< Timer to periodically check for WQE timeouts */ ocs_timer_t watchdog_timer; /**< Timer for heartbeat */ bool expiration_logged; uint32_t in_active_wqe_timer:1, /**< TRUE if currently in active wqe timer handler */ active_wqe_timer_shutdown:1, /** TRUE if wqe timer is to be shutdown */ :30; ocs_list_t iopc_list; /**< list of IO processing contexts */ ocs_lock_t iopc_list_lock; /**< lock for iopc_list */ ocs_pool_t *wq_reqtag_pool; /**< pool of hw_wq_callback_t objects */ ocs_atomic_t send_frame_seq_id; /**< send frame sequence ID */ }; typedef enum { OCS_HW_IO_INUSE_COUNT, OCS_HW_IO_FREE_COUNT, OCS_HW_IO_WAIT_FREE_COUNT, OCS_HW_IO_PORT_OWNED_COUNT, OCS_HW_IO_N_TOTAL_IO_COUNT, } ocs_hw_io_count_type_e; typedef void (*tcmd_cq_handler)(ocs_hw_t *hw, uint32_t cq_idx, void *cq_handler_arg); /* * HW queue data structures */ struct hw_eq_s { ocs_list_link_t link; /**< must be first */ sli4_qtype_e type; /**< must be second */ uint32_t instance; uint32_t entry_count; uint32_t entry_size; ocs_hw_t *hw; sli4_queue_t *queue; ocs_list_t cq_list; #if OCS_STAT_ENABLE uint32_t use_count; #endif ocs_varray_t *wq_array; /*<< array of WQs */ }; struct hw_cq_s { ocs_list_link_t link; /*<< must be first */ sli4_qtype_e type; /**< must be second */ uint32_t instance; /*<< CQ instance (cq_idx) */ uint32_t entry_count; /*<< Number of entries */ uint32_t entry_size; /*<< entry size */ hw_eq_t *eq; /*<< parent EQ */ sli4_queue_t *queue; /**< pointer to SLI4 queue */ ocs_list_t q_list; /**< list of children queues */ #if OCS_STAT_ENABLE uint32_t use_count; #endif }; typedef struct { ocs_list_link_t link; /*<< must be first */ sli4_qtype_e type; /*<< must be second */ } hw_q_t; struct hw_mq_s { ocs_list_link_t link; /*<< must be first */ sli4_qtype_e type; /*<< must be second */ uint32_t instance; uint32_t entry_count; uint32_t entry_size; hw_cq_t *cq; sli4_queue_t *queue; #if OCS_STAT_ENABLE uint32_t use_count; #endif }; struct hw_wq_s { ocs_list_link_t link; /*<< must be first */ sli4_qtype_e type; /*<< must be second */ uint32_t instance; ocs_hw_t *hw; uint32_t entry_count; uint32_t entry_size; hw_cq_t *cq; sli4_queue_t *queue; uint32_t class; uint8_t ulp; /* WQ consumed */ uint32_t wqec_set_count; /*<< how often IOs are submitted with wqce set */ uint32_t wqec_count; /*<< current wqce counter */ uint32_t free_count; /*<< free count */ uint32_t total_submit_count; /*<< total submit count */ ocs_list_t pending_list; /*<< list of IOs pending for this WQ */ /* * ---Skyhawk only --- * BZ 160124 - Driver must quarantine XRIs for target writes and * initiator read when using DIF separates. Throw them on a * queue until another 4 similar requests are completed to ensure they * are flushed from the internal chip cache before being re-used. * The must be a separate queue per CQ because the actual chip completion * order cannot be determined. Since each WQ has a separate CQ, use the wq * associated with the IO. * * Note: Protected by queue->lock */ ocs_quarantine_info_t quarantine_info; /* * HW IO allocated for use with Send Frame */ ocs_hw_io_t *send_frame_io; /* Stats */ #if OCS_STAT_ENABLE uint32_t use_count; /*<< use count */ uint32_t wq_pending_count; /*<< count of HW IOs that were queued on the WQ pending list */ #endif }; struct hw_rq_s { ocs_list_link_t link; /*<< must be first */ sli4_qtype_e type; /*<< must be second */ uint32_t instance; uint32_t entry_count; uint32_t hdr_entry_size; uint32_t first_burst_entry_size; uint32_t data_entry_size; uint8_t ulp; bool is_mrq; uint32_t base_mrq_id; hw_cq_t *cq; uint8_t filter_mask; /* Filter mask value */ sli4_queue_t *hdr; sli4_queue_t *first_burst; sli4_queue_t *data; ocs_hw_rq_buffer_t *hdr_buf; ocs_hw_rq_buffer_t *fb_buf; ocs_hw_rq_buffer_t *payload_buf; ocs_hw_sequence_t **rq_tracker; /* RQ tracker for this RQ */ #if OCS_STAT_ENABLE uint32_t use_count; uint32_t hdr_use_count; uint32_t fb_use_count; uint32_t payload_use_count; #endif }; typedef struct ocs_hw_global_s { const char *queue_topology_string; /**< queue topology string */ } ocs_hw_global_t; extern ocs_hw_global_t hw_global; extern hw_eq_t *hw_new_eq(ocs_hw_t *hw, uint32_t entry_count); extern hw_cq_t *hw_new_cq(hw_eq_t *eq, uint32_t entry_count); extern uint32_t hw_new_cq_set(hw_eq_t *eqs[], hw_cq_t *cqs[], uint32_t num_cqs, uint32_t entry_count); extern hw_mq_t *hw_new_mq(hw_cq_t *cq, uint32_t entry_count); extern hw_wq_t *hw_new_wq(hw_cq_t *cq, uint32_t entry_count, uint32_t class, uint32_t ulp); extern hw_rq_t *hw_new_rq(hw_cq_t *cq, uint32_t entry_count, uint32_t ulp); extern uint32_t hw_new_rq_set(hw_cq_t *cqs[], hw_rq_t *rqs[], uint32_t num_rq_pairs, uint32_t entry_count, uint32_t ulp); extern void hw_del_eq(hw_eq_t *eq); extern void hw_del_cq(hw_cq_t *cq); extern void hw_del_mq(hw_mq_t *mq); extern void hw_del_wq(hw_wq_t *wq); extern void hw_del_rq(hw_rq_t *rq); extern void hw_queue_dump(ocs_hw_t *hw); extern void hw_queue_teardown(ocs_hw_t *hw); extern int32_t hw_route_rqe(ocs_hw_t *hw, ocs_hw_sequence_t *seq); extern int32_t ocs_hw_queue_hash_find(ocs_queue_hash_t *, uint16_t); extern ocs_hw_rtn_e ocs_hw_setup(ocs_hw_t *, ocs_os_handle_t, sli4_port_type_e); extern ocs_hw_rtn_e ocs_hw_init(ocs_hw_t *); extern ocs_hw_rtn_e ocs_hw_teardown(ocs_hw_t *); extern ocs_hw_rtn_e ocs_hw_reset(ocs_hw_t *, ocs_hw_reset_e); extern int32_t ocs_hw_get_num_eq(ocs_hw_t *); extern ocs_hw_rtn_e ocs_hw_get(ocs_hw_t *, ocs_hw_property_e, uint32_t *); extern void *ocs_hw_get_ptr(ocs_hw_t *, ocs_hw_property_e); extern ocs_hw_rtn_e ocs_hw_set(ocs_hw_t *, ocs_hw_property_e, uint32_t); extern ocs_hw_rtn_e ocs_hw_set_ptr(ocs_hw_t *, ocs_hw_property_e, void*); extern int32_t ocs_hw_event_check(ocs_hw_t *, uint32_t); extern int32_t ocs_hw_process(ocs_hw_t *, uint32_t, uint32_t); extern ocs_hw_rtn_e ocs_hw_command(ocs_hw_t *, uint8_t *, uint32_t, void *, void *); extern ocs_hw_rtn_e ocs_hw_callback(ocs_hw_t *, ocs_hw_callback_e, void *, void *); extern ocs_hw_rtn_e ocs_hw_port_alloc(ocs_hw_t *, ocs_sli_port_t *, ocs_domain_t *, uint8_t *); extern ocs_hw_rtn_e ocs_hw_port_attach(ocs_hw_t *, ocs_sli_port_t *, uint32_t); typedef void (*ocs_hw_port_control_cb_t)(int32_t status, uintptr_t value, void *arg); extern ocs_hw_rtn_e ocs_hw_port_control(ocs_hw_t *, ocs_hw_port_e, uintptr_t, ocs_hw_port_control_cb_t, void *); extern ocs_hw_rtn_e ocs_hw_port_free(ocs_hw_t *, ocs_sli_port_t *); extern ocs_hw_rtn_e ocs_hw_domain_alloc(ocs_hw_t *, ocs_domain_t *, uint32_t, uint32_t); extern ocs_hw_rtn_e ocs_hw_domain_attach(ocs_hw_t *, ocs_domain_t *, uint32_t); extern ocs_hw_rtn_e ocs_hw_domain_free(ocs_hw_t *, ocs_domain_t *); extern ocs_hw_rtn_e ocs_hw_domain_force_free(ocs_hw_t *, ocs_domain_t *); extern ocs_domain_t * ocs_hw_domain_get(ocs_hw_t *, uint16_t); extern ocs_hw_rtn_e ocs_hw_node_alloc(ocs_hw_t *, ocs_remote_node_t *, uint32_t, ocs_sli_port_t *); extern ocs_hw_rtn_e ocs_hw_node_free_all(ocs_hw_t *); extern ocs_hw_rtn_e ocs_hw_node_attach(ocs_hw_t *, ocs_remote_node_t *, ocs_dma_t *); extern ocs_hw_rtn_e ocs_hw_node_detach(ocs_hw_t *, ocs_remote_node_t *); extern ocs_hw_rtn_e ocs_hw_node_free_resources(ocs_hw_t *, ocs_remote_node_t *); extern ocs_hw_rtn_e ocs_hw_node_group_alloc(ocs_hw_t *, ocs_remote_node_group_t *); extern ocs_hw_rtn_e ocs_hw_node_group_attach(ocs_hw_t *, ocs_remote_node_group_t *, ocs_remote_node_t *); extern ocs_hw_rtn_e ocs_hw_node_group_free(ocs_hw_t *, ocs_remote_node_group_t *); extern ocs_hw_io_t *ocs_hw_io_alloc(ocs_hw_t *); extern ocs_hw_io_t *ocs_hw_io_activate_port_owned(ocs_hw_t *, ocs_hw_io_t *); extern int32_t ocs_hw_io_free(ocs_hw_t *, ocs_hw_io_t *); extern uint8_t ocs_hw_io_inuse(ocs_hw_t *hw, ocs_hw_io_t *io); typedef int32_t (*ocs_hw_srrs_cb_t)(ocs_hw_io_t *io, ocs_remote_node_t *rnode, uint32_t length, int32_t status, uint32_t ext_status, void *arg); extern ocs_hw_rtn_e ocs_hw_srrs_send(ocs_hw_t *, ocs_hw_io_type_e, ocs_hw_io_t *, ocs_dma_t *, uint32_t, ocs_dma_t *, ocs_remote_node_t *, ocs_hw_io_param_t *, ocs_hw_srrs_cb_t, void *); extern ocs_hw_rtn_e ocs_hw_io_send(ocs_hw_t *, ocs_hw_io_type_e, ocs_hw_io_t *, uint32_t, ocs_hw_io_param_t *, ocs_remote_node_t *, void *, void *); extern ocs_hw_rtn_e _ocs_hw_io_send(ocs_hw_t *hw, ocs_hw_io_type_e type, ocs_hw_io_t *io, uint32_t len, ocs_hw_io_param_t *iparam, ocs_remote_node_t *rnode, void *cb, void *arg); extern ocs_hw_rtn_e ocs_hw_io_register_sgl(ocs_hw_t *, ocs_hw_io_t *, ocs_dma_t *, uint32_t); extern ocs_hw_rtn_e ocs_hw_io_init_sges(ocs_hw_t *hw, ocs_hw_io_t *io, ocs_hw_io_type_e type); extern ocs_hw_rtn_e ocs_hw_io_add_seed_sge(ocs_hw_t *hw, ocs_hw_io_t *io, ocs_hw_dif_info_t *dif_info); extern ocs_hw_rtn_e ocs_hw_io_add_sge(ocs_hw_t *, ocs_hw_io_t *, uintptr_t, uint32_t); extern ocs_hw_rtn_e ocs_hw_io_add_dif_sge(ocs_hw_t *hw, ocs_hw_io_t *io, uintptr_t addr); extern ocs_hw_rtn_e ocs_hw_io_abort(ocs_hw_t *, ocs_hw_io_t *, uint32_t, void *, void *); extern int32_t ocs_hw_io_get_xid(ocs_hw_t *, ocs_hw_io_t *); extern uint32_t ocs_hw_io_get_count(ocs_hw_t *, ocs_hw_io_count_type_e); extern uint32_t ocs_hw_get_rqes_produced_count(ocs_hw_t *hw); typedef void (*ocs_hw_fw_cb_t)(int32_t status, uint32_t bytes_written, uint32_t change_status, void *arg); extern ocs_hw_rtn_e ocs_hw_firmware_write(ocs_hw_t *, ocs_dma_t *, uint32_t, uint32_t, int, ocs_hw_fw_cb_t, void*); /* Function for retrieving SFP data */ typedef void (*ocs_hw_sfp_cb_t)(void *, int32_t, uint32_t, uint32_t *, void *); extern ocs_hw_rtn_e ocs_hw_get_sfp(ocs_hw_t *, uint16_t, ocs_hw_sfp_cb_t, void *); /* Function for retrieving temperature data */ typedef void (*ocs_hw_temp_cb_t)(int32_t status, uint32_t curr_temp, uint32_t crit_temp_thrshld, uint32_t warn_temp_thrshld, uint32_t norm_temp_thrshld, uint32_t fan_off_thrshld, uint32_t fan_on_thrshld, void *arg); extern ocs_hw_rtn_e ocs_hw_get_temperature(ocs_hw_t *, ocs_hw_temp_cb_t, void*); /* Function for retrieving link statistics */ typedef void (*ocs_hw_link_stat_cb_t)(int32_t status, uint32_t num_counters, ocs_hw_link_stat_counts_t *counters, void *arg); extern ocs_hw_rtn_e ocs_hw_get_link_stats(ocs_hw_t *, uint8_t req_ext_counters, uint8_t clear_overflow_flags, uint8_t clear_all_counters, ocs_hw_link_stat_cb_t, void*); /* Function for retrieving host statistics */ typedef void (*ocs_hw_host_stat_cb_t)(int32_t status, uint32_t num_counters, ocs_hw_host_stat_counts_t *counters, void *arg); extern ocs_hw_rtn_e ocs_hw_get_host_stats(ocs_hw_t *hw, uint8_t cc, ocs_hw_host_stat_cb_t, void *arg); extern ocs_hw_rtn_e ocs_hw_raise_ue(ocs_hw_t *, uint8_t); typedef void (*ocs_hw_dump_get_cb_t)(int32_t status, uint32_t bytes_read, uint8_t eof, void *arg); extern ocs_hw_rtn_e ocs_hw_dump_get(ocs_hw_t *, ocs_dma_t *, uint32_t, uint32_t, ocs_hw_dump_get_cb_t, void *); extern ocs_hw_rtn_e ocs_hw_set_dump_location(ocs_hw_t *, uint32_t, ocs_dma_t *, uint8_t); typedef void (*ocs_get_port_protocol_cb_t)(int32_t status, ocs_hw_port_protocol_e port_protocol, void *arg); extern ocs_hw_rtn_e ocs_hw_get_port_protocol(ocs_hw_t *hw, uint32_t pci_func, ocs_get_port_protocol_cb_t mgmt_cb, void* ul_arg); typedef void (*ocs_set_port_protocol_cb_t)(int32_t status, void *arg); extern ocs_hw_rtn_e ocs_hw_set_port_protocol(ocs_hw_t *hw, ocs_hw_port_protocol_e profile, uint32_t pci_func, ocs_set_port_protocol_cb_t mgmt_cb, void* ul_arg); typedef void (*ocs_get_profile_list_cb_t)(int32_t status, ocs_hw_profile_list_t*, void *arg); extern ocs_hw_rtn_e ocs_hw_get_profile_list(ocs_hw_t *hw, ocs_get_profile_list_cb_t mgmt_cb, void *arg); typedef void (*ocs_get_active_profile_cb_t)(int32_t status, uint32_t active_profile, void *arg); extern ocs_hw_rtn_e ocs_hw_get_active_profile(ocs_hw_t *hw, ocs_get_active_profile_cb_t mgmt_cb, void *arg); typedef void (*ocs_set_active_profile_cb_t)(int32_t status, void *arg); extern ocs_hw_rtn_e ocs_hw_set_active_profile(ocs_hw_t *hw, ocs_set_active_profile_cb_t mgmt_cb, uint32_t profile_id, void *arg); typedef void (*ocs_get_nvparms_cb_t)(int32_t status, uint8_t *wwpn, uint8_t *wwnn, uint8_t hard_alpa, uint32_t preferred_d_id, void *arg); extern ocs_hw_rtn_e ocs_hw_get_nvparms(ocs_hw_t *hw, ocs_get_nvparms_cb_t mgmt_cb, void *arg); typedef void (*ocs_set_nvparms_cb_t)(int32_t status, void *arg); extern ocs_hw_rtn_e ocs_hw_set_nvparms(ocs_hw_t *hw, ocs_set_nvparms_cb_t mgmt_cb, uint8_t *wwpn, uint8_t *wwnn, uint8_t hard_alpa, uint32_t preferred_d_id, void *arg); extern int32_t ocs_hw_eq_process(ocs_hw_t *hw, hw_eq_t *eq, uint32_t max_isr_time_msec); extern void ocs_hw_cq_process(ocs_hw_t *hw, hw_cq_t *cq); extern void ocs_hw_wq_process(ocs_hw_t *hw, hw_cq_t *cq, uint8_t *cqe, int32_t status, uint16_t rid); extern void ocs_hw_xabt_process(ocs_hw_t *hw, hw_cq_t *cq, uint8_t *cqe, uint16_t rid); extern int32_t hw_wq_write(hw_wq_t *wq, ocs_hw_wqe_t *wqe); typedef void (*ocs_hw_dump_clear_cb_t)(int32_t status, void *arg); extern ocs_hw_rtn_e ocs_hw_dump_clear(ocs_hw_t *, ocs_hw_dump_clear_cb_t, void *); extern uint8_t ocs_hw_is_io_port_owned(ocs_hw_t *hw, ocs_hw_io_t *io); extern uint8_t ocs_hw_is_xri_port_owned(ocs_hw_t *hw, uint32_t xri); extern ocs_hw_io_t * ocs_hw_io_lookup(ocs_hw_t *hw, uint32_t indicator); extern uint32_t ocs_hw_xri_move_to_port_owned(ocs_hw_t *hw, uint32_t num_xri); extern ocs_hw_rtn_e ocs_hw_xri_move_to_host_owned(ocs_hw_t *hw, uint8_t num_xri); extern int32_t ocs_hw_reque_xri(ocs_hw_t *hw, ocs_hw_io_t *io); ocs_hw_rtn_e ocs_hw_set_persistent_topology(ocs_hw_t *hw, uint32_t topology, uint32_t opts); extern uint32_t ocs_hw_get_config_persistent_topology(ocs_hw_t *hw); typedef struct { /* structure elements used by HW */ ocs_hw_t *hw; /**> pointer to HW */ hw_wq_callback_t *wqcb; /**> WQ callback object, request tag */ ocs_hw_wqe_t wqe; /**> WQE buffer object (may be queued on WQ pending list) */ void (*callback)(int32_t status, void *arg); /**> final callback function */ void *arg; /**> final callback argument */ /* General purpose elements */ ocs_hw_sequence_t *seq; ocs_dma_t payload; /**> a payload DMA buffer */ } ocs_hw_send_frame_context_t; #define OCS_HW_OBJECT_G5 0xfeaa0001 #define OCS_HW_OBJECT_G6 0xfeaa0003 #define OCS_FILE_TYPE_GROUP 0xf7 #define OCS_FILE_ID_GROUP 0xa2 struct ocs_hw_grp_hdr { uint32_t size; uint32_t magic_number; uint32_t word2; uint8_t rev_name[128]; uint8_t date[12]; uint8_t revision[32]; }; ocs_hw_rtn_e ocs_hw_send_frame(ocs_hw_t *hw, fc_header_le_t *hdr, uint8_t sof, uint8_t eof, ocs_dma_t *payload, ocs_hw_send_frame_context_t *ctx, void (*callback)(void *arg, uint8_t *cqe, int32_t status), void *arg); /* RQ completion handlers for RQ pair mode */ extern int32_t ocs_hw_rqpair_process_rq(ocs_hw_t *hw, hw_cq_t *cq, uint8_t *cqe); extern ocs_hw_rtn_e ocs_hw_rqpair_sequence_free(ocs_hw_t *hw, ocs_hw_sequence_t *seq); extern int32_t ocs_hw_rqpair_process_auto_xfr_rdy_cmd(ocs_hw_t *hw, hw_cq_t *cq, uint8_t *cqe); extern int32_t ocs_hw_rqpair_process_auto_xfr_rdy_data(ocs_hw_t *hw, hw_cq_t *cq, uint8_t *cqe); extern ocs_hw_rtn_e ocs_hw_rqpair_init(ocs_hw_t *hw); extern ocs_hw_rtn_e ocs_hw_rqpair_auto_xfer_rdy_buffer_alloc(ocs_hw_t *hw, uint32_t num_buffers); extern uint8_t ocs_hw_rqpair_auto_xfer_rdy_buffer_post(ocs_hw_t *hw, ocs_hw_io_t *io, int reuse_buf); extern ocs_hw_rtn_e ocs_hw_rqpair_auto_xfer_rdy_move_to_port(ocs_hw_t *hw, ocs_hw_io_t *io); extern void ocs_hw_rqpair_auto_xfer_rdy_move_to_host(ocs_hw_t *hw, ocs_hw_io_t *io); extern void ocs_hw_rqpair_teardown(ocs_hw_t *hw); extern ocs_hw_rtn_e ocs_hw_rx_allocate(ocs_hw_t *hw); extern ocs_hw_rtn_e ocs_hw_rx_post(ocs_hw_t *hw); extern void ocs_hw_rx_free(ocs_hw_t *hw); extern void ocs_hw_unsol_process_bounce(void *arg); typedef int32_t (*ocs_hw_async_cb_t)(ocs_hw_t *hw, int32_t status, uint8_t *mqe, void *arg); extern int32_t ocs_hw_async_call(ocs_hw_t *hw, ocs_hw_async_cb_t callback, void *arg); static inline void ocs_hw_sequence_copy(ocs_hw_sequence_t *dst, ocs_hw_sequence_t *src) { /* Copy the src to dst, then zero out the linked list link */ *dst = *src; ocs_memset(&dst->link, 0, sizeof(dst->link)); } static inline ocs_hw_rtn_e ocs_hw_sequence_free(ocs_hw_t *hw, ocs_hw_sequence_t *seq) { /* Only RQ pair mode is supported */ return ocs_hw_rqpair_sequence_free(hw, seq); } /* HW WQ request tag API */ extern ocs_hw_rtn_e ocs_hw_reqtag_init(ocs_hw_t *hw); extern hw_wq_callback_t *ocs_hw_reqtag_alloc(ocs_hw_t *hw, void (*callback)(void *arg, uint8_t *cqe, int32_t status), void *arg); extern void ocs_hw_reqtag_free(ocs_hw_t *hw, hw_wq_callback_t *wqcb); extern hw_wq_callback_t *ocs_hw_reqtag_get_instance(ocs_hw_t *hw, uint32_t instance_index); extern void ocs_hw_reqtag_reset(ocs_hw_t *hw); extern uint32_t ocs_hw_dif_blocksize(ocs_hw_dif_info_t *dif_info); extern int32_t ocs_hw_dif_mem_blocksize(ocs_hw_dif_info_t *dif_info, int wiretomem); extern int32_t ocs_hw_dif_wire_blocksize(ocs_hw_dif_info_t *dif_info, int wiretomem); extern uint32_t ocs_hw_get_def_wwn(ocs_t *ocs, uint32_t chan, uint64_t *wwpn, uint64_t *wwnn); /* Uncomment to enable CPUTRACE */ //#define ENABLE_CPUTRACE #ifdef ENABLE_CPUTRACE #define CPUTRACE(t) ocs_printf("trace: %-20s %2s %-16s cpu %2d\n", __func__, t, \ ({ocs_thread_t *self = ocs_thread_self(); self != NULL ? self->name : "unknown";}), ocs_thread_getcpu()); #else #define CPUTRACE(...) #endif /* Two levels of macro needed due to expansion */ #define HW_FWREV(a,b,c,d) (((uint64_t)(a) << 48) | ((uint64_t)(b) << 32) | ((uint64_t)(c) << 16) | ((uint64_t)(d))) #define HW_FWREV_1(x) HW_FWREV(x) #define OCS_FW_VER_STR2(a,b,c,d) #a "." #b "." #c "." #d #define OCS_FW_VER_STR(x) OCS_FW_VER_STR2(x) #define OCS_MIN_FW_VER_LANCER 10,4,255,0 #define OCS_MIN_FW_VER_SKYHAWK 10,4,255,0 extern void ocs_hw_workaround_setup(struct ocs_hw_s *hw); /** * @brief Defines the number of the RQ buffers for each RQ */ #ifndef OCS_HW_RQ_NUM_HDR #define OCS_HW_RQ_NUM_HDR 1024 #endif #ifndef OCS_HW_RQ_NUM_PAYLOAD #define OCS_HW_RQ_NUM_PAYLOAD 1024 #endif /** * @brief Defines the size of the RQ buffers used for each RQ */ #ifndef OCS_HW_RQ_SIZE_HDR #define OCS_HW_RQ_SIZE_HDR 128 #endif #ifndef OCS_HW_RQ_SIZE_PAYLOAD #define OCS_HW_RQ_SIZE_PAYLOAD 1024 #endif /* * @brief Define the maximum number of multi-receive queues */ #ifndef OCS_HW_MAX_MRQS #define OCS_HW_MAX_MRQS 8 #endif /* * @brief Define count of when to set the WQEC bit in a submitted * WQE, causing a consummed/released completion to be posted. */ #ifndef OCS_HW_WQEC_SET_COUNT #define OCS_HW_WQEC_SET_COUNT 32 #endif /* * @brief Send frame timeout in seconds */ #ifndef OCS_HW_SEND_FRAME_TIMEOUT #define OCS_HW_SEND_FRAME_TIMEOUT 10 #endif /* * @brief FDT Transfer Hint value, reads greater than this value * will be segmented to implement fairness. A value of zero disables * the feature. */ #ifndef OCS_HW_FDT_XFER_HINT #define OCS_HW_FDT_XFER_HINT 8192 #endif #endif /* !_OCS_HW_H */ diff --git a/sys/dev/ocs_fc/ocs_scsi.c b/sys/dev/ocs_fc/ocs_scsi.c index 0e87cc0bed4b..af9fc798b01c 100644 --- a/sys/dev/ocs_fc/ocs_scsi.c +++ b/sys/dev/ocs_fc/ocs_scsi.c @@ -1,2947 +1,2951 @@ /*- * Copyright (c) 2017 Broadcom. All rights reserved. * The term "Broadcom" refers to Broadcom Limited and/or its subsidiaries. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /** * @file * OCS Linux SCSI API base driver implementation. */ /** * @defgroup scsi_api_base SCSI Base Target/Initiator */ #include "ocs.h" #include "ocs_els.h" #include "ocs_scsi.h" #include "ocs_vpd.h" #include "ocs_utils.h" #include "ocs_device.h" #define SCSI_IOFMT "[%04x][i:%0*x t:%0*x h:%04x]" #define SCSI_ITT_SIZE(ocs) ((ocs->ocs_xport == OCS_XPORT_FC) ? 4 : 8) #define SCSI_IOFMT_ARGS(io) io->instance_index, SCSI_ITT_SIZE(io->ocs), io->init_task_tag, SCSI_ITT_SIZE(io->ocs), io->tgt_task_tag, io->hw_tag #define enable_tsend_auto_resp(ocs) ((ocs->ctrlmask & OCS_CTRLMASK_XPORT_DISABLE_AUTORSP_TSEND) == 0) #define enable_treceive_auto_resp(ocs) ((ocs->ctrlmask & OCS_CTRLMASK_XPORT_DISABLE_AUTORSP_TRECEIVE) == 0) #define scsi_io_printf(io, fmt, ...) ocs_log_info(io->ocs, "[%s]" SCSI_IOFMT fmt, \ io->node->display_name, SCSI_IOFMT_ARGS(io), ##__VA_ARGS__) #define scsi_io_trace(io, fmt, ...) \ do { \ if (OCS_LOG_ENABLE_SCSI_TRACE(io->ocs)) \ scsi_io_printf(io, fmt, ##__VA_ARGS__); \ } while (0) #define scsi_log(ocs, fmt, ...) \ do { \ if (OCS_LOG_ENABLE_SCSI_TRACE(ocs)) \ ocs_log_info(ocs, fmt, ##__VA_ARGS__); \ } while (0) static int32_t ocs_target_send_bls_resp(ocs_io_t *io, ocs_scsi_io_cb_t cb, void *arg); static int32_t ocs_scsi_abort_io_cb(struct ocs_hw_io_s *hio, ocs_remote_node_t *rnode, uint32_t len, int32_t status, uint32_t ext, void *arg); static void ocs_scsi_io_free_ovfl(ocs_io_t *io); static uint32_t ocs_scsi_count_sgls(ocs_hw_dif_info_t *hw_dif, ocs_scsi_sgl_t *sgl, uint32_t sgl_count); static int ocs_scsi_dif_guard_is_crc(uint8_t direction, ocs_hw_dif_info_t *dif_info); static ocs_scsi_io_status_e ocs_scsi_dif_check_unknown(ocs_io_t *io, uint32_t length, uint32_t check_length, int is_crc); static uint32_t ocs_scsi_dif_check_guard(ocs_hw_dif_info_t *dif_info, ocs_scsi_vaddr_len_t addrlen[], uint32_t addrlen_count, ocs_dif_t *dif, int is_crc); static uint32_t ocs_scsi_dif_check_app_tag(ocs_t *ocs, ocs_hw_dif_info_t *dif_info, uint16_t exp_app_tag, ocs_dif_t *dif); static uint32_t ocs_scsi_dif_check_ref_tag(ocs_t *ocs, ocs_hw_dif_info_t *dif_info, uint32_t exp_ref_tag, ocs_dif_t *dif); static int32_t ocs_scsi_convert_dif_info(ocs_t *ocs, ocs_scsi_dif_info_t *scsi_dif_info, ocs_hw_dif_info_t *hw_dif_info); static int32_t ocs_scsi_io_dispatch_hw_io(ocs_io_t *io, ocs_hw_io_t *hio); static int32_t ocs_scsi_io_dispatch_no_hw_io(ocs_io_t *io); static void _ocs_scsi_io_free(void *arg); /** * @ingroup scsi_api_base * @brief Returns a big-endian 32-bit value given a pointer. * * @param p Pointer to the 32-bit big-endian location. * * @return Returns the byte-swapped 32-bit value. */ static inline uint32_t ocs_fc_getbe32(void *p) { return ocs_be32toh(*((uint32_t*)p)); } /** * @ingroup scsi_api_base * @brief Enable IO allocation. * * @par Description * The SCSI and Transport IO allocation functions are enabled. If the allocation functions * are not enabled, then calls to ocs_scsi_io_alloc() (and ocs_els_io_alloc() for FC) will * fail. * * @param node Pointer to node object. * * @return None. */ void ocs_scsi_io_alloc_enable(ocs_node_t *node) { ocs_assert(node != NULL); ocs_lock(&node->active_ios_lock); node->io_alloc_enabled = TRUE; ocs_unlock(&node->active_ios_lock); } /** * @ingroup scsi_api_base * @brief Disable IO allocation * * @par Description * The SCSI and Transport IO allocation functions are disabled. If the allocation functions * are not enabled, then calls to ocs_scsi_io_alloc() (and ocs_els_io_alloc() for FC) will * fail. * * @param node Pointer to node object * * @return None. */ void ocs_scsi_io_alloc_disable(ocs_node_t *node) { ocs_assert(node != NULL); ocs_lock(&node->active_ios_lock); node->io_alloc_enabled = FALSE; ocs_unlock(&node->active_ios_lock); } /** * @ingroup scsi_api_base * @brief Allocate a SCSI IO context. * * @par Description * A SCSI IO context is allocated and associated with a @c node. This function * is called by an initiator-client when issuing SCSI commands to remote * target devices. On completion, ocs_scsi_io_free() is called. * @n @n * The returned ocs_io_t structure has an element of type ocs_scsi_ini_io_t named * "ini_io" that is declared and used by an initiator-client for private information. * * @param node Pointer to the associated node structure. * @param role Role for IO (originator/responder). * * @return Returns the pointer to the IO context, or NULL. * */ ocs_io_t * ocs_scsi_io_alloc(ocs_node_t *node, ocs_scsi_io_role_e role) { ocs_t *ocs; ocs_xport_t *xport; ocs_io_t *io; ocs_assert(node, NULL); ocs_assert(node->ocs, NULL); ocs = node->ocs; ocs_assert(ocs->xport, NULL); xport = ocs->xport; ocs_lock(&node->active_ios_lock); if (!node->io_alloc_enabled) { ocs_unlock(&node->active_ios_lock); return NULL; } io = ocs_io_alloc(ocs); if (io == NULL) { ocs_atomic_add_return(&xport->io_alloc_failed_count, 1); ocs_unlock(&node->active_ios_lock); return NULL; } /* initialize refcount */ ocs_ref_init(&io->ref, _ocs_scsi_io_free, io); if (io->hio != NULL) { ocs_log_err(node->ocs, "assertion failed: io->hio is not NULL\n"); ocs_io_free(ocs, io); ocs_unlock(&node->active_ios_lock); return NULL; } /* set generic fields */ io->ocs = ocs; io->node = node; /* set type and name */ io->io_type = OCS_IO_TYPE_IO; io->display_name = "scsi_io"; switch (role) { case OCS_SCSI_IO_ROLE_ORIGINATOR: io->cmd_ini = TRUE; io->cmd_tgt = FALSE; break; case OCS_SCSI_IO_ROLE_RESPONDER: io->cmd_ini = FALSE; io->cmd_tgt = TRUE; break; } /* Add to node's active_ios list */ ocs_list_add_tail(&node->active_ios, io); ocs_unlock(&node->active_ios_lock); return io; } /** * @ingroup scsi_api_base * @brief Free a SCSI IO context (internal). * * @par Description * The IO context previously allocated using ocs_scsi_io_alloc() * is freed. This is called from within the transport layer, * when the reference count goes to zero. * * @param arg Pointer to the IO context. * * @return None. */ static void _ocs_scsi_io_free(void *arg) { ocs_io_t *io = (ocs_io_t *)arg; ocs_t *ocs = io->ocs; ocs_node_t *node = io->node; int send_empty_event; ocs_assert(io != NULL); scsi_io_trace(io, "freeing io 0x%p %s\n", io, io->display_name); ocs_assert(ocs_io_busy(io)); ocs_lock(&node->active_ios_lock); ocs_list_remove(&node->active_ios, io); send_empty_event = (!node->io_alloc_enabled) && ocs_list_empty(&node->active_ios); ocs_unlock(&node->active_ios_lock); if (send_empty_event) { ocs_node_post_event(node, OCS_EVT_NODE_ACTIVE_IO_LIST_EMPTY, NULL); } io->node = NULL; ocs_io_free(ocs, io); } /** * @ingroup scsi_api_base * @brief Free a SCSI IO context. * * @par Description * The IO context previously allocated using ocs_scsi_io_alloc() is freed. * * @param io Pointer to the IO context. * * @return None. */ void ocs_scsi_io_free(ocs_io_t *io) { scsi_io_trace(io, "freeing io 0x%p %s\n", io, io->display_name); ocs_assert(ocs_ref_read_count(&io->ref) > 0); ocs_ref_put(&io->ref); /* ocs_ref_get(): ocs_scsi_io_alloc() */ } static int32_t ocs_scsi_send_io(ocs_hw_io_type_e type, ocs_node_t *node, ocs_io_t *io, uint64_t lun, ocs_scsi_tmf_cmd_e tmf, uint8_t *cdb, uint32_t cdb_len, ocs_scsi_dif_info_t *dif_info, ocs_scsi_sgl_t *sgl, uint32_t sgl_count, uint32_t wire_len, uint32_t first_burst, ocs_scsi_rsp_io_cb_t cb, void *arg, uint32_t flags); /** * @brief Target response completion callback. * * @par Description * Function is called upon the completion of a target IO request. * * @param hio Pointer to the HW IO structure. * @param rnode Remote node associated with the IO that is completing. * @param length Length of the response payload. * @param status Completion status. * @param ext_status Extended completion status. * @param app Application-specific data (generally a pointer to the IO context). * * @return None. */ static void ocs_target_io_cb(ocs_hw_io_t *hio, ocs_remote_node_t *rnode, uint32_t length, int32_t status, uint32_t ext_status, void *app) { ocs_io_t *io = app; ocs_t *ocs; ocs_scsi_io_status_e scsi_status = OCS_SCSI_STATUS_GOOD; uint16_t additional_length; uint8_t edir; uint8_t tdpv; ocs_hw_dif_info_t *dif_info = &io->hw_dif; int is_crc; ocs_assert(io); scsi_io_trace(io, "status x%x ext_status x%x\n", status, ext_status); ocs = io->ocs; ocs_assert(ocs); ocs_scsi_io_free_ovfl(io); io->transferred += length; /* Call target server completion */ if (io->scsi_tgt_cb) { ocs_scsi_io_cb_t cb = io->scsi_tgt_cb; uint32_t flags = 0; /* Clear the callback before invoking the callback */ io->scsi_tgt_cb = NULL; /* if status was good, and auto-good-response was set, then callback * target-server with IO_CMPL_RSP_SENT, otherwise send IO_CMPL */ if ((status == 0) && (io->auto_resp)) flags |= OCS_SCSI_IO_CMPL_RSP_SENT; else flags |= OCS_SCSI_IO_CMPL; switch (status) { case SLI4_FC_WCQE_STATUS_SUCCESS: scsi_status = OCS_SCSI_STATUS_GOOD; break; case SLI4_FC_WCQE_STATUS_DI_ERROR: if (ext_status & SLI4_FC_DI_ERROR_GE) { scsi_status = OCS_SCSI_STATUS_DIF_GUARD_ERROR; } else if (ext_status & SLI4_FC_DI_ERROR_AE) { scsi_status = OCS_SCSI_STATUS_DIF_APP_TAG_ERROR; } else if (ext_status & SLI4_FC_DI_ERROR_RE) { scsi_status = OCS_SCSI_STATUS_DIF_REF_TAG_ERROR; } else { additional_length = ((ext_status >> 16) & 0xFFFF); /* Capture the EDIR and TDPV bits as 0 or 1 for easier printing. */ edir = !!(ext_status & SLI4_FC_DI_ERROR_EDIR); tdpv = !!(ext_status & SLI4_FC_DI_ERROR_TDPV); is_crc = ocs_scsi_dif_guard_is_crc(edir, dif_info); if (edir == 0) { /* For reads, we have everything in memory. Start checking from beginning. */ scsi_status = ocs_scsi_dif_check_unknown(io, 0, io->wire_len, is_crc); } else { /* For writes, use the additional length to determine where to look for the error. * The additional_length field is set to 0 if it is not supported. * The additional length field is valid if: * . additional_length is not zero * . Total Data Placed is valid * . Error Direction is RX (1) * . Operation is a pass thru (CRC or CKSUM on IN, and CRC or CHKSUM on OUT) (all pass-thru cases except raw) */ if ((additional_length != 0) && (tdpv != 0) && (dif_info->dif == SLI4_DIF_PASS_THROUGH) && (dif_info->dif_oper != OCS_HW_SGE_DIF_OP_IN_RAW_OUT_RAW) ) { scsi_status = ocs_scsi_dif_check_unknown(io, length, additional_length, is_crc); } else { /* If we can't do additional checking, then fall-back to guard error */ scsi_status = OCS_SCSI_STATUS_DIF_GUARD_ERROR; } } } break; case SLI4_FC_WCQE_STATUS_LOCAL_REJECT: switch (ext_status) { case SLI4_FC_LOCAL_REJECT_INVALID_RELOFFSET: case SLI4_FC_LOCAL_REJECT_ABORT_REQUESTED: scsi_status = OCS_SCSI_STATUS_ABORTED; break; case SLI4_FC_LOCAL_REJECT_INVALID_RPI: scsi_status = OCS_SCSI_STATUS_NEXUS_LOST; break; case SLI4_FC_LOCAL_REJECT_NO_XRI: scsi_status = OCS_SCSI_STATUS_NO_IO; break; default: /* TODO: we have seen 0x0d (TX_DMA_FAILED error) */ scsi_status = OCS_SCSI_STATUS_ERROR; break; } break; - case SLI4_FC_WCQE_STATUS_TARGET_WQE_TIMEOUT: + case SLI4_FC_WCQE_STATUS_WQE_TIMEOUT: /* target IO timed out */ scsi_status = OCS_SCSI_STATUS_TIMEDOUT_AND_ABORTED; break; case SLI4_FC_WCQE_STATUS_SHUTDOWN: /* Target IO cancelled by HW */ scsi_status = OCS_SCSI_STATUS_SHUTDOWN; break; default: scsi_status = OCS_SCSI_STATUS_ERROR; break; } cb(io, scsi_status, flags, io->scsi_tgt_cb_arg); } ocs_scsi_check_pending(ocs); } /** * @brief Determine if an IO is using CRC for DIF guard format. * * @param direction IO direction: 1 for write, 0 for read. * @param dif_info Pointer to HW DIF info data. * * @return Returns TRUE if using CRC, FALSE if not. */ static int ocs_scsi_dif_guard_is_crc(uint8_t direction, ocs_hw_dif_info_t *dif_info) { int is_crc; if (direction) { /* For writes, check if operation is "OUT_CRC" or not */ switch(dif_info->dif_oper) { case OCS_HW_SGE_DIF_OP_IN_NODIF_OUT_CRC: case OCS_HW_SGE_DIF_OP_IN_CRC_OUT_CRC: case OCS_HW_SGE_DIF_OP_IN_CHKSUM_OUT_CRC: is_crc = TRUE; break; default: is_crc = FALSE; break; } } else { /* For reads, check if operation is "IN_CRC" or not */ switch(dif_info->dif_oper) { case OCS_HW_SGE_DIF_OP_IN_CRC_OUT_NODIF: case OCS_HW_SGE_DIF_OP_IN_CRC_OUT_CRC: case OCS_HW_SGE_DIF_OP_IN_CRC_OUT_CHKSUM: is_crc = TRUE; break; default: is_crc = FALSE; break; } } return is_crc; } /** * @brief Check a block and DIF data, computing the appropriate SCSI status * * @par Description * This function is used to check blocks and DIF when given an unknown DIF * status using the following logic: * * Given the address of the last good block, and a length of bytes that includes * the block with the DIF error, find the bad block. If a block is found with an * app_tag or ref_tag error, then return the appropriate error. No block is expected * to have a block guard error since hardware "fixes" the crc. So if no block in the * range of blocks has an error, then it is presumed to be a BLOCK GUARD error. * * @param io Pointer to the IO object. * @param length Length of bytes covering the good blocks. * @param check_length Length of bytes that covers the bad block. * @param is_crc True if guard is using CRC format. * * @return Returns SCSI status. */ static ocs_scsi_io_status_e ocs_scsi_dif_check_unknown(ocs_io_t *io, uint32_t length, uint32_t check_length, int is_crc) { uint32_t i; ocs_t *ocs = io->ocs; ocs_hw_dif_info_t *dif_info = &io->hw_dif; ocs_scsi_io_status_e scsi_status = OCS_SCSI_STATUS_DIF_GUARD_ERROR; uint32_t blocksize; /* data block size */ uint64_t first_check_block; /* first block following total data placed */ uint64_t last_check_block; /* last block to check */ uint32_t check_count; /* count of blocks to check */ ocs_scsi_vaddr_len_t addrlen[4]; /* address-length pairs returned from target */ int32_t addrlen_count; /* count of address-length pairs */ ocs_dif_t *dif; /* pointer to DIF block returned from target */ ocs_scsi_dif_info_t scsi_dif_info = io->scsi_dif_info; blocksize = ocs_hw_dif_mem_blocksize(&io->hw_dif, TRUE); first_check_block = length / blocksize; last_check_block = ((length + check_length) / blocksize); check_count = last_check_block - first_check_block; ocs_log_debug(ocs, "blocksize %d first check_block %" PRId64 " last_check_block %" PRId64 " check_count %d\n", blocksize, first_check_block, last_check_block, check_count); for (i = first_check_block; i < last_check_block; i++) { addrlen_count = ocs_scsi_get_block_vaddr(io, (scsi_dif_info.lba + i), addrlen, ARRAY_SIZE(addrlen), (void**) &dif); if (addrlen_count < 0) { ocs_log_test(ocs, "ocs_scsi_get_block_vaddr() failed: %d\n", addrlen_count); scsi_status = OCS_SCSI_STATUS_DIF_UNKNOWN_ERROR; break; } if (! ocs_scsi_dif_check_guard(dif_info, addrlen, addrlen_count, dif, is_crc)) { ocs_log_debug(ocs, "block guard check error, lba %" PRId64 "\n", scsi_dif_info.lba + i); scsi_status = OCS_SCSI_STATUS_DIF_GUARD_ERROR; break; } if (! ocs_scsi_dif_check_app_tag(ocs, dif_info, scsi_dif_info.app_tag, dif)) { ocs_log_debug(ocs, "app tag check error, lba %" PRId64 "\n", scsi_dif_info.lba + i); scsi_status = OCS_SCSI_STATUS_DIF_APP_TAG_ERROR; break; } if (! ocs_scsi_dif_check_ref_tag(ocs, dif_info, (scsi_dif_info.ref_tag + i), dif)) { ocs_log_debug(ocs, "ref tag check error, lba %" PRId64 "\n", scsi_dif_info.lba + i); scsi_status = OCS_SCSI_STATUS_DIF_REF_TAG_ERROR; break; } } return scsi_status; } /** * @brief Check the block guard of block data * * @par Description * Using the dif_info for the transfer, check the block guard value. * * @param dif_info Pointer to HW DIF info data. * @param addrlen Array of address length pairs. * @param addrlen_count Number of entries in the addrlen[] array. * @param dif Pointer to the DIF data block being checked. * @param is_crc True if guard is using CRC format. * * @return Returns TRUE if block guard check is ok. */ static uint32_t ocs_scsi_dif_check_guard(ocs_hw_dif_info_t *dif_info, ocs_scsi_vaddr_len_t addrlen[], uint32_t addrlen_count, ocs_dif_t *dif, int is_crc) { uint16_t crc = dif_info->dif_seed; uint32_t i; uint16_t checksum; if ((dif == NULL) || !dif_info->check_guard) { return TRUE; } if (is_crc) { for (i = 0; i < addrlen_count; i++) { crc = ocs_scsi_dif_calc_crc(addrlen[i].vaddr, addrlen[i].length, crc); } return (crc == ocs_be16toh(dif->crc)); } else { checksum = ocs_scsi_dif_calc_checksum(addrlen, addrlen_count); return (checksum == dif->crc); } } /** * @brief Check the app tag of dif data * * @par Description * Using the dif_info for the transfer, check the app tag. * * @param ocs Pointer to the ocs structure for logging. * @param dif_info Pointer to HW DIF info data. * @param exp_app_tag The value the app tag is expected to be. * @param dif Pointer to the DIF data block being checked. * * @return Returns TRUE if app tag check is ok. */ static uint32_t ocs_scsi_dif_check_app_tag(ocs_t *ocs, ocs_hw_dif_info_t *dif_info, uint16_t exp_app_tag, ocs_dif_t *dif) { if ((dif == NULL) || !dif_info->check_app_tag) { return TRUE; } ocs_log_debug(ocs, "expected app tag 0x%x, actual 0x%x\n", exp_app_tag, ocs_be16toh(dif->app_tag)); return (exp_app_tag == ocs_be16toh(dif->app_tag)); } /** * @brief Check the ref tag of dif data * * @par Description * Using the dif_info for the transfer, check the app tag. * * @param ocs Pointer to the ocs structure for logging. * @param dif_info Pointer to HW DIF info data. * @param exp_ref_tag The value the ref tag is expected to be. * @param dif Pointer to the DIF data block being checked. * * @return Returns TRUE if ref tag check is ok. */ static uint32_t ocs_scsi_dif_check_ref_tag(ocs_t *ocs, ocs_hw_dif_info_t *dif_info, uint32_t exp_ref_tag, ocs_dif_t *dif) { if ((dif == NULL) || !dif_info->check_ref_tag) { return TRUE; } if (exp_ref_tag != ocs_be32toh(dif->ref_tag)) { ocs_log_debug(ocs, "expected ref tag 0x%x, actual 0x%x\n", exp_ref_tag, ocs_be32toh(dif->ref_tag)); return FALSE; } else { return TRUE; } } /** * @brief Return count of SGE's required for request * * @par Description * An accurate count of SGEs is computed and returned. * * @param hw_dif Pointer to HW dif information. * @param sgl Pointer to SGL from back end. * @param sgl_count Count of SGEs in SGL. * * @return Count of SGEs. */ static uint32_t ocs_scsi_count_sgls(ocs_hw_dif_info_t *hw_dif, ocs_scsi_sgl_t *sgl, uint32_t sgl_count) { uint32_t count = 0; uint32_t i; /* Convert DIF Information */ if (hw_dif->dif_oper != OCS_HW_DIF_OPER_DISABLED) { /* If we're not DIF separate, then emit a seed SGE */ if (!hw_dif->dif_separate) { count++; } for (i = 0; i < sgl_count; i++) { /* If DIF is enabled, and DIF is separate, then append a SEED then DIF SGE */ if (hw_dif->dif_separate) { count += 2; } count++; } } else { count = sgl_count; } return count; } static int32_t ocs_scsi_build_sgls(ocs_hw_t *hw, ocs_hw_io_t *hio, ocs_hw_dif_info_t *hw_dif, ocs_scsi_sgl_t *sgl, uint32_t sgl_count, ocs_hw_io_type_e type) { int32_t rc; uint32_t i; ocs_t *ocs = hw->os; uint32_t blocksize = 0; uint32_t blockcount; ocs_assert(hio, -1); /* Initialize HW SGL */ rc = ocs_hw_io_init_sges(hw, hio, type); if (rc) { ocs_log_err(ocs, "ocs_hw_io_init_sges failed: %d\n", rc); return -1; } /* Convert DIF Information */ if (hw_dif->dif_oper != OCS_HW_DIF_OPER_DISABLED) { /* If we're not DIF separate, then emit a seed SGE */ if (!hw_dif->dif_separate) { rc = ocs_hw_io_add_seed_sge(hw, hio, hw_dif); if (rc) { return rc; } } /* if we are doing DIF separate, then figure out the block size so that we * can update the ref tag in the DIF seed SGE. Also verify that the * the sgl lengths are all multiples of the blocksize */ if (hw_dif->dif_separate) { switch(hw_dif->blk_size) { case OCS_HW_DIF_BK_SIZE_512: blocksize = 512; break; case OCS_HW_DIF_BK_SIZE_1024: blocksize = 1024; break; case OCS_HW_DIF_BK_SIZE_2048: blocksize = 2048; break; case OCS_HW_DIF_BK_SIZE_4096: blocksize = 4096; break; case OCS_HW_DIF_BK_SIZE_520: blocksize = 520; break; case OCS_HW_DIF_BK_SIZE_4104: blocksize = 4104; break; default: ocs_log_test(hw->os, "Inavlid hw_dif blocksize %d\n", hw_dif->blk_size); return -1; } for (i = 0; i < sgl_count; i++) { if ((sgl[i].len % blocksize) != 0) { ocs_log_test(hw->os, "sgl[%d] len of %ld is not multiple of blocksize\n", i, sgl[i].len); return -1; } } } for (i = 0; i < sgl_count; i++) { ocs_assert(sgl[i].addr, -1); ocs_assert(sgl[i].len, -1); /* If DIF is enabled, and DIF is separate, then append a SEED then DIF SGE */ if (hw_dif->dif_separate) { rc = ocs_hw_io_add_seed_sge(hw, hio, hw_dif); if (rc) { return rc; } rc = ocs_hw_io_add_dif_sge(hw, hio, sgl[i].dif_addr); if (rc) { return rc; } /* Update the ref_tag for the next DIF seed SGE */ blockcount = sgl[i].len / blocksize; if (hw_dif->dif_oper == OCS_HW_DIF_OPER_INSERT) { hw_dif->ref_tag_repl += blockcount; } else { hw_dif->ref_tag_cmp += blockcount; } } /* Add data SGE */ rc = ocs_hw_io_add_sge(hw, hio, sgl[i].addr, sgl[i].len); if (rc) { ocs_log_err(ocs, "ocs_hw_io_add_sge failed: count=%d rc=%d\n", sgl_count, rc); return rc; } } } else { for (i = 0; i < sgl_count; i++) { ocs_assert(sgl[i].addr, -1); ocs_assert(sgl[i].len, -1); /* Add data SGE */ rc = ocs_hw_io_add_sge(hw, hio, sgl[i].addr, sgl[i].len); if (rc) { ocs_log_err(ocs, "ocs_hw_io_add_sge failed: count=%d rc=%d\n", sgl_count, rc); return rc; } } } return 0; } /** * @ingroup scsi_api_base * @brief Convert SCSI API T10 DIF information into the FC HW format. * * @param ocs Pointer to the ocs structure for logging. * @param scsi_dif_info Pointer to the SCSI API T10 DIF fields. * @param hw_dif_info Pointer to the FC HW API T10 DIF fields. * * @return Returns 0 on success, or a negative error code value on failure. */ static int32_t ocs_scsi_convert_dif_info(ocs_t *ocs, ocs_scsi_dif_info_t *scsi_dif_info, ocs_hw_dif_info_t *hw_dif_info) { uint32_t dif_seed; ocs_memset(hw_dif_info, 0, sizeof(ocs_hw_dif_info_t)); if (scsi_dif_info == NULL) { hw_dif_info->dif_oper = OCS_HW_DIF_OPER_DISABLED; hw_dif_info->blk_size = OCS_HW_DIF_BK_SIZE_NA; return 0; } /* Convert the DIF operation */ switch(scsi_dif_info->dif_oper) { case OCS_SCSI_DIF_OPER_IN_NODIF_OUT_CRC: hw_dif_info->dif_oper = OCS_HW_SGE_DIF_OP_IN_NODIF_OUT_CRC; hw_dif_info->dif = SLI4_DIF_INSERT; break; case OCS_SCSI_DIF_OPER_IN_CRC_OUT_NODIF: hw_dif_info->dif_oper = OCS_HW_SGE_DIF_OP_IN_CRC_OUT_NODIF; hw_dif_info->dif = SLI4_DIF_STRIP; break; case OCS_SCSI_DIF_OPER_IN_NODIF_OUT_CHKSUM: hw_dif_info->dif_oper = OCS_HW_SGE_DIF_OP_IN_NODIF_OUT_CHKSUM; hw_dif_info->dif = SLI4_DIF_INSERT; break; case OCS_SCSI_DIF_OPER_IN_CHKSUM_OUT_NODIF: hw_dif_info->dif_oper = OCS_HW_SGE_DIF_OP_IN_CHKSUM_OUT_NODIF; hw_dif_info->dif = SLI4_DIF_STRIP; break; case OCS_SCSI_DIF_OPER_IN_CRC_OUT_CRC: hw_dif_info->dif_oper = OCS_HW_SGE_DIF_OP_IN_CRC_OUT_CRC; hw_dif_info->dif = SLI4_DIF_PASS_THROUGH; break; case OCS_SCSI_DIF_OPER_IN_CHKSUM_OUT_CHKSUM: hw_dif_info->dif_oper = OCS_HW_SGE_DIF_OP_IN_CHKSUM_OUT_CHKSUM; hw_dif_info->dif = SLI4_DIF_PASS_THROUGH; break; case OCS_SCSI_DIF_OPER_IN_CRC_OUT_CHKSUM: hw_dif_info->dif_oper = OCS_HW_SGE_DIF_OP_IN_CRC_OUT_CHKSUM; hw_dif_info->dif = SLI4_DIF_PASS_THROUGH; break; case OCS_SCSI_DIF_OPER_IN_CHKSUM_OUT_CRC: hw_dif_info->dif_oper = OCS_HW_SGE_DIF_OP_IN_CHKSUM_OUT_CRC; hw_dif_info->dif = SLI4_DIF_PASS_THROUGH; break; case OCS_SCSI_DIF_OPER_IN_RAW_OUT_RAW: hw_dif_info->dif_oper = OCS_HW_SGE_DIF_OP_IN_RAW_OUT_RAW; hw_dif_info->dif = SLI4_DIF_PASS_THROUGH; break; default: ocs_log_test(ocs, "unhandled SCSI DIF operation %d\n", scsi_dif_info->dif_oper); return -1; } switch(scsi_dif_info->blk_size) { case OCS_SCSI_DIF_BK_SIZE_512: hw_dif_info->blk_size = OCS_HW_DIF_BK_SIZE_512; break; case OCS_SCSI_DIF_BK_SIZE_1024: hw_dif_info->blk_size = OCS_HW_DIF_BK_SIZE_1024; break; case OCS_SCSI_DIF_BK_SIZE_2048: hw_dif_info->blk_size = OCS_HW_DIF_BK_SIZE_2048; break; case OCS_SCSI_DIF_BK_SIZE_4096: hw_dif_info->blk_size = OCS_HW_DIF_BK_SIZE_4096; break; case OCS_SCSI_DIF_BK_SIZE_520: hw_dif_info->blk_size = OCS_HW_DIF_BK_SIZE_520; break; case OCS_SCSI_DIF_BK_SIZE_4104: hw_dif_info->blk_size = OCS_HW_DIF_BK_SIZE_4104; break; default: ocs_log_test(ocs, "unhandled SCSI DIF block size %d\n", scsi_dif_info->blk_size); return -1; } /* If the operation is an INSERT the tags provided are the ones that should be * inserted, otherwise they're the ones to be checked against. */ if (hw_dif_info->dif == SLI4_DIF_INSERT ) { hw_dif_info->ref_tag_repl = scsi_dif_info->ref_tag; hw_dif_info->app_tag_repl = scsi_dif_info->app_tag; } else { hw_dif_info->ref_tag_cmp = scsi_dif_info->ref_tag; hw_dif_info->app_tag_cmp = scsi_dif_info->app_tag; } hw_dif_info->check_ref_tag = scsi_dif_info->check_ref_tag; hw_dif_info->check_app_tag = scsi_dif_info->check_app_tag; hw_dif_info->check_guard = scsi_dif_info->check_guard; hw_dif_info->auto_incr_ref_tag = 1; hw_dif_info->dif_separate = scsi_dif_info->dif_separate; hw_dif_info->disable_app_ffff = scsi_dif_info->disable_app_ffff; hw_dif_info->disable_app_ref_ffff = scsi_dif_info->disable_app_ref_ffff; ocs_hw_get(&ocs->hw, OCS_HW_DIF_SEED, &dif_seed); hw_dif_info->dif_seed = dif_seed; return 0; } /** * @ingroup scsi_api_base * @brief This function logs the SGLs for an IO. * * @param io Pointer to the IO context. */ static void ocs_log_sgl(ocs_io_t *io) { ocs_hw_io_t *hio = io->hio; sli4_sge_t *data = NULL; uint32_t *dword = NULL; uint32_t i; uint32_t n_sge; scsi_io_trace(io, "def_sgl at 0x%x 0x%08x\n", ocs_addr32_hi(hio->def_sgl.phys), ocs_addr32_lo(hio->def_sgl.phys)); n_sge = (hio->sgl == &hio->def_sgl ? hio->n_sge : hio->def_sgl_count); for (i = 0, data = hio->def_sgl.virt; i < n_sge; i++, data++) { dword = (uint32_t*)data; scsi_io_trace(io, "SGL %2d 0x%08x 0x%08x 0x%08x 0x%08x\n", i, dword[0], dword[1], dword[2], dword[3]); if (dword[2] & (1U << 31)) { break; } } if (hio->ovfl_sgl != NULL && hio->sgl == hio->ovfl_sgl) { scsi_io_trace(io, "Overflow at 0x%x 0x%08x\n", ocs_addr32_hi(hio->ovfl_sgl->phys), ocs_addr32_lo(hio->ovfl_sgl->phys)); for (i = 0, data = hio->ovfl_sgl->virt; i < hio->n_sge; i++, data++) { dword = (uint32_t*)data; scsi_io_trace(io, "SGL %2d 0x%08x 0x%08x 0x%08x 0x%08x\n", i, dword[0], dword[1], dword[2], dword[3]); if (dword[2] & (1U << 31)) { break; } } } } /** * @brief Check pending error asynchronous callback function. * * @par Description * Invoke the HW callback function for a given IO. This function is called * from the NOP mailbox completion context. * * @param hw Pointer to HW object. * @param status Completion status. * @param mqe Mailbox completion queue entry. * @param arg General purpose argument. * * @return Returns 0. */ static int32_t ocs_scsi_check_pending_async_cb(ocs_hw_t *hw, int32_t status, uint8_t *mqe, void *arg) { ocs_io_t *io = arg; if (io != NULL) { if (io->hw_cb != NULL) { ocs_hw_done_t cb = io->hw_cb; io->hw_cb = NULL; cb(io->hio, NULL, 0, SLI4_FC_WCQE_STATUS_DISPATCH_ERROR, 0, io); } } return 0; } /** * @brief Check for pending IOs to dispatch. * * @par Description * If there are IOs on the pending list, and a HW IO is available, then * dispatch the IOs. * * @param ocs Pointer to the OCS structure. * * @return None. */ void ocs_scsi_check_pending(ocs_t *ocs) { ocs_xport_t *xport = ocs->xport; ocs_io_t *io; ocs_hw_io_t *hio; int32_t status; int count = 0; int dispatch; /* Guard against recursion */ if (ocs_atomic_add_return(&xport->io_pending_recursing, 1)) { /* This function is already running. Decrement and return. */ ocs_atomic_sub_return(&xport->io_pending_recursing, 1); return; } do { ocs_lock(&xport->io_pending_lock); status = 0; hio = NULL; io = ocs_list_remove_head(&xport->io_pending_list); if (io != NULL) { if (io->io_type == OCS_IO_TYPE_ABORT) { hio = NULL; } else { hio = ocs_hw_io_alloc(&ocs->hw); if (hio == NULL) { /* * No HW IO available. * Put IO back on the front of pending list */ ocs_list_add_head(&xport->io_pending_list, io); io = NULL; } else { hio->eq = io->hw_priv; } } } /* Must drop the lock before dispatching the IO */ ocs_unlock(&xport->io_pending_lock); if (io != NULL) { count++; /* * We pulled an IO off the pending list, * and either got an HW IO or don't need one */ ocs_atomic_sub_return(&xport->io_pending_count, 1); if (hio == NULL) { status = ocs_scsi_io_dispatch_no_hw_io(io); } else { status = ocs_scsi_io_dispatch_hw_io(io, hio); } if (status) { /* * Invoke the HW callback, but do so in the separate execution context, * provided by the NOP mailbox completion processing context by using * ocs_hw_async_call() */ if (ocs_hw_async_call(&ocs->hw, ocs_scsi_check_pending_async_cb, io)) { ocs_log_test(ocs, "call to ocs_hw_async_call() failed\n"); } } } } while (io != NULL); /* * If nothing was removed from the list, * we might be in a case where we need to abort an * active IO and the abort is on the pending list. * Look for an abort we can dispatch. */ if (count == 0 ) { dispatch = 0; ocs_lock(&xport->io_pending_lock); ocs_list_foreach(&xport->io_pending_list, io) { if (io->io_type == OCS_IO_TYPE_ABORT) { if (io->io_to_abort->hio != NULL) { /* This IO has a HW IO, so it is active. Dispatch the abort. */ dispatch = 1; } else { /* Leave this abort on the pending list and keep looking */ dispatch = 0; } } if (dispatch) { ocs_list_remove(&xport->io_pending_list, io); ocs_atomic_sub_return(&xport->io_pending_count, 1); break; } } ocs_unlock(&xport->io_pending_lock); if (dispatch) { status = ocs_scsi_io_dispatch_no_hw_io(io); if (status) { if (ocs_hw_async_call(&ocs->hw, ocs_scsi_check_pending_async_cb, io)) { ocs_log_test(ocs, "call to ocs_hw_async_call() failed\n"); } } } } ocs_atomic_sub_return(&xport->io_pending_recursing, 1); return; } /** * @brief Attempt to dispatch a non-abort IO * * @par Description * An IO is dispatched: * - if the pending list is not empty, add IO to pending list * and call a function to process the pending list. * - if pending list is empty, try to allocate a HW IO. If none * is available, place this IO at the tail of the pending IO * list. * - if HW IO is available, attach this IO to the HW IO and * submit it. * * @param io Pointer to IO structure. * @param cb Callback function. * * @return Returns 0 on success, a negative error code value on failure. */ int32_t ocs_scsi_io_dispatch(ocs_io_t *io, void *cb) { ocs_hw_io_t *hio; ocs_t *ocs = io->ocs; ocs_xport_t *xport = ocs->xport; ocs_assert(io->cmd_tgt || io->cmd_ini, -1); ocs_assert((io->io_type != OCS_IO_TYPE_ABORT), -1); io->hw_cb = cb; /* * if this IO already has a HW IO, then this is either not the first phase of * the IO. Send it to the HW. */ if (io->hio != NULL) { return ocs_scsi_io_dispatch_hw_io(io, io->hio); } /* * We don't already have a HW IO associated with the IO. First check * the pending list. If not empty, add IO to the tail and process the * pending list. */ ocs_lock(&xport->io_pending_lock); if (!ocs_list_empty(&xport->io_pending_list)) { /* * If this is a low latency request, the put at the front of the IO pending * queue, otherwise put it at the end of the queue. */ if (io->low_latency) { ocs_list_add_head(&xport->io_pending_list, io); } else { ocs_list_add_tail(&xport->io_pending_list, io); } ocs_unlock(&xport->io_pending_lock); ocs_atomic_add_return(&xport->io_pending_count, 1); ocs_atomic_add_return(&xport->io_total_pending, 1); /* process pending list */ ocs_scsi_check_pending(ocs); return 0; } ocs_unlock(&xport->io_pending_lock); /* * We don't have a HW IO associated with the IO and there's nothing * on the pending list. Attempt to allocate a HW IO and dispatch it. */ hio = ocs_hw_io_alloc(&io->ocs->hw); if (hio == NULL) { /* Couldn't get a HW IO. Save this IO on the pending list */ ocs_lock(&xport->io_pending_lock); ocs_list_add_tail(&xport->io_pending_list, io); ocs_unlock(&xport->io_pending_lock); ocs_atomic_add_return(&xport->io_total_pending, 1); ocs_atomic_add_return(&xport->io_pending_count, 1); return 0; } /* We successfully allocated a HW IO; dispatch to HW */ return ocs_scsi_io_dispatch_hw_io(io, hio); } /** * @brief Attempt to dispatch an Abort IO. * * @par Description * An Abort IO is dispatched: * - if the pending list is not empty, add IO to pending list * and call a function to process the pending list. * - if pending list is empty, send abort to the HW. * * @param io Pointer to IO structure. * @param cb Callback function. * * @return Returns 0 on success, a negative error code value on failure. */ int32_t ocs_scsi_io_dispatch_abort(ocs_io_t *io, void *cb) { ocs_t *ocs = io->ocs; ocs_xport_t *xport = ocs->xport; ocs_assert((io->io_type == OCS_IO_TYPE_ABORT), -1); io->hw_cb = cb; /* * For aborts, we don't need a HW IO, but we still want to pass through * the pending list to preserve ordering. Thus, if the pending list is * not empty, add this abort to the pending list and process the pending list. */ ocs_lock(&xport->io_pending_lock); if (!ocs_list_empty(&xport->io_pending_list)) { ocs_list_add_tail(&xport->io_pending_list, io); ocs_unlock(&xport->io_pending_lock); ocs_atomic_add_return(&xport->io_pending_count, 1); ocs_atomic_add_return(&xport->io_total_pending, 1); /* process pending list */ ocs_scsi_check_pending(ocs); return 0; } ocs_unlock(&xport->io_pending_lock); /* nothing on pending list, dispatch abort */ return ocs_scsi_io_dispatch_no_hw_io(io); } /** * @brief Dispatch IO * * @par Description * An IO and its associated HW IO is dispatched to the HW. * * @param io Pointer to IO structure. * @param hio Pointer to HW IO structure from which IO will be * dispatched. * * @return Returns 0 on success, a negative error code value on failure. */ static int32_t ocs_scsi_io_dispatch_hw_io(ocs_io_t *io, ocs_hw_io_t *hio) { int32_t rc; ocs_t *ocs = io->ocs; /* Got a HW IO; update ini/tgt_task_tag with HW IO info and dispatch */ io->hio = hio; if (io->cmd_tgt) { io->tgt_task_tag = hio->indicator; } else if (io->cmd_ini) { io->init_task_tag = hio->indicator; } io->hw_tag = hio->reqtag; hio->eq = io->hw_priv; /* Copy WQ steering */ switch(io->wq_steering) { case OCS_SCSI_WQ_STEERING_CLASS >> OCS_SCSI_WQ_STEERING_SHIFT: hio->wq_steering = OCS_HW_WQ_STEERING_CLASS; break; case OCS_SCSI_WQ_STEERING_REQUEST >> OCS_SCSI_WQ_STEERING_SHIFT: hio->wq_steering = OCS_HW_WQ_STEERING_REQUEST; break; case OCS_SCSI_WQ_STEERING_CPU >> OCS_SCSI_WQ_STEERING_SHIFT: hio->wq_steering = OCS_HW_WQ_STEERING_CPU; break; } switch (io->io_type) { case OCS_IO_TYPE_IO: { uint32_t max_sgl; uint32_t total_count; uint32_t host_allocated; ocs_hw_get(&ocs->hw, OCS_HW_N_SGL, &max_sgl); ocs_hw_get(&ocs->hw, OCS_HW_SGL_CHAINING_HOST_ALLOCATED, &host_allocated); /* * If the requested SGL is larger than the default size, then we can allocate * an overflow SGL. */ total_count = ocs_scsi_count_sgls(&io->hw_dif, io->sgl, io->sgl_count); /* * Lancer requires us to allocate the chained memory area, but * Skyhawk must use the SGL list associated with another XRI. */ if (host_allocated && total_count > max_sgl) { /* Compute count needed, the number extra plus 1 for the link sge */ uint32_t count = total_count - max_sgl + 1; rc = ocs_dma_alloc(ocs, &io->ovfl_sgl, count*sizeof(sli4_sge_t), 64); if (rc) { ocs_log_err(ocs, "ocs_dma_alloc overflow sgl failed\n"); break; } rc = ocs_hw_io_register_sgl(&ocs->hw, io->hio, &io->ovfl_sgl, count); if (rc) { ocs_scsi_io_free_ovfl(io); ocs_log_err(ocs, "ocs_hw_io_register_sgl() failed\n"); break; } /* EVT: update chained_io_count */ io->node->chained_io_count++; } rc = ocs_scsi_build_sgls(&ocs->hw, io->hio, &io->hw_dif, io->sgl, io->sgl_count, io->hio_type); if (rc) { ocs_scsi_io_free_ovfl(io); break; } if (OCS_LOG_ENABLE_SCSI_TRACE(ocs)) { ocs_log_sgl(io); } if (io->app_id) { io->iparam.fcp_tgt.app_id = io->app_id; } rc = ocs_hw_io_send(&io->ocs->hw, io->hio_type, io->hio, io->wire_len, &io->iparam, &io->node->rnode, io->hw_cb, io); break; } case OCS_IO_TYPE_ELS: case OCS_IO_TYPE_CT: { rc = ocs_hw_srrs_send(&ocs->hw, io->hio_type, io->hio, &io->els_req, io->wire_len, &io->els_rsp, &io->node->rnode, &io->iparam, io->hw_cb, io); break; } case OCS_IO_TYPE_CT_RESP: { rc = ocs_hw_srrs_send(&ocs->hw, io->hio_type, io->hio, &io->els_rsp, io->wire_len, NULL, &io->node->rnode, &io->iparam, io->hw_cb, io); break; } case OCS_IO_TYPE_BLS_RESP: { /* no need to update tgt_task_tag for BLS response since the RX_ID * will be specified by the payload, not the XRI */ rc = ocs_hw_srrs_send(&ocs->hw, io->hio_type, io->hio, NULL, 0, NULL, &io->node->rnode, &io->iparam, io->hw_cb, io); break; } default: scsi_io_printf(io, "Unknown IO type=%d\n", io->io_type); rc = -1; break; } return rc; } /** * @brief Dispatch IO * * @par Description * An IO that does require a HW IO is dispatched to the HW. * * @param io Pointer to IO structure. * * @return Returns 0 on success, or a negative error code value on failure. */ static int32_t ocs_scsi_io_dispatch_no_hw_io(ocs_io_t *io) { int32_t rc; switch (io->io_type) { case OCS_IO_TYPE_ABORT: { ocs_hw_io_t *hio_to_abort = NULL; ocs_assert(io->io_to_abort, -1); hio_to_abort = io->io_to_abort->hio; if (hio_to_abort == NULL) { /* * If "IO to abort" does not have an associated HW IO, immediately * make callback with success. The command must have been sent to * the backend, but the data phase has not yet started, so we don't * have a HW IO. * * Note: since the backend shims should be taking a reference * on io_to_abort, it should not be possible to have been completed * and freed by the backend before the abort got here. */ scsi_io_printf(io, "IO: " SCSI_IOFMT " not active\n", SCSI_IOFMT_ARGS(io->io_to_abort)); ((ocs_hw_done_t)io->hw_cb)(io->hio, NULL, 0, SLI4_FC_WCQE_STATUS_SUCCESS, 0, io); rc = 0; } else { /* HW IO is valid, abort it */ scsi_io_printf(io, "aborting " SCSI_IOFMT "\n", SCSI_IOFMT_ARGS(io->io_to_abort)); rc = ocs_hw_io_abort(&io->ocs->hw, hio_to_abort, io->send_abts, io->hw_cb, io); if (rc) { int status = SLI4_FC_WCQE_STATUS_SUCCESS; if ((rc != OCS_HW_RTN_IO_NOT_ACTIVE) && (rc != OCS_HW_RTN_IO_ABORT_IN_PROGRESS)) { status = -1; scsi_io_printf(io, "Failed to abort IO: " SCSI_IOFMT " status=%d\n", SCSI_IOFMT_ARGS(io->io_to_abort), rc); } ((ocs_hw_done_t)io->hw_cb)(io->hio, NULL, 0, status, 0, io); rc = 0; } } break; } default: scsi_io_printf(io, "Unknown IO type=%d\n", io->io_type); rc = -1; break; } return rc; } /** * @ingroup scsi_api_base * @brief Send read/write data. * * @par Description * This call is made by a target-server to initiate a SCSI read or write data phase, transferring * data between the target to the remote initiator. The payload is specified by the * scatter-gather list @c sgl of length @c sgl_count. The @c wire_len argument * specifies the payload length (independent of the scatter-gather list cumulative length). * @n @n * The @c flags argument has one bit, OCS_SCSI_LAST_DATAPHASE, which is a hint to the base * driver that it may use auto SCSI response features if the hardware supports it. * @n @n * Upon completion, the callback function @b cb is called with flags indicating that the * IO has completed (OCS_SCSI_IO_COMPL) and another data phase or response may be sent; * that the IO has completed and no response needs to be sent (OCS_SCSI_IO_COMPL_NO_RSP); * or that the IO was aborted (OCS_SCSI_IO_ABORTED). * * @param io Pointer to the IO context. * @param flags Flags controlling the sending of data. * @param dif_info Pointer to T10 DIF fields, or NULL if no DIF. * @param sgl Pointer to the payload scatter-gather list. * @param sgl_count Count of the scatter-gather list elements. * @param xwire_len Length of the payload on wire, in bytes. * @param type HW IO type. * @param enable_ar Enable auto-response if true. * @param cb Completion callback. * @param arg Application-supplied callback data. * * @return Returns 0 on success, or a negative error code value on failure. */ static inline int32_t ocs_scsi_xfer_data(ocs_io_t *io, uint32_t flags, ocs_scsi_dif_info_t *dif_info, ocs_scsi_sgl_t *sgl, uint32_t sgl_count, uint32_t xwire_len, ocs_hw_io_type_e type, int enable_ar, ocs_scsi_io_cb_t cb, void *arg) { int32_t rc; ocs_t *ocs; uint32_t disable_ar_tgt_dif = FALSE; size_t residual = 0; if ((dif_info != NULL) && (dif_info->dif_oper == OCS_SCSI_DIF_OPER_DISABLED)) { dif_info = NULL; } ocs_assert(io, -1); if (dif_info != NULL) { ocs_hw_get(&io->ocs->hw, OCS_HW_DISABLE_AR_TGT_DIF, &disable_ar_tgt_dif); if (disable_ar_tgt_dif) { enable_ar = FALSE; } } io->sgl_count = sgl_count; /* If needed, copy SGL */ if (sgl && (sgl != io->sgl)) { ocs_assert(sgl_count <= io->sgl_allocated, -1); ocs_memcpy(io->sgl, sgl, sgl_count*sizeof(*io->sgl)); } ocs = io->ocs; ocs_assert(ocs, -1); ocs_assert(io->node, -1); scsi_io_trace(io, "%s wire_len %d\n", (type == OCS_HW_IO_TARGET_READ) ? "send" : "recv", xwire_len); ocs_assert(sgl, -1); ocs_assert(sgl_count > 0, -1); ocs_assert(io->exp_xfer_len > io->transferred, -1); io->hio_type = type; io->scsi_tgt_cb = cb; io->scsi_tgt_cb_arg = arg; rc = ocs_scsi_convert_dif_info(ocs, dif_info, &io->hw_dif); if (rc) { return rc; } /* If DIF is used, then save lba for error recovery */ if (dif_info) { io->scsi_dif_info = *dif_info; } io->wire_len = MIN(xwire_len, io->exp_xfer_len - io->transferred); residual = (xwire_len - io->wire_len); ocs_memset(&io->iparam, 0, sizeof(io->iparam)); io->iparam.fcp_tgt.ox_id = io->init_task_tag; io->iparam.fcp_tgt.offset = io->transferred; io->iparam.fcp_tgt.dif_oper = io->hw_dif.dif; io->iparam.fcp_tgt.blk_size = io->hw_dif.blk_size; io->iparam.fcp_tgt.cs_ctl = io->cs_ctl; io->iparam.fcp_tgt.timeout = io->timeout; /* if this is the last data phase and there is no residual, enable * auto-good-response */ if (enable_ar && (flags & OCS_SCSI_LAST_DATAPHASE) && (residual == 0) && ((io->transferred + io->wire_len) == io->exp_xfer_len) && (!(flags & OCS_SCSI_NO_AUTO_RESPONSE))) { io->iparam.fcp_tgt.flags |= SLI4_IO_AUTO_GOOD_RESPONSE; io->auto_resp = TRUE; } else { io->auto_resp = FALSE; } /* save this transfer length */ io->xfer_req = io->wire_len; /* Adjust the transferred count to account for overrun * when the residual is calculated in ocs_scsi_send_resp */ io->transferred += residual; /* Adjust the SGL size if there is overrun */ if (residual) { ocs_scsi_sgl_t *sgl_ptr = &io->sgl[sgl_count-1]; while (residual) { size_t len = sgl_ptr->len; if ( len > residual) { sgl_ptr->len = len - residual; residual = 0; } else { sgl_ptr->len = 0; residual -= len; io->sgl_count--; } sgl_ptr--; } } /* Set latency and WQ steering */ io->low_latency = (flags & OCS_SCSI_LOW_LATENCY) != 0; io->wq_steering = (flags & OCS_SCSI_WQ_STEERING_MASK) >> OCS_SCSI_WQ_STEERING_SHIFT; io->wq_class = (flags & OCS_SCSI_WQ_CLASS_MASK) >> OCS_SCSI_WQ_CLASS_SHIFT; return ocs_scsi_io_dispatch(io, ocs_target_io_cb); } int32_t ocs_scsi_send_rd_data(ocs_io_t *io, uint32_t flags, ocs_scsi_dif_info_t *dif_info, ocs_scsi_sgl_t *sgl, uint32_t sgl_count, uint32_t len, ocs_scsi_io_cb_t cb, void *arg) { return ocs_scsi_xfer_data(io, flags, dif_info, sgl, sgl_count, len, OCS_HW_IO_TARGET_READ, enable_tsend_auto_resp(io->ocs), cb, arg); } int32_t ocs_scsi_recv_wr_data(ocs_io_t *io, uint32_t flags, ocs_scsi_dif_info_t *dif_info, ocs_scsi_sgl_t *sgl, uint32_t sgl_count, uint32_t len, ocs_scsi_io_cb_t cb, void *arg) { return ocs_scsi_xfer_data(io, flags, dif_info, sgl, sgl_count, len, OCS_HW_IO_TARGET_WRITE, enable_treceive_auto_resp(io->ocs), cb, arg); } /** * @ingroup scsi_api_base * @brief Free overflow SGL. * * @par Description * Free the overflow SGL if it is present. * * @param io Pointer to IO object. * * @return None. */ static void ocs_scsi_io_free_ovfl(ocs_io_t *io) { if (io->ovfl_sgl.size) { ocs_dma_free(io->ocs, &io->ovfl_sgl); } } /** * @ingroup scsi_api_base * @brief Send response data. * * @par Description * This function is used by a target-server to send the SCSI response data to a remote * initiator node. The target-server populates the @c ocs_scsi_cmd_resp_t * argument with scsi status, status qualifier, sense data, and response data, as * needed. * @n @n * Upon completion, the callback function @c cb is invoked. The target-server will generally * clean up its IO context resources and call ocs_scsi_io_complete(). * * @param io Pointer to the IO context. * @param flags Flags to control sending of the SCSI response. * @param rsp Pointer to the response data populated by the caller. * @param cb Completion callback. * @param arg Application-specified completion callback argument. * @return Returns 0 on success, or a negative error code value on failure. */ int32_t ocs_scsi_send_resp(ocs_io_t *io, uint32_t flags, ocs_scsi_cmd_resp_t *rsp, ocs_scsi_io_cb_t cb, void *arg) { ocs_t *ocs; int32_t residual; int auto_resp = TRUE; /* Always try auto resp */ uint8_t scsi_status = 0; uint16_t scsi_status_qualifier = 0; uint8_t *sense_data = NULL; uint32_t sense_data_length = 0; ocs_assert(io, -1); ocs = io->ocs; ocs_assert(ocs, -1); ocs_assert(io->node, -1); ocs_scsi_convert_dif_info(ocs, NULL, &io->hw_dif); if (rsp) { scsi_status = rsp->scsi_status; scsi_status_qualifier = rsp->scsi_status_qualifier; sense_data = rsp->sense_data; sense_data_length = rsp->sense_data_length; residual = rsp->residual; } else { residual = io->exp_xfer_len - io->transferred; } io->wire_len = 0; io->hio_type = OCS_HW_IO_TARGET_RSP; io->scsi_tgt_cb = cb; io->scsi_tgt_cb_arg = arg; ocs_memset(&io->iparam, 0, sizeof(io->iparam)); io->iparam.fcp_tgt.ox_id = io->init_task_tag; io->iparam.fcp_tgt.offset = 0; io->iparam.fcp_tgt.cs_ctl = io->cs_ctl; io->iparam.fcp_tgt.timeout = io->timeout; /* Set low latency queueing request */ io->low_latency = (flags & OCS_SCSI_LOW_LATENCY) != 0; io->wq_steering = (flags & OCS_SCSI_WQ_STEERING_MASK) >> OCS_SCSI_WQ_STEERING_SHIFT; io->wq_class = (flags & OCS_SCSI_WQ_CLASS_MASK) >> OCS_SCSI_WQ_CLASS_SHIFT; if ((scsi_status != 0) || residual || sense_data_length) { fcp_rsp_iu_t *fcprsp = io->rspbuf.virt; if (!fcprsp) { ocs_log_err(ocs, "NULL response buffer\n"); return -1; } auto_resp = FALSE; ocs_memset(fcprsp, 0, sizeof(*fcprsp)); io->wire_len += (sizeof(*fcprsp) - sizeof(fcprsp->data)); fcprsp->scsi_status = scsi_status; *((uint16_t*)fcprsp->status_qualifier) = ocs_htobe16(scsi_status_qualifier); /* set residual status if necessary */ if (residual != 0) { /* FCP: if data transferred is less than the amount expected, then this is an * underflow. If data transferred would have been greater than the amount expected * then this is an overflow */ if (residual > 0) { fcprsp->flags |= FCP_RESID_UNDER; *((uint32_t *)fcprsp->fcp_resid) = ocs_htobe32(residual); } else { fcprsp->flags |= FCP_RESID_OVER; *((uint32_t *)fcprsp->fcp_resid) = ocs_htobe32(-residual); } } if (sense_data && sense_data_length) { ocs_assert(sense_data_length <= sizeof(fcprsp->data), -1); fcprsp->flags |= FCP_SNS_LEN_VALID; ocs_memcpy(fcprsp->data, sense_data, sense_data_length); *((uint32_t*)fcprsp->fcp_sns_len) = ocs_htobe32(sense_data_length); io->wire_len += sense_data_length; } io->sgl[0].addr = io->rspbuf.phys; io->sgl[0].dif_addr = 0; io->sgl[0].len = io->wire_len; io->sgl_count = 1; } if (auto_resp) { io->iparam.fcp_tgt.flags |= SLI4_IO_AUTO_GOOD_RESPONSE; } return ocs_scsi_io_dispatch(io, ocs_target_io_cb); } /** * @ingroup scsi_api_base * @brief Send TMF response data. * * @par Description * This function is used by a target-server to send SCSI TMF response data to a remote * initiator node. * Upon completion, the callback function @c cb is invoked. The target-server will generally * clean up its IO context resources and call ocs_scsi_io_complete(). * * @param io Pointer to the IO context. * @param rspcode TMF response code. * @param addl_rsp_info Additional TMF response information (may be NULL for zero data). * @param cb Completion callback. * @param arg Application-specified completion callback argument. * * @return Returns 0 on success, or a negative error code value on failure. */ int32_t ocs_scsi_send_tmf_resp(ocs_io_t *io, ocs_scsi_tmf_resp_e rspcode, uint8_t addl_rsp_info[3], ocs_scsi_io_cb_t cb, void *arg) { int32_t rc = -1; ocs_t *ocs = NULL; fcp_rsp_iu_t *fcprsp = NULL; fcp_rsp_info_t *rspinfo = NULL; uint8_t fcp_rspcode; ocs_assert(io, -1); ocs_assert(io->ocs, -1); ocs_assert(io->node, -1); ocs = io->ocs; io->wire_len = 0; ocs_scsi_convert_dif_info(ocs, NULL, &io->hw_dif); switch(rspcode) { case OCS_SCSI_TMF_FUNCTION_COMPLETE: fcp_rspcode = FCP_TMF_COMPLETE; break; case OCS_SCSI_TMF_FUNCTION_SUCCEEDED: case OCS_SCSI_TMF_FUNCTION_IO_NOT_FOUND: fcp_rspcode = FCP_TMF_SUCCEEDED; break; case OCS_SCSI_TMF_FUNCTION_REJECTED: fcp_rspcode = FCP_TMF_REJECTED; break; case OCS_SCSI_TMF_INCORRECT_LOGICAL_UNIT_NUMBER: fcp_rspcode = FCP_TMF_INCORRECT_LUN; break; case OCS_SCSI_TMF_SERVICE_DELIVERY: fcp_rspcode = FCP_TMF_FAILED; break; default: fcp_rspcode = FCP_TMF_REJECTED; break; } io->hio_type = OCS_HW_IO_TARGET_RSP; io->scsi_tgt_cb = cb; io->scsi_tgt_cb_arg = arg; if (io->tmf_cmd == OCS_SCSI_TMF_ABORT_TASK) { rc = ocs_target_send_bls_resp(io, cb, arg); return rc; } /* populate the FCP TMF response */ fcprsp = io->rspbuf.virt; ocs_memset(fcprsp, 0, sizeof(*fcprsp)); fcprsp->flags |= FCP_RSP_LEN_VALID; rspinfo = (fcp_rsp_info_t*) fcprsp->data; if (addl_rsp_info != NULL) { ocs_memcpy(rspinfo->addl_rsp_info, addl_rsp_info, sizeof(rspinfo->addl_rsp_info)); } rspinfo->rsp_code = fcp_rspcode; io->wire_len = sizeof(*fcprsp) - sizeof(fcprsp->data) + sizeof(*rspinfo); *((uint32_t*)fcprsp->fcp_rsp_len) = ocs_htobe32(sizeof(*rspinfo)); io->sgl[0].addr = io->rspbuf.phys; io->sgl[0].dif_addr = 0; io->sgl[0].len = io->wire_len; io->sgl_count = 1; ocs_memset(&io->iparam, 0, sizeof(io->iparam)); io->iparam.fcp_tgt.ox_id = io->init_task_tag; io->iparam.fcp_tgt.offset = 0; io->iparam.fcp_tgt.cs_ctl = io->cs_ctl; io->iparam.fcp_tgt.timeout = io->timeout; rc = ocs_scsi_io_dispatch(io, ocs_target_io_cb); return rc; } /** * @brief Process target abort callback. * * @par Description * Accepts HW abort requests. * * @param hio HW IO context. * @param rnode Remote node. * @param length Length of response data. * @param status Completion status. * @param ext_status Extended completion status. * @param app Application-specified callback data. * * @return Returns 0 on success, or a negative error code value on failure. */ static int32_t ocs_target_abort_cb(ocs_hw_io_t *hio, ocs_remote_node_t *rnode, uint32_t length, int32_t status, uint32_t ext_status, void *app) { ocs_io_t *io = app; ocs_t *ocs; ocs_scsi_io_status_e scsi_status; ocs_assert(io, -1); ocs_assert(io->ocs, -1); ocs = io->ocs; if (io->abort_cb) { ocs_scsi_io_cb_t abort_cb = io->abort_cb; void *abort_cb_arg = io->abort_cb_arg; io->abort_cb = NULL; io->abort_cb_arg = NULL; switch (status) { case SLI4_FC_WCQE_STATUS_SUCCESS: scsi_status = OCS_SCSI_STATUS_GOOD; break; case SLI4_FC_WCQE_STATUS_LOCAL_REJECT: switch (ext_status) { case SLI4_FC_LOCAL_REJECT_NO_XRI: scsi_status = OCS_SCSI_STATUS_NO_IO; break; case SLI4_FC_LOCAL_REJECT_ABORT_IN_PROGRESS: scsi_status = OCS_SCSI_STATUS_ABORT_IN_PROGRESS; break; default: /* TODO: we have seen 0x15 (abort in progress) */ scsi_status = OCS_SCSI_STATUS_ERROR; break; } break; case SLI4_FC_WCQE_STATUS_FCP_RSP_FAILURE: scsi_status = OCS_SCSI_STATUS_CHECK_RESPONSE; break; default: scsi_status = OCS_SCSI_STATUS_ERROR; break; } /* invoke callback */ abort_cb(io->io_to_abort, scsi_status, 0, abort_cb_arg); } ocs_assert(io != io->io_to_abort, -1); /* done with IO to abort */ ocs_ref_put(&io->io_to_abort->ref); /* ocs_ref_get(): ocs_scsi_tgt_abort_io() */ ocs_io_free(ocs, io); ocs_scsi_check_pending(ocs); return 0; } /** * @ingroup scsi_api_base * @brief Abort a target IO. * * @par Description * This routine is called from a SCSI target-server. It initiates an abort of a * previously-issued target data phase or response request. * * @param io IO context. * @param cb SCSI target server callback. * @param arg SCSI target server supplied callback argument. * * @return Returns 0 on success, or a non-zero value on failure. */ int32_t ocs_scsi_tgt_abort_io(ocs_io_t *io, ocs_scsi_io_cb_t cb, void *arg) { ocs_t *ocs; ocs_xport_t *xport; int32_t rc; ocs_io_t *abort_io = NULL; ocs_assert(io, -1); ocs_assert(io->node, -1); ocs_assert(io->ocs, -1); ocs = io->ocs; xport = ocs->xport; /* take a reference on IO being aborted */ if ((ocs_ref_get_unless_zero(&io->ref) == 0)) { /* command no longer active */ scsi_io_printf(io, "command no longer active\n"); return -1; } /* * allocate a new IO to send the abort request. Use ocs_io_alloc() directly, as * we need an IO object that will not fail allocation due to allocations being * disabled (in ocs_scsi_io_alloc()) */ abort_io = ocs_io_alloc(ocs); if (abort_io == NULL) { ocs_atomic_add_return(&xport->io_alloc_failed_count, 1); ocs_ref_put(&io->ref); /* ocs_ref_get(): same function */ return -1; } /* Save the target server callback and argument */ ocs_assert(abort_io->hio == NULL, -1); /* set generic fields */ abort_io->cmd_tgt = TRUE; abort_io->node = io->node; /* set type and abort-specific fields */ abort_io->io_type = OCS_IO_TYPE_ABORT; abort_io->display_name = "tgt_abort"; abort_io->io_to_abort = io; abort_io->send_abts = FALSE; abort_io->abort_cb = cb; abort_io->abort_cb_arg = arg; /* now dispatch IO */ rc = ocs_scsi_io_dispatch_abort(abort_io, ocs_target_abort_cb); if (rc) { ocs_ref_put(&io->ref); /* ocs_ref_get(): same function */ } return rc; } /** * @brief Process target BLS response callback. * * @par Description * Accepts HW abort requests. * * @param hio HW IO context. * @param rnode Remote node. * @param length Length of response data. * @param status Completion status. * @param ext_status Extended completion status. * @param app Application-specified callback data. * * @return Returns 0 on success, or a negative error code value on failure. */ static int32_t ocs_target_bls_resp_cb(ocs_hw_io_t *hio, ocs_remote_node_t *rnode, uint32_t length, int32_t status, uint32_t ext_status, void *app) { ocs_io_t *io = app; ocs_t *ocs; ocs_scsi_io_status_e bls_status; ocs_assert(io, -1); ocs_assert(io->ocs, -1); ocs = io->ocs; /* BLS isn't really a "SCSI" concept, but use SCSI status */ if (status) { io_error_log(io, "s=%#x x=%#x\n", status, ext_status); bls_status = OCS_SCSI_STATUS_ERROR; } else { bls_status = OCS_SCSI_STATUS_GOOD; } if (io->bls_cb) { ocs_scsi_io_cb_t bls_cb = io->bls_cb; void *bls_cb_arg = io->bls_cb_arg; io->bls_cb = NULL; io->bls_cb_arg = NULL; /* invoke callback */ bls_cb(io, bls_status, 0, bls_cb_arg); } ocs_scsi_check_pending(ocs); return 0; } /** * @brief Complete abort request. * * @par Description * An abort request is completed by posting a BA_ACC for the IO that requested the abort. * * @param io Pointer to the IO context. * @param cb Callback function to invoke upon completion. * @param arg Application-specified completion callback argument. * * @return Returns 0 on success, or a negative error code value on failure. */ static int32_t ocs_target_send_bls_resp(ocs_io_t *io, ocs_scsi_io_cb_t cb, void *arg) { int32_t rc; fc_ba_acc_payload_t *acc; ocs_assert(io, -1); /* fill out IO structure with everything needed to send BA_ACC */ ocs_memset(&io->iparam, 0, sizeof(io->iparam)); io->iparam.bls.ox_id = io->init_task_tag; io->iparam.bls.rx_id = io->abort_rx_id; acc = (void *)io->iparam.bls.payload; ocs_memset(io->iparam.bls.payload, 0, sizeof(io->iparam.bls.payload)); acc->ox_id = io->iparam.bls.ox_id; acc->rx_id = io->iparam.bls.rx_id; acc->high_seq_cnt = UINT16_MAX; /* generic io fields have already been populated */ /* set type and BLS-specific fields */ io->io_type = OCS_IO_TYPE_BLS_RESP; io->display_name = "bls_rsp"; io->hio_type = OCS_HW_BLS_ACC; io->bls_cb = cb; io->bls_cb_arg = arg; /* dispatch IO */ rc = ocs_scsi_io_dispatch(io, ocs_target_bls_resp_cb); return rc; } /** * @ingroup scsi_api_base * @brief Notify the base driver that the IO is complete. * * @par Description * This function is called by a target-server to notify the base driver that an IO * has completed, allowing for the base driver to free resources. * @n * @n @b Note: This function is not called by initiator-clients. * * @param io Pointer to IO context. * * @return None. */ void ocs_scsi_io_complete(ocs_io_t *io) { ocs_assert(io); if (!ocs_io_busy(io)) { ocs_log_test(io->ocs, "Got completion for non-busy io with tag 0x%x\n", io->tag); return; } scsi_io_trace(io, "freeing io 0x%p %s\n", io, io->display_name); ocs_assert(ocs_ref_read_count(&io->ref) > 0); ocs_ref_put(&io->ref); /* ocs_ref_get(): ocs_scsi_io_alloc() */ } /** * @brief Handle initiator IO completion. * * @par Description * This callback is made upon completion of an initiator operation (initiator read/write command). * * @param hio HW IO context. * @param rnode Remote node. * @param length Length of completion data. * @param status Completion status. * @param ext_status Extended completion status. * @param app Application-specified callback data. * * @return None. */ static void ocs_initiator_io_cb(ocs_hw_io_t *hio, ocs_remote_node_t *rnode, uint32_t length, int32_t status, uint32_t ext_status, void *app) { ocs_io_t *io = app; ocs_t *ocs; ocs_scsi_io_status_e scsi_status; ocs_assert(io); ocs_assert(io->scsi_ini_cb); scsi_io_trace(io, "status x%x ext_status x%x\n", status, ext_status); ocs = io->ocs; ocs_assert(ocs); ocs_scsi_io_free_ovfl(io); /* Call target server completion */ if (io->scsi_ini_cb) { fcp_rsp_iu_t *fcprsp = io->rspbuf.virt; ocs_scsi_cmd_resp_t rsp; ocs_scsi_rsp_io_cb_t cb = io->scsi_ini_cb; uint32_t flags = 0; uint8_t *pd = fcprsp->data; /* Clear the callback before invoking the callback */ io->scsi_ini_cb = NULL; ocs_memset(&rsp, 0, sizeof(rsp)); /* Unless status is FCP_RSP_FAILURE, fcprsp is not filled in */ switch (status) { case SLI4_FC_WCQE_STATUS_SUCCESS: scsi_status = OCS_SCSI_STATUS_GOOD; break; case SLI4_FC_WCQE_STATUS_FCP_RSP_FAILURE: scsi_status = OCS_SCSI_STATUS_CHECK_RESPONSE; rsp.scsi_status = fcprsp->scsi_status; rsp.scsi_status_qualifier = ocs_be16toh(*((uint16_t*)fcprsp->status_qualifier)); if (fcprsp->flags & FCP_RSP_LEN_VALID) { rsp.response_data = pd; rsp.response_data_length = ocs_fc_getbe32(fcprsp->fcp_rsp_len); pd += rsp.response_data_length; } if (fcprsp->flags & FCP_SNS_LEN_VALID) { uint32_t sns_len = ocs_fc_getbe32(fcprsp->fcp_sns_len); rsp.sense_data = pd; rsp.sense_data_length = sns_len; pd += sns_len; } /* Set residual */ if (fcprsp->flags & FCP_RESID_OVER) { rsp.residual = -ocs_fc_getbe32(fcprsp->fcp_resid); rsp.response_wire_length = length; } else if (fcprsp->flags & FCP_RESID_UNDER) { rsp.residual = ocs_fc_getbe32(fcprsp->fcp_resid); rsp.response_wire_length = length; } /* * Note: The FCP_RSP_FAILURE can be returned for initiator IOs when the total data * placed does not match the requested length even if the status is good. If * the status is all zeroes, then we have to assume that a frame(s) were * dropped and change the status to LOCAL_REJECT/OUT_OF_ORDER_DATA */ if (length != io->wire_len) { uint32_t rsp_len = ext_status; uint8_t *rsp_bytes = io->rspbuf.virt; uint32_t i; uint8_t all_zeroes = (rsp_len > 0); /* Check if the rsp is zero */ for (i = 0; i < rsp_len; i++) { if (rsp_bytes[i] != 0) { all_zeroes = FALSE; break; } } if (all_zeroes) { scsi_status = OCS_SCSI_STATUS_ERROR; ocs_log_test(io->ocs, "[%s]" SCSI_IOFMT "local reject=0x%02x\n", io->node->display_name, SCSI_IOFMT_ARGS(io), SLI4_FC_LOCAL_REJECT_OUT_OF_ORDER_DATA); } } break; case SLI4_FC_WCQE_STATUS_LOCAL_REJECT: if (ext_status == SLI4_FC_LOCAL_REJECT_SEQUENCE_TIMEOUT) { scsi_status = OCS_SCSI_STATUS_COMMAND_TIMEOUT; } else { scsi_status = OCS_SCSI_STATUS_ERROR; } break; + case SLI4_FC_WCQE_STATUS_WQE_TIMEOUT: + /* IO timed out */ + scsi_status = OCS_SCSI_STATUS_TIMEDOUT_AND_ABORTED; + break; case SLI4_FC_WCQE_STATUS_DI_ERROR: if (ext_status & 0x01) { scsi_status = OCS_SCSI_STATUS_DIF_GUARD_ERROR; } else if (ext_status & 0x02) { scsi_status = OCS_SCSI_STATUS_DIF_APP_TAG_ERROR; } else if (ext_status & 0x04) { scsi_status = OCS_SCSI_STATUS_DIF_REF_TAG_ERROR; } else { scsi_status = OCS_SCSI_STATUS_DIF_UNKNOWN_ERROR; } break; default: scsi_status = OCS_SCSI_STATUS_ERROR; break; } cb(io, scsi_status, &rsp, flags, io->scsi_ini_cb_arg); } ocs_scsi_check_pending(ocs); } /** * @ingroup scsi_api_base * @brief Initiate initiator read IO. * * @par Description * This call is made by an initiator-client to send a SCSI read command. The payload * for the command is given by a scatter-gather list @c sgl for @c sgl_count * entries. * @n @n * Upon completion, the callback @b cb is invoked and passed request status. * If the command completed successfully, the callback is given SCSI response data. * * @param node Pointer to the node. * @param io Pointer to the IO context. * @param lun LUN value. * @param cdb Pointer to the CDB. * @param cdb_len Length of the CDB. * @param dif_info Pointer to the T10 DIF fields, or NULL if no DIF. * @param sgl Pointer to the scatter-gather list. * @param sgl_count Count of the scatter-gather list elements. * @param wire_len Length of the payload. * @param cb Completion callback. * @param arg Application-specified completion callback argument. * * @return Returns 0 on success, or a negative error code value on failure. */ int32_t ocs_scsi_send_rd_io(ocs_node_t *node, ocs_io_t *io, uint64_t lun, void *cdb, uint32_t cdb_len, ocs_scsi_dif_info_t *dif_info, ocs_scsi_sgl_t *sgl, uint32_t sgl_count, uint32_t wire_len, ocs_scsi_rsp_io_cb_t cb, void *arg, uint32_t flags) { int32_t rc; rc = ocs_scsi_send_io(OCS_HW_IO_INITIATOR_READ, node, io, lun, 0, cdb, cdb_len, dif_info, sgl, sgl_count, wire_len, 0, cb, arg, flags); return rc; } /** * @ingroup scsi_api_base * @brief Initiate initiator write IO. * * @par Description * This call is made by an initiator-client to send a SCSI write command. The payload * for the command is given by a scatter-gather list @c sgl for @c sgl_count * entries. * @n @n * Upon completion, the callback @c cb is invoked and passed request status. If the command * completed successfully, the callback is given SCSI response data. * * @param node Pointer to the node. * @param io Pointer to IO context. * @param lun LUN value. * @param cdb Pointer to the CDB. * @param cdb_len Length of the CDB. * @param dif_info Pointer to the T10 DIF fields, or NULL if no DIF. * @param sgl Pointer to the scatter-gather list. * @param sgl_count Count of the scatter-gather list elements. * @param wire_len Length of the payload. * @param cb Completion callback. * @param arg Application-specified completion callback argument. * * @return Returns 0 on success, or a negative error code value on failure. */ int32_t ocs_scsi_send_wr_io(ocs_node_t *node, ocs_io_t *io, uint64_t lun, void *cdb, uint32_t cdb_len, ocs_scsi_dif_info_t *dif_info, ocs_scsi_sgl_t *sgl, uint32_t sgl_count, uint32_t wire_len, ocs_scsi_rsp_io_cb_t cb, void *arg, uint32_t flags) { int32_t rc; rc = ocs_scsi_send_io(OCS_HW_IO_INITIATOR_WRITE, node, io, lun, 0, cdb, cdb_len, dif_info, sgl, sgl_count, wire_len, 0, cb, arg, flags); return rc; } /** * @ingroup scsi_api_base * @brief Initiate initiator write IO. * * @par Description * This call is made by an initiator-client to send a SCSI write command. The payload * for the command is given by a scatter-gather list @c sgl for @c sgl_count * entries. * @n @n * Upon completion, the callback @c cb is invoked and passed request status. If the command * completed successfully, the callback is given SCSI response data. * * @param node Pointer to the node. * @param io Pointer to IO context. * @param lun LUN value. * @param cdb Pointer to the CDB. * @param cdb_len Length of the CDB. * @param dif_info Pointer to the T10 DIF fields, or NULL if no DIF. * @param sgl Pointer to the scatter-gather list. * @param sgl_count Count of the scatter-gather list elements. * @param wire_len Length of the payload. * @param first_burst Number of first burst bytes to send. * @param cb Completion callback. * @param arg Application-specified completion callback argument. * * @return Returns 0 on success, or a negative error code value on failure. */ int32_t ocs_scsi_send_wr_io_first_burst(ocs_node_t *node, ocs_io_t *io, uint64_t lun, void *cdb, uint32_t cdb_len, ocs_scsi_dif_info_t *dif_info, ocs_scsi_sgl_t *sgl, uint32_t sgl_count, uint32_t wire_len, uint32_t first_burst, ocs_scsi_rsp_io_cb_t cb, void *arg, uint32_t flags) { int32_t rc; rc = ocs_scsi_send_io(OCS_HW_IO_INITIATOR_WRITE, node, io, lun, 0, cdb, cdb_len, dif_info, sgl, sgl_count, wire_len, 0, cb, arg, flags); return rc; } /** * @ingroup scsi_api_base * @brief Initiate initiator SCSI command with no data. * * @par Description * This call is made by an initiator-client to send a SCSI command with no data. * @n @n * Upon completion, the callback @c cb is invoked and passed request status. If the command * completed successfully, the callback is given SCSI response data. * * @param node Pointer to the node. * @param io Pointer to the IO context. * @param lun LUN value. * @param cdb Pointer to the CDB. * @param cdb_len Length of the CDB. * @param cb Completion callback. * @param arg Application-specified completion callback argument. * * @return Returns 0 on success, or a negative error code value on failure. */ int32_t ocs_scsi_send_nodata_io(ocs_node_t *node, ocs_io_t *io, uint64_t lun, void *cdb, uint32_t cdb_len, ocs_scsi_rsp_io_cb_t cb, void *arg, uint32_t flags) { int32_t rc; rc = ocs_scsi_send_io(OCS_HW_IO_INITIATOR_NODATA, node, io, lun, 0, cdb, cdb_len, NULL, NULL, 0, 0, 0, cb, arg, flags); return rc; } /** * @ingroup scsi_api_base * @brief Initiate initiator task management operation. * * @par Description * This command is used to send a SCSI task management function command. If the command * requires it (QUERY_TASK_SET for example), a payload may be associated with the command. * If no payload is required, then @c sgl_count may be zero and @c sgl is ignored. * @n @n * Upon completion @c cb is invoked with status and SCSI response data. * * @param node Pointer to the node. * @param io Pointer to the IO context. * @param io_to_abort Pointer to the IO context to abort in the * case of OCS_SCSI_TMF_ABORT_TASK. Note: this can point to the * same the same ocs_io_t as @c io, provided that @c io does not * have any outstanding work requests. * @param lun LUN value. * @param tmf Task management command. * @param sgl Pointer to the scatter-gather list. * @param sgl_count Count of the scatter-gather list elements. * @param len Length of the payload. * @param cb Completion callback. * @param arg Application-specified completion callback argument. * * @return Returns 0 on success, or a negative error code value on failure. */ int32_t ocs_scsi_send_tmf(ocs_node_t *node, ocs_io_t *io, ocs_io_t *io_to_abort, uint64_t lun, ocs_scsi_tmf_cmd_e tmf, ocs_scsi_sgl_t *sgl, uint32_t sgl_count, uint32_t len, ocs_scsi_rsp_io_cb_t cb, void *arg) { int32_t rc; ocs_assert(io, -1); if (tmf == OCS_SCSI_TMF_ABORT_TASK) { ocs_assert(io_to_abort, -1); /* take a reference on IO being aborted */ if ((ocs_ref_get_unless_zero(&io_to_abort->ref) == 0)) { /* command no longer active */ scsi_io_printf(io, "command no longer active\n"); return -1; } /* generic io fields have already been populated */ /* abort-specific fields */ io->io_type = OCS_IO_TYPE_ABORT; io->display_name = "abort_task"; io->io_to_abort = io_to_abort; io->send_abts = TRUE; io->scsi_ini_cb = cb; io->scsi_ini_cb_arg = arg; /* now dispatch IO */ rc = ocs_scsi_io_dispatch_abort(io, ocs_scsi_abort_io_cb); if (rc) { scsi_io_printf(io, "Failed to dispatch abort\n"); ocs_ref_put(&io->ref); /* ocs_ref_get(): same function */ } } else { io->display_name = "tmf"; rc = ocs_scsi_send_io(OCS_HW_IO_INITIATOR_READ, node, io, lun, tmf, NULL, 0, NULL, sgl, sgl_count, len, 0, cb, arg, 0); } return rc; } /** * @ingroup scsi_api_base * @brief Send an FCP IO. * * @par Description * An FCP read/write IO command, with optional task management flags, is sent to @c node. * * @param type HW IO type to send. * @param node Pointer to the node destination of the IO. * @param io Pointer to the IO context. * @param lun LUN value. * @param tmf Task management command. * @param cdb Pointer to the SCSI CDB. * @param cdb_len Length of the CDB, in bytes. * @param dif_info Pointer to the T10 DIF fields, or NULL if no DIF. * @param sgl Pointer to the scatter-gather list. * @param sgl_count Number of SGL entries in SGL. * @param wire_len Payload length, in bytes, of data on wire. * @param first_burst Number of first burst bytes to send. * @param cb Completion callback. * @param arg Application-specified completion callback argument. * * @return Returns 0 on success, or a negative error code value on failure. */ /* tc: could elminiate LUN, as it's part of the IO structure */ static int32_t ocs_scsi_send_io(ocs_hw_io_type_e type, ocs_node_t *node, ocs_io_t *io, uint64_t lun, ocs_scsi_tmf_cmd_e tmf, uint8_t *cdb, uint32_t cdb_len, ocs_scsi_dif_info_t *dif_info, ocs_scsi_sgl_t *sgl, uint32_t sgl_count, uint32_t wire_len, uint32_t first_burst, ocs_scsi_rsp_io_cb_t cb, void *arg, uint32_t flags) { int32_t rc; ocs_t *ocs; fcp_cmnd_iu_t *cmnd; uint32_t cmnd_bytes = 0; uint32_t *fcp_dl; uint8_t tmf_flags = 0; ocs_assert(io->node, -1); ocs_assert(io->node == node, -1); ocs_assert(io, -1); ocs = io->ocs; ocs_assert(cb, -1); io->sgl_count = sgl_count; /* Copy SGL if needed */ if (sgl != io->sgl) { ocs_assert(sgl_count <= io->sgl_allocated, -1); ocs_memcpy(io->sgl, sgl, sizeof(*io->sgl) * sgl_count); } /* save initiator and target task tags for debugging */ io->tgt_task_tag = 0xffff; io->wire_len = wire_len; io->hio_type = type; if (OCS_LOG_ENABLE_SCSI_TRACE(ocs)) { char buf[80]; ocs_textbuf_t txtbuf; uint32_t i; ocs_textbuf_init(ocs, &txtbuf, buf, sizeof(buf)); ocs_textbuf_printf(&txtbuf, "cdb%d: ", cdb_len); for (i = 0; i < cdb_len; i ++) { ocs_textbuf_printf(&txtbuf, "%02X%s", cdb[i], (i == (cdb_len-1)) ? "" : " "); } scsi_io_printf(io, "%s len %d, %s\n", (io->hio_type == OCS_HW_IO_INITIATOR_READ) ? "read" : (io->hio_type == OCS_HW_IO_INITIATOR_WRITE) ? "write" : "", io->wire_len, ocs_textbuf_get_buffer(&txtbuf)); } ocs_assert(io->cmdbuf.virt, -1); cmnd = io->cmdbuf.virt; ocs_assert(sizeof(*cmnd) <= io->cmdbuf.size, -1); ocs_memset(cmnd, 0, sizeof(*cmnd)); /* Default FCP_CMND IU doesn't include additional CDB bytes but does include FCP_DL */ cmnd_bytes = sizeof(fcp_cmnd_iu_t) - sizeof(cmnd->fcp_cdb_and_dl) + sizeof(uint32_t); fcp_dl = (uint32_t*)(&(cmnd->fcp_cdb_and_dl)); if (cdb) { if (cdb_len <= 16) { ocs_memcpy(cmnd->fcp_cdb, cdb, cdb_len); } else { uint32_t addl_cdb_bytes; ocs_memcpy(cmnd->fcp_cdb, cdb, 16); addl_cdb_bytes = cdb_len - 16; ocs_memcpy(cmnd->fcp_cdb_and_dl, &(cdb[16]), addl_cdb_bytes); /* additional_fcp_cdb_length is in words, not bytes */ cmnd->additional_fcp_cdb_length = (addl_cdb_bytes + 3) / 4; fcp_dl += cmnd->additional_fcp_cdb_length; /* Round up additional CDB bytes */ cmnd_bytes += (addl_cdb_bytes + 3) & ~0x3; } } be64enc(cmnd->fcp_lun, CAM_EXTLUN_BYTE_SWIZZLE(lun)); if (node->fcp2device) { if(ocs_get_crn(node, &cmnd->command_reference_number, lun)) { return -1; } } if (flags & OCS_SCSI_CMD_HEAD_OF_QUEUE) cmnd->task_attribute = FCP_TASK_ATTR_HEAD_OF_QUEUE; else if (flags & OCS_SCSI_CMD_ORDERED) cmnd->task_attribute = FCP_TASK_ATTR_ORDERED; else if (flags & OCS_SCSI_CMD_UNTAGGED) cmnd->task_attribute = FCP_TASK_ATTR_UNTAGGED; else if (flags & OCS_SCSI_CMD_ACA) cmnd->task_attribute = FCP_TASK_ATTR_ACA; else cmnd->task_attribute = FCP_TASK_ATTR_SIMPLE; cmnd->command_priority = (flags & OCS_SCSI_PRIORITY_MASK) >> OCS_SCSI_PRIORITY_SHIFT; switch (tmf) { case OCS_SCSI_TMF_QUERY_TASK_SET: tmf_flags = FCP_QUERY_TASK_SET; break; case OCS_SCSI_TMF_ABORT_TASK_SET: tmf_flags = FCP_ABORT_TASK_SET; break; case OCS_SCSI_TMF_CLEAR_TASK_SET: tmf_flags = FCP_CLEAR_TASK_SET; break; case OCS_SCSI_TMF_QUERY_ASYNCHRONOUS_EVENT: tmf_flags = FCP_QUERY_ASYNCHRONOUS_EVENT; break; case OCS_SCSI_TMF_LOGICAL_UNIT_RESET: tmf_flags = FCP_LOGICAL_UNIT_RESET; break; case OCS_SCSI_TMF_CLEAR_ACA: tmf_flags = FCP_CLEAR_ACA; break; case OCS_SCSI_TMF_TARGET_RESET: tmf_flags = FCP_TARGET_RESET; break; default: tmf_flags = 0; } cmnd->task_management_flags = tmf_flags; *fcp_dl = ocs_htobe32(io->wire_len); switch (io->hio_type) { case OCS_HW_IO_INITIATOR_READ: cmnd->rddata = 1; break; case OCS_HW_IO_INITIATOR_WRITE: cmnd->wrdata = 1; break; case OCS_HW_IO_INITIATOR_NODATA: /* sets neither */ break; default: ocs_log_test(ocs, "bad IO type %d\n", io->hio_type); return -1; } rc = ocs_scsi_convert_dif_info(ocs, dif_info, &io->hw_dif); if (rc) { return rc; } io->scsi_ini_cb = cb; io->scsi_ini_cb_arg = arg; /* set command and response buffers in the iparam */ io->iparam.fcp_ini.cmnd = &io->cmdbuf; io->iparam.fcp_ini.cmnd_size = cmnd_bytes; io->iparam.fcp_ini.rsp = &io->rspbuf; io->iparam.fcp_ini.flags = 0; io->iparam.fcp_ini.dif_oper = io->hw_dif.dif; io->iparam.fcp_ini.blk_size = io->hw_dif.blk_size; io->iparam.fcp_ini.timeout = io->timeout; io->iparam.fcp_ini.first_burst = first_burst; return ocs_scsi_io_dispatch(io, ocs_initiator_io_cb); } /** * @ingroup scsi_api_base * @brief Callback for an aborted IO. * * @par Description * Callback function invoked upon completion of an IO abort request. * * @param hio HW IO context. * @param rnode Remote node. * @param len Response length. * @param status Completion status. * @param ext_status Extended completion status. * @param arg Application-specific callback, usually IO context. * @return Returns 0 on success, or a negative error code value on failure. */ static int32_t ocs_scsi_abort_io_cb(struct ocs_hw_io_s *hio, ocs_remote_node_t *rnode, uint32_t len, int32_t status, uint32_t ext_status, void *arg) { ocs_io_t *io = arg; ocs_t *ocs; ocs_scsi_io_status_e scsi_status = OCS_SCSI_STATUS_GOOD; ocs_assert(io, -1); ocs_assert(ocs_io_busy(io), -1); ocs_assert(io->ocs, -1); ocs_assert(io->io_to_abort, -1); ocs = io->ocs; ocs_log_debug(ocs, "status %d ext %d\n", status, ext_status); /* done with IO to abort */ ocs_ref_put(&io->io_to_abort->ref); /* ocs_ref_get(): ocs_scsi_send_tmf() */ ocs_scsi_io_free_ovfl(io); switch (status) { case SLI4_FC_WCQE_STATUS_SUCCESS: scsi_status = OCS_SCSI_STATUS_GOOD; break; case SLI4_FC_WCQE_STATUS_LOCAL_REJECT: if (ext_status == SLI4_FC_LOCAL_REJECT_ABORT_REQUESTED) { scsi_status = OCS_SCSI_STATUS_ABORTED; } else if (ext_status == SLI4_FC_LOCAL_REJECT_NO_XRI) { scsi_status = OCS_SCSI_STATUS_NO_IO; } else if (ext_status == SLI4_FC_LOCAL_REJECT_ABORT_IN_PROGRESS) { scsi_status = OCS_SCSI_STATUS_ABORT_IN_PROGRESS; } else { ocs_log_test(ocs, "Unhandled local reject 0x%x/0x%x\n", status, ext_status); scsi_status = OCS_SCSI_STATUS_ERROR; } break; default: scsi_status = OCS_SCSI_STATUS_ERROR; break; } if (io->scsi_ini_cb) { (*io->scsi_ini_cb)(io, scsi_status, NULL, 0, io->scsi_ini_cb_arg); } else { ocs_scsi_io_free(io); } ocs_scsi_check_pending(ocs); return 0; } /** * @ingroup scsi_api_base * @brief Return SCSI API integer valued property. * * @par Description * This function is called by a target-server or initiator-client to * retrieve an integer valued property. * * @param ocs Pointer to the ocs. * @param prop Property value to return. * * @return Returns a value, or 0 if invalid property was requested. */ uint32_t ocs_scsi_get_property(ocs_t *ocs, ocs_scsi_property_e prop) { ocs_xport_t *xport = ocs->xport; uint32_t val; switch (prop) { case OCS_SCSI_MAX_SGE: if (0 == ocs_hw_get(&ocs->hw, OCS_HW_MAX_SGE, &val)) { return val; } break; case OCS_SCSI_MAX_SGL: if (ocs->ctrlmask & OCS_CTRLMASK_TEST_CHAINED_SGLS) { /* * If chain SGL test-mode is enabled, the number of HW SGEs * has been limited; report back original max. */ return (OCS_FC_MAX_SGL); } if (0 == ocs_hw_get(&ocs->hw, OCS_HW_N_SGL, &val)) { return val; } break; case OCS_SCSI_MAX_IOS: return ocs_io_pool_allocated(xport->io_pool); case OCS_SCSI_DIF_CAPABLE: if (0 == ocs_hw_get(&ocs->hw, OCS_HW_DIF_CAPABLE, &val)) { return val; } break; case OCS_SCSI_MAX_FIRST_BURST: return 0; case OCS_SCSI_DIF_MULTI_SEPARATE: if (ocs_hw_get(&ocs->hw, OCS_HW_DIF_MULTI_SEPARATE, &val) == 0) { return val; } break; case OCS_SCSI_ENABLE_TASK_SET_FULL: /* Return FALSE if we are send frame capable */ if (ocs_hw_get(&ocs->hw, OCS_HW_SEND_FRAME_CAPABLE, &val) == 0) { return ! val; } break; default: break; } ocs_log_debug(ocs, "invalid property request %d\n", prop); return 0; } /** * @ingroup scsi_api_base * @brief Return a property pointer. * * @par Description * This function is called by a target-server or initiator-client to * retrieve a pointer to the requested property. * * @param ocs Pointer to the ocs. * @param prop Property value to return. * * @return Returns pointer to the requested property, or NULL otherwise. */ void *ocs_scsi_get_property_ptr(ocs_t *ocs, ocs_scsi_property_e prop) { void *rc = NULL; switch (prop) { case OCS_SCSI_WWNN: rc = ocs_hw_get_ptr(&ocs->hw, OCS_HW_WWN_NODE); break; case OCS_SCSI_WWPN: rc = ocs_hw_get_ptr(&ocs->hw, OCS_HW_WWN_PORT); break; case OCS_SCSI_PORTNUM: rc = ocs_hw_get_ptr(&ocs->hw, OCS_HW_PORTNUM); break; case OCS_SCSI_BIOS_VERSION_STRING: rc = ocs_hw_get_ptr(&ocs->hw, OCS_HW_BIOS_VERSION_STRING); break; case OCS_SCSI_SERIALNUMBER: { uint8_t *pvpd; uint32_t vpd_len; if (ocs_hw_get(&ocs->hw, OCS_HW_VPD_LEN, &vpd_len)) { ocs_log_test(ocs, "Can't get VPD length\n"); rc = "\012sn-unknown"; break; } pvpd = ocs_hw_get_ptr(&ocs->hw, OCS_HW_VPD); if (pvpd) { rc = ocs_find_vpd(pvpd, vpd_len, "SN"); } if (rc == NULL || ocs_strlen(rc) == 0) { /* Note: VPD is missing, using wwnn for serial number */ scsi_log(ocs, "Note: VPD is missing, using wwnn for serial number\n"); /* Use the last 32 bits of the WWN */ if ((ocs == NULL) || (ocs->domain == NULL) || (ocs->domain->sport == NULL)) { rc = "\011(Unknown)"; } else { rc = &ocs->domain->sport->wwnn_str[8]; } } break; } case OCS_SCSI_PARTNUMBER: { uint8_t *pvpd; uint32_t vpd_len; if (ocs_hw_get(&ocs->hw, OCS_HW_VPD_LEN, &vpd_len)) { ocs_log_test(ocs, "Can't get VPD length\n"); rc = "\012pn-unknown"; break; } pvpd = ocs_hw_get_ptr(&ocs->hw, OCS_HW_VPD); if (pvpd) { rc = ocs_find_vpd(pvpd, vpd_len, "PN"); if (rc == NULL) { rc = "\012pn-unknown"; } } else { rc = "\012pn-unknown"; } break; } default: break; } if (rc == NULL) { ocs_log_debug(ocs, "invalid property request %d\n", prop); } return rc; } /** * @ingroup scsi_api_base * @brief Notify that delete initiator is complete. * * @par Description * Sent by the target-server to notify the base driver that the work started from * ocs_scsi_del_initiator() is now complete and that it is safe for the node to * release the rest of its resources. * * @param node Pointer to the node. * * @return None. */ void ocs_scsi_del_initiator_complete(ocs_node_t *node) { /* Notify the node to resume */ ocs_node_post_event(node, OCS_EVT_NODE_DEL_INI_COMPLETE, NULL); } /** * @ingroup scsi_api_base * @brief Notify that delete target is complete. * * @par Description * Sent by the initiator-client to notify the base driver that the work started from * ocs_scsi_del_target() is now complete and that it is safe for the node to * release the rest of its resources. * * @param node Pointer to the node. * * @return None. */ void ocs_scsi_del_target_complete(ocs_node_t *node) { /* Notify the node to resume */ ocs_node_post_event(node, OCS_EVT_NODE_DEL_TGT_COMPLETE, NULL); } /** * @brief Update transferred count * * @par Description * Updates io->transferred, as required when using first burst, when the amount * of first burst data processed differs from the amount of first burst * data received. * * @param io Pointer to the io object. * @param transferred Number of bytes transferred out of first burst buffers. * * @return None. */ void ocs_scsi_update_first_burst_transferred(ocs_io_t *io, uint32_t transferred) { io->transferred = transferred; } /** * @brief Register bounce callback for multi-threading. * * @par Description * Register the back end bounce function. * * @param ocs Pointer to device object. * @param fctn Function pointer of bounce function. * * @return None. */ void ocs_scsi_register_bounce(ocs_t *ocs, void(*fctn)(void(*fctn)(void *arg), void *arg, uint32_t s_id, uint32_t d_id, uint32_t ox_id)) { ocs_hw_rtn_e rc; rc = ocs_hw_callback(&ocs->hw, OCS_HW_CB_BOUNCE, fctn, NULL); if (rc) { ocs_log_test(ocs, "ocs_hw_callback(OCS_HW_CB_BOUNCE) failed: %d\n", rc); } } diff --git a/sys/dev/ocs_fc/ocs_xport.c b/sys/dev/ocs_fc/ocs_xport.c index d6b0d8740906..d997ea245132 100644 --- a/sys/dev/ocs_fc/ocs_xport.c +++ b/sys/dev/ocs_fc/ocs_xport.c @@ -1,1131 +1,1133 @@ /*- * Copyright (c) 2017 Broadcom. All rights reserved. * The term "Broadcom" refers to Broadcom Limited and/or its subsidiaries. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /** * @file * FC transport API * */ #include "ocs.h" #include "ocs_device.h" static void ocs_xport_link_stats_cb(int32_t status, uint32_t num_counters, ocs_hw_link_stat_counts_t *counters, void *arg); static void ocs_xport_host_stats_cb(int32_t status, uint32_t num_counters, ocs_hw_host_stat_counts_t *counters, void *arg); /** * @brief Post node event callback argument. */ typedef struct { ocs_sem_t sem; ocs_node_t *node; ocs_sm_event_t evt; void *context; } ocs_xport_post_node_event_t; /** * @brief Allocate a transport object. * * @par Description * A transport object is allocated, and associated with a device instance. * * @param ocs Pointer to device instance. * * @return Returns the pointer to the allocated transport object, or NULL if failed. */ ocs_xport_t * ocs_xport_alloc(ocs_t *ocs) { ocs_xport_t *xport; ocs_assert(ocs, NULL); xport = ocs_malloc(ocs, sizeof(*xport), OCS_M_ZERO); if (xport != NULL) { xport->ocs = ocs; } return xport; } /** * @brief Create the RQ threads and the circular buffers used to pass sequences. * * @par Description * Creates the circular buffers and the servicing threads for RQ processing. * * @param xport Pointer to transport object * * @return Returns 0 on success, or a non-zero value on failure. */ static void ocs_xport_rq_threads_teardown(ocs_xport_t *xport) { ocs_t *ocs = xport->ocs; uint32_t i; if (xport->num_rq_threads == 0 || xport->rq_thread_info == NULL) { return; } /* Abort any threads */ for (i = 0; i < xport->num_rq_threads; i++) { if (xport->rq_thread_info[i].thread_started) { ocs_thread_terminate(&xport->rq_thread_info[i].thread); /* wait for the thread to exit */ ocs_log_debug(ocs, "wait for thread %d to exit\n", i); while (xport->rq_thread_info[i].thread_started) { ocs_udelay(10000); } ocs_log_debug(ocs, "thread %d to exited\n", i); } if (xport->rq_thread_info[i].seq_cbuf != NULL) { ocs_cbuf_free(xport->rq_thread_info[i].seq_cbuf); xport->rq_thread_info[i].seq_cbuf = NULL; } } } /** * @brief Create the RQ threads and the circular buffers used to pass sequences. * * @par Description * Creates the circular buffers and the servicing threads for RQ processing. * * @param xport Pointer to transport object. * @param num_rq_threads Number of RQ processing threads that the * driver creates. * * @return Returns 0 on success, or a non-zero value on failure. */ static int32_t ocs_xport_rq_threads_create(ocs_xport_t *xport, uint32_t num_rq_threads) { ocs_t *ocs = xport->ocs; int32_t rc = 0; uint32_t i; xport->num_rq_threads = num_rq_threads; ocs_log_debug(ocs, "number of RQ threads %d\n", num_rq_threads); if (num_rq_threads == 0) { return 0; } /* Allocate the space for the thread objects */ xport->rq_thread_info = ocs_malloc(ocs, sizeof(ocs_xport_rq_thread_info_t) * num_rq_threads, OCS_M_ZERO); if (xport->rq_thread_info == NULL) { ocs_log_err(ocs, "memory allocation failure\n"); return -1; } /* Create the circular buffers and threads. */ for (i = 0; i < num_rq_threads; i++) { xport->rq_thread_info[i].ocs = ocs; xport->rq_thread_info[i].seq_cbuf = ocs_cbuf_alloc(ocs, OCS_HW_RQ_NUM_HDR); if (xport->rq_thread_info[i].seq_cbuf == NULL) { goto ocs_xport_rq_threads_create_error; } ocs_snprintf(xport->rq_thread_info[i].thread_name, sizeof(xport->rq_thread_info[i].thread_name), "ocs_unsol_rq:%d:%d", ocs->instance_index, i); rc = ocs_thread_create(ocs, &xport->rq_thread_info[i].thread, ocs_unsol_rq_thread, xport->rq_thread_info[i].thread_name, &xport->rq_thread_info[i], OCS_THREAD_RUN); if (rc) { ocs_log_err(ocs, "ocs_thread_create failed: %d\n", rc); goto ocs_xport_rq_threads_create_error; } xport->rq_thread_info[i].thread_started = TRUE; } return 0; ocs_xport_rq_threads_create_error: ocs_xport_rq_threads_teardown(xport); return -1; } /** * @brief Do as much allocation as possible, but do not initialization the device. * * @par Description * Performs the functions required to get a device ready to run. * * @param xport Pointer to transport object. * * @return Returns 0 on success, or a non-zero value on failure. */ int32_t ocs_xport_attach(ocs_xport_t *xport) { ocs_t *ocs = xport->ocs; int32_t rc; uint32_t max_sgl; uint32_t n_sgl; uint32_t i; uint32_t value; uint32_t max_remote_nodes; /* booleans used for cleanup if initialization fails */ uint8_t io_pool_created = FALSE; uint8_t node_pool_created = FALSE; ocs_list_init(&ocs->domain_list, ocs_domain_t, link); for (i = 0; i < SLI4_MAX_FCFI; i++) { xport->fcfi[i].hold_frames = 1; ocs_lock_init(ocs, &xport->fcfi[i].pend_frames_lock, "xport pend_frames[%d]", i); ocs_list_init(&xport->fcfi[i].pend_frames, ocs_hw_sequence_t, link); } rc = ocs_hw_set_ptr(&ocs->hw, OCS_HW_WAR_VERSION, ocs->hw_war_version); if (rc) { ocs_log_test(ocs, "can't set OCS_HW_WAR_VERSION\n"); return -1; } rc = ocs_hw_setup(&ocs->hw, ocs, SLI4_PORT_TYPE_FC); if (rc) { ocs_log_err(ocs, "%s: Can't setup hardware\n", ocs->desc); return -1; } else if (ocs->ctrlmask & OCS_CTRLMASK_CRASH_RESET) { ocs_log_debug(ocs, "stopping after ocs_hw_setup\n"); return -1; } ocs_hw_set(&ocs->hw, OCS_HW_BOUNCE, ocs->hw_bounce); ocs_log_debug(ocs, "HW bounce: %d\n", ocs->hw_bounce); ocs_hw_set(&ocs->hw, OCS_HW_RQ_SELECTION_POLICY, ocs->rq_selection_policy); ocs_hw_set(&ocs->hw, OCS_HW_RR_QUANTA, ocs->rr_quanta); ocs_hw_get(&ocs->hw, OCS_HW_RQ_SELECTION_POLICY, &value); ocs_log_debug(ocs, "RQ Selection Policy: %d\n", value); ocs_hw_set_ptr(&ocs->hw, OCS_HW_FILTER_DEF, (void*) ocs->filter_def); ocs_hw_get(&ocs->hw, OCS_HW_MAX_SGL, &max_sgl); max_sgl -= SLI4_SGE_MAX_RESERVED; n_sgl = MIN(OCS_FC_MAX_SGL, max_sgl); /* EVT: For chained SGL testing */ if (ocs->ctrlmask & OCS_CTRLMASK_TEST_CHAINED_SGLS) { n_sgl = 4; } /* Note: number of SGLs must be set for ocs_node_create_pool */ if (ocs_hw_set(&ocs->hw, OCS_HW_N_SGL, n_sgl) != OCS_HW_RTN_SUCCESS) { ocs_log_err(ocs, "%s: Can't set number of SGLs\n", ocs->desc); return -1; } else { ocs_log_debug(ocs, "%s: Configured for %d SGLs\n", ocs->desc, n_sgl); } ocs_hw_get(&ocs->hw, OCS_HW_MAX_NODES, &max_remote_nodes); if (!ocs->max_remote_nodes) ocs->max_remote_nodes = max_remote_nodes; rc = ocs_node_create_pool(ocs, ocs->max_remote_nodes); if (rc) { ocs_log_err(ocs, "Can't allocate node pool\n"); goto ocs_xport_attach_cleanup; } else { node_pool_created = TRUE; } /* EVT: if testing chained SGLs allocate OCS_FC_MAX_SGL SGE's in the IO */ xport->io_pool = ocs_io_pool_create(ocs, ocs->num_scsi_ios, (ocs->ctrlmask & OCS_CTRLMASK_TEST_CHAINED_SGLS) ? OCS_FC_MAX_SGL : n_sgl); if (xport->io_pool == NULL) { ocs_log_err(ocs, "Can't allocate IO pool\n"); goto ocs_xport_attach_cleanup; } else { io_pool_created = TRUE; } /* * setup the RQ processing threads */ if (ocs_xport_rq_threads_create(xport, ocs->rq_threads) != 0) { ocs_log_err(ocs, "failure creating RQ threads\n"); goto ocs_xport_attach_cleanup; } return 0; ocs_xport_attach_cleanup: if (io_pool_created) { ocs_io_pool_free(xport->io_pool); } if (node_pool_created) { ocs_node_free_pool(ocs); } return -1; } /** * @brief Determines how to setup auto Xfer ready. * * @par Description * @param xport Pointer to transport object. * * @return Returns 0 on success or a non-zero value on failure. */ static int32_t ocs_xport_initialize_auto_xfer_ready(ocs_xport_t *xport) { ocs_t *ocs = xport->ocs; uint32_t auto_xfer_rdy; char prop_buf[32]; uint32_t ramdisc_blocksize = 512; uint8_t p_type = 0; ocs_hw_get(&ocs->hw, OCS_HW_AUTO_XFER_RDY_CAPABLE, &auto_xfer_rdy); if (!auto_xfer_rdy) { ocs->auto_xfer_rdy_size = 0; ocs_log_test(ocs, "Cannot enable auto xfer rdy for this port\n"); return 0; } if (ocs_hw_set(&ocs->hw, OCS_HW_AUTO_XFER_RDY_SIZE, ocs->auto_xfer_rdy_size)) { ocs_log_test(ocs, "%s: Can't set auto xfer rdy mode\n", ocs->desc); return -1; } /* * Determine if we are doing protection in the backend. We are looking * at the modules parameters here. The backend cannot allow a format * command to change the protection mode when using this feature, * otherwise the firmware will not do the proper thing. */ if (ocs_get_property("p_type", prop_buf, sizeof(prop_buf)) == 0) { p_type = ocs_strtoul(prop_buf, 0, 0); } if (ocs_get_property("ramdisc_blocksize", prop_buf, sizeof(prop_buf)) == 0) { ramdisc_blocksize = ocs_strtoul(prop_buf, 0, 0); } if (ocs_get_property("external_dif", prop_buf, sizeof(prop_buf)) == 0) { if(ocs_strlen(prop_buf)) { if (p_type == 0) { p_type = 1; } } } if (p_type != 0) { if (ocs_hw_set(&ocs->hw, OCS_HW_AUTO_XFER_RDY_T10_ENABLE, TRUE)) { ocs_log_test(ocs, "%s: Can't set auto xfer rdy mode\n", ocs->desc); return -1; } if (ocs_hw_set(&ocs->hw, OCS_HW_AUTO_XFER_RDY_BLK_SIZE, ramdisc_blocksize)) { ocs_log_test(ocs, "%s: Can't set auto xfer rdy blk size\n", ocs->desc); return -1; } if (ocs_hw_set(&ocs->hw, OCS_HW_AUTO_XFER_RDY_P_TYPE, p_type)) { ocs_log_test(ocs, "%s: Can't set auto xfer rdy mode\n", ocs->desc); return -1; } if (ocs_hw_set(&ocs->hw, OCS_HW_AUTO_XFER_RDY_REF_TAG_IS_LBA, TRUE)) { ocs_log_test(ocs, "%s: Can't set auto xfer rdy ref tag\n", ocs->desc); return -1; } if (ocs_hw_set(&ocs->hw, OCS_HW_AUTO_XFER_RDY_APP_TAG_VALID, FALSE)) { ocs_log_test(ocs, "%s: Can't set auto xfer rdy app tag valid\n", ocs->desc); return -1; } } ocs_log_debug(ocs, "Auto xfer rdy is enabled, p_type=%d, blksize=%d\n", p_type, ramdisc_blocksize); return 0; } /** * @brief Initialize link topology config * * @par Description * Topology can be fetched from mod-param or Persistet Topology(PT). * a. Mod-param value is used when the value is 1(P2P) or 2(LOOP). * a. PT is used if mod-param is not provided( i.e, default value of AUTO) * Also, if mod-param is used, update PT. * * @param ocs Pointer to ocs * * @return Returns 0 on success, or a non-zero value on failure. */ static int ocs_topology_setup(ocs_t *ocs) { uint32_t topology; if (ocs->topology == OCS_HW_TOPOLOGY_AUTO) { topology = ocs_hw_get_config_persistent_topology(&ocs->hw); } else { topology = ocs->topology; /* ignore failure here. link will come-up either in auto mode * if PT is not supported or last saved PT value */ ocs_hw_set_persistent_topology(&ocs->hw, topology, OCS_CMD_POLL); } return ocs_hw_set(&ocs->hw, OCS_HW_TOPOLOGY, topology); } /** * @brief Initializes the device. * * @par Description * Performs the functions required to make a device functional. * * @param xport Pointer to transport object. * * @return Returns 0 on success, or a non-zero value on failure. */ int32_t ocs_xport_initialize(ocs_xport_t *xport) { ocs_t *ocs = xport->ocs; int32_t rc; uint32_t i; uint32_t max_hw_io; uint32_t max_sgl; uint32_t hlm; uint32_t rq_limit; uint32_t dif_capable; uint8_t dif_separate = 0; char prop_buf[32]; /* booleans used for cleanup if initialization fails */ uint8_t ini_device_set = FALSE; uint8_t tgt_device_set = FALSE; uint8_t hw_initialized = FALSE; ocs_hw_get(&ocs->hw, OCS_HW_MAX_IO, &max_hw_io); if (ocs_hw_set(&ocs->hw, OCS_HW_N_IO, max_hw_io) != OCS_HW_RTN_SUCCESS) { ocs_log_err(ocs, "%s: Can't set number of IOs\n", ocs->desc); return -1; } ocs_hw_get(&ocs->hw, OCS_HW_MAX_SGL, &max_sgl); max_sgl -= SLI4_SGE_MAX_RESERVED; if (ocs->enable_hlm) { ocs_hw_get(&ocs->hw, OCS_HW_HIGH_LOGIN_MODE, &hlm); if (!hlm) { ocs->enable_hlm = FALSE; ocs_log_err(ocs, "Cannot enable high login mode for this port\n"); } else { ocs_log_debug(ocs, "High login mode is enabled\n"); if (ocs_hw_set(&ocs->hw, OCS_HW_HIGH_LOGIN_MODE, TRUE)) { ocs_log_err(ocs, "%s: Can't set high login mode\n", ocs->desc); return -1; } } } /* validate the auto xfer_rdy size */ if (ocs->auto_xfer_rdy_size > 0 && (ocs->auto_xfer_rdy_size < 2048 || ocs->auto_xfer_rdy_size > 65536)) { ocs_log_err(ocs, "Auto XFER_RDY size is out of range (2K-64K)\n"); return -1; } ocs_hw_get(&ocs->hw, OCS_HW_MAX_IO, &max_hw_io); if (ocs->auto_xfer_rdy_size > 0) { if (ocs_xport_initialize_auto_xfer_ready(xport)) { ocs_log_err(ocs, "%s: Failed auto xfer ready setup\n", ocs->desc); return -1; } if (ocs->esoc){ ocs_hw_set(&ocs->hw, OCS_ESOC, TRUE); } } if (ocs->explicit_buffer_list) { /* Are pre-registered SGL's required? */ ocs_hw_get(&ocs->hw, OCS_HW_PREREGISTER_SGL, &i); if (i == TRUE) { ocs_log_err(ocs, "Explicit Buffer List not supported on this device, not enabled\n"); } else { ocs_hw_set(&ocs->hw, OCS_HW_PREREGISTER_SGL, FALSE); } } /* Setup persistent topology based on topology mod-param value */ rc = ocs_topology_setup(ocs); if (rc) { ocs_log_err(ocs, "%s: Can't set the toplogy\n", ocs->desc); return -1; } if (ocs_hw_set(&ocs->hw, OCS_HW_TOPOLOGY, ocs->topology) != OCS_HW_RTN_SUCCESS) { ocs_log_err(ocs, "%s: Can't set the toplogy\n", ocs->desc); return -1; } ocs_hw_set(&ocs->hw, OCS_HW_RQ_DEFAULT_BUFFER_SIZE, OCS_FC_RQ_SIZE_DEFAULT); if (ocs_hw_set(&ocs->hw, OCS_HW_LINK_SPEED, ocs->speed) != OCS_HW_RTN_SUCCESS) { ocs_log_err(ocs, "%s: Can't set the link speed\n", ocs->desc); return -1; } if (ocs_hw_set(&ocs->hw, OCS_HW_ETH_LICENSE, ocs->ethernet_license) != OCS_HW_RTN_SUCCESS) { ocs_log_err(ocs, "%s: Can't set the ethernet license\n", ocs->desc); return -1; } /* currently only lancer support setting the CRC seed value */ if (ocs->hw.sli.asic_type == SLI4_ASIC_TYPE_LANCER) { if (ocs_hw_set(&ocs->hw, OCS_HW_DIF_SEED, OCS_FC_DIF_SEED) != OCS_HW_RTN_SUCCESS) { ocs_log_err(ocs, "%s: Can't set the DIF seed\n", ocs->desc); return -1; } } /* Set the Dif mode */ if (0 == ocs_hw_get(&ocs->hw, OCS_HW_DIF_CAPABLE, &dif_capable)) { if (dif_capable) { if (ocs_get_property("dif_separate", prop_buf, sizeof(prop_buf)) == 0) { dif_separate = ocs_strtoul(prop_buf, 0, 0); } if ((rc = ocs_hw_set(&ocs->hw, OCS_HW_DIF_MODE, (dif_separate == 0 ? OCS_HW_DIF_MODE_INLINE : OCS_HW_DIF_MODE_SEPARATE)))) { ocs_log_err(ocs, "Requested DIF MODE not supported\n"); } } } - if (ocs->target_io_timer_sec) { - ocs_log_debug(ocs, "setting target io timer=%d\n", ocs->target_io_timer_sec); - ocs_hw_set(&ocs->hw, OCS_HW_EMULATE_TARGET_WQE_TIMEOUT, TRUE); + if (ocs->target_io_timer_sec || ocs->enable_ini) { + if (ocs->target_io_timer_sec) + ocs_log_debug(ocs, "setting target io timer=%d\n", ocs->target_io_timer_sec); + + ocs_hw_set(&ocs->hw, OCS_HW_EMULATE_WQE_TIMEOUT, TRUE); } ocs_hw_callback(&ocs->hw, OCS_HW_CB_DOMAIN, ocs_domain_cb, ocs); ocs_hw_callback(&ocs->hw, OCS_HW_CB_REMOTE_NODE, ocs_remote_node_cb, ocs); ocs_hw_callback(&ocs->hw, OCS_HW_CB_UNSOLICITED, ocs_unsolicited_cb, ocs); ocs_hw_callback(&ocs->hw, OCS_HW_CB_PORT, ocs_port_cb, ocs); ocs->fw_version = (const char*) ocs_hw_get_ptr(&ocs->hw, OCS_HW_FW_REV); /* Initialize vport list */ ocs_list_init(&xport->vport_list, ocs_vport_spec_t, link); ocs_lock_init(ocs, &xport->io_pending_lock, "io_pending_lock[%d]", ocs->instance_index); ocs_list_init(&xport->io_pending_list, ocs_io_t, io_pending_link); ocs_atomic_init(&xport->io_active_count, 0); ocs_atomic_init(&xport->io_pending_count, 0); ocs_atomic_init(&xport->io_total_free, 0); ocs_atomic_init(&xport->io_total_pending, 0); ocs_atomic_init(&xport->io_alloc_failed_count, 0); ocs_atomic_init(&xport->io_pending_recursing, 0); ocs_lock_init(ocs, &ocs->hw.watchdog_lock, " Watchdog Lock[%d]", ocs_instance(ocs)); rc = ocs_hw_init(&ocs->hw); if (rc) { ocs_log_err(ocs, "ocs_hw_init failure\n"); goto ocs_xport_init_cleanup; } else { hw_initialized = TRUE; } rq_limit = max_hw_io/2; if (ocs_hw_set(&ocs->hw, OCS_HW_RQ_PROCESS_LIMIT, rq_limit) != OCS_HW_RTN_SUCCESS) { ocs_log_err(ocs, "%s: Can't set the RQ process limit\n", ocs->desc); } if (ocs->config_tgt) { rc = ocs_scsi_tgt_new_device(ocs); if (rc) { ocs_log_err(ocs, "failed to initialize target\n"); goto ocs_xport_init_cleanup; } else { tgt_device_set = TRUE; } } if (ocs->enable_ini) { rc = ocs_scsi_ini_new_device(ocs); if (rc) { ocs_log_err(ocs, "failed to initialize initiator\n"); goto ocs_xport_init_cleanup; } else { ini_device_set = TRUE; } } /* Add vports */ if (ocs->num_vports != 0) { uint32_t max_vports; ocs_hw_get(&ocs->hw, OCS_HW_MAX_VPORTS, &max_vports); if (ocs->num_vports < max_vports) { ocs_log_debug(ocs, "Provisioning %d vports\n", ocs->num_vports); for (i = 0; i < ocs->num_vports; i++) { ocs_vport_create_spec(ocs, 0, 0, UINT32_MAX, ocs->enable_ini, ocs->enable_tgt, NULL, NULL); } } else { ocs_log_err(ocs, "failed to create vports. num_vports range should be (1-%d) \n", max_vports-1); goto ocs_xport_init_cleanup; } } return 0; ocs_xport_init_cleanup: if (ini_device_set) { ocs_scsi_ini_del_device(ocs); } if (tgt_device_set) { ocs_scsi_tgt_del_device(ocs); } if (hw_initialized) { /* ocs_hw_teardown can only execute after ocs_hw_init */ ocs_hw_teardown(&ocs->hw); } return -1; } /** * @brief Detaches the transport from the device. * * @par Description * Performs the functions required to shut down a device. * * @param xport Pointer to transport object. * * @return Returns 0 on success or a non-zero value on failure. */ int32_t ocs_xport_detach(ocs_xport_t *xport) { ocs_t *ocs = xport->ocs; /* free resources associated with target-server and initiator-client */ if (ocs->config_tgt) ocs_scsi_tgt_del_device(ocs); if (ocs->enable_ini) { ocs_scsi_ini_del_device(ocs); /*Shutdown FC Statistics timer*/ if (ocs_timer_pending(&ocs->xport->stats_timer)) ocs_del_timer(&ocs->xport->stats_timer); } ocs_hw_teardown(&ocs->hw); return 0; } /** * @brief domain list empty callback * * @par Description * Function is invoked when the device domain list goes empty. By convention * @c arg points to an ocs_sem_t instance, that is incremented. * * @param ocs Pointer to device object. * @param arg Pointer to semaphore instance. * * @return None. */ static void ocs_xport_domain_list_empty_cb(ocs_t *ocs, void *arg) { ocs_sem_t *sem = arg; ocs_assert(ocs); ocs_assert(sem); ocs_sem_v(sem); } /** * @brief post node event callback * * @par Description * This function is called from the mailbox completion interrupt context to post an * event to a node object. By doing this in the interrupt context, it has * the benefit of only posting events in the interrupt context, deferring the need to * create a per event node lock. * * @param hw Pointer to HW structure. * @param status Completion status for mailbox command. * @param mqe Mailbox queue completion entry. * @param arg Callback argument. * * @return Returns 0 on success, a negative error code value on failure. */ static int32_t ocs_xport_post_node_event_cb(ocs_hw_t *hw, int32_t status, uint8_t *mqe, void *arg) { ocs_xport_post_node_event_t *payload = arg; if (payload != NULL) { ocs_node_post_event(payload->node, payload->evt, payload->context); ocs_sem_v(&payload->sem); } return 0; } /** * @brief Initiate force free. * * @par Description * Perform force free of OCS. * * @param xport Pointer to transport object. * * @return None. */ static void ocs_xport_force_free(ocs_xport_t *xport) { ocs_t *ocs = xport->ocs; ocs_domain_t *domain; ocs_domain_t *next; ocs_log_debug(ocs, "reset required, do force shutdown\n"); ocs_device_lock(ocs); ocs_list_foreach_safe(&ocs->domain_list, domain, next) { ocs_domain_force_free(domain); } ocs_device_unlock(ocs); } /** * @brief Perform transport attach function. * * @par Description * Perform the attach function, which for the FC transport makes a HW call * to bring up the link. * * @param xport pointer to transport object. * @param cmd command to execute. * * ocs_xport_control(ocs_xport_t *xport, OCS_XPORT_PORT_ONLINE) * ocs_xport_control(ocs_xport_t *xport, OCS_XPORT_PORT_OFFLINE) * ocs_xport_control(ocs_xport_t *xport, OCS_XPORT_PORT_SHUTDOWN) * ocs_xport_control(ocs_xport_t *xport, OCS_XPORT_POST_NODE_EVENT, ocs_node_t *node, ocs_sm_event_t, void *context) * * @return Returns 0 on success, or a negative error code value on failure. */ int32_t ocs_xport_control(ocs_xport_t *xport, ocs_xport_ctrl_e cmd, ...) { uint32_t rc = 0; ocs_t *ocs = NULL; va_list argp; ocs_assert(xport, -1); ocs_assert(xport->ocs, -1); ocs = xport->ocs; switch (cmd) { case OCS_XPORT_PORT_ONLINE: { /* Bring the port on-line */ rc = ocs_hw_port_control(&ocs->hw, OCS_HW_PORT_INIT, 0, NULL, NULL); if (rc) { ocs_log_err(ocs, "%s: Can't init port\n", ocs->desc); } else { xport->configured_link_state = cmd; } break; } case OCS_XPORT_PORT_OFFLINE: { if (ocs_hw_port_control(&ocs->hw, OCS_HW_PORT_SHUTDOWN, 0, NULL, NULL)) { ocs_log_err(ocs, "port shutdown failed\n"); } else { xport->configured_link_state = cmd; } break; } case OCS_XPORT_SHUTDOWN: { ocs_sem_t sem; uint32_t reset_required; /* if a PHYSDEV reset was performed (e.g. hw dump), will affect * all PCI functions; orderly shutdown won't work, just force free */ /* TODO: need to poll this regularly... */ if (ocs_hw_get(&ocs->hw, OCS_HW_RESET_REQUIRED, &reset_required) != OCS_HW_RTN_SUCCESS) { reset_required = 0; } if (reset_required) { ocs_log_debug(ocs, "reset required, do force shutdown\n"); ocs_xport_force_free(xport); break; } ocs_sem_init(&sem, 0, "domain_list_sem"); ocs_register_domain_list_empty_cb(ocs, ocs_xport_domain_list_empty_cb, &sem); if (ocs_hw_port_control(&ocs->hw, OCS_HW_PORT_SHUTDOWN, 0, NULL, NULL)) { ocs_log_debug(ocs, "port shutdown failed, do force shutdown\n"); ocs_xport_force_free(xport); } else { ocs_log_debug(ocs, "Waiting %d seconds for domain shutdown.\n", (OCS_FC_DOMAIN_SHUTDOWN_TIMEOUT_USEC/1000000)); rc = ocs_sem_p(&sem, OCS_FC_DOMAIN_SHUTDOWN_TIMEOUT_USEC); if (rc) { ocs_log_debug(ocs, "Note: Domain shutdown timed out\n"); ocs_xport_force_free(xport); } } ocs_register_domain_list_empty_cb(ocs, NULL, NULL); /* Free up any saved virtual ports */ ocs_vport_del_all(ocs); break; } /* * POST_NODE_EVENT: post an event to a node object * * This transport function is used to post an event to a node object. It does * this by submitting a NOP mailbox command to defer execution to the * interrupt context (thereby enforcing the serialized execution of event posting * to the node state machine instances) * * A counting semaphore is used to make the call synchronous (we wait until * the callback increments the semaphore before returning (or times out) */ case OCS_XPORT_POST_NODE_EVENT: { ocs_node_t *node; ocs_sm_event_t evt; void *context; ocs_xport_post_node_event_t payload; ocs_t *ocs; ocs_hw_t *hw; /* Retrieve arguments */ va_start(argp, cmd); node = va_arg(argp, ocs_node_t*); evt = va_arg(argp, ocs_sm_event_t); context = va_arg(argp, void *); va_end(argp); ocs_assert(node, -1); ocs_assert(node->ocs, -1); ocs = node->ocs; hw = &ocs->hw; /* if node's state machine is disabled, don't bother continuing */ if (!node->sm.current_state) { ocs_log_test(ocs, "node %p state machine disabled\n", node); return -1; } /* Setup payload */ ocs_memset(&payload, 0, sizeof(payload)); ocs_sem_init(&payload.sem, 0, "xport_post_node_Event"); payload.node = node; payload.evt = evt; payload.context = context; if (ocs_hw_async_call(hw, ocs_xport_post_node_event_cb, &payload)) { ocs_log_test(ocs, "ocs_hw_async_call failed\n"); rc = -1; break; } /* Wait for completion */ if (ocs_sem_p(&payload.sem, OCS_SEM_FOREVER)) { ocs_log_test(ocs, "POST_NODE_EVENT: sem wait failed\n"); rc = -1; } break; } /* * Set wwnn for the port. This will be used instead of the default provided by FW. */ case OCS_XPORT_WWNN_SET: { uint64_t wwnn; /* Retrieve arguments */ va_start(argp, cmd); wwnn = va_arg(argp, uint64_t); va_end(argp); ocs_log_debug(ocs, " WWNN %016" PRIx64 "\n", wwnn); xport->req_wwnn = wwnn; break; } /* * Set wwpn for the port. This will be used instead of the default provided by FW. */ case OCS_XPORT_WWPN_SET: { uint64_t wwpn; /* Retrieve arguments */ va_start(argp, cmd); wwpn = va_arg(argp, uint64_t); va_end(argp); ocs_log_debug(ocs, " WWPN %016" PRIx64 "\n", wwpn); xport->req_wwpn = wwpn; break; } default: break; } return rc; } /** * @brief Return status on a link. * * @par Description * Returns status information about a link. * * @param xport Pointer to transport object. * @param cmd Command to execute. * @param result Pointer to result value. * * ocs_xport_status(ocs_xport_t *xport, OCS_XPORT_PORT_STATUS) * ocs_xport_status(ocs_xport_t *xport, OCS_XPORT_LINK_SPEED, ocs_xport_stats_t *result) * return link speed in MB/sec * ocs_xport_status(ocs_xport_t *xport, OCS_XPORT_IS_SUPPORTED_LINK_SPEED, ocs_xport_stats_t *result) * [in] *result is speed to check in MB/s * returns 1 if supported, 0 if not * ocs_xport_status(ocs_xport_t *xport, OCS_XPORT_LINK_STATISTICS, ocs_xport_stats_t *result) * return link/host port stats * ocs_xport_status(ocs_xport_t *xport, OCS_XPORT_LINK_STAT_RESET, ocs_xport_stats_t *result) * resets link/host stats * * * @return Returns 0 on success, or a negative error code value on failure. */ int32_t ocs_xport_status(ocs_xport_t *xport, ocs_xport_status_e cmd, ocs_xport_stats_t *result) { uint32_t rc = 0; ocs_t *ocs = NULL; ocs_xport_stats_t value; ocs_hw_rtn_e hw_rc; ocs_assert(xport, -1); ocs_assert(xport->ocs, -1); ocs = xport->ocs; switch (cmd) { case OCS_XPORT_CONFIG_PORT_STATUS: ocs_assert(result, -1); if (xport->configured_link_state == 0) { /* Initial state is offline. configured_link_state is */ /* set to online explicitly when port is brought online. */ xport->configured_link_state = OCS_XPORT_PORT_OFFLINE; } result->value = xport->configured_link_state; break; case OCS_XPORT_PORT_STATUS: ocs_assert(result, -1); /* Determine port status based on link speed. */ hw_rc = ocs_hw_get(&(ocs->hw), OCS_HW_LINK_SPEED, &value.value); if (hw_rc == OCS_HW_RTN_SUCCESS) { if (value.value == 0) { result->value = 0; } else { result->value = 1; } rc = 0; } else { rc = -1; } break; case OCS_XPORT_LINK_SPEED: { uint32_t speed; ocs_assert(result, -1); result->value = 0; rc = ocs_hw_get(&ocs->hw, OCS_HW_LINK_SPEED, &speed); if (rc == 0) { result->value = speed; } break; } case OCS_XPORT_IS_SUPPORTED_LINK_SPEED: { uint32_t speed; uint32_t link_module_type; ocs_assert(result, -1); speed = result->value; rc = ocs_hw_get(&ocs->hw, OCS_HW_LINK_MODULE_TYPE, &link_module_type); if (rc == 0) { switch(speed) { case 1000: rc = (link_module_type & OCS_HW_LINK_MODULE_TYPE_1GB) != 0; break; case 2000: rc = (link_module_type & OCS_HW_LINK_MODULE_TYPE_2GB) != 0; break; case 4000: rc = (link_module_type & OCS_HW_LINK_MODULE_TYPE_4GB) != 0; break; case 8000: rc = (link_module_type & OCS_HW_LINK_MODULE_TYPE_8GB) != 0; break; case 10000: rc = (link_module_type & OCS_HW_LINK_MODULE_TYPE_10GB) != 0; break; case 16000: rc = (link_module_type & OCS_HW_LINK_MODULE_TYPE_16GB) != 0; break; case 32000: rc = (link_module_type & OCS_HW_LINK_MODULE_TYPE_32GB) != 0; break; default: rc = 0; break; } } else { rc = 0; } break; } case OCS_XPORT_LINK_STATISTICS: ocs_device_lock(ocs); ocs_memcpy((void *)result, &ocs->xport->fc_xport_stats, sizeof(ocs_xport_stats_t)); ocs_device_unlock(ocs); break; case OCS_XPORT_LINK_STAT_RESET: { /* Create a semaphore to synchronize the stat reset process. */ ocs_sem_init(&(result->stats.semaphore), 0, "fc_stats_reset"); /* First reset the link stats */ if ((rc = ocs_hw_get_link_stats(&ocs->hw, 0, 1, 1, ocs_xport_link_stats_cb, result)) != 0) { ocs_log_err(ocs, "%s: Failed to reset link statistics\n", __func__); break; } /* Wait for semaphore to be signaled when the command completes */ /* TODO: Should there be a timeout on this? If so, how long? */ if (ocs_sem_p(&(result->stats.semaphore), OCS_SEM_FOREVER) != 0) { /* Undefined failure */ ocs_log_test(ocs, "ocs_sem_p failed\n"); rc = -ENXIO; break; } /* Next reset the host stats */ if ((rc = ocs_hw_get_host_stats(&ocs->hw, 1, ocs_xport_host_stats_cb, result)) != 0) { ocs_log_err(ocs, "%s: Failed to reset host statistics\n", __func__); break; } /* Wait for semaphore to be signaled when the command completes */ if (ocs_sem_p(&(result->stats.semaphore), OCS_SEM_FOREVER) != 0) { /* Undefined failure */ ocs_log_test(ocs, "ocs_sem_p failed\n"); rc = -ENXIO; break; } break; } case OCS_XPORT_IS_QUIESCED: ocs_device_lock(ocs); result->value = ocs_list_empty(&ocs->domain_list); ocs_device_unlock(ocs); break; default: rc = -1; break; } return rc; } static void ocs_xport_link_stats_cb(int32_t status, uint32_t num_counters, ocs_hw_link_stat_counts_t *counters, void *arg) { ocs_xport_stats_t *result = arg; result->stats.link_stats.link_failure_error_count = counters[OCS_HW_LINK_STAT_LINK_FAILURE_COUNT].counter; result->stats.link_stats.loss_of_sync_error_count = counters[OCS_HW_LINK_STAT_LOSS_OF_SYNC_COUNT].counter; result->stats.link_stats.primitive_sequence_error_count = counters[OCS_HW_LINK_STAT_PRIMITIVE_SEQ_COUNT].counter; result->stats.link_stats.invalid_transmission_word_error_count = counters[OCS_HW_LINK_STAT_INVALID_XMIT_WORD_COUNT].counter; result->stats.link_stats.crc_error_count = counters[OCS_HW_LINK_STAT_CRC_COUNT].counter; ocs_sem_v(&(result->stats.semaphore)); } static void ocs_xport_host_stats_cb(int32_t status, uint32_t num_counters, ocs_hw_host_stat_counts_t *counters, void *arg) { ocs_xport_stats_t *result = arg; result->stats.host_stats.transmit_kbyte_count = counters[OCS_HW_HOST_STAT_TX_KBYTE_COUNT].counter; result->stats.host_stats.receive_kbyte_count = counters[OCS_HW_HOST_STAT_RX_KBYTE_COUNT].counter; result->stats.host_stats.transmit_frame_count = counters[OCS_HW_HOST_STAT_TX_FRAME_COUNT].counter; result->stats.host_stats.receive_frame_count = counters[OCS_HW_HOST_STAT_RX_FRAME_COUNT].counter; ocs_sem_v(&(result->stats.semaphore)); } /** * @brief Free a transport object. * * @par Description * The transport object is freed. * * @param xport Pointer to transport object. * * @return None. */ void ocs_xport_free(ocs_xport_t *xport) { ocs_t *ocs; uint32_t i; if (xport) { ocs = xport->ocs; ocs_io_pool_free(xport->io_pool); ocs_node_free_pool(ocs); if(mtx_initialized(&xport->io_pending_lock.lock)) ocs_lock_free(&xport->io_pending_lock); for (i = 0; i < SLI4_MAX_FCFI; i++) { ocs_lock_free(&xport->fcfi[i].pend_frames_lock); } ocs_xport_rq_threads_teardown(xport); ocs_free(ocs, xport, sizeof(*xport)); } } diff --git a/sys/dev/ocs_fc/sli4.h b/sys/dev/ocs_fc/sli4.h index 4d8686ce8841..e9271df1530f 100644 --- a/sys/dev/ocs_fc/sli4.h +++ b/sys/dev/ocs_fc/sli4.h @@ -1,5676 +1,5676 @@ /*- * Copyright (c) 2017 Broadcom. All rights reserved. * The term "Broadcom" refers to Broadcom Limited and/or its subsidiaries. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /** * @file * Define common SLI-4 structures and function prototypes. */ #ifndef _SLI4_H #define _SLI4_H #include "ocs_os.h" #define SLI_PAGE_SIZE (4096) #define SLI_SUB_PAGE_MASK (SLI_PAGE_SIZE - 1) #define SLI_PAGE_SHIFT 12 #define SLI_ROUND_PAGE(b) (((b) + SLI_SUB_PAGE_MASK) & ~SLI_SUB_PAGE_MASK) #define SLI4_BMBX_TIMEOUT_MSEC 30000 #define SLI4_FW_READY_TIMEOUT_MSEC 30000 static inline uint32_t sli_page_count(size_t bytes, uint32_t page_size) { uint32_t mask = page_size - 1; uint32_t shift = 0; switch (page_size) { case 4096: shift = 12; break; case 8192: shift = 13; break; case 16384: shift = 14; break; case 32768: shift = 15; break; case 65536: shift = 16; break; default: return 0; } return (bytes + mask) >> shift; } /************************************************************************* * Common PCI configuration space register definitions */ #define SLI4_PCI_CLASS_REVISION 0x0008 /** register offset */ #define SLI4_PCI_REV_ID_SHIFT 0 #define SLI4_PCI_REV_ID_MASK 0xff #define SLI4_PCI_CLASS_SHIFT 8 #define SLI4_PCI_CLASS_MASK 0xfff #define SLI4_PCI_SOFT_RESET_CSR 0x005c /** register offset */ #define SLI4_PCI_SOFT_RESET_MASK 0x0080 /************************************************************************* * Common SLI-4 register offsets and field definitions */ /** * @brief SLI_INTF - SLI Interface Definition Register */ #define SLI4_INTF_REG 0x0058 /** register offset */ #define SLI4_INTF_VALID_SHIFT 29 #define SLI4_INTF_VALID_MASK 0x7 #define SLI4_INTF_VALID 0x6 #define SLI4_INTF_IF_TYPE_SHIFT 12 #define SLI4_INTF_IF_TYPE_MASK 0xf #define SLI4_INTF_SLI_FAMILY_SHIFT 8 #define SLI4_INTF_SLI_FAMILY_MASK 0xf #define SLI4_INTF_SLI_REVISION_SHIFT 4 #define SLI4_INTF_SLI_REVISION_MASK 0xf #define SLI4_FAMILY_CHECK_ASIC_TYPE 0xf #define SLI4_IF_TYPE_BE3_SKH_PF 0 #define SLI4_IF_TYPE_BE3_SKH_VF 1 #define SLI4_IF_TYPE_LANCER_FC_ETH 2 #define SLI4_IF_TYPE_LANCER_RDMA 3 #define SLI4_IF_TYPE_LANCER_G7 6 #define SLI4_MAX_IF_TYPES 7 /** * @brief ASIC_ID - SLI ASIC Type and Revision Register */ #define SLI4_ASIC_ID_REG 0x009c /* register offset */ #define SLI4_ASIC_REV_SHIFT 0 #define SLI4_ASIC_REV_MASK 0xf #define SLI4_ASIC_VER_SHIFT 4 #define SLI4_ASIC_VER_MASK 0xf #define SLI4_ASIC_GEN_SHIFT 8 #define SLI4_ASIC_GEN_MASK 0xff #define SLI4_ASIC_GEN_BE2 0x00 #define SLI4_ASIC_GEN_BE3 0x03 #define SLI4_ASIC_GEN_SKYHAWK 0x04 #define SLI4_ASIC_GEN_CORSAIR 0x05 #define SLI4_ASIC_GEN_LANCER 0x0b /** * @brief BMBX - Bootstrap Mailbox Register */ #define SLI4_BMBX_REG 0x0160 /* register offset */ #define SLI4_BMBX_MASK_HI 0x3 #define SLI4_BMBX_MASK_LO 0xf #define SLI4_BMBX_RDY BIT(0) #define SLI4_BMBX_HI BIT(1) #define SLI4_BMBX_WRITE_HI(r) ((ocs_addr32_hi(r) & ~SLI4_BMBX_MASK_HI) | \ SLI4_BMBX_HI) #define SLI4_BMBX_WRITE_LO(r) (((ocs_addr32_hi(r) & SLI4_BMBX_MASK_HI) << 30) | \ (((r) & ~SLI4_BMBX_MASK_LO) >> 2)) #define SLI4_BMBX_SIZE 256 /** * @brief EQCQ_DOORBELL - EQ and CQ Doorbell Register */ #define SLI4_EQCQ_DOORBELL_REG 0x120 #define SLI4_EQCQ_DOORBELL_CI BIT(9) #define SLI4_EQCQ_DOORBELL_QT BIT(10) #define SLI4_EQCQ_DOORBELL_ARM BIT(29) #define SLI4_EQCQ_DOORBELL_SE BIT(31) #define SLI4_EQCQ_NUM_SHIFT 16 #define SLI4_EQCQ_NUM_MASK 0x01ff #define SLI4_EQCQ_EQ_ID_MASK 0x3fff #define SLI4_EQCQ_CQ_ID_MASK 0x7fff #define SLI4_EQCQ_EQ_ID_MASK_LO 0x01ff #define SLI4_EQCQ_CQ_ID_MASK_LO 0x03ff #define SLI4_EQCQ_EQCQ_ID_MASK_HI 0xf800 #define SLI4_IF6_EQ_DOORBELL_REG 0x120 #define SLI4_IF6_CQ_DOORBELL_REG 0xC0 /** * @brief SLIPORT_CONTROL - SLI Port Control Register */ #define SLI4_SLIPORT_CONTROL_REG 0x0408 #define SLI4_SLIPORT_CONTROL_END BIT(30) #define SLI4_SLIPORT_CONTROL_LITTLE_ENDIAN (0) #define SLI4_SLIPORT_CONTROL_BIG_ENDIAN BIT(30) #define SLI4_SLIPORT_CONTROL_IP BIT(27) #define SLI4_SLIPORT_CONTROL_IDIS BIT(22) #define SLI4_SLIPORT_CONTROL_FDD BIT(31) /** * @brief SLI4_SLIPORT_ERROR1 - SLI Port Error Register */ #define SLI4_SLIPORT_ERROR1 0x040c /** * @brief SLI4_SLIPORT_ERROR2 - SLI Port Error Register */ #define SLI4_SLIPORT_ERROR2 0x0410 /** * @brief User error registers */ #define SLI4_UERR_STATUS_LOW_REG 0xA0 #define SLI4_UERR_STATUS_HIGH_REG 0xA4 #define SLI4_UERR_MASK_LOW_REG 0xA8 #define SLI4_UERR_MASK_HIGH_REG 0xAC /** * @brief Registers for generating software UE (BE3) */ #define SLI4_SW_UE_CSR1 0x138 #define SLI4_SW_UE_CSR2 0x1FFFC /** * @brief Registers for generating software UE (Skyhawk) */ #define SLI4_SW_UE_REG 0x5C /* register offset */ static inline uint32_t sli_eq_doorbell(uint16_t n_popped, uint16_t id, uint8_t arm) { uint32_t reg = 0; #if BYTE_ORDER == LITTLE_ENDIAN struct { uint32_t eq_id_lo:9, ci:1, /* clear interrupt */ qt:1, /* queue type */ eq_id_hi:5, number_popped:13, arm:1, :1, se:1; } * eq_doorbell = (void *)® #else #error big endian version not defined #endif eq_doorbell->eq_id_lo = id & SLI4_EQCQ_EQ_ID_MASK_LO; eq_doorbell->qt = 1; /* EQ is type 1 (section 2.2.3.3 SLI Arch) */ eq_doorbell->eq_id_hi = (id >> 9) & 0x1f; eq_doorbell->number_popped = n_popped; eq_doorbell->arm = arm; eq_doorbell->ci = TRUE; return reg; } static inline uint32_t sli_cq_doorbell(uint16_t n_popped, uint16_t id, uint8_t arm) { uint32_t reg = 0; #if BYTE_ORDER == LITTLE_ENDIAN struct { uint32_t cq_id_lo:10, qt:1, /* queue type */ cq_id_hi:5, number_popped:13, arm:1, :1, se:1; } * cq_doorbell = (void *)® #else #error big endian version not defined #endif cq_doorbell->cq_id_lo = id & SLI4_EQCQ_CQ_ID_MASK_LO; cq_doorbell->qt = 0; /* CQ is type 0 (section 2.2.3.3 SLI Arch) */ cq_doorbell->cq_id_hi = (id >> 10) & 0x1f; cq_doorbell->number_popped = n_popped; cq_doorbell->arm = arm; return reg; } static inline uint32_t sli_iftype6_eq_doorbell(uint16_t n_popped, uint16_t id, uint8_t arm) { uint32_t reg = 0; #if BYTE_ORDER == LITTLE_ENDIAN struct { uint32_t eq_id:12, :4, /* clear interrupt */ number_popped:13, arm:1, :1, io:1; } * eq_doorbell = (void *)® #else #error big endian version not defined #endif eq_doorbell->eq_id = id; eq_doorbell->number_popped = n_popped; eq_doorbell->arm = arm; return reg; } static inline uint32_t sli_iftype6_cq_doorbell(uint16_t n_popped, uint16_t id, uint8_t arm) { uint32_t reg = 0; #if BYTE_ORDER == LITTLE_ENDIAN struct { uint32_t cq_id:16, number_popped:13, arm:1, :1, se:1; } * cq_doorbell = (void *)® #else #error big endian version not defined #endif cq_doorbell->cq_id = id; cq_doorbell->number_popped = n_popped; cq_doorbell->arm = arm; return reg; } /** * @brief MQ_DOORBELL - MQ Doorbell Register */ #define SLI4_MQ_DOORBELL_REG 0x0140 /* register offset */ #define SLI4_IF6_MQ_DOORBELL_REG 0x0160 /* register offset if_type = 6 */ #define SLI4_MQ_DOORBELL_NUM_SHIFT 16 #define SLI4_MQ_DOORBELL_NUM_MASK 0x3fff #define SLI4_MQ_DOORBELL_ID_MASK 0xffff #define SLI4_MQ_DOORBELL(n, i) ((((n) & SLI4_MQ_DOORBELL_NUM_MASK) << SLI4_MQ_DOORBELL_NUM_SHIFT) | \ ((i) & SLI4_MQ_DOORBELL_ID_MASK)) /** * @brief RQ_DOORBELL - RQ Doorbell Register */ #define SLI4_RQ_DOORBELL_REG 0x0a0 /* register offset */ #define SLI4_IF6_RQ_DOORBELL_REG 0x0080 /* register offset of if_type = 6 */ #define SLI4_RQ_DOORBELL_NUM_SHIFT 16 #define SLI4_RQ_DOORBELL_NUM_MASK 0x3fff #define SLI4_RQ_DOORBELL_ID_MASK 0xffff #define SLI4_RQ_DOORBELL(n, i) ((((n) & SLI4_RQ_DOORBELL_NUM_MASK) << SLI4_RQ_DOORBELL_NUM_SHIFT) | \ ((i) & SLI4_RQ_DOORBELL_ID_MASK)) /** * @brief WQ_DOORBELL - WQ Doorbell Register */ #define SLI4_IO_WQ_DOORBELL_REG 0x040 /* register offset */ #define SLI4_IF6_WQ_DOORBELL_REG 0x040 /* register offset for if_type = 6 */ #define SLI4_WQ_DOORBELL_IDX_SHIFT 16 #define SLI4_WQ_DOORBELL_IDX_MASK 0x00ff #define SLI4_WQ_DOORBELL_NUM_SHIFT 24 #define SLI4_WQ_DOORBELL_NUM_MASK 0x00ff #define SLI4_WQ_DOORBELL_ID_MASK 0xffff #define SLI4_WQ_DOORBELL(n, x, i) ((((n) & SLI4_WQ_DOORBELL_NUM_MASK) << SLI4_WQ_DOORBELL_NUM_SHIFT) | \ (((x) & SLI4_WQ_DOORBELL_IDX_MASK) << SLI4_WQ_DOORBELL_IDX_SHIFT) | \ ((i) & SLI4_WQ_DOORBELL_ID_MASK)) /** * @brief SLIPORT_SEMAPHORE - SLI Port Host and Port Status Register */ #define SLI4_PORT_SEMAPHORE_REG_0 0x00ac /** register offset Interface Type 0 + 1 */ #define SLI4_PORT_SEMAPHORE_REG_1 0x0180 /** register offset Interface Type 0 + 1 */ #define SLI4_PORT_SEMAPHORE_REG_236 0x0400 /** register offset Interface Type 2 + 3 + 6*/ #define SLI4_PORT_SEMAPHORE_PORT_MASK 0x0000ffff #define SLI4_PORT_SEMAPHORE_PORT(r) ((r) & SLI4_PORT_SEMAPHORE_PORT_MASK) #define SLI4_PORT_SEMAPHORE_HOST_MASK 0x00ff0000 #define SLI4_PORT_SEMAPHORE_HOST_SHIFT 16 #define SLI4_PORT_SEMAPHORE_HOST(r) (((r) & SLI4_PORT_SEMAPHORE_HOST_MASK) >> \ SLI4_PORT_SEMAPHORE_HOST_SHIFT) #define SLI4_PORT_SEMAPHORE_SCR2 BIT(26) /** scratch area 2 */ #define SLI4_PORT_SEMAPHORE_SCR1 BIT(27) /** scratch area 1 */ #define SLI4_PORT_SEMAPHORE_IPC BIT(28) /** IP conflict */ #define SLI4_PORT_SEMAPHORE_NIP BIT(29) /** no IP address */ #define SLI4_PORT_SEMAPHORE_SFI BIT(30) /** secondary firmware image used */ #define SLI4_PORT_SEMAPHORE_PERR BIT(31) /** POST fatal error */ #define SLI4_PORT_SEMAPHORE_STATUS_POST_READY 0xc000 #define SLI4_PORT_SEMAPHORE_STATUS_UNRECOV_ERR 0xf000 #define SLI4_PORT_SEMAPHORE_STATUS_ERR_MASK 0xf000 #define SLI4_PORT_SEMAPHORE_IN_ERR(r) (SLI4_PORT_SEMAPHORE_STATUS_UNRECOV_ERR == ((r) & \ SLI4_PORT_SEMAPHORE_STATUS_ERR_MASK)) /** * @brief SLIPORT_STATUS - SLI Port Status Register */ #define SLI4_PORT_STATUS_REG_236 0x0404 /** register offset Interface Type 2 + 3 + 6*/ #define SLI4_PORT_STATUS_FDP BIT(21) /** function specific dump present */ #define SLI4_PORT_STATUS_RDY BIT(23) /** ready */ #define SLI4_PORT_STATUS_RN BIT(24) /** reset needed */ #define SLI4_PORT_STATUS_DIP BIT(25) /** dump present */ #define SLI4_PORT_STATUS_OTI BIT(29) /** over temp indicator */ #define SLI4_PORT_STATUS_END BIT(30) /** endianness */ #define SLI4_PORT_STATUS_ERR BIT(31) /** SLI port error */ #define SLI4_PORT_STATUS_READY(r) ((r) & SLI4_PORT_STATUS_RDY) #define SLI4_PORT_STATUS_ERROR(r) ((r) & SLI4_PORT_STATUS_ERR) #define SLI4_PORT_STATUS_DUMP_PRESENT(r) ((r) & SLI4_PORT_STATUS_DIP) #define SLI4_PORT_STATUS_FDP_PRESENT(r) ((r) & SLI4_PORT_STATUS_FDP) #define SLI4_PHSDEV_CONTROL_REG_236 0x0414 /** register offset Interface Type 2 + 3 + 6*/ #define SLI4_PHYDEV_CONTROL_DRST BIT(0) /** physical device reset */ #define SLI4_PHYDEV_CONTROL_FRST BIT(1) /** firmware reset */ #define SLI4_PHYDEV_CONTROL_DD BIT(2) /** diagnostic dump */ #define SLI4_PHYDEV_CONTROL_FRL_MASK 0x000000f0 #define SLI4_PHYDEV_CONTROL_FRL_SHIFT 4 #define SLI4_PHYDEV_CONTROL_FRL(r) (((r) & SLI4_PHYDEV_CONTROL_FRL_MASK) >> \ SLI4_PHYDEV_CONTROL_FRL_SHIFT_SHIFT) /************************************************************************* * SLI-4 mailbox command formats and definitions */ typedef struct sli4_mbox_command_header_s { #if BYTE_ORDER == LITTLE_ENDIAN uint32_t :8, command:8, status:16; /** Port writes to indicate success / fail */ #else #error big endian version not defined #endif } sli4_mbox_command_header_t; #define SLI4_MBOX_COMMAND_CONFIG_LINK 0x07 #define SLI4_MBOX_COMMAND_DUMP 0x17 #define SLI4_MBOX_COMMAND_DOWN_LINK 0x06 #define SLI4_MBOX_COMMAND_INIT_LINK 0x05 #define SLI4_MBOX_COMMAND_INIT_VFI 0xa3 #define SLI4_MBOX_COMMAND_INIT_VPI 0xa4 #define SLI4_MBOX_COMMAND_POST_XRI 0xa7 #define SLI4_MBOX_COMMAND_RELEASE_XRI 0xac #define SLI4_MBOX_COMMAND_READ_CONFIG 0x0b #define SLI4_MBOX_COMMAND_READ_STATUS 0x0e #define SLI4_MBOX_COMMAND_READ_NVPARMS 0x02 #define SLI4_MBOX_COMMAND_READ_REV 0x11 #define SLI4_MBOX_COMMAND_READ_LNK_STAT 0x12 #define SLI4_MBOX_COMMAND_READ_SPARM64 0x8d #define SLI4_MBOX_COMMAND_READ_TOPOLOGY 0x95 #define SLI4_MBOX_COMMAND_REG_FCFI 0xa0 #define SLI4_MBOX_COMMAND_REG_FCFI_MRQ 0xaf #define SLI4_MBOX_COMMAND_REG_RPI 0x93 #define SLI4_MBOX_COMMAND_REG_RX_RQ 0xa6 #define SLI4_MBOX_COMMAND_REG_VFI 0x9f #define SLI4_MBOX_COMMAND_REG_VPI 0x96 #define SLI4_MBOX_COMMAND_REQUEST_FEATURES 0x9d #define SLI4_MBOX_COMMAND_SLI_CONFIG 0x9b #define SLI4_MBOX_COMMAND_UNREG_FCFI 0xa2 #define SLI4_MBOX_COMMAND_UNREG_RPI 0x14 #define SLI4_MBOX_COMMAND_UNREG_VFI 0xa1 #define SLI4_MBOX_COMMAND_UNREG_VPI 0x97 #define SLI4_MBOX_COMMAND_WRITE_NVPARMS 0x03 #define SLI4_MBOX_COMMAND_CONFIG_AUTO_XFER_RDY 0xAD #define SLI4_MBOX_COMMAND_CONFIG_AUTO_XFER_RDY_HP 0xAE #define SLI4_MBOX_STATUS_SUCCESS 0x0000 #define SLI4_MBOX_STATUS_FAILURE 0x0001 #define SLI4_MBOX_STATUS_RPI_NOT_REG 0x1400 /** * @brief Buffer Descriptor Entry (BDE) */ typedef struct sli4_bde_s { #if BYTE_ORDER == LITTLE_ENDIAN uint32_t buffer_length:24, bde_type:8; union { struct { uint32_t buffer_address_low; uint32_t buffer_address_high; } data; struct { uint32_t offset; uint32_t rsvd2; } imm; struct { uint32_t sgl_segment_address_low; uint32_t sgl_segment_address_high; } blp; } u; #else #error big endian version not defined #endif } sli4_bde_t; #define SLI4_BDE_TYPE_BDE_64 0x00 /** Generic 64-bit data */ #define SLI4_BDE_TYPE_BDE_IMM 0x01 /** Immediate data */ #define SLI4_BDE_TYPE_BLP 0x40 /** Buffer List Pointer */ /** * @brief Scatter-Gather Entry (SGE) */ typedef struct sli4_sge_s { #if BYTE_ORDER == LITTLE_ENDIAN uint32_t buffer_address_high; uint32_t buffer_address_low; uint32_t data_offset:27, sge_type:4, last:1; uint32_t buffer_length; #else #error big endian version not defined #endif } sli4_sge_t; /** * @brief T10 DIF Scatter-Gather Entry (SGE) */ typedef struct sli4_dif_sge_s { #if BYTE_ORDER == LITTLE_ENDIAN uint32_t buffer_address_high; uint32_t buffer_address_low; uint32_t :27, sge_type:4, last:1; uint32_t :32; #else #error big endian version not defined #endif } sli4_dif_sge_t; /** * @brief T10 DIF Seed Scatter-Gather Entry (SGE) */ typedef struct sli4_diseed_sge_s { #if BYTE_ORDER == LITTLE_ENDIAN uint32_t ref_tag_cmp; uint32_t ref_tag_repl; uint32_t app_tag_repl:16, :2, hs:1, ws:1, ic:1, ics:1, atrt:1, at:1, fwd_app_tag:1, repl_app_tag:1, head_insert:1, sge_type:4, last:1; uint32_t app_tag_cmp:16, dif_blk_size:3, auto_incr_ref_tag:1, check_app_tag:1, check_ref_tag:1, check_crc:1, new_ref_tag:1, dif_op_rx:4, dif_op_tx:4; #else #error big endian version not defined #endif } sli4_diseed_sge_t; /** * @brief List Segment Pointer Scatter-Gather Entry (SGE) */ typedef struct sli4_lsp_sge_s { #if BYTE_ORDER == LITTLE_ENDIAN uint32_t buffer_address_high; uint32_t buffer_address_low; uint32_t :27, sge_type:4, last:1; uint32_t segment_length:24, :8; #else #error big endian version not defined #endif } sli4_lsp_sge_t; #define SLI4_SGE_MAX_RESERVED 3 #define SLI4_SGE_DIF_OP_IN_NODIF_OUT_CRC 0x00 #define SLI4_SGE_DIF_OP_IN_CRC_OUT_NODIF 0x01 #define SLI4_SGE_DIF_OP_IN_NODIF_OUT_CHKSUM 0x02 #define SLI4_SGE_DIF_OP_IN_CHKSUM_OUT_NODIF 0x03 #define SLI4_SGE_DIF_OP_IN_CRC_OUT_CRC 0x04 #define SLI4_SGE_DIF_OP_IN_CHKSUM_OUT_CHKSUM 0x05 #define SLI4_SGE_DIF_OP_IN_CRC_OUT_CHKSUM 0x06 #define SLI4_SGE_DIF_OP_IN_CHKSUM_OUT_CRC 0x07 #define SLI4_SGE_DIF_OP_IN_RAW_OUT_RAW 0x08 #define SLI4_SGE_TYPE_DATA 0x00 #define SLI4_SGE_TYPE_CHAIN 0x03 /** Skyhawk only */ #define SLI4_SGE_TYPE_DIF 0x04 /** Data Integrity Field */ #define SLI4_SGE_TYPE_LSP 0x05 /** List Segment Pointer */ #define SLI4_SGE_TYPE_PEDIF 0x06 /** Post Encryption Engine DIF */ #define SLI4_SGE_TYPE_PESEED 0x07 /** Post Encryption Engine DIF Seed */ #define SLI4_SGE_TYPE_DISEED 0x08 /** DIF Seed */ #define SLI4_SGE_TYPE_ENC 0x09 /** Encryption */ #define SLI4_SGE_TYPE_ATM 0x0a /** DIF Application Tag Mask */ #define SLI4_SGE_TYPE_SKIP 0x0c /** SKIP */ #define OCS_MAX_SGE_SIZE 0x80000000 /* Maximum data allowed in a SGE */ /** * @brief CONFIG_LINK */ typedef struct sli4_cmd_config_link_s { sli4_mbox_command_header_t hdr; #if BYTE_ORDER == LITTLE_ENDIAN uint32_t maxbbc:8, /** Max buffer-to-buffer credit */ :24; uint32_t alpa:8, n_port_id:16, :8; uint32_t rsvd3; uint32_t e_d_tov; uint32_t lp_tov; uint32_t r_a_tov; uint32_t r_t_tov; uint32_t al_tov; uint32_t rsvd9; uint32_t :8, bbscn:4, /** buffer-to-buffer state change number */ cscn:1, /** configure BBSCN */ :19; #else #error big endian version not defined #endif } sli4_cmd_config_link_t; /** * @brief DUMP Type 4 */ #define SLI4_WKI_TAG_SAT_TEM 0x1040 typedef struct sli4_cmd_dump4_s { sli4_mbox_command_header_t hdr; #if BYTE_ORDER == LITTLE_ENDIAN uint32_t type:4, :28; uint32_t wki_selection:16, :16; uint32_t resv; uint32_t returned_byte_cnt; uint32_t resp_data[59]; #else #error big endian version not defined #endif } sli4_cmd_dump4_t; /** * @brief FW_INITIALIZE - initialize a SLI port * * @note This command uses a different format than all others. */ extern const uint8_t sli4_fw_initialize[8]; /** * @brief FW_DEINITIALIZE - deinitialize a SLI port * * @note This command uses a different format than all others. */ extern const uint8_t sli4_fw_deinitialize[8]; /** * @brief INIT_LINK - initialize the link for a FC/FCoE port */ typedef struct sli4_cmd_init_link_flags_s { uint32_t loopback:1, topology:2, #define FC_TOPOLOGY_FCAL 0 #define FC_TOPOLOGY_P2P 1 :3, unfair:1, skip_lirp_lilp:1, gen_loop_validity_check:1, skip_lisa:1, enable_topology_failover:1, fixed_speed:1, :3, select_hightest_al_pa:1, :16; /* pad to 32 bits */ } sli4_cmd_init_link_flags_t; #define SLI4_INIT_LINK_F_LOOP_BACK BIT(0) #define SLI4_INIT_LINK_F_UNFAIR BIT(6) #define SLI4_INIT_LINK_F_NO_LIRP BIT(7) #define SLI4_INIT_LINK_F_LOOP_VALID_CHK BIT(8) #define SLI4_INIT_LINK_F_NO_LISA BIT(9) #define SLI4_INIT_LINK_F_FAIL_OVER BIT(10) #define SLI4_INIT_LINK_F_NO_AUTOSPEED BIT(11) #define SLI4_INIT_LINK_F_PICK_HI_ALPA BIT(15) #define SLI4_INIT_LINK_F_P2P_ONLY 1 #define SLI4_INIT_LINK_F_FCAL_ONLY 2 #define SLI4_INIT_LINK_F_FCAL_FAIL_OVER 0 #define SLI4_INIT_LINK_F_P2P_FAIL_OVER 1 typedef struct sli4_cmd_init_link_s { sli4_mbox_command_header_t hdr; #if BYTE_ORDER == LITTLE_ENDIAN uint32_t selective_reset_al_pa:8, :24; sli4_cmd_init_link_flags_t link_flags; uint32_t link_speed_selection_code; #define FC_LINK_SPEED_1G 1 #define FC_LINK_SPEED_2G 2 #define FC_LINK_SPEED_AUTO_1_2 3 #define FC_LINK_SPEED_4G 4 #define FC_LINK_SPEED_AUTO_4_1 5 #define FC_LINK_SPEED_AUTO_4_2 6 #define FC_LINK_SPEED_AUTO_4_2_1 7 #define FC_LINK_SPEED_8G 8 #define FC_LINK_SPEED_AUTO_8_1 9 #define FC_LINK_SPEED_AUTO_8_2 10 #define FC_LINK_SPEED_AUTO_8_2_1 11 #define FC_LINK_SPEED_AUTO_8_4 12 #define FC_LINK_SPEED_AUTO_8_4_1 13 #define FC_LINK_SPEED_AUTO_8_4_2 14 #define FC_LINK_SPEED_10G 16 #define FC_LINK_SPEED_16G 17 #define FC_LINK_SPEED_AUTO_16_8_4 18 #define FC_LINK_SPEED_AUTO_16_8 19 #define FC_LINK_SPEED_32G 20 #define FC_LINK_SPEED_AUTO_32_16_8 21 #define FC_LINK_SPEED_AUTO_32_16 22 #else #error big endian version not defined #endif } sli4_cmd_init_link_t; /** * @brief INIT_VFI - initialize the VFI resource */ typedef struct sli4_cmd_init_vfi_s { sli4_mbox_command_header_t hdr; #if BYTE_ORDER == LITTLE_ENDIAN uint32_t vfi:16, :12, vp:1, vf:1, vt:1, vr:1; uint32_t fcfi:16, vpi:16; uint32_t vf_id:13, pri:3, :16; uint32_t :24, hop_count:8; #else #error big endian version not defined #endif } sli4_cmd_init_vfi_t; /** * @brief INIT_VPI - initialize the VPI resource */ typedef struct sli4_cmd_init_vpi_s { sli4_mbox_command_header_t hdr; #if BYTE_ORDER == LITTLE_ENDIAN uint32_t vpi:16, vfi:16; #else #error big endian version not defined #endif } sli4_cmd_init_vpi_t; /** * @brief POST_XRI - post XRI resources to the SLI Port */ typedef struct sli4_cmd_post_xri_s { sli4_mbox_command_header_t hdr; #if BYTE_ORDER == LITTLE_ENDIAN uint32_t xri_base:16, xri_count:12, enx:1, dl:1, di:1, val:1; #else #error big endian version not defined #endif } sli4_cmd_post_xri_t; /** * @brief RELEASE_XRI - Release XRI resources from the SLI Port */ typedef struct sli4_cmd_release_xri_s { sli4_mbox_command_header_t hdr; #if BYTE_ORDER == LITTLE_ENDIAN uint32_t released_xri_count:5, :11, xri_count:5, :11; struct { uint32_t xri_tag0:16, xri_tag1:16; } xri_tbl[62]; #else #error big endian version not defined #endif } sli4_cmd_release_xri_t; /** * @brief READ_CONFIG - read SLI port configuration parameters */ typedef struct sli4_cmd_read_config_s { sli4_mbox_command_header_t hdr; } sli4_cmd_read_config_t; typedef struct sli4_res_read_config_s { sli4_mbox_command_header_t hdr; #if BYTE_ORDER == LITTLE_ENDIAN uint32_t :31, ext:1; /** Resource Extents */ uint32_t :20, pt:2, tf:1, ptv:1, topology:8; uint32_t rsvd3; uint32_t e_d_tov:16, :16; uint32_t rsvd5; uint32_t r_a_tov:16, :16; uint32_t rsvd7; uint32_t rsvd8; uint32_t lmt:16, /** Link Module Type */ :16; uint32_t rsvd10; uint32_t rsvd11; uint32_t xri_base:16, xri_count:16; uint32_t rpi_base:16, rpi_count:16; uint32_t vpi_base:16, vpi_count:16; uint32_t vfi_base:16, vfi_count:16; uint32_t :16, fcfi_count:16; uint32_t rq_count:16, eq_count:16; uint32_t wq_count:16, cq_count:16; uint32_t pad[45]; #else #error big endian version not defined #endif } sli4_res_read_config_t; #define SLI4_READ_CFG_TOPO_FCOE 0x0 /** FCoE topology */ #define SLI4_READ_CFG_TOPO_FC 0x1 /** FC topology unknown */ #define SLI4_READ_CFG_TOPO_FC_DA 0x2 /** FC Direct Attach (non FC-AL) topology */ #define SLI4_READ_CFG_TOPO_FC_AL 0x3 /** FC-AL topology */ /** * @brief READ_NVPARMS - read SLI port configuration parameters */ typedef struct sli4_cmd_read_nvparms_s { sli4_mbox_command_header_t hdr; #if BYTE_ORDER == LITTLE_ENDIAN uint32_t rsvd1; uint32_t rsvd2; uint32_t rsvd3; uint32_t rsvd4; uint8_t wwpn[8]; uint8_t wwnn[8]; uint32_t hard_alpa:8, preferred_d_id:24; #else #error big endian version not defined #endif } sli4_cmd_read_nvparms_t; /** * @brief WRITE_NVPARMS - write SLI port configuration parameters */ typedef struct sli4_cmd_write_nvparms_s { sli4_mbox_command_header_t hdr; #if BYTE_ORDER == LITTLE_ENDIAN uint32_t rsvd1; uint32_t rsvd2; uint32_t rsvd3; uint32_t rsvd4; uint8_t wwpn[8]; uint8_t wwnn[8]; uint32_t hard_alpa:8, preferred_d_id:24; #else #error big endian version not defined #endif } sli4_cmd_write_nvparms_t; /** * @brief READ_REV - read the Port revision levels */ typedef struct sli4_cmd_read_rev_s { sli4_mbox_command_header_t hdr; #if BYTE_ORDER == LITTLE_ENDIAN uint32_t :16, sli_level:4, fcoem:1, ceev:2, :6, vpd:1, :2; uint32_t first_hw_revision; uint32_t second_hw_revision; uint32_t rsvd4; uint32_t third_hw_revision; uint32_t fc_ph_low:8, fc_ph_high:8, feature_level_low:8, feature_level_high:8; uint32_t rsvd7; uint32_t first_fw_id; char first_fw_name[16]; uint32_t second_fw_id; char second_fw_name[16]; uint32_t rsvd18[30]; uint32_t available_length:24, :8; uint32_t physical_address_low; uint32_t physical_address_high; uint32_t returned_vpd_length; uint32_t actual_vpd_length; #else #error big endian version not defined #endif } sli4_cmd_read_rev_t; /** * @brief READ_SPARM64 - read the Port service parameters */ typedef struct sli4_cmd_read_sparm64_s { sli4_mbox_command_header_t hdr; #if BYTE_ORDER == LITTLE_ENDIAN uint32_t rsvd1; uint32_t rsvd2; sli4_bde_t bde_64; uint32_t vpi:16, :16; uint32_t port_name_start:16, port_name_length:16; uint32_t node_name_start:16, node_name_length:16; #else #error big endian version not defined #endif } sli4_cmd_read_sparm64_t; #define SLI4_READ_SPARM64_VPI_DEFAULT 0 #define SLI4_READ_SPARM64_VPI_SPECIAL UINT16_MAX #define SLI4_READ_SPARM64_WWPN_OFFSET (4 * sizeof(uint32_t)) #define SLI4_READ_SPARM64_WWNN_OFFSET (SLI4_READ_SPARM64_WWPN_OFFSET + sizeof(uint64_t)) typedef struct sli4_port_state_s { #if BYTE_ORDER == LITTLE_ENDIAN uint32_t nx_port_recv_state:2, nx_port_trans_state:2, nx_port_state_machine:4, link_speed:8, :14, tf:1, lu:1; #else #error big endian version not defined #endif } sli4_port_state_t; /** * @brief READ_TOPOLOGY - read the link event information */ typedef struct sli4_cmd_read_topology_s { sli4_mbox_command_header_t hdr; #if BYTE_ORDER == LITTLE_ENDIAN uint32_t event_tag; uint32_t attention_type:8, il:1, pb_recvd:1, :22; uint32_t topology:8, lip_type:8, lip_al_ps:8, al_pa_granted:8; sli4_bde_t bde_loop_map; sli4_port_state_t link_down; sli4_port_state_t link_current; uint32_t max_bbc:8, init_bbc:8, bbscn:4, cbbscn:4, :8; uint32_t r_t_tov:9, :3, al_tov:4, lp_tov:16; uint32_t acquired_al_pa:8, :7, pb:1, specified_al_pa:16; uint32_t initial_n_port_id:24, :8; #else #error big endian version not defined #endif } sli4_cmd_read_topology_t; #define SLI4_MIN_LOOP_MAP_BYTES 128 #define SLI4_READ_TOPOLOGY_LINK_UP 0x1 #define SLI4_READ_TOPOLOGY_LINK_DOWN 0x2 #define SLI4_READ_TOPOLOGY_LINK_NO_ALPA 0x3 #define SLI4_READ_TOPOLOGY_UNKNOWN 0x0 #define SLI4_READ_TOPOLOGY_NPORT 0x1 #define SLI4_READ_TOPOLOGY_FC_AL 0x2 #define SLI4_READ_TOPOLOGY_SPEED_NONE 0x00 #define SLI4_READ_TOPOLOGY_SPEED_1G 0x04 #define SLI4_READ_TOPOLOGY_SPEED_2G 0x08 #define SLI4_READ_TOPOLOGY_SPEED_4G 0x10 #define SLI4_READ_TOPOLOGY_SPEED_8G 0x20 #define SLI4_READ_TOPOLOGY_SPEED_10G 0x40 #define SLI4_READ_TOPOLOGY_SPEED_16G 0x80 #define SLI4_READ_TOPOLOGY_SPEED_32G 0x90 /** * @brief REG_FCFI - activate a FC Forwarder */ #define SLI4_CMD_REG_FCFI_NUM_RQ_CFG 4 typedef struct sli4_cmd_reg_fcfi_s { sli4_mbox_command_header_t hdr; #if BYTE_ORDER == LITTLE_ENDIAN uint32_t fcf_index:16, fcfi:16; uint32_t rq_id_1:16, rq_id_0:16; uint32_t rq_id_3:16, rq_id_2:16; struct { uint32_t r_ctl_mask:8, r_ctl_match:8, type_mask:8, type_match:8; } rq_cfg[SLI4_CMD_REG_FCFI_NUM_RQ_CFG]; uint32_t vlan_tag:12, vv:1, :19; #else #error big endian version not defined #endif } sli4_cmd_reg_fcfi_t; #define SLI4_CMD_REG_FCFI_MRQ_NUM_RQ_CFG 4 #define SLI4_CMD_REG_FCFI_MRQ_MAX_NUM_RQ 32 #define SLI4_CMD_REG_FCFI_SET_FCFI_MODE 0 #define SLI4_CMD_REG_FCFI_SET_MRQ_MODE 1 typedef struct sli4_cmd_reg_fcfi_mrq_s { sli4_mbox_command_header_t hdr; #if BYTE_ORDER == LITTLE_ENDIAN uint32_t fcf_index:16, fcfi:16; uint32_t rq_id_1:16, rq_id_0:16; uint32_t rq_id_3:16, rq_id_2:16; struct { uint32_t r_ctl_mask:8, r_ctl_match:8, type_mask:8, type_match:8; } rq_cfg[SLI4_CMD_REG_FCFI_MRQ_NUM_RQ_CFG]; uint32_t vlan_tag:12, vv:1, mode:1, :18; uint32_t num_mrq_pairs:8, mrq_filter_bitmask:4, rq_selection_policy:4, :16; #endif } sli4_cmd_reg_fcfi_mrq_t; /** * @brief REG_RPI - register a Remote Port Indicator */ typedef struct sli4_cmd_reg_rpi_s { sli4_mbox_command_header_t hdr; #if BYTE_ORDER == LITTLE_ENDIAN uint32_t rpi:16, :16; uint32_t remote_n_port_id:24, upd:1, :2, etow:1, :1, terp:1, :1, ci:1; sli4_bde_t bde_64; uint32_t vpi:16, :16; #else #error big endian version not defined #endif } sli4_cmd_reg_rpi_t; #define SLI4_REG_RPI_BUF_LEN 0x70 /** * @brief REG_VFI - register a Virtual Fabric Indicator */ typedef struct sli4_cmd_reg_vfi_s { sli4_mbox_command_header_t hdr; #if BYTE_ORDER == LITTLE_ENDIAN uint32_t vfi:16, :12, vp:1, upd:1, :2; uint32_t fcfi:16, vpi:16; /* vp=TRUE */ uint8_t wwpn[8]; /* vp=TRUE */ sli4_bde_t sparm; /* either FLOGI or PLOGI */ uint32_t e_d_tov; uint32_t r_a_tov; uint32_t local_n_port_id:24, /* vp=TRUE */ :8; #else #error big endian version not defined #endif } sli4_cmd_reg_vfi_t; /** * @brief REG_VPI - register a Virtual Port Indicator */ typedef struct sli4_cmd_reg_vpi_s { sli4_mbox_command_header_t hdr; #if BYTE_ORDER == LITTLE_ENDIAN uint32_t rsvd1; uint32_t local_n_port_id:24, upd:1, :7; uint8_t wwpn[8]; uint32_t rsvd5; uint32_t vpi:16, vfi:16; #else #error big endian version not defined #endif } sli4_cmd_reg_vpi_t; /** * @brief REQUEST_FEATURES - request / query SLI features */ typedef union { #if BYTE_ORDER == LITTLE_ENDIAN struct { uint32_t iaab:1, /** inhibit auto-ABTS originator */ npiv:1, /** NPIV support */ dif:1, /** DIF/DIX support */ vf:1, /** virtual fabric support */ fcpi:1, /** FCP initiator support */ fcpt:1, /** FCP target support */ fcpc:1, /** combined FCP initiator/target */ :1, rqd:1, /** recovery qualified delay */ iaar:1, /** inhibit auto-ABTS responder */ hlm:1, /** High Login Mode */ perfh:1, /** performance hints */ rxseq:1, /** RX Sequence Coalescing */ rxri:1, /** Release XRI variant of Coalescing */ dcl2:1, /** Disable Class 2 */ rsco:1, /** Receive Sequence Coalescing Optimizations */ mrqp:1, /** Multi RQ Pair Mode Support */ :15; } flag; uint32_t dword; #else #error big endian version not defined #endif } sli4_features_t; typedef struct sli4_cmd_request_features_s { sli4_mbox_command_header_t hdr; #if BYTE_ORDER == LITTLE_ENDIAN uint32_t qry:1, :31; #else #error big endian version not defined #endif sli4_features_t command; sli4_features_t response; } sli4_cmd_request_features_t; /** * @brief SLI_CONFIG - submit a configuration command to Port * * Command is either embedded as part of the payload (embed) or located * in a separate memory buffer (mem) */ typedef struct sli4_sli_config_pmd_s { uint32_t address_low; uint32_t address_high; uint32_t length:24, :8; } sli4_sli_config_pmd_t; typedef struct sli4_cmd_sli_config_s { sli4_mbox_command_header_t hdr; #if BYTE_ORDER == LITTLE_ENDIAN uint32_t emb:1, :2, pmd_count:5, :24; uint32_t payload_length; uint32_t rsvd3; uint32_t rsvd4; uint32_t rsvd5; union { uint8_t embed[58 * sizeof(uint32_t)]; sli4_sli_config_pmd_t mem; } payload; #else #error big endian version not defined #endif } sli4_cmd_sli_config_t; /** * @brief READ_STATUS - read tx/rx status of a particular port * */ typedef struct sli4_cmd_read_status_s { sli4_mbox_command_header_t hdr; #if BYTE_ORDER == LITTLE_ENDIAN uint32_t cc:1, :31; uint32_t rsvd2; uint32_t transmit_kbyte_count; uint32_t receive_kbyte_count; uint32_t transmit_frame_count; uint32_t receive_frame_count; uint32_t transmit_sequence_count; uint32_t receive_sequence_count; uint32_t total_exchanges_originator; uint32_t total_exchanges_responder; uint32_t receive_p_bsy_count; uint32_t receive_f_bsy_count; uint32_t dropped_frames_due_to_no_rq_buffer_count; uint32_t empty_rq_timeout_count; uint32_t dropped_frames_due_to_no_xri_count; uint32_t empty_xri_pool_count; #else #error big endian version not defined #endif } sli4_cmd_read_status_t; /** * @brief READ_LNK_STAT - read link status of a particular port * */ typedef struct sli4_cmd_read_link_stats_s { sli4_mbox_command_header_t hdr; #if BYTE_ORDER == LITTLE_ENDIAN uint32_t rec:1, gec:1, w02of:1, w03of:1, w04of:1, w05of:1, w06of:1, w07of:1, w08of:1, w09of:1, w10of:1, w11of:1, w12of:1, w13of:1, w14of:1, w15of:1, w16of:1, w17of:1, w18of:1, w19of:1, w20of:1, w21of:1, resv0:8, clrc:1, clof:1; uint32_t link_failure_error_count; uint32_t loss_of_sync_error_count; uint32_t loss_of_signal_error_count; uint32_t primitive_sequence_error_count; uint32_t invalid_transmission_word_error_count; uint32_t crc_error_count; uint32_t primitive_sequence_event_timeout_count; uint32_t elastic_buffer_overrun_error_count; uint32_t arbitration_fc_al_timout_count; uint32_t advertised_receive_bufftor_to_buffer_credit; uint32_t current_receive_buffer_to_buffer_credit; uint32_t advertised_transmit_buffer_to_buffer_credit; uint32_t current_transmit_buffer_to_buffer_credit; uint32_t received_eofa_count; uint32_t received_eofdti_count; uint32_t received_eofni_count; uint32_t received_soff_count; uint32_t received_dropped_no_aer_count; uint32_t received_dropped_no_available_rpi_resources_count; uint32_t received_dropped_no_available_xri_resources_count; #else #error big endian version not defined #endif } sli4_cmd_read_link_stats_t; /** * @brief Format a WQE with WQ_ID Association performance hint * * @par Description * PHWQ works by over-writing part of Word 10 in the WQE with the WQ ID. * * @param entry Pointer to the WQE. * @param q_id Queue ID. * * @return None. */ static inline void sli_set_wq_id_association(void *entry, uint16_t q_id) { uint32_t *wqe = entry; /* * Set Word 10, bit 0 to zero * Set Word 10, bits 15:1 to the WQ ID */ #if BYTE_ORDER == LITTLE_ENDIAN wqe[10] &= ~0xffff; wqe[10] |= q_id << 1; #else #error big endian version not defined #endif } /** * @brief UNREG_FCFI - unregister a FCFI */ typedef struct sli4_cmd_unreg_fcfi_s { sli4_mbox_command_header_t hdr; uint32_t rsvd1; #if BYTE_ORDER == LITTLE_ENDIAN uint32_t fcfi:16, :16; #else #error big endian version not defined #endif } sli4_cmd_unreg_fcfi_t; /** * @brief UNREG_RPI - unregister one or more RPI */ typedef struct sli4_cmd_unreg_rpi_s { sli4_mbox_command_header_t hdr; #if BYTE_ORDER == LITTLE_ENDIAN uint32_t index:16, :13, dp:1, ii:2; uint32_t destination_n_port_id:24, :8; #else #error big endian version not defined #endif } sli4_cmd_unreg_rpi_t; #define SLI4_UNREG_RPI_II_RPI 0x0 #define SLI4_UNREG_RPI_II_VPI 0x1 #define SLI4_UNREG_RPI_II_VFI 0x2 #define SLI4_UNREG_RPI_II_FCFI 0x3 /** * @brief UNREG_VFI - unregister one or more VFI */ typedef struct sli4_cmd_unreg_vfi_s { sli4_mbox_command_header_t hdr; #if BYTE_ORDER == LITTLE_ENDIAN uint32_t rsvd1; uint32_t index:16, :14, ii:2; #else #error big endian version not defined #endif } sli4_cmd_unreg_vfi_t; #define SLI4_UNREG_VFI_II_VFI 0x0 #define SLI4_UNREG_VFI_II_FCFI 0x3 enum { SLI4_UNREG_TYPE_PORT, SLI4_UNREG_TYPE_DOMAIN, SLI4_UNREG_TYPE_FCF, SLI4_UNREG_TYPE_ALL }; /** * @brief UNREG_VPI - unregister one or more VPI */ typedef struct sli4_cmd_unreg_vpi_s { sli4_mbox_command_header_t hdr; #if BYTE_ORDER == LITTLE_ENDIAN uint32_t rsvd1; uint32_t index:16, :14, ii:2; #else #error big endian version not defined #endif } sli4_cmd_unreg_vpi_t; #define SLI4_UNREG_VPI_II_VPI 0x0 #define SLI4_UNREG_VPI_II_VFI 0x2 #define SLI4_UNREG_VPI_II_FCFI 0x3 /** * @brief AUTO_XFER_RDY - Configure the auto-generate XFER-RDY feature. */ typedef struct sli4_cmd_config_auto_xfer_rdy_s { sli4_mbox_command_header_t hdr; #if BYTE_ORDER == LITTLE_ENDIAN uint32_t resv; uint32_t max_burst_len; #else #error big endian version not defined #endif } sli4_cmd_config_auto_xfer_rdy_t; typedef struct sli4_cmd_config_auto_xfer_rdy_hp_s { sli4_mbox_command_header_t hdr; #if BYTE_ORDER == LITTLE_ENDIAN uint32_t resv; uint32_t max_burst_len; uint32_t esoc:1, :31; uint32_t block_size:16, :16; #else #error big endian version not defined #endif } sli4_cmd_config_auto_xfer_rdy_hp_t; /************************************************************************* * SLI-4 common configuration command formats and definitions */ #define SLI4_CFG_STATUS_SUCCESS 0x00 #define SLI4_CFG_STATUS_FAILED 0x01 #define SLI4_CFG_STATUS_ILLEGAL_REQUEST 0x02 #define SLI4_CFG_STATUS_ILLEGAL_FIELD 0x03 #define SLI4_MGMT_STATUS_FLASHROM_READ_FAILED 0xcb #define SLI4_CFG_ADD_STATUS_NO_STATUS 0x00 #define SLI4_CFG_ADD_STATUS_INVALID_OPCODE 0x1e /** * Subsystem values. */ #define SLI4_SUBSYSTEM_COMMON 0x01 #define SLI4_SUBSYSTEM_LOWLEVEL 0x0B #define SLI4_SUBSYSTEM_FCFCOE 0x0c #define SLI4_SUBSYSTEM_DMTF 0x11 #define SLI4_OPC_LOWLEVEL_SET_WATCHDOG 0X36 /** * Common opcode (OPC) values. */ #define SLI4_OPC_COMMON_FUNCTION_RESET 0x3d #define SLI4_OPC_COMMON_CREATE_CQ 0x0c #define SLI4_OPC_COMMON_CREATE_CQ_SET 0x1d #define SLI4_OPC_COMMON_DESTROY_CQ 0x36 #define SLI4_OPC_COMMON_MODIFY_EQ_DELAY 0x29 #define SLI4_OPC_COMMON_CREATE_EQ 0x0d #define SLI4_OPC_COMMON_DESTROY_EQ 0x37 #define SLI4_OPC_COMMON_CREATE_MQ_EXT 0x5a #define SLI4_OPC_COMMON_DESTROY_MQ 0x35 #define SLI4_OPC_COMMON_GET_CNTL_ATTRIBUTES 0x20 #define SLI4_OPC_COMMON_NOP 0x21 #define SLI4_OPC_COMMON_GET_RESOURCE_EXTENT_INFO 0x9a #define SLI4_OPC_COMMON_GET_SLI4_PARAMETERS 0xb5 #define SLI4_OPC_COMMON_QUERY_FW_CONFIG 0x3a #define SLI4_OPC_COMMON_GET_PORT_NAME 0x4d #define SLI4_OPC_COMMON_WRITE_FLASHROM 0x07 #define SLI4_OPC_COMMON_MANAGE_FAT 0x44 #define SLI4_OPC_COMMON_READ_TRANSCEIVER_DATA 0x49 #define SLI4_OPC_COMMON_GET_CNTL_ADDL_ATTRIBUTES 0x79 #define SLI4_OPC_COMMON_GET_EXT_FAT_CAPABILITIES 0x7d #define SLI4_OPC_COMMON_SET_EXT_FAT_CAPABILITIES 0x7e #define SLI4_OPC_COMMON_EXT_FAT_CONFIGURE_SNAPSHOT 0x7f #define SLI4_OPC_COMMON_EXT_FAT_RETRIEVE_SNAPSHOT 0x80 #define SLI4_OPC_COMMON_EXT_FAT_READ_STRING_TABLE 0x82 #define SLI4_OPC_COMMON_GET_FUNCTION_CONFIG 0xa0 #define SLI4_OPC_COMMON_GET_PROFILE_CONFIG 0xa4 #define SLI4_OPC_COMMON_SET_PROFILE_CONFIG 0xa5 #define SLI4_OPC_COMMON_GET_PROFILE_LIST 0xa6 #define SLI4_OPC_COMMON_GET_ACTIVE_PROFILE 0xa7 #define SLI4_OPC_COMMON_SET_ACTIVE_PROFILE 0xa8 #define SLI4_OPC_COMMON_READ_OBJECT 0xab #define SLI4_OPC_COMMON_WRITE_OBJECT 0xac #define SLI4_OPC_COMMON_DELETE_OBJECT 0xae #define SLI4_OPC_COMMON_READ_OBJECT_LIST 0xad #define SLI4_OPC_COMMON_SET_DUMP_LOCATION 0xb8 #define SLI4_OPC_COMMON_SET_FEATURES 0xbf #define SLI4_OPC_COMMON_GET_RECONFIG_LINK_INFO 0xc9 #define SLI4_OPC_COMMON_SET_RECONFIG_LINK_ID 0xca /** * DMTF opcode (OPC) values. */ #define SLI4_OPC_DMTF_EXEC_CLP_CMD 0x01 /** * @brief Generic Command Request header */ typedef struct sli4_req_hdr_s { #if BYTE_ORDER == LITTLE_ENDIAN uint32_t opcode:8, subsystem:8, :16; uint32_t timeout; uint32_t request_length; uint32_t version:8, :24; #else #error big endian version not defined #endif } sli4_req_hdr_t; /** * @brief Generic Command Response header */ typedef struct sli4_res_hdr_s { #if BYTE_ORDER == LITTLE_ENDIAN uint32_t opcode:8, subsystem:8, :16; uint32_t status:8, additional_status:8, :16; uint32_t response_length; uint32_t actual_response_length; #else #error big endian version not defined #endif } sli4_res_hdr_t; /** * @brief COMMON_FUNCTION_RESET * * Resets the Port, returning it to a power-on state. This configuration * command does not have a payload and should set/expect the lengths to * be zero. */ typedef struct sli4_req_common_function_reset_s { sli4_req_hdr_t hdr; } sli4_req_common_function_reset_t; typedef struct sli4_res_common_function_reset_s { sli4_res_hdr_t hdr; } sli4_res_common_function_reset_t; /** * @brief COMMON_CREATE_CQ_V0 * * Create a Completion Queue. */ typedef struct sli4_req_common_create_cq_v0_s { sli4_req_hdr_t hdr; #if BYTE_ORDER == LITTLE_ENDIAN uint32_t num_pages:16, :16; uint32_t :12, clswm:2, nodelay:1, :12, cqecnt:2, valid:1, :1, evt:1; uint32_t :22, eq_id:8, :1, arm:1; uint32_t rsvd[2]; struct { uint32_t low; uint32_t high; } page_physical_address[0]; #else #error big endian version not defined #endif } sli4_req_common_create_cq_v0_t; /** * @brief COMMON_CREATE_CQ_V2 * * Create a Completion Queue. */ typedef struct sli4_req_common_create_cq_v2_s { sli4_req_hdr_t hdr; #if BYTE_ORDER == LITTLE_ENDIAN uint32_t num_pages:16, page_size:8, :8, uint32_t :12, clswm:2, nodelay:1, autovalid:1, :9, cqe_size:2, cqecnt:2, valid:1, :1, evt:1; uint32_t eq_id:16, :15, arm:1; uint32_t cqe_count:16, :16; uint32_t rsvd[1]; struct { uint32_t low; uint32_t high; } page_physical_address[0]; #else #error big endian version not defined #endif } sli4_req_common_create_cq_v2_t; /** * @brief COMMON_CREATE_CQ_SET_V0 * * Create a set of Completion Queues. */ typedef struct sli4_req_common_create_cq_set_v0_s { sli4_req_hdr_t hdr; #if BYTE_ORDER == LITTLE_ENDIAN uint32_t num_pages:16, page_size:8, :8; uint32_t :12, clswm:2, nodelay:1, autovalid:1, rsvd:11, cqecnt:2, valid:1, :1, evt:1; uint32_t num_cq_req:16, cqe_count:15, arm:1; uint16_t eq_id[16]; struct { uint32_t low; uint32_t high; } page_physical_address[0]; #else #error big endian version not defined #endif } sli4_req_common_create_cq_set_v0_t; /** * CQE count. */ #define SLI4_CQ_CNT_256 0 #define SLI4_CQ_CNT_512 1 #define SLI4_CQ_CNT_1024 2 #define SLI4_CQ_CNT_LARGE 3 #define SLI4_CQE_BYTES (4 * sizeof(uint32_t)) #define SLI4_COMMON_CREATE_CQ_V2_MAX_PAGES 8 /** * @brief Generic Common Create EQ/CQ/MQ/WQ/RQ Queue completion */ typedef struct sli4_res_common_create_queue_s { sli4_res_hdr_t hdr; #if BYTE_ORDER == LITTLE_ENDIAN uint32_t q_id:16, :8, ulp:8; uint32_t db_offset; uint32_t db_rs:16, db_fmt:16; #else #error big endian version not defined #endif } sli4_res_common_create_queue_t; typedef struct sli4_res_common_create_queue_set_s { sli4_res_hdr_t hdr; #if BYTE_ORDER == LITTLE_ENDIAN uint32_t q_id:16, num_q_allocated:16; #else #error big endian version not defined #endif } sli4_res_common_create_queue_set_t; /** * @brief Common Destroy CQ */ typedef struct sli4_req_common_destroy_cq_s { sli4_req_hdr_t hdr; #if BYTE_ORDER == LITTLE_ENDIAN uint32_t cq_id:16, :16; #else #error big endian version not defined #endif } sli4_req_common_destroy_cq_t; /** * @brief COMMON_MODIFY_EQ_DELAY * * Modify the delay multiplier for EQs */ typedef struct sli4_req_common_modify_eq_delay_s { sli4_req_hdr_t hdr; #if BYTE_ORDER == LITTLE_ENDIAN uint32_t num_eq; struct { uint32_t eq_id; uint32_t phase; uint32_t delay_multiplier; } eq_delay_record[8]; #else #error big endian version not defined #endif } sli4_req_common_modify_eq_delay_t; /** * @brief COMMON_CREATE_EQ * * Create an Event Queue. */ typedef struct sli4_req_common_create_eq_s { sli4_req_hdr_t hdr; #if BYTE_ORDER == LITTLE_ENDIAN uint32_t num_pages:16, :16; uint32_t :28, autovalid:1, valid:1, :1, eqesz:1; uint32_t :26, count:3, :2, arm:1; uint32_t :13, delay_multiplier:10, :9; uint32_t rsvd; struct { uint32_t low; uint32_t high; } page_address[8]; #else #error big endian version not defined #endif } sli4_req_common_create_eq_t; #define SLI4_EQ_CNT_256 0 #define SLI4_EQ_CNT_512 1 #define SLI4_EQ_CNT_1024 2 #define SLI4_EQ_CNT_2048 3 #define SLI4_EQ_CNT_4096 4 #define SLI4_EQE_SIZE_4 0 #define SLI4_EQE_SIZE_16 1 /** * @brief Common Destroy EQ */ typedef struct sli4_req_common_destroy_eq_s { sli4_req_hdr_t hdr; #if BYTE_ORDER == LITTLE_ENDIAN uint32_t eq_id:16, :16; #else #error big endian version not defined #endif } sli4_req_common_destroy_eq_t; /** * @brief COMMON_CREATE_MQ_EXT * * Create a Mailbox Queue; accommodate v0 and v1 forms. */ typedef struct sli4_req_common_create_mq_ext_s { sli4_req_hdr_t hdr; #if BYTE_ORDER == LITTLE_ENDIAN uint32_t num_pages:16, cq_id_v1:16; uint32_t async_event_bitmap; uint32_t async_cq_id_v1:16, ring_size:4, :2, cq_id_v0:10; uint32_t :31, val:1; uint32_t acqv:1, async_cq_id_v0:10, :21; uint32_t rsvd9; struct { uint32_t low; uint32_t high; } page_physical_address[8]; #else #error big endian version not defined #endif } sli4_req_common_create_mq_ext_t; #define SLI4_MQE_SIZE_16 0x05 #define SLI4_MQE_SIZE_32 0x06 #define SLI4_MQE_SIZE_64 0x07 #define SLI4_MQE_SIZE_128 0x08 #define SLI4_ASYNC_EVT_LINK_STATE BIT(1) #define SLI4_ASYNC_EVT_FCOE_FIP BIT(2) #define SLI4_ASYNC_EVT_DCBX BIT(3) #define SLI4_ASYNC_EVT_ISCSI BIT(4) #define SLI4_ASYNC_EVT_GRP5 BIT(5) #define SLI4_ASYNC_EVT_FC BIT(16) #define SLI4_ASYNC_EVT_SLI_PORT BIT(17) #define SLI4_ASYNC_EVT_VF BIT(18) #define SLI4_ASYNC_EVT_MR BIT(19) #define SLI4_ASYNC_EVT_ALL \ SLI4_ASYNC_EVT_LINK_STATE | \ SLI4_ASYNC_EVT_FCOE_FIP | \ SLI4_ASYNC_EVT_DCBX | \ SLI4_ASYNC_EVT_ISCSI | \ SLI4_ASYNC_EVT_GRP5 | \ SLI4_ASYNC_EVT_FC | \ SLI4_ASYNC_EVT_SLI_PORT | \ SLI4_ASYNC_EVT_VF |\ SLI4_ASYNC_EVT_MR #define SLI4_ASYNC_EVT_FC_FCOE \ SLI4_ASYNC_EVT_LINK_STATE | \ SLI4_ASYNC_EVT_FCOE_FIP | \ SLI4_ASYNC_EVT_GRP5 | \ SLI4_ASYNC_EVT_FC | \ SLI4_ASYNC_EVT_SLI_PORT /** * @brief Common Destroy MQ */ typedef struct sli4_req_common_destroy_mq_s { sli4_req_hdr_t hdr; #if BYTE_ORDER == LITTLE_ENDIAN uint32_t mq_id:16, :16; #else #error big endian version not defined #endif } sli4_req_common_destroy_mq_t; /** * @brief COMMON_GET_CNTL_ATTRIBUTES * * Query for information about the SLI Port */ typedef struct sli4_res_common_get_cntl_attributes_s { sli4_res_hdr_t hdr; #if BYTE_ORDER == LITTLE_ENDIAN uint8_t version_string[32]; uint8_t manufacturer_name[32]; uint32_t supported_modes; uint32_t eprom_version_lo:8, eprom_version_hi:8, :16; uint32_t mbx_data_structure_version; uint32_t ep_firmware_data_structure_version; uint8_t ncsi_version_string[12]; uint32_t default_extended_timeout; uint8_t model_number[32]; uint8_t description[64]; uint8_t serial_number[32]; uint8_t ip_version_string[32]; uint8_t fw_version_string[32]; uint8_t bios_version_string[32]; uint8_t redboot_version_string[32]; uint8_t driver_version_string[32]; uint8_t fw_on_flash_version_string[32]; uint32_t functionalities_supported; uint32_t max_cdb_length:16, asic_revision:8, generational_guid0:8; uint32_t generational_guid1_12[3]; uint32_t generational_guid13:24, hba_port_count:8; uint32_t default_link_down_timeout:16, iscsi_version_min_max:8, multifunctional_device:8; uint32_t cache_valid:8, hba_status:8, max_domains_supported:8, port_number:6, port_type:2; uint32_t firmware_post_status; uint32_t hba_mtu; uint32_t iscsi_features:8, rsvd121:24; uint32_t pci_vendor_id:16, pci_device_id:16; uint32_t pci_sub_vendor_id:16, pci_sub_system_id:16; uint32_t pci_bus_number:8, pci_device_number:8, pci_function_number:8, interface_type:8; uint64_t unique_identifier; uint32_t number_of_netfilters:8, rsvd130:24; #else #error big endian version not defined #endif } sli4_res_common_get_cntl_attributes_t; /** * @brief COMMON_GET_CNTL_ATTRIBUTES * * This command queries the controller information from the Flash ROM. */ typedef struct sli4_req_common_get_cntl_addl_attributes_s { sli4_req_hdr_t hdr; } sli4_req_common_get_cntl_addl_attributes_t; typedef struct sli4_res_common_get_cntl_addl_attributes_s { sli4_res_hdr_t hdr; uint16_t ipl_file_number; uint8_t ipl_file_version; uint8_t rsvd0; uint8_t on_die_temperature; uint8_t rsvd1[3]; uint32_t driver_advanced_features_supported; uint32_t rsvd2[4]; char fcoe_universal_bios_version[32]; char fcoe_x86_bios_version[32]; char fcoe_efi_bios_version[32]; char fcoe_fcode_version[32]; char uefi_bios_version[32]; char uefi_nic_version[32]; char uefi_fcode_version[32]; char uefi_iscsi_version[32]; char iscsi_x86_bios_version[32]; char pxe_x86_bios_version[32]; uint8_t fcoe_default_wwpn[8]; uint8_t ext_phy_version[32]; uint8_t fc_universal_bios_version[32]; uint8_t fc_x86_bios_version[32]; uint8_t fc_efi_bios_version[32]; uint8_t fc_fcode_version[32]; uint8_t ext_phy_crc_label[8]; uint8_t ipl_file_name[16]; uint8_t rsvd3[72]; } sli4_res_common_get_cntl_addl_attributes_t; /** * @brief COMMON_NOP * * This command does not do anything; it only returns the payload in the completion. */ typedef struct sli4_req_common_nop_s { sli4_req_hdr_t hdr; #if BYTE_ORDER == LITTLE_ENDIAN uint32_t context[2]; #else #error big endian version not defined #endif } sli4_req_common_nop_t; typedef struct sli4_res_common_nop_s { sli4_res_hdr_t hdr; #if BYTE_ORDER == LITTLE_ENDIAN uint32_t context[2]; #else #error big endian version not defined #endif } sli4_res_common_nop_t; /** * @brief COMMON_GET_RESOURCE_EXTENT_INFO */ typedef struct sli4_req_common_get_resource_extent_info_s { sli4_req_hdr_t hdr; #if BYTE_ORDER == LITTLE_ENDIAN uint32_t resource_type:16, :16; #else #error big endian version not defined #endif } sli4_req_common_get_resource_extent_info_t; #define SLI4_RSC_TYPE_ISCSI_INI_XRI 0x0c #define SLI4_RSC_TYPE_FCOE_VFI 0x20 #define SLI4_RSC_TYPE_FCOE_VPI 0x21 #define SLI4_RSC_TYPE_FCOE_RPI 0x22 #define SLI4_RSC_TYPE_FCOE_XRI 0x23 typedef struct sli4_res_common_get_resource_extent_info_s { sli4_res_hdr_t hdr; #if BYTE_ORDER == LITTLE_ENDIAN uint32_t resource_extent_count:16, resource_extent_size:16; #else #error big endian version not defined #endif } sli4_res_common_get_resource_extent_info_t; #define SLI4_128BYTE_WQE_SUPPORT 0x02 /** * @brief COMMON_GET_SLI4_PARAMETERS */ typedef struct sli4_res_common_get_sli4_parameters_s { sli4_res_hdr_t hdr; #if BYTE_ORDER == LITTLE_ENDIAN uint32_t protocol_type:8, :24; uint32_t ft:1, :3, sli_revision:4, sli_family:4, if_type:4, sli_hint_1:8, sli_hint_2:5, :3; uint32_t eq_page_cnt:4, :4, eqe_sizes:4, :4, eq_page_sizes:8, eqe_count_method:4, :4; uint32_t eqe_count_mask:16, :16; uint32_t cq_page_cnt:4, :4, cqe_sizes:4, :2, cqv:2, cq_page_sizes:8, cqe_count_method:4, :4; uint32_t cqe_count_mask:16, :16; uint32_t mq_page_cnt:4, :10, mqv:2, mq_page_sizes:8, mqe_count_method:4, :4; uint32_t mqe_count_mask:16, :16; uint32_t wq_page_cnt:4, :4, wqe_sizes:4, :2, wqv:2, wq_page_sizes:8, wqe_count_method:4, :4; uint32_t wqe_count_mask:16, :16; uint32_t rq_page_cnt:4, :4, rqe_sizes:4, :2, rqv:2, rq_page_sizes:8, rqe_count_method:4, :4; uint32_t rqe_count_mask:16, :12, rq_db_window:4; uint32_t fcoe:1, ext:1, hdrr:1, sglr:1, fbrr:1, areg:1, tgt:1, terp:1, assi:1, wchn:1, tcca:1, trty:1, trir:1, phoff:1, phon:1, phwq:1, /** Performance Hint WQ_ID Association */ boundary_4ga:1, rxc:1, hlm:1, ipr:1, rxri:1, sglc:1, timm:1, tsmm:1, :1, oas:1, lc:1, agxf:1, loopback_scope:4; uint32_t sge_supported_length; uint32_t sgl_page_cnt:4, :4, sgl_page_sizes:8, sgl_pp_align:8, :8; uint32_t min_rq_buffer_size:16, :16; uint32_t max_rq_buffer_size; uint32_t physical_xri_max:16, physical_rpi_max:16; uint32_t physical_vpi_max:16, physical_vfi_max:16; uint32_t rsvd19; uint32_t frag_num_field_offset:16, /* dword 20 */ frag_num_field_size:16; uint32_t sgl_index_field_offset:16, /* dword 21 */ sgl_index_field_size:16; uint32_t chain_sge_initial_value_lo; /* dword 22 */ uint32_t chain_sge_initial_value_hi; /* dword 23 */ #else #error big endian version not defined #endif } sli4_res_common_get_sli4_parameters_t; /** * @brief COMMON_QUERY_FW_CONFIG * * This command retrieves firmware configuration parameters and adapter * resources available to the driver. */ typedef struct sli4_req_common_query_fw_config_s { sli4_req_hdr_t hdr; } sli4_req_common_query_fw_config_t; #define SLI4_FUNCTION_MODE_FCOE_INI_MODE 0x40 #define SLI4_FUNCTION_MODE_FCOE_TGT_MODE 0x80 #define SLI4_FUNCTION_MODE_DUA_MODE 0x800 #define SLI4_ULP_MODE_FCOE_INI 0x40 #define SLI4_ULP_MODE_FCOE_TGT 0x80 typedef struct sli4_res_common_query_fw_config_s { sli4_res_hdr_t hdr; uint32_t config_number; uint32_t asic_rev; uint32_t physical_port; uint32_t function_mode; uint32_t ulp0_mode; uint32_t ulp0_nic_wqid_base; uint32_t ulp0_nic_wq_total; /* Dword 10 */ uint32_t ulp0_toe_wqid_base; uint32_t ulp0_toe_wq_total; uint32_t ulp0_toe_rqid_base; uint32_t ulp0_toe_rq_total; uint32_t ulp0_toe_defrqid_base; uint32_t ulp0_toe_defrq_total; uint32_t ulp0_lro_rqid_base; uint32_t ulp0_lro_rq_total; uint32_t ulp0_iscsi_icd_base; uint32_t ulp0_iscsi_icd_total; /* Dword 20 */ uint32_t ulp1_mode; uint32_t ulp1_nic_wqid_base; uint32_t ulp1_nic_wq_total; uint32_t ulp1_toe_wqid_base; uint32_t ulp1_toe_wq_total; uint32_t ulp1_toe_rqid_base; uint32_t ulp1_toe_rq_total; uint32_t ulp1_toe_defrqid_base; uint32_t ulp1_toe_defrq_total; uint32_t ulp1_lro_rqid_base; /* Dword 30 */ uint32_t ulp1_lro_rq_total; uint32_t ulp1_iscsi_icd_base; uint32_t ulp1_iscsi_icd_total; uint32_t function_capabilities; uint32_t ulp0_cq_base; uint32_t ulp0_cq_total; uint32_t ulp0_eq_base; uint32_t ulp0_eq_total; uint32_t ulp0_iscsi_chain_icd_base; uint32_t ulp0_iscsi_chain_icd_total; /* Dword 40 */ uint32_t ulp1_iscsi_chain_icd_base; uint32_t ulp1_iscsi_chain_icd_total; } sli4_res_common_query_fw_config_t; /** * @brief COMMON_GET_PORT_NAME */ typedef struct sli4_req_common_get_port_name_s { sli4_req_hdr_t hdr; #if BYTE_ORDER == LITTLE_ENDIAN uint32_t pt:2, /* only COMMON_GET_PORT_NAME_V1 */ :30; #else #error big endian version not defined #endif } sli4_req_common_get_port_name_t; typedef struct sli4_res_common_get_port_name_s { sli4_res_hdr_t hdr; char port_name[4]; } sli4_res_common_get_port_name_t; /** * @brief COMMON_WRITE_FLASHROM */ typedef struct sli4_req_common_write_flashrom_s { sli4_req_hdr_t hdr; #if BYTE_ORDER == LITTLE_ENDIAN uint32_t flash_rom_access_opcode; uint32_t flash_rom_access_operation_type; uint32_t data_buffer_size; uint32_t offset; uint8_t data_buffer[4]; #else #error big endian version not defined #endif } sli4_req_common_write_flashrom_t; #define SLI4_MGMT_FLASHROM_OPCODE_FLASH 0x01 #define SLI4_MGMT_FLASHROM_OPCODE_SAVE 0x02 #define SLI4_MGMT_FLASHROM_OPCODE_CLEAR 0x03 #define SLI4_MGMT_FLASHROM_OPCODE_REPORT 0x04 #define SLI4_MGMT_FLASHROM_OPCODE_IMAGE_INFO 0x05 #define SLI4_MGMT_FLASHROM_OPCODE_IMAGE_CRC 0x06 #define SLI4_MGMT_FLASHROM_OPCODE_OFFSET_BASED_FLASH 0x07 #define SLI4_MGMT_FLASHROM_OPCODE_OFFSET_BASED_SAVE 0x08 #define SLI4_MGMT_PHY_FLASHROM_OPCODE_FLASH 0x09 #define SLI4_MGMT_PHY_FLASHROM_OPCODE_SAVE 0x0a #define SLI4_FLASH_ROM_ACCESS_OP_TYPE_ISCSI 0x00 #define SLI4_FLASH_ROM_ACCESS_OP_TYPE_REDBOOT 0x01 #define SLI4_FLASH_ROM_ACCESS_OP_TYPE_BIOS 0x02 #define SLI4_FLASH_ROM_ACCESS_OP_TYPE_PXE_BIOS 0x03 #define SLI4_FLASH_ROM_ACCESS_OP_TYPE_CODE_CONTROL 0x04 #define SLI4_FLASH_ROM_ACCESS_OP_TYPE_IPSEC_CFG 0x05 #define SLI4_FLASH_ROM_ACCESS_OP_TYPE_INIT_DATA 0x06 #define SLI4_FLASH_ROM_ACCESS_OP_TYPE_ROM_OFFSET 0x07 #define SLI4_FLASH_ROM_ACCESS_OP_TYPE_FCOE_BIOS 0x08 #define SLI4_FLASH_ROM_ACCESS_OP_TYPE_ISCSI_BAK 0x09 #define SLI4_FLASH_ROM_ACCESS_OP_TYPE_FCOE_ACT 0x0a #define SLI4_FLASH_ROM_ACCESS_OP_TYPE_FCOE_BAK 0x0b #define SLI4_FLASH_ROM_ACCESS_OP_TYPE_CODE_CTRL_P 0x0c #define SLI4_FLASH_ROM_ACCESS_OP_TYPE_NCSI 0x0d #define SLI4_FLASH_ROM_ACCESS_OP_TYPE_NIC 0x0e #define SLI4_FLASH_ROM_ACCESS_OP_TYPE_DCBX 0x0f #define SLI4_FLASH_ROM_ACCESS_OP_TYPE_PXE_BIOS_CFG 0x10 #define SLI4_FLASH_ROM_ACCESS_OP_TYPE_ALL_CFG_DATA 0x11 /** * @brief COMMON_MANAGE_FAT */ typedef struct sli4_req_common_manage_fat_s { sli4_req_hdr_t hdr; #if BYTE_ORDER == LITTLE_ENDIAN uint32_t fat_operation; uint32_t read_log_offset; uint32_t read_log_length; uint32_t data_buffer_size; uint32_t data_buffer; /* response only */ #else #error big endian version not defined #endif } sli4_req_common_manage_fat_t; /** * @brief COMMON_GET_EXT_FAT_CAPABILITIES */ typedef struct sli4_req_common_get_ext_fat_capabilities_s { sli4_req_hdr_t hdr; #if BYTE_ORDER == LITTLE_ENDIAN uint32_t parameter_type; #else #error big endian version not defined #endif } sli4_req_common_get_ext_fat_capabilities_t; /** * @brief COMMON_SET_EXT_FAT_CAPABILITIES */ typedef struct sli4_req_common_set_ext_fat_capabilities_s { sli4_req_hdr_t hdr; #if BYTE_ORDER == LITTLE_ENDIAN uint32_t maximum_log_entries; uint32_t log_entry_size; uint32_t logging_type:8, maximum_logging_functions:8, maximum_logging_ports:8, :8; uint32_t supported_modes; uint32_t number_modules; uint32_t debug_module[14]; #else #error big endian version not defined #endif } sli4_req_common_set_ext_fat_capabilities_t; /** * @brief COMMON_EXT_FAT_CONFIGURE_SNAPSHOT */ typedef struct sli4_req_common_ext_fat_configure_snapshot_s { sli4_req_hdr_t hdr; #if BYTE_ORDER == LITTLE_ENDIAN uint32_t total_log_entries; #else #error big endian version not defined #endif } sli4_req_common_ext_fat_configure_snapshot_t; /** * @brief COMMON_EXT_FAT_RETRIEVE_SNAPSHOT */ typedef struct sli4_req_common_ext_fat_retrieve_snapshot_s { sli4_req_hdr_t hdr; #if BYTE_ORDER == LITTLE_ENDIAN uint32_t snapshot_mode; uint32_t start_index; uint32_t number_log_entries; #else #error big endian version not defined #endif } sli4_req_common_ext_fat_retrieve_snapshot_t; typedef struct sli4_res_common_ext_fat_retrieve_snapshot_s { sli4_res_hdr_t hdr; #if BYTE_ORDER == LITTLE_ENDIAN uint32_t number_log_entries; uint32_t version:8, physical_port:8, function_id:16; uint32_t trace_level; uint32_t module_mask[2]; uint32_t trace_table_index; uint32_t timestamp; uint8_t string_data[16]; uint32_t data[6]; #else #error big endian version not defined #endif } sli4_res_common_ext_fat_retrieve_snapshot_t; /** * @brief COMMON_EXT_FAT_READ_STRING_TABLE */ typedef struct sli4_req_common_ext_fat_read_string_table_s { sli4_req_hdr_t hdr; #if BYTE_ORDER == LITTLE_ENDIAN uint32_t byte_offset; uint32_t number_bytes; #else #error big endian version not defined #endif } sli4_req_common_ext_fat_read_string_table_t; typedef struct sli4_res_common_ext_fat_read_string_table_s { sli4_res_hdr_t hdr; #if BYTE_ORDER == LITTLE_ENDIAN uint32_t number_returned_bytes; uint32_t number_remaining_bytes; uint32_t table_data0:8, :24; uint8_t table_data[0]; #else #error big endian version not defined #endif } sli4_res_common_ext_fat_read_string_table_t; /** * @brief COMMON_READ_TRANSCEIVER_DATA * * This command reads SFF transceiver data(Format is defined * by the SFF-8472 specification). */ typedef struct sli4_req_common_read_transceiver_data_s { sli4_req_hdr_t hdr; #if BYTE_ORDER == LITTLE_ENDIAN uint32_t page_number; uint32_t port; #else #error big endian version not defined #endif } sli4_req_common_read_transceiver_data_t; typedef struct sli4_res_common_read_transceiver_data_s { sli4_res_hdr_t hdr; #if BYTE_ORDER == LITTLE_ENDIAN uint32_t page_number; uint32_t port; uint32_t page_data[32]; uint32_t page_data_2[32]; #else #error big endian version not defined #endif } sli4_res_common_read_transceiver_data_t; /** * @brief COMMON_READ_OBJECT */ typedef struct sli4_req_common_read_object_s { sli4_req_hdr_t hdr; #if BYTE_ORDER == LITTLE_ENDIAN uint32_t desired_read_length:24, :8; uint32_t read_offset; uint8_t object_name[104]; uint32_t host_buffer_descriptor_count; sli4_bde_t host_buffer_descriptor[0]; #else #error big endian version not defined #endif } sli4_req_common_read_object_t; typedef struct sli4_res_common_read_object_s { sli4_res_hdr_t hdr; #if BYTE_ORDER == LITTLE_ENDIAN uint32_t actual_read_length; uint32_t resv:31, eof:1; #else #error big endian version not defined #endif } sli4_res_common_read_object_t; /** * @brief COMMON_WRITE_OBJECT */ typedef struct sli4_req_common_write_object_s { sli4_req_hdr_t hdr; #if BYTE_ORDER == LITTLE_ENDIAN uint32_t desired_write_length:24, :6, noc:1, eof:1; uint32_t write_offset; uint8_t object_name[104]; uint32_t host_buffer_descriptor_count; sli4_bde_t host_buffer_descriptor[0]; #else #error big endian version not defined #endif } sli4_req_common_write_object_t; typedef struct sli4_res_common_write_object_s { sli4_res_hdr_t hdr; #if BYTE_ORDER == LITTLE_ENDIAN uint32_t actual_write_length; uint32_t change_status:8, :24; #else #error big endian version not defined #endif } sli4_res_common_write_object_t; /** * @brief COMMON_DELETE_OBJECT */ typedef struct sli4_req_common_delete_object_s { sli4_req_hdr_t hdr; #if BYTE_ORDER == LITTLE_ENDIAN uint32_t rsvd4; uint32_t rsvd5; uint8_t object_name[104]; #else #error big endian version not defined #endif } sli4_req_common_delete_object_t; /** * @brief COMMON_READ_OBJECT_LIST */ typedef struct sli4_req_common_read_object_list_s { sli4_req_hdr_t hdr; #if BYTE_ORDER == LITTLE_ENDIAN uint32_t desired_read_length:24, :8; uint32_t read_offset; uint8_t object_name[104]; uint32_t host_buffer_descriptor_count; sli4_bde_t host_buffer_descriptor[0]; #else #error big endian version not defined #endif } sli4_req_common_read_object_list_t; /** * @brief COMMON_SET_DUMP_LOCATION */ typedef struct sli4_req_common_set_dump_location_s { sli4_req_hdr_t hdr; #if BYTE_ORDER == LITTLE_ENDIAN uint32_t buffer_length:24, :5, fdb:1, blp:1, qry:1; uint32_t buf_addr_low; uint32_t buf_addr_high; #else #error big endian version not defined #endif } sli4_req_common_set_dump_location_t; typedef struct sli4_res_common_set_dump_location_s { sli4_res_hdr_t hdr; #if BYTE_ORDER == LITTLE_ENDIAN uint32_t buffer_length:24, :8; #else #error big endian version not defined #endif }sli4_res_common_set_dump_location_t; /** * @brief COMMON_SET_SET_FEATURES */ #define SLI4_SET_FEATURES_DIF_SEED 0x01 #define SLI4_SET_FEATURES_XRI_TIMER 0x03 #define SLI4_SET_FEATURES_MAX_PCIE_SPEED 0x04 #define SLI4_SET_FEATURES_FCTL_CHECK 0x05 #define SLI4_SET_FEATURES_FEC 0x06 #define SLI4_SET_FEATURES_PCIE_RECV_DETECT 0x07 #define SLI4_SET_FEATURES_DIF_MEMORY_MODE 0x08 #define SLI4_SET_FEATURES_DISABLE_SLI_PORT_PAUSE_STATE 0x09 #define SLI4_SET_FEATURES_ENABLE_PCIE_OPTIONS 0x0A #define SLI4_SET_FEATURES_SET_CONFIG_AUTO_XFER_RDY_T10PI 0x0C #define SLI4_SET_FEATURES_ENABLE_MULTI_RECEIVE_QUEUE 0x0D #define SLI4_SET_FEATURES_SET_FTD_XFER_HINT 0x0F #define SLI4_SET_FEATURES_SLI_PORT_HEALTH_CHECK 0x11 #define SLI4_SET_FEATURES_PERSISTENT_TOPOLOGY 0x20 typedef struct sli4_req_common_set_features_s { sli4_req_hdr_t hdr; #if BYTE_ORDER == LITTLE_ENDIAN uint32_t feature; uint32_t param_len; uint32_t params[8]; #else #error big endian version not defined #endif } sli4_req_common_set_features_t; typedef struct sli4_req_common_set_features_dif_seed_s { #if BYTE_ORDER == LITTLE_ENDIAN uint32_t seed:16, :16; #else #error big endian version not defined #endif } sli4_req_common_set_features_dif_seed_t; typedef struct sli4_req_common_set_features_t10_pi_mem_model_s { #if BYTE_ORDER == LITTLE_ENDIAN uint32_t tmm:1, :31; #else #error big endian version not defined #endif } sli4_req_common_set_features_t10_pi_mem_model_t; typedef struct sli4_req_common_set_features_multirq_s { #if BYTE_ORDER == LITTLE_ENDIAN uint32_t isr:1, /*<< Include Sequence Reporting */ agxfe:1, /*<< Auto Generate XFER-RDY Feature Enabled */ :30; uint32_t num_rqs:8, rq_select_policy:4, :20; #else #error big endian version not defined #endif } sli4_req_common_set_features_multirq_t; typedef struct sli4_req_common_set_features_xfer_rdy_t10pi_s { #if BYTE_ORDER == LITTLE_ENDIAN uint32_t rtc:1, atv:1, tmm:1, :1, p_type:3, blk_size:3, :22; uint32_t app_tag:16, :16; #else #error big endian version not defined #endif } sli4_req_common_set_features_xfer_rdy_t10pi_t; typedef struct sli4_req_common_set_features_health_check_s { #if BYTE_ORDER == LITTLE_ENDIAN uint32_t hck:1, qry:1, :30; #else #error big endian version not defined #endif } sli4_req_common_set_features_health_check_t; typedef struct sli4_req_common_set_features_set_fdt_xfer_hint_s { #if BYTE_ORDER == LITTLE_ENDIAN uint32_t fdt_xfer_hint; #else #error big endian version not defined #endif } sli4_req_common_set_features_set_fdt_xfer_hint_t; typedef struct sli4_req_common_set_features_persistent_topo_param_s { #if BYTE_ORDER == LITTLE_ENDIAN uint32_t persistent_topo:2, topo_failover:1, :29; #else #error big endian version not defined #endif } sli4_req_common_set_features_persistent_topo_param_t; /** * @brief DMTF_EXEC_CLP_CMD */ typedef struct sli4_req_dmtf_exec_clp_cmd_s { sli4_req_hdr_t hdr; #if BYTE_ORDER == LITTLE_ENDIAN uint32_t cmd_buf_length; uint32_t resp_buf_length; uint32_t cmd_buf_addr_low; uint32_t cmd_buf_addr_high; uint32_t resp_buf_addr_low; uint32_t resp_buf_addr_high; #else #error big endian version not defined #endif } sli4_req_dmtf_exec_clp_cmd_t; typedef struct sli4_res_dmtf_exec_clp_cmd_s { sli4_res_hdr_t hdr; #if BYTE_ORDER == LITTLE_ENDIAN uint32_t :32; uint32_t resp_length; uint32_t :32; uint32_t :32; uint32_t :32; uint32_t :32; uint32_t clp_status; uint32_t clp_detailed_status; #else #error big endian version not defined #endif } sli4_res_dmtf_exec_clp_cmd_t; /** * @brief Resource descriptor */ #define SLI4_RESOURCE_DESCRIPTOR_TYPE_PCIE 0x50 #define SLI4_RESOURCE_DESCRIPTOR_TYPE_NIC 0x51 #define SLI4_RESOURCE_DESCRIPTOR_TYPE_ISCSI 0x52 #define SLI4_RESOURCE_DESCRIPTOR_TYPE_FCFCOE 0x53 #define SLI4_RESOURCE_DESCRIPTOR_TYPE_RDMA 0x54 #define SLI4_RESOURCE_DESCRIPTOR_TYPE_PORT 0x55 #define SLI4_RESOURCE_DESCRIPTOR_TYPE_ISAP 0x56 #define SLI4_PROTOCOL_NIC_TOE 0x01 #define SLI4_PROTOCOL_ISCSI 0x02 #define SLI4_PROTOCOL_FCOE 0x04 #define SLI4_PROTOCOL_NIC_TOE_RDMA 0x08 #define SLI4_PROTOCOL_FC 0x10 #define SLI4_PROTOCOL_DEFAULT 0xff typedef struct sli4_resource_descriptor_v1_s { uint32_t descriptor_type:8, descriptor_length:8, :16; uint32_t type_specific[0]; } sli4_resource_descriptor_v1_t; typedef struct sli4_pcie_resource_descriptor_v1_s { uint32_t descriptor_type:8, descriptor_length:8, :14, imm:1, nosv:1; uint32_t :16, pf_number:10, :6; uint32_t rsvd1; uint32_t sriov_state:8, pf_state:8, pf_type:8, :8; uint32_t number_of_vfs:16, :16; uint32_t mission_roles:8, :19, pchg:1, schg:1, xchg:1, xrom:2; uint32_t rsvd2[16]; } sli4_pcie_resource_descriptor_v1_t; typedef struct sli4_isap_resource_descriptor_v1_s { uint32_t descriptor_type:8, descriptor_length:8, :16; uint32_t iscsi_tgt:1, iscsi_ini:1, iscsi_dif:1, :29; uint32_t rsvd1[3]; uint32_t fcoe_tgt:1, fcoe_ini:1, fcoe_dif:1, :29; uint32_t rsvd2[7]; uint32_t mc_type0:8, mc_type1:8, mc_type2:8, mc_type3:8; uint32_t rsvd3[3]; } sli4_isap_resouce_descriptor_v1_t; /** * @brief COMMON_GET_FUNCTION_CONFIG */ typedef struct sli4_req_common_get_function_config_s { sli4_req_hdr_t hdr; } sli4_req_common_get_function_config_t; typedef struct sli4_res_common_get_function_config_s { sli4_res_hdr_t hdr; #if BYTE_ORDER == LITTLE_ENDIAN uint32_t desc_count; uint32_t desc[54]; #else #error big endian version not defined #endif } sli4_res_common_get_function_config_t; /** * @brief COMMON_GET_PROFILE_CONFIG */ typedef struct sli4_req_common_get_profile_config_s { sli4_req_hdr_t hdr; uint32_t profile_id:8, typ:2, :22; } sli4_req_common_get_profile_config_t; typedef struct sli4_res_common_get_profile_config_s { sli4_res_hdr_t hdr; #if BYTE_ORDER == LITTLE_ENDIAN uint32_t desc_count; uint32_t desc[0]; #else #error big endian version not defined #endif } sli4_res_common_get_profile_config_t; /** * @brief COMMON_SET_PROFILE_CONFIG */ typedef struct sli4_req_common_set_profile_config_s { sli4_req_hdr_t hdr; uint32_t profile_id:8, :23, isap:1; uint32_t desc_count; uint32_t desc[0]; } sli4_req_common_set_profile_config_t; typedef struct sli4_res_common_set_profile_config_s { sli4_res_hdr_t hdr; #if BYTE_ORDER == LITTLE_ENDIAN #else #error big endian version not defined #endif } sli4_res_common_set_profile_config_t; /** * @brief Profile Descriptor for profile functions */ typedef struct sli4_profile_descriptor_s { #if BYTE_ORDER == LITTLE_ENDIAN uint32_t profile_id:8, :8, profile_index:8, :8; uint32_t profile_description[128]; #else #error big endian version not defined #endif } sli4_profile_descriptor_t; /* We don't know in advance how many descriptors there are. We have to pick a number that we think will be big enough and ask for that many. */ #define MAX_PRODUCT_DESCRIPTORS 40 /** * @brief COMMON_GET_PROFILE_LIST */ typedef struct sli4_req_common_get_profile_list_s { sli4_req_hdr_t hdr; #if BYTE_ORDER == LITTLE_ENDIAN uint32_t start_profile_index:8, :24; #else #error big endian version not defined #endif } sli4_req_common_get_profile_list_t; typedef struct sli4_res_common_get_profile_list_s { sli4_res_hdr_t hdr; #if BYTE_ORDER == LITTLE_ENDIAN uint32_t profile_descriptor_count; sli4_profile_descriptor_t profile_descriptor[MAX_PRODUCT_DESCRIPTORS]; #else #error big endian version not defined #endif } sli4_res_common_get_profile_list_t; /** * @brief COMMON_GET_ACTIVE_PROFILE */ typedef struct sli4_req_common_get_active_profile_s { sli4_req_hdr_t hdr; } sli4_req_common_get_active_profile_t; typedef struct sli4_res_common_get_active_profile_s { sli4_res_hdr_t hdr; #if BYTE_ORDER == LITTLE_ENDIAN uint32_t active_profile_id:8, :8, next_profile_id:8, :8; #else #error big endian version not defined #endif } sli4_res_common_get_active_profile_t; /** * @brief COMMON_SET_ACTIVE_PROFILE */ typedef struct sli4_req_common_set_active_profile_s { sli4_req_hdr_t hdr; #if BYTE_ORDER == LITTLE_ENDIAN uint32_t active_profile_id:8, :23, fd:1; #else #error big endian version not defined #endif } sli4_req_common_set_active_profile_t; typedef struct sli4_res_common_set_active_profile_s { sli4_res_hdr_t hdr; } sli4_res_common_set_active_profile_t; /** * @brief Link Config Descriptor for link config functions */ typedef struct sli4_link_config_descriptor_s { #if BYTE_ORDER == LITTLE_ENDIAN uint32_t link_config_id:8, :24; uint32_t config_description[8]; #else #error big endian version not defined #endif } sli4_link_config_descriptor_t; #define MAX_LINK_CONFIG_DESCRIPTORS 10 /** * @brief COMMON_GET_RECONFIG_LINK_INFO */ typedef struct sli4_req_common_get_reconfig_link_info_s { sli4_req_hdr_t hdr; #if BYTE_ORDER == LITTLE_ENDIAN #else #error big endian version not defined #endif } sli4_req_common_get_reconfig_link_info_t; typedef struct sli4_res_common_get_reconfig_link_info_s { sli4_res_hdr_t hdr; #if BYTE_ORDER == LITTLE_ENDIAN uint32_t active_link_config_id:8, :8, next_link_config_id:8, :8; uint32_t link_configuration_descriptor_count; sli4_link_config_descriptor_t desc[MAX_LINK_CONFIG_DESCRIPTORS]; #else #error big endian version not defined #endif } sli4_res_common_get_reconfig_link_info_t; /** * @brief COMMON_SET_RECONFIG_LINK_ID */ typedef struct sli4_req_common_set_reconfig_link_id_s { sli4_req_hdr_t hdr; #if BYTE_ORDER == LITTLE_ENDIAN uint32_t next_link_config_id:8, :23, fd:1; #else #error big endian version not defined #endif } sli4_req_common_set_reconfig_link_id_t; typedef struct sli4_res_common_set_reconfig_link_id_s { sli4_res_hdr_t hdr; #if BYTE_ORDER == LITTLE_ENDIAN #else #error big endian version not defined #endif } sli4_res_common_set_reconfig_link_id_t; typedef struct sli4_req_lowlevel_set_watchdog_s { sli4_req_hdr_t hdr; #if BYTE_ORDER == LITTLE_ENDIAN uint32_t watchdog_timeout:16, :16; #else #error big endian version not defined #endif } sli4_req_lowlevel_set_watchdog_t; typedef struct sli4_res_lowlevel_set_watchdog_s { sli4_res_hdr_t hdr; #if BYTE_ORDER == LITTLE_ENDIAN uint32_t rsvd; #else #error big endian version not defined #endif } sli4_res_lowlevel_set_watchdog_t; /** * @brief Event Queue Entry */ typedef struct sli4_eqe_s { #if BYTE_ORDER == LITTLE_ENDIAN uint32_t vld:1, /** valid */ major_code:3, minor_code:12, resource_id:16; #else #error big endian version not defined #endif } sli4_eqe_t; #define SLI4_MAJOR_CODE_STANDARD 0 #define SLI4_MAJOR_CODE_SENTINEL 1 /** * @brief Mailbox Completion Queue Entry * * A CQE generated on the completion of a MQE from a MQ. */ typedef struct sli4_mcqe_s { #if BYTE_ORDER == LITTLE_ENDIAN uint32_t completion_status:16, /** values are protocol specific */ extended_status:16; uint32_t mqe_tag_low; uint32_t mqe_tag_high; uint32_t :27, con:1, /** consumed - command now being executed */ cmp:1, /** completed - command still executing if clear */ :1, ae:1, /** async event - this is an ACQE */ val:1; /** valid - contents of CQE are valid */ #else #error big endian version not defined #endif } sli4_mcqe_t; /** * @brief Asynchronous Completion Queue Entry * * A CQE generated asynchronously in response to the link or other internal events. */ typedef struct sli4_acqe_s { #if BYTE_ORDER == LITTLE_ENDIAN uint32_t event_data[3]; uint32_t :8, event_code:8, event_type:8, /** values are protocol specific */ :6, ae:1, /** async event - this is an ACQE */ val:1; /** valid - contents of CQE are valid */ #else #error big endian version not defined #endif } sli4_acqe_t; #define SLI4_ACQE_EVENT_CODE_LINK_STATE 0x01 #define SLI4_ACQE_EVENT_CODE_FCOE_FIP 0x02 #define SLI4_ACQE_EVENT_CODE_DCBX 0x03 #define SLI4_ACQE_EVENT_CODE_ISCSI 0x04 #define SLI4_ACQE_EVENT_CODE_GRP_5 0x05 #define SLI4_ACQE_EVENT_CODE_FC_LINK_EVENT 0x10 #define SLI4_ACQE_EVENT_CODE_SLI_PORT_EVENT 0x11 #define SLI4_ACQE_EVENT_CODE_VF_EVENT 0x12 #define SLI4_ACQE_EVENT_CODE_MR_EVENT 0x13 /** * @brief Register name enums */ typedef enum { SLI4_REG_BMBX, SLI4_REG_EQ_DOORBELL, SLI4_REG_CQ_DOORBELL, SLI4_REG_FCOE_RQ_DOORBELL, SLI4_REG_IO_WQ_DOORBELL, SLI4_REG_MQ_DOORBELL, SLI4_REG_PHYSDEV_CONTROL, SLI4_REG_SLIPORT_CONTROL, SLI4_REG_SLIPORT_ERROR1, SLI4_REG_SLIPORT_ERROR2, SLI4_REG_SLIPORT_SEMAPHORE, SLI4_REG_SLIPORT_STATUS, SLI4_REG_UERR_MASK_HI, SLI4_REG_UERR_MASK_LO, SLI4_REG_UERR_STATUS_HI, SLI4_REG_UERR_STATUS_LO, SLI4_REG_SW_UE_CSR1, SLI4_REG_SW_UE_CSR2, SLI4_REG_MAX /* must be last */ } sli4_regname_e; typedef struct sli4_reg_s { uint32_t rset; uint32_t off; } sli4_reg_t; typedef enum { SLI_QTYPE_EQ, SLI_QTYPE_CQ, SLI_QTYPE_MQ, SLI_QTYPE_WQ, SLI_QTYPE_RQ, SLI_QTYPE_MAX, /* must be last */ } sli4_qtype_e; #define SLI_USER_MQ_COUNT 1 /** User specified max mail queues */ #define SLI_MAX_CQ_SET_COUNT 16 #define SLI_MAX_RQ_SET_COUNT 16 typedef enum { SLI_QENTRY_ASYNC, SLI_QENTRY_MQ, SLI_QENTRY_RQ, SLI_QENTRY_WQ, SLI_QENTRY_WQ_RELEASE, SLI_QENTRY_OPT_WRITE_CMD, SLI_QENTRY_OPT_WRITE_DATA, SLI_QENTRY_XABT, SLI_QENTRY_MAX /* must be last */ } sli4_qentry_e; typedef struct sli4_queue_s { /* Common to all queue types */ ocs_dma_t dma; ocs_lock_t lock; uint32_t index; /** current host entry index */ uint16_t size; /** entry size */ uint16_t length; /** number of entries */ uint16_t n_posted; /** number entries posted */ uint16_t id; /** Port assigned xQ_ID */ uint16_t ulp; /** ULP assigned to this queue */ uint32_t doorbell_offset;/** The offset for the doorbell */ uint16_t doorbell_rset; /** register set for the doorbell */ uint8_t type; /** queue type ie EQ, CQ, ... */ uint32_t proc_limit; /** limit number of CQE processed per iteration */ uint32_t posted_limit; /** number of CQE/EQE to process before ringing doorbell */ uint32_t max_num_processed; time_t max_process_time; uint16_t phase; /** For if_type = 6, this value toggle for each iteration of the queue, a queue entry is valid when a cqe valid bit matches this value */ /* Type specific gunk */ union { uint32_t r_idx; /** "read" index (MQ only) */ struct { uint32_t is_mq:1,/** CQ contains MQ/Async completions */ is_hdr:1,/** is a RQ for packet headers */ rq_batch:1;/** RQ index incremented by 8 */ } flag; } u; } sli4_queue_t; static inline void sli_queue_lock(sli4_queue_t *q) { ocs_lock(&q->lock); } static inline void sli_queue_unlock(sli4_queue_t *q) { ocs_unlock(&q->lock); } #define SLI4_QUEUE_DEFAULT_CQ UINT16_MAX /** Use the default CQ */ #define SLI4_QUEUE_RQ_BATCH 8 typedef enum { SLI4_CB_LINK, SLI4_CB_FIP, SLI4_CB_MAX /* must be last */ } sli4_callback_e; typedef enum { SLI_LINK_STATUS_UP, SLI_LINK_STATUS_DOWN, SLI_LINK_STATUS_NO_ALPA, SLI_LINK_STATUS_MAX, } sli4_link_status_e; typedef enum { SLI_LINK_TOPO_NPORT = 1, /** fabric or point-to-point */ SLI_LINK_TOPO_LOOP, SLI_LINK_TOPO_LOOPBACK_INTERNAL, SLI_LINK_TOPO_LOOPBACK_EXTERNAL, SLI_LINK_TOPO_NONE, SLI_LINK_TOPO_MAX, } sli4_link_topology_e; /* TODO do we need both sli4_port_type_e & sli4_link_medium_e */ typedef enum { SLI_LINK_MEDIUM_ETHERNET, SLI_LINK_MEDIUM_FC, SLI_LINK_MEDIUM_MAX, } sli4_link_medium_e; typedef struct sli4_link_event_s { sli4_link_status_e status; /* link up/down */ sli4_link_topology_e topology; sli4_link_medium_e medium; /* Ethernet / FC */ uint32_t speed; /* Mbps */ uint8_t *loop_map; uint32_t fc_id; } sli4_link_event_t; /** * @brief Fields retrieved from skyhawk that used used to build chained SGL */ typedef struct sli4_sgl_chaining_params_s { uint8_t chaining_capable; uint16_t frag_num_field_offset; uint16_t sgl_index_field_offset; uint64_t frag_num_field_mask; uint64_t sgl_index_field_mask; uint32_t chain_sge_initial_value_lo; uint32_t chain_sge_initial_value_hi; } sli4_sgl_chaining_params_t; typedef struct sli4_fip_event_s { uint32_t type; uint32_t index; /* FCF index or UINT32_MAX if invalid */ } sli4_fip_event_t; typedef enum { SLI_RSRC_FCOE_VFI, SLI_RSRC_FCOE_VPI, SLI_RSRC_FCOE_RPI, SLI_RSRC_FCOE_XRI, SLI_RSRC_FCOE_FCFI, SLI_RSRC_MAX /* must be last */ } sli4_resource_e; typedef enum { SLI4_PORT_TYPE_FC, SLI4_PORT_TYPE_NIC, SLI4_PORT_TYPE_MAX /* must be last */ } sli4_port_type_e; typedef enum { SLI4_ASIC_TYPE_BE3 = 1, SLI4_ASIC_TYPE_SKYHAWK, SLI4_ASIC_TYPE_LANCER, SLI4_ASIC_TYPE_CORSAIR, SLI4_ASIC_TYPE_LANCERG6, SLI4_ASIC_TYPE_LANCERG7 } sli4_asic_type_e; typedef enum { SLI4_ASIC_REV_FPGA = 1, SLI4_ASIC_REV_A0, SLI4_ASIC_REV_A1, SLI4_ASIC_REV_A2, SLI4_ASIC_REV_A3, SLI4_ASIC_REV_B0, SLI4_ASIC_REV_B1, SLI4_ASIC_REV_C0, SLI4_ASIC_REV_D0, } sli4_asic_rev_e; typedef struct sli4_s { ocs_os_handle_t os; sli4_port_type_e port_type; uint32_t sli_rev; /* SLI revision number */ uint32_t sli_family; uint32_t if_type; /* SLI Interface type */ sli4_asic_type_e asic_type; /*<< ASIC type */ sli4_asic_rev_e asic_rev; /*<< ASIC revision */ uint32_t physical_port; struct { uint16_t e_d_tov; uint16_t r_a_tov; uint16_t max_qcount[SLI_QTYPE_MAX]; uint32_t max_qentries[SLI_QTYPE_MAX]; uint16_t count_mask[SLI_QTYPE_MAX]; uint16_t count_method[SLI_QTYPE_MAX]; uint32_t qpage_count[SLI_QTYPE_MAX]; uint16_t link_module_type; uint8_t rq_batch; uint16_t rq_min_buf_size; uint32_t rq_max_buf_size; uint8_t topology; uint8_t pt:4, tf:1, ptv:1, :2; uint8_t wwpn[8]; uint8_t wwnn[8]; uint32_t fw_rev[2]; uint8_t fw_name[2][16]; char ipl_name[16]; uint32_t hw_rev[3]; uint8_t port_number; char port_name[2]; char bios_version_string[32]; uint8_t dual_ulp_capable; uint8_t is_ulp_fc[2]; /* * Tracks the port resources using extents metaphor. For * devices that don't implement extents (i.e. * has_extents == FALSE), the code models each resource as * a single large extent. */ struct { uint32_t number; /* number of extents */ uint32_t size; /* number of elements in each extent */ uint32_t n_alloc;/* number of elements allocated */ uint32_t *base; ocs_bitmap_t *use_map;/* bitmap showing resources in use */ uint32_t map_size;/* number of bits in bitmap */ } extent[SLI_RSRC_MAX]; sli4_features_t features; uint32_t has_extents:1, auto_reg:1, auto_xfer_rdy:1, hdr_template_req:1, perf_hint:1, perf_wq_id_association:1, cq_create_version:2, mq_create_version:2, high_login_mode:1, sgl_pre_registered:1, sgl_pre_registration_required:1, t10_dif_inline_capable:1, t10_dif_separate_capable:1; uint32_t sge_supported_length; uint32_t sgl_page_sizes; uint32_t max_sgl_pages; sli4_sgl_chaining_params_t sgl_chaining_params; size_t wqe_size; } config; /* * Callback functions */ int32_t (*link)(void *, void *); void *link_arg; int32_t (*fip)(void *, void *); void *fip_arg; ocs_dma_t bmbx; #if defined(OCS_INCLUDE_DEBUG) /* Save pointer to physical memory descriptor for non-embedded SLI_CONFIG * commands for BMBX dumping purposes */ ocs_dma_t *bmbx_non_emb_pmd; #endif struct { ocs_dma_t data; uint32_t length; } vpd; } sli4_t; /** * Get / set parameter functions */ static inline uint32_t sli_get_max_rsrc(sli4_t *sli4, sli4_resource_e rsrc) { if (rsrc >= SLI_RSRC_MAX) { return 0; } return sli4->config.extent[rsrc].size; } static inline uint32_t sli_get_max_queue(sli4_t *sli4, sli4_qtype_e qtype) { if (qtype >= SLI_QTYPE_MAX) { return 0; } return sli4->config.max_qcount[qtype]; } static inline uint32_t sli_get_max_qentries(sli4_t *sli4, sli4_qtype_e qtype) { return sli4->config.max_qentries[qtype]; } static inline uint32_t sli_get_max_sge(sli4_t *sli4) { return sli4->config.sge_supported_length; } static inline uint32_t sli_get_max_sgl(sli4_t *sli4) { if (sli4->config.sgl_page_sizes != 1) { ocs_log_test(sli4->os, "unsupported SGL page sizes %#x\n", sli4->config.sgl_page_sizes); return 0; } return ((sli4->config.max_sgl_pages * SLI_PAGE_SIZE) / sizeof(sli4_sge_t)); } static inline sli4_link_medium_e sli_get_medium(sli4_t *sli4) { switch (sli4->config.topology) { case SLI4_READ_CFG_TOPO_FCOE: return SLI_LINK_MEDIUM_ETHERNET; case SLI4_READ_CFG_TOPO_FC: case SLI4_READ_CFG_TOPO_FC_DA: case SLI4_READ_CFG_TOPO_FC_AL: return SLI_LINK_MEDIUM_FC; default: return SLI_LINK_MEDIUM_MAX; } } static inline void sli_skh_chain_sge_build(sli4_t *sli4, sli4_sge_t *sge, uint32_t xri_index, uint32_t frag_num, uint32_t offset) { sli4_sgl_chaining_params_t *cparms = &sli4->config.sgl_chaining_params; ocs_memset(sge, 0, sizeof(*sge)); sge->sge_type = SLI4_SGE_TYPE_CHAIN; sge->buffer_address_high = (uint32_t)cparms->chain_sge_initial_value_hi; sge->buffer_address_low = (uint32_t)((cparms->chain_sge_initial_value_lo | (((uintptr_t)(xri_index & cparms->sgl_index_field_mask)) << cparms->sgl_index_field_offset) | (((uintptr_t)(frag_num & cparms->frag_num_field_mask)) << cparms->frag_num_field_offset) | offset) >> 3); } static inline uint32_t sli_get_sli_rev(sli4_t *sli4) { return sli4->sli_rev; } static inline uint32_t sli_get_sli_family(sli4_t *sli4) { return sli4->sli_family; } static inline uint32_t sli_get_if_type(sli4_t *sli4) { return sli4->if_type; } static inline void * sli_get_wwn_port(sli4_t *sli4) { return sli4->config.wwpn; } static inline void * sli_get_wwn_node(sli4_t *sli4) { return sli4->config.wwnn; } static inline void * sli_get_vpd(sli4_t *sli4) { return sli4->vpd.data.virt; } static inline uint32_t sli_get_vpd_len(sli4_t *sli4) { return sli4->vpd.length; } static inline uint32_t sli_get_fw_revision(sli4_t *sli4, uint32_t which) { return sli4->config.fw_rev[which]; } static inline void * sli_get_fw_name(sli4_t *sli4, uint32_t which) { return sli4->config.fw_name[which]; } static inline char * sli_get_ipl_name(sli4_t *sli4) { return sli4->config.ipl_name; } static inline uint32_t sli_get_hw_revision(sli4_t *sli4, uint32_t which) { return sli4->config.hw_rev[which]; } static inline uint32_t sli_get_auto_xfer_rdy_capable(sli4_t *sli4) { return sli4->config.auto_xfer_rdy; } static inline uint32_t sli_get_dif_capable(sli4_t *sli4) { return sli4->config.features.flag.dif; } static inline uint32_t sli_is_dif_inline_capable(sli4_t *sli4) { return sli_get_dif_capable(sli4) && sli4->config.t10_dif_inline_capable; } static inline uint32_t sli_is_dif_separate_capable(sli4_t *sli4) { return sli_get_dif_capable(sli4) && sli4->config.t10_dif_separate_capable; } static inline uint32_t sli_get_is_dual_ulp_capable(sli4_t *sli4) { return sli4->config.dual_ulp_capable; } static inline uint32_t sli_get_is_sgl_chaining_capable(sli4_t *sli4) { return sli4->config.sgl_chaining_params.chaining_capable; } static inline uint32_t sli_get_is_ulp_enabled(sli4_t *sli4, uint16_t ulp) { return sli4->config.is_ulp_fc[ulp]; } static inline uint32_t sli_get_hlm_capable(sli4_t *sli4) { return sli4->config.features.flag.hlm; } static inline int32_t sli_set_hlm(sli4_t *sli4, uint32_t value) { if (value && !sli4->config.features.flag.hlm) { ocs_log_test(sli4->os, "HLM not supported\n"); return -1; } sli4->config.high_login_mode = value != 0 ? TRUE : FALSE; return 0; } static inline uint32_t sli_get_hlm(sli4_t *sli4) { return sli4->config.high_login_mode; } static inline uint32_t sli_get_sgl_preregister_required(sli4_t *sli4) { return sli4->config.sgl_pre_registration_required; } static inline uint32_t sli_get_sgl_preregister(sli4_t *sli4) { return sli4->config.sgl_pre_registered; } static inline int32_t sli_set_sgl_preregister(sli4_t *sli4, uint32_t value) { if ((value == 0) && sli4->config.sgl_pre_registration_required) { ocs_log_test(sli4->os, "SGL pre-registration required\n"); return -1; } sli4->config.sgl_pre_registered = value != 0 ? TRUE : FALSE; return 0; } static inline sli4_asic_type_e sli_get_asic_type(sli4_t *sli4) { return sli4->asic_type; } static inline sli4_asic_rev_e sli_get_asic_rev(sli4_t *sli4) { return sli4->asic_rev; } static inline int32_t sli_set_topology(sli4_t *sli4, uint32_t value) { int32_t rc = 0; switch (value) { case SLI4_READ_CFG_TOPO_FCOE: case SLI4_READ_CFG_TOPO_FC: case SLI4_READ_CFG_TOPO_FC_DA: case SLI4_READ_CFG_TOPO_FC_AL: sli4->config.topology = value; break; default: ocs_log_test(sli4->os, "unsupported topology %#x\n", value); rc = -1; } return rc; } static inline void sli_config_persistent_topology(sli4_t *sli4, sli4_req_common_set_features_persistent_topo_param_t *req) { sli4->config.pt = req->persistent_topo; sli4->config.tf = req->topo_failover; } static inline uint16_t sli_get_link_module_type(sli4_t *sli4) { return sli4->config.link_module_type; } static inline char * sli_get_portnum(sli4_t *sli4) { return sli4->config.port_name; } static inline char * sli_get_bios_version_string(sli4_t *sli4) { return sli4->config.bios_version_string; } static inline uint32_t sli_convert_mask_to_count(uint32_t method, uint32_t mask) { uint32_t count = 0; if (method) { count = 1 << ocs_lg2(mask); count *= 16; } else { count = mask; } return count; } static inline bool sli_fcal_is_speed_supported(uint32_t link_speed) { if ((link_speed == FC_LINK_SPEED_16G) || (link_speed == FC_LINK_SPEED_32G) || (link_speed >= FC_LINK_SPEED_AUTO_32_16)) { ocs_log_err(NULL, "unsupported FC-AL speed (speed_code: %d)\n", link_speed); return FALSE; } return TRUE; } /** * @brief Common Create Queue function prototype */ typedef int32_t (*sli4_create_q_fn_t)(sli4_t *, void *, size_t, ocs_dma_t *, uint16_t, uint16_t); /** * @brief Common Destroy Queue function prototype */ typedef int32_t (*sli4_destroy_q_fn_t)(sli4_t *, void *, size_t, uint16_t); /**************************************************************************** * Function prototypes */ extern int32_t sli_cmd_config_auto_xfer_rdy(sli4_t *, void *, size_t, uint32_t); extern int32_t sli_cmd_config_auto_xfer_rdy_hp(sli4_t *, void *, size_t, uint32_t, uint32_t, uint32_t); extern int32_t sli_cmd_config_link(sli4_t *, void *, size_t); extern int32_t sli_cmd_down_link(sli4_t *, void *, size_t); extern int32_t sli_cmd_dump_type4(sli4_t *, void *, size_t, uint16_t); extern int32_t sli_cmd_common_read_transceiver_data(sli4_t *, void *, size_t, uint32_t, ocs_dma_t *); extern int32_t sli_cmd_read_link_stats(sli4_t *, void *, size_t,uint8_t, uint8_t, uint8_t); extern int32_t sli_cmd_read_status(sli4_t *sli4, void *buf, size_t size, uint8_t clear_counters); extern int32_t sli_cmd_init_link(sli4_t *, void *, size_t, uint32_t, uint8_t); extern int32_t sli_cmd_init_vfi(sli4_t *, void *, size_t, uint16_t, uint16_t, uint16_t); extern int32_t sli_cmd_init_vpi(sli4_t *, void *, size_t, uint16_t, uint16_t); extern int32_t sli_cmd_post_xri(sli4_t *, void *, size_t, uint16_t, uint16_t); extern int32_t sli_cmd_release_xri(sli4_t *, void *, size_t, uint8_t); extern int32_t sli_cmd_read_sparm64(sli4_t *, void *, size_t, ocs_dma_t *, uint16_t); extern int32_t sli_cmd_read_topology(sli4_t *, void *, size_t, ocs_dma_t *); extern int32_t sli_cmd_read_nvparms(sli4_t *, void *, size_t); extern int32_t sli_cmd_write_nvparms(sli4_t *, void *, size_t, uint8_t *, uint8_t *, uint8_t, uint32_t); typedef struct { uint16_t rq_id; uint8_t r_ctl_mask; uint8_t r_ctl_match; uint8_t type_mask; uint8_t type_match; } sli4_cmd_rq_cfg_t; extern int32_t sli_cmd_reg_fcfi(sli4_t *, void *, size_t, uint16_t, sli4_cmd_rq_cfg_t rq_cfg[SLI4_CMD_REG_FCFI_NUM_RQ_CFG], uint16_t); extern int32_t sli_cmd_reg_fcfi_mrq(sli4_t *, void *, size_t, uint8_t, uint16_t, uint16_t, uint8_t, uint8_t , uint16_t, sli4_cmd_rq_cfg_t rq_cfg[SLI4_CMD_REG_FCFI_NUM_RQ_CFG]); extern int32_t sli_cmd_reg_rpi(sli4_t *, void *, size_t, uint32_t, uint16_t, uint16_t, ocs_dma_t *, uint8_t, uint8_t); extern int32_t sli_cmd_reg_vfi(sli4_t *, void *, size_t, ocs_domain_t *); extern int32_t sli_cmd_reg_vpi(sli4_t *, void *, size_t, ocs_sli_port_t *, uint8_t); extern int32_t sli_cmd_sli_config(sli4_t *, void *, size_t, uint32_t, ocs_dma_t *); extern int32_t sli_cmd_unreg_fcfi(sli4_t *, void *, size_t, uint16_t); extern int32_t sli_cmd_unreg_rpi(sli4_t *, void *, size_t, uint16_t, sli4_resource_e, uint32_t); extern int32_t sli_cmd_unreg_vfi(sli4_t *, void *, size_t, ocs_domain_t *, uint32_t); extern int32_t sli_cmd_unreg_vpi(sli4_t *, void *, size_t, uint16_t, uint32_t); extern int32_t sli_cmd_common_nop(sli4_t *, void *, size_t, uint64_t); extern int32_t sli_cmd_common_get_resource_extent_info(sli4_t *, void *, size_t, uint16_t); extern int32_t sli_cmd_common_get_sli4_parameters(sli4_t *, void *, size_t); extern int32_t sli_cmd_common_write_object(sli4_t *, void *, size_t, uint16_t, uint16_t, uint32_t, uint32_t, char *, ocs_dma_t *); extern int32_t sli_cmd_common_delete_object(sli4_t *, void *, size_t, char *); extern int32_t sli_cmd_common_read_object(sli4_t *, void *, size_t, uint32_t, uint32_t, char *, ocs_dma_t *); extern int32_t sli_cmd_dmtf_exec_clp_cmd(sli4_t *sli4, void *buf, size_t size, ocs_dma_t *cmd, ocs_dma_t *resp); extern int32_t sli_cmd_common_set_dump_location(sli4_t *sli4, void *buf, size_t size, uint8_t query, uint8_t is_buffer_list, ocs_dma_t *buffer, uint8_t fdb); extern int32_t sli_cmd_common_set_features(sli4_t *, void *, size_t, uint32_t, uint32_t, void*); extern int32_t sli_cmd_common_get_profile_list(sli4_t *sli4, void *buf, size_t size, uint32_t start_profile_index, ocs_dma_t *dma); extern int32_t sli_cmd_common_get_active_profile(sli4_t *sli4, void *buf, size_t size); extern int32_t sli_cmd_common_set_active_profile(sli4_t *sli4, void *buf, size_t size, uint32_t fd, uint32_t active_profile_id); extern int32_t sli_cmd_common_get_reconfig_link_info(sli4_t *sli4, void *buf, size_t size, ocs_dma_t *dma); extern int32_t sli_cmd_common_set_reconfig_link_id(sli4_t *sli4, void *buf, size_t size, ocs_dma_t *dma, uint32_t fd, uint32_t active_link_config_id); extern int32_t sli_cmd_common_get_function_config(sli4_t *sli4, void *buf, size_t size); extern int32_t sli_cmd_common_get_profile_config(sli4_t *sli4, void *buf, size_t size, ocs_dma_t *dma); extern int32_t sli_cmd_common_set_profile_config(sli4_t *sli4, void *buf, size_t size, ocs_dma_t *dma, uint8_t profile_id, uint32_t descriptor_count, uint8_t isap); extern int32_t sli_cqe_mq(void *); extern int32_t sli_cqe_async(sli4_t *, void *); extern int32_t sli_setup(sli4_t *, ocs_os_handle_t, sli4_port_type_e); extern void sli_calc_max_qentries(sli4_t *sli4); extern int32_t sli_init(sli4_t *); extern int32_t sli_reset(sli4_t *); extern int32_t sli_fw_reset(sli4_t *); extern int32_t sli_teardown(sli4_t *); extern int32_t sli_callback(sli4_t *, sli4_callback_e, void *, void *); extern int32_t sli_bmbx_command(sli4_t *); extern int32_t __sli_queue_init(sli4_t *, sli4_queue_t *, uint32_t, size_t, uint32_t, uint32_t); extern int32_t __sli_create_queue(sli4_t *, sli4_queue_t *); extern int32_t sli_eq_modify_delay(sli4_t *sli4, sli4_queue_t *eq, uint32_t num_eq, uint32_t shift, uint32_t delay_mult); extern int32_t sli_queue_alloc(sli4_t *, uint32_t, sli4_queue_t *, uint32_t, sli4_queue_t *, uint16_t); extern int32_t sli_cq_alloc_set(sli4_t *, sli4_queue_t *qs[], uint32_t, uint32_t, sli4_queue_t *eqs[]); extern int32_t sli_get_queue_entry_size(sli4_t *, uint32_t); extern int32_t sli_queue_free(sli4_t *, sli4_queue_t *, uint32_t, uint32_t); extern int32_t sli_queue_reset(sli4_t *, sli4_queue_t *); extern int32_t sli_queue_is_empty(sli4_t *, sli4_queue_t *); extern int32_t sli_queue_eq_arm(sli4_t *, sli4_queue_t *, uint8_t); extern int32_t sli_queue_arm(sli4_t *, sli4_queue_t *, uint8_t); extern int32_t _sli_queue_write(sli4_t *, sli4_queue_t *, uint8_t *); extern int32_t sli_queue_write(sli4_t *, sli4_queue_t *, uint8_t *); extern int32_t sli_queue_read(sli4_t *, sli4_queue_t *, uint8_t *); extern int32_t sli_queue_index(sli4_t *, sli4_queue_t *); extern int32_t _sli_queue_poke(sli4_t *, sli4_queue_t *, uint32_t, uint8_t *); extern int32_t sli_queue_poke(sli4_t *, sli4_queue_t *, uint32_t, uint8_t *); extern int32_t sli_resource_alloc(sli4_t *, sli4_resource_e, uint32_t *, uint32_t *); extern int32_t sli_resource_free(sli4_t *, sli4_resource_e, uint32_t); extern int32_t sli_resource_reset(sli4_t *, sli4_resource_e); extern int32_t sli_eq_parse(sli4_t *, uint8_t *, uint16_t *); extern int32_t sli_cq_parse(sli4_t *, sli4_queue_t *, uint8_t *, sli4_qentry_e *, uint16_t *); extern int32_t sli_raise_ue(sli4_t *, uint8_t); extern int32_t sli_dump_is_ready(sli4_t *); extern int32_t sli_dump_is_present(sli4_t *); extern int32_t sli_reset_required(sli4_t *); extern int32_t sli_fw_error_status(sli4_t *); extern int32_t sli_fw_ready(sli4_t *); extern uint32_t sli_reg_read(sli4_t *, sli4_regname_e); extern void sli_reg_write(sli4_t *, sli4_regname_e, uint32_t); extern int32_t sli_link_is_configurable(sli4_t *); #include "ocs_fcp.h" /** * @brief Maximum value for a FCFI * * Note that although most commands provide a 16 bit field for the FCFI, * the FC/FCoE Asynchronous Recived CQE format only provides 6 bits for * the returned FCFI. Then effectively, the FCFI cannot be larger than * 1 << 6 or 64. */ #define SLI4_MAX_FCFI 64 /** * @brief Maximum value for FCF index * * The SLI-4 specification uses a 16 bit field in most places for the FCF * index, but practically, this value will be much smaller. Arbitrarily * limit the max FCF index to match the max FCFI value. */ #define SLI4_MAX_FCF_INDEX SLI4_MAX_FCFI /************************************************************************* * SLI-4 FC/FCoE mailbox command formats and definitions. */ /** * FC/FCoE opcode (OPC) values. */ #define SLI4_OPC_FCOE_WQ_CREATE 0x1 #define SLI4_OPC_FCOE_WQ_DESTROY 0x2 #define SLI4_OPC_FCOE_POST_SGL_PAGES 0x3 #define SLI4_OPC_FCOE_RQ_CREATE 0x5 #define SLI4_OPC_FCOE_RQ_DESTROY 0x6 #define SLI4_OPC_FCOE_READ_FCF_TABLE 0x8 #define SLI4_OPC_FCOE_POST_HDR_TEMPLATES 0xb #define SLI4_OPC_FCOE_REDISCOVER_FCF 0x10 /* Use the default CQ associated with the WQ */ #define SLI4_CQ_DEFAULT 0xffff typedef struct sli4_physical_page_descriptor_s { uint32_t low; uint32_t high; } sli4_physical_page_descriptor_t; /** * @brief FCOE_WQ_CREATE * * Create a Work Queue for FC/FCoE use. */ #define SLI4_FCOE_WQ_CREATE_V0_MAX_PAGES 4 typedef struct sli4_req_fcoe_wq_create_s { sli4_req_hdr_t hdr; #if BYTE_ORDER == LITTLE_ENDIAN uint32_t num_pages:8, dua:1, :7, cq_id:16; sli4_physical_page_descriptor_t page_physical_address[SLI4_FCOE_WQ_CREATE_V0_MAX_PAGES]; uint32_t bqu:1, :7, ulp:8, :16; #else #error big endian version not defined #endif } sli4_req_fcoe_wq_create_t; /** * @brief FCOE_WQ_CREATE_V1 * * Create a version 1 Work Queue for FC/FCoE use. */ typedef struct sli4_req_fcoe_wq_create_v1_s { sli4_req_hdr_t hdr; #if BYTE_ORDER == LITTLE_ENDIAN uint32_t num_pages:16, cq_id:16; uint32_t page_size:8, wqe_size:4, :4, wqe_count:16; uint32_t rsvd6; sli4_physical_page_descriptor_t page_physical_address[8]; #else #error big endian version not defined #endif } sli4_req_fcoe_wq_create_v1_t; #define SLI4_FCOE_WQ_CREATE_V1_MAX_PAGES 8 /** * @brief FCOE_WQ_DESTROY * * Destroy an FC/FCoE Work Queue. */ typedef struct sli4_req_fcoe_wq_destroy_s { sli4_req_hdr_t hdr; #if BYTE_ORDER == LITTLE_ENDIAN uint32_t wq_id:16, :16; #else #error big endian version not defined #endif } sli4_req_fcoe_wq_destroy_t; /** * @brief FCOE_POST_SGL_PAGES * * Register the scatter gather list (SGL) memory and associate it with an XRI. */ typedef struct sli4_req_fcoe_post_sgl_pages_s { sli4_req_hdr_t hdr; #if BYTE_ORDER == LITTLE_ENDIAN uint32_t xri_start:16, xri_count:16; struct { uint32_t page0_low; uint32_t page0_high; uint32_t page1_low; uint32_t page1_high; } page_set[10]; #else #error big endian version not defined #endif } sli4_req_fcoe_post_sgl_pages_t; /** * @brief FCOE_RQ_CREATE * * Create a Receive Queue for FC/FCoE use. */ typedef struct sli4_req_fcoe_rq_create_s { sli4_req_hdr_t hdr; #if BYTE_ORDER == LITTLE_ENDIAN uint32_t num_pages:16, dua:1, bqu:1, :6, ulp:8; uint32_t :16, rqe_count:4, :12; uint32_t rsvd6; uint32_t buffer_size:16, cq_id:16; uint32_t rsvd8; sli4_physical_page_descriptor_t page_physical_address[8]; #else #error big endian version not defined #endif } sli4_req_fcoe_rq_create_t; #define SLI4_FCOE_RQ_CREATE_V0_MAX_PAGES 8 #define SLI4_FCOE_RQ_CREATE_V0_MIN_BUF_SIZE 128 #define SLI4_FCOE_RQ_CREATE_V0_MAX_BUF_SIZE 2048 /** * @brief FCOE_RQ_CREATE_V1 * * Create a version 1 Receive Queue for FC/FCoE use. */ typedef struct sli4_req_fcoe_rq_create_v1_s { sli4_req_hdr_t hdr; #if BYTE_ORDER == LITTLE_ENDIAN uint32_t num_pages:16, :13, dim:1, dfd:1, dnb:1; uint32_t page_size:8, rqe_size:4, :4, rqe_count:16; uint32_t rsvd6; uint32_t :16, cq_id:16; uint32_t buffer_size; sli4_physical_page_descriptor_t page_physical_address[8]; #else #error big endian version not defined #endif } sli4_req_fcoe_rq_create_v1_t; /** * @brief FCOE_RQ_CREATE_V2 * * Create a version 2 Receive Queue for FC/FCoE use. */ typedef struct sli4_req_fcoe_rq_create_v2_s { sli4_req_hdr_t hdr; #if BYTE_ORDER == LITTLE_ENDIAN uint32_t num_pages:16, rq_count:8, :5, dim:1, dfd:1, dnb:1; uint32_t page_size:8, rqe_size:4, :4, rqe_count:16; uint32_t hdr_buffer_size:16, payload_buffer_size:16; uint32_t base_cq_id:16, :16; uint32_t rsvd; sli4_physical_page_descriptor_t page_physical_address[0]; #else #error big endian version not defined #endif } sli4_req_fcoe_rq_create_v2_t; #define SLI4_FCOE_RQ_CREATE_V1_MAX_PAGES 8 #define SLI4_FCOE_RQ_CREATE_V1_MIN_BUF_SIZE 64 #define SLI4_FCOE_RQ_CREATE_V1_MAX_BUF_SIZE 2048 #define SLI4_FCOE_RQE_SIZE_8 0x2 #define SLI4_FCOE_RQE_SIZE_16 0x3 #define SLI4_FCOE_RQE_SIZE_32 0x4 #define SLI4_FCOE_RQE_SIZE_64 0x5 #define SLI4_FCOE_RQE_SIZE_128 0x6 #define SLI4_FCOE_RQ_PAGE_SIZE_4096 0x1 #define SLI4_FCOE_RQ_PAGE_SIZE_8192 0x2 #define SLI4_FCOE_RQ_PAGE_SIZE_16384 0x4 #define SLI4_FCOE_RQ_PAGE_SIZE_32768 0x8 #define SLI4_FCOE_RQ_PAGE_SIZE_64536 0x10 #define SLI4_FCOE_RQE_SIZE 8 /** * @brief FCOE_RQ_DESTROY * * Destroy an FC/FCoE Receive Queue. */ typedef struct sli4_req_fcoe_rq_destroy_s { sli4_req_hdr_t hdr; #if BYTE_ORDER == LITTLE_ENDIAN uint32_t rq_id:16, :16; #else #error big endian version not defined #endif } sli4_req_fcoe_rq_destroy_t; /** * @brief FCOE_READ_FCF_TABLE * * Retrieve a FCF database (also known as a table) entry created by the SLI Port * during FIP discovery. */ typedef struct sli4_req_fcoe_read_fcf_table_s { sli4_req_hdr_t hdr; #if BYTE_ORDER == LITTLE_ENDIAN uint32_t fcf_index:16, :16; #else #error big endian version not defined #endif } sli4_req_fcoe_read_fcf_table_t; /* A FCF index of -1 on the request means return the first valid entry */ #define SLI4_FCOE_FCF_TABLE_FIRST (UINT16_MAX) /** * @brief FCF table entry * * This is the information returned by the FCOE_READ_FCF_TABLE command. */ typedef struct sli4_fcf_entry_s { #if BYTE_ORDER == LITTLE_ENDIAN uint32_t max_receive_size; uint32_t fip_keep_alive; uint32_t fip_priority; uint8_t fcf_mac_address[6]; uint8_t fcf_available; uint8_t mac_address_provider; uint8_t fabric_name_id[8]; uint8_t fc_map[3]; uint8_t val:1, fc:1, :5, sol:1; uint32_t fcf_index:16, fcf_state:16; uint8_t vlan_bitmap[512]; uint8_t switch_name[8]; #else #error big endian version not defined #endif } sli4_fcf_entry_t; /** * @brief FCOE_READ_FCF_TABLE response. */ typedef struct sli4_res_fcoe_read_fcf_table_s { sli4_res_hdr_t hdr; #if BYTE_ORDER == LITTLE_ENDIAN uint32_t event_tag; uint32_t next_index:16, :16; sli4_fcf_entry_t fcf_entry; #else #error big endian version not defined #endif } sli4_res_fcoe_read_fcf_table_t; /* A next FCF index of -1 in the response means this is the last valid entry */ #define SLI4_FCOE_FCF_TABLE_LAST (UINT16_MAX) /** * @brief FCOE_POST_HDR_TEMPLATES */ typedef struct sli4_req_fcoe_post_hdr_templates_s { sli4_req_hdr_t hdr; #if BYTE_ORDER == LITTLE_ENDIAN uint32_t rpi_offset:16, page_count:16; sli4_physical_page_descriptor_t page_descriptor[0]; #else #error big endian version not defined #endif } sli4_req_fcoe_post_hdr_templates_t; #define SLI4_FCOE_HDR_TEMPLATE_SIZE 64 /** * @brief FCOE_REDISCOVER_FCF */ typedef struct sli4_req_fcoe_rediscover_fcf_s { sli4_req_hdr_t hdr; #if BYTE_ORDER == LITTLE_ENDIAN uint32_t fcf_count:16, :16; uint32_t rsvd5; uint16_t fcf_index[16]; #else #error big endian version not defined #endif } sli4_req_fcoe_rediscover_fcf_t; /** * Work Queue Entry (WQE) types. */ #define SLI4_WQE_ABORT 0x0f #define SLI4_WQE_ELS_REQUEST64 0x8a #define SLI4_WQE_FCP_IBIDIR64 0xac #define SLI4_WQE_FCP_IREAD64 0x9a #define SLI4_WQE_FCP_IWRITE64 0x98 #define SLI4_WQE_FCP_ICMND64 0x9c #define SLI4_WQE_FCP_TRECEIVE64 0xa1 #define SLI4_WQE_FCP_CONT_TRECEIVE64 0xe5 #define SLI4_WQE_FCP_TRSP64 0xa3 #define SLI4_WQE_FCP_TSEND64 0x9f #define SLI4_WQE_GEN_REQUEST64 0xc2 #define SLI4_WQE_SEND_FRAME 0xe1 #define SLI4_WQE_XMIT_BCAST64 0X84 #define SLI4_WQE_XMIT_BLS_RSP 0x97 #define SLI4_WQE_ELS_RSP64 0x95 #define SLI4_WQE_XMIT_SEQUENCE64 0x82 #define SLI4_WQE_REQUEUE_XRI 0x93 /** * WQE command types. */ #define SLI4_CMD_FCP_IREAD64_WQE 0x00 #define SLI4_CMD_FCP_ICMND64_WQE 0x00 #define SLI4_CMD_FCP_IWRITE64_WQE 0x01 #define SLI4_CMD_FCP_TRECEIVE64_WQE 0x02 #define SLI4_CMD_FCP_TRSP64_WQE 0x03 #define SLI4_CMD_FCP_TSEND64_WQE 0x07 #define SLI4_CMD_GEN_REQUEST64_WQE 0x08 #define SLI4_CMD_XMIT_BCAST64_WQE 0x08 #define SLI4_CMD_XMIT_BLS_RSP64_WQE 0x08 #define SLI4_CMD_ABORT_WQE 0x08 #define SLI4_CMD_XMIT_SEQUENCE64_WQE 0x08 #define SLI4_CMD_REQUEUE_XRI_WQE 0x0A #define SLI4_CMD_SEND_FRAME_WQE 0x0a #define SLI4_WQE_SIZE 0x05 #define SLI4_WQE_EXT_SIZE 0x06 #define SLI4_WQE_BYTES (16 * sizeof(uint32_t)) #define SLI4_WQE_EXT_BYTES (32 * sizeof(uint32_t)) /* Mask for ccp (CS_CTL) */ #define SLI4_MASK_CCP 0xfe /* Upper 7 bits of CS_CTL is priority */ /** * @brief Generic WQE */ typedef struct sli4_generic_wqe_s { #if BYTE_ORDER == LITTLE_ENDIAN uint32_t cmd_spec0_5[6]; uint32_t xri_tag:16, context_tag:16; uint32_t :2, ct:2, :4, command:8, class:3, :1, pu:2, :2, timer:8; uint32_t abort_tag; uint32_t request_tag:16, :16; uint32_t ebde_cnt:4, :3, len_loc:2, qosd:1, :1, xbl:1, hlm:1, iod:1, dbde:1, wqes:1, pri:3, pv:1, eat:1, xc:1, :1, ccpe:1, ccp:8; uint32_t cmd_type:4, :3, wqec:1, :8, cq_id:16; #else #error big endian version not defined #endif } sli4_generic_wqe_t; /** * @brief WQE used to abort exchanges. */ typedef struct sli4_abort_wqe_s { #if BYTE_ORDER == LITTLE_ENDIAN uint32_t rsvd0; uint32_t rsvd1; uint32_t ext_t_tag; uint32_t ia:1, ir:1, :6, criteria:8, :16; uint32_t ext_t_mask; uint32_t t_mask; uint32_t xri_tag:16, context_tag:16; uint32_t :2, ct:2, :4, command:8, class:3, :1, pu:2, :2, timer:8; uint32_t t_tag; uint32_t request_tag:16, :16; uint32_t ebde_cnt:4, :3, len_loc:2, qosd:1, :1, xbl:1, :1, iod:1, dbde:1, wqes:1, pri:3, pv:1, eat:1, xc:1, :1, ccpe:1, ccp:8; uint32_t cmd_type:4, :3, wqec:1, :8, cq_id:16; #else #error big endian version not defined #endif } sli4_abort_wqe_t; #define SLI4_ABORT_CRITERIA_XRI_TAG 0x01 #define SLI4_ABORT_CRITERIA_ABORT_TAG 0x02 #define SLI4_ABORT_CRITERIA_REQUEST_TAG 0x03 #define SLI4_ABORT_CRITERIA_EXT_ABORT_TAG 0x04 typedef enum { SLI_ABORT_XRI, SLI_ABORT_ABORT_ID, SLI_ABORT_REQUEST_ID, SLI_ABORT_MAX, /* must be last */ } sli4_abort_type_e; /** * @brief WQE used to create an ELS request. */ typedef struct sli4_els_request64_wqe_s { sli4_bde_t els_request_payload; #if BYTE_ORDER == LITTLE_ENDIAN uint32_t els_request_payload_length; uint32_t sid:24, sp:1, :7; uint32_t remote_id:24, :8; uint32_t xri_tag:16, context_tag:16; uint32_t :2, ct:2, :4, command:8, class:3, ar:1, pu:2, :2, timer:8; uint32_t abort_tag; uint32_t request_tag:16, temporary_rpi:16; uint32_t ebde_cnt:4, :3, len_loc:2, qosd:1, :1, xbl:1, hlm:1, iod:1, dbde:1, wqes:1, pri:3, pv:1, eat:1, xc:1, :1, ccpe:1, ccp:8; uint32_t cmd_type:4, els_id:3, wqec:1, :8, cq_id:16; sli4_bde_t els_response_payload_bde; uint32_t max_response_payload_length; #else #error big endian version not defined #endif } sli4_els_request64_wqe_t; #define SLI4_ELS_REQUEST64_CONTEXT_RPI 0x0 #define SLI4_ELS_REQUEST64_CONTEXT_VPI 0x1 #define SLI4_ELS_REQUEST64_CONTEXT_VFI 0x2 #define SLI4_ELS_REQUEST64_CONTEXT_FCFI 0x3 #define SLI4_ELS_REQUEST64_CLASS_2 0x1 #define SLI4_ELS_REQUEST64_CLASS_3 0x2 #define SLI4_ELS_REQUEST64_DIR_WRITE 0x0 #define SLI4_ELS_REQUEST64_DIR_READ 0x1 #define SLI4_ELS_REQUEST64_OTHER 0x0 #define SLI4_ELS_REQUEST64_LOGO 0x1 #define SLI4_ELS_REQUEST64_FDISC 0x2 #define SLI4_ELS_REQUEST64_FLOGIN 0x3 #define SLI4_ELS_REQUEST64_PLOGI 0x4 #define SLI4_ELS_REQUEST64_CMD_GEN 0x08 #define SLI4_ELS_REQUEST64_CMD_NON_FABRIC 0x0c #define SLI4_ELS_REQUEST64_CMD_FABRIC 0x0d /** * @brief WQE used to create an FCP initiator no data command. */ typedef struct sli4_fcp_icmnd64_wqe_s { sli4_bde_t bde; #if BYTE_ORDER == LITTLE_ENDIAN uint32_t payload_offset_length:16, fcp_cmd_buffer_length:16; uint32_t rsvd4; uint32_t remote_n_port_id:24, :8; uint32_t xri_tag:16, context_tag:16; uint32_t dif:2, ct:2, bs:3, :1, command:8, class:3, :1, pu:2, erp:1, lnk:1, timer:8; uint32_t abort_tag; uint32_t request_tag:16, :16; uint32_t ebde_cnt:4, :3, len_loc:2, qosd:1, :1, xbl:1, hlm:1, iod:1, dbde:1, wqes:1, pri:3, pv:1, eat:1, xc:1, :1, ccpe:1, ccp:8; uint32_t cmd_type:4, :3, wqec:1, :8, cq_id:16; uint32_t rsvd12; uint32_t rsvd13; uint32_t rsvd14; uint32_t rsvd15; #else #error big endian version not defined #endif } sli4_fcp_icmnd64_wqe_t; /** * @brief WQE used to create an FCP initiator read. */ typedef struct sli4_fcp_iread64_wqe_s { sli4_bde_t bde; #if BYTE_ORDER == LITTLE_ENDIAN uint32_t payload_offset_length:16, fcp_cmd_buffer_length:16; uint32_t total_transfer_length; uint32_t remote_n_port_id:24, :8; uint32_t xri_tag:16, context_tag:16; uint32_t dif:2, ct:2, bs:3, :1, command:8, class:3, :1, pu:2, erp:1, lnk:1, timer:8; uint32_t abort_tag; uint32_t request_tag:16, :16; uint32_t ebde_cnt:4, :3, len_loc:2, qosd:1, :1, xbl:1, hlm:1, iod:1, dbde:1, wqes:1, pri:3, pv:1, eat:1, xc:1, :1, ccpe:1, ccp:8; uint32_t cmd_type:4, :3, wqec:1, :8, cq_id:16; uint32_t rsvd12; #else #error big endian version not defined #endif sli4_bde_t first_data_bde; /* reserved if performance hints disabled */ } sli4_fcp_iread64_wqe_t; /** * @brief WQE used to create an FCP initiator write. */ typedef struct sli4_fcp_iwrite64_wqe_s { sli4_bde_t bde; #if BYTE_ORDER == LITTLE_ENDIAN uint32_t payload_offset_length:16, fcp_cmd_buffer_length:16; uint32_t total_transfer_length; uint32_t initial_transfer_length; uint32_t xri_tag:16, context_tag:16; uint32_t dif:2, ct:2, bs:3, :1, command:8, class:3, :1, pu:2, erp:1, lnk:1, timer:8; uint32_t abort_tag; uint32_t request_tag:16, :16; uint32_t ebde_cnt:4, :3, len_loc:2, qosd:1, :1, xbl:1, hlm:1, iod:1, dbde:1, wqes:1, pri:3, pv:1, eat:1, xc:1, :1, ccpe:1, ccp:8; uint32_t cmd_type:4, :3, wqec:1, :8, cq_id:16; uint32_t remote_n_port_id:24, :8; #else #error big endian version not defined #endif sli4_bde_t first_data_bde; } sli4_fcp_iwrite64_wqe_t; typedef struct sli4_fcp_128byte_wqe_s { uint32_t dw[32]; } sli4_fcp_128byte_wqe_t; /** * @brief WQE used to create an FCP target receive, and FCP target * receive continue. */ typedef struct sli4_fcp_treceive64_wqe_s { sli4_bde_t bde; #if BYTE_ORDER == LITTLE_ENDIAN uint32_t payload_offset_length; uint32_t relative_offset; /** * DWord 5 can either be the task retry identifier (HLM=0) or * the remote N_Port ID (HLM=1), or if implementing the Skyhawk * T10-PI workaround, the secondary xri tag */ union { uint32_t sec_xri_tag:16, :16; uint32_t dword; } dword5; uint32_t xri_tag:16, context_tag:16; uint32_t dif:2, ct:2, bs:3, :1, command:8, class:3, ar:1, pu:2, conf:1, lnk:1, timer:8; uint32_t abort_tag; uint32_t request_tag:16, remote_xid:16; uint32_t ebde_cnt:4, :1, app_id_valid:1, :1, len_loc:2, qosd:1, wchn:1, xbl:1, hlm:1, iod:1, dbde:1, wqes:1, pri:3, pv:1, eat:1, xc:1, sr:1, ccpe:1, ccp:8; uint32_t cmd_type:4, :3, wqec:1, :8, cq_id:16; uint32_t fcp_data_receive_length; #else #error big endian version not defined #endif sli4_bde_t first_data_bde; /* For performance hints */ } sli4_fcp_treceive64_wqe_t; /** * @brief WQE used to create an FCP target response. */ typedef struct sli4_fcp_trsp64_wqe_s { sli4_bde_t bde; #if BYTE_ORDER == LITTLE_ENDIAN uint32_t fcp_response_length; uint32_t rsvd4; /** * DWord 5 can either be the task retry identifier (HLM=0) or * the remote N_Port ID (HLM=1) */ uint32_t dword5; uint32_t xri_tag:16, rpi:16; uint32_t :2, ct:2, dnrx:1, :3, command:8, class:3, ag:1, pu:2, conf:1, lnk:1, timer:8; uint32_t abort_tag; uint32_t request_tag:16, remote_xid:16; uint32_t ebde_cnt:4, :1, app_id_valid:1, :1, len_loc:2, qosd:1, wchn:1, xbl:1, hlm:1, iod:1, dbde:1, wqes:1, pri:3, pv:1, eat:1, xc:1, sr:1, ccpe:1, ccp:8; uint32_t cmd_type:4, :3, wqec:1, :8, cq_id:16; uint32_t rsvd12; uint32_t rsvd13; uint32_t rsvd14; uint32_t rsvd15; #else #error big endian version not defined #endif } sli4_fcp_trsp64_wqe_t; /** * @brief WQE used to create an FCP target send (DATA IN). */ typedef struct sli4_fcp_tsend64_wqe_s { sli4_bde_t bde; #if BYTE_ORDER == LITTLE_ENDIAN uint32_t payload_offset_length; uint32_t relative_offset; /** * DWord 5 can either be the task retry identifier (HLM=0) or * the remote N_Port ID (HLM=1) */ uint32_t dword5; uint32_t xri_tag:16, rpi:16; uint32_t dif:2, ct:2, bs:3, :1, command:8, class:3, ar:1, pu:2, conf:1, lnk:1, timer:8; uint32_t abort_tag; uint32_t request_tag:16, remote_xid:16; uint32_t ebde_cnt:4, :1, app_id_valid:1, :1, len_loc:2, qosd:1, wchn:1, xbl:1, hlm:1, iod:1, dbde:1, wqes:1, pri:3, pv:1, eat:1, xc:1, sr:1, ccpe:1, ccp:8; uint32_t cmd_type:4, :3, wqec:1, :8, cq_id:16; uint32_t fcp_data_transmit_length; #else #error big endian version not defined #endif sli4_bde_t first_data_bde; /* For performance hints */ } sli4_fcp_tsend64_wqe_t; #define SLI4_IO_CONTINUATION BIT(0) /** The XRI associated with this IO is already active */ #define SLI4_IO_AUTO_GOOD_RESPONSE BIT(1) /** Automatically generate a good RSP frame */ #define SLI4_IO_NO_ABORT BIT(2) #define SLI4_IO_DNRX BIT(3) /** Set the DNRX bit because no auto xref rdy buffer is posted */ /* WQE DIF field contents */ #define SLI4_DIF_DISABLED 0 #define SLI4_DIF_PASS_THROUGH 1 #define SLI4_DIF_STRIP 2 #define SLI4_DIF_INSERT 3 /** * @brief WQE used to create a general request. */ typedef struct sli4_gen_request64_wqe_s { sli4_bde_t bde; #if BYTE_ORDER == LITTLE_ENDIAN uint32_t request_payload_length; uint32_t relative_offset; uint32_t :8, df_ctl:8, type:8, r_ctl:8; uint32_t xri_tag:16, context_tag:16; uint32_t :2, ct:2, :4, command:8, class:3, :1, pu:2, :2, timer:8; uint32_t abort_tag; uint32_t request_tag:16, :16; uint32_t ebde_cnt:4, :3, len_loc:2, qosd:1, :1, xbl:1, hlm:1, iod:1, dbde:1, wqes:1, pri:3, pv:1, eat:1, xc:1, :1, ccpe:1, ccp:8; uint32_t cmd_type:4, :3, wqec:1, :8, cq_id:16; uint32_t remote_n_port_id:24, :8; uint32_t rsvd13; uint32_t rsvd14; uint32_t max_response_payload_length; #else #error big endian version not defined #endif } sli4_gen_request64_wqe_t; /** * @brief WQE used to create a send frame request. */ typedef struct sli4_send_frame_wqe_s { sli4_bde_t bde; #if BYTE_ORDER == LITTLE_ENDIAN uint32_t frame_length; uint32_t fc_header_0_1[2]; uint32_t xri_tag:16, context_tag:16; uint32_t :2, ct:2, :4, command:8, class:3, :1, pu:2, :2, timer:8; uint32_t abort_tag; uint32_t request_tag:16, eof:8, sof:8; uint32_t ebde_cnt:4, :3, lenloc:2, qosd:1, wchn:1, xbl:1, hlm:1, iod:1, dbde:1, wqes:1, pri:3, pv:1, eat:1, xc:1, :1, ccpe:1, ccp:8; uint32_t cmd_type:4, :3, wqec:1, :8, cq_id:16; uint32_t fc_header_2_5[4]; #else #error big endian version not defined #endif } sli4_send_frame_wqe_t; /** * @brief WQE used to create a transmit sequence. */ typedef struct sli4_xmit_sequence64_wqe_s { sli4_bde_t bde; #if BYTE_ORDER == LITTLE_ENDIAN uint32_t remote_n_port_id:24, :8; uint32_t relative_offset; uint32_t :2, si:1, ft:1, :2, xo:1, ls:1, df_ctl:8, type:8, r_ctl:8; uint32_t xri_tag:16, context_tag:16; uint32_t dif:2, ct:2, bs:3, :1, command:8, class:3, :1, pu:2, :2, timer:8; uint32_t abort_tag; uint32_t request_tag:16, remote_xid:16; uint32_t ebde_cnt:4, :3, len_loc:2, qosd:1, :1, xbl:1, hlm:1, iod:1, dbde:1, wqes:1, pri:3, pv:1, eat:1, xc:1, sr:1, ccpe:1, ccp:8; uint32_t cmd_type:4, :3, wqec:1, :8, cq_id:16; uint32_t sequence_payload_len; uint32_t rsvd13; uint32_t rsvd14; uint32_t rsvd15; #else #error big endian version not defined #endif } sli4_xmit_sequence64_wqe_t; /** * @brief WQE used unblock the specified XRI and to release it to the SLI Port's free pool. */ typedef struct sli4_requeue_xri_wqe_s { uint32_t rsvd0; uint32_t rsvd1; uint32_t rsvd2; uint32_t rsvd3; uint32_t rsvd4; uint32_t rsvd5; #if BYTE_ORDER == LITTLE_ENDIAN uint32_t xri_tag:16, context_tag:16; uint32_t :2, ct:2, :4, command:8, class:3, :1, pu:2, :2, timer:8; uint32_t rsvd8; uint32_t request_tag:16, :16; uint32_t ebde_cnt:4, :3, len_loc:2, qosd:1, wchn:1, xbl:1, hlm:1, iod:1, dbde:1, wqes:1, pri:3, pv:1, eat:1, xc:1, :1, ccpe:1, ccp:8; uint32_t cmd_type:4, :3, wqec:1, :8, cq_id:16; uint32_t rsvd12; uint32_t rsvd13; uint32_t rsvd14; uint32_t rsvd15; #else #error big endian version not defined #endif } sli4_requeue_xri_wqe_t; /** * @brief WQE used to send a single frame sequence to broadcast address */ typedef struct sli4_xmit_bcast64_wqe_s { sli4_bde_t sequence_payload; #if BYTE_ORDER == LITTLE_ENDIAN uint32_t sequence_payload_length; uint32_t rsvd4; uint32_t :8, df_ctl:8, type:8, r_ctl:8; uint32_t xri_tag:16, context_tag:16; uint32_t :2, ct:2, :4, command:8, class:3, :1, pu:2, :2, timer:8; uint32_t abort_tag; uint32_t request_tag:16, temporary_rpi:16; uint32_t ebde_cnt:4, :3, len_loc:2, qosd:1, :1, xbl:1, hlm:1, iod:1, dbde:1, wqes:1, pri:3, pv:1, eat:1, xc:1, :1, ccpe:1, ccp:8; uint32_t cmd_type:4, :3, wqec:1, :8, cq_id:16; uint32_t rsvd12; uint32_t rsvd13; uint32_t rsvd14; uint32_t rsvd15; #else #error big endian version not defined #endif } sli4_xmit_bcast64_wqe_t; /** * @brief WQE used to create a BLS response. */ typedef struct sli4_xmit_bls_rsp_wqe_s { #if BYTE_ORDER == LITTLE_ENDIAN uint32_t payload_word0; uint32_t rx_id:16, ox_id:16; uint32_t high_seq_cnt:16, low_seq_cnt:16; uint32_t rsvd3; uint32_t local_n_port_id:24, :8; uint32_t remote_id:24, :6, ar:1, xo:1; uint32_t xri_tag:16, context_tag:16; uint32_t :2, ct:2, :4, command:8, class:3, :1, pu:2, :2, timer:8; uint32_t abort_tag; uint32_t request_tag:16, :16; uint32_t ebde_cnt:4, :3, len_loc:2, qosd:1, :1, xbl:1, hlm:1, iod:1, dbde:1, wqes:1, pri:3, pv:1, eat:1, xc:1, :1, ccpe:1, ccp:8; uint32_t cmd_type:4, :3, wqec:1, :8, cq_id:16; uint32_t temporary_rpi:16, :16; uint32_t rsvd13; uint32_t rsvd14; uint32_t rsvd15; #else #error big endian version not defined #endif } sli4_xmit_bls_rsp_wqe_t; typedef enum { SLI_BLS_ACC, SLI_BLS_RJT, SLI_BLS_MAX } sli_bls_type_e; typedef struct sli_bls_payload_s { sli_bls_type_e type; uint16_t ox_id; uint16_t rx_id; union { struct { uint32_t seq_id_validity:8, seq_id_last:8, :16; uint16_t ox_id; uint16_t rx_id; uint16_t low_seq_cnt; uint16_t high_seq_cnt; } acc; struct { uint32_t vendor_unique:8, reason_explanation:8, reason_code:8, :8; } rjt; } u; } sli_bls_payload_t; /** * @brief WQE used to create an ELS response. */ typedef struct sli4_xmit_els_rsp64_wqe_s { sli4_bde_t els_response_payload; #if BYTE_ORDER == LITTLE_ENDIAN uint32_t els_response_payload_length; uint32_t s_id:24, sp:1, :7; uint32_t remote_id:24, :8; uint32_t xri_tag:16, context_tag:16; uint32_t :2, ct:2, :4, command:8, class:3, :1, pu:2, :2, timer:8; uint32_t abort_tag; uint32_t request_tag:16, ox_id:16; uint32_t ebde_cnt:4, :3, len_loc:2, qosd:1, :1, xbl:1, hlm:1, iod:1, dbde:1, wqes:1, pri:3, pv:1, eat:1, xc:1, :1, ccpe:1, ccp:8; uint32_t cmd_type:4, :3, wqec:1, :8, cq_id:16; uint32_t temporary_rpi:16, :16; uint32_t rsvd13; uint32_t rsvd14; uint32_t rsvd15; #else #error big endian version not defined #endif } sli4_xmit_els_rsp64_wqe_t; /** * @brief Asynchronouse Event: Link State ACQE. */ typedef struct sli4_link_state_s { #if BYTE_ORDER == LITTLE_ENDIAN uint32_t link_number:6, link_type:2, port_link_status:8, port_duplex:8, port_speed:8; uint32_t port_fault:8, :8, logical_link_speed:16; uint32_t event_tag; uint32_t :8, event_code:8, event_type:8, /** values are protocol specific */ :6, ae:1, /** async event - this is an ACQE */ val:1; /** valid - contents of CQE are valid */ #else #error big endian version not defined #endif } sli4_link_state_t; #define SLI4_LINK_ATTN_TYPE_LINK_UP 0x01 #define SLI4_LINK_ATTN_TYPE_LINK_DOWN 0x02 #define SLI4_LINK_ATTN_TYPE_NO_HARD_ALPA 0x03 #define SLI4_LINK_ATTN_P2P 0x01 #define SLI4_LINK_ATTN_FC_AL 0x02 #define SLI4_LINK_ATTN_INTERNAL_LOOPBACK 0x03 #define SLI4_LINK_ATTN_SERDES_LOOPBACK 0x04 #define SLI4_LINK_ATTN_1G 0x01 #define SLI4_LINK_ATTN_2G 0x02 #define SLI4_LINK_ATTN_4G 0x04 #define SLI4_LINK_ATTN_8G 0x08 #define SLI4_LINK_ATTN_10G 0x0a #define SLI4_LINK_ATTN_16G 0x10 #define SLI4_LINK_TYPE_ETHERNET 0x0 #define SLI4_LINK_TYPE_FC 0x1 /** * @brief Asynchronouse Event: FC Link Attention Event. */ typedef struct sli4_link_attention_s { #if BYTE_ORDER == LITTLE_ENDIAN uint32_t link_number:8, attn_type:8, topology:8, port_speed:8; uint32_t port_fault:8, shared_link_status:8, logical_link_speed:16; uint32_t event_tag; uint32_t :8, event_code:8, event_type:8, /** values are protocol specific */ :6, ae:1, /** async event - this is an ACQE */ val:1; /** valid - contents of CQE are valid */ #else #error big endian version not defined #endif } sli4_link_attention_t; /** * @brief FC/FCoE event types. */ #define SLI4_LINK_STATE_PHYSICAL 0x00 #define SLI4_LINK_STATE_LOGICAL 0x01 #define SLI4_FCOE_FIP_FCF_DISCOVERED 0x01 #define SLI4_FCOE_FIP_FCF_TABLE_FULL 0x02 #define SLI4_FCOE_FIP_FCF_DEAD 0x03 #define SLI4_FCOE_FIP_FCF_CLEAR_VLINK 0x04 #define SLI4_FCOE_FIP_FCF_MODIFIED 0x05 #define SLI4_GRP5_QOS_SPEED 0x01 #define SLI4_FC_EVENT_LINK_ATTENTION 0x01 #define SLI4_FC_EVENT_SHARED_LINK_ATTENTION 0x02 #define SLI4_PORT_SPEED_NO_LINK 0x0 #define SLI4_PORT_SPEED_10_MBPS 0x1 #define SLI4_PORT_SPEED_100_MBPS 0x2 #define SLI4_PORT_SPEED_1_GBPS 0x3 #define SLI4_PORT_SPEED_10_GBPS 0x4 #define SLI4_PORT_DUPLEX_NONE 0x0 #define SLI4_PORT_DUPLEX_HWF 0x1 #define SLI4_PORT_DUPLEX_FULL 0x2 #define SLI4_PORT_LINK_STATUS_PHYSICAL_DOWN 0x0 #define SLI4_PORT_LINK_STATUS_PHYSICAL_UP 0x1 #define SLI4_PORT_LINK_STATUS_LOGICAL_DOWN 0x2 #define SLI4_PORT_LINK_STATUS_LOGICAL_UP 0x3 /** * @brief Asynchronouse Event: FCoE/FIP ACQE. */ typedef struct sli4_fcoe_fip_s { #if BYTE_ORDER == LITTLE_ENDIAN uint32_t event_information; uint32_t fcf_count:16, fcoe_event_type:16; uint32_t event_tag; uint32_t :8, event_code:8, event_type:8, /** values are protocol specific */ :6, ae:1, /** async event - this is an ACQE */ val:1; /** valid - contents of CQE are valid */ #else #error big endian version not defined #endif } sli4_fcoe_fip_t; /** * @brief FC/FCoE WQ completion queue entry. */ typedef struct sli4_fc_wcqe_s { #if BYTE_ORDER == LITTLE_ENDIAN uint32_t hw_status:8, status:8, request_tag:16; uint32_t wqe_specific_1; uint32_t wqe_specific_2; uint32_t :15, qx:1, code:8, pri:3, pv:1, xb:1, :2, vld:1; #else #error big endian version not defined #endif } sli4_fc_wcqe_t; /** * @brief FC/FCoE WQ consumed CQ queue entry. */ typedef struct sli4_fc_wqec_s { #if BYTE_ORDER == LITTLE_ENDIAN uint32_t :32; uint32_t :32; uint32_t wqe_index:16, wq_id:16; uint32_t :16, code:8, :7, vld:1; #else #error big endian version not defined #endif } sli4_fc_wqec_t; /** * @brief FC/FCoE Completion Status Codes. */ #define SLI4_FC_WCQE_STATUS_SUCCESS 0x00 #define SLI4_FC_WCQE_STATUS_FCP_RSP_FAILURE 0x01 #define SLI4_FC_WCQE_STATUS_REMOTE_STOP 0x02 #define SLI4_FC_WCQE_STATUS_LOCAL_REJECT 0x03 #define SLI4_FC_WCQE_STATUS_NPORT_RJT 0x04 #define SLI4_FC_WCQE_STATUS_FABRIC_RJT 0x05 #define SLI4_FC_WCQE_STATUS_NPORT_BSY 0x06 #define SLI4_FC_WCQE_STATUS_FABRIC_BSY 0x07 #define SLI4_FC_WCQE_STATUS_LS_RJT 0x09 #define SLI4_FC_WCQE_STATUS_CMD_REJECT 0x0b #define SLI4_FC_WCQE_STATUS_FCP_TGT_LENCHECK 0x0c #define SLI4_FC_WCQE_STATUS_RQ_BUF_LEN_EXCEEDED 0x11 #define SLI4_FC_WCQE_STATUS_RQ_INSUFF_BUF_NEEDED 0x12 #define SLI4_FC_WCQE_STATUS_RQ_INSUFF_FRM_DISC 0x13 #define SLI4_FC_WCQE_STATUS_RQ_DMA_FAILURE 0x14 #define SLI4_FC_WCQE_STATUS_FCP_RSP_TRUNCATE 0x15 #define SLI4_FC_WCQE_STATUS_DI_ERROR 0x16 #define SLI4_FC_WCQE_STATUS_BA_RJT 0x17 #define SLI4_FC_WCQE_STATUS_RQ_INSUFF_XRI_NEEDED 0x18 #define SLI4_FC_WCQE_STATUS_RQ_INSUFF_XRI_DISC 0x19 #define SLI4_FC_WCQE_STATUS_RX_ERROR_DETECT 0x1a #define SLI4_FC_WCQE_STATUS_RX_ABORT_REQUEST 0x1b /* driver generated status codes; better not overlap with chip's status codes! */ -#define SLI4_FC_WCQE_STATUS_TARGET_WQE_TIMEOUT 0xff +#define SLI4_FC_WCQE_STATUS_WQE_TIMEOUT 0xff #define SLI4_FC_WCQE_STATUS_SHUTDOWN 0xfe #define SLI4_FC_WCQE_STATUS_DISPATCH_ERROR 0xfd /** * @brief DI_ERROR Extended Status */ #define SLI4_FC_DI_ERROR_GE (1 << 0) /* Guard Error */ #define SLI4_FC_DI_ERROR_AE (1 << 1) /* Application Tag Error */ #define SLI4_FC_DI_ERROR_RE (1 << 2) /* Reference Tag Error */ #define SLI4_FC_DI_ERROR_TDPV (1 << 3) /* Total Data Placed Valid */ #define SLI4_FC_DI_ERROR_UDB (1 << 4) /* Uninitialized DIF Block */ #define SLI4_FC_DI_ERROR_EDIR (1 << 5) /* Error direction */ /** * @brief Local Reject Reason Codes. */ #define SLI4_FC_LOCAL_REJECT_MISSING_CONTINUE 0x01 #define SLI4_FC_LOCAL_REJECT_SEQUENCE_TIMEOUT 0x02 #define SLI4_FC_LOCAL_REJECT_INTERNAL_ERROR 0x03 #define SLI4_FC_LOCAL_REJECT_INVALID_RPI 0x04 #define SLI4_FC_LOCAL_REJECT_NO_XRI 0x05 #define SLI4_FC_LOCAL_REJECT_ILLEGAL_COMMAND 0x06 #define SLI4_FC_LOCAL_REJECT_XCHG_DROPPED 0x07 #define SLI4_FC_LOCAL_REJECT_ILLEGAL_FIELD 0x08 #define SLI4_FC_LOCAL_REJECT_NO_ABORT_MATCH 0x0c #define SLI4_FC_LOCAL_REJECT_TX_DMA_FAILED 0x0d #define SLI4_FC_LOCAL_REJECT_RX_DMA_FAILED 0x0e #define SLI4_FC_LOCAL_REJECT_ILLEGAL_FRAME 0x0f #define SLI4_FC_LOCAL_REJECT_NO_RESOURCES 0x11 #define SLI4_FC_LOCAL_REJECT_FCP_CONF_FAILURE 0x12 #define SLI4_FC_LOCAL_REJECT_ILLEGAL_LENGTH 0x13 #define SLI4_FC_LOCAL_REJECT_UNSUPPORTED_FEATURE 0x14 #define SLI4_FC_LOCAL_REJECT_ABORT_IN_PROGRESS 0x15 #define SLI4_FC_LOCAL_REJECT_ABORT_REQUESTED 0x16 #define SLI4_FC_LOCAL_REJECT_RCV_BUFFER_TIMEOUT 0x17 #define SLI4_FC_LOCAL_REJECT_LOOP_OPEN_FAILURE 0x18 #define SLI4_FC_LOCAL_REJECT_LINK_DOWN 0x1a #define SLI4_FC_LOCAL_REJECT_CORRUPTED_DATA 0x1b #define SLI4_FC_LOCAL_REJECT_CORRUPTED_RPI 0x1c #define SLI4_FC_LOCAL_REJECT_OUT_OF_ORDER_DATA 0x1d #define SLI4_FC_LOCAL_REJECT_OUT_OF_ORDER_ACK 0x1e #define SLI4_FC_LOCAL_REJECT_DUP_FRAME 0x1f #define SLI4_FC_LOCAL_REJECT_LINK_CONTROL_FRAME 0x20 #define SLI4_FC_LOCAL_REJECT_BAD_HOST_ADDRESS 0x21 #define SLI4_FC_LOCAL_REJECT_MISSING_HDR_BUFFER 0x23 #define SLI4_FC_LOCAL_REJECT_MSEQ_CHAIN_CORRUPTED 0x24 #define SLI4_FC_LOCAL_REJECT_ABORTMULT_REQUESTED 0x25 #define SLI4_FC_LOCAL_REJECT_BUFFER_SHORTAGE 0x28 #define SLI4_FC_LOCAL_REJECT_RCV_XRIBUF_WAITING 0x29 #define SLI4_FC_LOCAL_REJECT_INVALID_VPI 0x2e #define SLI4_FC_LOCAL_REJECT_MISSING_XRIBUF 0x30 #define SLI4_FC_LOCAL_REJECT_INVALID_RELOFFSET 0x40 #define SLI4_FC_LOCAL_REJECT_MISSING_RELOFFSET 0x41 #define SLI4_FC_LOCAL_REJECT_INSUFF_BUFFERSPACE 0x42 #define SLI4_FC_LOCAL_REJECT_MISSING_SI 0x43 #define SLI4_FC_LOCAL_REJECT_MISSING_ES 0x44 #define SLI4_FC_LOCAL_REJECT_INCOMPLETE_XFER 0x45 #define SLI4_FC_LOCAL_REJECT_SLER_FAILURE 0x46 #define SLI4_FC_LOCAL_REJECT_SLER_CMD_RCV_FAILURE 0x47 #define SLI4_FC_LOCAL_REJECT_SLER_REC_RJT_ERR 0x48 #define SLI4_FC_LOCAL_REJECT_SLER_REC_SRR_RETRY_ERR 0x49 #define SLI4_FC_LOCAL_REJECT_SLER_SRR_RJT_ERR 0x4a #define SLI4_FC_LOCAL_REJECT_SLER_RRQ_RJT_ERR 0x4c #define SLI4_FC_LOCAL_REJECT_SLER_RRQ_RETRY_ERR 0x4d #define SLI4_FC_LOCAL_REJECT_SLER_ABTS_ERR 0x4e typedef struct sli4_fc_async_rcqe_s { #if BYTE_ORDER == LITTLE_ENDIAN uint32_t :8, status:8, rq_element_index:12, :4; uint32_t rsvd1; uint32_t fcfi:6, rq_id:10, payload_data_placement_length:16; uint32_t sof_byte:8, eof_byte:8, code:8, header_data_placement_length:6, :1, vld:1; #else #error big endian version not defined #endif } sli4_fc_async_rcqe_t; typedef struct sli4_fc_async_rcqe_v1_s { #if BYTE_ORDER == LITTLE_ENDIAN uint32_t :8, status:8, rq_element_index:12, :4; uint32_t fcfi:6, :26; uint32_t rq_id:16, payload_data_placement_length:16; uint32_t sof_byte:8, eof_byte:8, code:8, header_data_placement_length:6, :1, vld:1; #else #error big endian version not defined #endif } sli4_fc_async_rcqe_v1_t; #define SLI4_FC_ASYNC_RQ_SUCCESS 0x10 #define SLI4_FC_ASYNC_RQ_BUF_LEN_EXCEEDED 0x11 #define SLI4_FC_ASYNC_RQ_INSUFF_BUF_NEEDED 0x12 #define SLI4_FC_ASYNC_RQ_INSUFF_BUF_FRM_DISC 0x13 #define SLI4_FC_ASYNC_RQ_DMA_FAILURE 0x14 typedef struct sli4_fc_coalescing_rcqe_s { #if BYTE_ORDER == LITTLE_ENDIAN uint32_t :8, status:8, rq_element_index:12, :4; uint32_t rsvd1; uint32_t rq_id:16, sequence_reporting_placement_length:16; uint32_t :16, code:8, :7, vld:1; #else #error big endian version not defined #endif } sli4_fc_coalescing_rcqe_t; #define SLI4_FC_COALESCE_RQ_SUCCESS 0x10 #define SLI4_FC_COALESCE_RQ_INSUFF_XRI_NEEDED 0x18 typedef struct sli4_fc_optimized_write_cmd_cqe_s { #if BYTE_ORDER == LITTLE_ENDIAN uint32_t :8, status:8, rq_element_index:15, iv:1; uint32_t fcfi:6, :8, oox:1, agxr:1, xri:16; uint32_t rq_id:16, payload_data_placement_length:16; uint32_t rpi:16, code:8, header_data_placement_length:6, :1, vld:1; #else #error big endian version not defined #endif } sli4_fc_optimized_write_cmd_cqe_t; typedef struct sli4_fc_optimized_write_data_cqe_s { #if BYTE_ORDER == LITTLE_ENDIAN uint32_t hw_status:8, status:8, xri:16; uint32_t total_data_placed; uint32_t extended_status; uint32_t :16, code:8, pri:3, pv:1, xb:1, rha:1, :1, vld:1; #else #error big endian version not defined #endif } sli4_fc_optimized_write_data_cqe_t; typedef struct sli4_fc_xri_aborted_cqe_s { #if BYTE_ORDER == LITTLE_ENDIAN uint32_t :8, status:8, :16; uint32_t extended_status; uint32_t xri:16, remote_xid:16; uint32_t :16, code:8, xr:1, :3, eo:1, br:1, ia:1, vld:1; #else #error big endian version not defined #endif } sli4_fc_xri_aborted_cqe_t; /** * Code definitions applicable to all FC/FCoE CQE types. */ #define SLI4_CQE_CODE_OFFSET 14 #define SLI4_CQE_CODE_WORK_REQUEST_COMPLETION 0x01 #define SLI4_CQE_CODE_RELEASE_WQE 0x02 #define SLI4_CQE_CODE_RQ_ASYNC 0x04 #define SLI4_CQE_CODE_XRI_ABORTED 0x05 #define SLI4_CQE_CODE_RQ_COALESCING 0x06 #define SLI4_CQE_CODE_RQ_CONSUMPTION 0x07 #define SLI4_CQE_CODE_MEASUREMENT_REPORTING 0x08 #define SLI4_CQE_CODE_RQ_ASYNC_V1 0x09 #define SLI4_CQE_CODE_OPTIMIZED_WRITE_CMD 0x0B #define SLI4_CQE_CODE_OPTIMIZED_WRITE_DATA 0x0C extern int32_t sli_fc_process_link_state(sli4_t *, void *); extern int32_t sli_fc_process_link_attention(sli4_t *, void *); extern int32_t sli_fc_cqe_parse(sli4_t *, sli4_queue_t *, uint8_t *, sli4_qentry_e *, uint16_t *); extern uint32_t sli_fc_response_length(sli4_t *, uint8_t *); extern uint32_t sli_fc_io_length(sli4_t *, uint8_t *); extern int32_t sli_fc_els_did(sli4_t *, uint8_t *, uint32_t *); extern uint32_t sli_fc_ext_status(sli4_t *, uint8_t *); extern int32_t sli_fc_rqe_rqid_and_index(sli4_t *, uint8_t *, uint16_t *, uint32_t *); extern int32_t sli_fc_process_fcoe(sli4_t *, void *); extern int32_t sli_cmd_fcoe_wq_create(sli4_t *, void *, size_t, ocs_dma_t *, uint16_t, uint16_t); extern int32_t sli_cmd_fcoe_wq_create_v1(sli4_t *, void *, size_t, ocs_dma_t *, uint16_t, uint16_t); extern int32_t sli_cmd_fcoe_wq_destroy(sli4_t *, void *, size_t, uint16_t); extern int32_t sli_cmd_fcoe_post_sgl_pages(sli4_t *, void *, size_t, uint16_t, uint32_t, ocs_dma_t **, ocs_dma_t **, ocs_dma_t *); extern int32_t sli_cmd_fcoe_rq_create(sli4_t *, void *, size_t, ocs_dma_t *, uint16_t, uint16_t, uint16_t); extern int32_t sli_cmd_fcoe_rq_create_v1(sli4_t *, void *, size_t, ocs_dma_t *, uint16_t, uint16_t, uint16_t); extern int32_t sli_cmd_fcoe_rq_destroy(sli4_t *, void *, size_t, uint16_t); extern int32_t sli_cmd_fcoe_read_fcf_table(sli4_t *, void *, size_t, ocs_dma_t *, uint16_t); extern int32_t sli_cmd_fcoe_post_hdr_templates(sli4_t *, void *, size_t, ocs_dma_t *, uint16_t, ocs_dma_t *); extern int32_t sli_cmd_fcoe_rediscover_fcf(sli4_t *, void *, size_t, uint16_t); extern int32_t sli_fc_rq_alloc(sli4_t *, sli4_queue_t *, uint32_t, uint32_t, sli4_queue_t *, uint16_t, uint8_t); extern int32_t sli_fc_rq_set_alloc(sli4_t *, uint32_t, sli4_queue_t *[], uint32_t, uint32_t, uint32_t, uint32_t, uint16_t); extern uint32_t sli_fc_get_rpi_requirements(sli4_t *, uint32_t); extern int32_t sli_abort_wqe(sli4_t *, void *, size_t, sli4_abort_type_e, uint32_t, uint32_t, uint32_t, uint16_t, uint16_t); extern int32_t sli_els_request64_wqe(sli4_t *, void *, size_t, ocs_dma_t *, uint8_t, uint32_t, uint32_t, uint8_t, uint16_t, uint16_t, uint16_t, ocs_remote_node_t *); extern int32_t sli_fcp_iread64_wqe(sli4_t *, void *, size_t, ocs_dma_t *, uint32_t, uint32_t, uint16_t, uint16_t, uint16_t, uint32_t, ocs_remote_node_t *, uint8_t, uint8_t, uint8_t); extern int32_t sli_fcp_iwrite64_wqe(sli4_t *, void *, size_t, ocs_dma_t *, uint32_t, uint32_t, uint32_t, uint16_t, uint16_t, uint16_t, uint32_t, ocs_remote_node_t *, uint8_t, uint8_t, uint8_t); extern int32_t sli_fcp_icmnd64_wqe(sli4_t *, void *, size_t, ocs_dma_t *, uint16_t, uint16_t, uint16_t, uint32_t, ocs_remote_node_t *, uint8_t); extern int32_t sli_fcp_treceive64_wqe(sli4_t *, void *, size_t, ocs_dma_t *, uint32_t, uint32_t, uint32_t, uint16_t, uint16_t, uint16_t, uint16_t, uint32_t, ocs_remote_node_t *, uint32_t, uint8_t, uint8_t, uint8_t, uint32_t); extern int32_t sli_fcp_trsp64_wqe(sli4_t *, void *, size_t, ocs_dma_t *, uint32_t, uint16_t, uint16_t, uint16_t, uint16_t, uint32_t, ocs_remote_node_t *, uint32_t, uint8_t, uint8_t, uint32_t); extern int32_t sli_fcp_tsend64_wqe(sli4_t *, void *, size_t, ocs_dma_t *, uint32_t, uint32_t, uint32_t, uint16_t, uint16_t, uint16_t, uint16_t, uint32_t, ocs_remote_node_t *, uint32_t, uint8_t, uint8_t, uint8_t, uint32_t); extern int32_t sli_fcp_cont_treceive64_wqe(sli4_t *, void*, size_t, ocs_dma_t *, uint32_t, uint32_t, uint32_t, uint16_t, uint16_t, uint16_t, uint16_t, uint16_t, uint32_t, ocs_remote_node_t *, uint32_t, uint8_t, uint8_t, uint8_t, uint32_t); extern int32_t sli_gen_request64_wqe(sli4_t *, void *, size_t, ocs_dma_t *, uint32_t, uint32_t,uint8_t, uint16_t, uint16_t, uint16_t, ocs_remote_node_t *, uint8_t, uint8_t, uint8_t); extern int32_t sli_send_frame_wqe(sli4_t *sli4, void *buf, size_t size, uint8_t sof, uint8_t eof, uint32_t *hdr, ocs_dma_t *payload, uint32_t req_len, uint8_t timeout, uint16_t xri, uint16_t req_tag); extern int32_t sli_xmit_sequence64_wqe(sli4_t *, void *, size_t, ocs_dma_t *, uint32_t, uint8_t, uint16_t, uint16_t, uint16_t, ocs_remote_node_t *, uint8_t, uint8_t, uint8_t); extern int32_t sli_xmit_bcast64_wqe(sli4_t *, void *, size_t, ocs_dma_t *, uint32_t, uint8_t, uint16_t, uint16_t, uint16_t, ocs_remote_node_t *, uint8_t, uint8_t, uint8_t); extern int32_t sli_xmit_bls_rsp64_wqe(sli4_t *, void *, size_t, sli_bls_payload_t *, uint16_t, uint16_t, uint16_t, ocs_remote_node_t *, uint32_t); extern int32_t sli_xmit_els_rsp64_wqe(sli4_t *, void *, size_t, ocs_dma_t *, uint32_t, uint16_t, uint16_t, uint16_t, uint16_t, ocs_remote_node_t *, uint32_t, uint32_t); extern int32_t sli_requeue_xri_wqe(sli4_t *, void *, size_t, uint16_t, uint16_t, uint16_t); extern void sli4_cmd_lowlevel_set_watchdog(sli4_t *sli4, void *buf, size_t size, uint16_t timeout); extern bool sli_persist_topology_enabled(sli4_t *sli4); /** * @ingroup sli_fc * @brief Retrieve the received header and payload length. * * @param sli4 SLI context. * @param cqe Pointer to the CQ entry. * @param len_hdr Pointer where the header length is written. * @param len_data Pointer where the payload length is written. * * @return Returns 0 on success, or a non-zero value on failure. */ static inline int32_t sli_fc_rqe_length(sli4_t *sli4, void *cqe, uint32_t *len_hdr, uint32_t *len_data) { sli4_fc_async_rcqe_t *rcqe = cqe; *len_hdr = *len_data = 0; if (SLI4_FC_ASYNC_RQ_SUCCESS == rcqe->status) { *len_hdr = rcqe->header_data_placement_length; *len_data = rcqe->payload_data_placement_length; return 0; } else { return -1; } } /** * @ingroup sli_fc * @brief Retrieve the received FCFI. * * @param sli4 SLI context. * @param cqe Pointer to the CQ entry. * * @return Returns the FCFI in the CQE. or UINT8_MAX if invalid CQE code. */ static inline uint8_t sli_fc_rqe_fcfi(sli4_t *sli4, void *cqe) { uint8_t code = ((uint8_t*)cqe)[SLI4_CQE_CODE_OFFSET]; uint8_t fcfi = UINT8_MAX; switch(code) { case SLI4_CQE_CODE_RQ_ASYNC: { sli4_fc_async_rcqe_t *rcqe = cqe; fcfi = rcqe->fcfi; break; } case SLI4_CQE_CODE_RQ_ASYNC_V1: { sli4_fc_async_rcqe_v1_t *rcqev1 = cqe; fcfi = rcqev1->fcfi; break; } case SLI4_CQE_CODE_OPTIMIZED_WRITE_CMD: { sli4_fc_optimized_write_cmd_cqe_t *opt_wr = cqe; fcfi = opt_wr->fcfi; break; } } return fcfi; } extern const char *sli_fc_get_status_string(uint32_t status); #endif /* !_SLI4_H */