diff --git a/sys/kern/uipc_ktls.c b/sys/kern/uipc_ktls.c
index ff20b3652407..bf91b774c0dc 100644
--- a/sys/kern/uipc_ktls.c
+++ b/sys/kern/uipc_ktls.c
@@ -1,3252 +1,3254 @@
 /*-
  * SPDX-License-Identifier: BSD-2-Clause
  *
  * Copyright (c) 2014-2019 Netflix Inc.
  *
  * Redistribution and use in source and binary forms, with or without
  * modification, are permitted provided that the following conditions
  * are met:
  * 1. Redistributions of source code must retain the above copyright
  *    notice, this list of conditions and the following disclaimer.
  * 2. Redistributions in binary form must reproduce the above copyright
  *    notice, this list of conditions and the following disclaimer in the
  *    documentation and/or other materials provided with the distribution.
  *
  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  * SUCH DAMAGE.
  */
 
 #include <sys/cdefs.h>
 __FBSDID("$FreeBSD$");
 
 #include "opt_inet.h"
 #include "opt_inet6.h"
 #include "opt_kern_tls.h"
 #include "opt_ratelimit.h"
 #include "opt_rss.h"
 
 #include <sys/param.h>
 #include <sys/kernel.h>
 #include <sys/domainset.h>
 #include <sys/endian.h>
 #include <sys/ktls.h>
 #include <sys/lock.h>
 #include <sys/mbuf.h>
 #include <sys/mutex.h>
 #include <sys/rmlock.h>
 #include <sys/proc.h>
 #include <sys/protosw.h>
 #include <sys/refcount.h>
 #include <sys/smp.h>
 #include <sys/socket.h>
 #include <sys/socketvar.h>
 #include <sys/sysctl.h>
 #include <sys/taskqueue.h>
 #include <sys/kthread.h>
 #include <sys/uio.h>
 #include <sys/vmmeter.h>
 #if defined(__aarch64__) || defined(__amd64__) || defined(__i386__)
 #include <machine/pcb.h>
 #endif
 #include <machine/vmparam.h>
 #include <net/if.h>
 #include <net/if_var.h>
 #ifdef RSS
 #include <net/netisr.h>
 #include <net/rss_config.h>
 #endif
 #include <net/route.h>
 #include <net/route/nhop.h>
 #if defined(INET) || defined(INET6)
 #include <netinet/in.h>
 #include <netinet/in_pcb.h>
 #endif
 #include <netinet/tcp_var.h>
 #ifdef TCP_OFFLOAD
 #include <netinet/tcp_offload.h>
 #endif
 #include <opencrypto/cryptodev.h>
 #include <opencrypto/ktls.h>
 #include <vm/uma_dbg.h>
 #include <vm/vm.h>
 #include <vm/vm_pageout.h>
 #include <vm/vm_page.h>
 #include <vm/vm_pagequeue.h>
 
 struct ktls_wq {
 	struct mtx	mtx;
 	STAILQ_HEAD(, mbuf) m_head;
 	STAILQ_HEAD(, socket) so_head;
 	bool		running;
 	int		lastallocfail;
 } __aligned(CACHE_LINE_SIZE);
 
 struct ktls_alloc_thread {
 	uint64_t wakeups;
 	uint64_t allocs;
 	struct thread *td;
 	int running;
 };
 
 struct ktls_domain_info {
 	int count;
 	int cpu[MAXCPU];
 	struct ktls_alloc_thread alloc_td;
 };
 
 struct ktls_domain_info ktls_domains[MAXMEMDOM];
 static struct ktls_wq *ktls_wq;
 static struct proc *ktls_proc;
 static uma_zone_t ktls_session_zone;
 static uma_zone_t ktls_buffer_zone;
 static uint16_t ktls_cpuid_lookup[MAXCPU];
 static int ktls_init_state;
 static struct sx ktls_init_lock;
 SX_SYSINIT(ktls_init_lock, &ktls_init_lock, "ktls init");
 
 SYSCTL_NODE(_kern_ipc, OID_AUTO, tls, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
     "Kernel TLS offload");
 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, stats, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
     "Kernel TLS offload stats");
 
 #ifdef RSS
 static int ktls_bind_threads = 1;
 #else
 static int ktls_bind_threads;
 #endif
 SYSCTL_INT(_kern_ipc_tls, OID_AUTO, bind_threads, CTLFLAG_RDTUN,
     &ktls_bind_threads, 0,
     "Bind crypto threads to cores (1) or cores and domains (2) at boot");
 
 static u_int ktls_maxlen = 16384;
 SYSCTL_UINT(_kern_ipc_tls, OID_AUTO, maxlen, CTLFLAG_RDTUN,
     &ktls_maxlen, 0, "Maximum TLS record size");
 
 static int ktls_number_threads;
 SYSCTL_INT(_kern_ipc_tls_stats, OID_AUTO, threads, CTLFLAG_RD,
     &ktls_number_threads, 0,
     "Number of TLS threads in thread-pool");
 
 unsigned int ktls_ifnet_max_rexmit_pct = 2;
 SYSCTL_UINT(_kern_ipc_tls, OID_AUTO, ifnet_max_rexmit_pct, CTLFLAG_RWTUN,
     &ktls_ifnet_max_rexmit_pct, 2,
     "Max percent bytes retransmitted before ifnet TLS is disabled");
 
 static bool ktls_offload_enable;
 SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, enable, CTLFLAG_RWTUN,
     &ktls_offload_enable, 0,
     "Enable support for kernel TLS offload");
 
 static bool ktls_cbc_enable = true;
 SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, cbc_enable, CTLFLAG_RWTUN,
     &ktls_cbc_enable, 1,
     "Enable Support of AES-CBC crypto for kernel TLS");
 
 static bool ktls_sw_buffer_cache = true;
 SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, sw_buffer_cache, CTLFLAG_RDTUN,
     &ktls_sw_buffer_cache, 1,
     "Enable caching of output buffers for SW encryption");
 
 static int ktls_max_alloc = 128;
 SYSCTL_INT(_kern_ipc_tls, OID_AUTO, max_alloc, CTLFLAG_RWTUN,
     &ktls_max_alloc, 128,
     "Max number of 16k buffers to allocate in thread context");
 
 static COUNTER_U64_DEFINE_EARLY(ktls_tasks_active);
 SYSCTL_COUNTER_U64(_kern_ipc_tls, OID_AUTO, tasks_active, CTLFLAG_RD,
     &ktls_tasks_active, "Number of active tasks");
 
 static COUNTER_U64_DEFINE_EARLY(ktls_cnt_tx_pending);
 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, sw_tx_pending, CTLFLAG_RD,
     &ktls_cnt_tx_pending,
     "Number of TLS 1.0 records waiting for earlier TLS records");
 
 static COUNTER_U64_DEFINE_EARLY(ktls_cnt_tx_queued);
 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, sw_tx_inqueue, CTLFLAG_RD,
     &ktls_cnt_tx_queued,
     "Number of TLS records in queue to tasks for SW encryption");
 
 static COUNTER_U64_DEFINE_EARLY(ktls_cnt_rx_queued);
 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, sw_rx_inqueue, CTLFLAG_RD,
     &ktls_cnt_rx_queued,
     "Number of TLS sockets in queue to tasks for SW decryption");
 
 static COUNTER_U64_DEFINE_EARLY(ktls_offload_total);
 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, offload_total,
     CTLFLAG_RD, &ktls_offload_total,
     "Total successful TLS setups (parameters set)");
 
 static COUNTER_U64_DEFINE_EARLY(ktls_offload_enable_calls);
 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, enable_calls,
     CTLFLAG_RD, &ktls_offload_enable_calls,
     "Total number of TLS enable calls made");
 
 static COUNTER_U64_DEFINE_EARLY(ktls_offload_active);
 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, active, CTLFLAG_RD,
     &ktls_offload_active, "Total Active TLS sessions");
 
 static COUNTER_U64_DEFINE_EARLY(ktls_offload_corrupted_records);
 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, corrupted_records, CTLFLAG_RD,
     &ktls_offload_corrupted_records, "Total corrupted TLS records received");
 
 static COUNTER_U64_DEFINE_EARLY(ktls_offload_failed_crypto);
 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, failed_crypto, CTLFLAG_RD,
     &ktls_offload_failed_crypto, "Total TLS crypto failures");
 
 static COUNTER_U64_DEFINE_EARLY(ktls_switch_to_ifnet);
 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_to_ifnet, CTLFLAG_RD,
     &ktls_switch_to_ifnet, "TLS sessions switched from SW to ifnet");
 
 static COUNTER_U64_DEFINE_EARLY(ktls_switch_to_sw);
 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_to_sw, CTLFLAG_RD,
     &ktls_switch_to_sw, "TLS sessions switched from ifnet to SW");
 
 static COUNTER_U64_DEFINE_EARLY(ktls_switch_failed);
 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_failed, CTLFLAG_RD,
     &ktls_switch_failed, "TLS sessions unable to switch between SW and ifnet");
 
 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_disable_fail);
 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, ifnet_disable_failed, CTLFLAG_RD,
     &ktls_ifnet_disable_fail, "TLS sessions unable to switch to SW from ifnet");
 
 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_disable_ok);
 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, ifnet_disable_ok, CTLFLAG_RD,
     &ktls_ifnet_disable_ok, "TLS sessions able to switch to SW from ifnet");
 
 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, sw, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
     "Software TLS session stats");
 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, ifnet, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
     "Hardware (ifnet) TLS session stats");
 #ifdef TCP_OFFLOAD
 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, toe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
     "TOE TLS session stats");
 #endif
 
 static COUNTER_U64_DEFINE_EARLY(ktls_sw_cbc);
 SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, cbc, CTLFLAG_RD, &ktls_sw_cbc,
     "Active number of software TLS sessions using AES-CBC");
 
 static COUNTER_U64_DEFINE_EARLY(ktls_sw_gcm);
 SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, gcm, CTLFLAG_RD, &ktls_sw_gcm,
     "Active number of software TLS sessions using AES-GCM");
 
 static COUNTER_U64_DEFINE_EARLY(ktls_sw_chacha20);
 SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, chacha20, CTLFLAG_RD,
     &ktls_sw_chacha20,
     "Active number of software TLS sessions using Chacha20-Poly1305");
 
 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_cbc);
 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, cbc, CTLFLAG_RD,
     &ktls_ifnet_cbc,
     "Active number of ifnet TLS sessions using AES-CBC");
 
 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_gcm);
 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, gcm, CTLFLAG_RD,
     &ktls_ifnet_gcm,
     "Active number of ifnet TLS sessions using AES-GCM");
 
 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_chacha20);
 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, chacha20, CTLFLAG_RD,
     &ktls_ifnet_chacha20,
     "Active number of ifnet TLS sessions using Chacha20-Poly1305");
 
 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_reset);
 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset, CTLFLAG_RD,
     &ktls_ifnet_reset, "TLS sessions updated to a new ifnet send tag");
 
 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_reset_dropped);
 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset_dropped, CTLFLAG_RD,
     &ktls_ifnet_reset_dropped,
     "TLS sessions dropped after failing to update ifnet send tag");
 
 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_reset_failed);
 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset_failed, CTLFLAG_RD,
     &ktls_ifnet_reset_failed,
     "TLS sessions that failed to allocate a new ifnet send tag");
 
 static int ktls_ifnet_permitted;
 SYSCTL_UINT(_kern_ipc_tls_ifnet, OID_AUTO, permitted, CTLFLAG_RWTUN,
     &ktls_ifnet_permitted, 1,
     "Whether to permit hardware (ifnet) TLS sessions");
 
 #ifdef TCP_OFFLOAD
 static COUNTER_U64_DEFINE_EARLY(ktls_toe_cbc);
 SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, cbc, CTLFLAG_RD,
     &ktls_toe_cbc,
     "Active number of TOE TLS sessions using AES-CBC");
 
 static COUNTER_U64_DEFINE_EARLY(ktls_toe_gcm);
 SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, gcm, CTLFLAG_RD,
     &ktls_toe_gcm,
     "Active number of TOE TLS sessions using AES-GCM");
 
 static COUNTER_U64_DEFINE_EARLY(ktls_toe_chacha20);
 SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, chacha20, CTLFLAG_RD,
     &ktls_toe_chacha20,
     "Active number of TOE TLS sessions using Chacha20-Poly1305");
 #endif
 
 static MALLOC_DEFINE(M_KTLS, "ktls", "Kernel TLS");
 
 static void ktls_cleanup(struct ktls_session *tls);
 #if defined(INET) || defined(INET6)
 static void ktls_reset_receive_tag(void *context, int pending);
 static void ktls_reset_send_tag(void *context, int pending);
 #endif
 static void ktls_work_thread(void *ctx);
 static void ktls_alloc_thread(void *ctx);
 
 #if defined(INET) || defined(INET6)
 static u_int
 ktls_get_cpu(struct socket *so)
 {
 	struct inpcb *inp;
 #ifdef NUMA
 	struct ktls_domain_info *di;
 #endif
 	u_int cpuid;
 
 	inp = sotoinpcb(so);
 #ifdef RSS
 	cpuid = rss_hash2cpuid(inp->inp_flowid, inp->inp_flowtype);
 	if (cpuid != NETISR_CPUID_NONE)
 		return (cpuid);
 #endif
 	/*
 	 * Just use the flowid to shard connections in a repeatable
 	 * fashion.  Note that TLS 1.0 sessions rely on the
 	 * serialization provided by having the same connection use
 	 * the same queue.
 	 */
 #ifdef NUMA
 	if (ktls_bind_threads > 1 && inp->inp_numa_domain != M_NODOM) {
 		di = &ktls_domains[inp->inp_numa_domain];
 		cpuid = di->cpu[inp->inp_flowid % di->count];
 	} else
 #endif
 		cpuid = ktls_cpuid_lookup[inp->inp_flowid % ktls_number_threads];
 	return (cpuid);
 }
 #endif
 
 static int
 ktls_buffer_import(void *arg, void **store, int count, int domain, int flags)
 {
 	vm_page_t m;
 	int i, req;
 
 	KASSERT((ktls_maxlen & PAGE_MASK) == 0,
 	    ("%s: ktls max length %d is not page size-aligned",
 	    __func__, ktls_maxlen));
 
 	req = VM_ALLOC_WIRED | VM_ALLOC_NODUMP | malloc2vm_flags(flags);
 	for (i = 0; i < count; i++) {
 		m = vm_page_alloc_noobj_contig_domain(domain, req,
 		    atop(ktls_maxlen), 0, ~0ul, PAGE_SIZE, 0,
 		    VM_MEMATTR_DEFAULT);
 		if (m == NULL)
 			break;
 		store[i] = (void *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
 	}
 	return (i);
 }
 
 static void
 ktls_buffer_release(void *arg __unused, void **store, int count)
 {
 	vm_page_t m;
 	int i, j;
 
 	for (i = 0; i < count; i++) {
 		m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)store[i]));
 		for (j = 0; j < atop(ktls_maxlen); j++) {
 			(void)vm_page_unwire_noq(m + j);
 			vm_page_free(m + j);
 		}
 	}
 }
 
 static void
 ktls_free_mext_contig(struct mbuf *m)
 {
 	M_ASSERTEXTPG(m);
 	uma_zfree(ktls_buffer_zone, (void *)PHYS_TO_DMAP(m->m_epg_pa[0]));
 }
 
 static int
 ktls_init(void)
 {
 	struct thread *td;
 	struct pcpu *pc;
 	int count, domain, error, i;
 
 	ktls_wq = malloc(sizeof(*ktls_wq) * (mp_maxid + 1), M_KTLS,
 	    M_WAITOK | M_ZERO);
 
 	ktls_session_zone = uma_zcreate("ktls_session",
 	    sizeof(struct ktls_session),
 	    NULL, NULL, NULL, NULL,
 	    UMA_ALIGN_CACHE, 0);
 
 	if (ktls_sw_buffer_cache) {
 		ktls_buffer_zone = uma_zcache_create("ktls_buffers",
 		    roundup2(ktls_maxlen, PAGE_SIZE), NULL, NULL, NULL, NULL,
 		    ktls_buffer_import, ktls_buffer_release, NULL,
 		    UMA_ZONE_FIRSTTOUCH);
 	}
 
 	/*
 	 * Initialize the workqueues to run the TLS work.  We create a
 	 * work queue for each CPU.
 	 */
 	CPU_FOREACH(i) {
 		STAILQ_INIT(&ktls_wq[i].m_head);
 		STAILQ_INIT(&ktls_wq[i].so_head);
 		mtx_init(&ktls_wq[i].mtx, "ktls work queue", NULL, MTX_DEF);
 		if (ktls_bind_threads > 1) {
 			pc = pcpu_find(i);
 			domain = pc->pc_domain;
 			count = ktls_domains[domain].count;
 			ktls_domains[domain].cpu[count] = i;
 			ktls_domains[domain].count++;
 		}
 		ktls_cpuid_lookup[ktls_number_threads] = i;
 		ktls_number_threads++;
 	}
 
 	/*
 	 * If we somehow have an empty domain, fall back to choosing
 	 * among all KTLS threads.
 	 */
 	if (ktls_bind_threads > 1) {
 		for (i = 0; i < vm_ndomains; i++) {
 			if (ktls_domains[i].count == 0) {
 				ktls_bind_threads = 1;
 				break;
 			}
 		}
 	}
 
 	/* Start kthreads for each workqueue. */
 	CPU_FOREACH(i) {
 		error = kproc_kthread_add(ktls_work_thread, &ktls_wq[i],
 		    &ktls_proc, &td, 0, 0, "KTLS", "thr_%d", i);
 		if (error) {
 			printf("Can't add KTLS thread %d error %d\n", i, error);
 			return (error);
 		}
 	}
 
 	/*
 	 * Start an allocation thread per-domain to perform blocking allocations
 	 * of 16k physically contiguous TLS crypto destination buffers.
 	 */
 	if (ktls_sw_buffer_cache) {
 		for (domain = 0; domain < vm_ndomains; domain++) {
 			if (VM_DOMAIN_EMPTY(domain))
 				continue;
 			if (CPU_EMPTY(&cpuset_domain[domain]))
 				continue;
 			error = kproc_kthread_add(ktls_alloc_thread,
 			    &ktls_domains[domain], &ktls_proc,
 			    &ktls_domains[domain].alloc_td.td,
 			    0, 0, "KTLS", "alloc_%d", domain);
 			if (error) {
 				printf("Can't add KTLS alloc thread %d error %d\n",
 				    domain, error);
 				return (error);
 			}
 		}
 	}
 
 	if (bootverbose)
 		printf("KTLS: Initialized %d threads\n", ktls_number_threads);
 	return (0);
 }
 
 static int
 ktls_start_kthreads(void)
 {
 	int error, state;
 
 start:
 	state = atomic_load_acq_int(&ktls_init_state);
 	if (__predict_true(state > 0))
 		return (0);
 	if (state < 0)
 		return (ENXIO);
 
 	sx_xlock(&ktls_init_lock);
 	if (ktls_init_state != 0) {
 		sx_xunlock(&ktls_init_lock);
 		goto start;
 	}
 
 	error = ktls_init();
 	if (error == 0)
 		state = 1;
 	else
 		state = -1;
 	atomic_store_rel_int(&ktls_init_state, state);
 	sx_xunlock(&ktls_init_lock);
 	return (error);
 }
 
 #if defined(INET) || defined(INET6)
 static int
 ktls_create_session(struct socket *so, struct tls_enable *en,
     struct ktls_session **tlsp, int direction)
 {
 	struct ktls_session *tls;
 	int error;
 
 	/* Only TLS 1.0 - 1.3 are supported. */
 	if (en->tls_vmajor != TLS_MAJOR_VER_ONE)
 		return (EINVAL);
 	if (en->tls_vminor < TLS_MINOR_VER_ZERO ||
 	    en->tls_vminor > TLS_MINOR_VER_THREE)
 		return (EINVAL);
 
 	if (en->auth_key_len < 0 || en->auth_key_len > TLS_MAX_PARAM_SIZE)
 		return (EINVAL);
 	if (en->cipher_key_len < 0 || en->cipher_key_len > TLS_MAX_PARAM_SIZE)
 		return (EINVAL);
 	if (en->iv_len < 0 || en->iv_len > sizeof(tls->params.iv))
 		return (EINVAL);
 
 	/* All supported algorithms require a cipher key. */
 	if (en->cipher_key_len == 0)
 		return (EINVAL);
 
 	/* No flags are currently supported. */
 	if (en->flags != 0)
 		return (EINVAL);
 
 	/* Common checks for supported algorithms. */
 	switch (en->cipher_algorithm) {
 	case CRYPTO_AES_NIST_GCM_16:
 		/*
 		 * auth_algorithm isn't used, but permit GMAC values
 		 * for compatibility.
 		 */
 		switch (en->auth_algorithm) {
 		case 0:
 #ifdef COMPAT_FREEBSD12
 		/* XXX: Really 13.0-current COMPAT. */
 		case CRYPTO_AES_128_NIST_GMAC:
 		case CRYPTO_AES_192_NIST_GMAC:
 		case CRYPTO_AES_256_NIST_GMAC:
 #endif
 			break;
 		default:
 			return (EINVAL);
 		}
 		if (en->auth_key_len != 0)
 			return (EINVAL);
 		switch (en->tls_vminor) {
 		case TLS_MINOR_VER_TWO:
 			if (en->iv_len != TLS_AEAD_GCM_LEN)
 				return (EINVAL);
 			break;
 		case TLS_MINOR_VER_THREE:
 			if (en->iv_len != TLS_1_3_GCM_IV_LEN)
 				return (EINVAL);
 			break;
 		default:
 			return (EINVAL);
 		}
 		break;
 	case CRYPTO_AES_CBC:
 		switch (en->auth_algorithm) {
 		case CRYPTO_SHA1_HMAC:
 			break;
 		case CRYPTO_SHA2_256_HMAC:
 		case CRYPTO_SHA2_384_HMAC:
 			if (en->tls_vminor != TLS_MINOR_VER_TWO)
 				return (EINVAL);
 			break;
 		default:
 			return (EINVAL);
 		}
 		if (en->auth_key_len == 0)
 			return (EINVAL);
 
 		/*
 		 * TLS 1.0 requires an implicit IV.  TLS 1.1 and 1.2
 		 * use explicit IVs.
 		 */
 		switch (en->tls_vminor) {
 		case TLS_MINOR_VER_ZERO:
 			if (en->iv_len != TLS_CBC_IMPLICIT_IV_LEN)
 				return (EINVAL);
 			break;
 		case TLS_MINOR_VER_ONE:
 		case TLS_MINOR_VER_TWO:
 			/* Ignore any supplied IV. */
 			en->iv_len = 0;
 			break;
 		default:
 			return (EINVAL);
 		}
 		break;
 	case CRYPTO_CHACHA20_POLY1305:
 		if (en->auth_algorithm != 0 || en->auth_key_len != 0)
 			return (EINVAL);
 		if (en->tls_vminor != TLS_MINOR_VER_TWO &&
 		    en->tls_vminor != TLS_MINOR_VER_THREE)
 			return (EINVAL);
 		if (en->iv_len != TLS_CHACHA20_IV_LEN)
 			return (EINVAL);
 		break;
 	default:
 		return (EINVAL);
 	}
 
 	error = ktls_start_kthreads();
 	if (error != 0)
 		return (error);
 
 	tls = uma_zalloc(ktls_session_zone, M_WAITOK | M_ZERO);
 
 	counter_u64_add(ktls_offload_active, 1);
 
 	refcount_init(&tls->refcount, 1);
 	if (direction == KTLS_RX)
 		TASK_INIT(&tls->reset_tag_task, 0, ktls_reset_receive_tag, tls);
 	else
 		TASK_INIT(&tls->reset_tag_task, 0, ktls_reset_send_tag, tls);
 
 	tls->wq_index = ktls_get_cpu(so);
 
 	tls->params.cipher_algorithm = en->cipher_algorithm;
 	tls->params.auth_algorithm = en->auth_algorithm;
 	tls->params.tls_vmajor = en->tls_vmajor;
 	tls->params.tls_vminor = en->tls_vminor;
 	tls->params.flags = en->flags;
 	tls->params.max_frame_len = min(TLS_MAX_MSG_SIZE_V10_2, ktls_maxlen);
 
 	/* Set the header and trailer lengths. */
 	tls->params.tls_hlen = sizeof(struct tls_record_layer);
 	switch (en->cipher_algorithm) {
 	case CRYPTO_AES_NIST_GCM_16:
 		/*
 		 * TLS 1.2 uses a 4 byte implicit IV with an explicit 8 byte
 		 * nonce.  TLS 1.3 uses a 12 byte implicit IV.
 		 */
 		if (en->tls_vminor < TLS_MINOR_VER_THREE)
 			tls->params.tls_hlen += sizeof(uint64_t);
 		tls->params.tls_tlen = AES_GMAC_HASH_LEN;
 		tls->params.tls_bs = 1;
 		break;
 	case CRYPTO_AES_CBC:
 		switch (en->auth_algorithm) {
 		case CRYPTO_SHA1_HMAC:
 			if (en->tls_vminor == TLS_MINOR_VER_ZERO) {
 				/* Implicit IV, no nonce. */
 				tls->sequential_records = true;
 				tls->next_seqno = be64dec(en->rec_seq);
 				STAILQ_INIT(&tls->pending_records);
 			} else {
 				tls->params.tls_hlen += AES_BLOCK_LEN;
 			}
 			tls->params.tls_tlen = AES_BLOCK_LEN +
 			    SHA1_HASH_LEN;
 			break;
 		case CRYPTO_SHA2_256_HMAC:
 			tls->params.tls_hlen += AES_BLOCK_LEN;
 			tls->params.tls_tlen = AES_BLOCK_LEN +
 			    SHA2_256_HASH_LEN;
 			break;
 		case CRYPTO_SHA2_384_HMAC:
 			tls->params.tls_hlen += AES_BLOCK_LEN;
 			tls->params.tls_tlen = AES_BLOCK_LEN +
 			    SHA2_384_HASH_LEN;
 			break;
 		default:
 			panic("invalid hmac");
 		}
 		tls->params.tls_bs = AES_BLOCK_LEN;
 		break;
 	case CRYPTO_CHACHA20_POLY1305:
 		/*
 		 * Chacha20 uses a 12 byte implicit IV.
 		 */
 		tls->params.tls_tlen = POLY1305_HASH_LEN;
 		tls->params.tls_bs = 1;
 		break;
 	default:
 		panic("invalid cipher");
 	}
 
 	/*
 	 * TLS 1.3 includes optional padding which we do not support,
 	 * and also puts the "real" record type at the end of the
 	 * encrypted data.
 	 */
 	if (en->tls_vminor == TLS_MINOR_VER_THREE)
 		tls->params.tls_tlen += sizeof(uint8_t);
 
 	KASSERT(tls->params.tls_hlen <= MBUF_PEXT_HDR_LEN,
 	    ("TLS header length too long: %d", tls->params.tls_hlen));
 	KASSERT(tls->params.tls_tlen <= MBUF_PEXT_TRAIL_LEN,
 	    ("TLS trailer length too long: %d", tls->params.tls_tlen));
 
 	if (en->auth_key_len != 0) {
 		tls->params.auth_key_len = en->auth_key_len;
 		tls->params.auth_key = malloc(en->auth_key_len, M_KTLS,
 		    M_WAITOK);
 		error = copyin(en->auth_key, tls->params.auth_key,
 		    en->auth_key_len);
 		if (error)
 			goto out;
 	}
 
 	tls->params.cipher_key_len = en->cipher_key_len;
 	tls->params.cipher_key = malloc(en->cipher_key_len, M_KTLS, M_WAITOK);
 	error = copyin(en->cipher_key, tls->params.cipher_key,
 	    en->cipher_key_len);
 	if (error)
 		goto out;
 
 	/*
 	 * This holds the implicit portion of the nonce for AEAD
 	 * ciphers and the initial implicit IV for TLS 1.0.  The
 	 * explicit portions of the IV are generated in ktls_frame().
 	 */
 	if (en->iv_len != 0) {
 		tls->params.iv_len = en->iv_len;
 		error = copyin(en->iv, tls->params.iv, en->iv_len);
 		if (error)
 			goto out;
 
 		/*
 		 * For TLS 1.2 with GCM, generate an 8-byte nonce as a
 		 * counter to generate unique explicit IVs.
 		 *
 		 * Store this counter in the last 8 bytes of the IV
 		 * array so that it is 8-byte aligned.
 		 */
 		if (en->cipher_algorithm == CRYPTO_AES_NIST_GCM_16 &&
 		    en->tls_vminor == TLS_MINOR_VER_TWO)
 			arc4rand(tls->params.iv + 8, sizeof(uint64_t), 0);
 	}
 
 	*tlsp = tls;
 	return (0);
 
 out:
 	ktls_cleanup(tls);
 	return (error);
 }
 
 static struct ktls_session *
 ktls_clone_session(struct ktls_session *tls, int direction)
 {
 	struct ktls_session *tls_new;
 
 	tls_new = uma_zalloc(ktls_session_zone, M_WAITOK | M_ZERO);
 
 	counter_u64_add(ktls_offload_active, 1);
 
 	refcount_init(&tls_new->refcount, 1);
 	if (direction == KTLS_RX)
 		TASK_INIT(&tls_new->reset_tag_task, 0, ktls_reset_receive_tag,
 		    tls_new);
 	else
 		TASK_INIT(&tls_new->reset_tag_task, 0, ktls_reset_send_tag,
 		    tls_new);
 
 	/* Copy fields from existing session. */
 	tls_new->params = tls->params;
 	tls_new->wq_index = tls->wq_index;
 
 	/* Deep copy keys. */
 	if (tls_new->params.auth_key != NULL) {
 		tls_new->params.auth_key = malloc(tls->params.auth_key_len,
 		    M_KTLS, M_WAITOK);
 		memcpy(tls_new->params.auth_key, tls->params.auth_key,
 		    tls->params.auth_key_len);
 	}
 
 	tls_new->params.cipher_key = malloc(tls->params.cipher_key_len, M_KTLS,
 	    M_WAITOK);
 	memcpy(tls_new->params.cipher_key, tls->params.cipher_key,
 	    tls->params.cipher_key_len);
 
 	return (tls_new);
 }
 #endif
 
 static void
 ktls_cleanup(struct ktls_session *tls)
 {
 
 	counter_u64_add(ktls_offload_active, -1);
 	switch (tls->mode) {
 	case TCP_TLS_MODE_SW:
 		switch (tls->params.cipher_algorithm) {
 		case CRYPTO_AES_CBC:
 			counter_u64_add(ktls_sw_cbc, -1);
 			break;
 		case CRYPTO_AES_NIST_GCM_16:
 			counter_u64_add(ktls_sw_gcm, -1);
 			break;
 		case CRYPTO_CHACHA20_POLY1305:
 			counter_u64_add(ktls_sw_chacha20, -1);
 			break;
 		}
 		break;
 	case TCP_TLS_MODE_IFNET:
 		switch (tls->params.cipher_algorithm) {
 		case CRYPTO_AES_CBC:
 			counter_u64_add(ktls_ifnet_cbc, -1);
 			break;
 		case CRYPTO_AES_NIST_GCM_16:
 			counter_u64_add(ktls_ifnet_gcm, -1);
 			break;
 		case CRYPTO_CHACHA20_POLY1305:
 			counter_u64_add(ktls_ifnet_chacha20, -1);
 			break;
 		}
 		if (tls->snd_tag != NULL)
 			m_snd_tag_rele(tls->snd_tag);
 		if (tls->rx_ifp != NULL)
 			if_rele(tls->rx_ifp);
 		break;
 #ifdef TCP_OFFLOAD
 	case TCP_TLS_MODE_TOE:
 		switch (tls->params.cipher_algorithm) {
 		case CRYPTO_AES_CBC:
 			counter_u64_add(ktls_toe_cbc, -1);
 			break;
 		case CRYPTO_AES_NIST_GCM_16:
 			counter_u64_add(ktls_toe_gcm, -1);
 			break;
 		case CRYPTO_CHACHA20_POLY1305:
 			counter_u64_add(ktls_toe_chacha20, -1);
 			break;
 		}
 		break;
 #endif
 	}
 	if (tls->ocf_session != NULL)
 		ktls_ocf_free(tls);
 	if (tls->params.auth_key != NULL) {
 		zfree(tls->params.auth_key, M_KTLS);
 		tls->params.auth_key = NULL;
 		tls->params.auth_key_len = 0;
 	}
 	if (tls->params.cipher_key != NULL) {
 		zfree(tls->params.cipher_key, M_KTLS);
 		tls->params.cipher_key = NULL;
 		tls->params.cipher_key_len = 0;
 	}
 	explicit_bzero(tls->params.iv, sizeof(tls->params.iv));
 }
 
 #if defined(INET) || defined(INET6)
 
 #ifdef TCP_OFFLOAD
 static int
 ktls_try_toe(struct socket *so, struct ktls_session *tls, int direction)
 {
 	struct inpcb *inp;
 	struct tcpcb *tp;
 	int error;
 
 	inp = so->so_pcb;
 	INP_WLOCK(inp);
 	if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) {
 		INP_WUNLOCK(inp);
 		return (ECONNRESET);
 	}
 	if (inp->inp_socket == NULL) {
 		INP_WUNLOCK(inp);
 		return (ECONNRESET);
 	}
 	tp = intotcpcb(inp);
 	if (!(tp->t_flags & TF_TOE)) {
 		INP_WUNLOCK(inp);
 		return (EOPNOTSUPP);
 	}
 
 	error = tcp_offload_alloc_tls_session(tp, tls, direction);
 	INP_WUNLOCK(inp);
 	if (error == 0) {
 		tls->mode = TCP_TLS_MODE_TOE;
 		switch (tls->params.cipher_algorithm) {
 		case CRYPTO_AES_CBC:
 			counter_u64_add(ktls_toe_cbc, 1);
 			break;
 		case CRYPTO_AES_NIST_GCM_16:
 			counter_u64_add(ktls_toe_gcm, 1);
 			break;
 		case CRYPTO_CHACHA20_POLY1305:
 			counter_u64_add(ktls_toe_chacha20, 1);
 			break;
 		}
 	}
 	return (error);
 }
 #endif
 
 /*
  * Common code used when first enabling ifnet TLS on a connection or
  * when allocating a new ifnet TLS session due to a routing change.
  * This function allocates a new TLS send tag on whatever interface
  * the connection is currently routed over.
  */
 static int
 ktls_alloc_snd_tag(struct inpcb *inp, struct ktls_session *tls, bool force,
     struct m_snd_tag **mstp)
 {
 	union if_snd_tag_alloc_params params;
 	struct ifnet *ifp;
 	struct nhop_object *nh;
 	struct tcpcb *tp;
 	int error;
 
 	INP_RLOCK(inp);
 	if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) {
 		INP_RUNLOCK(inp);
 		return (ECONNRESET);
 	}
 	if (inp->inp_socket == NULL) {
 		INP_RUNLOCK(inp);
 		return (ECONNRESET);
 	}
 	tp = intotcpcb(inp);
 
 	/*
 	 * Check administrative controls on ifnet TLS to determine if
 	 * ifnet TLS should be denied.
 	 *
 	 * - Always permit 'force' requests.
 	 * - ktls_ifnet_permitted == 0: always deny.
 	 */
 	if (!force && ktls_ifnet_permitted == 0) {
 		INP_RUNLOCK(inp);
 		return (ENXIO);
 	}
 
 	/*
 	 * XXX: Use the cached route in the inpcb to find the
 	 * interface.  This should perhaps instead use
 	 * rtalloc1_fib(dst, 0, 0, fibnum).  Since KTLS is only
 	 * enabled after a connection has completed key negotiation in
 	 * userland, the cached route will be present in practice.
 	 */
 	nh = inp->inp_route.ro_nh;
 	if (nh == NULL) {
 		INP_RUNLOCK(inp);
 		return (ENXIO);
 	}
 	ifp = nh->nh_ifp;
 	if_ref(ifp);
 
 	/*
 	 * Allocate a TLS + ratelimit tag if the connection has an
 	 * existing pacing rate.
 	 */
 	if (tp->t_pacing_rate != -1 &&
 	    (ifp->if_capenable & IFCAP_TXTLS_RTLMT) != 0) {
 		params.hdr.type = IF_SND_TAG_TYPE_TLS_RATE_LIMIT;
 		params.tls_rate_limit.inp = inp;
 		params.tls_rate_limit.tls = tls;
 		params.tls_rate_limit.max_rate = tp->t_pacing_rate;
 	} else {
 		params.hdr.type = IF_SND_TAG_TYPE_TLS;
 		params.tls.inp = inp;
 		params.tls.tls = tls;
 	}
 	params.hdr.flowid = inp->inp_flowid;
 	params.hdr.flowtype = inp->inp_flowtype;
 	params.hdr.numa_domain = inp->inp_numa_domain;
 	INP_RUNLOCK(inp);
 
 	if ((ifp->if_capenable & IFCAP_MEXTPG) == 0) {
 		error = EOPNOTSUPP;
 		goto out;
 	}
 	if (inp->inp_vflag & INP_IPV6) {
 		if ((ifp->if_capenable & IFCAP_TXTLS6) == 0) {
 			error = EOPNOTSUPP;
 			goto out;
 		}
 	} else {
 		if ((ifp->if_capenable & IFCAP_TXTLS4) == 0) {
 			error = EOPNOTSUPP;
 			goto out;
 		}
 	}
 	error = m_snd_tag_alloc(ifp, &params, mstp);
 out:
 	if_rele(ifp);
 	return (error);
 }
 
 /*
  * Allocate an initial TLS receive tag for doing HW decryption of TLS
  * data.
  *
  * This function allocates a new TLS receive tag on whatever interface
  * the connection is currently routed over.  If the connection ends up
  * using a different interface for receive this will get fixed up via
  * ktls_input_ifp_mismatch as future packets arrive.
  */
 static int
 ktls_alloc_rcv_tag(struct inpcb *inp, struct ktls_session *tls,
     struct m_snd_tag **mstp)
 {
 	union if_snd_tag_alloc_params params;
 	struct ifnet *ifp;
 	struct nhop_object *nh;
 	int error;
 
 	if (!ktls_ocf_recrypt_supported(tls))
 		return (ENXIO);
 
 	INP_RLOCK(inp);
 	if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) {
 		INP_RUNLOCK(inp);
 		return (ECONNRESET);
 	}
 	if (inp->inp_socket == NULL) {
 		INP_RUNLOCK(inp);
 		return (ECONNRESET);
 	}
 
 	/*
 	 * Check administrative controls on ifnet TLS to determine if
 	 * ifnet TLS should be denied.
 	 */
 	if (ktls_ifnet_permitted == 0) {
 		INP_RUNLOCK(inp);
 		return (ENXIO);
 	}
 
 	/*
 	 * XXX: As with ktls_alloc_snd_tag, use the cached route in
 	 * the inpcb to find the interface.
 	 */
 	nh = inp->inp_route.ro_nh;
 	if (nh == NULL) {
 		INP_RUNLOCK(inp);
 		return (ENXIO);
 	}
 	ifp = nh->nh_ifp;
 	if_ref(ifp);
 	tls->rx_ifp = ifp;
 
 	params.hdr.type = IF_SND_TAG_TYPE_TLS_RX;
 	params.hdr.flowid = inp->inp_flowid;
 	params.hdr.flowtype = inp->inp_flowtype;
 	params.hdr.numa_domain = inp->inp_numa_domain;
 	params.tls_rx.inp = inp;
 	params.tls_rx.tls = tls;
 	params.tls_rx.vlan_id = 0;
 
 	INP_RUNLOCK(inp);
 
 	if (inp->inp_vflag & INP_IPV6) {
 		if ((ifp->if_capenable2 & IFCAP2_RXTLS6) == 0) {
 			error = EOPNOTSUPP;
 			goto out;
 		}
 	} else {
 		if ((ifp->if_capenable2 & IFCAP2_RXTLS4) == 0) {
 			error = EOPNOTSUPP;
 			goto out;
 		}
 	}
 	error = m_snd_tag_alloc(ifp, &params, mstp);
 
 	/*
 	 * If this connection is over a vlan, vlan_snd_tag_alloc
 	 * rewrites vlan_id with the saved interface.  Save the VLAN
 	 * ID for use in ktls_reset_receive_tag which allocates new
 	 * receive tags directly from the leaf interface bypassing
 	 * if_vlan.
 	 */
 	if (error == 0)
 		tls->rx_vlan_id = params.tls_rx.vlan_id;
 out:
 	return (error);
 }
 
 static int
 ktls_try_ifnet(struct socket *so, struct ktls_session *tls, int direction,
     bool force)
 {
 	struct m_snd_tag *mst;
 	int error;
 
 	switch (direction) {
 	case KTLS_TX:
 		error = ktls_alloc_snd_tag(so->so_pcb, tls, force, &mst);
 		if (__predict_false(error != 0))
 			goto done;
 		break;
 	case KTLS_RX:
 		KASSERT(!force, ("%s: forced receive tag", __func__));
 		error = ktls_alloc_rcv_tag(so->so_pcb, tls, &mst);
 		if (__predict_false(error != 0))
 			goto done;
 		break;
 	default:
 		__assert_unreachable();
 	}
 
 	tls->mode = TCP_TLS_MODE_IFNET;
 	tls->snd_tag = mst;
 
 	switch (tls->params.cipher_algorithm) {
 	case CRYPTO_AES_CBC:
 		counter_u64_add(ktls_ifnet_cbc, 1);
 		break;
 	case CRYPTO_AES_NIST_GCM_16:
 		counter_u64_add(ktls_ifnet_gcm, 1);
 		break;
 	case CRYPTO_CHACHA20_POLY1305:
 		counter_u64_add(ktls_ifnet_chacha20, 1);
 		break;
 	default:
 		break;
 	}
 done:
 	return (error);
 }
 
 static void
 ktls_use_sw(struct ktls_session *tls)
 {
 	tls->mode = TCP_TLS_MODE_SW;
 	switch (tls->params.cipher_algorithm) {
 	case CRYPTO_AES_CBC:
 		counter_u64_add(ktls_sw_cbc, 1);
 		break;
 	case CRYPTO_AES_NIST_GCM_16:
 		counter_u64_add(ktls_sw_gcm, 1);
 		break;
 	case CRYPTO_CHACHA20_POLY1305:
 		counter_u64_add(ktls_sw_chacha20, 1);
 		break;
 	}
 }
 
 static int
 ktls_try_sw(struct socket *so, struct ktls_session *tls, int direction)
 {
 	int error;
 
 	error = ktls_ocf_try(so, tls, direction);
 	if (error)
 		return (error);
 	ktls_use_sw(tls);
 	return (0);
 }
 
 /*
  * KTLS RX stores data in the socket buffer as a list of TLS records,
  * where each record is stored as a control message containg the TLS
  * header followed by data mbufs containing the decrypted data.  This
  * is different from KTLS TX which always uses an mb_ext_pgs mbuf for
  * both encrypted and decrypted data.  TLS records decrypted by a NIC
  * should be queued to the socket buffer as records, but encrypted
  * data which needs to be decrypted by software arrives as a stream of
  * regular mbufs which need to be converted.  In addition, there may
  * already be pending encrypted data in the socket buffer when KTLS RX
  * is enabled.
  *
  * To manage not-yet-decrypted data for KTLS RX, the following scheme
  * is used:
  *
  * - A single chain of NOTREADY mbufs is hung off of sb_mtls.
  *
  * - ktls_check_rx checks this chain of mbufs reading the TLS header
  *   from the first mbuf.  Once all of the data for that TLS record is
  *   queued, the socket is queued to a worker thread.
  *
  * - The worker thread calls ktls_decrypt to decrypt TLS records in
  *   the TLS chain.  Each TLS record is detached from the TLS chain,
  *   decrypted, and inserted into the regular socket buffer chain as
  *   record starting with a control message holding the TLS header and
  *   a chain of mbufs holding the encrypted data.
  */
 
 static void
 sb_mark_notready(struct sockbuf *sb)
 {
 	struct mbuf *m;
 
 	m = sb->sb_mb;
 	sb->sb_mtls = m;
 	sb->sb_mb = NULL;
 	sb->sb_mbtail = NULL;
 	sb->sb_lastrecord = NULL;
 	for (; m != NULL; m = m->m_next) {
 		KASSERT(m->m_nextpkt == NULL, ("%s: m_nextpkt != NULL",
 		    __func__));
 		KASSERT((m->m_flags & M_NOTAVAIL) == 0, ("%s: mbuf not avail",
 		    __func__));
 		KASSERT(sb->sb_acc >= m->m_len, ("%s: sb_acc < m->m_len",
 		    __func__));
 		m->m_flags |= M_NOTREADY;
 		sb->sb_acc -= m->m_len;
 		sb->sb_tlscc += m->m_len;
 		sb->sb_mtlstail = m;
 	}
 	KASSERT(sb->sb_acc == 0 && sb->sb_tlscc == sb->sb_ccc,
 	    ("%s: acc %u tlscc %u ccc %u", __func__, sb->sb_acc, sb->sb_tlscc,
 	    sb->sb_ccc));
 }
 
 /*
  * Return information about the pending TLS data in a socket
  * buffer.  On return, 'seqno' is set to the sequence number
  * of the next TLS record to be received, 'resid' is set to
  * the amount of bytes still needed for the last pending
  * record.  The function returns 'false' if the last pending
  * record contains a partial TLS header.  In that case, 'resid'
  * is the number of bytes needed to complete the TLS header.
  */
 bool
 ktls_pending_rx_info(struct sockbuf *sb, uint64_t *seqnop, size_t *residp)
 {
 	struct tls_record_layer hdr;
 	struct mbuf *m;
 	uint64_t seqno;
 	size_t resid;
 	u_int offset, record_len;
 
 	SOCKBUF_LOCK_ASSERT(sb);
 	MPASS(sb->sb_flags & SB_TLS_RX);
 	seqno = sb->sb_tls_seqno;
 	resid = sb->sb_tlscc;
 	m = sb->sb_mtls;
 	offset = 0;
 
 	if (resid == 0) {
 		*seqnop = seqno;
 		*residp = 0;
 		return (true);
 	}
 
 	for (;;) {
 		seqno++;
 
 		if (resid < sizeof(hdr)) {
 			*seqnop = seqno;
 			*residp = sizeof(hdr) - resid;
 			return (false);
 		}
 
 		m_copydata(m, offset, sizeof(hdr), (void *)&hdr);
 
 		record_len = sizeof(hdr) + ntohs(hdr.tls_length);
 		if (resid <= record_len) {
 			*seqnop = seqno;
 			*residp = record_len - resid;
 			return (true);
 		}
 		resid -= record_len;
 
 		while (record_len != 0) {
 			if (m->m_len - offset > record_len) {
 				offset += record_len;
 				break;
 			}
 
 			record_len -= (m->m_len - offset);
 			offset = 0;
 			m = m->m_next;
 		}
 	}
 }
 
 int
 ktls_enable_rx(struct socket *so, struct tls_enable *en)
 {
 	struct ktls_session *tls;
 	int error;
 
 	if (!ktls_offload_enable)
 		return (ENOTSUP);
 	if (SOLISTENING(so))
 		return (EINVAL);
 
 	counter_u64_add(ktls_offload_enable_calls, 1);
 
 	/*
 	 * This should always be true since only the TCP socket option
 	 * invokes this function.
 	 */
 	if (so->so_proto->pr_protocol != IPPROTO_TCP)
 		return (EINVAL);
 
 	/*
 	 * XXX: Don't overwrite existing sessions.  We should permit
 	 * this to support rekeying in the future.
 	 */
 	if (so->so_rcv.sb_tls_info != NULL)
 		return (EALREADY);
 
 	if (en->cipher_algorithm == CRYPTO_AES_CBC && !ktls_cbc_enable)
 		return (ENOTSUP);
 
 	error = ktls_create_session(so, en, &tls, KTLS_RX);
 	if (error)
 		return (error);
 
 	error = ktls_ocf_try(so, tls, KTLS_RX);
 	if (error) {
 		ktls_cleanup(tls);
 		return (error);
 	}
 
 	/* Mark the socket as using TLS offload. */
 	SOCKBUF_LOCK(&so->so_rcv);
 	so->so_rcv.sb_tls_seqno = be64dec(en->rec_seq);
 	so->so_rcv.sb_tls_info = tls;
 	so->so_rcv.sb_flags |= SB_TLS_RX;
 
 	/* Mark existing data as not ready until it can be decrypted. */
 	sb_mark_notready(&so->so_rcv);
 	ktls_check_rx(&so->so_rcv);
 	SOCKBUF_UNLOCK(&so->so_rcv);
 
 	/* Prefer TOE -> ifnet TLS -> software TLS. */
 #ifdef TCP_OFFLOAD
 	error = ktls_try_toe(so, tls, KTLS_RX);
 	if (error)
 #endif
 		error = ktls_try_ifnet(so, tls, KTLS_RX, false);
 	if (error)
 		ktls_use_sw(tls);
 
 	counter_u64_add(ktls_offload_total, 1);
 
 	return (0);
 }
 
 int
 ktls_enable_tx(struct socket *so, struct tls_enable *en)
 {
 	struct ktls_session *tls;
 	struct inpcb *inp;
 	int error;
 
 	if (!ktls_offload_enable)
 		return (ENOTSUP);
 	if (SOLISTENING(so))
 		return (EINVAL);
 
 	counter_u64_add(ktls_offload_enable_calls, 1);
 
 	/*
 	 * This should always be true since only the TCP socket option
 	 * invokes this function.
 	 */
 	if (so->so_proto->pr_protocol != IPPROTO_TCP)
 		return (EINVAL);
 
 	/*
 	 * XXX: Don't overwrite existing sessions.  We should permit
 	 * this to support rekeying in the future.
 	 */
 	if (so->so_snd.sb_tls_info != NULL)
 		return (EALREADY);
 
 	if (en->cipher_algorithm == CRYPTO_AES_CBC && !ktls_cbc_enable)
 		return (ENOTSUP);
 
 	/* TLS requires ext pgs */
 	if (mb_use_ext_pgs == 0)
 		return (ENXIO);
 
 	error = ktls_create_session(so, en, &tls, KTLS_TX);
 	if (error)
 		return (error);
 
 	/* Prefer TOE -> ifnet TLS -> software TLS. */
 #ifdef TCP_OFFLOAD
 	error = ktls_try_toe(so, tls, KTLS_TX);
 	if (error)
 #endif
 		error = ktls_try_ifnet(so, tls, KTLS_TX, false);
 	if (error)
 		error = ktls_try_sw(so, tls, KTLS_TX);
 
 	if (error) {
 		ktls_cleanup(tls);
 		return (error);
 	}
 
 	error = SOCK_IO_SEND_LOCK(so, SBL_WAIT);
 	if (error) {
 		ktls_cleanup(tls);
 		return (error);
 	}
 
 	/*
 	 * Write lock the INP when setting sb_tls_info so that
 	 * routines in tcp_ratelimit.c can read sb_tls_info while
 	 * holding the INP lock.
 	 */
 	inp = so->so_pcb;
 	INP_WLOCK(inp);
 	SOCKBUF_LOCK(&so->so_snd);
 	so->so_snd.sb_tls_seqno = be64dec(en->rec_seq);
 	so->so_snd.sb_tls_info = tls;
 	if (tls->mode != TCP_TLS_MODE_SW)
 		so->so_snd.sb_flags |= SB_TLS_IFNET;
 	SOCKBUF_UNLOCK(&so->so_snd);
 	INP_WUNLOCK(inp);
 	SOCK_IO_SEND_UNLOCK(so);
 
 	counter_u64_add(ktls_offload_total, 1);
 
 	return (0);
 }
 
 int
 ktls_get_rx_mode(struct socket *so, int *modep)
 {
 	struct ktls_session *tls;
 	struct inpcb *inp __diagused;
 
 	if (SOLISTENING(so))
 		return (EINVAL);
 	inp = so->so_pcb;
 	INP_WLOCK_ASSERT(inp);
 	SOCK_RECVBUF_LOCK(so);
 	tls = so->so_rcv.sb_tls_info;
 	if (tls == NULL)
 		*modep = TCP_TLS_MODE_NONE;
 	else
 		*modep = tls->mode;
 	SOCK_RECVBUF_UNLOCK(so);
 	return (0);
 }
 
 /*
  * ktls_get_rx_sequence - get the next TCP- and TLS- sequence number.
  *
  * This function gets information about the next TCP- and TLS-
  * sequence number to be processed by the TLS receive worker
  * thread. The information is extracted from the given "inpcb"
  * structure. The values are stored in host endian format at the two
  * given output pointer locations. The TCP sequence number points to
  * the beginning of the TLS header.
  *
  * This function returns zero on success, else a non-zero error code
  * is returned.
  */
 int
 ktls_get_rx_sequence(struct inpcb *inp, uint32_t *tcpseq, uint64_t *tlsseq)
 {
 	struct socket *so;
 	struct tcpcb *tp;
 
 	INP_RLOCK(inp);
 	so = inp->inp_socket;
 	if (__predict_false(so == NULL)) {
 		INP_RUNLOCK(inp);
 		return (EINVAL);
 	}
 	if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) {
 		INP_RUNLOCK(inp);
 		return (ECONNRESET);
 	}
 
 	tp = intotcpcb(inp);
 	MPASS(tp != NULL);
 
 	SOCKBUF_LOCK(&so->so_rcv);
 	*tcpseq = tp->rcv_nxt - so->so_rcv.sb_tlscc;
 	*tlsseq = so->so_rcv.sb_tls_seqno;
 	SOCKBUF_UNLOCK(&so->so_rcv);
 
 	INP_RUNLOCK(inp);
 
 	return (0);
 }
 
 int
 ktls_get_tx_mode(struct socket *so, int *modep)
 {
 	struct ktls_session *tls;
 	struct inpcb *inp __diagused;
 
 	if (SOLISTENING(so))
 		return (EINVAL);
 	inp = so->so_pcb;
 	INP_WLOCK_ASSERT(inp);
 	SOCK_SENDBUF_LOCK(so);
 	tls = so->so_snd.sb_tls_info;
 	if (tls == NULL)
 		*modep = TCP_TLS_MODE_NONE;
 	else
 		*modep = tls->mode;
 	SOCK_SENDBUF_UNLOCK(so);
 	return (0);
 }
 
 /*
  * Switch between SW and ifnet TLS sessions as requested.
  */
 int
 ktls_set_tx_mode(struct socket *so, int mode)
 {
 	struct ktls_session *tls, *tls_new;
 	struct inpcb *inp;
 	int error;
 
 	if (SOLISTENING(so))
 		return (EINVAL);
 	switch (mode) {
 	case TCP_TLS_MODE_SW:
 	case TCP_TLS_MODE_IFNET:
 		break;
 	default:
 		return (EINVAL);
 	}
 
 	inp = so->so_pcb;
 	INP_WLOCK_ASSERT(inp);
 	SOCKBUF_LOCK(&so->so_snd);
 	tls = so->so_snd.sb_tls_info;
 	if (tls == NULL) {
 		SOCKBUF_UNLOCK(&so->so_snd);
 		return (0);
 	}
 
 	if (tls->mode == mode) {
 		SOCKBUF_UNLOCK(&so->so_snd);
 		return (0);
 	}
 
 	tls = ktls_hold(tls);
 	SOCKBUF_UNLOCK(&so->so_snd);
 	INP_WUNLOCK(inp);
 
 	tls_new = ktls_clone_session(tls, KTLS_TX);
 
 	if (mode == TCP_TLS_MODE_IFNET)
 		error = ktls_try_ifnet(so, tls_new, KTLS_TX, true);
 	else
 		error = ktls_try_sw(so, tls_new, KTLS_TX);
 	if (error) {
 		counter_u64_add(ktls_switch_failed, 1);
 		ktls_free(tls_new);
 		ktls_free(tls);
 		INP_WLOCK(inp);
 		return (error);
 	}
 
 	error = SOCK_IO_SEND_LOCK(so, SBL_WAIT);
 	if (error) {
 		counter_u64_add(ktls_switch_failed, 1);
 		ktls_free(tls_new);
 		ktls_free(tls);
 		INP_WLOCK(inp);
 		return (error);
 	}
 
 	/*
 	 * If we raced with another session change, keep the existing
 	 * session.
 	 */
 	if (tls != so->so_snd.sb_tls_info) {
 		counter_u64_add(ktls_switch_failed, 1);
 		SOCK_IO_SEND_UNLOCK(so);
 		ktls_free(tls_new);
 		ktls_free(tls);
 		INP_WLOCK(inp);
 		return (EBUSY);
 	}
 
 	INP_WLOCK(inp);
 	SOCKBUF_LOCK(&so->so_snd);
 	so->so_snd.sb_tls_info = tls_new;
 	if (tls_new->mode != TCP_TLS_MODE_SW)
 		so->so_snd.sb_flags |= SB_TLS_IFNET;
 	SOCKBUF_UNLOCK(&so->so_snd);
 	SOCK_IO_SEND_UNLOCK(so);
 
 	/*
 	 * Drop two references on 'tls'.  The first is for the
 	 * ktls_hold() above.  The second drops the reference from the
 	 * socket buffer.
 	 */
 	KASSERT(tls->refcount >= 2, ("too few references on old session"));
 	ktls_free(tls);
 	ktls_free(tls);
 
 	if (mode == TCP_TLS_MODE_IFNET)
 		counter_u64_add(ktls_switch_to_ifnet, 1);
 	else
 		counter_u64_add(ktls_switch_to_sw, 1);
 
 	return (0);
 }
 
 /*
  * Try to allocate a new TLS receive tag.  This task is scheduled when
  * sbappend_ktls_rx detects an input path change.  If a new tag is
  * allocated, replace the tag in the TLS session.  If a new tag cannot
  * be allocated, let the session fall back to software decryption.
  */
 static void
 ktls_reset_receive_tag(void *context, int pending)
 {
 	union if_snd_tag_alloc_params params;
 	struct ktls_session *tls;
 	struct m_snd_tag *mst;
 	struct inpcb *inp;
 	struct ifnet *ifp;
 	struct socket *so;
 	int error;
 
 	MPASS(pending == 1);
 
 	tls = context;
 	so = tls->so;
 	inp = so->so_pcb;
 	ifp = NULL;
 
 	INP_RLOCK(inp);
 	if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) {
 		INP_RUNLOCK(inp);
 		goto out;
 	}
 
 	SOCKBUF_LOCK(&so->so_rcv);
-	m_snd_tag_rele(tls->snd_tag);
+	mst = tls->snd_tag;
 	tls->snd_tag = NULL;
+	if (mst != NULL)
+		m_snd_tag_rele(mst);
 
 	ifp = tls->rx_ifp;
 	if_ref(ifp);
 	SOCKBUF_UNLOCK(&so->so_rcv);
 
 	params.hdr.type = IF_SND_TAG_TYPE_TLS_RX;
 	params.hdr.flowid = inp->inp_flowid;
 	params.hdr.flowtype = inp->inp_flowtype;
 	params.hdr.numa_domain = inp->inp_numa_domain;
 	params.tls_rx.inp = inp;
 	params.tls_rx.tls = tls;
 	params.tls_rx.vlan_id = tls->rx_vlan_id;
 	INP_RUNLOCK(inp);
 
 	if (inp->inp_vflag & INP_IPV6) {
 		if ((ifp->if_capenable2 & IFCAP2_RXTLS6) == 0)
 			goto out;
 	} else {
 		if ((ifp->if_capenable2 & IFCAP2_RXTLS4) == 0)
 			goto out;
 	}
 
 	error = m_snd_tag_alloc(ifp, &params, &mst);
 	if (error == 0) {
 		SOCKBUF_LOCK(&so->so_rcv);
 		tls->snd_tag = mst;
 		SOCKBUF_UNLOCK(&so->so_rcv);
 
 		counter_u64_add(ktls_ifnet_reset, 1);
 	} else {
 		/*
 		 * Just fall back to software decryption if a tag
 		 * cannot be allocated leaving the connection intact.
 		 * If a future input path change switches to another
 		 * interface this connection will resume ifnet TLS.
 		 */
 		counter_u64_add(ktls_ifnet_reset_failed, 1);
 	}
 
 out:
 	mtx_pool_lock(mtxpool_sleep, tls);
 	tls->reset_pending = false;
 	mtx_pool_unlock(mtxpool_sleep, tls);
 
 	if (ifp != NULL)
 		if_rele(ifp);
 	sorele(so);
 	ktls_free(tls);
 }
 
 /*
  * Try to allocate a new TLS send tag.  This task is scheduled when
  * ip_output detects a route change while trying to transmit a packet
  * holding a TLS record.  If a new tag is allocated, replace the tag
  * in the TLS session.  Subsequent packets on the connection will use
  * the new tag.  If a new tag cannot be allocated, drop the
  * connection.
  */
 static void
 ktls_reset_send_tag(void *context, int pending)
 {
 	struct epoch_tracker et;
 	struct ktls_session *tls;
 	struct m_snd_tag *old, *new;
 	struct inpcb *inp;
 	struct tcpcb *tp;
 	int error;
 
 	MPASS(pending == 1);
 
 	tls = context;
 	inp = tls->inp;
 
 	/*
 	 * Free the old tag first before allocating a new one.
 	 * ip[6]_output_send() will treat a NULL send tag the same as
 	 * an ifp mismatch and drop packets until a new tag is
 	 * allocated.
 	 *
 	 * Write-lock the INP when changing tls->snd_tag since
 	 * ip[6]_output_send() holds a read-lock when reading the
 	 * pointer.
 	 */
 	INP_WLOCK(inp);
 	old = tls->snd_tag;
 	tls->snd_tag = NULL;
 	INP_WUNLOCK(inp);
 	if (old != NULL)
 		m_snd_tag_rele(old);
 
 	error = ktls_alloc_snd_tag(inp, tls, true, &new);
 
 	if (error == 0) {
 		INP_WLOCK(inp);
 		tls->snd_tag = new;
 		mtx_pool_lock(mtxpool_sleep, tls);
 		tls->reset_pending = false;
 		mtx_pool_unlock(mtxpool_sleep, tls);
 		if (!in_pcbrele_wlocked(inp))
 			INP_WUNLOCK(inp);
 
 		counter_u64_add(ktls_ifnet_reset, 1);
 
 		/*
 		 * XXX: Should we kick tcp_output explicitly now that
 		 * the send tag is fixed or just rely on timers?
 		 */
 	} else {
 		NET_EPOCH_ENTER(et);
 		INP_WLOCK(inp);
 		if (!in_pcbrele_wlocked(inp)) {
 			if (!(inp->inp_flags & INP_TIMEWAIT) &&
 			    !(inp->inp_flags & INP_DROPPED)) {
 				tp = intotcpcb(inp);
 				CURVNET_SET(tp->t_vnet);
 				tp = tcp_drop(tp, ECONNABORTED);
 				CURVNET_RESTORE();
 				if (tp != NULL)
 					INP_WUNLOCK(inp);
 				counter_u64_add(ktls_ifnet_reset_dropped, 1);
 			} else
 				INP_WUNLOCK(inp);
 		}
 		NET_EPOCH_EXIT(et);
 
 		counter_u64_add(ktls_ifnet_reset_failed, 1);
 
 		/*
 		 * Leave reset_pending true to avoid future tasks while
 		 * the socket goes away.
 		 */
 	}
 
 	ktls_free(tls);
 }
 
 void
 ktls_input_ifp_mismatch(struct sockbuf *sb, struct ifnet *ifp)
 {
 	struct ktls_session *tls;
 	struct socket *so;
 
 	SOCKBUF_LOCK_ASSERT(sb);
 	KASSERT(sb->sb_flags & SB_TLS_RX, ("%s: sockbuf %p isn't TLS RX",
 	    __func__, sb));
 	so = __containerof(sb, struct socket, so_rcv);
 
 	tls = sb->sb_tls_info;
 	if_rele(tls->rx_ifp);
 	if_ref(ifp);
 	tls->rx_ifp = ifp;
 
 	/*
 	 * See if we should schedule a task to update the receive tag for
 	 * this session.
 	 */
 	mtx_pool_lock(mtxpool_sleep, tls);
 	if (!tls->reset_pending) {
 		(void) ktls_hold(tls);
 		soref(so);
 		tls->so = so;
 		tls->reset_pending = true;
 		taskqueue_enqueue(taskqueue_thread, &tls->reset_tag_task);
 	}
 	mtx_pool_unlock(mtxpool_sleep, tls);
 }
 
 int
 ktls_output_eagain(struct inpcb *inp, struct ktls_session *tls)
 {
 
 	if (inp == NULL)
 		return (ENOBUFS);
 
 	INP_LOCK_ASSERT(inp);
 
 	/*
 	 * See if we should schedule a task to update the send tag for
 	 * this session.
 	 */
 	mtx_pool_lock(mtxpool_sleep, tls);
 	if (!tls->reset_pending) {
 		(void) ktls_hold(tls);
 		in_pcbref(inp);
 		tls->inp = inp;
 		tls->reset_pending = true;
 		taskqueue_enqueue(taskqueue_thread, &tls->reset_tag_task);
 	}
 	mtx_pool_unlock(mtxpool_sleep, tls);
 	return (ENOBUFS);
 }
 
 #ifdef RATELIMIT
 int
 ktls_modify_txrtlmt(struct ktls_session *tls, uint64_t max_pacing_rate)
 {
 	union if_snd_tag_modify_params params = {
 		.rate_limit.max_rate = max_pacing_rate,
 		.rate_limit.flags = M_NOWAIT,
 	};
 	struct m_snd_tag *mst;
 
 	/* Can't get to the inp, but it should be locked. */
 	/* INP_LOCK_ASSERT(inp); */
 
 	MPASS(tls->mode == TCP_TLS_MODE_IFNET);
 
 	if (tls->snd_tag == NULL) {
 		/*
 		 * Resetting send tag, ignore this change.  The
 		 * pending reset may or may not see this updated rate
 		 * in the tcpcb.  If it doesn't, we will just lose
 		 * this rate change.
 		 */
 		return (0);
 	}
 
 	mst = tls->snd_tag;
 
 	MPASS(mst != NULL);
 	MPASS(mst->sw->type == IF_SND_TAG_TYPE_TLS_RATE_LIMIT);
 
 	return (mst->sw->snd_tag_modify(mst, &params));
 }
 #endif
 #endif
 
 void
 ktls_destroy(struct ktls_session *tls)
 {
 
 	if (tls->sequential_records) {
 		struct mbuf *m, *n;
 		int page_count;
 
 		STAILQ_FOREACH_SAFE(m, &tls->pending_records, m_epg_stailq, n) {
 			page_count = m->m_epg_enc_cnt;
 			while (page_count > 0) {
 				KASSERT(page_count >= m->m_epg_nrdy,
 				    ("%s: too few pages", __func__));
 				page_count -= m->m_epg_nrdy;
 				m = m_free(m);
 			}
 		}
 	}
 	ktls_cleanup(tls);
 	uma_zfree(ktls_session_zone, tls);
 }
 
 void
 ktls_seq(struct sockbuf *sb, struct mbuf *m)
 {
 
 	for (; m != NULL; m = m->m_next) {
 		KASSERT((m->m_flags & M_EXTPG) != 0,
 		    ("ktls_seq: mapped mbuf %p", m));
 
 		m->m_epg_seqno = sb->sb_tls_seqno;
 		sb->sb_tls_seqno++;
 	}
 }
 
 /*
  * Add TLS framing (headers and trailers) to a chain of mbufs.  Each
  * mbuf in the chain must be an unmapped mbuf.  The payload of the
  * mbuf must be populated with the payload of each TLS record.
  *
  * The record_type argument specifies the TLS record type used when
  * populating the TLS header.
  *
  * The enq_count argument on return is set to the number of pages of
  * payload data for this entire chain that need to be encrypted via SW
  * encryption.  The returned value should be passed to ktls_enqueue
  * when scheduling encryption of this chain of mbufs.  To handle the
  * special case of empty fragments for TLS 1.0 sessions, an empty
  * fragment counts as one page.
  */
 void
 ktls_frame(struct mbuf *top, struct ktls_session *tls, int *enq_cnt,
     uint8_t record_type)
 {
 	struct tls_record_layer *tlshdr;
 	struct mbuf *m;
 	uint64_t *noncep;
 	uint16_t tls_len;
 	int maxlen __diagused;
 
 	maxlen = tls->params.max_frame_len;
 	*enq_cnt = 0;
 	for (m = top; m != NULL; m = m->m_next) {
 		/*
 		 * All mbufs in the chain should be TLS records whose
 		 * payload does not exceed the maximum frame length.
 		 *
 		 * Empty TLS 1.0 records are permitted when using CBC.
 		 */
 		KASSERT(m->m_len <= maxlen && m->m_len >= 0 &&
 		    (m->m_len > 0 || ktls_permit_empty_frames(tls)),
 		    ("ktls_frame: m %p len %d", m, m->m_len));
 
 		/*
 		 * TLS frames require unmapped mbufs to store session
 		 * info.
 		 */
 		KASSERT((m->m_flags & M_EXTPG) != 0,
 		    ("ktls_frame: mapped mbuf %p (top = %p)", m, top));
 
 		tls_len = m->m_len;
 
 		/* Save a reference to the session. */
 		m->m_epg_tls = ktls_hold(tls);
 
 		m->m_epg_hdrlen = tls->params.tls_hlen;
 		m->m_epg_trllen = tls->params.tls_tlen;
 		if (tls->params.cipher_algorithm == CRYPTO_AES_CBC) {
 			int bs, delta;
 
 			/*
 			 * AES-CBC pads messages to a multiple of the
 			 * block size.  Note that the padding is
 			 * applied after the digest and the encryption
 			 * is done on the "plaintext || mac || padding".
 			 * At least one byte of padding is always
 			 * present.
 			 *
 			 * Compute the final trailer length assuming
 			 * at most one block of padding.
 			 * tls->params.tls_tlen is the maximum
 			 * possible trailer length (padding + digest).
 			 * delta holds the number of excess padding
 			 * bytes if the maximum were used.  Those
 			 * extra bytes are removed.
 			 */
 			bs = tls->params.tls_bs;
 			delta = (tls_len + tls->params.tls_tlen) & (bs - 1);
 			m->m_epg_trllen -= delta;
 		}
 		m->m_len += m->m_epg_hdrlen + m->m_epg_trllen;
 
 		/* Populate the TLS header. */
 		tlshdr = (void *)m->m_epg_hdr;
 		tlshdr->tls_vmajor = tls->params.tls_vmajor;
 
 		/*
 		 * TLS 1.3 masquarades as TLS 1.2 with a record type
 		 * of TLS_RLTYPE_APP.
 		 */
 		if (tls->params.tls_vminor == TLS_MINOR_VER_THREE &&
 		    tls->params.tls_vmajor == TLS_MAJOR_VER_ONE) {
 			tlshdr->tls_vminor = TLS_MINOR_VER_TWO;
 			tlshdr->tls_type = TLS_RLTYPE_APP;
 			/* save the real record type for later */
 			m->m_epg_record_type = record_type;
 			m->m_epg_trail[0] = record_type;
 		} else {
 			tlshdr->tls_vminor = tls->params.tls_vminor;
 			tlshdr->tls_type = record_type;
 		}
 		tlshdr->tls_length = htons(m->m_len - sizeof(*tlshdr));
 
 		/*
 		 * Store nonces / explicit IVs after the end of the
 		 * TLS header.
 		 *
 		 * For GCM with TLS 1.2, an 8 byte nonce is copied
 		 * from the end of the IV.  The nonce is then
 		 * incremented for use by the next record.
 		 *
 		 * For CBC, a random nonce is inserted for TLS 1.1+.
 		 */
 		if (tls->params.cipher_algorithm == CRYPTO_AES_NIST_GCM_16 &&
 		    tls->params.tls_vminor == TLS_MINOR_VER_TWO) {
 			noncep = (uint64_t *)(tls->params.iv + 8);
 			be64enc(tlshdr + 1, *noncep);
 			(*noncep)++;
 		} else if (tls->params.cipher_algorithm == CRYPTO_AES_CBC &&
 		    tls->params.tls_vminor >= TLS_MINOR_VER_ONE)
 			arc4rand(tlshdr + 1, AES_BLOCK_LEN, 0);
 
 		/*
 		 * When using SW encryption, mark the mbuf not ready.
 		 * It will be marked ready via sbready() after the
 		 * record has been encrypted.
 		 *
 		 * When using ifnet TLS, unencrypted TLS records are
 		 * sent down the stack to the NIC.
 		 */
 		if (tls->mode == TCP_TLS_MODE_SW) {
 			m->m_flags |= M_NOTREADY;
 			if (__predict_false(tls_len == 0)) {
 				/* TLS 1.0 empty fragment. */
 				m->m_epg_nrdy = 1;
 			} else
 				m->m_epg_nrdy = m->m_epg_npgs;
 			*enq_cnt += m->m_epg_nrdy;
 		}
 	}
 }
 
 bool
 ktls_permit_empty_frames(struct ktls_session *tls)
 {
 	return (tls->params.cipher_algorithm == CRYPTO_AES_CBC &&
 	    tls->params.tls_vminor == TLS_MINOR_VER_ZERO);
 }
 
 void
 ktls_check_rx(struct sockbuf *sb)
 {
 	struct tls_record_layer hdr;
 	struct ktls_wq *wq;
 	struct socket *so;
 	bool running;
 
 	SOCKBUF_LOCK_ASSERT(sb);
 	KASSERT(sb->sb_flags & SB_TLS_RX, ("%s: sockbuf %p isn't TLS RX",
 	    __func__, sb));
 	so = __containerof(sb, struct socket, so_rcv);
 
 	if (sb->sb_flags & SB_TLS_RX_RUNNING)
 		return;
 
 	/* Is there enough queued for a TLS header? */
 	if (sb->sb_tlscc < sizeof(hdr)) {
 		if ((sb->sb_state & SBS_CANTRCVMORE) != 0 && sb->sb_tlscc != 0)
 			so->so_error = EMSGSIZE;
 		return;
 	}
 
 	m_copydata(sb->sb_mtls, 0, sizeof(hdr), (void *)&hdr);
 
 	/* Is the entire record queued? */
 	if (sb->sb_tlscc < sizeof(hdr) + ntohs(hdr.tls_length)) {
 		if ((sb->sb_state & SBS_CANTRCVMORE) != 0)
 			so->so_error = EMSGSIZE;
 		return;
 	}
 
 	sb->sb_flags |= SB_TLS_RX_RUNNING;
 
 	soref(so);
 	wq = &ktls_wq[so->so_rcv.sb_tls_info->wq_index];
 	mtx_lock(&wq->mtx);
 	STAILQ_INSERT_TAIL(&wq->so_head, so, so_ktls_rx_list);
 	running = wq->running;
 	mtx_unlock(&wq->mtx);
 	if (!running)
 		wakeup(wq);
 	counter_u64_add(ktls_cnt_rx_queued, 1);
 }
 
 static struct mbuf *
 ktls_detach_record(struct sockbuf *sb, int len)
 {
 	struct mbuf *m, *n, *top;
 	int remain;
 
 	SOCKBUF_LOCK_ASSERT(sb);
 	MPASS(len <= sb->sb_tlscc);
 
 	/*
 	 * If TLS chain is the exact size of the record,
 	 * just grab the whole record.
 	 */
 	top = sb->sb_mtls;
 	if (sb->sb_tlscc == len) {
 		sb->sb_mtls = NULL;
 		sb->sb_mtlstail = NULL;
 		goto out;
 	}
 
 	/*
 	 * While it would be nice to use m_split() here, we need
 	 * to know exactly what m_split() allocates to update the
 	 * accounting, so do it inline instead.
 	 */
 	remain = len;
 	for (m = top; remain > m->m_len; m = m->m_next)
 		remain -= m->m_len;
 
 	/* Easy case: don't have to split 'm'. */
 	if (remain == m->m_len) {
 		sb->sb_mtls = m->m_next;
 		if (sb->sb_mtls == NULL)
 			sb->sb_mtlstail = NULL;
 		m->m_next = NULL;
 		goto out;
 	}
 
 	/*
 	 * Need to allocate an mbuf to hold the remainder of 'm'.  Try
 	 * with M_NOWAIT first.
 	 */
 	n = m_get(M_NOWAIT, MT_DATA);
 	if (n == NULL) {
 		/*
 		 * Use M_WAITOK with socket buffer unlocked.  If
 		 * 'sb_mtls' changes while the lock is dropped, return
 		 * NULL to force the caller to retry.
 		 */
 		SOCKBUF_UNLOCK(sb);
 
 		n = m_get(M_WAITOK, MT_DATA);
 
 		SOCKBUF_LOCK(sb);
 		if (sb->sb_mtls != top) {
 			m_free(n);
 			return (NULL);
 		}
 	}
 	n->m_flags |= (m->m_flags & (M_NOTREADY | M_DECRYPTED));
 
 	/* Store remainder in 'n'. */
 	n->m_len = m->m_len - remain;
 	if (m->m_flags & M_EXT) {
 		n->m_data = m->m_data + remain;
 		mb_dupcl(n, m);
 	} else {
 		bcopy(mtod(m, caddr_t) + remain, mtod(n, caddr_t), n->m_len);
 	}
 
 	/* Trim 'm' and update accounting. */
 	m->m_len -= n->m_len;
 	sb->sb_tlscc -= n->m_len;
 	sb->sb_ccc -= n->m_len;
 
 	/* Account for 'n'. */
 	sballoc_ktls_rx(sb, n);
 
 	/* Insert 'n' into the TLS chain. */
 	sb->sb_mtls = n;
 	n->m_next = m->m_next;
 	if (sb->sb_mtlstail == m)
 		sb->sb_mtlstail = n;
 
 	/* Detach the record from the TLS chain. */
 	m->m_next = NULL;
 
 out:
 	MPASS(m_length(top, NULL) == len);
 	for (m = top; m != NULL; m = m->m_next)
 		sbfree_ktls_rx(sb, m);
 	sb->sb_tlsdcc = len;
 	sb->sb_ccc += len;
 	SBCHECK(sb);
 	return (top);
 }
 
 /*
  * Determine the length of the trailing zero padding and find the real
  * record type in the byte before the padding.
  *
  * Walking the mbuf chain backwards is clumsy, so another option would
  * be to scan forwards remembering the last non-zero byte before the
  * trailer.  However, it would be expensive to scan the entire record.
  * Instead, find the last non-zero byte of each mbuf in the chain
  * keeping track of the relative offset of that nonzero byte.
  *
  * trail_len is the size of the MAC/tag on input and is set to the
  * size of the full trailer including padding and the record type on
  * return.
  */
 static int
 tls13_find_record_type(struct ktls_session *tls, struct mbuf *m, int tls_len,
     int *trailer_len, uint8_t *record_typep)
 {
 	char *cp;
 	u_int digest_start, last_offset, m_len, offset;
 	uint8_t record_type;
 
 	digest_start = tls_len - *trailer_len;
 	last_offset = 0;
 	offset = 0;
 	for (; m != NULL && offset < digest_start;
 	     offset += m->m_len, m = m->m_next) {
 		/* Don't look for padding in the tag. */
 		m_len = min(digest_start - offset, m->m_len);
 		cp = mtod(m, char *);
 
 		/* Find last non-zero byte in this mbuf. */
 		while (m_len > 0 && cp[m_len - 1] == 0)
 			m_len--;
 		if (m_len > 0) {
 			record_type = cp[m_len - 1];
 			last_offset = offset + m_len;
 		}
 	}
 	if (last_offset < tls->params.tls_hlen)
 		return (EBADMSG);
 
 	*record_typep = record_type;
 	*trailer_len = tls_len - last_offset + 1;
 	return (0);
 }
 
 /*
  * Check if a mbuf chain is fully decrypted at the given offset and
  * length. Returns KTLS_MBUF_CRYPTO_ST_DECRYPTED if all data is
  * decrypted. KTLS_MBUF_CRYPTO_ST_MIXED if there is a mix of encrypted
  * and decrypted data. Else KTLS_MBUF_CRYPTO_ST_ENCRYPTED if all data
  * is encrypted.
  */
 ktls_mbuf_crypto_st_t
 ktls_mbuf_crypto_state(struct mbuf *mb, int offset, int len)
 {
 	int m_flags_ored = 0;
 	int m_flags_anded = -1;
 
 	for (; mb != NULL; mb = mb->m_next) {
 		if (offset < mb->m_len)
 			break;
 		offset -= mb->m_len;
 	}
 	offset += len;
 
 	for (; mb != NULL; mb = mb->m_next) {
 		m_flags_ored |= mb->m_flags;
 		m_flags_anded &= mb->m_flags;
 
 		if (offset <= mb->m_len)
 			break;
 		offset -= mb->m_len;
 	}
 	MPASS(mb != NULL || offset == 0);
 
 	if ((m_flags_ored ^ m_flags_anded) & M_DECRYPTED)
 		return (KTLS_MBUF_CRYPTO_ST_MIXED);
 	else
 		return ((m_flags_ored & M_DECRYPTED) ?
 		    KTLS_MBUF_CRYPTO_ST_DECRYPTED :
 		    KTLS_MBUF_CRYPTO_ST_ENCRYPTED);
 }
 
 /*
  * ktls_resync_ifnet - get HW TLS RX back on track after packet loss
  */
 static int
 ktls_resync_ifnet(struct socket *so, uint32_t tls_len, uint64_t tls_rcd_num)
 {
 	union if_snd_tag_modify_params params;
 	struct m_snd_tag *mst;
 	struct inpcb *inp;
 	struct tcpcb *tp;
 
 	mst = so->so_rcv.sb_tls_info->snd_tag;
 	if (__predict_false(mst == NULL))
 		return (EINVAL);
 
 	inp = sotoinpcb(so);
 	if (__predict_false(inp == NULL))
 		return (EINVAL);
 
 	INP_RLOCK(inp);
 	if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) {
 		INP_RUNLOCK(inp);
 		return (ECONNRESET);
 	}
 
 	tp = intotcpcb(inp);
 	MPASS(tp != NULL);
 
 	/* Get the TCP sequence number of the next valid TLS header. */
 	SOCKBUF_LOCK(&so->so_rcv);
 	params.tls_rx.tls_hdr_tcp_sn =
 	    tp->rcv_nxt - so->so_rcv.sb_tlscc - tls_len;
 	params.tls_rx.tls_rec_length = tls_len;
 	params.tls_rx.tls_seq_number = tls_rcd_num;
 	SOCKBUF_UNLOCK(&so->so_rcv);
 
 	INP_RUNLOCK(inp);
 
 	MPASS(mst->sw->type == IF_SND_TAG_TYPE_TLS_RX);
 	return (mst->sw->snd_tag_modify(mst, &params));
 }
 
 static void
 ktls_decrypt(struct socket *so)
 {
 	char tls_header[MBUF_PEXT_HDR_LEN];
 	struct ktls_session *tls;
 	struct sockbuf *sb;
 	struct tls_record_layer *hdr;
 	struct tls_get_record tgr;
 	struct mbuf *control, *data, *m;
 	ktls_mbuf_crypto_st_t state;
 	uint64_t seqno;
 	int error, remain, tls_len, trail_len;
 	bool tls13;
 	uint8_t vminor, record_type;
 
 	hdr = (struct tls_record_layer *)tls_header;
 	sb = &so->so_rcv;
 	SOCKBUF_LOCK(sb);
 	KASSERT(sb->sb_flags & SB_TLS_RX_RUNNING,
 	    ("%s: socket %p not running", __func__, so));
 
 	tls = sb->sb_tls_info;
 	MPASS(tls != NULL);
 
 	tls13 = (tls->params.tls_vminor == TLS_MINOR_VER_THREE);
 	if (tls13)
 		vminor = TLS_MINOR_VER_TWO;
 	else
 		vminor = tls->params.tls_vminor;
 	for (;;) {
 		/* Is there enough queued for a TLS header? */
 		if (sb->sb_tlscc < tls->params.tls_hlen)
 			break;
 
 		m_copydata(sb->sb_mtls, 0, tls->params.tls_hlen, tls_header);
 		tls_len = sizeof(*hdr) + ntohs(hdr->tls_length);
 
 		if (hdr->tls_vmajor != tls->params.tls_vmajor ||
 		    hdr->tls_vminor != vminor)
 			error = EINVAL;
 		else if (tls13 && hdr->tls_type != TLS_RLTYPE_APP)
 			error = EINVAL;
 		else if (tls_len < tls->params.tls_hlen || tls_len >
 		    tls->params.tls_hlen + TLS_MAX_MSG_SIZE_V10_2 +
 		    tls->params.tls_tlen)
 			error = EMSGSIZE;
 		else
 			error = 0;
 		if (__predict_false(error != 0)) {
 			/*
 			 * We have a corrupted record and are likely
 			 * out of sync.  The connection isn't
 			 * recoverable at this point, so abort it.
 			 */
 			SOCKBUF_UNLOCK(sb);
 			counter_u64_add(ktls_offload_corrupted_records, 1);
 
 			CURVNET_SET(so->so_vnet);
 			so->so_proto->pr_abort(so);
 			so->so_error = error;
 			CURVNET_RESTORE();
 			goto deref;
 		}
 
 		/* Is the entire record queued? */
 		if (sb->sb_tlscc < tls_len)
 			break;
 
 		/*
 		 * Split out the portion of the mbuf chain containing
 		 * this TLS record.
 		 */
 		data = ktls_detach_record(sb, tls_len);
 		if (data == NULL)
 			continue;
 		MPASS(sb->sb_tlsdcc == tls_len);
 
 		seqno = sb->sb_tls_seqno;
 		sb->sb_tls_seqno++;
 		SBCHECK(sb);
 		SOCKBUF_UNLOCK(sb);
 
 		/* get crypto state for this TLS record */
 		state = ktls_mbuf_crypto_state(data, 0, tls_len);
 
 		switch (state) {
 		case KTLS_MBUF_CRYPTO_ST_MIXED:
 			error = ktls_ocf_recrypt(tls, hdr, data, seqno);
 			if (error)
 				break;
 			/* FALLTHROUGH */
 		case KTLS_MBUF_CRYPTO_ST_ENCRYPTED:
 			error = ktls_ocf_decrypt(tls, hdr, data, seqno,
 			    &trail_len);
 			if (__predict_true(error == 0)) {
 				if (tls13) {
 					error = tls13_find_record_type(tls, data,
 					    tls_len, &trail_len, &record_type);
 				} else {
 					record_type = hdr->tls_type;
 				}
 			}
 			break;
 		case KTLS_MBUF_CRYPTO_ST_DECRYPTED:
 			/*
 			 * NIC TLS is only supported for AEAD
 			 * ciphersuites which used a fixed sized
 			 * trailer.
 			 */
 			if (tls13) {
 				trail_len = tls->params.tls_tlen - 1;
 				error = tls13_find_record_type(tls, data,
 				    tls_len, &trail_len, &record_type);
 			} else {
 				trail_len = tls->params.tls_tlen;
 				error = 0;
 				record_type = hdr->tls_type;
 			}
 			break;
 		default:
 			error = EINVAL;
 			break;
 		}
 		if (error) {
 			counter_u64_add(ktls_offload_failed_crypto, 1);
 
 			SOCKBUF_LOCK(sb);
 			if (sb->sb_tlsdcc == 0) {
 				/*
 				 * sbcut/drop/flush discarded these
 				 * mbufs.
 				 */
 				m_freem(data);
 				break;
 			}
 
 			/*
 			 * Drop this TLS record's data, but keep
 			 * decrypting subsequent records.
 			 */
 			sb->sb_ccc -= tls_len;
 			sb->sb_tlsdcc = 0;
 
 			CURVNET_SET(so->so_vnet);
 			so->so_error = EBADMSG;
 			sorwakeup_locked(so);
 			CURVNET_RESTORE();
 
 			m_freem(data);
 
 			SOCKBUF_LOCK(sb);
 			continue;
 		}
 
 		/* Allocate the control mbuf. */
 		memset(&tgr, 0, sizeof(tgr));
 		tgr.tls_type = record_type;
 		tgr.tls_vmajor = hdr->tls_vmajor;
 		tgr.tls_vminor = hdr->tls_vminor;
 		tgr.tls_length = htobe16(tls_len - tls->params.tls_hlen -
 		    trail_len);
 		control = sbcreatecontrol(&tgr, sizeof(tgr),
 		    TLS_GET_RECORD, IPPROTO_TCP, M_WAITOK);
 
 		SOCKBUF_LOCK(sb);
 		if (sb->sb_tlsdcc == 0) {
 			/* sbcut/drop/flush discarded these mbufs. */
 			MPASS(sb->sb_tlscc == 0);
 			m_freem(data);
 			m_freem(control);
 			break;
 		}
 
 		/*
 		 * Clear the 'dcc' accounting in preparation for
 		 * adding the decrypted record.
 		 */
 		sb->sb_ccc -= tls_len;
 		sb->sb_tlsdcc = 0;
 		SBCHECK(sb);
 
 		/* If there is no payload, drop all of the data. */
 		if (tgr.tls_length == htobe16(0)) {
 			m_freem(data);
 			data = NULL;
 		} else {
 			/* Trim header. */
 			remain = tls->params.tls_hlen;
 			while (remain > 0) {
 				if (data->m_len > remain) {
 					data->m_data += remain;
 					data->m_len -= remain;
 					break;
 				}
 				remain -= data->m_len;
 				data = m_free(data);
 			}
 
 			/* Trim trailer and clear M_NOTREADY. */
 			remain = be16toh(tgr.tls_length);
 			m = data;
 			for (m = data; remain > m->m_len; m = m->m_next) {
 				m->m_flags &= ~(M_NOTREADY | M_DECRYPTED);
 				remain -= m->m_len;
 			}
 			m->m_len = remain;
 			m_freem(m->m_next);
 			m->m_next = NULL;
 			m->m_flags &= ~(M_NOTREADY | M_DECRYPTED);
 
 			/* Set EOR on the final mbuf. */
 			m->m_flags |= M_EOR;
 		}
 
 		sbappendcontrol_locked(sb, data, control, 0);
 
 		if (__predict_false(state != KTLS_MBUF_CRYPTO_ST_DECRYPTED)) {
 			sb->sb_flags |= SB_TLS_RX_RESYNC;
 			SOCKBUF_UNLOCK(sb);
 			ktls_resync_ifnet(so, tls_len, seqno);
 			SOCKBUF_LOCK(sb);
 		} else if (__predict_false(sb->sb_flags & SB_TLS_RX_RESYNC)) {
 			sb->sb_flags &= ~SB_TLS_RX_RESYNC;
 			SOCKBUF_UNLOCK(sb);
 			ktls_resync_ifnet(so, 0, seqno);
 			SOCKBUF_LOCK(sb);
 		}
 	}
 
 	sb->sb_flags &= ~SB_TLS_RX_RUNNING;
 
 	if ((sb->sb_state & SBS_CANTRCVMORE) != 0 && sb->sb_tlscc > 0)
 		so->so_error = EMSGSIZE;
 
 	sorwakeup_locked(so);
 
 deref:
 	SOCKBUF_UNLOCK_ASSERT(sb);
 
 	CURVNET_SET(so->so_vnet);
 	sorele(so);
 	CURVNET_RESTORE();
 }
 
 void
 ktls_enqueue_to_free(struct mbuf *m)
 {
 	struct ktls_wq *wq;
 	bool running;
 
 	/* Mark it for freeing. */
 	m->m_epg_flags |= EPG_FLAG_2FREE;
 	wq = &ktls_wq[m->m_epg_tls->wq_index];
 	mtx_lock(&wq->mtx);
 	STAILQ_INSERT_TAIL(&wq->m_head, m, m_epg_stailq);
 	running = wq->running;
 	mtx_unlock(&wq->mtx);
 	if (!running)
 		wakeup(wq);
 }
 
 static void *
 ktls_buffer_alloc(struct ktls_wq *wq, struct mbuf *m)
 {
 	void *buf;
 	int domain, running;
 
 	if (m->m_epg_npgs <= 2)
 		return (NULL);
 	if (ktls_buffer_zone == NULL)
 		return (NULL);
 	if ((u_int)(ticks - wq->lastallocfail) < hz) {
 		/*
 		 * Rate-limit allocation attempts after a failure.
 		 * ktls_buffer_import() will acquire a per-domain mutex to check
 		 * the free page queues and may fail consistently if memory is
 		 * fragmented.
 		 */
 		return (NULL);
 	}
 	buf = uma_zalloc(ktls_buffer_zone, M_NOWAIT | M_NORECLAIM);
 	if (buf == NULL) {
 		domain = PCPU_GET(domain);
 		wq->lastallocfail = ticks;
 
 		/*
 		 * Note that this check is "racy", but the races are
 		 * harmless, and are either a spurious wakeup if
 		 * multiple threads fail allocations before the alloc
 		 * thread wakes, or waiting an extra second in case we
 		 * see an old value of running == true.
 		 */
 		if (!VM_DOMAIN_EMPTY(domain)) {
 			running = atomic_load_int(&ktls_domains[domain].alloc_td.running);
 			if (!running)
 				wakeup(&ktls_domains[domain].alloc_td);
 		}
 	}
 	return (buf);
 }
 
 static int
 ktls_encrypt_record(struct ktls_wq *wq, struct mbuf *m,
     struct ktls_session *tls, struct ktls_ocf_encrypt_state *state)
 {
 	vm_page_t pg;
 	int error, i, len, off;
 
 	KASSERT((m->m_flags & (M_EXTPG | M_NOTREADY)) == (M_EXTPG | M_NOTREADY),
 	    ("%p not unready & nomap mbuf\n", m));
 	KASSERT(ptoa(m->m_epg_npgs) <= ktls_maxlen,
 	    ("page count %d larger than maximum frame length %d", m->m_epg_npgs,
 	    ktls_maxlen));
 
 	/* Anonymous mbufs are encrypted in place. */
 	if ((m->m_epg_flags & EPG_FLAG_ANON) != 0)
 		return (ktls_ocf_encrypt(state, tls, m, NULL, 0));
 
 	/*
 	 * For file-backed mbufs (from sendfile), anonymous wired
 	 * pages are allocated and used as the encryption destination.
 	 */
 	if ((state->cbuf = ktls_buffer_alloc(wq, m)) != NULL) {
 		len = ptoa(m->m_epg_npgs - 1) + m->m_epg_last_len -
 		    m->m_epg_1st_off;
 		state->dst_iov[0].iov_base = (char *)state->cbuf +
 		    m->m_epg_1st_off;
 		state->dst_iov[0].iov_len = len;
 		state->parray[0] = DMAP_TO_PHYS((vm_offset_t)state->cbuf);
 		i = 1;
 	} else {
 		off = m->m_epg_1st_off;
 		for (i = 0; i < m->m_epg_npgs; i++, off = 0) {
 			pg = vm_page_alloc_noobj(VM_ALLOC_NODUMP |
 			    VM_ALLOC_WIRED | VM_ALLOC_WAITOK);
 			len = m_epg_pagelen(m, i, off);
 			state->parray[i] = VM_PAGE_TO_PHYS(pg);
 			state->dst_iov[i].iov_base =
 			    (char *)PHYS_TO_DMAP(state->parray[i]) + off;
 			state->dst_iov[i].iov_len = len;
 		}
 	}
 	KASSERT(i + 1 <= nitems(state->dst_iov), ("dst_iov is too small"));
 	state->dst_iov[i].iov_base = m->m_epg_trail;
 	state->dst_iov[i].iov_len = m->m_epg_trllen;
 
 	error = ktls_ocf_encrypt(state, tls, m, state->dst_iov, i + 1);
 
 	if (__predict_false(error != 0)) {
 		/* Free the anonymous pages. */
 		if (state->cbuf != NULL)
 			uma_zfree(ktls_buffer_zone, state->cbuf);
 		else {
 			for (i = 0; i < m->m_epg_npgs; i++) {
 				pg = PHYS_TO_VM_PAGE(state->parray[i]);
 				(void)vm_page_unwire_noq(pg);
 				vm_page_free(pg);
 			}
 		}
 	}
 	return (error);
 }
 
 /* Number of TLS records in a batch passed to ktls_enqueue(). */
 static u_int
 ktls_batched_records(struct mbuf *m)
 {
 	int page_count, records;
 
 	records = 0;
 	page_count = m->m_epg_enc_cnt;
 	while (page_count > 0) {
 		records++;
 		page_count -= m->m_epg_nrdy;
 		m = m->m_next;
 	}
 	KASSERT(page_count == 0, ("%s: mismatched page count", __func__));
 	return (records);
 }
 
 void
 ktls_enqueue(struct mbuf *m, struct socket *so, int page_count)
 {
 	struct ktls_session *tls;
 	struct ktls_wq *wq;
 	int queued;
 	bool running;
 
 	KASSERT(((m->m_flags & (M_EXTPG | M_NOTREADY)) ==
 	    (M_EXTPG | M_NOTREADY)),
 	    ("ktls_enqueue: %p not unready & nomap mbuf\n", m));
 	KASSERT(page_count != 0, ("enqueueing TLS mbuf with zero page count"));
 
 	KASSERT(m->m_epg_tls->mode == TCP_TLS_MODE_SW, ("!SW TLS mbuf"));
 
 	m->m_epg_enc_cnt = page_count;
 
 	/*
 	 * Save a pointer to the socket.  The caller is responsible
 	 * for taking an additional reference via soref().
 	 */
 	m->m_epg_so = so;
 
 	queued = 1;
 	tls = m->m_epg_tls;
 	wq = &ktls_wq[tls->wq_index];
 	mtx_lock(&wq->mtx);
 	if (__predict_false(tls->sequential_records)) {
 		/*
 		 * For TLS 1.0, records must be encrypted
 		 * sequentially.  For a given connection, all records
 		 * queued to the associated work queue are processed
 		 * sequentially.  However, sendfile(2) might complete
 		 * I/O requests spanning multiple TLS records out of
 		 * order.  Here we ensure TLS records are enqueued to
 		 * the work queue in FIFO order.
 		 *
 		 * tls->next_seqno holds the sequence number of the
 		 * next TLS record that should be enqueued to the work
 		 * queue.  If this next record is not tls->next_seqno,
 		 * it must be a future record, so insert it, sorted by
 		 * TLS sequence number, into tls->pending_records and
 		 * return.
 		 *
 		 * If this TLS record matches tls->next_seqno, place
 		 * it in the work queue and then check
 		 * tls->pending_records to see if any
 		 * previously-queued records are now ready for
 		 * encryption.
 		 */
 		if (m->m_epg_seqno != tls->next_seqno) {
 			struct mbuf *n, *p;
 
 			p = NULL;
 			STAILQ_FOREACH(n, &tls->pending_records, m_epg_stailq) {
 				if (n->m_epg_seqno > m->m_epg_seqno)
 					break;
 				p = n;
 			}
 			if (n == NULL)
 				STAILQ_INSERT_TAIL(&tls->pending_records, m,
 				    m_epg_stailq);
 			else if (p == NULL)
 				STAILQ_INSERT_HEAD(&tls->pending_records, m,
 				    m_epg_stailq);
 			else
 				STAILQ_INSERT_AFTER(&tls->pending_records, p, m,
 				    m_epg_stailq);
 			mtx_unlock(&wq->mtx);
 			counter_u64_add(ktls_cnt_tx_pending, 1);
 			return;
 		}
 
 		tls->next_seqno += ktls_batched_records(m);
 		STAILQ_INSERT_TAIL(&wq->m_head, m, m_epg_stailq);
 
 		while (!STAILQ_EMPTY(&tls->pending_records)) {
 			struct mbuf *n;
 
 			n = STAILQ_FIRST(&tls->pending_records);
 			if (n->m_epg_seqno != tls->next_seqno)
 				break;
 
 			queued++;
 			STAILQ_REMOVE_HEAD(&tls->pending_records, m_epg_stailq);
 			tls->next_seqno += ktls_batched_records(n);
 			STAILQ_INSERT_TAIL(&wq->m_head, n, m_epg_stailq);
 		}
 		counter_u64_add(ktls_cnt_tx_pending, -(queued - 1));
 	} else
 		STAILQ_INSERT_TAIL(&wq->m_head, m, m_epg_stailq);
 
 	running = wq->running;
 	mtx_unlock(&wq->mtx);
 	if (!running)
 		wakeup(wq);
 	counter_u64_add(ktls_cnt_tx_queued, queued);
 }
 
 /*
  * Once a file-backed mbuf (from sendfile) has been encrypted, free
  * the pages from the file and replace them with the anonymous pages
  * allocated in ktls_encrypt_record().
  */
 static void
 ktls_finish_nonanon(struct mbuf *m, struct ktls_ocf_encrypt_state *state)
 {
 	int i;
 
 	MPASS((m->m_epg_flags & EPG_FLAG_ANON) == 0);
 
 	/* Free the old pages. */
 	m->m_ext.ext_free(m);
 
 	/* Replace them with the new pages. */
 	if (state->cbuf != NULL) {
 		for (i = 0; i < m->m_epg_npgs; i++)
 			m->m_epg_pa[i] = state->parray[0] + ptoa(i);
 
 		/* Contig pages should go back to the cache. */
 		m->m_ext.ext_free = ktls_free_mext_contig;
 	} else {
 		for (i = 0; i < m->m_epg_npgs; i++)
 			m->m_epg_pa[i] = state->parray[i];
 
 		/* Use the basic free routine. */
 		m->m_ext.ext_free = mb_free_mext_pgs;
 	}
 
 	/* Pages are now writable. */
 	m->m_epg_flags |= EPG_FLAG_ANON;
 }
 
 static __noinline void
 ktls_encrypt(struct ktls_wq *wq, struct mbuf *top)
 {
 	struct ktls_ocf_encrypt_state state;
 	struct ktls_session *tls;
 	struct socket *so;
 	struct mbuf *m;
 	int error, npages, total_pages;
 
 	so = top->m_epg_so;
 	tls = top->m_epg_tls;
 	KASSERT(tls != NULL, ("tls = NULL, top = %p\n", top));
 	KASSERT(so != NULL, ("so = NULL, top = %p\n", top));
 #ifdef INVARIANTS
 	top->m_epg_so = NULL;
 #endif
 	total_pages = top->m_epg_enc_cnt;
 	npages = 0;
 
 	/*
 	 * Encrypt the TLS records in the chain of mbufs starting with
 	 * 'top'.  'total_pages' gives us a total count of pages and is
 	 * used to know when we have finished encrypting the TLS
 	 * records originally queued with 'top'.
 	 *
 	 * NB: These mbufs are queued in the socket buffer and
 	 * 'm_next' is traversing the mbufs in the socket buffer.  The
 	 * socket buffer lock is not held while traversing this chain.
 	 * Since the mbufs are all marked M_NOTREADY their 'm_next'
 	 * pointers should be stable.  However, the 'm_next' of the
 	 * last mbuf encrypted is not necessarily NULL.  It can point
 	 * to other mbufs appended while 'top' was on the TLS work
 	 * queue.
 	 *
 	 * Each mbuf holds an entire TLS record.
 	 */
 	error = 0;
 	for (m = top; npages != total_pages; m = m->m_next) {
 		KASSERT(m->m_epg_tls == tls,
 		    ("different TLS sessions in a single mbuf chain: %p vs %p",
 		    tls, m->m_epg_tls));
 		KASSERT(npages + m->m_epg_npgs <= total_pages,
 		    ("page count mismatch: top %p, total_pages %d, m %p", top,
 		    total_pages, m));
 
 		error = ktls_encrypt_record(wq, m, tls, &state);
 		if (error) {
 			counter_u64_add(ktls_offload_failed_crypto, 1);
 			break;
 		}
 
 		if ((m->m_epg_flags & EPG_FLAG_ANON) == 0)
 			ktls_finish_nonanon(m, &state);
 
 		npages += m->m_epg_nrdy;
 
 		/*
 		 * Drop a reference to the session now that it is no
 		 * longer needed.  Existing code depends on encrypted
 		 * records having no associated session vs
 		 * yet-to-be-encrypted records having an associated
 		 * session.
 		 */
 		m->m_epg_tls = NULL;
 		ktls_free(tls);
 	}
 
 	CURVNET_SET(so->so_vnet);
 	if (error == 0) {
 		(void)so->so_proto->pr_ready(so, top, npages);
 	} else {
 		so->so_proto->pr_abort(so);
 		so->so_error = EIO;
 		mb_free_notready(top, total_pages);
 	}
 
 	sorele(so);
 	CURVNET_RESTORE();
 }
 
 void
 ktls_encrypt_cb(struct ktls_ocf_encrypt_state *state, int error)
 {
 	struct ktls_session *tls;
 	struct socket *so;
 	struct mbuf *m;
 	int npages;
 
 	m = state->m;
 
 	if ((m->m_epg_flags & EPG_FLAG_ANON) == 0)
 		ktls_finish_nonanon(m, state);
 
 	so = state->so;
 	free(state, M_KTLS);
 
 	/*
 	 * Drop a reference to the session now that it is no longer
 	 * needed.  Existing code depends on encrypted records having
 	 * no associated session vs yet-to-be-encrypted records having
 	 * an associated session.
 	 */
 	tls = m->m_epg_tls;
 	m->m_epg_tls = NULL;
 	ktls_free(tls);
 
 	if (error != 0)
 		counter_u64_add(ktls_offload_failed_crypto, 1);
 
 	CURVNET_SET(so->so_vnet);
 	npages = m->m_epg_nrdy;
 
 	if (error == 0) {
 		(void)so->so_proto->pr_ready(so, m, npages);
 	} else {
 		so->so_proto->pr_abort(so);
 		so->so_error = EIO;
 		mb_free_notready(m, npages);
 	}
 
 	sorele(so);
 	CURVNET_RESTORE();
 }
 
 /*
  * Similar to ktls_encrypt, but used with asynchronous OCF backends
  * (coprocessors) where encryption does not use host CPU resources and
  * it can be beneficial to queue more requests than CPUs.
  */
 static __noinline void
 ktls_encrypt_async(struct ktls_wq *wq, struct mbuf *top)
 {
 	struct ktls_ocf_encrypt_state *state;
 	struct ktls_session *tls;
 	struct socket *so;
 	struct mbuf *m, *n;
 	int error, mpages, npages, total_pages;
 
 	so = top->m_epg_so;
 	tls = top->m_epg_tls;
 	KASSERT(tls != NULL, ("tls = NULL, top = %p\n", top));
 	KASSERT(so != NULL, ("so = NULL, top = %p\n", top));
 #ifdef INVARIANTS
 	top->m_epg_so = NULL;
 #endif
 	total_pages = top->m_epg_enc_cnt;
 	npages = 0;
 
 	error = 0;
 	for (m = top; npages != total_pages; m = n) {
 		KASSERT(m->m_epg_tls == tls,
 		    ("different TLS sessions in a single mbuf chain: %p vs %p",
 		    tls, m->m_epg_tls));
 		KASSERT(npages + m->m_epg_npgs <= total_pages,
 		    ("page count mismatch: top %p, total_pages %d, m %p", top,
 		    total_pages, m));
 
 		state = malloc(sizeof(*state), M_KTLS, M_WAITOK | M_ZERO);
 		soref(so);
 		state->so = so;
 		state->m = m;
 
 		mpages = m->m_epg_nrdy;
 		n = m->m_next;
 
 		error = ktls_encrypt_record(wq, m, tls, state);
 		if (error) {
 			counter_u64_add(ktls_offload_failed_crypto, 1);
 			free(state, M_KTLS);
 			CURVNET_SET(so->so_vnet);
 			sorele(so);
 			CURVNET_RESTORE();
 			break;
 		}
 
 		npages += mpages;
 	}
 
 	CURVNET_SET(so->so_vnet);
 	if (error != 0) {
 		so->so_proto->pr_abort(so);
 		so->so_error = EIO;
 		mb_free_notready(m, total_pages - npages);
 	}
 
 	sorele(so);
 	CURVNET_RESTORE();
 }
 
 static int
 ktls_bind_domain(int domain)
 {
 	int error;
 
 	error = cpuset_setthread(curthread->td_tid, &cpuset_domain[domain]);
 	if (error != 0)
 		return (error);
 	curthread->td_domain.dr_policy = DOMAINSET_PREF(domain);
 	return (0);
 }
 
 static void
 ktls_alloc_thread(void *ctx)
 {
 	struct ktls_domain_info *ktls_domain = ctx;
 	struct ktls_alloc_thread *sc = &ktls_domain->alloc_td;
 	void **buf;
 	struct sysctl_oid *oid;
 	char name[80];
 	int domain, error, i, nbufs;
 
 	domain = ktls_domain - ktls_domains;
 	if (bootverbose)
 		printf("Starting KTLS alloc thread for domain %d\n", domain);
 	error = ktls_bind_domain(domain);
 	if (error)
 		printf("Unable to bind KTLS alloc thread for domain %d: error %d\n",
 		    domain, error);
 	snprintf(name, sizeof(name), "domain%d", domain);
 	oid = SYSCTL_ADD_NODE(NULL, SYSCTL_STATIC_CHILDREN(_kern_ipc_tls), OID_AUTO,
 	    name, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
 	SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "allocs",
 	    CTLFLAG_RD,  &sc->allocs, 0, "buffers allocated");
 	SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "wakeups",
 	    CTLFLAG_RD,  &sc->wakeups, 0, "thread wakeups");
 	SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "running",
 	    CTLFLAG_RD,  &sc->running, 0, "thread running");
 
 	buf = NULL;
 	nbufs = 0;
 	for (;;) {
 		atomic_store_int(&sc->running, 0);
 		tsleep(sc, PZERO | PNOLOCK, "-",  0);
 		atomic_store_int(&sc->running, 1);
 		sc->wakeups++;
 		if (nbufs != ktls_max_alloc) {
 			free(buf, M_KTLS);
 			nbufs = atomic_load_int(&ktls_max_alloc);
 			buf = malloc(sizeof(void *) * nbufs, M_KTLS,
 			    M_WAITOK | M_ZERO);
 		}
 		/*
 		 * Below we allocate nbufs with different allocation
 		 * flags than we use when allocating normally during
 		 * encryption in the ktls worker thread.  We specify
 		 * M_NORECLAIM in the worker thread. However, we omit
 		 * that flag here and add M_WAITOK so that the VM
 		 * system is permitted to perform expensive work to
 		 * defragment memory.  We do this here, as it does not
 		 * matter if this thread blocks.  If we block a ktls
 		 * worker thread, we risk developing backlogs of
 		 * buffers to be encrypted, leading to surges of
 		 * traffic and potential NIC output drops.
 		 */
 		for (i = 0; i < nbufs; i++) {
 			buf[i] = uma_zalloc(ktls_buffer_zone, M_WAITOK);
 			sc->allocs++;
 		}
 		for (i = 0; i < nbufs; i++) {
 			uma_zfree(ktls_buffer_zone, buf[i]);
 			buf[i] = NULL;
 		}
 	}
 }
 
 static void
 ktls_work_thread(void *ctx)
 {
 	struct ktls_wq *wq = ctx;
 	struct mbuf *m, *n;
 	struct socket *so, *son;
 	STAILQ_HEAD(, mbuf) local_m_head;
 	STAILQ_HEAD(, socket) local_so_head;
 	int cpu;
 
 	cpu = wq - ktls_wq;
 	if (bootverbose)
 		printf("Starting KTLS worker thread for CPU %d\n", cpu);
 
 	/*
 	 * Bind to a core.  If ktls_bind_threads is > 1, then
 	 * we bind to the NUMA domain instead.
 	 */
 	if (ktls_bind_threads) {
 		int error;
 
 		if (ktls_bind_threads > 1) {
 			struct pcpu *pc = pcpu_find(cpu);
 
 			error = ktls_bind_domain(pc->pc_domain);
 		} else {
 			cpuset_t mask;
 
 			CPU_SETOF(cpu, &mask);
 			error = cpuset_setthread(curthread->td_tid, &mask);
 		}
 		if (error)
 			printf("Unable to bind KTLS worker thread for CPU %d: error %d\n",
 				cpu, error);
 	}
 #if defined(__aarch64__) || defined(__amd64__) || defined(__i386__)
 	fpu_kern_thread(0);
 #endif
 	for (;;) {
 		mtx_lock(&wq->mtx);
 		while (STAILQ_EMPTY(&wq->m_head) &&
 		    STAILQ_EMPTY(&wq->so_head)) {
 			wq->running = false;
 			mtx_sleep(wq, &wq->mtx, 0, "-", 0);
 			wq->running = true;
 		}
 
 		STAILQ_INIT(&local_m_head);
 		STAILQ_CONCAT(&local_m_head, &wq->m_head);
 		STAILQ_INIT(&local_so_head);
 		STAILQ_CONCAT(&local_so_head, &wq->so_head);
 		mtx_unlock(&wq->mtx);
 
 		STAILQ_FOREACH_SAFE(m, &local_m_head, m_epg_stailq, n) {
 			if (m->m_epg_flags & EPG_FLAG_2FREE) {
 				ktls_free(m->m_epg_tls);
 				m_free_raw(m);
 			} else {
 				if (m->m_epg_tls->sync_dispatch)
 					ktls_encrypt(wq, m);
 				else
 					ktls_encrypt_async(wq, m);
 				counter_u64_add(ktls_cnt_tx_queued, -1);
 			}
 		}
 
 		STAILQ_FOREACH_SAFE(so, &local_so_head, so_ktls_rx_list, son) {
 			ktls_decrypt(so);
 			counter_u64_add(ktls_cnt_rx_queued, -1);
 		}
 	}
 }
 
 #if defined(INET) || defined(INET6)
 static void
 ktls_disable_ifnet_help(void *context, int pending __unused)
 {
 	struct ktls_session *tls;
 	struct inpcb *inp;
 	struct tcpcb *tp;
 	struct socket *so;
 	int err;
 
 	tls = context;
 	inp = tls->inp;
 	if (inp == NULL)
 		return;
 	INP_WLOCK(inp);
 	so = inp->inp_socket;
 	MPASS(so != NULL);
 	if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) {
 		goto out;
 	}
 
 	if (so->so_snd.sb_tls_info != NULL)
 		err = ktls_set_tx_mode(so, TCP_TLS_MODE_SW);
 	else
 		err = ENXIO;
 	if (err == 0) {
 		counter_u64_add(ktls_ifnet_disable_ok, 1);
 		/* ktls_set_tx_mode() drops inp wlock, so recheck flags */
 		if ((inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) == 0 &&
 		    (tp = intotcpcb(inp)) != NULL &&
 		    tp->t_fb->tfb_hwtls_change != NULL)
 			(*tp->t_fb->tfb_hwtls_change)(tp, 0);
 	} else {
 		counter_u64_add(ktls_ifnet_disable_fail, 1);
 	}
 
 out:
 	sorele(so);
 	if (!in_pcbrele_wlocked(inp))
 		INP_WUNLOCK(inp);
 	ktls_free(tls);
 }
 
 /*
  * Called when re-transmits are becoming a substantial portion of the
  * sends on this connection.  When this happens, we transition the
  * connection to software TLS.  This is needed because most inline TLS
  * NICs keep crypto state only for in-order transmits.  This means
  * that to handle a TCP rexmit (which is out-of-order), the NIC must
  * re-DMA the entire TLS record up to and including the current
  * segment.  This means that when re-transmitting the last ~1448 byte
  * segment of a 16KB TLS record, we could wind up re-DMA'ing an order
  * of magnitude more data than we are sending.  This can cause the
  * PCIe link to saturate well before the network, which can cause
  * output drops, and a general loss of capacity.
  */
 void
 ktls_disable_ifnet(void *arg)
 {
 	struct tcpcb *tp;
 	struct inpcb *inp;
 	struct socket *so;
 	struct ktls_session *tls;
 
 	tp = arg;
 	inp = tp->t_inpcb;
 	INP_WLOCK_ASSERT(inp);
 	so = inp->inp_socket;
 	SOCK_LOCK(so);
 	tls = so->so_snd.sb_tls_info;
 	if (tls->disable_ifnet_pending) {
 		SOCK_UNLOCK(so);
 		return;
 	}
 
 	/*
 	 * note that disable_ifnet_pending is never cleared; disabling
 	 * ifnet can only be done once per session, so we never want
 	 * to do it again
 	 */
 
 	(void)ktls_hold(tls);
 	in_pcbref(inp);
 	soref(so);
 	tls->disable_ifnet_pending = true;
 	tls->inp = inp;
 	SOCK_UNLOCK(so);
 	TASK_INIT(&tls->disable_ifnet_task, 0, ktls_disable_ifnet_help, tls);
 	(void)taskqueue_enqueue(taskqueue_thread, &tls->disable_ifnet_task);
 }
 #endif