diff --git a/sys/compat/freebsd32/freebsd32_misc.c b/sys/compat/freebsd32/freebsd32_misc.c index c8681c6e3f8b..719a0573cb5d 100644 --- a/sys/compat/freebsd32/freebsd32_misc.c +++ b/sys/compat/freebsd32/freebsd32_misc.c @@ -1,3023 +1,3055 @@ /*- * Copyright (c) 2002 Doug Rabson * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include "opt_compat.h" #include "opt_inet.h" #include "opt_inet6.h" #define __ELF_WORD_SIZE 32 #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* Must come after sys/malloc.h */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* Must come after sys/selinfo.h */ #include /* Must come after sys/selinfo.h */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INET #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include FEATURE(compat_freebsd_32bit, "Compatible with 32-bit FreeBSD"); #ifndef __mips__ CTASSERT(sizeof(struct timeval32) == 8); CTASSERT(sizeof(struct timespec32) == 8); CTASSERT(sizeof(struct itimerval32) == 16); #endif CTASSERT(sizeof(struct statfs32) == 256); #ifndef __mips__ CTASSERT(sizeof(struct rusage32) == 72); #endif CTASSERT(sizeof(struct sigaltstack32) == 12); CTASSERT(sizeof(struct kevent32) == 20); CTASSERT(sizeof(struct iovec32) == 8); CTASSERT(sizeof(struct msghdr32) == 28); #ifndef __mips__ CTASSERT(sizeof(struct stat32) == 96); #endif CTASSERT(sizeof(struct sigaction32) == 24); static int freebsd32_kevent_copyout(void *arg, struct kevent *kevp, int count); static int freebsd32_kevent_copyin(void *arg, struct kevent *kevp, int count); void freebsd32_rusage_out(const struct rusage *s, struct rusage32 *s32) { TV_CP(*s, *s32, ru_utime); TV_CP(*s, *s32, ru_stime); CP(*s, *s32, ru_maxrss); CP(*s, *s32, ru_ixrss); CP(*s, *s32, ru_idrss); CP(*s, *s32, ru_isrss); CP(*s, *s32, ru_minflt); CP(*s, *s32, ru_majflt); CP(*s, *s32, ru_nswap); CP(*s, *s32, ru_inblock); CP(*s, *s32, ru_oublock); CP(*s, *s32, ru_msgsnd); CP(*s, *s32, ru_msgrcv); CP(*s, *s32, ru_nsignals); CP(*s, *s32, ru_nvcsw); CP(*s, *s32, ru_nivcsw); } int freebsd32_wait4(struct thread *td, struct freebsd32_wait4_args *uap) { int error, status; struct rusage32 ru32; struct rusage ru, *rup; if (uap->rusage != NULL) rup = &ru; else rup = NULL; error = kern_wait(td, uap->pid, &status, uap->options, rup); if (error) return (error); if (uap->status != NULL) error = copyout(&status, uap->status, sizeof(status)); if (uap->rusage != NULL && error == 0) { freebsd32_rusage_out(&ru, &ru32); error = copyout(&ru32, uap->rusage, sizeof(ru32)); } return (error); } int freebsd32_wait6(struct thread *td, struct freebsd32_wait6_args *uap) { struct wrusage32 wru32; struct __wrusage wru, *wrup; struct siginfo32 si32; struct __siginfo si, *sip; int error, status; if (uap->wrusage != NULL) wrup = &wru; else wrup = NULL; if (uap->info != NULL) { sip = &si; bzero(sip, sizeof(*sip)); } else sip = NULL; error = kern_wait6(td, uap->idtype, PAIR32TO64(id_t, uap->id), &status, uap->options, wrup, sip); if (error != 0) return (error); if (uap->status != NULL) error = copyout(&status, uap->status, sizeof(status)); if (uap->wrusage != NULL && error == 0) { freebsd32_rusage_out(&wru.wru_self, &wru32.wru_self); freebsd32_rusage_out(&wru.wru_children, &wru32.wru_children); error = copyout(&wru32, uap->wrusage, sizeof(wru32)); } if (uap->info != NULL && error == 0) { siginfo_to_siginfo32 (&si, &si32); error = copyout(&si32, uap->info, sizeof(si32)); } return (error); } #ifdef COMPAT_FREEBSD4 static void copy_statfs(struct statfs *in, struct statfs32 *out) { statfs_scale_blocks(in, INT32_MAX); bzero(out, sizeof(*out)); CP(*in, *out, f_bsize); out->f_iosize = MIN(in->f_iosize, INT32_MAX); CP(*in, *out, f_blocks); CP(*in, *out, f_bfree); CP(*in, *out, f_bavail); out->f_files = MIN(in->f_files, INT32_MAX); out->f_ffree = MIN(in->f_ffree, INT32_MAX); CP(*in, *out, f_fsid); CP(*in, *out, f_owner); CP(*in, *out, f_type); CP(*in, *out, f_flags); out->f_syncwrites = MIN(in->f_syncwrites, INT32_MAX); out->f_asyncwrites = MIN(in->f_asyncwrites, INT32_MAX); strlcpy(out->f_fstypename, in->f_fstypename, MFSNAMELEN); strlcpy(out->f_mntonname, in->f_mntonname, min(MNAMELEN, FREEBSD4_MNAMELEN)); out->f_syncreads = MIN(in->f_syncreads, INT32_MAX); out->f_asyncreads = MIN(in->f_asyncreads, INT32_MAX); strlcpy(out->f_mntfromname, in->f_mntfromname, min(MNAMELEN, FREEBSD4_MNAMELEN)); } #endif #ifdef COMPAT_FREEBSD4 int freebsd4_freebsd32_getfsstat(struct thread *td, struct freebsd4_freebsd32_getfsstat_args *uap) { struct statfs *buf, *sp; struct statfs32 stat32; size_t count, size; int error; count = uap->bufsize / sizeof(struct statfs32); size = count * sizeof(struct statfs); error = kern_getfsstat(td, &buf, size, UIO_SYSSPACE, uap->flags); if (size > 0) { count = td->td_retval[0]; sp = buf; while (count > 0 && error == 0) { copy_statfs(sp, &stat32); error = copyout(&stat32, uap->buf, sizeof(stat32)); sp++; uap->buf++; count--; } free(buf, M_TEMP); } return (error); } #endif int freebsd32_sigaltstack(struct thread *td, struct freebsd32_sigaltstack_args *uap) { struct sigaltstack32 s32; struct sigaltstack ss, oss, *ssp; int error; if (uap->ss != NULL) { error = copyin(uap->ss, &s32, sizeof(s32)); if (error) return (error); PTRIN_CP(s32, ss, ss_sp); CP(s32, ss, ss_size); CP(s32, ss, ss_flags); ssp = &ss; } else ssp = NULL; error = kern_sigaltstack(td, ssp, &oss); if (error == 0 && uap->oss != NULL) { PTROUT_CP(oss, s32, ss_sp); CP(oss, s32, ss_size); CP(oss, s32, ss_flags); error = copyout(&s32, uap->oss, sizeof(s32)); } return (error); } /* * Custom version of exec_copyin_args() so that we can translate * the pointers. */ int freebsd32_exec_copyin_args(struct image_args *args, char *fname, enum uio_seg segflg, u_int32_t *argv, u_int32_t *envv) { char *argp, *envp; u_int32_t *p32, arg; size_t length; int error; bzero(args, sizeof(*args)); if (argv == NULL) return (EFAULT); /* * Allocate demand-paged memory for the file name, argument, and * environment strings. */ error = exec_alloc_args(args); if (error != 0) return (error); /* * Copy the file name. */ if (fname != NULL) { args->fname = args->buf; error = (segflg == UIO_SYSSPACE) ? copystr(fname, args->fname, PATH_MAX, &length) : copyinstr(fname, args->fname, PATH_MAX, &length); if (error != 0) goto err_exit; } else length = 0; args->begin_argv = args->buf + length; args->endp = args->begin_argv; args->stringspace = ARG_MAX; /* * extract arguments first */ p32 = argv; for (;;) { error = copyin(p32++, &arg, sizeof(arg)); if (error) goto err_exit; if (arg == 0) break; argp = PTRIN(arg); error = copyinstr(argp, args->endp, args->stringspace, &length); if (error) { if (error == ENAMETOOLONG) error = E2BIG; goto err_exit; } args->stringspace -= length; args->endp += length; args->argc++; } args->begin_envv = args->endp; /* * extract environment strings */ if (envv) { p32 = envv; for (;;) { error = copyin(p32++, &arg, sizeof(arg)); if (error) goto err_exit; if (arg == 0) break; envp = PTRIN(arg); error = copyinstr(envp, args->endp, args->stringspace, &length); if (error) { if (error == ENAMETOOLONG) error = E2BIG; goto err_exit; } args->stringspace -= length; args->endp += length; args->envc++; } } return (0); err_exit: exec_free_args(args); return (error); } int freebsd32_execve(struct thread *td, struct freebsd32_execve_args *uap) { struct image_args eargs; int error; error = freebsd32_exec_copyin_args(&eargs, uap->fname, UIO_USERSPACE, uap->argv, uap->envv); if (error == 0) error = kern_execve(td, &eargs, NULL); return (error); } int freebsd32_fexecve(struct thread *td, struct freebsd32_fexecve_args *uap) { struct image_args eargs; int error; error = freebsd32_exec_copyin_args(&eargs, NULL, UIO_SYSSPACE, uap->argv, uap->envv); if (error == 0) { eargs.fd = uap->fd; error = kern_execve(td, &eargs, NULL); } return (error); } #ifdef __ia64__ static int freebsd32_mmap_partial(struct thread *td, vm_offset_t start, vm_offset_t end, int prot, int fd, off_t pos) { vm_map_t map; vm_map_entry_t entry; int rv; map = &td->td_proc->p_vmspace->vm_map; if (fd != -1) prot |= VM_PROT_WRITE; if (vm_map_lookup_entry(map, start, &entry)) { if ((entry->protection & prot) != prot) { rv = vm_map_protect(map, trunc_page(start), round_page(end), entry->protection | prot, FALSE); if (rv != KERN_SUCCESS) return (EINVAL); } } else { vm_offset_t addr = trunc_page(start); rv = vm_map_find(map, NULL, 0, &addr, PAGE_SIZE, 0, VMFS_NO_SPACE, prot, VM_PROT_ALL, 0); if (rv != KERN_SUCCESS) return (EINVAL); } if (fd != -1) { struct pread_args r; r.fd = fd; r.buf = (void *) start; r.nbyte = end - start; r.offset = pos; return (sys_pread(td, &r)); } else { while (start < end) { subyte((void *) start, 0); start++; } return (0); } } #endif int freebsd32_mprotect(struct thread *td, struct freebsd32_mprotect_args *uap) { struct mprotect_args ap; ap.addr = PTRIN(uap->addr); ap.len = uap->len; ap.prot = uap->prot; #if defined(__amd64__) || defined(__ia64__) if (i386_read_exec && (ap.prot & PROT_READ) != 0) ap.prot |= PROT_EXEC; #endif return (sys_mprotect(td, &ap)); } int freebsd32_mmap(struct thread *td, struct freebsd32_mmap_args *uap) { struct mmap_args ap; vm_offset_t addr = (vm_offset_t) uap->addr; vm_size_t len = uap->len; int prot = uap->prot; int flags = uap->flags; int fd = uap->fd; off_t pos = PAIR32TO64(off_t,uap->pos); #ifdef __ia64__ vm_size_t pageoff; int error; /* * Attempt to handle page size hassles. */ pageoff = (pos & PAGE_MASK); if (flags & MAP_FIXED) { vm_offset_t start, end; start = addr; end = addr + len; if (start != trunc_page(start)) { error = freebsd32_mmap_partial(td, start, round_page(start), prot, fd, pos); if (fd != -1) pos += round_page(start) - start; start = round_page(start); } if (end != round_page(end)) { vm_offset_t t = trunc_page(end); error = freebsd32_mmap_partial(td, t, end, prot, fd, pos + t - start); end = trunc_page(end); } if (end > start && fd != -1 && (pos & PAGE_MASK)) { /* * We can't map this region at all. The specified * address doesn't have the same alignment as the file * position. Fake the mapping by simply reading the * entire region into memory. First we need to make * sure the region exists. */ vm_map_t map; struct pread_args r; int rv; prot |= VM_PROT_WRITE; map = &td->td_proc->p_vmspace->vm_map; rv = vm_map_remove(map, start, end); if (rv != KERN_SUCCESS) return (EINVAL); rv = vm_map_find(map, NULL, 0, &start, end - start, 0, VMFS_NO_SPACE, prot, VM_PROT_ALL, 0); if (rv != KERN_SUCCESS) return (EINVAL); r.fd = fd; r.buf = (void *) start; r.nbyte = end - start; r.offset = pos; error = sys_pread(td, &r); if (error) return (error); td->td_retval[0] = addr; return (0); } if (end == start) { /* * After dealing with the ragged ends, there * might be none left. */ td->td_retval[0] = addr; return (0); } addr = start; len = end - start; } #endif #if defined(__amd64__) || defined(__ia64__) if (i386_read_exec && (prot & PROT_READ)) prot |= PROT_EXEC; #endif ap.addr = (void *) addr; ap.len = len; ap.prot = prot; ap.flags = flags; ap.fd = fd; ap.pos = pos; return (sys_mmap(td, &ap)); } #ifdef COMPAT_FREEBSD6 int freebsd6_freebsd32_mmap(struct thread *td, struct freebsd6_freebsd32_mmap_args *uap) { struct freebsd32_mmap_args ap; ap.addr = uap->addr; ap.len = uap->len; ap.prot = uap->prot; ap.flags = uap->flags; ap.fd = uap->fd; ap.pos1 = uap->pos1; ap.pos2 = uap->pos2; return (freebsd32_mmap(td, &ap)); } #endif int freebsd32_setitimer(struct thread *td, struct freebsd32_setitimer_args *uap) { struct itimerval itv, oitv, *itvp; struct itimerval32 i32; int error; if (uap->itv != NULL) { error = copyin(uap->itv, &i32, sizeof(i32)); if (error) return (error); TV_CP(i32, itv, it_interval); TV_CP(i32, itv, it_value); itvp = &itv; } else itvp = NULL; error = kern_setitimer(td, uap->which, itvp, &oitv); if (error || uap->oitv == NULL) return (error); TV_CP(oitv, i32, it_interval); TV_CP(oitv, i32, it_value); return (copyout(&i32, uap->oitv, sizeof(i32))); } int freebsd32_getitimer(struct thread *td, struct freebsd32_getitimer_args *uap) { struct itimerval itv; struct itimerval32 i32; int error; error = kern_getitimer(td, uap->which, &itv); if (error || uap->itv == NULL) return (error); TV_CP(itv, i32, it_interval); TV_CP(itv, i32, it_value); return (copyout(&i32, uap->itv, sizeof(i32))); } int freebsd32_select(struct thread *td, struct freebsd32_select_args *uap) { struct timeval32 tv32; struct timeval tv, *tvp; int error; if (uap->tv != NULL) { error = copyin(uap->tv, &tv32, sizeof(tv32)); if (error) return (error); CP(tv32, tv, tv_sec); CP(tv32, tv, tv_usec); tvp = &tv; } else tvp = NULL; /* * XXX Do pointers need PTRIN()? */ return (kern_select(td, uap->nd, uap->in, uap->ou, uap->ex, tvp, sizeof(int32_t) * 8)); } int freebsd32_pselect(struct thread *td, struct freebsd32_pselect_args *uap) { struct timespec32 ts32; struct timespec ts; struct timeval tv, *tvp; sigset_t set, *uset; int error; if (uap->ts != NULL) { error = copyin(uap->ts, &ts32, sizeof(ts32)); if (error != 0) return (error); CP(ts32, ts, tv_sec); CP(ts32, ts, tv_nsec); TIMESPEC_TO_TIMEVAL(&tv, &ts); tvp = &tv; } else tvp = NULL; if (uap->sm != NULL) { error = copyin(uap->sm, &set, sizeof(set)); if (error != 0) return (error); uset = &set; } else uset = NULL; /* * XXX Do pointers need PTRIN()? */ error = kern_pselect(td, uap->nd, uap->in, uap->ou, uap->ex, tvp, uset, sizeof(int32_t) * 8); return (error); } /* * Copy 'count' items into the destination list pointed to by uap->eventlist. */ static int freebsd32_kevent_copyout(void *arg, struct kevent *kevp, int count) { struct freebsd32_kevent_args *uap; struct kevent32 ks32[KQ_NEVENTS]; int i, error = 0; KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count)); uap = (struct freebsd32_kevent_args *)arg; for (i = 0; i < count; i++) { CP(kevp[i], ks32[i], ident); CP(kevp[i], ks32[i], filter); CP(kevp[i], ks32[i], flags); CP(kevp[i], ks32[i], fflags); CP(kevp[i], ks32[i], data); PTROUT_CP(kevp[i], ks32[i], udata); } error = copyout(ks32, uap->eventlist, count * sizeof *ks32); if (error == 0) uap->eventlist += count; return (error); } /* * Copy 'count' items from the list pointed to by uap->changelist. */ static int freebsd32_kevent_copyin(void *arg, struct kevent *kevp, int count) { struct freebsd32_kevent_args *uap; struct kevent32 ks32[KQ_NEVENTS]; int i, error = 0; KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count)); uap = (struct freebsd32_kevent_args *)arg; error = copyin(uap->changelist, ks32, count * sizeof *ks32); if (error) goto done; uap->changelist += count; for (i = 0; i < count; i++) { CP(ks32[i], kevp[i], ident); CP(ks32[i], kevp[i], filter); CP(ks32[i], kevp[i], flags); CP(ks32[i], kevp[i], fflags); CP(ks32[i], kevp[i], data); PTRIN_CP(ks32[i], kevp[i], udata); } done: return (error); } int freebsd32_kevent(struct thread *td, struct freebsd32_kevent_args *uap) { struct timespec32 ts32; struct timespec ts, *tsp; struct kevent_copyops k_ops = { uap, freebsd32_kevent_copyout, freebsd32_kevent_copyin}; int error; if (uap->timeout) { error = copyin(uap->timeout, &ts32, sizeof(ts32)); if (error) return (error); CP(ts32, ts, tv_sec); CP(ts32, ts, tv_nsec); tsp = &ts; } else tsp = NULL; error = kern_kevent(td, uap->fd, uap->nchanges, uap->nevents, &k_ops, tsp); return (error); } int freebsd32_gettimeofday(struct thread *td, struct freebsd32_gettimeofday_args *uap) { struct timeval atv; struct timeval32 atv32; struct timezone rtz; int error = 0; if (uap->tp) { microtime(&atv); CP(atv, atv32, tv_sec); CP(atv, atv32, tv_usec); error = copyout(&atv32, uap->tp, sizeof (atv32)); } if (error == 0 && uap->tzp != NULL) { rtz.tz_minuteswest = tz_minuteswest; rtz.tz_dsttime = tz_dsttime; error = copyout(&rtz, uap->tzp, sizeof (rtz)); } return (error); } int freebsd32_getrusage(struct thread *td, struct freebsd32_getrusage_args *uap) { struct rusage32 s32; struct rusage s; int error; error = kern_getrusage(td, uap->who, &s); if (error) return (error); if (uap->rusage != NULL) { freebsd32_rusage_out(&s, &s32); error = copyout(&s32, uap->rusage, sizeof(s32)); } return (error); } static int freebsd32_copyinuio(struct iovec32 *iovp, u_int iovcnt, struct uio **uiop) { struct iovec32 iov32; struct iovec *iov; struct uio *uio; u_int iovlen; int error, i; *uiop = NULL; if (iovcnt > UIO_MAXIOV) return (EINVAL); iovlen = iovcnt * sizeof(struct iovec); uio = malloc(iovlen + sizeof *uio, M_IOV, M_WAITOK); iov = (struct iovec *)(uio + 1); for (i = 0; i < iovcnt; i++) { error = copyin(&iovp[i], &iov32, sizeof(struct iovec32)); if (error) { free(uio, M_IOV); return (error); } iov[i].iov_base = PTRIN(iov32.iov_base); iov[i].iov_len = iov32.iov_len; } uio->uio_iov = iov; uio->uio_iovcnt = iovcnt; uio->uio_segflg = UIO_USERSPACE; uio->uio_offset = -1; uio->uio_resid = 0; for (i = 0; i < iovcnt; i++) { if (iov->iov_len > INT_MAX - uio->uio_resid) { free(uio, M_IOV); return (EINVAL); } uio->uio_resid += iov->iov_len; iov++; } *uiop = uio; return (0); } int freebsd32_readv(struct thread *td, struct freebsd32_readv_args *uap) { struct uio *auio; int error; error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); if (error) return (error); error = kern_readv(td, uap->fd, auio); free(auio, M_IOV); return (error); } int freebsd32_writev(struct thread *td, struct freebsd32_writev_args *uap) { struct uio *auio; int error; error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); if (error) return (error); error = kern_writev(td, uap->fd, auio); free(auio, M_IOV); return (error); } int freebsd32_preadv(struct thread *td, struct freebsd32_preadv_args *uap) { struct uio *auio; int error; error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); if (error) return (error); error = kern_preadv(td, uap->fd, auio, PAIR32TO64(off_t,uap->offset)); free(auio, M_IOV); return (error); } int freebsd32_pwritev(struct thread *td, struct freebsd32_pwritev_args *uap) { struct uio *auio; int error; error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); if (error) return (error); error = kern_pwritev(td, uap->fd, auio, PAIR32TO64(off_t,uap->offset)); free(auio, M_IOV); return (error); } int freebsd32_copyiniov(struct iovec32 *iovp32, u_int iovcnt, struct iovec **iovp, int error) { struct iovec32 iov32; struct iovec *iov; u_int iovlen; int i; *iovp = NULL; if (iovcnt > UIO_MAXIOV) return (error); iovlen = iovcnt * sizeof(struct iovec); iov = malloc(iovlen, M_IOV, M_WAITOK); for (i = 0; i < iovcnt; i++) { error = copyin(&iovp32[i], &iov32, sizeof(struct iovec32)); if (error) { free(iov, M_IOV); return (error); } iov[i].iov_base = PTRIN(iov32.iov_base); iov[i].iov_len = iov32.iov_len; } *iovp = iov; return (0); } static int freebsd32_copyinmsghdr(struct msghdr32 *msg32, struct msghdr *msg) { struct msghdr32 m32; int error; error = copyin(msg32, &m32, sizeof(m32)); if (error) return (error); msg->msg_name = PTRIN(m32.msg_name); msg->msg_namelen = m32.msg_namelen; msg->msg_iov = PTRIN(m32.msg_iov); msg->msg_iovlen = m32.msg_iovlen; msg->msg_control = PTRIN(m32.msg_control); msg->msg_controllen = m32.msg_controllen; msg->msg_flags = m32.msg_flags; return (0); } static int freebsd32_copyoutmsghdr(struct msghdr *msg, struct msghdr32 *msg32) { struct msghdr32 m32; int error; m32.msg_name = PTROUT(msg->msg_name); m32.msg_namelen = msg->msg_namelen; m32.msg_iov = PTROUT(msg->msg_iov); m32.msg_iovlen = msg->msg_iovlen; m32.msg_control = PTROUT(msg->msg_control); m32.msg_controllen = msg->msg_controllen; m32.msg_flags = msg->msg_flags; error = copyout(&m32, msg32, sizeof(m32)); return (error); } #ifndef __mips__ #define FREEBSD32_ALIGNBYTES (sizeof(int) - 1) #else #define FREEBSD32_ALIGNBYTES (sizeof(long) - 1) #endif #define FREEBSD32_ALIGN(p) \ (((u_long)(p) + FREEBSD32_ALIGNBYTES) & ~FREEBSD32_ALIGNBYTES) #define FREEBSD32_CMSG_SPACE(l) \ (FREEBSD32_ALIGN(sizeof(struct cmsghdr)) + FREEBSD32_ALIGN(l)) #define FREEBSD32_CMSG_DATA(cmsg) ((unsigned char *)(cmsg) + \ FREEBSD32_ALIGN(sizeof(struct cmsghdr))) static int freebsd32_copy_msg_out(struct msghdr *msg, struct mbuf *control) { struct cmsghdr *cm; void *data; socklen_t clen, datalen; int error; caddr_t ctlbuf; int len, maxlen, copylen; struct mbuf *m; error = 0; len = msg->msg_controllen; maxlen = msg->msg_controllen; msg->msg_controllen = 0; m = control; ctlbuf = msg->msg_control; while (m && len > 0) { cm = mtod(m, struct cmsghdr *); clen = m->m_len; while (cm != NULL) { if (sizeof(struct cmsghdr) > clen || cm->cmsg_len > clen) { error = EINVAL; break; } data = CMSG_DATA(cm); datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data; /* Adjust message length */ cm->cmsg_len = FREEBSD32_ALIGN(sizeof(struct cmsghdr)) + datalen; /* Copy cmsghdr */ copylen = sizeof(struct cmsghdr); if (len < copylen) { msg->msg_flags |= MSG_CTRUNC; copylen = len; } error = copyout(cm,ctlbuf,copylen); if (error) goto exit; ctlbuf += FREEBSD32_ALIGN(copylen); len -= FREEBSD32_ALIGN(copylen); if (len <= 0) break; /* Copy data */ copylen = datalen; if (len < copylen) { msg->msg_flags |= MSG_CTRUNC; copylen = len; } error = copyout(data,ctlbuf,copylen); if (error) goto exit; ctlbuf += FREEBSD32_ALIGN(copylen); len -= FREEBSD32_ALIGN(copylen); if (CMSG_SPACE(datalen) < clen) { clen -= CMSG_SPACE(datalen); cm = (struct cmsghdr *) ((caddr_t)cm + CMSG_SPACE(datalen)); } else { clen = 0; cm = NULL; } } m = m->m_next; } msg->msg_controllen = (len <= 0) ? maxlen : ctlbuf - (caddr_t)msg->msg_control; exit: return (error); } int freebsd32_recvmsg(td, uap) struct thread *td; struct freebsd32_recvmsg_args /* { int s; struct msghdr32 *msg; int flags; } */ *uap; { struct msghdr msg; struct msghdr32 m32; struct iovec *uiov, *iov; struct mbuf *control = NULL; struct mbuf **controlp; int error; error = copyin(uap->msg, &m32, sizeof(m32)); if (error) return (error); error = freebsd32_copyinmsghdr(uap->msg, &msg); if (error) return (error); error = freebsd32_copyiniov(PTRIN(m32.msg_iov), m32.msg_iovlen, &iov, EMSGSIZE); if (error) return (error); msg.msg_flags = uap->flags; uiov = msg.msg_iov; msg.msg_iov = iov; controlp = (msg.msg_control != NULL) ? &control : NULL; error = kern_recvit(td, uap->s, &msg, UIO_USERSPACE, controlp); if (error == 0) { msg.msg_iov = uiov; if (control != NULL) error = freebsd32_copy_msg_out(&msg, control); else msg.msg_controllen = 0; if (error == 0) error = freebsd32_copyoutmsghdr(&msg, uap->msg); } free(iov, M_IOV); if (control != NULL) m_freem(control); return (error); } static int freebsd32_convert_msg_in(struct mbuf **controlp) { struct mbuf *control = *controlp; struct cmsghdr *cm = mtod(control, struct cmsghdr *); void *data; socklen_t clen = control->m_len, datalen; int error; error = 0; *controlp = NULL; while (cm != NULL) { if (sizeof(struct cmsghdr) > clen || cm->cmsg_len > clen) { error = EINVAL; break; } data = FREEBSD32_CMSG_DATA(cm); datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data; *controlp = sbcreatecontrol(data, datalen, cm->cmsg_type, cm->cmsg_level); controlp = &(*controlp)->m_next; if (FREEBSD32_CMSG_SPACE(datalen) < clen) { clen -= FREEBSD32_CMSG_SPACE(datalen); cm = (struct cmsghdr *) ((caddr_t)cm + FREEBSD32_CMSG_SPACE(datalen)); } else { clen = 0; cm = NULL; } } m_freem(control); return (error); } int freebsd32_sendmsg(struct thread *td, struct freebsd32_sendmsg_args *uap) { struct msghdr msg; struct msghdr32 m32; struct iovec *iov; struct mbuf *control = NULL; struct sockaddr *to = NULL; int error; error = copyin(uap->msg, &m32, sizeof(m32)); if (error) return (error); error = freebsd32_copyinmsghdr(uap->msg, &msg); if (error) return (error); error = freebsd32_copyiniov(PTRIN(m32.msg_iov), m32.msg_iovlen, &iov, EMSGSIZE); if (error) return (error); msg.msg_iov = iov; if (msg.msg_name != NULL) { error = getsockaddr(&to, msg.msg_name, msg.msg_namelen); if (error) { to = NULL; goto out; } msg.msg_name = to; } if (msg.msg_control) { if (msg.msg_controllen < sizeof(struct cmsghdr)) { error = EINVAL; goto out; } error = sockargs(&control, msg.msg_control, msg.msg_controllen, MT_CONTROL); if (error) goto out; error = freebsd32_convert_msg_in(&control); if (error) goto out; } error = kern_sendit(td, uap->s, &msg, uap->flags, control, UIO_USERSPACE); out: free(iov, M_IOV); if (to) free(to, M_SONAME); return (error); } int freebsd32_recvfrom(struct thread *td, struct freebsd32_recvfrom_args *uap) { struct msghdr msg; struct iovec aiov; int error; if (uap->fromlenaddr) { error = copyin(PTRIN(uap->fromlenaddr), &msg.msg_namelen, sizeof(msg.msg_namelen)); if (error) return (error); } else { msg.msg_namelen = 0; } msg.msg_name = PTRIN(uap->from); msg.msg_iov = &aiov; msg.msg_iovlen = 1; aiov.iov_base = PTRIN(uap->buf); aiov.iov_len = uap->len; msg.msg_control = NULL; msg.msg_flags = uap->flags; error = kern_recvit(td, uap->s, &msg, UIO_USERSPACE, NULL); if (error == 0 && uap->fromlenaddr) error = copyout(&msg.msg_namelen, PTRIN(uap->fromlenaddr), sizeof (msg.msg_namelen)); return (error); } int freebsd32_settimeofday(struct thread *td, struct freebsd32_settimeofday_args *uap) { struct timeval32 tv32; struct timeval tv, *tvp; struct timezone tz, *tzp; int error; if (uap->tv) { error = copyin(uap->tv, &tv32, sizeof(tv32)); if (error) return (error); CP(tv32, tv, tv_sec); CP(tv32, tv, tv_usec); tvp = &tv; } else tvp = NULL; if (uap->tzp) { error = copyin(uap->tzp, &tz, sizeof(tz)); if (error) return (error); tzp = &tz; } else tzp = NULL; return (kern_settimeofday(td, tvp, tzp)); } int freebsd32_utimes(struct thread *td, struct freebsd32_utimes_args *uap) { struct timeval32 s32[2]; struct timeval s[2], *sp; int error; if (uap->tptr != NULL) { error = copyin(uap->tptr, s32, sizeof(s32)); if (error) return (error); CP(s32[0], s[0], tv_sec); CP(s32[0], s[0], tv_usec); CP(s32[1], s[1], tv_sec); CP(s32[1], s[1], tv_usec); sp = s; } else sp = NULL; return (kern_utimes(td, uap->path, UIO_USERSPACE, sp, UIO_SYSSPACE)); } int freebsd32_lutimes(struct thread *td, struct freebsd32_lutimes_args *uap) { struct timeval32 s32[2]; struct timeval s[2], *sp; int error; if (uap->tptr != NULL) { error = copyin(uap->tptr, s32, sizeof(s32)); if (error) return (error); CP(s32[0], s[0], tv_sec); CP(s32[0], s[0], tv_usec); CP(s32[1], s[1], tv_sec); CP(s32[1], s[1], tv_usec); sp = s; } else sp = NULL; return (kern_lutimes(td, uap->path, UIO_USERSPACE, sp, UIO_SYSSPACE)); } int freebsd32_futimes(struct thread *td, struct freebsd32_futimes_args *uap) { struct timeval32 s32[2]; struct timeval s[2], *sp; int error; if (uap->tptr != NULL) { error = copyin(uap->tptr, s32, sizeof(s32)); if (error) return (error); CP(s32[0], s[0], tv_sec); CP(s32[0], s[0], tv_usec); CP(s32[1], s[1], tv_sec); CP(s32[1], s[1], tv_usec); sp = s; } else sp = NULL; return (kern_futimes(td, uap->fd, sp, UIO_SYSSPACE)); } int freebsd32_futimesat(struct thread *td, struct freebsd32_futimesat_args *uap) { struct timeval32 s32[2]; struct timeval s[2], *sp; int error; if (uap->times != NULL) { error = copyin(uap->times, s32, sizeof(s32)); if (error) return (error); CP(s32[0], s[0], tv_sec); CP(s32[0], s[0], tv_usec); CP(s32[1], s[1], tv_sec); CP(s32[1], s[1], tv_usec); sp = s; } else sp = NULL; return (kern_utimesat(td, uap->fd, uap->path, UIO_USERSPACE, sp, UIO_SYSSPACE)); } int freebsd32_adjtime(struct thread *td, struct freebsd32_adjtime_args *uap) { struct timeval32 tv32; struct timeval delta, olddelta, *deltap; int error; if (uap->delta) { error = copyin(uap->delta, &tv32, sizeof(tv32)); if (error) return (error); CP(tv32, delta, tv_sec); CP(tv32, delta, tv_usec); deltap = δ } else deltap = NULL; error = kern_adjtime(td, deltap, &olddelta); if (uap->olddelta && error == 0) { CP(olddelta, tv32, tv_sec); CP(olddelta, tv32, tv_usec); error = copyout(&tv32, uap->olddelta, sizeof(tv32)); } return (error); } #ifdef COMPAT_FREEBSD4 int freebsd4_freebsd32_statfs(struct thread *td, struct freebsd4_freebsd32_statfs_args *uap) { struct statfs32 s32; struct statfs s; int error; error = kern_statfs(td, uap->path, UIO_USERSPACE, &s); if (error) return (error); copy_statfs(&s, &s32); return (copyout(&s32, uap->buf, sizeof(s32))); } #endif #ifdef COMPAT_FREEBSD4 int freebsd4_freebsd32_fstatfs(struct thread *td, struct freebsd4_freebsd32_fstatfs_args *uap) { struct statfs32 s32; struct statfs s; int error; error = kern_fstatfs(td, uap->fd, &s); if (error) return (error); copy_statfs(&s, &s32); return (copyout(&s32, uap->buf, sizeof(s32))); } #endif #ifdef COMPAT_FREEBSD4 int freebsd4_freebsd32_fhstatfs(struct thread *td, struct freebsd4_freebsd32_fhstatfs_args *uap) { struct statfs32 s32; struct statfs s; fhandle_t fh; int error; if ((error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t))) != 0) return (error); error = kern_fhstatfs(td, fh, &s); if (error) return (error); copy_statfs(&s, &s32); return (copyout(&s32, uap->buf, sizeof(s32))); } #endif int freebsd32_pread(struct thread *td, struct freebsd32_pread_args *uap) { struct pread_args ap; ap.fd = uap->fd; ap.buf = uap->buf; ap.nbyte = uap->nbyte; ap.offset = PAIR32TO64(off_t,uap->offset); return (sys_pread(td, &ap)); } int freebsd32_pwrite(struct thread *td, struct freebsd32_pwrite_args *uap) { struct pwrite_args ap; ap.fd = uap->fd; ap.buf = uap->buf; ap.nbyte = uap->nbyte; ap.offset = PAIR32TO64(off_t,uap->offset); return (sys_pwrite(td, &ap)); } #ifdef COMPAT_43 int ofreebsd32_lseek(struct thread *td, struct ofreebsd32_lseek_args *uap) { struct lseek_args nuap; nuap.fd = uap->fd; nuap.offset = uap->offset; nuap.whence = uap->whence; return (sys_lseek(td, &nuap)); } #endif int freebsd32_lseek(struct thread *td, struct freebsd32_lseek_args *uap) { int error; struct lseek_args ap; off_t pos; ap.fd = uap->fd; ap.offset = PAIR32TO64(off_t,uap->offset); ap.whence = uap->whence; error = sys_lseek(td, &ap); /* Expand the quad return into two parts for eax and edx */ pos = *(off_t *)(td->td_retval); td->td_retval[RETVAL_LO] = pos & 0xffffffff; /* %eax */ td->td_retval[RETVAL_HI] = pos >> 32; /* %edx */ return error; } int freebsd32_truncate(struct thread *td, struct freebsd32_truncate_args *uap) { struct truncate_args ap; ap.path = uap->path; ap.length = PAIR32TO64(off_t,uap->length); return (sys_truncate(td, &ap)); } int freebsd32_ftruncate(struct thread *td, struct freebsd32_ftruncate_args *uap) { struct ftruncate_args ap; ap.fd = uap->fd; ap.length = PAIR32TO64(off_t,uap->length); return (sys_ftruncate(td, &ap)); } #ifdef COMPAT_43 int ofreebsd32_getdirentries(struct thread *td, struct ofreebsd32_getdirentries_args *uap) { struct ogetdirentries_args ap; int error; long loff; int32_t loff_cut; ap.fd = uap->fd; ap.buf = uap->buf; ap.count = uap->count; ap.basep = NULL; error = kern_ogetdirentries(td, &ap, &loff); if (error == 0) { loff_cut = loff; error = copyout(&loff_cut, uap->basep, sizeof(int32_t)); } return (error); } #endif int freebsd32_getdirentries(struct thread *td, struct freebsd32_getdirentries_args *uap) { long base; int32_t base32; int error; error = kern_getdirentries(td, uap->fd, uap->buf, uap->count, &base, NULL, UIO_USERSPACE); if (error) return (error); if (uap->basep != NULL) { base32 = base; error = copyout(&base32, uap->basep, sizeof(int32_t)); } return (error); } #ifdef COMPAT_FREEBSD6 /* versions with the 'int pad' argument */ int freebsd6_freebsd32_pread(struct thread *td, struct freebsd6_freebsd32_pread_args *uap) { struct pread_args ap; ap.fd = uap->fd; ap.buf = uap->buf; ap.nbyte = uap->nbyte; ap.offset = PAIR32TO64(off_t,uap->offset); return (sys_pread(td, &ap)); } int freebsd6_freebsd32_pwrite(struct thread *td, struct freebsd6_freebsd32_pwrite_args *uap) { struct pwrite_args ap; ap.fd = uap->fd; ap.buf = uap->buf; ap.nbyte = uap->nbyte; ap.offset = PAIR32TO64(off_t,uap->offset); return (sys_pwrite(td, &ap)); } int freebsd6_freebsd32_lseek(struct thread *td, struct freebsd6_freebsd32_lseek_args *uap) { int error; struct lseek_args ap; off_t pos; ap.fd = uap->fd; ap.offset = PAIR32TO64(off_t,uap->offset); ap.whence = uap->whence; error = sys_lseek(td, &ap); /* Expand the quad return into two parts for eax and edx */ pos = *(off_t *)(td->td_retval); td->td_retval[RETVAL_LO] = pos & 0xffffffff; /* %eax */ td->td_retval[RETVAL_HI] = pos >> 32; /* %edx */ return error; } int freebsd6_freebsd32_truncate(struct thread *td, struct freebsd6_freebsd32_truncate_args *uap) { struct truncate_args ap; ap.path = uap->path; ap.length = PAIR32TO64(off_t,uap->length); return (sys_truncate(td, &ap)); } int freebsd6_freebsd32_ftruncate(struct thread *td, struct freebsd6_freebsd32_ftruncate_args *uap) { struct ftruncate_args ap; ap.fd = uap->fd; ap.length = PAIR32TO64(off_t,uap->length); return (sys_ftruncate(td, &ap)); } #endif /* COMPAT_FREEBSD6 */ struct sf_hdtr32 { uint32_t headers; int hdr_cnt; uint32_t trailers; int trl_cnt; }; +struct sf_hdtr_kq32 { + int kq_fd; + uint32_t kq_flags; + uint32_t kq_udata; /* 32-bit void ptr */ + uint32_t kq_ident; /* 32-bit uintptr_t */ +}; + static int freebsd32_do_sendfile(struct thread *td, struct freebsd32_sendfile_args *uap, int compat) { struct sf_hdtr32 hdtr32; struct sf_hdtr hdtr; + struct sf_hdtr_kq32 hdtr_kq32; + struct sf_hdtr_kq hdtr_kq; struct uio *hdr_uio, *trl_uio; struct iovec32 *iov32; off_t offset; int error; off_t sbytes; struct sendfile_sync *sfs; + int do_kqueue = 0; offset = PAIR32TO64(off_t, uap->offset); if (offset < 0) return (EINVAL); hdr_uio = trl_uio = NULL; sfs = NULL; if (uap->hdtr != NULL) { error = copyin(uap->hdtr, &hdtr32, sizeof(hdtr32)); if (error) goto out; PTRIN_CP(hdtr32, hdtr, headers); CP(hdtr32, hdtr, hdr_cnt); PTRIN_CP(hdtr32, hdtr, trailers); CP(hdtr32, hdtr, trl_cnt); if (hdtr.headers != NULL) { iov32 = PTRIN(hdtr32.headers); error = freebsd32_copyinuio(iov32, hdtr32.hdr_cnt, &hdr_uio); if (error) goto out; } if (hdtr.trailers != NULL) { iov32 = PTRIN(hdtr32.trailers); error = freebsd32_copyinuio(iov32, hdtr32.trl_cnt, &trl_uio); if (error) goto out; } + + /* + * If SF_KQUEUE is set, then we need to also copy in + * the kqueue data after the normal hdtr set and set do_kqueue=1. + */ + if (uap->flags & SF_KQUEUE) { + error = copyin(((char *) uap->hdtr) + sizeof(hdtr32), + &hdtr_kq32, + sizeof(hdtr_kq32)); + if (error != 0) + goto out; + + /* 32->64 bit fields */ + CP(hdtr_kq32, hdtr_kq, kq_fd); + CP(hdtr_kq32, hdtr_kq, kq_flags); + PTRIN_CP(hdtr_kq32, hdtr_kq, kq_udata); + CP(hdtr_kq32, hdtr_kq, kq_ident); + do_kqueue = 1; + } } + + /* Call sendfile */ + /* XXX stack depth! */ error = _do_sendfile(td, uap->fd, uap->s, uap->flags, compat, - offset, uap->nbytes, &sbytes, hdr_uio, trl_uio); + offset, uap->nbytes, &sbytes, hdr_uio, trl_uio, &hdtr_kq); if (uap->sbytes != NULL) copyout(&sbytes, uap->sbytes, sizeof(off_t)); out: if (hdr_uio) free(hdr_uio, M_IOV); if (trl_uio) free(trl_uio, M_IOV); return (error); } #ifdef COMPAT_FREEBSD4 int freebsd4_freebsd32_sendfile(struct thread *td, struct freebsd4_freebsd32_sendfile_args *uap) { return (freebsd32_do_sendfile(td, (struct freebsd32_sendfile_args *)uap, 1)); } #endif int freebsd32_sendfile(struct thread *td, struct freebsd32_sendfile_args *uap) { return (freebsd32_do_sendfile(td, uap, 0)); } static void copy_stat(struct stat *in, struct stat32 *out) { CP(*in, *out, st_dev); CP(*in, *out, st_ino); CP(*in, *out, st_mode); CP(*in, *out, st_nlink); CP(*in, *out, st_uid); CP(*in, *out, st_gid); CP(*in, *out, st_rdev); TS_CP(*in, *out, st_atim); TS_CP(*in, *out, st_mtim); TS_CP(*in, *out, st_ctim); CP(*in, *out, st_size); CP(*in, *out, st_blocks); CP(*in, *out, st_blksize); CP(*in, *out, st_flags); CP(*in, *out, st_gen); TS_CP(*in, *out, st_birthtim); } #ifdef COMPAT_43 static void copy_ostat(struct stat *in, struct ostat32 *out) { CP(*in, *out, st_dev); CP(*in, *out, st_ino); CP(*in, *out, st_mode); CP(*in, *out, st_nlink); CP(*in, *out, st_uid); CP(*in, *out, st_gid); CP(*in, *out, st_rdev); CP(*in, *out, st_size); TS_CP(*in, *out, st_atim); TS_CP(*in, *out, st_mtim); TS_CP(*in, *out, st_ctim); CP(*in, *out, st_blksize); CP(*in, *out, st_blocks); CP(*in, *out, st_flags); CP(*in, *out, st_gen); } #endif int freebsd32_stat(struct thread *td, struct freebsd32_stat_args *uap) { struct stat sb; struct stat32 sb32; int error; error = kern_stat(td, uap->path, UIO_USERSPACE, &sb); if (error) return (error); copy_stat(&sb, &sb32); error = copyout(&sb32, uap->ub, sizeof (sb32)); return (error); } #ifdef COMPAT_43 int ofreebsd32_stat(struct thread *td, struct ofreebsd32_stat_args *uap) { struct stat sb; struct ostat32 sb32; int error; error = kern_stat(td, uap->path, UIO_USERSPACE, &sb); if (error) return (error); copy_ostat(&sb, &sb32); error = copyout(&sb32, uap->ub, sizeof (sb32)); return (error); } #endif int freebsd32_fstat(struct thread *td, struct freebsd32_fstat_args *uap) { struct stat ub; struct stat32 ub32; int error; error = kern_fstat(td, uap->fd, &ub); if (error) return (error); copy_stat(&ub, &ub32); error = copyout(&ub32, uap->ub, sizeof(ub32)); return (error); } #ifdef COMPAT_43 int ofreebsd32_fstat(struct thread *td, struct ofreebsd32_fstat_args *uap) { struct stat ub; struct ostat32 ub32; int error; error = kern_fstat(td, uap->fd, &ub); if (error) return (error); copy_ostat(&ub, &ub32); error = copyout(&ub32, uap->ub, sizeof(ub32)); return (error); } #endif int freebsd32_fstatat(struct thread *td, struct freebsd32_fstatat_args *uap) { struct stat ub; struct stat32 ub32; int error; error = kern_statat(td, uap->flag, uap->fd, uap->path, UIO_USERSPACE, &ub); if (error) return (error); copy_stat(&ub, &ub32); error = copyout(&ub32, uap->buf, sizeof(ub32)); return (error); } int freebsd32_lstat(struct thread *td, struct freebsd32_lstat_args *uap) { struct stat sb; struct stat32 sb32; int error; error = kern_lstat(td, uap->path, UIO_USERSPACE, &sb); if (error) return (error); copy_stat(&sb, &sb32); error = copyout(&sb32, uap->ub, sizeof (sb32)); return (error); } #ifdef COMPAT_43 int ofreebsd32_lstat(struct thread *td, struct ofreebsd32_lstat_args *uap) { struct stat sb; struct ostat32 sb32; int error; error = kern_lstat(td, uap->path, UIO_USERSPACE, &sb); if (error) return (error); copy_ostat(&sb, &sb32); error = copyout(&sb32, uap->ub, sizeof (sb32)); return (error); } #endif int freebsd32_sysctl(struct thread *td, struct freebsd32_sysctl_args *uap) { int error, name[CTL_MAXNAME]; size_t j, oldlen; if (uap->namelen > CTL_MAXNAME || uap->namelen < 2) return (EINVAL); error = copyin(uap->name, name, uap->namelen * sizeof(int)); if (error) return (error); if (uap->oldlenp) oldlen = fuword32(uap->oldlenp); else oldlen = 0; error = userland_sysctl(td, name, uap->namelen, uap->old, &oldlen, 1, uap->new, uap->newlen, &j, SCTL_MASK32); if (error && error != ENOMEM) return (error); if (uap->oldlenp) suword32(uap->oldlenp, j); return (0); } int freebsd32_jail(struct thread *td, struct freebsd32_jail_args *uap) { uint32_t version; int error; struct jail j; error = copyin(uap->jail, &version, sizeof(uint32_t)); if (error) return (error); switch (version) { case 0: { /* FreeBSD single IPv4 jails. */ struct jail32_v0 j32_v0; bzero(&j, sizeof(struct jail)); error = copyin(uap->jail, &j32_v0, sizeof(struct jail32_v0)); if (error) return (error); CP(j32_v0, j, version); PTRIN_CP(j32_v0, j, path); PTRIN_CP(j32_v0, j, hostname); j.ip4s = htonl(j32_v0.ip_number); /* jail_v0 is host order */ break; } case 1: /* * Version 1 was used by multi-IPv4 jail implementations * that never made it into the official kernel. */ return (EINVAL); case 2: /* JAIL_API_VERSION */ { /* FreeBSD multi-IPv4/IPv6,noIP jails. */ struct jail32 j32; error = copyin(uap->jail, &j32, sizeof(struct jail32)); if (error) return (error); CP(j32, j, version); PTRIN_CP(j32, j, path); PTRIN_CP(j32, j, hostname); PTRIN_CP(j32, j, jailname); CP(j32, j, ip4s); CP(j32, j, ip6s); PTRIN_CP(j32, j, ip4); PTRIN_CP(j32, j, ip6); break; } default: /* Sci-Fi jails are not supported, sorry. */ return (EINVAL); } return (kern_jail(td, &j)); } int freebsd32_jail_set(struct thread *td, struct freebsd32_jail_set_args *uap) { struct uio *auio; int error; /* Check that we have an even number of iovecs. */ if (uap->iovcnt & 1) return (EINVAL); error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); if (error) return (error); error = kern_jail_set(td, auio, uap->flags); free(auio, M_IOV); return (error); } int freebsd32_jail_get(struct thread *td, struct freebsd32_jail_get_args *uap) { struct iovec32 iov32; struct uio *auio; int error, i; /* Check that we have an even number of iovecs. */ if (uap->iovcnt & 1) return (EINVAL); error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); if (error) return (error); error = kern_jail_get(td, auio, uap->flags); if (error == 0) for (i = 0; i < uap->iovcnt; i++) { PTROUT_CP(auio->uio_iov[i], iov32, iov_base); CP(auio->uio_iov[i], iov32, iov_len); error = copyout(&iov32, uap->iovp + i, sizeof(iov32)); if (error != 0) break; } free(auio, M_IOV); return (error); } int freebsd32_sigaction(struct thread *td, struct freebsd32_sigaction_args *uap) { struct sigaction32 s32; struct sigaction sa, osa, *sap; int error; if (uap->act) { error = copyin(uap->act, &s32, sizeof(s32)); if (error) return (error); sa.sa_handler = PTRIN(s32.sa_u); CP(s32, sa, sa_flags); CP(s32, sa, sa_mask); sap = &sa; } else sap = NULL; error = kern_sigaction(td, uap->sig, sap, &osa, 0); if (error == 0 && uap->oact != NULL) { s32.sa_u = PTROUT(osa.sa_handler); CP(osa, s32, sa_flags); CP(osa, s32, sa_mask); error = copyout(&s32, uap->oact, sizeof(s32)); } return (error); } #ifdef COMPAT_FREEBSD4 int freebsd4_freebsd32_sigaction(struct thread *td, struct freebsd4_freebsd32_sigaction_args *uap) { struct sigaction32 s32; struct sigaction sa, osa, *sap; int error; if (uap->act) { error = copyin(uap->act, &s32, sizeof(s32)); if (error) return (error); sa.sa_handler = PTRIN(s32.sa_u); CP(s32, sa, sa_flags); CP(s32, sa, sa_mask); sap = &sa; } else sap = NULL; error = kern_sigaction(td, uap->sig, sap, &osa, KSA_FREEBSD4); if (error == 0 && uap->oact != NULL) { s32.sa_u = PTROUT(osa.sa_handler); CP(osa, s32, sa_flags); CP(osa, s32, sa_mask); error = copyout(&s32, uap->oact, sizeof(s32)); } return (error); } #endif #ifdef COMPAT_43 struct osigaction32 { u_int32_t sa_u; osigset_t sa_mask; int sa_flags; }; #define ONSIG 32 int ofreebsd32_sigaction(struct thread *td, struct ofreebsd32_sigaction_args *uap) { struct osigaction32 s32; struct sigaction sa, osa, *sap; int error; if (uap->signum <= 0 || uap->signum >= ONSIG) return (EINVAL); if (uap->nsa) { error = copyin(uap->nsa, &s32, sizeof(s32)); if (error) return (error); sa.sa_handler = PTRIN(s32.sa_u); CP(s32, sa, sa_flags); OSIG2SIG(s32.sa_mask, sa.sa_mask); sap = &sa; } else sap = NULL; error = kern_sigaction(td, uap->signum, sap, &osa, KSA_OSIGSET); if (error == 0 && uap->osa != NULL) { s32.sa_u = PTROUT(osa.sa_handler); CP(osa, s32, sa_flags); SIG2OSIG(osa.sa_mask, s32.sa_mask); error = copyout(&s32, uap->osa, sizeof(s32)); } return (error); } int ofreebsd32_sigprocmask(struct thread *td, struct ofreebsd32_sigprocmask_args *uap) { sigset_t set, oset; int error; OSIG2SIG(uap->mask, set); error = kern_sigprocmask(td, uap->how, &set, &oset, SIGPROCMASK_OLD); SIG2OSIG(oset, td->td_retval[0]); return (error); } int ofreebsd32_sigpending(struct thread *td, struct ofreebsd32_sigpending_args *uap) { struct proc *p = td->td_proc; sigset_t siglist; PROC_LOCK(p); siglist = p->p_siglist; SIGSETOR(siglist, td->td_siglist); PROC_UNLOCK(p); SIG2OSIG(siglist, td->td_retval[0]); return (0); } struct sigvec32 { u_int32_t sv_handler; int sv_mask; int sv_flags; }; int ofreebsd32_sigvec(struct thread *td, struct ofreebsd32_sigvec_args *uap) { struct sigvec32 vec; struct sigaction sa, osa, *sap; int error; if (uap->signum <= 0 || uap->signum >= ONSIG) return (EINVAL); if (uap->nsv) { error = copyin(uap->nsv, &vec, sizeof(vec)); if (error) return (error); sa.sa_handler = PTRIN(vec.sv_handler); OSIG2SIG(vec.sv_mask, sa.sa_mask); sa.sa_flags = vec.sv_flags; sa.sa_flags ^= SA_RESTART; sap = &sa; } else sap = NULL; error = kern_sigaction(td, uap->signum, sap, &osa, KSA_OSIGSET); if (error == 0 && uap->osv != NULL) { vec.sv_handler = PTROUT(osa.sa_handler); SIG2OSIG(osa.sa_mask, vec.sv_mask); vec.sv_flags = osa.sa_flags; vec.sv_flags &= ~SA_NOCLDWAIT; vec.sv_flags ^= SA_RESTART; error = copyout(&vec, uap->osv, sizeof(vec)); } return (error); } int ofreebsd32_sigblock(struct thread *td, struct ofreebsd32_sigblock_args *uap) { sigset_t set, oset; OSIG2SIG(uap->mask, set); kern_sigprocmask(td, SIG_BLOCK, &set, &oset, 0); SIG2OSIG(oset, td->td_retval[0]); return (0); } int ofreebsd32_sigsetmask(struct thread *td, struct ofreebsd32_sigsetmask_args *uap) { sigset_t set, oset; OSIG2SIG(uap->mask, set); kern_sigprocmask(td, SIG_SETMASK, &set, &oset, 0); SIG2OSIG(oset, td->td_retval[0]); return (0); } int ofreebsd32_sigsuspend(struct thread *td, struct ofreebsd32_sigsuspend_args *uap) { sigset_t mask; OSIG2SIG(uap->mask, mask); return (kern_sigsuspend(td, mask)); } struct sigstack32 { u_int32_t ss_sp; int ss_onstack; }; int ofreebsd32_sigstack(struct thread *td, struct ofreebsd32_sigstack_args *uap) { struct sigstack32 s32; struct sigstack nss, oss; int error = 0, unss; if (uap->nss != NULL) { error = copyin(uap->nss, &s32, sizeof(s32)); if (error) return (error); nss.ss_sp = PTRIN(s32.ss_sp); CP(s32, nss, ss_onstack); unss = 1; } else { unss = 0; } oss.ss_sp = td->td_sigstk.ss_sp; oss.ss_onstack = sigonstack(cpu_getstack(td)); if (unss) { td->td_sigstk.ss_sp = nss.ss_sp; td->td_sigstk.ss_size = 0; td->td_sigstk.ss_flags |= (nss.ss_onstack & SS_ONSTACK); td->td_pflags |= TDP_ALTSTACK; } if (uap->oss != NULL) { s32.ss_sp = PTROUT(oss.ss_sp); CP(oss, s32, ss_onstack); error = copyout(&s32, uap->oss, sizeof(s32)); } return (error); } #endif int freebsd32_nanosleep(struct thread *td, struct freebsd32_nanosleep_args *uap) { struct timespec32 rmt32, rqt32; struct timespec rmt, rqt; int error; error = copyin(uap->rqtp, &rqt32, sizeof(rqt32)); if (error) return (error); CP(rqt32, rqt, tv_sec); CP(rqt32, rqt, tv_nsec); if (uap->rmtp && !useracc((caddr_t)uap->rmtp, sizeof(rmt), VM_PROT_WRITE)) return (EFAULT); error = kern_nanosleep(td, &rqt, &rmt); if (error && uap->rmtp) { int error2; CP(rmt, rmt32, tv_sec); CP(rmt, rmt32, tv_nsec); error2 = copyout(&rmt32, uap->rmtp, sizeof(rmt32)); if (error2) error = error2; } return (error); } int freebsd32_clock_gettime(struct thread *td, struct freebsd32_clock_gettime_args *uap) { struct timespec ats; struct timespec32 ats32; int error; error = kern_clock_gettime(td, uap->clock_id, &ats); if (error == 0) { CP(ats, ats32, tv_sec); CP(ats, ats32, tv_nsec); error = copyout(&ats32, uap->tp, sizeof(ats32)); } return (error); } int freebsd32_clock_settime(struct thread *td, struct freebsd32_clock_settime_args *uap) { struct timespec ats; struct timespec32 ats32; int error; error = copyin(uap->tp, &ats32, sizeof(ats32)); if (error) return (error); CP(ats32, ats, tv_sec); CP(ats32, ats, tv_nsec); return (kern_clock_settime(td, uap->clock_id, &ats)); } int freebsd32_clock_getres(struct thread *td, struct freebsd32_clock_getres_args *uap) { struct timespec ts; struct timespec32 ts32; int error; if (uap->tp == NULL) return (0); error = kern_clock_getres(td, uap->clock_id, &ts); if (error == 0) { CP(ts, ts32, tv_sec); CP(ts, ts32, tv_nsec); error = copyout(&ts32, uap->tp, sizeof(ts32)); } return (error); } int freebsd32_ktimer_create(struct thread *td, struct freebsd32_ktimer_create_args *uap) { struct sigevent32 ev32; struct sigevent ev, *evp; int error, id; if (uap->evp == NULL) { evp = NULL; } else { evp = &ev; error = copyin(uap->evp, &ev32, sizeof(ev32)); if (error != 0) return (error); error = convert_sigevent32(&ev32, &ev); if (error != 0) return (error); } error = kern_ktimer_create(td, uap->clock_id, evp, &id, -1); if (error == 0) { error = copyout(&id, uap->timerid, sizeof(int)); if (error != 0) kern_ktimer_delete(td, id); } return (error); } int freebsd32_ktimer_settime(struct thread *td, struct freebsd32_ktimer_settime_args *uap) { struct itimerspec32 val32, oval32; struct itimerspec val, oval, *ovalp; int error; error = copyin(uap->value, &val32, sizeof(val32)); if (error != 0) return (error); ITS_CP(val32, val); ovalp = uap->ovalue != NULL ? &oval : NULL; error = kern_ktimer_settime(td, uap->timerid, uap->flags, &val, ovalp); if (error == 0 && uap->ovalue != NULL) { ITS_CP(oval, oval32); error = copyout(&oval32, uap->ovalue, sizeof(oval32)); } return (error); } int freebsd32_ktimer_gettime(struct thread *td, struct freebsd32_ktimer_gettime_args *uap) { struct itimerspec32 val32; struct itimerspec val; int error; error = kern_ktimer_gettime(td, uap->timerid, &val); if (error == 0) { ITS_CP(val, val32); error = copyout(&val32, uap->value, sizeof(val32)); } return (error); } int freebsd32_clock_getcpuclockid2(struct thread *td, struct freebsd32_clock_getcpuclockid2_args *uap) { clockid_t clk_id; int error; error = kern_clock_getcpuclockid2(td, PAIR32TO64(id_t, uap->id), uap->which, &clk_id); if (error == 0) error = copyout(&clk_id, uap->clock_id, sizeof(clockid_t)); return (error); } int freebsd32_thr_new(struct thread *td, struct freebsd32_thr_new_args *uap) { struct thr_param32 param32; struct thr_param param; int error; if (uap->param_size < 0 || uap->param_size > sizeof(struct thr_param32)) return (EINVAL); bzero(¶m, sizeof(struct thr_param)); bzero(¶m32, sizeof(struct thr_param32)); error = copyin(uap->param, ¶m32, uap->param_size); if (error != 0) return (error); param.start_func = PTRIN(param32.start_func); param.arg = PTRIN(param32.arg); param.stack_base = PTRIN(param32.stack_base); param.stack_size = param32.stack_size; param.tls_base = PTRIN(param32.tls_base); param.tls_size = param32.tls_size; param.child_tid = PTRIN(param32.child_tid); param.parent_tid = PTRIN(param32.parent_tid); param.flags = param32.flags; param.rtp = PTRIN(param32.rtp); param.spare[0] = PTRIN(param32.spare[0]); param.spare[1] = PTRIN(param32.spare[1]); param.spare[2] = PTRIN(param32.spare[2]); return (kern_thr_new(td, ¶m)); } int freebsd32_thr_suspend(struct thread *td, struct freebsd32_thr_suspend_args *uap) { struct timespec32 ts32; struct timespec ts, *tsp; int error; error = 0; tsp = NULL; if (uap->timeout != NULL) { error = copyin((const void *)uap->timeout, (void *)&ts32, sizeof(struct timespec32)); if (error != 0) return (error); ts.tv_sec = ts32.tv_sec; ts.tv_nsec = ts32.tv_nsec; tsp = &ts; } return (kern_thr_suspend(td, tsp)); } void siginfo_to_siginfo32(const siginfo_t *src, struct siginfo32 *dst) { bzero(dst, sizeof(*dst)); dst->si_signo = src->si_signo; dst->si_errno = src->si_errno; dst->si_code = src->si_code; dst->si_pid = src->si_pid; dst->si_uid = src->si_uid; dst->si_status = src->si_status; dst->si_addr = (uintptr_t)src->si_addr; dst->si_value.sival_int = src->si_value.sival_int; dst->si_timerid = src->si_timerid; dst->si_overrun = src->si_overrun; } int freebsd32_sigtimedwait(struct thread *td, struct freebsd32_sigtimedwait_args *uap) { struct timespec32 ts32; struct timespec ts; struct timespec *timeout; sigset_t set; ksiginfo_t ksi; struct siginfo32 si32; int error; if (uap->timeout) { error = copyin(uap->timeout, &ts32, sizeof(ts32)); if (error) return (error); ts.tv_sec = ts32.tv_sec; ts.tv_nsec = ts32.tv_nsec; timeout = &ts; } else timeout = NULL; error = copyin(uap->set, &set, sizeof(set)); if (error) return (error); error = kern_sigtimedwait(td, set, &ksi, timeout); if (error) return (error); if (uap->info) { siginfo_to_siginfo32(&ksi.ksi_info, &si32); error = copyout(&si32, uap->info, sizeof(struct siginfo32)); } if (error == 0) td->td_retval[0] = ksi.ksi_signo; return (error); } /* * MPSAFE */ int freebsd32_sigwaitinfo(struct thread *td, struct freebsd32_sigwaitinfo_args *uap) { ksiginfo_t ksi; struct siginfo32 si32; sigset_t set; int error; error = copyin(uap->set, &set, sizeof(set)); if (error) return (error); error = kern_sigtimedwait(td, set, &ksi, NULL); if (error) return (error); if (uap->info) { siginfo_to_siginfo32(&ksi.ksi_info, &si32); error = copyout(&si32, uap->info, sizeof(struct siginfo32)); } if (error == 0) td->td_retval[0] = ksi.ksi_signo; return (error); } int freebsd32_cpuset_setid(struct thread *td, struct freebsd32_cpuset_setid_args *uap) { struct cpuset_setid_args ap; ap.which = uap->which; ap.id = PAIR32TO64(id_t,uap->id); ap.setid = uap->setid; return (sys_cpuset_setid(td, &ap)); } int freebsd32_cpuset_getid(struct thread *td, struct freebsd32_cpuset_getid_args *uap) { struct cpuset_getid_args ap; ap.level = uap->level; ap.which = uap->which; ap.id = PAIR32TO64(id_t,uap->id); ap.setid = uap->setid; return (sys_cpuset_getid(td, &ap)); } int freebsd32_cpuset_getaffinity(struct thread *td, struct freebsd32_cpuset_getaffinity_args *uap) { struct cpuset_getaffinity_args ap; ap.level = uap->level; ap.which = uap->which; ap.id = PAIR32TO64(id_t,uap->id); ap.cpusetsize = uap->cpusetsize; ap.mask = uap->mask; return (sys_cpuset_getaffinity(td, &ap)); } int freebsd32_cpuset_setaffinity(struct thread *td, struct freebsd32_cpuset_setaffinity_args *uap) { struct cpuset_setaffinity_args ap; ap.level = uap->level; ap.which = uap->which; ap.id = PAIR32TO64(id_t,uap->id); ap.cpusetsize = uap->cpusetsize; ap.mask = uap->mask; return (sys_cpuset_setaffinity(td, &ap)); } int freebsd32_nmount(struct thread *td, struct freebsd32_nmount_args /* { struct iovec *iovp; unsigned int iovcnt; int flags; } */ *uap) { struct uio *auio; uint64_t flags; int error; /* * Mount flags are now 64-bits. On 32-bit archtectures only * 32-bits are passed in, but from here on everything handles * 64-bit flags correctly. */ flags = uap->flags; AUDIT_ARG_FFLAGS(flags); /* * Filter out MNT_ROOTFS. We do not want clients of nmount() in * userspace to set this flag, but we must filter it out if we want * MNT_UPDATE on the root file system to work. * MNT_ROOTFS should only be set by the kernel when mounting its * root file system. */ flags &= ~MNT_ROOTFS; /* * check that we have an even number of iovec's * and that we have at least two options. */ if ((uap->iovcnt & 1) || (uap->iovcnt < 4)) return (EINVAL); error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); if (error) return (error); error = vfs_donmount(td, flags, auio); free(auio, M_IOV); return error; } #if 0 int freebsd32_xxx(struct thread *td, struct freebsd32_xxx_args *uap) { struct yyy32 *p32, s32; struct yyy *p = NULL, s; struct xxx_arg ap; int error; if (uap->zzz) { error = copyin(uap->zzz, &s32, sizeof(s32)); if (error) return (error); /* translate in */ p = &s; } error = kern_xxx(td, p); if (error) return (error); if (uap->zzz) { /* translate out */ error = copyout(&s32, p32, sizeof(s32)); } return (error); } #endif int syscall32_register(int *offset, struct sysent *new_sysent, struct sysent *old_sysent) { if (*offset == NO_SYSCALL) { int i; for (i = 1; i < SYS_MAXSYSCALL; ++i) if (freebsd32_sysent[i].sy_call == (sy_call_t *)lkmnosys) break; if (i == SYS_MAXSYSCALL) return (ENFILE); *offset = i; } else if (*offset < 0 || *offset >= SYS_MAXSYSCALL) return (EINVAL); else if (freebsd32_sysent[*offset].sy_call != (sy_call_t *)lkmnosys && freebsd32_sysent[*offset].sy_call != (sy_call_t *)lkmressys) return (EEXIST); *old_sysent = freebsd32_sysent[*offset]; freebsd32_sysent[*offset] = *new_sysent; return 0; } int syscall32_deregister(int *offset, struct sysent *old_sysent) { if (*offset) freebsd32_sysent[*offset] = *old_sysent; return 0; } int syscall32_module_handler(struct module *mod, int what, void *arg) { struct syscall_module_data *data = (struct syscall_module_data*)arg; modspecific_t ms; int error; switch (what) { case MOD_LOAD: error = syscall32_register(data->offset, data->new_sysent, &data->old_sysent); if (error) { /* Leave a mark so we know to safely unload below. */ data->offset = NULL; return error; } ms.intval = *data->offset; MOD_XLOCK; module_setspecific(mod, &ms); MOD_XUNLOCK; if (data->chainevh) error = data->chainevh(mod, what, data->chainarg); return (error); case MOD_UNLOAD: /* * MOD_LOAD failed, so just return without calling the * chained handler since we didn't pass along the MOD_LOAD * event. */ if (data->offset == NULL) return (0); if (data->chainevh) { error = data->chainevh(mod, what, data->chainarg); if (error) return (error); } error = syscall32_deregister(data->offset, &data->old_sysent); return (error); default: error = EOPNOTSUPP; if (data->chainevh) error = data->chainevh(mod, what, data->chainarg); return (error); } } int syscall32_helper_register(struct syscall_helper_data *sd) { struct syscall_helper_data *sd1; int error; for (sd1 = sd; sd1->syscall_no != NO_SYSCALL; sd1++) { error = syscall32_register(&sd1->syscall_no, &sd1->new_sysent, &sd1->old_sysent); if (error != 0) { syscall32_helper_unregister(sd); return (error); } sd1->registered = 1; } return (0); } int syscall32_helper_unregister(struct syscall_helper_data *sd) { struct syscall_helper_data *sd1; for (sd1 = sd; sd1->registered != 0; sd1++) { syscall32_deregister(&sd1->syscall_no, &sd1->old_sysent); sd1->registered = 0; } return (0); } register_t * freebsd32_copyout_strings(struct image_params *imgp) { int argc, envc, i; u_int32_t *vectp; char *stringp, *destp; u_int32_t *stack_base; struct freebsd32_ps_strings *arginfo; char canary[sizeof(long) * 8]; int32_t pagesizes32[MAXPAGESIZES]; size_t execpath_len; int szsigcode; /* * Calculate string base and vector table pointers. * Also deal with signal trampoline code for this exec type. */ if (imgp->execpath != NULL && imgp->auxargs != NULL) execpath_len = strlen(imgp->execpath) + 1; else execpath_len = 0; arginfo = (struct freebsd32_ps_strings *)curproc->p_sysent-> sv_psstrings; if (imgp->proc->p_sysent->sv_sigcode_base == 0) szsigcode = *(imgp->proc->p_sysent->sv_szsigcode); else szsigcode = 0; destp = (caddr_t)arginfo - szsigcode - SPARE_USRSPACE - roundup(execpath_len, sizeof(char *)) - roundup(sizeof(canary), sizeof(char *)) - roundup(sizeof(pagesizes32), sizeof(char *)) - roundup((ARG_MAX - imgp->args->stringspace), sizeof(char *)); /* * install sigcode */ if (szsigcode != 0) copyout(imgp->proc->p_sysent->sv_sigcode, ((caddr_t)arginfo - szsigcode), szsigcode); /* * Copy the image path for the rtld. */ if (execpath_len != 0) { imgp->execpathp = (uintptr_t)arginfo - szsigcode - execpath_len; copyout(imgp->execpath, (void *)imgp->execpathp, execpath_len); } /* * Prepare the canary for SSP. */ arc4rand(canary, sizeof(canary), 0); imgp->canary = (uintptr_t)arginfo - szsigcode - execpath_len - sizeof(canary); copyout(canary, (void *)imgp->canary, sizeof(canary)); imgp->canarylen = sizeof(canary); /* * Prepare the pagesizes array. */ for (i = 0; i < MAXPAGESIZES; i++) pagesizes32[i] = (uint32_t)pagesizes[i]; imgp->pagesizes = (uintptr_t)arginfo - szsigcode - execpath_len - roundup(sizeof(canary), sizeof(char *)) - sizeof(pagesizes32); copyout(pagesizes32, (void *)imgp->pagesizes, sizeof(pagesizes32)); imgp->pagesizeslen = sizeof(pagesizes32); /* * If we have a valid auxargs ptr, prepare some room * on the stack. */ if (imgp->auxargs) { /* * 'AT_COUNT*2' is size for the ELF Auxargs data. This is for * lower compatibility. */ imgp->auxarg_size = (imgp->auxarg_size) ? imgp->auxarg_size : (AT_COUNT * 2); /* * The '+ 2' is for the null pointers at the end of each of * the arg and env vector sets,and imgp->auxarg_size is room * for argument of Runtime loader. */ vectp = (u_int32_t *) (destp - (imgp->args->argc + imgp->args->envc + 2 + imgp->auxarg_size + execpath_len) * sizeof(u_int32_t)); } else /* * The '+ 2' is for the null pointers at the end of each of * the arg and env vector sets */ vectp = (u_int32_t *) (destp - (imgp->args->argc + imgp->args->envc + 2) * sizeof(u_int32_t)); /* * vectp also becomes our initial stack base */ stack_base = vectp; stringp = imgp->args->begin_argv; argc = imgp->args->argc; envc = imgp->args->envc; /* * Copy out strings - arguments and environment. */ copyout(stringp, destp, ARG_MAX - imgp->args->stringspace); /* * Fill in "ps_strings" struct for ps, w, etc. */ suword32(&arginfo->ps_argvstr, (u_int32_t)(intptr_t)vectp); suword32(&arginfo->ps_nargvstr, argc); /* * Fill in argument portion of vector table. */ for (; argc > 0; --argc) { suword32(vectp++, (u_int32_t)(intptr_t)destp); while (*stringp++ != 0) destp++; destp++; } /* a null vector table pointer separates the argp's from the envp's */ suword32(vectp++, 0); suword32(&arginfo->ps_envstr, (u_int32_t)(intptr_t)vectp); suword32(&arginfo->ps_nenvstr, envc); /* * Fill in environment portion of vector table. */ for (; envc > 0; --envc) { suword32(vectp++, (u_int32_t)(intptr_t)destp); while (*stringp++ != 0) destp++; destp++; } /* end of vector table is a null pointer */ suword32(vectp, 0); return ((register_t *)stack_base); } int freebsd32_kldstat(struct thread *td, struct freebsd32_kldstat_args *uap) { struct kld_file_stat stat; struct kld32_file_stat stat32; int error, version; if ((error = copyin(&uap->stat->version, &version, sizeof(version))) != 0) return (error); if (version != sizeof(struct kld32_file_stat_1) && version != sizeof(struct kld32_file_stat)) return (EINVAL); error = kern_kldstat(td, uap->fileid, &stat); if (error != 0) return (error); bcopy(&stat.name[0], &stat32.name[0], sizeof(stat.name)); CP(stat, stat32, refs); CP(stat, stat32, id); PTROUT_CP(stat, stat32, address); CP(stat, stat32, size); bcopy(&stat.pathname[0], &stat32.pathname[0], sizeof(stat.pathname)); return (copyout(&stat32, uap->stat, version)); } int freebsd32_posix_fallocate(struct thread *td, struct freebsd32_posix_fallocate_args *uap) { return (kern_posix_fallocate(td, uap->fd, PAIR32TO64(off_t, uap->offset), PAIR32TO64(off_t, uap->len))); } int freebsd32_posix_fadvise(struct thread *td, struct freebsd32_posix_fadvise_args *uap) { return (kern_posix_fadvise(td, uap->fd, PAIR32TO64(off_t, uap->offset), PAIR32TO64(off_t, uap->len), uap->advice)); } int convert_sigevent32(struct sigevent32 *sig32, struct sigevent *sig) { CP(*sig32, *sig, sigev_notify); switch (sig->sigev_notify) { case SIGEV_NONE: break; case SIGEV_THREAD_ID: CP(*sig32, *sig, sigev_notify_thread_id); /* FALLTHROUGH */ case SIGEV_SIGNAL: CP(*sig32, *sig, sigev_signo); PTRIN_CP(*sig32, *sig, sigev_value.sival_ptr); break; case SIGEV_KEVENT: CP(*sig32, *sig, sigev_notify_kqueue); CP(*sig32, *sig, sigev_notify_kevent_flags); PTRIN_CP(*sig32, *sig, sigev_value.sival_ptr); break; default: return (EINVAL); } return (0); } int freebsd32_procctl(struct thread *td, struct freebsd32_procctl_args *uap) { void *data; int error, flags; switch (uap->com) { case PROC_SPROTECT: error = copyin(PTRIN(uap->data), &flags, sizeof(flags)); if (error) return (error); data = &flags; break; default: return (EINVAL); } return (kern_procctl(td, uap->idtype, PAIR32TO64(id_t, uap->id), uap->com, data)); } diff --git a/sys/kern/uipc_syscalls.c b/sys/kern/uipc_syscalls.c index 6dbdd522a2d1..9420dfda5800 100644 --- a/sys/kern/uipc_syscalls.c +++ b/sys/kern/uipc_syscalls.c @@ -1,3162 +1,3681 @@ /*- * Copyright (c) 1982, 1986, 1989, 1990, 1993 * The Regents of the University of California. All rights reserved. * * sendfile(2) and related extensions: * Copyright (c) 1998, David Greenman. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)uipc_syscalls.c 8.4 (Berkeley) 2/21/94 */ #include __FBSDID("$FreeBSD$"); #include "opt_capsicum.h" #include "opt_inet.h" #include "opt_inet6.h" #include "opt_sctp.h" #include "opt_compat.h" #include "opt_ktrace.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef KTRACE #include #endif #ifdef COMPAT_FREEBSD32 #include #endif #include #include #include #include #include #include #include #include #include #include #include #if defined(INET) || defined(INET6) #ifdef SCTP #include #include #endif /* SCTP */ #endif /* INET || INET6 */ /* * Flags for accept1() and kern_accept4(), in addition to SOCK_CLOEXEC * and SOCK_NONBLOCK. */ #define ACCEPT4_INHERIT 0x1 #define ACCEPT4_COMPAT 0x2 static int sendit(struct thread *td, int s, struct msghdr *mp, int flags); static int recvit(struct thread *td, int s, struct msghdr *mp, void *namelenp); static int accept1(struct thread *td, int s, struct sockaddr *uname, socklen_t *anamelen, int flags); static int do_sendfile(struct thread *td, struct sendfile_args *uap, int compat); static int getsockname1(struct thread *td, struct getsockname_args *uap, int compat); static int getpeername1(struct thread *td, struct getpeername_args *uap, int compat); counter_u64_t sfstat[sizeof(struct sfstat) / sizeof(uint64_t)]; +static int filt_sfsync_attach(struct knote *kn); +static void filt_sfsync_detach(struct knote *kn); +static int filt_sfsync(struct knote *kn, long hint); + /* * sendfile(2)-related variables and associated sysctls */ static SYSCTL_NODE(_kern_ipc, OID_AUTO, sendfile, CTLFLAG_RW, 0, "sendfile(2) tunables"); static int sfreadahead = 1; SYSCTL_INT(_kern_ipc_sendfile, OID_AUTO, readahead, CTLFLAG_RW, &sfreadahead, 0, "Number of sendfile(2) read-ahead MAXBSIZE blocks"); +#ifdef SFSYNC_DEBUG +static int sf_sync_debug = 0; +SYSCTL_INT(_debug, OID_AUTO, sf_sync_debug, CTLFLAG_RW, + &sf_sync_debug, 0, "Output debugging during sf_sync lifecycle"); +#define SFSYNC_DPRINTF(s, ...) \ + do { \ + if (sf_sync_debug) \ + printf((s), ##__VA_ARGS__); \ + } while (0) +#else +#define SFSYNC_DPRINTF(c, ...) +#endif + static uma_zone_t zone_sfsync; +static struct filterops sendfile_filtops = { + .f_isfd = 0, + .f_attach = filt_sfsync_attach, + .f_detach = filt_sfsync_detach, + .f_event = filt_sfsync, +}; + static void sfstat_init(const void *unused) { COUNTER_ARRAY_ALLOC(sfstat, sizeof(struct sfstat) / sizeof(uint64_t), M_WAITOK); } SYSINIT(sfstat, SI_SUB_MBUF, SI_ORDER_FIRST, sfstat_init, NULL); static void sf_sync_init(const void *unused) { zone_sfsync = uma_zcreate("sendfile_sync", sizeof(struct sendfile_sync), NULL, NULL, NULL, NULL, UMA_ALIGN_CACHE, 0); + kqueue_add_filteropts(EVFILT_SENDFILE, &sendfile_filtops); } SYSINIT(sf_sync, SI_SUB_MBUF, SI_ORDER_FIRST, sf_sync_init, NULL); static int sfstat_sysctl(SYSCTL_HANDLER_ARGS) { struct sfstat s; COUNTER_ARRAY_COPY(sfstat, &s, sizeof(s) / sizeof(uint64_t)); if (req->newptr) COUNTER_ARRAY_ZERO(sfstat, sizeof(s) / sizeof(uint64_t)); return (SYSCTL_OUT(req, &s, sizeof(s))); } SYSCTL_PROC(_kern_ipc, OID_AUTO, sfstat, CTLTYPE_OPAQUE | CTLFLAG_RW, NULL, 0, sfstat_sysctl, "I", "sendfile statistics"); /* * Convert a user file descriptor to a kernel file entry and check if required * capability rights are present. * A reference on the file entry is held upon returning. */ static int getsock_cap(struct filedesc *fdp, int fd, cap_rights_t *rightsp, struct file **fpp, u_int *fflagp) { struct file *fp; int error; error = fget_unlocked(fdp, fd, rightsp, 0, &fp, NULL); if (error != 0) return (error); if (fp->f_type != DTYPE_SOCKET) { fdrop(fp, curthread); return (ENOTSOCK); } if (fflagp != NULL) *fflagp = fp->f_flag; *fpp = fp; return (0); } /* * System call interface to the socket abstraction. */ #if defined(COMPAT_43) #define COMPAT_OLDSOCK #endif int sys_socket(td, uap) struct thread *td; struct socket_args /* { int domain; int type; int protocol; } */ *uap; { struct socket *so; struct file *fp; int fd, error, type, oflag, fflag; AUDIT_ARG_SOCKET(uap->domain, uap->type, uap->protocol); type = uap->type; oflag = 0; fflag = 0; if ((type & SOCK_CLOEXEC) != 0) { type &= ~SOCK_CLOEXEC; oflag |= O_CLOEXEC; } if ((type & SOCK_NONBLOCK) != 0) { type &= ~SOCK_NONBLOCK; fflag |= FNONBLOCK; } #ifdef MAC error = mac_socket_check_create(td->td_ucred, uap->domain, type, uap->protocol); if (error != 0) return (error); #endif error = falloc(td, &fp, &fd, oflag); if (error != 0) return (error); /* An extra reference on `fp' has been held for us by falloc(). */ error = socreate(uap->domain, &so, type, uap->protocol, td->td_ucred, td); if (error != 0) { fdclose(td->td_proc->p_fd, fp, fd, td); } else { finit(fp, FREAD | FWRITE | fflag, DTYPE_SOCKET, so, &socketops); if ((fflag & FNONBLOCK) != 0) (void) fo_ioctl(fp, FIONBIO, &fflag, td->td_ucred, td); td->td_retval[0] = fd; } fdrop(fp, td); return (error); } /* ARGSUSED */ int sys_bind(td, uap) struct thread *td; struct bind_args /* { int s; caddr_t name; int namelen; } */ *uap; { struct sockaddr *sa; int error; error = getsockaddr(&sa, uap->name, uap->namelen); if (error == 0) { error = kern_bind(td, uap->s, sa); free(sa, M_SONAME); } return (error); } static int kern_bindat(struct thread *td, int dirfd, int fd, struct sockaddr *sa) { struct socket *so; struct file *fp; cap_rights_t rights; int error; AUDIT_ARG_FD(fd); AUDIT_ARG_SOCKADDR(td, dirfd, sa); error = getsock_cap(td->td_proc->p_fd, fd, cap_rights_init(&rights, CAP_BIND), &fp, NULL); if (error != 0) return (error); so = fp->f_data; #ifdef KTRACE if (KTRPOINT(td, KTR_STRUCT)) ktrsockaddr(sa); #endif #ifdef MAC error = mac_socket_check_bind(td->td_ucred, so, sa); if (error == 0) { #endif if (dirfd == AT_FDCWD) error = sobind(so, sa, td); else error = sobindat(dirfd, so, sa, td); #ifdef MAC } #endif fdrop(fp, td); return (error); } int kern_bind(struct thread *td, int fd, struct sockaddr *sa) { return (kern_bindat(td, AT_FDCWD, fd, sa)); } /* ARGSUSED */ int sys_bindat(td, uap) struct thread *td; struct bindat_args /* { int fd; int s; caddr_t name; int namelen; } */ *uap; { struct sockaddr *sa; int error; error = getsockaddr(&sa, uap->name, uap->namelen); if (error == 0) { error = kern_bindat(td, uap->fd, uap->s, sa); free(sa, M_SONAME); } return (error); } /* ARGSUSED */ int sys_listen(td, uap) struct thread *td; struct listen_args /* { int s; int backlog; } */ *uap; { struct socket *so; struct file *fp; cap_rights_t rights; int error; AUDIT_ARG_FD(uap->s); error = getsock_cap(td->td_proc->p_fd, uap->s, cap_rights_init(&rights, CAP_LISTEN), &fp, NULL); if (error == 0) { so = fp->f_data; #ifdef MAC error = mac_socket_check_listen(td->td_ucred, so); if (error == 0) #endif error = solisten(so, uap->backlog, td); fdrop(fp, td); } return(error); } /* * accept1() */ static int accept1(td, s, uname, anamelen, flags) struct thread *td; int s; struct sockaddr *uname; socklen_t *anamelen; int flags; { struct sockaddr *name; socklen_t namelen; struct file *fp; int error; if (uname == NULL) return (kern_accept4(td, s, NULL, NULL, flags, NULL)); error = copyin(anamelen, &namelen, sizeof (namelen)); if (error != 0) return (error); error = kern_accept4(td, s, &name, &namelen, flags, &fp); /* * return a namelen of zero for older code which might * ignore the return value from accept. */ if (error != 0) { (void) copyout(&namelen, anamelen, sizeof(*anamelen)); return (error); } if (error == 0 && uname != NULL) { #ifdef COMPAT_OLDSOCK if (flags & ACCEPT4_COMPAT) ((struct osockaddr *)name)->sa_family = name->sa_family; #endif error = copyout(name, uname, namelen); } if (error == 0) error = copyout(&namelen, anamelen, sizeof(namelen)); if (error != 0) fdclose(td->td_proc->p_fd, fp, td->td_retval[0], td); fdrop(fp, td); free(name, M_SONAME); return (error); } int kern_accept(struct thread *td, int s, struct sockaddr **name, socklen_t *namelen, struct file **fp) { return (kern_accept4(td, s, name, namelen, ACCEPT4_INHERIT, fp)); } int kern_accept4(struct thread *td, int s, struct sockaddr **name, socklen_t *namelen, int flags, struct file **fp) { struct filedesc *fdp; struct file *headfp, *nfp = NULL; struct sockaddr *sa = NULL; struct socket *head, *so; cap_rights_t rights; u_int fflag; pid_t pgid; int error, fd, tmp; if (name != NULL) *name = NULL; AUDIT_ARG_FD(s); fdp = td->td_proc->p_fd; error = getsock_cap(fdp, s, cap_rights_init(&rights, CAP_ACCEPT), &headfp, &fflag); if (error != 0) return (error); head = headfp->f_data; if ((head->so_options & SO_ACCEPTCONN) == 0) { error = EINVAL; goto done; } #ifdef MAC error = mac_socket_check_accept(td->td_ucred, head); if (error != 0) goto done; #endif error = falloc(td, &nfp, &fd, (flags & SOCK_CLOEXEC) ? O_CLOEXEC : 0); if (error != 0) goto done; ACCEPT_LOCK(); if ((head->so_state & SS_NBIO) && TAILQ_EMPTY(&head->so_comp)) { ACCEPT_UNLOCK(); error = EWOULDBLOCK; goto noconnection; } while (TAILQ_EMPTY(&head->so_comp) && head->so_error == 0) { if (head->so_rcv.sb_state & SBS_CANTRCVMORE) { head->so_error = ECONNABORTED; break; } error = msleep(&head->so_timeo, &accept_mtx, PSOCK | PCATCH, "accept", 0); if (error != 0) { ACCEPT_UNLOCK(); goto noconnection; } } if (head->so_error) { error = head->so_error; head->so_error = 0; ACCEPT_UNLOCK(); goto noconnection; } so = TAILQ_FIRST(&head->so_comp); KASSERT(!(so->so_qstate & SQ_INCOMP), ("accept1: so SQ_INCOMP")); KASSERT(so->so_qstate & SQ_COMP, ("accept1: so not SQ_COMP")); /* * Before changing the flags on the socket, we have to bump the * reference count. Otherwise, if the protocol calls sofree(), * the socket will be released due to a zero refcount. */ SOCK_LOCK(so); /* soref() and so_state update */ soref(so); /* file descriptor reference */ TAILQ_REMOVE(&head->so_comp, so, so_list); head->so_qlen--; if (flags & ACCEPT4_INHERIT) so->so_state |= (head->so_state & SS_NBIO); else so->so_state |= (flags & SOCK_NONBLOCK) ? SS_NBIO : 0; so->so_qstate &= ~SQ_COMP; so->so_head = NULL; SOCK_UNLOCK(so); ACCEPT_UNLOCK(); /* An extra reference on `nfp' has been held for us by falloc(). */ td->td_retval[0] = fd; /* connection has been removed from the listen queue */ KNOTE_UNLOCKED(&head->so_rcv.sb_sel.si_note, 0); if (flags & ACCEPT4_INHERIT) { pgid = fgetown(&head->so_sigio); if (pgid != 0) fsetown(pgid, &so->so_sigio); } else { fflag &= ~(FNONBLOCK | FASYNC); if (flags & SOCK_NONBLOCK) fflag |= FNONBLOCK; } finit(nfp, fflag, DTYPE_SOCKET, so, &socketops); /* Sync socket nonblocking/async state with file flags */ tmp = fflag & FNONBLOCK; (void) fo_ioctl(nfp, FIONBIO, &tmp, td->td_ucred, td); tmp = fflag & FASYNC; (void) fo_ioctl(nfp, FIOASYNC, &tmp, td->td_ucred, td); sa = 0; error = soaccept(so, &sa); if (error != 0) { /* * return a namelen of zero for older code which might * ignore the return value from accept. */ if (name) *namelen = 0; goto noconnection; } if (sa == NULL) { if (name) *namelen = 0; goto done; } AUDIT_ARG_SOCKADDR(td, AT_FDCWD, sa); if (name) { /* check sa_len before it is destroyed */ if (*namelen > sa->sa_len) *namelen = sa->sa_len; #ifdef KTRACE if (KTRPOINT(td, KTR_STRUCT)) ktrsockaddr(sa); #endif *name = sa; sa = NULL; } noconnection: free(sa, M_SONAME); /* * close the new descriptor, assuming someone hasn't ripped it * out from under us. */ if (error != 0) fdclose(fdp, nfp, fd, td); /* * Release explicitly held references before returning. We return * a reference on nfp to the caller on success if they request it. */ done: if (fp != NULL) { if (error == 0) { *fp = nfp; nfp = NULL; } else *fp = NULL; } if (nfp != NULL) fdrop(nfp, td); fdrop(headfp, td); return (error); } int sys_accept(td, uap) struct thread *td; struct accept_args *uap; { return (accept1(td, uap->s, uap->name, uap->anamelen, ACCEPT4_INHERIT)); } int sys_accept4(td, uap) struct thread *td; struct accept4_args *uap; { if (uap->flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) return (EINVAL); return (accept1(td, uap->s, uap->name, uap->anamelen, uap->flags)); } #ifdef COMPAT_OLDSOCK int oaccept(td, uap) struct thread *td; struct accept_args *uap; { return (accept1(td, uap->s, uap->name, uap->anamelen, ACCEPT4_INHERIT | ACCEPT4_COMPAT)); } #endif /* COMPAT_OLDSOCK */ /* ARGSUSED */ int sys_connect(td, uap) struct thread *td; struct connect_args /* { int s; caddr_t name; int namelen; } */ *uap; { struct sockaddr *sa; int error; error = getsockaddr(&sa, uap->name, uap->namelen); if (error == 0) { error = kern_connect(td, uap->s, sa); free(sa, M_SONAME); } return (error); } static int kern_connectat(struct thread *td, int dirfd, int fd, struct sockaddr *sa) { struct socket *so; struct file *fp; cap_rights_t rights; int error, interrupted = 0; AUDIT_ARG_FD(fd); AUDIT_ARG_SOCKADDR(td, dirfd, sa); error = getsock_cap(td->td_proc->p_fd, fd, cap_rights_init(&rights, CAP_CONNECT), &fp, NULL); if (error != 0) return (error); so = fp->f_data; if (so->so_state & SS_ISCONNECTING) { error = EALREADY; goto done1; } #ifdef KTRACE if (KTRPOINT(td, KTR_STRUCT)) ktrsockaddr(sa); #endif #ifdef MAC error = mac_socket_check_connect(td->td_ucred, so, sa); if (error != 0) goto bad; #endif if (dirfd == AT_FDCWD) error = soconnect(so, sa, td); else error = soconnectat(dirfd, so, sa, td); if (error != 0) goto bad; if ((so->so_state & SS_NBIO) && (so->so_state & SS_ISCONNECTING)) { error = EINPROGRESS; goto done1; } SOCK_LOCK(so); while ((so->so_state & SS_ISCONNECTING) && so->so_error == 0) { error = msleep(&so->so_timeo, SOCK_MTX(so), PSOCK | PCATCH, "connec", 0); if (error != 0) { if (error == EINTR || error == ERESTART) interrupted = 1; break; } } if (error == 0) { error = so->so_error; so->so_error = 0; } SOCK_UNLOCK(so); bad: if (!interrupted) so->so_state &= ~SS_ISCONNECTING; if (error == ERESTART) error = EINTR; done1: fdrop(fp, td); return (error); } int kern_connect(struct thread *td, int fd, struct sockaddr *sa) { return (kern_connectat(td, AT_FDCWD, fd, sa)); } /* ARGSUSED */ int sys_connectat(td, uap) struct thread *td; struct connectat_args /* { int fd; int s; caddr_t name; int namelen; } */ *uap; { struct sockaddr *sa; int error; error = getsockaddr(&sa, uap->name, uap->namelen); if (error == 0) { error = kern_connectat(td, uap->fd, uap->s, sa); free(sa, M_SONAME); } return (error); } int kern_socketpair(struct thread *td, int domain, int type, int protocol, int *rsv) { struct filedesc *fdp = td->td_proc->p_fd; struct file *fp1, *fp2; struct socket *so1, *so2; int fd, error, oflag, fflag; AUDIT_ARG_SOCKET(domain, type, protocol); oflag = 0; fflag = 0; if ((type & SOCK_CLOEXEC) != 0) { type &= ~SOCK_CLOEXEC; oflag |= O_CLOEXEC; } if ((type & SOCK_NONBLOCK) != 0) { type &= ~SOCK_NONBLOCK; fflag |= FNONBLOCK; } #ifdef MAC /* We might want to have a separate check for socket pairs. */ error = mac_socket_check_create(td->td_ucred, domain, type, protocol); if (error != 0) return (error); #endif error = socreate(domain, &so1, type, protocol, td->td_ucred, td); if (error != 0) return (error); error = socreate(domain, &so2, type, protocol, td->td_ucred, td); if (error != 0) goto free1; /* On success extra reference to `fp1' and 'fp2' is set by falloc. */ error = falloc(td, &fp1, &fd, oflag); if (error != 0) goto free2; rsv[0] = fd; fp1->f_data = so1; /* so1 already has ref count */ error = falloc(td, &fp2, &fd, oflag); if (error != 0) goto free3; fp2->f_data = so2; /* so2 already has ref count */ rsv[1] = fd; error = soconnect2(so1, so2); if (error != 0) goto free4; if (type == SOCK_DGRAM) { /* * Datagram socket connection is asymmetric. */ error = soconnect2(so2, so1); if (error != 0) goto free4; } finit(fp1, FREAD | FWRITE | fflag, DTYPE_SOCKET, fp1->f_data, &socketops); finit(fp2, FREAD | FWRITE | fflag, DTYPE_SOCKET, fp2->f_data, &socketops); if ((fflag & FNONBLOCK) != 0) { (void) fo_ioctl(fp1, FIONBIO, &fflag, td->td_ucred, td); (void) fo_ioctl(fp2, FIONBIO, &fflag, td->td_ucred, td); } fdrop(fp1, td); fdrop(fp2, td); return (0); free4: fdclose(fdp, fp2, rsv[1], td); fdrop(fp2, td); free3: fdclose(fdp, fp1, rsv[0], td); fdrop(fp1, td); free2: if (so2 != NULL) (void)soclose(so2); free1: if (so1 != NULL) (void)soclose(so1); return (error); } int sys_socketpair(struct thread *td, struct socketpair_args *uap) { int error, sv[2]; error = kern_socketpair(td, uap->domain, uap->type, uap->protocol, sv); if (error != 0) return (error); error = copyout(sv, uap->rsv, 2 * sizeof(int)); if (error != 0) { (void)kern_close(td, sv[0]); (void)kern_close(td, sv[1]); } return (error); } static int sendit(td, s, mp, flags) struct thread *td; int s; struct msghdr *mp; int flags; { struct mbuf *control; struct sockaddr *to; int error; #ifdef CAPABILITY_MODE if (IN_CAPABILITY_MODE(td) && (mp->msg_name != NULL)) return (ECAPMODE); #endif if (mp->msg_name != NULL) { error = getsockaddr(&to, mp->msg_name, mp->msg_namelen); if (error != 0) { to = NULL; goto bad; } mp->msg_name = to; } else { to = NULL; } if (mp->msg_control) { if (mp->msg_controllen < sizeof(struct cmsghdr) #ifdef COMPAT_OLDSOCK && mp->msg_flags != MSG_COMPAT #endif ) { error = EINVAL; goto bad; } error = sockargs(&control, mp->msg_control, mp->msg_controllen, MT_CONTROL); if (error != 0) goto bad; #ifdef COMPAT_OLDSOCK if (mp->msg_flags == MSG_COMPAT) { struct cmsghdr *cm; M_PREPEND(control, sizeof(*cm), M_WAITOK); cm = mtod(control, struct cmsghdr *); cm->cmsg_len = control->m_len; cm->cmsg_level = SOL_SOCKET; cm->cmsg_type = SCM_RIGHTS; } #endif } else { control = NULL; } error = kern_sendit(td, s, mp, flags, control, UIO_USERSPACE); bad: free(to, M_SONAME); return (error); } int kern_sendit(td, s, mp, flags, control, segflg) struct thread *td; int s; struct msghdr *mp; int flags; struct mbuf *control; enum uio_seg segflg; { struct file *fp; struct uio auio; struct iovec *iov; struct socket *so; cap_rights_t rights; #ifdef KTRACE struct uio *ktruio = NULL; #endif ssize_t len; int i, error; AUDIT_ARG_FD(s); cap_rights_init(&rights, CAP_SEND); if (mp->msg_name != NULL) { AUDIT_ARG_SOCKADDR(td, AT_FDCWD, mp->msg_name); cap_rights_set(&rights, CAP_CONNECT); } error = getsock_cap(td->td_proc->p_fd, s, &rights, &fp, NULL); if (error != 0) return (error); so = (struct socket *)fp->f_data; #ifdef KTRACE if (mp->msg_name != NULL && KTRPOINT(td, KTR_STRUCT)) ktrsockaddr(mp->msg_name); #endif #ifdef MAC if (mp->msg_name != NULL) { error = mac_socket_check_connect(td->td_ucred, so, mp->msg_name); if (error != 0) goto bad; } error = mac_socket_check_send(td->td_ucred, so); if (error != 0) goto bad; #endif auio.uio_iov = mp->msg_iov; auio.uio_iovcnt = mp->msg_iovlen; auio.uio_segflg = segflg; auio.uio_rw = UIO_WRITE; auio.uio_td = td; auio.uio_offset = 0; /* XXX */ auio.uio_resid = 0; iov = mp->msg_iov; for (i = 0; i < mp->msg_iovlen; i++, iov++) { if ((auio.uio_resid += iov->iov_len) < 0) { error = EINVAL; goto bad; } } #ifdef KTRACE if (KTRPOINT(td, KTR_GENIO)) ktruio = cloneuio(&auio); #endif len = auio.uio_resid; error = sosend(so, mp->msg_name, &auio, 0, control, flags, td); if (error != 0) { if (auio.uio_resid != len && (error == ERESTART || error == EINTR || error == EWOULDBLOCK)) error = 0; /* Generation of SIGPIPE can be controlled per socket */ if (error == EPIPE && !(so->so_options & SO_NOSIGPIPE) && !(flags & MSG_NOSIGNAL)) { PROC_LOCK(td->td_proc); tdsignal(td, SIGPIPE); PROC_UNLOCK(td->td_proc); } } if (error == 0) td->td_retval[0] = len - auio.uio_resid; #ifdef KTRACE if (ktruio != NULL) { ktruio->uio_resid = td->td_retval[0]; ktrgenio(s, UIO_WRITE, ktruio, error); } #endif bad: fdrop(fp, td); return (error); } int sys_sendto(td, uap) struct thread *td; struct sendto_args /* { int s; caddr_t buf; size_t len; int flags; caddr_t to; int tolen; } */ *uap; { struct msghdr msg; struct iovec aiov; msg.msg_name = uap->to; msg.msg_namelen = uap->tolen; msg.msg_iov = &aiov; msg.msg_iovlen = 1; msg.msg_control = 0; #ifdef COMPAT_OLDSOCK msg.msg_flags = 0; #endif aiov.iov_base = uap->buf; aiov.iov_len = uap->len; return (sendit(td, uap->s, &msg, uap->flags)); } #ifdef COMPAT_OLDSOCK int osend(td, uap) struct thread *td; struct osend_args /* { int s; caddr_t buf; int len; int flags; } */ *uap; { struct msghdr msg; struct iovec aiov; msg.msg_name = 0; msg.msg_namelen = 0; msg.msg_iov = &aiov; msg.msg_iovlen = 1; aiov.iov_base = uap->buf; aiov.iov_len = uap->len; msg.msg_control = 0; msg.msg_flags = 0; return (sendit(td, uap->s, &msg, uap->flags)); } int osendmsg(td, uap) struct thread *td; struct osendmsg_args /* { int s; caddr_t msg; int flags; } */ *uap; { struct msghdr msg; struct iovec *iov; int error; error = copyin(uap->msg, &msg, sizeof (struct omsghdr)); if (error != 0) return (error); error = copyiniov(msg.msg_iov, msg.msg_iovlen, &iov, EMSGSIZE); if (error != 0) return (error); msg.msg_iov = iov; msg.msg_flags = MSG_COMPAT; error = sendit(td, uap->s, &msg, uap->flags); free(iov, M_IOV); return (error); } #endif int sys_sendmsg(td, uap) struct thread *td; struct sendmsg_args /* { int s; caddr_t msg; int flags; } */ *uap; { struct msghdr msg; struct iovec *iov; int error; error = copyin(uap->msg, &msg, sizeof (msg)); if (error != 0) return (error); error = copyiniov(msg.msg_iov, msg.msg_iovlen, &iov, EMSGSIZE); if (error != 0) return (error); msg.msg_iov = iov; #ifdef COMPAT_OLDSOCK msg.msg_flags = 0; #endif error = sendit(td, uap->s, &msg, uap->flags); free(iov, M_IOV); return (error); } int kern_recvit(td, s, mp, fromseg, controlp) struct thread *td; int s; struct msghdr *mp; enum uio_seg fromseg; struct mbuf **controlp; { struct uio auio; struct iovec *iov; struct mbuf *m, *control = NULL; caddr_t ctlbuf; struct file *fp; struct socket *so; struct sockaddr *fromsa = NULL; cap_rights_t rights; #ifdef KTRACE struct uio *ktruio = NULL; #endif ssize_t len; int error, i; if (controlp != NULL) *controlp = NULL; AUDIT_ARG_FD(s); error = getsock_cap(td->td_proc->p_fd, s, cap_rights_init(&rights, CAP_RECV), &fp, NULL); if (error != 0) return (error); so = fp->f_data; #ifdef MAC error = mac_socket_check_receive(td->td_ucred, so); if (error != 0) { fdrop(fp, td); return (error); } #endif auio.uio_iov = mp->msg_iov; auio.uio_iovcnt = mp->msg_iovlen; auio.uio_segflg = UIO_USERSPACE; auio.uio_rw = UIO_READ; auio.uio_td = td; auio.uio_offset = 0; /* XXX */ auio.uio_resid = 0; iov = mp->msg_iov; for (i = 0; i < mp->msg_iovlen; i++, iov++) { if ((auio.uio_resid += iov->iov_len) < 0) { fdrop(fp, td); return (EINVAL); } } #ifdef KTRACE if (KTRPOINT(td, KTR_GENIO)) ktruio = cloneuio(&auio); #endif len = auio.uio_resid; error = soreceive(so, &fromsa, &auio, NULL, (mp->msg_control || controlp) ? &control : NULL, &mp->msg_flags); if (error != 0) { if (auio.uio_resid != len && (error == ERESTART || error == EINTR || error == EWOULDBLOCK)) error = 0; } if (fromsa != NULL) AUDIT_ARG_SOCKADDR(td, AT_FDCWD, fromsa); #ifdef KTRACE if (ktruio != NULL) { ktruio->uio_resid = len - auio.uio_resid; ktrgenio(s, UIO_READ, ktruio, error); } #endif if (error != 0) goto out; td->td_retval[0] = len - auio.uio_resid; if (mp->msg_name) { len = mp->msg_namelen; if (len <= 0 || fromsa == NULL) len = 0; else { /* save sa_len before it is destroyed by MSG_COMPAT */ len = MIN(len, fromsa->sa_len); #ifdef COMPAT_OLDSOCK if (mp->msg_flags & MSG_COMPAT) ((struct osockaddr *)fromsa)->sa_family = fromsa->sa_family; #endif if (fromseg == UIO_USERSPACE) { error = copyout(fromsa, mp->msg_name, (unsigned)len); if (error != 0) goto out; } else bcopy(fromsa, mp->msg_name, len); } mp->msg_namelen = len; } if (mp->msg_control && controlp == NULL) { #ifdef COMPAT_OLDSOCK /* * We assume that old recvmsg calls won't receive access * rights and other control info, esp. as control info * is always optional and those options didn't exist in 4.3. * If we receive rights, trim the cmsghdr; anything else * is tossed. */ if (control && mp->msg_flags & MSG_COMPAT) { if (mtod(control, struct cmsghdr *)->cmsg_level != SOL_SOCKET || mtod(control, struct cmsghdr *)->cmsg_type != SCM_RIGHTS) { mp->msg_controllen = 0; goto out; } control->m_len -= sizeof (struct cmsghdr); control->m_data += sizeof (struct cmsghdr); } #endif len = mp->msg_controllen; m = control; mp->msg_controllen = 0; ctlbuf = mp->msg_control; while (m && len > 0) { unsigned int tocopy; if (len >= m->m_len) tocopy = m->m_len; else { mp->msg_flags |= MSG_CTRUNC; tocopy = len; } if ((error = copyout(mtod(m, caddr_t), ctlbuf, tocopy)) != 0) goto out; ctlbuf += tocopy; len -= tocopy; m = m->m_next; } mp->msg_controllen = ctlbuf - (caddr_t)mp->msg_control; } out: fdrop(fp, td); #ifdef KTRACE if (fromsa && KTRPOINT(td, KTR_STRUCT)) ktrsockaddr(fromsa); #endif free(fromsa, M_SONAME); if (error == 0 && controlp != NULL) *controlp = control; else if (control) m_freem(control); return (error); } static int recvit(td, s, mp, namelenp) struct thread *td; int s; struct msghdr *mp; void *namelenp; { int error; error = kern_recvit(td, s, mp, UIO_USERSPACE, NULL); if (error != 0) return (error); if (namelenp != NULL) { error = copyout(&mp->msg_namelen, namelenp, sizeof (socklen_t)); #ifdef COMPAT_OLDSOCK if (mp->msg_flags & MSG_COMPAT) error = 0; /* old recvfrom didn't check */ #endif } return (error); } int sys_recvfrom(td, uap) struct thread *td; struct recvfrom_args /* { int s; caddr_t buf; size_t len; int flags; struct sockaddr * __restrict from; socklen_t * __restrict fromlenaddr; } */ *uap; { struct msghdr msg; struct iovec aiov; int error; if (uap->fromlenaddr) { error = copyin(uap->fromlenaddr, &msg.msg_namelen, sizeof (msg.msg_namelen)); if (error != 0) goto done2; } else { msg.msg_namelen = 0; } msg.msg_name = uap->from; msg.msg_iov = &aiov; msg.msg_iovlen = 1; aiov.iov_base = uap->buf; aiov.iov_len = uap->len; msg.msg_control = 0; msg.msg_flags = uap->flags; error = recvit(td, uap->s, &msg, uap->fromlenaddr); done2: return (error); } #ifdef COMPAT_OLDSOCK int orecvfrom(td, uap) struct thread *td; struct recvfrom_args *uap; { uap->flags |= MSG_COMPAT; return (sys_recvfrom(td, uap)); } #endif #ifdef COMPAT_OLDSOCK int orecv(td, uap) struct thread *td; struct orecv_args /* { int s; caddr_t buf; int len; int flags; } */ *uap; { struct msghdr msg; struct iovec aiov; msg.msg_name = 0; msg.msg_namelen = 0; msg.msg_iov = &aiov; msg.msg_iovlen = 1; aiov.iov_base = uap->buf; aiov.iov_len = uap->len; msg.msg_control = 0; msg.msg_flags = uap->flags; return (recvit(td, uap->s, &msg, NULL)); } /* * Old recvmsg. This code takes advantage of the fact that the old msghdr * overlays the new one, missing only the flags, and with the (old) access * rights where the control fields are now. */ int orecvmsg(td, uap) struct thread *td; struct orecvmsg_args /* { int s; struct omsghdr *msg; int flags; } */ *uap; { struct msghdr msg; struct iovec *iov; int error; error = copyin(uap->msg, &msg, sizeof (struct omsghdr)); if (error != 0) return (error); error = copyiniov(msg.msg_iov, msg.msg_iovlen, &iov, EMSGSIZE); if (error != 0) return (error); msg.msg_flags = uap->flags | MSG_COMPAT; msg.msg_iov = iov; error = recvit(td, uap->s, &msg, &uap->msg->msg_namelen); if (msg.msg_controllen && error == 0) error = copyout(&msg.msg_controllen, &uap->msg->msg_accrightslen, sizeof (int)); free(iov, M_IOV); return (error); } #endif int sys_recvmsg(td, uap) struct thread *td; struct recvmsg_args /* { int s; struct msghdr *msg; int flags; } */ *uap; { struct msghdr msg; struct iovec *uiov, *iov; int error; error = copyin(uap->msg, &msg, sizeof (msg)); if (error != 0) return (error); error = copyiniov(msg.msg_iov, msg.msg_iovlen, &iov, EMSGSIZE); if (error != 0) return (error); msg.msg_flags = uap->flags; #ifdef COMPAT_OLDSOCK msg.msg_flags &= ~MSG_COMPAT; #endif uiov = msg.msg_iov; msg.msg_iov = iov; error = recvit(td, uap->s, &msg, NULL); if (error == 0) { msg.msg_iov = uiov; error = copyout(&msg, uap->msg, sizeof(msg)); } free(iov, M_IOV); return (error); } /* ARGSUSED */ int sys_shutdown(td, uap) struct thread *td; struct shutdown_args /* { int s; int how; } */ *uap; { struct socket *so; struct file *fp; cap_rights_t rights; int error; AUDIT_ARG_FD(uap->s); error = getsock_cap(td->td_proc->p_fd, uap->s, cap_rights_init(&rights, CAP_SHUTDOWN), &fp, NULL); if (error == 0) { so = fp->f_data; error = soshutdown(so, uap->how); fdrop(fp, td); } return (error); } /* ARGSUSED */ int sys_setsockopt(td, uap) struct thread *td; struct setsockopt_args /* { int s; int level; int name; caddr_t val; int valsize; } */ *uap; { return (kern_setsockopt(td, uap->s, uap->level, uap->name, uap->val, UIO_USERSPACE, uap->valsize)); } int kern_setsockopt(td, s, level, name, val, valseg, valsize) struct thread *td; int s; int level; int name; void *val; enum uio_seg valseg; socklen_t valsize; { struct socket *so; struct file *fp; struct sockopt sopt; cap_rights_t rights; int error; if (val == NULL && valsize != 0) return (EFAULT); if ((int)valsize < 0) return (EINVAL); sopt.sopt_dir = SOPT_SET; sopt.sopt_level = level; sopt.sopt_name = name; sopt.sopt_val = val; sopt.sopt_valsize = valsize; switch (valseg) { case UIO_USERSPACE: sopt.sopt_td = td; break; case UIO_SYSSPACE: sopt.sopt_td = NULL; break; default: panic("kern_setsockopt called with bad valseg"); } AUDIT_ARG_FD(s); error = getsock_cap(td->td_proc->p_fd, s, cap_rights_init(&rights, CAP_SETSOCKOPT), &fp, NULL); if (error == 0) { so = fp->f_data; error = sosetopt(so, &sopt); fdrop(fp, td); } return(error); } /* ARGSUSED */ int sys_getsockopt(td, uap) struct thread *td; struct getsockopt_args /* { int s; int level; int name; void * __restrict val; socklen_t * __restrict avalsize; } */ *uap; { socklen_t valsize; int error; if (uap->val) { error = copyin(uap->avalsize, &valsize, sizeof (valsize)); if (error != 0) return (error); } error = kern_getsockopt(td, uap->s, uap->level, uap->name, uap->val, UIO_USERSPACE, &valsize); if (error == 0) error = copyout(&valsize, uap->avalsize, sizeof (valsize)); return (error); } /* * Kernel version of getsockopt. * optval can be a userland or userspace. optlen is always a kernel pointer. */ int kern_getsockopt(td, s, level, name, val, valseg, valsize) struct thread *td; int s; int level; int name; void *val; enum uio_seg valseg; socklen_t *valsize; { struct socket *so; struct file *fp; struct sockopt sopt; cap_rights_t rights; int error; if (val == NULL) *valsize = 0; if ((int)*valsize < 0) return (EINVAL); sopt.sopt_dir = SOPT_GET; sopt.sopt_level = level; sopt.sopt_name = name; sopt.sopt_val = val; sopt.sopt_valsize = (size_t)*valsize; /* checked non-negative above */ switch (valseg) { case UIO_USERSPACE: sopt.sopt_td = td; break; case UIO_SYSSPACE: sopt.sopt_td = NULL; break; default: panic("kern_getsockopt called with bad valseg"); } AUDIT_ARG_FD(s); error = getsock_cap(td->td_proc->p_fd, s, cap_rights_init(&rights, CAP_GETSOCKOPT), &fp, NULL); if (error == 0) { so = fp->f_data; error = sogetopt(so, &sopt); *valsize = sopt.sopt_valsize; fdrop(fp, td); } return (error); } /* * getsockname1() - Get socket name. */ /* ARGSUSED */ static int getsockname1(td, uap, compat) struct thread *td; struct getsockname_args /* { int fdes; struct sockaddr * __restrict asa; socklen_t * __restrict alen; } */ *uap; int compat; { struct sockaddr *sa; socklen_t len; int error; error = copyin(uap->alen, &len, sizeof(len)); if (error != 0) return (error); error = kern_getsockname(td, uap->fdes, &sa, &len); if (error != 0) return (error); if (len != 0) { #ifdef COMPAT_OLDSOCK if (compat) ((struct osockaddr *)sa)->sa_family = sa->sa_family; #endif error = copyout(sa, uap->asa, (u_int)len); } free(sa, M_SONAME); if (error == 0) error = copyout(&len, uap->alen, sizeof(len)); return (error); } int kern_getsockname(struct thread *td, int fd, struct sockaddr **sa, socklen_t *alen) { struct socket *so; struct file *fp; cap_rights_t rights; socklen_t len; int error; AUDIT_ARG_FD(fd); error = getsock_cap(td->td_proc->p_fd, fd, cap_rights_init(&rights, CAP_GETSOCKNAME), &fp, NULL); if (error != 0) return (error); so = fp->f_data; *sa = NULL; CURVNET_SET(so->so_vnet); error = (*so->so_proto->pr_usrreqs->pru_sockaddr)(so, sa); CURVNET_RESTORE(); if (error != 0) goto bad; if (*sa == NULL) len = 0; else len = MIN(*alen, (*sa)->sa_len); *alen = len; #ifdef KTRACE if (KTRPOINT(td, KTR_STRUCT)) ktrsockaddr(*sa); #endif bad: fdrop(fp, td); if (error != 0 && *sa != NULL) { free(*sa, M_SONAME); *sa = NULL; } return (error); } int sys_getsockname(td, uap) struct thread *td; struct getsockname_args *uap; { return (getsockname1(td, uap, 0)); } #ifdef COMPAT_OLDSOCK int ogetsockname(td, uap) struct thread *td; struct getsockname_args *uap; { return (getsockname1(td, uap, 1)); } #endif /* COMPAT_OLDSOCK */ /* * getpeername1() - Get name of peer for connected socket. */ /* ARGSUSED */ static int getpeername1(td, uap, compat) struct thread *td; struct getpeername_args /* { int fdes; struct sockaddr * __restrict asa; socklen_t * __restrict alen; } */ *uap; int compat; { struct sockaddr *sa; socklen_t len; int error; error = copyin(uap->alen, &len, sizeof (len)); if (error != 0) return (error); error = kern_getpeername(td, uap->fdes, &sa, &len); if (error != 0) return (error); if (len != 0) { #ifdef COMPAT_OLDSOCK if (compat) ((struct osockaddr *)sa)->sa_family = sa->sa_family; #endif error = copyout(sa, uap->asa, (u_int)len); } free(sa, M_SONAME); if (error == 0) error = copyout(&len, uap->alen, sizeof(len)); return (error); } int kern_getpeername(struct thread *td, int fd, struct sockaddr **sa, socklen_t *alen) { struct socket *so; struct file *fp; cap_rights_t rights; socklen_t len; int error; AUDIT_ARG_FD(fd); error = getsock_cap(td->td_proc->p_fd, fd, cap_rights_init(&rights, CAP_GETPEERNAME), &fp, NULL); if (error != 0) return (error); so = fp->f_data; if ((so->so_state & (SS_ISCONNECTED|SS_ISCONFIRMING)) == 0) { error = ENOTCONN; goto done; } *sa = NULL; CURVNET_SET(so->so_vnet); error = (*so->so_proto->pr_usrreqs->pru_peeraddr)(so, sa); CURVNET_RESTORE(); if (error != 0) goto bad; if (*sa == NULL) len = 0; else len = MIN(*alen, (*sa)->sa_len); *alen = len; #ifdef KTRACE if (KTRPOINT(td, KTR_STRUCT)) ktrsockaddr(*sa); #endif bad: if (error != 0 && *sa != NULL) { free(*sa, M_SONAME); *sa = NULL; } done: fdrop(fp, td); return (error); } int sys_getpeername(td, uap) struct thread *td; struct getpeername_args *uap; { return (getpeername1(td, uap, 0)); } #ifdef COMPAT_OLDSOCK int ogetpeername(td, uap) struct thread *td; struct ogetpeername_args *uap; { /* XXX uap should have type `getpeername_args *' to begin with. */ return (getpeername1(td, (struct getpeername_args *)uap, 1)); } #endif /* COMPAT_OLDSOCK */ int sockargs(mp, buf, buflen, type) struct mbuf **mp; caddr_t buf; int buflen, type; { struct sockaddr *sa; struct mbuf *m; int error; if (buflen > MLEN) { #ifdef COMPAT_OLDSOCK if (type == MT_SONAME && buflen <= 112) buflen = MLEN; /* unix domain compat. hack */ else #endif if (buflen > MCLBYTES) return (EINVAL); } m = m_get2(buflen, M_WAITOK, type, 0); m->m_len = buflen; error = copyin(buf, mtod(m, caddr_t), (u_int)buflen); if (error != 0) (void) m_free(m); else { *mp = m; if (type == MT_SONAME) { sa = mtod(m, struct sockaddr *); #if defined(COMPAT_OLDSOCK) && BYTE_ORDER != BIG_ENDIAN if (sa->sa_family == 0 && sa->sa_len < AF_MAX) sa->sa_family = sa->sa_len; #endif sa->sa_len = buflen; } } return (error); } int getsockaddr(namp, uaddr, len) struct sockaddr **namp; caddr_t uaddr; size_t len; { struct sockaddr *sa; int error; if (len > SOCK_MAXADDRLEN) return (ENAMETOOLONG); if (len < offsetof(struct sockaddr, sa_data[0])) return (EINVAL); sa = malloc(len, M_SONAME, M_WAITOK); error = copyin(uaddr, sa, len); if (error != 0) { free(sa, M_SONAME); } else { #if defined(COMPAT_OLDSOCK) && BYTE_ORDER != BIG_ENDIAN if (sa->sa_family == 0 && sa->sa_len < AF_MAX) sa->sa_family = sa->sa_len; #endif sa->sa_len = len; *namp = sa; } return (error); } +static int +filt_sfsync_attach(struct knote *kn) +{ + struct sendfile_sync *sfs = (struct sendfile_sync *) kn->kn_sdata; + struct knlist *knl = &sfs->klist; + + SFSYNC_DPRINTF("%s: kn=%p, sfs=%p\n", __func__, kn, sfs); + + /* + * Validate that we actually received this via the kernel API. + */ + if ((kn->kn_flags & EV_FLAG1) == 0) + return (EPERM); + + kn->kn_ptr.p_v = sfs; + kn->kn_flags &= ~EV_FLAG1; + + knl->kl_lock(knl->kl_lockarg); + /* + * If we're in the "freeing" state, + * don't allow the add. That way we don't + * end up racing with some other thread that + * is trying to finish some setup. + */ + if (sfs->state == SF_STATE_FREEING) { + knl->kl_unlock(knl->kl_lockarg); + return (EINVAL); + } + knlist_add(&sfs->klist, kn, 1); + knl->kl_unlock(knl->kl_lockarg); + + return (0); +} + +/* + * Called when a knote is being detached. + */ +static void +filt_sfsync_detach(struct knote *kn) +{ + struct knlist *knl; + struct sendfile_sync *sfs; + int do_free = 0; + + sfs = kn->kn_ptr.p_v; + knl = &sfs->klist; + + SFSYNC_DPRINTF("%s: kn=%p, sfs=%p\n", __func__, kn, sfs); + + knl->kl_lock(knl->kl_lockarg); + if (!knlist_empty(knl)) + knlist_remove(knl, kn, 1); + + /* + * If the list is empty _AND_ the refcount is 0 + * _AND_ we've finished the setup phase and now + * we're in the running phase, we can free the + * underlying sendfile_sync. + * + * But we shouldn't do it before finishing the + * underlying divorce from the knote. + * + * So, we have the sfsync lock held; transition + * it to "freeing", then unlock, then free + * normally. + */ + if (knlist_empty(knl)) { + if (sfs->state == SF_STATE_COMPLETED && sfs->count == 0) { + SFSYNC_DPRINTF("%s: (%llu) sfs=%p; completed, " + "count==0, empty list: time to free!\n", + __func__, + (unsigned long long) curthread->td_tid, + sfs); + sf_sync_set_state(sfs, SF_STATE_FREEING, 1); + do_free = 1; + } + } + knl->kl_unlock(knl->kl_lockarg); + + /* + * Only call free if we're the one who has transitioned things + * to free. Otherwise we could race with another thread that + * is currently tearing things down. + */ + if (do_free == 1) { + SFSYNC_DPRINTF("%s: (%llu) sfs=%p, %s:%d\n", + __func__, + (unsigned long long) curthread->td_tid, + sfs, + __FILE__, + __LINE__); + sf_sync_free(sfs); + } +} + +static int +filt_sfsync(struct knote *kn, long hint) +{ + struct sendfile_sync *sfs = (struct sendfile_sync *) kn->kn_ptr.p_v; + int ret; + + SFSYNC_DPRINTF("%s: kn=%p, sfs=%p\n", __func__, kn, sfs); + + /* + * XXX add a lock assertion here! + */ + ret = (sfs->count == 0 && sfs->state == SF_STATE_COMPLETED); + + return (ret); +} + + /* * Detach mapped page and release resources back to the system. */ int sf_buf_mext(struct mbuf *mb, void *addr, void *args) { vm_page_t m; struct sendfile_sync *sfs; m = sf_buf_page(args); sf_buf_free(args); vm_page_lock(m); vm_page_unwire(m, 0); /* * Check for the object going away on us. This can * happen since we don't hold a reference to it. * If so, we're responsible for freeing the page. */ if (m->wire_count == 0 && m->object == NULL) vm_page_free(m); vm_page_unlock(m); if (addr != NULL) { sfs = addr; sf_sync_deref(sfs); } + /* + * sfs may be invalid at this point, don't use it! + */ return (EXT_FREE_OK); } +/* + * Called to remove a reference to a sf_sync object. + * + * This is generally done during the mbuf free path to signify + * that one of the mbufs in the transaction has been completed. + * + * If we're doing SF_SYNC and the refcount is zero then we'll wake + * up any waiters. + * + * IF we're doing SF_KQUEUE and the refcount is zero then we'll + * fire off the knote. + */ void sf_sync_deref(struct sendfile_sync *sfs) { + int do_free = 0; if (sfs == NULL) return; mtx_lock(&sfs->mtx); KASSERT(sfs->count> 0, ("Sendfile sync botchup count == 0")); - if (--sfs->count == 0) - cv_signal(&sfs->cv); + sfs->count --; + + /* + * Only fire off the wakeup / kqueue notification if + * we are in the running state. + */ + if (sfs->count == 0 && sfs->state == SF_STATE_COMPLETED) { + if (sfs->flags & SF_SYNC) + cv_signal(&sfs->cv); + + if (sfs->flags & SF_KQUEUE) { + SFSYNC_DPRINTF("%s: (%llu) sfs=%p: knote!\n", + __func__, + (unsigned long long) curthread->td_tid, + sfs); + KNOTE_LOCKED(&sfs->klist, 1); + } + + /* + * If we're not waiting around for a sync, + * check if the knote list is empty. + * If it is, we transition to free. + * + * XXX I think it's about time I added some state + * or flag that says whether we're supposed to be + * waiting around until we've done a signal. + * + * XXX Ie, the reason that I don't free it here + * is because the caller will free the last reference, + * not us. That should be codified in some flag + * that indicates "self-free" rather than checking + * for SF_SYNC all the time. + */ + if ((sfs->flags & SF_SYNC) == 0 && knlist_empty(&sfs->klist)) { + SFSYNC_DPRINTF("%s: (%llu) sfs=%p; completed, " + "count==0, empty list: time to free!\n", + __func__, + (unsigned long long) curthread->td_tid, + sfs); + sf_sync_set_state(sfs, SF_STATE_FREEING, 1); + do_free = 1; + } + + } mtx_unlock(&sfs->mtx); + + /* + * Attempt to do a free here. + * + * We do this outside of the lock because it may destroy the + * lock in question as it frees things. We can optimise this + * later. + * + * XXX yes, we should make it a requirement to hold the + * lock across sf_sync_free(). + */ + if (do_free == 1) { + SFSYNC_DPRINTF("%s: (%llu) sfs=%p\n", + __func__, + (unsigned long long) curthread->td_tid, + sfs); + sf_sync_free(sfs); + } } /* * Allocate a sendfile_sync state structure. * * For now this only knows about the "sleep" sync, but later it will * grow various other personalities. */ struct sendfile_sync * sf_sync_alloc(uint32_t flags) { struct sendfile_sync *sfs; sfs = uma_zalloc(zone_sfsync, M_WAITOK | M_ZERO); mtx_init(&sfs->mtx, "sendfile", NULL, MTX_DEF); cv_init(&sfs->cv, "sendfile"); sfs->flags = flags; + sfs->state = SF_STATE_SETUP; + knlist_init_mtx(&sfs->klist, &sfs->mtx); + + SFSYNC_DPRINTF("%s: sfs=%p, flags=0x%08x\n", __func__, sfs, sfs->flags); return (sfs); } /* * Take a reference to a sfsync instance. * * This has to map 1:1 to free calls coming in via sf_buf_mext(), * so typically this will be referenced once for each mbuf allocated. */ void sf_sync_ref(struct sendfile_sync *sfs) { if (sfs == NULL) return; mtx_lock(&sfs->mtx); sfs->count++; mtx_unlock(&sfs->mtx); } void sf_sync_syscall_wait(struct sendfile_sync *sfs) { if (sfs == NULL) return; - mtx_lock(&sfs->mtx); + KASSERT(mtx_owned(&sfs->mtx), ("%s: sfs=%p: not locked but should be!", + __func__, + sfs)); + + /* + * If we're not requested to wait during the syscall, + * don't bother waiting. + */ + if ((sfs->flags & SF_SYNC) == 0) + goto out; + + /* + * This is a bit suboptimal and confusing, so bear with me. + * + * Ideally sf_sync_syscall_wait() will wait until + * all pending mbuf transmit operations are done. + * This means that when sendfile becomes async, it'll + * run in the background and will transition from + * RUNNING to COMPLETED when it's finished acquiring + * new things to send. Then, when the mbufs finish + * sending, COMPLETED + sfs->count == 0 is enough to + * know that no further work is being done. + * + * So, we will sleep on both RUNNING and COMPLETED. + * It's up to the (in progress) async sendfile loop + * to transition the sf_sync from RUNNING to + * COMPLETED so the wakeup above will actually + * do the cv_signal() call. + */ + if (sfs->state != SF_STATE_COMPLETED && sfs->state != SF_STATE_RUNNING) + goto out; + if (sfs->count != 0) cv_wait(&sfs->cv, &sfs->mtx); KASSERT(sfs->count == 0, ("sendfile sync still busy")); - mtx_unlock(&sfs->mtx); + +out: + return; } +/* + * Free an sf_sync if it's appropriate to. + */ void sf_sync_free(struct sendfile_sync *sfs) { if (sfs == NULL) return; + SFSYNC_DPRINTF("%s: (%lld) sfs=%p; called; state=%d, flags=0x%08x " + "count=%d\n", + __func__, + (long long) curthread->td_tid, + sfs, + sfs->state, + sfs->flags, + sfs->count); + + mtx_lock(&sfs->mtx); + /* - * XXX we should ensure that nothing else has this - * locked before freeing. + * We keep the sf_sync around if the state is active, + * we are doing kqueue notification and we have active + * knotes. + * + * If the caller wants to free us right this second it + * should transition this to the freeing state. + * + * So, complain loudly if they break this rule. */ - mtx_lock(&sfs->mtx); + if (sfs->state != SF_STATE_FREEING) { + printf("%s: (%llu) sfs=%p; not freeing; let's wait!\n", + __func__, + (unsigned long long) curthread->td_tid, + sfs); + mtx_unlock(&sfs->mtx); + return; + } + KASSERT(sfs->count == 0, ("sendfile sync still busy")); cv_destroy(&sfs->cv); + /* + * This doesn't call knlist_detach() on each knote; it just frees + * the entire list. + */ + knlist_delete(&sfs->klist, curthread, 1); mtx_destroy(&sfs->mtx); + SFSYNC_DPRINTF("%s: (%llu) sfs=%p; freeing\n", + __func__, + (unsigned long long) curthread->td_tid, + sfs); uma_zfree(zone_sfsync, sfs); } +/* + * Setup a sf_sync to post a kqueue notification when things are complete. + */ +int +sf_sync_kqueue_setup(struct sendfile_sync *sfs, struct sf_hdtr_kq *sfkq) +{ + struct kevent kev; + int error; + + sfs->flags |= SF_KQUEUE; + + /* Check the flags are valid */ + if ((sfkq->kq_flags & ~(EV_CLEAR | EV_DISPATCH | EV_ONESHOT)) != 0) + return (EINVAL); + + SFSYNC_DPRINTF("%s: sfs=%p: kqfd=%d, flags=0x%08x, ident=%p, udata=%p\n", + __func__, + sfs, + sfkq->kq_fd, + sfkq->kq_flags, + (void *) sfkq->kq_ident, + (void *) sfkq->kq_udata); + + /* Setup and register a knote on the given kqfd. */ + kev.ident = (uintptr_t) sfkq->kq_ident; + kev.filter = EVFILT_SENDFILE; + kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1 | sfkq->kq_flags; + kev.data = (intptr_t) sfs; + kev.udata = sfkq->kq_udata; + + error = kqfd_register(sfkq->kq_fd, &kev, curthread, 1); + if (error != 0) { + SFSYNC_DPRINTF("%s: returned %d\n", __func__, error); + } + return (error); +} + +void +sf_sync_set_state(struct sendfile_sync *sfs, sendfile_sync_state_t state, + int islocked) +{ + sendfile_sync_state_t old_state; + + if (! islocked) + mtx_lock(&sfs->mtx); + + /* + * Update our current state. + */ + old_state = sfs->state; + sfs->state = state; + SFSYNC_DPRINTF("%s: (%llu) sfs=%p; going from %d to %d\n", + __func__, + (unsigned long long) curthread->td_tid, + sfs, + old_state, + state); + + /* + * If we're transitioning from RUNNING to COMPLETED and the count is + * zero, then post the knote. The caller may have completed the + * send before we updated the state to COMPLETED and we need to make + * sure this is communicated. + */ + if (old_state == SF_STATE_RUNNING + && state == SF_STATE_COMPLETED + && sfs->count == 0 + && sfs->flags & SF_KQUEUE) { + SFSYNC_DPRINTF("%s: (%llu) sfs=%p: triggering knote!\n", + __func__, + (unsigned long long) curthread->td_tid, + sfs); + KNOTE_LOCKED(&sfs->klist, 1); + } + + if (! islocked) + mtx_unlock(&sfs->mtx); +} + +/* + * Set the retval/errno for the given transaction. + * + * This will eventually/ideally be used when the KNOTE is fired off + * to signify the completion of this transaction. + * + * The sfsync lock should be held before entering this function. + */ +void +sf_sync_set_retval(struct sendfile_sync *sfs, off_t retval, int xerrno) +{ + + KASSERT(mtx_owned(&sfs->mtx), ("%s: sfs=%p: not locked but should be!", + __func__, + sfs)); + + SFSYNC_DPRINTF("%s: (%llu) sfs=%p: errno=%d, retval=%jd\n", + __func__, + (unsigned long long) curthread->td_tid, + sfs, + xerrno, + (intmax_t) retval); + + sfs->retval = retval; + sfs->xerrno = xerrno; +} + /* * sendfile(2) * * int sendfile(int fd, int s, off_t offset, size_t nbytes, * struct sf_hdtr *hdtr, off_t *sbytes, int flags) * * Send a file specified by 'fd' and starting at 'offset' to a socket * specified by 's'. Send only 'nbytes' of the file or until EOF if nbytes == * 0. Optionally add a header and/or trailer to the socket output. If * specified, write the total number of bytes sent into *sbytes. */ int sys_sendfile(struct thread *td, struct sendfile_args *uap) { return (do_sendfile(td, uap, 0)); } int _do_sendfile(struct thread *td, int src_fd, int sock_fd, int flags, int compat, off_t offset, size_t nbytes, off_t *sbytes, - struct uio *hdr_uio, struct uio *trl_uio) + struct uio *hdr_uio, + struct uio *trl_uio, struct sf_hdtr_kq *hdtr_kq) { cap_rights_t rights; struct sendfile_sync *sfs = NULL; struct file *fp; int error; + int do_kqueue = 0; + int do_free = 0; AUDIT_ARG_FD(src_fd); + if (hdtr_kq != NULL) + do_kqueue = 1; + /* * sendfile(2) can start at any offset within a file so we require * CAP_READ+CAP_SEEK = CAP_PREAD. */ if ((error = fget_read(td, src_fd, cap_rights_init(&rights, CAP_PREAD), &fp)) != 0) { goto out; } + /* + * IF SF_KQUEUE is set but we haven't copied in anything for + * kqueue data, error out. + */ + if (flags & SF_KQUEUE && do_kqueue == 0) { + SFSYNC_DPRINTF("%s: SF_KQUEUE but no KQUEUE data!\n", __func__); + goto out; + } + /* * If we need to wait for completion, initialise the sfsync * state here. */ - if (flags & SF_SYNC) - sfs = sf_sync_alloc(flags & SF_SYNC); + if (flags & (SF_SYNC | SF_KQUEUE)) + sfs = sf_sync_alloc(flags & (SF_SYNC | SF_KQUEUE)); + + if (flags & SF_KQUEUE) { + error = sf_sync_kqueue_setup(sfs, hdtr_kq); + if (error) { + SFSYNC_DPRINTF("%s: (%llu) error; sfs=%p\n", + __func__, + (unsigned long long) curthread->td_tid, + sfs); + sf_sync_set_state(sfs, SF_STATE_FREEING, 0); + sf_sync_free(sfs); + goto out; + } + } + /* + * Do the sendfile call. + * + * If this fails, it'll free the mbuf chain which will free up the + * sendfile_sync references. + */ error = fo_sendfile(fp, sock_fd, hdr_uio, trl_uio, offset, nbytes, sbytes, flags, compat ? SFK_COMPAT : 0, sfs, td); /* - * If appropriate, do the wait and free here. + * If the sendfile call succeeded, transition the sf_sync state + * to RUNNING, then COMPLETED. + * + * If the sendfile call failed, then the sendfile call may have + * actually sent some data first - so we check to see whether + * any data was sent. If some data was queued (ie, count > 0) + * then we can't call free; we have to wait until the partial + * transaction completes before we continue along. + * + * This has the side effect of firing off the knote + * if the refcount has hit zero by the time we get here. */ if (sfs != NULL) { + mtx_lock(&sfs->mtx); + if (error == 0 || sfs->count > 0) { + /* + * When it's time to do async sendfile, the transition + * to RUNNING signifies that we're actually actively + * adding and completing mbufs. When the last disk + * buffer is read (ie, when we're not doing any + * further read IO and all subsequent stuff is mbuf + * transmissions) we'll transition to COMPLETED + * and when the final mbuf is freed, the completion + * will be signaled. + */ + sf_sync_set_state(sfs, SF_STATE_RUNNING, 1); + + /* + * Set the retval before we signal completed. + * If we do it the other way around then transitioning to + * COMPLETED may post the knote before you set the return + * status! + * + * XXX for now, errno is always 0, as we don't post + * knotes if sendfile failed. Maybe that'll change later. + */ + sf_sync_set_retval(sfs, *sbytes, error); + + /* + * And now transition to completed, which will kick off + * the knote if required. + */ + sf_sync_set_state(sfs, SF_STATE_COMPLETED, 1); + } else { + /* + * Error isn't zero, sfs_count is zero, so we + * won't have some other thing to wake things up. + * Thus free. + */ + sf_sync_set_state(sfs, SF_STATE_FREEING, 1); + do_free = 1; + } + + /* + * Next - wait if appropriate. + */ sf_sync_syscall_wait(sfs); + + /* + * If we're not doing kqueue notifications, we can + * transition this immediately to the freeing state. + */ + if ((sfs->flags & SF_KQUEUE) == 0) { + sf_sync_set_state(sfs, SF_STATE_FREEING, 1); + do_free = 1; + } + + mtx_unlock(&sfs->mtx); + } + + /* + * If do_free is set, free here. + * + * If we're doing no-kqueue notification and it's just sleep notification, + * we also do free; it's the only chance we have. + */ + if (sfs != NULL && do_free == 1) { sf_sync_free(sfs); } /* * XXX Should we wait until the send has completed before freeing the source * file handle? It's the previous behaviour, sure, but is it required? * We've wired down the page references after all. */ fdrop(fp, td); out: + /* Return error */ return (error); } + static int do_sendfile(struct thread *td, struct sendfile_args *uap, int compat) { struct sf_hdtr hdtr; + struct sf_hdtr_kq hdtr_kq; struct uio *hdr_uio, *trl_uio; int error; off_t sbytes; + int do_kqueue = 0; /* * File offset must be positive. If it goes beyond EOF * we send only the header/trailer and no payload data. */ if (uap->offset < 0) return (EINVAL); hdr_uio = trl_uio = NULL; if (uap->hdtr != NULL) { error = copyin(uap->hdtr, &hdtr, sizeof(hdtr)); if (error != 0) goto out; if (hdtr.headers != NULL) { error = copyinuio(hdtr.headers, hdtr.hdr_cnt, &hdr_uio); if (error != 0) goto out; } if (hdtr.trailers != NULL) { error = copyinuio(hdtr.trailers, hdtr.trl_cnt, &trl_uio); if (error != 0) goto out; } + + /* + * If SF_KQUEUE is set, then we need to also copy in + * the kqueue data after the normal hdtr set and set + * do_kqueue=1. + */ + if (uap->flags & SF_KQUEUE) { + error = copyin(((char *) uap->hdtr) + sizeof(hdtr), + &hdtr_kq, + sizeof(hdtr_kq)); + if (error != 0) + goto out; + do_kqueue = 1; + } } + /* Call sendfile */ error = _do_sendfile(td, uap->fd, uap->s, uap->flags, compat, - uap->offset, uap->nbytes, &sbytes, hdr_uio, trl_uio); + uap->offset, uap->nbytes, &sbytes, hdr_uio, trl_uio, &hdtr_kq); if (uap->sbytes != NULL) { copyout(&sbytes, uap->sbytes, sizeof(off_t)); } out: free(hdr_uio, M_IOV); free(trl_uio, M_IOV); return (error); } #ifdef COMPAT_FREEBSD4 int freebsd4_sendfile(struct thread *td, struct freebsd4_sendfile_args *uap) { struct sendfile_args args; args.fd = uap->fd; args.s = uap->s; args.offset = uap->offset; args.nbytes = uap->nbytes; args.hdtr = uap->hdtr; args.sbytes = uap->sbytes; args.flags = uap->flags; return (do_sendfile(td, &args, 1)); } #endif /* COMPAT_FREEBSD4 */ static int sendfile_readpage(vm_object_t obj, struct vnode *vp, int nd, off_t off, int xfsize, int bsize, struct thread *td, vm_page_t *res) { vm_page_t m; vm_pindex_t pindex; ssize_t resid; int error, readahead, rv; pindex = OFF_TO_IDX(off); VM_OBJECT_WLOCK(obj); m = vm_page_grab(obj, pindex, (vp != NULL ? VM_ALLOC_NOBUSY | VM_ALLOC_IGN_SBUSY : 0) | VM_ALLOC_WIRED | VM_ALLOC_NORMAL); /* * Check if page is valid for what we need, otherwise initiate I/O. * * The non-zero nd argument prevents disk I/O, instead we * return the caller what he specified in nd. In particular, * if we already turned some pages into mbufs, nd == EAGAIN * and the main function send them the pages before we come * here again and block. */ if (m->valid != 0 && vm_page_is_valid(m, off & PAGE_MASK, xfsize)) { if (vp == NULL) vm_page_xunbusy(m); VM_OBJECT_WUNLOCK(obj); *res = m; return (0); } else if (nd != 0) { if (vp == NULL) vm_page_xunbusy(m); error = nd; goto free_page; } /* * Get the page from backing store. */ error = 0; if (vp != NULL) { VM_OBJECT_WUNLOCK(obj); readahead = sfreadahead * MAXBSIZE; /* * Use vn_rdwr() instead of the pager interface for * the vnode, to allow the read-ahead. * * XXXMAC: Because we don't have fp->f_cred here, we * pass in NOCRED. This is probably wrong, but is * consistent with our original implementation. */ error = vn_rdwr(UIO_READ, vp, NULL, readahead, trunc_page(off), UIO_NOCOPY, IO_NODELOCKED | IO_VMIO | ((readahead / bsize) << IO_SEQSHIFT), td->td_ucred, NOCRED, &resid, td); SFSTAT_INC(sf_iocnt); VM_OBJECT_WLOCK(obj); } else { if (vm_pager_has_page(obj, pindex, NULL, NULL)) { rv = vm_pager_get_pages(obj, &m, 1, 0); SFSTAT_INC(sf_iocnt); m = vm_page_lookup(obj, pindex); if (m == NULL) error = EIO; else if (rv != VM_PAGER_OK) { vm_page_lock(m); vm_page_free(m); vm_page_unlock(m); m = NULL; error = EIO; } } else { pmap_zero_page(m); m->valid = VM_PAGE_BITS_ALL; m->dirty = 0; } if (m != NULL) vm_page_xunbusy(m); } if (error == 0) { *res = m; } else if (m != NULL) { free_page: vm_page_lock(m); vm_page_unwire(m, 0); /* * See if anyone else might know about this page. If * not and it is not valid, then free it. */ if (m->wire_count == 0 && m->valid == 0 && !vm_page_busied(m)) vm_page_free(m); vm_page_unlock(m); } KASSERT(error != 0 || (m->wire_count > 0 && vm_page_is_valid(m, off & PAGE_MASK, xfsize)), ("wrong page state m %p off %#jx xfsize %d", m, (uintmax_t)off, xfsize)); VM_OBJECT_WUNLOCK(obj); return (error); } static int sendfile_getobj(struct thread *td, struct file *fp, vm_object_t *obj_res, struct vnode **vp_res, struct shmfd **shmfd_res, off_t *obj_size, int *bsize) { struct vattr va; vm_object_t obj; struct vnode *vp; struct shmfd *shmfd; int error; vp = *vp_res = NULL; obj = NULL; shmfd = *shmfd_res = NULL; *bsize = 0; /* * The file descriptor must be a regular file and have a * backing VM object. */ if (fp->f_type == DTYPE_VNODE) { vp = fp->f_vnode; vn_lock(vp, LK_SHARED | LK_RETRY); if (vp->v_type != VREG) { error = EINVAL; goto out; } *bsize = vp->v_mount->mnt_stat.f_iosize; error = VOP_GETATTR(vp, &va, td->td_ucred); if (error != 0) goto out; *obj_size = va.va_size; obj = vp->v_object; if (obj == NULL) { error = EINVAL; goto out; } } else if (fp->f_type == DTYPE_SHM) { shmfd = fp->f_data; obj = shmfd->shm_object; *obj_size = shmfd->shm_size; } else { error = EINVAL; goto out; } VM_OBJECT_WLOCK(obj); if ((obj->flags & OBJ_DEAD) != 0) { VM_OBJECT_WUNLOCK(obj); error = EBADF; goto out; } /* * Temporarily increase the backing VM object's reference * count so that a forced reclamation of its vnode does not * immediately destroy it. */ vm_object_reference_locked(obj); VM_OBJECT_WUNLOCK(obj); *obj_res = obj; *vp_res = vp; *shmfd_res = shmfd; out: if (vp != NULL) VOP_UNLOCK(vp, 0); return (error); } static int kern_sendfile_getsock(struct thread *td, int s, struct file **sock_fp, struct socket **so) { cap_rights_t rights; int error; *sock_fp = NULL; *so = NULL; /* * The socket must be a stream socket and connected. */ error = getsock_cap(td->td_proc->p_fd, s, cap_rights_init(&rights, CAP_SEND), sock_fp, NULL); if (error != 0) return (error); *so = (*sock_fp)->f_data; if ((*so)->so_type != SOCK_STREAM) return (EINVAL); if (((*so)->so_state & SS_ISCONNECTED) == 0) return (ENOTCONN); return (0); } int vn_sendfile(struct file *fp, int sockfd, struct uio *hdr_uio, struct uio *trl_uio, off_t offset, size_t nbytes, off_t *sent, int flags, int kflags, struct sendfile_sync *sfs, struct thread *td) { struct file *sock_fp; struct vnode *vp; struct vm_object *obj; struct socket *so; struct mbuf *m; struct sf_buf *sf; struct vm_page *pg; struct shmfd *shmfd; struct vattr va; off_t off, xfsize, fsbytes, sbytes, rem, obj_size; int error, bsize, nd, hdrlen, mnw; pg = NULL; obj = NULL; so = NULL; m = NULL; fsbytes = sbytes = 0; hdrlen = mnw = 0; rem = nbytes; obj_size = 0; error = sendfile_getobj(td, fp, &obj, &vp, &shmfd, &obj_size, &bsize); if (error != 0) return (error); if (rem == 0) rem = obj_size; error = kern_sendfile_getsock(td, sockfd, &sock_fp, &so); if (error != 0) goto out; /* * Do not wait on memory allocations but return ENOMEM for * caller to retry later. * XXX: Experimental. */ if (flags & SF_MNOWAIT) mnw = 1; #ifdef MAC error = mac_socket_check_send(td->td_ucred, so); if (error != 0) goto out; #endif /* If headers are specified copy them into mbufs. */ if (hdr_uio != NULL) { hdr_uio->uio_td = td; hdr_uio->uio_rw = UIO_WRITE; if (hdr_uio->uio_resid > 0) { /* * In FBSD < 5.0 the nbytes to send also included * the header. If compat is specified subtract the * header size from nbytes. */ if (kflags & SFK_COMPAT) { if (nbytes > hdr_uio->uio_resid) nbytes -= hdr_uio->uio_resid; else nbytes = 0; } m = m_uiotombuf(hdr_uio, (mnw ? M_NOWAIT : M_WAITOK), 0, 0, 0); if (m == NULL) { error = mnw ? EAGAIN : ENOBUFS; goto out; } hdrlen = m_length(m, NULL); } } /* * Protect against multiple writers to the socket. * * XXXRW: Historically this has assumed non-interruptibility, so now * we implement that, but possibly shouldn't. */ (void)sblock(&so->so_snd, SBL_WAIT | SBL_NOINTR); /* * Loop through the pages of the file, starting with the requested * offset. Get a file page (do I/O if necessary), map the file page * into an sf_buf, attach an mbuf header to the sf_buf, and queue * it on the socket. * This is done in two loops. The inner loop turns as many pages * as it can, up to available socket buffer space, without blocking * into mbufs to have it bulk delivered into the socket send buffer. * The outer loop checks the state and available space of the socket * and takes care of the overall progress. */ for (off = offset; ; ) { struct mbuf *mtail; int loopbytes; int space; int done; if ((nbytes != 0 && nbytes == fsbytes) || (nbytes == 0 && obj_size == fsbytes)) break; mtail = NULL; loopbytes = 0; space = 0; done = 0; /* * Check the socket state for ongoing connection, * no errors and space in socket buffer. * If space is low allow for the remainder of the * file to be processed if it fits the socket buffer. * Otherwise block in waiting for sufficient space * to proceed, or if the socket is nonblocking, return * to userland with EAGAIN while reporting how far * we've come. * We wait until the socket buffer has significant free * space to do bulk sends. This makes good use of file * system read ahead and allows packet segmentation * offloading hardware to take over lots of work. If * we were not careful here we would send off only one * sfbuf at a time. */ SOCKBUF_LOCK(&so->so_snd); if (so->so_snd.sb_lowat < so->so_snd.sb_hiwat / 2) so->so_snd.sb_lowat = so->so_snd.sb_hiwat / 2; retry_space: if (so->so_snd.sb_state & SBS_CANTSENDMORE) { error = EPIPE; SOCKBUF_UNLOCK(&so->so_snd); goto done; } else if (so->so_error) { error = so->so_error; so->so_error = 0; SOCKBUF_UNLOCK(&so->so_snd); goto done; } space = sbspace(&so->so_snd); if (space < rem && (space <= 0 || space < so->so_snd.sb_lowat)) { if (so->so_state & SS_NBIO) { SOCKBUF_UNLOCK(&so->so_snd); error = EAGAIN; goto done; } /* * sbwait drops the lock while sleeping. * When we loop back to retry_space the * state may have changed and we retest * for it. */ error = sbwait(&so->so_snd); /* * An error from sbwait usually indicates that we've * been interrupted by a signal. If we've sent anything * then return bytes sent, otherwise return the error. */ if (error != 0) { SOCKBUF_UNLOCK(&so->so_snd); goto done; } goto retry_space; } SOCKBUF_UNLOCK(&so->so_snd); /* * Reduce space in the socket buffer by the size of * the header mbuf chain. * hdrlen is set to 0 after the first loop. */ space -= hdrlen; if (vp != NULL) { error = vn_lock(vp, LK_SHARED); if (error != 0) goto done; error = VOP_GETATTR(vp, &va, td->td_ucred); if (error != 0 || off >= va.va_size) { VOP_UNLOCK(vp, 0); goto done; } obj_size = va.va_size; } /* * Loop and construct maximum sized mbuf chain to be bulk * dumped into socket buffer. */ while (space > loopbytes) { vm_offset_t pgoff; struct mbuf *m0; /* * Calculate the amount to transfer. * Not to exceed a page, the EOF, * or the passed in nbytes. */ pgoff = (vm_offset_t)(off & PAGE_MASK); rem = obj_size - offset; if (nbytes != 0) rem = omin(rem, nbytes); rem -= fsbytes + loopbytes; xfsize = omin(PAGE_SIZE - pgoff, rem); xfsize = omin(space - loopbytes, xfsize); if (xfsize <= 0) { done = 1; /* all data sent */ break; } /* * Attempt to look up the page. Allocate * if not found or wait and loop if busy. */ if (m != NULL) nd = EAGAIN; /* send what we already got */ else if ((flags & SF_NODISKIO) != 0) nd = EBUSY; else nd = 0; error = sendfile_readpage(obj, vp, nd, off, xfsize, bsize, td, &pg); if (error != 0) { if (error == EAGAIN) error = 0; /* not a real error */ break; } /* * Get a sendfile buf. When allocating the * first buffer for mbuf chain, we usually * wait as long as necessary, but this wait * can be interrupted. For consequent * buffers, do not sleep, since several * threads might exhaust the buffers and then * deadlock. */ sf = sf_buf_alloc(pg, (mnw || m != NULL) ? SFB_NOWAIT : SFB_CATCH); if (sf == NULL) { SFSTAT_INC(sf_allocfail); vm_page_lock(pg); vm_page_unwire(pg, 0); KASSERT(pg->object != NULL, ("%s: object disappeared", __func__)); vm_page_unlock(pg); if (m == NULL) error = (mnw ? EAGAIN : EINTR); break; } /* * Get an mbuf and set it up as having * external storage. */ m0 = m_get((mnw ? M_NOWAIT : M_WAITOK), MT_DATA); if (m0 == NULL) { error = (mnw ? EAGAIN : ENOBUFS); (void)sf_buf_mext(NULL, NULL, sf); break; } if (m_extadd(m0, (caddr_t )sf_buf_kva(sf), PAGE_SIZE, sf_buf_mext, sfs, sf, M_RDONLY, EXT_SFBUF, (mnw ? M_NOWAIT : M_WAITOK)) != 0) { error = (mnw ? EAGAIN : ENOBUFS); (void)sf_buf_mext(NULL, NULL, sf); m_freem(m0); break; } m0->m_data = (char *)sf_buf_kva(sf) + pgoff; m0->m_len = xfsize; /* Append to mbuf chain. */ if (mtail != NULL) mtail->m_next = m0; else if (m != NULL) m_last(m)->m_next = m0; else m = m0; mtail = m0; /* Keep track of bits processed. */ loopbytes += xfsize; off += xfsize; /* * XXX eventually this should be a sfsync * method call! */ if (sfs != NULL) sf_sync_ref(sfs); } if (vp != NULL) VOP_UNLOCK(vp, 0); /* Add the buffer chain to the socket buffer. */ if (m != NULL) { int mlen, err; mlen = m_length(m, NULL); SOCKBUF_LOCK(&so->so_snd); if (so->so_snd.sb_state & SBS_CANTSENDMORE) { error = EPIPE; SOCKBUF_UNLOCK(&so->so_snd); goto done; } SOCKBUF_UNLOCK(&so->so_snd); CURVNET_SET(so->so_vnet); /* Avoid error aliasing. */ err = (*so->so_proto->pr_usrreqs->pru_send) (so, 0, m, NULL, NULL, td); CURVNET_RESTORE(); if (err == 0) { /* * We need two counters to get the * file offset and nbytes to send * right: * - sbytes contains the total amount * of bytes sent, including headers. * - fsbytes contains the total amount * of bytes sent from the file. */ sbytes += mlen; fsbytes += mlen; if (hdrlen) { fsbytes -= hdrlen; hdrlen = 0; } } else if (error == 0) error = err; m = NULL; /* pru_send always consumes */ } /* Quit outer loop on error or when we're done. */ if (done) break; if (error != 0) goto done; } /* * Send trailers. Wimp out and use writev(2). */ if (trl_uio != NULL) { sbunlock(&so->so_snd); error = kern_writev(td, sockfd, trl_uio); if (error == 0) sbytes += td->td_retval[0]; goto out; } done: sbunlock(&so->so_snd); out: /* * If there was no error we have to clear td->td_retval[0] * because it may have been set by writev. */ if (error == 0) { td->td_retval[0] = 0; } if (sent != NULL) { (*sent) = sbytes; } if (obj != NULL) vm_object_deallocate(obj); if (so) fdrop(sock_fp, td); if (m) m_freem(m); if (error == ERESTART) error = EINTR; return (error); } /* * SCTP syscalls. * Functionality only compiled in if SCTP is defined in the kernel Makefile, * otherwise all return EOPNOTSUPP. * XXX: We should make this loadable one day. */ int sys_sctp_peeloff(td, uap) struct thread *td; struct sctp_peeloff_args /* { int sd; caddr_t name; } */ *uap; { #if (defined(INET) || defined(INET6)) && defined(SCTP) struct file *nfp = NULL; struct socket *head, *so; cap_rights_t rights; u_int fflag; int error, fd; AUDIT_ARG_FD(uap->sd); error = fgetsock(td, uap->sd, cap_rights_init(&rights, CAP_PEELOFF), &head, &fflag); if (error != 0) goto done2; if (head->so_proto->pr_protocol != IPPROTO_SCTP) { error = EOPNOTSUPP; goto done; } error = sctp_can_peel_off(head, (sctp_assoc_t)uap->name); if (error != 0) goto done; /* * At this point we know we do have a assoc to pull * we proceed to get the fd setup. This may block * but that is ok. */ error = falloc(td, &nfp, &fd, 0); if (error != 0) goto done; td->td_retval[0] = fd; CURVNET_SET(head->so_vnet); so = sonewconn(head, SS_ISCONNECTED); if (so == NULL) { error = ENOMEM; goto noconnection; } /* * Before changing the flags on the socket, we have to bump the * reference count. Otherwise, if the protocol calls sofree(), * the socket will be released due to a zero refcount. */ SOCK_LOCK(so); soref(so); /* file descriptor reference */ SOCK_UNLOCK(so); ACCEPT_LOCK(); TAILQ_REMOVE(&head->so_comp, so, so_list); head->so_qlen--; so->so_state |= (head->so_state & SS_NBIO); so->so_state &= ~SS_NOFDREF; so->so_qstate &= ~SQ_COMP; so->so_head = NULL; ACCEPT_UNLOCK(); finit(nfp, fflag, DTYPE_SOCKET, so, &socketops); error = sctp_do_peeloff(head, so, (sctp_assoc_t)uap->name); if (error != 0) goto noconnection; if (head->so_sigio != NULL) fsetown(fgetown(&head->so_sigio), &so->so_sigio); noconnection: /* * close the new descriptor, assuming someone hasn't ripped it * out from under us. */ if (error != 0) fdclose(td->td_proc->p_fd, nfp, fd, td); /* * Release explicitly held references before returning. */ CURVNET_RESTORE(); done: if (nfp != NULL) fdrop(nfp, td); fputsock(head); done2: return (error); #else /* SCTP */ return (EOPNOTSUPP); #endif /* SCTP */ } int sys_sctp_generic_sendmsg (td, uap) struct thread *td; struct sctp_generic_sendmsg_args /* { int sd, caddr_t msg, int mlen, caddr_t to, __socklen_t tolen, struct sctp_sndrcvinfo *sinfo, int flags } */ *uap; { #if (defined(INET) || defined(INET6)) && defined(SCTP) struct sctp_sndrcvinfo sinfo, *u_sinfo = NULL; struct socket *so; struct file *fp = NULL; struct sockaddr *to = NULL; #ifdef KTRACE struct uio *ktruio = NULL; #endif struct uio auio; struct iovec iov[1]; cap_rights_t rights; int error = 0, len; if (uap->sinfo != NULL) { error = copyin(uap->sinfo, &sinfo, sizeof (sinfo)); if (error != 0) return (error); u_sinfo = &sinfo; } cap_rights_init(&rights, CAP_SEND); if (uap->tolen != 0) { error = getsockaddr(&to, uap->to, uap->tolen); if (error != 0) { to = NULL; goto sctp_bad2; } cap_rights_set(&rights, CAP_CONNECT); } AUDIT_ARG_FD(uap->sd); error = getsock_cap(td->td_proc->p_fd, uap->sd, &rights, &fp, NULL); if (error != 0) goto sctp_bad; #ifdef KTRACE if (to && (KTRPOINT(td, KTR_STRUCT))) ktrsockaddr(to); #endif iov[0].iov_base = uap->msg; iov[0].iov_len = uap->mlen; so = (struct socket *)fp->f_data; if (so->so_proto->pr_protocol != IPPROTO_SCTP) { error = EOPNOTSUPP; goto sctp_bad; } #ifdef MAC error = mac_socket_check_send(td->td_ucred, so); if (error != 0) goto sctp_bad; #endif /* MAC */ auio.uio_iov = iov; auio.uio_iovcnt = 1; auio.uio_segflg = UIO_USERSPACE; auio.uio_rw = UIO_WRITE; auio.uio_td = td; auio.uio_offset = 0; /* XXX */ auio.uio_resid = 0; len = auio.uio_resid = uap->mlen; CURVNET_SET(so->so_vnet); error = sctp_lower_sosend(so, to, &auio, (struct mbuf *)NULL, (struct mbuf *)NULL, uap->flags, u_sinfo, td); CURVNET_RESTORE(); if (error != 0) { if (auio.uio_resid != len && (error == ERESTART || error == EINTR || error == EWOULDBLOCK)) error = 0; /* Generation of SIGPIPE can be controlled per socket. */ if (error == EPIPE && !(so->so_options & SO_NOSIGPIPE) && !(uap->flags & MSG_NOSIGNAL)) { PROC_LOCK(td->td_proc); tdsignal(td, SIGPIPE); PROC_UNLOCK(td->td_proc); } } if (error == 0) td->td_retval[0] = len - auio.uio_resid; #ifdef KTRACE if (ktruio != NULL) { ktruio->uio_resid = td->td_retval[0]; ktrgenio(uap->sd, UIO_WRITE, ktruio, error); } #endif /* KTRACE */ sctp_bad: if (fp != NULL) fdrop(fp, td); sctp_bad2: free(to, M_SONAME); return (error); #else /* SCTP */ return (EOPNOTSUPP); #endif /* SCTP */ } int sys_sctp_generic_sendmsg_iov(td, uap) struct thread *td; struct sctp_generic_sendmsg_iov_args /* { int sd, struct iovec *iov, int iovlen, caddr_t to, __socklen_t tolen, struct sctp_sndrcvinfo *sinfo, int flags } */ *uap; { #if (defined(INET) || defined(INET6)) && defined(SCTP) struct sctp_sndrcvinfo sinfo, *u_sinfo = NULL; struct socket *so; struct file *fp = NULL; struct sockaddr *to = NULL; #ifdef KTRACE struct uio *ktruio = NULL; #endif struct uio auio; struct iovec *iov, *tiov; cap_rights_t rights; ssize_t len; int error, i; if (uap->sinfo != NULL) { error = copyin(uap->sinfo, &sinfo, sizeof (sinfo)); if (error != 0) return (error); u_sinfo = &sinfo; } cap_rights_init(&rights, CAP_SEND); if (uap->tolen != 0) { error = getsockaddr(&to, uap->to, uap->tolen); if (error != 0) { to = NULL; goto sctp_bad2; } cap_rights_set(&rights, CAP_CONNECT); } AUDIT_ARG_FD(uap->sd); error = getsock_cap(td->td_proc->p_fd, uap->sd, &rights, &fp, NULL); if (error != 0) goto sctp_bad1; #ifdef COMPAT_FREEBSD32 if (SV_CURPROC_FLAG(SV_ILP32)) error = freebsd32_copyiniov((struct iovec32 *)uap->iov, uap->iovlen, &iov, EMSGSIZE); else #endif error = copyiniov(uap->iov, uap->iovlen, &iov, EMSGSIZE); if (error != 0) goto sctp_bad1; #ifdef KTRACE if (to && (KTRPOINT(td, KTR_STRUCT))) ktrsockaddr(to); #endif so = (struct socket *)fp->f_data; if (so->so_proto->pr_protocol != IPPROTO_SCTP) { error = EOPNOTSUPP; goto sctp_bad; } #ifdef MAC error = mac_socket_check_send(td->td_ucred, so); if (error != 0) goto sctp_bad; #endif /* MAC */ auio.uio_iov = iov; auio.uio_iovcnt = uap->iovlen; auio.uio_segflg = UIO_USERSPACE; auio.uio_rw = UIO_WRITE; auio.uio_td = td; auio.uio_offset = 0; /* XXX */ auio.uio_resid = 0; tiov = iov; for (i = 0; i iovlen; i++, tiov++) { if ((auio.uio_resid += tiov->iov_len) < 0) { error = EINVAL; goto sctp_bad; } } len = auio.uio_resid; CURVNET_SET(so->so_vnet); error = sctp_lower_sosend(so, to, &auio, (struct mbuf *)NULL, (struct mbuf *)NULL, uap->flags, u_sinfo, td); CURVNET_RESTORE(); if (error != 0) { if (auio.uio_resid != len && (error == ERESTART || error == EINTR || error == EWOULDBLOCK)) error = 0; /* Generation of SIGPIPE can be controlled per socket */ if (error == EPIPE && !(so->so_options & SO_NOSIGPIPE) && !(uap->flags & MSG_NOSIGNAL)) { PROC_LOCK(td->td_proc); tdsignal(td, SIGPIPE); PROC_UNLOCK(td->td_proc); } } if (error == 0) td->td_retval[0] = len - auio.uio_resid; #ifdef KTRACE if (ktruio != NULL) { ktruio->uio_resid = td->td_retval[0]; ktrgenio(uap->sd, UIO_WRITE, ktruio, error); } #endif /* KTRACE */ sctp_bad: free(iov, M_IOV); sctp_bad1: if (fp != NULL) fdrop(fp, td); sctp_bad2: free(to, M_SONAME); return (error); #else /* SCTP */ return (EOPNOTSUPP); #endif /* SCTP */ } int sys_sctp_generic_recvmsg(td, uap) struct thread *td; struct sctp_generic_recvmsg_args /* { int sd, struct iovec *iov, int iovlen, struct sockaddr *from, __socklen_t *fromlenaddr, struct sctp_sndrcvinfo *sinfo, int *msg_flags } */ *uap; { #if (defined(INET) || defined(INET6)) && defined(SCTP) uint8_t sockbufstore[256]; struct uio auio; struct iovec *iov, *tiov; struct sctp_sndrcvinfo sinfo; struct socket *so; struct file *fp = NULL; struct sockaddr *fromsa; cap_rights_t rights; #ifdef KTRACE struct uio *ktruio = NULL; #endif ssize_t len; int error, fromlen, i, msg_flags; AUDIT_ARG_FD(uap->sd); error = getsock_cap(td->td_proc->p_fd, uap->sd, cap_rights_init(&rights, CAP_RECV), &fp, NULL); if (error != 0) return (error); #ifdef COMPAT_FREEBSD32 if (SV_CURPROC_FLAG(SV_ILP32)) error = freebsd32_copyiniov((struct iovec32 *)uap->iov, uap->iovlen, &iov, EMSGSIZE); else #endif error = copyiniov(uap->iov, uap->iovlen, &iov, EMSGSIZE); if (error != 0) goto out1; so = fp->f_data; if (so->so_proto->pr_protocol != IPPROTO_SCTP) { error = EOPNOTSUPP; goto out; } #ifdef MAC error = mac_socket_check_receive(td->td_ucred, so); if (error != 0) goto out; #endif /* MAC */ if (uap->fromlenaddr != NULL) { error = copyin(uap->fromlenaddr, &fromlen, sizeof (fromlen)); if (error != 0) goto out; } else { fromlen = 0; } if (uap->msg_flags) { error = copyin(uap->msg_flags, &msg_flags, sizeof (int)); if (error != 0) goto out; } else { msg_flags = 0; } auio.uio_iov = iov; auio.uio_iovcnt = uap->iovlen; auio.uio_segflg = UIO_USERSPACE; auio.uio_rw = UIO_READ; auio.uio_td = td; auio.uio_offset = 0; /* XXX */ auio.uio_resid = 0; tiov = iov; for (i = 0; i iovlen; i++, tiov++) { if ((auio.uio_resid += tiov->iov_len) < 0) { error = EINVAL; goto out; } } len = auio.uio_resid; fromsa = (struct sockaddr *)sockbufstore; #ifdef KTRACE if (KTRPOINT(td, KTR_GENIO)) ktruio = cloneuio(&auio); #endif /* KTRACE */ memset(&sinfo, 0, sizeof(struct sctp_sndrcvinfo)); CURVNET_SET(so->so_vnet); error = sctp_sorecvmsg(so, &auio, (struct mbuf **)NULL, fromsa, fromlen, &msg_flags, (struct sctp_sndrcvinfo *)&sinfo, 1); CURVNET_RESTORE(); if (error != 0) { if (auio.uio_resid != len && (error == ERESTART || error == EINTR || error == EWOULDBLOCK)) error = 0; } else { if (uap->sinfo) error = copyout(&sinfo, uap->sinfo, sizeof (sinfo)); } #ifdef KTRACE if (ktruio != NULL) { ktruio->uio_resid = len - auio.uio_resid; ktrgenio(uap->sd, UIO_READ, ktruio, error); } #endif /* KTRACE */ if (error != 0) goto out; td->td_retval[0] = len - auio.uio_resid; if (fromlen && uap->from) { len = fromlen; if (len <= 0 || fromsa == 0) len = 0; else { len = MIN(len, fromsa->sa_len); error = copyout(fromsa, uap->from, (size_t)len); if (error != 0) goto out; } error = copyout(&len, uap->fromlenaddr, sizeof (socklen_t)); if (error != 0) goto out; } #ifdef KTRACE if (KTRPOINT(td, KTR_STRUCT)) ktrsockaddr(fromsa); #endif if (uap->msg_flags) { error = copyout(&msg_flags, uap->msg_flags, sizeof (int)); if (error != 0) goto out; } out: free(iov, M_IOV); out1: if (fp != NULL) fdrop(fp, td); return (error); #else /* SCTP */ return (EOPNOTSUPP); #endif /* SCTP */ } diff --git a/sys/sys/sf_base.h b/sys/sys/sf_base.h index 1c03ef447259..7c8d49cde4fe 100644 --- a/sys/sys/sf_base.h +++ b/sys/sys/sf_base.h @@ -1,36 +1,37 @@ /*- * Copyright (c) 2013 Adrian Chadd * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ #ifndef _SYS_SF_BASE_H_ #define _SYS_SF_BASE_H_ extern int _do_sendfile(struct thread *, int src_fd, int sock_fd, int flags, int compat, off_t offset, size_t nbytes, off_t *sbytes, - struct uio *hdr_uio, struct uio *trl_uio); + struct uio *hdr_uio, struct uio *trl_uio, + struct sf_hdtr_kq *hdtr_kq); #endif /* _SYS_SF_BASE_H_ */ diff --git a/sys/sys/sf_sync.h b/sys/sys/sf_sync.h index c66f4d99f162..04dee3801a5e 100644 --- a/sys/sys/sf_sync.h +++ b/sys/sys/sf_sync.h @@ -1,45 +1,64 @@ /*- * Copyright (c) 2013 Adrian Chadd * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ #ifndef _SYS_SF_SYNC_H_ #define _SYS_SF_SYNC_H_ +typedef enum { + SF_STATE_NONE, + SF_STATE_SETUP, + SF_STATE_RUNNING, + SF_STATE_COMPLETED, + SF_STATE_FREEING +} sendfile_sync_state_t; + struct sendfile_sync { - uint32_t flags; struct mtx mtx; struct cv cv; - unsigned count; + struct knlist klist; + uint32_t flags; + uint32_t count; + int32_t xerrno; /* Completion errno, if retval < 0 */ + off_t retval; /* Completion retval (eg written bytes) */ + sendfile_sync_state_t state; }; +/* XXX pollution */ +struct sf_hdtr_kq; + extern struct sendfile_sync * sf_sync_alloc(uint32_t flags); extern void sf_sync_syscall_wait(struct sendfile_sync *); extern void sf_sync_free(struct sendfile_sync *); +extern void sf_sync_try_free(struct sendfile_sync *); extern void sf_sync_ref(struct sendfile_sync *); extern void sf_sync_deref(struct sendfile_sync *); +extern int sf_sync_kqueue_setup(struct sendfile_sync *, struct sf_hdtr_kq *); +extern void sf_sync_set_state(struct sendfile_sync *, sendfile_sync_state_t, int); +extern void sf_sync_set_retval(struct sendfile_sync *, off_t, int); #endif /* !_SYS_SF_BUF_H_ */