diff --git a/sys/dev/cxgbe/cxgbei/cxgbei.c b/sys/dev/cxgbe/cxgbei/cxgbei.c index 193d58f9eda4..4ae0e4da717b 100644 --- a/sys/dev/cxgbe/cxgbei/cxgbei.c +++ b/sys/dev/cxgbe/cxgbei/cxgbei.c @@ -1,986 +1,983 @@ /*- * Copyright (c) 2012 Chelsio Communications, Inc. * All rights reserved. * * Chelsio T5xx iSCSI driver * * Written by: Sreenivasa Honnur * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include #include "opt_inet.h" #include "opt_inet6.h" #include #include #include #include #include #include #ifdef TCP_OFFLOAD #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "common/common.h" #include "common/t4_msg.h" #include "common/t4_regs.h" /* for PCIE_MEM_ACCESS */ #include "tom/t4_tom.h" #include "cxgbei.h" static void read_pdu_limits(struct adapter *sc, uint32_t *max_tx_data_len, uint32_t *max_rx_data_len, struct ppod_region *pr) { uint32_t tx_len, rx_len, r, v; rx_len = t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE); tx_len = t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE); r = t4_read_reg(sc, A_TP_PARA_REG2); rx_len = min(rx_len, G_MAXRXDATA(r)); tx_len = min(tx_len, G_MAXRXDATA(r)); r = t4_read_reg(sc, A_TP_PARA_REG7); v = min(G_PMMAXXFERLEN0(r), G_PMMAXXFERLEN1(r)); rx_len = min(rx_len, v); tx_len = min(tx_len, v); /* * AHS is not supported by the kernel so we'll not account for * it either in our PDU len -> data segment len conversions. */ rx_len -= ISCSI_BHS_SIZE + ISCSI_HEADER_DIGEST_SIZE + ISCSI_DATA_DIGEST_SIZE; tx_len -= ISCSI_BHS_SIZE + ISCSI_HEADER_DIGEST_SIZE + ISCSI_DATA_DIGEST_SIZE; /* * DDP can place only 4 pages for a single PDU. A single * request might use larger pages than the smallest page size, * but that cannot be guaranteed. Assume the smallest DDP * page size for this limit. */ rx_len = min(rx_len, 4 * (1U << pr->pr_page_shift[0])); if (chip_id(sc) == CHELSIO_T5) { tx_len = min(tx_len, 15360); rx_len = rounddown2(rx_len, 512); tx_len = rounddown2(tx_len, 512); } *max_tx_data_len = tx_len; *max_rx_data_len = rx_len; } /* * Initialize the software state of the iSCSI ULP driver. * * ENXIO means firmware didn't set up something that it was supposed to. */ static int cxgbei_init(struct adapter *sc, struct cxgbei_data *ci) { struct sysctl_oid *oid; struct sysctl_oid_list *children; struct ppod_region *pr; uint32_t r; int rc; MPASS(sc->vres.iscsi.size > 0); MPASS(ci != NULL); pr = &ci->pr; r = t4_read_reg(sc, A_ULP_RX_ISCSI_PSZ); rc = t4_init_ppod_region(pr, &sc->vres.iscsi, r, "iSCSI page pods"); if (rc != 0) { device_printf(sc->dev, "%s: failed to initialize the iSCSI page pod region: %u.\n", __func__, rc); return (rc); } read_pdu_limits(sc, &ci->max_tx_data_len, &ci->max_rx_data_len, pr); sysctl_ctx_init(&ci->ctx); oid = device_get_sysctl_tree(sc->dev); /* dev.t5nex.X */ children = SYSCTL_CHILDREN(oid); oid = SYSCTL_ADD_NODE(&ci->ctx, children, OID_AUTO, "iscsi", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "iSCSI ULP settings"); children = SYSCTL_CHILDREN(oid); ci->ddp_threshold = 2048; SYSCTL_ADD_UINT(&ci->ctx, children, OID_AUTO, "ddp_threshold", CTLFLAG_RW, &ci->ddp_threshold, 0, "Rx zero copy threshold"); SYSCTL_ADD_UINT(&ci->ctx, children, OID_AUTO, "max_rx_data_len", CTLFLAG_RW, &ci->max_rx_data_len, 0, "Maximum receive data segment length"); SYSCTL_ADD_UINT(&ci->ctx, children, OID_AUTO, "max_tx_data_len", CTLFLAG_RW, &ci->max_tx_data_len, 0, "Maximum transmit data segment length"); return (0); } static int do_rx_iscsi_hdr(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) { struct adapter *sc = iq->adapter; struct cpl_iscsi_hdr *cpl = mtod(m, struct cpl_iscsi_hdr *); u_int tid = GET_TID(cpl); struct toepcb *toep = lookup_tid(sc, tid); struct icl_pdu *ip; struct icl_cxgbei_pdu *icp; uint16_t len_ddp = be16toh(cpl->pdu_len_ddp); uint16_t len = be16toh(cpl->len); M_ASSERTPKTHDR(m); MPASS(m->m_pkthdr.len == len + sizeof(*cpl)); ip = icl_cxgbei_new_pdu(M_NOWAIT); if (ip == NULL) CXGBE_UNIMPLEMENTED("PDU allocation failure"); m_copydata(m, sizeof(*cpl), ISCSI_BHS_SIZE, (caddr_t)ip->ip_bhs); ip->ip_data_len = G_ISCSI_PDU_LEN(len_ddp) - len; icp = ip_to_icp(ip); icp->icp_seq = ntohl(cpl->seq); icp->icp_flags = ICPF_RX_HDR; /* This is the start of a new PDU. There should be no old state. */ MPASS(toep->ulpcb2 == NULL); toep->ulpcb2 = icp; #if 0 CTR5(KTR_CXGBE, "%s: tid %u, cpl->len %u, pdu_len_ddp 0x%04x, icp %p", __func__, tid, len, len_ddp, icp); #endif m_freem(m); return (0); } static int do_rx_iscsi_data(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) { struct adapter *sc = iq->adapter; struct cpl_iscsi_data *cpl = mtod(m, struct cpl_iscsi_data *); u_int tid = GET_TID(cpl); struct toepcb *toep = lookup_tid(sc, tid); struct icl_cxgbei_pdu *icp = toep->ulpcb2; struct icl_pdu *ip; M_ASSERTPKTHDR(m); MPASS(m->m_pkthdr.len == be16toh(cpl->len) + sizeof(*cpl)); if (icp == NULL) { /* * T6 completion enabled, start of a new pdu. Header * will come in completion CPL. */ ip = icl_cxgbei_new_pdu(M_NOWAIT); if (ip == NULL) CXGBE_UNIMPLEMENTED("PDU allocation failure"); icp = ip_to_icp(ip); } else { /* T5 mode, header is already received. */ MPASS(icp->icp_flags == ICPF_RX_HDR); MPASS(icp->ip.ip_data_mbuf == NULL); MPASS(icp->ip.ip_data_len == m->m_pkthdr.len - sizeof(*cpl)); } /* Trim the cpl header from mbuf. */ m_adj(m, sizeof(*cpl)); icp->icp_flags |= ICPF_RX_FLBUF; icp->ip.ip_data_mbuf = m; toep->ofld_rxq->rx_iscsi_fl_pdus++; toep->ofld_rxq->rx_iscsi_fl_octets += m->m_pkthdr.len; /* * For T6, save the icp for further processing in the * completion handler. */ if (icp->icp_flags == ICPF_RX_FLBUF) { MPASS(toep->ulpcb2 == NULL); toep->ulpcb2 = icp; } #if 0 CTR4(KTR_CXGBE, "%s: tid %u, cpl->len %u, icp %p", __func__, tid, be16toh(cpl->len), icp); #endif return (0); } static int mbuf_crc32c_helper(void *arg, void *data, u_int len) { uint32_t *digestp = arg; *digestp = calculate_crc32c(*digestp, data, len); return (0); } static struct icl_pdu * parse_pdu(struct socket *so, struct toepcb *toep, struct icl_cxgbei_conn *icc, struct sockbuf *sb, u_int total_len) { struct uio uio; struct iovec iov[2]; struct iscsi_bhs bhs; struct mbuf *m; struct icl_pdu *ip; u_int ahs_len, data_len, header_len, pdu_len; uint32_t calc_digest, wire_digest; int error; uio.uio_segflg = UIO_SYSSPACE; uio.uio_rw = UIO_READ; uio.uio_td = curthread; header_len = sizeof(struct iscsi_bhs); if (icc->ic.ic_header_crc32c) header_len += ISCSI_HEADER_DIGEST_SIZE; if (total_len < header_len) { ICL_WARN("truncated pre-offload PDU with len %u", total_len); return (NULL); } iov[0].iov_base = &bhs; iov[0].iov_len = sizeof(bhs); iov[1].iov_base = &wire_digest; iov[1].iov_len = sizeof(wire_digest); uio.uio_iov = iov; uio.uio_iovcnt = 1; uio.uio_offset = 0; uio.uio_resid = header_len; error = soreceive(so, NULL, &uio, NULL, NULL, NULL); if (error != 0) { ICL_WARN("failed to read BHS from pre-offload PDU: %d", error); return (NULL); } ahs_len = bhs.bhs_total_ahs_len * 4; data_len = bhs.bhs_data_segment_len[0] << 16 | bhs.bhs_data_segment_len[1] << 8 | bhs.bhs_data_segment_len[2]; pdu_len = header_len + ahs_len + roundup2(data_len, 4); if (icc->ic.ic_data_crc32c && data_len != 0) pdu_len += ISCSI_DATA_DIGEST_SIZE; if (total_len < pdu_len) { ICL_WARN("truncated pre-offload PDU len %u vs %u", total_len, pdu_len); return (NULL); } if (ahs_len != 0) { ICL_WARN("received pre-offload PDU with AHS"); return (NULL); } if (icc->ic.ic_header_crc32c) { calc_digest = calculate_crc32c(0xffffffff, (caddr_t)&bhs, sizeof(bhs)); calc_digest ^= 0xffffffff; if (calc_digest != wire_digest) { ICL_WARN("received pre-offload PDU 0x%02x with " "invalid header digest (0x%x vs 0x%x)", bhs.bhs_opcode, wire_digest, calc_digest); toep->ofld_rxq->rx_iscsi_header_digest_errors++; return (NULL); } } m = NULL; if (data_len != 0) { uio.uio_iov = NULL; uio.uio_resid = roundup2(data_len, 4); if (icc->ic.ic_data_crc32c) uio.uio_resid += ISCSI_DATA_DIGEST_SIZE; error = soreceive(so, NULL, &uio, &m, NULL, NULL); if (error != 0) { ICL_WARN("failed to read data payload from " "pre-offload PDU: %d", error); return (NULL); } if (icc->ic.ic_data_crc32c) { m_copydata(m, roundup2(data_len, 4), sizeof(wire_digest), (caddr_t)&wire_digest); calc_digest = 0xffffffff; m_apply(m, 0, roundup2(data_len, 4), mbuf_crc32c_helper, &calc_digest); calc_digest ^= 0xffffffff; if (calc_digest != wire_digest) { ICL_WARN("received pre-offload PDU 0x%02x " "with invalid data digest (0x%x vs 0x%x)", bhs.bhs_opcode, wire_digest, calc_digest); toep->ofld_rxq->rx_iscsi_data_digest_errors++; m_freem(m); return (NULL); } } } ip = icl_cxgbei_new_pdu(M_WAITOK); icl_cxgbei_new_pdu_set_conn(ip, &icc->ic); *ip->ip_bhs = bhs; ip->ip_data_len = data_len; ip->ip_data_mbuf = m; return (ip); } void parse_pdus(struct icl_cxgbei_conn *icc, struct sockbuf *sb) { struct icl_conn *ic = &icc->ic; struct socket *so = ic->ic_socket; struct toepcb *toep = icc->toep; struct icl_pdu *ip, *lastip; u_int total_len; SOCKBUF_LOCK_ASSERT(sb); CTR3(KTR_CXGBE, "%s: tid %u, %u bytes in so_rcv", __func__, toep->tid, sbused(sb)); lastip = NULL; while (sbused(sb) != 0 && (sb->sb_state & SBS_CANTRCVMORE) == 0) { total_len = sbused(sb); SOCKBUF_UNLOCK(sb); ip = parse_pdu(so, toep, icc, sb, total_len); if (ip == NULL) { ic->ic_error(ic); SOCKBUF_LOCK(sb); return; } if (lastip == NULL) STAILQ_INSERT_HEAD(&icc->rcvd_pdus, ip, ip_next); else STAILQ_INSERT_AFTER(&icc->rcvd_pdus, lastip, ip, ip_next); lastip = ip; SOCKBUF_LOCK(sb); } } static int do_rx_iscsi_ddp(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) { struct adapter *sc = iq->adapter; const struct cpl_rx_data_ddp *cpl = (const void *)(rss + 1); u_int tid = GET_TID(cpl); struct toepcb *toep = lookup_tid(sc, tid); struct inpcb *inp = toep->inp; struct socket *so; struct sockbuf *sb; struct tcpcb *tp; struct icl_cxgbei_conn *icc; struct icl_conn *ic; struct icl_cxgbei_pdu *icp = toep->ulpcb2; struct icl_pdu *ip; u_int pdu_len, val; struct epoch_tracker et; MPASS(m == NULL); /* Must already be assembling a PDU. */ MPASS(icp != NULL); MPASS(icp->icp_flags & ICPF_RX_HDR); /* Data is optional. */ MPASS((icp->icp_flags & ICPF_RX_STATUS) == 0); pdu_len = be16toh(cpl->len); /* includes everything. */ val = be32toh(cpl->ddpvld); #if 0 CTR5(KTR_CXGBE, "%s: tid %u, cpl->len %u, ddpvld 0x%08x, icp_flags 0x%08x", __func__, tid, pdu_len, val, icp->icp_flags); #endif icp->icp_flags |= ICPF_RX_STATUS; ip = &icp->ip; if (val & F_DDP_PADDING_ERR) { ICL_WARN("received PDU 0x%02x with invalid padding", ip->ip_bhs->bhs_opcode); toep->ofld_rxq->rx_iscsi_padding_errors++; } if (val & F_DDP_HDRCRC_ERR) { ICL_WARN("received PDU 0x%02x with invalid header digest", ip->ip_bhs->bhs_opcode); toep->ofld_rxq->rx_iscsi_header_digest_errors++; } if (val & F_DDP_DATACRC_ERR) { ICL_WARN("received PDU 0x%02x with invalid data digest", ip->ip_bhs->bhs_opcode); toep->ofld_rxq->rx_iscsi_data_digest_errors++; } if (val & F_DDP_PDU && ip->ip_data_mbuf == NULL) { MPASS((icp->icp_flags & ICPF_RX_FLBUF) == 0); MPASS(ip->ip_data_len > 0); icp->icp_flags |= ICPF_RX_DDP; toep->ofld_rxq->rx_iscsi_ddp_pdus++; toep->ofld_rxq->rx_iscsi_ddp_octets += ip->ip_data_len; } INP_WLOCK(inp); if (__predict_false(inp->inp_flags & INP_DROPPED)) { CTR4(KTR_CXGBE, "%s: tid %u, rx (%d bytes), inp_flags 0x%x", __func__, tid, pdu_len, inp->inp_flags); INP_WUNLOCK(inp); icl_cxgbei_conn_pdu_free(NULL, ip); toep->ulpcb2 = NULL; return (0); } /* * T6+ does not report data PDUs received via DDP without F * set. This can result in gaps in the TCP sequence space. */ tp = intotcpcb(inp); MPASS(chip_id(sc) >= CHELSIO_T6 || icp->icp_seq == tp->rcv_nxt); tp->rcv_nxt = icp->icp_seq + pdu_len; tp->t_rcvtime = ticks; /* * Don't update the window size or return credits since RX * flow control is disabled. */ so = inp->inp_socket; sb = &so->so_rcv; SOCKBUF_LOCK(sb); icc = toep->ulpcb; if (__predict_false(icc == NULL || sb->sb_state & SBS_CANTRCVMORE)) { CTR5(KTR_CXGBE, "%s: tid %u, excess rx (%d bytes), icc %p, sb_state 0x%x", __func__, tid, pdu_len, icc, sb->sb_state); SOCKBUF_UNLOCK(sb); INP_WUNLOCK(inp); CURVNET_SET(so->so_vnet); NET_EPOCH_ENTER(et); INP_WLOCK(inp); tp = tcp_drop(tp, ECONNRESET); if (tp) INP_WUNLOCK(inp); NET_EPOCH_EXIT(et); CURVNET_RESTORE(); icl_cxgbei_conn_pdu_free(NULL, ip); toep->ulpcb2 = NULL; return (0); } MPASS(icc->icc_signature == CXGBEI_CONN_SIGNATURE); ic = &icc->ic; if ((val & (F_DDP_PADDING_ERR | F_DDP_HDRCRC_ERR | F_DDP_DATACRC_ERR)) != 0) { SOCKBUF_UNLOCK(sb); INP_WUNLOCK(inp); icl_cxgbei_conn_pdu_free(NULL, ip); toep->ulpcb2 = NULL; ic->ic_error(ic); return (0); } icl_cxgbei_new_pdu_set_conn(ip, ic); STAILQ_INSERT_TAIL(&icc->rcvd_pdus, ip, ip_next); if (!icc->rx_active) { icc->rx_active = true; wakeup(&icc->rx_active); } SOCKBUF_UNLOCK(sb); INP_WUNLOCK(inp); toep->ulpcb2 = NULL; return (0); } static int do_rx_iscsi_cmp(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) { struct epoch_tracker et; struct adapter *sc = iq->adapter; struct cpl_rx_iscsi_cmp *cpl = mtod(m, struct cpl_rx_iscsi_cmp *); u_int tid = GET_TID(cpl); struct toepcb *toep = lookup_tid(sc, tid); struct icl_cxgbei_pdu *icp = toep->ulpcb2; struct icl_pdu *ip; struct cxgbei_cmp *cmp; struct inpcb *inp = toep->inp; #ifdef INVARIANTS uint16_t len = be16toh(cpl->len); u_int data_digest_len; #endif struct socket *so; struct sockbuf *sb; struct tcpcb *tp; struct icl_cxgbei_conn *icc; struct icl_conn *ic; struct iscsi_bhs_data_out *bhsdo; u_int val = be32toh(cpl->ddpvld); u_int npdus, pdu_len; uint32_t prev_seg_len; M_ASSERTPKTHDR(m); MPASS(m->m_pkthdr.len == len + sizeof(*cpl)); if ((val & F_DDP_PDU) == 0) { MPASS(icp != NULL); MPASS((icp->icp_flags & ICPF_RX_STATUS) == 0); ip = &icp->ip; } if (icp == NULL) { /* T6 completion enabled, start of a new PDU. */ ip = icl_cxgbei_new_pdu(M_NOWAIT); if (ip == NULL) CXGBE_UNIMPLEMENTED("PDU allocation failure"); icp = ip_to_icp(ip); } pdu_len = G_ISCSI_PDU_LEN(be16toh(cpl->pdu_len_ddp)); #if 0 CTR5(KTR_CXGBE, "%s: tid %u, cpl->len %u, ddpvld 0x%08x, icp %p", __func__, tid, pdu_len, val, icp); #endif /* Copy header */ m_copydata(m, sizeof(*cpl), ISCSI_BHS_SIZE, (caddr_t)ip->ip_bhs); bhsdo = (struct iscsi_bhs_data_out *)ip->ip_bhs; ip->ip_data_len = bhsdo->bhsdo_data_segment_len[0] << 16 | bhsdo->bhsdo_data_segment_len[1] << 8 | bhsdo->bhsdo_data_segment_len[2]; icp->icp_seq = ntohl(cpl->seq); icp->icp_flags |= ICPF_RX_HDR; icp->icp_flags |= ICPF_RX_STATUS; if (val & F_DDP_PADDING_ERR) { ICL_WARN("received PDU 0x%02x with invalid padding", ip->ip_bhs->bhs_opcode); toep->ofld_rxq->rx_iscsi_padding_errors++; } if (val & F_DDP_HDRCRC_ERR) { ICL_WARN("received PDU 0x%02x with invalid header digest", ip->ip_bhs->bhs_opcode); toep->ofld_rxq->rx_iscsi_header_digest_errors++; } if (val & F_DDP_DATACRC_ERR) { ICL_WARN("received PDU 0x%02x with invalid data digest", ip->ip_bhs->bhs_opcode); toep->ofld_rxq->rx_iscsi_data_digest_errors++; } INP_WLOCK(inp); if (__predict_false(inp->inp_flags & INP_DROPPED)) { CTR4(KTR_CXGBE, "%s: tid %u, rx (%d bytes), inp_flags 0x%x", __func__, tid, pdu_len, inp->inp_flags); INP_WUNLOCK(inp); icl_cxgbei_conn_pdu_free(NULL, ip); toep->ulpcb2 = NULL; m_freem(m); return (0); } tp = intotcpcb(inp); /* * If icc is NULL, the connection is being closed in * icl_cxgbei_conn_close(), just drop this data. */ icc = toep->ulpcb; if (__predict_false(icc == NULL)) { CTR4(KTR_CXGBE, "%s: tid %u, excess rx (%d bytes), icc %p", __func__, tid, pdu_len, icc); /* * Update rcv_nxt so the sequence number of the FIN * doesn't appear wrong. */ tp->rcv_nxt = icp->icp_seq + pdu_len; tp->t_rcvtime = ticks; INP_WUNLOCK(inp); icl_cxgbei_conn_pdu_free(NULL, ip); toep->ulpcb2 = NULL; m_freem(m); return (0); } MPASS(icc->icc_signature == CXGBEI_CONN_SIGNATURE); ic = &icc->ic; if ((val & (F_DDP_PADDING_ERR | F_DDP_HDRCRC_ERR | F_DDP_DATACRC_ERR)) != 0) { INP_WUNLOCK(inp); icl_cxgbei_conn_pdu_free(NULL, ip); toep->ulpcb2 = NULL; m_freem(m); ic->ic_error(ic); return (0); } #ifdef INVARIANTS data_digest_len = (icc->ulp_submode & ULP_CRC_DATA) ? ISCSI_DATA_DIGEST_SIZE : 0; MPASS(roundup2(ip->ip_data_len, 4) == pdu_len - len - data_digest_len); #endif if (val & F_DDP_PDU && ip->ip_data_mbuf == NULL) { MPASS((icp->icp_flags & ICPF_RX_FLBUF) == 0); MPASS(ip->ip_data_len > 0); icp->icp_flags |= ICPF_RX_DDP; bhsdo = (struct iscsi_bhs_data_out *)ip->ip_bhs; switch (ip->ip_bhs->bhs_opcode & ~ISCSI_BHS_OPCODE_IMMEDIATE) { case ISCSI_BHS_OPCODE_SCSI_DATA_IN: cmp = cxgbei_find_cmp(icc, be32toh(bhsdo->bhsdo_initiator_task_tag)); break; case ISCSI_BHS_OPCODE_SCSI_DATA_OUT: cmp = cxgbei_find_cmp(icc, be32toh(bhsdo->bhsdo_target_transfer_tag)); break; default: __assert_unreachable(); } MPASS(cmp != NULL); /* * The difference between the end of the last burst * and the offset of the last PDU in this burst is * the additional data received via DDP. */ prev_seg_len = be32toh(bhsdo->bhsdo_buffer_offset) - cmp->next_buffer_offset; if (prev_seg_len != 0) { uint32_t orig_datasn; /* * Return a "large" PDU representing the burst * of PDUs. Adjust the offset and length of * this PDU to represent the entire burst. */ ip->ip_data_len += prev_seg_len; bhsdo->bhsdo_data_segment_len[2] = ip->ip_data_len; bhsdo->bhsdo_data_segment_len[1] = ip->ip_data_len >> 8; bhsdo->bhsdo_data_segment_len[0] = ip->ip_data_len >> 16; bhsdo->bhsdo_buffer_offset = htobe32(cmp->next_buffer_offset); orig_datasn = htobe32(bhsdo->bhsdo_datasn); npdus = orig_datasn - cmp->last_datasn; bhsdo->bhsdo_datasn = htobe32(cmp->last_datasn + 1); cmp->last_datasn = orig_datasn; ip->ip_additional_pdus = npdus - 1; } else { MPASS(htobe32(bhsdo->bhsdo_datasn) == cmp->last_datasn + 1); npdus = 1; cmp->last_datasn = htobe32(bhsdo->bhsdo_datasn); } cmp->next_buffer_offset += ip->ip_data_len; toep->ofld_rxq->rx_iscsi_ddp_pdus += npdus; toep->ofld_rxq->rx_iscsi_ddp_octets += ip->ip_data_len; } else { MPASS(icp->icp_flags & (ICPF_RX_FLBUF)); MPASS(ip->ip_data_len == ip->ip_data_mbuf->m_pkthdr.len); } tp->rcv_nxt = icp->icp_seq + pdu_len; tp->t_rcvtime = ticks; /* * Don't update the window size or return credits since RX * flow control is disabled. */ so = inp->inp_socket; sb = &so->so_rcv; SOCKBUF_LOCK(sb); if (__predict_false(sb->sb_state & SBS_CANTRCVMORE)) { CTR5(KTR_CXGBE, "%s: tid %u, excess rx (%d bytes), icc %p, sb_state 0x%x", __func__, tid, pdu_len, icc, sb->sb_state); SOCKBUF_UNLOCK(sb); INP_WUNLOCK(inp); CURVNET_SET(so->so_vnet); NET_EPOCH_ENTER(et); INP_WLOCK(inp); tp = tcp_drop(tp, ECONNRESET); if (tp != NULL) INP_WUNLOCK(inp); NET_EPOCH_EXIT(et); CURVNET_RESTORE(); icl_cxgbei_conn_pdu_free(NULL, ip); toep->ulpcb2 = NULL; m_freem(m); return (0); } icl_cxgbei_new_pdu_set_conn(ip, ic); /* Enqueue the PDU to the received pdus queue. */ STAILQ_INSERT_TAIL(&icc->rcvd_pdus, ip, ip_next); if (!icc->rx_active) { icc->rx_active = true; wakeup(&icc->rx_active); } SOCKBUF_UNLOCK(sb); INP_WUNLOCK(inp); toep->ulpcb2 = NULL; m_freem(m); return (0); } static int cxgbei_activate(struct adapter *sc) { struct cxgbei_data *ci; int rc; ASSERT_SYNCHRONIZED_OP(sc); if (uld_active(sc, ULD_ISCSI)) { KASSERT(0, ("%s: iSCSI offload already enabled on adapter %p", __func__, sc)); return (0); } if (sc->iscsicaps == 0 || sc->vres.iscsi.size == 0) { device_printf(sc->dev, "not iSCSI offload capable, or capability disabled.\n"); return (ENOSYS); } /* per-adapter softc for iSCSI */ ci = malloc(sizeof(*ci), M_CXGBE, M_ZERO | M_WAITOK); - if (ci == NULL) - return (ENOMEM); - rc = cxgbei_init(sc, ci); if (rc != 0) { free(ci, M_CXGBE); return (rc); } sc->iscsi_ulp_softc = ci; return (0); } static int cxgbei_deactivate(struct adapter *sc) { struct cxgbei_data *ci = sc->iscsi_ulp_softc; ASSERT_SYNCHRONIZED_OP(sc); if (ci != NULL) { sysctl_ctx_free(&ci->ctx); t4_free_ppod_region(&ci->pr); free(ci, M_CXGBE); sc->iscsi_ulp_softc = NULL; } return (0); } static void cxgbei_activate_all(struct adapter *sc, void *arg __unused) { if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4isact") != 0) return; /* Activate iSCSI if any port on this adapter has IFCAP_TOE enabled. */ if (sc->offload_map && !uld_active(sc, ULD_ISCSI)) (void) t4_activate_uld(sc, ULD_ISCSI); end_synchronized_op(sc, 0); } static void cxgbei_deactivate_all(struct adapter *sc, void *arg __unused) { if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4isdea") != 0) return; if (uld_active(sc, ULD_ISCSI)) (void) t4_deactivate_uld(sc, ULD_ISCSI); end_synchronized_op(sc, 0); } static struct uld_info cxgbei_uld_info = { .uld_id = ULD_ISCSI, .activate = cxgbei_activate, .deactivate = cxgbei_deactivate, }; static int cxgbei_mod_load(void) { int rc; t4_register_cpl_handler(CPL_ISCSI_HDR, do_rx_iscsi_hdr); t4_register_cpl_handler(CPL_ISCSI_DATA, do_rx_iscsi_data); t4_register_cpl_handler(CPL_RX_ISCSI_DDP, do_rx_iscsi_ddp); t4_register_cpl_handler(CPL_RX_ISCSI_CMP, do_rx_iscsi_cmp); rc = t4_register_uld(&cxgbei_uld_info); if (rc != 0) return (rc); t4_iterate(cxgbei_activate_all, NULL); return (rc); } static int cxgbei_mod_unload(void) { t4_iterate(cxgbei_deactivate_all, NULL); if (t4_unregister_uld(&cxgbei_uld_info) == EBUSY) return (EBUSY); t4_register_cpl_handler(CPL_ISCSI_HDR, NULL); t4_register_cpl_handler(CPL_ISCSI_DATA, NULL); t4_register_cpl_handler(CPL_RX_ISCSI_DDP, NULL); t4_register_cpl_handler(CPL_RX_ISCSI_CMP, NULL); return (0); } #endif static int cxgbei_modevent(module_t mod, int cmd, void *arg) { int rc = 0; #ifdef TCP_OFFLOAD switch (cmd) { case MOD_LOAD: rc = cxgbei_mod_load(); if (rc == 0) rc = icl_cxgbei_mod_load(); break; case MOD_UNLOAD: rc = icl_cxgbei_mod_unload(); if (rc == 0) rc = cxgbei_mod_unload(); break; default: rc = EINVAL; } #else printf("cxgbei: compiled without TCP_OFFLOAD support.\n"); rc = EOPNOTSUPP; #endif return (rc); } static moduledata_t cxgbei_mod = { "cxgbei", cxgbei_modevent, NULL, }; MODULE_VERSION(cxgbei, 1); DECLARE_MODULE(cxgbei, cxgbei_mod, SI_SUB_EXEC, SI_ORDER_ANY); MODULE_DEPEND(cxgbei, t4_tom, 1, 1, 1); MODULE_DEPEND(cxgbei, cxgbe, 1, 1, 1); MODULE_DEPEND(cxgbei, icl, 1, 1, 1); diff --git a/sys/dev/cxgbe/tom/t4_cpl_io.c b/sys/dev/cxgbe/tom/t4_cpl_io.c index 842e72bf8b2b..0d42c89dcf93 100644 --- a/sys/dev/cxgbe/tom/t4_cpl_io.c +++ b/sys/dev/cxgbe/tom/t4_cpl_io.c @@ -1,2454 +1,2449 @@ /*- * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 2012, 2015 Chelsio Communications, Inc. * All rights reserved. * Written by: Navdeep Parhar * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include #include "opt_inet.h" #include "opt_inet6.h" #include "opt_kern_tls.h" #include "opt_ratelimit.h" #ifdef TCP_OFFLOAD #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define TCPSTATES #include #include #include #include #include #include #include #include #include #include #include #include "common/common.h" #include "common/t4_msg.h" #include "common/t4_regs.h" #include "common/t4_tcb.h" #include "tom/t4_tom_l2t.h" #include "tom/t4_tom.h" static void t4_aiotx_cancel(struct kaiocb *job); static void t4_aiotx_queue_toep(struct socket *so, struct toepcb *toep); void send_flowc_wr(struct toepcb *toep, struct tcpcb *tp) { struct wrqe *wr; struct fw_flowc_wr *flowc; unsigned int nparams, flowclen, paramidx; struct vi_info *vi = toep->vi; struct port_info *pi = vi->pi; struct adapter *sc = pi->adapter; unsigned int pfvf = sc->pf << S_FW_VIID_PFN; struct ofld_tx_sdesc *txsd = &toep->txsd[toep->txsd_pidx]; KASSERT(!(toep->flags & TPF_FLOWC_WR_SENT), ("%s: flowc for tid %u sent already", __func__, toep->tid)); if (tp != NULL) nparams = 8; else nparams = 6; if (toep->params.tc_idx != -1) { MPASS(toep->params.tc_idx >= 0 && toep->params.tc_idx < sc->params.nsched_cls); nparams++; } flowclen = sizeof(*flowc) + nparams * sizeof(struct fw_flowc_mnemval); wr = alloc_wrqe(roundup2(flowclen, 16), &toep->ofld_txq->wrq); if (wr == NULL) { /* XXX */ panic("%s: allocation failure.", __func__); } flowc = wrtod(wr); memset(flowc, 0, wr->wr_len); flowc->op_to_nparams = htobe32(V_FW_WR_OP(FW_FLOWC_WR) | V_FW_FLOWC_WR_NPARAMS(nparams)); flowc->flowid_len16 = htonl(V_FW_WR_LEN16(howmany(flowclen, 16)) | V_FW_WR_FLOWID(toep->tid)); #define FLOWC_PARAM(__m, __v) \ do { \ flowc->mnemval[paramidx].mnemonic = FW_FLOWC_MNEM_##__m; \ flowc->mnemval[paramidx].val = htobe32(__v); \ paramidx++; \ } while (0) paramidx = 0; FLOWC_PARAM(PFNVFN, pfvf); FLOWC_PARAM(CH, pi->tx_chan); FLOWC_PARAM(PORT, pi->tx_chan); FLOWC_PARAM(IQID, toep->ofld_rxq->iq.abs_id); FLOWC_PARAM(SNDBUF, toep->params.sndbuf); if (tp) { FLOWC_PARAM(MSS, toep->params.emss); FLOWC_PARAM(SNDNXT, tp->snd_nxt); FLOWC_PARAM(RCVNXT, tp->rcv_nxt); } else FLOWC_PARAM(MSS, 512); CTR6(KTR_CXGBE, "%s: tid %u, mss %u, sndbuf %u, snd_nxt 0x%x, rcv_nxt 0x%x", __func__, toep->tid, toep->params.emss, toep->params.sndbuf, tp ? tp->snd_nxt : 0, tp ? tp->rcv_nxt : 0); if (toep->params.tc_idx != -1) FLOWC_PARAM(SCHEDCLASS, toep->params.tc_idx); #undef FLOWC_PARAM KASSERT(paramidx == nparams, ("nparams mismatch")); txsd->tx_credits = howmany(flowclen, 16); txsd->plen = 0; KASSERT(toep->tx_credits >= txsd->tx_credits && toep->txsd_avail > 0, ("%s: not enough credits (%d)", __func__, toep->tx_credits)); toep->tx_credits -= txsd->tx_credits; if (__predict_false(++toep->txsd_pidx == toep->txsd_total)) toep->txsd_pidx = 0; toep->txsd_avail--; toep->flags |= TPF_FLOWC_WR_SENT; t4_wrq_tx(sc, wr); } #ifdef RATELIMIT /* * Input is Bytes/second (so_max_pacing_rate), chip counts in Kilobits/second. */ static int update_tx_rate_limit(struct adapter *sc, struct toepcb *toep, u_int Bps) { int tc_idx, rc; const u_int kbps = (u_int) (uint64_t)Bps * 8ULL / 1000; const int port_id = toep->vi->pi->port_id; CTR3(KTR_CXGBE, "%s: tid %u, rate %uKbps", __func__, toep->tid, kbps); if (kbps == 0) { /* unbind */ tc_idx = -1; } else { rc = t4_reserve_cl_rl_kbps(sc, port_id, kbps, &tc_idx); if (rc != 0) return (rc); MPASS(tc_idx >= 0 && tc_idx < sc->params.nsched_cls); } if (toep->params.tc_idx != tc_idx) { struct wrqe *wr; struct fw_flowc_wr *flowc; int nparams = 1, flowclen, flowclen16; struct ofld_tx_sdesc *txsd = &toep->txsd[toep->txsd_pidx]; flowclen = sizeof(*flowc) + nparams * sizeof(struct fw_flowc_mnemval); flowclen16 = howmany(flowclen, 16); if (toep->tx_credits < flowclen16 || toep->txsd_avail == 0 || (wr = alloc_wrqe(roundup2(flowclen, 16), &toep->ofld_txq->wrq)) == NULL) { if (tc_idx >= 0) t4_release_cl_rl(sc, port_id, tc_idx); return (ENOMEM); } flowc = wrtod(wr); memset(flowc, 0, wr->wr_len); flowc->op_to_nparams = htobe32(V_FW_WR_OP(FW_FLOWC_WR) | V_FW_FLOWC_WR_NPARAMS(nparams)); flowc->flowid_len16 = htonl(V_FW_WR_LEN16(flowclen16) | V_FW_WR_FLOWID(toep->tid)); flowc->mnemval[0].mnemonic = FW_FLOWC_MNEM_SCHEDCLASS; if (tc_idx == -1) flowc->mnemval[0].val = htobe32(0xff); else flowc->mnemval[0].val = htobe32(tc_idx); txsd->tx_credits = flowclen16; txsd->plen = 0; toep->tx_credits -= txsd->tx_credits; if (__predict_false(++toep->txsd_pidx == toep->txsd_total)) toep->txsd_pidx = 0; toep->txsd_avail--; t4_wrq_tx(sc, wr); } if (toep->params.tc_idx >= 0) t4_release_cl_rl(sc, port_id, toep->params.tc_idx); toep->params.tc_idx = tc_idx; return (0); } #endif void send_reset(struct adapter *sc, struct toepcb *toep, uint32_t snd_nxt) { struct wrqe *wr; struct cpl_abort_req *req; int tid = toep->tid; struct inpcb *inp = toep->inp; struct tcpcb *tp = intotcpcb(inp); /* don't use if INP_DROPPED */ INP_WLOCK_ASSERT(inp); CTR6(KTR_CXGBE, "%s: tid %d (%s), toep_flags 0x%x, inp_flags 0x%x%s", __func__, toep->tid, inp->inp_flags & INP_DROPPED ? "inp dropped" : tcpstates[tp->t_state], toep->flags, inp->inp_flags, toep->flags & TPF_ABORT_SHUTDOWN ? " (abort already in progress)" : ""); if (toep->flags & TPF_ABORT_SHUTDOWN) return; /* abort already in progress */ toep->flags |= TPF_ABORT_SHUTDOWN; KASSERT(toep->flags & TPF_FLOWC_WR_SENT, ("%s: flowc_wr not sent for tid %d.", __func__, tid)); wr = alloc_wrqe(sizeof(*req), &toep->ofld_txq->wrq); if (wr == NULL) { /* XXX */ panic("%s: allocation failure.", __func__); } req = wrtod(wr); INIT_TP_WR_MIT_CPL(req, CPL_ABORT_REQ, tid); if (inp->inp_flags & INP_DROPPED) req->rsvd0 = htobe32(snd_nxt); else req->rsvd0 = htobe32(tp->snd_nxt); req->rsvd1 = !(toep->flags & TPF_TX_DATA_SENT); req->cmd = CPL_ABORT_SEND_RST; /* * XXX: What's the correct way to tell that the inp hasn't been detached * from its socket? Should I even be flushing the snd buffer here? */ if ((inp->inp_flags & INP_DROPPED) == 0) { struct socket *so = inp->inp_socket; if (so != NULL) /* because I'm not sure. See comment above */ sbflush(&so->so_snd); } t4_l2t_send(sc, wr, toep->l2te); } /* * Called when a connection is established to translate the TCP options * reported by HW to FreeBSD's native format. */ static void assign_rxopt(struct tcpcb *tp, uint16_t opt) { struct toepcb *toep = tp->t_toe; struct inpcb *inp = tptoinpcb(tp); struct adapter *sc = td_adapter(toep->td); INP_LOCK_ASSERT(inp); toep->params.mtu_idx = G_TCPOPT_MSS(opt); tp->t_maxseg = sc->params.mtus[toep->params.mtu_idx]; if (inp->inp_inc.inc_flags & INC_ISIPV6) tp->t_maxseg -= sizeof(struct ip6_hdr) + sizeof(struct tcphdr); else tp->t_maxseg -= sizeof(struct ip) + sizeof(struct tcphdr); toep->params.emss = tp->t_maxseg; if (G_TCPOPT_TSTAMP(opt)) { toep->params.tstamp = 1; toep->params.emss -= TCPOLEN_TSTAMP_APPA; tp->t_flags |= TF_RCVD_TSTMP; /* timestamps ok */ tp->ts_recent = 0; /* hmmm */ tp->ts_recent_age = tcp_ts_getticks(); } else toep->params.tstamp = 0; if (G_TCPOPT_SACK(opt)) { toep->params.sack = 1; tp->t_flags |= TF_SACK_PERMIT; /* should already be set */ } else { toep->params.sack = 0; tp->t_flags &= ~TF_SACK_PERMIT; /* sack disallowed by peer */ } if (G_TCPOPT_WSCALE_OK(opt)) tp->t_flags |= TF_RCVD_SCALE; /* Doing window scaling? */ if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) == (TF_RCVD_SCALE | TF_REQ_SCALE)) { tp->rcv_scale = tp->request_r_scale; tp->snd_scale = G_TCPOPT_SND_WSCALE(opt); } else toep->params.wscale = 0; CTR6(KTR_CXGBE, "assign_rxopt: tid %d, mtu_idx %u, emss %u, ts %u, sack %u, wscale %u", toep->tid, toep->params.mtu_idx, toep->params.emss, toep->params.tstamp, toep->params.sack, toep->params.wscale); } /* * Completes some final bits of initialization for just established connections * and changes their state to TCPS_ESTABLISHED. * * The ISNs are from the exchange of SYNs. */ void make_established(struct toepcb *toep, uint32_t iss, uint32_t irs, uint16_t opt) { struct inpcb *inp = toep->inp; struct socket *so = inp->inp_socket; struct tcpcb *tp = intotcpcb(inp); uint16_t tcpopt = be16toh(opt); INP_WLOCK_ASSERT(inp); KASSERT(tp->t_state == TCPS_SYN_SENT || tp->t_state == TCPS_SYN_RECEIVED, ("%s: TCP state %s", __func__, tcpstates[tp->t_state])); CTR6(KTR_CXGBE, "%s: tid %d, so %p, inp %p, tp %p, toep %p", __func__, toep->tid, so, inp, tp, toep); tcp_state_change(tp, TCPS_ESTABLISHED); tp->t_starttime = ticks; TCPSTAT_INC(tcps_connects); tp->irs = irs; tcp_rcvseqinit(tp); tp->rcv_wnd = (u_int)toep->params.opt0_bufsize << 10; tp->rcv_adv += tp->rcv_wnd; tp->last_ack_sent = tp->rcv_nxt; tp->iss = iss; tcp_sendseqinit(tp); tp->snd_una = iss + 1; tp->snd_nxt = iss + 1; tp->snd_max = iss + 1; assign_rxopt(tp, tcpopt); send_flowc_wr(toep, tp); soisconnected(so); } int send_rx_credits(struct adapter *sc, struct toepcb *toep, int credits) { struct wrqe *wr; struct cpl_rx_data_ack *req; uint32_t dack = F_RX_DACK_CHANGE | V_RX_DACK_MODE(1); KASSERT(credits >= 0, ("%s: %d credits", __func__, credits)); wr = alloc_wrqe(sizeof(*req), toep->ctrlq); if (wr == NULL) return (0); req = wrtod(wr); INIT_TP_WR_MIT_CPL(req, CPL_RX_DATA_ACK, toep->tid); req->credit_dack = htobe32(dack | V_RX_CREDITS(credits)); t4_wrq_tx(sc, wr); return (credits); } void t4_rcvd_locked(struct toedev *tod, struct tcpcb *tp) { struct adapter *sc = tod->tod_softc; struct inpcb *inp = tptoinpcb(tp); struct socket *so = inp->inp_socket; struct sockbuf *sb = &so->so_rcv; struct toepcb *toep = tp->t_toe; int rx_credits; INP_WLOCK_ASSERT(inp); SOCKBUF_LOCK_ASSERT(sb); rx_credits = sbspace(sb) > tp->rcv_wnd ? sbspace(sb) - tp->rcv_wnd : 0; if (rx_credits > 0 && (tp->rcv_wnd <= 32 * 1024 || rx_credits >= 64 * 1024 || (rx_credits >= 16 * 1024 && tp->rcv_wnd <= 128 * 1024) || sbused(sb) + tp->rcv_wnd < sb->sb_lowat)) { rx_credits = send_rx_credits(sc, toep, rx_credits); tp->rcv_wnd += rx_credits; tp->rcv_adv += rx_credits; } } void t4_rcvd(struct toedev *tod, struct tcpcb *tp) { struct inpcb *inp = tptoinpcb(tp); struct socket *so = inp->inp_socket; struct sockbuf *sb = &so->so_rcv; SOCKBUF_LOCK(sb); t4_rcvd_locked(tod, tp); SOCKBUF_UNLOCK(sb); } /* * Close a connection by sending a CPL_CLOSE_CON_REQ message. */ int t4_close_conn(struct adapter *sc, struct toepcb *toep) { struct wrqe *wr; struct cpl_close_con_req *req; unsigned int tid = toep->tid; CTR3(KTR_CXGBE, "%s: tid %u%s", __func__, toep->tid, toep->flags & TPF_FIN_SENT ? ", IGNORED" : ""); if (toep->flags & TPF_FIN_SENT) return (0); KASSERT(toep->flags & TPF_FLOWC_WR_SENT, ("%s: flowc_wr not sent for tid %u.", __func__, tid)); wr = alloc_wrqe(sizeof(*req), &toep->ofld_txq->wrq); if (wr == NULL) { /* XXX */ panic("%s: allocation failure.", __func__); } req = wrtod(wr); req->wr.wr_hi = htonl(V_FW_WR_OP(FW_TP_WR) | V_FW_WR_IMMDLEN(sizeof(*req) - sizeof(req->wr))); req->wr.wr_mid = htonl(V_FW_WR_LEN16(howmany(sizeof(*req), 16)) | V_FW_WR_FLOWID(tid)); req->wr.wr_lo = cpu_to_be64(0); OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_CON_REQ, tid)); req->rsvd = 0; toep->flags |= TPF_FIN_SENT; toep->flags &= ~TPF_SEND_FIN; t4_l2t_send(sc, wr, toep->l2te); return (0); } #define MAX_OFLD_TX_CREDITS (SGE_MAX_WR_LEN / 16) #define MIN_OFLD_TX_CREDITS (howmany(sizeof(struct fw_ofld_tx_data_wr) + 1, 16)) #define MIN_ISO_TX_CREDITS (howmany(sizeof(struct cpl_tx_data_iso), 16)) #define MIN_TX_CREDITS(iso) \ (MIN_OFLD_TX_CREDITS + ((iso) ? MIN_ISO_TX_CREDITS : 0)) /* Maximum amount of immediate data we could stuff in a WR */ static inline int max_imm_payload(int tx_credits, int iso) { const int iso_cpl_size = iso ? sizeof(struct cpl_tx_data_iso) : 0; const int n = 1; /* Use no more than one desc for imm. data WR */ KASSERT(tx_credits >= 0 && tx_credits <= MAX_OFLD_TX_CREDITS, ("%s: %d credits", __func__, tx_credits)); if (tx_credits < MIN_TX_CREDITS(iso)) return (0); if (tx_credits >= (n * EQ_ESIZE) / 16) return ((n * EQ_ESIZE) - sizeof(struct fw_ofld_tx_data_wr) - iso_cpl_size); else return (tx_credits * 16 - sizeof(struct fw_ofld_tx_data_wr) - iso_cpl_size); } /* Maximum number of SGL entries we could stuff in a WR */ static inline int max_dsgl_nsegs(int tx_credits, int iso) { int nseg = 1; /* ulptx_sgl has room for 1, rest ulp_tx_sge_pair */ int sge_pair_credits = tx_credits - MIN_TX_CREDITS(iso); KASSERT(tx_credits >= 0 && tx_credits <= MAX_OFLD_TX_CREDITS, ("%s: %d credits", __func__, tx_credits)); if (tx_credits < MIN_TX_CREDITS(iso)) return (0); nseg += 2 * (sge_pair_credits * 16 / 24); if ((sge_pair_credits * 16) % 24 == 16) nseg++; return (nseg); } static inline void write_tx_wr(void *dst, struct toepcb *toep, int fw_wr_opcode, unsigned int immdlen, unsigned int plen, uint8_t credits, int shove, int ulp_submode) { struct fw_ofld_tx_data_wr *txwr = dst; txwr->op_to_immdlen = htobe32(V_WR_OP(fw_wr_opcode) | V_FW_WR_IMMDLEN(immdlen)); txwr->flowid_len16 = htobe32(V_FW_WR_FLOWID(toep->tid) | V_FW_WR_LEN16(credits)); txwr->lsodisable_to_flags = htobe32(V_TX_ULP_MODE(ulp_mode(toep)) | V_TX_ULP_SUBMODE(ulp_submode) | V_TX_URG(0) | V_TX_SHOVE(shove)); txwr->plen = htobe32(plen); if (toep->params.tx_align > 0) { if (plen < 2 * toep->params.emss) txwr->lsodisable_to_flags |= htobe32(F_FW_OFLD_TX_DATA_WR_LSODISABLE); else txwr->lsodisable_to_flags |= htobe32(F_FW_OFLD_TX_DATA_WR_ALIGNPLD | (toep->params.nagle == 0 ? 0 : F_FW_OFLD_TX_DATA_WR_ALIGNPLDSHOVE)); } } /* * Generate a DSGL from a starting mbuf. The total number of segments and the * maximum segments in any one mbuf are provided. */ static void write_tx_sgl(void *dst, struct mbuf *start, struct mbuf *stop, int nsegs, int n) { struct mbuf *m; struct ulptx_sgl *usgl = dst; int i, j, rc; struct sglist sg; struct sglist_seg segs[n]; KASSERT(nsegs > 0, ("%s: nsegs 0", __func__)); sglist_init(&sg, n, segs); usgl->cmd_nsge = htobe32(V_ULPTX_CMD(ULP_TX_SC_DSGL) | V_ULPTX_NSGE(nsegs)); i = -1; for (m = start; m != stop; m = m->m_next) { if (m->m_flags & M_EXTPG) rc = sglist_append_mbuf_epg(&sg, m, mtod(m, vm_offset_t), m->m_len); else rc = sglist_append(&sg, mtod(m, void *), m->m_len); if (__predict_false(rc != 0)) panic("%s: sglist_append %d", __func__, rc); for (j = 0; j < sg.sg_nseg; i++, j++) { if (i < 0) { usgl->len0 = htobe32(segs[j].ss_len); usgl->addr0 = htobe64(segs[j].ss_paddr); } else { usgl->sge[i / 2].len[i & 1] = htobe32(segs[j].ss_len); usgl->sge[i / 2].addr[i & 1] = htobe64(segs[j].ss_paddr); } #ifdef INVARIANTS nsegs--; #endif } sglist_reset(&sg); } if (i & 1) usgl->sge[i / 2].len[1] = htobe32(0); KASSERT(nsegs == 0, ("%s: nsegs %d, start %p, stop %p", __func__, nsegs, start, stop)); } /* * Max number of SGL entries an offload tx work request can have. This is 41 * (1 + 40) for a full 512B work request. * fw_ofld_tx_data_wr(16B) + ulptx_sgl(16B, 1) + ulptx_sge_pair(480B, 40) */ #define OFLD_SGL_LEN (41) /* * Send data and/or a FIN to the peer. * * The socket's so_snd buffer consists of a stream of data starting with sb_mb * and linked together with m_next. sb_sndptr, if set, is the last mbuf that * was transmitted. * * drop indicates the number of bytes that should be dropped from the head of * the send buffer. It is an optimization that lets do_fw4_ack avoid creating * contention on the send buffer lock (before this change it used to do * sowwakeup and then t4_push_frames right after that when recovering from tx * stalls). When drop is set this function MUST drop the bytes and wake up any * writers. */ void t4_push_frames(struct adapter *sc, struct toepcb *toep, int drop) { struct mbuf *sndptr, *m, *sb_sndptr; struct fw_ofld_tx_data_wr *txwr; struct wrqe *wr; u_int plen, nsegs, credits, max_imm, max_nsegs, max_nsegs_1mbuf; struct inpcb *inp = toep->inp; struct tcpcb *tp = intotcpcb(inp); struct socket *so = inp->inp_socket; struct sockbuf *sb = &so->so_snd; int tx_credits, shove, compl, sowwakeup; struct ofld_tx_sdesc *txsd; bool nomap_mbuf_seen; INP_WLOCK_ASSERT(inp); KASSERT(toep->flags & TPF_FLOWC_WR_SENT, ("%s: flowc_wr not sent for tid %u.", __func__, toep->tid)); KASSERT(ulp_mode(toep) == ULP_MODE_NONE || ulp_mode(toep) == ULP_MODE_TCPDDP || ulp_mode(toep) == ULP_MODE_TLS || ulp_mode(toep) == ULP_MODE_RDMA, ("%s: ulp_mode %u for toep %p", __func__, ulp_mode(toep), toep)); #ifdef VERBOSE_TRACES CTR5(KTR_CXGBE, "%s: tid %d toep flags %#x tp flags %#x drop %d", __func__, toep->tid, toep->flags, tp->t_flags, drop); #endif if (__predict_false(toep->flags & TPF_ABORT_SHUTDOWN)) return; #ifdef RATELIMIT if (__predict_false(inp->inp_flags2 & INP_RATE_LIMIT_CHANGED) && (update_tx_rate_limit(sc, toep, so->so_max_pacing_rate) == 0)) { inp->inp_flags2 &= ~INP_RATE_LIMIT_CHANGED; } #endif /* * This function doesn't resume by itself. Someone else must clear the * flag and call this function. */ if (__predict_false(toep->flags & TPF_TX_SUSPENDED)) { KASSERT(drop == 0, ("%s: drop (%d) != 0 but tx is suspended", __func__, drop)); return; } txsd = &toep->txsd[toep->txsd_pidx]; do { tx_credits = min(toep->tx_credits, MAX_OFLD_TX_CREDITS); max_imm = max_imm_payload(tx_credits, 0); max_nsegs = max_dsgl_nsegs(tx_credits, 0); SOCKBUF_LOCK(sb); sowwakeup = drop; if (drop) { sbdrop_locked(sb, drop); drop = 0; } sb_sndptr = sb->sb_sndptr; sndptr = sb_sndptr ? sb_sndptr->m_next : sb->sb_mb; plen = 0; nsegs = 0; max_nsegs_1mbuf = 0; /* max # of SGL segments in any one mbuf */ nomap_mbuf_seen = false; for (m = sndptr; m != NULL; m = m->m_next) { int n; if ((m->m_flags & M_NOTAVAIL) != 0) break; if (m->m_flags & M_EXTPG) { #ifdef KERN_TLS if (m->m_epg_tls != NULL) { toep->flags |= TPF_KTLS; if (plen == 0) { SOCKBUF_UNLOCK(sb); t4_push_ktls(sc, toep, 0); return; } break; } #endif n = sglist_count_mbuf_epg(m, mtod(m, vm_offset_t), m->m_len); } else n = sglist_count(mtod(m, void *), m->m_len); nsegs += n; plen += m->m_len; /* This mbuf sent us _over_ the nsegs limit, back out */ if (plen > max_imm && nsegs > max_nsegs) { nsegs -= n; plen -= m->m_len; if (plen == 0) { /* Too few credits */ toep->flags |= TPF_TX_SUSPENDED; if (sowwakeup) { if (!TAILQ_EMPTY( &toep->aiotx_jobq)) t4_aiotx_queue_toep(so, toep); sowwakeup_locked(so); } else SOCKBUF_UNLOCK(sb); SOCKBUF_UNLOCK_ASSERT(sb); return; } break; } if (m->m_flags & M_EXTPG) nomap_mbuf_seen = true; if (max_nsegs_1mbuf < n) max_nsegs_1mbuf = n; sb_sndptr = m; /* new sb->sb_sndptr if all goes well */ /* This mbuf put us right at the max_nsegs limit */ if (plen > max_imm && nsegs == max_nsegs) { m = m->m_next; break; } } if (sbused(sb) > sb->sb_hiwat * 5 / 8 && toep->plen_nocompl + plen >= sb->sb_hiwat / 4) compl = 1; else compl = 0; if (sb->sb_flags & SB_AUTOSIZE && V_tcp_do_autosndbuf && sb->sb_hiwat < V_tcp_autosndbuf_max && sbused(sb) >= sb->sb_hiwat * 7 / 8) { int newsize = min(sb->sb_hiwat + V_tcp_autosndbuf_inc, V_tcp_autosndbuf_max); if (!sbreserve_locked(so, SO_SND, newsize, NULL)) sb->sb_flags &= ~SB_AUTOSIZE; else sowwakeup = 1; /* room available */ } if (sowwakeup) { if (!TAILQ_EMPTY(&toep->aiotx_jobq)) t4_aiotx_queue_toep(so, toep); sowwakeup_locked(so); } else SOCKBUF_UNLOCK(sb); SOCKBUF_UNLOCK_ASSERT(sb); /* nothing to send */ if (plen == 0) { KASSERT(m == NULL || (m->m_flags & M_NOTAVAIL) != 0, ("%s: nothing to send, but m != NULL is ready", __func__)); break; } if (__predict_false(toep->flags & TPF_FIN_SENT)) panic("%s: excess tx.", __func__); shove = m == NULL && !(tp->t_flags & TF_MORETOCOME); if (plen <= max_imm && !nomap_mbuf_seen) { /* Immediate data tx */ wr = alloc_wrqe(roundup2(sizeof(*txwr) + plen, 16), &toep->ofld_txq->wrq); if (wr == NULL) { /* XXX: how will we recover from this? */ toep->flags |= TPF_TX_SUSPENDED; return; } txwr = wrtod(wr); credits = howmany(wr->wr_len, 16); write_tx_wr(txwr, toep, FW_OFLD_TX_DATA_WR, plen, plen, credits, shove, 0); m_copydata(sndptr, 0, plen, (void *)(txwr + 1)); nsegs = 0; } else { int wr_len; /* DSGL tx */ wr_len = sizeof(*txwr) + sizeof(struct ulptx_sgl) + ((3 * (nsegs - 1)) / 2 + ((nsegs - 1) & 1)) * 8; wr = alloc_wrqe(roundup2(wr_len, 16), &toep->ofld_txq->wrq); if (wr == NULL) { /* XXX: how will we recover from this? */ toep->flags |= TPF_TX_SUSPENDED; return; } txwr = wrtod(wr); credits = howmany(wr_len, 16); write_tx_wr(txwr, toep, FW_OFLD_TX_DATA_WR, 0, plen, credits, shove, 0); write_tx_sgl(txwr + 1, sndptr, m, nsegs, max_nsegs_1mbuf); if (wr_len & 0xf) { uint64_t *pad = (uint64_t *) ((uintptr_t)txwr + wr_len); *pad = 0; } } KASSERT(toep->tx_credits >= credits, ("%s: not enough credits", __func__)); toep->tx_credits -= credits; toep->tx_nocompl += credits; toep->plen_nocompl += plen; if (toep->tx_credits <= toep->tx_total * 3 / 8 && toep->tx_nocompl >= toep->tx_total / 4) compl = 1; if (compl || ulp_mode(toep) == ULP_MODE_RDMA) { txwr->op_to_immdlen |= htobe32(F_FW_WR_COMPL); toep->tx_nocompl = 0; toep->plen_nocompl = 0; } tp->snd_nxt += plen; tp->snd_max += plen; SOCKBUF_LOCK(sb); KASSERT(sb_sndptr, ("%s: sb_sndptr is NULL", __func__)); sb->sb_sndptr = sb_sndptr; SOCKBUF_UNLOCK(sb); toep->flags |= TPF_TX_DATA_SENT; if (toep->tx_credits < MIN_OFLD_TX_CREDITS) toep->flags |= TPF_TX_SUSPENDED; KASSERT(toep->txsd_avail > 0, ("%s: no txsd", __func__)); txsd->plen = plen; txsd->tx_credits = credits; txsd++; if (__predict_false(++toep->txsd_pidx == toep->txsd_total)) { toep->txsd_pidx = 0; txsd = &toep->txsd[0]; } toep->txsd_avail--; t4_l2t_send(sc, wr, toep->l2te); } while (m != NULL && (m->m_flags & M_NOTAVAIL) == 0); /* Send a FIN if requested, but only if there's no more data to send */ if (m == NULL && toep->flags & TPF_SEND_FIN) t4_close_conn(sc, toep); } static inline void rqdrop_locked(struct mbufq *q, int plen) { struct mbuf *m; while (plen > 0) { m = mbufq_dequeue(q); /* Too many credits. */ MPASS(m != NULL); M_ASSERTPKTHDR(m); /* Partial credits. */ MPASS(plen >= m->m_pkthdr.len); plen -= m->m_pkthdr.len; m_freem(m); } } /* * Not a bit in the TCB, but is a bit in the ulp_submode field of the * CPL_TX_DATA flags field in FW_ISCSI_TX_DATA_WR. */ #define ULP_ISO G_TX_ULP_SUBMODE(F_FW_ISCSI_TX_DATA_WR_ULPSUBMODE_ISO) static void write_tx_data_iso(void *dst, u_int ulp_submode, uint8_t flags, uint16_t mss, int len, int npdu) { struct cpl_tx_data_iso *cpl; unsigned int burst_size; unsigned int last; /* * The firmware will set the 'F' bit on the last PDU when * either condition is true: * * - this large PDU is marked as the "last" slice * * - the amount of data payload bytes equals the burst_size * * The strategy used here is to always set the burst_size * artificially high (len includes the size of the template * BHS) and only set the "last" flag if the original PDU had * 'F' set. */ burst_size = len; last = !!(flags & CXGBE_ISO_F); cpl = (struct cpl_tx_data_iso *)dst; cpl->op_to_scsi = htonl(V_CPL_TX_DATA_ISO_OP(CPL_TX_DATA_ISO) | V_CPL_TX_DATA_ISO_FIRST(1) | V_CPL_TX_DATA_ISO_LAST(last) | V_CPL_TX_DATA_ISO_CPLHDRLEN(0) | V_CPL_TX_DATA_ISO_HDRCRC(!!(ulp_submode & ULP_CRC_HEADER)) | V_CPL_TX_DATA_ISO_PLDCRC(!!(ulp_submode & ULP_CRC_DATA)) | V_CPL_TX_DATA_ISO_IMMEDIATE(0) | V_CPL_TX_DATA_ISO_SCSI(CXGBE_ISO_TYPE(flags))); cpl->ahs_len = 0; cpl->mpdu = htons(DIV_ROUND_UP(mss, 4)); cpl->burst_size = htonl(DIV_ROUND_UP(burst_size, 4)); cpl->len = htonl(len); cpl->reserved2_seglen_offset = htonl(0); cpl->datasn_offset = htonl(0); cpl->buffer_offset = htonl(0); cpl->reserved3 = 0; } static struct wrqe * write_iscsi_mbuf_wr(struct toepcb *toep, struct mbuf *sndptr) { struct mbuf *m; struct fw_ofld_tx_data_wr *txwr; struct cpl_tx_data_iso *cpl_iso; void *p; struct wrqe *wr; u_int plen, nsegs, credits, max_imm, max_nsegs, max_nsegs_1mbuf; u_int adjusted_plen, imm_data, ulp_submode; struct inpcb *inp = toep->inp; struct tcpcb *tp = intotcpcb(inp); int tx_credits, shove, npdu, wr_len; uint16_t iso_mss; static const u_int ulp_extra_len[] = {0, 4, 4, 8}; bool iso, nomap_mbuf_seen; M_ASSERTPKTHDR(sndptr); tx_credits = min(toep->tx_credits, MAX_OFLD_TX_CREDITS); if (mbuf_raw_wr(sndptr)) { plen = sndptr->m_pkthdr.len; KASSERT(plen <= SGE_MAX_WR_LEN, ("raw WR len %u is greater than max WR len", plen)); if (plen > tx_credits * 16) return (NULL); wr = alloc_wrqe(roundup2(plen, 16), &toep->ofld_txq->wrq); if (__predict_false(wr == NULL)) return (NULL); m_copydata(sndptr, 0, plen, wrtod(wr)); return (wr); } iso = mbuf_iscsi_iso(sndptr); max_imm = max_imm_payload(tx_credits, iso); max_nsegs = max_dsgl_nsegs(tx_credits, iso); iso_mss = mbuf_iscsi_iso_mss(sndptr); plen = 0; nsegs = 0; max_nsegs_1mbuf = 0; /* max # of SGL segments in any one mbuf */ nomap_mbuf_seen = false; for (m = sndptr; m != NULL; m = m->m_next) { int n; if (m->m_flags & M_EXTPG) n = sglist_count_mbuf_epg(m, mtod(m, vm_offset_t), m->m_len); else n = sglist_count(mtod(m, void *), m->m_len); nsegs += n; plen += m->m_len; /* * This mbuf would send us _over_ the nsegs limit. * Suspend tx because the PDU can't be sent out. */ if ((nomap_mbuf_seen || plen > max_imm) && nsegs > max_nsegs) return (NULL); if (m->m_flags & M_EXTPG) nomap_mbuf_seen = true; if (max_nsegs_1mbuf < n) max_nsegs_1mbuf = n; } if (__predict_false(toep->flags & TPF_FIN_SENT)) panic("%s: excess tx.", __func__); /* * We have a PDU to send. All of it goes out in one WR so 'm' * is NULL. A PDU's length is always a multiple of 4. */ MPASS(m == NULL); MPASS((plen & 3) == 0); MPASS(sndptr->m_pkthdr.len == plen); shove = !(tp->t_flags & TF_MORETOCOME); /* * plen doesn't include header and data digests, which are * generated and inserted in the right places by the TOE, but * they do occupy TCP sequence space and need to be accounted * for. */ ulp_submode = mbuf_ulp_submode(sndptr); MPASS(ulp_submode < nitems(ulp_extra_len)); npdu = iso ? howmany(plen - ISCSI_BHS_SIZE, iso_mss) : 1; adjusted_plen = plen + ulp_extra_len[ulp_submode] * npdu; if (iso) adjusted_plen += ISCSI_BHS_SIZE * (npdu - 1); wr_len = sizeof(*txwr); if (iso) wr_len += sizeof(struct cpl_tx_data_iso); if (plen <= max_imm && !nomap_mbuf_seen) { /* Immediate data tx */ imm_data = plen; wr_len += plen; nsegs = 0; } else { /* DSGL tx */ imm_data = 0; wr_len += sizeof(struct ulptx_sgl) + ((3 * (nsegs - 1)) / 2 + ((nsegs - 1) & 1)) * 8; } wr = alloc_wrqe(roundup2(wr_len, 16), &toep->ofld_txq->wrq); if (wr == NULL) { /* XXX: how will we recover from this? */ return (NULL); } txwr = wrtod(wr); credits = howmany(wr->wr_len, 16); if (iso) { write_tx_wr(txwr, toep, FW_ISCSI_TX_DATA_WR, imm_data + sizeof(struct cpl_tx_data_iso), adjusted_plen, credits, shove, ulp_submode | ULP_ISO); cpl_iso = (struct cpl_tx_data_iso *)(txwr + 1); MPASS(plen == sndptr->m_pkthdr.len); write_tx_data_iso(cpl_iso, ulp_submode, mbuf_iscsi_iso_flags(sndptr), iso_mss, plen, npdu); p = cpl_iso + 1; } else { write_tx_wr(txwr, toep, FW_OFLD_TX_DATA_WR, imm_data, adjusted_plen, credits, shove, ulp_submode); p = txwr + 1; } if (imm_data != 0) { m_copydata(sndptr, 0, plen, p); } else { write_tx_sgl(p, sndptr, m, nsegs, max_nsegs_1mbuf); if (wr_len & 0xf) { uint64_t *pad = (uint64_t *)((uintptr_t)txwr + wr_len); *pad = 0; } } KASSERT(toep->tx_credits >= credits, ("%s: not enough credits: credits %u " "toep->tx_credits %u tx_credits %u nsegs %u " "max_nsegs %u iso %d", __func__, credits, toep->tx_credits, tx_credits, nsegs, max_nsegs, iso)); tp->snd_nxt += adjusted_plen; tp->snd_max += adjusted_plen; counter_u64_add(toep->ofld_txq->tx_iscsi_pdus, npdu); counter_u64_add(toep->ofld_txq->tx_iscsi_octets, plen); if (iso) counter_u64_add(toep->ofld_txq->tx_iscsi_iso_wrs, 1); return (wr); } void t4_push_pdus(struct adapter *sc, struct toepcb *toep, int drop) { struct mbuf *sndptr, *m; struct fw_wr_hdr *wrhdr; struct wrqe *wr; u_int plen, credits; struct inpcb *inp = toep->inp; struct ofld_tx_sdesc *txsd = &toep->txsd[toep->txsd_pidx]; struct mbufq *pduq = &toep->ulp_pduq; INP_WLOCK_ASSERT(inp); KASSERT(toep->flags & TPF_FLOWC_WR_SENT, ("%s: flowc_wr not sent for tid %u.", __func__, toep->tid)); KASSERT(ulp_mode(toep) == ULP_MODE_ISCSI, ("%s: ulp_mode %u for toep %p", __func__, ulp_mode(toep), toep)); if (__predict_false(toep->flags & TPF_ABORT_SHUTDOWN)) return; /* * This function doesn't resume by itself. Someone else must clear the * flag and call this function. */ if (__predict_false(toep->flags & TPF_TX_SUSPENDED)) { KASSERT(drop == 0, ("%s: drop (%d) != 0 but tx is suspended", __func__, drop)); return; } if (drop) { struct socket *so = inp->inp_socket; struct sockbuf *sb = &so->so_snd; int sbu; /* * An unlocked read is ok here as the data should only * transition from a non-zero value to either another * non-zero value or zero. Once it is zero it should * stay zero. */ if (__predict_false(sbused(sb)) > 0) { SOCKBUF_LOCK(sb); sbu = sbused(sb); if (sbu > 0) { /* * The data transmitted before the * tid's ULP mode changed to ISCSI is * still in so_snd. Incoming credits * should account for so_snd first. */ sbdrop_locked(sb, min(sbu, drop)); drop -= min(sbu, drop); } sowwakeup_locked(so); /* unlocks so_snd */ } rqdrop_locked(&toep->ulp_pdu_reclaimq, drop); } while ((sndptr = mbufq_first(pduq)) != NULL) { wr = write_iscsi_mbuf_wr(toep, sndptr); if (wr == NULL) { toep->flags |= TPF_TX_SUSPENDED; return; } plen = sndptr->m_pkthdr.len; credits = howmany(wr->wr_len, 16); KASSERT(toep->tx_credits >= credits, ("%s: not enough credits", __func__)); m = mbufq_dequeue(pduq); MPASS(m == sndptr); mbufq_enqueue(&toep->ulp_pdu_reclaimq, m); toep->tx_credits -= credits; toep->tx_nocompl += credits; toep->plen_nocompl += plen; /* * Ensure there are enough credits for a full-sized WR * as page pod WRs can be full-sized. */ if (toep->tx_credits <= SGE_MAX_WR_LEN * 5 / 4 && toep->tx_nocompl >= toep->tx_total / 4) { wrhdr = wrtod(wr); wrhdr->hi |= htobe32(F_FW_WR_COMPL); toep->tx_nocompl = 0; toep->plen_nocompl = 0; } toep->flags |= TPF_TX_DATA_SENT; if (toep->tx_credits < MIN_OFLD_TX_CREDITS) toep->flags |= TPF_TX_SUSPENDED; KASSERT(toep->txsd_avail > 0, ("%s: no txsd", __func__)); txsd->plen = plen; txsd->tx_credits = credits; txsd++; if (__predict_false(++toep->txsd_pidx == toep->txsd_total)) { toep->txsd_pidx = 0; txsd = &toep->txsd[0]; } toep->txsd_avail--; t4_l2t_send(sc, wr, toep->l2te); } /* Send a FIN if requested, but only if there are no more PDUs to send */ if (mbufq_first(pduq) == NULL && toep->flags & TPF_SEND_FIN) t4_close_conn(sc, toep); } static inline void t4_push_data(struct adapter *sc, struct toepcb *toep, int drop) { if (ulp_mode(toep) == ULP_MODE_ISCSI) t4_push_pdus(sc, toep, drop); else if (toep->flags & TPF_KTLS) t4_push_ktls(sc, toep, drop); else t4_push_frames(sc, toep, drop); } int t4_tod_output(struct toedev *tod, struct tcpcb *tp) { struct adapter *sc = tod->tod_softc; #ifdef INVARIANTS struct inpcb *inp = tptoinpcb(tp); #endif struct toepcb *toep = tp->t_toe; INP_WLOCK_ASSERT(inp); KASSERT((inp->inp_flags & INP_DROPPED) == 0, ("%s: inp %p dropped.", __func__, inp)); KASSERT(toep != NULL, ("%s: toep is NULL", __func__)); t4_push_data(sc, toep, 0); return (0); } int t4_send_fin(struct toedev *tod, struct tcpcb *tp) { struct adapter *sc = tod->tod_softc; #ifdef INVARIANTS struct inpcb *inp = tptoinpcb(tp); #endif struct toepcb *toep = tp->t_toe; INP_WLOCK_ASSERT(inp); KASSERT((inp->inp_flags & INP_DROPPED) == 0, ("%s: inp %p dropped.", __func__, inp)); KASSERT(toep != NULL, ("%s: toep is NULL", __func__)); toep->flags |= TPF_SEND_FIN; if (tp->t_state >= TCPS_ESTABLISHED) t4_push_data(sc, toep, 0); return (0); } int t4_send_rst(struct toedev *tod, struct tcpcb *tp) { struct adapter *sc = tod->tod_softc; #if defined(INVARIANTS) struct inpcb *inp = tptoinpcb(tp); #endif struct toepcb *toep = tp->t_toe; INP_WLOCK_ASSERT(inp); KASSERT((inp->inp_flags & INP_DROPPED) == 0, ("%s: inp %p dropped.", __func__, inp)); KASSERT(toep != NULL, ("%s: toep is NULL", __func__)); /* hmmmm */ KASSERT(toep->flags & TPF_FLOWC_WR_SENT, ("%s: flowc for tid %u [%s] not sent already", __func__, toep->tid, tcpstates[tp->t_state])); send_reset(sc, toep, 0); return (0); } /* * Peer has sent us a FIN. */ static int do_peer_close(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) { struct adapter *sc = iq->adapter; const struct cpl_peer_close *cpl = (const void *)(rss + 1); unsigned int tid = GET_TID(cpl); struct toepcb *toep = lookup_tid(sc, tid); struct inpcb *inp = toep->inp; struct tcpcb *tp = NULL; struct socket *so; struct epoch_tracker et; #ifdef INVARIANTS unsigned int opcode = G_CPL_OPCODE(be32toh(OPCODE_TID(cpl))); #endif KASSERT(opcode == CPL_PEER_CLOSE, ("%s: unexpected opcode 0x%x", __func__, opcode)); KASSERT(m == NULL, ("%s: wasn't expecting payload", __func__)); if (__predict_false(toep->flags & TPF_SYNQE)) { /* * do_pass_establish must have run before do_peer_close and if * this is still a synqe instead of a toepcb then the connection * must be getting aborted. */ MPASS(toep->flags & TPF_ABORT_SHUTDOWN); CTR4(KTR_CXGBE, "%s: tid %u, synqe %p (0x%x)", __func__, tid, toep, toep->flags); return (0); } KASSERT(toep->tid == tid, ("%s: toep tid mismatch", __func__)); CURVNET_SET(toep->vnet); NET_EPOCH_ENTER(et); INP_WLOCK(inp); tp = intotcpcb(inp); CTR6(KTR_CXGBE, "%s: tid %u (%s), toep_flags 0x%x, ddp_flags 0x%x, inp %p", __func__, tid, tp ? tcpstates[tp->t_state] : "no tp", toep->flags, toep->ddp.flags, inp); if (toep->flags & TPF_ABORT_SHUTDOWN) goto done; if (ulp_mode(toep) == ULP_MODE_TCPDDP) { DDP_LOCK(toep); if (__predict_false(toep->ddp.flags & (DDP_BUF0_ACTIVE | DDP_BUF1_ACTIVE))) handle_ddp_close(toep, tp, cpl->rcv_nxt); DDP_UNLOCK(toep); } so = inp->inp_socket; socantrcvmore(so); if (ulp_mode(toep) == ULP_MODE_RDMA || (ulp_mode(toep) == ULP_MODE_ISCSI && chip_id(sc) >= CHELSIO_T6)) { /* * There might be data received via DDP before the FIN * not reported to the driver. Just assume the * sequence number in the CPL is correct as the * sequence number of the FIN. */ } else { KASSERT(tp->rcv_nxt + 1 == be32toh(cpl->rcv_nxt), ("%s: rcv_nxt mismatch: %u %u", __func__, tp->rcv_nxt, be32toh(cpl->rcv_nxt))); } tp->rcv_nxt = be32toh(cpl->rcv_nxt); switch (tp->t_state) { case TCPS_SYN_RECEIVED: tp->t_starttime = ticks; /* FALLTHROUGH */ case TCPS_ESTABLISHED: tcp_state_change(tp, TCPS_CLOSE_WAIT); break; case TCPS_FIN_WAIT_1: tcp_state_change(tp, TCPS_CLOSING); break; case TCPS_FIN_WAIT_2: restore_so_proto(so, inp->inp_vflag & INP_IPV6); tcp_twstart(tp); INP_UNLOCK_ASSERT(inp); /* safe, we have a ref on the inp */ NET_EPOCH_EXIT(et); CURVNET_RESTORE(); INP_WLOCK(inp); final_cpl_received(toep); return (0); default: log(LOG_ERR, "%s: TID %u received CPL_PEER_CLOSE in state %d\n", __func__, tid, tp->t_state); } done: INP_WUNLOCK(inp); NET_EPOCH_EXIT(et); CURVNET_RESTORE(); return (0); } /* * Peer has ACK'd our FIN. */ static int do_close_con_rpl(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) { struct adapter *sc = iq->adapter; const struct cpl_close_con_rpl *cpl = (const void *)(rss + 1); unsigned int tid = GET_TID(cpl); struct toepcb *toep = lookup_tid(sc, tid); struct inpcb *inp = toep->inp; struct tcpcb *tp = NULL; struct socket *so = NULL; struct epoch_tracker et; #ifdef INVARIANTS unsigned int opcode = G_CPL_OPCODE(be32toh(OPCODE_TID(cpl))); #endif KASSERT(opcode == CPL_CLOSE_CON_RPL, ("%s: unexpected opcode 0x%x", __func__, opcode)); KASSERT(m == NULL, ("%s: wasn't expecting payload", __func__)); KASSERT(toep->tid == tid, ("%s: toep tid mismatch", __func__)); CURVNET_SET(toep->vnet); NET_EPOCH_ENTER(et); INP_WLOCK(inp); tp = intotcpcb(inp); CTR4(KTR_CXGBE, "%s: tid %u (%s), toep_flags 0x%x", __func__, tid, tp ? tcpstates[tp->t_state] : "no tp", toep->flags); if (toep->flags & TPF_ABORT_SHUTDOWN) goto done; so = inp->inp_socket; tp->snd_una = be32toh(cpl->snd_nxt) - 1; /* exclude FIN */ switch (tp->t_state) { case TCPS_CLOSING: /* see TCPS_FIN_WAIT_2 in do_peer_close too */ restore_so_proto(so, inp->inp_vflag & INP_IPV6); tcp_twstart(tp); release: INP_UNLOCK_ASSERT(inp); /* safe, we have a ref on the inp */ NET_EPOCH_EXIT(et); CURVNET_RESTORE(); INP_WLOCK(inp); final_cpl_received(toep); /* no more CPLs expected */ return (0); case TCPS_LAST_ACK: if (tcp_close(tp)) INP_WUNLOCK(inp); goto release; case TCPS_FIN_WAIT_1: if (so->so_rcv.sb_state & SBS_CANTRCVMORE) soisdisconnected(so); tcp_state_change(tp, TCPS_FIN_WAIT_2); break; default: log(LOG_ERR, "%s: TID %u received CPL_CLOSE_CON_RPL in state %s\n", __func__, tid, tcpstates[tp->t_state]); } done: INP_WUNLOCK(inp); NET_EPOCH_EXIT(et); CURVNET_RESTORE(); return (0); } void send_abort_rpl(struct adapter *sc, struct sge_ofld_txq *ofld_txq, int tid, int rst_status) { struct wrqe *wr; struct cpl_abort_rpl *cpl; wr = alloc_wrqe(sizeof(*cpl), &ofld_txq->wrq); if (wr == NULL) { /* XXX */ panic("%s: allocation failure.", __func__); } cpl = wrtod(wr); INIT_TP_WR_MIT_CPL(cpl, CPL_ABORT_RPL, tid); cpl->cmd = rst_status; t4_wrq_tx(sc, wr); } static int abort_status_to_errno(struct tcpcb *tp, unsigned int abort_reason) { switch (abort_reason) { case CPL_ERR_BAD_SYN: case CPL_ERR_CONN_RESET: return (tp->t_state == TCPS_CLOSE_WAIT ? EPIPE : ECONNRESET); case CPL_ERR_XMIT_TIMEDOUT: case CPL_ERR_PERSIST_TIMEDOUT: case CPL_ERR_FINWAIT2_TIMEDOUT: case CPL_ERR_KEEPALIVE_TIMEDOUT: return (ETIMEDOUT); default: return (EIO); } } /* * TCP RST from the peer, timeout, or some other such critical error. */ static int do_abort_req(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) { struct adapter *sc = iq->adapter; const struct cpl_abort_req_rss *cpl = (const void *)(rss + 1); unsigned int tid = GET_TID(cpl); struct toepcb *toep = lookup_tid(sc, tid); struct sge_ofld_txq *ofld_txq = toep->ofld_txq; struct inpcb *inp; struct tcpcb *tp; struct epoch_tracker et; #ifdef INVARIANTS unsigned int opcode = G_CPL_OPCODE(be32toh(OPCODE_TID(cpl))); #endif KASSERT(opcode == CPL_ABORT_REQ_RSS, ("%s: unexpected opcode 0x%x", __func__, opcode)); KASSERT(m == NULL, ("%s: wasn't expecting payload", __func__)); if (toep->flags & TPF_SYNQE) return (do_abort_req_synqe(iq, rss, m)); KASSERT(toep->tid == tid, ("%s: toep tid mismatch", __func__)); if (negative_advice(cpl->status)) { CTR4(KTR_CXGBE, "%s: negative advice %d for tid %d (0x%x)", __func__, cpl->status, tid, toep->flags); return (0); /* Ignore negative advice */ } inp = toep->inp; CURVNET_SET(toep->vnet); NET_EPOCH_ENTER(et); /* for tcp_close */ INP_WLOCK(inp); tp = intotcpcb(inp); CTR6(KTR_CXGBE, "%s: tid %d (%s), toep_flags 0x%x, inp_flags 0x%x, status %d", __func__, tid, tp ? tcpstates[tp->t_state] : "no tp", toep->flags, inp->inp_flags, cpl->status); /* * If we'd initiated an abort earlier the reply to it is responsible for * cleaning up resources. Otherwise we tear everything down right here * right now. We owe the T4 a CPL_ABORT_RPL no matter what. */ if (toep->flags & TPF_ABORT_SHUTDOWN) { INP_WUNLOCK(inp); goto done; } toep->flags |= TPF_ABORT_SHUTDOWN; if ((inp->inp_flags & INP_DROPPED) == 0) { struct socket *so = inp->inp_socket; if (so != NULL) so_error_set(so, abort_status_to_errno(tp, cpl->status)); tp = tcp_close(tp); if (tp == NULL) INP_WLOCK(inp); /* re-acquire */ } final_cpl_received(toep); done: NET_EPOCH_EXIT(et); CURVNET_RESTORE(); send_abort_rpl(sc, ofld_txq, tid, CPL_ABORT_NO_RST); return (0); } /* * Reply to the CPL_ABORT_REQ (send_reset) */ static int do_abort_rpl(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) { struct adapter *sc = iq->adapter; const struct cpl_abort_rpl_rss *cpl = (const void *)(rss + 1); unsigned int tid = GET_TID(cpl); struct toepcb *toep = lookup_tid(sc, tid); struct inpcb *inp = toep->inp; #ifdef INVARIANTS unsigned int opcode = G_CPL_OPCODE(be32toh(OPCODE_TID(cpl))); #endif KASSERT(opcode == CPL_ABORT_RPL_RSS, ("%s: unexpected opcode 0x%x", __func__, opcode)); KASSERT(m == NULL, ("%s: wasn't expecting payload", __func__)); if (toep->flags & TPF_SYNQE) return (do_abort_rpl_synqe(iq, rss, m)); KASSERT(toep->tid == tid, ("%s: toep tid mismatch", __func__)); CTR5(KTR_CXGBE, "%s: tid %u, toep %p, inp %p, status %d", __func__, tid, toep, inp, cpl->status); KASSERT(toep->flags & TPF_ABORT_SHUTDOWN, ("%s: wasn't expecting abort reply", __func__)); INP_WLOCK(inp); final_cpl_received(toep); return (0); } static int do_rx_data(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) { struct adapter *sc = iq->adapter; const struct cpl_rx_data *cpl = mtod(m, const void *); unsigned int tid = GET_TID(cpl); struct toepcb *toep = lookup_tid(sc, tid); struct inpcb *inp = toep->inp; struct tcpcb *tp; struct socket *so; struct sockbuf *sb; struct epoch_tracker et; int len; uint32_t ddp_placed = 0; if (__predict_false(toep->flags & TPF_SYNQE)) { /* * do_pass_establish must have run before do_rx_data and if this * is still a synqe instead of a toepcb then the connection must * be getting aborted. */ MPASS(toep->flags & TPF_ABORT_SHUTDOWN); CTR4(KTR_CXGBE, "%s: tid %u, synqe %p (0x%x)", __func__, tid, toep, toep->flags); m_freem(m); return (0); } KASSERT(toep->tid == tid, ("%s: toep tid mismatch", __func__)); /* strip off CPL header */ m_adj(m, sizeof(*cpl)); len = m->m_pkthdr.len; INP_WLOCK(inp); if (inp->inp_flags & INP_DROPPED) { CTR4(KTR_CXGBE, "%s: tid %u, rx (%d bytes), inp_flags 0x%x", __func__, tid, len, inp->inp_flags); INP_WUNLOCK(inp); m_freem(m); return (0); } tp = intotcpcb(inp); if (__predict_false(ulp_mode(toep) == ULP_MODE_TLS && toep->flags & TPF_TLS_RECEIVE)) { /* Received "raw" data on a TLS socket. */ CTR3(KTR_CXGBE, "%s: tid %u, raw TLS data (%d bytes)", __func__, tid, len); do_rx_data_tls(cpl, toep, m); return (0); } if (__predict_false(tp->rcv_nxt != be32toh(cpl->seq))) ddp_placed = be32toh(cpl->seq) - tp->rcv_nxt; tp->rcv_nxt += len; if (tp->rcv_wnd < len) { KASSERT(ulp_mode(toep) == ULP_MODE_RDMA, ("%s: negative window size", __func__)); } tp->rcv_wnd -= len; tp->t_rcvtime = ticks; if (ulp_mode(toep) == ULP_MODE_TCPDDP) DDP_LOCK(toep); so = inp_inpcbtosocket(inp); sb = &so->so_rcv; SOCKBUF_LOCK(sb); if (__predict_false(sb->sb_state & SBS_CANTRCVMORE)) { CTR3(KTR_CXGBE, "%s: tid %u, excess rx (%d bytes)", __func__, tid, len); m_freem(m); SOCKBUF_UNLOCK(sb); if (ulp_mode(toep) == ULP_MODE_TCPDDP) DDP_UNLOCK(toep); INP_WUNLOCK(inp); CURVNET_SET(toep->vnet); NET_EPOCH_ENTER(et); INP_WLOCK(inp); tp = tcp_drop(tp, ECONNRESET); if (tp) INP_WUNLOCK(inp); NET_EPOCH_EXIT(et); CURVNET_RESTORE(); return (0); } /* receive buffer autosize */ MPASS(toep->vnet == so->so_vnet); CURVNET_SET(toep->vnet); if (sb->sb_flags & SB_AUTOSIZE && V_tcp_do_autorcvbuf && sb->sb_hiwat < V_tcp_autorcvbuf_max && len > (sbspace(sb) / 8 * 7)) { unsigned int hiwat = sb->sb_hiwat; unsigned int newsize = min(hiwat + sc->tt.autorcvbuf_inc, V_tcp_autorcvbuf_max); if (!sbreserve_locked(so, SO_RCV, newsize, NULL)) sb->sb_flags &= ~SB_AUTOSIZE; } if (ulp_mode(toep) == ULP_MODE_TCPDDP) { int changed = !(toep->ddp.flags & DDP_ON) ^ cpl->ddp_off; if (toep->ddp.waiting_count != 0 || toep->ddp.active_count != 0) CTR3(KTR_CXGBE, "%s: tid %u, non-ddp rx (%d bytes)", __func__, tid, len); if (changed) { if (toep->ddp.flags & DDP_SC_REQ) toep->ddp.flags ^= DDP_ON | DDP_SC_REQ; else if (cpl->ddp_off == 1) { /* Fell out of DDP mode */ toep->ddp.flags &= ~DDP_ON; CTR1(KTR_CXGBE, "%s: fell out of DDP mode", __func__); insert_ddp_data(toep, ddp_placed); } else { /* * Data was received while still * ULP_MODE_NONE, just fall through. */ } } if (toep->ddp.flags & DDP_ON) { /* * CPL_RX_DATA with DDP on can only be an indicate. * Start posting queued AIO requests via DDP. The * payload that arrived in this indicate is appended * to the socket buffer as usual. */ handle_ddp_indicate(toep); } } sbappendstream_locked(sb, m, 0); t4_rcvd_locked(&toep->td->tod, tp); if (ulp_mode(toep) == ULP_MODE_TCPDDP && (toep->ddp.flags & DDP_AIO) != 0 && toep->ddp.waiting_count > 0 && sbavail(sb) != 0) { CTR2(KTR_CXGBE, "%s: tid %u queueing AIO task", __func__, tid); ddp_queue_toep(toep); } if (toep->flags & TPF_TLS_STARTING) tls_received_starting_data(sc, toep, sb, len); sorwakeup_locked(so); SOCKBUF_UNLOCK_ASSERT(sb); if (ulp_mode(toep) == ULP_MODE_TCPDDP) DDP_UNLOCK(toep); INP_WUNLOCK(inp); CURVNET_RESTORE(); return (0); } static int do_fw4_ack(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) { struct adapter *sc = iq->adapter; const struct cpl_fw4_ack *cpl = (const void *)(rss + 1); unsigned int tid = G_CPL_FW4_ACK_FLOWID(be32toh(OPCODE_TID(cpl))); struct toepcb *toep = lookup_tid(sc, tid); struct inpcb *inp; struct tcpcb *tp; struct socket *so; uint8_t credits = cpl->credits; struct ofld_tx_sdesc *txsd; int plen; #ifdef INVARIANTS unsigned int opcode = G_CPL_FW4_ACK_OPCODE(be32toh(OPCODE_TID(cpl))); #endif /* * Very unusual case: we'd sent a flowc + abort_req for a synq entry and * now this comes back carrying the credits for the flowc. */ if (__predict_false(toep->flags & TPF_SYNQE)) { KASSERT(toep->flags & TPF_ABORT_SHUTDOWN, ("%s: credits for a synq entry %p", __func__, toep)); return (0); } inp = toep->inp; KASSERT(opcode == CPL_FW4_ACK, ("%s: unexpected opcode 0x%x", __func__, opcode)); KASSERT(m == NULL, ("%s: wasn't expecting payload", __func__)); KASSERT(toep->tid == tid, ("%s: toep tid mismatch", __func__)); INP_WLOCK(inp); if (__predict_false(toep->flags & TPF_ABORT_SHUTDOWN)) { INP_WUNLOCK(inp); return (0); } KASSERT((inp->inp_flags & INP_DROPPED) == 0, ("%s: inp_flags 0x%x", __func__, inp->inp_flags)); tp = intotcpcb(inp); if (cpl->flags & CPL_FW4_ACK_FLAGS_SEQVAL) { tcp_seq snd_una = be32toh(cpl->snd_una); #ifdef INVARIANTS if (__predict_false(SEQ_LT(snd_una, tp->snd_una))) { log(LOG_ERR, "%s: unexpected seq# %x for TID %u, snd_una %x\n", __func__, snd_una, toep->tid, tp->snd_una); } #endif if (tp->snd_una != snd_una) { tp->snd_una = snd_una; tp->ts_recent_age = tcp_ts_getticks(); } } #ifdef VERBOSE_TRACES CTR3(KTR_CXGBE, "%s: tid %d credits %u", __func__, tid, credits); #endif so = inp->inp_socket; txsd = &toep->txsd[toep->txsd_cidx]; plen = 0; while (credits) { KASSERT(credits >= txsd->tx_credits, ("%s: too many (or partial) credits", __func__)); credits -= txsd->tx_credits; toep->tx_credits += txsd->tx_credits; plen += txsd->plen; txsd++; toep->txsd_avail++; KASSERT(toep->txsd_avail <= toep->txsd_total, ("%s: txsd avail > total", __func__)); if (__predict_false(++toep->txsd_cidx == toep->txsd_total)) { txsd = &toep->txsd[0]; toep->txsd_cidx = 0; } } if (toep->tx_credits == toep->tx_total) { toep->tx_nocompl = 0; toep->plen_nocompl = 0; } if (toep->flags & TPF_TX_SUSPENDED && toep->tx_credits >= toep->tx_total / 4) { #ifdef VERBOSE_TRACES CTR2(KTR_CXGBE, "%s: tid %d calling t4_push_frames", __func__, tid); #endif toep->flags &= ~TPF_TX_SUSPENDED; CURVNET_SET(toep->vnet); t4_push_data(sc, toep, plen); CURVNET_RESTORE(); } else if (plen > 0) { struct sockbuf *sb = &so->so_snd; int sbu; SOCKBUF_LOCK(sb); sbu = sbused(sb); if (ulp_mode(toep) == ULP_MODE_ISCSI) { if (__predict_false(sbu > 0)) { /* * The data transmitted before the * tid's ULP mode changed to ISCSI is * still in so_snd. Incoming credits * should account for so_snd first. */ sbdrop_locked(sb, min(sbu, plen)); plen -= min(sbu, plen); } sowwakeup_locked(so); /* unlocks so_snd */ rqdrop_locked(&toep->ulp_pdu_reclaimq, plen); } else { #ifdef VERBOSE_TRACES CTR3(KTR_CXGBE, "%s: tid %d dropped %d bytes", __func__, tid, plen); #endif sbdrop_locked(sb, plen); if (!TAILQ_EMPTY(&toep->aiotx_jobq)) t4_aiotx_queue_toep(so, toep); sowwakeup_locked(so); /* unlocks so_snd */ } SOCKBUF_UNLOCK_ASSERT(sb); } INP_WUNLOCK(inp); return (0); } void t4_set_tcb_field(struct adapter *sc, struct sge_wrq *wrq, struct toepcb *toep, uint16_t word, uint64_t mask, uint64_t val, int reply, int cookie) { struct wrqe *wr; struct cpl_set_tcb_field *req; struct ofld_tx_sdesc *txsd; MPASS((cookie & ~M_COOKIE) == 0); if (reply) { MPASS(cookie != CPL_COOKIE_RESERVED); } wr = alloc_wrqe(sizeof(*req), wrq); if (wr == NULL) { /* XXX */ panic("%s: allocation failure.", __func__); } req = wrtod(wr); INIT_TP_WR_MIT_CPL(req, CPL_SET_TCB_FIELD, toep->tid); req->reply_ctrl = htobe16(V_QUEUENO(toep->ofld_rxq->iq.abs_id)); if (reply == 0) req->reply_ctrl |= htobe16(F_NO_REPLY); req->word_cookie = htobe16(V_WORD(word) | V_COOKIE(cookie)); req->mask = htobe64(mask); req->val = htobe64(val); if (wrq->eq.type == EQ_OFLD) { txsd = &toep->txsd[toep->txsd_pidx]; txsd->tx_credits = howmany(sizeof(*req), 16); txsd->plen = 0; KASSERT(toep->tx_credits >= txsd->tx_credits && toep->txsd_avail > 0, ("%s: not enough credits (%d)", __func__, toep->tx_credits)); toep->tx_credits -= txsd->tx_credits; if (__predict_false(++toep->txsd_pidx == toep->txsd_total)) toep->txsd_pidx = 0; toep->txsd_avail--; } t4_wrq_tx(sc, wr); } void t4_init_cpl_io_handlers(void) { t4_register_cpl_handler(CPL_PEER_CLOSE, do_peer_close); t4_register_cpl_handler(CPL_CLOSE_CON_RPL, do_close_con_rpl); t4_register_cpl_handler(CPL_ABORT_REQ_RSS, do_abort_req); t4_register_shared_cpl_handler(CPL_ABORT_RPL_RSS, do_abort_rpl, CPL_COOKIE_TOM); t4_register_cpl_handler(CPL_RX_DATA, do_rx_data); t4_register_shared_cpl_handler(CPL_FW4_ACK, do_fw4_ack, CPL_COOKIE_TOM); } void t4_uninit_cpl_io_handlers(void) { t4_register_cpl_handler(CPL_PEER_CLOSE, NULL); t4_register_cpl_handler(CPL_CLOSE_CON_RPL, NULL); t4_register_cpl_handler(CPL_ABORT_REQ_RSS, NULL); t4_register_shared_cpl_handler(CPL_ABORT_RPL_RSS, NULL, CPL_COOKIE_TOM); t4_register_cpl_handler(CPL_RX_DATA, NULL); t4_register_shared_cpl_handler(CPL_FW4_ACK, NULL, CPL_COOKIE_TOM); } /* * Use the 'backend1' field in AIO jobs to hold an error that should * be reported when the job is completed, the 'backend3' field to * store the amount of data sent by the AIO job so far, and the * 'backend4' field to hold a reference count on the job. * * Each unmapped mbuf holds a reference on the job as does the queue * so long as the job is queued. */ #define aio_error backend1 #define aio_sent backend3 #define aio_refs backend4 #ifdef VERBOSE_TRACES static int jobtotid(struct kaiocb *job) { struct socket *so; struct tcpcb *tp; struct toepcb *toep; so = job->fd_file->f_data; tp = sototcpcb(so); toep = tp->t_toe; return (toep->tid); } #endif static void aiotx_free_job(struct kaiocb *job) { long status; int error; if (refcount_release(&job->aio_refs) == 0) return; error = (intptr_t)job->aio_error; status = job->aio_sent; #ifdef VERBOSE_TRACES CTR5(KTR_CXGBE, "%s: tid %d completed %p len %ld, error %d", __func__, jobtotid(job), job, status, error); #endif if (error != 0 && status != 0) error = 0; if (error == ECANCELED) aio_cancel(job); else if (error) aio_complete(job, -1, error); else { job->msgsnd = 1; aio_complete(job, status, 0); } } static void aiotx_free_pgs(struct mbuf *m) { struct kaiocb *job; vm_page_t pg; M_ASSERTEXTPG(m); job = m->m_ext.ext_arg1; #ifdef VERBOSE_TRACES CTR3(KTR_CXGBE, "%s: completed %d bytes for tid %d", __func__, m->m_len, jobtotid(job)); #endif for (int i = 0; i < m->m_epg_npgs; i++) { pg = PHYS_TO_VM_PAGE(m->m_epg_pa[i]); vm_page_unwire(pg, PQ_ACTIVE); } aiotx_free_job(job); } /* * Allocate a chain of unmapped mbufs describing the next 'len' bytes * of an AIO job. */ static struct mbuf * alloc_aiotx_mbuf(struct kaiocb *job, int len) { struct vmspace *vm; vm_page_t pgs[MBUF_PEXT_MAX_PGS]; struct mbuf *m, *top, *last; vm_map_t map; vm_offset_t start; int i, mlen, npages, pgoff; KASSERT(job->aio_sent + len <= job->uaiocb.aio_nbytes, ("%s(%p, %d): request to send beyond end of buffer", __func__, job, len)); /* * The AIO subsystem will cancel and drain all requests before * permitting a process to exit or exec, so p_vmspace should * be stable here. */ vm = job->userproc->p_vmspace; map = &vm->vm_map; start = (uintptr_t)job->uaiocb.aio_buf + job->aio_sent; pgoff = start & PAGE_MASK; top = NULL; last = NULL; while (len > 0) { mlen = imin(len, MBUF_PEXT_MAX_PGS * PAGE_SIZE - pgoff); KASSERT(mlen == len || ((start + mlen) & PAGE_MASK) == 0, ("%s: next start (%#jx + %#x) is not page aligned", __func__, (uintmax_t)start, mlen)); npages = vm_fault_quick_hold_pages(map, start, mlen, VM_PROT_WRITE, pgs, nitems(pgs)); if (npages < 0) break; m = mb_alloc_ext_pgs(M_WAITOK, aiotx_free_pgs); - if (m == NULL) { - vm_page_unhold_pages(pgs, npages); - break; - } - m->m_epg_1st_off = pgoff; m->m_epg_npgs = npages; if (npages == 1) { KASSERT(mlen + pgoff <= PAGE_SIZE, ("%s: single page is too large (off %d len %d)", __func__, pgoff, mlen)); m->m_epg_last_len = mlen; } else { m->m_epg_last_len = mlen - (PAGE_SIZE - pgoff) - (npages - 2) * PAGE_SIZE; } for (i = 0; i < npages; i++) m->m_epg_pa[i] = VM_PAGE_TO_PHYS(pgs[i]); m->m_len = mlen; m->m_ext.ext_size = npages * PAGE_SIZE; m->m_ext.ext_arg1 = job; refcount_acquire(&job->aio_refs); #ifdef VERBOSE_TRACES CTR5(KTR_CXGBE, "%s: tid %d, new mbuf %p for job %p, npages %d", __func__, jobtotid(job), m, job, npages); #endif if (top == NULL) top = m; else last->m_next = m; last = m; len -= mlen; start += mlen; pgoff = 0; } return (top); } static void t4_aiotx_process_job(struct toepcb *toep, struct socket *so, struct kaiocb *job) { struct sockbuf *sb; struct inpcb *inp; struct tcpcb *tp; struct mbuf *m; u_int sent; int error, len; bool moretocome, sendmore; sb = &so->so_snd; SOCKBUF_UNLOCK(sb); m = NULL; #ifdef MAC error = mac_socket_check_send(job->fd_file->f_cred, so); if (error != 0) goto out; #endif /* Inline sosend_generic(). */ error = SOCK_IO_SEND_LOCK(so, SBL_WAIT); MPASS(error == 0); sendanother: SOCKBUF_LOCK(sb); if (so->so_snd.sb_state & SBS_CANTSENDMORE) { SOCKBUF_UNLOCK(sb); SOCK_IO_SEND_UNLOCK(so); if ((so->so_options & SO_NOSIGPIPE) == 0) { PROC_LOCK(job->userproc); kern_psignal(job->userproc, SIGPIPE); PROC_UNLOCK(job->userproc); } error = EPIPE; goto out; } if (so->so_error) { error = so->so_error; so->so_error = 0; SOCKBUF_UNLOCK(sb); SOCK_IO_SEND_UNLOCK(so); goto out; } if ((so->so_state & SS_ISCONNECTED) == 0) { SOCKBUF_UNLOCK(sb); SOCK_IO_SEND_UNLOCK(so); error = ENOTCONN; goto out; } if (sbspace(sb) < sb->sb_lowat) { MPASS(job->aio_sent == 0 || !(so->so_state & SS_NBIO)); /* * Don't block if there is too little room in the socket * buffer. Instead, requeue the request. */ if (!aio_set_cancel_function(job, t4_aiotx_cancel)) { SOCKBUF_UNLOCK(sb); SOCK_IO_SEND_UNLOCK(so); error = ECANCELED; goto out; } TAILQ_INSERT_HEAD(&toep->aiotx_jobq, job, list); SOCKBUF_UNLOCK(sb); SOCK_IO_SEND_UNLOCK(so); goto out; } /* * Write as much data as the socket permits, but no more than a * a single sndbuf at a time. */ len = sbspace(sb); if (len > job->uaiocb.aio_nbytes - job->aio_sent) { len = job->uaiocb.aio_nbytes - job->aio_sent; moretocome = false; } else moretocome = true; if (len > toep->params.sndbuf) { len = toep->params.sndbuf; sendmore = true; } else sendmore = false; if (!TAILQ_EMPTY(&toep->aiotx_jobq)) moretocome = true; SOCKBUF_UNLOCK(sb); MPASS(len != 0); m = alloc_aiotx_mbuf(job, len); if (m == NULL) { SOCK_IO_SEND_UNLOCK(so); error = EFAULT; goto out; } /* Inlined tcp_usr_send(). */ inp = toep->inp; INP_WLOCK(inp); if (inp->inp_flags & INP_DROPPED) { INP_WUNLOCK(inp); SOCK_IO_SEND_UNLOCK(so); error = ECONNRESET; goto out; } sent = m_length(m, NULL); job->aio_sent += sent; counter_u64_add(toep->ofld_txq->tx_aio_octets, sent); sbappendstream(sb, m, 0); m = NULL; if (!(inp->inp_flags & INP_DROPPED)) { tp = intotcpcb(inp); if (moretocome) tp->t_flags |= TF_MORETOCOME; error = tcp_output(tp); if (error < 0) { INP_UNLOCK_ASSERT(inp); SOCK_IO_SEND_UNLOCK(so); error = -error; goto out; } if (moretocome) tp->t_flags &= ~TF_MORETOCOME; } INP_WUNLOCK(inp); if (sendmore) goto sendanother; SOCK_IO_SEND_UNLOCK(so); if (error) goto out; /* * If this is a blocking socket and the request has not been * fully completed, requeue it until the socket is ready * again. */ if (job->aio_sent < job->uaiocb.aio_nbytes && !(so->so_state & SS_NBIO)) { SOCKBUF_LOCK(sb); if (!aio_set_cancel_function(job, t4_aiotx_cancel)) { SOCKBUF_UNLOCK(sb); error = ECANCELED; goto out; } TAILQ_INSERT_HEAD(&toep->aiotx_jobq, job, list); return; } /* * If the request will not be requeued, drop the queue's * reference to the job. Any mbufs in flight should still * hold a reference, but this drops the reference that the * queue owns while it is waiting to queue mbufs to the * socket. */ aiotx_free_job(job); counter_u64_add(toep->ofld_txq->tx_aio_jobs, 1); out: if (error) { job->aio_error = (void *)(intptr_t)error; aiotx_free_job(job); } m_freem(m); SOCKBUF_LOCK(sb); } static void t4_aiotx_task(void *context, int pending) { struct toepcb *toep = context; struct socket *so; struct kaiocb *job; struct epoch_tracker et; so = toep->aiotx_so; CURVNET_SET(toep->vnet); NET_EPOCH_ENTER(et); SOCKBUF_LOCK(&so->so_snd); while (!TAILQ_EMPTY(&toep->aiotx_jobq) && sowriteable(so)) { job = TAILQ_FIRST(&toep->aiotx_jobq); TAILQ_REMOVE(&toep->aiotx_jobq, job, list); if (!aio_clear_cancel_function(job)) continue; t4_aiotx_process_job(toep, so, job); } toep->aiotx_so = NULL; SOCKBUF_UNLOCK(&so->so_snd); NET_EPOCH_EXIT(et); free_toepcb(toep); sorele(so); CURVNET_RESTORE(); } static void t4_aiotx_queue_toep(struct socket *so, struct toepcb *toep) { SOCKBUF_LOCK_ASSERT(&toep->inp->inp_socket->so_snd); #ifdef VERBOSE_TRACES CTR3(KTR_CXGBE, "%s: queueing aiotx task for tid %d, active = %s", __func__, toep->tid, toep->aiotx_so != NULL ? "true" : "false"); #endif if (toep->aiotx_so != NULL) return; soref(so); toep->aiotx_so = so; hold_toepcb(toep); soaio_enqueue(&toep->aiotx_task); } static void t4_aiotx_cancel(struct kaiocb *job) { struct socket *so; struct sockbuf *sb; struct tcpcb *tp; struct toepcb *toep; so = job->fd_file->f_data; tp = sototcpcb(so); toep = tp->t_toe; MPASS(job->uaiocb.aio_lio_opcode == LIO_WRITE); sb = &so->so_snd; SOCKBUF_LOCK(sb); if (!aio_cancel_cleared(job)) TAILQ_REMOVE(&toep->aiotx_jobq, job, list); SOCKBUF_UNLOCK(sb); job->aio_error = (void *)(intptr_t)ECANCELED; aiotx_free_job(job); } int t4_aio_queue_aiotx(struct socket *so, struct kaiocb *job) { struct tcpcb *tp = sototcpcb(so); struct toepcb *toep = tp->t_toe; struct adapter *sc = td_adapter(toep->td); /* This only handles writes. */ if (job->uaiocb.aio_lio_opcode != LIO_WRITE) return (EOPNOTSUPP); if (!sc->tt.tx_zcopy) return (EOPNOTSUPP); if (tls_tx_key(toep)) return (EOPNOTSUPP); SOCKBUF_LOCK(&so->so_snd); #ifdef VERBOSE_TRACES CTR3(KTR_CXGBE, "%s: queueing %p for tid %u", __func__, job, toep->tid); #endif if (!aio_set_cancel_function(job, t4_aiotx_cancel)) panic("new job was cancelled"); refcount_init(&job->aio_refs, 1); TAILQ_INSERT_TAIL(&toep->aiotx_jobq, job, list); if (sowriteable(so)) t4_aiotx_queue_toep(so, toep); SOCKBUF_UNLOCK(&so->so_snd); return (0); } void aiotx_init_toep(struct toepcb *toep) { TAILQ_INIT(&toep->aiotx_jobq); TASK_INIT(&toep->aiotx_task, 0, t4_aiotx_task, toep); } #endif