diff --git a/sys/net80211/ieee80211.c b/sys/net80211/ieee80211.c index e4de0b439ac0..74fdaa033952 100644 --- a/sys/net80211/ieee80211.c +++ b/sys/net80211/ieee80211.c @@ -1,2789 +1,2776 @@ /*- * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 2001 Atsushi Onoe * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include /* * IEEE 802.11 generic handler */ #include "opt_wlan.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef IEEE80211_SUPPORT_SUPERG #include #endif #include #include #include const char *ieee80211_phymode_name[IEEE80211_MODE_MAX] = { [IEEE80211_MODE_AUTO] = "auto", [IEEE80211_MODE_11A] = "11a", [IEEE80211_MODE_11B] = "11b", [IEEE80211_MODE_11G] = "11g", [IEEE80211_MODE_FH] = "FH", [IEEE80211_MODE_TURBO_A] = "turboA", [IEEE80211_MODE_TURBO_G] = "turboG", [IEEE80211_MODE_STURBO_A] = "sturboA", [IEEE80211_MODE_HALF] = "half", [IEEE80211_MODE_QUARTER] = "quarter", [IEEE80211_MODE_11NA] = "11na", [IEEE80211_MODE_11NG] = "11ng", [IEEE80211_MODE_VHT_2GHZ] = "11acg", [IEEE80211_MODE_VHT_5GHZ] = "11ac", }; /* map ieee80211_opmode to the corresponding capability bit */ const int ieee80211_opcap[IEEE80211_OPMODE_MAX] = { [IEEE80211_M_IBSS] = IEEE80211_C_IBSS, [IEEE80211_M_WDS] = IEEE80211_C_WDS, [IEEE80211_M_STA] = IEEE80211_C_STA, [IEEE80211_M_AHDEMO] = IEEE80211_C_AHDEMO, [IEEE80211_M_HOSTAP] = IEEE80211_C_HOSTAP, [IEEE80211_M_MONITOR] = IEEE80211_C_MONITOR, #ifdef IEEE80211_SUPPORT_MESH [IEEE80211_M_MBSS] = IEEE80211_C_MBSS, #endif }; const uint8_t ieee80211broadcastaddr[IEEE80211_ADDR_LEN] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; static void ieee80211_syncflag_locked(struct ieee80211com *ic, int flag); static void ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag); static void ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag); static void ieee80211_syncflag_vht_locked(struct ieee80211com *ic, int flag); static int ieee80211_media_setup(struct ieee80211com *ic, struct ifmedia *media, int caps, int addsta, ifm_change_cb_t media_change, ifm_stat_cb_t media_stat); static int media_status(enum ieee80211_opmode, const struct ieee80211_channel *); static uint64_t ieee80211_get_counter(struct ifnet *, ift_counter); MALLOC_DEFINE(M_80211_VAP, "80211vap", "802.11 vap state"); /* * Default supported rates for 802.11 operation (in IEEE .5Mb units). */ #define B(r) ((r) | IEEE80211_RATE_BASIC) static const struct ieee80211_rateset ieee80211_rateset_11a = { 8, { B(12), 18, B(24), 36, B(48), 72, 96, 108 } }; static const struct ieee80211_rateset ieee80211_rateset_half = { 8, { B(6), 9, B(12), 18, B(24), 36, 48, 54 } }; static const struct ieee80211_rateset ieee80211_rateset_quarter = { 8, { B(3), 4, B(6), 9, B(12), 18, 24, 27 } }; static const struct ieee80211_rateset ieee80211_rateset_11b = { 4, { B(2), B(4), B(11), B(22) } }; /* NB: OFDM rates are handled specially based on mode */ static const struct ieee80211_rateset ieee80211_rateset_11g = { 12, { B(2), B(4), B(11), B(22), 12, 18, 24, 36, 48, 72, 96, 108 } }; #undef B static int set_vht_extchan(struct ieee80211_channel *c); /* * Fill in 802.11 available channel set, mark * all available channels as active, and pick * a default channel if not already specified. */ void ieee80211_chan_init(struct ieee80211com *ic) { #define DEFAULTRATES(m, def) do { \ if (ic->ic_sup_rates[m].rs_nrates == 0) \ ic->ic_sup_rates[m] = def; \ } while (0) struct ieee80211_channel *c; int i; KASSERT(0 < ic->ic_nchans && ic->ic_nchans <= IEEE80211_CHAN_MAX, ("invalid number of channels specified: %u", ic->ic_nchans)); memset(ic->ic_chan_avail, 0, sizeof(ic->ic_chan_avail)); memset(ic->ic_modecaps, 0, sizeof(ic->ic_modecaps)); setbit(ic->ic_modecaps, IEEE80211_MODE_AUTO); for (i = 0; i < ic->ic_nchans; i++) { c = &ic->ic_channels[i]; KASSERT(c->ic_flags != 0, ("channel with no flags")); /* * Help drivers that work only with frequencies by filling * in IEEE channel #'s if not already calculated. Note this * mimics similar work done in ieee80211_setregdomain when * changing regulatory state. */ if (c->ic_ieee == 0) c->ic_ieee = ieee80211_mhz2ieee(c->ic_freq,c->ic_flags); /* * Setup the HT40/VHT40 upper/lower bits. * The VHT80/... math is done elsewhere. */ if (IEEE80211_IS_CHAN_HT40(c) && c->ic_extieee == 0) c->ic_extieee = ieee80211_mhz2ieee(c->ic_freq + (IEEE80211_IS_CHAN_HT40U(c) ? 20 : -20), c->ic_flags); /* Update VHT math */ /* * XXX VHT again, note that this assumes VHT80/... channels * are legit already. */ set_vht_extchan(c); /* default max tx power to max regulatory */ if (c->ic_maxpower == 0) c->ic_maxpower = 2*c->ic_maxregpower; setbit(ic->ic_chan_avail, c->ic_ieee); /* * Identify mode capabilities. */ if (IEEE80211_IS_CHAN_A(c)) setbit(ic->ic_modecaps, IEEE80211_MODE_11A); if (IEEE80211_IS_CHAN_B(c)) setbit(ic->ic_modecaps, IEEE80211_MODE_11B); if (IEEE80211_IS_CHAN_ANYG(c)) setbit(ic->ic_modecaps, IEEE80211_MODE_11G); if (IEEE80211_IS_CHAN_FHSS(c)) setbit(ic->ic_modecaps, IEEE80211_MODE_FH); if (IEEE80211_IS_CHAN_108A(c)) setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_A); if (IEEE80211_IS_CHAN_108G(c)) setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_G); if (IEEE80211_IS_CHAN_ST(c)) setbit(ic->ic_modecaps, IEEE80211_MODE_STURBO_A); if (IEEE80211_IS_CHAN_HALF(c)) setbit(ic->ic_modecaps, IEEE80211_MODE_HALF); if (IEEE80211_IS_CHAN_QUARTER(c)) setbit(ic->ic_modecaps, IEEE80211_MODE_QUARTER); if (IEEE80211_IS_CHAN_HTA(c)) setbit(ic->ic_modecaps, IEEE80211_MODE_11NA); if (IEEE80211_IS_CHAN_HTG(c)) setbit(ic->ic_modecaps, IEEE80211_MODE_11NG); if (IEEE80211_IS_CHAN_VHTA(c)) setbit(ic->ic_modecaps, IEEE80211_MODE_VHT_5GHZ); if (IEEE80211_IS_CHAN_VHTG(c)) setbit(ic->ic_modecaps, IEEE80211_MODE_VHT_2GHZ); } /* initialize candidate channels to all available */ memcpy(ic->ic_chan_active, ic->ic_chan_avail, sizeof(ic->ic_chan_avail)); /* sort channel table to allow lookup optimizations */ ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans); /* invalidate any previous state */ ic->ic_bsschan = IEEE80211_CHAN_ANYC; ic->ic_prevchan = NULL; ic->ic_csa_newchan = NULL; /* arbitrarily pick the first channel */ ic->ic_curchan = &ic->ic_channels[0]; ic->ic_rt = ieee80211_get_ratetable(ic->ic_curchan); /* fillin well-known rate sets if driver has not specified */ DEFAULTRATES(IEEE80211_MODE_11B, ieee80211_rateset_11b); DEFAULTRATES(IEEE80211_MODE_11G, ieee80211_rateset_11g); DEFAULTRATES(IEEE80211_MODE_11A, ieee80211_rateset_11a); DEFAULTRATES(IEEE80211_MODE_TURBO_A, ieee80211_rateset_11a); DEFAULTRATES(IEEE80211_MODE_TURBO_G, ieee80211_rateset_11g); DEFAULTRATES(IEEE80211_MODE_STURBO_A, ieee80211_rateset_11a); DEFAULTRATES(IEEE80211_MODE_HALF, ieee80211_rateset_half); DEFAULTRATES(IEEE80211_MODE_QUARTER, ieee80211_rateset_quarter); DEFAULTRATES(IEEE80211_MODE_11NA, ieee80211_rateset_11a); DEFAULTRATES(IEEE80211_MODE_11NG, ieee80211_rateset_11g); DEFAULTRATES(IEEE80211_MODE_VHT_2GHZ, ieee80211_rateset_11g); DEFAULTRATES(IEEE80211_MODE_VHT_5GHZ, ieee80211_rateset_11a); /* * Setup required information to fill the mcsset field, if driver did * not. Assume a 2T2R setup for historic reasons. */ if (ic->ic_rxstream == 0) ic->ic_rxstream = 2; if (ic->ic_txstream == 0) ic->ic_txstream = 2; ieee80211_init_suphtrates(ic); /* * Set auto mode to reset active channel state and any desired channel. */ (void) ieee80211_setmode(ic, IEEE80211_MODE_AUTO); #undef DEFAULTRATES } static void null_update_mcast(struct ieee80211com *ic) { ic_printf(ic, "need multicast update callback\n"); } static void null_update_promisc(struct ieee80211com *ic) { ic_printf(ic, "need promiscuous mode update callback\n"); } static void null_update_chw(struct ieee80211com *ic) { ic_printf(ic, "%s: need callback\n", __func__); } -int -ic_printf(struct ieee80211com *ic, const char * fmt, ...) -{ - va_list ap; - int retval; - - retval = printf("%s: ", ic->ic_name); - va_start(ap, fmt); - retval += vprintf(fmt, ap); - va_end(ap); - return (retval); -} - static LIST_HEAD(, ieee80211com) ic_head = LIST_HEAD_INITIALIZER(ic_head); static struct mtx ic_list_mtx; MTX_SYSINIT(ic_list, &ic_list_mtx, "ieee80211com list", MTX_DEF); static int sysctl_ieee80211coms(SYSCTL_HANDLER_ARGS) { struct ieee80211com *ic; struct sbuf sb; char *sp; int error; error = sysctl_wire_old_buffer(req, 0); if (error) return (error); sbuf_new_for_sysctl(&sb, NULL, 8, req); sbuf_clear_flags(&sb, SBUF_INCLUDENUL); sp = ""; mtx_lock(&ic_list_mtx); LIST_FOREACH(ic, &ic_head, ic_next) { sbuf_printf(&sb, "%s%s", sp, ic->ic_name); sp = " "; } mtx_unlock(&ic_list_mtx); error = sbuf_finish(&sb); sbuf_delete(&sb); return (error); } SYSCTL_PROC(_net_wlan, OID_AUTO, devices, CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0, sysctl_ieee80211coms, "A", "names of available 802.11 devices"); /* * Attach/setup the common net80211 state. Called by * the driver on attach to prior to creating any vap's. */ void ieee80211_ifattach(struct ieee80211com *ic) { IEEE80211_LOCK_INIT(ic, ic->ic_name); IEEE80211_TX_LOCK_INIT(ic, ic->ic_name); TAILQ_INIT(&ic->ic_vaps); /* Create a taskqueue for all state changes */ ic->ic_tq = taskqueue_create("ic_taskq", IEEE80211_M_WAITOK | IEEE80211_M_ZERO, taskqueue_thread_enqueue, &ic->ic_tq); taskqueue_start_threads(&ic->ic_tq, 1, PI_NET, "%s net80211 taskq", ic->ic_name); ic->ic_ierrors = counter_u64_alloc(IEEE80211_M_WAITOK); ic->ic_oerrors = counter_u64_alloc(IEEE80211_M_WAITOK); /* * Fill in 802.11 available channel set, mark all * available channels as active, and pick a default * channel if not already specified. */ ieee80211_chan_init(ic); ic->ic_update_mcast = null_update_mcast; ic->ic_update_promisc = null_update_promisc; ic->ic_update_chw = null_update_chw; ic->ic_hash_key = arc4random(); ic->ic_bintval = IEEE80211_BINTVAL_DEFAULT; ic->ic_lintval = ic->ic_bintval; ic->ic_txpowlimit = IEEE80211_TXPOWER_MAX; ieee80211_crypto_attach(ic); ieee80211_node_attach(ic); ieee80211_power_attach(ic); ieee80211_proto_attach(ic); #ifdef IEEE80211_SUPPORT_SUPERG ieee80211_superg_attach(ic); #endif ieee80211_ht_attach(ic); ieee80211_vht_attach(ic); ieee80211_scan_attach(ic); ieee80211_regdomain_attach(ic); ieee80211_dfs_attach(ic); ieee80211_sysctl_attach(ic); mtx_lock(&ic_list_mtx); LIST_INSERT_HEAD(&ic_head, ic, ic_next); mtx_unlock(&ic_list_mtx); } /* * Detach net80211 state on device detach. Tear down * all vap's and reclaim all common state prior to the * device state going away. Note we may call back into * driver; it must be prepared for this. */ void ieee80211_ifdetach(struct ieee80211com *ic) { struct ieee80211vap *vap; /* * We use this as an indicator that ifattach never had a chance to be * called, e.g. early driver attach failed and ifdetach was called * during subsequent detach. Never fear, for we have nothing to do * here. */ if (ic->ic_tq == NULL) return; mtx_lock(&ic_list_mtx); LIST_REMOVE(ic, ic_next); mtx_unlock(&ic_list_mtx); taskqueue_drain(taskqueue_thread, &ic->ic_restart_task); /* * The VAP is responsible for setting and clearing * the VIMAGE context. */ while ((vap = TAILQ_FIRST(&ic->ic_vaps)) != NULL) { ieee80211_com_vdetach(vap); ieee80211_vap_destroy(vap); } ieee80211_waitfor_parent(ic); ieee80211_sysctl_detach(ic); ieee80211_dfs_detach(ic); ieee80211_regdomain_detach(ic); ieee80211_scan_detach(ic); #ifdef IEEE80211_SUPPORT_SUPERG ieee80211_superg_detach(ic); #endif ieee80211_vht_detach(ic); ieee80211_ht_detach(ic); /* NB: must be called before ieee80211_node_detach */ ieee80211_proto_detach(ic); ieee80211_crypto_detach(ic); ieee80211_power_detach(ic); ieee80211_node_detach(ic); counter_u64_free(ic->ic_ierrors); counter_u64_free(ic->ic_oerrors); taskqueue_free(ic->ic_tq); IEEE80211_TX_LOCK_DESTROY(ic); IEEE80211_LOCK_DESTROY(ic); } /* * Called by drivers during attach to set the supported * cipher set for software encryption. */ void ieee80211_set_software_ciphers(struct ieee80211com *ic, uint32_t cipher_suite) { ieee80211_crypto_set_supported_software_ciphers(ic, cipher_suite); } /* * Called by drivers during attach to set the supported * cipher set for hardware encryption. */ void ieee80211_set_hardware_ciphers(struct ieee80211com *ic, uint32_t cipher_suite) { ieee80211_crypto_set_supported_hardware_ciphers(ic, cipher_suite); } /* * Called by drivers during attach to set the supported * key management suites by the driver/hardware. */ void ieee80211_set_driver_keymgmt_suites(struct ieee80211com *ic, uint32_t keymgmt_set) { ieee80211_crypto_set_supported_driver_keymgmt(ic, keymgmt_set); } struct ieee80211com * ieee80211_find_com(const char *name) { struct ieee80211com *ic; mtx_lock(&ic_list_mtx); LIST_FOREACH(ic, &ic_head, ic_next) if (strcmp(ic->ic_name, name) == 0) break; mtx_unlock(&ic_list_mtx); return (ic); } void ieee80211_iterate_coms(ieee80211_com_iter_func *f, void *arg) { struct ieee80211com *ic; mtx_lock(&ic_list_mtx); LIST_FOREACH(ic, &ic_head, ic_next) (*f)(arg, ic); mtx_unlock(&ic_list_mtx); } /* * Default reset method for use with the ioctl support. This * method is invoked after any state change in the 802.11 * layer that should be propagated to the hardware but not * require re-initialization of the 802.11 state machine (e.g * rescanning for an ap). We always return ENETRESET which * should cause the driver to re-initialize the device. Drivers * can override this method to implement more optimized support. */ static int default_reset(struct ieee80211vap *vap, u_long cmd) { return ENETRESET; } /* * Default for updating the VAP default TX key index. * * Drivers that support TX offload as well as hardware encryption offload * may need to be informed of key index changes separate from the key * update. */ static void default_update_deftxkey(struct ieee80211vap *vap, ieee80211_keyix kid) { /* XXX assert validity */ /* XXX assert we're in a key update block */ vap->iv_def_txkey = kid; } /* * Add underlying device errors to vap errors. */ static uint64_t ieee80211_get_counter(struct ifnet *ifp, ift_counter cnt) { struct ieee80211vap *vap = ifp->if_softc; struct ieee80211com *ic = vap->iv_ic; uint64_t rv; rv = if_get_counter_default(ifp, cnt); switch (cnt) { case IFCOUNTER_OERRORS: rv += counter_u64_fetch(ic->ic_oerrors); break; case IFCOUNTER_IERRORS: rv += counter_u64_fetch(ic->ic_ierrors); break; default: break; } return (rv); } /* * Prepare a vap for use. Drivers use this call to * setup net80211 state in new vap's prior attaching * them with ieee80211_vap_attach (below). */ int ieee80211_vap_setup(struct ieee80211com *ic, struct ieee80211vap *vap, const char name[IFNAMSIZ], int unit, enum ieee80211_opmode opmode, int flags, const uint8_t bssid[IEEE80211_ADDR_LEN]) { struct ifnet *ifp; ifp = if_alloc(IFT_ETHER); if_initname(ifp, name, unit); ifp->if_softc = vap; /* back pointer */ if_setflags(ifp, IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST); ifp->if_transmit = ieee80211_vap_transmit; ifp->if_qflush = ieee80211_vap_qflush; ifp->if_ioctl = ieee80211_ioctl; ifp->if_init = ieee80211_init; ifp->if_get_counter = ieee80211_get_counter; vap->iv_ifp = ifp; vap->iv_ic = ic; vap->iv_flags = ic->ic_flags; /* propagate common flags */ vap->iv_flags_ext = ic->ic_flags_ext; vap->iv_flags_ven = ic->ic_flags_ven; vap->iv_caps = ic->ic_caps &~ IEEE80211_C_OPMODE; /* 11n capabilities - XXX methodize */ vap->iv_htcaps = ic->ic_htcaps; vap->iv_htextcaps = ic->ic_htextcaps; /* 11ac capabilities - XXX methodize */ vap->iv_vht_cap.vht_cap_info = ic->ic_vht_cap.vht_cap_info; vap->iv_vhtextcaps = ic->ic_vhtextcaps; vap->iv_opmode = opmode; vap->iv_caps |= ieee80211_opcap[opmode]; IEEE80211_ADDR_COPY(vap->iv_myaddr, ic->ic_macaddr); switch (opmode) { case IEEE80211_M_WDS: /* * WDS links must specify the bssid of the far end. * For legacy operation this is a static relationship. * For non-legacy operation the station must associate * and be authorized to pass traffic. Plumbing the * vap to the proper node happens when the vap * transitions to RUN state. */ IEEE80211_ADDR_COPY(vap->iv_des_bssid, bssid); vap->iv_flags |= IEEE80211_F_DESBSSID; if (flags & IEEE80211_CLONE_WDSLEGACY) vap->iv_flags_ext |= IEEE80211_FEXT_WDSLEGACY; break; #ifdef IEEE80211_SUPPORT_TDMA case IEEE80211_M_AHDEMO: if (flags & IEEE80211_CLONE_TDMA) { /* NB: checked before clone operation allowed */ KASSERT(ic->ic_caps & IEEE80211_C_TDMA, ("not TDMA capable, ic_caps 0x%x", ic->ic_caps)); /* * Propagate TDMA capability to mark vap; this * cannot be removed and is used to distinguish * regular ahdemo operation from ahdemo+tdma. */ vap->iv_caps |= IEEE80211_C_TDMA; } break; #endif default: break; } /* auto-enable s/w beacon miss support */ if (flags & IEEE80211_CLONE_NOBEACONS) vap->iv_flags_ext |= IEEE80211_FEXT_SWBMISS; /* auto-generated or user supplied MAC address */ if (flags & (IEEE80211_CLONE_BSSID|IEEE80211_CLONE_MACADDR)) vap->iv_flags_ext |= IEEE80211_FEXT_UNIQMAC; /* * Enable various functionality by default if we're * capable; the driver can override us if it knows better. */ if (vap->iv_caps & IEEE80211_C_WME) vap->iv_flags |= IEEE80211_F_WME; if (vap->iv_caps & IEEE80211_C_BURST) vap->iv_flags |= IEEE80211_F_BURST; /* NB: bg scanning only makes sense for station mode right now */ if (vap->iv_opmode == IEEE80211_M_STA && (vap->iv_caps & IEEE80211_C_BGSCAN)) vap->iv_flags |= IEEE80211_F_BGSCAN; vap->iv_flags |= IEEE80211_F_DOTH; /* XXX no cap, just ena */ /* NB: DFS support only makes sense for ap mode right now */ if (vap->iv_opmode == IEEE80211_M_HOSTAP && (vap->iv_caps & IEEE80211_C_DFS)) vap->iv_flags_ext |= IEEE80211_FEXT_DFS; /* NB: only flip on U-APSD for hostap/sta for now */ if ((vap->iv_opmode == IEEE80211_M_STA) || (vap->iv_opmode == IEEE80211_M_HOSTAP)) { if (vap->iv_caps & IEEE80211_C_UAPSD) vap->iv_flags_ext |= IEEE80211_FEXT_UAPSD; } vap->iv_des_chan = IEEE80211_CHAN_ANYC; /* any channel is ok */ vap->iv_bmissthreshold = IEEE80211_HWBMISS_DEFAULT; vap->iv_dtim_period = IEEE80211_DTIM_DEFAULT; /* * Install a default reset method for the ioctl support; * the driver can override this. */ vap->iv_reset = default_reset; /* * Install a default crypto key update method, the driver * can override this. */ vap->iv_update_deftxkey = default_update_deftxkey; ieee80211_sysctl_vattach(vap); ieee80211_crypto_vattach(vap); ieee80211_node_vattach(vap); ieee80211_power_vattach(vap); ieee80211_proto_vattach(vap); #ifdef IEEE80211_SUPPORT_SUPERG ieee80211_superg_vattach(vap); #endif ieee80211_ht_vattach(vap); ieee80211_vht_vattach(vap); ieee80211_scan_vattach(vap); ieee80211_regdomain_vattach(vap); ieee80211_radiotap_vattach(vap); ieee80211_vap_reset_erp(vap); ieee80211_ratectl_set(vap, IEEE80211_RATECTL_NONE); return 0; } /* * Activate a vap. State should have been prepared with a * call to ieee80211_vap_setup and by the driver. On return * from this call the vap is ready for use. */ int ieee80211_vap_attach(struct ieee80211vap *vap, ifm_change_cb_t media_change, ifm_stat_cb_t media_stat, const uint8_t macaddr[IEEE80211_ADDR_LEN]) { struct ifnet *ifp = vap->iv_ifp; struct ieee80211com *ic = vap->iv_ic; struct ifmediareq imr; int maxrate; IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: %s parent %s flags 0x%x flags_ext 0x%x\n", __func__, ieee80211_opmode_name[vap->iv_opmode], ic->ic_name, vap->iv_flags, vap->iv_flags_ext); /* * Do late attach work that cannot happen until after * the driver has had a chance to override defaults. */ ieee80211_node_latevattach(vap); ieee80211_power_latevattach(vap); maxrate = ieee80211_media_setup(ic, &vap->iv_media, vap->iv_caps, vap->iv_opmode == IEEE80211_M_STA, media_change, media_stat); ieee80211_media_status(ifp, &imr); /* NB: strip explicit mode; we're actually in autoselect */ ifmedia_set(&vap->iv_media, imr.ifm_active &~ (IFM_MMASK | IFM_IEEE80211_TURBO)); if (maxrate) ifp->if_baudrate = IF_Mbps(maxrate); ether_ifattach(ifp, macaddr); /* Do initial MAC address sync */ ieee80211_vap_copy_mac_address(vap); /* hook output method setup by ether_ifattach */ vap->iv_output = ifp->if_output; ifp->if_output = ieee80211_output; /* NB: if_mtu set by ether_ifattach to ETHERMTU */ IEEE80211_LOCK(ic); TAILQ_INSERT_TAIL(&ic->ic_vaps, vap, iv_next); ieee80211_syncflag_locked(ic, IEEE80211_F_WME); #ifdef IEEE80211_SUPPORT_SUPERG ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP); #endif ieee80211_syncflag_locked(ic, IEEE80211_F_PCF); ieee80211_syncflag_locked(ic, IEEE80211_F_BURST); ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT); ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40); ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_VHT); ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT40); ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80); ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT160); ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80P80); ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_STBC_TX); ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_STBC_RX); IEEE80211_UNLOCK(ic); return 1; } /* * Tear down vap state and reclaim the ifnet. * The driver is assumed to have prepared for * this; e.g. by turning off interrupts for the * underlying device. */ void ieee80211_vap_detach(struct ieee80211vap *vap) { struct ieee80211com *ic = vap->iv_ic; struct ifnet *ifp = vap->iv_ifp; int i; CURVNET_SET(ifp->if_vnet); IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: %s parent %s\n", __func__, ieee80211_opmode_name[vap->iv_opmode], ic->ic_name); /* NB: bpfdetach is called by ether_ifdetach and claims all taps */ ether_ifdetach(ifp); ieee80211_stop(vap); /* * Flush any deferred vap tasks. */ for (i = 0; i < NET80211_IV_NSTATE_NUM; i++) ieee80211_draintask(ic, &vap->iv_nstate_task[i]); ieee80211_draintask(ic, &vap->iv_swbmiss_task); ieee80211_draintask(ic, &vap->iv_wme_task); ieee80211_draintask(ic, &ic->ic_parent_task); /* XXX band-aid until ifnet handles this for us */ taskqueue_drain(taskqueue_swi, &ifp->if_linktask); IEEE80211_LOCK(ic); KASSERT(vap->iv_state == IEEE80211_S_INIT , ("vap still running")); TAILQ_REMOVE(&ic->ic_vaps, vap, iv_next); ieee80211_syncflag_locked(ic, IEEE80211_F_WME); #ifdef IEEE80211_SUPPORT_SUPERG ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP); #endif ieee80211_syncflag_locked(ic, IEEE80211_F_PCF); ieee80211_syncflag_locked(ic, IEEE80211_F_BURST); ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT); ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40); ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_VHT); ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT40); ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80); ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT160); ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80P80); ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_STBC_TX); ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_STBC_RX); /* NB: this handles the bpfdetach done below */ ieee80211_syncflag_ext_locked(ic, IEEE80211_FEXT_BPF); if (vap->iv_ifflags & IFF_PROMISC) ieee80211_promisc(vap, false); if (vap->iv_ifflags & IFF_ALLMULTI) ieee80211_allmulti(vap, false); IEEE80211_UNLOCK(ic); ifmedia_removeall(&vap->iv_media); ieee80211_radiotap_vdetach(vap); ieee80211_regdomain_vdetach(vap); ieee80211_scan_vdetach(vap); #ifdef IEEE80211_SUPPORT_SUPERG ieee80211_superg_vdetach(vap); #endif ieee80211_vht_vdetach(vap); ieee80211_ht_vdetach(vap); /* NB: must be before ieee80211_node_vdetach */ ieee80211_proto_vdetach(vap); ieee80211_crypto_vdetach(vap); ieee80211_power_vdetach(vap); ieee80211_node_vdetach(vap); ieee80211_sysctl_vdetach(vap); if_free(ifp); CURVNET_RESTORE(); } /* * Count number of vaps in promisc, and issue promisc on * parent respectively. */ void ieee80211_promisc(struct ieee80211vap *vap, bool on) { struct ieee80211com *ic = vap->iv_ic; IEEE80211_LOCK_ASSERT(ic); if (on) { if (++ic->ic_promisc == 1) ieee80211_runtask(ic, &ic->ic_promisc_task); } else { KASSERT(ic->ic_promisc > 0, ("%s: ic %p not promisc", __func__, ic)); if (--ic->ic_promisc == 0) ieee80211_runtask(ic, &ic->ic_promisc_task); } } /* * Count number of vaps in allmulti, and issue allmulti on * parent respectively. */ void ieee80211_allmulti(struct ieee80211vap *vap, bool on) { struct ieee80211com *ic = vap->iv_ic; IEEE80211_LOCK_ASSERT(ic); if (on) { if (++ic->ic_allmulti == 1) ieee80211_runtask(ic, &ic->ic_mcast_task); } else { KASSERT(ic->ic_allmulti > 0, ("%s: ic %p not allmulti", __func__, ic)); if (--ic->ic_allmulti == 0) ieee80211_runtask(ic, &ic->ic_mcast_task); } } /* * Synchronize flag bit state in the com structure * according to the state of all vap's. This is used, * for example, to handle state changes via ioctls. */ static void ieee80211_syncflag_locked(struct ieee80211com *ic, int flag) { struct ieee80211vap *vap; int bit; IEEE80211_LOCK_ASSERT(ic); bit = 0; TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) if (vap->iv_flags & flag) { bit = 1; break; } if (bit) ic->ic_flags |= flag; else ic->ic_flags &= ~flag; } void ieee80211_syncflag(struct ieee80211vap *vap, int flag) { struct ieee80211com *ic = vap->iv_ic; IEEE80211_LOCK(ic); if (flag < 0) { flag = -flag; vap->iv_flags &= ~flag; } else vap->iv_flags |= flag; ieee80211_syncflag_locked(ic, flag); IEEE80211_UNLOCK(ic); } /* * Synchronize flags_ht bit state in the com structure * according to the state of all vap's. This is used, * for example, to handle state changes via ioctls. */ static void ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag) { struct ieee80211vap *vap; int bit; IEEE80211_LOCK_ASSERT(ic); bit = 0; TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) if (vap->iv_flags_ht & flag) { bit = 1; break; } if (bit) ic->ic_flags_ht |= flag; else ic->ic_flags_ht &= ~flag; } void ieee80211_syncflag_ht(struct ieee80211vap *vap, int flag) { struct ieee80211com *ic = vap->iv_ic; IEEE80211_LOCK(ic); if (flag < 0) { flag = -flag; vap->iv_flags_ht &= ~flag; } else vap->iv_flags_ht |= flag; ieee80211_syncflag_ht_locked(ic, flag); IEEE80211_UNLOCK(ic); } /* * Synchronize flags_vht bit state in the com structure * according to the state of all vap's. This is used, * for example, to handle state changes via ioctls. */ static void ieee80211_syncflag_vht_locked(struct ieee80211com *ic, int flag) { struct ieee80211vap *vap; int bit; IEEE80211_LOCK_ASSERT(ic); bit = 0; TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) if (vap->iv_vht_flags & flag) { bit = 1; break; } if (bit) ic->ic_vht_flags |= flag; else ic->ic_vht_flags &= ~flag; } void ieee80211_syncflag_vht(struct ieee80211vap *vap, int flag) { struct ieee80211com *ic = vap->iv_ic; IEEE80211_LOCK(ic); if (flag < 0) { flag = -flag; vap->iv_vht_flags &= ~flag; } else vap->iv_vht_flags |= flag; ieee80211_syncflag_vht_locked(ic, flag); IEEE80211_UNLOCK(ic); } /* * Synchronize flags_ext bit state in the com structure * according to the state of all vap's. This is used, * for example, to handle state changes via ioctls. */ static void ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag) { struct ieee80211vap *vap; int bit; IEEE80211_LOCK_ASSERT(ic); bit = 0; TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) if (vap->iv_flags_ext & flag) { bit = 1; break; } if (bit) ic->ic_flags_ext |= flag; else ic->ic_flags_ext &= ~flag; } void ieee80211_syncflag_ext(struct ieee80211vap *vap, int flag) { struct ieee80211com *ic = vap->iv_ic; IEEE80211_LOCK(ic); if (flag < 0) { flag = -flag; vap->iv_flags_ext &= ~flag; } else vap->iv_flags_ext |= flag; ieee80211_syncflag_ext_locked(ic, flag); IEEE80211_UNLOCK(ic); } static __inline int mapgsm(u_int freq, u_int flags) { freq *= 10; if (flags & IEEE80211_CHAN_QUARTER) freq += 5; else if (flags & IEEE80211_CHAN_HALF) freq += 10; else freq += 20; /* NB: there is no 907/20 wide but leave room */ return (freq - 906*10) / 5; } static __inline int mappsb(u_int freq, u_int flags) { return 37 + ((freq * 10) + ((freq % 5) == 2 ? 5 : 0) - 49400) / 5; } /* * Convert MHz frequency to IEEE channel number. */ int ieee80211_mhz2ieee(u_int freq, u_int flags) { #define IS_FREQ_IN_PSB(_freq) ((_freq) > 4940 && (_freq) < 4990) if (flags & IEEE80211_CHAN_GSM) return mapgsm(freq, flags); if (flags & IEEE80211_CHAN_2GHZ) { /* 2GHz band */ if (freq == 2484) return 14; if (freq < 2484) return ((int) freq - 2407) / 5; else return 15 + ((freq - 2512) / 20); } else if (flags & IEEE80211_CHAN_5GHZ) { /* 5Ghz band */ if (freq <= 5000) { /* XXX check regdomain? */ if (IS_FREQ_IN_PSB(freq)) return mappsb(freq, flags); return (freq - 4000) / 5; } else return (freq - 5000) / 5; } else { /* either, guess */ if (freq == 2484) return 14; if (freq < 2484) { if (907 <= freq && freq <= 922) return mapgsm(freq, flags); return ((int) freq - 2407) / 5; } if (freq < 5000) { if (IS_FREQ_IN_PSB(freq)) return mappsb(freq, flags); else if (freq > 4900) return (freq - 4000) / 5; else return 15 + ((freq - 2512) / 20); } return (freq - 5000) / 5; } #undef IS_FREQ_IN_PSB } /* * Convert channel to IEEE channel number. */ int ieee80211_chan2ieee(struct ieee80211com *ic, const struct ieee80211_channel *c) { if (c == NULL) { ic_printf(ic, "invalid channel (NULL)\n"); return 0; /* XXX */ } return (c == IEEE80211_CHAN_ANYC ? IEEE80211_CHAN_ANY : c->ic_ieee); } /* * Convert IEEE channel number to MHz frequency. */ u_int ieee80211_ieee2mhz(u_int chan, u_int flags) { if (flags & IEEE80211_CHAN_GSM) return 907 + 5 * (chan / 10); if (flags & IEEE80211_CHAN_2GHZ) { /* 2GHz band */ if (chan == 14) return 2484; if (chan < 14) return 2407 + chan*5; else return 2512 + ((chan-15)*20); } else if (flags & IEEE80211_CHAN_5GHZ) {/* 5Ghz band */ if (flags & (IEEE80211_CHAN_HALF|IEEE80211_CHAN_QUARTER)) { chan -= 37; return 4940 + chan*5 + (chan % 5 ? 2 : 0); } return 5000 + (chan*5); } else { /* either, guess */ /* XXX can't distinguish PSB+GSM channels */ if (chan == 14) return 2484; if (chan < 14) /* 0-13 */ return 2407 + chan*5; if (chan < 27) /* 15-26 */ return 2512 + ((chan-15)*20); return 5000 + (chan*5); } } static __inline void set_extchan(struct ieee80211_channel *c) { /* * IEEE Std 802.11-2012, page 1738, subclause 20.3.15.4: * "the secondary channel number shall be 'N + [1,-1] * 4' */ if (c->ic_flags & IEEE80211_CHAN_HT40U) c->ic_extieee = c->ic_ieee + 4; else if (c->ic_flags & IEEE80211_CHAN_HT40D) c->ic_extieee = c->ic_ieee - 4; else c->ic_extieee = 0; } /* * Populate the freq1/freq2 fields as appropriate for VHT channels. * * This for now uses a hard-coded list of 80MHz wide channels. * * For HT20/HT40, freq1 just is the centre frequency of the 40MHz * wide channel we've already decided upon. * * For VHT80 and VHT160, there are only a small number of fixed * 80/160MHz wide channels, so we just use those. * * This is all likely very very wrong - both the regulatory code * and this code needs to ensure that all four channels are * available and valid before the VHT80 (and eight for VHT160) channel * is created. */ struct vht_chan_range { uint16_t freq_start; uint16_t freq_end; }; struct vht_chan_range vht80_chan_ranges[] = { { 5170, 5250 }, { 5250, 5330 }, { 5490, 5570 }, { 5570, 5650 }, { 5650, 5730 }, { 5735, 5815 }, { 5815, 5895 }, { 0, 0 } }; struct vht_chan_range vht160_chan_ranges[] = { { 5170, 5330 }, { 5490, 5650 }, { 5735, 5895 }, { 0, 0 } }; static int set_vht_extchan(struct ieee80211_channel *c) { int i; if (! IEEE80211_IS_CHAN_VHT(c)) return (0); if (IEEE80211_IS_CHAN_VHT80P80(c)) { printf("%s: TODO VHT80+80 channel (ieee=%d, flags=0x%08x)\n", __func__, c->ic_ieee, c->ic_flags); } if (IEEE80211_IS_CHAN_VHT160(c)) { for (i = 0; vht160_chan_ranges[i].freq_start != 0; i++) { if (c->ic_freq >= vht160_chan_ranges[i].freq_start && c->ic_freq < vht160_chan_ranges[i].freq_end) { int midpoint; midpoint = vht160_chan_ranges[i].freq_start + 80; c->ic_vht_ch_freq1 = ieee80211_mhz2ieee(midpoint, c->ic_flags); c->ic_vht_ch_freq2 = 0; #if 0 printf("%s: %d, freq=%d, midpoint=%d, freq1=%d, freq2=%d\n", __func__, c->ic_ieee, c->ic_freq, midpoint, c->ic_vht_ch_freq1, c->ic_vht_ch_freq2); #endif return (1); } } return (0); } if (IEEE80211_IS_CHAN_VHT80(c)) { for (i = 0; vht80_chan_ranges[i].freq_start != 0; i++) { if (c->ic_freq >= vht80_chan_ranges[i].freq_start && c->ic_freq < vht80_chan_ranges[i].freq_end) { int midpoint; midpoint = vht80_chan_ranges[i].freq_start + 40; c->ic_vht_ch_freq1 = ieee80211_mhz2ieee(midpoint, c->ic_flags); c->ic_vht_ch_freq2 = 0; #if 0 printf("%s: %d, freq=%d, midpoint=%d, freq1=%d, freq2=%d\n", __func__, c->ic_ieee, c->ic_freq, midpoint, c->ic_vht_ch_freq1, c->ic_vht_ch_freq2); #endif return (1); } } return (0); } if (IEEE80211_IS_CHAN_VHT40(c)) { if (IEEE80211_IS_CHAN_HT40U(c)) c->ic_vht_ch_freq1 = c->ic_ieee + 2; else if (IEEE80211_IS_CHAN_HT40D(c)) c->ic_vht_ch_freq1 = c->ic_ieee - 2; else return (0); return (1); } if (IEEE80211_IS_CHAN_VHT20(c)) { c->ic_vht_ch_freq1 = c->ic_ieee; return (1); } printf("%s: unknown VHT channel type (ieee=%d, flags=0x%08x)\n", __func__, c->ic_ieee, c->ic_flags); return (0); } /* * Return whether the current channel could possibly be a part of * a VHT80/VHT160 channel. * * This doesn't check that the whole range is in the allowed list * according to regulatory. */ static bool is_vht160_valid_freq(uint16_t freq) { int i; for (i = 0; vht160_chan_ranges[i].freq_start != 0; i++) { if (freq >= vht160_chan_ranges[i].freq_start && freq < vht160_chan_ranges[i].freq_end) return (true); } return (false); } static int is_vht80_valid_freq(uint16_t freq) { int i; for (i = 0; vht80_chan_ranges[i].freq_start != 0; i++) { if (freq >= vht80_chan_ranges[i].freq_start && freq < vht80_chan_ranges[i].freq_end) return (1); } return (0); } static int addchan(struct ieee80211_channel chans[], int maxchans, int *nchans, uint8_t ieee, uint16_t freq, int8_t maxregpower, uint32_t flags) { struct ieee80211_channel *c; if (*nchans >= maxchans) return (ENOBUFS); #if 0 printf("%s: %d of %d: ieee=%d, freq=%d, flags=0x%08x\n", __func__, *nchans, maxchans, ieee, freq, flags); #endif c = &chans[(*nchans)++]; c->ic_ieee = ieee; c->ic_freq = freq != 0 ? freq : ieee80211_ieee2mhz(ieee, flags); c->ic_maxregpower = maxregpower; c->ic_maxpower = 2 * maxregpower; c->ic_flags = flags; c->ic_vht_ch_freq1 = 0; c->ic_vht_ch_freq2 = 0; set_extchan(c); set_vht_extchan(c); return (0); } static int copychan_prev(struct ieee80211_channel chans[], int maxchans, int *nchans, uint32_t flags) { struct ieee80211_channel *c; KASSERT(*nchans > 0, ("channel list is empty\n")); if (*nchans >= maxchans) return (ENOBUFS); #if 0 printf("%s: %d of %d: flags=0x%08x\n", __func__, *nchans, maxchans, flags); #endif c = &chans[(*nchans)++]; c[0] = c[-1]; c->ic_flags = flags; c->ic_vht_ch_freq1 = 0; c->ic_vht_ch_freq2 = 0; set_extchan(c); set_vht_extchan(c); return (0); } /* * XXX VHT-2GHz */ static void getflags_2ghz(const uint8_t bands[], uint32_t flags[], int cbw_flags) { int nmodes; nmodes = 0; if (isset(bands, IEEE80211_MODE_11B)) flags[nmodes++] = IEEE80211_CHAN_B; if (isset(bands, IEEE80211_MODE_11G)) flags[nmodes++] = IEEE80211_CHAN_G; if (isset(bands, IEEE80211_MODE_11NG)) flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT20; if (cbw_flags & NET80211_CBW_FLAG_HT40) { flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT40U; flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT40D; } flags[nmodes] = 0; } static void getflags_5ghz(const uint8_t bands[], uint32_t flags[], int cbw_flags) { int nmodes; /* * The addchan_list() function seems to expect the flags array to * be in channel width order, so the VHT bits are interspersed * as appropriate to maintain said order. * * It also assumes HT40U is before HT40D. */ nmodes = 0; /* 20MHz */ if (isset(bands, IEEE80211_MODE_11A)) flags[nmodes++] = IEEE80211_CHAN_A; if (isset(bands, IEEE80211_MODE_11NA)) flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT20; if (isset(bands, IEEE80211_MODE_VHT_5GHZ)) { flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT20 | IEEE80211_CHAN_VHT20; } /* 40MHz */ if (cbw_flags & NET80211_CBW_FLAG_HT40) flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U; if ((cbw_flags & NET80211_CBW_FLAG_HT40) && isset(bands, IEEE80211_MODE_VHT_5GHZ)) flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U | IEEE80211_CHAN_VHT40U; if (cbw_flags & NET80211_CBW_FLAG_HT40) flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D; if ((cbw_flags & NET80211_CBW_FLAG_HT40) && isset(bands, IEEE80211_MODE_VHT_5GHZ)) flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D | IEEE80211_CHAN_VHT40D; /* 80MHz */ if ((cbw_flags & NET80211_CBW_FLAG_VHT80) && isset(bands, IEEE80211_MODE_VHT_5GHZ)) { flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U | IEEE80211_CHAN_VHT80; flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D | IEEE80211_CHAN_VHT80; } /* VHT160 */ if ((cbw_flags & NET80211_CBW_FLAG_VHT160) && isset(bands, IEEE80211_MODE_VHT_5GHZ)) { flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U | IEEE80211_CHAN_VHT160; flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D | IEEE80211_CHAN_VHT160; } /* VHT80+80 */ if ((cbw_flags & NET80211_CBW_FLAG_VHT80P80) && isset(bands, IEEE80211_MODE_VHT_5GHZ)) { flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U | IEEE80211_CHAN_VHT80P80; flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D | IEEE80211_CHAN_VHT80P80; } flags[nmodes] = 0; } static void getflags(const uint8_t bands[], uint32_t flags[], int cbw_flags) { flags[0] = 0; if (isset(bands, IEEE80211_MODE_11A) || isset(bands, IEEE80211_MODE_11NA) || isset(bands, IEEE80211_MODE_VHT_5GHZ)) { if (isset(bands, IEEE80211_MODE_11B) || isset(bands, IEEE80211_MODE_11G) || isset(bands, IEEE80211_MODE_11NG) || isset(bands, IEEE80211_MODE_VHT_2GHZ)) return; getflags_5ghz(bands, flags, cbw_flags); } else getflags_2ghz(bands, flags, cbw_flags); } /* * Add one 20 MHz channel into specified channel list. * You MUST NOT mix bands when calling this. It will not add 5ghz * channels if you have any B/G/N band bit set. * The _cbw() variant does also support HT40/VHT80/160/80+80. */ int ieee80211_add_channel_cbw(struct ieee80211_channel chans[], int maxchans, int *nchans, uint8_t ieee, uint16_t freq, int8_t maxregpower, uint32_t chan_flags, const uint8_t bands[], int cbw_flags) { uint32_t flags[IEEE80211_MODE_MAX]; int i, error; getflags(bands, flags, cbw_flags); KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__)); error = addchan(chans, maxchans, nchans, ieee, freq, maxregpower, flags[0] | chan_flags); for (i = 1; flags[i] != 0 && error == 0; i++) { error = copychan_prev(chans, maxchans, nchans, flags[i] | chan_flags); } return (error); } int ieee80211_add_channel(struct ieee80211_channel chans[], int maxchans, int *nchans, uint8_t ieee, uint16_t freq, int8_t maxregpower, uint32_t chan_flags, const uint8_t bands[]) { return (ieee80211_add_channel_cbw(chans, maxchans, nchans, ieee, freq, maxregpower, chan_flags, bands, 0)); } static struct ieee80211_channel * findchannel(struct ieee80211_channel chans[], int nchans, uint16_t freq, uint32_t flags) { struct ieee80211_channel *c; int i; flags &= IEEE80211_CHAN_ALLTURBO; /* brute force search */ for (i = 0; i < nchans; i++) { c = &chans[i]; if (c->ic_freq == freq && (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) return c; } return NULL; } /* * Add 40 MHz channel pair into specified channel list. */ /* XXX VHT */ int ieee80211_add_channel_ht40(struct ieee80211_channel chans[], int maxchans, int *nchans, uint8_t ieee, int8_t maxregpower, uint32_t flags) { struct ieee80211_channel *cent, *extc; uint16_t freq; int error; freq = ieee80211_ieee2mhz(ieee, flags); /* * Each entry defines an HT40 channel pair; find the * center channel, then the extension channel above. */ flags |= IEEE80211_CHAN_HT20; cent = findchannel(chans, *nchans, freq, flags); if (cent == NULL) return (EINVAL); extc = findchannel(chans, *nchans, freq + 20, flags); if (extc == NULL) return (ENOENT); flags &= ~IEEE80211_CHAN_HT; error = addchan(chans, maxchans, nchans, cent->ic_ieee, cent->ic_freq, maxregpower, flags | IEEE80211_CHAN_HT40U); if (error != 0) return (error); error = addchan(chans, maxchans, nchans, extc->ic_ieee, extc->ic_freq, maxregpower, flags | IEEE80211_CHAN_HT40D); return (error); } /* * Fetch the center frequency for the primary channel. */ uint32_t ieee80211_get_channel_center_freq(const struct ieee80211_channel *c) { return (c->ic_freq); } /* * Fetch the center frequency for the primary BAND channel. * * For 5, 10, 20MHz channels it'll be the normally configured channel * frequency. * * For 40MHz, 80MHz, 160MHz channels it will be the centre of the * wide channel, not the centre of the primary channel (that's ic_freq). * * For 80+80MHz channels this will be the centre of the primary * 80MHz channel; the secondary 80MHz channel will be center_freq2(). */ uint32_t ieee80211_get_channel_center_freq1(const struct ieee80211_channel *c) { /* * VHT - use the pre-calculated centre frequency * of the given channel. */ if (IEEE80211_IS_CHAN_VHT(c)) return (ieee80211_ieee2mhz(c->ic_vht_ch_freq1, c->ic_flags)); if (IEEE80211_IS_CHAN_HT40U(c)) { return (c->ic_freq + 10); } if (IEEE80211_IS_CHAN_HT40D(c)) { return (c->ic_freq - 10); } return (c->ic_freq); } /* * For now, no 80+80 support; it will likely always return 0. */ uint32_t ieee80211_get_channel_center_freq2(const struct ieee80211_channel *c) { if (IEEE80211_IS_CHAN_VHT(c) && (c->ic_vht_ch_freq2 != 0)) return (ieee80211_ieee2mhz(c->ic_vht_ch_freq2, c->ic_flags)); return (0); } /* * Adds channels into specified channel list (ieee[] array must be sorted). * Channels are already sorted. */ static int add_chanlist(struct ieee80211_channel chans[], int maxchans, int *nchans, const uint8_t ieee[], int nieee, uint32_t flags[]) { uint16_t freq; int i, j, error; int is_vht; for (i = 0; i < nieee; i++) { freq = ieee80211_ieee2mhz(ieee[i], flags[0]); for (j = 0; flags[j] != 0; j++) { /* * Notes: * + HT40 and VHT40 channels occur together, so * we need to be careful that we actually allow that. * + VHT80, VHT160 will coexist with HT40/VHT40, so * make sure it's not skipped because of the overlap * check used for (V)HT40. */ is_vht = !! (flags[j] & IEEE80211_CHAN_VHT); /* XXX TODO FIXME VHT80P80. */ /* Test for VHT160 analogue to the VHT80 below. */ if (is_vht && flags[j] & IEEE80211_CHAN_VHT160) if (! is_vht160_valid_freq(freq)) continue; /* * Test for VHT80. * XXX This is all very broken right now. * What we /should/ do is: * * + check that the frequency is in the list of * allowed VHT80 ranges; and * + the other 3 channels in the list are actually * also available. */ if (is_vht && flags[j] & IEEE80211_CHAN_VHT80) if (! is_vht80_valid_freq(freq)) continue; /* * Test for (V)HT40. * * This is also a fall through from VHT80; as we only * allow a VHT80 channel if the VHT40 combination is * also valid. If the VHT40 form is not valid then * we certainly can't do VHT80.. */ if (flags[j] & IEEE80211_CHAN_HT40D) /* * Can't have a "lower" channel if we are the * first channel. * * Can't have a "lower" channel if it's below/ * within 20MHz of the first channel. * * Can't have a "lower" channel if the channel * below it is not 20MHz away. */ if (i == 0 || ieee[i] < ieee[0] + 4 || freq - 20 != ieee80211_ieee2mhz(ieee[i] - 4, flags[j])) continue; if (flags[j] & IEEE80211_CHAN_HT40U) /* * Can't have an "upper" channel if we are * the last channel. * * Can't have an "upper" channel be above the * last channel in the list. * * Can't have an "upper" channel if the next * channel according to the math isn't 20MHz * away. (Likely for channel 13/14.) */ if (i == nieee - 1 || ieee[i] + 4 > ieee[nieee - 1] || freq + 20 != ieee80211_ieee2mhz(ieee[i] + 4, flags[j])) continue; if (j == 0) { error = addchan(chans, maxchans, nchans, ieee[i], freq, 0, flags[j]); } else { error = copychan_prev(chans, maxchans, nchans, flags[j]); } if (error != 0) return (error); } } return (0); } int ieee80211_add_channel_list_2ghz(struct ieee80211_channel chans[], int maxchans, int *nchans, const uint8_t ieee[], int nieee, const uint8_t bands[], int cbw_flags) { uint32_t flags[IEEE80211_MODE_MAX]; /* XXX no VHT for now */ getflags_2ghz(bands, flags, cbw_flags); KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__)); return (add_chanlist(chans, maxchans, nchans, ieee, nieee, flags)); } int ieee80211_add_channels_default_2ghz(struct ieee80211_channel chans[], int maxchans, int *nchans, const uint8_t bands[], int cbw_flags) { const uint8_t default_chan_list[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 }; return (ieee80211_add_channel_list_2ghz(chans, maxchans, nchans, default_chan_list, nitems(default_chan_list), bands, cbw_flags)); } int ieee80211_add_channel_list_5ghz(struct ieee80211_channel chans[], int maxchans, int *nchans, const uint8_t ieee[], int nieee, const uint8_t bands[], int cbw_flags) { /* * XXX-BZ with HT and VHT there is no 1:1 mapping anymore. Review all * uses of IEEE80211_MODE_MAX and add a new #define name for array size. */ uint32_t flags[2 * IEEE80211_MODE_MAX]; getflags_5ghz(bands, flags, cbw_flags); KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__)); return (add_chanlist(chans, maxchans, nchans, ieee, nieee, flags)); } /* * Locate a channel given a frequency+flags. We cache * the previous lookup to optimize switching between two * channels--as happens with dynamic turbo. */ struct ieee80211_channel * ieee80211_find_channel(struct ieee80211com *ic, int freq, int flags) { struct ieee80211_channel *c; flags &= IEEE80211_CHAN_ALLTURBO; c = ic->ic_prevchan; if (c != NULL && c->ic_freq == freq && (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) return c; /* brute force search */ return (findchannel(ic->ic_channels, ic->ic_nchans, freq, flags)); } /* * Locate a channel given a channel number+flags. We cache * the previous lookup to optimize switching between two * channels--as happens with dynamic turbo. */ struct ieee80211_channel * ieee80211_find_channel_byieee(struct ieee80211com *ic, int ieee, int flags) { struct ieee80211_channel *c; int i; flags &= IEEE80211_CHAN_ALLTURBO; c = ic->ic_prevchan; if (c != NULL && c->ic_ieee == ieee && (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) return c; /* brute force search */ for (i = 0; i < ic->ic_nchans; i++) { c = &ic->ic_channels[i]; if (c->ic_ieee == ieee && (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) return c; } return NULL; } /* * Lookup a channel suitable for the given rx status. * * This is used to find a channel for a frame (eg beacon, probe * response) based purely on the received PHY information. * * For now it tries to do it based on R_FREQ / R_IEEE. * This is enough for 11bg and 11a (and thus 11ng/11na) * but it will not be enough for GSM, PSB channels and the * like. It also doesn't know about legacy-turbog and * legacy-turbo modes, which some offload NICs actually * support in weird ways. * * Takes the ic and rxstatus; returns the channel or NULL * if not found. * * XXX TODO: Add support for that when the need arises. */ struct ieee80211_channel * ieee80211_lookup_channel_rxstatus(struct ieee80211vap *vap, const struct ieee80211_rx_stats *rxs) { struct ieee80211com *ic = vap->iv_ic; uint32_t flags; struct ieee80211_channel *c; if (rxs == NULL) return (NULL); /* * Strictly speaking we only use freq for now, * however later on we may wish to just store * the ieee for verification. */ if ((rxs->r_flags & IEEE80211_R_FREQ) == 0) return (NULL); if ((rxs->r_flags & IEEE80211_R_IEEE) == 0) return (NULL); if ((rxs->r_flags & IEEE80211_R_BAND) == 0) return (NULL); /* * If the rx status contains a valid ieee/freq, then * ensure we populate the correct channel information * in rxchan before passing it up to the scan infrastructure. * Offload NICs will pass up beacons from all channels * during background scans. */ /* Determine a band */ switch (rxs->c_band) { case IEEE80211_CHAN_2GHZ: flags = IEEE80211_CHAN_G; break; case IEEE80211_CHAN_5GHZ: flags = IEEE80211_CHAN_A; break; default: if (rxs->c_freq < 3000) { flags = IEEE80211_CHAN_G; } else { flags = IEEE80211_CHAN_A; } break; } /* Channel lookup */ c = ieee80211_find_channel(ic, rxs->c_freq, flags); IEEE80211_DPRINTF(vap, IEEE80211_MSG_INPUT, "%s: freq=%d, ieee=%d, flags=0x%08x; c=%p\n", __func__, (int) rxs->c_freq, (int) rxs->c_ieee, flags, c); return (c); } static void addmedia(struct ifmedia *media, int caps, int addsta, int mode, int mword) { #define ADD(_ic, _s, _o) \ ifmedia_add(media, \ IFM_MAKEWORD(IFM_IEEE80211, (_s), (_o), 0), 0, NULL) static const u_int mopts[IEEE80211_MODE_MAX] = { [IEEE80211_MODE_AUTO] = IFM_AUTO, [IEEE80211_MODE_11A] = IFM_IEEE80211_11A, [IEEE80211_MODE_11B] = IFM_IEEE80211_11B, [IEEE80211_MODE_11G] = IFM_IEEE80211_11G, [IEEE80211_MODE_FH] = IFM_IEEE80211_FH, [IEEE80211_MODE_TURBO_A] = IFM_IEEE80211_11A|IFM_IEEE80211_TURBO, [IEEE80211_MODE_TURBO_G] = IFM_IEEE80211_11G|IFM_IEEE80211_TURBO, [IEEE80211_MODE_STURBO_A] = IFM_IEEE80211_11A|IFM_IEEE80211_TURBO, [IEEE80211_MODE_HALF] = IFM_IEEE80211_11A, /* XXX */ [IEEE80211_MODE_QUARTER] = IFM_IEEE80211_11A, /* XXX */ [IEEE80211_MODE_11NA] = IFM_IEEE80211_11NA, [IEEE80211_MODE_11NG] = IFM_IEEE80211_11NG, [IEEE80211_MODE_VHT_2GHZ] = IFM_IEEE80211_VHT2G, [IEEE80211_MODE_VHT_5GHZ] = IFM_IEEE80211_VHT5G, }; u_int mopt; mopt = mopts[mode]; if (addsta) ADD(ic, mword, mopt); /* STA mode has no cap */ if (caps & IEEE80211_C_IBSS) ADD(media, mword, mopt | IFM_IEEE80211_ADHOC); if (caps & IEEE80211_C_HOSTAP) ADD(media, mword, mopt | IFM_IEEE80211_HOSTAP); if (caps & IEEE80211_C_AHDEMO) ADD(media, mword, mopt | IFM_IEEE80211_ADHOC | IFM_FLAG0); if (caps & IEEE80211_C_MONITOR) ADD(media, mword, mopt | IFM_IEEE80211_MONITOR); if (caps & IEEE80211_C_WDS) ADD(media, mword, mopt | IFM_IEEE80211_WDS); if (caps & IEEE80211_C_MBSS) ADD(media, mword, mopt | IFM_IEEE80211_MBSS); #undef ADD } /* * Setup the media data structures according to the channel and * rate tables. */ static int ieee80211_media_setup(struct ieee80211com *ic, struct ifmedia *media, int caps, int addsta, ifm_change_cb_t media_change, ifm_stat_cb_t media_stat) { int i, j, rate, maxrate, mword, r; enum ieee80211_phymode mode; const struct ieee80211_rateset *rs; struct ieee80211_rateset allrates; struct ieee80211_node_txrate tn; /* * Fill in media characteristics. */ ifmedia_init(media, 0, media_change, media_stat); maxrate = 0; /* * Add media for legacy operating modes. */ memset(&allrates, 0, sizeof(allrates)); for (mode = IEEE80211_MODE_AUTO; mode < IEEE80211_MODE_11NA; mode++) { if (isclr(ic->ic_modecaps, mode)) continue; addmedia(media, caps, addsta, mode, IFM_AUTO); if (mode == IEEE80211_MODE_AUTO) continue; rs = &ic->ic_sup_rates[mode]; for (i = 0; i < rs->rs_nrates; i++) { rate = rs->rs_rates[i]; tn = IEEE80211_NODE_TXRATE_INIT_LEGACY(rate); mword = ieee80211_rate2media(ic, &tn, mode); if (mword == 0) continue; addmedia(media, caps, addsta, mode, mword); /* * Add legacy rate to the collection of all rates. */ r = rate & IEEE80211_RATE_VAL; for (j = 0; j < allrates.rs_nrates; j++) if (allrates.rs_rates[j] == r) break; if (j == allrates.rs_nrates) { /* unique, add to the set */ allrates.rs_rates[j] = r; allrates.rs_nrates++; } rate = (rate & IEEE80211_RATE_VAL) / 2; if (rate > maxrate) maxrate = rate; } } for (i = 0; i < allrates.rs_nrates; i++) { tn = IEEE80211_NODE_TXRATE_INIT_LEGACY(allrates.rs_rates[i]); mword = ieee80211_rate2media(ic, &tn, IEEE80211_MODE_AUTO); if (mword == 0) continue; /* NB: remove media options from mword */ addmedia(media, caps, addsta, IEEE80211_MODE_AUTO, IFM_SUBTYPE(mword)); } /* * Add HT/11n media. Note that we do not have enough * bits in the media subtype to express the MCS so we * use a "placeholder" media subtype and any fixed MCS * must be specified with a different mechanism. */ for (; mode <= IEEE80211_MODE_11NG; mode++) { if (isclr(ic->ic_modecaps, mode)) continue; addmedia(media, caps, addsta, mode, IFM_AUTO); addmedia(media, caps, addsta, mode, IFM_IEEE80211_MCS); } if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) || isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) { addmedia(media, caps, addsta, IEEE80211_MODE_AUTO, IFM_IEEE80211_MCS); i = ic->ic_txstream * 8 - 1; if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) && (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI40)) rate = ieee80211_htrates[i].ht40_rate_400ns; else if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40)) rate = ieee80211_htrates[i].ht40_rate_800ns; else if ((ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI20)) rate = ieee80211_htrates[i].ht20_rate_400ns; else rate = ieee80211_htrates[i].ht20_rate_800ns; if (rate > maxrate) maxrate = rate; } /* * Add VHT media. * XXX-BZ skip "VHT_2GHZ" for now. */ for (mode = IEEE80211_MODE_VHT_5GHZ; mode <= IEEE80211_MODE_VHT_5GHZ; mode++) { if (isclr(ic->ic_modecaps, mode)) continue; addmedia(media, caps, addsta, mode, IFM_AUTO); addmedia(media, caps, addsta, mode, IFM_IEEE80211_VHT); } if (isset(ic->ic_modecaps, IEEE80211_MODE_VHT_5GHZ)) { addmedia(media, caps, addsta, IEEE80211_MODE_AUTO, IFM_IEEE80211_VHT); /* XXX TODO: VHT maxrate */ } return maxrate; } /* XXX inline or eliminate? */ const struct ieee80211_rateset * ieee80211_get_suprates(struct ieee80211com *ic, const struct ieee80211_channel *c) { /* XXX does this work for 11ng basic rates? */ return &ic->ic_sup_rates[ieee80211_chan2mode(c)]; } /* XXX inline or eliminate? */ const struct ieee80211_htrateset * ieee80211_get_suphtrates(struct ieee80211com *ic, const struct ieee80211_channel *c) { return &ic->ic_sup_htrates; } void ieee80211_announce(struct ieee80211com *ic) { int i, rate, mword; enum ieee80211_phymode mode; const struct ieee80211_rateset *rs; struct ieee80211_node_txrate tn; /* NB: skip AUTO since it has no rates */ for (mode = IEEE80211_MODE_AUTO+1; mode < IEEE80211_MODE_11NA; mode++) { if (isclr(ic->ic_modecaps, mode)) continue; ic_printf(ic, "%s rates: ", ieee80211_phymode_name[mode]); rs = &ic->ic_sup_rates[mode]; for (i = 0; i < rs->rs_nrates; i++) { tn = IEEE80211_NODE_TXRATE_INIT_LEGACY(rs->rs_rates[i]); mword = ieee80211_rate2media(ic, &tn, mode); if (mword == 0) continue; rate = ieee80211_media2rate(mword); printf("%s%d%sMbps", (i != 0 ? " " : ""), rate / 2, ((rate & 0x1) != 0 ? ".5" : "")); } printf("\n"); } ieee80211_ht_announce(ic); ieee80211_vht_announce(ic); } void ieee80211_announce_channels(struct ieee80211com *ic) { const struct ieee80211_channel *c; char type; int i, cw; printf("Chan Freq CW RegPwr MinPwr MaxPwr\n"); for (i = 0; i < ic->ic_nchans; i++) { c = &ic->ic_channels[i]; if (IEEE80211_IS_CHAN_ST(c)) type = 'S'; else if (IEEE80211_IS_CHAN_108A(c)) type = 'T'; else if (IEEE80211_IS_CHAN_108G(c)) type = 'G'; else if (IEEE80211_IS_CHAN_HT(c)) type = 'n'; else if (IEEE80211_IS_CHAN_A(c)) type = 'a'; else if (IEEE80211_IS_CHAN_ANYG(c)) type = 'g'; else if (IEEE80211_IS_CHAN_B(c)) type = 'b'; else type = 'f'; if (IEEE80211_IS_CHAN_HT40(c) || IEEE80211_IS_CHAN_TURBO(c)) cw = 40; else if (IEEE80211_IS_CHAN_HALF(c)) cw = 10; else if (IEEE80211_IS_CHAN_QUARTER(c)) cw = 5; else cw = 20; printf("%4d %4d%c %2d%c %6d %4d.%d %4d.%d\n" , c->ic_ieee, c->ic_freq, type , cw , IEEE80211_IS_CHAN_HT40U(c) ? '+' : IEEE80211_IS_CHAN_HT40D(c) ? '-' : ' ' , c->ic_maxregpower , c->ic_minpower / 2, c->ic_minpower & 1 ? 5 : 0 , c->ic_maxpower / 2, c->ic_maxpower & 1 ? 5 : 0 ); } } static int media2mode(const struct ifmedia_entry *ime, uint32_t flags, uint16_t *mode) { switch (IFM_MODE(ime->ifm_media)) { case IFM_IEEE80211_11A: *mode = IEEE80211_MODE_11A; break; case IFM_IEEE80211_11B: *mode = IEEE80211_MODE_11B; break; case IFM_IEEE80211_11G: *mode = IEEE80211_MODE_11G; break; case IFM_IEEE80211_FH: *mode = IEEE80211_MODE_FH; break; case IFM_IEEE80211_11NA: *mode = IEEE80211_MODE_11NA; break; case IFM_IEEE80211_11NG: *mode = IEEE80211_MODE_11NG; break; case IFM_IEEE80211_VHT2G: *mode = IEEE80211_MODE_VHT_2GHZ; break; case IFM_IEEE80211_VHT5G: *mode = IEEE80211_MODE_VHT_5GHZ; break; case IFM_AUTO: *mode = IEEE80211_MODE_AUTO; break; default: return 0; } /* * Turbo mode is an ``option''. * XXX does not apply to AUTO */ if (ime->ifm_media & IFM_IEEE80211_TURBO) { if (*mode == IEEE80211_MODE_11A) { if (flags & IEEE80211_F_TURBOP) *mode = IEEE80211_MODE_TURBO_A; else *mode = IEEE80211_MODE_STURBO_A; } else if (*mode == IEEE80211_MODE_11G) *mode = IEEE80211_MODE_TURBO_G; else return 0; } /* XXX HT40 +/- */ return 1; } /* * Handle a media change request on the vap interface. */ int ieee80211_media_change(struct ifnet *ifp) { struct ieee80211vap *vap = ifp->if_softc; struct ifmedia_entry *ime = vap->iv_media.ifm_cur; uint16_t newmode; if (!media2mode(ime, vap->iv_flags, &newmode)) return EINVAL; if (vap->iv_des_mode != newmode) { vap->iv_des_mode = newmode; /* XXX kick state machine if up+running */ } return 0; } /* * Common code to calculate the media status word * from the operating mode and channel state. */ static int media_status(enum ieee80211_opmode opmode, const struct ieee80211_channel *chan) { int status; status = IFM_IEEE80211; switch (opmode) { case IEEE80211_M_STA: break; case IEEE80211_M_IBSS: status |= IFM_IEEE80211_ADHOC; break; case IEEE80211_M_HOSTAP: status |= IFM_IEEE80211_HOSTAP; break; case IEEE80211_M_MONITOR: status |= IFM_IEEE80211_MONITOR; break; case IEEE80211_M_AHDEMO: status |= IFM_IEEE80211_ADHOC | IFM_FLAG0; break; case IEEE80211_M_WDS: status |= IFM_IEEE80211_WDS; break; case IEEE80211_M_MBSS: status |= IFM_IEEE80211_MBSS; break; } if (IEEE80211_IS_CHAN_VHT_5GHZ(chan)) { status |= IFM_IEEE80211_VHT5G; } else if (IEEE80211_IS_CHAN_VHT_2GHZ(chan)) { status |= IFM_IEEE80211_VHT2G; } else if (IEEE80211_IS_CHAN_HTA(chan)) { status |= IFM_IEEE80211_11NA; } else if (IEEE80211_IS_CHAN_HTG(chan)) { status |= IFM_IEEE80211_11NG; } else if (IEEE80211_IS_CHAN_A(chan)) { status |= IFM_IEEE80211_11A; } else if (IEEE80211_IS_CHAN_B(chan)) { status |= IFM_IEEE80211_11B; } else if (IEEE80211_IS_CHAN_ANYG(chan)) { status |= IFM_IEEE80211_11G; } else if (IEEE80211_IS_CHAN_FHSS(chan)) { status |= IFM_IEEE80211_FH; } /* XXX else complain? */ if (IEEE80211_IS_CHAN_TURBO(chan)) status |= IFM_IEEE80211_TURBO; #if 0 if (IEEE80211_IS_CHAN_HT20(chan)) status |= IFM_IEEE80211_HT20; if (IEEE80211_IS_CHAN_HT40(chan)) status |= IFM_IEEE80211_HT40; #endif return status; } void ieee80211_media_status(struct ifnet *ifp, struct ifmediareq *imr) { struct ieee80211vap *vap = ifp->if_softc; struct ieee80211com *ic = vap->iv_ic; enum ieee80211_phymode mode; struct ieee80211_node_txrate tn; imr->ifm_status = IFM_AVALID; /* * NB: use the current channel's mode to lock down a xmit * rate only when running; otherwise we may have a mismatch * in which case the rate will not be convertible. */ if (vap->iv_state == IEEE80211_S_RUN || vap->iv_state == IEEE80211_S_SLEEP) { imr->ifm_status |= IFM_ACTIVE; mode = ieee80211_chan2mode(ic->ic_curchan); } else mode = IEEE80211_MODE_AUTO; imr->ifm_active = media_status(vap->iv_opmode, ic->ic_curchan); /* * Calculate a current rate if possible. */ if (vap->iv_txparms[mode].ucastrate != IEEE80211_FIXED_RATE_NONE) { /* * A fixed rate is set, report that. */ tn = IEEE80211_NODE_TXRATE_INIT_LEGACY( vap->iv_txparms[mode].ucastrate); imr->ifm_active |= ieee80211_rate2media(ic, &tn, mode); } else if (vap->iv_opmode == IEEE80211_M_STA) { /* * In station mode report the current transmit rate. */ ieee80211_node_get_txrate(vap->iv_bss, &tn); imr->ifm_active |= ieee80211_rate2media(ic, &tn, mode); } else imr->ifm_active |= IFM_AUTO; if (imr->ifm_status & IFM_ACTIVE) imr->ifm_current = imr->ifm_active; } /* * Set the current phy mode and recalculate the active channel * set based on the available channels for this mode. Also * select a new default/current channel if the current one is * inappropriate for this mode. */ int ieee80211_setmode(struct ieee80211com *ic, enum ieee80211_phymode mode) { /* * Adjust basic rates in 11b/11g supported rate set. * Note that if operating on a hal/quarter rate channel * this is a noop as those rates sets are different * and used instead. */ if (mode == IEEE80211_MODE_11G || mode == IEEE80211_MODE_11B) ieee80211_setbasicrates(&ic->ic_sup_rates[mode], mode); ic->ic_curmode = mode; ieee80211_reset_erp(ic); /* reset global ERP state */ return 0; } /* * Return the phy mode for with the specified channel. */ enum ieee80211_phymode ieee80211_chan2mode(const struct ieee80211_channel *chan) { if (IEEE80211_IS_CHAN_VHT_2GHZ(chan)) return IEEE80211_MODE_VHT_2GHZ; else if (IEEE80211_IS_CHAN_VHT_5GHZ(chan)) return IEEE80211_MODE_VHT_5GHZ; else if (IEEE80211_IS_CHAN_HTA(chan)) return IEEE80211_MODE_11NA; else if (IEEE80211_IS_CHAN_HTG(chan)) return IEEE80211_MODE_11NG; else if (IEEE80211_IS_CHAN_108G(chan)) return IEEE80211_MODE_TURBO_G; else if (IEEE80211_IS_CHAN_ST(chan)) return IEEE80211_MODE_STURBO_A; else if (IEEE80211_IS_CHAN_TURBO(chan)) return IEEE80211_MODE_TURBO_A; else if (IEEE80211_IS_CHAN_HALF(chan)) return IEEE80211_MODE_HALF; else if (IEEE80211_IS_CHAN_QUARTER(chan)) return IEEE80211_MODE_QUARTER; else if (IEEE80211_IS_CHAN_A(chan)) return IEEE80211_MODE_11A; else if (IEEE80211_IS_CHAN_ANYG(chan)) return IEEE80211_MODE_11G; else if (IEEE80211_IS_CHAN_B(chan)) return IEEE80211_MODE_11B; else if (IEEE80211_IS_CHAN_FHSS(chan)) return IEEE80211_MODE_FH; /* NB: should not get here */ printf("%s: cannot map channel to mode; freq %u flags 0x%x\n", __func__, chan->ic_freq, chan->ic_flags); return IEEE80211_MODE_11B; } struct ratemedia { u_int match; /* rate + mode */ u_int media; /* if_media rate */ }; static int findmedia(const struct ratemedia rates[], int n, u_int match) { int i; for (i = 0; i < n; i++) if (rates[i].match == match) return rates[i].media; return IFM_AUTO; } /* * Convert IEEE80211 rate value to ifmedia subtype. * Rate is either a legacy rate in units of 0.5Mbps * or an MCS index. */ int ieee80211_rate2media(struct ieee80211com *ic, const struct ieee80211_node_txrate *tr, enum ieee80211_phymode mode) { static const struct ratemedia rates[] = { { 2 | IFM_IEEE80211_FH, IFM_IEEE80211_FH1 }, { 4 | IFM_IEEE80211_FH, IFM_IEEE80211_FH2 }, { 2 | IFM_IEEE80211_11B, IFM_IEEE80211_DS1 }, { 4 | IFM_IEEE80211_11B, IFM_IEEE80211_DS2 }, { 11 | IFM_IEEE80211_11B, IFM_IEEE80211_DS5 }, { 22 | IFM_IEEE80211_11B, IFM_IEEE80211_DS11 }, { 44 | IFM_IEEE80211_11B, IFM_IEEE80211_DS22 }, { 12 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM6 }, { 18 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM9 }, { 24 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM12 }, { 36 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM18 }, { 48 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM24 }, { 72 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM36 }, { 96 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM48 }, { 108 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM54 }, { 2 | IFM_IEEE80211_11G, IFM_IEEE80211_DS1 }, { 4 | IFM_IEEE80211_11G, IFM_IEEE80211_DS2 }, { 11 | IFM_IEEE80211_11G, IFM_IEEE80211_DS5 }, { 22 | IFM_IEEE80211_11G, IFM_IEEE80211_DS11 }, { 12 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM6 }, { 18 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM9 }, { 24 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM12 }, { 36 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM18 }, { 48 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM24 }, { 72 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM36 }, { 96 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM48 }, { 108 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM54 }, { 6 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM3 }, { 9 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM4 }, { 54 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM27 }, /* NB: OFDM72 doesn't really exist so we don't handle it */ }; static const struct ratemedia htrates[] = { { 0, IFM_IEEE80211_MCS }, { 1, IFM_IEEE80211_MCS }, { 2, IFM_IEEE80211_MCS }, { 3, IFM_IEEE80211_MCS }, { 4, IFM_IEEE80211_MCS }, { 5, IFM_IEEE80211_MCS }, { 6, IFM_IEEE80211_MCS }, { 7, IFM_IEEE80211_MCS }, { 8, IFM_IEEE80211_MCS }, { 9, IFM_IEEE80211_MCS }, { 10, IFM_IEEE80211_MCS }, { 11, IFM_IEEE80211_MCS }, { 12, IFM_IEEE80211_MCS }, { 13, IFM_IEEE80211_MCS }, { 14, IFM_IEEE80211_MCS }, { 15, IFM_IEEE80211_MCS }, { 16, IFM_IEEE80211_MCS }, { 17, IFM_IEEE80211_MCS }, { 18, IFM_IEEE80211_MCS }, { 19, IFM_IEEE80211_MCS }, { 20, IFM_IEEE80211_MCS }, { 21, IFM_IEEE80211_MCS }, { 22, IFM_IEEE80211_MCS }, { 23, IFM_IEEE80211_MCS }, { 24, IFM_IEEE80211_MCS }, { 25, IFM_IEEE80211_MCS }, { 26, IFM_IEEE80211_MCS }, { 27, IFM_IEEE80211_MCS }, { 28, IFM_IEEE80211_MCS }, { 29, IFM_IEEE80211_MCS }, { 30, IFM_IEEE80211_MCS }, { 31, IFM_IEEE80211_MCS }, { 32, IFM_IEEE80211_MCS }, { 33, IFM_IEEE80211_MCS }, { 34, IFM_IEEE80211_MCS }, { 35, IFM_IEEE80211_MCS }, { 36, IFM_IEEE80211_MCS }, { 37, IFM_IEEE80211_MCS }, { 38, IFM_IEEE80211_MCS }, { 39, IFM_IEEE80211_MCS }, { 40, IFM_IEEE80211_MCS }, { 41, IFM_IEEE80211_MCS }, { 42, IFM_IEEE80211_MCS }, { 43, IFM_IEEE80211_MCS }, { 44, IFM_IEEE80211_MCS }, { 45, IFM_IEEE80211_MCS }, { 46, IFM_IEEE80211_MCS }, { 47, IFM_IEEE80211_MCS }, { 48, IFM_IEEE80211_MCS }, { 49, IFM_IEEE80211_MCS }, { 50, IFM_IEEE80211_MCS }, { 51, IFM_IEEE80211_MCS }, { 52, IFM_IEEE80211_MCS }, { 53, IFM_IEEE80211_MCS }, { 54, IFM_IEEE80211_MCS }, { 55, IFM_IEEE80211_MCS }, { 56, IFM_IEEE80211_MCS }, { 57, IFM_IEEE80211_MCS }, { 58, IFM_IEEE80211_MCS }, { 59, IFM_IEEE80211_MCS }, { 60, IFM_IEEE80211_MCS }, { 61, IFM_IEEE80211_MCS }, { 62, IFM_IEEE80211_MCS }, { 63, IFM_IEEE80211_MCS }, { 64, IFM_IEEE80211_MCS }, { 65, IFM_IEEE80211_MCS }, { 66, IFM_IEEE80211_MCS }, { 67, IFM_IEEE80211_MCS }, { 68, IFM_IEEE80211_MCS }, { 69, IFM_IEEE80211_MCS }, { 70, IFM_IEEE80211_MCS }, { 71, IFM_IEEE80211_MCS }, { 72, IFM_IEEE80211_MCS }, { 73, IFM_IEEE80211_MCS }, { 74, IFM_IEEE80211_MCS }, { 75, IFM_IEEE80211_MCS }, { 76, IFM_IEEE80211_MCS }, }; static const struct ratemedia vhtrates[] = { { 0, IFM_IEEE80211_VHT }, { 1, IFM_IEEE80211_VHT }, { 2, IFM_IEEE80211_VHT }, { 3, IFM_IEEE80211_VHT }, { 4, IFM_IEEE80211_VHT }, { 5, IFM_IEEE80211_VHT }, { 6, IFM_IEEE80211_VHT }, { 7, IFM_IEEE80211_VHT }, { 8, IFM_IEEE80211_VHT }, /* Optional. */ { 9, IFM_IEEE80211_VHT }, /* Optional. */ #if 0 /* Some QCA and BRCM seem to support this; offspec. */ { 10, IFM_IEEE80211_VHT }, { 11, IFM_IEEE80211_VHT }, #endif }; int m, rate; /* * Check 11ac/11n rates first for match as an MCS. */ if (mode == IEEE80211_MODE_VHT_5GHZ) { if (tr->type == IEEE80211_NODE_TXRATE_VHT) { m = findmedia(vhtrates, nitems(vhtrates), tr->mcs); if (m != IFM_AUTO) return (m | IFM_IEEE80211_VHT); } } else if (mode == IEEE80211_MODE_11NA) { /* NB: 12 is ambiguous, it will be treated as an MCS */ if (tr->type == IEEE80211_NODE_TXRATE_HT) { m = findmedia(htrates, nitems(htrates), tr->dot11rate & ~IEEE80211_RATE_MCS); if (m != IFM_AUTO) return m | IFM_IEEE80211_11NA; } } else if (mode == IEEE80211_MODE_11NG) { /* NB: 12 is ambiguous, it will be treated as an MCS */ if (tr->type == IEEE80211_NODE_TXRATE_HT) { m = findmedia(htrates, nitems(htrates), tr->dot11rate & ~IEEE80211_RATE_MCS); if (m != IFM_AUTO) return m | IFM_IEEE80211_11NG; } } /* * At this point it needs to be a dot11rate (legacy/HT) for the * rest of the logic to work. */ if ((tr->type != IEEE80211_NODE_TXRATE_LEGACY) && (tr->type != IEEE80211_NODE_TXRATE_HT)) return (IFM_AUTO); rate = tr->dot11rate & IEEE80211_RATE_VAL; switch (mode) { case IEEE80211_MODE_11A: case IEEE80211_MODE_HALF: /* XXX good 'nuf */ case IEEE80211_MODE_QUARTER: case IEEE80211_MODE_11NA: case IEEE80211_MODE_TURBO_A: case IEEE80211_MODE_STURBO_A: return findmedia(rates, nitems(rates), rate | IFM_IEEE80211_11A); case IEEE80211_MODE_11B: return findmedia(rates, nitems(rates), rate | IFM_IEEE80211_11B); case IEEE80211_MODE_FH: return findmedia(rates, nitems(rates), rate | IFM_IEEE80211_FH); case IEEE80211_MODE_AUTO: /* NB: ic may be NULL for some drivers */ if (ic != NULL && ic->ic_phytype == IEEE80211_T_FH) return findmedia(rates, nitems(rates), rate | IFM_IEEE80211_FH); /* NB: hack, 11g matches both 11b+11a rates */ /* fall thru... */ case IEEE80211_MODE_11G: case IEEE80211_MODE_11NG: case IEEE80211_MODE_TURBO_G: return findmedia(rates, nitems(rates), rate | IFM_IEEE80211_11G); case IEEE80211_MODE_VHT_2GHZ: case IEEE80211_MODE_VHT_5GHZ: /* XXX TODO: need to figure out mapping for VHT rates */ return IFM_AUTO; } return IFM_AUTO; } int ieee80211_media2rate(int mword) { static const int ieeerates[] = { -1, /* IFM_AUTO */ 0, /* IFM_MANUAL */ 0, /* IFM_NONE */ 2, /* IFM_IEEE80211_FH1 */ 4, /* IFM_IEEE80211_FH2 */ 2, /* IFM_IEEE80211_DS1 */ 4, /* IFM_IEEE80211_DS2 */ 11, /* IFM_IEEE80211_DS5 */ 22, /* IFM_IEEE80211_DS11 */ 44, /* IFM_IEEE80211_DS22 */ 12, /* IFM_IEEE80211_OFDM6 */ 18, /* IFM_IEEE80211_OFDM9 */ 24, /* IFM_IEEE80211_OFDM12 */ 36, /* IFM_IEEE80211_OFDM18 */ 48, /* IFM_IEEE80211_OFDM24 */ 72, /* IFM_IEEE80211_OFDM36 */ 96, /* IFM_IEEE80211_OFDM48 */ 108, /* IFM_IEEE80211_OFDM54 */ 144, /* IFM_IEEE80211_OFDM72 */ 0, /* IFM_IEEE80211_DS354k */ 0, /* IFM_IEEE80211_DS512k */ 6, /* IFM_IEEE80211_OFDM3 */ 9, /* IFM_IEEE80211_OFDM4 */ 54, /* IFM_IEEE80211_OFDM27 */ -1, /* IFM_IEEE80211_MCS */ -1, /* IFM_IEEE80211_VHT */ }; return IFM_SUBTYPE(mword) < nitems(ieeerates) ? ieeerates[IFM_SUBTYPE(mword)] : 0; } /* * The following hash function is adapted from "Hash Functions" by Bob Jenkins * ("Algorithm Alley", Dr. Dobbs Journal, September 1997). */ #define mix(a, b, c) \ do { \ a -= b; a -= c; a ^= (c >> 13); \ b -= c; b -= a; b ^= (a << 8); \ c -= a; c -= b; c ^= (b >> 13); \ a -= b; a -= c; a ^= (c >> 12); \ b -= c; b -= a; b ^= (a << 16); \ c -= a; c -= b; c ^= (b >> 5); \ a -= b; a -= c; a ^= (c >> 3); \ b -= c; b -= a; b ^= (a << 10); \ c -= a; c -= b; c ^= (b >> 15); \ } while (/*CONSTCOND*/0) uint32_t ieee80211_mac_hash(const struct ieee80211com *ic, const uint8_t addr[IEEE80211_ADDR_LEN]) { uint32_t a = 0x9e3779b9, b = 0x9e3779b9, c = ic->ic_hash_key; b += addr[5] << 8; b += addr[4]; a += addr[3] << 24; a += addr[2] << 16; a += addr[1] << 8; a += addr[0]; mix(a, b, c); return c; } #undef mix char ieee80211_channel_type_char(const struct ieee80211_channel *c) { if (IEEE80211_IS_CHAN_ST(c)) return 'S'; if (IEEE80211_IS_CHAN_108A(c)) return 'T'; if (IEEE80211_IS_CHAN_108G(c)) return 'G'; if (IEEE80211_IS_CHAN_VHT(c)) return 'v'; if (IEEE80211_IS_CHAN_HT(c)) return 'n'; if (IEEE80211_IS_CHAN_A(c)) return 'a'; if (IEEE80211_IS_CHAN_ANYG(c)) return 'g'; if (IEEE80211_IS_CHAN_B(c)) return 'b'; return 'f'; } /* * Determine whether the given key in the given VAP is a global key. * (key index 0..3, shared between all stations on a VAP.) * * This is either a WEP key or a GROUP key. * * Note this will NOT return true if it is a IGTK key. */ bool ieee80211_is_key_global(const struct ieee80211vap *vap, const struct ieee80211_key *key) { return (&vap->iv_nw_keys[0] <= key && key < &vap->iv_nw_keys[IEEE80211_WEP_NKID]); } /* * Determine whether the given key in the given VAP is a unicast key. */ bool ieee80211_is_key_unicast(const struct ieee80211vap *vap, const struct ieee80211_key *key) { /* * This is a short-cut for now; eventually we will need * to support multiple unicast keys, IGTK, etc) so we * will absolutely need to fix the key flags. */ return (!ieee80211_is_key_global(vap, key)); } /** * Determine whether the given control frame is from a known node * and destined to us. * * In some instances a control frame won't have a TA (eg ACKs), so * we should only verify the RA for those. * * @param ni ieee80211_node representing the sender, or BSS node * @param m0 mbuf representing the 802.11 frame. * @returns false if the frame is not a CTL frame (with a warning logged); * true if the frame is from a known sender / valid recipient, * false otherwise. */ bool ieee80211_is_ctl_frame_for_vap(struct ieee80211_node *ni, const struct mbuf *m0) { const struct ieee80211vap *vap = ni->ni_vap; const struct ieee80211_frame *wh; uint8_t subtype; wh = mtod(m0, const struct ieee80211_frame *); subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; /* Verify it's a ctl frame. */ KASSERT(IEEE80211_IS_CTL(wh), ("%s: not a CTL frame (fc[0]=0x%04x)", __func__, wh->i_fc[0])); if (!IEEE80211_IS_CTL(wh)) { if_printf(vap->iv_ifp, "%s: not a control frame (fc[0]=0x%04x)\n", __func__, wh->i_fc[0]); return (false); } /* Verify the TA if present. */ switch (subtype) { case IEEE80211_FC0_SUBTYPE_CTS: case IEEE80211_FC0_SUBTYPE_ACK: /* No TA. */ break; default: /* * Verify TA matches ni->ni_macaddr; for unknown * sources it will be the BSS node and ni->ni_macaddr * will the BSS MAC. */ if (!IEEE80211_ADDR_EQ(wh->i_addr2, ni->ni_macaddr)) return (false); break; } /* Verify the RA */ return (IEEE80211_ADDR_EQ(wh->i_addr1, vap->iv_myaddr)); } diff --git a/sys/net80211/ieee80211_freebsd.c b/sys/net80211/ieee80211_freebsd.c index 5c7ebd7c727c..b5ab79a4ad16 100644 --- a/sys/net80211/ieee80211_freebsd.c +++ b/sys/net80211/ieee80211_freebsd.c @@ -1,1371 +1,1419 @@ /*- * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 2003-2009 Sam Leffler, Errno Consulting * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include /* * IEEE 802.11 support (FreeBSD-specific code) */ #include "opt_wlan.h" #include #include #include #include #include #include #include #include #include #include #include +#include #include #include #include #include #include #include #include #include #include #include #include #include #include +#include + #include #include DEBUGNET_DEFINE(ieee80211); SYSCTL_NODE(_net, OID_AUTO, wlan, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "IEEE 80211 parameters"); #ifdef IEEE80211_DEBUG static int ieee80211_debug = 0; SYSCTL_INT(_net_wlan, OID_AUTO, debug, CTLFLAG_RW, &ieee80211_debug, 0, "debugging printfs"); #endif static const char wlanname[] = "wlan"; static struct if_clone *wlan_cloner; /* * priv(9) NET80211 checks. * Return 0 if operation is allowed, E* (usually EPERM) otherwise. */ int ieee80211_priv_check_vap_getkey(u_long cmd __unused, struct ieee80211vap *vap __unused, struct ifnet *ifp __unused) { return (priv_check(curthread, PRIV_NET80211_VAP_GETKEY)); } int ieee80211_priv_check_vap_manage(u_long cmd __unused, struct ieee80211vap *vap __unused, struct ifnet *ifp __unused) { return (priv_check(curthread, PRIV_NET80211_VAP_MANAGE)); } int ieee80211_priv_check_vap_setmac(u_long cmd __unused, struct ieee80211vap *vap __unused, struct ifnet *ifp __unused) { return (priv_check(curthread, PRIV_NET80211_VAP_SETMAC)); } int ieee80211_priv_check_create_vap(u_long cmd __unused, struct ieee80211vap *vap __unused, struct ifnet *ifp __unused) { return (priv_check(curthread, PRIV_NET80211_CREATE_VAP)); } static int wlan_clone_create(struct if_clone *ifc, char *name, size_t len, struct ifc_data *ifd, struct ifnet **ifpp) { struct ieee80211_clone_params cp; struct ieee80211vap *vap; struct ieee80211com *ic; int error; error = ieee80211_priv_check_create_vap(0, NULL, NULL); if (error) return error; error = ifc_copyin(ifd, &cp, sizeof(cp)); if (error) return error; ic = ieee80211_find_com(cp.icp_parent); if (ic == NULL) return ENXIO; if (cp.icp_opmode >= IEEE80211_OPMODE_MAX) { ic_printf(ic, "%s: invalid opmode %d\n", __func__, cp.icp_opmode); return EINVAL; } if ((ic->ic_caps & ieee80211_opcap[cp.icp_opmode]) == 0) { ic_printf(ic, "%s mode not supported\n", ieee80211_opmode_name[cp.icp_opmode]); return EOPNOTSUPP; } if ((cp.icp_flags & IEEE80211_CLONE_TDMA) && #ifdef IEEE80211_SUPPORT_TDMA (ic->ic_caps & IEEE80211_C_TDMA) == 0 #else (1) #endif ) { ic_printf(ic, "TDMA not supported\n"); return EOPNOTSUPP; } vap = ic->ic_vap_create(ic, wlanname, ifd->unit, cp.icp_opmode, cp.icp_flags, cp.icp_bssid, cp.icp_flags & IEEE80211_CLONE_MACADDR ? cp.icp_macaddr : ic->ic_macaddr); if (vap == NULL) return (EIO); #ifdef DEBUGNET if (ic->ic_debugnet_meth != NULL) DEBUGNET_SET(vap->iv_ifp, ieee80211); #endif *ifpp = vap->iv_ifp; return (0); } static int wlan_clone_destroy(struct if_clone *ifc, struct ifnet *ifp, uint32_t flags) { struct ieee80211vap *vap = ifp->if_softc; struct ieee80211com *ic = vap->iv_ic; ic->ic_vap_delete(vap); return (0); } void ieee80211_vap_destroy(struct ieee80211vap *vap) { CURVNET_SET(vap->iv_ifp->if_vnet); if_clone_destroyif(wlan_cloner, vap->iv_ifp); CURVNET_RESTORE(); } int ieee80211_sysctl_msecs_ticks(SYSCTL_HANDLER_ARGS) { int msecs = ticks_to_msecs(*(int *)arg1); int error; error = sysctl_handle_int(oidp, &msecs, 0, req); if (error || !req->newptr) return error; *(int *)arg1 = msecs_to_ticks(msecs); return 0; } static int ieee80211_sysctl_inact(SYSCTL_HANDLER_ARGS) { int inact = (*(int *)arg1) * IEEE80211_INACT_WAIT; int error; error = sysctl_handle_int(oidp, &inact, 0, req); if (error || !req->newptr) return error; *(int *)arg1 = inact / IEEE80211_INACT_WAIT; return 0; } static int ieee80211_sysctl_parent(SYSCTL_HANDLER_ARGS) { struct ieee80211com *ic = arg1; return SYSCTL_OUT_STR(req, ic->ic_name); } static int ieee80211_sysctl_radar(SYSCTL_HANDLER_ARGS) { struct ieee80211com *ic = arg1; int t = 0, error; error = sysctl_handle_int(oidp, &t, 0, req); if (error || !req->newptr) return error; IEEE80211_LOCK(ic); ieee80211_dfs_notify_radar(ic, ic->ic_curchan); IEEE80211_UNLOCK(ic); return 0; } /* * For now, just restart everything. * * Later on, it'd be nice to have a separate VAP restart to * full-device restart. */ static int ieee80211_sysctl_vap_restart(SYSCTL_HANDLER_ARGS) { struct ieee80211vap *vap = arg1; int t = 0, error; error = sysctl_handle_int(oidp, &t, 0, req); if (error || !req->newptr) return error; ieee80211_restart_all(vap->iv_ic); return 0; } void ieee80211_sysctl_attach(struct ieee80211com *ic) { } void ieee80211_sysctl_detach(struct ieee80211com *ic) { } void ieee80211_sysctl_vattach(struct ieee80211vap *vap) { struct ifnet *ifp = vap->iv_ifp; struct sysctl_ctx_list *ctx; struct sysctl_oid *oid; char num[14]; /* sufficient for 32 bits */ ctx = (struct sysctl_ctx_list *) IEEE80211_MALLOC(sizeof(struct sysctl_ctx_list), M_DEVBUF, IEEE80211_M_NOWAIT | IEEE80211_M_ZERO); if (ctx == NULL) { - if_printf(ifp, "%s: cannot allocate sysctl context!\n", - __func__); + net80211_vap_printf(vap, + "%s: cannot allocate sysctl context!\n", __func__); return; } sysctl_ctx_init(ctx); snprintf(num, sizeof(num), "%u", ifp->if_dunit); oid = SYSCTL_ADD_NODE(ctx, &SYSCTL_NODE_CHILDREN(_net, wlan), OID_AUTO, num, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, vap->iv_ic, 0, ieee80211_sysctl_parent, "A", "parent device"); SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, "driver_caps", CTLFLAG_RW, &vap->iv_caps, 0, "driver capabilities"); #ifdef IEEE80211_DEBUG vap->iv_debug = ieee80211_debug; SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, "debug", CTLFLAG_RW, &vap->iv_debug, 0, "control debugging printfs"); #endif SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, "bmiss_max", CTLFLAG_RW, &vap->iv_bmiss_max, 0, "consecutive beacon misses before scanning"); /* XXX inherit from tunables */ SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, "inact_run", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &vap->iv_inact_run, 0, ieee80211_sysctl_inact, "I", "station inactivity timeout (sec)"); SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, "inact_probe", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &vap->iv_inact_probe, 0, ieee80211_sysctl_inact, "I", "station inactivity probe timeout (sec)"); SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, "inact_auth", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &vap->iv_inact_auth, 0, ieee80211_sysctl_inact, "I", "station authentication timeout (sec)"); SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, "inact_init", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &vap->iv_inact_init, 0, ieee80211_sysctl_inact, "I", "station initial state timeout (sec)"); if (vap->iv_htcaps & IEEE80211_HTC_HT) { SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, "ampdu_mintraffic_bk", CTLFLAG_RW, &vap->iv_ampdu_mintraffic[WME_AC_BK], 0, "BK traffic tx aggr threshold (pps)"); SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, "ampdu_mintraffic_be", CTLFLAG_RW, &vap->iv_ampdu_mintraffic[WME_AC_BE], 0, "BE traffic tx aggr threshold (pps)"); SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, "ampdu_mintraffic_vo", CTLFLAG_RW, &vap->iv_ampdu_mintraffic[WME_AC_VO], 0, "VO traffic tx aggr threshold (pps)"); SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, "ampdu_mintraffic_vi", CTLFLAG_RW, &vap->iv_ampdu_mintraffic[WME_AC_VI], 0, "VI traffic tx aggr threshold (pps)"); } SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, "force_restart", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, vap, 0, ieee80211_sysctl_vap_restart, "I", "force a VAP restart"); if (vap->iv_caps & IEEE80211_C_DFS) { SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, "radar", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, vap->iv_ic, 0, ieee80211_sysctl_radar, "I", "simulate radar event"); } vap->iv_sysctl = ctx; vap->iv_oid = oid; } void ieee80211_sysctl_vdetach(struct ieee80211vap *vap) { if (vap->iv_sysctl != NULL) { sysctl_ctx_free(vap->iv_sysctl); IEEE80211_FREE(vap->iv_sysctl, M_DEVBUF); vap->iv_sysctl = NULL; } } int ieee80211_com_vincref(struct ieee80211vap *vap) { uint32_t ostate; ostate = atomic_fetchadd_32(&vap->iv_com_state, IEEE80211_COM_REF_ADD); if (ostate & IEEE80211_COM_DETACHED) { atomic_subtract_32(&vap->iv_com_state, IEEE80211_COM_REF_ADD); return (ENETDOWN); } if (_IEEE80211_MASKSHIFT(ostate, IEEE80211_COM_REF) == IEEE80211_COM_REF_MAX) { atomic_subtract_32(&vap->iv_com_state, IEEE80211_COM_REF_ADD); return (EOVERFLOW); } return (0); } void ieee80211_com_vdecref(struct ieee80211vap *vap) { uint32_t ostate; ostate = atomic_fetchadd_32(&vap->iv_com_state, -IEEE80211_COM_REF_ADD); KASSERT(_IEEE80211_MASKSHIFT(ostate, IEEE80211_COM_REF) != 0, ("com reference counter underflow")); (void) ostate; } void ieee80211_com_vdetach(struct ieee80211vap *vap) { int sleep_time; sleep_time = msecs_to_ticks(250); atomic_set_32(&vap->iv_com_state, IEEE80211_COM_DETACHED); while (_IEEE80211_MASKSHIFT(atomic_load_32(&vap->iv_com_state), IEEE80211_COM_REF) != 0) pause("comref", sleep_time); } int ieee80211_node_dectestref(struct ieee80211_node *ni) { /* XXX need equivalent of atomic_dec_and_test */ atomic_subtract_int(&ni->ni_refcnt, 1); return atomic_cmpset_int(&ni->ni_refcnt, 0, 1); } void ieee80211_drain_ifq(struct ifqueue *ifq) { struct ieee80211_node *ni; struct mbuf *m; for (;;) { IF_DEQUEUE(ifq, m); if (m == NULL) break; ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; KASSERT(ni != NULL, ("frame w/o node")); ieee80211_free_node(ni); m->m_pkthdr.rcvif = NULL; m_freem(m); } } void ieee80211_flush_ifq(struct ifqueue *ifq, struct ieee80211vap *vap) { struct ieee80211_node *ni; struct mbuf *m, **mprev; IF_LOCK(ifq); mprev = &ifq->ifq_head; while ((m = *mprev) != NULL) { ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; if (ni != NULL && ni->ni_vap == vap) { *mprev = m->m_nextpkt; /* remove from list */ ifq->ifq_len--; m_freem(m); ieee80211_free_node(ni); /* reclaim ref */ } else mprev = &m->m_nextpkt; } /* recalculate tail ptr */ m = ifq->ifq_head; for (; m != NULL && m->m_nextpkt != NULL; m = m->m_nextpkt) ; ifq->ifq_tail = m; IF_UNLOCK(ifq); } /* * As above, for mbufs allocated with m_gethdr/MGETHDR * or initialized by M_COPY_PKTHDR. */ #define MC_ALIGN(m, len) \ do { \ (m)->m_data += rounddown2(MCLBYTES - (len), sizeof(long)); \ } while (/* CONSTCOND */ 0) /* * Allocate and setup a management frame of the specified * size. We return the mbuf and a pointer to the start * of the contiguous data area that's been reserved based * on the packet length. The data area is forced to 32-bit * alignment and the buffer length to a multiple of 4 bytes. * This is done mainly so beacon frames (that require this) * can use this interface too. */ struct mbuf * ieee80211_getmgtframe(uint8_t **frm, int headroom, int pktlen) { struct mbuf *m; u_int len; /* * NB: we know the mbuf routines will align the data area * so we don't need to do anything special. */ len = roundup2(headroom + pktlen, 4); KASSERT(len <= MCLBYTES, ("802.11 mgt frame too large: %u", len)); if (len < MINCLSIZE) { m = m_gethdr(IEEE80211_M_NOWAIT, MT_DATA); /* * Align the data in case additional headers are added. * This should only happen when a WEP header is added * which only happens for shared key authentication mgt * frames which all fit in MHLEN. */ if (m != NULL) M_ALIGN(m, len); } else { m = m_getcl(IEEE80211_M_NOWAIT, MT_DATA, M_PKTHDR); if (m != NULL) MC_ALIGN(m, len); } if (m != NULL) { m->m_data += headroom; *frm = m->m_data; } return m; } #ifndef __NO_STRICT_ALIGNMENT /* * Re-align the payload in the mbuf. This is mainly used (right now) * to handle IP header alignment requirements on certain architectures. */ struct mbuf * ieee80211_realign(struct ieee80211vap *vap, struct mbuf *m, size_t align) { int pktlen, space; struct mbuf *n; pktlen = m->m_pkthdr.len; space = pktlen + align; if (space < MINCLSIZE) n = m_gethdr(IEEE80211_M_NOWAIT, MT_DATA); else { n = m_getjcl(IEEE80211_M_NOWAIT, MT_DATA, M_PKTHDR, space <= MCLBYTES ? MCLBYTES : #if MJUMPAGESIZE != MCLBYTES space <= MJUMPAGESIZE ? MJUMPAGESIZE : #endif space <= MJUM9BYTES ? MJUM9BYTES : MJUM16BYTES); } if (__predict_true(n != NULL)) { m_move_pkthdr(n, m); n->m_data = (caddr_t)(ALIGN(n->m_data + align) - align); m_copydata(m, 0, pktlen, mtod(n, caddr_t)); n->m_len = pktlen; } else { IEEE80211_DISCARD(vap, IEEE80211_MSG_ANY, mtod(m, const struct ieee80211_frame *), NULL, "%s", "no mbuf to realign"); vap->iv_stats.is_rx_badalign++; } m_freem(m); return n; } #endif /* !__NO_STRICT_ALIGNMENT */ int ieee80211_add_callback(struct mbuf *m, void (*func)(struct ieee80211_node *, void *, int), void *arg) { struct m_tag *mtag; struct ieee80211_cb *cb; mtag = m_tag_alloc(MTAG_ABI_NET80211, NET80211_TAG_CALLBACK, sizeof(struct ieee80211_cb), IEEE80211_M_NOWAIT); if (mtag == NULL) return 0; cb = (struct ieee80211_cb *)(mtag+1); cb->func = func; cb->arg = arg; m_tag_prepend(m, mtag); m->m_flags |= M_TXCB; return 1; } int ieee80211_add_xmit_params(struct mbuf *m, const struct ieee80211_bpf_params *params) { struct m_tag *mtag; struct ieee80211_tx_params *tx; mtag = m_tag_alloc(MTAG_ABI_NET80211, NET80211_TAG_XMIT_PARAMS, sizeof(struct ieee80211_tx_params), IEEE80211_M_NOWAIT); if (mtag == NULL) return (0); tx = (struct ieee80211_tx_params *)(mtag+1); memcpy(&tx->params, params, sizeof(struct ieee80211_bpf_params)); m_tag_prepend(m, mtag); return (1); } int ieee80211_get_xmit_params(struct mbuf *m, struct ieee80211_bpf_params *params) { struct m_tag *mtag; struct ieee80211_tx_params *tx; mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_XMIT_PARAMS, NULL); if (mtag == NULL) return (-1); tx = (struct ieee80211_tx_params *)(mtag + 1); memcpy(params, &tx->params, sizeof(struct ieee80211_bpf_params)); return (0); } void ieee80211_process_callback(struct ieee80211_node *ni, struct mbuf *m, int status) { struct m_tag *mtag; mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_CALLBACK, NULL); if (mtag != NULL) { struct ieee80211_cb *cb = (struct ieee80211_cb *)(mtag+1); cb->func(ni, cb->arg, status); } } /* * Add RX parameters to the given mbuf. * * Returns 1 if OK, 0 on error. */ int ieee80211_add_rx_params(struct mbuf *m, const struct ieee80211_rx_stats *rxs) { struct m_tag *mtag; struct ieee80211_rx_params *rx; mtag = m_tag_alloc(MTAG_ABI_NET80211, NET80211_TAG_RECV_PARAMS, sizeof(struct ieee80211_rx_stats), IEEE80211_M_NOWAIT); if (mtag == NULL) return (0); rx = (struct ieee80211_rx_params *)(mtag + 1); memcpy(&rx->params, rxs, sizeof(*rxs)); m_tag_prepend(m, mtag); return (1); } int ieee80211_get_rx_params(struct mbuf *m, struct ieee80211_rx_stats *rxs) { struct m_tag *mtag; struct ieee80211_rx_params *rx; mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_RECV_PARAMS, NULL); if (mtag == NULL) return (-1); rx = (struct ieee80211_rx_params *)(mtag + 1); memcpy(rxs, &rx->params, sizeof(*rxs)); return (0); } const struct ieee80211_rx_stats * ieee80211_get_rx_params_ptr(struct mbuf *m) { struct m_tag *mtag; struct ieee80211_rx_params *rx; mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_RECV_PARAMS, NULL); if (mtag == NULL) return (NULL); rx = (struct ieee80211_rx_params *)(mtag + 1); return (&rx->params); } /* * Add TOA parameters to the given mbuf. */ int ieee80211_add_toa_params(struct mbuf *m, const struct ieee80211_toa_params *p) { struct m_tag *mtag; struct ieee80211_toa_params *rp; mtag = m_tag_alloc(MTAG_ABI_NET80211, NET80211_TAG_TOA_PARAMS, sizeof(struct ieee80211_toa_params), IEEE80211_M_NOWAIT); if (mtag == NULL) return (0); rp = (struct ieee80211_toa_params *)(mtag + 1); memcpy(rp, p, sizeof(*rp)); m_tag_prepend(m, mtag); return (1); } int ieee80211_get_toa_params(struct mbuf *m, struct ieee80211_toa_params *p) { struct m_tag *mtag; struct ieee80211_toa_params *rp; mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_TOA_PARAMS, NULL); if (mtag == NULL) return (0); rp = (struct ieee80211_toa_params *)(mtag + 1); if (p != NULL) memcpy(p, rp, sizeof(*p)); return (1); } /* * @brief Transmit a frame to the parent interface. * * Transmit an 802.11 or 802.3 frame to the parent interface. * * This is called as part of 802.11 processing to enqueue a frame * from net80211 into the device for transmit. * * If the interface is marked as 802.3 via IEEE80211_C_8023ENCAP * (ie, doing offload), then an 802.3 frame will be sent and the * driver will need to understand what to do. * * If the interface is marked as 802.11 (ie, no offload), then * an encapsulated 802.11 frame will be queued. In the case * of an 802.11 fragmented frame this will be a list of frames * representing the fragments making up the 802.11 frame, linked * via m_nextpkt. * * A fragmented frame list will consist of: * + only the first frame with M_SEQNO_SET() assigned the sequence number; * + only the first frame with the node reference and node in rcvif; * + all frames will have the sequence + fragment number populated in * the 802.11 header. * * The driver must ensure it doesn't try releasing a node reference * for each fragment in the list. * * The provided mbuf/list is consumed both upon success and error. * * @param ic struct ieee80211com device to enqueue frame to * @param m struct mbuf chain / packet list to enqueue * @returns 0 if successful, errno if error. */ int ieee80211_parent_xmitpkt(struct ieee80211com *ic, struct mbuf *m) { int error; /* * Assert the IC TX lock is held - this enforces the * processing -> queuing order is maintained */ IEEE80211_TX_LOCK_ASSERT(ic); error = ic->ic_transmit(ic, m); if (error) { struct ieee80211_node *ni; ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; /* XXX number of fragments */ if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1); /* Note: there's only one node reference for a fragment list */ ieee80211_free_node(ni); ieee80211_free_mbuf(m); } return (error); } /* * @brief Transmit an 802.3 frame to the VAP interface. * * This is the entry point for the wifi stack to enqueue 802.3 * encapsulated frames for transmit to the given vap/ifnet instance. * This is used in paths where 802.3 frames have been received * or queued, and need to be pushed through the VAP encapsulation * and transmit processing pipeline. * * The provided mbuf/list is consumed both upon success and error. * * @param vap struct ieee80211vap instance to transmit frame to * @param m mbuf to transmit * @returns 0 if OK, errno if error */ int ieee80211_vap_xmitpkt(struct ieee80211vap *vap, struct mbuf *m) { struct ifnet *ifp = vap->iv_ifp; /* * When transmitting via the VAP, we shouldn't hold * any IC TX lock as the VAP TX path will acquire it. */ IEEE80211_TX_UNLOCK_ASSERT(vap->iv_ic); return (ifp->if_transmit(ifp, m)); } #include void net80211_get_random_bytes(void *p, size_t n) { uint8_t *dp = p; while (n > 0) { uint32_t v = arc4random(); size_t nb = n > sizeof(uint32_t) ? sizeof(uint32_t) : n; bcopy(&v, dp, n > sizeof(uint32_t) ? sizeof(uint32_t) : n); dp += sizeof(uint32_t), n -= nb; } } /* * Helper function for events that pass just a single mac address. */ static void notify_macaddr(struct ifnet *ifp, int op, const uint8_t mac[IEEE80211_ADDR_LEN]) { struct ieee80211_join_event iev; CURVNET_SET(ifp->if_vnet); memset(&iev, 0, sizeof(iev)); IEEE80211_ADDR_COPY(iev.iev_addr, mac); rt_ieee80211msg(ifp, op, &iev, sizeof(iev)); CURVNET_RESTORE(); } void ieee80211_notify_node_join(struct ieee80211_node *ni, int newassoc) { struct ieee80211vap *vap = ni->ni_vap; struct ifnet *ifp = vap->iv_ifp; CURVNET_SET_QUIET(ifp->if_vnet); IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%snode join", (ni == vap->iv_bss) ? "bss " : ""); if (ni == vap->iv_bss) { notify_macaddr(ifp, newassoc ? RTM_IEEE80211_ASSOC : RTM_IEEE80211_REASSOC, ni->ni_bssid); if_link_state_change(ifp, LINK_STATE_UP); } else { notify_macaddr(ifp, newassoc ? RTM_IEEE80211_JOIN : RTM_IEEE80211_REJOIN, ni->ni_macaddr); } CURVNET_RESTORE(); } void ieee80211_notify_node_leave(struct ieee80211_node *ni) { struct ieee80211vap *vap = ni->ni_vap; struct ifnet *ifp = vap->iv_ifp; CURVNET_SET_QUIET(ifp->if_vnet); IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%snode leave", (ni == vap->iv_bss) ? "bss " : ""); if (ni == vap->iv_bss) { rt_ieee80211msg(ifp, RTM_IEEE80211_DISASSOC, NULL, 0); if_link_state_change(ifp, LINK_STATE_DOWN); } else { /* fire off wireless event station leaving */ notify_macaddr(ifp, RTM_IEEE80211_LEAVE, ni->ni_macaddr); } CURVNET_RESTORE(); } void ieee80211_notify_scan_done(struct ieee80211vap *vap) { struct ifnet *ifp = vap->iv_ifp; IEEE80211_DPRINTF(vap, IEEE80211_MSG_SCAN, "%s\n", "notify scan done"); /* dispatch wireless event indicating scan completed */ CURVNET_SET(ifp->if_vnet); rt_ieee80211msg(ifp, RTM_IEEE80211_SCAN, NULL, 0); CURVNET_RESTORE(); } void ieee80211_notify_replay_failure(struct ieee80211vap *vap, const struct ieee80211_frame *wh, const struct ieee80211_key *k, u_int64_t rsc, int tid) { struct ifnet *ifp = vap->iv_ifp; IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2, "%s replay detected tid %d ", k->wk_cipher->ic_name, tid, (intmax_t) rsc, (intmax_t) rsc, (intmax_t) k->wk_keyrsc[tid], (intmax_t) k->wk_keyrsc[tid], k->wk_keyix, k->wk_rxkeyix); if (ifp != NULL) { /* NB: for cipher test modules */ struct ieee80211_replay_event iev; IEEE80211_ADDR_COPY(iev.iev_dst, wh->i_addr1); IEEE80211_ADDR_COPY(iev.iev_src, wh->i_addr2); iev.iev_cipher = k->wk_cipher->ic_cipher; if (k->wk_rxkeyix != IEEE80211_KEYIX_NONE) iev.iev_keyix = k->wk_rxkeyix; else iev.iev_keyix = k->wk_keyix; iev.iev_keyrsc = k->wk_keyrsc[tid]; iev.iev_rsc = rsc; CURVNET_SET(ifp->if_vnet); rt_ieee80211msg(ifp, RTM_IEEE80211_REPLAY, &iev, sizeof(iev)); CURVNET_RESTORE(); } } void ieee80211_notify_michael_failure(struct ieee80211vap *vap, const struct ieee80211_frame *wh, ieee80211_keyix keyix) { struct ifnet *ifp = vap->iv_ifp; IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2, "michael MIC verification failed ", keyix); vap->iv_stats.is_rx_tkipmic++; if (ifp != NULL) { /* NB: for cipher test modules */ struct ieee80211_michael_event iev; IEEE80211_ADDR_COPY(iev.iev_dst, wh->i_addr1); IEEE80211_ADDR_COPY(iev.iev_src, wh->i_addr2); iev.iev_cipher = IEEE80211_CIPHER_TKIP; iev.iev_keyix = keyix; CURVNET_SET(ifp->if_vnet); rt_ieee80211msg(ifp, RTM_IEEE80211_MICHAEL, &iev, sizeof(iev)); CURVNET_RESTORE(); } } void ieee80211_notify_wds_discover(struct ieee80211_node *ni) { struct ieee80211vap *vap = ni->ni_vap; struct ifnet *ifp = vap->iv_ifp; notify_macaddr(ifp, RTM_IEEE80211_WDS, ni->ni_macaddr); } void ieee80211_notify_csa(struct ieee80211com *ic, const struct ieee80211_channel *c, int mode, int count) { struct ieee80211_csa_event iev; struct ieee80211vap *vap; struct ifnet *ifp; memset(&iev, 0, sizeof(iev)); iev.iev_flags = c->ic_flags; iev.iev_freq = c->ic_freq; iev.iev_ieee = c->ic_ieee; iev.iev_mode = mode; iev.iev_count = count; TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { ifp = vap->iv_ifp; CURVNET_SET(ifp->if_vnet); rt_ieee80211msg(ifp, RTM_IEEE80211_CSA, &iev, sizeof(iev)); CURVNET_RESTORE(); } } void ieee80211_notify_radar(struct ieee80211com *ic, const struct ieee80211_channel *c) { struct ieee80211_radar_event iev; struct ieee80211vap *vap; struct ifnet *ifp; memset(&iev, 0, sizeof(iev)); iev.iev_flags = c->ic_flags; iev.iev_freq = c->ic_freq; iev.iev_ieee = c->ic_ieee; TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { ifp = vap->iv_ifp; CURVNET_SET(ifp->if_vnet); rt_ieee80211msg(ifp, RTM_IEEE80211_RADAR, &iev, sizeof(iev)); CURVNET_RESTORE(); } } void ieee80211_notify_cac(struct ieee80211com *ic, const struct ieee80211_channel *c, enum ieee80211_notify_cac_event type) { struct ieee80211_cac_event iev; struct ieee80211vap *vap; struct ifnet *ifp; memset(&iev, 0, sizeof(iev)); iev.iev_flags = c->ic_flags; iev.iev_freq = c->ic_freq; iev.iev_ieee = c->ic_ieee; iev.iev_type = type; TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { ifp = vap->iv_ifp; CURVNET_SET(ifp->if_vnet); rt_ieee80211msg(ifp, RTM_IEEE80211_CAC, &iev, sizeof(iev)); CURVNET_RESTORE(); } } void ieee80211_notify_node_deauth(struct ieee80211_node *ni) { struct ieee80211vap *vap = ni->ni_vap; struct ifnet *ifp = vap->iv_ifp; IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%s", "node deauth"); notify_macaddr(ifp, RTM_IEEE80211_DEAUTH, ni->ni_macaddr); } void ieee80211_notify_node_auth(struct ieee80211_node *ni) { struct ieee80211vap *vap = ni->ni_vap; struct ifnet *ifp = vap->iv_ifp; IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%s", "node auth"); notify_macaddr(ifp, RTM_IEEE80211_AUTH, ni->ni_macaddr); } void ieee80211_notify_country(struct ieee80211vap *vap, const uint8_t bssid[IEEE80211_ADDR_LEN], const uint8_t cc[2]) { struct ifnet *ifp = vap->iv_ifp; struct ieee80211_country_event iev; memset(&iev, 0, sizeof(iev)); IEEE80211_ADDR_COPY(iev.iev_addr, bssid); iev.iev_cc[0] = cc[0]; iev.iev_cc[1] = cc[1]; CURVNET_SET(ifp->if_vnet); rt_ieee80211msg(ifp, RTM_IEEE80211_COUNTRY, &iev, sizeof(iev)); CURVNET_RESTORE(); } void ieee80211_notify_radio(struct ieee80211com *ic, int state) { struct ieee80211_radio_event iev; struct ieee80211vap *vap; struct ifnet *ifp; memset(&iev, 0, sizeof(iev)); iev.iev_state = state; TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { ifp = vap->iv_ifp; CURVNET_SET(ifp->if_vnet); rt_ieee80211msg(ifp, RTM_IEEE80211_RADIO, &iev, sizeof(iev)); CURVNET_RESTORE(); } } void ieee80211_notify_ifnet_change(struct ieee80211vap *vap, int if_flags_mask) { struct ifnet *ifp = vap->iv_ifp; IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG, "%s\n", "interface state change"); CURVNET_SET(ifp->if_vnet); rt_ifmsg(ifp, if_flags_mask); CURVNET_RESTORE(); } void ieee80211_load_module(const char *modname) { #ifdef notyet (void)kern_kldload(curthread, modname, NULL); #else printf("%s: load the %s module by hand for now.\n", __func__, modname); #endif } static eventhandler_tag wlan_bpfevent; static eventhandler_tag wlan_ifllevent; static void bpf_track(void *arg, struct ifnet *ifp, int dlt, int attach) { /* NB: identify vap's by if_init */ if (dlt == DLT_IEEE802_11_RADIO && ifp->if_init == ieee80211_init) { struct ieee80211vap *vap = ifp->if_softc; /* * Track bpf radiotap listener state. We mark the vap * to indicate if any listener is present and the com * to indicate if any listener exists on any associated * vap. This flag is used by drivers to prepare radiotap * state only when needed. */ if (attach) { ieee80211_syncflag_ext(vap, IEEE80211_FEXT_BPF); if (vap->iv_opmode == IEEE80211_M_MONITOR) atomic_add_int(&vap->iv_ic->ic_montaps, 1); } else if (!bpf_peers_present(vap->iv_rawbpf)) { ieee80211_syncflag_ext(vap, -IEEE80211_FEXT_BPF); if (vap->iv_opmode == IEEE80211_M_MONITOR) atomic_subtract_int(&vap->iv_ic->ic_montaps, 1); } } } /* * Change MAC address on the vap (if was not started). */ static void wlan_iflladdr(void *arg __unused, struct ifnet *ifp) { /* NB: identify vap's by if_init */ if (ifp->if_init == ieee80211_init && (ifp->if_flags & IFF_UP) == 0) { struct ieee80211vap *vap = ifp->if_softc; IEEE80211_ADDR_COPY(vap->iv_myaddr, IF_LLADDR(ifp)); } } /* * Fetch the VAP name. * * This returns a const char pointer suitable for debugging, * but don't expect it to stick around for much longer. */ const char * ieee80211_get_vap_ifname(struct ieee80211vap *vap) { if (vap->iv_ifp == NULL) return "(none)"; return (if_name(vap->iv_ifp)); } #ifdef DEBUGNET static void ieee80211_debugnet_init(struct ifnet *ifp, int *nrxr, int *ncl, int *clsize) { struct ieee80211vap *vap; struct ieee80211com *ic; vap = if_getsoftc(ifp); ic = vap->iv_ic; IEEE80211_LOCK(ic); ic->ic_debugnet_meth->dn8_init(ic, nrxr, ncl, clsize); IEEE80211_UNLOCK(ic); } static void ieee80211_debugnet_event(struct ifnet *ifp, enum debugnet_ev ev) { struct ieee80211vap *vap; struct ieee80211com *ic; vap = if_getsoftc(ifp); ic = vap->iv_ic; IEEE80211_LOCK(ic); ic->ic_debugnet_meth->dn8_event(ic, ev); IEEE80211_UNLOCK(ic); } static int ieee80211_debugnet_transmit(struct ifnet *ifp, struct mbuf *m) { return (ieee80211_vap_transmit(ifp, m)); } static int ieee80211_debugnet_poll(struct ifnet *ifp, int count) { struct ieee80211vap *vap; struct ieee80211com *ic; vap = if_getsoftc(ifp); ic = vap->iv_ic; return (ic->ic_debugnet_meth->dn8_poll(ic, count)); } #endif /** * @brief Check if the MAC address was changed by the upper layer. * * This is specifically to handle cases like the MAC address * being changed via an ioctl (eg SIOCSIFLLADDR). * * @param vap VAP to sync MAC address for */ void ieee80211_vap_sync_mac_address(struct ieee80211vap *vap) { struct epoch_tracker et; const struct ifnet *ifp = vap->iv_ifp; /* * Check if the MAC address was changed * via SIOCSIFLLADDR ioctl. * * NB: device may be detached during initialization; * use if_ioctl for existence check. */ NET_EPOCH_ENTER(et); if (ifp->if_ioctl == ieee80211_ioctl && (ifp->if_flags & IFF_UP) == 0 && !IEEE80211_ADDR_EQ(vap->iv_myaddr, IF_LLADDR(ifp))) IEEE80211_ADDR_COPY(vap->iv_myaddr, IF_LLADDR(ifp)); NET_EPOCH_EXIT(et); } /** * @brief Initial MAC address setup for a VAP. * * @param vap VAP to sync MAC address for */ void ieee80211_vap_copy_mac_address(struct ieee80211vap *vap) { struct epoch_tracker et; NET_EPOCH_ENTER(et); IEEE80211_ADDR_COPY(vap->iv_myaddr, IF_LLADDR(vap->iv_ifp)); NET_EPOCH_EXIT(et); } /** * @brief Deliver data into the upper ifp of the VAP interface * * This delivers an 802.3 frame from net80211 up to the operating * system network interface layer. * * @param vap the current VAP * @param m the 802.3 frame to pass up to the VAP interface * * Note: this API consumes the mbuf. */ void ieee80211_vap_deliver_data(struct ieee80211vap *vap, struct mbuf *m) { struct epoch_tracker et; NET_EPOCH_ENTER(et); if_input(vap->iv_ifp, m); NET_EPOCH_EXIT(et); } /** * @brief Return whether the VAP is configured with monitor mode * * This checks the operating system layer for whether monitor mode * is enabled. * * @param vap the current VAP * @retval true if the underlying interface is in MONITOR mode, false otherwise */ bool ieee80211_vap_ifp_check_is_monitor(struct ieee80211vap *vap) { return ((if_getflags(vap->iv_ifp) & IFF_MONITOR) != 0); } /** * @brief Return whether the VAP is configured in simplex mode. * * This checks the operating system layer for whether simplex mode * is enabled. * * @param vap the current VAP * @retval true if the underlying interface is in SIMPLEX mode, false otherwise */ bool ieee80211_vap_ifp_check_is_simplex(struct ieee80211vap *vap) { return ((if_getflags(vap->iv_ifp) & IFF_SIMPLEX) != 0); } /** * @brief Return if the VAP underlying network interface is running * * @param vap the current VAP * @retval true if the underlying interface is running; false otherwise */ bool ieee80211_vap_ifp_check_is_running(struct ieee80211vap *vap) { return ((if_getdrvflags(vap->iv_ifp) & IFF_DRV_RUNNING) != 0); } /** * @brief Change the VAP underlying network interface state * * @param vap the current VAP * @param state true to mark the interface as RUNNING, false to clear */ void ieee80211_vap_ifp_set_running_state(struct ieee80211vap *vap, bool state) { if (state) if_setdrvflagbits(vap->iv_ifp, IFF_DRV_RUNNING, 0); else if_setdrvflagbits(vap->iv_ifp, 0, IFF_DRV_RUNNING); } /** * @brief Return the broadcast MAC address. * * @param vap The current VAP * @retval a uint8_t array representing the ethernet broadcast address */ const uint8_t * ieee80211_vap_get_broadcast_address(struct ieee80211vap *vap) { return (if_getbroadcastaddr(vap->iv_ifp)); } +/** + * @brief net80211 printf() (not vap/ic related) + */ +void +net80211_printf(const char *fmt, ...) +{ + va_list ap; + + va_start(ap, fmt); + vprintf(fmt, ap); + va_end(ap); +} + +/** + * @brief VAP specific printf() + */ +void +net80211_vap_printf(const struct ieee80211vap *vap, const char *fmt, ...) +{ + char if_fmt[256]; + va_list ap; + + va_start(ap, fmt); + snprintf(if_fmt, sizeof(if_fmt), "%s: %s", if_name(vap->iv_ifp), fmt); + vlog(LOG_INFO, if_fmt, ap); + va_end(ap); +} + +/** + * @brief ic specific printf() + */ +void +net80211_ic_printf(const struct ieee80211com *ic, const char *fmt, ...) +{ + va_list ap; + + /* + * TODO: do the vap_printf stuff above, use vlog(LOG_INFO, ...) + */ + printf("%s: ", ic->ic_name); + va_start(ap, fmt); + vprintf(fmt, ap); + va_end(ap); +} + /* * Module glue. * * NB: the module name is "wlan" for compatibility with NetBSD. */ static int wlan_modevent(module_t mod, int type, void *unused) { switch (type) { case MOD_LOAD: if (bootverbose) printf("wlan: <802.11 Link Layer>\n"); wlan_bpfevent = EVENTHANDLER_REGISTER(bpf_track, bpf_track, 0, EVENTHANDLER_PRI_ANY); wlan_ifllevent = EVENTHANDLER_REGISTER(iflladdr_event, wlan_iflladdr, NULL, EVENTHANDLER_PRI_ANY); struct if_clone_addreq req = { .create_f = wlan_clone_create, .destroy_f = wlan_clone_destroy, .flags = IFC_F_AUTOUNIT, }; wlan_cloner = ifc_attach_cloner(wlanname, &req); return 0; case MOD_UNLOAD: ifc_detach_cloner(wlan_cloner); EVENTHANDLER_DEREGISTER(bpf_track, wlan_bpfevent); EVENTHANDLER_DEREGISTER(iflladdr_event, wlan_ifllevent); return 0; } return EINVAL; } static moduledata_t wlan_mod = { wlanname, wlan_modevent, 0 }; DECLARE_MODULE(wlan, wlan_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST); MODULE_VERSION(wlan, 1); MODULE_DEPEND(wlan, ether, 1, 1, 1); #ifdef IEEE80211_ALQ MODULE_DEPEND(wlan, alq, 1, 1, 1); #endif /* IEEE80211_ALQ */ diff --git a/sys/net80211/ieee80211_freebsd.h b/sys/net80211/ieee80211_freebsd.h index 5afc093ba90c..141b13f9f740 100644 --- a/sys/net80211/ieee80211_freebsd.h +++ b/sys/net80211/ieee80211_freebsd.h @@ -1,734 +1,740 @@ /*- * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 2003-2008 Sam Leffler, Errno Consulting * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef _NET80211_IEEE80211_FREEBSD_H_ #define _NET80211_IEEE80211_FREEBSD_H_ #ifdef _KERNEL #include #include #include #include #include #include #include #include #include #include /* * priv(9) NET80211 checks. */ struct ieee80211vap; int ieee80211_priv_check_vap_getkey(u_long, struct ieee80211vap *, struct ifnet *); int ieee80211_priv_check_vap_manage(u_long, struct ieee80211vap *, struct ifnet *); int ieee80211_priv_check_vap_setmac(u_long, struct ieee80211vap *, struct ifnet *); int ieee80211_priv_check_create_vap(u_long, struct ieee80211vap *, struct ifnet *); /* * Common state locking definitions. */ typedef struct { char name[16]; /* e.g. "ath0_com_lock" */ struct mtx mtx; } ieee80211_com_lock_t; #define IEEE80211_LOCK_INIT(_ic, _name) do { \ ieee80211_com_lock_t *cl = &(_ic)->ic_comlock; \ snprintf(cl->name, sizeof(cl->name), "%s_com_lock", _name); \ mtx_init(&cl->mtx, cl->name, NULL, MTX_DEF | MTX_RECURSE); \ } while (0) #define IEEE80211_LOCK_OBJ(_ic) (&(_ic)->ic_comlock.mtx) #define IEEE80211_LOCK_DESTROY(_ic) mtx_destroy(IEEE80211_LOCK_OBJ(_ic)) #define IEEE80211_LOCK(_ic) mtx_lock(IEEE80211_LOCK_OBJ(_ic)) #define IEEE80211_UNLOCK(_ic) mtx_unlock(IEEE80211_LOCK_OBJ(_ic)) #define IEEE80211_LOCK_ASSERT(_ic) \ mtx_assert(IEEE80211_LOCK_OBJ(_ic), MA_OWNED) #define IEEE80211_UNLOCK_ASSERT(_ic) \ mtx_assert(IEEE80211_LOCK_OBJ(_ic), MA_NOTOWNED) #define IEEE80211_IS_LOCKED(_ic) \ mtx_owned(IEEE80211_LOCK_OBJ(_ic)) /* * Transmit lock. * * This is a (mostly) temporary lock designed to serialise all of the * transmission operations throughout the stack. */ typedef struct { char name[16]; /* e.g. "ath0_tx_lock" */ struct mtx mtx; } ieee80211_tx_lock_t; #define IEEE80211_TX_LOCK_INIT(_ic, _name) do { \ ieee80211_tx_lock_t *cl = &(_ic)->ic_txlock; \ snprintf(cl->name, sizeof(cl->name), "%s_tx_lock", _name); \ mtx_init(&cl->mtx, cl->name, NULL, MTX_DEF); \ } while (0) #define IEEE80211_TX_LOCK_OBJ(_ic) (&(_ic)->ic_txlock.mtx) #define IEEE80211_TX_LOCK_DESTROY(_ic) mtx_destroy(IEEE80211_TX_LOCK_OBJ(_ic)) #define IEEE80211_TX_LOCK(_ic) mtx_lock(IEEE80211_TX_LOCK_OBJ(_ic)) #define IEEE80211_TX_UNLOCK(_ic) mtx_unlock(IEEE80211_TX_LOCK_OBJ(_ic)) #define IEEE80211_TX_LOCK_ASSERT(_ic) \ mtx_assert(IEEE80211_TX_LOCK_OBJ(_ic), MA_OWNED) #define IEEE80211_TX_UNLOCK_ASSERT(_ic) \ mtx_assert(IEEE80211_TX_LOCK_OBJ(_ic), MA_NOTOWNED) /* * Stageq / ni_tx_superg lock */ typedef struct { char name[16]; /* e.g. "ath0_ff_lock" */ struct mtx mtx; } ieee80211_ff_lock_t; #define IEEE80211_FF_LOCK_INIT(_ic, _name) do { \ ieee80211_ff_lock_t *fl = &(_ic)->ic_fflock; \ snprintf(fl->name, sizeof(fl->name), "%s_ff_lock", _name); \ mtx_init(&fl->mtx, fl->name, NULL, MTX_DEF); \ } while (0) #define IEEE80211_FF_LOCK_OBJ(_ic) (&(_ic)->ic_fflock.mtx) #define IEEE80211_FF_LOCK_DESTROY(_ic) mtx_destroy(IEEE80211_FF_LOCK_OBJ(_ic)) #define IEEE80211_FF_LOCK(_ic) mtx_lock(IEEE80211_FF_LOCK_OBJ(_ic)) #define IEEE80211_FF_UNLOCK(_ic) mtx_unlock(IEEE80211_FF_LOCK_OBJ(_ic)) #define IEEE80211_FF_LOCK_ASSERT(_ic) \ mtx_assert(IEEE80211_FF_LOCK_OBJ(_ic), MA_OWNED) /* * Node locking definitions. */ typedef struct { char name[16]; /* e.g. "ath0_node_lock" */ struct mtx mtx; } ieee80211_node_lock_t; #define IEEE80211_NODE_LOCK_INIT(_nt, _name) do { \ ieee80211_node_lock_t *nl = &(_nt)->nt_nodelock; \ snprintf(nl->name, sizeof(nl->name), "%s_node_lock", _name); \ mtx_init(&nl->mtx, nl->name, NULL, MTX_DEF | MTX_RECURSE); \ } while (0) #define IEEE80211_NODE_LOCK_OBJ(_nt) (&(_nt)->nt_nodelock.mtx) #define IEEE80211_NODE_LOCK_DESTROY(_nt) \ mtx_destroy(IEEE80211_NODE_LOCK_OBJ(_nt)) #define IEEE80211_NODE_LOCK(_nt) \ mtx_lock(IEEE80211_NODE_LOCK_OBJ(_nt)) #define IEEE80211_NODE_IS_LOCKED(_nt) \ mtx_owned(IEEE80211_NODE_LOCK_OBJ(_nt)) #define IEEE80211_NODE_UNLOCK(_nt) \ mtx_unlock(IEEE80211_NODE_LOCK_OBJ(_nt)) #define IEEE80211_NODE_LOCK_ASSERT(_nt) \ mtx_assert(IEEE80211_NODE_LOCK_OBJ(_nt), MA_OWNED) /* * Power-save queue definitions. */ typedef struct mtx ieee80211_psq_lock_t; #define IEEE80211_PSQ_INIT(_psq, _name) \ mtx_init(&(_psq)->psq_lock, _name, "802.11 ps q", MTX_DEF) #define IEEE80211_PSQ_DESTROY(_psq) mtx_destroy(&(_psq)->psq_lock) #define IEEE80211_PSQ_LOCK(_psq) mtx_lock(&(_psq)->psq_lock) #define IEEE80211_PSQ_UNLOCK(_psq) mtx_unlock(&(_psq)->psq_lock) #ifndef IF_PREPEND_LIST #define _IF_PREPEND_LIST(ifq, mhead, mtail, mcount) do { \ (mtail)->m_nextpkt = (ifq)->ifq_head; \ if ((ifq)->ifq_tail == NULL) \ (ifq)->ifq_tail = (mtail); \ (ifq)->ifq_head = (mhead); \ (ifq)->ifq_len += (mcount); \ } while (0) #define IF_PREPEND_LIST(ifq, mhead, mtail, mcount) do { \ IF_LOCK(ifq); \ _IF_PREPEND_LIST(ifq, mhead, mtail, mcount); \ IF_UNLOCK(ifq); \ } while (0) #endif /* IF_PREPEND_LIST */ /* * Age queue definitions. */ typedef struct mtx ieee80211_ageq_lock_t; #define IEEE80211_AGEQ_INIT(_aq, _name) \ mtx_init(&(_aq)->aq_lock, _name, "802.11 age q", MTX_DEF) #define IEEE80211_AGEQ_DESTROY(_aq) mtx_destroy(&(_aq)->aq_lock) #define IEEE80211_AGEQ_LOCK(_aq) mtx_lock(&(_aq)->aq_lock) #define IEEE80211_AGEQ_UNLOCK(_aq) mtx_unlock(&(_aq)->aq_lock) /* * 802.1x MAC ACL database locking definitions. */ typedef struct mtx acl_lock_t; #define ACL_LOCK_INIT(_as, _name) \ mtx_init(&(_as)->as_lock, _name, "802.11 ACL", MTX_DEF) #define ACL_LOCK_DESTROY(_as) mtx_destroy(&(_as)->as_lock) #define ACL_LOCK(_as) mtx_lock(&(_as)->as_lock) #define ACL_UNLOCK(_as) mtx_unlock(&(_as)->as_lock) #define ACL_LOCK_ASSERT(_as) \ mtx_assert((&(_as)->as_lock), MA_OWNED) /* * Scan table definitions. */ typedef struct mtx ieee80211_scan_table_lock_t; #define IEEE80211_SCAN_TABLE_LOCK_INIT(_st, _name) \ mtx_init(&(_st)->st_lock, _name, "802.11 scan table", MTX_DEF) #define IEEE80211_SCAN_TABLE_LOCK_DESTROY(_st) mtx_destroy(&(_st)->st_lock) #define IEEE80211_SCAN_TABLE_LOCK(_st) mtx_lock(&(_st)->st_lock) #define IEEE80211_SCAN_TABLE_UNLOCK(_st) mtx_unlock(&(_st)->st_lock) typedef struct mtx ieee80211_scan_iter_lock_t; #define IEEE80211_SCAN_ITER_LOCK_INIT(_st, _name) \ mtx_init(&(_st)->st_scanlock, _name, "802.11 scangen", MTX_DEF) #define IEEE80211_SCAN_ITER_LOCK_DESTROY(_st) mtx_destroy(&(_st)->st_scanlock) #define IEEE80211_SCAN_ITER_LOCK(_st) mtx_lock(&(_st)->st_scanlock) #define IEEE80211_SCAN_ITER_UNLOCK(_st) mtx_unlock(&(_st)->st_scanlock) /* * Mesh node/routing definitions. */ typedef struct mtx ieee80211_rte_lock_t; #define MESH_RT_ENTRY_LOCK_INIT(_rt, _name) \ mtx_init(&(rt)->rt_lock, _name, "802.11s route entry", MTX_DEF) #define MESH_RT_ENTRY_LOCK_DESTROY(_rt) \ mtx_destroy(&(_rt)->rt_lock) #define MESH_RT_ENTRY_LOCK(rt) mtx_lock(&(rt)->rt_lock) #define MESH_RT_ENTRY_LOCK_ASSERT(rt) mtx_assert(&(rt)->rt_lock, MA_OWNED) #define MESH_RT_ENTRY_UNLOCK(rt) mtx_unlock(&(rt)->rt_lock) typedef struct mtx ieee80211_rt_lock_t; #define MESH_RT_LOCK(ms) mtx_lock(&(ms)->ms_rt_lock) #define MESH_RT_LOCK_ASSERT(ms) mtx_assert(&(ms)->ms_rt_lock, MA_OWNED) #define MESH_RT_UNLOCK(ms) mtx_unlock(&(ms)->ms_rt_lock) #define MESH_RT_LOCK_INIT(ms, name) \ mtx_init(&(ms)->ms_rt_lock, name, "802.11s routing table", MTX_DEF) #define MESH_RT_LOCK_DESTROY(ms) \ mtx_destroy(&(ms)->ms_rt_lock) /* * Node reference counting definitions. * * ieee80211_node_initref initialize the reference count to 1 * ieee80211_node_incref add a reference * ieee80211_node_decref remove a reference * ieee80211_node_dectestref remove a reference and return 1 if this * is the last reference, otherwise 0 * ieee80211_node_refcnt reference count for printing (only) */ #include struct ieee80211vap; int ieee80211_com_vincref(struct ieee80211vap *); void ieee80211_com_vdecref(struct ieee80211vap *); void ieee80211_com_vdetach(struct ieee80211vap *); #define ieee80211_node_initref(_ni) \ do { ((_ni)->ni_refcnt = 1); } while (0) #define ieee80211_node_incref(_ni) \ atomic_add_int(&(_ni)->ni_refcnt, 1) #define ieee80211_node_decref(_ni) \ atomic_subtract_int(&(_ni)->ni_refcnt, 1) struct ieee80211_node; int ieee80211_node_dectestref(struct ieee80211_node *ni); #define ieee80211_node_refcnt(_ni) (_ni)->ni_refcnt struct ifqueue; void ieee80211_drain_ifq(struct ifqueue *); void ieee80211_flush_ifq(struct ifqueue *, struct ieee80211vap *); void ieee80211_vap_destroy(struct ieee80211vap *); const char * ieee80211_get_vap_ifname(struct ieee80211vap *); #define IFNET_IS_UP_RUNNING(_ifp) \ (((if_getflags(_ifp) & IFF_UP) != 0) && \ ((if_getdrvflags(_ifp) & IFF_DRV_RUNNING) != 0)) #define msecs_to_ticks(ms) MSEC_2_TICKS(ms) #define ticks_to_msecs(t) TICKS_2_MSEC(t) #define ticks_to_secs(t) ((t) / hz) #define ieee80211_time_after(a,b) ((int)(b) - (int)(a) < 0) #define ieee80211_time_before(a,b) ieee80211_time_after(b,a) #define ieee80211_time_after_eq(a,b) ((int)(a) - (int)(b) >= 0) #define ieee80211_time_before_eq(a,b) ieee80211_time_after_eq(b,a) struct mbuf *ieee80211_getmgtframe(uint8_t **frm, int headroom, int pktlen); /* tx path usage */ #define M_ENCAP M_PROTO1 /* 802.11 encap done */ #define M_EAPOL M_PROTO3 /* PAE/EAPOL frame */ #define M_PWR_SAV M_PROTO4 /* bypass PS handling */ #define M_MORE_DATA M_PROTO5 /* more data frames to follow */ #define M_FF M_PROTO6 /* fast frame / A-MSDU */ #define M_TXCB M_PROTO7 /* do tx complete callback */ #define M_AMPDU_MPDU M_PROTO8 /* ok for A-MPDU aggregation */ #define M_FRAG M_PROTO9 /* frame fragmentation */ #define M_FIRSTFRAG M_PROTO10 /* first frame fragment */ #define M_LASTFRAG M_PROTO11 /* last frame fragment */ #define M_80211_TX \ (M_ENCAP|M_EAPOL|M_PWR_SAV|M_MORE_DATA|M_FF|M_TXCB| \ M_AMPDU_MPDU|M_FRAG|M_FIRSTFRAG|M_LASTFRAG) /* rx path usage */ #define M_AMPDU M_PROTO1 /* A-MPDU subframe */ #define M_WEP M_PROTO2 /* WEP done by hardware */ #if 0 #define M_AMPDU_MPDU M_PROTO8 /* A-MPDU re-order done */ #endif #define M_80211_RX (M_AMPDU|M_WEP|M_AMPDU_MPDU) #define IEEE80211_MBUF_TX_FLAG_BITS \ M_FLAG_BITS \ "\15M_ENCAP\17M_EAPOL\20M_PWR_SAV\21M_MORE_DATA\22M_FF\23M_TXCB" \ "\24M_AMPDU_MPDU\25M_FRAG\26M_FIRSTFRAG\27M_LASTFRAG" #define IEEE80211_MBUF_RX_FLAG_BITS \ M_FLAG_BITS \ "\15M_AMPDU\16M_WEP\24M_AMPDU_MPDU" /* * Store WME access control bits in the vlan tag. * This is safe since it's done after the packet is classified * (where we use any previous tag) and because it's passed * directly in to the driver and there's no chance someone * else will clobber them on us. */ #define M_WME_SETAC(m, ac) \ ((m)->m_pkthdr.ether_vtag = (ac)) #define M_WME_GETAC(m) ((m)->m_pkthdr.ether_vtag) /* * Mbufs on the power save queue are tagged with an age and * timed out. We reuse the hardware checksum field in the * mbuf packet header to store this data. */ #define M_AGE_SET(m,v) (m->m_pkthdr.csum_data = v) #define M_AGE_GET(m) (m->m_pkthdr.csum_data) #define M_AGE_SUB(m,adj) (m->m_pkthdr.csum_data -= adj) /* * Store the sequence number. */ #define M_SEQNO_SET(m, seqno) \ ((m)->m_pkthdr.tso_segsz = (seqno)) #define M_SEQNO_GET(m) ((m)->m_pkthdr.tso_segsz) #define MTAG_ABI_NET80211 1132948340 /* net80211 ABI */ struct ieee80211_cb { void (*func)(struct ieee80211_node *, void *, int status); void *arg; }; #define NET80211_TAG_CALLBACK 0 /* xmit complete callback */ int ieee80211_add_callback(struct mbuf *m, void (*func)(struct ieee80211_node *, void *, int), void *arg); void ieee80211_process_callback(struct ieee80211_node *, struct mbuf *, int); #define NET80211_TAG_XMIT_PARAMS 1 /* See below; this is after the bpf_params definition */ #define NET80211_TAG_RECV_PARAMS 2 #define NET80211_TAG_TOA_PARAMS 3 struct ieee80211com; int ieee80211_parent_xmitpkt(struct ieee80211com *, struct mbuf *); int ieee80211_vap_xmitpkt(struct ieee80211vap *, struct mbuf *); void net80211_get_random_bytes(void *, size_t); void ieee80211_sysctl_attach(struct ieee80211com *); void ieee80211_sysctl_detach(struct ieee80211com *); void ieee80211_sysctl_vattach(struct ieee80211vap *); void ieee80211_sysctl_vdetach(struct ieee80211vap *); SYSCTL_DECL(_net_wlan); int ieee80211_sysctl_msecs_ticks(SYSCTL_HANDLER_ARGS); void ieee80211_load_module(const char *); /* * A "policy module" is an adjunct module to net80211 that provides * functionality that typically includes policy decisions. This * modularity enables extensibility and vendor-supplied functionality. */ #define _IEEE80211_POLICY_MODULE(policy, name, version) \ typedef void (*policy##_setup)(int); \ SET_DECLARE(policy##_set, policy##_setup); \ static int \ wlan_##name##_modevent(module_t mod, int type, void *unused) \ { \ policy##_setup * const *iter, f; \ switch (type) { \ case MOD_LOAD: \ SET_FOREACH(iter, policy##_set) { \ f = (void*) *iter; \ f(type); \ } \ return 0; \ case MOD_UNLOAD: \ case MOD_QUIESCE: \ if (nrefs) { \ printf("wlan_" #name ": still in use " \ "(%u dynamic refs)\n", nrefs); \ return EBUSY; \ } \ if (type == MOD_UNLOAD) { \ SET_FOREACH(iter, policy##_set) { \ f = (void*) *iter; \ f(type); \ } \ } \ return 0; \ } \ return EINVAL; \ } \ static moduledata_t name##_mod = { \ "wlan_" #name, \ wlan_##name##_modevent, \ 0 \ }; \ DECLARE_MODULE(wlan_##name, name##_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);\ MODULE_VERSION(wlan_##name, version); \ MODULE_DEPEND(wlan_##name, wlan, 1, 1, 1) /* * Crypto modules implement cipher support. */ #define IEEE80211_CRYPTO_MODULE_ADD(name) \ static void \ name##_modevent(int type) \ { \ if (type == MOD_LOAD) \ ieee80211_crypto_register(&name); \ else \ ieee80211_crypto_unregister(&name); \ } \ TEXT_SET(crypto##_set, name##_modevent) #define IEEE80211_CRYPTO_MODULE(name, version) \ _IEEE80211_POLICY_MODULE(crypto, name, version); \ IEEE80211_CRYPTO_MODULE_ADD(name) /* * Scanner modules provide scanning policy. */ #define IEEE80211_SCANNER_MODULE(name, version) \ _IEEE80211_POLICY_MODULE(scanner, name, version) #define IEEE80211_SCANNER_ALG(name, alg, v) \ static void \ name##_modevent(int type) \ { \ if (type == MOD_LOAD) \ ieee80211_scanner_register(alg, &v); \ else \ ieee80211_scanner_unregister(alg, &v); \ } \ TEXT_SET(scanner_set, name##_modevent); \ /* * ACL modules implement acl policy. */ #define IEEE80211_ACL_MODULE(name, alg, version) \ _IEEE80211_POLICY_MODULE(acl, name, version); \ static void \ alg##_modevent(int type) \ { \ if (type == MOD_LOAD) \ ieee80211_aclator_register(&alg); \ else \ ieee80211_aclator_unregister(&alg); \ } \ TEXT_SET(acl_set, alg##_modevent); \ /* * Authenticator modules handle 802.1x/WPA authentication. */ #define IEEE80211_AUTH_MODULE(name, version) \ _IEEE80211_POLICY_MODULE(auth, name, version) #define IEEE80211_AUTH_ALG(name, alg, v) \ static void \ name##_modevent(int type) \ { \ if (type == MOD_LOAD) \ ieee80211_authenticator_register(alg, &v); \ else \ ieee80211_authenticator_unregister(alg); \ } \ TEXT_SET(auth_set, name##_modevent) /* * Rate control modules provide tx rate control support. */ #define IEEE80211_RATECTL_MODULE(alg, version) \ _IEEE80211_POLICY_MODULE(ratectl, alg, version); \ #define IEEE80211_RATECTL_ALG(name, alg, v) \ static void \ alg##_modevent(int type) \ { \ if (type == MOD_LOAD) \ ieee80211_ratectl_register(alg, &v); \ else \ ieee80211_ratectl_unregister(alg); \ } \ TEXT_SET(ratectl##_set, alg##_modevent) struct ieee80211req; typedef int ieee80211_ioctl_getfunc(struct ieee80211vap *, struct ieee80211req *); SET_DECLARE(ieee80211_ioctl_getset, ieee80211_ioctl_getfunc); #define IEEE80211_IOCTL_GET(_name, _get) TEXT_SET(ieee80211_ioctl_getset, _get) typedef int ieee80211_ioctl_setfunc(struct ieee80211vap *, struct ieee80211req *); SET_DECLARE(ieee80211_ioctl_setset, ieee80211_ioctl_setfunc); #define IEEE80211_IOCTL_SET(_name, _set) TEXT_SET(ieee80211_ioctl_setset, _set) #ifdef DEBUGNET typedef void debugnet80211_init_t(struct ieee80211com *, int *nrxr, int *ncl, int *clsize); typedef void debugnet80211_event_t(struct ieee80211com *, enum debugnet_ev); typedef int debugnet80211_poll_t(struct ieee80211com *, int); struct debugnet80211_methods { debugnet80211_init_t *dn8_init; debugnet80211_event_t *dn8_event; debugnet80211_poll_t *dn8_poll; }; #define DEBUGNET80211_DEFINE(driver) \ static debugnet80211_init_t driver##_debugnet80211_init; \ static debugnet80211_event_t driver##_debugnet80211_event; \ static debugnet80211_poll_t driver##_debugnet80211_poll; \ \ static struct debugnet80211_methods driver##_debugnet80211_methods = { \ .dn8_init = driver##_debugnet80211_init, \ .dn8_event = driver##_debugnet80211_event, \ .dn8_poll = driver##_debugnet80211_poll, \ } #define DEBUGNET80211_SET(ic, driver) \ (ic)->ic_debugnet_meth = &driver##_debugnet80211_methods #else #define DEBUGNET80211_DEFINE(driver) #define DEBUGNET80211_SET(ic, driver) #endif /* DEBUGNET */ void ieee80211_vap_sync_mac_address(struct ieee80211vap *); void ieee80211_vap_copy_mac_address(struct ieee80211vap *); void ieee80211_vap_deliver_data(struct ieee80211vap *, struct mbuf *); bool ieee80211_vap_ifp_check_is_monitor(struct ieee80211vap *); bool ieee80211_vap_ifp_check_is_simplex(struct ieee80211vap *); bool ieee80211_vap_ifp_check_is_running(struct ieee80211vap *); void ieee80211_vap_ifp_set_running_state(struct ieee80211vap *, bool); const uint8_t * ieee80211_vap_get_broadcast_address(struct ieee80211vap *); +void net80211_printf(const char *fmt, ...) __printflike(1, 2); +void net80211_vap_printf(const struct ieee80211vap *, const char *fmt, ...) + __printflike(2, 3); +void net80211_ic_printf(const struct ieee80211com *, const char *fmt, ...) + __printflike(2, 3); + #endif /* _KERNEL */ /* XXX this stuff belongs elsewhere */ /* * Message formats for messages from the net80211 layer to user * applications via the routing socket. These messages are appended * to an if_announcemsghdr structure. */ struct ieee80211_join_event { uint8_t iev_addr[6]; }; struct ieee80211_leave_event { uint8_t iev_addr[6]; }; struct ieee80211_replay_event { uint8_t iev_src[6]; /* src MAC */ uint8_t iev_dst[6]; /* dst MAC */ uint8_t iev_cipher; /* cipher type */ uint8_t iev_keyix; /* key id/index */ uint64_t iev_keyrsc; /* RSC from key */ uint64_t iev_rsc; /* RSC from frame */ }; struct ieee80211_michael_event { uint8_t iev_src[6]; /* src MAC */ uint8_t iev_dst[6]; /* dst MAC */ uint8_t iev_cipher; /* cipher type */ uint8_t iev_keyix; /* key id/index */ }; struct ieee80211_wds_event { uint8_t iev_addr[6]; }; struct ieee80211_csa_event { uint32_t iev_flags; /* channel flags */ uint16_t iev_freq; /* setting in Mhz */ uint8_t iev_ieee; /* IEEE channel number */ uint8_t iev_mode; /* CSA mode */ uint8_t iev_count; /* CSA count */ }; struct ieee80211_cac_event { uint32_t iev_flags; /* channel flags */ uint16_t iev_freq; /* setting in Mhz */ uint8_t iev_ieee; /* IEEE channel number */ /* XXX timestamp? */ uint8_t iev_type; /* IEEE80211_NOTIFY_CAC_* */ }; struct ieee80211_radar_event { uint32_t iev_flags; /* channel flags */ uint16_t iev_freq; /* setting in Mhz */ uint8_t iev_ieee; /* IEEE channel number */ /* XXX timestamp? */ }; struct ieee80211_auth_event { uint8_t iev_addr[6]; }; struct ieee80211_deauth_event { uint8_t iev_addr[6]; }; struct ieee80211_country_event { uint8_t iev_addr[6]; uint8_t iev_cc[2]; /* ISO country code */ }; struct ieee80211_radio_event { uint8_t iev_state; /* 1 on, 0 off */ }; #define RTM_IEEE80211_ASSOC 100 /* station associate (bss mode) */ #define RTM_IEEE80211_REASSOC 101 /* station re-associate (bss mode) */ #define RTM_IEEE80211_DISASSOC 102 /* station disassociate (bss mode) */ #define RTM_IEEE80211_JOIN 103 /* station join (ap mode) */ #define RTM_IEEE80211_LEAVE 104 /* station leave (ap mode) */ #define RTM_IEEE80211_SCAN 105 /* scan complete, results available */ #define RTM_IEEE80211_REPLAY 106 /* sequence counter replay detected */ #define RTM_IEEE80211_MICHAEL 107 /* Michael MIC failure detected */ #define RTM_IEEE80211_REJOIN 108 /* station re-associate (ap mode) */ #define RTM_IEEE80211_WDS 109 /* WDS discovery (ap mode) */ #define RTM_IEEE80211_CSA 110 /* Channel Switch Announcement event */ #define RTM_IEEE80211_RADAR 111 /* radar event */ #define RTM_IEEE80211_CAC 112 /* Channel Availability Check event */ #define RTM_IEEE80211_DEAUTH 113 /* station deauthenticate */ #define RTM_IEEE80211_AUTH 114 /* station authenticate (ap mode) */ #define RTM_IEEE80211_COUNTRY 115 /* discovered country code (sta mode) */ #define RTM_IEEE80211_RADIO 116 /* RF kill switch state change */ /* * Structure prepended to raw packets sent through the bpf * interface when set to DLT_IEEE802_11_RADIO. This allows * user applications to specify pretty much everything in * an Atheros tx descriptor. XXX need to generalize. * * XXX cannot be more than 14 bytes as it is copied to a sockaddr's * XXX sa_data area. */ struct ieee80211_bpf_params { uint8_t ibp_vers; /* version */ #define IEEE80211_BPF_VERSION 0 uint8_t ibp_len; /* header length in bytes */ uint8_t ibp_flags; #define IEEE80211_BPF_SHORTPRE 0x01 /* tx with short preamble */ #define IEEE80211_BPF_NOACK 0x02 /* tx with no ack */ #define IEEE80211_BPF_CRYPTO 0x04 /* tx with h/w encryption */ #define IEEE80211_BPF_FCS 0x10 /* frame incldues FCS */ #define IEEE80211_BPF_DATAPAD 0x20 /* frame includes data padding */ #define IEEE80211_BPF_RTS 0x40 /* tx with RTS/CTS */ #define IEEE80211_BPF_CTS 0x80 /* tx with CTS only */ uint8_t ibp_pri; /* WME/WMM AC+tx antenna */ uint8_t ibp_try0; /* series 1 try count */ uint8_t ibp_rate0; /* series 1 IEEE tx rate */ uint8_t ibp_power; /* tx power (device units) */ uint8_t ibp_ctsrate; /* IEEE tx rate for CTS */ uint8_t ibp_try1; /* series 2 try count */ uint8_t ibp_rate1; /* series 2 IEEE tx rate */ uint8_t ibp_try2; /* series 3 try count */ uint8_t ibp_rate2; /* series 3 IEEE tx rate */ uint8_t ibp_try3; /* series 4 try count */ uint8_t ibp_rate3; /* series 4 IEEE tx rate */ }; #ifdef _KERNEL struct ieee80211_tx_params { struct ieee80211_bpf_params params; }; int ieee80211_add_xmit_params(struct mbuf *m, const struct ieee80211_bpf_params *); int ieee80211_get_xmit_params(struct mbuf *m, struct ieee80211_bpf_params *); struct ieee80211_rx_params; struct ieee80211_rx_stats; int ieee80211_add_rx_params(struct mbuf *m, const struct ieee80211_rx_stats *rxs); int ieee80211_get_rx_params(struct mbuf *m, struct ieee80211_rx_stats *rxs); const struct ieee80211_rx_stats * ieee80211_get_rx_params_ptr(struct mbuf *m); struct ieee80211_toa_params { int request_id; }; int ieee80211_add_toa_params(struct mbuf *m, const struct ieee80211_toa_params *p); int ieee80211_get_toa_params(struct mbuf *m, struct ieee80211_toa_params *p); #define IEEE80211_F_SURVEY_TIME 0x00000001 #define IEEE80211_F_SURVEY_TIME_BUSY 0x00000002 #define IEEE80211_F_SURVEY_NOISE_DBM 0x00000004 #define IEEE80211_F_SURVEY_TSC 0x00000008 struct ieee80211_channel_survey { uint32_t s_flags; uint32_t s_time; uint32_t s_time_busy; int32_t s_noise; uint64_t s_tsc; }; #endif /* _KERNEL */ /* * Malloc API. Other BSD operating systems have slightly * different malloc/free namings (eg DragonflyBSD.) */ #define IEEE80211_MALLOC malloc #define IEEE80211_FREE free /* XXX TODO: get rid of WAITOK, fix all the users of it? */ #define IEEE80211_M_NOWAIT M_NOWAIT #define IEEE80211_M_WAITOK M_WAITOK #define IEEE80211_M_ZERO M_ZERO /* XXX TODO: the type fields */ #endif /* _NET80211_IEEE80211_FREEBSD_H_ */ diff --git a/sys/net80211/ieee80211_var.h b/sys/net80211/ieee80211_var.h index 91beaec6f997..a0293f814899 100644 --- a/sys/net80211/ieee80211_var.h +++ b/sys/net80211/ieee80211_var.h @@ -1,1145 +1,1147 @@ /*- * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 2001 Atsushi Onoe * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef _NET80211_IEEE80211_VAR_H_ #define _NET80211_IEEE80211_VAR_H_ /* * Definitions for IEEE 802.11 drivers. */ /* NB: portability glue must go first */ #if defined(__NetBSD__) #include #elif defined(__FreeBSD__) #include #elif defined(__linux__) #include #else #error "No support for your operating system!" #endif #include #include #include #include #include #include /* for ieee80211_stats */ #include #include #include #include #include #include #define IEEE80211_TXPOWER_MAX 100 /* .5 dBm (XXX units?) */ #define IEEE80211_TXPOWER_MIN 0 /* kill radio */ #define IEEE80211_DTIM_DEFAULT 1 /* default DTIM period */ #define IEEE80211_BINTVAL_DEFAULT 100 /* default beacon interval (TU's) */ #define IEEE80211_BMISS_MAX 2 /* maximum consecutive bmiss allowed */ #define IEEE80211_HWBMISS_DEFAULT 7 /* h/w bmiss threshold (beacons) */ #define IEEE80211_BGSCAN_INTVAL_MIN 15 /* min bg scan intvl (secs) */ #define IEEE80211_BGSCAN_INTVAL_DEFAULT (5*60) /* default bg scan intvl */ #define IEEE80211_BGSCAN_IDLE_MIN 100 /* min idle time (ms) */ #define IEEE80211_BGSCAN_IDLE_DEFAULT 250 /* default idle time (ms) */ #define IEEE80211_SCAN_VALID_MIN 10 /* min scan valid time (secs) */ #define IEEE80211_SCAN_VALID_DEFAULT 60 /* default scan valid time */ #define IEEE80211_PS_SLEEP 0x1 /* STA is in power saving mode */ #define IEEE80211_PS_MAX_QUEUE 50 /* maximum saved packets */ #define IEEE80211_FIXED_RATE_NONE 0xff #define IEEE80211_TXMAX_DEFAULT 6 /* default ucast max retries */ #define IEEE80211_RTS_DEFAULT IEEE80211_RTS_MAX #define IEEE80211_FRAG_DEFAULT IEEE80211_FRAG_MAX #define IEEE80211_MS_TO_TU(x) (((x) * 1000) / 1024) #define IEEE80211_TU_TO_MS(x) (((x) * 1024) / 1000) /* XXX TODO: cap this at 1, in case hz is not 1000 */ #define IEEE80211_TU_TO_TICKS(x)(((uint64_t)(x) * 1024 * hz) / (1000 * 1000)) /* * Technically, vhtflags may be 0 /and/ 11ac is enabled. * At some point ic should just grow a flag somewhere that * says that VHT is supported - and then this macro can be * changed. */ #define IEEE80211_CONF_VHT(ic) \ ((ic)->ic_flags_ext & IEEE80211_FEXT_VHT) #define IEEE80211_CONF_SEQNO_OFFLOAD(ic) \ ((ic)->ic_flags_ext & IEEE80211_FEXT_SEQNO_OFFLOAD) #define IEEE80211_CONF_FRAG_OFFLOAD(ic) \ ((ic)->ic_flags_ext & IEEE80211_FEXT_FRAG_OFFLOAD) #define IEEE80211_CONF_AMPDU_OFFLOAD(ic) \ ((ic)->ic_flags_ext & IEEE80211_FEXT_AMPDU_OFFLOAD) /* * 802.11 control state is split into a common portion that maps * 1-1 to a physical device and one or more "Virtual AP's" (VAP) * that are bound to an ieee80211com instance and share a single * underlying device. Each VAP has a corresponding OS device * entity through which traffic flows and that applications use * for issuing ioctls, etc. */ /* * Data common to one or more virtual AP's. State shared by * the underlying device and the net80211 layer is exposed here; * e.g. device-specific callbacks. */ struct ieee80211vap; typedef void (*ieee80211vap_attach)(struct ieee80211vap *); struct ieee80211_appie { uint16_t ie_len; /* size of ie_data */ uint8_t ie_data[]; /* user-specified IE's */ }; struct ieee80211_tdma_param; struct ieee80211_rate_table; struct ieee80211_tx_ampdu; struct ieee80211_rx_ampdu; struct ieee80211_superg; struct ieee80211_frame; struct net80211dump_methods; struct ieee80211com { void *ic_softc; /* driver softc */ const char *ic_name; /* usually device name */ ieee80211_com_lock_t ic_comlock; /* state update lock */ ieee80211_tx_lock_t ic_txlock; /* ic/vap TX lock */ ieee80211_ff_lock_t ic_fflock; /* stageq/ni_tx_superg lock */ LIST_ENTRY(ieee80211com) ic_next; /* on global list */ TAILQ_HEAD(, ieee80211vap) ic_vaps; /* list of vap instances */ int ic_headroom; /* driver tx headroom needs */ enum ieee80211_phytype ic_phytype; /* XXX wrong for multi-mode */ enum ieee80211_opmode ic_opmode; /* operation mode */ struct callout ic_inact; /* inactivity processing */ struct taskqueue *ic_tq; /* deferred state thread */ struct task ic_parent_task; /* deferred parent processing */ struct task ic_promisc_task;/* deferred promisc update */ struct task ic_mcast_task; /* deferred mcast update */ struct task ic_chan_task; /* deferred channel change */ struct task ic_bmiss_task; /* deferred beacon miss hndlr */ struct task ic_chw_task; /* deferred HT CHW update */ struct task ic_restart_task; /* deferred device restart */ counter_u64_t ic_ierrors; /* input errors */ counter_u64_t ic_oerrors; /* output errors */ uint32_t ic_flags; /* state flags */ uint32_t ic_flags_ext; /* extended state flags */ uint32_t ic_flags_ht; /* HT state flags */ uint32_t ic_flags_ven; /* vendor state flags */ uint32_t ic_caps; /* capabilities */ uint32_t ic_htcaps; /* HT capabilities */ uint32_t ic_htextcaps; /* HT extended capabilities */ /* driver-supported software crypto caps */ uint32_t ic_sw_cryptocaps; uint32_t ic_cryptocaps; /* hardware crypto caps */ /* set of mode capabilities */ /* driver/net80211 sw KEYMGMT capabilities */ uint32_t ic_sw_keymgmtcaps; uint8_t ic_modecaps[IEEE80211_MODE_BYTES]; uint8_t ic_promisc; /* vap's needing promisc mode */ uint8_t ic_allmulti; /* vap's needing all multicast*/ uint8_t ic_nrunning; /* vap's marked running */ uint8_t ic_curmode; /* current mode */ uint8_t ic_macaddr[IEEE80211_ADDR_LEN]; uint16_t ic_bintval; /* beacon interval */ uint16_t ic_lintval; /* listen interval */ uint16_t ic_holdover; /* PM hold over duration */ uint16_t ic_txpowlimit; /* global tx power limit */ struct ieee80211_rateset ic_sup_rates[IEEE80211_MODE_MAX]; struct ieee80211_htrateset ic_sup_htrates; /* * Channel state: * * ic_channels is the set of available channels for the device; * it is setup by the driver * ic_nchans is the number of valid entries in ic_channels * ic_chan_avail is a bit vector of these channels used to check * whether a channel is available w/o searching the channel table. * ic_chan_active is a (potentially) constrained subset of * ic_chan_avail that reflects any mode setting or user-specified * limit on the set of channels to use/scan * ic_curchan is the current channel the device is set to; it may * be different from ic_bsschan when we are off-channel scanning * or otherwise doing background work * ic_bsschan is the channel selected for operation; it may * be undefined (IEEE80211_CHAN_ANYC) * ic_prevchan is a cached ``previous channel'' used to optimize * lookups when switching back+forth between two channels * (e.g. for dynamic turbo) */ int ic_nchans; /* # entries in ic_channels */ struct ieee80211_channel ic_channels[IEEE80211_CHAN_MAX]; uint8_t ic_chan_avail[IEEE80211_CHAN_BYTES]; uint8_t ic_chan_active[IEEE80211_CHAN_BYTES]; uint8_t ic_chan_scan[IEEE80211_CHAN_BYTES]; struct ieee80211_channel *ic_curchan; /* current channel */ const struct ieee80211_rate_table *ic_rt; /* table for ic_curchan */ struct ieee80211_channel *ic_bsschan; /* bss channel */ struct ieee80211_channel *ic_prevchan; /* previous channel */ struct ieee80211_regdomain ic_regdomain;/* regulatory data */ struct ieee80211_appie *ic_countryie; /* calculated country ie */ struct ieee80211_channel *ic_countryie_chan; /* 802.11h/DFS state */ struct ieee80211_channel *ic_csa_newchan;/* channel for doing CSA */ short ic_csa_mode; /* mode for doing CSA */ short ic_csa_count; /* count for doing CSA */ struct ieee80211_dfs_state ic_dfs; /* DFS state */ struct ieee80211_scan_state *ic_scan; /* scan state */ struct ieee80211_scan_methods *ic_scan_methods; /* scan methods */ int ic_lastdata; /* time of last data frame */ int ic_lastscan; /* time last scan completed */ /* NB: this is the union of all vap stations/neighbors */ int ic_max_keyix; /* max h/w key index */ struct ieee80211_node_table ic_sta; /* stations/neighbors */ struct ieee80211_ageq ic_stageq; /* frame staging queue */ uint32_t ic_hash_key; /* random key for mac hash */ /* XXX multi-bss: split out common/vap parts */ struct ieee80211_wme_state ic_wme; /* WME/WMM state */ /* Protection mode for net80211 driven channel NICs */ enum ieee80211_protmode ic_protmode; /* 802.11g protection mode */ enum ieee80211_protmode ic_htprotmode; /* HT protection mode */ uint8_t ic_curhtprotmode;/* HTINFO bss state */ uint8_t ic_rxstream; /* # RX streams */ uint8_t ic_txstream; /* # TX streams */ /* VHT information */ uint32_t ic_vht_flags; /* VHT state flags */ struct ieee80211_vht_cap ic_vht_cap; /* VHT capabilities + MCS info */ uint32_t ic_vhtextcaps; /* VHT extended capabilities (TODO) */ uint32_t ic_vht_spare[3]; /* optional state for Atheros SuperG protocol extensions */ struct ieee80211_superg *ic_superg; /* radiotap handling */ struct ieee80211_radiotap_header *ic_th;/* tx radiotap headers */ void *ic_txchan; /* channel state in ic_th */ struct ieee80211_radiotap_header *ic_rh;/* rx radiotap headers */ void *ic_rxchan; /* channel state in ic_rh */ int ic_montaps; /* active monitor mode taps */ /* virtual ap create/delete */ struct ieee80211vap* (*ic_vap_create)(struct ieee80211com *, const char [IFNAMSIZ], int, enum ieee80211_opmode, int, const uint8_t [IEEE80211_ADDR_LEN], const uint8_t [IEEE80211_ADDR_LEN]); void (*ic_vap_delete)(struct ieee80211vap *); /* device specific ioctls */ int (*ic_ioctl)(struct ieee80211com *, u_long, void *); /* start/stop device */ void (*ic_parent)(struct ieee80211com *); /* operating mode attachment */ ieee80211vap_attach ic_vattach[IEEE80211_OPMODE_MAX]; /* return hardware/radio capabilities */ void (*ic_getradiocaps)(struct ieee80211com *, int, int *, struct ieee80211_channel []); /* check and/or prepare regdomain state change */ int (*ic_setregdomain)(struct ieee80211com *, struct ieee80211_regdomain *, int, struct ieee80211_channel []); int (*ic_set_quiet)(struct ieee80211_node *, u_int8_t *quiet_elm); /* regular transmit */ int (*ic_transmit)(struct ieee80211com *, struct mbuf *); /* send/recv 802.11 management frame */ int (*ic_send_mgmt)(struct ieee80211_node *, int, int); /* send raw 802.11 frame */ int (*ic_raw_xmit)(struct ieee80211_node *, struct mbuf *, const struct ieee80211_bpf_params *); /* update device state for 802.11 slot time change */ void (*ic_updateslot)(struct ieee80211com *); /* handle multicast state changes */ void (*ic_update_mcast)(struct ieee80211com *); /* handle promiscuous mode changes */ void (*ic_update_promisc)(struct ieee80211com *); /* new station association callback/notification */ void (*ic_newassoc)(struct ieee80211_node *, int); /* TDMA update notification */ void (*ic_tdma_update)(struct ieee80211_node *, const struct ieee80211_tdma_param *, int); /* Node state management */ /* Allocate a new node */ struct ieee80211_node* (*ic_node_alloc)(struct ieee80211vap *, const uint8_t [IEEE80211_ADDR_LEN]); /* Driver node initialisation after net80211 setup */ int (*ic_node_init)(struct ieee80211_node *); /* Driver node deallocation */ void (*ic_node_free)(struct ieee80211_node *); /* Driver node state cleanup before deallocation */ void (*ic_node_cleanup)(struct ieee80211_node *); void (*ic_node_age)(struct ieee80211_node *); void (*ic_node_drain)(struct ieee80211_node *); int8_t (*ic_node_getrssi)(const struct ieee80211_node*); void (*ic_node_getsignal)(const struct ieee80211_node*, int8_t *, int8_t *); void (*ic_node_getmimoinfo)( const struct ieee80211_node*, struct ieee80211_mimo_info *); /* scanning support */ void (*ic_scan_start)(struct ieee80211com *); void (*ic_scan_end)(struct ieee80211com *); void (*ic_set_channel)(struct ieee80211com *); void (*ic_scan_curchan)(struct ieee80211_scan_state *, unsigned long); void (*ic_scan_mindwell)(struct ieee80211_scan_state *); /* * 802.11n ADDBA support. A simple/generic implementation * of A-MPDU tx aggregation is provided; the driver may * override these methods to provide their own support. * A-MPDU rx re-ordering happens automatically if the * driver passes out-of-order frames to ieee80211_input * from an assocated HT station. */ int (*ic_recv_action)(struct ieee80211_node *, const struct ieee80211_frame *, const uint8_t *frm, const uint8_t *efrm); int (*ic_send_action)(struct ieee80211_node *, int category, int action, void *); /* check if A-MPDU should be enabled this station+ac */ int (*ic_ampdu_enable)(struct ieee80211_node *, struct ieee80211_tx_ampdu *); /* start/stop doing A-MPDU tx aggregation for a station */ int (*ic_addba_request)(struct ieee80211_node *, struct ieee80211_tx_ampdu *, int dialogtoken, int baparamset, int batimeout); int (*ic_addba_response)(struct ieee80211_node *, struct ieee80211_tx_ampdu *, int status, int baparamset, int batimeout); void (*ic_addba_stop)(struct ieee80211_node *, struct ieee80211_tx_ampdu *); void (*ic_addba_response_timeout)(struct ieee80211_node *, struct ieee80211_tx_ampdu *); /* BAR response received */ void (*ic_bar_response)(struct ieee80211_node *, struct ieee80211_tx_ampdu *, int status); /* start/stop doing A-MPDU rx processing for a station */ int (*ic_ampdu_rx_start)(struct ieee80211_node *, struct ieee80211_rx_ampdu *, int baparamset, int batimeout, int baseqctl); void (*ic_ampdu_rx_stop)(struct ieee80211_node *, struct ieee80211_rx_ampdu *); /* The channel width has changed (20<->2040) */ void (*ic_update_chw)(struct ieee80211com *); const struct debugnet80211_methods *ic_debugnet_meth; uint64_t ic_spare[7]; }; struct ieee80211_aclator; struct ieee80211_tdma_state; struct ieee80211_mesh_state; struct ieee80211_hwmp_state; struct ieee80211_rx_histogram; struct ieee80211_tx_histogram; struct ieee80211vap { struct ifmedia iv_media; /* interface media config */ struct ifnet *iv_ifp; /* associated device */ struct bpf_if *iv_rawbpf; /* packet filter structure */ struct sysctl_ctx_list *iv_sysctl; /* dynamic sysctl context */ struct sysctl_oid *iv_oid; /* net.wlan.X sysctl oid */ TAILQ_ENTRY(ieee80211vap) iv_next; /* list of vap instances */ struct ieee80211com *iv_ic; /* back ptr to common state */ /* MAC address: ifp or ic */ uint8_t iv_myaddr[IEEE80211_ADDR_LEN]; uint32_t iv_debug; /* debug msg flags */ struct ieee80211_stats iv_stats; /* statistics */ uint32_t iv_flags; /* state flags */ uint32_t iv_flags_ext; /* extended state flags */ uint32_t iv_flags_ht; /* HT state flags */ uint32_t iv_flags_ven; /* vendor state flags */ uint32_t iv_ifflags; /* ifnet flags */ uint32_t iv_caps; /* capabilities */ uint32_t iv_htcaps; /* HT capabilities */ uint32_t iv_htextcaps; /* HT extended capabilities */ uint32_t iv_com_state; /* com usage / detached flag */ enum ieee80211_opmode iv_opmode; /* operation mode */ enum ieee80211_state iv_state; /* state machine state */ /* Deferred state processing. */ enum ieee80211_state iv_nstate; /* next pending state (historic) */ #define NET80211_IV_NSTATE_NUM 8 int iv_nstate_b; /* First filled slot. */ int iv_nstate_n; /* # of filled slots. */ enum ieee80211_state iv_nstates[NET80211_IV_NSTATE_NUM]; /* queued pending state(s) */ int iv_nstate_args[NET80211_IV_NSTATE_NUM]; /* queued pending state(s) arg */ struct task iv_nstate_task[NET80211_IV_NSTATE_NUM]; struct task iv_swbmiss_task;/* deferred iv_bmiss call */ struct callout iv_mgtsend; /* mgmt frame response timer */ /* inactivity timer settings */ int iv_inact_init; /* setting for new station */ int iv_inact_auth; /* auth but not assoc setting */ int iv_inact_run; /* authorized setting */ int iv_inact_probe; /* inactive probe time */ /* VHT flags */ uint32_t iv_vht_flags; /* VHT state flags */ struct ieee80211_vht_cap iv_vht_cap; /* VHT capabilities + MCS info */ uint32_t iv_vhtextcaps; /* VHT extended capabilities (TODO) */ uint32_t iv_vht_spare[4]; int iv_des_nssid; /* # desired ssids */ struct ieee80211_scan_ssid iv_des_ssid[1];/* desired ssid table */ uint8_t iv_des_bssid[IEEE80211_ADDR_LEN]; struct ieee80211_channel *iv_des_chan; /* desired channel */ uint16_t iv_des_mode; /* desired mode */ int iv_nicknamelen; /* XXX junk */ uint8_t iv_nickname[IEEE80211_NWID_LEN]; u_int iv_bgscanidle; /* bg scan idle threshold */ u_int iv_bgscanintvl; /* bg scan min interval */ u_int iv_scanvalid; /* scan cache valid threshold */ u_int iv_scanreq_duration; u_int iv_scanreq_mindwell; u_int iv_scanreq_maxdwell; uint16_t iv_scanreq_flags;/* held scan request params */ uint8_t iv_scanreq_nssid; struct ieee80211_scan_ssid iv_scanreq_ssid[IEEE80211_SCAN_MAX_SSID]; /* sta-mode roaming state */ enum ieee80211_roamingmode iv_roaming; /* roaming mode */ struct ieee80211_roamparam iv_roamparms[IEEE80211_MODE_MAX]; uint8_t iv_bmissthreshold; uint8_t iv_bmiss_count; /* current beacon miss count */ int iv_bmiss_max; /* max bmiss before scan */ uint16_t iv_swbmiss_count;/* beacons in last period */ uint16_t iv_swbmiss_period;/* s/w bmiss period */ struct callout iv_swbmiss; /* s/w beacon miss timer */ int iv_ampdu_rxmax; /* A-MPDU rx limit (bytes) */ int iv_ampdu_density;/* A-MPDU density */ int iv_ampdu_limit; /* A-MPDU tx limit (bytes) */ int iv_amsdu_limit; /* A-MSDU tx limit (bytes) */ u_int iv_ampdu_mintraffic[WME_NUM_AC]; struct ieee80211_beacon_offsets iv_bcn_off; uint32_t *iv_aid_bitmap; /* association id map */ uint16_t iv_max_aid; uint16_t iv_sta_assoc; /* stations associated */ uint16_t iv_ps_sta; /* stations in power save */ uint16_t iv_ps_pending; /* ps sta's w/ pending frames */ uint16_t iv_txseq; /* mcast xmit seq# space */ uint16_t iv_tim_len; /* ic_tim_bitmap size (bytes) */ uint8_t *iv_tim_bitmap; /* power-save stations w/ data*/ uint8_t iv_dtim_period; /* DTIM period */ uint8_t iv_dtim_count; /* DTIM count from last bcn */ /* set/unset aid pwrsav state */ uint8_t iv_quiet; /* Quiet Element */ uint8_t iv_quiet_count; /* constant count for Quiet Element */ uint8_t iv_quiet_count_value; /* variable count for Quiet Element */ uint8_t iv_quiet_period; /* period for Quiet Element */ uint16_t iv_quiet_duration; /* duration for Quiet Element */ uint16_t iv_quiet_offset; /* offset for Quiet Element */ int iv_csa_count; /* count for doing CSA */ struct ieee80211_node *iv_bss; /* information for this node */ struct ieee80211_txparam iv_txparms[IEEE80211_MODE_MAX]; uint16_t iv_rtsthreshold; uint16_t iv_fragthreshold; int iv_inact_timer; /* inactivity timer wait */ /* application-specified IE's to attach to mgt frames */ struct ieee80211_appie *iv_appie_beacon; struct ieee80211_appie *iv_appie_probereq; struct ieee80211_appie *iv_appie_proberesp; struct ieee80211_appie *iv_appie_assocreq; struct ieee80211_appie *iv_appie_assocresp; struct ieee80211_appie *iv_appie_wpa; uint8_t *iv_wpa_ie; uint8_t *iv_rsn_ie; /* Key management */ uint16_t iv_max_keyix; /* max h/w key index */ ieee80211_keyix iv_def_txkey; /* default/group tx key index */ struct ieee80211_key iv_nw_keys[IEEE80211_WEP_NKID]; int (*iv_key_alloc)(struct ieee80211vap *, struct ieee80211_key *, ieee80211_keyix *, ieee80211_keyix *); int (*iv_key_delete)(struct ieee80211vap *, const struct ieee80211_key *); int (*iv_key_set)(struct ieee80211vap *, const struct ieee80211_key *); void (*iv_key_update_begin)(struct ieee80211vap *); void (*iv_key_update_end)(struct ieee80211vap *); void (*iv_update_deftxkey)(struct ieee80211vap *, ieee80211_keyix deftxkey); const struct ieee80211_authenticator *iv_auth; /* authenticator glue */ void *iv_ec; /* private auth state */ const struct ieee80211_aclator *iv_acl; /* acl glue */ void *iv_as; /* private aclator state */ const struct ieee80211_ratectl *iv_rate; void *iv_rs; /* private ratectl state */ struct ieee80211_tdma_state *iv_tdma; /* tdma state */ struct ieee80211_mesh_state *iv_mesh; /* MBSS state */ struct ieee80211_hwmp_state *iv_hwmp; /* HWMP state */ /* operate-mode detach hook */ void (*iv_opdetach)(struct ieee80211vap *); /* receive processing */ int (*iv_input)(struct ieee80211_node *, struct mbuf *, const struct ieee80211_rx_stats *, int, int); void (*iv_recv_mgmt)(struct ieee80211_node *, struct mbuf *, int, const struct ieee80211_rx_stats *, int, int); void (*iv_recv_ctl)(struct ieee80211_node *, struct mbuf *, int); void (*iv_deliver_data)(struct ieee80211vap *, struct ieee80211_node *, struct mbuf *); #if 0 /* send processing */ int (*iv_send_mgmt)(struct ieee80211_node *, int, int); #endif /* beacon miss processing */ void (*iv_bmiss)(struct ieee80211vap *); /* reset device state after 802.11 parameter/state change */ int (*iv_reset)(struct ieee80211vap *, u_long); /* [schedule] beacon frame update */ void (*iv_update_beacon)(struct ieee80211vap *, int); /* power save handling */ void (*iv_update_ps)(struct ieee80211vap *, int); int (*iv_set_tim)(struct ieee80211_node *, int); void (*iv_node_ps)(struct ieee80211_node *, int); void (*iv_sta_ps)(struct ieee80211vap *, int); void (*iv_recv_pspoll)(struct ieee80211_node *, struct mbuf *); /* state machine processing */ int (*iv_newstate)(struct ieee80211vap *, enum ieee80211_state, int); struct ieee80211_node * (*iv_update_bss)(struct ieee80211vap *, struct ieee80211_node *); /* 802.3 output method for raw frame xmit */ int (*iv_output)(struct ifnet *, struct mbuf *, const struct sockaddr *, struct route *); int (*iv_wme_update)(struct ieee80211vap *, const struct wmeParams *wme_params); struct task iv_wme_task; /* deferred VAP WME update */ /* associated state; protection mode */ enum ieee80211_protmode iv_protmode; /* 802.11g protection mode */ enum ieee80211_protmode iv_htprotmode; /* HT protection mode */ uint8_t iv_curhtprotmode;/* HTINFO bss state */ uint16_t iv_nonerpsta; /* # non-ERP stations */ uint16_t iv_longslotsta; /* # long slot time stations */ uint16_t iv_ht_sta_assoc;/* HT stations associated */ uint16_t iv_ht40_sta_assoc;/* HT40 stations associated */ int iv_lastnonerp; /* last time non-ERP sta noted*/ int iv_lastnonht; /* last time non-HT sta noted */ /* update device state for 802.11 slot time change */ void (*iv_updateslot)(struct ieee80211vap *); struct task iv_slot_task; /* deferred slot time update */ struct task iv_erp_protmode_task; /* deferred ERP protmode update */ void (*iv_erp_protmode_update)(struct ieee80211vap *); struct task iv_preamble_task; /* deferred short/barker preamble update */ void (*iv_preamble_update)(struct ieee80211vap *); struct task iv_ht_protmode_task; /* deferred HT protmode update */ void (*iv_ht_protmode_update)(struct ieee80211vap *); /* per-vap U-APSD state */ uint8_t iv_uapsdinfo; /* sta mode QoS Info flags */ /* Optional transmit/receive histogram statistics */ struct ieee80211_rx_histogram *rx_histogram; struct ieee80211_tx_histogram *tx_histogram; uint64_t iv_spare[36]; }; MALLOC_DECLARE(M_80211_VAP); #define IEEE80211_ADDR_EQ(a1,a2) (memcmp(a1,a2,IEEE80211_ADDR_LEN) == 0) #define IEEE80211_ADDR_COPY(dst,src) memcpy(dst,src,IEEE80211_ADDR_LEN) /* ic_flags/iv_flags */ #define IEEE80211_F_TURBOP 0x00000001 /* CONF: ATH Turbo enabled*/ #define IEEE80211_F_COMP 0x00000002 /* CONF: ATH comp enabled */ #define IEEE80211_F_FF 0x00000004 /* CONF: ATH FF enabled */ #define IEEE80211_F_BURST 0x00000008 /* CONF: bursting enabled */ /* NB: this is intentionally setup to be IEEE80211_CAPINFO_PRIVACY */ #define IEEE80211_F_PRIVACY 0x00000010 /* CONF: privacy enabled */ #define IEEE80211_F_PUREG 0x00000020 /* CONF: 11g w/o 11b sta's */ #define IEEE80211_F_SCAN 0x00000080 /* STATUS: scanning */ /* 0x00000300 reserved */ /* NB: this is intentionally setup to be IEEE80211_CAPINFO_SHORT_SLOTTIME */ #define IEEE80211_F_SHSLOT 0x00000400 /* STATUS: use short slot time*/ #define IEEE80211_F_PMGTON 0x00000800 /* CONF: Power mgmt enable */ #define IEEE80211_F_DESBSSID 0x00001000 /* CONF: des_bssid is set */ #define IEEE80211_F_WME 0x00002000 /* CONF: enable WME use */ #define IEEE80211_F_BGSCAN 0x00004000 /* CONF: bg scan enabled (???)*/ #define IEEE80211_F_SWRETRY 0x00008000 /* CONF: sw tx retry enabled */ /* 0x00030000 reserved */ #define IEEE80211_F_SHPREAMBLE 0x00040000 /* STATUS: use short preamble */ #define IEEE80211_F_DATAPAD 0x00080000 /* CONF: do alignment pad */ #define IEEE80211_F_USEPROT 0x00100000 /* STATUS: protection enabled */ #define IEEE80211_F_USEBARKER 0x00200000 /* STATUS: use barker preamble*/ #define IEEE80211_F_CSAPENDING 0x00400000 /* STATUS: chan switch pending*/ #define IEEE80211_F_WPA1 0x00800000 /* CONF: WPA enabled */ #define IEEE80211_F_WPA2 0x01000000 /* CONF: WPA2 enabled */ #define IEEE80211_F_WPA 0x01800000 /* CONF: WPA/WPA2 enabled */ #define IEEE80211_F_DROPUNENC 0x02000000 /* CONF: drop unencrypted */ #define IEEE80211_F_COUNTERM 0x04000000 /* CONF: TKIP countermeasures */ #define IEEE80211_F_HIDESSID 0x08000000 /* CONF: hide SSID in beacon */ #define IEEE80211_F_NOBRIDGE 0x10000000 /* CONF: dis. internal bridge */ #define IEEE80211_F_PCF 0x20000000 /* CONF: PCF enabled */ #define IEEE80211_F_DOTH 0x40000000 /* CONF: 11h enabled */ #define IEEE80211_F_DWDS 0x80000000 /* CONF: Dynamic WDS enabled */ #define IEEE80211_F_BITS \ "\20\1TURBOP\2COMP\3FF\4BURST\5PRIVACY\6PUREG\10SCAN" \ "\13SHSLOT\14PMGTON\15DESBSSID\16WME\17BGSCAN\20SWRETRY" \ "\23SHPREAMBLE\24DATAPAD\25USEPROT\26USERBARKER\27CSAPENDING" \ "\30WPA1\31WPA2\32DROPUNENC\33COUNTERM\34HIDESSID\35NOBRIDG\36PCF" \ "\37DOTH\40DWDS" /* Atheros protocol-specific flags */ #define IEEE80211_F_ATHEROS \ (IEEE80211_F_FF | IEEE80211_F_COMP | IEEE80211_F_TURBOP) /* Check if an Atheros capability was negotiated for use */ #define IEEE80211_ATH_CAP(vap, ni, bit) \ ((vap)->iv_flags & (ni)->ni_ath_flags & (bit)) /* ic_flags_ext/iv_flags_ext */ #define IEEE80211_FEXT_INACT 0x00000002 /* CONF: sta inact handling */ #define IEEE80211_FEXT_SCANWAIT 0x00000004 /* STATUS: awaiting scan */ /* 0x00000006 reserved */ #define IEEE80211_FEXT_BGSCAN 0x00000008 /* STATUS: complete bgscan */ #define IEEE80211_FEXT_WPS 0x00000010 /* CONF: WPS enabled */ #define IEEE80211_FEXT_TSN 0x00000020 /* CONF: TSN enabled */ #define IEEE80211_FEXT_SCANREQ 0x00000040 /* STATUS: scan req params */ #define IEEE80211_FEXT_RESUME 0x00000080 /* STATUS: start on resume */ #define IEEE80211_FEXT_4ADDR 0x00000100 /* CONF: apply 4-addr encap */ #define IEEE80211_FEXT_NONERP_PR 0x00000200 /* STATUS: non-ERP sta present*/ #define IEEE80211_FEXT_SWBMISS 0x00000400 /* CONF: do bmiss in s/w */ #define IEEE80211_FEXT_DFS 0x00000800 /* CONF: DFS enabled */ #define IEEE80211_FEXT_DOTD 0x00001000 /* CONF: 11d enabled */ #define IEEE80211_FEXT_STATEWAIT 0x00002000 /* STATUS: awaiting state chg */ #define IEEE80211_FEXT_REINIT 0x00004000 /* STATUS: INIT state first */ #define IEEE80211_FEXT_BPF 0x00008000 /* STATUS: BPF tap present */ /* NB: immutable: should be set only when creating a vap */ #define IEEE80211_FEXT_WDSLEGACY 0x00010000 /* CONF: legacy WDS operation */ #define IEEE80211_FEXT_PROBECHAN 0x00020000 /* CONF: probe passive channel*/ #define IEEE80211_FEXT_UNIQMAC 0x00040000 /* CONF: user or computed mac */ #define IEEE80211_FEXT_SCAN_OFFLOAD 0x00080000 /* CONF: scan is fully offloaded */ #define IEEE80211_FEXT_SEQNO_OFFLOAD 0x00100000 /* CONF: driver does seqno insertion/allocation */ #define IEEE80211_FEXT_FRAG_OFFLOAD 0x00200000 /* CONF: hardware does 802.11 fragmentation + assignment */ #define IEEE80211_FEXT_VHT 0x00400000 /* CONF: VHT support */ #define IEEE80211_FEXT_QUIET_IE 0x00800000 /* STATUS: quiet IE in a beacon has been added */ #define IEEE80211_FEXT_UAPSD 0x01000000 /* CONF: enable U-APSD */ #define IEEE80211_FEXT_AMPDU_OFFLOAD 0x02000000 /* CONF: driver/fw handles AMPDU[-TX] itself */ #define IEEE80211_FEXT_BITS \ "\20\2INACT\3SCANWAIT\4BGSCAN\5WPS\6TSN\7SCANREQ\10RESUME" \ "\0114ADDR\12NONEPR_PR\13SWBMISS\14DFS\15DOTD\16STATEWAIT\17REINIT" \ "\20BPF\21WDSLEGACY\22PROBECHAN\23UNIQMAC\24SCAN_OFFLOAD\25SEQNO_OFFLOAD" \ "\26FRAG_OFFLOAD\27VHT" \ "\30QUIET_IE\31UAPSD\32AMPDU_OFFLOAD" /* ic_flags_ht/iv_flags_ht */ #define IEEE80211_FHT_NONHT_PR 0x00000001 /* STATUS: non-HT sta present */ #define IEEE80211_FHT_LDPC_TX 0x00010000 /* CONF: LDPC tx enabled */ #define IEEE80211_FHT_LDPC_RX 0x00020000 /* CONF: LDPC rx enabled */ #define IEEE80211_FHT_GF 0x00040000 /* CONF: Greenfield enabled */ #define IEEE80211_FHT_HT 0x00080000 /* CONF: HT supported */ #define IEEE80211_FHT_AMPDU_TX 0x00100000 /* CONF: A-MPDU tx supported */ #define IEEE80211_FHT_AMPDU_RX 0x00200000 /* CONF: A-MPDU rx supported */ #define IEEE80211_FHT_AMSDU_TX 0x00400000 /* CONF: A-MSDU tx supported */ #define IEEE80211_FHT_AMSDU_RX 0x00800000 /* CONF: A-MSDU rx supported */ #define IEEE80211_FHT_USEHT40 0x01000000 /* CONF: 20/40 use enabled */ #define IEEE80211_FHT_PUREN 0x02000000 /* CONF: 11n w/o legacy sta's */ #define IEEE80211_FHT_SHORTGI20 0x04000000 /* CONF: short GI in HT20 */ #define IEEE80211_FHT_SHORTGI40 0x08000000 /* CONF: short GI in HT40 */ #define IEEE80211_FHT_HTCOMPAT 0x10000000 /* CONF: HT vendor OUI's */ #define IEEE80211_FHT_RIFS 0x20000000 /* CONF: RIFS enabled */ #define IEEE80211_FHT_STBC_TX 0x40000000 /* CONF: STBC tx enabled */ #define IEEE80211_FHT_STBC_RX 0x80000000 /* CONF: STBC rx enabled */ #define IEEE80211_FHT_BITS \ "\20\1NONHT_PR" \ "\21LDPC_TX\22LDPC_RX\23GF\24HT\25AMPDU_TX\26AMPDU_RX" \ "\27AMSDU_TX\30AMSDU_RX\31USEHT40\32PUREN\33SHORTGI20\34SHORTGI40" \ "\35HTCOMPAT\36RIFS\37STBC_TX\40STBC_RX" #define IEEE80211_FVEN_BITS "\20" /* * These flags are compared in ieee80211_setupcurchan(). * Thus 160 should be > 80P80. */ #define IEEE80211_FVHT_VHT 0x000000001 /* CONF: VHT supported */ #define IEEE80211_FVHT_USEVHT40 0x000000002 /* CONF: Use VHT40 */ #define IEEE80211_FVHT_USEVHT80 0x000000004 /* CONF: Use VHT80 */ #define IEEE80211_FVHT_USEVHT80P80 0x000000008 /* CONF: Use VHT 80+80 */ #define IEEE80211_FVHT_USEVHT160 0x000000010 /* CONF: Use VHT160 */ #define IEEE80211_FVHT_STBC_TX 0x00000020 /* CONF: STBC tx enabled */ #define IEEE80211_FVHT_STBC_RX 0x00000040 /* CONF: STBC rx enabled */ #define IEEE80211_FVHT_CHANWIDTH_MASK \ (IEEE80211_FVHT_VHT | IEEE80211_FVHT_USEVHT40 | \ IEEE80211_FVHT_USEVHT80 | IEEE80211_FVHT_USEVHT160 | \ IEEE80211_FVHT_USEVHT80P80) #define IEEE80211_FVHT_MASK \ (IEEE80211_FVHT_CHANWIDTH_MASK | \ IEEE80211_FVHT_STBC_TX | IEEE80211_FVHT_STBC_RX) #define IEEE80211_VFHT_BITS \ "\20\1VHT\2VHT40\3VHT80\4VHT80P80\5VHT160\6STBC_TX\7STBC_RX" #define IEEE80211_COM_DETACHED 0x00000001 /* ieee80211_ifdetach called */ #define IEEE80211_COM_REF_ADD 0x00000002 /* add / remove reference */ #define IEEE80211_COM_REF 0xfffffffe /* reference counter bits */ #define IEEE80211_COM_REF_S 1 #define IEEE80211_COM_REF_MAX (IEEE80211_COM_REF >> IEEE80211_COM_REF_S) -int ic_printf(struct ieee80211com *, const char *, ...) __printflike(2, 3); +/* TODO: Transition macro */ +#define ic_printf net80211_ic_printf + void ieee80211_ifattach(struct ieee80211com *); void ieee80211_ifdetach(struct ieee80211com *); void ieee80211_set_software_ciphers(struct ieee80211com *, uint32_t cipher_suite); void ieee80211_set_hardware_ciphers(struct ieee80211com *, uint32_t cipher_suite); void ieee80211_set_driver_keymgmt_suites(struct ieee80211com *ic, uint32_t keymgmt_set); int ieee80211_vap_setup(struct ieee80211com *, struct ieee80211vap *, const char name[IFNAMSIZ], int unit, enum ieee80211_opmode opmode, int flags, const uint8_t bssid[IEEE80211_ADDR_LEN]); int ieee80211_vap_attach(struct ieee80211vap *, ifm_change_cb_t, ifm_stat_cb_t, const uint8_t macaddr[IEEE80211_ADDR_LEN]); void ieee80211_vap_detach(struct ieee80211vap *); const struct ieee80211_rateset *ieee80211_get_suprates(struct ieee80211com *ic, const struct ieee80211_channel *); const struct ieee80211_htrateset *ieee80211_get_suphtrates( struct ieee80211com *, const struct ieee80211_channel *); void ieee80211_announce(struct ieee80211com *); void ieee80211_announce_channels(struct ieee80211com *); void ieee80211_drain(struct ieee80211com *); void ieee80211_chan_init(struct ieee80211com *); struct ieee80211com *ieee80211_find_vap(const uint8_t mac[IEEE80211_ADDR_LEN]); struct ieee80211com *ieee80211_find_com(const char *name); typedef void ieee80211_com_iter_func(void *, struct ieee80211com *); void ieee80211_iterate_coms(ieee80211_com_iter_func *, void *); int ieee80211_media_change(struct ifnet *); void ieee80211_media_status(struct ifnet *, struct ifmediareq *); int ieee80211_ioctl(struct ifnet *, u_long, caddr_t); int ieee80211_rate2media(struct ieee80211com *, const struct ieee80211_node_txrate *, enum ieee80211_phymode); int ieee80211_media2rate(int); int ieee80211_mhz2ieee(u_int, u_int); int ieee80211_chan2ieee(struct ieee80211com *, const struct ieee80211_channel *); u_int ieee80211_ieee2mhz(u_int, u_int); int ieee80211_add_channel_cbw(struct ieee80211_channel[], int, int *, uint8_t, uint16_t, int8_t, uint32_t, const uint8_t[], int); int ieee80211_add_channel(struct ieee80211_channel[], int, int *, uint8_t, uint16_t, int8_t, uint32_t, const uint8_t[]); int ieee80211_add_channel_ht40(struct ieee80211_channel[], int, int *, uint8_t, int8_t, uint32_t); uint32_t ieee80211_get_channel_center_freq(const struct ieee80211_channel *); uint32_t ieee80211_get_channel_center_freq1(const struct ieee80211_channel *); uint32_t ieee80211_get_channel_center_freq2(const struct ieee80211_channel *); #define NET80211_CBW_FLAG_HT40 0x01 #define NET80211_CBW_FLAG_VHT80 0x02 #define NET80211_CBW_FLAG_VHT160 0x04 #define NET80211_CBW_FLAG_VHT80P80 0x08 int ieee80211_add_channel_list_2ghz(struct ieee80211_channel[], int, int *, const uint8_t[], int, const uint8_t[], int); int ieee80211_add_channels_default_2ghz(struct ieee80211_channel[], int, int *, const uint8_t[], int); int ieee80211_add_channel_list_5ghz(struct ieee80211_channel[], int, int *, const uint8_t[], int, const uint8_t[], int); struct ieee80211_channel *ieee80211_find_channel(struct ieee80211com *, int freq, int flags); struct ieee80211_channel *ieee80211_find_channel_byieee(struct ieee80211com *, int ieee, int flags); struct ieee80211_channel *ieee80211_lookup_channel_rxstatus(struct ieee80211vap *, const struct ieee80211_rx_stats *); int ieee80211_setmode(struct ieee80211com *, enum ieee80211_phymode); enum ieee80211_phymode ieee80211_chan2mode(const struct ieee80211_channel *); uint32_t ieee80211_mac_hash(const struct ieee80211com *, const uint8_t addr[IEEE80211_ADDR_LEN]); char ieee80211_channel_type_char(const struct ieee80211_channel *c); #define ieee80211_get_current_channel(_ic) ((_ic)->ic_curchan) #define ieee80211_get_home_channel(_ic) ((_ic)->ic_bsschan) #define ieee80211_get_vap_desired_channel(_iv) ((_iv)->iv_des_chan) bool ieee80211_is_key_global(const struct ieee80211vap *vap, const struct ieee80211_key *key); bool ieee80211_is_key_unicast(const struct ieee80211vap *vap, const struct ieee80211_key *key); bool ieee80211_is_ctl_frame_for_vap(struct ieee80211_node *, const struct mbuf *); void ieee80211_radiotap_attach(struct ieee80211com *, struct ieee80211_radiotap_header *th, int tlen, uint32_t tx_radiotap, struct ieee80211_radiotap_header *rh, int rlen, uint32_t rx_radiotap); void ieee80211_radiotap_attachv(struct ieee80211com *, struct ieee80211_radiotap_header *th, int tlen, int n_tx_v, uint32_t tx_radiotap, struct ieee80211_radiotap_header *rh, int rlen, int n_rx_v, uint32_t rx_radiotap); void ieee80211_radiotap_detach(struct ieee80211com *); void ieee80211_radiotap_vattach(struct ieee80211vap *); void ieee80211_radiotap_vdetach(struct ieee80211vap *); void ieee80211_radiotap_chan_change(struct ieee80211com *); void ieee80211_radiotap_tx(struct ieee80211vap *, struct mbuf *); void ieee80211_radiotap_rx(struct ieee80211vap *, struct mbuf *); void ieee80211_radiotap_rx_all(struct ieee80211com *, struct mbuf *); static __inline int ieee80211_radiotap_active(const struct ieee80211com *ic) { return (ic->ic_flags_ext & IEEE80211_FEXT_BPF) != 0; } static __inline int ieee80211_radiotap_active_vap(const struct ieee80211vap *vap) { return (vap->iv_flags_ext & IEEE80211_FEXT_BPF) || vap->iv_ic->ic_montaps != 0; } /* * Enqueue a task on the state thread. */ static __inline void ieee80211_runtask(struct ieee80211com *ic, struct task *task) { taskqueue_enqueue(ic->ic_tq, task); } /* * Wait for a queued task to complete. */ static __inline void ieee80211_draintask(struct ieee80211com *ic, struct task *task) { taskqueue_drain(ic->ic_tq, task); } /* * Key update synchronization methods. XXX should not be visible. */ static __inline void ieee80211_key_update_begin(struct ieee80211vap *vap) { vap->iv_key_update_begin(vap); } static __inline void ieee80211_key_update_end(struct ieee80211vap *vap) { vap->iv_key_update_end(vap); } /* * XXX these need to be here for IEEE80211_F_DATAPAD */ /* * Return the space occupied by the 802.11 header and any * padding required by the driver. This works for a * management or data frame. */ static __inline int ieee80211_hdrspace(struct ieee80211com *ic, const void *data) { int size = ieee80211_hdrsize(data); if (ic->ic_flags & IEEE80211_F_DATAPAD) size = roundup(size, sizeof(uint32_t)); return size; } /* * Like ieee80211_hdrspace, but handles any type of frame. */ static __inline int ieee80211_anyhdrspace(struct ieee80211com *ic, const void *data) { int size = ieee80211_anyhdrsize(data); if (ic->ic_flags & IEEE80211_F_DATAPAD) size = roundup(size, sizeof(uint32_t)); return size; } /* * Notify a vap that beacon state has been updated. */ static __inline void ieee80211_beacon_notify(struct ieee80211vap *vap, int what) { if (vap->iv_state == IEEE80211_S_RUN) vap->iv_update_beacon(vap, what); } /* * Calculate HT channel promotion flags for a channel. * XXX belongs in ieee80211_ht.h but needs IEEE80211_FHT_* */ static __inline int ieee80211_htchanflags(const struct ieee80211_channel *c) { return IEEE80211_IS_CHAN_HT40(c) ? IEEE80211_FHT_HT | IEEE80211_FHT_USEHT40 : IEEE80211_IS_CHAN_HT(c) ? IEEE80211_FHT_HT : 0; } /* * Calculate VHT channel promotion flags for a channel. * XXX belongs in ieee80211_vht.h but needs IEEE80211_FVHT_* */ static __inline int ieee80211_vhtchanflags(const struct ieee80211_channel *c) { if (IEEE80211_IS_CHAN_VHT160(c)) return IEEE80211_FVHT_USEVHT160; if (IEEE80211_IS_CHAN_VHT80P80(c)) return IEEE80211_FVHT_USEVHT80P80; if (IEEE80211_IS_CHAN_VHT80(c)) return IEEE80211_FVHT_USEVHT80; if (IEEE80211_IS_CHAN_VHT40(c)) return IEEE80211_FVHT_USEVHT40; if (IEEE80211_IS_CHAN_VHT(c)) return IEEE80211_FVHT_VHT; return (0); } /* * Fetch the current TX power (cap) for the given node. * * This includes the node and ic/vap TX power limit as needed, * but it doesn't take into account any per-rate limit. */ static __inline uint16_t ieee80211_get_node_txpower(struct ieee80211_node *ni) { struct ieee80211com *ic = ni->ni_ic; uint16_t txpower; txpower = ni->ni_txpower; txpower = MIN(txpower, ic->ic_txpowlimit); if (ic->ic_curchan != NULL) { txpower = MIN(txpower, 2 * ic->ic_curchan->ic_maxregpower); txpower = MIN(txpower, ic->ic_curchan->ic_maxpower); } return (txpower); } /* * Debugging facilities compiled in when IEEE80211_DEBUG is defined. * * The intent is that any problem in the net80211 layer can be * diagnosed by inspecting the statistics (dumped by the wlanstats * program) and/or the msgs generated by net80211. Messages are * broken into functional classes and can be controlled with the * wlandebug program. Certain of these msg groups are for facilities * that are no longer part of net80211 (e.g. IEEE80211_MSG_DOT1XSM). */ #define IEEE80211_MSG_11N 0x80000000 /* 11n mode debug */ #define IEEE80211_MSG_DEBUG 0x40000000 /* IFF_DEBUG equivalent */ #define IEEE80211_MSG_DUMPPKTS 0x20000000 /* IFF_LINK2 equivalant */ #define IEEE80211_MSG_CRYPTO 0x10000000 /* crypto work */ #define IEEE80211_MSG_INPUT 0x08000000 /* input handling */ #define IEEE80211_MSG_XRATE 0x04000000 /* rate set handling */ #define IEEE80211_MSG_ELEMID 0x02000000 /* element id parsing */ #define IEEE80211_MSG_NODE 0x01000000 /* node handling */ #define IEEE80211_MSG_ASSOC 0x00800000 /* association handling */ #define IEEE80211_MSG_AUTH 0x00400000 /* authentication handling */ #define IEEE80211_MSG_SCAN 0x00200000 /* scanning */ #define IEEE80211_MSG_OUTPUT 0x00100000 /* output handling */ #define IEEE80211_MSG_STATE 0x00080000 /* state machine */ #define IEEE80211_MSG_POWER 0x00040000 /* power save handling */ #define IEEE80211_MSG_HWMP 0x00020000 /* hybrid mesh protocol */ #define IEEE80211_MSG_DOT1XSM 0x00010000 /* 802.1x state machine */ #define IEEE80211_MSG_RADIUS 0x00008000 /* 802.1x radius client */ #define IEEE80211_MSG_RADDUMP 0x00004000 /* dump 802.1x radius packets */ #define IEEE80211_MSG_MESH 0x00002000 /* mesh networking */ #define IEEE80211_MSG_WPA 0x00001000 /* WPA/RSN protocol */ #define IEEE80211_MSG_ACL 0x00000800 /* ACL handling */ #define IEEE80211_MSG_WME 0x00000400 /* WME protocol */ #define IEEE80211_MSG_SUPERG 0x00000200 /* Atheros SuperG protocol */ #define IEEE80211_MSG_DOTH 0x00000100 /* 802.11h support */ #define IEEE80211_MSG_INACT 0x00000080 /* inactivity handling */ #define IEEE80211_MSG_ROAM 0x00000040 /* sta-mode roaming */ #define IEEE80211_MSG_RATECTL 0x00000020 /* tx rate control */ #define IEEE80211_MSG_ACTION 0x00000010 /* action frame handling */ #define IEEE80211_MSG_WDS 0x00000008 /* WDS handling */ #define IEEE80211_MSG_IOCTL 0x00000004 /* ioctl handling */ #define IEEE80211_MSG_TDMA 0x00000002 /* TDMA handling */ #define IEEE80211_MSG_ANY 0xffffffff /* anything */ #define IEEE80211_MSG_BITS \ "\20\2TDMA\3IOCTL\4WDS\5ACTION\6RATECTL\7ROAM\10INACT\11DOTH\12SUPERG" \ "\13WME\14ACL\15WPA\16RADKEYS\17RADDUMP\20RADIUS\21DOT1XSM\22HWMP" \ "\23POWER\24STATE\25OUTPUT\26SCAN\27AUTH\30ASSOC\31NODE\32ELEMID" \ "\33XRATE\34INPUT\35CRYPTO\36DUPMPKTS\37DEBUG\04011N" /* Helper macros unified. */ #define _IEEE80211_MASKSHIFT(_v, _f) (((_v) & _f) >> _f##_S) #define _IEEE80211_SHIFTMASK(_v, _f) (((_v) << _f##_S) & _f) #ifdef IEEE80211_DEBUG #define ieee80211_msg(_vap, _m) ((_vap)->iv_debug & (_m)) #define IEEE80211_DPRINTF(_vap, _m, _fmt, ...) do { \ if (ieee80211_msg(_vap, _m)) \ ieee80211_note(_vap, _fmt, __VA_ARGS__); \ } while (0) #define IEEE80211_NOTE(_vap, _m, _ni, _fmt, ...) do { \ if (ieee80211_msg(_vap, _m)) \ ieee80211_note_mac(_vap, (_ni)->ni_macaddr, _fmt, __VA_ARGS__);\ } while (0) #define IEEE80211_NOTE_MAC(_vap, _m, _mac, _fmt, ...) do { \ if (ieee80211_msg(_vap, _m)) \ ieee80211_note_mac(_vap, _mac, _fmt, __VA_ARGS__); \ } while (0) #define IEEE80211_NOTE_FRAME(_vap, _m, _wh, _fmt, ...) do { \ if (ieee80211_msg(_vap, _m)) \ ieee80211_note_frame(_vap, _wh, _fmt, __VA_ARGS__); \ } while (0) void ieee80211_note(const struct ieee80211vap *, const char *, ...); void ieee80211_note_mac(const struct ieee80211vap *, const uint8_t mac[IEEE80211_ADDR_LEN], const char *, ...); void ieee80211_note_frame(const struct ieee80211vap *, const struct ieee80211_frame *, const char *, ...); #define ieee80211_msg_debug(_vap) \ ((_vap)->iv_debug & IEEE80211_MSG_DEBUG) #define ieee80211_msg_dumppkts(_vap) \ ((_vap)->iv_debug & IEEE80211_MSG_DUMPPKTS) #define ieee80211_msg_input(_vap) \ ((_vap)->iv_debug & IEEE80211_MSG_INPUT) #define ieee80211_msg_radius(_vap) \ ((_vap)->iv_debug & IEEE80211_MSG_RADIUS) #define ieee80211_msg_dumpradius(_vap) \ ((_vap)->iv_debug & IEEE80211_MSG_RADDUMP) #define ieee80211_msg_dumpradkeys(_vap) \ ((_vap)->iv_debug & IEEE80211_MSG_RADKEYS) #define ieee80211_msg_scan(_vap) \ ((_vap)->iv_debug & IEEE80211_MSG_SCAN) #define ieee80211_msg_assoc(_vap) \ ((_vap)->iv_debug & IEEE80211_MSG_ASSOC) /* * Emit a debug message about discarding a frame or information * element. One format is for extracting the mac address from * the frame header; the other is for when a header is not * available or otherwise appropriate. */ #define IEEE80211_DISCARD(_vap, _m, _wh, _type, _fmt, ...) do { \ if ((_vap)->iv_debug & (_m)) \ ieee80211_discard_frame(_vap, _wh, _type, \ "%s:%d: " _fmt, __func__, __LINE__, __VA_ARGS__); \ } while (0) #define IEEE80211_DISCARD_IE(_vap, _m, _wh, _type, _fmt, ...) do { \ if ((_vap)->iv_debug & (_m)) \ ieee80211_discard_ie(_vap, _wh, _type, \ "%s:%d: " _fmt, __func__, __LINE__, __VA_ARGS__); \ } while (0) #define IEEE80211_DISCARD_MAC(_vap, _m, _mac, _type, _fmt, ...) do { \ if ((_vap)->iv_debug & (_m)) \ ieee80211_discard_mac(_vap, _mac, _type, \ "%s:%d: " _fmt, __func__, __LINE__, __VA_ARGS__); \ } while (0) void ieee80211_discard_frame(const struct ieee80211vap *, const struct ieee80211_frame *, const char *type, const char *fmt, ...); void ieee80211_discard_ie(const struct ieee80211vap *, const struct ieee80211_frame *, const char *type, const char *fmt, ...); void ieee80211_discard_mac(const struct ieee80211vap *, const uint8_t mac[IEEE80211_ADDR_LEN], const char *type, const char *fmt, ...); #else #define IEEE80211_DPRINTF(_vap, _m, _fmt, ...) #define IEEE80211_NOTE(_vap, _m, _ni, _fmt, ...) #define IEEE80211_NOTE_FRAME(_vap, _m, _wh, _fmt, ...) #define IEEE80211_NOTE_MAC(_vap, _m, _mac, _fmt, ...) #define ieee80211_msg_dumppkts(_vap) 0 #define ieee80211_msg(_vap, _m) 0 #define IEEE80211_DISCARD(_vap, _m, _wh, _type, _fmt, ...) #define IEEE80211_DISCARD_IE(_vap, _m, _wh, _type, _fmt, ...) #define IEEE80211_DISCARD_MAC(_vap, _m, _mac, _type, _fmt, ...) #endif #endif /* _NET80211_IEEE80211_VAR_H_ */