diff --git a/sys/crypto/aesni/aesni.c b/sys/crypto/aesni/aesni.c index 7d4dbd2c1604..de797abd1af5 100644 --- a/sys/crypto/aesni/aesni.c +++ b/sys/crypto/aesni/aesni.c @@ -1,936 +1,940 @@ /*- * Copyright (c) 2005-2008 Pawel Jakub Dawidek * Copyright (c) 2010 Konstantin Belousov * Copyright (c) 2014-2021 The FreeBSD Foundation * Copyright (c) 2017 Conrad Meyer * All rights reserved. * * Portions of this software were developed by John-Mark Gurney * under sponsorship of the FreeBSD Foundation and * Rubicon Communications, LLC (Netgate). * * Portions of this software were developed by Ararat River * Consulting, LLC under sponsorship of the FreeBSD Foundation. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static struct mtx_padalign *ctx_mtx; static struct fpu_kern_ctx **ctx_fpu; struct aesni_softc { int32_t cid; bool has_aes; bool has_sha; }; #define ACQUIRE_CTX(i, ctx) \ do { \ (i) = PCPU_GET(cpuid); \ mtx_lock(&ctx_mtx[(i)]); \ (ctx) = ctx_fpu[(i)]; \ } while (0) #define RELEASE_CTX(i, ctx) \ do { \ mtx_unlock(&ctx_mtx[(i)]); \ (i) = -1; \ (ctx) = NULL; \ } while (0) static int aesni_cipher_setup(struct aesni_session *ses, const struct crypto_session_params *csp); static int aesni_cipher_process(struct aesni_session *ses, struct cryptop *crp); static int aesni_cipher_crypt(struct aesni_session *ses, struct cryptop *crp, const struct crypto_session_params *csp); static int aesni_cipher_mac(struct aesni_session *ses, struct cryptop *crp, const struct crypto_session_params *csp); MALLOC_DEFINE(M_AESNI, "aesni_data", "AESNI Data"); static void aesni_identify(driver_t *drv, device_t parent) { /* NB: order 10 is so we get attached after h/w devices */ if (device_find_child(parent, "aesni", -1) == NULL && BUS_ADD_CHILD(parent, 10, "aesni", -1) == 0) panic("aesni: could not attach"); } static void detect_cpu_features(bool *has_aes, bool *has_sha) { *has_aes = ((cpu_feature2 & CPUID2_AESNI) != 0 && (cpu_feature2 & CPUID2_SSE41) != 0); *has_sha = ((cpu_stdext_feature & CPUID_STDEXT_SHA) != 0 && (cpu_feature2 & CPUID2_SSSE3) != 0); } static int aesni_probe(device_t dev) { bool has_aes, has_sha; detect_cpu_features(&has_aes, &has_sha); if (!has_aes && !has_sha) { device_printf(dev, "No AES or SHA support.\n"); return (EINVAL); } else if (has_aes && has_sha) device_set_desc(dev, "AES-CBC,AES-CCM,AES-GCM,AES-ICM,AES-XTS,SHA1,SHA256"); else if (has_aes) device_set_desc(dev, "AES-CBC,AES-CCM,AES-GCM,AES-ICM,AES-XTS"); else device_set_desc(dev, "SHA1,SHA256"); return (0); } static void aesni_cleanctx(void) { int i; /* XXX - no way to return driverid */ CPU_FOREACH(i) { if (ctx_fpu[i] != NULL) { mtx_destroy(&ctx_mtx[i]); fpu_kern_free_ctx(ctx_fpu[i]); } ctx_fpu[i] = NULL; } free(ctx_mtx, M_AESNI); ctx_mtx = NULL; free(ctx_fpu, M_AESNI); ctx_fpu = NULL; } static int aesni_attach(device_t dev) { struct aesni_softc *sc; int i; sc = device_get_softc(dev); sc->cid = crypto_get_driverid(dev, sizeof(struct aesni_session), CRYPTOCAP_F_SOFTWARE | CRYPTOCAP_F_SYNC | CRYPTOCAP_F_ACCEL_SOFTWARE); if (sc->cid < 0) { device_printf(dev, "Could not get crypto driver id.\n"); return (ENOMEM); } ctx_mtx = malloc(sizeof *ctx_mtx * (mp_maxid + 1), M_AESNI, M_WAITOK|M_ZERO); ctx_fpu = malloc(sizeof *ctx_fpu * (mp_maxid + 1), M_AESNI, M_WAITOK|M_ZERO); CPU_FOREACH(i) { #ifdef __amd64__ ctx_fpu[i] = fpu_kern_alloc_ctx_domain( pcpu_find(i)->pc_domain, FPU_KERN_NORMAL); #else ctx_fpu[i] = fpu_kern_alloc_ctx(FPU_KERN_NORMAL); #endif mtx_init(&ctx_mtx[i], "anifpumtx", NULL, MTX_DEF|MTX_NEW); } detect_cpu_features(&sc->has_aes, &sc->has_sha); return (0); } static int aesni_detach(device_t dev) { struct aesni_softc *sc; sc = device_get_softc(dev); crypto_unregister_all(sc->cid); aesni_cleanctx(); return (0); } static bool aesni_auth_supported(struct aesni_softc *sc, const struct crypto_session_params *csp) { if (!sc->has_sha) return (false); switch (csp->csp_auth_alg) { case CRYPTO_SHA1: case CRYPTO_SHA2_224: case CRYPTO_SHA2_256: case CRYPTO_SHA1_HMAC: case CRYPTO_SHA2_224_HMAC: case CRYPTO_SHA2_256_HMAC: break; default: return (false); } return (true); } static bool aesni_cipher_supported(struct aesni_softc *sc, const struct crypto_session_params *csp) { if (!sc->has_aes) return (false); switch (csp->csp_cipher_alg) { case CRYPTO_AES_CBC: case CRYPTO_AES_ICM: switch (csp->csp_cipher_klen * 8) { case 128: case 192: case 256: break; default: CRYPTDEB("invalid CBC/ICM key length"); return (false); } if (csp->csp_ivlen != AES_BLOCK_LEN) return (false); break; case CRYPTO_AES_XTS: switch (csp->csp_cipher_klen * 8) { case 256: case 512: break; default: CRYPTDEB("invalid XTS key length"); return (false); } if (csp->csp_ivlen != AES_XTS_IV_LEN) return (false); break; default: return (false); } return (true); } #define SUPPORTED_SES (CSP_F_SEPARATE_OUTPUT | CSP_F_SEPARATE_AAD | CSP_F_ESN) static int aesni_probesession(device_t dev, const struct crypto_session_params *csp) { struct aesni_softc *sc; sc = device_get_softc(dev); if ((csp->csp_flags & ~(SUPPORTED_SES)) != 0) return (EINVAL); switch (csp->csp_mode) { case CSP_MODE_DIGEST: if (!aesni_auth_supported(sc, csp)) return (EINVAL); break; case CSP_MODE_CIPHER: if (!aesni_cipher_supported(sc, csp)) return (EINVAL); break; case CSP_MODE_AEAD: switch (csp->csp_cipher_alg) { case CRYPTO_AES_NIST_GCM_16: switch (csp->csp_cipher_klen * 8) { case 128: case 192: case 256: break; default: CRYPTDEB("invalid GCM key length"); return (EINVAL); } if (csp->csp_auth_mlen != 0 && csp->csp_auth_mlen != GMAC_DIGEST_LEN) return (EINVAL); if (csp->csp_ivlen != AES_GCM_IV_LEN || !sc->has_aes) return (EINVAL); break; case CRYPTO_AES_CCM_16: switch (csp->csp_cipher_klen * 8) { case 128: case 192: case 256: break; default: CRYPTDEB("invalid CCM key length"); return (EINVAL); } - if (csp->csp_auth_mlen != 0 && - csp->csp_auth_mlen != AES_CBC_MAC_HASH_LEN) - return (EINVAL); if (!sc->has_aes) return (EINVAL); break; default: return (EINVAL); } break; case CSP_MODE_ETA: if (!aesni_auth_supported(sc, csp) || !aesni_cipher_supported(sc, csp)) return (EINVAL); break; default: return (EINVAL); } return (CRYPTODEV_PROBE_ACCEL_SOFTWARE); } static int aesni_newsession(device_t dev, crypto_session_t cses, const struct crypto_session_params *csp) { struct aesni_softc *sc; struct aesni_session *ses; int error; sc = device_get_softc(dev); ses = crypto_get_driver_session(cses); switch (csp->csp_mode) { case CSP_MODE_DIGEST: case CSP_MODE_CIPHER: case CSP_MODE_AEAD: case CSP_MODE_ETA: break; default: return (EINVAL); } error = aesni_cipher_setup(ses, csp); if (error != 0) { CRYPTDEB("setup failed"); return (error); } return (0); } static int aesni_process(device_t dev, struct cryptop *crp, int hint __unused) { struct aesni_session *ses; int error; ses = crypto_get_driver_session(crp->crp_session); error = aesni_cipher_process(ses, crp); crp->crp_etype = error; crypto_done(crp); return (0); } static uint8_t * aesni_cipher_alloc(struct cryptop *crp, int start, int length, bool *allocated) { uint8_t *addr; addr = crypto_contiguous_subsegment(crp, start, length); if (addr != NULL) { *allocated = false; return (addr); } addr = malloc(length, M_AESNI, M_NOWAIT); if (addr != NULL) { *allocated = true; crypto_copydata(crp, start, length, addr); } else *allocated = false; return (addr); } static device_method_t aesni_methods[] = { DEVMETHOD(device_identify, aesni_identify), DEVMETHOD(device_probe, aesni_probe), DEVMETHOD(device_attach, aesni_attach), DEVMETHOD(device_detach, aesni_detach), DEVMETHOD(cryptodev_probesession, aesni_probesession), DEVMETHOD(cryptodev_newsession, aesni_newsession), DEVMETHOD(cryptodev_process, aesni_process), DEVMETHOD_END }; static driver_t aesni_driver = { "aesni", aesni_methods, sizeof(struct aesni_softc), }; static devclass_t aesni_devclass; DRIVER_MODULE(aesni, nexus, aesni_driver, aesni_devclass, 0, 0); MODULE_VERSION(aesni, 1); MODULE_DEPEND(aesni, crypto, 1, 1, 1); static int intel_sha1_update(void *vctx, const void *vdata, u_int datalen) { struct sha1_ctxt *ctx = vctx; const char *data = vdata; size_t gaplen; size_t gapstart; size_t off; size_t copysiz; u_int blocks; off = 0; /* Do any aligned blocks without redundant copying. */ if (datalen >= 64 && ctx->count % 64 == 0) { blocks = datalen / 64; ctx->c.b64[0] += blocks * 64 * 8; intel_sha1_step(ctx->h.b32, data + off, blocks); off += blocks * 64; } while (off < datalen) { gapstart = ctx->count % 64; gaplen = 64 - gapstart; copysiz = (gaplen < datalen - off) ? gaplen : datalen - off; bcopy(&data[off], &ctx->m.b8[gapstart], copysiz); ctx->count += copysiz; ctx->count %= 64; ctx->c.b64[0] += copysiz * 8; if (ctx->count % 64 == 0) intel_sha1_step(ctx->h.b32, (void *)ctx->m.b8, 1); off += copysiz; } return (0); } static void SHA1_Init_fn(void *ctx) { sha1_init(ctx); } static void SHA1_Finalize_fn(void *digest, void *ctx) { sha1_result(ctx, digest); } static int intel_sha256_update(void *vctx, const void *vdata, u_int len) { SHA256_CTX *ctx = vctx; uint64_t bitlen; uint32_t r; u_int blocks; const unsigned char *src = vdata; /* Number of bytes left in the buffer from previous updates */ r = (ctx->count >> 3) & 0x3f; /* Convert the length into a number of bits */ bitlen = len << 3; /* Update number of bits */ ctx->count += bitlen; /* Handle the case where we don't need to perform any transforms */ if (len < 64 - r) { memcpy(&ctx->buf[r], src, len); return (0); } /* Finish the current block */ memcpy(&ctx->buf[r], src, 64 - r); intel_sha256_step(ctx->state, ctx->buf, 1); src += 64 - r; len -= 64 - r; /* Perform complete blocks */ if (len >= 64) { blocks = len / 64; intel_sha256_step(ctx->state, src, blocks); src += blocks * 64; len -= blocks * 64; } /* Copy left over data into buffer */ memcpy(ctx->buf, src, len); return (0); } static void SHA224_Init_fn(void *ctx) { SHA224_Init(ctx); } static void SHA224_Finalize_fn(void *digest, void *ctx) { SHA224_Final(digest, ctx); } static void SHA256_Init_fn(void *ctx) { SHA256_Init(ctx); } static void SHA256_Finalize_fn(void *digest, void *ctx) { SHA256_Final(digest, ctx); } static int aesni_authprepare(struct aesni_session *ses, int klen) { if (klen > SHA1_BLOCK_LEN) return (EINVAL); if ((ses->hmac && klen == 0) || (!ses->hmac && klen != 0)) return (EINVAL); return (0); } static int aesni_cipher_setup(struct aesni_session *ses, const struct crypto_session_params *csp) { struct fpu_kern_ctx *ctx; uint8_t *schedbase; int kt, ctxidx, error; schedbase = (uint8_t *)roundup2((uintptr_t)ses->schedules, AES_SCHED_ALIGN); ses->enc_schedule = schedbase; ses->dec_schedule = schedbase + AES_SCHED_LEN; ses->xts_schedule = schedbase + AES_SCHED_LEN * 2; switch (csp->csp_auth_alg) { case CRYPTO_SHA1_HMAC: ses->hmac = true; /* FALLTHROUGH */ case CRYPTO_SHA1: ses->hash_len = SHA1_HASH_LEN; ses->hash_init = SHA1_Init_fn; ses->hash_update = intel_sha1_update; ses->hash_finalize = SHA1_Finalize_fn; break; case CRYPTO_SHA2_224_HMAC: ses->hmac = true; /* FALLTHROUGH */ case CRYPTO_SHA2_224: ses->hash_len = SHA2_224_HASH_LEN; ses->hash_init = SHA224_Init_fn; ses->hash_update = intel_sha256_update; ses->hash_finalize = SHA224_Finalize_fn; break; case CRYPTO_SHA2_256_HMAC: ses->hmac = true; /* FALLTHROUGH */ case CRYPTO_SHA2_256: ses->hash_len = SHA2_256_HASH_LEN; ses->hash_init = SHA256_Init_fn; ses->hash_update = intel_sha256_update; ses->hash_finalize = SHA256_Finalize_fn; break; } if (ses->hash_len != 0) { if (csp->csp_auth_mlen == 0) ses->mlen = ses->hash_len; else ses->mlen = csp->csp_auth_mlen; error = aesni_authprepare(ses, csp->csp_auth_klen); if (error != 0) return (error); + } else if (csp->csp_cipher_alg == CRYPTO_AES_CCM_16) { + if (csp->csp_auth_mlen == 0) + ses->mlen = AES_CBC_MAC_HASH_LEN; + else + ses->mlen = csp->csp_auth_mlen; } kt = is_fpu_kern_thread(0) || (csp->csp_cipher_alg == 0); if (!kt) { ACQUIRE_CTX(ctxidx, ctx); fpu_kern_enter(curthread, ctx, FPU_KERN_NORMAL | FPU_KERN_KTHR); } error = 0; if (csp->csp_cipher_key != NULL) aesni_cipher_setup_common(ses, csp, csp->csp_cipher_key, csp->csp_cipher_klen); if (!kt) { fpu_kern_leave(curthread, ctx); RELEASE_CTX(ctxidx, ctx); } return (error); } static int aesni_cipher_process(struct aesni_session *ses, struct cryptop *crp) { const struct crypto_session_params *csp; struct fpu_kern_ctx *ctx; int error, ctxidx; bool kt; csp = crypto_get_params(crp->crp_session); switch (csp->csp_cipher_alg) { case CRYPTO_AES_CCM_16: if (crp->crp_payload_length > ccm_max_payload_length(csp)) return (EMSGSIZE); /* FALLTHROUGH */ case CRYPTO_AES_ICM: case CRYPTO_AES_NIST_GCM_16: if ((crp->crp_flags & CRYPTO_F_IV_SEPARATE) == 0) return (EINVAL); break; case CRYPTO_AES_CBC: case CRYPTO_AES_XTS: /* CBC & XTS can only handle full blocks for now */ if ((crp->crp_payload_length % AES_BLOCK_LEN) != 0) return (EINVAL); break; } ctx = NULL; ctxidx = 0; error = 0; kt = is_fpu_kern_thread(0); if (!kt) { ACQUIRE_CTX(ctxidx, ctx); fpu_kern_enter(curthread, ctx, FPU_KERN_NORMAL | FPU_KERN_KTHR); } /* Do work */ if (csp->csp_mode == CSP_MODE_ETA) { if (CRYPTO_OP_IS_ENCRYPT(crp->crp_op)) { error = aesni_cipher_crypt(ses, crp, csp); if (error == 0) error = aesni_cipher_mac(ses, crp, csp); } else { error = aesni_cipher_mac(ses, crp, csp); if (error == 0) error = aesni_cipher_crypt(ses, crp, csp); } } else if (csp->csp_mode == CSP_MODE_DIGEST) error = aesni_cipher_mac(ses, crp, csp); else error = aesni_cipher_crypt(ses, crp, csp); if (!kt) { fpu_kern_leave(curthread, ctx); RELEASE_CTX(ctxidx, ctx); } return (error); } static int aesni_cipher_crypt(struct aesni_session *ses, struct cryptop *crp, const struct crypto_session_params *csp) { uint8_t iv[AES_BLOCK_LEN], tag[GMAC_DIGEST_LEN]; uint8_t *authbuf, *buf, *outbuf; int error; bool encflag, allocated, authallocated, outallocated, outcopy; if (crp->crp_payload_length == 0) { buf = NULL; allocated = false; } else { buf = aesni_cipher_alloc(crp, crp->crp_payload_start, crp->crp_payload_length, &allocated); if (buf == NULL) return (ENOMEM); } outallocated = false; authallocated = false; authbuf = NULL; if (csp->csp_cipher_alg == CRYPTO_AES_NIST_GCM_16 || csp->csp_cipher_alg == CRYPTO_AES_CCM_16) { if (crp->crp_aad_length == 0) { authbuf = NULL; } else if (crp->crp_aad != NULL) { authbuf = crp->crp_aad; } else { authbuf = aesni_cipher_alloc(crp, crp->crp_aad_start, crp->crp_aad_length, &authallocated); if (authbuf == NULL) { error = ENOMEM; goto out; } } } if (CRYPTO_HAS_OUTPUT_BUFFER(crp) && crp->crp_payload_length > 0) { outbuf = crypto_buffer_contiguous_subsegment(&crp->crp_obuf, crp->crp_payload_output_start, crp->crp_payload_length); if (outbuf == NULL) { outcopy = true; if (allocated) outbuf = buf; else { outbuf = malloc(crp->crp_payload_length, M_AESNI, M_NOWAIT); if (outbuf == NULL) { error = ENOMEM; goto out; } outallocated = true; } } else outcopy = false; } else { outbuf = buf; outcopy = allocated; } error = 0; encflag = CRYPTO_OP_IS_ENCRYPT(crp->crp_op); if (crp->crp_cipher_key != NULL) aesni_cipher_setup_common(ses, csp, crp->crp_cipher_key, csp->csp_cipher_klen); crypto_read_iv(crp, iv); switch (csp->csp_cipher_alg) { case CRYPTO_AES_CBC: if (encflag) aesni_encrypt_cbc(ses->rounds, ses->enc_schedule, crp->crp_payload_length, buf, outbuf, iv); else { if (buf != outbuf) memcpy(outbuf, buf, crp->crp_payload_length); aesni_decrypt_cbc(ses->rounds, ses->dec_schedule, crp->crp_payload_length, outbuf, iv); } break; case CRYPTO_AES_ICM: /* encryption & decryption are the same */ aesni_encrypt_icm(ses->rounds, ses->enc_schedule, crp->crp_payload_length, buf, outbuf, iv); break; case CRYPTO_AES_XTS: if (encflag) aesni_encrypt_xts(ses->rounds, ses->enc_schedule, ses->xts_schedule, crp->crp_payload_length, buf, outbuf, iv); else aesni_decrypt_xts(ses->rounds, ses->dec_schedule, ses->xts_schedule, crp->crp_payload_length, buf, outbuf, iv); break; case CRYPTO_AES_NIST_GCM_16: if (encflag) { memset(tag, 0, sizeof(tag)); AES_GCM_encrypt(buf, outbuf, authbuf, iv, tag, crp->crp_payload_length, crp->crp_aad_length, csp->csp_ivlen, ses->enc_schedule, ses->rounds); crypto_copyback(crp, crp->crp_digest_start, sizeof(tag), tag); } else { crypto_copydata(crp, crp->crp_digest_start, sizeof(tag), tag); if (!AES_GCM_decrypt(buf, outbuf, authbuf, iv, tag, crp->crp_payload_length, crp->crp_aad_length, csp->csp_ivlen, ses->enc_schedule, ses->rounds)) error = EBADMSG; } break; case CRYPTO_AES_CCM_16: if (encflag) { memset(tag, 0, sizeof(tag)); AES_CCM_encrypt(buf, outbuf, authbuf, iv, tag, crp->crp_payload_length, crp->crp_aad_length, - csp->csp_ivlen, ses->enc_schedule, ses->rounds); - crypto_copyback(crp, crp->crp_digest_start, sizeof(tag), + csp->csp_ivlen, ses->mlen, ses->enc_schedule, + ses->rounds); + crypto_copyback(crp, crp->crp_digest_start, ses->mlen, tag); } else { - crypto_copydata(crp, crp->crp_digest_start, sizeof(tag), + crypto_copydata(crp, crp->crp_digest_start, ses->mlen, tag); if (!AES_CCM_decrypt(buf, outbuf, authbuf, iv, tag, crp->crp_payload_length, crp->crp_aad_length, - csp->csp_ivlen, ses->enc_schedule, ses->rounds)) + csp->csp_ivlen, ses->mlen, ses->enc_schedule, + ses->rounds)) error = EBADMSG; } break; } if (outcopy && error == 0) crypto_copyback(crp, CRYPTO_HAS_OUTPUT_BUFFER(crp) ? crp->crp_payload_output_start : crp->crp_payload_start, crp->crp_payload_length, outbuf); out: if (allocated) zfree(buf, M_AESNI); if (authallocated) zfree(authbuf, M_AESNI); if (outallocated) zfree(outbuf, M_AESNI); explicit_bzero(iv, sizeof(iv)); explicit_bzero(tag, sizeof(tag)); return (error); } static int aesni_cipher_mac(struct aesni_session *ses, struct cryptop *crp, const struct crypto_session_params *csp) { union { struct SHA256Context sha2 __aligned(16); struct sha1_ctxt sha1 __aligned(16); } sctx; uint32_t res[SHA2_256_HASH_LEN / sizeof(uint32_t)]; const uint8_t *key; int i, keylen; if (crp->crp_auth_key != NULL) key = crp->crp_auth_key; else key = csp->csp_auth_key; keylen = csp->csp_auth_klen; if (ses->hmac) { uint8_t hmac_key[SHA1_BLOCK_LEN] __aligned(16); /* Inner hash: (K ^ IPAD) || data */ ses->hash_init(&sctx); for (i = 0; i < keylen; i++) hmac_key[i] = key[i] ^ HMAC_IPAD_VAL; for (i = keylen; i < sizeof(hmac_key); i++) hmac_key[i] = 0 ^ HMAC_IPAD_VAL; ses->hash_update(&sctx, hmac_key, sizeof(hmac_key)); if (crp->crp_aad != NULL) ses->hash_update(&sctx, crp->crp_aad, crp->crp_aad_length); else crypto_apply(crp, crp->crp_aad_start, crp->crp_aad_length, ses->hash_update, &sctx); if (CRYPTO_HAS_OUTPUT_BUFFER(crp) && CRYPTO_OP_IS_ENCRYPT(crp->crp_op)) crypto_apply_buf(&crp->crp_obuf, crp->crp_payload_output_start, crp->crp_payload_length, ses->hash_update, &sctx); else crypto_apply(crp, crp->crp_payload_start, crp->crp_payload_length, ses->hash_update, &sctx); if (csp->csp_flags & CSP_F_ESN) ses->hash_update(&sctx, crp->crp_esn, 4); ses->hash_finalize(res, &sctx); /* Outer hash: (K ^ OPAD) || inner hash */ ses->hash_init(&sctx); for (i = 0; i < keylen; i++) hmac_key[i] = key[i] ^ HMAC_OPAD_VAL; for (i = keylen; i < sizeof(hmac_key); i++) hmac_key[i] = 0 ^ HMAC_OPAD_VAL; ses->hash_update(&sctx, hmac_key, sizeof(hmac_key)); ses->hash_update(&sctx, res, ses->hash_len); ses->hash_finalize(res, &sctx); explicit_bzero(hmac_key, sizeof(hmac_key)); } else { ses->hash_init(&sctx); if (crp->crp_aad != NULL) ses->hash_update(&sctx, crp->crp_aad, crp->crp_aad_length); else crypto_apply(crp, crp->crp_aad_start, crp->crp_aad_length, ses->hash_update, &sctx); if (CRYPTO_HAS_OUTPUT_BUFFER(crp) && CRYPTO_OP_IS_ENCRYPT(crp->crp_op)) crypto_apply_buf(&crp->crp_obuf, crp->crp_payload_output_start, crp->crp_payload_length, ses->hash_update, &sctx); else crypto_apply(crp, crp->crp_payload_start, crp->crp_payload_length, ses->hash_update, &sctx); ses->hash_finalize(res, &sctx); } if (crp->crp_op & CRYPTO_OP_VERIFY_DIGEST) { uint32_t res2[SHA2_256_HASH_LEN / sizeof(uint32_t)]; crypto_copydata(crp, crp->crp_digest_start, ses->mlen, res2); if (timingsafe_bcmp(res, res2, ses->mlen) != 0) return (EBADMSG); explicit_bzero(res2, sizeof(res2)); } else crypto_copyback(crp, crp->crp_digest_start, ses->mlen, res); explicit_bzero(res, sizeof(res)); return (0); } diff --git a/sys/crypto/aesni/aesni.h b/sys/crypto/aesni/aesni.h index 284bf6fba0fc..77ceec7b382a 100644 --- a/sys/crypto/aesni/aesni.h +++ b/sys/crypto/aesni/aesni.h @@ -1,124 +1,124 @@ /*- * Copyright (c) 2010 Konstantin Belousov * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ #ifndef _AESNI_H_ #define _AESNI_H_ #include #include #include #include #if defined(__amd64__) || defined(__i386__) #include #include #include #include #include #endif #define AES128_ROUNDS 10 #define AES192_ROUNDS 12 #define AES256_ROUNDS 14 #define AES_SCHED_LEN ((AES256_ROUNDS + 1) * AES_BLOCK_LEN) #define AES_SCHED_ALIGN 16 struct aesni_session { uint8_t schedules[3 * AES_SCHED_LEN + AES_SCHED_ALIGN]; uint8_t *enc_schedule; uint8_t *dec_schedule; uint8_t *xts_schedule; int rounds; /* uint8_t *ses_ictx; */ /* uint8_t *ses_octx; */ int used; int mlen; int hash_len; void (*hash_init)(void *); int (*hash_update)(void *, const void *, u_int); void (*hash_finalize)(void *, void *); bool hmac; }; /* * Internal functions, implemented in assembler. */ void aesni_set_enckey(const uint8_t *userkey, uint8_t *encrypt_schedule /*__aligned(16)*/, int number_of_rounds); void aesni_set_deckey(const uint8_t *encrypt_schedule /*__aligned(16)*/, uint8_t *decrypt_schedule /*__aligned(16)*/, int number_of_rounds); /* * Slightly more public interfaces. */ void aesni_encrypt_cbc(int rounds, const void *key_schedule /*__aligned(16)*/, size_t len, const uint8_t *from, uint8_t *to, const uint8_t iv[__min_size(AES_BLOCK_LEN)]); void aesni_decrypt_cbc(int rounds, const void *key_schedule /*__aligned(16)*/, size_t len, uint8_t *buf, const uint8_t iv[__min_size(AES_BLOCK_LEN)]); void aesni_encrypt_ecb(int rounds, const void *key_schedule /*__aligned(16)*/, size_t len, const uint8_t *from, uint8_t *to); void aesni_decrypt_ecb(int rounds, const void *key_schedule /*__aligned(16)*/, size_t len, const uint8_t *from, uint8_t *to); void aesni_encrypt_icm(int rounds, const void *key_schedule /*__aligned(16)*/, size_t len, const uint8_t *from, uint8_t *to, const uint8_t iv[__min_size(AES_BLOCK_LEN)]); void aesni_encrypt_xts(int rounds, const void *data_schedule /*__aligned(16)*/, const void *tweak_schedule /*__aligned(16)*/, size_t len, const uint8_t *from, uint8_t *to, const uint8_t iv[__min_size(AES_BLOCK_LEN)]); void aesni_decrypt_xts(int rounds, const void *data_schedule /*__aligned(16)*/, const void *tweak_schedule /*__aligned(16)*/, size_t len, const uint8_t *from, uint8_t *to, const uint8_t iv[__min_size(AES_BLOCK_LEN)]); /* GCM & GHASH functions */ void AES_GCM_encrypt(const unsigned char *in, unsigned char *out, const unsigned char *addt, const unsigned char *ivec, unsigned char *tag, uint32_t nbytes, uint32_t abytes, int ibytes, const unsigned char *key, int nr); int AES_GCM_decrypt(const unsigned char *in, unsigned char *out, const unsigned char *addt, const unsigned char *ivec, const unsigned char *tag, uint32_t nbytes, uint32_t abytes, int ibytes, const unsigned char *key, int nr); /* CCM + CBC-MAC functions */ void AES_CCM_encrypt(const unsigned char *in, unsigned char *out, const unsigned char *addt, const unsigned char *ivec, - unsigned char *tag, uint32_t nbytes, uint32_t abytes, int ibytes, - const unsigned char *key, int nr); + unsigned char *tag, uint32_t nbytes, uint32_t abytes, int nlen, + int tag_length, const unsigned char *key, int nr); int AES_CCM_decrypt(const unsigned char *in, unsigned char *out, const unsigned char *addt, const unsigned char *ivec, - const unsigned char *tag, uint32_t nbytes, uint32_t abytes, int ibytes, - const unsigned char *key, int nr); + const unsigned char *tag, uint32_t nbytes, uint32_t abytes, int nlen, + int tag_length, const unsigned char *key, int nr); void aesni_cipher_setup_common(struct aesni_session *ses, const struct crypto_session_params *csp, const uint8_t *key, int keylen); #endif /* _AESNI_H_ */ diff --git a/sys/crypto/aesni/aesni_ccm.c b/sys/crypto/aesni/aesni_ccm.c index 34b61a633907..c7edaa0b9d5c 100644 --- a/sys/crypto/aesni/aesni_ccm.c +++ b/sys/crypto/aesni/aesni_ccm.c @@ -1,418 +1,412 @@ /*- * Copyright (c) 2014-2021 The FreeBSD Foundation * Copyright (c) 2018 iXsystems, Inc * All rights reserved. * * Portions of this software were developed by John-Mark Gurney * under the sponsorship of the FreeBSD Foundation and * Rubicon Communications, LLC (Netgate). * * Portions of this software were developed by Ararat River * Consulting, LLC under sponsorship of the FreeBSD Foundation. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * * $FreeBSD$ * * This file implements AES-CCM+CBC-MAC, as described * at https://tools.ietf.org/html/rfc3610, using Intel's * AES-NI instructions. * */ #include #include #include #include #include #include #include #define AESNI_ENC(d, k, nr) aesni_enc(nr-1, (const __m128i*)k, d) #include #include #include /* * Encrypt a single 128-bit block after * doing an xor. This is also used to * decrypt (yay symmetric encryption). */ static inline __m128i xor_and_encrypt(__m128i a, __m128i b, const unsigned char *k, int nr) { __m128i retval = _mm_xor_si128(a, b); retval = AESNI_ENC(retval, k, nr); return (retval); } /* * Put value at the end of block, starting at offset. * (This goes backwards, putting bytes in *until* it * reaches offset.) */ static void append_int(size_t value, __m128i *block, size_t offset) { int indx = sizeof(*block) - 1; uint8_t *bp = (uint8_t*)block; while (indx > (sizeof(*block) - offset)) { bp[indx] = value & 0xff; indx--; value >>= 8; } } /* * Start the CBC-MAC process. This handles the auth data. */ static __m128i cbc_mac_start(const unsigned char *auth_data, size_t auth_len, const unsigned char *nonce, size_t nonce_len, const unsigned char *key, int nr, size_t data_len, size_t tag_len) { __m128i cbc_block, staging_block; uint8_t *byte_ptr; /* This defines where the message length goes */ int L = sizeof(__m128i) - 1 - nonce_len; /* * Set up B0 here. This has the flags byte, * followed by the nonce, followed by the * length of the message. */ cbc_block = _mm_setzero_si128(); byte_ptr = (uint8_t*)&cbc_block; byte_ptr[0] = ((auth_len > 0) ? 1 : 0) * 64 | (((tag_len - 2) / 2) * 8) | (L - 1); bcopy(nonce, byte_ptr + 1, nonce_len); append_int(data_len, &cbc_block, L+1); cbc_block = AESNI_ENC(cbc_block, key, nr); if (auth_len != 0) { /* * We need to start by appending the length descriptor. */ uint32_t auth_amt; size_t copy_amt; const uint8_t *auth_ptr = auth_data; staging_block = _mm_setzero_si128(); /* * The current OCF calling convention means that * there can never be more than 4g of authentication * data, so we don't handle the 0xffff case. */ KASSERT(auth_len < (1ULL << 32), ("%s: auth_len (%zu) larger than 4GB", __FUNCTION__, auth_len)); if (auth_len < ((1 << 16) - (1 << 8))) { /* * If the auth data length is less than * 0xff00, we don't need to encode a length * specifier, just the length of the auth * data. */ be16enc(&staging_block, auth_len); auth_amt = 2; } else if (auth_len < (1ULL << 32)) { /* * Two bytes for the length prefix, and then * four bytes for the length. This makes a total * of 6 bytes to describe the auth data length. */ be16enc(&staging_block, 0xfffe); be32enc((char*)&staging_block + 2, auth_len); auth_amt = 6; } else panic("%s: auth len too large", __FUNCTION__); /* * Need to copy abytes into blocks. The first block is * already partially filled, by auth_amt, so we need * to handle that. The last block needs to be zero padded. */ copy_amt = MIN(auth_len, sizeof(staging_block) - auth_amt); byte_ptr = (uint8_t*)&staging_block; bcopy(auth_ptr, &byte_ptr[auth_amt], copy_amt); auth_ptr += copy_amt; cbc_block = xor_and_encrypt(cbc_block, staging_block, key, nr); while (auth_ptr < auth_data + auth_len) { copy_amt = MIN((auth_data + auth_len) - auth_ptr, sizeof(staging_block)); if (copy_amt < sizeof(staging_block)) bzero(&staging_block, sizeof(staging_block)); bcopy(auth_ptr, &staging_block, copy_amt); cbc_block = xor_and_encrypt(cbc_block, staging_block, key, nr); auth_ptr += copy_amt; } } return (cbc_block); } /* * Implement AES CCM+CBC-MAC encryption and authentication. * * A couple of notes: - * The specification allows for a different number of tag lengths; - * however, they're always truncated from 16 bytes, and the tag - * length isn't passed in. (This could be fixed by changing the - * code in aesni.c:aesni_cipher_crypt().) * Since abytes is limited to a 32 bit value here, the AAD is * limited to 4 gigabytes or less. */ void AES_CCM_encrypt(const unsigned char *in, unsigned char *out, const unsigned char *addt, const unsigned char *nonce, unsigned char *tag, uint32_t nbytes, uint32_t abytes, int nlen, - const unsigned char *key, int nr) + int tag_length, const unsigned char *key, int nr) { - static const int tag_length = 16; /* 128 bits */ int L; int counter = 1; /* S0 has 0, S1 has 1 */ size_t copy_amt, total = 0; uint8_t *byte_ptr; __m128i s0, rolling_mac, s_x, staging_block; /* NIST 800-38c section A.1 says n is [7, 13]. */ if (nlen < 7 || nlen > 13) panic("%s: bad nonce length %d", __FUNCTION__, nlen); /* * We need to know how many bytes to use to describe * the length of the data. Normally, nlen should be * 12, which leaves us 3 bytes to do that -- 16mbytes of * data to encrypt. But it can be longer or shorter; * this impacts the length of the message. */ L = sizeof(__m128i) - 1 - nlen; /* * Clear out the blocks */ s0 = _mm_setzero_si128(); rolling_mac = cbc_mac_start(addt, abytes, nonce, nlen, key, nr, nbytes, tag_length); /* s0 has flags, nonce, and then 0 */ byte_ptr = (uint8_t*)&s0; byte_ptr[0] = L - 1; /* but the flags byte only has L' */ bcopy(nonce, &byte_ptr[1], nlen); /* * Now to cycle through the rest of the data. */ bcopy(&s0, &s_x, sizeof(s0)); while (total < nbytes) { /* * Copy the plain-text data into staging_block. * This may need to be zero-padded. */ copy_amt = MIN(nbytes - total, sizeof(staging_block)); bcopy(in+total, &staging_block, copy_amt); if (copy_amt < sizeof(staging_block)) { byte_ptr = (uint8_t*)&staging_block; bzero(&byte_ptr[copy_amt], sizeof(staging_block) - copy_amt); } rolling_mac = xor_and_encrypt(rolling_mac, staging_block, key, nr); /* Put the counter into the s_x block */ append_int(counter++, &s_x, L+1); /* Encrypt that */ __m128i X = AESNI_ENC(s_x, key, nr); /* XOR the plain-text with the encrypted counter block */ staging_block = _mm_xor_si128(staging_block, X); /* And copy it out */ bcopy(&staging_block, out+total, copy_amt); total += copy_amt; } /* * Allegedly done with it! Except for the tag. */ s0 = AESNI_ENC(s0, key, nr); staging_block = _mm_xor_si128(s0, rolling_mac); bcopy(&staging_block, tag, tag_length); explicit_bzero(&s0, sizeof(s0)); explicit_bzero(&staging_block, sizeof(staging_block)); explicit_bzero(&s_x, sizeof(s_x)); explicit_bzero(&rolling_mac, sizeof(rolling_mac)); } /* * Implement AES CCM+CBC-MAC decryption and authentication. * Returns 0 on failure, 1 on success. * * The primary difference here is that each encrypted block * needs to be hashed&encrypted after it is decrypted (since * the CBC-MAC is based on the plain text). This means that * we do the decryption twice -- first to verify the tag, * and second to decrypt and copy it out. * * To avoid annoying code copying, we implement the main * loop as a separate function. * * Call with out as NULL to not store the decrypted results; * call with hashp as NULL to not run the authentication. * Calling with neither as NULL does the decryption and * authentication as a single pass (which is not allowed * per the specification, really). * * If hashp is non-NULL, it points to the post-AAD computed * checksum. */ static void decrypt_loop(const unsigned char *in, unsigned char *out, size_t nbytes, __m128i s0, size_t nonce_length, __m128i *macp, const unsigned char *key, int nr) { size_t total = 0; __m128i s_x = s0, mac_block; int counter = 1; const size_t L = sizeof(__m128i) - 1 - nonce_length; __m128i pad_block, staging_block; /* * The starting mac (post AAD, if any). */ if (macp != NULL) mac_block = *macp; while (total < nbytes) { size_t copy_amt = MIN(nbytes - total, sizeof(staging_block)); if (copy_amt < sizeof(staging_block)) { staging_block = _mm_setzero_si128(); } bcopy(in+total, &staging_block, copy_amt); /* * staging_block has the current block of input data, * zero-padded if necessary. This is used in computing * both the decrypted data, and the authentication tag. */ append_int(counter++, &s_x, L+1); /* * The tag is computed based on the decrypted data. */ pad_block = AESNI_ENC(s_x, key, nr); if (copy_amt < sizeof(staging_block)) { /* * Need to pad out pad_block with 0. * (staging_block was set to 0's above.) */ uint8_t *end_of_buffer = (uint8_t*)&pad_block; bzero(end_of_buffer + copy_amt, sizeof(pad_block) - copy_amt); } staging_block = _mm_xor_si128(staging_block, pad_block); if (out) bcopy(&staging_block, out+total, copy_amt); if (macp) mac_block = xor_and_encrypt(mac_block, staging_block, key, nr); total += copy_amt; } if (macp) *macp = mac_block; explicit_bzero(&pad_block, sizeof(pad_block)); explicit_bzero(&staging_block, sizeof(staging_block)); explicit_bzero(&mac_block, sizeof(mac_block)); } /* * The exposed decryption routine. This is practically a * copy of the encryption routine, except that the order * in which the tag is created is changed. * XXX combine the two functions at some point! */ int AES_CCM_decrypt(const unsigned char *in, unsigned char *out, const unsigned char *addt, const unsigned char *nonce, const unsigned char *tag, uint32_t nbytes, uint32_t abytes, int nlen, - const unsigned char *key, int nr) + int tag_length, const unsigned char *key, int nr) { - static const int tag_length = 16; /* 128 bits */ int L; __m128i s0, rolling_mac, staging_block; uint8_t *byte_ptr; if (nlen < 0 || nlen > 15) panic("%s: bad nonce length %d", __FUNCTION__, nlen); /* * We need to know how many bytes to use to describe * the length of the data. Normally, nlen should be * 12, which leaves us 3 bytes to do that -- 16mbytes of * data to encrypt. But it can be longer or shorter. */ L = sizeof(__m128i) - 1 - nlen; /* * Clear out the blocks */ s0 = _mm_setzero_si128(); rolling_mac = cbc_mac_start(addt, abytes, nonce, nlen, key, nr, nbytes, tag_length); /* s0 has flags, nonce, and then 0 */ byte_ptr = (uint8_t*)&s0; byte_ptr[0] = L-1; /* but the flags byte only has L' */ bcopy(nonce, &byte_ptr[1], nlen); /* * Now to cycle through the rest of the data. */ decrypt_loop(in, NULL, nbytes, s0, nlen, &rolling_mac, key, nr); /* * Compare the tag. */ staging_block = _mm_xor_si128(AESNI_ENC(s0, key, nr), rolling_mac); if (timingsafe_bcmp(&staging_block, tag, tag_length) != 0) { return (0); } /* * Push out the decryption results this time. */ decrypt_loop(in, out, nbytes, s0, nlen, NULL, key, nr); return (1); }