diff --git a/sys/compat/linuxkpi/common/src/linux_pci.c b/sys/compat/linuxkpi/common/src/linux_pci.c
index e4f85b906563..2db542284332 100644
--- a/sys/compat/linuxkpi/common/src/linux_pci.c
+++ b/sys/compat/linuxkpi/common/src/linux_pci.c
@@ -1,1576 +1,1576 @@
 /*-
  * Copyright (c) 2015-2016 Mellanox Technologies, Ltd.
  * All rights reserved.
  * Copyright (c) 2020-2022 The FreeBSD Foundation
  *
  * Portions of this software were developed by Björn Zeeb
  * under sponsorship from the FreeBSD Foundation.
  *
  * Redistribution and use in source and binary forms, with or without
  * modification, are permitted provided that the following conditions
  * are met:
  * 1. Redistributions of source code must retain the above copyright
  *    notice unmodified, this list of conditions, and the following
  *    disclaimer.
  * 2. Redistributions in binary form must reproduce the above copyright
  *    notice, this list of conditions and the following disclaimer in the
  *    documentation and/or other materials provided with the distribution.
  *
  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  */
 
 #include <sys/cdefs.h>
 __FBSDID("$FreeBSD$");
 
 #include <sys/param.h>
 #include <sys/systm.h>
 #include <sys/bus.h>
 #include <sys/malloc.h>
 #include <sys/kernel.h>
 #include <sys/sysctl.h>
 #include <sys/lock.h>
 #include <sys/mutex.h>
 #include <sys/fcntl.h>
 #include <sys/file.h>
 #include <sys/filio.h>
 #include <sys/pciio.h>
 #include <sys/pctrie.h>
 #include <sys/rwlock.h>
 
 #include <vm/vm.h>
 #include <vm/pmap.h>
 
 #include <machine/stdarg.h>
 
 #include <dev/pci/pcivar.h>
 #include <dev/pci/pci_private.h>
 #include <dev/pci/pci_iov.h>
 #include <dev/backlight/backlight.h>
 
 #include <linux/kernel.h>
 #include <linux/kobject.h>
 #include <linux/device.h>
 #include <linux/slab.h>
 #include <linux/module.h>
 #include <linux/cdev.h>
 #include <linux/file.h>
 #include <linux/sysfs.h>
 #include <linux/mm.h>
 #include <linux/io.h>
 #include <linux/vmalloc.h>
 #include <linux/pci.h>
 #include <linux/compat.h>
 
 #include <linux/backlight.h>
 
 #include "backlight_if.h"
 #include "pcib_if.h"
 
 /* Undef the linux function macro defined in linux/pci.h */
 #undef pci_get_class
 
 extern int linuxkpi_debug;
 
 SYSCTL_DECL(_compat_linuxkpi);
 
 static counter_u64_t lkpi_pci_nseg1_fail;
 SYSCTL_COUNTER_U64(_compat_linuxkpi, OID_AUTO, lkpi_pci_nseg1_fail, CTLFLAG_RD,
     &lkpi_pci_nseg1_fail, "Count of busdma mapping failures of single-segment");
 
 static device_probe_t linux_pci_probe;
 static device_attach_t linux_pci_attach;
 static device_detach_t linux_pci_detach;
 static device_suspend_t linux_pci_suspend;
 static device_resume_t linux_pci_resume;
 static device_shutdown_t linux_pci_shutdown;
 static pci_iov_init_t linux_pci_iov_init;
 static pci_iov_uninit_t linux_pci_iov_uninit;
 static pci_iov_add_vf_t linux_pci_iov_add_vf;
 static int linux_backlight_get_status(device_t dev, struct backlight_props *props);
 static int linux_backlight_update_status(device_t dev, struct backlight_props *props);
 static int linux_backlight_get_info(device_t dev, struct backlight_info *info);
 
 static device_method_t pci_methods[] = {
 	DEVMETHOD(device_probe, linux_pci_probe),
 	DEVMETHOD(device_attach, linux_pci_attach),
 	DEVMETHOD(device_detach, linux_pci_detach),
 	DEVMETHOD(device_suspend, linux_pci_suspend),
 	DEVMETHOD(device_resume, linux_pci_resume),
 	DEVMETHOD(device_shutdown, linux_pci_shutdown),
 	DEVMETHOD(pci_iov_init, linux_pci_iov_init),
 	DEVMETHOD(pci_iov_uninit, linux_pci_iov_uninit),
 	DEVMETHOD(pci_iov_add_vf, linux_pci_iov_add_vf),
 
 	/* backlight interface */
 	DEVMETHOD(backlight_update_status, linux_backlight_update_status),
 	DEVMETHOD(backlight_get_status, linux_backlight_get_status),
 	DEVMETHOD(backlight_get_info, linux_backlight_get_info),
 	DEVMETHOD_END
 };
 
 struct linux_dma_priv {
 	uint64_t	dma_mask;
 	bus_dma_tag_t	dmat;
 	uint64_t	dma_coherent_mask;
 	bus_dma_tag_t	dmat_coherent;
 	struct mtx	lock;
 	struct pctrie	ptree;
 };
 #define	DMA_PRIV_LOCK(priv) mtx_lock(&(priv)->lock)
 #define	DMA_PRIV_UNLOCK(priv) mtx_unlock(&(priv)->lock)
 
 static bool
 linux_is_drm(struct pci_driver *pdrv)
 {
 	return (pdrv->name != NULL && strcmp(pdrv->name, "drmn") == 0);
 }
 
 static int
 linux_pdev_dma_uninit(struct pci_dev *pdev)
 {
 	struct linux_dma_priv *priv;
 
 	priv = pdev->dev.dma_priv;
 	if (priv->dmat)
 		bus_dma_tag_destroy(priv->dmat);
 	if (priv->dmat_coherent)
 		bus_dma_tag_destroy(priv->dmat_coherent);
 	mtx_destroy(&priv->lock);
 	pdev->dev.dma_priv = NULL;
 	free(priv, M_DEVBUF);
 	return (0);
 }
 
 static int
 linux_pdev_dma_init(struct pci_dev *pdev)
 {
 	struct linux_dma_priv *priv;
 	int error;
 
 	priv = malloc(sizeof(*priv), M_DEVBUF, M_WAITOK | M_ZERO);
 
 	mtx_init(&priv->lock, "lkpi-priv-dma", NULL, MTX_DEF);
 	pctrie_init(&priv->ptree);
 
 	pdev->dev.dma_priv = priv;
 
 	/* Create a default DMA tags. */
 	error = linux_dma_tag_init(&pdev->dev, DMA_BIT_MASK(64));
 	if (error != 0)
 		goto err;
 	/* Coherent is lower 32bit only by default in Linux. */
 	error = linux_dma_tag_init_coherent(&pdev->dev, DMA_BIT_MASK(32));
 	if (error != 0)
 		goto err;
 
 	return (error);
 
 err:
 	linux_pdev_dma_uninit(pdev);
 	return (error);
 }
 
 int
 linux_dma_tag_init(struct device *dev, u64 dma_mask)
 {
 	struct linux_dma_priv *priv;
 	int error;
 
 	priv = dev->dma_priv;
 
 	if (priv->dmat) {
 		if (priv->dma_mask == dma_mask)
 			return (0);
 
 		bus_dma_tag_destroy(priv->dmat);
 	}
 
 	priv->dma_mask = dma_mask;
 
 	error = bus_dma_tag_create(bus_get_dma_tag(dev->bsddev),
 	    1, 0,			/* alignment, boundary */
 	    dma_mask,			/* lowaddr */
 	    BUS_SPACE_MAXADDR,		/* highaddr */
 	    NULL, NULL,			/* filtfunc, filtfuncarg */
 	    BUS_SPACE_MAXSIZE,		/* maxsize */
 	    1,				/* nsegments */
 	    BUS_SPACE_MAXSIZE,		/* maxsegsz */
 	    0,				/* flags */
 	    NULL, NULL,			/* lockfunc, lockfuncarg */
 	    &priv->dmat);
 	return (-error);
 }
 
 int
 linux_dma_tag_init_coherent(struct device *dev, u64 dma_mask)
 {
 	struct linux_dma_priv *priv;
 	int error;
 
 	priv = dev->dma_priv;
 
 	if (priv->dmat_coherent) {
 		if (priv->dma_coherent_mask == dma_mask)
 			return (0);
 
 		bus_dma_tag_destroy(priv->dmat_coherent);
 	}
 
 	priv->dma_coherent_mask = dma_mask;
 
 	error = bus_dma_tag_create(bus_get_dma_tag(dev->bsddev),
 	    1, 0,			/* alignment, boundary */
 	    dma_mask,			/* lowaddr */
 	    BUS_SPACE_MAXADDR,		/* highaddr */
 	    NULL, NULL,			/* filtfunc, filtfuncarg */
 	    BUS_SPACE_MAXSIZE,		/* maxsize */
 	    1,				/* nsegments */
 	    BUS_SPACE_MAXSIZE,		/* maxsegsz */
 	    0,				/* flags */
 	    NULL, NULL,			/* lockfunc, lockfuncarg */
 	    &priv->dmat_coherent);
 	return (-error);
 }
 
 static struct pci_driver *
 linux_pci_find(device_t dev, const struct pci_device_id **idp)
 {
 	const struct pci_device_id *id;
 	struct pci_driver *pdrv;
 	uint16_t vendor;
 	uint16_t device;
 	uint16_t subvendor;
 	uint16_t subdevice;
 
 	vendor = pci_get_vendor(dev);
 	device = pci_get_device(dev);
 	subvendor = pci_get_subvendor(dev);
 	subdevice = pci_get_subdevice(dev);
 
 	spin_lock(&pci_lock);
 	list_for_each_entry(pdrv, &pci_drivers, node) {
 		for (id = pdrv->id_table; id->vendor != 0; id++) {
 			if (vendor == id->vendor &&
 			    (PCI_ANY_ID == id->device || device == id->device) &&
 			    (PCI_ANY_ID == id->subvendor || subvendor == id->subvendor) &&
 			    (PCI_ANY_ID == id->subdevice || subdevice == id->subdevice)) {
 				*idp = id;
 				spin_unlock(&pci_lock);
 				return (pdrv);
 			}
 		}
 	}
 	spin_unlock(&pci_lock);
 	return (NULL);
 }
 
 struct pci_dev *
 lkpi_pci_get_device(uint16_t vendor, uint16_t device, struct pci_dev *odev)
 {
 	struct pci_dev *pdev;
 
 	KASSERT(odev == NULL, ("%s: odev argument not yet supported\n", __func__));
 
 	spin_lock(&pci_lock);
 	list_for_each_entry(pdev, &pci_devices, links) {
 		if (pdev->vendor == vendor && pdev->device == device)
 			break;
 	}
 	spin_unlock(&pci_lock);
 
 	return (pdev);
 }
 
 static void
 lkpi_pci_dev_release(struct device *dev)
 {
 
 	lkpi_devres_release_free_list(dev);
 	spin_lock_destroy(&dev->devres_lock);
 }
 
 static void
 lkpifill_pci_dev(device_t dev, struct pci_dev *pdev)
 {
 
 	pdev->devfn = PCI_DEVFN(pci_get_slot(dev), pci_get_function(dev));
 	pdev->vendor = pci_get_vendor(dev);
 	pdev->device = pci_get_device(dev);
 	pdev->subsystem_vendor = pci_get_subvendor(dev);
 	pdev->subsystem_device = pci_get_subdevice(dev);
 	pdev->class = pci_get_class(dev);
 	pdev->revision = pci_get_revid(dev);
 	pdev->bus = malloc(sizeof(*pdev->bus), M_DEVBUF, M_WAITOK | M_ZERO);
 	/*
 	 * This should be the upstream bridge; pci_upstream_bridge()
 	 * handles that case on demand as otherwise we'll shadow the
 	 * entire PCI hierarchy.
 	 */
 	pdev->bus->self = pdev;
 	pdev->bus->number = pci_get_bus(dev);
 	pdev->bus->domain = pci_get_domain(dev);
 	pdev->dev.bsddev = dev;
 	pdev->dev.parent = &linux_root_device;
 	pdev->dev.release = lkpi_pci_dev_release;
 	INIT_LIST_HEAD(&pdev->dev.irqents);
 	kobject_init(&pdev->dev.kobj, &linux_dev_ktype);
 	kobject_set_name(&pdev->dev.kobj, device_get_nameunit(dev));
 	kobject_add(&pdev->dev.kobj, &linux_root_device.kobj,
 	    kobject_name(&pdev->dev.kobj));
 	spin_lock_init(&pdev->dev.devres_lock);
 	INIT_LIST_HEAD(&pdev->dev.devres_head);
 }
 
 static void
 lkpinew_pci_dev_release(struct device *dev)
 {
 	struct pci_dev *pdev;
 
 	pdev = to_pci_dev(dev);
 	if (pdev->root != NULL)
 		pci_dev_put(pdev->root);
 	if (pdev->bus->self != pdev)
 		pci_dev_put(pdev->bus->self);
 	free(pdev->bus, M_DEVBUF);
 	free(pdev, M_DEVBUF);
 }
 
 struct pci_dev *
 lkpinew_pci_dev(device_t dev)
 {
 	struct pci_dev *pdev;
 
 	pdev = malloc(sizeof(*pdev), M_DEVBUF, M_WAITOK|M_ZERO);
 	lkpifill_pci_dev(dev, pdev);
 	pdev->dev.release = lkpinew_pci_dev_release;
 
 	return (pdev);
 }
 
 struct pci_dev *
 lkpi_pci_get_class(unsigned int class, struct pci_dev *from)
 {
 	device_t dev;
 	device_t devfrom = NULL;
 	struct pci_dev *pdev;
 
 	if (from != NULL)
 		devfrom = from->dev.bsddev;
 
 	dev = pci_find_class_from(class >> 16, (class >> 8) & 0xFF, devfrom);
 	if (dev == NULL)
 		return (NULL);
 
 	pdev = lkpinew_pci_dev(dev);
 	return (pdev);
 }
 
 struct pci_dev *
 lkpi_pci_get_domain_bus_and_slot(int domain, unsigned int bus,
     unsigned int devfn)
 {
 	device_t dev;
 	struct pci_dev *pdev;
 
 	dev = pci_find_dbsf(domain, bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
 	if (dev == NULL)
 		return (NULL);
 
 	pdev = lkpinew_pci_dev(dev);
 	return (pdev);
 }
 
 static int
 linux_pci_probe(device_t dev)
 {
 	const struct pci_device_id *id;
 	struct pci_driver *pdrv;
 
 	if ((pdrv = linux_pci_find(dev, &id)) == NULL)
 		return (ENXIO);
 	if (device_get_driver(dev) != &pdrv->bsddriver)
 		return (ENXIO);
 	device_set_desc(dev, pdrv->name);
 
 	/* Assume BSS initialized (should never return BUS_PROBE_SPECIFIC). */
 	if (pdrv->bsd_probe_return == 0)
 		return (BUS_PROBE_DEFAULT);
 	else
 		return (pdrv->bsd_probe_return);
 }
 
 static int
 linux_pci_attach(device_t dev)
 {
 	const struct pci_device_id *id;
 	struct pci_driver *pdrv;
 	struct pci_dev *pdev;
 
 	pdrv = linux_pci_find(dev, &id);
 	pdev = device_get_softc(dev);
 
 	MPASS(pdrv != NULL);
 	MPASS(pdev != NULL);
 
 	return (linux_pci_attach_device(dev, pdrv, id, pdev));
 }
 
 int
 linux_pci_attach_device(device_t dev, struct pci_driver *pdrv,
     const struct pci_device_id *id, struct pci_dev *pdev)
 {
 	struct resource_list_entry *rle;
 	device_t parent;
 	uintptr_t rid;
 	int error;
 	bool isdrm;
 
 	linux_set_current(curthread);
 
 	parent = device_get_parent(dev);
 	isdrm = pdrv != NULL && linux_is_drm(pdrv);
 
 	if (isdrm) {
 		struct pci_devinfo *dinfo;
 
 		dinfo = device_get_ivars(parent);
 		device_set_ivars(dev, dinfo);
 	}
 
 	lkpifill_pci_dev(dev, pdev);
 	if (isdrm)
 		PCI_GET_ID(device_get_parent(parent), parent, PCI_ID_RID, &rid);
 	else
 		PCI_GET_ID(parent, dev, PCI_ID_RID, &rid);
 	pdev->devfn = rid;
 	pdev->pdrv = pdrv;
 	rle = linux_pci_get_rle(pdev, SYS_RES_IRQ, 0, false);
 	if (rle != NULL)
 		pdev->dev.irq = rle->start;
 	else
 		pdev->dev.irq = LINUX_IRQ_INVALID;
 	pdev->irq = pdev->dev.irq;
 	error = linux_pdev_dma_init(pdev);
 	if (error)
 		goto out_dma_init;
 
 	TAILQ_INIT(&pdev->mmio);
 
 	spin_lock(&pci_lock);
 	list_add(&pdev->links, &pci_devices);
 	spin_unlock(&pci_lock);
 
 	if (pdrv != NULL) {
 		error = pdrv->probe(pdev, id);
 		if (error)
 			goto out_probe;
 	}
 	return (0);
 
 out_probe:
 	free(pdev->bus, M_DEVBUF);
 	linux_pdev_dma_uninit(pdev);
 out_dma_init:
 	spin_lock(&pci_lock);
 	list_del(&pdev->links);
 	spin_unlock(&pci_lock);
 	put_device(&pdev->dev);
 	return (-error);
 }
 
 static int
 linux_pci_detach(device_t dev)
 {
 	struct pci_dev *pdev;
 
 	pdev = device_get_softc(dev);
 
 	MPASS(pdev != NULL);
 
 	device_set_desc(dev, NULL);
 
 	return (linux_pci_detach_device(pdev));
 }
 
 int
 linux_pci_detach_device(struct pci_dev *pdev)
 {
 
 	linux_set_current(curthread);
 
 	if (pdev->pdrv != NULL)
 		pdev->pdrv->remove(pdev);
 
 	if (pdev->root != NULL)
 		pci_dev_put(pdev->root);
 	free(pdev->bus, M_DEVBUF);
 	linux_pdev_dma_uninit(pdev);
 
 	spin_lock(&pci_lock);
 	list_del(&pdev->links);
 	spin_unlock(&pci_lock);
 	put_device(&pdev->dev);
 
 	return (0);
 }
 
 static int
 lkpi_pci_disable_dev(struct device *dev)
 {
 
 	(void) pci_disable_io(dev->bsddev, SYS_RES_MEMORY);
 	(void) pci_disable_io(dev->bsddev, SYS_RES_IOPORT);
 	return (0);
 }
 
 struct pci_devres *
 lkpi_pci_devres_get_alloc(struct pci_dev *pdev)
 {
 	struct pci_devres *dr;
 
 	dr = lkpi_devres_find(&pdev->dev, lkpi_pci_devres_release, NULL, NULL);
 	if (dr == NULL) {
 		dr = lkpi_devres_alloc(lkpi_pci_devres_release, sizeof(*dr),
 		    GFP_KERNEL | __GFP_ZERO);
 		if (dr != NULL)
 			lkpi_devres_add(&pdev->dev, dr);
 	}
 
 	return (dr);
 }
 
 void
 lkpi_pci_devres_release(struct device *dev, void *p)
 {
 	struct pci_devres *dr;
 	struct pci_dev *pdev;
 	int bar;
 
 	pdev = to_pci_dev(dev);
 	dr = p;
 
 	if (pdev->msix_enabled)
 		lkpi_pci_disable_msix(pdev);
         if (pdev->msi_enabled)
 		lkpi_pci_disable_msi(pdev);
 
 	if (dr->enable_io && lkpi_pci_disable_dev(dev) == 0)
 		dr->enable_io = false;
 
 	if (dr->region_mask == 0)
 		return;
 	for (bar = PCIR_MAX_BAR_0; bar >= 0; bar--) {
 
 		if ((dr->region_mask & (1 << bar)) == 0)
 			continue;
 		pci_release_region(pdev, bar);
 	}
 }
 
 struct pcim_iomap_devres *
 lkpi_pcim_iomap_devres_find(struct pci_dev *pdev)
 {
 	struct pcim_iomap_devres *dr;
 
 	dr = lkpi_devres_find(&pdev->dev, lkpi_pcim_iomap_table_release,
 	    NULL, NULL);
 	if (dr == NULL) {
 		dr = lkpi_devres_alloc(lkpi_pcim_iomap_table_release,
 		    sizeof(*dr), GFP_KERNEL | __GFP_ZERO);
 		if (dr != NULL)
 			lkpi_devres_add(&pdev->dev, dr);
 	}
 
 	if (dr == NULL)
 		device_printf(pdev->dev.bsddev, "%s: NULL\n", __func__);
 
 	return (dr);
 }
 
 void
 lkpi_pcim_iomap_table_release(struct device *dev, void *p)
 {
 	struct pcim_iomap_devres *dr;
 	struct pci_dev *pdev;
 	int bar;
 
 	dr = p;
 	pdev = to_pci_dev(dev);
 	for (bar = PCIR_MAX_BAR_0; bar >= 0; bar--) {
 
 		if (dr->mmio_table[bar] == NULL)
 			continue;
 
 		pci_iounmap(pdev, dr->mmio_table[bar]);
 	}
 }
 
 static int
 linux_pci_suspend(device_t dev)
 {
 	const struct dev_pm_ops *pmops;
 	struct pm_message pm = { };
 	struct pci_dev *pdev;
 	int error;
 
 	error = 0;
 	linux_set_current(curthread);
 	pdev = device_get_softc(dev);
 	pmops = pdev->pdrv->driver.pm;
 
 	if (pdev->pdrv->suspend != NULL)
 		error = -pdev->pdrv->suspend(pdev, pm);
 	else if (pmops != NULL && pmops->suspend != NULL) {
 		error = -pmops->suspend(&pdev->dev);
 		if (error == 0 && pmops->suspend_late != NULL)
 			error = -pmops->suspend_late(&pdev->dev);
 	}
 	return (error);
 }
 
 static int
 linux_pci_resume(device_t dev)
 {
 	const struct dev_pm_ops *pmops;
 	struct pci_dev *pdev;
 	int error;
 
 	error = 0;
 	linux_set_current(curthread);
 	pdev = device_get_softc(dev);
 	pmops = pdev->pdrv->driver.pm;
 
 	if (pdev->pdrv->resume != NULL)
 		error = -pdev->pdrv->resume(pdev);
 	else if (pmops != NULL && pmops->resume != NULL) {
 		if (pmops->resume_early != NULL)
 			error = -pmops->resume_early(&pdev->dev);
 		if (error == 0 && pmops->resume != NULL)
 			error = -pmops->resume(&pdev->dev);
 	}
 	return (error);
 }
 
 static int
 linux_pci_shutdown(device_t dev)
 {
 	struct pci_dev *pdev;
 
 	linux_set_current(curthread);
 	pdev = device_get_softc(dev);
 	if (pdev->pdrv->shutdown != NULL)
 		pdev->pdrv->shutdown(pdev);
 	return (0);
 }
 
 static int
 linux_pci_iov_init(device_t dev, uint16_t num_vfs, const nvlist_t *pf_config)
 {
 	struct pci_dev *pdev;
 	int error;
 
 	linux_set_current(curthread);
 	pdev = device_get_softc(dev);
 	if (pdev->pdrv->bsd_iov_init != NULL)
 		error = pdev->pdrv->bsd_iov_init(dev, num_vfs, pf_config);
 	else
 		error = EINVAL;
 	return (error);
 }
 
 static void
 linux_pci_iov_uninit(device_t dev)
 {
 	struct pci_dev *pdev;
 
 	linux_set_current(curthread);
 	pdev = device_get_softc(dev);
 	if (pdev->pdrv->bsd_iov_uninit != NULL)
 		pdev->pdrv->bsd_iov_uninit(dev);
 }
 
 static int
 linux_pci_iov_add_vf(device_t dev, uint16_t vfnum, const nvlist_t *vf_config)
 {
 	struct pci_dev *pdev;
 	int error;
 
 	linux_set_current(curthread);
 	pdev = device_get_softc(dev);
 	if (pdev->pdrv->bsd_iov_add_vf != NULL)
 		error = pdev->pdrv->bsd_iov_add_vf(dev, vfnum, vf_config);
 	else
 		error = EINVAL;
 	return (error);
 }
 
 static int
 _linux_pci_register_driver(struct pci_driver *pdrv, devclass_t dc)
 {
 	int error;
 
 	linux_set_current(curthread);
 	spin_lock(&pci_lock);
 	list_add(&pdrv->node, &pci_drivers);
 	spin_unlock(&pci_lock);
 	if (pdrv->bsddriver.name == NULL)
 		pdrv->bsddriver.name = pdrv->name;
 	pdrv->bsddriver.methods = pci_methods;
 	pdrv->bsddriver.size = sizeof(struct pci_dev);
 
 	bus_topo_lock();
 	error = devclass_add_driver(dc, &pdrv->bsddriver,
 	    BUS_PASS_DEFAULT, &pdrv->bsdclass);
 	bus_topo_unlock();
 	return (-error);
 }
 
 int
 linux_pci_register_driver(struct pci_driver *pdrv)
 {
 	devclass_t dc;
 
 	dc = devclass_find("pci");
 	if (dc == NULL)
 		return (-ENXIO);
 	return (_linux_pci_register_driver(pdrv, dc));
 }
 
 struct resource_list_entry *
 linux_pci_reserve_bar(struct pci_dev *pdev, struct resource_list *rl,
     int type, int rid)
 {
 	device_t dev;
 	struct resource *res;
 
 	KASSERT(type == SYS_RES_IOPORT || type == SYS_RES_MEMORY,
 	    ("trying to reserve non-BAR type %d", type));
 
 	dev = pdev->pdrv != NULL && linux_is_drm(pdev->pdrv) ?
 	    device_get_parent(pdev->dev.bsddev) : pdev->dev.bsddev;
 	res = pci_reserve_map(device_get_parent(dev), dev, type, &rid, 0, ~0,
 	    1, 1, 0);
 	if (res == NULL)
 		return (NULL);
 	return (resource_list_find(rl, type, rid));
 }
 
 unsigned long
 pci_resource_start(struct pci_dev *pdev, int bar)
 {
 	struct resource_list_entry *rle;
 	rman_res_t newstart;
 	device_t dev;
 
 	if ((rle = linux_pci_get_bar(pdev, bar, true)) == NULL)
 		return (0);
 	dev = pdev->pdrv != NULL && linux_is_drm(pdev->pdrv) ?
 	    device_get_parent(pdev->dev.bsddev) : pdev->dev.bsddev;
 	if (BUS_TRANSLATE_RESOURCE(dev, rle->type, rle->start, &newstart)) {
 		device_printf(pdev->dev.bsddev, "translate of %#jx failed\n",
 		    (uintmax_t)rle->start);
 		return (0);
 	}
 	return (newstart);
 }
 
 unsigned long
 pci_resource_len(struct pci_dev *pdev, int bar)
 {
 	struct resource_list_entry *rle;
 
 	if ((rle = linux_pci_get_bar(pdev, bar, true)) == NULL)
 		return (0);
 	return (rle->count);
 }
 
 int
 pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
 {
 	struct resource *res;
 	struct pci_devres *dr;
 	struct pci_mmio_region *mmio;
 	int rid;
 	int type;
 
 	type = pci_resource_type(pdev, bar);
 	if (type < 0)
 		return (-ENODEV);
 	rid = PCIR_BAR(bar);
 	res = bus_alloc_resource_any(pdev->dev.bsddev, type, &rid,
 	    RF_ACTIVE|RF_SHAREABLE);
 	if (res == NULL) {
 		device_printf(pdev->dev.bsddev, "%s: failed to alloc "
 		    "bar %d type %d rid %d\n",
 		    __func__, bar, type, PCIR_BAR(bar));
 		return (-ENODEV);
 	}
 
 	/*
 	 * It seems there is an implicit devres tracking on these if the device
 	 * is managed; otherwise the resources are not automatiaclly freed on
 	 * FreeBSD/LinuxKPI tough they should be/are expected to be by Linux
 	 * drivers.
 	 */
 	dr = lkpi_pci_devres_find(pdev);
 	if (dr != NULL) {
 		dr->region_mask |= (1 << bar);
 		dr->region_table[bar] = res;
 	}
 
 	/* Even if the device is not managed we need to track it for iomap. */
 	mmio = malloc(sizeof(*mmio), M_DEVBUF, M_WAITOK | M_ZERO);
 	mmio->rid = PCIR_BAR(bar);
 	mmio->type = type;
 	mmio->res = res;
 	TAILQ_INSERT_TAIL(&pdev->mmio, mmio, next);
 
 	return (0);
 }
 
 struct resource *
 _lkpi_pci_iomap(struct pci_dev *pdev, int bar, int mmio_size __unused)
 {
 	struct pci_mmio_region *mmio, *p;
 	int type;
 
 	type = pci_resource_type(pdev, bar);
 	if (type < 0) {
 		device_printf(pdev->dev.bsddev, "%s: bar %d type %d\n",
 		     __func__, bar, type);
 		return (NULL);
 	}
 
 	/*
 	 * Check for duplicate mappings.
 	 * This can happen if a driver calls pci_request_region() first.
 	 */
 	TAILQ_FOREACH_SAFE(mmio, &pdev->mmio, next, p) {
 		if (mmio->type == type && mmio->rid == PCIR_BAR(bar)) {
 			return (mmio->res);
 		}
 	}
 
 	mmio = malloc(sizeof(*mmio), M_DEVBUF, M_WAITOK | M_ZERO);
 	mmio->rid = PCIR_BAR(bar);
 	mmio->type = type;
 	mmio->res = bus_alloc_resource_any(pdev->dev.bsddev, mmio->type,
 	    &mmio->rid, RF_ACTIVE|RF_SHAREABLE);
 	if (mmio->res == NULL) {
 		device_printf(pdev->dev.bsddev, "%s: failed to alloc "
 		    "bar %d type %d rid %d\n",
 		    __func__, bar, type, PCIR_BAR(bar));
 		free(mmio, M_DEVBUF);
 		return (NULL);
 	}
 	TAILQ_INSERT_TAIL(&pdev->mmio, mmio, next);
 
 	return (mmio->res);
 }
 
 int
 linux_pci_register_drm_driver(struct pci_driver *pdrv)
 {
 	devclass_t dc;
 
 	dc = devclass_create("vgapci");
 	if (dc == NULL)
 		return (-ENXIO);
 	pdrv->name = "drmn";
 	return (_linux_pci_register_driver(pdrv, dc));
 }
 
 void
 linux_pci_unregister_driver(struct pci_driver *pdrv)
 {
 	devclass_t bus;
 
 	bus = devclass_find("pci");
 
 	spin_lock(&pci_lock);
 	list_del(&pdrv->node);
 	spin_unlock(&pci_lock);
 	bus_topo_lock();
 	if (bus != NULL)
 		devclass_delete_driver(bus, &pdrv->bsddriver);
 	bus_topo_unlock();
 }
 
 void
 linux_pci_unregister_drm_driver(struct pci_driver *pdrv)
 {
 	devclass_t bus;
 
 	bus = devclass_find("vgapci");
 
 	spin_lock(&pci_lock);
 	list_del(&pdrv->node);
 	spin_unlock(&pci_lock);
 	bus_topo_lock();
 	if (bus != NULL)
 		devclass_delete_driver(bus, &pdrv->bsddriver);
 	bus_topo_unlock();
 }
 
 int
 pci_alloc_irq_vectors(struct pci_dev *pdev, int minv, int maxv,
     unsigned int flags)
 {
 	int error;
 
 	if (flags & PCI_IRQ_MSIX) {
 		struct msix_entry *entries;
 		int i;
 
 		entries = kcalloc(maxv, sizeof(*entries), GFP_KERNEL);
 		if (entries == NULL) {
 			error = -ENOMEM;
 			goto out;
 		}
 		for (i = 0; i < maxv; ++i)
 			entries[i].entry = i;
 		error = pci_enable_msix(pdev, entries, maxv);
 out:
 		kfree(entries);
 		if (error == 0 && pdev->msix_enabled)
 			return (pdev->dev.irq_end - pdev->dev.irq_start);
 	}
 	if (flags & PCI_IRQ_MSI) {
 		if (pci_msi_count(pdev->dev.bsddev) < minv)
 			return (-ENOSPC);
 		/* We only support 1 vector in pci_enable_msi() */
 		if (minv != 1)
 			return (-ENOSPC);
 		error = pci_enable_msi(pdev);
 		if (error == 0 && pdev->msi_enabled)
 			return (pdev->dev.irq_end - pdev->dev.irq_start);
 	}
 	if (flags & PCI_IRQ_LEGACY) {
 		if (pdev->irq)
 			return (1);
 	}
 
 	return (-EINVAL);
 }
 
 bool
 pci_device_is_present(struct pci_dev *pdev)
 {
 	device_t dev;
 
 	dev = pdev->dev.bsddev;
 
 	return (bus_child_present(dev));
 }
 
 CTASSERT(sizeof(dma_addr_t) <= sizeof(uint64_t));
 
 struct linux_dma_obj {
 	void		*vaddr;
 	uint64_t	dma_addr;
 	bus_dmamap_t	dmamap;
 	bus_dma_tag_t	dmat;
 };
 
 static uma_zone_t linux_dma_trie_zone;
 static uma_zone_t linux_dma_obj_zone;
 
 static void
 linux_dma_init(void *arg)
 {
 
 	linux_dma_trie_zone = uma_zcreate("linux_dma_pctrie",
 	    pctrie_node_size(), NULL, NULL, pctrie_zone_init, NULL,
 	    UMA_ALIGN_PTR, 0);
 	linux_dma_obj_zone = uma_zcreate("linux_dma_object",
 	    sizeof(struct linux_dma_obj), NULL, NULL, NULL, NULL,
 	    UMA_ALIGN_PTR, 0);
 	lkpi_pci_nseg1_fail = counter_u64_alloc(M_WAITOK);
 }
 SYSINIT(linux_dma, SI_SUB_DRIVERS, SI_ORDER_THIRD, linux_dma_init, NULL);
 
 static void
 linux_dma_uninit(void *arg)
 {
 
 	counter_u64_free(lkpi_pci_nseg1_fail);
 	uma_zdestroy(linux_dma_obj_zone);
 	uma_zdestroy(linux_dma_trie_zone);
 }
 SYSUNINIT(linux_dma, SI_SUB_DRIVERS, SI_ORDER_THIRD, linux_dma_uninit, NULL);
 
 static void *
 linux_dma_trie_alloc(struct pctrie *ptree)
 {
 
 	return (uma_zalloc(linux_dma_trie_zone, M_NOWAIT));
 }
 
 static void
 linux_dma_trie_free(struct pctrie *ptree, void *node)
 {
 
 	uma_zfree(linux_dma_trie_zone, node);
 }
 
 PCTRIE_DEFINE(LINUX_DMA, linux_dma_obj, dma_addr, linux_dma_trie_alloc,
     linux_dma_trie_free);
 
 #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__)
 static dma_addr_t
 linux_dma_map_phys_common(struct device *dev, vm_paddr_t phys, size_t len,
     bus_dma_tag_t dmat)
 {
 	struct linux_dma_priv *priv;
 	struct linux_dma_obj *obj;
 	int error, nseg;
 	bus_dma_segment_t seg;
 
 	priv = dev->dma_priv;
 
 	/*
 	 * If the resultant mapping will be entirely 1:1 with the
 	 * physical address, short-circuit the remainder of the
 	 * bus_dma API.  This avoids tracking collisions in the pctrie
 	 * with the additional benefit of reducing overhead.
 	 */
 	if (bus_dma_id_mapped(dmat, phys, len))
 		return (phys);
 
 	obj = uma_zalloc(linux_dma_obj_zone, M_NOWAIT);
 	if (obj == NULL) {
 		return (0);
 	}
 	obj->dmat = dmat;
 
 	DMA_PRIV_LOCK(priv);
 	if (bus_dmamap_create(obj->dmat, 0, &obj->dmamap) != 0) {
 		DMA_PRIV_UNLOCK(priv);
 		uma_zfree(linux_dma_obj_zone, obj);
 		return (0);
 	}
 
 	nseg = -1;
 	if (_bus_dmamap_load_phys(obj->dmat, obj->dmamap, phys, len,
 	    BUS_DMA_NOWAIT, &seg, &nseg) != 0) {
 		bus_dmamap_destroy(obj->dmat, obj->dmamap);
 		DMA_PRIV_UNLOCK(priv);
 		uma_zfree(linux_dma_obj_zone, obj);
 		counter_u64_add(lkpi_pci_nseg1_fail, 1);
 		if (linuxkpi_debug)
 			dump_stack();
 		return (0);
 	}
 
 	KASSERT(++nseg == 1, ("More than one segment (nseg=%d)", nseg));
 	obj->dma_addr = seg.ds_addr;
 
 	error = LINUX_DMA_PCTRIE_INSERT(&priv->ptree, obj);
 	if (error != 0) {
 		bus_dmamap_unload(obj->dmat, obj->dmamap);
 		bus_dmamap_destroy(obj->dmat, obj->dmamap);
 		DMA_PRIV_UNLOCK(priv);
 		uma_zfree(linux_dma_obj_zone, obj);
 		return (0);
 	}
 	DMA_PRIV_UNLOCK(priv);
 	return (obj->dma_addr);
 }
 #else
 static dma_addr_t
 linux_dma_map_phys_common(struct device *dev __unused, vm_paddr_t phys,
     size_t len __unused, bus_dma_tag_t dmat __unused)
 {
 	return (phys);
 }
 #endif
 
 dma_addr_t
 linux_dma_map_phys(struct device *dev, vm_paddr_t phys, size_t len)
 {
 	struct linux_dma_priv *priv;
 
 	priv = dev->dma_priv;
 	return (linux_dma_map_phys_common(dev, phys, len, priv->dmat));
 }
 
 #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__)
 void
 linux_dma_unmap(struct device *dev, dma_addr_t dma_addr, size_t len)
 {
 	struct linux_dma_priv *priv;
 	struct linux_dma_obj *obj;
 
 	priv = dev->dma_priv;
 
 	if (pctrie_is_empty(&priv->ptree))
 		return;
 
 	DMA_PRIV_LOCK(priv);
 	obj = LINUX_DMA_PCTRIE_LOOKUP(&priv->ptree, dma_addr);
 	if (obj == NULL) {
 		DMA_PRIV_UNLOCK(priv);
 		return;
 	}
 	LINUX_DMA_PCTRIE_REMOVE(&priv->ptree, dma_addr);
 	bus_dmamap_unload(obj->dmat, obj->dmamap);
 	bus_dmamap_destroy(obj->dmat, obj->dmamap);
 	DMA_PRIV_UNLOCK(priv);
 
 	uma_zfree(linux_dma_obj_zone, obj);
 }
 #else
 void
 linux_dma_unmap(struct device *dev, dma_addr_t dma_addr, size_t len)
 {
 }
 #endif
 
 void *
 linux_dma_alloc_coherent(struct device *dev, size_t size,
     dma_addr_t *dma_handle, gfp_t flag)
 {
 	struct linux_dma_priv *priv;
 	vm_paddr_t high;
 	size_t align;
 	void *mem;
 
 	if (dev == NULL || dev->dma_priv == NULL) {
 		*dma_handle = 0;
 		return (NULL);
 	}
 	priv = dev->dma_priv;
 	if (priv->dma_coherent_mask)
 		high = priv->dma_coherent_mask;
 	else
 		/* Coherent is lower 32bit only by default in Linux. */
 		high = BUS_SPACE_MAXADDR_32BIT;
 	align = PAGE_SIZE << get_order(size);
 	/* Always zero the allocation. */
 	flag |= M_ZERO;
 	mem = (void *)kmem_alloc_contig(size, flag & GFP_NATIVE_MASK, 0, high,
 	    align, 0, VM_MEMATTR_DEFAULT);
 	if (mem != NULL) {
 		*dma_handle = linux_dma_map_phys_common(dev, vtophys(mem), size,
 		    priv->dmat_coherent);
 		if (*dma_handle == 0) {
 			kmem_free((vm_offset_t)mem, size);
 			mem = NULL;
 		}
 	} else {
 		*dma_handle = 0;
 	}
 	return (mem);
 }
 
 struct lkpi_devres_dmam_coherent {
 	size_t size;
 	dma_addr_t *handle;
 	void *mem;
 };
 
 static void
 lkpi_dmam_free_coherent(struct device *dev, void *p)
 {
 	struct lkpi_devres_dmam_coherent *dr;
 
 	dr = p;
 	dma_free_coherent(dev, dr->size, dr->mem, *dr->handle);
 }
 
 void *
 linuxkpi_dmam_alloc_coherent(struct device *dev, size_t size, dma_addr_t *dma_handle,
     gfp_t flag)
 {
 	struct lkpi_devres_dmam_coherent *dr;
 
 	dr = lkpi_devres_alloc(lkpi_dmam_free_coherent,
-	   sizeof(*dr), GFP_KERNEL | __GFP_ZERO);
+	    sizeof(*dr), GFP_KERNEL | __GFP_ZERO);
 
 	if (dr == NULL)
 		return (NULL);
 
 	dr->size = size;
 	dr->mem = linux_dma_alloc_coherent(dev, size, dma_handle, flag);
 	dr->handle = dma_handle;
 	if (dr->mem == NULL) {
 		lkpi_devres_free(dr);
 		return (NULL);
 	}
 
 	lkpi_devres_add(dev, dr);
 	return (dr->mem);
 }
 
 void
 linuxkpi_dma_sync(struct device *dev, dma_addr_t dma_addr, size_t size,
     bus_dmasync_op_t op)
 {
 	struct linux_dma_priv *priv;
 	struct linux_dma_obj *obj;
 
 	priv = dev->dma_priv;
 
 	if (pctrie_is_empty(&priv->ptree))
 		return;
 
 	DMA_PRIV_LOCK(priv);
 	obj = LINUX_DMA_PCTRIE_LOOKUP(&priv->ptree, dma_addr);
 	if (obj == NULL) {
 		DMA_PRIV_UNLOCK(priv);
 		return;
 	}
 
 	bus_dmamap_sync(obj->dmat, obj->dmamap, op);
 	DMA_PRIV_UNLOCK(priv);
 }
 
 int
 linux_dma_map_sg_attrs(struct device *dev, struct scatterlist *sgl, int nents,
     enum dma_data_direction direction, unsigned long attrs __unused)
 {
 	struct linux_dma_priv *priv;
 	struct scatterlist *sg;
 	int i, nseg;
 	bus_dma_segment_t seg;
 
 	priv = dev->dma_priv;
 
 	DMA_PRIV_LOCK(priv);
 
 	/* create common DMA map in the first S/G entry */
 	if (bus_dmamap_create(priv->dmat, 0, &sgl->dma_map) != 0) {
 		DMA_PRIV_UNLOCK(priv);
 		return (0);
 	}
 
 	/* load all S/G list entries */
 	for_each_sg(sgl, sg, nents, i) {
 		nseg = -1;
 		if (_bus_dmamap_load_phys(priv->dmat, sgl->dma_map,
 		    sg_phys(sg), sg->length, BUS_DMA_NOWAIT,
 		    &seg, &nseg) != 0) {
 			bus_dmamap_unload(priv->dmat, sgl->dma_map);
 			bus_dmamap_destroy(priv->dmat, sgl->dma_map);
 			DMA_PRIV_UNLOCK(priv);
 			return (0);
 		}
 		KASSERT(nseg == 0,
 		    ("More than one segment (nseg=%d)", nseg + 1));
 
 		sg_dma_address(sg) = seg.ds_addr;
 	}
 
 	switch (direction) {
 	case DMA_BIDIRECTIONAL:
 		bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_PREWRITE);
 		break;
 	case DMA_TO_DEVICE:
 		bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_PREREAD);
 		break;
 	case DMA_FROM_DEVICE:
 		bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_PREWRITE);
 		break;
 	default:
 		break;
 	}
 
 	DMA_PRIV_UNLOCK(priv);
 
 	return (nents);
 }
 
 void
 linux_dma_unmap_sg_attrs(struct device *dev, struct scatterlist *sgl,
     int nents __unused, enum dma_data_direction direction,
     unsigned long attrs __unused)
 {
 	struct linux_dma_priv *priv;
 
 	priv = dev->dma_priv;
 
 	DMA_PRIV_LOCK(priv);
 
 	switch (direction) {
 	case DMA_BIDIRECTIONAL:
 		bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_POSTREAD);
 		bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_PREREAD);
 		break;
 	case DMA_TO_DEVICE:
 		bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_POSTWRITE);
 		break;
 	case DMA_FROM_DEVICE:
 		bus_dmamap_sync(priv->dmat, sgl->dma_map, BUS_DMASYNC_POSTREAD);
 		break;
 	default:
 		break;
 	}
 
 	bus_dmamap_unload(priv->dmat, sgl->dma_map);
 	bus_dmamap_destroy(priv->dmat, sgl->dma_map);
 	DMA_PRIV_UNLOCK(priv);
 }
 
 struct dma_pool {
 	struct device  *pool_device;
 	uma_zone_t	pool_zone;
 	struct mtx	pool_lock;
 	bus_dma_tag_t	pool_dmat;
 	size_t		pool_entry_size;
 	struct pctrie	pool_ptree;
 };
 
 #define	DMA_POOL_LOCK(pool) mtx_lock(&(pool)->pool_lock)
 #define	DMA_POOL_UNLOCK(pool) mtx_unlock(&(pool)->pool_lock)
 
 static inline int
 dma_pool_obj_ctor(void *mem, int size, void *arg, int flags)
 {
 	struct linux_dma_obj *obj = mem;
 	struct dma_pool *pool = arg;
 	int error, nseg;
 	bus_dma_segment_t seg;
 
 	nseg = -1;
 	DMA_POOL_LOCK(pool);
 	error = _bus_dmamap_load_phys(pool->pool_dmat, obj->dmamap,
 	    vtophys(obj->vaddr), pool->pool_entry_size, BUS_DMA_NOWAIT,
 	    &seg, &nseg);
 	DMA_POOL_UNLOCK(pool);
 	if (error != 0) {
 		return (error);
 	}
 	KASSERT(++nseg == 1, ("More than one segment (nseg=%d)", nseg));
 	obj->dma_addr = seg.ds_addr;
 
 	return (0);
 }
 
 static void
 dma_pool_obj_dtor(void *mem, int size, void *arg)
 {
 	struct linux_dma_obj *obj = mem;
 	struct dma_pool *pool = arg;
 
 	DMA_POOL_LOCK(pool);
 	bus_dmamap_unload(pool->pool_dmat, obj->dmamap);
 	DMA_POOL_UNLOCK(pool);
 }
 
 static int
 dma_pool_obj_import(void *arg, void **store, int count, int domain __unused,
     int flags)
 {
 	struct dma_pool *pool = arg;
 	struct linux_dma_obj *obj;
 	int error, i;
 
 	for (i = 0; i < count; i++) {
 		obj = uma_zalloc(linux_dma_obj_zone, flags);
 		if (obj == NULL)
 			break;
 
 		error = bus_dmamem_alloc(pool->pool_dmat, &obj->vaddr,
 		    BUS_DMA_NOWAIT, &obj->dmamap);
 		if (error!= 0) {
 			uma_zfree(linux_dma_obj_zone, obj);
 			break;
 		}
 
 		store[i] = obj;
 	}
 
 	return (i);
 }
 
 static void
 dma_pool_obj_release(void *arg, void **store, int count)
 {
 	struct dma_pool *pool = arg;
 	struct linux_dma_obj *obj;
 	int i;
 
 	for (i = 0; i < count; i++) {
 		obj = store[i];
 		bus_dmamem_free(pool->pool_dmat, obj->vaddr, obj->dmamap);
 		uma_zfree(linux_dma_obj_zone, obj);
 	}
 }
 
 struct dma_pool *
 linux_dma_pool_create(char *name, struct device *dev, size_t size,
     size_t align, size_t boundary)
 {
 	struct linux_dma_priv *priv;
 	struct dma_pool *pool;
 
 	priv = dev->dma_priv;
 
 	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
 	pool->pool_device = dev;
 	pool->pool_entry_size = size;
 
 	if (bus_dma_tag_create(bus_get_dma_tag(dev->bsddev),
 	    align, boundary,		/* alignment, boundary */
 	    priv->dma_mask,		/* lowaddr */
 	    BUS_SPACE_MAXADDR,		/* highaddr */
 	    NULL, NULL,			/* filtfunc, filtfuncarg */
 	    size,			/* maxsize */
 	    1,				/* nsegments */
 	    size,			/* maxsegsz */
 	    0,				/* flags */
 	    NULL, NULL,			/* lockfunc, lockfuncarg */
 	    &pool->pool_dmat)) {
 		kfree(pool);
 		return (NULL);
 	}
 
 	pool->pool_zone = uma_zcache_create(name, -1, dma_pool_obj_ctor,
 	    dma_pool_obj_dtor, NULL, NULL, dma_pool_obj_import,
 	    dma_pool_obj_release, pool, 0);
 
 	mtx_init(&pool->pool_lock, "lkpi-dma-pool", NULL, MTX_DEF);
 	pctrie_init(&pool->pool_ptree);
 
 	return (pool);
 }
 
 void
 linux_dma_pool_destroy(struct dma_pool *pool)
 {
 
 	uma_zdestroy(pool->pool_zone);
 	bus_dma_tag_destroy(pool->pool_dmat);
 	mtx_destroy(&pool->pool_lock);
 	kfree(pool);
 }
 
 void
 lkpi_dmam_pool_destroy(struct device *dev, void *p)
 {
 	struct dma_pool *pool;
 
 	pool = *(struct dma_pool **)p;
 	LINUX_DMA_PCTRIE_RECLAIM(&pool->pool_ptree);
 	linux_dma_pool_destroy(pool);
 }
 
 void *
 linux_dma_pool_alloc(struct dma_pool *pool, gfp_t mem_flags,
     dma_addr_t *handle)
 {
 	struct linux_dma_obj *obj;
 
 	obj = uma_zalloc_arg(pool->pool_zone, pool, mem_flags & GFP_NATIVE_MASK);
 	if (obj == NULL)
 		return (NULL);
 
 	DMA_POOL_LOCK(pool);
 	if (LINUX_DMA_PCTRIE_INSERT(&pool->pool_ptree, obj) != 0) {
 		DMA_POOL_UNLOCK(pool);
 		uma_zfree_arg(pool->pool_zone, obj, pool);
 		return (NULL);
 	}
 	DMA_POOL_UNLOCK(pool);
 
 	*handle = obj->dma_addr;
 	return (obj->vaddr);
 }
 
 void
 linux_dma_pool_free(struct dma_pool *pool, void *vaddr, dma_addr_t dma_addr)
 {
 	struct linux_dma_obj *obj;
 
 	DMA_POOL_LOCK(pool);
 	obj = LINUX_DMA_PCTRIE_LOOKUP(&pool->pool_ptree, dma_addr);
 	if (obj == NULL) {
 		DMA_POOL_UNLOCK(pool);
 		return;
 	}
 	LINUX_DMA_PCTRIE_REMOVE(&pool->pool_ptree, dma_addr);
 	DMA_POOL_UNLOCK(pool);
 
 	uma_zfree_arg(pool->pool_zone, obj, pool);
 }
 
 static int
 linux_backlight_get_status(device_t dev, struct backlight_props *props)
 {
 	struct pci_dev *pdev;
 
 	linux_set_current(curthread);
 	pdev = device_get_softc(dev);
 
 	props->brightness = pdev->dev.bd->props.brightness;
 	props->brightness = props->brightness * 100 / pdev->dev.bd->props.max_brightness;
 	props->nlevels = 0;
 
 	return (0);
 }
 
 static int
 linux_backlight_get_info(device_t dev, struct backlight_info *info)
 {
 	struct pci_dev *pdev;
 
 	linux_set_current(curthread);
 	pdev = device_get_softc(dev);
 
 	info->type = BACKLIGHT_TYPE_PANEL;
 	strlcpy(info->name, pdev->dev.bd->name, BACKLIGHTMAXNAMELENGTH);
 	return (0);
 }
 
 static int
 linux_backlight_update_status(device_t dev, struct backlight_props *props)
 {
 	struct pci_dev *pdev;
 
 	linux_set_current(curthread);
 	pdev = device_get_softc(dev);
 
 	pdev->dev.bd->props.brightness = pdev->dev.bd->props.max_brightness *
 		props->brightness / 100;
 	pdev->dev.bd->props.power = props->brightness == 0 ?
 		4/* FB_BLANK_POWERDOWN */ : 0/* FB_BLANK_UNBLANK */;
 	return (pdev->dev.bd->ops->update_status(pdev->dev.bd));
 }
 
 struct backlight_device *
 linux_backlight_device_register(const char *name, struct device *dev,
     void *data, const struct backlight_ops *ops, struct backlight_properties *props)
 {
 
 	dev->bd = malloc(sizeof(*dev->bd), M_DEVBUF, M_WAITOK | M_ZERO);
 	dev->bd->ops = ops;
 	dev->bd->props.type = props->type;
 	dev->bd->props.max_brightness = props->max_brightness;
 	dev->bd->props.brightness = props->brightness;
 	dev->bd->props.power = props->power;
 	dev->bd->data = data;
 	dev->bd->dev = dev;
 	dev->bd->name = strdup(name, M_DEVBUF);
 
 	dev->backlight_dev = backlight_register(name, dev->bsddev);
 
 	return (dev->bd);
 }
 
 void
 linux_backlight_device_unregister(struct backlight_device *bd)
 {
 
 	backlight_destroy(bd->dev->backlight_dev);
 	free(bd->name, M_DEVBUF);
 	free(bd, M_DEVBUF);
 }