diff --git a/sys/dev/random/random_harvestq.c b/sys/dev/random/random_harvestq.c
index 1c0ba0774687..563ff73a3d38 100644
--- a/sys/dev/random/random_harvestq.c
+++ b/sys/dev/random/random_harvestq.c
@@ -1,656 +1,676 @@
 /*-
  * Copyright (c) 2017 Oliver Pinter
  * Copyright (c) 2017 W. Dean Freeman
  * Copyright (c) 2000-2015 Mark R V Murray
  * Copyright (c) 2013 Arthur Mesh
  * Copyright (c) 2004 Robert N. M. Watson
  * All rights reserved.
  *
  * Redistribution and use in source and binary forms, with or without
  * modification, are permitted provided that the following conditions
  * are met:
  * 1. Redistributions of source code must retain the above copyright
  *    notice, this list of conditions and the following disclaimer
  *    in this position and unchanged.
  * 2. Redistributions in binary form must reproduce the above copyright
  *    notice, this list of conditions and the following disclaimer in the
  *    documentation and/or other materials provided with the distribution.
  *
  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  *
  */
 
 #include <sys/cdefs.h>
 __FBSDID("$FreeBSD$");
 
 #include <sys/param.h>
 #include <sys/systm.h>
 #include <sys/ck.h>
 #include <sys/conf.h>
 #include <sys/epoch.h>
 #include <sys/eventhandler.h>
 #include <sys/hash.h>
 #include <sys/kernel.h>
 #include <sys/kthread.h>
 #include <sys/linker.h>
 #include <sys/lock.h>
 #include <sys/malloc.h>
 #include <sys/module.h>
 #include <sys/mutex.h>
 #include <sys/random.h>
 #include <sys/sbuf.h>
 #include <sys/sysctl.h>
 #include <sys/unistd.h>
 
 #include <machine/atomic.h>
 #include <machine/cpu.h>
 
 #include <crypto/rijndael/rijndael-api-fst.h>
 #include <crypto/sha2/sha256.h>
 
 #include <dev/random/hash.h>
 #include <dev/random/randomdev.h>
 #include <dev/random/random_harvestq.h>
 
 #if defined(RANDOM_ENABLE_ETHER)
 #define _RANDOM_HARVEST_ETHER_OFF 0
 #else
 #define _RANDOM_HARVEST_ETHER_OFF (1u << RANDOM_NET_ETHER)
 #endif
 #if defined(RANDOM_ENABLE_UMA)
 #define _RANDOM_HARVEST_UMA_OFF 0
 #else
 #define _RANDOM_HARVEST_UMA_OFF (1u << RANDOM_UMA)
 #endif
 
+/*
+ * Note that random_sources_feed() will also use this to try and split up
+ * entropy into a subset of pools per iteration with the goal of feeding
+ * HARVESTSIZE into every pool at least once per second.
+ */
+#define	RANDOM_KTHREAD_HZ	10
+
 static void random_kthread(void);
 static void random_sources_feed(void);
 
 /*
  * Random must initialize much earlier than epoch, but we can initialize the
  * epoch code before SMP starts.  Prior to SMP, we can safely bypass
  * concurrency primitives.
  */
 static __read_mostly bool epoch_inited;
 static __read_mostly epoch_t rs_epoch;
 
 /*
  * How many events to queue up. We create this many items in
  * an 'empty' queue, then transfer them to the 'harvest' queue with
  * supplied junk. When used, they are transferred back to the
  * 'empty' queue.
  */
 #define	RANDOM_RING_MAX		1024
 #define	RANDOM_ACCUM_MAX	8
 
 /* 1 to let the kernel thread run, 0 to terminate, -1 to mark completion */
 volatile int random_kthread_control;
 
 
 /* Allow the sysadmin to select the broad category of
  * entropy types to harvest.
  */
 __read_frequently u_int hc_source_mask;
 
 struct random_sources {
 	CK_LIST_ENTRY(random_sources)	 rrs_entries;
 	struct random_source		*rrs_source;
 };
 
 static CK_LIST_HEAD(sources_head, random_sources) source_list =
     CK_LIST_HEAD_INITIALIZER(source_list);
 
 SYSCTL_NODE(_kern_random, OID_AUTO, harvest, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
     "Entropy Device Parameters");
 
 /*
  * Put all the harvest queue context stuff in one place.
  * this make is a bit easier to lock and protect.
  */
 static struct harvest_context {
 	/* The harvest mutex protects all of harvest_context and
 	 * the related data.
 	 */
 	struct mtx hc_mtx;
 	/* Round-robin destination cache. */
 	u_int hc_destination[ENTROPYSOURCE];
 	/* The context of the kernel thread processing harvested entropy */
 	struct proc *hc_kthread_proc;
 	/*
 	 * Lockless ring buffer holding entropy events
 	 * If ring.in == ring.out,
 	 *     the buffer is empty.
 	 * If ring.in != ring.out,
 	 *     the buffer contains harvested entropy.
 	 * If (ring.in + 1) == ring.out (mod RANDOM_RING_MAX),
 	 *     the buffer is full.
 	 *
 	 * NOTE: ring.in points to the last added element,
 	 * and ring.out points to the last consumed element.
 	 *
 	 * The ring.in variable needs locking as there are multiple
 	 * sources to the ring. Only the sources may change ring.in,
 	 * but the consumer may examine it.
 	 *
 	 * The ring.out variable does not need locking as there is
 	 * only one consumer. Only the consumer may change ring.out,
 	 * but the sources may examine it.
 	 */
 	struct entropy_ring {
 		struct harvest_event ring[RANDOM_RING_MAX];
 		volatile u_int in;
 		volatile u_int out;
 	} hc_entropy_ring;
 	struct fast_entropy_accumulator {
 		volatile u_int pos;
 		uint32_t buf[RANDOM_ACCUM_MAX];
 	} hc_entropy_fast_accumulator;
 } harvest_context;
 
 static struct kproc_desc random_proc_kp = {
 	"rand_harvestq",
 	random_kthread,
 	&harvest_context.hc_kthread_proc,
 };
 
 /* Pass the given event straight through to Fortuna/Whatever. */
 static __inline void
 random_harvestq_fast_process_event(struct harvest_event *event)
 {
 	p_random_alg_context->ra_event_processor(event);
 	explicit_bzero(event, sizeof(*event));
 }
 
 static void
 random_kthread(void)
 {
         u_int maxloop, ring_out, i;
 
 	/*
 	 * Locking is not needed as this is the only place we modify ring.out, and
 	 * we only examine ring.in without changing it. Both of these are volatile,
 	 * and this is a unique thread.
 	 */
 	for (random_kthread_control = 1; random_kthread_control;) {
 		/* Deal with events, if any. Restrict the number we do in one go. */
 		maxloop = RANDOM_RING_MAX;
 		while (harvest_context.hc_entropy_ring.out != harvest_context.hc_entropy_ring.in) {
 			ring_out = (harvest_context.hc_entropy_ring.out + 1)%RANDOM_RING_MAX;
 			random_harvestq_fast_process_event(harvest_context.hc_entropy_ring.ring + ring_out);
 			harvest_context.hc_entropy_ring.out = ring_out;
 			if (!--maxloop)
 				break;
 		}
 		random_sources_feed();
 		/* XXX: FIX!! Increase the high-performance data rate? Need some measurements first. */
 		for (i = 0; i < RANDOM_ACCUM_MAX; i++) {
 			if (harvest_context.hc_entropy_fast_accumulator.buf[i]) {
 				random_harvest_direct(harvest_context.hc_entropy_fast_accumulator.buf + i, sizeof(harvest_context.hc_entropy_fast_accumulator.buf[0]), RANDOM_UMA);
 				harvest_context.hc_entropy_fast_accumulator.buf[i] = 0;
 			}
 		}
 		/* XXX: FIX!! This is a *great* place to pass hardware/live entropy to random(9) */
-		tsleep_sbt(&harvest_context.hc_kthread_proc, 0, "-", SBT_1S/10, 0, C_PREL(1));
+		tsleep_sbt(&harvest_context.hc_kthread_proc, 0, "-",
+		    SBT_1S/RANDOM_KTHREAD_HZ, 0, C_PREL(1));
 	}
 	random_kthread_control = -1;
 	wakeup(&harvest_context.hc_kthread_proc);
 	kproc_exit(0);
 	/* NOTREACHED */
 }
 /* This happens well after SI_SUB_RANDOM */
 SYSINIT(random_device_h_proc, SI_SUB_KICK_SCHEDULER, SI_ORDER_ANY, kproc_start,
     &random_proc_kp);
 
 static void
 rs_epoch_init(void *dummy __unused)
 {
 	rs_epoch = epoch_alloc("Random Sources", EPOCH_PREEMPT);
 	epoch_inited = true;
 }
 SYSINIT(rs_epoch_init, SI_SUB_EPOCH, SI_ORDER_ANY, rs_epoch_init, NULL);
 
 /*
  * Run through all fast sources reading entropy for the given
  * number of rounds, which should be a multiple of the number
  * of entropy accumulation pools in use; it is 32 for Fortuna.
  */
 static void
 random_sources_feed(void)
 {
 	uint32_t entropy[HARVESTSIZE];
 	struct epoch_tracker et;
 	struct random_sources *rrs;
-	u_int i, n;
+	u_int i, n, npools;
 	bool rse_warm;
 
 	rse_warm = epoch_inited;
 
+	/*
+	 * Evenly-ish distribute pool population across the second based on how
+	 * frequently random_kthread iterates.
+	 *
+	 * For Fortuna, the math currently works out as such:
+	 *
+	 * 64 bits * 4 pools = 256 bits per iteration
+	 * 256 bits * 10 Hz = 2560 bits per second, 320 B/s
+	 *
+	 */
+	npools = howmany(p_random_alg_context->ra_poolcount, RANDOM_KTHREAD_HZ);
+
 	/*
 	 * Step over all of live entropy sources, and feed their output
 	 * to the system-wide RNG.
 	 */
 	if (rse_warm)
 		epoch_enter_preempt(rs_epoch, &et);
 	CK_LIST_FOREACH(rrs, &source_list, rrs_entries) {
-		for (i = 0; i < p_random_alg_context->ra_poolcount; i++) {
+		for (i = 0; i < npools; i++) {
 			n = rrs->rrs_source->rs_read(entropy, sizeof(entropy));
 			KASSERT((n <= sizeof(entropy)), ("%s: rs_read returned too much data (%u > %zu)", __func__, n, sizeof(entropy)));
 			/*
 			 * Sometimes the HW entropy source doesn't have anything
 			 * ready for us.  This isn't necessarily untrustworthy.
 			 * We don't perform any other verification of an entropy
 			 * source (i.e., length is allowed to be anywhere from 1
 			 * to sizeof(entropy), quality is unchecked, etc), so
 			 * don't balk verbosely at slow random sources either.
 			 * There are reports that RDSEED on x86 metal falls
 			 * behind the rate at which we query it, for example.
 			 * But it's still a better entropy source than RDRAND.
 			 */
 			if (n == 0)
 				continue;
 			random_harvest_direct(entropy, n, rrs->rrs_source->rs_source);
 		}
 	}
 	if (rse_warm)
 		epoch_exit_preempt(rs_epoch, &et);
 	explicit_bzero(entropy, sizeof(entropy));
 }
 
 void
 read_rate_increment(u_int chunk)
 {
 
 	/* Stubbed to maintain KBI; removed in FreeBSD 14.0. */
 }
 
 /* ARGSUSED */
 static int
 random_check_uint_harvestmask(SYSCTL_HANDLER_ARGS)
 {
 	static const u_int user_immutable_mask =
 	    (((1 << ENTROPYSOURCE) - 1) & (-1UL << RANDOM_PURE_START)) |
 	    _RANDOM_HARVEST_ETHER_OFF | _RANDOM_HARVEST_UMA_OFF;
 
 	int error;
 	u_int value, orig_value;
 
 	orig_value = value = hc_source_mask;
 	error = sysctl_handle_int(oidp, &value, 0, req);
 	if (error != 0 || req->newptr == NULL)
 		return (error);
 
 	if (flsl(value) > ENTROPYSOURCE)
 		return (EINVAL);
 
 	/*
 	 * Disallow userspace modification of pure entropy sources.
 	 */
 	hc_source_mask = (value & ~user_immutable_mask) |
 	    (orig_value & user_immutable_mask);
 	return (0);
 }
 SYSCTL_PROC(_kern_random_harvest, OID_AUTO, mask,
     CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, NULL, 0,
     random_check_uint_harvestmask, "IU",
     "Entropy harvesting mask");
 
 /* ARGSUSED */
 static int
 random_print_harvestmask(SYSCTL_HANDLER_ARGS)
 {
 	struct sbuf sbuf;
 	int error, i;
 
 	error = sysctl_wire_old_buffer(req, 0);
 	if (error == 0) {
 		sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
 		for (i = ENTROPYSOURCE - 1; i >= 0; i--)
 			sbuf_cat(&sbuf, (hc_source_mask & (1 << i)) ? "1" : "0");
 		error = sbuf_finish(&sbuf);
 		sbuf_delete(&sbuf);
 	}
 	return (error);
 }
 SYSCTL_PROC(_kern_random_harvest, OID_AUTO, mask_bin,
     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
     random_print_harvestmask, "A",
     "Entropy harvesting mask (printable)");
 
 static const char *random_source_descr[ENTROPYSOURCE] = {
 	[RANDOM_CACHED] = "CACHED",
 	[RANDOM_ATTACH] = "ATTACH",
 	[RANDOM_KEYBOARD] = "KEYBOARD",
 	[RANDOM_MOUSE] = "MOUSE",
 	[RANDOM_NET_TUN] = "NET_TUN",
 	[RANDOM_NET_ETHER] = "NET_ETHER",
 	[RANDOM_NET_NG] = "NET_NG",
 	[RANDOM_INTERRUPT] = "INTERRUPT",
 	[RANDOM_SWI] = "SWI",
 	[RANDOM_FS_ATIME] = "FS_ATIME",
 	[RANDOM_UMA] = "UMA", /* ENVIRONMENTAL_END */
 	[RANDOM_PURE_OCTEON] = "PURE_OCTEON", /* PURE_START */
 	[RANDOM_PURE_SAFE] = "PURE_SAFE",
 	[RANDOM_PURE_GLXSB] = "PURE_GLXSB",
 	[RANDOM_PURE_HIFN] = "PURE_HIFN",
 	[RANDOM_PURE_RDRAND] = "PURE_RDRAND",
 	[RANDOM_PURE_NEHEMIAH] = "PURE_NEHEMIAH",
 	[RANDOM_PURE_RNDTEST] = "PURE_RNDTEST",
 	[RANDOM_PURE_VIRTIO] = "PURE_VIRTIO",
 	[RANDOM_PURE_BROADCOM] = "PURE_BROADCOM",
 	[RANDOM_PURE_CCP] = "PURE_CCP",
 	[RANDOM_PURE_DARN] = "PURE_DARN",
 	[RANDOM_PURE_TPM] = "PURE_TPM",
 	[RANDOM_PURE_VMGENID] = "VMGENID",
 	/* "ENTROPYSOURCE" */
 };
 
 /* ARGSUSED */
 static int
 random_print_harvestmask_symbolic(SYSCTL_HANDLER_ARGS)
 {
 	struct sbuf sbuf;
 	int error, i;
 	bool first;
 
 	first = true;
 	error = sysctl_wire_old_buffer(req, 0);
 	if (error == 0) {
 		sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
 		for (i = ENTROPYSOURCE - 1; i >= 0; i--) {
 			if (i >= RANDOM_PURE_START &&
 			    (hc_source_mask & (1 << i)) == 0)
 				continue;
 			if (!first)
 				sbuf_cat(&sbuf, ",");
 			sbuf_cat(&sbuf, !(hc_source_mask & (1 << i)) ? "[" : "");
 			sbuf_cat(&sbuf, random_source_descr[i]);
 			sbuf_cat(&sbuf, !(hc_source_mask & (1 << i)) ? "]" : "");
 			first = false;
 		}
 		error = sbuf_finish(&sbuf);
 		sbuf_delete(&sbuf);
 	}
 	return (error);
 }
 SYSCTL_PROC(_kern_random_harvest, OID_AUTO, mask_symbolic,
     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
     random_print_harvestmask_symbolic, "A",
     "Entropy harvesting mask (symbolic)");
 
 /* ARGSUSED */
 static void
 random_harvestq_init(void *unused __unused)
 {
 	static const u_int almost_everything_mask =
 	    (((1 << (RANDOM_ENVIRONMENTAL_END + 1)) - 1) &
 	    ~_RANDOM_HARVEST_ETHER_OFF & ~_RANDOM_HARVEST_UMA_OFF);
 
 	hc_source_mask = almost_everything_mask;
 	RANDOM_HARVEST_INIT_LOCK();
 	harvest_context.hc_entropy_ring.in = harvest_context.hc_entropy_ring.out = 0;
 }
 SYSINIT(random_device_h_init, SI_SUB_RANDOM, SI_ORDER_THIRD, random_harvestq_init, NULL);
 
 /*
  * Subroutine to slice up a contiguous chunk of 'entropy' and feed it into the
  * underlying algorithm.  Returns number of bytes actually fed into underlying
  * algorithm.
  */
 static size_t
 random_early_prime(char *entropy, size_t len)
 {
 	struct harvest_event event;
 	size_t i;
 
 	len = rounddown(len, sizeof(event.he_entropy));
 	if (len == 0)
 		return (0);
 
 	for (i = 0; i < len; i += sizeof(event.he_entropy)) {
 		event.he_somecounter = (uint32_t)get_cyclecount();
 		event.he_size = sizeof(event.he_entropy);
 		event.he_source = RANDOM_CACHED;
 		event.he_destination =
 		    harvest_context.hc_destination[RANDOM_CACHED]++;
 		memcpy(event.he_entropy, entropy + i, sizeof(event.he_entropy));
 		random_harvestq_fast_process_event(&event);
 	}
 	explicit_bzero(entropy, len);
 	return (len);
 }
 
 /*
  * Subroutine to search for known loader-loaded files in memory and feed them
  * into the underlying algorithm early in boot.  Returns the number of bytes
  * loaded (zero if none were loaded).
  */
 static size_t
 random_prime_loader_file(const char *type)
 {
 	uint8_t *keyfile, *data;
 	size_t size;
 
 	keyfile = preload_search_by_type(type);
 	if (keyfile == NULL)
 		return (0);
 
 	data = preload_fetch_addr(keyfile);
 	size = preload_fetch_size(keyfile);
 	if (data == NULL)
 		return (0);
 
 	return (random_early_prime(data, size));
 }
 
 /*
  * This is used to prime the RNG by grabbing any early random stuff
  * known to the kernel, and inserting it directly into the hashing
  * module, currently Fortuna.
  */
 /* ARGSUSED */
 static void
 random_harvestq_prime(void *unused __unused)
 {
 	size_t size;
 
 	/*
 	 * Get entropy that may have been preloaded by loader(8)
 	 * and use it to pre-charge the entropy harvest queue.
 	 */
 	size = random_prime_loader_file(RANDOM_CACHED_BOOT_ENTROPY_MODULE);
 	if (bootverbose) {
 		if (size > 0)
 			printf("random: read %zu bytes from preloaded cache\n",
 			    size);
 		else
 			printf("random: no preloaded entropy cache\n");
 	}
 }
 SYSINIT(random_device_prime, SI_SUB_RANDOM, SI_ORDER_MIDDLE, random_harvestq_prime, NULL);
 
 /* ARGSUSED */
 static void
 random_harvestq_deinit(void *unused __unused)
 {
 
 	/* Command the hash/reseed thread to end and wait for it to finish */
 	random_kthread_control = 0;
 	while (random_kthread_control >= 0)
 		tsleep(&harvest_context.hc_kthread_proc, 0, "harvqterm", hz/5);
 }
 SYSUNINIT(random_device_h_init, SI_SUB_RANDOM, SI_ORDER_THIRD, random_harvestq_deinit, NULL);
 
 /*-
  * Entropy harvesting queue routine.
  *
  * This is supposed to be fast; do not do anything slow in here!
  * It is also illegal (and morally reprehensible) to insert any
  * high-rate data here. "High-rate" is defined as a data source
  * that will usually cause lots of failures of the "Lockless read"
  * check a few lines below. This includes the "always-on" sources
  * like the Intel "rdrand" or the VIA Nehamiah "xstore" sources.
  */
 /* XXXRW: get_cyclecount() is cheap on most modern hardware, where cycle
  * counters are built in, but on older hardware it will do a real time clock
  * read which can be quite expensive.
  */
 void
 random_harvest_queue_(const void *entropy, u_int size, enum random_entropy_source origin)
 {
 	struct harvest_event *event;
 	u_int ring_in;
 
 	KASSERT(origin >= RANDOM_START && origin < ENTROPYSOURCE, ("%s: origin %d invalid\n", __func__, origin));
 	RANDOM_HARVEST_LOCK();
 	ring_in = (harvest_context.hc_entropy_ring.in + 1)%RANDOM_RING_MAX;
 	if (ring_in != harvest_context.hc_entropy_ring.out) {
 		/* The ring is not full */
 		event = harvest_context.hc_entropy_ring.ring + ring_in;
 		event->he_somecounter = (uint32_t)get_cyclecount();
 		event->he_source = origin;
 		event->he_destination = harvest_context.hc_destination[origin]++;
 		if (size <= sizeof(event->he_entropy)) {
 			event->he_size = size;
 			memcpy(event->he_entropy, entropy, size);
 		}
 		else {
 			/* Big event, so squash it */
 			event->he_size = sizeof(event->he_entropy[0]);
 			event->he_entropy[0] = jenkins_hash(entropy, size, (uint32_t)(uintptr_t)event);
 		}
 		harvest_context.hc_entropy_ring.in = ring_in;
 	}
 	RANDOM_HARVEST_UNLOCK();
 }
 
 /*-
  * Entropy harvesting fast routine.
  *
  * This is supposed to be very fast; do not do anything slow in here!
  * This is the right place for high-rate harvested data.
  */
 void
 random_harvest_fast_(const void *entropy, u_int size)
 {
 	u_int pos;
 
 	pos = harvest_context.hc_entropy_fast_accumulator.pos;
 	harvest_context.hc_entropy_fast_accumulator.buf[pos] ^= jenkins_hash(entropy, size, (uint32_t)get_cyclecount());
 	harvest_context.hc_entropy_fast_accumulator.pos = (pos + 1)%RANDOM_ACCUM_MAX;
 }
 
 /*-
  * Entropy harvesting direct routine.
  *
  * This is not supposed to be fast, but will only be used during
  * (e.g.) booting when initial entropy is being gathered.
  */
 void
 random_harvest_direct_(const void *entropy, u_int size, enum random_entropy_source origin)
 {
 	struct harvest_event event;
 
 	KASSERT(origin >= RANDOM_START && origin < ENTROPYSOURCE, ("%s: origin %d invalid\n", __func__, origin));
 	size = MIN(size, sizeof(event.he_entropy));
 	event.he_somecounter = (uint32_t)get_cyclecount();
 	event.he_size = size;
 	event.he_source = origin;
 	event.he_destination = harvest_context.hc_destination[origin]++;
 	memcpy(event.he_entropy, entropy, size);
 	random_harvestq_fast_process_event(&event);
 }
 
 void
 random_harvest_register_source(enum random_entropy_source source)
 {
 
 	hc_source_mask |= (1 << source);
 }
 
 void
 random_harvest_deregister_source(enum random_entropy_source source)
 {
 
 	hc_source_mask &= ~(1 << source);
 }
 
 void
 random_source_register(struct random_source *rsource)
 {
 	struct random_sources *rrs;
 
 	KASSERT(rsource != NULL, ("invalid input to %s", __func__));
 
 	rrs = malloc(sizeof(*rrs), M_ENTROPY, M_WAITOK);
 	rrs->rrs_source = rsource;
 
 	random_harvest_register_source(rsource->rs_source);
 
 	printf("random: registering fast source %s\n", rsource->rs_ident);
 
 	RANDOM_HARVEST_LOCK();
 	CK_LIST_INSERT_HEAD(&source_list, rrs, rrs_entries);
 	RANDOM_HARVEST_UNLOCK();
 }
 
 void
 random_source_deregister(struct random_source *rsource)
 {
 	struct random_sources *rrs = NULL;
 
 	KASSERT(rsource != NULL, ("invalid input to %s", __func__));
 
 	random_harvest_deregister_source(rsource->rs_source);
 
 	RANDOM_HARVEST_LOCK();
 	CK_LIST_FOREACH(rrs, &source_list, rrs_entries)
 		if (rrs->rrs_source == rsource) {
 			CK_LIST_REMOVE(rrs, rrs_entries);
 			break;
 		}
 	RANDOM_HARVEST_UNLOCK();
 
 	if (rrs != NULL && epoch_inited)
 		epoch_wait_preempt(rs_epoch);
 	free(rrs, M_ENTROPY);
 }
 
 static int
 random_source_handler(SYSCTL_HANDLER_ARGS)
 {
 	struct epoch_tracker et;
 	struct random_sources *rrs;
 	struct sbuf sbuf;
 	int error, count;
 
 	error = sysctl_wire_old_buffer(req, 0);
 	if (error != 0)
 		return (error);
 
 	sbuf_new_for_sysctl(&sbuf, NULL, 64, req);
 	count = 0;
 	epoch_enter_preempt(rs_epoch, &et);
 	CK_LIST_FOREACH(rrs, &source_list, rrs_entries) {
 		sbuf_cat(&sbuf, (count++ ? ",'" : "'"));
 		sbuf_cat(&sbuf, rrs->rrs_source->rs_ident);
 		sbuf_cat(&sbuf, "'");
 	}
 	epoch_exit_preempt(rs_epoch, &et);
 	error = sbuf_finish(&sbuf);
 	sbuf_delete(&sbuf);
 	return (error);
 }
 SYSCTL_PROC(_kern_random, OID_AUTO, random_sources, CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
 	    NULL, 0, random_source_handler, "A",
 	    "List of active fast entropy sources.");
 
 MODULE_VERSION(random_harvestq, 1);