diff --git a/sys/kern/kern_mbuf.c b/sys/kern/kern_mbuf.c index f814d3cab6e8..2333bf887354 100644 --- a/sys/kern/kern_mbuf.c +++ b/sys/kern/kern_mbuf.c @@ -1,1660 +1,1670 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2004, 2005, * Bosko Milekic . All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice unmodified, this list of conditions and the following * disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include "opt_param.h" #include "opt_kern_tls.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * In FreeBSD, Mbufs and Mbuf Clusters are allocated from UMA * Zones. * * Mbuf Clusters (2K, contiguous) are allocated from the Cluster * Zone. The Zone can be capped at kern.ipc.nmbclusters, if the * administrator so desires. * * Mbufs are allocated from a UMA Primary Zone called the Mbuf * Zone. * * Additionally, FreeBSD provides a Packet Zone, which it * configures as a Secondary Zone to the Mbuf Primary Zone, * thus sharing backend Slab kegs with the Mbuf Primary Zone. * * Thus common-case allocations and locking are simplified: * * m_clget() m_getcl() * | | * | .------------>[(Packet Cache)] m_get(), m_gethdr() * | | [ Packet ] | * [(Cluster Cache)] [ Secondary ] [ (Mbuf Cache) ] * [ Cluster Zone ] [ Zone ] [ Mbuf Primary Zone ] * | \________ | * [ Cluster Keg ] \ / * | [ Mbuf Keg ] * [ Cluster Slabs ] | * | [ Mbuf Slabs ] * \____________(VM)_________________/ * * * Whenever an object is allocated with uma_zalloc() out of * one of the Zones its _ctor_ function is executed. The same * for any deallocation through uma_zfree() the _dtor_ function * is executed. * * Caches are per-CPU and are filled from the Primary Zone. * * Whenever an object is allocated from the underlying global * memory pool it gets pre-initialized with the _zinit_ functions. * When the Keg's are overfull objects get decommissioned with * _zfini_ functions and free'd back to the global memory pool. * */ int nmbufs; /* limits number of mbufs */ int nmbclusters; /* limits number of mbuf clusters */ int nmbjumbop; /* limits number of page size jumbo clusters */ int nmbjumbo9; /* limits number of 9k jumbo clusters */ int nmbjumbo16; /* limits number of 16k jumbo clusters */ bool mb_use_ext_pgs = true; /* use M_EXTPG mbufs for sendfile & TLS */ SYSCTL_BOOL(_kern_ipc, OID_AUTO, mb_use_ext_pgs, CTLFLAG_RWTUN, &mb_use_ext_pgs, 0, "Use unmapped mbufs for sendfile(2) and TLS offload"); static quad_t maxmbufmem; /* overall real memory limit for all mbufs */ SYSCTL_QUAD(_kern_ipc, OID_AUTO, maxmbufmem, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &maxmbufmem, 0, "Maximum real memory allocatable to various mbuf types"); static counter_u64_t snd_tag_count; SYSCTL_COUNTER_U64(_kern_ipc, OID_AUTO, num_snd_tags, CTLFLAG_RW, &snd_tag_count, "# of active mbuf send tags"); /* * tunable_mbinit() has to be run before any mbuf allocations are done. */ static void tunable_mbinit(void *dummy) { quad_t realmem; /* * The default limit for all mbuf related memory is 1/2 of all * available kernel memory (physical or kmem). * At most it can be 3/4 of available kernel memory. */ realmem = qmin((quad_t)physmem * PAGE_SIZE, vm_kmem_size); maxmbufmem = realmem / 2; TUNABLE_QUAD_FETCH("kern.ipc.maxmbufmem", &maxmbufmem); if (maxmbufmem > realmem / 4 * 3) maxmbufmem = realmem / 4 * 3; TUNABLE_INT_FETCH("kern.ipc.nmbclusters", &nmbclusters); if (nmbclusters == 0) nmbclusters = maxmbufmem / MCLBYTES / 4; TUNABLE_INT_FETCH("kern.ipc.nmbjumbop", &nmbjumbop); if (nmbjumbop == 0) nmbjumbop = maxmbufmem / MJUMPAGESIZE / 4; TUNABLE_INT_FETCH("kern.ipc.nmbjumbo9", &nmbjumbo9); if (nmbjumbo9 == 0) nmbjumbo9 = maxmbufmem / MJUM9BYTES / 6; TUNABLE_INT_FETCH("kern.ipc.nmbjumbo16", &nmbjumbo16); if (nmbjumbo16 == 0) nmbjumbo16 = maxmbufmem / MJUM16BYTES / 6; /* * We need at least as many mbufs as we have clusters of * the various types added together. */ TUNABLE_INT_FETCH("kern.ipc.nmbufs", &nmbufs); if (nmbufs < nmbclusters + nmbjumbop + nmbjumbo9 + nmbjumbo16) nmbufs = lmax(maxmbufmem / MSIZE / 5, nmbclusters + nmbjumbop + nmbjumbo9 + nmbjumbo16); } SYSINIT(tunable_mbinit, SI_SUB_KMEM, SI_ORDER_MIDDLE, tunable_mbinit, NULL); static int sysctl_nmbclusters(SYSCTL_HANDLER_ARGS) { int error, newnmbclusters; newnmbclusters = nmbclusters; error = sysctl_handle_int(oidp, &newnmbclusters, 0, req); if (error == 0 && req->newptr && newnmbclusters != nmbclusters) { if (newnmbclusters > nmbclusters && nmbufs >= nmbclusters + nmbjumbop + nmbjumbo9 + nmbjumbo16) { nmbclusters = newnmbclusters; nmbclusters = uma_zone_set_max(zone_clust, nmbclusters); EVENTHANDLER_INVOKE(nmbclusters_change); } else error = EINVAL; } return (error); } SYSCTL_PROC(_kern_ipc, OID_AUTO, nmbclusters, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &nmbclusters, 0, sysctl_nmbclusters, "IU", "Maximum number of mbuf clusters allowed"); static int sysctl_nmbjumbop(SYSCTL_HANDLER_ARGS) { int error, newnmbjumbop; newnmbjumbop = nmbjumbop; error = sysctl_handle_int(oidp, &newnmbjumbop, 0, req); if (error == 0 && req->newptr && newnmbjumbop != nmbjumbop) { if (newnmbjumbop > nmbjumbop && nmbufs >= nmbclusters + nmbjumbop + nmbjumbo9 + nmbjumbo16) { nmbjumbop = newnmbjumbop; nmbjumbop = uma_zone_set_max(zone_jumbop, nmbjumbop); } else error = EINVAL; } return (error); } SYSCTL_PROC(_kern_ipc, OID_AUTO, nmbjumbop, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &nmbjumbop, 0, sysctl_nmbjumbop, "IU", "Maximum number of mbuf page size jumbo clusters allowed"); static int sysctl_nmbjumbo9(SYSCTL_HANDLER_ARGS) { int error, newnmbjumbo9; newnmbjumbo9 = nmbjumbo9; error = sysctl_handle_int(oidp, &newnmbjumbo9, 0, req); if (error == 0 && req->newptr && newnmbjumbo9 != nmbjumbo9) { if (newnmbjumbo9 > nmbjumbo9 && nmbufs >= nmbclusters + nmbjumbop + nmbjumbo9 + nmbjumbo16) { nmbjumbo9 = newnmbjumbo9; nmbjumbo9 = uma_zone_set_max(zone_jumbo9, nmbjumbo9); } else error = EINVAL; } return (error); } SYSCTL_PROC(_kern_ipc, OID_AUTO, nmbjumbo9, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &nmbjumbo9, 0, sysctl_nmbjumbo9, "IU", "Maximum number of mbuf 9k jumbo clusters allowed"); static int sysctl_nmbjumbo16(SYSCTL_HANDLER_ARGS) { int error, newnmbjumbo16; newnmbjumbo16 = nmbjumbo16; error = sysctl_handle_int(oidp, &newnmbjumbo16, 0, req); if (error == 0 && req->newptr && newnmbjumbo16 != nmbjumbo16) { if (newnmbjumbo16 > nmbjumbo16 && nmbufs >= nmbclusters + nmbjumbop + nmbjumbo9 + nmbjumbo16) { nmbjumbo16 = newnmbjumbo16; nmbjumbo16 = uma_zone_set_max(zone_jumbo16, nmbjumbo16); } else error = EINVAL; } return (error); } SYSCTL_PROC(_kern_ipc, OID_AUTO, nmbjumbo16, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &nmbjumbo16, 0, sysctl_nmbjumbo16, "IU", "Maximum number of mbuf 16k jumbo clusters allowed"); static int sysctl_nmbufs(SYSCTL_HANDLER_ARGS) { int error, newnmbufs; newnmbufs = nmbufs; error = sysctl_handle_int(oidp, &newnmbufs, 0, req); if (error == 0 && req->newptr && newnmbufs != nmbufs) { if (newnmbufs > nmbufs) { nmbufs = newnmbufs; nmbufs = uma_zone_set_max(zone_mbuf, nmbufs); EVENTHANDLER_INVOKE(nmbufs_change); } else error = EINVAL; } return (error); } SYSCTL_PROC(_kern_ipc, OID_AUTO, nmbufs, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &nmbufs, 0, sysctl_nmbufs, "IU", "Maximum number of mbufs allowed"); /* * Zones from which we allocate. */ uma_zone_t zone_mbuf; uma_zone_t zone_clust; uma_zone_t zone_pack; uma_zone_t zone_jumbop; uma_zone_t zone_jumbo9; uma_zone_t zone_jumbo16; /* * Local prototypes. */ static int mb_ctor_mbuf(void *, int, void *, int); static int mb_ctor_clust(void *, int, void *, int); static int mb_ctor_pack(void *, int, void *, int); static void mb_dtor_mbuf(void *, int, void *); static void mb_dtor_pack(void *, int, void *); static int mb_zinit_pack(void *, int, int); static void mb_zfini_pack(void *, int); static void mb_reclaim(uma_zone_t, int); /* Ensure that MSIZE is a power of 2. */ CTASSERT((((MSIZE - 1) ^ MSIZE) + 1) >> 1 == MSIZE); _Static_assert(sizeof(struct mbuf) <= MSIZE, "size of mbuf exceeds MSIZE"); /* * Initialize FreeBSD Network buffer allocation. */ static void mbuf_init(void *dummy) { /* * Configure UMA zones for Mbufs, Clusters, and Packets. */ zone_mbuf = uma_zcreate(MBUF_MEM_NAME, MSIZE, mb_ctor_mbuf, mb_dtor_mbuf, NULL, NULL, MSIZE - 1, UMA_ZONE_CONTIG | UMA_ZONE_MAXBUCKET); if (nmbufs > 0) nmbufs = uma_zone_set_max(zone_mbuf, nmbufs); uma_zone_set_warning(zone_mbuf, "kern.ipc.nmbufs limit reached"); uma_zone_set_maxaction(zone_mbuf, mb_reclaim); zone_clust = uma_zcreate(MBUF_CLUSTER_MEM_NAME, MCLBYTES, mb_ctor_clust, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_CONTIG); if (nmbclusters > 0) nmbclusters = uma_zone_set_max(zone_clust, nmbclusters); uma_zone_set_warning(zone_clust, "kern.ipc.nmbclusters limit reached"); uma_zone_set_maxaction(zone_clust, mb_reclaim); zone_pack = uma_zsecond_create(MBUF_PACKET_MEM_NAME, mb_ctor_pack, mb_dtor_pack, mb_zinit_pack, mb_zfini_pack, zone_mbuf); /* Make jumbo frame zone too. Page size, 9k and 16k. */ zone_jumbop = uma_zcreate(MBUF_JUMBOP_MEM_NAME, MJUMPAGESIZE, mb_ctor_clust, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_CONTIG); if (nmbjumbop > 0) nmbjumbop = uma_zone_set_max(zone_jumbop, nmbjumbop); uma_zone_set_warning(zone_jumbop, "kern.ipc.nmbjumbop limit reached"); uma_zone_set_maxaction(zone_jumbop, mb_reclaim); zone_jumbo9 = uma_zcreate(MBUF_JUMBO9_MEM_NAME, MJUM9BYTES, mb_ctor_clust, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_CONTIG); if (nmbjumbo9 > 0) nmbjumbo9 = uma_zone_set_max(zone_jumbo9, nmbjumbo9); uma_zone_set_warning(zone_jumbo9, "kern.ipc.nmbjumbo9 limit reached"); uma_zone_set_maxaction(zone_jumbo9, mb_reclaim); zone_jumbo16 = uma_zcreate(MBUF_JUMBO16_MEM_NAME, MJUM16BYTES, mb_ctor_clust, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_CONTIG); if (nmbjumbo16 > 0) nmbjumbo16 = uma_zone_set_max(zone_jumbo16, nmbjumbo16); uma_zone_set_warning(zone_jumbo16, "kern.ipc.nmbjumbo16 limit reached"); uma_zone_set_maxaction(zone_jumbo16, mb_reclaim); /* * Hook event handler for low-memory situation, used to * drain protocols and push data back to the caches (UMA * later pushes it back to VM). */ EVENTHANDLER_REGISTER(vm_lowmem, mb_reclaim, NULL, EVENTHANDLER_PRI_FIRST); snd_tag_count = counter_u64_alloc(M_WAITOK); } SYSINIT(mbuf, SI_SUB_MBUF, SI_ORDER_FIRST, mbuf_init, NULL); #ifdef DEBUGNET /* * debugnet makes use of a pre-allocated pool of mbufs and clusters. When * debugnet is configured, we initialize a set of UMA cache zones which return * items from this pool. At panic-time, the regular UMA zone pointers are * overwritten with those of the cache zones so that drivers may allocate and * free mbufs and clusters without attempting to allocate physical memory. * * We keep mbufs and clusters in a pair of mbuf queues. In particular, for * the purpose of caching clusters, we treat them as mbufs. */ static struct mbufq dn_mbufq = { STAILQ_HEAD_INITIALIZER(dn_mbufq.mq_head), 0, INT_MAX }; static struct mbufq dn_clustq = { STAILQ_HEAD_INITIALIZER(dn_clustq.mq_head), 0, INT_MAX }; static int dn_clsize; static uma_zone_t dn_zone_mbuf; static uma_zone_t dn_zone_clust; static uma_zone_t dn_zone_pack; static struct debugnet_saved_zones { uma_zone_t dsz_mbuf; uma_zone_t dsz_clust; uma_zone_t dsz_pack; uma_zone_t dsz_jumbop; uma_zone_t dsz_jumbo9; uma_zone_t dsz_jumbo16; bool dsz_debugnet_zones_enabled; } dn_saved_zones; static int dn_buf_import(void *arg, void **store, int count, int domain __unused, int flags) { struct mbufq *q; struct mbuf *m; int i; q = arg; for (i = 0; i < count; i++) { m = mbufq_dequeue(q); if (m == NULL) break; trash_init(m, q == &dn_mbufq ? MSIZE : dn_clsize, flags); store[i] = m; } KASSERT((flags & M_WAITOK) == 0 || i == count, ("%s: ran out of pre-allocated mbufs", __func__)); return (i); } static void dn_buf_release(void *arg, void **store, int count) { struct mbufq *q; struct mbuf *m; int i; q = arg; for (i = 0; i < count; i++) { m = store[i]; (void)mbufq_enqueue(q, m); } } static int dn_pack_import(void *arg __unused, void **store, int count, int domain __unused, int flags __unused) { struct mbuf *m; void *clust; int i; for (i = 0; i < count; i++) { m = m_get(MT_DATA, M_NOWAIT); if (m == NULL) break; clust = uma_zalloc(dn_zone_clust, M_NOWAIT); if (clust == NULL) { m_free(m); break; } mb_ctor_clust(clust, dn_clsize, m, 0); store[i] = m; } KASSERT((flags & M_WAITOK) == 0 || i == count, ("%s: ran out of pre-allocated mbufs", __func__)); return (i); } static void dn_pack_release(void *arg __unused, void **store, int count) { struct mbuf *m; void *clust; int i; for (i = 0; i < count; i++) { m = store[i]; clust = m->m_ext.ext_buf; uma_zfree(dn_zone_clust, clust); uma_zfree(dn_zone_mbuf, m); } } /* * Free the pre-allocated mbufs and clusters reserved for debugnet, and destroy * the corresponding UMA cache zones. */ void debugnet_mbuf_drain(void) { struct mbuf *m; void *item; if (dn_zone_mbuf != NULL) { uma_zdestroy(dn_zone_mbuf); dn_zone_mbuf = NULL; } if (dn_zone_clust != NULL) { uma_zdestroy(dn_zone_clust); dn_zone_clust = NULL; } if (dn_zone_pack != NULL) { uma_zdestroy(dn_zone_pack); dn_zone_pack = NULL; } while ((m = mbufq_dequeue(&dn_mbufq)) != NULL) m_free(m); while ((item = mbufq_dequeue(&dn_clustq)) != NULL) uma_zfree(m_getzone(dn_clsize), item); } /* * Callback invoked immediately prior to starting a debugnet connection. */ void debugnet_mbuf_start(void) { MPASS(!dn_saved_zones.dsz_debugnet_zones_enabled); /* Save the old zone pointers to restore when debugnet is closed. */ dn_saved_zones = (struct debugnet_saved_zones) { .dsz_debugnet_zones_enabled = true, .dsz_mbuf = zone_mbuf, .dsz_clust = zone_clust, .dsz_pack = zone_pack, .dsz_jumbop = zone_jumbop, .dsz_jumbo9 = zone_jumbo9, .dsz_jumbo16 = zone_jumbo16, }; /* * All cluster zones return buffers of the size requested by the * drivers. It's up to the driver to reinitialize the zones if the * MTU of a debugnet-enabled interface changes. */ printf("debugnet: overwriting mbuf zone pointers\n"); zone_mbuf = dn_zone_mbuf; zone_clust = dn_zone_clust; zone_pack = dn_zone_pack; zone_jumbop = dn_zone_clust; zone_jumbo9 = dn_zone_clust; zone_jumbo16 = dn_zone_clust; } /* * Callback invoked when a debugnet connection is closed/finished. */ void debugnet_mbuf_finish(void) { MPASS(dn_saved_zones.dsz_debugnet_zones_enabled); printf("debugnet: restoring mbuf zone pointers\n"); zone_mbuf = dn_saved_zones.dsz_mbuf; zone_clust = dn_saved_zones.dsz_clust; zone_pack = dn_saved_zones.dsz_pack; zone_jumbop = dn_saved_zones.dsz_jumbop; zone_jumbo9 = dn_saved_zones.dsz_jumbo9; zone_jumbo16 = dn_saved_zones.dsz_jumbo16; memset(&dn_saved_zones, 0, sizeof(dn_saved_zones)); } /* * Reinitialize the debugnet mbuf+cluster pool and cache zones. */ void debugnet_mbuf_reinit(int nmbuf, int nclust, int clsize) { struct mbuf *m; void *item; debugnet_mbuf_drain(); dn_clsize = clsize; dn_zone_mbuf = uma_zcache_create("debugnet_" MBUF_MEM_NAME, MSIZE, mb_ctor_mbuf, mb_dtor_mbuf, NULL, NULL, dn_buf_import, dn_buf_release, &dn_mbufq, UMA_ZONE_NOBUCKET); dn_zone_clust = uma_zcache_create("debugnet_" MBUF_CLUSTER_MEM_NAME, clsize, mb_ctor_clust, NULL, NULL, NULL, dn_buf_import, dn_buf_release, &dn_clustq, UMA_ZONE_NOBUCKET); dn_zone_pack = uma_zcache_create("debugnet_" MBUF_PACKET_MEM_NAME, MCLBYTES, mb_ctor_pack, mb_dtor_pack, NULL, NULL, dn_pack_import, dn_pack_release, NULL, UMA_ZONE_NOBUCKET); while (nmbuf-- > 0) { m = m_get(MT_DATA, M_WAITOK); uma_zfree(dn_zone_mbuf, m); } while (nclust-- > 0) { item = uma_zalloc(m_getzone(dn_clsize), M_WAITOK); uma_zfree(dn_zone_clust, item); } } #endif /* DEBUGNET */ /* * Constructor for Mbuf primary zone. * * The 'arg' pointer points to a mb_args structure which * contains call-specific information required to support the * mbuf allocation API. See mbuf.h. */ static int mb_ctor_mbuf(void *mem, int size, void *arg, int how) { struct mbuf *m; struct mb_args *args; int error; int flags; short type; args = (struct mb_args *)arg; type = args->type; /* * The mbuf is initialized later. The caller has the * responsibility to set up any MAC labels too. */ if (type == MT_NOINIT) return (0); m = (struct mbuf *)mem; flags = args->flags; MPASS((flags & M_NOFREE) == 0); error = m_init(m, how, type, flags); return (error); } /* * The Mbuf primary zone destructor. */ static void mb_dtor_mbuf(void *mem, int size, void *arg) { struct mbuf *m; unsigned long flags; m = (struct mbuf *)mem; flags = (unsigned long)arg; KASSERT((m->m_flags & M_NOFREE) == 0, ("%s: M_NOFREE set", __func__)); KASSERT((flags & 0x1) == 0, ("%s: obsolete MB_DTOR_SKIP passed", __func__)); if ((m->m_flags & M_PKTHDR) && !SLIST_EMPTY(&m->m_pkthdr.tags)) m_tag_delete_chain(m, NULL); } /* * The Mbuf Packet zone destructor. */ static void mb_dtor_pack(void *mem, int size, void *arg) { struct mbuf *m; m = (struct mbuf *)mem; if ((m->m_flags & M_PKTHDR) != 0) m_tag_delete_chain(m, NULL); /* Make sure we've got a clean cluster back. */ KASSERT((m->m_flags & M_EXT) == M_EXT, ("%s: M_EXT not set", __func__)); KASSERT(m->m_ext.ext_buf != NULL, ("%s: ext_buf == NULL", __func__)); KASSERT(m->m_ext.ext_free == NULL, ("%s: ext_free != NULL", __func__)); KASSERT(m->m_ext.ext_arg1 == NULL, ("%s: ext_arg1 != NULL", __func__)); KASSERT(m->m_ext.ext_arg2 == NULL, ("%s: ext_arg2 != NULL", __func__)); KASSERT(m->m_ext.ext_size == MCLBYTES, ("%s: ext_size != MCLBYTES", __func__)); KASSERT(m->m_ext.ext_type == EXT_PACKET, ("%s: ext_type != EXT_PACKET", __func__)); #ifdef INVARIANTS trash_dtor(m->m_ext.ext_buf, MCLBYTES, arg); #endif /* * If there are processes blocked on zone_clust, waiting for pages * to be freed up, cause them to be woken up by draining the * packet zone. We are exposed to a race here (in the check for * the UMA_ZFLAG_FULL) where we might miss the flag set, but that * is deliberate. We don't want to acquire the zone lock for every * mbuf free. */ if (uma_zone_exhausted(zone_clust)) uma_zone_reclaim(zone_pack, UMA_RECLAIM_DRAIN); } /* * The Cluster and Jumbo[PAGESIZE|9|16] zone constructor. * * Here the 'arg' pointer points to the Mbuf which we * are configuring cluster storage for. If 'arg' is * empty we allocate just the cluster without setting * the mbuf to it. See mbuf.h. */ static int mb_ctor_clust(void *mem, int size, void *arg, int how) { struct mbuf *m; m = (struct mbuf *)arg; if (m != NULL) { m->m_ext.ext_buf = (char *)mem; m->m_data = m->m_ext.ext_buf; m->m_flags |= M_EXT; m->m_ext.ext_free = NULL; m->m_ext.ext_arg1 = NULL; m->m_ext.ext_arg2 = NULL; m->m_ext.ext_size = size; m->m_ext.ext_type = m_gettype(size); m->m_ext.ext_flags = EXT_FLAG_EMBREF; m->m_ext.ext_count = 1; } return (0); } /* * The Packet secondary zone's init routine, executed on the * object's transition from mbuf keg slab to zone cache. */ static int mb_zinit_pack(void *mem, int size, int how) { struct mbuf *m; m = (struct mbuf *)mem; /* m is virgin. */ if (uma_zalloc_arg(zone_clust, m, how) == NULL || m->m_ext.ext_buf == NULL) return (ENOMEM); m->m_ext.ext_type = EXT_PACKET; /* Override. */ #ifdef INVARIANTS trash_init(m->m_ext.ext_buf, MCLBYTES, how); #endif return (0); } /* * The Packet secondary zone's fini routine, executed on the * object's transition from zone cache to keg slab. */ static void mb_zfini_pack(void *mem, int size) { struct mbuf *m; m = (struct mbuf *)mem; #ifdef INVARIANTS trash_fini(m->m_ext.ext_buf, MCLBYTES); #endif uma_zfree_arg(zone_clust, m->m_ext.ext_buf, NULL); #ifdef INVARIANTS trash_dtor(mem, size, NULL); #endif } /* * The "packet" keg constructor. */ static int mb_ctor_pack(void *mem, int size, void *arg, int how) { struct mbuf *m; struct mb_args *args; int error, flags; short type; m = (struct mbuf *)mem; args = (struct mb_args *)arg; flags = args->flags; type = args->type; MPASS((flags & M_NOFREE) == 0); #ifdef INVARIANTS trash_ctor(m->m_ext.ext_buf, MCLBYTES, arg, how); #endif error = m_init(m, how, type, flags); /* m_ext is already initialized. */ m->m_data = m->m_ext.ext_buf; m->m_flags = (flags | M_EXT); return (error); } /* * This is the protocol drain routine. Called by UMA whenever any of the * mbuf zones is closed to its limit. * * No locks should be held when this is called. The drain routines have to * presently acquire some locks which raises the possibility of lock order * reversal. */ static void mb_reclaim(uma_zone_t zone __unused, int pending __unused) { struct epoch_tracker et; struct domain *dp; struct protosw *pr; WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK | WARN_PANIC, NULL, __func__); NET_EPOCH_ENTER(et); for (dp = domains; dp != NULL; dp = dp->dom_next) for (pr = dp->dom_protosw; pr < dp->dom_protoswNPROTOSW; pr++) if (pr->pr_drain != NULL) (*pr->pr_drain)(); NET_EPOCH_EXIT(et); } /* * Free "count" units of I/O from an mbuf chain. They could be held * in M_EXTPG or just as a normal mbuf. This code is intended to be * called in an error path (I/O error, closed connection, etc). */ void mb_free_notready(struct mbuf *m, int count) { int i; for (i = 0; i < count && m != NULL; i++) { if ((m->m_flags & M_EXTPG) != 0) { m->m_epg_nrdy--; if (m->m_epg_nrdy != 0) continue; } m = m_free(m); } KASSERT(i == count, ("Removed only %d items from %p", i, m)); } /* * Compress an unmapped mbuf into a simple mbuf when it holds a small * amount of data. This is used as a DOS defense to avoid having * small packets tie up wired pages, an ext_pgs structure, and an * mbuf. Since this converts the existing mbuf in place, it can only * be used if there are no other references to 'm'. */ int mb_unmapped_compress(struct mbuf *m) { volatile u_int *refcnt; char buf[MLEN]; /* * Assert that 'm' does not have a packet header. If 'm' had * a packet header, it would only be able to hold MHLEN bytes * and m_data would have to be initialized differently. */ KASSERT((m->m_flags & M_PKTHDR) == 0 && (m->m_flags & M_EXTPG), ("%s: m %p !M_EXTPG or M_PKTHDR", __func__, m)); KASSERT(m->m_len <= MLEN, ("m_len too large %p", m)); if (m->m_ext.ext_flags & EXT_FLAG_EMBREF) { refcnt = &m->m_ext.ext_count; } else { KASSERT(m->m_ext.ext_cnt != NULL, ("%s: no refcounting pointer on %p", __func__, m)); refcnt = m->m_ext.ext_cnt; } if (*refcnt != 1) return (EBUSY); m_copydata(m, 0, m->m_len, buf); /* Free the backing pages. */ m->m_ext.ext_free(m); /* Turn 'm' into a "normal" mbuf. */ m->m_flags &= ~(M_EXT | M_RDONLY | M_EXTPG); m->m_data = m->m_dat; /* Copy data back into m. */ bcopy(buf, mtod(m, char *), m->m_len); return (0); } /* * These next few routines are used to permit downgrading an unmapped * mbuf to a chain of mapped mbufs. This is used when an interface * doesn't supported unmapped mbufs or if checksums need to be * computed in software. * * Each unmapped mbuf is converted to a chain of mbufs. First, any * TLS header data is stored in a regular mbuf. Second, each page of * unmapped data is stored in an mbuf with an EXT_SFBUF external * cluster. These mbufs use an sf_buf to provide a valid KVA for the * associated physical page. They also hold a reference on the * original M_EXTPG mbuf to ensure the physical page doesn't go away. * Finally, any TLS trailer data is stored in a regular mbuf. * * mb_unmapped_free_mext() is the ext_free handler for the EXT_SFBUF * mbufs. It frees the associated sf_buf and releases its reference * on the original M_EXTPG mbuf. * * _mb_unmapped_to_ext() is a helper function that converts a single * unmapped mbuf into a chain of mbufs. * * mb_unmapped_to_ext() is the public function that walks an mbuf * chain converting any unmapped mbufs to mapped mbufs. It returns * the new chain of unmapped mbufs on success. On failure it frees * the original mbuf chain and returns NULL. */ static void mb_unmapped_free_mext(struct mbuf *m) { struct sf_buf *sf; struct mbuf *old_m; sf = m->m_ext.ext_arg1; sf_buf_free(sf); /* Drop the reference on the backing M_EXTPG mbuf. */ old_m = m->m_ext.ext_arg2; mb_free_extpg(old_m); } static struct mbuf * _mb_unmapped_to_ext(struct mbuf *m) { struct mbuf *m_new, *top, *prev, *mref; struct sf_buf *sf; vm_page_t pg; int i, len, off, pglen, pgoff, seglen, segoff; volatile u_int *refcnt; u_int ref_inc = 0; M_ASSERTEXTPG(m); len = m->m_len; KASSERT(m->m_epg_tls == NULL, ("%s: can't convert TLS mbuf %p", __func__, m)); /* See if this is the mbuf that holds the embedded refcount. */ if (m->m_ext.ext_flags & EXT_FLAG_EMBREF) { refcnt = &m->m_ext.ext_count; mref = m; } else { KASSERT(m->m_ext.ext_cnt != NULL, ("%s: no refcounting pointer on %p", __func__, m)); refcnt = m->m_ext.ext_cnt; mref = __containerof(refcnt, struct mbuf, m_ext.ext_count); } /* Skip over any data removed from the front. */ off = mtod(m, vm_offset_t); top = NULL; if (m->m_epg_hdrlen != 0) { if (off >= m->m_epg_hdrlen) { off -= m->m_epg_hdrlen; } else { seglen = m->m_epg_hdrlen - off; segoff = off; seglen = min(seglen, len); off = 0; len -= seglen; m_new = m_get(M_NOWAIT, MT_DATA); if (m_new == NULL) goto fail; m_new->m_len = seglen; prev = top = m_new; memcpy(mtod(m_new, void *), &m->m_epg_hdr[segoff], seglen); } } pgoff = m->m_epg_1st_off; for (i = 0; i < m->m_epg_npgs && len > 0; i++) { pglen = m_epg_pagelen(m, i, pgoff); if (off >= pglen) { off -= pglen; pgoff = 0; continue; } seglen = pglen - off; segoff = pgoff + off; off = 0; seglen = min(seglen, len); len -= seglen; pg = PHYS_TO_VM_PAGE(m->m_epg_pa[i]); m_new = m_get(M_NOWAIT, MT_DATA); if (m_new == NULL) goto fail; if (top == NULL) { top = prev = m_new; } else { prev->m_next = m_new; prev = m_new; } sf = sf_buf_alloc(pg, SFB_NOWAIT); if (sf == NULL) goto fail; ref_inc++; m_extadd(m_new, (char *)sf_buf_kva(sf), PAGE_SIZE, mb_unmapped_free_mext, sf, mref, M_RDONLY, EXT_SFBUF); m_new->m_data += segoff; m_new->m_len = seglen; pgoff = 0; }; if (len != 0) { KASSERT((off + len) <= m->m_epg_trllen, ("off + len > trail (%d + %d > %d)", off, len, m->m_epg_trllen)); m_new = m_get(M_NOWAIT, MT_DATA); if (m_new == NULL) goto fail; if (top == NULL) top = m_new; else prev->m_next = m_new; m_new->m_len = len; memcpy(mtod(m_new, void *), &m->m_epg_trail[off], len); } if (ref_inc != 0) { /* * Obtain an additional reference on the old mbuf for * each created EXT_SFBUF mbuf. They will be dropped * in mb_unmapped_free_mext(). */ if (*refcnt == 1) *refcnt += ref_inc; else atomic_add_int(refcnt, ref_inc); } m_free(m); return (top); fail: if (ref_inc != 0) { /* * Obtain an additional reference on the old mbuf for * each created EXT_SFBUF mbuf. They will be * immediately dropped when these mbufs are freed * below. */ if (*refcnt == 1) *refcnt += ref_inc; else atomic_add_int(refcnt, ref_inc); } m_free(m); m_freem(top); return (NULL); } struct mbuf * mb_unmapped_to_ext(struct mbuf *top) { struct mbuf *m, *next, *prev = NULL; prev = NULL; for (m = top; m != NULL; m = next) { /* m might be freed, so cache the next pointer. */ next = m->m_next; if (m->m_flags & M_EXTPG) { if (prev != NULL) { /* * Remove 'm' from the new chain so * that the 'top' chain terminates * before 'm' in case 'top' is freed * due to an error. */ prev->m_next = NULL; } m = _mb_unmapped_to_ext(m); if (m == NULL) { m_freem(top); m_freem(next); return (NULL); } if (prev == NULL) { top = m; } else { prev->m_next = m; } /* * Replaced one mbuf with a chain, so we must * find the end of chain. */ prev = m_last(m); } else { if (prev != NULL) { prev->m_next = m; } prev = m; } } return (top); } /* * Allocate an empty M_EXTPG mbuf. The ext_free routine is * responsible for freeing any pages backing this mbuf when it is * freed. */ struct mbuf * mb_alloc_ext_pgs(int how, m_ext_free_t ext_free) { struct mbuf *m; m = m_get(how, MT_DATA); if (m == NULL) return (NULL); m->m_epg_npgs = 0; m->m_epg_nrdy = 0; m->m_epg_1st_off = 0; m->m_epg_last_len = 0; m->m_epg_flags = 0; m->m_epg_hdrlen = 0; m->m_epg_trllen = 0; m->m_epg_tls = NULL; m->m_epg_so = NULL; m->m_data = NULL; m->m_flags |= (M_EXT | M_RDONLY | M_EXTPG); m->m_ext.ext_flags = EXT_FLAG_EMBREF; m->m_ext.ext_count = 1; m->m_ext.ext_size = 0; m->m_ext.ext_free = ext_free; return (m); } /* * Clean up after mbufs with M_EXT storage attached to them if the * reference count hits 1. */ void mb_free_ext(struct mbuf *m) { volatile u_int *refcnt; struct mbuf *mref; int freembuf; KASSERT(m->m_flags & M_EXT, ("%s: M_EXT not set on %p", __func__, m)); /* See if this is the mbuf that holds the embedded refcount. */ if (m->m_ext.ext_flags & EXT_FLAG_EMBREF) { refcnt = &m->m_ext.ext_count; mref = m; } else { KASSERT(m->m_ext.ext_cnt != NULL, ("%s: no refcounting pointer on %p", __func__, m)); refcnt = m->m_ext.ext_cnt; mref = __containerof(refcnt, struct mbuf, m_ext.ext_count); } /* * Check if the header is embedded in the cluster. It is * important that we can't touch any of the mbuf fields * after we have freed the external storage, since mbuf * could have been embedded in it. For now, the mbufs * embedded into the cluster are always of type EXT_EXTREF, * and for this type we won't free the mref. */ if (m->m_flags & M_NOFREE) { freembuf = 0; KASSERT(m->m_ext.ext_type == EXT_EXTREF || m->m_ext.ext_type == EXT_RXRING, ("%s: no-free mbuf %p has wrong type", __func__, m)); } else freembuf = 1; /* Free attached storage if this mbuf is the only reference to it. */ if (*refcnt == 1 || atomic_fetchadd_int(refcnt, -1) == 1) { switch (m->m_ext.ext_type) { case EXT_PACKET: /* The packet zone is special. */ if (*refcnt == 0) *refcnt = 1; uma_zfree(zone_pack, mref); break; case EXT_CLUSTER: uma_zfree(zone_clust, m->m_ext.ext_buf); uma_zfree(zone_mbuf, mref); break; case EXT_JUMBOP: uma_zfree(zone_jumbop, m->m_ext.ext_buf); uma_zfree(zone_mbuf, mref); break; case EXT_JUMBO9: uma_zfree(zone_jumbo9, m->m_ext.ext_buf); uma_zfree(zone_mbuf, mref); break; case EXT_JUMBO16: uma_zfree(zone_jumbo16, m->m_ext.ext_buf); uma_zfree(zone_mbuf, mref); break; case EXT_SFBUF: case EXT_NET_DRV: case EXT_MOD_TYPE: case EXT_DISPOSABLE: KASSERT(mref->m_ext.ext_free != NULL, ("%s: ext_free not set", __func__)); mref->m_ext.ext_free(mref); uma_zfree(zone_mbuf, mref); break; case EXT_EXTREF: KASSERT(m->m_ext.ext_free != NULL, ("%s: ext_free not set", __func__)); m->m_ext.ext_free(m); break; case EXT_RXRING: KASSERT(m->m_ext.ext_free == NULL, ("%s: ext_free is set", __func__)); break; default: KASSERT(m->m_ext.ext_type == 0, ("%s: unknown ext_type", __func__)); } } if (freembuf && m != mref) uma_zfree(zone_mbuf, m); } /* * Clean up after mbufs with M_EXTPG storage attached to them if the * reference count hits 1. */ void mb_free_extpg(struct mbuf *m) { volatile u_int *refcnt; struct mbuf *mref; M_ASSERTEXTPG(m); /* See if this is the mbuf that holds the embedded refcount. */ if (m->m_ext.ext_flags & EXT_FLAG_EMBREF) { refcnt = &m->m_ext.ext_count; mref = m; } else { KASSERT(m->m_ext.ext_cnt != NULL, ("%s: no refcounting pointer on %p", __func__, m)); refcnt = m->m_ext.ext_cnt; mref = __containerof(refcnt, struct mbuf, m_ext.ext_count); } /* Free attached storage if this mbuf is the only reference to it. */ if (*refcnt == 1 || atomic_fetchadd_int(refcnt, -1) == 1) { KASSERT(mref->m_ext.ext_free != NULL, ("%s: ext_free not set", __func__)); mref->m_ext.ext_free(mref); #ifdef KERN_TLS if (mref->m_epg_tls != NULL && !refcount_release_if_not_last(&mref->m_epg_tls->refcount)) ktls_enqueue_to_free(mref); else #endif uma_zfree(zone_mbuf, mref); } if (m != mref) uma_zfree(zone_mbuf, m); } /* * Official mbuf(9) allocation KPI for stack and drivers: * * m_get() - a single mbuf without any attachments, sys/mbuf.h. * m_gethdr() - a single mbuf initialized as M_PKTHDR, sys/mbuf.h. * m_getcl() - an mbuf + 2k cluster, sys/mbuf.h. * m_clget() - attach cluster to already allocated mbuf. * m_cljget() - attach jumbo cluster to already allocated mbuf. * m_get2() - allocate minimum mbuf that would fit size argument. * m_getm2() - allocate a chain of mbufs/clusters. * m_extadd() - attach external cluster to mbuf. * * m_free() - free single mbuf with its tags and ext, sys/mbuf.h. * m_freem() - free chain of mbufs. */ int m_clget(struct mbuf *m, int how) { KASSERT((m->m_flags & M_EXT) == 0, ("%s: mbuf %p has M_EXT", __func__, m)); m->m_ext.ext_buf = (char *)NULL; uma_zalloc_arg(zone_clust, m, how); /* * On a cluster allocation failure, drain the packet zone and retry, * we might be able to loosen a few clusters up on the drain. */ if ((how & M_NOWAIT) && (m->m_ext.ext_buf == NULL)) { uma_zone_reclaim(zone_pack, UMA_RECLAIM_DRAIN); uma_zalloc_arg(zone_clust, m, how); } MBUF_PROBE2(m__clget, m, how); return (m->m_flags & M_EXT); } /* * m_cljget() is different from m_clget() as it can allocate clusters without * attaching them to an mbuf. In that case the return value is the pointer * to the cluster of the requested size. If an mbuf was specified, it gets * the cluster attached to it and the return value can be safely ignored. * For size it takes MCLBYTES, MJUMPAGESIZE, MJUM9BYTES, MJUM16BYTES. */ void * m_cljget(struct mbuf *m, int how, int size) { uma_zone_t zone; void *retval; if (m != NULL) { KASSERT((m->m_flags & M_EXT) == 0, ("%s: mbuf %p has M_EXT", __func__, m)); m->m_ext.ext_buf = NULL; } zone = m_getzone(size); retval = uma_zalloc_arg(zone, m, how); MBUF_PROBE4(m__cljget, m, how, size, retval); return (retval); } /* * m_get2() allocates minimum mbuf that would fit "size" argument. */ struct mbuf * m_get2(int size, int how, short type, int flags) { struct mb_args args; struct mbuf *m, *n; args.flags = flags; args.type = type; if (size <= MHLEN || (size <= MLEN && (flags & M_PKTHDR) == 0)) return (uma_zalloc_arg(zone_mbuf, &args, how)); if (size <= MCLBYTES) return (uma_zalloc_arg(zone_pack, &args, how)); if (size > MJUMPAGESIZE) return (NULL); m = uma_zalloc_arg(zone_mbuf, &args, how); if (m == NULL) return (NULL); n = uma_zalloc_arg(zone_jumbop, m, how); if (n == NULL) { uma_zfree(zone_mbuf, m); return (NULL); } return (m); } /* * m_getjcl() returns an mbuf with a cluster of the specified size attached. * For size it takes MCLBYTES, MJUMPAGESIZE, MJUM9BYTES, MJUM16BYTES. */ struct mbuf * m_getjcl(int how, short type, int flags, int size) { struct mb_args args; struct mbuf *m, *n; uma_zone_t zone; if (size == MCLBYTES) return m_getcl(how, type, flags); args.flags = flags; args.type = type; m = uma_zalloc_arg(zone_mbuf, &args, how); if (m == NULL) return (NULL); zone = m_getzone(size); n = uma_zalloc_arg(zone, m, how); if (n == NULL) { uma_zfree(zone_mbuf, m); return (NULL); } MBUF_PROBE5(m__getjcl, how, type, flags, size, m); return (m); } /* * Allocate a given length worth of mbufs and/or clusters (whatever fits * best) and return a pointer to the top of the allocated chain. If an * existing mbuf chain is provided, then we will append the new chain * to the existing one and return a pointer to the provided mbuf. */ struct mbuf * m_getm2(struct mbuf *m, int len, int how, short type, int flags) { struct mbuf *mb, *nm = NULL, *mtail = NULL; KASSERT(len >= 0, ("%s: len is < 0", __func__)); /* Validate flags. */ flags &= (M_PKTHDR | M_EOR); /* Packet header mbuf must be first in chain. */ if ((flags & M_PKTHDR) && m != NULL) flags &= ~M_PKTHDR; /* Loop and append maximum sized mbufs to the chain tail. */ while (len > 0) { mb = NULL; if (len > MCLBYTES) { mb = m_getjcl(M_NOWAIT, type, (flags & M_PKTHDR), MJUMPAGESIZE); } if (mb == NULL) { if (len >= MINCLSIZE) mb = m_getcl(how, type, (flags & M_PKTHDR)); else if (flags & M_PKTHDR) mb = m_gethdr(how, type); else mb = m_get(how, type); /* * Fail the whole operation if one mbuf can't be * allocated. */ if (mb == NULL) { m_freem(nm); return (NULL); } } /* Book keeping. */ len -= M_SIZE(mb); if (mtail != NULL) mtail->m_next = mb; else nm = mb; mtail = mb; flags &= ~M_PKTHDR; /* Only valid on the first mbuf. */ } if (flags & M_EOR) mtail->m_flags |= M_EOR; /* Only valid on the last mbuf. */ /* If mbuf was supplied, append new chain to the end of it. */ if (m != NULL) { for (mtail = m; mtail->m_next != NULL; mtail = mtail->m_next) ; mtail->m_next = nm; mtail->m_flags &= ~M_EOR; } else m = nm; return (m); } /*- * Configure a provided mbuf to refer to the provided external storage * buffer and setup a reference count for said buffer. * * Arguments: * mb The existing mbuf to which to attach the provided buffer. * buf The address of the provided external storage buffer. * size The size of the provided buffer. * freef A pointer to a routine that is responsible for freeing the * provided external storage buffer. * args A pointer to an argument structure (of any type) to be passed * to the provided freef routine (may be NULL). * flags Any other flags to be passed to the provided mbuf. * type The type that the external storage buffer should be * labeled with. * * Returns: * Nothing. */ void m_extadd(struct mbuf *mb, char *buf, u_int size, m_ext_free_t freef, void *arg1, void *arg2, int flags, int type) { KASSERT(type != EXT_CLUSTER, ("%s: EXT_CLUSTER not allowed", __func__)); mb->m_flags |= (M_EXT | flags); mb->m_ext.ext_buf = buf; mb->m_data = mb->m_ext.ext_buf; mb->m_ext.ext_size = size; mb->m_ext.ext_free = freef; mb->m_ext.ext_arg1 = arg1; mb->m_ext.ext_arg2 = arg2; mb->m_ext.ext_type = type; if (type != EXT_EXTREF) { mb->m_ext.ext_count = 1; mb->m_ext.ext_flags = EXT_FLAG_EMBREF; } else mb->m_ext.ext_flags = 0; } /* * Free an entire chain of mbufs and associated external buffers, if * applicable. */ void m_freem(struct mbuf *mb) { MBUF_PROBE1(m__freem, mb); while (mb != NULL) mb = m_free(mb); } +/* + * Temporary primitive to allow freeing without going through m_free. + */ +void +m_free_raw(struct mbuf *mb) +{ + + uma_zfree(zone_mbuf, mb); +} + int m_snd_tag_alloc(struct ifnet *ifp, union if_snd_tag_alloc_params *params, struct m_snd_tag **mstp) { if (ifp->if_snd_tag_alloc == NULL) return (EOPNOTSUPP); return (ifp->if_snd_tag_alloc(ifp, params, mstp)); } void m_snd_tag_init(struct m_snd_tag *mst, struct ifnet *ifp, u_int type) { if_ref(ifp); mst->ifp = ifp; refcount_init(&mst->refcount, 1); mst->type = type; counter_u64_add(snd_tag_count, 1); } void m_snd_tag_destroy(struct m_snd_tag *mst) { struct ifnet *ifp; ifp = mst->ifp; ifp->if_snd_tag_free(mst); if_rele(ifp); counter_u64_add(snd_tag_count, -1); } /* * Allocate an mbuf with anonymous external pages. */ struct mbuf * mb_alloc_ext_plus_pages(int len, int how) { struct mbuf *m; vm_page_t pg; int i, npgs; m = mb_alloc_ext_pgs(how, mb_free_mext_pgs); if (m == NULL) return (NULL); m->m_epg_flags |= EPG_FLAG_ANON; npgs = howmany(len, PAGE_SIZE); for (i = 0; i < npgs; i++) { do { pg = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ | VM_ALLOC_NODUMP | VM_ALLOC_WIRED); if (pg == NULL) { if (how == M_NOWAIT) { m->m_epg_npgs = i; m_free(m); return (NULL); } vm_wait(NULL); } } while (pg == NULL); m->m_epg_pa[i] = VM_PAGE_TO_PHYS(pg); } m->m_epg_npgs = npgs; return (m); } /* * Copy the data in the mbuf chain to a chain of mbufs with anonymous external * unmapped pages. * len is the length of data in the input mbuf chain. * mlen is the maximum number of bytes put into each ext_page mbuf. */ struct mbuf * mb_mapped_to_unmapped(struct mbuf *mp, int len, int mlen, int how, struct mbuf **mlast) { struct mbuf *m, *mout; char *pgpos, *mbpos; int i, mblen, mbufsiz, pglen, xfer; if (len == 0) return (NULL); mbufsiz = min(mlen, len); m = mout = mb_alloc_ext_plus_pages(mbufsiz, how); if (m == NULL) return (m); pgpos = (char *)(void *)PHYS_TO_DMAP(m->m_epg_pa[0]); pglen = PAGE_SIZE; mblen = 0; i = 0; do { if (pglen == 0) { if (++i == m->m_epg_npgs) { m->m_epg_last_len = PAGE_SIZE; mbufsiz = min(mlen, len); m->m_next = mb_alloc_ext_plus_pages(mbufsiz, how); m = m->m_next; if (m == NULL) { m_freem(mout); return (m); } i = 0; } pgpos = (char *)(void *)PHYS_TO_DMAP(m->m_epg_pa[i]); pglen = PAGE_SIZE; } while (mblen == 0) { if (mp == NULL) { m_freem(mout); return (NULL); } KASSERT((mp->m_flags & M_EXTPG) == 0, ("mb_copym_ext_pgs: ext_pgs input mbuf")); mbpos = mtod(mp, char *); mblen = mp->m_len; mp = mp->m_next; } xfer = min(mblen, pglen); memcpy(pgpos, mbpos, xfer); pgpos += xfer; mbpos += xfer; pglen -= xfer; mblen -= xfer; len -= xfer; m->m_len += xfer; } while (len > 0); m->m_epg_last_len = PAGE_SIZE - pglen; if (mlast != NULL) *mlast = m; return (mout); } diff --git a/sys/sys/mbuf.h b/sys/sys/mbuf.h index ffc574817249..1dac5fcf32b7 100644 --- a/sys/sys/mbuf.h +++ b/sys/sys/mbuf.h @@ -1,1642 +1,1643 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 1982, 1986, 1988, 1993 * The Regents of the University of California. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)mbuf.h 8.5 (Berkeley) 2/19/95 * $FreeBSD$ */ #ifndef _SYS_MBUF_H_ #define _SYS_MBUF_H_ /* XXX: These includes suck. Sorry! */ #include #ifdef _KERNEL #include #include #include #ifdef WITNESS #include #endif #endif #ifdef _KERNEL #include #define MBUF_PROBE1(probe, arg0) \ SDT_PROBE1(sdt, , , probe, arg0) #define MBUF_PROBE2(probe, arg0, arg1) \ SDT_PROBE2(sdt, , , probe, arg0, arg1) #define MBUF_PROBE3(probe, arg0, arg1, arg2) \ SDT_PROBE3(sdt, , , probe, arg0, arg1, arg2) #define MBUF_PROBE4(probe, arg0, arg1, arg2, arg3) \ SDT_PROBE4(sdt, , , probe, arg0, arg1, arg2, arg3) #define MBUF_PROBE5(probe, arg0, arg1, arg2, arg3, arg4) \ SDT_PROBE5(sdt, , , probe, arg0, arg1, arg2, arg3, arg4) SDT_PROBE_DECLARE(sdt, , , m__init); SDT_PROBE_DECLARE(sdt, , , m__gethdr); SDT_PROBE_DECLARE(sdt, , , m__get); SDT_PROBE_DECLARE(sdt, , , m__getcl); SDT_PROBE_DECLARE(sdt, , , m__getjcl); SDT_PROBE_DECLARE(sdt, , , m__clget); SDT_PROBE_DECLARE(sdt, , , m__cljget); SDT_PROBE_DECLARE(sdt, , , m__cljset); SDT_PROBE_DECLARE(sdt, , , m__free); SDT_PROBE_DECLARE(sdt, , , m__freem); #endif /* _KERNEL */ /* * Mbufs are of a single size, MSIZE (sys/param.h), which includes overhead. * An mbuf may add a single "mbuf cluster" of size MCLBYTES (also in * sys/param.h), which has no additional overhead and is used instead of the * internal data area; this is done when at least MINCLSIZE of data must be * stored. Additionally, it is possible to allocate a separate buffer * externally and attach it to the mbuf in a way similar to that of mbuf * clusters. * * NB: These calculation do not take actual compiler-induced alignment and * padding inside the complete struct mbuf into account. Appropriate * attention is required when changing members of struct mbuf. * * MLEN is data length in a normal mbuf. * MHLEN is data length in an mbuf with pktheader. * MINCLSIZE is a smallest amount of data that should be put into cluster. * * Compile-time assertions in uipc_mbuf.c test these values to ensure that * they are sensible. */ struct mbuf; #define MHSIZE offsetof(struct mbuf, m_dat) #define MPKTHSIZE offsetof(struct mbuf, m_pktdat) #define MLEN ((int)(MSIZE - MHSIZE)) #define MHLEN ((int)(MSIZE - MPKTHSIZE)) #define MINCLSIZE (MHLEN + 1) #define M_NODOM 255 #ifdef _KERNEL /*- * Macro for type conversion: convert mbuf pointer to data pointer of correct * type: * * mtod(m, t) -- Convert mbuf pointer to data pointer of correct type. * mtodo(m, o) -- Same as above but with offset 'o' into data. */ #define mtod(m, t) ((t)((m)->m_data)) #define mtodo(m, o) ((void *)(((m)->m_data) + (o))) /* * Argument structure passed to UMA routines during mbuf and packet * allocations. */ struct mb_args { int flags; /* Flags for mbuf being allocated */ short type; /* Type of mbuf being allocated */ }; #endif /* _KERNEL */ /* * Packet tag structure (see below for details). */ struct m_tag { SLIST_ENTRY(m_tag) m_tag_link; /* List of packet tags */ u_int16_t m_tag_id; /* Tag ID */ u_int16_t m_tag_len; /* Length of data */ u_int32_t m_tag_cookie; /* ABI/Module ID */ void (*m_tag_free)(struct m_tag *); }; /* * Static network interface owned tag. * Allocated through ifp->if_snd_tag_alloc(). */ struct m_snd_tag { struct ifnet *ifp; /* network interface tag belongs to */ volatile u_int refcount; u_int type; /* One of IF_SND_TAG_TYPE_*. */ }; /* * Record/packet header in first mbuf of chain; valid only if M_PKTHDR is set. * Size ILP32: 48 * LP64: 56 * Compile-time assertions in uipc_mbuf.c test these values to ensure that * they are correct. */ struct pkthdr { union { struct m_snd_tag *snd_tag; /* send tag, if any */ struct ifnet *rcvif; /* rcv interface */ }; SLIST_HEAD(packet_tags, m_tag) tags; /* list of packet tags */ int32_t len; /* total packet length */ /* Layer crossing persistent information. */ uint32_t flowid; /* packet's 4-tuple system */ uint32_t csum_flags; /* checksum and offload features */ uint16_t fibnum; /* this packet should use this fib */ uint8_t numa_domain; /* NUMA domain of recvd pkt */ uint8_t rsstype; /* hash type */ union { uint64_t rcv_tstmp; /* timestamp in ns */ struct { uint8_t l2hlen; /* layer 2 hdr len */ uint8_t l3hlen; /* layer 3 hdr len */ uint8_t l4hlen; /* layer 4 hdr len */ uint8_t l5hlen; /* layer 5 hdr len */ uint8_t inner_l2hlen; uint8_t inner_l3hlen; uint8_t inner_l4hlen; uint8_t inner_l5hlen; }; }; union { uint8_t eight[8]; uint16_t sixteen[4]; uint32_t thirtytwo[2]; uint64_t sixtyfour[1]; uintptr_t unintptr[1]; void *ptr; } PH_per; /* Layer specific non-persistent local storage for reassembly, etc. */ union { uint8_t eight[8]; uint16_t sixteen[4]; uint32_t thirtytwo[2]; uint64_t sixtyfour[1]; uintptr_t unintptr[1]; void *ptr; } PH_loc; }; #define ether_vtag PH_per.sixteen[0] #define tcp_tun_port PH_per.sixteen[0] /* outbound */ #define PH_vt PH_per #define vt_nrecs sixteen[0] /* mld and v6-ND */ #define tso_segsz PH_per.sixteen[1] /* inbound after LRO */ #define lro_nsegs tso_segsz /* inbound after LRO */ #define csum_data PH_per.thirtytwo[1] /* inbound from hardware up */ #define lro_tcp_d_len PH_loc.sixteen[0] /* inbound during LRO (no reassembly) */ #define lro_tcp_d_csum PH_loc.sixteen[1] /* inbound during LRO (no reassembly) */ #define lro_tcp_h_off PH_loc.sixteen[2] /* inbound during LRO (no reassembly) */ #define lro_etype PH_loc.sixteen[3] /* inbound during LRO (no reassembly) */ /* Note PH_loc is used during IP reassembly (all 8 bytes as a ptr) */ /* * TLS records for TLS 1.0-1.2 can have the following header lengths: * - 5 (AES-CBC with implicit IV) * - 21 (AES-CBC with explicit IV) * - 13 (AES-GCM with 8 byte explicit IV) */ #define MBUF_PEXT_HDR_LEN 23 /* * TLS records for TLS 1.0-1.2 can have the following maximum trailer * lengths: * - 16 (AES-GCM) * - 36 (AES-CBC with SHA1 and up to 16 bytes of padding) * - 48 (AES-CBC with SHA2-256 and up to 16 bytes of padding) * - 64 (AES-CBC with SHA2-384 and up to 16 bytes of padding) */ #define MBUF_PEXT_TRAIL_LEN 64 #if defined(__LP64__) #define MBUF_PEXT_MAX_PGS (40 / sizeof(vm_paddr_t)) #else #define MBUF_PEXT_MAX_PGS (72 / sizeof(vm_paddr_t)) #endif #define MBUF_PEXT_MAX_BYTES \ (MBUF_PEXT_MAX_PGS * PAGE_SIZE + MBUF_PEXT_HDR_LEN + MBUF_PEXT_TRAIL_LEN) struct ktls_session; struct socket; /* * Description of external storage mapped into mbuf; valid only if M_EXT is * set. * Size ILP32: 28 * LP64: 48 * Compile-time assertions in uipc_mbuf.c test these values to ensure that * they are correct. */ typedef void m_ext_free_t(struct mbuf *); struct m_ext { union { /* * If EXT_FLAG_EMBREF is set, then we use refcount in the * mbuf, the 'ext_count' member. Otherwise, we have a * shadow copy and we use pointer 'ext_cnt'. The original * mbuf is responsible to carry the pointer to free routine * and its arguments. They aren't copied into shadows in * mb_dupcl() to avoid dereferencing next cachelines. */ volatile u_int ext_count; volatile u_int *ext_cnt; }; uint32_t ext_size; /* size of buffer, for ext_free */ uint32_t ext_type:8, /* type of external storage */ ext_flags:24; /* external storage mbuf flags */ union { struct { /* * Regular M_EXT mbuf: * o ext_buf always points to the external buffer. * o ext_free (below) and two optional arguments * ext_arg1 and ext_arg2 store the free context for * the external storage. They are set only in the * refcount carrying mbuf, the one with * EXT_FLAG_EMBREF flag, with exclusion for * EXT_EXTREF type, where the free context is copied * into all mbufs that use same external storage. */ char *ext_buf; /* start of buffer */ #define m_ext_copylen offsetof(struct m_ext, ext_arg2) void *ext_arg2; }; struct { /* * Multi-page M_EXTPG mbuf: * o extpg_pa - page vector. * o extpg_trail and extpg_hdr - TLS trailer and * header. * Uses ext_free and may also use ext_arg1. */ vm_paddr_t extpg_pa[MBUF_PEXT_MAX_PGS]; char extpg_trail[MBUF_PEXT_TRAIL_LEN]; char extpg_hdr[MBUF_PEXT_HDR_LEN]; /* Pretend these 3 fields are part of mbuf itself. */ #define m_epg_pa m_ext.extpg_pa #define m_epg_trail m_ext.extpg_trail #define m_epg_hdr m_ext.extpg_hdr #define m_epg_ext_copylen offsetof(struct m_ext, ext_free) }; }; /* * Free method and optional argument pointer, both * used by M_EXT and M_EXTPG. */ m_ext_free_t *ext_free; void *ext_arg1; }; /* * The core of the mbuf object along with some shortcut defines for practical * purposes. */ struct mbuf { /* * Header present at the beginning of every mbuf. * Size ILP32: 24 * LP64: 32 * Compile-time assertions in uipc_mbuf.c test these values to ensure * that they are correct. */ union { /* next buffer in chain */ struct mbuf *m_next; SLIST_ENTRY(mbuf) m_slist; STAILQ_ENTRY(mbuf) m_stailq; }; union { /* next chain in queue/record */ struct mbuf *m_nextpkt; SLIST_ENTRY(mbuf) m_slistpkt; STAILQ_ENTRY(mbuf) m_stailqpkt; }; caddr_t m_data; /* location of data */ int32_t m_len; /* amount of data in this mbuf */ uint32_t m_type:8, /* type of data in this mbuf */ m_flags:24; /* flags; see below */ #if !defined(__LP64__) uint32_t m_pad; /* pad for 64bit alignment */ #endif /* * A set of optional headers (packet header, external storage header) * and internal data storage. Historically, these arrays were sized * to MHLEN (space left after a packet header) and MLEN (space left * after only a regular mbuf header); they are now variable size in * order to support future work on variable-size mbufs. */ union { struct { union { /* M_PKTHDR set. */ struct pkthdr m_pkthdr; /* M_EXTPG set. * Multi-page M_EXTPG mbuf has its meta data * split between the below anonymous structure * and m_ext. It carries vector of pages, * optional header and trailer char vectors * and pointers to socket/TLS data. */ #define m_epg_startcopy m_epg_npgs #define m_epg_endcopy m_epg_stailq struct { /* Overall count of pages and count of * pages with I/O pending. */ uint8_t m_epg_npgs; uint8_t m_epg_nrdy; /* TLS header and trailer lengths. * The data itself resides in m_ext. */ uint8_t m_epg_hdrlen; uint8_t m_epg_trllen; /* Offset into 1st page and length of * data in the last page. */ uint16_t m_epg_1st_off; uint16_t m_epg_last_len; uint8_t m_epg_flags; #define EPG_FLAG_ANON 0x1 /* Data can be encrypted in place. */ #define EPG_FLAG_2FREE 0x2 /* Scheduled for free. */ uint8_t m_epg_record_type; uint8_t __spare[2]; int m_epg_enc_cnt; struct ktls_session *m_epg_tls; struct socket *m_epg_so; uint64_t m_epg_seqno; STAILQ_ENTRY(mbuf) m_epg_stailq; }; }; union { /* M_EXT or M_EXTPG set. */ struct m_ext m_ext; /* M_PKTHDR set, neither M_EXT nor M_EXTPG. */ char m_pktdat[0]; }; }; char m_dat[0]; /* !M_PKTHDR, !M_EXT */ }; }; #ifdef _KERNEL static inline int m_epg_pagelen(const struct mbuf *m, int pidx, int pgoff) { KASSERT(pgoff == 0 || pidx == 0, ("page %d with non-zero offset %d in %p", pidx, pgoff, m)); if (pidx == m->m_epg_npgs - 1) { return (m->m_epg_last_len); } else { return (PAGE_SIZE - pgoff); } } #ifdef INVARIANTS #define MCHECK(ex, msg) KASSERT((ex), \ ("Multi page mbuf %p with " #msg " at %s:%d", \ m, __FILE__, __LINE__)) /* * NB: This expects a non-empty buffer (npgs > 0 and * last_pg_len > 0). */ #define MBUF_EXT_PGS_ASSERT_SANITY(m) do { \ MCHECK(m->m_epg_npgs > 0, "no valid pages"); \ MCHECK(m->m_epg_npgs <= nitems(m->m_epg_pa), \ "too many pages"); \ MCHECK(m->m_epg_nrdy <= m->m_epg_npgs, \ "too many ready pages"); \ MCHECK(m->m_epg_1st_off < PAGE_SIZE, \ "too large page offset"); \ MCHECK(m->m_epg_last_len > 0, "zero last page length"); \ MCHECK(m->m_epg_last_len <= PAGE_SIZE, \ "too large last page length"); \ if (m->m_epg_npgs == 1) \ MCHECK(m->m_epg_1st_off + \ m->m_epg_last_len <= PAGE_SIZE, \ "single page too large"); \ MCHECK(m->m_epg_hdrlen <= sizeof(m->m_epg_hdr), \ "too large header length"); \ MCHECK(m->m_epg_trllen <= sizeof(m->m_epg_trail), \ "too large header length"); \ } while (0) #else #define MBUF_EXT_PGS_ASSERT_SANITY(m) do {} while (0); #endif #endif /* * mbuf flags of global significance and layer crossing. * Those of only protocol/layer specific significance are to be mapped * to M_PROTO[1-11] and cleared at layer handoff boundaries. * NB: Limited to the lower 24 bits. */ #define M_EXT 0x00000001 /* has associated external storage */ #define M_PKTHDR 0x00000002 /* start of record */ #define M_EOR 0x00000004 /* end of record */ #define M_RDONLY 0x00000008 /* associated data is marked read-only */ #define M_BCAST 0x00000010 /* send/received as link-level broadcast */ #define M_MCAST 0x00000020 /* send/received as link-level multicast */ #define M_PROMISC 0x00000040 /* packet was not for us */ #define M_VLANTAG 0x00000080 /* ether_vtag is valid */ #define M_EXTPG 0x00000100 /* has array of unmapped pages and TLS */ #define M_NOFREE 0x00000200 /* do not free mbuf, embedded in cluster */ #define M_TSTMP 0x00000400 /* rcv_tstmp field is valid */ #define M_TSTMP_HPREC 0x00000800 /* rcv_tstmp is high-prec, typically hw-stamped on port (useful for IEEE 1588 and 802.1AS) */ #define M_TSTMP_LRO 0x00001000 /* Time LRO pushed in pkt is valid in (PH_loc) */ #define M_PROTO1 0x00002000 /* protocol-specific */ #define M_PROTO2 0x00004000 /* protocol-specific */ #define M_PROTO3 0x00008000 /* protocol-specific */ #define M_PROTO4 0x00010000 /* protocol-specific */ #define M_PROTO5 0x00020000 /* protocol-specific */ #define M_PROTO6 0x00040000 /* protocol-specific */ #define M_PROTO7 0x00080000 /* protocol-specific */ #define M_PROTO8 0x00100000 /* protocol-specific */ #define M_PROTO9 0x00200000 /* protocol-specific */ #define M_PROTO10 0x00400000 /* protocol-specific */ #define M_PROTO11 0x00800000 /* protocol-specific */ /* * Flags to purge when crossing layers. */ #define M_PROTOFLAGS \ (M_PROTO1|M_PROTO2|M_PROTO3|M_PROTO4|M_PROTO5|M_PROTO6|M_PROTO7|M_PROTO8|\ M_PROTO9|M_PROTO10|M_PROTO11) /* * Flags preserved when copying m_pkthdr. */ #define M_COPYFLAGS \ (M_PKTHDR|M_EOR|M_RDONLY|M_BCAST|M_MCAST|M_PROMISC|M_VLANTAG|M_TSTMP| \ M_TSTMP_HPREC|M_TSTMP_LRO|M_PROTOFLAGS) /* * Mbuf flag description for use with printf(9) %b identifier. */ #define M_FLAG_BITS \ "\20\1M_EXT\2M_PKTHDR\3M_EOR\4M_RDONLY\5M_BCAST\6M_MCAST" \ "\7M_PROMISC\10M_VLANTAG\11M_EXTPG\12M_NOFREE\13M_TSTMP\14M_TSTMP_HPREC\15M_TSTMP_LRO" #define M_FLAG_PROTOBITS \ "\16M_PROTO1\17M_PROTO2\20M_PROTO3\21M_PROTO4" \ "\22M_PROTO5\23M_PROTO6\24M_PROTO7\25M_PROTO8\26M_PROTO9" \ "\27M_PROTO10\28M_PROTO11" #define M_FLAG_PRINTF (M_FLAG_BITS M_FLAG_PROTOBITS) /* * Network interface cards are able to hash protocol fields (such as IPv4 * addresses and TCP port numbers) classify packets into flows. These flows * can then be used to maintain ordering while delivering packets to the OS * via parallel input queues, as well as to provide a stateless affinity * model. NIC drivers can pass up the hash via m->m_pkthdr.flowid, and set * m_flag fields to indicate how the hash should be interpreted by the * network stack. * * Most NICs support RSS, which provides ordering and explicit affinity, and * use the hash m_flag bits to indicate what header fields were covered by * the hash. M_HASHTYPE_OPAQUE and M_HASHTYPE_OPAQUE_HASH can be set by non- * RSS cards or configurations that provide an opaque flow identifier, allowing * for ordering and distribution without explicit affinity. Additionally, * M_HASHTYPE_OPAQUE_HASH indicates that the flow identifier has hash * properties. * * The meaning of the IPV6_EX suffix: * "o Home address from the home address option in the IPv6 destination * options header. If the extension header is not present, use the Source * IPv6 Address. * o IPv6 address that is contained in the Routing-Header-Type-2 from the * associated extension header. If the extension header is not present, * use the Destination IPv6 Address." * Quoted from: * https://docs.microsoft.com/en-us/windows-hardware/drivers/network/rss-hashing-types#ndishashipv6ex */ #define M_HASHTYPE_HASHPROP 0x80 /* has hash properties */ #define M_HASHTYPE_INNER 0x40 /* calculated from inner headers */ #define M_HASHTYPE_HASH(t) (M_HASHTYPE_HASHPROP | (t)) /* Microsoft RSS standard hash types */ #define M_HASHTYPE_NONE 0 #define M_HASHTYPE_RSS_IPV4 M_HASHTYPE_HASH(1) /* IPv4 2-tuple */ #define M_HASHTYPE_RSS_TCP_IPV4 M_HASHTYPE_HASH(2) /* TCPv4 4-tuple */ #define M_HASHTYPE_RSS_IPV6 M_HASHTYPE_HASH(3) /* IPv6 2-tuple */ #define M_HASHTYPE_RSS_TCP_IPV6 M_HASHTYPE_HASH(4) /* TCPv6 4-tuple */ #define M_HASHTYPE_RSS_IPV6_EX M_HASHTYPE_HASH(5) /* IPv6 2-tuple + * ext hdrs */ #define M_HASHTYPE_RSS_TCP_IPV6_EX M_HASHTYPE_HASH(6) /* TCPv6 4-tuple + * ext hdrs */ #define M_HASHTYPE_RSS_UDP_IPV4 M_HASHTYPE_HASH(7) /* IPv4 UDP 4-tuple*/ #define M_HASHTYPE_RSS_UDP_IPV6 M_HASHTYPE_HASH(9) /* IPv6 UDP 4-tuple*/ #define M_HASHTYPE_RSS_UDP_IPV6_EX M_HASHTYPE_HASH(10)/* IPv6 UDP 4-tuple + * ext hdrs */ #define M_HASHTYPE_OPAQUE 0x3f /* ordering, not affinity */ #define M_HASHTYPE_OPAQUE_HASH M_HASHTYPE_HASH(M_HASHTYPE_OPAQUE) /* ordering+hash, not affinity*/ #define M_HASHTYPE_CLEAR(m) ((m)->m_pkthdr.rsstype = 0) #define M_HASHTYPE_GET(m) ((m)->m_pkthdr.rsstype & ~M_HASHTYPE_INNER) #define M_HASHTYPE_SET(m, v) ((m)->m_pkthdr.rsstype = (v)) #define M_HASHTYPE_TEST(m, v) (M_HASHTYPE_GET(m) == (v)) #define M_HASHTYPE_ISHASH(m) \ (((m)->m_pkthdr.rsstype & M_HASHTYPE_HASHPROP) != 0) #define M_HASHTYPE_SETINNER(m) do { \ (m)->m_pkthdr.rsstype |= M_HASHTYPE_INNER; \ } while (0) /* * External mbuf storage buffer types. */ #define EXT_CLUSTER 1 /* mbuf cluster */ #define EXT_SFBUF 2 /* sendfile(2)'s sf_buf */ #define EXT_JUMBOP 3 /* jumbo cluster page sized */ #define EXT_JUMBO9 4 /* jumbo cluster 9216 bytes */ #define EXT_JUMBO16 5 /* jumbo cluster 16184 bytes */ #define EXT_PACKET 6 /* mbuf+cluster from packet zone */ #define EXT_MBUF 7 /* external mbuf reference */ #define EXT_RXRING 8 /* data in NIC receive ring */ #define EXT_VENDOR1 224 /* for vendor-internal use */ #define EXT_VENDOR2 225 /* for vendor-internal use */ #define EXT_VENDOR3 226 /* for vendor-internal use */ #define EXT_VENDOR4 227 /* for vendor-internal use */ #define EXT_EXP1 244 /* for experimental use */ #define EXT_EXP2 245 /* for experimental use */ #define EXT_EXP3 246 /* for experimental use */ #define EXT_EXP4 247 /* for experimental use */ #define EXT_NET_DRV 252 /* custom ext_buf provided by net driver(s) */ #define EXT_MOD_TYPE 253 /* custom module's ext_buf type */ #define EXT_DISPOSABLE 254 /* can throw this buffer away w/page flipping */ #define EXT_EXTREF 255 /* has externally maintained ext_cnt ptr */ /* * Flags for external mbuf buffer types. * NB: limited to the lower 24 bits. */ #define EXT_FLAG_EMBREF 0x000001 /* embedded ext_count */ #define EXT_FLAG_EXTREF 0x000002 /* external ext_cnt, notyet */ #define EXT_FLAG_NOFREE 0x000010 /* don't free mbuf to pool, notyet */ #define EXT_FLAG_VENDOR1 0x010000 /* These flags are vendor */ #define EXT_FLAG_VENDOR2 0x020000 /* or submodule specific, */ #define EXT_FLAG_VENDOR3 0x040000 /* not used by mbuf code. */ #define EXT_FLAG_VENDOR4 0x080000 /* Set/read by submodule. */ #define EXT_FLAG_EXP1 0x100000 /* for experimental use */ #define EXT_FLAG_EXP2 0x200000 /* for experimental use */ #define EXT_FLAG_EXP3 0x400000 /* for experimental use */ #define EXT_FLAG_EXP4 0x800000 /* for experimental use */ /* * EXT flag description for use with printf(9) %b identifier. */ #define EXT_FLAG_BITS \ "\20\1EXT_FLAG_EMBREF\2EXT_FLAG_EXTREF\5EXT_FLAG_NOFREE" \ "\21EXT_FLAG_VENDOR1\22EXT_FLAG_VENDOR2\23EXT_FLAG_VENDOR3" \ "\24EXT_FLAG_VENDOR4\25EXT_FLAG_EXP1\26EXT_FLAG_EXP2\27EXT_FLAG_EXP3" \ "\30EXT_FLAG_EXP4" /* * Flags indicating checksum, segmentation and other offload work to be * done, or already done, by hardware or lower layers. It is split into * separate inbound and outbound flags. * * Outbound flags that are set by upper protocol layers requesting lower * layers, or ideally the hardware, to perform these offloading tasks. * For outbound packets this field and its flags can be directly tested * against ifnet if_hwassist. Note that the outbound and the inbound flags do * not collide right now but they could be allowed to (as long as the flags are * scrubbed appropriately when the direction of an mbuf changes). CSUM_BITS * would also have to split into CSUM_BITS_TX and CSUM_BITS_RX. * * CSUM_INNER_ is the same as CSUM_ but it applies to the inner frame. * The CSUM_ENCAP_ bits identify the outer encapsulation. */ #define CSUM_IP 0x00000001 /* IP header checksum offload */ #define CSUM_IP_UDP 0x00000002 /* UDP checksum offload */ #define CSUM_IP_TCP 0x00000004 /* TCP checksum offload */ #define CSUM_IP_SCTP 0x00000008 /* SCTP checksum offload */ #define CSUM_IP_TSO 0x00000010 /* TCP segmentation offload */ #define CSUM_IP_ISCSI 0x00000020 /* iSCSI checksum offload */ #define CSUM_INNER_IP6_UDP 0x00000040 #define CSUM_INNER_IP6_TCP 0x00000080 #define CSUM_INNER_IP6_TSO 0x00000100 #define CSUM_IP6_UDP 0x00000200 /* UDP checksum offload */ #define CSUM_IP6_TCP 0x00000400 /* TCP checksum offload */ #define CSUM_IP6_SCTP 0x00000800 /* SCTP checksum offload */ #define CSUM_IP6_TSO 0x00001000 /* TCP segmentation offload */ #define CSUM_IP6_ISCSI 0x00002000 /* iSCSI checksum offload */ #define CSUM_INNER_IP 0x00004000 #define CSUM_INNER_IP_UDP 0x00008000 #define CSUM_INNER_IP_TCP 0x00010000 #define CSUM_INNER_IP_TSO 0x00020000 #define CSUM_ENCAP_VXLAN 0x00040000 /* VXLAN outer encapsulation */ #define CSUM_ENCAP_RSVD1 0x00080000 /* Inbound checksum support where the checksum was verified by hardware. */ #define CSUM_INNER_L3_CALC 0x00100000 #define CSUM_INNER_L3_VALID 0x00200000 #define CSUM_INNER_L4_CALC 0x00400000 #define CSUM_INNER_L4_VALID 0x00800000 #define CSUM_L3_CALC 0x01000000 /* calculated layer 3 csum */ #define CSUM_L3_VALID 0x02000000 /* checksum is correct */ #define CSUM_L4_CALC 0x04000000 /* calculated layer 4 csum */ #define CSUM_L4_VALID 0x08000000 /* checksum is correct */ #define CSUM_L5_CALC 0x10000000 /* calculated layer 5 csum */ #define CSUM_L5_VALID 0x20000000 /* checksum is correct */ #define CSUM_COALESCED 0x40000000 /* contains merged segments */ #define CSUM_SND_TAG 0x80000000 /* Packet header has send tag */ #define CSUM_FLAGS_TX (CSUM_IP | CSUM_IP_UDP | CSUM_IP_TCP | CSUM_IP_SCTP | \ CSUM_IP_TSO | CSUM_IP_ISCSI | CSUM_INNER_IP6_UDP | CSUM_INNER_IP6_TCP | \ CSUM_INNER_IP6_TSO | CSUM_IP6_UDP | CSUM_IP6_TCP | CSUM_IP6_SCTP | \ CSUM_IP6_TSO | CSUM_IP6_ISCSI | CSUM_INNER_IP | CSUM_INNER_IP_UDP | \ CSUM_INNER_IP_TCP | CSUM_INNER_IP_TSO | CSUM_ENCAP_VXLAN | \ CSUM_ENCAP_RSVD1 | CSUM_SND_TAG) #define CSUM_FLAGS_RX (CSUM_INNER_L3_CALC | CSUM_INNER_L3_VALID | \ CSUM_INNER_L4_CALC | CSUM_INNER_L4_VALID | CSUM_L3_CALC | CSUM_L3_VALID | \ CSUM_L4_CALC | CSUM_L4_VALID | CSUM_L5_CALC | CSUM_L5_VALID | \ CSUM_COALESCED) /* * CSUM flag description for use with printf(9) %b identifier. */ #define CSUM_BITS \ "\20\1CSUM_IP\2CSUM_IP_UDP\3CSUM_IP_TCP\4CSUM_IP_SCTP\5CSUM_IP_TSO" \ "\6CSUM_IP_ISCSI\7CSUM_INNER_IP6_UDP\10CSUM_INNER_IP6_TCP" \ "\11CSUM_INNER_IP6_TSO\12CSUM_IP6_UDP\13CSUM_IP6_TCP\14CSUM_IP6_SCTP" \ "\15CSUM_IP6_TSO\16CSUM_IP6_ISCSI\17CSUM_INNER_IP\20CSUM_INNER_IP_UDP" \ "\21CSUM_INNER_IP_TCP\22CSUM_INNER_IP_TSO\23CSUM_ENCAP_VXLAN" \ "\24CSUM_ENCAP_RSVD1\25CSUM_INNER_L3_CALC\26CSUM_INNER_L3_VALID" \ "\27CSUM_INNER_L4_CALC\30CSUM_INNER_L4_VALID\31CSUM_L3_CALC" \ "\32CSUM_L3_VALID\33CSUM_L4_CALC\34CSUM_L4_VALID\35CSUM_L5_CALC" \ "\36CSUM_L5_VALID\37CSUM_COALESCED\40CSUM_SND_TAG" /* CSUM flags compatibility mappings. */ #define CSUM_IP_CHECKED CSUM_L3_CALC #define CSUM_IP_VALID CSUM_L3_VALID #define CSUM_DATA_VALID CSUM_L4_VALID #define CSUM_PSEUDO_HDR CSUM_L4_CALC #define CSUM_SCTP_VALID CSUM_L4_VALID #define CSUM_DELAY_DATA (CSUM_TCP|CSUM_UDP) #define CSUM_DELAY_IP CSUM_IP /* Only v4, no v6 IP hdr csum */ #define CSUM_DELAY_DATA_IPV6 (CSUM_TCP_IPV6|CSUM_UDP_IPV6) #define CSUM_DATA_VALID_IPV6 CSUM_DATA_VALID #define CSUM_TCP CSUM_IP_TCP #define CSUM_UDP CSUM_IP_UDP #define CSUM_SCTP CSUM_IP_SCTP #define CSUM_TSO (CSUM_IP_TSO|CSUM_IP6_TSO) #define CSUM_INNER_TSO (CSUM_INNER_IP_TSO|CSUM_INNER_IP6_TSO) #define CSUM_UDP_IPV6 CSUM_IP6_UDP #define CSUM_TCP_IPV6 CSUM_IP6_TCP #define CSUM_SCTP_IPV6 CSUM_IP6_SCTP /* * mbuf types describing the content of the mbuf (including external storage). */ #define MT_NOTMBUF 0 /* USED INTERNALLY ONLY! Object is not mbuf */ #define MT_DATA 1 /* dynamic (data) allocation */ #define MT_HEADER MT_DATA /* packet header, use M_PKTHDR instead */ #define MT_VENDOR1 4 /* for vendor-internal use */ #define MT_VENDOR2 5 /* for vendor-internal use */ #define MT_VENDOR3 6 /* for vendor-internal use */ #define MT_VENDOR4 7 /* for vendor-internal use */ #define MT_SONAME 8 /* socket name */ #define MT_EXP1 9 /* for experimental use */ #define MT_EXP2 10 /* for experimental use */ #define MT_EXP3 11 /* for experimental use */ #define MT_EXP4 12 /* for experimental use */ #define MT_CONTROL 14 /* extra-data protocol message */ #define MT_EXTCONTROL 15 /* control message with externalized contents */ #define MT_OOBDATA 16 /* expedited data */ #define MT_NOINIT 255 /* Not a type but a flag to allocate a non-initialized mbuf */ /* * String names of mbuf-related UMA(9) and malloc(9) types. Exposed to * !_KERNEL so that monitoring tools can look up the zones with * libmemstat(3). */ #define MBUF_MEM_NAME "mbuf" #define MBUF_CLUSTER_MEM_NAME "mbuf_cluster" #define MBUF_PACKET_MEM_NAME "mbuf_packet" #define MBUF_JUMBOP_MEM_NAME "mbuf_jumbo_page" #define MBUF_JUMBO9_MEM_NAME "mbuf_jumbo_9k" #define MBUF_JUMBO16_MEM_NAME "mbuf_jumbo_16k" #define MBUF_TAG_MEM_NAME "mbuf_tag" #define MBUF_EXTREFCNT_MEM_NAME "mbuf_ext_refcnt" #define MBUF_EXTPGS_MEM_NAME "mbuf_extpgs" #ifdef _KERNEL union if_snd_tag_alloc_params; #ifdef WITNESS #define MBUF_CHECKSLEEP(how) do { \ if (how == M_WAITOK) \ WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, \ "Sleeping in \"%s\"", __func__); \ } while (0) #else #define MBUF_CHECKSLEEP(how) #endif /* * Network buffer allocation API * * The rest of it is defined in kern/kern_mbuf.c */ extern uma_zone_t zone_mbuf; extern uma_zone_t zone_clust; extern uma_zone_t zone_pack; extern uma_zone_t zone_jumbop; extern uma_zone_t zone_jumbo9; extern uma_zone_t zone_jumbo16; extern uma_zone_t zone_extpgs; void mb_dupcl(struct mbuf *, struct mbuf *); void mb_free_ext(struct mbuf *); void mb_free_extpg(struct mbuf *); void mb_free_mext_pgs(struct mbuf *); struct mbuf *mb_alloc_ext_pgs(int, m_ext_free_t); struct mbuf *mb_alloc_ext_plus_pages(int, int); struct mbuf *mb_mapped_to_unmapped(struct mbuf *, int, int, int, struct mbuf **); int mb_unmapped_compress(struct mbuf *m); struct mbuf *mb_unmapped_to_ext(struct mbuf *m); void mb_free_notready(struct mbuf *m, int count); void m_adj(struct mbuf *, int); void m_adj_decap(struct mbuf *, int); int m_apply(struct mbuf *, int, int, int (*)(void *, void *, u_int), void *); int m_append(struct mbuf *, int, c_caddr_t); void m_cat(struct mbuf *, struct mbuf *); void m_catpkt(struct mbuf *, struct mbuf *); int m_clget(struct mbuf *m, int how); void *m_cljget(struct mbuf *m, int how, int size); struct mbuf *m_collapse(struct mbuf *, int, int); void m_copyback(struct mbuf *, int, int, c_caddr_t); void m_copydata(const struct mbuf *, int, int, caddr_t); struct mbuf *m_copym(struct mbuf *, int, int, int); struct mbuf *m_copypacket(struct mbuf *, int); void m_copy_pkthdr(struct mbuf *, struct mbuf *); struct mbuf *m_copyup(struct mbuf *, int, int); struct mbuf *m_defrag(struct mbuf *, int); void m_demote_pkthdr(struct mbuf *); void m_demote(struct mbuf *, int, int); struct mbuf *m_devget(char *, int, int, struct ifnet *, void (*)(char *, caddr_t, u_int)); void m_dispose_extcontrolm(struct mbuf *m); struct mbuf *m_dup(const struct mbuf *, int); int m_dup_pkthdr(struct mbuf *, const struct mbuf *, int); void m_extadd(struct mbuf *, char *, u_int, m_ext_free_t, void *, void *, int, int); u_int m_fixhdr(struct mbuf *); struct mbuf *m_fragment(struct mbuf *, int, int); void m_freem(struct mbuf *); +void m_free_raw(struct mbuf *); struct mbuf *m_get2(int, int, short, int); struct mbuf *m_getjcl(int, short, int, int); struct mbuf *m_getm2(struct mbuf *, int, int, short, int); struct mbuf *m_getptr(struct mbuf *, int, int *); u_int m_length(struct mbuf *, struct mbuf **); int m_mbuftouio(struct uio *, const struct mbuf *, int); void m_move_pkthdr(struct mbuf *, struct mbuf *); int m_pkthdr_init(struct mbuf *, int); struct mbuf *m_prepend(struct mbuf *, int, int); void m_print(const struct mbuf *, int); struct mbuf *m_pulldown(struct mbuf *, int, int, int *); struct mbuf *m_pullup(struct mbuf *, int); int m_sanity(struct mbuf *, int); struct mbuf *m_split(struct mbuf *, int, int); struct mbuf *m_uiotombuf(struct uio *, int, int, int, int); int m_unmapped_uiomove(const struct mbuf *, int, struct uio *, int); struct mbuf *m_unshare(struct mbuf *, int); int m_snd_tag_alloc(struct ifnet *, union if_snd_tag_alloc_params *, struct m_snd_tag **); void m_snd_tag_init(struct m_snd_tag *, struct ifnet *, u_int); void m_snd_tag_destroy(struct m_snd_tag *); static __inline int m_gettype(int size) { int type; switch (size) { case MSIZE: type = EXT_MBUF; break; case MCLBYTES: type = EXT_CLUSTER; break; #if MJUMPAGESIZE != MCLBYTES case MJUMPAGESIZE: type = EXT_JUMBOP; break; #endif case MJUM9BYTES: type = EXT_JUMBO9; break; case MJUM16BYTES: type = EXT_JUMBO16; break; default: panic("%s: invalid cluster size %d", __func__, size); } return (type); } /* * Associated an external reference counted buffer with an mbuf. */ static __inline void m_extaddref(struct mbuf *m, char *buf, u_int size, u_int *ref_cnt, m_ext_free_t freef, void *arg1, void *arg2) { KASSERT(ref_cnt != NULL, ("%s: ref_cnt not provided", __func__)); atomic_add_int(ref_cnt, 1); m->m_flags |= M_EXT; m->m_ext.ext_buf = buf; m->m_ext.ext_cnt = ref_cnt; m->m_data = m->m_ext.ext_buf; m->m_ext.ext_size = size; m->m_ext.ext_free = freef; m->m_ext.ext_arg1 = arg1; m->m_ext.ext_arg2 = arg2; m->m_ext.ext_type = EXT_EXTREF; m->m_ext.ext_flags = 0; } static __inline uma_zone_t m_getzone(int size) { uma_zone_t zone; switch (size) { case MCLBYTES: zone = zone_clust; break; #if MJUMPAGESIZE != MCLBYTES case MJUMPAGESIZE: zone = zone_jumbop; break; #endif case MJUM9BYTES: zone = zone_jumbo9; break; case MJUM16BYTES: zone = zone_jumbo16; break; default: panic("%s: invalid cluster size %d", __func__, size); } return (zone); } /* * Initialize an mbuf with linear storage. * * Inline because the consumer text overhead will be roughly the same to * initialize or call a function with this many parameters and M_PKTHDR * should go away with constant propagation for !MGETHDR. */ static __inline int m_init(struct mbuf *m, int how, short type, int flags) { int error; m->m_next = NULL; m->m_nextpkt = NULL; m->m_data = m->m_dat; m->m_len = 0; m->m_flags = flags; m->m_type = type; if (flags & M_PKTHDR) error = m_pkthdr_init(m, how); else error = 0; MBUF_PROBE5(m__init, m, how, type, flags, error); return (error); } static __inline struct mbuf * m_get(int how, short type) { struct mbuf *m; struct mb_args args; args.flags = 0; args.type = type; m = uma_zalloc_arg(zone_mbuf, &args, how); MBUF_PROBE3(m__get, how, type, m); return (m); } static __inline struct mbuf * m_gethdr(int how, short type) { struct mbuf *m; struct mb_args args; args.flags = M_PKTHDR; args.type = type; m = uma_zalloc_arg(zone_mbuf, &args, how); MBUF_PROBE3(m__gethdr, how, type, m); return (m); } static __inline struct mbuf * m_getcl(int how, short type, int flags) { struct mbuf *m; struct mb_args args; args.flags = flags; args.type = type; m = uma_zalloc_arg(zone_pack, &args, how); MBUF_PROBE4(m__getcl, how, type, flags, m); return (m); } /* * XXX: m_cljset() is a dangerous API. One must attach only a new, * unreferenced cluster to an mbuf(9). It is not possible to assert * that, so care can be taken only by users of the API. */ static __inline void m_cljset(struct mbuf *m, void *cl, int type) { int size; switch (type) { case EXT_CLUSTER: size = MCLBYTES; break; #if MJUMPAGESIZE != MCLBYTES case EXT_JUMBOP: size = MJUMPAGESIZE; break; #endif case EXT_JUMBO9: size = MJUM9BYTES; break; case EXT_JUMBO16: size = MJUM16BYTES; break; default: panic("%s: unknown cluster type %d", __func__, type); break; } m->m_data = m->m_ext.ext_buf = cl; m->m_ext.ext_free = m->m_ext.ext_arg1 = m->m_ext.ext_arg2 = NULL; m->m_ext.ext_size = size; m->m_ext.ext_type = type; m->m_ext.ext_flags = EXT_FLAG_EMBREF; m->m_ext.ext_count = 1; m->m_flags |= M_EXT; MBUF_PROBE3(m__cljset, m, cl, type); } static __inline void m_chtype(struct mbuf *m, short new_type) { m->m_type = new_type; } static __inline void m_clrprotoflags(struct mbuf *m) { while (m) { m->m_flags &= ~M_PROTOFLAGS; m = m->m_next; } } static __inline struct mbuf * m_last(struct mbuf *m) { while (m->m_next) m = m->m_next; return (m); } static inline u_int m_extrefcnt(struct mbuf *m) { KASSERT(m->m_flags & M_EXT, ("%s: M_EXT missing", __func__)); return ((m->m_ext.ext_flags & EXT_FLAG_EMBREF) ? m->m_ext.ext_count : *m->m_ext.ext_cnt); } /* * mbuf, cluster, and external object allocation macros (for compatibility * purposes). */ #define M_MOVE_PKTHDR(to, from) m_move_pkthdr((to), (from)) #define MGET(m, how, type) ((m) = m_get((how), (type))) #define MGETHDR(m, how, type) ((m) = m_gethdr((how), (type))) #define MCLGET(m, how) m_clget((m), (how)) #define MEXTADD(m, buf, size, free, arg1, arg2, flags, type) \ m_extadd((m), (char *)(buf), (size), (free), (arg1), (arg2), \ (flags), (type)) #define m_getm(m, len, how, type) \ m_getm2((m), (len), (how), (type), M_PKTHDR) /* * Evaluate TRUE if it's safe to write to the mbuf m's data region (this can * be both the local data payload, or an external buffer area, depending on * whether M_EXT is set). */ #define M_WRITABLE(m) (((m)->m_flags & (M_RDONLY | M_EXTPG)) == 0 && \ (!(((m)->m_flags & M_EXT)) || \ (m_extrefcnt(m) == 1))) /* Check if the supplied mbuf has a packet header, or else panic. */ #define M_ASSERTPKTHDR(m) \ KASSERT((m) != NULL && (m)->m_flags & M_PKTHDR, \ ("%s: no mbuf packet header!", __func__)) /* Check if mbuf is multipage. */ #define M_ASSERTEXTPG(m) \ KASSERT(((m)->m_flags & (M_EXTPG|M_PKTHDR)) == M_EXTPG, \ ("%s: m %p is not multipage!", __func__, m)) /* * Ensure that the supplied mbuf is a valid, non-free mbuf. * * XXX: Broken at the moment. Need some UMA magic to make it work again. */ #define M_ASSERTVALID(m) \ KASSERT((((struct mbuf *)m)->m_flags & 0) == 0, \ ("%s: attempted use of a free mbuf!", __func__)) /* Check whether any mbuf in the chain is unmapped. */ #ifdef INVARIANTS #define M_ASSERTMAPPED(m) do { \ for (struct mbuf *__m = (m); __m != NULL; __m = __m->m_next) \ KASSERT((__m->m_flags & M_EXTPG) == 0, \ ("%s: chain %p contains an unmapped mbuf", __func__, (m)));\ } while (0) #else #define M_ASSERTMAPPED(m) #endif /* * Return the address of the start of the buffer associated with an mbuf, * handling external storage, packet-header mbufs, and regular data mbufs. */ #define M_START(m) \ (((m)->m_flags & M_EXTPG) ? NULL : \ ((m)->m_flags & M_EXT) ? (m)->m_ext.ext_buf : \ ((m)->m_flags & M_PKTHDR) ? &(m)->m_pktdat[0] : \ &(m)->m_dat[0]) /* * Return the size of the buffer associated with an mbuf, handling external * storage, packet-header mbufs, and regular data mbufs. */ #define M_SIZE(m) \ (((m)->m_flags & M_EXT) ? (m)->m_ext.ext_size : \ ((m)->m_flags & M_PKTHDR) ? MHLEN : \ MLEN) /* * Set the m_data pointer of a newly allocated mbuf to place an object of the * specified size at the end of the mbuf, longword aligned. * * NB: Historically, we had M_ALIGN(), MH_ALIGN(), and MEXT_ALIGN() as * separate macros, each asserting that it was called at the proper moment. * This required callers to themselves test the storage type and call the * right one. Rather than require callers to be aware of those layout * decisions, we centralize here. */ static __inline void m_align(struct mbuf *m, int len) { #ifdef INVARIANTS const char *msg = "%s: not a virgin mbuf"; #endif int adjust; KASSERT(m->m_data == M_START(m), (msg, __func__)); adjust = M_SIZE(m) - len; m->m_data += adjust &~ (sizeof(long)-1); } #define M_ALIGN(m, len) m_align(m, len) #define MH_ALIGN(m, len) m_align(m, len) #define MEXT_ALIGN(m, len) m_align(m, len) /* * Compute the amount of space available before the current start of data in * an mbuf. * * The M_WRITABLE() is a temporary, conservative safety measure: the burden * of checking writability of the mbuf data area rests solely with the caller. * * NB: In previous versions, M_LEADINGSPACE() would only check M_WRITABLE() * for mbufs with external storage. We now allow mbuf-embedded data to be * read-only as well. */ #define M_LEADINGSPACE(m) \ (M_WRITABLE(m) ? ((m)->m_data - M_START(m)) : 0) /* * Compute the amount of space available after the end of data in an mbuf. * * The M_WRITABLE() is a temporary, conservative safety measure: the burden * of checking writability of the mbuf data area rests solely with the caller. * * NB: In previous versions, M_TRAILINGSPACE() would only check M_WRITABLE() * for mbufs with external storage. We now allow mbuf-embedded data to be * read-only as well. */ #define M_TRAILINGSPACE(m) \ (M_WRITABLE(m) ? \ ((M_START(m) + M_SIZE(m)) - ((m)->m_data + (m)->m_len)) : 0) /* * Arrange to prepend space of size plen to mbuf m. If a new mbuf must be * allocated, how specifies whether to wait. If the allocation fails, the * original mbuf chain is freed and m is set to NULL. */ #define M_PREPEND(m, plen, how) do { \ struct mbuf **_mmp = &(m); \ struct mbuf *_mm = *_mmp; \ int _mplen = (plen); \ int __mhow = (how); \ \ MBUF_CHECKSLEEP(how); \ if (M_LEADINGSPACE(_mm) >= _mplen) { \ _mm->m_data -= _mplen; \ _mm->m_len += _mplen; \ } else \ _mm = m_prepend(_mm, _mplen, __mhow); \ if (_mm != NULL && _mm->m_flags & M_PKTHDR) \ _mm->m_pkthdr.len += _mplen; \ *_mmp = _mm; \ } while (0) /* * Change mbuf to new type. This is a relatively expensive operation and * should be avoided. */ #define MCHTYPE(m, t) m_chtype((m), (t)) /* Return the rcvif of a packet header. */ static __inline struct ifnet * m_rcvif(struct mbuf *m) { M_ASSERTPKTHDR(m); if (m->m_pkthdr.csum_flags & CSUM_SND_TAG) return (NULL); return (m->m_pkthdr.rcvif); } /* Length to m_copy to copy all. */ #define M_COPYALL 1000000000 extern int max_datalen; /* MHLEN - max_hdr */ extern int max_hdr; /* Largest link + protocol header */ extern int max_linkhdr; /* Largest link-level header */ extern int max_protohdr; /* Largest protocol header */ extern int nmbclusters; /* Maximum number of clusters */ extern bool mb_use_ext_pgs; /* Use ext_pgs for sendfile */ /*- * Network packets may have annotations attached by affixing a list of * "packet tags" to the pkthdr structure. Packet tags are dynamically * allocated semi-opaque data structures that have a fixed header * (struct m_tag) that specifies the size of the memory block and a * pair that identifies it. The cookie is a 32-bit unique * unsigned value used to identify a module or ABI. By convention this value * is chosen as the date+time that the module is created, expressed as the * number of seconds since the epoch (e.g., using date -u +'%s'). The type * value is an ABI/module-specific value that identifies a particular * annotation and is private to the module. For compatibility with systems * like OpenBSD that define packet tags w/o an ABI/module cookie, the value * PACKET_ABI_COMPAT is used to implement m_tag_get and m_tag_find * compatibility shim functions and several tag types are defined below. * Users that do not require compatibility should use a private cookie value * so that packet tag-related definitions can be maintained privately. * * Note that the packet tag returned by m_tag_alloc has the default memory * alignment implemented by malloc. To reference private data one can use a * construct like: * * struct m_tag *mtag = m_tag_alloc(...); * struct foo *p = (struct foo *)(mtag+1); * * if the alignment of struct m_tag is sufficient for referencing members of * struct foo. Otherwise it is necessary to embed struct m_tag within the * private data structure to insure proper alignment; e.g., * * struct foo { * struct m_tag tag; * ... * }; * struct foo *p = (struct foo *) m_tag_alloc(...); * struct m_tag *mtag = &p->tag; */ /* * Persistent tags stay with an mbuf until the mbuf is reclaimed. Otherwise * tags are expected to ``vanish'' when they pass through a network * interface. For most interfaces this happens normally as the tags are * reclaimed when the mbuf is free'd. However in some special cases * reclaiming must be done manually. An example is packets that pass through * the loopback interface. Also, one must be careful to do this when * ``turning around'' packets (e.g., icmp_reflect). * * To mark a tag persistent bit-or this flag in when defining the tag id. * The tag will then be treated as described above. */ #define MTAG_PERSISTENT 0x800 #define PACKET_TAG_NONE 0 /* Nadda */ /* Packet tags for use with PACKET_ABI_COMPAT. */ #define PACKET_TAG_IPSEC_IN_DONE 1 /* IPsec applied, in */ #define PACKET_TAG_IPSEC_OUT_DONE 2 /* IPsec applied, out */ #define PACKET_TAG_IPSEC_IN_CRYPTO_DONE 3 /* NIC IPsec crypto done */ #define PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED 4 /* NIC IPsec crypto req'ed */ #define PACKET_TAG_IPSEC_IN_COULD_DO_CRYPTO 5 /* NIC notifies IPsec */ #define PACKET_TAG_IPSEC_PENDING_TDB 6 /* Reminder to do IPsec */ #define PACKET_TAG_BRIDGE 7 /* Bridge processing done */ #define PACKET_TAG_GIF 8 /* GIF processing done */ #define PACKET_TAG_GRE 9 /* GRE processing done */ #define PACKET_TAG_IN_PACKET_CHECKSUM 10 /* NIC checksumming done */ #define PACKET_TAG_ENCAP 11 /* Encap. processing */ #define PACKET_TAG_IPSEC_SOCKET 12 /* IPSEC socket ref */ #define PACKET_TAG_IPSEC_HISTORY 13 /* IPSEC history */ #define PACKET_TAG_IPV6_INPUT 14 /* IPV6 input processing */ #define PACKET_TAG_DUMMYNET 15 /* dummynet info */ #define PACKET_TAG_DIVERT 17 /* divert info */ #define PACKET_TAG_IPFORWARD 18 /* ipforward info */ #define PACKET_TAG_MACLABEL (19 | MTAG_PERSISTENT) /* MAC label */ #define PACKET_TAG_PF (21 | MTAG_PERSISTENT) /* PF/ALTQ information */ #define PACKET_TAG_RTSOCKFAM 25 /* rtsock sa family */ #define PACKET_TAG_IPOPTIONS 27 /* Saved IP options */ #define PACKET_TAG_CARP 28 /* CARP info */ #define PACKET_TAG_IPSEC_NAT_T_PORTS 29 /* two uint16_t */ #define PACKET_TAG_ND_OUTGOING 30 /* ND outgoing */ /* Specific cookies and tags. */ /* Packet tag routines. */ struct m_tag *m_tag_alloc(u_int32_t, int, int, int); void m_tag_delete(struct mbuf *, struct m_tag *); void m_tag_delete_chain(struct mbuf *, struct m_tag *); void m_tag_free_default(struct m_tag *); struct m_tag *m_tag_locate(struct mbuf *, u_int32_t, int, struct m_tag *); struct m_tag *m_tag_copy(struct m_tag *, int); int m_tag_copy_chain(struct mbuf *, const struct mbuf *, int); void m_tag_delete_nonpersistent(struct mbuf *); /* * Initialize the list of tags associated with an mbuf. */ static __inline void m_tag_init(struct mbuf *m) { SLIST_INIT(&m->m_pkthdr.tags); } /* * Set up the contents of a tag. Note that this does not fill in the free * method; the caller is expected to do that. * * XXX probably should be called m_tag_init, but that was already taken. */ static __inline void m_tag_setup(struct m_tag *t, u_int32_t cookie, int type, int len) { t->m_tag_id = type; t->m_tag_len = len; t->m_tag_cookie = cookie; } /* * Reclaim resources associated with a tag. */ static __inline void m_tag_free(struct m_tag *t) { (*t->m_tag_free)(t); } /* * Return the first tag associated with an mbuf. */ static __inline struct m_tag * m_tag_first(struct mbuf *m) { return (SLIST_FIRST(&m->m_pkthdr.tags)); } /* * Return the next tag in the list of tags associated with an mbuf. */ static __inline struct m_tag * m_tag_next(struct mbuf *m __unused, struct m_tag *t) { return (SLIST_NEXT(t, m_tag_link)); } /* * Prepend a tag to the list of tags associated with an mbuf. */ static __inline void m_tag_prepend(struct mbuf *m, struct m_tag *t) { SLIST_INSERT_HEAD(&m->m_pkthdr.tags, t, m_tag_link); } /* * Unlink a tag from the list of tags associated with an mbuf. */ static __inline void m_tag_unlink(struct mbuf *m, struct m_tag *t) { SLIST_REMOVE(&m->m_pkthdr.tags, t, m_tag, m_tag_link); } /* These are for OpenBSD compatibility. */ #define MTAG_ABI_COMPAT 0 /* compatibility ABI */ static __inline struct m_tag * m_tag_get(int type, int length, int wait) { return (m_tag_alloc(MTAG_ABI_COMPAT, type, length, wait)); } static __inline struct m_tag * m_tag_find(struct mbuf *m, int type, struct m_tag *start) { return (SLIST_EMPTY(&m->m_pkthdr.tags) ? (struct m_tag *)NULL : m_tag_locate(m, MTAG_ABI_COMPAT, type, start)); } static inline struct m_snd_tag * m_snd_tag_ref(struct m_snd_tag *mst) { refcount_acquire(&mst->refcount); return (mst); } static inline void m_snd_tag_rele(struct m_snd_tag *mst) { if (refcount_release(&mst->refcount)) m_snd_tag_destroy(mst); } static __inline struct mbuf * m_free(struct mbuf *m) { struct mbuf *n = m->m_next; MBUF_PROBE1(m__free, m); if ((m->m_flags & (M_PKTHDR|M_NOFREE)) == (M_PKTHDR|M_NOFREE)) m_tag_delete_chain(m, NULL); if (m->m_flags & M_PKTHDR && m->m_pkthdr.csum_flags & CSUM_SND_TAG) m_snd_tag_rele(m->m_pkthdr.snd_tag); if (m->m_flags & M_EXTPG) mb_free_extpg(m); else if (m->m_flags & M_EXT) mb_free_ext(m); else if ((m->m_flags & M_NOFREE) == 0) uma_zfree(zone_mbuf, m); return (n); } static __inline int rt_m_getfib(struct mbuf *m) { KASSERT(m->m_flags & M_PKTHDR , ("Attempt to get FIB from non header mbuf.")); return (m->m_pkthdr.fibnum); } #define M_GETFIB(_m) rt_m_getfib(_m) #define M_SETFIB(_m, _fib) do { \ KASSERT((_m)->m_flags & M_PKTHDR, ("Attempt to set FIB on non header mbuf.")); \ ((_m)->m_pkthdr.fibnum) = (_fib); \ } while (0) /* flags passed as first argument for "m_xxx_tcpip_hash()" */ #define MBUF_HASHFLAG_L2 (1 << 2) #define MBUF_HASHFLAG_L3 (1 << 3) #define MBUF_HASHFLAG_L4 (1 << 4) /* mbuf hashing helper routines */ uint32_t m_ether_tcpip_hash_init(void); uint32_t m_ether_tcpip_hash(const uint32_t, const struct mbuf *, uint32_t); uint32_t m_infiniband_tcpip_hash_init(void); uint32_t m_infiniband_tcpip_hash(const uint32_t, const struct mbuf *, uint32_t); #ifdef MBUF_PROFILING void m_profile(struct mbuf *m); #define M_PROFILE(m) m_profile(m) #else #define M_PROFILE(m) #endif struct mbufq { STAILQ_HEAD(, mbuf) mq_head; int mq_len; int mq_maxlen; }; static inline void mbufq_init(struct mbufq *mq, int maxlen) { STAILQ_INIT(&mq->mq_head); mq->mq_maxlen = maxlen; mq->mq_len = 0; } static inline struct mbuf * mbufq_flush(struct mbufq *mq) { struct mbuf *m; m = STAILQ_FIRST(&mq->mq_head); STAILQ_INIT(&mq->mq_head); mq->mq_len = 0; return (m); } static inline void mbufq_drain(struct mbufq *mq) { struct mbuf *m, *n; n = mbufq_flush(mq); while ((m = n) != NULL) { n = STAILQ_NEXT(m, m_stailqpkt); m_freem(m); } } static inline struct mbuf * mbufq_first(const struct mbufq *mq) { return (STAILQ_FIRST(&mq->mq_head)); } static inline struct mbuf * mbufq_last(const struct mbufq *mq) { return (STAILQ_LAST(&mq->mq_head, mbuf, m_stailqpkt)); } static inline int mbufq_full(const struct mbufq *mq) { return (mq->mq_maxlen > 0 && mq->mq_len >= mq->mq_maxlen); } static inline int mbufq_len(const struct mbufq *mq) { return (mq->mq_len); } static inline int mbufq_enqueue(struct mbufq *mq, struct mbuf *m) { if (mbufq_full(mq)) return (ENOBUFS); STAILQ_INSERT_TAIL(&mq->mq_head, m, m_stailqpkt); mq->mq_len++; return (0); } static inline struct mbuf * mbufq_dequeue(struct mbufq *mq) { struct mbuf *m; m = STAILQ_FIRST(&mq->mq_head); if (m) { STAILQ_REMOVE_HEAD(&mq->mq_head, m_stailqpkt); m->m_nextpkt = NULL; mq->mq_len--; } return (m); } static inline void mbufq_prepend(struct mbufq *mq, struct mbuf *m) { STAILQ_INSERT_HEAD(&mq->mq_head, m, m_stailqpkt); mq->mq_len++; } /* * Note: this doesn't enforce the maximum list size for dst. */ static inline void mbufq_concat(struct mbufq *mq_dst, struct mbufq *mq_src) { mq_dst->mq_len += mq_src->mq_len; STAILQ_CONCAT(&mq_dst->mq_head, &mq_src->mq_head); mq_src->mq_len = 0; } #ifdef _SYS_TIMESPEC_H_ static inline void mbuf_tstmp2timespec(struct mbuf *m, struct timespec *ts) { KASSERT((m->m_flags & M_PKTHDR) != 0, ("mbuf %p no M_PKTHDR", m)); KASSERT((m->m_flags & (M_TSTMP|M_TSTMP_LRO)) != 0, ("mbuf %p no M_TSTMP or M_TSTMP_LRO", m)); ts->tv_sec = m->m_pkthdr.rcv_tstmp / 1000000000; ts->tv_nsec = m->m_pkthdr.rcv_tstmp % 1000000000; } #endif #ifdef DEBUGNET /* Invoked from the debugnet client code. */ void debugnet_mbuf_drain(void); void debugnet_mbuf_start(void); void debugnet_mbuf_finish(void); void debugnet_mbuf_reinit(int nmbuf, int nclust, int clsize); #endif static inline bool mbuf_has_tls_session(struct mbuf *m) { if (m->m_flags & M_EXTPG) { if (m->m_epg_tls != NULL) { return (true); } } return (false); } #endif /* _KERNEL */ #endif /* !_SYS_MBUF_H_ */