diff --git a/config/kernel-blk-queue.m4 b/config/kernel-blk-queue.m4
index bb5903b313eb..15dbe1c7dff0 100644
--- a/config/kernel-blk-queue.m4
+++ b/config/kernel-blk-queue.m4
@@ -1,418 +1,433 @@
 dnl #
 dnl # 2.6.39 API change,
 dnl # blk_start_plug() and blk_finish_plug()
 dnl #
 AC_DEFUN([ZFS_AC_KERNEL_SRC_BLK_QUEUE_PLUG], [
 	ZFS_LINUX_TEST_SRC([blk_plug], [
 		#include <linux/blkdev.h>
 	],[
 		struct blk_plug plug __attribute__ ((unused));
 
 		blk_start_plug(&plug);
 		blk_finish_plug(&plug);
 	])
 ])
 
 AC_DEFUN([ZFS_AC_KERNEL_BLK_QUEUE_PLUG], [
 	AC_MSG_CHECKING([whether struct blk_plug is available])
 	ZFS_LINUX_TEST_RESULT([blk_plug], [
 		AC_MSG_RESULT(yes)
 	],[
 		ZFS_LINUX_TEST_ERROR([blk_plug])
 	])
 ])
 
 dnl #
 dnl # 2.6.32 - 4.11: statically allocated bdi in request_queue
 dnl # 4.12: dynamically allocated bdi in request_queue
 dnl #
 AC_DEFUN([ZFS_AC_KERNEL_SRC_BLK_QUEUE_BDI], [
 	ZFS_LINUX_TEST_SRC([blk_queue_bdi], [
 		#include <linux/blkdev.h>
 	],[
 		struct request_queue q;
 		struct backing_dev_info bdi;
 		q.backing_dev_info = &bdi;
 	])
 ])
 
 AC_DEFUN([ZFS_AC_KERNEL_BLK_QUEUE_BDI], [
 	AC_MSG_CHECKING([whether blk_queue bdi is dynamic])
 	ZFS_LINUX_TEST_RESULT([blk_queue_bdi], [
 		AC_MSG_RESULT(yes)
 		AC_DEFINE(HAVE_BLK_QUEUE_BDI_DYNAMIC, 1,
 		    [blk queue backing_dev_info is dynamic])
 	],[
 		AC_MSG_RESULT(no)
 	])
 ])
 
 dnl #
 dnl # 5.9: added blk_queue_update_readahead(),
 dnl # 5.15: renamed to disk_update_readahead()
 dnl #
 AC_DEFUN([ZFS_AC_KERNEL_SRC_BLK_QUEUE_UPDATE_READAHEAD], [
 	ZFS_LINUX_TEST_SRC([blk_queue_update_readahead], [
 		#include <linux/blkdev.h>
 	],[
 		struct request_queue q;
 		blk_queue_update_readahead(&q);
 	])
 
 	ZFS_LINUX_TEST_SRC([disk_update_readahead], [
 		#include <linux/blkdev.h>
 	],[
 		struct gendisk disk;
 		disk_update_readahead(&disk);
 	])
 ])
 
 AC_DEFUN([ZFS_AC_KERNEL_BLK_QUEUE_UPDATE_READAHEAD], [
 	AC_MSG_CHECKING([whether blk_queue_update_readahead() exists])
 	ZFS_LINUX_TEST_RESULT([blk_queue_update_readahead], [
 		AC_MSG_RESULT(yes)
 		AC_DEFINE(HAVE_BLK_QUEUE_UPDATE_READAHEAD, 1,
 		    [blk_queue_update_readahead() exists])
 	],[
 		AC_MSG_RESULT(no)
 
 		AC_MSG_CHECKING([whether disk_update_readahead() exists])
 		ZFS_LINUX_TEST_RESULT([disk_update_readahead], [
 			AC_MSG_RESULT(yes)
 			AC_DEFINE(HAVE_DISK_UPDATE_READAHEAD, 1,
 			    [disk_update_readahead() exists])
 		],[
 			AC_MSG_RESULT(no)
 		])
 	])
 ])
 
 dnl #
 dnl # 5.19: bdev_max_discard_sectors() available
 dnl # 2.6.32: blk_queue_discard() available
 dnl #
 AC_DEFUN([ZFS_AC_KERNEL_SRC_BLK_QUEUE_DISCARD], [
 	ZFS_LINUX_TEST_SRC([bdev_max_discard_sectors], [
 		#include <linux/blkdev.h>
 	],[
 		struct block_device *bdev __attribute__ ((unused)) = NULL;
 		unsigned int error __attribute__ ((unused));
 
 		error = bdev_max_discard_sectors(bdev);
 	])
 
 	ZFS_LINUX_TEST_SRC([blk_queue_discard], [
 		#include <linux/blkdev.h>
 	],[
 		struct request_queue r;
 		struct request_queue *q = &r;
 		int value __attribute__ ((unused));
 		memset(q, 0, sizeof(r));
 		value = blk_queue_discard(q);
 	],[-Wframe-larger-than=8192])
 ])
 
 AC_DEFUN([ZFS_AC_KERNEL_BLK_QUEUE_DISCARD], [
 	AC_MSG_CHECKING([whether bdev_max_discard_sectors() is available])
 	ZFS_LINUX_TEST_RESULT([bdev_max_discard_sectors], [
 		AC_MSG_RESULT(yes)
 		AC_DEFINE(HAVE_BDEV_MAX_DISCARD_SECTORS, 1,
 		    [bdev_max_discard_sectors() is available])
 	],[
 		AC_MSG_RESULT(no)
 
 		AC_MSG_CHECKING([whether blk_queue_discard() is available])
 		ZFS_LINUX_TEST_RESULT([blk_queue_discard], [
 			AC_MSG_RESULT(yes)
 			AC_DEFINE(HAVE_BLK_QUEUE_DISCARD, 1,
 			    [blk_queue_discard() is available])
 		],[
 			ZFS_LINUX_TEST_ERROR([blk_queue_discard])
 		])
 	])
 ])
 
 dnl #
 dnl # 5.19: bdev_max_secure_erase_sectors() available
 dnl # 4.8: blk_queue_secure_erase() available
 dnl # 2.6.36: blk_queue_secdiscard() available
 dnl #
 AC_DEFUN([ZFS_AC_KERNEL_SRC_BLK_QUEUE_SECURE_ERASE], [
 	ZFS_LINUX_TEST_SRC([bdev_max_secure_erase_sectors], [
 		#include <linux/blkdev.h>
 	],[
 		struct block_device *bdev __attribute__ ((unused)) = NULL;
 		unsigned int error __attribute__ ((unused));
 
 		error = bdev_max_secure_erase_sectors(bdev);
 	])
 
 	ZFS_LINUX_TEST_SRC([blk_queue_secure_erase], [
 		#include <linux/blkdev.h>
 	],[
 		struct request_queue r;
 		struct request_queue *q = &r;
 		int value __attribute__ ((unused));
 		memset(q, 0, sizeof(r));
 		value = blk_queue_secure_erase(q);
 	],[-Wframe-larger-than=8192])
 
 	ZFS_LINUX_TEST_SRC([blk_queue_secdiscard], [
 		#include <linux/blkdev.h>
 	],[
 		struct request_queue r;
 		struct request_queue *q = &r;
 		int value __attribute__ ((unused));
 		memset(q, 0, sizeof(r));
 		value = blk_queue_secdiscard(q);
 	])
 ])
 
 AC_DEFUN([ZFS_AC_KERNEL_BLK_QUEUE_SECURE_ERASE], [
 	AC_MSG_CHECKING([whether bdev_max_secure_erase_sectors() is available])
 	ZFS_LINUX_TEST_RESULT([bdev_max_secure_erase_sectors], [
 		AC_MSG_RESULT(yes)
 		AC_DEFINE(HAVE_BDEV_MAX_SECURE_ERASE_SECTORS, 1,
 		    [bdev_max_secure_erase_sectors() is available])
 	],[
 		AC_MSG_RESULT(no)
 
 		AC_MSG_CHECKING([whether blk_queue_secure_erase() is available])
 		ZFS_LINUX_TEST_RESULT([blk_queue_secure_erase], [
 			AC_MSG_RESULT(yes)
 			AC_DEFINE(HAVE_BLK_QUEUE_SECURE_ERASE, 1,
 			    [blk_queue_secure_erase() is available])
 		],[
 			AC_MSG_RESULT(no)
 
 			AC_MSG_CHECKING([whether blk_queue_secdiscard() is available])
 			ZFS_LINUX_TEST_RESULT([blk_queue_secdiscard], [
 				AC_MSG_RESULT(yes)
 			AC_DEFINE(HAVE_BLK_QUEUE_SECDISCARD, 1,
 				    [blk_queue_secdiscard() is available])
 			],[
 				ZFS_LINUX_TEST_ERROR([blk_queue_secure_erase])
 			])
 		])
 	])
 ])
 
 dnl #
 dnl # 4.16 API change,
 dnl # Introduction of blk_queue_flag_set and blk_queue_flag_clear
 dnl #
 AC_DEFUN([ZFS_AC_KERNEL_SRC_BLK_QUEUE_FLAG_SET], [
 	ZFS_LINUX_TEST_SRC([blk_queue_flag_set], [
 		#include <linux/kernel.h>
 		#include <linux/blkdev.h>
 	],[
 		struct request_queue *q = NULL;
 		blk_queue_flag_set(0, q);
 	])
 ])
 
 AC_DEFUN([ZFS_AC_KERNEL_BLK_QUEUE_FLAG_SET], [
 	AC_MSG_CHECKING([whether blk_queue_flag_set() exists])
 	ZFS_LINUX_TEST_RESULT([blk_queue_flag_set], [
 		AC_MSG_RESULT(yes)
 		AC_DEFINE(HAVE_BLK_QUEUE_FLAG_SET, 1,
 		    [blk_queue_flag_set() exists])
 	],[
 		AC_MSG_RESULT(no)
 	])
 ])
 
 AC_DEFUN([ZFS_AC_KERNEL_SRC_BLK_QUEUE_FLAG_CLEAR], [
 	ZFS_LINUX_TEST_SRC([blk_queue_flag_clear], [
 		#include <linux/kernel.h>
 		#include <linux/blkdev.h>
 	],[
 		struct request_queue *q = NULL;
 		blk_queue_flag_clear(0, q);
 	])
 ])
 
 AC_DEFUN([ZFS_AC_KERNEL_BLK_QUEUE_FLAG_CLEAR], [
 	AC_MSG_CHECKING([whether blk_queue_flag_clear() exists])
 	ZFS_LINUX_TEST_RESULT([blk_queue_flag_clear], [
 		AC_MSG_RESULT(yes)
 		AC_DEFINE(HAVE_BLK_QUEUE_FLAG_CLEAR, 1,
 		    [blk_queue_flag_clear() exists])
 	],[
 		AC_MSG_RESULT(no)
 	])
 ])
 
 dnl #
 dnl # 2.6.36 API change,
 dnl # Added blk_queue_flush() interface, while the previous interface
 dnl # was available to all the new one is GPL-only.  Thus in addition to
 dnl # detecting if this function is available we determine if it is
 dnl # GPL-only.  If the GPL-only interface is there we implement our own
 dnl # compatibility function, otherwise we use the function.  The hope
 dnl # is that long term this function will be opened up.
 dnl #
 dnl # 4.7 API change,
 dnl # Replace blk_queue_flush with blk_queue_write_cache
 dnl #
 AC_DEFUN([ZFS_AC_KERNEL_SRC_BLK_QUEUE_FLUSH], [
 	ZFS_LINUX_TEST_SRC([blk_queue_flush], [
 		#include <linux/blkdev.h>
 	], [
 		struct request_queue *q __attribute__ ((unused)) = NULL;
 		(void) blk_queue_flush(q, REQ_FLUSH);
 	], [], [ZFS_META_LICENSE])
 
 	ZFS_LINUX_TEST_SRC([blk_queue_write_cache], [
 		#include <linux/kernel.h>
 		#include <linux/blkdev.h>
 	], [
 		struct request_queue *q __attribute__ ((unused)) = NULL;
 		blk_queue_write_cache(q, true, true);
 	], [], [ZFS_META_LICENSE])
 ])
 
 AC_DEFUN([ZFS_AC_KERNEL_BLK_QUEUE_FLUSH], [
 	AC_MSG_CHECKING([whether blk_queue_flush() is available])
 	ZFS_LINUX_TEST_RESULT([blk_queue_flush], [
 		AC_MSG_RESULT(yes)
 		AC_DEFINE(HAVE_BLK_QUEUE_FLUSH, 1,
 		    [blk_queue_flush() is available])
 
 		AC_MSG_CHECKING([whether blk_queue_flush() is GPL-only])
 		ZFS_LINUX_TEST_RESULT([blk_queue_flush_license], [
 			AC_MSG_RESULT(no)
 		],[
 			AC_MSG_RESULT(yes)
 			AC_DEFINE(HAVE_BLK_QUEUE_FLUSH_GPL_ONLY, 1,
 			    [blk_queue_flush() is GPL-only])
 		])
 	],[
 		AC_MSG_RESULT(no)
 	])
 
 	dnl #
 	dnl # 4.7 API change
 	dnl # Replace blk_queue_flush with blk_queue_write_cache
 	dnl #
 	AC_MSG_CHECKING([whether blk_queue_write_cache() exists])
 	ZFS_LINUX_TEST_RESULT([blk_queue_write_cache], [
 		AC_MSG_RESULT(yes)
 		AC_DEFINE(HAVE_BLK_QUEUE_WRITE_CACHE, 1,
 		    [blk_queue_write_cache() exists])
 
 		AC_MSG_CHECKING([whether blk_queue_write_cache() is GPL-only])
 		ZFS_LINUX_TEST_RESULT([blk_queue_write_cache_license], [
 			AC_MSG_RESULT(no)
 		],[
 			AC_MSG_RESULT(yes)
 			AC_DEFINE(HAVE_BLK_QUEUE_WRITE_CACHE_GPL_ONLY, 1,
 			    [blk_queue_write_cache() is GPL-only])
 		])
 	],[
 		AC_MSG_RESULT(no)
 	])
 ])
 
 dnl #
 dnl # 2.6.34 API change
 dnl # blk_queue_max_hw_sectors() replaces blk_queue_max_sectors().
 dnl #
 AC_DEFUN([ZFS_AC_KERNEL_SRC_BLK_QUEUE_MAX_HW_SECTORS], [
 	ZFS_LINUX_TEST_SRC([blk_queue_max_hw_sectors], [
 		#include <linux/blkdev.h>
 	], [
 		struct request_queue *q __attribute__ ((unused)) = NULL;
 		(void) blk_queue_max_hw_sectors(q, BLK_SAFE_MAX_SECTORS);
 	], [])
 ])
 
 AC_DEFUN([ZFS_AC_KERNEL_BLK_QUEUE_MAX_HW_SECTORS], [
 	AC_MSG_CHECKING([whether blk_queue_max_hw_sectors() is available])
 	ZFS_LINUX_TEST_RESULT([blk_queue_max_hw_sectors], [
 		AC_MSG_RESULT(yes)
 	],[
 		ZFS_LINUX_TEST_ERROR([blk_queue_max_hw_sectors])
 	])
 ])
 
 dnl #
 dnl # 2.6.34 API change
 dnl # blk_queue_max_segments() consolidates blk_queue_max_hw_segments()
 dnl # and blk_queue_max_phys_segments().
 dnl #
 AC_DEFUN([ZFS_AC_KERNEL_SRC_BLK_QUEUE_MAX_SEGMENTS], [
 	ZFS_LINUX_TEST_SRC([blk_queue_max_segments], [
 		#include <linux/blkdev.h>
 	], [
 		struct request_queue *q __attribute__ ((unused)) = NULL;
 		(void) blk_queue_max_segments(q, BLK_MAX_SEGMENTS);
 	], [])
 ])
 
 AC_DEFUN([ZFS_AC_KERNEL_BLK_QUEUE_MAX_SEGMENTS], [
 	AC_MSG_CHECKING([whether blk_queue_max_segments() is available])
 	ZFS_LINUX_TEST_RESULT([blk_queue_max_segments], [
 		AC_MSG_RESULT(yes)
 	], [
 		ZFS_LINUX_TEST_ERROR([blk_queue_max_segments])
 	])
 ])
 
 dnl #
 dnl # See if kernel supports block multi-queue and blk_status_t.
 dnl # blk_status_t represents the new status codes introduced in the 4.13
 dnl # kernel patch:
 dnl #
 dnl #  block: introduce new block status code type
 dnl #
 dnl # We do not currently support the "old" block multi-queue interfaces from
 dnl # prior kernels.
 dnl #
 AC_DEFUN([ZFS_AC_KERNEL_SRC_BLK_MQ], [
 	ZFS_LINUX_TEST_SRC([blk_mq], [
 		#include <linux/blk-mq.h>
 	], [
 		struct blk_mq_tag_set tag_set __attribute__ ((unused)) = {0};
 		(void) blk_mq_alloc_tag_set(&tag_set);
 		return BLK_STS_OK;
 	], [])
+	ZFS_LINUX_TEST_SRC([blk_mq_rq_hctx], [
+		#include <linux/blk-mq.h>
+		#include <linux/blkdev.h>
+	], [
+		struct request rq = {0};
+		struct blk_mq_hw_ctx *hctx = NULL;
+		rq.mq_hctx = hctx;
+	], [])
 ])
 
 AC_DEFUN([ZFS_AC_KERNEL_BLK_MQ], [
 	AC_MSG_CHECKING([whether block multiqueue with blk_status_t is available])
 	ZFS_LINUX_TEST_RESULT([blk_mq], [
 		AC_MSG_RESULT(yes)
 		AC_DEFINE(HAVE_BLK_MQ, 1, [block multiqueue is available])
+		AC_MSG_CHECKING([whether block multiqueue hardware context is cached in struct request])
+		ZFS_LINUX_TEST_RESULT([blk_mq_rq_hctx], [
+			AC_MSG_RESULT(yes)
+			AC_DEFINE(HAVE_BLK_MQ_RQ_HCTX, 1, [block multiqueue hardware context is cached in struct request])
+		], [
+			AC_MSG_RESULT(no)
+		])
 	], [
 		AC_MSG_RESULT(no)
 	])
 ])
 
 AC_DEFUN([ZFS_AC_KERNEL_SRC_BLK_QUEUE], [
 	ZFS_AC_KERNEL_SRC_BLK_QUEUE_PLUG
 	ZFS_AC_KERNEL_SRC_BLK_QUEUE_BDI
 	ZFS_AC_KERNEL_SRC_BLK_QUEUE_UPDATE_READAHEAD
 	ZFS_AC_KERNEL_SRC_BLK_QUEUE_DISCARD
 	ZFS_AC_KERNEL_SRC_BLK_QUEUE_SECURE_ERASE
 	ZFS_AC_KERNEL_SRC_BLK_QUEUE_FLAG_SET
 	ZFS_AC_KERNEL_SRC_BLK_QUEUE_FLAG_CLEAR
 	ZFS_AC_KERNEL_SRC_BLK_QUEUE_FLUSH
 	ZFS_AC_KERNEL_SRC_BLK_QUEUE_MAX_HW_SECTORS
 	ZFS_AC_KERNEL_SRC_BLK_QUEUE_MAX_SEGMENTS
 	ZFS_AC_KERNEL_SRC_BLK_MQ
 ])
 
 AC_DEFUN([ZFS_AC_KERNEL_BLK_QUEUE], [
 	ZFS_AC_KERNEL_BLK_QUEUE_PLUG
 	ZFS_AC_KERNEL_BLK_QUEUE_BDI
 	ZFS_AC_KERNEL_BLK_QUEUE_UPDATE_READAHEAD
 	ZFS_AC_KERNEL_BLK_QUEUE_DISCARD
 	ZFS_AC_KERNEL_BLK_QUEUE_SECURE_ERASE
 	ZFS_AC_KERNEL_BLK_QUEUE_FLAG_SET
 	ZFS_AC_KERNEL_BLK_QUEUE_FLAG_CLEAR
 	ZFS_AC_KERNEL_BLK_QUEUE_FLUSH
 	ZFS_AC_KERNEL_BLK_QUEUE_MAX_HW_SECTORS
 	ZFS_AC_KERNEL_BLK_QUEUE_MAX_SEGMENTS
 	ZFS_AC_KERNEL_BLK_MQ
 ])
diff --git a/module/os/linux/zfs/zvol_os.c b/module/os/linux/zfs/zvol_os.c
index e2a6ba3a7f32..4b960daf89ee 100644
--- a/module/os/linux/zfs/zvol_os.c
+++ b/module/os/linux/zfs/zvol_os.c
@@ -1,1766 +1,1771 @@
 /*
  * CDDL HEADER START
  *
  * The contents of this file are subject to the terms of the
  * Common Development and Distribution License (the "License").
  * You may not use this file except in compliance with the License.
  *
  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
  * or https://opensource.org/licenses/CDDL-1.0.
  * See the License for the specific language governing permissions
  * and limitations under the License.
  *
  * When distributing Covered Code, include this CDDL HEADER in each
  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  * If applicable, add the following below this CDDL HEADER, with the
  * fields enclosed by brackets "[]" replaced with your own identifying
  * information: Portions Copyright [yyyy] [name of copyright owner]
  *
  * CDDL HEADER END
  */
 /*
  * Copyright (c) 2012, 2020 by Delphix. All rights reserved.
  */
 
 #include <sys/dataset_kstats.h>
 #include <sys/dbuf.h>
 #include <sys/dmu_traverse.h>
 #include <sys/dsl_dataset.h>
 #include <sys/dsl_prop.h>
 #include <sys/dsl_dir.h>
 #include <sys/zap.h>
 #include <sys/zfeature.h>
 #include <sys/zil_impl.h>
 #include <sys/dmu_tx.h>
 #include <sys/zio.h>
 #include <sys/zfs_rlock.h>
 #include <sys/spa_impl.h>
 #include <sys/zvol.h>
 #include <sys/zvol_impl.h>
 #include <cityhash.h>
 
 #include <linux/blkdev_compat.h>
 #include <linux/task_io_accounting_ops.h>
 
 #ifdef HAVE_BLK_MQ
 #include <linux/blk-mq.h>
 #endif
 
 static void zvol_request_impl(zvol_state_t *zv, struct bio *bio,
     struct request *rq, boolean_t force_sync);
 
 static unsigned int zvol_major = ZVOL_MAJOR;
 static unsigned int zvol_request_sync = 0;
 static unsigned int zvol_prefetch_bytes = (128 * 1024);
 static unsigned long zvol_max_discard_blocks = 16384;
 
 /*
  * Switch taskq at multiple of 512 MB offset. This can be set to a lower value
  * to utilize more threads for small files but may affect prefetch hits.
  */
 #define	ZVOL_TASKQ_OFFSET_SHIFT 29
 
 #ifndef HAVE_BLKDEV_GET_ERESTARTSYS
 static unsigned int zvol_open_timeout_ms = 1000;
 #endif
 
 static unsigned int zvol_threads = 0;
 #ifdef HAVE_BLK_MQ
 static unsigned int zvol_blk_mq_threads = 0;
 static unsigned int zvol_blk_mq_actual_threads;
 static boolean_t zvol_use_blk_mq = B_FALSE;
 
 /*
  * The maximum number of volblocksize blocks to process per thread.  Typically,
  * write heavy workloads preform better with higher values here, and read
  * heavy workloads preform better with lower values, but that's not a hard
  * and fast rule.  It's basically a knob to tune between "less overhead with
  * less parallelism" and "more overhead, but more parallelism".
  *
  * '8' was chosen as a reasonable, balanced, default based off of sequential
  * read and write tests to a zvol in an NVMe pool (with 16 CPUs).
  */
 static unsigned int zvol_blk_mq_blocks_per_thread = 8;
 #endif
 
 static unsigned int zvol_num_taskqs = 0;
 
 #ifndef	BLKDEV_DEFAULT_RQ
 /* BLKDEV_MAX_RQ was renamed to BLKDEV_DEFAULT_RQ in the 5.16 kernel */
 #define	BLKDEV_DEFAULT_RQ BLKDEV_MAX_RQ
 #endif
 
 /*
  * Finalize our BIO or request.
  */
 #ifdef	HAVE_BLK_MQ
 #define	END_IO(zv, bio, rq, error)  do { \
 	if (bio) { \
 		BIO_END_IO(bio, error); \
 	} else { \
 		blk_mq_end_request(rq, errno_to_bi_status(error)); \
 	} \
 } while (0)
 #else
 #define	END_IO(zv, bio, rq, error)	BIO_END_IO(bio, error)
 #endif
 
 #ifdef HAVE_BLK_MQ
 static unsigned int zvol_blk_mq_queue_depth = BLKDEV_DEFAULT_RQ;
 static unsigned int zvol_actual_blk_mq_queue_depth;
 #endif
 
 struct zvol_state_os {
 	struct gendisk		*zvo_disk;	/* generic disk */
 	struct request_queue	*zvo_queue;	/* request queue */
 	dev_t			zvo_dev;	/* device id */
 
 #ifdef HAVE_BLK_MQ
 	struct blk_mq_tag_set tag_set;
 #endif
 
 	/* Set from the global 'zvol_use_blk_mq' at zvol load */
 	boolean_t use_blk_mq;
 };
 
 typedef struct zv_taskq {
 	uint_t tqs_cnt;
 	taskq_t **tqs_taskq;
 } zv_taskq_t;
 static zv_taskq_t zvol_taskqs;
 static struct ida zvol_ida;
 
 typedef struct zv_request_stack {
 	zvol_state_t	*zv;
 	struct bio	*bio;
 	struct request *rq;
 } zv_request_t;
 
 typedef struct zv_work {
 	struct request  *rq;
 	struct work_struct work;
 } zv_work_t;
 
 typedef struct zv_request_task {
 	zv_request_t zvr;
 	taskq_ent_t	ent;
 } zv_request_task_t;
 
 static zv_request_task_t *
 zv_request_task_create(zv_request_t zvr)
 {
 	zv_request_task_t *task;
 	task = kmem_alloc(sizeof (zv_request_task_t), KM_SLEEP);
 	taskq_init_ent(&task->ent);
 	task->zvr = zvr;
 	return (task);
 }
 
 static void
 zv_request_task_free(zv_request_task_t *task)
 {
 	kmem_free(task, sizeof (*task));
 }
 
 #ifdef HAVE_BLK_MQ
 
 /*
  * This is called when a new block multiqueue request comes in.  A request
  * contains one or more BIOs.
  */
 static blk_status_t zvol_mq_queue_rq(struct blk_mq_hw_ctx *hctx,
     const struct blk_mq_queue_data *bd)
 {
 	struct request *rq = bd->rq;
 	zvol_state_t *zv = rq->q->queuedata;
 
 	/* Tell the kernel that we are starting to process this request */
 	blk_mq_start_request(rq);
 
 	if (blk_rq_is_passthrough(rq)) {
 		/* Skip non filesystem request */
 		blk_mq_end_request(rq, BLK_STS_IOERR);
 		return (BLK_STS_IOERR);
 	}
 
 	zvol_request_impl(zv, NULL, rq, 0);
 
 	/* Acknowledge to the kernel that we got this request */
 	return (BLK_STS_OK);
 }
 
 static struct blk_mq_ops zvol_blk_mq_queue_ops = {
 	.queue_rq = zvol_mq_queue_rq,
 };
 
 /* Initialize our blk-mq struct */
 static int zvol_blk_mq_alloc_tag_set(zvol_state_t *zv)
 {
 	struct zvol_state_os *zso = zv->zv_zso;
 
 	memset(&zso->tag_set, 0, sizeof (zso->tag_set));
 
 	/* Initialize tag set. */
 	zso->tag_set.ops = &zvol_blk_mq_queue_ops;
 	zso->tag_set.nr_hw_queues = zvol_blk_mq_actual_threads;
 	zso->tag_set.queue_depth = zvol_actual_blk_mq_queue_depth;
 	zso->tag_set.numa_node = NUMA_NO_NODE;
 	zso->tag_set.cmd_size = 0;
 
 	/*
 	 * We need BLK_MQ_F_BLOCKING here since we do blocking calls in
 	 * zvol_request_impl()
 	 */
 	zso->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_BLOCKING;
 	zso->tag_set.driver_data = zv;
 
 	return (blk_mq_alloc_tag_set(&zso->tag_set));
 }
 #endif /* HAVE_BLK_MQ */
 
 /*
  * Given a path, return TRUE if path is a ZVOL.
  */
 boolean_t
 zvol_os_is_zvol(const char *path)
 {
 	dev_t dev = 0;
 
 	if (vdev_lookup_bdev(path, &dev) != 0)
 		return (B_FALSE);
 
 	if (MAJOR(dev) == zvol_major)
 		return (B_TRUE);
 
 	return (B_FALSE);
 }
 
 static void
 zvol_write(zv_request_t *zvr)
 {
 	struct bio *bio = zvr->bio;
 	struct request *rq = zvr->rq;
 	int error = 0;
 	zfs_uio_t uio;
 	zvol_state_t *zv = zvr->zv;
 	struct request_queue *q;
 	struct gendisk *disk;
 	unsigned long start_time = 0;
 	boolean_t acct = B_FALSE;
 
 	ASSERT3P(zv, !=, NULL);
 	ASSERT3U(zv->zv_open_count, >, 0);
 	ASSERT3P(zv->zv_zilog, !=, NULL);
 
 	q = zv->zv_zso->zvo_queue;
 	disk = zv->zv_zso->zvo_disk;
 
 	/* bio marked as FLUSH need to flush before write */
 	if (io_is_flush(bio, rq))
 		zil_commit(zv->zv_zilog, ZVOL_OBJ);
 
 	/* Some requests are just for flush and nothing else. */
 	if (io_size(bio, rq) == 0) {
 		rw_exit(&zv->zv_suspend_lock);
 		END_IO(zv, bio, rq, 0);
 		return;
 	}
 
 	zfs_uio_bvec_init(&uio, bio, rq);
 
 	ssize_t start_resid = uio.uio_resid;
 
 	/*
 	 * With use_blk_mq, accounting is done by blk_mq_start_request()
 	 * and blk_mq_end_request(), so we can skip it here.
 	 */
 	if (bio) {
 		acct = blk_queue_io_stat(q);
 		if (acct) {
 			start_time = blk_generic_start_io_acct(q, disk, WRITE,
 			    bio);
 		}
 	}
 
 	boolean_t sync =
 	    io_is_fua(bio, rq) || zv->zv_objset->os_sync == ZFS_SYNC_ALWAYS;
 
 	zfs_locked_range_t *lr = zfs_rangelock_enter(&zv->zv_rangelock,
 	    uio.uio_loffset, uio.uio_resid, RL_WRITER);
 
 	uint64_t volsize = zv->zv_volsize;
 	while (uio.uio_resid > 0 && uio.uio_loffset < volsize) {
 		uint64_t bytes = MIN(uio.uio_resid, DMU_MAX_ACCESS >> 1);
 		uint64_t off = uio.uio_loffset;
 		dmu_tx_t *tx = dmu_tx_create(zv->zv_objset);
 
 		if (bytes > volsize - off)	/* don't write past the end */
 			bytes = volsize - off;
 
 		dmu_tx_hold_write_by_dnode(tx, zv->zv_dn, off, bytes);
 
 		/* This will only fail for ENOSPC */
 		error = dmu_tx_assign(tx, TXG_WAIT);
 		if (error) {
 			dmu_tx_abort(tx);
 			break;
 		}
 		error = dmu_write_uio_dnode(zv->zv_dn, &uio, bytes, tx);
 		if (error == 0) {
 			zvol_log_write(zv, tx, off, bytes, sync);
 		}
 		dmu_tx_commit(tx);
 
 		if (error)
 			break;
 	}
 	zfs_rangelock_exit(lr);
 
 	int64_t nwritten = start_resid - uio.uio_resid;
 	dataset_kstats_update_write_kstats(&zv->zv_kstat, nwritten);
 	task_io_account_write(nwritten);
 
 	if (sync)
 		zil_commit(zv->zv_zilog, ZVOL_OBJ);
 
 	rw_exit(&zv->zv_suspend_lock);
 
 	if (bio && acct) {
 		blk_generic_end_io_acct(q, disk, WRITE, bio, start_time);
 	}
 
 	END_IO(zv, bio, rq, -error);
 }
 
 static void
 zvol_write_task(void *arg)
 {
 	zv_request_task_t *task = arg;
 	zvol_write(&task->zvr);
 	zv_request_task_free(task);
 }
 
 static void
 zvol_discard(zv_request_t *zvr)
 {
 	struct bio *bio = zvr->bio;
 	struct request *rq = zvr->rq;
 	zvol_state_t *zv = zvr->zv;
 	uint64_t start = io_offset(bio, rq);
 	uint64_t size = io_size(bio, rq);
 	uint64_t end = start + size;
 	boolean_t sync;
 	int error = 0;
 	dmu_tx_t *tx;
 	struct request_queue *q = zv->zv_zso->zvo_queue;
 	struct gendisk *disk = zv->zv_zso->zvo_disk;
 	unsigned long start_time = 0;
 	boolean_t acct = B_FALSE;
 
 	ASSERT3P(zv, !=, NULL);
 	ASSERT3U(zv->zv_open_count, >, 0);
 	ASSERT3P(zv->zv_zilog, !=, NULL);
 
 	if (bio) {
 		acct = blk_queue_io_stat(q);
 		if (acct) {
 			start_time = blk_generic_start_io_acct(q, disk, WRITE,
 			    bio);
 		}
 	}
 
 	sync = io_is_fua(bio, rq) || zv->zv_objset->os_sync == ZFS_SYNC_ALWAYS;
 
 	if (end > zv->zv_volsize) {
 		error = SET_ERROR(EIO);
 		goto unlock;
 	}
 
 	/*
 	 * Align the request to volume block boundaries when a secure erase is
 	 * not required.  This will prevent dnode_free_range() from zeroing out
 	 * the unaligned parts which is slow (read-modify-write) and useless
 	 * since we are not freeing any space by doing so.
 	 */
 	if (!io_is_secure_erase(bio, rq)) {
 		start = P2ROUNDUP(start, zv->zv_volblocksize);
 		end = P2ALIGN(end, zv->zv_volblocksize);
 		size = end - start;
 	}
 
 	if (start >= end)
 		goto unlock;
 
 	zfs_locked_range_t *lr = zfs_rangelock_enter(&zv->zv_rangelock,
 	    start, size, RL_WRITER);
 
 	tx = dmu_tx_create(zv->zv_objset);
 	dmu_tx_mark_netfree(tx);
 	error = dmu_tx_assign(tx, TXG_WAIT);
 	if (error != 0) {
 		dmu_tx_abort(tx);
 	} else {
 		zvol_log_truncate(zv, tx, start, size);
 		dmu_tx_commit(tx);
 		error = dmu_free_long_range(zv->zv_objset,
 		    ZVOL_OBJ, start, size);
 	}
 	zfs_rangelock_exit(lr);
 
 	if (error == 0 && sync)
 		zil_commit(zv->zv_zilog, ZVOL_OBJ);
 
 unlock:
 	rw_exit(&zv->zv_suspend_lock);
 
 	if (bio && acct) {
 		blk_generic_end_io_acct(q, disk, WRITE, bio,
 		    start_time);
 	}
 
 	END_IO(zv, bio, rq, -error);
 }
 
 static void
 zvol_discard_task(void *arg)
 {
 	zv_request_task_t *task = arg;
 	zvol_discard(&task->zvr);
 	zv_request_task_free(task);
 }
 
 static void
 zvol_read(zv_request_t *zvr)
 {
 	struct bio *bio = zvr->bio;
 	struct request *rq = zvr->rq;
 	int error = 0;
 	zfs_uio_t uio;
 	boolean_t acct = B_FALSE;
 	zvol_state_t *zv = zvr->zv;
 	struct request_queue *q;
 	struct gendisk *disk;
 	unsigned long start_time = 0;
 
 	ASSERT3P(zv, !=, NULL);
 	ASSERT3U(zv->zv_open_count, >, 0);
 
 	zfs_uio_bvec_init(&uio, bio, rq);
 
 	q = zv->zv_zso->zvo_queue;
 	disk = zv->zv_zso->zvo_disk;
 
 	ssize_t start_resid = uio.uio_resid;
 
 	/*
 	 * When blk-mq is being used, accounting is done by
 	 * blk_mq_start_request() and blk_mq_end_request().
 	 */
 	if (bio) {
 		acct = blk_queue_io_stat(q);
 		if (acct)
 			start_time = blk_generic_start_io_acct(q, disk, READ,
 			    bio);
 	}
 
 	zfs_locked_range_t *lr = zfs_rangelock_enter(&zv->zv_rangelock,
 	    uio.uio_loffset, uio.uio_resid, RL_READER);
 
 	uint64_t volsize = zv->zv_volsize;
 
 	while (uio.uio_resid > 0 && uio.uio_loffset < volsize) {
 		uint64_t bytes = MIN(uio.uio_resid, DMU_MAX_ACCESS >> 1);
 
 		/* don't read past the end */
 		if (bytes > volsize - uio.uio_loffset)
 			bytes = volsize - uio.uio_loffset;
 
 		error = dmu_read_uio_dnode(zv->zv_dn, &uio, bytes);
 		if (error) {
 			/* convert checksum errors into IO errors */
 			if (error == ECKSUM)
 				error = SET_ERROR(EIO);
 			break;
 		}
 	}
 	zfs_rangelock_exit(lr);
 
 	int64_t nread = start_resid - uio.uio_resid;
 	dataset_kstats_update_read_kstats(&zv->zv_kstat, nread);
 	task_io_account_read(nread);
 
 	rw_exit(&zv->zv_suspend_lock);
 
 	if (bio && acct) {
 		blk_generic_end_io_acct(q, disk, READ, bio, start_time);
 	}
 
 	END_IO(zv, bio, rq, -error);
 }
 
 static void
 zvol_read_task(void *arg)
 {
 	zv_request_task_t *task = arg;
 	zvol_read(&task->zvr);
 	zv_request_task_free(task);
 }
 
 
 /*
  * Process a BIO or request
  *
  * Either 'bio' or 'rq' should be set depending on if we are processing a
  * bio or a request (both should not be set).
  *
  * force_sync:	Set to 0 to defer processing to a background taskq
  *			Set to 1 to process data synchronously
  */
 static void
 zvol_request_impl(zvol_state_t *zv, struct bio *bio, struct request *rq,
     boolean_t force_sync)
 {
 	fstrans_cookie_t cookie = spl_fstrans_mark();
 	uint64_t offset = io_offset(bio, rq);
 	uint64_t size = io_size(bio, rq);
 	int rw = io_data_dir(bio, rq);
 
 	if (zvol_request_sync || zv->zv_threading == B_FALSE)
 		force_sync = 1;
 
 	zv_request_t zvr = {
 		.zv = zv,
 		.bio = bio,
 		.rq = rq,
 	};
 
 	if (io_has_data(bio, rq) && offset + size > zv->zv_volsize) {
 		printk(KERN_INFO "%s: bad access: offset=%llu, size=%lu\n",
 		    zv->zv_zso->zvo_disk->disk_name,
 		    (long long unsigned)offset,
 		    (long unsigned)size);
 
 		END_IO(zv, bio, rq, -SET_ERROR(EIO));
 		goto out;
 	}
 
 	zv_request_task_t *task;
 	zv_taskq_t *ztqs = &zvol_taskqs;
 	uint_t blk_mq_hw_queue = 0;
 	uint_t tq_idx;
 	uint_t taskq_hash;
 #ifdef HAVE_BLK_MQ
 	if (rq)
+#ifdef HAVE_BLK_MQ_RQ_HCTX
 		blk_mq_hw_queue = rq->mq_hctx->queue_num;
+#else
+		blk_mq_hw_queue =
+		    rq->q->queue_hw_ctx[rq->q->mq_map[rq->cpu]]->queue_num;
+#endif
 #endif
 	taskq_hash = cityhash4((uintptr_t)zv, offset >> ZVOL_TASKQ_OFFSET_SHIFT,
 	    blk_mq_hw_queue, 0);
 	tq_idx = taskq_hash % ztqs->tqs_cnt;
 
 	if (rw == WRITE) {
 		if (unlikely(zv->zv_flags & ZVOL_RDONLY)) {
 			END_IO(zv, bio, rq, -SET_ERROR(EROFS));
 			goto out;
 		}
 
 		/*
 		 * Prevents the zvol from being suspended, or the ZIL being
 		 * concurrently opened.  Will be released after the i/o
 		 * completes.
 		 */
 		rw_enter(&zv->zv_suspend_lock, RW_READER);
 
 		/*
 		 * Open a ZIL if this is the first time we have written to this
 		 * zvol. We protect zv->zv_zilog with zv_suspend_lock rather
 		 * than zv_state_lock so that we don't need to acquire an
 		 * additional lock in this path.
 		 */
 		if (zv->zv_zilog == NULL) {
 			rw_exit(&zv->zv_suspend_lock);
 			rw_enter(&zv->zv_suspend_lock, RW_WRITER);
 			if (zv->zv_zilog == NULL) {
 				zv->zv_zilog = zil_open(zv->zv_objset,
 				    zvol_get_data, &zv->zv_kstat.dk_zil_sums);
 				zv->zv_flags |= ZVOL_WRITTEN_TO;
 				/* replay / destroy done in zvol_create_minor */
 				VERIFY0((zv->zv_zilog->zl_header->zh_flags &
 				    ZIL_REPLAY_NEEDED));
 			}
 			rw_downgrade(&zv->zv_suspend_lock);
 		}
 
 		/*
 		 * We don't want this thread to be blocked waiting for i/o to
 		 * complete, so we instead wait from a taskq callback. The
 		 * i/o may be a ZIL write (via zil_commit()), or a read of an
 		 * indirect block, or a read of a data block (if this is a
 		 * partial-block write).  We will indicate that the i/o is
 		 * complete by calling END_IO() from the taskq callback.
 		 *
 		 * This design allows the calling thread to continue and
 		 * initiate more concurrent operations by calling
 		 * zvol_request() again. There are typically only a small
 		 * number of threads available to call zvol_request() (e.g.
 		 * one per iSCSI target), so keeping the latency of
 		 * zvol_request() low is important for performance.
 		 *
 		 * The zvol_request_sync module parameter allows this
 		 * behavior to be altered, for performance evaluation
 		 * purposes.  If the callback blocks, setting
 		 * zvol_request_sync=1 will result in much worse performance.
 		 *
 		 * We can have up to zvol_threads concurrent i/o's being
 		 * processed for all zvols on the system.  This is typically
 		 * a vast improvement over the zvol_request_sync=1 behavior
 		 * of one i/o at a time per zvol.  However, an even better
 		 * design would be for zvol_request() to initiate the zio
 		 * directly, and then be notified by the zio_done callback,
 		 * which would call END_IO().  Unfortunately, the DMU/ZIL
 		 * interfaces lack this functionality (they block waiting for
 		 * the i/o to complete).
 		 */
 		if (io_is_discard(bio, rq) || io_is_secure_erase(bio, rq)) {
 			if (force_sync) {
 				zvol_discard(&zvr);
 			} else {
 				task = zv_request_task_create(zvr);
 				taskq_dispatch_ent(ztqs->tqs_taskq[tq_idx],
 				    zvol_discard_task, task, 0, &task->ent);
 			}
 		} else {
 			if (force_sync) {
 				zvol_write(&zvr);
 			} else {
 				task = zv_request_task_create(zvr);
 				taskq_dispatch_ent(ztqs->tqs_taskq[tq_idx],
 				    zvol_write_task, task, 0, &task->ent);
 			}
 		}
 	} else {
 		/*
 		 * The SCST driver, and possibly others, may issue READ I/Os
 		 * with a length of zero bytes.  These empty I/Os contain no
 		 * data and require no additional handling.
 		 */
 		if (size == 0) {
 			END_IO(zv, bio, rq, 0);
 			goto out;
 		}
 
 		rw_enter(&zv->zv_suspend_lock, RW_READER);
 
 		/* See comment in WRITE case above. */
 		if (force_sync) {
 			zvol_read(&zvr);
 		} else {
 			task = zv_request_task_create(zvr);
 			taskq_dispatch_ent(ztqs->tqs_taskq[tq_idx],
 			    zvol_read_task, task, 0, &task->ent);
 		}
 	}
 
 out:
 	spl_fstrans_unmark(cookie);
 }
 
 #ifdef HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS
 #ifdef HAVE_BDEV_SUBMIT_BIO_RETURNS_VOID
 static void
 zvol_submit_bio(struct bio *bio)
 #else
 static blk_qc_t
 zvol_submit_bio(struct bio *bio)
 #endif
 #else
 static MAKE_REQUEST_FN_RET
 zvol_request(struct request_queue *q, struct bio *bio)
 #endif
 {
 #ifdef HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS
 #if defined(HAVE_BIO_BDEV_DISK)
 	struct request_queue *q = bio->bi_bdev->bd_disk->queue;
 #else
 	struct request_queue *q = bio->bi_disk->queue;
 #endif
 #endif
 	zvol_state_t *zv = q->queuedata;
 
 	zvol_request_impl(zv, bio, NULL, 0);
 #if defined(HAVE_MAKE_REQUEST_FN_RET_QC) || \
 	defined(HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS) && \
 	!defined(HAVE_BDEV_SUBMIT_BIO_RETURNS_VOID)
 	return (BLK_QC_T_NONE);
 #endif
 }
 
 static int
 #ifdef HAVE_BLK_MODE_T
 zvol_open(struct gendisk *disk, blk_mode_t flag)
 #else
 zvol_open(struct block_device *bdev, fmode_t flag)
 #endif
 {
 	zvol_state_t *zv;
 	int error = 0;
 	boolean_t drop_suspend = B_FALSE;
 #ifndef HAVE_BLKDEV_GET_ERESTARTSYS
 	hrtime_t timeout = MSEC2NSEC(zvol_open_timeout_ms);
 	hrtime_t start = gethrtime();
 
 retry:
 #endif
 	rw_enter(&zvol_state_lock, RW_READER);
 	/*
 	 * Obtain a copy of private_data under the zvol_state_lock to make
 	 * sure that either the result of zvol free code path setting
 	 * disk->private_data to NULL is observed, or zvol_os_free()
 	 * is not called on this zv because of the positive zv_open_count.
 	 */
 #ifdef HAVE_BLK_MODE_T
 	zv = disk->private_data;
 #else
 	zv = bdev->bd_disk->private_data;
 #endif
 	if (zv == NULL) {
 		rw_exit(&zvol_state_lock);
 		return (SET_ERROR(-ENXIO));
 	}
 
 	mutex_enter(&zv->zv_state_lock);
 	/*
 	 * Make sure zvol is not suspended during first open
 	 * (hold zv_suspend_lock) and respect proper lock acquisition
 	 * ordering - zv_suspend_lock before zv_state_lock
 	 */
 	if (zv->zv_open_count == 0) {
 		if (!rw_tryenter(&zv->zv_suspend_lock, RW_READER)) {
 			mutex_exit(&zv->zv_state_lock);
 			rw_enter(&zv->zv_suspend_lock, RW_READER);
 			mutex_enter(&zv->zv_state_lock);
 			/* check to see if zv_suspend_lock is needed */
 			if (zv->zv_open_count != 0) {
 				rw_exit(&zv->zv_suspend_lock);
 			} else {
 				drop_suspend = B_TRUE;
 			}
 		} else {
 			drop_suspend = B_TRUE;
 		}
 	}
 	rw_exit(&zvol_state_lock);
 
 	ASSERT(MUTEX_HELD(&zv->zv_state_lock));
 
 	if (zv->zv_open_count == 0) {
 		boolean_t drop_namespace = B_FALSE;
 
 		ASSERT(RW_READ_HELD(&zv->zv_suspend_lock));
 
 		/*
 		 * In all other call paths the spa_namespace_lock is taken
 		 * before the bdev->bd_mutex lock.  However, on open(2)
 		 * the __blkdev_get() function calls fops->open() with the
 		 * bdev->bd_mutex lock held.  This can result in a deadlock
 		 * when zvols from one pool are used as vdevs in another.
 		 *
 		 * To prevent a lock inversion deadlock we preemptively
 		 * take the spa_namespace_lock.  Normally the lock will not
 		 * be contended and this is safe because spa_open_common()
 		 * handles the case where the caller already holds the
 		 * spa_namespace_lock.
 		 *
 		 * When the lock cannot be aquired after multiple retries
 		 * this must be the vdev on zvol deadlock case and we have
 		 * no choice but to return an error.  For 5.12 and older
 		 * kernels returning -ERESTARTSYS will result in the
 		 * bdev->bd_mutex being dropped, then reacquired, and
 		 * fops->open() being called again.  This process can be
 		 * repeated safely until both locks are acquired.  For 5.13
 		 * and newer the -ERESTARTSYS retry logic was removed from
 		 * the kernel so the only option is to return the error for
 		 * the caller to handle it.
 		 */
 		if (!mutex_owned(&spa_namespace_lock)) {
 			if (!mutex_tryenter(&spa_namespace_lock)) {
 				mutex_exit(&zv->zv_state_lock);
 				rw_exit(&zv->zv_suspend_lock);
 
 #ifdef HAVE_BLKDEV_GET_ERESTARTSYS
 				schedule();
 				return (SET_ERROR(-ERESTARTSYS));
 #else
 				if ((gethrtime() - start) > timeout)
 					return (SET_ERROR(-ERESTARTSYS));
 
 				schedule_timeout(MSEC_TO_TICK(10));
 				goto retry;
 #endif
 			} else {
 				drop_namespace = B_TRUE;
 			}
 		}
 
 		error = -zvol_first_open(zv, !(blk_mode_is_open_write(flag)));
 
 		if (drop_namespace)
 			mutex_exit(&spa_namespace_lock);
 	}
 
 	if (error == 0) {
 		if ((blk_mode_is_open_write(flag)) &&
 		    (zv->zv_flags & ZVOL_RDONLY)) {
 			if (zv->zv_open_count == 0)
 				zvol_last_close(zv);
 
 			error = SET_ERROR(-EROFS);
 		} else {
 			zv->zv_open_count++;
 		}
 	}
 
 	mutex_exit(&zv->zv_state_lock);
 	if (drop_suspend)
 		rw_exit(&zv->zv_suspend_lock);
 
 	if (error == 0)
 #ifdef HAVE_BLK_MODE_T
 		disk_check_media_change(disk);
 #else
 		zfs_check_media_change(bdev);
 #endif
 
 	return (error);
 }
 
 static void
 #ifdef HAVE_BLOCK_DEVICE_OPERATIONS_RELEASE_1ARG
 zvol_release(struct gendisk *disk)
 #else
 zvol_release(struct gendisk *disk, fmode_t unused)
 #endif
 {
 #if !defined(HAVE_BLOCK_DEVICE_OPERATIONS_RELEASE_1ARG)
 	(void) unused;
 #endif
 	zvol_state_t *zv;
 	boolean_t drop_suspend = B_TRUE;
 
 	rw_enter(&zvol_state_lock, RW_READER);
 	zv = disk->private_data;
 
 	mutex_enter(&zv->zv_state_lock);
 	ASSERT3U(zv->zv_open_count, >, 0);
 	/*
 	 * make sure zvol is not suspended during last close
 	 * (hold zv_suspend_lock) and respect proper lock acquisition
 	 * ordering - zv_suspend_lock before zv_state_lock
 	 */
 	if (zv->zv_open_count == 1) {
 		if (!rw_tryenter(&zv->zv_suspend_lock, RW_READER)) {
 			mutex_exit(&zv->zv_state_lock);
 			rw_enter(&zv->zv_suspend_lock, RW_READER);
 			mutex_enter(&zv->zv_state_lock);
 			/* check to see if zv_suspend_lock is needed */
 			if (zv->zv_open_count != 1) {
 				rw_exit(&zv->zv_suspend_lock);
 				drop_suspend = B_FALSE;
 			}
 		}
 	} else {
 		drop_suspend = B_FALSE;
 	}
 	rw_exit(&zvol_state_lock);
 
 	ASSERT(MUTEX_HELD(&zv->zv_state_lock));
 
 	zv->zv_open_count--;
 	if (zv->zv_open_count == 0) {
 		ASSERT(RW_READ_HELD(&zv->zv_suspend_lock));
 		zvol_last_close(zv);
 	}
 
 	mutex_exit(&zv->zv_state_lock);
 
 	if (drop_suspend)
 		rw_exit(&zv->zv_suspend_lock);
 }
 
 static int
 zvol_ioctl(struct block_device *bdev, fmode_t mode,
     unsigned int cmd, unsigned long arg)
 {
 	zvol_state_t *zv = bdev->bd_disk->private_data;
 	int error = 0;
 
 	ASSERT3U(zv->zv_open_count, >, 0);
 
 	switch (cmd) {
 	case BLKFLSBUF:
 #ifdef HAVE_FSYNC_BDEV
 		fsync_bdev(bdev);
 #elif defined(HAVE_SYNC_BLOCKDEV)
 		sync_blockdev(bdev);
 #else
 #error "Neither fsync_bdev() nor sync_blockdev() found"
 #endif
 		invalidate_bdev(bdev);
 		rw_enter(&zv->zv_suspend_lock, RW_READER);
 
 		if (!(zv->zv_flags & ZVOL_RDONLY))
 			txg_wait_synced(dmu_objset_pool(zv->zv_objset), 0);
 
 		rw_exit(&zv->zv_suspend_lock);
 		break;
 
 	case BLKZNAME:
 		mutex_enter(&zv->zv_state_lock);
 		error = copy_to_user((void *)arg, zv->zv_name, MAXNAMELEN);
 		mutex_exit(&zv->zv_state_lock);
 		break;
 
 	default:
 		error = -ENOTTY;
 		break;
 	}
 
 	return (SET_ERROR(error));
 }
 
 #ifdef CONFIG_COMPAT
 static int
 zvol_compat_ioctl(struct block_device *bdev, fmode_t mode,
     unsigned cmd, unsigned long arg)
 {
 	return (zvol_ioctl(bdev, mode, cmd, arg));
 }
 #else
 #define	zvol_compat_ioctl	NULL
 #endif
 
 static unsigned int
 zvol_check_events(struct gendisk *disk, unsigned int clearing)
 {
 	unsigned int mask = 0;
 
 	rw_enter(&zvol_state_lock, RW_READER);
 
 	zvol_state_t *zv = disk->private_data;
 	if (zv != NULL) {
 		mutex_enter(&zv->zv_state_lock);
 		mask = zv->zv_changed ? DISK_EVENT_MEDIA_CHANGE : 0;
 		zv->zv_changed = 0;
 		mutex_exit(&zv->zv_state_lock);
 	}
 
 	rw_exit(&zvol_state_lock);
 
 	return (mask);
 }
 
 static int
 zvol_revalidate_disk(struct gendisk *disk)
 {
 	rw_enter(&zvol_state_lock, RW_READER);
 
 	zvol_state_t *zv = disk->private_data;
 	if (zv != NULL) {
 		mutex_enter(&zv->zv_state_lock);
 		set_capacity(zv->zv_zso->zvo_disk,
 		    zv->zv_volsize >> SECTOR_BITS);
 		mutex_exit(&zv->zv_state_lock);
 	}
 
 	rw_exit(&zvol_state_lock);
 
 	return (0);
 }
 
 int
 zvol_os_update_volsize(zvol_state_t *zv, uint64_t volsize)
 {
 	struct gendisk *disk = zv->zv_zso->zvo_disk;
 
 #if defined(HAVE_REVALIDATE_DISK_SIZE)
 	revalidate_disk_size(disk, zvol_revalidate_disk(disk) == 0);
 #elif defined(HAVE_REVALIDATE_DISK)
 	revalidate_disk(disk);
 #else
 	zvol_revalidate_disk(disk);
 #endif
 	return (0);
 }
 
 void
 zvol_os_clear_private(zvol_state_t *zv)
 {
 	/*
 	 * Cleared while holding zvol_state_lock as a writer
 	 * which will prevent zvol_open() from opening it.
 	 */
 	zv->zv_zso->zvo_disk->private_data = NULL;
 }
 
 /*
  * Provide a simple virtual geometry for legacy compatibility.  For devices
  * smaller than 1 MiB a small head and sector count is used to allow very
  * tiny devices.  For devices over 1 Mib a standard head and sector count
  * is used to keep the cylinders count reasonable.
  */
 static int
 zvol_getgeo(struct block_device *bdev, struct hd_geometry *geo)
 {
 	zvol_state_t *zv = bdev->bd_disk->private_data;
 	sector_t sectors;
 
 	ASSERT3U(zv->zv_open_count, >, 0);
 
 	sectors = get_capacity(zv->zv_zso->zvo_disk);
 
 	if (sectors > 2048) {
 		geo->heads = 16;
 		geo->sectors = 63;
 	} else {
 		geo->heads = 2;
 		geo->sectors = 4;
 	}
 
 	geo->start = 0;
 	geo->cylinders = sectors / (geo->heads * geo->sectors);
 
 	return (0);
 }
 
 /*
  * Why have two separate block_device_operations structs?
  *
  * Normally we'd just have one, and assign 'submit_bio' as needed.  However,
  * it's possible the user's kernel is built with CONSTIFY_PLUGIN, meaning we
  * can't just change submit_bio dynamically at runtime.  So just create two
  * separate structs to get around this.
  */
 static const struct block_device_operations zvol_ops_blk_mq = {
 	.open			= zvol_open,
 	.release		= zvol_release,
 	.ioctl			= zvol_ioctl,
 	.compat_ioctl		= zvol_compat_ioctl,
 	.check_events		= zvol_check_events,
 #ifdef HAVE_BLOCK_DEVICE_OPERATIONS_REVALIDATE_DISK
 	.revalidate_disk	= zvol_revalidate_disk,
 #endif
 	.getgeo			= zvol_getgeo,
 	.owner			= THIS_MODULE,
 };
 
 static const struct block_device_operations zvol_ops = {
 	.open			= zvol_open,
 	.release		= zvol_release,
 	.ioctl			= zvol_ioctl,
 	.compat_ioctl		= zvol_compat_ioctl,
 	.check_events		= zvol_check_events,
 #ifdef HAVE_BLOCK_DEVICE_OPERATIONS_REVALIDATE_DISK
 	.revalidate_disk	= zvol_revalidate_disk,
 #endif
 	.getgeo			= zvol_getgeo,
 	.owner			= THIS_MODULE,
 #ifdef HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS
 	.submit_bio		= zvol_submit_bio,
 #endif
 };
 
 static int
 zvol_alloc_non_blk_mq(struct zvol_state_os *zso)
 {
 #if defined(HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS)
 #if defined(HAVE_BLK_ALLOC_DISK)
 	zso->zvo_disk = blk_alloc_disk(NUMA_NO_NODE);
 	if (zso->zvo_disk == NULL)
 		return (1);
 
 	zso->zvo_disk->minors = ZVOL_MINORS;
 	zso->zvo_queue = zso->zvo_disk->queue;
 #elif defined(HAVE_BLK_ALLOC_DISK_2ARG)
 	struct gendisk *disk = blk_alloc_disk(NULL, NUMA_NO_NODE);
 	if (IS_ERR(disk)) {
 		zso->zvo_disk = NULL;
 		return (1);
 	}
 
 	zso->zvo_disk = disk;
 	zso->zvo_disk->minors = ZVOL_MINORS;
 	zso->zvo_queue = zso->zvo_disk->queue;
 #else
 	zso->zvo_queue = blk_alloc_queue(NUMA_NO_NODE);
 	if (zso->zvo_queue == NULL)
 		return (1);
 
 	zso->zvo_disk = alloc_disk(ZVOL_MINORS);
 	if (zso->zvo_disk == NULL) {
 		blk_cleanup_queue(zso->zvo_queue);
 		return (1);
 	}
 
 	zso->zvo_disk->queue = zso->zvo_queue;
 #endif /* HAVE_BLK_ALLOC_DISK */
 #else
 	zso->zvo_queue = blk_generic_alloc_queue(zvol_request, NUMA_NO_NODE);
 	if (zso->zvo_queue == NULL)
 		return (1);
 
 	zso->zvo_disk = alloc_disk(ZVOL_MINORS);
 	if (zso->zvo_disk == NULL) {
 		blk_cleanup_queue(zso->zvo_queue);
 		return (1);
 	}
 
 	zso->zvo_disk->queue = zso->zvo_queue;
 #endif /* HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS */
 	return (0);
 
 }
 
 static int
 zvol_alloc_blk_mq(zvol_state_t *zv)
 {
 #ifdef HAVE_BLK_MQ
 	struct zvol_state_os *zso = zv->zv_zso;
 
 	/* Allocate our blk-mq tag_set */
 	if (zvol_blk_mq_alloc_tag_set(zv) != 0)
 		return (1);
 
 #if defined(HAVE_BLK_ALLOC_DISK)
 	zso->zvo_disk = blk_mq_alloc_disk(&zso->tag_set, zv);
 	if (zso->zvo_disk == NULL) {
 		blk_mq_free_tag_set(&zso->tag_set);
 		return (1);
 	}
 	zso->zvo_queue = zso->zvo_disk->queue;
 	zso->zvo_disk->minors = ZVOL_MINORS;
 #elif defined(HAVE_BLK_ALLOC_DISK_2ARG)
 	struct gendisk *disk = blk_mq_alloc_disk(&zso->tag_set, NULL, zv);
 	if (IS_ERR(disk)) {
 		zso->zvo_disk = NULL;
 		blk_mq_free_tag_set(&zso->tag_set);
 		return (1);
 	}
 
 	zso->zvo_disk = disk;
 	zso->zvo_queue = zso->zvo_disk->queue;
 	zso->zvo_disk->minors = ZVOL_MINORS;
 #else
 	zso->zvo_disk = alloc_disk(ZVOL_MINORS);
 	if (zso->zvo_disk == NULL) {
 		blk_cleanup_queue(zso->zvo_queue);
 		blk_mq_free_tag_set(&zso->tag_set);
 		return (1);
 	}
 	/* Allocate queue */
 	zso->zvo_queue = blk_mq_init_queue(&zso->tag_set);
 	if (IS_ERR(zso->zvo_queue)) {
 		blk_mq_free_tag_set(&zso->tag_set);
 		return (1);
 	}
 
 	/* Our queue is now created, assign it to our disk */
 	zso->zvo_disk->queue = zso->zvo_queue;
 
 #endif
 #endif
 	return (0);
 }
 
 /*
  * Allocate memory for a new zvol_state_t and setup the required
  * request queue and generic disk structures for the block device.
  */
 static zvol_state_t *
 zvol_alloc(dev_t dev, const char *name)
 {
 	zvol_state_t *zv;
 	struct zvol_state_os *zso;
 	uint64_t volmode;
 	int ret;
 
 	if (dsl_prop_get_integer(name, "volmode", &volmode, NULL) != 0)
 		return (NULL);
 
 	if (volmode == ZFS_VOLMODE_DEFAULT)
 		volmode = zvol_volmode;
 
 	if (volmode == ZFS_VOLMODE_NONE)
 		return (NULL);
 
 	zv = kmem_zalloc(sizeof (zvol_state_t), KM_SLEEP);
 	zso = kmem_zalloc(sizeof (struct zvol_state_os), KM_SLEEP);
 	zv->zv_zso = zso;
 	zv->zv_volmode = volmode;
 
 	list_link_init(&zv->zv_next);
 	mutex_init(&zv->zv_state_lock, NULL, MUTEX_DEFAULT, NULL);
 
 #ifdef HAVE_BLK_MQ
 	zv->zv_zso->use_blk_mq = zvol_use_blk_mq;
 #endif
 
 	/*
 	 * The block layer has 3 interfaces for getting BIOs:
 	 *
 	 * 1. blk-mq request queues (new)
 	 * 2. submit_bio() (oldest)
 	 * 3. regular request queues (old).
 	 *
 	 * Each of those interfaces has two permutations:
 	 *
 	 * a) We have blk_alloc_disk()/blk_mq_alloc_disk(), which allocates
 	 *    both the disk and its queue (5.14 kernel or newer)
 	 *
 	 * b) We don't have blk_*alloc_disk(), and have to allocate the
 	 *    disk and the queue separately. (5.13 kernel or older)
 	 */
 	if (zv->zv_zso->use_blk_mq) {
 		ret = zvol_alloc_blk_mq(zv);
 		zso->zvo_disk->fops = &zvol_ops_blk_mq;
 	} else {
 		ret = zvol_alloc_non_blk_mq(zso);
 		zso->zvo_disk->fops = &zvol_ops;
 	}
 	if (ret != 0)
 		goto out_kmem;
 
 	blk_queue_set_write_cache(zso->zvo_queue, B_TRUE, B_TRUE);
 
 	/* Limit read-ahead to a single page to prevent over-prefetching. */
 	blk_queue_set_read_ahead(zso->zvo_queue, 1);
 
 	if (!zv->zv_zso->use_blk_mq) {
 		/* Disable write merging in favor of the ZIO pipeline. */
 		blk_queue_flag_set(QUEUE_FLAG_NOMERGES, zso->zvo_queue);
 	}
 
 	/* Enable /proc/diskstats */
 	blk_queue_flag_set(QUEUE_FLAG_IO_STAT, zso->zvo_queue);
 
 	zso->zvo_queue->queuedata = zv;
 	zso->zvo_dev = dev;
 	zv->zv_open_count = 0;
 	strlcpy(zv->zv_name, name, sizeof (zv->zv_name));
 
 	zfs_rangelock_init(&zv->zv_rangelock, NULL, NULL);
 	rw_init(&zv->zv_suspend_lock, NULL, RW_DEFAULT, NULL);
 
 	zso->zvo_disk->major = zvol_major;
 	zso->zvo_disk->events = DISK_EVENT_MEDIA_CHANGE;
 
 	/*
 	 * Setting ZFS_VOLMODE_DEV disables partitioning on ZVOL devices.
 	 * This is accomplished by limiting the number of minors for the
 	 * device to one and explicitly disabling partition scanning.
 	 */
 	if (volmode == ZFS_VOLMODE_DEV) {
 		zso->zvo_disk->minors = 1;
 		zso->zvo_disk->flags &= ~ZFS_GENHD_FL_EXT_DEVT;
 		zso->zvo_disk->flags |= ZFS_GENHD_FL_NO_PART;
 	}
 
 	zso->zvo_disk->first_minor = (dev & MINORMASK);
 	zso->zvo_disk->private_data = zv;
 	snprintf(zso->zvo_disk->disk_name, DISK_NAME_LEN, "%s%d",
 	    ZVOL_DEV_NAME, (dev & MINORMASK));
 
 	return (zv);
 
 out_kmem:
 	kmem_free(zso, sizeof (struct zvol_state_os));
 	kmem_free(zv, sizeof (zvol_state_t));
 	return (NULL);
 }
 
 /*
  * Cleanup then free a zvol_state_t which was created by zvol_alloc().
  * At this time, the structure is not opened by anyone, is taken off
  * the zvol_state_list, and has its private data set to NULL.
  * The zvol_state_lock is dropped.
  *
  * This function may take many milliseconds to complete (e.g. we've seen
  * it take over 256ms), due to the calls to "blk_cleanup_queue" and
  * "del_gendisk". Thus, consumers need to be careful to account for this
  * latency when calling this function.
  */
 void
 zvol_os_free(zvol_state_t *zv)
 {
 
 	ASSERT(!RW_LOCK_HELD(&zv->zv_suspend_lock));
 	ASSERT(!MUTEX_HELD(&zv->zv_state_lock));
 	ASSERT0(zv->zv_open_count);
 	ASSERT3P(zv->zv_zso->zvo_disk->private_data, ==, NULL);
 
 	rw_destroy(&zv->zv_suspend_lock);
 	zfs_rangelock_fini(&zv->zv_rangelock);
 
 	del_gendisk(zv->zv_zso->zvo_disk);
 #if defined(HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS) && \
 	(defined(HAVE_BLK_ALLOC_DISK) || defined(HAVE_BLK_ALLOC_DISK_2ARG))
 #if defined(HAVE_BLK_CLEANUP_DISK)
 	blk_cleanup_disk(zv->zv_zso->zvo_disk);
 #else
 	put_disk(zv->zv_zso->zvo_disk);
 #endif
 #else
 	blk_cleanup_queue(zv->zv_zso->zvo_queue);
 	put_disk(zv->zv_zso->zvo_disk);
 #endif
 
 #ifdef HAVE_BLK_MQ
 	if (zv->zv_zso->use_blk_mq)
 		blk_mq_free_tag_set(&zv->zv_zso->tag_set);
 #endif
 
 	ida_simple_remove(&zvol_ida,
 	    MINOR(zv->zv_zso->zvo_dev) >> ZVOL_MINOR_BITS);
 
 	mutex_destroy(&zv->zv_state_lock);
 	dataset_kstats_destroy(&zv->zv_kstat);
 
 	kmem_free(zv->zv_zso, sizeof (struct zvol_state_os));
 	kmem_free(zv, sizeof (zvol_state_t));
 }
 
 void
 zvol_wait_close(zvol_state_t *zv)
 {
 }
 
 /*
  * Create a block device minor node and setup the linkage between it
  * and the specified volume.  Once this function returns the block
  * device is live and ready for use.
  */
 int
 zvol_os_create_minor(const char *name)
 {
 	zvol_state_t *zv;
 	objset_t *os;
 	dmu_object_info_t *doi;
 	uint64_t volsize;
 	uint64_t len;
 	unsigned minor = 0;
 	int error = 0;
 	int idx;
 	uint64_t hash = zvol_name_hash(name);
 	uint64_t volthreading;
 	bool replayed_zil = B_FALSE;
 
 	if (zvol_inhibit_dev)
 		return (0);
 
 	idx = ida_simple_get(&zvol_ida, 0, 0, kmem_flags_convert(KM_SLEEP));
 	if (idx < 0)
 		return (SET_ERROR(-idx));
 	minor = idx << ZVOL_MINOR_BITS;
 	if (MINOR(minor) != minor) {
 		/* too many partitions can cause an overflow */
 		zfs_dbgmsg("zvol: create minor overflow: %s, minor %u/%u",
 		    name, minor, MINOR(minor));
 		ida_simple_remove(&zvol_ida, idx);
 		return (SET_ERROR(EINVAL));
 	}
 
 	zv = zvol_find_by_name_hash(name, hash, RW_NONE);
 	if (zv) {
 		ASSERT(MUTEX_HELD(&zv->zv_state_lock));
 		mutex_exit(&zv->zv_state_lock);
 		ida_simple_remove(&zvol_ida, idx);
 		return (SET_ERROR(EEXIST));
 	}
 
 	doi = kmem_alloc(sizeof (dmu_object_info_t), KM_SLEEP);
 
 	error = dmu_objset_own(name, DMU_OST_ZVOL, B_TRUE, B_TRUE, FTAG, &os);
 	if (error)
 		goto out_doi;
 
 	error = dmu_object_info(os, ZVOL_OBJ, doi);
 	if (error)
 		goto out_dmu_objset_disown;
 
 	error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize);
 	if (error)
 		goto out_dmu_objset_disown;
 
 	zv = zvol_alloc(MKDEV(zvol_major, minor), name);
 	if (zv == NULL) {
 		error = SET_ERROR(EAGAIN);
 		goto out_dmu_objset_disown;
 	}
 	zv->zv_hash = hash;
 
 	if (dmu_objset_is_snapshot(os))
 		zv->zv_flags |= ZVOL_RDONLY;
 
 	zv->zv_volblocksize = doi->doi_data_block_size;
 	zv->zv_volsize = volsize;
 	zv->zv_objset = os;
 
 	/* Default */
 	zv->zv_threading = B_TRUE;
 	if (dsl_prop_get_integer(name, "volthreading", &volthreading, NULL)
 	    == 0)
 		zv->zv_threading = volthreading;
 
 	set_capacity(zv->zv_zso->zvo_disk, zv->zv_volsize >> 9);
 
 	blk_queue_max_hw_sectors(zv->zv_zso->zvo_queue,
 	    (DMU_MAX_ACCESS / 4) >> 9);
 
 	if (zv->zv_zso->use_blk_mq) {
 		/*
 		 * IO requests can be really big (1MB).  When an IO request
 		 * comes in, it is passed off to zvol_read() or zvol_write()
 		 * in a new thread, where it is chunked up into 'volblocksize'
 		 * sized pieces and processed.  So for example, if the request
 		 * is a 1MB write and your volblocksize is 128k, one zvol_write
 		 * thread will take that request and sequentially do ten 128k
 		 * IOs.  This is due to the fact that the thread needs to lock
 		 * each volblocksize sized block.  So you might be wondering:
 		 * "instead of passing the whole 1MB request to one thread,
 		 * why not pass ten individual 128k chunks to ten threads and
 		 * process the whole write in parallel?"  The short answer is
 		 * that there's a sweet spot number of chunks that balances
 		 * the greater parallelism with the added overhead of more
 		 * threads. The sweet spot can be different depending on if you
 		 * have a read or write  heavy workload.  Writes typically want
 		 * high chunk counts while reads typically want lower ones.  On
 		 * a test pool with 6 NVMe drives in a 3x 2-disk mirror
 		 * configuration, with volblocksize=8k, the sweet spot for good
 		 * sequential reads and writes was at 8 chunks.
 		 */
 
 		/*
 		 * Below we tell the kernel how big we want our requests
 		 * to be.  You would think that blk_queue_io_opt() would be
 		 * used to do this since it is used to "set optimal request
 		 * size for the queue", but that doesn't seem to do
 		 * anything - the kernel still gives you huge requests
 		 * with tons of little PAGE_SIZE segments contained within it.
 		 *
 		 * Knowing that the kernel will just give you PAGE_SIZE segments
 		 * no matter what, you can say "ok, I want PAGE_SIZE byte
 		 * segments, and I want 'N' of them per request", where N is
 		 * the correct number of segments for the volblocksize and
 		 * number of chunks you want.
 		 */
 #ifdef HAVE_BLK_MQ
 		if (zvol_blk_mq_blocks_per_thread != 0) {
 			unsigned int chunks;
 			chunks = MIN(zvol_blk_mq_blocks_per_thread, UINT16_MAX);
 
 			blk_queue_max_segment_size(zv->zv_zso->zvo_queue,
 			    PAGE_SIZE);
 			blk_queue_max_segments(zv->zv_zso->zvo_queue,
 			    (zv->zv_volblocksize * chunks) / PAGE_SIZE);
 		} else {
 			/*
 			 * Special case: zvol_blk_mq_blocks_per_thread = 0
 			 * Max everything out.
 			 */
 			blk_queue_max_segments(zv->zv_zso->zvo_queue,
 			    UINT16_MAX);
 			blk_queue_max_segment_size(zv->zv_zso->zvo_queue,
 			    UINT_MAX);
 		}
 #endif
 	} else {
 		blk_queue_max_segments(zv->zv_zso->zvo_queue, UINT16_MAX);
 		blk_queue_max_segment_size(zv->zv_zso->zvo_queue, UINT_MAX);
 	}
 
 	blk_queue_physical_block_size(zv->zv_zso->zvo_queue,
 	    zv->zv_volblocksize);
 	blk_queue_io_opt(zv->zv_zso->zvo_queue, zv->zv_volblocksize);
 	blk_queue_max_discard_sectors(zv->zv_zso->zvo_queue,
 	    (zvol_max_discard_blocks * zv->zv_volblocksize) >> 9);
 	blk_queue_discard_granularity(zv->zv_zso->zvo_queue,
 	    zv->zv_volblocksize);
 #ifdef QUEUE_FLAG_DISCARD
 	blk_queue_flag_set(QUEUE_FLAG_DISCARD, zv->zv_zso->zvo_queue);
 #endif
 #ifdef QUEUE_FLAG_NONROT
 	blk_queue_flag_set(QUEUE_FLAG_NONROT, zv->zv_zso->zvo_queue);
 #endif
 #ifdef QUEUE_FLAG_ADD_RANDOM
 	blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, zv->zv_zso->zvo_queue);
 #endif
 	/* This flag was introduced in kernel version 4.12. */
 #ifdef QUEUE_FLAG_SCSI_PASSTHROUGH
 	blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, zv->zv_zso->zvo_queue);
 #endif
 
 	ASSERT3P(zv->zv_kstat.dk_kstats, ==, NULL);
 	error = dataset_kstats_create(&zv->zv_kstat, zv->zv_objset);
 	if (error)
 		goto out_dmu_objset_disown;
 	ASSERT3P(zv->zv_zilog, ==, NULL);
 	zv->zv_zilog = zil_open(os, zvol_get_data, &zv->zv_kstat.dk_zil_sums);
 	if (spa_writeable(dmu_objset_spa(os))) {
 		if (zil_replay_disable)
 			replayed_zil = zil_destroy(zv->zv_zilog, B_FALSE);
 		else
 			replayed_zil = zil_replay(os, zv, zvol_replay_vector);
 	}
 	if (replayed_zil)
 		zil_close(zv->zv_zilog);
 	zv->zv_zilog = NULL;
 
 	/*
 	 * When udev detects the addition of the device it will immediately
 	 * invoke blkid(8) to determine the type of content on the device.
 	 * Prefetching the blocks commonly scanned by blkid(8) will speed
 	 * up this process.
 	 */
 	len = MIN(zvol_prefetch_bytes, SPA_MAXBLOCKSIZE);
 	if (len > 0) {
 		dmu_prefetch(os, ZVOL_OBJ, 0, 0, len, ZIO_PRIORITY_SYNC_READ);
 		dmu_prefetch(os, ZVOL_OBJ, 0, volsize - len, len,
 		    ZIO_PRIORITY_SYNC_READ);
 	}
 
 	zv->zv_objset = NULL;
 out_dmu_objset_disown:
 	dmu_objset_disown(os, B_TRUE, FTAG);
 out_doi:
 	kmem_free(doi, sizeof (dmu_object_info_t));
 
 	/*
 	 * Keep in mind that once add_disk() is called, the zvol is
 	 * announced to the world, and zvol_open()/zvol_release() can
 	 * be called at any time. Incidentally, add_disk() itself calls
 	 * zvol_open()->zvol_first_open() and zvol_release()->zvol_last_close()
 	 * directly as well.
 	 */
 	if (error == 0) {
 		rw_enter(&zvol_state_lock, RW_WRITER);
 		zvol_insert(zv);
 		rw_exit(&zvol_state_lock);
 #ifdef HAVE_ADD_DISK_RET
 		error = add_disk(zv->zv_zso->zvo_disk);
 #else
 		add_disk(zv->zv_zso->zvo_disk);
 #endif
 	} else {
 		ida_simple_remove(&zvol_ida, idx);
 	}
 
 	return (error);
 }
 
 void
 zvol_os_rename_minor(zvol_state_t *zv, const char *newname)
 {
 	int readonly = get_disk_ro(zv->zv_zso->zvo_disk);
 
 	ASSERT(RW_LOCK_HELD(&zvol_state_lock));
 	ASSERT(MUTEX_HELD(&zv->zv_state_lock));
 
 	strlcpy(zv->zv_name, newname, sizeof (zv->zv_name));
 
 	/* move to new hashtable entry  */
 	zv->zv_hash = zvol_name_hash(zv->zv_name);
 	hlist_del(&zv->zv_hlink);
 	hlist_add_head(&zv->zv_hlink, ZVOL_HT_HEAD(zv->zv_hash));
 
 	/*
 	 * The block device's read-only state is briefly changed causing
 	 * a KOBJ_CHANGE uevent to be issued.  This ensures udev detects
 	 * the name change and fixes the symlinks.  This does not change
 	 * ZVOL_RDONLY in zv->zv_flags so the actual read-only state never
 	 * changes.  This would normally be done using kobject_uevent() but
 	 * that is a GPL-only symbol which is why we need this workaround.
 	 */
 	set_disk_ro(zv->zv_zso->zvo_disk, !readonly);
 	set_disk_ro(zv->zv_zso->zvo_disk, readonly);
 
 	dataset_kstats_rename(&zv->zv_kstat, newname);
 }
 
 void
 zvol_os_set_disk_ro(zvol_state_t *zv, int flags)
 {
 
 	set_disk_ro(zv->zv_zso->zvo_disk, flags);
 }
 
 void
 zvol_os_set_capacity(zvol_state_t *zv, uint64_t capacity)
 {
 
 	set_capacity(zv->zv_zso->zvo_disk, capacity);
 }
 
 int
 zvol_init(void)
 {
 	int error;
 
 	/*
 	 * zvol_threads is the module param the user passes in.
 	 *
 	 * zvol_actual_threads is what we use internally, since the user can
 	 * pass zvol_thread = 0 to mean "use all the CPUs" (the default).
 	 */
 	static unsigned int zvol_actual_threads;
 
 	if (zvol_threads == 0) {
 		/*
 		 * See dde9380a1 for why 32 was chosen here.  This should
 		 * probably be refined to be some multiple of the number
 		 * of CPUs.
 		 */
 		zvol_actual_threads = MAX(num_online_cpus(), 32);
 	} else {
 		zvol_actual_threads = MIN(MAX(zvol_threads, 1), 1024);
 	}
 
 	/*
 	 * Use atleast 32 zvol_threads but for many core system,
 	 * prefer 6 threads per taskq, but no more taskqs
 	 * than threads in them on large systems.
 	 *
 	 *                 taskq   total
 	 * cpus    taskqs  threads threads
 	 * ------- ------- ------- -------
 	 * 1       1       32       32
 	 * 2       1       32       32
 	 * 4       1       32       32
 	 * 8       2       16       32
 	 * 16      3       11       33
 	 * 32      5       7        35
 	 * 64      8       8        64
 	 * 128     11      12       132
 	 * 256     16      16       256
 	 */
 	zv_taskq_t *ztqs = &zvol_taskqs;
 	uint_t num_tqs = MIN(num_online_cpus(), zvol_num_taskqs);
 	if (num_tqs == 0) {
 		num_tqs = 1 + num_online_cpus() / 6;
 		while (num_tqs * num_tqs > zvol_actual_threads)
 			num_tqs--;
 	}
 	uint_t per_tq_thread = zvol_actual_threads / num_tqs;
 	if (per_tq_thread * num_tqs < zvol_actual_threads)
 		per_tq_thread++;
 	ztqs->tqs_cnt = num_tqs;
 	ztqs->tqs_taskq = kmem_alloc(num_tqs * sizeof (taskq_t *), KM_SLEEP);
 	error = register_blkdev(zvol_major, ZVOL_DRIVER);
 	if (error) {
 		kmem_free(ztqs->tqs_taskq, ztqs->tqs_cnt * sizeof (taskq_t *));
 		ztqs->tqs_taskq = NULL;
 		printk(KERN_INFO "ZFS: register_blkdev() failed %d\n", error);
 		return (error);
 	}
 
 #ifdef HAVE_BLK_MQ
 	if (zvol_blk_mq_queue_depth == 0) {
 		zvol_actual_blk_mq_queue_depth = BLKDEV_DEFAULT_RQ;
 	} else {
 		zvol_actual_blk_mq_queue_depth =
 		    MAX(zvol_blk_mq_queue_depth, BLKDEV_MIN_RQ);
 	}
 
 	if (zvol_blk_mq_threads == 0) {
 		zvol_blk_mq_actual_threads = num_online_cpus();
 	} else {
 		zvol_blk_mq_actual_threads = MIN(MAX(zvol_blk_mq_threads, 1),
 		    1024);
 	}
 #endif
 	for (uint_t i = 0; i < num_tqs; i++) {
 		char name[32];
 		(void) snprintf(name, sizeof (name), "%s_tq-%u",
 		    ZVOL_DRIVER, i);
 		ztqs->tqs_taskq[i] = taskq_create(name, per_tq_thread,
 		    maxclsyspri, per_tq_thread, INT_MAX,
 		    TASKQ_PREPOPULATE | TASKQ_DYNAMIC);
 		if (ztqs->tqs_taskq[i] == NULL) {
 			for (int j = i - 1; j >= 0; j--)
 				taskq_destroy(ztqs->tqs_taskq[j]);
 			unregister_blkdev(zvol_major, ZVOL_DRIVER);
 			kmem_free(ztqs->tqs_taskq, ztqs->tqs_cnt *
 			    sizeof (taskq_t *));
 			ztqs->tqs_taskq = NULL;
 			return (-ENOMEM);
 		}
 	}
 
 	zvol_init_impl();
 	ida_init(&zvol_ida);
 	return (0);
 }
 
 void
 zvol_fini(void)
 {
 	zv_taskq_t *ztqs = &zvol_taskqs;
 	zvol_fini_impl();
 	unregister_blkdev(zvol_major, ZVOL_DRIVER);
 
 	if (ztqs->tqs_taskq == NULL) {
 		ASSERT3U(ztqs->tqs_cnt, ==, 0);
 	} else {
 		for (uint_t i = 0; i < ztqs->tqs_cnt; i++) {
 			ASSERT3P(ztqs->tqs_taskq[i], !=, NULL);
 			taskq_destroy(ztqs->tqs_taskq[i]);
 		}
 		kmem_free(ztqs->tqs_taskq, ztqs->tqs_cnt *
 		    sizeof (taskq_t *));
 		ztqs->tqs_taskq = NULL;
 	}
 
 	ida_destroy(&zvol_ida);
 }
 
 /* BEGIN CSTYLED */
 module_param(zvol_inhibit_dev, uint, 0644);
 MODULE_PARM_DESC(zvol_inhibit_dev, "Do not create zvol device nodes");
 
 module_param(zvol_major, uint, 0444);
 MODULE_PARM_DESC(zvol_major, "Major number for zvol device");
 
 module_param(zvol_threads, uint, 0444);
 MODULE_PARM_DESC(zvol_threads, "Number of threads to handle I/O requests. Set"
     "to 0 to use all active CPUs");
 
 module_param(zvol_request_sync, uint, 0644);
 MODULE_PARM_DESC(zvol_request_sync, "Synchronously handle bio requests");
 
 module_param(zvol_max_discard_blocks, ulong, 0444);
 MODULE_PARM_DESC(zvol_max_discard_blocks, "Max number of blocks to discard");
 
 module_param(zvol_num_taskqs, uint, 0444);
 MODULE_PARM_DESC(zvol_num_taskqs, "Number of zvol taskqs");
 
 module_param(zvol_prefetch_bytes, uint, 0644);
 MODULE_PARM_DESC(zvol_prefetch_bytes, "Prefetch N bytes at zvol start+end");
 
 module_param(zvol_volmode, uint, 0644);
 MODULE_PARM_DESC(zvol_volmode, "Default volmode property value");
 
 #ifdef HAVE_BLK_MQ
 module_param(zvol_blk_mq_queue_depth, uint, 0644);
 MODULE_PARM_DESC(zvol_blk_mq_queue_depth, "Default blk-mq queue depth");
 
 module_param(zvol_use_blk_mq, uint, 0644);
 MODULE_PARM_DESC(zvol_use_blk_mq, "Use the blk-mq API for zvols");
 
 module_param(zvol_blk_mq_blocks_per_thread, uint, 0644);
 MODULE_PARM_DESC(zvol_blk_mq_blocks_per_thread,
     "Process volblocksize blocks per thread");
 #endif
 
 #ifndef HAVE_BLKDEV_GET_ERESTARTSYS
 module_param(zvol_open_timeout_ms, uint, 0644);
 MODULE_PARM_DESC(zvol_open_timeout_ms, "Timeout for ZVOL open retries");
 #endif
 
 /* END CSTYLED */