diff --git a/contrib/bc/NEWS.md b/contrib/bc/NEWS.md index 5d0126b821a8..9a354e537d9f 100644 --- a/contrib/bc/NEWS.md +++ b/contrib/bc/NEWS.md @@ -1,1231 +1,1239 @@ # News +## 5.2.2 + +This is a production release that fixes one bug, a segmentation fault if +`argv[0]` equals `NULL`. + +This is not a critical bug; there will be no vulnerability as far as I can tell. +There is no need to update if you do not wish to. + ## 5.2.1 This is a production release that fixes two parse bugs when in POSIX standard mode. One of these bugs was due to a quirk of the POSIX grammar, and the other was because `bc` was too strict. ## 5.2.0 This is a production release that adds a new feature, fixes some bugs, and adds out-of-source builds and a `pkg-config` file for `bcl`. The new feature is the ability to turn off exiting on expressions. It is also possible to set the default using `configure.sh`. This behavior used to exist with the `BC_EXPR_EXIT` environment variable, which is now used again. Bugs fixed include: * Some possible race conditions with error handling. * Install and uninstall targets for `bcl` did not work. ## 5.1.1 This is a production release that completes a bug fix from `5.1.0`. The bug exists in all versions of `bc`. The bug was that `if` statements without `else` statements would not be handled correctly at the end of files or right before a function definition. ## 5.1.0 This is a production release with some fixes and new features. * Fixed a bug where an `if` statement without an `else` before defining a function caused an error. * Fixed a bug with the `bc` banner and `-q`. * Fixed a bug on Windows where files were not read correctly. * Added a command-line flag (`-z`) to make `bc` and `dc` print leading zeroes on numbers `-1 < x < 1`. * Added four functions to `lib2.bc` (`plz()`, `plznl()`, `pnlz()`, and `pnlznl()`) to allow printing numbers with or without leading zeros, despite the use of `-z` or not. * Added builtin functions to query global state like line length, global stacks, and leading zeroes. * Added a command-line flag (`-L`) to disable wrapping when printing numbers. * Improved builds on Windows. ## 5.0.2 This is a production release with one fix for a flaky test. If you have not experienced problems with the test suite, you do ***NOT*** need to upgrade. The test was one that tested whether `bc` fails gracefully when it can't allocate memory. Unfortunately, there are cases when Linux and FreeBSD lie and pretend to allocate the memory. The reason they do this is because a lot of programs don't use all of the memory they allocate, so those OS's usually get away with it. However, this `bc` uses all of the memory it allocates (at least at page granularity), so when it tries to use the memory, FreeBSD and Linux kill it. This only happens sometimes, however. Other times (on my machine), they do, in fact, refuse the request. So I changed the test to not test for that because I think the graceful failure code won't really change much. ## 5.0.1 This is a production release with two fixes: * Fix for the build on Mac OSX. * Fix for the build on Android. Users that do not use those platforms do ***NOT*** need to update. ## 5.0.0 This is a major production release with several changes: * Added support for OpenBSD's `pledge()` and `unveil()`. * Fixed print bug where a backslash newline combo was printed even if only one digit was left, something I blindly copied from GNU `bc`, like a fool. * Fixed bugs in the manuals. * Fixed a possible multiplication overflow in power. * Temporary numbers are garbage collected if allocation fails, and the allocation is retried. This is to make `bc` and `dc` more resilient to running out of memory. * Limited the number of temporary numbers and made the space for them static so that allocating more space for them cannot fail. * Allowed integers with non-zero `scale` to be used with power, places, and shift operators. * Added greatest common divisor and least common multiple to `lib2.bc`. * Added `SIGQUIT` handling to history. * Added a command to `dc` (`y`) to get the length of register stacks. * Fixed multi-digit bugs in `lib2.bc`. * Removed the no prompt build option. * Created settings that builders can set defaults for and users can set their preferences for. This includes the `bc` banner, resetting on `SIGINT`, TTY mode, and prompt. * Added history support to Windows. * Fixed bugs with the handling of register names in `dc`. * Fixed bugs with multi-line comments and strings in both calculators. * Added a new error type and message for `dc` when register stacks don't have enough items. * Optimized string allocation. * Made `bc` and `dc` UTF-8 capable. * Fixed a bug with `void` functions. * Fixed a misspelled symbol in `bcl`. This is technically a breaking change, which requires this to be `5.0.0`. * Added the ability for users to get the copyright banner back. * Added the ability for users to have `bc` and `dc` quit on `SIGINT`. * Added the ability for users to disable prompt and TTY mode by environment variables. * Added the ability for users to redefine keywords. This is another reason this is `5.0.0`. * Added `dc`'s modular exponentiation and divmod to `bc`. * Added the ability to assign strings to variables and array elements and pass them to functions in `bc`. * Added `dc`'s asciify command and stream printing to `bc`. * Added a command to `dc` (`Y`) to get the length of an array. * Added a command to `dc` (`,`) to get the depth of the execution stack. * Added bitwise and, or, xor, left shift, right shift, reverse, left rotate, right rotate, and mod functions to `lib2.bc`. * Added the functions `s2u(x)` and `s2un(x,n)`, to `lib2.bc`. ## 4.0.2 This is a production release that fixes two bugs: 1. If no files are used and the first statement on `stdin` is invalid, `scale` would not be set to `20` even if `-l` was used. 2. When using history, `bc` failed to respond properly to `SIGSTOP` and `SIGTSTP`. ## 4.0.1 This is a production release that only adds one thing: flushing output when it is printed with a print statement. ## 4.0.0 This is a production release with many fixes, a new command-line option, and a big surprise: * A bug was fixed in `dc`'s `P` command where the item on the stack was *not* popped. * Various bugs in the manuals have been fixed. * A known bug was fixed where history did not interact well with prompts printed by user code without newlines. * A new command-line option, `-R` and `--no-read-prompt` was added to disable just the prompt when using `read()` (`bc`) or `?` (`dc`). * And finally, **official support for Windows was added**. The last item is why this is a major version bump. Currently, only one set of build options (extra math and prompt enabled, history and NLS/locale support disabled, both calculators enabled) is supported on Windows. However, both debug and release builds are supported. In addition, Windows builds are supported for the the library (`bcl`). For more details about how to build on Windows, see the [README][5] or the [build manual][13]. ## 3.3.4 This is a production release that fixes a small bug. The bug was that output was not flushed before a `read()` call, so prompts without a newline on the end were not flushed before the `read()` call. This is such a tiny bug that users only need to upgrade if they are affected. ## 3.3.3 This is a production release with one tweak and fixes for manuals. The tweak is that `length(0)` returns `1` instead of `0`. In `3.3.1`, I changed it so `length(0.x)`, where `x` could be any number of digits, returned the `scale`, but `length(0)` still returned `0` because I believe that `0` has `0` significant digits. After request of FreeBSD and considering the arguments of a mathematician, compatibility with other `bc`'s, and the expectations of users, I decided to make the change. The fixes for manuals fixed a bug where `--` was rendered as `-`. ## 3.3.2 This is a production release that fixes a divide-by-zero bug in `root()` in the [extended math library][16]. All previous versions with `root()` have the bug. ## 3.3.1 This is a production release that fixes a bug. The bug was in the reporting of number length when the value was 0. ## 3.3.0 This is a production release that changes one behavior and fixes documentation bugs. The changed behavior is the treatment of `-e` and `-f` when given through `BC_ENV_ARGS` or `DC_ENV_ARGS`. Now `bc` and `dc` do not exit when those options (or their equivalents) are given through those environment variables. However, `bc` and `dc` still exit when they or their equivalents are given on the command-line. ## 3.2.7 This is a production release that removes a small non-portable shell operation in `configure.sh`. This problem was only noticed on OpenBSD, not FreeBSD or Linux. Non-OpenBSD users do ***NOT*** need to upgrade, although NetBSD users may also need to upgrade. ## 3.2.6 This is a production release that fixes the build on FreeBSD. There was a syntax error in `configure.sh` that the Linux shell did not catch, and FreeBSD depends on the existence of `tests/all.sh`. All users that already upgraded to `3.2.5` should update to this release, with my apologies for the poor release of `3.2.5`. Other users should skip `3.2.5` in favor of this version. ## 3.2.5 This is a production release that fixes several bugs and adds a couple small things. The two most important bugs were bugs that causes `dc` to access memory out-of-bounds (crash in debug builds). This was found by upgrading to `afl++` from `afl`. Both were caused by a failure to distinguish between the same two cases. Another bug was the failure to put all of the licenses in the `LICENSE.md` file. Third, some warnings by `scan-build` were found and eliminated. This needed one big change: `bc` and `dc` now bail out as fast as possible on fatal errors instead of unwinding the stack. Fourth, the pseudo-random number now attempts to seed itself with `/dev/random` if `/dev/urandom` fails. Finally, this release has a few quality-of-life changes to the build system. The usage should not change at all; the only thing that changed was making sure the `Makefile.in` was written to rebuild properly when headers changed and to not rebuild when not necessary. ## 3.2.4 This is a production release that fixes a warning on `gcc` 6 or older, which does not have an attribute that is used. Users do ***NOT*** need to upgrade if they don't use `gcc` 6 or older. ## 3.2.3 This is a production release that fixes a bug in `gen/strgen.sh`. I recently changed `gen/strgen.c`, but I did not change `gen/strgen.sh`. Users that do not use `gen/strgen.sh` do not need to upgrade. ## 3.2.2 This is a production release that fixes a portability bug in `configure.sh`. The bug was using the GNU `find` extension `-wholename`. ## 3.2.1 This is a production release that has one fix for `bcl(3)`. It is technically not a bug fix since the behavior is undefined, but the `BclNumber`s that `bcl_divmod()` returns will be set to `BCL_ERROR_INVALID_NUM` if there is an error. Previously, they were not set. ## 3.2.0 This is a production release that has one bug fix and a major addition. The bug fix was a missing `auto` variable in the bessel `j()` function in the math library. The major addition is a way to build a version of `bc`'s math code as a library. This is done with the `-a` option to `configure.sh`. The API for the library can be read in `./manuals/bcl.3.md` or `man bcl` once the library is installed with `make install`. This library was requested by developers before I even finished version 1.0, but I could not figure out how to do it until now. If the library has API breaking changes, the major version of `bc` will be incremented. ## 3.1.6 This is a production release that fixes a new warning from Clang 12 for FreeBSD and also removes some possible undefined behavior found by UBSan that compilers did not seem to take advantage of. Users do ***NOT*** need to upgrade, if they do not want to. ## 3.1.5 This is a production release that fixes the Chinese locales (which caused `bc` to crash) and a crash caused by `bc` executing code when it should not have been able to. ***ALL USERS SHOULD UPGRADE.*** ## 3.1.4 This is a production release that fixes one bug, changes two behaviors, and removes one environment variable. The bug is like the one in the last release except it applies if files are being executed. I also made the fix more general. The behavior that was changed is that `bc` now exits when given `-e`, `-f`, `--expression` or `--file`. However, if the last one of those is `-f-` (using `stdin` as the file), `bc` does not exit. If `-f-` exists and is not the last of the `-e` and `-f` options (and equivalents), `bc` gives a fatal error and exits. Next, I removed the `BC_EXPR_EXIT` and `DC_EXPR_EXIT` environment variables since their use is not needed with the behavior change. Finally, I made it so `bc` does not print the header, though the `-q` and `--quiet` options were kept for compatibility with GNU `bc`. ## 3.1.3 This is a production release that fixes one minor bug: if `bc` was invoked like the following, it would error: ``` echo "if (1 < 3) 1" | bc ``` Unless users run into this bug, they do not need to upgrade, but it is suggested that they do. ## 3.1.2 This is a production release that adds a way to install *all* locales. Users do ***NOT*** need to upgrade. For package maintainers wishing to make use of the change, just pass `-l` to `configure.sh`. ## 3.1.1 This is a production release that adds two Spanish locales. Users do ***NOT*** need to upgrade, unless they want those locales. ## 3.1.0 This is a production release that adjusts one behavior, fixes eight bugs, and improves manpages for FreeBSD. Because this release fixes bugs, **users and package maintainers should update to this version as soon as possible**. The behavior that was adjusted was how code from the `-e` and `-f` arguments (and equivalents) were executed. They used to be executed as one big chunk, but in this release, they are now executed line-by-line. The first bug fix in how output to `stdout` was handled in `SIGINT`. If a `SIGINT` came in, the `stdout` buffer was not correctly flushed. In fact, a clean-up function was not getting called. This release fixes that bug. The second bug is in how `dc` handled input from `stdin`. This affected `bc` as well since it was a mishandling of the `stdin` buffer. The third fixed bug was that `bc` and `dc` could `abort()` (in debug mode) when receiving a `SIGTERM`. This one was a race condition with pushing and popping items onto and out of vectors. The fourth bug fixed was that `bc` could leave extra items on the stack and thus, not properly clean up some memory. (The memory would still get `free()`'ed, but it would not be `free()`'ed when it could have been.) The next two bugs were bugs in `bc`'s parser that caused crashes when executing the resulting code. The last two bugs were crashes in `dc` that resulted from mishandling of strings. The manpage improvement was done by switching from [ronn][20] to [Pandoc][21] to generate manpages. Pandoc generates much cleaner manpages and doesn't leave blank lines where they shouldn't be. ## 3.0.3 This is a production release that adds one new feature: specific manpages. Before this release, `bc` and `dc` only used one manpage each that referred to various build options. This release changes it so there is one manpage set per relevant build type. Each manual only has information about its particular build, and `configure.sh` selects the correct set for install. ## 3.0.2 This is a production release that adds `utf8` locale symlinks and removes an unused `auto` variable from the `ceil()` function in the [extended math library][16]. Users do ***NOT*** need to update unless they want the locales. ## 3.0.1 This is a production release with two small changes. Users do ***NOT*** need to upgrade to this release; however, if they haven't upgraded to `3.0.0` yet, it may be worthwhile to upgrade to this release. The first change is fixing a compiler warning on FreeBSD with strict warnings on. The second change is to make the new implementation of `ceil()` in `lib2.bc` much more efficient. ## 3.0.0 *Notes for package maintainers:* *First, the `2.7.0` release series saw a change in the option parsing. This made me change one error message and add a few others. The error message that was changed removed one format specifier. This means that `printf()` will seqfault on old locale files. Unfortunately, `bc` cannot use any locale files except the global ones that are already installed, so it will use the previous ones while running tests during install. **If `bc` segfaults while running arg tests when updating, it is because the global locale files have not been replaced. Make sure to either prevent the test suite from running on update or remove the old locale files before updating.** (Removing the locale files can be done with `make uninstall` or by running the [`locale_uninstall.sh`][22] script.) Once this is done, `bc` should install without problems.* *Second, **the option to build without signal support has been removed**. See below for the reasons why.* This is a production release with some small bug fixes, a few improvements, three major bug fixes, and a complete redesign of `bc`'s error and signal handling. **Users and package maintainers should update to this version as soon as possible.** The first major bug fix was in how `bc` executed files. Previously, a whole file was parsed before it was executed, but if a function is defined *after* code, especially if the function definition was actually a redefinition, and the code before the definition referred to the previous function, this `bc` would replace the function before executing any code. The fix was to make sure that all code that existed before a function definition was executed. The second major bug fix was in `bc`'s `lib2.bc`. The `ceil()` function had a bug where a `0` in the decimal place after the truncation position, caused it to output the wrong numbers if there was any non-zero digit after. The third major bug is that when passing parameters to functions, if an expression included an array (not an array element) as a parameter, it was accepted, when it should have been rejected. It is now correctly rejected. Beyond that, this `bc` got several improvements that both sped it up, improved the handling of signals, and improved the error handling. First, the requirements for `bc` were pushed back to POSIX 2008. `bc` uses one function, `strdup()`, which is not in POSIX 2001, and it is in the X/Open System Interfaces group 2001. It is, however, in POSIX 2008, and since POSIX 2008 is old enough to be supported anywhere that I care, that should be the requirement. Second, the BcVm global variable was put into `bss`. This actually slightly reduces the size of the executable from a massive code shrink, and it will stop `bc` from allocating a large set of memory when `bc` starts. Third, the default Karatsuba length was updated from 64 to 32 after making the optimization changes below, since 32 is going to be better than 64 after the changes. Fourth, Spanish translations were added. Fifth, the interpreter received a speedup to make performance on non-math-heavy scripts more competitive with GNU `bc`. While improvements did, in fact, get it much closer (see the [benchmarks][19]), it isn't quite there. There were several things done to speed up the interpreter: First, several small inefficiencies were removed. These inefficiencies included calling the function `bc_vec_pop(v)` twice instead of calling `bc_vec_npop(v, 2)`. They also included an extra function call for checking the size of the stack and checking the size of the stack more than once on several operations. Second, since the current `bc` function is the one that stores constants and strings, the program caches pointers to the current function's vectors of constants and strings to prevent needing to grab the current function in order to grab a constant or a string. Third, `bc` tries to reuse `BcNum`'s (the internal representation of arbitary-precision numbers). If a `BcNum` has the default capacity of `BC_NUM_DEF_SIZE` (32 on 64-bit and 16 on 32-bit) when it is freed, it is added to a list of available `BcNum`'s. And then, when a `BcNum` is allocated with a capacity of `BC_NUM_DEF_SIZE` and any `BcNum`'s exist on the list of reusable ones, one of those ones is grabbed instead. In order to support these changes, the `BC_NUM_DEF_SIZE` was changed. It used to be 16 bytes on all systems, but it was changed to more closely align with the minimum allocation size on Linux, which is either 32 bytes (64-bit musl), 24 bytes (64-bit glibc), 16 bytes (32-bit musl), or 12 bytes (32-bit glibc). Since these are the minimum allocation sizes, these are the sizes that would be allocated anyway, making it worth it to just use the whole space, so the value of `BC_NUM_DEF_SIZE` on 64-bit systems was changed to 32 bytes. On top of that, at least on 64-bit, `BC_NUM_DEF_SIZE` supports numbers with either 72 integer digits or 45 integer digits and 27 fractional digits. This should be more than enough for most cases since `bc`'s default `scale` values are 0 or 20, meaning that, by default, it has at most 20 fractional digits. And 45 integer digits are *a lot*; it's enough to calculate the amount of mass in the Milky Way galaxy in kilograms. Also, 72 digits is enough to calculate the diameter of the universe in Planck lengths. (For 32-bit, these numbers are either 32 integer digits or 12 integer digits and 20 fractional digits. These are also quite big, and going much bigger on a 32-bit system seems a little pointless since 12 digits is just under a trillion and 20 fractional digits is still enough for about any use since `10^-20` light years is just under a millimeter.) All of this together means that for ordinary uses, and even uses in scientific work, the default number size will be all that is needed, which means that nearly all, if not all, numbers will be reused, relieving pressure on the system allocator. I did several experiments to find the changes that had the most impact, especially with regard to reusing `BcNum`'s. One was putting `BcNum`'s into buckets according to their capacity in powers of 2 up to 512. That performed worse than `bc` did in `2.7.2`. Another was putting any `BcNum` on the reuse list that had a capacity of `BC_NUM_DEF_SIZE * 2` and reusing them for `BcNum`'s that requested `BC_NUM_DEF_SIZE`. This did reduce the amount of time spent, but it also spent a lot of time in the system allocator for an unknown reason. (When using `strace`, a bunch more `brk` calls showed up.) Just reusing `BcNum`'s that had exactly `BC_NUM_DEF_SIZE` capacity spent the smallest amount of time in both user and system time. This makes sense, especially with the changes to make `BC_NUM_DEF_SIZE` bigger on 64-bit systems, since the vast majority of numbers will only ever use numbers with a size less than or equal to `BC_NUM_DEF_SIZE`. Last of all, `bc`'s signal handling underwent a complete redesign. (This is the reason that this version is `3.0.0` and not `2.8.0`.) The change was to move from a polling approach to signal handling to an interrupt-based approach. Previously, every single loop condition had a check for signals. I suspect that this could be expensive when in tight loops. Now, the signal handler just uses `longjmp()` (actually `siglongjmp()`) to start an unwinding of the stack until it is stopped or the stack is unwound to `main()`, which just returns. If `bc` is currently executing code that cannot be safely interrupted (according to POSIX), then signals are "locked." The signal handler checks if the lock is taken, and if it is, it just sets the status to indicate that a signal arrived. Later, when the signal lock is released, the status is checked to see if a signal came in. If so, the stack unwinding starts. This design eliminates polling in favor of maintaining a stack of `jmp_buf`'s. This has its own performance implications, but it gives better interaction. And the cost of pushing and popping a `jmp_buf` in a function is paid at most twice. Most functions do not pay that price, and most of the rest only pay it once. (There are only some 3 functions in `bc` that push and pop a `jmp_buf` twice.) As a side effect of this change, I had to eliminate the use of `stdio.h` in `bc` because `stdio` does not play nice with signals and `longjmp()`. I implemented custom I/O buffer code that takes a fraction of the size. This means that static builds will be smaller, but non-static builds will be bigger, though they will have less linking time. This change is also good because my history implementation was already bypassing `stdio` for good reasons, and unifying the architecture was a win. Another reason for this change is that my `bc` should *always* behave correctly in the presence of signals like `SIGINT`, `SIGTERM`, and `SIGQUIT`. With the addition of my own I/O buffering, I needed to also make sure that the buffers were correctly flushed even when such signals happened. For this reason, I **removed the option to build without signal support**. As a nice side effect of this change, the error handling code could be changed to take advantage of the stack unwinding that signals used. This means that signals and error handling use the same code paths, which means that the stack unwinding is well-tested. (Errors are tested heavily in the test suite.) It also means that functions do not need to return a status code that ***every*** caller needs to check. This eliminated over 100 branches that simply checked return codes and then passed that return code up the stack if necessary. The code bloat savings from this is at least 1700 bytes on `x86_64`, *before* taking into account the extra code from removing `stdio.h`. ## 2.7.2 This is a production release with one major bug fix. The `length()` built-in function can take either a number or an array. If it takes an array, it returns the length of the array. Arrays can be passed by reference. The bug is that the `length()` function would not properly dereference arrays that were references. This is a bug that affects all users. **ALL USERS SHOULD UPDATE `bc`**. ## 2.7.1 This is a production release with fixes for new locales and fixes for compiler warnings on FreeBSD. ## 2.7.0 This is a production release with a bug fix for Linux, new translations, and new features. Bug fixes: * Option parsing in `BC_ENV_ARGS` was broken on Linux in 2.6.1 because `glibc`'s `getopt_long()` is broken. To get around that, and to support long options on every platform, an adapted version of [`optparse`][17] was added. Now, `bc` does not even use `getopt()`. * Parsing `BC_ENV_ARGS` with quotes now works. It isn't the smartest, but it does the job if there are spaces in file names. The following new languages are supported: * Dutch * Polish * Russian * Japanes * Simplified Chinese All of these translations were generated using [DeepL][18], so improvements are welcome. There is only one new feature: **`bc` now has a built-in pseudo-random number generator** (PRNG). The PRNG is seeded, making it useful for applications where `/dev/urandom` does not work because output needs to be reproducible. However, it also uses `/dev/urandom` to seed itself by default, so it will start with a good seed by default. It also outputs 32 bits on 32-bit platforms and 64 bits on 64-bit platforms, far better than the 15 bits of C's `rand()` and `bash`'s `$RANDOM`. In addition, the PRNG can take a bound, and when it gets a bound, it automatically adjusts to remove bias. It can also generate numbers of arbitrary size. (As of the time of release, the largest pseudo-random number generated by this `bc` was generated with a bound of `2^(2^20)`.) ***IMPORTANT: read the [`bc` manual][9] and the [`dc` manual][10] to find out exactly what guarantees the PRNG provides. The underlying implementation is not guaranteed to stay the same, but the guarantees that it provides are guaranteed to stay the same regardless of the implementation.*** On top of that, four functions were added to `bc`'s [extended math library][16] to make using the PRNG easier: * `frand(p)`: Generates a number between `[0,1)` to `p` decimal places. * `ifrand(i, p)`: Generates an integer with bound `i` and adds it to `frand(p)`. * `srand(x)`: Randomizes the sign of `x`. In other words, it flips the sign of `x` with probability `0.5`. * `brand()`: Returns a random boolean value (either `0` or `1`). ## 2.6.1 This is a production release with a bug fix for FreeBSD. The bug was that when `bc` was built without long options, it would give a fatal error on every run. This was caused by a mishandling of `optind`. ## 2.6.0 This release is a production release ***with no bugfixes***. If you do not want to upgrade, you don't have to. No source code changed; the only thing that changed was `lib2.bc`. This release adds one function to the [extended math library][16]: `p(x, y)`, which calculates `x` to the power of `y`, whether or not `y` is an integer. (The `^` operator can only accept integer powers.) This release also includes a couple of small tweaks to the [extended math library][16], mostly to fix returning numbers with too high of `scale`. ## 2.5.3 This release is a production release which addresses inconsistencies in the Portuguese locales. No `bc` code was changed. The issues were that the ISO files used different naming, and also that the files that should have been symlinks were not. I did not catch that because GitHub rendered them the exact same way. ## 2.5.2 This release is a production release. No code was changed, but the build system was changed to allow `CFLAGS` to be given to `CC`, like this: ``` CC="gcc -O3 -march=native" ./configure.sh ``` If this happens, the flags are automatically put into `CFLAGS`, and the compiler is set appropriately. In the example above this means that `CC` will be "gcc" and `CFLAGS` will be "-O3 -march=native". This behavior was added to conform to GNU autotools practices. ## 2.5.1 This is a production release which addresses portability concerns discovered in the `bc` build system. No `bc` code was changed. * Support for Solaris SPARC and AIX were added. * Minor documentations edits were performed. * An option for `configure.sh` was added to disable long options if `getopt_long()` is missing. ## 2.5.0 This is a production release with new translations. No code changed. The translations were contributed by [bugcrazy][15], and they are for Portuguese, both Portugal and Brazil locales. ## 2.4.0 This is a production release primarily aimed at improving `dc`. * A couple of copy and paste errors in the [`dc` manual][10] were fixed. * `dc` startup was optimized by making sure it didn't have to set up `bc`-only things. * The `bc` `&&` and `||` operators were made available to `dc` through the `M` and `m` commands, respectively. * `dc` macros were changed to be tail call-optimized. The last item, tail call optimization, means that if the last thing in a macro is a call to another macro, then the old macro is popped before executing the new macro. This change was made to stop `dc` from consuming more and more memory as macros are executed in a loop. The `q` and `Q` commands still respect the "hidden" macros by way of recording how many macros were removed by tail call optimization. ## 2.3.2 This is a production release meant to fix warnings in the Gentoo `ebuild` by making it possible to disable binary stripping. Other users do *not* need to upgrade. ## 2.3.1 This is a production release. It fixes a bug that caused `-1000000000 < -1` to return `0`. This only happened with negative numbers and only if the value on the left was more negative by a certain amount. That said, this bug *is* a bad bug, and needs to be fixed. **ALL USERS SHOULD UPDATE `bc`**. ## 2.3.0 This is a production release with changes to the build system. ## 2.2.0 This release is a production release. It only has new features and performance improvements. 1. The performance of `sqrt(x)` was improved. 2. The new function `root(x, n)` was added to the extended math library to calculate `n`th roots. 3. The new function `cbrt(x)` was added to the extended math library to calculate cube roots. ## 2.1.3 This is a non-critical release; it just changes the build system, and in non-breaking ways: 1. Linked locale files were changed to link to their sources with a relative link. 2. A bug in `configure.sh` that caused long option parsing to fail under `bash` was fixed. ## 2.1.2 This release is not a critical release. 1. A few codes were added to history. 2. Multiplication was optimized a bit more. 3. Addition and subtraction were both optimized a bit more. ## 2.1.1 This release contains a fix for the test suite made for Linux from Scratch: now the test suite prints `pass` when a test is passed. Other than that, there is no change in this release, so distros and other users do not need to upgrade. ## 2.1.0 This release is a production release. The following bugs were fixed: 1. A `dc` bug that caused stack mishandling was fixed. 2. A warning on OpenBSD was fixed. 3. Bugs in `ctrl+arrow` operations in history were fixed. 4. The ability to paste multiple lines in history was added. 5. A `bc` bug, mishandling of array arguments to functions, was fixed. 6. A crash caused by freeing the wrong pointer was fixed. 7. A `dc` bug where strings, in a rare case, were mishandled in parsing was fixed. In addition, the following changes were made: 1. Division was slightly optimized. 2. An option was added to the build to disable printing of prompts. 3. The special case of empty arguments is now handled. This is to prevent errors in scripts that end up passing empty arguments. 4. A harmless bug was fixed. This bug was that, with the pop instructions (mostly) removed (see below), `bc` would leave extra values on its stack for `void` functions and in a few other cases. These extra items would not affect anything put on the stack and would not cause any sort of crash or even buggy behavior, but they would cause `bc` to take more memory than it needed. On top of the above changes, the following optimizations were added: 1. The need for pop instructions in `bc` was removed. 2. Extra tests on every iteration of the interpreter loop were removed. 3. Updating function and code pointers on every iteration of the interpreter loop was changed to only updating them when necessary. 4. Extra assignments to pointers were removed. Altogether, these changes sped up the interpreter by around 2x. ***NOTE***: This is the last release with new features because this `bc` is now considered complete. From now on, only bug fixes and new translations will be added to this `bc`. ## 2.0.3 This is a production, bug-fix release. Two bugs were fixed in this release: 1. A rare and subtle signal handling bug was fixed. 2. A misbehavior on `0` to a negative power was fixed. The last bug bears some mentioning. When I originally wrote power, I did not thoroughly check its error cases; instead, I had it check if the first number was `0` and then if so, just return `0`. However, `0` to a negative power means that `1` will be divided by `0`, which is an error. I caught this, but only after I stopped being cocky. You see, sometime later, I had noticed that GNU `bc` returned an error, correctly, but I thought it was wrong simply because that's not what my `bc` did. I saw it again later and had a double take. I checked for real, finally, and found out that my `bc` was wrong all along. That was bad on me. But the bug was easy to fix, so it is fixed now. There are two other things in this release: 1. Subtraction was optimized by [Stefan Eßer][14]. 2. Division was also optimized, also by Stefan Eßer. ## 2.0.2 This release contains a fix for a possible overflow in the signal handling. I would be surprised if any users ran into it because it would only happen after 2 billion (`2^31-1`) `SIGINT`'s, but I saw it and had to fix it. ## 2.0.1 This release contains very few things that will apply to any users. 1. A slight bug in `dc`'s interactive mode was fixed. 2. A bug in the test suite that was only triggered on NetBSD was fixed. 3. **The `-P`/`--no-prompt` option** was added for users that do not want a prompt. 4. A `make check` target was added as an alias for `make test`. 5. `dc` got its own read prompt: `?> `. ## 2.0.0 This release is a production release. This release is also a little different from previous releases. From here on out, I do not plan on adding any more features to this `bc`; I believe that it is complete. However, there may be bug fix releases in the future, if I or any others manage to find bugs. This release has only a few new features: 1. `atan2(y, x)` was added to the extended math library as both `a2(y, x)` and `atan2(y, x)`. 2. Locales were fixed. 3. A **POSIX shell-compatible script was added as an alternative to compiling `gen/strgen.c`** on a host machine. More details about making the choice between the two can be found by running `./configure.sh --help` or reading the [build manual][13]. 4. Multiplication was optimized by using **diagonal multiplication**, rather than straight brute force. 5. The `locale_install.sh` script was fixed. 6. `dc` was given the ability to **use the environment variable `DC_ENV_ARGS`**. 7. `dc` was also given the ability to **use the `-i` or `--interactive`** options. 8. Printing the prompt was fixed so that it did not print when it shouldn't. 9. Signal handling was fixed. 10. **Handling of `SIGTERM` and `SIGQUIT`** was fixed. 11. The **built-in functions `maxibase()`, `maxobase()`, and `maxscale()`** (the commands `T`, `U`, `V` in `dc`, respectively) were added to allow scripts to query for the max allowable values of those globals. 12. Some incompatibilities with POSIX were fixed. In addition, this release is `2.0.0` for a big reason: the internal format for numbers changed. They used to be a `char` array. Now, they are an array of larger integers, packing more decimal digits into each integer. This has delivered ***HUGE*** performance improvements, especially for multiplication, division, and power. This `bc` should now be the fastest `bc` available, but I may be wrong. ## 1.2.8 This release contains a fix for a harmless bug (it is harmless in that it still works, but it just copies extra data) in the [`locale_install.sh`][12] script. ## 1.2.7 This version contains fixes for the build on Arch Linux. ## 1.2.6 This release removes the use of `local` in shell scripts because it's not POSIX shell-compatible, and also updates a man page that should have been updated a long time ago but was missed. ## 1.2.5 This release contains some missing locale `*.msg` files. ## 1.2.4 This release contains a few bug fixes and new French translations. ## 1.2.3 This release contains a fix for a bug: use of uninitialized data. Such data was only used when outputting an error message, but I am striving for perfection. As Michelangelo said, "Trifles make perfection, and perfection is no trifle." ## 1.2.2 This release contains fixes for OpenBSD. ## 1.2.1 This release contains bug fixes for some rare bugs. ## 1.2.0 This is a production release. There have been several changes since `1.1.0`: 1. The build system had some changes. 2. Locale support has been added. (Patches welcome for translations.) 3. **The ability to turn `ibase`, `obase`, and `scale` into stacks** was added with the `-g` command-line option. (See the [`bc` manual][9] for more details.) 4. Support for compiling on Mac OSX out of the box was added. 5. The extended math library got `t(x)`, `ceil(x)`, and some aliases. 6. The extended math library also got `r2d(x)` (for converting from radians to degrees) and `d2r(x)` (for converting from degrees to radians). This is to allow using degrees with the standard library. 7. Both calculators now accept numbers in **scientific notation**. See the [`bc` manual][9] and the [`dc` manual][10] for details. 8. Both calculators can **output in either scientific or engineering notation**. See the [`bc` manual][9] and the [`dc` manual][10] for details. 9. Some inefficiencies were removed. 10. Some bugs were fixed. 11. Some bugs in the extended library were fixed. 12. Some defects from [Coverity Scan][11] were fixed. ## 1.1.4 This release contains a fix to the build system that allows it to build on older versions of `glibc`. ## 1.1.3 This release contains a fix for a bug in the test suite where `bc` tests and `dc` tests could not be run in parallel. ## 1.1.2 This release has a fix for a history bug; the down arrow did not work. ## 1.1.1 This release fixes a bug in the `1.1.0` build system. The source is exactly the same. The bug that was fixed was a failure to install if no `EXECSUFFIX` was used. ## 1.1.0 This is a production release. However, many new features were added since `1.0`. 1. **The build system has been changed** to use a custom, POSIX shell-compatible configure script ([`configure.sh`][6]) to generate a POSIX make-compatible `Makefile`, which means that `bc` and `dc` now build out of the box on any POSIX-compatible system. 2. Out-of-memory and output errors now cause the `bc` to report the error, clean up, and die, rather than just reporting and trying to continue. 3. **Strings and constants are now garbage collected** when possible. 4. Signal handling and checking has been made more simple and more thorough. 5. `BcGlobals` was refactored into `BcVm` and `BcVm` was made global. Some procedure names were changed to reflect its difference to everything else. 6. Addition got a speed improvement. 7. Some common code for addition and multiplication was refactored into its own procedure. 8. A bug was removed where `dc` could have been selected, but the internal `#define` that returned `true` for a query about `dc` would not have returned `true`. 9. Useless calls to `bc_num_zero()` were removed. 10. **History support was added.** The history support is based off of a [UTF-8 aware fork][7] of [`linenoise`][8], which has been customized with `bc`'s own data structures and signal handling. 11. Generating C source from the math library now removes tabs from the library, shrinking the size of the executable. 12. The math library was shrunk. 13. Error handling and reporting was improved. 14. Reallocations were reduced by giving access to the request size for each operation. 15. **`abs()` (`b` command for `dc`) was added as a builtin.** 16. Both calculators were tested on FreeBSD. 17. Many obscure parse bugs were fixed. 18. Markdown and man page manuals were added, and the man pages are installed by `make install`. 19. Executable size was reduced, though the added features probably made the executable end up bigger. 20. **GNU-style array references were added as a supported feature.** 21. Allocations were reduced. 22. **New operators were added**: `$` (`$` for `dc`), `@` (`@` for `dc`), `@=`, `<<` (`H` for `dc`), `<<=`, `>>` (`h` for `dc`), and `>>=`. See the [`bc` manual][9] and the [`dc` manual][10] for more details. 23. **An extended math library was added.** This library contains code that makes it so I can replace my desktop calculator with this `bc`. See the [`bc` manual][3] for more details. 24. Support for all capital letters as numbers was added. 25. **Support for GNU-style void functions was added.** 26. A bug fix for improper handling of function parameters was added. 27. Precedence for the or (`||`) operator was changed to match GNU `bc`. 28. `dc` was given an explicit negation command. 29. `dc` was changed to be able to handle strings in arrays. ## 1.1 Release Candidate 3 This release is the eighth release candidate for 1.1, though it is the third release candidate meant as a general release candidate. The new code has not been tested as thoroughly as it should for release. ## 1.1 Release Candidate 2 This release is the seventh release candidate for 1.1, though it is the second release candidate meant as a general release candidate. The new code has not been tested as thoroughly as it should for release. ## 1.1 FreeBSD Beta 5 This release is the sixth release candidate for 1.1, though it is the fifth release candidate meant specifically to test if `bc` works on FreeBSD. The new code has not been tested as thoroughly as it should for release. ## 1.1 FreeBSD Beta 4 This release is the fifth release candidate for 1.1, though it is the fourth release candidate meant specifically to test if `bc` works on FreeBSD. The new code has not been tested as thoroughly as it should for release. ## 1.1 FreeBSD Beta 3 This release is the fourth release candidate for 1.1, though it is the third release candidate meant specifically to test if `bc` works on FreeBSD. The new code has not been tested as thoroughly as it should for release. ## 1.1 FreeBSD Beta 2 This release is the third release candidate for 1.1, though it is the second release candidate meant specifically to test if `bc` works on FreeBSD. The new code has not been tested as thoroughly as it should for release. ## 1.1 FreeBSD Beta 1 This release is the second release candidate for 1.1, though it is meant specifically to test if `bc` works on FreeBSD. The new code has not been tested as thoroughly as it should for release. ## 1.1 Release Candidate 1 This is the first release candidate for 1.1. The new code has not been tested as thoroughly as it should for release. ## 1.0 This is the first non-beta release. `bc` is ready for production use. As such, a lot has changed since 0.5. 1. `dc` has been added. It has been tested even more thoroughly than `bc` was for `0.5`. It does not have the `!` command, and for security reasons, it never will, so it is complete. 2. `bc` has been more thoroughly tested. An entire section of the test suite (for both programs) has been added to test for errors. 3. A prompt (`>>> `) has been added for interactive mode, making it easier to see inputs and outputs. 4. Interrupt handling has been improved, including elimination of race conditions (as much as possible). 5. MinGW and [Windows Subsystem for Linux][1] support has been added (see [xstatic][2] for binaries). 6. Memory leaks and errors have been eliminated (as far as ASan and Valgrind can tell). 7. Crashes have been eliminated (as far as [afl][3] can tell). 8. Karatsuba multiplication was added (and thoroughly) tested, speeding up multiplication and power by orders of magnitude. 9. Performance was further enhanced by using a "divmod" function to reduce redundant divisions and by removing superfluous `memset()` calls. 10. To switch between Karatsuba and `O(n^2)` multiplication, the config variable `BC_NUM_KARATSUBA_LEN` was added. It is set to a sane default, but the optimal number can be found with [`karatsuba.py`][4] (requires Python 3) and then configured through `make`. 11. The random math test generator script was changed to Python 3 and improved. `bc` and `dc` have together been run through 30+ million random tests. 12. All known math bugs have been fixed, including out of control memory allocations in `sine` and `cosine` (that was actually a parse bug), certain cases of infinite loop on square root, and slight inaccuracies (as much as possible; see the [README][5]) in transcendental functions. 13. Parsing has been fixed as much as possible. 14. Test coverage was improved to 94.8%. The only paths not covered are ones that happen when `malloc()` or `realloc()` fails. 15. An extension to get the length of an array was added. 16. The boolean not (`!`) had its precedence change to match negation. 17. Data input was hardened. 18. `bc` was made fully compliant with POSIX when the `-s` flag is used or `POSIXLY_CORRECT` is defined. 19. Error handling was improved. 20. `bc` now checks that files it is given are not directories. ## 1.0 Release Candidate 7 This is the seventh release candidate for 1.0. It fixes a few bugs in 1.0 Release Candidate 6. ## 1.0 Release Candidate 6 This is the sixth release candidate for 1.0. It fixes a few bugs in 1.0 Release Candidate 5. ## 1.0 Release Candidate 5 This is the fifth release candidate for 1.0. It fixes a few bugs in 1.0 Release Candidate 4. ## 1.0 Release Candidate 4 This is the fourth release candidate for 1.0. It fixes a few bugs in 1.0 Release Candidate 3. ## 1.0 Release Candidate 3 This is the third release candidate for 1.0. It fixes a few bugs in 1.0 Release Candidate 2. ## 1.0 Release Candidate 2 This is the second release candidate for 1.0. It fixes a few bugs in 1.0 Release Candidate 1. ## 1.0 Release Candidate 1 This is the first Release Candidate for 1.0. `bc` is complete, with `dc`, but it is not tested. ## 0.5 This beta release completes more features, but it is still not complete nor tested as thoroughly as necessary. ## 0.4.1 This beta release fixes a few bugs in 0.4. ## 0.4 This is a beta release. It does not have the complete set of features, and it is not thoroughly tested. [1]: https://docs.microsoft.com/en-us/windows/wsl/install-win10 [2]: https://pkg.musl.cc/bc/ [3]: http://lcamtuf.coredump.cx/afl/ [4]: ./scripts/karatsuba.py [5]: ./README.md [6]: ./configure.sh [7]: https://github.com/rain-1/linenoise-mob [8]: https://github.com/antirez/linenoise [9]: ./manuals/bc/A.1.md [10]: ./manuals/dc/A.1.md [11]: https://scan.coverity.com/projects/gavinhoward-bc [12]: ./scripts/locale_install.sh [13]: ./manuals/build.md [14]: https://github.com/stesser [15]: https://github.com/bugcrazy [16]: ./manuals/bc/A.1.md#extended-library [17]: https://github.com/skeeto/optparse [18]: https://www.deepl.com/translator [19]: ./manuals/benchmarks.md [20]: https://github.com/apjanke/ronn-ng [21]: https://pandoc.org/ [22]: ./scripts/locale_uninstall.sh diff --git a/contrib/bc/configure.sh b/contrib/bc/configure.sh index 76ffb2b9a18e..fc66ffc51066 100755 --- a/contrib/bc/configure.sh +++ b/contrib/bc/configure.sh @@ -1,1764 +1,1764 @@ #! /bin/sh # # SPDX-License-Identifier: BSD-2-Clause # # Copyright (c) 2018-2021 Gavin D. Howard and contributors. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # script="$0" scriptdir=$(dirname "$script") script=$(basename "$script") builddir=$(pwd) . "$scriptdir/scripts/functions.sh" # Simply prints the help message and quits based on the argument. -# @param val The value to pass to exit. Must be an integer. +# @param msg The help message to print. usage() { if [ $# -gt 0 ]; then _usage_val=1 printf "%s\n\n" "$1" else _usage_val=0 fi printf 'usage:\n' printf ' %s -h\n' "$script" printf ' %s --help\n' "$script" printf ' %s [-a|-bD|-dB|-c] [-CEfgGHlmMNtTvz] [-O OPT_LEVEL] [-k KARATSUBA_LEN]\\\n' "$script" printf ' [-s SETTING] [-S SETTING]\n' printf ' %s \\\n' "$script" printf ' [--library|--bc-only --disable-dc|--dc-only --disable-bc|--coverage] \\\n' printf ' [--force --debug --disable-extra-math --disable-generated-tests] \\\n' printf ' [--disable-history --disable-man-pages --disable-nls --disable-strip] \\\n' printf ' [--install-all-locales] [--opt=OPT_LEVEL] \\\n' printf ' [--karatsuba-len=KARATSUBA_LEN] \\\n' printf ' [--set-default-on=SETTING] [--set-default-off=SETTING] \\\n' printf ' [--prefix=PREFIX] [--bindir=BINDIR] [--datarootdir=DATAROOTDIR] \\\n' printf ' [--datadir=DATADIR] [--mandir=MANDIR] [--man1dir=MAN1DIR] \\\n' printf '\n' printf ' -a, --library\n' printf ' Build the libbcl instead of the programs. This is meant to be used with\n' printf ' Other software like programming languages that want to make use of the\n' printf ' parsing and math capabilities. This option will install headers using\n' printf ' `make install`.\n' printf ' -b, --bc-only\n' printf ' Build bc only. It is an error if "-d", "--dc-only", "-B", or\n' printf ' "--disable-bc" are specified too.\n' printf ' -B, --disable-bc\n' printf ' Disable bc. It is an error if "-b", "--bc-only", "-D", or "--disable-dc"\n' printf ' are specified too.\n' printf ' -c, --coverage\n' printf ' Generate test coverage code. Requires gcov and gcovr.\n' printf ' It is an error if either "-b" ("-D") or "-d" ("-B") is specified.\n' printf ' Requires a compiler that use gcc-compatible coverage options\n' printf ' -C, --disable-clean\n' printf ' Disable the clean that configure.sh does before configure.\n' printf ' -d, --dc-only\n' printf ' Build dc only. It is an error if "-b", "--bc-only", "-D", or\n' printf ' "--disable-dc" are specified too.\n' printf ' -D, --disable-dc\n' printf ' Disable dc. It is an error if "-d", "--dc-only", "-B", or "--disable-bc"\n' printf ' are specified too.\n' printf ' -E, --disable-extra-math\n' printf ' Disable extra math. This includes: "$" operator (truncate to integer),\n' printf ' "@" operator (set number of decimal places), and r(x, p) (rounding\n' printf ' function). Additionally, this option disables the extra printing\n' printf ' functions in the math library.\n' printf ' -f, --force\n' printf ' Force use of all enabled options, even if they do not work. This\n' printf ' option is to allow the maintainer a way to test that certain options\n' - printf ' are not failing invisibly. (Development only.)' + printf ' are not failing invisibly. (Development only.)\n' printf ' -g, --debug\n' printf ' Build in debug mode. Adds the "-g" flag, and if there are no\n' printf ' other CFLAGS, and "-O" was not given, this also adds the "-O0"\n' printf ' flag. If this flag is *not* given, "-DNDEBUG" is added to CPPFLAGS\n' printf ' and a strip flag is added to the link stage.\n' printf ' -G, --disable-generated-tests\n' printf ' Disable generating tests. This is for platforms that do not have a\n' printf ' GNU bc-compatible bc to generate tests.\n' printf ' -h, --help\n' printf ' Print this help message and exit.\n' printf ' -H, --disable-history\n' printf ' Disable history.\n' printf ' -k KARATSUBA_LEN, --karatsuba-len KARATSUBA_LEN\n' printf ' Set the karatsuba length to KARATSUBA_LEN (default is 64).\n' printf ' It is an error if KARATSUBA_LEN is not a number or is less than 16.\n' printf ' -l, --install-all-locales\n' printf ' Installs all locales, regardless of how many are on the system. This\n' printf ' option is useful for package maintainers who want to make sure that\n' printf ' a package contains all of the locales that end users might need.\n' printf ' -m, --enable-memcheck\n' printf ' Enable memcheck mode, to ensure no memory leaks. For development only.\n' printf ' -M, --disable-man-pages\n' printf ' Disable installing manpages.\n' printf ' -N, --disable-nls\n' printf ' Disable POSIX locale (NLS) support.\n' printf ' -O OPT_LEVEL, --opt OPT_LEVEL\n' printf ' Set the optimization level. This can also be included in the CFLAGS,\n' printf ' but it is provided, so maintainers can build optimized debug builds.\n' printf ' This is passed through to the compiler, so it must be supported.\n' printf ' -s SETTING, --set-default-on SETTING\n' printf ' Set the default named by SETTING to on. See below for possible values\n' printf ' for SETTING. For multiple instances of the -s or -S for the the same\n' printf ' setting, the last one is used.\n' printf ' -S SETTING, --set-default-off SETTING\n' printf ' Set the default named by SETTING to off. See below for possible values\n' printf ' for SETTING. For multiple instances of the -s or -S for the the same\n' printf ' setting, the last one is used.\n' printf ' -t, --enable-test-timing\n' printf ' Enable the timing of tests. This is for development only.\n' printf ' -T, --disable-strip\n' printf ' Disable stripping symbols from the compiled binary or binaries.\n' printf ' Stripping symbols only happens when debug mode is off.\n' printf ' -v, --enable-valgrind\n' printf ' Enable a build appropriate for valgrind. For development only.\n' printf ' -z, --enable-fuzz-mode\n' printf ' Enable fuzzing mode. THIS IS FOR DEVELOPMENT ONLY.\n' printf ' --prefix PREFIX\n' printf ' The prefix to install to. Overrides "$PREFIX" if it exists.\n' printf ' If PREFIX is "/usr", install path will be "/usr/bin".\n' printf ' Default is "/usr/local".\n' printf ' --bindir BINDIR\n' printf ' The directory to install binaries in. Overrides "$BINDIR" if it exists.\n' printf ' Default is "$PREFIX/bin".\n' printf ' --includedir INCLUDEDIR\n' printf ' The directory to install headers in. Overrides "$INCLUDEDIR" if it\n' printf ' exists. Default is "$PREFIX/include".\n' printf ' --libdir LIBDIR\n' printf ' The directory to install libraries in. Overrides "$LIBDIR" if it exists.\n' printf ' Default is "$PREFIX/lib".\n' printf ' --datarootdir DATAROOTDIR\n' printf ' The root location for data files. Overrides "$DATAROOTDIR" if it exists.\n' printf ' Default is "$PREFIX/share".\n' printf ' --datadir DATADIR\n' printf ' The location for data files. Overrides "$DATADIR" if it exists.\n' printf ' Default is "$DATAROOTDIR".\n' printf ' --mandir MANDIR\n' printf ' The location to install manpages to. Overrides "$MANDIR" if it exists.\n' printf ' Default is "$DATADIR/man".\n' printf ' --man1dir MAN1DIR\n' printf ' The location to install Section 1 manpages to. Overrides "$MAN1DIR" if\n' printf ' it exists. Default is "$MANDIR/man1".\n' printf ' --man3dir MAN3DIR\n' printf ' The location to install Section 3 manpages to. Overrides "$MAN3DIR" if\n' printf ' it exists. Default is "$MANDIR/man3".\n' printf '\n' printf 'In addition, the following environment variables are used:\n' printf '\n' printf ' CC C compiler. Must be compatible with POSIX c99. If there is a\n' printf ' space in the basename of the compiler, the items after the\n' printf ' first space are assumed to be compiler flags, and in that case,\n' printf ' the flags are automatically moved into CFLAGS. Default is\n' printf ' "c99".\n' printf ' HOSTCC Host C compiler. Must be compatible with POSIX c99. If there is\n' printf ' a space in the basename of the compiler, the items after the\n' printf ' first space are assumed to be compiler flags, and in the case,\n' printf ' the flags are automatically moved into HOSTCFLAGS. Default is\n' printf ' "$CC".\n' printf ' HOST_CC Same as HOSTCC. If HOSTCC also exists, it is used.\n' printf ' CFLAGS C compiler flags.\n' printf ' HOSTCFLAGS CFLAGS for HOSTCC. Default is "$CFLAGS".\n' printf ' HOST_CFLAGS Same as HOST_CFLAGS. If HOST_CFLAGS also exists, it is used.\n' printf ' CPPFLAGS C preprocessor flags. Default is "".\n' printf ' LDFLAGS Linker flags. Default is "".\n' printf ' PREFIX The prefix to install to. Default is "/usr/local".\n' printf ' If PREFIX is "/usr", install path will be "/usr/bin".\n' printf ' BINDIR The directory to install binaries in. Default is "$PREFIX/bin".\n' printf ' INCLUDEDIR The directory to install header files in. Default is\n' printf ' "$PREFIX/include".\n' printf ' LIBDIR The directory to install libraries in. Default is\n' printf ' "$PREFIX/lib".\n' printf ' DATAROOTDIR The root location for data files. Default is "$PREFIX/share".\n' printf ' DATADIR The location for data files. Default is "$DATAROOTDIR".\n' printf ' MANDIR The location to install manpages to. Default is "$DATADIR/man".\n' printf ' MAN1DIR The location to install Section 1 manpages to. Default is\n' printf ' "$MANDIR/man1".\n' printf ' MAN3DIR The location to install Section 3 manpages to. Default is\n' printf ' "$MANDIR/man3".\n' printf ' NLSPATH The location to install locale catalogs to. Must be an absolute\n' printf ' path (or contain one). This is treated the same as the POSIX\n' printf ' definition of $NLSPATH (see POSIX environment variables for\n' printf ' more information). Default is "/usr/share/locale/%%L/%%N".\n' printf ' PC_PATH The location to install pkg-config files to. Must be an\n' printf ' path or contain one. Default is the first path given by the\n' printf ' output of `pkg-config --variable=pc_path pkg-config`.\n' printf ' EXECSUFFIX The suffix to append to the executable names, used to not\n' printf ' interfere with other installed bc executables. Default is "".\n' printf ' EXECPREFIX The prefix to append to the executable names, used to not\n' printf ' interfere with other installed bc executables. Default is "".\n' printf ' DESTDIR For package creation. Default is "". If it is empty when\n' printf ' `%s` is run, it can also be passed to `make install`\n' "$script" printf ' later as an environment variable. If both are specified,\n' printf ' the one given to `%s` takes precedence.\n' "$script" printf ' LONG_BIT The number of bits in a C `long` type. This is mostly for the\n' printf ' embedded space since this `bc` uses `long`s internally for\n' printf ' overflow checking. In C99, a `long` is required to be 32 bits.\n' printf ' For most normal desktop systems, setting this is unnecessary,\n' printf ' except that 32-bit platforms with 64-bit longs may want to set\n' printf ' it to `32`. Default is the default of `LONG_BIT` for the target\n' printf ' platform. Minimum allowed is `32`. It is a build time error if\n' printf ' the specified value of `LONG_BIT` is greater than the default\n' printf ' value of `LONG_BIT` for the target platform.\n' printf ' GEN_HOST Whether to use `gen/strgen.c`, instead of `gen/strgen.sh`, to\n' printf ' produce the C files that contain the help texts as well as the\n' printf ' math libraries. By default, `gen/strgen.c` is used, compiled by\n' printf ' "$HOSTCC" and run on the host machine. Using `gen/strgen.sh`\n' printf ' removes the need to compile and run an executable on the host\n' printf ' machine since `gen/strgen.sh` is a POSIX shell script. However,\n' printf ' `gen/lib2.bc` is perilously close to 4095 characters, the max\n' printf ' supported length of a string literal in C99 (and it could be\n' printf ' added to in the future), and `gen/strgen.sh` generates a string\n' printf ' literal instead of an array, as `gen/strgen.c` does. For most\n' printf ' production-ready compilers, this limit probably is not\n' printf ' enforced, but it could be. Both options are still available for\n' printf ' this reason. If you are sure your compiler does not have the\n' printf ' limit and do not want to compile and run a binary on the host\n' printf ' machine, set this variable to "0". Any other value, or a\n' printf ' non-existent value, will cause the build system to compile and\n' printf ' run `gen/strgen.c`. Default is "".\n' printf ' GEN_EMU Emulator to run string generator code under (leave empty if not\n' printf ' necessary). This is not necessary when using `gen/strgen.sh`.\n' printf ' Default is "".\n' printf '\n' printf 'WARNING: even though `configure.sh` supports both option types, short and\n' printf 'long, it does not support handling both at the same time. Use only one type.\n' printf '\n' printf 'Settings\n' printf '========\n' printf '\n' printf 'bc and dc have some settings that, while they cannot be removed by build time\n' printf 'options, can have their defaults changed at build time by packagers. Users are\n' printf 'also able to change each setting with environment variables.\n' printf '\n' printf 'The following is a table of settings, along with their default values and the\n' printf 'environment variables users can use to change them. (For the defaults, non-zero\n' printf 'means on, and zero means off.)\n' printf '\n' printf '| Setting | Description | Default | Env Variable |\n' printf '| =============== | ==================== | ============ | ==================== |\n' printf '| bc.banner | Whether to display | 0 | BC_BANNER |\n' printf '| | the bc version | | |\n' printf '| | banner when in | | |\n' printf '| | interactive mode. | | |\n' printf '| --------------- | -------------------- | ------------ | -------------------- |\n' printf '| bc.sigint_reset | Whether SIGINT will | 1 | BC_SIGINT_RESET |\n' printf '| | reset bc, instead of | | |\n' printf '| | exiting, when in | | |\n' printf '| | interactive mode. | | |\n' printf '| --------------- | -------------------- | ------------ | -------------------- |\n' printf '| dc.sigint_reset | Whether SIGINT will | 1 | DC_SIGINT_RESET |\n' printf '| | reset dc, instead of | | |\n' printf '| | exiting, when in | | |\n' printf '| | interactive mode. | | |\n' printf '| --------------- | -------------------- | ------------ | -------------------- |\n' printf '| bc.tty_mode | Whether TTY mode for | 1 | BC_TTY_MODE |\n' printf '| | bc should be on when | | |\n' printf '| | available. | | |\n' printf '| --------------- | -------------------- | ------------ | -------------------- |\n' printf '| dc.tty_mode | Whether TTY mode for | 0 | BC_TTY_MODE |\n' printf '| | dc should be on when | | |\n' printf '| | available. | | |\n' printf '| --------------- | -------------------- | ------------ | -------------------- |\n' printf '| bc.prompt | Whether the prompt | $BC_TTY_MODE | BC_PROMPT |\n' printf '| | for bc should be on | | |\n' printf '| | in tty mode. | | |\n' printf '| --------------- | -------------------- | ------------ | -------------------- |\n' printf '| dc.prompt | Whether the prompt | $DC_TTY_MODE | DC_PROMPT |\n' printf '| | for dc should be on | | |\n' printf '| | in tty mode. | | |\n' printf '| --------------- | -------------------- | ------------ | -------------------- |\n' printf '| bc.expr_exit | Whether to exit bc | 1 | BC_EXPR_EXIT |\n' printf '| | if an expression or | | |\n' printf '| | expression file is | | |\n' printf '| | given with the -e or | | |\n' printf '| | -f options. | | |\n' printf '| --------------- | -------------------- | ------------ | -------------------- |\n' printf '| dc.expr_exit | Whether to exit dc | 1 | DC_EXPR_EXIT |\n' printf '| | if an expression or | | |\n' printf '| | expression file is | | |\n' printf '| | given with the -e or | | |\n' printf '| | -f options. | | |\n' printf '| --------------- | -------------------- | ------------ | -------------------- |\n' printf '\n' printf 'These settings are not meant to be changed on a whim. They are meant to ensure\n' printf 'that this bc and dc will conform to the expectations of the user on each\n' printf 'platform.\n' exit "$_usage_val" } # Replaces a file extension in a filename. This is used mostly to turn filenames # like `src/num.c` into `src/num.o`. In other words, it helps to link targets to # the files they depend on. # # @param file The filename. # @param ext1 The extension to replace. # @param ext2 The new extension. replace_ext() { if [ "$#" -ne 3 ]; then err_exit "Invalid number of args to $0" fi _replace_ext_file="$1" _replace_ext_ext1="$2" _replace_ext_ext2="$3" _replace_ext_result="${_replace_ext_file%.$_replace_ext_ext1}.$_replace_ext_ext2" printf '%s\n' "$_replace_ext_result" } # Replaces a file extension in every filename given in a list. The list is just # a space-separated list of words, so filenames are expected to *not* have # spaces in them. See the documentation for `replace_ext()`. # # @param files The list of space-separated filenames to replace extensions for. # @param ext1 The extension to replace. # @param ext2 The new extension. replace_exts() { if [ "$#" -ne 3 ]; then err_exit "Invalid number of args to $0" fi _replace_exts_files="$1" _replace_exts_ext1="$2" _replace_exts_ext2="$3" for _replace_exts_file in $_replace_exts_files; do _replace_exts_new_name=$(replace_ext "$_replace_exts_file" "$_replace_exts_ext1" "$_replace_exts_ext2") _replace_exts_result="$_replace_exts_result $_replace_exts_new_name" done printf '%s\n' "$_replace_exts_result" } # Finds a placeholder in @a str and replaces it. This is the workhorse of # configure.sh. It's what replaces placeholders in Makefile.in with the data # needed for the chosen build. Below, you will see a lot of calls to this # function. # # Note that needle can never contain an exclamation point. For more information, # see substring_replace() in scripts/functions.sh. # # @param str The string to find and replace placeholders in. # @param needle The placeholder name. # @param replacement The string to use to replace the placeholder. replace() { if [ "$#" -ne 3 ]; then err_exit "Invalid number of args to $0" fi _replace_str="$1" _replace_needle="$2" _replace_replacement="$3" substring_replace "$_replace_str" "%%$_replace_needle%%" "$_replace_replacement" } # This function finds all the source files that need to be built. If there is # only one argument and it is empty, then all source files are built. Otherwise, # the arguments are all assumed to be source files that should *not* be built. find_src_files() { _find_src_files_args="" if [ "$#" -ge 1 ] && [ "$1" != "" ]; then while [ "$#" -ge 1 ]; do _find_src_files_a="${1## }" shift _find_src_files_args=$(printf '%s\n%s/src/%s\n' "$_find_src_files_args" "$scriptdir" "${_find_src_files_a}") done fi _find_src_files_files=$(find "$scriptdir/src/" -depth -name "*.c" -print) _find_src_files_result="" for _find_src_files_f in $_find_src_files_files; do # If this is true, the file is part of args, and therefore, unneeded. if [ "${_find_src_files_args##*$_find_src_files_f}" != "${_find_src_files_args}" ]; then continue fi _find_src_files_result=$(printf '%s\n%s\n' "$_find_src_files_result" "$_find_src_files_f") done printf '%s\n' "$_find_src_files_result" } # This function generates a list of files to go into the Makefile. It generates # the list of object files, as well as the list of test coverage files. # # @param contents The contents of the Makefile template to put the list of # files into. gen_file_list() { if [ "$#" -lt 1 ]; then err_exit "Invalid number of args to $0" fi _gen_file_list_contents="$1" shift if [ "$#" -ge 1 ]; then _gen_file_list_unneeded="$@" else _gen_file_list_unneeded="" fi _gen_file_list_needle_src="SRC" _gen_file_list_needle_obj="OBJ" _gen_file_list_needle_gcda="GCDA" _gen_file_list_needle_gcno="GCNO" _gen_file_list_replacement=$(find_src_files $_gen_file_list_unneeded | tr '\n' ' ') _gen_file_list_contents=$(replace "$_gen_file_list_contents" \ "$_gen_file_list_needle_src" "$_gen_file_list_replacement") _gen_file_list_cbases="" for _gen_file_list_f in $_gen_file_list_replacement; do _gen_file_list_b=$(basename "$_gen_file_list_f") _gen_file_list_cbases="$_gen_file_list_cbases src/$_gen_file_list_b" done _gen_file_list_replacement=$(replace_exts "$_gen_file_list_cbases" "c" "o") _gen_file_list_contents=$(replace "$_gen_file_list_contents" \ "$_gen_file_list_needle_obj" "$_gen_file_list_replacement") _gen_file_list_replacement=$(replace_exts "$_gen_file_list_replacement" "o" "gcda") _gen_file_list_contents=$(replace "$_gen_file_list_contents" \ "$_gen_file_list_needle_gcda" "$_gen_file_list_replacement") _gen_file_list_replacement=$(replace_exts "$_gen_file_list_replacement" "gcda" "gcno") _gen_file_list_contents=$(replace "$_gen_file_list_contents" \ "$_gen_file_list_needle_gcno" "$_gen_file_list_replacement") printf '%s\n' "$_gen_file_list_contents" } # Generates the proper test targets for each test to have its own target. This # allows `make test` to run in parallel. # # @param name Which calculator to generate tests for. # @param extra_math An integer that, if non-zero, activates extra math tests. # @param time_tests An integer that, if non-zero, tells the test suite to time # the execution of each test. gen_std_tests() { _gen_std_tests_name="$1" shift _gen_std_tests_extra_math="$1" shift _gen_std_tests_time_tests="$1" shift _gen_std_tests_extra_required=$(cat "$scriptdir/tests/extra_required.txt") for _gen_std_tests_t in $(cat "$scriptdir/tests/$_gen_std_tests_name/all.txt"); do if [ "$_gen_std_tests_extra_math" -eq 0 ]; then if [ -z "${_gen_std_tests_extra_required##*$_gen_std_tests_t*}" ]; then printf 'test_%s_%s:\n\t@printf "Skipping %s %s\\n"\n\n' \ "$_gen_std_tests_name" "$_gen_std_tests_t" "$_gen_std_tests_name" \ "$_gen_std_tests_t" >> "Makefile" continue fi fi printf 'test_%s_%s:\n\t@export BC_TEST_OUTPUT_DIR="%s/tests"; sh \$(TESTSDIR)/test.sh %s %s %s %s %s\n\n' \ "$_gen_std_tests_name" "$_gen_std_tests_t" "$builddir" "$_gen_std_tests_name" \ "$_gen_std_tests_t" "$generate_tests" "$time_tests" \ "$*" >> "Makefile" done } # Generates a list of test targets that will be used as prerequisites for other # targets. # # @param name The name of the calculator to generate test targets for. gen_std_test_targets() { _gen_std_test_targets_name="$1" shift _gen_std_test_targets_tests=$(cat "$scriptdir/tests/${_gen_std_test_targets_name}/all.txt") for _gen_std_test_targets_t in $_gen_std_test_targets_tests; do printf ' test_%s_%s' "$_gen_std_test_targets_name" "$_gen_std_test_targets_t" done printf '\n' } # Generates the proper test targets for each error test to have its own target. # This allows `make test_bc_errors` and `make test_dc_errors` to run in # parallel. # -# @param name Which calculator to generate tests for. +# @param name Which calculator to generate tests for. gen_err_tests() { _gen_err_tests_name="$1" shift _gen_err_tests_fs=$(ls "$scriptdir/tests/$_gen_err_tests_name/errors/") for _gen_err_tests_t in $_gen_err_tests_fs; do printf 'test_%s_error_%s:\n\t@export BC_TEST_OUTPUT_DIR="%s/tests"; sh \$(TESTSDIR)/error.sh %s %s %s\n\n' \ "$_gen_err_tests_name" "$_gen_err_tests_t" "$builddir" "$_gen_err_tests_name" \ "$_gen_err_tests_t" "$*" >> "Makefile" done } # Generates a list of error test targets that will be used as prerequisites for # other targets. # # @param name The name of the calculator to generate test targets for. gen_err_test_targets() { _gen_err_test_targets_name="$1" shift _gen_err_test_targets_tests=$(ls "$scriptdir/tests/$_gen_err_test_targets_name/errors/") for _gen_err_test_targets_t in $_gen_err_test_targets_tests; do printf ' test_%s_error_%s' "$_gen_err_test_targets_name" "$_gen_err_test_targets_t" done printf '\n' } # Generates the proper script test targets for each script test to have its own # target. This allows `make test` to run in parallel. # # @param name Which calculator to generate tests for. # @param extra_math An integer that, if non-zero, activates extra math tests. # @param generate An integer that, if non-zero, activates generated tests. # @param time_tests An integer that, if non-zero, tells the test suite to time # the execution of each test. gen_script_tests() { _gen_script_tests_name="$1" shift _gen_script_tests_extra_math="$1" shift _gen_script_tests_generate="$1" shift _gen_script_tests_time="$1" shift _gen_script_tests_tests=$(cat "$scriptdir/tests/$_gen_script_tests_name/scripts/all.txt") for _gen_script_tests_f in $_gen_script_tests_tests; do _gen_script_tests_b=$(basename "$_gen_script_tests_f" ".${_gen_script_tests_name}") printf 'test_%s_script_%s:\n\t@export BC_TEST_OUTPUT_DIR="%s/tests"; sh \$(TESTSDIR)/script.sh %s %s %s 1 %s %s %s\n\n' \ "$_gen_script_tests_name" "$_gen_script_tests_b" "$builddir" "$_gen_script_tests_name" \ "$_gen_script_tests_f" "$_gen_script_tests_extra_math" "$_gen_script_tests_generate" \ "$_gen_script_tests_time" "$*" >> "Makefile" done } set_default() { _set_default_on="$1" shift _set_default_name="$1" shift # The reason that the variables that are being set do not have the same # non-collision avoidance that the other variables do is that we *do* want # the settings of these variables to leak out of the function. They adjust # the settings outside of the function. case "$_set_default_name" in bc.banner) bc_default_banner="$_set_default_on" ;; bc.sigint_reset) bc_default_sigint_reset="$_set_default_on" ;; dc.sigint_reset) dc_default_sigint_reset="$_set_default_on" ;; bc.tty_mode) bc_default_tty_mode="$_set_default_on" ;; dc.tty_mode) dc_default_tty_mode="$_set_default_on" ;; bc.prompt) bc_default_prompt="$_set_default_on" ;; dc.prompt) dc_default_prompt="$_set_default_on" ;; bc.expr_exit) bc_default_expr_exit="$_set_default_on";; dc.expr_exit) dc_default_expr_exit="$_set_default_on";; ?) usage "Invalid setting: $_set_default_name" ;; esac } # Generates a list of script test targets that will be used as prerequisites for # other targets. # # @param name The name of the calculator to generate script test targets for. gen_script_test_targets() { _gen_script_test_targets_name="$1" shift _gen_script_test_targets_tests=$(cat "$scriptdir/tests/$_gen_script_test_targets_name/scripts/all.txt") for _gen_script_test_targets_f in $_gen_script_test_targets_tests; do _gen_script_test_targets_b=$(basename "$_gen_script_test_targets_f" \ ".$_gen_script_test_targets_name") printf ' test_%s_script_%s' "$_gen_script_test_targets_name" \ "$_gen_script_test_targets_b" done printf '\n' } # This is a list of defaults, but it is also the list of possible options for # users to change. # # The development options are: force (force options even if they fail), valgrind # (build in a way suitable for valgrind testing), memcheck (same as valgrind), # and fuzzing (build in a way suitable for fuzzing). bc_only=0 dc_only=0 coverage=0 karatsuba_len=32 debug=0 hist=1 extra_math=1 optimization="" generate_tests=1 install_manpages=1 nls=1 force=0 strip_bin=1 all_locales=0 library=0 fuzz=0 time_tests=0 vg=0 memcheck=0 clean=1 # The empty strings are because they depend on TTY mode. If they are directly # set, though, they will be integers. We test for empty strings later. bc_default_banner=0 bc_default_sigint_reset=1 dc_default_sigint_reset=1 bc_default_tty_mode=1 dc_default_tty_mode=0 bc_default_prompt="" dc_default_prompt="" bc_default_expr_exit=1 dc_default_expr_exit=1 # getopts is a POSIX utility, but it cannot handle long options. Thus, the # handling of long options is done by hand, and that's the reason that short and # long options cannot be mixed. while getopts "abBcdDEfgGhHk:lMmNO:S:s:tTvz-" opt; do case "$opt" in a) library=1 ;; b) bc_only=1 ;; B) dc_only=1 ;; c) coverage=1 ;; C) clean=0 ;; d) dc_only=1 ;; D) bc_only=1 ;; E) extra_math=0 ;; f) force=1 ;; g) debug=1 ;; G) generate_tests=0 ;; h) usage ;; H) hist=0 ;; k) karatsuba_len="$OPTARG" ;; l) all_locales=1 ;; m) memcheck=1 ;; M) install_manpages=0 ;; N) nls=0 ;; O) optimization="$OPTARG" ;; S) set_default 0 "$OPTARG" ;; s) set_default 1 "$OPTARG" ;; t) time_tests=1 ;; T) strip_bin=0 ;; v) vg=1 ;; z) fuzz=1 ;; -) arg="$1" arg="${arg#--}" LONG_OPTARG="${arg#*=}" case $arg in help) usage ;; library) library=1 ;; bc-only) bc_only=1 ;; dc-only) dc_only=1 ;; coverage) coverage=1 ;; debug) debug=1 ;; force) force=1 ;; prefix=?*) PREFIX="$LONG_OPTARG" ;; prefix) if [ "$#" -lt 2 ]; then usage "No argument given for '--$arg' option" fi PREFIX="$2" shift ;; bindir=?*) BINDIR="$LONG_OPTARG" ;; bindir) if [ "$#" -lt 2 ]; then usage "No argument given for '--$arg' option" fi BINDIR="$2" shift ;; includedir=?*) INCLUDEDIR="$LONG_OPTARG" ;; includedir) if [ "$#" -lt 2 ]; then usage "No argument given for '--$arg' option" fi INCLUDEDIR="$2" shift ;; libdir=?*) LIBDIR="$LONG_OPTARG" ;; libdir) if [ "$#" -lt 2 ]; then usage "No argument given for '--$arg' option" fi LIBDIR="$2" shift ;; datarootdir=?*) DATAROOTDIR="$LONG_OPTARG" ;; datarootdir) if [ "$#" -lt 2 ]; then usage "No argument given for '--$arg' option" fi DATAROOTDIR="$2" shift ;; datadir=?*) DATADIR="$LONG_OPTARG" ;; datadir) if [ "$#" -lt 2 ]; then usage "No argument given for '--$arg' option" fi DATADIR="$2" shift ;; mandir=?*) MANDIR="$LONG_OPTARG" ;; mandir) if [ "$#" -lt 2 ]; then usage "No argument given for '--$arg' option" fi MANDIR="$2" shift ;; man1dir=?*) MAN1DIR="$LONG_OPTARG" ;; man1dir) if [ "$#" -lt 2 ]; then usage "No argument given for '--$arg' option" fi MAN1DIR="$2" shift ;; man3dir=?*) MAN3DIR="$LONG_OPTARG" ;; man3dir) if [ "$#" -lt 2 ]; then usage "No argument given for '--$arg' option" fi MAN3DIR="$2" shift ;; localedir=?*) LOCALEDIR="$LONG_OPTARG" ;; localedir) if [ "$#" -lt 2 ]; then usage "No argument given for '--$arg' option" fi LOCALEDIR="$2" shift ;; karatsuba-len=?*) karatsuba_len="$LONG_OPTARG" ;; karatsuba-len) if [ "$#" -lt 2 ]; then usage "No argument given for '--$arg' option" fi karatsuba_len="$1" shift ;; opt=?*) optimization="$LONG_OPTARG" ;; opt) if [ "$#" -lt 2 ]; then usage "No argument given for '--$arg' option" fi optimization="$1" shift ;; set-default-on=?*) set_default 1 "$LONG_OPTARG" ;; set-default-on) if [ "$#" -lt 2 ]; then usage "No argument given for '--$arg' option" fi set_default 1 "$1" shift ;; set-default-off=?*) set_default 0 "$LONG_OPTARG" ;; set-default-off) if [ "$#" -lt 2 ]; then usage "No argument given for '--$arg' option" fi set_default 0 "$1" shift ;; disable-bc) dc_only=1 ;; disable-dc) bc_only=1 ;; disable-clean) clean=0 ;; disable-extra-math) extra_math=0 ;; disable-generated-tests) generate_tests=0 ;; disable-history) hist=0 ;; disable-man-pages) install_manpages=0 ;; disable-nls) nls=0 ;; disable-strip) strip_bin=0 ;; enable-test-timing) time_tests=1 ;; enable-valgrind) vg=1 ;; enable-fuzz-mode) fuzz=1 ;; enable-memcheck) memcheck=1 ;; install-all-locales) all_locales=1 ;; help* | bc-only* | dc-only* | coverage* | debug*) usage "No arg allowed for --$arg option" ;; disable-bc* | disable-dc* | disable-clean*) usage "No arg allowed for --$arg option" ;; disable-extra-math*) usage "No arg allowed for --$arg option" ;; disable-generated-tests* | disable-history*) usage "No arg allowed for --$arg option" ;; disable-man-pages* | disable-nls* | disable-strip*) usage "No arg allowed for --$arg option" ;; enable-fuzz-mode* | enable-test-timing* | enable-valgrind*) usage "No arg allowed for --$arg option" ;; enable-memcheck* | install-all-locales*) usage "No arg allowed for --$arg option" ;; '') break ;; # "--" terminates argument processing * ) usage "Invalid option $LONG_OPTARG" ;; esac shift OPTIND=1 ;; ?) usage "Invalid option: $opt" ;; esac done # Sometimes, developers don't want configure.sh to do a config clean. But # sometimes they do. if [ "$clean" -ne 0 ]; then if [ -f ./Makefile ]; then make clean_config > /dev/null fi fi # It is an error to say that bc only should be built and likewise for dc. if [ "$bc_only" -eq 1 ] && [ "$dc_only" -eq 1 ]; then usage "Can only specify one of -b(-D) or -d(-B)" fi # The library is mutually exclusive to the calculators, so it's an error to # give an option for either of them. if [ "$library" -ne 0 ]; then if [ "$bc_only" -eq 1 ] || [ "$dc_only" -eq 1 ]; then usage "Must not specify -b(-D) or -d(-B) when building the library" fi fi # KARATSUBA_LEN must be an integer and must be 16 or greater. case $karatsuba_len in (*[!0-9]*|'') usage "KARATSUBA_LEN is not a number" ;; (*) ;; esac if [ "$karatsuba_len" -lt 16 ]; then usage "KARATSUBA_LEN is less than 16" fi set -e if [ -z "${LONG_BIT+set}" ]; then LONG_BIT_DEFINE="" elif [ "$LONG_BIT" -lt 32 ]; then usage "LONG_BIT is less than 32" else LONG_BIT_DEFINE="-DBC_LONG_BIT=\$(BC_LONG_BIT)" fi if [ -z "$CC" ]; then CC="c99" else # I had users complain that, if they gave CFLAGS as part of CC, which # autotools allows in its braindead way, the build would fail with an error. # I don't like adjusting for autotools, but oh well. These lines puts the # stuff after the first space into CFLAGS. ccbase=$(basename "$CC") suffix=" *" prefix="* " if [ "${ccbase%%$suffix}" != "$ccbase" ]; then ccflags="${ccbase#$prefix}" cc="${ccbase%%$suffix}" ccdir=$(dirname "$CC") if [ "$ccdir" = "." ] && [ "${CC#.}" = "$CC" ]; then ccdir="" else ccdir="$ccdir/" fi CC="${ccdir}${cc}" CFLAGS="$CFLAGS $ccflags" fi fi if [ -z "$HOSTCC" ] && [ -z "$HOST_CC" ]; then HOSTCC="$CC" elif [ -z "$HOSTCC" ]; then HOSTCC="$HOST_CC" fi if [ "$HOSTCC" != "$CC" ]; then # Like above, this splits HOSTCC and HOSTCFLAGS. ccbase=$(basename "$HOSTCC") suffix=" *" prefix="* " if [ "${ccbase%%$suffix}" != "$ccbase" ]; then ccflags="${ccbase#$prefix}" cc="${ccbase%%$suffix}" ccdir=$(dirname "$HOSTCC") if [ "$ccdir" = "." ] && [ "${HOSTCC#.}" = "$HOSTCC" ]; then ccdir="" else ccdir="$ccdir/" fi HOSTCC="${ccdir}${cc}" HOSTCFLAGS="$HOSTCFLAGS $ccflags" fi fi if [ -z "${HOSTCFLAGS+set}" ] && [ -z "${HOST_CFLAGS+set}" ]; then HOSTCFLAGS="$CFLAGS" elif [ -z "${HOSTCFLAGS+set}" ]; then HOSTCFLAGS="$HOST_CFLAGS" fi # Store these for the cross compilation detection later. OLDCFLAGS="$CFLAGS" OLDHOSTCFLAGS="$HOSTCFLAGS" link="@printf 'No link necessary\\\\n'" main_exec="BC" executable="BC_EXEC" tests="test_bc timeconst test_dc" bc_test="@export BC_TEST_OUTPUT_DIR=\"$builddir/tests\"; \$(TESTSDIR)/all.sh bc $extra_math 1 $generate_tests $time_tests \$(BC_EXEC)" bc_test_np="@export BC_TEST_OUTPUT_DIR=\"$builddir/tests\"; \$(TESTSDIR)/all.sh -n bc $extra_math 1 $generate_tests $time_tests \$(BC_EXEC)" dc_test="@export BC_TEST_OUTPUT_DIR=\"$builddir/tests\"; \$(TESTSDIR)/all.sh dc $extra_math 1 $generate_tests $time_tests \$(DC_EXEC)" dc_test_np="@export BC_TEST_OUTPUT_DIR=\"$builddir/tests\"; \$(TESTSDIR)/all.sh -n dc $extra_math 1 $generate_tests $time_tests \$(DC_EXEC)" timeconst="@export BC_TEST_OUTPUT_DIR=\"$builddir/tests\"; \$(TESTSDIR)/bc/timeconst.sh \$(TESTSDIR)/bc/scripts/timeconst.bc \$(BC_EXEC)" # In order to have cleanup at exit, we need to be in # debug mode, so don't run valgrind without that. if [ "$vg" -ne 0 ]; then debug=1 bc_test_exec='valgrind $(VALGRIND_ARGS) $(BC_EXEC)' dc_test_exec='valgrind $(VALGRIND_ARGS) $(DC_EXEC)' else bc_test_exec='$(BC_EXEC)' dc_test_exec='$(DC_EXEC)' fi test_bc_history_prereqs="test_bc_history_all" test_dc_history_prereqs="test_dc_history_all" karatsuba="@printf 'karatsuba cannot be run because one of bc or dc is not built\\\\n'" karatsuba_test="@printf 'karatsuba cannot be run because one of bc or dc is not built\\\\n'" bc_lib="\$(GEN_DIR)/lib.o" bc_help="\$(GEN_DIR)/bc_help.o" dc_help="\$(GEN_DIR)/dc_help.o" default_target_prereqs="\$(BIN) \$(OBJS)" default_target_cmd="\$(CC) \$(CFLAGS) \$(OBJS) \$(LDFLAGS) -o \$(EXEC)" default_target="\$(DC_EXEC)" second_target_prereqs="" second_target_cmd="$default_target_cmd" second_target="\$(BC_EXEC)" # This if/else if chain is for setting the defaults that change based on whether # the library is being built, bc only, dc only, or both calculators. if [ "$library" -ne 0 ]; then extra_math=1 nls=0 hist=0 bc=1 dc=1 default_target_prereqs="\$(BIN) \$(OBJ)" default_target_cmd="ar -r -cu \$(LIBBC) \$(OBJ)" default_target="\$(LIBBC)" tests="test_library" test_bc_history_prereqs=" test_bc_history_skip" test_dc_history_prereqs=" test_dc_history_skip" install_prereqs=" install_library" uninstall_prereqs=" uninstall_library" install_man_prereqs=" install_bcl_manpage" uninstall_man_prereqs=" uninstall_bcl_manpage" elif [ "$bc_only" -eq 1 ]; then bc=1 dc=0 dc_help="" executables="bc" dc_test="@printf 'No dc tests to run\\\\n'" dc_test_np="@printf 'No dc tests to run\\\\n'" test_dc_history_prereqs=" test_dc_history_skip" install_prereqs=" install_execs" install_man_prereqs=" install_bc_manpage" uninstall_prereqs=" uninstall_bc" uninstall_man_prereqs=" uninstall_bc_manpage" default_target="\$(BC_EXEC)" second_target="\$(DC_EXEC)" tests="test_bc timeconst" elif [ "$dc_only" -eq 1 ]; then bc=0 dc=1 bc_lib="" bc_help="" executables="dc" main_exec="DC" executable="DC_EXEC" bc_test="@printf 'No bc tests to run\\\\n'" bc_test_np="@printf 'No bc tests to run\\\\n'" test_bc_history_prereqs=" test_bc_history_skip" timeconst="@printf 'timeconst cannot be run because bc is not built\\\\n'" install_prereqs=" install_execs" install_man_prereqs=" install_dc_manpage" uninstall_prereqs=" uninstall_dc" uninstall_man_prereqs=" uninstall_dc_manpage" tests="test_dc" else bc=1 dc=1 executables="bc and dc" karatsuba="@\$(KARATSUBA) 30 0 \$(BC_EXEC)" karatsuba_test="@\$(KARATSUBA) 1 100 \$(BC_EXEC)" if [ "$library" -eq 0 ]; then install_prereqs=" install_execs" install_man_prereqs=" install_bc_manpage install_dc_manpage" uninstall_prereqs=" uninstall_bc uninstall_dc" uninstall_man_prereqs=" uninstall_bc_manpage uninstall_dc_manpage" else install_prereqs=" install_library install_bcl_header" install_man_prereqs=" install_bcl_manpage" uninstall_prereqs=" uninstall_library uninstall_bcl_header" uninstall_man_prereqs=" uninstall_bcl_manpage" tests="test_library" fi second_target_prereqs="$default_target_prereqs" default_target_prereqs="$second_target" default_target_cmd="\$(LINK) \$(BIN) \$(EXEC_PREFIX)\$(DC)" fi # We need specific stuff for fuzzing. if [ "$fuzz" -ne 0 ]; then debug=1 hist=0 nls=0 optimization="3" fi # This sets some necessary things for debug mode. if [ "$debug" -eq 1 ]; then if [ -z "$CFLAGS" ] && [ -z "$optimization" ]; then CFLAGS="-O0" fi CFLAGS="-g $CFLAGS" else CPPFLAGS="-DNDEBUG $CPPFLAGS" if [ "$strip_bin" -ne 0 ]; then LDFLAGS="-s $LDFLAGS" fi fi # Set optimization CFLAGS. if [ -n "$optimization" ]; then CFLAGS="-O$optimization $CFLAGS" fi # Set test coverage defaults. if [ "$coverage" -eq 1 ]; then if [ "$bc_only" -eq 1 ] || [ "$dc_only" -eq 1 ]; then usage "Can only specify -c without -b or -d" fi CFLAGS="-fprofile-arcs -ftest-coverage -g -O0 $CFLAGS" CPPFLAGS="-DNDEBUG $CPPFLAGS" COVERAGE_OUTPUT="@gcov -pabcdf \$(GCDA) \$(BC_GCDA) \$(DC_GCDA) \$(HISTORY_GCDA) \$(RAND_GCDA)" COVERAGE_OUTPUT="$COVERAGE_OUTPUT;\$(RM) -f \$(GEN)*.gc*" COVERAGE_OUTPUT="$COVERAGE_OUTPUT;gcovr --exclude-unreachable-branches --exclude-throw-branches --html-details --output index.html" COVERAGE_PREREQS=" test coverage_output" else COVERAGE_OUTPUT="@printf 'Coverage not generated\\\\n'" COVERAGE_PREREQS="" fi # Set some defaults. if [ -z "${DESTDIR+set}" ]; then destdir="" else destdir="DESTDIR = $DESTDIR" fi if [ -z "${PREFIX+set}" ]; then PREFIX="/usr/local" fi if [ -z "${BINDIR+set}" ]; then BINDIR="$PREFIX/bin" fi if [ -z "${INCLUDEDIR+set}" ]; then INCLUDEDIR="$PREFIX/include" fi if [ -z "${LIBDIR+set}" ]; then LIBDIR="$PREFIX/lib" fi if [ -z "${PC_PATH+set}" ]; then set +e command -v pkg-config > /dev/null err=$? set -e if [ "$err" -eq 0 ]; then PC_PATH=$(pkg-config --variable=pc_path pkg-config) PC_PATH="${PC_PATH%%:*}" else PC_PATH="" fi fi # Set a default for the DATAROOTDIR. This is done if either manpages will be # installed, or locales are enabled because that's probably where NLS_PATH # points. if [ "$install_manpages" -ne 0 ] || [ "$nls" -ne 0 ]; then if [ -z "${DATAROOTDIR+set}" ]; then DATAROOTDIR="$PREFIX/share" fi fi # Set defaults for manpage environment variables. if [ "$install_manpages" -ne 0 ]; then if [ -z "${DATADIR+set}" ]; then DATADIR="$DATAROOTDIR" fi if [ -z "${MANDIR+set}" ]; then MANDIR="$DATADIR/man" fi if [ -z "${MAN1DIR+set}" ]; then MAN1DIR="$MANDIR/man1" fi if [ -z "${MAN3DIR+set}" ]; then MAN3DIR="$MANDIR/man3" fi else install_man_prereqs="" uninstall_man_prereqs="" fi # Here is where we test NLS (the locale system). This is done by trying to # compile src/vm.c, which has the relevant code. If it fails, then it is # disabled. if [ "$nls" -ne 0 ]; then set +e printf 'Testing NLS...\n' flags="-DBC_ENABLE_NLS=1 -DBC_ENABLED=$bc -DDC_ENABLED=$dc" flags="$flags -DBC_ENABLE_HISTORY=$hist -DBC_ENABLE_LIBRARY=0 -DBC_ENABLE_AFL=0" flags="$flags -DBC_ENABLE_EXTRA_MATH=$extra_math -I$scriptdir/include/" flags="$flags -D_POSIX_C_SOURCE=200809L -D_XOPEN_SOURCE=700" "$CC" $CPPFLAGS $CFLAGS $flags -c "$scriptdir/src/vm.c" -o "./vm.o" > /dev/null 2>&1 err="$?" rm -rf "./vm.o" # If this errors, it is probably because of building on Windows, # and NLS is not supported on Windows, so disable it. if [ "$err" -ne 0 ]; then printf 'NLS does not work.\n' if [ $force -eq 0 ]; then printf 'Disabling NLS...\n\n' nls=0 else printf 'Forcing NLS...\n\n' fi else printf 'NLS works.\n\n' printf 'Testing gencat...\n' gencat "./en_US.cat" "$scriptdir/locales/en_US.msg" > /dev/null 2>&1 err="$?" rm -rf "./en_US.cat" if [ "$err" -ne 0 ]; then printf 'gencat does not work.\n' if [ $force -eq 0 ]; then printf 'Disabling NLS...\n\n' nls=0 else printf 'Forcing NLS...\n\n' fi else printf 'gencat works.\n\n' # It turns out that POSIX locales are really terrible, and running # gencat on one machine is not guaranteed to make those cat files # portable to another machine, so we had better warn the user here. if [ "$HOSTCC" != "$CC" ] || [ "$OLDHOSTCFLAGS" != "$OLDCFLAGS" ]; then printf 'Cross-compile detected.\n\n' printf 'WARNING: Catalog files generated with gencat may not be portable\n' printf ' across different architectures.\n\n' fi if [ -z "$NLSPATH" ]; then NLSPATH="/usr/share/locale/%L/%N" fi install_locales_prereqs=" install_locales" uninstall_locales_prereqs=" uninstall_locales" fi fi set -e else install_locales_prereqs="" uninstall_locales_prereqs="" all_locales=0 fi if [ "$nls" -ne 0 ] && [ "$all_locales" -ne 0 ]; then install_locales="\$(LOCALE_INSTALL) -l \$(NLSPATH) \$(MAIN_EXEC) \$(DESTDIR)" else install_locales="\$(LOCALE_INSTALL) \$(NLSPATH) \$(MAIN_EXEC) \$(DESTDIR)" fi # Like the above tested locale support, this tests history. if [ "$hist" -eq 1 ]; then set +e printf 'Testing history...\n' flags="-DBC_ENABLE_HISTORY=1 -DBC_ENABLED=$bc -DDC_ENABLED=$dc" flags="$flags -DBC_ENABLE_NLS=$nls -DBC_ENABLE_LIBRARY=0 -DBC_ENABLE_AFL=0" flags="$flags -DBC_ENABLE_EXTRA_MATH=$extra_math -I$scriptdir/include/" flags="$flags -D_POSIX_C_SOURCE=200809L -D_XOPEN_SOURCE=700" "$CC" $CPPFLAGS $CFLAGS $flags -c "$scriptdir/src/history.c" -o "./history.o" > /dev/null 2>&1 err="$?" rm -rf "./history.o" # If this errors, it is probably because of building on Windows, # and history is not supported on Windows, so disable it. if [ "$err" -ne 0 ]; then printf 'History does not work.\n' if [ $force -eq 0 ]; then printf 'Disabling history...\n\n' hist=0 else printf 'Forcing history...\n\n' fi else printf 'History works.\n\n' fi set -e fi # We have to disable the history tests if it is disabled or valgrind is on. if [ "$hist" -eq 0 ] || [ "$vg" -ne 0 ]; then test_bc_history_prereqs=" test_bc_history_skip" test_dc_history_prereqs=" test_dc_history_skip" history_tests="@printf 'Skipping history tests...\\\\n'" else history_tests="@printf '\$(TEST_STARS)\\\\n\\\\nRunning history tests...\\\\n\\\\n' \&\& \$(TESTSDIR)/history.sh bc -a \&\& \$(TESTSDIR)/history.sh dc -a \&\& printf '\\\\nAll history tests passed.\\\\n\\\\n\$(TEST_STARS)\\\\n'" fi # Test OpenBSD. This is not in an if statement because regardless of whatever # the user says, we need to know if we are on OpenBSD to activate _BSD_SOURCE. # No, I cannot `#define _BSD_SOURCE` in a header because OpenBSD's patched GCC # and Clang complain that that is only allowed for system headers. Sigh....So we # have to check at configure time and set it on the compiler command-line. And # we have to set it because we also set _POSIX_C_SOURCE, which OpenBSD headers # detect, and when they detect it, they turn off _BSD_SOURCE unless it is # specifically requested. set +e printf 'Testing for OpenBSD...\n' flags="-DBC_TEST_OPENBSD -DBC_ENABLE_AFL=0" "$CC" $CPPFLAGS $CFLAGS $flags "-I$scriptdir/include" -E "$scriptdir/include/status.h" > /dev/null 2>&1 err="$?" if [ "$err" -ne 0 ]; then printf 'On OpenBSD. Using _BSD_SOURCE.\n\n' bsd="-D_BSD_SOURCE" else printf 'Not on OpenBSD.\n\n' bsd="" fi if [ "$library" -eq 1 ]; then bc_lib="" fi if [ "$extra_math" -eq 1 ] && [ "$bc" -ne 0 ] && [ "$library" -eq 0 ]; then BC_LIB2_O="\$(GEN_DIR)/lib2.o" else BC_LIB2_O="" fi # These lines set the appropriate targets based on whether `gen/strgen.c` or # `gen/strgen.sh` is used. GEN="strgen" GEN_EXEC_TARGET="\$(HOSTCC) \$(HOSTCFLAGS) -o \$(GEN_EXEC) \$(GEN_C)" CLEAN_PREREQS=" clean_gen clean_coverage" if [ -z "${GEN_HOST+set}" ]; then GEN_HOST=1 else if [ "$GEN_HOST" -eq 0 ]; then GEN="strgen.sh" GEN_EXEC_TARGET="@printf 'Do not need to build gen/strgen.c\\\\n'" CLEAN_PREREQS=" clean_coverage" fi fi manpage_args="" unneeded="" headers="\$(HEADERS)" # This series of if statements figure out what source files are *not* needed. if [ "$extra_math" -eq 0 ]; then manpage_args="E" unneeded="$unneeded rand.c" else headers="$headers \$(EXTRA_MATH_HEADERS)" fi # All of these next if statements set the build type and mark certain source # files as unneeded so that they won't have targets generated for them. if [ "$hist" -eq 0 ]; then manpage_args="${manpage_args}H" unneeded="$unneeded history.c" else headers="$headers \$(HISTORY_HEADERS)" fi if [ "$nls" -eq 0 ]; then manpage_args="${manpage_args}N" fi if [ "$bc" -eq 0 ]; then unneeded="$unneeded bc.c bc_lex.c bc_parse.c" else headers="$headers \$(BC_HEADERS)" fi if [ "$dc" -eq 0 ]; then unneeded="$unneeded dc.c dc_lex.c dc_parse.c" else headers="$headers \$(DC_HEADERS)" fi # This convoluted mess does pull the version out. If you change the format of # include/version.h, you may have to change this line. version=$(cat "$scriptdir/include/version.h" | grep "VERSION " - | awk '{ print $3 }' -) if [ "$library" -ne 0 ]; then unneeded="$unneeded args.c opt.c read.c file.c main.c" unneeded="$unneeded lang.c lex.c parse.c program.c" unneeded="$unneeded bc.c bc_lex.c bc_parse.c" unneeded="$unneeded dc.c dc_lex.c dc_parse.c" headers="$headers \$(LIBRARY_HEADERS)" if [ "$PC_PATH" != "" ]; then contents=$(cat "$scriptdir/bcl.pc.in") contents=$(replace "$contents" "INCLUDEDIR" "$INCLUDEDIR") contents=$(replace "$contents" "LIBDIR" "$LIBDIR") contents=$(replace "$contents" "VERSION" "$version") printf '%s\n' "$contents" > "./bcl.pc" pkg_config_install="\$(SAFE_INSTALL) \$(PC_INSTALL_ARGS) \"\$(BCL_PC)\" \"\$(DESTDIR)\$(PC_PATH)/\$(BCL_PC)\"" pkg_config_uninstall="\$(RM) -f \"\$(DESTDIR)\$(PC_PATH)/\$(BCL_PC)\"" else pkg_config_install="" pkg_config_uninstall="" fi else unneeded="$unneeded library.c" PC_PATH="" pkg_config_install="" pkg_config_uninstall="" fi # library.c is not needed under normal circumstances. if [ "$unneeded" = "" ]; then unneeded="library.c" fi # This sets the appropriate manpage for a full build. if [ "$manpage_args" = "" ]; then manpage_args="A" fi if [ "$vg" -ne 0 ]; then memcheck=1 fi if [ "$bc_default_prompt" = "" ]; then bc_default_prompt="$bc_default_tty_mode" fi if [ "$dc_default_prompt" = "" ]; then dc_default_prompt="$dc_default_tty_mode" fi # Generate the test targets and prerequisites. bc_tests=$(gen_std_test_targets bc) bc_script_tests=$(gen_script_test_targets bc) bc_err_tests=$(gen_err_test_targets bc) dc_tests=$(gen_std_test_targets dc) dc_script_tests=$(gen_script_test_targets dc) dc_err_tests=$(gen_err_test_targets dc) # Print out the values; this is for debugging. printf 'Version: %s\n' "$version" if [ "$bc" -ne 0 ]; then printf 'Building bc\n' else printf 'Not building bc\n' fi if [ "$dc" -ne 0 ]; then printf 'Building dc\n' else printf 'Not building dc\n' fi printf '\n' printf 'BC_ENABLE_LIBRARY=%s\n\n' "$library" printf 'BC_ENABLE_HISTORY=%s\n' "$hist" printf 'BC_ENABLE_EXTRA_MATH=%s\n' "$extra_math" printf 'BC_ENABLE_NLS=%s\n' "$nls" printf 'BC_ENABLE_AFL=%s\n' "$fuzz" printf '\n' printf 'BC_NUM_KARATSUBA_LEN=%s\n' "$karatsuba_len" printf '\n' printf 'CC=%s\n' "$CC" printf 'CFLAGS=%s\n' "$CFLAGS" printf 'HOSTCC=%s\n' "$HOSTCC" printf 'HOSTCFLAGS=%s\n' "$HOSTCFLAGS" printf 'CPPFLAGS=%s\n' "$CPPFLAGS" printf 'LDFLAGS=%s\n' "$LDFLAGS" printf 'PREFIX=%s\n' "$PREFIX" printf 'BINDIR=%s\n' "$BINDIR" printf 'INCLUDEDIR=%s\n' "$INCLUDEDIR" printf 'LIBDIR=%s\n' "$LIBDIR" printf 'DATAROOTDIR=%s\n' "$DATAROOTDIR" printf 'DATADIR=%s\n' "$DATADIR" printf 'MANDIR=%s\n' "$MANDIR" printf 'MAN1DIR=%s\n' "$MAN1DIR" printf 'MAN3DIR=%s\n' "$MAN3DIR" printf 'NLSPATH=%s\n' "$NLSPATH" printf 'PC_PATH=%s\n' "$PC_PATH" printf 'EXECSUFFIX=%s\n' "$EXECSUFFIX" printf 'EXECPREFIX=%s\n' "$EXECPREFIX" printf 'DESTDIR=%s\n' "$DESTDIR" printf 'LONG_BIT=%s\n' "$LONG_BIT" printf 'GEN_HOST=%s\n' "$GEN_HOST" printf 'GEN_EMU=%s\n' "$GEN_EMU" printf '\n' printf 'Setting Defaults\n' printf '================\n' printf 'bc.banner=%s\n' "$bc_default_banner" printf 'bc.sigint_reset=%s\n' "$bc_default_sigint_reset" printf 'dc.sigint_reset=%s\n' "$dc_default_sigint_reset" printf 'bc.tty_mode=%s\n' "$bc_default_tty_mode" printf 'dc.tty_mode=%s\n' "$dc_default_tty_mode" printf 'bc.prompt=%s\n' "$bc_default_prompt" printf 'dc.prompt=%s\n' "$dc_default_prompt" printf 'bc.expr_exit=%s\n' "$bc_default_expr_exit" printf 'dc.expr_exit=%s\n' "$dc_default_expr_exit" # This is where the real work begins. This is the point at which the Makefile.in # template is edited and output to the Makefile. contents=$(cat "$scriptdir/Makefile.in") needle="WARNING" replacement='*** WARNING: Autogenerated from Makefile.in. DO NOT MODIFY ***' contents=$(replace "$contents" "$needle" "$replacement") # The contents are edited to have the list of files to build. contents=$(gen_file_list "$contents" $unneeded) SRC_TARGETS="" # This line and loop generates the individual targets for source files. I used # to just use an implicit target, but that was found to be inadequate when I # added the library. src_files=$(find_src_files $unneeded) for f in $src_files; do o=$(replace_ext "$f" "c" "o") o=$(basename "$o") SRC_TARGETS=$(printf '%s\n\nsrc/%s: src %s %s\n\t$(CC) $(CFLAGS) -o src/%s -c %s\n' \ "$SRC_TARGETS" "$o" "$headers" "$f" "$o" "$f") done # Replace all the placeholders. contents=$(replace "$contents" "ROOTDIR" "$scriptdir") contents=$(replace "$contents" "BUILDDIR" "$builddir") contents=$(replace "$contents" "HEADERS" "$headers") contents=$(replace "$contents" "BC_ENABLED" "$bc") contents=$(replace "$contents" "DC_ENABLED" "$dc") contents=$(replace "$contents" "BC_ALL_TESTS" "$bc_test") contents=$(replace "$contents" "BC_ALL_TESTS_NP" "$bc_test_np") contents=$(replace "$contents" "BC_TESTS" "$bc_tests") contents=$(replace "$contents" "BC_SCRIPT_TESTS" "$bc_script_tests") contents=$(replace "$contents" "BC_ERROR_TESTS" "$bc_err_tests") contents=$(replace "$contents" "BC_TEST_EXEC" "$bc_test_exec") contents=$(replace "$contents" "TIMECONST_ALL_TESTS" "$timeconst") contents=$(replace "$contents" "DC_ALL_TESTS" "$dc_test") contents=$(replace "$contents" "DC_ALL_TESTS_NP" "$dc_test_np") contents=$(replace "$contents" "DC_TESTS" "$dc_tests") contents=$(replace "$contents" "DC_SCRIPT_TESTS" "$dc_script_tests") contents=$(replace "$contents" "DC_ERROR_TESTS" "$dc_err_tests") contents=$(replace "$contents" "DC_TEST_EXEC" "$dc_test_exec") contents=$(replace "$contents" "BUILD_TYPE" "$manpage_args") contents=$(replace "$contents" "LIBRARY" "$library") contents=$(replace "$contents" "HISTORY" "$hist") contents=$(replace "$contents" "EXTRA_MATH" "$extra_math") contents=$(replace "$contents" "NLS" "$nls") contents=$(replace "$contents" "FUZZ" "$fuzz") contents=$(replace "$contents" "MEMCHECK" "$memcheck") contents=$(replace "$contents" "BC_LIB_O" "$bc_lib") contents=$(replace "$contents" "BC_HELP_O" "$bc_help") contents=$(replace "$contents" "DC_HELP_O" "$dc_help") contents=$(replace "$contents" "BC_LIB2_O" "$BC_LIB2_O") contents=$(replace "$contents" "KARATSUBA_LEN" "$karatsuba_len") contents=$(replace "$contents" "NLSPATH" "$NLSPATH") contents=$(replace "$contents" "DESTDIR" "$destdir") contents=$(replace "$contents" "EXECSUFFIX" "$EXECSUFFIX") contents=$(replace "$contents" "EXECPREFIX" "$EXECPREFIX") contents=$(replace "$contents" "BINDIR" "$BINDIR") contents=$(replace "$contents" "INCLUDEDIR" "$INCLUDEDIR") contents=$(replace "$contents" "LIBDIR" "$LIBDIR") contents=$(replace "$contents" "MAN1DIR" "$MAN1DIR") contents=$(replace "$contents" "MAN3DIR" "$MAN3DIR") contents=$(replace "$contents" "CFLAGS" "$CFLAGS") contents=$(replace "$contents" "HOSTCFLAGS" "$HOSTCFLAGS") contents=$(replace "$contents" "CPPFLAGS" "$CPPFLAGS") contents=$(replace "$contents" "LDFLAGS" "$LDFLAGS") contents=$(replace "$contents" "CC" "$CC") contents=$(replace "$contents" "HOSTCC" "$HOSTCC") contents=$(replace "$contents" "COVERAGE_OUTPUT" "$COVERAGE_OUTPUT") contents=$(replace "$contents" "COVERAGE_PREREQS" "$COVERAGE_PREREQS") contents=$(replace "$contents" "INSTALL_PREREQS" "$install_prereqs") contents=$(replace "$contents" "INSTALL_MAN_PREREQS" "$install_man_prereqs") contents=$(replace "$contents" "INSTALL_LOCALES" "$install_locales") contents=$(replace "$contents" "INSTALL_LOCALES_PREREQS" "$install_locales_prereqs") contents=$(replace "$contents" "UNINSTALL_MAN_PREREQS" "$uninstall_man_prereqs") contents=$(replace "$contents" "UNINSTALL_PREREQS" "$uninstall_prereqs") contents=$(replace "$contents" "UNINSTALL_LOCALES_PREREQS" "$uninstall_locales_prereqs") contents=$(replace "$contents" "PC_PATH" "$PC_PATH") contents=$(replace "$contents" "PKG_CONFIG_INSTALL" "$pkg_config_install") contents=$(replace "$contents" "PKG_CONFIG_UNINSTALL" "$pkg_config_uninstall") contents=$(replace "$contents" "DEFAULT_TARGET" "$default_target") contents=$(replace "$contents" "DEFAULT_TARGET_PREREQS" "$default_target_prereqs") contents=$(replace "$contents" "DEFAULT_TARGET_CMD" "$default_target_cmd") contents=$(replace "$contents" "SECOND_TARGET" "$second_target") contents=$(replace "$contents" "SECOND_TARGET_PREREQS" "$second_target_prereqs") contents=$(replace "$contents" "SECOND_TARGET_CMD" "$second_target_cmd") contents=$(replace "$contents" "ALL_PREREQ" "$ALL_PREREQ") contents=$(replace "$contents" "BC_EXEC_PREREQ" "$bc_exec_prereq") contents=$(replace "$contents" "BC_EXEC_CMD" "$bc_exec_cmd") contents=$(replace "$contents" "DC_EXEC_PREREQ" "$dc_exec_prereq") contents=$(replace "$contents" "DC_EXEC_CMD" "$dc_exec_cmd") contents=$(replace "$contents" "EXECUTABLES" "$executables") contents=$(replace "$contents" "MAIN_EXEC" "$main_exec") contents=$(replace "$contents" "EXEC" "$executable") contents=$(replace "$contents" "TESTS" "$tests") contents=$(replace "$contents" "BC_HISTORY_TEST_PREREQS" "$test_bc_history_prereqs") contents=$(replace "$contents" "DC_HISTORY_TEST_PREREQS" "$test_dc_history_prereqs") contents=$(replace "$contents" "HISTORY_TESTS" "$history_tests") contents=$(replace "$contents" "VG_BC_TEST" "$vg_bc_test") contents=$(replace "$contents" "VG_DC_TEST" "$vg_dc_test") contents=$(replace "$contents" "TIMECONST" "$timeconst") contents=$(replace "$contents" "KARATSUBA" "$karatsuba") contents=$(replace "$contents" "KARATSUBA_TEST" "$karatsuba_test") contents=$(replace "$contents" "LONG_BIT" "$LONG_BIT") contents=$(replace "$contents" "LONG_BIT_DEFINE" "$LONG_BIT_DEFINE") contents=$(replace "$contents" "GEN" "$GEN") contents=$(replace "$contents" "GEN_EXEC_TARGET" "$GEN_EXEC_TARGET") contents=$(replace "$contents" "CLEAN_PREREQS" "$CLEAN_PREREQS") contents=$(replace "$contents" "GEN_EMU" "$GEN_EMU") contents=$(replace "$contents" "BSD" "$bsd") contents=$(replace "$contents" "BC_DEFAULT_BANNER" "$bc_default_banner") contents=$(replace "$contents" "BC_DEFAULT_SIGINT_RESET" "$bc_default_sigint_reset") contents=$(replace "$contents" "DC_DEFAULT_SIGINT_RESET" "$dc_default_sigint_reset") contents=$(replace "$contents" "BC_DEFAULT_TTY_MODE" "$bc_default_tty_mode") contents=$(replace "$contents" "DC_DEFAULT_TTY_MODE" "$dc_default_tty_mode") contents=$(replace "$contents" "BC_DEFAULT_PROMPT" "$bc_default_prompt") contents=$(replace "$contents" "DC_DEFAULT_PROMPT" "$dc_default_prompt") contents=$(replace "$contents" "BC_DEFAULT_EXPR_EXIT" "$bc_default_expr_exit") contents=$(replace "$contents" "DC_DEFAULT_EXPR_EXIT" "$dc_default_expr_exit") # Do the first print to the Makefile. printf '%s\n%s\n\n' "$contents" "$SRC_TARGETS" > "Makefile" # Generate the individual test targets. if [ "$bc" -ne 0 ]; then gen_std_tests bc "$extra_math" "$time_tests" $bc_test_exec gen_script_tests bc "$extra_math" "$generate_tests" "$time_tests" $bc_test_exec gen_err_tests bc $bc_test_exec fi if [ "$dc" -ne 0 ]; then gen_std_tests dc "$extra_math" "$time_tests" $dc_test_exec gen_script_tests dc "$extra_math" "$generate_tests" "$time_tests" $dc_test_exec gen_err_tests dc $dc_test_exec fi # Copy the correct manuals to the expected places. mkdir -p manuals cp -f "$scriptdir/manuals/bc/$manpage_args.1.md" manuals/bc.1.md cp -f "$scriptdir/manuals/bc/$manpage_args.1" manuals/bc.1 cp -f "$scriptdir/manuals/dc/$manpage_args.1.md" manuals/dc.1.md cp -f "$scriptdir/manuals/dc/$manpage_args.1" manuals/dc.1 make clean > /dev/null diff --git a/contrib/bc/include/lang.h b/contrib/bc/include/lang.h index 705aca35df1c..09b0d6072806 100644 --- a/contrib/bc/include/lang.h +++ b/contrib/bc/include/lang.h @@ -1,700 +1,708 @@ /* * ***************************************************************************** * * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 2018-2021 Gavin D. Howard and contributors. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * * Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * * Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * * ***************************************************************************** * * Definitions for program data. * */ #ifndef BC_LANG_H #define BC_LANG_H #include +#if BC_C11 +#include +#endif // BC_C11 #include #include #include /// The instructions for bytecode. typedef enum BcInst { #if BC_ENABLED /// Postfix increment and decrement. Prefix are translated into /// BC_INST_ONE with either BC_INST_ASSIGN_PLUS or BC_INST_ASSIGN_MINUS. BC_INST_INC = 0, BC_INST_DEC, #endif // BC_ENABLED /// Unary negation. BC_INST_NEG, /// Boolean not. BC_INST_BOOL_NOT, #if BC_ENABLE_EXTRA_MATH /// Truncation operator. BC_INST_TRUNC, #endif // BC_ENABLE_EXTRA_MATH /// These should be self-explanatory. BC_INST_POWER, BC_INST_MULTIPLY, BC_INST_DIVIDE, BC_INST_MODULUS, BC_INST_PLUS, BC_INST_MINUS, #if BC_ENABLE_EXTRA_MATH /// Places operator. BC_INST_PLACES, /// Shift operators. BC_INST_LSHIFT, BC_INST_RSHIFT, #endif // BC_ENABLE_EXTRA_MATH /// Comparison operators. BC_INST_REL_EQ, BC_INST_REL_LE, BC_INST_REL_GE, BC_INST_REL_NE, BC_INST_REL_LT, BC_INST_REL_GT, /// Boolean or and and. BC_INST_BOOL_OR, BC_INST_BOOL_AND, #if BC_ENABLED /// Same as the normal operators, but assigment. So ^=, *=, /=, etc. BC_INST_ASSIGN_POWER, BC_INST_ASSIGN_MULTIPLY, BC_INST_ASSIGN_DIVIDE, BC_INST_ASSIGN_MODULUS, BC_INST_ASSIGN_PLUS, BC_INST_ASSIGN_MINUS, #if BC_ENABLE_EXTRA_MATH /// Places and shift assignment operators. BC_INST_ASSIGN_PLACES, BC_INST_ASSIGN_LSHIFT, BC_INST_ASSIGN_RSHIFT, #endif // BC_ENABLE_EXTRA_MATH /// Normal assignment. BC_INST_ASSIGN, /// bc and dc detect when the value from an assignment is not necessary. /// For example, a plain assignment statement means the value is never used. /// In those cases, we can get lots of performance back by not even creating /// a copy at all. In fact, it saves a copy, a push onto the results stack, /// a pop from the results stack, and a free. Definitely worth it to detect. BC_INST_ASSIGN_POWER_NO_VAL, BC_INST_ASSIGN_MULTIPLY_NO_VAL, BC_INST_ASSIGN_DIVIDE_NO_VAL, BC_INST_ASSIGN_MODULUS_NO_VAL, BC_INST_ASSIGN_PLUS_NO_VAL, BC_INST_ASSIGN_MINUS_NO_VAL, #if BC_ENABLE_EXTRA_MATH /// Same as above. BC_INST_ASSIGN_PLACES_NO_VAL, BC_INST_ASSIGN_LSHIFT_NO_VAL, BC_INST_ASSIGN_RSHIFT_NO_VAL, #endif // BC_ENABLE_EXTRA_MATH #endif // BC_ENABLED /// Normal assignment that pushes no value on the stack. BC_INST_ASSIGN_NO_VAL, /// Push a constant onto the results stack. BC_INST_NUM, /// Push a variable onto the results stack. BC_INST_VAR, /// Push an array element onto the results stack. BC_INST_ARRAY_ELEM, /// Push an array onto the results stack. This is different from pushing an /// array *element* onto the results stack; it pushes a reference to the /// whole array. This is needed in bc for function arguments that are /// arrays. It is also needed for returning the length of an array. BC_INST_ARRAY, /// Push a zero or a one onto the stack. These are special cased because it /// does help performance, particularly for one since inc/dec operators /// use it. BC_INST_ZERO, BC_INST_ONE, #if BC_ENABLED /// Push the last printed value onto the stack. BC_INST_LAST, #endif // BC_ENABLED /// Push the value of any of the globals onto the stack. BC_INST_IBASE, BC_INST_OBASE, BC_INST_SCALE, #if BC_ENABLE_EXTRA_MATH /// Push the value of the seed global onto the stack. BC_INST_SEED, #endif // BC_ENABLE_EXTRA_MATH /// These are builtin functions. BC_INST_LENGTH, BC_INST_SCALE_FUNC, BC_INST_SQRT, BC_INST_ABS, #if BC_ENABLE_EXTRA_MATH /// Another builtin function. BC_INST_IRAND, #endif // BC_ENABLE_EXTRA_MATH /// Asciify. BC_INST_ASCIIFY, /// Another builtin function. BC_INST_READ, #if BC_ENABLE_EXTRA_MATH /// Another builtin function. BC_INST_RAND, #endif // BC_ENABLE_EXTRA_MATH /// Return the max for the various globals. BC_INST_MAXIBASE, BC_INST_MAXOBASE, BC_INST_MAXSCALE, #if BC_ENABLE_EXTRA_MATH /// Return the max value returned by rand(). BC_INST_MAXRAND, #endif // BC_ENABLE_EXTRA_MATH /// bc line_length() builtin function. BC_INST_LINE_LENGTH, #if BC_ENABLED /// bc global_stacks() builtin function. BC_INST_GLOBAL_STACKS, #endif // BC_ENABLED /// bc leading_zero() builtin function. BC_INST_LEADING_ZERO, /// This is slightly misnamed versus BC_INST_PRINT_POP. Well, it is in bc. /// dc uses this instruction to print, but not pop. That's valid in dc. /// However, in bc, it is *never* valid to print without popping. In bc, /// BC_INST_PRINT_POP is used to indicate when a string should be printed /// because of a print statement or whether it should be printed raw. The /// reason for this is because a print statement handles escaped characters. /// So BC_INST_PRINT_POP is for printing a string from a print statement, /// BC_INST_PRINT_STR is for printing a string by itself. /// /// In dc, BC_INST_PRINT_POP prints and pops, and BC_INST_PRINT just prints. /// /// Oh, and BC_INST_STR pushes a string onto the results stack. BC_INST_PRINT, BC_INST_PRINT_POP, BC_INST_STR, #if BC_ENABLED BC_INST_PRINT_STR, /// Jumps unconditionally. BC_INST_JUMP, /// Jumps if the top of the results stack is zero (condition failed). It /// turns out that we only want to jump when conditions fail to "skip" code. BC_INST_JUMP_ZERO, /// Call a function. BC_INST_CALL, /// Return the top of the stack to the caller. BC_INST_RET, /// Return 0 to the caller. BC_INST_RET0, /// Special return instruction for void functions. BC_INST_RET_VOID, /// Special halt instruction. BC_INST_HALT, #endif // BC_ENABLED /// Pop an item off of the results stack. BC_INST_POP, /// Swaps the top two items on the results stack. BC_INST_SWAP, /// Modular exponentiation. BC_INST_MODEXP, /// Do divide and modulus at the same time. BC_INST_DIVMOD, /// Turns a number into a string and prints it. BC_INST_PRINT_STREAM, #if DC_ENABLED /// dc's return; it pops an executing string off of the stack. BC_INST_POP_EXEC, /// Unconditionally execute a string. BC_INST_EXECUTE, /// Conditionally execute a string. BC_INST_EXEC_COND, /// Prints each item on the results stack, separated by newlines. BC_INST_PRINT_STACK, /// Pops everything off of the results stack. BC_INST_CLEAR_STACK, /// Pushes the current length of a register stack onto the results stack. BC_INST_REG_STACK_LEN, /// Pushes the current length of the results stack onto the results stack. BC_INST_STACK_LEN, /// Pushes a copy of the item on the top of the results stack onto the /// results stack. BC_INST_DUPLICATE, /// Copies the value in a register and pushes the copy onto the results /// stack. BC_INST_LOAD, /// Pops an item off of a register stack and pushes it onto the results /// stack. BC_INST_PUSH_VAR, /// Pops an item off of the results stack and pushes it onto a register's /// stack. BC_INST_PUSH_TO_VAR, /// Quit. BC_INST_QUIT, /// Quit executing some number of strings. BC_INST_NQUIT, /// Push the depth of the execution stack onto the stack. BC_INST_EXEC_STACK_LEN, #endif // DC_ENABLED /// Invalid instruction. BC_INST_INVALID, } BcInst; +#if BC_C11 +static_assert(BC_INST_INVALID <= UCHAR_MAX, + "Too many instructions to fit into an unsigned char"); +#endif // BC_C11 + /// Used by maps to identify where items are in the array. typedef struct BcId { /// The name of the item. char *name; /// The index into the array where the item is. size_t idx; } BcId; /// The location of a var, array, or array element. typedef struct BcLoc { /// The index of the var or array. size_t loc; /// The index of the array element. Only used for array elements. size_t idx; } BcLoc; /// An entry for a constant. typedef struct BcConst { /// The original string as parsed from the source code. char *val; /// The last base that the constant was parsed in. BcBigDig base; /// The parsed constant. BcNum num; } BcConst; /// A function. This is also used in dc, not just bc. The reason is that strings /// are executed in dc, and they are converted to functions in order to be /// executed. typedef struct BcFunc { /// The bytecode instructions. BcVec code; #if BC_ENABLED /// The labels. This is a vector of indices. The index is the index into /// the bytecode vector where the label is. BcVec labels; /// The autos for the function. The first items are the parameters, and the /// arguments to the parameters must match the types in this vector. BcVec autos; /// The number of parameters the function takes. size_t nparams; #endif // BC_ENABLED /// The strings encountered in the function. BcVec strs; /// The constants encountered in the function. BcVec consts; /// The function's name. const char *name; #if BC_ENABLED /// True if the function is a void function. bool voidfn; #endif // BC_ENABLED } BcFunc; /// Types of results that can be pushed onto the results stack. typedef enum BcResultType { /// Result is a variable. BC_RESULT_VAR, /// Result is an array element. BC_RESULT_ARRAY_ELEM, /// Result is an array. This is only allowed for function arguments or /// returning the length of the array. BC_RESULT_ARRAY, /// Result is a string. BC_RESULT_STR, /// Result is a temporary. This is used for the result of almost all /// expressions. BC_RESULT_TEMP, /// Special casing the two below gave performance improvements. /// Result is a 0. BC_RESULT_ZERO, /// Result is a 1. Useful for inc/dec operators. BC_RESULT_ONE, #if BC_ENABLED /// Result is the special "last" variable. BC_RESULT_LAST, /// Result is the return value of a void function. BC_RESULT_VOID, #endif // BC_ENABLED /// Result is the value of ibase. BC_RESULT_IBASE, /// Result is the value of obase. BC_RESULT_OBASE, /// Result is the value of scale. BC_RESULT_SCALE, #if BC_ENABLE_EXTRA_MATH /// Result is the value of seed. BC_RESULT_SEED, #endif // BC_ENABLE_EXTRA_MATH } BcResultType; /// A union to store data for various result types. typedef union BcResultData { /// A number. Strings are stored here too; they are numbers with /// cap == 0 && num == NULL. The string's index into the strings vector is /// stored in the scale field. But this is only used for strings stored in /// variables. BcNum n; /// A vector. BcVec v; /// A variable, array, or array element reference. This could also be a /// string if a string is not stored in a variable (dc only). BcLoc loc; } BcResultData; /// A tagged union for results. typedef struct BcResult { /// The tag. The type of the result. BcResultType t; /// The data. The data for the result. BcResultData d; } BcResult; /// An instruction pointer. This is how bc knows where in the bytecode vector, /// and which function, the current execution is. typedef struct BcInstPtr { /// The index of the currently executing function in the fns vector. size_t func; /// The index into the bytecode vector of the *next* instruction. size_t idx; /// The length of the results vector when this function started executing. /// This is mostly used for bc where functions should not affect the results /// of their callers. size_t len; } BcInstPtr; /// Types of identifiers. typedef enum BcType { /// Variable. BC_TYPE_VAR, /// Array. BC_TYPE_ARRAY, #if BC_ENABLED /// Array reference. BC_TYPE_REF, #endif // BC_ENABLED } BcType; #if BC_ENABLED /// An auto variable in bc. typedef struct BcAuto { /// The index of the variable in the vars or arrs vectors. size_t idx; /// The type of the variable. BcType type; } BcAuto; #endif // BC_ENABLED /// Forward declaration. struct BcProgram; /** * Initializes a function. * @param f The function to initialize. * @param name The name of the function. The string is assumed to be owned by * some other entity. */ void bc_func_init(BcFunc *f, const char* name); /** * Inserts an auto into the function. * @param f The function to insert into. * @param p The program. This is to search for the variable or array name. * @param name The name of the auto to insert. * @param type The type of the auto. * @param line The line in the source code where the insert happened. This is * solely for error reporting. */ void bc_func_insert(BcFunc *f, struct BcProgram* p, char* name, BcType type, size_t line); /** * Resets a function in preparation for it to be reused. This can happen in bc * because it is a dynamic language and functions can be redefined. * @param f The functio to reset. */ void bc_func_reset(BcFunc *f); #ifndef NDEBUG /** * Frees a function. This is a destructor. This is only used in debug builds * because all functions are freed at exit. We free them in debug builds to * check for memory leaks. * @param func The function to free as a void pointer. */ void bc_func_free(void *func); #endif // NDEBUG /** * Initializes an array, which is the array type in bc and dc source code. Since * variables and arrays are both arrays (see the development manual, * manuals/development.md#execution, for more information), the @a nums * parameter tells bc whether to initialize an array of numbers or an array of * arrays of numbers. If the latter, it does a recursive call with nums set to * true. * @param a The array to initialize. * @param nums True if the array should be for numbers, false if it should be * for vectors. */ void bc_array_init(BcVec *a, bool nums); /** * Copies an array to another array. This is used to do pass arrays to functions * that do not take references to arrays. The arrays are passed entirely by * value, which means that they need to be copied. * @param d The destination array. * @param s The source array. */ void bc_array_copy(BcVec *d, const BcVec *s); /** * Frees a string stored in a function. This is a destructor. * @param string The string to free as a void pointer. */ void bc_string_free(void *string); /** * Frees a constant stored in a function. This is a destructor. * @param constant The constant to free as a void pointer. */ void bc_const_free(void *constant); /** * Clears a result. It sets the type to BC_RESULT_TEMP and clears the union by * clearing the BcNum in the union. This is to ensure that bc does not use * uninitialized data. * @param r The result to clear. */ void bc_result_clear(BcResult *r); /** * Copies a result into another. This is done for things like duplicating the * top of the results stack or copying the result of an assignment to put back * on the results stack. * @param d The destination result. * @param src The source result. */ void bc_result_copy(BcResult *d, BcResult *src); /** * Frees a result. This is a destructor. * @param result The result to free as a void pointer. */ void bc_result_free(void *result); /** * Expands an array to @a len. This can happen because in bc, you do not have to * explicitly initialize elements of an array. If you access an element that is * not initialized, the array is expanded to fit it, and all missing elements * are initialized to 0 if they are numbers, or arrays with one element of 0. * This function does that expansion. * @param a The array to expand. * @param len The length to expand to. */ void bc_array_expand(BcVec *a, size_t len); /** * Compare two BcId's and return the result. Since they are just comparing the * names in the BcId, I return the result from strcmp() exactly. This is used by * maps in their binary search. * @param e1 The first id. * @param e2 The second id. * @return The result of strcmp() on the BcId's names. */ int bc_id_cmp(const BcId *e1, const BcId *e2); #if BC_ENABLED /** * Returns non-zero if the bytecode instruction i is an assignment instruction. * @param i The instruction to test. * @return Non-zero if i is an assignment instruction, zero otherwise. */ #define BC_INST_IS_ASSIGN(i) \ ((i) == BC_INST_ASSIGN || (i) == BC_INST_ASSIGN_NO_VAL) /** * Returns true if the bytecode instruction @a i requires the value to be * returned for use. * @param i The instruction to test. * @return True if @a i requires the value to be returned for use, false * otherwise. */ #define BC_INST_USE_VAL(i) ((i) <= BC_INST_ASSIGN) #else // BC_ENABLED /** * Returns non-zero if the bytecode instruction i is an assignment instruction. * @param i The instruction to test. * @return Non-zero if i is an assignment instruction, zero otherwise. */ #define BC_INST_IS_ASSIGN(i) ((i) == BC_INST_ASSIGN_NO_VAL) /** * Returns true if the bytecode instruction @a i requires the value to be * returned for use. * @param i The instruction to test. * @return True if @a i requires the value to be returned for use, false * otherwise. */ #define BC_INST_USE_VAL(i) (false) #endif // BC_ENABLED #if BC_DEBUG_CODE /// Reference to string names for all of the instructions. For debugging. extern const char* bc_inst_names[]; #endif // BC_DEBUG_CODE /// References to the names of the main and read functions. extern const char bc_func_main[]; extern const char bc_func_read[]; #endif // BC_LANG_H diff --git a/contrib/bc/include/version.h b/contrib/bc/include/version.h index eca73baf508f..0c4122528e7d 100644 --- a/contrib/bc/include/version.h +++ b/contrib/bc/include/version.h @@ -1,42 +1,42 @@ /* * ***************************************************************************** * * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 2018-2021 Gavin D. Howard and contributors. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * * Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * * Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * * ***************************************************************************** * * The version of bc. * */ #ifndef BC_VERSION_H #define BC_VERSION_H /// The current version. -#define VERSION 5.2.1 +#define VERSION 5.2.2 #endif // BC_VERSION_H diff --git a/contrib/bc/include/vm.h b/contrib/bc/include/vm.h index d6f698fb1e6d..6f69712a804b 100644 --- a/contrib/bc/include/vm.h +++ b/contrib/bc/include/vm.h @@ -1,882 +1,884 @@ /* * ***************************************************************************** * * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 2018-2021 Gavin D. Howard and contributors. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * * Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * * Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * * ***************************************************************************** * * Definitions for bc's VM. * */ #ifndef BC_VM_H #define BC_VM_H #include #include #include #include #if BC_ENABLE_NLS #ifdef _WIN32 #error NLS is not supported on Windows. #endif // _WIN32 #include #endif // BC_ENABLE_NLS #include #include #include #include #include #include #include #include // We don't want to include this file for the library because it's unused. #if !BC_ENABLE_LIBRARY #include #endif // !BC_ENABLE_LIBRARY // This should be obvious. If neither calculator is enabled, barf. #if !BC_ENABLED && !DC_ENABLED #error Must define BC_ENABLED, DC_ENABLED, or both #endif // CHAR_BIT must be at least 6, for various reasons. I might want to bump this // to 8 in the future. #if CHAR_BIT < 6 #error CHAR_BIT must be at least 6. #endif // Set defaults. // #ifndef BC_ENABLE_NLS #define BC_ENABLE_NLS (0) #endif // BC_ENABLE_NLS #ifndef MAINEXEC #define MAINEXEC bc #endif // MAINEXEC #ifndef _WIN32 #ifndef EXECPREFIX #define EXECPREFIX #endif // EXECPREFIX #else // _WIN32 #undef EXECPREFIX #endif // _WIN32 /** * Generate a string from text. * @parm V The text to generate a string for. */ #define GEN_STR(V) #V /** * Help generate a string from text. The preprocessor requires this two-step * process. Trust me. * @parm V The text to generate a string for. */ #define GEN_STR2(V) GEN_STR(V) /// The version as a string. VERSION must be defined previously, usually by the /// build system. #define BC_VERSION GEN_STR2(VERSION) /// The main executable name as a string. MAINEXEC must be defined previously, /// usually by the build system. #define BC_MAINEXEC GEN_STR2(MAINEXEC) /// The build type as a string. BUILD_TYPE must be defined previously, usually /// by the build system. #define BC_BUILD_TYPE GEN_STR2(BUILD_TYPE) // We only allow an empty executable prefix on Windows. #ifndef _WIN32 #define BC_EXECPREFIX GEN_STR2(EXECPREFIX) #else // _WIN32 #define BC_EXECPREFIX "" #endif // _WIN32 #if !BC_ENABLE_LIBRARY #if DC_ENABLED /// The flag for the extended register option. #define DC_FLAG_X (UINTMAX_C(1)<<0) #endif // DC_ENABLED #if BC_ENABLED /// The flag for the POSIX warning option. #define BC_FLAG_W (UINTMAX_C(1)<<1) /// The flag for the POSIX error option. #define BC_FLAG_S (UINTMAX_C(1)<<2) /// The flag for the math library option. #define BC_FLAG_L (UINTMAX_C(1)<<3) /// The flag for the global stacks option. #define BC_FLAG_G (UINTMAX_C(1)<<4) #endif // BC_ENABLED /// The flag for quiet, though this one is reversed; the option clears the flag. #define BC_FLAG_Q (UINTMAX_C(1)<<5) /// The flag for interactive. #define BC_FLAG_I (UINTMAX_C(1)<<6) /// The flag for prompt. This is also reversed; the option clears the flag. #define BC_FLAG_P (UINTMAX_C(1)<<7) /// The flag for read prompt. This is also reversed; the option clears the flag. #define BC_FLAG_R (UINTMAX_C(1)<<8) /// The flag for a leading zero. #define BC_FLAG_Z (UINTMAX_C(1)<<9) /// The flag for stdin being a TTY. #define BC_FLAG_TTYIN (UINTMAX_C(1)<<10) /// The flag for TTY mode. #define BC_FLAG_TTY (UINTMAX_C(1)<<11) /// The flag for reset on SIGINT. #define BC_FLAG_SIGINT (UINTMAX_C(1)<<12) /// The flag for exiting with expressions. #define BC_FLAG_EXPR_EXIT (UINTMAX_C(1)<<13) /// A convenience macro for getting the TTYIN flag. #define BC_TTYIN (vm.flags & BC_FLAG_TTYIN) /// A convenience macro for getting the TTY flag. #define BC_TTY (vm.flags & BC_FLAG_TTY) /// A convenience macro for getting the SIGINT flag. #define BC_SIGINT (vm.flags & BC_FLAG_SIGINT) #if BC_ENABLED /// A convenience macro for getting the POSIX error flag. #define BC_S (vm.flags & BC_FLAG_S) /// A convenience macro for getting the POSIX warning flag. #define BC_W (vm.flags & BC_FLAG_W) /// A convenience macro for getting the math library flag. #define BC_L (vm.flags & BC_FLAG_L) /// A convenience macro for getting the global stacks flag. #define BC_G (vm.flags & BC_FLAG_G) #endif // BC_ENABLED #if DC_ENABLED /// A convenience macro for getting the extended register flag. #define DC_X (vm.flags & DC_FLAG_X) #endif // DC_ENABLED /// A convenience macro for getting the interactive flag. #define BC_I (vm.flags & BC_FLAG_I) /// A convenience macro for getting the prompt flag. #define BC_P (vm.flags & BC_FLAG_P) /// A convenience macro for getting the read prompt flag. #define BC_R (vm.flags & BC_FLAG_R) /// A convenience macro for getting the leading zero flag. #define BC_Z (vm.flags & BC_FLAG_Z) /// A convenience macro for getting the expression exit flag. #define BC_EXPR_EXIT (vm.flags & BC_FLAG_EXPR_EXIT) #if BC_ENABLED /// A convenience macro for checking if bc is in POSIX mode. #define BC_IS_POSIX (BC_S || BC_W) #if DC_ENABLED /// Returns true if bc is running. #define BC_IS_BC (vm.name[0] != 'd') /// Returns true if dc is running. #define BC_IS_DC (vm.name[0] == 'd') #else // DC_ENABLED /// Returns true if bc is running. #define BC_IS_BC (1) /// Returns true if dc is running. #define BC_IS_DC (0) #endif // DC_ENABLED #else // BC_ENABLED /// A convenience macro for checking if bc is in POSIX mode. #define BC_IS_POSIX (0) /// Returns true if bc is running. #define BC_IS_BC (0) /// Returns true if dc is running. #define BC_IS_DC (1) #endif // BC_ENABLED /// A convenience macro for checking if the prompt is enabled. #define BC_PROMPT (BC_P) #else // !BC_ENABLE_LIBRARY #define BC_Z (vm.leading_zeroes) #endif // !BC_ENABLE_LIBRARY /** * Returns the max of its two arguments. This evaluates arguments twice, so be * careful what args you give it. * @param a The first argument. * @param b The second argument. * @return The max of the two arguments. */ #define BC_MAX(a, b) ((a) > (b) ? (a) : (b)) /** * Returns the min of its two arguments. This evaluates arguments twice, so be * careful what args you give it. * @param a The first argument. * @param b The second argument. * @return The min of the two arguments. */ #define BC_MIN(a, b) ((a) < (b) ? (a) : (b)) /// Returns the max obase that is allowed. #define BC_MAX_OBASE ((BcBigDig) (BC_BASE_POW)) /// Returns the max array size that is allowed. #define BC_MAX_DIM ((BcBigDig) (SIZE_MAX - 1)) /// Returns the max scale that is allowed. #define BC_MAX_SCALE ((BcBigDig) (BC_NUM_BIGDIG_MAX - 1)) /// Returns the max string length that is allowed. #define BC_MAX_STRING ((BcBigDig) (BC_NUM_BIGDIG_MAX - 1)) /// Returns the max identifier length that is allowed. #define BC_MAX_NAME BC_MAX_STRING /// Returns the max number size that is allowed. #define BC_MAX_NUM BC_MAX_SCALE #if BC_ENABLE_EXTRA_MATH /// Returns the max random integer that can be returned. #define BC_MAX_RAND ((BcBigDig) (((BcRand) 0) - 1)) #endif // BC_ENABLE_EXTRA_MATH /// Returns the max exponent that is allowed. #define BC_MAX_EXP ((ulong) (BC_NUM_BIGDIG_MAX)) /// Returns the max number of variables that is allowed. #define BC_MAX_VARS ((ulong) (SIZE_MAX - 1)) /// The size of the global buffer. #define BC_VM_BUF_SIZE (1<<12) /// The amount of the global buffer allocated to stdout. #define BC_VM_STDOUT_BUF_SIZE (1<<11) /// The amount of the global buffer allocated to stderr. #define BC_VM_STDERR_BUF_SIZE (1<<10) /// The amount of the global buffer allocated to stdin. #define BC_VM_STDIN_BUF_SIZE (BC_VM_STDERR_BUF_SIZE - 1) /// The max number of temporary BcNums that can be kept. #define BC_VM_MAX_TEMPS (1 << 9) /// The capacity of the one BcNum, which is a constant. #define BC_VM_ONE_CAP (1) /** * Returns true if a BcResult is safe for garbage collection. * @param r The BcResult to test. * @return True if @a r is safe to garbage collect. */ #define BC_VM_SAFE_RESULT(r) ((r)->t >= BC_RESULT_TEMP) /// The invalid locale catalog return value. #define BC_VM_INVALID_CATALOG ((nl_catd) -1) /** * Returns true if the *unsigned* multiplication overflows. * @param a The first operand. * @param b The second operand. * @param r The product. * @return True if the multiplication of @a a and @a b overflows. */ #define BC_VM_MUL_OVERFLOW(a, b, r) \ ((r) >= SIZE_MAX || ((a) != 0 && (r) / (a) != (b))) /// The global vm struct. This holds all of the global data besides the file /// buffers. typedef struct BcVm { /// The current status. This is volatile sig_atomic_t because it is also /// used in the signal handler. See the development manual /// (manuals/development.md#async-signal-safe-signal-handling) for more /// information. volatile sig_atomic_t status; /// Non-zero if a jump series is in progress and items should be popped off /// the jmp_bufs vector. This is volatile sig_atomic_t because it is also /// used in the signal handler. See the development manual /// (manuals/development.md#async-signal-safe-signal-handling) for more /// information. volatile sig_atomic_t sig_pop; #if !BC_ENABLE_LIBRARY /// The parser. BcParse prs; /// The program. BcProgram prog; /// A buffer for lines for stdin. BcVec line_buf; /// A buffer to hold a series of lines from stdin. Sometimes, multiple lines /// are necessary for parsing, such as a comment that spans multiple lines. BcVec buffer; /// A parser to parse read expressions. BcParse read_prs; /// A buffer for read expressions. BcVec read_buf; #endif // !BC_ENABLE_LIBRARY /// A vector of jmp_bufs for doing a jump series. This allows exception-type /// error handling, while allowing me to do cleanup on the way. BcVec jmp_bufs; /// The number of temps in the temps array. size_t temps_len; #if BC_ENABLE_LIBRARY /// The vector of contexts for the library. BcVec ctxts; /// The vector for creating strings to pass to the client. BcVec out; /// The PRNG. BcRNG rng; /// The current error. BclError err; /// Whether or not bcl should abort on fatal errors. bool abrt; /// Whether or not to print leading zeros. bool leading_zeroes; /// The number of "references," or times that the library was initialized. unsigned int refs; /// Non-zero if bcl is running. This is volatile sig_atomic_t because it is /// also used in the signal handler. See the development manual /// (manuals/development.md#async-signal-safe-signal-handling) for more /// information. volatile sig_atomic_t running; #endif // BC_ENABLE_LIBRARY #if !BC_ENABLE_LIBRARY /// A pointer to the filename of the current file. This is not owned by the /// BcVm struct. const char* file; /// The message printed when SIGINT happens. const char *sigmsg; #endif // !BC_ENABLE_LIBRARY /// Non-zero when signals are "locked." This is volatile sig_atomic_t /// because it is also used in the signal handler. See the development /// manual (manuals/development.md#async-signal-safe-signal-handling) for /// more information. volatile sig_atomic_t sig_lock; /// Non-zero when a signal has been received, but not acted on. This is /// volatile sig_atomic_t because it is also used in the signal handler. See /// the development manual /// (manuals/development.md#async-signal-safe-signal-handling) for more /// information. volatile sig_atomic_t sig; #if !BC_ENABLE_LIBRARY /// The length of sigmsg. uchar siglen; /// The instruction used for returning from a read() call. uchar read_ret; /// The flags field used by most macros above. uint16_t flags; /// The number of characters printed in the current line. This is used /// because bc has a limit of the number of characters it can print per /// line. uint16_t nchars; /// The length of the line we can print. The user can set this if they wish. uint16_t line_len; /// True if bc should error if expressions are encountered during option /// parsing, false otherwise. bool no_exprs; /// True if bc should exit if expresions are encountered. bool exit_exprs; /// True if EOF was encountered. bool eof; /// True if bc is currently reading from stdin. bool is_stdin; #if BC_ENABLED /// True if keywords should not be redefined. This is only true for the /// builtin math libraries for bc. bool no_redefine; #endif // BC_ENABLED #endif // !BC_ENABLE_LIBRARY /// An array of maxes for the globals. BcBigDig maxes[BC_PROG_GLOBALS_LEN + BC_ENABLE_EXTRA_MATH]; #if !BC_ENABLE_LIBRARY /// A vector of filenames to process. BcVec files; /// A vector of expressions to process. BcVec exprs; /// The name of the calculator under use. This is used by BC_IS_BC and /// BC_IS_DC. const char *name; /// The help text for the calculator. const char *help; #if BC_ENABLE_HISTORY /// The history data. BcHistory history; #endif // BC_ENABLE_HISTORY /// The function to call to get the next lex token. BcLexNext next; /// The function to call to parse. BcParseParse parse; /// The function to call to parse expressions. BcParseExpr expr; /// The text to display to label functions in error messages. const char *func_header; /// The names of the categories of errors. const char *err_ids[BC_ERR_IDX_NELEMS + BC_ENABLED]; /// The messages for each error. const char *err_msgs[BC_ERR_NELEMS]; +#if BC_ENABLE_NLS /// The locale. const char *locale; +#endif // BC_ENABLE_NLS #endif // !BC_ENABLE_LIBRARY /// The last base used to parse. BcBigDig last_base; /// The last power of last_base used to parse. BcBigDig last_pow; /// The last exponent of base that equals last_pow. BcBigDig last_exp; /// BC_BASE_POW - last_pow. BcBigDig last_rem; #if !BC_ENABLE_LIBRARY /// A buffer of environment arguments. This is the actual value of the /// environment variable. char *env_args_buffer; /// A vector for environment arguments after parsing. BcVec env_args; /// A BcNum set to constant 0. BcNum zero; #endif // !BC_ENABLE_LIBRARY /// A BcNum set to constant 1. BcNum one; /// A BcNum holding the max number held by a BcBigDig plus 1. BcNum max; /// A BcNum holding the max number held by a BcBigDig times 2 plus 1. BcNum max2; /// The BcDig array for max. BcDig max_num[BC_NUM_BIGDIG_LOG10]; /// The BcDig array for max2. BcDig max2_num[BC_NUM_BIGDIG_LOG10]; // The BcDig array for the one BcNum. BcDig one_num[BC_VM_ONE_CAP]; #if !BC_ENABLE_LIBRARY // The BcDig array for the zero BcNum. BcDig zero_num[BC_VM_ONE_CAP]; /// The stdout file. BcFile fout; /// The stderr file. BcFile ferr; #if BC_ENABLE_NLS /// The locale catalog. nl_catd catalog; #endif // BC_ENABLE_NLS /// A pointer to the stdin buffer. char *buf; /// The number of items in the input buffer. size_t buf_len; /// The slab for constants in the main function. This is separate for /// garbage collection reasons. BcVec main_const_slab; //// The slab for all other strings for the main function. BcVec main_slabs; /// The slab for function names, strings in other functions, and constants /// in other functions. BcVec other_slabs; #if BC_ENABLED /// An array of booleans for which bc keywords have been redefined if /// BC_REDEFINE_KEYWORDS is non-zero. bool redefined_kws[BC_LEX_NKWS]; #endif // BC_ENABLED #endif // !BC_ENABLE_LIBRARY #if BC_DEBUG_CODE /// The depth for BC_FUNC_ENTER and BC_FUNC_EXIT. size_t func_depth; #endif // BC_DEBUG_CODE } BcVm; /** * Print the copyright banner and help if it's non-NULL. * @param help The help message to print if it's non-NULL. */ void bc_vm_info(const char* const help); /** * The entrance point for bc/dc together. * @param argc The count of arguments. * @param argv The argument array. */ void bc_vm_boot(int argc, char *argv[]); /** * Initializes some of the BcVm global. This is separate to make things easier * on the library code. */ void bc_vm_init(void); /** * Frees the BcVm global. */ void bc_vm_shutdown(void); /** * Add a temp to the temp array. * @param num The BcDig array to add to the temp array. */ void bc_vm_addTemp(BcDig *num); /** * Dish out a temp, or NULL if there are none. * @return A temp, or NULL if none exist. */ BcDig* bc_vm_takeTemp(void); /** * Frees all temporaries. */ void bc_vm_freeTemps(void); #if !BC_ENABLE_HISTORY /** * Erases the flush argument if history does not exist because it does not * matter if history does not exist. */ #define bc_vm_putchar(c, t) bc_vm_putchar(c) #endif // !BC_ENABLE_HISTORY /** * Print to stdout with limited formating. * @param fmt The format string. */ void bc_vm_printf(const char *fmt, ...); /** * Puts a char into the stdout buffer. * @param c The character to put on the stdout buffer. * @param type The flush type. */ void bc_vm_putchar(int c, BcFlushType type); /** * Multiplies @a n and @a size and throws an allocation error if overflow * occurs. * @param n The number of elements. * @param size The size of each element. * @return The product of @a n and @a size. */ size_t bc_vm_arraySize(size_t n, size_t size); /** * Adds @a a and @a b and throws an error if overflow occurs. * @param a The first operand. * @param b The second operand. * @return The sum of @a a and @a b. */ size_t bc_vm_growSize(size_t a, size_t b); /** * Allocate @a n bytes and throw an allocation error if allocation fails. * @param n The bytes to allocate. * @return A pointer to the allocated memory. */ void* bc_vm_malloc(size_t n); /** * Reallocate @a ptr to be @a n bytes and throw an allocation error if * reallocation fails. * @param ptr The pointer to a memory allocation to reallocate. * @param n The bytes to allocate. * @return A pointer to the reallocated memory. */ void* bc_vm_realloc(void *ptr, size_t n); /** * Allocates space for, and duplicates, @a str. * @param str The string to allocate. * @return The allocated string. */ char* bc_vm_strdup(const char *str); /** * Reads a line into BcVm's buffer field. * @param clear True if the buffer should be cleared first, false otherwise. * @return True if a line was read, false otherwise. */ bool bc_vm_readLine(bool clear); /** * A convenience and portability function for OpenBSD's pledge(). * @param promises The promises to pledge(). * @param execpromises The exec promises to pledge(). */ void bc_pledge(const char *promises, const char *execpromises); /** * Returns the value of an environment variable. * @param var The environment variable. * @return The value of the environment variable. */ char* bc_vm_getenv(const char* var); /** * Frees an environment variable value. * @param val The value to free. */ void bc_vm_getenvFree(char* val); #if BC_DEBUG_CODE /** * Start executing a jump series. * @param f The name of the function that started the jump series. */ void bc_vm_jmp(const char *f); #else // BC_DEBUG_CODE /** * Start executing a jump series. */ void bc_vm_jmp(void); #endif // BC_DEBUG_CODE #if BC_ENABLE_LIBRARY /** * Handle an error. This is the true error handler. It will start a jump series * if an error occurred. POSIX errors will not cause jumps when warnings are on * or no POSIX errors are enabled. * @param e The error. */ void bc_vm_handleError(BcErr e); /** * Handle a fatal error. * @param e The error. */ void bc_vm_fatalError(BcErr e); /** * A function to call at exit. */ void bc_vm_atexit(void); #else // BC_ENABLE_LIBRARY /** * Handle an error. This is the true error handler. It will start a jump series * if an error occurred. POSIX errors will not cause jumps when warnings are on * or no POSIX errors are enabled. * @param e The error. * @param line The source line where the error occurred. */ void bc_vm_handleError(BcErr e, size_t line, ...); /** * Handle a fatal error. * @param e The error. */ #if !BC_ENABLE_MEMCHECK BC_NORETURN #endif // !BC_ENABLE_MEMCHECK void bc_vm_fatalError(BcErr e); /** * A function to call at exit. * @param status The exit status. */ int bc_vm_atexit(int status); #endif // BC_ENABLE_LIBRARY /// A reference to the copyright header. extern const char bc_copyright[]; /// A reference to the format string for source code line printing. extern const char* const bc_err_line; /// A reference to the format string for source code function printing. extern const char* const bc_err_func_header; /// A reference to the array of default error category names. extern const char *bc_errs[]; /// A reference to the array of error category indices for each error. extern const uchar bc_err_ids[]; /// A reference to the array of default error messages. extern const char* const bc_err_msgs[]; /// A reference to the pledge() promises at start. extern const char bc_pledge_start[]; #if BC_ENABLE_HISTORY /// A reference to the end pledge() promises when using history. extern const char bc_pledge_end_history[]; #endif // BC_ENABLE_HISTORY /// A reference to the end pledge() promises when *not* using history. extern const char bc_pledge_end[]; /// A reference to the global data. extern BcVm vm; /// A reference to the global output buffers. extern char output_bufs[BC_VM_BUF_SIZE]; #endif // BC_VM_H diff --git a/contrib/bc/src/main.c b/contrib/bc/src/main.c index 38c87a415f2b..3146f983787e 100644 --- a/contrib/bc/src/main.c +++ b/contrib/bc/src/main.c @@ -1,96 +1,116 @@ /* * ***************************************************************************** * * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 2018-2021 Gavin D. Howard and contributors. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * * Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * * Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * * ***************************************************************************** * * The entry point for bc. * */ #include #include #include +#if BC_ENABLE_NLS #include +#endif // BC_ENABLE_NLS #ifndef _WIN32 #include #endif // _WIN32 #include #include #include #include #include #include int main(int argc, char *argv[]) { char *name; size_t len = strlen(BC_EXECPREFIX); +#if BC_ENABLE_NLS // Must set the locale properly in order to have the right error messages. vm.locale = setlocale(LC_ALL, ""); +#endif // BC_ENABLE_NLS // Set the start pledge(). bc_pledge(bc_pledge_start, NULL); - // Figure out the name of the calculator we are using. We can't use basename - // because it's not portable, but yes, this is stripping off the directory. - name = strrchr(argv[0], BC_FILE_SEP); - vm.name = (name == NULL) ? argv[0] : name + 1; + // Sometimes, argv[0] can be NULL. Better make sure to be robust against it. + if (argv[0] != NULL) { + + // Figure out the name of the calculator we are using. We can't use + // basename because it's not portable, but yes, this is stripping off + // the directory. + name = strrchr(argv[0], BC_FILE_SEP); + vm.name = (name == NULL) ? argv[0] : name + 1; + } + else + { +#if !DC_ENABLED + vm.name = "bc"; +#elif !BC_ENABLED + vm.name = "dc"; +#else + // Just default to bc in that case. + vm.name = "bc"; +#endif + } // If the name is longer than the length of the prefix, skip the prefix. if (strlen(vm.name) > len) vm.name += len; BC_SIG_LOCK; // We *must* do this here. Otherwise, other code could not jump out all of // the way. bc_vec_init(&vm.jmp_bufs, sizeof(sigjmp_buf), BC_DTOR_NONE); BC_SETJMP_LOCKED(exit); #if !DC_ENABLED bc_main(argc, argv); #elif !BC_ENABLED dc_main(argc, argv); #else // BC_IS_BC uses vm.name, which was set above. So we're good. if (BC_IS_BC) bc_main(argc, argv); else dc_main(argc, argv); #endif exit: BC_SIG_MAYLOCK; // Ensure we exit appropriately. return bc_vm_atexit((int) vm.status); } diff --git a/contrib/bc/src/program.c b/contrib/bc/src/program.c index bc5b88011638..8ec1a011a26d 100644 --- a/contrib/bc/src/program.c +++ b/contrib/bc/src/program.c @@ -1,3348 +1,3347 @@ /* * ***************************************************************************** * * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 2018-2021 Gavin D. Howard and contributors. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * * Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * * Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * * ***************************************************************************** * * Code to execute bc programs. * */ #include #include #include #include #include #include #include #include #include #include /** * Quickly sets the const and strs vector pointers in the program. This is a * convenience function. * @param p The program. * @param f The new function. */ static inline void bc_program_setVecs(BcProgram *p, BcFunc *f) { BC_SIG_ASSERT_LOCKED; p->consts = &f->consts; p->strs = &f->strs; } /** * Does a type check for something that expects a number. * @param r The result that will be checked. * @param n The result's number. */ static inline void bc_program_type_num(BcResult *r, BcNum *n) { #if BC_ENABLED // This should have already been taken care of. assert(r->t != BC_RESULT_VOID); #endif // BC_ENABLED if (BC_ERR(!BC_PROG_NUM(r, n))) bc_err(BC_ERR_EXEC_TYPE); } #if BC_ENABLED /** * Does a type check. * @param r The result to check. * @param t The type that the result should be. */ static void bc_program_type_match(BcResult *r, BcType t) { if (BC_ERR((r->t != BC_RESULT_ARRAY) != (!t))) bc_err(BC_ERR_EXEC_TYPE); } #endif // BC_ENABLED /** * Pulls an index out of a bytecode vector and updates the index into the vector * to point to the spot after the index. For more details on bytecode indices, * see the development manual (manuals/development.md#bytecode-indices). * @param code The bytecode vector. * @param bgn An in/out parameter; the index into the vector that will be * updated. * @return The index at @a bgn in the bytecode vector. */ static size_t bc_program_index(const char *restrict code, size_t *restrict bgn) { uchar amt = (uchar) code[(*bgn)++], i = 0; size_t res = 0; for (; i < amt; ++i, ++(*bgn)) { size_t temp = ((size_t) ((int) (uchar) code[*bgn]) & UCHAR_MAX); res |= (temp << (i * CHAR_BIT)); } return res; } /** * Returns a string from a result and its number. * @param p The program. * @param n The number tied to the result. * @return The string corresponding to the result and number. */ static char* bc_program_string(BcProgram *p, const BcNum *n) { BcFunc *f = bc_vec_item(&p->fns, n->rdx); return *((char**) bc_vec_item(&f->strs, n->scale)); } #if BC_ENABLED /** * Prepares the globals for a function call. This is only called when global * stacks are on because it pushes a copy of the current globals onto each of * their respective stacks. * @param p The program. */ static void bc_program_prepGlobals(BcProgram *p) { size_t i; for (i = 0; i < BC_PROG_GLOBALS_LEN; ++i) bc_vec_push(p->globals_v + i, p->globals + i); #if BC_ENABLE_EXTRA_MATH bc_rand_push(&p->rng); #endif // BC_ENABLE_EXTRA_MATH } /** * Pops globals stacks on returning from a function, or in the case of reset, * pops all but one item on each global stack. * @param p The program. * @param reset True if all but one item on each stack should be popped, false * otherwise. */ static void bc_program_popGlobals(BcProgram *p, bool reset) { size_t i; BC_SIG_ASSERT_LOCKED; for (i = 0; i < BC_PROG_GLOBALS_LEN; ++i) { BcVec *v = p->globals_v + i; bc_vec_npop(v, reset ? v->len - 1 : 1); p->globals[i] = BC_PROG_GLOBAL(v); } #if BC_ENABLE_EXTRA_MATH bc_rand_pop(&p->rng, reset); #endif // BC_ENABLE_EXTRA_MATH } /** * Derefeneces an array reference and returns a pointer to the real array. * @param p The program. * @param vec The reference vector. * @return A pointer to the desired array. */ static BcVec* bc_program_dereference(const BcProgram *p, BcVec *vec) { BcVec *v; size_t vidx, nidx, i = 0; // We want to be sure we have a reference vector. assert(vec->size == sizeof(uchar)); // Get the index of the vector in arrs, then the index of the original // referenced vector. vidx = bc_program_index(vec->v, &i); nidx = bc_program_index(vec->v, &i); v = bc_vec_item(bc_vec_item(&p->arrs, vidx), nidx); // We want to be sure we do *not* have a reference vector. assert(v->size != sizeof(uchar)); return v; } #endif // BC_ENABLED /** * Creates a BcNum from a BcBigDig and pushes onto the results stack. This is a * convenience function. * @param p The program. * @param dig The BcBigDig to push onto the results stack. * @param type The type that the pushed result should be. */ static void bc_program_pushBigdig(BcProgram *p, BcBigDig dig, BcResultType type) { BcResult res; res.t = type; BC_SIG_LOCK; bc_num_createFromBigdig(&res.d.n, dig); bc_vec_push(&p->results, &res); BC_SIG_UNLOCK; } size_t bc_program_addString(BcProgram *p, const char *str, size_t fidx) { BcFunc *f; char **str_ptr; BcVec *slabs; BC_SIG_ASSERT_LOCKED; // Push an empty string on the proper vector. f = bc_vec_item(&p->fns, fidx); str_ptr = bc_vec_pushEmpty(&f->strs); // Figure out which slab vector to use. slabs = fidx == BC_PROG_MAIN || fidx == BC_PROG_READ ? &vm.main_slabs : &vm.other_slabs; *str_ptr = bc_slabvec_strdup(slabs, str); return f->strs.len - 1; } size_t bc_program_search(BcProgram *p, const char *id, bool var) { BcVec *v, *map; size_t i; BC_SIG_ASSERT_LOCKED; // Grab the right vector and map. v = var ? &p->vars : &p->arrs; map = var ? &p->var_map : &p->arr_map; // We do an insert because the variable might not exist yet. This is because // the parser calls this function. If the insert succeeds, we create a stack // for the variable/array. But regardless, bc_map_insert() gives us the // index of the item in i. if (bc_map_insert(map, id, v->len, &i)) { BcVec *temp = bc_vec_pushEmpty(v); bc_array_init(temp, var); } return ((BcId*) bc_vec_item(map, i))->idx; } /** * Returns the correct variable or array stack for the type. * @param p The program. * @param idx The index of the variable or array in the variable or array * vector. * @param type The type of vector to return. * @return A pointer to the variable or array stack. */ static inline BcVec* bc_program_vec(const BcProgram *p, size_t idx, BcType type) { const BcVec *v = (type == BC_TYPE_VAR) ? &p->vars : &p->arrs; return bc_vec_item(v, idx); } /** * Returns a pointer to the BcNum corresponding to the result. There is one * case, however, where this returns a pointer to a BcVec: if the type of the * result is array. In that case, the pointer is casted to a pointer to BcNum, * but is never used. The function that calls this expecting an array casts the * pointer back. This function is called a lot and needs to be as fast as * possible. * @param p The program. * @param r The result whose number will be returned. * @return The BcNum corresponding to the result. */ static BcNum* bc_program_num(BcProgram *p, BcResult *r) { BcNum *n; #ifdef _WIN32 // Windows made it an error to not initialize this, so shut it up. // I don't want to do this on other platforms because this procedure // is one of the most heavily-used, and eliminating the initialization // is a performance win. n = NULL; #endif // _WIN32 switch (r->t) { case BC_RESULT_STR: case BC_RESULT_TEMP: case BC_RESULT_IBASE: case BC_RESULT_SCALE: case BC_RESULT_OBASE: #if BC_ENABLE_EXTRA_MATH case BC_RESULT_SEED: #endif // BC_ENABLE_EXTRA_MATH { n = &r->d.n; break; } case BC_RESULT_VAR: case BC_RESULT_ARRAY: case BC_RESULT_ARRAY_ELEM: { BcVec *v; BcType type = (r->t == BC_RESULT_VAR) ? BC_TYPE_VAR : BC_TYPE_ARRAY; // Get the correct variable or array vector. v = bc_program_vec(p, r->d.loc.loc, type); // Surprisingly enough, the hard case is *not* returning an array; // it's returning an array element. This is because we have to dig // deeper to get *to* the element. That's what the code inside this // if statement does. if (r->t == BC_RESULT_ARRAY_ELEM) { size_t idx = r->d.loc.idx; v = bc_vec_top(v); #if BC_ENABLED // If this is true, we have a reference vector, so dereference // it. The reason we don't need to worry about it for returning // a straight array is because we only care about references // when we access elements of an array that is a reference. That // is this code, so in essence, this line takes care of arrays // as well. if (v->size == sizeof(uchar)) v = bc_program_dereference(p, v); #endif // BC_ENABLED // We want to be sure we got a valid array of numbers. assert(v->size == sizeof(BcNum)); // The bc spec says that if an element is accessed that does not // exist, it should be preinitialized to 0. Well, if we access // an element *way* out there, we have to preinitialize all // elements between the current last element and the actual // accessed element. if (v->len <= idx) { BC_SIG_LOCK; bc_array_expand(v, bc_vm_growSize(idx, 1)); BC_SIG_UNLOCK; } n = bc_vec_item(v, idx); } // This is either a number (for a var) or an array (for an array). // Because bc_vec_top() returns a void*, we don't need to cast. else n = bc_vec_top(v); break; } case BC_RESULT_ZERO: { n = &vm.zero; break; } case BC_RESULT_ONE: { n = &vm.one; break; } #if BC_ENABLED // We should never get here; this is taken care of earlier because a // result is expected. case BC_RESULT_VOID: #ifndef NDEBUG { abort(); } #endif // NDEBUG // Fallthrough case BC_RESULT_LAST: { n = &p->last; break; } #endif // BC_ENABLED } return n; } /** * Prepares an operand for use. * @param p The program. * @param r An out parameter; this is set to the pointer to the result that * we care about. * @param n An out parameter; this is set to the pointer to the number that * we care about. * @param idx The index of the result from the top of the results stack. */ static void bc_program_operand(BcProgram *p, BcResult **r, BcNum **n, size_t idx) { *r = bc_vec_item_rev(&p->results, idx); #if BC_ENABLED if (BC_ERR((*r)->t == BC_RESULT_VOID)) bc_err(BC_ERR_EXEC_VOID_VAL); #endif // BC_ENABLED *n = bc_program_num(p, *r); } /** * Prepares the operands of a binary operator. * @param p The program. * @param l An out parameter; this is set to the pointer to the result for * the left operand. * @param ln An out parameter; this is set to the pointer to the number for * the left operand. * @param r An out parameter; this is set to the pointer to the result for * the right operand. * @param rn An out parameter; this is set to the pointer to the number for * the right operand. * @param idx The starting index where the operands are in the results stack, * starting from the top. */ static void bc_program_binPrep(BcProgram *p, BcResult **l, BcNum **ln, BcResult **r, BcNum **rn, size_t idx) { BcResultType lt; assert(p != NULL && l != NULL && ln != NULL && r != NULL && rn != NULL); #ifndef BC_PROG_NO_STACK_CHECK // Check the stack for dc. if (BC_IS_DC) { if (BC_ERR(!BC_PROG_STACK(&p->results, idx + 2))) bc_err(BC_ERR_EXEC_STACK); } #endif // BC_PROG_NO_STACK_CHECK assert(BC_PROG_STACK(&p->results, idx + 2)); // Get the operands. bc_program_operand(p, l, ln, idx + 1); bc_program_operand(p, r, rn, idx); lt = (*l)->t; #if BC_ENABLED // bc_program_operand() checked these for us. assert(lt != BC_RESULT_VOID && (*r)->t != BC_RESULT_VOID); #endif // BC_ENABLED // We run this again under these conditions in case any vector has been // reallocated out from under the BcNums or arrays we had. In other words, // this is to fix pointer invalidation. if (lt == (*r)->t && (lt == BC_RESULT_VAR || lt == BC_RESULT_ARRAY_ELEM)) *ln = bc_program_num(p, *l); if (BC_ERR(lt == BC_RESULT_STR)) bc_err(BC_ERR_EXEC_TYPE); } /** * Prepares the operands of a binary operator and type checks them. This is * separate from bc_program_binPrep() because some places want this, others want * bc_program_binPrep(). * @param p The program. * @param l An out parameter; this is set to the pointer to the result for * the left operand. * @param ln An out parameter; this is set to the pointer to the number for * the left operand. * @param r An out parameter; this is set to the pointer to the result for * the right operand. * @param rn An out parameter; this is set to the pointer to the number for * the right operand. * @param idx The starting index where the operands are in the results stack, * starting from the top. */ static void bc_program_binOpPrep(BcProgram *p, BcResult **l, BcNum **ln, BcResult **r, BcNum **rn, size_t idx) { bc_program_binPrep(p, l, ln, r, rn, idx); bc_program_type_num(*l, *ln); bc_program_type_num(*r, *rn); } /** * Prepares the operands of an assignment operator. * @param p The program. * @param l An out parameter; this is set to the pointer to the result for the * left operand. * @param ln An out parameter; this is set to the pointer to the number for the * left operand. * @param r An out parameter; this is set to the pointer to the result for the * right operand. * @param rn An out parameter; this is set to the pointer to the number for the * right operand. */ static void bc_program_assignPrep(BcProgram *p, BcResult **l, BcNum **ln, BcResult **r, BcNum **rn) { BcResultType lt, min; // This is the min non-allowable result type. dc allows strings. min = BC_RESULT_TEMP - ((unsigned int) (BC_IS_BC)); // Prepare the operands. bc_program_binPrep(p, l, ln, r, rn, 0); lt = (*l)->t; // Typecheck the left. if (BC_ERR(lt >= min && lt <= BC_RESULT_ONE)) bc_err(BC_ERR_EXEC_TYPE); // Strings can be assigned to variables. We are already good if we are // assigning a string. bool good = ((*r)->t == BC_RESULT_STR && lt <= BC_RESULT_ARRAY_ELEM); assert(BC_PROG_STR(*rn) || (*r)->t != BC_RESULT_STR); // If not, type check for a number. if (!good) bc_program_type_num(*r, *rn); } /** * Prepares a single operand and type checks it. This is separate from * bc_program_operand() because different places want one or the other. * @param p The program. * @param r An out parameter; this is set to the pointer to the result that * we care about. * @param n An out parameter; this is set to the pointer to the number that * we care about. * @param idx The index of the result from the top of the results stack. */ static void bc_program_prep(BcProgram *p, BcResult **r, BcNum **n, size_t idx) { assert(p != NULL && r != NULL && n != NULL); #ifndef BC_PROG_NO_STACK_CHECK // Check the stack for dc. if (BC_IS_DC) { if (BC_ERR(!BC_PROG_STACK(&p->results, idx + 1))) bc_err(BC_ERR_EXEC_STACK); } #endif // BC_PROG_NO_STACK_CHECK assert(BC_PROG_STACK(&p->results, idx + 1)); bc_program_operand(p, r, n, idx); // dc does not allow strings in this case. bc_program_type_num(*r, *n); } /** * Prepares and returns a clean result for the result of an operation. * @param p The program. * @return A clean result. */ static BcResult* bc_program_prepResult(BcProgram *p) { BcResult *res = bc_vec_pushEmpty(&p->results); bc_result_clear(res); return res; } /** * Prepares a constant for use. This parses the constant into a number and then * pushes that number onto the results stack. * @param p The program. * @param code The bytecode vector that we will pull the index of the constant * from. * @param bgn An in/out parameter; marks the start of the index in the * bytecode vector and will be updated to point to after the index. */ static void bc_program_const(BcProgram *p, const char *code, size_t *bgn) { // I lied. I actually push the result first. I can do this because the // result will be popped on error. I also get the constant itself. BcResult *r = bc_program_prepResult(p); BcConst *c = bc_vec_item(p->consts, bc_program_index(code, bgn)); BcBigDig base = BC_PROG_IBASE(p); // Only reparse if the base changed. if (c->base != base) { // Allocate if we haven't yet. if (c->num.num == NULL) { BC_SIG_LOCK; bc_num_init(&c->num, BC_NUM_RDX(strlen(c->val))); BC_SIG_UNLOCK; } // bc_num_parse() should only do operations that cannot fail. bc_num_parse(&c->num, c->val, base); c->base = base; } BC_SIG_LOCK; bc_num_createCopy(&r->d.n, &c->num); BC_SIG_UNLOCK; } /** * Executes a binary operator operation. * @param p The program. * @param inst The instruction corresponding to the binary operator to execute. */ static void bc_program_op(BcProgram *p, uchar inst) { BcResult *opd1, *opd2, *res; BcNum *n1, *n2; size_t idx = inst - BC_INST_POWER; res = bc_program_prepResult(p); bc_program_binOpPrep(p, &opd1, &n1, &opd2, &n2, 1); BC_SIG_LOCK; // Initialize the number with enough space, using the correct // BcNumBinaryOpReq function. This looks weird because it is executing an // item of an array. Rest assured that item is a function. bc_num_init(&res->d.n, bc_program_opReqs[idx](n1, n2, BC_PROG_SCALE(p))); BC_SIG_UNLOCK; assert(BC_NUM_RDX_VALID(n1)); assert(BC_NUM_RDX_VALID(n2)); // Run the operation. This also executes an item of an array. bc_program_ops[idx](n1, n2, &res->d.n, BC_PROG_SCALE(p)); bc_program_retire(p, 1, 2); } /** * Executes a read() or ? command. * @param p The program. */ static void bc_program_read(BcProgram *p) { BcStatus s; BcInstPtr ip; size_t i; const char* file; bool is_stdin; BcFunc *f = bc_vec_item(&p->fns, BC_PROG_READ); // If we are already executing a read, that is an error. So look for a read // and barf. for (i = 0; i < p->stack.len; ++i) { BcInstPtr *ip_ptr = bc_vec_item(&p->stack, i); if (ip_ptr->func == BC_PROG_READ) bc_err(BC_ERR_EXEC_REC_READ); } BC_SIG_LOCK; // Save the filename because we are going to overwrite it. file = vm.file; is_stdin = vm.is_stdin; // It is a parse error if there needs to be more than one line, so we unset // this to tell the lexer to not request more. We set it back later. vm.is_stdin = false; if (!BC_PARSE_IS_INITED(&vm.read_prs, p)) { // We need to parse, but we don't want to use the existing parser // because it has state it needs to keep. (It could have a partial parse // state.) So we create a new parser. This parser is in the BcVm struct // so that it is not local, which means that a longjmp() could change // it. bc_parse_init(&vm.read_prs, p, BC_PROG_READ); // We need a separate input buffer; that's why it is also in the BcVm // struct. bc_vec_init(&vm.read_buf, sizeof(char), BC_DTOR_NONE); } // This needs to be updated because the parser could have been used // somewhere else else bc_parse_updateFunc(&vm.read_prs, BC_PROG_READ); BC_SETJMP_LOCKED(exec_err); BC_SIG_UNLOCK; // Set up the lexer and the read function. bc_lex_file(&vm.read_prs.l, bc_program_stdin_name); bc_vec_popAll(&f->code); // Read a line. if (!BC_R) s = bc_read_line(&vm.read_buf, ""); else s = bc_read_line(&vm.read_buf, BC_IS_BC ? "read> " : "?> "); // We should *not* have run into EOF. if (s == BC_STATUS_EOF) bc_err(BC_ERR_EXEC_READ_EXPR); // Parse *one* expression. bc_parse_text(&vm.read_prs, vm.read_buf.v, false); BC_SIG_LOCK; vm.expr(&vm.read_prs, BC_PARSE_NOREAD | BC_PARSE_NEEDVAL); BC_SIG_UNLOCK; // We *must* have a valid expression. A semicolon cannot end an expression, // although EOF can. if (BC_ERR(vm.read_prs.l.t != BC_LEX_NLINE && vm.read_prs.l.t != BC_LEX_EOF)) { bc_err(BC_ERR_EXEC_READ_EXPR); } #if BC_ENABLED // Push on the globals stack if necessary. if (BC_G) bc_program_prepGlobals(p); #endif // BC_ENABLED // Set up a new BcInstPtr. ip.func = BC_PROG_READ; ip.idx = 0; ip.len = p->results.len; // Update this pointer, just in case. f = bc_vec_item(&p->fns, BC_PROG_READ); // We want a return instruction to simplify things. bc_vec_pushByte(&f->code, vm.read_ret); // This lock is here to make sure dc's tail calls are the same length. BC_SIG_LOCK; bc_vec_push(&p->stack, &ip); #if DC_ENABLED // We need a new tail call entry for dc. if (BC_IS_DC) { size_t temp = 0; bc_vec_push(&p->tail_calls, &temp); } #endif // DC_ENABLED exec_err: BC_SIG_MAYLOCK; vm.is_stdin = is_stdin; vm.file = file; BC_LONGJMP_CONT; } #if BC_ENABLE_EXTRA_MATH /** * Execute a rand(). * @param p The program. */ static void bc_program_rand(BcProgram *p) { BcRand rand = bc_rand_int(&p->rng); bc_program_pushBigdig(p, (BcBigDig) rand, BC_RESULT_TEMP); #ifndef NDEBUG // This is just to ensure that the generated number is correct. I also use // braces because I declare every local at the top of the scope. { BcResult *r = bc_vec_top(&p->results); assert(BC_NUM_RDX_VALID_NP(r->d.n)); } #endif // NDEBUG } #endif // BC_ENABLE_EXTRA_MATH /** * Prints a series of characters, without escapes. * @param str The string (series of characters). */ static void bc_program_printChars(const char *str) { const char *nl; size_t len = vm.nchars + strlen(str); sig_atomic_t lock; BC_SIG_TRYLOCK(lock); bc_file_puts(&vm.fout, bc_flush_save, str); // We need to update the number of characters, so we find the last newline // and set the characters accordingly. nl = strrchr(str, '\n'); if (nl != NULL) len = strlen(nl + 1); vm.nchars = len > UINT16_MAX ? UINT16_MAX : (uint16_t) len; BC_SIG_TRYUNLOCK(lock); } /** * Prints a string with escapes. * @param str The string. */ static void bc_program_printString(const char *restrict str) { size_t i, len = strlen(str); #if DC_ENABLED // This is to ensure a nul byte is printed for dc's stream operation. if (!len && BC_IS_DC) { bc_vm_putchar('\0', bc_flush_save); return; } #endif // DC_ENABLED // Loop over the characters, processing escapes and printing the rest. for (i = 0; i < len; ++i) { int c = str[i]; // If we have an escape... if (c == '\\' && i != len - 1) { const char *ptr; // Get the escape character and its companion. c = str[++i]; ptr = strchr(bc_program_esc_chars, c); // If we have a companion character... if (ptr != NULL) { // We need to specially handle a newline. if (c == 'n') { BC_SIG_LOCK; vm.nchars = UINT16_MAX; BC_SIG_UNLOCK; } // Grab the actual character. c = bc_program_esc_seqs[(size_t) (ptr - bc_program_esc_chars)]; } else { // Just print the backslash if there is no companion character. // The following character will be printed later after the outer // if statement. bc_vm_putchar('\\', bc_flush_save); } } bc_vm_putchar(c, bc_flush_save); } } /** * Executes a print. This function handles all printing except streaming. * @param p The program. * @param inst The instruction for the type of print we are doing. * @param idx The index of the result that we are printing. */ static void bc_program_print(BcProgram *p, uchar inst, size_t idx) { BcResult *r; char *str; BcNum *n; bool pop = (inst != BC_INST_PRINT); assert(p != NULL); #ifndef BC_PROG_NO_STACK_CHECK if (BC_IS_DC) { if (BC_ERR(!BC_PROG_STACK(&p->results, idx + 1))) bc_err(BC_ERR_EXEC_STACK); } #endif // BC_PROG_NO_STACK_CHECK assert(BC_PROG_STACK(&p->results, idx + 1)); r = bc_vec_item_rev(&p->results, idx); #if BC_ENABLED // If we have a void value, that's not necessarily an error. It is if pop is // true because that means that we are executing a print statement, but // attempting to do a print on a lone void value is allowed because that's // exactly how we want void values used. if (r->t == BC_RESULT_VOID) { if (BC_ERR(pop)) bc_err(BC_ERR_EXEC_VOID_VAL); bc_vec_pop(&p->results); return; } #endif // BC_ENABLED n = bc_program_num(p, r); // If we have a number... if (BC_PROG_NUM(r, n)) { #if BC_ENABLED assert(inst != BC_INST_PRINT_STR); #endif // BC_ENABLED // Print the number. bc_num_print(n, BC_PROG_OBASE(p), !pop); #if BC_ENABLED // Need to store the number in last. if (BC_IS_BC) bc_num_copy(&p->last, n); #endif // BC_ENABLED } else { // We want to flush any stuff in the stdout buffer first. bc_file_flush(&vm.fout, bc_flush_save); str = bc_program_string(p, n); #if BC_ENABLED if (inst == BC_INST_PRINT_STR) bc_program_printChars(str); else #endif // BC_ENABLED { bc_program_printString(str); // Need to print a newline only in this case. if (inst == BC_INST_PRINT) bc_vm_putchar('\n', bc_flush_err); } } // bc always pops. if (BC_IS_BC || pop) bc_vec_pop(&p->results); } void bc_program_negate(BcResult *r, BcNum *n) { bc_num_copy(&r->d.n, n); if (BC_NUM_NONZERO(&r->d.n)) BC_NUM_NEG_TGL_NP(r->d.n); } void bc_program_not(BcResult *r, BcNum *n) { if (!bc_num_cmpZero(n)) bc_num_one(&r->d.n); } #if BC_ENABLE_EXTRA_MATH void bc_program_trunc(BcResult *r, BcNum *n) { bc_num_copy(&r->d.n, n); bc_num_truncate(&r->d.n, n->scale); } #endif // BC_ENABLE_EXTRA_MATH /** * Runs a unary operation. * @param p The program. * @param inst The unary operation. */ static void bc_program_unary(BcProgram *p, uchar inst) { BcResult *res, *ptr; BcNum *num; res = bc_program_prepResult(p); bc_program_prep(p, &ptr, &num, 1); BC_SIG_LOCK; bc_num_init(&res->d.n, num->len); BC_SIG_UNLOCK; // This calls a function that is in an array. bc_program_unarys[inst - BC_INST_NEG](res, num); bc_program_retire(p, 1, 1); } /** * Executes a logical operator. * @param p The program. * @param inst The operator. */ static void bc_program_logical(BcProgram *p, uchar inst) { BcResult *opd1, *opd2, *res; BcNum *n1, *n2; bool cond = 0; ssize_t cmp; res = bc_program_prepResult(p); // All logical operators (except boolean not, which is taken care of by // bc_program_unary()), are binary operators. bc_program_binOpPrep(p, &opd1, &n1, &opd2, &n2, 1); // Boolean and and or are not short circuiting. This is why; they can be // implemented much easier this way. if (inst == BC_INST_BOOL_AND) cond = (bc_num_cmpZero(n1) && bc_num_cmpZero(n2)); else if (inst == BC_INST_BOOL_OR) cond = (bc_num_cmpZero(n1) || bc_num_cmpZero(n2)); else { // We have a relational operator, so do a comparison. cmp = bc_num_cmp(n1, n2); switch (inst) { case BC_INST_REL_EQ: { cond = (cmp == 0); break; } case BC_INST_REL_LE: { cond = (cmp <= 0); break; } case BC_INST_REL_GE: { cond = (cmp >= 0); break; } case BC_INST_REL_NE: { cond = (cmp != 0); break; } case BC_INST_REL_LT: { cond = (cmp < 0); break; } case BC_INST_REL_GT: { cond = (cmp > 0); break; } #ifndef NDEBUG default: { // There is a bug if we get here. abort(); } #endif // NDEBUG } } BC_SIG_LOCK; bc_num_init(&res->d.n, BC_NUM_DEF_SIZE); BC_SIG_UNLOCK; if (cond) bc_num_one(&res->d.n); bc_program_retire(p, 1, 2); } /** * Assigns a string to a variable. * @param p The program. * @param num The location of the string as a BcNum. * @param v The stack for the variable. * @param push Whether to push the string or not. To push means to move the * string from the results stack and push it onto the variable * stack. */ static void bc_program_assignStr(BcProgram *p, BcNum *num, BcVec *v, bool push) { BcNum *n; assert(BC_PROG_STACK(&p->results, 1 + !push)); assert(num != NULL && num->num == NULL && num->cap == 0); // If we are not pushing onto the variable stack, we need to replace the // top of the variable stack. if (!push) bc_vec_pop(v); bc_vec_npop(&p->results, 1 + !push); n = bc_vec_pushEmpty(v); // We can just copy because the num should not have allocated anything. memcpy(n, num, sizeof(BcNum)); } /** * Copies a value to a variable. This is used for storing in dc as well as to * set function parameters to arguments in bc. * @param p The program. * @param idx The index of the variable or array to copy to. * @param t The type to copy to. This could be a variable or an array. * @param last Whether to grab the last item on the variable stack or not (for * bc function parameters). This is important because if a new * value has been pushed to the variable already, we need to grab * the value pushed before. This happens when you have a parameter * named something like "x", and a variable "x" is passed to * another parameter. */ static void bc_program_copyToVar(BcProgram *p, size_t idx, BcType t, bool last) { BcResult *ptr = NULL, r; BcVec *vec; BcNum *n = NULL; bool var = (t == BC_TYPE_VAR); #if DC_ENABLED // Check the stack for dc. if (BC_IS_DC) { if (BC_ERR(!BC_PROG_STACK(&p->results, 1))) bc_err(BC_ERR_EXEC_STACK); } #endif assert(BC_PROG_STACK(&p->results, 1)); bc_program_operand(p, &ptr, &n, 0); #if BC_ENABLED // Get the variable for a bc function call. if (BC_IS_BC) { // Type match the result. bc_program_type_match(ptr, t); // Get the variable or array, taking care to get the real item. We take // care of last with arrays later. if (!last && var) n = bc_vec_item_rev(bc_program_vec(p, ptr->d.loc.loc, t), 1); } #endif // BC_ENABLED vec = bc_program_vec(p, idx, t); // We can shortcut in dc if it's assigning a string by using // bc_program_assignStr(). if (ptr->t == BC_RESULT_STR) { assert(BC_PROG_STR(n)); if (BC_ERR(!var)) bc_err(BC_ERR_EXEC_TYPE); bc_program_assignStr(p, n, vec, true); return; } BC_SIG_LOCK; // Just create and copy for a normal variable. if (var) { if (BC_PROG_STR(n)) memcpy(&r.d.n, n, sizeof(BcNum)); else bc_num_createCopy(&r.d.n, n); } else { // If we get here, we are handling an array. This is one place we need // to cast the number from bc_program_num() to a vector. BcVec *v = (BcVec*) n, *rv = &r.d.v; #if BC_ENABLED if (BC_IS_BC) { BcVec *parent; bool ref, ref_size; // We need to figure out if the parameter is a reference or not and // construct the reference vector, if necessary. So this gets the // parent stack for the array. parent = bc_program_vec(p, ptr->d.loc.loc, t); assert(parent != NULL); // This takes care of last for arrays. Mostly. if (!last) v = bc_vec_item_rev(parent, !last); assert(v != NULL); // True if we are using a reference. ref = (v->size == sizeof(BcNum) && t == BC_TYPE_REF); // True if we already have a reference vector. This is slightly // (okay, a lot; it just doesn't look that way) different from // above. The above means that we need to construct a reference // vector, whereas this means that we have one and we might have to // *dereference* it. ref_size = (v->size == sizeof(uchar)); // If we *should* have a reference. if (ref || (ref_size && t == BC_TYPE_REF)) { // Create a new reference vector. bc_vec_init(rv, sizeof(uchar), BC_DTOR_NONE); // If this is true, then we need to construct a reference. if (ref) { assert(parent->len >= (size_t) (!last + 1)); // Make sure the pointer was not invalidated. vec = bc_program_vec(p, idx, t); // Push the indices onto the reference vector. This takes // care of last; it ensures the reference goes to the right // place. bc_vec_pushIndex(rv, ptr->d.loc.loc); bc_vec_pushIndex(rv, parent->len - !last - 1); } // If we get here, we are copying a ref to a ref. Just push a // copy of all of the bytes. else bc_vec_npush(rv, v->len * sizeof(uchar), v->v); // Push the reference vector onto the array stack and pop the // source. bc_vec_push(vec, &r.d); bc_vec_pop(&p->results); // We need to return early to avoid executing code that we must // not touch. BC_SIG_UNLOCK; return; } // If we get here, we have a reference, but we need an array, so // dereference the array. else if (ref_size && t != BC_TYPE_REF) v = bc_program_dereference(p, v); } #endif // BC_ENABLED // If we get here, we need to copy the array because in bc, all // arguments are passed by value. Yes, this is expensive. bc_array_init(rv, true); bc_array_copy(rv, v); } // Push the vector onto the array stack and pop the source. bc_vec_push(vec, &r.d); bc_vec_pop(&p->results); BC_SIG_UNLOCK; } /** * Executes an assignment operator. * @param p The program. * @param inst The assignment operator to execute. */ static void bc_program_assign(BcProgram *p, uchar inst) { // The local use_val is true when the assigned value needs to be copied. BcResult *left, *right, res; BcNum *l, *r; bool ob, sc, use_val = BC_INST_USE_VAL(inst); bc_program_assignPrep(p, &left, &l, &right, &r); // Assigning to a string should be impossible simply because of the parse. assert(left->t != BC_RESULT_STR); // If we are assigning a string... if (right->t == BC_RESULT_STR) { assert(BC_PROG_STR(r)); #if BC_ENABLED if (inst != BC_INST_ASSIGN && inst != BC_INST_ASSIGN_NO_VAL) bc_err(BC_ERR_EXEC_TYPE); #endif // BC_ENABLED // If we are assigning to an array element... if (left->t == BC_RESULT_ARRAY_ELEM) { BC_SIG_LOCK; // We need to free the number and clear it. bc_num_free(l); memcpy(l, r, sizeof(BcNum)); // Now we can pop the results. bc_vec_npop(&p->results, 2); BC_SIG_UNLOCK; } else { // If we get here, we are assigning to a variable, which we can use // bc_program_assignStr() for. BcVec *v = bc_program_vec(p, left->d.loc.loc, BC_TYPE_VAR); bc_program_assignStr(p, r, v, false); } #if BC_ENABLED // If this is true, the value is going to be used again, so we want to // push a temporary with the string. if (inst == BC_INST_ASSIGN) { res.t = BC_RESULT_STR; memcpy(&res.d.n, r, sizeof(BcNum)); bc_vec_push(&p->results, &res); } #endif // BC_ENABLED // By using bc_program_assignStr(), we short-circuited this, so return. return; } // If we have a normal assignment operator, not a math one... if (BC_INST_IS_ASSIGN(inst)) { // Assigning to a variable that has a string here is fine because there // is no math done on it. // BC_RESULT_TEMP, BC_RESULT_IBASE, BC_RESULT_OBASE, BC_RESULT_SCALE, // and BC_RESULT_SEED all have temporary copies. Because that's the // case, we can free the left and just move the value over. We set the // type of right to BC_RESULT_ZERO in order to prevent it from being // freed. We also don't have to worry about BC_RESULT_STR because it's // take care of above. if (right->t == BC_RESULT_TEMP || right->t >= BC_RESULT_IBASE) { BC_SIG_LOCK; bc_num_free(l); memcpy(l, r, sizeof(BcNum)); right->t = BC_RESULT_ZERO; BC_SIG_UNLOCK; } // Copy over. else bc_num_copy(l, r); } #if BC_ENABLED else { // If we get here, we are doing a math assignment (+=, -=, etc.). So // we need to prepare for a binary operator. BcBigDig scale = BC_PROG_SCALE(p); // At this point, the left side could still be a string because it could // be a variable that has the string. If that's the case, we have a type // error. if (BC_PROG_STR(l)) bc_err(BC_ERR_EXEC_TYPE); // Get the right type of assignment operator, whether val is used or // NO_VAL for performance. if (!use_val) inst -= (BC_INST_ASSIGN_POWER_NO_VAL - BC_INST_ASSIGN_POWER); assert(BC_NUM_RDX_VALID(l)); assert(BC_NUM_RDX_VALID(r)); // Run the actual operation. We do not need worry about reallocating l // because bc_num_binary() does that behind the scenes for us. bc_program_ops[inst - BC_INST_ASSIGN_POWER](l, r, l, scale); } #endif // BC_ENABLED ob = (left->t == BC_RESULT_OBASE); sc = (left->t == BC_RESULT_SCALE); // The globals need special handling, especially the non-seed ones. The // first part of the if statement handles them. if (ob || sc || left->t == BC_RESULT_IBASE) { BcVec *v; BcBigDig *ptr, *ptr_t, val, max, min; // Get the actual value. val = bc_num_bigdig(l); // Scale needs handling separate from ibase and obase. if (sc) { // Set the min and max. min = 0; max = vm.maxes[BC_PROG_GLOBALS_SCALE]; // Get a pointer to the stack and to the current value. v = p->globals_v + BC_PROG_GLOBALS_SCALE; ptr_t = p->globals + BC_PROG_GLOBALS_SCALE; } else { // Set the min and max. min = BC_NUM_MIN_BASE; if (BC_ENABLE_EXTRA_MATH && ob && (BC_IS_DC || !BC_IS_POSIX)) min = 0; max = vm.maxes[ob + BC_PROG_GLOBALS_IBASE]; // Get a pointer to the stack and to the current value. v = p->globals_v + BC_PROG_GLOBALS_IBASE + ob; ptr_t = p->globals + BC_PROG_GLOBALS_IBASE + ob; } // Check for error. if (BC_ERR(val > max || val < min)) { // This grabs the right error. BcErr e = left->t - BC_RESULT_IBASE + BC_ERR_EXEC_IBASE; bc_verr(e, min, max); } // Set the top of the stack and the actual global value. ptr = bc_vec_top(v); *ptr = val; *ptr_t = val; } #if BC_ENABLE_EXTRA_MATH // To assign to steed, let bc_num_rng() do its magic. else if (left->t == BC_RESULT_SEED) bc_num_rng(l, &p->rng); #endif // BC_ENABLE_EXTRA_MATH BC_SIG_LOCK; // If we needed to use the value, then we need to copy it. Otherwise, we can // pop indiscriminately. Oh, and the copy should be a BC_RESULT_TEMP. if (use_val) { bc_num_createCopy(&res.d.n, l); res.t = BC_RESULT_TEMP; bc_vec_npop(&p->results, 2); bc_vec_push(&p->results, &res); } else bc_vec_npop(&p->results, 2); BC_SIG_UNLOCK; } /** * Pushes a variable's value onto the results stack. * @param p The program. * @param code The bytecode vector to pull the variable's index out of. * @param bgn An in/out parameter; the start of the index in the bytecode * vector, and will be updated to point after the index on return. * @param pop True if the variable's value should be popped off its stack. * This is only used in dc. * @param copy True if the variable's value should be copied to the results * stack. This is only used in dc. */ static void bc_program_pushVar(BcProgram *p, const char *restrict code, size_t *restrict bgn, bool pop, bool copy) { BcResult r; size_t idx = bc_program_index(code, bgn); // Set the result appropriately. r.t = BC_RESULT_VAR; r.d.loc.loc = idx; #if DC_ENABLED // If this condition is true, then we have the hard case, where we have to // adjust dc registers. if (BC_IS_DC && (pop || copy)) { // Get the stack for the variable and the number at the top. BcVec *v = bc_program_vec(p, idx, BC_TYPE_VAR); BcNum *num = bc_vec_top(v); // Ensure there are enough elements on the stack. if (BC_ERR(!BC_PROG_STACK(v, 2 - copy))) { const char *name = bc_map_name(&p->var_map, idx); bc_verr(BC_ERR_EXEC_STACK_REGISTER, name); } assert(BC_PROG_STACK(v, 2 - copy)); // If the top of the stack is actually a number... if (!BC_PROG_STR(num)) { BC_SIG_LOCK; // Create a copy to go onto the results stack as appropriate. r.t = BC_RESULT_TEMP; bc_num_createCopy(&r.d.n, num); // If we are not actually copying, we need to do a replace, so pop. if (!copy) bc_vec_pop(v); bc_vec_push(&p->results, &r); BC_SIG_UNLOCK; return; } else { // Set the string result. We can just memcpy because all of the // fields in the num should be cleared. memcpy(&r.d.n, num, sizeof(BcNum)); r.t = BC_RESULT_STR; } // If we are not actually copying, we need to do a replace, so pop. if (!copy) bc_vec_pop(v); } #endif // DC_ENABLED bc_vec_push(&p->results, &r); } /** * Pushes an array or an array element onto the results stack. * @param p The program. * @param code The bytecode vector to pull the variable's index out of. * @param bgn An in/out parameter; the start of the index in the bytecode * vector, and will be updated to point after the index on return. * @param inst The instruction; whether to push an array or an array element. */ static void bc_program_pushArray(BcProgram *p, const char *restrict code, size_t *restrict bgn, uchar inst) { BcResult r, *operand; BcNum *num; BcBigDig temp; // Get the index of the array. r.d.loc.loc = bc_program_index(code, bgn); // Doing an array is easy; just set the result type and finish. if (inst == BC_INST_ARRAY) { r.t = BC_RESULT_ARRAY; bc_vec_push(&p->results, &r); return; } // Grab the top element of the results stack for the array index. bc_program_prep(p, &operand, &num, 0); temp = bc_num_bigdig(num); // Set the result. r.t = BC_RESULT_ARRAY_ELEM; r.d.loc.idx = (size_t) temp; BC_SIG_LOCK; // Pop the index and push the element. bc_vec_pop(&p->results); bc_vec_push(&p->results, &r); BC_SIG_UNLOCK; } #if BC_ENABLED /** * Executes an increment or decrement operator. This only handles postfix * inc/dec because the parser translates prefix inc/dec into an assignment where * the value is used. * @param p The program. * @param inst The instruction; whether to do an increment or decrement. */ static void bc_program_incdec(BcProgram *p, uchar inst) { BcResult *ptr, res, copy; BcNum *num; uchar inst2; bc_program_prep(p, &ptr, &num, 0); BC_SIG_LOCK; // We need a copy from *before* the operation. copy.t = BC_RESULT_TEMP; bc_num_createCopy(©.d.n, num); BC_SETJMP_LOCKED(exit); BC_SIG_UNLOCK; // Create the proper assignment. res.t = BC_RESULT_ONE; inst2 = BC_INST_ASSIGN_PLUS_NO_VAL + (inst & 0x01); bc_vec_push(&p->results, &res); bc_program_assign(p, inst2); BC_SIG_LOCK; bc_vec_push(&p->results, ©); BC_UNSETJMP; BC_SIG_UNLOCK; // No need to free the copy here because we pushed it onto the stack. return; exit: BC_SIG_MAYLOCK; bc_num_free(©.d.n); BC_LONGJMP_CONT; } /** * Executes a function call for bc. * @param p The program. * @param code The bytecode vector to pull the number of arguments and the * function index out of. * @param bgn An in/out parameter; the start of the indices in the bytecode * vector, and will be updated to point after the indices on * return. */ static void bc_program_call(BcProgram *p, const char *restrict code, size_t *restrict bgn) { BcInstPtr ip; size_t i, nargs; BcFunc *f; BcVec *v; BcAuto *a; BcResult *arg; // Pull the number of arguments out of the bytecode vector. nargs = bc_program_index(code, bgn); // Set up instruction pointer. ip.idx = 0; ip.func = bc_program_index(code, bgn); f = bc_vec_item(&p->fns, ip.func); // Error checking. if (BC_ERR(!f->code.len)) bc_verr(BC_ERR_EXEC_UNDEF_FUNC, f->name); if (BC_ERR(nargs != f->nparams)) bc_verr(BC_ERR_EXEC_PARAMS, f->nparams, nargs); // Set the length of the results stack. We discount the argument, of course. ip.len = p->results.len - nargs; assert(BC_PROG_STACK(&p->results, nargs)); // Prepare the globals' stacks. if (BC_G) bc_program_prepGlobals(p); // Push the arguments onto the stacks of their respective parameters. for (i = 0; i < nargs; ++i) { size_t j; bool last = true; arg = bc_vec_top(&p->results); if (BC_ERR(arg->t == BC_RESULT_VOID)) bc_err(BC_ERR_EXEC_VOID_VAL); // Get the corresponding parameter. a = bc_vec_item(&f->autos, nargs - 1 - i); // If I have already pushed to a var, I need to make sure I // get the previous version, not the already pushed one. This condition // must be true for that to even be possible. if (arg->t == BC_RESULT_VAR || arg->t == BC_RESULT_ARRAY) { // Loop through all of the previous parameters. for (j = 0; j < i && last; ++j) { BcAuto *aptr = bc_vec_item(&f->autos, nargs - 1 - j); // This condition is true if there is a previous parameter with // the same name *and* type because variables and arrays do not // interfere with each other. last = (arg->d.loc.loc != aptr->idx || (!aptr->type) != (arg->t == BC_RESULT_VAR)); } } // Actually push the value onto the parameter's stack. bc_program_copyToVar(p, a->idx, a->type, last); } BC_SIG_LOCK; // Push zeroes onto the stacks of the auto variables. for (; i < f->autos.len; ++i) { // Get the auto and its stack. a = bc_vec_item(&f->autos, i); v = bc_program_vec(p, a->idx, a->type); // If a variable, just push a 0; otherwise, push an array. if (a->type == BC_TYPE_VAR) { BcNum *n = bc_vec_pushEmpty(v); bc_num_init(n, BC_NUM_DEF_SIZE); } else { BcVec *v2; assert(a->type == BC_TYPE_ARRAY); v2 = bc_vec_pushEmpty(v); bc_array_init(v2, true); } } // Push the instruction pointer onto the execution stack. bc_vec_push(&p->stack, &ip); BC_SIG_UNLOCK; } /** * Executes a return instruction. * @param p The program. * @param inst The return instruction. bc can return void, and we need to know * if it is. */ static void bc_program_return(BcProgram *p, uchar inst) { BcResult *res; BcFunc *f; BcInstPtr *ip; size_t i, nresults; // Get the instruction pointer. ip = bc_vec_top(&p->stack); // Get the difference between the actual number of results and the number of // results the caller expects. nresults = p->results.len - ip->len; // If this isn't true, there was a missing call somewhere. assert(BC_PROG_STACK(&p->stack, 2)); // If this isn't true, the parser screwed by giving us no value when we // expected one, or giving us a value when we expected none. assert(BC_PROG_STACK(&p->results, ip->len + (inst == BC_INST_RET))); // Get the function we are returning from. f = bc_vec_item(&p->fns, ip->func); res = bc_program_prepResult(p); // If we are returning normally... if (inst == BC_INST_RET) { BcNum *num; BcResult *operand; // Prepare and copy the return value. bc_program_operand(p, &operand, &num, 1); if (BC_PROG_STR(num)) { // We need to set this because otherwise, it will be a // BC_RESULT_TEMP, and BC_RESULT_TEMP needs an actual number to make // it easier to do type checking. res->t = BC_RESULT_STR; memcpy(&res->d.n, num, sizeof(BcNum)); } else { BC_SIG_LOCK; bc_num_createCopy(&res->d.n, num); } } // Void is easy; set the result. else if (inst == BC_INST_RET_VOID) res->t = BC_RESULT_VOID; else { BC_SIG_LOCK; // If we get here, the instruction is for returning a zero, so do that. bc_num_init(&res->d.n, BC_NUM_DEF_SIZE); } BC_SIG_MAYUNLOCK; // We need to pop items off of the stacks of arguments and autos as well. for (i = 0; i < f->autos.len; ++i) { BcAuto *a = bc_vec_item(&f->autos, i); BcVec *v = bc_program_vec(p, a->idx, a->type); bc_vec_pop(v); } BC_SIG_LOCK; // When we retire, pop all of the unused results. bc_program_retire(p, 1, nresults); // Pop the globals, if necessary. if (BC_G) bc_program_popGlobals(p, false); // Pop the stack. This is what causes the function to actually "return." bc_vec_pop(&p->stack); BC_SIG_UNLOCK; } #endif // BC_ENABLED /** * Executes a builtin function. * @param p The program. * @param inst The builtin to execute. */ static void bc_program_builtin(BcProgram *p, uchar inst) { BcResult *opd, *res; BcNum *num; bool len = (inst == BC_INST_LENGTH); // Ensure we have a valid builtin. #if BC_ENABLE_EXTRA_MATH assert(inst >= BC_INST_LENGTH && inst <= BC_INST_IRAND); #else // BC_ENABLE_EXTRA_MATH assert(inst >= BC_INST_LENGTH && inst <= BC_INST_ABS); #endif // BC_ENABLE_EXTRA_MATH #ifndef BC_PROG_NO_STACK_CHECK // Check stack for dc. if (BC_IS_DC && BC_ERR(!BC_PROG_STACK(&p->results, 1))) bc_err(BC_ERR_EXEC_STACK); #endif // BC_PROG_NO_STACK_CHECK assert(BC_PROG_STACK(&p->results, 1)); res = bc_program_prepResult(p); bc_program_operand(p, &opd, &num, 1); assert(num != NULL); // We need to ensure that strings and arrays aren't passed to most builtins. // The scale function can take strings in dc. if (!len && (inst != BC_INST_SCALE_FUNC || BC_IS_BC)) bc_program_type_num(opd, num); // Square root is easy. if (inst == BC_INST_SQRT) bc_num_sqrt(num, &res->d.n, BC_PROG_SCALE(p)); // Absolute value is easy. else if (inst == BC_INST_ABS) { BC_SIG_LOCK; bc_num_createCopy(&res->d.n, num); BC_SIG_UNLOCK; BC_NUM_NEG_CLR_NP(res->d.n); } #if BC_ENABLE_EXTRA_MATH // irand() is easy. else if (inst == BC_INST_IRAND) { BC_SIG_LOCK; bc_num_init(&res->d.n, num->len - BC_NUM_RDX_VAL(num)); BC_SIG_UNLOCK; bc_num_irand(num, &res->d.n, &p->rng); } #endif // BC_ENABLE_EXTRA_MATH // Everything else is...not easy. else { BcBigDig val = 0; // Well, scale() is easy, but length() is not. if (len) { // If we are bc and we have an array... if (opd->t == BC_RESULT_ARRAY) { // Yes, this is one place where we need to cast the number from // bc_program_num() to a vector. BcVec *v = (BcVec*) num; #if BC_ENABLED // Dereference the array, if necessary. if (BC_IS_BC && v->size == sizeof(uchar)) v = bc_program_dereference(p, v); #endif // BC_ENABLED assert(v->size == sizeof(BcNum)); val = (BcBigDig) v->len; } else { // If the item is a string... if (!BC_PROG_NUM(opd, num)) { char *str; // Get the string, then get the length. str = bc_program_string(p, num); val = (BcBigDig) strlen(str); } else { // Calculate the length of the number. val = (BcBigDig) bc_num_len(num); } } } // Like I said; scale() is actually easy. It just also needs the integer // conversion that length() does. else if (BC_IS_BC || BC_PROG_NUM(opd, num)) val = (BcBigDig) bc_num_scale(num); BC_SIG_LOCK; // Create the result. bc_num_createFromBigdig(&res->d.n, val); BC_SIG_UNLOCK; } bc_program_retire(p, 1, 1); } /** * Executes a divmod. * @param p The program. */ static void bc_program_divmod(BcProgram *p) { BcResult *opd1, *opd2, *res, *res2; BcNum *n1, *n2; size_t req; // We grow first to avoid pointer invalidation. bc_vec_grow(&p->results, 2); // We don't need to update the pointer because // the capacity is enough due to the line above. res2 = bc_program_prepResult(p); res = bc_program_prepResult(p); // Prepare the operands. bc_program_binOpPrep(p, &opd1, &n1, &opd2, &n2, 2); req = bc_num_mulReq(n1, n2, BC_PROG_SCALE(p)); BC_SIG_LOCK; // Initialize the results. bc_num_init(&res->d.n, req); bc_num_init(&res2->d.n, req); BC_SIG_UNLOCK; // Execute. bc_num_divmod(n1, n2, &res2->d.n, &res->d.n, BC_PROG_SCALE(p)); bc_program_retire(p, 2, 2); } /** * Executes modular exponentiation. * @param p The program. */ static void bc_program_modexp(BcProgram *p) { BcResult *r1, *r2, *r3, *res; BcNum *n1, *n2, *n3; #if DC_ENABLED // Check the stack. if (BC_IS_DC && BC_ERR(!BC_PROG_STACK(&p->results, 3))) bc_err(BC_ERR_EXEC_STACK); #endif // DC_ENABLED assert(BC_PROG_STACK(&p->results, 3)); res = bc_program_prepResult(p); // Get the first operand and typecheck. bc_program_operand(p, &r1, &n1, 3); bc_program_type_num(r1, n1); // Get the last two operands. bc_program_binOpPrep(p, &r2, &n2, &r3, &n3, 1); // Make sure that the values have their pointers updated, if necessary. // Only array elements are possible because this is dc. if (r1->t == BC_RESULT_ARRAY_ELEM && (r1->t == r2->t || r1->t == r3->t)) n1 = bc_program_num(p, r1); BC_SIG_LOCK; bc_num_init(&res->d.n, n3->len); BC_SIG_UNLOCK; bc_num_modexp(n1, n2, n3, &res->d.n); bc_program_retire(p, 1, 3); } /** * Asciifies a number for dc. This is a helper for bc_program_asciify(). * @param p The program. * @param n The number to asciify. */ static uchar bc_program_asciifyNum(BcProgram *p, BcNum *n) { BcNum num; BcBigDig val; #ifndef NDEBUG // This is entirely to satisfy a useless scan-build error. val = 0; #endif // NDEBUG bc_num_clear(&num); BC_SETJMP(num_err); BC_SIG_LOCK; bc_num_createCopy(&num, n); BC_SIG_UNLOCK; // We want to clear the scale and sign for easy mod later. bc_num_truncate(&num, num.scale); BC_NUM_NEG_CLR_NP(num); // This is guaranteed to not have a divide by 0 // because strmb is equal to 256. bc_num_mod(&num, &p->strmb, &num, 0); // This is also guaranteed to not error because num is in the range // [0, UCHAR_MAX], which is definitely in range for a BcBigDig. And // it is not negative. val = bc_num_bigdig2(&num); num_err: BC_SIG_MAYLOCK; bc_num_free(&num); BC_LONGJMP_CONT; return (uchar) val; } /** * Executes the "asciify" command in dc. * @param p The program. * @param fidx The index of the current function. */ static void bc_program_asciify(BcProgram *p, size_t fidx) { BcResult *r, res; BcNum *n; char str[2], *str2; uchar c; size_t idx; // Check the stack. if (BC_ERR(!BC_PROG_STACK(&p->results, 1))) bc_err(BC_ERR_EXEC_STACK); assert(BC_PROG_STACK(&p->results, 1)); // Get the top of the results stack. bc_program_operand(p, &r, &n, 0); assert(n != NULL); // Asciify. if (BC_PROG_NUM(r, n)) c = bc_program_asciifyNum(p, n); else { // Get the string itself, then the first character. str2 = bc_program_string(p, n); c = (uchar) str2[0]; } // Fill the resulting string. str[0] = (char) c; str[1] = '\0'; // Add the string to the data structures. BC_SIG_LOCK; idx = bc_program_addString(p, str, fidx); BC_SIG_UNLOCK; // Set the result res.t = BC_RESULT_STR; bc_num_clear(&res.d.n); res.d.n.rdx = fidx; res.d.n.scale = idx; // Pop and push. bc_vec_pop(&p->results); bc_vec_push(&p->results, &res); } /** * Streams a number or a string to stdout. * @param p The program. */ static void bc_program_printStream(BcProgram *p) { BcResult *r; BcNum *n; // Check the stack. if (BC_ERR(!BC_PROG_STACK(&p->results, 1))) bc_err(BC_ERR_EXEC_STACK); assert(BC_PROG_STACK(&p->results, 1)); // Get the top of the results stack. bc_program_operand(p, &r, &n, 0); assert(n != NULL); // Stream appropriately. if (BC_PROG_NUM(r, n)) bc_num_stream(n); else bc_program_printChars(bc_program_string(p, n)); // Pop the operand. bc_vec_pop(&p->results); } #if DC_ENABLED /** * Gets the length of a register in dc and pushes it onto the results stack. * @param p The program. * @param code The bytecode vector to pull the register's index out of. * @param bgn An in/out parameter; the start of the index in the bytecode * vector, and will be updated to point after the index on return. */ static void bc_program_regStackLen(BcProgram *p, const char *restrict code, size_t *restrict bgn) { size_t idx = bc_program_index(code, bgn); BcVec *v = bc_program_vec(p, idx, BC_TYPE_VAR); bc_program_pushBigdig(p, (BcBigDig) v->len, BC_RESULT_TEMP); } /** * Pushes the length of the results stack onto the results stack. * @param p The program. */ static void bc_program_stackLen(BcProgram *p) { bc_program_pushBigdig(p, (BcBigDig) p->results.len, BC_RESULT_TEMP); } /** * Pops a certain number of elements off the execution stack. * @param p The program. * @param inst The instruction to tell us how many. There is one to pop up to * 2, and one to pop the amount equal to the number at the top of * the results stack. */ static void bc_program_nquit(BcProgram *p, uchar inst) { BcResult *opnd; BcNum *num; BcBigDig val; size_t i; // Ensure that the tail calls stack is correct. assert(p->stack.len == p->tail_calls.len); // Get the number of executions to pop. if (inst == BC_INST_QUIT) val = 2; else { bc_program_prep(p, &opnd, &num, 0); val = bc_num_bigdig(num); bc_vec_pop(&p->results); } // Loop over the tail call stack and adjust the quit value appropriately. for (i = 0; val && i < p->tail_calls.len; ++i) { // Get the number of tail calls for this one. size_t calls = *((size_t*) bc_vec_item_rev(&p->tail_calls, i)) + 1; // Adjust the value. if (calls >= val) val = 0; else val -= (BcBigDig) calls; } // If we don't have enough executions, just quit. if (i == p->stack.len) { vm.status = BC_STATUS_QUIT; BC_JMP; } else { // We can always pop the last item we reached on the tail call stack // because these are for tail calls. That means that any executions that // we would not have quit in that position on the stack would have quit // anyway. BC_SIG_LOCK; bc_vec_npop(&p->stack, i); bc_vec_npop(&p->tail_calls, i); BC_SIG_UNLOCK; } } /** * Pushes the depth of the execution stack onto the stack. * @param p The program. */ static void bc_program_execStackLen(BcProgram *p) { size_t i, amt, len = p->tail_calls.len; amt = len; for (i = 0; i < len; ++i) amt += *((size_t*) bc_vec_item(&p->tail_calls, i)); bc_program_pushBigdig(p, (BcBigDig) amt, BC_RESULT_TEMP); } /** * * @param p The program. * @param code The bytecode vector to pull the register's index out of. * @param bgn An in/out parameter; the start of the index in the bytecode * vector, and will be updated to point after the index on return. * @param cond True if the execution is conditional, false otherwise. * @param len The number of bytes in the bytecode vector. */ static void bc_program_execStr(BcProgram *p, const char *restrict code, size_t *restrict bgn, bool cond, size_t len) { BcResult *r; char *str; BcFunc *f; BcInstPtr ip; size_t fidx; BcNum *n; assert(p->stack.len == p->tail_calls.len); // Check the stack. if (BC_ERR(!BC_PROG_STACK(&p->results, 1))) bc_err(BC_ERR_EXEC_STACK); assert(BC_PROG_STACK(&p->results, 1)); // Get the operand. bc_program_operand(p, &r, &n, 0); // If execution is conditional... if (cond) { bool exec; size_t idx, then_idx, else_idx; // Get the index of the "then" var and "else" var. then_idx = bc_program_index(code, bgn); else_idx = bc_program_index(code, bgn); // Figure out if we should execute. exec = (r->d.n.len != 0); idx = exec ? then_idx : else_idx; BC_SIG_LOCK; BC_SETJMP_LOCKED(exit); // If we are supposed to execute, execute. If else_idx == SIZE_MAX, that // means there was no else clause, so if execute is false and else does // not exist, we don't execute. The goto skips all of the setup for the // execution. if (exec || (else_idx != SIZE_MAX)) n = bc_vec_top(bc_program_vec(p, idx, BC_TYPE_VAR)); else goto exit; if (BC_ERR(!BC_PROG_STR(n))) bc_err(BC_ERR_EXEC_TYPE); BC_UNSETJMP; BC_SIG_UNLOCK; } else { // In non-conditional situations, only the top of stack can be executed, // and in those cases, variables are not allowed to be "on the stack"; // they are only put on the stack to be assigned to. assert(r->t != BC_RESULT_VAR); if (r->t != BC_RESULT_STR) return; } assert(BC_PROG_STR(n)); // Get the string. str = bc_program_string(p, n); // Get the function index and function. BC_SIG_LOCK; fidx = bc_program_insertFunc(p, str); BC_SIG_UNLOCK; f = bc_vec_item(&p->fns, fidx); // If the function has not been parsed yet... if (!f->code.len) { BC_SIG_LOCK; if (!BC_PARSE_IS_INITED(&vm.read_prs, p)) { bc_parse_init(&vm.read_prs, p, fidx); // Initialize this too because bc_vm_shutdown() expects them to be // initialized togther. bc_vec_init(&vm.read_buf, sizeof(char), BC_DTOR_NONE); } // This needs to be updated because the parser could have been used // somewhere else else bc_parse_updateFunc(&vm.read_prs, fidx); bc_lex_file(&vm.read_prs.l, vm.file); BC_SETJMP_LOCKED(err); BC_SIG_UNLOCK; // Parse. bc_parse_text(&vm.read_prs, str, false); BC_SIG_LOCK; vm.expr(&vm.read_prs, BC_PARSE_NOCALL); BC_UNSETJMP; // We can just assert this here because // dc should parse everything until EOF. assert(vm.read_prs.l.t == BC_LEX_EOF); BC_SIG_UNLOCK; } // Set the instruction pointer. ip.idx = 0; ip.len = p->results.len; ip.func = fidx; BC_SIG_LOCK; // Pop the operand. bc_vec_pop(&p->results); // Tail call processing. This condition means that there is more on the // execution stack, and we are at the end of the bytecode vector, and the // last instruction is just a BC_INST_POP_EXEC, which would return. if (p->stack.len > 1 && *bgn == len - 1 && code[*bgn] == BC_INST_POP_EXEC) { size_t *call_ptr = bc_vec_top(&p->tail_calls); // Add one to the tail call. *call_ptr += 1; // Pop the execution stack before pushing the new instruction pointer // on. bc_vec_pop(&p->stack); } // If not a tail call, just push a new one. else bc_vec_push(&p->tail_calls, &ip.idx); // Push the new function onto the execution stack and return. bc_vec_push(&p->stack, &ip); BC_SIG_UNLOCK; return; err: BC_SIG_MAYLOCK; f = bc_vec_item(&p->fns, fidx); // Make sure to erase the bytecode vector so dc knows it is not parsed. bc_vec_popAll(&f->code); exit: bc_vec_pop(&p->results); BC_LONGJMP_CONT; } /** * Prints every item on the results stack, one per line. * @param p The program. */ static void bc_program_printStack(BcProgram *p) { size_t idx; for (idx = 0; idx < p->results.len; ++idx) bc_program_print(p, BC_INST_PRINT, idx); } #endif // DC_ENABLED /** * Pushes the value of a global onto the results stack. * @param p The program. * @param inst Which global to push, as an instruction. */ static void bc_program_pushGlobal(BcProgram *p, uchar inst) { BcResultType t; // Make sure the instruction is valid. assert(inst >= BC_INST_IBASE && inst <= BC_INST_SCALE); // Push the global. t = inst - BC_INST_IBASE + BC_RESULT_IBASE; bc_program_pushBigdig(p, p->globals[inst - BC_INST_IBASE], t); } /** * Pushes the value of a global setting onto the stack. * @param p The program. * @param inst Which global setting to push, as an instruction. */ static void bc_program_globalSetting(BcProgram *p, uchar inst) { BcBigDig val; // Make sure the instruction is valid. assert(inst >= BC_INST_LINE_LENGTH && inst <= BC_INST_LEADING_ZERO); if (inst == BC_INST_LINE_LENGTH) val = (BcBigDig) vm.line_len; #if BC_ENABLED else if (inst == BC_INST_GLOBAL_STACKS) val = (BC_G != 0); #endif // BC_ENABLED else val = (BC_Z != 0); // Push the global. bc_program_pushBigdig(p, val, BC_RESULT_TEMP); } #if BC_ENABLE_EXTRA_MATH /** * Pushes the value of seed on the stack. * @param p The program. */ static void bc_program_pushSeed(BcProgram *p) { BcResult *res; res = bc_program_prepResult(p); res->t = BC_RESULT_SEED; BC_SIG_LOCK; // We need 2*BC_RAND_NUM_SIZE because of the size of the state. bc_num_init(&res->d.n, 2 * BC_RAND_NUM_SIZE); BC_SIG_UNLOCK; bc_num_createFromRNG(&res->d.n, &p->rng); } #endif // BC_ENABLE_EXTRA_MATH /** * Adds a function to the fns array. The function's ID must have already been * inserted into the map. * @param p The program. * @param id_ptr The ID of the function as inserted into the map. */ static void bc_program_addFunc(BcProgram *p, BcId *id_ptr) { BcInstPtr *ip; BcFunc *f; BC_SIG_ASSERT_LOCKED; // Push and init. f = bc_vec_pushEmpty(&p->fns); bc_func_init(f, id_ptr->name); // This is to make sure pointers are updated if the array was moved. if (p->stack.len) { ip = bc_vec_top(&p->stack); bc_program_setVecs(p, (BcFunc*) bc_vec_item(&p->fns, ip->func)); } } size_t bc_program_insertFunc(BcProgram *p, const char *name) { BcId *id_ptr; bool new; size_t idx; BC_SIG_ASSERT_LOCKED; assert(p != NULL && name != NULL); // Insert into the map and get the resulting ID. new = bc_map_insert(&p->fn_map, name, p->fns.len, &idx); id_ptr = (BcId*) bc_vec_item(&p->fn_map, idx); idx = id_ptr->idx; // If the function is new... if (new) { // Add the function to the fns array. bc_program_addFunc(p, id_ptr); } #if BC_ENABLED // bc has to reset the function because it's about to be redefined. else if (BC_IS_BC) { BcFunc *func = bc_vec_item(&p->fns, idx); bc_func_reset(func); } #endif // BC_ENABLED return idx; } #ifndef NDEBUG void bc_program_free(BcProgram *p) { size_t i; BC_SIG_ASSERT_LOCKED; assert(p != NULL); // Free the globals stacks. for (i = 0; i < BC_PROG_GLOBALS_LEN; ++i) bc_vec_free(p->globals_v + i); bc_vec_free(&p->fns); bc_vec_free(&p->fn_map); bc_vec_free(&p->vars); bc_vec_free(&p->var_map); bc_vec_free(&p->arrs); bc_vec_free(&p->arr_map); bc_vec_free(&p->results); bc_vec_free(&p->stack); #if BC_ENABLED if (BC_IS_BC) bc_num_free(&p->last); #endif // BC_ENABLED #if BC_ENABLE_EXTRA_MATH bc_rand_free(&p->rng); #endif // BC_ENABLE_EXTRA_MATH #if DC_ENABLED if (BC_IS_DC) bc_vec_free(&p->tail_calls); #endif // DC_ENABLED } #endif // NDEBUG void bc_program_init(BcProgram *p) { BcInstPtr ip; size_t i; BC_SIG_ASSERT_LOCKED; assert(p != NULL); // We want this clear. memset(&ip, 0, sizeof(BcInstPtr)); // Setup the globals stacks and the current values. for (i = 0; i < BC_PROG_GLOBALS_LEN; ++i) { BcBigDig val = i == BC_PROG_GLOBALS_SCALE ? 0 : BC_BASE; bc_vec_init(p->globals_v + i, sizeof(BcBigDig), BC_DTOR_NONE); bc_vec_push(p->globals_v + i, &val); p->globals[i] = val; } #if DC_ENABLED // dc-only setup. if (BC_IS_DC) { bc_vec_init(&p->tail_calls, sizeof(size_t), BC_DTOR_NONE); // We want an item for the main function on the tail call stack. i = 0; bc_vec_push(&p->tail_calls, &i); } #endif // DC_ENABLED bc_num_setup(&p->strmb, p->strmb_num, BC_NUM_BIGDIG_LOG10); bc_num_bigdig2num(&p->strmb, BC_NUM_STREAM_BASE); #if BC_ENABLE_EXTRA_MATH // We need to initialize srand() just in case /dev/urandom and /dev/random // are not available. srand((unsigned int) time(NULL)); bc_rand_init(&p->rng); #endif // BC_ENABLE_EXTRA_MATH #if BC_ENABLED if (BC_IS_BC) bc_num_init(&p->last, BC_NUM_DEF_SIZE); #endif // BC_ENABLED #ifndef NDEBUG bc_vec_init(&p->fns, sizeof(BcFunc), BC_DTOR_FUNC); #else // NDEBUG bc_vec_init(&p->fns, sizeof(BcFunc), BC_DTOR_NONE); #endif // NDEBUG bc_map_init(&p->fn_map); bc_program_insertFunc(p, bc_func_main); bc_program_insertFunc(p, bc_func_read); bc_vec_init(&p->vars, sizeof(BcVec), BC_DTOR_VEC); bc_map_init(&p->var_map); bc_vec_init(&p->arrs, sizeof(BcVec), BC_DTOR_VEC); bc_map_init(&p->arr_map); bc_vec_init(&p->results, sizeof(BcResult), BC_DTOR_RESULT); // Push the first instruction pointer onto the execution stack. bc_vec_init(&p->stack, sizeof(BcInstPtr), BC_DTOR_NONE); bc_vec_push(&p->stack, &ip); // Make sure the pointers are properly set up. bc_program_setVecs(p, (BcFunc*) bc_vec_item(&p->fns, BC_PROG_MAIN)); assert(p->consts != NULL && p->strs != NULL); } void bc_program_reset(BcProgram *p) { BcFunc *f; BcInstPtr *ip; BC_SIG_ASSERT_LOCKED; // Pop all but the last execution and all results. bc_vec_npop(&p->stack, p->stack.len - 1); bc_vec_popAll(&p->results); #if BC_ENABLED // Clear the globals' stacks. if (BC_G) bc_program_popGlobals(p, true); #endif // BC_ENABLED // Clear the bytecode vector of the main function. f = bc_vec_item(&p->fns, BC_PROG_MAIN); bc_vec_npop(&f->code, f->code.len); // Reset the instruction pointer. ip = bc_vec_top(&p->stack); bc_program_setVecs(p, f); memset(ip, 0, sizeof(BcInstPtr)); // Write the ready message for a signal, and clear the signal. if (vm.sig) { bc_file_write(&vm.fout, bc_flush_none, bc_program_ready_msg, bc_program_ready_msg_len); bc_file_flush(&vm.fout, bc_flush_err); vm.sig = 0; } } void bc_program_exec(BcProgram *p) { size_t idx; BcResult r, *ptr; BcInstPtr *ip; BcFunc *func; char *code; bool cond = false; uchar inst; #if BC_ENABLED BcNum *num; #endif // BC_ENABLED #if !BC_HAS_COMPUTED_GOTO #ifndef NDEBUG size_t jmp_bufs_len; #endif // NDEBUG #endif // !BC_HAS_COMPUTED_GOTO #if BC_HAS_COMPUTED_GOTO BC_PROG_LBLS; BC_PROG_LBLS_ASSERT; // BC_INST_INVALID is a marker for the end so that we don't have to have an // execution loop. func = (BcFunc*) bc_vec_item(&p->fns, BC_PROG_MAIN); bc_vec_pushByte(&func->code, BC_INST_INVALID); #endif // BC_HAS_COMPUTED_GOTO ip = bc_vec_top(&p->stack); func = (BcFunc*) bc_vec_item(&p->fns, ip->func); code = func->code.v; // Ensure the pointers are correct. BC_SIG_LOCK; bc_program_setVecs(p, func); BC_SIG_UNLOCK; #if !BC_HAS_COMPUTED_GOTO #ifndef NDEBUG jmp_bufs_len = vm.jmp_bufs.len; #endif // NDEBUG // This loop is the heart of the execution engine. It *is* the engine. For // computed goto, it is ignored. while (ip->idx < func->code.len) #endif // !BC_HAS_COMPUTED_GOTO { - BC_SIG_ASSERT_NOT_LOCKED; #if BC_HAS_COMPUTED_GOTO BC_PROG_JUMP(inst, code, ip); #else // BC_HAS_COMPUTED_GOTO // Get the next instruction and increment the index. inst = (uchar) code[(ip->idx)++]; #endif // BC_HAS_COMPUTED_GOTO #if BC_DEBUG_CODE bc_file_printf(&vm.ferr, "inst: %s\n", bc_inst_names[inst]); bc_file_flush(&vm.ferr, bc_flush_none); #endif // BC_DEBUG_CODE #if !BC_HAS_COMPUTED_GOTO switch (inst) #endif // !BC_HAS_COMPUTED_GOTO { #if BC_ENABLED // This just sets up the condition for the unconditional jump below, // which checks the condition, if necessary. BC_PROG_LBL(BC_INST_JUMP_ZERO): { bc_program_prep(p, &ptr, &num, 0); cond = !bc_num_cmpZero(num); bc_vec_pop(&p->results); BC_PROG_DIRECT_JUMP(BC_INST_JUMP) } // Fallthrough. BC_PROG_FALLTHROUGH BC_PROG_LBL(BC_INST_JUMP): { idx = bc_program_index(code, &ip->idx); // If a jump is required... if (inst == BC_INST_JUMP || cond) { // Get the address to jump to. size_t *addr = bc_vec_item(&func->labels, idx); // If this fails, then the parser failed to set up the // labels correctly. assert(*addr != SIZE_MAX); // Set the new address. ip->idx = *addr; } BC_PROG_JUMP(inst, code, ip); } BC_PROG_LBL(BC_INST_CALL): { assert(BC_IS_BC); bc_program_call(p, code, &ip->idx); // Because we changed the execution stack and where we are // executing, we have to update all of this. BC_SIG_LOCK; ip = bc_vec_top(&p->stack); func = bc_vec_item(&p->fns, ip->func); code = func->code.v; bc_program_setVecs(p, func); BC_SIG_UNLOCK; BC_PROG_JUMP(inst, code, ip); } BC_PROG_LBL(BC_INST_INC): BC_PROG_LBL(BC_INST_DEC): { bc_program_incdec(p, inst); BC_PROG_JUMP(inst, code, ip); } BC_PROG_LBL(BC_INST_HALT): { vm.status = BC_STATUS_QUIT; // Just jump out. The jump series will take care of everything. BC_JMP; BC_PROG_JUMP(inst, code, ip); } BC_PROG_LBL(BC_INST_RET): BC_PROG_LBL(BC_INST_RET0): BC_PROG_LBL(BC_INST_RET_VOID): { bc_program_return(p, inst); // Because we changed the execution stack and where we are // executing, we have to update all of this. BC_SIG_LOCK; ip = bc_vec_top(&p->stack); func = bc_vec_item(&p->fns, ip->func); code = func->code.v; bc_program_setVecs(p, func); BC_SIG_UNLOCK; BC_PROG_JUMP(inst, code, ip); } #endif // BC_ENABLED BC_PROG_LBL(BC_INST_BOOL_OR): BC_PROG_LBL(BC_INST_BOOL_AND): BC_PROG_LBL(BC_INST_REL_EQ): BC_PROG_LBL(BC_INST_REL_LE): BC_PROG_LBL(BC_INST_REL_GE): BC_PROG_LBL(BC_INST_REL_NE): BC_PROG_LBL(BC_INST_REL_LT): BC_PROG_LBL(BC_INST_REL_GT): { bc_program_logical(p, inst); BC_PROG_JUMP(inst, code, ip); } BC_PROG_LBL(BC_INST_READ): { // We want to flush output before // this in case there is a prompt. bc_file_flush(&vm.fout, bc_flush_save); bc_program_read(p); // Because we changed the execution stack and where we are // executing, we have to update all of this. BC_SIG_LOCK; ip = bc_vec_top(&p->stack); func = bc_vec_item(&p->fns, ip->func); code = func->code.v; bc_program_setVecs(p, func); BC_SIG_UNLOCK; BC_PROG_JUMP(inst, code, ip); } #if BC_ENABLE_EXTRA_MATH BC_PROG_LBL(BC_INST_RAND): { bc_program_rand(p); BC_PROG_JUMP(inst, code, ip); } #endif // BC_ENABLE_EXTRA_MATH BC_PROG_LBL(BC_INST_MAXIBASE): BC_PROG_LBL(BC_INST_MAXOBASE): BC_PROG_LBL(BC_INST_MAXSCALE): #if BC_ENABLE_EXTRA_MATH BC_PROG_LBL(BC_INST_MAXRAND): #endif // BC_ENABLE_EXTRA_MATH { BcBigDig dig = vm.maxes[inst - BC_INST_MAXIBASE]; bc_program_pushBigdig(p, dig, BC_RESULT_TEMP); BC_PROG_JUMP(inst, code, ip); } BC_PROG_LBL(BC_INST_LINE_LENGTH): #if BC_ENABLED BC_PROG_LBL(BC_INST_GLOBAL_STACKS): #endif // BC_ENABLED BC_PROG_LBL(BC_INST_LEADING_ZERO): { bc_program_globalSetting(p, inst); BC_PROG_JUMP(inst, code, ip); } BC_PROG_LBL(BC_INST_VAR): { bc_program_pushVar(p, code, &ip->idx, false, false); BC_PROG_JUMP(inst, code, ip); } BC_PROG_LBL(BC_INST_ARRAY_ELEM): BC_PROG_LBL(BC_INST_ARRAY): { bc_program_pushArray(p, code, &ip->idx, inst); BC_PROG_JUMP(inst, code, ip); } BC_PROG_LBL(BC_INST_IBASE): BC_PROG_LBL(BC_INST_SCALE): BC_PROG_LBL(BC_INST_OBASE): { bc_program_pushGlobal(p, inst); BC_PROG_JUMP(inst, code, ip); } #if BC_ENABLE_EXTRA_MATH BC_PROG_LBL(BC_INST_SEED): { bc_program_pushSeed(p); BC_PROG_JUMP(inst, code, ip); } #endif // BC_ENABLE_EXTRA_MATH BC_PROG_LBL(BC_INST_LENGTH): BC_PROG_LBL(BC_INST_SCALE_FUNC): BC_PROG_LBL(BC_INST_SQRT): BC_PROG_LBL(BC_INST_ABS): #if BC_ENABLE_EXTRA_MATH BC_PROG_LBL(BC_INST_IRAND): #endif // BC_ENABLE_EXTRA_MATH { bc_program_builtin(p, inst); BC_PROG_JUMP(inst, code, ip); } BC_PROG_LBL(BC_INST_ASCIIFY): { bc_program_asciify(p, ip->func); // Because we changed the execution stack and where we are // executing, we have to update all of this. BC_SIG_LOCK; ip = bc_vec_top(&p->stack); func = bc_vec_item(&p->fns, ip->func); code = func->code.v; bc_program_setVecs(p, func); BC_SIG_UNLOCK; BC_PROG_JUMP(inst, code, ip); } BC_PROG_LBL(BC_INST_NUM): { bc_program_const(p, code, &ip->idx); BC_PROG_JUMP(inst, code, ip); } BC_PROG_LBL(BC_INST_ZERO): BC_PROG_LBL(BC_INST_ONE): #if BC_ENABLED BC_PROG_LBL(BC_INST_LAST): #endif // BC_ENABLED { r.t = BC_RESULT_ZERO + (inst - BC_INST_ZERO); bc_vec_push(&p->results, &r); BC_PROG_JUMP(inst, code, ip); } BC_PROG_LBL(BC_INST_PRINT): BC_PROG_LBL(BC_INST_PRINT_POP): #if BC_ENABLED BC_PROG_LBL(BC_INST_PRINT_STR): #endif // BC_ENABLED { bc_program_print(p, inst, 0); // We want to flush right away to save the output for history, // if history must preserve it when taking input. bc_file_flush(&vm.fout, bc_flush_save); BC_PROG_JUMP(inst, code, ip); } BC_PROG_LBL(BC_INST_STR): { // Set up the result and push. r.t = BC_RESULT_STR; bc_num_clear(&r.d.n); r.d.n.rdx = bc_program_index(code, &ip->idx); r.d.n.scale = bc_program_index(code, &ip->idx); bc_vec_push(&p->results, &r); BC_PROG_JUMP(inst, code, ip); } BC_PROG_LBL(BC_INST_POWER): BC_PROG_LBL(BC_INST_MULTIPLY): BC_PROG_LBL(BC_INST_DIVIDE): BC_PROG_LBL(BC_INST_MODULUS): BC_PROG_LBL(BC_INST_PLUS): BC_PROG_LBL(BC_INST_MINUS): #if BC_ENABLE_EXTRA_MATH BC_PROG_LBL(BC_INST_PLACES): BC_PROG_LBL(BC_INST_LSHIFT): BC_PROG_LBL(BC_INST_RSHIFT): #endif // BC_ENABLE_EXTRA_MATH { bc_program_op(p, inst); BC_PROG_JUMP(inst, code, ip); } BC_PROG_LBL(BC_INST_NEG): BC_PROG_LBL(BC_INST_BOOL_NOT): #if BC_ENABLE_EXTRA_MATH BC_PROG_LBL(BC_INST_TRUNC): #endif // BC_ENABLE_EXTRA_MATH { bc_program_unary(p, inst); BC_PROG_JUMP(inst, code, ip); } #if BC_ENABLED BC_PROG_LBL(BC_INST_ASSIGN_POWER): BC_PROG_LBL(BC_INST_ASSIGN_MULTIPLY): BC_PROG_LBL(BC_INST_ASSIGN_DIVIDE): BC_PROG_LBL(BC_INST_ASSIGN_MODULUS): BC_PROG_LBL(BC_INST_ASSIGN_PLUS): BC_PROG_LBL(BC_INST_ASSIGN_MINUS): #if BC_ENABLE_EXTRA_MATH BC_PROG_LBL(BC_INST_ASSIGN_PLACES): BC_PROG_LBL(BC_INST_ASSIGN_LSHIFT): BC_PROG_LBL(BC_INST_ASSIGN_RSHIFT): #endif // BC_ENABLE_EXTRA_MATH BC_PROG_LBL(BC_INST_ASSIGN): BC_PROG_LBL(BC_INST_ASSIGN_POWER_NO_VAL): BC_PROG_LBL(BC_INST_ASSIGN_MULTIPLY_NO_VAL): BC_PROG_LBL(BC_INST_ASSIGN_DIVIDE_NO_VAL): BC_PROG_LBL(BC_INST_ASSIGN_MODULUS_NO_VAL): BC_PROG_LBL(BC_INST_ASSIGN_PLUS_NO_VAL): BC_PROG_LBL(BC_INST_ASSIGN_MINUS_NO_VAL): #if BC_ENABLE_EXTRA_MATH BC_PROG_LBL(BC_INST_ASSIGN_PLACES_NO_VAL): BC_PROG_LBL(BC_INST_ASSIGN_LSHIFT_NO_VAL): BC_PROG_LBL(BC_INST_ASSIGN_RSHIFT_NO_VAL): #endif // BC_ENABLE_EXTRA_MATH #endif // BC_ENABLED BC_PROG_LBL(BC_INST_ASSIGN_NO_VAL): { bc_program_assign(p, inst); BC_PROG_JUMP(inst, code, ip); } BC_PROG_LBL(BC_INST_POP): { #ifndef BC_PROG_NO_STACK_CHECK // dc must do a stack check, but bc does not. if (BC_IS_DC) { if (BC_ERR(!BC_PROG_STACK(&p->results, 1))) bc_err(BC_ERR_EXEC_STACK); } #endif // BC_PROG_NO_STACK_CHECK assert(BC_PROG_STACK(&p->results, 1)); bc_vec_pop(&p->results); BC_PROG_JUMP(inst, code, ip); } BC_PROG_LBL(BC_INST_SWAP): { BcResult *ptr2; // Check the stack. if (BC_ERR(!BC_PROG_STACK(&p->results, 2))) bc_err(BC_ERR_EXEC_STACK); assert(BC_PROG_STACK(&p->results, 2)); // Get the two items. ptr = bc_vec_item_rev(&p->results, 0); ptr2 = bc_vec_item_rev(&p->results, 1); // Swap. It's just easiest to do it this way. memcpy(&r, ptr, sizeof(BcResult)); memcpy(ptr, ptr2, sizeof(BcResult)); memcpy(ptr2, &r, sizeof(BcResult)); BC_PROG_JUMP(inst, code, ip); } BC_PROG_LBL(BC_INST_MODEXP): { bc_program_modexp(p); BC_PROG_JUMP(inst, code, ip); } BC_PROG_LBL(BC_INST_DIVMOD): { bc_program_divmod(p); BC_PROG_JUMP(inst, code, ip); } BC_PROG_LBL(BC_INST_PRINT_STREAM): { bc_program_printStream(p); BC_PROG_JUMP(inst, code, ip); } #if DC_ENABLED BC_PROG_LBL(BC_INST_POP_EXEC): { // If this fails, the dc parser got something wrong. assert(BC_PROG_STACK(&p->stack, 2)); // Pop the execution stack and tail call stack. bc_vec_pop(&p->stack); bc_vec_pop(&p->tail_calls); // Because we changed the execution stack and where we are // executing, we have to update all of this. BC_SIG_LOCK; ip = bc_vec_top(&p->stack); func = bc_vec_item(&p->fns, ip->func); code = func->code.v; bc_program_setVecs(p, func); BC_SIG_UNLOCK; BC_PROG_JUMP(inst, code, ip); } BC_PROG_LBL(BC_INST_EXECUTE): BC_PROG_LBL(BC_INST_EXEC_COND): { cond = (inst == BC_INST_EXEC_COND); bc_program_execStr(p, code, &ip->idx, cond, func->code.len); // Because we changed the execution stack and where we are // executing, we have to update all of this. BC_SIG_LOCK; ip = bc_vec_top(&p->stack); func = bc_vec_item(&p->fns, ip->func); code = func->code.v; bc_program_setVecs(p, func); BC_SIG_UNLOCK; BC_PROG_JUMP(inst, code, ip); } BC_PROG_LBL(BC_INST_PRINT_STACK): { bc_program_printStack(p); BC_PROG_JUMP(inst, code, ip); } BC_PROG_LBL(BC_INST_CLEAR_STACK): { bc_vec_popAll(&p->results); BC_PROG_JUMP(inst, code, ip); } BC_PROG_LBL(BC_INST_REG_STACK_LEN): { bc_program_regStackLen(p, code, &ip->idx); BC_PROG_JUMP(inst, code, ip); } BC_PROG_LBL(BC_INST_STACK_LEN): { bc_program_stackLen(p); BC_PROG_JUMP(inst, code, ip); } BC_PROG_LBL(BC_INST_DUPLICATE): { // Check the stack. if (BC_ERR(!BC_PROG_STACK(&p->results, 1))) bc_err(BC_ERR_EXEC_STACK); assert(BC_PROG_STACK(&p->results, 1)); // Get the top of the stack. ptr = bc_vec_top(&p->results); BC_SIG_LOCK; // Copy and push. bc_result_copy(&r, ptr); bc_vec_push(&p->results, &r); BC_SIG_UNLOCK; BC_PROG_JUMP(inst, code, ip); } BC_PROG_LBL(BC_INST_LOAD): BC_PROG_LBL(BC_INST_PUSH_VAR): { bool copy = (inst == BC_INST_LOAD); bc_program_pushVar(p, code, &ip->idx, true, copy); BC_PROG_JUMP(inst, code, ip); } BC_PROG_LBL(BC_INST_PUSH_TO_VAR): { idx = bc_program_index(code, &ip->idx); bc_program_copyToVar(p, idx, BC_TYPE_VAR, true); BC_PROG_JUMP(inst, code, ip); } BC_PROG_LBL(BC_INST_QUIT): BC_PROG_LBL(BC_INST_NQUIT): { bc_program_nquit(p, inst); // Because we changed the execution stack and where we are // executing, we have to update all of this. BC_SIG_LOCK; ip = bc_vec_top(&p->stack); func = bc_vec_item(&p->fns, ip->func); code = func->code.v; bc_program_setVecs(p, func); BC_SIG_UNLOCK; BC_PROG_JUMP(inst, code, ip); } BC_PROG_LBL(BC_INST_EXEC_STACK_LEN): { bc_program_execStackLen(p); BC_PROG_JUMP(inst, code, ip); } #endif // DC_ENABLED #if BC_HAS_COMPUTED_GOTO BC_PROG_LBL(BC_INST_INVALID): { return; } #else // BC_HAS_COMPUTED_GOTO default: { BC_UNREACHABLE #ifndef NDEBUG abort(); #endif // NDEBUG } #endif // BC_HAS_COMPUTED_GOTO } #if !BC_HAS_COMPUTED_GOTO #ifndef NDEBUG // This is to allow me to use a debugger to see the last instruction, // which will point to which function was the problem. But it's also a // good smoke test for error handling changes. assert(jmp_bufs_len == vm.jmp_bufs.len); #endif // NDEBUG #endif // !BC_HAS_COMPUTED_GOTO } } #if BC_DEBUG_CODE #if BC_ENABLED && DC_ENABLED void bc_program_printStackDebug(BcProgram *p) { bc_file_puts(&vm.fout, bc_flush_err, "-------------- Stack ----------\n"); bc_program_printStack(p); bc_file_puts(&vm.fout, bc_flush_err, "-------------- Stack End ------\n"); } static void bc_program_printIndex(const char *restrict code, size_t *restrict bgn) { uchar byte, i, bytes = (uchar) code[(*bgn)++]; ulong val = 0; for (byte = 1, i = 0; byte && i < bytes; ++i) { byte = (uchar) code[(*bgn)++]; if (byte) val |= ((ulong) byte) << (CHAR_BIT * i); } bc_vm_printf(" (%lu) ", val); } static void bc_program_printStr(const BcProgram *p, const char *restrict code, size_t *restrict bgn) { size_t idx = bc_program_index(code, bgn); char *s; s = *((char**) bc_vec_item(p->strs, idx)); bc_vm_printf(" (\"%s\") ", s); } void bc_program_printInst(const BcProgram *p, const char *restrict code, size_t *restrict bgn) { uchar inst = (uchar) code[(*bgn)++]; bc_vm_printf("Inst[%zu]: %s [%lu]; ", *bgn - 1, bc_inst_names[inst], (unsigned long) inst); if (inst == BC_INST_VAR || inst == BC_INST_ARRAY_ELEM || inst == BC_INST_ARRAY) { bc_program_printIndex(code, bgn); } else if (inst == BC_INST_STR) bc_program_printStr(p, code, bgn); else if (inst == BC_INST_NUM) { size_t idx = bc_program_index(code, bgn); BcConst *c = bc_vec_item(p->consts, idx); bc_vm_printf("(%s)", c->val); } else if (inst == BC_INST_CALL || (inst > BC_INST_STR && inst <= BC_INST_JUMP_ZERO)) { bc_program_printIndex(code, bgn); if (inst == BC_INST_CALL) bc_program_printIndex(code, bgn); } bc_vm_putchar('\n', bc_flush_err); } void bc_program_code(const BcProgram* p) { BcFunc *f; char *code; BcInstPtr ip; size_t i; for (i = 0; i < p->fns.len; ++i) { ip.idx = ip.len = 0; ip.func = i; f = bc_vec_item(&p->fns, ip.func); code = f->code.v; bc_vm_printf("func[%zu]:\n", ip.func); while (ip.idx < f->code.len) bc_program_printInst(p, code, &ip.idx); bc_file_puts(&vm.fout, bc_flush_err, "\n\n"); } } #endif // BC_ENABLED && DC_ENABLED #endif // BC_DEBUG_CODE