Index: head/en_US.ISO8859-1/articles/committers-guide/article.xml =================================================================== --- head/en_US.ISO8859-1/articles/committers-guide/article.xml (revision 53416) +++ head/en_US.ISO8859-1/articles/committers-guide/article.xml (revision 53417) @@ -1,5500 +1,5489 @@ ]>
Committer's Guide The &os; Documentation Project 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 The &os; Documentation Project &tm-attrib.freebsd; &tm-attrib.coverity; &tm-attrib.ibm; &tm-attrib.intel; &tm-attrib.sparc; &tm-attrib.general; $FreeBSD$ $FreeBSD$ This document provides information for the &os; committer community. All new committers should read this document before they start, and existing committers are strongly encouraged to review it from time to time. Almost all &os; developers have commit rights to one or more repositories. However, a few developers do not, and some of the information here applies to them as well. (For instance, some people only have rights to work with the Problem Report database). Please see for more information. This document may also be of interest to members of the &os; community who want to learn more about how the project works. Administrative Details Login Methods &man.ssh.1;, protocol 2 only Main Shell Host freefall.FreeBSD.org SMTP Host smtp.FreeBSD.org:587 (see also ). src/ Subversion Root svn+ssh://repo.FreeBSD.org/base (see also ). doc/ Subversion Root svn+ssh://repo.FreeBSD.org/doc (see also ). ports/ Subversion Root svn+ssh://repo.FreeBSD.org/ports (see also ). Internal Mailing Lists developers (technically called all-developers), doc-developers, doc-committers, ports-developers, ports-committers, src-developers, src-committers. (Each project repository has its own -developers and -committers mailing lists. Archives for these lists can be found in the files /local/mail/repository-name-developers-archive and /local/mail/repository-name-committers-archive on the FreeBSD.org cluster.) Core Team monthly reports /home/core/public/monthly-reports on the FreeBSD.org cluster. Ports Management Team monthly reports /home/portmgr/public/monthly-reports on the FreeBSD.org cluster. Noteworthy src/ SVN Branches stable/n (n-STABLE), head (-CURRENT) &man.ssh.1; is required to connect to the project hosts. For more information, see . Useful links: &os; Project Internal Pages &os; Project Hosts &os; Project Administrative Groups Open<acronym>PGP</acronym> Keys for &os; Cryptographic keys conforming to the OpenPGP (Pretty Good Privacy) standard are used by the &os; project to authenticate committers. Messages carrying important information like public SSH keys can be signed with the OpenPGP key to prove that they are really from the committer. See PGP & GPG: Email for the Practical Paranoid by Michael Lucas and for more information. Creating a Key Existing keys can be used, but should be checked with doc/head/share/pgpkeys/checkkey.sh first. In this case, make sure the key has a &os; user ID. For those who do not yet have an OpenPGP key, or need a new key to meet &os; security requirements, here we show how to generate one. Install security/gnupg. Enter these lines in ~/.gnupg/gpg.conf to set minimum acceptable defaults: fixed-list-mode keyid-format 0xlong personal-digest-preferences SHA512 SHA384 SHA256 SHA224 default-preference-list SHA512 SHA384 SHA256 SHA224 AES256 AES192 AES CAST5 BZIP2 ZLIB ZIP Uncompressed use-agent verify-options show-uid-validity list-options show-uid-validity sig-notation issuer-fpr@notations.openpgp.fifthhorseman.net=%g cert-digest-algo SHA512 Generate a key: &prompt.user; gpg --full-gen-key gpg (GnuPG) 2.1.8; Copyright (C) 2015 Free Software Foundation, Inc. This is free software: you are free to change and redistribute it. There is NO WARRANTY, to the extent permitted by law. Warning: using insecure memory! Please select what kind of key you want: (1) RSA and RSA (default) (2) DSA and Elgamal (3) DSA (sign only) (4) RSA (sign only) Your selection? 1 RSA keys may be between 1024 and 4096 bits long. What keysize do you want? (2048) 2048 Requested keysize is 2048 bits Please specify how long the key should be valid. 0 = key does not expire <n> = key expires in n days <n>w = key expires in n weeks <n>m = key expires in n months <n>y = key expires in n years Key is valid for? (0) 3y Key expires at Wed Nov 4 17:20:20 2015 MST Is this correct? (y/N) y GnuPG needs to construct a user ID to identify your key. Real name: Chucky Daemon Email address: notreal@example.com Comment: You selected this USER-ID: "Chucky Daemon <notreal@example.com>" Change (N)ame, (C)omment, (E)mail or (O)kay/(Q)uit? o You need a Passphrase to protect your secret key. 2048-bit keys with a three-year expiration provide adequate protection at present (2013-12). describes the situation in more detail. A three year key lifespan is short enough to obsolete keys weakened by advancing computer power, but long enough to reduce key management problems. Use your real name here, preferably matching that shown on government-issued ID to make it easier for others to verify your identity. Text that may help others identify you can be entered in the Comment section. After the email address is entered, a passphrase is requested. Methods of creating a secure passphrase are contentious. Rather than suggest a single way, here are some links to sites that describe various methods: , , , . Protect the private key and passphrase. If either the private key or passphrase may have been compromised or disclosed, immediately notify accounts@FreeBSD.org and revoke the key. Committing the new key is shown in . Kerberos and LDAP web Password for &os; Cluster The &os; cluster requires a Kerberos password to access certain services. The Kerberos password also serves as the LDAP web password, since LDAP is proxying to Kerberos in the cluster. Some of the services which require this include: Bugzilla Jenkins To create a new Kerberos account in the &os; cluster, or to reset a Kerberos password for an existing account using a random password generator: &prompt.user; ssh kpasswd.freebsd.org This must be done from a machine outside of the &os;.org cluster. A Kerberos password can also be set manually by logging into freefall.FreeBSD.org and running: &prompt.user; kpasswd Unless the Kerberos-authenticated services of the &os;.org cluster have been used previously, Client unknown will be shown. This error means that the ssh kpasswd.freebsd.org method shown above must be used first to initialize the Kerberos account. Commit Bit Types The &os; repository has a number of components which, when combined, support the basic operating system source, documentation, third party application ports infrastructure, and various maintained utilities. When &os; commit bits are allocated, the areas of the tree where the bit may be used are specified. Generally, the areas associated with a bit reflect who authorized the allocation of the commit bit. Additional areas of authority may be added at a later date: when this occurs, the committer should follow normal commit bit allocation procedures for that area of the tree, seeking approval from the appropriate entity and possibly getting a mentor for that area for some period of time. Committer Type Responsible Tree Components src core@ src/, doc/ subject to appropriate review doc doceng@ doc/, ports/, src/ documentation ports portmgr@ ports/ Commit bits allocated prior to the development of the notion of areas of authority may be appropriate for use in many parts of the tree. However, common sense dictates that a committer who has not previously worked in an area of the tree seek review prior to committing, seek approval from the appropriate responsible party, and/or work with a mentor. Since the rules regarding code maintenance differ by area of the tree, this is as much for the benefit of the committer working in an area of less familiarity as it is for others working on the tree. Committers are encouraged to seek review for their work as part of the normal development process, regardless of the area of the tree where the work is occurring. Policy for Committer Activity in Other Trees All committers may modify base/head/share/misc/committers-*.dot, base/head/usr.bin/calendar/calendars/calendar.freebsd, and ports/head/astro/xearth/files. doc committers may commit documentation changes to src files, such as man pages, READMEs, fortune databases, calendar files, and comment fixes without approval from a src committer, subject to the normal care and tending of commits. Any committer may make changes to any other tree with an "Approved by" from a non-mentored committer with the appropriate bit. Committers can acquire an additional bit by the usual process of finding a mentor who will propose them to core, doceng, or portmgr, as appropriate. When approved, they will be added to 'access' and the normal mentoring period will ensue, which will involve a continuing of Approved by for some period. "Approved by" is only acceptable from non-mentored src committers -- mentored committers can provide a "Reviewed by" but not an "Approved by". Subversion Primer New committers are assumed to already be familiar with the basic operation of Subversion. If not, start by reading the Subversion Book. Introduction The &os; source repository switched from CVS to Subversion on May 31st, 2008. The first real SVN commit is r179447. The &os; doc/www repository switched from CVS to Subversion on May 19th, 2012. The first real SVN commit is r38821. The &os; ports repository switched from CVS to Subversion on July 14th, 2012. The first real SVN commit is r300894. Subversion can be installed from the &os; Ports Collection by issuing these commands: &prompt.root; pkg install subversion Getting Started There are a few ways to obtain a working copy of the tree from Subversion. This section will explain them. Direct Checkout The first is to check out directly from the main repository. For the src tree, use: &prompt.user; svn checkout svn+ssh://repo.freebsd.org/base/head /usr/src For the doc tree, use: &prompt.user; svn checkout svn+ssh://repo.freebsd.org/doc/head /usr/doc For the ports tree, use: &prompt.user; svn checkout svn+ssh://repo.freebsd.org/ports/head /usr/ports Though the remaining examples in this document are written with the workflow of working with the src tree in mind, the underlying concepts are the same for working with the doc and the ports tree. Ports related Subversion operations are listed in . The above command will check out a CURRENT source tree as /usr/src/, which can be any target directory on the local filesystem. Omitting the final argument of that command causes the working copy, in this case, to be named head, but that can be renamed safely. svn+ssh means the SVN protocol tunnelled over SSH. The name of the server is repo.freebsd.org, base is the path to the repository, and head is the subdirectory within the repository. If your &os; login name is different from the login name used on the local machine, either include it in the URL (for example svn+ssh://jarjar@repo.freebsd.org/base/head), or add an entry to ~/.ssh/config in the form: Host repo.freebsd.org User jarjar This is the simplest method, but it is hard to tell just yet how much load it will place on the repository. The svn diff does not require access to the server as SVN stores a reference copy of every file in the working copy. This, however, means that Subversion working copies are very large in size. <literal>RELENG_*</literal> Branches and General Layout In svn+ssh://repo.freebsd.org/base, base refers to the source tree. Similarly, ports refers to the ports tree, and so on. These are separate repositories with their own change number sequences, access controls and commit mail. For the base repository, HEAD refers to the -CURRENT tree. For example, head/bin/ls is what would go into /usr/src/bin/ls in a release. Some key locations are: /head/ which corresponds to HEAD, also known as -CURRENT. /stable/n which corresponds to RELENG_n. /releng/n.n which corresponds to RELENG_n_n. /release/n.n.n which corresponds to RELENG_n_n_n_RELEASE. /vendor* is the vendor branch import work area. This directory itself does not contain branches, however its subdirectories do. This contrasts with the stable, releng and release directories. /projects and /user feature a branch work area. As above, the /user directory does not contain branches itself. &os; Documentation Project Branches and Layout In svn+ssh://repo.freebsd.org/doc, doc refers to the repository root of the source tree. In general, most &os; Documentation Project work will be done within the head/ branch of the documentation source tree. &os; documentation is written and/or translated to various languages, each in a separate directory in the head/ branch. Each translation set contains several subdirectories for the various parts of the &os; Documentation Project. A few noteworthy directories are: /articles/ contains the source code for articles written by various &os; contributors. /books/ contains the source code for the different books, such as the &os; Handbook. /htdocs/ contains the source code for the &os; website. &os; Ports Tree Branches and Layout In svn+ssh://repo.freebsd.org/ports, ports refers to the repository root of the ports tree. In general, most &os; port work will be done within the head/ branch of the ports tree which is the actual ports tree used to install software. Some other key locations are: /branches/RELENG_n_n_n which corresponds to RELENG_n_n_n is used to merge back security updates in preparation for a release. /tags/RELEASE_n_n_n which corresponds to RELEASE_n_n_n represents a release tag of the ports tree. /tags/RELEASE_n_EOL represents the end of life tag of a specific &os; branch. Daily Use This section will explain how to perform common day-to-day operations with Subversion. Help SVN has built in help documentation. It can be accessed by typing: &prompt.user; svn help Additional information can be found in the Subversion Book. Checkout As seen earlier, to check out the &os; head branch: &prompt.user; svn checkout svn+ssh://repo.freebsd.org/base/head /usr/src At some point, more than just HEAD will probably be useful, for instance when merging changes to stable/7. Therefore, it may be useful to have a partial checkout of the complete tree (a full checkout would be very painful). To do this, first check out the root of the repository: &prompt.user; svn checkout --depth=immediates svn+ssh://repo.freebsd.org/base This will give base with all the files it contains (at the time of writing, just ROADMAP.txt) and empty subdirectories for head, stable, vendor and so on. Expanding the working copy is possible. Just change the depth of the various subdirectories: &prompt.user; svn up --set-depth=infinity base/head &prompt.user; svn up --set-depth=immediates base/release base/releng base/stable The above command will pull down a full copy of head, plus empty copies of every release tag, every releng branch, and every stable branch. If at a later date merging to 7-STABLE is required, expand the working copy: &prompt.user; svn up --set-depth=infinity base/stable/7 Subtrees do not have to be expanded completely. For instance, expanding only stable/7/sys and then later expand the rest of stable/7: &prompt.user; svn up --set-depth=infinity base/stable/7/sys &prompt.user; svn up --set-depth=infinity base/stable/7 Updating the tree with svn update will only update what was previously asked for (in this case, head and stable/7; it will not pull down the whole tree. Anonymous Checkout It is possible to anonymously check out the &os; repository with Subversion. This will give access to a read-only tree that can be updated, but not committed back to the main repository. To do this, use: &prompt.user; svn co https://svn.FreeBSD.org/base/head /usr/src More details on using Subversion this way can be found in Using Subversion. Updating the Tree To update a working copy to either the latest revision, or a specific revision: &prompt.user; svn update &prompt.user; svn update -r12345 Status To view the local changes that have been made to the working copy: &prompt.user; svn status To show local changes and files that are out-of-date do: &prompt.user; svn status --show-updates Editing and Committing SVN does not need to be told in advance about file editing. To commit all changes in the current directory and all subdirectories: &prompt.user; svn commit To commit all changes in, for example, lib/libfetch/ and usr/bin/fetch/ in a single operation: &prompt.user; svn commit lib/libfetch usr/bin/fetch There is also a commit wrapper for the ports tree to handle the properties and sanity checking the changes: &prompt.user; /usr/ports/Tools/scripts/psvn commit Adding and Removing Files Before adding files, get a copy of auto-props.txt (there is also a ports tree specific version) and add it to ~/.subversion/config according to the instructions in the file. If you added something before reading this, use svn rm --keep-local for just added files, fix your config file and re-add them again. The initial config file is created when you first run a svn command, even something as simple as svn help. Files are added to a SVN repository with svn add. To add a file named foo, edit it, then: &prompt.user; svn add foo Most new source files should include a $&os;$ string near the start of the file. On commit, svn will expand the $&os;$ string, adding the file path, revision number, date and time of commit, and the username of the committer. Files which cannot be modified may be committed without the $&os;$ string. Files can be removed with svn remove: &prompt.user; svn remove foo Subversion does not require deleting the file before using svn rm, and indeed complains if that happens. It is possible to add directories with svn add: &prompt.user; mkdir bar &prompt.user; svn add bar Although svn mkdir makes this easier by combining the creation of the directory and the adding of it: &prompt.user; svn mkdir bar Like files, directories are removed with svn rm. There is no separate command specifically for removing directories. &prompt.user; svn rm bar Copying and Moving Files This command creates a copy of foo.c named bar.c, with the new file also under version control and with the full history of foo.c: &prompt.user; svn copy foo.c bar.c This is usually preferred to copying the file with cp and adding it to the repository with svn add because this way the new file does not inherit the original one's history. To move and rename a file: &prompt.user; svn move foo.c bar.c Log and Annotate svn log shows revisions and commit messages, most recent first, for files or directories. When used on a directory, all revisions that affected the directory and files within that directory are shown. svn annotate, or equally svn praise or svn blame, shows the most recent revision number and who committed that revision for each line of a file. Diffs svn diff displays changes to the working copy. Diffs generated by SVN are unified and include new files by default in the diff output. svn diff can show the changes between two revisions of the same file: &prompt.user; svn diff -r179453:179454 ROADMAP.txt It can also show all changes for a specific changeset. This command shows what changes were made to the current directory and all subdirectories in changeset 179454: &prompt.user; svn diff -c179454 . Reverting Local changes (including additions and deletions) can be reverted using svn revert. It does not update out-of-date files, but just replaces them with pristine copies of the original version. Conflicts If an svn update resulted in a merge conflict, Subversion will remember which files have conflicts and refuse to commit any changes to those files until explicitly told that the conflicts have been resolved. The simple, not yet deprecated procedure is: &prompt.user; svn resolved foo However, the preferred procedure is: &prompt.user; svn resolve --accept=working foo The two examples are equivalent. Possible values for --accept are: working: use the version in your working directory (which one presumes has been edited to resolve the conflicts). base: use a pristine copy of the version you had before svn update, discarding your own changes, the conflicting changes, and possibly other intervening changes as well. mine-full: use what you had before svn update, including your own changes, but discarding the conflicting changes, and possibly other intervening changes as well. theirs-full: use the version that was retrieved when you did svn update, discarding your own changes. Advanced Use Sparse Checkouts SVN allows sparse, or partial checkouts of a directory by adding to a svn checkout. Valid arguments to are: empty: the directory itself without any of its contents. files: the directory and any files it contains. immediates: the directory and any files and directories it contains, but none of the subdirectories' contents. infinity: anything. The --depth option applies to many other commands, including svn commit, svn revert, and svn diff. Since --depth is sticky, there is a --set-depth option for svn update that will change the selected depth. Thus, given the working copy produced by the previous example: &prompt.user; cd ~/freebsd &prompt.user; svn update --set-depth=immediates . The above command will populate the working copy in ~/freebsd with ROADMAP.txt and empty subdirectories, and nothing will happen when svn update is executed on the subdirectories. However, this command will set the depth for head (in this case) to infinity, and fully populate it: &prompt.user; svn update --set-depth=infinity head Direct Operation Certain operations can be performed directly on the repository without touching the working copy. Specifically, this applies to any operation that does not require editing a file, including: log, diff mkdir remove, copy, rename propset, propedit, propdel merge Branching is very fast. This command would be used to branch RELENG_8: &prompt.user; svn copy svn+ssh://repo.freebsd.org/base/head svn+ssh://repo.freebsd.org/base/stable/8 This is equivalent to these commands which take minutes and hours as opposed to seconds, depending on your network connection: &prompt.user; svn checkout --depth=immediates svn+ssh://repo.freebsd.org/base &prompt.user; cd base &prompt.user; svn update --set-depth=infinity head &prompt.user; svn copy head stable/8 &prompt.user; svn commit stable/8 Merging with <acronym>SVN</acronym> This section deals with merging code from one branch to another (typically, from head to a stable branch). In all examples below, $FSVN refers to the location of the &os; Subversion repository, svn+ssh://repo.freebsd.org/base/. About Merge Tracking From the user's perspective, merge tracking information (or mergeinfo) is stored in a property called svn:mergeinfo, which is a comma-separated list of revisions and ranges of revisions that have been merged. When set on a file, it applies only to that file. When set on a directory, it applies to that directory and its descendants (files and directories) except for those that have their own svn:mergeinfo. It is not inherited. For instance, stable/6/contrib/openpam/ does not implicitly inherit mergeinfo from stable/6/, or stable/6/contrib/. Doing so would make partial checkouts very hard to manage. Instead, mergeinfo is explicitly propagated down the tree. For merging something into branch/foo/bar/, these rules apply: If branch/foo/bar/ does not already have a mergeinfo record, but a direct ancestor (for instance, branch/foo/) does, then that record will be propagated down to branch/foo/bar/ before information about the current merge is recorded. Information about the current merge will not be propagated back up that ancestor. If a direct descendant of branch/foo/bar/ (for instance, branch/foo/bar/baz/) already has a mergeinfo record, information about the current merge will be propagated down to it. If you consider the case where a revision changes several separate parts of the tree (for example, branch/foo/bar/ and branch/foo/quux/), but you only want to merge some of it (for example, branch/foo/bar/), you will see that these rules make sense. If mergeinfo was propagated up, it would seem like that revision had also been merged to branch/foo/quux/, when in fact it had not been. Selecting the Source and Target Branch When Merging Merging to stable/ branches should originate from head/. For example: &prompt.user; svn merge -c r123456 ^/head/ stable/11 &prompt.user; svn commit stable/11 Merges to releng/ branches should always originate from the corresponding stable/ branch. For example: &prompt.user; svn merge -c r123456 ^/stable/11 releng/11.0 &prompt.user; svn commit releng/11.0 Committers are only permitted to commit to the releng/ branches during a release cycle after receiving approval from the Release Engineering Team, after which only the Security Officer may commit to a releng/ branch for a Security Advisory or Errata Notice. All merges are merged to and committed from the root of the branch. All merges look like: &prompt.user; svn merge -c r123456 ^/head/ checkout &prompt.user; svn commit checkout Note that checkout must be a complete checkout of the branch to which the merge occurs. &prompt.user; svn merge -c r123456 ^/stable/10 releng/10.0 Preparing the Merge Target Because of the mergeinfo propagation issues described earlier, it is very important to never merge changes into a sparse working copy. Always use a full checkout of the branch being merged into. For instance, when merging from HEAD to 7, use a full checkout of stable/7: &prompt.user; cd stable/7 &prompt.user; svn up --set-depth=infinity The target directory must also be up-to-date and must not contain any uncommitted changes or stray files. Identifying Revisions Identifying revisions to be merged is a must. If the target already has complete mergeinfo, ask SVN for a list: &prompt.user; cd stable/6/contrib/openpam &prompt.user; svn mergeinfo --show-revs=eligible $FSVN/head/contrib/openpam If the target does not have complete mergeinfo, check the log for the merge source. Merging Now, let us start merging! The Principles For example, To merge: revision $R in directory $target in stable branch $B from directory $source in head $FSVN is svn+ssh://repo.freebsd.org/base Assuming that revisions $P and $Q have already been merged, and that the current directory is an up-to-date working copy of stable/$B, the existing mergeinfo looks like this: &prompt.user; svn propget svn:mergeinfo -R $target $target - /head/$source:$P,$Q Merging is done like so: &prompt.user; svn merge -c$R $FSVN/head/$source $target Checking the results of this is possible with svn diff. The svn:mergeinfo now looks like: &prompt.user; svn propget svn:mergeinfo -R $target $target - head/$source:$P,$Q,$R If the results are not exactly as shown, assistance may be required before committing as mistakes may have been made, or there may be something wrong with the existing mergeinfo, or there may be a bug in Subversion. Practical Example As a practical example, consider this scenario. The changes to netmap.4 in r238987 are to be merged from CURRENT to 9-STABLE. The file resides in head/share/man/man4. According to , this is also where to do the merge. Note that in this example all paths are relative to the top of the svn repository. For more information on the directory layout, see . The first step is to inspect the existing mergeinfo. &prompt.user; svn propget svn:mergeinfo -R stable/9/share/man/man4 Take a quick note of how it looks before moving on to the next step; doing the actual merge: &prompt.user; svn merge -c r238987 svn+ssh://repo.freebsd.org/base/head/share/man/man4 stable/9/share/man/man4 --- Merging r238987 into 'stable/9/share/man/man4': U stable/9/share/man/man4/netmap.4 --- Recording mergeinfo for merge of r238987 into 'stable/9/share/man/man4': U stable/9/share/man/man4 Check that the revision number of the merged revision has been added. Once this is verified, the only thing left is the actual commit. &prompt.user; svn commit stable/9/share/man/man4 Precautions Before Committing As always, build world (or appropriate parts of it). Check the changes with svn diff and svn stat. Make sure all the files that should have been added or deleted were in fact added or deleted. Take a closer look at any property change (marked by a M in the second column of svn stat). Normally, no svn:mergeinfo properties should be anywhere except the target directory (or directories). If something looks fishy, ask for help. Committing Make sure to commit a top level directory to have the mergeinfo included as well. Do not specify individual files on the command line. For more information about committing files in general, see the relevant section of this primer. Vendor Imports with <acronym>SVN</acronym> Please read this entire section before starting a vendor import. Patches to vendor code fall into two categories: Vendor patches: these are patches that have been issued by the vendor, or that have been extracted from the vendor's version control system, which address issues which cannot wait until the next vendor release. &os; patches: these are patches that modify the vendor code to address &os;-specific issues. The nature of a patch dictates where it should be committed: Vendor patches must be committed to the vendor branch, and merged from there to head. If the patch addresses an issue in a new release that is currently being imported, it must not be committed along with the new release: the release must be imported and tagged first, then the patch can be applied and committed. There is no need to re-tag the vendor sources after committing the patch. &os; patches are committed directly to head. Preparing the Tree If importing for the first time after the switch to Subversion, flattening and cleaning up the vendor tree is necessary, as well as bootstrapping the merge history in the main tree. Flattening During the conversion from CVS to Subversion, vendor branches were imported with the same layout as the main tree. This means that the pf vendor sources ended up in vendor/pf/dist/contrib/pf. The vendor source is best directly in vendor/pf/dist. To flatten the pf tree: &prompt.user; cd vendor/pf/dist/contrib/pf &prompt.user; svn mv $(svn list) ../.. &prompt.user; cd ../.. &prompt.user; svn rm contrib &prompt.user; svn propdel -R svn:mergeinfo . &prompt.user; svn commit The propdel bit is necessary because starting with 1.5, Subversion will automatically add svn:mergeinfo to any directory that is copied or moved. In this case, as nothing is being merged from the deleted tree, they just get in the way. Tags may be flattened as well (3, 4, 3.5 etc.); the procedure is exactly the same, only changing dist to 3.5 or similar, and putting the svn commit off until the end of the process. Cleaning Up The dist tree can be cleaned up as necessary. Disabling keyword expansion is recommended, as it makes no sense on unmodified vendor code and in some cases it can even be harmful. OpenSSH, for example, includes two files that originated with &os; and still contain the original version tags. To do this: &prompt.user; svn propdel svn:keywords -R . &prompt.user; svn commit Bootstrapping Merge History If importing for the first time after the switch to Subversion, bootstrap svn:mergeinfo on the target directory in the main tree to the revision that corresponds to the last related change to the vendor tree, prior to importing new sources: &prompt.user; cd head/contrib/pf &prompt.user; svn merge --record-only svn+ssh://repo.freebsd.org/base/vendor/pf/dist@180876 . &prompt.user; svn commit Importing New Sources With two commits—one for the import itself and one for the tag—this step can optionally be repeated for every upstream release between the last import and the current import. Preparing the Vendor Sources Subversion is able to store a full distribution in the vendor tree. So, import everything, but merge only what is required. A svn add is required to add any files that were added since the last vendor import, and svn rm is required to remove any that were removed since. Preparing sorted lists of the contents of the vendor tree and of the sources that are about to be imported is recommended, to facilitate the process. &prompt.user; cd vendor/pf/dist &prompt.user; svn list -R | grep -v '/$' | sort >../old &prompt.user; cd ../pf-4.3 &prompt.user; find . -type f | cut -c 3- | sort >../new With these two files, comm -23 ../old ../new will list removed files (files only in old), while comm -13 ../old ../new will list added files only in new. Importing into the Vendor Tree Now, the sources must be copied into dist and the svn add and svn rm commands are used as needed: &prompt.user; cd vendor/pf/pf-4.3 &prompt.user; tar cf - . | tar xf - -C ../dist &prompt.user; cd ../dist &prompt.user; comm -23 ../old ../new | xargs svn rm &prompt.user; comm -13 ../old ../new | xargs svn add --parents If any directories were removed, they will have to be svn rmed manually. Nothing will break if they are not, but they will remain in the tree. Check properties on any new files. All text files should have svn:eol-style set to native. All binary files should have svn:mime-type set to application/octet-stream unless there is a more appropriate media type. Executable files should have svn:executable set to *. No other properties should exist on any file in the tree. Committing is now possible. However, it is good practice to make sure that everything is okay by using the svn stat and svn diff commands. Tagging Once committed, vendor releases are tagged for future reference. The best and quickest way to do this is directly in the repository: &prompt.user; svn cp svn+ssh://repo.freebsd.org/base/vendor/pf/dist svn+ssh://repo.freebsd.org/base/vendor/pf/4.3 Once that is complete, svn up the working copy of vendor/pf to get the new tag, although this is rarely needed. If creating the tag in the working copy of the tree, svn:mergeinfo results must be removed: &prompt.user; cd vendor/pf &prompt.user; svn cp dist 4.3 &prompt.user; svn propdel svn:mergeinfo -R 4.3 Merging to Head &prompt.user; cd head/contrib/pf &prompt.user; svn up &prompt.user; svn merge --accept=postpone svn+ssh://repo.freebsd.org/base/vendor/pf/dist . The --accept=postpone tells Subversion not to complain about merge conflicts as they will be handled manually. The cvs2svn changeover occurred on June 3, 2008. When performing vendor merges for packages which were already present and converted by the cvs2svn process, the command used to merge /vendor/package_name/dist to /head/package_location (for example, head/contrib/sendmail) must use to indicate the revision to merge from the /vendor tree. For example: &prompt.user; svn checkout svn+ssh://repo.freebsd.org/base/head/contrib/sendmail &prompt.user; cd sendmail &prompt.user; svn merge -c r261190 '^/vendor/sendmail/dist' . ^ is an alias for the repository path. If using the Zsh shell, the ^ must be escaped with \ or quoted. It is necessary to resolve any merge conflicts. Make sure that any files that were added or removed in the vendor tree have been properly added or removed in the main tree. To check diffs against the vendor branch: &prompt.user; svn diff --no-diff-deleted --old=svn+ssh://repo.freebsd.org/base/vendor/pf/dist --new=. The --no-diff-deleted tells Subversion not to complain about files that are in the vendor tree but not in the main tree. Things that would have previously been removed before the vendor import, like the vendor's makefiles and configure scripts. Using CVS, once a file was off the vendor branch, it was not able to be put back. With Subversion, there is no concept of on or off the vendor branch. If a file that previously had local modifications, to make it not show up in diffs in the vendor tree, all that has to be done is remove any left-over cruft like &os; version tags, which is much easier. If any changes are required for the world to build with the new sources, make them now, and keep testing until everything builds and runs perfectly. Committing the Vendor Import Committing is now possible! Everything must be committed in one go. If done properly, the tree will move from a consistent state with old code, to a consistent state with new code. From Scratch Importing into the Vendor Tree This section is an example of importing and tagging byacc into head. First, prepare the directory in vendor: &prompt.user; svn co --depth immediates $FSVN/vendor &prompt.user; cd vendor &prompt.user; svn mkdir byacc &prompt.user; svn mkdir byacc/dist Now, import the sources into the dist directory. Once the files are in place, svn add the new ones, then svn commit and tag the imported version. To save time and bandwidth, direct remote committing and tagging is possible: &prompt.user; svn cp -m "Tag byacc 20120115" $FSVN/vendor/byacc/dist $FSVN/vendor/byacc/20120115 Merging to <literal>head</literal> Due to this being a new file, copy it for the merge: &prompt.user; svn cp -m "Import byacc to contrib" $FSVN/vendor/byacc/dist $FSVN/head/contrib/byacc Working normally on newly imported sources is still possible. Reverting a Commit Reverting a commit to a previous version is fairly easy: &prompt.user; svn merge -r179454:179453 ROADMAP.txt &prompt.user; svn commit Change number syntax, with negative meaning a reverse change, can also be used: &prompt.user; svn merge -c -179454 ROADMAP.txt &prompt.user; svn commit This can also be done directly in the repository: &prompt.user; svn merge -r179454:179453 svn+ssh://repo.freebsd.org/base/ROADMAP.txt It is important to ensure that the mergeinfo is correct when reverting a file to permit svn mergeinfo --eligible to work as expected. Reverting the deletion of a file is slightly different. Copying the version of the file that predates the deletion is required. For example, to restore a file that was deleted in revision N, restore version N-1: &prompt.user; svn copy svn+ssh://repo.freebsd.org/base/ROADMAP.txt@179454 &prompt.user; svn commit or, equally: &prompt.user; svn copy svn+ssh://repo.freebsd.org/base/ROADMAP.txt@179454 svn+ssh://repo.freebsd.org/base Do not simply recreate the file manually and svn add it—this will cause history to be lost. Fixing Mistakes While we can do surgery in an emergency, do not plan on having mistakes fixed behind the scenes. Plan on mistakes remaining in the logs forever. Be sure to check the output of svn status and svn diff before committing. Mistakes will happen but, they can generally be fixed without disruption. Take a case of adding a file in the wrong location. The right thing to do is to svn move the file to the correct location and commit. This causes just a couple of lines of metadata in the repository journal, and the logs are all linked up correctly. The wrong thing to do is to delete the file and then svn add an independent copy in the correct location. Instead of a couple of lines of text, the repository journal grows an entire new copy of the file. This is a waste. Using a Subversion Mirror There is a serious disadvantage to this method: every time something is to be committed, a svn relocate to the master repository has to be done, remembering to svn relocate back to the mirror after the commit. Also, since svn relocate only works between repositories that have the same UUID, some hacking of the local repository's UUID has to occur before it is possible to start using it. Checkout from a Mirror Check out a working copy from a mirror by substituting the mirror's URL for svn+ssh://repo.freebsd.org/base. This can be an official mirror or a mirror maintained by using svnsync. Setting up a <application>svnsync</application> Mirror Avoid setting up a svnsync mirror unless there is a very good reason for it. Most of the time a git mirror is a better alternative. Starting a fresh mirror from scratch takes a long time. Expect a minimum of 10 hours for high speed connectivity. If international links are involved, expect this to take four to ten times longer. One way to limit the time required is to grab a seed file. It is large (~1GB) but will consume less network traffic and take less time to fetch than svnsync will. Extract the file and update it: &prompt.user; tar xf svnmirror-base-r261170.tar.xz &prompt.user; svnsync sync file:///home/svnmirror/base Now, set that up to run from &man.cron.8;, do checkouts locally, set up a svnserve server for local machines to talk to, etc. The seed mirror is set to fetch from svn://svn.freebsd.org/base. The configuration for the mirror is stored in revprop 0 on the local mirror. To see the configuration, try: &prompt.user; svn proplist -v --revprop -r 0 file:///home/svnmirror/base Use svn propset to change things. Committing High-<acronym>ASCII</acronym> Data Files that have high-ASCII bits are considered binary files in SVN, so the pre-commit checks fail and indicate that the mime-type property should be set to application/octet-stream. However, the use of this is discouraged, so please do not set it. The best way is always avoiding high-ASCII data, so that it can be read everywhere with any text editor but if it is not avoidable, instead of changing the mime-type, set the fbsd:notbinary property with propset: &prompt.user; svn propset fbsd:notbinary yes foo.data Maintaining a Project Branch A project branch is one that is synced to head (or another branch) is used to develop a project then commit it back to head. In SVN, dolphin branching is used for this. A dolphin branch is one that diverges for a while and is finally committed back to the original branch. During development code migration in one direction (from head to the branch only). No code is committed back to head until the end. After the branch is committed back at the end, it is dead (although a new branch with the same name can be created after the dead one is deleted). As per https://people.FreeBSD.org/~peter/svn_notes.txt, work that is intended to be merged back into HEAD should be in base/projects/. If the work is beneficial to the &os; community in some way but not intended to be merged directly back into HEAD then the proper location is base/user/username/. This page contains further details. To create a project branch: &prompt.user; svn copy svn+ssh://repo.freebsd.org/base/head svn+ssh://repo.freebsd.org/base/projects/spif To merge changes from HEAD back into the project branch: &prompt.user; cd copy_of_spif &prompt.user; svn merge svn+ssh://repo.freebsd.org/base/head &prompt.user; svn commit It is important to resolve any merge conflicts before committing. Some Tips In commit logs etc., rev 179872 is spelled r179872 as per convention. Speeding up svn is possible by adding these entries to ~/.ssh/config: Host * ControlPath ~/.ssh/sockets/master-%l-%r@%h:%p ControlMaster auto ControlPersist yes and then typing mkdir ~/.ssh/sockets Checking out a working copy with a stock Subversion client without &os;-specific patches (OPTIONS_SET=FREEBSD_TEMPLATE) will mean that $FreeBSD$ tags will not be expanded. Once the correct version has been installed, trick Subversion into expanding them like so: &prompt.user; svn propdel -R svn:keywords . &prompt.user; svn revert -R . This will wipe out uncommitted patches. It is possible to automatically fill the "Sponsored by" and "MFC after" commit log fields by setting "freebsd-sponsored-by" and "freebsd-mfc-after" fields in the "[miscellany]" section of the ~/.subversion/config configuration file. For example: freebsd-sponsored-by = The FreeBSD Foundation freebsd-mfc-after = 2 weeks Setup, Conventions, and Traditions There are a number of things to do as a new developer. The first set of steps is specific to committers only. These steps must be done by a mentor for those who are not committers. For New Committers Those who have been given commit rights to the &os; repositories must follow these steps. Get mentor approval before committing each of these changes! The .ent and .xml files mentioned below exist in the &os; Documentation Project SVN repository at svn+ssh://repo.FreeBSD.org/doc/. New files that do not have the FreeBSD=%H svn:keywords property will be rejected when attempting to commit them to the repository. Be sure to read regarding adding and removing files. Verify that ~/.subversion/config contains the necessary auto-props entries from auto-props.txt mentioned there. All src commits go to &os.current; first before being merged to &os.stable;. The &os.stable; branch must maintain ABI and API compatibility with earlier versions of that branch. Do not merge changes that break this compatibility. Steps for New Committers Add an Author Entity doc/head/share/xml/authors.ent — Add an author entity. Later steps depend on this entity, and missing this step will cause the doc/ build to fail. This is a relatively easy task, but remains a good first test of version control skills. Update the List of Developers and Contributors doc/head/en_US.ISO8859-1/articles/contributors/contrib.committers.xml — Add an entry to the Developers section of the Contributors List. Entries are sorted by last name. doc/head/en_US.ISO8859-1/articles/contributors/contrib.additional.xmlRemove the entry from the Additional Contributors section. Entries are sorted by first name. Add a News Item doc/head/share/xml/news.xml — Add an entry. Look for the other entries that announce new committers and follow the format. Use the date from the commit bit approval email from core@FreeBSD.org. Add a <acronym>PGP</acronym> Key doc/head/share/pgpkeys/pgpkeys.ent and doc/head/share/pgpkeys/pgpkeys-developers.xml - Add your PGP or GnuPG key. Those who do not yet have a key should see . &a.des.email; has written a shell script (doc/head/share/pgpkeys/addkey.sh) to make this easier. See the README file for more information. Use doc/head/share/pgpkeys/checkkey.sh to verify that keys meet minimal best-practices standards. After adding and checking a key, add both updated files to source control and then commit them. Entries in this file are sorted by last name. It is very important to have a current PGP/GnuPG key in the repository. The key may be required for positive identification of a committer. For example, the &a.admins; might need it for account recovery. A complete keyring of FreeBSD.org users is available for download from https://www.FreeBSD.org/doc/pgpkeyring.txt. Update Mentor and Mentee Information base/head/share/misc/committers-repository.dot — Add an entry to the current committers section, where repository is doc, ports, or src, depending on the commit privileges granted. Add an entry for each additional mentor/mentee relationship in the bottom section. Generate a <application>Kerberos</application> Password See to generate or set a Kerberos for use with other &os; services like the bug tracking database. Optional: Enable Wiki Account &os; Wiki Account — A wiki account allows sharing projects and ideas. Those who do not yet have an account can follow instructions on the AboutWiki Page to obtain one. Contact wiki-admin@FreeBSD.org if you need help with your Wiki account. Optional: Update Wiki Information Wiki Information - After gaining access to the wiki, some people add entries to the How We Got Here, IRC Nicks, and Dogs of FreeBSD pages. Optional: Update Ports with Personal Information ports/astro/xearth/files/freebsd.committers.markers and src/usr.bin/calendar/calendars/calendar.freebsd - Some people add entries for themselves to these files to show where they are located or the date of their birthday. Optional: Prevent Duplicate Mailings Subscribers to &a.svn-src-all.name;, &a.svn-ports-all.name; or &a.svn-doc-all.name; might wish to unsubscribe to avoid receiving duplicate copies of commit messages and followups. For Everyone Introduce yourself to the other developers, otherwise no one will have any idea who you are or what you are working on. The introduction need not be a comprehensive biography, just write a paragraph or two about who you are, what you plan to be working on as a developer in &os;, and who will be your mentor. Email this to the &a.developers; and you will be on your way! Log into freefall.FreeBSD.org and create a /var/forward/user (where user is your username) file containing the e-mail address where you want mail addressed to yourusername@FreeBSD.org to be forwarded. This includes all of the commit messages as well as any other mail addressed to the &a.committers; and the &a.developers;. Really large mailboxes which have taken up permanent residence on freefall may get truncated without warning if space needs to be freed, so forward it or save it elsewhere. If your e-mail system uses SPF with strict rules, you should whitelist mx2.FreeBSD.org from SPF checks. Due to the severe load dealing with SPAM places on the central mail servers that do the mailing list processing, the front-end server does do some basic checks and will drop some messages based on these checks. At the moment proper DNS information for the connecting host is the only check in place but that may change. Some people blame these checks for bouncing valid email. To have these checks turned off for your email, create a file named ~/.spam_lover on freefall.FreeBSD.org. Those who are developers but not committers will not be subscribed to the committers or developers mailing lists. The subscriptions are derived from the access rights. SMTP Access Setup For those willing to send e-mail messages through the FreeBSD.org infrastructure, follow the instructions below: Point your mail client at smtp.FreeBSD.org:587. Enable STARTTLS. Ensure your From: address is set to yourusername@FreeBSD.org. For authentication, you can use your &os; Kerberos username and password (see ). The yourusername/mail principal is preferred, as it is only valid for authenticating to mail resources. Do not include @FreeBSD.org when entering in your username. Additional Notes Will only accept mail from yourusername@FreeBSD.org. If you are authenticated as one user, you are not permitted to send mail from another. A header will be appended with the SASL username: (Authenticated sender: username). Host has various rate limits in place to cut down on brute force attempts. Using a Local MTA to Forward Emails to the &os;.org SMTP Service It is also possible to use a local MTA to forward locally sent emails to the &os;.org SMTP servers. Using <application>Postfix</application> To tell a local Postfix instance that anything from yourusername@FreeBSD.org should be forwarded to the &os;.org servers, add this to your main.cf: sender_dependent_relayhost_maps = hash:/usr/local/etc/postfix/relayhost_maps smtp_sasl_auth_enable = yes smtp_sasl_security_options = noanonymous smtp_sasl_password_maps = hash:/usr/local/etc/postfix/sasl_passwd smtp_use_tls = yes Create /usr/local/etc/postfix/relayhost_maps with the following content: yourusername@FreeBSD.org [smtp.freebsd.org]:587 Create /usr/local/etc/postfix/sasl_passwd with the following content: [smtp.freebsd.org]:587 yourusername:yourpassword If the email server is used by other people, you may want to prevent them from sending e-mails from your address. To achieve this, add this to your main.cf: smtpd_sender_login_maps = hash:/usr/local/etc/postfix/sender_login_maps smtpd_sender_restrictions = reject_known_sender_login_mismatch Create /usr/local/etc/postfix/sender_login_maps with the following content: yourusername@FreeBSD.org yourlocalusername Where yourlocalusername is the SASL username used to connect to the local instance of Postfix. Mentors All new developers have a mentor assigned to them for the first few months. A mentor is responsible for teaching the mentee the rules and conventions of the project and guiding their first steps in the developer community. The mentor is also personally responsible for the mentee's actions during this initial period. For committers: do not commit anything without first getting mentor approval. Document that approval with an Approved by: line in the commit message. When the mentor decides that a mentee has learned the ropes and is ready to commit on their own, the mentor announces it with a commit to conf/mentors. This file is in the svnadmin branch of each repository: src base/svnadmin/conf/mentors doc doc/svnadmin/conf/mentors ports ports/svnadmin/conf/mentors Pre-Commit Review Code review is one way to increase the quality of software. The following guidelines apply to commits to the head (-CURRENT) branch of the src repository. Other branches and the ports and docs trees have their own review policies, but these guidelines generally apply to commits requiring review: All non-trivial changes should be reviewed before they are committed to the repository. Reviews may be conducted by email, in Bugzilla, in Phabricator, or by another mechanism. Where possible, reviews should be public. The developer responsible for a code change is also responsible for making all necessary review-related changes. Code review can be an iterative process, which continues until the patch is ready to be committed. Specifically, once a patch is sent out for review, it should receive an explicit looks good before it is committed. So long as it is explicit, this can take whatever form makes sense for the review method. Timeouts are not a substitute for review. Sometimes code reviews will take longer than you would hope for, especially for larger features. Accepted ways to speed up review times for your patches are: Review other people's patches. If you help out, everybody will be more willing to do the same for you; goodwill is our currency. Ping the patch. If it is urgent, provide reasons why it is important to you to get this patch landed and ping it every couple of days. If it is not urgent, the common courtesy ping rate is one week. Remember that you are asking for valuable time from other professional developers. Ask for help on mailing lists, IRC, etc. Others may be able to either help you directly, or suggest a reviewer. Split your patch into multiple smaller patches that build on each other. The smaller your patch, the higher the probability that somebody will take a quick look at it. When making large changes, it is helpful to keep this in mind from the beginning of the effort as breaking large changes into smaller ones is often difficult after the fact. Developers should participate in code reviews as both reviewers and reviewees. If someone is kind enough to review your code, you should return the favor for someone else. Note that while anyone is welcome to review and give feedback on a patch, only an appropriate subject-matter expert can approve a change. This will usually be a committer who works with the code in question on a regular basis. In some cases, no subject-matter expert may be available. In those cases, a review by an experienced developer is sufficient when coupled with appropriate testing. Commit Log Messages This section contains some suggestions and traditions for how commit logs are formatted. As well as including an informative message with each commit, some additional information may be needed. This information consists of one or more lines containing the key word or phrase, a colon, tabs for formatting, and then the additional information. The key words or phrases are: PR: The problem report (if any) which is affected (typically, by being closed) by this commit. Multiple PRs may be specified on one line, separated by commas or spaces. Submitted by: The name and e-mail address of the person that submitted the fix; for developers, just the username on the &os; cluster. If the submitter is the maintainer of the port being committed, include "(maintainer)" after the email address. Avoid obfuscating the email address of the submitter as this adds additional work when searching logs. Reviewed by: The name and e-mail address of the person or people that reviewed the change; for developers, just the username on the &os; cluster. If a patch was submitted to a mailing list for review, and the review was favorable, then just include the list name. Approved by: The name and e-mail address of the person or people that approved the change; for developers, just the username on the &os; cluster. It is customary to get prior approval for a commit if it is to an area of the tree to which you do not usually commit. In addition, during the run up to a new release all commits must be approved by the release engineering team. While under mentorship, get mentor approval before the commit. Enter the mentor's username in this field, and note that they are a mentor: Approved by: username-of-mentor (mentor) If a team approved these commits then include the team name followed by the username of the approver in parentheses. For example: Approved by: re (username) Obtained from: The name of the project (if any) from which the code was obtained. Do not use this line for the name of an individual person. Sponsored by: Sponsoring organizations for this change, if any. Separate multiple organizations with commas. If only a portion of the work was sponsored, or different amounts of sponsorship were provided to different authors, please give appropriate credit in parentheses after each sponsor name. For example, Example.com (alice, code refactoring), Wormulon (bob), Momcorp (cindy) shows that Alice was sponsored by Example.com to do code refactoring, while Wormulon sponsored Bob's work and Momcorp sponsored Cindy's work. Other authors were either not sponsored or chose not to list sponsorship. MFC after: To receive an e-mail reminder to MFC at a later date, specify the number of days, weeks, or months after which an MFC is planned. MFC to: If the commit should be merged to a subset of stable branches, specify the branch names. MFC with: If the commit should be merged together with a previous one in a single MFC commit (for example, where this commit corrects a bug in the previous change), specify the corresponding revision number. Relnotes: If the change is a candidate for inclusion in the release notes for the next release from the branch, set to yes. Security: If the change is related to a security vulnerability or security exposure, include one or more references or a description of the issue. If possible, include a VuXML URL or a CVE ID. Event: The description for the event where this commit was made. If this is a recurring event, add the year or even the month to it. For example, this could be FooBSDcon 2019. The idea behind this line is to put recognition to conferences, gatherings, and other types of meetups and to show that these are useful to have. Please do not use the Sponsored by: line for this as that is meant for organizations sponsoring certain features or developers working on them. Differential Revision: The full URL of the Phabricator review. This line must be the last line. For example: https://reviews.freebsd.org/D1708. Commit Log for a Commit Based on a PR The commit is based on a patch from a PR submitted by John Smith. The commit message PR and Submitted by fields are filled.. ... PR: 12345 Submitted by: John Smith <John.Smith@example.com> Commit Log for a Commit Needing Review The virtual memory system is being changed. After posting patches to the appropriate mailing list (in this case, freebsd-arch) and the changes have been approved. ... Reviewed by: -arch Commit Log for a Commit Needing Approval Commit a port, after working with the listed MAINTAINER, who said to go ahead and commit. ... Approved by: abc (maintainer) Where abc is the account name of the person who approved. Commit Log for a Commit Bringing in Code from OpenBSD Committing some code based on work done in the OpenBSD project. ... Obtained from: OpenBSD Commit Log for a Change to &os.current; with a Planned Commit to &os.stable; to Follow at a Later Date. Committing some code which will be merged from &os.current; into the &os.stable; branch after two weeks. ... MFC after: 2 weeks Where 2 is the number of days, weeks, or months after which an MFC is planned. The weeks option may be day, days, week, weeks, month, months. It is often necessary to combine these. Consider the situation where a user has submitted a PR containing code from the NetBSD project. Looking at the PR, the developer sees it is not an area of the tree they normally work in, so they have the change reviewed by the arch mailing list. Since the change is complex, the developer opts to MFC after one month to allow adequate testing. The extra information to include in the commit would look something like Example Combined Commit Log PR: 54321 Submitted by: John Smith <John.Smith@example.com> Reviewed by: -arch Obtained from: NetBSD MFC after: 1 month Relnotes: yes Preferred License for New Files The &os; Project's full license policy can be found at https://www.FreeBSD.org/internal/software-license.html. The rest of this section is intended to help you get started. As a rule, when in doubt, ask. It is much easier to give advice than to fix the source tree. The &os; Project suggests and uses this text as the preferred license scheme: /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) [year] [your name] * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * [id for your version control system, if any] */ The &os; project strongly discourages the so-called "advertising clause" in new code. Due to the large number of contributors to the &os; project, complying with this clause for many commercial vendors has become difficult. If you have code in the tree with the advertising clause, please consider removing it. In fact, please consider using the above license for your code. The &os; project discourages completely new licenses and variations on the standard licenses. New licenses require the approval of the &a.core; to reside in the main repository. The more different licenses that are used in the tree, the more problems that this causes to those wishing to utilize this code, typically from unintended consequences from a poorly worded license. Project policy dictates that code under some non-BSD licenses must be placed only in specific sections of the repository, and in some cases, compilation must be conditional or even disabled by default. For example, the GENERIC kernel must be compiled under only licenses identical to or substantially similar to the BSD license. GPL, APSL, CDDL, etc, licensed software must not be compiled into GENERIC. Developers are reminded that in open source, getting "open" right is just as important as getting "source" right, as improper handling of intellectual property has serious consequences. Any questions or concerns should immediately be brought to the attention of the core team. Keeping Track of Licenses Granted to the &os; Project Various software or data exist in the repositories where the &os; project has been granted a special licence to be able to use them. A case in point are the Terminus fonts for use with &man.vt.4;. Here the author Dimitar Zhekov has allowed us to use the "Terminus BSD Console" font under a 2-clause BSD license rather than the regular Open Font License he normally uses. It is clearly sensible to keep a record of any such license grants. To that end, the &a.core; has decided to keep an archive of them. Whenever the &os; project is granted a special license we require the &a.core; to be notified. Any developers involved in arranging such a license grant, please send details to the &a.core; including: Contact details for people or organizations granting the special license. What files, directories etc. in the repositories are covered by the license grant including the revision numbers where any specially licensed material was committed. The date the license comes into effect from. Unless otherwise agreed, this will be the date the license was issued by the authors of the software in question. The license text. A note of any restrictions, limitations or exceptions that apply specifically to &os;'s usage of the licensed material. Any other relevant information. Once the &a.core; is satisfied that all the necessary details have been gathered and are correct, the secretary will send a PGP-signed acknowledgement of receipt including the license details. This receipt will be persistently archived and serve as our permanent record of the license grant. The license archive should contain only details of license grants; this is not the place for any discussions around licensing or other subjects. Access to data within the license archive will be available on request to the &a.core;. Developer Relations When working directly on your own code or on code which is already well established as your responsibility, then there is probably little need to check with other committers before jumping in with a commit. Working on a bug in an area of the system which is clearly orphaned (and there are a few such areas, to our shame), the same applies. When modifying parts of the system which are maintained, formally, or informally, consider asking for review just as a developer would have before becoming a committer. For ports, contact the listed MAINTAINER in the Makefile. To determine if an area of the tree is maintained, check the MAINTAINERS file at the root of the tree. If nobody is listed, scan the revision history to see who has committed changes in the past. An example script that lists each person who has committed to a given file along with the number of commits each person has made can be found at on freefall at ~eadler/bin/whodid. If queries go unanswered or the committer otherwise indicates a lack of interest in the area affected, go ahead and commit it. Avoid sending private emails to maintainers. Other people might be interested in the conversation, not just the final output. If there is any doubt about a commit for any reason at all, have it reviewed before committing. Better to have it flamed then and there rather than when it is part of the repository. If a commit does results in controversy erupting, it may be advisable to consider backing the change out again until the matter is settled. Remember, with a version control system we can always change it back. Do not impugn the intentions of others. If they see a different solution to a problem, or even a different problem, it is probably not because they are stupid, because they have questionable parentage, or because they are trying to destroy hard work, personal image, or &os;, but basically because they have a different outlook on the world. Different is good. Disagree honestly. Argue your position from its merits, be honest about any shortcomings it may have, and be open to seeing their solution, or even their vision of the problem, with an open mind. Accept correction. We are all fallible. When you have made a mistake, apologize and get on with life. Do not beat up yourself, and certainly do not beat up others for your mistake. Do not waste time on embarrassment or recrimination, just fix the problem and move on. Ask for help. Seek out (and give) peer reviews. One of the ways open source software is supposed to excel is in the number of eyeballs applied to it; this does not apply if nobody will review code. If in Doubt... When unsure about something, whether it be a technical issue or a project convention be sure to ask. If you stay silent you will never make progress. If it relates to a technical issue ask on the public mailing lists. Avoid the temptation to email the individual person that knows the answer. This way everyone will be able to learn from the question and the answer. For project specific or administrative questions ask, in order: Your mentor or former mentor. An experienced committer on IRC, email, etc. Any team with a "hat", as they can give you a definitive answer. If still not sure, ask on &a.developers;. Once your question is answered, if no one pointed you to documentation that spelled out the answer to your question, document it, as others will have the same question. Bugzilla The &os; Project utilizes Bugzilla for tracking bugs and change requests. Be sure that if you commit a fix or suggestion found in the PR database to close it. It is also considered nice if you take time to close any PRs associated with your commits, if appropriate. Committers with non-&os;.org Bugzilla accounts can have the old account merged with the &os;.org account by following these steps: Log in using your old account. Open new bug. Choose Services as the Product, and Bug Tracker as the Component. In bug description list acounts you wish to be merged. Log in using &os;.org account and post comment to newly opened bug to confirm ownership. See for more details on how to generate or set a password for your &os;.org account. If there are more than two accounts to merge, post comments from each of them. You can find out more about Bugzilla at: &os; Problem Report Handling Guidelines https://www.FreeBSD.org/support.html Phabricator The &os; Project utilizes Phabricator for code review requests. See the CodeReview wiki page for details. Committers with non-&os;.org Phabricator accounts can have the old account renamed to the &os;.org account by following these steps: Change your Phabricator account email to your &os;.org email. Open new bug on our bug tracker using your &os;.org account, see for more information. Choose Services as the Product, and Code Review as the Component. In bug description request that your Phabricator account be renamed, and provide a link to your Phabricator user. For example, https://reviews.freebsd.org/p/bob_example.com/ Phabricator accounts cannot be merged, please do not open a new account. Who's Who Besides the repository meisters, there are other &os; project members and teams whom you will probably get to know in your role as a committer. Briefly, and by no means all-inclusively, these are: &a.doceng; doceng is the group responsible for the documentation build infrastructure, approving new documentation committers, and ensuring that the &os; website and documentation on the FTP site is up to date with respect to the subversion tree. It is not a conflict resolution body. The vast majority of documentation related discussion takes place on the &a.doc;. More details regarding the doceng team can be found in its charter. Committers interested in contributing to the documentation should familiarize themselves with the Documentation Project Primer. &a.bde.email; Bruce is the Style Police-Meister. When you do a commit that could have been done better, Bruce will be there to tell you. Be thankful that someone is. Bruce is also very knowledgeable on the various standards applicable to &os;. &a.re.members.email; These are the members of the &a.re;. This team is responsible for setting release deadlines and controlling the release process. During code freezes, the release engineers have final authority on all changes to the system for whichever branch is pending release status. If there is something you want merged from &os.current; to &os.stable; (whatever values those may have at any given time), these are the people to talk to about it. &a.so.email; &a.so; is the &os; Security Officer and oversees the &a.security-officer;. &a.wollman.email; If you need advice on obscure network internals or are not sure of some potential change to the networking subsystem you have in mind, Garrett is someone to talk to. Garrett is also very knowledgeable on the various standards applicable to &os;. &a.committers; &a.svn-src-all.name;, &a.svn-ports-all.name; and &a.svn-doc-all.name; are the mailing lists that the version control system uses to send commit messages to. Never send email directly to these lists. Only send replies to this list when they are short and are directly related to a commit. &a.developers; All committers are subscribed to -developers. This list was created to be a forum for the committers community issues. Examples are Core voting, announcements, etc. The &a.developers; is for the exclusive use of &os; committers. To develop &os;, committers must have the ability to openly discuss matters that will be resolved before they are publicly announced. Frank discussions of work in progress are not suitable for open publication and may harm &os;. All &os; committers are expected not to not publish or forward messages from the &a.developers; outside the list membership without permission of all of the authors. Violators will be removed from the &a.developers;, resulting in a suspension of commit privileges. Repeated or flagrant violations may result in permanent revocation of commit privileges. This list is not intended as a place for code reviews or for any technical discussion. In fact using it as such hurts the &os; Project as it gives a sense of a closed list where general decisions affecting all of the &os; using community are made without being open. Last, but not least never, never ever, email the &a.developers; and CC:/BCC: another &os; list. Never, ever email another &os; email list and CC:/BCC: the &a.developers;. Doing so can greatly diminish the benefits of this list. SSH Quick-Start Guide If you do not wish to type your password in every time you use &man.ssh.1;, and you use keys to authenticate, &man.ssh-agent.1; is there for your convenience. If you want to use &man.ssh-agent.1;, make sure that you run it before running other applications. X users, for example, usually do this from their .xsession or .xinitrc. See &man.ssh-agent.1; for details. Generate a key pair using &man.ssh-keygen.1;. The key pair will wind up in your $HOME/.ssh/ directory. Only ECDSA, Ed25519 or RSA keys are supported. Send your public key ($HOME/.ssh/id_ecdsa.pub, $HOME/.ssh/id_ed25519.pub, or $HOME/.ssh/id_rsa.pub) to the person setting you up as a committer so it can be put into yourlogin in /etc/ssh-keys/ on freefall. Now &man.ssh-add.1; can be used for authentication once per session. It prompts for the private key's pass phrase, and then stores it in the authentication agent (&man.ssh-agent.1;). Use ssh-add -d to remove keys stored in the agent. Test with a simple remote command: ssh freefall.FreeBSD.org ls /usr. For more information, see security/openssh, &man.ssh.1;, &man.ssh-add.1;, &man.ssh-agent.1;, &man.ssh-keygen.1;, and &man.scp.1;. For information on adding, changing, or removing &man.ssh.1; keys, see this article. &coverity; Availability for &os; Committers All &os; developers can obtain access to Coverity analysis results of all &os; Project software. All who are interested in obtaining access to the analysis results of the automated Coverity runs, can sign up at Coverity Scan. The &os; wiki includes a mini-guide for developers who are interested in working with the &coverity; analysis reports: https://wiki.freebsd.org/CoverityPrevent. Please note that this mini-guide is only readable by &os; developers, so if you cannot access this page, you will have to ask someone to add you to the appropriate Wiki access list. Finally, all &os; developers who are going to use &coverity; are always encouraged to ask for more details and usage information, by posting any questions to the mailing list of the &os; developers. The &os; Committers' Big List of Rules Everyone involved with the &os; project is expected to abide by the Code of Conduct available from https://www.FreeBSD.org/internal/code-of-conduct.html. As committers, you form the public face of the project, and how you behave has a vital impact on the public perception of it. This guide expands on the parts of the Code of Conduct specific to committers. Respect other committers. Respect other contributors. Discuss any significant change before committing. Respect existing maintainers (if listed in the MAINTAINER field in Makefile or in MAINTAINER in the top-level directory). Any disputed change must be backed out pending resolution of the dispute if requested by a maintainer. Security related changes may override a maintainer's wishes at the Security Officer's discretion. Changes go to &os.current; before &os.stable; unless specifically permitted by the release engineer or unless they are not applicable to &os.current;. Any non-trivial or non-urgent change which is applicable should also be allowed to sit in &os.current; for at least 3 days before merging so that it can be given sufficient testing. The release engineer has the same authority over the &os.stable; branch as outlined for the maintainer in rule #5. Do not fight in public with other committers; it looks bad. Respect all code freezes and read the committers and developers mailing lists in a timely manner so you know when a code freeze is in effect. When in doubt on any procedure, ask first! Test your changes before committing them. Do not commit to contributed software without explicit approval from the respective maintainers. As noted, breaking some of these rules can be grounds for suspension or, upon repeated offense, permanent removal of commit privileges. Individual members of core have the power to temporarily suspend commit privileges until core as a whole has the chance to review the issue. In case of an emergency (a committer doing damage to the repository), a temporary suspension may also be done by the repository meisters. Only a 2/3 majority of core has the authority to suspend commit privileges for longer than a week or to remove them permanently. This rule does not exist to set core up as a bunch of cruel dictators who can dispose of committers as casually as empty soda cans, but to give the project a kind of safety fuse. If someone is out of control, it is important to be able to deal with this immediately rather than be paralyzed by debate. In all cases, a committer whose privileges are suspended or revoked is entitled to a hearing by core, the total duration of the suspension being determined at that time. A committer whose privileges are suspended may also request a review of the decision after 30 days and every 30 days thereafter (unless the total suspension period is less than 30 days). A committer whose privileges have been revoked entirely may request a review after a period of 6 months has elapsed. This review policy is strictly informal and, in all cases, core reserves the right to either act on or disregard requests for review if they feel their original decision to be the right one. In all other aspects of project operation, core is a subset of committers and is bound by the same rules. Just because someone is in core this does not mean that they have special dispensation to step outside any of the lines painted here; core's special powers only kick in when it acts as a group, not on an individual basis. As individuals, the core team members are all committers first and core second. Details Respect other committers. This means that you need to treat other committers as the peer-group developers that they are. Despite our occasional attempts to prove the contrary, one does not get to be a committer by being stupid and nothing rankles more than being treated that way by one of your peers. Whether we always feel respect for one another or not (and everyone has off days), we still have to treat other committers with respect at all times, on public forums and in private email. Being able to work together long term is this project's greatest asset, one far more important than any set of changes to the code, and turning arguments about code into issues that affect our long-term ability to work harmoniously together is just not worth the trade-off by any conceivable stretch of the imagination. To comply with this rule, do not send email when you are angry or otherwise behave in a manner which is likely to strike others as needlessly confrontational. First calm down, then think about how to communicate in the most effective fashion for convincing the other persons that your side of the argument is correct, do not just blow off some steam so you can feel better in the short term at the cost of a long-term flame war. Not only is this very bad energy economics, but repeated displays of public aggression which impair our ability to work well together will be dealt with severely by the project leadership and may result in suspension or termination of your commit privileges. The project leadership will take into account both public and private communications brought before it. It will not seek the disclosure of private communications, but it will take it into account if it is volunteered by the committers involved in the complaint. All of this is never an option which the project's leadership enjoys in the slightest, but unity comes first. No amount of code or good advice is worth trading that away. Respect other contributors. You were not always a committer. At one time you were a contributor. Remember that at all times. Remember what it was like trying to get help and attention. Do not forget that your work as a contributor was very important to you. Remember what it was like. Do not discourage, belittle, or demean contributors. Treat them with respect. They are our committers in waiting. They are every bit as important to the project as committers. Their contributions are as valid and as important as your own. After all, you made many contributions before you became a committer. Always remember that. Consider the points raised under and apply them also to contributors. Discuss any significant change before committing. The repository is not where changes are initially submitted for correctness or argued over, that happens first in the mailing lists or by use of the Phabricator service. The commit will only happen once something resembling consensus has been reached. This does not mean that permission is required before correcting every obvious syntax error or manual page misspelling, just that it is good to develop a feel for when a proposed change is not quite such a no-brainer and requires some feedback first. People really do not mind sweeping changes if the result is something clearly better than what they had before, they just do not like being surprised by those changes. The very best way of making sure that things are on the right track is to have code reviewed by one or more other committers. When in doubt, ask for review! Respect existing maintainers if listed. Many parts of &os; are not owned in the sense that any specific individual will jump up and yell if you commit a change to their area, but it still pays to check first. One convention we use is to put a maintainer line in the Makefile for any package or subtree which is being actively maintained by one or more people; see https://www.FreeBSD.org/doc/en_US.ISO8859-1/books/developers-handbook/policies.html for documentation on this. Where sections of code have several maintainers, commits to affected areas by one maintainer need to be reviewed by at least one other maintainer. In cases where the maintainer-ship of something is not clear, look at the repository logs for the files in question and see if someone has been working recently or predominantly in that area. Any disputed change must be backed out pending resolution of the dispute if requested by a maintainer. Security related changes may override a maintainer's wishes at the Security Officer's discretion. This may be hard to swallow in times of conflict (when each side is convinced that they are in the right, of course) but a version control system makes it unnecessary to have an ongoing dispute raging when it is far easier to simply reverse the disputed change, get everyone calmed down again and then try to figure out what is the best way to proceed. If the change turns out to be the best thing after all, it can be easily brought back. If it turns out not to be, then the users did not have to live with the bogus change in the tree while everyone was busily debating its merits. People very rarely call for back-outs in the repository since discussion generally exposes bad or controversial changes before the commit even happens, but on such rare occasions the back-out should be done without argument so that we can get immediately on to the topic of figuring out whether it was bogus or not. Changes go to &os.current; before &os.stable; unless specifically permitted by the release engineer or unless they are not applicable to &os.current;. Any non-trivial or non-urgent change which is applicable should also be allowed to sit in &os.current; for at least 3 days before merging so that it can be given sufficient testing. The release engineer has the same authority over the &os.stable; branch as outlined in rule #5. This is another do not argue about it issue since it is the release engineer who is ultimately responsible (and gets beaten up) if a change turns out to be bad. Please respect this and give the release engineer your full cooperation when it comes to the &os.stable; branch. The management of &os.stable; may frequently seem to be overly conservative to the casual observer, but also bear in mind the fact that conservatism is supposed to be the hallmark of &os.stable; and different rules apply there than in &os.current;. There is also really no point in having &os.current; be a testing ground if changes are merged over to &os.stable; immediately. Changes need a chance to be tested by the &os.current; developers, so allow some time to elapse before merging unless the &os.stable; fix is critical, time sensitive or so obvious as to make further testing unnecessary (spelling fixes to manual pages, obvious bug/typo fixes, etc.) In other words, apply common sense. Changes to the security branches (for example, releng/9.3) must be approved by a member of the &a.security-officer;, or in some cases, by a member of the &a.re;. Do not fight in public with other committers; it looks bad. This project has a public image to uphold and that image is very important to all of us, especially if we are to continue to attract new members. There will be occasions when, despite everyone's very best attempts at self-control, tempers are lost and angry words are exchanged. The best thing that can be done in such cases is to minimize the effects of this until everyone has cooled back down. Do not air angry words in public and do not forward private correspondence or other private communications to public mailing lists, mail aliases, instant messaging channels or social media sites. What people say one-to-one is often much less sugar-coated than what they would say in public, and such communications therefore have no place there - they only serve to inflame an already bad situation. If the person sending a flame-o-gram at least had the grace to send it privately, then have the grace to keep it private yourself. If you feel you are being unfairly treated by another developer, and it is causing you anguish, bring the matter up with core rather than taking it public. Core will do its best to play peace makers and get things back to sanity. In cases where the dispute involves a change to the codebase and the participants do not appear to be reaching an amicable agreement, core may appoint a mutually-agreeable third party to resolve the dispute. All parties involved must then agree to be bound by the decision reached by this third party. Respect all code freezes and read the committers and developers mailing list on a timely basis so you know when a code freeze is in effect. Committing unapproved changes during a code freeze is a really big mistake and committers are expected to keep up-to-date on what is going on before jumping in after a long absence and committing 10 megabytes worth of accumulated stuff. People who abuse this on a regular basis will have their commit privileges suspended until they get back from the &os; Happy Reeducation Camp we run in Greenland. When in doubt on any procedure, ask first! Many mistakes are made because someone is in a hurry and just assumes they know the right way of doing something. If you have not done it before, chances are good that you do not actually know the way we do things and really need to ask first or you are going to completely embarrass yourself in public. There is no shame in asking how in the heck do I do this? We already know you are an intelligent person; otherwise, you would not be a committer. Test your changes before committing them. This may sound obvious, but if it really were so obvious then we probably would not see so many cases of people clearly not doing this. If your changes are to the kernel, make sure you can still compile both GENERIC and LINT. If your changes are anywhere else, make sure you can still make world. If your changes are to a branch, make sure your testing occurs with a machine which is running that code. If you have a change which also may break another architecture, be sure and test on all supported architectures. Please refer to the &os; Internal Page for a list of available resources. As other architectures are added to the &os; supported platforms list, the appropriate shared testing resources will be made available. Do not commit to contributed software without explicit approval from the respective maintainers. Contributed software is anything under the src/contrib, src/crypto, or src/sys/contrib trees. The trees mentioned above are for contributed software usually imported onto a vendor branch. Committing something there may cause unnecessary headaches when importing newer versions of the software. As a general consider sending patches upstream to the vendor. Patches may be committed to FreeBSD first with permission of the maintainer. Reasons for modifying upstream software range from wanting strict control over a tightly coupled dependency to lack of portability in the canonical repository's distribution of their code. Regardless of the reason, effort to minimize the maintenance burden of fork is helpful to fellow maintainers. Avoid committing trivial or cosmetic changes to files since it makes every merge thereafter more difficult: such patches need to be manually re-verified every import. If a particular piece of software lacks a maintainer, you are encouraged to take up owership. If you are unsure of the current maintainership email &a.arch; and ask. Policy on Multiple Architectures &os; has added several new architecture ports during recent release cycles and is truly no longer an &i386; centric operating system. In an effort to make it easier to keep &os; portable across the platforms we support, core has developed this mandate:
Our 32-bit reference platform is &arch.i386;, and our 64-bit reference platform is &arch.amd64;. Major design work (including major API and ABI changes) must prove itself on at least one 32-bit and at least one 64-bit platform, preferably the primary reference platforms, before it may be committed to the source tree.
The &arch.i386; and &arch.amd64; platforms were chosen due to being more readily available to developers and as representatives of more diverse processor and system designs - big versus little endian, register file versus register stack, different DMA and cache implementations, hardware page tables versus software TLB management etc. We will continue to re-evaluate this policy as cost and availability of the 64-bit platforms change. Developers should also be aware of our Tier Policy for the long term support of hardware architectures. The rules here are intended to provide guidance during the development process, and are distinct from the requirements for features and architectures listed in that section. The Tier rules for feature support on architectures at release-time are more strict than the rules for changes during the development process.
Other Suggestions When committing documentation changes, use a spell checker before committing. For all XML docs, verify that the formatting directives are correct by running make lint and textproc/igor. For manual pages, run sysutils/manck and textproc/igor over the manual page to verify all of the cross references and file references are correct and that the man page has all of the appropriate MLINKs installed. Do not mix style fixes with new functionality. A style fix is any change which does not modify the functionality of the code. Mixing the changes obfuscates the functionality change when asking for differences between revisions, which can hide any new bugs. Do not include whitespace changes with content changes in commits to doc/ . The extra clutter in the diffs makes the translators' job much more difficult. Instead, make any style or whitespace changes in separate commits that are clearly labeled as such in the commit message. Deprecating Features When it is necessary to remove functionality from software in the base system, follow these guidelines whenever possible: Mention is made in the manual page and possibly the release notes that the option, utility, or interface is deprecated. Use of the deprecated feature generates a warning. The option, utility, or interface is preserved until the next major (point zero) release. The option, utility, or interface is removed and no longer documented. It is now obsolete. It is also generally a good idea to note its removal in the release notes. Privacy and Confidentiality Most &os; business is done in public. &os; is an open project. Which means that not only can anyone use the source code, but that most of the development process is open to public scrutiny. Certain sensitive matters must remain private or held under embargo. There unfortunately cannot be complete transparency. As a &os; developer you will have a certain degree of privileged access to information. Consequently you are expected to respect certain requirements for confidentiality. Sometimes the need for confidentiality comes from external collaborators or has a specific time limit. Mostly though, it is a matter of not releasing private communications. The Security Officer has sole control over the release of security advisories. Where there are security problems that affect many different operating systems, &os; frequently depends on early access to be able to prepare advisories for coordinated release. Unless &os; developers can be trusted to maintain security, such early access will not be made available. The Security Officer is responsible for controlling pre-release access to information about vulnerabilities, and for timing the release of all advisories. He may request help under condition of confidentiality from any developer with relevant knowledge to prepare security fixes. Communications with Core are kept confidential for as long as necessary. Communications to core will initially be treated as confidential. Eventually however, most of Core's business will be summarized into the monthly or quarterly core reports. Care will be taken to avoid publicising any sensitive details. Records of some particularly sensitive subjects may not be reported on at all and will be retained only in Core's private archives. Non-disclosure Agreements may be required for access to certain commercially sensitive data. Access to certain commercially sensitive data may only be available under a Non-Disclosure Agreement. The FreeBSD Foundation legal staff must be consulted before any binding agreements are entered into. Private communications must not be made public without permission. Beyond the specific requirements above there is a general expectation not to publish private communications between developers without the consent of all parties involved. Ask permission before forwarding a message onto a public mailing list, or posting it to a forum or website that can be accessed by other than the original correspondents. Communications on project-only or restricted access channels must be kept private. Similarly to personal communications, certain internal communications channels, including &os; Committer only mailing lists and restricted access IRC channels are considered private communications. Permission is required to publish material from these sources. Core may approve publication. Where it is impractical to obtain permission due to the number of correspondents or where permission to publish is unreasonably withheld, Core may approve release of such private matters that merit more general publication.
Support for Multiple Architectures &os; is a highly portable operating system intended to function on many different types of hardware architectures. Maintaining clean separation of Machine Dependent (MD) and Machine Independent (MI) code, as well as minimizing MD code, is an important part of our strategy to remain agile with regards to current hardware trends. Each new hardware architecture supported by &os; adds substantially to the cost of code maintenance, toolchain support, and release engineering. It also dramatically increases the cost of effective testing of kernel changes. As such, there is strong motivation to differentiate between classes of support for various architectures while remaining strong in a few key architectures that are seen as the &os; target audience. Statement of General Intent The &os; Project targets "production quality commercial off-the-shelf (COTS) workstation, server, and high-end embedded systems". By retaining a focus on a narrow set of architectures of interest in these environments, the &os; Project is able to maintain high levels of quality, stability, and performance, as well as minimize the load on various support teams on the project, such as the ports team, documentation team, security officer, and release engineering teams. Diversity in hardware support broadens the options for &os; consumers by offering new features and usage opportunities (such as support for 64-bit CPUs, use in embedded environments, etc.), but these benefits must always be carefully considered in terms of the real-world maintenance cost associated with additional platform support. The &os; Project differentiates platform targets into four tiers. Each tier includes a specification of the requirements for an architecture to be in that tier, as well as specifying the obligations of developers with regards to the platform. In addition, a policy is defined regarding the circumstances required to change the tier of an architecture. Tier 1: Fully Supported Architectures Tier 1 platforms are fully supported by the security officer, release engineering, and toolchain maintenance staff. New features added to the operating system must be fully functional across all Tier 1 architectures for every release (features which are inherently architecture-specific, such as support for hardware device drivers, may be exempt from this requirement). In general, all Tier 1 platforms must have build and test automation support either in the FreeBSD.org cluster, or easily available for all developers. Embedded platforms may substitute an emulator available in the FreeBSD.org cluster for actual hardware. Tier 1 architectures are expected to be Production Quality with respects to all aspects of the &os; operating system, including installation and development environments. Tier 1 architectures are expected to be completely integrated into the source tree and have all features necessary to produce an entire system relevant for that target architecture. Tier 1 architectures generally have at least 6 active developers. Tier 1 architectures are expected to be fully supported by the ports system. All the ports should build on a Tier 1 platform, or have the appropriate filters to prevent the inappropriate ones from building there. The packaging system must support all Tier 1 architectures. To ensure an architecture's Tier 1 status, proponents of that architecture must show that all relevant packages can be built on that platform. Tier 1 embedded architectures must be able to cross-build packages on at least one other Tier 1 architecture. The packages must be the most relevant for the platform, but may be a non-empty subset of those that build natively. Tier 1 architectures must be fully documented. All basic operations need to be covered by the handbook or other documents. All relevant integration documentation must also be integrated into the tree, or readily available. Current Tier 1 platforms are &arch.i386; and &arch.amd64;. Tier 2: Developmental Architectures Tier 2 platforms are not supported by the security officer and release engineering teams. Platform maintainers are responsible for toolchain support in the tree. The toolchain maintainers are expected to work with the platform maintainers to refine these changes. Major new toolchain components are allowed to break support for Tier 2 architectures if the &os;-local changes have not been incorporated upstream. The toolchain maintainers are expected to provide prompt review of any proposed changes and cannot block, through their inaction, changes going into the tree. New features added to &os; should be feasible to implement on these platforms, but an implementation is not required before the feature may be added to the &os; source tree. New features that may be difficult to implement on Tier 2 architectures should provide a means of disabling them on those architectures. The implementation of a Tier 2 architecture may be committed to the main &os; tree as long as it does not interfere with production work on Tier 1 platforms, or substantially with other Tier 2 platforms. Before a Tier 2 platform can be added to the &os; base source tree, the platform must be able to boot multi-user on actual hardware. Generally, there must be at least three active developers working on the platform. Tier 2 architectures are usually systems targeted at Tier 1 support, but that are still under development. Architectures reaching end of life may also be moved from Tier 1 status to Tier 2 status as the availability of resources to continue to maintain the system in a Production Quality state diminishes. Well supported niche architectures may also be Tier 2. Tier 2 architectures have basic support for them integrated into the ports infrastructure. They may have cross compilation support added, at the discretion of portmgr. Some ports must built natively into packages if the package system supports that architecture. If not integrated into the base system, some external patches for the architecture for ports must be available. Tier 2 architectures can be integrated into the &os; handbook. The basics for how to get a system running must be documented, although not necessarily for every single board or system a Tier 2 architecture supports. The supported hardware list must exist and be relatively recent. It should be integrated into the &os; documentation. Current Tier 2 platforms are &arch.arm;, &arch.arm64;, &arch.mips;, &arch.powerpc;, and &arch.sparc64;. Tier 3: Experimental Architectures Tier 3 platforms are not supported by the security officer and release engineering teams. At the discretion of the toolchain maintainers, they may be supported in the toolchain. Tier 3 platforms are architectures in the early stages of development, for non-mainstream hardware platforms, or which are considered legacy systems unlikely to see broad future use. Initial support for Tier 3 platforms is worked on in external SCM repositories. The transition to &os;'s subversion takes place after the platform boots multi-user on hardware; sharing via subversion is needed for wider exposure; and multiple developers are actively working on the platform. Platforms that transition to Tier 3 status may be removed from the tree if they are no longer actively supported by the &os; developer community at the discretion of the release engineer. Tier 3 platforms may have ports support, either integrated or external, but do not require it. Tier 3 platforms must have the basics documented for how to build a kernel and how to boot it on at least one target hardware or emulation environment. This documentation need not be integrated into the &os; tree. Current Tier 3 platforms are &arch.riscv;. Tier 4: Unsupported Architectures Tier 4 systems are not supported in any form by the project. All systems not otherwise classified into a support tier are Tier 4 systems. Policy on Changing the Tier of an Architecture Systems may only be moved from one tier to another by approval of the &os; Core Team, which shall make that decision in collaboration with the Security Officer, Release Engineering, and toolchain maintenance teams. Ports Specific FAQ Adding a New Port How do I add a new port? First, please read the section about repository copies. The easiest way to add a new port is the addport script located in the ports/Tools/scripts directory. It adds a port from the directory specified, determining the category automatically from the port Makefile. It also adds an entry to the port's category Makefile. It was written by &a.mharo.email;, &a.will.email;, and &a.garga.email;. When sending questions about this script to the &a.ports;, please also CC &a.crees.email;, the current maintainer. Any other things I need to know when I add a new port? Check the port, preferably to make sure it compiles and packages correctly. This is the recommended sequence: &prompt.root; make install &prompt.root; make package &prompt.root; make deinstall &prompt.root; pkg add package you built above &prompt.root; make deinstall &prompt.root; make reinstall &prompt.root; make package The Porters Handbook contains more detailed instructions. Use &man.portlint.1; to check the syntax of the port. You do not necessarily have to eliminate all warnings but make sure you have fixed the simple ones. If the port came from a submitter who has not contributed to the Project before, add that person's name to the Additional Contributors section of the &os; Contributors List. Close the PR if the port came in as a PR. To close a PR, change the state to Issue Resolved and the resolution as Fixed. Removing an Existing Port How do I remove an existing port? First, please read the section about repository copies. Before you remove the port, you have to verify there are no other ports depending on it. Make sure there is no dependency on the port in the ports collection: The port's PKGNAME appears in exactly one line in a recent INDEX file. No other ports contains any reference to the port's directory or PKGNAME in their Makefiles When using Git, consider using git grep, it is much faster than grep -r. Then, remove the port: Remove the port's files and directory with svn remove. Remove the SUBDIR listing of the port in the parent directory Makefile. Add an entry to ports/MOVED. Search for entries in ports/security/vuxml/vuln.xml and adjust them accordingly. In particular, check for previous packages with the new name which version could include the new port. Remove the port from ports/LEGAL if it is there. Alternatively, you can use the rmport script, from ports/Tools/scripts. This script was written by &a.vd.email;. When sending questions about this script to the &a.ports;, please also CC &a.crees.email;, the current maintainer. Re-adding a Deleted Port How do I re-add a deleted port? This is essentially the reverse of deleting a port. Do not use svn add to add the port. Follow these steps. If they are unclear, or are not working, ask for help, do not just svn add the port. Figure out when the port was removed. Use this list, or look for the port on freshports, and then copy the last living revision of the port: &prompt.user; cd /usr/ports/category &prompt.user; svn cp 'svn+ssh://repo.freebsd.org/ports/head/category/portname/@XXXXXX' portname Pick the revision that is just before the removal. For example, if the revision where it was removed is 269874, use 269873. It is also possible to specify a date. In that case, pick a date that is before the removal but after the last commit to the port. &prompt.user; cd /usr/ports/category &prompt.user; svn cp 'svn+ssh://repo.freebsd.org/ports/head/category/portname/@{YYYY-MM-DD}' portname Make the changes necessary to get the port working again. If it was deleted because the distfiles are no longer available, either volunteer to host the distfiles, or find someone else to do so. If some files have been added, or were removed during the resurrection process, use svn add or svn remove to make sure all the files in the port will be committed. Restore the SUBDIR listing of the port in the parent directory Makefile, keeping the entries sorted. Delete the port entry from ports/MOVED. If the port had an entry in ports/LEGAL, restore it. svn commit these changes, preferably in one step. The addport script mentioned in now detects when the port to add has previously existed, and attempts to handle all except the ports/LEGAL step automatically. Repository Copies When do we need a repository copy? When you want to add a port that is related to any port that is already in the tree in a separate directory, you have to do a repository copy. Here related means it is a different version or a slightly modified version. Examples are print/ghostscript* (different versions) and x11-wm/windowmaker* (English-only and internationalized version). Another example is when a port is moved from one subdirectory to another, or when the name of a directory must be changed because the authors renamed their software even though it is a descendant of a port already in a tree. What do I need to do? With Subversion, a repo copy can be done by any committer: Doing a repo copy: Verify that the target directory does not exist. Use svn up to make certain the original files, directories, and checkout information is current. Use svn move or svn copy to do the repo copy. Upgrade the copied port to the new version. Remember to add or change the PKGNAMEPREFIX or PKGNAMESUFFIX so there are no duplicate ports with the same name. In some rare cases it may be necessary to change the PORTNAME instead of adding PKGNAMEPREFIX or PKGNAMESUFFIX, but this is only done when it is really needed — for example, using an existing port as the base for a very similar program with a different name, or upgrading a port to a new upstream version which actually changes the distribution name, like the transition from textproc/libxml to textproc/libxml2. In most cases, adding or changing PKGNAMEPREFIX or PKGNAMESUFFIX suffices. Add the new subdirectory to the SUBDIR listing in the parent directory Makefile. You can run make checksubdirs in the parent directory to check this. If the port changed categories, modify the CATEGORIES line of the port's Makefile accordingly Add an entry to ports/MOVED, if you remove the original port. Commit all changes on one commit. When removing a port: Perform a thorough check of the ports collection for any dependencies on the old port location/name, and update them. Running grep on INDEX is not enough because some ports have dependencies enabled by compile-time options. A full grep -r of the ports collection is recommended. Remove the old port and the old SUBDIR entry. Add an entry to ports/MOVED. After repo moves (rename operations where a port is copied and the old location is removed): Follow the same steps that are outlined in the previous two entries, to activate the new location of the port and remove the old one. Ports Freeze What is a ports freeze? A ports freeze was a restricted state the ports tree was put in before a release. It was used to ensure a higher quality for the packages shipped with a release. It usually lasted a couple of weeks. During that time, build problems were fixed, and the release packages were built. This practice is no longer used, as the packages for the releases are built from the current stable, quarterly branch. For more information on how to merge commits to the quarterly branch, see . Quarterly Branches What is the procedure to request authorization for merging a commit to the quarterly branch? When doing the commit, add the branch name to the MFH: line, for example: MFH: 2014Q1 It will automatically notify the &a.ports-secteam; and the &a.portmgr;. They will then decide if the commit can be merged and answer with the procedure. If the commit has already been made, send an email to the &a.ports-secteam; and the &a.portmgr; with the revision number and a small description of why the commit needs to be merged. If the MFH is covered by a blanket approval, please explain why with a couple of words on the MFH line, so that the reviewing team can skip this commit and save time. For example: MFH: 2014Q1 (runtime fix) MFH: 2014Q1 (browser blanket) The list of blanket approvals is available in . Are there any changes that can be merged without asking for approval? The following blanket approvals for merging to the quarterly branches are in effect: This blanket approval also applies to direct commits for ports that have been removed from head. These fixes must be tested on the quarterly branch. Fixes that do not result in a change in contents of the resulting package. For example: pkg-descr: WWW: URL updates (existing 404, moved or incorrect) Build, runtime or packaging fixes, if the quarterly branch version is currently broken. Missing dependencies (detected, linked against but not registered via *_DEPENDS). Fixing shebangs, stripping installed libraries and binaries, and plist fixes. Backport of security and reliability fixes which only result in PORTREVISION bumps and no changes to enabled features. for example, adding a patch fixing a buffer overflow. Minor version changes that do nothing but fix security or crash-related issues. Adding/fixing CONFLICTS. Web Browsers, browser plugins, and their required dependencies. Commits that are not covered by these blanket approvals always require explicit approval of either &a.ports-secteam; or &a.portmgr;. What is the procedure for merging commits to the quarterly branch? A script is provided to automate merging a specific commit: ports/Tools/scripts/mfh. It is used as follows: &prompt.user; /usr/ports/Tools/scripts/mfh 380362 U 2015Q1 Checked out revision 380443. A 2015Q1/security Updating '2015Q1/security/rubygem-sshkit': A 2015Q1/security/rubygem-sshkit A 2015Q1/security/rubygem-sshkit/Makefile A 2015Q1/security/rubygem-sshkit/distinfo A 2015Q1/security/rubygem-sshkit/pkg-descr Updated to revision 380443. --- Merging r380362 into '2015Q1': U 2015Q1/security/rubygem-sshkit/Makefile U 2015Q1/security/rubygem-sshkit/distinfo --- Recording mergeinfo for merge of r380362 into '2015Q1': U 2015Q1 --- Recording mergeinfo for merge of r380362 into '2015Q1/security': G 2015Q1/security --- Eliding mergeinfo from '2015Q1/security': U 2015Q1/security --- Recording mergeinfo for merge of r380362 into '2015Q1/security/rubygem-sshkit': G 2015Q1/security/rubygem-sshkit --- Eliding mergeinfo from '2015Q1/security/rubygem-sshkit': U 2015Q1/security/rubygem-sshkit M 2015Q1 M 2015Q1/security/rubygem-sshkit/Makefile M 2015Q1/security/rubygem-sshkit/distinfo Index: 2015Q1/security/rubygem-sshkit/Makefile =================================================================== --- 2015Q1/security/rubygem-sshkit/Makefile (revision 380443) +++ 2015Q1/security/rubygem-sshkit/Makefile (working copy) @@ -2,7 +2,7 @@ # $FreeBSD$ PORTNAME= sshkit -PORTVERSION= 1.6.1 +PORTVERSION= 1.7.0 CATEGORIES= security rubygems MASTER_SITES= RG Index: 2015Q1/security/rubygem-sshkit/distinfo =================================================================== --- 2015Q1/security/rubygem-sshkit/distinfo (revision 380443) +++ 2015Q1/security/rubygem-sshkit/distinfo (working copy) @@ -1,2 +1,2 @@ -SHA256 (rubygem/sshkit-1.6.1.gem) = 8ca67e46bb4ea50fdb0553cda77552f3e41b17a5aa919877d93875dfa22c03a7 -SIZE (rubygem/sshkit-1.6.1.gem) = 135680 +SHA256 (rubygem/sshkit-1.7.0.gem) = 90effd1813363bae7355f4a45ebc8335a8ca74acc8d0933ba6ee6d40f281a2cf +SIZE (rubygem/sshkit-1.7.0.gem) = 136192 Index: 2015Q1 =================================================================== --- 2015Q1 (revision 380443) +++ 2015Q1 (working copy) Property changes on: 2015Q1 ___________________________________________________________________ Modified: svn:mergeinfo Merged /head:r380362 Do you want to commit? (no = start a shell) [y/n] At that point, the script will either open a shell for you to fix things, or open your text editor with the commit message all prepared and then commit the merge. The script assumes that you can connect to repo.FreeBSD.org with SSH directly, so if your local login name is different than your &os; cluster account, you need a few lines in your ~/.ssh/config: Host *.freebsd.org User freebsd-login The script is also able to merge more than one revision at a time. If there have been other updates to the port since the branch was created that have not been merged because they were not security related. Add the different revisions in the order they were committed on the mfh line. The new commit log message will contain the combined log messages from all the original commits. These messages must be edited to show what is actually being done with the new commit. &prompt.user; /usr/ports/Tools/scripts/mfh r407208 r407713 r407722 r408567 r408943 r410728 The mfh script can also take an optional first argument, the branch where the merge is being done. Only the latest quarterly branch is supported, so specifying the branch is discouraged. To be safe, the script will give a warning if the quarterly branch is not the latest: &prompt.user; /usr/ports/Tools/scripts/mfh 2016Q1 r407208 r407713 /!\ The latest branch is 2016Q2, do you really want to commit to 2016Q1? [y/n] Creating a New Category What is the procedure for creating a new category? Please see Proposing a New Category in the Porter's Handbook. Once that procedure has been followed and the PR has been assigned to the &a.portmgr;, it is their decision whether or not to approve it. If they do, it is their responsibility to: Perform any needed moves. (This only applies to physical categories.) Update the VALID_CATEGORIES definition in ports/Mk/bsd.port.mk. Assign the PR back to you. What do I need to do to implement a new physical category? Upgrade each moved port's Makefile. Do not connect the new category to the build yet. To do this, you will need to: Change the port's CATEGORIES (this was the point of the exercise, remember?) The new category is listed first. This will help to ensure that the PKGORIGIN is correct. Run a make describe. Since the top-level make index that you will be running in a few steps is an iteration of make describe over the entire ports hierarchy, catching any errors here will save you having to re-run that step later on. If you want to be really thorough, now might be a good time to run &man.portlint.1;. Check that the PKGORIGINs are correct. The ports system uses each port's CATEGORIES entry to create its PKGORIGIN, which is used to connect installed packages to the port directory they were built from. If this entry is wrong, common port tools like &man.pkg.version.1; and &man.portupgrade.1; fail. To do this, use the chkorigin.sh tool: env PORTSDIR=/path/to/ports sh -e /path/to/ports/Tools/scripts/chkorigin.sh. This will check every port in the ports tree, even those not connected to the build, so you can run it directly after the move operation. Hint: do not forget to look at the PKGORIGINs of any slave ports of the ports you just moved! On your own local system, test the proposed changes: first, comment out the SUBDIR entries in the old ports' categories' Makefiles; then enable building the new category in ports/Makefile. Run make checksubdirs in the affected category directories to check the SUBDIR entries. Next, in the ports/ directory, run make index. This can take over 40 minutes on even modern systems; however, it is a necessary step to prevent problems for other people. Once this is done, you can commit the updated ports/Makefile to connect the new category to the build and also commit the Makefile changes for the old category or categories. Add appropriate entries to ports/MOVED. Update the documentation by modifying: the list of categories in the Porter's Handbook doc/en_US.ISO8859-1/htdocs/ports. Note that these are now displayed by sub-groups, as specified in doc/en_US.ISO8859-1/htdocs/ports/categories.descriptions. (Note: these are in the docs, not the ports, repository). If you are not a docs committer, you will need to submit a PR for this. Only once all the above have been done, and no one is any longer reporting problems with the new ports, should the old ports be deleted from their previous locations in the repository. It is not necessary to manually update the ports web pages to reflect the new category. This is done automatically via the change to en_US.ISO8859-1/htdocs/ports/categories and the automated rebuild of INDEX. What do I need to do to implement a new virtual category? This is much simpler than a physical category. Only a few modifications are needed: the list of categories in the Porter's Handbook en_US.ISO8859-1/htdocs/ports/categories Miscellaneous Questions Are there changes that can be committed without asking the maintainer for approval? Blanket approval for most ports applies to these types of fixes: Most infrastructure changes to a port (that is, modernizing, but not changing the functionality). For example, the blanket covers converting to new USES macros, enabling verbose builds, and switching to new ports system syntaxes. Trivial and tested build and runtime fixes. Exceptions to this are anything maintained by the &a.portmgr;, or the &a.security-officer;. No unauthorized commits may ever be made to ports maintained by those groups. - - Blanket approval does not apply to ports that are - maintained by teams like autotools@FreeBSD.org, x11@FreeBSD.org, gnome@FreeBSD.org, or kde@FreeBSD.org. These teams - use external repositories and can have work that would - conflict with changes that would normally fall under - blanket approval. - How do I know if my port is building correctly or not? The packages are built multiple times each week. If a port fails, the maintainer will receive an email from pkg-fallout@FreeBSD.org. Reports for all the package builds (official, experimental, and non-regression) are aggregated at pkg-status.FreeBSD.org. I added a new port. Do I need to add it to the INDEX? No. The file can either be generated by running make index, or a pre-generated version can be downloaded with make fetchindex. Are there any other files I am not allowed to touch? Any file directly under ports/, or any file under a subdirectory that starts with an uppercase letter (Mk/, Tools/, etc.). In particular, the &a.portmgr; is very protective of ports/Mk/bsd.port*.mk so do not commit changes to those files unless you want to face their wrath. What is the proper procedure for updating the checksum for a port distfile when the file changes without a version change? When the checksum for a distribution file is updated due to the author updating the file without changing the port revision, the commit message includes a summary of the relevant diffs between the original and new distfile to ensure that the distfile has not been corrupted or maliciously altered. If the current version of the port has been in the ports tree for a while, a copy of the old distfile will usually be available on the ftp servers; otherwise the author or maintainer should be contacted to find out why the distfile has changed. How can an experimental test build of the ports tree (exp-run) be requested? An exp-run must be completed before patches with a significant ports impact are committed. The patch can be against the ports tree or the base system. Full package builds will be done with the patches provided by the submitter, and the submitter is required to fix detected problems (fallout) before commit. Go to the Bugzilla new PR page. Select the product your patch is about. Fill in the bug report as normal. Remember to attach the patch. If at the top it says Show Advanced Fields click on it. It will now say Hide Advanced Fields. Many new fields will be available. If it already says Hide Advanced Fields, no need to do anything. In the Flags section, set the exp-run one to ?. As for all other fields, hovering the mouse over any field shows more details. Submit. Wait for the build to run. &a.portmgr; will replies with a possible fallout. Depending on the fallout: If there is no fallout, the procedure stops here, and the change can be committed, pending any other approval required. If there is fallout, it must be fixed, either by fixing the ports directly in the ports tree, or adding to the submitted patch. When this is done, go back to step 6 saying the fallout was fixed and wait for the exp-run to be run again. Repeat as long as there are broken ports. Issues Specific to Developers Who Are Not Committers A few people who have access to the &os; machines do not have commit bits. Almost all of this document will apply to these developers as well (except things specific to commits and the mailing list memberships that go with them). In particular, we recommend that you read: Administrative Details Conventions Get your mentor to add you to the Additional Contributors (doc/en_US.ISO8859-1/articles/contributors/contrib.additional.xml), if you are not already listed there. Developer Relations SSH Quick-Start Guide The &os; Committers' Big List of Rules Information About &ga; As of December 12, 2012, &ga; was enabled on the &os; Project website to collect anonymized usage statistics regarding usage of the site. The information collected is valuable to the &os; Documentation Project, to identify various problems on the &os; website. &ga; General Policy The &os; Project takes visitor privacy very seriously. As such, the &os; Project website honors the Do Not Track header before fetching the tracking code from Google. For more information, please see the &os; Privacy Policy. &ga; access is not arbitrarily allowed — access must be requested, voted on by the &a.doceng;, and explicitly granted. Requests for &ga; data must include a specific purpose. For example, a valid reason for requesting access would be to see the most frequently used web browsers when viewing &os; web pages to ensure page rendering speeds are acceptable. Conversely, to see what web browsers are most frequently used (without stating why) would be rejected. All requests must include the timeframe for which the data would be required. For example, it must be explicitly stated if the requested data would be needed for a timeframe covering a span of 3 weeks, or if the request would be one-time only. Any request for &ga; data without a clear, reasonable reason beneficial to the &os; Project will be rejected. Data Available Through &ga; A few examples of the types of &ga; data available include: Commonly used web browsers Page load times Site access by language Miscellaneous Questions How do I add a new file to a branch? To add a file onto a branch, simply checkout or update to the branch you want to add to and then add the file using the add operation as you normally would. This works fine for the doc and ports trees. The src tree uses SVN and requires more care because of the mergeinfo properties. See the Subversion Primer for details on how to perform an MFC. How do I access people.FreeBSD.org to put up personal or project information? people.FreeBSD.org is the same as freefall.FreeBSD.org. Just create a public_html directory. Anything you place in that directory will automatically be visible under https://people.FreeBSD.org/. Where are the mailing list archives stored? The mailing lists are archived under /local/mail on freefall.FreeBSD.org. I would like to mentor a new committer. What process do I need to follow? See the New Account Creation Procedure document on the internal pages. Benefits and Perks for &os; Committers Recognition Recognition as a competent software engineer is the longest lasting value. In addition, getting a chance to work with some of the best people that every engineer would dream of meeting is a great perk! FreeBSD Mall &os; committers can get a free 4-CD or DVD set at conferences from &os; Mall, Inc.. <acronym>IRC</acronym> In addition, developers may request a cloaked hostmask for their account on the Freenode IRC network in the form of freebsd/developer/freefall name or freebsd/developer/NickServ name. To request a cloak, send an email to &a.irc.email; with your requested hostmask and NickServ account name. <systemitem class="domainname">Gandi.net</systemitem> Gandi provides website hosting, cloud computing, domain registration, and X.509 certificate services. Gandi offers an E-rate discount to all &os; developers. Send mail to non-profit@gandi.net using your @freebsd.org mail address, and indicate your Gandi handle.
Index: head/en_US.ISO8859-1/books/porters-handbook/makefiles/chapter.xml =================================================================== --- head/en_US.ISO8859-1/books/porters-handbook/makefiles/chapter.xml (revision 53416) +++ head/en_US.ISO8859-1/books/porters-handbook/makefiles/chapter.xml (revision 53417) @@ -1,8192 +1,8184 @@ Configuring the Makefile Configuring the Makefile is pretty simple, and again we suggest looking at existing examples before starting. Also, there is a sample Makefile in this handbook, so take a look and please follow the ordering of variables and sections in that template to make the port easier for others to read. Consider these problems in sequence during the design of the new Makefile: The Original Source Does it live in DISTDIR as a standard gzipped tarball named something like foozolix-1.2.tar.gz? If so, go on to the next step. If not, the distribution file format might require overriding one or more of DISTVERSION, DISTNAME, EXTRACT_CMD, EXTRACT_BEFORE_ARGS, EXTRACT_AFTER_ARGS, EXTRACT_SUFX, or DISTFILES. In the worst case, create a custom do-extract target to override the default. This is rarely, if ever, necessary. Naming The first part of the port's Makefile names the port, describes its version number, and lists it in the correct category. <varname>PORTNAME</varname> Set PORTNAME to the base name of the software. It is used as the base for the &os; package, and for DISTNAME. The package name must be unique across the entire ports tree. Make sure that the PORTNAME is not already in use by an existing port, and that no other port already has the same PKGBASE. If the name has already been used, add either PKGNAMEPREFIX or PKGNAMESUFFIX. Versions, <varname>DISTVERSION</varname> <emphasis>or</emphasis> <varname>PORTVERSION</varname> Set DISTVERSION to the version number of the software. PORTVERSION is the version used for the &os; package. It will be automatically derived from DISTVERSION to be compatible with &os;'s package versioning scheme. If the version contains letters, it might be needed to set PORTVERSION and not DISTVERSION. Only one of PORTVERSION and DISTVERSION can be set at a time. From time to time, some software will use a version scheme that is not compatible with how DISTVERSION translates in PORTVERSION. When updating a port, it is possible to use &man.pkg-version.8;'s argument to check if the new version is greater or lesser than before. See . Using &man.pkg-version.8; to Compare Versions. pkg version -t takes two versions as arguments, it will respond with <, = or > if the first version is less, equal, or more than the second version, respectively. &prompt.user; pkg version -t 1.2 1.3 < &prompt.user; pkg version -t 1.2 1.2 = &prompt.user; pkg version -t 1.2 1.2.0 = &prompt.user; pkg version -t 1.2 1.2.p1 > &prompt.user; pkg version -t 1.2.a1 1.2.b1 < &prompt.user; pkg version -t 1.2 1.2p1 < 1.2 is before 1.3. 1.2 and 1.2 are equal as they have the same version. 1.2 and 1.2.0 are equal as nothing equals zero. 1.2 is after 1.2.p1 as .p1, think pre-release 1. 1.2.a1 is before 1.2.b1, think alpha and beta, and a is before b. 1.2 is before 1.2p1 as 2p1, think 2, patch level 1 which is a version after any 2.X but before 3. In here, the a, b, and p are used as if meaning alpha, beta or pre-release and patch level, but they are only letters and are sorted alphabetically, so any letter can be used, and they will be sorted appropriately. Examples of <varname>DISTVERSION</varname> and the Derived <varname>PORTVERSION</varname> DISTVERSION PORTVERSION 0.7.1d 0.7.1.d 10Alpha3 10.a3 3Beta7-pre2 3.b7.p2 8:f_17 8f.17
Using <varname>DISTVERSION</varname> When the version only contains numbers separated by dots, dashes or underscores, use DISTVERSION. PORTNAME= nekoto DISTVERSION= 1.2-4 It will generate a PORTVERSION of 1.2.4. Using <varname>DISTVERSION</varname> When the Version Starts with a Letter or a Prefix When the version starts or ends with a letter, or a prefix or a suffix that is not part of the version, use DISTVERSIONPREFIX, DISTVERSION, and DISTVERSIONSUFFIX. If the version is v1.2-4: PORTNAME= nekoto DISTVERSIONPREFIX= v DISTVERSION= 1_2_4 Some of the time, projects using GitHub will use their name in their versions. For example, the version could be nekoto-1.2-4: PORTNAME= nekoto DISTVERSIONPREFIX= nekoto- DISTVERSION= 1.2_4 Those projects also sometimes use some string at the end of the version, for example, 1.2-4_RELEASE: PORTNAME= nekoto DISTVERSION= 1.2-4 DISTVERSIONSUFFIX= _RELEASE Or they do both, for example, nekoto-1.2-4_RELEASE: PORTNAME= nekoto DISTVERSIONPREFIX= nekoto- DISTVERSION= 1.2-4 DISTVERSIONSUFFIX= _RELEASE DISTVERSIONPREFIX and DISTVERSIONSUFFIX will not be used while constructing PORTVERSION, but only used in DISTNAME. All will generate a PORTVERSION of 1.2.4. Using <varname>DISTVERSION</varname> When the Version Contains Letters Meaning <quote>alpha</quote>, <quote>beta</quote>, or <quote>pre-release</quote> When the version contains numbers separated by dots, dashes or underscores, and letters are used to mean alpha, beta or pre-release, which is, before the version without the letters, use DISTVERSION. PORTNAME= nekoto DISTVERSION= 1.2-pre4 PORTNAME= nekoto DISTVERSION= 1.2p4 Both will generate a PORTVERSION of 1.2.p4 which is before than 1.2. &man.pkg-version.8; can be used to check that fact: &prompt.user; pkg version -t 1.2.p4 1.2 < Not Using <varname>DISTVERSION</varname> When the Version Contains Letters Meaning "Patch Level" When the version contains letters that are not meant as alpha, beta, or pre, but more in a patch level, and meaning after the version without the letters, use PORTVERSION. PORTNAME= nekoto PORTVERSION= 1.2p4 In this case, using DISTVERSION is not possible because it would generate a version of 1.2.p4 which would be before 1.2 and not after. &man.pkg-version.8; will verify this: &prompt.user; pkg version -t 1.2 1.2.p4 > &prompt.user; pkg version -t 1.2 1.2p4 < 1.2 is after 1.2.p4, which is wrong in this case. 1.2 is before 1.2p4, which is what was needed. For some more advanced examples of setting PORTVERSION, when the software's versioning is really not compatible with &os;'s, or DISTNAME when the distribution file does not contain the version itself, see .
<varname>PORTREVISION</varname> and <varname>PORTEPOCH</varname> <varname>PORTREVISION</varname> PORTREVISION is a monotonically increasing value which is reset to 0 with every increase of DISTVERSION, typically every time there is a new official vendor release. If PORTREVISION is non-zero, the value is appended to the package name. Changes to PORTREVISION are used by automated tools like &man.pkg-version.8; to determine that a new package is available. PORTREVISION must be increased each time a change is made to the port that changes the generated package in any way. That includes changes that only affect a package built with non-default options. Examples of when PORTREVISION must be bumped: Addition of patches to correct security vulnerabilities, bugs, or to add new functionality to the port. Changes to the port Makefile to enable or disable compile-time options in the package. Changes in the packing list or the install-time behavior of the package. For example, a change to a script which generates initial data for the package, like &man.ssh.1; host keys. Version bump of a port's shared library dependency (in this case, someone trying to install the old package after installing a newer version of the dependency will fail since it will look for the old libfoo.x instead of libfoo.(x+1)). Silent changes to the port distfile which have significant functional differences. For example, changes to the distfile requiring a correction to distinfo with no corresponding change to DISTVERSION, where a diff -ru of the old and new versions shows non-trivial changes to the code. Examples of changes which do not require a PORTREVISION bump: Style changes to the port skeleton with no functional change to what appears in the resulting package. Changes to MASTER_SITES or other functional changes to the port which do not affect the resulting package. Trivial patches to the distfile such as correction of typos, which are not important enough that users of the package have to go to the trouble of upgrading. Build fixes which cause a package to become compilable where it was previously failing. As long as the changes do not introduce any functional change on any other platforms on which the port did previously build. Since PORTREVISION reflects the content of the package, if the package was not previously buildable then there is no need to increase PORTREVISION to mark a change. A rule of thumb is to decide whether a change committed to a port is something which some people would benefit from having. Either because of an enhancement, fix, or by virtue that the new package will actually work at all. Then weigh that against that fact that it will cause everyone who regularly updates their ports tree to be compelled to update. If yes, PORTREVISION must be bumped. People using binary packages will never see the update if PORTREVISION is not bumped. Without increasing PORTREVISION, the package builders have no way to detect the change and thus, will not rebuild the package. <varname>PORTEPOCH</varname> From time to time a software vendor or &os; porter will do something silly and release a version of their software which is actually numerically less than the previous version. An example of this is a port which goes from foo-20000801 to foo-1.0 (the former will be incorrectly treated as a newer version since 20000801 is a numerically greater value than 1). The results of version number comparisons are not always obvious. pkg version (see &man.pkg-version.8;) can be used to test the comparison of two version number strings. For example: &prompt.user; pkg version -t 0.031 0.29 > The > output indicates that version 0.031 is considered greater than version 0.29, which may not have been obvious to the porter. In situations such as this, PORTEPOCH must be increased. If PORTEPOCH is nonzero it is appended to the package name as described in section 0 above. PORTEPOCH must never be decreased or reset to zero, because that would cause comparison to a package from an earlier epoch to fail. For example, the package would not be detected as out of date. The new version number, 1.0,1 in the above example, is still numerically less than the previous version, 20000801, but the ,1 suffix is treated specially by automated tools and found to be greater than the implied suffix ,0 on the earlier package. Dropping or resetting PORTEPOCH incorrectly leads to no end of grief. If the discussion above was not clear enough, please consult the &a.ports;. It is expected that PORTEPOCH will not be used for the majority of ports, and that sensible use of DISTVERSION, or that use PORTVERSION carefully, can often preempt it becoming necessary if a future release of the software changes the version structure. However, care is needed by &os; porters when a vendor release is made without an official version number — such as a code snapshot release. The temptation is to label the release with the release date, which will cause problems as in the example above when a new official release is made. For example, if a snapshot release is made on the date 20000917, and the previous version of the software was version 1.2, do not use 20000917 for DISTVERSION. The correct way is a DISTVERSION of 1.2.20000917, or similar, so that the succeeding release, say 1.3, is still a numerically greater value. Example of <varname>PORTREVISION</varname> and <varname>PORTEPOCH</varname> Usage The gtkmumble port, version 0.10, is committed to the ports collection: PORTNAME= gtkmumble DISTVERSION= 0.10 PKGNAME becomes gtkmumble-0.10. A security hole is discovered which requires a local &os; patch. PORTREVISION is bumped accordingly. PORTNAME= gtkmumble DISTVERSION= 0.10 PORTREVISION= 1 PKGNAME becomes gtkmumble-0.10_1 A new version is released by the vendor, numbered 0.2 (it turns out the author actually intended 0.10 to actually mean 0.1.0, not what comes after 0.9 - oops, too late now). Since the new minor version 2 is numerically less than the previous version 10, PORTEPOCH must be bumped to manually force the new package to be detected as newer. Since it is a new vendor release of the code, PORTREVISION is reset to 0 (or removed from the Makefile). PORTNAME= gtkmumble DISTVERSION= 0.2 PORTEPOCH= 1 PKGNAME becomes gtkmumble-0.2,1 The next release is 0.3. Since PORTEPOCH never decreases, the version variables are now: PORTNAME= gtkmumble DISTVERSION= 0.3 PORTEPOCH= 1 PKGNAME becomes gtkmumble-0.3,1 If PORTEPOCH were reset to 0 with this upgrade, someone who had installed the gtkmumble-0.10_1 package would not detect the gtkmumble-0.3 package as newer, since 3 is still numerically less than 10. Remember, this is the whole point of PORTEPOCH in the first place. <varname>PKGNAMEPREFIX</varname> and <varname>PKGNAMESUFFIX</varname> Two optional variables, PKGNAMEPREFIX and PKGNAMESUFFIX, are combined with PORTNAME and PORTVERSION to form PKGNAME as ${PKGNAMEPREFIX}${PORTNAME}${PKGNAMESUFFIX}-${PORTVERSION}. Make sure this conforms to our guidelines for a good package name. In particular, the use of a hyphen (-) in PORTVERSION is not allowed. Also, if the package name has the language- or the -compiled.specifics part (see below), use PKGNAMEPREFIX and PKGNAMESUFFIX, respectively. Do not make them part of PORTNAME. Package Naming Conventions These are the conventions to follow when naming packages. This is to make the package directory easy to scan, as there are already thousands of packages and users are going to turn away if they hurt their eyes! Package names take the form of language_region-name-compiled.specifics-version.numbers. The package name is defined as ${PKGNAMEPREFIX}${PORTNAME}${PKGNAMESUFFIX}-${PORTVERSION}. Make sure to set the variables to conform to that format. language_region- &os; strives to support the native language of its users. The language- part is a two letter abbreviation of the natural language defined by ISO-639 when the port is specific to a certain language. Examples are ja for Japanese, ru for Russian, vi for Vietnamese, zh for Chinese, ko for Korean and de for German. If the port is specific to a certain region within the language area, add the two letter country code as well. Examples are en_US for US English and fr_CH for Swiss French. The language- part is set in PKGNAMEPREFIX. name Make sure that the port's name and version are clearly separated and placed into PORTNAME and DISTVERSION. The only reason for PORTNAME to contain a version part is if the upstream distribution is really named that way, as in the textproc/libxml2 or japanese/kinput2-freewnn ports. Otherwise, PORTNAME cannot contain any version-specific information. It is quite normal for several ports to have the same PORTNAME, as the www/apache* ports do; in that case, different versions (and different index entries) are distinguished by PKGNAMEPREFIX and PKGNAMESUFFIX values. There is a tradition of naming Perl 5 modules by prepending p5- and converting the double-colon separator to a hyphen. For example, the Data::Dumper module becomes p5-Data-Dumper. -compiled.specifics If the port can be built with different hardcoded defaults (usually part of the directory name in a family of ports), the -compiled.specifics part states the compiled-in defaults. The hyphen is optional. Examples are paper size and font units. The -compiled.specifics part is set in PKGNAMESUFFIX. -version.numbers The version string follows a dash (-) and is a period-separated list of integers and single lowercase alphabetics. In particular, it is not permissible to have another dash inside the version string. The only exception is the string pl (meaning patchlevel), which can be used only when there are no major and minor version numbers in the software. If the software version has strings like alpha, beta, rc, or pre, take the first letter and put it immediately after a period. If the version string continues after those names, the numbers follow the single alphabet without an extra period between them (for example, 1.0b2). The idea is to make it easier to sort ports by looking at the version string. In particular, make sure version number components are always delimited by a period, and if the date is part of the string, use the dyyyy.mm.dd format, not dd.mm.yyyy or the non-Y2K compliant yy.mm.dd format. It is important to prefix the version with a letter, here d (for date), in case a release with an actual version number is made, which would be numerically less than yyyy. Package name must be unique among all of the ports tree, check that there is not already a port with the same PORTNAME and if there is add one of PKGNAMEPREFIX or PKGNAMESUFFIX. Here are some (real) examples on how to convert the name as called by the software authors to a suitable package name, for each line, only one of DISTVERSION or PORTVERSION is set in, depending on which would be used in the port's Makefile: Package Naming Examples Distribution Name PKGNAMEPREFIX PORTNAME PKGNAMESUFFIX DISTVERSION PORTVERSION Reason or comment mule-2.2.2 (empty) mule (empty) 2.2.2 No changes required mule-1.0.1 (empty) mule 1 1.0.1 This is version 1 of mule, and version 2 already exists EmiClock-1.0.2 (empty) emiclock (empty) 1.0.2 No uppercase names for single programs rdist-1.3alpha (empty) rdist (empty) 1.3alpha Version will be 1.3.a es-0.9-beta1 (empty) es (empty) 0.9-beta1 Version will be 0.9.b1 mailman-2.0rc3 (empty) mailman (empty) 2.0rc3 Version will be 2.0.r3 v3.3beta021.src (empty) tiff (empty) 3.3 What the heck was that anyway? tvtwm (empty) tvtwm (empty) p11 No version in the filename, use what upstream says it is piewm (empty) piewm (empty) 1.0 No version in the filename, use what upstream says it is xvgr-2.10pl1 (empty) xvgr (empty) 2.10.pl1 In that case, pl1 means patch level, so using DISTVERSION is not possible. gawk-2.15.6 ja- gawk (empty) 2.15.6 Japanese language version psutils-1.13 (empty) psutils -letter 1.13 Paper size hardcoded at package build time pkfonts (empty) pkfonts 300 1.0 Package for 300dpi fonts
If there is absolutely no trace of version information in the original source and it is unlikely that the original author will ever release another version, just set the version string to 1.0 (like the piewm example above). Otherwise, ask the original author or use the date string the source file was released on (dyyyy.mm.dd, or dyyyymmdd) as the version. Use any letter. Here, d here stands for date, if the source is a Git repository, g followed by the commit date is commonly used, using s for snapshot is also common.
Categorization <varname>CATEGORIES</varname> When a package is created, it is put under /usr/ports/packages/All and links are made from one or more subdirectories of /usr/ports/packages. The names of these subdirectories are specified by the variable CATEGORIES. It is intended to make life easier for the user when he is wading through the pile of packages on the FTP site or the CDROM. Please take a look at the current list of categories and pick the ones that are suitable for the port. This list also determines where in the ports tree the port is imported. If there is more than one category here, the port files must be put in the subdirectory with the name of the first category. See below for more discussion about how to pick the right categories. Current List of Categories Here is the current list of port categories. Those marked with an asterisk (*) are virtual categories—those that do not have a corresponding subdirectory in the ports tree. They are only used as secondary categories, and only for search purposes. For non-virtual categories, there is a one-line description in COMMENT in that subdirectory's Makefile. Category Description Notes accessibility Ports to help disabled users. afterstep * Ports to support the AfterStep window manager. arabic Arabic language support. archivers Archiving tools. astro Astronomical ports. audio Sound support. benchmarks Benchmarking utilities. biology Biology-related software. cad Computer aided design tools. chinese Chinese language support. comms Communication software. Mostly software to talk to the serial port. converters Character code converters. databases Databases. deskutils Things that used to be on the desktop before computers were invented. devel Development utilities. Do not put libraries here just because they are libraries. They should not be in this category unless they truly do not belong anywhere else. dns DNS-related software. docs * Meta-ports for &os; documentation. editors General editors. Specialized editors go in the section for those tools. For example, a mathematical-formula editor will go in math, and have editors as a second category. elisp * Emacs-lisp ports. emulators Emulators for other operating systems. Terminal emulators do not belong here. X-based ones go to x11 and text-based ones to either comms or misc, depending on the exact functionality. finance Monetary, financial and related applications. french French language support. ftp FTP client and server utilities. If the port speaks both FTP and HTTP, put it in ftp with a secondary category of www. games Games. geography * Geography-related software. german German language support. gnome * Ports from the GNOME Project. gnustep * Software related to the GNUstep desktop environment. graphics Graphics utilities. hamradio * Software for amateur radio. haskell * Software related to the Haskell language. hebrew Hebrew language support. hungarian Hungarian language support. ipv6 * IPv6 related software. irc Internet Relay Chat utilities. japanese Japanese language support. java Software related to the Java™ language. The java category must not be the only one for a port. Save for ports directly related to the Java language, porters are also encouraged not to use java as the main category of a port. kde * Ports from the KDE Project. kld * Kernel loadable modules. korean Korean language support. lang Programming languages. linux * Linux applications and support utilities. lisp * Software related to the Lisp language. mail Mail software. math Numerical computation software and other utilities for mathematics. mbone * MBone applications. misc Miscellaneous utilities Things that do not belong anywhere else. If at all possible, try to find a better category for the port than misc, as ports tend to be overlooked in here. multimedia Multimedia software. net Miscellaneous networking software. net-im Instant messaging software. net-mgmt Networking management software. net-p2p Peer to peer network applications. news USENET news software. palm Software support for the Palm™ series. parallel * Applications dealing with parallelism in computing. pear * Ports related to the Pear PHP framework. perl5 * Ports that require Perl version 5 to run. plan9 * Various programs from Plan9. polish Polish language support. ports-mgmt Ports for managing, installing and developing &os; ports and packages. portuguese Portuguese language support. print Printing software. Desktop publishing tools (previewers, etc.) belong here too. python * Software related to the Python language. ruby * Software related to the Ruby language. rubygems * Ports of RubyGems packages. russian Russian language support. scheme * Software related to the Scheme language. science Scientific ports that do not fit into other categories such as astro, biology and math. security Security utilities. shells Command line shells. spanish * Spanish language support. sysutils System utilities. tcl * Ports that use Tcl to run. textproc Text processing utilities. It does not include desktop publishing tools, which go to print. tk * Ports that use Tk to run. ukrainian Ukrainian language support. vietnamese Vietnamese language support. windowmaker * Ports to support the WindowMaker window manager. www Software related to the World Wide Web. HTML language support belongs here too. x11 The X Window System and friends. This category is only for software that directly supports the window system. Do not put regular X applications here. Most of them go into other x11-* categories (see below). x11-clocks X11 clocks. x11-drivers X11 drivers. x11-fm X11 file managers. x11-fonts X11 fonts and font utilities. x11-servers X11 servers. x11-themes X11 themes. x11-toolkits X11 toolkits. x11-wm X11 window managers. xfce * Ports related to the Xfce desktop environment. zope * Zope support. Choosing the Right Category As many of the categories overlap, choosing which of the categories will be the primary category of the port can be tedious. There are several rules that govern this issue. Here is the list of priorities, in decreasing order of precedence: The first category must be a physical category (see above). This is necessary to make the packaging work. Virtual categories and physical categories may be intermixed after that. Language specific categories always come first. For example, if the port installs Japanese X11 fonts, then the CATEGORIES line would read japanese x11-fonts. Specific categories are listed before less-specific ones. For instance, an HTML editor is listed as www editors, not the other way around. Also, do not list net when the port belongs to any of irc, mail, news, security, or www, as net is included implicitly. x11 is used as a secondary category only when the primary category is a natural language. In particular, do not put x11 in the category line for X applications. Emacs modes are placed in the same ports category as the application supported by the mode, not in editors. For example, an Emacs mode to edit source files of some programming language goes into lang. Ports installing loadable kernel modules also have the virtual category kld in their CATEGORIES line. This is one of the things handled automatically by adding USES=kmod. misc does not appear with any other non-virtual category. If there is misc with something else in CATEGORIES, that means misc can safely be deleted and the port placed only in the other subdirectory. If the port truly does not belong anywhere else, put it in misc. If the category is not clearly defined, please put a comment to that effect in the port submission in the bug database so we can discuss it before we import it. As a committer, send a note to the &a.ports; so we can discuss it first. Too often, new ports are imported to the wrong category only to be moved right away. Proposing a New Category As the Ports Collection has grown over time, various new categories have been introduced. New categories can either be virtual categories—those that do not have a corresponding subdirectory in the ports tree— or physical categories—those that do. This section discusses the issues involved in creating a new physical category. Read it thouroughly before proposing a new one. Our existing practice has been to avoid creating a new physical category unless either a large number of ports would logically belong to it, or the ports that would belong to it are a logically distinct group that is of limited general interest (for instance, categories related to spoken human languages), or preferably both. The rationale for this is that such a change creates a fair amount of work for both the committers and also for all users who track changes to the Ports Collection. In addition, proposed category changes just naturally seem to attract controversy. (Perhaps this is because there is no clear consensus on when a category is too big, nor whether categories should lend themselves to browsing (and thus what number of categories would be an ideal number), and so forth.) Here is the procedure: Propose the new category on &a.ports;. Include a detailed rationale for the new category, including why the existing categories are not sufficient, and the list of existing ports proposed to move. (If there are new ports pending in Bugzilla that would fit this category, list them too.) If you are the maintainer and/or submitter, respectively, mention that as it may help the case. Participate in the discussion. If it seems that there is support for the idea, file a PR which includes both the rationale and the list of existing ports that need to be moved. Ideally, this PR would also include these patches: Makefiles for the new ports once they are repocopied Makefile for the new category Makefile for the old ports' categories Makefiles for ports that depend on the old ports (for extra credit, include the other files that have to change, as per the procedure in the Committer's Guide.) Since it affects the ports infrastructure and involves moving and patching many ports but also possibly running regression tests on the build cluster, assign the PR to the &a.portmgr;. If that PR is approved, a committer will need to follow the rest of the procedure that is outlined in the Committer's Guide. Proposing a new virtual category is similar to the above but much less involved, since no ports will actually have to move. In this case, the only patches to include in the PR would be those to add the new category to CATEGORIES of the affected ports. Proposing Reorganizing All the Categories Occasionally someone proposes reorganizing the categories with either a 2-level structure, or some other kind of keyword structure. To date, nothing has come of any of these proposals because, while they are very easy to make, the effort involved to retrofit the entire existing ports collection with any kind of reorganization is daunting to say the very least. Please read the history of these proposals in the mailing list archives before posting this idea. Furthermore, be prepared to be challenged to offer a working prototype. The Distribution Files The second part of the Makefile describes the files that must be downloaded to build the port, and where they can be downloaded. <varname>DISTNAME</varname> DISTNAME is the name of the port as called by the authors of the software. DISTNAME defaults to ${PORTNAME}-${DISTVERSIONPREFIX}${DISTVERSION}${DISTVERSIONSUFFIX}, and if not set, DISTVERSION defaults to ${PORTVERSION} so override DISTNAME only if necessary. DISTNAME is only used in two places. First, the distribution file list (DISTFILES) defaults to ${DISTNAME}${EXTRACT_SUFX}. Second, the distribution file is expected to extract into a subdirectory named WRKSRC, which defaults to work/${DISTNAME}. Some vendor's distribution names which do not fit into the ${PORTNAME}-${PORTVERSION}-scheme can be handled automatically by setting DISTVERSIONPREFIX, DISTVERSION, and DISTVERSIONSUFFIX. PORTVERSION will be derived from DISTVERSION automatically. Only one of PORTVERSION and DISTVERSION can be set at a time. If DISTVERSION does not derive a correct PORTVERSION, do not use DISTVERSION. If the upstream version scheme can be derived into a ports-compatible version scheme, set some variable to the upstream version, do not use DISTVERSION as the variable name. Set PORTVERSION to the computed version based on the variable you created, and set DISTNAME accordingly. If the upstream version scheme cannot easily be coerced into a ports-compatible value, set PORTVERSION to a sensible value, and set DISTNAME with PORTNAME with the verbatim upstream version. Deriving <varname>PORTVERSION</varname> Manually BIND9 uses a version scheme that is not compatible with the ports versions (it has - in its versions) and cannot be derived using DISTVERSION because after the 9.9.9 release, it will release a patchlevels in the form of 9.9.9-P1. DISTVERSION would translate that into 9.9.9.p1, which, in the ports versioning scheme means 9.9.9 pre-release 1, which is before 9.9.9 and not after. So PORTVERSION is manually derived from an ISCVERSION variable to output 9.9.9p1. The order into which the ports framework, and pkg, will sort versions is checked using the -t argument of &man.pkg-version.8;: &prompt.user; pkg version -t 9.9.9 9.9.9.p1 > &prompt.user; pkg version -t 9.9.9 9.9.9p1 < The > sign means that the first argument passed to -t is greater than the second argument. 9.9.9 is after 9.9.9.p1. The < sign means that the first argument passed to -t is less than the second argument. 9.9.9 is before 9.9.9p1. In the port Makefile, for example dns/bind99, it is achieved by: PORTNAME= bind PORTVERSION= ${ISCVERSION:S/-P/P/:S/b/.b/:S/a/.a/:S/rc/.rc/} CATEGORIES= dns net ipv6 MASTER_SITES= ISC/bind9/${ISCVERSION} PKGNAMESUFFIX= 99 DISTNAME= ${PORTNAME}-${ISCVERSION} MAINTAINER= mat@FreeBSD.org COMMENT= BIND DNS suite with updated DNSSEC and DNS64 LICENSE= ISCL # ISC releases things like 9.8.0-P1 or 9.8.1rc1, which our versioning does not like ISCVERSION= 9.9.9-P6 Define upstream version in ISCVERSION, with a comment saying why it is needed. Use ISCVERSION to get a ports-compatible PORTVERSION. Use ISCVERSION directly to get the correct URL for fetching the distribution file. Use ISCVERSION directly to name the distribution file. Derive <varname>DISTNAME</varname> from <varname>PORTVERSION</varname> From time to time, the distribution file name has little or no relation to the version of the software. In comms/kermit, only the last element of the version is present in the distribution file: PORTNAME= kermit PORTVERSION= 9.0.304 CATEGORIES= comms ftp net MASTER_SITES= ftp://ftp.kermitproject.org/kermit/test/tar/ DISTNAME= cku${PORTVERSION:E}-dev20 The :E &man.make.1; modifier returns the suffix of the variable, in this case, 304. The distribution file is correctly generated as cku304-dev20.tar.gz. Exotic Case 1 Sometimes, there is no relation between the software name, its version, and the distribution file it is distributed in. From audio/libworkman: PORTNAME= libworkman PORTVERSION= 1.4 CATEGORIES= audio MASTER_SITES= LOCAL/jim DISTNAME= ${PORTNAME}-1999-06-20 Exotic Case 2 In comms/librs232, the distribution file is not versioned, so using DIST_SUBDIR is needed: PORTNAME= librs232 PORTVERSION= 20160710 CATEGORIES= comms MASTER_SITES= http://www.teuniz.net/RS-232/ DISTNAME= RS-232 DIST_SUBDIR= ${PORTNAME}-${PORTVERSION} PKGNAMEPREFIX and PKGNAMESUFFIX do not affect DISTNAME. Also note that if WRKSRC is equal to ${WRKDIR}/${DISTNAME} while the original source archive is named something other than ${PORTNAME}-${PORTVERSION}${EXTRACT_SUFX}, leave DISTNAME alone— defining only DISTFILES is easier than both DISTNAME and WRKSRC (and possibly EXTRACT_SUFX). <varname>MASTER_SITES</varname> Record the directory part of the FTP/HTTP-URL pointing at the original tarball in MASTER_SITES. Do not forget the trailing slash (/)! The make macros will try to use this specification for grabbing the distribution file with FETCH if they cannot find it already on the system. It is recommended that multiple sites are included on this list, preferably from different continents. This will safeguard against wide-area network problems. MASTER_SITES must not be blank. It must point to the actual site hosting the distribution files. It cannot point to web archives, or the &os; distribution files cache sites. The only exception to this rule is ports that do not have any distribution files. For example, meta-ports do not have any distribution files, so MASTER_SITES does not need to be set. Using <varname>MASTER_SITE_<replaceable>*</replaceable></varname> Variables Shortcut abbreviations are available for popular archives like SourceForge (SOURCEFORGE), GNU (GNU), or Perl CPAN (PERL_CPAN). MASTER_SITES can use them directly: MASTER_SITES= GNU/make The older expanded format still works, but all ports have been converted to the compact format. The expanded format looks like this: MASTER_SITES= ${MASTER_SITE_GNU} MASTER_SITE_SUBDIR= make These values and variables are defined in Mk/bsd.sites.mk. New entries are added often, so make sure to check the latest version of this file before submitting a port. For any MASTER_SITE_FOO variable, the shorthand FOO can be used. For example, use: MASTER_SITES= FOO If MASTER_SITE_SUBDIR is needed, use this: MASTER_SITES= FOO/bar Some MASTER_SITE_* names are quite long, and for ease of use, shortcuts have been defined: Shortcuts for <varname>MASTER_SITE_<replaceable>*</replaceable></varname> Macros Macro Shortcut PERL_CPAN CPAN GITHUB GH GITHUB_CLOUD GHC LIBREOFFICE_DEV LODEV NETLIB NL RUBYGEMS RG SOURCEFORGE SF
Magic MASTER_SITES Macros Several magic macros exist for popular sites with a predictable directory structure. For these, just use the abbreviation and the system will choose a subdirectory automatically. For a port named Stardict, of version 1.2.3, and hosted on SourceForge, adding this line: MASTER_SITES= SF infers a subdirectory named /project/stardict/stardict/1.2.3. If the inferred directory is incorrect, it can be overridden: MASTER_SITES= SF/stardict/WyabdcRealPeopleTTS/${PORTVERSION} This can also be written as MASTER_SITES= SF MASTER_SITE_SUBDIR= stardict/WyabdcRealPeopleTTS/${PORTVERSION} Magic <varname>MASTER_SITES</varname> Macros Macro Assumed subdirectory APACHE_COMMONS_BINARIES ${PORTNAME:S,commons-,,} APACHE_COMMONS_SOURCE ${PORTNAME:S,commons-,,} APACHE_JAKARTA ${PORTNAME:S,-,/,}/source BERLIOS ${PORTNAME:tl}.berlios CHEESESHOP source/${DISTNAME:C/(.).*/\1/}/${DISTNAME:C/(.*)-[0-9].*/\1/} CPAN ${PORTNAME:C/-.*//} DEBIAN pool/main/${PORTNAME:C/^((lib)?.).*$/\1/}/${PORTNAME} FARSIGHT ${PORTNAME} FESTIVAL ${PORTREVISION} GCC releases/${DISTNAME} GENTOO distfiles GIMP ${PORTNAME}/${PORTVERSION:R}/ GH ${GH_ACCOUNT}/${GH_PROJECT}/tar.gz/${GH_TAGNAME}?dummy=/ GHC ${GH_ACCOUNT}/${GH_PROJECT}/ GNOME sources/${PORTNAME}/${PORTVERSION:C/^([0-9]+\.[0-9]+).*/\1/} GNU ${PORTNAME} GNUPG ${PORTNAME} GNU_ALPHA ${PORTNAME} HORDE ${PORTNAME} LODEV ${PORTNAME} MATE ${PORTVERSION:C/^([0-9]+\.[0-9]+).*/\1/} MOZDEV ${PORTNAME:tl} NL ${PORTNAME} QT archive/qt/${PORTVERSION:R} SAMBA ${PORTNAME} SAVANNAH ${PORTNAME:tl} SF ${PORTNAME:tl}/${PORTNAME:tl}/${PORTVERSION}
<varname>USE_GITHUB</varname> If the distribution file comes from a specific commit or tag on GitHub for which there is no officially released file, there is an easy way to set the right DISTNAME and MASTER_SITES automatically. These variables are available: <varname>USE_GITHUB</varname> Description Variable Description Default GH_ACCOUNT Account name of the GitHub user hosting the project ${PORTNAME} GH_PROJECT Name of the project on GitHub ${PORTNAME} GH_TAGNAME Name of the tag to download (2.0.1, hash, ...) Using the name of a branch here is incorrect. It is also possible to use the hash of a commit id to do a snapshot. ${DISTVERSIONPREFIX}${DISTVERSION}${DISTVERSIONSUFFIX} GH_SUBDIR When the software needs an additional distribution file to be extracted within ${WRKSRC}, this variable can be used. See the examples in for more information. (none) GH_TUPLE GH_TUPLE allows putting GH_ACCOUNT, GH_PROJECT, GH_TAGNAME, and GH_SUBDIR into a single variable. The format is account:project:tagname:group/subdir. The /subdir part is optional. It is helpful when there is more than one GitHub project from which to fetch.
Do not use GH_TUPLE for the default distribution file, as it has no default. Simple Use of <varname>USE_GITHUB</varname> While trying to make a port for version 1.2.7 of pkg from the &os; user on github, at , The Makefile would end up looking like this (slightly stripped for the example): PORTNAME= pkg DISTVERSION= 1.2.7 USE_GITHUB= yes GH_ACCOUNT= freebsd It will automatically have MASTER_SITES set to GH GHC and WRKSRC to ${WRKDIR}/pkg-1.2.7. More Complete Use of <varname>USE_GITHUB</varname> While trying to make a port for the bleeding edge version of pkg from the &os; user on github, at , the Makefile ends up looking like this (slightly stripped for the example): PORTNAME= pkg-devel DISTVERSION= 1.3.0.a.20140411 USE_GITHUB= yes GH_ACCOUNT= freebsd GH_PROJECT= pkg GH_TAGNAME= 6dbb17b It will automatically have MASTER_SITES set to GH GHC and WRKSRC to ${WRKDIR}/pkg-6dbb17b. 20140411 is the date of the commit referenced in GH_TAGNAME, not the date the Makefile is edited, or the date the commit is made. Use of <varname>USE_GITHUB</varname> with <varname>DISTVERSIONPREFIX</varname> From time to time, GH_TAGNAME is a slight variation from DISTVERSION. For example, if the version is 1.0.2, the tag is v1.0.2. In those cases, it is possible to use DISTVERSIONPREFIX or DISTVERSIONSUFFIX: PORTNAME= foo DISTVERSIONPREFIX= v DISTVERSION= 1.0.2 USE_GITHUB= yes It will automatically set GH_TAGNAME to v1.0.2, while WRKSRC will be kept to ${WRKDIR}/foo-1.0.2. Using <varname>USE_GITHUB</varname> When Upstream Does Not Use Versions If there never was a version upstream, do not invent one like 0.1 or 1.0. Create the port with a DISTVERSION of gYYYYMMDD, where g is for Git, and YYYYMMDD represents the date the commit referenced in GH_TAGNAME. PORTNAME= bar DISTVERSION= g20140411 USE_GITHUB= yes GH_TAGNAME= c472d66b This creates a versioning scheme that increases over time, and that is still before version 0 (see for details on &man.pkg-version.8;): &prompt.user; pkg version -t g20140411 0 < Which means using PORTEPOCH will not be needed in case upstream decides to cut versions in the future. Using <varname>USE_GITHUB</varname> to Access a Commit Between Two Versions If the current version of the software uses a Git tag, and the port needs to be updated to a newer, intermediate version, without a tag, use &man.git-describe.1; to find out the version to use: &prompt.user; git describe --tags f0038b1 v0.7.3-14-gf0038b1 v0.7.3-14-gf0038b1 can be split into three parts: v0.7.3 This is the last Git tag that appears in the commit history before the requested commit. -14 This means that the requested commit, f0038b1, is the 14th commit after the v0.7.3 tag. -gf0038b1 The -g means Git, and the f0038b1 is the commit hash that this reference points to. PORTNAME= bar DISTVERSIONPREFIX= v DISTVERSION= 0.7.3-14 DISTVERSIONSUFFIX= -gf0038b1 USE_GITHUB= yes This creates a versioning scheme that increases over time (well, over commits), and does not conflict with the creation of a 0.7.4 version. (See for details on &man.pkg-version.8;): &prompt.user; pkg version -t 0.7.3 0.7.3.14 < &prompt.user; pkg version -t 0.7.3.14 0.7.4 < If the requested commit is the same as a tag, a shorter description is shown by default. The longer version is equivalent: &prompt.user; git describe --tags c66c71d v0.7.3 &prompt.user; git describe --tags --long c66c71d v0.7.3-0-gc66c71d Fetching Multiple Files from GitHub The USE_GITHUB framework also supports fetching multiple distribution files from different places in GitHub. It works in a way very similar to . Multiple values are added to GH_ACCOUNT, GH_PROJECT, and GH_TAGNAME. Each different value is assigned a group. The main value can either have no group, or the :DEFAULT group. A value can be omitted if it is the same as the default as listed in . GH_TUPLE can also be used when there are a lot of distribution files. It helps keep the account, project, tagname, and group information at the same place. For each group, a ${WRKSRC_group} helper variable is created, containing the directory into which the file has been extracted. The ${WRKSRC_group} variables can be used to move directories around during post-extract, or add to CONFIGURE_ARGS, or whatever is needed so that the software builds correctly. The :group part must be used for only one distribution file. It is used as a unique key and using it more than once will overwrite the previous values. As this is only syntactic sugar above DISTFILES and MASTER_SITES, the group names must adhere to the restrictions on group names outlined in When fetching multiple files from GitHub, sometimes the default distribution file is not fetched from GitHub. To disable fetching the default distribution, set: USE_GITHUB= nodefault When using USE_GITHUB=nodefault, the Makefile must set DISTFILES in its top block. The definition should be: DISTFILES= ${DISTNAME}${EXTRACT_SUFX} Use of <varname>USE_GITHUB</varname> with Multiple Distribution Files From time to time, there is a need to fetch more than one distribution file. For example, when the upstream git repository uses submodules. This can be done easily using groups in the GH_* variables: PORTNAME= foo DISTVERSION= 1.0.2 USE_GITHUB= yes GH_ACCOUNT= bar:icons,contrib GH_PROJECT= foo-icons:icons foo-contrib:contrib GH_TAGNAME= 1.0:icons fa579bc:contrib GH_SUBDIR= ext/icons:icons CONFIGURE_ARGS= --with-contrib=${WRKSRC_contrib} This will fetch three distribution files from github. The default one comes from foo/foo and is version 1.0.2. The second one, with the icons group, comes from bar/foo-icons and is in version 1.0. The third one comes from bar/foo-contrib and uses the Git commit fa579bc. The distribution files are named foo-foo-1.0.2_GH0.tar.gz, bar-foo-icons-1.0_GH0.tar.gz, and bar-foo-contrib-fa579bc_GH0.tar.gz. All the distribution files are extracted in ${WRKDIR} in their respective subdirectories. The default file is still extracted in ${WRKSRC}, in this case, ${WRKDIR}/foo-1.0.2. Each additional distribution file is extracted in ${WRKSRC_group}. Here, for the icons group, it is called ${WRKSRC_icons} and it contains ${WRKDIR}/foo-icons-1.0. The file with the contrib group is called ${WRKSRC_contrib} and contains ${WRKDIR}/foo-contrib-fa579bc. The software's build system expects to find the icons in a ext/icons subdirectory in its sources, so GH_SUBDIR is used. GH_SUBDIR makes sure that ext exists, but that ext/icons does not already exist. Then it does this: post-extract: @${MV} ${WRKSRC_icons} ${WRKSRC}/ext/icons Use of <varname>USE_GITHUB</varname> with Multiple Distribution Files Using <varname>GH_TUPLE</varname> This is functionally equivalent to , but using GH_TUPLE: PORTNAME= foo DISTVERSION= 1.0.2 USE_GITHUB= yes GH_TUPLE= bar:foo-icons:1.0:icons/ext/icons \ bar:foo-contrib:fa579bc:contrib CONFIGURE_ARGS= --with-contrib=${WRKSRC_contrib} Grouping was used in the previous example with bar:icons,contrib. Some redundant information is present with GH_TUPLE because grouping is not possible. How to Use <varname>USE_GITHUB</varname> with <application>Git</application> Submodules? Ports with GitHub as an upstream repository sometimes use submodules. See &man.git-submodule.1; for more information. The problem with submodules is that each is a separate repository. As such, they each must be fetched separately. Using finance/moneymanagerex as an example, its GitHub repository is . It has a .gitmodules file at the root. This file describes all the submodules used in this repository, and lists additional repositories needed. This file will tell what additional repositories are needed: [submodule "lib/wxsqlite3"] path = lib/wxsqlite3 url = https://github.com/utelle/wxsqlite3.git [submodule "3rd/mongoose"] path = 3rd/mongoose url = https://github.com/cesanta/mongoose.git [submodule "3rd/LuaGlue"] path = 3rd/LuaGlue url = https://github.com/moneymanagerex/LuaGlue.git [submodule "3rd/cgitemplate"] path = 3rd/cgitemplate url = https://github.com/moneymanagerex/html-template.git [...] The only information missing from that file is the commit hash or tag to use as a version. This information is found after cloning the repository: &prompt.user; git clone --recurse-submodules https://github.com/moneymanagerex/moneymanagerex.git Cloning into 'moneymanagerex'... remote: Counting objects: 32387, done. [...] Submodule '3rd/LuaGlue' (https://github.com/moneymanagerex/LuaGlue.git) registered for path '3rd/LuaGlue' Submodule '3rd/cgitemplate' (https://github.com/moneymanagerex/html-template.git) registered for path '3rd/cgitemplate' Submodule '3rd/mongoose' (https://github.com/cesanta/mongoose.git) registered for path '3rd/mongoose' Submodule 'lib/wxsqlite3' (https://github.com/utelle/wxsqlite3.git) registered for path 'lib/wxsqlite3' [...] Cloning into '/home/mat/work/freebsd/ports/finance/moneymanagerex/moneymanagerex/3rd/LuaGlue'... Cloning into '/home/mat/work/freebsd/ports/finance/moneymanagerex/moneymanagerex/3rd/cgitemplate'... Cloning into '/home/mat/work/freebsd/ports/finance/moneymanagerex/moneymanagerex/3rd/mongoose'... Cloning into '/home/mat/work/freebsd/ports/finance/moneymanagerex/moneymanagerex/lib/wxsqlite3'... [...] Submodule path '3rd/LuaGlue': checked out 'c51d11a247ee4d1e9817dfa2a8da8d9e2f97ae3b' Submodule path '3rd/cgitemplate': checked out 'cd434eeeb35904ebcd3d718ba29c281a649b192c' Submodule path '3rd/mongoose': checked out '2140e5992ab9a3a9a34ce9a281abf57f00f95cda' Submodule path 'lib/wxsqlite3': checked out 'fb66eb230d8aed21dec273b38c7c054dcb7d6b51' [...] &prompt.user; cd moneymanagerex &prompt.user; git submodule status c51d11a247ee4d1e9817dfa2a8da8d9e2f97ae3b 3rd/LuaGlue (heads/master) cd434eeeb35904ebcd3d718ba29c281a649b192c 3rd/cgitemplate (cd434ee) 2140e5992ab9a3a9a34ce9a281abf57f00f95cda 3rd/mongoose (6.2-138-g2140e59) fb66eb230d8aed21dec273b38c7c054dcb7d6b51 lib/wxsqlite3 (v3.4.0) [...] It can also be found on GitHub. Each subdirectory that is a submodule is shown as directory @ hash, for example, mongoose @ 2140e59. While getting the information from GitHub seems more straightforward, the information found using git submodule status will provide more meaningful information. For example, here, lib/wxsqlite3's commit hash fb66eb2 correspond to v3.4.0. Both can be used interchangeably, but when a tag is available, use it. Now that all the required information has been gathered, the Makefile can be written (only GitHub-related lines are shown): PORTNAME= moneymanagerex DISTVERSIONPREFIX= v DISTVERSION= 1.3.0 USE_GITHUB= yes GH_TUPLE= utelle:wxsqlite3:v3.4.0:wxsqlite3/lib/wxsqlite3 \ moneymanagerex:LuaGlue:c51d11a:lua_glue/3rd/LuaGlue \ moneymanagerex:html-template:cd434ee:html_template/3rd/cgitemplate \ cesanta:mongoose:2140e59:mongoose/3rd/mongoose \ [...]
<varname>USE_GITLAB</varname> Similar to GitHub, if the distribution file comes from gitlab.com or is hosting the GitLab software, these variables are available for use and might need to be set. <varname>USE_GITLAB</varname> Description Variable Description Default GL_SITE Site name hosting the GitLab project https://gitlab.com GL_ACCOUNT Account name of the GitLab user hosting the project ${PORTNAME} GL_PROJECT Name of the project on GitLab ${PORTNAME} GL_COMMIT The commit hash to download. Must be the full 160 bit, 40 character hex sha1 hash. This is a required variable for GitLab. (none) GL_SUBDIR When the software needs an additional distribution file to be extracted within ${WRKSRC}, this variable can be used. See the examples in for more information. (none) GL_TUPLE GL_TUPLE allows putting GL_SITE, GL_ACCOUNT, GL_PROJECT, GL_COMMIT, and GL_SUBDIR into a single variable. The format is site:account:project:commit:group/subdir. The site: and /subdir part is optional. It is helpful when there are more than one GitLab project from which to fetch.
Simple Use of <varname>USE_GITLAB</varname> While trying to make a port for version 1.14 of libsignon-glib from the accounts-sso user on gitlab.com, at , The Makefile would end up looking like this for fetching the distribution files: PORTNAME= libsignon-glib DISTVERSION= 1.14 USE_GITLAB= yes GL_ACCOUNT= accounts-sso GL_COMMIT= e90302e342bfd27bc8c9132ab9d0ea3d8723fd03 It will automatically have MASTER_SITES set to gitlab.com and WRKSRC to ${WRKDIR}/libsignon-glib-e90302e342bfd27bc8c9132ab9d0ea3d8723fd03-e90302e342bfd27bc8c9132ab9d0ea3d8723fd03. More Complete Use of <varname>USE_GITLAB</varname> A more complete use of the above if port had no versioning and foobar from the foo user on project bar on a self hosted GitLab site https://gitlab.example.com, the Makefile ends up looking like this for fetching distribution files: PORTNAME= foobar DISTVERSION= g20170906 USE_GITLAB= yes GL_SITE= https://gitlab.example.com GL_ACCOUNT= foo GL_PROJECT= bar GL_COMMIT= 9c1669ce60c3f4f5eb43df874d7314483fb3f8a6 It will have MASTER_SITES set to "https://gitlab.example.com" and WRKSRC to ${WRKDIR}/bar-9c1669ce60c3f4f5eb43df874d7314483fb3f8a6-9c1669ce60c3f4f5eb43df874d7314483fb3f8a6. 20170906 is the date of the commit referenced in GL_COMMIT, not the date the Makefile is edited, or the date the commit to the &os; ports tree is made. GL_SITE's protocol, port and webroot can all be modified in the same variable. Fetching Multiple Files from <application>GitLab</application> The USE_GITLAB framework also supports fetching multiple distribution files from different places from GitLab and GitLab hosted sites. It works in a way very similar to and . Multiple values are added to GL_SITE, GL_ACCOUNT, GL_PROJECT and GL_COMMIT. Each different value is assigned a group. . GL_TUPLE can also be used when there are a lot of distribution files. It helps keep the site, account, project, commit, and group information at the same place. For each group, a ${WRKSRC_group} helper variable is created, containing the directory into which the file has been extracted. The ${WRKSRC_group} variables can be used to move directories around during post-extract, or add to CONFIGURE_ARGS, or whatever is needed so that the software builds correctly. The :group part must be used for only one distribution file. It is used as a unique key and using it more than once will overwrite the previous values. As this is only syntactic sugar above DISTFILES and MASTER_SITES, the group names must adhere to the restrictions on group names outlined in When fetching multiple files using GitLab, sometimes the default distribution file is not fetched from a GitLab site. To disable fetching the default distribution, set: USE_GITLAB= nodefault When using USE_GITLAB=nodefault, the Makefile must set DISTFILES in its top block. The definition should be: DISTFILES= ${DISTNAME}${EXTRACT_SUFX} Use of <varname>USE_GITLAB</varname> with Multiple Distribution Files From time to time, there is a need to fetch more than one distribution file. For example, when the upstream git repository uses submodules. This can be done easily using groups in the GL_* variables: PORTNAME= foo DISTVERSION= 1.0.2 USE_GITLAB= yes GL_SITE= https://gitlab.example.com:9434/gitlab:icons GL_ACCOUNT= bar:icons,contrib GL_PROJECT= foo-icons:icons foo-contrib:contrib GL_COMMIT= c189207a55da45305c884fe2b50e086fcad4724b ae7368cab1ca7ca754b38d49da064df87968ffe4:icons 9e4dd76ad9b38f33fdb417a4c01935958d5acd2a:contrib GL_SUBDIR= ext/icons:icons CONFIGURE_ARGS= --with-contrib=${WRKSRC_contrib} This will fetch two distribution files from gitlab.com and one from gitlab.example.com hosting GitLab. The default one comes from https://gitlab.com/foo/foo and commit is c189207a55da45305c884fe2b50e086fcad4724b. The second one, with the icons group, comes from https://gitlab.example.com:9434/gitlab/bar/foo-icons and commit is ae7368cab1ca7ca754b38d49da064df87968ffe4. The third one comes from https://gitlab.com/bar/foo-contrib and is commit 9e4dd76ad9b38f33fdb417a4c01935958d5acd2a. The distribution files are named foo-foo-c189207a55da45305c884fe2b50e086fcad4724b_GL0.tar.gz, bar-foo-icons-ae7368cab1ca7ca754b38d49da064df87968ffe4_GL0.tar.gz, and bar-foo-contrib-9e4dd76ad9b38f33fdb417a4c01935958d5acd2a_GL0.tar.gz. All the distribution files are extracted in ${WRKDIR} in their respective subdirectories. The default file is still extracted in ${WRKSRC}, in this case, ${WRKDIR}/foo-c189207a55da45305c884fe2b50e086fcad4724b-c189207a55da45305c884fe2b50e086fcad4724b. Each additional distribution file is extracted in ${WRKSRC_group}. Here, for the icons group, it is called ${WRKSRC_icons} and it contains ${WRKDIR}/foo-icons-ae7368cab1ca7ca754b38d49da064df87968ffe4-ae7368cab1ca7ca754b38d49da064df87968ffe4. The file with the contrib group is called ${WRKSRC_contrib} and contains ${WRKDIR}/foo-contrib-9e4dd76ad9b38f33fdb417a4c01935958d5acd2a-9e4dd76ad9b38f33fdb417a4c01935958d5acd2a. The software's build system expects to find the icons in a ext/icons subdirectory in its sources, so GL_SUBDIR is used. GL_SUBDIR makes sure that ext exists, but that ext/icons does not already exist. Then it does this: post-extract: @${MV} ${WRKSRC_icons} ${WRKSRC}/ext/icons Use of <varname>USE_GITLAB</varname> with Multiple Distribution Files Using <varname>GL_TUPLE</varname> This is functionally equivalent to , but using GL_TUPLE: PORTNAME= foo DISTVERSION= 1.0.2 USE_GITLAB= yes GL_COMMIT= c189207a55da45305c884fe2b50e086fcad4724b GL_TUPLE= https://gitlab.example.com:9434/gitlab:bar:foo-icons:ae7368cab1ca7ca754b38d49da064df87968ffe4:icons/ext/icons \ bar:foo-contrib:9e4dd76ad9b38f33fdb417a4c01935958d5acd2a:contrib CONFIGURE_ARGS= --with-contrib=${WRKSRC_contrib} Grouping was used in the previous example with bar:icons,contrib. Some redundant information is present with GL_TUPLE because grouping is not possible.
<varname>EXTRACT_SUFX</varname> If there is one distribution file, and it uses an odd suffix to indicate the compression mechanism, set EXTRACT_SUFX. For example, if the distribution file was named foo.tar.gzip instead of the more normal foo.tar.gz, write: DISTNAME= foo EXTRACT_SUFX= .tar.gzip The USES=tar[:xxx], USES=lha or USES=zip automatically set EXTRACT_SUFX to the most common archives extensions as necessary, see for more details. If neither of these are set then EXTRACT_SUFX defaults to .tar.gz. As EXTRACT_SUFX is only used in DISTFILES, only set one of them.. <varname>DISTFILES</varname> Sometimes the names of the files to be downloaded have no resemblance to the name of the port. For example, it might be called source.tar.gz or similar. In other cases the application's source code might be in several different archives, all of which must be downloaded. If this is the case, set DISTFILES to be a space separated list of all the files that must be downloaded. DISTFILES= source1.tar.gz source2.tar.gz If not explicitly set, DISTFILES defaults to ${DISTNAME}${EXTRACT_SUFX}. <varname>EXTRACT_ONLY</varname> If only some of the DISTFILES must be extracted—for example, one of them is the source code, while another is an uncompressed document—list the filenames that must be extracted in EXTRACT_ONLY. DISTFILES= source.tar.gz manual.html EXTRACT_ONLY= source.tar.gz When none of the DISTFILES need to be uncompressed, set EXTRACT_ONLY to the empty string. EXTRACT_ONLY= <varname>PATCHFILES</varname> If the port requires some additional patches that are available by FTP or HTTP, set PATCHFILES to the names of the files and PATCH_SITES to the URL of the directory that contains them (the format is the same as MASTER_SITES). If the patch is not relative to the top of the source tree (that is, WRKSRC) because it contains some extra pathnames, set PATCH_DIST_STRIP accordingly. For instance, if all the pathnames in the patch have an extra foozolix-1.0/ in front of the filenames, then set PATCH_DIST_STRIP=-p1. Do not worry if the patches are compressed; they will be decompressed automatically if the filenames end with .Z, .gz, .bz2 or .xz. If the patch is distributed with some other files, such as documentation, in a compressed tarball, using PATCHFILES is not possible. If that is the case, add the name and the location of the patch tarball to DISTFILES and MASTER_SITES. Then, use EXTRA_PATCHES to point to those files and bsd.port.mk will automatically apply them. In particular, do not copy patch files into ${PATCHDIR}. That directory may not be writable. If there are multiple patches and they need mixed values for the strip parameter, it can be added alongside the patch name in PATCHFILES, e.g: PATCHFILES= patch1 patch2:-p1 This does not conflict with the master site grouping feature, adding a group also works: PATCHFILES= patch2:-p1:source2 The tarball will have been extracted alongside the regular source by then, so there is no need to explicitly extract it if it is a regular compressed tarball. Take extra care not to overwrite something that already exists in that directory if extracting it manually. Also, do not forget to add a command to remove the copied patch in the pre-clean target. Multiple Distribution or Patches Files from Multiple Locations (Consider this to be a somewhat advanced topic; those new to this document may wish to skip this section at first). This section has information on the fetching mechanism known as both MASTER_SITES:n and MASTER_SITES_NN. We will refer to this mechanism as MASTER_SITES:n. A little background first. OpenBSD has a neat feature inside DISTFILES and PATCHFILES which allows files and patches to be postfixed with :n identifiers. Here, n can be any word containing [0-9a-zA-Z_] and denote a group designation. For example: DISTFILES= alpha:0 beta:1 In OpenBSD, distribution file alpha will be associated with variable MASTER_SITES0 instead of our common MASTER_SITES and beta with MASTER_SITES1. This is a very interesting feature which can decrease that endless search for the correct download site. Just picture 2 files in DISTFILES and 20 sites in MASTER_SITES, the sites slow as hell where beta is carried by all sites in MASTER_SITES, and alpha can only be found in the 20th site. It would be such a waste to check all of them if the maintainer knew this beforehand, would it not? Not a good start for that lovely weekend! Now that you have the idea, just imagine more DISTFILES and more MASTER_SITES. Surely our distfiles survey meister would appreciate the relief to network strain that this would bring. In the next sections, information will follow on the &os; implementation of this idea. We improved a bit on OpenBSD's concept. The group names cannot have dashes in them (-), in fact, they cannot have any characters out of the [a-zA-Z0-9_] range. This is because, while &man.make.1; is ok with variable names containing dashes, &man.sh.1; is not. Simplified Information This section explains how to quickly prepare fine grained fetching of multiple distribution files and patches from different sites and subdirectories. We describe here a case of simplified MASTER_SITES:n usage. This will be sufficient for most scenarios. More detailed information are available in . Some applications consist of multiple distribution files that must be downloaded from a number of different sites. For example, Ghostscript consists of the core of the program, and then a large number of driver files that are used depending on the user's printer. Some of these driver files are supplied with the core, but many others must be downloaded from a variety of different sites. To support this, each entry in DISTFILES may be followed by a colon and a group name. Each site listed in MASTER_SITES is then followed by a colon, and the group that indicates which distribution files are downloaded from this site. For example, consider an application with the source split in two parts, source1.tar.gz and source2.tar.gz, which must be downloaded from two different sites. The port's Makefile would include lines like . Simplified Use of <literal>MASTER_SITES:n</literal> with One File Per Site MASTER_SITES= ftp://ftp1.example.com/:source1 \ http://www.example.com/:source2 DISTFILES= source1.tar.gz:source1 \ source2.tar.gz:source2 Multiple distribution files can have the same group. Continuing the previous example, suppose that there was a third distfile, source3.tar.gz, that is downloaded from ftp.example2.com. The Makefile would then be written like . Simplified Use of <literal>MASTER_SITES:n</literal> with More Than One File Per Site MASTER_SITES= ftp://ftp.example.com/:source1 \ http://www.example.com/:source2 DISTFILES= source1.tar.gz:source1 \ source2.tar.gz:source2 \ source3.tar.gz:source2 Detailed Information Okay, so the previous example did not reflect the new port's needs? In this section we will explain in detail how the fine grained fetching mechanism MASTER_SITES:n works and how it can be used. Elements can be postfixed with :n where n is [^:,]+, that is, n could conceptually be any alphanumeric string but we will limit it to [a-zA-Z_][0-9a-zA-Z_]+ for now. Moreover, string matching is case sensitive; that is, n is different from N. However, these words cannot be used for postfixing purposes since they yield special meaning: default, all and ALL (they are used internally in item ). Furthermore, DEFAULT is a special purpose word (check item ). Elements postfixed with :n belong to the group n, :m belong to group m and so forth. Elements without a postfix are groupless, they all belong to the special group DEFAULT. Any elements postfixed with DEFAULT, is just being redundant unless an element belongs to both DEFAULT and other groups at the same time (check item ). These examples are equivalent but the first one is preferred: MASTER_SITES= alpha MASTER_SITES= alpha:DEFAULT Groups are not exclusive, an element may belong to several different groups at the same time and a group can either have either several different elements or none at all. When an element belongs to several groups at the same time, use the comma operator (,). Instead of repeating it several times, each time with a different postfix, we can list several groups at once in a single postfix. For instance, :m,n,o marks an element that belongs to group m, n and o. All these examples are equivalent but the last one is preferred: MASTER_SITES= alpha alpha:SOME_SITE MASTER_SITES= alpha:DEFAULT alpha:SOME_SITE MASTER_SITES= alpha:SOME_SITE,DEFAULT MASTER_SITES= alpha:DEFAULT,SOME_SITE All sites within a given group are sorted according to MASTER_SORT_AWK. All groups within MASTER_SITES and PATCH_SITES are sorted as well. Group semantics can be used in any of the variables MASTER_SITES, PATCH_SITES, MASTER_SITE_SUBDIR, PATCH_SITE_SUBDIR, DISTFILES, and PATCHFILES according to this syntax: All MASTER_SITES, PATCH_SITES, MASTER_SITE_SUBDIR and PATCH_SITE_SUBDIR elements must be terminated with the forward slash / character. If any elements belong to any groups, the group postfix :n must come right after the terminator /. The MASTER_SITES:n mechanism relies on the existence of the terminator / to avoid confusing elements where a :n is a valid part of the element with occurrences where :n denotes group n. For compatibility purposes, since the / terminator was not required before in both MASTER_SITE_SUBDIR and PATCH_SITE_SUBDIR elements, if the postfix immediate preceding character is not a / then :n will be considered a valid part of the element instead of a group postfix even if an element is postfixed with :n. See both and . Detailed Use of <literal>MASTER_SITES:n</literal> in <varname>MASTER_SITE_SUBDIR</varname> MASTER_SITE_SUBDIR= old:n new/:NEW Directories within group DEFAULT -> old:n Directories within group NEW -> new Detailed Use of <literal>MASTER_SITES:n</literal> with Comma Operator, Multiple Files, Multiple Sites and Multiple Subdirectories MASTER_SITES= http://site1/%SUBDIR%/ http://site2/:DEFAULT \ http://site3/:group3 http://site4/:group4 \ http://site5/:group5 http://site6/:group6 \ http://site7/:DEFAULT,group6 \ http://site8/%SUBDIR%/:group6,group7 \ http://site9/:group8 DISTFILES= file1 file2:DEFAULT file3:group3 \ file4:group4,group5,group6 file5:grouping \ file6:group7 MASTER_SITE_SUBDIR= directory-trial:1 directory-n/:groupn \ directory-one/:group6,DEFAULT \ directory The previous example results in this fine grained fetching. Sites are listed in the exact order they will be used. file1 will be fetched from MASTER_SITE_OVERRIDE http://site1/directory-trial:1/ http://site1/directory-one/ http://site1/directory/ http://site2/ http://site7/ MASTER_SITE_BACKUP file2 will be fetched exactly as file1 since they both belong to the same group MASTER_SITE_OVERRIDE http://site1/directory-trial:1/ http://site1/directory-one/ http://site1/directory/ http://site2/ http://site7/ MASTER_SITE_BACKUP file3 will be fetched from MASTER_SITE_OVERRIDE http://site3/ MASTER_SITE_BACKUP file4 will be fetched from MASTER_SITE_OVERRIDE http://site4/ http://site5/ http://site6/ http://site7/ http://site8/directory-one/ MASTER_SITE_BACKUP file5 will be fetched from MASTER_SITE_OVERRIDE MASTER_SITE_BACKUP file6 will be fetched from MASTER_SITE_OVERRIDE http://site8/ MASTER_SITE_BACKUP How do I group one of the special macros from bsd.sites.mk, for example, SourceForge (SF)? This has been simplified as much as possible. See . Detailed Use of <literal>MASTER_SITES:n</literal> with SourceForge (<literal>SF</literal>) MASTER_SITES= http://site1/ SF/something/1.0:sourceforge,TEST DISTFILES= something.tar.gz:sourceforge something.tar.gz will be fetched from all sites within SourceForge. How do I use this with PATCH*? All examples were done with MASTER* but they work exactly the same for PATCH* ones as can be seen in . Simplified Use of <literal>MASTER_SITES:n</literal> with <varname>PATCH_SITES</varname> PATCH_SITES= http://site1/ http://site2/:test PATCHFILES= patch1:test What Does Change for Ports? What Does Not? All current ports remain the same. The MASTER_SITES:n feature code is only activated if there are elements postfixed with :n like elements according to the aforementioned syntax rules, especially as shown in item . The port targets remain the same: checksum, makesum, patch, configure, build, etc. With the obvious exceptions of do-fetch, fetch-list, master-sites and patch-sites. do-fetch: deploys the new grouping postfixed DISTFILES and PATCHFILES with their matching group elements within both MASTER_SITES and PATCH_SITES which use matching group elements within both MASTER_SITE_SUBDIR and PATCH_SITE_SUBDIR. Check . fetch-list: works like old fetch-list with the exception that it groups just like do-fetch. master-sites and patch-sites: (incompatible with older versions) only return the elements of group DEFAULT; in fact, they execute targets master-sites-default and patch-sites-default respectively. Furthermore, using target either master-sites-all or patch-sites-all is preferred to directly checking either MASTER_SITES or PATCH_SITES. Also, directly checking is not guaranteed to work in any future versions. Check item for more information on these new port targets. New port targets There are master-sites-n and patch-sites-n targets which will list the elements of the respective group n within MASTER_SITES and PATCH_SITES respectively. For instance, both master-sites-DEFAULT and patch-sites-DEFAULT will return the elements of group DEFAULT, master-sites-test and patch-sites-test of group test, and thereon. There are new targets master-sites-all and patch-sites-all which do the work of the old master-sites and patch-sites ones. They return the elements of all groups as if they all belonged to the same group with the caveat that it lists as many MASTER_SITE_BACKUP and MASTER_SITE_OVERRIDE as there are groups defined within either DISTFILES or PATCHFILES; respectively for master-sites-all and patch-sites-all. <varname>DIST_SUBDIR</varname> Do not let the port clutter /usr/ports/distfiles. If the port requires a lot of files to be fetched, or contains a file that has a name that might conflict with other ports (for example, Makefile), set DIST_SUBDIR to the name of the port (${PORTNAME} or ${PKGNAMEPREFIX}${PORTNAME} are fine). This will change DISTDIR from the default /usr/ports/distfiles to /usr/ports/distfiles/${DIST_SUBDIR}, and in effect puts everything that is required for the port into that subdirectory. It will also look at the subdirectory with the same name on the backup master site at http://distcache.FreeBSD.org (Setting DISTDIR explicitly in Makefile will not accomplish this, so please use DIST_SUBDIR.) This does not affect MASTER_SITES defined in the Makefile.
<varname>MAINTAINER</varname> Set your mail-address here. Please. :-) Only a single address without the comment part is allowed as a MAINTAINER value. The format used is user@hostname.domain. Please do not include any descriptive text such as a real name in this entry. That merely confuses the Ports infrastructure and most tools using it. The maintainer is responsible for keeping the port up to date and making sure that it works correctly. For a detailed description of the responsibilities of a port maintainer, refer to The challenge for port maintainers. A maintainer volunteers to keep a port in good working order. Maintainers have the primary responsibility for their ports, but not exclusive ownership. Ports exist for the benefit of the community and, in reality, belong to the community. What this means is that people other than the maintainer can make changes to a port. Large changes to the Ports Collection might require changes to many ports. The &os; Ports Management Team or members of other teams might modify ports to fix dependency issues or other problems, like a version bump for a shared library update. Some types of fixes have blanket approval from the &a.portmgr;, allowing any committer to fix those categories of problems on any port. These fixes do not need - approval from the maintainer. Blanket approval does not apply - to ports that are maintained by teams like autotools@FreeBSD.org, x11@FreeBSD.org, gnome@FreeBSD.org, or kde@FreeBSD.org. These teams use - external repositories and can have work that would conflict - with changes that would normally fall under blanket - approval. + approval from the maintainer. Blanket approval for most ports applies to fixes like infrastructure changes, or trivial and tested build and runtime fixes. The current list is available in Ports section of the Committer's Guide. Other changes to the port will be sent to the maintainer for review and approval before being committed. If the maintainer does not respond to an update request after two weeks (excluding major public holidays), then that is considered a maintainer timeout, and the update can be made without explicit maintainer approval. If the maintainer does not respond within three months, or if there have been three consecutive timeouts, then that maintainer is considered absent without leave, and all of their ports can be assigned back to the pool. Exceptions to this are anything maintained by the &a.portmgr;, or the &a.security-officer;. No unauthorized commits may ever be made to ports maintained by those groups. We reserve the right to modify the maintainer's submission to better match existing policies and style of the Ports Collection without explicit blessing from the submitter or the maintainer. Also, large infrastructural changes can result in a port being modified without the maintainer's consent. These kinds of changes will never affect the port's functionality. The &a.portmgr; reserves the right to revoke or override anyone's maintainership for any reason, and the &a.security-officer; reserves the right to revoke or override maintainership for security reasons. <varname>COMMENT</varname> The comment is a one-line description of a port shown by pkg info. Please follow these rules when composing it: The COMMENT string should be 70 characters or less. Do not include the package name or version number of software. The comment must begin with a capital and end without a period. Do not start with an indefinite article (that is, A or An). Capitalize names such as Apache, JavaScript, or Perl. Use a serial comma for lists of words: "green, red, and blue." Check for spelling errors. Here is an example: COMMENT= Cat chasing a mouse all over the screen The COMMENT variable immediately follows the MAINTAINER variable in the Makefile. Licenses Each port must document the license under which it is available. If it is not an OSI approved license it must also document any restrictions on redistribution. <varname>LICENSE</varname> A short name for the license or licenses if more than one license apply. If it is one of the licenses listed in , only LICENSE_FILE and LICENSE_DISTFILES variables can be set. If this is a license that has not been defined in the ports framework (see ), the LICENSE_PERMS and LICENSE_NAME must be set, along with either LICENSE_FILE or LICENSE_TEXT. LICENSE_DISTFILES and LICENSE_GROUPS can also be set, but are not required. The predefined licenses are shown in . The current list is always available in Mk/bsd.licenses.db.mk. Simplest Usage, Predefined Licenses When the README of some software says This software is under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. but does not provide the license file, use this: LICENSE= LGPL21+ When the software provides the license file, use this: LICENSE= LGPL21+ LICENSE_FILE= ${WRKSRC}/COPYING For the predefined licenses, the default permissions are dist-mirror dist-sell pkg-mirror pkg-sell auto-accept. Predefined License List Short Name Name Group Permissions AGPLv3 GNU Affero General Public License version 3 FSF GPL OSI (default) AGPLv3+ GNU Affero General Public License version 3 (or later) FSF GPL OSI (default) APACHE10 Apache License 1.0 FSF (default) APACHE11 Apache License 1.1 FSF OSI (default) APACHE20 Apache License 2.0 FSF OSI (default) ART10 Artistic License version 1.0 OSI (default) ART20 Artistic License version 2.0 FSF GPL OSI (default) ARTPERL10 Artistic License (perl) version 1.0 OSI (default) BSD BSD license Generic Version (deprecated) FSF OSI COPYFREE (default) BSD2CLAUSE BSD 2-clause "Simplified" License FSF OSI COPYFREE (default) BSD3CLAUSE BSD 3-clause "New" or "Revised" License FSF OSI COPYFREE (default) BSD4CLAUSE BSD 4-clause "Original" or "Old" License FSF (default) BSL Boost Software License FSF OSI COPYFREE (default) CC-BY-1.0 Creative Commons Attribution 1.0 (default) CC-BY-2.0 Creative Commons Attribution 2.0 (default) CC-BY-2.5 Creative Commons Attribution 2.5 (default) CC-BY-3.0 Creative Commons Attribution 3.0 (default) CC-BY-4.0 Creative Commons Attribution 4.0 (default) CC-BY-NC-1.0 Creative Commons Attribution Non Commercial 1.0 dist-mirror pkg-mirror auto-accept CC-BY-NC-2.0 Creative Commons Attribution Non Commercial 2.0 dist-mirror pkg-mirror auto-accept CC-BY-NC-2.5 Creative Commons Attribution Non Commercial 2.5 dist-mirror pkg-mirror auto-accept CC-BY-NC-3.0 Creative Commons Attribution Non Commercial 3.0 dist-mirror pkg-mirror auto-accept CC-BY-NC-4.0 Creative Commons Attribution Non Commercial 4.0 dist-mirror pkg-mirror auto-accept CC-BY-NC-ND-1.0 Creative Commons Attribution Non Commercial No Derivatives 1.0 dist-mirror pkg-mirror auto-accept CC-BY-NC-ND-2.0 Creative Commons Attribution Non Commercial No Derivatives 2.0 dist-mirror pkg-mirror auto-accept CC-BY-NC-ND-2.5 Creative Commons Attribution Non Commercial No Derivatives 2.5 dist-mirror pkg-mirror auto-accept CC-BY-NC-ND-3.0 Creative Commons Attribution Non Commercial No Derivatives 3.0 dist-mirror pkg-mirror auto-accept CC-BY-NC-ND-4.0 Creative Commons Attribution Non Commercial No Derivatives 4.0 dist-mirror pkg-mirror auto-accept CC-BY-NC-SA-1.0 Creative Commons Attribution Non Commercial Share Alike 1.0 dist-mirror pkg-mirror auto-accept CC-BY-NC-SA-2.0 Creative Commons Attribution Non Commercial Share Alike 2.0 dist-mirror pkg-mirror auto-accept CC-BY-NC-SA-2.5 Creative Commons Attribution Non Commercial Share Alike 2.5 dist-mirror pkg-mirror auto-accept CC-BY-NC-SA-3.0 Creative Commons Attribution Non Commercial Share Alike 3.0 dist-mirror pkg-mirror auto-accept CC-BY-NC-SA-4.0 Creative Commons Attribution Non Commercial Share Alike 4.0 dist-mirror pkg-mirror auto-accept CC-BY-ND-1.0 Creative Commons Attribution No Derivatives 1.0 (default) CC-BY-ND-2.0 Creative Commons Attribution No Derivatives 2.0 (default) CC-BY-ND-2.5 Creative Commons Attribution No Derivatives 2.5 (default) CC-BY-ND-3.0 Creative Commons Attribution No Derivatives 3.0 (default) CC-BY-ND-4.0 Creative Commons Attribution No Derivatives 4.0 (default) CC-BY-SA-1.0 Creative Commons Attribution Share Alike 1.0 (default) CC-BY-SA-2.0 Creative Commons Attribution Share Alike 2.0 (default) CC-BY-SA-2.5 Creative Commons Attribution Share Alike 2.5 (default) CC-BY-SA-3.0 Creative Commons Attribution Share Alike 3.0 (default) CC-BY-SA-4.0 Creative Commons Attribution Share Alike 4.0 (default) CC0-1.0 Creative Commons Zero v1.0 Universal FSF GPL COPYFREE (default) CDDL Common Development and Distribution License FSF OSI (default) CPAL-1.0 Common Public Attribution License FSF OSI (default) ClArtistic Clarified Artistic License FSF GPL OSI (default) EPL Eclipse Public License FSF OSI (default) GFDL GNU Free Documentation License FSF (default) GMGPL GNAT Modified General Public License FSF GPL OSI (default) GPLv1 GNU General Public License version 1 FSF GPL OSI (default) GPLv1+ GNU General Public License version 1 (or later) FSF GPL OSI (default) GPLv2 GNU General Public License version 2 FSF GPL OSI (default) GPLv2+ GNU General Public License version 2 (or later) FSF GPL OSI (default) GPLv3 GNU General Public License version 3 FSF GPL OSI (default) GPLv3+ GNU General Public License version 3 (or later) FSF GPL OSI (default) GPLv3RLE GNU GPL version 3 Runtime Library Exception FSF GPL OSI (default) GPLv3RLE+ GNU GPL version 3 Runtime Library Exception (or later) FSF GPL OSI (default) ISCL Internet Systems Consortium License FSF GPL OSI COPYFREE (default) LGPL20 GNU Library General Public License version 2.0 FSF GPL OSI (default) LGPL20+ GNU Library General Public License version 2.0 (or later) FSF GPL OSI (default) LGPL21 GNU Lesser General Public License version 2.1 FSF GPL OSI (default) LGPL21+ GNU Lesser General Public License version 2.1 (or later) FSF GPL OSI (default) LGPL3 GNU Lesser General Public License version 3 FSF GPL OSI (default) LGPL3+ GNU Lesser General Public License version 3 (or later) FSF GPL OSI (default) LPPL10 LaTeX Project Public License version 1.0 FSF OSI dist-mirror dist-sell LPPL11 LaTeX Project Public License version 1.1 FSF OSI dist-mirror dist-sell LPPL12 LaTeX Project Public License version 1.2 FSF OSI dist-mirror dist-sell LPPL13 LaTeX Project Public License version 1.3 FSF OSI dist-mirror dist-sell LPPL13a LaTeX Project Public License version 1.3a FSF OSI dist-mirror dist-sell LPPL13b LaTeX Project Public License version 1.3b FSF OSI dist-mirror dist-sell LPPL13c LaTeX Project Public License version 1.3c FSF OSI dist-mirror dist-sell MIT MIT license / X11 license COPYFREE FSF GPL OSI (default) MPL10 Mozilla Public License version 1.0 FSF OSI (default) MPL11 Mozilla Public License version 1.1 FSF OSI (default) MPL20 Mozilla Public License version 2.0 FSF OSI (default) NCSA University of Illinois/NCSA Open Source License COPYFREE FSF GPL OSI (default) NONE No license specified none OFL10 SIL Open Font License version 1.0 (http://scripts.sil.org/OFL) FONTS (default) OFL11 SIL Open Font License version 1.1 (http://scripts.sil.org/OFL) FONTS (default) OWL Open Works License (owl.apotheon.org) COPYFREE (default) OpenSSL OpenSSL License FSF (default) PD Public Domain GPL COPYFREE (default) PHP202 PHP License version 2.02 FSF OSI (default) PHP30 PHP License version 3.0 FSF OSI (default) PHP301 PHP License version 3.01 FSF OSI (default) PSFL Python Software Foundation License FSF GPL OSI (default) PostgreSQL PostgreSQL Licence FSF GPL OSI COPYFREE (default) RUBY Ruby License FSF (default) UNLICENSE The Unlicense COPYFREE FSF GPL (default) WTFPL Do What the Fuck You Want To Public License version 2 GPL FSF COPYFREE (default) WTFPL1 Do What the Fuck You Want To Public License version 1 GPL FSF COPYFREE (default) ZLIB zlib License GPL FSF OSI (default) ZPL21 Zope Public License version 2.1 GPL OSI (default)
<varname>LICENSE_PERMS</varname> and <varname>LICENSE_PERMS_<replaceable>NAME</replaceable></varname> Permissions. use none if empty. License Permissions List dist-mirror Redistribution of the distribution files is permitted. The distribution files will be added to the &os; MASTER_SITE_BACKUP CDN. no-dist-mirror Redistribution of the distribution files is prohibited. This is equivalent to setting RESTRICTED. The distribution files will not be added to the &os; MASTER_SITE_BACKUP CDN. dist-sell Selling of distribution files is permitted. The distribution files will be present on the installer images. no-dist-sell Selling of distribution files is prohibited. This is equivalent to setting NO_CDROM. pkg-mirror Free redistribution of package is permitted. The package will be distributed on the &os; package CDN https://pkg.freebsd.org/. no-pkg-mirror Free redistribution of package is prohibited. Equivalent to setting NO_PACKAGE. The package will not be distributed from the &os; package CDN https://pkg.freebsd.org/. pkg-sell Selling of package is permitted. The package will be present on the installer images. no-pkg-sell Selling of package is prohibited. This is equivalent to setting NO_CDROM. The package will not be present on the installer images. auto-accept License is accepted by default. Prompts to accept a license are not displayed unless the user has defined LICENSES_ASK. Use this unless the license states the user must accept the terms of the license. no-auto-accept License is not accepted by default. The user will always be asked to confirm the acceptance of this license. This must be used if the license states that the user must accept its terms. When both permission and no-permission is present the no-permission will cancel permission. When permission is not present, it is considered to be a no-permission. Some missing permissions will prevent a port (and all ports depending on it) from being usable by package users: A port without the auto-accept permission will never be be built and all the ports depending on it will be ignored. A port without the pkg-mirror permission will be removed, as well as all the ports depending on it, after the build and they will ever end up being distributed. Nonstandard License Read the terms of the license and translate those using the available permissions. LICENSE= UNKNOWN LICENSE_NAME= unknown LICENSE_TEXT= This program is NOT in public domain.\ It can be freely distributed for non-commercial purposes only. LICENSE_PERMS= dist-mirror no-dist-sell pkg-mirror no-pkg-sell auto-accept Standard and Nonstandard Licenses Read the terms of the license and express those using the available permissions. In case of doubt, please ask for guidance on the &a.ports;. LICENSE= WARSOW GPLv2 LICENSE_COMB= multi LICENSE_NAME_WARSOW= Warsow Content License LICENSE_FILE_WARSOW= ${WRKSRC}/docs/license.txt LICENSE_PERMS_WARSOW= dist-mirror pkg-mirror auto-accept When the permissions of the GPLv2 and the UNKNOWN licenses are mixed, the port ends up with dist-mirror dist-sell pkg-mirror pkg-sell auto-accept dist-mirror no-dist-sell pkg-mirror no-pkg-sell auto-accept. The no-permissions cancel the permissions. The resulting list of permissions are dist-mirror pkg-mirror auto-accept. The distribution files and the packages will not be available on the installer images. <varname>LICENSE_GROUPS</varname> and <varname>LICENSE_GROUPS_<replaceable>NAME</replaceable></varname> Groups the license belongs. Predefined License Groups List FSF Free Software Foundation Approved, see the FSF Licensing & Compliance Team. GPL GPL Compatible OSI OSI Approved, see the Open Source Initiative Open Source Licenses page. COPYFREE Comply with Copyfree Standard Definition, see the Copyfree Licenses page. FONTS Font licenses <varname>LICENSE_NAME</varname> and <varname>LICENSE_NAME_<replaceable>NAME</replaceable></varname> Full name of the license. <varname>LICENSE_NAME</varname> LICENSE= UNRAR LICENSE_NAME= UnRAR License LICENSE_FILE= ${WRKSRC}/license.txt LICENSE_PERMS= dist-mirror dist-sell pkg-mirror pkg-sell auto-accept <varname>LICENSE_FILE</varname> and <varname>LICENSE_FILE_<replaceable>NAME</replaceable></varname> Full path to the file containing the license text, usually ${WRKSRC}/some/file. If the file is not in the distfile, and its content is too long to be put in LICENSE_TEXT, put it in a new file in ${FILESDIR}. <varname>LICENSE_FILE</varname> LICENSE= GPLv3+ LICENSE_FILE= ${WRKSRC}/COPYING <varname>LICENSE_TEXT</varname> and <varname>LICENSE_TEXT_<replaceable>NAME</replaceable></varname> Text to use as a license. Useful when the license is not in the distribution files and its text is short. <varname>LICENSE_TEXT</varname> LICENSE= UNKNOWN LICENSE_NAME= unknown LICENSE_TEXT= This program is NOT in public domain.\ It can be freely distributed for non-commercial purposes only,\ and THERE IS NO WARRANTY FOR THIS PROGRAM. LICENSE_PERMS= dist-mirror no-dist-sell pkg-mirror no-pkg-sell auto-accept <varname>LICENSE_DISTFILES</varname> and <varname>LICENSE_DISTFILES_<replaceable>NAME</replaceable></varname> The distribution files to which the licenses apply. Defaults to all the distribution files. <varname>LICENSE_DISTFILES</varname> Used when the distribution files do not all have the same license. For example, one has a code license, and another has some artwork that cannot be redistributed: MASTER_SITES= SF/some-game DISTFILES= ${DISTNAME}${EXTRACT_SUFX} artwork.zip LICENSE= BSD3CLAUSE ARTWORK LICENSE_COMB= dual LICENSE_NAME_ARTWORK= The game artwork license LICENSE_TEXT_ARTWORK= The README says that the files cannot be redistributed LICENSE_PERMS_ARTWORK= pkg-mirror pkg-sell auto-accept LICENSE_DISTFILES_BSD3CLAUSE= ${DISTNAME}${EXTRACT_SUFX} LICENSE_DISTFILES_ARTWORK= artwork.zip <varname>LICENSE_COMB</varname> Set to multi if all licenses apply. Set to dual if any license applies. Defaults to single. Dual Licenses When a port says This software may be distributed under the GNU General Public License or the Artistic License, it means that either license can be used. Use this: LICENSE= ART10 GPLv1 LICENSE_COMB= dual If license files are provided, use this: LICENSE= ART10 GPLv1 LICENSE_COMB= dual LICENSE_FILE_ART10= ${WRKSRC}/Artistic LICENSE_FILE_GPLv1= ${WRKSRC}/Copying Multiple Licenses When part of a port has one license, and another part has a different license, use multi: LICENSE= GPLv2 LGPL21+ LICENSE_COMB= multi
<varname>PORTSCOUT</varname> Portscout is an automated distfile check utility for the &os; Ports Collection, described in detail in . PORTSCOUT defines special conditions within which the Portscout distfile scanner is restricted. Situations where PORTSCOUT is set include: When distfiles have to be ignored, whether for specific versions, or specific minor revisions. For example, to exclude version 8.2 from distfile version checks because it is known to be broken, add: PORTSCOUT= ignore:8.2 When specific versions or specific major and minor revisions of a distfile must be checked. For example, if only version 0.6.4 must be monitored because newer versions have compatibility issues with &os;, add: PORTSCOUT= limit:^0\.6\.4 When URLs listing the available versions differ from the download URLs. For example, to limit distfile version checks to the download page for the databases/pgtune port, add: PORTSCOUT= site:http://pgfoundry.org/frs/?group_id=1000416 Dependencies Many ports depend on other ports. This is a very convenient feature of most Unix-like operating systems, including &os;. Multiple ports can share a common dependency, rather than bundling that dependency with every port or package that needs it. There are seven variables that can be used to ensure that all the required bits will be on the user's machine. There are also some pre-supported dependency variables for common cases, plus a few more to control the behavior of dependencies. <varname>LIB_DEPENDS</varname> This variable specifies the shared libraries this port depends on. It is a list of lib:dir tuples where lib is the name of the shared library, dir is the directory in which to find it in case it is not available. For example, LIB_DEPENDS= libjpeg.so:graphics/jpeg will check for a shared jpeg library with any version, and descend into the graphics/jpeg subdirectory of the ports tree to build and install it if it is not found. The dependency is checked twice, once from within the build target and then from within the install target. Also, the name of the dependency is put into the package so that pkg install (see &man.pkg-install.8;) will automatically install it if it is not on the user's system. <varname>RUN_DEPENDS</varname> This variable specifies executables or files this port depends on during run-time. It is a list of path:dir:target tuples where path is the name of the executable or file, dir is the directory in which to find it in case it is not available, and target is the target to call in that directory. If path starts with a slash (/), it is treated as a file and its existence is tested with test -e; otherwise, it is assumed to be an executable, and which -s is used to determine if the program exists in the search path. For example, RUN_DEPENDS= ${LOCALBASE}/news/bin/innd:news/inn \ xmlcatmgr:textproc/xmlcatmgr will check if the file or directory /usr/local/news/bin/innd exists, and build and install it from the news/inn subdirectory of the ports tree if it is not found. It will also see if an executable called xmlcatmgr is in the search path, and descend into textproc/xmlcatmgr to build and install it if it is not found. In this case, innd is actually an executable; if an executable is in a place that is not expected to be in the search path, use the full pathname. The official search PATH used on the ports build cluster is /sbin:/bin:/usr/sbin:/usr/bin:/usr/local/sbin:/usr/local/bin The dependency is checked from within the install target. Also, the name of the dependency is put into the package so that pkg install (see &man.pkg-install.8;) will automatically install it if it is not on the user's system. The target part can be omitted if it is the same as DEPENDS_TARGET. A quite common situation is when RUN_DEPENDS is literally the same as BUILD_DEPENDS, especially if ported software is written in a scripted language or if it requires the same build and run-time environment. In this case, it is both tempting and intuitive to directly assign one to the other: RUN_DEPENDS= ${BUILD_DEPENDS} However, such assignment can pollute run-time dependencies with entries not defined in the port's original BUILD_DEPENDS. This happens because of &man.make.1;'s lazy evaluation of variable assignment. Consider a Makefile with USE_*, which are processed by ports/Mk/bsd.*.mk to augment initial build dependencies. For example, USES= gmake adds devel/gmake to BUILD_DEPENDS. To prevent such additional dependencies from polluting RUN_DEPENDS, create another variable with the current content of BUILD_DEPENDS and assign it to both BUILD_DEPENDS and RUN_DEPENDS: MY_DEPENDS= some:devel/some \ other:lang/other BUILD_DEPENDS= ${MY_DEPENDS} RUN_DEPENDS= ${MY_DEPENDS} Do not use := to assign BUILD_DEPENDS to RUN_DEPENDS or vice-versa. All variables are expanded immediately, which is exactly the wrong thing to do and almost always a failure. <varname>BUILD_DEPENDS</varname> This variable specifies executables or files this port requires to build. Like RUN_DEPENDS, it is a list of path:dir:target tuples. For example, BUILD_DEPENDS= unzip:archivers/unzip will check for an executable called unzip, and descend into the archivers/unzip subdirectory of the ports tree to build and install it if it is not found. build here means everything from extraction to compilation. The dependency is checked from within the extract target. The target part can be omitted if it is the same as DEPENDS_TARGET <varname>FETCH_DEPENDS</varname> This variable specifies executables or files this port requires to fetch. Like the previous two, it is a list of path:dir:target tuples. For example, FETCH_DEPENDS= ncftp2:net/ncftp2 will check for an executable called ncftp2, and descend into the net/ncftp2 subdirectory of the ports tree to build and install it if it is not found. The dependency is checked from within the fetch target. The target part can be omitted if it is the same as DEPENDS_TARGET. <varname>EXTRACT_DEPENDS</varname> This variable specifies executables or files this port requires for extraction. Like the previous, it is a list of path:dir:target tuples. For example, EXTRACT_DEPENDS= unzip:archivers/unzip will check for an executable called unzip, and descend into the archivers/unzip subdirectory of the ports tree to build and install it if it is not found. The dependency is checked from within the extract target. The target part can be omitted if it is the same as DEPENDS_TARGET. Use this variable only if the extraction does not already work (the default assumes tar) and cannot be made to work using USES=tar, USES=lha or USES=zip described in . <varname>PATCH_DEPENDS</varname> This variable specifies executables or files this port requires to patch. Like the previous, it is a list of path:dir:target tuples. For example, PATCH_DEPENDS= ${NONEXISTENT}:java/jfc:extract will descend into the java/jfc subdirectory of the ports tree to extract it. The dependency is checked from within the patch target. The target part can be omitted if it is the same as DEPENDS_TARGET. <varname>USES</varname> Parameters can be added to define different features and dependencies used by the port. They are specified by adding this line to the Makefile: USES= feature[:arguments] For the complete list of values, please see . USES cannot be assigned after inclusion of bsd.port.pre.mk. <varname>USE_<replaceable>*</replaceable></varname> Several variables exist to define common dependencies shared by many ports. Their use is optional, but helps to reduce the verbosity of the port Makefiles. Each of them is styled as USE_*. These variables may be used only in the port Makefiles and ports/Mk/bsd.*.mk. They are not meant for user-settable options — use PORT_OPTIONS for that purpose. It is always incorrect to set any USE_* in /etc/make.conf. For instance, setting USE_GCC=X.Y (where X.Y is version number) would add a dependency on gccXY for every port, including lang/gccXY itself! <varname>USE_<replaceable>*</replaceable></varname> Variable Means USE_GCC The port requires GCC (gcc or g++) to build. Some ports need any GCC version, some require modern, recent versions. It is typically set to any (in this case, GCC from base would be used on versions of &os; that still have it, or lang/gcc port would be installed when default C/C++ compiler is Clang); or yes (means always use stable, modern GCC from lang/gcc port). The exact version can also be specified, with a value such as 4.7. The minimal required version can be specified as 4.6+. The GCC from the base system is used when it satisfies the requested version, otherwise an appropriate compiler is built from the port, and CC and CXX are adjusted accordingly. USE_GCC will register a build-time and a run-time dependency.
Variables related to gmake and configure are described in , while autoconf, automake and libtool are described in . Perl related variables are described in . X11 variables are listed in . deals with GNOME and with KDE related variables. documents Java variables, while contains information on Apache, PHP and PEAR modules. Python is discussed in , while Ruby in . provides variables used for SDL applications and finally, contains information on Xfce.
Minimal Version of a Dependency A minimal version of a dependency can be specified in any *_DEPENDS except LIB_DEPENDS using this syntax: p5-Spiffy>=0.26:devel/p5-Spiffy The first field contains a dependent package name, which must match the entry in the package database, a comparison sign, and a package version. The dependency is satisfied if p5-Spiffy-0.26 or newer is installed on the machine. Notes on Dependencies As mentioned above, the default target to call when a dependency is required is DEPENDS_TARGET. It defaults to install. This is a user variable; it is never defined in a port's Makefile. If the port needs a special way to handle a dependency, use the :target part of *_DEPENDS instead of redefining DEPENDS_TARGET. When running make clean, the port dependencies are automatically cleaned too. If this is not desirable, define NOCLEANDEPENDS in the environment. This may be particularly desirable if the port has something that takes a long time to rebuild in its dependency list, such as KDE, GNOME or Mozilla. To depend on another port unconditionally, use the variable ${NONEXISTENT} as the first field of BUILD_DEPENDS or RUN_DEPENDS. Use this only when the source of the other port is needed. Compilation time can be saved by specifying the target too. For instance BUILD_DEPENDS= ${NONEXISTENT}:graphics/jpeg:extract will always descend to the jpeg port and extract it. Circular Dependencies Are Fatal Do not introduce any circular dependencies into the ports tree! The ports building technology does not tolerate circular dependencies. If one is introduced, someone, somewhere in the world, will have their &os; installation broken almost immediately, with many others quickly to follow. These can really be hard to detect. If in doubt, before making that change, make sure to run: cd /usr/ports; make index. That process can be quite slow on older machines, but it may be able to save a large number of people, including yourself, a lot of grief in the process. Problems Caused by Automatic Dependencies Dependencies must be declared either explicitly or by using the OPTIONS framework. Using other methods like automatic detection complicates indexing, which causes problems for port and package management. Wrong Declaration of an Optional Dependency .include <bsd.port.pre.mk> .if exists(${LOCALBASE}/bin/foo) LIB_DEPENDS= libbar.so:foo/bar .endif The problem with trying to automatically add dependencies is that files and settings outside an individual port can change at any time. For example: an index is built, then a batch of ports are installed. But one of the ports installs the tested file. The index is now incorrect, because an installed port unexpectedly has a new dependency. The index may still be wrong even after rebuilding if other ports also determine their need for dependencies based on the existence of other files. Correct Declaration of an Optional Dependency OPTIONS_DEFINE= BAR BAR_DESC= Calling cellphones via bar BAR_LIB_DEPENDS= libbar.so:foo/bar Testing option variables is the correct method. It will not cause inconsistencies in the index of a batch of ports, provided the options were defined prior to the index build. Simple scripts can then be used to automate the building, installation, and updating of these ports and their packages.
Slave Ports and <varname>MASTERDIR</varname> If the port needs to build slightly different versions of packages by having a variable (for instance, resolution, or paper size) take different values, create one subdirectory per package to make it easier for users to see what to do, but try to share as many files as possible between ports. Typically, by using variables cleverly, only a very short Makefile is needed in all but one of the directories. In the sole Makefile, use MASTERDIR to specify the directory where the rest of the files are. Also, use a variable as part of PKGNAMESUFFIX so the packages will have different names. This will be best demonstrated by an example. This is part of print/pkfonts300/Makefile; PORTNAME= pkfonts${RESOLUTION} PORTVERSION= 1.0 DISTFILES= pk${RESOLUTION}.tar.gz PLIST= ${PKGDIR}/pkg-plist.${RESOLUTION} .if !defined(RESOLUTION) RESOLUTION= 300 .else .if ${RESOLUTION} != 118 && ${RESOLUTION} != 240 && \ ${RESOLUTION} != 300 && ${RESOLUTION} != 360 && \ ${RESOLUTION} != 400 && ${RESOLUTION} != 600 .BEGIN: @${ECHO_MSG} "Error: invalid value for RESOLUTION: \"${RESOLUTION}\"" @${ECHO_MSG} "Possible values are: 118, 240, 300, 360, 400 and 600." @${FALSE} .endif .endif print/pkfonts300 also has all the regular patches, package files, etc. Running make there, it will take the default value for the resolution (300) and build the port normally. As for other resolutions, this is the entire print/pkfonts360/Makefile: RESOLUTION= 360 MASTERDIR= ${.CURDIR}/../pkfonts300 .include "${MASTERDIR}/Makefile" (print/pkfonts118/Makefile, print/pkfonts600/Makefile, and all the other are similar). MASTERDIR definition tells bsd.port.mk that the regular set of subdirectories like FILESDIR and SCRIPTDIR are to be found under pkfonts300. The RESOLUTION=360 line will override the RESOLUTION=300 line in pkfonts300/Makefile and the port will be built with resolution set to 360. Man Pages If the port anchors its man tree somewhere other than PREFIX, use MANDIRS to specify those directories. Note that the files corresponding to manual pages must be placed in pkg-plist along with the rest of the files. The purpose of MANDIRS is to enable automatic compression of manual pages, therefore the file names are suffixed with .gz. Info Files If the package needs to install GNU info files, list them in INFO (without the trailing .info), one entry per document. These files are assumed to be installed to PREFIX/INFO_PATH. Change INFO_PATH if the package uses a different location. However, this is not recommended. These entries contain just the path relative to PREFIX/INFO_PATH. For example, lang/gcc34 installs info files to PREFIX/INFO_PATH/gcc34, and INFO will be something like this: INFO= gcc34/cpp gcc34/cppinternals gcc34/g77 ... Appropriate installation/de-installation code will be automatically added to the temporary pkg-plist before package registration. Makefile Options Many applications can be built with optional or differing configurations. Examples include choice of natural (human) language, GUI versus command-line, or type of database to support. Users may need a different configuration than the default, so the ports system provides hooks the port author can use to control which variant will be built. Supporting these options properly will make users happy, and effectively provide two or more ports for the price of one. <varname>OPTIONS</varname> Background OPTIONS_* give the user installing the port a dialog showing the available options, and then saves those options to ${PORT_DBDIR}/${OPTIONS_NAME}/options. The next time the port is built, the options are reused. PORT_DBDIR defaults to /var/db/ports. OPTIONS_NAME is to the port origin with an underscore as the space separator, for example, for dns/bind99 it will be dns_bind99. When the user runs make config (or runs make build for the first time), the framework checks for ${PORT_DBDIR}/${OPTIONS_NAME}/options. If that file does not exist, the values of OPTIONS_* are used, and a dialog box is displayed where the options can be enabled or disabled. Then options is saved and the configured variables are used when building the port. If a new version of the port adds new OPTIONS, the dialog will be presented to the user with the saved values of old OPTIONS prefilled. make showconfig shows the saved configuration. Use make rmconfig to remove the saved configuration. Syntax OPTIONS_DEFINE contains a list of OPTIONS to be used. These are independent of each other and are not grouped: OPTIONS_DEFINE= OPT1 OPT2 Once defined, OPTIONS are described (optional, but strongly recommended): OPT1_DESC= Describe OPT1 OPT2_DESC= Describe OPT2 OPT3_DESC= Describe OPT3 OPT4_DESC= Describe OPT4 OPT5_DESC= Describe OPT5 OPT6_DESC= Describe OPT6 ports/Mk/bsd.options.desc.mk has descriptions for many common OPTIONS. While often useful, override them if the description is insufficient for the port. When describing options, view it from the perspective of the user: What functionality does it change? and Why would I want to enable this? Do not just repeat the name. For example, describing the NLS option as include NLS support does not help the user, who can already see the option name but may not know what it means. Describing it as Native Language Support via gettext utilities is much more helpful. Option names are always in all uppercase. They cannot use mixed case or lowercase. OPTIONS can be grouped as radio choices, where only one choice from each group is allowed: OPTIONS_SINGLE= SG1 OPTIONS_SINGLE_SG1= OPT3 OPT4 There must be one of each OPTIONS_SINGLE group selected at all times for the options to be valid. One option of each group must be added to OPTIONS_DEFAULT. OPTIONS can be grouped as radio choices, where none or only one choice from each group is allowed: OPTIONS_RADIO= RG1 OPTIONS_RADIO_RG1= OPT7 OPT8 OPTIONS can also be grouped as multiple-choice lists, where at least one option must be enabled: OPTIONS_MULTI= MG1 OPTIONS_MULTI_MG1= OPT5 OPT6 OPTIONS can also be grouped as multiple-choice lists, where none or any option can be enabled: OPTIONS_GROUP= GG1 OPTIONS_GROUP_GG1= OPT9 OPT10 OPTIONS are unset by default, unless they are listed in OPTIONS_DEFAULT: OPTIONS_DEFAULT= OPT1 OPT3 OPT6 OPTIONS definitions must appear before the inclusion of bsd.port.options.mk. PORT_OPTIONS values can only be tested after the inclusion of bsd.port.options.mk. Inclusion of bsd.port.pre.mk can be used instead, too, and is still widely used in ports written before the introduction of bsd.port.options.mk. But be aware that some variables will not work as expected after the inclusion of bsd.port.pre.mk, typically some USE_* flags. Simple Use of <varname>OPTIONS</varname> OPTIONS_DEFINE= FOO BAR OPTIONS_DEFAULT=FOO FOO_DESC= Option foo support BAR_DESC= Feature bar support # Will add --with-foo / --without-foo FOO_CONFIGURE_WITH= foo BAR_RUN_DEPENDS= bar:bar/bar .include <bsd.port.mk> Check for Unset Port <varname>OPTIONS</varname> .if ! ${PORT_OPTIONS:MEXAMPLES} CONFIGURE_ARGS+=--without-examples .endif The form shown above is discouraged. The preferred method is using a configure knob to really enable and disable the feature to match the option: # Will add --with-examples / --without-examples EXAMPLES_CONFIGURE_WITH= examples Practical Use of <varname>OPTIONS</varname> OPTIONS_DEFINE= EXAMPLES OPTIONS_DEFAULT= PGSQL LDAP SSL OPTIONS_SINGLE= BACKEND OPTIONS_SINGLE_BACKEND= MYSQL PGSQL BDB OPTIONS_MULTI= AUTH OPTIONS_MULTI_AUTH= LDAP PAM SSL EXAMPLES_DESC= Install extra examples MYSQL_DESC= Use MySQL as backend PGSQL_DESC= Use PostgreSQL as backend BDB_DESC= Use Berkeley DB as backend LDAP_DESC= Build with LDAP authentication support PAM_DESC= Build with PAM support SSL_DESC= Build with OpenSSL support # Will add USE_PGSQL=yes PGSQL_USE= pgsql=yes # Will add --enable-postgres / --disable-postgres PGSQL_CONFIGURE_ENABLE= postgres ICU_LIB_DEPENDS= libicuuc.so:devel/icu # Will add --with-examples / --without-examples EXAMPLES_CONFIGURE_WITH= examples # Check other OPTIONS .include <bsd.port.mk> Default Options These options are always on by default. DOCS — build and install documentation. NLS — Native Language Support. EXAMPLES — build and install examples. IPV6 — IPv6 protocol support. There is no need to add these to OPTIONS_DEFAULT. To have them active, and show up in the options selection dialog, however, they must be added to OPTIONS_DEFINE. Feature Auto-Activation When using a GNU configure script, keep an eye on which optional features are activated by auto-detection. Explicitly disable optional features that are not needed by adding --without-xxx or --disable-xxx in CONFIGURE_ARGS. Wrong Handling of an Option .if ${PORT_OPTIONS:MFOO} LIB_DEPENDS+= libfoo.so:devel/foo CONFIGURE_ARGS+= --enable-foo .endif In the example above, imagine a library libfoo is installed on the system. The user does not want this application to use libfoo, so he toggled the option off in the make config dialog. But the application's configure script detects the library present in the system and includes its support in the resulting executable. Now when the user decides to remove libfoo from the system, the ports system does not protest (no dependency on libfoo was recorded) but the application breaks. Correct Handling of an Option FOO_LIB_DEPENDS= libfoo.so:devel/foo # Will add --enable-foo / --disable-foo FOO_CONFIGURE_ENABLE= foo Under some circumstances, the shorthand conditional syntax can cause problems with complex constructs. The errors are usually Malformed conditional, an alternative syntax can be used. .if !empty(VARIABLE:MVALUE) as an alternative to .if ${VARIABLE:MVALUE} Options Helpers There are some macros to help simplify conditional values which differ based on the options set. For easier access, a comprehensive list is provided: PLIST_SUB, SUB_LIST For automatic %%OPT%% and %%NO_OPT%% generation, see . For more complex usage, see . CONFIGURE_ARGS For --enable-x and --disable-x, see . For --with-x and --without-x, see . For all other cases, see . CMAKE_ARGS For arguments that are booleans (on, off, true, false, 0, 1) see . For all other cases, see . MESON_ARGS For arguments that take true or false, see . For arguments that take yes or no, use . For arguments that take enabled or disabled, see . For all other cases, use . QMAKE_ARGS See . USE_* See . *_DEPENDS See . * (Any variable) The most used variables have direct helpers, see . For any variable without a specific helper, see . Options dependencies When an option need another option to work, see . Options conflicts When an option cannot work if another is also enabled, see . Build targets When an option need some extra processing, see . <varname>OPTIONS_SUB</varname> If OPTIONS_SUB is set to yes then each of the options added to OPTIONS_DEFINE will be added to PLIST_SUB and SUB_LIST, for example: OPTIONS_DEFINE= OPT1 OPTIONS_SUB= yes is equivalent to: OPTIONS_DEFINE= OPT1 .include <bsd.port.options.mk> .if ${PORT_OPTIONS:MOPT1} PLIST_SUB+= OPT1="" NO_OPT1="@comment " SUB_LIST+= OPT1="" NO_OPT1="@comment " .else PLIST_SUB+= OPT1="@comment " NO_OPT1="" SUB_LIST+= OPT1="@comment " NO_OPT1="" .endif The value of OPTIONS_SUB is ignored. Setting it to any value will add PLIST_SUB and SUB_LIST entries for all options. <varname><replaceable>OPT</replaceable>_USE</varname> and <varname><replaceable>OPT</replaceable>_USE_OFF</varname> When option OPT is selected, for each key=value pair in OPT_USE, value is appended to the corresponding USE_KEY. If value has spaces in it, replace them with commas and they will be changed back to spaces during processing. OPT_USE_OFF works the same way, but when OPT is not selected. For example: OPTIONS_DEFINE= OPT1 OPT1_USES= xorg OPT1_USE= mysql=yes xorg=x11,xextproto,xext,xrandr OPT1_USE_OFF= openssl=yes is equivalent to: OPTIONS_DEFINE= OPT1 .include <bsd.port.options.mk> .if ${PORT_OPTIONS:MOPT1} USE_MYSQL= yes USES+= xorg USE_XORG= x11 xextproto xext xrandr .else USE_OPENSSL= yes .endif <varname>CONFIGURE_ARGS</varname> Helpers <varname><replaceable>OPT</replaceable>_CONFIGURE_ENABLE</varname> When option OPT is selected, for each entry in OPT_CONFIGURE_ENABLE then --enable-entry is appended to CONFIGURE_ARGS. When option OPT is not selected, --disable-entry is appended to CONFIGURE_ARGS. An optional argument can be specified with an = symbol. This argument is only appended to the --enable-entry configure option. For example: OPTIONS_DEFINE= OPT1 OPT2 OPT1_CONFIGURE_ENABLE= test1 test2 OPT2_CONFIGURE_ENABLE= test2=exhaustive is equivalent to: OPTIONS_DEFINE= OPT1 .include <bsd.port.options.mk> .if ${PORT_OPTIONS:MOPT1} CONFIGURE_ARGS+= --enable-test1 --enable-test2 .else CONFIGURE_ARGS+= --disable-test1 --disable-test2 .endif .if ${PORT_OPTIONS:MOPT2} CONFIGURE_ARGS+= --enable-test2=exhaustive .else CONFIGURE_ARGS+= --disable-test2 .endif <varname><replaceable>OPT</replaceable>_CONFIGURE_WITH</varname> When option OPT is selected, for each entry in OPT_CONFIGURE_WITH then --with-entry is appended to CONFIGURE_ARGS. When option OPT is not selected, --without-entry is appended to CONFIGURE_ARGS. An optional argument can be specified with an = symbol. This argument is only appended to the --with-entry configure option. For example: OPTIONS_DEFINE= OPT1 OPT2 OPT1_CONFIGURE_WITH= test1 OPT2_CONFIGURE_WITH= test2=exhaustive is equivalent to: OPTIONS_DEFINE= OPT1 OPT2 .include <bsd.port.options.mk> .if ${PORT_OPTIONS:MOPT1} CONFIGURE_ARGS+= --with-test1 .else CONFIGURE_ARGS+= --without-test1 .endif .if ${PORT_OPTIONS:MOPT2} CONFIGURE_ARGS+= --with-test2=exhaustive .else CONFIGURE_ARGS+= --without-test2 .endif <varname><replaceable>OPT</replaceable>_CONFIGURE_ON</varname> and <varname><replaceable>OPT</replaceable>_CONFIGURE_OFF</varname> When option OPT is selected, the value of OPT_CONFIGURE_ON, if defined, is appended to CONFIGURE_ARGS. OPT_CONFIGURE_OFF works the same way, but when OPT is not selected. For example: OPTIONS_DEFINE= OPT1 OPT1_CONFIGURE_ON= --add-test OPT1_CONFIGURE_OFF= --no-test is equivalent to: OPTIONS_DEFINE= OPT1 .include <bsd.port.options.mk> .if ${PORT_OPTIONS:MOPT1} CONFIGURE_ARGS+= --add-test .else CONFIGURE_ARGS+= --no-test .endif Most of the time, the helpers in and provide a shorter and more comprehensive functionality. <varname>CMAKE_ARGS</varname> Helpers <varname><replaceable>OPT</replaceable>_CMAKE_ON</varname> and <varname><replaceable>OPT</replaceable>_CMAKE_OFF</varname> When option OPT is selected, the value of OPT_CMAKE_ON, if defined, is appended to CMAKE_ARGS. OPT_CMAKE_OFF works the same way, but when OPT is not selected. For example: OPTIONS_DEFINE= OPT1 OPT1_CMAKE_ON= -DTEST:BOOL=true -DDEBUG:BOOL=true OPT1_CMAKE_OFF= -DOPTIMIZE:BOOL=true is equivalent to: OPTIONS_DEFINE= OPT1 .include <bsd.port.options.mk> .if ${PORT_OPTIONS:MOPT1} CMAKE_ARGS+= -DTEST:BOOL=true -DDEBUG:BOOL=true .else CMAKE_ARGS+= -DOPTIMIZE:BOOL=true .endif See for a shorter helper when the value is boolean. <varname><replaceable>OPT</replaceable>_CMAKE_BOOL</varname> and <varname><replaceable>OPT</replaceable>_CMAKE_BOOL_OFF</varname> When option OPT is selected, for each entry in OPT_CMAKE_BOOL then -Dentry:BOOL=true is appended to CMAKE_ARGS. When option OPT is not selected, -Dentry:BOOL=false is appended to CONFIGURE_ARGS. OPT_CMAKE_BOOL_OFF is the opposite, -Dentry:BOOL=false is appended to CMAKE_ARGS when the option is selected, and -Dentry:BOOL=true when the option is not selected. For example: OPTIONS_DEFINE= OPT1 OPT1_CMAKE_BOOL= TEST DEBUG OPT1_CMAKE_BOOL_OFF= OPTIMIZE is equivalent to: OPTIONS_DEFINE= OPT1 .include <bsd.port.options.mk> .if ${PORT_OPTIONS:MOPT1} CMAKE_ARGS+= -DTEST:BOOL=true -DDEBUG:BOOL=true \ -DOPTIMIZE:BOOL=false .else CMAKE_ARGS+= -DTEST:BOOL=false -DDEBUG:BOOL=false \ -DOPTIMIZE:BOOL=true .endif <varname>MESON_ARGS</varname> Helpers <varname><replaceable>OPT</replaceable>_MESON_ON</varname> and <varname><replaceable>OPT</replaceable>_MESON_OFF</varname> When option OPT is selected, the value of OPT_MESON_ON, if defined, is appended to MESON_ARGS. OPT_MESON_OFF works the same way, but when OPT is not selected. For example: OPTIONS_DEFINE= OPT1 OPT1_MESON_ON= -Dopt=1 OPT1_MESON_OFF= -Dopt=2 is equivalent to: OPTIONS_DEFINE= OPT1 .include <bsd.port.options.mk> .if ${PORT_OPTIONS:MOPT1} MESON_ARGS+= -Dopt=1 .else MESON_ARGS+= -Dopt=2 .endif <varname><replaceable>OPT</replaceable>_MESON_TRUE</varname> and <varname><replaceable>OPT</replaceable>_MESON_FALSE</varname> When option OPT is selected, for each entry in OPT_MESON_TRUE then -Dentry=true is appended to MESON_ARGS. When option OPT is not selected, -Dentry=false is appended to MESON_ARGS. OPT_MESON_FALSE is the opposite, -Dentry=false is appended to MESON_ARGS when the option is selected, and -Dentry=true when the option is not selected. For example: OPTIONS_DEFINE= OPT1 OPT1_MESON_TRUE= test debug OPT1_MESON_FALSE= optimize is equivalent to: OPTIONS_DEFINE= OPT1 .include <bsd.port.options.mk> .if ${PORT_OPTIONS:MOPT1} MESON_ARGS+= -Dtest=true -Ddebug=true \ -Doptimize=false .else MESON_ARGS+= -Dtest=false -Ddebug=false \ -Doptimize=true .endif <varname><replaceable>OPT</replaceable>_MESON_YES</varname> and <varname><replaceable>OPT</replaceable>_MESON_NO</varname> When option OPT is selected, for each entry in OPT_MESON_YES then -Dentry=yes is appended to MESON_ARGS. When option OPT is not selected, -Dentry=no is appended to MESON_ARGS. OPT_MESON_NO is the opposite, -Dentry=no is appended to MESON_ARGS when the option is selected, and -Dentry=yes when the option is not selected. For example: OPTIONS_DEFINE= OPT1 OPT1_MESON_YES= test debug OPT1_MESON_NO= optimize is equivalent to: OPTIONS_DEFINE= OPT1 .include <bsd.port.options.mk> .if ${PORT_OPTIONS:MOPT1} MESON_ARGS+= -Dtest=yes -Ddebug=yes \ -Doptimize=no .else MESON_ARGS+= -Dtest=no -Ddebug=no \ -Doptimize=yes .endif <varname><replaceable>OPT</replaceable>_MESON_ENABLED</varname> and <varname><replaceable>OPT</replaceable>_MESON_DISABLED</varname> When option OPT is selected, for each entry in OPT_MESON_ENABLED then -Dentry=enabled is appended to MESON_ARGS. When option OPT is not selected, -Dentry=disabled is appended to MESON_ARGS. OPT_MESON_DISABLED is the opposite, -Dentry=disabled is appended to MESON_ARGS when the option is selected, and -Dentry=enabled when the option is not selected. For example: OPTIONS_DEFINE= OPT1 OPT1_MESON_ENABLED= test OPT1_MESON_DISABLED= debug is equivalent to: OPTIONS_DEFINE= OPT1 .include <bsd.port.options.mk> .if ${PORT_OPTIONS:MOPT1} MESON_ARGS+= -Dtest=enabled -Ddebug=disabled .else MESON_ARGS+= -Dtest=disabled -Ddebug=enabled .endif <varname><replaceable>OPT</replaceable>_QMAKE_ON</varname> and <varname><replaceable>OPT</replaceable>_QMAKE_OFF</varname> When option OPT is selected, the value of OPT_QMAKE_ON, if defined, is appended to QMAKE_ARGS. OPT_QMAKE_OFF works the same way, but when OPT is not selected. For example: OPTIONS_DEFINE= OPT1 OPT1_QMAKE_ON= -DTEST:BOOL=true OPT1_QMAKE_OFF= -DPRODUCTION:BOOL=true is equivalent to: OPTIONS_DEFINE= OPT1 .include <bsd.port.options.mk> .if ${PORT_OPTIONS:MOPT1} QMAKE_ARGS+= -DTEST:BOOL=true .else QMAKE_ARGS+= -DPRODUCTION:BOOL=true .endif <varname><replaceable>OPT</replaceable>_IMPLIES</varname> Provides a way to add dependencies between options. When OPT is selected, all the options listed in this variable will be selected too. Using the OPT_CONFIGURE_ENABLE described earlier to illustrate: OPTIONS_DEFINE= OPT1 OPT2 OPT1_IMPLIES= OPT2 OPT1_CONFIGURE_ENABLE= opt1 OPT2_CONFIGURE_ENABLE= opt2 Is equivalent to: OPTIONS_DEFINE= OPT1 OPT2 .include <bsd.port.options.mk> .if ${PORT_OPTIONS:MOPT1} CONFIGURE_ARGS+= --enable-opt1 .else CONFIGURE_ARGS+= --disable-opt1 .endif .if ${PORT_OPTIONS:MOPT2} || ${PORT_OPTIONS:MOPT1} CONFIGURE_ARGS+= --enable-opt2 .else CONFIGURE_ARGS+= --disable-opt2 .endif Simple Use of <varname><replaceable>OPT</replaceable>_IMPLIES</varname> This port has a X11 option, and a GNOME option that needs the X11 option to be selected to build. OPTIONS_DEFINE= X11 GNOME OPTIONS_DEFAULT= X11 X11_USES= xorg X11_USE= xorg=xi,xextproto GNOME_USE= gnome=gtk30 GNOME_IMPLIES= X11 <varname><replaceable>OPT</replaceable>_PREVENTS</varname> and <varname><replaceable>OPT</replaceable>_PREVENTS_MSG</varname> Provides a way to add conflicts between options. When OPT is selected, all the options listed in OPT_PREVENTS must be un-selected. If OPT_PREVENTS_MSG is set and a conflict is triggered, its content will be shown explaining why they conflict. For example: OPTIONS_DEFINE= OPT1 OPT2 OPT1_PREVENTS= OPT2 OPT1_PREVENTS_MSG= OPT1 and OPT2 enable conflicting options Is roughly equivalent to: OPTIONS_DEFINE= OPT1 OPT2 .include <bsd.port.options.mk> .if ${PORT_OPTIONS:MOPT2} && ${PORT_OPTIONS:MOPT1} BROKEN= Option OPT1 conflicts with OPT2 (select only one) .endif The only difference is that the first one will write an error after running make config, suggesting changing the selected options. Simple Use of <varname><replaceable>OPT</replaceable>_PREVENTS</varname> This port has X509 and SCTP options. Both options add patches, but the patches conflict with each other, so they cannot be selected at the same time. OPTIONS_DEFINE= X509 SCTP SCTP_PATCHFILES= ${PORTNAME}-6.8p1-sctp-2573.patch.gz:-p1 SCTP_CONFIGURE_WITH= sctp X509_PATCH_SITES= http://www.roumenpetrov.info/openssh/x509/:x509 X509_PATCHFILES= ${PORTNAME}-7.0p1+x509-8.5.diff.gz:-p1:x509 X509_PREVENTS= SCTP X509_PREVENTS_MSG= X509 and SCTP patches conflict <varname><replaceable>OPT</replaceable>_VARS</varname> and <varname><replaceable>OPT</replaceable>_VARS_OFF</varname> Provides a generic way to set and append to variables. Before using OPT_VARS and OPT_VARS_OFF, see if there is already a more specific helper available in . When option OPT is selected, and OPT_VARS defined, key=value and key+=value pairs are evaluated from OPT_VARS. An = cause the existing value of KEY to be overwritten, an += appends to the value. OPT_VARS_OFF works the same way, but when OPT is not selected. OPTIONS_DEFINE= OPT1 OPT2 OPT3 OPT1_VARS= also_build+=bin1 OPT2_VARS= also_build+=bin2 OPT3_VARS= bin3_build=yes OPT3_VARS_OFF= bin3_build=no MAKE_ARGS= ALSO_BUILD="${ALSO_BUILD}" BIN3_BUILD="${BIN3_BUILD}" is equivalent to: OPTIONS_DEFINE= OPT1 OPT2 MAKE_ARGS= ALSO_BUILD="${ALSO_BUILD}" BIN3_BUILD="${BIN3_BUILD}" .include <bsd.port.options.mk> .if ${PORT_OPTIONS:MOPT1} ALSO_BUILD+= bin1 .endif .if ${PORT_OPTIONS:MOPT2} ALSO_BUILD+= bin2 .endif .if ${PORT_OPTIONS:MOPT2} BIN3_BUILD= yes .else BIN3_BUILD= no .endif Values containing whitespace must be enclosed in quotes: OPT_VARS= foo="bar baz" This is due to the way &man.make.1; variable expansion deals with whitespace. When OPT_VARS= foo=bar baz is expanded, the variable ends up containing two strings, foo=bar and baz. But the submitter probably intended there to be only one string, foo=bar baz. Quoting the value prevents whitespace from being used as a delimiter. Also, do not add extra spaces after the var= sign and before the value, it would also be split into two strings. This will not work: OPT_VARS= foo= bar Dependencies, <varname><replaceable>OPT</replaceable>_<replaceable>DEPTYPE</replaceable></varname> and <varname><replaceable>OPT</replaceable>_<replaceable>DEPTYPE</replaceable>_OFF</varname> For any of these dependency types: PKG_DEPENDS EXTRACT_DEPENDS PATCH_DEPENDS FETCH_DEPENDS BUILD_DEPENDS LIB_DEPENDS RUN_DEPENDS When option OPT is selected, the value of OPT_DEPTYPE, if defined, is appended to DEPTYPE. OPT_DEPTYPE_OFF works the same, but when OPT is not selected. For example: OPTIONS_DEFINE= OPT1 OPT1_LIB_DEPENDS= liba.so:devel/a OPT1_LIB_DEPENDS_OFF= libb.so:devel/b is equivalent to: OPTIONS_DEFINE= OPT1 .include <bsd.port.options.mk> .if ${PORT_OPTIONS:MOPT1} LIB_DEPENDS+= liba.so:devel/a .else LIB_DEPENDS+= libb.so:devel/b .endif Generic Variables Replacement, <varname><replaceable>OPT</replaceable>_<replaceable>VARIABLE</replaceable></varname> and <varname><replaceable>OPT</replaceable>_<replaceable>VARIABLE</replaceable>_OFF</varname> For any of these variables: ALL_TARGET BINARY_ALIAS BROKEN CATEGORIES CFLAGS CONFIGURE_ENV CONFLICTS CONFLICTS_BUILD CONFLICTS_INSTALL CPPFLAGS CXXFLAGS DESKTOP_ENTRIES DISTFILES EXTRACT_ONLY EXTRA_PATCHES GH_ACCOUNT GH_PROJECT GH_SUBDIR GH_TAGNAME GH_TUPLE GL_ACCOUNT GL_COMMIT GL_PROJECT GL_SITE GL_SUBDIR GL_TUPLE IGNORE INFO INSTALL_TARGET LDFLAGS LIBS MAKE_ARGS MAKE_ENV MASTER_SITES PATCHFILES PATCH_SITES PLIST_DIRS PLIST_FILES PLIST_SUB PORTDOCS PORTEXAMPLES SUB_FILES SUB_LIST TEST_TARGET USES When option OPT is selected, the value of OPT_ABOVEVARIABLE, if defined, is appended to ABOVEVARIABLE. OPT_ABOVEVARIABLE_OFF works the same way, but when OPT is not selected. For example: OPTIONS_DEFINE= OPT1 OPT1_USES= gmake OPT1_CFLAGS_OFF= -DTEST is equivalent to: OPTIONS_DEFINE= OPT1 .include <bsd.port.options.mk> .if ${PORT_OPTIONS:MOPT1} USES+= gmake .else CFLAGS+= -DTEST .endif Some variables are not in this list, in particular PKGNAMEPREFIX and PKGNAMESUFFIX. This is intentional. A port must not change its name when its option set changes. Some of these variables, at least ALL_TARGET, DISTFILES and INSTALL_TARGET, have their default values set after the options are processed. With these lines in the Makefile: ALL_TARGET= all DOCS_ALL_TARGET= doc If the DOCS option is enabled, ALL_TARGET will have a final value of all doc; if the option is disabled, it would have a value of all. With only the options helper line in the Makefile: DOCS_ALL_TARGET= doc If the DOCS option is enabled, ALL_TARGET will have a final value of doc; if the option is disabled, it would have a value of all. Additional Build Targets, <buildtarget><replaceable>target</replaceable>-<replaceable>OPT</replaceable>-on</buildtarget> and <buildtarget><replaceable>target</replaceable>-<replaceable>OPT</replaceable>-off</buildtarget> These Makefile targets can accept optional extra build targets: pre-fetch do-fetch post-fetch pre-extract do-extract post-extract pre-patch do-patch post-patch pre-configure do-configure post-configure pre-build do-build post-build pre-install do-install post-install post-stage pre-package do-package post-package When option OPT is selected, the target TARGET-OPT-on, if defined, is executed after TARGET. TARGET-OPT-off works the same way, but when OPT is not selected. For example: OPTIONS_DEFINE= OPT1 post-patch-OPT1-on: @${REINPLACE_CMD} -e '/opt1/s|/usr/bin/|${EXAMPLESDIR}/|' ${WRKSRC}/Makefile post-patch-OPT1-off: @${REINPLACE_CMD} -e '/opt1/s|/usr/bin/|${PREFIX}/bin/|' ${WRKSRC}/Makefile is equivalent to: OPTIONS_DEFINE= OPT1 .include <bsd.port.options.mk> post-patch: .if ${PORT_OPTIONS:MOPT1} @${REINPLACE_CMD} -e '/opt1/s|/usr/bin/|${EXAMPLESDIR}/|' ${WRKSRC}/Makefile .else @${REINPLACE_CMD} -e '/opt1/s|/usr/bin/|${PREFIX}/bin/|' ${WRKSRC}/Makefile .endif Specifying the Working Directory Each port is extracted into a working directory, which must be writable. The ports system defaults to having DISTFILES unpack in to a directory called ${DISTNAME}. In other words, if the Makefile has: PORTNAME= foo DISTVERSION= 1.0 then the port's distribution files contain a top-level directory, foo-1.0, and the rest of the files are located under that directory. A number of variables can be overridden if that is not the case. <varname>WRKSRC</varname> The variable lists the name of the directory that is created when the application's distfiles are extracted. If our previous example extracted into a directory called foo (and not foo-1.0) write: WRKSRC= ${WRKDIR}/foo or possibly WRKSRC= ${WRKDIR}/${PORTNAME} <varname>WRKSRC_SUBDIR</varname> If the source files needed for the port are in a subdirectory of the extracted distribution file, set WRKSRC_SUBDIR to that directory. WRKSRC_SUBDIR= src <varname>NO_WRKSUBDIR</varname> If the port does not extract in to a subdirectory at all, then set NO_WRKSUBDIR to indicate that. NO_WRKSUBDIR= yes Because WRKDIR is the only directory that is supposed to be writable during the build, and is used to store many files recording the status of the build, the port's extraction will be forced into a subdirectory. Conflict Handling There are three different variables to register a conflict between packages and ports: CONFLICTS, CONFLICTS_INSTALL and CONFLICTS_BUILD. The conflict variables automatically set the variable IGNORE, which is more fully documented in . When removing one of several conflicting ports, it is advisable to retain CONFLICTS in those other ports for a few months to cater for users who only update once in a while. CONFLICTS_INSTALL If the package cannot coexist with other packages (because of file conflicts, runtime incompatibilities, etc.). CONFLICTS_INSTALL check is done after the build stage and prior to the install stage. CONFLICTS_BUILD If the port cannot be built when other specific ports are already installed. Build conflicts are not recorded in the resulting package. CONFLICTS If the port cannot be built if a certain port is already installed and the resulting package cannot coexist with the other package. CONFLICTS check is done prior to the build stage and prior to the install stage. The most common content of one of these variable is the package base of another port. The package base is the package name without the appended version, it can be obtained by running make -V PKGBASE. Basic usage of <varname>CONFLICTS<replaceable>*</replaceable></varname> dns/bind99 cannot be installed if dns/bind910 is present because they install same files. First gather the package base to use: &prompt.user; make -C dns/bind99 -V PKGBASE bind99 &prompt.user; make -C dns/bind910 -V PKGBASE bind910 Then add to the Makefile of dns/bind99: CONFLICTS_INSTALL= bind910 And add to the Makefile of dns/bind910: CONFLICTS_INSTALL= bind99 Sometime, only some version of another port is incompatible, in this case, use the full package name, with the version, and use shell globs, like * and ? to make sure all possible versions are matched. Using <varname>CONFLICTS<replaceable>*</replaceable></varname> With Globs. From versions from 2.0 and up-to 2.4.1_2, deskutils/gnotime used to install a bundled version of databases/qof. To reflect this past, the Makefile of databases/qof contains: CONFLICTS_INSTALL= gnotime-2.[0-3]* \ gnotime-2.4.0* gnotime-2.4.1 \ gnotime-2.4.1_[12] The first entry match versions 2.0 through 2.3, the second all the revisions of 2.4.0, the third the exact 2.4.1 version, and the last the first and second revisions of the 2.4.1 version. deskutils/gnotime does not have any conflicts line because its current version does not conflict with anything else. Installing Files The install phase is very important to the end user because it adds files to their system. All the additional commands run in the port Makefile's *-install targets should be echoed to the screen. Do not silence these commands with @ or .SILENT. <varname>INSTALL_<replaceable>*</replaceable></varname> Macros Use the macros provided in bsd.port.mk to ensure correct modes of files in the port's *-install targets. Set ownership directly in pkg-plist with the corresponding entries, such as @(owner,group,), @owner owner, and @group group. These operators work until overridden, or until the end of pkg-plist, so remember to reset them after they are no longer needed. The default ownership is root:wheel. See for more information. INSTALL_PROGRAM is a command to install binary executables. INSTALL_SCRIPT is a command to install executable scripts. INSTALL_LIB is a command to install shared libraries (but not static libraries). INSTALL_KLD is a command to install kernel loadable modules. Some architectures do not like having the modules stripped, so use this command instead of INSTALL_PROGRAM. INSTALL_DATA is a command to install sharable data, including static libraries. INSTALL_MAN is a command to install manpages and other documentation (it does not compress anything). These variables are set to the &man.install.1; command with the appropriate flags for each situation. Do not use INSTALL_LIB to install static libraries, because stripping them renders them useless. Use INSTALL_DATA instead. Stripping Binaries and Shared Libraries Installed binaries should be stripped. Do not strip binaries manually unless absolutely required. The INSTALL_PROGRAM macro installs and strips a binary at the same time. The INSTALL_LIB macro does the same thing to shared libraries. When a file must be stripped, but neither INSTALL_PROGRAM nor INSTALL_LIB macros are desirable, ${STRIP_CMD} strips the program or shared library. This is typically done within the post-install target. For example: post-install: ${STRIP_CMD} ${STAGEDIR}${PREFIX}/bin/xdl When multiple files need to be stripped: post-install: .for l in geometry media body track world ${STRIP_CMD} ${STAGEDIR}${PREFIX}/lib/lib${PORTNAME}-${l}.so.0 .endfor Use &man.file.1; on a file to determine if it has been stripped. Binaries are reported by &man.file.1; as stripped, or not stripped. Additionally, &man.strip.1; will detect programs that have already been stripped and exit cleanly. When WITH_DEBUG is defined, elf files must not be stripped. The variables (STRIP_CMD, INSTALL_PROGRAM, INSTALL_LIB, ...) and USES provided by the framework handle this automatically. Some software, add -s to their LDFLAGS, in this case, either remove -s if WITH_DEBUG is set, or remove it unconditionally and use STRIP_CMD in post-install. Installing a Whole Tree of Files Sometimes, a large number of files must be installed while preserving their hierarchical organization. For example, copying over a whole directory tree from WRKSRC to a target directory under PREFIX. Note that PREFIX, EXAMPLESDIR, DATADIR, and other path variables must always be prepended with STAGEDIR to respect staging (see ). Two macros exist for this situation. The advantage of using these macros instead of cp is that they guarantee proper file ownership and permissions on target files. The first macro, COPYTREE_BIN, will set all the installed files to be executable, thus being suitable for installing into PREFIX/bin. The second macro, COPYTREE_SHARE, does not set executable permissions on files, and is therefore suitable for installing files under PREFIX/share target. post-install: ${MKDIR} ${STAGEDIR}${EXAMPLESDIR} (cd ${WRKSRC}/examples && ${COPYTREE_SHARE} . ${STAGEDIR}${EXAMPLESDIR}) This example will install the contents of the examples directory in the vendor distfile to the proper examples location of the port. post-install: ${MKDIR} ${STAGEDIR}${DATADIR}/summer (cd ${WRKSRC}/temperatures && ${COPYTREE_SHARE} "June July August" ${STAGEDIR}${DATADIR}/summer) And this example will install the data of summer months to the summer subdirectory of a DATADIR. Additional find arguments can be passed via the third argument to COPYTREE_* macros. For example, to install all files from the first example except Makefiles, one can use these commands. post-install: ${MKDIR} ${STAGEDIR}${EXAMPLESDIR} (cd ${WRKSRC}/examples && \ ${COPYTREE_SHARE} . ${STAGEDIR}${EXAMPLESDIR} "! -name Makefile") These macros do not add the installed files to pkg-plist. They must be added manually. For optional documentation (PORTDOCS, see ) and examples (PORTEXAMPLES), the %%PORTDOCS%% or %%PORTEXAMPLES%% prefixes must be prepended in pkg-plist. Install Additional Documentation If the software has some documentation other than the standard man and info pages that is useful for the user, install it under DOCSDIR This can be done, like the previous item, in the post-install target. Create a new directory for the port. The directory name is DOCSDIR. This usually equals PORTNAME. However, if the user might want different versions of the port to be installed at the same time, the whole PKGNAME can be used. Since only the files listed in pkg-plist are installed, it is safe to always install documentation to STAGEDIR (see ). Hence .if blocks are only needed when the installed files are large enough to cause significant I/O overhead. post-install: ${MKDIR} ${STAGEDIR}${DOCSDIR} ${INSTALL_MAN} ${WRKSRC}/docs/xvdocs.ps ${STAGEDIR}${DOCSDIR} On the other hand, if there is a DOCS option in the port, install the documentation in a post-install-DOCS-on target. These targets are described in . Here are some handy variables and how they are expanded by default when used in the Makefile: DATADIR gets expanded to PREFIX/share/PORTNAME. DATADIR_REL gets expanded to share/PORTNAME. DOCSDIR gets expanded to PREFIX/share/doc/PORTNAME. DOCSDIR_REL gets expanded to share/doc/PORTNAME. EXAMPLESDIR gets expanded to PREFIX/share/examples/PORTNAME. EXAMPLESDIR_REL gets expanded to share/examples/PORTNAME. The DOCS option only controls additional documentation installed in DOCSDIR. It does not apply to standard man pages and info pages. Things installed in EXAMPLESDIR are controlled by the EXAMPLES option. These variables are exported to PLIST_SUB. Their values will appear there as pathnames relative to PREFIX if possible. That is, share/doc/PORTNAME will be substituted for %%DOCSDIR%% in the packing list by default, and so on. (See more on pkg-plist substitution here.) All conditionally installed documentation files and directories are included in pkg-plist with the %%PORTDOCS%% prefix, for example: %%PORTDOCS%%%%DOCSDIR%%/AUTHORS %%PORTDOCS%%%%DOCSDIR%%/CONTACT As an alternative to enumerating the documentation files in pkg-plist, a port can set the variable PORTDOCS to a list of file names and shell glob patterns to add to the final packing list. The names will be relative to DOCSDIR. Therefore, a port that utilizes PORTDOCS, and uses a non-default location for its documentation, must set DOCSDIR accordingly. If a directory is listed in PORTDOCS or matched by a glob pattern from this variable, the entire subtree of contained files and directories will be registered in the final packing list. If the DOCS option has been unset then files and directories listed in PORTDOCS would not be installed or added to port packing list. Installing the documentation at PORTDOCS as shown above remains up to the port itself. A typical example of utilizing PORTDOCS: PORTDOCS= README.* ChangeLog docs/* The equivalents of PORTDOCS for files installed under DATADIR and EXAMPLESDIR are PORTDATA and PORTEXAMPLES, respectively. The contents of pkg-message are displayed upon installation. See the section on using pkg-message for details. pkg-message does not need to be added to pkg-plist. Subdirectories Under <varname>PREFIX</varname> Try to let the port put things in the right subdirectories of PREFIX. Some ports lump everything and put it in the subdirectory with the port's name, which is incorrect. Also, many ports put everything except binaries, header files and manual pages in a subdirectory of lib, which does not work well with the BSD paradigm. Many of the files must be moved to one of these directories: etc (setup/configuration files), libexec (executables started internally), sbin (executables for superusers/managers), info (documentation for info browser) or share (architecture independent files). See &man.hier.7; for details; the rules governing /usr pretty much apply to /usr/local too. The exception are ports dealing with USENET news. They may use PREFIX/news as a destination for their files. Use <varname>BINARY_ALIAS</varname> to Rename Commands Instead of Patching the Build When BINARY_ALIAS is defined it will create symlinks of the given commands in a directory which will be prepended to PATH. Use it to substitute hardcoded commands the build phase relies on without having to patch any build files. Using <varname>BINARY_ALIAS</varname> to Make <command>gsed</command> Available as <command>sed</command> Some ports expect sed to behave like GNU sed and use features that &man.sed.1; does not provide. GNU sed is available from textproc/gsed on &os;. Use BINARY_ALIAS to substitute sed with gsed for the duration of the build: BUILD_DEPENDS= gsed:textproc/gsed ... BINARY_ALIAS= sed=gsed Using <varname>BINARY_ALIAS</varname> to Provide Aliases for Hardcoded <command>python3</command> Commands A port that has a hardcoded reference to python3 in its build scripts will need to have it available in PATH at build time. Use BINARY_ALIAS to create an alias that points to the right Python 3 binary: USES= python:3.4+,build ... BINARY_ALIAS= python3=${PYTHON_CMD} See for more information about USES=python.