Index: head/en_US.ISO8859-1/books/porters-handbook/makefiles/chapter.xml =================================================================== --- head/en_US.ISO8859-1/books/porters-handbook/makefiles/chapter.xml (revision 52859) +++ head/en_US.ISO8859-1/books/porters-handbook/makefiles/chapter.xml (revision 52860) @@ -1,8127 +1,8172 @@ Configuring the Makefile Configuring the Makefile is pretty simple, and again we suggest looking at existing examples before starting. Also, there is a sample Makefile in this handbook, so take a look and please follow the ordering of variables and sections in that template to make the port easier for others to read. Consider these problems in sequence during the design of the new Makefile: The Original Source Does it live in DISTDIR as a standard gzipped tarball named something like foozolix-1.2.tar.gz? If so, go on to the next step. If not, the distribution file format might require overriding one or more of DISTVERSION, DISTNAME, EXTRACT_CMD, EXTRACT_BEFORE_ARGS, EXTRACT_AFTER_ARGS, EXTRACT_SUFX, or DISTFILES. In the worst case, create a custom do-extract target to override the default. This is rarely, if ever, necessary. Naming The first part of the port's Makefile names the port, describes its version number, and lists it in the correct category. <varname>PORTNAME</varname> Set PORTNAME to the base name of the software. It is used as the base for the &os; package, and for DISTNAME. The package name must be unique across the entire ports tree. Make sure that the PORTNAME is not already in use by an existing port, and that no other port already has the same PKGBASE. If the name has already been used, add either PKGNAMEPREFIX or PKGNAMESUFFIX. Versions, <varname>DISTVERSION</varname> <emphasis>or</emphasis> <varname>PORTVERSION</varname> Set DISTVERSION to the version number of the software. PORTVERSION is the version used for the &os; package. It will be automatically derived from DISTVERSION to be compatible with &os;'s package versioning scheme. If the version contains letters, it might be needed to set PORTVERSION and not DISTVERSION. Only one of PORTVERSION and DISTVERSION can be set at a time. From time to time, some software will use a version scheme that is not compatible with how DISTVERSION translates in PORTVERSION. When updating a port, it is possible to use &man.pkg-version.8;'s argument to check if the new version is greater or lesser than before. See . Using &man.pkg-version.8; to Compare Versions. pkg version -t takes two versions as arguments, it will respond with <, = or > if the first version is less, equal, or more than the second version, respectively. &prompt.user; pkg version -t 1.2 1.3 < &prompt.user; pkg version -t 1.2 1.2 = &prompt.user; pkg version -t 1.2 1.2.0 = &prompt.user; pkg version -t 1.2 1.2.p1 > &prompt.user; pkg version -t 1.2.a1 1.2.b1 < &prompt.user; pkg version -t 1.2 1.2p1 < 1.2 is before 1.3. 1.2 and 1.2 are equal as they have the same version. 1.2 and 1.2.0 are equal as nothing equals zero. 1.2 is after 1.2.p1 as .p1, think pre-release 1. 1.2.a1 is before 1.2.b1, think alpha and beta, and a is before b. 1.2 is before 1.2p1 as 2p1, think 2, patch level 1 which is a version after any 2.X but before 3. In here, the a, b, and p are used as if meaning alpha, beta or pre-release and patch level, but they are only letters and are sorted alphabetically, so any letter can be used, and they will be sorted appropriately. Examples of <varname>DISTVERSION</varname> and the Derived <varname>PORTVERSION</varname> DISTVERSION PORTVERSION 0.7.1d 0.7.1.d 10Alpha3 10.a3 3Beta7-pre2 3.b7.p2 8:f_17 8f.17
Using <varname>DISTVERSION</varname> When the version only contains numbers separated by dots, dashes or underscores, use DISTVERSION. PORTNAME= nekoto DISTVERSION= 1.2-4 It will generate a PORTVERSION of 1.2.4. Using <varname>DISTVERSION</varname> When the Version Starts with a Letter or a Prefix When the version starts or ends with a letter, or a prefix or a suffix that is not part of the version, use DISTVERSIONPREFIX, DISTVERSION, and DISTVERSIONSUFFIX. If the version is v1.2-4: PORTNAME= nekoto DISTVERSIONPREFIX= v DISTVERSION= 1_2_4 Some of the time, projects using GitHub will use their name in their versions. For example, the version could be nekoto-1.2-4: PORTNAME= nekoto DISTVERSIONPREFIX= nekoto- DISTVERSION= 1.2_4 Those projects also sometimes use some string at the end of the version, for example, 1.2-4_RELEASE: PORTNAME= nekoto DISTVERSION= 1.2-4 DISTVERSIONSUFFIX= _RELEASE Or they do both, for example, nekoto-1.2-4_RELEASE: PORTNAME= nekoto DISTVERSIONPREFIX= nekoto- DISTVERSION= 1.2-4 DISTVERSIONSUFFIX= _RELEASE DISTVERSIONPREFIX and DISTVERSIONSUFFIX will not be used while constructing PORTVERSION, but only used in DISTNAME. All will generate a PORTVERSION of 1.2.4. Using <varname>DISTVERSION</varname> When the Version Contains Letters Meaning <quote>alpha</quote>, <quote>beta</quote>, or <quote>pre-release</quote> When the version contains numbers separated by dots, dashes or underscores, and letters are used to mean alpha, beta or pre-release, which is, before the version without the letters, use DISTVERSION. PORTNAME= nekoto DISTVERSION= 1.2-pre4 PORTNAME= nekoto DISTVERSION= 1.2p4 Both will generate a PORTVERSION of 1.2.p4 which is before than 1.2. &man.pkg-version.8; can be used to check that fact: &prompt.user; pkg version -t 1.2.p4 1.2 < Not Using <varname>DISTVERSION</varname> When the Version Contains Letters Meaning "Patch Level" When the version contains letters that are not meant as alpha, beta, or pre, but more in a patch level, and meaning after the version without the letters, use PORTVERSION. PORTNAME= nekoto PORTVERSION= 1.2p4 In this case, using DISTVERSION is not possible because it would generate a version of 1.2.p4 which would be before 1.2 and not after. &man.pkg-version.8; will verify this: &prompt.user; pkg version -t 1.2 1.2.p4 > &prompt.user; pkg version -t 1.2 1.2p4 < 1.2 is after 1.2.p4, which is wrong in this case. 1.2 is before 1.2p4, which is what was needed. For some more advanced examples of setting PORTVERSION, when the software's versioning is really not compatible with &os;'s, or DISTNAME when the distribution file does not contain the version itself, see .
<varname>PORTREVISION</varname> and <varname>PORTEPOCH</varname> <varname>PORTREVISION</varname> PORTREVISION is a monotonically increasing value which is reset to 0 with every increase of DISTVERSION, typically every time there is a new official vendor release. If PORTREVISION is non-zero, the value is appended to the package name. Changes to PORTREVISION are used by automated tools like &man.pkg-version.8; to determine that a new package is available. PORTREVISION must be increased each time a change is made to the port that changes the generated package in any way. That includes changes that only affect a package built with non-default options. Examples of when PORTREVISION must be bumped: Addition of patches to correct security vulnerabilities, bugs, or to add new functionality to the port. Changes to the port Makefile to enable or disable compile-time options in the package. Changes in the packing list or the install-time behavior of the package. For example, a change to a script which generates initial data for the package, like &man.ssh.1; host keys. Version bump of a port's shared library dependency (in this case, someone trying to install the old package after installing a newer version of the dependency will fail since it will look for the old libfoo.x instead of libfoo.(x+1)). Silent changes to the port distfile which have significant functional differences. For example, changes to the distfile requiring a correction to distinfo with no corresponding change to DISTVERSION, where a diff -ru of the old and new versions shows non-trivial changes to the code. Examples of changes which do not require a PORTREVISION bump: Style changes to the port skeleton with no functional change to what appears in the resulting package. Changes to MASTER_SITES or other functional changes to the port which do not affect the resulting package. Trivial patches to the distfile such as correction of typos, which are not important enough that users of the package have to go to the trouble of upgrading. Build fixes which cause a package to become compilable where it was previously failing. As long as the changes do not introduce any functional change on any other platforms on which the port did previously build. Since PORTREVISION reflects the content of the package, if the package was not previously buildable then there is no need to increase PORTREVISION to mark a change. A rule of thumb is to decide whether a change committed to a port is something which some people would benefit from having. Either because of an enhancement, fix, or by virtue that the new package will actually work at all. Then weigh that against that fact that it will cause everyone who regularly updates their ports tree to be compelled to update. If yes, PORTREVISION must be bumped. People using binary packages will never see the update if PORTREVISION is not bumped. Without increasing PORTREVISION, the package builders have no way to detect the change and thus, will not rebuild the package. <varname>PORTEPOCH</varname> From time to time a software vendor or &os; porter will do something silly and release a version of their software which is actually numerically less than the previous version. An example of this is a port which goes from foo-20000801 to foo-1.0 (the former will be incorrectly treated as a newer version since 20000801 is a numerically greater value than 1). The results of version number comparisons are not always obvious. pkg version (see &man.pkg-version.8;) can be used to test the comparison of two version number strings. For example: &prompt.user; pkg version -t 0.031 0.29 > The > output indicates that version 0.031 is considered greater than version 0.29, which may not have been obvious to the porter. In situations such as this, PORTEPOCH must be increased. If PORTEPOCH is nonzero it is appended to the package name as described in section 0 above. PORTEPOCH must never be decreased or reset to zero, because that would cause comparison to a package from an earlier epoch to fail. For example, the package would not be detected as out of date. The new version number, 1.0,1 in the above example, is still numerically less than the previous version, 20000801, but the ,1 suffix is treated specially by automated tools and found to be greater than the implied suffix ,0 on the earlier package. Dropping or resetting PORTEPOCH incorrectly leads to no end of grief. If the discussion above was not clear enough, please consult the &a.ports;. It is expected that PORTEPOCH will not be used for the majority of ports, and that sensible use of DISTVERSION, or that use PORTVERSION carefully, can often preempt it becoming necessary if a future release of the software changes the version structure. However, care is needed by &os; porters when a vendor release is made without an official version number — such as a code snapshot release. The temptation is to label the release with the release date, which will cause problems as in the example above when a new official release is made. For example, if a snapshot release is made on the date 20000917, and the previous version of the software was version 1.2, do not use 20000917 for DISTVERSION. The correct way is a DISTVERSION of 1.2.20000917, or similar, so that the succeeding release, say 1.3, is still a numerically greater value. Example of <varname>PORTREVISION</varname> and <varname>PORTEPOCH</varname> Usage The gtkmumble port, version 0.10, is committed to the ports collection: PORTNAME= gtkmumble DISTVERSION= 0.10 PKGNAME becomes gtkmumble-0.10. A security hole is discovered which requires a local &os; patch. PORTREVISION is bumped accordingly. PORTNAME= gtkmumble DISTVERSION= 0.10 PORTREVISION= 1 PKGNAME becomes gtkmumble-0.10_1 A new version is released by the vendor, numbered 0.2 (it turns out the author actually intended 0.10 to actually mean 0.1.0, not what comes after 0.9 - oops, too late now). Since the new minor version 2 is numerically less than the previous version 10, PORTEPOCH must be bumped to manually force the new package to be detected as newer. Since it is a new vendor release of the code, PORTREVISION is reset to 0 (or removed from the Makefile). PORTNAME= gtkmumble DISTVERSION= 0.2 PORTEPOCH= 1 PKGNAME becomes gtkmumble-0.2,1 The next release is 0.3. Since PORTEPOCH never decreases, the version variables are now: PORTNAME= gtkmumble DISTVERSION= 0.3 PORTEPOCH= 1 PKGNAME becomes gtkmumble-0.3,1 If PORTEPOCH were reset to 0 with this upgrade, someone who had installed the gtkmumble-0.10_1 package would not detect the gtkmumble-0.3 package as newer, since 3 is still numerically less than 10. Remember, this is the whole point of PORTEPOCH in the first place. <varname>PKGNAMEPREFIX</varname> and <varname>PKGNAMESUFFIX</varname> Two optional variables, PKGNAMEPREFIX and PKGNAMESUFFIX, are combined with PORTNAME and PORTVERSION to form PKGNAME as ${PKGNAMEPREFIX}${PORTNAME}${PKGNAMESUFFIX}-${PORTVERSION}. Make sure this conforms to our guidelines for a good package name. In particular, the use of a hyphen (-) in PORTVERSION is not allowed. Also, if the package name has the language- or the -compiled.specifics part (see below), use PKGNAMEPREFIX and PKGNAMESUFFIX, respectively. Do not make them part of PORTNAME. Package Naming Conventions These are the conventions to follow when naming packages. This is to make the package directory easy to scan, as there are already thousands of packages and users are going to turn away if they hurt their eyes! Package names take the form of language_region-name-compiled.specifics-version.numbers. The package name is defined as ${PKGNAMEPREFIX}${PORTNAME}${PKGNAMESUFFIX}-${PORTVERSION}. Make sure to set the variables to conform to that format. language_region- &os; strives to support the native language of its users. The language- part is a two letter abbreviation of the natural language defined by ISO-639 when the port is specific to a certain language. Examples are ja for Japanese, ru for Russian, vi for Vietnamese, zh for Chinese, ko for Korean and de for German. If the port is specific to a certain region within the language area, add the two letter country code as well. Examples are en_US for US English and fr_CH for Swiss French. The language- part is set in PKGNAMEPREFIX. name Make sure that the port's name and version are clearly separated and placed into PORTNAME and DISTVERSION. The only reason for PORTNAME to contain a version part is if the upstream distribution is really named that way, as in the textproc/libxml2 or japanese/kinput2-freewnn ports. Otherwise, PORTNAME cannot contain any version-specific information. It is quite normal for several ports to have the same PORTNAME, as the www/apache* ports do; in that case, different versions (and different index entries) are distinguished by PKGNAMEPREFIX and PKGNAMESUFFIX values. There is a tradition of naming Perl 5 modules by prepending p5- and converting the double-colon separator to a hyphen. For example, the Data::Dumper module becomes p5-Data-Dumper. -compiled.specifics If the port can be built with different hardcoded defaults (usually part of the directory name in a family of ports), the -compiled.specifics part states the compiled-in defaults. The hyphen is optional. Examples are paper size and font units. The -compiled.specifics part is set in PKGNAMESUFFIX. -version.numbers The version string follows a dash (-) and is a period-separated list of integers and single lowercase alphabetics. In particular, it is not permissible to have another dash inside the version string. The only exception is the string pl (meaning patchlevel), which can be used only when there are no major and minor version numbers in the software. If the software version has strings like alpha, beta, rc, or pre, take the first letter and put it immediately after a period. If the version string continues after those names, the numbers follow the single alphabet without an extra period between them (for example, 1.0b2). The idea is to make it easier to sort ports by looking at the version string. In particular, make sure version number components are always delimited by a period, and if the date is part of the string, use the dyyyy.mm.dd format, not dd.mm.yyyy or the non-Y2K compliant yy.mm.dd format. It is important to prefix the version with a letter, here d (for date), in case a release with an actual version number is made, which would be numerically less than yyyy. Package name must be unique among all of the ports tree, check that there is not already a port with the same PORTNAME and if there is add one of PKGNAMEPREFIX or PKGNAMESUFFIX. Here are some (real) examples on how to convert the name as called by the software authors to a suitable package name, for each line, only one of DISTVERSION or PORTVERSION is set in, depending on which would be used in the port's Makefile: Package Naming Examples Distribution Name PKGNAMEPREFIX PORTNAME PKGNAMESUFFIX DISTVERSION PORTVERSION Reason or comment mule-2.2.2 (empty) mule (empty) 2.2.2 No changes required mule-1.0.1 (empty) mule 1 1.0.1 This is version 1 of mule, and version 2 already exists EmiClock-1.0.2 (empty) emiclock (empty) 1.0.2 No uppercase names for single programs rdist-1.3alpha (empty) rdist (empty) 1.3alpha Version will be 1.3.a es-0.9-beta1 (empty) es (empty) 0.9-beta1 Version will be 0.9.b1 mailman-2.0rc3 (empty) mailman (empty) 2.0rc3 Version will be 2.0.r3 v3.3beta021.src (empty) tiff (empty) 3.3 What the heck was that anyway? tvtwm (empty) tvtwm (empty) p11 No version in the filename, use what upstream says it is piewm (empty) piewm (empty) 1.0 No version in the filename, use what upstream says it is xvgr-2.10pl1 (empty) xvgr (empty) 2.10.pl1 In that case, pl1 means patch level, so using DISTVERSION is not possible. gawk-2.15.6 ja- gawk (empty) 2.15.6 Japanese language version psutils-1.13 (empty) psutils -letter 1.13 Paper size hardcoded at package build time pkfonts (empty) pkfonts 300 1.0 Package for 300dpi fonts
If there is absolutely no trace of version information in the original source and it is unlikely that the original author will ever release another version, just set the version string to 1.0 (like the piewm example above). Otherwise, ask the original author or use the date string the source file was released on (dyyyy.mm.dd, or dyyyymmdd) as the version. Use any letter. Here, d here stands for date, if the source is a Git repository, g followed by the commit date is commonly used, using s for snapshot is also common.
Categorization <varname>CATEGORIES</varname> When a package is created, it is put under /usr/ports/packages/All and links are made from one or more subdirectories of /usr/ports/packages. The names of these subdirectories are specified by the variable CATEGORIES. It is intended to make life easier for the user when he is wading through the pile of packages on the FTP site or the CDROM. Please take a look at the current list of categories and pick the ones that are suitable for the port. This list also determines where in the ports tree the port is imported. If there is more than one category here, the port files must be put in the subdirectory with the name of the first category. See below for more discussion about how to pick the right categories. Current List of Categories Here is the current list of port categories. Those marked with an asterisk (*) are virtual categories—those that do not have a corresponding subdirectory in the ports tree. They are only used as secondary categories, and only for search purposes. For non-virtual categories, there is a one-line description in COMMENT in that subdirectory's Makefile. Category Description Notes accessibility Ports to help disabled users. afterstep * Ports to support the AfterStep window manager. arabic Arabic language support. archivers Archiving tools. astro Astronomical ports. audio Sound support. benchmarks Benchmarking utilities. biology Biology-related software. cad Computer aided design tools. chinese Chinese language support. comms Communication software. Mostly software to talk to the serial port. converters Character code converters. databases Databases. deskutils Things that used to be on the desktop before computers were invented. devel Development utilities. Do not put libraries here just because they are libraries. They should not be in this category unless they truly do not belong anywhere else. dns DNS-related software. docs * Meta-ports for &os; documentation. editors General editors. Specialized editors go in the section for those tools. For example, a mathematical-formula editor will go in math, and have editors as a second category. elisp * Emacs-lisp ports. emulators Emulators for other operating systems. Terminal emulators do not belong here. X-based ones go to x11 and text-based ones to either comms or misc, depending on the exact functionality. finance Monetary, financial and related applications. french French language support. ftp FTP client and server utilities. If the port speaks both FTP and HTTP, put it in ftp with a secondary category of www. games Games. geography * Geography-related software. german German language support. gnome * Ports from the GNOME Project. gnustep * Software related to the GNUstep desktop environment. graphics Graphics utilities. hamradio * Software for amateur radio. haskell * Software related to the Haskell language. hebrew Hebrew language support. hungarian Hungarian language support. ipv6 * IPv6 related software. irc Internet Relay Chat utilities. japanese Japanese language support. java Software related to the Java™ language. The java category must not be the only one for a port. Save for ports directly related to the Java language, porters are also encouraged not to use java as the main category of a port. kde * Ports from the KDE Project. kld * Kernel loadable modules. korean Korean language support. lang Programming languages. linux * Linux applications and support utilities. lisp * Software related to the Lisp language. mail Mail software. math Numerical computation software and other utilities for mathematics. mbone * MBone applications. misc Miscellaneous utilities Things that do not belong anywhere else. If at all possible, try to find a better category for the port than misc, as ports tend to be overlooked in here. multimedia Multimedia software. net Miscellaneous networking software. net-im Instant messaging software. net-mgmt Networking management software. net-p2p Peer to peer network applications. news USENET news software. palm Software support for the Palm™ series. parallel * Applications dealing with parallelism in computing. pear * Ports related to the Pear PHP framework. perl5 * Ports that require Perl version 5 to run. plan9 * Various programs from Plan9. polish Polish language support. ports-mgmt Ports for managing, installing and developing &os; ports and packages. portuguese Portuguese language support. print Printing software. Desktop publishing tools (previewers, etc.) belong here too. python * Software related to the Python language. ruby * Software related to the Ruby language. rubygems * Ports of RubyGems packages. russian Russian language support. scheme * Software related to the Scheme language. science Scientific ports that do not fit into other categories such as astro, biology and math. security Security utilities. shells Command line shells. spanish * Spanish language support. sysutils System utilities. tcl * Ports that use Tcl to run. textproc Text processing utilities. It does not include desktop publishing tools, which go to print. tk * Ports that use Tk to run. ukrainian Ukrainian language support. vietnamese Vietnamese language support. windowmaker * Ports to support the WindowMaker window manager. www Software related to the World Wide Web. HTML language support belongs here too. x11 The X Window System and friends. This category is only for software that directly supports the window system. Do not put regular X applications here. Most of them go into other x11-* categories (see below). x11-clocks X11 clocks. x11-drivers X11 drivers. x11-fm X11 file managers. x11-fonts X11 fonts and font utilities. x11-servers X11 servers. x11-themes X11 themes. x11-toolkits X11 toolkits. x11-wm X11 window managers. xfce * Ports related to the Xfce desktop environment. zope * Zope support. Choosing the Right Category As many of the categories overlap, choosing which of the categories will be the primary category of the port can be tedious. There are several rules that govern this issue. Here is the list of priorities, in decreasing order of precedence: The first category must be a physical category (see above). This is necessary to make the packaging work. Virtual categories and physical categories may be intermixed after that. Language specific categories always come first. For example, if the port installs Japanese X11 fonts, then the CATEGORIES line would read japanese x11-fonts. Specific categories are listed before less-specific ones. For instance, an HTML editor is listed as www editors, not the other way around. Also, do not list net when the port belongs to any of irc, mail, news, security, or www, as net is included implicitly. x11 is used as a secondary category only when the primary category is a natural language. In particular, do not put x11 in the category line for X applications. Emacs modes are placed in the same ports category as the application supported by the mode, not in editors. For example, an Emacs mode to edit source files of some programming language goes into lang. Ports installing loadable kernel modules also have the virtual category kld in their CATEGORIES line. This is one of the things handled automatically by adding USES=kmod. misc does not appear with any other non-virtual category. If there is misc with something else in CATEGORIES, that means misc can safely be deleted and the port placed only in the other subdirectory. If the port truly does not belong anywhere else, put it in misc. If the category is not clearly defined, please put a comment to that effect in the port submission in the bug database so we can discuss it before we import it. As a committer, send a note to the &a.ports; so we can discuss it first. Too often, new ports are imported to the wrong category only to be moved right away. Proposing a New Category As the Ports Collection has grown over time, various new categories have been introduced. New categories can either be virtual categories—those that do not have a corresponding subdirectory in the ports tree— or physical categories—those that do. This section discusses the issues involved in creating a new physical category. Read it thouroughly before proposing a new one. Our existing practice has been to avoid creating a new physical category unless either a large number of ports would logically belong to it, or the ports that would belong to it are a logically distinct group that is of limited general interest (for instance, categories related to spoken human languages), or preferably both. The rationale for this is that such a change creates a fair amount of work for both the committers and also for all users who track changes to the Ports Collection. In addition, proposed category changes just naturally seem to attract controversy. (Perhaps this is because there is no clear consensus on when a category is too big, nor whether categories should lend themselves to browsing (and thus what number of categories would be an ideal number), and so forth.) Here is the procedure: Propose the new category on &a.ports;. Include a detailed rationale for the new category, including why the existing categories are not sufficient, and the list of existing ports proposed to move. (If there are new ports pending in Bugzilla that would fit this category, list them too.) If you are the maintainer and/or submitter, respectively, mention that as it may help the case. Participate in the discussion. If it seems that there is support for the idea, file a PR which includes both the rationale and the list of existing ports that need to be moved. Ideally, this PR would also include these patches: Makefiles for the new ports once they are repocopied Makefile for the new category Makefile for the old ports' categories Makefiles for ports that depend on the old ports (for extra credit, include the other files that have to change, as per the procedure in the Committer's Guide.) Since it affects the ports infrastructure and involves moving and patching many ports but also possibly running regression tests on the build cluster, assign the PR to the &a.portmgr;. If that PR is approved, a committer will need to follow the rest of the procedure that is outlined in the Committer's Guide. Proposing a new virtual category is similar to the above but much less involved, since no ports will actually have to move. In this case, the only patches to include in the PR would be those to add the new category to CATEGORIES of the affected ports. Proposing Reorganizing All the Categories Occasionally someone proposes reorganizing the categories with either a 2-level structure, or some other kind of keyword structure. To date, nothing has come of any of these proposals because, while they are very easy to make, the effort involved to retrofit the entire existing ports collection with any kind of reorganization is daunting to say the very least. Please read the history of these proposals in the mailing list archives before posting this idea. Furthermore, be prepared to be challenged to offer a working prototype. The Distribution Files The second part of the Makefile describes the files that must be downloaded to build the port, and where they can be downloaded. <varname>DISTNAME</varname> DISTNAME is the name of the port as called by the authors of the software. DISTNAME defaults to ${PORTNAME}-${DISTVERSIONPREFIX}${DISTVERSION}${DISTVERSIONSUFFIX}, and if not set, DISTVERSION defaults to ${PORTVERSION} so override DISTNAME only if necessary. DISTNAME is only used in two places. First, the distribution file list (DISTFILES) defaults to ${DISTNAME}${EXTRACT_SUFX}. Second, the distribution file is expected to extract into a subdirectory named WRKSRC, which defaults to work/${DISTNAME}. Some vendor's distribution names which do not fit into the ${PORTNAME}-${PORTVERSION}-scheme can be handled automatically by setting DISTVERSIONPREFIX, DISTVERSION, and DISTVERSIONSUFFIX. PORTVERSION will be derived from DISTVERSION automatically. Only one of PORTVERSION and DISTVERSION can be set at a time. If DISTVERSION does not derive a correct PORTVERSION, do not use DISTVERSION. If the upstream version scheme can be derived into a ports-compatible version scheme, set some variable to the upstream version, do not use DISTVERSION as the variable name. Set PORTVERSION to the computed version based on the variable you created, and set DISTNAME accordingly. If the upstream version scheme cannot easily be coerced into a ports-compatible value, set PORTVERSION to a sensible value, and set DISTNAME with PORTNAME with the verbatim upstream version. Deriving <varname>PORTVERSION</varname> Manually BIND9 uses a version scheme that is not compatible with the ports versions (it has - in its versions) and cannot be derived using DISTVERSION because after the 9.9.9 release, it will release a patchlevels in the form of 9.9.9-P1. DISTVERSION would translate that into 9.9.9.p1, which, in the ports versioning scheme means 9.9.9 pre-release 1, which is before 9.9.9 and not after. So PORTVERSION is manually derived from an ISCVERSION variable to output 9.9.9p1. The order into which the ports framework, and pkg, will sort versions is checked using the -t argument of &man.pkg-version.8;: &prompt.user; pkg version -t 9.9.9 9.9.9.p1 > &prompt.user; pkg version -t 9.9.9 9.9.9p1 < The > sign means that the first argument passed to -t is greater than the second argument. 9.9.9 is after 9.9.9.p1. The < sign means that the first argument passed to -t is less than the second argument. 9.9.9 is before 9.9.9p1. In the port Makefile, for example dns/bind99, it is achieved by: PORTNAME= bind PORTVERSION= ${ISCVERSION:S/-P/P/:S/b/.b/:S/a/.a/:S/rc/.rc/} CATEGORIES= dns net ipv6 MASTER_SITES= ISC/bind9/${ISCVERSION} PKGNAMESUFFIX= 99 DISTNAME= ${PORTNAME}-${ISCVERSION} MAINTAINER= mat@FreeBSD.org COMMENT= BIND DNS suite with updated DNSSEC and DNS64 LICENSE= ISCL # ISC releases things like 9.8.0-P1 or 9.8.1rc1, which our versioning does not like ISCVERSION= 9.9.9-P6 Define upstream version in ISCVERSION, with a comment saying why it is needed. Use ISCVERSION to get a ports-compatible PORTVERSION. Use ISCVERSION directly to get the correct URL for fetching the distribution file. Use ISCVERSION directly to name the distribution file. Derive <varname>DISTNAME</varname> from <varname>PORTVERSION</varname> From time to time, the distribution file name has little or no relation to the version of the software. In comms/kermit, only the last element of the version is present in the distribution file: PORTNAME= kermit PORTVERSION= 9.0.304 CATEGORIES= comms ftp net MASTER_SITES= ftp://ftp.kermitproject.org/kermit/test/tar/ DISTNAME= cku${PORTVERSION:E}-dev20 The :E &man.make.1; modifier returns the suffix of the variable, in this case, 304. The distribution file is correctly generated as cku304-dev20.tar.gz. Exotic Case 1 Sometimes, there is no relation between the software name, its version, and the distribution file it is distributed in. From audio/libworkman: PORTNAME= libworkman PORTVERSION= 1.4 CATEGORIES= audio MASTER_SITES= LOCAL/jim DISTNAME= ${PORTNAME}-1999-06-20 Exotic Case 2 In comms/librs232, the distribution file is not versioned, so using DIST_SUBDIR is needed: PORTNAME= librs232 PORTVERSION= 20160710 CATEGORIES= comms MASTER_SITES= http://www.teuniz.net/RS-232/ DISTNAME= RS-232 DIST_SUBDIR= ${PORTNAME}-${PORTVERSION} PKGNAMEPREFIX and PKGNAMESUFFIX do not affect DISTNAME. Also note that if WRKSRC is equal to ${WRKDIR}/${DISTNAME} while the original source archive is named something other than ${PORTNAME}-${PORTVERSION}${EXTRACT_SUFX}, leave DISTNAME alone— defining only DISTFILES is easier than both DISTNAME and WRKSRC (and possibly EXTRACT_SUFX). <varname>MASTER_SITES</varname> Record the directory part of the FTP/HTTP-URL pointing at the original tarball in MASTER_SITES. Do not forget the trailing slash (/)! The make macros will try to use this specification for grabbing the distribution file with FETCH if they cannot find it already on the system. It is recommended that multiple sites are included on this list, preferably from different continents. This will safeguard against wide-area network problems. MASTER_SITES must not be blank. It must point to the actual site hosting the distribution files. It cannot point to web archives, or the &os; distribution files cache sites. The only exception to this rule is ports that do not have any distribution files. For example, meta-ports do not have any distribution files, so MASTER_SITES does not need to be set. Using <varname>MASTER_SITE_<replaceable>*</replaceable></varname> Variables Shortcut abbreviations are available for popular archives like SourceForge (SOURCEFORGE), GNU (GNU), or Perl CPAN (PERL_CPAN). MASTER_SITES can use them directly: MASTER_SITES= GNU/make The older expanded format still works, but all ports have been converted to the compact format. The expanded format looks like this: MASTER_SITES= ${MASTER_SITE_GNU} MASTER_SITE_SUBDIR= make These values and variables are defined in Mk/bsd.sites.mk. New entries are added often, so make sure to check the latest version of this file before submitting a port. For any MASTER_SITE_FOO variable, the shorthand FOO can be used. For example, use: MASTER_SITES= FOO If MASTER_SITE_SUBDIR is needed, use this: MASTER_SITES= FOO/bar Some MASTER_SITE_* names are quite long, and for ease of use, shortcuts have been defined: Shortcuts for <varname>MASTER_SITE_<replaceable>*</replaceable></varname> Macros Macro Shortcut PERL_CPAN CPAN GITHUB GH GITHUB_CLOUD GHC LIBREOFFICE_DEV LODEV NETLIB NL RUBYGEMS RG SOURCEFORGE SF
Magic MASTER_SITES Macros Several magic macros exist for popular sites with a predictable directory structure. For these, just use the abbreviation and the system will choose a subdirectory automatically. For a port named Stardict, of version 1.2.3, and hosted on SourceForge, adding this line: MASTER_SITES= SF infers a subdirectory named /project/stardict/stardict/1.2.3. If the inferred directory is incorrect, it can be overridden: MASTER_SITES= SF/stardict/WyabdcRealPeopleTTS/${PORTVERSION} This can also be written as MASTER_SITES= SF MASTER_SITE_SUBDIR= stardict/WyabdcRealPeopleTTS/${PORTVERSION} Magic <varname>MASTER_SITES</varname> Macros Macro Assumed subdirectory APACHE_COMMONS_BINARIES ${PORTNAME:S,commons-,,} APACHE_COMMONS_SOURCE ${PORTNAME:S,commons-,,} APACHE_JAKARTA ${PORTNAME:S,-,/,}/source BERLIOS ${PORTNAME:tl}.berlios CHEESESHOP source/${DISTNAME:C/(.).*/\1/}/${DISTNAME:C/(.*)-[0-9].*/\1/} CPAN ${PORTNAME:C/-.*//} DEBIAN pool/main/${PORTNAME:C/^((lib)?.).*$/\1/}/${PORTNAME} FARSIGHT ${PORTNAME} FESTIVAL ${PORTREVISION} GCC releases/${DISTNAME} GENTOO distfiles GIMP ${PORTNAME}/${PORTVERSION:R}/ GH ${GH_ACCOUNT}/${GH_PROJECT}/tar.gz/${GH_TAGNAME}?dummy=/ GHC ${GH_ACCOUNT}/${GH_PROJECT}/ GNOME sources/${PORTNAME}/${PORTVERSION:C/^([0-9]+\.[0-9]+).*/\1/} GNU ${PORTNAME} GNUPG ${PORTNAME} GNU_ALPHA ${PORTNAME} HORDE ${PORTNAME} LODEV ${PORTNAME} MATE ${PORTVERSION:C/^([0-9]+\.[0-9]+).*/\1/} MOZDEV ${PORTNAME:tl} NL ${PORTNAME} QT archive/qt/${PORTVERSION:R} SAMBA ${PORTNAME} SAVANNAH ${PORTNAME:tl} SF ${PORTNAME:tl}/${PORTNAME:tl}/${PORTVERSION}
<varname>USE_GITHUB</varname> If the distribution file comes from a specific commit or tag on GitHub for which there is no officially released file, there is an easy way to set the right DISTNAME and MASTER_SITES automatically. These variables are available: <varname>USE_GITHUB</varname> Description Variable Description Default GH_ACCOUNT Account name of the GitHub user hosting the project ${PORTNAME} GH_PROJECT Name of the project on GitHub ${PORTNAME} GH_TAGNAME Name of the tag to download (2.0.1, hash, ...) Using the name of a branch here is incorrect. It is also possible to use the hash of a commit id to do a snapshot. ${DISTVERSIONPREFIX}${DISTVERSION}${DISTVERSIONSUFFIX} GH_SUBDIR When the software needs an additional distribution file to be extracted within ${WRKSRC}, this variable can be used. See the examples in for more information. (none) GH_TUPLE GH_TUPLE allows putting GH_ACCOUNT, GH_PROJECT, GH_TAGNAME, and GH_SUBDIR into a single variable. The format is account:project:tagname:group/subdir. The /subdir part is optional. It is helpful when there is more than one GitHub project from which to fetch.
Do not use GH_TUPLE for the default distribution file, as it has no default. Simple Use of <varname>USE_GITHUB</varname> While trying to make a port for version 1.2.7 of pkg from the &os; user on github, at , The Makefile would end up looking like this (slightly stripped for the example): PORTNAME= pkg DISTVERSION= 1.2.7 USE_GITHUB= yes GH_ACCOUNT= freebsd It will automatically have MASTER_SITES set to GH GHC and WRKSRC to ${WRKDIR}/pkg-1.2.7. More Complete Use of <varname>USE_GITHUB</varname> While trying to make a port for the bleeding edge version of pkg from the &os; user on github, at , the Makefile ends up looking like this (slightly stripped for the example): PORTNAME= pkg-devel DISTVERSION= 1.3.0.a.20140411 USE_GITHUB= yes GH_ACCOUNT= freebsd GH_PROJECT= pkg GH_TAGNAME= 6dbb17b It will automatically have MASTER_SITES set to GH GHC and WRKSRC to ${WRKDIR}/pkg-6dbb17b. 20140411 is the date of the commit referenced in GH_TAGNAME, not the date the Makefile is edited, or the date the commit is made. Use of <varname>USE_GITHUB</varname> with <varname>DISTVERSIONPREFIX</varname> From time to time, GH_TAGNAME is a slight variation from DISTVERSION. For example, if the version is 1.0.2, the tag is v1.0.2. In those cases, it is possible to use DISTVERSIONPREFIX or DISTVERSIONSUFFIX: PORTNAME= foo DISTVERSIONPREFIX= v DISTVERSION= 1.0.2 USE_GITHUB= yes It will automatically set GH_TAGNAME to v1.0.2, while WRKSRC will be kept to ${WRKDIR}/foo-1.0.2. Using <varname>USE_GITHUB</varname> When Upstream Does Not Use Versions If there never was a version upstream, do not invent one like 0.1 or 1.0. Create the port with a DISTVERSION of gYYYYMMDD, where g is for Git, and YYYYMMDD represents the date the commit referenced in GH_TAGNAME. PORTNAME= bar DISTVERSION= g20140411 USE_GITHUB= yes GH_TAGNAME= c472d66b This creates a versioning scheme that increases over time, and that is still before version 0 (see for details on &man.pkg-version.8;): &prompt.user; pkg version -t g20140411 0 < Which means using PORTEPOCH will not be needed in case upstream decides to cut versions in the future. Using <varname>USE_GITHUB</varname> to Access a Commit Between Two Versions If the current version of the software uses a Git tag, and the port needs to be updated to a newer, intermediate version, without a tag, use &man.git-describe.1; to find out the version to use: &prompt.user; git describe --tags f0038b1 v0.7.3-14-gf0038b1 v0.7.3-14-gf0038b1 can be split into three parts: v0.7.3 This is the last Git tag that appears in the commit history before the requested commit. -14 This means that the requested commit, f0038b1, is the 14th commit after the v0.7.3 tag. -gf0038b1 The -g means Git, and the f0038b1 is the commit hash that this reference points to. PORTNAME= bar DISTVERSIONPREFIX= v DISTVERSION= 0.7.3-14 DISTVERSIONSUFFIX= -gf0038b1 USE_GITHUB= yes This creates a versioning scheme that increases over time (well, over commits), and does not conflict with the creation of a 0.7.4 version. (See for details on &man.pkg-version.8;): &prompt.user; pkg version -t 0.7.3 0.7.3.14 < &prompt.user; pkg version -t 0.7.3.14 0.7.4 < If the requested commit is the same as a tag, a shorter description is shown by default. The longer version is equivalent: &prompt.user; git describe --tags c66c71d v0.7.3 &prompt.user; git describe --tags --long c66c71d v0.7.3-0-gc66c71d Fetching Multiple Files from GitHub The USE_GITHUB framework also supports fetching multiple distribution files from different places in GitHub. It works in a way very similar to . When fetching multiple files from GitHub, sometimes the default distribution file is not fetched from GitHub. To disable fetching the default distribution, set: USE_GITHUB= nodefault Multiple values are added to GH_ACCOUNT, GH_PROJECT, and GH_TAGNAME. Each different value is assigned a group. The main value can either have no group, or the :DEFAULT group. A value can be omitted if it is the same as the default as listed in . GH_TUPLE can also be used when there are a lot of distribution files. It helps keep the account, project, tagname, and group information at the same place. For each group, a ${WRKSRC_group} helper variable is created, containing the directory into which the file has been extracted. The ${WRKSRC_group} variables can be used to move directories around during post-extract, or add to CONFIGURE_ARGS, or whatever is needed so that the software builds correctly. The :group part must be used for only one distribution file. It is used as a unique key and using it more than once will overwrite the previous values. As this is only syntactic sugar above DISTFILES and MASTER_SITES, the group names must adhere to the restrictions on group names outlined in Use of <varname>USE_GITHUB</varname> with Multiple Distribution Files From time to time, there is a need to fetch more than one distribution file. For example, when the upstream git repository uses submodules. This can be done easily using groups in the GH_* variables: PORTNAME= foo DISTVERSION= 1.0.2 USE_GITHUB= yes GH_ACCOUNT= bar:icons,contrib GH_PROJECT= foo-icons:icons foo-contrib:contrib GH_TAGNAME= 1.0:icons fa579bc:contrib GH_SUBDIR= ext/icons:icons CONFIGURE_ARGS= --with-contrib=${WRKSRC_contrib} This will fetch three distribution files from github. The default one comes from foo/foo and is version 1.0.2. The second one, with the icons group, comes from bar/foo-icons and is in version 1.0. The third one comes from bar/foo-contrib and uses the Git commit fa579bc. The distribution files are named foo-foo-1.0.2_GH0.tar.gz, bar-foo-icons-1.0_GH0.tar.gz, and bar-foo-contrib-fa579bc_GH0.tar.gz. All the distribution files are extracted in ${WRKDIR} in their respective subdirectories. The default file is still extracted in ${WRKSRC}, in this case, ${WRKDIR}/foo-1.0.2. Each additional distribution file is extracted in ${WRKSRC_group}. Here, for the icons group, it is called ${WRKSRC_icons} and it contains ${WRKDIR}/foo-icons-1.0. The file with the contrib group is called ${WRKSRC_contrib} and contains ${WRKDIR}/foo-contrib-fa579bc. The software's build system expects to find the icons in a ext/icons subdirectory in its sources, so GH_SUBDIR is used. GH_SUBDIR makes sure that ext exists, but that ext/icons does not already exist. Then it does this: post-extract: @${MV} ${WRKSRC_icons} ${WRKSRC}/ext/icons Use of <varname>USE_GITHUB</varname> with Multiple Distribution Files Using <varname>GH_TUPLE</varname> This is functionally equivalent to , but using GH_TUPLE: PORTNAME= foo DISTVERSION= 1.0.2 USE_GITHUB= yes GH_TUPLE= bar:foo-icons:1.0:icons/ext/icons \ bar:foo-contrib:fa579bc:contrib CONFIGURE_ARGS= --with-contrib=${WRKSRC_contrib} Grouping was used in the previous example with bar:icons,contrib. Some redundant information is present with GH_TUPLE because grouping is not possible. How to Use <varname>USE_GITHUB</varname> with <application>Git</application> Submodules? Ports with GitHub as an upstream repository sometimes use submodules. See &man.git-submodule.1; for more information. The problem with submodules is that each is a separate repository. As such, they each must be fetched separately. Using finance/moneymanagerex as an example, its GitHub repository is . It has a .gitmodules file at the root. This file describes all the submodules used in this repository, and lists additional repositories needed. This file will tell what additional repositories are needed: [submodule "lib/wxsqlite3"] path = lib/wxsqlite3 url = https://github.com/utelle/wxsqlite3.git [submodule "3rd/mongoose"] path = 3rd/mongoose url = https://github.com/cesanta/mongoose.git [submodule "3rd/LuaGlue"] path = 3rd/LuaGlue url = https://github.com/moneymanagerex/LuaGlue.git [submodule "3rd/cgitemplate"] path = 3rd/cgitemplate url = https://github.com/moneymanagerex/html-template.git [...] The only information missing from that file is the commit hash or tag to use as a version. This information is found after cloning the repository: &prompt.user; git clone --recurse-submodules https://github.com/moneymanagerex/moneymanagerex.git Cloning into 'moneymanagerex'... remote: Counting objects: 32387, done. [...] Submodule '3rd/LuaGlue' (https://github.com/moneymanagerex/LuaGlue.git) registered for path '3rd/LuaGlue' Submodule '3rd/cgitemplate' (https://github.com/moneymanagerex/html-template.git) registered for path '3rd/cgitemplate' Submodule '3rd/mongoose' (https://github.com/cesanta/mongoose.git) registered for path '3rd/mongoose' Submodule 'lib/wxsqlite3' (https://github.com/utelle/wxsqlite3.git) registered for path 'lib/wxsqlite3' [...] Cloning into '/home/mat/work/freebsd/ports/finance/moneymanagerex/moneymanagerex/3rd/LuaGlue'... Cloning into '/home/mat/work/freebsd/ports/finance/moneymanagerex/moneymanagerex/3rd/cgitemplate'... Cloning into '/home/mat/work/freebsd/ports/finance/moneymanagerex/moneymanagerex/3rd/mongoose'... Cloning into '/home/mat/work/freebsd/ports/finance/moneymanagerex/moneymanagerex/lib/wxsqlite3'... [...] Submodule path '3rd/LuaGlue': checked out 'c51d11a247ee4d1e9817dfa2a8da8d9e2f97ae3b' Submodule path '3rd/cgitemplate': checked out 'cd434eeeb35904ebcd3d718ba29c281a649b192c' Submodule path '3rd/mongoose': checked out '2140e5992ab9a3a9a34ce9a281abf57f00f95cda' Submodule path 'lib/wxsqlite3': checked out 'fb66eb230d8aed21dec273b38c7c054dcb7d6b51' [...] &prompt.user; cd moneymanagerex &prompt.user; git submodule status c51d11a247ee4d1e9817dfa2a8da8d9e2f97ae3b 3rd/LuaGlue (heads/master) cd434eeeb35904ebcd3d718ba29c281a649b192c 3rd/cgitemplate (cd434ee) 2140e5992ab9a3a9a34ce9a281abf57f00f95cda 3rd/mongoose (6.2-138-g2140e59) fb66eb230d8aed21dec273b38c7c054dcb7d6b51 lib/wxsqlite3 (v3.4.0) [...] It can also be found on GitHub. Each subdirectory that is a submodule is shown as directory @ hash, for example, mongoose @ 2140e59. While getting the information from GitHub seems more straightforward, the information found using git submodule status will provide more meaningful information. For example, here, lib/wxsqlite3's commit hash fb66eb2 correspond to v3.4.0. Both can be used interchangeably, but when a tag is available, use it. Now that all the required information has been gathered, the Makefile can be written (only GitHub-related lines are shown): PORTNAME= moneymanagerex DISTVERSIONPREFIX= v DISTVERSION= 1.3.0 USE_GITHUB= yes GH_TUPLE= utelle:wxsqlite3:v3.4.0:wxsqlite3/lib/wxsqlite3 \ moneymanagerex:LuaGlue:c51d11a:lua_glue/3rd/LuaGlue \ moneymanagerex:html-template:cd434ee:html_template/3rd/cgitemplate \ cesanta:mongoose:2140e59:mongoose/3rd/mongoose \ [...]
<varname>USE_GITLAB</varname> Similar to GitHub, if the distribution file comes from gitlab.com or is hosting the GitLab software, these variables are available for use and might need to be set. <varname>USE_GITLAB</varname> Description Variable Description Default GL_SITE Site name hosting the GitLab project https://gitlab.com GL_ACCOUNT Account name of the GitLab user hosting the project ${PORTNAME} GL_PROJECT Name of the project on GitLab ${PORTNAME} GL_COMMIT The commit hash to download. Must be the full 160 bit, 40 character hex sha1 hash. This is a required variable for GitLab. (none) GL_SUBDIR When the software needs an additional distribution file to be extracted within ${WRKSRC}, this variable can be used. See the examples in for more information. (none) GL_TUPLE GL_TUPLE allows putting GL_SITE, GL_ACCOUNT, GL_PROJECT, GL_COMMIT, and GL_SUBDIR into a single variable. The format is site:account:project:commit:group/subdir. The site: and /subdir part is optional. It is helpful when there are more than one GitLab project from which to fetch.
Simple Use of <varname>USE_GITLAB</varname> While trying to make a port for version 1.14 of libsignon-glib from the accounts-sso user on gitlab.com, at , The Makefile would end up looking like this for fetching the distribution files: PORTNAME= libsignon-glib DISTVERSION= 1.14 USE_GITLAB= yes GL_ACCOUNT= accounts-sso GL_COMMIT= e90302e342bfd27bc8c9132ab9d0ea3d8723fd03 It will automatically have MASTER_SITES set to gitlab.com and WRKSRC to ${WRKDIR}/libsignon-glib-e90302e342bfd27bc8c9132ab9d0ea3d8723fd03-e90302e342bfd27bc8c9132ab9d0ea3d8723fd03. More Complete Use of <varname>USE_GITLAB</varname> A more complete use of the above if port had no versioning and foobar from the foo user on project bar on a self hosted GitLab site https://gitlab.example.com, the Makefile ends up looking like this for fetching distribution files: PORTNAME= foobar DISTVERSION= g20170906 USE_GITLAB= yes GL_SITE= https://gitlab.example.com GL_ACCOUNT= foo GL_PROJECT= bar GL_COMMIT= 9c1669ce60c3f4f5eb43df874d7314483fb3f8a6 It will have MASTER_SITES set to "https://gitlab.example.com" and WRKSRC to ${WRKDIR}/bar-9c1669ce60c3f4f5eb43df874d7314483fb3f8a6-9c1669ce60c3f4f5eb43df874d7314483fb3f8a6. 20170906 is the date of the commit referenced in GL_COMMIT, not the date the Makefile is edited, or the date the commit to the &os; ports tree is made. GL_SITE's protocol, port and webroot can all be modified in the same variable. Fetching Multiple Files from <application>GitLab</application> The USE_GITLAB framework also supports fetching multiple distribution files from different places from GitLab and GitLab hosted sites. It works in a way very similar to and . When fetching multiple files using GitLab, sometimes the default distribution file is not fetched from a GitLab site. To disable fetching the default distribution, set: USE_GITLAB= nodefault Multiple values are added to GL_SITE, GL_ACCOUNT, GL_PROJECT and GL_COMMIT. Each different value is assigned a group. . GL_TUPLE can also be used when there are a lot of distribution files. It helps keep the site, account, project, commit, and group information at the same place. For each group, a ${WRKSRC_group} helper variable is created, containing the directory into which the file has been extracted. The ${WRKSRC_group} variables can be used to move directories around during post-extract, or add to CONFIGURE_ARGS, or whatever is needed so that the software builds correctly. The :group part must be used for only one distribution file. It is used as a unique key and using it more than once will overwrite the previous values. As this is only syntactic sugar above DISTFILES and MASTER_SITES, the group names must adhere to the restrictions on group names outlined in Use of <varname>USE_GITLAB</varname> with Multiple Distribution Files From time to time, there is a need to fetch more than one distribution file. For example, when the upstream git repository uses submodules. This can be done easily using groups in the GL_* variables: PORTNAME= foo DISTVERSION= 1.0.2 USE_GITLAB= yes GL_SITE= https://gitlab.example.com:9434/gitlab:icons GL_ACCOUNT= bar:icons,contrib GL_PROJECT= foo-icons:icons foo-contrib:contrib GL_COMMIT= c189207a55da45305c884fe2b50e086fcad4724b ae7368cab1ca7ca754b38d49da064df87968ffe4:icons 9e4dd76ad9b38f33fdb417a4c01935958d5acd2a:contrib GL_SUBDIR= ext/icons:icons CONFIGURE_ARGS= --with-contrib=${WRKSRC_contrib} This will fetch two distribution files from gitlab.com and one from gitlab.example.com hosting GitLab. The default one comes from https://gitlab.com/foo/foo and commit is c189207a55da45305c884fe2b50e086fcad4724b. The second one, with the icons group, comes from https://gitlab.example.com:9434/gitlab/bar/foo-icons and commit is ae7368cab1ca7ca754b38d49da064df87968ffe4. The third one comes from https://gitlab.com/bar/foo-contrib and is commit 9e4dd76ad9b38f33fdb417a4c01935958d5acd2a. The distribution files are named foo-foo-c189207a55da45305c884fe2b50e086fcad4724b_GL0.tar.gz, bar-foo-icons-ae7368cab1ca7ca754b38d49da064df87968ffe4_GL0.tar.gz, and bar-foo-contrib-9e4dd76ad9b38f33fdb417a4c01935958d5acd2a_GL0.tar.gz. All the distribution files are extracted in ${WRKDIR} in their respective subdirectories. The default file is still extracted in ${WRKSRC}, in this case, ${WRKDIR}/foo-c189207a55da45305c884fe2b50e086fcad4724b-c189207a55da45305c884fe2b50e086fcad4724b. Each additional distribution file is extracted in ${WRKSRC_group}. Here, for the icons group, it is called ${WRKSRC_icons} and it contains ${WRKDIR}/foo-icons-ae7368cab1ca7ca754b38d49da064df87968ffe4-ae7368cab1ca7ca754b38d49da064df87968ffe4. The file with the contrib group is called ${WRKSRC_contrib} and contains ${WRKDIR}/foo-contrib-9e4dd76ad9b38f33fdb417a4c01935958d5acd2a-9e4dd76ad9b38f33fdb417a4c01935958d5acd2a. The software's build system expects to find the icons in a ext/icons subdirectory in its sources, so GL_SUBDIR is used. GL_SUBDIR makes sure that ext exists, but that ext/icons does not already exist. Then it does this: post-extract: @${MV} ${WRKSRC_icons} ${WRKSRC}/ext/icons Use of <varname>USE_GITLAB</varname> with Multiple Distribution Files Using <varname>GL_TUPLE</varname> This is functionally equivalent to , but using GL_TUPLE: PORTNAME= foo DISTVERSION= 1.0.2 USE_GITLAB= yes GL_COMMIT= c189207a55da45305c884fe2b50e086fcad4724b GL_TUPLE= https://gitlab.example.com:9434/gitlab:bar:foo-icons:ae7368cab1ca7ca754b38d49da064df87968ffe4:icons/ext/icons \ bar:foo-contrib:9e4dd76ad9b38f33fdb417a4c01935958d5acd2a:contrib CONFIGURE_ARGS= --with-contrib=${WRKSRC_contrib} Grouping was used in the previous example with bar:icons,contrib. Some redundant information is present with GL_TUPLE because grouping is not possible.
<varname>EXTRACT_SUFX</varname> If there is one distribution file, and it uses an odd suffix to indicate the compression mechanism, set EXTRACT_SUFX. For example, if the distribution file was named foo.tar.gzip instead of the more normal foo.tar.gz, write: DISTNAME= foo EXTRACT_SUFX= .tar.gzip The USES=tar[:xxx], USES=lha or USES=zip automatically set EXTRACT_SUFX to the most common archives extensions as necessary, see for more details. If neither of these are set then EXTRACT_SUFX defaults to .tar.gz. As EXTRACT_SUFX is only used in DISTFILES, only set one of them.. <varname>DISTFILES</varname> Sometimes the names of the files to be downloaded have no resemblance to the name of the port. For example, it might be called source.tar.gz or similar. In other cases the application's source code might be in several different archives, all of which must be downloaded. If this is the case, set DISTFILES to be a space separated list of all the files that must be downloaded. DISTFILES= source1.tar.gz source2.tar.gz If not explicitly set, DISTFILES defaults to ${DISTNAME}${EXTRACT_SUFX}. <varname>EXTRACT_ONLY</varname> If only some of the DISTFILES must be extracted—for example, one of them is the source code, while another is an uncompressed document—list the filenames that must be extracted in EXTRACT_ONLY. DISTFILES= source.tar.gz manual.html EXTRACT_ONLY= source.tar.gz When none of the DISTFILES need to be uncompressed, set EXTRACT_ONLY to the empty string. EXTRACT_ONLY= <varname>PATCHFILES</varname> If the port requires some additional patches that are available by FTP or HTTP, set PATCHFILES to the names of the files and PATCH_SITES to the URL of the directory that contains them (the format is the same as MASTER_SITES). If the patch is not relative to the top of the source tree (that is, WRKSRC) because it contains some extra pathnames, set PATCH_DIST_STRIP accordingly. For instance, if all the pathnames in the patch have an extra foozolix-1.0/ in front of the filenames, then set PATCH_DIST_STRIP=-p1. Do not worry if the patches are compressed; they will be decompressed automatically if the filenames end with .Z, .gz, .bz2 or .xz. If the patch is distributed with some other files, such as documentation, in a compressed tarball, using PATCHFILES is not possible. If that is the case, add the name and the location of the patch tarball to DISTFILES and MASTER_SITES. Then, use EXTRA_PATCHES to point to those files and bsd.port.mk will automatically apply them. In particular, do not copy patch files into ${PATCHDIR}. That directory may not be writable. If there are multiple patches and they need mixed values for the strip parameter, it can be added alongside the patch name in PATCHFILES, e.g: PATCHFILES= patch1 patch2:-p1 This does not conflict with the master site grouping feature, adding a group also works: PATCHFILES= patch2:-p1:source2 The tarball will have been extracted alongside the regular source by then, so there is no need to explicitly extract it if it is a regular compressed tarball. Take extra care not to overwrite something that already exists in that directory if extracting it manually. Also, do not forget to add a command to remove the copied patch in the pre-clean target. Multiple Distribution or Patches Files from Multiple Locations (Consider this to be a somewhat advanced topic; those new to this document may wish to skip this section at first). This section has information on the fetching mechanism known as both MASTER_SITES:n and MASTER_SITES_NN. We will refer to this mechanism as MASTER_SITES:n. A little background first. OpenBSD has a neat feature inside DISTFILES and PATCHFILES which allows files and patches to be postfixed with :n identifiers. Here, n can be any word containing [0-9a-zA-Z_] and denote a group designation. For example: DISTFILES= alpha:0 beta:1 In OpenBSD, distribution file alpha will be associated with variable MASTER_SITES0 instead of our common MASTER_SITES and beta with MASTER_SITES1. This is a very interesting feature which can decrease that endless search for the correct download site. Just picture 2 files in DISTFILES and 20 sites in MASTER_SITES, the sites slow as hell where beta is carried by all sites in MASTER_SITES, and alpha can only be found in the 20th site. It would be such a waste to check all of them if the maintainer knew this beforehand, would it not? Not a good start for that lovely weekend! Now that you have the idea, just imagine more DISTFILES and more MASTER_SITES. Surely our distfiles survey meister would appreciate the relief to network strain that this would bring. In the next sections, information will follow on the &os; implementation of this idea. We improved a bit on OpenBSD's concept. The group names cannot have dashes in them (-), in fact, they cannot have any characters out of the [a-zA-Z0-9_] range. This is because, while &man.make.1; is ok with variable names containing dashes, &man.sh.1; is not. Simplified Information This section explains how to quickly prepare fine grained fetching of multiple distribution files and patches from different sites and subdirectories. We describe here a case of simplified MASTER_SITES:n usage. This will be sufficient for most scenarios. More detailed information are available in . Some applications consist of multiple distribution files that must be downloaded from a number of different sites. For example, Ghostscript consists of the core of the program, and then a large number of driver files that are used depending on the user's printer. Some of these driver files are supplied with the core, but many others must be downloaded from a variety of different sites. To support this, each entry in DISTFILES may be followed by a colon and a group name. Each site listed in MASTER_SITES is then followed by a colon, and the group that indicates which distribution files are downloaded from this site. For example, consider an application with the source split in two parts, source1.tar.gz and source2.tar.gz, which must be downloaded from two different sites. The port's Makefile would include lines like . Simplified Use of <literal>MASTER_SITES:n</literal> with One File Per Site MASTER_SITES= ftp://ftp1.example.com/:source1 \ http://www.example.com/:source2 DISTFILES= source1.tar.gz:source1 \ source2.tar.gz:source2 Multiple distribution files can have the same group. Continuing the previous example, suppose that there was a third distfile, source3.tar.gz, that is downloaded from ftp.example2.com. The Makefile would then be written like . Simplified Use of <literal>MASTER_SITES:n</literal> with More Than One File Per Site MASTER_SITES= ftp://ftp.example.com/:source1 \ http://www.example.com/:source2 DISTFILES= source1.tar.gz:source1 \ source2.tar.gz:source2 \ source3.tar.gz:source2 Detailed Information Okay, so the previous example did not reflect the new port's needs? In this section we will explain in detail how the fine grained fetching mechanism MASTER_SITES:n works and how it can be used. Elements can be postfixed with :n where n is [^:,]+, that is, n could conceptually be any alphanumeric string but we will limit it to [a-zA-Z_][0-9a-zA-Z_]+ for now. Moreover, string matching is case sensitive; that is, n is different from N. However, these words cannot be used for postfixing purposes since they yield special meaning: default, all and ALL (they are used internally in item ). Furthermore, DEFAULT is a special purpose word (check item ). Elements postfixed with :n belong to the group n, :m belong to group m and so forth. Elements without a postfix are groupless, they all belong to the special group DEFAULT. Any elements postfixed with DEFAULT, is just being redundant unless an element belongs to both DEFAULT and other groups at the same time (check item ). These examples are equivalent but the first one is preferred: MASTER_SITES= alpha MASTER_SITES= alpha:DEFAULT Groups are not exclusive, an element may belong to several different groups at the same time and a group can either have either several different elements or none at all. When an element belongs to several groups at the same time, use the comma operator (,). Instead of repeating it several times, each time with a different postfix, we can list several groups at once in a single postfix. For instance, :m,n,o marks an element that belongs to group m, n and o. All these examples are equivalent but the last one is preferred: MASTER_SITES= alpha alpha:SOME_SITE MASTER_SITES= alpha:DEFAULT alpha:SOME_SITE MASTER_SITES= alpha:SOME_SITE,DEFAULT MASTER_SITES= alpha:DEFAULT,SOME_SITE All sites within a given group are sorted according to MASTER_SORT_AWK. All groups within MASTER_SITES and PATCH_SITES are sorted as well. Group semantics can be used in any of the variables MASTER_SITES, PATCH_SITES, MASTER_SITE_SUBDIR, PATCH_SITE_SUBDIR, DISTFILES, and PATCHFILES according to this syntax: All MASTER_SITES, PATCH_SITES, MASTER_SITE_SUBDIR and PATCH_SITE_SUBDIR elements must be terminated with the forward slash / character. If any elements belong to any groups, the group postfix :n must come right after the terminator /. The MASTER_SITES:n mechanism relies on the existence of the terminator / to avoid confusing elements where a :n is a valid part of the element with occurrences where :n denotes group n. For compatibility purposes, since the / terminator was not required before in both MASTER_SITE_SUBDIR and PATCH_SITE_SUBDIR elements, if the postfix immediate preceding character is not a / then :n will be considered a valid part of the element instead of a group postfix even if an element is postfixed with :n. See both and . Detailed Use of <literal>MASTER_SITES:n</literal> in <varname>MASTER_SITE_SUBDIR</varname> MASTER_SITE_SUBDIR= old:n new/:NEW Directories within group DEFAULT -> old:n Directories within group NEW -> new Detailed Use of <literal>MASTER_SITES:n</literal> with Comma Operator, Multiple Files, Multiple Sites and Multiple Subdirectories MASTER_SITES= http://site1/%SUBDIR%/ http://site2/:DEFAULT \ http://site3/:group3 http://site4/:group4 \ http://site5/:group5 http://site6/:group6 \ http://site7/:DEFAULT,group6 \ http://site8/%SUBDIR%/:group6,group7 \ http://site9/:group8 DISTFILES= file1 file2:DEFAULT file3:group3 \ file4:group4,group5,group6 file5:grouping \ file6:group7 MASTER_SITE_SUBDIR= directory-trial:1 directory-n/:groupn \ directory-one/:group6,DEFAULT \ directory The previous example results in this fine grained fetching. Sites are listed in the exact order they will be used. file1 will be fetched from MASTER_SITE_OVERRIDE http://site1/directory-trial:1/ http://site1/directory-one/ http://site1/directory/ http://site2/ http://site7/ MASTER_SITE_BACKUP file2 will be fetched exactly as file1 since they both belong to the same group MASTER_SITE_OVERRIDE http://site1/directory-trial:1/ http://site1/directory-one/ http://site1/directory/ http://site2/ http://site7/ MASTER_SITE_BACKUP file3 will be fetched from MASTER_SITE_OVERRIDE http://site3/ MASTER_SITE_BACKUP file4 will be fetched from MASTER_SITE_OVERRIDE http://site4/ http://site5/ http://site6/ http://site7/ http://site8/directory-one/ MASTER_SITE_BACKUP file5 will be fetched from MASTER_SITE_OVERRIDE MASTER_SITE_BACKUP file6 will be fetched from MASTER_SITE_OVERRIDE http://site8/ MASTER_SITE_BACKUP How do I group one of the special macros from bsd.sites.mk, for example, SourceForge (SF)? This has been simplified as much as possible. See . Detailed Use of <literal>MASTER_SITES:n</literal> with SourceForge (<literal>SF</literal>) MASTER_SITES= http://site1/ SF/something/1.0:sourceforge,TEST DISTFILES= something.tar.gz:sourceforge something.tar.gz will be fetched from all sites within SourceForge. How do I use this with PATCH*? All examples were done with MASTER* but they work exactly the same for PATCH* ones as can be seen in . Simplified Use of <literal>MASTER_SITES:n</literal> with <varname>PATCH_SITES</varname> PATCH_SITES= http://site1/ http://site2/:test PATCHFILES= patch1:test What Does Change for Ports? What Does Not? All current ports remain the same. The MASTER_SITES:n feature code is only activated if there are elements postfixed with :n like elements according to the aforementioned syntax rules, especially as shown in item . The port targets remain the same: checksum, makesum, patch, configure, build, etc. With the obvious exceptions of do-fetch, fetch-list, master-sites and patch-sites. do-fetch: deploys the new grouping postfixed DISTFILES and PATCHFILES with their matching group elements within both MASTER_SITES and PATCH_SITES which use matching group elements within both MASTER_SITE_SUBDIR and PATCH_SITE_SUBDIR. Check . fetch-list: works like old fetch-list with the exception that it groups just like do-fetch. master-sites and patch-sites: (incompatible with older versions) only return the elements of group DEFAULT; in fact, they execute targets master-sites-default and patch-sites-default respectively. Furthermore, using target either master-sites-all or patch-sites-all is preferred to directly checking either MASTER_SITES or PATCH_SITES. Also, directly checking is not guaranteed to work in any future versions. Check item for more information on these new port targets. New port targets There are master-sites-n and patch-sites-n targets which will list the elements of the respective group n within MASTER_SITES and PATCH_SITES respectively. For instance, both master-sites-DEFAULT and patch-sites-DEFAULT will return the elements of group DEFAULT, master-sites-test and patch-sites-test of group test, and thereon. There are new targets master-sites-all and patch-sites-all which do the work of the old master-sites and patch-sites ones. They return the elements of all groups as if they all belonged to the same group with the caveat that it lists as many MASTER_SITE_BACKUP and MASTER_SITE_OVERRIDE as there are groups defined within either DISTFILES or PATCHFILES; respectively for master-sites-all and patch-sites-all. <varname>DIST_SUBDIR</varname> Do not let the port clutter /usr/ports/distfiles. If the port requires a lot of files to be fetched, or contains a file that has a name that might conflict with other ports (for example, Makefile), set DIST_SUBDIR to the name of the port (${PORTNAME} or ${PKGNAMEPREFIX}${PORTNAME} are fine). This will change DISTDIR from the default /usr/ports/distfiles to /usr/ports/distfiles/${DIST_SUBDIR}, and in effect puts everything that is required for the port into that subdirectory. It will also look at the subdirectory with the same name on the backup master site at http://distcache.FreeBSD.org (Setting DISTDIR explicitly in Makefile will not accomplish this, so please use DIST_SUBDIR.) This does not affect MASTER_SITES defined in the Makefile.
<varname>MAINTAINER</varname> Set your mail-address here. Please. :-) Only a single address without the comment part is allowed as a MAINTAINER value. The format used is user@hostname.domain. Please do not include any descriptive text such as a real name in this entry. That merely confuses the Ports infrastructure and most tools using it. The maintainer is responsible for keeping the port up to date and making sure that it works correctly. For a detailed description of the responsibilities of a port maintainer, refer to The challenge for port maintainers. A maintainer volunteers to keep a port in good working order. Maintainers have the primary responsibility for their ports, but not exclusive ownership. Ports exist for the benefit of the community and, in reality, belong to the community. What this means is that people other than the maintainer can make changes to a port. Large changes to the Ports Collection might require changes to many ports. The &os; Ports Management Team or members of other teams might modify ports to fix dependency issues or other problems, like a version bump for a shared library update. Some types of fixes have blanket approval from the &a.portmgr;, allowing any committer to fix those categories of problems on any port. These fixes do not need approval from the maintainer. Blanket approval does not apply to ports that are maintained by teams like autotools@FreeBSD.org, x11@FreeBSD.org, gnome@FreeBSD.org, or kde@FreeBSD.org. These teams use external repositories and can have work that would conflict with changes that would normally fall under blanket approval. Blanket approval for most ports applies to fixes like infrastructure changes, or trivial and tested build and runtime fixes. The current list is available in Ports section of the Committer's Guide. Other changes to the port will be sent to the maintainer for review and approval before being committed. If the maintainer does not respond to an update request after two weeks (excluding major public holidays), then that is considered a maintainer timeout, and the update can be made without explicit maintainer approval. If the maintainer does not respond within three months, or if there have been three consecutive timeouts, then that maintainer is considered absent without leave, and all of their ports can be assigned back to the pool. Exceptions to this are anything maintained by the &a.portmgr;, or the &a.security-officer;. No unauthorized commits may ever be made to ports maintained by those groups. We reserve the right to modify the maintainer's submission to better match existing policies and style of the Ports Collection without explicit blessing from the submitter or the maintainer. Also, large infrastructural changes can result in a port being modified without the maintainer's consent. These kinds of changes will never affect the port's functionality. The &a.portmgr; reserves the right to revoke or override anyone's maintainership for any reason, and the &a.security-officer; reserves the right to revoke or override maintainership for security reasons. <varname>COMMENT</varname> The comment is a one-line description of a port shown by pkg info. Please follow these rules when composing it: The COMMENT string should be 70 characters or less. Do not include the package name or version number of software. The comment must begin with a capital and end without a period. Do not start with an indefinite article (that is, A or An). Capitalize names such as Apache, JavaScript, or Perl. Use a serial comma for lists of words: "green, red, and blue." Check for spelling errors. Here is an example: COMMENT= Cat chasing a mouse all over the screen The COMMENT variable immediately follows the MAINTAINER variable in the Makefile. Licenses Each port must document the license under which it is available. If it is not an OSI approved license it must also document any restrictions on redistribution. <varname>LICENSE</varname> A short name for the license or licenses if more than one license apply. If it is one of the licenses listed in , only LICENSE_FILE and LICENSE_DISTFILES variables can be set. If this is a license that has not been defined in the ports framework (see ), the LICENSE_PERMS and LICENSE_NAME must be set, along with either LICENSE_FILE or LICENSE_TEXT. LICENSE_DISTFILES and LICENSE_GROUPS can also be set, but are not required. The predefined licenses are shown in . The current list is always available in Mk/bsd.licenses.db.mk. Simplest Usage, Predefined Licenses When the README of some software says This software is under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. but does not provide the license file, use this: LICENSE= LGPL21+ When the software provides the license file, use this: LICENSE= LGPL21+ LICENSE_FILE= ${WRKSRC}/COPYING For the predefined licenses, the default permissions are dist-mirror dist-sell pkg-mirror pkg-sell auto-accept. Predefined License List Short Name Name Group Permissions AGPLv3 GNU Affero General Public License version 3 FSF GPL OSI (default) AGPLv3+ GNU Affero General Public License version 3 (or later) FSF GPL OSI (default) APACHE10 Apache License 1.0 FSF (default) APACHE11 Apache License 1.1 FSF OSI (default) APACHE20 Apache License 2.0 FSF OSI (default) ART10 Artistic License version 1.0 OSI (default) ART20 Artistic License version 2.0 FSF GPL OSI (default) ARTPERL10 Artistic License (perl) version 1.0 OSI (default) BSD BSD license Generic Version (deprecated) FSF OSI COPYFREE (default) BSD2CLAUSE BSD 2-clause "Simplified" License FSF OSI COPYFREE (default) BSD3CLAUSE BSD 3-clause "New" or "Revised" License FSF OSI COPYFREE (default) BSD4CLAUSE BSD 4-clause "Original" or "Old" License FSF (default) BSL Boost Software License FSF OSI COPYFREE (default) CC-BY-1.0 Creative Commons Attribution 1.0 (default) CC-BY-2.0 Creative Commons Attribution 2.0 (default) CC-BY-2.5 Creative Commons Attribution 2.5 (default) CC-BY-3.0 Creative Commons Attribution 3.0 (default) CC-BY-4.0 Creative Commons Attribution 4.0 (default) CC-BY-NC-1.0 Creative Commons Attribution Non Commercial 1.0 dist-mirror pkg-mirror auto-accept CC-BY-NC-2.0 Creative Commons Attribution Non Commercial 2.0 dist-mirror pkg-mirror auto-accept CC-BY-NC-2.5 Creative Commons Attribution Non Commercial 2.5 dist-mirror pkg-mirror auto-accept CC-BY-NC-3.0 Creative Commons Attribution Non Commercial 3.0 dist-mirror pkg-mirror auto-accept CC-BY-NC-4.0 Creative Commons Attribution Non Commercial 4.0 dist-mirror pkg-mirror auto-accept CC-BY-NC-ND-1.0 Creative Commons Attribution Non Commercial No Derivatives 1.0 dist-mirror pkg-mirror auto-accept CC-BY-NC-ND-2.0 Creative Commons Attribution Non Commercial No Derivatives 2.0 dist-mirror pkg-mirror auto-accept CC-BY-NC-ND-2.5 Creative Commons Attribution Non Commercial No Derivatives 2.5 dist-mirror pkg-mirror auto-accept CC-BY-NC-ND-3.0 Creative Commons Attribution Non Commercial No Derivatives 3.0 dist-mirror pkg-mirror auto-accept CC-BY-NC-ND-4.0 Creative Commons Attribution Non Commercial No Derivatives 4.0 dist-mirror pkg-mirror auto-accept CC-BY-NC-SA-1.0 Creative Commons Attribution Non Commercial Share Alike 1.0 dist-mirror pkg-mirror auto-accept CC-BY-NC-SA-2.0 Creative Commons Attribution Non Commercial Share Alike 2.0 dist-mirror pkg-mirror auto-accept CC-BY-NC-SA-2.5 Creative Commons Attribution Non Commercial Share Alike 2.5 dist-mirror pkg-mirror auto-accept CC-BY-NC-SA-3.0 Creative Commons Attribution Non Commercial Share Alike 3.0 dist-mirror pkg-mirror auto-accept CC-BY-NC-SA-4.0 Creative Commons Attribution Non Commercial Share Alike 4.0 dist-mirror pkg-mirror auto-accept CC-BY-ND-1.0 Creative Commons Attribution No Derivatives 1.0 (default) CC-BY-ND-2.0 Creative Commons Attribution No Derivatives 2.0 (default) CC-BY-ND-2.5 Creative Commons Attribution No Derivatives 2.5 (default) CC-BY-ND-3.0 Creative Commons Attribution No Derivatives 3.0 (default) CC-BY-ND-4.0 Creative Commons Attribution No Derivatives 4.0 (default) CC-BY-SA-1.0 Creative Commons Attribution Share Alike 1.0 (default) CC-BY-SA-2.0 Creative Commons Attribution Share Alike 2.0 (default) CC-BY-SA-2.5 Creative Commons Attribution Share Alike 2.5 (default) CC-BY-SA-3.0 Creative Commons Attribution Share Alike 3.0 (default) CC-BY-SA-4.0 Creative Commons Attribution Share Alike 4.0 (default) CC0-1.0 Creative Commons Zero v1.0 Universal FSF GPL COPYFREE (default) CDDL Common Development and Distribution License FSF OSI (default) CPAL-1.0 Common Public Attribution License FSF OSI (default) ClArtistic Clarified Artistic License FSF GPL OSI (default) EPL Eclipse Public License FSF OSI (default) GFDL GNU Free Documentation License FSF (default) GMGPL GNAT Modified General Public License FSF GPL OSI (default) GPLv1 GNU General Public License version 1 FSF GPL OSI (default) GPLv1+ GNU General Public License version 1 (or later) FSF GPL OSI (default) GPLv2 GNU General Public License version 2 FSF GPL OSI (default) GPLv2+ GNU General Public License version 2 (or later) FSF GPL OSI (default) GPLv3 GNU General Public License version 3 FSF GPL OSI (default) GPLv3+ GNU General Public License version 3 (or later) FSF GPL OSI (default) GPLv3RLE GNU GPL version 3 Runtime Library Exception FSF GPL OSI (default) GPLv3RLE+ GNU GPL version 3 Runtime Library Exception (or later) FSF GPL OSI (default) ISCL Internet Systems Consortium License FSF GPL OSI COPYFREE (default) LGPL20 GNU Library General Public License version 2.0 FSF GPL OSI (default) LGPL20+ GNU Library General Public License version 2.0 (or later) FSF GPL OSI (default) LGPL21 GNU Lesser General Public License version 2.1 FSF GPL OSI (default) LGPL21+ GNU Lesser General Public License version 2.1 (or later) FSF GPL OSI (default) LGPL3 GNU Lesser General Public License version 3 FSF GPL OSI (default) LGPL3+ GNU Lesser General Public License version 3 (or later) FSF GPL OSI (default) LPPL10 LaTeX Project Public License version 1.0 FSF OSI dist-mirror dist-sell LPPL11 LaTeX Project Public License version 1.1 FSF OSI dist-mirror dist-sell LPPL12 LaTeX Project Public License version 1.2 FSF OSI dist-mirror dist-sell LPPL13 LaTeX Project Public License version 1.3 FSF OSI dist-mirror dist-sell LPPL13a LaTeX Project Public License version 1.3a FSF OSI dist-mirror dist-sell LPPL13b LaTeX Project Public License version 1.3b FSF OSI dist-mirror dist-sell LPPL13c LaTeX Project Public License version 1.3c FSF OSI dist-mirror dist-sell MIT MIT license / X11 license COPYFREE FSF GPL OSI (default) MPL10 Mozilla Public License version 1.0 FSF OSI (default) MPL11 Mozilla Public License version 1.1 FSF OSI (default) MPL20 Mozilla Public License version 2.0 FSF OSI (default) NCSA University of Illinois/NCSA Open Source License COPYFREE FSF GPL OSI (default) NONE No license specified none OFL10 SIL Open Font License version 1.0 (http://scripts.sil.org/OFL) FONTS (default) OFL11 SIL Open Font License version 1.1 (http://scripts.sil.org/OFL) FONTS (default) OWL Open Works License (owl.apotheon.org) COPYFREE (default) OpenSSL OpenSSL License FSF (default) PD Public Domain GPL COPYFREE (default) PHP202 PHP License version 2.02 FSF OSI (default) PHP30 PHP License version 3.0 FSF OSI (default) PHP301 PHP License version 3.01 FSF OSI (default) PSFL Python Software Foundation License FSF GPL OSI (default) PostgreSQL PostgreSQL Licence FSF GPL OSI COPYFREE (default) RUBY Ruby License FSF (default) UNLICENSE The Unlicense COPYFREE FSF GPL (default) WTFPL Do What the Fuck You Want To Public License version 2 GPL FSF COPYFREE (default) WTFPL1 Do What the Fuck You Want To Public License version 1 GPL FSF COPYFREE (default) ZLIB zlib License GPL FSF OSI (default) ZPL21 Zope Public License version 2.1 GPL OSI (default)
<varname>LICENSE_PERMS</varname> and <varname>LICENSE_PERMS_<replaceable>NAME</replaceable></varname> Permissions. use none if empty. License Permissions List dist-mirror Redistribution of the distribution files is permitted. The distribution files will be added to the &os; MASTER_SITE_BACKUP CDN. no-dist-mirror Redistribution of the distribution files is prohibited. This is equivalent to setting RESTRICTED. The distribution files will not be added to the &os; MASTER_SITE_BACKUP CDN. dist-sell Selling of distribution files is permitted. The distribution files will be present on the installer images. no-dist-sell Selling of distribution files is prohibited. This is equivalent to setting NO_CDROM. pkg-mirror Free redistribution of package is permitted. The package will be distributed on the &os; package CDN https://pkg.freebsd.org/. no-pkg-mirror Free redistribution of package is prohibited. Equivalent to setting NO_PACKAGE. The package will not be distributed from the &os; package CDN https://pkg.freebsd.org/. pkg-sell Selling of package is permitted. The package will be present on the installer images. no-pkg-sell Selling of package is prohibited. This is equivalent to setting NO_CDROM. The package will not be present on the installer images. auto-accept License is accepted by default. Prompts to accept a license are not displayed unless the user has defined LICENSES_ASK. Use this unless the license states the user must accept the terms of the license. no-auto-accept License is not accepted by default. The user will always be asked to confirm the acceptance of this license. This must be used if the license states that the user must accept its terms. When both permission and no-permission is present the no-permission will cancel permission. When permission is not present, it is considered to be a no-permission. Some missing permissions will prevent a port (and all ports depending on it) from being usable by package users: A port without the auto-accept permission will never be be built and all the ports depending on it will be ignored. A port without the pkg-mirror permission will be removed, as well as all the ports depending on it, after the build and they will ever end up being distributed. Nonstandard License Read the terms of the license and translate those using the available permissions. LICENSE= UNKNOWN LICENSE_NAME= unknown LICENSE_TEXT= This program is NOT in public domain.\ It can be freely distributed for non-commercial purposes only. LICENSE_PERMS= dist-mirror no-dist-sell pkg-mirror no-pkg-sell auto-accept Standard and Nonstandard Licenses Read the terms of the license and express those using the available permissions. In case of doubt, please ask for guidance on the &a.ports;. LICENSE= WARSOW GPLv2 LICENSE_COMB= multi LICENSE_NAME_WARSOW= Warsow Content License LICENSE_FILE_WARSOW= ${WRKSRC}/docs/license.txt LICENSE_PERMS_WARSOW= dist-mirror pkg-mirror auto-accept When the permissions of the GPLv2 and the UNKNOWN licenses are mixed, the port ends up with dist-mirror dist-sell pkg-mirror pkg-sell auto-accept dist-mirror no-dist-sell pkg-mirror no-pkg-sell auto-accept. The no-permissions cancel the permissions. The resulting list of permissions are dist-mirror pkg-mirror auto-accept. The distribution files and the packages will not be available on the installer images. <varname>LICENSE_GROUPS</varname> and <varname>LICENSE_GROUPS_<replaceable>NAME</replaceable></varname> Groups the license belongs. Predefined License Groups List FSF Free Software Foundation Approved, see the FSF Licensing & Compliance Team. GPL GPL Compatible OSI OSI Approved, see the Open Source Initiative Open Source Licenses page. COPYFREE Comply with Copyfree Standard Definition, see the Copyfree Licenses page. FONTS Font licenses <varname>LICENSE_NAME</varname> and <varname>LICENSE_NAME_<replaceable>NAME</replaceable></varname> Full name of the license. <varname>LICENSE_NAME</varname> LICENSE= UNRAR LICENSE_NAME= UnRAR License LICENSE_FILE= ${WRKSRC}/license.txt LICENSE_PERMS= dist-mirror dist-sell pkg-mirror pkg-sell auto-accept <varname>LICENSE_FILE</varname> and <varname>LICENSE_FILE_<replaceable>NAME</replaceable></varname> Full path to the file containing the license text, usually ${WRKSRC}/some/file. If the file is not in the distfile, and its content is too long to be put in LICENSE_TEXT, put it in a new file in ${FILESDIR}. <varname>LICENSE_FILE</varname> LICENSE= GPLv3+ LICENSE_FILE= ${WRKSRC}/COPYING <varname>LICENSE_TEXT</varname> and <varname>LICENSE_TEXT_<replaceable>NAME</replaceable></varname> Text to use as a license. Useful when the license is not in the distribution files and its text is short. <varname>LICENSE_TEXT</varname> LICENSE= UNKNOWN LICENSE_NAME= unknown LICENSE_TEXT= This program is NOT in public domain.\ It can be freely distributed for non-commercial purposes only,\ and THERE IS NO WARRANTY FOR THIS PROGRAM. LICENSE_PERMS= dist-mirror no-dist-sell pkg-mirror no-pkg-sell auto-accept <varname>LICENSE_DISTFILES</varname> and <varname>LICENSE_DISTFILES_<replaceable>NAME</replaceable></varname> The distribution files to which the licenses apply. Defaults to all the distribution files. <varname>LICENSE_DISTFILES</varname> Used when the distribution files do not all have the same license. For example, one has a code license, and another has some artwork that cannot be redistributed: MASTER_SITES= SF/some-game DISTFILES= ${DISTNAME}${EXTRACT_SUFX} artwork.zip LICENSE= BSD3CLAUSE ARTWORK LICENSE_COMB= dual LICENSE_NAME_ARTWORK= The game artwork license LICENSE_TEXT_ARTWORK= The README says that the files cannot be redistributed LICENSE_PERMS_ARTWORK= pkg-mirror pkg-sell auto-accept LICENSE_DISTFILES_BSD3CLAUSE= ${DISTNAME}${EXTRACT_SUFX} LICENSE_DISTFILES_ARTWORK= artwork.zip <varname>LICENSE_COMB</varname> Set to multi if all licenses apply. Set to dual if any license applies. Defaults to single. Dual Licenses When a port says This software may be distributed under the GNU General Public License or the Artistic License, it means that either license can be used. Use this: LICENSE= ART10 GPLv1 LICENSE_COMB= dual If license files are provided, use this: LICENSE= ART10 GPLv1 LICENSE_COMB= dual LICENSE_FILE_ART10= ${WRKSRC}/Artistic LICENSE_FILE_GPLv1= ${WRKSRC}/Copying Multiple Licenses When part of a port has one license, and another part has a different license, use multi: LICENSE= GPLv2 LGPL21+ LICENSE_COMB= multi
<varname>PORTSCOUT</varname> Portscout is an automated distfile check utility for the &os; Ports Collection, described in detail in . PORTSCOUT defines special conditions within which the Portscout distfile scanner is restricted. Situations where PORTSCOUT is set include: When distfiles have to be ignored, whether for specific versions, or specific minor revisions. For example, to exclude version 8.2 from distfile version checks because it is known to be broken, add: PORTSCOUT= ignore:8.2 When specific versions or specific major and minor revisions of a distfile must be checked. For example, if only version 0.6.4 must be monitored because newer versions have compatibility issues with &os;, add: PORTSCOUT= limit:^0\.6\.4 When URLs listing the available versions differ from the download URLs. For example, to limit distfile version checks to the download page for the databases/pgtune port, add: PORTSCOUT= site:http://pgfoundry.org/frs/?group_id=1000416 Dependencies Many ports depend on other ports. This is a very convenient feature of most Unix-like operating systems, including &os;. Multiple ports can share a common dependency, rather than bundling that dependency with every port or package that needs it. There are seven variables that can be used to ensure that all the required bits will be on the user's machine. There are also some pre-supported dependency variables for common cases, plus a few more to control the behavior of dependencies. <varname>LIB_DEPENDS</varname> This variable specifies the shared libraries this port depends on. It is a list of lib:dir tuples where lib is the name of the shared library, dir is the directory in which to find it in case it is not available. For example, LIB_DEPENDS= libjpeg.so:graphics/jpeg will check for a shared jpeg library with any version, and descend into the graphics/jpeg subdirectory of the ports tree to build and install it if it is not found. The dependency is checked twice, once from within the build target and then from within the install target. Also, the name of the dependency is put into the package so that pkg install (see &man.pkg-install.8;) will automatically install it if it is not on the user's system. <varname>RUN_DEPENDS</varname> This variable specifies executables or files this port depends on during run-time. It is a list of path:dir:target tuples where path is the name of the executable or file, dir is the directory in which to find it in case it is not available, and target is the target to call in that directory. If path starts with a slash (/), it is treated as a file and its existence is tested with test -e; otherwise, it is assumed to be an executable, and which -s is used to determine if the program exists in the search path. For example, RUN_DEPENDS= ${LOCALBASE}/news/bin/innd:news/inn \ xmlcatmgr:textproc/xmlcatmgr will check if the file or directory /usr/local/news/bin/innd exists, and build and install it from the news/inn subdirectory of the ports tree if it is not found. It will also see if an executable called xmlcatmgr is in the search path, and descend into textproc/xmlcatmgr to build and install it if it is not found. In this case, innd is actually an executable; if an executable is in a place that is not expected to be in the search path, use the full pathname. The official search PATH used on the ports build cluster is /sbin:/bin:/usr/sbin:/usr/bin:/usr/local/sbin:/usr/local/bin The dependency is checked from within the install target. Also, the name of the dependency is put into the package so that pkg install (see &man.pkg-install.8;) will automatically install it if it is not on the user's system. The target part can be omitted if it is the same as DEPENDS_TARGET. A quite common situation is when RUN_DEPENDS is literally the same as BUILD_DEPENDS, especially if ported software is written in a scripted language or if it requires the same build and run-time environment. In this case, it is both tempting and intuitive to directly assign one to the other: RUN_DEPENDS= ${BUILD_DEPENDS} However, such assignment can pollute run-time dependencies with entries not defined in the port's original BUILD_DEPENDS. This happens because of &man.make.1;'s lazy evaluation of variable assignment. Consider a Makefile with USE_*, which are processed by ports/Mk/bsd.*.mk to augment initial build dependencies. For example, USES= gmake adds devel/gmake to BUILD_DEPENDS. To prevent such additional dependencies from polluting RUN_DEPENDS, create another variable with the current content of BUILD_DEPENDS and assign it to both BUILD_DEPENDS and RUN_DEPENDS: MY_DEPENDS= some:devel/some \ other:lang/other BUILD_DEPENDS= ${MY_DEPENDS} RUN_DEPENDS= ${MY_DEPENDS} Do not use := to assign BUILD_DEPENDS to RUN_DEPENDS or vice-versa. All variables are expanded immediately, which is exactly the wrong thing to do and almost always a failure. <varname>BUILD_DEPENDS</varname> This variable specifies executables or files this port requires to build. Like RUN_DEPENDS, it is a list of path:dir:target tuples. For example, BUILD_DEPENDS= unzip:archivers/unzip will check for an executable called unzip, and descend into the archivers/unzip subdirectory of the ports tree to build and install it if it is not found. build here means everything from extraction to compilation. The dependency is checked from within the extract target. The target part can be omitted if it is the same as DEPENDS_TARGET <varname>FETCH_DEPENDS</varname> This variable specifies executables or files this port requires to fetch. Like the previous two, it is a list of path:dir:target tuples. For example, FETCH_DEPENDS= ncftp2:net/ncftp2 will check for an executable called ncftp2, and descend into the net/ncftp2 subdirectory of the ports tree to build and install it if it is not found. The dependency is checked from within the fetch target. The target part can be omitted if it is the same as DEPENDS_TARGET. <varname>EXTRACT_DEPENDS</varname> This variable specifies executables or files this port requires for extraction. Like the previous, it is a list of path:dir:target tuples. For example, EXTRACT_DEPENDS= unzip:archivers/unzip will check for an executable called unzip, and descend into the archivers/unzip subdirectory of the ports tree to build and install it if it is not found. The dependency is checked from within the extract target. The target part can be omitted if it is the same as DEPENDS_TARGET. Use this variable only if the extraction does not already work (the default assumes tar) and cannot be made to work using USES=tar, USES=lha or USES=zip described in . <varname>PATCH_DEPENDS</varname> This variable specifies executables or files this port requires to patch. Like the previous, it is a list of path:dir:target tuples. For example, PATCH_DEPENDS= ${NONEXISTENT}:java/jfc:extract will descend into the java/jfc subdirectory of the ports tree to extract it. The dependency is checked from within the patch target. The target part can be omitted if it is the same as DEPENDS_TARGET. <varname>USES</varname> Parameters can be added to define different features and dependencies used by the port. They are specified by adding this line to the Makefile: USES= feature[:arguments] For the complete list of values, please see . USES cannot be assigned after inclusion of bsd.port.pre.mk. <varname>USE_<replaceable>*</replaceable></varname> Several variables exist to define common dependencies shared by many ports. Their use is optional, but helps to reduce the verbosity of the port Makefiles. Each of them is styled as USE_*. These variables may be used only in the port Makefiles and ports/Mk/bsd.*.mk. They are not meant for user-settable options — use PORT_OPTIONS for that purpose. It is always incorrect to set any USE_* in /etc/make.conf. For instance, setting USE_GCC=X.Y (where X.Y is version number) would add a dependency on gccXY for every port, including lang/gccXY itself! <varname>USE_<replaceable>*</replaceable></varname> Variable Means USE_GCC The port requires GCC (gcc or g++) to build. Some ports need any GCC version, some require modern, recent versions. It is typically set to any (in this case, GCC from base would be used on versions of &os; that still have it, or lang/gcc port would be installed when default C/C++ compiler is Clang); or yes (means always use stable, modern GCC from lang/gcc port). The exact version can also be specified, with a value such as 4.7. The minimal required version can be specified as 4.6+. The GCC from the base system is used when it satisfies the requested version, otherwise an appropriate compiler is built from the port, and CC and CXX are adjusted accordingly. USE_GCC will register a build-time and a run-time dependency.
Variables related to gmake and configure are described in , while autoconf, automake and libtool are described in . Perl related variables are described in . X11 variables are listed in . deals with GNOME and with KDE related variables. documents Java variables, while contains information on Apache, PHP and PEAR modules. Python is discussed in , while Ruby in . provides variables used for SDL applications and finally, contains information on Xfce.
Minimal Version of a Dependency A minimal version of a dependency can be specified in any *_DEPENDS except LIB_DEPENDS using this syntax: p5-Spiffy>=0.26:devel/p5-Spiffy The first field contains a dependent package name, which must match the entry in the package database, a comparison sign, and a package version. The dependency is satisfied if p5-Spiffy-0.26 or newer is installed on the machine. Notes on Dependencies As mentioned above, the default target to call when a dependency is required is DEPENDS_TARGET. It defaults to install. This is a user variable; it is never defined in a port's Makefile. If the port needs a special way to handle a dependency, use the :target part of *_DEPENDS instead of redefining DEPENDS_TARGET. When running make clean, the port dependencies are automatically cleaned too. If this is not desirable, define NOCLEANDEPENDS in the environment. This may be particularly desirable if the port has something that takes a long time to rebuild in its dependency list, such as KDE, GNOME or Mozilla. To depend on another port unconditionally, use the variable ${NONEXISTENT} as the first field of BUILD_DEPENDS or RUN_DEPENDS. Use this only when the source of the other port is needed. Compilation time can be saved by specifying the target too. For instance BUILD_DEPENDS= ${NONEXISTENT}:graphics/jpeg:extract will always descend to the jpeg port and extract it. Circular Dependencies Are Fatal Do not introduce any circular dependencies into the ports tree! The ports building technology does not tolerate circular dependencies. If one is introduced, someone, somewhere in the world, will have their &os; installation broken almost immediately, with many others quickly to follow. These can really be hard to detect. If in doubt, before making that change, make sure to run: cd /usr/ports; make index. That process can be quite slow on older machines, but it may be able to save a large number of people, including yourself, a lot of grief in the process. Problems Caused by Automatic Dependencies Dependencies must be declared either explicitly or by using the OPTIONS framework. Using other methods like automatic detection complicates indexing, which causes problems for port and package management. Wrong Declaration of an Optional Dependency .include <bsd.port.pre.mk> .if exists(${LOCALBASE}/bin/foo) LIB_DEPENDS= libbar.so:foo/bar .endif The problem with trying to automatically add dependencies is that files and settings outside an individual port can change at any time. For example: an index is built, then a batch of ports are installed. But one of the ports installs the tested file. The index is now incorrect, because an installed port unexpectedly has a new dependency. The index may still be wrong even after rebuilding if other ports also determine their need for dependencies based on the existence of other files. Correct Declaration of an Optional Dependency OPTIONS_DEFINE= BAR BAR_DESC= Calling cellphones via bar BAR_LIB_DEPENDS= libbar.so:foo/bar Testing option variables is the correct method. It will not cause inconsistencies in the index of a batch of ports, provided the options were defined prior to the index build. Simple scripts can then be used to automate the building, installation, and updating of these ports and their packages.
Slave Ports and <varname>MASTERDIR</varname> If the port needs to build slightly different versions of packages by having a variable (for instance, resolution, or paper size) take different values, create one subdirectory per package to make it easier for users to see what to do, but try to share as many files as possible between ports. Typically, by using variables cleverly, only a very short Makefile is needed in all but one of the directories. In the sole Makefile, use MASTERDIR to specify the directory where the rest of the files are. Also, use a variable as part of PKGNAMESUFFIX so the packages will have different names. This will be best demonstrated by an example. This is part of print/pkfonts300/Makefile; PORTNAME= pkfonts${RESOLUTION} PORTVERSION= 1.0 DISTFILES= pk${RESOLUTION}.tar.gz PLIST= ${PKGDIR}/pkg-plist.${RESOLUTION} .if !defined(RESOLUTION) RESOLUTION= 300 .else .if ${RESOLUTION} != 118 && ${RESOLUTION} != 240 && \ ${RESOLUTION} != 300 && ${RESOLUTION} != 360 && \ ${RESOLUTION} != 400 && ${RESOLUTION} != 600 .BEGIN: @${ECHO_MSG} "Error: invalid value for RESOLUTION: \"${RESOLUTION}\"" @${ECHO_MSG} "Possible values are: 118, 240, 300, 360, 400 and 600." @${FALSE} .endif .endif print/pkfonts300 also has all the regular patches, package files, etc. Running make there, it will take the default value for the resolution (300) and build the port normally. As for other resolutions, this is the entire print/pkfonts360/Makefile: RESOLUTION= 360 MASTERDIR= ${.CURDIR}/../pkfonts300 .include "${MASTERDIR}/Makefile" (print/pkfonts118/Makefile, print/pkfonts600/Makefile, and all the other are similar). MASTERDIR definition tells bsd.port.mk that the regular set of subdirectories like FILESDIR and SCRIPTDIR are to be found under pkfonts300. The RESOLUTION=360 line will override the RESOLUTION=300 line in pkfonts300/Makefile and the port will be built with resolution set to 360. Man Pages If the port anchors its man tree somewhere other than PREFIX, use MANDIRS to specify those directories. Note that the files corresponding to manual pages must be placed in pkg-plist along with the rest of the files. The purpose of MANDIRS is to enable automatic compression of manual pages, therefore the file names are suffixed with .gz. Info Files If the package needs to install GNU info files, list them in INFO (without the trailing .info), one entry per document. These files are assumed to be installed to PREFIX/INFO_PATH. Change INFO_PATH if the package uses a different location. However, this is not recommended. These entries contain just the path relative to PREFIX/INFO_PATH. For example, lang/gcc34 installs info files to PREFIX/INFO_PATH/gcc34, and INFO will be something like this: INFO= gcc34/cpp gcc34/cppinternals gcc34/g77 ... Appropriate installation/de-installation code will be automatically added to the temporary pkg-plist before package registration. Makefile Options Many applications can be built with optional or differing configurations. Examples include choice of natural (human) language, GUI versus command-line, or type of database to support. Users may need a different configuration than the default, so the ports system provides hooks the port author can use to control which variant will be built. Supporting these options properly will make users happy, and effectively provide two or more ports for the price of one. <varname>OPTIONS</varname> Background OPTIONS_* give the user installing the port a dialog showing the available options, and then saves those options to ${PORT_DBDIR}/${OPTIONS_NAME}/options. The next time the port is built, the options are reused. PORT_DBDIR defaults to /var/db/ports. OPTIONS_NAME is to the port origin with an underscore as the space separator, for example, for dns/bind99 it will be dns_bind99. When the user runs make config (or runs make build for the first time), the framework checks for ${PORT_DBDIR}/${OPTIONS_NAME}/options. If that file does not exist, the values of OPTIONS_* are used, and a dialog box is displayed where the options can be enabled or disabled. Then options is saved and the configured variables are used when building the port. If a new version of the port adds new OPTIONS, the dialog will be presented to the user with the saved values of old OPTIONS prefilled. make showconfig shows the saved configuration. Use make rmconfig to remove the saved configuration. Syntax OPTIONS_DEFINE contains a list of OPTIONS to be used. These are independent of each other and are not grouped: OPTIONS_DEFINE= OPT1 OPT2 Once defined, OPTIONS are described (optional, but strongly recommended): OPT1_DESC= Describe OPT1 OPT2_DESC= Describe OPT2 OPT3_DESC= Describe OPT3 OPT4_DESC= Describe OPT4 OPT5_DESC= Describe OPT5 OPT6_DESC= Describe OPT6 ports/Mk/bsd.options.desc.mk has descriptions for many common OPTIONS. While often useful, override them if the description is insufficient for the port. When describing options, view it from the perspective of the user: What functionality does it change? and Why would I want to enable this? Do not just repeat the name. For example, describing the NLS option as include NLS support does not help the user, who can already see the option name but may not know what it means. Describing it as Native Language Support via gettext utilities is much more helpful. Option names are always in all uppercase. They cannot use mixed case or lowercase. OPTIONS can be grouped as radio choices, where only one choice from each group is allowed: OPTIONS_SINGLE= SG1 OPTIONS_SINGLE_SG1= OPT3 OPT4 There must be one of each OPTIONS_SINGLE group selected at all times for the options to be valid. One option of each group must be added to OPTIONS_DEFAULT. OPTIONS can be grouped as radio choices, where none or only one choice from each group is allowed: OPTIONS_RADIO= RG1 OPTIONS_RADIO_RG1= OPT7 OPT8 OPTIONS can also be grouped as multiple-choice lists, where at least one option must be enabled: OPTIONS_MULTI= MG1 OPTIONS_MULTI_MG1= OPT5 OPT6 OPTIONS can also be grouped as multiple-choice lists, where none or any option can be enabled: OPTIONS_GROUP= GG1 OPTIONS_GROUP_GG1= OPT9 OPT10 OPTIONS are unset by default, unless they are listed in OPTIONS_DEFAULT: OPTIONS_DEFAULT= OPT1 OPT3 OPT6 OPTIONS definitions must appear before the inclusion of bsd.port.options.mk. PORT_OPTIONS values can only be tested after the inclusion of bsd.port.options.mk. Inclusion of bsd.port.pre.mk can be used instead, too, and is still widely used in ports written before the introduction of bsd.port.options.mk. But be aware that some variables will not work as expected after the inclusion of bsd.port.pre.mk, typically some USE_* flags. Simple Use of <varname>OPTIONS</varname> OPTIONS_DEFINE= FOO BAR OPTIONS_DEFAULT=FOO FOO_DESC= Option foo support BAR_DESC= Feature bar support # Will add --with-foo / --without-foo FOO_CONFIGURE_WITH= foo BAR_RUN_DEPENDS= bar:bar/bar .include <bsd.port.mk> Check for Unset Port <varname>OPTIONS</varname> .if ! ${PORT_OPTIONS:MEXAMPLES} CONFIGURE_ARGS+=--without-examples .endif The form shown above is discouraged. The preferred method is using a configure knob to really enable and disable the feature to match the option: # Will add --with-examples / --without-examples EXAMPLES_CONFIGURE_WITH= examples Practical Use of <varname>OPTIONS</varname> OPTIONS_DEFINE= EXAMPLES OPTIONS_DEFAULT= PGSQL LDAP SSL OPTIONS_SINGLE= BACKEND OPTIONS_SINGLE_BACKEND= MYSQL PGSQL BDB OPTIONS_MULTI= AUTH OPTIONS_MULTI_AUTH= LDAP PAM SSL EXAMPLES_DESC= Install extra examples MYSQL_DESC= Use MySQL as backend PGSQL_DESC= Use PostgreSQL as backend BDB_DESC= Use Berkeley DB as backend LDAP_DESC= Build with LDAP authentication support PAM_DESC= Build with PAM support SSL_DESC= Build with OpenSSL support # Will add USE_PGSQL=yes PGSQL_USE= pgsql=yes # Will add --enable-postgres / --disable-postgres PGSQL_CONFIGURE_ENABLE= postgres ICU_LIB_DEPENDS= libicuuc.so:devel/icu # Will add --with-examples / --without-examples EXAMPLES_CONFIGURE_WITH= examples # Check other OPTIONS .include <bsd.port.mk> Default Options These options are always on by default. DOCS — build and install documentation. NLS — Native Language Support. EXAMPLES — build and install examples. IPV6 — IPv6 protocol support. There is no need to add these to OPTIONS_DEFAULT. To have them active, and show up in the options selection dialog, however, they must be added to OPTIONS_DEFINE. Feature Auto-Activation When using a GNU configure script, keep an eye on which optional features are activated by auto-detection. Explicitly disable optional features that are not needed by adding --without-xxx or --disable-xxx in CONFIGURE_ARGS. Wrong Handling of an Option .if ${PORT_OPTIONS:MFOO} LIB_DEPENDS+= libfoo.so:devel/foo CONFIGURE_ARGS+= --enable-foo .endif In the example above, imagine a library libfoo is installed on the system. The user does not want this application to use libfoo, so he toggled the option off in the make config dialog. But the application's configure script detects the library present in the system and includes its support in the resulting executable. Now when the user decides to remove libfoo from the system, the ports system does not protest (no dependency on libfoo was recorded) but the application breaks. Correct Handling of an Option FOO_LIB_DEPENDS= libfoo.so:devel/foo # Will add --enable-foo / --disable-foo FOO_CONFIGURE_ENABLE= foo Under some circumstances, the shorthand conditional syntax can cause problems with complex constructs. The errors are usually Malformed conditional, an alternative syntax can be used. .if !empty(VARIABLE:MVALUE) as an alternative to .if ${VARIABLE:MVALUE} Options Helpers There are some macros to help simplify conditional values which differ based on the options set. For easier access, a comprehensive list is provided: PLIST_SUB, SUB_LIST For automatic %%OPT%% and %%NO_OPT%% generation, see . For more complex usage, see . CONFIGURE_ARGS For --enable-x and --disable-x, see . For --with-x and --without-x, see . For all other cases, see . CMAKE_ARGS For arguments that are booleans (on, off, true, false, 0, 1) see . For all other cases, see . MESON_ARGS For arguments that take true or false, see . For arguments that take yes or no, use . + For arguments that take enabled + or disabled, see . + For all other cases, use . QMAKE_ARGS See . USE_* See . *_DEPENDS See . * (Any variable) The most used variables have direct helpers, see . For any variable without a specific helper, see . Options dependencies When an option need another option to work, see . Options conflicts When an option cannot work if another is also enabled, see . Build targets When an option need some extra processing, see . <varname>OPTIONS_SUB</varname> If OPTIONS_SUB is set to yes then each of the options added to OPTIONS_DEFINE will be added to PLIST_SUB and SUB_LIST, for example: OPTIONS_DEFINE= OPT1 OPTIONS_SUB= yes is equivalent to: OPTIONS_DEFINE= OPT1 .include <bsd.port.options.mk> .if ${PORT_OPTIONS:MOPT1} PLIST_SUB+= OPT1="" NO_OPT1="@comment " SUB_LIST+= OPT1="" NO_OPT1="@comment " .else PLIST_SUB+= OPT1="@comment " NO_OPT1="" SUB_LIST+= OPT1="@comment " NO_OPT1="" .endif The value of OPTIONS_SUB is ignored. Setting it to any value will add PLIST_SUB and SUB_LIST entries for all options. <varname><replaceable>OPT</replaceable>_USE</varname> and <varname><replaceable>OPT</replaceable>_USE_OFF</varname> When option OPT is selected, for each key=value pair in OPT_USE, value is appended to the corresponding USE_KEY. If value has spaces in it, replace them with commas and they will be changed back to spaces during processing. OPT_USE_OFF works the same way, but when OPT is not selected. For example: OPTIONS_DEFINE= OPT1 OPT1_USE= mysql=yes xorg=x11,xextproto,xext,xrandr OPT1_USE_OFF= openssl=yes is equivalent to: OPTIONS_DEFINE= OPT1 .include <bsd.port.options.mk> .if ${PORT_OPTIONS:MOPT1} USE_MYSQL= yes USE_XORG= x11 xextproto xext xrandr .else USE_OPENSSL= yes .endif <varname>CONFIGURE_ARGS</varname> Helpers <varname><replaceable>OPT</replaceable>_CONFIGURE_ENABLE</varname> When option OPT is selected, for each entry in OPT_CONFIGURE_ENABLE then --enable-entry is appended to CONFIGURE_ARGS. When option OPT is not selected, --disable-entry is appended to CONFIGURE_ARGS. An optional argument can be specified with an = symbol. This argument is only appended to the --enable-entry configure option. For example: OPTIONS_DEFINE= OPT1 OPT2 OPT1_CONFIGURE_ENABLE= test1 test2 OPT2_CONFIGURE_ENABLE= test2=exhaustive is equivalent to: OPTIONS_DEFINE= OPT1 .include <bsd.port.options.mk> .if ${PORT_OPTIONS:MOPT1} CONFIGURE_ARGS+= --enable-test1 --enable-test2 .else CONFIGURE_ARGS+= --disable-test1 --disable-test2 .endif .if ${PORT_OPTIONS:MOPT2} CONFIGURE_ARGS+= --enable-test2=exhaustive .else CONFIGURE_ARGS+= --disable-test2 .endif <varname><replaceable>OPT</replaceable>_CONFIGURE_WITH</varname> When option OPT is selected, for each entry in OPT_CONFIGURE_WITH then --with-entry is appended to CONFIGURE_ARGS. When option OPT is not selected, --without-entry is appended to CONFIGURE_ARGS. An optional argument can be specified with an = symbol. This argument is only appended to the --with-entry configure option. For example: OPTIONS_DEFINE= OPT1 OPT2 OPT1_CONFIGURE_WITH= test1 OPT2_CONFIGURE_WITH= test2=exhaustive is equivalent to: OPTIONS_DEFINE= OPT1 OPT2 .include <bsd.port.options.mk> .if ${PORT_OPTIONS:MOPT1} CONFIGURE_ARGS+= --with-test1 .else CONFIGURE_ARGS+= --without-test1 .endif .if ${PORT_OPTIONS:MOPT2} CONFIGURE_ARGS+= --with-test2=exhaustive .else CONFIGURE_ARGS+= --without-test2 .endif <varname><replaceable>OPT</replaceable>_CONFIGURE_ON</varname> and <varname><replaceable>OPT</replaceable>_CONFIGURE_OFF</varname> When option OPT is selected, the value of OPT_CONFIGURE_ON, if defined, is appended to CONFIGURE_ARGS. OPT_CONFIGURE_OFF works the same way, but when OPT is not selected. For example: OPTIONS_DEFINE= OPT1 OPT1_CONFIGURE_ON= --add-test OPT1_CONFIGURE_OFF= --no-test is equivalent to: OPTIONS_DEFINE= OPT1 .include <bsd.port.options.mk> .if ${PORT_OPTIONS:MOPT1} CONFIGURE_ARGS+= --add-test .else CONFIGURE_ARGS+= --no-test .endif Most of the time, the helpers in and provide a shorter and more comprehensive functionality. <varname>CMAKE_ARGS</varname> Helpers <varname><replaceable>OPT</replaceable>_CMAKE_ON</varname> and <varname><replaceable>OPT</replaceable>_CMAKE_OFF</varname> When option OPT is selected, the value of OPT_CMAKE_ON, if defined, is appended to CMAKE_ARGS. OPT_CMAKE_OFF works the same way, but when OPT is not selected. For example: OPTIONS_DEFINE= OPT1 OPT1_CMAKE_ON= -DTEST:BOOL=true -DDEBUG:BOOL=true OPT1_CMAKE_OFF= -DOPTIMIZE:BOOL=true is equivalent to: OPTIONS_DEFINE= OPT1 .include <bsd.port.options.mk> .if ${PORT_OPTIONS:MOPT1} CMAKE_ARGS+= -DTEST:BOOL=true -DDEBUG:BOOL=true .else CMAKE_ARGS+= -DOPTIMIZE:BOOL=true .endif See for a shorter helper when the value is boolean. <varname><replaceable>OPT</replaceable>_CMAKE_BOOL</varname> and <varname><replaceable>OPT</replaceable>_CMAKE_BOOL_OFF</varname> When option OPT is selected, for each entry in OPT_CMAKE_BOOL then -Dentry:BOOL=true is appended to CMAKE_ARGS. When option OPT is not selected, -Dentry:BOOL=false is appended to CONFIGURE_ARGS. OPT_CMAKE_BOOL_OFF - is the oposite, + is the opposite, -Dentry:BOOL=false is appended to CMAKE_ARGS when the option is selected, and -Dentry:BOOL=true when the option is not selected. For example: OPTIONS_DEFINE= OPT1 OPT1_CMAKE_BOOL= TEST DEBUG OPT1_CMAKE_BOOL_OFF= OPTIMIZE is equivalent to: OPTIONS_DEFINE= OPT1 .include <bsd.port.options.mk> .if ${PORT_OPTIONS:MOPT1} CMAKE_ARGS+= -DTEST:BOOL=true -DDEBUG:BOOL=true \ -DOPTIMIZE:BOOL=false .else CMAKE_ARGS+= -DTEST:BOOL=false -DDEBUG:BOOL=false \ -DOPTIMIZE:BOOL=true .endif <varname>MESON_ARGS</varname> Helpers <varname><replaceable>OPT</replaceable>_MESON_ON</varname> and <varname><replaceable>OPT</replaceable>_MESON_OFF</varname> When option OPT is selected, the value of OPT_MESON_ON, if defined, is appended to MESON_ARGS. OPT_MESON_OFF works the same way, but when OPT is not selected. For example: OPTIONS_DEFINE= OPT1 OPT1_MESON_ON= -Dopt=1 OPT1_MESON_OFF= -Dopt=2 is equivalent to: OPTIONS_DEFINE= OPT1 .include <bsd.port.options.mk> .if ${PORT_OPTIONS:MOPT1} MESON_ARGS+= -Dopt=1 .else MESON_ARGS+= -Dopt=2 .endif <varname><replaceable>OPT</replaceable>_MESON_TRUE</varname> and <varname><replaceable>OPT</replaceable>_MESON_FALSE</varname> When option OPT is selected, for each entry in OPT_MESON_TRUE then -Dentry=true - is appended to CMAKE_ARGS. When option + is appended to MESON_ARGS. When option OPT is not selected, -Dentry=false - is appended to CONFIGURE_ARGS. + is appended to MESON_ARGS. OPT_MESON_FALSE - is the oposite, + is the opposite, -Dentry=false - is appended to CMAKE_ARGS when the + is appended to MESON_ARGS when the option is selected, and -Dentry=true when the option is not selected. For example: OPTIONS_DEFINE= OPT1 OPT1_MESON_TRUE= test debug OPT1_MESON_FALSE= optimize is equivalent to: OPTIONS_DEFINE= OPT1 .include <bsd.port.options.mk> .if ${PORT_OPTIONS:MOPT1} MESON_ARGS+= -Dtest=true -Ddebug=true \ -Doptimize=false .else MESON_ARGS+= -Dtest=false -Ddebug=false \ -Doptimize=true .endif <varname><replaceable>OPT</replaceable>_MESON_YES</varname> and <varname><replaceable>OPT</replaceable>_MESON_NO</varname> When option OPT is selected, for each entry in OPT_MESON_YES then -Dentry=yes - is appended to CMAKE_ARGS. When option + is appended to MESON_ARGS. When option OPT is not selected, -Dentry=no - is appended to CONFIGURE_ARGS. + is appended to MESON_ARGS. OPT_MESON_NO - is the oposite, + is the opposite, -Dentry=no - is appended to CMAKE_ARGS when the + is appended to MESON_ARGS when the option is selected, and -Dentry=yes when the option is not selected. For example: OPTIONS_DEFINE= OPT1 OPT1_MESON_YES= test debug OPT1_MESON_NO= optimize is equivalent to: OPTIONS_DEFINE= OPT1 .include <bsd.port.options.mk> .if ${PORT_OPTIONS:MOPT1} -CMAKE_ARGS+= -Dtest=yes -Ddebug=yes \ +MESON_ARGS+= -Dtest=yes -Ddebug=yes \ -Doptimize=no .else -CMAKE_ARGS+= -Dtest=no -Ddebug=no \ +MESON_ARGS+= -Dtest=no -Ddebug=no \ -Doptimize=yes +.endif + + + + <varname><replaceable>OPT</replaceable>_MESON_ENABLED</varname> + and + <varname><replaceable>OPT</replaceable>_MESON_DISABLED</varname> + + When option OPT is + selected, for each entry in + OPT_MESON_ENABLED + then + -Dentry=enabled + is appended to MESON_ARGS. When option + OPT is not + selected, + -Dentry=disabled + is appended to MESON_ARGS. + OPT_MESON_DISABLED + is the opposite, + -Dentry=disabled + is appended to MESON_ARGS when the + option is selected, and + -Dentry=enabled + when the option is not selected. For + example: + + OPTIONS_DEFINE= OPT1 +OPT1_MESON_ENABLED= test +OPT1_MESON_DISABLED= debug + + is equivalent to: + + OPTIONS_DEFINE= OPT1 + +.include <bsd.port.options.mk> + +.if ${PORT_OPTIONS:MOPT1} +MESON_ARGS+= -Dtest=enabled -Ddebug=disabled +.else +MESON_ARGS+= -Dtest=disabled -Ddebug=enabled .endif <varname><replaceable>OPT</replaceable>_QMAKE_ON</varname> and <varname><replaceable>OPT</replaceable>_QMAKE_OFF</varname> When option OPT is selected, the value of OPT_QMAKE_ON, if defined, is appended to QMAKE_ARGS. OPT_QMAKE_OFF works the same way, but when OPT is not selected. For example: OPTIONS_DEFINE= OPT1 OPT1_QMAKE_ON= -DTEST:BOOL=true OPT1_QMAKE_OFF= -DPRODUCTION:BOOL=true is equivalent to: OPTIONS_DEFINE= OPT1 .include <bsd.port.options.mk> .if ${PORT_OPTIONS:MOPT1} QMAKE_ARGS+= -DTEST:BOOL=true .else QMAKE_ARGS+= -DPRODUCTION:BOOL=true .endif <varname><replaceable>OPT</replaceable>_IMPLIES</varname> Provides a way to add dependencies between options. When OPT is selected, all the options listed in this variable will be selected too. Using the OPT_CONFIGURE_ENABLE described earlier to illustrate: OPTIONS_DEFINE= OPT1 OPT2 OPT1_IMPLIES= OPT2 OPT1_CONFIGURE_ENABLE= opt1 OPT2_CONFIGURE_ENABLE= opt2 Is equivalent to: OPTIONS_DEFINE= OPT1 OPT2 .include <bsd.port.options.mk> .if ${PORT_OPTIONS:MOPT1} CONFIGURE_ARGS+= --enable-opt1 .else CONFIGURE_ARGS+= --disable-opt1 .endif .if ${PORT_OPTIONS:MOPT2} || ${PORT_OPTIONS:MOPT1} CONFIGURE_ARGS+= --enable-opt2 .else CONFIGURE_ARGS+= --disable-opt2 .endif Simple Use of <varname><replaceable>OPT</replaceable>_IMPLIES</varname> This port has a X11 option, and a GNOME option that needs the X11 option to be selected to build. OPTIONS_DEFINE= X11 GNOME OPTIONS_DEFAULT= X11 X11_USE= xorg=xi,xextproto GNOME_USE= gnome=gtk30 GNOME_IMPLIES= X11 <varname><replaceable>OPT</replaceable>_PREVENTS</varname> and <varname><replaceable>OPT</replaceable>_PREVENTS_MSG</varname> Provides a way to add conflicts between options. When OPT is selected, all the options listed in OPT_PREVENTS must be un-selected. If OPT_PREVENTS_MSG is set and a conflict is triggered, its content will be shown explaining why they conflict. For example: OPTIONS_DEFINE= OPT1 OPT2 OPT1_PREVENTS= OPT2 OPT1_PREVENTS_MSG= OPT1 and OPT2 enable conflicting options Is roughly equivalent to: OPTIONS_DEFINE= OPT1 OPT2 .include <bsd.port.options.mk> .if ${PORT_OPTIONS:MOPT2} && ${PORT_OPTIONS:MOPT1} BROKEN= Option OPT1 conflicts with OPT2 (select only one) .endif The only difference is that the first one will write an error after running make config, suggesting changing the selected options. Simple Use of <varname><replaceable>OPT</replaceable>_PREVENTS</varname> This port has X509 and SCTP options. Both options add patches, but the patches conflict with each other, so they cannot be selected at the same time. OPTIONS_DEFINE= X509 SCTP SCTP_PATCHFILES= ${PORTNAME}-6.8p1-sctp-2573.patch.gz:-p1 SCTP_CONFIGURE_WITH= sctp X509_PATCH_SITES= http://www.roumenpetrov.info/openssh/x509/:x509 X509_PATCHFILES= ${PORTNAME}-7.0p1+x509-8.5.diff.gz:-p1:x509 X509_PREVENTS= SCTP X509_PREVENTS_MSG= X509 and SCTP patches conflict <varname><replaceable>OPT</replaceable>_VARS</varname> and <varname><replaceable>OPT</replaceable>_VARS_OFF</varname> Provides a generic way to set and append to variables. Before using OPT_VARS and OPT_VARS_OFF, see if there is already a more specific helper available in . When option OPT is selected, and OPT_VARS defined, key=value and key+=value pairs are evaluated from OPT_VARS. An = cause the existing value of KEY to be overwritten, an += appends to the value. OPT_VARS_OFF works the same way, but when OPT is not selected. OPTIONS_DEFINE= OPT1 OPT2 OPT3 OPT1_VARS= also_build+=bin1 OPT2_VARS= also_build+=bin2 OPT3_VARS= bin3_build=yes OPT3_VARS_OFF= bin3_build=no MAKE_ARGS= ALSO_BUILD="${ALSO_BUILD}" BIN3_BUILD="${BIN3_BUILD}" is equivalent to: OPTIONS_DEFINE= OPT1 OPT2 MAKE_ARGS= ALSO_BUILD="${ALSO_BUILD}" BIN3_BUILD="${BIN3_BUILD}" .include <bsd.port.options.mk> .if ${PORT_OPTIONS:MOPT1} ALSO_BUILD+= bin1 .endif .if ${PORT_OPTIONS:MOPT2} ALSO_BUILD+= bin2 .endif .if ${PORT_OPTIONS:MOPT2} BIN3_BUILD= yes .else BIN3_BUILD= no .endif Values containing whitespace must be enclosed in quotes: OPT_VARS= foo="bar baz" This is due to the way &man.make.1; variable expansion deals with whitespace. When OPT_VARS= foo=bar baz is expanded, the variable ends up containing two strings, foo=bar and baz. But the submitter probably intended there to be only one string, foo=bar baz. Quoting the value prevents whitespace from being used as a delimiter. Also, do not add extra spaces after the var= sign and before the value, it would also be split into two strings. This will not work: OPT_VARS= foo= bar Dependencies, <varname><replaceable>OPT</replaceable>_<replaceable>DEPTYPE</replaceable></varname> and <varname><replaceable>OPT</replaceable>_<replaceable>DEPTYPE</replaceable>_OFF</varname> For any of these dependency types: PKG_DEPENDS EXTRACT_DEPENDS PATCH_DEPENDS FETCH_DEPENDS BUILD_DEPENDS LIB_DEPENDS RUN_DEPENDS When option OPT is selected, the value of OPT_DEPTYPE, if defined, is appended to DEPTYPE. OPT_DEPTYPE_OFF works the same, but when OPT is not selected. For example: OPTIONS_DEFINE= OPT1 OPT1_LIB_DEPENDS= liba.so:devel/a OPT1_LIB_DEPENDS_OFF= libb.so:devel/b is equivalent to: OPTIONS_DEFINE= OPT1 .include <bsd.port.options.mk> .if ${PORT_OPTIONS:MOPT1} LIB_DEPENDS+= liba.so:devel/a .else LIB_DEPENDS+= libb.so:devel/b .endif Generic Variables Replacement, <varname><replaceable>OPT</replaceable>_<replaceable>VARIABLE</replaceable></varname> and <varname><replaceable>OPT</replaceable>_<replaceable>VARIABLE</replaceable>_OFF</varname> For any of these variables: ALL_TARGET BINARY_ALIAS BROKEN CATEGORIES CFLAGS CONFIGURE_ENV CONFLICTS CONFLICTS_BUILD CONFLICTS_INSTALL CPPFLAGS CXXFLAGS DESKTOP_ENTRIES DISTFILES EXTRACT_ONLY EXTRA_PATCHES GH_ACCOUNT GH_PROJECT GH_SUBDIR GH_TAGNAME GH_TUPLE GL_ACCOUNT GL_COMMIT GL_PROJECT GL_SITE GL_SUBDIR GL_TUPLE IGNORE INFO INSTALL_TARGET LDFLAGS LIBS MAKE_ARGS MAKE_ENV MASTER_SITES PATCHFILES PATCH_SITES PLIST_DIRS PLIST_FILES PLIST_SUB PORTDOCS PORTEXAMPLES SUB_FILES SUB_LIST TEST_TARGET USES When option OPT is selected, the value of OPT_ABOVEVARIABLE, if defined, is appended to ABOVEVARIABLE. OPT_ABOVEVARIABLE_OFF works the same way, but when OPT is not selected. For example: OPTIONS_DEFINE= OPT1 OPT1_USES= gmake OPT1_CFLAGS_OFF= -DTEST is equivalent to: OPTIONS_DEFINE= OPT1 .include <bsd.port.options.mk> .if ${PORT_OPTIONS:MOPT1} USES+= gmake .else CFLAGS+= -DTEST .endif Some variables are not in this list, in particular PKGNAMEPREFIX and PKGNAMESUFFIX. This is intentional. A port must not change its name when its option set changes. Some of these variables, at least ALL_TARGET, DISTFILES and INSTALL_TARGET, have their default values set after the options are processed. With these lines in the Makefile: ALL_TARGET= all DOCS_ALL_TARGET= doc If the DOCS option is enabled, ALL_TARGET will have a final value of all doc; if the option is disabled, it would have a value of all. With only the options helper line in the Makefile: DOCS_ALL_TARGET= doc If the DOCS option is enabled, ALL_TARGET will have a final value of doc; if the option is disabled, it would have a value of all. Additional Build Targets, <buildtarget><replaceable>target</replaceable>-<replaceable>OPT</replaceable>-on</buildtarget> and <buildtarget><replaceable>target</replaceable>-<replaceable>OPT</replaceable>-off</buildtarget> These Makefile targets can accept optional extra build targets: pre-fetch do-fetch post-fetch pre-extract do-extract post-extract pre-patch do-patch post-patch pre-configure do-configure post-configure pre-build do-build post-build pre-install do-install post-install post-stage pre-package do-package post-package When option OPT is selected, the target TARGET-OPT-on, if defined, is executed after TARGET. TARGET-OPT-off works the same way, but when OPT is not selected. For example: OPTIONS_DEFINE= OPT1 post-patch: @${REINPLACE_CMD} -e 's/echo/true/' ${WRKSRC}/Makefile post-patch-OPT1-on: @${REINPLACE_CMD} -e '/opt1/d' ${WRKSRC}/Makefile post-patch-OPT1-off: @${REINPLACE_CMD} -e '/opt1/s|/usr/bin/|${LOCALBASE}/bin/|' ${WRKSRC}/Makefile is equivalent to: OPTIONS_DEFINE= OPT1 .include <bsd.port.options.mk> post-patch: @${REINPLACE_CMD} -e 's/echo/true/' ${WRKSRC}/Makefile .if ${PORT_OPTIONS:MOPT1} @${REINPLACE_CMD} -e '/opt1/d' ${WRKSRC}/Makefile .else @${REINPLACE_CMD} -e '/opt1/s|/usr/bin/|${LOCALBASE}/bin/|' ${WRKSRC}/Makefile .endif Specifying the Working Directory Each port is extracted into a working directory, which must be writable. The ports system defaults to having DISTFILES unpack in to a directory called ${DISTNAME}. In other words, if the Makefile has: PORTNAME= foo DISTVERSION= 1.0 then the port's distribution files contain a top-level directory, foo-1.0, and the rest of the files are located under that directory. A number of variables can be overridden if that is not the case. <varname>WRKSRC</varname> The variable lists the name of the directory that is created when the application's distfiles are extracted. If our previous example extracted into a directory called foo (and not foo-1.0) write: WRKSRC= ${WRKDIR}/foo or possibly WRKSRC= ${WRKDIR}/${PORTNAME} <varname>WRKSRC_SUBDIR</varname> If the source files needed for the port are in a subdirectory of the extracted distribution file, set WRKSRC_SUBDIR to that directory. WRKSRC_SUBDIR= src <varname>NO_WRKSUBDIR</varname> If the port does not extract in to a subdirectory at all, then set NO_WRKSUBDIR to indicate that. NO_WRKSUBDIR= yes Because WRKDIR is the only directory that is supposed to be writable during the build, and is used to store many files recording the status of the build, the port's extraction will be forced into a subdirectory. Conflict Handling There are three different variables to register a conflict between packages and ports: CONFLICTS, CONFLICTS_INSTALL and CONFLICTS_BUILD. The conflict variables automatically set the variable IGNORE, which is more fully documented in . When removing one of several conflicting ports, it is advisable to retain CONFLICTS in those other ports for a few months to cater for users who only update once in a while. CONFLICTS_INSTALL If the package cannot coexist with other packages (because of file conflicts, runtime incompatibilities, etc.). CONFLICTS_INSTALL check is done after the build stage and prior to the install stage. CONFLICTS_BUILD If the port cannot be built when other specific ports are already installed. Build conflicts are not recorded in the resulting package. CONFLICTS If the port cannot be built if a certain port is already installed and the resulting package cannot coexist with the other package. CONFLICTS check is done prior to the build stage and prior to the install stage. The most common content of one of these variable is the package base of another port. The package base is the package name without the appended version, it can be obtained by running make -V PKGBASE. Basic usage of <varname>CONFLICTS<replaceable>*</replaceable></varname> dns/bind99 cannot be installed if dns/bind910 is present because they install same files. First gather the package base to use: &prompt.user; make -C dns/bind99 -V PKGBASE bind99 &prompt.user; make -C dns/bind910 -V PKGBASE bind910 Then add to the Makefile of dns/bind99: CONFLICTS_INSTALL= bind910 And add to the Makefile of dns/bind910: CONFLICTS_INSTALL= bind99 Sometime, only some version of another port is incompatible, in this case, use the full package name, with the version, and use shell globs, like * and ? to make sure all possible versions are matched. Using <varname>CONFLICTS<replaceable>*</replaceable></varname> With Globs. From versions from 2.0 and up-to 2.4.1_2, deskutils/gnotime used to install a bundled version of databases/qof. To reflect this past, the Makefile of databases/qof contains: CONFLICTS_INSTALL= gnotime-2.[0-3]* \ gnotime-2.4.0* gnotime-2.4.1 \ gnotime-2.4.1_[12] The first entry match versions 2.0 through 2.3, the second all the revisions of 2.4.0, the third the exact 2.4.1 version, and the last the first and second revisions of the 2.4.1 version. deskutils/gnotime does not have any conflicts line because its current version does not conflict with anything else. Installing Files The install phase is very important to the end user because it adds files to their system. All the additional commands run in the port Makefile's *-install targets should be echoed to the screen. Do not silence these commands with @ or .SILENT. <varname>INSTALL_<replaceable>*</replaceable></varname> Macros Use the macros provided in bsd.port.mk to ensure correct modes of files in the port's *-install targets. Set ownership directly in pkg-plist with the corresponding entries, such as @(owner,group,), @owner owner, and @group group. These operators work until overridden, or until the end of pkg-plist, so remember to reset them after they are no longer needed. The default ownership is root:wheel. See for more information. INSTALL_PROGRAM is a command to install binary executables. INSTALL_SCRIPT is a command to install executable scripts. INSTALL_LIB is a command to install shared libraries (but not static libraries). INSTALL_KLD is a command to install kernel loadable modules. Some architectures do not like having the modules stripped, so use this command instead of INSTALL_PROGRAM. INSTALL_DATA is a command to install sharable data, including static libraries. INSTALL_MAN is a command to install manpages and other documentation (it does not compress anything). These variables are set to the &man.install.1; command with the appropriate flags for each situation. Do not use INSTALL_LIB to install static libraries, because stripping them renders them useless. Use INSTALL_DATA instead. Stripping Binaries and Shared Libraries Installed binaries should be stripped. Do not strip binaries manually unless absolutely required. The INSTALL_PROGRAM macro installs and strips a binary at the same time. The INSTALL_LIB macro does the same thing to shared libraries. When a file must be stripped, but neither INSTALL_PROGRAM nor INSTALL_LIB macros are desirable, ${STRIP_CMD} strips the program or shared library. This is typically done within the post-install target. For example: post-install: ${STRIP_CMD} ${STAGEDIR}${PREFIX}/bin/xdl When multiple files need to be stripped: post-install: .for l in geometry media body track world ${STRIP_CMD} ${STAGEDIR}${PREFIX}/lib/lib${PORTNAME}-${l}.so.0 .endfor Use &man.file.1; on a file to determine if it has been stripped. Binaries are reported by &man.file.1; as stripped, or not stripped. Additionally, &man.strip.1; will detect programs that have already been stripped and exit cleanly. When WITH_DEBUG is defined, elf files must not be stripped. The variables (STRIP_CMD, INSTALL_PROGRAM, INSTALL_LIB, ...) and USES provided by the framework handle this automatically. Some software, add -s to their LDFLAGS, in this case, either remove -s if WITH_DEBUG is set, or remove it unconditionally and use STRIP_CMD in post-install. Installing a Whole Tree of Files Sometimes, a large number of files must be installed while preserving their hierarchical organization. For example, copying over a whole directory tree from WRKSRC to a target directory under PREFIX. Note that PREFIX, EXAMPLESDIR, DATADIR, and other path variables must always be prepended with STAGEDIR to respect staging (see ). Two macros exist for this situation. The advantage of using these macros instead of cp is that they guarantee proper file ownership and permissions on target files. The first macro, COPYTREE_BIN, will set all the installed files to be executable, thus being suitable for installing into PREFIX/bin. The second macro, COPYTREE_SHARE, does not set executable permissions on files, and is therefore suitable for installing files under PREFIX/share target. post-install: ${MKDIR} ${STAGEDIR}${EXAMPLESDIR} (cd ${WRKSRC}/examples && ${COPYTREE_SHARE} . ${STAGEDIR}${EXAMPLESDIR}) This example will install the contents of the examples directory in the vendor distfile to the proper examples location of the port. post-install: ${MKDIR} ${STAGEDIR}${DATADIR}/summer (cd ${WRKSRC}/temperatures && ${COPYTREE_SHARE} "June July August" ${STAGEDIR}${DATADIR}/summer) And this example will install the data of summer months to the summer subdirectory of a DATADIR. Additional find arguments can be passed via the third argument to COPYTREE_* macros. For example, to install all files from the first example except Makefiles, one can use these commands. post-install: ${MKDIR} ${STAGEDIR}${EXAMPLESDIR} (cd ${WRKSRC}/examples && \ ${COPYTREE_SHARE} . ${STAGEDIR}${EXAMPLESDIR} "! -name Makefile") These macros do not add the installed files to pkg-plist. They must be added manually. For optional documentation (PORTDOCS, see ) and examples (PORTEXAMPLES), the %%PORTDOCS%% or %%PORTEXAMPLES%% prefixes must be prepended in pkg-plist. Install Additional Documentation If the software has some documentation other than the standard man and info pages that is useful for the user, install it under DOCSDIR This can be done, like the previous item, in the post-install target. Create a new directory for the port. The directory name is DOCSDIR. This usually equals PORTNAME. However, if the user might want different versions of the port to be installed at the same time, the whole PKGNAME can be used. Since only the files listed in pkg-plist are installed, it is safe to always install documentation to STAGEDIR (see ). Hence .if blocks are only needed when the installed files are large enough to cause significant I/O overhead. post-install: ${MKDIR} ${STAGEDIR}${DOCSDIR} ${INSTALL_MAN} ${WRKSRC}/docs/xvdocs.ps ${STAGEDIR}${DOCSDIR} On the other hand, if there is a DOCS option in the port, install the documentation in a post-install-DOCS-on target. These targets are described in . Here are some handy variables and how they are expanded by default when used in the Makefile: DATADIR gets expanded to PREFIX/share/PORTNAME. DATADIR_REL gets expanded to share/PORTNAME. DOCSDIR gets expanded to PREFIX/share/doc/PORTNAME. DOCSDIR_REL gets expanded to share/doc/PORTNAME. EXAMPLESDIR gets expanded to PREFIX/share/examples/PORTNAME. EXAMPLESDIR_REL gets expanded to share/examples/PORTNAME. The DOCS option only controls additional documentation installed in DOCSDIR. It does not apply to standard man pages and info pages. Things installed in EXAMPLESDIR are controlled by the EXAMPLES option. These variables are exported to PLIST_SUB. Their values will appear there as pathnames relative to PREFIX if possible. That is, share/doc/PORTNAME will be substituted for %%DOCSDIR%% in the packing list by default, and so on. (See more on pkg-plist substitution here.) All conditionally installed documentation files and directories are included in pkg-plist with the %%PORTDOCS%% prefix, for example: %%PORTDOCS%%%%DOCSDIR%%/AUTHORS %%PORTDOCS%%%%DOCSDIR%%/CONTACT As an alternative to enumerating the documentation files in pkg-plist, a port can set the variable PORTDOCS to a list of file names and shell glob patterns to add to the final packing list. The names will be relative to DOCSDIR. Therefore, a port that utilizes PORTDOCS, and uses a non-default location for its documentation, must set DOCSDIR accordingly. If a directory is listed in PORTDOCS or matched by a glob pattern from this variable, the entire subtree of contained files and directories will be registered in the final packing list. If the DOCS option has been unset then files and directories listed in PORTDOCS would not be installed or added to port packing list. Installing the documentation at PORTDOCS as shown above remains up to the port itself. A typical example of utilizing PORTDOCS: PORTDOCS= README.* ChangeLog docs/* The equivalents of PORTDOCS for files installed under DATADIR and EXAMPLESDIR are PORTDATA and PORTEXAMPLES, respectively. The contents of pkg-message are displayed upon installation. See the section on using pkg-message for details. pkg-message does not need to be added to pkg-plist. Subdirectories Under <varname>PREFIX</varname> Try to let the port put things in the right subdirectories of PREFIX. Some ports lump everything and put it in the subdirectory with the port's name, which is incorrect. Also, many ports put everything except binaries, header files and manual pages in a subdirectory of lib, which does not work well with the BSD paradigm. Many of the files must be moved to one of these directories: etc (setup/configuration files), libexec (executables started internally), sbin (executables for superusers/managers), info (documentation for info browser) or share (architecture independent files). See &man.hier.7; for details; the rules governing /usr pretty much apply to /usr/local too. The exception are ports dealing with USENET news. They may use PREFIX/news as a destination for their files. Use <varname>BINARY_ALIAS</varname> to Rename Commands Instead of Patching the Build When BINARY_ALIAS is defined it will create symlinks of the given commands in a directory which will be prepended to PATH. Use it to substitute hardcoded commands the build phase relies on without having to patch any build files. Using <varname>BINARY_ALIAS</varname> to Make <command>gsed</command> Available as <command>sed</command> Some ports expect sed to behave like GNU sed and use features that &man.sed.1; does not provide. GNU sed is available from textproc/gsed on &os;. Use BINARY_ALIAS to substitute sed with gsed for the duration of the build: BUILD_DEPENDS= gsed:textproc/gsed ... BINARY_ALIAS= sed=gsed Using <varname>BINARY_ALIAS</varname> to Provide Aliases for Hardcoded <command>python3</command> Commands A port that has a hardcoded reference to python3 in its build scripts will need to have it available in PATH at build time. Use BINARY_ALIAS to create an alias that points to the right Python 3 binary: USES= python:3.4+,build ... BINARY_ALIAS= python3=${PYTHON_CMD} See for more information about USES=python.
Index: head/en_US.ISO8859-1/books/porters-handbook/special/chapter.xml =================================================================== --- head/en_US.ISO8859-1/books/porters-handbook/special/chapter.xml (revision 52859) +++ head/en_US.ISO8859-1/books/porters-handbook/special/chapter.xml (revision 52860) @@ -1,5897 +1,5944 @@ Special Considerations This section explains the most common things to consider when creating a port. Staging bsd.port.mk expects ports to work with a stage directory. This means that a port must not install files directly to the regular destination directories (that is, under PREFIX, for example) but instead into a separate directory from which the package is then built. In many cases, this does not require root privileges, making it possible to build packages as an unprivileged user. With staging, the port is built and installed into the stage directory, STAGEDIR. A package is created from the stage directory and then installed on the system. Automake tools refer to this concept as DESTDIR, but in &os;, DESTDIR has a different meaning (see ). No port really needs to be root. It can mostly be avoided by using USES=uidfix. If the port still runs commands like &man.chown.8;, &man.chgrp.1;, or forces owner or group with &man.install.1; then use USES=fakeroot to fake those calls. Some patching of the port's Makefiles will be needed. Meta ports, or ports that do not install files themselves but only depend on other ports, must avoid needlessly extracting the &man.mtree.8; to the stage directory. This is the basic directory layout of the package, and these empty directories will be seen as orphans. To prevent &man.mtree.8; extraction, add this line: NO_MTREE= yes Metaports should use USES=metaport. It sets up defaults for ports that do not fetch, build, or install anything. Staging is enabled by prepending STAGEDIR to paths used in the pre-install, do-install, and post-install targets (see the examples through the book). Typically, this includes PREFIX, ETCDIR, DATADIR, EXAMPLESDIR, MANPREFIX, DOCSDIR, and so on. Directories should be created as part of the post-install target. Avoid using absolute paths whenever possible. Ports that install kernel modules must prepend STAGEDIR to their destination, by default /boot/modules. Handling Symbolic Links When creating a symlink, there are two cases, either the source and target are both within ${PREFIX}. In that case, use ${RLN}. In the other case, if one or both of the paths are outside of ${PREFIX} use ${LN} -s and only prepend ${STAGEDIR} to the target's path. Inside <filename>${PREFIX}</filename>, Create Relative Symbolic Links ${RLN} uses &man.install.1;'s relative symbolic feature which frees the porter of computing the relative path. ${RLN} ${STAGEDIR}${PREFIX}/lib/libfoo.so.42 ${STAGEDIR}${PREFIX}/lib/libfoo.so Will generate: &prompt.user; ls -lF ${STAGEDIR}${PREFIX}/lib lrwxr-xr-x 1 nobody nobody 181 Aug 3 11:27 libfoo.so@ -> libfoo.so.42 -rwxr-xr-x 1 nobody nobody 15 Aug 3 11:24 libfoo.so.42* When used with paths not in the same directory: ${RLN} ${STAGEDIR}${PREFIX}/libexec/foo/bar ${STAGEDIR}${PREFIX}/bin/bar Will automatically generate the relative symbolic links: &prompt.user; ls -lF ${STAGEDIR}${PREFIX}/bin lrwxr-xr-x 1 nobody nobody 181 Aug 3 11:27 bar@ -> ../libexec/foo/bar Outside <filename>${PREFIX}</filename>, Create Absolute Symbolic Links When creating a symbolic link outside of ${PREFIX}, the source must not contain ${STAGEDIR}, the target, however, must: ${LN} -sf /var/cache/${PORTNAME} ${STAGEDIR}${PREFIX}/share/${PORTNAME} Will generate: &prompt.user; ls -lF ${STAGEDIRDIR}${PREFIX}/share lrwxr-xr-x 1 nobody nobody 181 Aug 3 11:27 foo@ -> /var/cache/foo Bundled Libraries This section explains why bundled dependencies are considered bad and what to do about them. Why Bundled Libraries Are Bad Some software requires the porter to locate third-party libraries and add the required dependencies to the port. Other software bundles all necessary libraries into the distribution file. The second approach seems easier at first, but there are some serious drawbacks: This list is loosely based on the Fedora and Gentoo wikis, both licensed under the CC-BY-SA 3.0 license. Security If vulnerabilities are found in the upstream library and fixed there, they might not be fixed in the library bundled with the port. One reason could be that the author is not aware of the problem. This means that the porter must fix them, or upgrade to a non-vulnerable version, and send a patch to the author. This all takes time, which results in software being vulnerable longer than necessary. This in turn makes it harder to coordinate a fix without unnecessarily leaking information about the vulnerability. Bugs This problem is similar to the problem with security in the last paragraph, but generally less severe. Forking It is easier for the author to fork the upstream library once it is bundled. While convenient on first sight, it means that the code diverges from upstream making it harder to address security or other problems with the software. A reason for this is that patching becomes harder. Another problem of forking is that because code diverges from upstream, bugs get solved over and over again instead of just once at a central location. This defeats the idea of open source software in the first place. Symbol collision When a library is installed on the system, it might collide with the bundled version. This can cause immediate errors at compile or link time. It can also cause errors when running the program which might be harder to track down. The latter problem could be caused because the versions of the two libraries are incompatible. Licensing When bundling projects from different sources, license issues can arise more easily, especially when licenses are incompatible. Waste of resources Bundled libraries waste resources on several levels. It takes longer to build the actual application, especially if these libraries are already present on the system. At run-time, they can take up unnecessary memory when the system-wide library is already loaded by one program and the bundled library is loaded by another program. Waste of effort When a library needs patches for &os;, these patches have to be duplicated again in the bundled library. This wastes developer time because the patches might not apply cleanly. It can also be hard to notice that these patches are required in the first place. What to do About Bundled Libraries Whenever possible, use the unbundled version of the library by adding a LIB_DEPENDS to the port. If such a port does not exist yet, consider creating it. Only use bundled libraries if the upstream has a good track record on security and using unbundled versions leads to overly complex patches. In some very special cases, for example emulators, like Wine, a port has to bundle libraries, because they are in a different architecture, or they have been modified to fit the software's use. In that case, those libraries should not be exposed to other ports for linking. Add BUNDLE_LIBS=yes to the port's Makefile. This will tell &man.pkg.8; to not compute provided libraries. Always ask the &a.portmgr; before adding this to a port. Shared Libraries If the port installs one or more shared libraries, define a USE_LDCONFIG make variable, which will instruct a bsd.port.mk to run ${LDCONFIG} -m on the directory where the new library is installed (usually PREFIX/lib) during post-install target to register it into the shared library cache. This variable, when defined, will also facilitate addition of an appropriate @exec /sbin/ldconfig -m and @unexec /sbin/ldconfig -R pair into pkg-plist, so that a user who installed the package can start using the shared library immediately and de-installation will not cause the system to still believe the library is there. USE_LDCONFIG= yes The default directory can be overridden by setting USE_LDCONFIG to a list of directories into which shared libraries are to be installed. For example, if the port installs shared libraries into PREFIX/lib/foo and PREFIX/lib/bar use this in Makefile: USE_LDCONFIG= ${PREFIX}/lib/foo ${PREFIX}/lib/bar Please double-check, often this is not necessary at all or can be avoided through -rpath or setting LD_RUN_PATH during linking (see lang/mosml for an example), or through a shell-wrapper which sets LD_LIBRARY_PATH before invoking the binary, like www/seamonkey does. When installing 32-bit libraries on 64-bit system, use USE_LDCONFIG32 instead. If the software uses autotools, and specifically libtool, add USES=libtool. When the major library version number increments in the update to the new port version, all other ports that link to the affected library must have their PORTREVISION incremented, to force recompilation with the new library version. Ports with Distribution Restrictions or Legal Concerns Licenses vary, and some of them place restrictions on how the application can be packaged, whether it can be sold for profit, and so on. It is the responsibility of a porter to read the licensing terms of the software and make sure that the &os; project will not be held accountable for violating them by redistributing the source or compiled binaries either via FTP/HTTP or CD-ROM. If in doubt, please contact the &a.ports;. In situations like this, the variables described in the next sections can be set. <varname>NO_PACKAGE</varname> This variable indicates that we may not generate a binary package of the application. For instance, the license may disallow binary redistribution, or it may prohibit distribution of packages created from patched sources. However, the port's DISTFILES may be freely mirrored on FTP/HTTP. They may also be distributed on a CD-ROM (or similar media) unless NO_CDROM is set as well. If the binary package is not generally useful, and the application must always be compiled from the source code, use NO_PACKAGE. For example, if the application has configuration information that is site specific hard coded into it at compile time, set NO_PACKAGE. Set NO_PACKAGE to a string describing the reason why the package cannot be generated. <varname>NO_CDROM</varname> This variable alone indicates that, although we are allowed to generate binary packages, we may put neither those packages nor the port's DISTFILES onto a CD-ROM (or similar media) for resale. However, the binary packages and the port's DISTFILES will still be available via FTP/HTTP. If this variable is set along with NO_PACKAGE, then only the port's DISTFILES will be available, and only via FTP/HTTP. Set NO_CDROM to a string describing the reason why the port cannot be redistributed on CD-ROM. For instance, use this if the port's license is for non-commercial use only. <varname>NOFETCHFILES</varname> Files defined in NOFETCHFILES are not fetchable from any of MASTER_SITES. An example of such a file is when the file is supplied on CD-ROM by the vendor. Tools which check for the availability of these files on MASTER_SITES have to ignore these files and not report about them. <varname>RESTRICTED</varname> Set this variable alone if the application's license permits neither mirroring the application's DISTFILES nor distributing the binary package in any way. Do not set NO_CDROM or NO_PACKAGE along with RESTRICTED, since the latter variable implies the former ones. Set RESTRICTED to a string describing the reason why the port cannot be redistributed. Typically, this indicates that the port contains proprietary software and that the user will need to manually download the DISTFILES, possibly after registering for the software or agreeing to accept the terms of an EULA. <varname>RESTRICTED_FILES</varname> When RESTRICTED or NO_CDROM is set, this variable defaults to ${DISTFILES} ${PATCHFILES}, otherwise it is empty. If only some of the distribution files are restricted, then set this variable to list them. <varname>LEGAL_TEXT</varname> If the port has legal concerns not addressed by the above variables, set LEGAL_TEXT to a string explaining the concern. For example, if special permission was obtained for &os; to redistribute the binary, this variable must indicate so. <filename>/usr/ports/LEGAL</filename> and <varname>LEGAL</varname> A port which sets any of the above variables must also be added to /usr/ports/LEGAL. The first column is a glob which matches the restricted distfiles. The second column is the port's origin. The third column is the output of make -VLEGAL. Examples The preferred way to state "the distfiles for this port must be fetched manually" is as follows: .if !exists(${DISTDIR}/${DISTNAME}${EXTRACT_SUFX}) IGNORE= may not be redistributed because of licensing reasons. Please visit some-website to accept their license and download ${DISTFILES} into ${DISTDIR} .endif This both informs the user, and sets the proper metadata on the user's machine for use by automated programs. Note that this stanza must be preceded by an inclusion of bsd.port.pre.mk. Building Mechanisms Building Ports in Parallel The &os; ports framework supports parallel building using multiple make sub-processes, which allows SMP systems to utilize all of their available CPU power, allowing port builds to be faster and more effective. This is achieved by passing -jX flag to &man.make.1; running on vendor code. This is the default build behavior of ports. Unfortunately, not all ports handle parallel building well and it may be required to explicitly disable this feature by adding the MAKE_JOBS_UNSAFE=yes variable. It is used when a port is known to be broken with -jX due to race conditions causing intermittent build failures. When setting MAKE_JOBS_UNSAFE, it is very important to explain either with a comment in the Makefile, or at least in the commit message, why the port does not build when enabling. Otherwise, it is almost impossible to either fix the problem, or test if it has been fixed when committing an update at a later date. <command>make</command>, <command>gmake</command>, and <command>imake</command> Several differing make implementations exist. Ported software often requires a particular implementation, like GNU make, known in &os; as gmake. If the port uses GNU make, add gmake to USES. MAKE_CMD can be used to reference the specific command configured by the USES setting in the port's Makefile. Only use MAKE_CMD within the application Makefiles in WRKSRC to call the make implementation expected by the ported software. If the port is an X application that uses imake to create Makefiles from Imakefiles, set USES= imake.. See the USES=imake section of for more details. If the port's source Makefile has something other than all as the main build target, set ALL_TARGET accordingly. The same goes for install and INSTALL_TARGET. <command>configure</command> Script If the port uses the configure script to generate Makefile from Makefile.in, set GNU_CONFIGURE=yes. To give extra arguments to the configure script (the default argument is --prefix=${PREFIX} --infodir=${PREFIX}/${INFO_PATH} --mandir=${MANPREFIX}/man --build=${CONFIGURE_TARGET}), set those extra arguments in CONFIGURE_ARGS. Extra environment variables can be passed using CONFIGURE_ENV. Variables for Ports That Use <command>configure</command> Variable Means GNU_CONFIGURE The port uses configure script to prepare build. HAS_CONFIGURE Same as GNU_CONFIGURE, except default configure target is not added to CONFIGURE_ARGS. CONFIGURE_ARGS Additional arguments passed to configure script. CONFIGURE_ENV Additional environment variables to be set for configure script run. CONFIGURE_TARGET Override default configure target. Default value is ${MACHINE_ARCH}-portbld-freebsd${OSREL}.
Using <command>cmake</command> For ports that use CMake, define USES= cmake, or USES= cmake:outsource to build in a separate directory (see below). Variables for Ports That Use <command>cmake</command> Variable Means CMAKE_ARGS Port specific CMake flags to be passed to the cmake binary. CMAKE_ON For each entry in CMAKE_ON, an enabled boolean value is added to CMAKE_ARGS. See . CMAKE_OFF For each entry in CMAKE_OFF, a disabled boolean value is added to CMAKE_ARGS. See . CMAKE_BUILD_TYPE Type of build (CMake predefined build profiles). Default is Release, or Debug if WITH_DEBUG is set. CMAKE_SOURCE_PATH Path to the source directory. Default is ${WRKSRC}. CONFIGURE_ENV Additional environment variables to be set for the cmake binary.
Variables the Users Can Define for <command>cmake</command> Builds Variable Means CMAKE_VERBOSE Enable verbose build output. Default not set, unless BATCH or PACKAGE_BUILDING are set. CMAKE_NOCOLOR Disables color build output. Default not set, unless BATCH or PACKAGE_BUILDING are set.
CMake supports these build profiles: Debug, Release, RelWithDebInfo and MinSizeRel. Debug and Release profiles respect system *FLAGS, RelWithDebInfo and MinSizeRel will set CFLAGS to -O2 -g and -Os -DNDEBUG correspondingly. The lower-cased value of CMAKE_BUILD_TYPE is exported to PLIST_SUB and must be used if the port installs *.cmake depending on the build type (see deskutils/strigi for an example). Please note that some projects may define their own build profiles and/or force particular build type by setting CMAKE_BUILD_TYPE in CMakeLists.txt. To make a port for such a project respect CFLAGS and WITH_DEBUG, the CMAKE_BUILD_TYPE definitions must be removed from those files. Most CMake-based projects support an out-of-source method of building. The out-of-source build for a port can be requested by using the :outsource suffix. When enabled, CONFIGURE_WRKSRC, BUILD_WRKSRC and INSTALL_WRKSRC will be set to ${WRKDIR}/.build and this directory will be used to keep all files generated during configuration and build stages, leaving the source directory intact. <literal>USES= cmake</literal> Example This snippet demonstrates the use of CMake for a port. CMAKE_SOURCE_PATH is not usually required, but can be set when the sources are not located in the top directory, or if only a subset of the project is intended to be built by the port. USES= cmake:outsource CMAKE_SOURCE_PATH= ${WRKSRC}/subproject <varname>CMAKE_ON</varname> and <varname>CMAKE_OFF</varname> When adding boolean values to CMAKE_ARGS, it is easier to use the CMAKE_ON and CMAKE_OFF variables instead. This: CMAKE_ON= VAR1 VAR2 CMAKE_OFF= VAR3 Is equivalent to: CMAKE_ARGS= -DVAR1:BOOL=TRUE -DVAR2:BOOL=TRUE -DVAR3:BOOL=FALSE This is only for the default values off CMAKE_ARGS. The helpers described in use the same semantics, but for optional values.
Using <command>scons</command> If the port uses SCons, define USES=scons. To make third party SConstruct respect everything that is passed to SCons in the environment (that is, most importantly, CC/CXX/CFLAGS/CXXFLAGS), patch SConstruct so build Environment is constructed like this: env = Environment(**ARGUMENTS) It may be then modified with env.Append and env.Replace. Using <command>cargo</command> For ports that use Cargo, define USES=cargo. Variables the Users Can Define for <command>cargo</command> Builds Variable Default Description CARGO_CRATES List of crates the port depends on. Each entry needs to have a format like cratename-semver for example, libc-0.2.40. Port maintainers can generate this list from Cargo.lock using make cargo-crates. Manually bumping crate versions is possible but be mindful of transitive dependencies. CARGO_FEATURES List of application features to build (space separated list). CARGO_CARGOTOML ${WRKSRC}/Cargo.toml The path to the Cargo.toml to use. CARGO_CARGOLOCK ${WRKSRC}/Cargo.lock The path to the Cargo.lock to use for make cargo-crates. It is possible to specify more than one lock file when necessary. CARGO_ENV A list of environment variables to pass to Cargo similar to MAKE_ENV. RUSTFLAGS Flags to pass to the Rust compiler. CARGO_CONFIGURE yes Use the default do-configure. CARGO_UPDATE_ARGS Extra arguments to pass to Cargo during the configure phase. Valid arguments can be looked up with cargo update --help. CARGO_BUILDDEP yes Add a build dependency on lang/rust. CARGO_CARGO_BIN ${LOCALBASE}/bin/cargo Location of the cargo binary. CARGO_BUILD yes Use the default do-build. CARGO_BUILD_ARGS Extra arguments to pass to Cargo during the build phase. Valid arguments can be looked up with cargo build --help. CARGO_INSTALL yes Use the default do-install. CARGO_INSTALL_ARGS Extra arguments to pass to Cargo during the install phase. Valid arguments can be looked up with cargo install --help. CARGO_TEST yes Use the default do-test. CARGO_TEST_ARGS Extra arguments to pass to Cargo during the test phase. Valid arguments can be looked up with cargo test --help. CARGO_TARGET_DIR ${WRKDIR}/target Location of the cargo output directory. CARGO_DIST_SUBDIR rust/crates Directory relative to DISTDIR where the crate distribution files will be stored. CARGO_VENDOR_DIR ${WRKSRC}/cargo-crates Location of the vendor directory where all crates will be extracted to. Try to keep this under PATCH_WRKSRC, so that patches can be applied easily. CARGO_USE_GITHUB no Enable fetching of crates locked to specific Git commits on GitHub via GH_TUPLE. This will try to patch both Cargo.lock and Cargo.toml to point to the offline sources instead of fetching them from a Git repository during the build. Use with caution as transitive Git dependencies are not resolved and patched correctly. CARGO_GH_CARGOTOML ${CARGO_CARGOTOML} List of Cargo.toml that will be patched when using CARGO_USE_GITHUB.
Creating a Port for a Simple Rust Application Creating a Cargo based port is a three stage process. First we need to provide a ports template that fetches the application distribution file: PORTNAME= tokei DISTVERSIONPREFIX= v DISTVERSION= 7.0.2 CATEGORIES= devel MAINTAINER= tobik@FreeBSD.org COMMENT= Display statistics about your code USES= cargo USE_GITHUB= yes GH_ACCOUNT= Aaronepower .include <bsd.port.mk> Generate an initial distinfo: &prompt.user; make makesum => Aaronepower-tokei-v7.0.2_GH0.tar.gz doesn't seem to exist in /usr/ports/distfiles/. => Attempting to fetch https://codeload.github.com/Aaronepower/tokei/tar.gz/v7.0.2?dummy=/Aaronepower-tokei-v7.0.2_GH0.tar.gz fetch: https://codeload.github.com/Aaronepower/tokei/tar.gz/v7.0.2?dummy=/Aaronepower-tokei-v7.0.2_GH0.tar.gz: size of remote file is not known Aaronepower-tokei-v7.0.2_GH0.tar.gz 45 kB 239 kBps 00m00s Now the distribution file is ready to use and we can go ahead and extract crate dependencies from the bundled Cargo.lock: &prompt.user; make cargo-crates CARGO_CRATES= aho-corasick-0.6.4 \ ansi_term-0.11.0 \ arrayvec-0.4.7 \ atty-0.2.9 \ bitflags-1.0.1 \ byteorder-1.2.2 \ [...] The output of this command needs to be pasted directly into the Makefile: PORTNAME= tokei DISTVERSIONPREFIX= v DISTVERSION= 7.0.2 CATEGORIES= devel MAINTAINER= tobik@FreeBSD.org COMMENT= Display statistics about your code USES= cargo USE_GITHUB= yes GH_ACCOUNT= Aaronepower CARGO_CRATES= aho-corasick-0.6.4 \ ansi_term-0.11.0 \ arrayvec-0.4.7 \ atty-0.2.9 \ bitflags-1.0.1 \ byteorder-1.2.2 \ [...] .include <bsd.port.mk> distinfo needs to be regenerated to contain all the crate distribution files: &prompt.user; make makesum => rust/crates/aho-corasick-0.6.4.tar.gz doesn't seem to exist in /usr/ports/distfiles/. => Attempting to fetch https://crates.io/api/v1/crates/aho-corasick/0.6.4/download?dummy=/rust/crates/aho-corasick-0.6.4.tar.gz rust/crates/aho-corasick-0.6.4.tar.gz 100% of 24 kB 6139 kBps 00m00s => rust/crates/ansi_term-0.11.0.tar.gz doesn't seem to exist in /usr/ports/distfiles/. => Attempting to fetch https://crates.io/api/v1/crates/ansi_term/0.11.0/download?dummy=/rust/crates/ansi_term-0.11.0.tar.gz rust/crates/ansi_term-0.11.0.tar.gz 100% of 16 kB 21 MBps 00m00s => rust/crates/arrayvec-0.4.7.tar.gz doesn't seem to exist in /usr/ports/distfiles/. => Attempting to fetch https://crates.io/api/v1/crates/arrayvec/0.4.7/download?dummy=/rust/crates/arrayvec-0.4.7.tar.gz rust/crates/arrayvec-0.4.7.tar.gz 100% of 22 kB 3237 kBps 00m00s => rust/crates/atty-0.2.9.tar.gz doesn't seem to exist in /usr/ports/distfiles/. => Attempting to fetch https://crates.io/api/v1/crates/atty/0.2.9/download?dummy=/rust/crates/atty-0.2.9.tar.gz rust/crates/atty-0.2.9.tar.gz 100% of 5898 B 81 MBps 00m00s => rust/crates/bitflags-1.0.1.tar.gz doesn't seem to exist in /usr/ports/distfiles/. [...] The working directory currently only contains the application sources we extracted as part of the make cargo-crates step. Before attempting to build the port the working directory must be cleaned, so that the crate sources can be extracted into CARGO_VENDOR_DIR: &prompt.user; make clean ===> Cleaning for tokei-7.0.2 The port is now ready for a test build and further adjustments like creating a plist, writing a description, adding license information, options, etc. as normal. Enabling Additional Application Features Some applications define additional features in their Cargo.toml. They can be compiled in by setting CARGO_FEATURES in the port. Here we enable Tokei's json and yaml features: CARGO_FEATURES= json yaml Listing Crate Licenses Crates have their own licenses. It is important to know what they are when adding a LICENSE block to the port (see ). The helper target cargo-crates-licenses will try to list all the licenses of all crates defined in CARGO_CRATES. &prompt.user; make cargo-crates-licenses aho-corasick-0.6.4 Unlicense/MIT ansi_term-0.11.0 MIT arrayvec-0.4.7 MIT/Apache-2.0 atty-0.2.9 MIT bitflags-1.0.1 MIT/Apache-2.0 byteorder-1.2.2 Unlicense/MIT [...] The license names make cargo-crates-licenses outputs are SPDX 2.1 licenses expression which do not match the license names defined in the ports framework. They need to be translated to the names from .
+ + + Using <command>meson</command> + + For ports that use Meson, + define USES=meson. + + + Variables for Ports That Use + <command>meson</command> + + + + + Variable + Description + + + + + + MESON_ARGS + Port specific Meson + flags to be passed to the meson + binary. + + + + MESON_BUILD_DIR + Path to the build directory relative to + WRKSRC. Default is + _build. + + + +
+ + + <literal>USES=meson</literal> Example + + This snippet demonstrates the use of + Meson for a port. + + USES= meson +MESON_ARGS= -Dfoo=enabled + +
Using GNU Autotools If a port needs any of the GNU Autotools software, add USES=autoreconf. See for more information. Using GNU <literal>gettext</literal> Basic Usage If the port requires gettext, set USES= gettext, and the port will inherit a dependency on libintl.so from devel/gettext. Other values for gettext usage are listed in USES=gettext. A rather common case is a port using gettext and configure. Generally, GNU configure should be able to locate gettext automatically. USES= gettext GNU_CONFIGURE= yes If it ever fails to, hints at the location of gettext can be passed in CPPFLAGS and LDFLAGS as follows: USES= gettext CPPFLAGS+= -I${LOCALBASE}/include LDFLAGS+= -L${LOCALBASE}/lib GNU_CONFIGURE= yes Optional Usage Some software products allow for disabling NLS. For example, through passing to configure. In that case, the port must use gettext conditionally, depending on the status of the NLS option. For ports of low to medium complexity, use this idiom: GNU_CONFIGURE= yes OPTIONS_DEFINE= NLS OPTIONS_SUB= yes NLS_USES= gettext NLS_CONFIGURE_ENABLE= nls .include <bsd.port.mk> Or using the older way of using options: GNU_CONFIGURE= yes OPTIONS_DEFINE= NLS .include <bsd.port.options.mk> .if ${PORT_OPTIONS:MNLS} USES+= gettext PLIST_SUB+= NLS="" .else CONFIGURE_ARGS+= --disable-nls PLIST_SUB+= NLS="@comment " .endif .include <bsd.port.mk> The next item on the to-do list is to arrange so that the message catalog files are included in the packing list conditionally. The Makefile part of this task is already provided by the idiom. It is explained in the section on advanced pkg-plist practices. In a nutshell, each occurrence of %%NLS%% in pkg-plist will be replaced by @comment  if NLS is disabled, or by a null string if NLS is enabled. Consequently, the lines prefixed by %%NLS%% will become mere comments in the final packing list if NLS is off; otherwise the prefix will be just left out. Then insert %%NLS%% before each path to a message catalog file in pkg-plist. For example: %%NLS%%share/locale/fr/LC_MESSAGES/foobar.mo %%NLS%%share/locale/no/LC_MESSAGES/foobar.mo In high complexity cases, more advanced techniques may be needed, such as dynamic packing list generation. Handling Message Catalog Directories There is a point to note about installing message catalog files. The target directories for them, which reside under LOCALBASE/share/locale, must not be created and removed by a port. The most popular languages have their respective directories listed in PORTSDIR/Templates/BSD.local.dist. The directories for many other languages are governed by the devel/gettext port. Consult its pkg-plist and see whether the port is going to install a message catalog file for a unique language. Using <application>Perl</application> If MASTER_SITES is set to CPAN, the correct subdirectory is usually selected automatically. If the default subdirectory is wrong, CPAN/Module can be used to change it. MASTER_SITES can also be set to the old MASTER_SITE_PERL_CPAN, then the preferred value of MASTER_SITE_SUBDIR is the top-level hierarchy name. For example, the recommended value for p5-Module-Name is Module. The top-level hierarchy can be examined at cpan.org. This keeps the port working when the author of the module changes. The exception to this rule is when the relevant directory does not exist or the distfile does not exist in that directory. In such case, using author's id as MASTER_SITE_SUBDIR is allowed. The CPAN:AUTHOR macro can be used, which will be translated to the hashed author directory. For example, CPAN:AUTHOR will be converted to authors/id/A/AU/AUTHOR. When a port needs Perl support, it must set USES=perl5 with the optional USE_PERL5 described in the perl5 USES description. Read-Only Variables for Ports That Use <application>Perl</application> Read only variables Means PERL The full path of the Perl 5 interpreter, either in the system or installed from a port, but without the version number. Use this when the software needs the path to the Perl interpreter. To replace #!lines in scripts, use USES=shebangfix. PERL_VERSION The full version of Perl installed (for example, 5.8.9). PERL_LEVEL The installed Perl version as an integer of the form MNNNPP (for example, 500809). PERL_ARCH Where Perl stores architecture dependent libraries. Defaults to ${ARCH}-freebsd. PERL_PORT Name of the Perl port that is installed (for example, perl5). SITE_PERL Directory name where site specific Perl packages go. This value is added to PLIST_SUB.
Ports of Perl modules which do not have an official website must link to cpan.org in the WWW line of pkg-descr. The preferred URL form is http://search.cpan.org/dist/Module-Name/ (including the trailing slash). Do not use ${SITE_PERL} in dependency declarations. Doing so assumes that perl5.mk has been included, which is not always true. Ports depending on this port will have incorrect dependencies if this port's files move later in an upgrade. The right way to declare Perl module dependencies is shown in the example below. Perl Dependency Example p5-IO-Tee>=0.64:devel/p5-IO-Tee For Perl ports that install manual pages, the macro PERL5_MAN3 and PERL5_MAN1 can be used inside pkg-plist. For example, lib/perl5/5.14/man/man1/event.1.gz lib/perl5/5.14/man/man3/AnyEvent::I3.3.gz can be replaced with %%PERL5_MAN1%%/event.1.gz %%PERL5_MAN3%%/AnyEvent::I3.3.gz There are no PERL5_MANx macros for the other sections (x in 2 and 4 to 9) because those get installed in the regular directories. A Port Which Only Requires Perl to Build As the default USE_PERL5 value is build and run, set it to: USES= perl5 USE_PERL5= build A Port Which Also Requires Perl to Patch From time to time, using &man.sed.1; for patching is not enough. When using &man.perl.1; is easier, use: USES= perl5 USE_PERL5= patch build run A Perl Module Which Needs <literal>ExtUtils::MakeMaker</literal> to Build Most Perl modules come with a Makefile.PL configure script. In this case, set: USES= perl5 USE_PERL5= configure A Perl Module Which Needs <literal>Module::Build</literal> to Build When a Perl module comes with a Build.PL configure script, it can require Module::Build, in which case, set USES= perl5 USE_PERL5= modbuild If it instead requires Module::Build::Tiny, set USES= perl5 USE_PERL5= modbuildtiny
Using X11 X.Org Components The X11 implementation available in The Ports Collection is X.Org. If the application depends on X components, set USE_XORG to the list of required components. Available components, at the time of writing, are: bigreqsproto compositeproto damageproto dmx dmxproto dri2proto dri3proto evieproto fixesproto fontcacheproto fontenc fontsproto fontutil glproto ice inputproto kbproto libfs oldx pciaccess pixman presentproto printproto randrproto recordproto renderproto resourceproto scrnsaverproto sm trapproto videoproto x11 xau xaw xaw6 xaw7 xbitmaps xcb xcmiscproto xcomposite xcursor xdamage xdmcp xevie xext xextproto xf86bigfontproto xf86dgaproto xf86driproto xf86miscproto xf86rushproto xf86vidmodeproto xfixes xfont xfontcache xft xi xinerama xineramaproto xkbfile xkbui xmu xmuu xorg-macros xorg-server xp xpm xprintapputil xprintutil xproto xproxymngproto xrandr xrender xres xscrnsaver xshmfence xt xtrans xtrap xtst xv xvmc xxf86dga xxf86misc xxf86vm. Always up-to-date list can be found in /usr/ports/Mk/bsd.xorg.mk. The Mesa Project is an effort to provide free OpenGL implementation. To specify a dependency on various components of this project, use USES= gl and USE_GL. See for a full list of available components. For backwards compatibility, the value of yes maps to glu. <varname>USE_XORG</varname> Example USES= gl USE_GL= glu USE_XORG= xrender xft xkbfile xt xaw Variables for Ports That Use X USES= imake The port uses imake. XMKMF Set to the path of xmkmf if not in the PATH. Defaults to xmkmf -a.
Using X11-Related Variables # Use some X11 libraries USE_XORG= x11 xpm
Ports That Require Motif If the port requires a Motif library, define USES= motif in the Makefile. Default Motif implementation is x11-toolkits/open-motif. Users can choose x11-toolkits/lesstif instead by setting WANT_LESSTIF in their make.conf. MOTIFLIB will be set by motif.mk to reference the appropriate Motif library. Please patch the source of the port to use ${MOTIFLIB} wherever the Motif library is referenced in the original Makefile or Imakefile. There are two common cases: If the port refers to the Motif library as -lXm in its Makefile or Imakefile, substitute ${MOTIFLIB} for it. If the port uses XmClientLibs in its Imakefile, change it to ${MOTIFLIB} ${XTOOLLIB} ${XLIB}. Note that MOTIFLIB (usually) expands to -L/usr/local/lib -lXm -lXp or /usr/local/lib/libXm.a, so there is no need to add -L or -l in front. X11 Fonts If the port installs fonts for the X Window System, put them in LOCALBASE/lib/X11/fonts/local. Getting a Fake <envar>DISPLAY</envar> with Xvfb Some applications require a working X11 display for compilation to succeed. This poses a problem for machines that operate headless. When this variable is used, the build infrastructure will start the virtual framebuffer X server. The working DISPLAY is then passed to the build. See USES=display for the possible arguments. USES= display Desktop Entries Desktop entries (a Freedesktop standard) provide a way to automatically adjust desktop features when a new program is installed, without requiring user intervention. For example, newly-installed programs automatically appear in the application menus of compatible desktop environments. Desktop entries originated in the GNOME desktop environment, but are now a standard and also work with KDE and Xfce. This bit of automation provides a real benefit to the user, and desktop entries are encouraged for applications which can be used in a desktop environment. Using Predefined <filename>.desktop</filename> Files Ports that include predefined *.desktop must include those files in pkg-plist and install them in the $LOCALBASE/share/applications directory. The INSTALL_DATA macro is useful for installing these files. Updating Desktop Database If a port has a MimeType entry in its portname.desktop, the desktop database must be updated after install and deinstall. To do this, define USES= desktop-file-utils. Creating Desktop Entries with <varname>DESKTOP_ENTRIES</varname> Desktop entries can be easily created for applications by using DESKTOP_ENTRIES. A file named name.desktop will be created, installed, and added to pkg-plist automatically. Syntax is: DESKTOP_ENTRIES= "NAME" "COMMENT" "ICON" "COMMAND" "CATEGORY" StartupNotify The list of possible categories is available on the Freedesktop website. StartupNotify indicates whether the application is compatible with startup notifications. These are typically a graphic indicator like a clock that appear at the mouse pointer, menu, or panel to give the user an indication when a program is starting. A program that is compatible with startup notifications clears the indicator after it has started. Programs that are not compatible with startup notifications would never clear the indicator (potentially confusing and infuriating the user), and must have StartupNotify set to false so the indicator is not shown at all. Example: DESKTOP_ENTRIES= "ToME" "Roguelike game based on JRR Tolkien's work" \ "${DATADIR}/xtra/graf/tome-128.png" \ "tome -v -g" "Application;Game;RolePlaying;" \ false
Using GNOME Introduction This chapter explains the GNOME framework as used by ports. The framework can be loosely divided into the base components, GNOME desktop components, and a few special macros that simplify the work of port maintainers. While developing a port or changing one, please set DEVELOPER=yes in the environment or in /etc/make.conf. This causes the ports framework to enable additional checks. Using <varname>USE_GNOME</varname> Adding this variable to the port allows the use of the macros and components defined in bsd.gnome.mk. The code in bsd.gnome.mk adds the needed build-time, run-time or library dependencies or the handling of special files. GNOME applications under &os; use the USE_GNOME infrastructure. Include all the needed components as a space-separated list. The USE_GNOME components are divided into these virtual lists: basic components, GNOME 3 components and legacy components. If the port needs only GTK3 libraries, this is the shortest way to define it: USE_GNOME= gtk30 USE_GNOME components automatically add the dependencies they need. Please see for an exhaustive list of all USE_GNOME components and which other components they imply and their dependencies. Here is an example Makefile for a GNOME port that uses many of the techniques outlined in this document. Please use it as a guide for creating new ports. # $FreeBSD$ PORTNAME= regexxer DISTVERSION= 0.10 CATEGORIES= devel textproc gnome MASTER_SITES= GNOME MAINTAINER= kwm@FreeBSD.org COMMENT= Interactive tool for performing search and replace operations USES= gettext gmake pathfix pkgconfig tar:xz GNU_CONFIGURE= yes USE_GNOME= gnomeprefix intlhack gtksourceviewmm3 CPPFLAGS+= -I${LOCALBASE}/include LDFLAGS+= -L${LOCALBASE}/lib INSTALLS_ICONS= yes GLIB_SCHEMAS= org.regexxer.gschema.xml .include <bsd.port.mk> The USE_GNOME macro without any arguments does not add any dependencies to the port. USE_GNOME cannot be set after bsd.port.pre.mk. Variables This section explains which macros are available and how they are used. Like they are used in the above example. The has a more in-depth explanation. USE_GNOME has to be set for these macros to be of use. INSTALLS_ICONS GTK+ ports which install Freedesktop-style icons to ${LOCALBASE}/share/icons should use this macro to ensure that the icons are cached and will display correctly. The cache file is named icon-theme.cache. Do not include that file in pkg-plist. This macro handles that automatically. This macro is not needed for Qt, which use a internal method. GLIB_SCHEMAS List of all the glib schema files the port installs. The macro will add the files to the port plist and handle the registration of these files on install and deinstall. The glib schema files are written in XML and end with the gschema.xml extension. They are installed in the share/glib-2.0/schemas/ directory. These schema files contain all application config values with there default settings. The actual database used by the applications is built by glib-compile-schema, which is run by the GLIB_SCHEMAS macro. GLIB_SCHEMAS=foo.gschema.xml Do not add glib schemas to the pkg-plist. If they are listed in pkg-plist, they will not be registered and the applications might not work properly. GCONF_SCHEMAS List all the gconf schema files. The macro will add the schema files to the port plist and will handle their registration on install and deinstall. GConf is the XML-based database that virtually all GNOME applications use for storing their settings. These files are installed into the etc/gconf/schemas directory. This database is defined by installed schema files that are used to generate %gconf.xml key files. For each schema file installed by the port, there be an entry in the Makefile: GCONF_SCHEMAS=my_app.schemas my_app2.schemas my_app3.schemas Gconf schemas are listed in the GCONF_SCHEMAS macro rather than pkg-plist. If they are listed in pkg-plist, they will not be registered and the applications might not work properly. INSTALLS_OMF Open Source Metadata Framework (OMF) files are commonly used by GNOME 2 applications. These files contain the application help file information, and require special processing by ScrollKeeper/rarian. To properly register OMF files when installing GNOME applications from packages, make sure that omf files are listed in pkg-plist and that the port Makefile has INSTALLS_OMF defined: INSTALLS_OMF=yes When set, bsd.gnome.mk automatically scans pkg-plist and adds appropriate @exec and @unexec directives for each .omf to track in the OMF registration database. GNOME Components For further help with a GNOME port, look at some of the existing ports for examples. The &os; GNOME page has contact information if more help is needed. The components are divided into GNOME components that are currently in use and legacy components. If the component supports argument, they are listed between parenthesis in the description. The first is the default. "Both" is shown if the component defaults to adding to both build and run dependencies. GNOME Components Component Associated program Description atk accessibility/atk Accessibility toolkit (ATK) atkmm accessibility/atkmm c++ bindings for atk cairo graphics/cairo Vector graphics library with cross-device output support cairomm graphics/cairomm c++ bindings for cairo dconf devel/dconf Configuration database system (both, build, run) evolutiondataserver3 databases/evolution-data-server Data backends for the Evolution integrated mail/PIM suite gdkpixbuf2 graphics/gdk-pixbuf2 Graphics library for GTK+ glib20 devel/glib20 GNOME core library glib20 glibmm devel/glibmm c++ bindings for glib20 gnomecontrolcenter3 sysutils/gnome-control-center GNOME 3 Control Center gnomedesktop3 x11/gnome-desktop GNOME 3 desktop UI library gsound audio/gsound GObject library for playing system sounds (both, build, run) gtk-update-icon-cache graphics/gtk-update-icon-cache Gtk-update-icon-cache utility from the Gtk+ toolkit gtk20 x11-toolkits/gtk20 Gtk+ 2 toolkit gtk30 x11-toolkits/gtk30 Gtk+ 3 toolkit gtkmm20 x11-toolkits/gtkmm20 c++ bindings 2.0 for the gtk20 toolkit gtkmm24 x11-toolkits/gtkmm24 c++ bindings 2.4 for the gtk20 toolkit gtkmm30 x11-toolkits/gtkmm30 c++ bindings 3.0 for the gtk30 toolkit gtksourceview2 x11-toolkits/gtksourceview2 Widget that adds syntax highlighting to GtkTextView gtksourceview3 x11-toolkits/gtksourceview3 Text widget that adds syntax highlighting to the GtkTextView widget gtksourceviewmm3 x11-toolkits/gtksourceviewmm3 c++ bindings for the gtksourceview3 library gvfs devel/gvfs GNOME virtual file system intltool textproc/intltool Tool for internationalization (also see intlhack) introspection devel/gobject-introspection Basic introspection bindings and tools to generate introspection bindings. Most of the time :build is enough, :both/:run is only need for applications that use introspection bindings. (both, build, run) libgda5 databases/libgda5 Provides uniform access to different kinds of data sources libgda5-ui databases/libgda5-ui UI library from the libgda5 library libgdamm5 databases/libgdamm5 c++ bindings for the libgda5 library libgsf devel/libgsf Extensible I/O abstraction for dealing with structured file formats librsvg2 graphics/librsvg2 Library for parsing and rendering SVG vector-graphic files libsigc++20 devel/libsigc++20 Callback Framework for C++ libxml++26 textproc/libxml++26 c++ bindings for the libxml2 library libxml2 textproc/libxml2 XML parser library (both, build, run) libxslt textproc/libxslt XSLT C library (both, build, run) metacity x11-wm/metacity Window manager from GNOME nautilus3 x11-fm/nautilus GNOME file manager pango x11-toolkits/pango Open-source framework for the layout and rendering of i18n text pangomm x11-toolkits/pangomm c++ bindings for the pango library py3gobject3 devel/py3-gobject3 Python 3, GObject 3.0 bindings pygobject3 devel/py-gobject3 Python 2, GObject 3.0 bindings vte3 x11-toolkits/vte3 Terminal widget with improved accessibility and I18N support
GNOME Macro Components Component Description gnomeprefix Supply configure with some default locations. intlhack Same as intltool, but patches to make sure share/locale/ is used. Please only use when intltool alone is not enough. referencehack This macro is there to help splitting of the API or reference documentation into its own port.
GNOME Legacy Components Component Associated program Description atspi accessibility/at-spi Assistive Technology Service Provider Interface esound audio/esound Enlightenment sound package gal2 x11-toolkits/gal2 Collection of widgets taken from GNOME 2 gnumeric gconf2 devel/gconf2 Configuration database system for GNOME 2 gconfmm26 devel/gconfmm26 c++ bindings for gconf2 gdkpixbuf graphics/gdk-pixbuf Graphics library for GTK+ glib12 devel/glib12 glib 1.2 core library gnomedocutils textproc/gnome-doc-utils GNOME doc utils gnomemimedata misc/gnome-mime-data MIME and Application database for GNOME 2 gnomesharp20 x11-toolkits/gnome-sharp20 GNOME 2 interfaces for the .NET runtime gnomespeech accessibility/gnome-speech GNOME 2 text-to-speech API gnomevfs2 devel/gnome-vfs GNOME 2 Virtual File System gtk12 x11-toolkits/gtk12 Gtk+ 1.2 toolkit gtkhtml3 www/gtkhtml3 Lightweight HTML rendering/printing/editing engine gtkhtml4 www/gtkhtml4 Lightweight HTML rendering/printing/editing engine gtksharp20 x11-toolkits/gtk-sharp20 GTK+ and GNOME 2 interfaces for the .NET runtime gtksourceview x11-toolkits/gtksourceview Widget that adds syntax highlighting to GtkTextView libartgpl2 graphics/libart_lgpl Library for high-performance 2D graphics libbonobo devel/libbonobo Component and compound document system for GNOME 2 libbonoboui x11-toolkits/libbonoboui GUI frontend to the libbonobo component of GNOME 2 libgda4 databases/libgda4 Provides uniform access to different kinds of data sources libglade2 devel/libglade2 GNOME 2 glade library libgnome x11/libgnome Libraries for GNOME 2, a GNU desktop environment libgnomecanvas graphics/libgnomecanvas Graphics library for GNOME 2 libgnomekbd x11/libgnomekbd GNOME 2 keyboard shared library libgnomeprint print/libgnomeprint Gnome 2 print support library libgnomeprintui x11-toolkits/libgnomeprintui Gnome 2 print support library libgnomeui x11-toolkits/libgnomeui Libraries for the GNOME 2 GUI, a GNU desktop environment libgtkhtml www/libgtkhtml Lightweight HTML rendering/printing/editing engine libgtksourceviewmm x11-toolkits/libgtksourceviewmm c++ binding of GtkSourceView libidl devel/libIDL Library for creating trees of CORBA IDL file libsigc++12 devel/libsigc++12 Callback Framework for C++ libwnck x11-toolkits/libwnck Library used for writing pagers and taskslists libwnck3 x11-toolkits/libwnck3 Library used for writing pagers and taskslists orbit2 devel/ORBit2 High-performance CORBA ORB with support for the C language pygnome2 x11-toolkits/py-gnome2 Python bindings for GNOME 2 pygobject devel/py-gobject Python 2, GObject 2.0 bindings pygtk2 x11-toolkits/py-gtk2 Set of Python bindings for GTK+ pygtksourceview x11-toolkits/py-gtksourceview Python bindings for GtkSourceView 2 vte x11-toolkits/vte Terminal widget with improved accessibility and I18N support
Deprecated Components: Do Not Use Component Description pangox-compat pangox-compat has been deprecated and split off from the pango package.
Using Qt Ports That Require Qt The Ports Collection provides support for Qt 4 and Qt 5 frameworks with USES+=qt:x, where x is 4 or 5. Set USE_QT to the list of required Qt components (libraries, tools, plugins). The Qt 4 and Qt 5 frameworks are quite similar. The main difference is the set of supported components. The Qt framework exports a number of variables which can be used by ports, some of them listed below: Variables Provided to Ports That Use Qt QMAKE Full path to qmake binary. LRELEASE Full path to lrelease utility. MOC Full path to moc. RCC Full path to rcc. UIC Full path to uic. QT_INCDIR Qt include directory. QT_LIBDIR Qt libraries path. QT_PLUGINDIR Qt plugins path.
Component Selection Individual Qt tool and library dependencies must be specified in USE_QT. Every component can be suffixed with _build or _run, the suffix indicating whether the dependency on the component is at buildtime or runtime. If unsuffixed, the component will be depended on at both build- and runtime. Usually, library components are specified unsuffixed, tool components are mostly specified with the _build suffix and plugin components are specified with the _run suffix. The most commonly used components are listed below (all available components are listed in _USE_QT_ALL, _USE_QT4_ONLY, and _USE_QT5_ONLY in /usr/ports/Mk/Uses/qt.mk): Available Qt Library Components Name Description core core library (Qt 5 only) corelib core library (Qt 4 only) dbus Qt DBus library gui graphical user interface library network network library opengl Qt OpenGL library script script library sql SQL library testlib unit testing library webkit Qt WebKit library xml Qt XML library
To determine the libraries an application depends on, run ldd on the main executable after a successful compilation. Available Qt Tool Components Name Description qmake Makefile generator/build utility buildtools build tools (moc, rcc), needed for almost every Qt application (Qt 5 only) linguisttools localization tools: lrelease, lupdate (Qt 5 only) linguist localization tools: lrelease, lupdate (Qt 4 only) moc meta object compiler, needed for almost every Qt application at buildtime (Qt 4 only) rcc resource compiler, needed if the application comes with *.rc or *.qrc files (Qt 4 only) uic user interface compiler, needed if the application comes with *.ui files, in practice, every Qt application with a GUI (Qt 4 only)
Available Qt Plugin Components Name Description iconengines SVG icon engine plugin, needed if the application ships SVG icons (Qt 4 only) imageformats plugins for TGA, TIFF, and MNG image formats
Selecting Qt 4 Components In this example, the ported application uses the Qt 4 graphical user interface library, the Qt 4 core library, all of the Qt 4 code generation tools and Qt 4's Makefile generator. Since the gui library implies a dependency on the core library, corelib does not need to be specified. The Qt 4 code generation tools moc, uic and rcc, as well as the Makefile generator qmake are only needed at buildtime, thus they are specified with the _build suffix: USES= qt:4 USE_QT= gui moc_build qmake_build rcc_build uic_build
Using <command>qmake</command> If the application provides a qmake project file (*.pro), define USES= qmake along with USE_QT. USES= qmake already implies a build dependency on qmake, therefore the qmake component can be omitted from USE_QT. Similar to CMake, qmake supports out-of-source builds, which can be enabled by specifying the outsource argument (see USES= qmake example). Also see . Possible Arguments for <literal>USES= qmake</literal> Variable Description no_configure Do not add the configure target. This is implied by HAS_CONFIGURE=yes and GNU_CONFIGURE=yes. It is required when the build only needs the environment setup from USES= qmake, but otherwise runs qmake on its own. no_env Suppress modification of the configure and make environments. It is only required when qmake is used to configure the software and the build fails to understand the environment setup by USES= qmake. norecursive Do not pass the -recursive argument to qmake. outsource Perform an out-of-source build.
Variables for Ports That Use <command>qmake</command> Variable Description QMAKE_ARGS Port specific qmake flags to be passed to the qmake binary. QMAKE_ENV Environment variables to be set for the qmake binary. The default is ${CONFIGURE_ENV}. QMAKE_SOURCE_PATH Path to qmake project files (.pro). The default is ${WRKSRC} if an out-of-source build is requested, empty otherwise.
When using USES= qmake, these settings are deployed: CONFIGURE_ARGS+= --with-qt-includes=${QT_INCDIR} \ --with-qt-libraries=${QT_LIBDIR} \ --with-extra-libs=${LOCALBASE}/lib \ --with-extra-includes=${LOCALBASE}/include CONFIGURE_ENV+= QTDIR="${QT_PREFIX}" QMAKE="${QMAKE}" \ MOC="${MOC}" RCC="${RCC}" UIC="${UIC}" \ QMAKESPEC="${QMAKESPEC}" PLIST_SUB+= QT_INCDIR=${QT_INCDIR_REL} \ QT_LIBDIR=${QT_LIBDIR_REL} \ QT_PLUGINDIR=${QT_PLUGINDIR_REL} Some configure scripts do not support the arguments above. To suppress modification of CONFIGURE_ENV and CONFIGURE_ARGS, set USES= qmake:no_env. <literal>USES= qmake</literal> Example This snippet demonstrates the use of qmake for a Qt 4 port: USES= qmake:outsource qt:4 USE_QT= moc_build For a Qt 5 port: USES= qmake:outsource qt:5 USE_QT= buildtools_build Qt applications are often written to be cross-platform and often X11/Unix is not the platform they are developed on, which in turn leads to certain loose ends, like: Missing additional include paths. Many applications come with system tray icon support, but neglect to look for includes and/or libraries in the X11 directories. To add directories to qmake's include and library search paths via the command line, use: QMAKE_ARGS+= INCLUDEPATH+=${LOCALBASE}/include \ LIBS+=-L${LOCALBASE}/lib Bogus installation paths. Sometimes data such as icons or .desktop files are by default installed into directories which are not scanned by XDG-compatible applications. editors/texmaker is an example for this - look at patch-texmaker.pro in the files directory of that port for a template on how to remedy this directly in the qmake project file.
Using KDE KDE 4 Variable Definitions If the application depends on KDE 4, set USES+=kde:4 and USE_KDE to the list of required components. _build and _run suffixes can be used to force components dependency type (for example, baseapps_run). If no suffix is set, a default dependency type will be used. To force both types, add the component twice with both suffixes (for example, automoc4_build automoc4_run). The most commonly used components are listed below (up-to-date components are documented at the top of /usr/ports/Mk/bsd.kde4.mk): Available KDE 4 Components Name Description kdehier Hierarchy of common KDE directories kdelibs KDE core libraries kdeprefix If set, port will be installed into ${KDE_PREFIX} automoc4 Build tool to automatically generate moc files akonadi Storage server for KDE PIM data soprano Library for Resource Description Framework (RDF) strigi Strigi desktop search library libkcddb KDE CDDB (compact disc database) library libkcompactdisc KDE library for interfacing with audio CDs libkdeedu Libraries used by educational applications libkdcraw KDE LibRaw library libkexiv2 KDE Exiv2 library libkipi KDE Image Plugin Interface libkonq Konqueror core library libksane KDE SANE ("Scanner Access Now Easy") library pimlibs Personal information management libraries kate Advanced text editor framework marble Virtual globe and world atlas okular Universal document viewer korundum KDE Ruby bindings perlkde KDE Perl bindings pykde4 KDE Python bindings pykdeuic4 PyKDE user interface compiler smokekde KDE SMOKE libraries
KDE 4 ports are installed into KDE_PREFIX. This is achieved by specifying the kdeprefix component, which overrides the default PREFIX. The ports, however, respect any PREFIX set via the MAKEFLAGS environment variable and/or make arguments. Currently KDE_PREFIX is identical to the default PREFIX, ${LOCALBASE}. <varname>USE_KDE</varname> Example This is a simple example for a KDE 4 port. USES= cmake:outsource instructs the port to utilize CMake, a configuration tool widely used by KDE 4 projects (see for detailed usage). USE_KDE brings dependency on KDE libraries and makes port using automoc4 at build stage. Required KDE components and other dependencies can be determined through configure log. USE_KDE does not imply USE_QT. If a port requires some Qt 4 components, specify them in USE_QT. USES= cmake:outsource kde:4 qt:4 USE_KDE= kdelibs kdeprefix automoc4 USE_QT= moc_build qmake_build rcc_build uic_build
Using LXQt Applications depending on LXQt should set USES+= lxqt and set USE_LXQT to the list of required components from the table below Available LXQt Components Name Description buildtools Helpers for additional CMake modules libfmqt Libfm Qt bindings lxqt LXQt core library qtxdg Qt implementation of freedesktop.org XDG specifications
<literal>USE_LXQT</literal> Example This is a simple example, USE_LXQT adds a dependency on LXQt libraries. Required LXQt components and other dependencies can be determined from the configure log. USES= cmake:outsource lxqt qt:5 tar:xz USE_QT= core dbus widgets buildtools_build qmake_build USE_LXQT= buildtools libfmqt
Using Java Variable Definitions If the port needs a Java™ Development Kit (JDK™) to either build, run or even extract the distfile, then define USE_JAVA. There are several JDKs in the ports collection, from various vendors, and in several versions. If the port must use a particular version, specify it using the JAVA_VERSION variable. The most current version is java/openjdk8, with java/openjdk6 and java/openjdk7 also available. Variables Which May be Set by Ports That Use Java Variable Means USE_JAVA Define for the remaining variables to have any effect. JAVA_VERSION List of space-separated suitable Java versions for the port. An optional "+" allows specifying a range of versions (allowed values: 1.5[+] 1.6[+] 1.7[+]). JAVA_OS List of space-separated suitable JDK port operating systems for the port (allowed values: native linux). JAVA_VENDOR List of space-separated suitable JDK port vendors for the port (allowed values: freebsd bsdjava sun openjdk). JAVA_BUILD When set, add the selected JDK port to the build dependencies. JAVA_RUN When set, add the selected JDK port to the run dependencies. JAVA_EXTRACT When set, add the selected JDK port to the extract dependencies.
Below is the list of all settings a port will receive after setting USE_JAVA: Variables Provided to Ports That Use Java Variable Value JAVA_PORT The name of the JDK port (for example, java/openjdk6). JAVA_PORT_VERSION The full version of the JDK port (for example, 1.6.0). Only the first two digits of this version number are needed, use ${JAVA_PORT_VERSION:C/^([0-9])\.([0-9])(.*)$/\1.\2/}. JAVA_PORT_OS The operating system used by the JDK port (for example, 'native'). JAVA_PORT_VENDOR The vendor of the JDK port (for example, 'openjdk'). JAVA_PORT_OS_DESCRIPTION Description of the operating system used by the JDK port (for example, 'Native'). JAVA_PORT_VENDOR_DESCRIPTION Description of the vendor of the JDK port (for example, 'OpenJDK BSD Porting Team'). JAVA_HOME Path to the installation directory of the JDK (for example, '/usr/local/openjdk6'). JAVAC Path to the Java compiler to use (for example, '/usr/local/openjdk6/bin/javac'). JAR Path to the jar tool to use (for example, '/usr/local/openjdk6/bin/jar' or '/usr/local/bin/fastjar'). APPLETVIEWER Path to the appletviewer utility (for example, '/usr/local/openjdk6/bin/appletviewer'). JAVA Path to the java executable. Use this for executing Java programs (for example, '/usr/local/openjdk6/bin/java'). JAVADOC Path to the javadoc utility program. JAVAH Path to the javah program. JAVAP Path to the javap program. JAVA_KEYTOOL Path to the keytool utility program. JAVA_N2A Path to the native2ascii tool. JAVA_POLICYTOOL Path to the policytool program. JAVA_SERIALVER Path to the serialver utility program. RMIC Path to the RMI stub/skeleton generator, rmic. RMIREGISTRY Path to the RMI registry program, rmiregistry. RMID Path to the RMI daemon program rmid. JAVA_CLASSES Path to the archive that contains the JDK class files, ${JAVA_HOME}/jre/lib/rt.jar.
Use the java-debug make target to get information for debugging the port. It will display the value of many of the previously listed variables. Additionally, these constants are defined so all Java ports may be installed in a consistent way: Constants Defined for Ports That Use Java Constant Value JAVASHAREDIR The base directory for everything related to Java. Default: ${PREFIX}/share/java. JAVAJARDIR The directory where JAR files is installed. Default: ${JAVASHAREDIR}/classes. JAVALIBDIR The directory where JAR files installed by other ports are located. Default: ${LOCALBASE}/share/java/classes.
The related entries are defined in both PLIST_SUB (documented in ) and SUB_LIST.
Building with Ant When the port is to be built using Apache Ant, it has to define USE_ANT. Ant is thus considered to be the sub-make command. When no do-build target is defined by the port, a default one will be set that runs Ant according to MAKE_ENV, MAKE_ARGS and ALL_TARGET. This is similar to the USES= gmake mechanism, which is documented in . Best Practices When porting a Java library, the port has to install the JAR file(s) in ${JAVAJARDIR}, and everything else under ${JAVASHAREDIR}/${PORTNAME} (except for the documentation, see below). To reduce the packing file size, reference the JAR file(s) directly in the Makefile. Use this statement (where myport.jar is the name of the JAR file installed as part of the port): PLIST_FILES+= ${JAVAJARDIR}/myport.jar When porting a Java application, the port usually installs everything under a single directory (including its JAR dependencies). The use of ${JAVASHAREDIR}/${PORTNAME} is strongly encouraged in this regard. It is up the porter to decide whether the port installs the additional JAR dependencies under this directory or uses the already installed ones (from ${JAVAJARDIR}). When porting a &java; application that requires an application server such as www/tomcat7 to run the service, it is quite common for a vendor to distribute a .war. A .war is a Web application ARchive and is extracted when called by the application. Avoid adding a .war to pkg-plist. It is not considered best practice. An application server will expand war archive, but not clean it up properly if the port is removed. A more desirable way of working with this file is to extract the archive, then install the files, and lastly add these files to pkg-plist. TOMCATDIR= ${LOCALBASE}/apache-tomcat-7.0 WEBAPPDIR= myapplication post-extract: @${MKDIR} ${WRKDIR}/${PORTDIRNAME} @${TAR} xf ${WRKDIR}/myapplication.war -C ${WRKDIR}/${PORTDIRNAME} do-install: cd ${WRKDIR} && \ ${INSTALL} -d -o ${WWWOWN} -g ${WWWGRP} ${TOMCATDIR}/webapps/${PORTDIRNAME} cd ${WRKDIR}/${PORTDIRNAME} && ${COPYTREE_SHARE} \* ${WEBAPPDIR}/${PORTDIRNAME} Regardless of the type of port (library or application), the additional documentation is installed in the same location as for any other port. The Javadoc tool is known to produce a different set of files depending on the version of the JDK that is used. For ports that do not enforce the use of a particular JDK, it is therefore a complex task to specify the packing list (pkg-plist). This is one reason why porters are strongly encouraged to use PORTDOCS. Moreover, even if the set of files that will be generated by javadoc can be predicted, the size of the resulting pkg-plist advocates for the use of PORTDOCS. The default value for DATADIR is ${PREFIX}/share/${PORTNAME}. It is a good idea to override DATADIR to ${JAVASHAREDIR}/${PORTNAME} for Java ports. Indeed, DATADIR is automatically added to PLIST_SUB (documented in ) so use %%DATADIR%% directly in pkg-plist. As for the choice of building Java ports from source or directly installing them from a binary distribution, there is no defined policy at the time of writing. However, people from the &os; Java Project encourage porters to have their ports built from source whenever it is a trivial task. All the features that have been presented in this section are implemented in bsd.java.mk. If the port needs more sophisticated Java support, please first have a look at the bsd.java.mk Subversion log as it usually takes some time to document the latest features. Then, if the needed support that is lacking would be beneficial to many other Java ports, feel free to discuss it on the &a.java;. Although there is a java category for PRs, it refers to the JDK porting effort from the &os; Java project. Therefore, submit the Java port in the ports category as for any other port, unless the issue is related to either a JDK implementation or bsd.java.mk. Similarly, there is a defined policy regarding the CATEGORIES of a Java port, which is detailed in .
Web Applications, Apache and PHP Apache Variables for Ports That Use Apache USE_APACHE The port requires Apache. Possible values: yes (gets any version), 22, 24, 22-24, 22+, etc. The default APACHE version is 22. More details are available in ports/Mk/bsd.apache.mk and at wiki.freebsd.org/Apache/. APXS Full path to the apxs binary. Can be overridden in the port. HTTPD Full path to the httpd binary. Can be overridden in the port. APACHE_VERSION The version of present Apache installation (read-only variable). This variable is only available after inclusion of bsd.port.pre.mk. Possible values: 22, 24. APACHEMODDIR Directory for Apache modules. This variable is automatically expanded in pkg-plist. APACHEINCLUDEDIR Directory for Apache headers. This variable is automatically expanded in pkg-plist. APACHEETCDIR Directory for Apache configuration files. This variable is automatically expanded in pkg-plist.
Useful Variables for Porting Apache Modules MODULENAME Name of the module. Default value is PORTNAME. Example: mod_hello SHORTMODNAME Short name of the module. Automatically derived from MODULENAME, but can be overridden. Example: hello AP_FAST_BUILD Use apxs to compile and install the module. AP_GENPLIST Also automatically creates a pkg-plist. AP_INC Adds a directory to a header search path during compilation. AP_LIB Adds a directory to a library search path during compilation. AP_EXTRAS Additional flags to pass to apxs.
Web Applications Web applications must be installed into PREFIX/www/appname. This path is available both in Makefile and in pkg-plist as WWWDIR, and the path relative to PREFIX is available in Makefile as WWWDIR_REL. The user and group of web server process are available as WWWOWN and WWWGRP, in case the ownership of some files needs to be changed. The default values of both are www. Use WWWOWN?= myuser and WWWGRP?= mygroup if the port needs different values. This allows the user to override them easily. Use WWWOWN and WWWGRP sparingly. Remember that every file the web server can write to is a security risk waiting to happen. Do not depend on Apache unless the web app explicitly needs Apache. Respect that users may wish to run a web application on a web server other than Apache. PHP PHP web applications declare their dependency on it with USES=php. See for more information. PEAR Modules Porting PEAR modules is a very simple process. Add USES=pear to the port's Makefile. The framework will install the relevant files in the right places and automatically generate the plist at install time. Example Makefile for PEAR Class PORTNAME= Date DISTVERSION= 1.4.3 CATEGORIES= devel www pear MAINTAINER= example@domain.com COMMENT= PEAR Date and Time Zone Classes USES= pear .include <bsd.port.mk> PEAR modules will automatically be flavorized using PHP flavors. If a non default PEAR_CHANNEL is used, the build and run-time dependencies will automatically be added. PEAR modules do not need to defined PKGNAMESUFFIX it is automatically filled in using PEAR_PKGNAMEPREFIX. If a port needs to add to PKGNAMEPREFIX, it must also use PEAR_PKGNAMEPREFIX to differentiate between different flavors. <application>Horde</application> Modules In the same way, porting Horde modules is a simple process. Add USES=horde to the port's Makefile. The framework will install the relevant files in the right places and automatically generate the plist at install time. The USE_HORDE_BUILD and USE_HORDE_RUN variables can be used to add buildtime and runtime dependencies on other Horde modules. See Mk/Uses/horde.mk for a complete list of available modules. Example Makefile for <application>Horde</application> Module PORTNAME= Horde_Core DISTVERSION= 2.14.0 CATEGORIES= devel www pear MAINTAINER= horde@FreeBSD.org COMMENT= Horde Core Framework libraries OPTIONS_DEFINE= KOLAB SOCKETS KOLAB_DESC= Enable Kolab server support SOCKETS_DESC= Depend on sockets PHP extension USES= horde USE_PHP= session USE_HORDE_BUILD= Horde_Role USE_HORDE_RUN= Horde_Role Horde_History Horde_Pack \ Horde_Text_Filter Horde_View KOLAB_USE= HORDE_RUN=Horde_Kolab_Server,Horde_Kolab_Session SOCKETS_USE= PHP=sockets .include <bsd.port.mk> As Horde modules are also PEAR modules they will also automatically be flavorized using PHP flavors.
Using Python The Ports Collection supports parallel installation of multiple Python versions. Ports must use a correct python interpreter, according to the user-settable PYTHON_VERSION. Most prominently, this means replacing the path to python executable in scripts with the value of PYTHON_CMD. Ports that install files under PYTHON_SITELIBDIR must use the pyXY- package name prefix, so their package name embeds the version of Python they are installed into. PKGNAMEPREFIX= ${PYTHON_PKGNAMEPREFIX} Most Useful Variables for Ports That Use Python USES=python The port needs Python. The minimal required version can be specified with values such as 2.7+. Version ranges can also be specified by separating two version numbers with a dash: USES=python:3.2-3.3 USE_PYTHON=distutils Use Python distutils for configuring, compiling, and installing. This is required when the port comes with setup.py. This overrides the do-build and do-install targets and may also override do-configure if GNU_CONFIGURE is not defined. Additionally, it implies USE_PYTHON=flavors. USE_PYTHON=autoplist Create the packaging list automatically. This also requires USE_PYTHON=distutils to be set. USE_PYTHON=concurrent The port will use an unique prefix, typically PYTHON_PKGNAMEPREFIX for certain directories, such as EXAMPLESDIR and DOCSDIR and also will append a suffix, the python version from PYTHON_VER, to binaries and scripts to be installed. This allows ports to be installed for different Python versions at the same time, which otherwise would install conflicting files. USE_PYTHON=flavors The port does not use distutils but still supports multiple Python versions. FLAVORS will be set to the supported Python versions. See for more information. USE_PYTHON=optsuffix If the current Python version is not the default version, the port will gain PKGNAMESUFFIX=${PYTHON_PKGNAMESUFFIX}. Only useful with flavors. PYTHON_PKGNAMEPREFIX Used as a PKGNAMEPREFIX to distinguish packages for different Python versions. Example: py27- PYTHON_SITELIBDIR Location of the site-packages tree, that contains installation path of Python (usually LOCALBASE). PYTHON_SITELIBDIR can be very useful when installing Python modules. PYTHONPREFIX_SITELIBDIR The PREFIX-clean variant of PYTHON_SITELIBDIR. Always use %%PYTHON_SITELIBDIR%% in pkg-plist when possible. The default value of %%PYTHON_SITELIBDIR%% is lib/python%%PYTHON_VERSION%%/site-packages PYTHON_CMD Python interpreter command line, including version number.
Python Module Dependency Helpers PYNUMERIC Dependency line for numeric extension. PYNUMPY Dependency line for the new numeric extension, numpy. (PYNUMERIC is deprecated by upstream vendor). PYXML Dependency line for XML extension (not needed for Python 2.0 and higher as it is also in base distribution). PY_ENUM34 Conditional dependency on devel/py-enum34 depending on the Python version. PY_ENUM_COMPAT Conditional dependency on devel/py-enum-compat depending on the Python version. PY_PATHLIB Conditional dependency on devel/py-pathlib depending on the Python version. PY_IPADDRESS Conditional dependency on net/py-ipaddress depending on the Python version. PY_FUTURES Conditional dependency on devel/py-futures depending on the Python version.
A complete list of available variables can be found in /usr/ports/Mk/Uses/python.mk. All dependencies to Python ports using Python flavors (either with USE_PYTHON=distutils or USE_PYTHON=flavors) must have the Python flavor appended to their origin using @${PY_FLAVOR}. See . Makefile for a Simple <application>Python</application> Module PORTNAME= sample DISTVERSION= 1.2.3 CATEGORIES= devel MAINTAINER= john@doe.tld COMMENT= Python sample module RUN_DEPENDS= ${PYTHON_PKGNAMEPREFIX}six>0:devel/py-six@${PY_FLAVOR} USES= python USE_PYTHON= autoplist distutils .include <bsd.port.mk> Some Python applications claim to have DESTDIR support (which would be required for staging) but it is broken (Mailman up to 2.1.16, for instance). This can be worked around by recompiling the scripts. This can be done, for example, in the post-build target. Assuming the Python scripts are supposed to reside in PYTHONPREFIX_SITELIBDIR after installation, this solution can be applied: (cd ${STAGEDIR}${PREFIX} \ && ${PYTHON_CMD} ${PYTHON_LIBDIR}/compileall.py \ -d ${PREFIX} -f ${PYTHONPREFIX_SITELIBDIR:S;${PREFIX}/;;}) This recompiles the sources with a path relative to the stage directory, and prepends the value of PREFIX to the file name recorded in the byte-compiled output file by -d. -f is required to force recompilation, and the :S;${PREFIX}/;; strips prefixes from the value of PYTHONPREFIX_SITELIBDIR to make it relative to PREFIX.
Using <application>Tcl/Tk</application> The Ports Collection supports parallel installation of multiple Tcl/Tk versions. Ports should try to support at least the default Tcl/Tk version and higher with USES=tcl. It is possible to specify the desired version of tcl by appending :xx, for example, USES=tcl:85. The Most Useful Read-Only Variables for Ports That Use <application>Tcl/Tk</application> TCL_VER chosen major.minor version of Tcl TCLSH full path of the Tcl interpreter TCL_LIBDIR path of the Tcl libraries TCL_INCLUDEDIR path of the Tcl C header files TK_VER chosen major.minor version of Tk WISH full path of the Tk interpreter TK_LIBDIR path of the Tk libraries TK_INCLUDEDIR path of the Tk C header files
See the USES=tcl and USES=tk of for a full description of those variables. A complete list of those variables is available in /usr/ports/Mk/Uses/tcl.mk.
Using Ruby Useful Variables for Ports That Use Ruby Variable Description USE_RUBY Adds build and run dependencies on Ruby. USE_RUBY_EXTCONF The port uses extconf.rb to configure. USE_RUBY_SETUP The port uses setup.rb to configure. RUBY_SETUP Override the name of the setup script from setup.rb. Another common value is install.rb.
This table shows the selected variables available to port authors via the ports infrastructure. These variables are used to install files into their proper locations. Use them in pkg-plist as much as possible. Do not redefine these variables in the port. Selected Read-Only Variables for Ports That Use Ruby Variable Description Example value RUBY_PKGNAMEPREFIX Used as a PKGNAMEPREFIX to distinguish packages for different Ruby versions. ruby19- RUBY_VERSION Full version of Ruby in the form of x.y.z[.p]. 1.9.3.484 RUBY_SITELIBDIR Architecture independent libraries installation path. /usr/local/lib/ruby/site_ruby/1.9 RUBY_SITEARCHLIBDIR Architecture dependent libraries installation path. /usr/local/lib/ruby/site_ruby/1.9/amd64-freebsd10 RUBY_MODDOCDIR Module documentation installation path. /usr/local/share/doc/ruby19/patsy RUBY_MODEXAMPLESDIR Module examples installation path. /usr/local/share/examples/ruby19/patsy
A complete list of available variables can be found in /usr/ports/Mk/bsd.ruby.mk.
Using SDL USE_SDL is used to autoconfigure the dependencies for ports which use an SDL based library like devel/sdl12 and graphics/sdl_image. These SDL libraries for version 1.2 are recognized: sdl: devel/sdl12 console: devel/sdl_console gfx: graphics/sdl_gfx image: graphics/sdl_image mixer: audio/sdl_mixer mm: devel/sdlmm net: net/sdl_net pango: x11-toolkits/sdl_pango sound: audio/sdl_sound ttf: graphics/sdl_ttf These SDL libraries for version 2.0 are recognized: sdl: devel/sdl20 gfx: graphics/sdl2_gfx image: graphics/sdl2_image mixer: audio/sdl2_mixer net: net/sdl2_net ttf: graphics/sdl2_ttf Therefore, if a port has a dependency on net/sdl_net and audio/sdl_mixer, the syntax will be: USE_SDL= net mixer The dependency devel/sdl12, which is required by net/sdl_net and audio/sdl_mixer, is automatically added as well. Using USE_SDL with entries for SDL 1.2, it will automatically: Add a dependency on sdl12-config to BUILD_DEPENDS Add the variable SDL_CONFIG to CONFIGURE_ENV Add the dependencies of the selected libraries to LIB_DEPENDS Using USE_SDL with entries for SDL 2.0, it will automatically: Add a dependency on sdl2-config to BUILD_DEPENDS Add the variable SDL2_CONFIG to CONFIGURE_ENV Add the dependencies of the selected libraries to LIB_DEPENDS Using <application>wxWidgets</application> This section describes the status of the wxWidgets libraries in the ports tree and its integration with the ports system. Introduction There are many versions of the wxWidgets libraries which conflict between them (install files under the same name). In the ports tree this problem has been solved by installing each version under a different name using version number suffixes. The obvious disadvantage of this is that each application has to be modified to find the expected version. Fortunately, most of the applications call the wx-config script to determine the necessary compiler and linker flags. The script is named differently for every available version. Majority of applications respect an environment variable, or accept a configure argument, to specify which wx-config script to call. Otherwise they have to be patched. Version Selection To make the port use a specific version of wxWidgets there are two variables available for defining (if only one is defined the other will be set to a default value): Variables to Select <application>wxWidgets</application> Versions Variable Description Default value USE_WX List of versions the port can use All available versions USE_WX_NOT List of versions the port cannot use None
The available wxWidgets versions and the corresponding ports in the tree are: Available <application>wxWidgets</application> Versions Version Port 2.8 x11-toolkits/wxgtk28 3.0 x11-toolkits/wxgtk30
The variables in can be set to one or more of these combinations separated by spaces: <application>wxWidgets</application> Version Specifications Description Example Single version 2.8 Ascending range 2.8+ Descending range 3.0- Full range (must be ascending) 2.8-3.0
There are also some variables to select the preferred versions from the available ones. They can be set to a list of versions, the first ones will have higher priority. Variables to Select Preferred <application>wxWidgets</application> Versions Name Designed for WANT_WX_VER the port WITH_WX_VER the user
Component Selection There are other applications that, while not being wxWidgets libraries, are related to them. These applications can be specified in WX_COMPS. These components are available: Available <application>wxWidgets</application> Components Name Description Version restriction wx main library none contrib contributed libraries none python wxPython (Python bindings) 2.8-3.0
The dependency type can be selected for each component by adding a suffix separated by a semicolon. If not present then a default type will be used (see ). These types are available: Available <application>wxWidgets</application> Dependency Types Name Description build Component is required for building, equivalent to BUILD_DEPENDS run Component is required for running, equivalent to RUN_DEPENDS lib Component is required for building and running, equivalent to LIB_DEPENDS
The default values for the components are detailed in this table: Default <application>wxWidgets</application> Dependency Types Component Dependency type wx lib contrib lib python run mozilla lib svg lib
Selecting <application>wxWidgets</application> Components This fragment corresponds to a port which uses wxWidgets version 2.4 and its contributed libraries. USE_WX= 2.8 WX_COMPS= wx contrib
Detecting Installed Versions To detect an installed version, define WANT_WX. If it is not set to a specific version then the components will have a version suffix. HAVE_WX will be filled after detection. Detecting Installed <application>wxWidgets</application> Versions and Components This fragment can be used in a port that uses wxWidgets if it is installed, or an option is selected. WANT_WX= yes .include <bsd.port.pre.mk> .if defined(WITH_WX) || !empty(PORT_OPTIONS:MWX) || !empty(HAVE_WX:Mwx-2.8) USE_WX= 2.8 CONFIGURE_ARGS+= --enable-wx .endif This fragment can be used in a port that enables wxPython support if it is installed or if an option is selected, in addition to wxWidgets, both version 2.8. USE_WX= 2.8 WX_COMPS= wx WANT_WX= 2.8 .include <bsd.port.pre.mk> .if defined(WITH_WXPYTHON) || !empty(PORT_OPTIONS:MWXPYTHON) || !empty(HAVE_WX:Mpython) WX_COMPS+= python CONFIGURE_ARGS+= --enable-wxpython .endif Defined Variables These variables are available in the port (after defining one from ). Variables Defined for Ports That Use <application>wxWidgets</application> Name Description WX_CONFIG The path to the wxWidgets wx-config script (with different name) WXRC_CMD The path to the wxWidgets wxrc program (with different name) WX_VERSION The wxWidgets version that is going to be used (for example, 2.6)
Processing in <filename>bsd.port.pre.mk</filename> Define WX_PREMK to be able to use the variables right after including bsd.port.pre.mk. When defining WX_PREMK, then the version, dependencies, components and defined variables will not change if modifying the wxWidgets port variables after including bsd.port.pre.mk. Using <application>wxWidgets</application> Variables in Commands This fragment illustrates the use of WX_PREMK by running the wx-config script to obtain the full version string, assign it to a variable and pass it to the program. USE_WX= 2.8 WX_PREMK= yes .include <bsd.port.pre.mk> .if exists(${WX_CONFIG}) VER_STR!= ${WX_CONFIG} --release PLIST_SUB+= VERSION="${VER_STR}" .endif The wxWidgets variables can be safely used in commands when they are inside targets without the need of WX_PREMK. Additional <command>configure</command> Arguments Some GNU configure scripts cannot find wxWidgets with just the WX_CONFIG environment variable set, requiring additional arguments. WX_CONF_ARGS can be used for provide them. Legal Values for <varname>WX_CONF_ARGS</varname> Possible value Resulting argument absolute --with-wx-config=${WX_CONFIG} relative --with-wx=${LOCALBASE} --with-wx-config=${WX_CONFIG:T}
Using <application>Lua</application> This section describes the status of the Lua libraries in the ports tree and its integration with the ports system. Introduction There are many versions of the Lua libraries and corresponding interpreters, which conflict between them (install files under the same name). In the ports tree this problem has been solved by installing each version under a different name using version number suffixes. The obvious disadvantage of this is that each application has to be modified to find the expected version. But it can be solved by adding some additional flags to the compiler and linker. Version Selection A port using Lua only needs to have this line: USES= lua If a specific version of Lua is needed, instructions on how to select it are given in the USES=lua part of . Defined Variables These variables are available in the port. Variables Defined for Ports That Use <application>Lua</application> Name Description LUA_VER The Lua version that is going to be used (for example, 5.1) LUA_VER_STR The Lua version without the dots (for example, 51) LUA_PREFIX The prefix where Lua (and components) is installed LUA_SUBDIR The directory under ${PREFIX}/bin, ${PREFIX}/share and ${PREFIX}/lib where Lua is installed LUA_INCDIR The directory where Lua and tolua header files are installed LUA_LIBDIR The directory where Lua and tolua libraries are installed LUA_MODLIBDIR The directory where Lua module libraries (.so) are installed LUA_MODSHAREDIR The directory where Lua modules (.lua) are installed LUA_PKGNAMEPREFIX The package name prefix used by Lua modules LUA_CMD The path to the Lua interpreter LUAC_CMD The path to the Lua compiler
Using <command>iconv</command> After 2013-10-08 (254273), &os;  10-CURRENT and newer versions have a native iconv in the operating system. On earlier versions, converters/libiconv was used as a dependency. For software that needs iconv, define USES=iconv. &os; versions before 10-CURRENT on 2013-08-13 (254273) do not have a native iconv. On these earlier versions, a dependency on converters/libiconv will be added automatically. When a port defines USES=iconv, these variables will be available: Variable name Purpose Value before &os; 10-CURRENT 254273 (2013-08-13) Value after &os; 10-CURRENT 254273 (2013-08-13) ICONV_CMD Directory where the iconv binary resides ${LOCALBASE}/bin/iconv /usr/bin/iconv ICONV_LIB ld argument to link to libiconv (if needed) -liconv (empty) ICONV_PREFIX Directory where the iconv implementation resides (useful for configure scripts) ${LOCALBASE} /usr ICONV_CONFIGURE_ARG Preconstructed configure argument for configure scripts --with-libiconv-prefix=${LOCALBASE} (empty) ICONV_CONFIGURE_BASE Preconstructed configure argument for configure scripts --with-libiconv=${LOCALBASE} (empty) These two examples automatically populate the variables with the correct value for systems using converters/libiconv or the native iconv respectively: Simple <command>iconv</command> Usage USES= iconv LDFLAGS+= -L${LOCALBASE}/lib ${ICONV_LIB} <command>iconv</command> Usage with <command>configure</command> USES= iconv CONFIGURE_ARGS+=${ICONV_CONFIGURE_ARG} As shown above, ICONV_LIB is empty when a native iconv is present. This can be used to detect the native iconv and respond appropriately. Sometimes a program has an ld argument or search path hardcoded in a Makefile or configure script. This approach can be used to solve that problem: Fixing Hardcoded <literal>-liconv</literal> USES= iconv post-patch: @${REINPLACE_CMD} -e 's/-liconv/${ICONV_LIB}/' ${WRKSRC}/Makefile In some cases it is necessary to set alternate values or perform operations depending on whether there is a native iconv. bsd.port.pre.mk must be included before testing the value of ICONV_LIB: Checking for Native <command>iconv</command> Availability USES= iconv .include <bsd.port.pre.mk> post-patch: .if empty(ICONV_LIB) # native iconv detected @${REINPLACE_CMD} -e 's|iconv||' ${WRKSRC}/Config.sh .endif .include <bsd.port.post.mk> Using Xfce Ports that need Xfce libraries or applications set USES=xfce. Specific Xfce library and application dependencies are set with values assigned to USE_XFCE. They are defined in /usr/ports/Mk/Uses/xfce.mk. The possible values are: Values of <varname>USE_XFCE</varname> garcon sysutils/garcon libexo x11/libexo libgui x11-toolkits/libxfce4gui libmenu x11/libxfce4menu libutil x11/libxfce4util panel x11-wm/xfce4-panel thunar x11-fm/thunar xfconf x11/xfce4-conf <varname>USES=xfce</varname> Example USES= xfce USE_XFCE= libmenu Using Xfce's Own GTK3 Widgets In this example, the ported application uses the GTK3-specific widgets x11/libxfce4menu and x11/xfce4-conf. USES= xfce:gtk3 USE_XFCE= libmenu xfconf Xfce components included this way will automatically include any dependencies they need. It is no longer necessary to specify the entire list. If the port only needs x11-wm/xfce4-panel, use: USES= xfce USE_XFCE= panel There is no need to list the components x11-wm/xfce4-panel needs itself like this: USES= xfce USE_XFCE= libexo libmenu libutil panel However, Xfce components and non-Xfce dependencies of the port must be included explicitly. Do not count on an Xfce component to provide a sub-dependency other than itself for the main port. Using Databases Use one of the USES macros from to add a dependency on a database. Database <varname>USES</varname> Macros Database USES Macro Berkeley DB bdb MariaDB, MySQL, Percona mysql PostgreSQL pgsql SQLite sqlite
Using Berkeley DB 6 USES= bdb:6 See for more information. Using MySQL When a port needs the MySQL client library add USES= mysql See for more information. Using PostgreSQL When a port needs the PostgreSQL server version 9.6 or later add USES= pgsql:9.6+ WANT_PGSQL= server See for more information. Using SQLite 3 USES= sqlite:3 See for more information.
Starting and Stopping Services (<literal>rc</literal> Scripts) rc.d scripts are used to start services on system startup, and to give administrators a standard way of stopping, starting and restarting the service. Ports integrate into the system rc.d framework. Details on its usage can be found in the rc.d Handbook chapter. Detailed explanation of the available commands is provided in &man.rc.8; and &man.rc.subr.8;. Finally, there is an article on practical aspects of rc.d scripting. With a mythical port called doorman, which needs to start a doormand daemon. Add the following to the Makefile: USE_RC_SUBR= doormand Multiple scripts may be listed and will be installed. Scripts must be placed in the files subdirectory and a .in suffix must be added to their filename. Standard SUB_LIST expansions will be ran against this file. Use of the %%PREFIX%% and %%LOCALBASE%% expansions is strongly encouraged as well. More on SUB_LIST in the relevant section. As of &os; 6.1-RELEASE, local rc.d scripts (including those installed by ports) are included in the overall &man.rcorder.8; of the base system. An example simple rc.d script to start the doormand daemon: #!/bin/sh # $FreeBSD$ # # PROVIDE: doormand # REQUIRE: LOGIN # KEYWORD: shutdown # # Add these lines to /etc/rc.conf.local or /etc/rc.conf # to enable this service: # # doormand_enable (bool): Set to NO by default. # Set it to YES to enable doormand. # doormand_config (path): Set to %%PREFIX%%/etc/doormand/doormand.cf # by default. . /etc/rc.subr name=doormand rcvar=doormand_enable load_rc_config $name : ${doormand_enable:="NO"} : ${doormand_config="%%PREFIX%%/etc/doormand/doormand.cf"} command=%%PREFIX%%/sbin/${name} pidfile=/var/run/${name}.pid command_args="-p $pidfile -f $doormand_config" run_rc_command "$1" Unless there is a very good reason to start the service earlier, or it runs as a particular user (other than root), all ports scripts must use: REQUIRE: LOGIN If the startup script launches a daemon that must be shutdown, the following will trigger a stop of the service on system shutdown: KEYWORD: shutdown If the script is not starting a persistent service this is not necessary. For optional configuration elements the "=" style of default variable assignment is preferable to the ":=" style here, since the former sets a default value only if the variable is unset, and the latter sets one if the variable is unset or null. A user might very well include something like: doormand_flags="" in their rc.conf.local, and a variable substitution using ":=" would inappropriately override the user's intention. The _enable variable is not optional, and must use the ":" for the default. Ports must not start and stop their services when installing and deinstalling. Do not abuse the plist keywords described in by running commands that modify the currently running system, including starting or stopping services. Pre-Commit Checklist Before contributing a port with an rc.d script, and more importantly, before committing one, please consult this checklist to be sure that it is ready. The devel/rclint port can check for most of these, but it is not a substitute for proper review. If this is a new file, does it have a .sh extension? If so, that must be changed to just file.in since rc.d files may not end with that extension. Does the file have a $FreeBSD$ tag? Do the name of the file (minus .in), the PROVIDE line, and $name all match? The file name matching PROVIDE makes debugging easier, especially for &man.rcorder.8; issues. Matching the file name and $name makes it easier to figure out which variables are relevant in rc.conf[.local]. It is also a policy for all new scripts, including those in the base system. Is the REQUIRE line set to LOGIN? This is mandatory for scripts that run as a non-root user. If it runs as root, is there a good reason for it to run prior to LOGIN? If not, it must run after so that local scrips can be loosely grouped to a point in &man.rcorder.8; after most everything in the base is already running. Does the script start a persistent service? If so, it must have KEYWORD: shutdown. Make sure there is no KEYWORD: &os; present. This has not been necessary nor desirable for years. It is also an indication that the new script was copy/pasted from an old script, so extra caution must be given to the review. If the script uses an interpreted language like perl, python, or ruby, make certain that command_interpreter is set appropriately, for example, for Perl, by adding PERL=${PERL} to SUB_LIST and using %%PERL%%. Otherwise, &prompt.root; service name stop will probably not work properly. See &man.service.8; for more information. Have all occurrences of /usr/local been replaced with %%PREFIX%%? Do the default variable assignments come after load_rc_config? Are there default assignments to empty strings? They should be removed, but double-check that the option is documented in the comments at the top of the file. Are things that are set in variables actually used in the script? Are options listed in the default name_flags things that are actually mandatory? If so, they must be in command_args. is a red flag (pardon the pun) here, since it is usually the option to “daemonize” the process, and therefore is actually mandatory. name_flags must never be included in command_args (and vice versa, although that error is less common). Does the script execute any code unconditionally? This is frowned on. Usually these things must be dealt with through a start_precmd. All boolean tests must use the checkyesno function. No hand-rolled tests for [Yy][Ee][Ss], etc. If there is a loop (for example, waiting for something to start) does it have a counter to terminate the loop? We do not want the boot to be stuck forever if there is an error. Does the script create files or directories that need specific permissions, for example, a pid that needs to be owned by the user that runs the process? Rather than the traditional &man.touch.1;/&man.chown.8;/&man.chmod.1; routine, consider using &man.install.1; with the proper command line arguments to do the whole procedure with one step. Adding Users and Groups Some ports require a particular user account to be present, usually for daemons that run as that user. For these ports, choose a unique UID from 50 to 999 and register it in ports/UIDs (for users) and ports/GIDs (for groups). The unique identification should be the same for users and groups. Please include a patch against these two files when requiring a new user or group to be created for the port. Then use USERS and GROUPS in Makefile, and the user will be automatically created when installing the port. USERS= pulse GROUPS= pulse pulse-access pulse-rt The current list of reserved UIDs and GIDs can be found in ports/UIDs and ports/GIDs. Ports That Rely on Kernel Sources Some ports (such as kernel loadable modules) need the kernel source files so that the port can compile. Here is the correct way to determine if the user has them installed: USES= kmod Apart from this check, the kmod feature takes care of most items that these ports need to take into account. Go Libraries Ports must not package or install Go libs or source code. Only lang/go* should install into GO_SRCDIR and GO_LIBDIR. Go ports must fetch the required deps at the normal fetch time and should only install the programs and things users need, not the things Go developers would need. Ports should (in order of preference): Use vendored dependencies included with the package source. Fetch the versions of deps specified by upstream (in the case of vendor.json or similar). As a last resort (deps are not included nor versions specified exactly) fetch versions of dependencies available at the time of upstream development/release. Shell Completion Files Many modern shells (including bash, tcsh, and zsh) support parameter and/or option tab-completion. This support usually comes from completion files, which contain the definitions for how tab completion will work for a certain command. Ports sometimes ship with their own completion files, or porters may have created them themselves. When available, completion files should always be installed. It is not necessary to make an option for it. If an option is used, though, always enable it in OPTIONS_DEFAULT. Shell completion file paths bash ${PREFIX}/etc/bash_completion.d zsh ${PREFIX}/share/zsh/site-functions
Do not register any dependencies on the shells themselves.
Index: head/en_US.ISO8859-1/books/porters-handbook/uses/chapter.xml =================================================================== --- head/en_US.ISO8859-1/books/porters-handbook/uses/chapter.xml (revision 52859) +++ head/en_US.ISO8859-1/books/porters-handbook/uses/chapter.xml (revision 52860) @@ -1,3364 +1,3365 @@ Using <varname>USES</varname> Macros An Introduction to <varname>USES</varname> USES macros make it easy to declare requirements and settings for a port. They can add dependencies, change building behavior, add metadata to packages, and so on, all by selecting simple, preset values.. Each section in this chapter describes a possible value for USES, along with its possible arguments. Arguments are appeneded to the value after a colon (:). Multiple arguments are separated by commas (,). Using Multiple Values USES= bison perl Adding an Argument USES= gmake:lite Adding Multiple Arguments USES= drupal:7,theme Mixing it All Together USES= pgsql:9.3+ cpe python:2.7,build <literal>7z</literal> Possible arguments: (none), p7zip, partial Extract using &man.7z.1; instead of &man.bsdtar.1; and sets EXTRACT_SUFX=.7z. The p7zip option forces a dependency on the 7z from archivers/p7zip if the one from the base system is not able to extract the files. EXTRACT_SUFX is not changed if the partial option is used, this can be used if the main distribution file does not have a .7z extension. <literal>ada</literal> Possible arguments: (none), 5, 6 Depends on an Ada-capable compiler, and sets CC accordingly. Defaults to use gcc 5 from ports. Use the :X version option to force building with a different version. <literal>autoreconf</literal> Possible arguments: (none), build Runs autoreconf. It encapsulates the aclocal, autoconf, autoheader, automake, autopoint, and libtoolize commands. Each command applies to ${AUTORECONF_WRKSRC}/configure.ac or its old name, ${AUTORECONF_WRKSRC}/configure.in. If configure.ac defines subdirectories with their own configure.ac using AC_CONFIG_SUBDIRS, autoreconf will recursively update those as well. The :build argument only adds build time dependencies on those tools but does not run autoreconf. A port can set AUTORECONF_WRKSRC if WRKSRC does not contain the path to configure.ac. <literal>blaslapack</literal> Possible arguments: (none), atlas, netlib (default), gotoblas, openblas Adds dependencies on Blas / Lapack libraries. <literal>bdb</literal> Possible arguments: (none), 48, 5 (default), 6 Add dependency on the Berkeley DB library. Default to databases/db5. It can also depend on databases/db48 when using the :48 argument or databases/db6 with :6. It is possible to declare a range of acceptable values, :48+ finds the highest installed version, and falls back to 4.8 if nothing else is installed. INVALID_BDB_VER can be used to specify versions which do not work with this port. The framework exposes the following variables to the port: BDB_LIB_NAME The name of the Berkeley DB library. For example, when using databases/db5, it contains db-5.3. BDB_LIB_CXX_NAME The name of the Berkeley DB C++ library. For example, when using databases/db5, it contains db_cxx-5.3. BDB_INCLUDE_DIR The location of the Berkeley DB include directory. For example, when using databases/db5, it will contain ${LOCALBASE}/include/db5. BDB_LIB_DIR The location of the Berkeley DB library directory. For example, when using databases/db5, it contains ${LOCALBASE}/lib. BDB_VER The detected Berkeley DB version. For example, if using USES=bdb:48+ and Berkeley DB 5 is installed, it contains 5. databases/db48 is deprecated and unsupported. It must not be used by any port. <literal>bison</literal> Possible arguments: (none), build, run, both Uses devel/bison By default, with no arguments or with the build argument, it implies bison is a build-time dependency, run implies a run-time dependency, and both implies both run-time and build-time dependencies. <literal>cargo</literal> Possible arguments: (none) Uses Cargo for configuring, building, and testing. It can be used to port Rust applications that use the Cargo build system. For more information see . <literal>charsetfix</literal> Possible arguments: (none) Prevents the port from installing charset.alias. This must be installed only by converters/libiconv. CHARSETFIX_MAKEFILEIN can be set to a path relative to WRKSRC if charset.alias is not installed by ${WRKSRC}/Makefile.in. <literal>cmake</literal> Possible arguments: (none), outsource, run Uses CMake for configuring and building. With the outsource argument, an out-of-source build will be performed. With the run argument, a run-time dependency is registered. For more information see . <literal>compiler</literal> Possible arguments: (none), env (default, implicit), c++17-lang, c++14-lang, c++11-lang, gcc-c++11-lib, c++11-lib, c++0x, c11, openmp, nestedfct, features Determines which compiler to use based on any given wishes. Use c++17-lang if the port needs a C++17-capable compiler, c++14-lang if the port needs a C++14-capable compiler, c++11-lang if the port needs a C++11-capable compiler, gcc-c++11-lib if the port needs the g++ compiler with a C++11 library, or c++11-lib if the port needs a C++11-ready standard library. If the port needs a compiler understanding C++0X, C11, OpenMP, or nested functions, the corresponding parameters should be used. Use features to request a list of features supported by the default compiler. After including bsd.port.pre.mk the port can inspect the results using these variables: COMPILER_TYPE: the default compiler on the system, either gcc or clang ALT_COMPILER_TYPE: the alternative compiler on the system, either gcc or clang. Only set if two compilers are present in the base system. COMPILER_VERSION: the first two digits of the version of the default compiler. ALT_COMPILER_VERSION: the first two digits of the version of the alternative compiler, if present. CHOSEN_COMPILER_TYPE: the chosen compiler, either gcc or clang COMPILER_FEATURES: the features supported by the default compiler. It currently lists the C++ library. <literal>cpe</literal> Possible arguments: (none) Include Common Platform Enumeration (CPE) information in package manifest as a CPE 2.3 formatted string. See the CPE specification for details. To add CPE information to a port, follow these steps: Search for the official CPE entry for the software product either by using the NVD's CPE search engine or in the official CPE dictionary (warning, very large XML file). Do not ever make up CPE data. Add cpe to USES and compare the result of make -V CPE_STR to the CPE dictionary entry. Continue one step at a time until make -V CPE_STR is correct. If the product name (second field, defaults to PORTNAME) is incorrect, define CPE_PRODUCT. If the vendor name (first field, defaults to CPE_PRODUCT) is incorrect, define CPE_VENDOR. If the version field (third field, defaults to PORTVERSION) is incorrect, define CPE_VERSION. If the update field (fourth field, defaults to empty) is incorrect, define CPE_UPDATE. If it is still not correct, check Mk/Uses/cpe.mk for additional details, or contact the &a.ports-secteam;. Derive as much as possible of the CPE name from existing variables such as PORTNAME and PORTVERSION. Use variable modifiers to extract the relevant portions from these variables rather than hardcoding the name. Always run make -V CPE_STR and check the output before committing anything that changes PORTNAME or PORTVERSION or any other variable which is used to derive CPE_STR. <literal>cran</literal> Possible arguments: (none), auto-plist, compiles Uses the Comprehensive R Archive Network. Specify auto-plist to automatically generate pkg-plist. Specify compiles if the port has code that need to be compiled. <literal>desktop-file-utils</literal> Possible arguments: (none) Uses update-desktop-database from devel/desktop-file-utils. An extra post-install step will be run without interfering with any post-install steps already in the port Makefile. A line with @desktop-file-utils will be added to the plist. <literal>desthack</literal> Possible arguments: (none) Changes the behavior of GNU configure to properly support DESTDIR in case the original software does not. <literal>display</literal> Possible arguments: (none), ARGS Set up a virtual display environment. If the environment variable DISPLAY is not set, then Xvfb is added as a build dependency, and CONFIGURE_ENV is extended with the port number of the currently running instance of Xvfb. The ARGS parameter defaults to install and controls the phase around which to start and stop the virtual display. <literal>dos2unix</literal> Possible arguments: (none) The port has files with line endings in DOS format which need to be converted. Several variables can be set to control which files will be converted. The default is to convert all files, including binaries. See for examples. DOS2UNIX_REGEX: match file names based on a regular expression. DOS2UNIX_FILES: match literal file names. DOS2UNIX_GLOB: match file names based on a glob pattern. DOS2UNIX_WRKSRC: the directory from which to start the conversions. Defaults to ${WRKSRC}. <literal>drupal</literal> Possible arguments: 7, module, theme Automate installation of a port that is a Drupal theme or module. Use with the version of Drupal that the port is expecting. For example, USES=drupal:7,module says that this port creates a Drupal 6 module. A Drupal 7 theme can be specified with USES=drupal:7,theme. <literal>fakeroot</literal> Possible arguments: (none) Changes some default behavior of build systems to allow installing as a user. See for more information on fakeroot. <literal>fam</literal> Possible arguments: (none), fam, gamin Uses a File Alteration Monitor as a library dependency, either devel/fam or devel/gamin. End users can set WITH_FAM_SYSTEM to specify their preference. <literal>firebird</literal> Possible arguments: (none), 25 Add a dependency to the client library of the Firebird database. <literal>fonts</literal> Possible arguments: (none), fc, fcfontsdir (default), fontsdir, none Adds a runtime dependency on tools needed to register fonts. Depending on the argument, add a @fc ${FONTSDIR} line, @fcfontsdir ${FONTSDIR} line, @fontsdir ${FONTSDIR} line, or no line if the argument is none, to the plist. FONTSDIR defaults to ${PREFIX}/share/fonts/${FONTNAME} and FONTNAME to ${PORTNAME}. Add FONTSDIR to PLIST_SUB and SUB_LIST <literal>fortran</literal> Possible arguments: gcc (default) Uses the GNU Fortran compiler. <literal>fuse</literal> Possible arguments: 2 (default), 3 The port will depend on the FUSE library and handle the dependency on the kernel module depending on the version of &os;. <literal>gecko</literal> Possible arguments: libxul (default), firefox, seamonkey, thunderbird, build, XY, XY+ Add a dependency on different gecko based applications. If libxul is used, it is the only argument allowed. When the argument is not libxul, the firefox, seamonkey, or thunderbird arguments can be used, along with optional build and XY/XY+ version arguments. <literal>gem</literal> Possible arguments: (none), noautoplist Handle building with RubyGems. If noautoplist is used, the packing list is not generated automatically. <literal>gettext</literal> Possible arguments: (none) Deprecated. Will include both gettext-runtime and gettext-tools. <literal>gettext-runtime</literal> Possible arguments: (none), lib (default), build, run Uses devel/gettext-runtime. By default, with no arguments or with the lib argument, implies a library dependency on libintl.so. build and run implies, respectively a build-time and a run-time dependency on gettext. <literal>gettext-tools</literal> Possible arguments: (none), build (default), run Uses devel/gettext-tools. By default, with no argument, or with the build argument, a build time dependency on msgfmt is registered. With the run argument, a run-time dependency is registered. <literal>ghostscript</literal> Possible arguments: X, build, run, nox11 A specific version X can be used. Possible versions are 7, 8, 9, and agpl (default). nox11 indicates that the -nox11 version of the port is required. build and run add build- and run-time dependencies on Ghostscript. The default is both build- and run-time dependencies. <literal>gl</literal> Possible arguments: (none) Provides an easy way to depend on GL components. The components should be listed in USE_GL. The available components are: egl add a library dependency on libEGL.so from graphics/mesa-libs gbm Add a library dependency on libgbm.so from graphics/mesa-libs gl Add a library dependency on libGL.so from graphics/mesa-libs glesv2 Add a library dependency on libGLESv2.so from graphics/mesa-libs glew Add a library dependency on libGLEW.so from graphics/glew glu Add a library dependency on libGLU.so from graphics/libGLU glut Add a library dependency on libglut.so from graphics/freeglut glw Add a library dependency on libGLw.so from graphics/libGLw <literal>gmake</literal> Possible arguments: (none) Uses devel/gmake as a build-time dependency and sets up the environment to use gmake as the default make for the build. <literal>gnome</literal> Possible arguments: (none) Provides an easy way to depend on GNOME components. The components should be listed in USE_GNOME. The available components are: atk atkmm cairo cairomm dconf esound evolutiondataserver3 gconf2 gconfmm26 gdkpixbuf gdkpixbuf2 glib12 glib20 glibmm gnomecontrolcenter3 gnomedesktop3 gnomedocutils gnomemenus3 gnomemimedata gnomeprefix gnomesharp20 gnomevfs2 gsound gtk-update-icon-cache gtk12 gtk20 gtk30 gtkhtml3 gtkhtml4 gtkmm20 gtkmm24 gtkmm30 gtksharp20 gtksourceview gtksourceview2 gtksourceview3 gtksourceviewmm3 gvfs intlhack intltool introspection libartlgpl2 libbonobo libbonoboui libgda5 libgda5-ui libgdamm5 libglade2 libgnome libgnomecanvas libgnomekbd libgnomeprint libgnomeprintui libgnomeui libgsf libgtkhtml libgtksourceviewmm libidl librsvg2 libsigc++12 libsigc++20 libwnck libwnck3 libxml++26 libxml2 libxslt metacity nautilus3 orbit2 pango pangomm pangox-compat py3gobject3 pygnome2 pygobject pygobject3 pygtk2 pygtksourceview referencehack vte vte3 The default dependency is build- and run-time, it can be changed with :build or :run. For example: USES= gnome USE_GNOME= gnomemenus3:build intlhack See for more information. <literal>go</literal> Ports should not be created for Go libs, see for more information. Possible arguments: (none) Sets default values and targets used to build Go software. A build-time dependency on lang/go is added. The build process is controlled by several variables: GO_PKGNAME The name of the Go package. This is the directory that will be created in GOPATH/src. The default value is ${PORTNAME}. GO_TARGET The name of the packages to build. The default value is ${GO_PKGNAME}. CGO_CFLAGS Additional CFLAGS values to be passed to the C compiler by go. CGO_LDFLAGS Additional LDFLAGS values to be passed to the C compiler by go. <literal>gperf</literal> Possible arguments: (none) Add a buildtime dependency on devel/gperf if gperf is not present in the base system. <literal>grantlee</literal> Possible arguments: 4, 5, selfbuild Handle dependency on Grantlee. Specify 4 to depend on the Qt4 based version, devel/grantlee. Specify 5 to depend on the Qt5 based version, devel/grantlee5. selfbuild is used internally by devel/grantlee and devel/grantlee5 to get their versions numbers. <literal>groff</literal> Possible arguments: build, run, both Registers a dependency on textproc/groff if not present in the base system. <literal>gssapi</literal> Possible arguments: (none), base (default), heimdal, mit, flags, bootstrap Handle dependencies needed by consumers of the GSS-API. Only libraries that provide the Kerberos mechanism are available. By default, or set to base, the GSS-API library from the base system is used. Can also be set to heimdal to use security/heimdal, or mit to use security/krb5. When the local Kerberos installation is not in LOCALBASE, set HEIMDAL_HOME (for heimdal) or KRB5_HOME (for krb5) to the location of the Kerberos installation. These variables are exported for the ports to use: GSSAPIBASEDIR GSSAPICPPFLAGS GSSAPIINCDIR GSSAPILDFLAGS GSSAPILIBDIR GSSAPILIBS GSSAPI_CONFIGURE_ARGS The flags option can be given alongside base, heimdal, or mit to automatically add GSSAPICPPFLAGS, GSSAPILDFLAGS, and GSSAPILIBS to CFLAGS, LDFLAGS, and LDADD, respectively. For example, use base,flags. The bootstrap option is a special prefix only for use by security/krb5 and security/heimdal. For example, use bootstrap,mit. Typical Use OPTIONS_SINGLE= GSSAPI OPTIONS_SINGLE_GSSAPI= GSSAPI_BASE GSSAPI_HEIMDAL GSSAPI_MIT GSSAPI_NONE GSSAPI_BASE_USES= gssapi GSSAPI_BASE_CONFIGURE_ON= --with-gssapi=${GSSAPIBASEDIR} ${GSSAPI_CONFIGURE_ARGS} GSSAPI_HEIMDAL_USES= gssapi:heimdal GSSAPI_HEIMDAL_CONFIGURE_ON= --with-gssapi=${GSSAPIBASEDIR} ${GSSAPI_CONFIGURE_ARGS} GSSAPI_MIT_USES= gssapi:mit GSSAPI_MIT_CONFIGURE_ON= --with-gssapi=${GSSAPIBASEDIR} ${GSSAPI_CONFIGURE_ARGS} GSSAPI_NONE_CONFIGURE_ON= --without-gssapi <literal>horde</literal> Possible arguments: (none) Add buildtime and runtime dependencies on devel/pear-channel-horde. Other Horde dependencies can be added with USE_HORDE_BUILD and USE_HORDE_RUN. See for more information. <literal>iconv</literal> Possible arguments: (none), lib, build, patch, translit, wchar_t Uses iconv functions, either from the port converters/libiconv as a build-time and run-time dependency, or from the base system on 10-CURRENT after a native iconv was committed in 254273. By default, with no arguments or with the lib argument, implies iconv with build-time and run-time dependencies. build implies a build-time dependency, and patch implies a patch-time dependency. If the port uses the WCHAR_T or //TRANSLIT iconv extensions, add the relevant arguments so that the correct iconv is used. For more information see . <literal>imake</literal> Possible arguments: (none), env, notall, noman Add devel/imake as a build-time dependency and run xmkmf -a during the configure stage. If the env argument is given, the configure target is not set. If the flag is a problem for the port, add the notall argument. If xmkmf does not generate a install.man target, add the noman argument. <literal>kde</literal> Possible arguments: 4, 5 Add dependency on KDE components. See for more information. <literal>kmod</literal> Possible arguments: (none), debug Fills in the boilerplate for kernel module ports, currently: Add kld to CATEGORIES. Set SSP_UNSAFE. Set IGNORE if the kernel sources are not found in SRC_BASE. Define KMODDIR to /boot/modules by default, add it to PLIST_SUB and MAKE_ENV, and create it upon installation. If KMODDIR is set to /boot/kernel, it will be rewritten to /boot/modules. This prevents breaking packages when upgrading the kernel due to /boot/kernel being renamed to /boot/kernel.old in the process. Handle cross-referencing kernel modules upon installation and deinstallation, using @kld. If the debug argument is given, the port can install a debug version of the module into KERN_DEBUGDIR/KMODDIR. By default, KERN_DEBUGDIR is copied from DEBUGDIR and set to /usr/lib/debug. The framework will take care of creating and removing any required directories. <literal>lha</literal> Possible arguments: (none) Set EXTRACT_SUFX to .lzh <literal>libarchive</literal> Possible arguments: (none) Registers a dependency on archivers/libarchive. Any ports depending on libarchive must include USES=libarchive. <literal>libedit</literal> Possible arguments: (none) Registers a dependency on devel/libedit. Any ports depending on libedit must include USES=libedit. <literal>libtool</literal> Possible arguments: (none), keepla, build Patches libtool scripts. This must be added to all ports that use libtool. The keepla argument can be used to keep .la files. Some ports do not ship with their own copy of libtool and need a build time dependency on devel/libtool, use the :build argument to add such dependency. <literal>linux</literal> Possible arguments: c6, c7 Ports Linux compatibility framework. Specify c6 to depend on CentOS 6 packags. Specify c7 to depend on CentOS 7 packages. The available packages are: allegro alsa-plugins-oss alsa-plugins-pulseaudio alsalib atk avahi-libs base cairo cups-libs curl cyrus-sasl2 dbusglib dbuslibs devtools dri expat flac fontconfig gdkpixbuf2 gnutls graphite2 gtk2 harfbuzz jasper jbigkit jpeg libasyncns libaudiofile libelf libgcrypt libgfortran libgpg-error libmng libogg libpciaccess libsndfile libsoup libssh2 libtasn1 libthai libtheora libv4l libvorbis libxml2 mikmod naslibs ncurses-base nspr nss openal openal-soft openldap openmotif openssl pango pixman png pulseaudio-libs qt qt-x11 qtwebkit scimlibs sdl12 sdlimage sdlmixer sqlite3 tcl85 tcp_wrappers-libs tiff tk85 ucl xorglibs <literal>localbase</literal> Possible arguments: (none), ldflags Ensures that libraries from dependencies in LOCALBASE are used instead of the ones from the base system. Specify ldflags to add -L${LOCALBASE}/lib to LDFLAGS instead of LIBS. Ports that depend on libraries that are also present in the base system should use this. It is also used internally by a few other USES. <literal>lua</literal> Possible arguments: (none), XY+, XY, build, run Adds a dependency on Lua. By default this is a library dependency, unless overridden by the build or run option. The default version is 5.2, unless set by the XY parameter (for example, 51 or 52+). <literal>lxqt</literal> Possible arguments: (none) Handle dependencies for the LXQt Desktop Environment. Use USE_LXQT to select the components needed for the port. See for more information. <literal>makeinfo</literal> Possible arguments: (none) Add a build-time dependency on makeinfo if it is not present in the base system. <literal>makeself</literal> Possible arguments: (none) Indicates that the distribution files are makeself archives and sets the appropriate dependencies. <literal>mate</literal> Possible arguments: (none) Provides an easy way to depend on MATE components. The components should be listed in USE_MATE. The available components are: autogen caja common controlcenter desktop dialogs docutils icontheme intlhack intltool libmatekbd libmateweather marco menus notificationdaemon panel pluma polkit session settingsdaemon The default dependency is build- and run-time, it can be changed with :build or :run. For example: USES= mate USE_MATE= menus:build intlhack <literal>meson</literal> Possible arguments: (none) - Provide support for Meson based projects. + Provide support for Meson based projects. For more + information see . <literal>metaport</literal> Possible arguments: (none) Sets the following variables to make it easier to create a metaport: MASTER_SITES, DISTFILES, EXTRACT_ONLY, NO_BUILD, NO_INSTALL, NO_MTREE, NO_ARCH. <literal>mysql</literal> Possible arguments: (none), version, client (default), server, embedded Provide support for MySQL. If no version is given, try to find the current installed version. Fall back to the default version, MySQL-5.6. The possible versions are 55, 55m, 55p, 56, 56p, 56w, 57, 57p, 80, 100m, 101m, and 102m. The m and p suffixes are for the MariaDB and Percona variants of MySQL. server and embedded add a build- and run-time dependency on the MySQL server. When using server or embedded, add client to also add a dependency on libmysqlclient.so. A port can set IGNORE_WITH_MYSQL if some versions are not supported. The framework sets MYSQL_VER to the detected MySQL version. <literal>mono</literal> Possible arguments: (none), nuget Adds a dependency on the Mono (currently only C#) framework by setting the appropriate dependencies. Specify nuget when the port uses nuget packages. NUGET_DEPENDS needs to be set with the names and versions of the nuget packages in the format name=version. An optional package origin can be added using name=version:origin. The helper target, buildnuget, will output the content of the NUGET_DEPENDS based on the provided packages.config. <literal>motif</literal> Possible arguments: (none) Uses x11-toolkits/open-motif as a library dependency. End users can set WANT_LESSTIF for the dependency to be on x11-toolkits/lesstif instead of x11-toolkits/open-motif. <literal>ncurses</literal> Possible arguments: (none), base, port Uses ncurses, and causes some useful variables to be set. <literal>ninja</literal> Possible arguments: (none) Uses ninja to build the port. <literal>objc</literal> Possible arguments: (none) Add objective C dependencies (compiler, runtime library) if the base system does not support it. <literal>openal</literal> Possible arguments: al, soft (default), si, alut Uses OpenAL. The backend can be specified, with the software implementation as the default. The user can specify a preferred backend with WANT_OPENAL. Valid values for this knob are soft (default) and si. <literal>pathfix</literal> Possible arguments: (none) Look for Makefile.in and configure in PATHFIX_WRKSRC (defaults to WRKSRC) and fix common paths to make sure they respect the &os; hierarchy. For example, it fixes the installation directory of pkgconfig's .pc files to ${PREFIX}/libdata/pkgconfig. If the port uses USES=autoreconf, Makefile.am will be added to PATHFIX_MAKEFILEIN automatically. If the port USES=cmake it will look for CMakeLists.txt in PATHFIX_WRKSRC. If needed, that default filename can be changed with PATHFIX_CMAKELISTSTXT. <literal>pear</literal> Possible arguments: env Adds a dependency on devel/pear. It will setup default behavior for software using the PHP Extension and Application Repository. Using the env arguments only sets up the PEAR environment variables. See for more information. <literal>perl5</literal> Possible arguments: (none) Depends on Perl. The configuration is done using USE_PERL5. USE_PERL5 can contain the phases in which to use Perl, can be extract, patch, build, run, or test. USE_PERL5 can also contain configure, modbuild, or modbuildtiny when Makefile.PL, Build.PL, or Module::Build::Tiny's flavor of Build.PL is required. USE_PERL5 defaults to build run. When using configure, modbuild, or modbuildtiny, build and run are implied. See for more information. <literal>pgsql</literal> Possible arguments: (none), X.Y, X.Y+, X.Y- Provide support for PostgreSQL. Maintainer can set version required. Minimum and maximum versions can be specified; for example, 9.0-, 8.4+. Add PostgreSQL component dependency, using WANT_PGSQL=component[:target]. for example, WANT_PGSQL=server:configure pltcl plperl. The available components are: client contrib docs pgtcl plperl plpython pltcl server <literal>php</literal> Possible arguments: (none), phpize, ext, zend, build, cli, cgi, mod, web, embed, pecl, flavors, noflavors Provide support for PHP. Add a runtime dependency on the default PHP version, lang/php56. phpize Use to build a PHP extension. Enables flavors. ext Use to build, install and register a PHP extension. Enables flavors. zend Use to build, install and register a Zend extension. Enables flavors. build Set PHP also as a build-time dependency. cli Needs the CLI version of PHP. cgi Needs the CGI version of PHP. mod Needs the Apache module for PHP. web Needs the Apache module or the CGI version of PHP. embed Needs the embedded library version of PHP. pecl Provide defaults for fetching PHP extensions from the PECL repository. Enables flavors. flavors Enable automatic PHP flavors generation. Flavors will be generated for all PHP versions, except the ones present in IGNORE_WITH_PHP. noflavors Disable automatic PHP flavors generation. Must only be used with extensions provided by PHP itself. Variables are used to specify which PHP modules are required, as well as which version of PHP are supported. USE_PHP The list of required PHP extensions at run-time. Add :build to the extension name to add a build-time dependency. Example: pcre xml:build gettext IGNORE_WITH_PHP The port does not work with PHP of the given version. For possible values look at the content of _ALL_PHP_VERSIONS in Mk/Uses/php.mk. When building a PHP or Zend extension with :ext or :zend, these variables can be set: PHP_MODNAME The name of the PHP or Zend extension. Default value is ${PORTNAME}. PHP_HEADER_DIRS A list of subdirectories from which to install header files. The framework will always install the header files that are present in the same directory as the extension. PHP_MOD_PRIO The priority at which to load the extension. It is a number between 00 and 99. For extensions that do not depend on any extension, the priority is automatically set to 20, for extensions that depend on another extension, the priority is automatically set to 30. Some extensions may need to be loaded before every other extension, for example www/php56-opcache. Some may need to be loaded after an extension with a priority of 30. In that case, add PHP_MOD_PRIO=XX in the port's Makefile. For example: USES= php:ext USE_PHP= wddx PHP_MOD_PRIO= 40 These variables are available to use in PKGNAMEPREFIX or PKGNAMESUFFIX: PHP_PKGNAMEPREFIX Contains phpXY- where XY is the current flavor's PHP version. Use with PHP extensions and modules. PHP_PKGNAMESUFFIX Contains -phpXY where XY is the current flavor's PHP version. Use with PHP applications. PECL_PKGNAMEPREFIX Contains phpXY-pecl- where XY is the current flavor's PHP version. Use with PECL modules. With flavors, all PHP extensions, PECL extensions, PEAR modules must have a different package name, so they must all use one of these three variables in their PKGNAMEPREFIX or PKGNAMESUFFIX. <literal>pkgconfig</literal> Possible arguments: (none), build (default), run, both Uses devel/pkgconf. With no arguments or with the build argument, it implies pkg-config as a build-time dependency. run implies a run-time dependency and both implies both run-time and build-time dependencies. <literal>pure</literal> Possible arguments: (none), ffi Uses lang/pure. Largely used for building related pure ports. With the ffi argument, it implies devel/pure-ffi as a run-time dependency. <literal>pyqt</literal> Possible arguments: (none), 4, 5 Uses PyQt. If the port is part of PyQT itself, set PYQT_DIST. Use USE_PYQT to select the components the port needs. The available components are: core dbus dbussupport demo designer designerplugin doc gui multimedia network opengl qscintilla2 sip sql svg test webkit xml xmlpatterns These components are only available with PyQT4: assistant declarative help phonon script scripttools These components are only available with PyQT5: multimediawidgets printsupport qml serialport webkitwidgets widgets The default dependency for each component is build- and run-time, to select only build or run, add _build or _run to the component name. For example: USES= pyqt USE_PYQT= core doc_build designer_run <literal>python</literal> Possible arguments: (none), X.Y, X.Y+, -X.Y, X.Y-Z.A, patch, build, run, test Uses Python. A supported version or version range can be specified. If Python is only needed at build time, run time or for the tests, it can be set as a build, run or test dependency with build, run, or test. If Python is also needed during the patch phase, use patch. See for more information. PYTHON_NO_DEPENDS=yes can be used when the variables exported by the framework are needed but a dependency on Python is not. It can happen when using with USES=shebangfix, and the goal is only to fix the shebangs but not add a dependency on Python. <literal>qmail</literal> Possible arguments: (none), build, run, both, vars Uses mail/qmail. With the build argument, it implies qmail as a build-time dependency. run implies a run-time dependency. Using no argument or the both argument implies both run-time and build-time dependencies. vars will only set QMAIL variables for the port to use. <literal>qmake</literal> Possible arguments: (none), norecursive, outsource, no_env, no_configure Uses QMake for configuring. For more information see . <literal>qt</literal> Possible arguments: 4, 5, no_env Add dependency on Qt components. no_env is passed directly to USES= qmake. See for more information. <literal>readline</literal> Possible arguments: (none), port Uses readline as a library dependency, and sets CPPFLAGS and LDFLAGS as necessary. If the port argument is used or if readline is not present in the base system, add a dependency on devel/readline <literal>samba</literal> Possible arguments: build, env, lib, run Handle dependency on Samba. env will not add any dependency and only set up the variables. build and run will add build-time and run-time dependency on smbd. lib will add a dependency on libsmbclient.so. The variables that are exported are: SAMBAPORT The origin of the default Samba port. SAMBAINCLUDES The location of the Samba header files. SAMBALIBS The directory where the Samba shared libraries are available. <literal>scons</literal> Possible arguments: (none) Provide support for the use of devel/scons. See for more information. <literal>shared-mime-info</literal> Possible arguments: (none) Uses update-mime-database from misc/shared-mime-info. This uses will automatically add a post-install step in such a way that the port itself still can specify there own post-install step if needed. It also add an @shared-mime-info entry to the plist. <literal>shebangfix</literal> Possible arguments: (none) A lot of software uses incorrect locations for script interpreters, most notably /usr/bin/perl and /bin/bash. The shebangfix macro fixes shebang lines in scripts listed in SHEBANG_REGEX, SHEBANG_GLOB, or SHEBANG_FILES. SHEBANG_REGEX Contains one extended regular expressions, and is used with the -iregex argument of &man.find.1;. See . SHEBANG_GLOB Contains a list of patterns used with the -name argument of &man.find.1;. See . SHEBANG_FILES Contains a list of files or &man.sh.1; globs. The shebangfix macro is run from ${WRKSRC}, so SHEBANG_FILES can contain paths that are relative to ${WRKSRC}. It can also deal with absolute paths if files outside of ${WRKSRC} require patching. See . Currently Bash, Java, Ksh, Lua, Perl, PHP, Python, Ruby, Tcl, and Tk are supported by default. There are three configuration variables: SHEBANG_LANG The list of supported interpreters. interp_CMD The path to the command interpreter on &os;. The default value is ${LOCALBASE}/bin/interp. interp_OLD_CMD The list of wrong invocations of interpreters. These are typically obsolete paths, or paths used on other operating systems that are incorrect on &os;. They will be replaced by the correct path in interp_CMD. These will always be part of interp_OLD_CMD: "/usr/bin/env interp" /bin/interp /usr/bin/interp /usr/local/bin/interp. interp_OLD_CMD contain multiple values. Any entry with spaces must be quoted. See . The fixing of shebangs is done during the patch phase. If scripts are created with incorrect shebangs during the build phase, the build process (for example, the configure script, or the Makefiles) must be patched or given the right path (for example, with CONFIGURE_ENV, CONFIGURE_ARGS, MAKE_ENV, or MAKE_ARGS) to generate the right shebangs. Correct paths for supported interpreters are available in interp_CMD. When used with USES=python, and the aim is only to fix the shebangs but a dependency on Python itself is not wanted, use PYTHON_NO_DEPENDS=yes. Adding Another Interpreter to <literal>USES=shebangfix</literal> To add another interpreter, set SHEBANG_LANG. For example: SHEBANG_LANG= lua Specifying all the Paths When Adding an Interpreter to <literal>USES=shebangfix</literal> If it was not already defined, and there were no default values for interp_OLD_CMD and interp_CMD the Ksh entry could be defined as: SHEBANG_LANG= ksh ksh_OLD_CMD= "/usr/bin/env ksh" /bin/ksh /usr/bin/ksh ksh_CMD= ${LOCALBASE}/bin/ksh Adding a Strange Location for an Interpreter Some software uses strange locations for an interpreter. For example, an application might expect Python to be located in /opt/bin/python2.7. The strange path to be replaced can be declared in the port Makefile: python_OLD_CMD= /opt/bin/python2.7 <literal>USES=shebangfix</literal> with <varname>SHEBANG_REGEX</varname> To fix all the files in ${WRKSRC}/scripts ending in .pl, .sh, or .cgi do: USES= shebangfix SHEBANG_REGEX= ./scripts/.*\.(sh|pl|cgi) SHEBANG_REGEX is used by running find -E, which uses modern regular expressions also known as extended regular expressions. See &man.re.format.7; for more information. <literal>USES=shebangfix</literal> with <varname>SHEBANG_GLOB</varname> To fix all the files in ${WRKSRC} ending in .pl or .sh, do: USES= shebangfix SHEBANG_GLOB= *.sh *.pl <literal>USES=shebangfix</literal> with <varname>SHEBANG_FILES</varname> To fix the files script/foobar.pl and script/*.sh in ${WRKSRC}, do: USES= shebangfix SHEBANG_FILES= scripts/foobar.pl scripts/*.sh <literal>sqlite</literal> Possible arguments: (none), 2, 3 Add a dependency on SQLite. The default version used is 3, but version 2 is also possible using the :2 modifier. <literal>ssl</literal> Possible arguments: (none), build, run Provide support for OpenSSL. A build- or run-time only dependency can be specified using build or run. These variables are available for the port's use, they are also added to MAKE_ENV: OPENSSLBASE Path to the OpenSSL installation base. OPENSSLDIR Path to OpenSSL's configuration files. OPENSSLLIB Path to the OpenSSL libraries. OPENSSLINC Path to the OpenSSL includes. OPENSSLRPATH If defined, the path the linker needs to use to find the OpenSSL libraries. If a port does not build with an OpenSSL flavor, set the BROKEN_SSL variable, and possibly the BROKEN_SSL_REASON_flavor: BROKEN_SSL= libressl BROKEN_SSL_REASON_libressl= needs features only available in OpenSSL <literal>tar</literal> Possible arguments: (none), Z, bz2, bzip2, lzma, tbz, tbz2, tgz, txz, xz Set EXTRACT_SUFX to .tar, .tar.Z, .tar.bz2, .tar.bz2, .tar.lzma, .tbz, .tbz2, .tgz, .txz or .tar.xz respectively. <literal>tcl</literal> Possible arguments: version, wrapper, build, run, tea Add a dependency on Tcl. A specific version can be requested using version. The version can be empty, one or more exact version numbers (currently 84, 85, or 86), or a minimal version number (currently 84+, 85+ or 86+). To only request a non version specific wrapper, use wrapper. A build- or run-time only dependency can be specified using build or run. To build the port using the Tcl Extension Architecture, use tea. After including bsd.port.pre.mk the port can inspect the results using these variables: TCL_VER: chosen major.minor version of Tcl TCLSH: full path of the Tcl interpreter TCL_LIBDIR: path of the Tcl libraries TCL_INCLUDEDIR: path of the Tcl C header files TK_VER: chosen major.minor version of Tk WISH: full path of the Tk interpreter TK_LIBDIR: path of the Tk libraries TK_INCLUDEDIR: path of the Tk C header files <literal>terminfo</literal> Possible arguments: (none) Adds @terminfo to the plist. Use when the port installs *.terminfo files in ${PREFIX}/share/misc. <literal>tk</literal> Same as arguments for tcl Small wrapper when using both Tcl and Tk. The same variables are returned as when using Tcl. <literal>uidfix</literal> Possible arguments: (none) Changes some default behavior (mostly variables) of the build system to allow installing this port as a normal user. Try this in the port before using USES=fakeroot or patching. <literal>uniquefiles</literal> Possible arguments: (none), dirs Make files or directories 'unique', by adding a prefix or suffix. If the dirs argument is used, the port needs a prefix (and only a prefix) based on UNIQUE_PREFIX for standard directories DOCSDIR, EXAMPLESDIR, DATADIR, WWWDIR, ETCDIR. These variables are available for ports: UNIQUE_PREFIX: The prefix to be used for directories and files. Default: ${PKGNAMEPREFIX}. UNIQUE_PREFIX_FILES: A list of files that need to be prefixed. Default: empty. UNIQUE_SUFFIX: The suffix to be used for files. Default: ${PKGNAMESUFFIX}. UNIQUE_SUFFIX_FILES: A list of files that need to be suffixed. Default: empty. <literal>varnish</literal> Possible arguments: 4, 5 Handle dependencies on Varnish Cache. 4 will add a dependency on www/varnish4. 5 will add a dependency on www/varnish5. <literal>webplugin</literal> Possible arguments: (none), ARGS Automatically create and remove symbolic links for each application that supports the webplugin framework. ARGS can be one of: gecko: support plug-ins based on Gecko native: support plug-ins for Gecko, Opera, and WebKit-GTK linux: support Linux plug-ins all (default, implicit): support all plug-in types (individual entries): support only the browsers listed These variables can be adjusted: WEBPLUGIN_FILES: No default, must be set manually. The plug-in files to install. WEBPLUGIN_DIR: The directory to install the plug-in files to, default PREFIX/lib/browser_plugins/WEBPLUGIN_NAME. Set this if the port installs plug-in files outside of the default directory to prevent broken symbolic links. WEBPLUGIN_NAME: The final directory to install the plug-in files into, default PKGBASE. <literal>xfce</literal> Possible arguments: (none), gtk3 Provide support for Xfce related ports. See for details. The gtk3 argument specifies that the port requires GTK3 support. It adds additional features provided by some core components, for example, x11/libxfce4menu and x11-wm/xfce4-panel. <literal>zip</literal> Possible arguments: (none), infozip Indicates that the distribution files use the ZIP compression algorithm. For files using the InfoZip algorithm the infozip argument must be passed to set the appropriate dependencies. <literal>zope</literal> Possible arguments: (none) Uses www/zopeXY. Mostly used for building zope related ports. ZOPE_VERSION can be used by a port to indicate that a specific version of zope shall be used.