Index: head/de_DE.ISO8859-1/books/handbook/book.xml =================================================================== --- head/de_DE.ISO8859-1/books/handbook/book.xml (revision 50863) +++ head/de_DE.ISO8859-1/books/handbook/book.xml (revision 50864) @@ -1,320 +1,320 @@ %chapters; %txtfiles; ]> &os; Handbuch The FreeBSD German Documentation Project - $FreeBSD$ + $FreeBSD$ - $FreeBSD$ + $FreeBSD$ 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 The FreeBSD German Documentation Project &legalnotice; &tm-attrib.freebsd; &tm-attrib.3com; &tm-attrib.3ware; &tm-attrib.arm; &tm-attrib.adaptec; &tm-attrib.adobe; &tm-attrib.apple; &tm-attrib.corel; &tm-attrib.google; &tm-attrib.heidelberger; &tm-attrib.ibm; &tm-attrib.ieee; &tm-attrib.intel; &tm-attrib.intuit; &tm-attrib.linux; &tm-attrib.lsilogic; &tm-attrib.microsoft; &tm-attrib.opengroup; &tm-attrib.oracle; &tm-attrib.powerquest; &tm-attrib.realnetworks; &tm-attrib.redhat; &tm-attrib.sun; &tm-attrib.symantec; &tm-attrib.themathworks; &tm-attrib.thomson; &tm-attrib.vmware; &tm-attrib.wolframresearch; &tm-attrib.xfree86; &tm-attrib.xiph; &tm-attrib.general; Willkommen bei &os;! Dieses Handbuch beschreibt die Installation und den täglichen Umgang mit &os; &rel.current;-RELEASE und &os; &rel2.current;-RELEASE und &os; &rel3.current;-RELEASE. Das Handbuch ist das Ergebnis einer fortlaufenden Arbeit vieler Einzelpersonen. Dies kann dazu führen, dass einige Abschnitte nicht aktuell sind. Bei Unklarheiten empfiehlt es sich daher stets, die englische Originalversion des Handbuchs zu lesen. Wenn Sie bei der Übersetzung des Handbuchs mithelfen möchten, senden Sie bitte eine E-Mail an die Mailingliste &a.de.translators;. Die aktuelle Version des Handbuchs ist immer auf dem &os;-Webserver verfügbar und kann in verschiedenen Formaten und in komprimierter Form vom &os; FTP-Server oder einem der vielen Spiegel herunter geladen werden (ältere Versionen finden Sie hingegen unter https://docs.FreeBSD.org/doc/). Vielleicht möchten Sie das Handbuch aber auch durchsuchen. &chap.preface; Erste Schritte Dieser Teil des Handbuchs richtet sich an Benutzer und Administratoren für die &os; neu ist. Diese Kapitel enthalten eine Einführung in &os;, geleitet den Leser durch den Installationsprozess, erklärt die Grundlagen von &unix; Systemen, demonstriert, wie die Fülle der erhältlichen Anwendungen Dritter installiert werden und führt den Leser in X, der Benutzeroberfläche von &unix; Systemen ein. Es wird gezeigt, wie ein Desktop konfiguriert wird, um effektiver arbeiten zu können. Referenzen auf weiter vorne liegende Textteile wurden auf ein Minimum beschränkt, so dass dieser Abschnitt ohne viel Blättern durchgearbeitet werden kann. &chap.introduction; &chap.bsdinstall; &chap.basics; &chap.ports; &chap.x11; Oft benutzte Funktionen Nach den Grundlagen beschäftigt sich das Handbuch mit oft benutzten Funktionen von &os;. Die Kapitel behandeln die nachstehenden Themen: Beliebte und nützliche Werkzeuge wie Browser, Büroanwendungen und Programme zum Anzeigen von Dokumenten. Multimedia-Werkzeuge für &os;. Erstellung eines angepassten &os;-Kernels, um zusätzliche Funktionen zu aktivieren. Ausführliche Beschreibung des Drucksystems, sowohl für direkt angeschlossene Drucker als auch für Netzwerkdrucker. Ausführung von Linux-Anwendungen auf einem &os;-System. Damit Sie einige Kapitel verstehen, sollten Sie vorher andere Kapitel gelesen haben. Die Übersicht zu jedem Kapitel zählt die Voraussetzungen für das erolgreiche Durcharbeiten des Kapitels auf. &chap.desktop; &chap.multimedia; &chap.kernelconfig; &chap.printing; &chap.linuxemu; Systemadministration Die restlichen Kapitel behandeln alle Aspekte der &os; Systemadministration. Am Anfang jedes Kapitels finden Sie eine Zusammenfassung, die beschreibt, was Sie nach dem Durcharbeiten des Kapitels gelernt haben. Weiterhin werden die Voraussetzungen beschrieben, die für das Durcharbeiten des Kapitels erforderlich sind. Diese Kapitel sollten Sie lesen, wenn Sie die Informationen darin benötigen. Sie brauchen Sie nicht in einer bestimmten Reihenfolge zu lesen, noch müssen Sie die Kapitel lesen, bevor Sie anfangen, &os; zu benutzen. &chap.config; &chap.boot; &chap.security; &chap.jails; &chap.mac; &chap.audit; &chap.disks; &chap.geom; &chap.zfs; &chap.filesystems; &chap.virtualization; &chap.l10n; &chap.cutting-edge; &chap.dtrace; Netzwerke &os; ist eins der meist benutzten Betriebssysteme für leistungsfähige Netzwerkserver. Die Kapitel in diesem Teil behandeln die nachstehenden Themen: Serielle Datenübertragung PPP und PPP over Ethernet Elektronische Post (E-Mail) Den Betrieb von Netzwerkdiensten Firewalls Weiterführende Netzwerkthemen Diese Kapitel sollten Sie lesen, wenn Sie die Informationen darin benötigen. Sie brauchen die Kapitel nicht in einer bestimmten Reihenfolge zu lesen, noch müssen Sie die Kapitel lesen, bevor Sie anfangen, &os; in einer Netzwerkumgebung zu benutzen. &chap.serialcomms; &chap.ppp-and-slip; &chap.mail; &chap.network-servers; &chap.firewalls; &chap.advanced-networking; Anhang &chap.mirrors; &chap.bibliography; &chap.eresources; &chap.pgpkeys; &chap.freebsd-glossary; &chap.index; &chap.colophon; Index: head/de_DE.ISO8859-1/books/handbook/config/chapter.xml =================================================================== --- head/de_DE.ISO8859-1/books/handbook/config/chapter.xml (revision 50863) +++ head/de_DE.ISO8859-1/books/handbook/config/chapter.xml (revision 50864) @@ -1,3833 +1,3833 @@ Konfiguration und Tuning Chern Lee Geschrieben von Mike Smith Nach einem Tutorium von Matt Dillon Basiert ebenfalls auf tuning(7) von Martin Heinen Übersetzt von Übersicht System-Konfiguration System-Optimierung Die richtige Systemkonfiguration ist einer der wichtigsten Aspekte unter &os;. Dieses Kapitel beschreibt die Konfiguration von &os; sowie Maßnahmen zur Leistungssteigerung von &os;-Systemen. Nachdem Sie dieses Kapitel durchgearbeitet haben, werden Sie Folgendes wissen: Die Grundlagen der Konfiguration von rc.conf und die Skripte zum Starten von Anwendungen in /usr/local/etc/rc.d. Wie Sie Netzwerkkarten konfigurieren und testen. Wie Sie virtuelle Hosts und Netzwerkgeräte konfigurieren. Wie Sie die verschiedenen Konfigurationsdateien in /etc benutzen. Wie Sie mit &os; mit &man.sysctl.8;-Variablen einstellen können. Wie Sie die Platten-Performance einstellen und Kernel-Parameter modifizieren können. Bevor Sie dieses Kapitel lesen, sollten Sie die Grundlagen von &unix; und &os; () verstehen. Damit vertraut sein, wie Sie einen Kernel konfigurieren und kompilieren (). Start von Diensten Tom Rhodes Beigetragen von Dienste Viele Benutzer installieren Software Dritter auf &os; mithilfe der Ports-Sammlung. Häufig soll die Software bei einem Systemstart mitgestartet werden. Beispielsweise sollen die Dienste mail/postfix oder www/apache22 nach einem Systemstart laufen. Dieser Abschnitt stellt die Startprozeduren für Software Dritter vor. Unter &os; werden die meisten der im System enthaltenen Dienste wie &man.cron.8; mithilfe von Systemskripten gestartet. Dienste über das <filename>rc.d</filename>-System starten Mit rc.d lässt sich der Start von Anwendungen besser steuern und es sind mehr Funktionen verfügbar. Mit den in besprochenen Schlüsselwörtern können Anwendungen in einer bestimmten Reihenfolge gestartet werden und Optionen können in rc.conf statt fest im Startskript der Anwendung festgelegt werden. Ein einfaches Startskript sieht wie folgt aus: #!/bin/sh # # PROVIDE: utility # REQUIRE: DAEMON # KEYWORD: shutdown . /etc/rc.subr name=utility rcvar=utility_enable command="/usr/local/sbin/utility" load_rc_config $name # # DO NOT CHANGE THESE DEFAULT VALUES HERE # SET THEM IN THE /etc/rc.conf FILE # utility_enable=${utility_enable-"NO"} pidfile=${utility_pidfile-"/var/run/utility.pid"} run_rc_command "$1" Dieses Skript stellt sicher, dass utility nach den DAEMON-Pseudodiensten gestartet wird. Es stellt auch eine Methode bereit, die Prozess-ID (PID) der Anwendung in einer Datei zu speichern. In /etc/rc.conf könnte für diese Anwendung die folgende Zeile stehen: utility_enable="YES" Die Methode erleichtert den Umgang mit Kommandozeilenargumenten, bindet Funktionen aus /etc/rc.subr ein, ist kompatibel zu &man.rcorder.8; und lässt sich über rc.conf leichter konfigurieren. Andere Arten, um Dienste zu starten Andere Dienste können über &man.inetd.8; gestartet werden. Die Konfiguration von &man.inetd.8; wird in ausführlich beschrieben. Systemdienste können auch mit &man.cron.8; gestartet werden. Dieser Ansatz hat einige Vorteile; nicht zuletzt, weil &man.cron.8; die Prozesse unter dem Eigentümer der crontab startet, ist es möglich, dass Dienste von normalen Benutzern gestartet und gepflegt werden können. Für die Zeitangabe in &man.cron.8; kann @reboot eingesetzt werden. Damit wird das Kommando gestartet, wenn &man.cron.8; kurz nach dem Systemboot gestartet wird. &man.cron.8; konfigurieren Tom Rhodes Beigetragen von cron konfigurieren Ein sehr nützliches Werkzeug von &os; ist cron. Dieses Programm läuft im Hintergrund und überprüft fortlaufend /etc/crontab und /var/cron/tabs. In diesen Dateien wird festgelegt, welche Programme zu welchem Zeitpunkt von cron ausgeführt werden sollen. Jede Zeile in diesen Dateien definiert eine auszuführende Aufgabe, die auch als Cronjob bezeichnet wird. Das Werkzeug verwendet zwei verschiedene Konfigurationsdateien: die System-crontab, welche nicht verändert werden sollte und die Benutzer-crontabs, die nach Bedarf erstellt und geändert werden können. Das Format, dass von diesen beiden Dateien verwendet wird, ist in &man.crontab.5; dokumentiert. Das Format der System-crontab in /etc/crontab enthält das Feld who, das in der Benutzer-crontab nicht existiert. Dieses Feld gibt den Benutzer an, mit dem die Aufgabe ausgeführt wird. Die Aufgaben in den Benutzer-crontabs laufen unter dem Benutzer, der die crontab erstellt hat. Benutzer-crontabs erlauben es den Benutzern, ihre eigenen Aufgaben zu planen. Der Benutzer root kann auch seine eigene Benutzer-crontab haben, um Aufgaben zu planen, die nicht in der System-crontab existieren. Hier ist ein Beispieleintrag aus der System-crontab, /etc/crontab: - # /etc/crontab - root's crontab for FreeBSD + # /etc/crontab - root's crontab for FreeBSD # #$FreeBSD$ # SHELL=/bin/sh PATH=/etc:/bin:/sbin:/usr/bin:/usr/sbin # # #minute hour mday month wday who command # */5 * * * * root /usr/libexec/atrun Das Zeichen # am Zeilenanfang leitet einen Kommentar ein. Benutzen Sie Kommentare, um die Funktion eines Eintrags zu erläutern. Kommentare müssen in einer extra Zeile stehen. Sie können nicht in derselben Zeile wie ein Kommando stehen, da sie sonst Teil des Kommandos wären. Leerzeilen in dieser Datei werden ignoriert. Umgebungsvariablen werden mit dem Gleichheits-Zeichen (=) festgelegt. Im Beispiel werden die Variablen SHELL, PATH und HOME definiert. Wenn die Variable SHELL nicht definiert wird, benutzt cron die Bourne Shell. Wird die Variable PATH nicht gesetzt, müssen alle Pfadangaben absolut sein, da es keinen Vorgabewert für PATH gibt. In dieser Zeile werden sieben Felder der System-crontab beschrieben: minute, hour, mday, month, wday, who und command. Das Feld minute legt die Minute fest in der die Aufgabe ausgeführt wird, das Feld hour die Stunde, das Feld mday den Tag des Monats. Im Feld month wird der Monat und im Feld wday der Wochentag festgelegt. Alle Felder müssen numerische Werte enthalten und die Zeitangaben sind im 24-Stunden-Format. Das Zeichen * repräsentiert dabei alle möglichen Werte für dieses Feld. Das Feld who gibt es nur in der System-crontab und gibt den Account an, unter dem das Kommando laufen soll. Im letzten Feld wird schließlich das auszuführende Kommando angegeben. Diese Zeile definiert die Werte für den Cronjob. Die Zeichenfolge */5 gefolgt von mehreren *-Zeichen bedeutet, dass /usr/libexec/atrun von root alle fünf Minuten aufgerufen wird. Bei den Kommandos können beliebig viele Optionen angegeben werden. Wenn das Kommando zu lang ist und auf der nächsten Zeile fortgesetzt werden soll, muss am Ende der Zeile das Fortsetzungszeichen (\) angegeben werden. Eine Benutzer-crontab erstellen Rufen Sie crontab im Editor-Modus auf, um eine Benutzer-crontab zu erstellen: &prompt.user; crontab -e Dies wird die crontab des Benutzers mit dem voreingestellten Editor öffnen. Wenn der Benutzer diesen Befehl zum ersten Mal ausführt, wird eine leere Datei geöffnet. Nachdem der Benutzer eine crontab erstellt hat, wird die Datei mit diesem Kommando zur Bearbeitung geöffnet. Es empfiehlt sich, die folgenden Zeilen an den Anfang der crontab-Datei hinzuzufügen, um die Umgebungsvariablen zu setzen und die einzelnen Felder zu beschreiben: SHELL=/bin/sh PATH=/etc:/bin:/sbin:/usr/bin:/usr/sbin # Order of crontab fields # minute hour mday month wday command Fügen Sie dann für jedes Kommando oder Skript eine Zeile hinzu, mit der Angabe wann das Kommando ausgeführt werden soll. In diesem Beispiel wird ein Bourne Shell Skript täglich um 14:00 Uhr ausgeführt. Da der Pfad zum Skript nicht in PATH enthalten ist, wird der vollständige Pfad zum Skript angegeben: 0 14 * * * /usr/home/dru/bin/mycustomscript.sh Bevor Sie ein eigenes Skript verwenden, stellen Sie sicher, dass es ausführbar ist und dass es mit den wenigen Umgebungsvariablen von cron funktioniert. Um die Umgebung nachzubilden, die der obige cron-Eintrag bei der Ausführung verwenden würde, benutzen Sie dieses Kommando: &prompt.user; env -i SHELL=/bin/sh PATH=/etc:/bin:/sbin:/usr/bin:/usr/sbin HOME=/home/dru LOGNAME=dru /usr/home/dru/bin/mycustomscript.sh Die Umgebung von cron wird in &man.crontab.5; beschrieben. Es ist wichtig, dass sichergestellt wird, dass die Skripte in der Umgebung von cron korrekt arbeiten, besonders wenn Befehle enthalten sind, welche Dateien mit Wildcards löschen. Wenn Sie mit der Bearbeitung der crontab fertig sind, speichern Sie die Datei. Sie wird automatisch installiert und cron wird die darin enthalten Cronjobs zu den angegebenen Zeiten ausführen. Um die Cronjobs in einer crontab aufzulisten, verwenden Sie diesen Befehl: &prompt.user; crontab -l 0 14 * * * /usr/home/dru/bin/mycustomscript.sh Um alle Cronjobs einer Benutzer-crontab zu löschen, verwenden Sie diesen Befehl: &prompt.user; crontab -r remove crontab for dru? y Dienste unter &os; verwalten Tom Rhodes Beigetragen von &os; verwendet die vom &man.rc.8;-System bereit gestellten Startskripten beim Systemstart und für die Verwaltung von Diensten. Die Skripte sind in /etc/rc.d abgelegt und bieten grundlegende Dienste an, die über die Optionen , und des &man.service.8; Kommandos kontrolliert werden können. Beispielsweise kann &man.sshd.8; mit dem nachstehenden Kommando neu gestartet werden: &prompt.root; service sshd restart Analog können Sie andere Dienste starten und stoppen. Normalerweise werden die Dienste beim Systemstart über Einträge in der Datei &man.rc.conf.5; automatisch gestartet. &man.natd.8; wird zum Beispiel mit dem folgenden Eintrag in /etc/rc.conf aktiviert: natd_enable="YES" Wenn dort bereits die Zeile existiert, ändern Sie in . Die &man.rc.8;-Skripten starten, wie unten beschrieben, auch abhängige Dienste. Da das &man.rc.8;-System primär zum automatischen Starten und Stoppen von Systemdiensten dient, funktionieren die Optionen , und nur, wenn die entsprechenden Variablen in /etc/rc.conf gesetzt sind. Beispielsweise funktioniert sshd restart nur dann, wenn in /etc/rc.conf die Variable sshd_enable auf gesetzt wurde. Wenn Sie die Optionen , oder unabhängig von den Einstellungen in /etc/rc.conf benutzen wollen, müssen Sie den Optionen mit dem Präfix one verwenden. Um beispielsweise sshd unabhängig von den Einstellungen in /etc/rc.conf neu zu starten, benutzen Sie das nachstehende Kommando: &prompt.root; service sshd onerestart Ob ein Dienst in /etc/rc.conf aktiviert ist, können Sie herausfinden, indem Sie das entsprechende &man.rc.8;-Skript mit der Option aufrufen. Dieses Beispiel prüft, ob der sshd-Dienst in /etc/rc.conf aktiviert ist: &prompt.root; service sshd rcvar # sshd # sshd_enable="YES" # (default: "") Die Zeile # sshd wird von dem Kommando ausgegeben; sie kennzeichnet nicht die Eingabeaufforderung von root. Ob ein Dienst läuft, kann mit abgefragt werden. Das folgende Kommando überprüft, ob sshd auch wirklich gestartet wurde: &prompt.root; service sshd status sshd is running as pid 433. Einige Dienste können über die Option neu initialisiert werden. Dazu wird dem Dienst über ein Signal mitgeteilt, dass er seine Konfigurationsdateien neu einlesen soll. Oft wird dazu das Signal SIGHUP verwendet. Beachten Sie aber, dass nicht alle Dienste diese Option unterstützen. Die meisten Systemdienste werden beim Systemstart vom &man.rc.8;-System gestartet. Zum Beispiel aktiviert das Skript /etc/rc.d/bgfsck die Prüfung von Dateisystemen im Hintergrund. Das Skript gibt die folgende Meldung aus, wenn es gestartet wird: Starting background file system checks in 60 seconds. Dieses Skript wird während des Systemstarts ausgeführt und führt eine Überprüfung der Dateisysteme im Hintergrund durch. Viele Systemdienste hängen von anderen Diensten ab. &man.yp.8; und andere RPC-basierende Systeme hängen beispielsweise von dem rpcbind-Dienst ab. Im Kopf der Startskripten befinden sich die Informationen über Abhängigkeiten von anderen Diensten und weitere Metadaten. Mithilfe dieser Daten bestimmt das Programm &man.rcorder.8; beim Systemstart die Startreihenfolge der Dienste. Folgende Schlüsselwörter müssen im Kopf aller Startskripten verwendet werden, da sie von &man.rc.subr.8; zum Aktivieren des Startskripts benötigt werden: PROVIDE: Gibt die Namen der Dienste an, die mit dieser Datei zur Verfügung gestellt werden. Die folgenden Schlüsselwörter können im Kopf des Startskripts angegeben werden. Sie sind zwar nicht unbedingt notwendig, sind aber hilfreich beim Umgang mit &man.rcorder.8;: REQUIRE: Gibt die Namen der Dienste an, von denen dieser Dienst abhängt. Ein Skript, das dieses Schlüsselwort enthält wird nach den angegebenen Diensten ausgeführt. BEFORE: Zählt Dienste auf, die auf diesen Dienst angewiesen sind. Ein Skript, dass dieses Schlüsselwort enthält wird vor den angegebenen Diensten ausgeführt. Durch das Verwenden dieser Schlüsselwörter kann ein Administrator die Startreihenfolge von Systemdiensten feingranuliert steuern, ohne mit den Schwierigkeiten des runlevel-Systems anderer &unix; Systeme kämpfen zu müssen. Weitere Informationen über das &man.rc.8;-System finden Sie in &man.rc.8; und &man.rc.subr.8;. Wenn Sie eigene rc.d-Skripte schreiben wollen, sollten Sie diesen Artikel lesen. Systemspezifische Konfiguration rc-Dateien rc.conf Informationen zur Systemkonfiguration sind hauptsächlich in /etc/rc.conf, die meist beim Start des Systems verwendet wird, abgelegt. Sie enthält die Konfigurationen für die rc* Dateien. In rc.conf werden die Vorgabewerte aus /etc/defaults/rc.conf überschrieben. Die Vorgabedatei sollte nicht editiert werden. Stattdessen sollten alle systemspezifischen Änderungen in rc.conf vorgenommen werden. Um den administrativen Aufwand gering zu halten, existieren in geclusterten Anwendungen mehrere Strategien, globale Konfigurationen von systemspezifischen Konfigurationen zu trennen. Der empfohlene Weg hält die globale Konfiguration in einer separaten Datei z.B. /etc/rc.conf.local. Zum Beispiel so: /etc/rc.conf: sshd_enable="YES" keyrate="fast" defaultrouter="10.1.1.254" /etc/rc.conf.local: hostname="node1.example.org" ifconfig_fxp0="inet 10.1.1.1/8" /etc/rc.conf kann dann auf jedes System mit rsync oder puppet verteilt werden, während /etc/rc.conf.local dabei systemspezifisch bleibt. Bei einem Upgrade des Systems wird /etc/rc.conf nicht überschrieben, so dass die Systemkonfiguration erhalten bleibt. /etc/rc.conf und /etc/rc.conf.local werden von &man.sh.1; gelesen. Dies erlaubt es dem Systemadministrator, komplexe Konfigurationsszenarien zu erstellen. Lesen Sie &man.rc.conf.5;, um weitere Informationen zu diesem Thema zu erhalten. Einrichten von Netzwerkkarten Marc Fonvieille Beigetragen von Netzwerkkarten einrichten Die Konfiguration einer Netzwerkkarte gehört zu den alltäglichen Aufgaben eines &os; Administrators. Bestimmen des richtigen Treibers Netzwerkkarten Treiber Ermitteln Sie zunächst das Modell der Netzwerkkarte und den darin verwendeten Chip. &os; unterstützt eine Vielzahl von Netzwerkkarten. Prüfen Sie die Hardware-Kompatibilitätsliste für das &os; Release, um zu sehen ob die Karte unterstützt wird. Wenn die Karte unterstützt wird, müssen Sie den Treiber für die Karte bestimmen. /usr/src/sys/conf/NOTES und /usr/src/sys/arch/conf/NOTES enthalten eine Liste der verfügbaren Treiber mit Informationen zu den unterstützten Chipsätzen. Wenn Sie sich nicht sicher sind, ob Sie den richtigen Treiber ausgewählt haben, lesen Sie die Hilfeseite des Treibers. Sie enthält weitere Informationen über die unterstützten Geräte und bekannte Einschränkungen des Treibers. Die Treiber für gebräuchliche Netzwerkkarten sind schon im GENERIC-Kernel enthalten, so dass die Karte während des Systemstarts erkannt werden sollte. Die Systemmeldungen können Sie sich mit more /var/run/dmesg.boot ansehen. Mit der Leertaste können Sie durch den Text blättern. In diesem Beispiel findet das System zwei Karten, die den &man.dc.4;-Treiber benutzen: dc0: <82c169 PNIC 10/100BaseTX> port 0xa000-0xa0ff mem 0xd3800000-0xd38 000ff irq 15 at device 11.0 on pci0 miibus0: <MII bus> on dc0 bmtphy0: <BCM5201 10/100baseTX PHY> PHY 1 on miibus0 bmtphy0: 10baseT, 10baseT-FDX, 100baseTX, 100baseTX-FDX, auto dc0: Ethernet address: 00:a0:cc:da:da:da dc0: [ITHREAD] dc1: <82c169 PNIC 10/100BaseTX> port 0x9800-0x98ff mem 0xd3000000-0xd30 000ff irq 11 at device 12.0 on pci0 miibus1: <MII bus> on dc1 bmtphy1: <BCM5201 10/100baseTX PHY> PHY 1 on miibus1 bmtphy1: 10baseT, 10baseT-FDX, 100baseTX, 100baseTX-FDX, auto dc1: Ethernet address: 00:a0:cc:da:da:db dc1: [ITHREAD] Ist der Treiber für die Netzwerkkarte nicht in GENERIC enthalten, muss zunächst ein Treiber geladen werden, um die Karte konfigurieren und benutzen zu können. Dafür gibt es zwei Methoden: Am einfachsten ist es, das Kernelmodul für die Karte mit &man.kldload.8; zu laden. Um den Treiber automatisch beim Systemstart zu laden, fügen Sie die entsprechende Zeile in /boot/loader.conf ein. Es gibt nicht für alle Karten Kernelmodule. Alternativ kann der Treiber für die Karte fest in den Kernel eingebunden werden. Lesen Sie dazu /usr/src/sys/conf/NOTES, /usr/src/sys/arch/conf/NOTES und die Hilfeseite des Treibers, den Sie in den Kernel einbinden möchten, an. Die Übersetzung des Kernels wird in beschrieben. Wenn die Karte während des Systemstarts vom Kernel erkannt wurde, muss der Kernel nicht neu übersetzt werden. &windows;-<acronym>NDIS</acronym>-Treiber einsetzen NDIS NDISulator &windows;-Treiber µsoft.windows; Gerätetreiber KLD (kernel loadable object) Leider stellen nach wie vor viele Unternehmen die Spezifikationen ihrer Treiber der Open Source Gemeinde nicht zur Verfügung, weil sie diese Informationen als Geschäftsgeheimnisse betrachten. Daher haben die Entwickler von &os; und anderen Betriebssystemen nur zwei Möglichkeiten. Entweder versuchen sie in einem aufwändigen Prozess den Treiber durch Reverse Engineering nachzubauen, oder sie versuchen, die vorhandenen Binärtreiber der µsoft.windows;-Plattform zu verwenden. &os; bietet native Unterstützung für die Network Driver Interface Specification (NDIS). &man.ndisgen.8; wird benutzt, um einen &windowsxp;-Treiber in ein Format zu konvertieren, das von &os; verwendet werden kann. Da der &man.ndis.4;-Treiber einen &windowsxp;-Binärtreiber nutzt, kann er nur auf &i386;- und amd64-Systemen verwendet werden. Unterstützt werden PCI, CardBus, PCMCIA und USB-Geräte. Um den NDISulator zu verwenden, benötigen Sie drei Dinge: Die &os; Kernelquellen Den &windowsxp;-Binärtreiber mit der Erweiterung .SYS Die Konfigurationsdatei des &windowsxp;-Treibers mit der Erweiterung .INF Laden Sie die .SYS- und .INF-Dateien für die Karte. Diese befinden sich meistens auf einer beigelegten CD-ROM, oder können von der Internetseite des Herstellers heruntergeladen werden. In den folgenden Beispielen werden die Dateien W32DRIVER.SYS und W32DRIVER.INF verwendet. Die Architektur des Treibers muss zur jeweiligen Version von &os; passen. Benutzen Sie einen &windows; 32-bit Treiber für &os;/i386. Für &os;/amd64 wird ein &windows; 64-bit Treiber benötigt. Als Nächstes kompilieren Sie den binären Treiber, um ein Kernelmodul zu erzeugen. Dazu rufen Sie als root &man.ndisgen.8; auf: &prompt.root; ndisgen /path/to/W32DRIVER.INF /path/to/W32DRIVER.SYS Dieses Kommando arbeitet interaktiv, benötigt es weitere Informationen, so fragt es Sie danach. Das Ergebnis ist ein neu erzeugtes Kernelmodul im aktuellen Verzeichnis. Benutzen Sie &man.kldload.8; um das neue Modul zu laden: &prompt.root; kldload ./W32DRIVER.ko Neben dem erzeugten Kernelmodul müssen auch die Kernelmodule ndis.ko und if_ndis.ko geladen werden. Dies passiert automatisch, wenn Sie ein von &man.ndis.4; abhängiges Modul laden. Andernfalls können die Module mit den folgenden Kommandos manuell geladen werden: &prompt.root; kldload ndis &prompt.root; kldload if_ndis Der erste Befehl lädt den &man.ndis.4;-Miniport-Treiber, der zweite das tatsächliche Netzwerkgerät. Überprüfen Sie die Ausgabe von &man.dmesg.8; auf eventuelle Fehler während des Ladevorgangs. Gab es dabei keine Probleme, sollte die Ausgabe wie folgt aussehen: ndis0: <Wireless-G PCI Adapter> mem 0xf4100000-0xf4101fff irq 3 at device 8.0 on pci1 ndis0: NDIS API version: 5.0 ndis0: Ethernet address: 0a:b1:2c:d3:4e:f5 ndis0: 11b rates: 1Mbps 2Mbps 5.5Mbps 11Mbps ndis0: 11g rates: 6Mbps 9Mbps 12Mbps 18Mbps 36Mbps 48Mbps 54Mbps Ab jetzt kann das Gerät ndis0 wie jede andere Netzwerkkarte konfiguriert werden. Um die &man.ndis.4;-Module automatisch beim Systemstart zu laden, kopieren Sie das erzeugte Modul W32DRIVER_SYS.ko nach /boot/modules. Danach fügen Sie die folgende Zeile in /boot/loader.conf ein: W32DRIVER_SYS_load="YES" Konfiguration von Netzwerkkarten Netzwerkkarten einrichten Nachdem der richtige Treiber für die Karte geladen ist, muss die Karte konfiguriert werden. Unter Umständen ist die Karte schon während der Installation mit &man.bsdinstall.8; konfiguriert worden. Das nachstehende Kommando zeigt die Konfiguration der Netzwerkkarten an: &prompt.user; ifconfig dc0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric 0 mtu 1500 options=80008<VLAN_MTU,LINKSTATE> ether 00:a0:cc:da:da:da inet 192.168.1.3 netmask 0xffffff00 broadcast 192.168.1.255 media: Ethernet autoselect (100baseTX <full-duplex>) status: active dc1: flags=8802<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric 0 mtu 1500 options=80008<VLAN_MTU,LINKSTATE> ether 00:a0:cc:da:da:db inet 10.0.0.1 netmask 0xffffff00 broadcast 10.0.0.255 media: Ethernet 10baseT/UTP status: no carrier lo0: flags=8049<UP,LOOPBACK,RUNNING,MULTICAST> metric 0 mtu 16384 options=3<RXCSUM,TXCSUM> inet6 fe80::1%lo0 prefixlen 64 scopeid 0x4 inet6 ::1 prefixlen 128 inet 127.0.0.1 netmask 0xff000000 nd6 options=3<PERFORMNUD,ACCEPT_RTADV> Im Beispiel werden Informationen zu den folgenden Geräten angezeigt: dc0: Der erste Ethernet-Adapter. dc1: Der zweite Ethernet-Adapter. lo0: Das Loopback-Gerät. Der Name der Netzwerkkarte wird aus dem Namen des Treibers und einer Zahl zusammengesetzt. Die Zahl gibt die Reihenfolge an, in der die Geräte beim Systemstart erkannt wurden. Die dritte Karte, die den &man.sis.4; Treiber benutzt, würde beispielsweise sis2 heißen. Der Adapter dc0 aus dem Beispiel ist aktiv. Sie erkennen das an den folgenden Hinweisen: UP bedeutet, dass die Karte konfiguriert und aktiv ist. Der Karte wurde die Internet-Adresse (inet) 192.168.1.3 zugewiesen. Die Subnetzmaske ist richtig (0xffffff00 entspricht 255.255.255.0). Die Broadcast-Adresse 192.168.1.255 ist richtig. Die MAC-Adresse der Karte (ether) lautet 00:a0:cc:da:da:da. Die automatische Medienerkennung ist aktiviert (media: Ethernet autoselect (100baseTX <full-duplex>)). Der Adapter dc1 benutzt das Medium 10baseT/UTP. Weitere Informationen über die einstellbaren Medien entnehmen Sie der Hilfeseite des Treibers. Der Verbindungsstatus (status) ist active, das heißt es wurde ein Trägersignal entdeckt. Für dc1 wird status: no carrier angezeigt. Das ist normal, wenn kein Kabel an der Karte angeschlossen ist. Wäre die Karte nicht konfiguriert, würde die Ausgabe von &man.ifconfig.8; so aussehen: dc0: flags=8843<BROADCAST,SIMPLEX,MULTICAST> metric 0 mtu 1500 options=80008<VLAN_MTU,LINKSTATE> ether 00:a0:cc:da:da:da media: Ethernet autoselect (100baseTX <full-duplex>) status: active Die Karte muss als Benutzer root konfiguriert werden. Die Konfiguration kann auf der Kommandozeile mit &man.ifconfig.8; erfolgen. Allerdings gehen diese Informationen bei einem Neustart verloren. Tragen Sie stattdessen die Konfiguration in /etc/rc.conf ein. Wenn es im LAN einen DHCP-Server gibt, fügen Sie einfach folgende Zeile hinzu: ifconfig_dc0="DHCP" Ersetzen Sie >dc0 durch die richtigen Werte für das System. Nachdem Sie die Zeile hinzugefügt haben, folgen Sie den Anweisungen in . Wenn das Netzwerk während der Installation konfiguriert wurde, existieren vielleicht schon Einträge für die Netzwerkkarte(n). Überprüfen Sie /etc/rc.conf bevor Sie weitere Zeilen hinzufügen. Falls kein DHCP-Server zur Verfügung steht, müssen die Netzwerkkarten manuell konfiguriert werden. Fügen Sie für jede Karte im System eine Zeile hinzu, wie in diesem Beispiel zu sehen: ifconfig_dc0="inet 192.168.1.3 netmask 255.255.255.0" ifconfig_dc1="inet 10.0.0.1 netmask 255.255.255.0 media 10baseT/UTP" Ersetzen Sie dc0 und dc1 und die IP-Adressen durch die richtigen Werte für das System. Die Manualpages des Treibers, &man.ifconfig.8; und &man.rc.conf.5; enthalten weitere Einzelheiten über verfügbare Optionen und die Syntax von /etc/rc.conf. Wenn das Netzwerk kein DNS benutzt, können Sie in /etc/hosts die Namen und IP-Adressen der Rechner des LANs eintragen. Weitere Informationen entnehmen Sie &man.hosts.5; und /usr/share/examples/etc/hosts. Falls kein DHCP-Server zur Verfügung steht, Sie aber Zugang zum Internet benötigen, müssen Sie das Standard-Gateway und die Nameserver manuell konfigurieren: &prompt.root; echo 'defaultrouter="Ihr_Default_Gateway"' >> /etc/rc.conf &prompt.root; echo 'nameserver Ihr_DNS_Server' >> /etc/resolv.conf Test und Fehlersuche Nachdem die notwendigen Änderungen in /etc/rc.conf gespeichert wurden, kann das System neu gestartet werden, um die Konfiguration zu testen und zu überprüfen, ob das System ohne Fehler neu gestartet wurde. Alternativ können Sie mit folgenden Befehl die Netzwerkeinstellungen neu initialisieren: &prompt.root; service netif restart Falls in /etc/rc.conf ein Default-Gateway definiert wurde, müssen Sie auch den folgenden Befehl ausführen: &prompt.root; service routing restart Wenn das System gestartet ist, sollten Sie die Netzwerkkarten testen. Test der Ethernet-Karte Netzwerkkarten testen Um zu prüfen, ob die Ethernet-Karte richtig konfiguriert ist, testen Sie zunächst mit &man.ping.8; den Adapter selbst und sprechen Sie dann eine andere Maschine im LAN an. Zuerst, der Test des Adapters: &prompt.user; ping -c5 192.168.1.3 PING 192.168.1.3 (192.168.1.3): 56 data bytes 64 bytes from 192.168.1.3: icmp_seq=0 ttl=64 time=0.082 ms 64 bytes from 192.168.1.3: icmp_seq=1 ttl=64 time=0.074 ms 64 bytes from 192.168.1.3: icmp_seq=2 ttl=64 time=0.076 ms 64 bytes from 192.168.1.3: icmp_seq=3 ttl=64 time=0.108 ms 64 bytes from 192.168.1.3: icmp_seq=4 ttl=64 time=0.076 ms --- 192.168.1.3 ping statistics --- 5 packets transmitted, 5 packets received, 0% packet loss round-trip min/avg/max/stddev = 0.074/0.083/0.108/0.013 ms &prompt.user; ping -c5 192.168.1.2 PING 192.168.1.2 (192.168.1.2): 56 data bytes 64 bytes from 192.168.1.2: icmp_seq=0 ttl=64 time=0.726 ms 64 bytes from 192.168.1.2: icmp_seq=1 ttl=64 time=0.766 ms 64 bytes from 192.168.1.2: icmp_seq=2 ttl=64 time=0.700 ms 64 bytes from 192.168.1.2: icmp_seq=3 ttl=64 time=0.747 ms 64 bytes from 192.168.1.2: icmp_seq=4 ttl=64 time=0.704 ms --- 192.168.1.2 ping statistics --- 5 packets transmitted, 5 packets received, 0% packet loss round-trip min/avg/max/stddev = 0.700/0.729/0.766/0.025 ms Um die Namensauflösung zu testen, verwenden Sie den Namen der Maschine anstelle der IP-Adresse. Wenn kein DNS-Server im Netzwerk vorhanden ist, muss /etc/hosts entsprechend eingerichtet sein. Fügen Sie dazu die Namen und IP-Adressen der Rechner im LAN in /etc/hosts hinzu, falls sie nicht bereits vorhanden sind. Weitere Informationen finden Sie in &man.hosts.5; und /usr/share/examples/etc/hosts. Fehlersuche Netzwerkkarten Fehlersuche Fehler zu beheben, ist immer sehr mühsam. Indem Sie die einfachen Sachen zuerst prüfen, erleichtern Sie sich die Aufgabe. Steckt das Netzwerkkabel? Sind die Netzwerkdienste richtig konfiguriert? Funktioniert die Firewall? Wird die Netzwerkkarte von &os; unterstützt? Lesen Sie immer die Hardware-Informationen des Releases, bevor Sie einen Fehlerbericht einsenden. Aktualisieren Sie die &os;-Version auf die neueste -STABLE Version. Suchen Sie in den Archiven der Mailinglisten und im Internet nach bekannten Lösungen. Wenn die Karte funktioniert, die Verbindungen aber zu langsam sind, sollten Sie &man.tuning.7; lesen. Prüfen Sie auch die Netzwerkkonfiguration, da falsche Einstellungen die Ursache für langsame Verbindungen sein können. Wenn Sie viele device timeout Meldungen in den Systemprotokollen finden, prüfen Sie, dass es keinen Konflikt zwischen der Netzwerkkarte und anderen Geräten des Systems gibt. Überprüfen Sie nochmals die Verkabelung. Unter Umständen benötigen Sie eine andere Netzwerkkarte. Bei watchdog timeout Fehlermeldungen, kontrollieren Sie zuerst die Verkabelung. Überprüfen Sie dann, ob der PCI-Steckplatz der Karte Bus Mastering unterstützt. Auf einigen älteren Motherboards ist das nur für einen Steckplatz (meistens Steckplatz 0) der Fall. Lesen Sie in der Dokumentation der Karte und des Motherboards nach, ob das vielleicht die Ursache des Problems sein könnte. Die Meldung No route to host erscheint, wenn das System ein Paket nicht zustellen kann. Das kann vorkommen weil beispielsweise keine Default-Route gesetzt wurde oder das Netzwerkkabel nicht richtig steckt. Schauen Sie in der Ausgabe von netstat -rn nach, ob eine gültige Route zu dem Zielsystem existiert. Wenn nicht, lesen Sie . Die Meldung ping: sendto: Permission denied wird oft von einer falsch konfigurierten Firewall verursacht. Wenn keine Regeln definiert wurden, blockiert eine aktivierte Firewall alle Pakete, selbst einfache &man.ping.8;-Pakete. Weitere Informationen erhalten Sie in . Falls die Leistung der Karte schlecht ist, setzen Sie die Medienerkennung von autoselect (automatisch) auf das richtige Medium. In vielen Fällen löst diese Maßnahme Leistungsprobleme. Wenn nicht, prüfen Sie nochmal die Netzwerkeinstellungen und lesen Sie &man.tuning.7;. Virtual Hosts virtual hosts IP-Aliase Ein gebräuchlicher Zweck von &os; ist das virtuelle Hosting, bei dem ein Server im Netzwerk wie mehrere Server aussieht. Dies wird dadurch erreicht, dass einem Netzwerkinterface mehrere Netzwerk-Adressen zugewiesen werden. Ein Netzwerkinterface hat eine echte Adresse und kann beliebig viele alias Adressen haben. Die Aliase werden durch entsprechende alias Einträge in /etc/rc.conf festgelegt, wie in diesem Beispiel zu sehen ist: ifconfig_fxp0_alias0="inet xxx.xxx.xxx.xxx netmask xxx.xxx.xxx.xxx" Beachten Sie, dass die Alias-Einträge mit alias0 anfangen müssen und weiter hochgezählt werden, das heißt alias1, alias2, und so weiter. Die Konfiguration der Aliase hört bei der ersten fehlenden Zahl auf. Die Berechnung der Alias-Netzwerkmasken ist wichtig. Für jedes Interface muss es eine Adresse geben, die die Netzwerkmaske des Netzwerkes richtig beschreibt. Alle anderen Adressen in diesem Netzwerk haben dann eine Netzwerkmaske, die mit 1 gefüllt ist, also 255.255.255.255 oder hexadezimal 0xffffffff. Als Beispiel betrachten wir den Fall, in dem fxp0 mit zwei Netzwerken verbunden ist: dem Netzwerk 10.1.1.0 mit der Netzwerkmaske 255.255.255.0 und dem Netzwerk 202.0.75.16 mit der Netzwerkmaske 255.255.255.240. Das System soll die Adressen 10.1.1.1 bis 10.1.1.5 und 202.0.75.17 bis 202.0.75.20 belegen. Nur die erste Adresse in einem Netzwerk sollte die richtige Netzwerkmaske haben. Alle anderen Adressen (10.1.1.2 bis 10.1.1.5 und 202.0.75.18 bis 202.0.75.20) müssen die Maske 255.255.255.255 erhalten. Die folgenden Einträge in /etc/rc.conf konfigurieren den Adapter entsprechend dem Beispiel: ifconfig_fxp0="inet 10.1.1.1 netmask 255.255.255.0" ifconfig_fxp0_alias0="inet 10.1.1.2 netmask 255.255.255.255" ifconfig_fxp0_alias1="inet 10.1.1.3 netmask 255.255.255.255" ifconfig_fxp0_alias2="inet 10.1.1.4 netmask 255.255.255.255" ifconfig_fxp0_alias3="inet 10.1.1.5 netmask 255.255.255.255" ifconfig_fxp0_alias4="inet 202.0.75.17 netmask 255.255.255.240" ifconfig_fxp0_alias5="inet 202.0.75.18 netmask 255.255.255.255" ifconfig_fxp0_alias6="inet 202.0.75.19 netmask 255.255.255.255" ifconfig_fxp0_alias7="inet 202.0.75.20 netmask 255.255.255.255" Dies kann mit einer durch Leerzeichen getrennten Liste von IP-Adressbereichen auch einfacher ausgedrückt werden. Die erste Adresse hat wieder die angegebene Netzwerkmaske und die zusätzlichen Adressen haben die Netzwerkmaske 255.255.255.255. ifconfig_fxp0_aliases="inet 10.1.1.1-5/24 inet 202.0.75.17-20/28" Konfiguration der Systemprotokollierung Niclas Zeising Beigetragen von system logging syslog &man.syslogd.8; Die Aufzeichnung und Kontrolle von Log-Meldungen ist ein wichtiger Aspekt der Systemadministration. Die Informationen werden nicht nur verwendet um Hard- und Softwarefehler ausfindig zu machen, auch zur Überwachung der Sicherheit und der Reaktion bei einem Zwischenfall spielen diese Aufzeichnungen eine wichtige Rolle. Die meisten Systemdienste und Anwendungen erzeugen Log-Meldungen. &os; stellt mit syslogd ein Werkzeug zur Verwaltung von Protokollen bereit. In der Voreinstellung wird syslogd beim Booten automatisch gestartet. Dieses Verhalten wird über die Variable syslogd_enable in /etc/rc.conf gesteuert. Dazu gibt es noch zahlreiche Argumente, die in der Variable syslogd_flags in /etc/rc.conf gesetzt werden können. Lesen Sie &man.syslogd.8; für weitere Informationen über die verfügbaren Argumente. Dieser Abschnitt beschreibt die Konfiguration und Verwendung des &os; Protokollservers, und diskutiert auch die Log-Rotation und das Management von Logdateien. Konfiguration der lokalen Protokollierung syslog.conf Die Konfigurationsdatei /etc/syslog.conf steuert, was syslogd mit Log-Meldungen macht, sobald sie empfangen werden. Es gibt verschiedene Parameter, die das Verhalten bei eingehenden Ereignissen kontrollieren. facility beschreibt das Subsystem, welches das Ereignis generiert hat. Beispielsweise der Kernel, oder ein Daemon. level hingegen beschreibt den Schweregrad des aufgetretenen Ereignisses. Dies macht es möglich, Meldungen in verschiedenen Logdateien zu protokollieren, oder Meldungen zu verwerfen, je nach Konfiguration von facility und level. Ebenfalls besteht die Möglichkeit auf Meldungen zu reagieren, die von einer bestimmten Anwendung stammen, oder von einem spezifischen Host erzeugt wurden. Die Konfigurationsdatei von &man.syslogd.8; enthält für jede Aktion eine Zeile. Die Syntax besteht aus einem Auswahlfeld, gefolgt von einem Aktionsfeld. Die Syntax für das Auswahlfeld ist facility.level. Dies entspricht Log-Meldungen von facility mit einem Level von level oder höher. Um noch präziser festzulegen was protokolliert wird, kann dem Level optional ein Vergleichsflag vorangestellt werden. Mehrere Auswahlen können, durch Semikolon (;) getrennt, für die gleiche Aktion verwendet werden. * wählt dabei alles aus. Das Aktionsfeld definiert, wohin die Log-Meldungen gesendet werden, beispielsweise in eine Datei oder zu einem entfernten Log-Server. Als Beispiel dient hier /etc/syslog.conf aus &os;: - # $&os;$ + # $&os;$ # # Spaces ARE valid field separators in this file. However, # other *nix-like systems still insist on using tabs as field # separators. If you are sharing this file between systems, you$ # may want to use only tabs as field separators here. # Consult the syslog.conf(5) manpage. *.err;kern.warning;auth.notice;mail.crit /dev/console *.notice;authpriv.none;kern.debug;lpr.info;mail.crit;news.err /var/log/messages security.* /var/log/security auth.info;authpriv.info /var/log/auth.log mail.info /var/log/maillog lpr.info /var/log/lpd-errs ftp.info /var/log/xferlog cron.* /var/log/cron !-devd *.=debug /var/log/debug.log *.emerg * # uncomment this to log all writes to /dev/console to /var/log/console.log #console.info /var/log/console.log # uncomment this to enable logging of all log messages to /var/log/all.log # touch /var/log/all.log and chmod it to mode 600 before it will work #*.* /var/log/all.log # uncomment this to enable logging to a remote loghost named loghost #*.* @loghost # uncomment these if you're running inn # news.crit /var/log/news/news.crit # news.err /var/log/news/news.err # news.notice /var/log/news/news.notice # Uncomment this if you wish to see messages produced by devd # !devd # *.>=info !ppp *.* /var/log/ppp.log !* In diesem Beispiel: Zeile 8 selektiert alle Meldungen vom Level err, sowie kern.warning, auth.notice und mail.crit und schickt diese zur Konsole (/dev/console). Zeile 12 selektiert alle Meldungen von mail ab dem Level info oder höher und schreibt diese in /var/log/maillog. Zeile 17 benutzt ein Vergleichsflag (=), um nur Meldungen vom Level debug zu selektieren und schreibt diese in /var/log/debug.log. Zeile 33 zeigt ein Beispiel für die Nutzung einer Programmspezifikation. Die nachfolgenden Regeln sind dann nur für Programme gültig, welche der Programmspezifikation stehen. In diesem Fall werden alle Meldungen von ppp (und keinem anderen Programm) in /var/log/ppp.log geschrieben. Die verfügbaren level, beginnend mit den höchst kritischen, hin zu den weniger kritischen, sind: emerg, alert, crit, err, warning, notice, info und debug. Die facilities, in beliebiger Reihenfolge, sind: auth, authpriv, console, cron, daemon, ftp, kern, lpr, mail, mark, news, security, syslog, user, uucp, sowie local0 bis local7. Beachten Sie, dass andere Betriebssysteme hiervon abweichende facilities haben können. Um alle Meldungen vom Level notice und höher in /var/log/daemon.log zu protokollieren, fügen Sie folgenden Eintrag hinzu: daemon.notice /var/log/daemon.log Für weitere Informationen zu verschiedenen Level und faclilities, lesen Sie &man.syslog.3; und &man.syslogd.8;. Weitere Informationen zu /etc/syslog.conf, dessen Syntax und erweiterten Anwendungsbeispielen, finden Sie in &man.syslog.conf.5;. Management und Rotation von Logdateien newsyslog newsyslog.conf log rotation log management Logdateien können schnell wachsen und viel Speicherplatz belegen, was es schwieriger macht, nützliche Informationen zu finden. Log-Management versucht, diesen Effekt zu mildern. &os; verwendet newsyslog für die Verwaltung von Logdateien. Dieses in &os; integrierte Programm rotiert und komprimiert in regelmäßigen Abständen Logdateien. Optional kann es auch fehlende Logdateien erstellen und Programme benachrichtigen, wenn Logdateien verschoben wurden. Die Logdateien können von syslogd oder einem anderen Programm generiert werden. Obwohl newsyslog normalerweise von &man.cron.8; aufgerufen wird, ist es kein Systemdämon. In der Standardkonfiguration wird dieser Job jede Stunde ausgeführt. Um zu wissen, welche Maßnahmen zu ergreifen sind, liest newsyslog seine Konfigurationsdatei /etc/newsyslog.conf. Diese Konfigurationsdatei enthält eine Zeile für jede Datei, die von newsyslog verwaltet wird. Jede Zeile enthält Informationen über den Besitzer der Datei, die Dateiberechtigungen, wann die Datei rotiert wird, optionale Flags, welche die Log-Rotation beeinflussen (bspw. Komprimierung) und Programme, denen ein Signal geschickt wird, wenn Logdateien rotiert werden. Hier folgt die Standardkonfiguration in &os;: - # configuration file for newsyslog + # configuration file for newsyslog # $&os;$ # # Entries which do not specify the '/pid_file' field will cause the # syslogd process to be signalled when that log file is rotated. This # action is only appropriate for log files which are written to by the # syslogd process (ie, files listed in /etc/syslog.conf). If there # is no process which needs to be signalled when a given log file is # rotated, then the entry for that file should include the 'N' flag. # # The 'flags' field is one or more of the letters: BCDGJNUXZ or a '-'. # # Note: some sites will want to select more restrictive protections than the # defaults. In particular, it may be desirable to switch many of the 644 # entries to 640 or 600. For example, some sites will consider the # contents of maillog, messages, and lpd-errs to be confidential. In the # future, these defaults may change to more conservative ones. # # logfilename [owner:group] mode count size when flags [/pid_file] [sig_num] /var/log/all.log 600 7 * @T00 J /var/log/amd.log 644 7 100 * J /var/log/auth.log 600 7 100 @0101T JC /var/log/console.log 600 5 100 * J /var/log/cron 600 3 100 * JC /var/log/daily.log 640 7 * @T00 JN /var/log/debug.log 600 7 100 * JC /var/log/kerberos.log 600 7 100 * J /var/log/lpd-errs 644 7 100 * JC /var/log/maillog 640 7 * @T00 JC /var/log/messages 644 5 100 @0101T JC /var/log/monthly.log 640 12 * $M1D0 JN /var/log/pflog 600 3 100 * JB /var/run/pflogd.pid /var/log/ppp.log root:network 640 3 100 * JC /var/log/devd.log 644 3 100 * JC /var/log/security 600 10 100 * JC /var/log/sendmail.st 640 10 * 168 B /var/log/utx.log 644 3 * @01T05 B /var/log/weekly.log 640 5 1 $W6D0 JN /var/log/xferlog 600 7 100 * JC Jede Zeile beginnt mit dem Namen der Protokolldatei, die rotiert werden soll, optional gefolgt von Besitzer und Gruppe für rotierende, als auch für neu erstellte Dateien. Das Feld mode definiert die Zugriffsrechte der Datei. count gibt an, wie viele rotierte Dateien aufbewahrt werden sollen. Anhand der size- und when-Flags erkennt newsyslog, wann die Datei rotiert werden muss. Eine Logdatei wird rotiert, wenn ihre Größe den Wert von size überschreitet, oder wenn die Zeit im when-Feld abgelaufen ist. Ein * bedeutet, dass dieses Feld ignoriert wird. Das flags-Feld gibt newsyslog weitere Instruktionen, zum Beispiel wie eine Datei zu rotieren ist, oder eine Datei zu erstellen falls diese nicht existiert. Die letzten beiden Felder sind optional und bestimmen die PID-Datei und wann die Datei rotiert wird. Weitere Informationen zu allen Feldern, gültigen Flags und wie Sie die Rotationszeit angeben können, finden Sie in &man.newsyslog.conf.5;. Denken Sie daran, dass newsyslog von &man.cron.8; aufgerufen wird und somit Dateien auch nur dann rotiert, wenn es von &man.cron.8; aufgerufen wird, und nicht häufiger. Protokollierung von anderen Hosts Tom Rhodes Beigetragen von Benedict Reuschling Übersetzt von Die Überwachung der Protokolldateien kann bei steigender Anzahl von Rechnern sehr unhandlich werden. Eine zentrale Protokollierung kann manche administrativen Belastungen bei der Verwaltung von Protokolldateien reduzieren. Die Aggregation, Zusammenführung und Rotation von Protokolldateien kann in &os; mit syslogd und newsyslog konfiguriert werden. In der folgenden Beispielkonfiguration sammelt Host A, genannt logserv.example.com, Protokollinformationen für das lokale Netzwerk. Host B, genannt logclient.example.com wird seine Protokollinformationen an den Server weiterleiten. Konfiguration des Protokollservers Ein Protokollserver ist ein System, welches Protokollinformationen von anderen Hosts akzeptiert. Bevor Sie diesen Server konfigurieren, prüfen Sie folgendes: Falls eine Firewall zwischen dem Protokollserver und den -Clients steht, muss das Regelwerk der Firewall UDP auf Port 514 sowohl auf Client- als auch auf Serverseite freigegeben werden. Der syslogd-Server und alle Clientrechner müssen gültige Einträge für sowohl Vorwärts- als auch Umkehr-DNS besitzen. Falls im Netzwerk kein DNS-Server vorhanden ist, muss auf jedem System die Datei /etc/hosts mit den richtigen Einträgen gepflegt werden. Eine funktionierende Namensauflösung ist zwingend erforderlich, ansonsten würde der Server die Protokollnachrichten ablehnen. Bearbeiten Sie /etc/syslog.conf auf dem Server. Tragen Sie den Namen des Clients ein, den Verbindungsweg und den Namen der Protokolldatei. Dieses Beispiel verwendet den Rechnernamen B, alle Verbindungswege, und die Protokolle werden in /var/log/logclient.log gespeichert. Einfache Server Konfiguration +logclient.example.com *.* /var/log/logclient.log Fügen Sie für jeden Client zwei Zeilen hinzu, falls Sie mehrere Clients in diese Datei aufnehmen. Weitere Informationen über die verfügbaren Verbindungswege finden Sie in &man.syslog.conf.5;. Konfigurieren Sie als nächstes /etc/rc.conf: syslogd_enable="YES" syslogd_flags="-a logclient.example.com -v -v" Der erste Eintrag startet syslogd während des Bootens. Der zweite Eintrag erlaubt es, Daten von dem spezifizierten Client auf diesem Server zu akzeptieren. Die Verwendung von erhöht die Anzahl von Protokollnachrichten. Dies ist hilfreich für die Feineinstellung der Verbindungswege, da Administratoren auf diese Weise erkennen, welche Arten von Nachrichten von welchen Verbindungswegen protokolliert werden. Mehrere -Optionen können angegeben werden, um die Protokollierung von mehreren Clients zu erlauben. IP-Adressen und ganze Netzblöcke können ebenfalls spezifiziert werden. Eine vollständige Liste der Optionen finden Sie in &man.syslogd.8;. Zum Schluss muss die Protokolldatei erstellt werden: &prompt.root; touch /var/log/logclient.log Zu diesem Zeitpunkt sollte syslogd neu gestartet und überprüft werden: &prompt.root; service syslogd restart &prompt.root; pgrep syslog Wenn eine PID zurückgegeben wird, wurde der Server erfolgreich neu gestartet und die Clientkonfiguration kann beginnen. Wenn der Server nicht neu gestartet wurde, suchen Sie in /var/log/messages nach dem Fehler. Konfiguration des Protokollclients Ein Protokollclient sendet Protokollinformationen an einen Protokollserver. Zusätzlich behält er eine lokale Kopie seiner eigenen Protokolle. Sobald der Server konfiguriert ist, bearbeiten Sie /etc/rc.conf auf dem Client: syslogd_enable="YES" syslogd_flags="-s -v -v" Der erste Eintrag aktiviert den syslogd-Dienst während des Systemstarts. Der zweite Eintrag erhöht die Anzahl der Protokollnachrichten. Die Option verhindert, dass dieser Client Protokolle von anderen Hosts akzeptiert. Als nächstes muss der Protokollserver in der /etc/syslog.conf des Clients eingetragen werden. In diesem Beispiel wird das @-Symbol benutzt, um sämtliche Protokolldaten an einen bestimmten Server zu senden: *.* @logserv.example.com Nachdem die Änderungs gespeichert wurden, muss syslogd neu gestartet werden, damit die Änderungen wirksam werden: &prompt.root; service syslogd restart Um zu testen, ob Protokollnachrichten über das Netzwerk gesendet werden, kann &man.logger.1; auf dem Client benutzt werden, um eine Nachricht an syslogd zu schicken: &prompt.root; logger "Test message from logclient" Diese Nachricht sollte jetzt sowohl in /var/log/messages auf dem Client, als auch in /var/log/logclient.log auf dem Server vorhanden sein. Fehlerbehebung beim Protokollserver Wenn der Server keine Nachrichten empfängt, ist die Ursache wahrscheinlich ein Netzwerkproblem, ein Problem bei der Namensauflösung oder ein Tippfehler in einer Konfigurationsdatei. Um die Ursache zu isolieren, müssen Sie sicherstellen, dass sich Server und Client über den in /etc/rc.conf konfigurierten Hostnamen mit ping erreichen lässt. Falls dies nicht gelingt sollten Sie die Netzwerkverkabelung überprüfen, außerdem Firewallregeln sowie die Einträge für Hosts im DNS und /etc/hosts. Überprüfen Sie diese Dinge auf dem Server und dem Client, bis der ping von beiden Hosts erfolgreich ist. Wenn sich die Hosts gegenseitig mit ping erreichen können, der Server aber immer noch keine Nachrichten empfängt, können Sie vorübergehend die Ausführlichkeit der Protokollierung erhöhen, um die Ursache für das Problem weiter einzugrenzen. In dem folgenden Beispiel ist auf dem Server die Datei /var/log/logclient.log leer und in der Datei /var/log/messages auf dem Client ist keine Ursache für das Problem erkennbar. Um nun die Ausführlichkeit der Protokollierung zu erhöhen, passen Sie auf dem Server den Eintrag syslogd_flags an. Anschließend starten Sie den Dienst neu: syslogd_flags="-d -a logclient.example.com -v -v" &prompt.root; service syslogd restart Informationen wie diese werden sofort nach dem Neustart auf der Konsole erscheinen: logmsg: pri 56, flags 4, from logserv.example.com, msg syslogd: restart syslogd: restarted logmsg: pri 6, flags 4, from logserv.example.com, msg syslogd: kernel boot file is /boot/kernel/kernel Logging to FILE /var/log/messages syslogd: kernel boot file is /boot/kernel/kernel cvthname(192.168.1.10) validate: dgram from IP 192.168.1.10, port 514, name logclient.example.com; rejected in rule 0 due to name mismatch. In diesem Beispiel werden die Nachrichten aufgrund eines fehlerhaften Namens abgewiesen. Der Hostname sollte logclient und nicht logclien sein. Beheben Sie den Tippfehler, starten Sie den Dienst neu und überprüfen Sie das Ergebnis: &prompt.root; service syslogd restart logmsg: pri 56, flags 4, from logserv.example.com, msg syslogd: restart syslogd: restarted logmsg: pri 6, flags 4, from logserv.example.com, msg syslogd: kernel boot file is /boot/kernel/kernel syslogd: kernel boot file is /boot/kernel/kernel logmsg: pri 166, flags 17, from logserv.example.com, msg Dec 10 20:55:02 <syslog.err> logserv.example.com syslogd: exiting on signal 2 cvthname(192.168.1.10) validate: dgram from IP 192.168.1.10, port 514, name logclient.example.com; accepted in rule 0. logmsg: pri 15, flags 0, from logclient.example.com, msg Dec 11 02:01:28 trhodes: Test message 2 Logging to FILE /var/log/logclient.log Logging to FILE /var/log/messages Zu diesem Zeitpunkt werden die Nachrichten korrekt empfangen und in die richtige Datei geschrieben. Sicherheitsbedenken Wie mit jedem Netzwerkdienst, müssen Sicherheitsanforderungen in Betracht gezogen werden, bevor ein Protokollserver eingesetzt wird. Manchmal enthalten Protokolldateien sensitive Daten über aktivierte Dienste auf dem lokalen Rechner, Benutzerkonten und Konfigurationsdaten. Daten, die vom Client an den Server geschickt werden, sind weder verschlüsselt noch mit einem Passwort geschützt. Wenn ein Bedarf für Verschlüsselung besteht, ist es möglich security/stunnel zu verwenden, welches die Protokolldateien über einen verschlüsselten Tunnel versendet. Lokale Sicherheit ist ebenfalls ein Thema. Protokolldateien sind während der Verwendung oder nach ihrer Rotation nicht verschlüsselt. Lokale Benutzer versuchen vielleicht, auf diese Dateien zuzugreifen, um zusätzliche Einsichten in die Systemkonfiguration zu erlangen. Es ist absolut notwendig, die richtigen Berechtigungen auf diesen Dateien zu setzen. Das Werkzeug newsyslog unterstützt das Setzen von Berechtigungen auf gerade erstellte oder rotierte Protokolldateien. Protokolldateien mit Zugriffsmodus 600 sollten verhindern, dass lokale Benutzer darin herumschnüffeln. Zusätzliche Informationen finden Sie in &man.newsyslog.conf.5;. Konfigurationsdateien <filename>/etc</filename> Layout Konfigurationsdateien finden sich in einigen Verzeichnissen unter anderem in: /etc Enthält generelle systemspezifische Konfigurationsinformationen. /etc/defaults Default Versionen der Konfigurationsdateien. /etc/mail Enthält die &man.sendmail.8; Konfiguration und weitere MTA Konfigurationsdateien. /etc/ppp Hier findet sich die Konfiguration für die User- und Kernel-ppp Programme. /etc/namedb Das Vorgabeverzeichnis, in dem Daten von &man.named.8; gehalten werden. Normalerweise werden hier named.conf und Zonendaten abgelegt. /usr/local/etc Installierte Anwendungen legen hier ihre Konfigurationsdateien ab. Dieses Verzeichnis kann Unterverzeichnisse für bestimmte Anwendungen enthalten. /usr/local/etc/rc.d &man.rc.8;-Skripten installierter Anwendungen. /var/db Automatisch generierte systemspezifische Datenbanken, wie die Paket-Datenbank oder die &man.locate.1;-Datenbank. Hostnamen hostname DNS <filename>/etc/resolv.conf</filename> resolv.conf Wie ein &os;-System auf das Internet Domain Name System (DNS) zugreift, wird in /etc/resolv.conf festgelegt. Die gebräuchlichsten Einträge in /etc/resolv.conf sind: nameserver Die IP-Adresse eines Nameservers, den der Resolver abfragen soll. Bis zu drei Server werden in der Reihenfolge, in der sie aufgezählt sind, abgefragt. search Suchliste mit Domain-Namen zum Auflösen von Hostnamen. Die Liste wird normalerweise durch den Domain-Teil des lokalen Hostnamens festgelegt. domain Der lokale Domain-Name. Beispiel für eine typische /etc/resolv.conf: search example.com nameserver 147.11.1.11 nameserver 147.11.100.30 Nur eine der Anweisungen search oder domain sollte benutzt werden. Wenn Sie DHCP benutzen, überschreibt &man.dhclient.8; für gewöhnlich /etc/resolv.conf mit den Informationen vom DHCP-Server. <filename>/etc/hosts</filename> hosts /etc/hosts ist eine einfache textbasierte Datenbank. Zusammen mit DNS und NIS stellt sie eine Abbildung zwischen Namen und IP-Adressen zur Verfügung. Anstatt &man.named.8; zu konfigurieren, können hier lokale Rechner, die über ein LAN verbunden sind, eingetragen werden. Lokale Einträge für gebräuchliche Internet-Adressen in /etc/hosts verhindern die Abfrage eines externen Servers und beschleunigen die Namensauflösung. - # $FreeBSD$ + # $FreeBSD$ # # # Host Database # # This file should contain the addresses and aliases for local hosts that # share this file. Replace 'my.domain' below with the domainname of your # machine. # # In the presence of the domain name service or NIS, this file may # not be consulted at all; see /etc/nsswitch.conf for the resolution order. # # ::1 localhost localhost.my.domain 127.0.0.1 localhost localhost.my.domain # # Imaginary network. #10.0.0.2 myname.my.domain myname #10.0.0.3 myfriend.my.domain myfriend # # According to RFC 1918, you can use the following IP networks for # private nets which will never be connected to the Internet: # # 10.0.0.0 - 10.255.255.255 # 172.16.0.0 - 172.31.255.255 # 192.168.0.0 - 192.168.255.255 # # In case you want to be able to connect to the Internet, you need # real official assigned numbers. Do not try to invent your own network # numbers but instead get one from your network provider (if any) or # from your regional registry (ARIN, APNIC, LACNIC, RIPE NCC, or AfriNIC.) # /etc/hosts hat das folgende Format: [Internet Adresse] [Offizieller Hostname] [Alias1] [Alias2] ... Zum Beispiel: 10.0.0.1 myRealHostname.example.com myRealHostname foobar1 foobar2 Weitere Informationen entnehmen Sie bitte &man.hosts.5;. Einstellungen mit &man.sysctl.8; sysctl Einstellungen mit sysctl Mit &man.sysctl.8; können Sie Änderungen an einem laufenden &os;-System vornehmen. Unter anderem können Optionen des TCP/IP-Stacks oder des virtuellen Speichermanagements verändert werden. Unter der Hand eines erfahrenen Systemadministrators kann dies die Systemperformance erheblich verbessern. Über 500 Variablen können mit &man.sysctl.8; gelesen und gesetzt werden. Der Hauptzweck von &man.sysctl.8; besteht darin, Systemeinstellungen zu lesen und zu verändern. Alle auslesbaren Variablen werden wie folgt angezeigt: &prompt.user; sysctl -a Um eine spezielle Variable zu lesen, geben Sie den Namen an: &prompt.user; sysctl kern.maxproc kern.maxproc: 1044 Um eine Variable zu setzen, benutzen Sie die Syntax Variable= Wert: &prompt.root; sysctl kern.maxfiles=5000 kern.maxfiles: 2088 -> 5000 Mit sysctl können Strings, Zahlen oder Boolean-Werte gesetzt werden. Bei Boolean-Werten steht 1 für wahr und 0 für falsch. Um die Variablen automatisch während des Systemstarts zu setzen, fügen Sie sie in /etc/sysctl.conf ein. Weitere Informationen finden Sie in der Hilfeseite &man.sysctl.conf.5; und in . <filename>sysctl.conf</filename> sysctl.conf sysctl /etc/sysctl.conf sieht ähnlich wie /etc/rc.conf aus. Werte werden in der Form Variable=Wert gesetzt. Die angegebenen Werte werden gesetzt, nachdem sich das System bereits im Mehrbenutzermodus befindet. Allerdings lassen sich im Mehrbenutzermodus nicht alle Werte setzen. Um das Protokollieren von fatalen Signalen abzustellen und Benutzer daran zu hindern, von anderen Benutzern gestartete Prozesse zu sehen, können Sie in /etc/sysctl.conf die folgenden Variablen setzen: # Do not log fatal signal exits (e.g. sig 11) kern.logsigexit=0 # Prevent users from seeing information about processes that # are being run under another UID. security.bsd.see_other_uids=0 Schreibgeschützte Variablen Tom Rhodes Contributed by Wenn schreibgeschützte &man.sysctl.8;-Variablen verändert werden, ist ein Neustart des Systems erforderlich. Beispielsweise hat &man.cardbus.4; auf einigen Laptops Schwierigkeiten, Speicherbereiche zu erkennen. Es treten dann Fehlermeldungen wie die folgende auf: cbb0: Could not map register memory device_probe_and_attach: cbb0 attach returned 12 Um dieses Problem zu lösen, muss eine schreibgeschützte &man.sysctl.8;-Variable verändert werden. Fügen Sie in /boot/loader.conf hinzu und starten Sie das System neu. Danach sollte &man.cardbus.4; fehlerfrei funktionieren. Tuning von Laufwerken Der folgende Abschnitt beschreibt die verschiedenen Methoden zur Feinabstimmung der Laufwerke. Oft sind mechanische Teile in Laufwerken, wie SCSI-Laufwerke, verbaut. Diese können einen Flaschenhals bei der Gesamtleistung des Systems darstellen. Sie können zwar auch ein Laufwerk ohne mechanische Teile einbauen, wie z.B. ein Solid-State-Drive, aber Laufwerke mit mechanischen Teilen werden auch in naher Zukunft nicht vom Markt verschwinden. Bei der Feinabstimmung ist es ratsam, die Funktionen von &man.iostat.8; zu verwenden, um verschiedene Änderungen zu testen und um nützliche IO-Informationen des Systems zu erhalten. Sysctl Variablen <varname>vfs.vmiodirenable</varname> vfs.vmiodirenable Die &man.sysctl.8;-Variable vfs.vmiodirenable besitzt in der Voreinstellung den Wert 1. Die Variable kann auf den Wert 0 (deaktiviert) oder 1 (aktiviert) gesetzt werden. Sie steuert, wie Verzeichnisse vom System zwischengespeichert werden. Die meisten Verzeichnisse sind klein und benutzen nur ein einzelnes Fragment, typischerweise 1 kB, im Dateisystem und 512 Bytes im Buffer-Cache. Ist die Variable deaktiviert, wird der Buffer-Cache nur eine limitierte Anzahl Verzeichnisse zwischenspeichern, auch wenn das System über sehr viel Speicher verfügt. Ist die Variable aktiviert, kann der Buffer-Cache den VM-Page-Cache benutzen, um Verzeichnisse zwischenzuspeichern. Der ganze Speicher steht damit zum Zwischenspeichern von Verzeichnissen zur Verfügung. Der Nachteil bei dieser Vorgehensweise ist, dass zum Zwischenspeichern eines Verzeichnisses mindestens eine physikalische Seite im Speicher, die normalerweise 4 kB groß ist, anstelle von 512 Bytes gebraucht wird. Es wird empfohlen, diese Option aktiviert zu lassen, wenn Sie Dienste zur Verfügung stellen, die viele Dateien manipulieren. Beispiele für solche Dienste sind Web-Caches, große Mail-Systeme oder Netnews. Die aktivierte Variable vermindert, trotz des verschwendeten Speichers, in aller Regel nicht die Leistung des Systems, obwohl Sie das nachprüfen sollten. <varname>vfs.write_behind</varname> vfs.write_behind In der Voreinstellung besitzt die &man.sysctl.8;-Variable vfs.write_behind den Wert 1 (aktiviert). Mit dieser Einstellung schreibt das Dateisystem anfallende vollständige Cluster, die besonders beim sequentiellen Schreiben großer Dateien auftreten, direkt auf das Medium aus. Dies verhindert, dass sich im Buffer-Cache veränderte Puffer (dirty buffers) ansammeln, die die I/O-Verarbeitung nicht mehr beschleunigen würden. Unter bestimmten Umständen blockiert diese Funktion allerdings Prozesse. Setzen Sie in diesem Fall die Variable vfs.write_behind auf den Wert 0. <varname>vfs.hirunningspace</varname> vfs.hirunningspace Die &man.sysctl.8;-Variable vfs.hirunningspace bestimmt systemweit die Menge ausstehender Schreiboperationen, die dem Platten-Controller zu jedem beliebigen Zeitpunkt übergeben werden können. Normalerweise können Sie den Vorgabewert verwenden. Auf Systemen mit vielen Platten kann der Wert aber auf 4 bis 5 Megabyte erhöht werden. Ein zu hoher Wert (größer als der Schreib-Schwellwert des Buffer-Caches) kann zu Leistungsverlusten führen. Setzen Sie den Wert daher nicht zu hoch! Hohe Werte können auch Leseoperationen verzögern, die gleichzeitig mit Schreiboperationen ausgeführt werden. Es gibt weitere &man.sysctl.8;-Variablen, mit denen Sie den Buffer-Cache und den VM-Page-Cache beeinflussen können. Es wird nicht empfohlen, diese Variablen zu verändern, da das VM-System den virtuellen Speicher selbst sehr gut verwaltet. <varname>vm.swap_idle_enabled</varname> vm.swap_idle_enabled Die &man.sysctl.8;-Variable vm.swap_idle_enabled ist für große Mehrbenutzer-Systeme gedacht, auf denen sich viele Benutzer an- und abmelden und auf denen es viele Prozesse im Leerlauf (idle) gibt. Solche Systeme fragen kontinuierlich freien Speicher an. Wenn Sie die Variable vm.swap_idle_enabled aktivieren, können Sie die Auslagerungs-Hysterese von Seiten mit den Variablen vm.swap_idle_threshold1 und vm.swap_idle_threshold2 einstellen. Die Schwellwerte beider Variablen geben die Zeit in Sekunden an, in denen sich ein Prozess im Leerlauf befinden muss. Wenn die Werte so eingestellt sind, dass Seiten früher als nach dem normalen Algorithmus ausgelagert werden, verschafft das dem Auslagerungs-Prozess mehr Luft. Aktivieren Sie diese Funktion nur, wenn Sie sie wirklich benötigen: Die Speicherseiten werden eher früher als später ausgelagert. Der Platz im Swap-Bereich wird dadurch schneller verbraucht und die Plattenaktivitäten steigen an. Auf kleinen Systemen hat diese Funktion spürbare Auswirkungen. Auf großen Systemen, die sowieso schon Seiten auslagern müssen, können ganze Prozesse leichter in den Speicher geladen oder ausgelagert werden. <varname>hw.ata.wc</varname> hw.ata.wc Obwohl das Abstellen des IDE-Schreib-Zwischenspeichers die Bandbreite zum Schreiben auf die IDE-Festplatte verringert, kann es aus Gründen der Datenkonsistenz als notwendig angesehen werden. Das Problem ist, dass IDE-Platten keine zuverlässige Aussage über das Ende eines Schreibvorgangs treffen. Wenn der Schreib-Zwischenspeicher aktiviert ist, werden die Daten nicht in der Reihenfolge ihres Eintreffens geschrieben. Es kann sogar passieren, dass das Schreiben mancher Blöcke im Fall von starker Plattenaktivität auf unbefristete Zeit verzögert wird. Ein Absturz oder Stromausfall zu dieser Zeit kann die Dateisysteme erheblich beschädigen. Sie sollten den Wert der &man.sysctl.8;-Variable hw.ata.wc auf dem System überprüfen. Wenn der Schreib-Zwischenspeicher abgestellt ist, können Sie ihn beim Systemstart aktivieren, indem Sie die Variable in /boot/loader.conf auf den Wert 1 setzen. Weitere Informationen finden Sie in &man.ata.4;. <literal>SCSI_DELAY</literal> (<varname>kern.cam.scsi_delay</varname>) kern.cam.scsi_delay Kerneloptionen SCSI DELAY Mit der Kerneloption SCSI_DELAY kann die Dauer des Systemstarts verringert werden. Der Vorgabewert ist recht hoch und er verzögert den Systemstart um 15 oder mehr Sekunden. Normalerweise kann dieser Wert, insbesondere mit modernen Laufwerken, mit der &man.sysctl.8;-Variable kern.cam.scsi_delay auf 5 Sekunden heruntergesetzt werden. Die Variable sowie die Kerneloption verwenden für die Zeitangabe Millisekunden und nicht Sekunden. Soft Updates Soft Updates &man.tunefs.8; Mit &man.tunefs.8; lassen sich Feineinstellungen an Dateisystemen vornehmen. Das Programm hat verschiedene Optionen. Soft Updates werden wie folgt ein- und ausgeschaltet: &prompt.root; tunefs -n enable /filesystem &prompt.root; tunefs -n disable /filesystem Ein eingehängtes Dateisystem kann nicht mit &man.tunefs.8; modifiziert werden. Soft Updates werden am besten im Single-User Modus aktiviert, bevor Partitionen eingehangen sind. Durch Einsatz eines Zwischenspeichers wird die Performance im Bereich der Metadaten, vorwiegend beim Anlegen und Löschen von Dateien, gesteigert. Es wird empfohlen, Soft Updates auf allen UFS-Dateisystemen zu aktivieren. Allerdings sollten Sie sich über die zwei Nachteile von Soft Updates bewusst sein: Erstens garantieren Soft Updates zwar die Konsistenz der Daten im Fall eines Absturzes, aber es kann passieren, dass das Dateisystem über mehrere Sekunden oder gar eine Minute nicht synchronisiert wurde. Nicht geschriebene Daten gehen dann vielleicht verloren. Zweitens verzögern Soft Updates die Freigabe von Datenblöcken. Eine größere Aktualisierung eines fast vollen Dateisystems, wie dem Root-Dateisystem, z.B. während eines make installworld, kann das Dateisystem vollaufen lassen. Dadurch würde die Aktualisierung fehlschlagen. Details über Soft Updates Soft Updates Details Bei einem Metadaten-Update werden die Inodes und Verzeichniseinträge aktualisiert auf die Platte zurückgeschrieben. Es gibt zwei klassische Ansätze, um die Metadaten des Dateisystems auf die Platte zu schreiben. Das historisch übliche Verfahren waren synchrone Updates der Metadaten, d. h. wenn eine Änderung an einem Verzeichnis nötig war, wurde anschließend gewartet, bis diese Änderung tatsächlich auf die Platte zurückgeschrieben worden war. Der Inhalt der Dateien wurde im Buffer Cache zwischengespeichert und später asynchron auf die Platte geschrieben. Der Vorteil dieser Implementierung ist, dass sie sicher funktioniert. Wenn während eines Updates ein Ausfall erfolgt, haben die Metadaten immer einen konsistenten Zustand. Eine Datei ist entweder komplett angelegt oder gar nicht. Wenn die Datenblöcke einer Datei im Fall eines Absturzes noch nicht den Weg aus dem Buffer Cache auf die Platte gefunden haben, kann &man.fsck.8; das Dateisystem reparieren, indem es die Dateilänge einfach auf 0 setzt. Außerdem ist die Implementierung einfach und überschaubar. Der Nachteil ist, dass Änderungen der Metadaten sehr langsam vor sich gehen. Ein rm -r beispielsweise fasst alle Dateien eines Verzeichnisses der Reihe nach an, aber jede dieser Änderungen am Verzeichnis (Löschen einer Datei) wird einzeln synchron auf die Platte geschrieben. Gleiches beim Auspacken großer Hierarchien mit tar -x. Der zweite Ansatz sind asynchrone Metadaten-Updates. Das ist der Standard, wenn UFS-Dateisysteme mit mount -o async eingehängt werden. Man schickt die Updates der Metadaten einfach auch noch über den Buffer Cache, sie werden also zwischen die Updates der normalen Daten eingeschoben. Vorteil ist, dass man nun nicht mehr auf jeden Update warten muss, Operationen, die zahlreiche Metadaten ändern, werden also viel schneller. Auch hier ist die Implementierung sehr einfach und wenig anfällig für Fehler. Nachteil ist, dass keinerlei Konsistenz des Dateisystems mehr gesichert ist. Wenn mitten in einer Operation, die viele Metadaten ändert, ein Ausfall erfolgt (Stromausfall, drücken des Reset-Schalters), dann ist das Dateisystem anschließend in einem unbestimmten Zustand. Niemand kann genau sagen, was noch geschrieben worden ist und was nicht mehr; die Datenblöcke einer Datei können schon auf der Platte stehen, während die inode Tabelle oder das zugehörige Verzeichnis nicht mehr aktualisiert worden ist. Man kann praktisch kein &man.fsck.8; mehr implementieren, das diesen Zustand wieder reparieren kann, da die dazu nötigen Informationen einfach auf der Platte fehlen. Wenn ein Dateisystem irreparabel beschädigt wurde, hat man nur noch die Möglichkeit es neu zu erzeugen und die Daten vom Backup zurückspielen. Der Ausweg aus diesem Dilemma ist ein dirty region logging, was auch als Journalling bezeichnet wird. Man schreibt die Metadaten-Updates zwar synchron, aber nur in einen kleinen Plattenbereich, die logging area. Von da aus werden sie dann asynchron auf ihre eigentlichen Bereiche verteilt. Da die logging area ein kleines zusammenhängendes Stückchen ist, haben die Schreibköpfe der Platte bei massiven Operationen auf Metadaten keine allzu großen Wege zurückzulegen, so dass alles ein ganzes Stück schneller geht als bei klassischen synchronen Updates. Die Komplexität der Implementierung hält sich ebenfalls in Grenzen, somit auch die Anfälligkeit für Fehler. Als Nachteil ergibt sich, dass Metadaten zweimal auf die Platte geschrieben werden müssen (einmal in die logging area, einmal an die richtige Stelle), so dass das im Falle regulärer Arbeit (also keine gehäuften Metadatenoperationen) eine Pessimisierung des Falls der synchronen Updates eintritt, es wird alles langsamer. Dafür hat man als Vorteil, dass im Falle eines Absturzes der konsistente Zustand dadurch erzielbar ist, dass die angefangenen Operationen aus dem dirty region log entweder zu Ende ausgeführt oder komplett verworfen werden, wodurch das Dateisystem schnell wieder zur Verfügung steht. Die Lösung von Kirk McKusick, dem Schöpfer von Berkeley FFS, waren Soft Updates: die notwendigen Updates der Metadaten werden im Speicher gehalten und dann sortiert auf die Platte geschrieben (ordered metadata updates). Dadurch hat man den Effekt, dass im Falle massiver Metadaten-Änderungen spätere Operationen die vorhergehenden, noch nicht auf die Platte geschriebenen Updates desselben Elements im Speicher einholen. Alle Operationen, auf ein Verzeichnis beispielsweise, werden also in der Regel noch im Speicher abgewickelt, bevor der Update überhaupt auf die Platte geschrieben wird (die dazugehörigen Datenblöcke werden natürlich auch so sortiert, dass sie nicht vor ihren Metadaten auf der Platte sind). Im Fall eines Absturzes hat man ein implizites log rewind: alle Operationen, die noch nicht den Weg auf die Platte gefunden haben, sehen danach so aus, als hätten sie nie stattgefunden. Man hat so also den konsistenten Zustand von ca. 30 bis 60 Sekunden früher sichergestellt. Der verwendete Algorithmus garantiert dabei, dass alle tatsächlich benutzten Ressourcen auch in den entsprechenden Bitmaps (Block- und inode Tabellen) als belegt markiert sind. Der einzige Fehler, der auftreten kann, ist, dass Ressourcen noch als belegt markiert sind, die tatsächlich frei sind. &man.fsck.8; erkennt dies und korrigiert diese nicht mehr belegten Ressourcen. Die Notwendigkeit eines Dateisystem-Checks darf aus diesem Grunde auch ignoriert und das Dateisystem mittels mount -f zwangsweise eingebunden werden. Um noch allozierte Ressourcen freizugeben muss später ein &man.fsck.8; nachgeholt werden. Das ist dann auch die Idee des background fsck: beim Starten des Systems wird lediglich ein Schnappschuss des Dateisystems gemacht, mit dem &man.fsck.8; dann später arbeiten kann. Alle Dateisysteme dürfen unsauber eingebunden werden und das System kann sofort in den Multiuser-Modus gehen. Danach wird ein Hintergrund-&man.fsck.8; für die Dateisysteme gestartet, die dies benötigen, um möglicherweise irrtümlich belegte Ressourcen freizugeben. Dateisysteme ohne Soft Updates benötigen natürlich immer noch den üblichen Vordergrund-&man.fsck.8;, bevor sie eingebunden werden können. Der Vorteil ist, dass die Metadaten-Operationen beinahe so schnell ablaufen wie im asynchronen Fall, also auch schneller als beim logging, das die Metadaten immer zweimal schreiben muss. Als Nachteil stehen dem die Komplexität des Codes, ein erhöhter Speicherverbrauch und einige spezielle Eigenheiten entgegen. Nach einem Absturz ist ein etwas älterer Stand auf der Platte – statt einer leeren, aber bereits angelegten Datei, wie nach einem herkömmlichen &man.fsck.8; Lauf, ist auf einem Dateisystem mit Soft Updates keine Spur der entsprechenden Datei mehr zu sehen, da weder die Metadaten noch der Dateiinhalt je auf die Platte geschrieben wurden. Weiterhin kann der Platz nach einem &man.rm.1; nicht sofort wieder als verfügbar markiert werden, sondern erst dann, wenn der Update auch auf die Platte vermittelt worden ist. Dies kann besonders dann Probleme bereiten, wenn große Datenmengen in einem Dateisystem installiert werden, das nicht genügend Platz hat, um alle Dateien zweimal unterzubringen. Einstellungen von Kernel Limits Einstellungen von Kernel Limits Datei und Prozeß Limits <varname>kern.maxfiles</varname> kern.maxfiles Abhängig von den Anforderungen an das System kann die &man.sysctl.8;-Variable kern.maxfiles erhöht oder gesenkt werden. Die Variable legt die maximale Anzahl von Dateideskriptoren auf dem System fest. Wenn die Dateideskriptoren aufgebraucht sind, werden Sie die Meldung file: table is full wiederholt im Puffer für Systemmeldungen sehen. Den Inhalt des Puffers können Sie sich mit &man.dmesg.8; anzeigen lassen. Jede offene Datei, jedes Socket und jede FIFO verbraucht einen Dateideskriptor. Auf dicken Produktionsservern können leicht Tausende Dateideskriptoren benötigt werden, abhängig von der Art und Anzahl der gleichzeitig laufenden Dienste. In älteren &os;-Versionen wurde die Voreinstellung von kern.maxfile aus der Kernelkonfigurationsoption maxusers bestimmt. kern.maxfiles wächst proportional mit dem Wert von maxusers. Wenn Sie einen angepassten Kernel kompilieren, empfiehlt es sich diese Option entsprechend der maximalen Benutzerzahl des Systems einzustellen. Obwohl auf einer Produktionsmaschine vielleicht nicht 256 Benutzer gleichzeitig angemeldet sind, können die benötigten Ressourcen ähnlich hoch wie bei einem großen Webserver sein. Die nur lesbare &man.sysctl.8;-Variable kern.maxusers wird beim Systemstart automatisch aus dem zur Verfügung stehenden Hauptspeicher bestimmt. Im laufenden Betrieb kann dieser Wert aus kern.maxusers ermittelt werden. Einige Systeme benötigen für diese Variable einen anderen Wert, wobei 64, 128 und 256 gewöhnliche Werte darstellen. Es wird nicht empfohlen, die Anzahl der Dateideskriptoren auf einen Wert größer 256 zu setzen, es sei denn, Sie benötigen wirklich eine riesige Anzahl von ihnen. Viele der von kern.maxusers auf einen Standardwert gesetzten Parameter können beim Systemstart oder im laufenden Betrieb in /boot/loader.conf angepasst werden. In &man.loader.conf.5; und /boot/defaults/loader.conf finden Sie weitere Details und Hinweise. Ältere &os;-Versionen setzen diesen Wert selbst, wenn Sie in der Konfigurationsdatei den Wert 0 Der verwendete Algorithmus setzt maxusers auf die Speichergröße des Systems. Der minimale Wert beträgt dabei 32, das Maximum ist 384. angeben. Wenn Sie den Wert selbst bestimmen wollen, sollten Sie maxusers mindestens auf 4 setzen. Dies gilt insbesondere dann, wenn Sie beabsichtigen, &xorg; zu benutzen oder Software zu kompilieren. Der wichtigste Wert, der durch maxusers bestimmt wird, die maximale Anzahl an Prozessen ist, die auf 20 + 16 * maxusers gesetzt wird. Wird maxusers auf 1 setzen, können gleichzeitig nur 36 Prozesse laufen, von denen ungefähr 18 schon beim Booten des Systems gestartet werden. Dazu kommen nochmals etwa 15 Prozesse beim Start von &xorg;. Selbst eine einfache Aufgabe wie das Lesen einer Manualpage benötigt neun Prozesse zum Filtern, Dekomprimieren und Betrachten der Datei. Für die meisten Benutzer sollte es ausreichen, maxusers auf 64 zu setzen, womit 1044 gleichzeitige Prozesse zur Verfügung stehen. Wenn Sie allerdings den Fehler proc table full beim Start eines Programms oder auf einem Server mit einer großen Benutzerzahl sehen, dann sollten Sie den Wert nochmals erhöhen und den Kernel neu bauen. Die Anzahl der Benutzer, die sich auf einem Rechner anmelden kann, wird durch maxusers nicht begrenzt. Der Wert dieser Variablen legt neben der möglichen Anzahl der Prozesse eines Benutzers weitere sinnvolle Größen für bestimmte Systemtabellen fest. <varname>kern.ipc.soacceptqueue</varname> kern.ipc.soacceptqueue Die &man.sysctl.8;-Variable kern.ipc.soacceptqueue beschränkt die Größe der Warteschlange (Listen-Queue) für neue TCP-Verbindungen. Der Vorgabewert von 128 ist normalerweise zu klein, um neue Verbindungen auf einem stark ausgelasteten Webserver zuverlässig zu handhaben. Auf solchen Servern sollte der Wert auf 1024 oder höher gesetzt werden. Dienste wie &man.sendmail.8; oder Apache können die Größe der Queue selbst einschränken. Oft gibt es die Möglichkeit, die Größe der Listen-Queue in einer Konfigurationsdatei einzustellen. Eine große Listen-Queue übersteht vielleicht auch einen Denial of Service Angriff (DoS). Netzwerk Limits Die Kerneloption NMBCLUSTERS schreibt die Anzahl der Netzwerkpuffer (Mbufs) fest, die das System besitzt. Eine zu geringe Anzahl Mbufs auf einem Server mit viel Netzwerkverkehr verringert die Leistung von &os;. Jeder Mbuf-Cluster nimmt ungefähr 2 kB Speicher in Anspruch, so dass ein Wert von 1024 insgesamt 2 Megabyte Speicher für Netzwerkpuffer im System reserviert. Wie viele Cluster benötigt werden, lässt sich durch eine einfache Berechnung herausfinden. Ein Webserver, der maximal 1000 gleichzeitige Verbindungen servieren soll, wobei jede der Verbindungen einen 6 kB großen Sendepuffer und einen 16 kB großen Empfangspuffer benötigt, braucht ungefähr 32 MB Speicher für Netzwerkpuffer. Als Daumenregel verdoppeln Sie diese Zahl, so dass sich für NMBCLUSTERS der Wert 2x32 MB / 2 kB= 64 MB / 2 kB= 32768 ergibt. Für Maschinen mit viel Speicher werden Werte zwischen 4096 und 32768 empfohlen. Unter keinen Umständen sollten Sie diesen Wert willkürlich erhöhen, da dies zu einem Absturz beim Systemstart führen kann. Verwenden Sie &man.netstat.1; mit um den Gebrauch der Netzwerkpuffer zu kontrollieren. Die Netzwerkpuffer können beim Systemstart mit der Loader-Variablen kern.ipc.nmbclusters eingestellt werden. Nur auf älteren &os;-Systemen müssen Sie die Kerneloption NMBCLUSTERS verwenden. Die Anzahl der &man.sendfile.2; Puffer muss auf ausgelasteten Servern, die den Systemaufruf &man.sendfile.2; oft verwenden, vielleicht erhöht werden. Dazu können Sie die Kerneloption NSFBUFS verwenden oder die Anzahl der Puffer in /boot/loader.conf (siehe &man.loader.8;) setzen. Die Puffer sollten erhöht werden, wenn Sie Prozesse im Zustand sfbufa sehen. Die schreibgeschützte &man.sysctl.8;-Variable kern.ipc.nsfbufs zeigt die Anzahl eingerichteten Puffer im Kernel. Der Wert dieser Variablen wird normalerweise von kern.maxusers bestimmt. Manchmal muss die Pufferanzahl jedoch manuell eingestellt werden. Auch wenn ein Socket nicht blockierend angelegt wurde, kann der Aufruf von &man.sendfile.2; blockieren, um auf freie struct sf_buf Puffer zu warten. <varname>net.inet.ip.portrange.*</varname> net.inet.ip.portrange.* Die &man.sysctl.8;-Variable net.inet.ip.portrange.* legt die Portnummern für TCP- und UDP-Sockets fest. Es gibt drei Bereiche: den niedrigen Bereich, den normalen Bereich und den hohen Bereich. Die meisten Netzprogramme benutzen den normalen Bereich. Dieser Bereich umfasst in der Voreinstellung die Portnummern 1024 bis 5000 und wird durch die Variablen net.inet.ip.portrange.first und net.inet.ip.portrange.last festgelegt. Die festgelegten Bereiche für Portnummern werden von ausgehenden Verbindungen benutzt. Unter bestimmten Umständen, beispielsweise auf stark ausgelasteten Proxy-Servern, sind alle Portnummern für ausgehende Verbindungen belegt. Bereiche für Portnummern spielen auf Servern keine Rolle, die hauptsächlich eingehende Verbindungen verarbeiten (wie ein normaler Webserver) oder nur eine begrenzte Anzahl ausgehender Verbindungen öffnen (beispielsweise ein Mail-Relay). Wenn keine freien Portnummern mehr vorhanden sind, sollte die Variable net.inet.ip.portrange.last langsam erhöht werden. Ein Wert von 10000, 20000 oder 30000 ist angemessen. Beachten Sie auch eine vorhandene Firewall, wenn Sie die Bereiche für Portnummern ändern. Einige Firewalls sperren große Bereiche (normalerweise aus den kleinen Portnummern) und erwarten, dass hohe Portnummern für ausgehende Verbindungen verwendet werden. Daher kann es erforderlich sein, den Wert von net.inet.ip.portrange.first zu erhöhen. <literal>TCP</literal> Bandwidth Delay Product Begrenzung TCP Bandwidth Delay Product Begrenzung net.inet.tcp.inflight.enable Die TCP Bandwidth Delay Product Begrenzung wird aktiviert, indem die &man.sysctl.8;-Variable net.inet.tcp.inflight.enable auf den Wert 1 gesetzt wird. Das System wird dadurch angewiesen, für jede Verbindung, das Produkt aus der Übertragungsrate und der Verzögerungszeit zu bestimmen. Dieses Produkt begrenzt die Datenmenge, die für einen optimalen Durchsatz zwischengespeichert werden muss. Diese Begrenzung ist nützlich, wenn Sie Daten über Verbindungen mit einem hohen Produkt aus Übertragungsrate und Verzögerungszeit wie Modems, Gigabit-Ethernet oder schnellen WANs, zur Verfügung stellen. Insbesondere wirkt sich die Begrenzung aus, wenn die Verbindung die Option Window-scaling verwendet oder große Sende-Fenster (send window) benutzt. Schalten Sie die Debug-Meldungen aus, wenn Sie die Begrenzung aktiviert haben. Dazu setzen Sie die Variable net.inet.tcp.inflight.debug auf 0. Auf Produktions-Systemen sollten Sie zudem die Variable net.inet.tcp.inflight.min mindestens auf den Wert 6144 setzen. Allerdings kann ein zu hoher Wert, abhängig von der Verbindung, die Begrenzungsfunktion unwirksam machen. Die Begrenzung reduziert die Datenmenge in den Queues von Routern und Switches, sowie die Datenmenge in der Queue der lokalen Netzwerkkarte. Die Verzögerungszeit (Round Trip Time) für interaktive Anwendungen sinkt, da weniger Pakete zwischengespeichert werden. Dies gilt besonders für Verbindungen über langsame Modems. Die Begrenzung wirkt sich allerdings nur auf das Versenden von Daten aus (Uploads, Server). Auf den Empfang von Daten (Downloads) hat die Begrenzung keine Auswirkungen. Die Variable net.inet.tcp.inflight.stab sollte nicht angepasst werden. Der Vorgabewert der Variablen beträgt 20, das heißt es werden maximal zwei Pakete zu dem Produkt aus Übertragungsrate und Verzögerungszeit addiert. Dies stabilisiert den Algorithmus und verbessert die Reaktionszeit auf Veränderungen. Bei langsamen Verbindungen können sich aber die Laufzeiten der Pakete erhöhen (ohne diesen Algorithmus wären sie allerdings noch höher). In solchen Fällen können Sie versuchen, den Wert der Variablen auf 15, 10 oder 5 herabzusetzen. Gleichzeitig müssen Sie vielleicht auch net.inet.tcp.inflight.min auf einen kleineren Wert (beispielsweise 3500) setzen. Ändern Sie diese Variablen nur ab, wenn Sie keine anderen Möglichkeiten mehr haben. Virtueller Speicher (<foreignphrase>Virtual Memory</foreignphrase>) <varname>kern.maxvnodes</varname> Ein vnode ist die interne Darstellung einer Datei oder eines Verzeichnisses. Die Erhöhung der Anzahl der für das Betriebssystem verfügbaren vnodes verringert also die Schreib- und Lesezugriffe auf der Festplatte. vnodes werden im Normalfall vom Betriebssystem automatisch vergeben und müssen nicht manuell angepasst werden. In einigen Fällen stellt der Zugriff auf eine Platte allerdings einen Flaschenhals dar, daher sollten Sie in diesem Fall die Anzahl der möglichen vnodes erhöhen, um dieses Problem zu beheben. Beachten Sie dabei aber die Größe des inaktiven und freien Hauptspeichers. Um die Anzahl der derzeit verwendeten vnodes zu sehen, geben Sie Folgendes ein: &prompt.root; sysctl vfs.numvnodes vfs.numvnodes: 91349 Die maximal mögliche Anzahl der vnodes erhalten Sie durch die Eingabe von: &prompt.root; sysctl kern.maxvnodes kern.maxvnodes: 100000 Wenn sich die Anzahl der genutzten vnodes dem maximal möglichen Wert nähert, sollten Sie den Wert kern.maxvnodes zuerst um etwa 1000 erhöhen. Beobachten Sie danach die Anzahl der vom System genutzten vfs.numvnodes. Nähert sich der Wert wiederum dem definierten Maximum, müssen Sie kern.maxvnodes nochmals erhöhen. Sie sollten nun eine Änderung des Speicherverbrauches über &man.top.1; registrieren können und über mehr aktiven Speicher verfügen. Hinzufügen von Swap-Bereichen Manchmal benötigt ein System mehr Swap-Bereiche. Dieser Abschnitt beschreibt zwei Methoden, um Swap-Bereiche hinzuzufügen: auf einer bestehenden Partition oder auf einem neuen Laufwerk, und das Hinzufügen einer Swap-Datei auf einer existierenden Partition. Für Informationen zur Verschlüsselung von Swap-Partitionen, zu den dabei möglichen Optionen sowie zu den Gründen für eine Verschlüsselung des Auslagerungsspeichers lesen Sie . Swap auf einer neuen Festplatte oder einer existierenden Partition Das Hinzufügen einer neuen Festplatte für den Swap-Bereich bietet eine bessere Leistung, als die Verwendung einer Partition auf einem vorhandenem Laufwerk. Die Einrichtung von Partitionen und Laufwerken wird in beschrieben. diskutiert Aspekte über die Anordnung und Größe von Swap-Bereichen. Benutzen Sie swapon um eine Swap-Partition zum System hinzuzufügen. Zum Beispiel: &prompt.root; swapon /dev/ada1s1b Sie können jede Partition verwenden, sofern sie nicht schon eingehangen ist. Das gilt auch dann, wenn die Partition bereits Daten enthält. Wird swapon auf einer Partition ausgeführt die Daten enthält, werden die vorhandenen Daten überschrieben und sind unweigerlich verloren. Stellen Sie sicher, dass die Partition, die Sie als Swap-Bereich hinzufügen möchten, wirklich die gewünschte Partition ist, bevor Sie swapon ausführen. Um diese Swap-Partition automatisch beim Systemstart hinzuzufügen, fügen Sie einen Eintrag in /etc/fstab hinzu: /dev/ada1s1b none swap sw 0 0 Die einzelnen Einträge von /etc/fstab werden in &man.fstab.5; erläutert. Weitere Informationen zu swapon finden Sie in &man.swapon.8;. Swap-Dateien erstellen Anstatt eine Partition zu verwenden, erstellen diese Beispiele eine 64 MB große Swap-Datei mit dem Namen /usr/swap0. Die Verwendung von Swap-Dateien macht es erforderlich, dass das Modul &man.md.4; entweder im Kernel vorhanden oder geladen wird, bevor Swap aktiviert ist. enthält Informationen zum Bau eines angepassten Kernels. Erstellen einer Swap-Datei unter &os; 10.<replaceable>X</replaceable> und neuer Erstellen Sie die Swap-Datei: &prompt.root; dd if=/dev/zero of=/usr/swap0 bs=1024k count=64 Setzen Sie die richtigen Berechtigungen für die neue Datei: &prompt.root; chmod 0600 /usr/swap0 Fügen Sie einen Eintrag in /etc/fstab hinzu: md99 none swap sw,file=/usr/swap0,late 0 0 Das &man.md.4; Gerät md99 wird verwendet, damit die niedrigeren Gerätenummer für die interaktive Benutzung frei bleiben. Der Swap-Speicher wird nun automatisch beim Systemstart hinzugefügt. Benutzen Sie &man.swapon.8; um den Swap-Speicher direkt zu aktivieren: &prompt.root; swapon -aL Erstellen einer Swap-Datei unter &os; 9.<replaceable>X</replaceable> und älter Erstellen Sie die Swap-Datei /usr/swap0: &prompt.root; dd if=/dev/zero of=/usr/swap0 bs=1024k count=64 Setzen Sie die richtigen Berechtigungen für die neue Datei: &prompt.root; chmod 0600 /usr/swap0 Aktivieren Sie die Swap-Datei in /etc/rc.conf: swapfile="/usr/swap0" # Set to name of swap file Um die Swap-Datei sofort zu aktivieren, spezifizieren Sie ein speicherbasiertes Laufwerk. enthält weitere Informationen. &prompt.root; mdconfig -a -t vnode -f /usr/swap0 -u 0 && swapon /dev/md0 Energie- und Ressourcenverwaltung Hiten Pandya Verfasst von Tom Rhodes Es ist wichtig, Hardware effizient einzusetzen. Energie- und Ressourcenverwaltung ermöglicht es dem System auf verschiedene Ereignisse, beispielsweise einen unerwarteten Temperaturanstieg, reagieren zu können. Eine frühe Spezifikation für die Energieverwaltung war das Advanced Power Management (APM). APM steuert den Energieverbrauch eines Systems auf Basis der Systemaktivität. Ursprünglich konnten Stromverbrauch und Wärmeabgabe eines Systems nur schlecht von Betriebssystemen gesteuert werden. Die Hardware wurde vom BIOS gesteuert, was die Kontrolle der Energieverwaltung für den Anwender erschwerte. Das APM-BIOS wird von dem Hersteller des Systems zur Verfügung gestellt und ist auf die spezielle Hardware angepasst. Der APM-Treiber des Betriebssystems greift auf das APM Software Interface zu, das den Energieverbrauch regelt. APM hat hauptsächlich vier Probleme. Erstens läuft die Energieverwaltung unabhängig vom Betriebssystem in einem herstellerspezifischen BIOS. Beispielsweise kann das APM-BIOS die Festplatten nach einer konfigurierbaren Zeit ohne die Zustimmung des Betriebssystems herunterfahren. Zweitens befindet sich die ganze APM-Logik im BIOS; das Betriebssystem hat gar keine APM-Komponenten. Bei Problemen mit dem APM-BIOS muss das Flash-ROM aktualisiert werden. Diese Prozedur ist gefährlich, da sie im Fehlerfall das System unbrauchbar machen kann. Zum Dritten ist APM eine Technik, die herstellerspezifisch ist und nicht koordiniert wird. Fehler im BIOS eines Herstellers werden nicht unbedingt im BIOS anderer Hersteller korrigiert. Das letzte Problem ist, dass im APM-BIOS nicht genügend Platz vorhanden ist, um eine durchdachte oder eine auf den Zweck der Maschine zugeschnittene Energieverwaltung zu implementieren. Das Plug and Play BIOS (PNPBIOS) war in vielen Situationen ebenfalls unzureichend. Das PNPBIOS verwendet eine 16-Bit-Technik. Damit das Betriebssystem das PNPBIOS ansprechen kann, muss es in einer 16-Bit-Emulation laufen. &os; stellt einen APM-Treiber zur Verfügung, welcher für Systeme benutzt werden sollte, die vor dem Jahr 2000 hergestellt wurden. Der Treiber wird in &man.apm.4; beschrieben. ACPI APM Der Nachfolger von APM ist das Advanced Configuration and Power Interface (ACPI). ACPI ist ein Standard verschiedener Hersteller, welcher die Verwaltung von Hardware und Energiesparfunktionen festlegt. Die ACPI-Funktionen, die mehr Kontrolle und Flexibilität bieten, können vom Betriebssystem gesteuert werden. Dieser Abschnitt zeigt die Konfiguration von ACPI unter &os;. Zudem werden einige Tipps zur Fehlersuche vorgestellt und wie Sie Problemberichte einreichen können, sodass Entwickler ACPI-Probleme erfassen und beheben können. Konfiguration des <acronym>ACPI</acronym> Der &man.acpi.4;-Treiber wird standardmäßig beim Systemstart vom &man.loader.8; geladen und sollte daher nicht fest in den Kernel eingebunden werden. Der Treiber kann im laufenden Betrieb nicht entfernt werden, da er zur Kommunikation mit der Hardware verwendet wird. Falls jedoch Probleme auftreten, kann ACPI auch komplett deaktiviert werden. Dazu muss hint.acpi.0.disabled="1" in /boot/loader.conf gesetzt und anschließend das System neu gestartet werden. Alternativ können Sie diese Variable auch am &man.loader.8;-Prompt eingeben, wie in beschrieben. ACPI und APM können nicht zusammen verwendet werden. Das zuletzt geladene Modul beendet sich, sobald es bemerkt, dass das andere Modul geladen ist. Mit acpiconf können Sie das System in einen Ruhemodus (sleep mode) versetzen. Es gibt verschiedene Modi (von 1 bis 5), die Sie auf der Kommandozeile mit angeben können. Für die meisten Anwender sind die Modi 1 und 3 völlig ausreichend. Der Modus 5 schaltet das System aus (Soft-off) und entspricht dem Befehl halt -p. Verschiedene Optionen können mit sysctl gesetzt werden. Lesen Sie dazu &man.acpi.4; sowie &man.acpiconf.8;. Häufige Probleme ACPI ACPI gibt es in allen modernen Rechnern der ia32- (x86), ia64- (Itanium) und amd64- (AMD) Architektur. Der vollständige Standard bietet Funktionen zur Steuerung und Verwaltung der CPU-Leistung, der Stromversorgung, von Wärmebereichen, Batterien, eingebetteten Controllern und Bussen. Auf den meisten Systemen wird nicht der vollständige Standard implementiert. Arbeitsplatzrechner besitzen meist nur Funktionen zur Verwaltung der Busse, während Notebooks Funktionen zur Temperaturkontrolle und Ruhezustände besitzen. Ein ACPI konformes System besitzt verschiedene Komponenten. Die BIOS- und Chipsatz-Hersteller stellen mehrere statische Tabellen bereit, zum Beispiel die Fixed-ACPI-Description-Table (FADT). Die Tabellen enthalten beispielsweise die mit SMP-Systemen benutzte APIC-Map, Konfigurationsregister und einfache Konfigurationen. Zusätzlich gibt es die Differentiated-System-Description-Table (DSDT), die Bytecode enthält. Die Tabelle ordnet Geräte und Methoden in einem baumartigen Namensraum an. Ein ACPI-Treiber muss die statischen Tabellen einlesen, einen Interpreter für den Bytecode bereitstellen und die Gerätetreiber im Kernel so modifizieren, dass sie mit dem ACPI-Subsystem kommunizieren. Für &os;, &linux; und NetBSD hat &intel; den Interpreter ACPI-CA, zur Verfügung gestellt. Der Quelltext zu ACPI-CA befindet sich im Verzeichnis src/sys/contrib/dev/acpica. Die Schnittstelle von ACPI-CA zu &os; befindet sich unter src/sys/dev/acpica/Osd. Treiber, die verschiedene ACPI-Geräte implementieren, befinden sich im Verzeichnis src/sys/dev/acpica. ACPI Probleme mit Damit ACPI richtig funktioniert, müssen alle Teile funktionieren. Im Folgenden finden Sie eine Liste mit Problemen und möglichen Abhilfen oder Korrekturen. Die Liste ist nach der Häufigkeit, mit der die Probleme auftreten, sortiert. Wenn eine Korrektur das Problem nicht behebt, finden Sie in Anweisungen, wie Sie einen Problembericht einreichen können. Mausprobleme Es kann vorkommen, dass die Maus nicht mehr funktioniert, wenn Sie nach einem Suspend weiterarbeiten wollen. Ist dies bei Ihnen der Fall, reicht es meistens aus, den Eintrag hint.psm.0.flags="0x3000" in /boot/loader.conf aufzunehmen. Suspend/Resume ACPI kennt drei Suspend-to-RAM-Zustände (STR), S1-S3 sowie einen Suspend-to-Disk-Zustand (STD) S4. STD kann auf zwei Arten implementiert werden: S4BIOS und S4OS. Im ersten Fall wird der Suspend-to-Disk-Zustand durch das BIOS hergestellt im zweiten Fall alleine durch das Betriebssystem. Der Zustand S5 wird Soft off genannt. In diesem Zustand befindet sich ein Rechner, wenn die Stromversorgung angeschlossen ist, der Rechner aber nicht hochgefahren ist. Benutzen Sie sysctl hw.acpi um die Suspend-Zustände zu ermitteln. Diese Beispielausgabe stammt von einem Thinkpad: hw.acpi.supported_sleep_state: S3 S4 S5 hw.acpi.s4bios: 0 Diese Ausgabe besagt, dass mit dem Befehl acpiconf -s die Zustände S3, S4 und S5 eingestellt werden können. Hätte den Wert 1, gäbe es den Zustand S4BIOS anstelle von S4. Wenn Sie die Suspend- und Resume-Funktionen testen, fangen Sie mit dem S1-Zustand an, wenn er angeboten wird. Dieser Zustand wird am ehesten funktionieren, da der Zustand wenig Treiber-Unterstützung benötigt. Der Zustand S2 ist ähnlich wie S1, allerdings hat ihn noch niemand implementiert. Als nächstes sollten Sie den Zustand S3 ausprobieren. Dies ist der tiefste STR-Schlafzustand. Dieser Zustand ist auf massive Treiber-Unterstützung angewiesen, um die Geräte wieder richtig zu initialisieren. Ein häufiges Problem mit Suspend/Resume ist, dass viele Gerätetreiber ihre Firmware, Register und Gerätespeicher nicht korrekt speichern, wiederherstellen und/oder reinitialisieren. Um dieses Problem zu lösen, sollten Sie zuerst die folgenden Befehle ausführen: &prompt.root; sysctl debug.bootverbose=1 &prompt.root; sysctl debug.acpi.suspend_bounce=1 &prompt.root; acpiconf -s 3 Dieser Test emuliert einen Suspend/Resume-Zyklus für alle Geräte (ohne dass diese dabei wirklich in den Status S3 wechseln). In vielen Fällen reicht dies bereits aus, um Probleme (beispielsweise verlorener Firmware-Status, Timeouts, hängende Geräte) zu entdecken. Beachten Sie dabei, dass das Gerät bei diesem Test nicht wirklich in den Status S3 wechseln. Es kann also vorkommen, dass manche Geräte weiterhin mit Strom versorgt werden (dies wäre bei einem wirklichen Wechsel in den Status S3 NICHT möglich. Andere Geräte werden normal weiterarbeiten, weil sie über keine Suspend/Resume-Funktionen verfügen. Schwierigere Fälle können den Einsatz zusätzlicher Hardware (beispielsweise serielle Ports/Kabel für die Verbindung über eine serielle Konsole oder Firewire-Ports/Kabel für &man.dcons.4;) sowie Kenntnisse im Bereich Kerneldebugging erforderlich machen. Um das Problem einzugrenzen, entladen Sie soviele Treiber wie möglich. Wenn das funktioniert, laden Sie einen Treiber nach dem anderen, bis der Fehler wieder auftritt. Typischerweise verursachen binäre Treiber wie nvidia.ko, Grafiktreiber und USB-Treiber die meisten Fehler, hingegen laufen Ethernet-Treiber für gewöhnlich sehr zuverlässig. Wenn ein Treiber zuverlässig geladen und entfernt werden kann, können Sie den Vorgang automatisieren, indem Sie die entsprechenden Kommandos in /etc/rc.suspend und /etc/rc.resume einfügen. In den Dateien finden Sie ein deaktiviertes Beispiel, das einen Treiber lädt und wieder entfernt. Ist die Bildschirmanzeige bei der Wiederaufnahme des Betriebs gestört, setzen Sie die Variable auf 1. Versuchen Sie auch, die Variable auf kürzere Zeitspannen zu setzen. Die Suspend- und Resume-Funktionen können Sie auch auf einer neuen &linux;-Distribution mit ACPI testen. Wenn es mit &linux; funktioniert, liegt das Problem wahrscheinlich bei einem &os;-Treiber. Es hilft uns, das Problem zu lösen, wenn Sie feststellen können, welcher Treiber das Problem verursacht. Beachten Sie bitte, dass die ACPI-Entwickler normalerweise keine anderen Treiber pflegen (beispielsweise Sound- oder ATA-Treiber). Es ist wohl das beste, die Ergebnisse der Fehlersuche an die Mailingliste &a.current.name; und den Entwickler des Treibers zu schicken. Erfahrene Benutzer können versuchen, den Fehler in der Resume-Funktion zu finden, indem sie einige &man.printf.3;-Anweisungen in den Code des fehlerhaften Treibers einfügen. Schließlich können Sie ACPI noch abschalten und stattdessen APM verwenden. Wenn die Suspend- und Resume-Funktionen mit APM funktionieren, sollten Sie besser APM verwenden (insbesondere mit alter Hardware von vor dem Jahr 2000). Die Hersteller benötigten einige Zeit, um ACPI korrekt zu implementieren, daher gibt es mit älterer Hardware oft ACPI-Probleme. Systemhänger Die meisten Systemhänger entstehen durch verlorene Interrupts oder einen Interrupt-Sturm. Probleme werden verursacht durch die Art, in der das BIOS Interrupts vor dem Systemstart konfiguriert, durch eine fehlerhafte APIC-Tabelle und durch die Zustellung des System-Control-Interrupts (SCI). Interrupt-Sturm Anhand der Ausgabe des Befehls vmstat -i können Sie verlorene Interrupts von einem Interrupt-Sturm unterscheiden. Untersuchen Sie die Ausgabezeile, die acpi0 enthält. Ein Interrupt-Sturm liegt vor, wenn der Zähler öfter als ein paar Mal pro Sekunde hochgezählt wird. Wenn sich das System aufgehangen hat, versuchen Sie mit der Tastenkombination Ctrl Alt Esc in den Debugger DDB zu gelangen. Geben Sie dort den Befehl show interrupts ein. APIC deaktivieren Wenn Sie Interrupt-Probleme haben, ist es vorerst wohl am besten, APIC zu deaktivieren. Tragen Sie dazu die Zeile hint.apic.0.disabled="1" in /boot/loader.conf ein. Abstürze (Panics) Panics werden so schnell wie möglich behoben; mit ACPI kommt es aber selten dazu. Zuerst sollten Sie die Panic reproduzieren und dann versuchen einen backtrace (eine Rückverfolgung der Funktionsaufrufe) zu erstellen. Richten Sie dazu den DDB über die serielle Schnittstelle (siehe ) oder eine gesonderte &man.dump.8;-Partition ein. In DDB können Sie den backtrace mit dem Kommando tr erstellen. Falls Sie den backtrace vom Bildschirm abschreiben müssen, schreiben Sie bitte mindestens die fünf ersten und die fünf letzten Zeile der Ausgabe auf. Versuchen Sie anschließend, das Problem durch einen Neustart ohne ACPI zu beseitigen. Wenn das funktioniert hat, können Sie versuchen, das verantwortliche ACPI-Subsystem durch Setzen der Variablen herauszufinden. Die Hilfeseite &man.acpi.4; enthält dazu einige Beispiele. Nach einem Suspend oder einem Stopp startet das System wieder Setzen Sie zuerst in /boot/loader.conf. Damit wird verhindert, dass ACPI während des Systemabschlusses die Bearbeitung verschiedener Ereignisse deaktiviert. Auf manchen Systemen muss die Variable den Wert 1 besitzen (die Voreinstellung). Normalerweise wird der unerwünschte Neustart des Systems durch Setzen dieser Variablen behoben. BIOS mit fehlerhaftem Bytecode ACPI ASL Einige BIOS-Hersteller liefern einen fehlerhaften Bytecode aus. Dies erkennen Sie an Kernelmeldungen wie diesen: ACPI-1287: *** Error: Method execution failed [\\_SB_.PCI0.LPC0.FIGD._STA] \\ (Node 0xc3f6d160), AE_NOT_FOUND Oft können Sie das Problem dadurch lösen, dass Sie eine aktuelle BIOS-Version einspielen. Die meisten Meldungen auf der Konsole sind harmlos, wenn aber beispielsweise der Batteriestatus falsch angezeigt wird, können Sie in den Meldungen nach Problemen suchen. Die voreingestellte <acronym>ASL</acronym> überschreiben Der BIOS-Bytecode, bekannt als ACPI Maschine Language (AML) wird aus der Sprache namens ACPI Source Language (ASL) übersetzt. Die AML ist in einer Tabelle, bekannt als Differentiated System Description Table (DSDT), abgelegt. ACPI ASL Es ist das Ziel von &os;, dass ACPI ohne Eingriffe des Benutzers läuft. Zurzeit werden allerdings noch Abhilfen für Fehler der BIOS-Hersteller entwickelt. Der µsoft;-Interpreter (acpi.sys und acpiec.sys) prüft die ASL nicht streng gegen den Standard. Daher reparieren BIOS-Hersteller, die ACPI nur unter &windows; testen, ihre ASL nicht. Die &os; Entwickler hoffen, dass sie das vom Standard abweichende Verhalten des µsoft;-Interpreters dokumentieren und in &os; replizieren können. Dadurch müssen Benutzer ihre ASL nicht selbst reparieren. Um bei der Fehlersuche zu helfen und das Problem möglicherweise zu beheben, kann eine Kopie der ASL gemacht werden. Dazu nutzen Sie acpidump zusammen mit , um den Inhalt der Tabelle anzuzeigen und , um die AML zu zerlegen: &prompt.root; acpidump -td > my.asl Einige AMLs gehen davon aus, dass der Anwender eine &windows;-Versionen benutzt. Versuchen Sie das Betriebssystem, das Sie in der ASL finden, in /boot/loader.conf anzugeben: hw.acpi.osname="Windows 2009". Manche Abhilfen erfordern eine Anpassung von my.asl. Wenn diese Datei bearbeitet wird, erstellen Sie die neue ASL mit dem folgenden Befehl. Warnung können meistens ignoriert werden, aber Fehler verhindern die ordnungsgemäße Funktion von ACPI. &prompt.root; iasl -f my.asl Die Option erzwingt das Erstellen der AML auch dann, wenn während der Übersetzung Fehler auftreten. Einige Fehler, wie fehlende Return-Anweisungen, werden automatisch vom &os; Interpreter umgangen. Die voreingestellte Ausgabedatei von iasl ist DSDT.aml. Wenn Sie diese Datei anstelle der fehlerhaften Kopie des BIOS laden wollen, editieren Sie /boot/loader.conf wie folgt: acpi_dsdt_load="YES" acpi_dsdt_name="/boot/DSDT.aml" Stellen Sie bitte sicher, dass sich DSDT.aml in /boot befindet und starten Sie das System neu. Wenn dadurch das Problem behoben wird, schicken Sie einen &man.diff.1; der alten und der neuen ASL an &a.acpi.name;, damit die Entwickler das Problem in acpica umgehen können. Abrufen und Einreichen von Informationen zur Fehlersuche Nate Lawson Geschrieben von Peter Schultz Mit Beiträgen von Tom Rhodes ACPI Probleme mit ACPI Fehlersuche Der ACPI-Treiber besitzt flexible Möglichkeiten zur Fehlersuche. Sie können sowohl die zu untersuchenden Subsysteme als auch die zu erzeugenden Ausgaben festlegen. Die zu untersuchenden Subsysteme werden als layer angegeben und in Komponenten (ACPI_ALL_COMPONENTS) und ACPI-Hardware (ACPI_ALL_DRIVERS) aufgeteilt. Welche Meldungen ausgegeben werden, wird über level gesteuert. Die Level reichen von von ACPI_LV_ERROR (es werden nur Fehler ausgegeben) bis zu ACPI_LV_VERBOSE (alles wird ausgegeben). Das Level ist eine Bitmaske, sodass verschiedene Stufen auf einmal (durch Leerzeichen getrennt) angegeben werden können. Die erzeugte Ausgabemenge passt vielleicht nicht in den Konsolenpuffer. In diesem Fall sollte die Ausgabe mithilfe einer seriellen Konsole gesichert werden. Die möglichen Werte für layers und level werden in &man.acpi.4; beschrieben. Die Ausgaben zur Fehlersuche sind in der Voreinstellung nicht aktiviert. Wenn ACPI im Kernel enthalten ist, fügen Sie options ACPI_DEBUG zur Kernelkonfigurationsdatei hinzu. Sie können die Ausgaben zur Fehlersuche global aktivieren, indem Sie in der Datei /etc/make.conf die Zeile ACPI_DEBUG=1 einfügen. Das Modul acpi.ko können Sie wie folgt neu übersetzen: &prompt.root; cd /sys/modules/acpi/acpi && make clean && make ACPI_DEBUG=1 Kopieren Sie anschließend acpi.ko ins Verzeichnis /boot/kernel. In /boot/loader.conf stellen Sie level und layer ein. Das folgende Beispiel aktiviert die Ausgabe von Fehlern für alle ACPI-Komponenten und alle Hardwaretreiber: debug.acpi.layer="ACPI_ALL_COMPONENTS ACPI_ALL_DRIVERS" debug.acpi.level="ACPI_LV_ERROR" Wenn ein Problem durch ein bestimmtes Ereignis, beispielsweise den Start nach einem Ruhezustand, hervorgerufen wird, können Sie die Einstellungen für level und layer auch mit dem Kommando sysctl vornehmen. In diesem Fall müssen Sie /boot/loader.conf nicht editieren. Auf der Kommandozeile geben Sie über sysctl dieselben Variablennamen wie in /boot/loader.conf an. ACPI Probleme mit Sobald Sie die Fehlerinformationen gesammelt haben, schicken Sie diese an &a.acpi.name;, sodass die Betreuer des &os;-ACPI-Subsystems diese Informationen zur Analyse und für die Entwicklung einer Lösung verwenden können. Bevor Sie einen Fehlerbericht an diese Mailingliste einreichen, stellen Sie bitte sicher, dass das BIOS und die Firmware des Controllers aktuell sind. Wenn Sie einen Fehlerbericht einsenden, fügen Sie bitte die folgenden Informationen ein: Beschreiben Sie den Fehler und alle Umstände, unter denen der Fehler auftritt. Geben Sie ebenfalls den Typ und das Modell Ihres Systems an. Wenn Sie einen neuen Fehler entdeckt haben, versuchen Sie möglichst genau zu beschreiben, wann der Fehler das erste Mal aufgetreten ist. Die Ausgabe von dmesg nach der Eingabe von boot -v. Geben Sie auch alle Fehlermeldungen an, die erscheinen, wenn Sie den Fehler provozieren. Die Ausgabe von dmesg nach der Eingabe von boot -v und mit deaktiviertem ACPI, wenn das Problem ohne ACPI nicht auftritt. Die Ausgabe von sysctl hw.acpi. Dieses Kommando zeigt die vom System unterstützten ACPI-Funktionen an. Die URL, unter der die ASL liegt. Schicken Sie bitte nicht die ASL an die Mailingliste, da die ASL sehr groß sein kann. Eine Kopie der ASL erstellen Sie mit dem nachstehenden Befehl: &prompt.root; acpidump -td > name-system.asl Setzen Sie für name den Namen des Kontos und für system den Hersteller und das Modell des Systems ein. Zum Beispiel: njl-FooCo6000.asl. Obwohl die meisten Entwickler die Mailingliste &a.current.name; lesen, sollten Sie Fehlerberichte an die Liste &a.acpi.name; schicken. Seien Sie bitte geduldig; wir haben alle Arbeit außerhalb des Projekts. Wenn der Fehler nicht offensichtlich ist, bitten wir Sie vielleicht, einen offiziellen Fehlerbericht (PR) mit &man.send-pr.1; einzusenden. Geben Sie im Fehlerbericht bitte dieselben Informationen wie oben an. Mithilfe der PRs verfolgen und lösen wir Probleme. Senden Sie bitte keinen PR ein, ohne vorher den Fehlerbericht an die Liste &a.acpi.name; zu senden. Es kann sein, dass der Fehler schon von jemand anderem gemeldet wurde. Referenzen Weitere Informationen über ACPI finden Sie hier: Die ACPI 2.0 Spezifikation (http://acpi.info/spec.htm) &man.acpi.4;, &man.acpi.thermal.4;, &man.acpidump.8;, &man.iasl.8; und &man.acpidb.8; Index: head/de_DE.ISO8859-1/books/handbook/disks/chapter.xml =================================================================== --- head/de_DE.ISO8859-1/books/handbook/disks/chapter.xml (revision 50863) +++ head/de_DE.ISO8859-1/books/handbook/disks/chapter.xml (revision 50864) @@ -1,4096 +1,4096 @@ Speichermedien Bernd Warken Übersetzt von Martin Heinen Übersicht Dieses Kapitel behandelt die Benutzung von Laufwerken unter &os;. Hierzu zählen SCSI- und IDE-Geräte, CD- und DVD-Medien, speicherbasierte Laufwerke und USB-Geräte. Nachdem Sie dieses Kapitel gelesen haben, werden Sie Folgendes wissen: Wie Sie zusätzliche Laufwerke zu einem &os;-System hinzufügen. Wie Sie unter &os; die Partition einer Festplatte vergrößern. Wie Sie &os; zur Verwendung von USB-Speichermedien konfigurieren. Wie Sie CD- und DVD-Medien unter &os; benutzen. Wie Sie die unter &os; erhältlichen Backup-Programme benutzen. Wie Sie RAM-Disks einrichten. Was Dateisystem-Schnappschüsse sind und wie sie effizient eingesetzt werden. Wie Sie mit Quotas die Benutzung von Laufwerken einschränken. Wie Sie Festplatten und Swap verschlüsseln, um Daten vor Angreifern zu schützen. Wie Sie ein hochverfügbares Speichernetzwerk konfigurieren. Bevor Sie dieses Kapitel lesen, sollten Sie wissen, wie Sie einen neuen &os;-Kernel konfigurieren und installieren. Hinzufügen von Laufwerken David O'Brian Im Original von Laufwerke hinzufügen Dieser Abschnitt beschreibt, wie Sie ein neues SATA-Laufwerk zu einer Maschine hinzufügen, die momentan nur ein Laufwerk hat. Dazu schalten Sie zuerst den Rechner aus und installieren das Laufwerk entsprechend der Anleitungen Ihres Rechners, Ihres Controllers und des Laufwerkherstellers. Starten Sie das System neu und melden Sie sich als Benutzer root an. Kontrollieren Sie /var/run/dmesg.boot, um sicherzustellen, dass das neue Laufwerk gefunden wurde. In diesem Beispiel erscheint das neu hinzugefügte SATA-Laufwerk als ada1. Partitionen gpart In diesem Beispiel wird eine einzige große Partition auf der Festplatte erstellt. Verwendet wird das GPT-Partitionsschema, welches gegenüber dem älteren und weniger vielseitigen MBR-Schema bevorzug wird. Wenn die hinzugefügte Festplatte nicht leer ist, können alte Partitionsinformationen mit gpart delete entfernt werden. Details finden Sie in &man.gpart.8;. Zuerst wird das Partitionsschema erstellt und dann eine einzelne Partition angefügt. Zur Verbesserung der Leistung auf neueren Festplatten mit größeren Blockgrößen, wird die Partition an einer Megabyte-Grenze ausgerichtet: &prompt.root; gpart create -s GPT ada1 &prompt.root; gpart add -t freebsd-ufs -a 1M ada1 Je nach Anwendung kann es wünschenswert sein, mehrere kleinere Partitionen zu haben. In &man.gpart.8; finden Sie Optionen zum Erstellen von kleineren Partitionen. Informationen über die Partitionen der Festplatte werden mit gpart show angezeigt: &prompt.user; gpart show ada1 => 34 1465146988 ada1 GPT (699G) 34 2014 - free - (1.0M) 2048 1465143296 1 freebsd-ufs (699G) 1465145344 1678 - free - (839K) Ein Dateisystem wird in der neuen Partition erstellt: &prompt.root; newfs -U /dev/ada1p1 Ein leeres Verzeichnis wird als Mountpunkt erstellt, also ein Speicherort für die Montage der neuen Festplatte im originalen Dateisystem: &prompt.root; mkdir /newdisk Abschließend wird ein Eintrag in /etc/fstab hinzugefügt, damit die neue Festplatte automatisch beim Start eingehängt wird: /dev/ada1p1 /newdisk ufs rw 2 2 Die neue Festplatte kann manuell montiert werden, ohne das System neu zu starten: &prompt.root; mount /newdisk Partitionen vergrößern Allan Jude Beigetragen von Björn Heidotting Übersetzt von Partitionen vergrößern Die Kapazität einer Festplatte kann sich ohne Änderungen an bereits vorhandenen Daten erhöhen. Dies geschieht üblicherweise mit virtuellen Maschinen, wenn sich herausstellt, dass die virtuelle Festplatte zu klein ist und vergrößert werden soll. Zuweilen wird auch ein Abbild einer Platte auf einen USB-Stick geschrieben, ohne dabei die volle Kapazität zu nutzen. Dieser Abschnitt beschreibt, wie man Platten vergrößert, bzw. erweitert, um die Vorteile der erhöhten Kapazität zu nutzen. Überprüfen Sie /var/run/dmesg.boot, um den Gerätenamen der Festplatte zu bestimmen, die vergrößert werden soll. In diesem Beispiel gibt es nur eine SATA-Festplatte im System, so dass die Platte als ada0 angezeigt wird. Partitionen gpart Um die aktuelle Konfiguration der Partitionen auf der Festplatte anzuzeigen: &prompt.root; gpart show ada0 => 34 83886013 ada0 GPT (48G) [CORRUPT] 34 128 1 freebsd-boot (64k) 162 79691648 2 freebsd-ufs (38G) 79691810 4194236 3 freebsd-swap (2G) 83886046 1 - free - (512B) Wenn die Festplatte mit dem GPT-Partitionsschema formatiert wurde kann es vorkommen, dass sie als corrupted angezeigt wird, weil sich die Sicherung der GPT-Partitionstabellen nicht mehr am Ende des Laufwerks befinden. Reparieren Sie in so einem Fall die Partitionstabelle mit gpart: &prompt.root; gpart recover ada0 ada0 recovered Nun steht der zusätzliche Speicherplatz zur Verfügung und kann verwendet werden, um eine neue Partition anzulegen oder eine bestehende Partition zu erweitern: &prompt.root; gpart show ada0 => 34 102399933 ada0 GPT (48G) 34 128 1 freebsd-boot (64k) 162 79691648 2 freebsd-ufs (38G) 79691810 4194236 3 freebsd-swap (2G) 83886046 18513921 - free - (8.8G) Partitionen können nur auf zusammenhängenden, freien Speicherplatz vergrößert werden. In diesem Beispiel wird die letzte Partition der Platte als Swap-Speicher genutzt, aber die zweite Partition ist die, dessen Größe verändert werden soll. Weil der Swap-Speicher nur temporäre Daten enthält, kann er gefahrlos ausgehangen, gelöscht und nachdem die Partition vergrößert wurde, neu erstellt werden. &prompt.root; swapoff /dev/ada0p3 &prompt.root; gpart delete -i 3 ada0 ada0p3 deleted &prompt.root; gpart show ada0 => 34 102399933 ada0 GPT (48G) 34 128 1 freebsd-boot (64k) 162 79691648 2 freebsd-ufs (38G) 79691810 22708157 - free - (10G) Es besteht die Gefahr von Datenverlust, wenn die Partitionstabelle eines eingehangenen Dateisystems verändert wird. Es empfiehlt sich daher, die folgenden Schritte auf einem ausgehangenen Dateisystem durchzuführen, während die Umsetzung über eine Live-CD-ROM oder von einem USB-Gerät erfolgt. Wenn es jedoch absolut notwendig ist, kann ein eingehangenes Dateisystem auch vergrößert werden, nachdem die Sicherheitsfunktionen von GEOM deaktiviert wurden: &prompt.root; sysctl kern.geom.debugflags=16 Vergrößern Sie die Partition und lassen Sie Platz, um die Swap-Partition in der gewünschten Größe neu erstellen zu können. Dies ändert nur die Größe der Partition. Das Dateisystem innerhalb der Partition wird in einem separaten Schritt erweitert. &prompt.root; gpart resize -i 2 -a 4k -s 47G ada0 ada0p2 resized &prompt.root; gpart show ada0 => 34 102399933 ada0 GPT (48G) 34 128 1 freebsd-boot (64k) 162 98566144 2 freebsd-ufs (47G) 98566306 3833661 - free - (1.8G) Erstellen Sie die Swap-Partition neu: &prompt.root; gpart add -t freebsd-swap -a 4k ada0 ada0p3 added &prompt.root; gpart show ada0 => 34 102399933 ada0 GPT (48G) 34 128 1 freebsd-boot (64k) 162 98566144 2 freebsd-ufs (47G) 98566306 3833661 3 freebsd-swap (1.8G) &prompt.root; swapon /dev/ada0p3 Erweitern Sie das UFS-Dateisystem, um die Kapazität der vergrößerten Partition zu nutzen: Ab &os; 10.0-RELEASE ist es möglich, ein eingehangenes Dateisystem zu erweitern. Bei älteren Versionen muss das Dateisystem zuvor ausgehangen werden. &prompt.root; growfs /dev/ada0p2 Device is mounted read-write; resizing will result in temporary write suspension for /. It's strongly recommended to make a backup before growing the file system. OK to grow file system on /dev/ada0p2, mounted on /, from 38GB to 47GB? [Yes/No] Yes super-block backups (for fsck -b #) at: 80781312, 82063552, 83345792, 84628032, 85910272, 87192512, 88474752, 89756992, 91039232, 92321472, 93603712, 94885952, 96168192, 97450432 Sowohl die Partition als auch das Dateisystem wurden jetzt vergrößert, um den neu zur Verfügung stehenden Speicherplatz zu nutzen. <acronym>USB</acronym> Speichermedien Marc Fonvieille Beigetragen von USB Speichermedien Der Universal Serial Bus (USB) wird von vielen externen Speichern benutzt: Festplatten, USB-Thumbdrives sowie von CD- und DVD-Brennern. &os; bietet Unterstützung für Geräte mit USB 1.x, 2.0 und 3.0. Die Unterstützung für USB 3.0 ist mit einiger Hardware, einschließlich Haswell (Lynx Point) Chipsätzen, nicht kompatibel. Wenn &os; beim Booten mit dem Fehler failed with error 19 abbricht, müssen Sie xHCI/USB3 im BIOS deaktivieren. Unterstützung für USB-Massenspeicher ist im GENERIC-Kernel enthalten. Für einen angepassten Kernel müssen die nachstehenden Zeilen in der Kernelkonfigurationsdatei enthalten sein: device scbus # SCSI bus (required for ATA/SCSI) device da # Direct Access (disks) device pass # Passthrough device (direct ATA/SCSI access) device uhci # provides USB 1.x support device ohci # provides USB 1.x support device ehci # provides USB 2.0 support device xhci # provides USB 3.0 support device usb # USB Bus (required) device umass # Disks/Mass storage - Requires scbus and da device cd # needed for CD and DVD burners &os; benutzt den &man.umass.4;-Treiber, der das SCSI-Subsystem verwendet um auf USB-Geräte zuzugreifen. Da alle USB-Geräte vom System als SCSI-Geräte erkannt werden, dürfen Sie nicht in die Kernelkonfigurationsdatei aufnehmen, wenn es sich bei dem Gerät um einen CD- oder DVD-Brenner handelt. Der übrige Abschnitt beschreibt, wie Sie überprüfen können ob ein USB-Gerät von &os; erkannt wird und wie Sie das Gerät so konfigurieren, dass es verwendet werden kann. Konfiguration von Geräten Um die USB-Konfiguration zu testen, schließen Sie das USB-Gerät an. Verwenden Sie dmesg um zu überprüfen, ob das Gerät in den Systemmeldungen erscheint. Dies sollte in etwa so aussehen: umass0: <STECH Simple Drive, class 0/0, rev 2.00/1.04, addr 3> on usbus0 umass0: SCSI over Bulk-Only; quirks = 0x0100 umass0:4:0:-1: Attached to scbus4 da0 at umass-sim0 bus 0 scbus4 target 0 lun 0 da0: <STECH Simple Drive 1.04> Fixed Direct Access SCSI-4 device da0: Serial Number WD-WXE508CAN263 da0: 40.000MB/s transfers da0: 152627MB (312581808 512 byte sectors: 255H 63S/T 19457C) da0: quirks=0x2<NO_6_BYTE> Fabrikat, Gerätedatei (da0), Geschwindigkeit und Kapazität werden je nach Gerät unterschiedlich sein. Da ein USB-Gerät als SCSI-Gerät erkannt wird, kann camcontrol benutzt werden, um die mit dem System verbundenen USB-Massenspeicher anzuzeigen: &prompt.root; camcontrol devlist <STECH Simple Drive 1.04> at scbus4 target 0 lun 0 (pass3,da0) Alternativ kann usbconfig benutzt werden, um die Geräte aufzulisten. Weitere Informationen zu diesem Kommando finden Sie in &man.usbconfig.8;. &prompt.root; usbconfig ugen0.3: <Simple Drive STECH> at usbus0, cfg=0 md=HOST spd=HIGH (480Mbps) pwr=ON (2mA) Wenn das Gerät noch nicht formatiert ist, finden Sie in Informationen, wie Sie USB-Laufwerke formatieren und Partitionen einrichten. Wenn das Laufwerk bereits ein Dateisystem enthält, kann es von root nach den Anweisungen in eingehängt werden. Aus Sicherheitsgründen sollten Sie Benutzern, denen Sie nicht vertrauen, das Einhängen (z.B. durch die unten beschriebene Aktivierung von vfs.usermount) beliebiger Medien verbieten. Die meisten Dateisysteme wurden nicht entwickelt, um sich vor böswilligen Geräten zu schützen. Um auch normalen Anwendern das Einhängen des Laufwerks zu gestatten, könnten Sie beispielsweise mit &man.pw.8; alle potentiellen Benutzer dieser Gerätedateien in die Gruppe operator aufnehmen. Außerdem muss sichergestellt werden, dass operator Schreib- und Lesezugriff auf diese Gerätedateien haben. Hierfür werden die folgenden Zeilen in /etc/devfs.rules hinzugefügt: [localrules=5] add path 'da*' mode 0660 group operator Verfügt das System über interne SCSI-Laufwerke, so verändern Sie die zweite Zeile wie folgt: add path 'da[3-9]*' mode 0660 group operator Dies wird die ersten drei SCSI-Laufwerke (da0 bis da2) davon ausschließen, in die Gruppe operator aufgenommen zu werden. Ersetzen Sie 3 durch die Anzahl der SCSI-Laufwerke. Weitere Informationen zu dieser Datei finden Sie in &man.devfs.rules.5;. Aktivieren Sie nun die Regeln in /etc/rc.conf: devfs_system_ruleset="localrules" Als nächstes müssen Sie das System anweisen, auch normalen Benutzern das mounten von Dateisystemen zu erlauben, indem Sie die folgende Zeile in /etc/sysctl.conf hinzufügen: vfs.usermount=1 Da diese Einstellung erst nach einem Neustart wirksam wird, können Sie diese Variable mit sysctl auch direkt setzen: &prompt.root; sysctl vfs.usermount=1 vfs.usermount: 0 -> 1 Zuletzt müssen Sie noch ein Verzeichnis anlegen, in das das USB-Laufwerk eingehängt werden soll. Dieses Verzeichnis muss dem Benutzer gehören, der das USB-Laufwerk in den Verzeichnisbaum einhängen will. Dazu legen Sie als root ein Unterverzeichnis /mnt/username an, wobei Sie username durch den Login des jeweiligen Benutzers sowie usergroup durch die primäre Gruppe des Benutzers ersetzen: &prompt.root; mkdir /mnt/username &prompt.root; chown username:usergroup /mnt/username Wenn Sie nun beispielsweise einen USB-Stick anschließen, wird automatisch die Gerätedatei /dev/da0s1 erzeugt. Ist das Gerät mit einem FAT-Dateisystem formatiert, kann es der Benutzer mit dem folgenden Befehl in den Verzeichnisbaum einhängen: &prompt.user; mount -t msdosfs -o -m=644,-M=755 /dev/da0s1 /mnt/username Bevor das Gerät entfernt werden kann, muss es abgehängt werden: &prompt.root; umount /mnt/username Nach Entfernen des Geräts stehen in den Systemmeldungen Einträge, ähnlich der folgenden: umass0: at uhub3, port 2, addr 3 (disconnected) da0 at umass-sim0 bus 0 scbus4 target 0 lun 0 da0: <STECH Simple Drive 1.04> s/n WD-WXE508CAN263 detached (da0:umass-sim0:0:0:0): Periph destroyed Automatisches Einhängen von Wechselmedien &man.autofs.5; unterstützt das automatische Einhängen von Wechselmedien beginnend mit &os; 10.2-RELEASE. Damit USB-Geräte automatisch eingehängt werden, muss der Kommentar für folgende Zeile in /etc/auto_master entfernt werden: /media -media -nosuid Anschließend fügen Sie folgende Zeilen in /etc/devd.conf hinzu: notify 100 { match "system" "GEOM"; match "subsystem" "DEV"; action "/usr/sbin/automount -c"; }; Falls &man.autofs.5; und &man.devd.8; bereits ausgeführt werden, müssen Sie die Konfiguration neu einlesen: &prompt.root; service automount reload &prompt.root; service devd restart &man.autofs.5; wird beim Booten automatisch gestartet, wenn Sie folgende Zeile in /etc/rc.conf hinzufügen: autofs_enable="YES" Damit &man.autofs.5; funktioniert, muss &man.devd.8; aktiviert sein, was aber in der Voreinstellung der Fall ist. Starten Sie jetzt die Dienste: &prompt.root; service automount start &prompt.root; service automountd start &prompt.root; service autounmountd start &prompt.root; service devd start Jedes Dateisystem, das automatisch eingehängt werden kann, erscheint als ein Verzeichnis unterhalb von media. Das Verzeichnis wird nach dem Dateisystemlabel benannt, bzw. nach dem Gerätenamen, falls kein Label existiert. Das Dateisystem wird transparent beim ersten Zugriff in den Verzeichnisbaum eingehängt und auch nach gewisser Zeit der Inaktivität wieder ausgehängt. Laufwerke können auch manuell ausgehängt werden: &prompt.root; automount -fu Diese Methode wird in der Regel bei Speicherkarten und USB-Sticks verwendet. Sie funktioniert aber mit allen Blockgeräten, einschließlich optischen Laufwerken und iSCSI-LUNs. <acronym>USB</acronym>-Massenspeicher Der &man.cfumass.4;-Treiber ist ein USB Geräte-Modus-Treiber und steht mit &os; 12.0 zur Verfügung. Auf USB-OTG-kompatibler Hardware, wie in eingebetteten Systemen, kann der &os; USB-Stack im Geräte-Modus laufen. Der Geräte-Modus ermöglicht es dem Rechner, verschiedene Arten von USB-Geräteklassen zu präsentieren, einschließlich serieller Schnittstellen, Netzwerkadapter und Massenspeicher. Ein USB-Host, beispielsweise ein Laptop oder Desktop-Rechner, kann darauf wie auf ein physikalisches USB-Gerät zugreifen. Je nach angeschlossener Hardware, ermöglicht das &man.usb.template.4; Kernelmodul es dem USB-Stack, automatisch zwischen Host- und Geräteseite umzuschalten. Das Anschließen eines USB-Gerätes an den USB-OTG-Port bewirkt, dass &os; in den Geräte-Modus wechselt. Was &os; dem USB-Host präsentiert, hängt von der sysctl-Variablen hw.usb.template ab. Eine Liste der verfügbaren Werte finden Sie in &man.usb.template.4;. Damit der Host die geänderte Konfiguration erkennt, muss entweder das Gerät getrennt und wieder angeschlossen, oder der USB-Bus neu gescannt werden. Wenn auf dem Host &os; läuft, können Sie &man.usbconfig.8; reset benutzen. Dieser Befehl muss nach dem Laden von usb_template.ko erfolgen, falls der USB-Host bereits am USB-OTG-Port angeschlossen war. Die sysctl-Variable hw.usb.template ist in der Voreinstellung auf 0 gesetzt, so dass &os; als USB-Massenspeicher funktioniert. Dazu müssen die beiden Kernelmodule &man.usb.template.4; und &man.cfumass.4; geladen sein. &man.cfumass.4; ist die Schnittstelle zum CTL-Subsystem, die auch für iSCSI- und Fibre Channel-Targets benutzt wird. Auf der Host-Seite können USB-Massenspeicher nur auf eine einzelne LUN (LUN 0) zugreifen. USB-Massenspeicher benötigen keinen aktiven &man.ctld.8;-Daemon, obwohl er bei Bedarf verwendet werden kann. Dies unterscheidet sich von iSCSI. So gibt es zwei Möglichkeiten, ein Target zu konfigurieren: &man.ctladm.8; und &man.ctld.8;. Beide erfordern, dass das cfumass.ko Kernelmodul geladen ist. Das Modul kann wie folgt geladen werden: &prompt.root; kldload cfumass Wenn cfumass.ko nicht im Kernel enthalten ist, kann das Modul beim Booten über /boot/loader.conf geladen werden: cfumass_load="YES" Eine LUN kann auch ohne den &man.ctld.8;-Daemon erstellt werden: &prompt.root; ctladm create -b block -o file=/data/target0 Damit wird dem USB der Inhalt des Abbilds /data/target0 als LUN präsentiert. Die Datei muss vor dem Ausführen des Befehls vorhanden sein. Um die LUN beim Systemstart zu konfigurieren, fügen Sie den Befehl in /etc/rc.local hinzu. &man.ctld.8; kann ebenfalls verwendet werden, um LUNs zu verwalten. Erstellen Sie /etc/ctl.conf und fügen Sie eine Zeile in /etc/rc.conf hinzu, um sicherzustellen, dass &man.ctld.8; beim Booten automatisch gestartet wird. Danach starten Sie den Daemon. Dies ist ein Beispiel für eine einfache /etc/ctl.conf Konfigurationsdatei. &man.ctl.conf.5; enthält eine ausführliche Beschreibung der einzelnen Optionen. target naa.50015178f369f092 { lun 0 { path /data/target0 size 4G } } Dieses Beispiel erstellt ein Target mit einer einzigen LUN. naa.50015178f369f092 ist eine Gerätekennung aus 32 zufälligen, hexadezimalen Ziffern. Die path-Zeile definiert den vollständigen Pfad einer Datei oder eines zvols, welche als Backend für die LUN benutzt wird. Die Konfigurationsdatei muss vor dem Start von &man.ctld.8; existieren. Die zweite Zeile ist optional und gibt die Größe der LUN an. Fügen Sie folgende Zeile in /etc/rc.conf hinzu, um den &man.ctld.8;-Daemon beim Booten zu starten: ctld_enable="YES" Um &man.ctld.8; zu starten, führen Sie dieses Kommando aus: &prompt.root; service ctld start Beim Start liest der &man.ctld.8;-Daemon /etc/ctl.conf ein. Wenn diese Datei nach dem Start des Daemons bearbeitet wird, können Sie sie erneut einlesen, damit die Änderungen direkt wirksam sind: &prompt.root; service ctld reload Erstellen und Verwenden von <acronym>CD</acronym>s Mike Meyer Beigesteuert von CD-ROMs brennen CDs besitzen einige Eigenschaften, die sie von konventionellen Laufwerken unterscheiden. Sie wurden so entworfen, dass sie ununterbrochen, ohne Verzögerungen durch Kopfbewegungen zwischen den Spuren, gelesen werden können. CDs besitzen Spuren, aber damit ist der Teil Daten gemeint, der ununterbrochen gelesen wird, und nicht eine physikalische Eigenschaft der CD. Das ISO 9660-Dateisystem wurde entworfen, um mit diesen Unterschieden umzugehen. ISO 9660 Dateisysteme ISO 9660 CD-Brenner ATAPI Die &os; Ports-Sammlung bietet einige Werkzeuge zum Brennen und Kopieren von Audio- und Daten-CDs. Dieses Kapitel beschreibt die Verwendung von mehreren Kommandozeilen-Werkzeugen. Wenn Sie eine graphische Oberfläche zum Brennen von CDs benutzen, können Sie sysutils/xcdroast oder sysutils/k3b installieren. Unterstützte Geräte Marc Fonvielle Beigetragen von CD-Brenner ATAPI/CAM Treiber Der GENERIC-Kernel enthält Unterstützung für SCSI, USB und ATAPI CD Lesegeräte und Brenner. Wird ein angepasster Kernel erstellt, unterscheiden sich die Optionen für die Kernelkonfigurationsdatei je nach Art des Geräts. Für einen SCSI-Brenner müssen folgende Optionen vorhanden sein: device scbus # SCSI bus (required for ATA/SCSI) device da # Direct Access (disks) device pass # Passthrough device (direct ATA/SCSI access) device cd # needed for CD and DVD burners Für einen USB-Brenner müssen folgende Optionen vorhanden sein: device scbus # SCSI bus (required for ATA/SCSI) device da # Direct Access (disks) device pass # Passthrough device (direct ATA/SCSI access) device cd> # needed for CD and DVD burners device uhci # provides USB 1.x support device ohci # provides USB 1.x support device ehci # provides USB 2.0 support device xhci # provides USB 3.0 support device usb # USB Bus (required) device umass # Disks/Mass storage - Requires scbus and da Für einen ATAPI-Brenner müssen folgende Optionen vorhanden sein: device ata # Legacy ATA/SATA controllers device scbus # SCSI bus (required for ATA/SCSI) device pass # Passthrough device (direct ATA/SCSI access) device cd # needed for CD and DVD burners Unter &os; Versionen kleiner 10.x wird auch diese Option in der Kernelkonfigurationsdatei benötigt, falls der Brenner ein ATAPI-Gerät ist: device atapicam Alternativ kann folgende Zeile in /boot/loader.conf hinzugefügt werden, um den Treiber beim Booten automatisch zu laden: atapicam_load="YES" Hierzu ist ein Neustart des Systems erforderlich, da dieser Treiber nur beim Booten geladen werden kann. Mit dmesg können Sie prüfen, ob das Gerät von &os; erkannt wurde. Unter &os; Versionen kleiner 10.x lautet der Gerätename acd0 anstelle von cd0. &prompt.user; dmesg | grep cd cd0 at ahcich1 bus 0 scbus1 target 0 lun 0 cd0: <HL-DT-ST DVDRAM GU70N LT20> Removable CD-ROM SCSI-0 device cd0: Serial Number M3OD3S34152 cd0: 150.000MB/s transfers (SATA 1.x, UDMA6, ATAPI 12bytes, PIO 8192bytes) cd0: Attempt to query device size failed: NOT READY, Medium not present - tray closed Eine <acronym>CD</acronym> brennen Unter &os; kann cdrecord zum Brennen von CDs benutzt werden. Dieses Programm wird aus dem Port oder Paket sysutils/cdrecord installiert. Obwohl cdrecord viele Optionen besitzt, ist die grundlegende Benutzung sehr einfach. Geben Sie den Namen der zu brennenden ISO-Datei an. Wenn das System über mehrere Brenner verfügt, müssen Sie auch den Namen des Gerätes angeben: &prompt.root; cdrecord dev=device imagefile.iso Benutzen Sie um den Gerätenamen des Brenners zu bestimmen. Die Ausgabe könnte wie folgt aussehen: CD-ROM brennen &prompt.root; cdrecord -scanbus ProDVD-ProBD-Clone 3.00 (amd64-unknown-freebsd10.0) Copyright (C) 1995-2010 Jörg Schilling Using libscg version 'schily-0.9' scsibus0: 0,0,0 0) 'SEAGATE ' 'ST39236LW ' '0004' Disk 0,1,0 1) 'SEAGATE ' 'ST39173W ' '5958' Disk 0,2,0 2) * 0,3,0 3) 'iomega ' 'jaz 1GB ' 'J.86' Removable Disk 0,4,0 4) 'NEC ' 'CD-ROM DRIVE:466' '1.26' Removable CD-ROM 0,5,0 5) * 0,6,0 6) * 0,7,0 7) * scsibus1: 1,0,0 100) * 1,1,0 101) * 1,2,0 102) * 1,3,0 103) * 1,4,0 104) * 1,5,0 105) 'YAMAHA ' 'CRW4260 ' '1.0q' Removable CD-ROM 1,6,0 106) 'ARTEC ' 'AM12S ' '1.06' Scanner 1,7,0 107) * Benutzen Sie die drei durch Kommas separierten Zahlen, die für den CD-Brenner angegeben sind, als Argument für . Im Beispiel ist das Yamaha-Gerät 1,5,0, so dass die passende Eingabe ist. Einfachere Wege das Argument anzugeben, sowie Informationen über Audiospuren und das Einstellen der Geschwindigkeit, sind in der Manualpage von cdrecord beschrieben. Alternativ können Sie den folgenden Befehl ausführen, um die Geräteadresse des Brenners zu ermitteln: &prompt.root; camcontrol devlist <MATSHITA CDRW/DVD UJDA740 1.00> at scbus1 target 0 lun 0 (cd0,pass0) Verwenden Sie die numerischen Werte für scbus, target und lun. Für dieses Beispiel wäre 1,0,0 als Gerätename zu verwenden. Daten auf <acronym>ISO</acronym>-Dateisystem schreiben Die Datendateien müssen vorbereitet sein, bevor sie auf eine CD gebrannt werden. In &os; wird mkisofs vom Paket oder Port sysutils/cdrtools installiert. Dieses Programm kann aus einem &unix; Verzeichnisbaum ein ISO 9660-Dateisystem erzeugen. Im einfachsten Fall müssen Sie lediglich den Namen der zu erzeugenden ISO-Datei und den Pfad zu den Dateien angeben, die auf dem ISO 9660-Dateisystem platziert werden: &prompt.root; mkisofs -o imagefile.iso /path/to/tree Dateisysteme ISO 9660 Bei diesem Kommando werden die Dateinamen auf Namen abgebildet, die den Restriktionen des ISO 9660-Dateisystem entsprechen. Dateien, die diesem Standard nicht entsprechen bleiben unberücksichtigt. Dateisysteme Joliet Es gibt einige Optionen, um die Beschränkungen dieses Standards zu überwinden. Die unter &unix; Systemen üblichen Rock-Ridge-Erweiterungen werden durch aktiviert und aktiviert die von µsoft; Systemen benutzten Joliet-Erweiterungen. Für CDs, die nur auf &os;-Systemen verwendet werden sollen, kann genutzt werden, um alle Beschränkungen für Dateinamen aufzuheben. Zusammen mit wird ein Abbild des Dateisystems, identisch zu angegebenen &os;-Dateibaum erstellt, selbst wenn dies den ISO 9660 Standard verletzt. CD-ROM bootbare erstellen Die letzte übliche Option ist . Sie wird benutzt, um den Ort eines Bootimages einer El Torito bootbaren CD anzugeben. Das Argument zu dieser Option ist der Pfad zu einem Bootimage ausgehend von der Wurzel des Baumes, der auf die CD geschrieben werden soll. In der Voreinstellung erzeugt mkisofs ein ISO-Image im Diskettenemulations-Modus. Dabei muss das Image genau 1200, 1440 oder 2880 KB groß sein. Einige Bootloader, darunter der auf den &os; Installationsmedien verwendete, kennen keinen Emulationsmodus. Daher sollte in diesen Fällen verwendet werden. Wenn /tmp/myboot ein bootbares &os;-System enthält, dessen Bootimage sich in /tmp/myboot/boot/cdboot befindet, dann würde folgendes Kommando /tmp/bootable.iso erstellen: &prompt.root; mkisofs -R -no-emul-boot -b boot/cdboot -o /tmp/bootable.iso /tmp/myboot Das resultierende ISO-Abbild kann als speicherbasiertes Laufwerk eingehängt werden: &prompt.root; mdconfig -a -t vnode -f /tmp/bootable.iso -u 0 &prompt.root; mount -t cd9660 /dev/md0 /mnt Jetzt können Sie überprüfen, dass /mnt und /tmp/myboot identisch sind. Sie können das Verhalten von mkisofs mit einer Vielzahl von Optionen beeinflussen. Details dazu entnehmen Sie bitte &man.mkisofs.8;. Es ist möglich eine Daten-CD in eine Datei zu kopieren, die einem Image entspricht, das mit mkisofs erstellt wurde. Verwenden Sie dazu dd mit dem Gerätenamen als Eingabedatei und den Namen der ISO als Ausgabedatei: &prompt.root; dd if=/dev/cd0 of=file.iso bs=2048 Das resultierende Abbild kann auf eine CD gebrannt werden, wie in beschrieben. Einhängen von Daten-<acronym>CD</acronym>s Sobald ein Abbild auf eine CD gebrannt wurde, kann es durch Angabe des Dateisystemtyp, des CD-Laufwerks und des Mountpunktes eingehangen werden: &prompt.root; mount -t cd9660 /dev/cd0 /mnt Da mount davon ausgeht, dass ein Dateisystem vom Typ ufs ist, würde die Fehlermeldung Incorrect super block erscheinen, wenn Sie beim Einhängen einer Daten-CD auf die Angabe -t cd9660 verzichten. Auf diese Weise können Daten-CDs von jedem Hersteller verwendet werden. Es kann allerdings zu Problemen mit CDs kommen, die verschiedene ISO 9660-Erweiterungen benutzen. So speichern Joliet-CDs alle Dateinamen unter Verwendung von zwei Byte langen Unicode-Zeichen. Tauchen statt bestimmter Zeichen nur Fragezeichen auf, so muss über die Option der benötigte Zeichensatz angegeben werden. Weitere Informationen zu diesem Problem finden Sie in &man.mount.cd9660.8;. Damit der Kernel diese Zeichenkonvertierung (festgelegt durch die Option ) erkennt, müssen Sie das Kernelmodul cd9660_iconv.ko laden. Dazu fügen Sie folgende Zeile in loader.conf ein: cd9660_iconv_load="YES" Danach müssen Sie allerdings Ihr System neu starten. Alternativ können Sie das Kernelmodul auch direkt über kldload laden. Manchmal werden Sie die Meldung Device not configured erhalten, wenn Sie versuchen, eine Daten-CD einzuhängen. Für gewöhnlich liegt das daran, dass das Laufwerk keine CD erkannt hat, oder dass das Laufwerk auf dem Bus nicht erkannt wird. Es kann einige Sekunden dauern, bevor das Laufwerk die CD erkennt. Seien Sie also geduldig. Manchmal wird ein SCSI-CD nicht erkannt, weil es keine Zeit hatte, auf das Zurücksetzen des Busses zu antworten. Um dieses Problem zu lösen, fügen Sie die folgende Zeile in die Kernelkonfiguration ein und erstellen Sie einen angepassten Kernel nach den Anweisungen in : options SCSI_DELAY=15000 Die Zeile bewirkt, dass nach dem Zurücksetzen des SCSI-Busses beim Booten 15 Sekunden gewartet wird, um dem CD-Laufwerk genügend Zeit zu geben, darauf zu antworten. Es ist möglich eine Datei auch direkt auf eine CD zu brennen, ohne vorher auf ihr ein ISO 9660-Dateisystem einzurichten. Man sagt auch, Daten werden roh auf die CD gebrannt. Einige Leute nutzen dies, um Datensicherungen durchzuführen. Eine auf diese Weise gefertigte Daten-CD kann nicht in das Dateisystem eingehangen werden. Um auf die Daten einer solchen CD zuzugreifen, müssen die Daten vom rohen Gerät gelesen werden. Beispielsweise würde dieser Befehl eine komprimierte tar-Datei auf dem zweiten CD-Laufwerk in das aktuelle Verzeichnis extrahieren: &prompt.root; tar xzvf /dev/cd1 Um eine Daten-CD in das System einzuhängen, müssen die Daten mit mkisofs geschrieben werden. Kopieren von Audio-<acronym>CD</acronym>s Um eine Kopie einer Audio-CD zu erstellen, kopieren Sie die Stücke der CD in einzelne Dateien und brennen diese Dateien dann auf eine leere CD. beschreibt, wie eine Audio-CD kopiert und gebrannt wird. Wenn die Version älter als &os; 10.0 ist und ein ATAPI-Gerät verwendet wird, muss zunächst das Modul nach den Anweisungen in geladen werden. Eine Audio-<acronym>CD</acronym> kopieren Der Port oder das Paket sysutils/cdrtools installiert cdda2wav. Mit diesem Kommando können Audiodaten in das aktuelle Verzeichnis extrahiert werden, wobei jede Datei in eine separate WAV-Datei geschrieben wird: &prompt.user; cdda2wav -vall -B -Owav Wenn das System nur über ein CD-Laufwerk verfügt, muss der Gerätename nicht angegeben werden. Lesen Sie die Manualpage von cdda2wav für Anweisungen, wie ein Gerät spezifiziert wird und weitere verfügbare Optionen für dieses Kommando. Die erzeugten .wav Dateien schreiben Sie mit cdrecord auf eine leere CD: &prompt.user; cdrecord -v dev=2,0 -dao -useinfo *.wav Das Argument von gibt das verwendete Gerät an, das wie in ermittelt werden kann. <acronym>DVD</acronym>s benutzen Marc Fonvieille Beigetragen von Andy Polyakov Mit Beiträgen von DVD brennen Nach der CD ist die DVD die nächste Generation optischer Speichermedien. Auf einer DVD können mehr Daten als auf einer CD gespeichert werden. DVDs werden als Standardmedium für Videos verwendet. Für beschreibbare DVDs existieren fünf Medienformate: DVD-R: Dies war das erste verfügbare Format. Das Format wurde vom DVD-Forum festgelegt. Die Medien sind nur einmal beschreibbar. DVD-RW: Dies ist die wiederbeschreibbare Version des DVD-R Standards. Eine DVD-RW kann ungefähr 1000 Mal beschrieben werden. DVD-RAM: Dies ist ein wiederbeschreibbares Format, das wie ein Wechsellaufwerk betrachtet werden kann. Allerdings sind die Medien nicht kompatibel zu den meisten DVD-ROM-Laufwerken und DVD-Video-Spielern, da das DVD-RAM-Format nur von wenigen Brennern unterstützt wird. Informationen zur Nutzung von DVD-RAM finden Sie in . DVD+RW: Ist ein wiederbeschreibbares Format, das von der DVD+RW Alliance festgelegt wurde. Eine DVD+RW kann ungefähr 1000 Mal beschrieben werden. DVD+R: Dieses Format ist die nur einmal beschreibbare Variante des DVD+RW Formats. Auf einer einfach beschichteten DVD können 4.700.000.000 Bytes gespeichert werden. Das sind 4,38 GB oder 4485 MB (1 Kilobyte sind 1024 Bytes). Die physischen Medien sind unabhängig von der Anwendung. Ein DVD-Video ist eine spezielle Anordnung von Dateien, die auf irgendein Medium, beispielsweise DVD-R, DVD+R oder DVD-RW geschrieben werden kann. Bevor Sie ein Medium auswählen, müssen Sie sicherstellen, dass der Brenner und der DVD-Spieler mit dem Medium umgehen können. Konfiguration Benutzen Sie &man.growisofs.1;, um DVDs zu beschreiben. Das Kommando ist Bestandteil von sysutils/dvd+rw-tools, und kann mit allen DVD-Medien umgehen. Diese Werkzeuge verwenden das SCSI-Subsystem, um auf die Geräte zuzugreifen. Daher muss ATAPI/CAM-Unterstützung geladen, oder statisch in den Kernel kompiliert werden. Sollte der Brenner jedoch die USB-Schnittstelle nutzen, wird diese Unterstützung nicht benötigt. Weitere Informationen zur Konfiguration von USB-Geräten finden Sie in . Für ATAPI-Geräte müssen ebenfalls DMA-Zugriffe aktiviert werden. Dazu wird die folgende Zeile in /boot/loader.conf eingefügt: hw.ata.atapi_dma="1" Bevor Sie dvd+rw-tools benutzen, lesen Sie bitte die Hardware-Informationen auf der Seite Hardware Compatibility Notes. Für eine grafische Oberfläche sollten Sie sich sysutils/k3b ansehen, das eine benutzerfreundliche Schnittstelle zu &man.growisofs.1; und vielen anderen Werkzeugen bietet. Daten-<acronym>DVD</acronym>s brennen &man.growisofs.1; erstellt mit dem Programm mkisofs das Dateisystem und brennt anschließend die DVD. Vor dem Brennen braucht daher kein Abbild der Daten erstellt zu werden. Wenn Sie von den Daten im Verzeichnis /path/to/data eine DVD+R oder eine DVD-R brennen wollen, benutzen Sie das nachstehende Kommando: &prompt.root; growisofs -dvd-compat -Z /dev/cd0 -J -R /path/to/data In diesem Beispiel wird an &man.mkisofs.8; durchgereicht und dient zum Erstellen des Dateisystems (hier: ein ISO-9660-Dateisystem mit Joliet- und Rock-Ridge-Erweiterungen). Weiteres entnehmen Sie bitte der Hilfeseite &man.mkisofs.8;. Die Option wird für die erste Aufnahme einer Single- oder Multisession benötigt. Ersetzen Sie /dev/cd0 mit dem Gerätenamen des DVD-Gerätes. Die Nutzung von schließt das Medium, weitere Daten können danach nicht mehr angehängt werden. Dies sollte auch eine bessere Kompatibilität mit anderen DVD-ROM-Laufwerken bieten. Um ein vorher erstelltes Abbild der Daten zu brennen, beispielsweise imagefile.iso, verwenden Sie: &prompt.root; growisofs -dvd-compat -Z /dev/cd0=imagefile.iso Die Schreibgeschwindigkeit hängt von den verwendeten Medium sowie dem verwendeten Gerät ab und sollte automatisch gesetzt werden. Um die Schreibgeschwindigkeit vorzugeben, verwenden Sie . Beispiele finden Sie in &man.growisofs.1;. Um größere Dateien als 4.38GB zu unterstützen, ist es notwendig ein UDF/ISO-9660 Hybrid-Dateisystem zu erstellen. Dieses Dateisystem muss mit zusätzlichen Parametern bei &man.mkisofs.8; und allen relevanten Programmen, wie beispielsweise &man.growisofs.1;) erzeugt werden. Dies ist nur notwendig, wenn Sie ein ISO-Image erstellen oder direkt auf eine DVD schreiben wollen. DVDs, die in dieser Weise hergestellt worden sind, müssen als UDF-Dateisystem mit &man.mount.udf.8; eingehangen werden. Sie sind nur auf Betriebssystemen, die UDF unterstützen brauchbar, ansonsten sieht es so aus, als ob sie kaputte Dateien enthalten würden. Um diese Art von ISO-Datei zu erstellen: &prompt.user; mkisofs -R -J -udf -iso-level 3 -o imagefile.iso /path/to/data Um Daten direkt auf eine DVD zu brennen, geben Sie den folgenden Befehl ein: &prompt.root; growisofs -dvd-compat -udf -iso-level 3 -Z /dev/cd0 -J -R /path/to/data Wenn ein ISO-Abbild bereits große Dateien enthält, sind keine weiteren Optionen für &man.growisofs.1; notwendig, um das Abbild auf die DVD zu brennen. Achten Sie darauf, eine aktuelle Version von sysutils/cdrtools zu verwenden, welche &man.mkisofs.8; enthält, da ältere Versionen keinen Support für große Dateien enthalten. Falls die neueste Version nicht funktioniert, installieren Sie sysutils/cdrtools-devel und lesen Sie &man.mkisofs.8;. <acronym>DVD</acronym>-Videos brennen DVD DVD-Video Ein DVD-Video ist eine spezielle Anordnung von Dateien, die auf den ISO-9660 und den micro-UDF (M-UDF) Spezifikationen beruht. Da DVD-Video auf eine bestimmte Datei-Hierarchie angewiesen ist, müssen DVDs mit speziellen Programmen wie multimedia/dvdauthor erstellt werden. Ist bereits ein Abbild des Dateisystems eines DVD-Videos vorhanden, kann es auf die gleiche Weise wie jedes andere Abbild gebrannt werden. Wenn dvdauthor verwendet wurde, um die DVD zu erstellen und die Resultate in /path/to/video liegen, kann das folgende Kommando verwendet werden, um ein DVD-Video zu brennen: &prompt.root; growisofs -Z /dev/cd0 -dvd-video /path/to/video wird an &man.mkisofs.8; weitergereicht, um die Datei-Hierarchie für ein DVD-Video zu erstellen. Weiterhin bewirkt diese Option, dass &man.growisofs.1; mit aufgerufen wird. <acronym>DVD+RW</acronym>-Medien benutzen DVD DVD+RW Im Gegensatz zu CD-RW-Medien müssen DVD+RW-Medien erst formatiert werden, bevor sie benutzt werden können. Es wird empfohlen &man.growisofs.1; einzusetzen, da das Programm Medien automatisch formatiert, wenn es erforderlich ist. Es ist jedoch möglich, auch dvd+rw-format zu nutzen, um die DVD+RW zu formatieren: &prompt.root; dvd+rw-format /dev/cd0 Dieser Vorgang muss nur einmal durchgeführt werden. Denken Sie daran, dass nur neue DVD+RWs formatiert werden müssen. Anschließend können DVD+RWs, wie gewohnt gebrannt werden. Wenn Sie auf einer DVD+RW ein neues Dateisystem erstellen wollen, brauchen Sie die DVD+RW vorher nicht zu löschen. Überschreiben Sie einfach das vorige Dateisystem indem Sie eine neue Session anlegen: &prompt.root; growisofs -Z /dev/cd0 -J -R /path/to/newdata Das DVD+RW-Format erlaubt es, Daten an eine vorherige Aufnahme anzuhängen. Dazu wird eine neue Session mit der schon bestehenden zusammengeführt. Es wird keine Multi-Session geschrieben, sondern &man.growisofs.1; vergrößert das ISO-9660-Dateisystem auf dem Medium. Das folgende Kommando fügt weitere Daten zu einer vorher erstellten DVD+RW hinzu: &prompt.root; growisofs -M /dev/cd0 -J -R /path/to/nextdata Wenn Sie eine DVD+RW erweitern, verwenden Sie dieselben &man.mkisofs.8;-Optionen wie beim Erstellen der DVD+RW. Verwenden Sie , um bessere Kompatibilität mit DVD-ROM-Laufwerken zu gewährleisten. Zu einem DVD+RW-Medium können Sie mit dieser Option auch weiterhin Daten hinzufügen. Um das Medium zu löschen, verwenden Sie: &prompt.root; growisofs -Z /dev/cd0=/dev/zero <acronym>DVD-RW</acronym>-Medien benutzen DVD DVD-RW Eine DVD-RW kann mit zwei Methoden beschrieben werden: Sequential-Recording oder Restricted-Overwrite. Voreingestellt ist Sequential-Recording. Eine neue DVD-RW kann direkt beschrieben werden; sie muss nicht vorher formatiert werden. Allerdings muss eine DVD-RW, die mit Sequential-Recording aufgenommen wurde, zuerst gelöscht werden, bevor eine neue Session aufgenommen werden kann. Der folgende Befehl löscht eine DVD-RW im Sequential-Recording-Modus: &prompt.root; dvd+rw-format -blank=full /dev/cd0 Das vollständige Löschen mit dauert mit einem 1x Medium ungefähr eine Stunde. Wenn die DVD-RW im Disk-At-Once-Modus (DAO) aufgenommen wurde, kann sie mit schneller gelöscht werden. Um eine DVD-RW im DAO-Modus zu brennen, benutzen Sie das folgende Kommando: &prompt.root; growisofs -use-the-force-luke=dao -Z /dev/cd0=imagefile.iso Die Option sollte nicht erforderlich sein, da &man.growisofs.1; den DAO-Modus automatisch erkennt. Der Restricted-Overwrite-Modus sollte mit jeder DVD-RW verwendet werden, da er flexibler als der voreingestellte Sequential-Recording-Modus ist. Um Daten auf eine DVD-RW im Sequential-Recording-Modus zu schreiben, benutzen Sie dasselbe Kommando wie für die anderen DVD-Formate: &prompt.root; growisofs -Z /dev/cd0 -J -R /path/to/data Um weitere Daten zu einer Aufnahme hinzuzufügen, benutzen Sie mit &man.growisofs.1;. Werden die Daten im Sequential-Recording-Modus hinzugefügt, wird eine neue Session erstellt. Das Ergebnis ist ein Multi-Session-Medium. Eine DVD-RW im Restricted-Overwrite-Modus muss nicht gelöscht werden, um eine neue Session aufzunehmen. Das Medium kann einfach mit überschrieben werden. Mit kann das ISO-9660-Dateisystem, wie mit einer DVD+RW, vergrößert werden. Die DVD enthält danach eine Session. Benutzen sie das nachstehende Kommando, um den Restricted-Overwrite-Modus einzustellen: &prompt.root; dvd+rw-format /dev/cd0 Das folgende Kommando stellt den Modus wieder auf Sequential-Recording zurück: &prompt.root; dvd+rw-format -blank=full /dev/cd0 Multi-Session Nur wenige DVD-ROM-Laufwerke unterstützen Multi-Session-DVDs und lesen meist nur die erste Session. Mehrere Sessions werden von DVD+R, DVD-R und DVD-RW im Sequential-Recording-Modus unterstützt. Im Modus Restricted-Overwrite gibt nur eine Session. Wenn das Medium noch nicht geschlossen ist, erstellt das nachstehende Kommando eine neue Session auf einer DVD+R, DVD-R oder DVD-RW im Sequential-Recording-Modus: &prompt.root; growisofs -M /dev/cd0 -J -R /path/to/nextdata Wird dieses Kommando mit DVD+RW- oder DVD-RW-Medien im Restricted-Overwrite-Modus benutzt, werden die neuen Daten mit den Daten der bestehenden Session zusammengeführt. Das Medium enthält danach eine Session. Nutzen Sie diese Methode, um neue Daten zu einer bestehenden Session hinzuzufügen. Für den Anfang und das Ende einer Session wird auf dem Medium zusätzlicher Platz verbraucht. Um den Speicherplatz auf dem Medium optimal auszunutzen, sollten Sie daher Sessions mit vielen Daten hinzufügen. Auf ein DVD+R-Medium passen maximal 154 Sessions, 2000 Sessions auf ein DVD-R-Medium und 127 Sessions auf eine DVD+R Double Layer. Weiterführendes dvd+rw-mediainfo /dev/cd0 zeigt Informationen über eine im Laufwerk liegende DVD an. Weiteres zu dvd+rw-tools finden Sie in &man.growisofs.1;, auf der dvd+rw-tools Web-Seite und in den Archiven der cdwrite-Mailingliste. Wenn Sie einen Problembericht zur Nutzung der dvd+rw-tools erstellen, fügen Sie immer die Ausgabe von dvd+rw-mediainfo hinzu. <acronym>DVD-RAM</acronym> DVD DVD-RAM DVD-RAM-fähige Brenner nutzten die SCSI- oder ATAPI-Schnittstelle. Für ATAPI-Geräte muss der DMA-Modus aktiviert werden, indem die folgende Zeile in /boot/loader.conf hinzugefügt wird: hw.ata.atapi_dma="1" Eine DVD-RAM kann mit einer Wechselplatte verglichen werden. Wie diese, muss auch eine DVD-RAM vor dem ersten Einsatz formatiert werden. In diesem Beispiel wird das gesamte Medium mit dem Standard-UFS2-Dateisystem formatiert: &prompt.root; dd if=/dev/zero of=/dev/acd0 bs=2k count=1 &prompt.root; bsdlabel -Bw acd0 &prompt.root; newfs /dev/acd0 Denken Sie dabei daran, dass Sie gegebenenfalls die Gerätedatei (hier acd0) an Ihre Konfiguration anpassen müssen. Nachdem die DVD-RAM formatiert ist, kann sie wie eine normale Festplatte gemountet werden: &prompt.root; mount /dev/acd0 /mnt Danach kann schreibend und lesend auf das DVD-RAM Medium zugegriffen werden. Disketten benutzen Dieser Abschnitt beschreibt die Formatierung von 3,5 Zoll Disketten in &os;. Disketten formatieren Bevor eine Diskette benutzt werden kann, muss sie (low-level) formatiert werden, was normalerweise der Hersteller schon gemacht hat. Sie können die Diskette allerdings noch einmal formatieren, um das Medium zu überprüfen. Benutzen Sie &man.fdformat.1;, um Disketten unter &os; zu formatieren. Achten Sie dabei auf Fehlermeldungen, die schlechte Speichermedien anzeigen. Um eine Diskette zu formatieren, legen Sie eine 3,5 Zoll Diskette in das erste Diskettenlaufwerk ein und führen das folgende Kommando aus: &prompt.root; /usr/sbin/fdformat -f 1440 /dev/fd0 Nach dem Formatieren muss auf der Diskette ein Disklabel erstellt werden, um die Größe und Geometrie der Diskette zu erkennen. Eine Liste der unterstützten Geometrien finden Sie in /etc/disktab. Erstellen Sie nun das Label mit &man.bsdlabel.8;: &prompt.root; /sbin/bsdlabel -B -w /dev/fd0 fd1440 Auf der Diskette kann nun ein Dateisystem erstellt werden (high-level Formatierung). Das Dateisystem der Diskette kann entweder UFS oder FAT sein, wobei FAT für Disketten in der Regel die bessere Wahl ist. Um die Diskette mit FAT zu formatieren, geben Sie folgendes Kommando ein: &prompt.root; /sbin/newfs_msdos /dev/fd0 Die Diskette kann nun benutzt werden. Um die Diskette zu verwenden, kann sie mit &man.mount.msdosfs.8; eingehängt werden. Man kann auch emulators/mtools aus der Ports-Sammlung installieren, um mit der Diskette zu arbeiten. Datensicherung Die Planung und Umsetzung einer Backup-Strategie ist unerlässlich, um Daten in bestimmten Situationen wiederherstellen zu können, zum Beispiel bei Plattendefekten, versehentlichem Löschen von Dateien, willkürlicher Korrumpierung von Dateien oder der vollständigen Zerstörung des Systems und der Backups, die am gleichen Ort aufbewahrt werden. Die Art und der Zeitplan des Backups kann variieren, abhängig von der Wichtigkeit der Daten, der benötigten Granularität zur Wiederherstellung von Dateien und der Dauer einer akzeptablen Ausfallzeit. Zu den möglichen Backup-Strategien gehören unter anderem: Die Archivierung des kompletten Systems auf externen Datenträgern. Dieser Ansatz schützt zwar vor allen oben aufgeführten Problemen, ist aber zeitaufwändig und unbequem bei der Wiederherstellung, insbesondere für nicht privilegierte Benutzer. Dateisystem-Snapshots sind nützlich bei der Wiederherstellung von gelöschten Dateien, bzw. früheren Versionen von Dateien. Kopien ganzer Dateisysteme oder Festplatten, die mit einem anderen System im Netzwerk mittels net/rsync synchronisiert werden. Hardware oder Software RAID, was im Falle von Plattendefekten die Ausfallzeit minimiert oder vermeidet. Üblicherweise wird eine Mischung aus verschiedenen Strategien verwendet. Es kann zum Beispiel ein Sicherungsplan erstellt und automatisiert werden, um eine wöchentliche, vollständige Systemsicherung, ergänzt mit stündlichen ZFS-Snapshots, zu erstellen. Darüber hinaus könnte man eine manuelle Sicherung einzelner Verzeichnisse oder Dateien machen, bevor diese bearbeitet oder gelöscht werden. Dieser Abschnitt beschreibt einige Programme, die zur Erstellung und Verwaltung von Sicherungen unter &os; verwendet werden können. Sicherung von Dateisystemen Backup-Software dump / restore dump restore Die traditionellen &unix;-Programme zum Sichern und Wiederherstellen von Dateisystemen sind &man.dump.8; und &man.restore.8;. Diese Programme arbeiten auf der Block-Ebene der Festplatte, also unterhalb des Abstraktionslevels von Dateien, Links und Verzeichnissen, die die Grundlage des Dateisystemkonzepts bilden. Im Gegensatz zu anderen Backup-Programmen sichert dump ein ganzes Dateisystem und nicht nur einen Teil des Dateisystems, oder einen Verzeichnisbaum, der mehr als ein Dateisystem umfasst. Anstatt Dateien oder Verzeichnisse zu schreiben, schreibt dump die Blöcke, aus denen die Dateien und Verzeichnisse bestehen. Wird dump benutzt, um das Root-Verzeichnis zu sichern, werden /home, /usr und viele andere Verzeichnisse nicht gesichert, da dies normalerweise Mountpunkte für andere Dateisysteme oder symbolische Links zu diesen Dateisystemen sind. Wenn restore zum Extrahieren von Daten verwendet wird, werden temporäre Dateien standardmäßig in /tmp abgelegt. Wenn Sie von einer Platte mit einem kleinen /tmp-Verzeichnis zurücksichern, setzen Sie die Umgebungsvariable TMPDIR auf ein Verzeichnis mit mehr freiem Speicherplatz, damit die Wiederherstellung gelingt. Beachten Sie bei der Verwendung von dump, dass es einige Eigenarten aus den frühen Tagen der Version 6 von AT&T &unix; (ca. 1975) beibehalten hat. Die Standardparameter gehen davon aus, dass auf einem 9-Spur-Band gesichert wird, und nicht auf ein anderes Medium oder auf Sicherungsbänder mit hoher Dichte. Diese Standardwerte müssen auf der Kommandozeile überschrieben werden. .rhosts Es ist möglich, das Dateisystem über das Netzwerk auf einem anderen Rechner zu sichern, oder auf einem Bandlaufwerk eines anderen Rechners. Obwohl die Programme &man.rdump.8; und &man.rrestore.8; für diese Zwecke benutzt werden können, gelten sie als nicht sicher. Verwenden Sie stattdessen dump und restore in einer sichereren Weise über eine SSH-Verbindung. In diesem Beispiel wird eine vollständige, komprimierte Sicherung von /usr erstellt, das anschließend an einen bestimmten Host über eine SSH-Verbindung gesendet wird. <command>dump</command> mit <application>ssh</application> benutzen &prompt.root; /sbin/dump -0uan -f - /usr | gzip -2 | ssh -c blowfish \ targetuser@targetmachine.example.com dd of=/mybigfiles/dump-usr-l0.gz In diesem Beispiel wird RSH gesetzt, um über eine SSH-Verbindung eine Sicherung auf ein Bandlaufwerk eines entfernten Systems zu schreiben: <command>dump</command> über <application>ssh</application> mit gesetzter <envar>RSH</envar> benutzen &prompt.root; env RSH=/usr/bin/ssh /sbin/dump -0uan -f tatargetuser@targetmachine.example.com:/dev/sa0 /usr Sicherung von Verzeichnissen Backup-Software tar Einige integrierte Werkzeuge stehen zur Sicherung und Wiederherstellung von bestimmten Dateien und Verzeichnissen bei Bedarf zur Verfügung. Wenn es um die Sicherung von Dateien in einem Verzeichnis geht, ist &man.tar.1; eine gute Wahl. Dieses Werkzeug stammt aus Version 6 von AT&T &unix; und erwartet standardmäßig eine rekursive Sicherung auf ein lokales Band. Es können jedoch Optionen angegeben werden, um den Namen einer Sicherungsdatei zu bestimmen. tar In diesem Beispiel wird eine komprimierte Sicherung des aktuellen Verzeichnisses nach /tmp/mybackup.tgz gespeichert. Achten Sie bei der Sicherungsdatei darauf, dass sie nicht in dem Verzeichnis gespeichert wird, welches gesichert werden soll. Das aktuelle Verzeichnis mit <command>tar</command> sichern &prompt.root; tar czvf /tmp/mybackup.tgz . Um eine komplette Sicherung wiederherzustellen, wechseln Sie mit cd in das Verzeichnis, in dem Sie die Daten wiederherstellen möchten und geben Sie den Namen der Sicherungsdatei an. Beachten Sie, dass dabei alle Dateien in dem Verzeichnis überschrieben werden. Im Zweifel sichern Sie besser in einem temporären Verzeichnis, oder geben Sie den Verzeichnisnamen bei der Wiederherstellung an. Wiederherstellung mit <command>tar</command> in das aktuelle Verzeichnis &prompt.root; tar xzvf /tmp/mybackup.tgz Es gibt dutzende Optionen, die in &man.tar.1; beschrieben werden. Das Programm unterstützt auch die Verwendung von Ausschlußmustern, um bestimmte Dateien von der Sicherung oder Wiederherstellung von Verzeichnissen auszuschließen. Backup-Software cpio Um bestimmte, aufgelistete Dateien und Verzeichnisse zu sichern, ist &man.cpio.1; eine gute Wahl. Im Gegensatz zu tar weiß cpio nicht wie ein Verzeichnisbaum durchlaufen wird. Daher ist es auf eine Liste von zu sichernden Dateien angewiesen. So kann beispielsweise eine Liste von Dateien mit ls oder find erzeugt werden. Dieses Beispiel erstellt eine rekursive Liste des aktuellen Verzeichnisses, die dann über eine Pipe an cpio übergeben wird, um eine Sicherung namens /tmp/mybackup.cpio zu erstellen. Rekursive Sicherung des aktuellen Verzeichnisses mit <command>ls</command> und <command>cpio</command> &prompt.root; ls -R | cpio -ovF /tmp/mybackup.cpio Backup-Software pax pax POSIX IEEE &man.pax.1; ist ein Programm, welches versucht die Funktionen von tar und cpio zu kombinieren. Über die Jahre hinweg sind die verschiedenen Versionen von tar und cpio leicht inkompatibel geworden. Daher hat &posix; pax geschaffen, welches versucht viele der unterschiedlichen cpio- und tar-Formate zu lesen und zu schreiben, außerdem einige neue, eigene Formate. Für die vorangegangenen Beispiele wäre ein äquivalenter Aufruf von pax: Das aktuelle Verzeichnis mit <command>pax</command> sichern &prompt.root; pax -wf /tmp/mybackup.pax . Bandmedien benutzen Bandmedien Obwohl sich Bandmedien mit der Zeit weiterentwickelt haben, verwenden moderne Backup-Systeme in der Regel Offsite-Backups in Verbindung mit lokalen Wechseldatenträgern. &os; unterstützt alle SCSI-Bandlaufwerke, wie etwa LTO und DAT. Zusätzlich gibt es begrenzte Unterstützung für SATA- und USB-Bandlaufwerke. Für SCSI-Bandlaufwerke nutzt &os; den &man.sa.4; Treiber, der die Schnittstellen /dev/sa0, /dev/nsa0 und /dev/esa0 bereitstellt. Der Name des physikalischen Geräts ist /dev/sa0. Wird /dev/nsa0 benutzt, dann wird die Backup-Anwendung nach dem Schreibvorgang das Band nicht zurückspulen, was es ermöglicht, mehr als eine Datei auf das Band zu schreiben. Die Verwendung von /dev/esa0 wirft das Band aus, nachdem das Gerät geschlossen wurde. &os; nutzt mt für die Steuerung der Operationen des Bandlaufwerks, wie die Suche nach Dateien auf einem Band, oder um Kontrollmarkierungen auf ein Band zu schreiben. Beispielsweise können die ersten drei Dateien auf einem Band erhalten bleiben, indem sie übersprungen werden, bevor eine neue Datei auf das Band geschrieben wird &prompt.root; mt -f /dev/nsa0 fsf 3 Dieses Werkzeug unterstützt viele Operationen. Weitere Einzelheiten finden Sie in &man.mt.1;. Um eine Datei mit tar auf ein Band zu schreiben, geben Sie den Namen des Bandlaufwerks und den Dateinamen an: &prompt.root; tar cvf /dev/sa0 file Wiederherstellung von Dateien aus dem tar-Archiv von Band in das aktuelle Verzeichnis: &prompt.root; tar xvf /dev/sa0 Benutzen Sie dump, um ein UFS-Dateisystem zu sichern. Dieses Beispiel sichert /usr, ohne danach das Band zurückzuspulen: &prompt.root; dump -0aL -b64 -f /dev/nsa0 /usr Interaktive Wiederherstellung von Dateien aus einer &man.dump.8;-Datei von Band in das aktuelle Verzeichnis: &prompt.root; restore -i -f /dev/nsa0 Backup-Software von Drittanbietern Backup-Software Die &os; Ports-Sammlung enthält viele Programme von Drittanbietern, die verwendet werden können um die zeitliche Erstellung von Sicherungen zu planen, zu vereinfachen und bequemer zu machen. Viele dieser Programme basieren auf dem Client-Server-Modell und können benutzt werden, um die Sicherung von einzelnen Systemen oder allen Rechnern in einem Netzwerk zu automatisieren. Zu den bekannten Programmen gehören Amanda, Bacula, rsync und duplicity. Die Wiederherstellung in einem Notfall Zusätzlich zu den regelmäßigen Sicherungen empfiehlt es sich, die folgenden Schritte im Rahmen eines Notfallplans durchzuführen. bsdlabel Erstellen Sie einen Ausdruck der Ausgabe der folgenden Kommandos: gpart show more /etc/fstab dmesg Live-CD Bewahren Sie diesen Ausdruck und eine Kopie des Installationsmediums an einem sicheren Ort auf. Im Falle einer Wiederherstellung im Notfall, starten Sie von dem Installationsmedium und wählen Sie Live CD, um eine Rettungs-Shell zu starten. Dieser Rettungsmodus kann verwendet werden, um den aktuellen Stand des Systems anzuzeigen, und wenn nötig, Festplatten zu formatieren und Daten aus den Sicherungen wiederherzustellen. Das Installationsmedium für &os;/&arch.i386; &rel2.current;-RELEASE enthält keine Rettungs-Shell. Laden Sie für diese Version ein Abbild der Livefs CD von ftp://ftp.FreeBSD.org/pub/FreeBSD/releases/&arch.i386;/ISO-IMAGES/&rel2.current;/&os;-&rel2.current;-RELEASE-&arch.i386;-livefs.iso. Als nächstes testen Sie die Rettungs-Shell und die Sicherungen. Dokumentieren Sie diesen Ablauf. Bewahren Sie diese Notizen zusammen mit den Medien, den Ausdrucken und den Sicherungen auf. Diese Notizen können Ihnen im Notfall helfen eine versehentliche Zerstörung der Sicherungen zu verhindern, während Sie unter Stress eine Wiederherstellung durchführen. Als zusätzliche Sicherheitsvorkehrung kann jeweils die letzte Sicherung an einem entfernten Standort aufbewahrt werden. Dieser Standort sollte räumlich von den Computern und Festplatten durch eine erhebliche Entfernung getrennt sein. Speicherbasierte Laufwerke Marc Fonvieille Verbessert und neu strukturiert von Neben physikalischen Laufwerken unterstützt &os; auch speicherbasierte Laufwerke. Eine mögliche Verwendung für ein speicherbasiertes Laufwerk ist der Zugriff auf ein ISO-Dateisystem, jedoch ohne vorher die Daten auf eine CD oder DVD zu brennen und dann das Medium einzuhängen. &os; verwendet den &man.md.4; Treiber um Unterstützung für speicherbasierte Laufwerke bereitzustellen. Dieser Treiber ist bereits im GENERIC-Kernel enthalten. Wenn Sie eine angepasste Kernelkonfigurationsdatei verwenden, stellen Sie sicher, dass folgende Zeile enthalten ist: device md Ein- und Aushängen von bestehenden Abbildern Laufwerke speicherbasierte Um ein bestehendes Abbild eines Dateisystems einzuhängen, verwenden Sie mdconfig zusammen mit dem Namen der ISO-Datei und einer freien Gerätenummer. Benutzen Sie dann diese Gerätenummer, um das Abbild in einen existierenden Mountpunkt einzuhängen. Sobald dies erledigt ist, erscheinen die Dateien des Abbildes unterhalb des Mountpunktes. Dieses Beispiel wird diskimage.iso an das speicherbasierte Laufwerk /dev/md0 binden und dann in /mnt einhängen: &prompt.root; mdconfig -f diskimage.iso -u 0 &prompt.root; mount /dev/md0 /mnt Wenn keine Gerätenummer mit angegeben ist, wird von &man.md.4; automatisch eine ungenutzte Gerätenummer zugewiesen. Das zugewiesene Gerät wird auf der Standardausgabe ausgegeben (zum Beispiel md4). Weitere Informationen zu diesem Kommando und dessen Optionen finden Sie in &man.mdconfig.8;. Laufwerke speicherbasiertes Laufwerk aushängen Wenn ein speicherbasiertes Laufwerk nicht mehr in Gebrauch ist, sollten seine belegten Ressourcen wieder an das System zurückgegeben werden. Hängen Sie zuerst das Dateisystem aus, dann verwenden Sie mdconfig, um die Platte vom System zu trennen und die Ressourcen freizugeben. &prompt.root; umount /mnt &prompt.root; mdconfig -d -u 0 Um festzustellen, ob noch irgendwelche speicherbasierten Laufwerke am System angeschlossen sind, benutzen Sie mdconfig -l. Ein datei- oder speicherbasiertes Laufwerk erzeugen Laufwerke speicherbasierte &os; unterstützt auch speicherbasierte Laufwerke, bei denen der verwendete Speicher entweder einer Festplatte, oder einem Bereich im Arbeitsspeicher zugewiesen wird. Die erste Methode ist gemeinhin als dateibasiertes Dateisystem, die zweite als speicherbasiertes Dateisystem bekannt. Beide Typen können mit mdconfig erzeugt werden. Um ein speicherbasiertes Dateisystem zu erstellen, geben Sie den Typ swap sowie die gewünschte Größe des Laufwerks an. Dieses Beispiel erzeugt ein 5 MB großes Laufwerk an der Gerätenummer 1. Das Laufwerk wird mit dem UFS-Dateisystem formatiert, bevor es eingehängt wird: &prompt.root; mdconfig -a -t swap -s 5m -u 1 &prompt.root; newfs -U md1 /dev/md1: 5.0MB (10240 sectors) block size 16384, fragment size 2048 using 4 cylinder groups of 1.27MB, 81 blks, 192 inodes. with soft updates super-block backups (for fsck -b #) at: 160, 2752, 5344, 7936 &prompt.root; mount /dev/md1 /mnt &prompt.root; df /mnt Filesystem 1K-blocks Used Avail Capacity Mounted on /dev/md1 4718 4 4338 0% /mnt Um ein dateibasiertes Dateisystem zu erstellen, muss zunächst ein Stück Speicher auf der Festplatte reserviert werden. Dieses Beispiel erzeugt eine 5 KB große Datei namens newimage: &prompt.root; dd if=/dev/zero of=newimage bs=1k count=5k 5120+0 records in 5120+0 records out Als nächstes muss diese Datei an ein speicherbasiertes Laufwerk gebunden, gelabelt und mit dem UFS-Dateisystem formatiert werden. Danach können Sie das Laufwerk einhängen und die Größe überprüfen: &prompt.root; mdconfig -f newimage -u 0 &prompt.root; bsdlabel -w md0 auto &prompt.root; newfs md0a /dev/md0a: 5.0MB (10224 sectors) block size 16384, fragment size 2048 using 4 cylinder groups of 1.25MB, 80 blks, 192 inodes. super-block backups (for fsck -b #) at: 160, 2720, 5280, 7840 &prompt.root; mount /dev/md0a /mnt &prompt.root; df /mnt Filesystem 1K-blocks Used Avail Capacity Mounted on /dev/md0a 4710 4 4330 0% /mnt Es benötigt mehrere Befehle, um ein datei- oder speicherbasiertes Dateisystem mit mdconfig zu erstellen. &os; enthält auch mdmfs, das ein speicherbasiertes Laufwerk automatisch konfigurieren, formatieren und einhängen kann. Nachdem beispielsweise newimage mit dd erstellt wurde, hätte auch der folgende Befehl benutzt werden können, anstelle der oben verwendeten Kommandos bsdlabel, newfs und mount: &prompt.root; mdmfs -F newimage -s 5m md0 /mnt Um hingegen ein speicherbasiertes Laufwerk mit mdmfs zu erstellen, wird dieser Befehl benutzt: &prompt.root; mdmfs -s 5m md1 /mnt Wenn die Gerätenummer nicht angegeben wird, wählt mdmfs automatisch ein ungenutztes Gerät aus. Weitere Einzelheiten über mdmfs finden Sie in &man.mdmfs.8;. Schnappschüsse von Dateisystemen Tom Rhodes Beigetragen von Schnappschüsse von Dateisystemen Zusammen mit Soft Updates bietet &os; eine weitere Funktion: Schnappschüsse von Dateisystemen. UFS-Schnappschüsse sind Dateien, die ein Abbild eines Dateisystems enthalten und müssen auf dem jeweiligen Dateisystem erstellt werden. Pro Dateisystem darf es maximal 20 Schnappschüsse, die im Superblock vermerkt werden, geben. Schnappschüsse bleiben erhalten, wenn das Dateisystem abgehangen, neu eingehangen oder das System neu gestartet wird. Wenn ein Schnappschuss nicht mehr benötigt wird, kann er mit &man.rm.1; gelöscht werden. Es ist egal, in welcher Reihenfolge Schnappschüsse gelöscht werden. Es kann allerdings vorkommen, dass nicht der gesamte Speicherplatz wieder freigegeben wird, da ein anderer Schnappschuss einen Teil der entfernten Blöcke für sich beanspruchen kann. Das unveränderliche -Dateiflag wird nach der Erstellung des Snapshots von &man.mksnap.ffs.8; gesetzt. Durch die Verwendung von &man.unlink.1; ist es allerdings möglich, einen Schnappschuss zu löschen. Schnappschüsse werden mit &man.mount.8; erstellt. Das folgende Kommando legt einen Schnappschuss von /var in /var/snapshot/snap ab: &prompt.root; mount -u -o snapshot /var/snapshot/snap /var Alternativ kann der Schnappschuss auch mit &man.mksnap.ffs.8; erstellt werden. &prompt.root; mksnap_ffs /var /var/snapshot/snap Um Schnappschüsse auf einem Dateisystem, beispielsweise /var zu finden, kann man &man.find.1; verwenden: &prompt.root; find /var -flags snapshot Nachdem ein Schnappschuss erstellt wurde, können Sie ihn für verschiedene Zwecke benutzen: Sie können den Schnappschuss für die Datensicherung benutzen und ihn auf eine CD oder ein Band schreiben. Die Integrität des Schnappschusses kann mit &man.fsck.8; geprüft werden. Wenn das Dateisystem zum Zeitpunkt der Erstellung des Schnappschusses in Ordnung war, sollte &man.fsck.8; immer erfolgreich durchlaufen. Sie können den Schnappschuss mit &man.dump.8; sichern. Sie erhalten dann eine konsistente Sicherung des Dateisystems zu dem Zeitpunkt, der durch den Zeitstempel des Schnappschusses gegeben ist. Der Schalter von &man.dump.8; erstellt für die Sicherung einen Schnappschuss und entfernt diesen am Ende der Sicherung wieder. Sie können einen Schnappschuss in den Verzeichnisbaum einhängen und sich dann den Zustand des Dateisystems zu dem Zeitpunkt ansehen, an dem der Schnappschuss erstellt wurde. Der folgende Befehl hängt den Schnappschuss /var/snapshot/snap ein: &prompt.root; mdconfig -a -t vnode -o readonly -f /var/snapshot/snap -u 4 &prompt.root; mount -r /dev/md4 /mnt Der eingefrorene Stand des /var-Dateisystems ist nun unterhalb von /mnt verfügbar. Mit Ausnahme der früheren Schnappschüsse, die als leere Dateien auftauchen, wird zu Beginn alles so aussehen, wie zum Zeitpunkt der Erstellung des Schnappschusses. Der Schnappschuss kann wie folgt abgehängt werden: &prompt.root; umount /mnt &prompt.root; mdconfig -d -u 4 Weitere Informationen über Soft Updates und Schnappschüsse von Dateisystemen sowie technische Artikel finden Sie auf der Webseite von Marshall Kirk McKusick. Disk Quotas Accounting Plattenplatz Disk Quotas Disk Quotas erlauben dem Administrator, den Plattenplatz und/oder die Anzahl der Dateien eines Benutzers oder der Mitglieder einer Gruppe, auf Dateisystemebene zu beschränken. Dadurch wird verhindert, dass ein Benutzer oder eine Gruppe von Benutzern den ganzen verfügbaren Plattenplatz belegt. Dieser Abschnitt beschreibt die Konfiguration von Disk Quotas für UFS-Dateisysteme. Lesen Sie , wenn Sie Disk Quotas auf einem ZFS-Dateisystem einrichten möchten. Disk Quotas aktivieren Prüfen Sie zunächst, ob der &os;-Kernel Disk Quotas unterstützt: &prompt.user; sysctl kern.features.ufs_quota kern.features.ufs_quota: 1 In diesem Beispiel zeigt die 1 an, das Quotas unterstützt werden. Falls 0 ausgegeben wird, fügen Sie folgende Zeile in die Kernelkonfigurationsdatei ein, und folgen Sie den Anweisungen in um den Kernel zu aktualisieren: options QUOTA Als nächstes aktivieren Sie Disk Quotas in /etc/rc.conf: quota_enable="YES" Disk Quotas überprüfen Normalerweise wird beim Booten die Integrität der Quotas auf allen Dateisystemen mit &man.quotacheck.8; überprüft. Dieses Programm stellt sicher, dass die Quota-Datenbank mit den Daten auf einem Dateisystem übereinstimmt. Dies ist allerdings ein zeitraubender Prozess, der die Zeit, die das System zum Booten braucht, signifikant beeinflusst. Eine Variable in /etc/rc.config erlaubt es, diesen Schritt zu überspringen: check_quotas="NO" Zuletzt muss noch /etc/fstab bearbeitet werden, um die Plattenquotas auf Dateisystemebene zu aktivieren. Um Quotas pro Benutzer für ein Dateisystem zu aktivieren, geben Sie für dieses Dateisystem im Feld Optionen von /etc/fstab an. Zum Beispiel: /dev/da1s2g /home ufs rw,userquota 1 2 Um Quotas für Gruppen einzurichten, verwenden Sie . Um Quotas für Benutzer und Gruppen einzurichten, trennen Sie die Optionen durch Kommata: /dev/da1s2g /home ufs rw,userquota,groupquota 1 2 Quota-Dateien werden standardmäßig im Rootverzeichnis des Dateisystems unter quota.user und quota.group abgelegt. Weitere Informationen finden Sie in &man.fstab.5;. Es wird nicht empfohlen, Quota-Dateien an anderen Stellen zu speichern. Sobald die Konfiguration abgeschlossen ist, starten Sie das System neu. /etc/rc wird dann automatisch die richtigen Kommandos aufrufen, um die Quota-Dateien für alle in /etc/rc.conf definierten Quotas anzulegen. Normalerweise brauchen die Kommandos &man.quotacheck.8;, &man.quotaon.8; oder &man.quotaoff.8; nicht von Hand aufgerufen werden, obwohl man die entsprechenden Seiten im Manual lesen sollte, um sich mit ihnen vertraut zu machen. Setzen von Quota-Limits Disk Quotas Limits Stellen Sie sicher, dass Quotas auch tatsächlich aktiviert sind: &prompt.root; quota -v Für jedes Dateisystem, auf dem Quotas aktiviert sind, sollte eine Zeile mit der Plattenauslastung und den aktuellen Quota-Limits zu sehen sein. Mit edquota können nun Quota-Limits zugewiesen werden. Mehrere Möglichkeiten stehen zur Verfügung, um Limits für den Plattenplatz, den ein Benutzer oder eine Gruppe verbrauchen kann, oder die Anzahl der Dateien, die angelegt werden dürfen, festzulegen. Die Limits können auf dem Plattenplatz (Block-Quotas), der Anzahl der Dateien (Inode-Quotas) oder einer Kombination von beiden basieren. Jedes Limit wird weiterhin in zwei Kategorien geteilt: Hardlimits und Softlimits. Hardlimit Ein Hardlimit kann nicht überschritten werden. Hat der Benutzer einmal ein Hardlimit erreicht, so kann er auf dem betreffenden Dateisystem keinen weiteren Platz mehr beanspruchen. Hat ein Benutzer beispielsweise ein Hardlimit von 500 Kilobytes auf einem Dateisystem und benutzt davon 490 Kilobyte, so kann er nur noch 10 weitere Kilobytes beanspruchen. Der Versuch, weitere 11 Kilobytes zu beanspruchen, wird fehlschlagen. Softlimit Softlimits können für eine befristete Zeit überschritten werden. Diese Frist beträgt in der Grundeinstellung eine Woche. Hat der Benutzer das Softlimit über die Frist hinaus überschritten, so wird das Softlimit in ein Hardlimit umgewandelt und der Benutzer kann keinen weiteren Platz mehr beanspruchen. Wenn er einmal das Softlimit unterschreitet, wird die Frist wieder zurückgesetzt. Im folgenden Beispiel wird das Quota des Benutzerkonto test bearbeitet. Wenn edquota aufgerufen wird, wird der in EDITOR definierte Editor aufgerufen, um die Quota-Limts zu konfigurieren. Der Standard-Editor ist vi. &prompt.root; edquota -u test Quotas for user test: /usr: kbytes in use: 65, limits (soft = 50, hard = 75) inodes in use: 7, limits (soft = 50, hard = 60) /usr/var: kbytes in use: 0, limits (soft = 50, hard = 75) inodes in use: 0, limits (soft = 50, hard = 60) Für jedes Dateisystem, auf dem Quotas aktiv sind, sind zwei Zeilen zu sehen. Eine repräsentiert die Block-Quotas und die andere die Inode-Quotas. Um ein Limit zu modifizieren, ändern Sie einfach den angezeigten Wert. Um beispielsweise das Blocklimit von /usr auf ein Softlimit von 500 und ein Hardlimit von 600 zu erhöhen, ändern Sie die Zeile wie folgt: /usr: kbytes in use: 65, limits (soft = 500, hard = 600) Die neuen Limits sind wirksam, sobald der Editor verlassen wird. Manchmal ist es wünschenswert, die Limits für eine Reihe von Benutzern zu setzen. Dazu weisen Sie zunächst einem Benutzer das gewünschte Quota-Limit zu. Anschließend benutzen Sie , um das Quota auf einen bestimmten Bereich von Benutzer-IDs (UID) zu duplizieren. Der folgende Befehl dupliziert die Quota-Limits auf die UIDs 10000 bis 19999: &prompt.root; edquota -p test 10000-19999 Weitere Informationen finden Sie in &man.edquota.8;. Überprüfen von Quota-Limits und Plattennutzung Disk Quotas überprüfen Um die Limits oder die Plattennutzung individueller Benutzer und Gruppen zu überprüfen, kann &man.quota.1; benutzt werden. Ein Benutzer kann nur die eigenen Quotas und die Quotas der Gruppe, der er angehört untersuchen. Nur der Superuser darf sich alle Limits ansehen. Mit &man.repquota.8; erhalten Sie eine Zusammenfassung von allen Limits und der Plattenausnutzung für alle Dateisysteme, auf denen Quotas aktiv sind. In der Ausgabe von &man.quota.1; werden Dateisysteme, auf denen ein Benutzer keinen Platz verbraucht, nicht angezeigt, auch wenn diesem Quotas zugewiesen wurden. Benutzen Sie um solche Dateisysteme ebenfalls anzuzeigen. Das folgende Beispiel zeigt die Ausgabe von quota -v für einen Benutzer, der Quota-Limits auf zwei Dateisystemen besitzt: Disk quotas for user test (uid 1002): Filesystem usage quota limit grace files quota limit grace /usr 65* 50 75 5days 7 50 60 /usr/var 0 50 75 0 50 60 grace period Im Dateisystem /usr liegt der Benutzer momentan 15 Kilobytes über dem Softlimit von 50 Kilobytes und hat noch 5 Tage seiner Frist übrig. Der Stern * zeigt an, dass der Benutzer sein Limit überschritten hat. Quotas über NFS NFS Quotas werden von dem Quota-Subsystem auf dem NFS-Server erzwungen. Der &man.rpc.rquotad.8; Daemon stellt quota die Quota Informationen auf dem NFS-Client zur Verfügung, so dass Benutzer auf diesen Systemen ihre Quotas abfragen können. Sie aktivieren rpc.rquotad auf dem NFS-Server, indem Sie das Zeichen # auf folgender Zeile in /etc/inetd.conf entfernen: rquotad/1 dgram rpc/udp wait root /usr/libexec/rpc.rquotad rpc.rquotad Anschließend starten Sie inetd neu: &prompt.root; service inetd restart Partitionen verschlüsseln Lucky Green Beigetragen von
shamrock@cypherpunks.to
Partitionen verschlüsseln &os; bietet ausgezeichnete Möglichkeiten, Daten vor unberechtigten Zugriffen zu schützen. Wenn das Betriebssystem läuft, schützen Zugriffsrechte und vorgeschriebene Zugriffskontrollen (MAC) (siehe ) die Daten. Die Zugriffskontrollen des Betriebssystems schützen allerdings nicht vor einem Angreifer, der Zugriff auf den Rechner hat. Der Angreifer kann eine Festplatte in ein anderes System einbauen und dort die Daten analysieren. Die für &os; verfügbaren kryptografischen Subsysteme, GEOM Based Disk Encryption (gbde) und geli sind in der Lage, Daten auf Dateisystemen auch vor hoch motivierten Angreifern zu schützen, die über erhebliche Mittel verfügen. Dieser Schutz ist unabhängig von der Art und Weise, durch die ein Angreifer Zugang zu einer Festplatte oder zu einem Rechner erlangt hat. Im Gegensatz zu anderen Verschlüsselungsmethoden, bei denen einzelne Dateien verschlüsselt werden, verschlüsseln gbde und geli transparent ganze Dateisysteme. Auf der Festplatte werden dabei keine Daten im Klartext gespeichert. Dieses Kapitel zeigt, wie ein verschlüsseltes Dateisystem unter &os; erstellt wird. Zunächst wird der Ablauf für gbde beschrieben und anschließend das gleiche Beispiel für geli. Plattenverschlüsselung mit <application>gbde</application> Das Ziel von &man.gbde.4; ist es, einen Angreifer vor eine große Herausforderung zu stellen, um an die Daten einer Festplatte zu gelangen. Falls jedoch der Rechner kompromittiert wurde, während er im Betrieb war und das Speichergerät aktiv verbunden war, oder wenn der Angreifer eine gültige Passphrase kennt, bietet dieses System keinen Schutz für die Daten der Festplatte. Daher ist es wichtig, für die physische Sicherheit zu sorgen, während das System im Betrieb ist. Außerdem muss die Passphrase für den Verschlüsselungsmechanismus geschützt werden. &man.gbde.4; besitzt einige Funktionen um die Daten, die in einem Sektor gespeichert sind, zu schützen. Es benutzt 128-Bit AES im CBC-Modus, um die Daten eines Sektors zu verschlüsseln. Jeder Sektor einer Festplatte wird mit einem anderen AES-Schlüssel verschlüsselt. Weitere Informationen zum kryptographischen Design und wie die Schlüssel für einen Sektor aus der gegebenen Passphrase ermittelt werden, finden Sie in &man.gbde.4;. &os; enthält ein Kernelmodul für gbde, das wie folgt geladen werden kann: &prompt.root; kldload geom_bde Wenn Sie einen angepassten Kernel verwenden, stellen Sie sicher, dass folgende Zeile in der Kernelkonfigurationsdatei enthalten ist: options GEOM_BDE Das folgende Beispiel beschreibt, wie eine Partition auf einer neuen Festplatte verschlüsselt wird. Die Partition wird in /private eingehangen. Eine Partition mit <application>gbde</application> verschlüsseln Installieren der Festplatte Installieren Sie die Festplatte wie in beschrieben. Im Beispiel wird die Partition /dev/ad4s1c verwendet. Die Gerätedateien /dev/ad0s1* sind Standard-Partitionen des &os;-Systems. &prompt.root; ls /dev/ad* /dev/ad0 /dev/ad0s1b /dev/ad0s1e /dev/ad4s1 /dev/ad0s1 /dev/ad0s1c /dev/ad0s1f /dev/ad4s1c /dev/ad0s1a /dev/ad0s1d /dev/ad4 Verzeichnis für gbde-Lock-Dateien anlegen &prompt.root; mkdir /etc/gbde Die Lock-Dateien sind für den Zugriff von gbde auf verschlüsselte Partitionen notwendig. Ohne die Lock-Dateien können die Daten nur mit erheblichem manuellen Aufwand wieder entschlüsselt werden (dies wird auch von der Software nicht unterstützt). Jede verschlüsselte Partition benötigt eine gesonderte Lock-Datei. Vorbereiten der gbde-Partition Eine von gbde benutzte Partition muss einmalig initialisiert werden, bevor sie benutzt werden kann. Das Programm öffnet eine Vorlage im Standard-Editor, um verschiedene Optionen zu konfigurieren. Setzen Sie sector_size auf 2048, wenn Sie UFS benutzen: - &prompt.root; gbde init /dev/ad4s1c -i -L /etc/gbde/ad4s1c.lock + &prompt.root; gbde init /dev/ad4s1c -i -L /etc/gbde/ad4s1c.lock # $FreeBSD: src/sbin/gbde/template.txt,v 1.1.36.1 2009/08/03 08:13:06 kensmith Exp $ # # Sector size is the smallest unit of data which can be read or written. # Making it too small decreases performance and decreases available space. # Making it too large may prevent filesystems from working. 512 is the # minimum and always safe. For UFS, use the fragment size # sector_size = 2048 [...] Sobald die Änderungen gespeichert werden, wird der Benutzer zweimal aufgefordert, die zum Schutz der Daten verwendete Passphrase einzugeben. Die Passphrase muss beide Mal gleich eingegeben werden. Die Sicherheit der Daten hängt allein von der Qualität der gewählten Passphrase ab. Die Auswahl einer sicheren und leicht zu merkenden Passphrase wird auf der Webseite http://world.std.com/~reinhold/diceware.html beschrieben. Bei der Initialisierung wird eine Lock-Datei für die gbde-Partition erstellt. In diesem Beispiel /etc/gbde/ad4s1c.lock. Lock-Dateien müssen die Dateiendung .lock aufweisen, damit sie von /etc/rc.d/gbde, dem Startskript von gbde, erkannt werden. Lock-Dateien müssen immer zusammen mit den verschlüsselten Dateisystemen gesichert werden. Ohne die Lock-Datei können Sie allerdings nicht auf die verschlüsselten Daten zugreifen. Einbinden der verschlüsselten Partition in den Kernel &prompt.root; gbde attach /dev/ad4s1c -l /etc/gbde/ad4s1c.lock Dieses Kommando fragt die Passphrase ab, die bei der Initialisierung der verschlüsselten Partition eingegeben wurde. Das neue verschlüsselte Gerät erscheint danach in /dev als /dev/device_name.bde: &prompt.root; ls /dev/ad* /dev/ad0 /dev/ad0s1b /dev/ad0s1e /dev/ad4s1 /dev/ad0s1 /dev/ad0s1c /dev/ad0s1f /dev/ad4s1c /dev/ad0s1a /dev/ad0s1d /dev/ad4 /dev/ad4s1c.bde Dateisystem auf dem verschlüsselten Gerät anlegen Nachdem die verschlüsselte Partition im Kernel eingebunden ist, kann ein Dateisystem erstellt werden. Dieses Beispiel erstellt ein UFS-Dateisystem mit aktivierten Soft Updates. Achten Sie darauf, die Partition mit der Erweiterung *.bde zu benutzen: &prompt.root; newfs -U -O2 /dev/ad4s1c.bde Einhängen der verschlüsselten Partition Legen Sie einen Mountpunkt für das verschlüsselte Dateisystem an. Hängen Sie anschließend das Dateisystem ein: &prompt.root; mkdir /private &prompt.root; mount /dev/ad4s1c.bde /private Überprüfen des verschlüsselten Dateisystems Das verschlüsselte Dateisystem sollte jetzt erkannt und benutzt werden können: &prompt.user; df -H Filesystem Size Used Avail Capacity Mounted on /dev/ad0s1a 1037M 72M 883M 8% / /devfs 1.0K 1.0K 0B 100% /dev /dev/ad0s1f 8.1G 55K 7.5G 0% /home /dev/ad0s1e 1037M 1.1M 953M 0% /tmp /dev/ad0s1d 6.1G 1.9G 3.7G 35% /usr /dev/ad4s1c.bde 150G 4.1K 138G 0% /private Nach jedem Neustart müssen verschlüsselte Dateisysteme dem Kernel wieder bekannt gemacht werden, auf Fehler überprüft werden und eingehangen werden. Für die dazu nötigen Schritte fügen Sie folgende Zeilen in /etc/rc.conf hinzu: gbde_autoattach_all="YES" gbde_devices="ad4s1c" gbde_lockdir="/etc/gbde" Durch diese Argumente muss beim Systemstart auf der Konsole die Passphrase eingegeben werden. Erst nach Eingabe der korrekten Passphrase wird die verschlüsselte Partition automatisch in den Verzeichnisbaum eingehängt. Weitere Bootoptionen von gbde finden Sie in &man.rc.conf.5;. sysinstall ist nicht kompatibel mit gbde-verschlüsselten Geräten. Bevor sysinstall gestartet wird, müssen alle *.bde Geräte vom Kernel getrennt werden, da sonst der Kernel bei der ersten Suche nach Geräten abstürzt. Um das verschlüsselte Gerät aus dem Beispiel zu trennen, benutzen Sie das folgende Kommando: &prompt.root; gbde detach /dev/ad4s1c Plattenverschlüsselung mit <command>geli</command> Daniel Gerzo Beigetragen von Mit geli steht eine alternative kryptografische GEOM-Klasse zur Verfügung. Dieses Werkzeug unterstützt unterschiedliche Fähigkeiten und verfolgt einen anderen Ansatz für die Verschlüsselung. geli bietet die folgenden Funktionen: Die Nutzung des &man.crypto.9;-Frameworks. Wenn das System über kryptografische Hardware verfügt, wird diese von geli automatisch verwendet. Die Unterstützung verschiedener kryptografischer Algorithmen, wie AES, Blowfish, und 3DES. Die Möglichkeit, die root-Partition zu verschlüsseln. Um auf die verschlüsselte root-Partition zugreifen zu können, muss beim Systemstart die Passphrase eingegeben werden. Erlaubt den Einsatz von zwei voneinander unabhängigen Schlüsseln. Es ist durch einfache Sektor-zu-Sektor-Verschlüsselung sehr schnell. Die Möglichkeit, Master-Keys zu sichern und wiederherzustellen. Wenn ein Benutzer seinen Schlüssel zerstört, kann er über seinen zuvor gesicherten Schlüssel wieder auf seine Daten zugreifen. geli erlaubt es, Platten mit einem zufälligen Einmal-Schlüssel einzusetzen, was für Swap-Partitionen und temporäre Dateisysteme interessant ist. Weitere Funktionen und Anwendungsbeispiele finden Sie in &man.geli.8;. Das folgende Beispiel beschreibt, wie eine Schlüsseldatei erzeugt wird, die als Teil des Master-Keys für den Verschlüsselungs-Provider verwendet wird, der unter /private in den Verzeichnisbaum eingehängt wird. Die Schlüsseldatei liefert zufällige Daten, die für die Verschlüsselung des Master-Keys benutzt werden. Zusätzlich wird der Master-Key durch eine Passphrase geschützt. Die Sektorgröße des Providers beträgt 4 KB. Das Beispiel beschreibt, wie Sie einen geli-Provider aktivieren, ein vom ihm verwaltetes Dateisystem erzeugen, es mounten, mit ihm arbeiten und wie Sie es schließlich wieder unmounten und den Provider deaktivieren. Eine Partition mit <command>geli</command> verschlüsseln Laden der <command>geli</command>-Unterstützung Die Unterstützung für geli wird über ein ladbares Kernelmodul zur Verfügung gestellt. Damit das Modul automatisch beim Booten geladen wird, fügen Sie folgende Zeile in /boot/loader.conf ein: geom_eli_load="YES" Um das Modul direkt zu laden: &prompt.root; kldload geom_eli Stellen Sie bei einer angepassten Kernelkonfigurationsdatei sicher, dass diese Zeilen enthalten sind: options GEOM_ELI device crypto Erzeugen des Master-Keys Die folgenden Befehle erzeugen einen Master-Key (/root/da2.key), der durch eine Passphrase geschützt ist. Die Datenquelle für die Schlüsseldatei ist /dev/random. Um eine bessere Leistung zu erzielen beträgt die Sektorgröße des Providers (/dev/da2.eli) 4 KB: &prompt.root; dd if=/dev/random of=/root/da2.key bs=64 count=1 &prompt.root; geli init -s 4096 -K /root/da2.key /dev/da2 Enter new passphrase: Reenter new passphrase: Es ist nicht zwingend nötig, sowohl eine Passphrase als auch eine Schlüsseldatei zu verwenden. Die einzelnen Methoden können auch unabhängig voneinander eingesetzt werden. Wird für die Schlüsseldatei - angegeben, wird dafür die Standardeingabe verwendet. Das folgende Kommando erzeugt beispielsweise drei Schlüsseldateien: &prompt.root; cat keyfile1 keyfile2 keyfile3 | geli init -K - /dev/da2 Aktivieren des Providers mit dem erzeugten Schlüssel Um den Provider zu aktivieren, geben Sie die Schlüsseldatei, den Namen des Laufwerks und die Passphrase an: &prompt.root; geli attach -k /root/da2.key /dev/da2 Enter passphrase: Dadurch wird ein neues Gerät mit der Erweiterung .eli angelegt: &prompt.root; ls /dev/da2* /dev/da2 /dev/da2.eli Das neue Dateisystem erzeugen Als nächstes muss das Gerät mit dem UFS-Dateisystem formatiert und an einen vorhandenen Mountpunkt eingehängt werden: &prompt.root; dd if=/dev/random of=/dev/da2.eli bs=1m &prompt.root; newfs /dev/da2.eli &prompt.root; mount /dev/da2.eli /private Das verschlüsselte Dateisystem sollte jetzt erkannt und benutzt werden können: &prompt.root; df -H Filesystem Size Used Avail Capacity Mounted on /dev/ad0s1a 248M 89M 139M 38% / /devfs 1.0K 1.0K 0B 100% /dev /dev/ad0s1f 7.7G 2.3G 4.9G 32% /usr /dev/ad0s1d 989M 1.5M 909M 0% /tmp /dev/ad0s1e 3.9G 1.3G 2.3G 35% /var /dev/da2.eli 150G 4.1K 138G 0% /private Wenn Sie nicht mehr mit dem verschlüsselten Dateisystem arbeiten und die unter /private eingehängte Partition daher nicht mehr benötigen, sollten Sie diese unmounten und den geli-Verschlüsselungs-Provider wieder deaktivieren: &prompt.root; umount /private &prompt.root; geli detach da2.eli &os; verfügt über ein rc.d-Skript, das dass Einhängen von verschlüsselten Geräten beim Booten deutlich vereinfacht. Für dieses Beispiel, fügen Sie folgende Zeilen in /etc/rc.conf hinzu: geli_devices="da2" geli_da2_flags="-p -k /root/da2.key" Dies konfiguriert /dev/da2 als geli-Provider mit dem Master-Key /root/da2.key. Das System wird den Provider automatisch deaktivieren, bevor es heruntergefahren wird. Während des Startvorgangs fordert das Skript die Passphrase an, bevor der Provider aktiviert wird. Vor und nach der Eingabeaufforderung für die Passphrase werden noch weitere Kernelmeldungen angezeigt. Achten Sie sorgfältig auf die Eingabeaufforderung zwischen den anderen Meldungen, falls es zu Problemen beim Startvorgang kommt. Sobald die richtige Passphrase eingegeben wurde, wird der Provider aktiviert. Anschließend werden die Dateisysteme gemäß /etc/fstab eingehängt. Lesen Sie wenn Sie wissen möchten, wie Sie ein Dateisystem konfigurieren, sodass es beim booten automatisch gestartet wird.
Den Auslagerungsspeicher verschlüsseln Christian Brueffer Geschrieben von Auslagerungsspeicher verschlüsseln Wie die Verschlüsselung von Partitionen, wird auch der Auslagerungsspeicher verschlüsselt, um sensible Informationen zu schützen. Stellen Sie sich eine Anwendung vor, die mit Passwörtern umgeht. Solange sich diese Passwörter im Arbeitsspeicher befinden, werden sie nicht auf die Festplatte geschrieben und nach einem Neustart gelöscht. Falls &os; jedoch damit beginnt Speicher auszulagern, um Platz für andere Anwendungen zu schaffen, können die Passwörter unverschlüsselt auf die Festplatte geschrieben werden. Die Verschlüsselung des Auslagerungsspeichers kann in solchen Situationen Abhilfe schaffen. Dieser Abschnitt zeigt die Konfiguration eines verschlüsselten Auslagerungsspeichers mittels &man.gbde.8; oder &man.geli.8;. In den Beispielen repräsentiert /dev/ada0s1b die Swap-Partition. Konfiguration eines verschlüsselten Auslagerungsspeichers Swap-Partitionen werden standardmäßig nicht verschlüsselt. Sie sollten daher alle sensiblen Daten im Auslagerungsspeicher löschen, bevor Sie fortfahren. Führen Sie folgenden Befehl aus, um die Swap-Partition mit Zufallsdaten zu überschreiben: &prompt.root; dd if=/dev/random of=/dev/ada0s1b bs=1m Um den Auslagerungsspeicher mit &man.gbde.8; zu verschlüsseln, fügen Sie in /etc/fstab das Suffix .bde an den Gerätenamen der Swap-Partition hinzu: # Device Mountpoint FStype Options Dump Pass# /dev/ada0s1b.bde none swap sw 0 0 Wenn Sie &man.geli.8; benutzen, verwenden Sie stattdessen das Suffix .eli, um den Auslagerungsspeicher zu verschlüsseln: # Device Mountpoint FStype Options Dump Pass# /dev/ada0s1b.eli none swap sw 0 0 In der Voreinstellung verschlüsselt &man.geli.8; mit dem AES-Algorithmus und einer Schlüssellänge von 128 Bit. Diese Voreinstellungen sind in der Regel ausreichend, können jedoch im Options-Feld in /etc/fstab angepasst werden. Mögliche Optionen sind: aalgo Der Algorithmus für die Prüfung der Datenintegrität. Dieser wird benutzt um sicherzustellen, dass die verschlüsselten Daten nicht manipuliert wurden. Eine Liste der unterstützten Algorithmen finden Sie in &man.geli.8;. ealgo Der Verschlüsselungsalgorithmus, der verwendet wird um die Daten zu schützen. Eine Liste der unterstützten Algorithmen finden Sie in &man.geli.8;. keylen Die Länge des Schlüssels für den Verschlüsselungsalgorithmus. In &man.geli.8; können Sie lesen, welche Schlüssellängen von welchem Algorithmus unterstützt werden. sectorsize Die Größe, in der die Datenblöcke aufgeteilt werden, bevor sie verschlüsselt werden. Größere Blöcke erhöhen die Leistung auf Kosten des Speicherverbrauchs. Die empfohlene Größe beträgt 4096 Byte. Dieses Beispiel konfiguriert eine verschlüsselte Swap-Partition mit dem Blowfish-Algorithmus, einer Schlüssellänge von 128 Bit und einer Sektorgröße von 4 KB: # Device Mountpoint FStype Options Dump Pass# /dev/ada0s1b.eli none swap sw,ealgo=blowfish,keylen=128,sectorsize=4096 0 0 Überprüfung des verschlüsselten Auslagerungsspeichers Nachdem das System neu gestartet wurde, kann die korrekte Funktion des verschlüsselten Auslagerungsspeichers mit swapinfo geprüft werden. Wenn Sie &man.gbde.8; einsetzen, erhalten Sie eine Meldung ähnlich der folgenden: &prompt.user; swapinfo Device 1K-blocks Used Avail Capacity /dev/ada0s1b.bde 542720 0 542720 0% Wenn Sie &man.geli.8; einsetzen, erhalten Sie hingegen eine Ausgabe ähnlich der folgenden: &prompt.user; swapinfo Device 1K-blocks Used Avail Capacity /dev/ada0s1b.eli 542720 0 542720 0% Highly Available Storage (<acronym>HAST</acronym>) Daniel Gerzo Beigetragen von Freddie Cash Mit Beiträgen von Pawel Jakub Dawidek Michael W. Lucas Viktor Petersson Benedict Reuschling Übersetzt von HAST high availability Hochverfügbarkeit ist eine der Hauptanforderungen von ernsthaften Geschäftsanwendungen und hochverfügbarer Speicher ist eine Schlüsselkomponente in solchen Umgebungen. Highly Available STorage (HAST) ist ein Framework in &os;, welches die transparente Speicherung der gleichen Daten über mehrere physikalisch getrennte Maschinen ermöglicht, die über ein TCP/IP-Netzwerk verbunden sind. HAST kann als ein netzbasiertes RAID1 (Spiegel) verstanden werden und ist dem DRBD®-Speichersystem der GNU/&linux;-Plattform ähnlich. In Kombination mit anderen Hochverfügbarkeitseigenschaften von &os; wie CARP, ermöglicht es HAST, hochverfügbare Speichercluster zu bauen, die in der Lage sind, Hardwareausfällen zu widerstehen. Die Hauptmerkmale von HAST sind: Es kann zur Maskierung von I/O-Fehlern auf lokalen Festplatten eingesetzt werden. Dateisystem-unabhängig, was es erlaubt, jedes von &os; unterstützte Dateisystem zu verwenden. Effiziente und schnelle Resynchronisation: es werden nur die Blöcke synchronisiert, die während der Ausfallzeit eines Knotens geändert wurden. Es kann in einer bereits bestehenden Umgebung eingesetzt werden, um zusätzliche Redundanz zu erreichen. Zusammen mit CARP, Heartbeat, oder anderen Werkzeugen, ist es möglich, ein robustes und dauerhaftes Speichersystem zu bauen. Nachdem Sie diesen Abschnitt gelesen haben, werden Sie folgendes wissen: Was HAST ist, wie es funktioniert und welche Eigenschaften es besitzt. Wie man HAST unter &os; aufsetzt und verwendet. Wie man CARP und &man.devd.8; kombiniert, um ein robustes Speichersystem zu bauen. Bevor Sie diesen Abschnitt lesen, sollten Sie: die Grundlagen von &unix; und &os; verstanden haben (). wissen, wie man Netzwerkschnittstellen und andere Kernsysteme von &os; konfiguriert (). ein gutes Verständnis der &os;-Netzwerkfunktionalität besitzen (). Das HAST-Projekt wurde von der &os; Foundation mit Unterstützung der OMCnet Internet Service GmbH und TransIP BV gesponsert. HAST im Einsatz HAST bietet eine synchrone Replikation auf Blockebene zwischen zwei Maschinen: einem primary, auch bekannt als master Knoten, sowie dem secondary, oder slave Knoten. Diese beiden Maschinen zusammen werden als Cluster bezeichnet. Da HAST in einer primär-sekundär-Konfiguration funktioniert, ist immer nur ein Knoten des Clusters zu jeder Zeit aktiv. Der primäre Knoten, auch active genannt, ist derjenige, der alle I/O-Anfragen verarbeitet, die an die HAST-Schnittstelle gesendet werden. Der sekundäre Knoten wird automatisch vom primären Knoten aus synchronisiert. Die physischen Komponenten des HAST-Systems sind die lokale Platte am Primärknoten und die entfernte Platte am Sekundärknoten. HAST arbeitet synchron auf Blockebene, was es für Dateisysteme und Anwendungen transparent macht. HAST stellt gewöhnliche GEOM-Provider in /dev/hast/ für die Verwendung durch andere Werkzeuge oder Anwendungen zur Verfügung. Es gibt keinen Unterschied zwischen dem Einsatz von HAST bereitgestellten Geräten und herkömmlichen Platten oder Partitionen. Jede Schreib-, Lösch- oder Entleerungsoperation wird an die lokale und über TCP/IP zu der entfernt liegenden Platte gesendet. Jede Leseoperation wird von der lokalen Platte durchgeführt, es sei denn, die lokale Platte ist nicht aktuell oder es tritt ein I/O-Fehler auf. In solchen Fällen wird die Leseoperation an den Sekundärknoten geschickt. HAST versucht, eine schnelle Fehlerbereinigung zu gewährleisten. Aus diesem Grund ist es wichtig, die Synchronisationszeit nach dem Ausfall eines Knotens zu reduzieren. Um eine schnelle Synchronisation zu ermöglichen, verwaltet HAST eine Bitmap von unsauberen Bereichen auf der Platte und synchronisiert nur diese während einer regulären Synchronisation (mit Ausnahme der initialen Synchronisation). Es gibt viele Wege, diese Synchronisation zu behandeln. HAST implementiert mehrere Replikationsarten, um unterschiedliche Methoden der Synchronisation zu realisieren: memsync: Dieser Modus meldet Schreiboperationen als vollständig, wenn die lokale Schreiboperation beendet ist und der entfernt liegende Knoten die Ankunft der Daten bestätigt hat, jedoch bevor die Daten wirklich gespeichert wurden. Die Daten werden auf dem entfernt liegenden Knoten direkt nach dem Senden der Bestätigung gespeichert. Dieser Modus ist dafür gedacht, Latenzen zu verringern und zusätzlich eine gute Verlässlichkeit zu bieten. In der Voreinstellung wird dieser Modus benutzt. fullsync: Dieser Modus meldet Schreiboperationen als vollständig, wenn sowohl die lokale, als auch die entfernte Schreiboperation abgeschlossen wurde. Dies ist der sicherste und zugleich der langsamste Replikationsmodus. async: Dieser Modus meldet Schreiboperationen als vollständig, wenn lokale Schreibvorgänge abgeschlossen wurden. Dies ist der schnellste und gefährlichste Replikationsmodus. Er sollte nur verwendet werden, wenn die Latenz zu einem entfernten Knoten bei einer Replikation zu hoch ist für andere Modi. HAST-Konfiguration Das HAST-Framework besteht aus mehreren Komponenten: Dem &man.hastd.8;-Daemon, welcher für Datensynchronisation verantwortlich ist. Wenn dieser Daemon gestartet wird, wird automatisch geom_gate.ko geladen. Dem &man.hastctl.8; Management-Werkzeug. Der Konfigurationsdatei &man.hast.conf.5;. Diese Datei muss vorhanden sein, bevor hastd gestartet wird. Alternativ lässt sich die GEOM_GATE-Unterstützung in den Kernel statisch einbauen, indem folgende Zeile zur Kernelkonfigurationsdatei hinzugefügt wird. Anschließend muss der Kernel, wie in beschrieben, neu gebaut werden: options GEOM_GATE Das folgende Beispiel beschreibt, wie man zwei Knoten als master-slave / primary-secondary mittels HAST konfiguriert, um Daten zwischen diesen beiden auszutauschen. Die Knoten werden als hasta mit der IP-Adresse 172.16.0.1 und hastb mit der IP-Adresse 172.16.0.2 bezeichnet. Beide Knoten besitzen eine dedizierte Festplatte /dev/ad6 mit der gleichen Größe für den HAST-Betrieb. Der HAST-Pool, manchmal auch Ressource genannt, oder der GEOM-Provider in /dev/hast/ wird als test bezeichnet. Die Konfiguration von HAST wird in /etc/hast.conf vorgenommen. Diese Datei sollte auf beiden Knoten gleich sein. Die einfachste Konfiguration ist folgende: resource test { on hasta { local /dev/ad6 remote 172.16.0.2 } on hastb { local /dev/ad6 remote 172.16.0.1 } } Fortgeschrittene Konfigurationsmöglichkeiten finden Sie in &man.hast.conf.5;. Es ist ebenfalls möglich, den Hostnamen in den remote-Anweisungen zu verwenden, falls die Rechner aufgelöst werden können und in /etc/hosts, oder im lokalen DNS definiert sind. Sobald die Konfiguration auf beiden Rechnern vorhanden ist, kann ein HAST-Pool erstellt werden. Lassen Sie diese Kommandos auf beiden Knoten ablaufen, um die initialen Metadaten auf die lokale Platte zu schreiben und starten Sie anschließend &man.hastd.8;: &prompt.root; hastctl create test &prompt.root; service hastd onestart Es ist nicht möglich, GEOM-Provider mit einem bereits bestehenden Dateisystem zu verwenden, um beispielsweise einen bestehenden Speicher in einen von HAST verwalteten Pool zu konvertieren. Dieses Verfahren muss einige Metadaten auf den Provider schreiben und dafür würde nicht genug freier Platz zur Verfügung stehen. Die Rolle eines HAST Knotens, primary oder secondary, wird vom einem Administrator, oder einer Software wie Heartbeat, mittels &man.hastctl.8; festgelegt. Auf dem primären Knoten hasta geben Sie diesen Befehl ein: &prompt.root; hastctl role primary test Geben Sie folgendes Kommando auf dem sekundären Knoten hastb ein: &prompt.root; hastctl role secondary test Überprüfen Sie das Ergebnis mit hastctl auf beiden Knoten: &prompt.root; hastctl status test Überprüfen Sie die status-Zeile. Wird hier degraded angezeigt, dann ist etwas mit der Konfigurationsdatei nicht in Ordnung. Auf jedem Konten sollte complete angezeigt werden, was bedeutet, dass die Synchronisation zwischen den beiden Knoten gestartet wurde. Die Synchronisierung ist abgeschlossen, wenn hastctl status meldet, dass die dirty-Bereiche 0 Bytes betragen. Der nächste Schritt ist, ein Dateisystem auf dem GEOM-Provider anzulegen und dieses ins System einzuhängen. Dies muss auf dem primary-Knoten durchgeführt werden. Die Erstellung des Dateisystems kann ein paar Minuten dauern, abhängig von der Größe der Festplatte. Dieses Beispiel erstellt ein UFS-Dateisystem auf /dev/hast/test: &prompt.root; newfs -U /dev/hast/test &prompt.root; mkdir /hast/test &prompt.root; mount /dev/hast/test /hast/test Sobald das HAST-Framework richtig konfiguriert wurde, besteht der letzte Schritt nun darin, sicherzustellen, dass HAST während des Systemstarts automatisch gestartet wird. Fügen Sie diese Zeile in /etc/rc.conf hinzu: hastd_enable="YES" Failover-Konfiguration Das Ziel dieses Beispiels ist, ein robustes Speichersystem zu bauen, welches Fehlern auf einem beliebigen Knoten widerstehen kann. Wenn der primary-Knoten ausfällt, ist der secondary-Knoten da, um nahtlos einzuspringen, das Dateisystem zu prüfen, einzuhängen und mit der Arbeit fortzufahren, ohne dass auch nur ein einzelnes Bit an Daten verloren geht. Um diese Aufgabe zu bewerkstelligen, wird das Common Address Redundancy Protocol (CARP) benutzt, welches ein automatisches Failover auf der IP-Schicht ermöglicht. CARP erlaubt es mehreren Rechnern im gleichen Netzsegment, die gleiche IP-Adresse zu verwenden. Setzen Sie CARP auf beiden Knoten des Clusters anhand der Dokumentation in auf. In diesem Beispiel hat jeder Knoten seine eigene Management IP-Adresse und die geteilte IP-Adresse 172.16.0.254. Der primäre HAST-Knoten des Clusters muss der CARP-Masterknoten sein. Der HAST-Pool, welcher im vorherigen Abschnitt erstellt wurde, ist nun bereit für den Export über das Netzwerk auf den anderen Rechner. Dies kann durch den Export über NFS oder Samba erreicht werden, indem die geteilte IP-Adresse 172.16.0.254 verwendet wird. Das einzige ungelöste Problem ist der automatische Failover, sollte der primäre Knoten einmal ausfallen. Falls die CARP-Schnittstelle aktiviert oder deaktiviert wird, generiert das &os;-Betriebssystem ein &man.devd.8;-Ereignis, was es ermöglicht, Zustandsänderungen auf den CARP-Schnittstellen zu überwachen. Eine Zustandsänderung auf der CARP-Schnittstelle ist ein Indiz dafür, dass einer der Knoten gerade ausgefallen oder wieder verfügbar ist. Diese Zustandsänderungen machen es möglich, ein Skript zu starten, welches automatisch den HAST-Failover durchführt. Um Zustandsänderungen auf der CARP-Schnittstelle abzufangen, müssen diese Zeilen in /etc/devd.conf auf jedem Knoten hinzugefügt werden: notify 30 { match "system" "IFNET"; match "subsystem" "carp0"; match "type" "LINK_UP"; action "/usr/local/sbin/carp-hast-switch master"; }; notify 30 { match "system" "IFNET"; match "subsystem" "carp0"; match "type" "LINK_DOWN"; action "/usr/local/sbin/carp-hast-switch slave"; }; Wenn auf dem System &os; 10 oder höher eingesetzt wird, ersetzen Sie carp0 durch den Namen der konfigurierten Schnittstelle für CARP. Starten Sie &man.devd.8; auf beiden Knoten neu, um die neue Konfiguration wirksam werden zu lassen: &prompt.root; service devd restart Wenn die Schnittstelle aktiviert oder deaktiviert wird, erzeugt das System eine Meldung, was es dem &man.devd.8;-Subsystem ermöglicht, ein automatisches Failover-Skript zu starten, /usr/local/sbin/carp-hast-switch. Weitere Informationen zu dieser Konfiguration finden Sie in &man.devd.conf.5;. Es folgt ein Beispiel für ein automatisches Failover-Skript: #!/bin/sh # Original script by Freddie Cash <fjwcash@gmail.com> # Modified by Michael W. Lucas <mwlucas@BlackHelicopters.org> # and Viktor Petersson <vpetersson@wireload.net> # The names of the HAST resources, as listed in /etc/hast.conf resources="test" # delay in mounting HAST resource after becoming master # make your best guess delay=3 # logging log="local0.debug" name="carp-hast" # end of user configurable stuff case "$1" in master) logger -p $log -t $name "Switching to primary provider for ${resources}." sleep ${delay} # Wait for any "hastd secondary" processes to stop for disk in ${resources}; do while $( pgrep -lf "hastd: ${disk} \(secondary\)" > /dev/null 2>&1 ); do sleep 1 done # Switch role for each disk hastctl role primary ${disk} if [ $? -ne 0 ]; then logger -p $log -t $name "Unable to change role to primary for resource ${disk}." exit 1 fi done # Wait for the /dev/hast/* devices to appear for disk in ${resources}; do for I in $( jot 60 ); do [ -c "/dev/hast/${disk}" ] && break sleep 0.5 done if [ ! -c "/dev/hast/${disk}" ]; then logger -p $log -t $name "GEOM provider /dev/hast/${disk} did not appear." exit 1 fi done logger -p $log -t $name "Role for HAST resources ${resources} switched to primary." logger -p $log -t $name "Mounting disks." for disk in ${resources}; do mkdir -p /hast/${disk} fsck -p -y -t ufs /dev/hast/${disk} mount /dev/hast/${disk} /hast/${disk} done ;; slave) logger -p $log -t $name "Switching to secondary provider for ${resources}." # Switch roles for the HAST resources for disk in ${resources}; do if ! mount | grep -q "^/dev/hast/${disk} on " then else umount -f /hast/${disk} fi sleep $delay hastctl role secondary ${disk} 2>&1 if [ $? -ne 0 ]; then logger -p $log -t $name "Unable to switch role to secondary for resource ${disk}." exit 1 fi logger -p $log -t $name "Role switched to secondary for resource ${disk}." done ;; esac Im Kern führt das Skript die folgenden Aktionen durch, sobald ein Knoten zum Master wird: Es ernennt den HAST-Pool als den primären für einen gegebenen Knoten. Es prüft das Dateisystem, dass auf dem HAST-Pool erstellt wurde. Es hängt den Pool ins System ein. Wenn ein Knoten zum Sekundären ernannt wird: Hängt es den HAST-Pool aus dem Dateisystem aus. Degradiert es den HAST-Pool zum sekundären. Dieses Skript ist nur ein Beispiel für eine mögliche Lösung. Es behandelt nicht alle möglichen Szenarien, die auftreten können und sollte erweitert bzw. abgeändert werden, so dass z.B. benötigte Dienste gestartet oder gestoppt werden. Für dieses Beispiel wurde ein UFS-Dateisystem verwendet. Um die Zeit für die Wiederherstellung zu verringern, kann ein UFS mit Journal oder ein ZFS-Dateisystem benutzt werden. Weitere detaillierte Informationen mit zusätzlichen Beispielen können unter http://wiki.FreeBSD.org/HAST abgerufen werden. Fehlerbehebung HAST sollte generell ohne Probleme funktionieren. Jedoch kann es, wie bei jeder anderen Software auch, zu gewissen Zeiten sein, dass sie sich nicht so verhält wie angegeben. Die Quelle dieser Probleme kann unterschiedlich sein, jedoch sollte als Faustregel gewährleistet werden, dass die Zeit für alle Knoten im Cluster synchron läuft. Für die Fehlersuche bei HAST sollte die Anzahl an Debugging-Meldungen von &man.hastd.8; erhöht werden. Dies kann durch das Starten von hastd mit -d erreicht werden. Diese Option kann mehrfach angegeben werden, um die Anzahl an Meldungen weiter zu erhöhen. Sie sollten ebenfalls die Verwendung von -F in Erwägung ziehen, was hastd im Vordergrund startet. Auflösung des Split-brain-Zustands split-brain bezeichnet eine Situation, in der beide Knoten des Clusters nicht in der Lage sind, miteinander zu kommunizieren und dadurch beide als primäre Knoten fungieren. Dies ist ein gefährlicher Zustand, weil es beiden Knoten erlaubt ist, Änderungen an den Daten vorzunehmen, die miteinander nicht in Einklang gebracht werden können. Diese Situation muss vom Systemadministrator manuell bereinigt werden. Der Administrator muss entscheiden, welcher Knoten die wichtigeren Änderungen besitzt, oder die Zusammenführung manuell durchführen. Anschließend kann HAST die volle Synchronisation mit dem Knoten durchführen, der die beschädigten Daten enthält. Um dies zu tun, geben Sie folgende Befehle auf dem Knoten ein, der neu synchronisiert werden muss: &prompt.root; hastctl role init test &prompt.root; hastctl create test &prompt.root; hastctl role secondary test
Index: head/de_DE.ISO8859-1/books/handbook/mail/chapter.xml =================================================================== --- head/de_DE.ISO8859-1/books/handbook/mail/chapter.xml (revision 50863) +++ head/de_DE.ISO8859-1/books/handbook/mail/chapter.xml (revision 50864) @@ -1,2161 +1,2161 @@ Elektronische Post (E-Mail) Bill Lloyd Ursprüglicher Text von Jim Mock Neugeschrieben von Robert Drehmel Übersetzt von Terminologie E-Mail Terminologie Das Akronym MTA steht für Mail Transfer Agent was übersetzt Mailübertragungs-Agent bedeutet. Während die Bezeichnung Server-Dämon die Komponente eines MTA benennt, die für eingehende Verbindungen zuständig ist, wird mit dem Begriff Mailer öfters die Komponente des MTA bezeichnet, die E-Mails versendet. Übersicht E-Mail Elektronische Post, besser bekannt als E-Mail, ist eine der am weit verbreitetsten Formen der Kommunikation heutzutage. Dieses Kapitel bietet eine grundlegende Einführung in das Betreiben eines E-Mail-Servers unter &os;. Ebenfalls wird der Versand und Empfang von E-Mails unter &os; behandelt. Eine umfassende Betrachtung zu diesem Thema finden Sie in den Büchern, die in aufgelistet sind. Dieses Kapitel behandelt die folgenden Punkte: Welche Software-Komponenten beim Senden und Empfangen von elektronischer Post involviert sind. Wo sich grundlegende Sendmail Konfigurationsdateien in &os; befinden. Den Unterschied zwischen entfernten und lokalen Postfächern. Wie man Versender von Spam daran hindern kann, E-Mail-Server illegalerweise als Weiterleitung zu verwenden. Wie man einen alternativen MTA installiert und konfiguriert, um Sendmail zu ersetzen. Wie man oft auftretende E-Mail-Server Probleme behebt. Wie E-Mails über einen Relay verschickt werden. Wie E-Mails über eine Einwahlverbindung gehandhabt werden. Wie SMTP-Authentifizierung einrichtet wird. Den Empfang und den Versand von E-Mails mithilfe von Programmen wie mutt. Wie E-Mails von einem entfernten Server mit POP oder IMAP abgeholt werden. Wie eingehende E-Mail automatisch gefiltert wird. Bevor Sie dieses Kapitel lesen, sollten Sie: Die Netzwerk-Verbindung richtig einrichten. (). Die DNS-Information für einen E-Mail-Server einstellen (). Wissen, wie man zusätzliche Dritthersteller-Software installiert (). E-Mail Komponenten POP IMAP DNS E-Mail-Server Dämonen Sendmail E-Mail-Server Dämonen Postfix E-Mail-Server Dämonen qmail E-Mail-Server Dämonen Exim E-Mails empfangen MX-Eintrag E-Mail-Server Es gibt fünf größere Komponenten die am Austausch von E-Mails beteiligt sind: der Mail User Agent (MUA), der Mail Transfer Agent (MTA), der Mail Host, ein entferntes oder lokales Postfach, sowie DNS. Dieser Abschnitt enthält eine Übersicht über diese Komponenten. Mail User Agent (MUA) Der Mail User Agent (MUA) ist das Benutzerprogramm zum Verfassen, Senden und Empfangen von E-Mails. Diese Anwendung kann ein Kommandozeilenprogramm sein, wie das in &os; enthaltene Programm mail, oder ein Programm aus der Ports-Sammlung wie beispielsweise mutt, alpine oder elm. In der Ports-Sammlung sind auch dutzende von grafischen Programmen verfügbar, darunter ClawsMail, Evolution und Thunderbird. Einige Unternehmen bieten auch ein Web-Mail-Programm an, das über einen Webbrowser verwaltet werden kann. Weitere Informationen zur Installation und Verwendung von MUAs unter &os; finden Sie im . Mail Transfer Agent (MTA) Der Mail Transfer Agent (MTA) ist ein E-Mail-Server Daemon, welcher für dem Empfang von eingehenden E-Mails und für den Versand von ausgehenden E-Mails verantwortlich ist. &os; wird mit Sendmail als Standard-MTA ausgeliefert, aber es unterstützt auch weitere E-Mail-Server, darunter Exim, Postfix und qmail. Die Konfiguration von Sendmail wird im beschrieben. Wenn Sie einen anderen MTA aus der Ports-Sammlung installieren, lesen Sie die Nachrichten die nach der Installation der Anwendung ausgegeben werden, wenn Sie &os; spezifische Informationen benötigen. Allgemeine Informationen zur Konfiguration finden Sie in der Regel auf der Webseite des Herstellers. Mail Host und Postfächer Der Mail Host ist für die Zustellung und das Empfangen von E-Mails für den Rechner oder eines Netzwerks zuständig. Der Mail Host empfängt alle E-Mails für eine Domäne und speichert diese entweder im voreingestellten mbox-Format, oder im Maildir-Format. Diese E-Mails können lokal mit einem Benutzerprogramm MUA gelesen werden. Mithilfe von Protokollen wie POP oder IMAP können die E-Mails auch von entfernten Rechnern gelesen werden. Wenn die E-Mails direkt auf dem Mail Host gelesen werden, wird kein POP- oder IMAP-Server benötigt. Um auf entfernte Postfächer zuzugreifen, wird ein Zugang zu einem POP- oder IMAP-Server benötigt. Beide Protokolle ermöglichen es Benutzern, auf ein entferntes Postfach zuzugreifen. IMAP bietet gegenüber POP einige Vorteiler. Dazu zählt die Fähigkeit eine Kopie aller Nachrichten auf einem entfernten Server zu speichern, sowie gleichzeitig ablaufende Aktualisierungen. IMAP kann auch über langsame Verbindungen nützlich sein, da nicht gleich die komplette Nachricht heruntergeladen wird. Weiterhin können E-Mails auf dem Server durchsucht werden, was den Datenverkehr zwischen Clients und dem Server minimiert. Die Ports-Sammlung enthält einige POP- und IMAP-Server, darunter mail/qpopper, mail/imap-uw, mail/courier-imap und mail/dovecot2. Beachten Sie, dass sowohl POP als auch IMAP Daten, wie den Benutzernamen und das Passwort, im Klartext übertragen. Um die Übermittlung von Daten über diese Protokolle zu schützen, können Sie Sitzungen über &man.ssh.1; () tunneln oder SSL () verwenden. Domain Name System (DNS) Das Domain Name System (DNS) und sein Daemon named spielen eine große Rolle bei der Auslieferung von E-Mails. Um E-Mails auszuliefern, fragt der MTA im DNS den Rechner ab, der E-Mails für das Zielsystem entgegennimmt. Der gleiche Vorgang läuft ab, wenn eine E-Mail von einem entfernten Server zum MTA zugestellt wird. Im DNS werden Rechnernamen auf IP-Adressen abgebildet. Daneben werden spezielle Informationen für das Mail-System gespeichert, die MX-Einträge (MX record) genannt werden. Der MX-Eintrag (von Mail eXchanger) gibt an, welche Rechner E-Mails für eine Domäne annehmen. Mit &man.host.1; können die MX-Einträge für eine Domäne abgefragt werden: &prompt.root; host -t mx FreeBSD.org FreeBSD.org mail is handled by 10 mx1.FreeBSD.org Weitere Informationen zu DNS und dessen Konfiguration finden Sie im . <application>Sendmail</application>-Konfigurationsdateien Christopher Shumway Beigesteuert von Sendmail Sendmail ist der standardmäßig in &os; installierte MTA. Es nimmt E-Mails von E-Mail-Benutzerprogrammen (MUA) entgegen und liefert diese zu den entsprechenden Mail Hosts, die in der Konfigurationsdatei definiert sind. Sendmail kann auch Netzwerkverbindungen annehmen und E-Mails an lokale Mailboxen, oder an andere Programme ausliefern. Die Konfigurationsdateien von Sendmail befinden sich in /etc/mail. In diesem Abschnitt werden diese Dateien im Detail beschrieben. /etc/mail/access /etc/mail/aliases /etc/mail/local-host-names /etc/mail/mailer.conf /etc/mail/mailertable /etc/mail/sendmail.cf /etc/mail/virtusertable /etc/mail/access Diese Datenbank bestimmt, welche Rechner oder IP-Adressen Zugriff auf den lokalen Mail-Server haben und welche Art von Zugriff ihnen gestattet wird. Rechner die als aufgelistet sind, was der Standard ist, sind berechtigt E-Mails zu diesem Rechner zu schicken, solange die endgültige Zieladresse der lokale Rechner ist. Rechner die als aufgelistet sind, werden abgelehnt. Rechner die als aufgelistet sind, wird es erlaubt Post für jede Zieladresse durch diesen Mail-Server zu senden. Rechner die als aufgelistet sind, bekommen ihre E-Mail mit einem speziellen Fehler zurück. Wenn ein Rechner als aufgelistet ist, wird Sendmail die aktuelle Suche abbrechen, ohne die E-Mail zu akzeptieren oder abzulehnen. E-Mails von Rechnern die als aufgelistet sind, werden vorerst zurückgehalten. Dem sendenden Rechner wird ein festgelegter Text als Grund für die Quarantäne zurückgeschickt. Beispiele für die Verwendung dieser Optionen für IPv4- und IPv6-Adressen finden Sie in der Beispielkonfiguration /etc/mail/access.sample: - # $FreeBSD$ + # $FreeBSD$ # # Mail relay access control list. Default is to reject mail unless the # destination is local, or listed in /etc/mail/local-host-names # ## Examples (commented out for safety) #From:cyberspammer.com ERROR:"550 We don't accept mail from spammers" #From:okay.cyberspammer.com OK #Connect:sendmail.org RELAY #To:sendmail.org RELAY #Connect:128.32 RELAY #Connect:128.32.2 SKIP #Connect:IPv6:1:2:3:4:5:6:7 RELAY #Connect:suspicious.example.com QUARANTINE:Mail from suspicious host #Connect:[127.0.0.3] OK #Connect:[IPv6:1:2:3:4:5:6:7:8] OK Um die Datenbank zu konfigurieren, verwenden Sie das im Beispiel gezeigte Format, um Einträge in /etc/mail/access hinzuzufügen, aber setzen Sie kein Kommentarsymbol (#) vor die Einträge. Erstellen Sie einen Eintrag für jeden Rechner, dessen Zugriff konfiguriert werden soll. E-Mail-Versender, die mit der linken Spalte der Tabelle übereinstimmen, sind betroffen von der Aktion in der rechten Spalte. Immer wenn diese Datei verändert wurde, muss die Datenbank aktualisiert und Sendmail neu gestartet werden: &prompt.root; makemap hash /etc/mail/access < /etc/mail/access &prompt.root; service sendmail restart /etc/mail/aliases Diese Datenbank enthält eine Liste der virtuellen Mailboxen, die in andere Benutzer, Dateien, Programme oder andere Aliase expandiert werden. Hier sind ein paar Beispiele, die das Dateiformat verdeutlichen: root: localuser ftp-bugs: joe,eric,paul bit.bucket: /dev/null procmail: "|/usr/local/bin/procmail" Der Name der Mailbox auf der linken Seite des Doppelpunkts wird mit den Zielen auf der rechten Seite ersetzt. Der erste Eintrag ersetzt die Mailbox root mit der Mailbox localuser, die dann in der Datenbank /etc/mail/aliases gesucht wird. Wird kein passender Eintrag gefunden, wird die Nachricht zum localuser geliefert. Der zweite Eintrag zeigt eine E-Mail-Verteilerliste. E-Mails an ftp-bugs werden zu den drei lokalen Mailboxen joe, eric und paul gesendet. Eine entfernte Mailbox kann auch als user@example.com angegeben werden. Der dritte Eintrag zeigt wie E-Mails in eine Datei geschrieben werden, in diesem Fall /dev/null. Der letzte Eintrag verdeutlicht das Senden von E-Mails an ein Programm. Hier wird die Nachricht über eine &unix; Pipe an /usr/local/bin/procmail gesendet. Weitere Informationen zu dem Format dieser Datei finden Sie in &man.aliases.5;. Wenn diese Datei geändert wird, muss newaliases ausgeführt werden, um die Datenbank zu aktualisieren. /etc/mail/sendmail.cf Dies ist die Hauptkonfigurations-Datei von Sendmail. Sie kontrolliert das allgemeine Verhalten von Sendmail, einschließlich allem vom Umschreiben von E-Mail Adressen bis hin zum Übertragen von Ablehnungsnachrichten an entfernte E-Mail-Server. Dementsprechend ist die Konfigurationsdatei ziemlich komplex. Glücklicherweise muss diese Datei selten für Standard E-Mail-Server geändert werden. Die Sendmail Hauptkonfigurationsdatei kann mit &man.m4.1; Makros erstellt werden, die Eigenschaften und Verhalten von Sendmail definieren. Einige der Details finden Sie in /usr/src/contrib/sendmail/cf/README. Wenn Änderungen an dieser Datei vorgenommen werden, muss Sendmail neu gestartet werden, damit die Änderungen Wirkung zeigen. /etc/mail/virtusertable Diese Datenbank ordnet Adressen für virtuelle Domänen und Benutzern reellen Mailboxen zu. Diese Mailboxen können lokal, auf entfernten Systemen, Aliase in /etc/mail/aliases oder eine Datei sein. Dadurch können mehrere virtuelle Domains auf einem Rechner gehostet werden. &os; enthält eine Beispielkonfiguration in /etc/mail/virtusertable.sample, die das Format genauer beschreibt. Das folgende Beispiel zeigt, wie benutzerdefinierte Einträge in diesem Format erstellt werden: root@example.com root postmaster@example.com postmaster@noc.example.net @example.com joe Diese Datei wird nach dem ersten übereinstimmenden Eintrag durchsucht. Wenn eine E-Mail-Adresse mit der Adresse auf der linken Seite übereinstimmt, wird sie dem Eintrag auf der rechten Seite zugeordnet. Der erste Eintrag in diesem Beispiel ordnet eine bestimmte E-Mail-Adresse einer lokalen Mailbox zu, während der zweite Eintrag eine bestimmte E-Mail-Adresse einer entfernten Mailbox zuordnet. Zuletzt wird jede E-Mail-Adresse von example.com, welche nicht mit einem der vorherigen Einträge übereinstimmt, mit dem letzten Eintrag übereinstimmen und der lokalen Mailbox joe zugeordnet. Benutzen Sie dieses Format, wenn Sie neue Einträge in /etc/mail/virtusertable hinzufügen. Jedes Mal, wenn diese Datei bearbeitet wurde, muss die Datenbank aktualisiert und Sendmail neu gestartet werden: &prompt.root; makemap hash /etc/mail/virtusertable < /etc/mail/virusertable &prompt.root; service sendmail restart /etc/mail/relay-domains In der standardmäßigen &os;-Installation wird Sendmail nur dazu konfiguriert, E-Mails von dem Rechner, auf dem es läuft, zu senden. Wenn zum Beispiel ein POP-Server installiert ist, können Benutzer ihre E-Mails von entfernten Standorten überprüfen. Sie werden jedoch keine E-Mails von außen verschicken können. Typischerweise wird ein paar Sekunden nach dem Versuch eine E-Mail von MAILER-DAEMON mit einer 5.7 Relaying Denied Fehlermeldung versendet werden. Die einfachste Lösung ist, wie im folgenden Beispiel gezeigt, den FQDN des Internet-Dienstanbieters und gegebenenfalls weitere Adressen in /etc/mail/relay-domains einzutragen: your.isq.example.com other.isp.example.net users.isp.example.org www.example.org Nachdem diese Datei erstellt oder editiert wurde, muss Sendmail mittels service sendmail restart neu gestartet werden. Ab jetzt wird jede E-Mail, die von einem in der Liste eingetragenen Rechner durch das System geschickt wird, ihr Ziel erreichen, vorausgesetzt der Benutzer hat einen Account auf dem System. Dies erlaubt es Benutzern aus der Ferne, E-Mails über das System zu versenden, ohne dem Massenversand (SPAM) die Tür zu öffnen. Wechseln des Mailübertragungs-Agenten Andrew Boothman Geschrieben von Gregory Neil Shapiro Informationen entnommen aus E-Mails geschrieben von E-Mail MTA, wechseln &os; enthält mit Sendmail bereits einen MTA, der für die ein- und ausgehenden E-Mails verantwortlich ist. Der Systemadministrator kann aber den MTA des Systems wechseln. Eine große Auswahl an alternativen MTAs ist in der Kategorie mail der &os; Ports-Sammlung verfügbar. Sobald ein neuer MTA installiert ist, können Sie die neue Software konfigurieren und testen, bevor Sie Sendmail ersetzen. Informationen über die Konfiguration des neu gewählten MTA finden Sie in der dazugehörigen Dokumentation. Sobald der neue MTA wie gewünscht funktioniert, benutzen Sie die Anweisungen in diesem Abschnitt, um Sendmail zu deaktivieren und stattdessen den neuen MTA zu verwenden. <application>Sendmail</application> deaktivieren Wenn der ausgehende Mail-Dienst von Sendmail deaktiviert ist, muss für den E-Mail-Versand ein alternatives System installiert werden. Andernfalls sind Systemfunktionen wie &man.periodic.8; nicht mehr in der Lage, ihre Resulate und Meldungen als E-Mail zu versenden. Aber auch viele andere Teile des Systems erwarten einen funktionalen MTA. Sind Programme auf die deaktivierten Sendmail-Binärdateien angewiesen, landen deren E-Mails ansonsten in einer inaktiven Sendmail-Warteschlange und können nicht ausgeliefert werden. Um Sendmail komplett zu deaktivieren, müssen folgende Zeilen in /etc/rc.conf hinzugefügt oder editiert werden: sendmail_enable="NO" sendmail_submit_enable="NO" sendmail_outbound_enable="NO" sendmail_msp_queue_enable="NO" Um lediglich die Funktion zum Empfang von E-Mails durch Sendmail zu deaktivieren, muss folgender Eintrag in /etc/rc.conf gesetzt werden: sendmail_enable="NO" Weitere Informationen zu den Startoptionen von Sendmail finden Sie in der Manualpage &man.rc.sendmail.8;. Den voreingestellten <acronym>MTA</acronym> ersetzen Wenn ein neuer MTA über die Ports-Sammlung installiert wird, werden auch die Startskripten installiert. Die Anweisungen zum starten dieser Skripte werden in den Paketnachrichten erwähnt. Bevor Sie den neuen MTA in Betrieb nehmen, stoppen Sie alle laufenden Sendmail-Prozesse. In diesem Beispiel werden alle notwendigen Dienste gestoppt und danach der Postfix Dienst gestartet: &prompt.root; service sendmail stop &prompt.root; service postfix start Damit der angegebene MTA automatisch beim Hochfahren des Systems gestartet wird, fügen Sie dessen Konfigurationszeile in /etc/rc.conf hinzu. Dieser Eintrag startet den Postfix MTA: postfix_enable="YES" Da Sendmail allgegenwärtig ist und manche Anwendungen einfach davon ausgehen es bereits installiert und konfiguriert, wird einige zusätzliche Konfiguration benötigt. Überprüfen Sie /etc/periodic.conf und stellen Sie sicher, dass diese Werte auf NO gesetzt werden. Wenn die Datei nicht existiert, erstellen Sie sie mit folgenden Einträgen: daily_clean_hoststat_enable="NO" daily_status_mail_enable="NO" daily_status_include_submit_mailq="NO" daily_submit_queuerun="NO" Viele alternative MTAs stellen ihre eigenen kompatiblen Implementierungen der Sendmail Kommandozeilen-Schnittstelle zur Verfügung, was die Verwendung als drop-in Ersatz für Sendmail vereinfacht. Allerdings versuchen einige MUAs Sendmails Standard-Dateien auszuführen, anstelle der Dateien des neuen MTAs. &os; verwendet /etc/mail/mailer.conf um die erwarteten Sendmail Dateien auf die neuen Dateien abzubilden. Weitere Informationen über diese Zuordnungen können in &man.mailwrapper.8; gefunden werden. In der Voreinstellung sieht /etc/mail/mailer.conf wie folgt aus: - #$FreeBSD$ + # $FreeBSD$ # # Execute the "real" sendmail program, named /usr/libexec/sendmail/sendmail # sendmail /usr/libexec/sendmail/sendmail send-mail /usr/libexec/sendmail/sendmail mailq /usr/libexec/sendmail/sendmail newaliases /usr/libexec/sendmail/sendmail hoststat /usr/libexec/sendmail/sendmail purgestat /usr/libexec/sendmail/sendmail Wenn eines der Kommandos auf der linken Seite ausgeführt werden soll, führt das System tatsächlich den damit verbundenen Befehl auf der rechten Seite aus. Mit diesem System lassen sich Programme, die für die Sendmail-Funktionen gestartet werden, leicht ändern. Einige MTAs aus der Ports-Sammlung können diese Datei aktualisieren. Zum Beispiel würde Postfix die Datei wie folgt aktualisieren: # # Execute the Postfix sendmail program, named /usr/local/sbin/sendmail # sendmail /usr/local/sbin/sendmail send-mail /usr/local/sbin/sendmail mailq /usr/local/sbin/sendmail newaliases /usr/local/sbin/sendmail Falls die Installation des MTA nicht automatisch /etc/mail/mailer.conf aktualisiert, bearbeiten Sie diese Datei in einem Texteditor, so dass auf die neuen Dateien verwiesen wird. Dieses Beispiel zeigt auf die Dateien, die von mail/ssmtp installiert wurden: sendmail /usr/local/sbin/ssmtp send-mail /usr/local/sbin/ssmtp mailq /usr/local/sbin/ssmtp newaliases /usr/local/sbin/ssmtp hoststat /usr/bin/true purgestat /usr/bin/true Sobald alles konfiguriert ist, wird empfohlen, das System neu zu starten. Ein Neustart bietet auch die Möglichkeit sicherzustellen, dass das System korrekt konfiguriert wurde, um den neuen MTA automatisch beim Hochfahren zu starten. Fehlerbehebung Hier finden sich ein paar häufig gestellte Fragen und ihre Antworten, die von der FAQ übernommen wurden. Warum muss ich einen FQDN (fully-qualified domain name / voll ausgeschriebenen Domänennamen) für meine Rechner verwenden? Vielleicht befindet sich der Rechner in einer anderen Domäne. Um beispielsweise von einem Rechner in foo.bar.edu einen Rechner namens mumble in der Domäne foo.bar.edu zu erreichen, geben Sie seinen voll ausgeschriebenen Domänennamen (FQDN) mumble.bar.edu, anstelle von mumble an. Das liegt daran, dass die aktuelle Version von BIND BIND, die mit &os; ausgeliefert wird, keine Standardabkürzungen für nicht komplett angegebene Domänennamen außerhalb der lokalen Domäne unterstützt. Daher muss ein nicht-qualifizierter Rechner, wie mumble, entweder als mumble.foo.bar.edu gefunden werden, oder er wird in der root Domäne gesucht. In älteren Versionen von BIND lief die Suche über mumble.bar.edu und mumble.edu. RFC 1535 erklärt, warum dieses Verhalten als schlechte Praxis oder sogar als Sicherheitsloch angesehen wird. Um das zu umgehen, setzen Sie die Zeile: search foo.bar.edu bar.edu anstatt der vorherigen domain foo.bar.edu in /etc/resolv.conf ein. Stellen Sie jedoch sicher, dass die Suchordnung nicht die Begrenzung von lokaler und öffentlicher Administration, wie RFC 1535 sie nennt, überschreitet. Wie kann ich einen E-Mail-Server auf einem Anwahl-PPPPPP Rechner betreiben? Sie wollen sich mit einem &os; E-Mail Gateway im LAN verbinden. Die PPP-Verbindung ist keine Standleitung. Ein Weg dies zu tun ist, von einem immer mit dem Internet verbundenen Server einen sekundären MX-DienstMX-Eintrag für die Domäne zur Verfügung gestellt zu bekommen. In diesem Beispiel heißt die Domäne example.com, und der Internet-Dienstanbieter hat example.net so eingestellt, dass er für die Domäne einen sekundären MX-Dienst zur Verfügung stellt: example.com. MX 10 bigco.com. MX 20 example.net. Nur ein Rechner sollte als Endempfänger angegeben sein. Sendmail fügen Sie Cw example.com zu /etc/sendmail.cf auf example.com hinzu. Wenn der MTA des Versenders versucht die E-Mail zuzustellen, wird es versuchen das System example.com über die PPP-Verbindung zu erreichen. Es kommt zu einer Zeitüberschreitung, wenn das Zielsystem offline ist. Der MTA wird die E-Mail automatisch der sekundären MX-Seite des Internet-Providers example.net zustellen. Die sekundäre MX-Seite wird periodisch versuchen, eine Verbindung zur primären MX-Seite example.com aufzubauen. Verwenden Sie etwas wie dies als Login-Skript: #!/bin/sh # Put me in /usr/local/bin/pppmyisp ( sleep 60 ; /usr/sbin/sendmail -q ) & /usr/sbin/ppp -direct pppmyisp Wenn Sie ein separates Login-Skript für einen Benutzer erstellen, benutzen Sie stattdessen sendmail -qRexample.com in dem oben gezeigten Skript. Das erzwingt die sofortige Verarbeitung der E-Mails in der Warteschlange für example.com Eine weitere Verfeinerung der Situation kann an diesem Beispiel von &a.isp; entnommen werden: > wir stellen einem Kunden den sekundären MX zur Verfügung. > Der Kunde verbindet sich mit unseren Diensten mehrmals am Tag > automatisch um die E-Mails zu seinem primären MX zu holen > (wir wählen uns nicht bei ihm ein, wenn E-Mails für seine > Domäne eintreffen). Unser sendmail sendet den Inhalt der > E-Mail-Warteschlange alle 30 Minuten. Momentan muss er 30 Minuten > eingewählt bleiben um sicher zu sein, dass alle seine E-Mails > beim primären MX eingetroffen sind. > > Gibt es einen Befehl, der sendmail dazu bringt, alle E-Mails sofort > zu senden? Der Benutzer hat natürlich keine root-Rechte auf > unserer Maschine. In der privacy flags Sektion von sendmail.cf befindet sich die Definition Opgoaway,restrictqrun Entferne restrictqrun um nicht-root Benutzern zu erlauben, die Verarbeitung der Nachrichten-Warteschlangen zu starten. Möglicherweise willst du auch die MX neu sortieren. Wir sind der primäre MX für unsere Kunden mit diesen Wünschen und haben definiert: # Wenn wir der beste MX für einen Rechner sind, versuche es direkt # anstatt einen lokalen Konfigurationsfehler zu generieren. OwTrue Auf diesem Weg liefern Gegenstellen direkt zu dir, ohne die Kundenverbindung zu versuchen. Dann sendest du zu deinem Kunden. Das funktioniert nur für Rechner, du musst also deinen Kunden dazu bringen, ihre E-Mail Maschine customer.com zu nennen, sowie hostname.customer.com im DNS. Setze einfach einen A-Eintrag in den DNS für customer.com. Weiterführende Themen Dieser Abschnitt behandelt kompliziertere Themen wie E-Mail-Konfiguration und Einrichtung von E-Mail für eine ganze Domäne. Grundlegende Konfiguration Mit der Software im Auslieferungszustand sollte es möglich sein, E-Mails an externe Rechner zu senden, vorausgesetzt /etc/resolv.conf ist konfiguriert, oder das Netzwerk hat Zugriff auf einen konfigurierten DNS-Server. Um E-Mails an den MTA auf dem Rechner auszuliefern, stehen zwei Möglichkeiten zur Auswahl: Betreiben Sie einen DNS-Server für die Domäne. Lassen Sie die E-Mails direkt über den FQDN des Rechners ausliefern. Um E-Mails direkt zu einem Rechner geliefert zu bekommen, wird eine permanente statische IP-Adresse (keine dynamische IP-Adresse) benötigt. Befindet sich das System hinter einer Firewall, muss diese den SMTP-Verkehr weiterleiten. Um E-Mails direkt am Rechner zu empfangen, muss eines der folgenden Dinge konfiguriert werden: Vergewissern Sie sich, dass der MXMX-Eintrag -Eintrag mit der kleinsten Nummer im DNS auf die statische IP-Adresse des Rechners zeigt. Stellen Sie sicher, dass für den Rechner kein MX-Eintrag im DNS existiert. Jede der erwähnten Konfigurationsmöglichkeiten erlaubt es, E-Mails direkt auf dem Rechner zu empfangen. Versuchen Sie das: &prompt.root; hostname example.FreeBSD.org &prompt.root; host example.FreeBSD.org example.FreeBSD.org has address 204.216.27.XX In diesem Beispiel sollte es funktionieren, E-Mails direkt an yourlogin@example.FreeBSD.org zu senden, vorausgesetzt dass Sendmail auf example.FreeBSD.org korrekt läuft. In diesem Beispiel: &prompt.root; host example.FreeBSD.org example.FreeBSD.org has address 204.216.27.XX example.FreeBSD.org mail is handled (pri=10) by devnull.FreeBSD.org Hier wird jede an den Rechner example.FreeBSD.org gesandte E-Mail auf hub unter dem gleichen Benutzernamen gesammelt, anstatt diese direkt zu Ihrem Rechner zu senden. Die obige Information wird von einem DNS-Server verwaltet. Der DNS-Eintrag, der die Information zum E-Mail-Routing enthält, ist der MX-Eintrag. Existiert kein MX-Eintrag, werden E-Mails direkt über die IP-Adresse an den Rechner geliefert. Der MX-Eintrag für freefall.FreeBSD.org sah einmal so aus: freefall MX 30 mail.crl.net freefall MX 40 agora.rdrop.com freefall MX 10 freefall.FreeBSD.org freefall MX 20 who.cdrom.com freefall hatte viele MX-Einträge. Die kleinste MX-Nummer definiert de Rechner, der die E-Mails direkt empfängt, wobei die anderen Rechner temporär E-Mails in Warteschlangen einreihen, falls freefall beschäftigt oder unerreichbar ist. Es ist sehr sinnvoll, dass stellvertretende MX-Seiten separate Internet-Verbindungen verwenden. Ihr ISP kann diesen Dienst zur Verfügung stellen. E-Mails für eine Domäne Wird ein MTA für ein Netzwerk konfiguriert, dann sollte jede E-Mail die an einen Rechner in dieser Domäne geschickt wird, an den MTA umgeleitet werden, damit die Benutzer ihre E-Mails vom zentralen Mail-Server empfangen können. Am einfachsten ist es, wenn Accounts mit gleichen Benutzernamen sowohl auf dem MTA, als auch auf dem System mit dem MUA existieren. Verwenden Sie &man.adduser.8;, um Benutzerkonten anzulegen. Der MTA muss auf jeder Workstation im Netzwerk als der zuständige Rechner für den E-Mail-Austausch gekennzeichnet werden. Dies wird in der DNS-Konfiguration über den MX-Eintrag gesteuert: example.FreeBSD.org A 204.216.27.XX ; Workstation MX 10 devnull.FreeBSD.org ; Mailhost Diese Einstellung wird E-Mails für die Workstations zum MTA weiterleiten, egal wo der A-Eintrag hinzeigt. Die E-Mails werden zum MX-Rechner gesendet. Diese Einstellung muss auf dem DNS-Server konfiguriert werden. Besitzt das Netzwerk keinen eigenen DNS-Server, kontaktieren Sie Ihren ISP oder DNS-Verwalter. Im Folgenden ist ein Beispiel für virtuelles E-Mail-Hosting. Nehmen wir an, dass für einen Kunden mit der Domäne customer1.org, alle E-Mails für customer1.org an mail.myhost.com gesendet werden sollen. Der entsprechende DNS-Eintrag sollte wie folgt aussehen: customer1.org MX 10 mail.myhost.com Wenn für die Domäne nur E-Mails verarbeitet werden sollen, wird für customer1.org kein A-Eintrag benötigt. Allerdings wird ein ping gegen customer1.org nur dann funktionieren, wenn ein A-Eintrag existiert. Teilen Sie dem MTA mit, für welche Domänen bzw. Hostnamen Post entgegengenommen werden soll. Die beiden folgenden Methoden funktionieren für Sendmail: Fügen Sie die Rechnernamen in /etc/mail/local-host-names hinzu, wenn FEATURE(use_cw_file) verwendet wird. Fügen Sie eine Zeile Cwyour.host.com in /etc/sendmail.cf hinzu. Ausgehende E-Mail über einen Relay versenden Bill Moran Beigetragen von In vielen Fällen möchte man E-Mail nur über einen Relay verschicken. Zum Beispiel: Der Rechner ist ein Arbeitsplatzrechner und benutzt Programme wie &man.send-pr.1; über ein Relay des ISP. Ein Server, der E-Mails nicht selbst verarbeitet, soll alle E-Mails zu einem Relay schicken. Obwohl jeder MTA diese Aufgabe erfüllen kann, ist es oft schwierig einen vollwertigen MTA so zu konfigurieren, dass er lediglich ausgehende E-Mails weiterleitet. Es ist übertrieben, Programme wie Sendmail und Postfix nur für diesen Zweck einzusetzen. Weiterhin kann es sein, dass die Bestimmungen des Internetzugangs es verbieten, einen eigenen Mail-Server zu betreiben. Um die hier beschriebenen Anforderungen zu erfüllen, installieren Sie einfach den Port mail/ssmtp: &prompt.root; cd /usr/ports/mail/ssmtp &prompt.root; make install replace clean Nach der Installation kann mail/ssmtp über /usr/local/etc/ssmtp/ssmtp.conf konfiguriert werden: root=yourrealemail@example.com mailhub=mail.example.com rewriteDomain=example.com hostname=_HOSTNAME_ Verwenden Sie eine gültige E-Mail-Adresse für root. Geben Sie für mail.example.com den Mail-Relay des ISPs an. Einige ISPs nennen den Relay Postausgangsserver oder SMTP-Server. Deaktivieren Sie Sendmail, einschließlich des Services für den Postausgang. Details finden Sie in . mail/ssmtp verfügt über weitere Optionen. Die Beispiele in /usr/local/etc/ssmtp oder die Manualpage von ssmtp enthalten weitere Informationen. Wird ssmtp wie hier beschrieben eingerichtet, können Anwendungen E-Mails von dem lokalen Rechner verschicken. Man verstößt damit auch nicht gegen Bestimmungen des ISPs und läuft nicht Gefahr, dass der Rechner zum Versenden von Spam missbraucht wird. E-Mail über Einwahl-Verbindungen Wird eine feste IP-Adresse verwendet, müssen die Standardeinstellungen wahrscheinlich gar nicht geändert werden. Stellen Sie den Hostnamen auf den entsprechend zugeordneten Internetnamen ein und Sendmail übernimmt das Übrige. Bei der Verwendung einer dynamisch zugewiesenen IP-Adresse und einer PPP-Wählverbindung mit dem Internet, hat man in der Regel ein Postfach auf dem Mailserver des ISP. In diesem Beispiel ist die Domäne des ISP example.net, der Benutzername ist user, der Rechnername ist bsd.home und der ISP erlaubt es, relay.example.net als Mail-Relayhost zu benutzen. Um Mails aus der Mailbox des ISPs abzuholen, muss ein gesondertes Programm aus der Ports-Sammlung installiert werden. mail/fetchmail ist eine gute Wahl, weil es viele verschiedene Protokolle unterstützt. Für gewöhnlich stellt der ISP POP zur Verfügung. Falls User-PPP verwendet wird, können durch folgenden Eintrag in /etc/ppp/ppp.linkup E-Mails automatisch abgerufen werden, sobald eine Verbindung zum Netz aufgebaut wird: MYADDR: !bg su user -c fetchmail Wird Sendmail benutzt, um E-Mails an nicht-lokale Benutzer zu versenden, konfigurieren Sie es so, dass die Warteschlange abgearbeitet wird, sobald eine Verbindung mit dem Internet besteht. Um dies zu erreichen, müssen folgende Zeilen nach dem fetchmail-Eintrag in /etc/ppp/ppp.linkup hinzugefügt werden. !bg su user -c "sendmail -q" In diesem Beispiel existiert auf bsd.home ein Benutzer user. Erstellen Sie auf bsd.home im Heimatverzeichnis von user die Datei .fetchmailrc mit folgender Zeile: poll example.net protocol pop3 fetchall pass MySecret; Diese Datei sollte für niemandem außer user lesbar sein, weil sie das Passwort MySecret enthält. Um Mails mit dem richtigen from:-Header zu versenden, müssen Sie Sendmail so konfigurieren, dass es user@example.net und nicht user@bsd.home benutzen soll und das alle Mails über relay.example.net versendet werden, um eine schnellere Übertragung von Mails zu gewährleisten. Die folgende .mc sollte ausreichen: VERSIONID(`bsd.home.mc version 1.0') OSTYPE(bsd4.4)dnl FEATURE(nouucp)dnl MAILER(local)dnl MAILER(smtp)dnl Cwlocalhost Cwbsd.home MASQUERADE_AS(`example.net')dnl FEATURE(allmasquerade)dnl FEATURE(masquerade_envelope)dnl FEATURE(nocanonify)dnl FEATURE(nodns)dnl define(`SMART_HOST', `relay.example.net') Dmbsd.home define(`confDOMAIN_NAME',`bsd.home')dnl define(`confDELIVERY_MODE',`deferred')dnl Im vorherigen Abschnitt finden Sie Details dazu, wie Sie diese Datei in das Format sendmail.cf konvertieren können. Vergessen Sie nicht, Sendmail neu zu starten, nachdem sendmail.cf verändert wurde. SMTP-Authentifizierung James Gorham Geschrieben von Die Konfiguration von SMTP-Authentifizierung auf dem MTA bietet einige Vorteile. Die erforderliche Authentifizierung erhöht die Sicherheit von Sendmail und mobilen Benutzern, die auf entfernten Rechnern arbeiten. Diese Benutzer können denselben MTA verwenden, ohne jedes Mal das Benutzerprogramm neu konfigurieren zu müssen. Installieren Sie security/cyrus-sasl2 aus der Ports-Sammlung. Dieser Port verfügt über einige Optionen, die während der Übersetzung festgelegt werden. Für die in diesem Abschnitt beschriebene Methode zur SMTP-Authentifizierung muss die Option aktiviert werden. Nach der Installation von security/cyrus-sasl2 editieren Sie /usr/local/lib/sasl2/Sendmail.conf. Erstellen Sie die Datei, wenn sie nicht existiert und fügen Sie die folgende Zeile hinzu: pwcheck_method: saslauthd Als nächstes installieren Sie security/cyrus-sasl2-saslauthd, und fügen die folgende Zeile in /etc/rc.conf ein: saslauthd_enable="YES" Abschließend starten Sie den saslauthd-Dämon: &prompt.root; service saslauthd start Dieser Dämon agiert als Broker zwischen Sendmail und der &os;-passwd-Datenbank. Dadurch müssen zum Versenden von E-Mails keine zusätzlichen Accounts und Passwörter angelegt werden. Die Benutzer verwenden dasselbe Passwort zum Anmelden wie zum Verschicken von E-Mails. Fügen Sie danach in /etc/make.conf die folgenden Zeilen hinzu: SENDMAIL_CFLAGS=-I/usr/local/include/sasl -DSASL SENDMAIL_LDFLAGS=-L/usr/local/lib SENDMAIL_LDADD=-lsasl2 Beim Übersetzen von Sendmail werden damit die cyrus-sasl2-Bibliotheken benutzt. Stellen Sie daher vor dem Übersetzen von Sendmail sicher, dass cyrus-sasl2 installiert ist. Übersetzen Sie Sendmail mit den nachstehenden Kommandos: &prompt.root; cd /usr/src/lib/libsmutil &prompt.root; make cleandir && make obj && make &prompt.root; cd /usr/src/lib/libsm &prompt.root; make cleandir && make obj && make &prompt.root; cd /usr/src/usr.sbin/sendmail &prompt.root; make cleandir && make obj && make && make install Die Übersetzung sollte keine Probleme bereiten, wenn /usr/src nicht umfangreich verändert wurde und die benötigten Bibliotheken installiert sind. Nachdem Sendmail übersetzt und installiert wurde, editieren Sie /etc/mail/freebsd.mc beziehungsweise die lokale .mc-Datei. Viele Administratoren verwenden die Ausgabe von &man.hostname.1;, um der .mc einen eindeutigen Namen zu geben. Fügen Sie die folgenden Zeilen hinzu: dnl set SASL options TRUST_AUTH_MECH(`GSSAPI DIGEST-MD5 CRAM-MD5 LOGIN')dnl define(`confAUTH_MECHANISMS', `GSSAPI DIGEST-MD5 CRAM-MD5 LOGIN')dnl Diese Anweisungen konfigurieren die Methoden, die Sendmail zur Authentifizierung von Benutzern verwendet. Lesen Sie die Sendmail Dokumentation, wenn eine andere Methode als verwendet werden soll. Abschließend rufen Sie &man.make.1; in /etc/mail auf. Damit wird aus der .mc-Datei eine neue .cf-Datei erzeugt. Der Name ist entweder freebsd.cf oder der Name der lokalen .mc-Datei. make install restart installiert die Datei nach /etc/mail/sendmail.cf und startet Sendmail neu. Weitere Informationen zu diesem Vorgang entnehmen Sie bitte /etc/mail/Makefile. Um die Konfiguration zu testen, verwenden Sie einen MUA, um eine Testnachricht zu senden. Mail-Benutzerprogramm das Passwort für die Authentifizierung ein und versenden Sie zum Testen eine E-Mail. Zur Fehlersuche, setzen Sie den von Sendmail auf 13 und untersuchen die Fehlermeldungen in /var/log/maillog. Weitere Information finden Sie unter SMTP-Authentifizierung. E-Mail-Programme Marc Silver Beigetragen von Mail-User-Agents E-Mail-Programme Anwendungen, die E-Mails versenden und empfangen, werden als E-Mail-Programme oder Mail-User-Agents (MUA) bezeichnet. Mit der Entwicklung und Ausbreitung von E-Mail wachsen auch die E-Mail-Programme und bieten Benutzern mehr Funktionen und höhere Flexibilität. Die Kategorie mail der &os; Ports-Sammlung enthält zahlreiche E-Mail-Programme. Dazu gehören grafische Programme, wie beispielsweise Evolution oder Balsa und Konsolen basierte Programme wie mutt oder alpine. <command>mail</command> Das standardmäßig unter &os; installierte E-Mail-Programm ist &man.mail.1;. Das Programm ist konsolenorientiert und enthält alle Funktionen, die zum Versand und Empfang textbasierter E-Mails erforderlich sind. Es bietet eine begrenzte Unterstützung für Anhänge und kann auf lokale Postfächer zugreifen. mail kann nicht direkt auf POP- oder IMAP-Server zugreifen. Entfernte Postfächer können aber mit einer Anwendung wie fetchmail in eine lokale mbox geladen werden. Um E-Mails zu versenden oder zu empfangen, starten Sie einfach mail wie im nachstehenden Beispiel: &prompt.user; mail mail liest automatisch den Inhalt des Benutzer-Postfachs im Verzeichnis /var/mail. Sollte das Postfach leer sein, beendet sich mail mit der Nachricht, dass keine E-Mails vorhanden sind. Wenn E-Mails vorhanden sind, wird die Benutzeroberfläche gestartet und eine Liste der E-Mails angezeigt. Die E-Mails werden automatisch nummeriert wie im folgenden Beispiel gezeigt: Mail version 8.1 6/6/93. Type ? for help. "/var/mail/marcs": 3 messages 3 new >N 1 root@localhost Mon Mar 8 14:05 14/510 "test" N 2 root@localhost Mon Mar 8 14:05 14/509 "user account" N 3 root@localhost Mon Mar 8 14:05 14/509 "sample" Einzelne Nachrichten können nun durch Eingabe von t gefolgt von der Nummer der Nachricht gelesen werden. Im nachstehenden Beispiel wird die erste E-Mail gelesen: & t 1 Message 1: From root@localhost Mon Mar 8 14:05:52 2004 X-Original-To: marcs@localhost Delivered-To: marcs@localhost To: marcs@localhost Subject: test Date: Mon, 8 Mar 2004 14:05:52 +0200 (SAST) From: root@localhost (Charlie Root) Das ist eine Test-Nachricht. Antworte bitte! Wie in diesem Beispiel zu sehen ist, wird die Nachricht zusammen mit dem vollständigen Nachrichtenkopf angezeigt. Um die Liste der E-Mails erneut zu sehen, drücken Sie wieder die Taste h. Um auf eine E-Mail zu antworten, benutzen Sie entweder R oder r. R weist mail an, dem Versender der Nachricht zu antworten, während mit r allen Empfängern der Nachricht geantwortet wird. Den Kommandos kann die Zahl der E-Mail, auf die geantwortet werden soll, mitgegeben werden. Nachdem die Antwort E-Mail verfasst worden ist, sollte die Eingabe mit einem einzelnen Punkt (.) auf einer neuen Zeile abgeschlossen werden. Hierzu ein Beispiel: & R 1 To: root@localhost Subject: Re: test Danke, ich habe deine E-Mail erhalten. . EOT Neue E-Mails können mit m, gefolgt von der E-Mail-Adresse des Empfängers verschickt werden. Mehrere Empfänger werden durch Kommata (,) getrennt, angegeben. Der Betreff (subject) der Nachricht kann dann, gefolgt vom Inhalt der Nachricht eingegeben werden. Die Nachricht wird dann mit einem einzelnen Punkt (.) auf einer neuen Zeile abgeschlossen. & mail root@localhost Subject: Ich habe die E-Mails im Griff! Jetzt kann ich E-Mails versenden und empfangen ... :) . EOT Die Taste ? zeigt zu jeder Zeit einen Hilfetext an. Lesen Sie &man.mail.1;, wenn Sie weitere Hilfe zur Benutzung von mail erhalten möchten. &man.mail.1; wurde nicht für den Umgang mit Anhängen entworfen und kann daher sehr schlecht mit Anhängen umgehen. Neuere MUAs gehen wesentlich besser mit Anhängen um. Benutzer, die mail bevorzugen, werden vielleicht den Port converters/mpack zu schätzen wissen. <application>mutt</application> mutt ist ein leistungsfähiges E-Mail-Programm mit vielen Funktionen, darunter: mutt kann den Verlauf einer Diskussion (threading) darstellen. Unterstützung von PGP für das digitale signieren und verschlüsseln von E-Mail. MIME-Unterstützung. Maildir-Unterstützung. mutt lässt sich im höchsten Maße an lokale Bedürfnisse anpassen. Mehr über mutt erfahren Sie auf der Seite http://www.mutt.org. mutt kann über den Port mail/mutt installiert werden. Nachdem der Port installiert ist, kann mutt mit dem folgenden Befehl gestartet werden: &prompt.user; mutt mutt liest automatisch den Inhalt des Benutzer-Postfachs im Verzeichnis /var/mail. Sind keine E-Mails vorhanden, wartet mutt auf Benutzereingaben. Das folgende Beispiel zeigt, wie mutt eine Nachrichten-Liste darstellt: Um eine E-Mail zu lesen, wählen Sie die Nachricht einfach mit den Pfeiltasten aus und drücken Enter. mutt zeigt E-Mails wie folgt an: Änlich wie &man.mail.1;, kann auch mutt verwendet werden, um nur dem Absender, oder auch allen anderen Empfängern zu antworten. Um nur dem Absender der E-Mail zu antworten, drücken Sie r. Um sowohl dem Absender, als auch allen anderen Empfängern zu antworten, drücken Sie g. Zum Erstellen oder zum Beantworten von E-Mails ruft mutt den Editor &man.vi.1; auf. Jeder Benutzer kann diese Einstellung anpassen, indem die Variable editor in .muttrc im Heimatverzeichnis gesetzt wird, oder die Umgebungsvariable EDITOR entsprechend angepasst wird. Weitere Informationen zur Konfiguration von mutt finden Sie unter http://www.mutt.org/. Drücken Sie m, um eine neue Nachricht zu verfassen. Nachdem der Betreff (subject) eingegeben wurde, startet mutt den &man.vi.1; und die Nachricht kann verfasst werden. Wenn Sie fertig sind, speichern Sie die Nachricht und verlassen den &man.vi.1;. mutt wird dann wieder aktiv und zeigt eine Zusammenfassung der zu sendenden Nachricht an. Drücken Sie y, um die E-Mail zu versenden. Der nachstehende Bildschirmabzug zeigt die Zusammenfassung der E-Mail: mutt verfügt über eine umfangreiche Hilfestellung. Aus fast jedem Menü können Hilfeseiten mit ? aufgerufen werden. In der oberen Statuszeile werden zudem die verfügbaren Tastenkombinationen angezeigt. <application>alpine</application> alpine wendet sich an Anfänger bietet aber ebenfalls einige Funktionen für Profis. In der Vergangenheit wurden in alpine mehrere Schwachstellen gefunden. Die Schwachstellen gestatteten entfernten Benutzern, durch das Versenden einer besonders verfassten E-Mail, Programme auf dem lokalen System laufen zu lassen. Alle bekannten Schwachstellen sind beseitigt worden, doch wird im Quellcode von alpine ein sehr riskanter Programmierstil verwendet, sodass der &os;-Security-Officer von weiteren unbekannten Schwachstellen ausgeht. Benutzer installieren alpine auf eigene Verantwortung! Der Port mail/alpine enthält die aktuelle Version von alpine. Nach der Installation können Sie alpine mit dem nachstehenden Kommando starten: &prompt.user; alpine Beim ersten Start von alpine, zeigt das Programm eine Seite mit einer kurzen Einführung an. Um die alpine-Benutzer zu zählen, bitten die Entwickler auf dieser Seite um eine anonyme E-Mail. Sie können diese anonyme E-Mail senden, indem Sie Enter drücken oder den Begrüßungsbildschirm mit der Taste E verlassen, ohne die anonyme E-Mail zu senden. Der Begrüßungsbildschirm sieht wie folgt aus: Nach dem Begrüßungsbildschirm wird das Hauptmenü dargestellt, das sich mit den Pfeiltasten bedienen lässt. Über Tastenkombinationen können aus dem Hauptmenü neue E-Mails erstellt, Postfächer angezeigt und das Adressbuch verwaltet werden. Unterhalb des Menüs werden die Tastenkombinationen für die verfügbaren Aktionen angezeigt. In der Voreinstellung öffnet alpine das Verzeichnis inbox. Die Taste I oder der Menüpunkt MESSAGE INDEX führt zu einer Nachrichten-Liste: Die Liste zeigt die Nachrichten im Arbeitsverzeichnis. Sie können Nachrichten mit den Pfeiltasten markieren. Um eine Nachricht zu lesen, drücken Sie Enter. Im nächsten Bildschirmabzug sehen Sie, wie alpine eine Nachricht darstellt. Die unteren Bildschirmzeilen zeigen die verfügbaren Tastenkombinationen. Mit r können Sie zum Beispiel auf die gerade angezeigte Nachricht antworten. Zum Antworten auf eine E-Mail wird in alpine der Editor pico, der mit installiert wird, benutzt. pico ist leicht zu bedienen und gerade für Anfänger besser geeignet als &man.vi.1; oder &man.mail.1;. Die Antwort wird mit der Tastenkombination Ctrl X versendet. Vor dem Versand bittet alpine noch um eine Bestätigung. Über den Menüpunkt SETUP des Hauptmenüs können Sie alpine an Ihre Bedürfnisse anpassen. Erläuterungen dazu finden Sie auf der Seite http://www.washington.edu/pine/. E-Mails mit <application>fetchmail</application> abholen Marc Silver Beigetragen von fetchmail fetchmail ist ein vollwertiger IMAP- und POP-Client. Mit fetchmail können Benutzer E-Mails von entfernten IMAP- und POP-Servern in leichter zugängliche lokale Postfächer laden. fetchmail wird aus dem Port mail/fetchmail installiert. Das Programm bietet unter anderem folgende Funktionen: fetchmail beherrscht die Protokolle POP3, APOP, KPOP, IMAP, ETRN und ODMR. E-Mails können mit SMTP weiterverarbeitet werden. Dadurch ist garantiert, dass Filter, Weiterleitungen und Aliase weiterhin funktionieren. Das Programm kann als Dienst laufen und periodisch neue Nachrichten abrufen. fetchmail kann mehrere Postfächer abfragen und je nach Konfiguration die E-Mails an verschiedene lokale Benutzer zustellen. Dieser Abschnitt erklärt einige grundlegende Funktionen von fetchmail. Das Programm benötigt eine Konfigurationsdatei .fetchmailrc im Heimatverzeichnis des Benutzers. In dieser Datei werden Informationen über Server wie auch Benutzerdaten und Passwörter hinterlegt. Wegen des kritischen Inhalts dieser Datei ist es ratsam, diese nur für den Benutzer lesbar zu machen: &prompt.user; chmod 600 .fetchmailrc Die folgende .fetchmailrc zeigt, wie das Postfach eines einzelnen Benutzers mit POP heruntergeladen wird. fetchmail wird angewiesen, eine Verbindung zu example.com herzustellen und sich dort als Benutzer joesoap mit dem Passwort XXX anzumelden. Das Beispiel setzt voraus, dass der Benutzer joesoap auch auf dem lokalen System existiert. poll example.com protocol pop3 username "joesoap" password "XXX" Im folgenden Beispiel werden mehrere POP- und IMAP-Server benutzt. Wo notwendig, werden E-Mails auf andere lokale Konten umgeleitet: poll example.com proto pop3: user "joesoap", with password "XXX", is "jsoap" here; user "andrea", with password "XXXX"; poll example2.net proto imap: user "john", with password "XXXXX", is "myth" here; fetchmail kann als Dämon gestartet werden. Verwendet wird dazu die Kommandozeilenoption gefolgt von einer Zeitspanne in Sekunden, die angibt, wie oft die Server aus .fetchmailrc abgefragt werden sollen. Mit dem nachstehenden Befehl fragt fetchmail die Server alle 600 Sekunden ab: &prompt.user; fetchmail -d 600 Mehr über fetchmail erfahren Sie auf der Seite http://www.fetchmail.info/. E-Mails mit <application>procmail</application> filtern Marc Silver Beigetragen von procmail procmail ist ein mächtiges Werkzeug, mit dem sich eingehende E-Mails filtern lassen. Benutzer können Regeln für eingehende E-Mails definieren, die E-Mails zu anderen Postfächern oder anderen E-Mail-Adressen umleiten. procmail befindet sich im Port mail/procmail. procmail kann leicht in die meisten MTAs integriert werden. Lesen Sie dazu bitte die Dokumentation des verwendeten MTAs. Alternativ kann procmail in das E-Mail-System eingebunden werden, indem die nachstehende Zeile in die Datei .forward im Heimatverzeichnis eines Benutzers eingefügt wird: "|exec /usr/local/bin/procmail || exit 75" Der folgende Abschnitt zeigt einige einfache procmail-Regeln sowie eine kurze Beschreibung dessen, was sie tun. Regeln müssen in .procmailrc im Heimatverzeichnis des Benutzers eingefügt werden. Den Großteil dieser Regeln finden Sie auch in &man.procmailex.5;. Um E-Mails von user@example.com an die externe Adresse goodmail@example2.com weiterzuleiten: :0 * ^From.*user@example.com ! goodmail@example2.com Um E-Mails, die kürzer als 1000 Bytes sind, an goodmail@example2.com weiterzuleiten: :0 * < 1000 ! goodmail@example2.com Um E-Mails, die an alternate@example.com geschickt werden, im Postfach alternate zu speichern: :0 * ^TOalternate@example.com alternate Um E-Mails, die im Betreff Spam enthalten, nach /dev/null zu verschieben: :0 ^Subject:.*Spam /dev/null Zuletzt ein nützliches Rezept, das eingehende E-Mails von den &os;.org-Mailinglisten in ein separates Postfach für jede Liste einsortiert: :0 * ^Sender:.owner-freebsd-\/[^@]+@FreeBSD.ORG { LISTNAME=${MATCH} :0 * LISTNAME??^\/[^@]+ FreeBSD-${MATCH} } Index: head/de_DE.ISO8859-1/books/handbook/network-servers/chapter.xml =================================================================== --- head/de_DE.ISO8859-1/books/handbook/network-servers/chapter.xml (revision 50863) +++ head/de_DE.ISO8859-1/books/handbook/network-servers/chapter.xml (revision 50864) @@ -1,6135 +1,6135 @@ Netzwerkserver Übersicht Dieses Kapitel beschreibt einige der häufiger verwendeten Netzwerkdienste auf &unix;-Systemen. Dazu zählen Installation und Konfiguration sowie Test und Wartung verschiedener Netzwerkdienste. Zusätzlich sind im ganzen Kapitel Beispielkonfigurationen als Referenz enthalten. Nachdem Sie dieses Kapitel gelesen haben, werden Sie Den inetd-Daemon konfigurieren können. Wissen, wie das Network File System (NFS) eingerichtet wird. Einen Network Information Server (NIS) einrichten können, um damit Benutzerkonten im Netzwerk zu verteilen. Wissen, wie Sie &os; einrichten, um als LDAP-Server oder -Client zu agieren. Rechner durch Nutzung von DHCP automatisch für ein Netzwerk konfigurieren können. In der Lage sein, einen Domain Name Server (DNS) einzurichten. Den Apache HTTP-Server konfigurieren können. Wissen, wie man einen File Transfer Protocol (FTP)-Server einrichtet. Mit Samba einen Datei- und Druckserver für &windows;-Clients konfigurieren können. Unter Nutzung des NTP-Protokolls Datum und Uhrzeit synchronisieren sowie einen Zeitserver installieren können. Wissen, wie iSCSI eingerichtet wird. Dieses Kapitel setzt folgende Grundkenntnisse voraus: /etc/rc-Skripte. Netzwerkterminologie Installation zusätzlicher Software von Drittanbietern (). Der <application>inetd</application> <quote>Super-Server</quote> Der &man.inetd.8;-Daemon wird manchmal auch als Internet Super-Server bezeichnet, weil er Verbindungen für viele Dienste verwaltet. Anstatt mehrere Anwendungen zu starten, muss nur der inetd-Dienst gestartet werden. Wenn eine Verbindung für einen Dienst eintrifft, der von inetd verwaltet wird, bestimmt inetd, welches Programm für die eingetroffene Verbindung zuständig ist, aktiviert den entsprechenden Prozess und reicht den Socket an ihn weiter. Der Einsatz von inetd an Stelle viele einzelner Daemonen kann auf nicht komplett ausgelasteten Servern zu einer Verringerung der Systemlast führen. inetd wird vor allem dazu verwendet, andere Daemonen zu aktivieren, einige Protokolle werden aber auch intern verwaltet. Dazu gehören chargen, auth, time, echo, discard sowie daytime. Dieser Abschnitt beschreibt die Konfiguration von inetd. Konfigurationsdatei Die Konfiguration von inetd erfolgt über /etc/inetd.conf Jede Zeile dieser Datei repräsentiert eine Anwendung, die von inetd gestartet werden kann. In der Voreinstellung beginnt jede Zeile mit einem Kommentar (#), was bedeutet dass inetd keine Verbindungen für Anwendungen akzeptiert. Entfernen Sie den Kommentar am Anfang der Zeile, damit inetd Verbindungen für diese Anwendung entgegennimmt. Nachdem Sie die Änderungen gespeichert haben, fügen Sie folgende Zeile in /etc/rc.conf ein, damit inetd bei Booten automatisch gestartet wird: inetd_enable="YES" Starten Sie jetzt inetd, so dass er Verbindungen für die von Ihnen konfigurierten Dienste entgegennimmt: &prompt.root; service inetd start Sobald inetd gestartet ist, muss der Dienst benachrichtigt werden, wenn eine Änderung in /etc/inetd.conf gemacht wird: Die Konfigurationsdatei von <application>inetd</application> neu einlesen &prompt.root; service inetd reload Normalerweise müssen Sie lediglich den Kommentar vor der Anwendung entfernen. In einigen Situationen kann es jedoch sinnvoll sein, den Eintrag weiter zu bearbeiten. Als Beispiel dient hier der Standardeintrag für &man.ftpd.8; über IPv4: ftp stream tcp nowait root /usr/libexec/ftpd ftpd -l Die sieben Spalten in diesem Eintrag haben folgende Bedeutung: service-name socket-type protocol {wait|nowait}[/max-child[/max-connections-per-ip-per-minute[/max-child-per-ip]]] user[:group][/login-class] server-program server-program-arguments service-name Der Dienstname eines bestimmten Daemons. Er muss einem in /etc/services aufgelisteten Dienst entsprechen. Hier wird festgelegt, auf welchen Port inetd eingehende Verbindungen für diesen Dienst entgegennimmt. Wenn ein neuer Dienst benutzt wird, muss er zuerst in /etc/services eingetragen werden. socket-type Entweder stream, dgram, raw, oder seqpacket. Nutzen Sie stream für TCP-Verbindungen und dgram für UDP-Dienste. protocol Benutzen Sie eines der folgenden Protokolle: Protokoll Bedeutung tcp oder tcp4 TCP (IPv4) udp oder udp4 UDP (IPv4) tcp6 TCP (IPv6) udp6 UDP (IPv6) tcp46 TCP sowohl unter IPv4 als auch unter IPv6 udp46 UDP sowohl unter IPv4 als auch unter IPv6 {wait|nowait}[/max-child[/max-connections-per-ip-per-minute[/max-child-per-ip]]] In diesem Feld muss oder angegeben werden. , sowie sind optional. gibt an, ob der Dienst seinen eigenen Socket verwalten kann oder nicht. -Sockets müssen verwenden, während Daemonen mit -Sockets, die normalerweise auch aus mehreren Threads bestehen, verwenden sollten. gibt in der Regel mehrere Sockets an einen einzelnen Daemon weiter, während für jeden neuen Socket einen Childdaemon erzeugt. Die maximale Anzahl an Child-Daemonen, die inetd erzeugen kann, wird durch die Option festgelegt. Wenn ein bestimmter Daemon 10 Instanzen benötigt, wird der Wert /10 hinter die Option gesetzt. Der Wert /0 gibt an, das es keine Beschränkung gibt. legt die maximale Anzahl von Verbindungsversuchen pro Minute fest, die von einer bestimmten IP-Adresse aus unternommen werden können. Sobald das Limit erreicht ist, werden weitere Verbindungen von dieser IP-Adresse geblockt, bis die Minute vorüber ist. Ein Wert von /10 würde die maximale Anzahl der Verindungsversuche einer bestimmten IP-Adresse auf zehn Versuche in der Minute beschränken. legt fest, wie viele Child-Daemonen von einer bestimmten IP-Adresse aus gestartet werden können. Durch diese Optionen lassen sich Ressourcenverbrauch sowie die Auswirkungen eines Denial of Service (DoS)-Angriffs begrenzen. Ein Beispiel finden Sie in den Voreinstellungen für &man.fingerd.8;: finger stream tcp nowait/3/10 nobody /usr/libexec/fingerd fingerd -k -s user Der Benutzername, unter dem der jeweilige Daemon laufen soll. Meistens laufen Daemonen als root, daemon oder nobody. server-program Der vollständige Pfad des Daemons. Wird der Daemon von inetd intern bereitgestellt, verwenden Sie . server-program-arguments Dieser Eintrag legt die Argumente fest, die bei der Aktivierung an den Daemon übergeben werden. Wenn es sich beim Daemon um einen internen Dienst handelt, verwenden Sie wiederum . Kommandozeilenoptionen Wie die meisten anderen Server-Daemonen lässt sich auch inetd über verschiedene Optionen steuern. In der Voreinstellung wird inetd mit -wW -C 60 gestartet. Durch das Setzen dieser Werte wird das TCP-Wrapping für alle inetd-Dienste aktiviert. Zudem wird verhindert, dass eine IP-Adresse eine Dienst öfter als 60 Mal pro Minute anfordern kann. Um die Voreinstellungen für inetd zu ändern, fügen Sie einen Eintrag für inetd_flags in /etc/rc.conf hinzu. Wenn inetd bereits ausgeführt wird, starten Sie ihn mit service inetd restart neu. Die verfügbaren Optionen sind: -c maximum Legt die maximale Anzahl von parallelen Aufrufen eines Dienstes fest; in der Voreinstellung gibt es keine Einschränkung. Diese Einstellung kann für jeden Dienst durch Setzen des Parameters in /etc/inetd.conf festgelegt werden. -C rate Legt fest, wie oft ein Dienst von einer einzelnen IP-Adresse in einer Minute aufgerufen werden kann; in der Voreinstellung gibt es keine Einschränkung. Dieser Wert kann für jeden Dienst durch das Setzen des Parameters in /etc/inetd.conf festgelegt werden. -R rate Legt fest, wie oft ein Dienst in der Minute aktiviert werden kann; in der Voreinstellung sind dies 256 Aktivierungen pro Minute. Ein Wert von 0 erlaubt unbegrenzt viele Aktivierungen. -s maximum Legt fest, wie oft ein Dienst in der Minute von einer einzelnen IP-Adresse aus aktiviert werden kann; in der Voreinstellung gibt es hier keine Beschränkung. Diese Einstellung kann für jeden Dienst durch die Angabe von in /etc/inetd.conf angepasst werden. Es sind noch weitere Optionen verfügbar. Eine vollständige Liste der Optionen finden Sie in &man.inetd.8;. Sicherheitsbedenken Viele Daemonen, die von inetd verwaltet werden, sind nicht auf Sicherheit bedacht. Einige Damonen, wie beispielsweise fingerd, liefern Informationen, die für einen Angreifer nützlich sein könnten. Aktivieren Sie nur erforderliche Dienste und überwachen Sie das System auf übermäßige Verbindungsversuche. max-connections-per-ip-per-minute, max-child und max-child-per-ip können verwendet werden, um solche Angriffe zu begrenzen. TCP-Wrapper ist in der Voreinstellung aktiviert. Lesen Sie &man.hosts.access.5;, wenn Sie weitere Informationen zum Setzen von TCP-Beschränkungen für verschiedene von inetd aktivierte Daemonen benötigen. Network File System (<acronym>NFS</acronym>) Tom Rhodes Reorganisiert und erweitert von Bill Swingle Geschrieben von NFS &os; unterstützt das Netzwerkdateisystem NFS, das es einem Server erlaubt, Dateien und Verzeichnisse über ein Netzwerk mit Clients zu teilen. Mit NFS können Benutzer und Programme auf Daten entfernter Systeme zugreifen, und zwar so, als ob es sich um lokal gespeicherte Daten handeln würde. Die wichtigsten Vorteile von NFS sind: Daten, die sonst auf jeden Client dupliziert würden, können an einem zentralen Ort aufbewahrt, und von den Clients über das Netzwerk aufgerufen werden. Verschiedene Clients können auf ein gemeinsames Verzeichnis /usr/ports/distfiles zugreifen. Die gemeinsame Nutzung dieses Verzeichnisses ermöglicht einen schnellen Zugriff auf die Quelldateien, ohne sie auf jede Maschine zu kopieren zu müssen. In größeren Netzwerken ist es praktisch, einen zentralen NFS-Server einzurichten, auf dem die Heimatverzeichnisse der Benutzer gespeichert werden. Dadurch steht den Benutzern immer das gleiche Heimatverzeichnis zur Verfügung, unabhängig davon, an welchem Client im Netzwerk sie sich anmelden. Die Verwaltung der NFS-Exporte wird vereinfacht. Zum Beispiel gibt es dann nur noch ein Dateisystem, für das Sicherheits- oder Backup-Richtlinien festgelegt werden müssen. Wechselmedien können von anderen Maschinen im Netzwerk verwendet werden. Dies reduziert die Anzahl von Geräten im Netzwerk und bietet einen zentralen Ort für die Verwaltung. Oft ist es einfacher, über ein zentrales Installationsmedium Software auf mehreren Computern zu installieren. NFS besteht aus einem Server und einem oder mehreren Clients. Der Client greift über das Netzwerk auf die Daten zu, die auf dem Server gespeichert sind. Damit dies korrekt funktioniert, müssen einige Prozesse konfiguriert und gestartet werden: Folgende Daemonen müssen auf dem Server ausgeführt werden: NFS Server Dateiserver Unix-Clients rpcbind mountd nfsd Daemon Beschreibung nfsd Der NFS-Daemon. Er bearbeitet Anfragen der NFS-Clients. mountd Der NFS-Mount-Daemon. Er bearbeitet die Anfragen von nfsd. rpcbind Der Portmapper-Daemon. Durch ihn erkennen die NFS-Clients, welchen Port der NFS-Server verwendet. Der Einsatz von &man.nfsiod.8; ist nicht zwingend erforderlich, kann aber die Leistung auf dem Client verbessern. Konfiguration des Servers NFS einrichten Die Dateisysteme, die der NFS-Server exportieren soll, werden in /etc/exports festgelegt. Jede Zeile in dieser Datei beschreibt ein zu exportierendes Dateisystem, Clients, die darauf Zugriff haben sowie alle Zugriffsoptionen. Die Optionen eines auf einen anderen Rechner exportierten Dateisystems müssen alle in einer Zeile stehen. Wird in einer Zeile kein Rechner festgelegt, dürfen alle Clients im Netzwerk das exportierte Dateisystem einhängen. NFS Export von Dateisystemen Wie Dateisysteme exportiert werden, ist in der folgenden /etc/exports zu sehen. Diese Beispiele müssen natürlich an die Arbeitsumgebung und die Netzwerkkonfiguration angepasst werden. Es existieren viele verschiedene Optionen, allerdings werden hier nur wenige von ihnen erwähnt. Eine vollständige Liste der Optionen findne Sie in &man.exports.5;. Dieses Beispiel exportiert /cdrom für drei Clients, alpha, bravo und charlie: /cdrom -ro alpha bravo charlie Die Option kennzeichnet das exportierte Dateisystem als schreibgeschützt. Dadurch sind Clients nicht in der Lage, das exportierte Dateisystem zu verändern. Dieses Beispiel geht davon aus, dass die Hostnamen entweder über DNS oder über /etc/hosts aufgelöst werden können. Lesen Sie &man.hosts.5; falls das Netzwerk über keinen DNS-Server verfügt. Das nächste Beispiel exportiert /home auf drei durch IP-Adressen bestimmte Clients. Diese Einstellung kann für Netzwerke ohne DNS-Server und /etc/hosts nützlich sein. Die Option ermöglicht es, auch Unterverzeichnisse als Mountpunkte festzulegen. Dies bedeutet aber nicht, dass alle Unterverzeichnisse eingehängt werden, vielmehr wird es dem Client ermöglicht, nur diejenigen Verzeichnisse einzuhängen, die auch benötigt werden. /usr/home -alldirs 10.0.0.2 10.0.0.3 10.0.0.4 Das nächste Beispiel exportiert /a, damit Clients von verschiedenen Domänen auf das Dateisystem zugreifen können. Die Option erlaubt es dem Benutzer root des Clients, als root auf das exportierte Dateisystem zu schreiben. Wenn diese Option nicht gesetzt ist, wird der root-Benutzer des Clients dem nobody-Konto des Servers zugeordnet und unterliegt somit den Zugriffsbeschränkungen dieses Kontos. /a -maproot=root host.example.com box.example.org Ein Client kann für jedes Dateisystem nur einmal definiert werden. Wenn beispielsweise /usr ein gesondertes Dateisystem ist, dann wären die folgenden Einträge falsch, da in beiden Einträgen der gleiche Rechner angegeben wird: #Nicht erlaubt, wenn /usr ein einziges Dateisystem ist /usr/src client /usr/ports client Das richtige Format für eine solche Situation ist: /usr/src /usr/ports client Das Folgende ist ein Beispiel für eine gültige Exportliste, in der /usr und /exports lokale Dateisysteme sind: # Export src and ports to client01 and client02, but only # client01 has root privileges on it /usr/src /usr/ports -maproot=root client01 /usr/src /usr/ports client02 # The client machines have root and can mount anywhere # on /exports. Anyone in the world can mount /exports/obj read-only /exports -alldirs -maproot=root client01 client02 /exports/obj -ro Damit die vom NFS-Server benötigen Prozesse beim Booten gestartet werden, fügen Sie folgende Optionen in /etc/rc.conf hinzu: rpcbind_enable="YES" nfs_server_enable="YES" mountd_flags="-r" Der Server kann jetzt mit diesem Kommando gestartet werden: &prompt.root; service nfsd start Wenn der NFS-Server startet, wird auch mountd automatisch gestartet. Allerdings liest mountd /etc/exports nur, wenn der Server gestartet wird. Um nachfolgende Änderungen an /etc/exports wirksam werden zu lassen, kann mountd angewiesen werden, die Datei neu einzulesen: &prompt.root; service mountd reload Konfiguration des Clients Um den NFS-Client zu aktivieren, setzen Sie folgende Option in /etc/rc.conf auf jedem Client: nfs_client_enable="YES" Der Client ist nun in der Lage, ein entferntes Dateisystem einzuhängen. In diesen Beispielen ist der Name des Servers server und der Name des Clients client. Fügen Sie folgenden Befehl aus, um das Verzeichnis /home vom server auf dem client ins Verzeichnis /mnt einzuhängen: NFS Dateisysteme einhängen &prompt.root; mount server:/home /mnt Die Dateien und Verzeichnisse in /home stehen dem Rechner client nun im Verzeichnis /mnt zur Verfügung. Um ein entferntes Dateisystem bei jedem Systemstart automatisch einzuhängen, fügen Sie das Dateisystem in /etc/fstab ein: server:/home /mnt nfs rw 0 0 &man.fstab.5; enthält eine Beschreibung aller Optionen. Dateien sperren (<foreignphrase>Locking</foreignphrase>) Einige Anwendungen erfordern die Sperrung von Dateien, damit sie korrekt arbeiten. Um diese Sperre zu aktivieren, müssen diese Zeilen in /etc/rc.conf sowohl auf dem Client als auch auf dem Server hinzugefügt werden: rpc_lockd_enable="YES" rpc_statd_enable="YES" Danach starten Sie die beiden Anwendungen: &prompt.root; service lockd start &prompt.root; service statd start Wenn keine Dateisperren zwischen den NFS-Clients und dem NFS-Server benötigt werden, können Sie den NFS-Client durch die Übergabe der Option an mount zu einer lokalen Sperrung von Dateien zwingen. Weitere Details finden Sie in &man.mount.nfs.8;. Automatisches Einhängen mit &man.amd.8; Wylie Stilwell Beigetragen von Chern Lee Überarbeitet von amd Automatic Mounter Daemon &man.amd.8; (Automatic Mounter Daemon) hängt ein entferntes Dateisystem automatisch ein, wenn auf eine Datei oder ein Verzeichnis in diesem Dateisystem zugegriffen wird. Dateisysteme, die über einen gewissen Zeitraum inaktiv sind, werden von amd automatisch abgehängt. Dieser Damon ist eine Alternative zum dauerhaften Einhängen von Dateisystemen in /etc/fstab. In der Voreinstellung stellt amd die Verzeichnisse /host und /net als NFS-Server bereit. Wenn auf eine Datei in diesen Verzeichnissen zugegriffen wird, sucht amd den entsprechenden Mountpunkt und hängt das Dateisystem automatisch ein. /net wird zum Einhängen von exportierten Dateisystemen von einer IP-Adresse verwendet, während /host zum Einhängen von exportierten Dateisystemen eines durch seinen Namen festgelegten Rechners dient. Ein Zugriff auf eine Datei in /host/foobar/usr würde amd veranlassen, das von foobar exportierte Dateisystem /usr einzuhängen. Ein exportiertes Dateisystem mit <application>amd</application> in den Verzeichnisbaum einhängen showmount -e zeigt in diesem Beispiel die exportierten Dateisysteme des NFS-Servers foobar an: &prompt.user; showmount -e foobar Exports list on foobar: /usr 10.10.10.0 /a 10.10.10.0 &prompt.user; cd /host/foobar/usr Die Ausgabe von showmount zeigt /usr als exportiertes Dateisystem an. Wenn man in das Verzeichnis /host/foobar/usr wechselt, fängt amd die Anfrage ab und versucht den Rechnernamen foobar aufzulösen. Wenn dies gelingt, wird amd automatisch den gewünschten Export in den Verzeichnisbaum einhängen. Um amd beim Booten zu aktivieren, fügen Sie folgende Zeile in /etc/rc.conf ein: amd_enable="YES" Um amd direkt zu starten: &prompt.root; service amd start Individuelle Optionen können über die Umgebungsvariable amd_flags an amd übergeben werden. In der Voreinstellung ist amd_flags eingestellt auf: amd_flags="-a /.amd_mnt -l syslog /host /etc/amd.map /net /etc/amd.map" Die Standardoptionen, mit denen exportierte Dateisysteme in den Verzeichnisbaum eingehängt werden, werden in /etc/amd.map festgelegt. Einige der erweiterten Optionen von amd werden in /etc/amd.conf definiert. Weitere Informationen finden Sie in &man.amd.8; und &man.amd.conf.5;. Automatisches Einhängen mit &man.autofs.5; &man.autofs.5; wird seit &os; 10.1-RELEASE unterstützt. Um die Funktionalität des automatischen Einhängens in älteren &os;-Versionen zu benutzen, verwenden Sie stattdessen &man.amd.8;. In diesem Kapitel wird nur das automatische Einhängen mit Hilfe von &man.autofs.5; beschrieben. autofs Automounter Subsystem &man.autofs.5; ist eine gebräuchliche Bezeichnung für verschiedene Komponenten, welche es erlauben, lokale und entfernte Dateisysteme automatisch einzuhängen, sobald auf eine Datei oder ein Verzeichnis in diesem Dateisystem zugegriffen wird. Es besteht aus einer Kernel-Komponente &man.autofs.5; und mehreren Benutzerprogrammen: &man.automount.8;, &man.automountd.8; und &man.autounmountd.8;. &man.autofs.5; ist eine Alternative für &man.amd.8; aus früheren &os;-Versionen. &man.amd.8; steht nach wie vor zur Verfügung, da beide Programme ein unterschiedliches Format verwenden. Das Format welches &man.autofs.5; verwendet ist das gleiche wie bei anderen SVR4 Automountern, beispielsweise denen aus &solaris;, &macos; X und &linux;. Das virtuelle &man.autofs.5;-Dateisystem wird von &man.automount.8; in einen bestimmten Mountpunkt eingehängt. Dies geschieht gewöhnlich während des Bootens. Jedes Mal, wenn ein Prozess versucht auf eine Datei unterhalb des &man.autofs.5;-Mountpunkts zuzugreifen, wird der Kernel den &man.automountd.8;-Daemon benachrichtigen und den aktuellen Prozess anhalten. Der &man.automountd.8;-Daemon wird dann die Anfrage des Kernels bearbeiten und das entsprechende Dateisystem einhängen. Anschließend wird der Daemon den Kernel benachrichtigen, dass der angehaltene Prozess wieder freigegeben werden kann. Der &man.autounmountd.8;-Daemon hängt automatisch Dateisysteme nach einiger Zeit ab, sofern sie nicht mehr verwendet werden. Die primäre Konfigurationsdatei von autofs ist /etc/auto_master. Sie enthält die einzelnen Zuordnungen zu den Mountpunkten. Eine Erklärung zu auto_master und der Syntax für die Zuordnungen finden Sie in &man.auto.master.5;. Eine spezielle Automounter Zuordnung wird in /net eingehängt. Wenn auf eine Datei in diesem Verzeichnis zugegriffen wird, hängt &man.autofs.5; einen bestimmten, entfernen Mountpunkt ein. Wenn beispielsweise auf eine Datei unterhalb von /net/foobar/usr zugegriffen werden soll, würde &man.automountd.8; das exportierte Dateisystem /usr von dem Rechner foobar einhängen. Ein exportiertes Dateisystem mit &man.autofs.5; in den Verzeichnisbaum einhängen In diesem Beispiel zeigt showmount -e die exportierten Dateisysteme des NFS-Servers foobar: &prompt.user; showmount -e foobar Exports list on foobar: /usr 10.10.10.0 /a 10.10.10.0 &prompt.user; cd /net/foobar/usr Die Ausgabe von showmount zeigt das exportierte Dateisystem /usr. Wenn in das Verzeichnis /host/foobar/usr gewechselt wird, fängt &man.automountd.8; die Anforderung ab und versucht, den Rechnernamen foobar aufzulösen. Gelingt dies, wird &man.automountd.8; automatisch das exportierte Dateisystem einhängen. Um &man.autofs.5; beim Booten zu aktivieren, fügen Sie diese Zeile in /etc/rc.conf ein: autofs_enable="YES" Danach kann &man.autofs.5; gestartet werden: &prompt.root; service automount start &prompt.root; service automountd start &prompt.root; service autounmountd start Obwohl das Format von &man.autofs.5; das gleiche ist wie in anderen Betriebssystemen, kann es wünschenswert sein, Informationen von anderen Betriebssystemen zu Rate zu ziehen, wie dieses Mac OS X Dokument. Weitere Informationen finden Sie in den Manualpages &man.automount.8;, &man.automountd.8;, &man.autounmountd.8; und &man.auto.master.5;. Network Information System (<acronym>NIS</acronym>) NIS Solaris HP-UX AIX Linux NetBSD OpenBSD yellow pages NIS Das Network Information System (NIS) wurde entwickelt, um &unix;-Systeme zentral verwalten zu können. Dazu zählen beispielsweise &solaris;, HP-UX, &aix;, &linux;, NetBSD, OpenBSD und &os;. NIS war ursprünglich als Yellow Pages bekannt, aus markenrechtlichen Gründen wurde der Name aber geändert. Dies ist der Grund, warum NIS-Kommandos mit yp beginnen. NIS Domänen Bei NIS handelt es sich um ein RPC-basiertes Client/Server-System. Eine Gruppe von Rechnern greift dabei innerhalb einer NIS-Domäne auf gemeinsame Konfigurationsdateien zu. Dies erlaubt es einem Systemadministrator, NIS-Clients mit minimalem Aufwand einzurichten, sowie Änderungen an der Systemkonfiguration von einem zentralen Ort aus durchzuführen. &os; verwendet die Version 2 des NIS-Protokolls. <acronym>NIS</acronym>-Begriffe und -Prozesse Tabelle 30.1 fasst die Begriffe und Anwenderprozesse zusammen, die von NIS verwendet werden: rpcbind <acronym>NIS</acronym> Begriffe Begriff Beschreibung NIS-Domänenname NIS-Masterserver und Clients benutzen einen gemeinsamen NIS-Domänennamen. In der Regel hat dieser Name nichts mit DNS zu tun. &man.rpcbind.8; Dieser Dienst aktiviert RPC und muss gestartet sein, damit ein NIS-Server oder -Client ausgeführt werden kann. &man.ypbind.8; Dieser Dienst bindet einen NIS-Client an seinen NIS-Server. Der Client bezieht den NIS-Domänennamen vom System und stellt über das RPC-Protokoll eine Verbindung zum NIS-Server her. ypbind ist der zentrale Bestandteil der Client-Server-Kommunikation in einer NIS-Umgebung. Wird der Dienst auf einem Client beendet, ist dieser nicht mehr in der Lage, auf den NIS-Server zuzugreifen. &man.ypserv.8; Dies ist der Prozess für den NIS-Server. Wenn dieser Dienst nicht mehr läuft, kann der Server nicht mehr auf NIS-Anforderungen reagieren. Wenn ein Slaveserver existiert, kann dieser als Ersatz fungieren. Einige NIS-Systeme (allerdings nicht das von &os;) versuchen allerdings erst gar nicht, sich mit einem anderen Server zu verbinden, wenn der Masterserver nicht mehr reagiert. Die einzige Lösung besteht darin, den Serverprozess oder den ypbind-Prozess auf dem Client neu zu starten. &man.rpc.yppasswdd.8; Dieser Prozess läuft nur auf dem NIS-Masterserver. Es handelt sich um einen Daemonprozess, der es NIS-Clients ermöglicht, ihre NIS-Passwörter zu ändern. Wenn dieser Daemon nicht läuft, müssen sich die Benutzer am NIS-Masterserver anmelden und ihre Passwörter dort ändern.
Arten von NIS-Rechnern NIS Masterserver NIS Slaveserver NIS Client NIS-Masterserver Dieser Server dient als zentraler Speicherort für Rechnerkonfigurationen. Zudem verwaltet er die maßgebliche Kopie, der von den NIS-Clients gemeinsam verwendeten Dateien. passwd, group, sowie verschiedene andere von den Clients verwendete Dateien existieren auf dem Masterserver. Obwohl ein Rechner auch für mehrere NIS-Domänen als Masterserver fungieren kann, wird diese Art von Konfiguration nicht behandelt, da sich dieser Abschnitt auf eine relativ kleine NIS-Umgebung konzentriert. NIS-Slaveserver NIS-Slaveserver verwalten Kopien der Daten des NIS-Masterservers um Redundanz zu bieten. Zudem entlasten Slaveserver den Masterserver: NIS-Clients verbinden sich immer mit dem NIS-Server, welcher zuerst reagiert. Dieser Server kann auch ein Slaveserver sein. NIS-Clients NIS-Clients identifizieren sich gegenüber dem NIS-Server während der Anmeldung. Mit NIS können Informationen aus verschiedenen Dateien von mehreren Rechnern gemeinsam verwendet werden. master.passwd, group, und hosts werden oft gemeinsam über NIS verwendet. Immer, wenn ein Prozess auf einem Client auf Informationen zugreifen will, die normalerweise in lokalen Dateien vorhanden wären, wird stattdessen eine Anfrage an den NIS-Server gestellt, an den der Client gebunden ist. Planung Dieser Abschnitt beschreibt eine einfache NIS-Umgebung, welche aus 15 &os;-Maschinen besteht, für die keine zentrale Verwaltung existiert. Jeder Rechner hat also eine eigene Version von /etc/passwd und /etc/master.passwd. Diese Dateien werden manuell synchron gehalten; wird ein neuer Benutzer angelegt, so muss dies auf allen fünfzehn Rechnern manuell erledigt werden. In Zukunft soll die Konfiguration wie folgt aussehen: Rechnername IP-Adresse Rechneraufgabe ellington 10.0.0.2 NIS-Master coltrane 10.0.0.3 NIS-Slave basie 10.0.0.4 Workstation der Fakultät bird 10.0.0.5 Clientrechner cli[1-11] 10.0.0.[6-17] Verschiedene andere Clients Wenn erstmalig ein NIS-Schema eingerichtet wird, sollte es im Voraus sorgfältig geplant werden. Unabhängig von der Größe des Netzwerks müssen einige Entscheidungen im Rahmen des Planungsprozesses getroffen werden. Einen <acronym>NIS</acronym>-Domänennamen wählen NIS Domänenname Wenn ein Client Informationen anfordert, ist in dieser Anforderung der Name der NIS-Domäne enthalten. Dadurch weiß jeder Server im Netzwerk, auf welche Anforderung er antworten muss. Stellen Sie sich den NIS-Domänennamen als einen Namen einer Gruppe von Rechnern vor. Manchmal wird der Name der Internetdomäne auch für die NIS-Domäne verwendet. Dies ist allerdings nicht empfehlenswert, da es bei der Behebung von Problemen verwirrend sein kann. Der Name der NIS-Domäne sollte innerhalb des Netzwerks eindeutig sein. Hilfreich ist es, wenn der Name die Gruppe der in ihr zusammengefassten Rechner beschreibt. Die Kunstabteilung von Acme Inc. hätte daher vielleicht die NIS-Domäne acme-art. Für dieses Beispiel wird der Name test-domain verwendet. Es gibt jedoch auch Betriebssysteme, die als NIS-Domänennamen den Namen der Internetdomäne verwenden. Wenn dies für einen oder mehrere Rechner des Netzwerks zutrifft, muss der Name der Internetdomäne als NIS-Domänennamen verwendet werden. Anforderungen an den Server Bei der Wahl des NIS-Servers müssen einige Dinge beachtet werden. Da die NIS-Clients auf die Verfügbarkeit des Servers angewiesen sind, sollten Sie einen Rechner wählen, der nicht regelmäßig neu gestartet werden muss. Der NIS-Server sollte idealerweise ein alleinstehender Rechner sein, dessen einzige Aufgabe es ist, als NIS-Server zu dienen. Wenn das Netzwerk nicht zu stark ausgelastet ist, ist es auch möglich, den NIS-Server als weiteren Dienst auf einem anderen Rechner laufen zu lassen. Wenn jedoch ein NIS-Server ausfällt, wirkt sich dies negativ auf alle NIS-Clients aus. Einen <acronym>NIS</acronym>-Masterserver konfigurieren Die verbindlichen Kopien aller NIS-Dateien befinden sich auf dem Masterserver. Die Datenbanken, in denen die Informationen gespeichert sind, bezeichnet man als NIS-Maps. Unter &os; werden diese Maps unter /var/yp/[domainname] gespeichert, wobei [domainname] der Name der NIS-Domäne ist. Da ein NIS-Server mehrere Domänen verwalten kann, können auch mehrere Verzeichnisse vorhanden sein. Jede Domäne verfügt über ein eigenes Verzeichnis sowie einen eigenen, von anderen Domänen unabhängigen Satz von NIS-Maps. NIS-Master- und Slaveserver verwenden &man.ypserv.8;, um NIS-Anfragen zu bearbeiten. Dieser Daemon ist für eingehende Anfragen der NIS-Clients verantwortlich. Er ermittelt aus der angeforderten Domäne und Map einen Pfad zur entsprechenden Datenbank und sendet die angeforderten Daten von der Datenbank zum Client. NIS Serverkonfiguration Abhängig von den Anforderungen ist die Einrichtung eines NIS-Masterservers relativ einfach, da NIS von &os; bereits in der Standardkonfiguration unterstützt wird. Es kann durch folgende Zeilen in /etc/rc.conf aktiviert werden: nisdomainname="test-domain">>>>>>> nis_server_enable="YES">>>>>>>>> nis_yppasswdd_enable="YES">>>>>> Diese Zeile setzt den NIS-Domänennamen auf test-domain. Dadurch werden die NIS-Serverprozesse beim Systemstart automatisch ausgeführt. Durch diese Zeile wird der &man.rpc.yppasswdd.8;-Daemon aktiviert, der die Änderung von NIS-Passwörtern von einem Client aus ermöglicht. Wird ypserv in einer Multi-Serverdomäne verwendet, in der NIS-Server gleichzeitig als NIS-Clients arbeiten, ist es eine gute Idee, diese Server zu zwingen, sich an sich selbst zu binden. Damit wird verhindert, dass Bindeanforderungen gesendet werden und sich die Server gegenseitig binden. Sonst könnten seltsame Fehler auftreten, wenn ein Server ausfällt, auf den andere Server angewiesen sind. Letztlich werden alle Clients einen Timeout melden, und versuchen, sich an andere Server zu binden. Die dadurch entstehende Verzögerung kann beträchtlich sein. Außerdem kann der Fehler erneut auftreten, da sich die Server wiederum aneinander binden könnten. Server, die auch als Client arbeiten, können durch das Hinzufügen der folgenden Zeilen in /etc/rc.conf zu gezwungen werden, sich an einen bestimmten Server zu binden: nis_client_enable="YES" # run client stuff as well nis_client_flags="-S NIS domain,server" Nachdem die Parameter konfiguriert wurden, muss noch /etc/netstart ausgeführt werden, um alles entsprechend den Vorgaben in /etc/rc.conf einzurichten. Bevor die NIS-Maps einrichtet werden können, muss der &man.ypserv.8;-Daemon manuell gestartet werden: &prompt.root; service ypserv start Die <acronym>NIS</acronym>-Maps initialisieren NIS maps NIS-Maps Sie werden am NIS-Masterserver aus den Konfigurationsdateien unter /etc erzeugt. Einzige Ausnahme: /etc/master.passwd. Dies verhindert, dass die Passwörter für root- oder andere Administratorkonten an alle Server in der NIS-Domäne verteilt werden. Deshalb werden die primären Passwort-Dateien konfiguriert, bevor die NIS-Maps initialisiert werden: &prompt.root; cp /etc/master.passwd /var/yp/master.passwd &prompt.root; cd /var/yp &prompt.root; vi master.passwd Es ist ratsam, alle Einträge für Systemkonten sowie Benutzerkonten, die nicht an die NIS-Clients weitergegeben werden sollen, wie beispielsweise root und weitere administrative Konten, zu entfernen. Stellen Sie sicher, dass /var/yp/master.passwd weder von der Gruppe noch von der Welt gelesen werden kann, indem Sie Zugriffsmodus auf 600 einstellen. Nun können die NIS-Maps initialisiert werden. &os; verwendet dafür das Skript &man.ypinit.8;. Geben Sie und den NIS-Domänennamen an, wenn Sie NIS-Maps für den Masterserver erzeugen: ellington&prompt.root; ypinit -m test-domain Server Type: MASTER Domain: test-domain Creating an YP server will require that you answer a few questions. Questions will all be asked at the beginning of the procedure. Do you want this procedure to quit on non-fatal errors? [y/n: n] n Ok, please remember to go back and redo manually whatever fails. If not, something might not work. At this point, we have to construct a list of this domains YP servers. rod.darktech.org is already known as master server. Please continue to add any slave servers, one per line. When you are done with the list, type a <control D>. master server : ellington next host to add: coltrane next host to add: ^D The current list of NIS servers looks like this: ellington coltrane Is this correct? [y/n: y] y [..output from map generation..] NIS Map update completed. ellington has been setup as an YP master server without any errors. Dadurch erzeugt ypinit /var/yp/Makefile aus /var/yp/Makefile.dist. Diese Datei geht in der Voreinstellung davon aus, dass in einer NIS-Umgebung mit nur einem Server gearbeitet wird und dass alle Clients unter &os; laufen. Da test-domain aber auch über einen Slaveserver verfügt, muss /var/yp/Makefile entsprechend angepasst werden, sodass es mit einem Kommentar (#) beginnt: NOPUSH = "True" Neue Benutzer hinzufügen Jedes Mal, wenn ein neuer Benutzer angelegt wird, muss er am NIS-Masterserver hinzugefügt und die NIS-Maps anschließend neu erzeugt werden. Wird dieser Punkt vergessen, kann sich der neue Benutzer nur am NIS-Masterserver anmelden. Um beispielsweise den neuen Benutzer jsmith zur Domäne test-domain hinzufügen wollen, müssen folgende Kommandos auf dem Masterserver ausgeführt werden: &prompt.root; pw useradd jsmith &prompt.root; cd /var/yp &prompt.root; make test-domain Statt pw useradd jsmith kann auch adduser jsmith verwendet werden. Einen <acronym>NIS</acronym>-Slaveserver einrichten NIS Slaveserver Um einen NIS-Slaveserver einzurichten, melden Sie sich am Slaveserver an und bearbeiten Sie /etc/rc.conf analog zum Masterserver. Erzeugen Sie aber keine NIS-Maps, da diese bereits auf dem Server vorhanden sind. Wenn ypinit auf dem Slaveserver ausgeführt wird, benutzen Sie (Slave) statt (Master). Diese Option benötigt den Namen des NIS-Masterservers und den Domänennamen, wie in diesem Beispiel zu sehen: coltrane&prompt.root; ypinit -s ellington test-domain Server Type: SLAVE Domain: test-domain Master: ellington Creating an YP server will require that you answer a few questions. Questions will all be asked at the beginning of the procedure. Do you want this procedure to quit on non-fatal errors? [y/n: n] n Ok, please remember to go back and redo manually whatever fails. If not, something might not work. There will be no further questions. The remainder of the procedure should take a few minutes, to copy the databases from ellington. Transferring netgroup... ypxfr: Exiting: Map successfully transferred Transferring netgroup.byuser... ypxfr: Exiting: Map successfully transferred Transferring netgroup.byhost... ypxfr: Exiting: Map successfully transferred Transferring master.passwd.byuid... ypxfr: Exiting: Map successfully transferred Transferring passwd.byuid... ypxfr: Exiting: Map successfully transferred Transferring passwd.byname... ypxfr: Exiting: Map successfully transferred Transferring group.bygid... ypxfr: Exiting: Map successfully transferred Transferring group.byname... ypxfr: Exiting: Map successfully transferred Transferring services.byname... ypxfr: Exiting: Map successfully transferred Transferring rpc.bynumber... ypxfr: Exiting: Map successfully transferred Transferring rpc.byname... ypxfr: Exiting: Map successfully transferred Transferring protocols.byname... ypxfr: Exiting: Map successfully transferred Transferring master.passwd.byname... ypxfr: Exiting: Map successfully transferred Transferring networks.byname... ypxfr: Exiting: Map successfully transferred Transferring networks.byaddr... ypxfr: Exiting: Map successfully transferred Transferring netid.byname... ypxfr: Exiting: Map successfully transferred Transferring hosts.byaddr... ypxfr: Exiting: Map successfully transferred Transferring protocols.bynumber... ypxfr: Exiting: Map successfully transferred Transferring ypservers... ypxfr: Exiting: Map successfully transferred Transferring hosts.byname... ypxfr: Exiting: Map successfully transferred coltrane has been setup as an YP slave server without any errors. Remember to update map ypservers on ellington. Hierbei wird auf dem Slaveserver ein Verzeichnis namens /var/yp/test-domain erstellt, welches Kopien der NIS-Masterserver-Maps enthält. Durch hinzufügen der folgenden Zeilen in /etc/crontab wird der Slaveserver angewiesen, seine Maps mit den Maps des Masterservers zu synchronisieren: 20 * * * * root /usr/libexec/ypxfr passwd.byname 21 * * * * root /usr/libexec/ypxfr passwd.byuid Diese Einträge sind nicht zwingend notwendig, da der Masterserver automatisch versucht, alle Änderungen seiner NIS-Maps an seine Slaveserver weiterzugeben. Da Passwortinformationen aber auch für nur vom Slaveserver abhängige Systeme vital sind, ist es eine gute Idee, diese Aktualisierungen zu erzwingen. Besonders wichtig ist dies in stark ausgelasteten Netzen, in denen Map-Aktualisierungen unvollständig sein könnten. Um die Konfiguration abzuschließen, führen Sie /etc/netstart auf dem Slaveserver aus, um die NIS-Dienste erneut zu starten. Einen <acronym>NIS</acronym>-Client einrichten Ein NIS-Client bindet sich unter Verwendung von ypbind an einen NIS-Server. Dieser Daemon sendet RPC-Anfragen auf dem lokalen Netzwerk. Diese Anfragen legen den Namen der Domäne fest, die auf dem Client konfiguriert ist. Wenn der Server der entsprechenden Domäne eine solche Anforderung erhält, schickt er eine Antwort an ypbind, das wiederum die Adresse des Servers speichert. Wenn mehrere Server verfügbar sind, verwendet der Client die erste erhaltene Adresse und richtet alle Anfragen an genau diesen Server. ypbind pingt den Server gelegentlich an, um sicherzustellen, dass der Server funktioniert. Antwortet der Server innerhalb eines bestimmten Zeitraums nicht (Timeout), markiert ypbind die Domäne als ungebunden und beginnt erneut, RPCs über das Netzwerk zu verteilen, um einen anderen Server zu finden. NIS Client konfigurieren Einen &os;-Rechner als NIS-Client einrichten: Fügen Sie folgende Zeilen in /etc/rc.conf ein, um den NIS-Domänennamen festzulegen, und um &man.ypbind.8; bei der Initialisierung des Netzwerks zu starten: nisdomainname="test-domain" nis_client_enable="YES" Um alle Passworteinträge des NIS-Servers zu importieren, löschen Sie alle Benutzerkonten in /etc/master.passwd mit vipw. Denken Sie daran, zumindest ein lokales Benutzerkonto zu behalten. Dieses Konto sollte außerdem Mitglied der Gruppe wheel sein. Wenn es mit NIS Probleme gibt, können Sie diesen Zugang verwenden, um sich als Superuser anzumelden und das Problem zu beheben. Bevor Sie die Änderungen speichern, fügen Sie folgende Zeile am Ende der Datei hinzu: +::::::::: Diese Zeile legt für alle gültigen Benutzerkonten der NIS-Server-Maps einen Zugang an. Es gibt verschiedene Wege, den NIS-Client durch Änderung dieser Zeile zu konfigurieren. Eine Methode wird in beschrieben. Weitere detaillierte Informationen finden Sie im Buch Managing NFS and NIS vom O'Reilly Verlag. Um alle möglichen Gruppeneinträge vom NIS-Server zu importieren, fügen Sie folgende Zeile in /etc/group ein: +:*:: Um den NIS-Client direkt zu starten, führen Sie als Superuser die folgenden Befehle aus: &prompt.root; /etc/netstart &prompt.root; service ypbind start Danach sollte bei der Eingabe von ypcat passwd auf dem Client die passwd-Map des NIS-Servers angezeigt werden. Sicherheit unter <acronym>NIS</acronym> Da RPC ein Broadcast-basierter Dienst ist, kann jedes System innerhalb der Domäne mittels ypbind den Inhalt der NIS-Maps abrufen. Um nicht autorisierte Transaktionen zu verhindern, unterstützt &man.ypserv.8; eine Funktion namens securenets, durch die der Zugriff auf bestimmte Rechner beschränkt werden kann. In der Voreinstellung sind diese Informationen in /var/yp/securenets gespeichert, es sei denn, &man.ypserv.8; wurde mit der Option und einem alternativen Pfad gestartet. Diese Datei enthält Einträge, die aus einer Netzwerkadresse und einer Netzmaske bestehen. Kommentarzeilen beginnen mit #. /var/yp/securnets könnte beispielsweise so aussehen: # allow connections from local host -- mandatory 127.0.0.1 255.255.255.255 # allow connections from any host # on the 192.168.128.0 network 192.168.128.0 255.255.255.0 # allow connections from any host # between 10.0.0.0 to 10.0.15.255 # this includes the machines in the testlab 10.0.0.0 255.255.240.0 Wenn &man.ypserv.8; eine Anforderung von einer zu diesen Regeln passenden Adresse erhält, wird die Anforderung bearbeitet. Gibt es keine passende Regel, wird die Anforderung ignoriert und eine Warnmeldung aufgezeichnet. Wenn securenets nicht existiert, erlaubt ypserv Verbindungen von jedem Rechner. beschreibt eine alternative Methode zur Zugriffskontrolle. Obwohl beide Methoden einige Sicherheit gewähren, sind sie anfällig für IP-Spoofing-Angriffe. Der NIS-Verkehr sollte daher von einer Firewall blockiert werden. Server, die securenets verwenden, können Schwierigkeiten bei der Anmeldung von NIS-Clients haben, die ein veraltetes TCP/IP-Subsystem besitzen. Einige dieser TCP/IP-Subsysteme setzen alle Rechnerbits auf Null, wenn sie einen Broadcast durchführen oder können die Subnetzmaske nicht auslesen, wenn sie die Broadcast-Adresse berechnen. Einige Probleme können durch Änderungen der Clientkonfiguration behoben werden. Andere hingegen lassen sich nur durch das Entfernen des betreffenden Rechners aus dem Netzwerk oder den Verzicht auf securenets umgehen. TCP-Wrapper Die Verwendung der TCP-Wrapper verlangsamt die Reaktion des NIS-Servers. Diese zusätzliche Reaktionszeit kann in Clientprogrammen zu Timeouts führen. Dies vor allem in Netzwerken, die stark ausgelastet sind, oder nur über langsame NIS-Server verfügen. Wenn ein oder mehrere Clients dieses Problem aufweisen, sollten Sie die betreffenden Clients in NIS-Slaveserver umwandeln, und diese an sich selbst binden. Bestimmte Benutzer an der Anmeldung hindern In diesem Beispiel gibt es innerhalb der NIS-Domäne den Rechner basie, der nur für Mitarbeiter der Fakultät bestimmt ist. Die passwd Datenbank des NIS-Masterservers enthält Benutzerkonten sowohl für Fakultätsmitarbeiter als auch für Studenten. Dieser Abschnitt beschreibt, wie Sie den Mitarbeitern der Fakultät die Anmeldung am System ermöglichen, während den Studenten die Anmeldung verweigert wird. Es gibt eine Möglichkeit, bestimmte Benutzer an der Anmeldung an einem bestimmten Rechner zu hindern, selbst wenn diese in der NIS-Datenbank vorhanden sind. Dazu kann mit vipw der Eintrag -Benutzername und die richtige Anzahl von Doppelpunkten an das Ende von /etc/master.passwd gesetzt werden, wobei Benutzername der zu blockierende Benutzername ist. Die Zeile mit dem geblockten Benutzer muss dabei vor der + Zeile, für zugelassene Benutzer stehen. In diesem Beispiel wird die Anmeldung für den Benutzer bill am Rechner basie blockiert: basie&prompt.root; cat /etc/master.passwd root:[password]:0:0::0:0:The super-user:/root:/bin/csh toor:[password]:0:0::0:0:The other super-user:/root:/bin/sh daemon:*:1:1::0:0:Owner of many system processes:/root:/sbin/nologin operator:*:2:5::0:0:System &:/:/sbin/nologin bin:*:3:7::0:0:Binaries Commands and Source,,,:/:/sbin/nologin tty:*:4:65533::0:0:Tty Sandbox:/:/sbin/nologin kmem:*:5:65533::0:0:KMem Sandbox:/:/sbin/nologin games:*:7:13::0:0:Games pseudo-user:/usr/games:/sbin/nologin news:*:8:8::0:0:News Subsystem:/:/sbin/nologin man:*:9:9::0:0:Mister Man Pages:/usr/share/man:/sbin/nologin bind:*:53:53::0:0:Bind Sandbox:/:/sbin/nologin uucp:*:66:66::0:0:UUCP pseudo-user:/var/spool/uucppublic:/usr/libexec/uucp/uucico xten:*:67:67::0:0:X-10 daemon:/usr/local/xten:/sbin/nologin pop:*:68:6::0:0:Post Office Owner:/nonexistent:/sbin/nologin nobody:*:65534:65534::0:0:Unprivileged user:/nonexistent:/sbin/nologin -bill::::::::: +::::::::: basie&prompt.root; Netzgruppen verwenden Netzgruppen Bestimmten Benutzern die Anmeldung an einzelnen Systemen zu verweigern, kann in großen Netzwerken schnell unübersichtlich werden. Dadurch verlieren Sie den Hauptvorteil von NIS: die zentrale Verwaltung. Netzgruppen wurden entwickelt, um große, komplexe Netzwerke mit Hunderten Benutzern und Rechnern zu verwalten. Ihre Aufgabe ist vergleichbar mit &unix; Gruppen. Die Hauptunterschiede sind das Fehlen einer numerischen ID sowie die Möglichkeit, Netzgruppen zu definieren, die sowohl Benutzer als auch andere Netzgruppen enthalten. Um das Beispiel in diesem Kapitel fortzuführen, wird die NIS-Domäne um zusätzliche Benutzer und Rechner erweitert: Zusätzliche Benutzer Benutzername(n) Beschreibung alpha, beta Mitarbeiter der IT-Abteilung charlie, delta Lehrlinge der IT-Abteilung echo, foxtrott, golf, ... Mitarbeiter able, baker, ... Praktikanten
Zusätzliche Rechner Rechnername(n) Beschreibung war, death, famine, pollution Nur Mitarbeiter der IT-Abteilung dürfen sich an diesen Rechnern anmelden. pride, greed, envy, wrath, lust, sloth Nur Mitarbeiter und Lehrlinge der IT-Abteilung dürfen sich auf diesen Rechnern anmelden. one, two, three, four, ... Gewöhnliche Arbeitsrechner für Mitarbeiter. trashcan Ein sehr alter Rechner ohne kritische Daten. Sogar Praktikanten dürfen diesen Rechner verwenden.
Bei der Verwendung von Netzgruppen wird jeder Benutzer einer oder mehreren Netzgruppen zugewiesen und die Anmeldung wird dann für die Netzgruppe erlaubt oder verwehrt. Wenn ein neuer Rechner hinzugefügt wird, müssen die Zugangsbeschränkungen nur für die Netzgruppen festgelegt werden. Wird ein neuer Benutzer angelegt, muss er einer oder mehreren Netzgruppen zugewiesen werden. Wenn die Einrichtung von NIS sorgfältig geplant wurde, muss nur noch eine zentrale Konfigurationsdatei bearbeitet werden, um den Zugriff auf bestimmte Rechner zu erlauben oder zu verbieten. Dieses Beispiel erstellt vier Netzgruppen: IT-Mitarbeiter, IT-Lehrlinge, normale Mitarbeiter sowie Praktikanten: IT_EMP (,alpha,test-domain) (,beta,test-domain) IT_APP (,charlie,test-domain) (,delta,test-domain) USERS (,echo,test-domain) (,foxtrott,test-domain) \ (,golf,test-domain) INTERNS (,able,test-domain) (,baker,test-domain) Jede Zeile konfiguriert eine Netzgruppe. Die erste Spalte der Zeile bezeichnet den Namen der Netzgruppe. Die Einträge in den Klammern stehen entweder für eine Gruppe von einem oder mehreren Benutzern, oder für den Namen einer weiteren Netzgruppe. Wenn ein Benutzer angegeben wird, haben die drei Felder in der Klammer folgende Bedeutung: Der Name des Rechner(s), auf dem die weiteren Felder für den Benutzer gültig sind. Wird kein Rechnername festgelegt, ist der Eintrag auf allen Rechnern gültig. Der Name des Benutzerkontos, der zu dieser Netzgruppe gehört. Die NIS-Domäne für das Benutzerkonto. Benutzerkonten können von anderen NIS-Domänen in eine Netzgruppe importiert werden. Wenn eine Gruppe mehrere Benutzer enthält, müssen diese durch Leerzeichen getrennt werden. Darüber hinaus kann jedes Feld Wildcards enthalten. Weitere Einzelheiten finden Sie in &man.netgroup.5;. Netzgruppen Netzgruppennamen sollten nicht länger als 8 Zeichen sein. Es wird zwischen Groß- und Kleinschreibung unterschieden. Die Verwendung von Großbuchstaben für Netzgruppennamen ermöglicht eine leichte Unterscheidung zwischen Benutzern, Rechnern und Netzgruppen. Einige NIS-Clients (dies gilt nicht für &os;) können keine Netzgruppen mit mehr als 15 Einträgen verwalten. Diese Grenze kann umgangen werden, indem mehrere Subnetzgruppen mit weniger als fünfzehn Benutzern angelegt werden und diese Subnetzgruppen wiederum in einer Netzgruppe zusammengefasst wird, wie in diesem Beispiel zu sehen: BIGGRP1 (,joe1,domain) (,joe2,domain) (,joe3,domain) [...] BIGGRP2 (,joe16,domain) (,joe17,domain) [...] BIGGRP3 (,joe31,domain) (,joe32,domain) BIGGROUP BIGGRP1 BIGGRP2 BIGGRP3 Wiederholen Sie diesen Vorgang, wenn mehr als 225 (15*15) Benutzer in einer einzigen Netzgruppe existieren. Die neue NIS-Map aktivieren und verteilen: ellington&prompt.root; cd /var/yp ellington&prompt.root; make Dadurch werden die NIS-Maps netgroup, netgroup.byhost und netgroup.byuser erzeugt. Prüfen Sie die Verfügbarkeit der neuen NIS-Maps mit &man.ypcat.1;: ellington&prompt.user; ypcat -k netgroup ellington&prompt.user; ypcat -k netgroup.byhost ellington&prompt.user; ypcat -k netgroup.byuser Die Ausgabe des ersten Befehls gibt den Inhalt von /var/yp/netgroup wieder. Der zweite Befehl erzeugt nur dann eine Ausgabe, wenn rechnerspezifische Netzgruppen erzeugt wurden. Der dritte Befehl gibt die Netzgruppen nach Benutzern sortiert aus. Wenn Sie einen Client einrichten, verwenden Sie &man.vipw.8; um den Namen der Netzgruppe anzugeben. Ersetzen Sie beispielsweise auf dem Server namens war die folgende Zeile: +::::::::: durch +@IT_EMP::::::::: ersetzt werden. Diese Zeile legt fest, dass nur noch Benutzer der Netzgruppe IT_EMP in die Passwortdatenbank dieses Systems importiert werden. Nur diese Benutzer dürfen sich an diesem Server anmelden. Diese Konfiguration gilt auch für die ~-Funktion der Shell und für alle Routinen, die auf Benutzernamen und numerische Benutzer-IDs zugreifen. Oder anders formuliert, cd ~Benutzer ist nicht möglich, ls -l zeigt die numerische Benutzer-ID statt dem Benutzernamen und find . -user joe -print erzeugt die Fehlermeldung No such user. Um dieses Problem zu beheben, müssen alle Benutzereinträge importiert werden, ohne ihnen jedoch zu erlauben, sich am Server anzumelden. Dies kann durch das Hinzufügen einer zusätzlichen Zeile erreicht werden: +:::::::::/sbin/nologin Diese Zeile weist den Client an, alle Einträge zu importieren, aber die Shell in diesen Einträgen durch /sbin/nologin zu ersetzen. Stellen Sie sicher, dass die zusätzliche Zeile nach der Zeile +@IT_EMP::::::::: eingetragen ist. Andernfalls haben alle via NIS importierten Benutzerkonten /sbin/nologin als Loginshell und niemand wird sich mehr am System anmelden können. Um die weniger wichtigen Server zu konfigurieren, ersetzen Sie den alten Eintrag +::::::::: auf den Servern mit diesen Zeilen: +@IT_EMP::::::::: +@IT_APP::::::::: +:::::::::/sbin/nologin Die entsprechenden Zeilen für Arbeitsplätze lauten: +@IT_EMP::::::::: +@USERS::::::::: +:::::::::/sbin/nologin NIS ist in der Lage, Netzgruppen aus anderen Netzgruppen zu bilden. Dies kann nützlich sein, wenn sich die Firmenpolitik ändert. Eine Möglichkeit ist die Erzeugung rollenbasierter Netzgruppen. Sie könnten eine Netzgruppe BIGSRV erzeugen, um den Zugang zu den wichtigsten Servern zu beschränken, eine weitere Gruppe SMALLSRV für die weniger wichtigen Server und eine dritte Netzgruppe USERBOX für die Arbeitsplatzrechner. Jede dieser Netzgruppen enthält die Netzgruppen, die sich auf diesen Rechnern anmelden dürfen. Die Einträge der Netzgruppen in der NIS-Map sollten ähnlich den folgenden aussehen: BIGSRV IT_EMP IT_APP SMALLSRV IT_EMP IT_APP ITINTERN USERBOX IT_EMP ITINTERN USERS Diese Methode funktioniert besonders gut, wenn Rechner in Gruppen mit identischen Beschränkungen eingeteilt werden können. Unglücklicherweise ist dies die Ausnahme und nicht die Regel. Meistens wird die Möglichkeit zur rechnerspezischen Zugangsbeschränkung benötigt. Rechnerspezifische Netzgruppen sind eine weitere Möglichkeit, um mit den oben beschriebenen Änderungen umzugehen. In diesem Szenario enthält /etc/master.passwd auf jedem Rechner zwei mit + beginnende Zeilen. Die erste Zeile legt die Netzgruppe mit den Benutzern fest, die sich auf diesem Rechner anmelden dürfen. Die zweite Zeile weist allen anderen Benutzern /sbin/nologin als Shell zu. Verwenden Sie auch hier (analog zu den Netzgruppen) Großbuchstaben für die Rechnernamen: +@BOXNAME::::::::: +:::::::::/sbin/nologin Sobald dies für alle Rechner erledigt ist, müssen die lokalen Versionen von /etc/master.passwd nie mehr verändert werden. Alle weiteren Änderungen geschehen über die NIS-Maps. Nachfolgend ein Beispiel für eine mögliche Netzgruppen-Map: # Define groups of users first IT_EMP (,alpha,test-domain) (,beta,test-domain) IT_APP (,charlie,test-domain) (,delta,test-domain) DEPT1 (,echo,test-domain) (,foxtrott,test-domain) DEPT2 (,golf,test-domain) (,hotel,test-domain) DEPT3 (,india,test-domain) (,juliet,test-domain) ITINTERN (,kilo,test-domain) (,lima,test-domain) D_INTERNS (,able,test-domain) (,baker,test-domain) # # Now, define some groups based on roles USERS DEPT1 DEPT2 DEPT3 BIGSRV IT_EMP IT_APP SMALLSRV IT_EMP IT_APP ITINTERN USERBOX IT_EMP ITINTERN USERS # # And a groups for a special tasks # Allow echo and golf to access our anti-virus-machine SECURITY IT_EMP (,echo,test-domain) (,golf,test-domain) # # machine-based netgroups # Our main servers WAR BIGSRV FAMINE BIGSRV # User india needs access to this server POLLUTION BIGSRV (,india,test-domain) # # This one is really important and needs more access restrictions DEATH IT_EMP # # The anti-virus-machine mentioned above ONE SECURITY # # Restrict a machine to a single user TWO (,hotel,test-domain) # [...more groups to follow] Es ist nicht immer ratsam, rechnerbasierte Netzgruppen zu verwenden. Wenn Dutzende oder Hunderte identische Rechner eingerichtet werden müssen, sollten rollenbasierte Netzgruppen verwendet werden, um die Größe der NIS-Maps in Grenzen zu halten.
Passwortformate NIS Passwortformate Alle Rechner innerhalb der NIS-Domäne müssen für die Verschlüsselung von Passwörtern das gleiche Format benutzen. Wenn Benutzer Schwierigkeiten bei der Authentifizierung auf einem NIS-Client haben, liegt dies möglicherweise an einem anderen Passwort-Format. In einem heterogenen Netzwerk muss das verwendete Format von allen Betriebssystemen unterstützt werden, wobei DES der kleinste gemeinsame Standard ist. Welches Format die Server und Clients verwenden, steht in /etc/login.conf: default:\ :passwd_format=des:\ :copyright=/etc/COPYRIGHT:\ [weitere Einträge] In diesem Beispiel verwendet das System das Format DES. Weitere mögliche Werte sind unter anderem blf und md5 (mit Blowfish und MD5 verschlüsselte Passwörter). Wird auf einem Rechner das Format entsprechend der NIS-Domäne geändert, muss anschließend die Login-Capability Datenbank neu erstellt werden: &prompt.root; cap_mkdb /etc/login.conf Das Format der schon bestehenden Passwörter wird erst aktualisiert, wenn ein Benutzer sein Passwort ändert, nachdem die Datenbank neu erstellt wurde.
Lightweight Access Directory Protocol (<acronym>LDAP</acronym>) Tom Rhodes Geschrieben von Björn Heidotting Übersetzt von LDAP Das Lightweight Directory Access Protocol (LDAP) ist ein Protokoll der Anwendungsschicht, das verwendet wird um Objekte mithilfe eines verteilten Verzeichnisdienstes abzurufen, zu verändern und zu authentifizieren. Betrachten Sie es als ein Telefonbuch, das homogene Informationen in mehreren hierarchischen Ebenen speichert. Es wird in Active Directory und OpenLDAP-Netzwerken eingesetzt, in denen Benutzer unter Verwendung eines einzigen Kontos auf diverse interne Informationen zugreifen. Beispielsweise kann E-Mail-Authentifizierung, Abfrage von Kontaktinformationen und Website-Authentifizierung über ein einzelnes Benutzerkonto aus der Datenbank des LDAP-Servers erfolgen. Dieser Abschnitt enthält eine kompakte Anleitung, um einen LDAP-Server auf einem &os;-System zu konfigurieren. Es wird vorausgesetzt, dass der Administrator bereits einen Plan erarbeitet hat, der verschiedene Punkte umfasst, unter anderem die Art der zu speichernden Informationen, für was die Informationen verwendet werden, welche Benutzer Zugriff auf die Informationen haben und wie die Informationen vor unbefugtem Zugriff geschützt werden. <acronym>LDAP</acronym> Terminologie und Struktur LDAP verwendet mehrere Begriffe die Sie verstehen sollten bevor Sie die Konfiguration beginnen. Alle Verzeichniseinträge bestehen aus einer Gruppe von Attributen. Jede Attributgruppe enthält einen eindeutigen Bezeichner, der als distinguished name (DN) bekannt ist. Dieser setzt sich normalerweise aus mehreren anderen Attributen, wie dem Relative Distinguished Name (RDN) zusammen. Wie bei Verzeichnissen gibt es auch hier absolute und relative Pfade. Betrachten Sie DN als absoluten Pfad und RDN als relativen Pfad. Beispielsweise könnte ein LDAP-Eintrag wie folgt aussehen. Dieses Beispiel sucht nach dem Eintrag für das angegebene Benutzerkonto (uid), Organisationseinheit (ou und Organisation (o): &prompt.user; ldapsearch -xb "uid=trhodes,ou=users,o=example.com" # extended LDIF # # LDAPv3 # base <uid=trhodes,ou=users,o=example.com> with scope subtree # filter: (objectclass=*) # requesting: ALL # # trhodes, users, example.com dn: uid=trhodes,ou=users,o=example.com mail: trhodes@example.com cn: Tom Rhodes uid: trhodes telephoneNumber: (123) 456-7890 # search result search: 2 result: 0 Success # numResponses: 2 # numEntries:1 Die Einträge in diesem Beispiel zeigen die Werte für die Attribute dn, mail, cn, uid und telephoneNumber. Das Attribut cn ist der RDN. Weitere Informationen über LDAP und dessen Terminologie finden Sie unter http://www.openldap.org/doc/admin24/intro.html. Konfiguration eines <acronym>LDAP</acronym>-Servers LDAP Server &os; integriert keinen LDAP-Server. Beginnen Sie die Konfiguration durch die Installation des Ports oder Pakets net/openldap24-server. Da der Port viele konfigurierbare Optionen hat, ist es empfehlenswert zu prüfen, ob die Installation des Pakets ausreichend ist. Wenn Sie irgendwelche Optionen ändern möchten, ist es besser den Port zu übersetzen. In den meisten Fällen sollten die Standardwerte ausreichend sein. Wenn Sie jedoch SQL-Unterstützung benötigen, muss diese Option aktiviert und der Port nach den Anweisungen in übersetzt werden. Als nächstes muss ein Verzeichnis für Daten sowie ein Verzeichnis für die Zertifikate erstellt werden: &prompt.root; mkdir /var/db/openldap-data &prompt.root; mkdir /usr/local/etc/openldap/private Kopieren Sie die Konfigurationsdatei der Datenbank: &prompt.root; cp /usr/local/etc/openldap/DB_CONFIG.example /var/db/openldap-data/DB_CONFIG Im nächsten Schritt wird die Zertifizierungsstelle konfiguriert. Die folgenden Befehle müssen in /usr/local/etc/openldap/private ausgeführt werden. Dies ist wichtig, da die Dateiberechtigungen restriktiv gesetzt werden und Benutzer keinen direkten Zugriff auf diese Daten haben sollten. Geben Sie folgenden Befehl ein, um die Zertifizierungsstelle zu erstellen und folgen Sie den Anweisungen: &prompt.root; openssl req -days 365 -nodes -new -x509 -keyout ca.key -out ../ca.crt Diese Einträge sind frei wählbar, mit Ausnahme von Common Name. Hier muss etwas anderes als der Hostname des Systems eingetragen werden. Wenn ein selbstsigniertes Zertifikat verwendet wird, stellen Sie dem Hostnamen einfach das Präfix CA für die Zertifizierungsstelle voran. Die nächste Aufgabe besteht darin, einen Zertifikatsregistrierungsanforderung (CSR) sowie einen privaten Schlüssel zu erstellen. Geben Sie folgenden Befehl ein und folgen Sie den Anweisungen: &prompt.root; openssl req -days 365 -nodes -new -keyout server.key -out server.csr Stellen Sie hierbei sicher, dass Common Name richtig eingetragen wird. Anschließend muss der Schlüssel signiert werden: &prompt.root; openssl x509 -req -days 365 -in server.csr -out ../server.crt -CA ../ca.crt -CAkey ca.key -CAcreateserial Der letzte Schritt für die Erstellung der Zertifikate besteht darin, die Client-Zertifikate zu erstellen und zu signieren: &prompt.root; openssl req -days 365 -nodes -new -keyout client.key -out client.csr &prompt.root; openssl x509 -req -days 3650 -in client.csr -out ../client.crt -CAkey ca.key Achten Sie wieder auf das Attribut Common name. Stellen Sie außerdem sicher, dass bei diesem Verfahren acht (8) neue Dateien erzeugt worden sind. Der nächste Schritt besteht darin, /usr/local/etc/openldap/slapd.conf zu editieren und folgende Optionen hinzuzufügen: TLSCipherSuite HIGH:MEDIUM:+SSLv3 TLSCertificateFile /usr/local/etc/openldap/server.crt TLSCertificateKeyFile /usr/local/etc/openldap/private/server.key TLSCACertificateFile /usr/local/etc/openldap/ca.crt Danach bearbeiten Sie /usr/local/etc/openldap/ldap.conf und fügen folgende Zeilen hinzu: TLS_CACERT /usr/local/etc/openldap/ca.crt TLS_CIPHER_SUITE HIGH:MEDIUM:+SSLv3 Kommentieren Sie die folgenden Einträge aus und setzen Sie sie auf die gewünschten Werte: , , und . Setzen Sie bei und ein. Fügen Sie danach zwei Einträge ein, die auf die Zertifizierungsstelle verweisen. Wenn Sie fertig sind, sollten die Einträge wie folgt aussehen: BASE dc=example,dc=com URI ldap:// ldaps:// SIZELIMIT 12 TIMELIMIT 15 TLS_CACERT /usr/local/etc/openldap/ca.crt TLS_CIPHER_SUITE HIGH:MEDIUM:+SSLv3 Anschließend sollte das Standardpasswort für den Server geändert werden: &prompt.root; slappasswd -h "{SHA}" >> /usr/local/etc/openldap/slapd.conf Dieser Befehl wird nach einem Passwort fragen und, wenn der Prozess nicht fehlschlägt, ein Passwort-Hash an das Ende von slapd.conf hinzufügen. Es werden verschiedene Hash-Formate unterstützt. Weitere Informationen hierzu finden Sie in der Manualpage von slappasswd. Als nächstes bearbeiten Sie /usr/local/etc/openldap/slapd.conf und fügen folgende Zeilen hinzu: password-hash {sha} allow bind_v2 Das Suffix in dieser Datei muss aus /usr/local/etc/openldap/ldap.conf entsprechen. Zudem sollte die Option ebenfalls gesetzt werden. Ein guter Wert ist beispielsweise . Bevor die Datei gespeichert wird, setzen Sie die Passwortausgabe von slappasswd hinter die Option . Das Endergebnis sollte in etwa wie folgt aussehen: TLSCipherSuite HIGH:MEDIUM:+SSLv3 TLSCertificateFile /usr/local/etc/openldap/server.crt TLSCertificateKeyFile /usr/local/etc/openldap/private/server.key TLSCACertificateFile /usr/local/etc/openldap/ca.crt rootpw {SHA}W6ph5Mm5Pz8GgiULbPgzG37mj9g= Aktivieren Sie abschließend OpenLDAP in /etc/rc.conf und setzen Sie die URI: slapd_enable="YES" slapd_flags="-4 -h ldaps:///" An dieser Stelle kann der Server gestartet und getestet werden: &prompt.root; service slapd start Wenn alles richtig konfiguriert ist, sollte eine Suche im Verzeichnis, wie in diesem Beispiel, eine erfolgreiche Verbindung mit einer Antwort liefern: &prompt.root; ldapsearch -Z # extended LDIF # # LDAPv3 # base <dc=example,dc=com> (default) with scope subtree # filter: (objectclass=*) # requesting: ALL # search result search: 3 result: 32 No such object # numResponses: 1 Wenn der Befehl fehlschlägt, aber die Konfiguration richtig aussieht, stoppen Sie den slapd-Dienst. Starten Sie anschließend den Dienst mit Debugging-Optionen: &prompt.root; service slapd stop &prompt.root; /usr/local/libexec/slapd -d -1 Sobald der Dienst antwortet, kann das Verzeichnis mit dem Befehl ldapadd bestückt werden. In diesem Beispiel gibt es eine Datei mit einer Liste von Benutzern, die diesem Verzeichnis hinzugefügt werden. Die Einträge sollten das folgende Format haben: dn: dc=example,dc=com objectclass: dcObject objectclass: organization o: Example dc: Example dn: cn=Manager,dc=example,dc=com objectclass: organizationalRole cn: Manager Um diese Datei zu importieren, geben Sie den Dateinamen an. Bei dem folgenden Befehl werden Sie wieder zur Eingabe des Passworts aufgefordert, das Sie zuvor eingegeben haben. Die Ausgabe sollte wie folgt aussehen: &prompt.root; ldapadd -Z -D "cn=Manager,dc=example,dc=com" -W -f import.ldif Enter LDAP Password: adding new entry "dc=example,dc=com" adding new entry "cn=Manager,dc=example,dc=com" Stellen Sie mit einer Suche auf dem Server sicher, dass die Daten importiert wurden. Nutzen Sie dazu ldapsearch: &prompt.user; ldapsearch -Z # extended LDIF # # LDAPv3 # base <dc=example,dc=com> (default) with scope subtree # filter: (objectclass=*) # requesting: ALL # # example.com dn: dc=example,dc=com objectClass: dcObject objectClass: organization o: Example dc: Example # Manager, example.com dn: cn=Manager,dc=example,dc=com objectClass: organizationalRole cn: Manager # search result search: 3 result: 0 Success # numResponses: 3 # numEntries: 2 An dieser Stelle sollte der Server konfiguriert sein und ordnungsgemäß funktionieren. Dynamic Host Configuration Protocol (<acronym>DHCP</acronym>) Dynamic Host Configuration Protocol DHCP Internet Systems Consortium (ISC) Das Dynamic Host Configuration Protocol (DHCP) ermöglicht es einem System, sich mit einem Netzwerk zu verbinden und die für die Kommunikation mit diesem Netzwerk nötigen Informationen zu beziehen. &os; verwendet den von OpenBSD stammenden dhclient, um die Adressinformationen zu beziehen. &os; installiert keinen DHCP-Server, aber es stehen einige Server in der &os; Ports-Sammlung zu Verfügung. Das DHCP-Protokoll wird vollständig im RFC 2131 beschrieben. Eine weitere, lehrreiche Informationsquelle existiert unter isc.org/downloads/dhcp/. In diesem Abschnitt wird beschrieben, wie der integrierte DHCP-Client verwendet wird. Anschließend wird erklärt, wie ein DHCP-Server zu installieren und konfigurieren ist. Unter &os; wird das Gerät &man.bpf.4; für den DHCP-Server und den DHCP-Client benötigt. Das Gerät ist bereits im GENERIC-Kernel enthalten. Benutzer, die es vorziehen einen angepassten Kernel zu erstellen, müssen dieses Gerät behalten, wenn DHCP verwendet wird. Es sei darauf hingewiesen, dass bpf es priviligierten Benutzern ermöglicht einen Paket-Sniffer auf dem System auszuführen. Einen <acronym>DHCP</acronym>-Client konfigurieren Die Unterstützung für den DHCP-Client ist im Installationsprogramm von &os; enthalten, sodass ein neu installiertes System automatisch die Adressinformationen des Netzwerks vom DHCP-Server erhält. In finden Sie Beispiele für eine Netzwerkkonfiguration. UDP dhclient beginnt von einem Clientrechner aus über den UDP-Port 68 Konfigurationsinformationen anzufordern. Der Server antwortet auf dem UDP-Port 67, indem er dem Client eine IP-Adresse zuweist und ihm weitere relevante Informationen über das Netzwerk, wie Netzmasken, Router und DNS-Server mitteilt. Diese Informationen werden als DHCP-Lease bezeichnet und sind nur für bestimmte Zeit, die vom Administrator des DHCP-Servers vorgegeben wird, gültig. Dadurch fallen verwaiste IP-Adressen, deren Clients nicht mehr mit dem Netzwerk verbunden sind, automatisch an den Server zurück. DHCP-Clients können sehr viele Informationen von einem DHCP-Server erhalten. Eine ausführliche Liste finden Sie in &man.dhcp-options.5;. Das Gerät bpf ist im GENERIC-Kernel bereits enthalten. Für die Nutzung von DHCP muss also kein angepasster Kernel erzeugt werden. In einer angepassten Kernelkonfigurationsdatei muss das Gerät enthalten sein, damit DHCP ordnungsgemäß funktioniert. Standardmässig läuft die DHCP-Konfiguration bei &os; im Hintergrund oder auch asynchron. Andere Startskripte laufen weiter, während DHCP fertig abgearbeitet wird, was den Systemstart beschleunigt. DHCP im Hintergrund funktioniert gut, wenn der DHCP-Server schnell auf Anfragen der Clients antwortet. Jedoch kann DHCP eine lange Zeit benötigen, um auf manchen Systemen fertig zu werden. Falls Netzwerkdienste gestartet werden, bevor DHCP die Informationen und Netzwerkadressen gesetzt hat, werden diese fehlschlagen. Durch die Verwendung von DHCP im asynchronen Modus wird das Problem verhindert, so dass die Startskripte pausiert werden, bis die DHCP-Konfiguration abgeschlossen ist. Diese Zeile wird in /etc/rc.conf verwendet, um den asynchronen Modus zu aktivieren: ifconfig_fxp0="DHCP" Die Zeile kann bereits vorhanden sein, wenn bei der Installation des Systems DHCP konfiguriert wurde. Ersetzen Sie fxp0 durch die entsprechende Schnittstelle. Die dynamische Konfiguration von Netzwerkkarten wird in beschrieben. Um stattdessen den synchronen Modus zu verwenden, der während des Systemstarts pausiert bis die DHCP-Konfiguration abgeschlossen ist, benutzen Sie SYNCDHCP: ifconfig_fxp0="SYNCDHCP" Es stehen weitere Optionen für den Client zur Verfügung. Suchen Sie in &man.rc.conf.5; nach dhclient, wenn Sie an Einzelheiten interessiert sind. DHCP Konfigurationsdateien Der DHCP-Client verwendet die folgenden Dateien: /etc/dhclient.conf Die Konfigurationsdatei von dhclient. Diese Datei enthält normalerweise nur Kommentare, da die Vorgabewerte zumeist ausreichend sind. Diese Konfigurationsdatei wird in &man.dhclient.conf.5; beschrieben. /sbin/dhclient Weitere Informationen über dieses Kommando finden Sie in &man.dhclient.8;. /sbin/dhclient-script Das &os;-spezifische Konfigurationsskript des DHCP-Clients. Es wird in &man.dhclient-script.8; beschrieben und kann meist unverändert übernommen werden. /var/db/dhclient.leases.interface Der DHCP-Client verfügt über eine Datenbank, die alle derzeit gültigen Leases enthält und als Logdatei erzeugt wird. Diese Datei wird in &man.dhclient.leases.5; beschrieben. Einen <acronym>DHCP</acronym>-Server installieren und einrichten Dieser Abschnitt beschreibt die Einrichtung eines &os;-Systems als DHCP-Server. Dazu wird die DHCP-Implementation von ISC (Internet Systems Consortium) verwendet. Diese Implementation und die Dokumentation können als Port oder Paket net/isc-dhcp43-server installiert werden. DHCP Server DHCP installieren Der Port net/isc-dhcp43-server installiert eine Beispiel-Konfigurationsdatei. Kopieren Sie /usr/local/etc/dhcpd.conf.example nach /usr/local/etc/dhcpd.conf und nehmen Sie die Änderungen an der neuen Datei vor. DHCP dhcpd.conf Diese Konfigurationsdatei umfasst Deklarationen für Subnetze und Rechner, die den DHCP-Cleints zur Verfügung gestellt wird. Die folgenden Zeilen konfigurieren Folgendes: option domain-name "example.org"; option domain-name-servers ns1.example.org; option subnet-mask 255.255.255.0; default-lease-time 600; max-lease-time 72400; ddns-update-style none; subnet 10.254.239.0 netmask 255.255.255.224 { range 10.254.239.10 10.254.239.20; option routers rtr-239-0-1.example.org; } host fantasia { hardware ethernet 08:00:07:26:c0:a5; fixed-address fantasia.fugue.com; } Diese Option beschreibt die Standardsuchdomäne, die den Clients zugewiesen wird. Weitere Informationen finden Sie in &man.resolv.conf.5;. Diese Option legt eine, durch Kommata getrennte Liste von DNS-Servern fest, die von den Clients verwendet werden sollen. Die Server können über den Namen (FQDN) oder die IP-Adresse spezifiziert werden. Die den Clients zugewiesene Subnetzmaske. Die Voreinstellung für die Ablaufzeit des Lease in Sekunden. Ein Client kann diesen Wert in der Konfiguration überschreiben. Die maximale Zeitdauer, für die der Server Leases vergibt. Sollte ein Client eine längere Zeitspanne anfordern, wird dennoch nur der Wert max-lease-time zugewiesen. Die Voreinstellung deaktiviert dynamische DNS-Updates. Bei der Einstellung aktualisiert der DHCP-Server den DNS-Server, wenn ein Lease vergeben oder zurückgezogen wurde. Ändern Sie die Voreinstellung nicht, wenn der Server so konfiguriert wurde, dynamische DNS-Updates zu unterstützen. Diese Zeile erstellt einen Pool der verfügbaren IP-Adressen, die für die Zuweisung der DHCP-Clients reserviert sind. Der Bereich muss für das angegebene Netz oder Subnetz aus der vorherigen Zeile gültig sein. Legt das Standard-Gateway für das Netz oder Subnetz fest, das nach der öffnenden Klammer { gültig ist. Bestimmt die Hardware-MAC-Adresse eines Clients, durch die der DHCP-Server den Client erkennt, der eine Anforderung an ihn stellt. Einem Rechner soll immer die gleiche IP-Adresse zugewiesen werden. Hier ist auch ein Rechnername gültig, da der DHCP-Server den Rechnernamen auflöst, bevor er das Lease zuweist. Die Konfigurationsdatei unterstützt viele weitere Optionen. Lesen Sie &man.dhcpd.conf.5;, die mit dem Server installiert wird, für Details und Beispiele. Nachdem dhcpd.conf konfiguriert ist, aktivieren Sie den DHCP-Server in /etc/rc.conf: dhcpd_enable="YES" dhcpd_ifaces="dc0" Dabei müssen Sie dc0 durch die Gerätedatei (mehrere Gerätedateien müssen durch Leerzeichen getrennt werden) ersetzen, die der DHCP-Server auf Anfragen von DHCP-Clients hin überwachen soll. Starten Sie den Server mit folgenden Befehl: &prompt.root; service isc-dhcpd start Künftige Änderungen an der Konfiguration des Servers erfordern, dass der Dienst dhcpd gestoppt und anschließend mit &man.service.8; gestartet wird. DHCP Konfigurationsdateien /usr/local/sbin/dhcpd Weitere Informationen zu dhcpd finden Sie in &man.dhcpd.8;. /usr/local/etc/dhcpd.conf Die Konfigurationsdatei des Servers muss alle Informationen enthalten, die an die Clients weitergegeben werden soll. Außerdem sind hier Informationen zur Konfiguration des Servers enthalten. Diese Konfigurationsdatei wird in &man.dhcpd.conf.5; beschrieben. /var/db/dhcpd.leases Der DHCP-Server hat eine Datenbank, die alle vergebenen Leases enthält. Diese wird als Logdatei erzeugt. &man.dhcpd.leases.5; enthält eine ausführliche Beschreibung. /usr/local/sbin/dhcrelay Dieser Daemon wird in komplexen Umgebungen verwendet, in denen ein DHCP-Server eine Anfrage eines Clients an einen DHCP-Server in einem separaten Netzwerk weiterleitet. Wenn Sie diese Funktion benötigen, müssen Sie net/isc-dhcp43-relay installieren. Weitere Informationen zu diesem Thema finden Sie in &man.dhcrelay.8;. Domain Name System (<acronym>DNS</acronym>) DNS DNS ist das für die Umwandlung von Rechnernamen in IP-Adressen zuständige Protokoll. Im Internet wird DNS durch ein komplexes System von autoritativen Root-Nameservern, Top Level Domain-Servern (TLD) sowie anderen kleineren Nameservern verwaltet, die individuelle Domaininformationen speichern und untereinander abgleichen. Für einfache DNS-Anfragen wird auf dem lokalen System kein Nameserver benötigt. BIND In &os; 10 wurde Berkeley Internet Name Domain (BIND) aus dem Basissystem entfernt und durch Unbound ersetzt. Unbound ist für die lokale Namensauflösung zuständig. In der Ports-Sammlung ist BIND immer noch als dns/bind99 und dns/bind98 verfügbar und in &os; 9 und älteren Versionen ist BIND im Basissystem enthalten. Die Version in &os; bietet erweiterte Sicherheitsfunktionen, ein neues Dateisystem-Layout und eine automatisierte &man.chroot.8; Konfiguration. BIND wird betreut vom Internet Systems Consortium. Resolver Reverse-DNS Root-Zone Die folgende Tabelle beschreibt einige mit DNS verbundenen Begriffe: <acronym>DNS</acronym>-Begriffe Begriff Bedeutung Forward-DNS Rechnernamen in IP-Adressen umwandeln. Origin (Ursprung) Die in einer bestimmten Zonendatei beschriebene Domäne. named, BIND Gebräuchliche Namen für das unter &os; verwendete BIND-Nameserverpaket. Resolver Ein Systemprozess, durch den ein Rechner Zoneninformationen von einem Nameserver anfordert. Reverse-DNS die Umwandlung von IP-Adressen in Rechnernamen Root-Zone Der Beginn der Internet-Zonenhierarchie. Alle Zonen befinden sich innerhalb der Root-Zone. Dies ist analog zu einem Dateisystem, in dem sich alle Dateien und Verzeichnisse innerhalb des Wurzelverzeichnisses befinden. Zone Eine individuelle Domäne, Unterdomäne, oder ein Teil von DNS, der von der gleichen Autorität verwaltet wird.
Zonen Beispiele Es folgen nun einige Zonenbeispiele: Innerhalb der Dokumentation wird die Root-Zone in der Regel mit . bezeichnet. org. ist eine Top level Domain (TLD) innerhalb der Root-Zone. example.org. ist eine Zone innerhalb der org.-TLD. 1.168.192.in-addr.arpa. ist die Zone mit allen IP-Adressen des Bereichs 192.168.1.*. Wie man an diesen Beispielen erkennen kann, befindet sich der spezifischere Teil eines Rechnernamens auf der linken Seite der Adresse. example.org. beschreibt einen Rechner also genauer als org., während org. genauer als die Root-Zone ist. Jeder Teil des Rechnernamens hat Ähnlichkeiten mit einem Dateisystem, in dem etwa /dev dem Wurzelverzeichnis untergeordnet ist. Gründe für die Verwendung eines Nameservers Es gibt zwei Arten von Nameservern: Autoritative Nameserver sowie zwischenspeichernde (cachende, auch bekannt als auflösende) Nameserver. Ein autoritativer Nameserver ist notwendig, wenn Sie anderen verbindliche DNS-Auskünfte erteilen wollen. eine Domain, beispielsweise example.org, registriert wird, und den zu dieser Domain gehörenden Rechnern IP-Adressen zugewiesen werden müssen. ein IP-Adressblock reverse-DNS-Einträge benötigt, um IP-Adressen in Rechnernamen auflösen zu können. ein Backup-Nameserver (auch Slaveserver genannt) oder ein zweiter Nameserver auf Anfragen antworten soll. Ein cachender Nameserver ist notwendig, weil ein lokaler DNS-Server Daten zwischenspeichern und daher schneller auf Anfragen reagieren kann als ein entfernter Server. Wird nach www.FreeBSD.org gesucht, leitet der Resolver diese Anfrage an den Nameserver des ISPs weiter und nimmt danach das Ergebnis der Abfrage entgegen. Existiert ein lokaler, zwischenspeichernder DNS-Server, muss dieser die Anfrage nur einmal nach außen weitergeben. Für alle weiteren Anfragen ist dies nicht mehr nötig, da diese Information nun lokal gespeichert ist. <acronym>DNS</acronym>-Server Konfiguration in &os; 10.0 und neueren Versionen In &os; 10.0 wurde BIND durch Unbound ersetzt. Unbound ist lediglich ein validierender und cachender Resolver. Wenn ein autoritativer Server benötigt wird, stehen einige in der Ports-Sammlung zur Verfügung. Unbound ist im Basissystem von &os; enthalten. In der Voreinstellung bietet es nur die DNS-Auflösung auf dem lokalen Rechner. Obwohl das im Basissystem enthaltene Unbound konfiguriert werden kann, um Namensauflösung über den lokalen Rechner hinweg bereitzustellen, ist es empfehlenswert für solche Anforderungen Unbound aus der &os; Ports-Sammlung zu installieren. Um Unbound zu aktivieren, fügen Sie folgende Zeile in /etc/rc.conf ein: local_unbound_enable="YES" Alle vorhandenen Nameserver aus /etc/resolv.conf werden als Forwarder in der neuen Unbound-Konfiguration benutzt. Wenn einer der aufgeführten Nameserver kein DNSSEC unterstützt, wird die lokale DNS-Auflösung nicht funktionieren. Testen Sie jeden Server und entfernen Sie die Server, die den Test nicht bestehen. Das folgende Beispiel zeigt einen Trust Tree beziehungsweise einen Fehler für den Nameserver auf 192.168.1.1: &prompt.root; drill -S FreeBSD.org @192.168.1.1 Nachdem jeder Server für DNSSEC konfiguriert ist, starten Sie Unbound: &prompt.root; service local_unbound onestart Dieses Kommando sorgt für die Aktualisierung von /etc/resolv.conf, so dass Abfragen für DNSSEC gesicherte Domains jetzt funktionieren. Führen Sie folgenden Befehl aus, um den DNSSEC Trust Tree für FreeBSD.org zu überprüfen: &prompt.user; drill -S FreeBSD.org ;; Number of trusted keys: 1 ;; Chasing: freebsd.org. A DNSSEC Trust tree: freebsd.org. (A) |---freebsd.org. (DNSKEY keytag: 36786 alg: 8 flags: 256) |---freebsd.org. (DNSKEY keytag: 32659 alg: 8 flags: 257) |---freebsd.org. (DS keytag: 32659 digest type: 2) |---org. (DNSKEY keytag: 49587 alg: 7 flags: 256) |---org. (DNSKEY keytag: 9795 alg: 7 flags: 257) |---org. (DNSKEY keytag: 21366 alg: 7 flags: 257) |---org. (DS keytag: 21366 digest type: 1) | |---. (DNSKEY keytag: 40926 alg: 8 flags: 256) | |---. (DNSKEY keytag: 19036 alg: 8 flags: 257) |---org. (DS keytag: 21366 digest type: 2) |---. (DNSKEY keytag: 40926 alg: 8 flags: 256) |---. (DNSKEY keytag: 19036 alg: 8 flags: 257) ;; Chase successful <acronym>DNS</acronym>-Server Konfiguration in &os; 9.<replaceable>X</replaceable> Unter &os; wird der BIND-Daemon als named bezeichnet. Datei Beschreibung named Der BIND-Daemon. &man.rndc.8; Das Steuerprogramm für named. /etc/namedb Das Verzeichnis, in dem sich die Zoneninformationen für BIND befinden. /etc/namedb/named.conf Die Konfigurationsdatei für named. Je nachdem, wie eine Zone auf dem Server konfiguriert wurde, finden sich die zur Zone gehörendenden Dateien in den Unterverzeichnissen master, slave, oder dynamic des Verzeichnisses /etc/namedb. Diese Dateien enthalten die DNS-Informationen, die der Nameserver für die Beantwortung von Anfragen benötigt. BIND starten BIND Start Da BIND automatisch installiert wird, ist die Konfiguration relativ einfach. In der Voreinstellung wird ein in einer &man.chroot.8;-Umgebung betriebener named-Server zur einfachen Namensauflösung eingerichtet, der nur im lokalen IPv4-Loopback-Adressbereich (127.0.0.1) lauscht. Um den Server manuell zu starten, verwenden Sie den folgenden Befehl: &prompt.root; service named onestart Um den named-Daemon beim Systemstart automatisch zu starten, fügen Sie folgende Zeile in /etc/rc.conf ein: named_enable="YES" /etc/namedb/named.conf bietet zahlreiche Konfigurationsoptionen, die in diesem Dokument nicht alle beschrieben werden können. Weitere Startoptionen von named unter &os; finden Sie in den named_*-Flags in /etc/defaults/rc.conf sowie in &man.rc.conf.5;. Zusätzliche Informationen finden Sie im . Konfigurationsdateien BIND Konfigurationsdateien Die Konfigurationsdateien von named finden sich unter /etc/namedb und müssen in der Regel an Ihre Bedürfnisse angepasst werden. Es sei denn, Sie benötigen nur einen einfachen Resolver. Ein Großteil der Konfigurationsarbeiten erfolgt dabei in diesem Verzeichnis. <filename>/etc/namedb/named.conf</filename> - // $FreeBSD$ + // $FreeBSD$ // // Refer to the named.conf(5) and named(8) man pages, and the documentation // in /usr/share/doc/bind9 for more details. // // If you are going to set up an authoritative server, make sure you // understand the hairy details of how DNS works. Even with // simple mistakes, you can break connectivity for affected parties, // or cause huge amounts of useless Internet traffic. options { // All file and path names are relative to the chroot directory, // if any, and should be fully qualified. directory "/etc/namedb/working"; pid-file "/var/run/named/pid"; dump-file "/var/dump/named_dump.db"; statistics-file "/var/stats/named.stats"; // If named is being used only as a local resolver, this is a safe default. // For named to be accessible to the network, comment this option, specify // the proper IP address, or delete this option. listen-on { 127.0.0.1; }; // If you have IPv6 enabled on this system, uncomment this option for // use as a local resolver. To give access to the network, specify // an IPv6 address, or the keyword "any". // listen-on-v6 { ::1; }; // These zones are already covered by the empty zones listed below. // If you remove the related empty zones below, comment these lines out. disable-empty-zone "255.255.255.255.IN-ADDR.ARPA"; disable-empty-zone "0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.IP6.ARPA"; disable-empty-zone "1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.IP6.ARPA"; // If you've got a DNS server around at your upstream provider, enter // its IP address here, and enable the line below. This will make you // benefit from its cache, thus reduce overall DNS traffic in the Internet. /* forwarders { 127.0.0.1; }; */ // If the 'forwarders' clause is not empty the default is to 'forward first' // which will fall back to sending a query from your local server if the name // servers in 'forwarders' do not have the answer. Alternatively you can // force your name server to never initiate queries of its own by enabling the // following line: // forward only; // If you wish to have forwarding configured automatically based on // the entries in /etc/resolv.conf, uncomment the following line and // set named_auto_forward=yes in /etc/rc.conf. You can also enable // named_auto_forward_only (the effect of which is described above). // include "/etc/namedb/auto_forward.conf"; Um vom Cache Ihres Internetproviders zu profitieren, können hier forwarders aktiviert werden. Normalerweise sucht ein Nameserver das Internet rekursiv ab, bis er die gesuchte Antwort findet. Durch diese Option wird stets der Nameserver des Internetproviders zuerst abgefragt, um von dessen Cache zu profitieren. Wenn es sich um einen schnellen, viel benutzten Nameserver handelt, kann dies zu einer Geschwindigkeitssteigerung führen. 127.0.0.1 funktioniert hier nicht. Ändern Sie diese Adresse in einen Nameserver des Einwahlproviders. /* Modern versions of BIND use a random UDP port for each outgoing query by default in order to dramatically reduce the possibility of cache poisoning. All users are strongly encouraged to utilize this feature, and to configure their firewalls to accommodate it. AS A LAST RESORT in order to get around a restrictive firewall policy you can try enabling the option below. Use of this option will significantly reduce your ability to withstand cache poisoning attacks, and should be avoided if at all possible. Replace NNNNN in the example with a number between 49160 and 65530. */ // query-source address * port NNNNN; }; // If you enable a local name server, don't forget to enter 127.0.0.1 // first in your /etc/resolv.conf so this server will be queried. // Also, make sure to enable it in /etc/rc.conf. // The traditional root hints mechanism. Use this, OR the slave zones below. zone "." { type hint; file "/etc/namedb/named.root"; }; /* Slaving the following zones from the root name servers has some significant advantages: 1. Faster local resolution for your users 2. No spurious traffic will be sent from your network to the roots 3. Greater resilience to any potential root server failure/DDoS On the other hand, this method requires more monitoring than the hints file to be sure that an unexpected failure mode has not incapacitated your server. Name servers that are serving a lot of clients will benefit more from this approach than individual hosts. Use with caution. To use this mechanism, uncomment the entries below, and comment the hint zone above. As documented at http://dns.icann.org/services/axfr/ these zones: "." (the root), ARPA, IN-ADDR.ARPA, IP6.ARPA, and ROOT-SERVERS.NET are availble for AXFR from these servers on IPv4 and IPv6: xfr.lax.dns.icann.org, xfr.cjr.dns.icann.org */ /* zone "." { type slave; file "/etc/namedb/slave/root.slave"; masters { 192.5.5.241; // F.ROOT-SERVERS.NET. }; notify no; }; zone "arpa" { type slave; file "/etc/namedb/slave/arpa.slave"; masters { 192.5.5.241; // F.ROOT-SERVERS.NET. }; notify no; }; */ /* Serving the following zones locally will prevent any queries for these zones leaving your network and going to the root name servers. This has two significant advantages: 1. Faster local resolution for your users 2. No spurious traffic will be sent from your network to the roots */ // RFCs 1912 and 5735 (and BCP 32 for localhost) zone "localhost" { type master; file "/etc/namedb/master/localhost-forward.db"; }; zone "127.in-addr.arpa" { type master; file "/etc/namedb/master/localhost-reverse.db"; }; zone "255.in-addr.arpa" { type master; file "/etc/namedb/master/empty.db"; }; // RFC 1912-style zone for IPv6 localhost address zone "0.ip6.arpa" { type master; file "/etc/namedb/master/localhost-reverse.db"; }; // "This" Network (RFCs 1912 and 5735) zone "0.in-addr.arpa" { type master; file "/etc/namedb/master/empty.db"; }; // Private Use Networks (RFCs 1918 and 5735) zone "10.in-addr.arpa" { type master; file "/etc/namedb/master/empty.db"; }; zone "16.172.in-addr.arpa" { type master; file "/etc/namedb/master/empty.db"; }; zone "17.172.in-addr.arpa" { type master; file "/etc/namedb/master/empty.db"; }; zone "18.172.in-addr.arpa" { type master; file "/etc/namedb/master/empty.db"; }; zone "19.172.in-addr.arpa" { type master; file "/etc/namedb/master/empty.db"; }; zone "20.172.in-addr.arpa" { type master; file "/etc/namedb/master/empty.db"; }; zone "21.172.in-addr.arpa" { type master; file "/etc/namedb/master/empty.db"; }; zone "22.172.in-addr.arpa" { type master; file "/etc/namedb/master/empty.db"; }; zone "23.172.in-addr.arpa" { type master; file "/etc/namedb/master/empty.db"; }; zone "24.172.in-addr.arpa" { type master; file "/etc/namedb/master/empty.db"; }; zone "25.172.in-addr.arpa" { type master; file "/etc/namedb/master/empty.db"; }; zone "26.172.in-addr.arpa" { type master; file "/etc/namedb/master/empty.db"; }; zone "27.172.in-addr.arpa" { type master; file "/etc/namedb/master/empty.db"; }; zone "28.172.in-addr.arpa" { type master; file "/etc/namedb/master/empty.db"; }; zone "29.172.in-addr.arpa" { type master; file "/etc/namedb/master/empty.db"; }; zone "30.172.in-addr.arpa" { type master; file "/etc/namedb/master/empty.db"; }; zone "31.172.in-addr.arpa" { type master; file "/etc/namedb/master/empty.db"; }; zone "168.192.in-addr.arpa" { type master; file "/etc/namedb/master/empty.db"; }; // Link-local/APIPA (RFCs 3927 and 5735) zone "254.169.in-addr.arpa" { type master; file "/etc/namedb/master/empty.db"; }; // IETF protocol assignments (RFCs 5735 and 5736) zone "0.0.192.in-addr.arpa" { type master; file "/etc/namedb/master/empty.db"; }; // TEST-NET-[1-3] for Documentation (RFCs 5735 and 5737) zone "2.0.192.in-addr.arpa" { type master; file "/etc/namedb/master/empty.db"; }; zone "100.51.198.in-addr.arpa" { type master; file "/etc/namedb/master/empty.db"; }; zone "113.0.203.in-addr.arpa" { type master; file "/etc/namedb/master/empty.db"; }; // IPv6 Range for Documentation (RFC 3849) zone "8.b.d.0.1.0.0.2.ip6.arpa" { type master; file "/etc/namedb/master/empty.db"; }; // Domain Names for Documentation and Testing (BCP 32) zone "test" { type master; file "/etc/namedb/master/empty.db"; }; zone "example" { type master; file "/etc/namedb/master/empty.db"; }; zone "invalid" { type master; file "/etc/namedb/master/empty.db"; }; zone "example.com" { type master; file "/etc/namedb/master/empty.db"; }; zone "example.net" { type master; file "/etc/namedb/master/empty.db"; }; zone "example.org" { type master; file "/etc/namedb/master/empty.db"; }; // Router Benchmark Testing (RFCs 2544 and 5735) zone "18.198.in-addr.arpa" { type master; file "/etc/namedb/master/empty.db"; }; zone "19.198.in-addr.arpa" { type master; file "/etc/namedb/master/empty.db"; }; // IANA Reserved - Old Class E Space (RFC 5735) zone "240.in-addr.arpa" { type master; file "/etc/namedb/master/empty.db"; }; zone "241.in-addr.arpa" { type master; file "/etc/namedb/master/empty.db"; }; zone "242.in-addr.arpa" { type master; file "/etc/namedb/master/empty.db"; }; zone "243.in-addr.arpa" { type master; file "/etc/namedb/master/empty.db"; }; zone "244.in-addr.arpa" { type master; file "/etc/namedb/master/empty.db"; }; zone "245.in-addr.arpa" { type master; file "/etc/namedb/master/empty.db"; }; zone "246.in-addr.arpa" { type master; file "/etc/namedb/master/empty.db"; }; zone "247.in-addr.arpa" { type master; file "/etc/namedb/master/empty.db"; }; zone "248.in-addr.arpa" { type master; file "/etc/namedb/master/empty.db"; }; zone "249.in-addr.arpa" { type master; file "/etc/namedb/master/empty.db"; }; zone "250.in-addr.arpa" { type master; file "/etc/namedb/master/empty.db"; }; zone "251.in-addr.arpa" { type master; file "/etc/namedb/master/empty.db"; }; zone "252.in-addr.arpa" { type master; file "/etc/namedb/master/empty.db"; }; zone "253.in-addr.arpa" { type master; file "/etc/namedb/master/empty.db"; }; zone "254.in-addr.arpa" { type master; file "/etc/namedb/master/empty.db"; }; // IPv6 Unassigned Addresses (RFC 4291) zone "1.ip6.arpa" { type master; file "/etc/namedb/master/empty.db"; }; zone "3.ip6.arpa" { type master; file "/etc/namedb/master/empty.db"; }; zone "4.ip6.arpa" { type master; file "/etc/namedb/master/empty.db"; }; zone "5.ip6.arpa" { type master; file "/etc/namedb/master/empty.db"; }; zone "6.ip6.arpa" { type master; file "/etc/namedb/master/empty.db"; }; zone "7.ip6.arpa" { type master; file "/etc/namedb/master/empty.db"; }; zone "8.ip6.arpa" { type master; file "/etc/namedb/master/empty.db"; }; zone "9.ip6.arpa" { type master; file "/etc/namedb/master/empty.db"; }; zone "a.ip6.arpa" { type master; file "/etc/namedb/master/empty.db"; }; zone "b.ip6.arpa" { type master; file "/etc/namedb/master/empty.db"; }; zone "c.ip6.arpa" { type master; file "/etc/namedb/master/empty.db"; }; zone "d.ip6.arpa" { type master; file "/etc/namedb/master/empty.db"; }; zone "e.ip6.arpa" { type master; file "/etc/namedb/master/empty.db"; }; zone "0.f.ip6.arpa" { type master; file "/etc/namedb/master/empty.db"; }; zone "1.f.ip6.arpa" { type master; file "/etc/namedb/master/empty.db"; }; zone "2.f.ip6.arpa" { type master; file "/etc/namedb/master/empty.db"; }; zone "3.f.ip6.arpa" { type master; file "/etc/namedb/master/empty.db"; }; zone "4.f.ip6.arpa" { type master; file "/etc/namedb/master/empty.db"; }; zone "5.f.ip6.arpa" { type master; file "/etc/namedb/master/empty.db"; }; zone "6.f.ip6.arpa" { type master; file "/etc/namedb/master/empty.db"; }; zone "7.f.ip6.arpa" { type master; file "/etc/namedb/master/empty.db"; }; zone "8.f.ip6.arpa" { type master; file "/etc/namedb/master/empty.db"; }; zone "9.f.ip6.arpa" { type master; file "/etc/namedb/master/empty.db"; }; zone "a.f.ip6.arpa" { type master; file "/etc/namedb/master/empty.db"; }; zone "b.f.ip6.arpa" { type master; file "/etc/namedb/master/empty.db"; }; zone "0.e.f.ip6.arpa" { type master; file "/etc/namedb/master/empty.db"; }; zone "1.e.f.ip6.arpa" { type master; file "/etc/namedb/master/empty.db"; }; zone "2.e.f.ip6.arpa" { type master; file "/etc/namedb/master/empty.db"; }; zone "3.e.f.ip6.arpa" { type master; file "/etc/namedb/master/empty.db"; }; zone "4.e.f.ip6.arpa" { type master; file "/etc/namedb/master/empty.db"; }; zone "5.e.f.ip6.arpa" { type master; file "/etc/namedb/master/empty.db"; }; zone "6.e.f.ip6.arpa" { type master; file "/etc/namedb/master/empty.db"; }; zone "7.e.f.ip6.arpa" { type master; file "/etc/namedb/master/empty.db"; }; // IPv6 ULA (RFC 4193) zone "c.f.ip6.arpa" { type master; file "/etc/namedb/master/empty.db"; }; zone "d.f.ip6.arpa" { type master; file "/etc/namedb/master/empty.db"; }; // IPv6 Link Local (RFC 4291) zone "8.e.f.ip6.arpa" { type master; file "/etc/namedb/master/empty.db"; }; zone "9.e.f.ip6.arpa" { type master; file "/etc/namedb/master/empty.db"; }; zone "a.e.f.ip6.arpa" { type master; file "/etc/namedb/master/empty.db"; }; zone "b.e.f.ip6.arpa" { type master; file "/etc/namedb/master/empty.db"; }; // IPv6 Deprecated Site-Local Addresses (RFC 3879) zone "c.e.f.ip6.arpa" { type master; file "/etc/namedb/master/empty.db"; }; zone "d.e.f.ip6.arpa" { type master; file "/etc/namedb/master/empty.db"; }; zone "e.e.f.ip6.arpa" { type master; file "/etc/namedb/master/empty.db"; }; zone "f.e.f.ip6.arpa" { type master; file "/etc/namedb/master/empty.db"; }; // IP6.INT is Deprecated (RFC 4159) zone "ip6.int" { type master; file "/etc/namedb/master/empty.db"; }; // NB: Do not use the IP addresses below, they are faked, and only // serve demonstration/documentation purposes! // // Example slave zone config entries. It can be convenient to become // a slave at least for the zone your own domain is in. Ask // your network administrator for the IP address of the responsible // master name server. // // Do not forget to include the reverse lookup zone! // This is named after the first bytes of the IP address, in reverse // order, with ".IN-ADDR.ARPA" appended, or ".IP6.ARPA" for IPv6. // // Before starting to set up a master zone, make sure you fully // understand how DNS and BIND work. There are sometimes // non-obvious pitfalls. Setting up a slave zone is usually simpler. // // NB: Don't blindly enable the examples below. :-) Use actual names // and addresses instead. /* An example dynamic zone key "exampleorgkey" { algorithm hmac-md5; secret "sf87HJqjkqh8ac87a02lla=="; }; zone "example.org" { type master; allow-update { key "exampleorgkey"; }; file "/etc/named/dynamic/example.org"; }; */ /* Example of a slave reverse zone zone "1.168.192.in-addr.arpa" { type slave; file "/etc/namedb/slave/1.168.192.in-addr.arpa"; masters { 192.168.1.1; }; }; */ Hierbei handelt es sich um Slave-Einträge für eine Reverse- und Forward-DNS-Zone, die in der Datei named.conf definiert sind. Für jede neue Zone muss ein zusätzlicher Eintrag in named.conf erstellt werden. Ein einfacher Eintrag für eine Zone example.org könnte beispielsweise so aussehen: zone "example.org" { type master; file "master/example.org"; }; Die Option legt fest, dass es sich um eine Master-Zone handelt, deren Zoneninformationen sich in der Datei /etc/namedb/master/example.org befinden. Diese Datei wird durch die Option festgelegt. zone "example.org" { type slave; file "slave/example.org"; }; Hier handelt es sich um einen Slaveserver, der seine Informationen vom Masterserver der betreffenden Zone bezieht und diese in der angegebenen Datei speichert. Wenn der Masterserver nicht erreichbar ist, verfügt der Slaveserver über die transferierten Zoneninformationen und kann diese an andere Rechner weitergeben. Zonendateien BIND Zonendatei Die in der Datei /etc/namedb/master/example.org definierte Zonendatei für example.org könnte etwa so aussehen: $TTL 3600 ; 1 hour default TTL example.org. IN SOA ns1.example.org. admin.example.org. ( 2006051501 ; Serial 10800 ; Refresh 3600 ; Retry 604800 ; Expire 300 ; Negative Response TTL ) ; DNS Servers IN NS ns1.example.org. IN NS ns2.example.org. ; MX Records IN MX 10 mx.example.org. IN MX 20 mail.example.org. IN A 192.168.1.1 ; Machine Names localhost IN A 127.0.0.1 ns1 IN A 192.168.1.2 ns2 IN A 192.168.1.3 mx IN A 192.168.1.4 mail IN A 192.168.1.5 ; Aliases www IN CNAME example.org. Beachten Sie, dass jeder mit einem . endende Rechnername ein exakter Rechnername ist, während sich alles ohne einen abschließenden . relativ auf den Ursprung bezieht. ns1 steht daher beispielsweise für ns1.example.org.. Eine Zonendatei hat folgenden Aufbau: recordname IN recordtype value DNS Einträge Die am häufigsten verwendeten DNS-Einträge sind: SOA Start der Zonenautorität NS Ein autoritativer Nameserver A Eine Rechneradresse CNAME Der kanonische Name eines Alias MX Mail Exchanger PTR Ein (bei Reverse-DNS verwendeter) Domain Name Pointer example.org. IN SOA ns1.example.org. admin.example.org. ( 2006051501 ; Serial 10800 ; Refresh after 3 hours 3600 ; Retry after 1 hour 604800 ; Expire after 1 week 300 ) ; Negative Response TTL example.org. Der Name der Domäne und damit der Ursprung dieser Zonendatei. ns1.example.org. Der primäre/autoritative Nameserver dieser Zone. admin.example.org. Die für diese Zone verantwortliche Person. Das Zeichen @ wird dabei ersetzt (admin@example.org wird also zu admin.example.org). 2006051501 Die Seriennummer der Datei. Sie muss stets inkrementiert werden, wenn die Zonendatei geändert wird. Viele Administratoren bevorzugen ein JJJJMMTTRR-Format, um die Seriennummer festzulegen. 2006051501 steht also für den 15.05.2006, die beiden letzten Stellen für die erste Modifikation der Zonendatei an diesem Tag. Die Seriennummer ist von großer Bedeutung, da Slaveserver daran eine aktualisierte Zonendatei erkennen können. IN NS ns1.example.org. Ein NS-Eintrag. Jeder Nameserver, der für eine Zone verantwortlich ist, muss über einen solchen Eintrag verfügen. localhost IN A 127.0.0.1 ns1 IN A 192.168.1.2 ns2 IN A 192.168.1.3 mx IN A 192.168.1.4 mail IN A 192.168.1.5 Der Eintrag A bezieht sich auf Rechnernamen. ns1.example.org würde also zu 192.168.1.2 aufgelöst werden. IN A 192.168.1.1 Diese Zeile weist die IP-Adresse 192.168.1.1 dem aktuellen Ursprung, in diesem Fall also example.org, zu. www IN CNAME @ Der Eintrag für den kanonischen Namen wird dazu verwendet, Aliase für einen Rechner zu vergeben. Im Beispiel ist www ein Alias für den Master-Rechner, dessen Name dem Domainnamen example.org (oder 192.168.1.1) entspricht. CNAMEs können daher niemals gleichzeitig mit einem anderen Eintrag für denselben Hostname eingerichtet werden. MX-Eintrag IN MX 10 mail.example.org. Der MX-Eintrag legt fest, welcher Mailserver für eintreffende Mails der Zone verantwortlich ist. mail.example.org ist der Rechnername des Mailservers, der eine Priorität von 10 hat. Es können auch mehrere Mailserver mit verschiedener Priorität (10, 20, ...) vorhanden sein. Ein Mailserver, der eine Mail an example.org verschicken will, verwendet zuerst den MX mit der höchsten Priorität (das heißt den mit der niedrigsten Prioritätsnummer), danach den mit der nächsthöheren Priorität. Und dies solange, bis die E-Mail zugestellt werden kann. Für (bei Reverse-DNS verwendete) in-addr.arpa-Zonendateien wird das gleiche Format verwendet. Der einzige Unterschied besteht in der Verwendung der Option PTR an Stelle der Optionen A und CNAME. $TTL 3600 1.168.192.in-addr.arpa. IN SOA ns1.example.org. admin.example.org. ( 2006051501 ; Serial 10800 ; Refresh 3600 ; Retry 604800 ; Expire 300 ) ; Negative Response TTL IN NS ns1.example.org. IN NS ns2.example.org. 1 IN PTR example.org. 2 IN PTR ns1.example.org. 3 IN PTR ns2.example.org. 4 IN PTR mx.example.org. 5 IN PTR mail.example.org. Durch diese Datei werden den Rechnernamen der fiktiven Domäne IP-Adressen zugewiesen. Beachten Sie bitte, dass es sich bei allen Namen auf der rechten Seite eines PTR-Eintrags um absolute (fully qualified) Domainnamen handeln muss, die mit . enden. Zwischenspeichernde (cachende) Nameserver BIND Zwischenspeichernde Nameserver Ein cachender Nameserver hat primär die Aufgabe, rekursive Abfragen aufzulösen. Er stellt lediglich eigene Anfragen und speichert deren Ergebnisse ab. <acronym role="Doman Name Security Extensions"> DNSSEC</acronym> BIND DNS security extensions Domain Name System Security Extensions, oder kurz DNSSEC, ist eine Sammlung von Spezifikationen, um auflösende Nameserver von gefälschten DNS-Daten, wie beispielsweise vorgetäuschte DNS-Einträge, zu schützen. Durch die Verwendung von digitalen Signaturen kann ein Resolver die Integrität des Eintrages überprüfen. Wichtig dabei ist, dass DNSSEC nur die Integrität über digital signierte Resource Records (RR) bereitstellt. Weder wird die Vertraulichkeit noch der Schutz vor falschen Annahmen des Endbenutzers sichergestellt. Dies bedeutet, dass es Benutzer nicht davor schützen kann, zu example.net anstatt zu example.com zu gelangen. Das einzige, was DNSSEC tut, ist die Authentifizierung, dass die Daten während der Übertragung nicht verändert wurden. Die Sicherheit von DNS ist ein wichtiger Schritt in der generellen Absicherung des Internets. Für weitere, tiefergehende Details über die Funktionsweise von DNSSEC sind die dazugehörigen RFCs ein guter Einstieg in die Thematik. Sehen Sie sich dazu die Liste in an. Der folgende Abschnitt wird zeigen, wie man DNSSEC für einen autoritativen DNS-Server und einen rekursiven (oder cachenden) DNS-Server, der jeweils BIND 9 verwenden, einrichten kann. Obwohl alle Versionen von BIND 9 DNSSEC unterstützen, ist es notwendig, mindestens die Version 9.6.2 zu verwenden, um in der Lage zu sein, die signierten Root-Zonen zu benutzen, wenn DNS-Abfragen geprüft werden. Der Grund dafür ist, dass früheren Versionen die Algorithmen fehlen, um die Überprüfung des Root-Zonenschlüssels zu aktivieren. Es wird dringend empfohlen, die letzte Version von BIND 9.7 oder höher einzusetzen, um von den Vorteilen der automatischen Schlüsselaktualisierung des Root-Zonenschlüssels Gebrauch zu machen, genauso wie andere Eigenschaften, um automatisch Zonen signieren zu lassen und Signaturen aktuell zu halten. Unterschiede zwischen den Versionen 9.6.2 und 9.7 und höher werden an den betreffenden Stellen angesprochen. Rekursive <acronym>DNS</acronym>-Server Konfiguration Die Aktivierung der DNSSEC-Überprüfung von Anfragen, die von einem rekursiven DNS-Server stammen, benötigt ein paar Änderungen in der named.conf. Bevor man jedoch diese Änderungen durchführt, muss der Root-Zonenschlüssel oder Vertrauensanker erworben werden. Momentan ist der Root-Zonenschlüssel nicht in einem Dateiformat verfügbar, dass von BIND benutzt werden kann, so dass dieser manuell in das richtige Format konvertiert werden muss. Der Schlüssel selbst kann durch Abfrage an die Root-Zone erhalten werden, indem man dazu dig verwendet. Durch Aufruf von: &prompt.user; dig +multi +noall +answer DNSKEY . > root.dnskey wird der Schlüssel in root.dnskey abgelegt. Der Inhalt sollte so ähnlich wie folgt aussehen: . 93910 IN DNSKEY 257 3 8 ( AwEAAagAIKlVZrpC6Ia7gEzahOR+9W29euxhJhVVLOyQ bSEW0O8gcCjFFVQUTf6v58fLjwBd0YI0EzrAcQqBGCzh /RStIoO8g0NfnfL2MTJRkxoXbfDaUeVPQuYEhg37NZWA JQ9VnMVDxP/VHL496M/QZxkjf5/Efucp2gaDX6RS6CXp oY68LsvPVjR0ZSwzz1apAzvN9dlzEheX7ICJBBtuA6G3 LQpzW5hOA2hzCTMjJPJ8LbqF6dsV6DoBQzgul0sGIcGO Yl7OyQdXfZ57relSQageu+ipAdTTJ25AsRTAoub8ONGc LmqrAmRLKBP1dfwhYB4N7knNnulqQxA+Uk1ihz0= ) ; key id = 19036 . 93910 IN DNSKEY 256 3 8 ( AwEAAcaGQEA+OJmOzfzVfoYN249JId7gx+OZMbxy69Hf UyuGBbRN0+HuTOpBxxBCkNOL+EJB9qJxt+0FEY6ZUVjE g58sRr4ZQ6Iu6b1xTBKgc193zUARk4mmQ/PPGxn7Cn5V EGJ/1h6dNaiXuRHwR+7oWh7DnzkIJChcTqlFrXDW3tjt ) ; key id = 34525 Seien Sie nicht alarmiert, wenn der von Ihnen bezogene Schlüssel anders als in diesem Beispiel aussieht. Diese könnten sich in der Zwischenzeit geändert haben. In dieser Ausgabe sind eigentlich zwei Schlüssel enthalten. Der erste Schüssel mit dem Wert 257 nach dem DNSKEY-Eintrag ist derjenige, der benötigt wird. Der Wert zeigt an, dass es sich um einen sicheren Einstiegspunkt (SEP), gemein auch als Schlüsselsignierungsschlüssel (KSK) bekannt, handelt. Der zweite Schüssel mit dem Wert 256 ist der untergeordnete Schlüssel, im allgemeinen auch als Zonen-Signaturschlüssel (ZSK) bezeichnet. Weitere Schlüsselarten werden später in erläutert. Nun muss der Schlüssel verifiziert und so formatiert werden, dass BIND diesen verwenden kann. Um den Schlüssel zu verifizieren, erzeugen Sie einen DS RR-Satz. Erstellen Sie eine Datei, welche die RRs enthält, mittels: &prompt.user; dnssec-dsfromkey -f root.dnskey . > root.ds Diese Einträge verwenden SHA-1 sowie SHA-256 und sollten ähnlich zu folgendem Beispiel aussehen, in dem der längere, SHA-256, benutzt wird. . IN DS 19036 8 1 B256BD09DC8DD59F0E0F0D8541B8328DD986DF6E . IN DS 19036 8 2 49AAC11D7B6F6446702E54A1607371607A1A41855200FD2CE1CDDE32F24E8FB5 Der SHA-256 RR kann nun mit dem Abriss in https://data.iana.org/root-anchors/root-anchors.xml verglichen werden. Um absolut sicher zu sein, dass der Schlüssel nicht zusammen mit den XML-Daten verändert wurde, sollte die Datei mit einer passenden PGP-Signatur überprüft werden. Als nächstes muss der Schlüssel in das passende Format gebracht werden. Dies unterscheidet sich ein bisschen von den BIND Versionen 9.6.2 und 9.7 und höhere. In Version 9.7 wurde die Ünterstützung zur automatischen Verfolgung und notwendigen Aktualisierung von Änderungen am Schlüssel eingebaut. Dies wird durch den Einsatz von managed-keys erreicht, wie in dem Beispiel unten gezeigt ist. Wenn die ältere Version eingesetzt wird, kann der Schlüssel durch eine trusted-keys-Anweisung eingebaut werden und die Aktualisierung muss händisch erfolgen. In BIND 9.6.2 sollte das Format folgendermaßen aussehen: trusted-keys { "." 257 3 8 "AwEAAagAIKlVZrpC6Ia7gEzahOR+9W29euxhJhVVLOyQbSEW0O8gcCjF FVQUTf6v58fLjwBd0YI0EzrAcQqBGCzh/RStIoO8g0NfnfL2MTJRkxoX bfDaUeVPQuYEhg37NZWAJQ9VnMVDxP/VHL496M/QZxkjf5/Efucp2gaD X6RS6CXpoY68LsvPVjR0ZSwzz1apAzvN9dlzEheX7ICJBBtuA6G3LQpz W5hOA2hzCTMjJPJ8LbqF6dsV6DoBQzgul0sGIcGOYl7OyQdXfZ57relS Qageu+ipAdTTJ25AsRTAoub8ONGcLmqrAmRLKBP1dfwhYB4N7knNnulq QxA+Uk1ihz0="; }; In 9.7 wird das Format stattdessen wie folgt aussehen: managed-keys { "." initial-key 257 3 8 "AwEAAagAIKlVZrpC6Ia7gEzahOR+9W29euxhJhVVLOyQbSEW0O8gcCjF FVQUTf6v58fLjwBd0YI0EzrAcQqBGCzh/RStIoO8g0NfnfL2MTJRkxoX bfDaUeVPQuYEhg37NZWAJQ9VnMVDxP/VHL496M/QZxkjf5/Efucp2gaD X6RS6CXpoY68LsvPVjR0ZSwzz1apAzvN9dlzEheX7ICJBBtuA6G3LQpz W5hOA2hzCTMjJPJ8LbqF6dsV6DoBQzgul0sGIcGOYl7OyQdXfZ57relS Qageu+ipAdTTJ25AsRTAoub8ONGcLmqrAmRLKBP1dfwhYB4N7knNnulq QxA+Uk1ihz0="; }; Der Root-Schlüssel kann nun zu named.conf hinzugefügt werden, entweder direkt oder durch Inkludierung der Datei, die den Schlüssel enthält. Nachdem diese Schritte absolviert sind, muss BIND konfiguriert werden, um DNSSEC-Validierung für Anfragen durchzuführen, indem named.conf bearbeitet und die folgende options-Direktive hinzugefügt wird: dnssec-enable yes; dnssec-validation yes; Um zu prüfen, dass es tatsächlich funktioniert, benutzen Sie dig, um eine Anfrage zu einer signierten Zone durch den Resolver, der gerade konfiguriert wurde, zu stellen. Eine erfolgreiche Antwort wird den AD-Eintrag aufweisen, um anzudeuten, dass die Daten authentisiert sind. Eine Anfrage wie: &prompt.user; dig @resolver +dnssec se ds sollte den DS RR für die .se-Zone zurückgeben. In dem Abschnitt flags: sollte der AD-Eintrag gesetzt sein, wie im folgenden zu sehen ist: ... ;; flags: qr rd ra ad; QUERY: 1, ANSWER: 3, AUTHORITY: 0, ADDITIONAL: 1 ... Der Resolver ist nun in der Lage, Anfragen ans DNS zu authentisieren. Autoritative <acronym>DNS</acronym>-Server Konfiguration Um einen autoritativen Nameserver dazu zu bringen, als eine DNSSEC-signierte Zone zu fungieren, ist ein wenig mehr Aufwand nötig. Eine Zone ist durch kryptographische Schlüssel signiert, die erzeugt werden müssen. Es ist möglich, nur einen Schlüssel dazu zu verwenden. Die vorgeschlagene Methode ist jedoch, einen starken, gut geschützten Schlüsselsignierungsschlüssel (KSK) einzusetzen, der nicht oft gewechselt wird und einen Zonensignierungsschlüssel (ZSK), der öfter ausgewechselt wird. Informationen zu vorgeschlagenen Einsatzszenarien können in RFC 4641: DNSSEC Operational Practices nachgelesen werden. Einsatzszenarien, welche die Root-Zone betreffen, finden Sie in DNSSEC Practice Statement for the Root Zone KSK operator sowie DNSSEC Practice Statement for the Root Zone ZSK operator. Der KSK wird dazu verwendet, um eine Kette von Autorität für die Daten, die diese Validierung benötigen, zu erschaffen und wird als solche auch als sicherer Einstiegspunkt (SEP)-Schlüssel bezeichnet. Ein Nachrichtenabriss dieses Schlüssels, der auch Delegation Signer (DS)-Eintrag genannt wird, muss in der Elternzone veröffentlicht werden, um die Vertrauenskette herzustellen. Wie dies erreicht wird, hängt von dem Besitzer der Elternzone ab. Der ZSK wird verwendet, um die Zone zu signieren und muss nur dort öffentlich zugänglich gemacht werden. Um DNSSEC für die example.com-Zone, welche in den vorherigen Beispielen verwendet wird, zu aktivieren, muss als erster Schritt dnssec-keygen benutzt werden, um das KSK- und ZSK-Schlüsselpaar zu generieren. Dieses Schlüsselpaar kann unterschiedliche kryptographische Algorithmen nutzen. Es wird empfohlen, RSA/SHA256 für die Schlüssel zu nutzen. Eine Schlüssellänge von 2048 Bits sollte genügen. Um den KSK für example.com zu generieren, geben Sie: &prompt.user; dnssec-keygen -f KSK -a RSASHA256 -b 2048 -n ZONE example.com ein und um den ZSK zu erzeugen, setzen Sie folgenden Befehl ab: &prompt.user; dnssec-keygen -a RSASHA256 -b 2048 -n ZONE example.com dnssec-keygen gibt zwei Dateien aus, den öffentlichen und den privaten Schlüssel und zwar in Dateinamen, die ähnlich lauten wie Kexample.com.+005+nnnnn.key (öffentlich) und Kexample.com.+005+nnnnn.private (privat). Der nnnnn-Teil des Dateinamens ist eine fünfstellige Schlüsselkennung. Passen Sie genau auf, welche Kennung zu welchem Schlüssel gehört. Das ist besonders wichtig, wenn mehrere Schlüssel in einer Zone vorliegen. Es ist auch möglich, die Schlüssel umzubenennen. Für jede KSK-Datei tun Sie folgendes: &prompt.user; mv Kexample.com.+005+nnnnn.key Kexample.com.+005+nnnnn.KSK.key &prompt.user; mv Kexample.com.+005+nnnnn.private Kexample.com.+005+nnnnn.KSK.private Für die ZSK-Dateien ersetzen Sie KSK für ZSK wenn nötig. Die Dateien können nun in der Zonendatei inkludiert werden, indem die $include Anweisung verwendet wird. Es sollte folgendermaßen aussehen: $include Kexample.com.+005+nnnnn.KSK.key ; KSK $include Kexample.com.+005+nnnnn.ZSK.key ; ZSK Schliesslich signieren Sie die Zone und weisen BIND an, die signierte Zonendatei zu benutzen. Um eine Zone zu signieren, wird dnssec-signzone eingesetzt. Der Befehl, um eine Zone example.com zu signieren, die in example.com.db liegt, sollte wie folgt aussehen: &prompt.user; dnssec-signzone -o example.com -k Kexample.com.+005+nnnnn.KSK example.com.db Kexample.com.+005+nnnnn.ZSK.key Der Schlüssel, welcher mit dem Argument übergeben wird, ist der KSK und die andere Schlüsseldatei ist der ZSK, welcher für die Signatur benutzt werden soll. Es ist möglich, mehr als einen KSK und ZSK anzugeben, was das Ergebnis zur Folge hat, dass die Zone mit allen übergebenen Schlüsseln signiert wird. Dies kann dann benötigt werden, um Zonendaten mit mehr als einem Algorithmus zur Signierung zu verwenden. Die Ausgabe von dnssec-signzone ist eine Zonendatei mit allen signierten RRs. Diese Ausgabe wird in einer Datei mit der Endung .signed abgelegt, wie beispielsweise example.com.db.signed. Die DS-Einträge werden ebenfalls in eine separate Datei dsset-example.com geschrieben. Um diese signierte Zone zu verwenden, ändern Sie die Zonendirektive in named.conf, so dass example.com.db.signed benutzt wird. Standardmässig sind die Signaturen nur 30 Tage gültig, was bedeutet, dass die Zone in etwa 15 Tagen erneut signiert werden muss, um sicher zu stellen, dass Resolver keine Einträge mit veralteten Signaturen zwischenspeichern. Es ist möglich, ein Skript und einen cron-Job zu schreiben, um dies zu erledigen. Lesen Sie dazu die relevanten Anleitungen, um Details zu erfahren. Stellen Sie sicher, dass die privaten Schlüssel vertraulich bleiben, genau wie mit allen anderen kryptographischen Schlüsseln auch. Wenn ein Schlüssel geändert wird, ist es gute Praxis den neuen Schlüssel in die Zone zu inkludieren, noch während der alte Schlüssel noch zum signieren eingesetzt wird, um dann auf den neuen Schlüssel zum signieren zu wechseln. Nachdem diese Schritte erfolgt sind, kann der alte Schlüssel aus der Zone entfernt werden. Wenn das nicht geschieht, können DNS-Daten für einige Zeit nicht verfügbar sein, bis der neue Schlüssel durch die DNS-Hierarchie propagiert wurde. Für weitere Informationen bezüglich Schlüsselübergabe und andere DNSSEC-Einsatzszenarien lesen Sie RFC 4641: DNSSEC Operational practices. Automatisierung mittels <acronym>BIND</acronym> 9.7 oder höher Beginnend mit der Version 9.7 von BIND wurde eine neue Eigenschaft vorgestellt, die Smart Signing genannt wird. Diese zielt darauf ab, das Schlüsselmanagement und den Signierungsprozess einfacher zu gestalten und zu automatisieren. Durch ablegen der Schlüssel in ein Verzeichnis, genannt key repository und die Verwendung der neuen Option auto-dnssec, ist es möglich eine dynamische Zone zu erzeugen, welche dann bei Bedarf erneut signiert wird. Um diese Zone zu aktualisieren, benutzen Sie nsupdate mit der neuen Option . Es hat also rndc die Fähigkeit gewonnen, Zonen mit Schlüsseln im Key Repository zu verwenden, indem die Option eingesetzt wird. Um BIND anzuweisen, diese automatische Signierung und Zonenaktualisierung für example.com zu nutzen, fügen Sie die folgenden Zeilen in named.conf hinzu: zone example.com { type master; key-directory "/etc/named/keys"; update-policy local; auto-dnssec maintain; file "/etc/named/dynamic/example.com.zone"; }; Nachdem diese Änderungen durchgeführt wurden, erzeugen Sie die Schlüssel für die Zone wie in beschrieben wird, legen diese Schlüssel im Key Repository ab, dass als Argument key-directory in der Zonenkonfiguration steht und die Zone wird automatisch signiert. Aktualisierungen für eine Zone, die auf diese Art und Weise konfiguriert wurde, muss mittels nsupdate erfolgen, dass sich um die erneute Signierung der Zone mit den hinzugefügten Daten kümmern wird. Für weitere Details, lesen Sie und die Dokumentation von BIND. Sicherheit Obwohl BIND die am meisten verwendete Implementierung von DNS darstellt, werden dennoch manchmal neue Sicherheitsprobleme entdeckt. Zwar startet &os; named automatisch in einer &man.chroot.8;-Umgebung, es gibt aber noch weitere Sicherheitsmechanismen, mit denen Sie potentielle DNS-Serviceattacken erschweren können. Es ist daher eine gute Idee, die Sicherheitshinweise von CERT zu lesen sowie die Mailingliste &a.security-notifications; zu abonnieren, um sich über Sicherheitsprobleme im Zusammenhang mit dem Internet und &os; zu informieren. Tritt ein Problem auf, kann es nie schaden, die Quellen zu aktualisieren und named neu zu kompilieren. Weitere Informationsquellen Hilfeseiten zu BIND/named: &man.rndc.8; &man.named.8; &man.named.conf.5; &man.nsupdate.1; &man.dnssec-signzone.8; &man.dnssec-keygen.8; Offizielle ISC-Seite zu BIND Offizielles Forum zu ISC-BIND O'Reilly DNS and BIND 5th Edition Root DNSSEC DNSSEC Vertrauensanker-Publikation für die Root-Zone RFC 1034 - Domain Names - Concepts and Facilities RFC 1035 - Domain Names - Implementation and Specification RFC 4033 - DNS Security Introduction and Requirements RFC 4034 - Resource Records for the DNS Security Extensions RFC 4035 - Protocol Modifications for the DNS Security Extensions RFC 4641 - DNSSEC Operational Practices RFC 5011 - Automated Updates of DNS Security (DNSSEC) Trust Anchors
Apache HTTP-Server Murray Stokely Beigetragen von Webserver konfigurieren Apache Der Open Source Apache HTTP-Server ist der am weitesten verbreitete Webserver. Dieser Webserver ist nicht im Basissystem von &os; enthalten, kann aber als Paket oder Port www/apache24 installiert werden. Dieser Abschnitt beschreibt die Konfiguration der Version 2.x des Apache HTTP-Server. Weiterführende Informationen und Konfigurationsanweisungen für Apache 2.X finden Sie unter httpd.apache.org. Apache konfigurieren und starten Apache Konfigurationsdatei Der Apache HTTP-Server wird unter &os; primär in /usr/local/etc/apache2x/httpd.conf konfiguriert, wobei das x die Versionsnummer darstellt. In dieser Textdatei leitet ein # einen Kommentar ein. Die am häufigsten verwendeten Optionen sind: ServerRoot "/usr/local" Legt das Standardwurzelverzeichnis für die Apache-Installation fest. Binärdateien werden in die Verzeichnisse bin und sbin unterhalb des Serverwurzelverzeichnisses installiert, während sich Konfigurationsdateien im Unterverzeichnis etc/apache2x befinden. ServerAdmin you@example.com Die E-Mail-Adresse, an die Mitteilungen über Serverprobleme geschickt werden. Diese Adresse erscheint auf vom Server erzeugten Seiten, beispielsweise auf Fehlerseiten. ServerName www.example.com:80 Erlaubt dem Administrator, einen Rechnernamen festzulegen, den der Server an die Clients sendet. Beispielsweise könnte www statt des richtigen Rechnernamens verwendet werden. Wenn das System keinen eingetragenen DNS-Namen hat, kann stattdessen die IP-Adresse eingetragen werden. Lauscht der Server auf einem anderen Port, tauschen Sie die 80 gegen eine entsprechende Portnummer. DocumentRoot "/usr/local/www/apache2x/data" Das Verzeichnis, in dem die Dokumente abgelegt sind. In der Voreinstellung befinden sich alle Seiten in diesem Verzeichnis, durch symbolische Links oder Aliase lassen sich aber auch andere Orte festlegen. Es ist empfehlenswert, eine Sicherungskopie der Apache-Konfigurationsdatei anzulegen, bevor Änderungen durchgeführt werden. Wenn die Konfiguration von Apache abgeschlossen ist, speichern Sie die Datei und überprüfen Sie die Konfiguration mit apachectl. Der Befehl apachectl configtest sollte Syntax OK zurückgeben. Apache Starten oder Beenden Um den Apache beim Systemstart zu starten, fügen Sie folgende Zeile in /etc/rc.conf ein: apache24_enable="YES" Wenn Sie während des Systemstarts weitere Parameter an den Apache übergeben wollen, können Sie diese durch eine zusätzliche Zeile in rc.conf angeben: apache24_flags="" Wenn apachectl keine Konfigurationsfehler meldet, starten Sie httpd: &prompt.root; service apache24 start Sie können den httpd-Dienst testen, indem Sie http://localhost in einen Browser eingeben, wobei Sie localhost durch den vollqualifizierten Domainnamen der Maschine ersetzen, auf dem der httpd läuft. Die Standard Webseite, die angezeigt wird, ist /usr/local/www/apache24/data/index.html. Die Konfiguration von Apache kann bei nachfolgenden Änderungen an der Konfigurationsdatei bei laufendem httpd, auf Fehler überprüft werden. Geben Sie dazu folgendes Kommando ein: &prompt.root; service apache24 configtest Es ist wichitg zu beachten, dass configtest kein &man.rc.8;-Standard ist, und somit nicht zwingend mit anderen &man.rc.8;-Startskripten funktioniert. Virtual Hosting Virtual Hosting ermöglicht es, mehrere Webseiten auf einem Apache-Server laufen zu lassen. Die virtuellen Hosts können IP-basiert oder namensbasiert sein. IP-basiertes virtual Hosting verwendet eine IP-Adresse für jede Webseite. Beim namensbasierten virtual Hosting wird der HTTP/1.1-Header der Clients dazu verwendet, den Rechnernamen zu bestimmen. Dadurch wird es möglich, mehrere Domains unter der gleichen IP-Adresse zu betreiben. Damit der Apache namenbasierte virtuelle Domains verwalten kann, fügen Sie für jede Webseite einen separaten VirtualHost-Block ein. Wenn der Webserver beispielsweise www.domain.tld heißt und die virtuelle Domain www.someotherdomain.tld einrichtet werden soll, ergänzen Sie httpd.conf um folgende Einträge: <VirtualHost *> ServerName www.domain.tld DocumentRoot /www/domain.tld </VirtualHost> <VirtualHost *> ServerName www.someotherdomain.tld DocumentRoot /www/someotherdomain.tld </VirtualHost> Setzen Sie für jeden virtuellen Host die entsprechenden Werte für ServerName und DocumentRoot. Ausführliche Informationen zum Einrichten von virtuellen Hosts finden Sie in der offiziellen Apache-Dokumentation unter http://httpd.apache.org/docs/vhosts/. Häufig verwendete Apache-Module Apache Module Apache verwendet Module, die den Server um zusätzliche Funktionen erweitern. Eine vollständige Auflistung der zur Verfügung stehenden Module und Konfigurationsdetails finden Sie unter http://httpd.apache.org/docs/current/mod/. In &os; können einige Module mit dem Port www/apache24 kompiliert werden. Geben Sie in /usr/ports/www/apache24 make config ein, um zu sehen, welche Module zur Verfügung stehen und welche Module in der Voreinstellung aktiviert sind. Wenn ein Modul nicht zusammen mit dem Port kompiliert wird, bietet die Ports-Sammlung die Möglichkeit viele Module zu installieren. Dieser Abschnitt beschreibt drei der am häufigsten verwendeten Module. <filename>mod_ssl</filename> Webserver Verschlüsselung SSL Verschlüsselung Das Modul mod_ssl verwendet die OpenSSL-Bibliothek, um über die Protokolle Secure Sockets Layer (SSLv3) sowie Transport Layer Security (TLSv1) eine starke Verschlüsselung zu ermöglichen. Mit diesem Modul können Sie ein signiertes Zertifikat von einer Zertifizierungsstelle anfordern, damit Sie einen sicheren Webserver unter &os; betreiben können. Unter &os; wird das Modul mod_ssl standardmäßig im Port und auch im Paket aktiviert. Die verfügbaren Konfigurationsanweisungen werden in http://httpd.apache.org/docs/current/mod/mod_ssl.html beschrieben. <filename>mod_perl</filename> mod_perl Perl Das Modul mod_perl macht es möglich, vollständig in Perl geschriebene Apache-Module zu erzeugen. Da der Perl-Interpreter in den Server eingebettet wird, muss weder ein externer Interpreter noch Perl zusätzlich aufgerufen werden. mod_perl wird über den Port oder das Paket www/mod_perl2 installiert. Dokumentation für dieses Modul finden Sie unter http://perl.apache.org/docs/2.0/index.html. <filename>mod_php</filename> Tom Rhodes Geschrieben von mod_php PHP PHP: Hypertext Preprocessor (PHP) ist eine vielseitig verwendbare Skriptsprache, die besonders für die Web-Entwicklung geeignet ist. PHP kann in HTML eingebettet werden und ähnelt von der Syntax her Sprachen wie C, &java; und Perl. Das Hauptanliegen von PHP ist es, Web-Entwicklern die rasche Erstellung von dynamisch erzeugten Internetseiten zu ermöglichen. Damit der Apache-Webserver PHP5 unterstützt, der Port oder das Paket lang/php56 installiert werden. Dies wird die Module installieren und konfigurieren, die für die Unterstützung von dynamischen PHP-Anwendungen benötigt werden. Die Installation wird automatisch folgende Zeilen in /usr/local/etc/apache24/httpd.conf hinzufügen: LoadModule php5_module libexec/apache24/libphp5.so Danach rufen Sie apachectl auf, um das PHP-Modul zu laden: &prompt.root; apachectl graceful Die PHP-Unterstützung von www/mod_php56 verfügt nur über wenige Funktionen. Zusätzliche Funktionen können mit dem Port lang/php56-extensions installiert werden. Der Port bietet ein Auswahlmenü, über das Sie verschiedene PHP-Erweiterungen installieren können. Alternativ können einzelne Erweiterungen über den jeweiligen Port installieren. Um beispielsweise die Unterstützung des Datenbankservers MySQL in PHP zu aktivieren, installieren Sie den Port databases/php56-mysql. Nachdem Sie eine Erweiterung installiert haben, müssen Sie den Apache-Server neu starten, damit die Erweiterung auch erkannt wird: &prompt.root; apachectl graceful Ab nun wird MySQL von PHP unterstützt. Dynamische Webseiten Webserver dynamisch Neben mod_perl und mod_php stehen noch weitere Sprachen zur Erstellung von dynamischen Inhalten zur Verfügung. Dazu gehören auch Django und Ruby on Rails. Django Python Django Bei Django handelt es sich um ein unter der BSD-Lizenz verfügbares Framework zur schnellen Erstellung von mächtigen Internet-Applikationen. Es beinhaltet einen objekt-relationalen Mapper (wodurch Datentypen als Phyton-Objekte entwickelt werden können) sowie eine API für den dynamischen Datenbankzugriff auf diese Objekte, ohne dass Entwickler jemals SQL-Code schreiben müssen. Zusätzlich existiert ein umfangreiches Template-System, wodurch die Programmlogik von der HTML-Präsentation getrennt werden kann. Django setzt das Modul mod_python und eine SQL-Datenbank voraus. In &os; wird bei der Installation von www/py-django automatisch mod_python installiert. Als Datenbanken werden PostgreSQL, MySQL und SQLite unterstützt, wobei SQLite die Voreinstellung ist. Wenn Sie die Datenbank ändern möchten, geben Sie in /usr/ports/www/py-django make config ein und installieren Sie den Port neu. Nachdem Django installiert ist, benötigt die Anwendung ein Projektverzeichnis und die Apache-Konfiguration, um den eingebetteten Python-Interpreter zu nutzen. Dieser Interpreter wird verwendet um die Anwendung für spezifische URLs der Seite aufrufen. Damit Apache Anfragen für bestimmte URLs an die Web-Applikation übergeben kann, müssen Sie den vollständigen Pfad zum Projektverzeichnis in httpd.conf festlegen: <Location "/"> SetHandler python-program PythonPath "['/pfad/zu/den/django/paketen/'] + sys.path" PythonHandler django.core.handlers.modpython SetEnv DJANGO_SETTINGS_MODULE mysite.settings PythonAutoReload On PythonDebug On </Location> Weitere Informationen zur Verwendung von Django finden Sie unter https://docs.djangoproject.com/en/1.6/. Ruby on Rails Ruby on Rails Ruby on Rails ist ein weiteres, als Open Source verfügbares Webframework. Es bietet einen kompletten Entwicklungsstack und erlaubt es Webentwicklern, umfangreiche und mächtige Applikationen in kurzer Zeit zu programmieren. Unter &os; kann das Framework über den Port oder das Paket www/rubygem-rails installiert werden. Weitere Informationen zur Verwendung von Ruby on Rails finden Sie unter http://rubyonrails.org/documentation. File Transfer Protocol (<acronym>FTP</acronym>) FTP-Server Das File Transfer Protocol (FTP) ermöglicht auf einfache Art und Weise den Dateiaustausch mit einem FTP-Server. Der FTP-Server ftpd ist bei &os; bereits im Basisystem enthalten. &os; verwendet mehrere Konfigurationsdateien, um den Zugriff auf den FTP zu kontrollieren. Dieser Abschnitt fasst diese Dateien zusammen. In &man.ftpd.8; finden Sie weitere Inforamtionen über den integrierten FTP-Server. Konfiguration Der wichtigste Punkt ist hier die Entscheidung darüber, welche Benutzer auf den FTP-Server zugreifen dürfen. Ein &os;-System verfügt über diverse Systembenutzerkonten, die jedoch nicht auf den FTP-Server zugreifen sollen. Die Datei /etc/ftpusers enthält alle Benutzer, die vom FTP-Zugriff ausgeschlossen sind. In der Voreinstellung gilt dies auch die gerade erwähnten Systembenutzerkonten. Sie können über diese Datei weitere Benutzer vom FTP-Zugriff ausschließen. In einigen Fällen kann es wünschenswert sein, den Zugang für manche Benutzer einzuschränken, ohne dabei FTP komplett zu verbieten. Dazu passen Sie /etc/ftpchroot, wie in &man.ftpchroot.5; beschrieben, entsprechend an. Diese Datei enthält Benutzer und Gruppen sowie die für sie geltenden Einschränkungen für FTP. FTP anonymous Um anonymen FTP-Zugriff auf dem Server zu aktivieren, muss ein Benutzer ftp auf dem &os;-System angelegt werden. Danach können sich Benutzer mit dem Benutzernamen ftp oder anonymous am FTP-Server anmelden. Das Passwort ist dabei beliebig, allerdings wird dazu in der Regel eine E-Mail-Adresse verwendet. Meldet sich ein anonymer Benutzer an, aktiviert der FTP-Server &man.chroot.2;, um den Zugriff auf das Heimatverzeichnis des Benutzers ftp zu beschränken. Es gibt zwei Textdateien, deren Inhalt den FTP-Clients bei der Anmeldung angezeigt wird. Der Inhalt von /etc/ftpwelcome wird angezeigt, bevor der Login-Prompt erscheint. Nach einer erfolgreichen Anmeldung wird der Inhalt von /etc/ftpmotd angezeigt. Beachten Sie aber, dass es dabei um einen Pfad relativ zur Umgebung des anzumeldenden Benutzers handelt. Bei einer anonymen Anmeldung würde also der Inhalt von ~ftp/etc/ftpmotd angezeigt. Sobald der FTP-Server konfiguriert ist, setzen Sie die entsprechende Variable in /etc/rc.conf, damit der Dienst beim Booten gestartet wird: ftpd_enable="YES" Starten Sie den Dienst: &prompt.root; service ftpd start Testen Sie die Verbindung zum FTP-Server, indem Sie folgendes eingeben: &prompt.user; ftp localhost Wartung syslog Logdateien FTP Der ftpd-Daemon verwendet &man.syslog.3;, um Protokolldateien zu erstellen. In der Voreinstellung werden alle FTP betreffenden Nachrichten nach /var/log/xferlog geschrieben. Dies lässt sich aber durch das Einfügen der folgenden Zeile in /etc/syslog.conf ändern: ftp.info /var/log/xferlog FTP anonymous Beachten Sie, dass mit dem Betrieb eines anonymen FTP-Servers verschiedene Sicherheitsrisiken verbunden sind. Problematisch ist hier vor allem die Erlaubnis zum anonymen Upload von Dateien. Dadurch könnte der Server zur Verbreitung von illegaler oder nicht lizensierter Software oder noch Schlimmeren missbraucht werden. Wenn anonyme FTP-Uploads dennoch erforderlich sind, sollten Sie die Zugriffsrechte so setzen, dass solche Dateien erst nach Zustimmung eines Administrators von anderen Benutzern heruntergeladen werden können. Datei- und Druckserver für µsoft.windows;-Clients (Samba) Samba-Server Microsoft Windows Dateiserver Windows-Clients Druckserver Windows-Clients Samba ist ein beliebtes Open Source Softwarepaket, das Datei- und Druckdienste über das SMB/CIFS-Protokoll zur Verfügung stellt. Dieses Protokoll ist in µsoft.windows;-Systemen enthalten und kann über die Installation der Samba-Client-Bibliotheken in andere Betriebssysteme integriert werden. Das Protokoll ermöglicht es Clients auf freigegebene Daten und Drucker zuzugreifen, so als ob es sich um lokale Drucker und Festplatten handeln würde. Unter &os; können die Samba-Client-Bibliotheken über den Port oder das Paket net/samba-smbclient installiert werden. Der Client ermöglicht es einem &os;-System auf SMB/CIFS-Freigaben in einem µsoft.windows;-Netzwerk zuzugreifen. Ein &os;-System kann auch als Samba-Server agieren, wenn Sie den Port oder das Paket net/samba43 installieren. Dies erlaubt es dem Administrator SMB/CIFS-Freigaben auf dem &os;-System einzurichten, auf welche dann Clients mit µsoft.windows; oder den Samba-Client-Bibliotheken zugreifen können. Konfiguration des Servers Samba wird in /usr/local/etc/smb4.conf konfiguriert. Diese Datei muss erstellt werden, bevor Samba benutzt werden kann. Eine einfache smb4.conf, wie hier gezeigt, stellt den Zugriff auf Verzeichnisse und Drucker für &windows;-Clients in einer Arbeitsgruppe (engl. Workgroup) zur Verfügung. In aufwendigeren Installationen, in denen LDAP oder Active Directory zum Einsatz kommt, ist es einfacher die smb4.conf mit dem Werkzeug &man.samba-tool.8; zu erstellen. [global] workgroup = WORKGROUP server string = Samba Server Version %v netbios name = ExampleMachine wins support = Yes security = user passdb backend = tdbsam # Example: share /usr/src accessible only to 'developer' user [src] path = /usr/src valid users = developer writable = yes browsable = yes read only = no guest ok = no public = no create mask = 0666 directory mask = 0755 Globale Einstellungen Einstellungen für das Netzwerk werden in /usr/local/etc/smb4.conf definiert: workgroup Der Name der Arbeitsgruppe. netbios name NetBIOS Der NetBIOS-Namen fest, unter dem der Samba-Server bekannt ist. In der Regel handelt es sich dabei um den ersten Teil des DNS-Namens des Servers. server string Legt die Beschreibung fest, die angezeigt wird, wenn mit net view oder anderen Netzwerkprogrammen Informationen über den Server angefordert werden. wins support Legt fest, ob Samba als WINS-Server fungieren soll. Aktivieren Sie die Unterstützung für WINS auf maximal einem Server im Netzwerk. Samba absichern Die wichtigsten Einstellungen in /usr/local/etc/smb4.conf betreffen das zu verwendende Sicherheitsmodell sowie das Backend-Passwortformat. Die folgenden Direktiven steuern diese Optionen: security Die häufigsten Optionen sind security = share und security = user. Wenn die Clients Benutzernamen verwenden, die den Benutzernamen auf dem &os;-Rechner entsprechen, dann sollte die Einstellung user level verwendet werden. Dies ist die Standardeinstellung. Allerdings ist es dazu erforderlich, dass sich die Clients auf dem Rechner anmelden, bevor sie auf gemeinsame Ressourcen zugreifen können. In der Einstellung share level müssen sich Clients nicht unter Verwendung eines gültigen Logins auf dem Rechner anmelden, bevor sie auf gemeinsame Ressourcen zugreifen können. In früheren Samba-Versionen war dies die Standardeinstellung. passdb backend NIS+ LDAP SQL database Samba erlaubt verschiedene Backend-Authentifizierungsmodelle. Clients können sich durch LDAP, NIS+, eine SQL-Datenbank oder eine Passwortdatei authentifizieren. Die empfohlene Authentifizierungsmethode, tdbsam, ist ideal für einfache Netzwerke und wird hier vorgestellt. Für größere oder komplexere Netzwerke wird ldapsam empfohlen. smbpasswd war der frühere Standard und gilt mittlerweile als veraltet. <application>Samba</application> Benutzer Damit &windows;-Clients auf die Freigaben zugreifen können, müssen die &os;-Benutzerkonten in der SambaSAMAccount-Datenbank zugeordnet werden. Für bereits vorhandene Benutzerkonten kann dazu &man.pdbedit.8; benutzt werden: &prompt.root; pdbedit -a username Dieser Abschnitt beschreibt lediglich die am häufigsten verwendeten Einstellungen. Ausführliche Informationen zur Konfiguration von Samba finden Sie im Official Samba HOWTO. <application>Samba</application> starten Damit Samba beim Systemstart automatisch aktiviert wird, fügen Sie die folgende Zeile in /etc/rc.conf ein: samba_enable="YES" Für Samba4 verwenden Sie: samba_server_enable="YES" Jetzt kann Samba direkt gestartet werden: &prompt.root; service samba start Starting SAMBA: removing stale tdbs : Starting nmbd. Starting smbd. Samba verwendet drei Daemonen. Sowohl nmbd als auch smbd werden durch samba_enable gestartet. Wenn eine Namensauflösung über winbind benötigt wird, setzen Sie zusätzlich: winbindd_enable="YES" Samba kann jederzeit durch folgenden Befehl beendet werden: &prompt.root; service samba stop Samba ist ein komplexes Softwarepaket mit umfassenden Funktionen, die eine weitreichende Integration von µsoft.windows;-Netzwerken ermöglichen. Für eine Beschreibung dieser Zusatzfunktionen sollten Sie sich auf http://www.samba.org umsehen. Die Uhrzeit mit NTP synchronisieren NTP ntpd Die interne Uhrzeit eines Computers ist nie ganz exakt. Dies ist problematisch, da viele Dienste darauf angewiesen sind, dass die Computer im Netzwerk die exakte Uhrzeit übermitteln. Die exakte Uhrzeit ist auch erforderlich um sicherzustellen, dass die Zeitstempel der Dateien konsistent bleiben. Das Network Time Protocol (NTP) bietet die Möglichkeit, die exakte Uhrzeit in einem Netzwerk zur Verfügung zu stellen. Mit &man.ntpd.8; enthält &os; ein Werkzeug, das andere NTP-Server abfragen kann um die Uhrzeit auf diesem Computer zu synchronisieren, oder um selbst die Uhrzeit für andere Computer im Netzwerk bereitzustellen. Die Server, die abgefragt werden, können lokal oder von einem ISP zur Verfügung gestellt werden. Darüber hinaus gibt es eine Liste von öffentlich zugänglichen NTP-Servern. Falls Sie sich für einen solchen öffentlichen Server entscheiden, wählen Sie einen nahegelegenen Server und prüfen Sie die Nutzungsbedingungen. Die Auswahl von mehreren NTP-Servern wird empfohlen, falls sich ein Server nicht erreichbar ist oder sich als unzuverlässig herausstellt. ntpd verwendet die Antworten anderer Server, um zuverlässige Server zu bestimmen, die dann bevorzugt abgefragt werden. Dieser Abschnitt beschreibt die Konfiguration von ntpd unter &os;. Zusätzliche Dokumentation im HTML-Format finden Sie in /usr/share/doc/ntp/. <acronym>NTP</acronym> konfigurieren NTP ntp.conf &os; enthält mit ntpd ein Werkzeug, das zur Synchronisation der Uhrzeit verwendet werden kann. Um ntpd beim Booten zu aktivieren, fügen Sie den Eintrag ntpd_enable="YES" in /etc/rc.conf ein. Zusätzliche Variablen können ebenfalls in /etc/rc.conf gesetzt werden. Weitere Details finden Sie in &man.rc.conf.5; und &man.ntpd.8;. Das Programm liest /etc/ntp.conf um herauszufinden, welche NTP-Server abgefragt werden müssen. Hier ist ein einfaches Beispiel einer /etc/ntp.conf: Beispiel einer <filename>/etc/ntp.conf</filename> server ntplocal.example.com prefer server timeserver.example.org server ntp2a.example.net driftfile /var/db/ntp.drift Das Format dieser Datei wird in &man.ntp.conf.5; beschrieben. Die Option server legt die zu verwendenden Server fest, wobei jeder Server in einer eigenen Zeile steht. Wenn ein Server mit der Option prefer versehen ist, wird dieser Server bevorzugt verwendet. Eine Antwort von einem bevorzugten Server wird verworfen, wenn sie signifikant von den Antworten anderer Server abweicht, ansonsten wird sie akzeptiert. Die Option prefer sollte nur für sehr zuverlässige und genaue NTP-Server verwendet werden, die über eine spezielle Hardware zur Zeitüberwachung verfügen. Die Option driftfile legt fest, in welcher Datei die Abweichungen der Systemuhr protokolliert werden. ntpd verwendet diese Datei, um die Systemzeit automatisch anzupassen, selbst wenn kurzzeitig kein NTP-Server zur Synchronisation verfügbar ist. Weiterhin werden in dieser Datei Informationen über frühere Anworten von NTP-Server. Da diese Datei interne Informationen für NTP enthält, sollte sie nicht verändert werden. In der Voreinstellung ist der NTP-Server für alle Rechner im Netzwerk erreichbar. Die Option restrict in /etc/ntp.conf steuert, welche Rechner auf den Server zugreifen können. Wenn Sie beispielsweise alle Rechner vom Zugriff auf den NTP-Server ausschließen wollen, fügen Sie folgende Zeile in /etc/ntp.conf ein: restrict default ignore Dieser Eintrag verhindert auch den Zugriff von anderen NTP-Servern. Besteht die Notwendigkeit, sich mit einem externen NTP-Server zu synchronisieren, muss dieser Server explizit zugelassen werden. Weitere Informationen finden Sie in &man.ntp.conf.5;. Wenn Sie nur Rechnern innerhalb des Netzwerks die Synchronisation mit dem Server erlauben, gleichzeitig aber verhindern wollen, dass diese den Server konfigurieren oder als Server für andere Rechner dienen können, fügen Sie folgende Zeile ein: restrict 192.168.1.0 mask 255.255.255.0 nomodify notrap 192.168.1.0 ist die lokale Adresse des Netzwerks, 255.255.255.0 ist die Netzmaske des Netzwerks. Es werden mehrere restict-Einträge untstützt. Weitere Details finden Sie im Abschnitt Access Control Support von &man.ntp.conf.5;. Sobald ntpd_enable="YES" in /etc/rc.conf hinzugefügt wurde, kann ntpd direkt gestartet werden: &prompt.root; service ntpd start <acronym>NTP</acronym> mit einer <acronym>PPP</acronym>-Verbindung verwenden ntpd benötigt keine ständige Internetverbindung. Wenn Sie sich über eine PPP-Verbindung ins Internet einwählen, sollten Sie verhindern, dass NTP-Verkehr eine Verbindung aufbauen oder aufrechterhalten kann. Dies kann in den filter-Direktiven von /etc/ppp/ppp.conf festgelegt werden. Ein Beispiel: set filter dial 0 deny udp src eq 123 # Prevent NTP traffic from initiating dial out set filter dial 1 permit 0 0 set filter alive 0 deny udp src eq 123 # Prevent incoming NTP traffic from keeping the connection open set filter alive 1 deny udp dst eq 123 # Prevent outgoing NTP traffic from keeping the connection open set filter alive 2 permit 0/0 0/0 Weitere Informationen finden Sie im Abschnitt PACKET FILTERING von &man.ppp.8; sowie in den Beispielen unter /usr/share/examples/ppp/. Einige Internetprovider blockieren Ports mit niedrigen Nummern. In solchen Fällen funktioniert NTP leider nicht, da Antworten eines NTP-Servers den Rechner nicht erreichen werden. iSCSI Initiator und Target Konfiguration iSCSI bietet die Möglichkeit, Speicherkapazitäten über ein Netzwerk zu teilen. Im Gegensatz zu NFS, das auf Dateisystemebene arbeitet, funktioniert iSCSI auf Blockgerätebene. In der iSCSI-Terminologie wird das System, das den Speicherplatz zur Verfügung stellt, als Target bezeichnet. Der Speicherplatz selbst kann aus einer physischen Festplatte bestehen, oder auch aus einem Bereich, der mehrere Festplatten, oder nur Teile einer Festplatte, repräsentiert. Wenn beispielsweise die Festplatte(n) mit ZFS formatiert ist, kann ein zvol erstellt werden, welches dann als iSCSI-Speicher verwendet werden kann. Die Clients, die auf den iSCSI-Speicher zugreifen, werden Initiator genannt. Ihnen steht der verfügbare Speicher als rohe, nicht formatierte Festplatte, die auch als LUN bezeichnet wird, zur Verfügung. Die Gerätedateien für die Festplatten erscheinen in /dev/ und müssen separat formatiert und eingehangen werden. Seit 10.0-RELEASE enthält &os; einen nativen, kernelbasierten iSCSI Target und Initiator. Dieser Abschnitt beschreibt, wie ein &os;-System als Target oder Initiator konfiguriert wird. Ein <acronym>iSCSI</acronym>-Target konfigurieren Ein natives iSCSI-Target wird seit &os; 10.0-RELEASE unterstützt. Um iSCSI mit älteren Versionen zu benutzen, installieren Sie ein Target aus der Ports-Sammlung, beispielsweise net/istgt. Dieses Kapitel beschreibt nur das native Target. Um ein iSCSI-Target zu konfigurieren, erstellen Sie die Konfigurationsdatei /etc/ctl.conf und fügen Sie eine Zeile in /etc/rc.conf hinzu, um sicherzustellen, dass &man.ctld.8; automatisch beim Booten gestartet wird. Starten Sie dann den Daemon. Das folgende Beispiel zeigt eine einfache /etc/ctl.conf. Eine vollständige Beschreibung dieser Datei und der verfügbaren Optionen finden Sie in &man.ctl.conf.5;. portal-group pg0 { discovery-auth-group no-authentication listen 0.0.0.0 listen [::] } target iqn.2012-06.com.example:target0 { auth-group no-authentication portal-group pg0 lun 0 { path /data/target0-0 size 4G } } Der erste Eintrag definiert die Portalgruppe pg0. Portalgruppen legen fest, auf welchen Netzwerk-Adressen der &man.ctld.8;-Daemon Verbindungen entgegennehmen wird. Der Eintrag discovery-auth-group no-authentication zeigt an, dass jeder Initiator iSCSI-Targets suchen darf, ohne sich authentifizieren zu müssen. Die dritte und vierte Zeilen konfigurieren &man.ctld.8; so, dass er auf allen IPv4- (listen 0.0.0.0) und IPv6-Adressen (listen [::]) auf dem Standard-Port 3260 lauscht. Es ist nicht zwingend notwendig eine Portalgruppe zu definieren, da es bereits eine integrierte Portalgruppe namens default gibt. In diesem Fall ist der Unterschied zwischen default und pg0 der, dass bei default eine Authentifizierung nötig ist, während bei pg0 die Suche nach Targets immer erlaubt ist. Der zweite Eintrag definiert ein einzelnes Target. Ein Target hat zwei mögliche Bedeutungen: eine Maschine die iSCSI bereitstellt, oder eine Gruppe von LUNs. Dieses Beispiel verwendet die letztere Bedeutung, wobei iqn.2012-06.com.example:target0 der Name des Targets ist. Dieser Name ist nur für Testzwecke geeignet. Für den tatsächlichen Gebrauch ändern Sie com.example auf einen echten, rückwärts geschriebenen Domainnamen. 2012-06 steht für das Jahr und den Monat, an dem die Domain erworben wurde. target0 darf einen beliebigen Wert haben und in der Konfigurationsdatei darf eine beliebige Anzahl von Targets definiert werden. Der Eintrag auth-group no-authentication erlaubt es allen Initiatoren sich mit dem angegebenen Target zu verbinden und portal-group pg0 macht das Target über die Portalgruppe pg0 erreichbar. Die nächste Sektion definiert die LUN. Jede LUN wird dem Initiator als separate Platte präsentiert. Für jedes Target können mehrere LUNs definiert werden. Jede LUN wird über eine Nummer identifiziert, wobei LUN 0 verpflichtend ist. Die Zeile mit dem Pfad path /data/target0-0 definiert den absoluten Pfad zu der Datei oder des zvols für die LUN. Der Pfad muss vorhanden sein, bevor &man.ctld.8; gestartet wird. Die zweite Zeile ist optional und gibt die Größe der LUN an. Als nächstes fügen Sie folgende Zeile in /etc/rc.conf ein, um &man.ctld.8; automatisch beim Booten zu starten: ctld_enable="YES" Um &man.ctld.8; jetzt zu starten, geben Sie dieses Kommando ein: &prompt.root; service ctld start Der &man.ctld.8;-Daemon liest beim Start /etc/ctl.conf. Wenn diese Datei nach dem Starten des Daemons bearbeitet wird, verwenden Sie folgenden Befehl, damit die Änderungen sofort wirksam werden: &prompt.root; service ctld reload Authentifizierung Die vorherigen Beispiele sind grundsätzlich unsicher, da keine Authentifizierung verwendet wird und jedermann vollen Zugriff auf alle Targets hat. Um für den Zugriff auf die Targets einen Benutzernamen und ein Passwort vorauszusetzen, ändern Sie die Konfigurationsdatei wie folgt: auth-group ag0 { chap username1 secretsecret chap username2 anothersecret } portal-group pg0 { discovery-auth-group no-authentication listen 0.0.0.0 listen [::] } target iqn.2012-06.com.example:target0 { auth-group ag0 portal-group pg0 lun 0 { path /data/target0-0 size 4G } } Die Sektion auth-group definiert die Benutzernamen und Passwörter. Um sich mit iqn.2012-06.com.example:target0 zu verbinden, muss ein Initiator zuerst einen Benutzernamen und ein Passwort angeben. Eine Suche nach Targets wird jedoch immer noch ohne Authentifizierung gestattet. Um eine Authentifizierung zu erfordern, setzen Sie discovery-auth-group auf eine definierte auth-group anstelle von no-autentication. In der Regel wird für jeden Initiator ein einzelnes Target exportiert. In diesem Beispiel wird der Benutzername und das Passwort direkt im Target-Eintrag festgelegt: target iqn.2012-06.com.example:target0 { portal-group pg0 chap username1 secretsecret lun 0 { path /data/target0-0 size 4G } } Einen <acronym>iSCSI</acronym>-Initiator konfigurieren Der in dieser Sektion beschriebene iSCSI-Initiator wird seit &os; 10.0-RELEASE unterstützt. Lesen Sie &man.iscontrol.8;, wenn Sie den iSCSI-Initiator mit älteren Versionen benutzen möchten. Um den Initiator zu verwenden, muss zunächst ein iSCSI-Daemon gestartet sein. Der Daemon des Initiators benötigt keine Konfigurationsdatei. Um den Daemon automatisch beim Booten zu starten, fügen Sie folgende Zeile in /etc/rc.conf ein: iscsid_enable="YES" Um &man.iscsid.8; jetzt zu starten, geben Sie dieses Kommando ein: &prompt.root; service iscsid start Die Verbindung mit einem Target kann mit, oder ohne eine Konfigurationsdatei /etc/iscsi.conf durchgeführt werden. Dieser Abschnitt beschreibt beide Möglichkeiten. Verbindung zu einem Target herstellen - ohne Konfigurationsdatei Um einen Initiator mit einem Target zu verbinden, geben Sie die IP-Adresse des Portals und den Namen des Ziels an: &prompt.root; iscsictl -A -p 10.10.10.10 -t iqn.2012-06.com.example:target0 Um zu überprüfen, ob die Verbindung gelungen ist, rufen Sie iscsictl ohne Argumente auf. Die Ausgabe sollte in etwa wie folgt aussehen: Target name Target portal State iqn.2012-06.com.example:target0 10.10.10.10 Connected: da0 In diesem Beispiel wurde die iSCSI-Sitzung mit der LUN /dev/da0 erfolgreich hergestellt. Wenn das Target iqn.2012-06.com.example:target0 mehr als nur eine LUN exportiert, werden mehrere Gerätedateien in der Ausgabe angezeigt: Connected: da0 da1 da2. Alle Fehler werden auf die Ausgabe und in die Systemprotokolle geschrieben. Diese Meldung deutet beispielsweise darauf hin, dass der &man.iscsid.8;-Daemon nicht ausgeführt wird: Target name Target portal State iqn.2012-06.com.example:target0 10.10.10.10 Waiting for iscsid(8) Die folgende Meldung deutet auf ein Netzwerkproblem hin, zum Beispiel eine falsche IP-Adresse oder einen falschen Port: Target name Target portal State iqn.2012-06.com.example:target0 10.10.10.11 Connection refused Diese Meldung bedeutet, dass der Name des Targets falsch angegeben wurde: Target name Target portal State iqn.2012-06.com.example:target0 10.10.10.10 Not found Diese Meldung bedeutet, dass das Target eine Authentifizierung erfordert: Target name Target portal State iqn.2012-06.com.example:target0 10.10.10.10 Authentication failed Verwenden Sie diese Syntax, um einen CHAP-Benutzernamen und ein Passwort anzugeben: &prompt.root; iscsictl -A -p 10.10.10.10 -t iqn.2012-06.com.example:target0 -u user -s secretsecret Verbindung mit einem Target herstellen - mit Konfigurationsdatei Wenn Sie für die Verbindung eine Konfigurationsdatei verwenden möchten, erstellen Sie /etc/iscsi.conf mit etwa folgendem Inhalt: t0 { TargetAddress = 10.10.10.10 TargetName = iqn.2012-06.com.example:target0 AuthMethod = CHAP chapIName = user chapSecret = secretsecret } t0 gibt den Namen der Sektion in der Konfigurationsdatei an. Diser Name wird vom Initiator benutzt, um zu bestimmen, welche Konfiguration verwendet werden soll. Die anderen Einträge legen die Parameter fest, die während der Verbindung verwendet werden. TargetAddress und TargetName müssen angegeben werden, die restlichen sind optional. In diesen Beispiel wird der CHAP-Benuztername und das Passwort angegeben. Um sich mit einem bestimmten Target zu verbinden, geben Sie dessen Namen an: &prompt.root; iscsictl -An t0 Um sich stattdessen mit allen definierten Targets aus der Konfigurationsdatei zu verbinden, verwenden Sie: &prompt.root; iscsictl -Aa Damit sich der Initiator automatisch mit allen Targets aus /etc/iscsi.conf verbindet, fügen Sie folgendes in /etc/rc.conf hinzu: iscsictl_enable="YES" iscsictl_flags="-Aa"