Index: head/de_DE.ISO8859-1/books/handbook/config/chapter.xml =================================================================== --- head/de_DE.ISO8859-1/books/handbook/config/chapter.xml (revision 46647) +++ head/de_DE.ISO8859-1/books/handbook/config/chapter.xml (revision 46648) @@ -1,3678 +1,3678 @@ Konfiguration und Tuning ChernLeeGeschrieben von MikeSmithNach einem Tutorium von MattDillonBasiert ebenfalls auf tuning(7) von MartinHeinenÜbersetzt von Übersicht System-Konfiguration System-Optimierung Ein korrekt konfiguriertes System kann die Arbeit, die bei der zukünftigen Pflege und bei Migrationen des Systems entsteht, erheblich reduzieren. Dieses Kapitel beschreibt die Konfiguration von &os; sowie Maßnahmen zur Leistungssteigerung von &os;-Systemen. Nachdem Sie dieses Kapitel durchgearbeitet haben, werden Sie Folgendes wissen: Wie Sie effizient Dateisysteme und Swap-Partitionen auf Ihrer Festplatte einrichten. Die Grundlagen der Konfiguration mit rc.conf und des Systems zum Starten von Anwendungen in /usr/local/etc/rc.d. Wie Sie Netzwerkkarten konfigurieren und testen. Wie Sie virtuelle Hosts und Netzwerkgeräte konfigurieren. Wie Sie die verschiedenen Konfigurationsdateien in /etc benutzen. Wie Sie mit sysctl-Variablen &os; einstellen können. Wie Sie die Platten-Performance einstellen und Kernel-Parameter modifizieren können. Bevor Sie dieses Kapitel lesen, sollten Sie die Grundlagen von &unix; und &os; () verstehen. Damit vertraut sein, wie Sie einen Kernel konfigurieren und kompilieren (). Vorbereitende Konfiguration Layout von Partitionen Layout von Partitionen /etc /var /usr Partitionen Wenn Sie Dateisysteme mit &man.bsdlabel.8; oder &man.sysinstall.8; anlegen, sollten Sie beachten, dass Festplatten auf Daten in den äußeren Spuren schneller zugreifen können als auf Daten in den inneren Spuren. Daher sollten die kleineren oft benutzten Dateisysteme, wie das Root-Dateisystem oder die Swap-Partition, an den äußeren Rand der Platte gelegt werden. Die größeren Partitionen wie /usr sollten in die inneren Bereiche gelegt werden. Es empfiehlt sich, die Partitionen in einer ähnlichen Reihenfolge wie Root-Partition, Swap, /var und /usr anzulegen. Die Größe der /var-Partition ist abhängig vom Zweck der Maschine. Das /var-Dateisystem enthält hauptsächlich Postfächer, den Spoolbereich zum Drucken und Logdateien. Abhängig von der Anzahl der Systembenutzer und der Aufbewahrungszeit für Logdateien, können gerade die Postfächer und Logdateien zu ungeahnten Größen wachsen. Die meisten Benutzer werden selten mehr als etwa ein Gigabyte in /var benötigen. Ein paar Mal wird es vorkommen, dass viel Festplattenspeicher in /var/tmp gebraucht wird. Wenn neue Software mit &man.pkg.add.1; installiert wird, extrahieren die Paketwerkzeuge eine vorübergehende Kopie der Pakete unter /var/tmp. Die Installation grosser Softwarepakete wie Firefox, Openoffice oder LibreOffice kann sich wegen zu wenig Speicherplatz in /var/tmp als trickreich herausstellen. Die /usr-Partition enthält viele der Hauptbestandteile des Systems, dazu gehöhren die &man.ports.7;-Sammlung (empfohlen) und die Quellen (optional). Sowohl die Ports als auch die Quellen des Basissystems sind zum Zeitpunkt der Installation optional, trotzdem sollten Sie mindestens zwei Gigabyte für diese Partition vorsehen. Wenn Sie die Größe der Partitionen festlegen, beachten Sie bitte das Wachstum Ihres Systems. Wenn Sie den Platz auf einer Partition vollständig aufgebraucht haben, eine andere Partition aber kaum benutzen, kann die Handhabung des Systems schwierig werden. Die automatische Partitionierung von &man.sysinstall.8; mit Auto-defaults legt manchmal zu kleine / und /var-Partition an. Partitionieren Sie weise und großzügig. Swap Partition Swap-Partition Größe Swap-Partition Als Daumenregel sollten Sie doppelt soviel Speicher für die Swap-Partition vorsehen, als Sie Hauptspeicher haben. Verfügt die Maschine beispielsweise über 128 Megabyte Hauptspeicher, sollten Sie 256 Megabyte für den Swap-Bereich vorsehen. Systeme mit weniger Speicher werden wahrscheinlich mit viel mehr Swap mehr leisten. Es wird nicht empfohlen, weniger als 256 Megabyte Swap einzurichten. Außerdem sollten Sie künftige Speichererweiterungen beachten, wenn Sie die Swap-Partition einrichten. Die VM-Paging-Algorithmen im Kernel sind so eingestellt, dass Sie am besten laufen, wenn die Swap-Partition mindestens doppelt so groß wie der Hauptspeicher ist. Zu wenig Swap kann zu einer Leistungsverminderung im VM page scanning Code führen, sowie Probleme verursachen, wenn Sie später mehr Speicher in Ihre Maschine bauen. Auf größeren Systemen mit mehreren SCSI-Laufwerken (oder mehreren IDE-Laufwerken an unterschiedlichen Controllern) empfehlen wir Ihnen, Swap-Bereiche auf bis zu vier Laufwerken einzurichten. Diese Swap-Partitionen sollten ungefähr dieselbe Größe haben. Der Kernel kann zwar mit beliebigen Größen umgehen, aber die internen Datenstrukturen skalieren bis zur vierfachen Größe der größten Partition. Ungefähr gleich große Swap-Partitionen erlauben es dem Kernel, den Swap-Bereich optimal über die Laufwerke zu verteilen. Große Swap-Bereiche, auch wenn sie nicht oft gebraucht werden, sind nützlich, da sich ein speicherfressendes Programm unter Umständen auch ohne einen Neustart des Systems beenden lässt. Warum partitionieren? Gegen eine einzelne Partition sprechen mehrere Gründe. Jede Partition hat im Betrieb unterschiedliche Eigenschaften und die Trennung der Partitionen erlaubt es, die Dateisysteme an diese Eigenschaften anzupassen. Die Root- und /usr-Partitionen weisen meist nur lesende Zugriffe auf, während /var und /var/tmp hauptsächlich beschrieben werden. Indem Sie ein System richtig partitionieren, verhindern Sie, dass eine Fragmentierung in den häufig beschriebenen Partitionen auf die meist nur gelesenen Partitionen übergreift. Wenn Sie die häufig beschriebenen Partitionen an den Rand der Platte, legen, dann wird die I/O-Leistung diesen Partitionen steigen. Die I/O-Leistung ist natürlich auch für große Partitionen wichtig, doch erzielen Sie eine größere Leistungssteigerung, wenn Sie /var an den Rand der Platte legen. Schließlich sollten Sie noch die Stabilität des Systems beachten. Eine kleine Root-Partition, auf die meist nur lesend zugegriffen wird, überlebt einen schlimmen Absturz wahrscheinlich eher als eine große Partition. Basiskonfiguration rc-Dateien rc.conf Informationen zur Systemkonfiguration sind hauptsächlich in /etc/rc.conf, die meist beim Start des Systems verwendet wird, abgelegt. Der Name der Datei zeigt ihren Zweck an: Sie enthält die Konfigurationen für die rc* Dateien. In rc.conf werden die Vorgabewerte aus /etc/defaults/rc.conf überschrieben. Die Vorgabedatei sollte nicht nach /etc kopiert werden, da sie die Vorgabewerte und keine Beispiele enthält. Jede systemspezifische Änderung wird in rc.conf vorgenommen. Um den administrativen Aufwand gering zu halten, existieren in geclusterten Anwendungen mehrere Strategien, globale Konfigurationen von systemspezifischen Konfigurationen zu trennen. Der empfohlene Weg hält die globale Konfiguration in einer separaten Datei z.B. /etc/rc.conf.local. Zum Beispiel so: /etc/rc.conf: sshd_enable="YES" keyrate="fast" defaultrouter="10.1.1.254" /etc/rc.conf.local: hostname="node1.example.org" ifconfig_fxp0="inet 10.1.1.1/8" Die rc.conf Datei kann dann auf jedes System mit rsync oder einem ähnlichen Programm verteilt werden, während die rc.conf.local Datei dabei systemspezifisch bleibt. Bei einem Upgrade des Systems mit &man.sysinstall.8; oder make world wird rc.conf nicht überschrieben, so dass die Systemkonfiguration erhalten bleibt. Die Konfigurationsdatei /etc/rc.conf wird von &man.sh.1; gelesen. Dies erlaubt es dem Systemadministrator, eine bestimmte Menge an Logik dieser Datei hinzuzufügen, was dabei helfen kann, komplexe Konfigurationsszenarien zu erstellen. Lesen Sie dazu &man.rc.conf.5;, um weitere Informationen zu diesem Thema zu erhalten. Konfiguration von Anwendungen Installierte Anwendungen haben typischerweise eigene Konfigurationsdateien, die eine eigene Syntax verwenden. Damit diese Dateien leicht von der Paketverwaltung gefunden und verwaltet werden können, ist es wichtig, sie vom Basissystem zu trennen. /usr/local/etc Für gewöhnlich werden diese Dateien in /usr/local/etc installiert. Besitzt eine Anwendung viele Konfigurationsdateien, werden diese in einem separaten Unterverzeichnis abgelegt. Wenn ein Port oder ein Paket installiert wird, werden normalerweise auch Beispiele für die Konfigurationsdateien installiert. Diese erkennt man gewöhnlich an dem Suffix .default. Wenn keine Konfigurationsdateien für eine Anwendung existieren, werden sie durch Kopieren der .default Dateien erstellt. Als Beispiel sei /usr/local/etc/apache gezeigt: -rw-r--r-- 1 root wheel 2184 May 20 1998 access.conf -rw-r--r-- 1 root wheel 2184 May 20 1998 access.conf.default -rw-r--r-- 1 root wheel 9555 May 20 1998 httpd.conf -rw-r--r-- 1 root wheel 9555 May 20 1998 httpd.conf.default -rw-r--r-- 1 root wheel 12205 May 20 1998 magic -rw-r--r-- 1 root wheel 12205 May 20 1998 magic.default -rw-r--r-- 1 root wheel 2700 May 20 1998 mime.types -rw-r--r-- 1 root wheel 2700 May 20 1998 mime.types.default -rw-r--r-- 1 root wheel 7980 May 20 1998 srm.conf -rw-r--r-- 1 root wheel 7933 May 20 1998 srm.conf.default Anhand der Dateigröße erkennen Sie, dass sich nur srm.conf geändert hat. Eine spätere Aktualisierung des Apache-Ports überschreibt diese Datei nicht. Start von Diensten TomRhodesBeigetragen von Dienste Viele Benutzer installieren Software Dritter auf &os; mithilfe der Ports-Sammlung. Häufig soll die Software bei einem Systemstart mitgestartet werden. Beispielsweise sollen die Dienste mail/postfix oder - www/apache13 nach + www/apache22 nach einem Systemstart laufen. Dieser Abschnitt stellt die Startprozeduren für Software Dritter vor. Unter &os; werden die meisten der im System enthaltenen Dienste wie &man.cron.8; mithilfe von Systemskripten gestartet. Diese Skripten sind abhängig von der &os;- oder Hersteller-Version. Allerdings kann ein Dienst mit einfachen Skripten gestartet werden. Dienste über das <filename>rc.d</filename>-System starten Mit rc.d lässt sich der Start von Anwendungen besser steuern als mit den vorher besprochenen Startskripten. Mit den im Abschnitt rc.d besprochenen Schlüsselwörtern können Anwendungen in einer bestimmten Reihenfolge (zum Beispiel nach DNS) gestartet werden und Optionen können in rc.conf statt fest im Startskript der Anwendung festgelegt werden. Ein einfaches Startskript sieht wie folgt aus: #!/bin/sh # # PROVIDE: utility # REQUIRE: DAEMON # KEYWORD: shutdown . /etc/rc.subr name=utility rcvar=utility_enable command="/usr/local/sbin/utility" load_rc_config $name # # DO NOT CHANGE THESE DEFAULT VALUES HERE # SET THEM IN THE /etc/rc.conf FILE # utility_enable=${utility_enable-"NO"} pidfile=${utility_pidfile-"/var/run/utility.pid"} run_rc_command "$1" Dieses Skript stellt sicher, dass utility nach den DAEMON-Pseudodiensten gestartet wird. Es stellt auch eine Methode bereit, die Prozess-ID (PID) der Anwendung in einer Datei zu speichern. In /etc/rc.conf könnte für diese Anwendung die folgende Zeile stehen: utility_enable="YES" Die Methode erleichtert den Umgang mit Kommandozeilenargumenten, bindet Funktionen aus /etc/rc.subr ein, ist kompatibel zum Werkzeug &man.rcorder.8; und lässt sich über rc.conf leichter konfigurieren. Andere Arten, um Dienste zu starten Dienste wie POP3 oder IMAP können über &man.inetd.8; gestartet werden. Nach der Installation der Anwendung aus der Ports-Sammlung muss eine Konfigurationszeile in der Datei /etc/inetd.conf hinzugefügt oder in der aktuellen Konfiguration durch Entfernen der Kommentare aktiviert werden. Der Abschnitt beschreibt den inetd und dessen Konfiguration. Systemdienste können auch mit &man.cron.8; gestartet werden. Dieser Ansatz hat einige Vorteile; nicht zuletzt, weil &man.cron.8; die Prozesse unter dem Eigentümer der crontab startet, ist es möglich, dass Dienste von nicht-root Benutzern gestartet und gepflegt werden können. Dies nutzt eine Eigenschaft von &man.cron.8;: Für die Zeitangabe kann @reboot eingesetzt werden. Damit wird das Kommando gestartet, wenn &man.cron.8; kurz nach dem Systemboot gestartet wird. Programme mit <command>cron</command> starten TomRhodesBeigetragen von cron Ein sehr nützliches Werkzeug von &os; ist &man.cron.8;. cron läuft im Hintergrund und überprüft fortlaufend die Datei /etc/crontab. Beim Start sucht cron neue crontab-Dateien im Verzeichnis /var/cron/tabs. In den crontab-Dateien wird festgelegt, welche Programme zu welchem Zeitpunkt laufen sollen. Das Werkzeug cron verwendet zwei verschiedene Konfigurationsdateien: Die System-crontab und die Benutzer-crontab. Der einzige Unterschied zwischen beiden Formaten ist das sechste Feld. In der System-crontab gibt das sechste Feld das Konto an, unter dem ein Kommando läuft. Aus der System-crontab können daher Kommandos unter beliebigen Konten gestartet werden. In der Benutzer-crontab gibt das sechste Feld das auszuführende Kommando an. Alle Kommandos laufen unter dem Konto, unter dem die crontab erstellt wurde (ein wichtiges Sicherheitsmerkmal). Benutzer können mit Benutzer-crontabs ohne root-Rechte Befehle terminieren. Die Kommandos in Benutzer-crontabs laufen unter dem Benutzer, der die crontab erstellt hat. Der Benutzer root kann, wie jeder andere Benutzer, eine Benutzer-crontab besitzen. Die Benutzer-crontab von root ist nicht mit der Datei /etc/crontab, der System-crontab, zu verwechseln. Normalerweise besitzt root, wegen der Existenz der System-crontab, keine eigene Benutzer-crontab. Der folgende Auszug aus der System-crontab /etc/crontab zeigt den Aufbau einer crontab-Datei: # /etc/crontab - root's crontab for FreeBSD # # $FreeBSD: src/etc/crontab,v 1.32 2002/11/22 16:13:39 tom Exp $ # # SHELL=/bin/sh PATH=/etc:/bin:/sbin:/usr/bin:/usr/sbin HOME=/var/log # # #minute hour mday month wday who command # # */5 * * * * root /usr/libexec/atrun Das Zeichen # leitet, wie in den meisten Konfigurationsdateien, einen Kommentar ein. Benutzen Sie Kommentare, um die Funktion eines Eintrags zu erläutern. Kommentare müssen in einer extra Zeile stehen. Sie können nicht in derselben Zeile wie ein Kommando stehen, da sie sonst Teil des Kommandos wären. Leerzeilen in dieser Datei werden ignoriert. Umgebungsvariablen werden mit dem Gleichheits-Zeichen (=) festgelegt. Im Beispiel werden die Variablen SHELL, PATH und HOME definiert. Wenn die Variable SHELL nicht definiert wird, benutzt cron die Shell sh. Wird die Variable PATH nicht gesetzt, müssen alle Pfadangaben absolut sein, da es keinen Vorgabewert für PATH gibt. Der Vorgabewert für HOME ist das Heimatverzeichnis des Accounts, dem die crontab gehört. In dieser Zeile werden sieben Felder beschrieben: minute, hour, mday, month, wday, who und command. Die ersten Felder legen den Zeitpunkt fest, an dem ein Kommando laufen soll. Das Feld minute legt die Minute fest, das Feld hour die Stunde, das Feld mday den Tag des Monats. Im Feld month wird der Monat und im Feld wday der Wochentag festgelegt. Alle Felder müssen numerische Werte enthalten und die Zeitangaben sind im 24-Stunden-Format. Das Feld who gibt es nur in der Datei /etc/crontab und gibt den Account an, unter dem das Kommando laufen soll. In den crontab-Dateien einzelner Accounts existiert dieses Feld nicht. Im letzten Feld wird schließlich das auszuführende Kommando angegeben. Diese Zeile definiert die Zeitpunkte an denen das Kommando atrun laufen soll. Beachten Sie die Zeichenfolge */5 gefolgt von mehreren *-Zeichen. Das Zeichen * ist ein Platzhalter und steht für jede mögliche Zeit. Diese Zeile führt das Kommando atrun unter dem root-Account alle fünf Minuten aus. Mehr über das Kommando atrun erfahren Sie in der Hilfeseite &man.atrun.8;. Bei den Kommandos können beliebige Optionen angegeben werden. Wenn das Kommando zu lang ist und auf der nächsten Zeile fortgesetzt werden soll, muss am Ende der Zeile das Fortsetzungszeichen (\) angegeben werden. Bis auf das sechste Feld, das den Account angibt, sieht jede crontab-Datei so wie das Beispiel aus. Das sechste Feld existiert nur in der Systemdatei /etc/crontab. In den restlichen crontab-Dateien fehlt dieses Feld. <filename>crontab</filename> installieren Die nachstehende Prozedur gilt nur für Benutzer-crontabs. Die System-crontab können Sie einfach mit Ihrem Lieblingseditor editieren. Das Werkzeug cron bemerkt, dass sich die Datei geändert hat und wird die neue Version benutzen. Lesen Sie bitte auch die FAQ zur Meldung root: not found. Eine Benutzer-crontab, beispielsweise die Datei crontab, können Sie mit jedem Editor erstellen. Die Benutzer-crontab installieren Sie mit dem nachstehenden Befehl: &prompt.root; crontab crontab Das Argument zum Befehl crontab ist die vorher erstellte Datei crontab. Der Befehl crontab -l zeigt die installierte crontab-Datei an. Benutzer, die eine eigene crontab-Datei ohne Vorlage erstellen wollen, können den Befehl crontab -e verwenden. Dieser Befehl ruft einen Editor auf und installiert beim Verlassen des Editors die crontab-Datei. Wollen Sie die installierte Benutzer-crontab entfernen, rufen Sie den Befehl crontab mit der Option auf. Das rc-System für Systemdienste TomRhodesBeigetragen von 2002 wurde das rc.d-System von NetBSD zum Start von Systemdiensten in &os; integriert. Die zu diesem System gehörenden Dateien sind im Verzeichnis /etc/rc.d abgelegt. Die Skripten in diesem Verzeichnis akzeptieren die Optionen , und . Beispielsweise kann &man.sshd.8; mit dem nachstehenden Kommando neu gestartet werden: &prompt.root; /etc/rc.d/sshd restart Analog können Sie andere Dienste starten und stoppen. Normalerweise werden die Dienste beim Systemstart über Einträge in der Datei &man.rc.conf.5; automatisch gestartet. Der Network Address Translation Dæmon wird zum Beispiel mit dem folgenden Eintrag in /etc/rc.conf aktiviert: natd_enable="YES" Wenn dort bereits die Zeile existiert, ändern Sie einfach in . Die rc-Skripten starten, wie unten beschrieben, auch abhängige Dienste. Da das rcNG-System primär zum automatischen Starten und Stoppen von Systemdiensten dient, funktionieren die Optionen , und nur, wenn die entsprechenden Variablen in /etc/rc.conf gesetzt sind. Beispielsweise funktioniert das Kommando sshd restart nur dann, wenn in /etc/rc.conf die Variable sshd_enable auf gesetzt wurde. Wenn Sie die Optionen , oder unabhängig von den Einstellungen in /etc/rc.conf benutzen wollen, müssen Sie den Optionen mit dem Präfix one verwenden. Um beispielsweise sshd unabhängig von den Einstellungen in /etc/rc.conf neu zu starten, benutzen Sie das nachstehende Kommando: &prompt.root; /etc/rc.d/sshd onerestart Ob ein Dienst in /etc/rc.conf aktiviert ist, können Sie leicht herausfinden, indem Sie das entsprechende rc.d-Skript mit der Option aufrufen. Ein Administrator kann beispielsweise wie folgt prüfen, ob der sshd-Dienst in /etc/rc.conf aktiviert ist: &prompt.root; /etc/rc.d/sshd rcvar # sshd $sshd_enable=YES Die zweite Zeile (# sshd) wird vom Kommando sshd ausgegeben; sie kennzeichnet nicht die Eingabeaufforderung von root. Ob ein Dienst läuft, kann mit der Option abgefragt werden. Das folgende Kommando überprüft, ob der sshd auch wirklich gestartet wurde: &prompt.root; /etc/rc.d/sshd status sshd is running as pid 433. Einige Dienste können über die Option neu initialisiert werden. Dazu wird dem Dienst über ein Signal mitgeteilt, dass er seine Konfigurationsdateien neu einlesen soll. Oft wird dazu das Signal SIGHUP verwendet. Beachten Sie aber, dass nicht alle Dienste diese Option unterstützen. Die meisten Systemdienste werden beim Systemstart vom rc.d-System gestartet. Zum Beispiel aktiviert das Skript bgfsck die Prüfung von Dateisystemen im Hintergrund. Das Skript gibt die folgende Meldung aus, wenn es gestartet wird: Starting background file system checks in 60 seconds. Viele Systemdienste hängen von anderen Diensten ab. NIS und andere RPC-basierende Systeme hängen beispielsweise von dem rpcbind-Dienst (portmapper) ab. Im Kopf der Startskripten befinden sich die Informationen über Abhängigkeiten von anderen Diensten und weitere Metadaten.Mithilfe dieser Daten bestimmt das Programm &man.rcorder.8; beim Systemstart die Startreihenfolge der Dienste. Folgende Schlüsselwörter müssen im Kopf aller Startskripten verwendet werden (da sie von &man.rc.subr.8; zum Aktivieren des Startskripts benötigt werden: PROVIDE: Gibt die Namen der Dienste an, die mit dieser Datei zur Verfügung gestellt werden. Die folgenden Schlüsselwörter können im Kopf des Startskripts angegeben werden. Sie sind zwar nicht unbedingt notwendig, sind aber hilfreich beim Umgang mit &man.rcorder.8;: REQUIRE: Gibt die Namen der Dienste an, von denen dieser Dienst abhängt. Diese Datei wird nach den angegebenen Diensten ausgeführt. BEFORE: Zählt Dienste auf, die auf diesen Dienst angewiesen sind. Diese Datei wird vor den angegebenen Diensten ausgeführt. Durch das Verwenden dieser Schlüsselwörter kann ein Administrator die Startreihenfolge von Systemdiensten feingranuliert steuern, ohne mit den Schwierigkeiten des runlevel-Systems anderer &unix; Systeme kämpfen zu müssen. Weitere Informationen über das rc.d-System finden sich in den Manualpages zu &man.rc.8; sowie &man.rc.subr.8;. Wenn Sie Ihre eigenen rc.d-Skripte schreiben wollen, sollten Sie den Artikel Practical rc.d scripting in BSD lesen. Einrichten von Netzwerkkarten MarcFonvieilleBeigetragen von Netzwerkkarten einrichten Ein Rechner ohne Netzanschluss ist heute nicht mehr vorstellbar. Die Konfiguration einer Netzwerkkarte gehört zu den alltäglichen Aufgaben eines &os; Administrators. Bestimmen des richtigen Treibers Netzwerkkarten Treiber Bevor Sie anfangen, sollten Sie das Modell Ihrer Karte kennen, wissen welchen Chip die Karte benutzt und bestimmen, ob es sich um eine PCI- oder ISA-Karte handelt. Eine Aufzählung der unterstützten PCI- und ISA-Karten finden Sie in der Liste der unterstützen Geräte. Schauen Sie nach, ob Ihre Karte dort aufgeführt ist. Wenn Sie wissen, dass Ihre Karte unterstützt wird, müssen Sie den Treiber für Ihre Karte bestimmen. /usr/src/sys/conf/NOTES und /usr/src/sys/arch/conf/NOTES enthalten eine Liste der verfügbaren Treiber mit Informationen zu den unterstützten Chipsätzen und Karten. Wenn Sie sich nicht sicher sind, ob Sie den richtigen Treiber ausgewählt haben, lesen Sie die Hilfeseite des Treibers. Die Hilfeseite enthält weitere Informationen über die unterstützten Geräte und macht auch auf mögliche Probleme aufmerksam. Wenn Sie eine gebräuchliche Karte besitzen, brauchen Sie meistens nicht lange nach dem passenden Treiber zu suchen. Die Treiber zu diesen Karten sind schon im GENERIC-Kernel enthalten und die Karte sollte während des Systemstarts erkannt werden: dc0: <82c169 PNIC 10/100BaseTX> port 0xa000-0xa0ff mem 0xd3800000-0xd38 000ff irq 15 at device 11.0 on pci0 miibus0: <MII bus> on dc0 bmtphy0: <BCM5201 10/100baseTX PHY> PHY 1 on miibus0 bmtphy0: 10baseT, 10baseT-FDX, 100baseTX, 100baseTX-FDX, auto dc0: Ethernet address: 00:a0:cc:da:da:da dc0: [ITHREAD] dc1: <82c169 PNIC 10/100BaseTX> port 0x9800-0x98ff mem 0xd3000000-0xd30 000ff irq 11 at device 12.0 on pci0 miibus1: <MII bus> on dc1 bmtphy1: <BCM5201 10/100baseTX PHY> PHY 1 on miibus1 bmtphy1: 10baseT, 10baseT-FDX, 100baseTX, 100baseTX-FDX, auto dc1: Ethernet address: 00:a0:cc:da:da:db dc1: [ITHREAD] Im Beispiel erkennt das System zwei Karten, die den &man.dc.4; Treiber benutzen. Ist der Treiber für Ihre Netzwerkkarte nicht in GENERIC enthalten, müssen Sie den Treiber laden, um die Karte zu benutzen. Sie können den Treiber auf zwei Arten laden: Am einfachsten ist es, das Kernelmodul für Ihre Karte mit &man.kldload.8; zu laden. Allerdings gibt es nicht für alle Karten Kernelmodule; zum Beispiel gibt es keine Kernelmodule für ISA-Karten. Alternativ können Sie den Treiber für die Karte fest in den Kernel einbinden. Schauen Sie sich dazu /usr/src/sys/conf/NOTES, /usr/src/sys/arch/conf/NOTES und die Hilfeseite des Treibers, den Sie in den Kernel einbinden möchten, an. Die Übersetzung des Kernels wird in beschrieben. Wenn Ihre Karte während des Systemstarts vom Kernel (GENERIC) erkannt wurde, müssen Sie den Kernel nicht neu übersetzen. &windows;-NDIS-Treiber einsetzen NDIS NDISulator &windows;-Treiber Microsoft Windows Microsoft Windows Gerätetreiber KLD (kernel loadable object) Leider stellen nach wie vor viele Unternehmen die Spezifikationen ihrer Treiber der Open Source Gemeinde nicht zur Verfügung, weil sie diese Informationen als Geschäftsgeheimnisse betrachten. Daher haben die Entwickler von FreeBSD und anderen Betriebssystemen nur zwei Möglichkeiten. Entweder versuchen sie in einem aufwändigen Prozess den Treiber durch Reverse Engineering nachzubauen, oder sie versuchen, die vorhandenen Binärtreiber der µsoft.windows;-Plattform zu verwenden. Die meisten Entwickler, darunter auch die an FreeBSD beteiligten, haben sich für den zweiten Ansatz entschieden. Bill Paul (wpaul) ist es zu verdanken, dass es seit eine native Unterstützung der Network Driver Interface Specification (NDIS) gibt. Der FreeBSD NDISulator (auch als Project Evil bekannt) nutzt den binären &windows;-Treiber, indem er diesem vorgibt, unter &windows; zu laufen. Da der &man.ndis.4;-Treiber eine &windows;-Binärdatei nutzt, kann er nur auf &i386;- und amd64-Systemen verwendet werden. Der &man.ndis.4;-Treiber unterstützt primär PCI-, CardBus- sowie PCMCIA-Geräte, USB-Geräte werden hingegen noch nicht unterstützt. Um den NDISulator zu verwenden, benötigen Sie drei Dinge: Die Kernelquellen Den &windowsxp;-Binärtreiber (mit der Erweiterung .SYS) Die Konfigurationsdatei des &windowsxp;-Treibers (mit der Erweiterung .INF) Suchen Sie die Dateien für Ihre Karte. Diese befinden sich meistens auf einer beigelegten CD-ROM, oder können von der Internetseite des Herstellers heruntergeladen werden. In den folgenden Beispielen werden die Dateien W32DRIVER.SYS und W32DRIVER.INF verwendet. Sie können einen &windows;/i386-Treiber nicht unter &os;/amd64 einsetzen, vielmehr benötigen Sie dafür einen &windows;/amd64-Treiber. Als Nächstes kompilieren Sie den binären Treiber, um ein Kernelmodul zu erzeugen. Dazu rufen Sie als root &man.ndisgen.8; auf: &prompt.root; ndisgen /path/to/W32DRIVER.INF /path/to/W32DRIVER.SYS &man.ndisgen.8; arbeitet interaktiv, benötigt es weitere Informationen, so fragt es Sie danach. Als Ergebnis erhalten Sie ein Kernelmodul im Arbeitsverzeichnis, das Sie wie folgt laden können: &prompt.root; kldload ./W32DRIVER.ko Neben dem vorhin erzeugten Kernelmodul müssen Sie auch die Kernelmodule ndis.ko und if_ndis.ko laden. Diese Module sollten automatisch geladen werden, wenn Sie ein von &man.ndis.4; abhängiges Modul laden. Wollen Sie die Module hingegen manuell laden, geben Sie die folgenden Befehle ein: &prompt.root; kldload ndis &prompt.root; kldload if_ndis Der erste Befehl lädt dabei den NDIS-Miniport-Treiber, der zweite das tatsächliche Netzwerkgerät. Überprüfen Sie nun die Ausgabe von &man.dmesg.8; auf eventuelle Fehler während des Ladevorgangs. Gab es dabei keine Probleme, sollten Sie eine Ausgabe ähnlich der folgenden erhalten: ndis0: <Wireless-G PCI Adapter> mem 0xf4100000-0xf4101fff irq 3 at device 8.0 on pci1 ndis0: NDIS API version: 5.0 ndis0: Ethernet address: 0a:b1:2c:d3:4e:f5 ndis0: 11b rates: 1Mbps 2Mbps 5.5Mbps 11Mbps ndis0: 11g rates: 6Mbps 9Mbps 12Mbps 18Mbps 36Mbps 48Mbps 54Mbps Ab jetzt können Sie mit dem Gerät ndis0 wie mit jeder anderen Gerätedatei (etwa dc0) arbeiten. Wie jedes Kernelmodul können auch die NDIS-Module beim Systemstart automatisch geladen werden. Dazu kopieren Sie das erzeugte Modul (W32DRIVER_SYS.ko) in das Verzeichnis /boot/modules. Danach fügen Sie die folgende Zeile in /boot/loader.conf ein: W32DRIVER_SYS_load="YES" Konfiguration von Netzwerkkarten Netzwerkkarten einrichten Nachdem der richtige Treiber für die Karte geladen ist, muss die Karte konfiguriert werden. Unter Umständen ist die Karte schon während der Installation mit sysinstall konfiguriert worden. Das nachstehende Kommando zeigt die Konfiguration der Karten eines Systems an: &prompt.user; ifconfig dc0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric 0 mtu 1500 options=80008<VLAN_MTU,LINKSTATE> ether 00:a0:cc:da:da:da inet 192.168.1.3 netmask 0xffffff00 broadcast 192.168.1.255 media: Ethernet autoselect (100baseTX <full-duplex>) status: active dc1: flags=8802<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric 0 mtu 1500 options=80008<VLAN_MTU,LINKSTATE> ether 00:a0:cc:da:da:db inet 10.0.0.1 netmask 0xffffff00 broadcast 10.0.0.255 media: Ethernet 10baseT/UTP status: no carrier plip0: flags=8810<POINTOPOINT,SIMPLEX,MULTICAST> metric 0 mtu 1500 lo0: flags=8049<UP,LOOPBACK,RUNNING,MULTICAST> metric 0 mtu 16384 options=3<RXCSUM,TXCSUM> inet6 fe80::1%lo0 prefixlen 64 scopeid 0x4 inet6 ::1 prefixlen 128 inet 127.0.0.1 netmask 0xff000000 nd6 options=3<PERFORMNUD,ACCEPT_RTADV> Im Beispiel werden Informationen zu den folgenden Geräten angezeigt: dc0: Der erste Ethernet-Adapter dc1: Der zweite Ethernet-Adapter plip0: Die parallele Schnittstelle (falls Ihr System über eine derartige Schnittstelle verfügt) lo0: Das Loopback-Gerät Der Name der Netzwerkkarte wird aus dem Namen des Treibers und einer Zahl zusammengesetzt. Die Zahl gibt die Reihenfolge an, in der die Geräte beim Systemstart erkannt wurden. Die dritte Karte, die den &man.sis.4; Treiber benutzt, würde beispielsweise sis2 heißen. Der Adapter dc0 aus dem Beispiel ist aktiv. Sie erkennen das an den folgenden Hinweisen: UP bedeutet, dass die Karte konfiguriert und aktiv ist. Der Karte wurde die Internet-Adresse (inet) 192.168.1.3 zugewiesen. Die Subnetzmaske ist richtig (0xffffff00 entspricht 255.255.255.0). Die Broadcast-Adresse 192.168.1.255 ist richtig. Die MAC-Adresse der Karte (ether) lautet 00:a0:cc:da:da:da. Die automatische Medienerkennung ist aktiviert (media: Ethernet autoselect (100baseTX <full-duplex>)). Der Adapter dc1 benutzt das Medium 10baseT/UTP. Weitere Informationen über die einstellbaren Medien entnehmen Sie bitte der Hilfeseite des Treibers. Der Verbindungsstatus (status) ist active, das heißt es wurde ein Trägersignal entdeckt. Für dc1 wird status: no carrier angezeigt. Das ist normal, wenn kein Kabel an der Karte angeschlossen ist. Wäre die Karte nicht konfiguriert, würde die Ausgabe von &man.ifconfig.8; so aussehen: dc0: flags=8843<BROADCAST,SIMPLEX,MULTICAST> metric 0 mtu 1500 options=80008<VLAN_MTU,LINKSTATE> ether 00:a0:cc:da:da:da media: Ethernet autoselect (100baseTX <full-duplex>) status: active Sie brauchen die Berechtigungen von root, um Ihre Karte zu konfigurieren. Die Konfiguration kann auf der Kommandozeile mit &man.ifconfig.8; erfolgen, allerdings müsste sie dann nach jedem Neustart wiederholt werden. Dauerhaft wird die Karte in /etc/rc.conf konfiguriert. Öffnen Sie /etc/rc.conf mit Ihrem Lieblingseditor und fügen Sie für jede Karte Ihres Systems eine Zeile hinzu. In dem hier diskutierten Fall wurden die nachstehenden Zeilen eingefügt: ifconfig_dc0="inet 192.168.1.3 netmask 255.255.255.0" ifconfig_dc1="inet 10.0.0.1 netmask 255.255.255.0 media 10baseT/UTP" Ersetzen Sie dc0, dc1 usw. durch die Gerätenamen Ihrer Karten und setzen Sie die richtigen IP-Adressen ein. Die Hilfeseiten des Treibers und &man.ifconfig.8; enthalten weitere Einzelheiten über verfügbare Optionen. Die Syntax von /etc/rc.conf wird in &man.rc.conf.5; erklärt. Wenn Sie das Netz während der Installation konfiguriert haben, existieren vielleicht schon Einträge für Ihre Karten. Überprüfen Sie /etc/rc.conf bevor Sie weitere Zeilen hinzufügen. In /etc/hosts können Sie die Namen und IP-Adressen der Rechner Ihres LANs eintragen. Weitere Informationen entnehmen Sie bitte &man.hosts.5; und /usr/share/examples/etc/hosts. Soll Ihr System sich auch mit dem Internet verbinden können, müssen Sie Default-Gateway und Nameserver manuell konfigurieren: &prompt.root; echo 'defaultrouter="Ihr_Default_Gateway"' >> /etc/rc.conf &prompt.root; echo 'nameserver Ihr_DNS_Server' >> /etc/resolv.conf Test und Fehlersuche Nachdem Sie die notwendigen Änderungen in /etc/rc.conf vorgenommen haben, führen Sie einen Neustart Ihres Systems durch. Dadurch werden die Adapter konfiguriert und Sie stellen sicher, dass der Start ohne Konfigurationsfehler erfolgt. Alternativ können Sie auch lediglich die Netzwerkeinstellungen neu initialisieren: &prompt.root; /etc/rc.d/netif restart Haben Sie ein Default-Gateway definiert (in der Datei /etc/rc.conf), müssen Sie auch den folgenden Befehl ausführen: &prompt.root; /etc/rc.d/routing restart Wenn das System gestartet ist, sollten Sie die Netzwerkkarten testen. Test der Ethernet-Karte Netzwerkkarten testen Mit zwei Tests können Sie prüfen, ob die Ethernet-Karte richtig konfiguriert ist. Testen Sie zuerst mit ping den Adapter selbst und sprechen Sie dann eine andere Maschine im LAN an. Zuerst, der Test des Adapters: &prompt.user; ping -c5 192.168.1.3 PING 192.168.1.3 (192.168.1.3): 56 data bytes 64 bytes from 192.168.1.3: icmp_seq=0 ttl=64 time=0.082 ms 64 bytes from 192.168.1.3: icmp_seq=1 ttl=64 time=0.074 ms 64 bytes from 192.168.1.3: icmp_seq=2 ttl=64 time=0.076 ms 64 bytes from 192.168.1.3: icmp_seq=3 ttl=64 time=0.108 ms 64 bytes from 192.168.1.3: icmp_seq=4 ttl=64 time=0.076 ms --- 192.168.1.3 ping statistics --- 5 packets transmitted, 5 packets received, 0% packet loss round-trip min/avg/max/stddev = 0.074/0.083/0.108/0.013 ms Jetzt versuchen wir, eine andere Maschine im LAN zu erreichen: &prompt.user; ping -c5 192.168.1.2 PING 192.168.1.2 (192.168.1.2): 56 data bytes 64 bytes from 192.168.1.2: icmp_seq=0 ttl=64 time=0.726 ms 64 bytes from 192.168.1.2: icmp_seq=1 ttl=64 time=0.766 ms 64 bytes from 192.168.1.2: icmp_seq=2 ttl=64 time=0.700 ms 64 bytes from 192.168.1.2: icmp_seq=3 ttl=64 time=0.747 ms 64 bytes from 192.168.1.2: icmp_seq=4 ttl=64 time=0.704 ms --- 192.168.1.2 ping statistics --- 5 packets transmitted, 5 packets received, 0% packet loss round-trip min/avg/max/stddev = 0.700/0.729/0.766/0.025 ms Sie können auch den Namen der Maschine anstelle von 192.168.1.2 benutzen, wenn Sie /etc/hosts entsprechend eingerichtet haben. Fehlersuche Netzwerkkarten Fehlersuche Fehler zu beheben, ist immer sehr mühsam. Indem Sie die einfachen Sachen zuerst prüfen, erleichtern Sie sich die Aufgabe. Steckt das Netwerkkabel? Sind die Netzwerkdienste richtig konfiguriert? Funktioniert die Firewall? Wird die Netwerkkarte von &os; unterstützt? Lesen Sie immer die Hardware-Informationen des Releases, bevor Sie einen Fehlerbericht einsenden. Aktualisieren Sie Ihre &os;-Version auf -STABLE. Suchen Sie in den Archiven der Mailinglisten oder auf dem Internet nach bekannten Lösungen. Wenn die Karte funktioniert, die Verbindungen aber zu langsam sind, lesen Sie bitte die Hilfeseite &man.tuning.7;. Prüfen Sie auch die Netzwerkkonfiguration, da falsche Einstellungen die Ursache für langsame Verbindungen sein können. Wenn Sie viele device timeout Meldungen in den Systemprotokollen finden, prüfen Sie, dass es keinen Konflikt zwischen der Netzwerkkarte und anderen Geräten Ihres Systems gibt. Überprüfen Sie nochmals die Verkabelung. Unter Umständen benötigen Sie eine neue Netzwerkkarte. Wenn Sie in den Systemprotokollen watchdog timeout Fehlermeldungen finden, kontrollieren Sie zuerst die Verkabelung. Überprüfen Sie dann, ob der PCI-Steckplatz der Karte Bus Mastering unterstützt. Auf einigen älteren Motherboards ist das nur für einen Steckplatz (meistens Steckplatz 0) der Fall. Lesen Sie in der Dokumentation Ihrer Karte und Ihres Motherboards nach, ob das vielleicht die Ursache des Problems sein könnte. Die Meldung No route to host erscheint, wenn Ihr System ein Paket nicht zustellen kann. Das kann vorkommen weil beispielsweise keine Default-Route gesetzt wurde oder das Netzwerkkabel nicht richtig steckt. Schauen Sie in der Ausgabe von netstat -rn nach, ob eine Route zu dem Zielsystem existiert. Wenn nicht, lesen Sie bitte das . Die Meldung ping: sendto: Permission denied wird oft von einer falsch konfigurierten Firewall verursacht. Wenn keine Regeln definiert wurden, blockiert eine aktivierte Firewall alle Pakete, selbst einfache ping-Pakete. Weitere Informationen erhalten Sie in . Falls die Leistung der Karte schlecht ist, setzen Sie die Medienerkennung von autoselect (automatisch) auf das richtige Medium. In vielen Fällen löst diese Maßnahme Leistungsprobleme. Wenn nicht, prüfen Sie nochmal die Netzwerkeinstellungen und lesen Sie die Hilfeseite &man.tuning.7;. Virtual Hosts virtual hosts IP-Aliase Ein gebräuchlicher Zweck von &os; ist das virtuelle Hosting, bei dem ein Server im Netzwerk wie mehrere Server aussieht. Dies wird dadurch erreicht, dass einem Netzwerkinterface mehrere Netzwerk-Adressen zugewiesen werden. Ein Netzwerkinterface hat eine echte Adresse und kann beliebig viele alias Adressen haben. Die Aliase werden durch entsprechende alias Einträge in /etc/rc.conf festgelegt. Ein alias Eintrag für das Interface fxp0 sieht wie folgt aus: ifconfig_fxp0_alias0="inet xxx.xxx.xxx.xxx netmask xxx.xxx.xxx.xxx" Beachten Sie, dass die Alias-Einträge mit alias0 anfangen müssen und weiter hochgezählt werden, das heißt _alias1, _alias2, und so weiter. Die Konfiguration der Aliase hört bei der ersten fehlenden Zahl auf. Die Berechnung der Alias-Netzwerkmasken ist wichtig, doch zum Glück einfach. Für jedes Interface muss es eine Adresse geben, die die Netzwerkmaske des Netzwerkes richtig beschreibt. Alle anderen Adressen in diesem Netzwerk haben dann eine Netzwerkmaske, die mit 1 gefüllt ist (also 255.255.255.255 oder hexadezimal 0xffffffff). Als Beispiel betrachten wir den Fall, in dem fxp0 mit zwei Netzwerken verbunden ist: dem Netzwerk 10.1.1.0 mit der Netzwerkmaske 255.255.255.0 und dem Netzwerk 202.0.75.16 mit der Netzwerkmaske 255.255.255.240. Das System soll die Adressen 10.1.1.1 bis 10.1.1.5 und 202.0.75.17 bis 202.0.75.20 belegen. Wie eben beschrieben, hat nur die erste Adresse in einem Netzwerk (hier 10.0.1.1 und 202.0.75.17) die richtige Netzwerkmaske. Alle anderen Adressen (10.1.1.2 bis 10.1.1.5 und 202.0.75.18 bis 202.0.75.20) erhalten die Maske 255.255.255.255. Die folgenden Einträge in /etc/rc.conf konfigurieren den Adapter entsprechend dem Beispiel: ifconfig_fxp0="inet 10.1.1.1 netmask 255.255.255.0" ifconfig_fxp0_alias0="inet 10.1.1.2 netmask 255.255.255.255" ifconfig_fxp0_alias1="inet 10.1.1.3 netmask 255.255.255.255" ifconfig_fxp0_alias2="inet 10.1.1.4 netmask 255.255.255.255" ifconfig_fxp0_alias3="inet 10.1.1.5 netmask 255.255.255.255" ifconfig_fxp0_alias4="inet 202.0.75.17 netmask 255.255.255.240" ifconfig_fxp0_alias5="inet 202.0.75.18 netmask 255.255.255.255" ifconfig_fxp0_alias6="inet 202.0.75.19 netmask 255.255.255.255" ifconfig_fxp0_alias7="inet 202.0.75.20 netmask 255.255.255.255" Konfiguration des <application>syslogd</application> Servers Niclas Zeising Beigetragen von system logging syslog syslogd Das Aufzeichnen von Log-Meldungen ist ein wichtiger Aspekt der Systemadministration. Es wird nicht nur verwendet um Hard- und Softwarefehler ausfindig zu machen, auch zur Überwachung der Sicherheit und der Reaktion bei einem Zwischenfall spielen diese Aufzeichnungen eine wichtige Rolle. Systemdienste ohne kontrollierendes Terminal senden Meldungen in der Regel an einen Log-Server, oder schreiben sie in eine Logdatei. Dieser Abschnitt beschreibt die Konfiguration und Verwendung des &os; &man.syslogd.8; Servers, und diskutiert auch die Log-Rotation und das Management von Logdateien mit &man.newsyslog.8;. Der Fokus wird hierbei auf die Einrichtung und Benutzung eines syslogd auf dem lokalen Rechner gelegt. Für erweiterte Einstellungen und die Verwendung eines separaten Log-Servers lesen Sie bitte . Verwendung von <application>syslogd</application> In der Standardkonfiguration von &os; wird &man.syslogd.8; beim Booten automatisch gestartet. Dieses Verhalten wird über die Variable syslogd_enable in /etc/rc.conf gesteuert. Dazu gibt es noch zahlreiche Argumente, die das Verhalten von &man.syslogd.8; beeinflussen. Benutzen Sie zum verändern dieser Argumente syslogd_flags in /etc/rc.conf. Lesen Sie &man.syslogd.8; für weitere Informationen über die Argumente, und &man.rc.conf.5;, und wenn Sie mehr über /etc/rc.conf und das &man.rc.8;-Subsystem wissen möchten. Konfiguration von <application>syslogd</application> syslog.conf Die Konfigurationsdatei /etc/syslog.conf steuert, was &man.syslogd.8; mit Log-Meldungen macht, sobald sie empfangen werden. Es gibt verschiedene Parameter, die das Verhalten bei eingehenden Ereignissen kontrollieren. Zu den grundlegenden gehören facility und level. facility beschreibt das Subsystem, welches das Ereignis generiert hat. Beispielsweise der Kernel, oder ein Daemon. level hingegen beschreibt den Schweregrad des aufgetretenen Ereignisses. Dies macht es möglich, Meldungen in verschiedenen Logdateien zu protokollieren, oder Meldungen zu verwerfen, je nach Konfiguration von facility und level. Ebenfalls besteht die Möglichkeit auf Meldungen zu reagieren, die von einer bestimmten Anwendung stammen, oder von einem spezifischen Host erzeugt wurden. Die Konfiguration von &man.syslogd.8; ist recht einfach. In der Konfigurationsdatei wird pro Zeile eine Aktion definiert und die Syntax besteht aus einem Auswahlfeld, gefolgt von einem Aktionsfeld. Die Syntax für das Auswahlfeld ist facility.level. Dies entspricht Log-Meldungen von facility mit einem Level von level oder höher. Um noch präziser festzulegen was protokolliert wird, kann dem Level optional ein Vergleichsflag vorangestellt werden. Mehrere Auswahlen können, durch Semikolon (;) getrennt, für die gleiche Aktion verwendet werden. * wählt dabei alles aus. Das Aktionsfeld definiert, wohin die Log-Meldungen gesendet werden, beispielsweise in eine Datei oder zu einem entfernten Log-Server. Als Beispiel dient hier /etc/syslog.conf aus &os;: # $&os;$ # # Spaces ARE valid field separators in this file. However, # other *nix-like systems still insist on using tabs as field # separators. If you are sharing this file between systems, you$ # may want to use only tabs as field separators here. # Consult the syslog.conf(5) manpage. *.err;kern.warning;auth.notice;mail.crit /dev/console *.notice;authpriv.none;kern.debug;lpr.info;mail.crit;news.err /var/log/messages security.* /var/log/security auth.info;authpriv.info /var/log/auth.log mail.info /var/log/maillog lpr.info /var/log/lpd-errs ftp.info /var/log/xferlog cron.* /var/log/cron !-devd *.=debug /var/log/debug.log *.emerg * # uncomment this to log all writes to /dev/console to /var/log/console.log #console.info /var/log/console.log # uncomment this to enable logging of all log messages to /var/log/all.log # touch /var/log/all.log and chmod it to mode 600 before it will work #*.* /var/log/all.log # uncomment this to enable logging to a remote loghost named loghost #*.* @loghost # uncomment these if you're running inn # news.crit /var/log/news/news.crit # news.err /var/log/news/news.err # news.notice /var/log/news/news.notice # Uncomment this if you wish to see messages produced by devd # !devd # *.>=info !ppp *.* /var/log/ppp.log !* Selektiert alle Meldungen vom Level err, sowie kern.warning, auth.notice und mail.crit und schickt diese zur Konsole (/dev/console). Selektiert alle Meldungen von mail ab dem Level info oder höher und schreibt diese in /var/log/maillog. Diese Zeile benutzt das Vergleichsflag =, um nur Meldungen vom Level debug zu selektieren und schreibt diese in /var/log/debug.log. Hier ist ein Beispiel für die Nutzung einer Programmspezifikation. Die nachfolgenden Regeln sind dann nur für Programme gültig, welche der Programmspezifikation stehen. In diesem Fall landen alle Meldungen von ppp (und keinem anderen Programm) in /var/log/ppp.log. Dieses Beispiel zeigt, dass es jede Menge Level und Subsysteme gibt. Die Level, beginnend mit den höchst kritischen, hin zu den weniger kritischen, sind: emerg, alert, crit, err, warning, notice, info und debug. Die facilities, in beliebiger Reihenfolge, sind: auth, authpriv, console, cron, daemon, ftp, kern, lpr, mail, mark, news, security, syslog, user, uucp, sowie local0 bis local7. Beachten Sie, dass andere Betriebssysteme hiervon abweichende facilities haben können. Mit diesem Wissen ist es nun einfach, eine weitere Zeile in /etc/syslog.conf hinzuzufügen, welche alle Meldungen von den unterschiedlichsten Dämonen mit einem Level von notice und höher in /var/log/daemon.log. Fügen Sie einfach folgendes hinzu: daemon.notice /var/log/daemon.log Für weitere Informationen zu verschiedenen Level und faclilities, lesen Sie &man.syslog.3; und &man.syslogd.8;. Weitere Informationen zu syslog.conf, dessen Syntax und erweiterten Anwendungsbeispielen, finden Sie in &man.syslog.conf.5; und . Log-Management und Rotation mit <application>newsyslog</application> newsyslog newsyslog.conf log rotation log management In der Regel wachsen Log-Dateien schnell und ihre Anzahl steigt kontinuierlich. Dies führt dazu, dass sich sehr viele Dateien mit Informationen anhäufen die Sie nicht umgehend benötigen, außerdem verbraucht die Speicherung von Log-Dateien natürlich auch Festplattenplatz. Um diesen Effekt zu mildern, kommt das Log-Management ins Spiel. &os; verwendet &man.newsyslog.8;, für die Verwaltung von Log-Dateien. Dieses Programm wird verwendet, um in regelmäßigen Abständen Dateien zu rotieren und zu komprimieren, sowie gegebenenfalls fehlende Log-Dateien zu erstellen und Programme zu benachrichtigen, wenn Log-Dateien verschoben wurden. Dabei müssen die Log-Dateien nicht unbedingt von syslog stammen, &man.newsyslog.8; ist auch in der Lage, Nachrichten von anderen Programmen zu verarbeiten. Es sei noch angemerkt, dass &man.newsyslog.8; normalerweise von &man.cron.8; aufgerufen wird und kein Systemdämon ist. In der Standardkonfiguration wird dieser Job jede Stunde ausgeführt. Konfiguration von <application>newsyslog</application> Um zu wissen, welche Maßnahmen zu ergreifen sind, liest &man.newsyslog.8; seine Konfigurationsdatei, standardmäßig /etc/newsyslog.conf. Diese Konfigurationsdatei enthält eine Zeile für jede Datei, die von &man.newsyslog.8; verwaltet wird. Jede Zeile enthält Informationen über den Besitzer der Datei, die Dateiberechtigungen und wann die Datei rotiert wird. Zudem noch optionale Flags, welche die Log-Rotation beeinflussen (bspw. Komprimierung) und Programme, denen ein Signal geschickt wird, wenn Log-Dateien rotiert werden. Als Beispiel folgt hier die Standardkonfiguration in &os;: # configuration file for newsyslog # $&os;$ # # Entries which do not specify the '/pid_file' field will cause the # syslogd process to be signalled when that log file is rotated. This # action is only appropriate for log files which are written to by the # syslogd process (ie, files listed in /etc/syslog.conf). If there # is no process which needs to be signalled when a given log file is # rotated, then the entry for that file should include the 'N' flag. # # The 'flags' field is one or more of the letters: BCDGJNUXZ or a '-'. # # Note: some sites will want to select more restrictive protections than the # defaults. In particular, it may be desirable to switch many of the 644 # entries to 640 or 600. For example, some sites will consider the # contents of maillog, messages, and lpd-errs to be confidential. In the # future, these defaults may change to more conservative ones. # # logfilename [owner:group] mode count size when flags [/pid_file] [sig_num] /var/log/all.log 600 7 * @T00 J /var/log/amd.log 644 7 100 * J /var/log/auth.log 600 7 100 @0101T JC /var/log/console.log 600 5 100 * J /var/log/cron 600 3 100 * JC /var/log/daily.log 640 7 * @T00 JN /var/log/debug.log 600 7 100 * JC /var/log/kerberos.log 600 7 100 * J /var/log/lpd-errs 644 7 100 * JC /var/log/maillog 640 7 * @T00 JC /var/log/messages 644 5 100 @0101T JC /var/log/monthly.log 640 12 * $M1D0 JN /var/log/pflog 600 3 100 * JB /var/run/pflogd.pid /var/log/ppp.log root:network 640 3 100 * JC /var/log/devd.log 644 3 100 * JC /var/log/security 600 10 100 * JC /var/log/sendmail.st 640 10 * 168 B /var/log/utx.log 644 3 * @01T05 B /var/log/weekly.log 640 5 1 $W6D0 JN /var/log/xferlog 600 7 100 * JC Jede Zeile beginnt mit dem Namen der Datei, die rotiert werden soll, optional gefolgt von Besitzer und Gruppe für rotierende, als auch für neu erstellte Dateien. Das nächste Feld, mode, definiert die Zugriffsrechte der Datei. count gibt an, wie viele rotierte Dateien aufbewahrt werden sollen. Anhand der size- und when-Flags erkennt newsyslog, wann die Datei rotiert werden muss. Eine Log-Datei wird rotiert, wenn ihre Größe den Wert von size überschreitet, oder wenn die Zeit im when-Feld abgelaufen ist. Ein * bedeutet, dass dieses Feld ignoriert wird. Das flags-Feld gibt &man.newsyslog.8; weitere Instruktionen, zum Beispiel wie eine Datei zu rotieren ist, oder eine Datei zu erstellen falls diese nicht existiert. Die letzten beiden Felder sind optional und bestimmen die PID-Datei sowie eine Signalnummer, die zu diesem Prozess geschickt wird, wenn die Datei rotiert wird. Weitere Informationen zu allen Feldern, gültigen flags und wie Sie die Rotationszeit angeben können, finden Sie in &man.syslog.conf.5;. Denken Sie daran, dass newsyslog von cron aufgerufen wird und somit Dateien auch nur dann rotiert, wenn es von &man.cron.8; aufgerufen wird, und nicht häufiger. Konfigurationsdateien <filename>/etc</filename> Layout Konfigurationsdateien finden sich in einigen Verzeichnissen unter anderem in: /etc Enthält generelle Konfigurationsinformationen, die Daten hier sind systemspezifisch. /etc/defaults Default Versionen der Konfigurationsdateien. /etc/mail Enthält die &man.sendmail.8; Konfiguration und weitere MTA Konfigurationsdateien. /etc/ppp Hier findet sich die Konfiguration für die User- und Kernel-ppp Programme. /etc/namedb Das Vorgabeverzeichnis, in dem Daten von &man.named.8; gehalten werden. Normalerweise werden hier named.conf und Zonendaten abgelegt. /usr/local/etc Installierte Anwendungen legen hier ihre Konfigurationsdateien ab. Dieses Verzeichnis kann Unterverzeichnisse für bestimmte Anwendungen enthalten. /usr/local/etc/rc.d Ort für Start- und Stopskripten installierter Anwendungen. /var/db Automatisch generierte systemspezifische Datenbanken, wie die Paket-Datenbank oder die locate-Datenbank. Hostnamen hostname DNS <filename>/etc/resolv.conf</filename> resolv.conf Wie der &os;-Resolver auf das Internet Domain Name System (DNS) zugreift, wird in /etc/resolv.conf festgelegt. Die gebräuchlichsten Einträge in /etc/resolv.conf sind: nameserver Die IP-Adresse eines Nameservers, den der Resolver abfragen soll. Bis zu drei Server werden in der Reihenfolge, in der sie aufgezählt sind, abgefragt. search Suchliste mit Domain-Namen zum Auflösen von Hostnamen. Die Liste wird normalerweise durch den Domain-Teil des lokalen Hostnamens festgelegt. domain Der lokale Domain-Name. Beispiel für eine typische resolv.conf: search example.com nameserver 147.11.1.11 nameserver 147.11.100.30 Nur eine der Anweisungen search oder domain sollte benutzt werden. Wenn Sie DHCP benutzen, überschreibt &man.dhclient.8; für gewöhnlich resolv.conf mit den Informationen vom DHCP-Server. <filename>/etc/hosts</filename> hosts /etc/hosts ist eine einfache textbasierte Datenbank, die aus alten Internetzeiten stammt. Zusammen mit DNS und NIS stellt sie eine Abbildung zwischen Namen und IP-Adressen zur Verfügung. Anstatt &man.named.8; zu konfigurieren, können hier lokale Rechner, die über ein LAN verbunden sind, eingetragen werden. Lokale Einträge für gebräuchliche Internet-Adressen in /etc/hosts verhindern die Abfrage eines externen Servers und beschleunigen die Namensauflösung. # $FreeBSD$ # # # Host Database # # This file should contain the addresses and aliases for local hosts that # share this file. Replace 'my.domain' below with the domainname of your # machine. # # In the presence of the domain name service or NIS, this file may # not be consulted at all; see /etc/nsswitch.conf for the resolution order. # # ::1 localhost localhost.my.domain 127.0.0.1 localhost localhost.my.domain # # Imaginary network. #10.0.0.2 myname.my.domain myname #10.0.0.3 myfriend.my.domain myfriend # # According to RFC 1918, you can use the following IP networks for # private nets which will never be connected to the Internet: # # 10.0.0.0 - 10.255.255.255 # 172.16.0.0 - 172.31.255.255 # 192.168.0.0 - 192.168.255.255 # # In case you want to be able to connect to the Internet, you need # real official assigned numbers. Do not try to invent your own network # numbers but instead get one from your network provider (if any) or # from your regional registry (ARIN, APNIC, LACNIC, RIPE NCC, or AfriNIC.) # /etc/hosts hat ein einfaches Format: [Internet Adresse] [Offizieller Hostname] [Alias1] [Alias2] ... Zum Beispiel: 10.0.0.1 myRealHostname.example.com myRealHostname foobar1 foobar2 Weitere Informationen entnehmen Sie bitte &man.hosts.5;. <filename>sysctl.conf</filename> sysctl.conf sysctl sysctl.conf sieht ähnlich wie rc.conf aus. Werte werden in der Form Variable=Wert gesetzt. Die angegebenen Werte werden gesetzt, nachdem sich das System bereits im Mehrbenutzermodus befindet. Allerdings lassen sich im Mehrbenutzermodus nicht alle Werte setzen. Um das Protokollieren von fatalen Signalen abzustellen und Benutzer daran zu hindern, von anderen Benutzern gestartete Prozesse zu sehen, können Sie in der Datei sysctl.conf die folgenden Variablen setzen: # Do not log fatal signal exits (e.g. sig 11) kern.logsigexit=0 # Prevent users from seeing information about processes that # are being run under another UID. security.bsd.see_other_uids=0 Einstellungen mit sysctl sysctl Einstellungen mit sysctl Mit &man.sysctl.8; können Sie Änderungen an einem laufenden &os;-System vornehmen. Unter anderem können Optionen des TCP/IP-Stacks oder des virtuellen Speichermanagements verändert werden. Unter der Hand eines erfahrenen Systemadministrators kann dies die Systemperformance erheblich verbessern. Über 500 Variablen können mit &man.sysctl.8; gelesen und gesetzt werden. Der Hauptzweck von &man.sysctl.8; besteht darin, Systemeinstellungen zu lesen und zu verändern. Alle auslesbaren Variablen werden wie folgt angezeigt: &prompt.user; sysctl -a Sie können auch eine spezielle Variable, z.B. kern.maxproc lesen: &prompt.user; sysctl kern.maxproc kern.maxproc: 1044 Um eine Variable zu setzen, benutzen Sie die Syntax Variable= Wert: &prompt.root; sysctl kern.maxfiles=5000 kern.maxfiles: 2088 -> 5000 Mit sysctl können Sie Strings, Zahlen oder Boolean-Werte setzen. Bei Boolean-Werten setzen sie 1 für wahr und 0 für falsch. Wenn Sie Variablen automatisch während des Systemstarts setzen wollen, fügen Sie die Variablen in die Datei /etc/sysctl.conf ein. Weiteres entnehmen Sie bitte der Hilfeseite &man.sysctl.conf.5; und dem . Schreibgeschützte Variablen TomRhodesContributed by Schreibgeschützte sysctl-Variablen können nur während des Systemstarts verändert werden. Beispielsweise hat &man.cardbus.4; auf einigen Laptops Schwierigkeiten, Speicherbereiche zu erkennen. Es treten dann Fehlermeldungen wie die folgende auf: cbb0: Could not map register memory device_probe_and_attach: cbb0 attach returned 12 Um dieses Problem zu lösen, muss eine schreibgeschützte sysctl-Variable verändert werden. Eine OID kann in der Datei /boot/loader.conf überschrieben werden. Die Datei /boot/defaults/loader.conf enthält Vorgabewwerte für sysctl-Variablen. Das oben erwähnte Problem wird durch die Angabe von in /boot/loader.conf gelöst. Danach sollte &man.cardbus.4; fehlerfrei funktionieren. Tuning von Laufwerken Sysctl Variablen <varname>vfs.vmiodirenable</varname> vfs.vmiodirenable Die Variable vfs.vmiodirenable besitzt in der Voreinstellung den Wert 1. Die Variable kann auf den Wert 0 (ausgeschaltet) oder 1 (angeschaltet) gesetzt werden. Sie steuert, wie Verzeichnisse vom System zwischengespeichert werden. Die meisten Verzeichnisse sind klein und benutzen nur ein einzelnes Fragment, typischerweise 1 kB, im Dateisystem. Im Buffer-Cache verbrauchen sie mit 512 Bytes noch weniger Platz. Ist die Variable ausgeschaltet (auf 0) wird der Buffer-Cache nur eine limitierte Anzahl Verzeichnisse zwischenspeichern, auch wenn das System über sehr viel Speicher verfügt. Ist die Variable aktiviert (auf 1), kann der Buffer-Cache den VM-Page-Cache benutzen, um Verzeichnisse zwischenzuspeichern. Der ganze Speicher steht damit zum Zwischenspeichern von Verzeichnissen zur Verfügung. Der Nachteil bei dieser Vorgehensweise ist, dass zum Zwischenspeichern eines Verzeichnisses mindestens eine physikalische Seite im Speicher, die normalerweise 4 kB groß ist, anstelle von 512 Bytes gebraucht wird. Wir empfehlen, diese Option aktiviert zu lassen, wenn Sie Dienste zur Verfügung stellen, die viele Dateien manipulieren. Beispiele für solche Dienste sind Web-Caches, große Mail-Systeme oder Netnews. Die aktivierte Variable vermindert, trotz des verschwendeten Speichers, in aller Regel nicht die Leistung des Systems, obwohl Sie das nachprüfen sollten. <varname>vfs.write_behind</varname> vfs.write_behind In der Voreinstellung besitzt die Variable vfs.write_behind den Wert 1 (aktiviert). Mit dieser Einstellung schreibt das Dateisystem anfallende vollständige Cluster, die besonders beim sequentiellen Schreiben großer Dateien auftreten, direkt auf das Medium aus. Dies verhindert, dass sich im Buffer-Cache veränderte Puffer (dirty buffers) ansammeln, die die I/O-Verarbeitung nicht mehr beschleunigen würden. Unter bestimmten Umständen blockiert diese Funktion allerdings Prozesse. Setzen Sie in diesem Fall die Variable vfs.write_behind auf den Wert 0. <varname>vfs.hirunningspace</varname> vfs.hirunningspace Die Variable vfs.hirunningspace bestimmt systemweit die Menge ausstehender Schreiboperationen, die dem Platten-Controller zu jedem beliebigen Zeitpunkt übergeben werden können. Normalerweise können Sie den Vorgabewert verwenden. Auf Systemen mit vielen Platten kann der Wert aber auf 4 bis 5 Megabyte erhöht werden. Beachten Sie, dass ein zu hoher Wert (größer als der Schreib-Schwellwert des Buffer-Caches) zu Leistungverlusten führen kann. Setzen Sie den Wert daher nicht zu hoch! Hohe Werte können auch Leseoperationen verzögern, die gleichzeitig mit Schreiboperationen ausgeführt werden. Es gibt weitere Variablen, mit denen Sie den Buffer-Cache und den VM-Page-Cache beeinflussen können. Wir raten Ihnen allerdings davon ab, diese Variablen zu verändern, da das VM-System den virtuellen Speicher selbst sehr gut verwaltet. <varname>vm.swap_idle_enabled</varname> vm.swap_idle_enabled Die Variable vm.swap_idle_enabled ist für große Mehrbenutzer-Systeme gedacht, auf denen sich viele Benutzer an- und abmelden und auf denen es viele Prozesse im Leerlauf (idle) gibt. Solche Systeme fragen kontinuierlich freien Speicher an. Wenn Sie die Variable vm.swap_idle_enabled aktivieren, können Sie die Auslagerungs-Hysterese von Seiten mit den Variablen vm.swap_idle_threshold1 und vm.swap_idle_threshold2 einstellen. Die Schwellwerte beider Variablen geben die Zeit in Sekunden an, in denen sich ein Prozess im Leerlauf befinden muss. Wenn die Werte so eingestellt sind, dass Seiten früher als nach dem normalen Algorithmus ausgelagert werden, verschafft das dem Auslagerungs-Prozess mehr Luft. Aktivieren Sie diese Funktion nur, wenn Sie sie wirklich benötigen: Die Speicherseiten werden eher früher als später ausgelagert. Der Platz im Swap-Bereich wird dadurch schneller verbraucht und die Plattenaktivitäten steigen an. Auf kleine Systeme hat diese Funktion spürbare Auswirkungen. Auf großen Systemen, die sowieso schon Seiten auslagern müssen, können ganze Prozesse leichter in den Speicher geladen oder ausgelagert werden. <varname>hw.ata.wc</varname> hw.ata.wc In &os; 4.3 wurde versucht, den IDE-Schreib-Zwischenspeicher abzustellen. Obwohl dies die Bandbreite zum Schreiben auf IDE-Platten verringerte, wurde es aus Gründen der Datenkonsistenz als notwenig angesehen. Der Kern des Problems ist, dass IDE-Platten keine zuverlässige Aussage über das Ende eines Schreibvorgangs treffen. Wenn der Schreib-Zwischenspeicher aktiviert ist, werden die Daten nicht in der Reihenfolge ihres Eintreffens geschrieben. Es kann sogar passieren, dass das Schreiben mancher Blöcke im Fall von starker Plattenaktivität auf unbefristete Zeit verzögert wird. Ein Absturz oder Stromausfall zu dieser Zeit kann die Dateisysteme erheblich beschädigen. Wir entschieden uns daher für die sichere Variante und stellten den Schreib-Zwischenspeicher ab. Leider war damit auch ein großer Leistungsverlust verbunden, so dass wir die Variable nach dem Release wieder aktiviert haben. Sie sollten den Wert der Variable hw.ata.wc auf Ihrem System überprüfen. Wenn der Schreib-Zwischenspeicher abgestellt ist, können Sie ihn aktivieren, indem Sie die Variable auf den Wert 1 setzen. Dies muss zum Zeitpunkt des Systemstarts im Boot-Loader geschehen. Eine Änderung der Variable, nachdem der Kernel gestartet ist, hat keine Auswirkungen. Weitere Informationen finden Sie in &man.ata.4;. <literal>SCSI_DELAY</literal> (<varname>kern.cam.scsi_delay</varname>) kern.cam.scsi_delay Kerneloptionen SCSI_DELAY Mit der Kerneloption SCSI_DELAY kann die Dauer des Systemstarts verringert werden. Der Vorgabewert ist recht hoch und er verzögert den Systemstart um 15 oder mehr Sekunden. Normalerweise kann dieser Wert, insbesondere mit modernen Laufwerken, auf 5 Sekunden heruntergesetzt werden (durch Setzen der sysctl-Variable kern.cam.scsi_delay). Die Variable sowie die Kerneloption verwenden für die Zeitangabe Millisekunden und nicht Sekunden. Soft Updates Soft Updates tunefs Mit &man.tunefs.8; lassen sich Feineinstellungen an Dateisystemen vornehmen. Das Programm hat verschiedene Optionen, von denen hier nur Soft Updates betrachtet werden. Soft Updates werden wie folgt ein- und ausgeschaltet: &prompt.root; tunefs -n enable /filesystem &prompt.root; tunefs -n disable /filesystem Ein eingehängtes Dateisystem kann nicht mit &man.tunefs.8; modifiziert werden. Soft Updates werden am besten im Single-User Modus aktiviert, bevor Partitionen eingehangen sind. Durch Einsatz eines Zwischenspeichers wird die Performance im Bereich der Metadaten, vorwiegend beim Anlegen und Löschen von Dateien, gesteigert. Wir empfehlen, Soft Updates auf allen Dateisystemen zu aktivieren. Allerdings sollten Sie sich über die zwei Nachteile von Soft Updates bewusst sein: Erstens garantieren Soft Updates zwar die Konsistenz der Daten im Fall eines Absturzes, aber es kann leicht passieren, dass das Dateisystem über mehrere Sekunden oder gar eine Minute nicht synchronisiert wurde. Im Fall eines Absturzes verlieren Sie mit Soft Updates unter Umständen mehr Daten als ohne. Zweitens verzögern Soft Updates die Freigabe von Datenblöcken. Eine größere Aktualisierung eines fast vollen Dateisystems, wie dem Root-Dateisystem, z.B. während eines make installworld, kann das Dateisystem vollaufen lassen. Dadurch würde die Aktualisierung fehlschlagen. Details über Soft Updates Soft Updates Details Es gibt zwei klassische Herangehensweisen, wie man die Metadaten des Dateisystems (also Daten über Dateien, wie inode Bereiche oder Verzeichniseinträge) aktualisiert auf die Platte zurückschreibt: Das historisch übliche Verfahren waren synchrone Updates der Metadaten, d. h. wenn eine Änderung an einem Verzeichnis nötig war, wurde anschließend gewartet, bis diese Änderung tatsächlich auf die Platte zurückgeschrieben worden war. Der Inhalt der Dateien wurde im Buffer Cache zwischengespeichert und asynchron irgendwann später auf die Platte geschrieben. Der Vorteil dieser Implementierung ist, dass sie sicher funktioniert. Wenn während eines Updates ein Ausfall erfolgt, haben die Metadaten immer einen konsistenten Zustand. Eine Datei ist entweder komplett angelegt oder gar nicht. Wenn die Datenblöcke einer Datei im Fall eines Absturzes noch nicht den Weg aus dem Buffer Cache auf die Platte gefunden haben, kann &man.fsck.8; das Dateisystem reparieren, indem es die Dateilänge einfach auf 0 setzt. Außerdem ist die Implementierung einfach und überschaubar. Der Nachteil ist, dass Änderungen der Metadaten sehr langsam vor sich gehen. Ein rm -r beispielsweise fasst alle Dateien eines Verzeichnisses der Reihe nach an, aber jede dieser Änderungen am Verzeichnis (Löschen einer Datei) wird einzeln synchron auf die Platte geschrieben. Gleiches beim Auspacken großer Hierarchien (tar -x). Der zweite Fall sind asynchrone Metadaten-Updates. Das ist z. B. der Standard bei Linux/ext2fs oder die Variante mount -o async für *BSD UFS. Man schickt die Updates der Metadaten einfach auch noch über den Buffer Cache, sie werden also zwischen die Updates der normalen Daten eingeschoben. Vorteil ist, dass man nun nicht mehr auf jeden Update warten muss, Operationen, die zahlreiche Metadaten ändern, werden also viel schneller. Auch hier ist die Implementierung sehr einfach und wenig anfällig für Fehler. Nachteil ist, dass keinerlei Konsistenz des Dateisystems mehr gesichert ist. Wenn mitten in einer Operation, die viele Metadaten ändert, ein Ausfall erfolgt (Stromausfall, drücken des Reset-Tasters), dann ist das Dateisystem anschließend in einem unbestimmten Zustand. Niemand kann genau sagen, was noch geschrieben worden ist und was nicht mehr; die Datenblöcke einer Datei können schon auf der Platte stehen, während die inode Tabelle oder das zugehörige Verzeichnis nicht mehr aktualisiert worden ist. Man kann praktisch kein fsck mehr implementieren, das diesen Zustand wieder reparieren kann, da die dazu nötigen Informationen einfach auf der Platte fehlen. Wenn ein Dateisystem derart beschädigt worden ist, kann man es nur neu erzeugen (&man.newfs.8;) und die Daten vom Backup zurückspielen. Der historische Ausweg aus diesem Dilemma war ein dirty region logging (auch als Journalling bezeichnet, wenngleich dieser Begriff nicht immer gleich benutzt und manchmal auch für andere Formen von Transaktionsprotokollen gebraucht wird). Man schreibt die Metadaten-Updates zwar synchron, aber nur in einen kleinen Plattenbereich, die logging area. Von da aus werden sie dann asynchron auf ihre eigentlichen Bereiche verteilt. Da die logging area ein kleines zusammenhängendes Stückchen ist, haben die Schreibköpfe der Platte bei massiven Operationen auf Metadaten keine allzu großen Wege zurückzulegen, so dass alles ein ganzes Stück schneller geht als bei klassischen synchronen Updates. Die Komplexität der Implementierung hält sich ebenfalls in Grenzen, somit auch die Anfälligkeit für Fehler. Als Nachteil ergibt sich, dass Metadaten zweimal auf die Platte geschrieben werden müssen (einmal in die logging area, einmal an die richtige Stelle), so dass das im Falle regulärer Arbeit (also keine gehäuften Metadatenoperationen) eine Pessimisierung des Falls der synchronen Updates eintritt, es wird alles langsamer. Dafür hat man als Vorteil, dass im Falle eines Crashes der konsistente Zustand dadurch erzielbar ist, dass die angefangenen Operationen aus dem dirty region log entweder zu Ende ausgeführt oder komplett verworfen werden, wodurch das Dateisystem schnell wieder zur Verfügung steht. Die Lösung von Kirk McKusick, dem Schöpfer von Berkeley FFS, waren Soft Updates: die notwendigen Updates der Metadaten werden im Speicher gehalten und dann sortiert auf die Platte geschrieben (ordered metadata updates). Dadurch hat man den Effekt, dass im Falle massiver Metadaten-Änderungen spätere Operationen die vorhergehenden, noch nicht auf die Platte geschriebenen Updates desselben Elements im Speicher einholen. Alle Operationen, auf ein Verzeichnis beispielsweise, werden also in der Regel noch im Speicher abgewickelt, bevor der Update überhaupt auf die Platte geschrieben wird (die dazugehörigen Datenblöcke werden natürlich auch so sortiert, dass sie nicht vor ihren Metadaten auf der Platte sind). Im Fall eines Absturzes hat man ein implizites log rewind: alle Operationen, die noch nicht den Weg auf die Platte gefunden haben, sehen danach so aus, als hätten sie nie stattgefunden. Man hat so also den konsistenten Zustand von ca. 30 bis 60 Sekunden früher sichergestellt. Der verwendete Algorithmus garantiert dabei, dass alle tatsächlich benutzten Ressourcen auch in den entsprechenden Bitmaps (Block- und inode Tabellen) als belegt markiert sind. Der einzige Fehler, der auftreten kann, ist, dass Ressourcen noch als belegt markiert sind, die tatsächlich frei sind. &man.fsck.8; erkennt dies und korrigiert diese nicht mehr belegten Ressourcen. Die Notwendigkeit eines Dateisystem-Checks darf aus diesem Grunde auch ignoriert und das Dateisystem mittels mount -f zwangsweise eingebunden werden. Um noch allozierte Ressourcen freizugeben muss später ein &man.fsck.8; nachgeholt werden. Das ist dann auch die Idee des background fsck: beim Starten des Systems wird lediglich ein Schnappschuss des Filesystems gemacht, mit dem &man.fsck.8; dann später arbeiten kann. Alle Dateisysteme dürfen unsauber eingebunden werden und das System kann sofort in den Multiuser-Modus gehen. Danach wird ein Hintergrund-fsck für die Dateisysteme gestartet, die dies benötigen, um möglicherweise irrtümlich belegte Ressourcen freizugeben. (Dateisysteme ohne Soft Updates benötigen natürlich immer noch den üblichen (Vordergrund-)fsck, bevor sie eingebunden werden können.) Der Vorteil ist, dass die Metadaten-Operationen beinahe so schnell ablaufen wie im asynchronen Fall (also durchaus auch schneller als beim logging, das ja die Metadaten immer zweimal schreiben muss). Als Nachteil stehen dem die Komplexität des Codes (mit einer erhöhten Fehlerwahrscheinlichkeit in einem bezüglich Datenverlust hoch sensiblen Bereich) und ein erhöhter Speicherverbrauch entgegen. Außerdem muss man sich an einige Eigenheiten gewöhnen: Nach einem Absturz ist ein etwas älterer Stand auf der Platte – statt einer leeren, aber bereits angelegten Datei (wie nach einem herkömmlichen fsck Lauf) ist auf einem Dateisystem mit Soft Updates keine Spur der entsprechenden Datei mehr zu sehen, da weder die Metadaten noch der Dateiinhalt je auf die Platte geschrieben wurden. Weiterhin kann der Platz nach einem rm -r nicht sofort wieder als verfügbar markiert werden, sondern erst dann, wenn der Update auch auf die Platte vermittelt worden ist. Dies kann besonders dann Probleme bereiten, wenn große Datenmengen in einem Dateisystem ersetzt werden, das nicht genügend Platz hat, um alle Dateien zweimal unterzubringen. Einstellungen von Kernel Limits Einstellungen von Kernel Limits Datei und Prozeß Limits <varname>kern.maxfiles</varname> kern.maxfiles Abhängig von den Anforderungen Ihres Systems kann kern.maxfiles erhöht oder erniedrigt werden. Die Variable legt die maximale Anzahl von Dateideskriptoren auf Ihrem System fest. Wenn die Dateideskriptoren aufgebraucht sind, werden Sie die Meldung file: table is full wiederholt im Puffer für Systemmeldungen sehen. Den Inhalt des Puffers können Sie sich mit dmesg anzeigen lassen. Jede offene Datei, jedes Socket und jede FIFO verbraucht einen Dateideskriptor. Auf dicken Produktionsservern können leicht Tausende Dateideskriptoren benötigt werden, abhängig von der Art und Anzahl der gleichzeitig laufenden Dienste. In älteren &os;-Versionen wurde die Voreinstellung von kern.maxfile aus der Kernelkonfigurationsoption maxusers bestimmt. kern.maxfiles wächst proportional mit dem Wert von maxusers. Wenn Sie einen angepassten Kernel kompilieren, empfiehlt es sich diese Option entsprechend der maximalen Benutzerzahl Ihres Systems einzustellen. Obwohl auf einer Produktionsmaschine vielleicht nicht 256 Benutzer gleichzeitig angemeldet sind, können die benötigten Ressourcen ähnlich denen eines großen Webservers sein. Die Variable kern.maxusers wird beim Systemstart automatisch aus dem zur Verfügung stehenden Hauptspeicher bestimmt. Im laufenden Betrieb kann dieser Wert aus der (nur lesbaren) sysctl-Variable kern.maxusers ermittelt werden. Falls ein System für diese Variable einen anderen Wert benötigt, kann der Wert über den Loader angepasst werden. Häufig verwendete Werte sind dabei 64, 128, sowie 256. Es ist empfehlenswert, die Anzahl der Dateideskriptoren nicht auf einen Wert größer 256 zu setzen, es sei denn, Sie benötigen wirklich eine riesige Anzahl von ihnen. Viele der von kern.maxusers auf einen Standardwert gesetzten Parameter können beim Systemstart oder im laufenden Betrieb in der Datei /boot/loader.conf (sehen Sie sich dazu auch &man.loader.conf.5; sowie die Datei /boot/defaults/loader.conf an) an Ihre Bedürfnisse angepasst werden, so wie es bereits an anderer Stelle dieses Dokuments beschrieben ist. Ältere &os;-Versionen setzen diesen Wert selbst, wenn Sie in der Konfigurationsdatei den Wert 0 Der verwendete Algorithmus setzt maxusers auf die Speichergröße des Systems. Der minimale Wert beträgt dabei 32, das Maximum ist 384. angeben. Wenn Sie den Wert selbst bestimmen wollen, sollten Sie maxusers mindestens auf 4 setzen. Dies gilt insbesondere dann, wenn Sie beabsichtigen, das X Window-System zu benutzen oder Software zu kompilieren. Der Grund dafür ist, dass der wichtigste Wert, der durch maxusers bestimmt wird, die maximale Anzahl an Prozessen ist, die auf 20 + 16 * maxusers gesetzt wird. Wenn Sie also maxusers auf 1 setzen, können gleichzeitig nur 36 Prozesse laufen, von denen ungefähr 18 schon beim Booten des Systems gestartet werden. Dazu kommen nochmals etwa 15 Prozesse beim Start des X Window-Systems. Selbst eine einfache Aufgabe wie das Lesen einer Manualpage benötigt neun Prozesse zum Filtern, Dekomprimieren und Betrachten der Datei. Für die meisten Benutzer sollte es ausreichen, maxusers auf 64 zu setzen, womit 1044 gleichzeitige Prozesse zur Verfügung stehen. Wenn Sie allerdings den gefürchteten Fehler proc table full beim Start eines Programms oder auf einem Server mit einer großen Benutzerzahl (wie ftp.FreeBSD.org) sehen, dann sollten Sie den Wert nochmals erhöhen und den Kernel neu bauen. Die Anzahl der Benutzer, die sich auf einem Rechner anmelden kann, wird durch maxusers nicht begrenzt. Der Wert dieser Variablen legt neben der möglichen Anzahl der Prozesse eines Benutzers weitere sinnvolle Größen für bestimmte Systemtabellen fest. <varname>kern.ipc.somaxconn</varname> kern.ipc.somaxconn Die Variable kern.ipc.somaxconn beschränkt die Größe der Warteschlange (Listen-Queue) für neue TCP-Verbindungen. Der Vorgabewert von 128 ist normalerweise zu klein, um neue Verbindungen auf einem stark ausgelasteten Webserver zuverlässig zu handhaben. Auf solchen Servern sollte der Wert auf 1024 oder höher gesetzt werden. Ein Dienst (z.B. &man.sendmail.8;, oder Apache) kann die Größe der Queue selbst einschränken. Oft gibt es die Möglichkeit, die Größe der Listen-Queue in einer Konfigurationsdatei einzustellen. Eine große Listen-Queue übersteht vielleicht auch einen Denial of Service Angriff (DoS). Netzwerk Limits Die Kerneloption NMBCLUSTERS schreibt die Anzahl der Netzwerkpuffer (Mbufs) fest, die das System besitzt. Eine zu geringe Anzahl Mbufs auf einem Server mit viel Netzwerkverkehr verringert die Leistung von &os;. Jeder Mbuf-Cluster nimmt ungefähr 2 kB Speicher in Anspruch, so dass ein Wert von 1024 insgesamt 2 Megabyte Speicher für Netzwerkpuffer im System reserviert. Wie viele Cluster benötigt werden, lässt sich durch eine einfache Berechnung herausfinden. Wenn Sie einen Webserver besitzen, der maximal 1000 gleichzeitige Verbindungen servieren soll und jede der Verbindungen je einen 16 kB großen Puffer zum Senden und Empfangen braucht, brauchen Sie ungefähr 32 MB Speicher für Netzwerkpuffer. Als Daumenregel verdoppeln Sie diese Zahl, so dass sich für NMBCLUSTERS der Wert 2x32 MB / 2 kB = 32768 ergibt. Für Maschinen mit viel Speicher sollten Werte zwischen 4096 und 32768 genommen werden. Sie können diesen Wert nicht willkürlich erhöhen, da dies bereits zu einem Absturz beim Systemstart führen kann. Mit der Option von &man.netstat.1; können Sie den Gebrauch der Netzwerkpuffer kontrollieren. Die Netzwerkpuffer können beim Systemstart mit der Loader-Variablen kern.ipc.nmbclusters eingestellt werden. Nur auf älteren &os;-Systemen müssen Sie die Kerneloption NMBCLUSTERS verwenden. Die Anzahl der &man.sendfile.2; Puffer muss auf ausgelasteten Servern, die den Systemaufruf &man.sendfile.2; oft verwenden, vielleicht erhöht werden. Dazu können Sie die Kerneloption NSFBUFS verwenden oder die Anzahl der Puffer in /boot/loader.conf (siehe &man.loader.8;) setzen. Die Puffer sollten erhöht werden, wenn Sie Prozesse im Zustand sfbufa sehen. Die schreibgeschützte sysctl-Variable kern.ipc.nsfbufs zeigt die Anzahl eingerichteten Puffer im Kernel. Der Wert dieser Variablen wird normalerweise von kern.maxusers bestimmt. Manchmal muss die Pufferanzahl jedoch manuell eingestellt werden. Auch wenn ein Socket nicht blockierend angelegt wurde, kann der Aufruf von &man.sendfile.2; blockieren, um auf freie struct sf_buf Puffer zu warten. <varname>net.inet.ip.portrange.*</varname> net.inet.ip.portrange.* Die sysctl-Variable net.inet.ip.portrange.* legt die Portnummern für TCP- und UDP-Sockets fest. Es gibt drei Bereiche: den niedrigen Bereich, den normalen Bereich und den hohen Bereich. Die meisten Netzprogramme benutzen den normalen Bereich. Dieser Bereich umfasst in der Voreinstellung die Portnummern 500 bis 5000 und wird durch die Variablen net.inet.ip.portrange.first und net.inet.ip.portrange.last festgelegt. Die festgelegten Bereiche für Portnummern werden von ausgehenden Verbindungen benutzt. Unter bestimmten Umständen, beispielsweise auf stark ausgelasteten Proxy-Servern, sind alle Portnummern für ausgehende Verbindungen belegt. Bereiche für Portnummern spielen auf Servern keine Rolle, die hauptsächlich eingehende Verbindungen verarbeiten (wie ein normaler Webserver) oder nur eine begrenzte Anzahl ausgehender Verbindungen öffnen (beispielsweise ein Mail-Relay). Wenn Sie keine freien Portnummern mehr haben, sollten Sie die Variable net.inet.ip.portrange.last langsam erhöhen. Ein Wert von 10000, 20000 oder 30000 ist angemessen. Beachten Sie auch eine vorhandene Firewall, wenn Sie die Bereiche für Portnummern ändern. Einige Firewalls sperren große Bereiche (normalerweise aus den kleinen Portnummern) und erwarten, dass hohe Portnummern für ausgehende Verbindungen verwendet werden. Daher kann es erforderlich sein, den Wert von net.inet.ip.portrange.first zu erhöhen. TCP Bandwidth Delay Product Begrenzung TCP Bandwidth Delay Product Begrenzung net.inet.tcp.inflight.enable Die TCP Bandwidth Delay Product Begrenzung gleicht TCP/Vegas von NetBSD. Die Begrenzung wird aktiviert, indem Sie die sysctl-Variable net.inet.tcp.inflight.enable auf den Wert 1 setzen. Das System wird dann versuchen, für jede Verbindung, das Produkt aus der Übertragungsrate und der Verzögerungszeit zu bestimmen. Dieses Produkt begrenzt die Datenmenge, die für einen optimales Durchsatz zwischengespeichert werden muss. Diese Begrenzung ist nützlich, wenn Sie Daten über Verbindungen mit einem hohen Produkt aus Übertragungsrate und Verzögerungszeit wie Modems, Gigabit-Ethernet oder schnellen WANs, zur Verfügung stellen. Insbesondere wirkt sich die Begrenzung aus, wenn die Verbindung die TCP-Option Window-scaling verwendet oder große Sende-Fenster (send window) benutzt. Schalten Sie die Debug-Meldungen aus, wenn Sie die Begrenzung aktiviert haben. Dazu setzen Sie die Variable net.inet.tcp.inflight.debug auf 0. Auf Produktions-Systemen sollten Sie zudem die Variable net.inet.tcp.inflight.min mindestens auf den Wert 6144 setzen. Allerdings kann ein zu hoher Wert, abhängig von der Verbindung, die Begrenzungsfunktion unwirksam machen. Die Begrenzung reduziert die Datenmenge in den Queues von Routern und Switches, sowie die Datenmenge in der Queue der lokalen Netzwerkkarte. Die Verzögerungszeit (Round Trip Time) für interaktive Anwendungen sinkt, da weniger Pakete zwischengespeichert werden. Dies gilt besonders für Verbindungen über langsame Modems. Die Begrenzung wirkt sich allerdings nur auf das Versenden von Daten aus (Uploads, Server). Auf den Empfang von Daten (Downloads) hat die Begrenzung keine Auswirkungen. Die Variable net.inet.tcp.inflight.stab sollte nicht angepasst werden. Der Vorgabewert der Variablen beträgt 20, das heißt es werden maximal zwei Pakete zu dem Produkt aus Übertragungsrate und Verzögerungszeit addiert. Dies stabilisiert den Algorithmus und verbessert die Reaktionszeit auf Veränderungen. Bei langsamen Verbindungen können sich aber die Laufzeiten der Pakete erhöhen (ohne diesen Algorithmus wären sie allerdings noch höher). In solchen Fällen können Sie versuchen, den Wert der Variablen auf 15, 10 oder 5 zu erniedrigen. Gleichzeitig müssen Sie vielleicht auch net.inet.tcp.inflight.min auf einen kleineren Wert (beispielsweise 3500) setzen. Ändern Sie diese Variablen nur ab, wenn Sie keine anderen Möglichkeiten mehr haben. Virtueller Speicher (<foreignphrase>Virtual Memory</foreignphrase>) <varname>kern.maxvnodes</varname> Ein vnode ist die interne Darstellung einer Datei oder eines Verzeichnisses. Die Erhöhung der Anzahl der für das Betriebssystem verfügbaren vnodes verringert also die Schreib- und Lesezugriffe auf Ihre Festplatte. vnodes werden im Normalfall vom Betriebssystem automatisch vergeben und müssen nicht von Ihnen angepasst werden. In einigen Fällen stellt der Zugriff auf eine Platte allerdings einen Flaschenhals dar, daher sollten Sie in diesem Fall die Anzahl der möglichen vnodes erhöhen, um dieses Problem zu beheben. Beachten Sie dabei aber die Größe des inaktiven und freien Hauptspeichers. Um die Anzahl der derzeit verwendeten vnodes zu sehen, geben Sie Folgendes ein: &prompt.root; sysctl vfs.numvnodes vfs.numvnodes: 91349 Die maximal mögliche Anzahl der vnodes erhalten Sie durch die Eingabe von: &prompt.root; sysctl kern.maxvnodes kern.maxvnodes: 100000 Wenn sich die Anzahl der genutzten vnodes dem maximal möglichen Wert nähert, sollten Sie den Wert kern.maxvnodes zuerst um etwa 1.000 erhöhen. Beobachten Sie danach die Anzahl der vom System genutzten vfs.numvnodes. Nähert sich der Wert wiederum dem definierten Maximum, müssen Sie kern.maxvnodes nochmals erhöhen. Sie sollten nun eine Änderung Ihres Speicherverbrauches (etwa über &man.top.1;) registrieren können und über mehr aktiven Speicher verfügen. Hinzufügen von Swap-Bereichen Egal wie vorausschauend Sie planen, manchmal entspricht ein System einfach nicht Ihren Erwartungen. Es ist leicht, mehr Swap-Bereiche hinzuzufügen. Dazu stehen Ihnen drei Wege offen: Sie können eine neue Platte einbauen, den Swap-Bereich über NFS ansprechen oder eine Swap-Datei auf einer existierenden Partition einrichten. Für Informationen zur Verschlüsselung von Swap-Partitionen, zu den dabei möglichen Optionen sowie zu den Gründen für eine Verschlüsselung des Auslagerungsspeichers lesen Sie bitte des Handbuchs. Swap auf einer neuen Festplatte Der einfachste Weg, zusätzlich einen Swap-Bereich einzurichten, ist der Einbau einer neuen Platte, die Sie sowieso gebrauchen können. Die Anordnung von Swap-Bereichen wird in des Handbuchs besprochen. Swap-Bereiche über NFS Swap-Bereiche über NFS sollten Sie nur dann einsetzen, wenn Sie über keine lokale Platte verfügen, da es durch die zur Verfügung stehende Bandbreite limitiert wird und außerdem den NFS-Server zusätzlich belastet. Swap-Dateien Sie können eine Datei festgelegter Größe als Swap-Bereich nutzen. Im folgenden Beispiel werden wir eine 64 MB große Datei mit Namen /usr/swap0 benutzen, Sie können natürlich einen beliebigen Namen für den Swap-Bereich benutzen. Erstellen einer Swap-Datei Der GENERIC-Kernel unterstützt bereits RAM-Disks (&man.md.4;), welche für diese Aktion benötigt werden. Wenn Sie einen eigenen Kernel erstellen, vergewissern Sie sicher, dass die folgende Zeile in ihrer Kernel-Konfigurationsdatei enthalten ist: device md Informationen, wie man einen eigenen Kernel erstellen kann, erhalten Sie in . Legen Sie die Swap-Datei /usr/swap0 an: &prompt.root; dd if=/dev/zero of=/usr/swap0 bs=1024k count=64 Setzen Sie die richtigen Berechtigungen für /usr/swap0: &prompt.root; chmod 0600 /usr/swap0 Aktivieren Sie die Swap-Datei /etc/rc.conf: swapfile="/usr/swap0" # Set to name of swapfile if aux swapfile desired. Um die Swap-Datei zu aktivieren, führen Sie entweder einen Neustart durch oder geben das folgende Kommando ein: &prompt.root; mdconfig -a -t vnode -f /usr/swap0 -u 0 && swapon /dev/md0 Energie- und Ressourcenverwaltung HitenPandyaVerfasst von TomRhodes Es ist wichtig, Hardware effizient einzusetzen. Vor der Einführung des Advanced Configuration and Power Interface (ACPI) konnten Stromverbrauch und Wärmeabgabe eines Systems nur schlecht von Betriebssystemen gesteuert werden. Die Hardware wurde vom BIOS gesteuert, was die Kontrolle der Energieverwaltung für den Anwender erschwerte. Das Advanced Power Management (APM) erlaubte es lediglich, einige wenige Funktionen zu steuern, obwohl die Überwachung von Energie- und Ressourcenverbrauch zu den wichtigsten Aufgaben eines Betriebssystems gehört, um auf verschiedene Ereignisse, beispielsweise einen unerwarteten Temperaturanstieg, reagieren können. Dieser Abschnitt erklärt das Advanced Configuration and Power Interface (ACPI). Was ist ACPI? ACPI APM Advanced Configuration and Power Interface (ACPI) ist ein Standard verschiedener Hersteller, der die Verwaltung von Hardware und Energiesparfunktionen festlegt. Die ACPI-Funktionen können von einem Betriebssystem gesteuert werden. Der Vorgänger des ACPI, Advanced Power Management (APM), erwies sich in modernen Systemen als unzureichend. Mängel des Advanced Power Managements (APM) Das Advanced Power Management (APM) steuert den Energieverbrauch eines Systems auf Basis der Systemaktivität. Das APM-BIOS wird von dem Hersteller des Systems zur Verfügung gestellt und ist auf die spezielle Hardware angepasst. Der APM-Treiber des Betriebssystems greift auf das APM Software Interface zu, das den Energieverbrauch regelt. APM findet sich in der Regel nur noch in Systemen, die vor 2001 produziert wurden. Das APM hat hauptsächlich vier Probleme. Erstens läuft die Energieverwaltung unabhängig vom Betriebssystem in einem (herstellerspezifischen) BIOS. Beispielsweise kann das APM-BIOS die Festplatten nach einer konfigurierbaren Zeit ohne die Zustimmung des Betriebssystems herunterfahren. Zweitens befindet sich die ganze APM-Logik im BIOS; das Betriebssystem hat gar keine APM-Komponenten. Bei Problemen mit dem APM-BIOS muss das Flash-ROM aktualisiert werden. Diese Prozedur ist gefährlich, da sie im Fehlerfall das System unbrauchbar machen kann. Zum Dritten ist APM eine Technik, die herstellerspezifisch ist und nicht koordiniert wird. Fehler im BIOS eines Herstellers werden nicht unbedingt im BIOS anderer Hersteller korrigiert. Das letzte Problem ist, dass im APM-BIOS nicht genügend Platz vorhanden ist, um eine durchdachte oder eine auf den Zweck der Maschine zugeschnittene Energieverwaltung zu implementieren. Das Plug and Play BIOS (PNPBIOS) war ebenfalls unzureichend. Das PNPBIOS verwendet eine 16-Bit-Technik. Damit das Betriebssystem das PNPBIOS ansprechen kann, muss es in einer 16-Bit-Emulation laufen. Der APM-Treiber von &os; ist in der Hilfeseite &man.apm.4; beschrieben. Konfiguration des <acronym>ACPI</acronym> Das Modul acpi.ko wird standardmäßig beim Systemstart vom &man.loader.8; geladen und sollte daher nicht fest in den Kernel eingebunden werden. Dadurch kann acpi.ko ohne einen Neubau des Kernels ersetzt werden und das Modul ist leichter zu testen. Wenn Sie in der Ausgabe von &man.dmesg.8; das Wort ACPI sehen, ist das Modul geladen worden. Das ACPI-Modul im laufenden Betrieb zu laden, führt oft nicht zum gewünschten Ergebnis. Treten bei Ihrem System Probleme auf, können Sie ACPI auch komplett deaktivieren. Dazu definieren Sie die Variable hint.acpi.0.disabled="1" in der Datei /boot/loader.conf. Alternativ können Sie die Variable auch am &man.loader.8;-Prompt eingeben. Das Modul kann im laufenden Betrieb nicht entfernt werden, da es zur Kommunikation mit der Hardware verwendet wird. ACPI und APM können nicht zusammen verwendet werden. Das zuletzt geladene Modul beendet sich, sobald es bemerkt, dass das andere Modul geladen ist. Mit &man.acpiconf.8; können Sie das System in einen Ruhemodus (sleep mode) versetzen. Es gibt verschiedene Modi (von 1 bis 5), die Sie auf der Kommandozeile mit angeben können. Für die meisten Anwender sind die Modi 1 und 3 völlig ausreichend. Der Modus 5 schaltet das System aus (Soft-off) und entspricht dem folgenden Befehl: &prompt.root; halt -p Verschiedene Optionen können als &man.sysctl.8;-Variablen gesetzt werden. Lesen Sie dazu die Manualpages zu &man.acpi.4; sowie &man.acpiconf.8;. <acronym>ACPI</acronym>-Fehlersuche NateLawsonVerfasst von PeterSchultzMit Beiträgen von TomRhodes ACPI Probleme mit ACPI ist ein gänzlich neuer Weg, um Geräte aufzufinden und deren Stromverbrauch zu regulieren. Weiterhin bietet ACPI einen einheitlichen Zugriff auf Geräte, die vorher vom BIOS verwaltet wurden. Es werden zwar Fortschritte gemacht, dass ACPI auf allen Systemen läuft, doch tauchen immer wieder Fehler auf: fehlerhafter Bytecode der ACPI-Machine-Language (AML) einiger Systemplatinen, ein unvollständiges &os;-Kernel-Subsystem oder Fehler im ACPI-CA-Interpreter von &intel;. Dieser Abschnitt hilft Ihnen, zusammen mit den Betreuern des &os;-ACPI-Subsystems, Fehlerquellen zu finden und Fehler zu beseitigen. Danke, dass Sie diesen Abschnitt lesen; hoffentlich hilft er, Ihre Systemprobleme zu lösen. Fehlerberichte einreichen Bevor Sie einen Fehlerbericht einreichen, stellen Sie bitte sicher, dass Ihr BIOS und die Firmware Ihres Controllers aktuell sind. Wenn Sie sofort einen Fehlerbericht einsenden wollen, schicken Sie bitte die folgenden Informationen an die Mailingliste freebsd-acpi: Beschreiben Sie den Fehler und alle Umstände, unter denen der Fehler auftritt. Geben Sie ebenfalls den Typ und das Modell Ihres Systems an. Wenn Sie einen neuen Fehler entdeckt haben, versuchen Sie möglichst genau zu beschreiben, wann der Fehler das erste Mal aufgetreten ist. Die Ausgabe von &man.dmesg.8; nach der Eingabe von boot -v. Geben Sie auch alle Fehlermeldungen an, die erscheinen, wenn Sie den Fehler provozieren. Die Ausgabe von &man.dmesg.8; nach der Eingabe von boot -v und mit deaktiviertem ACPI, wenn das Problem ohne ACPI nicht auftritt. Die Ausgabe von sysctl hw.acpi. Dieses Kommando zeigt die vom System unterstützten ACPI-Funktionen an. Die URL, unter der die ACPI-Source-Language (ASL) liegt. Schicken Sie bitte nicht die ASL an die Mailingliste, da die ASL sehr groß sein kann. Eine Kopie der ASL erstellen Sie mit dem nachstehenden Befehl: &prompt.root; acpidump -td > name-system.asl Setzen Sie bitte für name den Namen Ihres Kontos und für system den Hersteller und das Modell Ihres Systems ein. Zum Beispiel: njl-FooCo6000.asl. Obwohl die meisten Entwickler die Mailingliste &a.current.name; lesen, sollten Sie Fehlerberichte an die Liste &a.acpi.name; schicken. Seien Sie bitte geduldig; wir haben alle Arbeit außerhalb des Projekts. Wenn der Fehler nicht offensichtlich ist, bitten wir Sie vielleicht, einen offiziellen Fehlerbericht (PR) mit &man.send-pr.1; einzusenden. Geben Sie im Fehlerbericht bitte dieselben Informationen wie oben an. Mithilfe der PRs verfolgen und lösen wir Probleme. Senden Sie bitte keinen PR ein, ohne vorher den Fehlerbericht an die Liste &a.acpi.name; zu senden. Wir benutzen die PRs als Erinnerung an bestehende Probleme und nicht zum Sammeln aller Probleme. Es kann sein, dass der Fehler schon von jemand anderem gemeldet wurde. <acronym>ACPI</acronym>-Grundlagen ACPI ACPI gibt es in allen modernen Rechnern der ia32- (x86), ia64- (Itanium) und amd64- (AMD) Architektur. Der vollständige Standard bietet Funktionen zur Steuerung und Verwaltung der CPU-Leistung, der Stromversorgung, von Wärmebereichen, Batterien, eingebetteten Controllern und Bussen. Auf den meisten Systemen wird nicht der vollständige Standard implementiert. Arbeitsplatzrechner besitzen meist nur Funktionen zur Verwaltung der Busse, während Notebooks Funktionen zur Temperaturkontrolle und Ruhezustände besitzen. Ein ACPI konformes System besitzt verschiedene Komponenten. Die BIOS- und Chipsatz-Hersteller stellen mehrere statische Tabellen bereit (zum Beispiel die Fixed-ACPI-Description-Table, FADT). Die Tabellen enthalten beispielsweise die mit SMP-Systemen benutzte APIC-Map, Konfigurationsregister und einfache Konfigurationen. Zusätzlich gibt es die Differentiated-System-Description-Table (DSDT), die Bytecode enthält. Die Tabelle ordnet Geräte und Methoden in einem baumartigen Namensraum an. Ein ACPI-Treiber muss die statischen Tabellen einlesen, einen Interpreter für den Bytecode bereitstellen und die Gerätetreiber im Kernel so modifizieren, dass sie mit dem ACPI-Subsystem kommunizieren. Für &os;, Linux und NetBSD hat &intel; den Interpreter ACPI-CA, zur Verfügung gestellt. Der Quelltext zu ACPI-CA befindet sich im Verzeichnis src/sys/contrib/dev/acpica. Die Schnittstelle von ACPI-CA zu &os; befindet sich unter src/sys/dev/acpica/Osd. Treiber, die verschiedene ACPI-Geräte implementieren, befinden sich im Verzeichnis src/sys/dev/acpica. Häufige Probleme ACPI Probleme mit Damit ACPI richtig funktioniert, müssen alle Teile funktionieren. Im Folgenden finden Sie eine Liste mit Problemen und möglichen Umgehungen oder Fehlerbehebungen. Die Liste ist nach der Häufigkeit, mit der die Probleme auftreten, sortiert. Mausprobleme Es kann vorkommen, dass die Maus nicht mehr funktioniert, wenn Sie nach einem Suspend weiterarbeiten wollen. Ist dies bei Ihnen der Fall, reicht es meistens aus, den Eintrag hint.psm.0.flags="0x3000" in Ihre /boot/loader.conf aufzunehmen. Besteht das Problem weiterhin, sollten Sie einen Fehlerbericht an das FreeBSD Project senden. Suspend/Resume ACPI kennt drei Suspend-to-RAM-Zustände (STR): S1-S3. Es gibt einen Suspend-to-Disk-Zustand: S4. Der Zustand S5 wird Soft-Off genannt. In diesem Zustand befindet sich ein Rechner, wenn die Stromversorgung angeschlossen ist, der Rechner aber nicht hochgefahren ist. Der Zustand S4 kann auf zwei Arten implementiert werden: S4BIOS und S4OS. Im ersten Fall wird der Suspend-to-Disk-Zustand durch das BIOS hergestellt im zweiten Fall alleine durch das Betriebssystem. Die Suspend-Zustände sind Ruhezustände, in denen der Rechner weniger Energie als im Normalbetrieb benötigt. Resume bezeichnet die Rückkehr zum Normalbetrieb. Die Suspend-Zustände können Sie mit dem Kommando sysctl hw.acpi ermitteln. Das Folgende könnte beispielsweise ausgegeben werden: hw.acpi.supported_sleep_state: S3 S4 S5 hw.acpi.s4bios: 0 Diese Ausgabe besagt, dass mit dem Befehl acpiconf -s die Zustände S3, S4OS und S5 eingestellt werden können. Hätte den Wert 1, gäbe es den Zustand S4BIOS anstelle von S4OS. Wenn Sie die Suspend- und Resume-Funktionen testen, fangen Sie mit dem S1-Zustand an, wenn er angeboten wird. Dieser Zustand wird am ehesten funktionieren, da der Zustand wenig Treiber-Unterstützung benötigt. Der Zustand S2 ist ähnlich wie S1, allerdings hat ihn noch niemand implementiert. Als nächstes sollten Sie den Zustand S3 ausprobieren. Dies ist der tiefste STR-Schlafzustand. Dieser Zustand ist auf massive Treiber-Unterstützung angewiesen, um die Geräte wieder richtig zu initialisieren. Wenn Sie Probleme mit diesem Zustand haben, können Sie die Mailingliste &a.acpi.name; anschreiben. Erwarten Sie allerdings nicht zu viel: Es gibt viele Treiber und Geräte, an denen noch gearbeitet und getestet wird. Ein häufiges Problem mit Suspend/Resume ist, dass viele Gerätetreiber ihre Firmware, Register und Gerätespeicher nicht korrekt speichern, wiederherstellen und/oder reinitialisieren. Um dieses Problem zu lösen, sollten Sie zuerst die folgenden Befehle ausführen: &prompt.root; sysctl debug.bootverbose=1 &prompt.root; sysctl debug.acpi.suspend_bounce=1 &prompt.root; acpiconf -s 3 Dieser Test emuliert einen Suspend/Resume-Zyklus für alle Geräte (ohne dass diese dabei wirklich in den Status S3 wechseln). In vielen Fällen reicht dies bereits aus, um Probleme (beispielsweise verlorener Firmware-Status, Timeouts, hängende Geräte) zu entdecken. Beachten Sie dabei, dass das Gerät bei diesem Test nicht wirklich in den Status S3 wechseln. Es kann also vorkommen, dass manche Geräte weiterhin mit Strom versorgt werden (dies wäre bei einem wirklichen Wechsel in den Status S3 NICHT möglich. Andere Geräte werden normal weiterarbeiten, weil sie über keine Suspend/Resume-Funktionen verfügen. Schwierigere Fälle können den Einsatz zusätzlicher Hardware (beispielsweise serielle Ports/Kabel für die Verbindung über eine serielle Konsole oder Firewire-Ports/Kabel für &man.dcons.4;) sowie Kenntnisse im Bereich Kerneldebugging erforderlich machen. Um das Problem einzugrenzen, entfernen Sie soviele Treiber wie möglich aus dem Kernel. Sie können das Problem isolieren, indem Sie einen Treiber nach dem anderen laden, bis der Fehler wieder auftritt. Typischerweise verursachen binäre Treiber wie nvidia.ko, X11-Grafiktreiber und USB-Treiber die meisten Fehler, hingegen laufen Ethernet-Treiber für gewöhnlich sehr zuverlässig. Wenn ein Treiber zuverlässig geladen und entfernt werden kann, können Sie den Vorgang automatisieren, indem Sie die entsprechenden Kommandos in die Dateien /etc/rc.suspend und /etc/rc.resume einfügen. In den Dateien finden Sie ein deaktiviertes Beispiel, das einen Treiber lädt und wieder entfernt. Ist die Bildschirmanzeige bei der Wiederaufnahme des Betriebs gestört, setzen Sie bitte die Variable auf 0. Versuchen Sie auch, die Variable auf kürzere Zeitspannen zu setzen. Die Suspend- und Resume-Funktionen können Sie auch auf einer neuen Linux-Distribution mit ACPI testen. Wenn es mit Linux funktioniert, liegt das Problem wahrscheinlich bei einem &os;-Treiber. Es hilft uns, das Problem zu lösen, wenn Sie feststellen können, welcher Treiber das Problem verursacht. Beachten Sie bitte, dass die ACPI-Entwickler normalerweise keine anderen Treiber pflegen (beispielsweise Sound- oder ATA-Treiber). Es ist wohl das beste, die Ergebnisse der Fehlersuche an die Mailingliste &a.current.name; und den Entwickler des Treibers zu schicken. Wenn Ihnen danach ist, versuchen Sie, den Fehler in der Resume-Funktion zu finden, indem Sie einige &man.printf.3;-Anweisungen in den Code des fehlerhaften Treibers einfügen. Schließlich können Sie ACPI noch abschalten und stattdessen APM verwenden. Wenn die Suspend- und Resume-Funktionen mit APM funktionieren, sollten Sie vielleicht besser APM verwenden (insbesondere mit alter Hardware von vor dem Jahr 2000). Die Hersteller benötigten einige Zeit, um ACPI korrekt zu implementieren, daher gibt es mit älterer Hardware oft ACPI-Probleme. Temporäre oder permanente Systemhänger Die meisten Systemhänger entstehen durch verlorene Interrupts oder einen Interrupt-Sturm. Probleme werden verursacht durch die Art, in der das BIOS Interrupts vor dem Systemstart konfiguriert, durch eine fehlerhafte APIC-Tabelle und durch die Zustellung des System-Control-Interrupts (SCI). Interrupt-Sturm Anhand der Ausgabe des Befehls vmstat -i können Sie verlorene Interrupts von einem Interrupt-Sturm unterscheiden. Untersuchen Sie die Ausgabezeile, die acpi0 enthält. Ein Interrupt-Sturm liegt vor, wenn der Zähler öfter als ein paar Mal pro Sekunde hochgezählt wird. Wenn sich das System aufgehangen hat, versuchen Sie mit der Tastenkombination Ctrl Alt Esc in den Debugger DDB zu gelangen. Geben Sie dort den Befehl show interrupts ein. APIC deaktivieren Wenn Sie Interrupt-Probleme haben, ist es vorerst wohl am besten, APIC zu deaktivieren. Tragen Sie dazu die Zeile hint.apic.0.disabled="1" in loader.conf ein. Abstürze (Panics) Panics werden so schnell wie möglich behoben; mit ACPI kommt es aber selten dazu. Zuerst sollten Sie die Panic reproduzieren und dann versuchen einen backtrace (eine Rückverfolgung der Funktionsaufrufe) zu erstellen. Richten Sie dazu den DDB über die serielle Schnittstelle (siehe ) oder eine gesonderte &man.dump.8;-Partition ein. In DDB können Sie den backtrace mit dem Kommando tr erstellen. Falls Sie den backtrace vom Bildschirm abschreiben müssen, schreiben Sie bitte mindestens die fünf ersten und die fünf letzten Zeile der Ausgabe auf. Versuchen Sie anschließend, das Problem durch einen Neustart ohne ACPI zu beseitigen. Wenn das funktioniert hat, können Sie versuchen, das verantwortliche ACPI-Subsystem durch Setzen der Variablen herauszufinden. Die Hilfeseite &man.acpi.4; enthält dazu einige Beispiele. Nach einem Suspend oder einem Stopp startet das System wieder Setzen Sie zuerst in &man.loader.conf.5; die Variable auf 0. Damit wird verhindert, dass ACPI während des Systemabschlusses die Bearbeitung verschiedener Ereignisse deaktiviert. Auf manchen Systemen muss die Variable den Wert 1 besitzen (die Voreinstellung). Normalerweise wird der unerwünschte Neustart des Systems durch Setzen dieser Variablen behoben. Andere Probleme Wenn Sie weitere Probleme mit ACPI haben (Umgang mit einer Docking-Station, nicht erkannte Geräte), schicken Sie bitte eine Beschreibung an die Mailingliste. Allerdings kann es sein, dass einige Probleme von noch unvollständigen Teilen des ACPI-Subsystems abhängen und es etwas dauern kann bis diese Teile fertig sind. Seien Sie geduldig und rechnen Sie damit, dass wir Ihnen Fehlerbehebungen zum Testen senden. <acronym>ASL</acronym>, <command>acpidump</command> und <acronym>IASL</acronym> ACPI ASL Ein häufiges Problem ist fehlerhafter Bytecode des BIOS-Herstellers. Dies erkennen Sie an Kernelmeldungen auf der Konsole wie die folgende: ACPI-1287: *** Error: Method execution failed [\\_SB_.PCI0.LPC0.FIGD._STA] \\ (Node 0xc3f6d160), AE_NOT_FOUND Oft können Sie das Problem dadurch lösen, dass Sie eine aktuelle BIOS-Version einspielen. Die meisten Meldungen auf der Konsole sind harmlos, wenn aber beispielsweise der Batteriestatus falsch angezeigt wird, können Sie in den Meldungen nach Problemen mit der AML-Machine-Language (AML) suchen. Der Bytecode der AML wird aus der ACPI-Source-Language (ASL) übersetzt und in einer Tabelle, der DSDT, abgelegt. Eine Kopie der ASL können Sie mit dem Befehl &man.acpidump.8; erstellen. Verwenden Sie mit diesem Befehl sowohl die Option (die Inhalte der statischen Tabellen anzeigen) als auch die Option (die AML in ASL zurückübersetzen). Ein Beispiel für die Syntax finden Sie im Abschnitt Fehlerberichte einreichen. Sie können einfach prüfen, ob sich die ASL übersetzen lässt. Für gewöhnlich können Sie Warnungen während des Übersetzens ignorieren. Fehlermeldungen führen normal dazu, dass ACPI fehlerhaft arbeitet. Ihre ASL übersetzen Sie mit dem nachstehenden Kommando: &prompt.root; iasl ihre.asl Die <acronym>ASL</acronym> reparieren ACPI ASL Auf lange Sicht ist es unser Ziel, dass ACPI ohne Eingriffe des Benutzers läuft. Zurzeit entwickeln wir allerdings noch Umgehungen für Fehler der BIOS-Hersteller. Der µsoft;-Interpreter (acpi.sys und acpiec.sys) prüft die ASL nicht streng gegen den Standard. Daher reparieren BIOS-Hersteller, die ACPI nur unter &windows; testen, ihre ASL nicht. Wir hoffen, dass wir das vom Standard abweichende Verhalten des µsoft;-Interpreters dokumentieren und in &os; replizieren können. Dadurch müssen Benutzer ihre ASL nicht selbst reparieren. Sie können Ihre ASL selbst reparieren, wenn Sie ein Problem umgehen und uns helfen möchten. Senden Sie uns bitte die mit &man.diff.1; erstellte Differenz zwischen alter und neuer ASL. Wir werden versuchen, den Interpreter ACPI-CA zu korrigieren, damit die Fehlerbehebung nicht mehr erforderlich ist. ACPI Fehlermeldungen Die nachfolgende Liste enthält häufige Fehlermeldungen, deren Ursache und eine Beschreibung, wie die Fehler korrigiert werden: Abhängigkeiten vom Betriebssystem Einige AMLs gehen davon aus, dass die Welt ausschließlich aus verschiedenen &windows;-Versionen besteht. &os; kann vorgeben, irgendein Betriebssystem zu sein. Versuchen Sie das Betriebssystem, das Sie in der ASL finden, in der Datei /boot/loader.conf anzugeben: hw.acpi.osname="Windows 2001". Fehlende Return-Anweisungen Einige Methoden verzichten auf die vom Standard vorgeschriebene Rückgabe eines Wertes. Obwohl der Interpreter ACPI-CA dies nicht beheben kann, besitzt &os; die Möglichkeit, den Rückgabewert implizit zu setzen. Wenn Sie wissen, welcher Wert zurückgegeben werden muss, können Sie die fehlenden Return-Anweisungen selbst einsetzen. Die Option zwingt iasl, die ASL zu übersetzen. Überschreiben der vorgegebenen <acronym>AML</acronym> Nachdem Sie Ihre ASL in der Datei ihre.asl angepasst haben, übersetzen Sie die ASL wie folgt: &prompt.root; iasl ihre.asl Mit der Option erzwingen Sie das Erstellen der AML auch wenn während der Übersetzung Fehler auftreten. Beachten Sie, dass einige Fehler, wie fehlende Return-Anweisungen, automatisch vom Interpreter umgangen werden. In der Voreinstellung erstellt der Befehl iasl die Ausgabedatei DSDT.aml. Wenn Sie diese Datei anstelle der fehlerhaften Kopie des BIOS laden wollen, editieren Sie /boot/loader.conf wie folgt: acpi_dsdt_load="YES" acpi_dsdt_name="/boot/DSDT.aml" Stellen Sie bitte sicher, dass sich die Datei DSDT.aml im Verzeichnis /boot befindet. <acronym>ACPI</acronym>-Meldungen zur Fehlersuche erzeugen ACPI Probleme mit ACPI Fehlersuche Der ACPI-Treiber besitzt flexible Möglichkeiten zur Fehlersuche. Sie können sowohl die zu untersuchenden Subsysteme als auch die zu erzeugenden Ausgaben festlegen. Die zu untersuchenden Subsysteme werden als so genannte layers angegeben. Die Subsysteme sind in ACPI-CA-Komponenten (ACPI_ALL_COMPONENTS) und ACPI-Hardware (ACPI_ALL_DRIVERS) aufgeteilt. Welche Meldungen ausgegeben werden, wird über level gesteuert. level reicht von ACPI_LV_ERROR (es werden nur Fehler ausgegeben) bis zu ACPI_LV_VERBOSE (alles wird ausgegeben). level ist eine Bitmaske, sodass verschiedene Stufen auf einmal (durch Leerzeichen getrennt) angegeben werden können. Die erzeugte Ausgabemenge passt vielleicht nicht in den Konsolenpuffer. In diesem Fall sollten Sie die Ausgaben mithilfe einer seriellen Konsole sichern. Die möglichen Werte für layers und level werden in der Hilfeseite &man.acpi.4; beschrieben. Die Ausgaben zur Fehlersuche sind in der Voreinstellung nicht aktiviert. Wenn ACPI im Kernel enthalten ist, fügen Sie options ACPI_DEBUG zur Kernelkonfigurationsdatei hinzu. Sie können die Ausgaben zur Fehlersuche global aktivieren, indem Sie in der Datei /etc/make.conf die Zeile ACPI_DEBUG=1 einfügen. Das Modul acpi.ko können Sie wie folgt neu übersetzen: &prompt.root; cd /sys/modules/acpi/acpi && make clean && make ACPI_DEBUG=1 Installieren Sie anschließend acpi.ko im Verzeichnis /boot/kernel. In der Datei loader.conf stellen Sie level und layer ein. Das folgende Beispiel aktiviert die Ausgabe von Fehlern für alle ACPI-CA-Komponenten und alle ACPI-Hardwaretreiber (wie CPU, LID): debug.acpi.layer="ACPI_ALL_COMPONENTS ACPI_ALL_DRIVERS" debug.acpi.level="ACPI_LV_ERROR" Wenn ein Problem durch ein bestimmtes Ereignis, beispielsweise den Start nach einem Ruhezustand, hervorgerufen wird, können Sie die Einstellungen für level und layer auch mit dem Kommando sysctl vornehmen. In diesem Fall müssen Sie die Datei loader.conf nicht editieren. Auf der sysctl-Kommandozeile geben Sie dieselben Variablennamen wie in loader.conf an. ACPI-Informationsquellen Weitere Informationen zu ACPI erhalten Sie an den folgenden Stellen: die &a.acpi; Mailingliste, die Archive der ACPI-Mailingliste: http://lists.FreeBSD.org/pipermail/freebsd-acpi/, die alten Archive der ACPI-Mailingliste: http://home.jp.FreeBSD.org/mail-list/acpi-jp/, die ACPI-Spezifikation (Version 2.0): http://acpi.info/spec.htm, in den nachstehenden &os;-Hilfeseiten: &man.acpi.4;, &man.acpi.thermal.4;, &man.acpidump.8;, &man.iasl.8; und &man.acpidb.8;, DSDT debugging resource (als Beispiel wird Compaq erläutert, die Ressource ist aber dennoch nützlich).