Index: head/en_US.ISO8859-1/books/handbook/advanced-networking/chapter.xml =================================================================== --- head/en_US.ISO8859-1/books/handbook/advanced-networking/chapter.xml (revision 46060) +++ head/en_US.ISO8859-1/books/handbook/advanced-networking/chapter.xml (revision 46061) @@ -1,5217 +1,5217 @@ Advanced Networking Synopsis This chapter covers a number of advanced networking topics. After reading this chapter, you will know: The basics of gateways and routes. How to set up USB tethering. How to set up &ieee; 802.11 and &bluetooth; devices. How to make &os; act as a bridge. How to set up network PXE booting. How to set up IPv6 on a &os; machine. How to enable and utilize the features of the Common Address Redundancy Protocol (CARP) in &os;. Before reading this chapter, you should: Understand the basics of the /etc/rc scripts. Be familiar with basic network terminology. Know how to configure and install a new &os; kernel (). Know how to install additional third-party software (). Gateways and Routes Coranth Gryphon Contributed by routing gateway subnet Routing is the mechanism that allows a system to find the network path to another system. A route is a defined pair of addresses which represent the destination and a gateway. The route indicates that when trying to get to the specified destination, send the packets through the specified gateway. There are three types of destinations: individual hosts, subnets, and default. The default route is used if no other routes apply. There are also three types of gateways: individual hosts, interfaces, also called links, and Ethernet hardware (MAC) addresses. Known routes are stored in a routing table. This section provides an overview of routing basics. It then demonstrates how to configure a &os; system as a router and offers some troubleshooting tips. Routing Basics To view the routing table of a &os; system, use &man.netstat.1;: &prompt.user; netstat -r Routing tables Internet: Destination Gateway Flags Refs Use Netif Expire default outside-gw UGS 37 418 em0 localhost localhost UH 0 181 lo0 test0 0:e0:b5:36:cf:4f UHLW 5 63288 re0 77 10.20.30.255 link#1 UHLW 1 2421 example.com link#1 UC 0 0 host1 0:e0:a8:37:8:1e UHLW 3 4601 lo0 host2 0:e0:a8:37:8:1e UHLW 0 5 lo0 => host2.example.com link#1 UC 0 0 224 link#1 UC 0 0 The entries in this example are as follows: default The first route in this table specifies the default route. When the local system needs to make a connection to a remote host, it checks the routing table to determine if a known path exists. If the remote host matches an entry in the table, the system checks to see if it can connect using the interface specified in that entry. If the destination does not match an entry, or if all known paths fail, the system uses the entry for the default route. For hosts on a local area network, the Gateway field in the default route is set to the system which has a direct connection to the Internet. When reading this entry, verify that the Flags column indicates that the gateway is usable (UG). The default route for a machine which itself is functioning as the gateway to the outside world will be the gateway machine at the Internet Service Provider (ISP). localhost The second route is the localhost route. The interface specified in the Netif column for localhost is lo0, also known as the loopback device. This indicates that all traffic for this destination should be internal, rather than sending it out over the network. MAC address The addresses beginning with 0:e0: are MAC addresses. &os; will automatically identify any hosts, test0 in the example, on the local Ethernet and add a route for that host over the Ethernet interface, re0. This type of route has a timeout, seen in the Expire column, which is used if the host does not respond in a specific amount of time. When this happens, the route to this host will be automatically deleted. These hosts are identified using the Routing Information Protocol (RIP), which calculates routes to local hosts based upon a shortest path determination. subnet &os; will automatically add subnet routes for the local subnet. In this example, 10.20.30.255 is the broadcast address for the subnet 10.20.30 and example.com is the domain name associated with that subnet. The designation link#1 refers to the first Ethernet card in the machine. Local network hosts and local subnets have their routes automatically configured by a daemon called &man.routed.8;. If it is not running, only routes which are statically defined by the administrator will exist. host The host1 line refers to the host by its Ethernet address. Since it is the sending host, &os; knows to use the loopback interface (lo0) rather than the Ethernet interface. The two host2 lines represent aliases which were created using &man.ifconfig.8;. The => symbol after the lo0 interface says that an alias has been set in addition to the loopback address. Such routes only show up on the host that supports the alias and all other hosts on the local network will have a link#1 line for such routes. 224 The final line (destination subnet 224) deals with multicasting. Various attributes of each route can be seen in the Flags column. summarizes some of these flags and their meanings: Commonly Seen Routing Table Flags Command Purpose U The route is active (up). H The route destination is a single host. G Send anything for this destination on to this gateway, which will figure out from there where to send it. S This route was statically configured. C Clones a new route based upon this route for machines to connect to. This type of route is normally used for local networks. W The route was auto-configured based upon a local area network (clone) route. L Route involves references to Ethernet (link) hardware.
On a &os; system, the default route can defined in /etc/rc.conf by specifying the IP address of the default gateway: defaultrouter="10.20.30.1" It is also possible to manually add the route using route: &prompt.root; route add default 10.20.30.1 Note that manually added routes will not survive a reboot. For more information on manual manipulation of network routing tables, refer to &man.route.8;.
Configuring a Router with Static Routes Al Hoang Contributed by dual homed hosts A &os; system can be configured as the default gateway, or router, for a network if it is a dual-homed system. A dual-homed system is a host which resides on at least two different networks. Typically, each network is connected to a separate network interface, though IP aliasing can be used to bind multiple addresses, each on a different subnet, to one physical interface. router In order for the system to forward packets between interfaces, &os; must be configured as a router. Internet standards and good engineering practice prevent the &os; Project from enabling this feature by default, but it can be configured to start at boot by adding this line to /etc/rc.conf: gateway_enable="YES" # Set to YES if this host will be a gateway To enable routing now, set the &man.sysctl.8; variable net.inet.ip.forwarding to 1. To stop routing, reset this variable to 0. BGP RIP OSPF The routing table of a router needs additional routes so it knows how to reach other networks. Routes can be either added manually using static routes or routes can be automatically learned using a routing protocol. Static routes are appropriate for small networks and this section describes how to add a static routing entry for a small network. For large networks, static routes quickly become unscalable. &os; comes with the standard BSD routing daemon &man.routed.8;, which provides the routing protocols RIP, versions 1 and 2, and IRDP. Support for the BGP and OSPF routing protocols can be installed using the net/zebra package or port. Consider the following network: INTERNET | (10.0.0.1/24) Default Router to Internet | |Interface xl0 |10.0.0.10/24 +------+ | | RouterA | | (FreeBSD gateway) +------+ | Interface xl1 | 192.168.1.1/24 | +--------------------------------+ Internal Net 1 | 192.168.1.2/24 | +------+ | | RouterB | | +------+ | 192.168.2.1/24 | Internal Net 2 In this scenario, RouterA is a &os; machine that is acting as a router to the rest of the Internet. It has a default route set to 10.0.0.1 which allows it to connect with the outside world. RouterB is already configured to use 192.168.1.1 as its default gateway. Before adding any static routes, the routing table on RouterA looks like this: &prompt.user; netstat -nr Routing tables Internet: Destination Gateway Flags Refs Use Netif Expire default 10.0.0.1 UGS 0 49378 xl0 127.0.0.1 127.0.0.1 UH 0 6 lo0 10.0.0.0/24 link#1 UC 0 0 xl0 192.168.1.0/24 link#2 UC 0 0 xl1 With the current routing table, RouterA does not have a route to the 192.168.2.0/24 network. The following command adds the Internal Net 2 network to RouterA's routing table using 192.168.1.2 as the next hop: &prompt.root; route add -net 192.168.2.0/24 192.168.1.2 Now, RouterA can reach any host on the 192.168.2.0/24 network. However, the routing information will not persist if the &os; system reboots. If a static route needs to be persistent, add it to /etc/rc.conf: # Add Internal Net 2 as a persistent static route static_routes="internalnet2" route_internalnet2="-net 192.168.2.0/24 192.168.1.2" The static_routes configuration variable is a list of strings separated by a space, where each string references a route name. The variable route_internalnet2 contains the static route for that route name. Using more than one string in static_routes creates multiple static routes. The following shows an example of adding static routes for the 192.168.0.0/24 and 192.168.1.0/24 networks: static_routes="net1 net2" route_net1="-net 192.168.0.0/24 192.168.0.1" route_net2="-net 192.168.1.0/24 192.168.1.1" Troubleshooting When an address space is assigned to a network, the service provider configures their routing tables so that all traffic for the network will be sent to the link for the site. But how do external sites know to send their packets to the network's ISP? There is a system that keeps track of all assigned address spaces and defines their point of connection to the Internet backbone, or the main trunk lines that carry Internet traffic across the country and around the world. Each backbone machine has a copy of a master set of tables, which direct traffic for a particular network to a specific backbone carrier, and from there down the chain of service providers until it reaches a particular network. It is the task of the service provider to advertise to the backbone sites that they are the point of connection, and thus the path inward, for a site. This is known as route propagation. &man.traceroute.8; Sometimes, there is a problem with route propagation and some sites are unable to connect. Perhaps the most useful command for trying to figure out where routing is breaking down is traceroute. It is useful when ping fails. When using traceroute, include the address of the remote host to connect to. The output will show the gateway hosts along the path of the attempt, eventually either reaching the target host, or terminating because of a lack of connection. For more information, refer to &man.traceroute.8;. Multicast Considerations multicast routing kernel options MROUTING &os; natively supports both multicast applications and multicast routing. Multicast applications do not require any special configuration in order to run on &os;. Support for multicast routing requires that the following option be compiled into a custom kernel: options MROUTING The multicast routing daemon, mrouted can be installed using the net/mrouted package or port. This daemon implements the DVMRP multicast routing protocol and is configured by editing /usr/local/etc/mrouted.conf in order to set up the tunnels and DVMRP. The installation of mrouted also installs map-mbone and mrinfo, as well as their associated man pages. Refer to these for configuration examples. DVMRP has largely been replaced by the PIM protocol in many multicast installations. Refer to &man.pim.4; for more information.
Wireless Networking Loader Marc Fonvieille Murray Stokely wireless networking 802.11 wireless networking Wireless Networking Basics Most wireless networks are based on the &ieee; 802.11 standards. A basic wireless network consists of multiple stations communicating with radios that broadcast in either the 2.4GHz or 5GHz band, though this varies according to the locale and is also changing to enable communication in the 2.3GHz and 4.9GHz ranges. 802.11 networks are organized in two ways. In infrastructure mode, one station acts as a master with all the other stations associating to it, the network is known as a BSS, and the master station is termed an access point (AP). In a BSS, all communication passes through the AP; even when one station wants to communicate with another wireless station, messages must go through the AP. In the second form of network, there is no master and stations communicate directly. This form of network is termed an IBSS and is commonly known as an ad-hoc network. 802.11 networks were first deployed in the 2.4GHz band using protocols defined by the &ieee; 802.11 and 802.11b standard. These specifications include the operating frequencies and the MAC layer characteristics, including framing and transmission rates, as communication can occur at various rates. Later, the 802.11a standard defined operation in the 5GHz band, including different signaling mechanisms and higher transmission rates. Still later, the 802.11g standard defined the use of 802.11a signaling and transmission mechanisms in the 2.4GHz band in such a way as to be backwards compatible with 802.11b networks. Separate from the underlying transmission techniques, 802.11 networks have a variety of security mechanisms. The original 802.11 specifications defined a simple security protocol called WEP. This protocol uses a fixed pre-shared key and the RC4 cryptographic cipher to encode data transmitted on a network. Stations must all agree on the fixed key in order to communicate. This scheme was shown to be easily broken and is now rarely used except to discourage transient users from joining networks. Current security practice is given by the &ieee; 802.11i specification that defines new cryptographic ciphers and an additional protocol to authenticate stations to an access point and exchange keys for data communication. Cryptographic keys are periodically refreshed and there are mechanisms for detecting and countering intrusion attempts. Another security protocol specification commonly used in wireless networks is termed WPA, which was a precursor to 802.11i. WPA specifies a subset of the requirements found in 802.11i and is designed for implementation on legacy hardware. Specifically, WPA requires only the TKIP cipher that is derived from the original WEP cipher. 802.11i permits use of TKIP but also requires support for a stronger cipher, AES-CCM, for encrypting data. The AES cipher was not required in WPA because it was deemed too computationally costly to be implemented on legacy hardware. The other standard to be aware of is 802.11e. It defines protocols for deploying multimedia applications, such as streaming video and voice over IP (VoIP), in an 802.11 network. Like 802.11i, 802.11e also has a precursor specification termed WME (later renamed WMM) that has been defined by an industry group as a subset of 802.11e that can be deployed now to enable multimedia applications while waiting for the final ratification of 802.11e. The most important thing to know about 802.11e and WME/WMM is that it enables prioritized traffic over a wireless network through Quality of Service (QoS) protocols and enhanced media access protocols. Proper implementation of these protocols enables high speed bursting of data and prioritized traffic flow. &os; supports networks that operate using 802.11a, 802.11b, and 802.11g. The WPA and 802.11i security protocols are likewise supported (in conjunction with any of 11a, 11b, and 11g) and QoS and traffic prioritization required by the WME/WMM protocols are supported for a limited set of wireless devices. Quick Start Connecting a computer to an existing wireless network is a very common situation. This procedure shows the steps required. Obtain the SSID (Service Set Identifier) and PSK (Pre-Shared Key) for the wireless network from the network administrator. Identify the wireless adapter. The &os; GENERIC kernel includes drivers for many common wireless adapters. If the wireless adapter is one of those models, it will be shown in the output from &man.ifconfig.8;: &prompt.user; ifconfig | grep -B3 -i wireless If a wireless adapter is not listed, an additional kernel module might be required, or it might be a model not supported by &os;. This example shows the Atheros ath0 wireless adapter. Add an entry for this network to /etc/wpa_supplicant.conf. If the file does not exist, create it. Replace myssid and mypsk with the SSID and PSK provided by the network administrator. network={ ssid="myssid" psk="mypsk" } Add entries to /etc/rc.conf to configure the network on startup: wlans_ath0="wlan0" ifconfig_wlan0="WPA SYNCDHCP" Restart the computer, or restart the network service to connect to the network: &prompt.root; service netif restart Basic Setup Kernel Configuration To use wireless networking, a wireless networking card is needed and the kernel needs to be configured with the appropriate wireless networking support. The kernel is separated into multiple modules so that only the required support needs to be configured. The most commonly used wireless devices are those that use parts made by Atheros. These devices are supported by &man.ath.4; and require the following line to be added to /boot/loader.conf: if_ath_load="YES" The Atheros driver is split up into three separate pieces: the driver (&man.ath.4;), the hardware support layer that handles chip-specific functions (&man.ath.hal.4;), and an algorithm for selecting the rate for transmitting frames. When this support is loaded as kernel modules, any dependencies are automatically handled. To load support for a different type of wireless device, specify the module for that device. This example is for devices based on the Intersil Prism parts (&man.wi.4;) driver: if_wi_load="YES" The examples in this section use an &man.ath.4; device and the device name in the examples must be changed according to the configuration. A list of available wireless drivers and supported adapters can be found in the &os; Hardware Notes, available on the Release Information page of the &os; website. If a native &os; driver for the wireless device does not exist, it may be possible to use the &windows; driver with the help of the NDIS driver wrapper. In addition, the modules that implement cryptographic support for the security protocols to use must be loaded. These are intended to be dynamically loaded on demand by the &man.wlan.4; module, but for now they must be manually configured. The following modules are available: &man.wlan.wep.4;, &man.wlan.ccmp.4;, and &man.wlan.tkip.4;. The &man.wlan.ccmp.4; and &man.wlan.tkip.4; drivers are only needed when using the WPA or 802.11i security protocols. If the network does not use encryption, &man.wlan.wep.4; support is not needed. To load these modules at boot time, add the following lines to /boot/loader.conf: wlan_wep_load="YES" wlan_ccmp_load="YES" wlan_tkip_load="YES" Once this information has been added to /boot/loader.conf, reboot the &os; box. Alternately, load the modules by hand using &man.kldload.8;. For users who do not want to use modules, it is possible to compile these drivers into the kernel by adding the following lines to a custom kernel configuration file: device wlan # 802.11 support device wlan_wep # 802.11 WEP support device wlan_ccmp # 802.11 CCMP support device wlan_tkip # 802.11 TKIP support device wlan_amrr # AMRR transmit rate control algorithm device ath # Atheros pci/cardbus NIC's device ath_hal # pci/cardbus chip support options AH_SUPPORT_AR5416 # enable AR5416 tx/rx descriptors device ath_rate_sample # SampleRate tx rate control for ath With this information in the kernel configuration file, recompile the kernel and reboot the &os; machine. Information about the wireless device should appear in the boot messages, like this: ath0: <Atheros 5212> mem 0x88000000-0x8800ffff irq 11 at device 0.0 on cardbus1 ath0: [ITHREAD] ath0: AR2413 mac 7.9 RF2413 phy 4.5 Infrastructure Mode Infrastructure (BSS) mode is the mode that is typically used. In this mode, a number of wireless access points are connected to a wired network. Each wireless network has its own name, called the SSID. Wireless clients connect to the wireless access points. &os; Clients How to Find Access Points To scan for available networks, use &man.ifconfig.8;. This request may take a few moments to complete as it requires the system to switch to each available wireless frequency and probe for available access points. Only the superuser can initiate a scan: &prompt.root; ifconfig wlan0 create wlandev ath0 &prompt.root; ifconfig wlan0 up scan SSID/MESH ID BSSID CHAN RATE S:N INT CAPS dlinkap 00:13:46:49:41:76 11 54M -90:96 100 EPS WPA WME freebsdap 00:11:95:c3:0d:ac 1 54M -83:96 100 EPS WPA The interface must be before it can scan. Subsequent scan requests do not require the interface to be marked as up again. The output of a scan request lists each BSS/IBSS network found. Besides listing the name of the network, the SSID, the output also shows the BSSID, which is the MAC address of the access point. The CAPS field identifies the type of each network and the capabilities of the stations operating there: Station Capability Codes Capability Code Meaning E Extended Service Set (ESS). Indicates that the station is part of an infrastructure network rather than an IBSS/ad-hoc network. I IBSS/ad-hoc network. Indicates that the station is part of an ad-hoc network rather than an ESS network. P Privacy. Encryption is required for all data frames exchanged within the BSS using cryptographic means such as WEP, TKIP or AES-CCMP. S Short Preamble. Indicates that the network is using short preambles, defined in 802.11b High Rate/DSSS PHY, and utilizes a 56 bit sync field rather than the 128 bit field used in long preamble mode. s Short slot time. Indicates that the 802.11g network is using a short slot time because there are no legacy (802.11b) stations present.
One can also display the current list of known networks with: &prompt.root; ifconfig wlan0 list scan This information may be updated automatically by the adapter or manually with a request. Old data is automatically removed from the cache, so over time this list may shrink unless more scans are done.
Basic Settings This section provides a simple example of how to make the wireless network adapter work in &os; without encryption. Once familiar with these concepts, it is strongly recommend to use WPA to set up the wireless network. There are three basic steps to configure a wireless network: select an access point, authenticate the station, and configure an IP address. The following sections discuss each step. Selecting an Access Point Most of the time, it is sufficient to let the system choose an access point using the builtin heuristics. This is the default behaviour when an interface is marked as up or it is listed in /etc/rc.conf: wlans_ath0="wlan0" ifconfig_wlan0="DHCP" If there are multiple access points, a specific one can be selected by its SSID: wlans_ath0="wlan0" ifconfig_wlan0="ssid your_ssid_here DHCP" In an environment where there are multiple access points with the same SSID, which is often done to simplify roaming, it may be necessary to associate to one specific device. In this case, the BSSID of the access point can be specified, with or without the SSID: wlans_ath0="wlan0" ifconfig_wlan0="ssid your_ssid_here bssid xx:xx:xx:xx:xx:xx DHCP" There are other ways to constrain the choice of an access point, such as limiting the set of frequencies the system will scan on. This may be useful for a multi-band wireless card as scanning all the possible channels can be time-consuming. To limit operation to a specific band, use the parameter: wlans_ath0="wlan0" ifconfig_wlan0="mode 11g ssid your_ssid_here DHCP" This example will force the card to operate in 802.11g, which is defined only for 2.4GHz frequencies so any 5GHz channels will not be considered. This can also be achieved with the parameter, which locks operation to one specific frequency, and the parameter, to specify a list of channels for scanning. More information about these parameters can be found in &man.ifconfig.8;. Authentication Once an access point is selected, the station needs to authenticate before it can pass data. Authentication can happen in several ways. The most common scheme, open authentication, allows any station to join the network and communicate. This is the authentication to use for test purposes the first time a wireless network is setup. Other schemes require cryptographic handshakes to be completed before data traffic can flow, either using pre-shared keys or secrets, or more complex schemes that involve backend services such as RADIUS. Open authentication is the default setting. The next most common setup is WPA-PSK, also known as WPA Personal, which is described in . If using an &apple; &airport; Extreme base station for an access point, shared-key authentication together with a WEP key needs to be configured. This can be configured in /etc/rc.conf or by using &man.wpa.supplicant.8;. For a single &airport; base station, access can be configured with: wlans_ath0="wlan0" ifconfig_wlan0="authmode shared wepmode on weptxkey 1 wepkey 01234567 DHCP" In general, shared key authentication should be avoided because it uses the WEP key material in a highly-constrained manner, making it even easier to crack the key. If WEP must be used for compatibility with legacy devices, it is better to use WEP with open authentication. More information regarding WEP can be found in . Getting an <acronym>IP</acronym> Address with <acronym>DHCP</acronym> Once an access point is selected and the authentication parameters are set, an IP address must be obtained in order to communicate. Most of the time, the IP address is obtained via DHCP. To achieve that, edit /etc/rc.conf and add DHCP to the configuration for the device: wlans_ath0="wlan0" ifconfig_wlan0="DHCP" The wireless interface is now ready to bring up: &prompt.root; service netif start Once the interface is running, use &man.ifconfig.8; to see the status of the interface ath0: &prompt.root; ifconfig wlan0 wlan0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500 ether 00:11:95:d5:43:62 inet 192.168.1.100 netmask 0xffffff00 broadcast 192.168.1.255 media: IEEE 802.11 Wireless Ethernet OFDM/54Mbps mode 11g status: associated ssid dlinkap channel 11 (2462 Mhz 11g) bssid 00:13:46:49:41:76 country US ecm authmode OPEN privacy OFF txpower 21.5 bmiss 7 scanvalid 60 bgscan bgscanintvl 300 bgscanidle 250 roam:rssi 7 roam:rate 5 protmode CTS wme burst The status: associated line means that it is connected to the wireless network. The bssid 00:13:46:49:41:76 is the MAC address of the access point and authmode OPEN indicates that the communication is not encrypted. Static <acronym>IP</acronym> Address In an IP address cannot be obtained from a DHCP server, set a fixed IP address. Replace the DHCP keyword shown above with the address information. Be sure to retain any other parameters for selecting the access point: wlans_ath0="wlan0" ifconfig_wlan0="inet 192.168.1.100 netmask 255.255.255.0 ssid your_ssid_here" <acronym>WPA</acronym> Wi-Fi Protected Access (WPA) is a security protocol used together with 802.11 networks to address the lack of proper authentication and the weakness of WEP. WPA leverages the 802.1X authentication protocol and uses one of several ciphers instead of WEP for data integrity. The only cipher required by WPA is the Temporary Key Integrity Protocol (TKIP). TKIP is a cipher that extends the basic RC4 cipher used by WEP by adding integrity checking, tamper detection, and measures for responding to detected intrusions. TKIP is designed to work on legacy hardware with only software modification. It represents a compromise that improves security but is still not entirely immune to attack. WPA also specifies the AES-CCMP cipher as an alternative to TKIP, and that is preferred when possible. For this specification, the term WPA2 or RSN is commonly used. WPA defines authentication and encryption protocols. Authentication is most commonly done using one of two techniques: by 802.1X and a backend authentication service such as RADIUS, or by a minimal handshake between the station and the access point using a pre-shared secret. The former is commonly termed WPA Enterprise and the latter is known as WPA Personal. Since most people will not set up a RADIUS backend server for their wireless network, WPA-PSK is by far the most commonly encountered configuration for WPA. The control of the wireless connection and the key negotiation or authentication with a server is done using &man.wpa.supplicant.8;. This program requires a configuration file, /etc/wpa_supplicant.conf, to run. More information regarding this file can be found in &man.wpa.supplicant.conf.5;. <acronym>WPA-PSK</acronym> WPA-PSK, also known as WPA Personal, is based on a pre-shared key (PSK) which is generated from a given password and used as the master key in the wireless network. This means every wireless user will share the same key. WPA-PSK is intended for small networks where the use of an authentication server is not possible or desired. Always use strong passwords that are sufficiently long and made from a rich alphabet so that they will not be easily guessed or attacked. The first step is the configuration of /etc/wpa_supplicant.conf with the SSID and the pre-shared key of the network: network={ ssid="freebsdap" psk="freebsdmall" } Then, in /etc/rc.conf, indicate that the wireless device configuration will be done with WPA and the IP address will be obtained with DHCP: wlans_ath0="wlan0" ifconfig_wlan0="WPA DHCP" Then, bring up the interface: &prompt.root; service netif start Starting wpa_supplicant. DHCPDISCOVER on wlan0 to 255.255.255.255 port 67 interval 5 DHCPDISCOVER on wlan0 to 255.255.255.255 port 67 interval 6 DHCPOFFER from 192.168.0.1 DHCPREQUEST on wlan0 to 255.255.255.255 port 67 DHCPACK from 192.168.0.1 bound to 192.168.0.254 -- renewal in 300 seconds. wlan0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500 ether 00:11:95:d5:43:62 inet 192.168.0.254 netmask 0xffffff00 broadcast 192.168.0.255 media: IEEE 802.11 Wireless Ethernet OFDM/36Mbps mode 11g status: associated ssid freebsdap channel 1 (2412 Mhz 11g) bssid 00:11:95:c3:0d:ac country US ecm authmode WPA2/802.11i privacy ON deftxkey UNDEF AES-CCM 3:128-bit txpower 21.5 bmiss 7 scanvalid 450 bgscan bgscanintvl 300 bgscanidle 250 roam:rssi 7 roam:rate 5 protmode CTS wme burst roaming MANUAL Or, try to configure the interface manually using the information in /etc/wpa_supplicant.conf: &prompt.root; wpa_supplicant -i wlan0 -c /etc/wpa_supplicant.conf Trying to associate with 00:11:95:c3:0d:ac (SSID='freebsdap' freq=2412 MHz) Associated with 00:11:95:c3:0d:ac WPA: Key negotiation completed with 00:11:95:c3:0d:ac [PTK=CCMP GTK=CCMP] CTRL-EVENT-CONNECTED - Connection to 00:11:95:c3:0d:ac completed (auth) [id=0 id_str=] The next operation is to launch &man.dhclient.8; to get the IP address from the DHCP server: &prompt.root; dhclient wlan0 DHCPREQUEST on wlan0 to 255.255.255.255 port 67 DHCPACK from 192.168.0.1 bound to 192.168.0.254 -- renewal in 300 seconds. &prompt.root; ifconfig wlan0 wlan0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500 ether 00:11:95:d5:43:62 inet 192.168.0.254 netmask 0xffffff00 broadcast 192.168.0.255 media: IEEE 802.11 Wireless Ethernet OFDM/36Mbps mode 11g status: associated ssid freebsdap channel 1 (2412 Mhz 11g) bssid 00:11:95:c3:0d:ac country US ecm authmode WPA2/802.11i privacy ON deftxkey UNDEF AES-CCM 3:128-bit txpower 21.5 bmiss 7 scanvalid 450 bgscan bgscanintvl 300 bgscanidle 250 roam:rssi 7 roam:rate 5 protmode CTS wme burst roaming MANUAL If /etc/rc.conf has an ifconfig_wlan0="DHCP" entry, &man.dhclient.8; will be launched automatically after &man.wpa.supplicant.8; associates with the access point. If DHCP is not possible or desired, set a static IP address after &man.wpa.supplicant.8; has authenticated the station: &prompt.root; ifconfig wlan0 inet 192.168.0.100 netmask 255.255.255.0 &prompt.root; ifconfig wlan0 wlan0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500 ether 00:11:95:d5:43:62 inet 192.168.0.100 netmask 0xffffff00 broadcast 192.168.0.255 media: IEEE 802.11 Wireless Ethernet OFDM/36Mbps mode 11g status: associated ssid freebsdap channel 1 (2412 Mhz 11g) bssid 00:11:95:c3:0d:ac country US ecm authmode WPA2/802.11i privacy ON deftxkey UNDEF AES-CCM 3:128-bit txpower 21.5 bmiss 7 scanvalid 450 bgscan bgscanintvl 300 bgscanidle 250 roam:rssi 7 roam:rate 5 protmode CTS wme burst roaming MANUAL When DHCP is not used, the default gateway and the nameserver also have to be manually set: &prompt.root; route add default your_default_router &prompt.root; echo "nameserver your_DNS_server" >> /etc/resolv.conf <acronym>WPA</acronym> with <acronym>EAP-TLS</acronym> The second way to use WPA is with an 802.1X backend authentication server. In this case, WPA is called WPA Enterprise to differentiate it from the less secure WPA Personal. Authentication in WPA Enterprise is based on the Extensible Authentication Protocol (EAP). EAP does not come with an encryption method. Instead, EAP is embedded inside an encrypted tunnel. There are many EAP authentication methods, but EAP-TLS, EAP-TTLS, and EAP-PEAP are the most common. EAP with Transport Layer Security (EAP-TLS) is a well-supported wireless authentication protocol since it was the first EAP method to be certified by the Wi-Fi Alliance. EAP-TLS requires three certificates to run: the certificate of the Certificate Authority (CA) installed on all machines, the server certificate for the authentication server, and one client certificate for each wireless client. In this EAP method, both the authentication server and wireless client authenticate each other by presenting their respective certificates, and then verify that these certificates were signed by the organization's CA. As previously, the configuration is done via /etc/wpa_supplicant.conf: network={ ssid="freebsdap" proto=RSN key_mgmt=WPA-EAP eap=TLS identity="loader" ca_cert="/etc/certs/cacert.pem" client_cert="/etc/certs/clientcert.pem" private_key="/etc/certs/clientkey.pem" private_key_passwd="freebsdmallclient" } This field indicates the network name (SSID). This example uses the RSN &ieee; 802.11i protocol, also known as WPA2. The key_mgmt line refers to the key management protocol to use. In this example, it is WPA using EAP authentication. This field indicates the EAP method for the connection. The identity field contains the identity string for EAP. The ca_cert field indicates the pathname of the CA certificate file. This file is needed to verify the server certificate. The client_cert line gives the pathname to the client certificate file. This certificate is unique to each wireless client of the network. The private_key field is the pathname to the client certificate private key file. The private_key_passwd field contains the passphrase for the private key. Then, add the following lines to /etc/rc.conf: wlans_ath0="wlan0" ifconfig_wlan0="WPA DHCP" The next step is to bring up the interface: &prompt.root; service netif start Starting wpa_supplicant. DHCPREQUEST on wlan0 to 255.255.255.255 port 67 interval 7 DHCPREQUEST on wlan0 to 255.255.255.255 port 67 interval 15 DHCPACK from 192.168.0.20 bound to 192.168.0.254 -- renewal in 300 seconds. wlan0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500 ether 00:11:95:d5:43:62 inet 192.168.0.254 netmask 0xffffff00 broadcast 192.168.0.255 media: IEEE 802.11 Wireless Ethernet DS/11Mbps mode 11g status: associated ssid freebsdap channel 1 (2412 Mhz 11g) bssid 00:11:95:c3:0d:ac country US ecm authmode WPA2/802.11i privacy ON deftxkey UNDEF AES-CCM 3:128-bit txpower 21.5 bmiss 7 scanvalid 450 bgscan bgscanintvl 300 bgscanidle 250 roam:rssi 7 roam:rate 5 protmode CTS wme burst roaming MANUAL It is also possible to bring up the interface manually using &man.wpa.supplicant.8; and &man.ifconfig.8;. <acronym>WPA</acronym> with <acronym>EAP-TTLS</acronym> With EAP-TTLS, both the authentication server and the client need a certificate. With EAP-TTLS, a client certificate is optional. This method is similar to a web server which creates a secure SSL tunnel even if visitors do not have client-side certificates. EAP-TTLS uses an encrypted TLS tunnel for safe transport of the authentication data. The required configuration can be added to /etc/wpa_supplicant.conf: network={ ssid="freebsdap" proto=RSN key_mgmt=WPA-EAP eap=TTLS identity="test" password="test" ca_cert="/etc/certs/cacert.pem" phase2="auth=MD5" } This field specifies the EAP method for the connection. The identity field contains the identity string for EAP authentication inside the encrypted TLS tunnel. The password field contains the passphrase for the EAP authentication. The ca_cert field indicates the pathname of the CA certificate file. This file is needed to verify the server certificate. This field specifies the authentication method used in the encrypted TLS tunnel. In this example, EAP with MD5-Challenge is used. The inner authentication phase is often called phase2. Next, add the following lines to /etc/rc.conf: wlans_ath0="wlan0" ifconfig_wlan0="WPA DHCP" The next step is to bring up the interface: &prompt.root; service netif start Starting wpa_supplicant. DHCPREQUEST on wlan0 to 255.255.255.255 port 67 interval 7 DHCPREQUEST on wlan0 to 255.255.255.255 port 67 interval 15 DHCPREQUEST on wlan0 to 255.255.255.255 port 67 interval 21 DHCPACK from 192.168.0.20 bound to 192.168.0.254 -- renewal in 300 seconds. wlan0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500 ether 00:11:95:d5:43:62 inet 192.168.0.254 netmask 0xffffff00 broadcast 192.168.0.255 media: IEEE 802.11 Wireless Ethernet DS/11Mbps mode 11g status: associated ssid freebsdap channel 1 (2412 Mhz 11g) bssid 00:11:95:c3:0d:ac country US ecm authmode WPA2/802.11i privacy ON deftxkey UNDEF AES-CCM 3:128-bit txpower 21.5 bmiss 7 scanvalid 450 bgscan bgscanintvl 300 bgscanidle 250 roam:rssi 7 roam:rate 5 protmode CTS wme burst roaming MANUAL <acronym>WPA</acronym> with <acronym>EAP-PEAP</acronym> PEAPv0/EAP-MSCHAPv2 is the most common PEAP method. In this chapter, the term PEAP is used to refer to that method. Protected EAP (PEAP) is designed as an alternative to EAP-TTLS and is the most used EAP standard after EAP-TLS. In a network with mixed operating systems, PEAP should be the most supported standard after EAP-TLS. PEAP is similar to EAP-TTLS as it uses a server-side certificate to authenticate clients by creating an encrypted TLS tunnel between the client and the authentication server, which protects the ensuing exchange of authentication information. PEAP authentication differs from EAP-TTLS as it broadcasts the username in the clear and only the password is sent in the encrypted TLS tunnel. EAP-TTLS will use the TLS tunnel for both the username and password. Add the following lines to /etc/wpa_supplicant.conf to configure the EAP-PEAP related settings: network={ ssid="freebsdap" proto=RSN key_mgmt=WPA-EAP eap=PEAP identity="test" password="test" ca_cert="/etc/certs/cacert.pem" phase1="peaplabel=0" phase2="auth=MSCHAPV2" } This field specifies the EAP method for the connection. The identity field contains the identity string for EAP authentication inside the encrypted TLS tunnel. The password field contains the passphrase for the EAP authentication. The ca_cert field indicates the pathname of the CA certificate file. This file is needed to verify the server certificate. This field contains the parameters for the first phase of authentication, the TLS tunnel. According to the authentication server used, specify a specific label for authentication. Most of the time, the label will be client EAP encryption which is set by using peaplabel=0. More information can be found in &man.wpa.supplicant.conf.5;. This field specifies the authentication protocol used in the encrypted TLS tunnel. In the case of PEAP, it is auth=MSCHAPV2. Add the following to /etc/rc.conf: wlans_ath0="wlan0" ifconfig_wlan0="WPA DHCP" Then, bring up the interface: &prompt.root; service netif start Starting wpa_supplicant. DHCPREQUEST on wlan0 to 255.255.255.255 port 67 interval 7 DHCPREQUEST on wlan0 to 255.255.255.255 port 67 interval 15 DHCPREQUEST on wlan0 to 255.255.255.255 port 67 interval 21 DHCPACK from 192.168.0.20 bound to 192.168.0.254 -- renewal in 300 seconds. wlan0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500 ether 00:11:95:d5:43:62 inet 192.168.0.254 netmask 0xffffff00 broadcast 192.168.0.255 media: IEEE 802.11 Wireless Ethernet DS/11Mbps mode 11g status: associated ssid freebsdap channel 1 (2412 Mhz 11g) bssid 00:11:95:c3:0d:ac country US ecm authmode WPA2/802.11i privacy ON deftxkey UNDEF AES-CCM 3:128-bit txpower 21.5 bmiss 7 scanvalid 450 bgscan bgscanintvl 300 bgscanidle 250 roam:rssi 7 roam:rate 5 protmode CTS wme burst roaming MANUAL <acronym>WEP</acronym> Wired Equivalent Privacy (WEP) is part of the original 802.11 standard. There is no authentication mechanism, only a weak form of access control which is easily cracked. WEP can be set up using &man.ifconfig.8;: &prompt.root; ifconfig wlan0 create wlandev ath0 &prompt.root; ifconfig wlan0 inet 192.168.1.100 netmask 255.255.255.0 \ ssid my_net wepmode on weptxkey 3 wepkey 3:0x3456789012 The weptxkey specifies which WEP key will be used in the transmission. This example uses the third key. This must match the setting on the access point. When unsure which key is used by the access point, try 1 (the first key) for this value. The wepkey selects one of the WEP keys. It should be in the format index:key. Key 1 is used by default; the index only needs to be set when using a key other than the first key. Replace the 0x3456789012 with the key configured for use on the access point. Refer to &man.ifconfig.8; for further information. The &man.wpa.supplicant.8; facility can be used to configure a wireless interface with WEP. The example above can be set up by adding the following lines to /etc/wpa_supplicant.conf: network={ ssid="my_net" key_mgmt=NONE wep_key3=3456789012 wep_tx_keyidx=3 } Then: &prompt.root; wpa_supplicant -i wlan0 -c /etc/wpa_supplicant.conf Trying to associate with 00:13:46:49:41:76 (SSID='dlinkap' freq=2437 MHz) Associated with 00:13:46:49:41:76
Ad-hoc Mode IBSS mode, also called ad-hoc mode, is designed for point to point connections. For example, to establish an ad-hoc network between the machines A and B, choose two IP addresses and a SSID. On A: &prompt.root; ifconfig wlan0 create wlandev ath0 wlanmode adhoc &prompt.root; ifconfig wlan0 inet 192.168.0.1 netmask 255.255.255.0 ssid freebsdap &prompt.root; ifconfig wlan0 wlan0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric 0 mtu 1500 ether 00:11:95:c3:0d:ac inet 192.168.0.1 netmask 0xffffff00 broadcast 192.168.0.255 media: IEEE 802.11 Wireless Ethernet autoselect mode 11g <adhoc> status: running ssid freebsdap channel 2 (2417 Mhz 11g) bssid 02:11:95:c3:0d:ac country US ecm authmode OPEN privacy OFF txpower 21.5 scanvalid 60 protmode CTS wme burst The adhoc parameter indicates that the interface is running in IBSS mode. B should now be able to detect A: &prompt.root; ifconfig wlan0 create wlandev ath0 wlanmode adhoc &prompt.root; ifconfig wlan0 up scan SSID/MESH ID BSSID CHAN RATE S:N INT CAPS freebsdap 02:11:95:c3:0d:ac 2 54M -64:-96 100 IS WME The I in the output confirms that A is in ad-hoc mode. Now, configure B with a different IP address: &prompt.root; ifconfig wlan0 inet 192.168.0.2 netmask 255.255.255.0 ssid freebsdap &prompt.root; ifconfig wlan0 wlan0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric 0 mtu 1500 ether 00:11:95:d5:43:62 inet 192.168.0.2 netmask 0xffffff00 broadcast 192.168.0.255 media: IEEE 802.11 Wireless Ethernet autoselect mode 11g <adhoc> status: running ssid freebsdap channel 2 (2417 Mhz 11g) bssid 02:11:95:c3:0d:ac country US ecm authmode OPEN privacy OFF txpower 21.5 scanvalid 60 protmode CTS wme burst Both A and B are now ready to exchange information. &os; Host Access Points &os; can act as an Access Point (AP) which eliminates the need to buy a hardware AP or run an ad-hoc network. This can be particularly useful when a &os; machine is acting as a gateway to another network such as the Internet. Basic Settings Before configuring a &os; machine as an AP, the kernel must be configured with the appropriate networking support for the wireless card as well as the security protocols being used. For more details, see . The NDIS driver wrapper for &windows; drivers does not currently support AP operation. Only native &os; wireless drivers support AP mode. Once wireless networking support is loaded, check if the wireless device supports the host-based access point mode, also known as hostap mode: &prompt.root; ifconfig wlan0 create wlandev ath0 &prompt.root; ifconfig wlan0 list caps drivercaps=6f85edc1<STA,FF,TURBOP,IBSS,HOSTAP,AHDEMO,TXPMGT,SHSLOT,SHPREAMBLE,MONITOR,MBSS,WPA1,WPA2,BURST,WME,WDS,BGSCAN,TXFRAG> cryptocaps=1f<WEP,TKIP,AES,AES_CCM,TKIPMIC> This output displays the card's capabilities. The HOSTAP word confirms that this wireless card can act as an AP. Various supported ciphers are also listed: WEP, TKIP, and AES. This information indicates which security protocols can be used on the AP. The wireless device can only be put into hostap mode during the creation of the network pseudo-device, so a previously created device must be destroyed first: &prompt.root; ifconfig wlan0 destroy then regenerated with the correct option before setting the other parameters: &prompt.root; ifconfig wlan0 create wlandev ath0 wlanmode hostap &prompt.root; ifconfig wlan0 inet 192.168.0.1 netmask 255.255.255.0 ssid freebsdap mode 11g channel 1 Use &man.ifconfig.8; again to see the status of the wlan0 interface: &prompt.root; ifconfig wlan0 wlan0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric 0 mtu 1500 ether 00:11:95:c3:0d:ac inet 192.168.0.1 netmask 0xffffff00 broadcast 192.168.0.255 media: IEEE 802.11 Wireless Ethernet autoselect mode 11g <hostap> status: running ssid freebsdap channel 1 (2412 Mhz 11g) bssid 00:11:95:c3:0d:ac country US ecm authmode OPEN privacy OFF txpower 21.5 scanvalid 60 protmode CTS wme burst dtimperiod 1 -dfs The hostap parameter indicates the interface is running in the host-based access point mode. The interface configuration can be done automatically at boot time by adding the following lines to /etc/rc.conf: wlans_ath0="wlan0" create_args_wlan0="wlanmode hostap" ifconfig_wlan0="inet 192.168.0.1 netmask 255.255.255.0 ssid freebsdap mode 11g channel 1" Host-based Access Point Without Authentication or Encryption Although it is not recommended to run an AP without any authentication or encryption, this is a simple way to check if the AP is working. This configuration is also important for debugging client issues. Once the AP is configured, initiate a scan from another wireless machine to find the AP: &prompt.root; ifconfig wlan0 create wlandev ath0 &prompt.root; ifconfig wlan0 up scan SSID/MESH ID BSSID CHAN RATE S:N INT CAPS freebsdap 00:11:95:c3:0d:ac 1 54M -66:-96 100 ES WME The client machine found the AP and can be associated with it: &prompt.root; ifconfig wlan0 inet 192.168.0.2 netmask 255.255.255.0 ssid freebsdap &prompt.root; ifconfig wlan0 wlan0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric 0 mtu 1500 ether 00:11:95:d5:43:62 inet 192.168.0.2 netmask 0xffffff00 broadcast 192.168.0.255 media: IEEE 802.11 Wireless Ethernet OFDM/54Mbps mode 11g status: associated ssid freebsdap channel 1 (2412 Mhz 11g) bssid 00:11:95:c3:0d:ac country US ecm authmode OPEN privacy OFF txpower 21.5 bmiss 7 scanvalid 60 bgscan bgscanintvl 300 bgscanidle 250 roam:rssi 7 roam:rate 5 protmode CTS wme burst <acronym>WPA</acronym> Host-based Access Point This section focuses on setting up a &os; AP using the WPA security protocol. More details regarding WPA and the configuration of WPA-based wireless clients can be found in . The &man.hostapd.8; daemon is used to deal with client authentication and key management on the WPA-enabled AP. The following configuration operations are performed on the &os; machine acting as the AP. Once the AP is correctly working, &man.hostapd.8; should be automatically enabled at boot with the following line in /etc/rc.conf: hostapd_enable="YES" Before trying to configure &man.hostapd.8;, first configure the basic settings introduced in . <acronym>WPA-PSK</acronym> WPA-PSK is intended for small networks where the use of a backend authentication server is not possible or desired. The configuration is done in /etc/hostapd.conf: interface=wlan0 debug=1 ctrl_interface=/var/run/hostapd ctrl_interface_group=wheel ssid=freebsdap wpa=1 wpa_passphrase=freebsdmall wpa_key_mgmt=WPA-PSK wpa_pairwise=CCMP TKIP This field indicates the wireless interface used for the AP. This field sets the level of verbosity during the execution of &man.hostapd.8;. A value of 1 represents the minimal level. The ctrl_interface field gives the pathname of the directory used by &man.hostapd.8; to store its domain socket files for the communication with external programs such as &man.hostapd.cli.8;. The default value is used in this example. The ctrl_interface_group line sets the group which is allowed to access the control interface files. This field sets the network name. The wpa field enables WPA and specifies which WPA authentication protocol will be required. A value of 1 configures the AP for WPA-PSK. The wpa_passphrase field contains the ASCII passphrase for WPA authentication. Always use strong passwords that are sufficiently long and made from a rich alphabet so that they will not be easily guessed or attacked. The wpa_key_mgmt line refers to the key management protocol to use. This example sets WPA-PSK. The wpa_pairwise field indicates the set of accepted encryption algorithms by the AP. In this example, both TKIP (WPA) and CCMP (WPA2) ciphers are accepted. The CCMP cipher is an alternative to TKIP and is strongly preferred when possible. TKIP should be used solely for stations incapable of doing CCMP. The next step is to start &man.hostapd.8;: &prompt.root; service hostapd forcestart &prompt.root; ifconfig wlan0 wlan0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 2290 inet 192.168.0.1 netmask 0xffffff00 broadcast 192.168.0.255 inet6 fe80::211:95ff:fec3:dac%ath0 prefixlen 64 scopeid 0x4 ether 00:11:95:c3:0d:ac media: IEEE 802.11 Wireless Ethernet autoselect mode 11g <hostap> status: associated ssid freebsdap channel 1 bssid 00:11:95:c3:0d:ac authmode WPA2/802.11i privacy MIXED deftxkey 2 TKIP 2:128-bit txpowmax 36 protmode CTS dtimperiod 1 bintval 100 Once the AP is running, the clients can associate with it. See for more details. It is possible to see the stations associated with the AP using ifconfig wlan0 list sta. <acronym>WEP</acronym> Host-based Access Point It is not recommended to use WEP for setting up an AP since there is no authentication mechanism and the encryption is easily cracked. Some legacy wireless cards only support WEP and these cards will only support an AP without authentication or encryption. The wireless device can now be put into hostap mode and configured with the correct SSID and IP address: &prompt.root; ifconfig wlan0 create wlandev ath0 wlanmode hostap &prompt.root; ifconfig wlan0 inet 192.168.0.1 netmask 255.255.255.0 \ ssid freebsdap wepmode on weptxkey 3 wepkey 3:0x3456789012 mode 11g The weptxkey indicates which WEP key will be used in the transmission. This example uses the third key as key numbering starts with 1. This parameter must be specified in order to encrypt the data. The wepkey sets the selected WEP key. It should be in the format index:key. If the index is not given, key 1 is set. The index needs to be set when using keys other than the first key. Use &man.ifconfig.8; to see the status of the wlan0 interface: &prompt.root; ifconfig wlan0 wlan0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric 0 mtu 1500 ether 00:11:95:c3:0d:ac inet 192.168.0.1 netmask 0xffffff00 broadcast 192.168.0.255 media: IEEE 802.11 Wireless Ethernet autoselect mode 11g <hostap> status: running ssid freebsdap channel 4 (2427 Mhz 11g) bssid 00:11:95:c3:0d:ac country US ecm authmode OPEN privacy ON deftxkey 3 wepkey 3:40-bit txpower 21.5 scanvalid 60 protmode CTS wme burst dtimperiod 1 -dfs From another wireless machine, it is now possible to initiate a scan to find the AP: &prompt.root; ifconfig wlan0 create wlandev ath0 &prompt.root; ifconfig wlan0 up scan SSID BSSID CHAN RATE S:N INT CAPS freebsdap 00:11:95:c3:0d:ac 1 54M 22:1 100 EPS In this example, the client machine found the AP and can associate with it using the correct parameters. See for more details. Using Both Wired and Wireless Connections A wired connection provides better performance and reliability, while a wireless connection provides flexibility and mobility. Laptop users typically want to roam seamlessly between the two types of connections. On &os;, it is possible to combine two or even more network interfaces together in a failover fashion. This type of configuration uses the most preferred and available connection from a group of network interfaces, and the operating system switches automatically when the link state changes. Link aggregation and failover is covered in and an example for using both wired and wireless connections is provided at . Troubleshooting This section describes a number of steps to help troubleshoot common wireless networking problems. If the access point is not listed when scanning, check that the configuration has not limited the wireless device to a limited set of channels. If the device cannot associate with an access point, verify that the configuration matches the settings on the access point. This includes the authentication scheme and any security protocols. Simplify the configuration as much as possible. If using a security protocol such as WPA or WEP, configure the access point for open authentication and no security to see if traffic will pass. Debugging support is provided by &man.wpa.supplicant.8;. Try running this utility manually - with the option and look at the + with and look at the system logs. Once the system can associate with the access point, diagnose the network configuration using tools like &man.ping.8;. There are many lower-level debugging tools. Debugging messages can be enabled in the 802.11 protocol support layer using &man.wlandebug.8;. On a &os; system prior to &os; 9.1, this program can be found in /usr/src/tools/tools/net80211. For example, to enable console messages related to scanning for access points and the 802.11 protocol handshakes required to arrange communication: &prompt.root; wlandebug -i ath0 +scan+auth+debug+assoc net.wlan.0.debug: 0 => 0xc80000<assoc,auth,scan> Many useful statistics are maintained by the 802.11 layer and wlanstats, found in /usr/src/tools/tools/net80211, will dump this information. These statistics should display all errors identified by the 802.11 layer. However, some errors are identified in the device drivers that lie below the 802.11 layer so they may not show up. To diagnose device-specific problems, refer to the drivers' documentation. If the above information does not help to clarify the problem, submit a problem report and include output from the above tools.
USB Tethering tether Many cellphones provide the option to share their data connection over USB (often called "tethering"). This feature uses either the RNDIS, CDC or a custom &apple; &iphone;/&ipad; protocol. &android; devices generally use the &man.urndis.4; driver. &apple; devices use the &man.ipheth.4; driver. Older devices will often use the &man.cdce.4; driver. Before attaching a device, load the appropriate driver into the kernel: &prompt.root; kldload if_urndis &prompt.root; kldload if_cdce &prompt.root; kldload if_ipheth Once the device is attached ue0 will be available for use like a normal network device. Be sure that the USB tethering option is enabled on the device. Bluetooth Pav Lucistnik Written by pav@FreeBSD.org Bluetooth Bluetooth is a wireless technology for creating personal networks operating in the 2.4 GHz unlicensed band, with a range of 10 meters. Networks are usually formed ad-hoc from portable devices such as cellular phones, handhelds, and laptops. Unlike Wi-Fi wireless technology, Bluetooth offers higher level service profiles, such as FTP-like file servers, file pushing, voice transport, serial line emulation, and more. This section describes the use of a USB Bluetooth dongle on a &os; system. It then describes the various Bluetooth protocols and utilities. Loading Bluetooth Support The Bluetooth stack in &os; is implemented using the &man.netgraph.4; framework. A broad variety of Bluetooth USB dongles is supported by &man.ng.ubt.4;. Broadcom BCM2033 based Bluetooth devices are supported by the &man.ubtbcmfw.4; and &man.ng.ubt.4; drivers. The 3Com Bluetooth PC Card 3CRWB60-A is supported by the &man.ng.bt3c.4; driver. Serial and UART based Bluetooth devices are supported by &man.sio.4;, &man.ng.h4.4;, and &man.hcseriald.8;. Before attaching a device, determine which of the above drivers it uses, then load the driver. For example, if the device uses the &man.ng.ubt.4; driver: &prompt.root; kldload ng_ubt If the Bluetooth device will be attached to the system during system startup, the system can be configured to load the module at boot time by adding the driver to /boot/loader.conf: ng_ubt_load="YES" Once the driver is loaded, plug in the USB dongle. If the driver load was successful, output similar to the following should appear on the console and in /var/log/messages: ubt0: vendor 0x0a12 product 0x0001, rev 1.10/5.25, addr 2 ubt0: Interface 0 endpoints: interrupt=0x81, bulk-in=0x82, bulk-out=0x2 ubt0: Interface 1 (alt.config 5) endpoints: isoc-in=0x83, isoc-out=0x3, wMaxPacketSize=49, nframes=6, buffer size=294 To start and stop the Bluetooth stack, use its startup script. It is a good idea to stop the stack before unplugging the device. When starting the stack, the output should be similar to the following: &prompt.root; service bluetooth start ubt0 BD_ADDR: 00:02:72:00:d4:1a Features: 0xff 0xff 0xf 00 00 00 00 00 <3-Slot> <5-Slot> <Encryption> <Slot offset> <Timing accuracy> <Switch> <Hold mode> <Sniff mode> <Park mode> <RSSI> <Channel quality> <SCO link> <HV2 packets> <HV3 packets> <u-law log> <A-law log> <CVSD> <Paging scheme> <Power control> <Transparent SCO data> Max. ACL packet size: 192 bytes Number of ACL packets: 8 Max. SCO packet size: 64 bytes Number of SCO packets: 8 Finding Other Bluetooth Devices HCI The Host Controller Interface (HCI) provides a uniform method for accessing Bluetooth baseband capabilities. In &os;, a netgraph HCI node is created for each Bluetooth device. For more details, refer to &man.ng.hci.4;. One of the most common tasks is discovery of Bluetooth devices within RF proximity. This operation is called inquiry. Inquiry and other HCI related operations are done using &man.hccontrol.8;. The example below shows how to find out which Bluetooth devices are in range. The list of devices should be displayed in a few seconds. Note that a remote device will only answer the inquiry if it is set to discoverable mode. &prompt.user; hccontrol -n ubt0hci inquiry Inquiry result, num_responses=1 Inquiry result #0 BD_ADDR: 00:80:37:29:19:a4 Page Scan Rep. Mode: 0x1 Page Scan Period Mode: 00 Page Scan Mode: 00 Class: 52:02:04 Clock offset: 0x78ef Inquiry complete. Status: No error [00] The BD_ADDR is the unique address of a Bluetooth device, similar to the MAC address of a network card. This address is needed for further communication with a device and it is possible to assign a human readable name to a BD_ADDR. Information regarding the known Bluetooth hosts is contained in /etc/bluetooth/hosts. The following example shows how to obtain the human readable name that was assigned to the remote device: &prompt.user; hccontrol -n ubt0hci remote_name_request 00:80:37:29:19:a4 BD_ADDR: 00:80:37:29:19:a4 Name: Pav's T39 If an inquiry is performed on a remote Bluetooth device, it will find the computer as your.host.name (ubt0). The name assigned to the local device can be changed at any time. The Bluetooth system provides a point-to-point connection between two Bluetooth units, or a point-to-multipoint connection which is shared among several Bluetooth devices. The following example shows how to obtain the list of active baseband connections for the local device: &prompt.user; hccontrol -n ubt0hci read_connection_list Remote BD_ADDR Handle Type Mode Role Encrypt Pending Queue State 00:80:37:29:19:a4 41 ACL 0 MAST NONE 0 0 OPEN A connection handle is useful when termination of the baseband connection is required, though it is normally not required to do this by hand. The stack will automatically terminate inactive baseband connections. &prompt.root; hccontrol -n ubt0hci disconnect 41 Connection handle: 41 Reason: Connection terminated by local host [0x16] Type hccontrol help for a complete listing of available HCI commands. Most of the HCI commands do not require superuser privileges. Device Pairing By default, Bluetooth communication is not authenticated, and any device can talk to any other device. A Bluetooth device, such as a cellular phone, may choose to require authentication to provide a particular service. Bluetooth authentication is normally done with a PIN code, an ASCII string up to 16 characters in length. The user is required to enter the same PIN code on both devices. Once the user has entered the PIN code, both devices will generate a link key. After that, the link key can be stored either in the devices or in a persistent storage. Next time, both devices will use the previously generated link key. This procedure is called pairing. Note that if the link key is lost by either device, the pairing must be repeated. The &man.hcsecd.8; daemon is responsible for handling Bluetooth authentication requests. The default configuration file is /etc/bluetooth/hcsecd.conf. An example section for a cellular phone with the PIN code set to 1234 is shown below: device { bdaddr 00:80:37:29:19:a4; name "Pav's T39"; key nokey; pin "1234"; } The only limitation on PIN codes is length. Some devices, such as Bluetooth headsets, may have a fixed PIN code built in. The switch forces &man.hcsecd.8; to stay in the foreground, so it is easy to see what is happening. Set the remote device to receive pairing and initiate the Bluetooth connection to the remote device. The remote device should indicate that pairing was accepted and request the PIN code. Enter the same PIN code listed in hcsecd.conf. Now the computer and the remote device are paired. Alternatively, pairing can be initiated on the remote device. The following line can be added to /etc/rc.conf to configure &man.hcsecd.8; to start automatically on system start: hcsecd_enable="YES" The following is a sample of the &man.hcsecd.8; daemon output: hcsecd[16484]: Got Link_Key_Request event from 'ubt0hci', remote bdaddr 0:80:37:29:19:a4 hcsecd[16484]: Found matching entry, remote bdaddr 0:80:37:29:19:a4, name 'Pav's T39', link key doesn't exist hcsecd[16484]: Sending Link_Key_Negative_Reply to 'ubt0hci' for remote bdaddr 0:80:37:29:19:a4 hcsecd[16484]: Got PIN_Code_Request event from 'ubt0hci', remote bdaddr 0:80:37:29:19:a4 hcsecd[16484]: Found matching entry, remote bdaddr 0:80:37:29:19:a4, name 'Pav's T39', PIN code exists hcsecd[16484]: Sending PIN_Code_Reply to 'ubt0hci' for remote bdaddr 0:80:37:29:19:a4 Network Access with <acronym>PPP</acronym> Profiles A Dial-Up Networking (DUN) profile can be used to configure a cellular phone as a wireless modem for connecting to a dial-up Internet access server. It can also be used to configure a computer to receive data calls from a cellular phone. Network access with a PPP profile can be used to provide LAN access for a single Bluetooth device or multiple Bluetooth devices. It can also provide PC to PC connection using PPP networking over serial cable emulation. In &os;, these profiles are implemented with &man.ppp.8; and the &man.rfcomm.pppd.8; wrapper which converts a Bluetooth connection into something PPP can use. Before a profile can be used, a new PPP label must be created in /etc/ppp/ppp.conf. Consult &man.rfcomm.pppd.8; for examples. In this example, &man.rfcomm.pppd.8; is used to open a connection to a remote device with a BD_ADDR of 00:80:37:29:19:a4 on a DUN RFCOMM channel: &prompt.root; rfcomm_pppd -a 00:80:37:29:19:a4 -c -C dun -l rfcomm-dialup The actual channel number will be obtained from the remote device using the SDP protocol. It is possible to specify the RFCOMM channel by hand, and in this case &man.rfcomm.pppd.8; will not perform the SDP query. Use &man.sdpcontrol.8; to find out the RFCOMM channel on the remote device. In order to provide network access with the PPP LAN service, &man.sdpd.8; must be running and a new entry for LAN clients must be created in /etc/ppp/ppp.conf. Consult &man.rfcomm.pppd.8; for examples. Finally, start the RFCOMM PPP server on a valid RFCOMM channel number. The RFCOMM PPP server will automatically register the Bluetooth LAN service with the local SDP daemon. The example below shows how to start the RFCOMM PPP server. &prompt.root; rfcomm_pppd -s -C 7 -l rfcomm-server Bluetooth Protocols This section provides an overview of the various Bluetooth protocols, their function, and associated utilities. Logical Link Control and Adaptation Protocol (<acronym>L2CAP</acronym>) L2CAP The Logical Link Control and Adaptation Protocol (L2CAP) provides connection-oriented and connectionless data services to upper layer protocols. L2CAP permits higher level protocols and applications to transmit and receive L2CAP data packets up to 64 kilobytes in length. L2CAP is based around the concept of channels. A channel is a logical connection on top of a baseband connection, where each channel is bound to a single protocol in a many-to-one fashion. Multiple channels can be bound to the same protocol, but a channel cannot be bound to multiple protocols. Each L2CAP packet received on a channel is directed to the appropriate higher level protocol. Multiple channels can share the same baseband connection. In &os;, a netgraph L2CAP node is created for each Bluetooth device. This node is normally connected to the downstream Bluetooth HCI node and upstream Bluetooth socket nodes. The default name for the L2CAP node is devicel2cap. For more details refer to &man.ng.l2cap.4;. A useful command is &man.l2ping.8;, which can be used to ping other devices. Some Bluetooth implementations might not return all of the data sent to them, so 0 bytes in the following example is normal. &prompt.root; l2ping -a 00:80:37:29:19:a4 0 bytes from 0:80:37:29:19:a4 seq_no=0 time=48.633 ms result=0 0 bytes from 0:80:37:29:19:a4 seq_no=1 time=37.551 ms result=0 0 bytes from 0:80:37:29:19:a4 seq_no=2 time=28.324 ms result=0 0 bytes from 0:80:37:29:19:a4 seq_no=3 time=46.150 ms result=0 The &man.l2control.8; utility is used to perform various operations on L2CAP nodes. This example shows how to obtain the list of logical connections (channels) and the list of baseband connections for the local device: &prompt.user; l2control -a 00:02:72:00:d4:1a read_channel_list L2CAP channels: Remote BD_ADDR SCID/ DCID PSM IMTU/ OMTU State 00:07:e0:00:0b:ca 66/ 64 3 132/ 672 OPEN &prompt.user; l2control -a 00:02:72:00:d4:1a read_connection_list L2CAP connections: Remote BD_ADDR Handle Flags Pending State 00:07:e0:00:0b:ca 41 O 0 OPEN Another diagnostic tool is &man.btsockstat.1;. It is similar to &man.netstat.1;, but for Bluetooth network-related data structures. The example below shows the same logical connection as &man.l2control.8; above. &prompt.user; btsockstat Active L2CAP sockets PCB Recv-Q Send-Q Local address/PSM Foreign address CID State c2afe900 0 0 00:02:72:00:d4:1a/3 00:07:e0:00:0b:ca 66 OPEN Active RFCOMM sessions L2PCB PCB Flag MTU Out-Q DLCs State c2afe900 c2b53380 1 127 0 Yes OPEN Active RFCOMM sockets PCB Recv-Q Send-Q Local address Foreign address Chan DLCI State c2e8bc80 0 250 00:02:72:00:d4:1a 00:07:e0:00:0b:ca 3 6 OPEN Radio Frequency Communication (<acronym>RFCOMM</acronym>) The RFCOMM protocol provides emulation of serial ports over the L2CAP protocol. RFCOMM is a simple transport protocol, with additional provisions for emulating the 9 circuits of RS-232 (EIATIA-232-E) serial ports. It supports up to 60 simultaneous connections (RFCOMM channels) between two Bluetooth devices. For the purposes of RFCOMM, a complete communication path involves two applications running on the communication endpoints with a communication segment between them. RFCOMM is intended to cover applications that make use of the serial ports of the devices in which they reside. The communication segment is a direct connect Bluetooth link from one device to another. RFCOMM is only concerned with the connection between the devices in the direct connect case, or between the device and a modem in the network case. RFCOMM can support other configurations, such as modules that communicate via Bluetooth wireless technology on one side and provide a wired interface on the other side. In &os;, RFCOMM is implemented at the Bluetooth sockets layer. Service Discovery Protocol (<acronym>SDP</acronym>) SDP The Service Discovery Protocol (SDP) provides the means for client applications to discover the existence of services provided by server applications as well as the attributes of those services. The attributes of a service include the type or class of service offered and the mechanism or protocol information needed to utilize the service. SDP involves communication between a SDP server and a SDP client. The server maintains a list of service records that describe the characteristics of services associated with the server. Each service record contains information about a single service. A client may retrieve information from a service record maintained by the SDP server by issuing a SDP request. If the client, or an application associated with the client, decides to use a service, it must open a separate connection to the service provider in order to utilize the service. SDP provides a mechanism for discovering services and their attributes, but it does not provide a mechanism for utilizing those services. Normally, a SDP client searches for services based on some desired characteristics of the services. However, there are times when it is desirable to discover which types of services are described by an SDP server's service records without any prior information about the services. This process of looking for any offered services is called browsing. The Bluetooth SDP server, &man.sdpd.8;, and command line client, &man.sdpcontrol.8;, are included in the standard &os; installation. The following example shows how to perform a SDP browse query. &prompt.user; sdpcontrol -a 00:01:03:fc:6e:ec browse Record Handle: 00000000 Service Class ID List: Service Discovery Server (0x1000) Protocol Descriptor List: L2CAP (0x0100) Protocol specific parameter #1: u/int/uuid16 1 Protocol specific parameter #2: u/int/uuid16 1 Record Handle: 0x00000001 Service Class ID List: Browse Group Descriptor (0x1001) Record Handle: 0x00000002 Service Class ID List: LAN Access Using PPP (0x1102) Protocol Descriptor List: L2CAP (0x0100) RFCOMM (0x0003) Protocol specific parameter #1: u/int8/bool 1 Bluetooth Profile Descriptor List: LAN Access Using PPP (0x1102) ver. 1.0 Note that each service has a list of attributes, such as the RFCOMM channel. Depending on the service, the user might need to make note of some of the attributes. Some Bluetooth implementations do not support service browsing and may return an empty list. In this case, it is possible to search for the specific service. The example below shows how to search for the OBEX Object Push (OPUSH) service: &prompt.user; sdpcontrol -a 00:01:03:fc:6e:ec search OPUSH Offering services on &os; to Bluetooth clients is done with the &man.sdpd.8; server. The following line can be added to /etc/rc.conf: sdpd_enable="YES" Then the &man.sdpd.8; daemon can be started with: &prompt.root; service sdpd start The local server application that wants to provide a Bluetooth service to remote clients will register the service with the local SDP daemon. An example of such an application is &man.rfcomm.pppd.8;. Once started, it will register the Bluetooth LAN service with the local SDP daemon. The list of services registered with the local SDP server can be obtained by issuing a SDP browse query via the local control channel: &prompt.root; sdpcontrol -l browse <acronym>OBEX</acronym> Object Push (<acronym>OPUSH</acronym>) OBEX Object Exchange (OBEX) is a widely used protocol for simple file transfers between mobile devices. Its main use is in infrared communication, where it is used for generic file transfers between notebooks or PDAs, and for sending business cards or calendar entries between cellular phones and other devices with Personal Information Manager (PIM) applications. The OBEX server and client are implemented by obexapp, which can be installed using the comms/obexapp package or port. The OBEX client is used to push and/or pull objects from the OBEX server. An example object is a business card or an appointment. The OBEX client can obtain the RFCOMM channel number from the remote device via SDP. This can be done by specifying the service name instead of the RFCOMM channel number. Supported service names are: IrMC, FTRN, and OPUSH. It is also possible to specify the RFCOMM channel as a number. Below is an example of an OBEX session where the device information object is pulled from the cellular phone, and a new object, the business card, is pushed into the phone's directory. &prompt.user; obexapp -a 00:80:37:29:19:a4 -C IrMC obex> get telecom/devinfo.txt devinfo-t39.txt Success, response: OK, Success (0x20) obex> put new.vcf Success, response: OK, Success (0x20) obex> di Success, response: OK, Success (0x20) In order to provide the OPUSH service, &man.sdpd.8; must be running and a root folder, where all incoming objects will be stored, must be created. The default path to the root folder is /var/spool/obex. Finally, start the OBEX server on a valid RFCOMM channel number. The OBEX server will automatically register the OPUSH service with the local SDP daemon. The example below shows how to start the OBEX server. &prompt.root; obexapp -s -C 10 Serial Port Profile (<acronym>SPP</acronym>) The Serial Port Profile (SPP) allows Bluetooth devices to perform serial cable emulation. This profile allows legacy applications to use Bluetooth as a cable replacement, through a virtual serial port abstraction. In &os;, &man.rfcomm.sppd.1; implements SPP and a pseudo tty is used as a virtual serial port abstraction. The example below shows how to connect to a remote device's serial port service. A RFCOMM channel does not have to be specified as &man.rfcomm.sppd.1; can obtain it from the remote device via SDP. To override this, specify a RFCOMM channel on the command line. &prompt.root; rfcomm_sppd -a 00:07:E0:00:0B:CA -t rfcomm_sppd[94692]: Starting on /dev/pts/6... /dev/pts/6 Once connected, the pseudo tty can be used as serial port: &prompt.root; cu -l /dev/pts/6 The pseudo tty is printed on stdout and can be read by wrapper scripts: PTS=`rfcomm_sppd -a 00:07:E0:00:0B:CA -t` cu -l $PTS Troubleshooting By default, when &os; is accepting a new connection, it tries to perform a role switch and become master. Some older Bluetooth devices which do not support role switching will not be able to connect. Since role switching is performed when a new connection is being established, it is not possible to ask the remote device if it supports role switching. However, there is a HCI option to disable role switching on the local side: &prompt.root; hccontrol -n ubt0hci write_node_role_switch 0 To display Bluetooth packets, use the third-party package hcidump, which can be installed using the comms/hcidump package or port. This utility is similar to &man.tcpdump.1; and can be used to display the contents of Bluetooth packets on the terminal and to dump the Bluetooth packets to a file. Bridging Andrew Thompson Written by IP subnet bridge It is sometimes useful to divide a network, such as an Ethernet segment, into network segments without having to create IP subnets and use a router to connect the segments together. A device that connects two networks together in this fashion is called a bridge. A bridge works by learning the MAC addresses of the devices on each of its network interfaces. It forwards traffic between networks only when the source and destination MAC addresses are on different networks. In many respects, a bridge is like an Ethernet switch with very few ports. A &os; system with multiple network interfaces can be configured to act as a bridge. Bridging can be useful in the following situations: Connecting Networks The basic operation of a bridge is to join two or more network segments. There are many reasons to use a host-based bridge instead of networking equipment, such as cabling constraints or firewalling. A bridge can also connect a wireless interface running in hostap mode to a wired network and act as an access point. Filtering/Traffic Shaping Firewall A bridge can be used when firewall functionality is needed without routing or Network Address Translation (NAT). An example is a small company that is connected via DSL or ISDN to an ISP. There are thirteen public IP addresses from the ISP and ten computers on the network. In this situation, using a router-based firewall is difficult because of subnetting issues. A bridge-based firewall can be configured without any IP addressing issues. Network Tap A bridge can join two network segments in order to inspect all Ethernet frames that pass between them using &man.bpf.4; and &man.tcpdump.1; on the bridge interface or by sending a copy of all frames out an additional interface known as a span port. Layer 2 VPN Two Ethernet networks can be joined across an IP link by bridging the networks to an EtherIP tunnel or a &man.tap.4; based solution such as OpenVPN. Layer 2 Redundancy A network can be connected together with multiple links and use the Spanning Tree Protocol (STP) to block redundant paths. This section describes how to configure a &os; system as a bridge using &man.if.bridge.4;. A netgraph bridging driver is also available, and is described in &man.ng.bridge.4;. Packet filtering can be used with any firewall package that hooks into the &man.pfil.9; framework. The bridge can be used as a traffic shaper with &man.altq.4; or &man.dummynet.4;. Enabling the Bridge In &os;, &man.if.bridge.4; is a kernel module which is automatically loaded by &man.ifconfig.8; when creating a bridge interface. It is also possible to compile bridge support into a custom kernel by adding device if_bridge to the custom kernel configuration file. The bridge is created using interface cloning. To create the bridge interface: &prompt.root; ifconfig bridge create bridge0 &prompt.root; ifconfig bridge0 bridge0: flags=8802<BROADCAST,SIMPLEX,MULTICAST> metric 0 mtu 1500 ether 96:3d:4b:f1:79:7a id 00:00:00:00:00:00 priority 32768 hellotime 2 fwddelay 15 maxage 20 holdcnt 6 proto rstp maxaddr 100 timeout 1200 root id 00:00:00:00:00:00 priority 0 ifcost 0 port 0 When a bridge interface is created, it is automatically assigned a randomly generated Ethernet address. The maxaddr and timeout parameters control how many MAC addresses the bridge will keep in its forwarding table and how many seconds before each entry is removed after it is last seen. The other parameters control how STP operates. Next, specify which network interfaces to add as members of the bridge. For the bridge to forward packets, all member interfaces and the bridge need to be up: &prompt.root; ifconfig bridge0 addm fxp0 addm fxp1 up &prompt.root; ifconfig fxp0 up &prompt.root; ifconfig fxp1 up The bridge can now forward Ethernet frames between fxp0 and fxp1. Add the following lines to /etc/rc.conf so the bridge is created at startup: cloned_interfaces="bridge0" ifconfig_bridge0="addm fxp0 addm fxp1 up" ifconfig_fxp0="up" ifconfig_fxp1="up" If the bridge host needs an IP address, set it on the bridge interface, not on the member interfaces. The address can be set statically or via DHCP. This example sets a static IP address: &prompt.root; ifconfig bridge0 inet 192.168.0.1/24 It is also possible to assign an IPv6 address to a bridge interface. To make the changes permanent, add the addressing information to /etc/rc.conf. When packet filtering is enabled, bridged packets will pass through the filter inbound on the originating interface on the bridge interface, and outbound on the appropriate interfaces. Either stage can be disabled. When direction of the packet flow is important, it is best to firewall on the member interfaces rather than the bridge itself. The bridge has several configurable settings for passing non-IP and IP packets, and layer2 firewalling with &man.ipfw.8;. See &man.if.bridge.4; for more information. Enabling Spanning Tree For an Ethernet network to function properly, only one active path can exist between two devices. The STP protocol detects loops and puts redundant links into a blocked state. Should one of the active links fail, STP calculates a different tree and enables one of the blocked paths to restore connectivity to all points in the network. The Rapid Spanning Tree Protocol (RSTP or 802.1w) provides backwards compatibility with legacy STP. RSTP provides faster convergence and exchanges information with neighboring switches to quickly transition to forwarding mode without creating loops. &os; supports RSTP and STP as operating modes, with RSTP being the default mode. STP can be enabled on member interfaces using &man.ifconfig.8;. For a bridge with fxp0 and fxp1 as the current interfaces, enable STP with: &prompt.root; ifconfig bridge0 stp fxp0 stp fxp1 bridge0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric 0 mtu 1500 ether d6:cf:d5:a0:94:6d id 00:01:02:4b:d4:50 priority 32768 hellotime 2 fwddelay 15 maxage 20 holdcnt 6 proto rstp maxaddr 100 timeout 1200 root id 00:01:02:4b:d4:50 priority 32768 ifcost 0 port 0 member: fxp0 flags=1c7<LEARNING,DISCOVER,STP,AUTOEDGE,PTP,AUTOPTP> port 3 priority 128 path cost 200000 proto rstp role designated state forwarding member: fxp1 flags=1c7<LEARNING,DISCOVER,STP,AUTOEDGE,PTP,AUTOPTP> port 4 priority 128 path cost 200000 proto rstp role designated state forwarding This bridge has a spanning tree ID of 00:01:02:4b:d4:50 and a priority of 32768. As the root id is the same, it indicates that this is the root bridge for the tree. Another bridge on the network also has STP enabled: bridge0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric 0 mtu 1500 ether 96:3d:4b:f1:79:7a id 00:13:d4:9a:06:7a priority 32768 hellotime 2 fwddelay 15 maxage 20 holdcnt 6 proto rstp maxaddr 100 timeout 1200 root id 00:01:02:4b:d4:50 priority 32768 ifcost 400000 port 4 member: fxp0 flags=1c7<LEARNING,DISCOVER,STP,AUTOEDGE,PTP,AUTOPTP> port 4 priority 128 path cost 200000 proto rstp role root state forwarding member: fxp1 flags=1c7<LEARNING,DISCOVER,STP,AUTOEDGE,PTP,AUTOPTP> port 5 priority 128 path cost 200000 proto rstp role designated state forwarding The line root id 00:01:02:4b:d4:50 priority 32768 ifcost 400000 port 4 shows that the root bridge is 00:01:02:4b:d4:50 and has a path cost of 400000 from this bridge. The path to the root bridge is via port 4 which is fxp0. Bridge Interface Parameters Several ifconfig parameters are unique to bridge interfaces. This section summarizes some common uses for these parameters. The complete list of available parameters is described in &man.ifconfig.8;. private A private interface does not forward any traffic to any other port that is also designated as a private interface. The traffic is blocked unconditionally so no Ethernet frames will be forwarded, including ARP packets. If traffic needs to be selectively blocked, a firewall should be used instead. span A span port transmits a copy of every Ethernet frame received by the bridge. The number of span ports configured on a bridge is unlimited, but if an interface is designated as a span port, it cannot also be used as a regular bridge port. This is most useful for snooping a bridged network passively on another host connected to one of the span ports of the bridge. For example, to send a copy of all frames out the interface named fxp4: &prompt.root; ifconfig bridge0 span fxp4 sticky If a bridge member interface is marked as sticky, dynamically learned address entries are treated at static entries in the forwarding cache. Sticky entries are never aged out of the cache or replaced, even if the address is seen on a different interface. This gives the benefit of static address entries without the need to pre-populate the forwarding table. Clients learned on a particular segment of the bridge can not roam to another segment. An example of using sticky addresses is to combine the bridge with VLANs in order to isolate customer networks without wasting IP address space. Consider that CustomerA is on vlan100, CustomerB is on vlan101, and the bridge has the address 192.168.0.1: &prompt.root; ifconfig bridge0 addm vlan100 sticky vlan100 addm vlan101 sticky vlan101 &prompt.root; ifconfig bridge0 inet 192.168.0.1/24 In this example, both clients see 192.168.0.1 as their default gateway. Since the bridge cache is sticky, one host can not spoof the MAC address of the other customer in order to intercept their traffic. Any communication between the VLANs can be blocked using a firewall or, as seen in this example, private interfaces: &prompt.root; ifconfig bridge0 private vlan100 private vlan101 The customers are completely isolated from each other and the full /24 address range can be allocated without subnetting. The number of unique source MAC addresses behind an interface can be limited. Once the limit is reached, packets with unknown source addresses are dropped until an existing host cache entry expires or is removed. The following example sets the maximum number of Ethernet devices for CustomerA on vlan100 to 10: &prompt.root; ifconfig bridge0 ifmaxaddr vlan100 10 Bridge interfaces also support monitor mode, where the packets are discarded after &man.bpf.4; processing and are not processed or forwarded further. This can be used to multiplex the input of two or more interfaces into a single &man.bpf.4; stream. This is useful for reconstructing the traffic for network taps that transmit the RX/TX signals out through two separate interfaces. For example, to read the input from four network interfaces as one stream: &prompt.root; ifconfig bridge0 addm fxp0 addm fxp1 addm fxp2 addm fxp3 monitor up &prompt.root; tcpdump -i bridge0 <acronym>SNMP</acronym> Monitoring The bridge interface and STP parameters can be monitored via &man.bsnmpd.1; which is included in the &os; base system. The exported bridge MIBs conform to IETF standards so any SNMP client or monitoring package can be used to retrieve the data. To enable monitoring on the bridge, uncomment this line in /etc/snmp.config by removing the beginning # symbol: begemotSnmpdModulePath."bridge" = "/usr/lib/snmp_bridge.so" Other configuration settings, such as community names and access lists, may need to be modified in this file. See &man.bsnmpd.1; and &man.snmp.bridge.3; for more information. Once these edits are saved, add this line to /etc/rc.conf: bsnmpd_enable="YES" Then, start &man.bsnmpd.1;: &prompt.root; service bsnmpd start The following examples use the Net-SNMP software (net-mgmt/net-snmp) to query a bridge from a client system. The net-mgmt/bsnmptools port can also be used. From the SNMP client which is running Net-SNMP, add the following lines to $HOME/.snmp/snmp.conf in order to import the bridge MIB definitions: mibdirs +/usr/share/snmp/mibs mibs +BRIDGE-MIB:RSTP-MIB:BEGEMOT-MIB:BEGEMOT-BRIDGE-MIB To monitor a single bridge using the IETF BRIDGE-MIB (RFC4188): &prompt.user; snmpwalk -v 2c -c public bridge1.example.com mib-2.dot1dBridge BRIDGE-MIB::dot1dBaseBridgeAddress.0 = STRING: 66:fb:9b:6e:5c:44 BRIDGE-MIB::dot1dBaseNumPorts.0 = INTEGER: 1 ports BRIDGE-MIB::dot1dStpTimeSinceTopologyChange.0 = Timeticks: (189959) 0:31:39.59 centi-seconds BRIDGE-MIB::dot1dStpTopChanges.0 = Counter32: 2 BRIDGE-MIB::dot1dStpDesignatedRoot.0 = Hex-STRING: 80 00 00 01 02 4B D4 50 ... BRIDGE-MIB::dot1dStpPortState.3 = INTEGER: forwarding(5) BRIDGE-MIB::dot1dStpPortEnable.3 = INTEGER: enabled(1) BRIDGE-MIB::dot1dStpPortPathCost.3 = INTEGER: 200000 BRIDGE-MIB::dot1dStpPortDesignatedRoot.3 = Hex-STRING: 80 00 00 01 02 4B D4 50 BRIDGE-MIB::dot1dStpPortDesignatedCost.3 = INTEGER: 0 BRIDGE-MIB::dot1dStpPortDesignatedBridge.3 = Hex-STRING: 80 00 00 01 02 4B D4 50 BRIDGE-MIB::dot1dStpPortDesignatedPort.3 = Hex-STRING: 03 80 BRIDGE-MIB::dot1dStpPortForwardTransitions.3 = Counter32: 1 RSTP-MIB::dot1dStpVersion.0 = INTEGER: rstp(2) The dot1dStpTopChanges.0 value is two, indicating that the STP bridge topology has changed twice. A topology change means that one or more links in the network have changed or failed and a new tree has been calculated. The dot1dStpTimeSinceTopologyChange.0 value will show when this happened. To monitor multiple bridge interfaces, the private BEGEMOT-BRIDGE-MIB can be used: &prompt.user; snmpwalk -v 2c -c public bridge1.example.com enterprises.fokus.begemot.begemotBridge BEGEMOT-BRIDGE-MIB::begemotBridgeBaseName."bridge0" = STRING: bridge0 BEGEMOT-BRIDGE-MIB::begemotBridgeBaseName."bridge2" = STRING: bridge2 BEGEMOT-BRIDGE-MIB::begemotBridgeBaseAddress."bridge0" = STRING: e:ce:3b:5a:9e:13 BEGEMOT-BRIDGE-MIB::begemotBridgeBaseAddress."bridge2" = STRING: 12:5e:4d:74:d:fc BEGEMOT-BRIDGE-MIB::begemotBridgeBaseNumPorts."bridge0" = INTEGER: 1 BEGEMOT-BRIDGE-MIB::begemotBridgeBaseNumPorts."bridge2" = INTEGER: 1 ... BEGEMOT-BRIDGE-MIB::begemotBridgeStpTimeSinceTopologyChange."bridge0" = Timeticks: (116927) 0:19:29.27 centi-seconds BEGEMOT-BRIDGE-MIB::begemotBridgeStpTimeSinceTopologyChange."bridge2" = Timeticks: (82773) 0:13:47.73 centi-seconds BEGEMOT-BRIDGE-MIB::begemotBridgeStpTopChanges."bridge0" = Counter32: 1 BEGEMOT-BRIDGE-MIB::begemotBridgeStpTopChanges."bridge2" = Counter32: 1 BEGEMOT-BRIDGE-MIB::begemotBridgeStpDesignatedRoot."bridge0" = Hex-STRING: 80 00 00 40 95 30 5E 31 BEGEMOT-BRIDGE-MIB::begemotBridgeStpDesignatedRoot."bridge2" = Hex-STRING: 80 00 00 50 8B B8 C6 A9 To change the bridge interface being monitored via the mib-2.dot1dBridge subtree: &prompt.user; snmpset -v 2c -c private bridge1.example.com BEGEMOT-BRIDGE-MIB::begemotBridgeDefaultBridgeIf.0 s bridge2 Link Aggregation and Failover Andrew Thompson Written by lagg failover FEC LACP loadbalance roundrobin &os; provides the &man.lagg.4; interface which can be used to aggregate multiple network interfaces into one virtual interface in order to provide failover and link aggregation. Failover allows traffic to continue to flow as long as at least one aggregated network interface has an established link. Link aggregation works best on switches which support LACP, as this protocol distributes traffic bi-directionally while responding to the failure of individual links. The aggregation protocols supported by the lagg interface determine which ports are used for outgoing traffic and whether or not a specific port accepts incoming traffic. The following protocols are supported by &man.lagg.4;: failover This mode sends and receives traffic only through the master port. If the master port becomes unavailable, the next active port is used. The first interface added to the virtual interface is the master port and all subsequently added interfaces are used as failover devices. If failover to a non-master port occurs, the original port becomes master once it becomes available again. fec / loadbalance &cisco; Fast ðerchannel; (FEC) is found on older &cisco; switches. It provides a static setup and does not negotiate aggregation with the peer or exchange frames to monitor the link. If the switch supports LACP, that should be used instead. lacp The &ieee; 802.3ad Link Aggregation Control Protocol (LACP) negotiates a set of aggregable links with the peer into one or more Link Aggregated Groups (LAGs). Each LAG is composed of ports of the same speed, set to full-duplex operation, and traffic is balanced across the ports in the LAG with the greatest total speed. Typically, there is only one LAG which contains all the ports. In the event of changes in physical connectivity, LACP will quickly converge to a new configuration. LACP balances outgoing traffic across the active ports based on hashed protocol header information and accepts incoming traffic from any active port. The hash includes the Ethernet source and destination address and, if available, the VLAN tag, and the IPv4 or IPv6 source and destination address. roundrobin This mode distributes outgoing traffic using a round-robin scheduler through all active ports and accepts incoming traffic from any active port. Since this mode violates Ethernet frame ordering, it should be used with caution. Configuration Examples This section demonstrates how to configure a &cisco; switch and a &os; system for LACP load balancing. It then shows how to configure two Ethernet interfaces in failover mode as well as how to configure failover mode between an Ethernet and a wireless interface. <acronym>LACP</acronym> Aggregation with a &cisco; Switch This example connects two &man.fxp.4; Ethernet interfaces on a &os; machine to the first two Ethernet ports on a &cisco; switch as a single load balanced and fault tolerant link. More interfaces can be added to increase throughput and fault tolerance. Replace the names of the &cisco; ports, Ethernet devices, channel group number, and IP address shown in the example to match the local configuration. Frame ordering is mandatory on Ethernet links and any traffic between two stations always flows over the same physical link, limiting the maximum speed to that of one interface. The transmit algorithm attempts to use as much information as it can to distinguish different traffic flows and balance the flows across the available interfaces. On the &cisco; switch, add the FastEthernet0/1 and FastEthernet0/2 interfaces to channel group 1: interface FastEthernet0/1 channel-group 1 mode active channel-protocol lacp ! interface FastEthernet0/2 channel-group 1 mode active channel-protocol lacp On the &os; system, create the &man.lagg.4; interface using the physical interfaces fxp0 and fxp1 and bring the interfaces up with an IP address of 10.0.0.3/24: &prompt.root; ifconfig fxp0 up &prompt.root; ifconfig fxp1 up &prompt.root; ifconfig lagg0 create &prompt.root; ifconfig lagg0 up laggproto lacp laggport fxp0 laggport fxp1 10.0.0.3/24 Next, verify the status of the virtual interface: &prompt.root; ifconfig lagg0 lagg0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric 0 mtu 1500 options=8<VLAN_MTU> ether 00:05:5d:71:8d:b8 media: Ethernet autoselect status: active laggproto lacp laggport: fxp1 flags=1c<ACTIVE,COLLECTING,DISTRIBUTING> laggport: fxp0 flags=1c<ACTIVE,COLLECTING,DISTRIBUTING> Ports marked as ACTIVE are part of the LAG that has been negotiated with the remote switch. Traffic will be transmitted and received through these active ports. Add to the above command to view the LAG identifiers. To see the port status on the &cisco; switch: switch# show lacp neighbor Flags: S - Device is requesting Slow LACPDUs F - Device is requesting Fast LACPDUs A - Device is in Active mode P - Device is in Passive mode Channel group 1 neighbors Partner's information: LACP port Oper Port Port Port Flags Priority Dev ID Age Key Number State Fa0/1 SA 32768 0005.5d71.8db8 29s 0x146 0x3 0x3D Fa0/2 SA 32768 0005.5d71.8db8 29s 0x146 0x4 0x3D For more detail, type show lacp neighbor detail. To retain this configuration across reboots, add the following entries to /etc/rc.conf on the &os; system: ifconfig_fxp0="up" ifconfig_fxp1="up" cloned_interfaces="lagg0" ifconfig_lagg0="laggproto lacp laggport fxp0 laggport fxp1 10.0.0.3/24" Failover Mode Failover mode can be used to switch over to a secondary interface if the link is lost on the master interface. To configure failover, make sure that the underlying physical interfaces are up, then create the &man.lagg.4; interface. In this example, fxp0 is the master interface, fxp1 is the secondary interface, and the virtual interface is assigned an IP address of 10.0.0.15/24: &prompt.root; ifconfig fxp0 up &prompt.root; ifconfig fxp1 up &prompt.root; ifconfig lagg0 create &prompt.root; ifconfig lagg0 up laggproto failover laggport fxp0 laggport fxp1 10.0.0.15/24 The virtual interface should look something like this: &prompt.root; ifconfig lagg0 lagg0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric 0 mtu 1500 options=8<VLAN_MTU> ether 00:05:5d:71:8d:b8 inet 10.0.0.15 netmask 0xffffff00 broadcast 10.0.0.255 media: Ethernet autoselect status: active laggproto failover laggport: fxp1 flags=0<> laggport: fxp0 flags=5<MASTER,ACTIVE> Traffic will be transmitted and received on fxp0. If the link is lost on fxp0, fxp1 will become the active link. If the link is restored on the master interface, it will once again become the active link. To retain this configuration across reboots, add the following entries to /etc/rc.conf: ifconfig_fxp0="up" ifconfig_fxp1="up" cloned_interfaces="lagg0" ifconfig_lagg0="laggproto failover laggport fxp0 laggport fxp1 10.0.0.15/24" Failover Mode Between Ethernet and Wireless Interfaces For laptop users, it is usually desirable to configure the wireless device as a secondary which is only used when the Ethernet connection is not available. With &man.lagg.4;, it is possible to configure a failover which prefers the Ethernet connection for both performance and security reasons, while maintaining the ability to transfer data over the wireless connection. This is achieved by overriding the physical wireless interface's MAC address with that of the Ethernet interface. In this example, the Ethernet interface, bge0, is the master and the wireless interface, wlan0, is the failover. The wlan0 device was created from iwn0 wireless interface, which will be configured with the MAC address of the Ethernet interface. First, determine the MAC address of the Ethernet interface: &prompt.root; ifconfig bge0 bge0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric 0 mtu 1500 options=19b<RXCSUM,TXCSUM,VLAN_MTU,VLAN_HWTAGGING,VLAN_HWCSUM,TSO4> ether 00:21:70:da:ae:37 inet6 fe80::221:70ff:feda:ae37%bge0 prefixlen 64 scopeid 0x2 nd6 options=29<PERFORMNUD,IFDISABLED,AUTO_LINKLOCAL> media: Ethernet autoselect (1000baseT <full-duplex>) status: active Replace bge0 to match the system's Ethernet interface name. The ether line will contain the MAC address of the specified interface. Now, change the MAC address of the underlying wireless interface: &prompt.root; ifconfig iwn0 ether 00:21:70:da:ae:37 Bring the wireless interface up, but do not set an IP address: &prompt.root; ifconfig wlan0 create wlandev iwn0 ssid my_router up Make sure the bge0 interface is up, then create the &man.lagg.4; interface with bge0 as master with failover to wlan0: &prompt.root; ifconfig bge0 up &prompt.root; ifconfig lagg0 create &prompt.root; ifconfig lagg0 up laggproto failover laggport bge0 laggport wlan0 The virtual interface should look something like this: &prompt.root; ifconfig lagg0 lagg0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric 0 mtu 1500 options=8<VLAN_MTU> ether 00:21:70:da:ae:37 media: Ethernet autoselect status: active laggproto failover laggport: wlan0 flags=0<> laggport: bge0 flags=5<MASTER,ACTIVE> Then, start the DHCP client to obtain an IP address: &prompt.root; dhclient lagg0 To retain this configuration across reboots, add the following entries to /etc/rc.conf: ifconfig_bge0="up" ifconfig_iwn0="ether 00:21:70:da:ae:37" wlans_iwn0="wlan0" ifconfig_wlan0="WPA" cloned_interfaces="lagg0" ifconfig_lagg0="laggproto failover laggport bge0 laggport wlan0 DHCP" Diskless Operation with <acronym>PXE</acronym> Jean-François Dockès Updated by Alex Dupre Reorganized and enhanced by diskless workstation diskless operation The &intel; Preboot eXecution Environment (PXE) allows an operating system to boot over the network. For example, a &os; system can boot over the network and operate without a local disk, using file systems mounted from an NFS server. PXE support is usually available in the BIOS. To use PXE when the machine starts, select the Boot from network option in the BIOS setup or type a function key during system initialization. In order to provide the files needed for an operating system to boot over the network, a PXE setup also requires properly configured DHCP, TFTP, and NFS servers, where: Initial parameters, such as an IP address, executable boot filename and location, server name, and root path are obtained from the DHCP server. The operating system loader file is booted using TFTP. The file systems are loaded using NFS. When a computer PXE boots, it receives information over DHCP about where to obtain the initial boot loader file. After the host computer receives this information, it downloads the boot loader via TFTP and then executes the boot loader. In &os;, the boot loader file is /boot/pxeboot. After /boot/pxeboot executes, the &os; kernel is loaded and the rest of the &os; bootup sequence proceeds, as described in . This section describes how to configure these services on a &os; system so that other systems can PXE boot into &os;. Refer to &man.diskless.8; for more information. As described, the system providing these services is insecure. It should live in a protected area of a network and be untrusted by other hosts. Setting Up the <acronym>PXE</acronym> Environment Craig Rodrigues
rodrigc@FreeBSD.org
Written by
The steps shown in this section configure the built-in NFS and TFTP servers. The next section demonstrates how to install and configure the DHCP server. In this example, the directory which will contain the files used by PXE users is /b/tftpboot/FreeBSD/install. It is important that this directory exists and that the same directory name is set in both /etc/inetd.conf and /usr/local/etc/dhcpd.conf. Create the root directory which will contain a &os; installation to be NFS mounted: &prompt.root; export NFSROOTDIR=/b/tftpboot/FreeBSD/install &prompt.root; mkdir -p ${NFSROOTDIR} Enable the NFS server by adding this line to /etc/rc.conf: nfs_server_enable="YES" Export the diskless root directory via NFS by adding the following to /etc/exports: /b -ro -alldirs Start the NFS server: &prompt.root; service nfsd start Enable &man.inetd.8; by adding the following line to /etc/rc.conf: inetd_enable="YES" Uncomment the following line in /etc/inetd.conf by making sure it does not start with a # symbol: tftp dgram udp wait root /usr/libexec/tftpd tftpd -l -s /b/tftpboot Some PXE versions require the TCP version of TFTP. In this case, uncomment the second tftp line which contains stream tcp. Start &man.inetd.8;: &prompt.root; service inetd start Rebuild the &os; kernel and userland (refer to for more detailed instructions): &prompt.root; cd /usr/src &prompt.root; make buildworld &prompt.root; make buildkernel Install &os; into the directory mounted over NFS: &prompt.root; make installworld DESTDIR=${NFSROOTDIR} &prompt.root; make installkernel DESTDIR=${NFSROOTDIR} &prompt.root; make distribution DESTDIR=${NFSROOTDIR} Test that the TFTP server works and can download the boot loader which will be obtained via PXE: &prompt.root; tftp localhost tftp> get FreeBSD/install/boot/pxeboot Received 264951 bytes in 0.1 seconds Edit ${NFSROOTDIR}/etc/fstab and create an entry to mount the root file system over NFS: # Device Mountpoint FSType Options Dump Pass myhost.example.com:/b/tftpboot/FreeBSD/install / nfs ro 0 0 Replace myhost.example.com with the hostname or IP address of the NFS server. In this example, the root file system is mounted read-only in order to prevent NFS clients from potentially deleting the contents of the root file system. Set the root password in the PXE environment for client machines which are PXE booting : &prompt.root; chroot ${NFSROOTDIR} &prompt.root; passwd If needed, enable &man.ssh.1; root logins for client machines which are PXE booting by editing ${NFSROOTDIR}/etc/ssh/sshd_config and enabling PermitRootLogin. This option is documented in &man.sshd.config.5;. Perform any other needed customizations of the PXE environment in ${NFSROOTDIR}. These customizations could include things like installing packages or editing the password file with &man.vipw.8;. When booting from an NFS root volume, /etc/rc detects the NFS boot and runs /etc/rc.initdiskless. In this case, /etc and /var need to be memory backed file systems so that these directories are writable but the NFS root directory is read-only: &prompt.root; chroot ${NFSROOTDIR} &prompt.root; mkdir -p conf/base &prompt.root; tar -c -v -f conf/base/etc.cpio.gz --format cpio --gzip etc &prompt.root; tar -c -v -f conf/base/var.cpio.gz --format cpio --gzip var When the system boots, memory file systems for /etc and /var will be created and mounted and the contents of the cpio.gz files will be copied into them.
Configuring the <acronym>DHCP</acronym> Server DHCP diskless operation The DHCP server does not need to be the same machine as the TFTP and NFS server, but it needs to be accessible in the network. DHCP is not part of the &os; base system but can be installed using the net/isc-dhcp42-server port or package. Once installed, edit the configuration file, /usr/local/etc/dhcpd.conf. Configure the next-server, filename, and root-path settings as seen in this example: subnet 192.168.0.0 netmask 255.255.255.0 { range 192.168.0.2 192.168.0.3 ; option subnet-mask 255.255.255.0 ; option routers 192.168.0.1 ; option broadcast-address 192.168.0.255 ; option domain-name-servers 192.168.35.35, 192.168.35.36 ; option domain-name "example.com"; # IP address of TFTP server next-server 192.168.0.1 ; # path of boot loader obtained via tftp filename "FreeBSD/install/boot/pxeboot" ; # pxeboot boot loader will try to NFS mount this directory for root FS option root-path "192.168.0.1:/b/tftpboot/FreeBSD/install/" ; } The next-server directive is used to specify the IP address of the TFTP server. The filename directive defines the path to /boot/pxeboot. A relative filename is used, meaning that /b/tftpboot is not included in the path. The root-path option defines the path to the NFS root file system. Once the edits are saved, enable DHCP at boot time by adding the following line to /etc/rc.conf: dhcpd_enable="YES" Then start the DHCP service: &prompt.root; service isc-dhcpd start Debugging <acronym>PXE</acronym> Problems Once all of the services are configured and started, PXE clients should be able to automatically load &os; over the network. If a particular client is unable to connect, when that client machine boots up, enter the BIOS configuration menu and confirm that it is set to boot from the network. This section describes some troubleshooting tips for isolating the source of the configuration problem should no clients be able to PXE boot. Use the net/wireshark package or port to debug the network traffic involved during the PXE booting process, which is illustrated in the diagram below.
<acronym>PXE</acronym> Booting Process with <acronym>NFS</acronym> Root Mount Client broadcasts a DHCPDISCOVER message. The DHCP server responds with the IP address, next-server, filename, and root-path values. The client sends a TFTP request to next-server, asking to retrieve filename. The TFTP server responds and sends filename to client. The client executes filename, which is &man.pxeboot.8;, which then loads the kernel. When the kernel executes, the root file system specified by root-path is mounted over NFS.
On the TFTP server, read - /var/log/xferlog to ensure that the - pxeboot file is being retrieved from + /var/log/xferlog to ensure that + pxeboot is being retrieved from the correct location. To test this example configuration: &prompt.root; tftp 192.168.0.1 tftp> get FreeBSD/install/boot/pxeboot Received 264951 bytes in 0.1 seconds The BUGS sections in &man.tftpd.8; and &man.tftp.1; document some limitations with TFTP. Make sure that the root file system can be mounted via NFS. To test this example configuration: &prompt.root; mount -t nfs 192.168.0.1:/b/tftpboot/FreeBSD/install /mnt
<acronym>IPv6</acronym> Aaron Kaplan Originally Written by Tom Rhodes Restructured and Added by Brad Davis Extended by IPv6 is the new version of the well known IP protocol, also known as IPv4. IPv6 provides several advantages over IPv4 as well as many new features: Its 128-bit address space allows for 340,282,366,920,938,463,463,374,607,431,768,211,456 addresses. This addresses the IPv4 address shortage and eventual IPv4 address exhaustion. Routers only store network aggregation addresses in their routing tables, thus reducing the average space of a routing table to 8192 entries. This addresses the scalability issues associated with IPv4, which required every allocated block of IPv4 addresses to be exchanged between Internet routers, causing their routing tables to become too large to allow efficient routing. Address autoconfiguration (RFC2462). Mandatory multicast addresses. Built-in IPsec (IP security). Simplified header structure. Support for mobile IP. IPv6-to-IPv4 transition mechanisms. &os; includes the http://www.kame.net/ IPv6 reference implementation and comes with everything needed to use IPv6. This section focuses on getting IPv6 configured and running. Background on <acronym>IPv6</acronym> Addresses There are three different types of IPv6 addresses: Unicast A packet sent to a unicast address arrives at the interface belonging to the address. Anycast These addresses are syntactically indistinguishable from unicast addresses but they address a group of interfaces. The packet destined for an anycast address will arrive at the nearest router interface. Anycast addresses are only used by routers. Multicast These addresses identify a group of interfaces. A packet destined for a multicast address will arrive at all interfaces belonging to the multicast group. The IPv4 broadcast address, usually xxx.xxx.xxx.255, is expressed by multicast addresses in IPv6. When reading an IPv6 address, the canonical form is represented as x:x:x:x:x:x:x:x, where each x represents a 16 bit hex value. An example is FEBC:A574:382B:23C1:AA49:4592:4EFE:9982. Often, an address will have long substrings of all zeros. A :: (double colon) can be used to replace one substring per address. Also, up to three leading 0s per hex value can be omitted. For example, fe80::1 corresponds to the canonical form fe80:0000:0000:0000:0000:0000:0000:0001. A third form is to write the last 32 bits using the well known IPv4 notation. For example, 2002::10.0.0.1 corresponds to the hexadecimal canonical representation 2002:0000:0000:0000:0000:0000:0a00:0001, which in turn is equivalent to 2002::a00:1. To view a &os; system's IPv6 address, use &man.ifconfig.8;: &prompt.root; ifconfig rl0: flags=8943<UP,BROADCAST,RUNNING,PROMISC,SIMPLEX,MULTICAST> mtu 1500 inet 10.0.0.10 netmask 0xffffff00 broadcast 10.0.0.255 inet6 fe80::200:21ff:fe03:8e1%rl0 prefixlen 64 scopeid 0x1 ether 00:00:21:03:08:e1 media: Ethernet autoselect (100baseTX ) status: active In this example, fe80::200:21ff:fe03:8e1%rl0 is an auto-configured link-local address which was automatically generated from the MAC address. Some IPv6 addresses are reserved. A summary of these reserved addresses is seen in : Reserved <acronym>IPv6</acronym> Addresses IPv6 address Prefixlength (Bits) Description Notes :: 128 bits unspecified Equivalent to 0.0.0.0 in IPv4. ::1 128 bits loopback address Equivalent to 127.0.0.1 in IPv4. ::00:xx:xx:xx:xx 96 bits embedded IPv4 The lower 32 bits are the compatible IPv4 address. ::ff:xx:xx:xx:xx 96 bits IPv4 mapped IPv6 address The lower 32 bits are the IPv4 address for hosts which do not support IPv6. fe80::/10 10 bits link-local Equivalent to 169.254.0.0/16 in IPv4. fc00::/7 7 bits unique-local Unique local addresses are intended for local communication and are only routable within a set of cooperating sites. ff00:: 8 bits multicast   2000::-3fff:: 3 bits global unicast All global unicast addresses are assigned from this pool. The first 3 bits are 001.
For further information on the structure of IPv6 addresses, refer to RFC3513.
Configuring <acronym>IPv6</acronym> To configure a &os; system as an IPv6 client, add these two lines to rc.conf: ifconfig_em0_ipv6="inet6 accept_rtadv" rtsold_enable="YES" The first line enables the specified interface to receive router solicitation messages. The second line enables the router solicitation daemon, &man.rtsol.8;. For &os; 8.x, add a third line: ipv6_enable="YES" If the interface needs a statically assigned IPv6 address, add an entry to specify the static address and associated prefix length: ifconfig_fxp0_ipv6="inet6 2001:db8:4672:6565:2026:5043:2d42:5344 prefixlen 64" On a &os; 8.x system, that line uses this format instead: ipv6_ifconfig_fxp0="2001:db8:4672:6565:2026:5043:2d42:5344" To assign a default router, specify its address: ipv6_defaultrouter="2001:db8:4672:6565::1" Connecting to a Provider In order to connect to other IPv6 networks, one must have a provider or a tunnel that supports IPv6: Contact an Internet Service Provider to see if they offer IPv6. SixXS offers tunnels with end-points all around the globe. Hurricane Electric offers tunnels with end-points all around the globe. Install the net/freenet6 package or port for a dial-up connection. This section demonstrates how to take the directions from a tunnel provider and convert them into /etc/rc.conf settings that will persist through reboots. The first /etc/rc.conf entry creates the generic tunneling interface gif0: gif_interfaces="gif0" Next, configure that interface with the IPv4 addresses of the local and remote endpoints. Replace MY_IPv4_ADDR and REMOTE_IPv4_ADDR with the actual IPv4 addresses: gifconfig_gif0="MY_IPv4_ADDR REMOTE_IPv4_ADDR" To apply the IPv6 address that has been assigned for use as the IPv6 tunnel endpoint, add this line, replacing MY_ASSIGNED_IPv6_TUNNEL_ENDPOINT_ADDR with the assigned address: ifconfig_gif0_ipv6="inet6 MY_ASSIGNED_IPv6_TUNNEL_ENDPOINT_ADDR" For &os; 8.x, that line should instead use this format: ipv6_ifconfig_gif0="MY_ASSIGNED_IPv6_TUNNEL_ENDPOINT_ADDR" Then, set the default route for the other side of the IPv6 tunnel. Replace MY_IPv6_REMOTE_TUNNEL_ENDPOINT_ADDR with the default gateway address assigned by the provider: ipv6_defaultrouter="MY_IPv6_REMOTE_TUNNEL_ENDPOINT_ADDR" If the &os; system will route IPv6 packets between the rest of the network and the world, enable the gateway using this line: ipv6_gateway_enable="YES" Router Advertisement and Host Auto Configuration This section demonstrates how to setup &man.rtadvd.8; to advertise the IPv6 default route. To enable &man.rtadvd.8;, add the following to /etc/rc.conf: rtadvd_enable="YES" It is important to specify the interface on which to do IPv6 router solicitation. For example, to tell &man.rtadvd.8; to use fxp0: rtadvd_interfaces="fxp0" Next, create the configuration file, /etc/rtadvd.conf as seen in this example: fxp0:\ :addrs#1:addr="2001:471:1f11:246::":prefixlen#64:tc=ether: Replace fxp0 with the interface to be used and 2001:471:1f11:246:: with the prefix of the allocation. For a dedicated /64 subnet, nothing else needs to be changed. Otherwise, change the prefixlen# to the correct value. <acronym>IPv6</acronym> and <acronym>IPv6</acronym> Address Mapping When IPv6 is enabled on a server, there may be a need to enable IPv4 mapped IPv6 address communication. This compatibility option allows for IPv4 addresses to be represented as IPv6 addresses. Permitting IPv6 applications to communicate with IPv4 and vice versa may be a security issue. This option may not be required in most cases and is available only for compatibility. This option will allow IPv6-only applications to work with IPv4 in a dual stack environment. This is most useful for third party applications which may not support an IPv6-only environment. To enable this feature, add the following to /etc/rc.conf: ipv6_ipv4mapping="YES" Reviewing the information in RFC 3493, section 3.6 and 3.7 as well as RFC 4038 section 4.2 may be useful to some adminstrators.
Common Address Redundancy Protocol (<acronym>CARP</acronym>) Tom Rhodes Contributed by Allan Jude Updated by CARP Common Address Redundancy Protocol The Common Address Redundancy Protocol (CARP) allows multiple hosts to share the same IP address and Virtual Host ID (VHID) in order to provide high availability for one or more services. This means that one or more hosts can fail, and the other hosts will transparently take over so that users do not see a service failure. In addition to the shared IP address, each host has its own IP address for management and configuration. All of the machines that share an IP address have the same VHID. The VHID for each virtual IP address must be unique across the broadcast domain of the network interface. High availability using CARP is built into &os;, though the steps to configure it vary slightly depending upon the &os; version. This section provides the same example configuration for versions before and equal to or after &os; 10. This example configures failover support with three hosts, all with unique IP addresses, but providing the same web content. It has two different masters named hosta.example.org and hostb.example.org, with a shared backup named hostc.example.org. These machines are load balanced with a Round Robin DNS configuration. The master and backup machines are configured identically except for their hostnames and management IP addresses. These servers must have the same configuration and run the same services. When the failover occurs, requests to the service on the shared IP address can only be answered correctly if the backup server has access to the same content. The backup machine has two additional CARP interfaces, one for each of the master content server's IP addresses. When a failure occurs, the backup server will pick up the failed master machine's IP address. Using <acronym>CARP</acronym> on &os; 10 and Later Enable boot-time support for CARP by adding an entry for the carp.ko kernel module in /boot/loader.conf: carp_load="YES" To load the module now without rebooting: &prompt.root; kldload carp For users who prefer to use a custom kernel, include the following line in the custom kernel configuration file and compile the kernel as described in : device carp The hostname, management IP address and subnet mask, shared IP address, and VHID are all set by adding entries to /etc/rc.conf. This example is for hosta.example.org: hostname="hosta.example.org" ifconfig_em0="inet 192.168.1.3 netmask 255.255.255.0" ifconfig_em0_alias0="vhid 1 pass testpass alias 192.168.1.50/32" The next set of entries are for hostb.example.org. Since it represents a second master, it uses a different shared IP address and VHID. However, the passwords specified with must be identical as CARP will only listen to and accept advertisements from machines with the correct password. hostname="hostb.example.org" ifconfig_em0="inet 192.168.1.4 netmask 255.255.255.0" ifconfig_em0_alias0="vhid 2 pass testpass alias 192.168.1.51/32" The third machine, hostc.example.org, is configured to handle failover from either master. This machine is configured with two CARP VHIDs, one to handle the virtual IP address for each of the master hosts. The CARP advertising skew, , is set to ensure that the backup host advertises later than the master, since controls the order of precedence when there are multiple backup servers. hostname="hostc.example.org" ifconfig_em0="inet 192.168.1.5 netmask 255.255.255.0" ifconfig_em0_alias0="vhid 1 advskew 100 pass testpass alias 192.168.1.50/32" ifconfig_em0_alias1="vhid 2 advskew 100 pass testpass alias 192.168.1.51/32" Having two CARP VHIDs configured means that hostc.example.org will notice if either of the master servers becomes unavailable. If a master fails to advertise before the backup server, the backup server will pick up the shared IP address until the master becomes available again. Preemption is disabled by default. If preemption has been enabled, hostc.example.org might not release the virtual IP address back to the original master server. The administrator can force the backup server to return the IP address to the master with the command: &prompt.root; ifconfig em0 vhid 1 state backup Once the configuration is complete, either restart networking or reboot each system. High availability is now enabled. CARP functionality can be controlled via several &man.sysctl.8; variables documented in the &man.carp.4; manual pages. Other actions can be triggered from CARP events by using &man.devd.8;. Using <acronym>CARP</acronym> on &os; 9 and Earlier The configuration for these versions of &os; is similar to the one described in the previous section, except that a CARP device must first be created and referred to in the configuration. Enable boot-time support for CARP by loading the if_carp.ko kernel module in /boot/loader.conf: if_carp_load="YES" To load the module now without rebooting: &prompt.root; kldload carp For users who prefer to use a custom kernel, include the following line in the custom kernel configuration file and compile the kernel as described in : device carp Next, on each host, create a CARP device: &prompt.root; ifconfig carp0 create Set the hostname, management IP address, the shared IP address, and VHID by adding the required lines to /etc/rc.conf. Since a virtual CARP device is used instead of an alias, the actual subnet mask of /24 is used instead of /32. Here are the entries for hosta.example.org: hostname="hosta.example.org" ifconfig_fxp0="inet 192.168.1.3 netmask 255.255.255.0" cloned_interfaces="carp0" ifconfig_carp0="vhid 1 pass testpass 192.168.1.50/24" On hostb.example.org: hostname="hostb.example.org" ifconfig_fxp0="inet 192.168.1.4 netmask 255.255.255.0" cloned_interfaces="carp0" ifconfig_carp0="vhid 2 pass testpass 192.168.1.51/24" The third machine, hostc.example.org, is configured to handle failover from either of the master hosts: hostname="hostc.example.org" ifconfig_fxp0="inet 192.168.1.5 netmask 255.255.255.0" cloned_interfaces="carp0 carp1" ifconfig_carp0="vhid 1 advskew 100 pass testpass 192.168.1.50/24" ifconfig_carp1="vhid 2 advskew 100 pass testpass 192.168.1.51/24" Preemption is disabled in the GENERIC &os; kernel. If preemption has been enabled with a custom kernel, hostc.example.org may not release the IP address back to the original content server. The administrator can force the backup server to return the IP address to the master with the command: &prompt.root; ifconfig carp0 down && ifconfig carp0 up This should be done on the carp interface which corresponds to the correct host. Once the configuration is complete, either restart networking or reboot each system. High availability is now enabled.
Index: head/en_US.ISO8859-1/books/handbook/bsdinstall/chapter.xml =================================================================== --- head/en_US.ISO8859-1/books/handbook/bsdinstall/chapter.xml (revision 46060) +++ head/en_US.ISO8859-1/books/handbook/bsdinstall/chapter.xml (revision 46061) @@ -1,2743 +1,2743 @@ Installing &os; 9.<replaceable>X</replaceable> and Later Jim Mock Restructured, reorganized, and parts rewritten by Gavin Atkinson Updated for bsdinstall by Warren Block Allan Jude Updated for root-on-ZFS by Synopsis installation Beginning with &os; 9.0-RELEASE, &os; provides an easy to use, text-based installation program named bsdinstall. This chapter describes how to install &os; using bsdinstall. The use of sysinstall, which is the installation program used by &os; 8.x, is covered in . In general, the installation instructions in this chapter are written for the &i386; and AMD64 architectures. Where applicable, instructions specific to other platforms will be listed. There may be minor differences between the installer and what is shown here, so use this chapter as a general guide rather than as a set of literal instructions. Users who prefer to install &os; using a graphical installer may be interested in pc-sysinstall, the installer used by the PC-BSD Project. It can be used to install either a graphical desktop (PC-BSD) or a command line version of &os;. Refer to the PC-BSD Users Handbook for details (http://wiki.pcbsd.org/index.php/PC-BSD%C2%AE_Users_Handbook/10.1). After reading this chapter, you will know: The minimum hardware requirements and &os; supported architectures. How to create the &os; installation media. How to start bsdinstall. The questions bsdinstall will ask, what they mean, and how to answer them. How to troubleshoot a failed installation. How to access a live version of &os; before committing to an installation. Before reading this chapter, you should: Read the supported hardware list that shipped with the version of &os; to be installed and verify that the system's hardware is supported. Minimum Hardware Requirements The hardware requirements to install &os; vary by the &os; version and the hardware architecture. Hardware architectures and devices supported by a &os; release are listed in the Hardware Notes file. Usually named HARDWARE.TXT, the file is located in the root directory of the release media. Copies of the supported hardware list are also available on the Release Information page of the &os; web site (http://www.FreeBSD.org/releases/index.html). A &os; installation will require at least 64 MB of RAM and 1.5 GB of free hard drive space for the most minimal installation. However, that is a very minimal install, leaving almost no free space. A more realistic minimum is 4 GB without a graphical environment, and 8 GB or more if a graphical user interface will be used. Third-party application software requires more space. It is recommended to increase RAM and hard drive space to meet the needs of the applications that will be used and the amount of data that will be stored. The processor requirements for each architecture can be summarized as follows: &arch.amd64; There are two classes of processors capable of running &arch.amd64;. The first are AMD64 processors, including the &amd.athlon;64 and &amd.opteron; processors. The second class of processors includes those using the &intel; EM64T architecture. Examples of these processors include all multi-core &intel; &xeon; processors except Sossaman, the single-core &intel; &xeon; processors Nocona, Irwindale, Potomac, and Cranford, the &intel; &core; 2 (not Core Duo) and later processors, all &intel; &pentium; D processors, the &intel; &pentium; 4s and Celeron Ds using the Cedar Mill core, and some &intel; &pentium; 4s and Celeron Ds using the Prescott core. Both Uniprocessor (UP) and Symmetric Multi-processor (SMP) configurations are supported. &arch.i386; Almost all i386-compatible processors with a floating point unit are supported. All &intel; processors 486 or higher are supported. &os; will take advantage of Physical Address Extensions (PAE) support on CPUs that support this feature. A kernel with the PAE feature enabled will detect memory above 4 GB and allow it to be used by the system. This feature places constraints on the device drivers and other features of &os; which may be used; refer to &man.pae.4; for details. ia64 Currently supported processors are the &itanium; and the &itanium; 2. Supported chipsets include the HP zx1, &intel; 460GX, and &intel; E8870. Both Uniprocessor (UP) and Symmetric Multi-processor (SMP) configurations are supported. pc98 NEC PC-9801/9821 series with almost all i386-compatible processors, including 80486, &pentium;, &pentium; Pro, and &pentium; II, are all supported. All i386-compatible processors by AMD, Cyrix, IBM, and IDT are also supported. EPSON PC-386/486/586 series, which are compatible with NEC PC-9801 series, are supported. The NEC FC-9801/9821 and NEC SV-98 series should be supported. High-resolution mode is not supported. NEC PC-98XA/XL/RL/XL^2, and NEC PC-H98 series are supported in normal (PC-9801 compatible) mode only. The SMP-related features of &os; are not supported. The New Extend Standard Architecture (NESA) bus used in the PC-H98, SV-H98, and FC-H98 series, is not supported. &arch.powerpc; All New World ROM &apple; &mac; systems with built-in USB are supported. SMP is supported on machines with multiple CPUs. A 32-bit kernel can only use the first 2 GB of RAM. &arch.sparc64; Systems supported by &os;/&arch.sparc64; are listed at the FreeBSD/sparc64 Project (http://www.freebsd.org/platforms/sparc.html). SMP is supported on all systems with more than 1 processor. A dedicated disk is required as it is not possible to share a disk with another operating system at this time. Pre-Installation Tasks Once it has been determined that the system meets the minimum hardware requirements for installing &os;, the installation file should be downloaded and the installation media prepared. Before doing this, check that the system is ready for an installation by verifying the items in this checklist: Back Up Important Data Before installing any operating system, always backup all important data first. Do not store the backup on the system being installed. Instead, save the data to a removable disk such as a USB drive, another system on the network, or an online backup service. Test the backup before starting the installation to make sure it contains all of the needed files. Once the installer formats the system's disk, all data stored on that disk will be lost. Decide Where to Install &os; If &os; will be the only operating system installed, this step can be skipped. But if &os; will share the disk with another operating system, decide which disk or partition will be used for &os;. In the &arch.i386; and &arch.amd64; architectures, disks can be divided into multiple partitions using one of two partitioning schemes. A traditional Master Boot Record (MBR) holds a partition table defining up to four primary partitions. For historical reasons, &os; calls these primary partition slices. One of these primary partitions can be made into an extended partition containing multiple logical partitions. The GUID Partition Table (GPT) is a newer and simpler method of partitioning a disk. Common GPT implementations allow up to 128 partitions per disk, eliminating the need for logical partitions. Some older operating systems, like &windows; XP, are not compatible with the GPT partition scheme. If &os; will be sharing a disk with such an operating system, MBR partitioning is required. The &os; boot loader requires either a primary or GPT partition. If all of the primary or GPT partitions are already in use, one must be freed for &os;. To create a partition without deleting existing data, use a partition resizing tool to shrink an existing partition and create a new partition using the freed space. A variety of free and commercial partition resizing tools are listed at http://en.wikipedia.org/wiki/List_of_disk_partitioning_software. GParted Live (http://gparted.sourceforge.net/livecd.php) is a free live CD which includes the GParted partition editor. GParted is also included with many other Linux live CD distributions. When used properly, disk shrinking utilities can safely create space for creating a new partition. Since the possibility of selecting the wrong partition exists, always backup any important data and verify the integrity of the backup before modifying disk partitions. Disk partitions containing different operating systems make it possible to install multiple operating systems on one computer. An alternative is to use virtualization () which allows multiple operating systems to run at the same time without modifying any disk partitions. Collect Network Information Some &os; installation methods require a network connection in order to download the installation files. After any installation, the installer will offer to setup the system's network interfaces. If the network has a DHCP server, it can be used to provide automatic network configuration. If DHCP is not available, the following network information for the system must be obtained from the local network administrator or Internet service provider: Required Network Information IP address Subnet mask IP address of default gateway Domain name of the network IP addresses of the network's DNS servers Check for &os; Errata Although the &os; Project strives to ensure that each release of &os; is as stable as possible, bugs occasionally creep into the process. On very rare occasions those bugs affect the installation process. As these problems are discovered and fixed, they are noted in the &os; Errata (http://www.freebsd.org/releases/&rel.current;R/errata.html) on the &os; web site. Check the errata before installing to make sure that there are no problems that might affect the installation. Information and errata for all the releases can be found on the release information section of the &os; web site (http://www.freebsd.org/releases/index.html). Prepare the Installation Media The &os; installer is not an application that can be run from within another operating system. Instead, download a &os; installation file, burn it to the media associated with its file type and size (CD, DVD, or USB), and boot the system to install from the inserted media. &os; installation files are available at www.freebsd.org/where.html#download. Each installation file's name includes the release version of &os;, the architecture, and the type of file. For example, to install &os; 10.0 on an &arch.amd64; system from a DVD, download FreeBSD-10.0-RELEASE-amd64-dvd1.iso, burn this file to a DVD, and boot the system with the DVD inserted. Several file types are available, though not all file types are available for all architectures. The possible file types are: -bootonly.iso: This is the smallest installation file as it only contains the installer. A working Internet connection is required during installation as the installer will download the files it needs to complete the &os; installation. This file should be burned to a CD using a CD burning application. -disc1.iso: This file contains all of the files needed to install &os;, its source, and the Ports Collection. It should be burned to a CD using a CD burning application. -dvd1.iso: This file contains all of the files needed to install &os;, its source, and the Ports Collection. It also contains a set of popular binary packages for installing a window manager and some applications so that a complete system can be installed from media without requiring a connection to the Internet. This file should be burned to a DVD using a DVD burning application. -memstick.img: This file contains all of the files needed to install &os;, its source, and the Ports Collection. It should be burned to a USB stick using the instructions below. Also download CHECKSUM.SHA256 from the same directory as the image file and use it to check the image file's integrity by calculating a checksum. &os; provides &man.sha256.1; for this, while other operating systems have similar programs. Compare the calculated checksum with the one shown in CHECKSUM.SHA256. The checksums must match exactly. If the checksums do not match, the file is corrupt and should be downloaded again. Writing an Image File to <acronym>USB</acronym> The *.img file is an image of the complete contents of a memory stick. It cannot be copied to the target device as a file. Several applications are available for writing the *.img to a USB stick. This section describes two of these utilities. Before proceeding, back up any important data on the USB stick. This procedure will erase the existing data on the stick. Using <command>dd</command> to Write the Image This example uses /dev/da0 as the target device where the image will be written. Be very careful that the correct device is used as this command will destroy the existing data on the specified target device. The &man.dd.1; command-line utility is available on BSD, &linux;, and &macos; systems. To burn the image using dd, insert the USB stick and determine its device name. Then, specify the name of the downloaded installation file and the device name for the USB stick. This example burns the &arch.amd64; installation image to the first USB device on an existing &os; system. &prompt.root; dd if=FreeBSD-10.0-RELEASE-amd64-memstick.img of=/dev/da0 bs=64k If this command fails, verify that the USB stick is not mounted and that the device name is for the disk, not a partition. Some operating systems might require this command to be run with &man.sudo.8;. Systems like &linux; might buffer writes. To force all writes to complete, use &man.sync.8;. Using &windows; to Write the Image Be sure to give the correct drive letter as the existing data on the specified drive will be overwritten and destroyed. Obtaining <application>Image Writer for &windows;</application> Image Writer for &windows; is a free application that can correctly write an image file to a memory stick. Download it from https://launchpad.net/win32-image-writer/ and extract it into a folder. Writing the Image with Image Writer Double-click the Win32DiskImager icon to start the program. Verify that the drive letter shown under Device is the drive with the memory stick. Click the folder icon and select the image to be written to the memory stick. Click [ Save ] to accept the image file name. Verify that everything is correct, and that no folders on the memory stick are open in other windows. When everything is ready, click [ Write ] to write the image file to the memory stick. You are now ready to start installing &os;. Starting the Installation By default, the installation will not make any changes to the disk(s) before the following message: Your changes will now be written to disk. If you have chosen to overwrite existing data, it will be PERMANENTLY ERASED. Are you sure you want to commit your changes? The install can be exited at any time prior to this warning. If there is a concern that something is incorrectly configured, just turn the computer off before this point and no changes will be made to the system's disks. This section describes how to boot the system from the installation media which was prepared using the instructions in . When using a bootable USB stick, plug in the USB stick before turning on the computer. When booting from CD or DVD, turn on the computer and insert the media at the first opportunity. How to configure the system to boot from the inserted media depends upon the architecture. Booting on &i386; and &arch.amd64; These architectures provide a BIOS menu for selecting the boot device. Depending upon the installation media being used, select the CD/DVD or USB device as the first boot device. Most systems also provide a key for selecting the boot device during startup without having to enter the BIOS. Typically, the key is either F10, F11, F12, or Escape. If the computer loads the existing operating system instead of the &os; installer, then either: The installation media was not inserted early enough in the boot process. Leave the media inserted and try restarting the computer. The BIOS changes were incorrect or not saved. Double-check that the right boot device is selected as the first boot device. This system is too old to support booting from the chosen media. In this case, the Plop Boot Manager (http://www.plop.at/en/bootmanager.html) can be used to boot the system from the selected media. Booting on &powerpc; On most machines, holding C on the keyboard during boot will boot from the CD. Otherwise, hold Command Option O F , or Windows Alt O F on non-&apple; keyboards. At the 0 > prompt, enter boot cd:,\ppc\loader cd:0 Booting on &sparc64; Most &sparc64; systems are set up to boot automatically from disk. To install &os; from a CD requires a break into the PROM. To do this, reboot the system and wait until the boot message appears. The message depends on the model, but should look something like this: Sun Blade 100 (UltraSPARC-IIe), Keyboard Present Copyright 1998-2001 Sun Microsystems, Inc. All rights reserved. OpenBoot 4.2, 128 MB memory installed, Serial #51090132. Ethernet address 0:3:ba:b:92:d4, Host ID: 830b92d4. If the system proceeds to boot from disk at this point, press L1A or StopA on the keyboard, or send a BREAK over the serial console. When using tip or cu, ~# will issue a BREAK. The PROM prompt will be ok on systems with one CPU and ok {0} on SMP systems, where the digit indicates the number of the active CPU. At this point, place the CD into the drive and type boot cdrom from the PROM prompt. &os; Boot Menu Once the system boots from the installation media, a menu similar to the following will be displayed:
&os; Boot Loader Menu
By default, the menu will wait ten seconds for user input before booting into the &os; installer or, if &os; is already installed, before booting into &os;. To pause the boot timer in order to review the selections, press Space. To select an option, press its highlighted number, character, or key. The following options are available. Boot Multi User: This will continue the &os; boot process. If the boot timer has been paused, press 1, upper- or lower-case B, or Enter. Boot Single User: This mode can be used to fix an existing &os; installation as described in . Press 2 or the upper- or lower-case S to enter this mode. Escape to loader prompt: This will boot the system into a repair prompt that contains a limited number of low-level commands. This prompt is described in . Press 3 or Esc to boot into this prompt. Reboot: Reboots the system. Configure Boot Options: Opens the menu shown in, and described under, .
&os; Boot Options Menu
The boot options menu is divided into two sections. The first section can be used to either return to the main boot menu or to reset any toggled options back to their defaults. The next section is used to toggle the available options to On or Off by pressing the option's highlighted number or character. The system will always boot using the settings for these options until they are modified. Several options can be toggled using this menu: ACPI Support: If the system hangs during boot, try toggling this option to Off. Safe Mode: If the system still hangs during boot even with ACPI Support set to Off, try setting this option to On. Single User: Toggle this option to On to fix an existing &os; installation as described in . Once the problem is fixed, set it back to Off. Verbose: Toggle this option to On to see more detailed messages during the boot process. This can be useful when troubleshooting a piece of hardware. After making the needed selections, press 1 or Backspace to return to the main boot menu, then press Enter to continue booting into &os;. A series of boot messages will appear as &os; carries out its hardware device probes and loads the installation program. Once the boot is complete, the welcome menu shown in will be displayed.
Welcome Menu
Press Enter to select the default of [ Install ] to enter the installer. The rest of this chapter describes how to use this installer. Otherwise, use the right or left arrows or the colorized letter to select the desired menu item. The [ Shell ] can be used to access a &os; shell in order to use command line utilities to prepare the disks before installation. The [ Live CD ] option can be used to try out &os; before installing it. The live version is described in . To review the boot messages, including the hardware device probe, press the upper- or lower-case S and then Enter to access a shell. At the shell prompt, type more /var/run/dmesg.boot and use the space bar to scroll through the messages. When finished, type exit to return to the welcome menu.
Using <application>bsdinstall</application> This section shows the order of the bsdinstall menus and the type of information that will be asked before the system is installed. Use the arrow keys to highlight a menu option, then Space to select or deselect that menu item. When finished, press Enter to save the selection and move onto the next screen. Selecting the Keymap Menu Depending on the system console being used, bsdinstall may initially display the menu shown in .
Keymap Selection
To configure the keyboard layout, press Enter with [ YES ] selected, which will display the menu shown in . To instead use the default layout, use the arrow key to select [ NO ] and press Enter to skip this menu screen.
Selecting Keyboard Menu
When configuring the keyboard layout, use the up and down arrows to select the keymap that most closely represents the mapping of the keyboard attached to the system. Press Enter to save the selection. Pressing Esc will exit this menu and use the default keymap. If the choice of keymap is not clear, United States of America ISO-8859-1 is also a safe option. In &os; 10.0-RELEASE and later, this menu has been enhanced. The full selection of keymaps is shown, with the default preselected. In addition, when selecting a different keymap, a dialog is displayed that allows the user to try the keymap and ensure it is correct before proceeding.
Enhanced Keymap Menu
Setting the Hostname The next bsdinstall menu is used to set the hostname for the newly installed system.
Setting the Hostname
Type in a hostname that is unique for the network. It should be a fully-qualified hostname, such as machine3.example.com.
Selecting Components to Install Next, bsdinstall will prompt to select optional components to install.
Selecting Components to Install
Deciding which components to install will depend largely on the intended use of the system and the amount of disk space available. The &os; kernel and userland, collectively known as the base system, are always installed. Depending on the architecture, some of these components may not appear: doc - Additional documentation, mostly of historical interest, to install into /usr/share/doc. The documentation provided by the FreeBSD Documentation Project may be installed later using the instructions in . games - Several traditional BSD games, including fortune, rot13, and others. lib32 - Compatibility libraries for running 32-bit applications on a 64-bit version of &os;. ports - The &os; Ports Collection is a collection of files which automates the downloading, compiling and installation of third-party software packages. discusses how to use the Ports Collection. The installation program does not check for adequate disk space. Select this option only if sufficient hard disk space is available. The &os; Ports Collection takes up about &ports.size; of disk space. src - The complete &os; source code for both the kernel and the userland. Although not required for the majority of applications, it may be required to build device drivers, kernel modules, or some applications from the Ports Collection. It is also used for developing &os; itself. The full source tree requires 1 GB of disk space and recompiling the entire &os; system requires an additional 5 GB of space.
Installing from the Network The menu shown in only appears when installing from a -bootonly.iso CD as this installation media does not hold copies of the installation files. Since the installation files must be retrieved over a network connection, this menu indicates that the network interface must be first configured.
Installing from the Network
To configure the network connection, press Enter and follow the instructions in . Once the interface is configured, select a mirror site that is located in the same region of the world as the computer on which &os; is being installed. Files can be retrieved more quickly when the mirror is close to the target computer, reducing installation time.
Choosing a Mirror
Installation will then continue as if the installation files were located on the local installation media.
Allocating Disk Space The next menu is used to determine the method for allocating disk space. The options available in the menu depend upon the version of &os; being installed.
Partitioning Choices on &os; 9.x
Partitioning Choices on &os; 10.x and Higher
Guided partitioning automatically sets up the disk partitions, Manual partitioning allows advanced users to create customized partitions from menu options, and Shell opens a shell prompt where advanced users can create customized partitions using command-line utilities like &man.gpart.8;, &man.fdisk.8;, and &man.bsdlabel.8;. ZFS partitioning, only available in &os; 10 and later, creates an optionally encrypted root-on-ZFS system with support for boot environments. This section describes what to consider when laying out the disk partitions. It then demonstrates how to use the different partitioning methods. Designing the Partition Layout partition layout /etc /var /usr When laying out file systems, remember that hard drives transfer data faster from the outer tracks to the inner. Thus, smaller and heavier-accessed file systems should be closer to the outside of the drive, while larger partitions like /usr should be placed toward the inner parts of the disk. It is a good idea to create partitions in an order similar to: /, swap, /var, and /usr. The size of the /var partition reflects the intended machine's usage. This partition is used to hold mailboxes, log files, and printer spools. Mailboxes and log files can grow to unexpected sizes depending on the number of users and how long log files are kept. On average, most users rarely need more than about a gigabyte of free disk space in /var. Sometimes, a lot of disk space is required in /var/tmp. When new software is installed, the packaging tools extract a temporary copy of the packages under /var/tmp. Large software packages, like Firefox, OpenOffice or LibreOffice may be tricky to install if there is not enough disk space under /var/tmp. The /usr partition holds many of the files which support the system, including the &os; Ports Collection and system source code. At least 2 gigabytes is recommended for this partition. When selecting partition sizes, keep the space requirements in mind. Running out of space in one partition while barely using another can be a hassle. swap sizing swap partition As a rule of thumb, the swap partition should be about double the size of physical memory (RAM). Systems with minimal RAM may perform better with more swap. Configuring too little swap can lead to inefficiencies in the VM page scanning code and might create issues later if more memory is added. On larger systems with multiple SCSI disks or multiple IDE disks operating on different controllers, it is recommended that swap be configured on each drive, up to four drives. The swap partitions should be approximately the same size. The kernel can handle arbitrary sizes but internal data structures scale to 4 times the largest swap partition. Keeping the swap partitions near the same size will allow the kernel to optimally stripe swap space across disks. Large swap sizes are fine, even if swap is not used much. It might be easier to recover from a runaway program before being forced to reboot. By properly partitioning a system, fragmentation introduced in the smaller write heavy partitions will not bleed over into the mostly read partitions. Keeping the write loaded partitions closer to the disk's edge will increase I/O performance in the partitions where it occurs the most. While I/O performance in the larger partitions may be needed, shifting them more toward the edge of the disk will not lead to a significant performance improvement over moving /var to the edge. Guided Partitioning When this method is selected, a menu will display the available disk(s). If multiple disks are connected, choose the one where &os; is to be installed.
Selecting from Multiple Disks
Once the disk is selected, the next menu prompts to install to either the entire disk or to create a partition using free space. If [ Entire Disk ] is chosen, a general partition layout filling the whole disk is automatically created. Selecting [ Partition ] creates a partition layout from the unused space on the disk.
Selecting Entire Disk or Partition
After the partition layout has been created, review it to ensure it meets the needs of the installation. Selecting [ Revert ] will reset the partitions to their original values and pressing [ Auto ] will recreate the automatic &os; partitions. Partitions can also be manually created, modified, or deleted. When the partitioning is correct, select [ Finish ] to continue with the installation.
Review Created Partitions
Manual Partitioning Selecting this method opens the partition editor:
Manually Create Partitions
Highlight the installation drive (ada0 in this example) and select [ Create ] to display a menu of available partition schemes:
Manually Create Partitions
GPT is usually the most appropriate choice for &arch.amd64; computers. Older computers that are not compatible with GPT should use MBR. The other partition schemes are generally used for uncommon or older computers. Partitioning Schemes Abbreviation Description APM Apple Partition Map, used by &powerpc;. BSD BSD label without an MBR, sometimes called dangerously dedicated mode as non-BSD disk utilities may not recognize it. GPT GUID Partition Table (http://en.wikipedia.org/wiki/GUID_Partition_Table). MBR Master Boot Record (http://en.wikipedia.org/wiki/Master_boot_record). PC98 MBR variant used by NEC PC-98 computers (http://en.wikipedia.org/wiki/Pc9801). VTOC8 Volume Table Of Contents used by Sun SPARC64 and UltraSPARC computers.
After the partitioning scheme has been selected and created, select [ Create ] again to create the partitions.
Manually Create Partitions
A standard &os; GPT installation uses at least three partitions: freebsd-boot - Holds the &os; boot code. freebsd-ufs - A &os; UFS file system. freebsd-swap - &os; swap space. Another partition type worth noting is freebsd-zfs, used for partitions that will contain a &os; ZFS file system (). Refer to &man.gpart.8; for descriptions of the available GPT partition types. Multiple file system partitions can be created and some people prefer a traditional layout with separate partitions - for the /, /var, - /tmp, and /usr file - systems. See - for an example. + for /, /var, + /tmp, and /usr. See + for an + example. The Size may be entered with common abbreviations: K for kilobytes, M for megabytes, or G for gigabytes. Proper sector alignment provides the best performance, and making partition sizes even multiples of 4K-bytes helps to ensure alignment on drives with either 512-byte or 4K-byte sectors. Generally, using partition sizes that are even multiples of 1M or 1G is the easiest way to make sure every partition starts at an even multiple of 4K. There is one exception: the freebsd-boot partition should be no larger than 512K due to current boot code limitations. A Mountpoint is needed if the partition will contain a file system. If only a single UFS partition will be created, the mountpoint should be /. The Label is a name by which the partition will be known. Drive names or numbers can change if the drive is connected to a different controller or port, but the partition label does not change. Referring to labels instead of drive names and partition numbers in files like /etc/fstab makes the system more tolerant to hardware changes. GPT labels appear in /dev/gpt/ when a disk is attached. Other partitioning schemes have different label capabilities and their labels appear in different directories in /dev/. Use a unique label on every partition to avoid conflicts from identical labels. A few letters from the computer's name, use, or location can be added to the label. For instance, use labroot or rootfslab for the UFS root partition on the computer named lab. Creating Traditional Split File System Partitions For a traditional partition layout where the /, /var, /tmp, and /usr directories are separate file systems on their own partitions, create a GPT partitioning scheme, then create the partitions as shown. Partition sizes shown are typical for a 20G target disk. If more space is available on the target disk, larger swap or /var partitions may be useful. Labels shown here are prefixed with ex for example, but readers should use other unique label values as described above. By default, &os;'s gptboot expects the first UFS partition to be the / partition. Partition Type Size Mountpoint Label freebsd-boot 512K freebsd-ufs 2G / exrootfs freebsd-swap 4G exswap freebsd-ufs 2G /var exvarfs freebsd-ufs 1G /tmp extmpfs freebsd-ufs accept the default (remainder of the disk) /usr exusrfs After the custom partitions have been created, select [ Finish ] to continue with the installation.
Root-on-ZFS Automatic Partitioning Support for automatic creation of root-on-ZFS installations was added in &os; 10.0-RELEASE. This partitioning mode only works with whole disks and will erase the contents of the entire disk. The installer will automatically create partitions aligned to 4k boundaries and force ZFS to use 4k sectors. This is safe even with 512 byte sector disks, and has the added benefit of ensuring that pools created on 512 byte disks will be able to have 4k sector disks added in the future, either as additional storage space or as replacements for failed disks. The installer can also optionally employ GELI disk encryption as described in . If encryption is enabled, a 2 GB unencrypted boot pool containing the /boot directory is created. It holds the kernel and other files necessary to boot the system. A swap partition of a user selectable size is also created, and all remaining space is used for the ZFS pool. The main ZFS configuration menu offers a number of options to control the creation of the pool.
<acronym>ZFS</acronym> Partitioning Menu
Select T to configure the Pool Type and the disk(s) that will constitute the pool. The automatic ZFS installer currently only supports the creation of a single top level vdev, except in stripe mode. To create more complex pools, use the instructions in to create the pool. The installer supports the creation of various pool types, including stripe (not recommended, no redundancy), mirror (best performance, least usable space), and RAID-Z 1, 2, and 3 (with the capability to withstand the concurrent failure of 1, 2, and 3 disks, respectively). while selecting the pool type, a tooltip is displayed across the bottom of the screen with advice about the number of required disks, and in the case of RAID-Z, the optimal number of disks for each configuration.
<acronym>ZFS</acronym> Pool Type
Once a Pool Type has been selected, a list of available disks is displayed, and the user is prompted to select one or more disks to make up the pool. The configuration is then validated, to ensure enough disks are selected. If not, select <Change Selection> to return to the list of disks, or <Cancel> to change the pool type.
Disk Selection
Invalid Selection
If one or more disks are missing from the list, or if disks were attached after the installer was started, select - Rescan Devices to repopulate the list of available disks. To ensure that the correct disks are selected, so as not to accidently destroy the wrong disks, the - Disk Info menu can be used to inspect each disk, including its partition table and various other information such as the device model number and serial number, if available.
Analysing a Disk
The main ZFS configuration menu also allows the user to enter a pool name, disable forcing 4k sectors, enable or disable encryption, switch between GPT (recommended) and MBR partition table types, and select the amount of swap space. Once all options have been set to the desired values, select the >>> Install option at the top of the menu. If GELI disk encryption was enabled, the installer will prompt twice for the passphrase to be used to encrypt the disks.
Disk Encryption Password
The installer then offers a last chance to cancel before the contents of the selected drives are destroyed to create the ZFS pool.
Last Chance
The installation then proceeds normally.
Shell Mode Partitioning When creating advanced installations, the bsdinstall paritioning menus may not provide the level of flexibility required. Advanced users can select the Shell option from the partitioning menu in order to manually partition the drives, create the file system(s), populate /tmp/bsdinstall_etc/fstab, and mount the file systems under /mnt. Once this is done, type exit to return to bsdinstall and continue the installation.
Committing to the Installation Once the disks are configured, the next menu provides the last chance to make changes before the selected hard drive(s) are formatted. If changes need to be made, select [ Back ] to return to the main partitioning menu. [ Revert & Exit ] will exit the installer without making any changes to the hard drive.
Final Confirmation
To instead start the actual installation, select [ Commit ] and press Enter. Installation time will vary depending on the distributions chosen, installation media, and speed of the computer. A series of messages will indicate the progress. First, the installer formats the selected disk(s) and initializes the partitions. Next, in the case of a bootonly media, it downloads the selected components:
Fetching Distribution Files
Next, the integrity of the distribution files is verified to ensure they have not been corrupted during download or misread from the installation media:
Verifying Distribution Files
Finally, the verified distribution files are extracted to the disk:
Extracting Distribution Files
Once all requested distribution files have been extracted, bsdinstall displays the first post-installation configuration screen. The available post-configuration options are described in the next section.
Post-Installation Once &os; is installed, bsdinstall will prompt to configure several options before booting into the newly installed system. This section describes these configuration options. Once the system has booted, bsdconfig provides a menu-driven method for configuring the system using these and additional options. Setting the <systemitem class="username">root</systemitem> Password First, the root password must be set. While entering the password, the characters being typed are not displayed on the screen. After the password has been entered, it must be entered again. This helps prevent typing errors.
Setting the <systemitem class="username">root</systemitem> Password
Configuring Network Interfaces Next, a list of the network interfaces found on the computer is shown. Select the interface to configure. The network configuration menus will be skipped if the network was previously configured as part of a bootonly installation.
Choose a Network Interface
If an Ethernet interface is selected, the installer will skip ahead to the menu shown in . If a wireless network interface is chosen, the system will instead scan for wireless access points:
Scanning for Wireless Access Points
Wireless networks are identified by a Service Set Identifier (SSID), a short, unique name given to each network. SSIDs found during the scan are listed, followed by a description of the encryption types available for that network. If the desired SSID does not appear in the list, select [ Rescan ] to scan again. If the desired network still does not appear, check for problems with antenna connections or try moving the computer closer to the access point. Rescan after each change is made.
Choosing a Wireless Network
Next, enter the encryption information for connecting to the selected wireless network. WPA2 encryption is strongly recommended as older encryption types, like WEP, offer little security. If the network uses WPA2, input the password, also known as the Pre-Shared Key (PSK). For security reasons, the characters typed into the input box are displayed as asterisks.
WPA2 Setup
Next, choose whether or not an IPv4 address should be configured on the Ethernet or wireless interface:
Choose <acronym>IPv4</acronym> Networking
There are two methods of IPv4 configuration. DHCP will automatically configure the network interface correctly and should be used if the network provides a DHCP server. Otherwise, the addressing information needs to be input manually as a static configuration. Do not enter random network information as it will not work. If a DHCP server is not available, obtain the information listed in from the network administrator or Internet service provider. If a DHCP server is available, select [ Yes ] in the next menu to automatically configure the network interface. The installer will appear to pause for a minute or so as it finds the DHCP server and obtains the addressing information for the system.
Choose <acronym>IPv4</acronym> <acronym>DHCP</acronym> Configuration
If a DHCP server is not available, select [ No ] and input the following addressing information in this menu:
<acronym>IPv4</acronym> Static Configuration
IP Address - The IPv4 address assigned to this computer. The address must be unique and not already in use by another piece of equipment on the local network. Subnet Mask - The subnet mask for the network. Default Router - The IP address of the network's default gateway. The next screen will ask if the interface should be configured for IPv6. If IPv6 is available and desired, choose [ Yes ] to select it.
Choose IPv6 Networking
IPv6 also has two methods of configuration. StateLess Address AutoConfiguration (SLAAC) will automatically request the correct configuration information from a local router. Refer to http://tools.ietf.org/html/rfc4862 for more information. Static configuration requires manual entry of network information. If an IPv6 router is available, select [ Yes ] in the next menu to automatically configure the network interface. The installer will appear to pause for a minute or so as it finds the router and obtains the addressing information for the system.
Choose IPv6 SLAAC Configuration
If an IPv6 router is not available, select [ No ] and input the following addressing information in this menu:
IPv6 Static Configuration
IPv6 Address - The IPv6 address assigned to this computer. The address must be unique and not already in use by another piece of equipment on the local network. Default Router - The IPv6 address of the network's default gateway. The last network configuration menu is used to configure the Domain Name System (DNS) resolver, which converts hostnames to and from network addresses. If DHCP or SLAAC was used to autoconfigure the network interface, the Resolver Configuration values may already be filled in. Otherwise, enter the local network's domain name in the Search field. DNS #1 and DNS #2 are the IPv4 and/or IPv6 addresses of the DNS servers. At least one DNS server is required.
DNS Configuration
Setting the Time Zone The next menu asks if the system clock uses UTC or local time. When in doubt, select [ No ] to choose the more commonly-used local time.
Select Local or UTC Clock
The next series of menus are used to determine the correct local time by selecting the geographic region, country, and time zone. Setting the time zone allows the system to automatically correct for regional time changes, such as daylight savings time, and perform other time zone related functions properly. The example shown here is for a machine located in the Eastern time zone of the United States. The selections will vary according to the geographical location.
Select a Region
The appropriate region is selected using the arrow keys and then pressing Enter.
Select a Country
Select the appropriate country using the arrow keys and press Enter.
Select a Time Zone
The appropriate time zone is selected using the arrow keys and pressing Enter.
Confirm Time Zone
Confirm the abbreviation for the time zone is correct. If it is, press Enter to continue with the post-installation configuration.
Enabling Services The next menu is used to configure which system services will be started whenever the system boots. All of these services are optional. Only start the services that are needed for the system to function.
Selecting Additional Services to Enable
Here is a summary of the services which can be enabled in this menu: sshd - The Secure Shell (SSH) daemon is used to remotely access a system over an encrypted connection. Only enable this service if the system should be available for remote logins. moused - Enable this service if the mouse will be used from the command-line system console. ntpd - The Network Time Protocol (NTP) daemon for automatic clock synchronization. Enable this service if there is a &windows;, Kerberos, or LDAP server on the network. powerd - System power control utility for power control and energy saving.
Enabling Crash Dumps The next menu is used to configure whether or not crash dumps should be enabled. Enabling crash dumps can be useful in debugging issues with the system, so users are encouraged to enable crash dumps.
Enabling Crash Dumps
Add Users The next menu prompts to create at least one user account. It is recommended to login to the system using a user account rather than as root. When logged in as root, there are essentially no limits or protection on what can be done. Logging in as a normal user is safer and more secure. Select [ Yes ] to add new users.
Add User Accounts
Follow the prompts and input the requested information for the user account. The example shown in creates the asample user account.
Enter User Information
Here is a summary of the information to input: Username - The name the user will enter to log in. A common convention is to use the first letter of the first name combined with the last name, as long as each username is unique for the system. The username is case sensitive and should not contain any spaces. Full name - The user's full name. This can contain spaces and is used as a description for the user account. Uid - User ID. Typically, this is left blank so the system will assign a value. Login group - The user's group. Typically this is left blank to accept the default. Invite user into other groups? - Additional groups to which the user will be added as a member. If the user needs administrative access, type wheel here. Login class - Typically left blank for the default. Shell - Type in one of the listed values to set the interactive shell for the user. Refer to for more information about shells. Home directory - The user's home directory. The default is usually correct. Home directory permissions - Permissions on the user's home directory. The default is usually correct. Use password-based authentication? - Typically yes so that the user is prompted to input their password at login. Use an empty password? - Typically no as it is insecure to have a blank password. Use a random password? - Typically no so that the user can set their own password in the next prompt. Enter password - The password for this user. Characters typed will not show on the screen. Enter password again - The password must be typed again for verification. Lock out the account after creation? - Typically no so that the user can login. After entering everything, a summary is shown for review. If a mistake was made, enter no and try again. If everything is correct, enter yes to create the new user.
Exit User and Group Management
If there are more users to add, answer the Add another user? question with yes. Enter no to finish adding users and continue the installation. For more information on adding users and user management, see .
Final Configuration After everything has been installed and configured, a final chance is provided to modify settings.
Final Configuration
Use this menu to make any changes or do any additional configuration before completing the installation. Add User - Described in . Root Password - Described in . Hostname - Described in . Network - Described in . Services - Described in . Time Zone - Described in . Handbook - Download and install the &os; Handbook. After any final configuration is complete, select Exit.
Manual Configuration
bsdinstall will prompt if there are any additional configuration that needs to be done before rebooting into the new system. Select [ Yes ] to exit to a shell within the new system or [ No ] to proceed to the last step of the installation.
Complete the Installation
If further configuration or special setup is needed, select [ Live CD ] to boot the install media into Live CD mode. If the installation is complete, select [ Reboot ] to reboot the computer and start the new &os; system. Do not forget to remove the &os; install media or the computer may boot from it again. As &os; boots, informational messages are displayed. After the system finishes booting, a login prompt is displayed. At the login: prompt, enter the username added during the installation. Avoid logging in as root. Refer to for instructions on how to become the superuser when administrative access is needed. The messages that appeared during boot can be reviewed by pressing Scroll-Lock to turn on the scroll-back buffer. The PgUp, PgDn, and arrow keys can be used to scroll back through the messages. When finished, press Scroll-Lock again to unlock the display and return to the console. To review these messages once the system has been up for some time, type less /var/run/dmesg.boot from a command prompt. Press q to return to the command line after viewing. If sshd was enabled in , the first boot may be a bit slower as the system will generate the RSA and DSA keys. Subsequent boots will be faster. The fingerprints of the keys will be displayed, as seen in this example: Generating public/private rsa1 key pair. Your identification has been saved in /etc/ssh/ssh_host_key. Your public key has been saved in /etc/ssh/ssh_host_key.pub. The key fingerprint is: 10:a0:f5:af:93:ae:a3:1a:b2:bb:3c:35:d9:5a:b3:f3 root@machine3.example.com The key's randomart image is: +--[RSA1 1024]----+ | o.. | | o . . | | . o | | o | | o S | | + + o | |o . + * | |o+ ..+ . | |==o..o+E | +-----------------+ Generating public/private dsa key pair. Your identification has been saved in /etc/ssh/ssh_host_dsa_key. Your public key has been saved in /etc/ssh/ssh_host_dsa_key.pub. The key fingerprint is: 7e:1c:ce:dc:8a:3a:18:13:5b:34:b5:cf:d9:d1:47:b2 root@machine3.example.com The key's randomart image is: +--[ DSA 1024]----+ | .. . .| | o . . + | | . .. . E .| | . . o o . . | | + S = . | | + . = o | | + . * . | | . . o . | | .o. . | +-----------------+ Starting sshd. Refer to for more information about fingerprints and SSH. &os; does not install a graphical environment by default. Refer to for more information about installing and configuring a graphical window manager. Proper shutdown of a &os; computer helps protect data and hardware from damage. Do not turn off the power before the system has been properly shut down! If the user is a member of the wheel group, become the superuser by typing su at the command line and entering the root password. Then, type shutdown -p now and the system will shut down cleanly, and if the hardware supports it, turn itself off.
Troubleshooting installation troubleshooting This section covers basic installation troubleshooting, such as common problems people have reported. Check the Hardware Notes (http://www.freebsd.org/releases/index.html) document for the version of &os; to make sure the hardware is supported. If the hardware is supported and lock-ups or other problems occur, build a custom kernel using the instructions in to add support for devices which are not present in the GENERIC kernel. The default kernel assumes that most hardware devices are in their factory default configuration in terms of IRQs, I/O addresses, and DMA channels. If the hardware has been reconfigured, a custom kernel configuration file can tell &os; where to find things. Some installation problems can be avoided or alleviated by updating the firmware on various hardware components, most notably the motherboard. Motherboard firmware is usually referred to as the BIOS. Most motherboard and computer manufacturers have a website for upgrades and upgrade information. Manufacturers generally advise against upgrading the motherboard BIOS unless there is a good reason for doing so, like a critical update. The upgrade process can go wrong, leaving the BIOS incomplete and the computer inoperative. If the system hangs while probing hardware during boot, or it behaves strangely during install, ACPI may be the culprit. &os; makes extensive use of the system ACPI service on the &arch.i386;, &arch.amd64;, and ia64 platforms to aid in system configuration if it is detected during boot. Unfortunately, some bugs still exist in both the ACPI driver and within system motherboards and BIOS firmware. ACPI can be disabled by setting the hint.acpi.0.disabled hint in the third stage boot loader: set hint.acpi.0.disabled="1" This is reset each time the system is booted, so it is necessary to add hint.acpi.0.disabled="1" to the file /boot/loader.conf. More information about the boot loader can be found in . Using the Live <acronym>CD</acronym> The welcome menu of bsdinstall, shown in , provides a [ Live CD ] option. This is useful for those who are still wondering whether &os; is the right operating system for them and want to test some of the features before installing. The following points should be noted before using the [ Live CD ]: To gain access to the system, authentication is required. The username is root and the password is blank. As the system runs directly from the installation media, performance will be significantly slower than that of a system installed on a hard disk. This option only provides a command prompt and not a graphical interface.
Index: head/en_US.ISO8859-1/books/handbook/geom/chapter.xml =================================================================== --- head/en_US.ISO8859-1/books/handbook/geom/chapter.xml (revision 46060) +++ head/en_US.ISO8859-1/books/handbook/geom/chapter.xml (revision 46061) @@ -1,1698 +1,1698 @@ GEOM: Modular Disk Transformation Framework Tom Rhodes Written by Synopsis GEOM GEOM Disk Framework GEOM In &os;, the GEOM framework permits access and control to classes, such as Master Boot Records and BSD labels, through the use of providers, or the disk devices in /dev. By supporting various software RAID configurations, GEOM transparently provides access to the operating system and operating system utilities. This chapter covers the use of disks under the GEOM framework in &os;. This includes the major RAID control utilities which use the framework for configuration. This chapter is not a definitive guide to RAID configurations and only GEOM-supported RAID classifications are discussed. After reading this chapter, you will know: What type of RAID support is available through GEOM. How to use the base utilities to configure, maintain, and manipulate the various RAID levels. How to mirror, stripe, encrypt, and remotely connect disk devices through GEOM. How to troubleshoot disks attached to the GEOM framework. Before reading this chapter, you should: Understand how &os; treats disk devices (). Know how to configure and install a new kernel (. RAID0 - Striping Tom Rhodes Written by Murray Stokely GEOM Striping Striping combines several disk drives into a single volume. Striping can be performed through the use of hardware RAID controllers. The GEOM disk subsystem provides software support for disk striping, also known as RAID0, without the need for a RAID disk controller. In RAID0, data is split into blocks that are written across all the drives in the array. As seen in the following illustration, instead of having to wait on the system to write 256k to one disk, RAID0 can simultaneously write 64k to each of the four disks in the array, offering superior I/O performance. This performance can be enhanced further by using multiple disk controllers. Disk Striping Illustration Each disk in a RAID0 stripe must be of the same size, since I/O requests are interleaved to read or write to multiple disks in parallel. RAID0 does not provide any redundancy. This means that if one disk in the array fails, all of the data on the disks is lost. If the data is important, implement a backup strategy that regularly saves backups to a remote system or device. The process for creating a software, GEOM-based RAID0 on a &os; system using commodity disks is as follows. Once the stripe is created, refer to &man.gstripe.8; for more information on how to control an existing stripe. Creating a Stripe of Unformatted <acronym>ATA</acronym> Disks Load the geom_stripe.ko module: &prompt.root; kldload geom_stripe Ensure that a suitable mount point exists. If this volume will become a root partition, then temporarily use another mount point such as /mnt. Determine the device names for the disks which will be striped, and create the new stripe device. For example, to stripe two unused and unpartitioned ATA disks with device names of /dev/ad2 and /dev/ad3: &prompt.root; gstripe label -v st0 /dev/ad2 /dev/ad3 Metadata value stored on /dev/ad2. Metadata value stored on /dev/ad3. Done. Write a standard label, also known as a partition table, on the new volume and install the default bootstrap code: &prompt.root; bsdlabel -wB /dev/stripe/st0 This process should create two other devices in /dev/stripe in addition to st0. Those include st0a and st0c. At this point, a UFS file system can be created on st0a using newfs: &prompt.root; newfs -U /dev/stripe/st0a Many numbers will glide across the screen, and after a few seconds, the process will be complete. The volume has been created and is ready to be mounted. To manually mount the created disk stripe: &prompt.root; mount /dev/stripe/st0a /mnt To mount this striped file system automatically during the boot process, place the volume information in /etc/fstab. In this example, a permanent mount point, named stripe, is created: &prompt.root; mkdir /stripe &prompt.root; echo "/dev/stripe/st0a /stripe ufs rw 2 2" \ >> /etc/fstab The geom_stripe.ko module must also be automatically loaded during system initialization, by adding a line to /boot/loader.conf: &prompt.root; echo 'geom_stripe_load="YES"' >> /boot/loader.conf RAID1 - Mirroring GEOM Disk Mirroring RAID1 RAID1, or mirroring, is the technique of writing the same data to more than one disk drive. Mirrors are usually used to guard against data loss due to drive failure. Each drive in a mirror contains an identical copy of the data. When an individual drive fails, the mirror continues to work, providing data from the drives that are still functioning. The computer keeps running, and the administrator has time to replace the failed drive without user interruption. Two common situations are illustrated in these examples. The first creates a mirror out of two new drives and uses it as a replacement for an existing single drive. The second example creates a mirror on a single new drive, copies the old drive's data to it, then inserts the old drive into the mirror. While this procedure is slightly more complicated, it only requires one new drive. Traditionally, the two drives in a mirror are identical in model and capacity, but &man.gmirror.8; does not require that. Mirrors created with dissimilar drives will have a capacity equal to that of the smallest drive in the mirror. Extra space on larger drives will be unused. Drives inserted into the mirror later must have at least as much capacity as the smallest drive already in the mirror. The mirroring procedures shown here are non-destructive, but as with any major disk operation, make a full backup first. While &man.dump.8; is used in these procedures to copy file systems, it does not work on file systems with soft updates journaling. See &man.tunefs.8; for information on detecting and disabling soft updates journaling. Metadata Issues Many disk systems store metadata at the end of each disk. Old metadata should be erased before reusing the disk for a mirror. Most problems are caused by two particular types of leftover metadata: GPT partition tables and old metadata from a previous mirror. GPT metadata can be erased with &man.gpart.8;. This example erases both primary and backup GPT partition tables from disk ada8: &prompt.root; gpart destroy -F ada8 A disk can be removed from an active mirror and the metadata erased in one step using &man.gmirror.8;. Here, the example disk ada8 is removed from the active mirror gm4: &prompt.root; gmirror remove gm4 ada8 If the mirror is not running, but old mirror metadata is still on the disk, use gmirror clear to remove it: &prompt.root; gmirror clear ada8 &man.gmirror.8; stores one block of metadata at the end of the disk. Because GPT partition schemes also store metadata at the end of the disk, mirroring entire GPT disks with &man.gmirror.8; is not recommended. MBR partitioning is used here because it only stores a partition table at the start of the disk and does not conflict with the mirror metadata. Creating a Mirror with Two New Disks In this example, &os; has already been installed on a single disk, ada0. Two new disks, ada1 and ada2, have been connected to the system. A new mirror will be created on these two disks and used to replace the old single disk. The geom_mirror.ko kernel module must either be built into the kernel or loaded at boot- or run-time. Manually load the kernel module now: &prompt.root; gmirror load Create the mirror with the two new drives: &prompt.root; gmirror label -v gm0 /dev/ada1 /dev/ada2 gm0 is a user-chosen device name assigned to the new mirror. After the mirror has been started, this device name appears in /dev/mirror/. MBR and bsdlabel partition tables can now be created on the mirror with &man.gpart.8;. This example uses a traditional file system layout, with partitions for /, swap, /var, /tmp, and /usr. A - single / file system and a swap partition + single / and a swap partition will also work. Partitions on the mirror do not have to be the same size as those on the existing disk, but they must be large enough to hold all the data already present on ada0. &prompt.root; gpart create -s MBR mirror/gm0 &prompt.root; gpart add -t freebsd -a 4k mirror/gm0 &prompt.root; gpart show mirror/gm0 => 63 156301423 mirror/gm0 MBR (74G) 63 63 - free - (31k) 126 156301299 1 freebsd (74G) 156301425 61 - free - (30k) &prompt.root; gpart create -s BSD mirror/gm0s1 &prompt.root; gpart add -t freebsd-ufs -a 4k -s 2g mirror/gm0s1 &prompt.root; gpart add -t freebsd-swap -a 4k -s 4g mirror/gm0s1 &prompt.root; gpart add -t freebsd-ufs -a 4k -s 2g mirror/gm0s1 &prompt.root; gpart add -t freebsd-ufs -a 4k -s 1g mirror/gm0s1 &prompt.root; gpart add -t freebsd-ufs -a 4k mirror/gm0s1 &prompt.root; gpart show mirror/gm0s1 => 0 156301299 mirror/gm0s1 BSD (74G) 0 2 - free - (1.0k) 2 4194304 1 freebsd-ufs (2.0G) 4194306 8388608 2 freebsd-swap (4.0G) 12582914 4194304 4 freebsd-ufs (2.0G) 16777218 2097152 5 freebsd-ufs (1.0G) 18874370 137426928 6 freebsd-ufs (65G) 156301298 1 - free - (512B) Make the mirror bootable by installing bootcode in the MBR and bsdlabel and setting the active slice: &prompt.root; gpart bootcode -b /boot/mbr mirror/gm0 &prompt.root; gpart set -a active -i 1 mirror/gm0 &prompt.root; gpart bootcode -b /boot/boot mirror/gm0s1 Format the file systems on the new mirror, enabling soft-updates. &prompt.root; newfs -U /dev/mirror/gm0s1a &prompt.root; newfs -U /dev/mirror/gm0s1d &prompt.root; newfs -U /dev/mirror/gm0s1e &prompt.root; newfs -U /dev/mirror/gm0s1f File systems from the original ada0 disk can now be copied onto the mirror with &man.dump.8; and &man.restore.8;. &prompt.root; mount /dev/mirror/gm0s1a /mnt &prompt.root; dump -C16 -b64 -0aL -f - / | (cd /mnt && restore -rf -) &prompt.root; mount /dev/mirror/gm0s1d /mnt/var &prompt.root; mount /dev/mirror/gm0s1e /mnt/tmp &prompt.root; mount /dev/mirror/gm0s1f /mnt/usr &prompt.root; dump -C16 -b64 -0aL -f - /var | (cd /mnt/var && restore -rf -) &prompt.root; dump -C16 -b64 -0aL -f - /tmp | (cd /mnt/tmp && restore -rf -) &prompt.root; dump -C16 -b64 -0aL -f - /usr | (cd /mnt/usr && restore -rf -) Edit /mnt/etc/fstab to point to the new mirror file systems: # Device Mountpoint FStype Options Dump Pass# /dev/mirror/gm0s1a / ufs rw 1 1 /dev/mirror/gm0s1b none swap sw 0 0 /dev/mirror/gm0s1d /var ufs rw 2 2 /dev/mirror/gm0s1e /tmp ufs rw 2 2 /dev/mirror/gm0s1f /usr ufs rw 2 2 If the geom_mirror.ko kernel module has not been built into the kernel, /mnt/boot/loader.conf is edited to load the module at boot: geom_mirror_load="YES" Reboot the system to test the new mirror and verify that all data has been copied. The BIOS will see the mirror as two individual drives rather than a mirror. Because the drives are identical, it does not matter which is selected to boot. See if there are problems booting. Powering down and disconnecting the original ada0 disk will allow it to be kept as an offline backup. In use, the mirror will behave just like the original single drive. Creating a Mirror with an Existing Drive In this example, &os; has already been installed on a single disk, ada0. A new disk, ada1, has been connected to the system. A one-disk mirror will be created on the new disk, the existing system copied onto it, and then the old disk will be inserted into the mirror. This slightly complex procedure is required because gmirror needs to put a 512-byte block of metadata at the end of each disk, and the existing ada0 has usually had all of its space already allocated. Load the geom_mirror.ko kernel module: &prompt.root; gmirror load Check the media size of the original disk with diskinfo: &prompt.root; diskinfo -v ada0 | head -n3 /dev/ada0 512 # sectorsize 1000204821504 # mediasize in bytes (931G) Create a mirror on the new disk. To make certain that the mirror capacity is not any larger than the original ada0 drive, &man.gnop.8; is used to create a fake drive of the exact same size. This drive does not store any data, but is used only to limit the size of the mirror. When &man.gmirror.8; creates the mirror, it will restrict the capacity to the size of gzero.nop, even if the new ada1 drive has more space. Note that the 1000204821504 in the second line is equal to ada0's media size as shown by diskinfo above. &prompt.root; geom zero load &prompt.root; gnop create -s 1000204821504 gzero &prompt.root; gmirror label -v gm0 gzero.nop ada1 &prompt.root; gmirror forget gm0 Since gzero.nop does not store any data, the mirror does not see it as connected. The mirror is told to forget unconnected components, removing references to gzero.nop. The result is a mirror device containing only a single disk, ada1. After creating gm0, view the partition table on ada0. This output is from a 1 TB drive. If there is some unallocated space at the end of the drive, the contents may be copied directly from ada0 to the new mirror. However, if the output shows that all of the space on the disk is allocated, as in the following listing, there is no space available for the 512-byte mirror metadata at the end of the disk. &prompt.root; gpart show ada0 => 63 1953525105 ada0 MBR (931G) 63 1953525105 1 freebsd [active] (931G) In this case, the partition table must be edited to reduce the capacity by one sector on mirror/gm0. The procedure will be explained later. In either case, partition tables on the primary disk should be first copied using gpart backup and gpart restore. &prompt.root; gpart backup ada0 > table.ada0 &prompt.root; gpart backup ada0s1 > table.ada0s1 These commands create two files, table.ada0 and table.ada0s1. This example is from a 1 TB drive: &prompt.root; cat table.ada0 MBR 4 1 freebsd 63 1953525105 [active] &prompt.root; cat table.ada0s1 BSD 8 1 freebsd-ufs 0 4194304 2 freebsd-swap 4194304 33554432 4 freebsd-ufs 37748736 50331648 5 freebsd-ufs 88080384 41943040 6 freebsd-ufs 130023424 838860800 7 freebsd-ufs 968884224 984640881 If no free space is shown at the end of the disk, the size of both the slice and the last partition must be reduced by one sector. Edit the two files, reducing the size of both the slice and last partition by one. These are the last numbers in each listing. &prompt.root; cat table.ada0 MBR 4 1 freebsd 63 1953525104 [active] &prompt.root; cat table.ada0s1 BSD 8 1 freebsd-ufs 0 4194304 2 freebsd-swap 4194304 33554432 4 freebsd-ufs 37748736 50331648 5 freebsd-ufs 88080384 41943040 6 freebsd-ufs 130023424 838860800 7 freebsd-ufs 968884224 984640880 If at least one sector was unallocated at the end of the disk, these two files can be used without modification. Now restore the partition table into mirror/gm0: &prompt.root; gpart restore mirror/gm0 < table.ada0 &prompt.root; gpart restore mirror/gm0s1 < table.ada0s1 Check the partition table with gpart show. This example has gm0s1a for /, gm0s1d for /var, gm0s1e for /usr, gm0s1f for /data1, and gm0s1g for /data2. &prompt.root; gpart show mirror/gm0 => 63 1953525104 mirror/gm0 MBR (931G) 63 1953525042 1 freebsd [active] (931G) 1953525105 62 - free - (31k) &prompt.root; gpart show mirror/gm0s1 => 0 1953525042 mirror/gm0s1 BSD (931G) 0 2097152 1 freebsd-ufs (1.0G) 2097152 16777216 2 freebsd-swap (8.0G) 18874368 41943040 4 freebsd-ufs (20G) 60817408 20971520 5 freebsd-ufs (10G) 81788928 629145600 6 freebsd-ufs (300G) 710934528 1242590514 7 freebsd-ufs (592G) 1953525042 63 - free - (31k) Both the slice and the last partition must have at least one free block at the end of the disk. Create file systems on these new partitions. The number of partitions will vary to match the original disk, ada0. &prompt.root; newfs -U /dev/mirror/gm0s1a &prompt.root; newfs -U /dev/mirror/gm0s1d &prompt.root; newfs -U /dev/mirror/gm0s1e &prompt.root; newfs -U /dev/mirror/gm0s1f &prompt.root; newfs -U /dev/mirror/gm0s1g Make the mirror bootable by installing bootcode in the MBR and bsdlabel and setting the active slice: &prompt.root; gpart bootcode -b /boot/mbr mirror/gm0 &prompt.root; gpart set -a active -i 1 mirror/gm0 &prompt.root; gpart bootcode -b /boot/boot mirror/gm0s1 Adjust /etc/fstab to use the new partitions on the mirror. Back up this file first by copying it to /etc/fstab.orig. &prompt.root; cp /etc/fstab /etc/fstab.orig Edit /etc/fstab, replacing /dev/ada0 with mirror/gm0. # Device Mountpoint FStype Options Dump Pass# /dev/mirror/gm0s1a / ufs rw 1 1 /dev/mirror/gm0s1b none swap sw 0 0 /dev/mirror/gm0s1d /var ufs rw 2 2 /dev/mirror/gm0s1e /usr ufs rw 2 2 /dev/mirror/gm0s1f /data1 ufs rw 2 2 /dev/mirror/gm0s1g /data2 ufs rw 2 2 If the geom_mirror.ko kernel module has not been built into the kernel, edit /boot/loader.conf to load it at boot: geom_mirror_load="YES" File systems from the original disk can now be copied onto the mirror with &man.dump.8; and &man.restore.8;. Each file system dumped with dump -L will create a snapshot first, which can take some time. &prompt.root; mount /dev/mirror/gm0s1a /mnt &prompt.root; dump -C16 -b64 -0aL -f - / | (cd /mnt && restore -rf -) &prompt.root; mount /dev/mirror/gm0s1d /mnt/var &prompt.root; mount /dev/mirror/gm0s1e /mnt/usr &prompt.root; mount /dev/mirror/gm0s1f /mnt/data1 &prompt.root; mount /dev/mirror/gm0s1g /mnt/data2 &prompt.root; dump -C16 -b64 -0aL -f - /usr | (cd /mnt/usr && restore -rf -) &prompt.root; dump -C16 -b64 -0aL -f - /var | (cd /mnt/var && restore -rf -) &prompt.root; dump -C16 -b64 -0aL -f - /data1 | (cd /mnt/data1 && restore -rf -) &prompt.root; dump -C16 -b64 -0aL -f - /data2 | (cd /mnt/data2 && restore -rf -) Restart the system, booting from ada1. If everything is working, the system will boot from mirror/gm0, which now contains the same data as ada0 had previously. See if there are problems booting. At this point, the mirror still consists of only the single ada1 disk. After booting from mirror/gm0 successfully, the final step is inserting ada0 into the mirror. When ada0 is inserted into the mirror, its former contents will be overwritten by data from the mirror. Make certain that mirror/gm0 has the same contents as ada0 before adding ada0 to the mirror. If the contents previously copied by &man.dump.8; and &man.restore.8; are not identical to what was on ada0, revert /etc/fstab to mount the file systems on ada0, reboot, and start the whole procedure again. &prompt.root; gmirror insert gm0 ada0 GEOM_MIRROR: Device gm0: rebuilding provider ada0 Synchronization between the two disks will start immediately. Use gmirror status to view the progress. &prompt.root; gmirror status Name Status Components mirror/gm0 DEGRADED ada1 (ACTIVE) ada0 (SYNCHRONIZING, 64%) After a while, synchronization will finish. GEOM_MIRROR: Device gm0: rebuilding provider ada0 finished. &prompt.root; gmirror status Name Status Components mirror/gm0 COMPLETE ada1 (ACTIVE) ada0 (ACTIVE) mirror/gm0 now consists of the two disks ada0 and ada1, and the contents are automatically synchronized with each other. In use, mirror/gm0 will behave just like the original single drive. Troubleshooting If the system no longer boots, BIOS settings may have to be changed to boot from one of the new mirrored drives. Either mirror drive can be used for booting, as they contain identical data. If the boot stops with this message, something is wrong with the mirror device: Mounting from ufs:/dev/mirror/gm0s1a failed with error 19. Loader variables: vfs.root.mountfrom=ufs:/dev/mirror/gm0s1a vfs.root.mountfrom.options=rw Manual root filesystem specification: <fstype>:<device> [options] Mount <device> using filesystem <fstype> and with the specified (optional) option list. eg. ufs:/dev/da0s1a zfs:tank cd9660:/dev/acd0 ro (which is equivalent to: mount -t cd9660 -o ro /dev/acd0 /) ? List valid disk boot devices . Yield 1 second (for background tasks) <empty line> Abort manual input mountroot> Forgetting to load the geom_mirror.ko module in /boot/loader.conf can cause this problem. To fix it, boot from a &os; 9.0 or later installation media and choose Shell at the first prompt. Then load the mirror module and mount the mirror device: &prompt.root; gmirror load &prompt.root; mount /dev/mirror/gm0s1a /mnt Edit /mnt/boot/loader.conf, adding a line to load the mirror module: geom_mirror_load="YES" Save the file and reboot. Other problems that cause error 19 require more effort to fix. Although the system should boot from ada0, another prompt to select a shell will appear if /etc/fstab is incorrect. Enter ufs:/dev/ada0s1a at the boot loader prompt and press Enter. Undo the edits in /etc/fstab then mount the file systems from the original disk (ada0) instead of the mirror. Reboot the system and try the procedure again. Enter full pathname of shell or RETURN for /bin/sh: &prompt.root; cp /etc/fstab.orig /etc/fstab &prompt.root; reboot Recovering from Disk Failure The benefit of disk mirroring is that an individual disk can fail without causing the mirror to lose any data. In the above example, if ada0 fails, the mirror will continue to work, providing data from the remaining working drive, ada1. To replace the failed drive, shut down the system and physically replace the failed drive with a new drive of equal or greater capacity. Manufacturers use somewhat arbitrary values when rating drives in gigabytes, and the only way to really be sure is to compare the total count of sectors shown by diskinfo -v. A drive with larger capacity than the mirror will work, although the extra space on the new drive will not be used. After the computer is powered back up, the mirror will be running in a degraded mode with only one drive. The mirror is told to forget drives that are not currently connected: &prompt.root; gmirror forget gm0 Any old metadata should be cleared from the replacement disk using the instructions in . Then the replacement disk, ada4 for this example, is inserted into the mirror: &prompt.root; gmirror insert gm0 /dev/ada4 Resynchronization begins when the new drive is inserted into the mirror. This process of copying mirror data to a new drive can take a while. Performance of the mirror will be greatly reduced during the copy, so inserting new drives is best done when there is low demand on the computer. Progress can be monitored with gmirror status, which shows drives that are being synchronized and the percentage of completion. During resynchronization, the status will be DEGRADED, changing to COMPLETE when the process is finished. <acronym>RAID</acronym>3 - Byte-level Striping with Dedicated Parity Mark Gladman Written by Daniel Gerzo Tom Rhodes Based on documentation by Murray Stokely GEOM RAID3 RAID3 is a method used to combine several disk drives into a single volume with a dedicated parity disk. In a RAID3 system, data is split up into a number of bytes that are written across all the drives in the array except for one disk which acts as a dedicated parity disk. This means that disk reads from a RAID3 implementation access all disks in the array. Performance can be enhanced by using multiple disk controllers. The RAID3 array provides a fault tolerance of 1 drive, while providing a capacity of 1 - 1/n times the total capacity of all drives in the array, where n is the number of hard drives in the array. Such a configuration is mostly suitable for storing data of larger sizes such as multimedia files. At least 3 physical hard drives are required to build a RAID3 array. Each disk must be of the same size, since I/O requests are interleaved to read or write to multiple disks in parallel. Also, due to the nature of RAID3, the number of drives must be equal to 3, 5, 9, 17, and so on, or 2^n + 1. This section demonstrates how to create a software RAID3 on a &os; system. While it is theoretically possible to boot from a RAID3 array on &os;, that configuration is uncommon and is not advised. Creating a Dedicated <acronym>RAID</acronym>3 Array In &os;, support for RAID3 is implemented by the &man.graid3.8; GEOM class. Creating a dedicated RAID3 array on &os; requires the following steps. First, load the geom_raid3.ko kernel module by issuing one of the following commands: &prompt.root; graid3 load or: &prompt.root; kldload geom_raid3 Ensure that a suitable mount point exists. This command creates a new directory to use as the mount point: &prompt.root; mkdir /multimedia Determine the device names for the disks which will be added to the array, and create the new RAID3 device. The final device listed will act as the dedicated parity disk. This example uses three unpartitioned ATA drives: ada1 and ada2 for data, and ada3 for parity. &prompt.root; graid3 label -v gr0 /dev/ada1 /dev/ada2 /dev/ada3 Metadata value stored on /dev/ada1. Metadata value stored on /dev/ada2. Metadata value stored on /dev/ada3. Done. Partition the newly created gr0 device and put a UFS file system on it: &prompt.root; gpart create -s GPT /dev/raid3/gr0 &prompt.root; gpart add -t freebsd-ufs /dev/raid3/gr0 &prompt.root; newfs -j /dev/raid3/gr0p1 Many numbers will glide across the screen, and after a bit of time, the process will be complete. The volume has been created and is ready to be mounted: &prompt.root; mount /dev/raid3/gr0p1 /multimedia/ The RAID3 array is now ready to use. Additional configuration is needed to retain this setup across system reboots. The geom_raid3.ko module must be loaded before the array can be mounted. To automatically load the kernel module during system initialization, add the following line to /boot/loader.conf: geom_raid3_load="YES" The following volume information must be added to /etc/fstab in order to automatically mount the array's file system during the system boot process: /dev/raid3/gr0p1 /multimedia ufs rw 2 2 Software <acronym>RAID</acronym> Devices Warren Block Originally contributed by GEOM Software RAID Devices Hardware-assisted RAID Some motherboards and expansion cards add some simple hardware, usually just a ROM, that allows the computer to boot from a RAID array. After booting, access to the RAID array is handled by software running on the computer's main processor. This hardware-assisted software RAID gives RAID arrays that are not dependent on any particular operating system, and which are functional even before an operating system is loaded. Several levels of RAID are supported, depending on the hardware in use. See &man.graid.8; for a complete list. &man.graid.8; requires the geom_raid.ko kernel module, which is included in the GENERIC kernel starting with &os; 9.1. If needed, it can be loaded manually with graid load. Creating an Array Software RAID devices often have a menu that can be entered by pressing special keys when the computer is booting. The menu can be used to create and delete RAID arrays. &man.graid.8; can also create arrays directly from the command line. graid label is used to create a new array. The motherboard used for this example has an Intel software RAID chipset, so the Intel metadata format is specified. The new array is given a label of gm0, it is a mirror (RAID1), and uses drives ada0 and ada1. Some space on the drives will be overwritten when they are made into a new array. Back up existing data first! &prompt.root; graid label Intel gm0 RAID1 ada0 ada1 GEOM_RAID: Intel-a29ea104: Array Intel-a29ea104 created. GEOM_RAID: Intel-a29ea104: Disk ada0 state changed from NONE to ACTIVE. GEOM_RAID: Intel-a29ea104: Subdisk gm0:0-ada0 state changed from NONE to ACTIVE. GEOM_RAID: Intel-a29ea104: Disk ada1 state changed from NONE to ACTIVE. GEOM_RAID: Intel-a29ea104: Subdisk gm0:1-ada1 state changed from NONE to ACTIVE. GEOM_RAID: Intel-a29ea104: Array started. GEOM_RAID: Intel-a29ea104: Volume gm0 state changed from STARTING to OPTIMAL. Intel-a29ea104 created GEOM_RAID: Intel-a29ea104: Provider raid/r0 for volume gm0 created. A status check shows the new mirror is ready for use: &prompt.root; graid status Name Status Components raid/r0 OPTIMAL ada0 (ACTIVE (ACTIVE)) ada1 (ACTIVE (ACTIVE)) The array device appears in /dev/raid/. The first array is called r0. Additional arrays, if present, will be r1, r2, and so on. The BIOS menu on some of these devices can create arrays with special characters in their names. To avoid problems with those special characters, arrays are given simple numbered names like r0. To show the actual labels, like gm0 in the example above, use &man.sysctl.8;: &prompt.root; sysctl kern.geom.raid.name_format=1 Multiple Volumes Some software RAID devices support more than one volume on an array. Volumes work like partitions, allowing space on the physical drives to be split and used in different ways. For example, Intel software RAID devices support two volumes. This example creates a 40 G mirror for safely storing the operating system, followed by a 20 G RAID0 (stripe) volume for fast temporary storage: &prompt.root; graid label -S 40G Intel gm0 RAID1 ada0 ada1 &prompt.root; graid add -S 20G gm0 RAID0 Volumes appear as additional rX entries in /dev/raid/. An array with two volumes will show r0 and r1. See &man.graid.8; for the number of volumes supported by different software RAID devices. Converting a Single Drive to a Mirror Under certain specific conditions, it is possible to convert an existing single drive to a &man.graid.8; array without reformatting. To avoid data loss during the conversion, the existing drive must meet these minimum requirements: The drive must be partitioned with the MBR partitioning scheme. GPT or other partitioning schemes with metadata at the end of the drive will be overwritten and corrupted by the &man.graid.8; metadata. There must be enough unpartitioned and unused space at the end of the drive to hold the &man.graid.8; metadata. This metadata varies in size, but the largest occupies 64 M, so at least that much free space is recommended. If the drive meets these requirements, start by making a full backup. Then create a single-drive mirror with that drive: &prompt.root; graid label Intel gm0 RAID1 ada0 NONE &man.graid.8; metadata was written to the end of the drive in the unused space. A second drive can now be inserted into the mirror: &prompt.root; graid insert raid/r0 ada1 Data from the original drive will immediately begin to be copied to the second drive. The mirror will operate in degraded status until the copy is complete. Inserting New Drives into the Array Drives can be inserted into an array as replacements for drives that have failed or are missing. If there are no failed or missing drives, the new drive becomes a spare. For example, inserting a new drive into a working two-drive mirror results in a two-drive mirror with one spare drive, not a three-drive mirror. In the example mirror array, data immediately begins to be copied to the newly-inserted drive. Any existing information on the new drive will be overwritten. &prompt.root; graid insert raid/r0 ada1 GEOM_RAID: Intel-a29ea104: Disk ada1 state changed from NONE to ACTIVE. GEOM_RAID: Intel-a29ea104: Subdisk gm0:1-ada1 state changed from NONE to NEW. GEOM_RAID: Intel-a29ea104: Subdisk gm0:1-ada1 state changed from NEW to REBUILD. GEOM_RAID: Intel-a29ea104: Subdisk gm0:1-ada1 rebuild start at 0. Removing Drives from the Array Individual drives can be permanently removed from a from an array and their metadata erased: &prompt.root; graid remove raid/r0 ada1 GEOM_RAID: Intel-a29ea104: Disk ada1 state changed from ACTIVE to OFFLINE. GEOM_RAID: Intel-a29ea104: Subdisk gm0:1-[unknown] state changed from ACTIVE to NONE. GEOM_RAID: Intel-a29ea104: Volume gm0 state changed from OPTIMAL to DEGRADED. Stopping the Array An array can be stopped without removing metadata from the drives. The array will be restarted when the system is booted. &prompt.root; graid stop raid/r0 Checking Array Status Array status can be checked at any time. After a drive was added to the mirror in the example above, data is being copied from the original drive to the new drive: &prompt.root; graid status Name Status Components raid/r0 DEGRADED ada0 (ACTIVE (ACTIVE)) ada1 (ACTIVE (REBUILD 28%)) Some types of arrays, like RAID0 or CONCAT, may not be shown in the status report if disks have failed. To see these partially-failed arrays, add : &prompt.root; graid status -ga Name Status Components Intel-e2d07d9a BROKEN ada6 (ACTIVE (ACTIVE)) Deleting Arrays Arrays are destroyed by deleting all of the volumes from them. When the last volume present is deleted, the array is stopped and metadata is removed from the drives: &prompt.root; graid delete raid/r0 Deleting Unexpected Arrays Drives may unexpectedly contain &man.graid.8; metadata, either from previous use or manufacturer testing. &man.graid.8; will detect these drives and create an array, interfering with access to the individual drive. To remove the unwanted metadata: Boot the system. At the boot menu, select 2 for the loader prompt. Enter: OK set kern.geom.raid.enable=0 OK boot The system will boot with &man.graid.8; disabled. Back up all data on the affected drive. As a workaround, &man.graid.8; array detection can be disabled by adding kern.geom.raid.enable=0 to /boot/loader.conf. To permanently remove the &man.graid.8; metadata from the affected drive, boot a &os; installation CD-ROM or memory stick, and select Shell. Use status to find the name of the array, typically raid/r0: &prompt.root; graid status Name Status Components raid/r0 OPTIMAL ada0 (ACTIVE (ACTIVE)) ada1 (ACTIVE (ACTIVE)) Delete the volume by name: &prompt.root; graid delete raid/r0 If there is more than one volume shown, repeat the process for each volume. After the last array has been deleted, the volume will be destroyed. Reboot and verify data, restoring from backup if necessary. After the metadata has been removed, the kern.geom.raid.enable=0 entry in /boot/loader.conf can also be removed. <acronym>GEOM</acronym> Gate Network GEOM provides a simple mechanism for providing remote access to devices such as disks, CDs, and file systems through the use of the GEOM Gate network daemon, ggated. The system with the device runs the server daemon which handles requests made by clients using ggatec. The devices should not contain any sensitive data as the connection between the client and the server is not encrypted. Similar to NFS, which is discussed in , ggated is configured using an exports file. This file specifies which systems are permitted to access the exported resources and what level of access they are offered. For example, to give the client 192.168.1.5 read and write access to the fourth slice on the first SCSI disk, create /etc/gg.exports with this line: 192.168.1.5 RW /dev/da0s4d Before exporting the device, ensure it is not currently mounted. Then, start ggated: &prompt.root; ggated Several options are available for specifying an alternate listening port or changing the default location of the exports file. Refer to &man.ggated.8; for details. To access the exported device on the client machine, first use ggatec to specify the IP address of the server and the device name of the exported device. If successful, this command will display a ggate device name to mount. Mount that specified device name on a free mount point. This example connects to the /dev/da0s4d partition on 192.168.1.1, then mounts /dev/ggate0 on /mnt: &prompt.root; ggatec create -o rw 192.168.1.1 /dev/da0s4d ggate0 &prompt.root; mount /dev/ggate0 /mnt The device on the server may now be accessed through /mnt on the client. For more details about ggatec and a few usage examples, refer to &man.ggatec.8;. The mount will fail if the device is currently mounted on either the server or any other client on the network. If simultaneous access is needed to network resources, use NFS instead. When the device is no longer needed, unmount it with umount so that the resource is available to other clients. Labeling Disk Devices GEOM Disk Labels During system initialization, the &os; kernel creates device nodes as devices are found. This method of probing for devices raises some issues. For instance, what if a new disk device is added via USB? It is likely that a flash device may be handed the device name of da0 and the original da0 shifted to da1. This will cause issues mounting file systems if they are listed in /etc/fstab which may also prevent the system from booting. One solution is to chain SCSI devices in order so a new device added to the SCSI card will be issued unused device numbers. But what about USB devices which may replace the primary SCSI disk? This happens because USB devices are usually probed before the SCSI card. One solution is to only insert these devices after the system has been booted. Another method is to use only a single ATA drive and never list the SCSI devices in /etc/fstab. A better solution is to use glabel to label the disk devices and use the labels in /etc/fstab. Because glabel stores the label in the last sector of a given provider, the label will remain persistent across reboots. By using this label as a device, the file system may always be mounted regardless of what device node it is accessed through. glabel can create both transient and permanent labels. Only permanent labels are consistent across reboots. Refer to &man.glabel.8; for more information on the differences between labels. Label Types and Examples Permanent labels can be a generic or a file system label. Permanent file system labels can be created with &man.tunefs.8; or &man.newfs.8;. These types of labels are created in a sub-directory of /dev, and will be named according to the file system type. For example, UFS2 file system labels will be created in /dev/ufs. Generic permanent labels can be created with glabel label. These are not file system specific and will be created in /dev/label. Temporary labels are destroyed at the next reboot. These labels are created in /dev/label and are suited to experimentation. A temporary label can be created using glabel create. To create a permanent label for a UFS2 file system without destroying any data, issue the following command: &prompt.root; tunefs -L home /dev/da3 If the file system is full, this may cause data corruption. A label should now exist in /dev/ufs which may be added to /etc/fstab: /dev/ufs/home /home ufs rw 2 2 The file system must not be mounted while attempting to run tunefs. Now the file system may be mounted: &prompt.root; mount /home From this point on, so long as the geom_label.ko kernel module is loaded at boot with /boot/loader.conf or the GEOM_LABEL kernel option is present, the device node may change without any ill effect on the system. File systems may also be created with a default label by using the flag with newfs. Refer to &man.newfs.8; for more information. The following command can be used to destroy the label: &prompt.root; glabel destroy home The following example shows how to label the partitions of a boot disk. Labeling Partitions on the Boot Disk By permanently labeling the partitions on the boot disk, the system should be able to continue to boot normally, even if the disk is moved to another controller or transferred to a different system. For this example, it is assumed that a single ATA disk is used, which is currently recognized by the system as ad0. It is also assumed that the standard &os; partition scheme is used, with /, /var, /usr and /tmp, as well as a swap partition. Reboot the system, and at the &man.loader.8; prompt, press 4 to boot into single user mode. Then enter the following commands: &prompt.root; glabel label rootfs /dev/ad0s1a GEOM_LABEL: Label for provider /dev/ad0s1a is label/rootfs &prompt.root; glabel label var /dev/ad0s1d GEOM_LABEL: Label for provider /dev/ad0s1d is label/var &prompt.root; glabel label usr /dev/ad0s1f GEOM_LABEL: Label for provider /dev/ad0s1f is label/usr &prompt.root; glabel label tmp /dev/ad0s1e GEOM_LABEL: Label for provider /dev/ad0s1e is label/tmp &prompt.root; glabel label swap /dev/ad0s1b GEOM_LABEL: Label for provider /dev/ad0s1b is label/swap &prompt.root; exit The system will continue with multi-user boot. After the boot completes, edit /etc/fstab and replace the conventional device names, with their respective labels. The final /etc/fstab will look like this: # Device Mountpoint FStype Options Dump Pass# /dev/label/swap none swap sw 0 0 /dev/label/rootfs / ufs rw 1 1 /dev/label/tmp /tmp ufs rw 2 2 /dev/label/usr /usr ufs rw 2 2 /dev/label/var /var ufs rw 2 2 The system can now be rebooted. If everything went well, it will come up normally and mount will show: &prompt.root; mount /dev/label/rootfs on / (ufs, local) devfs on /dev (devfs, local) /dev/label/tmp on /tmp (ufs, local, soft-updates) /dev/label/usr on /usr (ufs, local, soft-updates) /dev/label/var on /var (ufs, local, soft-updates) Starting with &os; 7.2, the &man.glabel.8; class supports a new label type for UFS file systems, based on the unique file system id, ufsid. These labels may be found in /dev/ufsid and are created automatically during system startup. It is possible to use ufsid labels to mount partitions using /etc/fstab. Use glabel status to receive a list of file systems and their corresponding ufsid labels: &prompt.user; glabel status Name Status Components ufsid/486b6fc38d330916 N/A ad4s1d ufsid/486b6fc16926168e N/A ad4s1f In the above example, ad4s1d represents /var, while ad4s1f represents /usr. Using the ufsid values shown, these partitions may now be mounted with the following entries in /etc/fstab: /dev/ufsid/486b6fc38d330916 /var ufs rw 2 2 /dev/ufsid/486b6fc16926168e /usr ufs rw 2 2 Any partitions with ufsid labels can be mounted in this way, eliminating the need to manually create permanent labels, while still enjoying the benefits of device name independent mounting. UFS Journaling Through <acronym>GEOM</acronym> GEOM Journaling Beginning with &os; 7.0, support for journals on UFS file systems is available. The implementation is provided through the GEOM subsystem and is configured using gjournal. Unlike other file system journaling implementations, the gjournal method is block based and not implemented as part of the file system. It is a GEOM extension. Journaling stores a log of file system transactions, such as changes that make up a complete disk write operation, before meta-data and file writes are committed to the disk. This transaction log can later be replayed to redo file system transactions, preventing file system inconsistencies. This method provides another mechanism to protect against data loss and inconsistencies of the file system. Unlike Soft Updates, which tracks and enforces meta-data updates, and snapshots, which create an image of the file system, a log is stored in disk space specifically for this task. For better performance, the journal may be stored on another disk. In this configuration, the journal provider or storage device should be listed after the device to enable journaling on. The GENERIC kernel provides support for gjournal. To automatically load the geom_journal.ko kernel module at boot time, add the following line to /boot/loader.conf: geom_journal_load="YES" If a custom kernel is used, ensure the following line is in the kernel configuration file: options GEOM_JOURNAL Once the module is loaded, a journal can be created on a new file system using the following steps. In this example, da4 is a new SCSI disk: &prompt.root; gjournal load &prompt.root; gjournal label /dev/da4 This will load the module and create a /dev/da4.journal device node on /dev/da4. A UFS file system may now be created on the journaled device, then mounted on an existing mount point: &prompt.root; newfs -O 2 -J /dev/da4.journal &prompt.root; mount /dev/da4.journal /mnt In the case of several slices, a journal will be created for each individual slice. For instance, if ad4s1 and ad4s2 are both slices, then gjournal will create ad4s1.journal and ad4s2.journal. Journaling may also be enabled on current file systems by using tunefs. However, always make a backup before attempting to alter an existing file system. In most cases, gjournal will fail if it is unable to create the journal, but this does not protect against data loss incurred as a result of misusing tunefs. Refer to &man.gjournal.8; and &man.tunefs.8; for more information about these commands. It is possible to journal the boot disk of a &os; system. Refer to the article Implementing UFS Journaling on a Desktop PC for detailed instructions. Index: head/en_US.ISO8859-1/books/handbook/security/chapter.xml =================================================================== --- head/en_US.ISO8859-1/books/handbook/security/chapter.xml (revision 46060) +++ head/en_US.ISO8859-1/books/handbook/security/chapter.xml (revision 46061) @@ -1,3927 +1,3927 @@ Security Tom Rhodes Rewritten by security Synopsis Security, whether physical or virtual, is a topic so broad that an entire industry has grown up around it. Hundreds of standard practices have been authored about how to secure systems and networks, and as a user of &os;, understanding how to protect against attacks and intruders is a must. In this chapter, several fundamentals and techniques will be discussed. The &os; system comes with multiple layers of security, and many more third party utilities may be added to enhance security. After reading this chapter, you will know: Basic &os; system security concepts. The various crypt mechanisms available in &os;. How to set up one-time password authentication. How to configure TCP Wrapper for use with &man.inetd.8;. How to set up Kerberos on &os;. How to configure IPsec and create a VPN. How to configure and use OpenSSH on &os;. How to use file system ACLs. How to use portaudit to audit third party software packages installed from the Ports Collection. How to utilize &os; security advisories. What Process Accounting is and how to enable it on &os;. How to control user resources using login classes or the resource limits database. Before reading this chapter, you should: Understand basic &os; and Internet concepts. Additional security topics are covered elsewhere in this Handbook. For example, Mandatory Access Control is discussed in and Internet firewalls are discussed in . Introduction Security is everyone's responsibility. A weak entry point in any system could allow intruders to gain access to critical information and cause havoc on an entire network. One of the core principles of information security is the CIA triad, which stands for the Confidentiality, Integrity, and Availability of information systems. The CIA triad is a bedrock concept of computer security as customers and users expect their data to be protected. For example, a customer expects that their credit card information is securely stored (confidentiality), that their orders are not changed behind the scenes (integrity), and that they have access to their order information at all times (availablility). To provide CIA, security professionals apply a defense in depth strategy. The idea of defense in depth is to add several layers of security to prevent one single layer failing and the entire security system collapsing. For example, a system administrator cannot simply turn on a firewall and consider the network or system secure. One must also audit accounts, check the integrity of binaries, and ensure malicious tools are not installed. To implement an effective security strategy, one must understand threats and how to defend against them. What is a threat as it pertains to computer security? Threats are not limited to remote attackers who attempt to access a system without permission from a remote location. Threats also include employees, malicious software, unauthorized network devices, natural disasters, security vulnerabilities, and even competing corporations. Systems and networks can be accessed without permission, sometimes by accident, or by remote attackers, and in some cases, via corporate espionage or former employees. As a user, it is important to prepare for and admit when a mistake has lead to a security breach and report possible issues to the security team. As an administrator, it is important to know of the threats and be prepared to mitigate them. When applying security to systems, it is recommended to start by securing the basic accounts and system configuration, and then to secure the network layer so that it adheres to the system policy and the organization's security procedures. Many organizations already have a security policy that covers the configuration of technology devices. The policy should include the security configuration of workstations, desktops, mobile devices, phones, production servers, and development servers. In many cases, standard operating procedures (SOPs) already exist. When in doubt, ask the security team. The rest of this introduction describes how some of these basic security configurations are performed on a &os; system. The rest of this chapter describes some specific tools which can be used when implementing a security policy on a &os; system. Preventing Logins In securing a system, a good starting point is an audit of accounts. Ensure that root has a strong password and that this password is not shared. Disable any accounts that do not need login access. To deny login access to accounts, two methods exist. The first is to lock the account. This example locks the toor account: &prompt.root; pw lock toor The second method is to prevent login access by changing the shell to /sbin/nologin. Only the superuser can change the shell for other users: &prompt.root; chsh -s /usr/sbin/nologin toor The /usr/sbin/nologin shell prevents the system from assigning a shell to the user when they attempt to login. Permitted Account Escalation In some cases, system administration needs to be shared with other users. &os; has two methods to handle this. The first one, which is not recommended, is a shared root password used by members of the wheel group. With this method, a user types su and enters the password for wheel whenever superuser access is needed. The user should then type exit to leave privileged access after finishing the commands that required administrative access. To add a user to this group, edit /etc/group and add the user to the end of the wheel entry. The user must be separated by a comma character with no space. The second, and recommended, method to permit privilege escalation is to install the security/sudo package or port. This software provides additional auditing, more fine-grained user control, and can be configured to lock users into running only the specified privileged commands. After installation, use visudo to edit /usr/local/etc/sudoers. This example creates a new webadmin group, adds the trhodes account to that group, and configures that group access to restart apache24: &prompt.root; pw groupadd webadmin -M trhodes -g 6000 &prompt.root; visudo %webadmin ALL=(ALL) /usr/sbin/service apache24 * Password Hashes Passwords are a necessary evil of technology. When they must be used, they should be complex and a powerful hash mechanism should be used to encrypt the version that is stored in the password database. &os; supports the DES, MD5, SHA256, SHA512, and Blowfish hash algorithms in its crypt() library. The default of SHA512 should not be changed to a less secure hashing algorithm, but can be changed to the more secure Blowfish algorithm. Blowfish is not part of AES and is not considered compliant with any Federal Information Processing Standards (FIPS). Its use may not be permitted in some environments. To determine which hash algorithm is used to encrypt a user's password, the superuser can view the hash for the user in the &os; password database. Each hash starts with a symbol which indicates the type of hash mechanism used to encrypt the password. If DES is used, there is no beginning symbol. For MD5, the symbol is $. For SHA256 and SHA512, the symbol is $6$. For Blowfish, the symbol is $2a$. In this example, the password for dru is hashed using the default SHA512 algorithm as the hash starts with $6$. Note that the encrypted hash, not the password itself, is stored in the password database: &prompt.root; grep dru /etc/master.passwd dru:$6$pzIjSvCAn.PBYQBA$PXpSeWPx3g5kscj3IMiM7tUEUSPmGexxta.8Lt9TGSi2lNQqYGKszsBPuGME0:1001:1001::0:0:dru:/usr/home/dru:/bin/csh The hash mechanism is set in the user's login class. For this example, the user is in the default login class and the hash algorithm is set with this line in /etc/login.conf: :passwd_format=sha512:\ To change the algorithm to Blowfish, modify that line to look like this: :passwd_format=blf:\ Then run cap_mkdb /etc/login.conf as described in . Note that this change will not affect any existing password hashes. This means that all passwords should be re-hashed by asking users to run passwd in order to change their password. For remote logins, two-factor authentication should be used. An example of two-factor authentication is something you have, such as a key, and something you know, such as the passphrase for that key. Since OpenSSH is part of the &os; base system, all network logins should be over an encrypted connection and use key-based authentication instead of passwords. For more information, refer to . Kerberos users may need to make additional changes to implement OpenSSH in their network. These changes are described in . Password Policy Enforcement Enforcing a strong password policy for local accounts is a fundamental aspect of system security. In &os;, password length, password strength, and password complexity can be implemented using built-in Pluggable Authentication Modules (PAM). This section demonstrates how to configure the minimum and maximum password length and the enforcement of mixed characters using the pam_passwdqc.so module. This module is enforced when a user changes their password. To configure this module, become the superuser and uncomment the line containing pam_passwdqc.so in /etc/pam.d/passwd. Then, edit that line to match the password policy: password requisite pam_passwdqc.so min=disabled,disabled,disabled,12,10 similar=deny retry=3 enforce=users This example sets several requirements for new passwords. The min setting controls the minimum password length. It has five values because this module defines five different types of passwords based on their complexity. Complexity is defined by the type of characters that must exist in a password, such as letters, numbers, symbols, and case. The types of passwords are described in &man.pam.passwdqc.8;. In this example, the first three types of passwords are disabled, meaning that passwords that meet those complexity requirements will not be accepted, regardless of their length. The 12 sets a minimum password policy of at least twelve characters, if the password also contains characters with three types of complexity. The 10 sets the password policy to also allow passwords of at least ten characters, if the password contains characters with four types of complexity. The similar setting denies passwords that are similar to the user's previous password. The retry setting provides a user with three opportunities to enter a new password. Once this file is saved, a user changing their password will see a message similar to the following: &prompt.user; passwd Changing local password for trhodes Old Password: You can now choose the new password. A valid password should be a mix of upper and lower case letters, digits and other characters. You can use a 12 character long password with characters from at least 3 of these 4 classes, or a 10 character long password containing characters from all the classes. Characters that form a common pattern are discarded by the check. Alternatively, if noone else can see your terminal now, you can pick this as your password: "trait-useful&knob". Enter new password: If a password that does not match the policy is entered, it will be rejected with a warning and the user will have an opportunity to try again, up to the configured number of retries. Most password policies require passwords to expire after so many days. To set a password age time in &os;, set for the user's login class in /etc/login.conf. The default login class contains an example: # :passwordtime=90d:\ So, to set an expiry of 90 days for this login class, remove the comment symbol (#), save the edit, and run cap_mkdb /etc/login.conf. To set the expiration on individual users, pass an expiration date or the number of days to expiry and a username to pw: &prompt.root; pw usermod -p 30-apr-2015 -n trhodes As seen here, an expiration date is set in the form of day, month, and year. For more information, see &man.pw.8;. Detecting Rootkits A rootkit is any unauthorized software that attempts to gain root access to a system. Once installed, this malicious software will normally open up another avenue of entry for an attacker. Realistically, once a system has been compromised by a rootkit and an investigation has been performed, the system should be reinstalled from scratch. There is tremendous risk that even the most prudent security or systems engineer will miss something an attacker left behind. A rootkit does do one thing usefulfor administrators: once detected, it is a sign that a compromise happened at some point. But, these types of applications tend to be very well hidden. This section demonstrates a tool that can be used to detect rootkits, security/rkhunter. After installation of this package or port, the system may be checked using the following command. It will produce a lot - of information and will require some manual pressing of the - ENTER key: + of information and will require some manual pressing of + ENTER: &prompt.root; rkhunter -c After the process completes, a status message will be printed to the screen. This message will include the amount of files checked, suspect files, possible rootkits, and more. During the check, some generic security warnings may be produced about hidden files, the OpenSSH protocol selection, and known vulnerable versions of installed software. These can be handled now or after a more detailed analysis has been performed. Every administrator should know what is running on the systems they are responsible for. Third-party tools like rkhunter and sysutils/lsof, and native commands such as netstat and ps, can show a great deal of information on the system. Take notes on what is normal, ask questions when something seems out of place, and be paranoid. While preventing a compromise is ideal, detecting a compromise is a must. Binary Verification Verification of system files and binaries is important because it provides the system administration and security teams information about system changes. A software application that monitors the system for changes is called an Intrusion Detection System (IDS). &os; provides native support for a basic IDS system. While the nightly security emails will notify an administrator of changes, the information is stored locally and there is a chance that a malicious user could modify this information in order to hide their changes to the system. As such, it is recommended to create a separate set of binary signatures and store them on a read-only, root-owned directory or, preferably, on a removable USB disk or remote rsync server. The built-in mtree utility can be used to generate a specification of the contents of a directory. A seed, or a numeric constant, is used to generate the specification and is required to check that the specification has not changed. This makes it possible to determine if a file or binary has been modified. Since the seed value is unknown by an attacker, faking or checking the checksum values of files will be difficult to impossible. The following example generates a set of SHA256 hashes, one for each system binary in /bin, and saves those values to a hidden file in root's home directory, /root/.bin_chksum_mtree: &prompt.root; mtree -s 3483151339707503 -c -K cksum,sha256digest -p /bin > /root/.bin_chksum_mtree &prompt.root; mtree: /bin checksum: 3427012225 The 3483151339707503 represents the seed. This value should be remembered, but not shared. Viewing /root/.bin_cksum_mtree should yield output similar to the following: # user: root # machine: dreadnaught # tree: /bin # date: Mon Feb 3 10:19:53 2014 # . /set type=file uid=0 gid=0 mode=0555 nlink=1 flags=none . type=dir mode=0755 nlink=2 size=1024 \ time=1380277977.000000000 \133 nlink=2 size=11704 time=1380277977.000000000 \ cksum=484492447 \ sha256digest=6207490fbdb5ed1904441fbfa941279055c3e24d3a4049aeb45094596400662a cat size=12096 time=1380277975.000000000 cksum=3909216944 \ sha256digest=65ea347b9418760b247ab10244f47a7ca2a569c9836d77f074e7a306900c1e69 chflags size=8168 time=1380277975.000000000 cksum=3949425175 \ sha256digest=c99eb6fc1c92cac335c08be004a0a5b4c24a0c0ef3712017b12c89a978b2dac3 chio size=18520 time=1380277975.000000000 cksum=2208263309 \ sha256digest=ddf7c8cb92a58750a675328345560d8cc7fe14fb3ccd3690c34954cbe69fc964 chmod size=8640 time=1380277975.000000000 cksum=2214429708 \ sha256digest=a435972263bf814ad8df082c0752aa2a7bdd8b74ff01431ccbd52ed1e490bbe7 The machine's hostname, the date and time the specification was created, and the name of the user who created the specification are included in this report. There is a checksum, size, time, and SHA256 digest for each binary in the directory. To verify that the binary signatures have not changed, compare the current contents of the directory to the previously generated specification, and save the results to a file. This command requires the seed that was used to generate the original specification: &prompt.root; mtree -s 3483151339707503 -p /bin < /root/.bin_chksum_mtree >> /root/.bin_chksum_output &prompt.root; mtree: /bin checksum: 3427012225 This should produce the same checksum for /bin that was produced when the specification was created. If no changes have occurred to the binaries in this directory, the /root/.bin_chksum_output output file will be empty. To simulate a change, change the date on /bin/cat using touch and run the verification command again: &prompt.root; touch /bin/cat &prompt.root; mtree -s 3483151339707503 -p /bin < /root/.bin_chksum_mtree >> /root/.bin_chksum_output &prompt.root; more /root/.bin_chksum_output cat changed modification time expected Fri Sep 27 06:32:55 2013 found Mon Feb 3 10:28:43 2014 It is recommended to create specifications for the directories which contain binaries and configuration files, as well as any directories containing sensitive data. Typically, specifications are created for /bin, /sbin, /usr/bin, /usr/sbin, /usr/local/bin, /etc, and /usr/local/etc. More advanced IDS systems exist, such as security/aide. In most cases, mtree provides the functionality administrators need. It is important to keep the seed value and the checksum output hidden from malicious users. More information about mtree can be found in &man.mtree.8;. System Tuning for Security In &os;, many system features can be tuned using sysctl. A few of the security features which can be tuned to prevent Denial of Service (DoS) attacks will be covered in this section. More information about using sysctl, including how to temporarily change values and how to make the changes permanent after testing, can be found in . Any time a setting is changed with sysctl, the chance to cause undesired harm is increased, affecting the availability of the system. All changes should be monitored and, if possible, tried on a testing system before being used on a production system. By default, the &os; kernel boots with a security level of -1. This is called insecure mode because immutable file flags may be turned off and all devices may be read from or written to. The security level will remain at -1 unless it is altered through sysctl or by a setting in the startup scripts. The security level may be increased during system startup by setting kern_securelevel_enable to YES in /etc/rc.conf, and the value of kern_securelevel to the desired security level. See &man.security.7; and &man.init.8; for more information on these settings and the available security levels. Increasing the securelevel can break Xorg and cause other issues. Be prepared to do some debugging. The net.inet.tcp.blackhole and net.inet.udp.blackhole settings can be used to drop incoming SYN packets on closed ports without sending a return RST response. The default behavior is to return an RST to show a port is closed. Changing the default provides some level of protection against ports scans, which are used to determine which applications are running on a system. Set net.inet.tcp.blackhole to 2 and net.inet.udp.blackhole to 1. Refer to &man.blackhole.4; for more information about these settings. The net.inet.icmp.drop_redirect and net.inet.ip.redirect settings help prevent against redirect attacks. A redirect attack is a type of DoS which sends mass numbers of ICMP type 5 packets. Since these packets are not required, set net.inet.icmp.drop_redirect to 1 and set net.inet.ip.redirect to 0. Source routing is a method for detecting and accessing non-routable addresses on the internal network. This should be disabled as non-routable addresses are normally not routable on purpose. To disable this feature, set net.inet.ip.sourceroute and net.inet.ip.accept_sourceroute to 0. When a machine on the network needs to send messages to all hosts on a subnet, an ICMP echo request message is sent to the broadcast address. However, there is no reason for an external host to perform such an action. To reject all external broadcast requests, set net.inet.icmp.bmcastecho to 0. Some additional settings are documented in &man.security.7;. One-time Passwords one-time passwords security one-time passwords By default, &os; includes support for One-time Passwords In Everything (OPIE). OPIE is designed to prevent replay attacks, in which an attacker discovers a user's password and uses it to access a system. Since a password is only used once in OPIE, a discovered password is of little use to an attacker. OPIE uses a secure hash and a challenge/response system to manage passwords. The &os; implementation uses the MD5 hash by default. OPIE uses three different types of passwords. The first is the usual &unix; or Kerberos password. The second is the one-time password which is generated by opiekey. The third type of password is the secret password which is used to generate one-time passwords. The secret password has nothing to do with, and should be different from, the &unix; password. There are two other pieces of data that are important to OPIE. One is the seed or key, consisting of two letters and five digits. The other is the iteration count, a number between 1 and 100. OPIE creates the one-time password by concatenating the seed and the secret password, applying the MD5 hash as many times as specified by the iteration count, and turning the result into six short English words which represent the one-time password. The authentication system keeps track of the last one-time password used, and the user is authenticated if the hash of the user-provided password is equal to the previous password. Because a one-way hash is used, it is impossible to generate future one-time passwords if a successfully used password is captured. The iteration count is decremented after each successful login to keep the user and the login program in sync. When the iteration count gets down to 1, OPIE must be reinitialized. There are a few programs involved in this process. A one-time password, or a consecutive list of one-time passwords, is generated by passing an iteration count, a seed, and a secret password to &man.opiekey.1;. In addition to initializing OPIE, &man.opiepasswd.1; is used to change passwords, iteration counts, or seeds. The relevant credential files in /etc/opiekeys are examined by &man.opieinfo.1; which prints out the invoking user's current iteration count and seed. This section describes four different sorts of operations. The first is how to set up one-time-passwords for the first time over a secure connection. The second is how to use opiepasswd over an insecure connection. The third is how to log in over an insecure connection. The fourth is how to generate a number of keys which can be written down or printed out to use at insecure locations. Initializing <acronym>OPIE</acronym> To initialize OPIE for the first time, run this command from a secure location: &prompt.user; opiepasswd -c [grimreaper] ~ $ opiepasswd -f -c Adding unfurl: Only use this method from the console; NEVER from remote. If you are using telnet, xterm, or a dial-in, type ^C now or exit with no password. Then run opiepasswd without the -c parameter. Using MD5 to compute responses. Enter new secret pass phrase: Again new secret pass phrase: ID unfurl OTP key is 499 to4268 MOS MALL GOAT ARM AVID COED The sets console mode which assumes that the command is being run from a secure location, such as a computer under the user's control or a SSH session to a computer under the user's control. When prompted, enter the secret password which will be used to generate the one-time login keys. This password should be difficult to guess and should be different than the password which is associated with the user's login account. It must be between 10 and 127 characters long. Remember this password. The ID line lists the login name (unfurl), default iteration count (499), and default seed (to4268). When logging in, the system will remember these parameters and display them, meaning that they do not have to be memorized. The last line lists the generated one-time password which corresponds to those parameters and the secret password. At the next login, use this one-time password. Insecure Connection Initialization To initialize or change the secret password on an insecure system, a secure connection is needed to some place where opiekey can be run. This might be a shell prompt on a trusted machine. An iteration count is needed, where 100 is probably a good value, and the seed can either be specified or the randomly-generated one used. On the insecure connection, the machine being initialized, use &man.opiepasswd.1;: &prompt.user; opiepasswd Updating unfurl: You need the response from an OTP generator. Old secret pass phrase: otp-md5 498 to4268 ext Response: GAME GAG WELT OUT DOWN CHAT New secret pass phrase: otp-md5 499 to4269 Response: LINE PAP MILK NELL BUOY TROY ID mark OTP key is 499 gr4269 LINE PAP MILK NELL BUOY TROY To accept the default seed, press Return. Before entering an access password, move over to the secure connection and give it the same parameters: &prompt.user; opiekey 498 to4268 Using the MD5 algorithm to compute response. Reminder: Do not use opiekey from telnet or dial-in sessions. Enter secret pass phrase: GAME GAG WELT OUT DOWN CHAT Switch back over to the insecure connection, and copy the generated one-time password over to the relevant program. Generating a Single One-time Password After initializing OPIE and logging in, a prompt like this will be displayed: &prompt.user; telnet example.com Trying 10.0.0.1... Connected to example.com Escape character is '^]'. FreeBSD/i386 (example.com) (ttypa) login: <username> otp-md5 498 gr4269 ext Password: The OPIE prompts provides a useful feature. If Return is pressed at the password prompt, the prompt will turn echo on and display what is typed. This can be useful when attempting to type in a password by hand from a printout. MS-DOS Windows MacOS At this point, generate the one-time password to answer this login prompt. This must be done on a trusted system where it is safe to run &man.opiekey.1;. There are versions of this command for &windows;, &macos; and &os;. This command needs the iteration count and the seed as command line options. Use cut-and-paste from the login prompt on the machine being logged in to. On the trusted system: &prompt.user; opiekey 498 to4268 Using the MD5 algorithm to compute response. Reminder: Do not use opiekey from telnet or dial-in sessions. Enter secret pass phrase: GAME GAG WELT OUT DOWN CHAT Once the one-time password is generated, continue to log in. Generating Multiple One-time Passwords Sometimes there is no access to a trusted machine or secure connection. In this case, it is possible to use &man.opiekey.1; to generate a number of one-time passwords beforehand. For example: &prompt.user; opiekey -n 5 30 zz99999 Using the MD5 algorithm to compute response. Reminder: Do not use opiekey from telnet or dial-in sessions. Enter secret pass phrase: <secret password> 26: JOAN BORE FOSS DES NAY QUIT 27: LATE BIAS SLAY FOLK MUCH TRIG 28: SALT TIN ANTI LOON NEAL USE 29: RIO ODIN GO BYE FURY TIC 30: GREW JIVE SAN GIRD BOIL PHI The requests five keys in sequence, and specifies what the last iteration number should be. Note that these are printed out in reverse order of use. The really paranoid might want to write the results down by hand; otherwise, print the list. Each line shows both the iteration count and the one-time password. Scratch off the passwords as they are used. Restricting Use of &unix; Passwords OPIE can restrict the use of &unix; passwords based on the IP address of a login session. The relevant file is /etc/opieaccess, which is present by default. Refer to &man.opieaccess.5; for more information on this file and which security considerations to be aware of when using it. Here is a sample opieaccess: permit 192.168.0.0 255.255.0.0 This line allows users whose IP source address (which is vulnerable to spoofing) matches the specified value and mask, to use &unix; passwords at any time. If no rules in opieaccess are matched, the default is to deny non-OPIE logins. TCP Wrapper TomRhodesWritten by TCP Wrapper TCP Wrapper is a host-based access control system which extends the abilities of . It can be configured to provide logging support, return messages, and connection restrictions for the server daemons under the control of inetd. Refer to &man.tcpd.8; for more information about TCP Wrapper and its features. TCP Wrapper should not be considered a replacement for a properly configured firewall. Instead, TCP Wrapper should be used in conjunction with a firewall and other security enhancements in order to provide another layer of protection in the implementation of a security policy. Initial Configuration To enable TCP Wrapper in &os;, add the following lines to /etc/rc.conf: inetd_enable="YES" inetd_flags="-Ww" Then, properly configure /etc/hosts.allow. Unlike other implementations of TCP Wrapper, the use of hosts.deny is deprecated in &os;. All configuration options should be placed in /etc/hosts.allow. In the simplest configuration, daemon connection policies are set to either permit or block, depending on the options in /etc/hosts.allow. The default configuration in &os; is to allow all connections to the daemons started with inetd. Basic configuration usually takes the form of daemon : address : action, where daemon is the daemon which inetd started, address is a valid hostname, IP address, or an IPv6 address enclosed in brackets ([ ]), and action is either allow or deny. TCP Wrapper uses a first rule match semantic, meaning that the configuration file is scanned from the beginning for a matching rule. When a match is found, the rule is applied and the search process stops. For example, to allow POP3 connections via the mail/qpopper daemon, the following lines should be appended to hosts.allow: # This line is required for POP3 connections: qpopper : ALL : allow Whenever this file is edited, restart inetd: &prompt.root; service inetd restart Advanced Configuration TCP Wrapper provides advanced options to allow more control over the way connections are handled. In some cases, it may be appropriate to return a comment to certain hosts or daemon connections. In other cases, a log entry should be recorded or an email sent to the administrator. Other situations may require the use of a service for local connections only. This is all possible through the use of configuration options known as wildcards, expansion characters, and external command execution. Suppose that a situation occurs where a connection should be denied yet a reason should be sent to the host who attempted to establish that connection. That action is possible with . When a connection attempt is made, executes a shell command or script. An example exists in hosts.allow: # The rest of the daemons are protected. ALL : ALL \ : severity auth.info \ : twist /bin/echo "You are not welcome to use %d from %h." In this example, the message You are not allowed to use daemon name from hostname. will be returned for any daemon not configured in hosts.allow. This is useful for sending a reply back to the connection initiator right after the established connection is dropped. Any message returned must be wrapped in quote (") characters. It may be possible to launch a denial of service attack on the server if an attacker floods these daemons with connection requests. Another possibility is to use . Like , implicitly denies the connection and may be used to run external shell commands or scripts. Unlike , will not send a reply back to the host who established the connection. For example, consider the following configuration: # We do not allow connections from example.com: ALL : .example.com \ : spawn (/bin/echo %a from %h attempted to access %d >> \ /var/log/connections.log) \ : deny This will deny all connection attempts from *.example.com and log the hostname, IP address, and the daemon to which access was attempted to /var/log/connections.log. This example uses the substitution characters %a and %h. Refer to &man.hosts.access.5; for the complete list. To match every instance of a daemon, domain, or IP address, use ALL. Another wildcard is PARANOID which may be used to match any host which provides an IP address that may be forged because the IP address differs from its resolved hostname. In this example, all connection requests to Sendmail which have an IP address that varies from its hostname will be denied: # Block possibly spoofed requests to sendmail: sendmail : PARANOID : deny Using the PARANOID wildcard will result in denied connections if the client or server has a broken DNS setup. To learn more about wildcards and their associated functionality, refer to &man.hosts.access.5;. When adding new configuration lines, make sure that any unneeded entries for that daemon are commented out in hosts.allow. <application>Kerberos</application> Tillman Hodgson Contributed by Mark Murray Based on a contribution by Kerberos is a network authentication protocol which was originally created by the Massachusetts Institute of Technology (MIT) as a way to securely provide authentication across a potentially hostile network. The Kerberos protocol uses strong cryptography so that both a client and server can prove their identity without sending any unencrypted secrets over the network. Kerberos can be described as an identity-verifying proxy system and as a trusted third-party authentication system. After a user authenticates with Kerberos, their communications can be encrypted to assure privacy and data integrity. The only function of Kerberos is to provide the secure authentication of users and servers on the network. It does not provide authorization or auditing functions. It is recommended that Kerberos be used with other security methods which provide authorization and audit services. The current version of the protocol is version 5, described in RFC 4120. Several free implementations of this protocol are available, covering a wide range of operating systems. MIT continues to develop their Kerberos package. It is commonly used in the US as a cryptography product, and has historically been subject to US export regulations. In &os;, MIT Kerberos is available as the security/krb5 package or port. The Heimdal Kerberos implementation was explicitly developed outside of the US to avoid export regulations. The Heimdal Kerberos distribution is included in the base &os; installation, and another distribution with more configurable options is available as security/heimdal in the Ports Collection. In Kerberos users and services are identified as principals which are contained within an administrative grouping, called a realm. A typical user principal would be of the form user@REALM (realms are traditionally uppercase). This section provides a guide on how to set up Kerberos using the Heimdal distribution included in &os;. For purposes of demonstrating a Kerberos installation, the name spaces will be as follows: The DNS domain (zone) will be example.org. The Kerberos realm will be EXAMPLE.ORG. Use real domain names when setting up Kerberos, even if it will run internally. This avoids DNS problems and assures inter-operation with other Kerberos realms. Setting up a Heimdal <acronym>KDC</acronym> Kerberos5 Key Distribution Center The Key Distribution Center (KDC) is the centralized authentication service that Kerberos provides, the trusted third party of the system. It is the computer that issues Kerberos tickets, which are used for clients to authenticate to servers. Because the KDC is considered trusted by all other computers in the Kerberos realm, it has heightened security concerns. Direct access to the KDC should be limited. While running a KDC requires few computing resources, a dedicated machine acting only as a KDC is recommended for security reasons. To begin setting up a KDC, add these lines to /etc/rc.conf: kerberos5_server_enable="YES" kadmind5_server_enable="YES" Next, edit /etc/krb5.conf as follows: [libdefaults] default_realm = EXAMPLE.ORG [realms] EXAMPLE.ORG = { kdc = kerberos.example.org admin_server = kerberos.example.org } [domain_realm] .example.org = EXAMPLE.ORG In this example, the KDC will use the fully-qualified hostname kerberos.example.org. The hostname of the KDC must be resolvable in the DNS. Kerberos can also use the DNS to locate KDCs, instead of a [realms] section in /etc/krb5.conf. For large organizations that have their own DNS servers, the above example could be trimmed to: [libdefaults] default_realm = EXAMPLE.ORG [domain_realm] .example.org = EXAMPLE.ORG With the following lines being included in the example.org zone file: _kerberos._udp IN SRV 01 00 88 kerberos.example.org. _kerberos._tcp IN SRV 01 00 88 kerberos.example.org. _kpasswd._udp IN SRV 01 00 464 kerberos.example.org. _kerberos-adm._tcp IN SRV 01 00 749 kerberos.example.org. _kerberos IN TXT EXAMPLE.ORG In order for clients to be able to find the Kerberos services, they must have either a fully configured /etc/krb5.conf or a minimally configured /etc/krb5.conf and a properly configured DNS server. Next, create the Kerberos database which contains the keys of all principals (users and hosts) encrypted with a master password. It is not required to remember this password as it will be stored in /var/heimdal/m-key; it would be reasonable to use a 45-character random password for this purpose. To create the master key, run kstash and enter a password: &prompt.root; kstash Master key: xxxxxxxxxxxxxxxxxxxxxxx Verifying password - Master key: xxxxxxxxxxxxxxxxxxxxxxx Once the master key has been created, the database should be initialized. The Kerberos administrative tool &man.kadmin.8; can be used on the KDC in a mode that operates directly on the database, without using the &man.kadmind.8; network service, as kadmin -l. This resolves the chicken-and-egg problem of trying to connect to the database before it is created. At the kadmin prompt, use init to create the realm's initial database: &prompt.root; kadmin -l kadmin> init EXAMPLE.ORG Realm max ticket life [unlimited]: Lastly, while still in kadmin, create the first principal using add. Stick to the default options for the principal for now, as these can be changed later with modify. Type ? at the prompt to see the available options. kadmin> add tillman Max ticket life [unlimited]: Max renewable life [unlimited]: Attributes []: Password: xxxxxxxx Verifying password - Password: xxxxxxxx Next, start the KDC services by running service kerberos start and service kadmind start. While there will not be any kerberized daemons running at this point, it is possible to confirm that the KDC is functioning by obtaining a ticket for the principal that was just created: &prompt.user; kinit tillman tillman@EXAMPLE.ORG's Password: Confirm that a ticket was successfully obtained using klist: &prompt.user; klist Credentials cache: FILE:/tmp/krb5cc_1001 Principal: tillman@EXAMPLE.ORG Issued Expires Principal Aug 27 15:37:58 2013 Aug 28 01:37:58 2013 krbtgt/EXAMPLE.ORG@EXAMPLE.ORG The temporary ticket can be destroyed when the test is finished: &prompt.user; kdestroy Configuring a Server to Use <application>Kerberos</application> Kerberos5 enabling services The first step in configuring a server to use Kerberos authentication is to ensure that it has the correct configuration in /etc/krb5.conf. The version from the KDC can be used as-is, or it can be regenerated on the new system. Next, create /etc/krb5.keytab on the server. This is the main part of Kerberizing a service — it corresponds to generating a secret shared between the service and the KDC. The secret is a cryptographic key, stored in a keytab. The keytab contains the server's host key, which allows it and the KDC to verify each others' identity. It must be transmitted to the server in a secure fashion, as the security of the server can be broken if the key is made public. Typically, the keytab is generated on an administrator's trusted machine using kadmin, then securely transferred to the server, e.g., with &man.scp.1;; it can also be created directly on the server if that is consistent with the desired security policy. It is very important that the keytab is transmitted to the server in a secure fashion: if the key is known by some other party, that party can impersonate any user to the server! Using kadmin on the server directly is convenient, because the entry for the host principal in the KDC database is also created using kadmin. Of course, kadmin is a kerberized service; a Kerberos ticket is needed to authenticate to the network service, but to ensure that the user running kadmin is actually present (and their session has not been hijacked), kadmin will prompt for the password to get a fresh ticket. The principal authenticating to the kadmin service must be permitted to use the kadmin interface, as specified in kadmind.acl. See the section titled Remote administration in info heimdal for details on designing access control lists. Instead of enabling remote kadmin access, the administrator could securely connect to the KDC via the local console or &man.ssh.1;, and perform administration locally using kadmin -l. After installing /etc/krb5.conf, use add --random-key in kadmin. This adds the server's host principal to the database, but does not extract a copy of the host principal key to a keytab. To generate the keytab, use ext to extract the server's host principal key to its own keytab: &prompt.root; kadmin kadmin> add --random-key host/myserver.example.org Max ticket life [unlimited]: Max renewable life [unlimited]: Principal expiration time [never]: Password expiration time [never]: Attributes []: kadmin> ext_keytab host/myserver.example.org kadmin> exit Note that ext_keytab stores the extracted key in /etc/krb5.keytab by default. This is good when being run on the server being kerberized, but the --keytab path/to/file argument should be used when the keytab is being extracted elsewhere: &prompt.root; kadmin kadmin> ext_keytab --keytab=/tmp/example.keytab host/myserver.example.org kadmin> exit The keytab can then be securely copied to the server using &man.scp.1; or a removable media. Be sure to specify a non-default keytab name to avoid inserting unneeded keys into the system's keytab. At this point, the server can read encrypted messages from the KDC using its shared key, stored in krb5.keytab. It is now ready for the Kerberos-using services to be enabled. One of the most common such services is &man.sshd.8;, which supports Kerberos via the GSS-API. In /etc/ssh/sshd_config, add the line: GSSAPIAuthentication yes After making this change, &man.sshd.8; must be restared for the new configuration to take effect: service sshd restart. Configuring a Client to Use <application>Kerberos</application> Kerberos5 configure clients As it was for the server, the client requires configuration in /etc/krb5.conf. Copy the file in place (securely) or re-enter it as needed. Test the client by using kinit, klist, and kdestroy from the client to obtain, show, and then delete a ticket for an existing principal. Kerberos applications should also be able to connect to Kerberos enabled servers. If that does not work but obtaining a ticket does, the problem is likely with the server and not with the client or the KDC. In the case of kerberized &man.ssh.1;, GSS-API is disabled by default, so test using ssh -o GSSAPIAuthentication=yes hostname. When testing a Kerberized application, try using a packet sniffer such as tcpdump to confirm that no sensitive information is sent in the clear. Various Kerberos client applications are available. With the advent of a bridge so that applications using SASL for authentication can use GSS-API mechanisms as well, large classes of client applications can use Kerberos for authentication, from Jabber clients to IMAP clients. .k5login .k5users Users within a realm typically have their Kerberos principal mapped to a local user account. Occasionally, one needs to grant access to a local user account to someone who does not have a matching Kerberos principal. For example, tillman@EXAMPLE.ORG may need access to the local user account webdevelopers. Other principals may also need access to that local account. The .k5login and .k5users files, placed in a user's home directory, can be used to solve this problem. For example, if the following .k5login is placed in the home directory of webdevelopers, both principals listed will have access to that account without requiring a shared password.: tillman@example.org jdoe@example.org Refer to &man.ksu.1; for more information about .k5users. <acronym>MIT</acronym> Differences The major difference between the MIT and Heimdal implementations is that kadmin has a different, but equivalent, set of commands and uses a different protocol. If the KDC is MIT, the Heimdal version of kadmin cannot be used to administer the KDC remotely, and vice versa. Client applications may also use slightly different command line options to accomplish the same tasks. Following the instructions at http://web.mit.edu/Kerberos/www/ is recommended. Be careful of path issues: the MIT port installs into /usr/local/ by default, and the &os; system applications run instead of the MIT versions if PATH lists the system directories first. When using MIT Kerberos as a KDC on &os;, the following edits should also be made to rc.conf: kerberos5_server="/usr/local/sbin/krb5kdc" kadmind5_server="/usr/local/sbin/kadmind" kerberos5_server_flags="" kerberos5_server_enable="YES" kadmind5_server_enable="YES" <application>Kerberos</application> Tips, Tricks, and Troubleshooting When configuring and troubleshooting Kerberos, keep the following points in mind: When using either Heimdal or MIT Kerberos from ports, ensure that the PATH lists the port's versions of the client applications before the system versions. If all the computers in the realm do not have synchronized time settings, authentication may fail. describes how to synchronize clocks using NTP. If the hostname is changed, the host/ principal must be changed and the keytab updated. This also applies to special keytab entries like the HTTP/ principal used for Apache's www/mod_auth_kerb. All hosts in the realm must be both forward and reverse resolvable in DNS or, at a minimum, exist in /etc/hosts. CNAMEs will work, but the A and PTR records must be correct and in place. The error message for unresolvable hosts is not intuitive: Kerberos5 refuses authentication because Read req failed: Key table entry not found. Some operating systems that act as clients to the KDC do not set the permissions for ksu to be setuid root. This means that ksu does not work. This is a permissions problem, not a KDC error. With MIT Kerberos, to allow a principal to have a ticket life longer than the default lifetime of ten hours, use modify_principal at the &man.kadmin.8; prompt to change the maxlife of both the principal in question and the krbtgt principal. The principal can then use kinit -l to request a ticket with a longer lifetime. When running a packet sniffer on the KDC to aid in troubleshooting while running kinit from a workstation, the Ticket Granting Ticket (TGT) is sent immediately, even before the password is typed. This is because the Kerberos server freely transmits a TGT to any unauthorized request. However, every TGT is encrypted in a key derived from the user's password. When a user types their password, it is not sent to the KDC, it is instead used to decrypt the TGT that kinit already obtained. If the decryption process results in a valid ticket with a valid time stamp, the user has valid Kerberos credentials. These credentials include a session key for establishing secure communications with the Kerberos server in the future, as well as the actual TGT, which is encrypted with the Kerberos server's own key. This second layer of encryption allows the Kerberos server to verify the authenticity of each TGT. Host principals can have a longer ticket lifetime. If the user principal has a lifetime of a week but the host being connected to has a lifetime of nine hours, the user cache will have an expired host principal and the ticket cache will not work as expected. When setting up krb5.dict to prevent specific bad passwords from being used as described in &man.kadmind.8;, remember that it only applies to principals that have a password policy assigned to them. The format used in krb5.dict is one string per line. Creating a symbolic link to /usr/share/dict/words might be useful. Mitigating <application>Kerberos</application> Limitations Kerberos5 limitations and shortcomings Since Kerberos is an all or nothing approach, every service enabled on the network must either be modified to work with Kerberos or be otherwise secured against network attacks. This is to prevent user credentials from being stolen and re-used. An example is when Kerberos is enabled on all remote shells but the non-Kerberized POP3 mail server sends passwords in plain text. The KDC is a single point of failure. By design, the KDC must be as secure as its master password database. The KDC should have absolutely no other services running on it and should be physically secure. The danger is high because Kerberos stores all passwords encrypted with the same master key which is stored as a file on the KDC. A compromised master key is not quite as bad as one might fear. The master key is only used to encrypt the Kerberos database and as a seed for the random number generator. As long as access to the KDC is secure, an attacker cannot do much with the master key. If the KDC is unavailable, network services are unusable as authentication cannot be performed. This can be alleviated with a single master KDC and one or more slaves, and with careful implementation of secondary or fall-back authentication using PAM. Kerberos allows users, hosts and services to authenticate between themselves. It does not have a mechanism to authenticate the KDC to the users, hosts, or services. This means that a trojanned kinit could record all user names and passwords. File system integrity checking tools like security/tripwire can alleviate this. Resources and Further Information Kerberos5 external resources The Kerberos FAQ Designing an Authentication System: a Dialog in Four Scenes RFC 4120, The Kerberos Network Authentication Service (V5) MIT Kerberos home page Heimdal Kerberos home page OpenSSL TomRhodesWritten by security OpenSSL OpenSSL is an open source implementation of the SSL and TLS protocols. It provides an encryption transport layer on top of the normal communications layer, allowing it to be intertwined with many network applications and services. The version of OpenSSL included in &os; supports the Secure Sockets Layer v2/v3 (SSLv2/SSLv3) and Transport Layer Security v1 (TLSv1) network security protocols and can be used as a general cryptographic library. OpenSSL is often used to encrypt authentication of mail clients and to secure web based transactions such as credit card payments. Some ports, such as www/apache24 and databases/postgresql91-server, include a compile option for building with OpenSSL. &os; provides two versions of OpenSSL: one in the base system and one in the Ports Collection. Users can choose which version to use by default for other ports using the following knobs: WITH_OPENSSL_PORT: when set, the port will use OpenSSL from the security/openssl port, even if the version in the base system is up to date or newer. WITH_OPENSSL_BASE: when set, the port will compile against OpenSSL provided by the base system. Another common use of OpenSSL is to provide certificates for use with software applications. Certificates can be used to verify the credentials of a company or individual. If a certificate has not been signed by an external Certificate Authority (CA), such as http://www.verisign.com, the application that uses the certificate will produce a warning. There is a cost associated with obtaining a signed certificate and using a signed certificate is not mandatory as certificates can be self-signed. However, using an external authority will prevent warnings and can put users at ease. This section demonstrates how to create and use certificates on a &os; system. Refer to for an example of how to create a CA for signing one's own certificates. Generating Certificates OpenSSL certificate generation To generate a certificate that will be signed by an external CA, issue the following command and input the information requested at the prompts. This input information will be written to the certificate. At the Common Name prompt, input the fully qualified name for the system that will use the certificate. If this name does not match the server, the application verifying the certificate will issue a warning to the user, rendering the verification provided by the certificate as useless. &prompt.root; openssl req -new -nodes -out req.pem -keyout cert.pem Generating a 1024 bit RSA private key ................++++++ .......................................++++++ writing new private key to 'cert.pem' ----- You are about to be asked to enter information that will be incorporated into your certificate request. What you are about to enter is what is called a Distinguished Name or a DN. There are quite a few fields but you can leave some blank For some fields there will be a default value, If you enter '.', the field will be left blank. ----- Country Name (2 letter code) [AU]:US State or Province Name (full name) [Some-State]:PA Locality Name (eg, city) []:Pittsburgh Organization Name (eg, company) [Internet Widgits Pty Ltd]:My Company Organizational Unit Name (eg, section) []:Systems Administrator Common Name (eg, YOUR name) []:localhost.example.org Email Address []:trhodes@FreeBSD.org Please enter the following 'extra' attributes to be sent with your certificate request A challenge password []:SOME PASSWORD An optional company name []:Another Name Other options, such as the expire time and alternate encryption algorithms, are available when creating a certificate. A complete list of options is described in &man.openssl.1;. This command will create two files in the current directory. The certificate request, req.pem, can be sent to a CA who will validate the entered credentials, sign the request, and return the signed certificate. The second file, cert.pem, is the private key for the certificate and should be stored in a secure location. If this falls in the hands of others, it can be used to impersonate the user or the server. Alternately, if a signature from a CA is not required, a self-signed certificate can be created. First, generate the RSA key: &prompt.root; openssl dsaparam -rand -genkey -out myRSA.key 1024 0 semi-random bytes loaded Generating DSA parameters, 1024 bit long prime This could take some time .............+........+...........+...+....+........+.....+++++++++++++++++++++++++++++++++++++++++++++++++++* ..........+.+...........+....+........+.................+.+++++++++++++++++++++++++++++++++++++++++++++++++++* Next, generate the CA key. When prompted, enter a passphrase between 4 to 1023 characters. Remember this passphrase as it is needed whenever the key is used to sign a certificate. &prompt.root; openssl gendsa -des3 -out myca.key myRSA.key Generating DSA key, 1024 bits Enter PEM pass phrase: Verifying - Enter PEM pass phrase: Use this key to create a self-signed certificate. When prompted, enter the passphrase. Then follow the usual prompts for creating a certificate: &prompt.root; openssl req -new -x509 -days 365 -key myca.key -out new.crt Enter pass phrase for myca.key: You are about to be asked to enter information that will be incorporated into your certificate request. What you are about to enter is what is called a Distinguished Name or a DN. There are quite a few fields but you can leave some blank For some fields there will be a default value, If you enter '.', the field will be left blank. ----- Country Name (2 letter code) [AU]:US State or Province Name (full name) [Some-State]:PA Locality Name (eg, city) []:Pittsburgh Organization Name (eg, company) [Internet Widgits Pty Ltd]:My Company Organizational Unit Name (eg, section) []:Systems Administrator Common Name (e.g. server FQDN or YOUR name) []:localhost.example.org Email Address []:trhodes@FreeBSD.org This will create two new files in the current directory: a certificate authority signature file, myca.key, and the certificate itself, new.crt. These should be placed in a directory, preferably under /etc, which is readable only by root. Permissions of 0700 are appropriate for these files and can be set using chmod. Using Certificates One use for a certificate is to encrypt connections to the Sendmail mail server in order to prevent the use of clear text authentication. Some mail clients will display an error if the user has not installed a local copy of the certificate. Refer to the documentation included with the software for more information on certificate installation. In &os; 10.0-RELEASE and above, it is possible to create a self-signed certificate for Sendmail automatically. To enable this, add the following lines to /etc/rc.conf: sendmail_enable="YES" sendmail_cert_create="YES" sendmail_cert_cn="localhost.example.org" This will automatically create a self-signed certificate, /etc/mail/certs/host.cert, a signing key, /etc/mail/certs/host.key, and a CA certificate, /etc/mail/certs/cacert.pem. The certificate will use the Common Name specified in . After saving the edits, restart Sendmail: &prompt.root; service sendmail restart If all went well, there will be no error messages in /var/log/maillog. For a simple test, connect to the mail server's listening port using telnet: &prompt.root; telnet example.com 25 Trying 192.0.34.166... Connected to example.com. Escape character is '^]'. 220 example.com ESMTP Sendmail 8.14.7/8.14.7; Fri, 18 Apr 2014 11:50:32 -0400 (EDT) ehlo example.com 250-example.com Hello example.com [192.0.34.166], pleased to meet you 250-ENHANCEDSTATUSCODES 250-PIPELINING 250-8BITMIME 250-SIZE 250-DSN 250-ETRN 250-AUTH LOGIN PLAIN 250-STARTTLS 250-DELIVERBY 250 HELP quit 221 2.0.0 example.com closing connection Connection closed by foreign host. If the STARTTLS line appears in the output, everything is working correctly. <acronym>VPN</acronym> over <acronym>IPsec</acronym> Nik Clayton
nik@FreeBSD.org
Written by
Hiten M. Pandya
hmp@FreeBSD.org
Written by
IPsec Internet Protocol Security (IPsec) is a set of protocols which sit on top of the Internet Protocol (IP) layer. It allows two or more hosts to communicate in a secure manner by authenticating and encrypting each IP packet of a communication session. The &os; IPsec network stack is based on the http://www.kame.net/ implementation and supports both IPv4 and IPv6 sessions. IPsec ESP IPsec AH IPsec is comprised of the following sub-protocols: Encapsulated Security Payload (ESP): this protocol protects the IP packet data from third party interference by encrypting the contents using symmetric cryptography algorithms such as Blowfish and 3DES. Authentication Header (AH)): this protocol protects the IP packet header from third party interference and spoofing by computing a cryptographic checksum and hashing the IP packet header fields with a secure hashing function. This is then followed by an additional header that contains the hash, to allow the information in the packet to be authenticated. IP Payload Compression Protocol (IPComp): this protocol tries to increase communication performance by compressing the IP payload in order ro reduce the amount of data sent. These protocols can either be used together or separately, depending on the environment. VPN virtual private network VPN IPsec supports two modes of operation. The first mode, Transport Mode, protects communications between two hosts. The second mode, Tunnel Mode, is used to build virtual tunnels, commonly known as Virtual Private Networks (VPNs). Consult &man.ipsec.4; for detailed information on the IPsec subsystem in &os;. To add IPsec support to the kernel, add the following options to the custom kernel configuration file and rebuild the kernel using the instructions in : kernel options IPSEC options IPSEC #IP security device crypto kernel options IPSEC_DEBUG If IPsec debugging support is desired, the following kernel option should also be added: options IPSEC_DEBUG #debug for IP security This rest of this chapter demonstrates the process of setting up an IPsec VPN between a home network and a corporate network. In the example scenario: Both sites are connected to the Internet through a gateway that is running &os;. The gateway on each network has at least one external IP address. In this example, the corporate LAN's external IP address is 172.16.5.4 and the home LAN's external IP address is 192.168.1.12. The internal addresses of the two networks can be either public or private IP addresses. However, the address space must not collide. For example, both networks cannot use 192.168.1.x. In this example, the corporate LAN's internal IP address is 10.246.38.1 and the home LAN's internal IP address is 10.0.0.5. Configuring a <acronym>VPN</acronym> on &os; Tom Rhodes
trhodes@FreeBSD.org
Written by
To begin, security/ipsec-tools must be installed from the Ports Collection. This software provides a number of applications which support the configuration. The next requirement is to create two &man.gif.4; pseudo-devices which will be used to tunnel packets and allow both networks to communicate properly. As root, run the following commands, replacing internal and external with the real IP addresses of the internal and external interfaces of the two gateways: &prompt.root; ifconfig gif0 create &prompt.root; ifconfig gif0 internal1 internal2 &prompt.root; ifconfig gif0 tunnel external1 external2 Verify the setup on each gateway, using ifconfig. Here is the output from Gateway 1: gif0: flags=8051 mtu 1280 tunnel inet 172.16.5.4 --> 192.168.1.12 inet6 fe80::2e0:81ff:fe02:5881%gif0 prefixlen 64 scopeid 0x6 inet 10.246.38.1 --> 10.0.0.5 netmask 0xffffff00 Here is the output from Gateway 2: gif0: flags=8051 mtu 1280 tunnel inet 192.168.1.12 --> 172.16.5.4 inet 10.0.0.5 --> 10.246.38.1 netmask 0xffffff00 inet6 fe80::250:bfff:fe3a:c1f%gif0 prefixlen 64 scopeid 0x4 Once complete, both internal IP addresses should be reachable using &man.ping.8;: priv-net# ping 10.0.0.5 PING 10.0.0.5 (10.0.0.5): 56 data bytes 64 bytes from 10.0.0.5: icmp_seq=0 ttl=64 time=42.786 ms 64 bytes from 10.0.0.5: icmp_seq=1 ttl=64 time=19.255 ms 64 bytes from 10.0.0.5: icmp_seq=2 ttl=64 time=20.440 ms 64 bytes from 10.0.0.5: icmp_seq=3 ttl=64 time=21.036 ms --- 10.0.0.5 ping statistics --- 4 packets transmitted, 4 packets received, 0% packet loss round-trip min/avg/max/stddev = 19.255/25.879/42.786/9.782 ms corp-net# ping 10.246.38.1 PING 10.246.38.1 (10.246.38.1): 56 data bytes 64 bytes from 10.246.38.1: icmp_seq=0 ttl=64 time=28.106 ms 64 bytes from 10.246.38.1: icmp_seq=1 ttl=64 time=42.917 ms 64 bytes from 10.246.38.1: icmp_seq=2 ttl=64 time=127.525 ms 64 bytes from 10.246.38.1: icmp_seq=3 ttl=64 time=119.896 ms 64 bytes from 10.246.38.1: icmp_seq=4 ttl=64 time=154.524 ms --- 10.246.38.1 ping statistics --- 5 packets transmitted, 5 packets received, 0% packet loss round-trip min/avg/max/stddev = 28.106/94.594/154.524/49.814 ms As expected, both sides have the ability to send and receive ICMP packets from the privately configured addresses. Next, both gateways must be told how to route packets in order to correctly send traffic from either network. The following commands will achieve this goal: &prompt.root; corp-net# route add 10.0.0.0 10.0.0.5 255.255.255.0 &prompt.root; corp-net# route add net 10.0.0.0: gateway 10.0.0.5 &prompt.root; priv-net# route add 10.246.38.0 10.246.38.1 255.255.255.0 &prompt.root; priv-net# route add host 10.246.38.0: gateway 10.246.38.1 At this point, internal machines should be reachable from each gateway as well as from machines behind the gateways. Again, use &man.ping.8; to confirm: corp-net# ping 10.0.0.8 PING 10.0.0.8 (10.0.0.8): 56 data bytes 64 bytes from 10.0.0.8: icmp_seq=0 ttl=63 time=92.391 ms 64 bytes from 10.0.0.8: icmp_seq=1 ttl=63 time=21.870 ms 64 bytes from 10.0.0.8: icmp_seq=2 ttl=63 time=198.022 ms 64 bytes from 10.0.0.8: icmp_seq=3 ttl=63 time=22.241 ms 64 bytes from 10.0.0.8: icmp_seq=4 ttl=63 time=174.705 ms --- 10.0.0.8 ping statistics --- 5 packets transmitted, 5 packets received, 0% packet loss round-trip min/avg/max/stddev = 21.870/101.846/198.022/74.001 ms priv-net# ping 10.246.38.107 PING 10.246.38.1 (10.246.38.107): 56 data bytes 64 bytes from 10.246.38.107: icmp_seq=0 ttl=64 time=53.491 ms 64 bytes from 10.246.38.107: icmp_seq=1 ttl=64 time=23.395 ms 64 bytes from 10.246.38.107: icmp_seq=2 ttl=64 time=23.865 ms 64 bytes from 10.246.38.107: icmp_seq=3 ttl=64 time=21.145 ms 64 bytes from 10.246.38.107: icmp_seq=4 ttl=64 time=36.708 ms --- 10.246.38.107 ping statistics --- 5 packets transmitted, 5 packets received, 0% packet loss round-trip min/avg/max/stddev = 21.145/31.721/53.491/12.179 ms Setting up the tunnels is the easy part. Configuring a secure link is a more in depth process. The following configuration uses pre-shared (PSK) RSA keys. Other than the IP addresses, the /usr/local/etc/racoon/racoon.conf on both gateways will be identical and look similar to: path pre_shared_key "/usr/local/etc/racoon/psk.txt"; #location of pre-shared key file log debug; #log verbosity setting: set to 'notify' when testing and debugging is complete padding # options are not to be changed { maximum_length 20; randomize off; strict_check off; exclusive_tail off; } timer # timing options. change as needed { counter 5; interval 20 sec; persend 1; # natt_keepalive 15 sec; phase1 30 sec; phase2 15 sec; } listen # address [port] that racoon will listen on { isakmp 172.16.5.4 [500]; isakmp_natt 172.16.5.4 [4500]; } remote 192.168.1.12 [500] { exchange_mode main,aggressive; doi ipsec_doi; situation identity_only; my_identifier address 172.16.5.4; peers_identifier address 192.168.1.12; lifetime time 8 hour; passive off; proposal_check obey; # nat_traversal off; generate_policy off; proposal { encryption_algorithm blowfish; hash_algorithm md5; authentication_method pre_shared_key; lifetime time 30 sec; dh_group 1; } } sainfo (address 10.246.38.0/24 any address 10.0.0.0/24 any) # address $network/$netmask $type address $network/$netmask $type ( $type being any or esp) { # $network must be the two internal networks you are joining. pfs_group 1; lifetime time 36000 sec; encryption_algorithm blowfish,3des,des; authentication_algorithm hmac_md5,hmac_sha1; compression_algorithm deflate; } For descriptions of each available option, refer to the manual page for racoon.conf. The Security Policy Database (SPD) needs to be configured so that &os; and racoon are able to encrypt and decrypt network traffic between the hosts. This can be achieved with a shell script, similar to the following, on the corporate gateway. This file will be used during system initialization and should be saved as /usr/local/etc/racoon/setkey.conf. flush; spdflush; # To the home network spdadd 10.246.38.0/24 10.0.0.0/24 any -P out ipsec esp/tunnel/172.16.5.4-192.168.1.12/use; spdadd 10.0.0.0/24 10.246.38.0/24 any -P in ipsec esp/tunnel/192.168.1.12-172.16.5.4/use; Once in place, racoon may be started on both gateways using the following command: &prompt.root; /usr/local/sbin/racoon -F -f /usr/local/etc/racoon/racoon.conf -l /var/log/racoon.log The output should be similar to the following: corp-net# /usr/local/sbin/racoon -F -f /usr/local/etc/racoon/racoon.conf Foreground mode. 2006-01-30 01:35:47: INFO: begin Identity Protection mode. 2006-01-30 01:35:48: INFO: received Vendor ID: KAME/racoon 2006-01-30 01:35:55: INFO: received Vendor ID: KAME/racoon 2006-01-30 01:36:04: INFO: ISAKMP-SA established 172.16.5.4[500]-192.168.1.12[500] spi:623b9b3bd2492452:7deab82d54ff704a 2006-01-30 01:36:05: INFO: initiate new phase 2 negotiation: 172.16.5.4[0]192.168.1.12[0] 2006-01-30 01:36:09: INFO: IPsec-SA established: ESP/Tunnel 192.168.1.12[0]->172.16.5.4[0] spi=28496098(0x1b2d0e2) 2006-01-30 01:36:09: INFO: IPsec-SA established: ESP/Tunnel 172.16.5.4[0]->192.168.1.12[0] spi=47784998(0x2d92426) 2006-01-30 01:36:13: INFO: respond new phase 2 negotiation: 172.16.5.4[0]192.168.1.12[0] 2006-01-30 01:36:18: INFO: IPsec-SA established: ESP/Tunnel 192.168.1.12[0]->172.16.5.4[0] spi=124397467(0x76a279b) 2006-01-30 01:36:18: INFO: IPsec-SA established: ESP/Tunnel 172.16.5.4[0]->192.168.1.12[0] spi=175852902(0xa7b4d66) To ensure the tunnel is working properly, switch to another console and use &man.tcpdump.1; to view network traffic using the following command. Replace em0 with the network interface card as required: &prompt.root; tcpdump -i em0 host 172.16.5.4 and dst 192.168.1.12 Data similar to the following should appear on the console. If not, there is an issue and debugging the returned data will be required. 01:47:32.021683 IP corporatenetwork.com > 192.168.1.12.privatenetwork.com: ESP(spi=0x02acbf9f,seq=0xa) 01:47:33.022442 IP corporatenetwork.com > 192.168.1.12.privatenetwork.com: ESP(spi=0x02acbf9f,seq=0xb) 01:47:34.024218 IP corporatenetwork.com > 192.168.1.12.privatenetwork.com: ESP(spi=0x02acbf9f,seq=0xc) At this point, both networks should be available and seem to be part of the same network. Most likely both networks are protected by a firewall. To allow traffic to flow between them, rules need to be added to pass packets. For the &man.ipfw.8; firewall, add the following lines to the firewall configuration file: ipfw add 00201 allow log esp from any to any ipfw add 00202 allow log ah from any to any ipfw add 00203 allow log ipencap from any to any ipfw add 00204 allow log udp from any 500 to any The rule numbers may need to be altered depending on the current host configuration. For users of &man.pf.4; or &man.ipf.8;, the following rules should do the trick: pass in quick proto esp from any to any pass in quick proto ah from any to any pass in quick proto ipencap from any to any pass in quick proto udp from any port = 500 to any port = 500 pass in quick on gif0 from any to any pass out quick proto esp from any to any pass out quick proto ah from any to any pass out quick proto ipencap from any to any pass out quick proto udp from any port = 500 to any port = 500 pass out quick on gif0 from any to any Finally, to allow the machine to start support for the VPN during system initialization, add the following lines to /etc/rc.conf: ipsec_enable="YES" ipsec_program="/usr/local/sbin/setkey" ipsec_file="/usr/local/etc/racoon/setkey.conf" # allows setting up spd policies on boot racoon_enable="yes"
OpenSSH ChernLeeContributed by OpenSSH security OpenSSH OpenSSH is a set of network connectivity tools used to provide secure access to remote machines. Additionally, TCP/IP connections can be tunneled or forwarded securely through SSH connections. OpenSSH encrypts all traffic to effectively eliminate eavesdropping, connection hijacking, and other network-level attacks. OpenSSH is maintained by the OpenBSD project and is installed by default in &os;. It is compatible with both SSH version 1 and 2 protocols. When data is sent over the network in an unencrypted form, network sniffers anywhere in between the client and server can steal user/password information or data transferred during the session. OpenSSH offers a variety of authentication and encryption methods to prevent this from happening. More information about OpenSSH is available from http://www.openssh.com/. This section provides an overview of the built-in client utilities to securely access other systems and securely transfer files from a &os; system. It then describes how to configure a SSH server on a &os; system. More information is available in the man pages mentioned in this chapter. Using the SSH Client Utilities OpenSSH client To log into a SSH server, use ssh and specify a username that exists on that server and the IP address or hostname of the server. If this is the first time a connection has been made to the specified server, the user will be prompted to first verify the server's fingerprint: &prompt.root; ssh user@example.com The authenticity of host 'example.com (10.0.0.1)' can't be established. ECDSA key fingerprint is 25:cc:73:b5:b3:96:75:3d:56:19:49:d2:5c:1f:91:3b. Are you sure you want to continue connecting (yes/no)? yes Permanently added 'example.com' (ECDSA) to the list of known hosts. Password for user@example.com: user_password SSH utilizes a key fingerprint system to verify the authenticity of the server when the client connects. When the user accepts the key's fingerprint by typing yes when connecting for the first time, a copy of the key is saved to .ssh/known_hosts in the user's home directory. Future attempts to login are verified against the saved key and ssh will display an alert if the server's key does not match the saved key. If this occurs, the user should first verify why the key has changed before continuing with the connection. By default, recent versions of OpenSSH only accept SSHv2 connections. By default, the client will use version 2 if possible and will fall back to version 1 if the server does not support version 2. To force ssh to only use the specified protocol, include or . Additional options are described in &man.ssh.1;. OpenSSH secure copy &man.scp.1; Use &man.scp.1; to securely copy a file to or from a remote machine. This example copies COPYRIGHT on the remote system to a file of the same name in the current directory of the local system: &prompt.root; scp user@example.com:/COPYRIGHT COPYRIGHT Password for user@example.com: ******* COPYRIGHT 100% |*****************************| 4735 00:00 &prompt.root; Since the fingerprint was already verified for this host, the server's key is automatically checked before prompting for the user's password. The arguments passed to scp are similar to cp. The file or files to copy is the first argument and the destination to copy to is the second. Since the file is fetched over the network, one or more of the file arguments takes the form . Be aware when copying directories recursively that scp uses , whereas cp uses . To open an interactive session for copying files, use sftp. Refer to &man.sftp.1; for a list of available commands while in an sftp session. Key-based Authentication Instead of using passwords, a client can be configured to connect to the remote machine using keys. To generate DSA or RSA authentication keys, use ssh-keygen. To generate a public and private key pair, specify the type of key and follow the prompts. It is recommended to protect the keys with a memorable, but hard to guess passphrase. &prompt.user; ssh-keygen -t dsa Generating public/private dsa key pair. Enter file in which to save the key (/home/user/.ssh/id_dsa): Created directory '/home/user/.ssh'. Enter passphrase (empty for no passphrase): type some passphrase here which can contain spaces Enter same passphrase again: type some passphrase here which can contain spaces Your identification has been saved in /home/user/.ssh/id_dsa. Your public key has been saved in /home/user/.ssh/id_dsa.pub. The key fingerprint is: bb:48:db:f2:93:57:80:b6:aa:bc:f5:d5:ba:8f:79:17 user@host.example.com Depending upon the specified protocol, the private key is stored in ~/.ssh/id_dsa (or ~/.ssh/id_rsa), and the public key is stored in ~/.ssh/id_dsa.pub (or ~/.ssh/id_rsa.pub). The public key must be first copied to ~/.ssh/authorized_keys on the remote machine in order for key-based authentication to work. Many users believe that keys are secure by design and will use a key without a passphrase. This is dangerous behavior. An administrator can verify that a key pair is protected by a passphrase by viewing the private key manually. If the private key file contains the word ENCRYPTED, the key owner is using a passphrase. In addition, to better secure end users, from may be placed in the public key file. For example, adding from="192.168.10.5" in the front of ssh-rsa or rsa-dsa prefix will only allow that specific user to login from that IP address. The various options and files can be different according to the OpenSSH version. To avoid problems, consult &man.ssh-keygen.1;. If a passphrase is used, the user will be prompted for the passphrase each time a connection is made to the server. To load SSH keys into memory, without needing to type the passphrase each time, use &man.ssh-agent.1; and &man.ssh-add.1;. Authentication is handled by ssh-agent, using the private key(s) that are loaded into it. Then, ssh-agent should be used to launch another application such as a shell or a window manager. To use ssh-agent in a shell, start it with a shell as an argument. Next, add the identity by running ssh-add and providing it the passphrase for the private key. Once these steps have been completed, the user will be able to ssh to any host that has the corresponding public key installed. For example: &prompt.user; ssh-agent csh &prompt.user; ssh-add Enter passphrase for key '/usr/home/user/.ssh/id_dsa': type passphrase here Identity added: /usr/home/user/.ssh/id_dsa (/usr/home/user/.ssh/id_dsa) &prompt.user; To use ssh-agent in &xorg;, add an entry for it in ~/.xinitrc. This provides the ssh-agent services to all programs launched in &xorg;. An example ~/.xinitrc might look like this: exec ssh-agent startxfce4 This launches ssh-agent, which in turn launches XFCE, every time &xorg; starts. Once &xorg; has been restarted so that the changes can take effect, run ssh-add to load all of the SSH keys. <acronym>SSH</acronym> Tunneling OpenSSH tunneling OpenSSH has the ability to create a tunnel to encapsulate another protocol in an encrypted session. The following command tells ssh to create a tunnel for telnet: &prompt.user; ssh -2 -N -f -L 5023:localhost:23 user@foo.example.com &prompt.user; This example uses the following options: Forces ssh to use version 2 to connect to the server. Indicates no command, or tunnel only. If omitted, ssh initiates a normal session. Forces ssh to run in the background. Indicates a local tunnel in localport:remotehost:remoteport format. The login name to use on the specified remote SSH server. An SSH tunnel works by creating a listen socket on localhost on the specified localport. It then forwards any connections received on localport via the SSH connection to the specified remotehost:remoteport. In the example, port 5023 on the client is forwarded to port 23 on the remote machine. Since port 23 is used by telnet, this creates an encrypted telnet session through an SSH tunnel. This method can be used to wrap any number of insecure TCP protocols such as SMTP, POP3, and FTP, as seen in the following examples. Create a Secure Tunnel for <acronym>SMTP</acronym> &prompt.user; ssh -2 -N -f -L 5025:localhost:25 user@mailserver.example.com user@mailserver.example.com's password: ***** &prompt.user; telnet localhost 5025 Trying 127.0.0.1... Connected to localhost. Escape character is '^]'. 220 mailserver.example.com ESMTP This can be used in conjunction with ssh-keygen and additional user accounts to create a more seamless SSH tunneling environment. Keys can be used in place of typing a password, and the tunnels can be run as a separate user. Secure Access of a <acronym>POP3</acronym> Server In this example, there is an SSH server that accepts connections from the outside. On the same network resides a mail server running a POP3 server. To check email in a secure manner, create an SSH connection to the SSH server and tunnel through to the mail server: &prompt.user; ssh -2 -N -f -L 2110:mail.example.com:110 user@ssh-server.example.com user@ssh-server.example.com's password: ****** Once the tunnel is up and running, point the email client to send POP3 requests to localhost on port 2110. This connection will be forwarded securely across the tunnel to mail.example.com. Bypassing a Firewall Some firewalls filter both incoming and outgoing connections. For example, a firewall might limit access from remote machines to ports 22 and 80 to only allow SSH and web surfing. This prevents access to any other service which uses a port other than 22 or 80. The solution is to create an SSH connection to a machine outside of the network's firewall and use it to tunnel to the desired service: &prompt.user; ssh -2 -N -f -L 8888:music.example.com:8000 user@unfirewalled-system.example.org user@unfirewalled-system.example.org's password: ******* In this example, a streaming Ogg Vorbis client can now be pointed to localhost port 8888, which will be forwarded over to music.example.com on port 8000, successfully bypassing the firewall. Enabling the SSH Server OpenSSH enabling In addition to providing built-in SSH client utilities, a &os; system can be configured as an SSH server, accepting connections from other SSH clients. To see if sshd is enabled, check /etc/rc.conf for this line and add it if it is missing: sshd_enable="YES" This will start sshd, the daemon program for OpenSSH, the next time the system boots. To start it now: &prompt.root; service sshd start The first time sshd starts on a &os; system, the system's host keys will be automatically created and the fingerprint will be displayed on the console. Provide users with the fingerprint so that they can verify it the first time they connect to the server. Refer to &man.sshd.8; for the list of available options when starting sshd and a more complete discussion about authentication, the login process, and the various configuration files. It is a good idea to limit which users can log into the SSH server and from where using the AllowUsers keyword in the OpenSSH server configuration file. For example, to only allow root to log in from 192.168.1.32, add this line to /etc/ssh/sshd_config: AllowUsers root@192.168.1.32 To allow admin to log in from anywhere, list that user without specifying an IP address: AllowUsers admin Multiple users should be listed on the same line, like so: AllowUsers root@192.168.1.32 admin After making changes to /etc/ssh/sshd_config, tell sshd to reload its configuration file by running: &prompt.root; service sshd reload When this keyword is used, it is important to list each user that needs to log into this machine. Any user that is not specified in that line will be locked out. Also, the keywords used in the OpenSSH server configuration file are case-sensitive. If the keyword is not spelled correctly, including its case, it will be ignored. Always test changes to this file to make sure that the edits are working as expected. Refer to &man.sshd.config.5; to verify the spelling and use of the available keywords. Do not confuse /etc/ssh/sshd_config with /etc/ssh/ssh_config (note the extra d in the first filename). The first file configures the server and the second file configures the client. Refer to &man.ssh.config.5; for a listing of the available client settings,. Access Control Lists TomRhodesContributed by ACL Access Control Lists (ACLs) extend the standard &unix; permission model in a &posix;.1e compatible way. This permits an administrator to take advantage of a more fine-grained permissions model. The &os; GENERIC kernel provides ACL support for UFS file systems. Users who prefer to compile a custom kernel must include the following option in their custom kernel configuration file: options UFS_ACL If this option is not compiled in, a warning message will be displayed when attempting to mount a file system with ACL support. ACLs rely on extended attributes which are natively supported in UFS2. This chapter describes how to enable ACL support and provides some usage examples. Enabling <acronym>ACL</acronym> Support ACLs are enabled by the mount-time administrative flag, , which may be added to /etc/fstab. The mount-time flag can also be automatically set in a persistent manner using &man.tunefs.8; to modify a superblock ACLs flag in the file system header. In general, it is preferred to use the superblock flag for several reasons: The superblock flag cannot be changed by a remount using as it requires a complete umount and fresh mount. This means that ACLs cannot be enabled on the root file system after boot. It also means that ACL support on a file system cannot be changed while the system is in use. Setting the superblock flag causes the file system to always be mounted with ACLs enabled, even if there is not an fstab entry or if the devices re-order. This prevents accidental mounting of the file system without ACL support. It is desirable to discourage accidental mounting without ACLs enabled because nasty things can happen if ACLs are enabled, then disabled, then re-enabled without flushing the extended attributes. In general, once ACLs are enabled on a file system, they should not be disabled, as the resulting file protections may not be compatible with those intended by the users of the system, and re-enabling ACLs may re-attach the previous ACLs to files that have since had their permissions changed, resulting in unpredictable behavior. File systems with ACLs enabled will show a plus (+) sign in their permission settings: drwx------ 2 robert robert 512 Dec 27 11:54 private drwxrwx---+ 2 robert robert 512 Dec 23 10:57 directory1 drwxrwx---+ 2 robert robert 512 Dec 22 10:20 directory2 drwxrwx---+ 2 robert robert 512 Dec 27 11:57 directory3 drwxr-xr-x 2 robert robert 512 Nov 10 11:54 public_html In this example, directory1, directory2, and directory3 are all taking advantage of ACLs, whereas public_html is not. Using <acronym>ACL</acronym>s File system ACLs can be viewed using getfacl. For instance, to view the ACL settings on test: &prompt.user; getfacl test #file:test #owner:1001 #group:1001 user::rw- group::r-- other::r-- To change the ACL settings on this file, use setfacl. To remove all of the currently defined ACLs from a file or file system, include . However, the preferred method is to use as it leaves the basic fields required for ACLs to work. &prompt.user; setfacl -k test To modify the default ACL entries, use : &prompt.user; setfacl -m u:trhodes:rwx,group:web:r--,o::--- test In this example, there were no pre-defined entries, as they were removed by the previous command. This command restores the default options and assigns the options listed. If a user or group is added which does not exist on the system, an Invalid argument error will be displayed. Refer to &man.getfacl.1; and &man.setfacl.1; for more information about the options available for these commands. Monitoring Third Party Security Issues TomRhodesContributed by portaudit In recent years, the security world has made many improvements to how vulnerability assessment is handled. The threat of system intrusion increases as third party utilities are installed and configured for virtually any operating system available today. Vulnerability assessment is a key factor in security. While &os; releases advisories for the base system, doing so for every third party utility is beyond the &os; Project's capability. There is a way to mitigate third party vulnerabilities and warn administrators of known security issues. A &os; add on utility known as portaudit exists solely for this purpose. The ports-mgmt/portaudit port polls a database, which is updated and maintained by the &os; Security Team and ports developers, for known security issues. To install portaudit from the Ports Collection: &prompt.root; cd /usr/ports/ports-mgmt/portaudit && make install clean During the installation, the configuration files for &man.periodic.8; will be updated, permitting portaudit output in the daily security runs. Ensure that the daily security run emails, which are sent to root's email account, are being read. No other configuration is required. After installation, an administrator can update the database and view known vulnerabilities in installed packages by invoking the following command: &prompt.root; portaudit -Fda The database is automatically updated during the &man.periodic.8; run. The above command is optional and can be used to manually update the database now. To audit the third party utilities installed as part of the Ports Collection at anytime, an administrator can run the following command: &prompt.root; portaudit -a portaudit will display messages for any installed vulnerable packages: Affected package: cups-base-1.1.22.0_1 Type of problem: cups-base -- HPGL buffer overflow vulnerability. Reference: <http://www.FreeBSD.org/ports/portaudit/40a3bca2-6809-11d9-a9e7-0001020eed82.html> 1 problem(s) in your installed packages found. You are advised to update or deinstall the affected package(s) immediately. By pointing a web browser to the displayed URL, an administrator may obtain more information about the vulnerability. This will include the versions affected, by &os; port version, along with other web sites which may contain security advisories. portaudit is a powerful utility and is extremely useful when coupled with the portmaster port. &os; Security Advisories TomRhodesContributed by &os; Security Advisories Like many producers of quality operating systems, the &os; Project has a security team which is responsible for determining the End-of-Life (EoL) date for each &os; release and to provide security updates for supported releases which have not yet reached their EoL. More information about the &os; security team and the supported releases is available on the &os; security page. One task of the security team is to respond to reported security vulnerabilities in the &os; operating system. Once a vulnerability is confirmed, the security team verifies the steps necessary to fix the vulnerability and updates the source code with the fix. It then publishes the details as a Security Advisory. Security advisories are published on the &os; website and mailed to the &a.security-notifications.name;, &a.security.name;, and &a.announce.name; mailing lists. This section describes the format of a &os; security advisory. Format of a Security Advisory Here is an example of a &os; security advisory: ============================================================================= -----BEGIN PGP SIGNED MESSAGE----- Hash: SHA512 ============================================================================= FreeBSD-SA-14:04.bind Security Advisory The FreeBSD Project Topic: BIND remote denial of service vulnerability Category: contrib Module: bind Announced: 2014-01-14 Credits: ISC Affects: FreeBSD 8.x and FreeBSD 9.x Corrected: 2014-01-14 19:38:37 UTC (stable/9, 9.2-STABLE) 2014-01-14 19:42:28 UTC (releng/9.2, 9.2-RELEASE-p3) 2014-01-14 19:42:28 UTC (releng/9.1, 9.1-RELEASE-p10) 2014-01-14 19:38:37 UTC (stable/8, 8.4-STABLE) 2014-01-14 19:42:28 UTC (releng/8.4, 8.4-RELEASE-p7) 2014-01-14 19:42:28 UTC (releng/8.3, 8.3-RELEASE-p14) CVE Name: CVE-2014-0591 For general information regarding FreeBSD Security Advisories, including descriptions of the fields above, security branches, and the following sections, please visit <URL:http://security.FreeBSD.org/>. I. Background BIND 9 is an implementation of the Domain Name System (DNS) protocols. The named(8) daemon is an Internet Domain Name Server. II. Problem Description Because of a defect in handling queries for NSEC3-signed zones, BIND can crash with an "INSIST" failure in name.c when processing queries possessing certain properties. This issue only affects authoritative nameservers with at least one NSEC3-signed zone. Recursive-only servers are not at risk. III. Impact An attacker who can send a specially crafted query could cause named(8) to crash, resulting in a denial of service. IV. Workaround No workaround is available, but systems not running authoritative DNS service with at least one NSEC3-signed zone using named(8) are not vulnerable. V. Solution Perform one of the following: 1) Upgrade your vulnerable system to a supported FreeBSD stable or release / security branch (releng) dated after the correction date. 2) To update your vulnerable system via a source code patch: The following patches have been verified to apply to the applicable FreeBSD release branches. a) Download the relevant patch from the location below, and verify the detached PGP signature using your PGP utility. [FreeBSD 8.3, 8.4, 9.1, 9.2-RELEASE and 8.4-STABLE] # fetch http://security.FreeBSD.org/patches/SA-14:04/bind-release.patch # fetch http://security.FreeBSD.org/patches/SA-14:04/bind-release.patch.asc # gpg --verify bind-release.patch.asc [FreeBSD 9.2-STABLE] # fetch http://security.FreeBSD.org/patches/SA-14:04/bind-stable-9.patch # fetch http://security.FreeBSD.org/patches/SA-14:04/bind-stable-9.patch.asc # gpg --verify bind-stable-9.patch.asc b) Execute the following commands as root: # cd /usr/src # patch < /path/to/patch Recompile the operating system using buildworld and installworld as described in <URL:http://www.FreeBSD.org/handbook/makeworld.html>. Restart the applicable daemons, or reboot the system. 3) To update your vulnerable system via a binary patch: Systems running a RELEASE version of FreeBSD on the i386 or amd64 platforms can be updated via the freebsd-update(8) utility: # freebsd-update fetch # freebsd-update install VI. Correction details The following list contains the correction revision numbers for each affected branch. Branch/path Revision - ------------------------------------------------------------------------- stable/8/ r260646 releng/8.3/ r260647 releng/8.4/ r260647 stable/9/ r260646 releng/9.1/ r260647 releng/9.2/ r260647 - ------------------------------------------------------------------------- To see which files were modified by a particular revision, run the following command, replacing NNNNNN with the revision number, on a machine with Subversion installed: # svn diff -cNNNNNN --summarize svn://svn.freebsd.org/base Or visit the following URL, replacing NNNNNN with the revision number: <URL:http://svnweb.freebsd.org/base?view=revision&revision=NNNNNN> VII. References <URL:https://kb.isc.org/article/AA-01078> <URL:http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0591> The latest revision of this advisory is available at <URL:http://security.FreeBSD.org/advisories/FreeBSD-SA-14:04.bind.asc> -----BEGIN PGP SIGNATURE----- iQIcBAEBCgAGBQJS1ZTYAAoJEO1n7NZdz2rnOvQP/2/68/s9Cu35PmqNtSZVVxVG ZSQP5EGWx/lramNf9566iKxOrLRMq/h3XWcC4goVd+gZFrvITJSVOWSa7ntDQ7TO XcinfRZ/iyiJbs/Rg2wLHc/t5oVSyeouyccqODYFbOwOlk35JjOTMUG1YcX+Zasg ax8RV+7Zt1QSBkMlOz/myBLXUjlTZ3Xg2FXVsfFQW5/g2CjuHpRSFx1bVNX6ysoG 9DT58EQcYxIS8WfkHRbbXKh9I1nSfZ7/Hky/kTafRdRMrjAgbqFgHkYTYsBZeav5 fYWKGQRJulYfeZQ90yMTvlpF42DjCC3uJYamJnwDIu8OhS1WRBI8fQfr9DRzmRua OK3BK9hUiScDZOJB6OqeVzUTfe7MAA4/UwrDtTYQ+PqAenv1PK8DZqwXyxA9ThHb zKO3OwuKOVHJnKvpOcr+eNwo7jbnHlis0oBksj/mrq2P9m2ueF9gzCiq5Ri5Syag Wssb1HUoMGwqU0roS8+pRpNC8YgsWpsttvUWSZ8u6Vj/FLeHpiV3mYXPVMaKRhVm 067BA2uj4Th1JKtGleox+Em0R7OFbCc/9aWC67wiqI6KRyit9pYiF3npph+7D5Eq 7zPsUdDd+qc+UTiLp3liCRp5w6484wWdhZO6wRtmUgxGjNkxFoNnX8CitzF8AaqO UWWemqWuz3lAZuORQ9KX =OQzQ -----END PGP SIGNATURE----- Every security advisory uses the following format: Each security advisory is signed by the PGP key of the Security Officer. The public key for the Security Officer can be verified at . The name of the security advisory always begins with FreeBSD-SA- (for FreeBSD Security Advisory), followed by the year in two digit format (14:), followed by the advisory number for that year (04.), followed by the name of the affected application or subsystem (bind). The advisory shown here is the fourth advisory for 2014 and it affects BIND. The Topic field summarizes the vulnerability. The Category refers to the affected part of the system which may be one of core, contrib, or ports. The core category means that the vulnerability affects a core component of the &os; operating system. The contrib category means that the vulnerability affects software included with &os;, such as BIND. The ports category indicates that the vulnerability affects software available through the Ports Collection. The Module field refers to the component location. In this example, the bind module is affected; therefore, this vulnerability affects an application installed with the operating system. The Announced field reflects the date the security advisory was published. This means that the security team has verified that the problem exists and that a patch has been committed to the &os; source code repository. The Credits field gives credit to the individual or organization who noticed the vulnerability and reported it. The Affects field explains which releases of &os; are affected by this vulnerability. The Corrected field indicates the date, time, time offset, and releases that were corrected. The section in parentheses shows each branch for which the fix has been merged, and the version number of the corresponding release from that branch. The release identifier itself includes the version number and, if appropriate, the patch level. The patch level is the letter p followed by a number, indicating the sequence number of the patch, allowing users to track which patches have already been applied to the system. The CVE Name field lists the advisory number, if one exists, in the public cve.mitre.org security vulnerabilities database. The Background field provides a description of the affected module. The Problem Description field explains the vulnerability. This can include information about the flawed code and how the utility could be maliciously used. The Impact field describes what type of impact the problem could have on a system. The Workaround field indicates if a workaround is available to system administrators who cannot immediately patch the system . The Solution field provides the instructions for patching the affected system. This is a step by step tested and verified method for getting a system patched and working securely. The Correction Details field displays each affected Subversion branch with the revision number that contains the corrected code. The References field offers sources of additional information regarding the vulnerability. Process Accounting TomRhodesContributed by Process Accounting Process accounting is a security method in which an administrator may keep track of system resources used and their allocation among users, provide for system monitoring, and minimally track a user's commands. Process accounting has both positive and negative points. One of the positives is that an intrusion may be narrowed down to the point of entry. A negative is the amount of logs generated by process accounting, and the disk space they may require. This section walks an administrator through the basics of process accounting. If more fine-grained accounting is needed, refer to . Enabling and Utilizing Process Accounting Before using process accounting, it must be enabled using the following commands: &prompt.root; touch /var/account/acct &prompt.root; chmod 600 /var/account/acct &prompt.root; accton /var/account/acct &prompt.root; echo 'accounting_enable="YES"' >> /etc/rc.conf Once enabled, accounting will begin to track information such as CPU statistics and executed commands. All accounting logs are in a non-human readable format which can be viewed using sa. If issued without any options, sa prints information relating to the number of per-user calls, the total elapsed time in minutes, total CPU and user time in minutes, and the average number of I/O operations. Refer to &man.sa.8; for the list of available options which control the output. To display the commands issued by users, use lastcomm. For example, this command prints out all usage of ls by trhodes on the ttyp1 terminal: &prompt.root; lastcomm ls trhodes ttyp1 Many other useful options exist and are explained in &man.lastcomm.1;, &man.acct.5;, and &man.sa.8;. Resource Limits TomRhodesContributed by Resource limits &os; provides several methods for an administrator to limit the amount of system resources an individual may use. Disk quotas limit the amount of disk space available to users. Quotas are discussed in . quotas limiting users quotas disk quotas Limits to other resources, such as CPU and memory, can be set using either a flat file or a command to configure a resource limits database. The traditional method defines login classes by editing /etc/login.conf. While this method is still supported, any changes require a multi-step process of editing this file, rebuilding the resource database, making necessary changes to /etc/master.passwd, and rebuilding the password database. This can become time consuming, depending upon the number of users to configure. Beginning with &os; 9.0-RELEASE, rctl can be used to provide a more fine-grained method for controlling resource limits. This command supports more than user limits as it can also be used to set resource constraints on processes and jails. This section demonstrates both methods for controlling resources, beginning with the traditional method. Configuring Login Classes limiting users accounts limiting /etc/login.conf In the traditional method, login classes and the resource limits to apply to a login class are defined in /etc/login.conf. Each user account can be assigned to a login class, where default is the default login class. Each login class has a set of login capabilities associated with it. A login capability is a name=value pair, where name is a well-known identifier and value is an arbitrary string which is processed accordingly depending on the name. Whenever /etc/login.conf is edited, the /etc/login.conf.db must be updated by executing the following command: &prompt.root; cap_mkdb /etc/login.conf Resource limits differ from the default login capabilities in two ways. First, for every limit, there is a soft and hard limit. A soft limit may be adjusted by the user or application, but may not be set higher than the hard limit. The hard limit may be lowered by the user, but can only be raised by the superuser. Second, most resource limits apply per process to a specific user. lists the most commonly used resource limits. All of the available resource limits and capabilities are described in detail in &man.login.conf.5;. limiting users coredumpsize limiting users cputime limiting users filesize limiting users maxproc limiting users memorylocked limiting users memoryuse limiting users openfiles limiting users sbsize limiting users stacksize Login Class Resource Limits Resource Limit Description coredumpsize The limit on the size of a core file generated by a program is subordinate to other limits on disk usage, such as filesize or disk quotas. This limit is often used as a less severe method of controlling disk space consumption. Since users do not generate core files and often do not delete them, this setting may save them from running out of disk space should a large program crash. cputime The maximum amount of CPU time a user's process may consume. Offending processes will be killed by the kernel. This is a limit on CPU time consumed, not the percentage of the CPU as displayed in some of the fields generated by top and ps. filesize The maximum size of a file the user may own. Unlike disk quotas (), this limit is enforced on individual files, not the set of all files a user owns. maxproc The maximum number of foreground and background processes a user can run. This limit may not be larger than the system limit specified by kern.maxproc. Setting this limit too small may hinder a user's productivity as some tasks, such as compiling a large program, start lots of processes. memorylocked The maximum amount of memory a process may request to be locked into main memory using &man.mlock.2;. Some system-critical programs, such as &man.amd.8;, lock into main memory so that if the system begins to swap, they do not contribute to disk thrashing. memoryuse The maximum amount of memory a process may consume at any given time. It includes both core memory and swap usage. This is not a catch-all limit for restricting memory consumption, but is a good start. openfiles The maximum number of files a process may have open. In &os;, files are used to represent sockets and IPC channels, so be careful not to set this too low. The system-wide limit for this is defined by kern.maxfiles. sbsize The limit on the amount of network memory a user may consume. This can be generally used to limit network communications. stacksize The maximum size of a process stack. This alone is not sufficient to limit the amount of memory a program may use, so it should be used in conjunction with other limits.
There are a few other things to remember when setting resource limits: Processes started at system startup by /etc/rc are assigned to the daemon login class. Although the default /etc/login.conf is a good source of reasonable values for most limits, they may not be appropriate for every system. Setting a limit too high may open the system up to abuse, while setting it too low may put a strain on productivity. &xorg; takes a lot of resources and encourages users to run more programs simultaneously. Many limits apply to individual processes, not the user as a whole. For example, setting openfiles to 50 means that each process the user runs may open up to 50 files. The total amount of files a user may open is the value of openfiles multiplied by the value of maxproc. This also applies to memory consumption. For further information on resource limits and login classes and capabilities in general, refer to &man.cap.mkdb.1;, &man.getrlimit.2;, and &man.login.conf.5;.
Enabling and Configuring Resource Limits By default, kernel support for rctl is not built-in, meaning that the kernel will first need to be recompiled using the instructions in . Add these lines to either GENERIC or a custom kernel configuration file, then rebuild the kernel: options RACCT options RCTL Once the system has rebooted into the new kernel, rctl may be used to set rules for the system. Rule syntax is controlled through the use of a subject, subject-id, resource, and action, as seen in this example rule: user:trhodes:maxproc:deny=10/user In this rule, the subject is user, the subject-id is trhodes, the resource, maxproc, is the maximum number of processes, and the action is deny, which blocks any new processes from being created. This means that the user, trhodes, will be constrained to no greater than 10 processes. Other possible actions include logging to the console, passing a notification to &man.devd.8;, or sending a sigterm to the process. Some care must be taken when adding rules. Since this user is constrained to 10 processes, this example will prevent the user from performing other tasks after logging in and executing a screen session. Once a resource limit has been hit, an error will be printed, as in this example: &prompt.user; man test /usr/bin/man: Cannot fork: Resource temporarily unavailable eval: Cannot fork: Resource temporarily unavailable As another example, a jail can be prevented from exceeding a memory limit. This rule could be written as: &prompt.root; rctl -a jail:httpd:memoryuse:deny=2G/jail Rules will persist across reboots if they have been added to /etc/rctl.conf. The format is a rule, without the preceding command. For example, the previous rule could be added as: # Block jail from using more than 2G memory: jail:httpd:memoryuse:deny=2G/jail To remove a rule, use rctl to remove it from the list: &prompt.root; rctl -r user:trhodes:maxproc:deny=10/user A method for removing all rules is documented in &man.rctl.8;. However, if removing all rules for a single user is required, this command may be issued: &prompt.root; rctl -r user:trhodes Many other resources exist which can be used to exert additional control over various subjects. See &man.rctl.8; to learn about them.