Index: head/de_DE.ISO8859-1/books/faq/book.sgml =================================================================== --- head/de_DE.ISO8859-1/books/faq/book.sgml (revision 36616) +++ head/de_DE.ISO8859-1/books/faq/book.sgml (revision 36617) @@ -1,12716 +1,12716 @@ %books.ent; ]> Häufig gestellte Fragen zu &os; 6.<replaceable>X</replaceable>, 7.<replaceable>X</replaceable> und 8.<replaceable>X</replaceable> Frequently Asked Questions zu &os; 6.X, 7.X und 8.X The &os; German Documentation Project Deutsche Übersetzung von Robert S. F. Drehmel, Dirk Gouders, Udo Erdelhoff, Johann Kois und Benedict Reuschling - $FreeBSDde: de-docproj/books/faq/book.sgml,v 1.764 2010/08/29 14:33:13 jkois Exp $ + $FreeBSDde: de-docproj/books/faq/book.sgml,v 1.765 2010/10/31 12:16:29 bcr Exp $ 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 The &os; Documentation Project 2000 2001 2002 2003 2004 2005 2006 2007 2007 2008 2009 2010 The &os; German Documentation Project &bookinfo.legalnotice; &tm-attrib.freebsd; &tm-attrib.3com; &tm-attrib.adobe; &tm-attrib.creative; &tm-attrib.cvsup; &tm-attrib.ibm; &tm-attrib.ieee; &tm-attrib.intel; &tm-attrib.iomega; &tm-attrib.linux; &tm-attrib.microsoft; &tm-attrib.mips; &tm-attrib.netscape; &tm-attrib.opengroup; &tm-attrib.oracle; &tm-attrib.sgi; &tm-attrib.sparc; &tm-attrib.sun; &tm-attrib.usrobotics; &tm-attrib.xfree86; &tm-attrib.general; Dies ist die FAQ für die &os;-Versionen 6.X 7.X und 8.X. Alle Einträge sollten für &os; ab Version 6.X relevant sein, andernfalls wird darauf explizit hingewiesen. Falls Sie daran interessiert sein sollten, an diesem Projekt mitzuarbeiten, senden Sie eine Mail an die Mailingliste &a.de.translators;. Die aktuelle Version dieses Dokuments ist ständig auf dem &os; World-Wide-Web-Server verfügbar. Sie kann aber auch als eine einzige große HTML-Datei, als Textdatei, als &postscript;- oder PDF-Datei sowie in verschiedenen anderen Formaten vom &os; FTP-Server heruntergeladen werden. Alternativ können Sie die FAQ auch durchsuchen. Einleitung Willkommen zur &os; 6.X-7.X- und 8.X FAQ! Wie auch bei den Usenet FAQs üblich, wird mit diesem Dokument beabsichtigt, die am häufigsten gestellten Fragen bezüglich des Betriebssystems &os; zu erfassen und sie natürlich auch zu beantworten. Obwohl FAQs ursprünglich lediglich dazu dienen sollten, die Netzbelastung zu reduzieren und das ständige Wiederholen derselben Fragen zu vermeiden, haben sie sich als wertvolle Informationsquellen etabliert. Wir haben uns die größte Mühe gegeben, diese FAQ so lehrreich wie möglich zu gestalten; falls Sie irgendwelche Vorschläge haben, wie sie verbessert werden kann, senden Sie diese bitte an die Mailingliste des &a.de.translators;. Was ist &os;? &os; ist, kurz gesagt, ein &unix; ähnliches Betriebssystem für die Plattformen AMD64 sowie &intel; EM64T, &i386;, IA-64, &arm;, &powerpc;, PC-98 und &ultrasparc;, das auf der 4.4BSD-Lite-Release der University of California at Berkeley (UCB) basiert; außerdem flossen einige Erweiterungen aus der 4.4BSD-Lite2-Release mit ein. Es basiert außerdem indirekt auf der von William Jolitz unter dem Namen 386BSD herausgebrachten Portierung der Net/2-Release der UCB auf die &i386;-Plattform - allerdings ist nur wenig vom 386BSD-Code übriggeblieben. Eine umfassendere Beschreibung darüber, was &os; ist und wie Sie es für Ihre Zwecke verwenden können, finden Sie auf den Internetseiten des &os; Projects. Unternehmen, Internet Service Provider, Forscher, Computerfachleute, Studenten und Privatnutzer auf der ganzen Welt benutzen &os; für die Arbeit, die Ausbildung oder zur Freizeitgestaltung. Ausführlichere Informationen zu &os;, finden Sie im &os; Handbuch. Welches Ziel hat das &os; Project? Die Ziel von &os; ist es, Software zur Nutzung für beliebige Zwecke, bedingungslos zur Verfügung zu stellen. Viele von uns haben erheblich zur Erstellung des Codes (und zum Projekt) beigetragen und hätten jetzt oder in Zukunft sicherlich nichts gegen einen geringen finanziellen Ausgleich einzuwenden, aber wir beabsichtigen definitiv nicht, darauf zu bestehen. Wir sind der Meinung, dass unsere Mission zuerst und vorderst darin besteht, allen und jedem Kommenden Code für welchen Zweck auch immer zur Verfügung zu stellen, damit der Code möglichst weit eingesetzt wird und den größtmöglichen Nutzen liefert. Das ist, so glauben wir, eines der fundamentalsten Ziele von freier Software und eines, das wir enthusiastisch unterstützen. Der Code in unserem Quellbaum, der der GNU General Public License (GPL) oder der GNU Library General Public License (LGPL) unterliegt, ist mit zusätzlichen, geringfügigen Bedingungen verknüpft, jedoch handelt es sich dabei lediglich um erzwungene Bereitstellung statt des sonst üblichen Gegenteils. Auf Grund der zusätzlichen Komplexität, die durch den kommerziellen Einsatz von GPL Software entstehen kann, bemühen wir uns jedoch, solche Software, wo möglich, durch solche, die der etwas lockereren &os; Lizenz unterliegt, zu ersetzen. Beinhaltet das &os;-Copyright irgendwelche Einschränkungen? Ja. Diese Einschränkungen regeln aber nicht, wie Sie mit dem Sourcecode umgehen, sondern betreffen nur den Umgang mit dem &os; Project an sich. Wenn Sie sich ernsthaft damit auseinandersetzen wollen, lesen Sie einfach die &os;-Lizenz. Wenn Sie einfach nur neugierig sind, sollte diese Zusammenfassung ausreichen: Behaupten Sie nicht, Sie hätten es geschrieben. Verklagen Sie uns nicht, wenn irgend etwas nicht funktioniert. Kann &os; mein bisher verwendetes Betriebssystem ersetzen? In den meisten Fällen lautet die Antwort ja. Allerdings ist diese Frage nicht ganz so einfach, wie sie scheint. Die meisten Anwender benutzen kein Betriebssystem, sondern Anwendungen. Die Anwendungen sind es, die das Betriebssystem benutzen. &os; ist dazu gedacht, eine stabile und vielfältige Umgebung für Anwendungen bereitzustellen. Es unterstützt viele unterschiedliche Web-Browser, Büroanwendungen, E-Mail-Programme, Grafik-Programme, Entwicklungsumgebungen, Netzwerk-Server, und so ziemlich alles andere, was Sie sich wünschen können. Die meisten dieser Anwendungen sind in der Ports-Sammlung verfügbar. Wenn Sie Anwendung benutzen müssen, die es nur für ein bestimmtes Betriebssystem gibt, dann kommen Sie an diesem Betriebssystem nicht vorbei. Allerdings stehen die Chancen nicht schlecht, dass es eine vergleichbare Anwendung für &os; gibt. Wenn Sie einen verläßlichen Server für ihr Büro oder das Internet brauchen, oder eine stabilen Arbeitsplatz, oder einfach nur die Fähigkeit, ihre Arbeit ohne dauernde Abstürze machen zu können, dann kann &os; genau das sein. Viele Anwender auf der ganzen Welt, vom Anfänger bis zum erfahrenen Administrator, benutzen an Ihren Arbeitsplätzen ausschließlich &os;. Wenn Sie von einem anderen &unix; System zu &os; wechseln, dürfte Ihnen vieles bekannt vorkommen. Wenn Ihr Hintergrund ein Grafik-orientiertes Betriebssystem wie &windows; oder ein älteres &macos; ist, werden Sie zusätzliche Zeit investieren müssen, um den &unix; Stil zu verstehen. Dieser FAQ und das &os; Handbuch sind die besten Startpunkte. Warum heißt es &os;? Es darf kostenlos genutzt werden - sogar von kommerziellen Benutzern. Der komplette Quellcode für das Betriebssystem ist frei verfügbar und die Benutzung, Verbreitung und Einbindung in andere (kommerzielle und nicht-kommerzielle) Arbeiten sind mit den geringstmöglichen Einschränkungen versehen worden. Jedem ist es freigestellt, Code für Verbesserungen oder die Behebung von Fehlern einzusenden und ihn zum Quellbaum hinzufügen zu lassen (dies ist natürlich Gegenstand von ein oder zwei offensichtlichen Klauseln). Es wird darauf hingewiesen, dass das englische Wort free hier in den Bedeutungen umsonst und Sie können tun, was immer Sie möchten genutzt wird. Abgesehen von ein oder zwei Dingen, die Sie mit dem &os;-Code nicht tun können (z.B. vorgeben, ihn geschrieben zu haben), können Sie damit tatsächlich tun, was auch immer Sie möchten. Wie unterschieden sich &os;, NetBSD, OpenBSD und andere Open-Source BSD-Systeme? James Howards Artikel, genannt The BSD Family Tree, beschreibt sehr gut die Geschichte und die Unterschiede der BSD-Varianten. Welches ist die aktuelle &os;-Version? Momentan gibt es zwei Entwicklungszweige, die für die Erstellung von Releases verwendet werden. Die 7.X-RELEASEs werden auf dem 7-STABLE-Zweig erstellt, die 8.X-RELEASEs auf dem 8-STABLE-Zweig. Bis zur Veröffentlichung von &os; 8.0 galt die 7.X-Serie als -STABLE. Seither gibt es für den Zweig 7.X nur mehr eine erweiterte Unterstützung in der Form von Korrekturen von größeren Problemen, wie neu entdeckten Sicherheitsheitslücken. Aus dem Zweig 7-STABLE werden zwar noch RELEASEs erzeugt, er gilt aber als ausgereift. Aktive Weiterentwicklungen konzentrieren sich daher auf den Zweig 8-STABLE. Version &rel.current; ist das aktuelle Release des 8-STABLE-Zweigs und ist im Januar 2009 erschienen. Version &rel2.current; ist das aktuelle Release aus dem 7-STABLE-Zweig und ist im November 2008 erschienen. Kurz gesagt, -STABLE ist für ISPs und andere Benutzer gedacht, die mehr Wert auf Stabilität und eine niedrige Änderungsfrequenz als auf die neuesten und möglicherweise unstabilen Features im aktuellen -CURRENT Snapshot legen. Releases können aus jedem Zweig entstehen, Sie sollten -CURRENT allerdings nur dann benutzen, wenn Sie auf ein erhöhtes Fehlverhalten im Vergleich zu -STABLE auch vorbereitet sind. Releases entstehen nur alle paar Monate. Viele Leute halten ihre Systeme aktueller (lesen Sie die Fragen zu &os;-CURRENT und &os;-STABLE), aber das erfordert ein erhöhtes Engagement, da die Sourcen sich ständig verändern. Weitere Informationen über &os;-Releases entnehmen Sie der Seite Release Engineering des &os; Webauftritts. Was ist &os;-CURRENT? &os;-CURRENT ist die Entwicklungsversion des Betriebssystems, aus der zu gegebener Zeit &os.stable; werden wird. Als solche ist sie lediglich für Entwickler, die am System mitarbeiten und für unentwegte Bastler von Interesse. Details zum Betrieb von -CURRENT finden Sie im entsprechenden Abschnitt des Handbuchs. Falls Sie nicht mit dem Betriebssystem vertraut sind oder nicht in der Lage sein sollten, den Unterschied zwischen einen echten und einem temporären Problem zu erkennen, sollten Sie &os.current; nicht verwenden. Dieser Zweig entwickelt sich manchmal sehr schnell weiter und kann gelegentlich nicht installierbar sein. Von Personen, die &os.current; verwenden, wird erwartet, dass Sie dazu in der Lage sind, Probleme zu analysieren und nur dann von ihnen berichten, wenn es sich um Fehler und nicht um kurzzeitige Störungen handelt. Fragen wie make world produziert Fehlermeldungen bezüglich Gruppen werden in der &a.current; Mailingliste manchmal nicht beachtet. Jeden Monat wird der aktuelle Entwicklungsstand in den Zweigen -CURRENT und -STABLE in einer Snapshot Release festgehalten. Die Ziele dieser Snapshot Releases sind: Die aktuelle Version der Installationssoftware zu testen. Personen, die -CURRENT oder -STABLE benutzen möchten, aber nicht über die nötige Zeit oder Bandbreite verfügen, um tagesaktuell zu bleiben, soll eine bequeme Möglichkeit geboten werden, es auf ihr System zu bringen. Die Erhaltung von Referenzpunkten des fraglichen Codes, für den Fall, dass wir später einmal ernsthaften Schaden anrichten sollten - obwohl CVS verhindern sollte, dass solche Situationen entstehen. Sicherzustellen, dass alle zu testenden, neuen Merkmale und Fehlerbehebungen zu möglichst vielen potentiellen Testern gelangen. Von keinem -CURRENT Snapshot kann Produktionsqualität für beliebige Zwecke erwartet werden. Wenn Sie eine stabile und ausgetestete Version benötigen, sollten Sie eine vollständige Release oder einen -STABLE Snapshot verwenden. Snapshot-Releases sind auf der Snapshots-Seite verfügbar. Offizielle Snapshots werden in der Regel jeden Monat für jeden aktiven Zweig erstellt. Es gibt auch täglich erstellte Snapshots der populären &arch.i386; und &arch.amd64; Zweige, die auf bereitliegen. Was ist das Konzept von &os;-STABLE? Zur der Zeit, als &os; 2.0.5 herausgegeben wurde, wurde entschieden, die Entwicklung von &os; zweizuteilen. Ein Zweig wurde -STABLE, der andere -CURRENT genannt. &os;-STABLE ist für Anbieter von Internetdiensten und andere kommerzielle Unternehmen gedacht, für die plötzliche Veränderungen und experimentelle Features unerwünscht sind. In diesem Zweige werden nur ausgetestete Fehlerbehebungen und kleine, inkrementelle Änderungen aufgenommen. &os;-CURRENT ist eine ununterbrochene Linie seitdem die Version 2.0 herausgegeben worden ist. Sie führt zu &rel.current;-RELEASE (und darüber hinaus). Weitere Informationen zu diesen Zweigen finden Sie unter &os; Release Engineering: Creating the Release Branch, der Status der Zweige und der Zeitplan zur anstehenden Veröffentlichung kann unter der Seite Release Engineering Information gefunden werden. Der Zweig 2.2-STABLE wurde mit der Veröffentlichung der Version 2.2.8 eingestellt. Der Zweig 3-STABLE endete mit Version 3.5.1, der letzten 3.X-Version, der Zweig 4.X endete mit der Version 4.11, der letzten 4.X-Version. Änderungen in diesen Zweigen beschränken sich im allgemeinen auf die Korrektur von sicherheitsrelevanten Fehlern. Der Zweig 5-STABLE wurde mit 5.5, der letzten 5.X Version, beendet. 6-STABLE wird noch unterstützt, die Unterstützung beschränkt sich allerdings auf das Schließen von neu entdeckten Sicherheitslücken und die Behebung von anderen ernsten Problemen. &rel.current;-STABLE ist der Zweig, auf den sich die Entwicklung von -STABLE zur Zeit konzentriert. Das neueste Release aus dem &rel.current;-STABLE-Zweig ist &rel.current;-RELEASE und ist im Januar 2007 erschienen. Aus dem 9-CURRENT-Zweig entsteht die nächste &os;-Generation. Weitere Informationen über diesen Zweig finden Sie unter Was ist &os;-CURRENT?. Wann werden &os;-Versionen erstellt? Im Schnitt gibt das &a.re; alle 18 Monate eine neue Haupt-Version und etwa alle 8 Monate eine Unter-Version frei. Das Erscheinungsdatum einer neuer Version wird frühzeitig bekanntgegeben, damit die am System arbeitenden Personen wissen, bis wann ihre Projekte abgeschlossen und ausgetestet sein müssen. Vor jedem Release gibt es eine Testperiode um sicherzustellen, dass die neu hinzugefügten Features nicht die Stabilität des Releases beeinträchtigen. Viele Benutzer halten dies für einen großen Vorteil von &os;, obwohl es manchmal frustrierend sein kann, so lange auf die Verfügbarkeit der aktuellsten Leckerbissen zu warten. Weitere Informationen über die Entwicklung von Releases, sowie eine Übersicht über kommende Releases, erhalten Sie auf den Release Engineering Seiten der &os; Webseite. Für diejenigen, die ein wenig mehr Spannung brauchen (oder möchten), werden täglich Snapshots herausgegeben, wie oben beschrieben. Wer ist für &os; verantwortlich? Schlüsseldiskussionen, die das &os; Project betreffen, wie z.B. über die generelle Ausrichtung des Projekts und darüber, wem es erlaubt sein soll, Code zum Quellbaum hinzuzufügen, werden innerhalb eines Core Teams von 9 Personen geführt. Es gibt ein weitaus größeres Team von über 350 Committern, die dazu autorisiert sind, Änderungen am &os; Quellbaum durchzuführen. Jedoch werden die meisten nicht-trivialen Änderungen zuvor in den Mailinglisten diskutiert und es bestehen keinerlei Einschränkungen darüber, wer sich an diesen Diskussionen beteiligen darf. Wie kann ich &os; beziehen? Jede bedeutende Ausgabe von &os; ist per Anonymous-FTP vom &os; FTP Server erhältlich: Das aktuelle 8-STABLE-Release, &rel.current;-RELEASE, finden Sie im Verzeichnis &rel.current;-RELEASE. Snapshots-Releases werden monatlich aus dem -CURRENT-Zweig sowie aus dem -STABLE-Zweig erzeugt. Sie sollten aber nur von Entwicklern und sehr erfahrenen Testern verwendet werden. Das aktuelle Release von 7-STABLE, &rel2.current;-RELEASE finden Sie im Verzeichnis &rel2.current;-RELEASE. Wo und wie Sie &os; auf CD, DVD, und anderen Medien beziehen können, erfahren Sie im Handbuch. Wie greife ich auf die Datenbank mit Problemberichten zu? Die Datenbank mit Problemberichten (PR, problem report) und Änderungsanfragen von Benutzern kann über die webbasierte PR-Abfrage-Schnittstelle abgefragt werden. Mit dem Programm &man.send-pr.1; können Sie Problemberichte oder Änderungsanträge per E-Mail einsenden. Alternativ können Sie Problemberichte auch über Ihren Browser und die webbasierte PR-Eingabe-Schnittstelle erstellen. Bevor Sie einen Fehler melden, sollten Sie sich zuerst den Artikel Writing &os; Problem Reports durchlesen, damit Sie wissen, wie Sie eine gute Fehlermeldung verfassen. Gibt es weitere Informationsquellen? Sie finden eine umfassende Liste unter Documentation auf der &os;-Webseite. Dokumentation und Support Gibt es gute Bücher über &os;? Im Zuge des &os; Projekts sind diverse gute Dokumente entstanden, die unter der folgenden URL abgerufen werden können: . Zusätzlich enthält die Bibliographie am Ende dieser FAQ und diejenige im Handbuch Verweise auf weitere empfohlene Bücher. Ist die Dokumentation auch in anderen Formaten verfügbar? Zum Beispiel als einfacher Text (ASCII) oder als &postscript;? Ja. Werfen Sie einen Blick auf das Verzeichnis /pub/FreeBSD/doc/ auf dem &os; FTP-Server. Dort finden sie Dokumentation in vielen verschiedenen Format. Die Dokumentation wurde nach vielen verschiedenen Kriterien sortiert. Die Kriterien sind: Der Name des Dokumentes, z.B. FAQ oder Handbuch. Die Sprache und der Zeichensatz, die in dem Dokument verwendet werden. Diese entsprechen den Anpassungen, die Sie auf Ihrem &os;-System im Verzeichnis /usr/share/locale finden. Zurzeit werden die folgenden Sprachen und Zeichensätze benutzt: Name Bedeutung bn_BD.ISO10646-1 Bengalisch oder Bangla (Bangladesh) da_DK.ISO8859-1 Dänisch (Dänemark) de_DE.ISO8859-1 Deutsch (Deutschland) en_US.ISO8859-1 Englisch (Vereinigte Staaten) el_GR.ISO8859-7 Griechisch (Griechenland) es_ES.ISO8859-1 Spanisch (Spanien) fr_FR.ISO8859-1 Französisch (Frankreich) it_IT.ISO8859-15 Italienisch (Italien) hu_HU.ISO8859-2 Ungarisch (Ungarn) ja_JP.eucJP Japanisch (Japan, EUC-kodiert) mn_MN.UTF-8 Mongolisch (Mongolei, UTF-8-kodiert) nl_NL.ISO8859-1 Niederländisch (Holland) no_NO.ISO8859-1 Norwegisch (Norwegen) pl_PL.ISO8859-2 Polnisch (Polen) pt_BR.ISO8859-1 Brasilianisches Portugiesisch (Brasilien) ru_RU.KOI8-R Russisch (Russland, KOI8-R-kodiert) sr_YU.ISO8859-2 Serbisch (Serbien) tr_TR.ISO8859-9 Türkisch (Türkei) zh_CN.GB2312 Vereinfachtes Chinesisch (China, GB2312-kodiert) zh_TW.Big5 Chinesisch (Taiwan, Big5-kodiert) Einige Dokumente sind nicht in allen Sprachen verfügbar. Das Format des Dokumentes. Die Dokumentation wird in verschiedenen Formaten erzeugt, von denen jedes seine eigenen Vor- und Nachteile hat. Einige Formate lassen sich gut an einem Bildschirm lesen, während andere Formate dafür gedacht sind, ein ansprechendes Druckbild zu erzeugen. Das die Dokumentation in verschiedenen Formaten verfügbar ist, stellt sicher, dass unsere Leser die für sie relevanten Teile unabhängig vom Ausgabemedium (Bildschirm oder Papier) lesen können. Derzeit werden die folgenden Formate unterstützt: Format Erklärung html-split Viele kleine HTML-Dateien, die sich gegenseitig referenzieren. html Eine große HTML-Datei, die das komplette Dokument enthält. pdf Adobe's Portable Document Format ps &postscript; rtf Microsoft's Rich Text Format txt Ganz normaler Text Die Seitennummern werden nicht automatisch aktualisiert, wenn Sie das Rich Text Format in Word laden. Wenn Sie das Dokument geladen haben, müssen Sie Sie CtrlA, CtrlEnd, F9 eingeben, um die Seitennummern aktualisieren zu lassen. Das zur Komprimierung verwendete Programm. Zur Zeit werden drei verschiedene Methoden benutzt. Wenn die Dokumentation im Format html-split vorliegt, werden die Dateien mit &man.tar.1; zusammengefasst. Die so entstandene .tar Datei wird dann mit einer der unten genannten Methoden komprimiert. Bei allen anderen Formaten existiert nur eine Datei mit dem Namen type.format (z.B. article.pdf, book.html, und so weiter). Diese Dateien werden mit zwei verschiedenen Programmen komprimiert. Programm Beschreibung zip Das zip-Format. Wenn Sie diese Dateien unter &os; entpacken wollen, müssen sie vorher den Port archivers/unzip installieren. bz2 Das bzip2-Format. Es wird seltener als das zip-Format benutzt, erzeugt aber normalerweise kleinere Archive. Sie müssen den Port archivers/bzip2 installieren, um diese Dateien entpacken zu können. Ein Beispiel: Die mit bzip2 gepackte Version des Handbuchs im &postscript;-Format hat den Namen book.ps.bz2 und ist im Verzeichnis handbook/ zu finden. Nachdem Sie das Format und das Kompressionsverfahren ausgewählt haben, müssen Sie die komprimierten Dateien selber herunterladen, entpacken und an die richtigen Stellen kopieren. Wenn Sie zum Beispiel die mit &man.bzip2.1; gepackte split HTMLVersion der englischen FAQ herunterladen und installieren wollten, bräuchten Sie die Datei doc/en_US.ISO8859-1/books/faq/book.html-split.tar.bz2. Um diese Datei herunterzuladen und auszupacken, wären die folgenden Schritte notwendig. &prompt.root; fetch ftp://ftp.de.FreeBSD.org/pub/FreeBSD/doc/en_US.ISO8859-1/books/faq/book.html-split.tar.bz2 &prompt.root; gzip -d book.html-split.tar.bz2 &prompt.root; tar xvf book.html-split.tar Danach haben Sie eine Sammlung vieler kleiner .html Datei. Die wichtigste Datei hat Namen index.html und enthält das Inhaltsverzeichnis, eine Einleitung und Verweise auf die anderen Teile des Dokumentes. Falls notwendig, können Sie die diversen Dateien jetzt an ihren endgültigen Bestimmungsort verschieben oder kopieren. Woher bekomme ich Informationen zu den &os; Mailinglisten? Vollständige Informationen finden Sie im Handbucheintrag über Mailinglisten. Welche Newsgruppen existieren zu &os;? Sie finden alle Informationen hierzu im Handbucheintrag zu Newsgruppen. Gibt es &os; IRC (Internet Relay Chat) Kanäle? Ja, die meisten großen IRC Netze bieten einen &os; Chat-Channel: Channel FreeBSD im EFNet ist ein &os;-Forum, aber gehen Sie nicht dorthin, um technische Unterstützung zu suchen, oder, um zu versuchen, die Leute dort dazu zu bringen, Ihnen dabei zu helfen, das mühselige Lesen von Manuals zu ersparen oder eigene Nachforschungen zu betreiben. Es ist in erster Linie ein Chat-Channel und die Themen dort umfassen Sex, Sport oder Kernwaffen ebensogut, wie &os;. Sie wurden gewarnt! Der Channel ist auf dem Server irc.efnet.org verfügbar. Der Channel #FreeBSDhelp im EFNet hat sich dagegen auf die Unterstützung der Benutzer von &os; spezialisiert. In diesem Channel sind Fragen deutlich willkommener als im Channel #FreeBSD. Der Channel ##FreeBSD auf Freenode bietet allgemeine Hilfe zu &os;-Themen. Es sind immer viele Benutzer online. Zwar werden auch nicht-&os;-spezifische Themen diskutiert, den Hauptteil der Diskussionen dreht sich aber um die Lösung der Probleme von &os;-Anwendern. Die Teilnehmer dieses Channels helfen Ihnen auch bei Fragen zu elementaren Dingen und zeigen Ihnen auch, wo Sie die entsprechenden Erklärungen im &os;-Handbuch oder anderen Ressourcen finden können. Obwohl die Teilnehmer des Channels über die ganze Welt verstreut sind, werden alle Diskussionen auf Englisch geführt. Wollen Sie die Diskussion in Ihrer Sprache führen, sollten Sie Ihre Frage trotzdem auf Englisch stellen und danach gegebenenfalls einen neuen Channel in der Form ##freebsd-Ihre_Sprache eröffnen. Der Channel #FreeBSD im DALNET ist in den USA unter irc.dal.net und in Europa unter irc.eu.dal.net verfügbar. Der Channel #FreeBSDHelp im DALNET ist in den USA unter irc.dal.net sowie in Europa unter irc.eu.dal.net verfügbar. Der Channel #FreeBSD im UNDERNET ist in den USA unter us.undernet.org und in Europa unter eu.undernet.org verfügbar. Es handelt sich hierbei um einen Hilfe-Channel, man wird Sie daher auf Dokumente verweisen, die Sie selbst lesen müssen. Der Channel #FreeBSD im RUSNET ist ein russischsprachiger Channel, der sich der Unterstützung von &os;-Anwendern verschrieben hat. Er ist auch ein guter Startpunkt für nichttechnische Diskussionen. Der Channel #bsdchat auf Freenode (Sprache: traditionelles Chinesisch, UTF-8-kodiert) hat sich der Unterstützung von &os;-Anwendern verschrieben. Er ist auch ein guter Startpunkt für nichttechnische Diskussionen. Alle diese Kanäle unterscheiden sich voneinander und sind nicht miteinander verbunden. Ebenso unterscheiden sich Ihre Chat-Stile, weshalb es sein kann, dass Sie zunächst alle Kanäle ausprobieren müssen, um den zu Ihrem Chat-Stil passenden zu finden. Hier gilt, was für jeden IRC-Verkehr gilt: falls sie sich leicht angegriffen fühlen oder nicht mit vielen jungen (und einigen älteren) Leuten, verbunden mit dem nutzlosen Gezanke umgehen können, dann ziehen Sie es gar nicht erst in Erwägung. Gibt es Firmen, die Training und Support für &os; anbieten? Die &os; Mall bietet ebenfalls professionellen &os; Support an. Weitergehende Informationen finden Sie auf ihrer Webseite. Die BSD Certification Group, Inc. bietet Zertifizierungen zur Systemadministration für DragonFly BSD, &os;, NetBSD und OpenBSD. Wenn Sie daran interessiert sind, besuchen Sie deren Webseite. Wenn Ihre Firma oder Organisation ebenfalls Training und Support anbietet und hier genannt werden möchte, wenden Sie sich bitte an das &os; Project. Nik Clayton
nik@FreeBSD.org
Installation Welche Dateien muss ich herunterladen, um &os; zu bekommen? Sie benötigen drei Floppy-Images: floppies/boot.flp, floppies/kern1.flp sowie floppies/kern2.flp. Diese Images müssen mit Hilfe von Werkzeugen wie fdimage oder &man.dd.1; auf Disketten kopiert werden. Falls Sie selbst die einzelnen Distributionen herunterladen müssen (um z.B. von einem DOS-Dateisystem aus zu installieren), empfehlen wir, sich die folgenden Distributionen zu besorgen: base/ manpages compat* doc src/ssys.* Vollständige Instruktionen für dieses Vorgehen und ein wenig mehr zur Installation generell finden Sie im Handbucheintrag zur Installation von &os;. Was soll ich tun, wenn das Floppy-Image nicht auf eine Diskette passt? Eine 3,5-Zoll (1,44 MB) Diskette kann 1.474.560 Byte an Daten fassen und das Boot-Image ist exakt 1.474.560 Byte groß. Häufige Fehler bei der Erstellung der Boot-Diskette sind: Bei der Benutzung von FTP das Floppy-Image nicht im Binär-Modus herunterzuladen. Einige FTP-Clients benutzen als Voreinstellung den ASCII-Modus und versuchen, alle Zeilenendezeichen an das Zielsystem anzupassen. Dadurch wird das Boot-Image in jedem Fall unbrauchbar. Überprüfen Sie die Größe des heruntergeladenen Boot-Images: falls sie nicht exakt mit der auf dem Server übereinstimmt, hat das Herunterladen nicht richtig funktioniert. Abhilfe: geben Sie binary an der FTP-Eingabeaufforderung ein, nach dem Sie mit dem Server verbunden sind und bevor Sie das Image herunterladen. Die Benutzung des DOS-Befehls copy (oder eines entsprechendes Werkzeugs der grafischen Benutzeroberfläche), um das Boot-Image auf die Diskette zu übertragen. Programme wie copy sind hier unbrauchbar, weil das Image zur direkten Übertragung erstellt wurde. Das Image stellt den gesamten Disketteninhalt dar, Spur für Spur, und nicht eine gewöhnliche Datei. Sie müssen es roh mit speziellen Werkzeugen (z.B. fdimage oder rawrite) übertragen, wie es in der Installationsanleitung zu &os; beschrieben ist. Wo befinden sich die Instruktionen zur Installation von &os;? Installationsanleitungen finden Sie im Handbucheintrag zur Installation von &os;. Was benötige ich zum Betrieb von &os;? Der Betrieb von &os; und neuer erfordert mindestens einen 486er Prozessor mit mindestens 24 MB RAM sowie mindestens 150 MB an Festplattenspeicher. Alle &os;-Versionen laufen mit einer einfachen MDA-Grafikkarte, für &xorg; benötigen Sie allerdings eine VGA- oder eine bessere Videokarte. Lesen Sie auch den Abschnitt Hardwarekompatibilität. Wie kann ich eine angepasste Installationsdiskette erstellen? Zurzeit gibt es keine Möglichkeit, nur die angepassten Installationsdisketten zu erstellen. Sie müssen sich eine ganz neues Release erstellen, das Ihre Installationsdiskette enthält. Wenn Sie eine modifizierte Ausgabe erstellen wollen, finden Sie eine Anleitung im Artikel &os; Release Engineering. Kann ich mehr als ein Betriebssystem auf meinem PC unterbringen? Sehen Sie sich Die Multi-OS-Seite an. Kann &windows; neben &os; existieren? Installieren Sie zuerst &windows;, dann &os;. Der Bootmanager von &os; kann dann entweder &windows; oder &os; booten. Falls Sie &windows; nach &os; installieren, wird es, ohne zu fragen, Ihren Bootmanager überschreiben. Lesen Sie den nächsten Abschnitt, falls das passieren sollte. &windows; hat meinen Bootmanager zerstört! Wie stelle ich ihn wieder her? Es gibt drei Möglichkeiten, den &os;-Bootmanager neu zu installieren: Unter DOS wechseln Sie in das Verzeichnis tools/ Ihrer &os;-Distribution und suchen nach bootinst.exe. Rufen sie es so auf: ...\TOOLS> bootinst.exe boot.bin und der Bootmanager wird neu installiert. Booten Sie &os; wieder mit der Bootdiskette und wählen Sie den Menüeintrag Custom Installation. Wählen Sie Partition. Wählen Sie das Laufwerk, auf dem sich der Bootmanager befand (wahrscheinlich der erste Eintrag) und wenn Sie in den Partitioneditor gelangen, drücken Sie als aller erstes (nehmen Sie z.B. keine Änderungen vor) (W)rite. Sie werden nach einer Bestätigung gefragt, wählen Sie &gui.yes; und vergessen Sie nicht, in der Bootmanager-Auswahl den &os; Boot Manager auszuwählen. Hierdurch wird der Bootmanager wieder auf die Festplatte geschrieben. Verlassen Sie nun das Installationsmenü und rebooten wie gewöhnlich von der Festplatte. Booten Sie &os; wieder mit der Bootdiskette (oder der CD-ROM) und wählen Sie den Menüpunkt Fixit. Wählen Sie die für Sie passende Option, entweder die Fixit-Diskette oder die CD-ROM Nummer 2 (die Option live Filesystem). Wechseln Sie zur Fixit-Shell und geben Sie den folgenden Befehl ein: Fixit# fdisk -B -b /boot/boot0 bootdevice Als bootdevice müssen Sie das von Ihrem System verwendete Gerät angeben, z.B. ad0 (erste IDE-Platte), ad4 (erste IDE-Platte an einem zusätzlichen Controller), da0 (erste SCSI-Platte), usw. Mein IBM Thinkpad Modell A, T oder X, hängt sich auf, wenn ich &os; zum ersten Mal starte. Was soll ich machen? Ein Fehler in den ersten BIOS-Versionen dieser Geräte führt dazu, dass sie die von &os; genutzte Partition für eine Suspend-To-Disk-Partition halten. Wenn das BIOS dann versucht, diese Partition auszuwerten, hängt sich das System auf. Laut IBM In einer Mail von Keith Frechette kfrechet@us.ibm.com. wurde der Fehler wurde in den folgenden BIOS-Versionen behoben: Gerät BIOS Version T20 IYET49WW oder neuer T21 KZET22WW oder neuer A20p IVET62WW oder neuer A20m IWET54WW oder neuer A21p KYET27WW oder neuer A21m KXET24WW oder neuer A21e KUET30WW Es ist möglich, dass neuere Version des IBM BIOS den Fehler wieder enthalten. Dieser Beitrag von &a.nectar; auf der Mailingliste &a.mobile; beschreibt eine Technik, die Ihnen weiterhelfen könnte, wenn Ihr IBM Laptop mit &os; nicht bootet und Sie eine neuere oder ältere BIOS-Version einspielen können. Wenn Ihr Thinkpad über eine ältere BIOS-Version verfügt und Sie das BIOS nicht aktualisieren können, ist eine der möglichen Lösungen, &os; zu installieren, die Partitions-ID zu ändern und danach neue Bootblocks zu installieren, die mit der geänderten ID umgehen können. Zunächst müssen Sie die Maschine so weit wiederherstellen, dass sie über den Selbst-Test hinauskommt. Dazu ist es erforderlich, dass das System beim Start keine Partitions-ID auf seiner primären Festplatte findet. Eine Variante ist, die Platte auszubauen und vorübergehend in einem älteren Thinkpad (z.B. dem Thinkpad 600) oder (mit einem passenden Adapter) in einen normalen PC einzubauen. Sobald dies erfolgt ist, können Sie die &os;-Partition löschen und die Festplatte wieder in das Thinkpad einbauen. Das Thinkpad sollte jetzt wieder starten können. Danach können Sie mit der nachfolgend beschriebenen Anleitung eine funktionsfähige &os;-Installation erhalten. Beschaffen Sie sich boot1 und boot2 von . Legen Sie diese Dateien so ab, dass Sie während der Installation darauf zugreifen können. Installieren Sie ganz wie gewohnt &os; auf dem Thinkpad. Allerdings dürfen Sie den Dangerously Dedicated-Modus nicht benutzen. Nach dem Abschluss der Installation dürfen Sie die Maschine nicht neu starten. Wechseln Sie zur Emergency Holographic Shell ( Alt F4 ) oder starten Sie eine fixit Shell. Benutzen Sie &man.fdisk.8;, um die Partitions-ID von &os; von 165 in 166 zu ändern (dieser Wert wird von OpenBSD benutzt). Kopieren Sie die Dateien boot1 und boot2 auf die lokale Festplatte. Installieren Sie boot1 und boot2 mit &man.disklabel.8; auf die &os;-Slice. &prompt.root; disklabel -B -b boot1 -s boot2 ad0sn Setzen Sie für n die Nummer der Slice ein, auf der sie FreeBSD installiert haben. Starten Sie das System neu. Am Boot-Prompt sollten Sie die Auswahl OpenBSD erhalten. Damit wird in Wirklichkeit &os; gestartet. Was Sie machen müssen, wenn Sie &os; und OpenBSD parallel installieren wollen, sollten Sie zu Übungszwecken einfach einmal selbst herausfinden. Kann ich &os; auf einer Festplatte mit beschädigten Blöcken installieren? Prinzipiell ja. Allerdings ist das keine gute Idee. Wenn Ihnen bei einer modernen IDE-Platte defekte Sektoren gemeldet werden, wird die Platte mit großer Wahrscheinlichkeit innerhalb kurzer Zeit vollständig ausfallen, da die Meldung ein Zeichen dafür ist, dass die für die Korrektur reservierten Sektoren bereits verbraucht wurden. Wir raten Ihnen, die Platte auszutauschen. Falls Sie ein SCSI-Laufwerk mit beschädigten Blöcken besitzen, lesen Sie diese Antwort. Wenn ich von der Installationsdiskette boote, geschehen merkwürdige Dinge! Was sollte ich tun? Falls Sie beobachten, dass ihr Rechner sich bis zum Stillstand abmüht oder spontan rebootet, während Sie versuchen, von der Installationsdiskette zu booten, sollten Sie sich drei Fragen stellen: Haben Sie eine brandneue, frisch formatierte, fehlerfreie Diskette benutzt (günstigerweise eine brandneue, direkt aus dem Karton und nicht eine Diskette aus einem Magazin, das schon seit drei Jahren unter Ihrem Bett lag)? Haben Sie das Floppy-Image im Binär- (oder Image) Modus heruntergeladen? (Schämen Sie sich nicht. Sogar die besten unter uns haben wenigstens einmal Binärdateien versehentlich im ASCII-Modus heruntergeladen!) Falls Sie &windows; 95 oder &windows; 98 benutzen, haben Sie es heruntergefahren und fdimage bzw. rawrite in einfachem, reinem DOS neu gestartet? Es scheint, dass diese Betriebssysteme Programme stören, die direkt auf Hardware schreiben, wie es das Erstellungsprogramm für die Diskette tut; selbst bei der Ausführung des Programms in einem DOS-Fenster in der grafischen Benutzeroberfläche kann dieses Problem auftreten. Es wurde auch darüber berichtet, dass &netscape; Probleme beim Herunterladen der Bootdisketten verursacht. Es ist also wahrscheinlich besser, einen anderen FTP-Client zu benutzen. Ich habe zur Installation von meinem ATAPI CD-ROM gebootet, aber das Installationsprogramm sagt mir, dass es kein CD-ROM gefunden hat. Was geht hier ab? Dieses Problem wird üblicherweise durch ein falsch konfiguriertes CD-ROM verursacht. Bei vielen PCs ist das CD-ROM der Slave am zweiten IDE-Controller, ein Master ist nicht vorhanden. Laut Spezifikation ist diese Konfiguration ungültig, aber &windows; verletzt die Spezifikation und das BIOS ignoriert sie, wenn es von einem CD-ROM booten soll. Daher konnten Sie zwar vom CD-ROM booten, während &os; es nicht für die Installation benutzen kann. Um dieses Problem zu lösen, müssen Sie entweder das CD-ROM als Master an den IDE-Controller anschließen oder dafür sorgen, dass an dem vom CD-ROM genutzten IDE-Controller das CD-ROM als Slave und ein anderes Gerät als Master angeschlossen ist. Kann ich auf meinem Laptop per PLIP (Parallel Line IP) installieren? Ja, Sie brauchen dazu nur ein ganz normales Laplink-Kabel. Weitere Informationen zum Thema Netzwerke am Druckerport finden sie im Kapitel PLIP des Handbuchs. Welche Geometrie sollte ich für ein Festplattenlaufwerk verwenden? Unter der Geometrie einer Festplatte verstehen wir die Anzahl Zylinder, Schreib-/Leseköpfen und Sektoren/Spur auf einer Festplatte. Im folgenden wird dafür der Übersichtlichkeit halber der Begriff C/H/S verwendet. Das BIOS des PCs berechnet mit diesen Angaben, auf welche Bereiche der Festplatte es für Schreib-/Lesezugriffe zugreifen muss). Aus einigen Gründen scheint dies gerade bei frischgebackenen Systemadministratoren für sehr viel Verwirrung zu sorgen. Zunächst einmal ist die physikalische Geometrie eines SCSI-Laufwerks vollkommen irrelevant, da &os; mit Blöcken arbeitet. Tatsächlich gibt es die physikalische Geometrie nicht, da die Sektordichte auf einer Festplatte variiert. Was die Hersteller als die wahre physikalische Geometrie bezeichnen, ist im allgemeinen die Geometrie, die aufgrund ihrer Ergebnisse im geringsten ungenutzten Speicher resultiert. Bei IDE-Platten arbeitet &os; mit C/H/S-Angaben, aber alle modernen Laufwerke wandeln diese intern ebenfalls in Blocknummern um. Wichtig ist nur die logische Geometrie. Das BIOS kann die logische Geometrie der Festplatte abfragen; die erhaltenen Daten werden dann vom BIOS bei Zugriffen auf die Festplatte genutzt. Da &os; das BIOS benutzt, während es bootet, ist es sehr wichtig, dass diese Angaben richtig sind. Insbesondere müssen alle Betriebssysteme mit derselben Geometrie arbeiten, falls Sie mehr als ein Betriebssystem auf einer Festplatte haben. Andernfalls werden Sie ernsthafte Bootprobleme bekommen! Bei SCSI-Festplatten hängt die zu verwendende Geometrie davon ab, ob der Extended Translation Support auf Ihrem Controller eingeschaltet ist (oft auch als Unterstützung für DOS-Platten >1GB oder ähnlich bezeichnet). Falls sie ausgeschaltet ist, benutzen Sie N Zylinder, 64 Köpfe und 32 Sektoren/Spur, wobei N die Kapazität der Festplatte in MB ist. Zum Beispiel sollten für eine 2 GB Festplatte 2048 Zylinder, 64 Köpfe und 32 Sektoren/Spur angegeben werden. Falls sie eingeschaltet ist (was oft der Fall ist, um bestimmte Einschränkungen von &ms-dos; zu umgehen) und die Plattenkapazität mehr als 1 GB beträgt, benutzen Sie M Zylinder, 63 Sektoren/Spur (nicht 64) und 255 Köpfe, wobei M der Plattenkapazität in MB, dividiert durch 7,844238 entspricht (!). Also würde unsere 2 GB Beispielplatte 261 Zylinder, 63 Sektoren/Spur und 255 Köpfe haben. Falls Sie sich hier nicht sicher sind oder &os; während der Installation die Geometrie nicht richtig erkennt, hilft es normalerweise, eine kleine DOS-Partition auf der Festplatte anzulegen. Das BIOS sollte dann in der Lage sein, die richtige Geometrie zu erkennen. Sie können die Partition jederzeit im Partitioneditor entfernen, falls Sie sie nicht behalten möchten. Allerdings kann Sie ganz nützlich sein, um Netzwerkkarten zu programmieren und ähnliches. Alternativ können Sie das frei verfügbare Programm pfdisk.exe verwenden. Sie finden es im Unterverzeichnis tools auf der &os; CD-ROM und allen &os; FTP-Servern). Mit diesem Programm können Sie herausfinden, welche Geometrie die anderen Betriebssysteme auf der Festplatte verwenden. Diese Geometrie können Sie im Partitioneditor eingeben. Gibt es irgendwelche Einschränkungen, wie ich die Festplatte aufteilen darf? Ja. Sie müssen sicherstellen, dass Ihre Rootpartition innerhalb der ersten 1024 Zylinder liegt, damit das BIOS den Kernel von Ihr booten kann. (Beachten Sie, dass es sich um eine Einschränkung durch das BIOS des PCs handelt und nicht durch &os;). Für ein SCSI-Laufwerk bedeutet dies normalerweise, dass sich die Rootpartition in den ersten 1024 MB befindet (oder in den ersten 4096 MB, falls die Extended Translation eingeschaltet ist - siehe die vorherige Frage). Der entsprechende Wert für IDE ist 504 MB. Verträgt sich &os; mit Plattenmanagern? &os; erkennt den Ontrack Disk Manager und berücksichtigt ihn. Andere Plattenmanager werden nicht unterstützt. Falls Sie die Festplatte nur mit &os; benutzen wollen, brauchen Sie keinen Plattenmanager. Wenn Sie Sie die Platte einfach in der vom BIOS maximal unterstützten Größe (normalerweise 504 Megabyte) konfigurieren, sollte &os; erkennen, wie viel Platz Sie tatsächlich haben. Falls Sie eine alte Festplatte mit einem MFM-Controller verwenden, könnte es sein, dass Sie &os; explizit angeben müssen, wie viele Zylinder es benutzen soll. Falls Sie die Festplatte mit &os; und einem anderen Betriebssystem benutzen wollen, sollten Sie auch in der Lage sein, ohne einen Plattenmanager auszukommen: stellen sie einfach sicher, dass sich die Bootpartition von &os; und der Bereich für das andere Betriebssystem in den ersten 1024 Zylindern befinden. Eine 20 Megabyte Bootpartition sollte völlig genügen, wenn Sie einigermaßen sorgfältig arbeiten. Beim ersten Booten von &os; erscheint Missing Operating System. Was ist passiert? Dies ist ein klassischer Fall von Konflikten bei den verwendeten Plattengeometrien von &os; und DOS oder anderen Betriebssystemen. Sie werden &os; neu installieren müssen. Bei Beachtung obiger Instruktionen wird in den meisten Fällen alles funktionieren. Wieso komme ich nicht weiter als bis zum F?-Prompt des Bootmanagers? Dies ist ein weiteres Symptom für das bereits in der vorherigen Frage beschriebene Problem. Ihre Einstellungen zur Geometrie im BIOS und in &os; stimmen nicht überein! Falls Ihr Controller oder BIOS Zylinderumsetzung (oft als >1GB drive support bezeichnet), probieren Sie eine Umsetzung dieser Einstellung und Neuinstallation von &os;. Muss ich den vollständigen Quellcode installieren? Im allgemeinen nicht. Wir empfehlen jedoch dringend die Installation des base Source-Kit, das viele der hier erwähnten Dateien enthält und des sys (Kernel) Source-Kit, das den Quellcode für den Kernel enthält. Außer dem Programm zur Konfiguration des Kernels (&man.config.8;) gibt es im System nichts, zu dessen Funktion der Quellcode erforderlich ist. Mit Ausnahme der Kernelquellen ist unsere Build-Struktur so aufgebaut, dass Sie den Quellcode von überall her per NFS read-only mounten und dennoch neue Binaries erstellen können. (Wegen der Einschränkung bezüglich der Kernelquellen empfehlen wir, diese nicht direkt nach /usr/src zu mounten, sondern irgendwo anders hin mit passenden symbolischen Links, um die Toplevel-Struktur des Quellbaumes zu duplizieren.) Die Quellen verfügbar zu haben und zu wissen, wie man ein System mit ihnen erstellt, wird es Ihnen wesentlich einfacher machen, zu zukünftigen Ausgaben von &os; zu wechseln. Um einen Teil der Quellen auszuwählen, verwenden Sie den Menüpunkt Custom, wenn Sie sich im Menü Distributions des Systeminstallationstools befinden. Muss ich einen Kernel erstellen? Ursprünglich war die Erstellung eines neuen Kernels bei fast jeder Installation von &os; erforderlich, aber neuere Ausgaben haben von der Einführung weitaus benutzerfreundlicherer Kernelkonfigurationswerkzeuge profitiert. Die Kernelkonfiguration erfolgt in der Regel durch die die deutlich flexibleren hints, die am Loader-Prompt eingegeben werden können. Es kann dennoch sinnvoll sein, einen neuen Kernel zu erstellen, der nur die benötigten Treiber enthält, um ein wenig Hauptspeicher zu sparen, für die meisten Systeme ist dies aber nicht mehr länger erforderlich. Soll ich DES, Blowfish oder MD5 zur Verschlüsselung der Passwörter benutzen? &os; benutzt standardmäßig MD5 zur Verschlüsselung der Passwörter. Es wird angenommen, dass diese Methode sicherer ist als das traditionell benutzte Verfahren, das auf dem DES Algorithmus basierte. Es ist immer noch möglich, DES-Passwörter zu benutzen, wenn Sie die Datei mit den Passwörtern mit älteren System austauschen müssen. &os; erlaubt es Ihnen, auch das sichere Blowfish-Verfahren für die Verschlüsselung der Passwörter einzusetzen. Das für neue Passwörter benutzte Verschlüsselungsverfahren wird über die Einstellung passwd_format in /etc/login festgelegt. Die möglichen Werte sind entweder des, blf (falls sie zur Verfügung stehen) oder md5. Weitere Informationen über die Einstellungen für den Login erhalten Sie in &man.login.conf.5;. Woran kann es liegen, dass ich zwar von der Diskette booten kann, aber nicht weiter als bis zur Meldung Probing Devices... komme? Falls Sie ein IDE &iomegazip;- oder &jaz;-Laufwerk eingebaut haben, entfernen Sie es und versuchen Sie es erneut. Solche Laufwerke könnten dem Bootvorgang stören. Nach der Installation des Systems können Sie das Laufwerk wieder einbauen. Dieser Fehler wird hoffentlich in einer späteren Version behoben werden. Wieso wird mit der Fehler panic: cant mount root gemeldet, wenn ich das System nach der Installation reboote? Dieser Fehler beruht auf Unstimmigkeiten zwischen den Festplatteninformationen im Bootblock und denen im Kernel. Der Fehler tritt normalerweise auf IDE-Systemen mit zwei Festplatten auf, bei denen die Festplatten als Master- oder Single-Device auf separaten IDE-Controllern angeschlossen sind und &os; auf der Platte am zweiten Controller installiert wurde. Der Bootblock vermutet, dass das System auf ad0 (der zweiten BIOS-Platte) installiert ist, während der Kernel der ersten Platte auf dem zweiten Controller die Gerätekennung ad2 zuteilt. Der Kernel versucht nach der Geräteüberprüfung die vom Bootblock angenommene Bootdisk ad0 zu mounten, obwohl sie in Wirklichkeit ad2 heißt - und scheitert. Tun Sie folgendes, um dieses Problem zu beheben: Rebooten Sie das System und drücken Sie Enter, wenn die Meldung Booting kernel in 10 seconds; hit [Enter] to interrupt erscheint. Dadurch gelangen Sie in den Boot Loader. Geben Sie nun set root_disk_unit="disk_number" ein. disk_number hat den Wert 0, wenn &os; auf dem Master des ersten IDE-Controllers installiert wurde; 1, wenn &os; auf dem Slave des ersten IDE-Controllers installiert wurde; 2, wenn &os; auf dem Master des zweiten IDE-Controllers installiert wurde; und 3, wenn &os; auf dem Slave des zweiten IDE-Controllers installiert wurde. Nach der Eingabe von boot sollte Ihr System jetzt korrekt starten. Damit Sie dieses Ritual nicht bei jedem Start des Systems durchführen müssen, sollten Sie die Zeile root_disk_unit="disk_number" in die Datei /boot/loader.conf.local eintragen. Stellen Sie eine ununterbrochene Folge der Festplatten her, indem Sie die &os;-Platte am ersten IDE-Controller anschließen. Gibt es eine Hauptspeicherbegrenzung? Hauptspeicherbegrenzung sind von der verwendeten Plattform abhängig. Bei einer &i386;-Standardinstallation werden maximal 4 GB Hauptspeicher unterstützt, mehr Speicher ist mittels &man.pae.4; verfügbar. Lesen Sie dazu die Anleitung, um 4 GB oder mehr Speicher auf &i386; zu verwenden. &os;/pc98 unterstützt maximal 4 GB Hauptspeicher, daher kann PAE auf diesen Systemen nicht verwendet werden. Sonstige von &os; unterstützte Architekturen haben ein sehr viel höheres theoretisches Speicherlimit (viele Terabytes). Wo liegen die Grenzen für FFS-Dateisysteme? Theoretisch liegt das Limit für FFS-Dateisysteme bei 8 Terabyte (2 G-Blöcke) oder 16 TB für die Standard-Blockgröße von 8 KB. In der Praxis setzt die Software das Limit auf 1 TB herab, aber durch Modifikationen sind auch Dateisysteme mit 4 TB möglich (und existieren auch). Die maximale Größe einer einzelnen FFS-Datei liegt bei ungefähr 1 G Blöcken (4 TB, falls die Blockgröße 4 KB beträgt). Maximale Dateigröße Blockgröße Geht Sollte Gehen 4 KB > 4 GB 4 TB - 1 8 KB > 32 GB 32 TB - 1 16 KB > 128 GB 32 TB - 1 32 KB > 512 GB 64 TB - 1 64 KB > 2048 GB 128 TB - 1
Wenn die im Dateisystem verwendete Blockgröße 4 KB beträgt, wird mit dreifacher Indirektion gearbeitet und die Limitierung sollte durch die höchste Blocknummer erfolgen, die mit dreifacher Indirektion dargestellt werden kann (ungefähr 10243 + 10242 + 1024). In Wirklichkeit liegt das Limit aber bei der (falschen) Anzahl von 1 G - 1 Blocknummern im Dateisystem. Die maximale Anzahl der Blocknummern müsste 2 G - 1 sein. Es gibt einige Fehler für Blocknummern nahe 2 G - 1, aber solche Blocknummern sind bei einer Blockgröße von 4 KB unerreichbar. Bei Blocknummern von 8 KB und größer sollte das Limit bei 2 G - 1 Blocknummern liegen, tatsächlich liegt es aber bei 1 G - 1 Blocknummern. Die Verwendung der korrekten Grenze von 2 G - 1 verursacht Probleme.
Wieso erhalte ich die Fehlermeldung archsw.readin.failed beim Start des Systems, nachdem ich einen neuen Kernel erstellt habe? Ihr System und Ihr Kernel sind nicht synchron - dies ist nicht erlaubt. Sie müssen Ihren Kernel mit make buildworld und make buildkernel aktualisieren. Sie können den zu bootenden Kernel direkt im zweiten Schritt angeben, indem Sie eine beliebige Taste drücken, wenn das | erscheint und bevor der Loader startet. Mein System stürzt beim Booten ab! Was kann ich tun? Deaktivieren Sie die ACPI-Unterstützung. Dazu drücken Sie beim Start des Bootloaders die Leertaste. Das System zeigt folgendes an: OK Geben Sie nun unset acpi_load und danach boot ein.
Hardware-Kompatibilität Allgemeines Ich will mir neue Hardware für mein &os;-System zulegen, was soll ich kaufen? Diese Frage wird ständig auf den &os;-Mailinglisten diskutiert. Da sich die Hardware ständig ändert, ist das allerdings keine Überraschung. Trotzdem sollten Sie unbedingt die Hardware-Informationen von &os; (&rel.current; oder &rel2.current;) und die Archive der Mailinglisten durchsehen, bevor Sie nach der neuesten/besten Hardware fragen. Normalerweise gab es kurz zuvor eine Diskussion über genau die Hardware, die Sie sich zulegen wollen. Wenn Sie sich einen Laptop zulegen wollen, sollten Sie einen Blick in das Archiv der Mailingliste &a.mobile; werfen. Ansonsten empfiehlt sich ein Blick in das Archiv von &a.questions; oder auch einer spezialisierte Mailingliste für diese Art von Hardware. Hauptspeicher Unterstützt &os; mehr als 4 GB Speicher (RAM)? Mehr als 16 GB? Mehr als 48 GB? Ja. Generell unterstützt &os; als Betriebssystem so viel physischen Speicher (RAM), wie die Plattform auf der es läuft. Achten Sie darauf, dass verschiedene Plattformen unterschiedliche Speichergrenzen besitzen. So wird z.B. &i386; ohne PAE höchstens 4 GB Speicher (normalerweise weniger als das wegen des PCI-Addressraums), dagegen wird &i386; mit PAE höchstens 64 GB Speicher bereitstellen. Momentan erhältliche AMD64 Plattformen können bis zu 1 TB physischen Speicher ansprechen. Warum zeigt &os; weniger als 4 GB Speicher an, wenn es auf einer &i386; Maschine installiert wird? Der Gesamtadressraum beträgt auf &i386; Maschinen 32-Bit, was bedeutet, dass maximal 4 GB Speicher addressiert (verwaltet) werden kann. Weiterhin sind viele Adressen in diesem Bereich von der Hardware für bestimmte Aufgaben reserviert, um z.B. PCI-Geräte zu benutzen und zu steuern, auf Videospeicher zuzugreifen und so weiter. Aus diesem Grund ist die Gesamtmenge an Speicher, die vom Betriebssystem für den Kernel und Anwendungen verwendet werden kann, auf wesentlich weniger als 4 GB begrenzt. Normalerweise sind 3.2 GB bis 3.7 GB das Maximum an verfügbarem Speicher in dieser Konfiguration. Um auf mehr als 3.2 GB bis 3.7 GB des installierten Speichers (was bis zu 4 GB, aber aber auch mehr als 4 GB bedeuten kann) zuzugreifen, muss eine spezielle Manipulation, genannt PAE, benutzt werden. PAE steht für Physical Address Extension und ist eine Möglichkeit für 32-Bit x86-CPUs mehr als 4 GB Speicher zu addressieren. Es organisiert den Speicher, der andererseits wegen Addressreservierungen für Hardwaregeräte oberhalb der 4 GB Grenze liegt, um und benutzt diesen als zusätzlichen physischen Speicher (lesen Sie dazu &man.pae.4;). Der Einsatz von PAE ist mit ein paar Nachteilen verbunden: diese Speicherzugriffsmethode ist ein bisschen langsamer als die normale Methode (ohne PAE) und ladbare Module (beschrieben in &man.kld.4;) werden nicht unterstützt. Das bedeutet, dass alle Treiber in den Kernel eingebaut sein müssen. Die am häufigsten verwendete Vorgehensweise, PAE zu aktivieren ist die, einen neuen Kernel mit der speziell dafür vorgesehenen Kernelkonfigurationsdatei, PAE genannt, zu bauen, die bereits so eingestellt ist, dass ein funktionierender Kernel erstellt wird. Beachten Sie, dass manche Einträge in dieser Kernelkonfigurationsdatei zu konservativ eingestellt sind und dass manche Treiber, die nicht für den Einsatz mit PAE vorgesehen sind, trotzdem funktionieren. Als Faustregel kann man sagen, dass wenn der Treiber auf 64-Bit Architekturen (like AMD64) läuft, er auch mit PAE lauffähig ist. Wenn Sie ihre eigene Kernelkonfigurationsdatei erstellen möchten, können Sie PAE aktivieren, indem Sie die folgende Zeile zu ihrer Konfiguration hinzufügen: options PAE PAE wird heutzutage nicht sehr häufig angewendet, da die Mehrzahl an neuer x86-Hardware auch den Betrieb im 64-Bit Modus erlaubt, auch als AMD64 oder &intel; 64 bekannt. Es hat viel mehr Adressraum und benötigt solche Manipulationen nicht. &os; unterstützt AMD64 und es wird empfohlen, diese &os; Version anstatt der &i386; Version einzusetzen, wenn 4 GB oder mehr Speicher gebraucht werden. Architekturen und Prozessoren Unterstützt &os; neben x86 auch andere Architekturen? Ja. &os; ist zurzeit für die Intel x86 und AMD64 Architekturen verfügbar. Intel EM64T, IA-64, &arm;, &powerpc;, sun4v und &sparc64; werden ebenfalls unterstützt. Die Neuzugänge auf der Liste der in Zukunft unterstützten Plattformen sind &mips; und &s390;. Abonnieren Sie die Mailingliste &a.mips;, wenn Sie mehr über den Stand der Entwicklung erfahren wollen. Schließen Sie sich der Mailingliste &a.platforms; an, wenn Sie an grundsätzlichen Diskussionen über neue Architekturen interessiert sind. Falls Ihre Maschine eine andere Architektur aufweist und Sie unbedingt sofort etwas benötigen, schlagen wir vor, dass Sie sich einmal NetBSD oder OpenBSD ansehen. Unterstützt &os; Symmetric-Multiproccessing (SMP)? Symmetric-Multiproccessing (SMP) Systeme werden generell von &os; unterstützt, obwohl in manchen Fällen durch Fehler im BIOS oder Mainboard Probleme auftreten. Lesen Sie die Mailingliste &a.smp;, wenn Sie weitere Hinweise benötigen. &os; nutzt die Vorteile von HyperThreading (HTT) Unterstützung von Intel-Prozessoren, die diese Eigenschaft besitzen. Ein Kernel mit der options SMP Zeile wird automatisch die zusätzlichen logischen Prozessoren erkennen. Der Standard &os;-Scheduler behandelt die logischen Prozessoren auf die gleiche Weise wie zusätzliche physische Prozessoren. Mit anderen Worten, es wird nicht der Versuch unternommen, die Entscheidungen des Schedulers zu optimieren, da sich die logischen Prozessoren innerhalb der gleichen CPU die Ressourcen teilen. Weil diese naive Planung in schlechterer Leistung resultieren kann, ist es unter Umständen hilfreich, die logischen Prozessoren über die sysctl Variable machdep.hlt_logical_cpus zu deaktivieren. Es ist auch möglich, jede CPU in der Warteschleife mit der sysctl Variable machdep.hlt_cpus anzuhalten. Weitere Informationen finden Sie in der Manualpage &man.smp.4;. Festplatten, Bandlaufwerke, sowie CD- und DVD-Laufwerke Welche Arten von Festplatten werden von &os; unterstützt? &os; unterstützt EIDE-, SATA-, SCSI- und SAS-Laufwerke (mit kompatiblen Controllern - siehe folgenden Abschnitt), sowie alle Laufwerke, die die original Western Digital-Schnittstelle (MFM, RLL, ESDI und natürlich IDE) benutzen. Ein paar Controller mit proprietären Schnittstellen könnten nicht laufen: halten Sie sich an WD1002/3/6/7-Schnittstellen und Clones. Welche SCSI- oder SAS-Controller werden unterstützt? Sie finden eine vollständige und aktuelle Liste in den Hardware-Informationen zu &os; (&rel.current; oder &rel2.current;). Welche Arten von Bandlaufwerken werden unterstützt? &os; unterstützt SCSI-, QIC-36- (mit QIC-02-Schnittstelle) und QIC-40/80-Bandlaufwerke (diskettenbasiert). Hierzu gehören auch 8-mm (aka Exabyte) und DAT-Laufwerke. Die QIC-40/80-Laufwerke sind bekanntlich sehr langsam. Einige der frühen 8-mm-Laufwerke sind nicht besonders kompatibel zu SCSI-2 und könnten unter &os; nicht einwandfrei funktionieren. Unterstützt &os; Bandwechsler? Das Gerät &man.ch.4; und das Kommando chio unterstützen Bandwechsler. Details zum Betrieb des Wechslers finden Sie in der Hilfeseite &man.chio.1;. Falls Sie nicht AMANDA oder ein anderes Produkt benutzen, das den Wechsler bereits kennt, bedenken Sie, dass die Programme nur wissen, wie sie ein Band von einem Punkt zu einem anderen bewegen müssen. Sie selbst müssen sich also merken, in welchem Einschub sich ein Band befindet und zu welchem Einschub das Band, das sich gerade im Laufwerk befindet, zurück muss. Welche CD-ROM-Laufwerke werden von &os; unterstützt? Jedes an einem unterstützten Controller angeschlossene SCSI-Laufwerk wird unterstützt. Die folgenden proprietären CD-ROM-Schnittstellen werden ebenfalls unterstützt: Mitsumi LU002 (8-Bit), LU005 (16-Bit) und FX001D (16-Bit 2x Speed). Sony CDU 31/33A Sound Blaster Non-SCSI CD-ROM Matsushita/Panasonic CD-ROM ATAPI compatible IDE CD-ROMs Von allen Nicht-SCSI-Laufwerken ist bekannt, dass sie im Vergleich zu SCSI-Laufwerken extrem langsam sind. Einige ATAPI-CD-ROMs könnten nicht funktionieren. &os; kann direkt von der offiziellen &os; CD-ROM, sowie den CD-ROMs von Daemon News und &os; Mall, gebootet werden. Welche CD-Brenner werden von &os; unterstützt? &os; unterstützt alle ATAPI-kompatiblen IDE CD-R und CD-RW Brenner. Lesen Sie dazu auch &man.burncd.8;. &os; unterstützt ebenfalls SCSI CD-R und CD-RW Brenner. Installieren und benutzen Sie das Paket cdrecord aus der Ports-Sammlung. Dazu müssen Sie allerdings das Gerät pass mit in Ihren Kernel aufnehmen. Unterstützt &os; &iomegazip;-Laufwerke? &os; unterstützt alle gängigen SCSI- und ATAPI-&iomegazip;-Laufwerke. Ihr SCSI-ZIP-Laufwerk darf nur mit den SCSI-Ziel-IDs 5 oder 6 laufen, aber Sie können sogar davon booten, falls das BIOS Ihres Hostadapters dies unterstützt. Es ist nicht bekannt, welche Hostadapter das Booten von anderen Zielen als 0 oder 1 erlauben; daher werden Sie in ihren Handbüchern nachsehen müssen, wenn Sie dieses Merkmal benutzen möchten. &os; unterstützt ZIP-Laufwerke, die an der parallelen Schnittstelle angeschlossen sind. Der Kernel sollte die folgenden Treiber enthalten: scbus0, da0, ppbus0 und vp0 (der GENERIC-Kernel enthält alle, außer vp0). Wenn diese Treiber vorhanden sind, sollte das Laufwerk an der parallelen Schnittstelle als /dev/da0s4 verfügbar sein. Zip-Datenträger können mit mount /dev/da0s4 /mnt ODER (DOS-formatierte) mount -t msdosfs /dev/da0s4 /mnt gemountet werden. Lesen Sie auch den FAQ-Eintrag zu Wechseldatenträgern und die Anmerkungen zum Thema Formatierung im Kapitel Administration. Unterstützt &os; &jaz;, EZ und andere Wechsellaufwerke? Ja. Bei den meisten dieser Geräte handelt es sich um SCSI-Geräte, die von &os; auch als solche angesprochen werden. Lediglich das IDE-EZ-Laufwerk wird als IDE-Laufwerk angesprochen. Schalten Sie die Laufwerke ein, bevor Sie Ihr System booten. Müssen Sie Medien im laufenden Betrieb wechseln, sollten Sie zuvor &man.mount.8;, &man.umount.8;, sowie &man.camcontrol.8; (für SCSI-Laufwerke) oder &man.atacontrol.8; (für IDE-Laufwerke), sowie den Abschnitt zur Nutzung von Wechsellaufwerken dieser FAQ lesen. Tastaturen und Mäuse Unterstützt &os; meine Tastatur mit USB-Anschluss? Ja. &os; unterstützt USB-Tastaturen. Wenn Sie die Unterstützung für USB-Tastaturen konfiguriert haben, ist die AT-Tastatur als /dev/kbd0 und die USB-Tastatur als /dev/kbd1 verfügbar. Dies gilt natürlich nur, wenn beide Tastaturen angeschlossen sind; falls nur die USB-Tastatur angeschlossen ist, ist diese als /dev/ukbd0 verfügbar. Wenn Sie die USB-Tastatur an der Systemkonsole benutzen wollen, müssen Sie dies dem System explizit mitteilen. Dazu muss das folgende Kommando während des Systemstarts ausgeführt werden: &prompt.root; kbdcontrol -k /dev/kbd1 < /dev/console > /dev/null Wenn Sie nur die USB-Tastatur angeschlossen haben, ist diese als /dev/ukbd0 verfügbar; daher muss in diesem Fall das folgende Kommando benutzt werden: &prompt.root; kbdcontrol -k /dev/ukbd0 < /dev/console > /dev/null Um diese Änderung auch noch nach dem Neustarten verfügbar zu haben, nehmen Sie den Eintrag keyboard="/dev/ukbd0" in die Datei /etc/rc.conf auf. Sobald Sie diese Schritte durchgeführt haben, sollte die USB-Tastatur ohne weitere Änderungen auch unter X benutzbar sei. Benutzen Sie dieses Kommando, wenn Sie wieder zur Standardtastatur wechseln wollen: &prompt.root; kbdcontrol -k /dev/kbd0 > /dev/null Um die gleichzeitige Verwendung der zweiten USB-Tastatur und der AT-Tastatur auf der selben Konsole mittels des &man.kbdmux.4; Treibers zu ermöglichen, geben Sie folgendes ein: &prompt.root; kbdcontrol -K < /dev/console > /dev/null &prompt.root; kbdcontrol -a atkbd0 < /dev/kbdmux0 > /dev/null &prompt.root; kbdcontrol -a ukbd1 < /dev/kbdmux0 > /dev/null &prompt.root; kbdcontrol -k /dev/kbdmux0 < /dev/console > /dev/null Lesen Sie die &man.ukbd.4;, &man.kbdcontrol.1; und &man.kbdmux.4; Manualpages, um weitere Informationen zu erhalten. Zurzeit kann es noch Probleme geben, wenn Sie eine USB-Tastatur im laufenden Betrieb einstecken oder abziehen. Um Probleme zu vermeiden, sollten Sie die Tastatur anschließen, bevor Sie das System anschalten und die Tastatur nicht abziehen, solange das System noch läuft. Ich habe eine unübliche Busmaus. Wie muss ich sie konfigurieren? &os; unterstützt die Busmaus und InPort-Busmaus von Herstellern wie Microsoft, Logitech und ATI. Der Gerätetreiber ist im GENERIC-Kernel allerdings nicht eingebunden. Wenn Sie den Bus-Gerätetreiber benötigen, müssen Sie daher einen angepassten Kernel erstellen. Dazu fügen Sie die folgende Zeile in Ihre Kernelkonfigurationsdatei ein: device mse0 at isa? port 0x23c irq5 Die Busmaus wird üblicherweise zusammen mit einer speziellen Karte ausgeliefert. Sie könnte es Ihnen ermöglichen, andere Werte für die Port-Adresse und den Interrupt zu setzen. Weitere Informationen finden Sie in Handbuch zu Ihrer Maus und in der &man.mse.4; Manualpage. Wie benutze ich meine PS/2 (Mouse-Port oder Tastatur)-Maus? PS/2 Mäuse werden von &os; unterstützt. Der notwendige Gerätetreiber, psm, ist bereits im GENERIC-Kernel enthalten. Wenn Sie einen angepassten Kernel ohne diesen Treiber benutzen, müssen Sie folgende Zeile in Ihre Kernelkonfigurationsdatei einfügen und den Kernel neu kompilieren: device psm0 at atkbdc? irq 12 Wenn der Kernel das Gerät psm0 beim Booten korrekt erkennt, stellen Sie sicher, dass sich im Verzeichnis /dev ein Eintrag für psm0 befindet. Kann man die Maus irgendwie außerhalb des X Window Systems benutzen? Falls Sie den normalen Konsolentreiber &man.syscons.4; benutzen, können Sie den Mauszeiger auf Textkonsolen zum Kopieren und Einfügen von Text verwenden. Starten Sie den Mausdämon &man.moused.8; und schalten Sie den Mauszeiger auf der virtuellen Konsole ein: &prompt.root; moused -p /dev/xxxx -t yyyy &prompt.root; vidcontrol -m on xxxx ist der Gerätename der Maus und yyyy ist das Protokoll. Der Mausdämon erkennt die Protokolle der meisten Mäuse (mit Ausnahme alter serieller Mäuse) automatisch, wenn Sie auto für das Protokoll angeben. Falls das Protokoll nicht automatisch erkannt wird, finden Sie die unterstützten Protokolle in der &man.moused.8; Manualpage. Wenn Sie eine PS/2-Maus besitzen und diese beim Systemstart aktivieren wollen, tragen Sie die Zeile moused_enable="YES" in die Datei /etc/rc.conf ein. Falls Sie den Mausdämon auf allen virtuellen Bildschirmen anstatt nur auf der Konsole benutzen wollen, tragen Sie außerdem allscreens_flags="-m on" in /etc/rc.conf ein. Während der Mausdämon läuft, muss der Zugriff auf die Maus zwischen dem Mausdämon und anderen Programmen, wie X Windows, koordiniert werden. Die FAQ Warum funktioniert meine meine Maus unter X nicht? enthält weitere Details. Wie funktioniert das Kopieren und Einfügen von Text mit der Maus auf einer Textkonsole? Wenn Sie es geschafft haben, den Mausdämon zu starten (wie im vorherigen Abschnitt gezeigt), halten Sie die linke Maustaste gedrückt und bewegen Sie die Maus, um einen Textabschnitt zu markieren. Dann drücken Sie die mittlere Maustaste, um den Text an der Cursorposition einzufügen. Wenn Sie keine 3-Tasten-Maus besitzen, können Sie die mittlere Maustaste mit einer Tastenkombination emulieren oder die Funktion der mittleren Taste auf eine andere Taste legen. Einzelheiten dazu enthält die Hilfeseite &man.moused.8;. Meine Maus hat ein neumodisches Rad und mehr Knöpfe. Kann ich sie in &os; benutzen? Unglücklicherweise lautet die Antwort: Vielleicht. Solche Mäuse mit zusätzlichen Extras erfordern in den meisten Fällen spezielle Treiber. Wenn der Gerätetreiber für die Maus oder das Anwendungsprogramm keine spezielle Unterstützung für die Maus bietet, wird sie sich wie eine gewöhnliche Maus mit zwei oder drei Knöpfen verhalten. Ob und wie Sie das Rad unter X benutzen können, können Sie im passenden Abschnitt der FAQ erfahren. Wie benutze ich Maus/Trackball/Touchpad auf meinem Laptop? Bitte lesen Sie die Antwort zur vorherigen Frage. Wie kann ich die Delete-Taste in der sh und csh einsetzen? Für die Bourne Shell fügen Sie die folgende Zeile in die Datei .shrc ein (lesen Sie dazu auch die Manualpages &man.sh.1; sowie &man.editrc.5;). bind ^? ed-delete-next-char # for console bind ^[[3~ ed-delete-next-char # for xterm Für die C Shell nehmen Sie hingegen die folgende Zeile in die Datei .cshrc auf (lesen Sie dazu auch die Manualpage &man.csh.1;). bindkey ^? delete-char # for console bindkey ^[[3~ delete-char # for xterm Weitere Informationen zu diesem Thema finden sich auch hier. Netzkarten und serielle Geräte Welche Netzwerkkarten unterstützt &os;? In den Hardware Informationen zu jedem &os; Release werden die unterstützten Karten aufgezählt. Unterstützt &os; Software Modems, wie die Winmodems? &os; unterstützt viele Software-Modems, wenn Sie zusätzliche Software installieren. Der Port comms/ltmdm bietet zum Beispiel Unterstützung für Modems, die auf dem oft verwendeten Lucent LT Chipsatz basieren. Sie können &os; nicht über ein Software-Modem installieren, diese Software kann nur installiert werden, nachdem das Betriebssystem installiert wurde. Gibt es einen &os;-Treiber für die Karten der Serie 43xx von Broadcom? Nein, und es wird wohl auch nie einen geben. Broadcom weigert sich, Informationen zu ihren drahtlosen Chipsätzen zu veröffentlichen. Wahrscheinlich liegt dies daran, dass Broadcom auch softwaregesteuerte Radios herstellt. Damit ihre Produkte von der FCC zugelassen werden, muss sichergestellt sein, dass Benutzer nicht in der Lage sind, Betriebsfrequenzen, Modulationsparameter, Ausgangsleistung und andere Werte nach Belieben einzustellen. Ohne solche Informationen ist es aber nahezu unmöglich, einen Treiber zu programmieren. Welche seriellen Multi-Port-Karten werden von &os; unterstützt? Es existiert eine Liste der unterstützten Karten im Abschnitt Serielle Datenübertragung des Handbuchs. Von einigen NoName-Nachbauten ist ebenfalls bekannt, dass sie funktionieren, speziell von den AST-kompatiblen. In &man.sio.4; finden Sie weitere Informationen zur Konfiguration solcher Karten. Wie kann ich den boot:-Prompt auf einer seriellen Konsole erscheinen lassen? Lesen Sie diesen Abschnitt des Handbuchs. Soundkarten Welche Soundkarten werden von &os; unterstützt? &os; unterstützt verschiedene Soundkarten. Lesen Sie die &os; Release Informationen sowie &man.snd.4;, wenn Sie genauere Informationen benötigen. MPU-401 und kompatible MIDI-Karten werden begrenzt unterstützt. Ebenso unterstützt werden Karten, die der µsoft; Sound System-Spezifikation entsprechen. Das gilt nur für Sound! Dieser Treiber unterstützt keine CD-ROMs, SCSI oder Joysticks auf diesen Karten, außer der &soundblaster;. Die &soundblaster;-SCSI-Schnittstelle und einige Nicht-SCSI-CD-ROMs werden unterstützt, Sie können von diesen Geräten aber nicht booten. Abhilfen für fehlenden Sound bei Verwendung des &man.pcm.4;-Treibers? Einige Soundkarten setzen die Lautstärke bei jedem Systemstart auf 0. In diesem Fall müssen Sie nach jedem Bootvorgang den folgenden Befehl ausführen: &prompt.root; mixer pcm 100 vol 100 cd 100 Sonstige Hardware Unterstützt &os; Power-Management auf meinem Laptop? &os; unterstützt APM auf einigen Systemen. Lesen Sie dazu auch &man.apm.4;. &os; unterstützt einen Großteil der ACPI-Funktionen moderner Hardware. Lesen Sie dazu auch &man.acpi.4;. Unterstützt Ihr System sowohl APM als auch ACPI, können Sie beide Systeme testen und sich für das System entscheiden, das Ihren Anforderungen am besten entspricht. Wie kann ich ACPI deaktivieren? Fügen Sie die Zeile hint.acpi.0.disabled="1" in die Datei /boot/device.hints ein. Wieso hängt sich mein Micron-System beim Booten auf? Lesen Sie die vorherige Antwort. Wenn ich ein System mit einem ASUS K7V Mainboard von der Bootdiskette starte, hängt sich das System auf. Wie kann ich dieses Problem lösen? Schalten Sie im BIOS die Option boot virus protection aus. Warum arbeitet meine &tm.3com; PCI-Netzwerkkarte in meinem Micron-Computer nicht? Einige Micron Motherboards besitzen eine nicht-konforme PCI-BIOS-Implementierung, die die PCI-Geräte nicht an den angegebenen Adressen konfiguriert. Hierdurch entstehen Probleme, wenn &os; bootet. Deaktivieren Sie die Option Plug and Play Operating System im BIOS, um das Problem zu umgehen. Fehlerbehebung Warum zeigt &os; eine falsche Speichergröße auf &i386; Hardware an? Das liegt sehr wahrscheinlich an den Unterschieden zwischen physikalischen und virtuellen Speicheraddressen. Bei moderner PC-Hardware ist es üblich, den Speicherbereich zwischen 3,5 und 4 Gigabyte für spezielle Aufgaben (normalerweise für PCI) zu reservieren. Dieser Adressbereich wird dabei dazu verwendet, um auf PCI-Hardware zuzugreifen. Dadurch kann in diesem Speicherbereich kein physikalischer Speicher verwaltet werden. Was mit dem in diesen Bereich gehörenden physikalischen Speicher passiert, hängt von der von Ihnen eingesetzten Hardware ab. Unglücklicherweise gibt es noch immer Hardware, die hier gar nichts macht. In diesem Fall ist Ihr System nicht in der Lage, auf diese 500 Megabyte des RAMs zuzugreifen. Ein Großteil der heute existierenden Hardware ist aber inzwischen in der Lage, diesen Speicherbereich in einen höheren Speicherbereich umzulenken, damit Sie weiterhin darauf zugreifen können. Allerdings kann es durch dieses Umlenken zu verwirrende Meldungen während des Systemstarts kommen. Unter 32-Bit-Versionen von &os; scheint dieser Speicherbereich nicht verfügbar zu sein, da er in einen Bereich oberhalb von 4 Gigabyte übertragen wurde, auf den ein 32-Bit-Kernel allerdings nicht zugreifen kann. Ist dies bei Ihnen der Fall, müssen Sie die PAE-Unterstützung in Ihren Kernel kompilieren. Lesen Sie dazu auch die entsprechenden Einträge über Speicherbegrenzungen und unterschiedliche Speicherbegrenzungen auf verschiedenen Plattformen. Verwenden Sie hingegen eine 64-Bit-Version von &os; oder einen 32-Bit-Kernel mit aktivierter PAE-Unterstützung, ist &os; in der Lage, diesen Speicherbereich korrekt zu erkennen und umzulenken, damit Sie weiterhin darauf zugreifen können. Allerdings wird, aufgrund der beschriebenen Umbelegung, in diesem Fall beim Systemstart mehr Speicher angezeigt, als tatsächlich auf Ihrem System vorhanden ist. Dies ist aber normal und wird nach dem Ende des Systemstarts automatisch korrigiert. Was sollte ich tun, wenn auf meiner Festplatte fehlerhafte Blöcke sind? SCSI-Laufwerke sollten in der Lage sein, diese automatisch zu verlagern. Bei einigen Laufwerken ist diese Eigenschaft jedoch aus unerfindlichen Gründen bei der Auslieferung ausgeschaltet... Um sie einzuschalten, müssen Sie den Page-Mode des ersten Gerätes editieren. Unter &os; können Sie das (als root) mit folgendem Befehl tun &prompt.root; camcontrol modepage sd0 -m 1 -e -P 3 und die Werte für AWRE und ARRE von 0 auf 1 ändern: AWRE (Auto Write Reallocation Enbld): 1 ARRE (Auto Read Reallocation Enbld): 1 Moderne IDE-Controller sind in der Lage, fehlerhafte Blöcke automatisch zu verlagern. Diese Funktionen sind bereits ab Werk aktiviert. Werden dennoch fehlerhafte Blöcke gemeldet (egal auf welchem Laufwerk), sollten Sie über den Kauf einer neuen Platte nachdenken. Zwar könnte es Ihnen mit Diagnoseprogrammen des Plattenherstellers gelingen, diese fehlerhaften Blöcke zu sperren. Allerdings können Sie damit den endgültigen Ausfall der Platte bestenfalls hinauszögern. Wieso wird der SCSI-Controller meines HP Netserver nicht erkannt? Hierbei handelt es sich um ein bekanntes Problem. Der auf dem Board befindliche EISA-SCSI-Controller auf dem HP Netserver belegt die EISA-Slotnummer 11, wodurch sich alle wirklichen EISA-Slots vor ihm befinden. Leider kollidiert der Adressraum von EISA-Slots >=10 mit dem Adressraum, der PCI zugeordnet ist und die Autokonfiguration von &os; kann mit dieser Situation derzeit nicht besonders gut umgehen. Die einfachste Alternative ist, diese Kollision einfach zu leugnen. Setzen Sie dazu die Kerneloption EISA_SLOTS auf den Wert 12. Konfigurieren und kompilieren Sie den Kernel, wie im Handbucheintrag zur Kernelkonfiguration beschrieben. Dies bringt Ihnen natürlich das klassische Huhn-Ei-Problem, wenn Sie auf einer solchen Maschine installieren wollen. Um dieses Problem zu umgehen, existiert ein spezieller Hack in UserConfig. Benutzen Sie nicht die visuelle Schnittstelle, sondern die rohe Kommandozeilenschnittstelle. Geben Sie einfach den folgenden Befehl am Prompt ein und Sie können Ihr System ganz normal installieren: eisa 12 quit Sie sollten auf jeden Fall einen angepassten Kernel zu kompilieren und installieren. Zukünftige Versionen werden hoffentlich eine passende Lösung für dieses Problem beinhalten. Sie können keine dangerously dedicated Platte auf einem HP Netserver verwenden. Lesen Sie weitere Informationen finden Sie in diesem Hinweis. Was bedeuten die ständigen Meldungen ed1: timeout? Dies wird meistens durch einen Interruptkonflikt verursacht (z.B., wenn zwei Karten den selben Interrupt benutzen). Booten Sie mit der Option und ändern Sie die Einträge zu ed0/de0/... (d.h. Ihrem Board entsprechend). Wenn Sie den BNC-Anschluss Ihrer Netzwerkkarte benutzen, könnte es auch sein, dass es sich Geräte-Timeouts aufgrund fehlerhafter Terminierung handelt. Um dies zu überprüfen, verbinden Sie einen Terminator direkt mit der Netzwerkkarte (ohne Kabel) und beobachten Sie, ob die Fehlermeldungen verschwinden. Einige NE2000 kompatible Karten melden diesen Fehler, wenn keine Verbindung am UTP-Eingang existiert oder wenn das Kabel nicht eingesteckt ist. Warum funktioniert meine &tm.3com; 3C509 plötzlich nicht mehr? Diese Karte ist dafür berüchtigt, ihre Konfiguration zu vergessen. Sie müssen die Karte mit dem DOS-Programm 3c5x9.exe neu konfigurieren. Mein an der parallel Schnittstelle angeschlossener Drucker ist unglaublich langsam. Was kann ich tun? Falls das einzige Problem ist, dass er schrecklich langsam ist, dann sollte Sie versuchen, die Kommunikationseinstellungen der parallelen Schnittstellen zu ändern, wie es im Kapitel Drucken des Handbuchs beschrieben ist. Wieso brechen meine Programme gelegentlich mit Signal 11-Fehlern ab? Das Signal 11 wird generiert, wenn ein Prozess versucht, auf Speicher zuzugreifen, obwohl er vom Betriebssystem dazu nicht befugt wurde. Wenn Ihnen das scheinbar zufällig immer wieder passiert, sollten Sie der Sache einmal auf der Grund gehen. Das Problem hat in der Regel eine der folgenden Ursachen: Wenn das Problem nur in einer bestimmten Anwendung auftritt, die Sie selbst entwickeln, dann ist es wahrscheinlich ein Fehler in Ihren Sourcen. Wenn das Problem in einem Teil von &os; auftritt, könnte es natürlich auch ein Fehler sein; aber in den meisten Fällen werden diese Probleme gefunden und behoben, bevor die typischen Leser der FAQ (wir) diese Teile der Sourcen benutzen können (dafür gibt es schließlich -CURRENT). Wenn der Fehler auftritt, wenn Sie ein Programm compilieren aber dabei immer wieder an anderer Stelle auftritt, dann ist das ein ganz eindeutiger Hinweis, dass das Problem nicht bei &os; liegt. Nehmen wir zum Beispiel an, dass Sie make buildworld ausführen und die Compilierung von ls.c in ls.o abbricht. Wenn Sie nochmal make buildworld durchführen und die Compilierung an der gleichen Stelle abbricht, handelt es sich um einen Fehler in den Sourcen. Aktualisieren Sie Ihre Sourcen und versuchen Sie es noch einmal. Wenn der Fehler jedoch an einer anderen Stelle auftritt, liegt das Problem mit an Sicherheit grenzender Wahrscheinlichkeit bei Ihrer Hardware. Was Sie tun sollten: Im ersten Fall können Sie einen Debugger wie z.B. &man.gdb.1; benutzen, um die Stelle im Programm zu finden, an der auf eine falsche Adresse zugegriffen wird und danach den Fehler beheben. Im zweiten Fall müssen Sie sicherstellen, dass das Problem nicht von Ihrer Hardware verursacht wird. Typische Ursachen dafür sind unter anderem: Es könnte sein, dass Ihren Festplatten zu warm werden: Überprüfen Sie, ob die Lüfter in Ihrem Gehäuse noch funktionieren, damit Ihre Festplatten (und andere Hardware) nicht heißlaufen. Der Prozessor überhitzt, weil Sie Ihn übertaktet haben oder der CPU-Kühler ausgefallen ist. Sie müssen sicherstellen, dass Sie Ihre Hardware unter den Bedingungen betreiben, für die sie spezifiziert ist, zumindest während Sie versuchen, das Problem zu lösen. Mit anderen Worten: Betreiben Sie Ihre CPU mit der normalen Taktfrequenz. Wenn Sie übertakten, sollten Sie daran denken, dass ein langsames System deutlich billiger ist als ein defektes System. Die große Masse hat nicht sehr häufig Mitgefühl mit Problemen bei übertakteten System, auch wenn Sie es für ungefährlich halten. Unzuverlässiger Speicher: Wenn Sie mehr als ein SIMM/DIMM installiert haben, sollten Sie sie alle ausbauen und die Maschine testweise mit jedem SIMM oder DIMM einzeln betreiben. So können Sie feststellen, ob die Ursache ein einzelnes SIMM/DIMM oder auch eine Kombination von Modulen ist. Zu optimistische Einstellung des Mainboards: In Ihrem BIOS und mit den Jumpern auf dem Mainboard können Sie diverse Timings ändern. In den meisten Fällen reichen die Defaults aus, aber manchmal kann es durch zu wenig wait states, die Einstellung RAM Speed: Turbo oder ähnliches zu merkwürdigen Problemen kommen. Ein möglicher Ansatz ist, die BIOS defaults zu laden, allerdings könnte es sinnvoll sein, die aktuellen Einstellungen vorher zu notieren. Schlechte oder fehlerhafte Stromversorgung des Mainboards: Wenn Sie unbenutzte Steckkarten, Platten oder CD-ROMs in Ihrem System haben, sollten Sie sie testweise ausbauen oder die Stromversorgung abziehen. Dadurch können Sie prüfen, ob Ihr Netzteil eventuell mit einer geringeren Last besser zurechtkommt. Sie können auch testweise ein anderes, am besten ein leistungsfähigeres, Netzteil ausprobieren. Wenn Sie zurzeit ein 250 W-Netzteil benutzen, sollten Sie testweise ein 300 W-Netzteil einbauen. Die sollten ebenfalls die SIG11 FAQ (unten aufgeführt) lesen, da sie gute Erklärungen für alle diese Probleme enthält (allerdings aus &linux;-Sicht). Sie erklärt ebenfalls, warum sowohl Programme als auch Geräte zur Speicherprüfung fehlerhaften Speicher teilweise nicht erkennen. Wenn alle diese Schritte nicht helfen, ist es möglich, dass Sie einen Fehler in &os; gefunden haben. Folgen Sie einfach den Anweisungen für die Erstellung eines Problem Reports. Es existiert eine ausführliche FAQ hierzu unter der SIG11-Problem-FAQ. Mein System stürzt mit der Meldung Fatal trap 12: page fault in kernel mode oder panic: ab und gibt eine Menge zusätzlicher Informationen aus. Was kann ich tun? Die Entwickler von &os; interessieren sich für solchen Meldungen, allerdings brauchen Sie deutlich mehr Informationen als die, die Ihnen angezeigt werden. Kopieren Sie die komplette Meldungen und lesen Sie nun den FAQ-Eintrag über kernel panics. Erzeugen sie einen Kernel mit den zusätzlichen Daten zur Fehlersuche, und dann einen backtrace. Das hört sich komplizierter an, als es ist. Sie brauchen keine Programmier-Erfahrung, Sie müssen einfach nur den Anweisungen folgen. Wieso wird beim Booten der Bildschirm schwarz und reagiert nicht mehr? Dies ist ein bekanntes Problem mit der ATI Mach64 Videokarte. Das Problem besteht darin, dass diese Karte die Adresse 2e8 benutzt und die vierte serielle Schnittstelle ebenfalls. Aufgrund eines Fehlers (einer Besonderheit?) im &man.sio.4;-Treiber wird diese Schnittstelle angesprochen, auch wenn Sie gar keine vierte serielle Schnittstelle besitzen und sogar, wenn Sie sio3 (die vierte Schnittstelle), die normalerweise diese Adresse verwendet, deaktivieren. Bis der Fehler behoben ist, können Sie folgende Abhilfe verwenden: Geben Sie am Bootprompt ein. (Dies bringt den Kernel in den Konfigurationsmodus). Deaktivieren Sie sio0, sio1, sio2 und sio3 (alle). Auf diese Weise wird der &man.sio.4;-Treiber nicht aktiviert und das Problem tritt nicht mehr auf. Geben Sie exit ein, um den Bootvorgang fortzusetzen. Falls sie in der Lage sein wollen Ihre seriellen Schnittstellen zu benutzen, müssen Sie einen neuen Kernel mit folgenden Modifikationen erstellen: suchen Sie in /usr/src/sys/sio/sio.c (oder in /usr/src/sys/pc98/cbus/sio.c für pc98) nach der Zeichenkette 0x2e8 und löschen Sie sie und das vorhergehende Komma (nicht das folgende Komma). Nun folgen Sie der normalen Prozedur zur Erstellung eines neuen Kernels. Wieso verwendet &os; nur 64 MB Hauptspeicher, obwohl in meinem Rechner 128 MB sind? Aufgrund der Art und Weise, wie &os; die Hauptspeichergröße vom BIOS mitgeteilt bekommt, kann es lediglich 16-Bit Werte in kByte-Größe (65535 kByte = 64 MB) erkennen (oder weniger... einige BIOSe setzen die Hauptspeichergröße auf 16 MB). Falls Sie mehr als 64 MB besitzen, wird &os; versuchen, das zu erkennen, was aber nicht immer funktioniert. Um dieses Problem zu umgehen, müssen Sie die untenstehende Kerneloption verwenden. Es gibt einen Weg, vollständige Hauptspeicherinformationen vom BIOS zu erhalten, aber in den Bootblöcken ist nicht genügend Platz dafür vorhanden. Wenn der Platzmangel in den Bootblöcken eins Tages behoben ist, werden wir die erweiterten BIOS-Funktionen dazu nutzen, die vollständigen Hauptspeicherinformationen zu erhalten... aber zurzeit sind wir auf die Kerneloption angewiesen. options MAXMEM=n Hierbei ist n Ihre Hauptspeichergröße in Kilobyte. Bei einer 128 MB-Maschine müßten Sie 131072 benutzen. Ich habe mehr als 1 GB RAM. Trotzdem stürzt mein System mit der Meldung kmem_map too small ab. Was läuft hier schief? Im Normalfall bestimmt &os; einige Kernelparameter, darunter die maximale Anzahl der Dateien, die gleichzeitig geöffnet sein können, aus der Größe des im System installierten Hauptspeichers. Auf Systemen mit mindestens 1 GB Hauptspeicher kann dieser auto sizing-Mechanismus diese Werte fälschlicherweise zu hoch ansetzen: Beim Systemstart fordert der Kernel dann verschiedene Tabellen und andere Strukturen an, die den Großteil des verfügbaren Kernelspeichers verbrauchen. Dies führt dazu, dass der Kernel während des Betriebs keine dynamischen Speicheranforderungen mehr ausführen kann und mit einer Kernelpanik abstürzt. Bauen Sie in diesem Fall Ihren eigenen Kernel. Dazu setzen Sie in Ihrer Kernelkonfigurationsdatei auf 400 MB (). 400 MB sollten für Maschinen bis 6 GB Hauptspeicher ausreichend sein. Ich habe weniger als 1 GB Hauptspeicher. Dennoch stürzt mein System mit der Meldung kmem_map too small ab! Diese Meldung zeigt an, dass der virtuelle Speicher für Netzwerkpuffer (spezieller mbuf-Cluster) aufgebraucht ist. Sie können die für mbuf verfügbare Größe an VM erhöhen, indem Sie den Anweisungen des Abschnitts Netzwerk-Limits des Handbuchs folgen. Wieso erhalte ich die Meldung kernel: proc: table is full? Der &os;-Kernel beschränkt die Anzahl der gleichzeitig laufenden Prozesse. Die Anzahl errechnet sich aus dem Wert der Variablen MAXUSERS in der Konfigurationsdatei des Kernels. Auch andere Einstellungen wie die Anzahl der Puffer für Netzwerkoperationen (Details dazu finden Sie in diesem Abschnitt). werden durch MAXUSERS beeinflusst. Wenn Ihr System stark belastet ist, sollten Sie den Wert von MAXUSERS erhöhen. Dadurch werden diverse Einstellung des Systems angepasst und die maximale Anzahl gleichzeitig laufender Prozesse erhöht. Um den Wert von MAXUSERS anzupassen, folgen Sie den Anweisungen des Abschnitts Datei- und Prozesslimits des Handbuchs. Dieser Abschnitt spricht zwar nur von Dateien, für Prozesse gelten aber die gleichen Beschränkungen. Wenn Ihr System nicht besonders stark ausgelastet ist und Sie einfach nur mehr gleichzeitig laufende Prozesse erlauben wollen, können Sie den Wert der Variable kern.maxproc in der Datei /boot/loader.conf anpassen. Um die Änderung zu aktivieren, müssen Sie Ihr System neu starten. Wollen Sie Ihr System zusätzlich optimieren, sollten Sie &man.loader.conf.5; und &man.sysctl.conf.5; lesen. Wenn diese Prozesse von einem einzigen Benutzer ausgeführt werden, müssen Sie den Wert von kern.maxprocperuid ebenfalls erhöhen. Dieser Wert muss immer mindestens um eins geringer sein als der Wert von kern.maxproc (der Grund für diese Einschränkung ist, dass ein Systemprogramm, &man.init.8;, immer ausgeführt werden muss). Damit Änderungen einer sysctl-Variable dauerhaft erhalten bleiben, nehmen Sie diese in /etc/sysctl.conf auf. Weitere Informationen zur Optimierung Ihres Systems finden Sie im Abschnitt Einstellungen mit sysctl des Handbuchs. Wieso erhalte ich die Meldung CMAP busy panic, wenn ich mein System mit einem neuen Kernel starte? Die Logik, die versucht, veraltete /var/db/kvm_*.db-Dateien zu erkennen, versagt manchmal und die Benutzung einer unpassenden Datei kann zu Paniksituationen führen. Falls das passiert, rebooten Sie in den Single-User-Modus und löschen Sie die Dateien: &prompt.root; rm /var/db/kvm_*.db Was soll mir die Meldung ahc0: brkadrint, Illegal Host Access at seqaddr 0x0 sagen? Dies ist ein Konflikt mit einem Ultrastor SCSI Hostadapter. Rufen Sie während des Bootprozesses das Kernelkonfigurationsmenü auf und deaktivieren Sie uha0, welches das Problem verursacht. Wenn ich mein System starte, erhalte ich die Meldung ahc0: illegal cable configuration, obwohl die Verkabelung korrekt ist. Woran liegt das? Auf Ihrem Mainboard fehlen ein paar Logikbausteine, die für die Unterstützung der automatischen Terminierung notwendig sind. Stellen Sie in Ihrem SCSI-BIOS manuell die korrekte Terminierung für Ihr System ein, anstatt sich auf die automatische Terminierung zu verlassen. Der &man.ahc.4;-Treiber kann nicht erkennen, ob die externen Logikbausteine für die Erkennung der Kabel (und damit automatische Terminierung) vorhanden sind. Der Treiber muss sich darauf verlassen, dass diese vorhanden sind, wenn in der Konfiguration automatische Terminierung eingestellt ist. Ohne die externen Bausteine ist es sehr wahrscheinlich, dass der Treiber die Terminierung falsch einstellt, was die Zuverlässigkeit des SCSI-Busses herabsetzen kann. Wieso meldet sendmail mail loops back to myself? Sie finden eine detaillierte Antwort auf diese Frage im Handbuch. Wieso funktionieren bildschirmorientierte Anwendungen beim Zugriff über ein Netzwerk nicht richtig? Die entfernte Maschine scheint den Terminaltyp auf etwas anderes als den Typ cons25, der von &os; verlangt wird, zu setzen. Es gibt mehrere mögliche Abhilfen für dieses Problem: Setzen Sie die Shell-Variable TERM nach dem Einloggen auf der entfernten Maschine auf ansi oder sco, sofern die entfernte Maschine diese Terminaltypen kennt. Benutzen Sie einen VT100-Emulator wie screen auf der &os;-Konsole. screen bietet Ihnen die Möglichkeit, mehrere gleichzeitige Sitzungen von einem Bildschirm aus laufen zu lassen. Es ist ein sehr nettes Programm. Jedes screen-Fenster verhält sich, wie ein VT100-Terminal, weshalb die Variable TERM am entfernten Ende auf vt100 gesetzt werden sollte. Installieren Sie den Eintrag cons25 in der Bildschirmdatenbank der entfernten Maschine. Wie das zu geschehen hat, hängt vom Betriebssystem der entfernten Maschine ab. Das Systemadministrationshandbuch für das entfernte System sollte Ihnen hierbei helfen können. Starten Sie einen X-Server auf der &os;-Seite und benutzen Sie einen X-basierten Terminalemulator wie xterm oder rxvt, um sich auf der entfernten Maschine einzuloggen. Die Variable TERM auf dem entfernten Host sollte auf xterm oder vt100 gesetzt werden. Warum wird meine PnP-Karte nicht (oder nur noch als unknown) erkannt? Die Gründe für dieses Verhalten werden in der unten zitierten Mail von &a.peter; erklärt. Diese Mail stammt von der Mailingliste &a.questions; und war eine Antwort auf eine Frage bezüglich eines internen Modem, das nach dem Update auf &os; 4.X nicht mehr erkannt wurde. Die mit [] gekennzeichneten Kommentare wurden eingefügt, um an einigen Stellen die Bezüge klarzustellen.
Das PnP-BIOS hat es [das Modem] vorkonfiguriert und es dann im Adressraum liegenlassen, daher haben es die alten ISA-Erkennungsroutinen [in 3.X] gefunden. In 4.0 sind die ISA-Routinen deutlich PnP-orientierter. Es war möglich [in 3.X], dass eine ISA-Erkennungsroutine ein zugelaufenes Gerät fand; während die PnP-Treiber zwar die ID erkannten, das Gerät aber wegen des Ressourcekonfliktes nicht benutzen konnten. Daher werden die programmierbaren Karten zunächst einmal abgeschaltet, um diese doppelte Erkennung vermeiden zu können. Das bedeutet allerdings auch, dass die Treiber die PnP-ID kennen muss, um PnP-Hardware unterstützen zu können. Wir haben uns vorgenommen, den Benutzern eine einfachere Möglichkeit zur Manipulation dieser Informationen zur Verfügung zu stellen.
Damit Ihr Gerät wieder funktioniert, müssen Sie seine PnP-ID herausfinden und die ID in die Listen eintragen, die zur Erkennung von PnP-Geräten genutzten werden. Zu diesem Zweck wird das Gerät mit &man.pnpinfo.8; analysiert. Das Beispiel zeigt die Ausgaben von &man.pnpinfo.8; für ein internes Modem: &prompt.root; pnpinfo Checking for Plug-n-Play devices... Card assigned CSN #1 Vendor ID PMC2430 (0x3024a341), Serial Number 0xffffffff PnP Version 1.0, Vendor Version 0 Device Description: Pace 56 Voice Internal Plug & Play Modem Logical Device ID: PMC2430 0x3024a341 #0 Device supports I/O Range Check TAG Start DF I/O Range 0x3f8 .. 0x3f8, alignment 0x8, len 0x8 [16-bit addr] IRQ: 4 - only one type (true/edge) [weitere TAG Zeilen gestrichen] TAG End DF End Tag Successfully got 31 resources, 1 logical fdevs -- card select # 0x0001 CSN PMC2430 (0x3024a341), Serial Number 0xffffffff Logical device #0 IO: 0x03e8 0x03e8 0x03e8 0x03e8 0x03e8 0x03e8 0x03e8 0x03e8 IRQ 5 0 DMA 4 0 IO range check 0x00 activate 0x01 Sie benötigen die Information aus der Zeile Vendor ID ganz am Anfang. Die in Klammern ausgegebene hexadezimale Zahl (0x3024a341 in diesem Beispiel) ist die PnP ID und die unmittelbar davor stehende Zeichenkette (PMC2430) ist eine eindeutige Herstellerkennung. Benutzen Sie &man.pciconf.8; wenn &man.pnpinfo.8; die Karte nicht anzeigt. Der Teil der Ausgabe von pciconf -vl für eine auf dem Motherboard integrierte Soundkarte sieht zum Beispiel so aus: &prompt.root; pciconf -vl chip1@pci0:31:5: class=0x040100 card=0x00931028 chip=0x24158086 rev=0x02 hdr=0x00 vendor = 'Intel Corporation' device = '82801AA 8xx Chipset AC'97 Audio Controller' class = multimedia subclass = audio Sie benötigen die Chip-ID 0x24158086, die hinter chip aufgeführt ist. Die Vendor ID oder chip-ID müssen in die Datei /usr/src/sys/dev/sio/sio_isa.c eingetragen werden. Sie sollten zunächst ein Backup von sio_isa.c anlegen, falls etwas schief gehen sollte. Sie werden auch einen Patch erzeugen müssen, um ihn zusammen mit Ihrem PR einzusenden. (Sie wollten doch einen PR schreiben, oder etwa nicht?) Öffnen Sie nun sio_isa.c mit einem Editor und suchen Sie nach der Zeile: static struct isa_pnp_id sio_ids[] = { Blättern Sie dann nach unten, um die passende Stelle für Ihr Gerät zu finden. Unten finden Sie Beispiel für die Einträge, diese sind nach der Herstellerkennung sortiert. Diese sollte in dem Kommentar auf der rechten Seite aufgenommen werden, dazu kommt die Gerätebeschreibung (Device Description) aus der Ausgabe von &man.pnpinfo.8;: {0x0f804f3f, NULL}, /* OZO800f - Zoom 2812 (56k Modem) */ {0x39804f3f, NULL}, /* OZO8039 - Zoom 56k flex */ {0x3024a341, NULL}, /* PMC2430 - Pace 56 Voice Internal Modem */ {0x1000eb49, NULL}, /* ROK0010 - Rockwell ? */ {0x5002734a, NULL}, /* RSS0250 - 5614Jx3(G) Internal Modem */ Fügen Sie die hexadezimale Gerätekennung an der richtigen Stelle ein, speichern Sie die Datei ab, erzeugen Sie einen neuen Kernel und starten Sie Ihr System neu. Ihr Gerät sollte nun als sio Gerät erkannt werden.
Warum erhalte ich die Meldung nlist failed, wenn ich Programme wie top oder systat benutze? Das Programm sucht nach einem speziellen Symbol im Kernel, kann es aber aus irgendeinem Grunde nicht finden. Dieser Fehler wird von einem dieser Probleme verursacht: Ihr Kernel und die sonstigen Programme (das Userland) sind nicht mehr auf dem gleichen Stand. Mit anderen Worten, Sie haben zwar einen neuen Kernel erzeugt, aber kein installworld (oder umgekehrt); darum weicht die Symboltabelle von dem ab, was die Anwendung erwartet. Wenn dies der Fall ist, müssen Sie lediglich die noch fehlenden Schritte des Upgrades durchführen. Die richtige Vorgehensweise kann /usr/src/UPDATING entnommen werden. Um Ihren Kernel zu laden, benutzen Sie nicht /boot/loader, sondern laden ihn direkt mit boot2 (siehe &man.boot.8;). Es ist zwar nicht immer ein Fehler, /boot/loader zu umgehen; allerdings ist er in der Regel besser dazu geeignet, die Symbole des Kernels für normale Anwendungen verfügbar zu machen. Wieso dauert es so lange, bis eine Verbindung (&man.ssh.1; oder &man.telnet.1;) aufgebaut wird? Das Symptom: Nach dem Aufbau des TCP-Verbindung vergeht einige Zeit, bis endlich die Abfrage des Passwortes (bzw. der Login-Prompt bei Telnet) erscheint. Das Problem: In den meisten Fällen versucht der Server in der Zwischenzeit, die IP-Adresse des Clients in einen Rechnernamen zu übersetzen. Viele Server (darunter die Telnet- und SSH-Server von &os;) machen das, um den Hostnamen z.B. für spätere Verwendung durch den Systemadministrator in eine Protokolldatei schreiben zu können. Die Lösung: wenn das Problem bei jedem Server auftritt, den Sie von Ihrem Computer (dem Client) ansprechen, dann wird das Problem vom Client verursacht. Wenn das Problem aber nur auftritt, wenn jemand Ihren Rechner (den Server) anspricht, dann liegt die Ursache beim Server. Wenn das Problem vom Client verursacht wird, müsssen Sie die Einträge im DNS korrigieren, damit der Server Ihre IP-Adresse übersetzen kann. Wenn das Problem in Ihrem lokalen Netzwerk auftritt, sollten Sie es als Problem des Servers behandeln und weiterlesen; wenn es allerdings im Internet auftritt, werden Sie sich wahrscheinlich an Ihrem ISP wenden müssen, damit dieser das Problem für Sie korrigiert. Wenn das Problem vom Server verursacht wird und Sie sich in einem lokalen Netzwerk befinden, dann müssen Sie Ihren Server so konfigurieren, dass er die lokal genutzten IP-Adressen in Rechnernamen übersetzen kann. Weitere Informationen erhalten Sie in den Onlinehilfen zu &man.hosts.5; und &man.named.8;. Wenn dieses Problem im Internet auftritt, könnte die Ursache auch darin liegen, dass die Namensauflösung auf dem Server nicht funktioniert. Versuchen Sie, einen anderen Hostnamen wie z.B. www.yahoo.com aufzulösen. Wenn das nicht funktioniert, liegt das Problem bei Ihrem System. Haben Sie &os; gerade erst installiert, kann es auch sein, dass die Domänen- und Nameserverinformationen noch nicht in /etc/resolv.conf vorhanden sind. Dadurch kommt es häufig zu Verzögerungen beim Einsatz von SSH, weil die Option UseDNS in der Voreinstellung auf yes gesetzt ist (in der Datei sshd_config im Verzeichnis /etc/ssh). Ist dies bei Ihnen der Fall, müssen Sie entweder die fehlenden Informationen in /etc/resolv.conf eintragen oder als temporäre Maßnahme UseDNS auf no setzen. Was bedeutet stray IRQ? Stray IRQs sind ein Zeichen für Probleme bei der Behandlung von Hardware-IRQs. Sie werden meistens von Geräten verursacht, die ihren Interrupt Request zurückziehen, obwohl gerade der interrupt request acknowledge-Zyklus läuft. Sie können drei Dinge tun: Ertragen Sie die Warnungen. Sie erhalten nur die ersten 5 für jeden IRQ, alle anderen werden unterdrückt. Eliminieren Sie die Meldungen, indem Sie den Wert von MAX_STRAY_LOG von 5 auf 0 in der für ihre Plattform (z.B. &i386;) zuständigen Datei intr_machdep.c ändern. Bauen Sie anschliessend den Kernel neu, um alle Meldungen zu unterdrücken. Eliminieren Sie die Meldungen, indem Sie Hardware für den Parallelport installieren, die IRQ 7 nutzt und vom PPP Treiber verwendet wird (das passiert auf den meisten Systemen), und installieren Sie eine IDE-Platte oder andere Hardware sowie einen dazu passenden Treiber, um IRQ 15 zu nutzen. Warum sehe ich in der Ausgabe von &man.dmesg.8; häufig die Meldung file: table is full? Diese Fehlermeldung besagt, dass Sie die zur Verfügung stehenden File-Handles des Systems verbraucht haben. Was das genau bedeutet und wie Sie dieses Problem lösen können, steht im Abschnitt kern.maxfiles im Kapitel Anpassung der Kernelkonfiguration des Handbuchs. Warum werden ständig Meldungen wie calcru: negative runtime oder calcru: runtime went backwards auf die Konsole geschrieben? Es existiert ein bekanntes Problem wenn &intel; Enhanced SpeedStep im BIOS aktiviert wird. Das führt dazu, dass der Kernel calcru-Nachrichten wie die folgende ausgibt: calcru: runtime went backwards from 6 usec to 3 usec for pid 37 (pagezero) calcru: runtime went backwards from 6 usec to 3 usec for pid 36 (vmdaemon) calcru: runtime went backwards from 170 usec to 138 usec for pid 35 (pagedaemon) calcru: runtime went backwards from 553 usec to 291 usec for pid 15 (swi6: task queue) calcru: runtime went backwards from 15521 usec to 10366 usec for pid 2 (g_event) calcru: runtime went backwards from 25 usec to 12 usec for pid 11 (swi1: net) calcru: runtime went backwards from 4417 usec to 3960 usec for pid 1 (init) calcru: runtime went backwards from 2084385 usec to 1793542 usec for pid 1 (init) calcru: runtime went backwards from 408 usec to 204 usec for pid 0 (swapper) Der Grund dafür besteht darin, dass &intel; SpeedStep (EIST) in manchen Mainboards inkompatibel ist. Abhilfe: Deaktivieren Sie die EIST-Eigenschaft im BIOS. Sie können trotzdem noch ihre Prozessorfrequenz ACPI-basiert mittels &man.powerd.8; drosseln. Warum ist die Uhrzeit auf meinem Computer immer falsch? Ihr Computer verfügt über mehr als eine Uhr und &os; benutzt leider die falsche. Starten Sie &man.dmesg.8; und achten Sie auf die Zeilen, in denen das Wort Timecounter vorkommt. Die von &os; benutzte Uhr findet sich in der Zeile mit dem höchsten quality-Wert. &prompt.root; dmesg | grep Timecounter Timecounter "i8254" frequency 1193182 Hz quality 0 Timecounter "ACPI-fast" frequency 3579545 Hz quality 1000 Timecounter "TSC" frequency 2998570050 Hz quality 800 Timecounters tick every 1.000 msec Sie können das überprüfen, indem Sie den Wert der Systemvariablen kern.timecounter.hardware abfragen. &prompt.root; sysctl kern.timecounter.hardware kern.timecounter.hardware: ACPI-fast Es kann sich um einen defekten ACPI Timer handeln. Die einfachste Lösung besteht darin, den ACPI Timer in /etc/loader.conf zu deaktivieren: debug.acpi.disabled="timer" Es ist aber auch durchaus möglich, dass das BIOS die TSC Uhr ändert, um beispielsweise den CPU-Takt zu während des Batteriebetrieb zu ändern, oder im Stromsparmodus; leider bemerkt &os; diese Änderungen nicht und daher scheint die Uhr falsch zu gehen. In diesem Beispiel ist die Uhr i8254 ebenfalls verfügbar; um sie auszuwählen, muss ihr Name in die Systemvariable kern.timecounter.hardware geschrieben werden. &prompt.root; sysctl -w kern.timecounter.hardware=i8254 kern.timecounter.hardware: TSC -> i8254 Die Uhrzeit Ihres Computers sollte nun genauer funktionieren. Damit diese Änderung automatisch beim Start des Systems durchgeführt wird, müssen Sie die folgende Zeile in die /etc/sysctl.conf eintragen. kern.timecounter.hardware=i8254 Warum erkennt mein Laptop PC-Cards nicht? Dieses Problem tritt häufig auf Laptops mit mehreren Betriebssystemen auf. Einige nicht-BSD Betriebssysteme lassen die Hardware in einem inkonsistenten Zustand. Die Karte wird dann von &man.pccardd.8; als "(null)""(null)" anstelle des tatsächlichen Modells gefunden. Um dies zu beheben, müssen Sie die Hardware zurücksetzen, das heißt der PC-Card Einschub muss stromlos sein. Gehen Sie dazu nicht in den Standby- oder Suspend-Modus und stellen Sie sicher, dass der Laptop wirklich ausgeschaltet ist. Warten Sie einen Moment und booten dann, Ihre PC-Card sollte jetzt funktionieren. Einige Laptops schalten sich nicht wirklich aus. Wenn der obige Vorschlag nichts genutzt hat, entfernen Sie bitte die Batterie, warten einen Moment und booten erneut. Wieso hängt sich &os; nach dem BIOS-Bildschirm mit der Meldung Read error auf? Der Bootloader von &os; erkennt die Geometrie Ihrer Festplatte nicht richtig. Sie müssen die Geometrie manuell festlegen, wenn sie mit &man.fdisk.8; &os;-Bereiche erzeugen oder ändern. Die richtigen Werte für die Geometrie können Sie im BIOS des Rechners ablesen. Achten Sie auf die Anzahl der Zylinder, Köpfe und Sektoren für Ihre Festplatte. Im fdisk von &man.sysinstall.8; müssen Sie G eingeben, um die Geometrie zu definieren. Sie erhalten eine Dialogbox, in der Sie die Anzahl der Zylinder, Köpfe und Sektoren eingeben können. Verwenden Sie die Angaben des BIOS und setzen Sie Schrägstriche zwischen die Zahlen. 5000 Zylinder, 250 Köpfe und 60 Sektoren würden also als 5000/250/60 eingegeben. Schließen Sie die Eingabe mit Enter ab und drücken Sie W, um die neue Partitionstabelle auf die Festplatte schreiben zu lassen. Ein anderes Betriebssystem hat meinen Bootmanager zerstört. Wie kann ich ihn wiederherstellen? Starten Sie &man.sysinstall.8; und wählen Sie Configure, dann Fdisk. Wählen Sie die Platte, auf der sich der Boot Manager befand, mit der Leertaste aus. Drücken Sie W, um die Änderungen auf die Platten schreiben zu lassen. Nun erscheint eine Abfrage, welcher Bootmanager installiert werden soll. Wählen Sie diesen an und er wird wieder installiert. Was soll mir die Meldung swap_pager: indefinite wait buffer: sagen? Ein Programm wollte Speicher auf Platte auslagern, und dieser Vorgang konnte nicht innerhalb von 20 Sekunden durchgeführt werden. Mögliche Gründe sind defekte Blöcke auf der Platte, falsche oder fehlerhafte Verkabelung sowie Probleme mit anderen Komponenten, die am Zugriff auf die Festplatte beteiligt sind. Wenn die Festplatte selbst fehlerhaft sind, sollten Sie entsprechende Meldungen in /var/log/messages und den Ausgaben von dmesg finden. Andernfalls sollten Sie die Kabel und Verbindungen überprüfen. Was sind UDMA ICRC Fehler und wie behebe ich sie? Der &man.ata.4;-Treiber meldet UDMA ICRC Fehler wenn eine DMA-Übertragung zu oder von einem Laufwerk fehlgeschlagen ist. Der Treiber versucht die Übertragung mehrmals durchzuführen und schaltet, wenn die Versuche fehlschlagen, vom DMA-Modus auf den langsameren PIO-Modus um. Der Fehler kann viele Ursachen haben, häufig ist ein Kabel kaputt oder die Geräte sind falsch verkabelt. Prüfen Sie, ob die ATA-Kabel unbeschädigt sind und für den verwendeten Ultra-DMA-Modus tauglich sind. Ebenso müssen Wechselrahmen für den verwendeten Modus geeignet sein. Stellen Sie sicher, dass alle Kabel fest angeschlossen sind. Es gab auch schon Probleme, wenn ein altes Laufwerk zusammen mit einem Ultra-DMA-66 oder einem schnelleren Laufwerk auf einem Kanal betrieben wurde. Es kann aber auch sein, dass das Laufwerk kaputt ist. Die meisten Hersteller stellen Test-Programme für ihre Laufwerke zur Verfügung. Überprüfen Sie damit Ihr Laufwerk und wenn nötig, sichern Sie Ihre Daten und ersetzen das Laufwerk. &man.atacontrol.8; zeigt für jedes ATA-Gerät den verwendeten DMA- oder PIO-Modus an. Das Kommando atacontrol mode Kanal zeigt die auf einem Kanal verwendeten Modi (die Kanäle werden von 0 an nummeriert). Was ist ein lock order reversal? Eine Antwort auf diese Frage findet sich im &os;-Glossar unter LOR. Warum erhalte ich die Meldung Called ... with the following non-sleepable locks held? Diese Meldung erscheint, wenn eine Funktion, die sich im Ruhemodus befindet, aufgerufen wird, während ein Mutex oder eine andere (nicht in den Ruhemodus versetzbare) Sperre aktiv war. Der Grund dafür ist, dass ein Mutex nicht für längere Zeitspannen aktiv sein soll, sondern nur für die Synchronisation von Gerätetreibern mit dem Rest des Kernels während eines Interrupts. Unter &os; dürfen Interrupts nicht in den Ruhemodus versetzt werden. Daher ist es von entscheidender Bedeutung, dass während des Bestehens eines Mutex kein Kernelsubsystem für einen längeren Zeitraum blockiert ist. Um solche Fehler abzufangen, können Sicherungen (Assertions) in den Kernel eingebaut werden, die danach mit dem &man.witness.4;-Subsystem interagieren. Dadurch wird (in Abhängigkeit von Ihrer Systemkonfiguration) eine Warnung oder eine Fehlermeldung ausgegeben, falls der Aufruf einer Funktion während des Bestehens eines Mutex zu einer Blockierung führen kann. Zusammenfassend kann man sagen, dass diese Warnungen in der Regel zwar nicht bedrohlich sind. Unter bestimmten Umständen kann es aber dennoch zu unerwünschten Nebenwirkungen, angefangen von einer Erhöhung der Reaktionszeit bis hin zu einem kompletten Einfrieren des Systems kommen. Warum bricht buildworld/installworld mit der Meldung touch: not found ab? Dieser Fehler bedeutet nicht, dass &man.touch.1; nicht auf Ihrem System vorhanden ist. Vielmehr sind Dateien die Ursache, deren Erzeugungsdatum in der Zukunft liegt. Wenn Ihre CMOS-Uhr auf Ihre lokale Zeit eingestellt ist, müssen Sie adjkerntz -i verwenden, um die Kerneluhr anzupassen, wenn Sie in den Single-User-Modus booten.
Kommerzielle Anwendungen Dieser Abschnitt ist immer noch sehr dürftig, aber wir hoffen natürlich, dass Unternehmen einen Beitrag leisten werden! :) Die &os;-Gruppe hat keinerlei finanzielle Interessen an einem der hier aufgelisteten Unternehmen, sondern listet sie lediglich als öffentlichen Service auf (und ist der Meinung, dass ein kommerzielles Interesse an &os; sehr positiven Einfluss auf ein langfristiges Bestehen von &os; haben kann). Wir möchten Anbieter kommerzieller Software dazu aufrufen, ihren Eintrag hier aufnehmen zu lassen. Auf der Anbieter-Seite finden Sie eine längere Liste. Wo bekomme ich &os;-Versionen der klassischen Büro-Anwendungen? Das als Open Source verfügbare Office-Paket OpenOffice.org läuft nativ unter &os;. Die um zusätzliche Funktionen erweiterte kommerzielle OpenOffice.org-Version Oracle Open Office läuft in der &linux;-Version ebenfalls problemlos unter &os;. In der Ports-Sammlung sind weitere Textbearbeitungsprogramme, Tabellenkalkulationen und Zeichenprogramme enthalten. Woher kann ich &motif; für &os; bekommen? Der Quelltext für &motif; 2.2.2 wurde von der Open Group herausgegeben. Sie können entweder das Package x11-toolkits/open-motif installieren oder es mit dem entsprechenden Port selbst compilieren. Weitere Informationen über die Benutzung der Ports erhalten Sie im Kapitel Ports des Handbuchs. Die Open &motif; Distribution darf nur weitergegeben werden, wenn sie auf einem Open Source Betriebssystem benutzt wird. Weiterhin gibt es auch kommerzielle &motif;-Pakete, die zwar nicht kostenlos sind, aber dafür auch mit closed source Software benutzt werden dürfen. Um die günstigste ELF-&motif; 2.1.20 Distribution für &os; (&i386;) zu bekommen, wenden Sie sich bitte an Apps2go. Es gibt zwei Distributionen, die development edition und die runtime edition (wesentlich günstiger). Diese Distributionen enthalten: OSF/&motif; manager, xmbind, panner, wsm. Development-Kit mit uil, mrm, xm, xmcxx, Include- und Imake-Dateien. Statische und dynamische ELF-Bibliotheken. Demonstrations-Applets. Achten Sie darauf, dass Sie bei der Bestellung angeben, dass Sie die &os;-Version von &motif; möchten (vergessen Sie auch nicht, die Architektur anzugeben)! Von Apps2go werden auch Versionen für NetBSD und OpenBSD verkauft. Dieses Produkt ist zurzeit nur zum Download per FTP verfügbar. Weitere Informationen Apps2go Web-Seite oder sales@apps2go.com oder support@apps2go.com oder Telefon (817) 431 8775 oder +1 817 431-8775 Woher kann ich CDE für &os; bekommen? Xi Graphics hat einmal CDE für &os; verkauft, tut es aber nicht mehr. KDE ist ein Open-Source X11-Desktop, der CDE in vielen Punkten ähnelt. Eventuell gefällt Ihnen auch das "Look and Feel" von xfce. KDE und xfce sind über die Ports-Sammlung von &os; verfügbar. Gibt es irgendwelche Datenbanksysteme für &os;? Ja! Lesen Sie den Abschnitt kommerzielle Anbieter auf der &os;-Web-Seite. Schauen Sie auch im Abschnitt Datenbanken der Ports-Sammlung nach. Kann ich &oracle; unter &os; laufen lassen? Ja. Informationen zur Installation von &linux;-&oracle; unter &os; finden Sie unter http://www.shadowcom.net/freebsd-oracle9i/. Benutzerprogramme Nun, wo sind die ganzen Benutzerprogramme? Werfen Sie bitte einen Blick auf die Ports-Seite, um Informationen über die nach &os; portierten Softwarepakete zu erhalten. Die Liste enthält zurzeit &os.numports; Einträge und wächst täglich. Informieren Sie sich daher regelmäßig auf dieser Seite oder abonnieren Sie die Mailingliste &a.announce;, um sich über Änderungen zu informieren. Die meisten Ports sollten auf den 6.X, 7.X und 8.X-Systemen laufen. Jedes Mal, wenn ein &os;-Release erstellt wird, wird auch ein Snapshot des Port-Baumes vom Zeitpunkt des Releases in das Verzeichnis ports/ eingefügt. Wir unterstützen auch das Konzept von Packages - im Grunde genommen nicht mehr als komprimierte Binärdistributionen mit ein wenig zusätzlicher Intelligenz zur Ermöglichung angepasster Installationen. Ein Package kann leicht installiert und wieder deinstalliert werden, ohne, dass man etwas über wissen muss, welche Dateien es enthält. Benutzen Sie das Packages Menü in &man.sysinstall.8; (unter dem Menüpunkt post-configuration) oder führen Sie den Befehl &man.pkg.add.1; mit den speziellen Paketdateien aus, die Sie installieren möchten. Paketdateien können für gewöhnlich an der Endung .tgz oder .tbz erkannt werden und diejenigen, die über eine CD-ROM-Distribution verfügen, haben auf ihrer CD ein Verzeichnis packages/All, das solche Dateien enthält. Für verschiedene &os;-Versionen können sie von folgenden Adressen auch über das Netz heruntergeladen werden: für 6.X-RELEASE/6-STABLE ftp://ftp.de.FreeBSD.org/pub/FreeBSD/ports/i386/packages-6-stable für 7.X-RELEASE/7-STABLE ftp://ftp.de.FreeBSD.org/pub/FreeBSD/ports/i386/packages-7-stable für 8.X-RELEASE/8-STABLE ftp://ftp.FreeBSD.org/pub/FreeBSD/ports/i386/packages-8-stable für 9-CURRENT ftp://ftp.FreeBSD.org/pub/FreeBSD/ports/i386/packages-9-current oder von Ihrem nächstgelegenen Mirror. Beachten Sie, dass nicht alle Ports als Package verfügbar sind, da ständig neue hinzugefügt werden. Es ist immer eine gute Idee, sich regelmäßig auf der ftp.de.FreeBSD.org Masterseite darüber zu informieren, welche Packages verfügbar sind. Wie konfiguriere ich INN (Internet News) für meine Maschine? Ein idealer Startpunkt nach der Installation des Packages oder Ports news/inn ist Dave Barr's INN-Seite, wo Sie die INN-FAQ finden. Unterstützt &os; &java;? Ja. Informieren Sie sich bitte unter http://www.de.FreeBSD.org/java/. Warum kann ich manche Ports auf meiner 6.X, 7.X oder 8.X-STABLE-Maschine nicht erstellen? Wenn Sie eine &os;-Version benutzen, die deutlich älter als das aktuelle -CURRENT oder -STABLE ist, könnte es sein, dass Sie vorher Ihre Ports-Sammlung aktualisieren müssen. Lesen Sie dazu den Abschnitt Keeping Up des Porters-Handbuch. Ist Ihre Ports-Sammlung aktuell, könnte es sein, dass jemand eine Änderung am Port durchgeführt hat, die für -CURRENT funktioniert, den Port für -STABLE aber unbrauchbar gemacht hat. Bitte senden Sie einen Fehlerbericht mit dem Befehl &man.send-pr.1;. Von der Ports-Sammlung wird nämlich erwartet, dass sie sowohl auf -CURRENT als auch auf -STABLE funktioniert. Ich habe gerade versucht, INDEX mit make index zu bauen, und es hat nicht geklappt. Woran liegt das? Stellen Sie zuerst sicher, dass Ihre Ports-Sammlung aktuell ist. Fehler, die einen Bau von INDEX aus einer aktuellen Ports-Sammlung verhindern, sind sofort sichtbar und werden daher fast immer umgehend behoben. Ist Ihre Ports-Sammlung jedoch aktuell, haben Sie vielleicht ein anderes Problem. make index hat einen Bug im Umgang mit unvollständigen Kopien der Ports-Sammlung. Es nimmt an, dass Sie über eine lokale Kopie aller Ports verfügen, von denen jeder lokale Port abhängt. Wenn Sie also beispielsweise eine Kopie von foo/bar auf Ihrem System haben, und foo/bar ist von baz/quux abhängig, dann muss auch eine Kopie von baz/quux auf Ihrem System vorhanden sein, sowie eine Kopie aller Ports, von denen baz/quux abhängt. Anderenfalls ist make index aufgrund fehlender Informationen nicht in der Lage, den Abhängigkeitsbaum zu erzeugen. Dieses Problem tritt vor allem dann auf, wenn &os;-Benutzer &man.cvsup.1; (oder &man.csup.1;) verwenden, um die Ports-Sammlung zu aktualisieren und dabei verschiedene Kategorien durch die Datei refuse von der Aktualisierung ausschließen. Theoretisch ist es zwar möglich, Kategorien auszuschließen, in der Praxis gibt es aber zu viele Ports, die von Ports in anderen Kategorien abhängen. Wenn Sie also INDEX bauen wollen, müssen Sie über eine komplette Kopie der Ports-Sammlung verfügen. Es gibt seltene Fälle, in denen INDEX nicht gebaut werden kann, wenn bestimmte WITH_* oder WITHOUT_* Variablen in make.conf gesetzt sind. Wenn Sie dieses Problem haben, sollten Sie diese make-Variablen deaktivieren und INDEX erneut bauen, bevor Sie das Problem an &a.ports; melden. Warum ist CVSup nicht im &os;-Basisquellbaum enthalten? Das Basissystem von &os; soll selbstverwaltend sein. Es soll also möglich sein, das komplette Betriebssystem mit einer beschränkten Anzahl von Werkzeugen zu starten. Daher werden die zum Bau von &os; nötigen Werkzeuge mit dem Quelltext gekoppelt. Zu diesen Werkzeugen gehören ein C-Compiler (&man.gcc.1;), &man.make.1;, &man.awk.1; und andere. Da CVSup in Modula-3 geschrieben wurde, müsste ein Modula-3-Compiler ins Basissystem aufgenommen und auch gewartet werden. Dies würde einen gestiegenen Speicherbedarf für die &os;-Quellen sowie einen erhöhten Wartungsaufwand verursachen. Daher ist es sowohl für Entwickler als auch Benutzer einfacher, CVSup bei Bedarf als Port oder als Paket von einer Installations-CD zu installieren. Wie dem auch sei, &os;-Benutzer müssen seit &os; 6.2-RELEASE nicht mehr ohne einen kompatiblen CVSup-Client auskommen. Dank &a.mux; wurde CVSup als &man.csup.1; in C neu geschrieben und ist mittlerweile Teil des Basissystems. Obwohl zur Zeit noch nicht alle Eigenschaften von CVSup implementiert sind, ist es gut genug (und sehr schnell!) darin, ihre Quellen zu synchronisieren. Für &os;-Systeme vor 6.2 kann es als Port oder Paket (siehe net/csup) installiert werden. Ich habe die Sourcen aktualisiert, wie aktualisiere ich jetzt die installierten Ports? &os; enthält zwar kein Programm, das die installierten Ports aktualisiert, allerdings existieren diverse Programme, die diesen Prozess etwas vereinfachen. Weiterhin können Sie zusätzliche Programme installieren, die Sie dabei unterstützen, siehe Ports aktualisieren im &os; Handbuch. Muss ich nach der Aktualisierung einer &os;-Hauptversionsnummer jedes Mal alle Ports neu erstellen lassen? Auf jeden Fall! Während ein aktuelles System mit Software für eine ältere Version funktionieren wird, werden Sie mit zufälligen Abstürzen und nicht funktionierenden Ports zurückbleiben, sobald Sie anfangen, andere Ports zu installieren oder diejenigen, die Sie bereits haben, aktualisieren möchten. Wenn das System aktualisiert wird, werden verschiedene Shared-Libraries, ladbare Module und andere Systembestandteile mit neueren Versionen ersetzt. Anwendungen, die gegen die älteren Versionen gelinkt sind, werden nicht starten oder in anderen Fällen nicht korrekt funktionieren. Für weitere Informationen, lesen Sie den Abschnitt über Betriebssystemupgrades im &os; Handbuch. Muss ich nach der Aktualisierung einer &os;-Unterversionsnummer jedes Mal alle Ports neu erstellen lassen? Generell nicht. Die &os;-Entwickler tun ihr möglichstes, um die Binärkompatibilität über alle Veröffentlichungen mit der gleichen Hauptversionsnummer zu garantieren. Ausnahmen werden in den Release Notes dokumentiert und die darin enthaltenen Hinweise sollten befolgt werden. Warum ist /bin/sh so spartanisch? Warum benutzt &os; nicht die bash oder eine ähnliche Shell? Weil der &posix;-Standard definiert, dass es so eine Shell geben muss. Die ausführlichere Antwort: Viele Leute müssen Shell-Programme schreiben, die auf vielen verschiedenen Systemen nutzbar sein müssen. Aus diesem Grund enthält der &posix;-Standard eine sehr detaillierte Definition der Shell und der Hilfsprogramme. Die meisten Programme werden für die Bourne Shell geschrieben; außerdem nutzen mehrere wichtige Schnittstellen (&man.make.1;, &man.system.3;, &man.popen.3; und ihre Entsprechungen in höheren Programmiersprachen wie Perl und Tcl) die Bourne Shell, um Befehle auszuführen. Da die Bourne Shell an so vielen Stellen und so häufig genutzt wird, muss sie die folgenden Anforderungen erfüllen: Schneller Start, ein klar definiertes Verhalten und ein möglichst geringer Speicherverbrauch. Wir haben bei der vorliegenden Implementierung versucht, möglichst viele dieser Anforderungen zu erfüllen. Um /bin/sh nicht zu groß werden zu lassen, haben wir viele der Annehmlichkeiten der anderen Shells weggelassen. Aus diesem Grund gibt es in den Ports die luxuriöseren Shells wie bash, scsh, tcsh und zsh. Vergleichen Sie einfach mal den Speicherverbrauch der verschiedenen Shells, indem Sie ps aufrufen und sich die Angaben in den Spalten VSZ und RSS ansehen. Wieso dauert es so lange, bis &netscape; und Opera starten? In den meisten Fällen liegt es daran, dass Ihre DNS-Einstellungen fehlerhaft sind. Sowohl &netscape; als auch Opera stellen Anfragen an DNS, wenn Sie gestartet werden. Das Fenster des Browsers erscheint erst, wenn das Programm eine Antwort erhalten hat oder es festgestellt hat, dass Ihr System nicht an ein Netzwerk angeschlossen ist. Ich habe die Ports-Sammlung mit CVSup aktualisiert. Viele Ports lassen sich danach nicht mehr bauen und geben seltsame Fehlermeldungen aus. Was ist passiert? Ist die Ports-Sammlung kaputt? Sie sollten immer die Teilsammlung ports-base aktualisieren, wenn Sie nur Teile der Ports-Sammlung mit Hilfe der CVSup-Teilsammlungen aktualisieren. Die Erklärung dazu finden Sie im Handbuch. Wie erzeuge ich Audio-CDs aus MIDI-Dateien? Installieren Sie zuerst den Port audio/timidity++. Danach müssen Sie manuell die GUS-Patche von Eric A. Welsh von installieren. Wenn TiMidity++ richtig installiert wurde, können Sie mit dem folgenden Kommando MIDI-Dateien in das WAV-Format konvertieren: &prompt.user; timidity -Ow -s 44100 -o /tmp/juke/01.wav 01.mid Die WAV-Dateien können dann in andere Formate konvertiert werden oder (wie im &os;-Handbuch beschrieben) auf Audio-CDs gebrannt werden. Kernelkonfiguration Ich möchte meinen Kernel anpassen. Ist das schwierig? Überhaupt nicht! Lesen Sie den Abschnitt zur Kernelkonfiguration im Handbuch. Der neue kernel wird zusammen mit seinen Modulen im Verzeichnis /boot/kernel installiert werden. Der alte Kernel und dessen Module wird in das Verzeichnis /boot/kernel.old verschoben, damit Sie, wenn Sie einen Fehler beim herumexperimentieren mit Ihrer Konfiguration gemacht haben, die vorherige Version Ihres Kernels starten können. Was kann ich machen, wenn meine Kernel-Kompilierungen fehlschlagen, weil _hw_float fehlt? Sie haben wahrscheinlich npx0 aus Ihrer Kernelkonfigurationsdatei entfernt, weil Sie keinen mathematischen Co-Prozessor besitzen. Die Gerätedatei npx0 ist allerdings VERPFLICHTEND. Ihre Hardware unterstützt Gleitkommaoperationen, selbst wenn dafür kein eigenes Bauteil (wie bei den 386er-Prozessoren) mehr verwendet wird. Daher müssen Sie die Gerätedatei npx0 einbinden. Selbst wenn es Ihnen gelingen sollte, einen Kernel ohne npx0-Unterstützung zu bauen, werden Sie diesen nicht booten können. Warum ist mein Kernel so groß (über 10 MByte)? Sie haben Ihren Kernel wahrscheinlich im Debug Modus erstellt. Ein Debug-Kernel enthält viele zusätzliche Informationen für die Fehlersuche, daher ist er so groß. Bitte beachten Sie, dass die Verwendung eines Debug-Kernels die Performance des Systems nicht oder nur minimal reduziert; außerdem ist es für den Fall einer system panic sehr praktisch, einen Debug-Kernel zur Hand zu haben. Wenn Ihnen allerdings der Plattenplatz ausgeht oder Sie einfach rein prinzipiell keinen Debug-Kernel benutzen wollen, müssen die beiden folgenden Bedingungen erfüllt sein: Die Konfigurationsdatei für Ihren Kernel darf die folgende Zeile nicht enthalten: makeoptions DEBUG=-g Sie dürfen &man.config.8; nicht mit dem Parameter starten. Sollten Sie sich nicht an diese Einschränkungen halten, wird Ihr Kernel im Debug-Modus erstellt. Solange Sie sich an diese Einschränkungen halten, können Sie Ihren Kernel ganz normal erstellen und die Größe des Kernels sollte deutlich sinken. Ein normaler Kernel ist nur 1.5 MByte bis 2 MByte groß. Wieso erhalte ich Meldungen über Interrupt-Konflikte, wenn ich eine Karte mit mehreren seriellen Schnittstellen einsetzen will? Wenn ich einen Kernel mit Unterstützung für serielle Multi-Port-Schnittstellen kompiliere, bekomme ich den Hinweis, dass nur der erste Port geprüft wird und die restlichen auf Grund von Interrupt-Konflikten übersprungen werden. Wie kann ich das Beheben? Das Problem besteht darin, dass in &os; Code integriert ist, um den Kernel vor Abstürzen aufgrund von Hardware- oder Software-Konflikten zu bewahren. Behoben wird es, indem die IRQ-Angaben für alle Ports, bis auf einen ausgelassen werden. Hier ist ein Beispiel: # # Multiport high-speed serial line - 16550 UARTS # device sio2 at isa? port 0x2a0 tty irq 5 flags 0x501 vector siointr device sio3 at isa? port 0x2a8 tty flags 0x501 vector siointr device sio4 at isa? port 0x2b0 tty flags 0x501 vector siointr device sio5 at isa? port 0x2b8 tty flags 0x501 vector siointr Wieso kann ich nicht einmal den Standard-Kernel (GENERIC) bauen? Es gibt eine Reihe von möglichen Ursachen für dieses Problem: Sie benutzen die neuen Kommandos make buildkernel und make installkernel nicht, obwohl die Sourcen auf Ihrem System nicht zum laufenden System passen (z.B. benutzen Sie die Sourcen von &rel.current;-RELEASE auf einem System mit &rel2.current;-RELEASE). Wenn Sie ein Upgrade durchführen wollen, sollten Sie /usr/src/UPDATING lesen, beachten Sie insbesondere den Abschnitt COMMON ITEMS gegen Ende des Dokuments. Sie benutzen zwar make buildkernel und make installkernel, aber Sie haben nicht darauf geachtet, dass vorher ein komplettes make buildworld durchgelaufen sein muss. Um seine Arbeit erledigen zu können, benötigt make buildkernel Dateien, die von make buildworld erzeugt werden. Auch wenn Sie &os;-STABLE verwenden, ist es durchaus möglich, dass Sie die Sourcen genau zum falschen Zeitpunkt aktualisiert haben: Während Sie gerade modifiziert wurden oder kurzzeitig fehlerhaft waren. Eine absolute und vollständige Garantie, dass Sie die Sourcen compilieren können, gibt es nur für die Releases, bei &os;-STABLE ist das nicht immer so. Wenn Sie es noch nicht versucht haben, sollten Sie ihre Source nochmals aktualisieren. Es ist denkbar, dass der von Ihnen genutzte Server zurzeit Probleme hat, benutzen Sie daher testweise auch einmal einen anderen Server. Wie kann ich prüfen, welchen Scheduler das System benutzt? Überprüfen Sie dazu, ob auf Ihrem System die sysctl-Variable kern.sched.quantum existiert. Ist dies bei Ihnen der Fall, werden Sie eine Ausgabe ähnlich der folgenden sehen: &prompt.user; sysctl kern.sched.quantum kern.sched.quantum: 99960 Wenn die sysctl-Variable kern.sched.quantum existiert, dann verwenden Sie den 4BSD-Scheduler (&man.sched.4bsd.4;). Existiert sie nicht, erzeugt &man.sysctl.8; eine Fehlermeldung (die Sie aber ignorieren können): &prompt.user; sysctl kern.sched.quantum sysctl: unknown oid 'kern.sched.quantum' Seit &os; 5.3-RELEASE wird der Name des verwendeten Schedulers direkt als Wert der sysctl-Variable kern.sched.name ausgegeben: &prompt.user; sysctl kern.sched.name kern.sched.name: 4BSD Was bedeutet kern.sched.quantum? kern.sched.quantum ist die maximale Anzahl Ticks, die ein Prozess ununterbrochen laufen kann. Die Variable ist charakteristisch für den 4BSD Scheduler, somit kann der verwendete Scheduler über die Existenz dieser Variablen bestimmt werden. Platten, Dateisysteme und Boot Loader Wie kann ich meine neue Festplatte in mein &os;-System einbinden? Lesen Sie den Abschnitt Hinzufügen von Laufwerken im Handbuch. Wie verschiebe ich mein System auf meine neue, große Platte? Die beste Methode ist, das Betriebssystem auf der neuen Platte neu zu installieren und danach die Daten zu verschieben. Wenn Sie -STABLE über eine Release hinaus genutzt haben oder eine Release aktualisiert haben, ist das sehr empfehlenswert. Sie können auf beiden Platten &man.boot0cfg.8; installieren und die beiden Versionen so lange parallel betreiben, bis Ihnen die neue Konfiguration gefällt. Wenn Sie dies tun wollen, können Sie im übernächsten Absatz erfahren, wie sie Ihre Daten verschieben können. Falls Sie sich entscheiden, das nicht zu tun, müssen Sie Ihre neue Platte partitionieren und labeln. Benutzen Sie dafür entweder &man.sysinstall.8; oder &man.fdisk.8; und &man.disklabel.8;. Weiterhin sollten Sie mit &man.boot0cfg.8; auf beiden Platten booteasy installieren, damit Sie in der Lage sind, das alte und das neue System abwechselnd zu starten, nachdem der Kopiervorgang abgeschlossen ist. Im Formatting-Media Tutorial finden Sie weitere Informationen zu diesen Schritten. Nachdem Sie die neue Platte eingerichtet haben, können Sie Ihre Daten verschieben. Dummerweise können Sie die Daten nicht einfach kopieren. Dinge wie Gerätedateien (in /dev), erweiterte Dateiattribute und symbolische Links führen dazu, dass das in die Hose geht. Sie müssen ein Programm benutzen, das damit umgehen kann, und das ist &man.dump.8;. Es wird oft empfohlen, die Daten im Single-User-Modus zu verschieben, aber das ist nicht unbedingt notwendig. Sie sollten auf gar keinen Fall etwas anderes als &man.dump.8; und &man.restore.8; benutzen, um Ihr Root-Filesystem zu verschieben. Es könnte auch mit &man.tar.1; funktionieren - oder auch nicht. Sie sollten ebenfalls &man.dump.8; und &man.restore.8; benutzen, wenn Sie eine komplette Partition auf eine andere, leere Partition verschieben wollen. Um die Daten einer Partition mit dump auf eine andere Partition zu verschieben, müssen Sie die folgenden Schritte ausführen: Richten Sie in der neuen Partition mit newfs ein Dateisystem ein. Mounten Sie die Partition temporär an einer geeigneten Stelle. Wechseln Sie mit cd in dieses Verzeichnis. Lesen Sie die alte Partition mit dump aus und lenken Sie die Ausgabe auf die neue Partition um. Wenn Sie zum Beispiel root auf /dev/ad1s1a verschieben wollen und diese derzeit auf /mnt gemountet ist, bedeutet das: &prompt.root; newfs /dev/ad1s1a &prompt.root; mount /dev/ad1s1a /mnt &prompt.root; cd /mnt &prompt.root; dump 0af - / | restore rf - Wenn Sie Ihre Partitionen mit &man.dump.8; umorganisieren wollen, steht Ihnen etwas mehr Arbeit bevor. Wenn Sie eine Partition wie /var in die übergeordnete Partition verschieben wollen, müssen Sie zunächst eine neue Partition erzeugen, die die beiden alten Partitionen aufnehmen kann. Der zweite Schritt ist, wie oben beschrieben die übergeordnete Partition in die neue Partition zu verschieben. Im dritten und letzten Schritt verschieben Sie dann die untergeordnete Partition in das leere Verzeichnis, das im zweiten Schritt entstanden ist: &prompt.root; newfs /dev/ad1s1a &prompt.root; mount /dev/ad1s1a /mnt &prompt.root; cd /mnt &prompt.root; dump 0af - / | restore rf - &prompt.root; cd var &prompt.root; dump 0af - /var | restore rf - Wenn Sie ein Verzeichnis aus einer Partition herauslösen wollen, also z.B. /var auf eine eigene Partition verlegen wollen, dann müssen Sie zunächst beide Partitionen anlegen. Danach müssen Sie die untergeordnete Partition im passenden Verzeichnis unterhalb des temporären mount points mounten und zum Abschluß die alte Partition verschieben: &prompt.root; newfs /dev/ad1s1a &prompt.root; newfs /dev/ad1s1d &prompt.root; mount /dev/ad1s1a /mnt &prompt.root; mkdir /mnt/var &prompt.root; mount /dev/ad1s1d /mnt/var &prompt.root; cd /mnt &prompt.root; dump 0af - / | restore rf - Eventuell sagen Ihnen für Benutzerdaten &man.cpio.1;, &man.pax.1; oder &man.tar.1; eher zu als &man.dump.8;. Allerdings haben alle diese Programme den Nachteil, dass sie die erweiterten Dateiattribute nicht verstehen, daher sollten Sie bei ihrem Einsatz aufpassen. Gefährdet eine dangerously dedicated Festplatte meine Gesundheit? Die Installationsprozedur bietet Ihnen zwei verschiedene Methoden, Ihre Festplatte(n) zu partitionieren. Die Standardmethode macht sie kompatibel zu anderen Betriebssystemen auf derselben Maschine, indem &man.fdisk.8;-Tabelleneinträge (unter &os; slices genannt) mit einem &os;-Eintrag, in dem eigene Partitionen untergebracht werden, benutzt werden. Optional kann ausgewählt werden, ob ein Boot-Selektor installiert werden soll, um zwischen den möglichen Betriebssystemen auf der/den Platte(n) wechseln zu können. Bei der zweiten Methode wird die gesamte Platte für &os; genutzt und nicht versucht, kompatibel zu anderen Betriebssystemen zu sein. Nun, warum wird es gefährlich genannt? Eine Platte in diesem Modus enthält nichts, was von normalen PC-Hilfsprogrammen als gültige &man.fdisk.8;-Tabelle betrachtet werden würde. Abhängig von der Qualität ihres Designs werden sie sich bei Ihnen beschweren, sobald sie mit einer solchen Platte in Kontakt kommen, oder noch schlimmer, sie könnten den Bootstrap von &os; beschädigen, ohne Sie zu fragen oder darauf hinzuweisen. Hinzu kommt, dass vom Layout von dangerously dedicated Platten bekannt ist, dass es viele BIOSe verwirrt, einschließlich solcher von AWARD (wie es z.B. im HP Netserver oder Micronics-Systemen, sowie vielen anderen zu finden ist) und Symbios/NCR (für die bekannte 53C8xx-Reihe von SCSI-Controllern). Dies ist keine vollständige Liste - es gibt weitere. Symptome für diese Verwirrung sind read error-Meldungen, die vom &os;-Bootstrap ausgegeben werden, wenn es sich selbst nicht finden kann, sowie Systemabstürze beim Booten. Warum gibt es diesen Modus dann überhaupt? Es spart ein paar kByte an Plattenplatz und kann echte Probleme verursachen, die zu einer Neuinstallation führen. Die Ursprünge des Dangerously dedicated Modus liegen in der Absicht, eines der häufigsten Probleme, das Erstinstallierer von &os; plagt, zu verhindern - die BIOS-Werte für die Geometrie einer Festplatte auf der Festplatte selbst anzupassen. Geometrie ist ein veraltetes Konzept, das aber immer noch die Grundlage für die Interaktion zwischen dem PC-BIOS und den Festplatten ist. Wenn das Installationsprogramm von &os; Slices erstellt, muss es sich die Lage dieser Slices auf der Festplatte in einer Art merken, die damit übereinstimmt, wie das BIOS erwartet, sie zu finden. Wenn das falsch geschieht, werden Sie nicht in der Lage sein, zu booten. Durch den Dangerously dedicated Modus wird versucht, dies zu umgehen, indem das Problem vereinfacht wird. In einigen Fällen klappt das zwar, aber er ist eher als allerletzter Ausweg gedacht - in 99 von 100 Fällen gibt es bessere Möglichkeiten, das Problem zu lösen. Wie vermeiden Sie also die Notwendigkeit zum DD Modus, wenn Sie installieren? Beginnen Sie, indem Sie sich notieren, welche Geometrie das BIOS für Ihre Platten benutzt. Sie können erreichen, dass der Kernel sie beim Booten ausgibt, indem Sie an der Eingabeaufforderung boot: angeben, oder boot -v im Loader verwenden. Kurz bevor das Installationsprogramm startet, wird der Kernel eine Liste mit den BIOS-Geometrien ausgeben. Keine Panik - warten Sie, bis das Installationsprogramm gestartet wurde und benutzen Sie Scrollback, um die Zahlen zu lesen. Typischerweise befinden sich die BIOS-Platten in derselben Reihenfolge, wie &os; Ihre Platten auflistet - zuerst IDE, dann SCSI. Wenn Sie Ihre Festplatte in Slices unterteilen, überprüfen Sie, ob die Plattengeometrie, die im FDISK-Menü angegeben ist, korrekt ist (das heißt mit den Einstellungen im BIOS übereinstimmen). Falls die Werte nicht stimmen, benutzen Sie G, um sie zu korrigieren. Diese Schritte sind nötig, wenn sich absolut nichts auf der Festplatte befindet, oder, wenn die Festplatte vorher in einem anderen System benutzt worden ist. Beachten Sie, dass dies nur für die Festplatte nötig ist, von der Sie booten wollen. Mit weiteren vorhandenen Platten wird &os; sich problemlos zurechtfinden. Wenn Sie es geschafft haben, dass das BIOS und &os; in der Festplattengeometrie übereinstimmen, dann sind Ihre Probleme ziemlich sicher vorüber - ohne, dass es nötig gewesen wäre, den DD-Modus zu benutzen. Falls sie jedoch immer noch mit der gefürchteten read error-Meldung begrüßt werden sollten, wenn Sie versuchen, zu booten, wird es Zeit, dass Sie Ihre Finger kreuzen und es einfach versuchen - es gibt nichts mehr zu verlieren. Um eine dangerously dedicated Festplatte wieder für einen normalen PC brauchbar zu machen, gibt es zwei Möglichkeiten. Die erste ist, ausreichend viele NULL-Bytes in den MBR zu schreiben, um irgendwelche nachfolgenden Installation glauben zu machen, dass es sich um eine leere Festplatte handelt. Sie können das zum Beispiel mit diesem Befehl tun: &prompt.root; dd if=/dev/zero of=/dev/rda0 count=15 Alternativ installiert der undokumentierte DOS-Befehl C:\> fdisk /mbr einen neuen Master-Boot-Record, das heißt der BSD-Bootstrap wird zerstört. Auf welchen Partitionen kann ich problemlos Soft Updates einsetzen? Ich habe gehört, das der Einsatz von Soft Updates auf / Probleme verursachen kann. Die schnelle Antwort: Sie können Soft Updates bedenkenlos auf alle Partitionen benutzen. Die ausführliche Antwort: Es gab lange Zeit Bedenken, was den Einsatz von Soft Updates auf der root-Partition betrifft. Der Grund sind zwei Charakteristika der Soft Updates: Zum einen kann es bei einem Absturz des System auf einer Partition mit Soft Updates zum Datenverlust kommen. Die Partition ist zwar noch brauchbar, aber einige Daten können verloren gehen. Weiterhin kann es durch Soft Updates zu einem zeitweisen Mangel an Plattenplatz kommen. Bei der Benutzung von Soft Updates kann es bis zu dreißig Sekunden dauern, bis der Kernel Änderungen auf das physikalische Speichermedium schreibt. Wenn Sie eine große Datei löschen, ist diese Datei noch auf der Platte vorhanden, bis der Kernel die Löschoperation tatsächlich durchführt. Das kann zu einem sehr einfachen Problem führen: Stellen Sie sich vor, Sie löschen eine große Datei und legen gleich darauf eine andere große Datei an. Da die erste Datei noch nicht wirklich gelöscht wurde, ist eventuell nicht genug Platz für die zweite große Datei. Sie erhalten die Fehlermeldung, dass nicht genug freier Platz vorhanden ist, obwohl Sie ganz genau wissen, dass Sie gerade eben Platz geschaffen haben. Wenn Sie die Operation ein paar Sekunden später wiederholen, funktioniert alles wie von Geisterhand. Dieser Effekt hat mehr als einen Benutzer verwirrt und Zweifel an seiner geistigen Stabilität oder dem &os;-Dateisystem aufkommen lassen. Wenn der Kernel ein Datenpaket annimmt und das System abstürzt, bevor er dies Daten auf die Platte geschrieben hat, kann es zum Verlust oder zur Zerstörung von Daten kommen. Dieses Risiko ist nur sehr gering und normalerweise tragbar. Wenn Sie allerdings einen IDE-Write-Cache verwenden, steigt das Risiko; daher wird normalerweise empfohlen, auf den Einsatz dieser Technik zu verzichten, wenn Sie Soft Updates benutzen. Diese beiden Probleme betreffen alle Partitionen, die Soft Updates verwenden. Was bedeutet das für die Root-Partition? Die wichtigen Daten auf der Root-Partition ändern sich nur sehr selten. Dateien wie /boot/kernel/kernel und der Inhalt /etc werden nur bei der Wartung des Systems geändert, oder wenn Benutzer ihre Passwörter ändern. Wenn das System in den 30 Sekunden nach einer solchen Änderung abstürzt, ist es möglich, das Daten verloren gehen. Dieses Risiko ist in den meisten Fällen unerheblich, aber es ist vorhanden. Wenn das zu viel Risiko ist, dann sollten Sie Soft Updates nicht auf der Root-Partition einsetzen. / war schon immer eine der kleinsten Partitionen. Wenn Sie das Verzeichnis /tmp direkt auf / und in Ihrem /tmp viel Betrieb ist, kann es gelegentlich zu den oben beschriebenen Platzproblemen kommen. Um das Problem zu lösen, sollten sie einen symbolischen Link von /tmp nach /var/tmp legen. Was stimmt mit meinem &man.ccd.4; nicht? Das Symptom hierfür ist: &prompt.root; ccdconfig -C ccdconfig: ioctl (CCDIOCSET): /dev/ccd0c: Inappropriate file type or format Das geschieht für gewöhnlich, wenn Sie versuchen, die c Partitionen, die standardmäßig vom Typ unbenutzt sind, zu verbinden. Der &man.ccd.4;-Treiber verlangt Partitionen vom Typ FS_BSDFFS. Editieren Sie den Plattenlabel der Platten, die Sie zu verknüpfen versuchen und ändern Sie die Typen der Partitionen in 4.2BSD. Warum kann ich den Plattenlabel meines &man.ccd.4; nicht editieren? Das Symptom hierfür ist: &prompt.root; disklabel ccd0 (hier wird etwas vernünftiges ausgegeben; versuchen wir nun, es zu editieren) &prompt.root; disklabel -e ccd0 (editieren, speichern, beenden) disklabel: ioctl DIOCWDINFO: No disk label on disk; use "disklabel -r" to install initial label Der Grund ist, dass der von &man.ccd.4; zurückgelieferte Plattenlabel ein vorgetäuschter ist, der sich nicht wirklich auf der Platte befindet. Sie können das Problem beheben, indem Sie ihn explizit zurückschreiben, wie z.B. hier: &prompt.root; disklabel ccd0 > /tmp/disklabel.tmp &prompt.root; disklabel -Rr ccd0 /tmp/disklabel.tmp &prompt.root; disklabel -e ccd0 (nun wird es funktionieren) Kann ich andere fremde Dateisysteme unter &os; mounten? &os; unterstützt verschiedene fremde Dateisysteme. UFS UFS-CD-ROMs können unter &os; direkt gemountet werden. Das Mounten von Partitionen von Digital &unix; und anderen Systemen, die UFS unterstützen, könnte schwieriger sein, abhängig von den Details der Plattenpartitionierung des betreffenden Betriebssystems. ext2/ext3 &os; unterstützt ext2fs und ext3fs-Partitionen. Unter &man.mount.ext2fs.8; finden Sie weitere Informationen. NTFS Ein NTFS-Treiber, der nur Lesezugriffe gestattet, ist Teil von &os;. Weitere Informationen entnehmen Sie bitte der Hilfeseite &man.mount.ntfs.8;. Ein Port von ntfs-3g unterstützt Schreiboperationen auf NTFS (siehe sysutils/fusefs-ntfs). FAT &os; enthält ein FAT-Treiber, der Lese- und Schreibzugriffe ermöglicht. Weitere Informationen entnehmen Sie bitte der Hilfeseite &man.mount.msdosfs.8;. ReiserFS &os; enthält einen Treiber, der Lesezugriffe auf ReiserFS-Partitionen erlaubt. Weitere Informationen dazu finden Sie in der Manualpage &man.mount.reiserfs.8;. ZFS Zum jetzigen Zeitpunkt enthält &os; eine Portierung von &sun;s ZFS Treiber. Die aktuelle Empfehlung ist, es nur auf &arch.amd64; Plattformen mit ausreichend Hauptspeicher zu verwenden. Mehr Informationen finden Sie in der Manualpage &man.zfs.8;. &os; unterstützt auch verschiedene Netzwerk-Dateisysteme, wie NFS (&man.mount.nfs.8;), NetWare (&man.mount.nwfs.8;), sowie die SMB-Dateisysteme von Microsoft (&man.mount.smbfs.8;). In Ports die auf FUSE (sysutils/fusefs-kmod) basieren, können Sie viele weitere Dateisysteme finden. Wie mounte ich eine erweiterte DOS-Partition? Die erweiterten DOS-Partitionen befinden sich hinter allen primären Partitionen. Wenn sich zum Beispiel eine Partition E als sekundäre DOS-Partition auf Ihrem zweiten SCSI-Laufwerk befindet, wird eine Gerätedatei für Slice 5 im Verzeichnis /dev erstellt, also mounten Sie diese einfach: &prompt.root; mount -t msdosfs /dev/da1s5 /dos/e Gibt es ein verschlüsselndes Dateisystem für &os;? Ja. Sie können entweder &man.gbde.8; oder &man.geli.8; einsetzen. Lesen Sie dazu auch den Abschnitt Partitionen verschlüsseln des Handbuchs. Wie kann ich den &windowsnt;-Loader zum Booten von &os; verwenden? Das grundsätzliche Vorgehen besteht darin, dass Sie den ersten Sektor Ihrer eigentlichen &os;-Rootpartition in eine Datei auf der DOS/&windowsnt;-Partition kopieren. Angenommen, sie nennen die Datei etwa c:\bootsect.bsd (durch c:\bootsect.dos inspiriert), dann können Sie die Datei c:\boot.ini etwa wie folgt editieren: [boot loader] timeout=30 default=multi(0)disk(0)rdisk(0)partition(1)\WINDOWS [operating systems] multi(0)disk(0)rdisk(0)partition(1)\WINDOWS="Windows NT" C:\BOOTSECT.BSD="&os;" C:\="DOS" Falls &os; auf derselben Platte, wie die &windowsnt;-Bootpartition installiert ist, kopieren Sie einfach /boot/boot1 nach C:\BOOTSECT.BSD. Falls &os; auf einer anderen Platte installiert ist, wird /boot/boot1 nicht funktionieren; Sie brauchen in diesem Fall /boot/boot0. /boot/boot0 muss mit &man.sysinstall.8; installiert werden. Wählen Sie dazu den &os;-Bootmanager aus, wenn Sie gefragt werden, ob sie einen Bootmanager installieren wollen. Dieser Schritt ist notwendig, weil /boot/boot0 eine leere Partitionstabelle enthält, die von &man.sysinstall.8; mit NULL-Zeichen ausgefüllt wird, bevor /boot/boot0 in den MBR kopiert wird. Sie dürfen auf gar keinen Fall einfach /boot/boot0 statt /boot/boot1 kopieren. Wenn Sie das doch tun sollten, wird Ihre Partitionstabelle überschrieben und Ihr Rechner wird nicht mehr starten! Wenn der Bootmanager von &os; gestartet wird, merkt er sich das zuletzt gestartet Betriebssystem, indem er dessen Partition als aktiv markiert. Danach kopiert er sich selbst (alle 512 Bytes) in den MBR. Wenn Sie also einfach /boot/boot0 nach C:\BOOTSECT.BSD kopieren, würde der Bootmanager eine leere Partitionstabelle (mit einem als aktiv markiertem Eintrag) in den MBR kopieren. Wie boote ich &os; und &linux; mit LILO? Falls sich &os; und &linux; auf derselben Platte befinden, folgen Sie einfach den Installationsanweisungen von LILO zum Booten eines Nicht-&linux;-Betriebssystems. Ganz knapp sind dies: Booten Sie &linux; und fügen Sie die folgenden Zeilen in die Datei /etc/lilo.conf ein: other=/dev/hda2 table=/dev/hda label=&os; (hierbei wird angenommen, dass Ihre &os;-Partition &linux; unter /dev/hda2 bekannt ist; ändern Sie dies entsprechend Ihren Einstellungen). Führen Sie nun als root den Befehl lilo aus und Sie sind fertig. Falls &os; sich auf einer anderen Platte befindet, müssen Sie loader=/boot/chain.b zu den LILO-Angaben hinzufügen. Zum Beispiel: other=/dev/dab4 table=/dev/dab loader=/boot/chain.b label=&os; In einigen Fällen könnte es sein, dass Sie beim &os;-Bootloader die BIOS-Laufwerksnummer angeben müssen, um von der zweiten Platte booten zu können. Wenn Ihre &os;-SCSI-Platte vom BIOS zum Beispiel als BIOS-Platte 1 erkannt wird, müssen Sie am Prompt des &os;-Bootloaders eingeben: Boot: 1:da(0,a)/boot/kernel/kernel Sie können &man.boot.8; so konfigurieren, dass das beim Booten automatisch geschieht. Das &linux;+FreeBSD mini-HOWTO ist ein guter Ratgeber bei Fragen zur Interaktion von &os; und &linux;. Wie boote ich &os; und &linux; mit GRUB? Es ist sehr einfach, GRUB zum Starten von &os; einzusetzen. Dazu müssen Sie lediglich die folgenden Zeilen in die Konfigurationsdatei /boot/grub/menu.lst (oder /boot/grub/grub.conf bei manchen Systemen wie z.B. Red Hat Linux und dessen Abkömmlinge) aufnehmen. title &os; 6.1 root (hd0,a) kernel /boot/loader Dabei steht hd0,a für die root-Partition Ihrer ersten Festplatte. Benötigen Sie auch die Slice-Nummer, so verwenden Sie einen Eintrag der Form (hd0,2,a). In der Voreinstellung ist die Angabe der Slice-Nummer aber nicht nötig, da GRUB automatisch das erste Slice (das die Bezeichnung a hat) nutzt. Wie boote ich &os; und &linux; mit BootEasy? Installieren Sie LILO am Anfang Ihrer &linux;-Bootpartition, anstatt im Master Boot Record. Sie können LILO dann von BootEasy aus booten. Wenn Sie &windows; und &linux; benutzen, wird das ohnehin empfohlen, um es einfacher zu machen, &linux; wieder zu booten, wenn es nötig werden sollte, dass Sie &windows; neu installieren (&windows; ist ein eifersüchtiges Betriebssystem, das kein anderes Betriebssystem im Master Boot Sektor duldet). Wie kann ich das ??? des Boot-Managers durch etwas Sinnvolles ersetzen? Solange Sie den Boot-Manager nicht komplett neu schreiben, gar nicht. Allerdings gibt es in der Kategorie sysutils der Ports diverse Boot-Manager, die diese Funktionalität bieten. Ich habe ein Wechsellaufwerk. Wie benutze ich es? Ob es sich um ein Wechsellaufwerk handelt, um ein &iomegazip; oder ein EZ-Laufwerk (oder sogar ein Diskettenlaufwerk, wenn Sie es auf diese Weise benutzen möchten), oder um eine neue Festplatte - wenn es einmal installiert und vom System erkannt ist und Sie Ihre Kassette/Diskette/was_auch_immer eingelegt haben, ist das Vorgehen bei allen Geräten ziemlich ähnlich. (dieser Abschnitt basiert auf Mark Mayo's ZIP-FAQ) Wenn es sich um ein ZIP- oder Diskettenlaufwerk handelt, und sich bereits ein DOS-Dateisystem darauf befindet, können Sie einen Befehl wie diesen für eine Diskette benutzen: &prompt.root; mount -t msdosfs /dev/fd0c /floppy oder diesen: &prompt.root; mount -t msdosfs /dev/da2s4 /zip für eine ZIP-Disk mit der Herstellerkonfiguration. Benutzen Sie bei anderen Platten &man.fdisk.8; oder &man.sysinstall.8;, um herauszufinden, wie sie konfiguriert sind. Die restlichen Beispiele sind für ein ZIP-Laufwerk unter da2, der dritten SCSI-Platte. Wenn es sich nicht um eine Diskette oder eine Wechselplatte handelt, die Sie mit anderen Leuten austauschen wollen, ist es wahrscheinlich besser, ein BSD-Dateisystem darauf zu installieren. Hierdurch bekommen Sie Unterstützung für lange Dateinamen, eine mindestens doppelt so hohe Leistungsausnutzung und wesentlich höhere Stabilität. Zunächst müssen Sie die Partitionen/Dateisysteme auf DOS-Ebene nochmals erstellen. Sie können entweder &man.fdisk.8; oder &man.sysinstall.8; benutzen, oder, bei einem kleinen Laufwerk, dem Sie eine Unterstützung für mehrere Betriebssysteme nicht zumuten wollen, entfernen Sie einfach die komplette FAT Partitionstabelle (Slices) und benutzen Sie einfach die BSD-Partitionierung: &prompt.root; dd if=/dev/zero of=/dev/rda2 count=2 &prompt.root; disklabel -Brw da2 auto Sie können &man.disklabel.8; oder &man.sysinstall.8; benutzen, um mehrere BSD-Partitionen zu erstellen. Dies werden Sie sicherlich bei einer fest eingebauten Platte wollen, aber bei einem Wechsellaufwerk wie einem ZIP ist das wahrscheinlich irrelevant. Zum Schluß erstellen Sie ein neues Dateisystem - dieses befindet sich auf unserem ZIP-Laufwerk und belegt die gesamte Platte: &prompt.root; newfs /dev/rda2c anschließend mounten Sie es: &prompt.root; mount /dev/da2c /zip Und sicherlich ist es keine schlechte Idee, eine Zeile ähnlich der folgenden in die Datei /etc/fstab einzufügen, damit Sie in Zukunft nur mount /zip einzugeben brauchen: /dev/da2c /zip ffs rw,noauto 0 0 Wieso erhalte ich die Meldung Incorrect super block beim Mounten einer CD-ROM? Sie müssen &man.mount.8; mitteilen, was für ein Gerät Sie mounten wollen. Genauere Informationen dazu finden Sie im Kapitel Optische Speichermedien des Handbuch, genauer gesagt im Abschnitt Benutzung von Daten-CDs. Wieso erhalte ich die Meldung Device not configured, wenn ich eine CD-ROM mounte? Das bedeutet im allgemeinen, dass sich keine CD-ROM im Laufwerk befindet, oder, dass das Laufwerk auf dem Bus nicht sichtbar ist. Dieses Problem wird im Kapitel Benutzung von Daten-CDs des Handbuchs ausführlich diskutiert. Wieso werden alle Sonderzeichen in den Dateinamen auf meinen CDs durch ? ersetzt, wenn ich die CD unter &os; benutze? Wahrscheinlich werden auf der CD-ROM die Joliet Erweiterungen für die Speicherung von Datei- und Verzeichnisnamen benutzt. Werfen Sie einen Blick in das Kapitel Erzeugung von CD-ROMs im Handbuch, speziell in den Abschnitt über Benutzung von Daten-CDs. [Anmerkung des Übersetzers: Es geht hier nicht um die deutschen Sonderzeichen, da diese schon im normalen ISO8859-1 enthalten sind. Die Probleme treten auf, wenn man z.B. russische CDs (ISO8859-5) verwendet.] Ich habe eine CD mit &os; gebrannt und kann sie nicht mit anderen Betriebssystemen lesen. Warum? Sie haben wahrscheinlichste eine Datei direkt auf CD geschrieben, statt ein ISO 9660-Dateisystem erzeugt zu haben. Werfen Sie einen Blick in das Kapitel Erzeugung von CD-ROMs im Handbuch, speziell in den Abschnitt über reine Daten-CDs. Wie kann ich ein Image einer Daten-CD erzeugen? Diese Information finden Sie im Abschnitt Kopieren von CD-ROMs des Handbuchs. Weitere Informationen über die Arbeit mit CD-ROMs finden Sie im Abschnitt Erzeugen von CD-ROMs im Kapitel Speichermedien des Handbuchs. Wieso kommt mount nicht meiner Audio-CD zurecht? Wenn Sie versuchen sollten, eine Audio-CD zu mounten, erhalten Sie die Meldung cd9660: /dev/acd0c: Invalid argument. Der Grund dafür ist, dass mount nur für Dateisysteme vorgehen ist. Audio CDs habe kein Dateisystem, sondern nur Daten. Wenn Sie eine Audio CD auslesen wollen, brauchen Sie ein entsprechendes Programm wie z.B. audio/xmcd aus den Ports. Wie nutze ich mount für eine Multi-Session CD? Standardmäßig benutzt &man.mount.8; den letzten (aktuellsten) Daten-Track der CD. Wenn Sie eine ältere Session benutzen wollen, müssen Sie diese mit der Option definieren. Weitere Informationen finden Sie in der Onlinehilfe zu &man.mount.cd9660.8; Wie lasse ich normale Benutzer Disketten, CD-ROMs und andere Wechseldatenträger mounten? Normale Benutzer können dazu berechtigt werden, Geräte zu mounten. Das geht so: Setzen Sie als root die sysctl-Variable vfs.usermount auf 1: &prompt.root; sysctl -w vfs.usermount=1 Ordnen Sie als root den Block-Geräten, die den Wechsellaufwerken zugeordnet sind, die entsprechenden Zugriffsrechte zu. Wenn Sie zum Beispiel den Benutzer den Zugriff auf das erste Diskettenlaufwerk zu erlauben wollen: &prompt.root; chmod 666 /dev/fd0 Um den Mitgliedern der Gruppe operator den Zugriff auf das CD-ROM zu gestatten: &prompt.root; chgrp operator /dev/acd0c &prompt.root; chmod 640 /dev/acd0c Sie müssen zusätzlich /etc/devfs.conf anpassen, weil diese Einstellungen ansonsten beim Systemneustart verloren gehen. Damit normale Benutzer beispielsweise das erste Diskettenlaufwerk mounten können, fügen Sie als root folgende Zeilen in /etc/devfs.conf ein: # Allen Benutzern erlauben, das erste Diskettenlaufwerk zu mounten. own /dev/fd0 root:operator perm /dev/fd0 0666 Damit alle Mitglieder der Gruppe operator das CD-ROM-Laufwerk mounten können, die folgenden Zeilen: # Alle Mitglieder der Gruppe operator dürfen CD-ROMs mounten. own /dev/acd0 root:operator perm /dev/acd0 0660 Fügen Sie zum Abschluss die Zeile vfs.usermount=1 in die Datei /etc/sysctl.conf ein, damit die Einstellung bei einem Neustart des Systems automatisch erhalten bleibt. Alle Benutzer können nun /dev/fd0 auf ein Verzeichnis, das ihnen gehört, mounten: &prompt.user; mkdir ~/my-mount-point &prompt.user; mount -t msdosfs /dev/fd0 ~/my-mount-point Die zur Gruppe operator gehörenden Benutzer können nun /dev/acd0c auf ein Verzeichnis, das ihnen gehört, mounten: &prompt.user; mkdir ~/my-mount-point &prompt.user; mount -t cd9660 /dev/acd0c ~/my-mount-point Das Unmounten des Gerätes ist simpel: &prompt.user; umount ~/my-mount-point Die Aktivierung von vfs.usermount hat jedoch negative Auswirkungen auf Sicherheitsaspekte. Ein besserer Weg, um auf &ms-dos;-formatierte Datenträger zuzugreifen, ist die Benutzung des Packages emulators/mtools. Denken Sie daran, dass Sie die Gerätenamen in diesen Beispielen an Ihre Konfiguration anpassen müssen. Wieso geben die Befehle du und df unterschiedliche Werte für den freien Plattenplatz aus? Der Grund ist die Funktionsweise von du und df. du geht durch einen Dateibaum, ermittelt die Größe jeder einzelnen Datei, und gibt die Summe aus. df fragt lediglich das Dateisystem wie viel Platz noch frei ist. Das scheint zwar auf den ersten Blick sehr ähnlich zu sein; allerdings wird sich ein leeres Verzeichnis auf die Ausgabe von df auswirken, während es auf das Ergebnis von du keinen Einfluss hat. Wenn Sie eine Datei löschen, während sie von einem Programm genutzt wird, wird diese Datei erst gelöscht, wenn sie vom Programm freigegeben wird. Allerdings wird die Datei sofort aus dem Verzeichnis entfernt. Sie können dieses Verhalten mit einem Programm wie more sehr einfach nachvollziehen. Dazu brauchen Sie nur eine Datei, die groß genug ist, um die Ausgabe von du und df zu beeinflussen. Bei der Größe aktueller Platten muss diese Datei schon sehr groß sein! Wenn Sie diese Datei löschen, während Sie sie sich in more anzeigen lassen, hat more kein Problem. Der Eintrag für die Datei wird lediglich aus dem Verzeichnis entfernt, damit kein anderes Programm mehr darauf zugreifen kann. Laut du ist die Datei verschwunden – es hat das Verzeichnis untersucht und die Datei nicht gefunden. Laut df ist die Datei aber vorhanden, da sie im Dateisystem immer noch Platz belegt. Sobald Sie more beenden, werden die Ergebnisse von du und df wieder übereinstimmen. Bitte beachten Sie, dass die Freigabe des Plattenplatzes durch die Soft Updates um bis zu 30 Sekunden verzögert werden kann. Die oben beschriebene Situation tritt sehr häufig auf Web-Servern auf. Viele Anwender installieren einen &os; Web-Server und vergessen die Rotation der Logfiles, bis irgendwann die Partition /var überläuft. Der Administrator löscht die Datei, aber das System beschwert sich immer noch über fehlenden Plattenplatz. Die Datei wird erst freigegeben, wenn der Web-Server beendet und neu gestartet wird; dadurch kann das System den Plattenplatz freigeben. Um solche und ähnliche Unfälle zu verhindern, sollten Sie &man.newsyslog.8; einsetzen. Wie kann ich den Swap-Bereich vergrößern? Im Kapitel Konfiguration und Tuning des Handbuches gibt es einen Abschnitt mit einer Schritt-für-Schritt Anleitung. Warum ist meine Festplatte unter &os; kleiner, als sie laut Hersteller sein soll? Festplattenhersteller definieren ein Gigabyte als eine Milliarde Bytes, für &os; ist ein Gigabyte hingegen 1.073.741.824 Bytes groß. Aus diesem Grund wird für eine Platte, die laut Herstellerangaben 80 GB groß ist, während des Bootvorgangs eine Größe von 76.319 MB angezeigt. Beachten Sie auch, dass &os; (in der Voreinstellung) 8 % des Plattenplatzes für sich reserviert. Warum kann eine Partition zu mehr als 100% gefüllt sein? Ein Teil jeder UFS Partition, in der Vorgabe sind das 8%, ist für das Betriebssystem und den Benutzer root reserviert. &man.df.1; rechnet diesen Teil bei der Ausgabe der Capacity Spalte nicht ein, so dass dort Werte über 100% angezeigt werden können. Die Anzahl der Blöcke in der blocks Spalte ist ebenfalls um 8% größer als die Summe der benutzten und verfügbaren Blöcke (die Spalten Used und Avail). Wie viel Platz reserviert wird, können Sie mit der Option von &man.tunefs.8; einstellen. Systemadministration Wo befinden sich die Konfigurationsdateien für den Systemstart? /etc/defaults/rc.conf (siehe &man.rc.conf.5;) ist die primäre Konfigurationsdatei. Die Startskripten des Systems, wie /etc/rc und /etc/rc.d (siehe &man.rc.8;) inkludieren diese Datei. Ändern Sie diese Datei nicht! Wenn Sie den Wert einer der in /etc/defaults/rc.conf gesetzten Variablen ändern wollen, fügen Sie die entsprechende Zeile in die Datei /etc/rc.conf ein und ändern die Zeile dort. Wenn Sie zum Beispiel den mitgelieferten DNS-Server &man.named.8 aktivieren wollen, müssen Sie lediglich das folgende Kommando eingeben: - &prompt.root; echo named_enable="YES" >> /etc/rc.conf + &prompt.root; echo 'named_enable="YES"' >> /etc/rc.conf Wenn Sie lokale Server starten wollen, müssen Sie passende Shellskripten im Verzeichnis /usr/local/etc/rc.d/ ablegen. Die Dateien müssen als ausführbar markiert sein und die Dateiberechtigungen 555 besitzen. Wie kann ich am Einfachsten einen Benutzer hinzufügen? Benutzen Sie den Befehl &man.adduser.8; und für kompliziertere Fälle den Befehl &man.pw.8;. Benutzen Sie den Befehl &man.rmuser.8;, um einen Benutzer wieder zu löschen. Sie können, wenn nötig. auch &man.pw.8; benutzen. Warum erhalte ich Meldungen wie root: not found, nachdem ich meine crontab geändert habe? Die übliche Ursache dieses Problems ist, dass Sie die crontab des Systems (/etc/crontab) geändert und dann mit &man.crontab.1; installiert haben: &prompt.root; crontab /etc/crontab Diese Vorgehensweise ist falsch. Die crontab des Systems hat ein anderes Format als die crontabs für die einzelnen Benutzer, die mit &man.crontab.1; aktualisiert werden (genauere Informationen über die Unterschiede erhalten Sie in &man.crontab.5;). Wenn Sie so vorgegangen sind, ist die zweite crontab einfach nur eine Kopie von /etc/crontab, allerdings im falschen Format. Löschen Sie sie mit dem folgenden Befehl: &prompt.root; crontab -r Wenn Sie /etc/crontab wieder ändern müssen, sollten Sie einfach gar nichts tun, um &man.cron.8; über die Änderung zu informieren, er erkennt die Änderung automatisch. Wenn Sie ein Kommando jeden Tag, jede Woche oder jeden Monat ausführen lassen wollen, ist es wahrscheinlich einfacher, wenn Sie entsprechende Shell-Scripte in /usr/local/etc/periodic ablegen. Diese werden dann von &man.periodic.8; zusammen mit den anderen regelmäßigen cron Tätigkeiten ausgeführt. Der eigentliche Grund für den Fehler ist die Tatsache, dass die crontab des Systems ein zusätzliches Feld enthält; dieses Feld gibt an, mit welcher Benutzerkennung der Befehl ausgeführt werden soll. In der mitgelieferten crontab ist das bei allen Einträgen die Benutzerkennung root. Wenn diese Datei als die crontab des Benutzers username (die nicht mit der crontab des Systems identisch ist) verwendet wird, hält &man.cron.8; die Zeichenkette root für den Namen des zu startenden Programmes, aber dieses Programm gibt es nicht. Wieso meldet mir &man.su.1; you are not in the correct group to su root, wenn ich mit su root werden will? Das ist ein Sicherheits-Feature. Wenn Sie mit su zum Account root (oder jedem anderen Account mit Super-User-Privilegien) wechseln wollen, müssen Sie ein Mitglied der Gruppe wheel sein. Wenn es dieses Feature nicht gäbe, könnte jeder, der einen Account auf dem System hat und zufällig das Passwort für root erfährt, mit Super-User-Rechten auf das System zugreifen. Durch dieses Feature ist die Lage anders, wenn Sie nicht Mitglied von wheel sind, können Sie nicht einmal versuchen, dass Passwort einzugeben. Um einem Benutzer zu erlauben, mit su root zu werden, müssen Sie ihn nur in die Gruppe wheel eintragen. Ich habe einen Fehler in der rc.conf oder einer der anderen Dateien für den Systemstart und jetzt kann ich sie nicht ändern, weil das Dateisystem read-only ist. Was kann ich tun? Starten Sie das System mittels boot -s an der Loader-Eingabeaufforderung neu, um in den Single-User-Modus zu gelangen. Wenn Sie aufgefordert werden, den Pfadnamen der Shell einzugeben, drücken Sie einfach Enter. Geben Sie danach mount -urw / ein, um das Root-Dateisystem im Schreib/Lese-Modus zu mounten. Sie werden wahrscheinlich auch mount -a -t ufs ausführen müssen, um das Dateisystem mit Ihrem Lieblingseditor zu mounten. Wenn Ihr Lieblingseditor auf einem Netzwerklaufwerk liegt, müssen Sie entweder das Netzwerk von Hand konfigurieren oder einen Editor benutzen, der auf einem lokalen Laufwerk vorhanden ist, z.B. &man.ed.1;. Wenn Sie einen bildschirmorientierten Editor wie zum Beispiel &man.vi.1; oder &man.emacs.1; benutzen wollen, werden Sie auch den Befehl export TERM=cons25 ausführen müssen, damit diese Editoren die richtigen Einstellungen aus der Datenbank &man.termcap.5; übernehmen. Sobald Sie diese Schritte ausgeführt, können Sie den Fehler in der /etc/rc.conf ganz normal beheben. Die Fehlermeldungen, die Ihnen unmittelbar nach den Startmeldungen des Kernels angezeigt wurden, sollten Ihnen die Nummer der Zeile mit dem Fehler melden. Wieso habe ich habe Probleme, meinen Drucker einzurichten? Lesen sie den Handbucheintrag über Drucker. Es sollte die meisten Ihrer Probleme behandeln. Einige Drucker benötigen einen auf dem Rechner laufenden Treiber, um drucken zu können. Diese so genannten WinPrinter oder GDI-Drucker werden von &os; nicht unterstützt und an diesem Zustand wird sich wohl auch nichts ändern. Wenn Ihr Drucker nicht unter DOS oder &windows; verwendet werden kann, handelt es sich um einen WinPrinter und wird in der Regel auch nicht unter &os; funktionieren. Ihre einzige Chance, einen dieser Drucker benutzen können, ist der Port ports/print/pnm2ppa. Wie kann ich die Tastaturbelegung meines Systems korrigieren? Informationen dazu finden Sie im Kapitel länderspezifische Einstellungen des Handbuchs, insbesondere im Abschnitt Konfiguration der Konsole. Wieso erhalte ich beim Start des Systems Meldungen wie unknown: <PNP0303> can't assign resources? Die nachfolgende Erklärung stammt aus einer Mail auf der Mailingliste &a.current;.
&a.wollman;, 24 April 2001 Die Geräte, für die can't assign resources-Meldungen ausgegeben werden, sind Legacy ISAGeräte, für die ein nicht PNP-fähiger Treiber in den Kernel eingebunden wurde. Dabei handelt es sich um Geräte wie den Tastaturkontroller, den programmierbaren Interrupt-Kontroller und diverse andere Standardkomponenten. Die Ressourcen können nicht zugewiesen werden, weil es schon einen Treiber gibt, der diese Ressourcen benutzt.
Wieso funktionieren die Benutzer-Quotas nicht richtig? Es kann sein, dass Ihr Kernel nicht für den Einsatz von Quotas konfiguriert ist. Damit Sie mit Quotas arbeiten können, müssen Sie folgende Zeile in Ihre Kernelkonfigurationsdatei aufnehmen und den Kernel neu bauen: options QUOTA Weitere Informationen zum Einsatz von Quotas finden Sie im entsprechenden Abschnitt des Handbuchs. Benutzen Sie keine Quotas für /. Erstellen Sie die Quotas-Datei in dem Dateisystem, für das die Quotas gelten sollen, z.B.: File System Quota file /usr /usr/admin/quotas /home /home/admin/quotas Unterstützt &os; IPC-Grundfunktionen von System V? Ja, &os; unterstützt IPC im Stil von System V einschließlich gemeinsamen Speicher, Nachrichten und Semaphoren bereits mit dem GENERIC-Kernel. Wenn Sie einen angepassten Kernel verwenden, müssen Sie die folgenden Zeilen in Ihre Kernelkonfigurationsdatei einfügen: options SYSVSHM options SYSVSHM # enable shared memory options SYSVSEM # enable for semaphores options SYSVMSG # enable for messaging Danach kompilieren und installieren Sie den neuen Kernel. Welchen Mail-Server kann ich an Stelle von sendmail benutzen? sendmail ist zwar der Mail-Server, der bei &os; standardmäßig installiert wird, aber Sie können Ihn problemlos durch einen anderen MTA (z.B. aus den Ports) ersetzen. In der Port-Sammlung gibt es bereits viele verschiedene MTAs, mail/exim, mail/postfix, mail/qmail, sowie mail/zmailer sind einige der beliebteren Alternativen. Konkurrenz belebt das Geschäft und die Tatsache, dass Sie die Qual der Wahl haben, ist ein Vorteil. Daher sollten Sie Fragen wie Ist sendmail besser als qmail? besser nicht auf den Mailinglisten stellen. Wenn Sie dieses Thema interessiert, sollten sie zunächst die Archive durchsehen. Die Vorteile und Nachteile jedes einzelnen der verfügbaren MTAs sind schon mehrere Male bis zur Erschöpfung diskutiert worden. Was kann ich machen, wenn ich das Rootpasswort vergessen habe? Keine Panik! Starten Sie Ihr System neu und geben Sie boot -s an der Eingabeaufforderung Boot: ein, um in den Single-User-Modus zu gelangen. Bei der Frage danach, welche Shell benutzt werden soll, drücken Sie einfach Enter. Nun erscheint die Eingabeaufforderung &prompt.root;. Geben Sie mount -urw / ein, um Ihr Root-Dateisystem für Lese- und Schreibzugriffe zu remounten und dann mount -a, um alle Dateisysteme zu remounten. Mit passwd root können Sie das Rootpasswort ändern und mit &man.exit.1; können Sie mit dem Booten fortfahren. Wenn Sie immer noch dazu aufgefordert werden, das root Passwort beim Betreten des Single-User-Modus einzugeben, bedeutet das, dass die Konsole als insecure in /etc/ttys markiert wurde. In diesem Fall ist es notwendig, von einem &os; Installationsmedium zu booten, die Fixit-Shell auszuwählen und die oben beschriebenen Befehle einzugeben. Wenn Sie ihre root Partition im Single-User-Modus nicht mounten können, liegt es möglicherweise daran, dass die Partionen verschlüsselt sind und es damit unmöglich ist, sie ohne die dazugehörigen Schlüssel zu mounten. Ihre Chancen hängen von der jeweiligen Implementierung ab. Für weitere Informationen lesen Sie den Abschnittt über verschlüsselte Partitionen im &os; Handbuch. Wie verhindere ich, dass das System mit Ctrl Alt Delete rebootet werden kann? Falls Sie &man.syscons.4; (der Standard-Treiber für die Konsole) benutzen, fügen Sie folgende Zeile in Ihre Kernelkonfigurationsdatei ein: options SC_DISABLE_REBOOT Alternativ können Sie auch die folgende &man.sysctl.8;-Variable setzen (die aktiviert wird, ohne dass Sie Ihr System dazu neu starten oder einen angepassten Kernel erstellen müssen): &prompt.root; sysctl hw.syscons.kbd_reboot=0 Die beiden oben genannten Methoden schliessen sich gegenseitig aus: &man.sysctl.8; existiert nicht, wenn Sie ihren Kernel mit der Option SC_DISABLE_REBOOT bauen. Falls Sie den &man.pcvt.4; Konsolentreiber verwenden, fügen Sie die folgende Zeile in die Kernelkonfigurationsdatei hinzu und bauen Sie einen neuen Kernel: options PCVT_CTRL_ALT_DEL Wie kann ich Textdateien von DOS Systemen auf &unix; Systemen verwenden? Benutzen Sie diesen Perl-Befehl: &prompt.user; perl -i.bak -npe 's/\r\n/\n/g' file(s) Wobei file(s) eine oder mehrere zu verarbeitende(n) Datei(en) ist/sind. Die Änderungen erfolgen in der Originaldatei, die zuvor mit der Erweiterung .bak gesichert wird. Alternativ können Sie den Befehl &man.tr.1; benutzen: &prompt.user; tr -d '\r' < dos-text-file > unix-file dos-text-file ist die Datei, die den Text im DOS-Format enthält und unix-file wird die konvertierte Ausgabe enthalten. Diese Möglichkeit könnte etwas schneller sein, als die Benutzung von perl. Die Verwendung des Ports converters/dosunix aus der Ports-Sammlung stellt eine weitere Möglichkeit dar, DOS-Textdateien neu zu formatieren. Konsultieren Sie die Dokumentation für weitere Informationen. Wie beende ich Prozesse namentlich? Benutzen Sie &man.killall.1;. Warum nervt &man.su.1; mich damit, dass ich nicht in der ACL von root bin? Der Fehler stammt vom verteilten Authentifizierungssystem Kerberos. Das Problem ist nicht ernsthaft, aber störend. Sie können entweder su mit der Option benutzen, oder Kerberos deinstallieren, wie in der nächsten Frage beschrieben. Wie deinstalliere ich Kerberos? Um Kerberos aus dem System zu entfernen, müssen Sie die base-Distribution der von Ihnen benutzten RELEASE neu installieren. Wenn Sie die CD-ROM besitzen, können Sie sie mounten (wir nehmen an, unter /cdrom) und folgende Befehle ausführen: &prompt.root; cd /cdrom/base &prompt.root; ./install.sh Alternativ können Sie mit der Option NO_KERBEROS in der /etc/make.conf ein make world durchführen. Wo ist /dev/MAKEDEV hin? Ab &os; 5.X werden Geräte automatisch von &man.devfs.8; zur Verfügung gestellt. Die Gerätetreiber erstellen die Gerätedateien, wenn diese benötigt werden. Das Skript /dev/MAKEDEV wird nicht mehr gebraucht. Wie füge ich Pseudo-Terminals zum System hinzu? Wenn Sie viele Benutzer von telnet, ssh, X oder screen haben, werden Ihnen eventuell die Pseudo-Terminals ausgehen. Standardmässig unterstützt &os; 6.2 und vorherige Versionen 256 Pseudo-Terminals, während &os; 6.3 und höher 512 Pseudo-Terminals zur Verfügung stellt. Wenn nötig, können mehr Pseudo-Terminals hinzugefügt werden. Allerdings muss dafür die C-Blibliothek, der Kernel und /etc/ttys erweitert werden. Zum Beispiel erhöht die Anzahl an Pseudo-Terminals auf 1152. Beachten Sie, dass die Erweiterung nur für &os; 6.3 oder höher problemlos funktioniert. Wie lade ich /etc/rc.conf und starte /etc/rc neu, ohne zu rebooten? Gehen Sie in den Single-User-Modus und dann zurück in den Multi-User-Modus. Geben Sie auf der Konsole folgendes ein: &prompt.root; shutdown now (Hinweis: ohne -r oder -h) &prompt.root; return &prompt.root; exit Ich wollte auf das aktuelle -STABLE updaten, und plötzlich läuft hier ein -BETAx, -RC oder -PRERELEASE! Was ist passiert? Kurze Antwort: Das ist nur ein anderer Name. RC ist die Abkürzung für Release Candidate. Es bedeutet, dass eine neue Release bevorsteht. Und -PRERELEASE bedeutet bei &os; normalerweise, dass die Sourcen zur Vorbereitung auf eine Release eingefroren wurden (in einigen Releases wurde -BETA anstelle von -PRERELEASE verwendet). Ausführliche Antwort: Bei &os; gibt es zwei Quellen für Releases. Die Major Releases wie 7.0-RELEASE und 8.0-RELEASE werden aus dem aktuellen Stand des Hauptzweiges der Entwicklung (besser und kürzer als -CURRENT bekannt) erzeugt. Minor Releases wie 6.3-RELEASE oder 5.2-RELEASE stammen aus dem aktiven -STABLE Zweig. Seit 4.3-RELEASE gibt es es nun auch einen eigenen Zweig für jede Release, der für die Leute gedacht ist, die ein sehr konservativ weiterentwickeltes System benötigen (im Normalfall also nur Updates aus dem Bereich Sicherheit). Bevor in einem Zweig eine Release erfolgt, muss in diesem Zweig ein bestimmter Prozess ablaufen. Ein Teil dieses Prozesses ist der code freeze, der Stop der Weiterentwicklung. Sobald dieser Schritt erfolgt ist, wird der Name des Zweiges geändert, um anzuzeigen, dass demnächst eine Release erfolgen wird. Wenn der Zweig zum Beispiel 6.2-STABLE genannt wurde, wird der Name in 6.3-PRERELEASE geändert, um dies zu verdeutlichen. Weiterhin ist das ein Zeichen, dass jetzt besonders intensiv getestet werden sollte. In dieser Phase können Fehler im Sourcecode noch korrigiert werden. Wenn der Sourcecode so weit gereift ist, dass eine Release erstellt werden kann, wird der Name in 6.3-RC geändert, um genau dies anzuzeigen. In dieser Phase können nur noch extrem wichtige Korrekturen aufgenommen werden. Sobald die Release (in diesem Beispiel 6.3-RELEASE) erfolgt ist, wird der Zweig in 6.3-STABLE umbenannt. Weitere Informationen über Versionsnummern und die verschiedenen Entwicklungszweige enthält der Artikel Release Engineering. Als ich versucht habe, einen neuen Kernel zu installieren, ist das &man.chflags.1; fehlgeschlagen. Was mache ich jetzt? Kurze Antwort: Ihre Sicherheitseinstellung (der securelevel) ist wahrscheinlich größer als 0. Sie müssen das System neu starten und den Kernel im Single-User-Modus installieren. Ausführliche Antwort: Wenn die Sicherheitseinstellung größer als 0 ist, erlaubt Ihnen &os; nicht, die Systemflags zu ändern. Um den aktuellen Securelevel zu ermitteln, können Sie das folgende Kommando benutzen: &prompt.root; sysctl kern.securelevel Sie können die Sicherheitseinstellung nicht verringern. Sie müssen das System neu starten und den Kernel im Single-User-Modus installieren oder die Sicherheitseinstellung in /etc/rc.conf ändern und dann das System neu starten. Weitere Details zu securelevel erhalten Sie in &man.init.8;, weitere Informationen zur rc.conf erhalten Sie in /etc/defaults/rc.conf und &man.rc.conf.5;. Ich kann die Systemzeit nicht um mehr als eine Sekunde verstellen. Was mache ich jetzt? Kurze Antwort: Ihre Sicherheitseinstellung (der securelevel) ist wahrscheinlich größer als 1. Sie müssen das System neu starten und die Systemzeit im Single-User-Modus verstellen. Ausführliche Antwort: Wenn die Sicherheitseinstellung größer als 1 ist, erlaubt Ihnen &os; nicht, die Systemzeit zu ändern. Um den aktuellen Securelevel zu ermitteln, können Sie das folgende Kommando benutzen: &prompt.root; sysctl kern.securelevel Sie können die Sicherheitseinstellung nicht verringern, Sie müssen das System neu starten und die Systemzeit im Single-User-Modus ändern oder die Sicherheitseinstellung in /etc/rc.conf ändern und dann das System neu starten. Weitere Details zu securelevel erhalten Sie in &man.init.8;, weitere Informationen zur rc.conf erhalten Sie in /etc/defaults/rc.conf und &man.rc.conf.5;. Warum braucht &man.rpc.statd.8; 256 MB Speicher? Nein, das Programm hat keinen Fehler und es verbraucht auch nicht 256 MB Speicher. rpc.statd projiziert nur einen übertrieben großen Speicherbereich in seinen eigenen Adressraum. Von einem rein technischen Standpunkt aus ist das nichts verwerfliches, allerdings verwirrt es Programme wie &man.top.1; und &man.ps.1;. &man.rpc.statd.8; projiziert seine Statusdatei (die in /var liegt) in seinen Adressraum. Um die Probleme zu vermeiden, die bei einer Vergrößerung dieser Projektion entstehen könnten, wird gleich ein möglichst großer Speicherbereich benutzt. Dies kann man sehr schön im Sourcecode sehen: Die Längenangabe beim Aufruf von &man.mmap.2; ist 0x10000000, ein sechzehntel des Adressraums bei IA32, oder genau 256 MByte. Warum kann ich das Dateiattribut schg nicht löschen? Sie betreiben Ihr System mit einer erhöhten Sicherheitsstufe. Senken Sie die Sicherheitsstufe und versuchen Sie es dann noch einmal. Weitere Informationen erhalten Sie im FAQ Eintrag über Sicherheitsstufen und in der Online-Hilfe &man.init.8;. Warum funktioniert die .shosts Authentifizierung von SSH in neueren Versionen von &os; nicht mehr? Die .shosts Authentifizierung funktioniert nicht mehr, weil &man.ssh.1; in neueren Versionen von &os; nicht mehr SUID-root installiert wird. Um dieses Problem zu lösen, gibt es die folgenden Möglichkeiten: Um das Problem für immer zu lösen, müssen Sie in /etc/make.conf die Variable ENABLE_SUID_SSH auf true setzen und danach &man.ssh.1; neu übersetzen (oder make world) ausführen. Übergangsweise können Sie auch die Dateirechte von /usr/bin/ssh auf 4555 setzen, indem Sie den Befehl chmod 4555 /usr/bin/ssh als root ausführen. Fügen Sie anschließend ENABLE_SUID_SSH =true in die Datei /etc/make.conf ein, damit diese Änderung erhalten bleibt, wenn Sie das nächste Mal make world ausführen. Was ist vnlru? vnlru schreibt vnodes auf Platte und gibt sie wieder frei, falls das System die Grenzwert kern.maxvnodes erreicht. Dieser Thread des Kernel tut meistens gar nichts und wird nur aktiv, wenn Sie extrem viel RAM haben und gleichzeitig auf viele zehntausende kleine Dateien zugreifen. Was bedeuten die Zustände, die top für Speicherseiten ausgibt? Speicherseiten werden vom Kernel in verschiedenen Listen verwaltet: Active: Seiten, die vor Kurzem benutzt wurden. Inactive: Seiten, die länger nicht benutzt wurden. Cache: Meistens Seiten, die vorher im Zustand Inactive waren und noch gültige Daten enthalten. Diese Seiten können sofort in ihrem alten Kontext oder in einem neuen Kontext verwendet werden. Wenn eine Seite unverändert (clean) ist, kann ein Zustandswechsel direkt von Active nach Cache erfolgen. Ob dieser Zustandswechsel möglich ist, wird durch die Seitenersetzungsstrategie bestimmt, die der Entwickler des VM-Systems festgelegt hat. Free: Seiten, die keine Daten enthalten. Diese Seiten können sofort benutzt werden, wenn Seiten im Zustand Cache nicht benutzt werden können. Seiten im Zustand Free können auch während eines Interrupts angefordert werden. Wired: Seiten, die fest im Speicher liegen und nicht ausgelagert werden können. Normalerweise werden solche Seiten vom Kernel benutzt, manchmal werden Sie aber auch für spezielle Zwecke von Prozessen verwendet. Seiten im Zustand Inactive werden oft auf Plattenspeicher geschrieben (sozusagen ein sync des VM-Systems). Wenn die CPU erkennen kann, das eine Seite unmodifiziert (clean) ist, kann auch eine Active-Seite auf den Plattenspeicher ausgeschrieben werden. In bestimmten Situationen ist es von Vorteil, wenn ein Block von VM-Seiten, unabhängig von seinem Zustand, ausgeschrieben werden kann. Die Inactive-Liste enthält wenig benutzte Seiten, die ausgeschrieben werden könnten. Seiten im Zustand Cached sind schon ausgeschrieben und stehen Prozessen für die Verwendung im alten oder in einem neuen Kontext zur Verfügung. Seiten im Zustand Cache sind nicht ausreichend geschützt und können während Unterbrechungen nicht benutzt werden. Die eben beschriebene Behandlung von Speicherseiten kann durch weitere Zustände (wie das das Busy-Flag) verändert werden. Wie viel freien Speicher hat mein System? Es gibt verschiedene Arten von freiem Speicher. Eine Art ist die Speichermenge, die sofort, ohne etwas auszulagern, zur Verfügung steht. Der gesamte VM-Bereich ist eine weitere Art des freien Speichers. Die Betrachtung ist komplex, hängt aber von der Größe des Swap-Bereichs und der Größe des Arbeitsspeichers ab. Es gibt weitere Definitionen für freien Speicher, die aber alle relativ nutzlos sind. Wichtig ist hingegen, dass wenig Seiten ausgelagert werden (paging) und der Swap-Bereich ausreichend groß ist. Ich kann /var/empty nicht löschen! Das Verzeichnis /var/empty wird von &man.sshd.8; benötigt, wenn es mit Privilege Separation läuft. Das Verzeichnis /var/empty ist leer, gehört root und ist durch das Dateiattribut schg geschützt. Wir empfehlen Ihnen, das Verzeichnis zu belassen. Sollten Sie es aber trotzdem löschen wollen, müssen Sie zuerst das schg-Attribut entfernen. Schauen Sie sich dazu die Hilfeseite &man.chflags.1; an und beachten Sie die Antwort auf die Frage wie das schg-Attribut entfernt wird.
Das X Window System und virtuelle Konsolen Was ist das X Window System? Das X Window System (oder auch nur X11) ist das am häufigsten verwendete Window System für &unix;- und &unix;-ähnliche Systeme, zu denen auch &os; gehört. Der X  Protokollstandard wird von der X.org Foundation definiert und liegt aktuell in Version 11 Release &xorg.version; vor und wird häufig auch nur als X11 bezeichnet. Das X Window System wurde für viele verschiedene Architekturen und Betriebssysteme implementiert. Eine serverseitige Implementierung wird dabei als X-Server bezeichnet. Welche X-Implementierungen sind für &os; verfügbar? Früher war &xfree86;, die X-Implementierung des XFree86 Projects, Inc., der Standard unter &os;. Dieser X-Server wurde bis einschließlich &os; Version 4.10 und 5.2 als Standard-X-Server installiert. Die von &xorg; veröffentlichte Implementierung diente nur als Referenzplattform, weil der verwendete Code über die Jahre sehr ineffizient geworden war. Anfang 2004 verließen einige Entwickler das XFree86 Project, um fortan &xorg; direkt zu unterstützen. Der Grund dafür waren Meinungsverschiedenheiten über die Geschwindigkeit der Weiterentwicklung, die zukünftige Ausrichtung des Projekts sowie persönliche Differenzen. Zur gleichen Zeit aktualisierte &xorg; ihren Quellcodebaum auf die &xfree86;-Version 4.3.99.903, brachte viele Änderungen, die bisher getrennt verwaltet worden waren, in das Projekt ein und veröffentlichte das Paket als X11R6.7.0, bevor &xfree86; die Lizenz änderte. Ein separates, aber mit &xorg; verbundenes Projekt, freedesktop.org (oder fd.o), arbeitet an einer Überarbeitung des ursprünglichen &xfree86;-Codes, um einerseits mehr Rechenarbeit an die Grafikkarten zu übertragen (mit dem Ziel einer deutlich erhöhten Geschwindigkeit) und andererseits den Code zu modularisieren (mit dem Ziel einer verbesserten Wartung, einer schnelleren Entwicklung sowie einer vereinfachten Konfiguration). &xorg; plant, die Weiterentwicklungen von freedesktop.org in seine zukünftigen Versionen zu integrieren. Seit Juli 2004 ist &xorg; der Standard-X-Server für &os;. Seitdem ist &xorg; in &os; als Standard-X11 implementiert. Weitere Informationen zum X Window System finden Sie im X11-Kapitel des &os;-Handbuchs. Warum hat sich das X Project überhaupt aufgespalten? Diese Frage ist nicht &os;-spezifisch. Es gibt zu diesem Thema umfangreiche Postings in diversen Mailinglist-Archiven. Suchen Sie daher über eine Suchmaschine danach, statt diese Frage auf einer &os;-Mailingliste zu stellen. Warum hat sich &os; für &xorg; als Standard-X-Server entschieden? Die Entwickler von &xorg; gaben an, dass sie neue Versionen rascher veröffentlichen und neue Eigenschaften schneller implementieren wollen. Außerdem verwenden sie nach wie vor die traditionelle X-Lizenz, während &xfree86; eine veränderte Version benutzt. Ich möchte X benutzen, was muss ich tun? Wenn Sie X auf einem existierenden System installieren wollen, sollten Sie entweder den Meta-Port x11/xorg verwenden, der alle benötigen Komponenten baut und installiert, oder Sie installieren die &os; &xorg;-Pakete: &prompt.root; pkg_add -r xorg Es ist auch möglich, &xorg; aus &man.sysinstall.8; heraus zu installieren, indem Sie Configure, dann Distributions und anschliessend The X.Org Distribution aufrufen. Lesen Sie nach erfolgreicher Installation von &xorg; den Abschnitt X11 konfigurieren im &os; Handbuch. Ich habe versucht, X zu starten, aber wenn ich startx eingebe, erhalte ich die Fehlermeldung KDENABIO failed (Operation not permitted). Was soll ich jetzt machen? Das System läuft auf einer erhöhten Sicherheitsstufe (securelevel). X kann auf einer erhöhten Sicherheitsstufe nicht gestartet werden, weil X dazu Schreibzugriff auf &man.io.4; benötigt. Lesen Sie dazu auch &man.init.8;. Die Frage ist also eigentlich, was Sie anders machen sollten. Sie haben zwei Möglichkeiten: Setzen Sie die Sicherheitsstufe wieder zurück auf 0 (die Einstellung erfolgt in der Regel in /etc/rc.conf) oder starten Sie &man.xdm.1; während des Starts des Systems, bevor die Sicherheitsstufe erhöht wird. Der Abschnitt enthält Informationen darüber, wie Sie &man.xdm.1; beim Start des Systems starten können. Warum funktioniert meine Maus unter X nicht? Wenn Sie &man.syscons.4; (den Standard-Konsolentreiber) benutzen, können Sie &os; so konfigurieren, dass auf jedem virtuellen Bildschirm ein Mauszeiger unterstützt wird. Um Konflikte mit X zu vermeiden, unterstützt &man.syscons.4; ein virtuelles Gerät mit dem Namen /dev/sysmouse. Alle Mausbewegungen und Mausklicks werden in das &man.sysmouse.4; Gerät über &man.moused.8; geschrieben. Falls Sie Ihre Maus auf einer oder mehreren virtuellen Konsolen und X benutzen wollen, sollten Sie zunächst lesen und dann &man.moused.8; installieren. Die Datei /etc/X11/xorg.conf sollte die folgenden Einträge enthalten: Section "InputDevice" Option "Protocol" "SysMouse" Option "Device" "/dev/sysmouse" ..... Beginnend mit &xorg; 7.4 werden Angaben im Abschnitt InputDevice von xorg.conf ignoriert. Stattdessen wird die automatisch detektierten Werte zurückgegriffen. Um das alte Verhalten zu reaktivieren, fügen Sie die folgende Zeile entweder in den Abschnitt ServerLayout oder ServerFlags ein: Option "AutoAddDevices" "false" Einige Leute ziehen es vor, unter X /dev/mouse zu benutzen. Hierzu sollte /dev/mouse nach /dev/sysmouse (lesen Sie &man.sysmouse.4;) gelinkt werden, indem Sie die folgende Zeile in /etc/devfs.conf (siehe auch &man.devfs.conf.5;) hinzufügen: link sysmouse mouse Die Verknüpfung kann durch Neustart von &man.devfs.5; über das folgende Kommando (als root) erzeugt werden: &prompt.root; /etc/rc.d/devfs restart Kann ich meine Rad-Maus auch unter X benutzen? Ja. Dazu müssen Sie X nur mitteilen, dass Sie eine Maus mit 5 Tasten haben. Dazu fügen Sie die Zeilen Buttons 5 sowie ZAxisMapping 4 5 in den Abschnitt InputDevice der Datei /etc/X11/xorg.conf ein. Das Beispiel zeigt, wie ein solcher Abschnitt aussehen könnte. Abschnitt <quote>InputDevice</quote> für Rad-Mäuse in der Konfigurationsdatei von &xorg; Section "InputDevice" Identifier "Mouse1" Driver "mouse" Option "Protocol" "auto" Option "Device" "/dev/sysmouse" Option "Buttons" "5" Option "ZAxisMapping" "4 5" EndSection <quote>.emacs</quote> Beispiel für seitenweises Blättern mit einer Rad-Maus (optional) ;; wheel mouse (global-set-key [mouse-4] 'scroll-down) (global-set-key [mouse-5] 'scroll-up) X verbietet Verbindungen von entfernten Systemen! Aus Sicherheitsgründen verbietet der X-Server in der Voreinstellung Verbindungen von entfernten Systemen. Starten Sie den X-Server mit der Option , wenn Sie Verbindungen von entfernten Systemen erlauben wollen: &prompt.user; startx -listen_tcp Was ist eine virtuelle Konsole und wie erstelle ich mehr? Mit virtuellen Konsolen können Sie mehrere simultane Sitzungen auf einer Maschine laufen lassen, ohne so komplizierte Dinge wie die Einrichtung eines Netzwerkes oder die Benutzung von X zu benötigen. Wenn das System startet, wird es nach der Anzeige aller Bootmeldungen eine Eingabeaufforderung auf dem Bildschirm anzeigen. Sie können dann auf der ersten virtuellen Konsole Ihren Benutzernamen und das Passwort eingeben und anfangen, zu arbeiten (oder zu spielen!). Gelegentlich möchten Sie möglicherweise eine weitere Sitzung starten wollen, vielleicht, um die Dokumentation zu einem Programm, das Sie gerade benutzen, einzusehen, oder, um Ihre Mails zu lesen, während Sie auf das Ende einer FTP-Übertragung warten. Drücken Sie einfach AltF2 (halten Sie die Alt-Taste gedrückt und drücken Sie die Taste F2) und Sie gelangen zur Anmelde-Aufforderung auf der zweiten virtuellen Konsole! Wenn Sie zurück zur ersten Sitzung möchten, drücken Sie AltF1 . Die Standardinstallation von &os; bietet acht aktivierte virtuelle Konsolen. Mit AltF1, AltF2, AltF3 und so weiter wechseln Sie zwischen diesen virtuellen Konsolen. Um mehr von ihnen zu aktivieren, editieren Sie /etc/ttys (siehe &man.ttys.5;) und fügen Einträge für ttyv8 bis zu ttyvc nach dem Kommentar zu virtuellen Terminals ein: # Edit the existing entry for ttyv8 in /etc/ttys and change # "off" to "on". ttyv8 "/usr/libexec/getty Pc" cons25 on secure ttyv9 "/usr/libexec/getty Pc" cons25 on secure ttyva "/usr/libexec/getty Pc" cons25 on secure ttyvb "/usr/libexec/getty Pc" cons25 on secure Benutzen Sie so wenig oder so viele, wie Sie möchten. Je mehr virtuelle Terminals Sie benutzen, desto mehr Ressourcen werden gebraucht; das kann wichtig sein, wenn Sie 8 MB RAM oder weniger besitzen. Sie können auch secure in insecure ändern. Wenn Sie einen X-Server benutzen möchten, müssen Sie mindestens ein virtuelles Terminal unbenutzt (oder ausgeschaltet) lassen damit der Server es benutzen kann. Das heißt, dass Sie Pech haben, wenn Sie für jede Ihrer 12 Alt-Funktionstasten eine Anmeldeaufforderung haben möchten - Sie können das nur für elf von ihnen tun, wenn Sie einen X-Server auf derselben Maschine laufen lassen möchten. Der einfachste Weg, eine Konsole zu deaktivieren, ist, sie auszuschalten. Wenn Sie zum Beispiel die oben erwähnte volle Zuordnung aller 12 Terminals hätten, müssten Sie die Einstellung für das virtuelle Terminal 12 von: ttyvb "/usr/libexec/getty Pc" cons25 on secure in: ttyvb "/usr/libexec/getty Pc" cons25 off secure ändern. Wenn Ihre Tastatur nur über zehn Funktionstasten verfügt, bedeutet das: ttyv9 "/usr/libexec/getty Pc" cons25 off secure ttyva "/usr/libexec/getty Pc" cons25 off secure ttyvb "/usr/libexec/getty Pc" cons25 off secure (Sie können diese Zeilen auch einfach löschen.) Die einfachste (und sauberste) Möglichkeit, die virtuellen Konsolen zu aktivieren, ist, zu rebooten. Wenn Sie jedoch auf keinen Fall rebooten möchten, können Sie auch einfach das X Window System herunterfahren und als root &prompt.root; kill -HUP 1 ausführen. Es ist unbedingt erforderlich, dass Sie das X Window System vollständig herunterfahren, falls es läuft. Falls Sie es nicht tun, könnte es sein, dass sich ihr System nach der Eingabe des kill-Befehls aufhängt. Wie greife ich von X aus auf virtuelle Konsolen zu? Benutzen Sie CtrlAlt Fn um auf eine virtuelle Konsole umzuschalten. Mit CtrlAlt F1 würden Sie zur ersten virtuellen Konsole umschalten. Sobald Sie auf eine virtuelle Konsole umgeschaltet haben, können Sie ganz normal Alt Fn benutzen, um zwischen den einzelnen virtuellen Konsolen umzuschalten. Um zu Ihrer X-Sitzung zurückzukehren, müssen Sie auf die virtuelle Konsole umschalten, auf der X läuft. Wenn Sie X über der Eingabeaufforderung gestartet haben (z.B. mit startx), benutzt X die nächste freie virtuelle Konsole und nicht die Konsole, von der es gestartet wurde. Wenn Sie acht aktive virtuelle Konsole haben, dann wird X die neunte benutzen und Sie können mit AltF9 umschalten. Wie starte ich XDM beim Booten? Es gibt zwei Denkansätze, wie &man.xdm.1; zu starten ist. Bei dem einen wird xdm unter Nutzung des mitgelieferten Beispiels über /etc/ttys (&man.ttys.5;) gestartet, während beim zweiten Ansatz rc.local (&man.rc.8;) oder das Skript X im Verzeichnis /usr/local/etc/rc.d verwendet wird. Beide Ansätze sind gleichwertig und der eine wird in Situationen funktionieren, in denen der andere es nicht tut. In beiden Fällen ist das Ergebnis das gleiche: X liefert eine graphische Anmeldeaufforderung. Die &man.ttys.5;-Methode hat den Vorteil, dass dokumentiert ist, auf welchem vty X gestartet wird und der Neustart des X-Servers beim Abmelden an &man.init.8; übergeben wird. Die &man.rc.8;-Methode erleichtert den Aufruf von kill xdm, falls Probleme beim Start des X-Servers auftreten sollten. Beim Laden von &man.rc.8; sollte xdm ohne irgendwelche Argumente (das heißt als Daemon) gestartet werden. Das Kommando xdm muss gestartet werden nachdem &man.getty.8; läuft, andernfalls entsteht ein Konflikt zwischen getty und xdm und die Konsole bleibt gesperrt. Der beste Weg, um dies zu vermeiden, ist, das Skript für etwa zehn Sekunden anzuhalten und dann xdm zu starten. Wenn Sie xdm durch einen Eintrag in /etc/ttys starten lassen, kann es zu einem Konflikt zwischen xdm und &man.getty.8; kommen. Um dieses Problem zu vermeiden, sollten Sie die Nummer des vt in die Datei /usr/local/lib/X11/xdm/Xservers eintragen: :0 local /usr/local/bin/X vt4 Diese Zeile führt dazu, dass der X Server /dev/ttyv3 nutzt. Die beiden Zahlen weichen voneinander ab: Der X-Server beginnt die Zählung der vty bei 1, während der &os;-Kernel bei 0 beginnt. Wieso erhalte ich die Meldung Couldn't open console, wenn ich xconsole benutze? Wenn Sie X mit startx starten, werden die Zugriffsrechte für /dev/console leider nicht geändert, was dazu führt, dass Dinge wie xterm -C und xconsole nicht funktionieren. Das hängt damit zusammen, wie die Zugriffsrechte für die Konsole standardmäßig gesetzt sind. Auf einem Mehrbenutzersystem möchte man nicht unbedingt, dass jeder Benutzer einfach auf die Systemkonsole schreiben kann. Für Benutzer, die sich auf einer Maschine direkt mit einem VTY anmelden, existiert die Datei &man.fbtab.5;, um derartige Probleme zu lösen. In Kürze: sorgen Sie dafür, dass sich in der Datei /etc/fbtab eine nicht auskommentierte Zeile der folgenden Art befindet: /dev/ttyv0 0600 /dev/console Das sorgt dafür, dass wer auch immer sich auf /dev/ttyv0 anmeldet, auch die Konsole besitzt. Früher konnte ich &xfree86; als normaler User starten. Warum sagt mir das System jetzt, dass ich root sein muss? Alle X-Server müssen mit der ID root laufen, um direkt auf die Videohardware zuzugreifen. Die älteren Versionen von &xfree86; (bis einschließlich 3.3.6) installierten alle mitgelieferten Server so, dass sie automatisch unter ID root ausgeführt werden (setuid to root). Dies stellt natürlich eine Gefahrenquelle dar, da die X-Server große, komplexe Programme sind. Alle neueren Versionen von &xfree86; installieren die Server aus genau diesem Grund nicht mehr "setuid root". Es ist natürlich nicht tragbar, den X-Server immer mit der ID root laufen zu lassen; auch aus Gründen der Sicherheit ist es keine gute Idee. Es gibt zwei Möglichkeiten, um X auch als normaler Benutzer starten zu können. Die erste ist die Verwendung von xdm oder eines ähnlichen Programms; die zweite ist die Benutzer von Xwrapper. xdm ist ein ständig laufendes Programm, mit dem Logins über eine graphische Benutzeroberfläche sind. Es wird normalerweise beim Systemstart initialisiert und für die Authentifizierung der Benutzer und den Start ihrer Sitzungen verantwortlich. Es ist also die graphische Entsprechung von &man.getty.8; und &man.login.1;. Weitere Informationen zum Thema xdm finden Sie in der &xfree86; Dokumentation und dem entsprechenden FAQ-Eintrag. Xwrapper ist eine Hülle für den X-Server. Mit diesem kleinen Utility ist es möglich, manuell den X-Server zu starten und weiterhin eine annehmbare Sicherheit zu haben. Das Tools prüft, ob die per Kommandozeile übergebenen Argumente halbwegs sinnvoll sind. Wenn dies der Fall ist, startet es den entsprechenden X-Server. Wenn Sie (aus welchem Grund auch immer) keine graphische Anmeldung wollen, ist Xwrapper die optimale Lösung. Wenn Sie die vollständige Ports-Sammlung installiert haben, finden Sie das Tool im Verzeichnis x11/wrapper. Warum funktioniert meine PS/2-Maus nicht richtig? Ihre Maus und der Maustreiber sind etwas aus der Synchronisation geraten. In seltenen Fällen kann es jedoch sein, dass der Treiber fälschlicherweise Synchronisationsprobleme meldet und Sie in den Kernelmeldungen folgendes sehen: psmintr: out of sync (xxxx != yyyy) und Ihre Maus nicht richtig zu funktionieren scheint. Falls das passiert, deaktivieren Sie den Code zur Überprüfung der Synchronisation, indem Sie die Treiberangaben für den PS/2-Maustreiber auf 0x100 setzen. Rufen Sie UserConfig durch Angabe der Option am Boot-Prompt auf: boot: -c Geben sie dann in der Kommandozeile von UserConfig folgendes ein: UserConfig> flags psm0 0x100 UserConfig> quit Meine PS/2-Maus von MouseSystems scheint nicht zu funktionieren. Es wurde berichtet, dass einige Modelle der PS/2-Mäuse von MouseSystems nur funktionieren, wenn sie im hochauflösenden Modus betrieben werden. Andernfalls springt der Mauszeiger sehr oft in die linke obere Ecke des Bildschirms. Das Flag 0x04 des Maustreibers bringt die Maus in den hochauflösenden Modus. Rufen Sie UserConfig durch Angabe der Option am Boot-Prompt auf: boot: -c Geben sie dann in der Kommandozeile von UserConfig folgendes ein: UserConfig> flags psm0 0x04 UserConfig> quit Lesen Sie den vorigen Abschnitt über eine andere mögliche Ursache für Probleme mit der Maus. Wie vertausche ich die Maustasten? Benutzen Sie den Befehl xmodmap -e "pointer = 3 2 1" in Ihrer .xinitrc oder .xsession. Wie installiere ich einen Splash-Screen und wo finde ich sie? Die detaillierte Antwort auf diese Frage können Sie im Abschnitt Splash-Screens während des Systemstarts des Handbuchs nachlesen. Kann ich die Windows-Tasten unter X benutzen? Ja, Sie müssen lediglich mit &man.xmodmap.1; festlegen, welche Aktion diese Tasten auslösen sollen. Unter der Annahme, dass alle Windows Tastaturen dem Standard entsprechen, lauten die Keycodes für die drei Tasten wie folgt: 115 - Windows-Taste zwischen den Ctrl- und Alt-Tasten auf der linken Seite 116 - Windows-Taste rechts von der AltGr-Taste 117 - Menü-Taste, links von der rechten Strg-Taste Nach der folgenden Anweisung erzeugt die linke Windows-Taste ein Komma. &prompt.root; xmodmap -e "keycode 115 = comma" Sie werden Ihren Window Manager wahrscheinlich neu starten müssen, damit diese Einstellung wirksam wird. Um die neue Belegung der Windows-Tasten automatisch beim Start von X zu erhalten, könnten Sie entsprechende xmodmap Anweisungen in ihre ~/.xinitrc einfügen. Die bevorzugte Variante ist aber, eine Datei mit dem Namen ~/.xmodmaprc zu erzeugen, die nur die Parameter für den Aufruf von xmodmap enthält. Wenn Sie mehrere Tasten umdefinieren wollen, muss jede Definition in eine eigene Zeile gesetzt werden. Weiterhin müssen Sie in Ihrer ~/.xinitrc noch die folgende Zeile einfügen: xmodmap $HOME/.xmodmaprc Sie könnten die drei Tasten zum Beispiel mit den Funktionen F13, F14 und F15 belegen. Dadurch ist es sehr einfach, diese Tasten mit nützlichen Funktionen eines Programmes oder Desktops zu verknüpfen. Falls Sie das auch tun wollen, sollten in Ihrer ~/.xmodmaprc die folgenden Anweisungen stehen. keycode 115 = F13 keycode 116 = F14 keycode 117 = F15 Falls Sie zum Beispiel den x11-wm/fvwm2 Port benutzen, können Sie ihn so einstellen, dass F13 das Fenster unter dem Mauszeiger minimiert bzw. maximiert. F14 holt das Fenster unter dem Mauszeiger in den Vordergrund bzw. ganz nach hinten, wenn es bereits im Vordergrund ist. F15 öffnet das Arbeitsplatz (Programme) Menü, auch wenn der Cursor nicht auf den Hintergrund zeigt. Dies ist extrem praktisch, wenn der gesamte Bildschirm von Fenster belegt wird; als kleiner Bonus gibt es sogar einen Zusammenhang zwischen dem Symbol auf der Taste und der durchgeführten Aktion. Dieses Verhalten kann man mit den folgenden Einträgen in der Datei ~/.fvwmrc erhalten: Key F13 FTIWS A Iconify Key F14 FTIWS A RaiseLower Key F15 A A Menu Workplace Nop Wird 3D Hardware Beschleunigung für &opengl; unterstützt? Dies hängt davon ab, welche Version von &xorg; und welche Grafikkarte Sie verwenden. Wenn Sie eine Karte mit NVIDIA-Chipsatz besitzen, benutzen Sie die binären Treiber für &os;, indem Sie einen der folgenden Ports installieren: Die aktuelle Version von NVIDIA-Karten wird durch den Port x11/nvidia-driver unterstützt. NVIDIA Karten wie die GeForce2 MX/3/4 Serie wird durch die 96XX Treiber unterstützt, die im x11/nvidia-driver-96xx Port bereitgestellt werden. Sogar ältere Karten wie die GeForce und RIVA TNT sind durch die 71XX Treiberserie verfügbar, die im Port x11/nvidia-driver-71xx enthalten ist. Tatsächlich liefert NVIDIA detaillierte Informationen darüber, welche Karte von welchem Treiber unterstützt wird. Diese Information finden Sie auf der Website von NVIDIA: . Für Matrox G200/400 sehen Sie sich den Port x11-servers/mga_hal an. Bei ATI Rage 128 und Radeon lesen Sie die Anleitungen &man.ati.4x;, &man.r128.4x; und &man.radeon.4x;. Fü 3dfx Vodoo 3, 4, 5 und Banshee Karten gibt es einen x11-servers/driglide Port. Netzwerke Woher kann ich Informationen über Diskless Booting bekommen? Diskless Booting bedeutet, dass die &os;-Maschine über ein Netzwerk gebootet wird und die notwendigen Dateien von einem Server anstatt von der Festplatte liest. Vollständige Details finden Sie im Handbucheintrag über den plattenlosen Betrieb. Kann eine &os;-Maschine als Netzwerkrouter genutzt werden? Ja. Genaue Informationen zu diesem Thema finden Sie im Abschnitt Gateways und Routen des Handbuchkapitels Weiterführende Netzwerkthemen. Kann ich meine &windows;-Maschine über &os; ans Internet anbinden? Personen, die diese Frage stellen, haben typischerweise zwei PCs zu Hause: einen mit &os; und einen mit einer &windows;-Variante. Die Idee ist, die &os;-Maschine an das Internet anzubinden, um in der Lage zu sein, von der &windows;-Maschine über die &os;-Maschine auf das Internet zuzugreifen. Das ist tatsächlich nur ein Spezialfall der vorherigen Frage. Das User-Mode &man.ppp.8; von &os; kennt die Option . Wenn Sie &man.ppp.8; mit der Option starten, in /etc/rc.conf die Variable gateway_enable auf YES setzen und Ihre &windows;-Maschine korrekt konfigurieren, sollte das hervorragend funktionieren. Weitere Informationen erhalten Sie in der Hilfeseite &man.ppp.8; oder im Abschnitt User-PPP des Handbuchs. Wenn Sie Kernel-Mode PPP verwenden oder ihre Verbindung zum Internet über Ethernet erstellt wurde, müssen Sie &man.natd.8; verwenden. Weitere Informationen dazu finden Sie im natd-Abschnitt des Handbuchs. Unterstützt &os; SLIP und PPP? Ja. Lesen Sie die Manualpages &man.slattach.8;, &man.sliplogin.8;, &man.pppd.8; und &man.ppp.8;. &man.ppp.8; und &man.pppd.8; liefern Unterstützung sowohl für eingehende, als auch ausgehende Verbindungen. &man.sliplogin.8; behandelt ausschließlich eingehende Verbindungen und &man.slattach.8; behandelt ausschließlich ausgehende Verbindungen. Diese Programme werden im Abschnitt PPP und SLIP des Handbuchs beschrieben. Falls Sie nur durch einen Shell-Account Zugang zum Internet haben, sehen Sie sich einmal das Package net/slirp an. Es kann Ihnen (eingeschränkten) Zugang zu Diensten wie ftp und http direkt von Ihrer lokalen Maschine aus ermöglichen. Unterstützt &os; NAT oder Masquerading? Ja. Wenn Sie NAT über eine User-PPP-Verbindung einsetzen wollen, lesen Sie bitte den User-PPP Abschnitt des Handbuchs. Wollen Sie NAT über eine andere Verbindung einsetzen, lesen Sie bitte den NATD-Abschnitt des Handbuchs. Wie verbinde ich zwei &os;-Maschinen mit PLIP über die parallele Schnittstelle? Dieses Thema wird im Handbuch-Kapitel PLIP behandelt. Wie kann ich Ethernet-Aliase einrichten? Wenn sich die zweite Adresse im gleichen Subnetz befindet wie eine der Adressen, die bereits auf dem Interface konfiguriert sind, benutzen Sie netmask 0xffffffff in Ihrer &man.ifconfig.8; Befehlszeile, wie z.B.: &prompt.root; ifconfig ed0 alias 192.0.2.2 netmask 0xffffffff Andernfalls geben sie die Adresse und die Netzmaske so an, wie sie es bei einem normalen Interface auch tun würden: &prompt.root; ifconfig ed0 alias 172.16.141.5 netmask 0xffffff00 Sie können mehr darüber im &os; Handbuch nachlesen. Wie bringe ich meine 3C503 dazu, den anderen Anschluss zu benutzen? Wenn Sie die anderen Anschlüsse benutzen möchten, müssen Sie einen zusätzlichen Parameter in der &man.ifconfig.8;-Befehlszeile spezifizieren. Der Standard-Anschluss ist link0. Um den AUI-Anschluss anstelle des BNC-Anschlusses zu verwenden, benutzen Sie link2. Diese Angaben sollten durch Benutzung der Variablen ifconfig_* in der Datei /etc/rc.conf spezifiziert werden. Warum habe ich Probleme mit NFS und &os;? Gewisse PC-Netzwerkkarten sind (um es gelinde auszudrücken) besser als andere und können manchmal Probleme mit netzwerkintensiven Anwendungen wie NFS verursachen. Weitere Informationen zu diesem Thema finden Sie im Handbucheintrag zu NFS. Warum kann ich per NFS nicht von einer &linux;-Maschine mounten? Einige Versionen des NFS-Codes von &linux; akzeptieren Mount-Requests nur von einem privilegierten Port. Versuchen Sie den folgenden Befehl: &prompt.root; mount -o -P linuxbox:/blah /mnt Warum kann ich per NFS nicht von einer &sun;-Maschine mounten? Sun Workstations mit &sunos; 4.X akzeptieren Mount-Requests nur von einem privilegierten Port. Versuchen Sie dieses Kommando: &prompt.root; mount -o -P sunbox:/blah /mnt Warum meldet mir mountd auf meinem &os; NFS-Server ständig can't change attributes und bad exports list? Die häufigste Ursache für dieses Problem ist, dass Sie den Aufbau der &man.exports.5; nicht oder nicht richtig verstanden haben. Überprüfen Sie Ihre &man.exports.5; und lesen das Kapitel NFS im Handbuch, speziell den Abschnitt Konfiguration. Warum habe ich Probleme, per PPP mit NeXTStep-Maschinen zu kommunizieren? Versuchen Sie, die TCP-Erweiterung in /etc/rc.conf zu deaktivieren, indem Sie die folgende Variable auf NO setzen: tcp_extensions=NO Xylogic's Annex-Maschinen arbeiten hier auch fehlerhaft und Sie müssen die obige Änderung benutzen, um über Sie Verbindungen herzustellen. Wie aktiviere ich die Unterstützung für IP-Multicast? Multicast-Host-Funktionen werden standardmäßig von &os; unterstützt. Wenn Sie Ihre Maschine als Multicast-Router betreiben wollen, müssen Sie Ihren Kernel mit der Option MROUTING neu kompilieren und &man.mrouted.8; starten. Wenn Sie die Variable mrouted_enable in der Datei /etc/rc.conf auf YES setzen, wird &man.mrouted.8; während des &os;-Systemstarts automatisch gestartet. In aktuellen Versionen von &os; sind die Programme &man.mrouted.8;, der Multicast Routing Dienst, &man.map-mbone.8; und &man.mrinfo.8; nicht mehr im Basissystem enthalten. In der &os; Ports-Sammlung sind diese Programme unter net/mrouted erhältlich. MBONE-Tools sind in ihrer eigenen Ports-Kategorie mbone verfügbar. Schauen Sie dort nach, wenn Sie die Konferenztools vic und vat suchen! Welche Netzwerkkarten basieren auf dem DEC-PCI-Chipsatz? Hier ist eine von Glen Foster gfoster@driver.nsta.org zusammengetragene Liste mit einigen aktuellen Ergänzungen: Netzwerkkarten mit DEC-PCI-Chipsatz Vendor Model ASUS PCI-L101-TB Accton ENI1203 Cogent EM960PCI Compex ENET32-PCI D-Link DE-530 Dayna DP1203, DP2100 DEC DE435, DE450 Danpex EN-9400P3 JCIS Condor JC1260 Linksys EtherPCI Mylex LNP101 SMC EtherPower 10/100 (Modell 9332) SMC EtherPower (Model 8432) TopWare TE-3500P Znyx (2.2.X) ZX312, ZX314, ZX342, ZX345, ZX346, ZX348 Znyx (3.X) ZX345Q, ZX346Q, ZX348Q, ZX412Q, ZX414, ZX442, ZX444, ZX474, ZX478, ZX212, ZX214 (10mbps/hd)
Warum muss ich für Hosts auf meiner Site den FQDN benutzen? Lesen Sie die Antwort im &os; Handbook. Wieso erhalte ich bei allen Netzwerkoperationen die Meldung Permission denied? Dieses Problem kann auftreten, wenn Sie einen Kernel mit der Option IPFIREWALL erstellt haben. In der Voreinstellung werden alle Pakete, die nicht explizit erlaubt wurden, blockiert. Falls sie Ihr System unbeabsichtigt als Firewall konfiguriert haben, können Sie die Netzwerkfunktionalität wiederherstellen, indem Sie als root folgendes eingeben: &prompt.root; ipfw add 65534 allow all from any to any Sie können in /etc/rc.conf auch firewall_type="open" setzen. Weitere Informationen über die Konfiguration einer &os;-Firewall finden Sie im Kapitel Firewalls des Handbuchs. Warum kann ich bei &man.ipfw.8; einen Dienst nicht mit fwd auf eine andere Maschine umlenken? Der wahrscheinlichste Grund ist, dass Sie Network Address Translation (NAT) brauchen und nicht die einfache Weiterleitung von Pakete. Die fwd Anweisung macht genau das, was da steht: Sie leitet Pakete weiter; die Daten in den Paketen werden aber nicht verändert. Ein Beispiel: 01000 fwd 10.0.0.1 from any to foo 21 Wenn ein Paket mit dem Ziel foo die Maschine mit dieser Regel erreicht, wird das Paket an 10.0.0.1 weitergeleitet; die Zieladresse im Paket lautet aber immer noch foo! Die Zieladresse wird nicht in 10.0.0.1 geändert. Die meisten Rechner werden allerdings Pakete verwerfen, wenn die Zieladresse des Paketes nicht mit der Adresse des Rechners übereinstimmt. Das ist der Grund, warum eine fwd Regel oft nicht den Effekt hat, den der Benutzer wollte. Dieses Verhalten ist aber kein Fehler, sondern erwünscht. Wenn Sie einen Dienst auf eine andere Maschine umleiten wollen, sollten Sie sich den FAQ-Eintrag über die Umleitung von Diensten oder die Online-Hilfe zu &man.natd.8; durchlesen. Auch in der Ports Sammlung sind diverse Hilfsprogramme für diesen Zweck enthalten. Wie kann ich Service-Requests von einer Maschine auf eine andere umleiten? Sie können FTP-Requests (und andere Dienste) mit dem Port sysutils/socket umleiten. Ersetzen sie die Befehlszeile für den Dienst einfach so, dass stattdessen socket aufgerufen wird, zum Beispiel so: ftp stream tcp nowait nobody /usr/local/bin/socket socket ftp.example.com ftp wobei ftp.example.com und ftp entsprechend der Host und der Port sind, wohin umgeleitet werden soll. Woher kann ich ein Bandbreiten-Managementtool bekommen? Für &os; gibt es drei Bandbreiten-Managementtools. &man.dummynet.4; ist als Teil von &man.ipfw.4; in &os; integriert. ALTQ ist in &os; Bestandteil von &man.pf.4;. Bei Bandwidth Manager von Emerging Technologies handelt es sich hingegen um ein kommerzielles Produkt. Warum erhalte ich die Meldung /dev/bpf0: device not configured? Der Berkeley-Paket-Filter (&man.bpf.4;) muss in den Kernel eingebunden werden, bevor er von einem Programme aus genutzt werden kann. Fügen Sie folgendes zu Ihrer Kernelkonfigurationsdatei hinzu und erstellen Sie einen neuen Kernel: device bpf # Berkeley Packet Filter Habe ich, analog zum smbmount von &linux;, eine Möglichkeit, auf ein freigegebenes Laufwerk einer &windows;-Maschine in meinem Netzwerk zuzugreifen? Benutzen Sie die Kernel-Erweiterungen und Benutzerprogramme aus dem Programmpaket SMBFS. Das Paket und weitergehende Informationen sind unter &man.mount.smbfs.8; im Basissystem verfügbar. Was bedeutet die Meldung Limiting icmp/open port/closed port response in meinen Logfiles? Mit dieser Meldung teilt Ihnen der Kernel mit, dass irgend jemand versucht, ihn zur Generierung von zu vielen ICMP oder TCP reset (RST) Antworten zu provozieren. ICMP Antworten sind oft das Ergebnis von Verbindungsversuchen zu unbenutzten UDP Ports. TCP Resets werden generiert, wenn jemand versucht, eine Verbindung zu einem ungenutzten TCP Port aufzubauen. Die Meldungen können unter anderem durch die folgenden Ereignisse ausgelöst werden: Denial of Service (DoS) Angriffe mit der Brechstange (und nicht durch Angriffe mit einzelnen Paketen, die gezielt eine Schwachstelle des Systems ausnutzen sollen). Port Scans, bei denen versucht wird, Verbindungen zu einer großen Anzahl von Ports (und nicht nur einigen bekannten Ports) herzustellen. Die erste Zahl gibt an, wie viele Pakete vom Kernel ohne das Limit versendet worden wären; die zweite Zahl gibt das Limit an. Sie können das Limit mit Hilfe der sysctl-Variable net.inet.icmp.icmplim einstellen. Im Beispiel wird das Limit auf 300 Pakete pro Sekunde gesetzt: &prompt.root; sysctl -w net.inet.icmp.icmplim=300 Wenn Sie zwar die Begrenzung benutzen möchten, aber die Meldungen nicht in Ihren Logfiles sehen möchten, können Sie die Meldungen mit der sysctl-Variable net.inet.icmp.icmplim_output abschalten: &prompt.root; sysctl -w net.inet.icmp.icmplim_output=0 Falls Sie die Begrenzung ganz abschalten wollen, können Sie die Sysctl-Variable net.inet.icmp.icmplim auf 0. Wir raten Ihnen aus den oben genannten Gründen dringend von diesem Schritt ab. Was bedeutet die Meldung arp: unknown hardware address format? Ein Gerät im lokalen Ethernet verwendet eine MAC-Adresse in einem Format, das &os; nicht kennt. Der wahrscheinlichste Grund ist, dass jemand Experimente mit einer Ethernet-Karte anstellt. Die Meldung tritt sehr häufig in Netzwerken mit Cable Modems auf. Die Meldung ist harmlos und sollte die Performance Ihres Systems nicht negativ beeinflussen. Warum sehe ich ständig Nachrichten wie: 192.168.0.10 is on fxp1 but got reply from 00:15:17:67:cf:82 on rl0 und wie stelle ich das ab? Weil ein Paket unerwartet von ausserhalb des Netzwerks empfangen wurde. Um die Nachrichten abzustellen, ändern Sie net.link.ether.inet.log_arp_wrong_iface auf 0. Ich habe gerade CVSup installiert, aber das Programm bricht mit Fehlermeldungen ab. Was ist da schief gelaufen? Schauen Sie bitte zuerst nach, ob Sie eine Fehlermeldung wie die unten gezeigte erhalten. /usr/libexec/ld-elf.so.1: Shared object "libXaw.so.6" not found Solche Fehlermeldungen erhalten Sie, wenn Sie den net/cvsup Port auf einer Maschine installieren, die kein &xorg;-System besitzt. Wenn Sie das GUI von CVSup benutzen wollen, müssen Sie &xorg; installieren. Wenn Sie CVSup nur auf der Kommandozeile benutzen wollen, entfernen Sie bitte den Port, den Sie gerade installiert haben. Installieren Sie stattdessen den Port net/cvsup-without-gui oder den net/csup Port. Falls Sie ein aktuelles &os; Release besitzen, können Sie &man.csup.1; verwenden. Genauere Informationen finden Sie im CVSup Abschnitt des Handbuchs.
Sicherheit Was ist ein Sandkasten (sandbox)? Sandkasten (sandbox) ist ein Ausdruck aus dem Bereich Sicherheit. Er hat zwei Bedeutungen: Ein Programm, das innerhalb virtueller Wände ausgeführt wird. Wenn ein Angreifer über eine Sicherheitslücke in diesen Programm einbricht, verhindern diese Wände ein tieferes Vordringen in das System. Man sagt: Der Prozess kann innerhalb der Wände spielen, das heißt nichts, was der Prozess in Bezug auf die Ausführung von Code tut, kann die Wände durchbrechen. Es ist also keine detaillierte Revision des Codes erforderlich, um gewisse Aussagen über seine Sicherheit machen zu können. Die Wände könnten z.B. eine Benutzerkennung sein. Dies ist die Definition, die in den Hilfeseiten &man.security.7; und &man.named.8; benutzt wird. Nehmen Sie zum Beispiel den Dienst ntalk (siehe auch &man.inetd.8;). Dieser Dienst ist früher mit der Benutzerkennung root gelaufen; nun läuft er mit der Benutzerkennung tty. Der Benutzer tty ist ein Sandkasten, der dazu gedacht ist, es jemandem, der über ntalk erfolgreich in das System eingebrochen ist, schwer zu machen, über diese Benutzerkennung hinaus vorzudringen. Ein Prozess, der sich innerhalb einer simulierten Maschine befindet. Dies ist etwas fortgeschrittener; grundsätzlich bedeutet es, dass jemand, der in der Lage ist, in einen Prozess einzudringen, annehmen könnte, er könnte weiter in die Maschine eindringen, tatsächlich aber nur in eine Simulation der Maschine einbricht und keine echten Daten verändert. Der gängigste Weg, dies zu erreichen, ist, in einem Unterverzeichnis eine simulierte Umgebung zu erstellen und den Prozess in diesem Verzeichnis mit chroot auszuführen (für diesen Prozess ist / dieses Verzeichnis und nicht das echte / des Systems). Eine weitere gebräuchliche Anwendung ist, ein untergeordnetes Dateisystem nur mit Leserechten zu mounten, und dann darüber eine Dateisystemebene zu erstellen, die einem Prozess einen scheinbar schreibberechtigten Blick in das Dateisystem gibt. Der Prozess mag glauben, dass er in der Lage ist, diese Dateien zu verändern, aber nur der Prozess sieht diesen Effekt - andere Prozess im System natürlich nicht. Es wird versucht, diese Art von Sandkasten so transparent zu gestalten, dass der Benutzer (oder Hacker) nicht merkt, dass er sich in ihm befindet. Ein &unix; System implementiert zwei Arten von Sandkästen - eine auf Prozessebene und die andere auf der Ebene der Benutzerkennung. Jeder Prozess auf einem &unix; System ist komplett von allen anderen Prozessen abgeschirmt. Ein Prozess kann den Adressraum eines anderen Prozesses nicht modifizieren. Das ist anders als bei &windows;, wo ein Prozess leicht den Adressraum eines anderen überschreiben kann, was zu einem Absturz führt. Ein Prozess gehört einer bestimmten Benutzerkennung. Falls die Benutzerkennung nicht die von root ist, dient sie dazu, den Prozess von Prozessen anderer Benutzer abzuschirmen. Die Benutzerkennung wird außerdem dazu genutzt, Daten auf der Festplatte abzuschirmen. Was sind die Sicherheitsstufen? Die Sicherheitsstufen sind ein Sicherheitsmechanismus, der im Kernel angesiedelt ist. Wenn die Sicherheitsstufe einen positiven Wert hat, verhindert der Kernel die Ausführung bestimmter Tätigkeiten; nicht einmal der Super-User (also root) darf sie durchführen. Zurzeit können über die Sicherheitsstufen unter anderem die folgenden Tätigkeiten geblockt werden: Zurücksetzen bestimmter Dateiattribute, wie zum Beispiel schg (das "system immutable" Attribut). Schreibender Zugriff auf die Speicherbereiche des Kernels mittels /dev/mem und /dev/kmem. Laden von Kernel-Modulen. Änderungen an den Firewall-Regeln. Um die eingestellte Sicherheitsstufe eines aktiven Systems abzufragen, reicht das folgende einfache Kommando: &prompt.root; sysctl kern.securelevel Die Ausgaben wird den Namen der &man.sysctl.8;-Variablen (in diesem Fall kern.securelevel) und eine Zahl enthalten. Die Zahl ist der aktuelle Wert der Sicherheitsstufe. Wenn die Zahl positiv (größer als Null) ist, sind zumindest einige der Schutzmaßnahmen aktiviert. Sie können die Sicherheitsstufe eines laufenden Systems nicht verringern, da dies den Mechanismus wertlos machen würden. Wenn Sie eine Tätigkeit ausführen müssen, bei der die Sicherheitsstufe nicht-positiv sein muss (z.B. ein installworld oder eine Änderung der Systemzeit), dann müssen Sie die entsprechende Einstellung in /etc/rc.conf ändern (suchen Sie nach den Variablen kern_securelevel und kern_securelevel_enable) und das System rebooten. Weitere Informationen über die Sicherheitsstufen und genaue Informationen, was die Einstellungen bewirken, können Sie der Online-Hilfe &man.init.8; entnehmen. Die Sicherheitsstufen sind kein magischer Zauberstab, der alle Ihre Problem löst; es gibt viele bekannte Probleme. Und in der Mehrzahl der Fälle vermitteln sie ein falsches Gefühl der Sicherheit. Eines der größten Probleme ist, dass alle für den Start des Systems benötigten Dateien geschützt sein müssen, damit die Sicherheitsstufe effektiv sein können. Wenn es ein Angreifer schafft, seine eigenen Programme ausführen zu lassen, bevor die Sicherheitsstufe gesetzt wird (was leider erst gegen Ende des Startvorgangs erfolgen kann, da viele der notwendigen Tätigkeiten für den Systemstart nicht mit einer gesetzten Sicherheitsstufe möglich wären), werden die Schutzmechanismen ausgehebelt. Es ist zwar nicht technisch unmöglich, alle beim Systemstart genutzten Dateien zu schützen; allerdings würde in einem so geschützten System die Administration zu einem Alptraum, da man das System neu starten oder in den Single-User-Modus bringen müsste, um eine Konfigurationsdatei ändern zu können. Dieses und andere Probleme werden häufig auf den Mailinglisten diskutiert, speziell auf auf der Mailingliste &a.security;. Das verfügbare Archiv enthält ausgiebige Diskussionen. Einige Benutzer sind guter Hoffnung, dass das System der Sicherheitsstufen bald durch ein besser konfigurierbares System ersetzt wird, aber es gibt noch keine definitiven Aussagen. Fühlen Sie sich gewarnt. Wieso wartet BIND (named) auf hohen Ports auf Anfragen? &os; benutzt eine Version von BIND, die einen Port mit einer hohen, zufälligen Nummer für den Versand von Anfragen nutzt. Aktuelle Versionen wählen einen neuen, zufälligen UDP-Port für jeden Query. Das kann für manche Netzwerkkonfigurationen Probleme verursachen, besonders wenn eine Firewall eingehende UDP-Pakete auf bestimmten Ports blockiert. Wenn Sie durch eine solche Firewall wollen, können Sie die avoid-v4-udp-ports und avoid-v6-udp-ports Optionen ausprobieren, um ein zufälliges Auswählen von Portnummern innerhalb eines blockierten Bereiches zu verhindern. Wenn eine Portnummer (wie 53) über die Optionen query-source oder query-source-v6 in /etc/namedb/named.conf spezifiziert ist, wird zufällige Portauswahl nicht verwendet. Es wird dringend empfohlen, dass diese Optionen nicht für die Spezifikation von festen Portnummern verwendet wird. Ach übrigens, herzlichen Glückwunsch. Es ist eine sehr gute Angewohnheit, die Ausgaben von &man.sockstat.1; durchzusehen und auf merkwürdige Dinge zu achten. Wieso wartet der sendmail-Dienst neuerdings sowohl auf Port 587 als auch auf dem Standard-Port 25 auf Anfragen? Aktuelle sendmail-Versionen unterstützen eine neue Technik zur Einlieferung von Mails, die Port 587 nutzt. Diese Technik wird zwar noch nicht oft angewendet, erfreut sich aber ständig steigender Popularität. Woher kommt dieser Benutzer toor mit UID 0? Ist mein System gehackt worden? Keine Panik. toor ist ein alternativer Account für den Super-User (wenn man root rückwärts schreibt, erhält man toor). Früher wurde er nur erzeugt, wenn die Shell &man.bash.1; installiert wurde, heute wird er auf jeden Fall erzeugt. Dieser Account ist für die Verwendung mit einer alternativen Shell vorgesehen; damit ist es nicht mehr erforderlich, die Shell von root zu ändern. Dies ist wichtig, wenn eine Shell verwendet wird, die nicht zum Lieferumfang von &os; gehört, zum Beispiel aus einem Port oder einem Package. Diese Shells werden in der Regel in /usr/local/bin installiert und dieses Verzeichnis liegt standardmäßig auf einem anderem Filesystem. Wenn die Shell von root in /usr/local/bin liegt und /usr (oder das Filesystem, auf dem /usr/local/bin liegt) nicht gemountet werden kann, kann sich root nicht mehr einloggen, um das Problem zu beheben. Es ist allerdings möglich, das System zu rebooten und das Problem im Single-User-Modus zu lösen, da man hier gefragt wird, welche Shell benutzt werden soll. Einige Anwender benutzen toor mit einer alternativen Shell für die tägliche Arbeit und benutzen root (mit der Standard-Shell) für den Single-User-Modus und für Notfälle. Standardmäßig kann man sich nicht als toor anmelden, da der Account kein gültiges Passwort hat; Sie müssen sich also als root anmelden und ein Passwort für toor setzen, wenn Sie diesen Account benutzen wollen. Warum funktioniert suidperl nicht richtig? Aus Sicherheitsgründen wird suidperl standardmäßig nicht installiert. Wenn Sie wollen, dass suidperl auch beim Update via Sourcecode das SUID-Bit erhält, müssen Sie in /etc/make.conf die Zeile ENABLE_SUIDPERL=true einfügen, bevor Sie perl bauen. PPP Ich bekomme &man.ppp.8; nicht zum Laufen. Was mache ich falsch? Sie sollten zuerst &man.ppp.8; (die Manualpage zu ppp) und den Abschnitt zu PPP im Handbuch lesen. Aktivieren Sie das Logging mit folgendem Befehl: set log Phase Chat Connect Carrier lcp ipcp ccp command Dieser Befehl kann an der Eingabeaufforderung von &man.ppp.8; eingegeben oder in die Konfigurationsdatei /etc/ppp/ppp.conf eingetragen werden (der beste Ort hierfür ist der Anfang des Abschnitts default. Stellen Sie sicher, dass die Datei /etc/syslog.conf die folgenden Zeilen enthält und die Datei /var/log/ppp.log existiert: !ppp *.* /var/log/ppp.log Sie können nun über die Logfiles eine Menge darüber herausfinden, was geschieht. Es macht nichts, wenn die Einträge in den Logfiles Ihnen gar nichts sagen. Wenn Sie jemandem um Hilfe bitten müssen, könnten sie für ihn von Nutzen sein. Warum hängt sich ppp auf, wenn ich es benutze? Das liegt meistens daran, dass Ihr Rechnername nicht aufgelöst werden kann. Um dieses Problem zu lösen, müssen Sie sicherstellen, dass die Datei /etc/hosts von Ihrem Resolver zuerst genutzt wird. Dazu muss in der Datei /etc/host.conf der Eintrag hosts an die erste Stelle gesetzt werden. Erstellen Sie dann einfach für Ihren lokalen Rechner einen Eintrag in der Datei /etc/hosts. Falls Sie kein lokales Netzwerk besitzen, ändern Sie die localhost-Zeile: 127.0.0.1 foo.example.com foo localhost Andernfalls fügen Sie einfach einen weiteren Eintrag für Ihren lokalen Rechner hinzu. Weitere Details finden Sie in den betreffenden Manualpages. Wenn Sie fertig sind sollten Sie ping -c1 `hostname` erfolgreich ausführen können. Warum wählt &man.ppp.8; im -auto-Modus nicht? Überprüfen Sie zunächst, ob Sie einen Standard-Gateway eingestellt haben. Wenn Sie netstat -rn ausführen, sollten Sie zwei Einträge ähnlich den folgenden sehen: Destination Gateway Flags Refs Use Netif Expire default 10.0.0.2 UGSc 0 0 tun0 10.0.0.2 10.0.0.1 UH 0 0 tun0 Hier wird angenommen, dass Sie die Adressen aus dem Handbuch, der Manualpage oder aus der Datei ppp.conf.sample benutzt haben. Falls Sie keine Standardroute haben, kann es daran liegen, dass Sie vergessen haben, die Zeile HISADDR in der Datei ppp.conf hinzuzufügen. Ein weiterer Grund dafür, dass die Zeile für die Standardroute fehlt, könnte der sein, dass Sie fälschlicherweise eine Standardroute in der Datei /etc/rc.conf eingetragen und die folgende Zeile in ppp.conf ausgelassen haben: delete ALL Lesen Sie in diesem Fall den Abschnitt Abschließende Systemkonfiguration des Handbuchs. Was bedeutet No route to host? Dieser Fehler beruht für gewöhnlich auf einem fehlenden Abschnitt in Ihrer Datei /etc/ppp/ppp.linkup: MYADDR: delete ALL add 0 0 HISADDR Er ist nur notwendig, wenn Sie eine dynamische IP-Adresse besitzen oder die Adresse Ihres Gateways nicht kennen. Wenn Sie den interaktiven Modus benutzen, können Sie folgendes eingeben, nachdem Sie in den packet mode gelangt sind (den Paket Modus erkennen Sie an PPP im Prompt): delete ALL add 0 0 HISADDR Weitere Details finden Sie im Abschnitt PPP und Dynamische IP-Adressen des Handbuchs. Wieso werden meine Verbindungen nach ca. drei Minuten beendet? Der Standardtimeout für &man.ppp.8; beträgt drei Minuten. Er kann durch die folgende Zeile eingestellt werden, wobei NNN die Inaktivität in Sekunden angibt, bevor die Verbindung geschlossen wird: set timeout NNN Falls NNN Null ist, wird die Verbindung niemals aufgrund eines Timeouts geschlossen. Es ist möglich, diesen Befehl in die Datei ppp.conf einzubinden, oder ihn an der Eingabeaufforderung im interaktiven Modus einzugeben. Durch eine Verbindung zum Server-Socket von ppp über &man.telnet.1; oder &man.pppctl.8; ist es auch möglich, den Timeout bei aktiver Verbindung anzupassen. Weitere Details finden Sie in der Manualpage &man.ppp.8;. Wieso bricht meine Verbindung bei hoher Auslastung ab? Falls Sie Link-Quality-Reporting (LQR) konfiguriert haben, ist es möglich, dass zu viele LQR-Pakete zwischen Ihrer Maschine und dem verbundenen Rechner verloren gehen. Das &man.ppp.8;-Programm folgert daraus, dass die Verbindung nicht in Ordnung ist und schließt sie. Vor &os; Version 2.2.5 war LQR standardmäßig aktiviert; nun ist es standardmäßig deaktiviert. Es kann durch die folgende Zeile deaktiviert werden: disable lqr Warum brechen meine Verbindungen nach unbestimmter Zeit zusammen? Wenn die Qualität Ihrer Telefonleitung zu schlecht oder bei Ihrem Anschluss die Option (Telekomdeutsch: das Leistungsmerkmal) Anklopfen aktiviert ist, kann es manchmal vorkommen, dass Ihr Modem auflegt, weil es (fälschlicherweise) annimmt, dass es das Trägersignal verloren hat. Bei den meisten Modems gibt es eine Einstellmöglichkeit, um anzugeben, wie tolerant es gegenüber vorübergehenden Verlusten des Trägersignals sein soll. Bei einem &usrobotics; &sportster; wird dies zum Beispiel im Register S10 in Zehntelsekunden angegeben. Um Ihr Modem toleranter zu machen, können Sie zu Ihrem Wählbefehl die folgende Sende-Empfangs-Sequenz hinzufügen: set dial "...... ATS10=10 OK ......" Weitere Information sollten Sie dem Handbuch Ihres Modems entnehmen können. Warum hängen meine Verbindung nach einer unbestimmten Zeit? Viele Leute machen Erfahrungen mit hängenden Verbindungen ohne erkennbaren Grund. Als erstes muss festgestellt werden, welche Seite der Verbindung hängt. Wenn Sie ein externes Modem benutzen, können Sie einfach versuchen, &man.ping.8; zu benutzen, um zu sehen, ob die TD-Anzeige aufleuchtet, wenn Sie Daten übertragen. Falls sie aufleuchtet (und die RD-Anzeige nicht), liegt das Problem am anderen Ende. Falls TD nicht aufleuchtet, handelt es sich um ein lokales Problem. Bei einem internen Modem müssen Sie den Befehl set server in Ihrer Datei ppp.conf benutzen. Stellen Sie über &man.pppctl.8; eine Verbindung zu &man.ppp.8; her, wenn die Verbindung hängt. Falls Ihre Netzwerkverbindung plötzlich wieder funktioniert (ppp wurde durch die Aktivität auf dem Diagnose-Socket wiederbelebt) oder Sie keine Verbindung bekommen (vorausgesetzt, der Befehl set socket wurde beim Start erfolgreich ausgeführt), handelt es sich um ein lokales Problem. Falls Sie eine Verbindung bekommen und die externe Verbindung weiterhin hängt, aktivieren Sie lokales asynchrones Logging mit set log local async und benutzen Sie &man.ping.8; von einem anderen Fenster oder Bildschirm aus, um die externe Verbindung zu benutzen. Das asynchrone Logging zeigt Ihnen, welche Daten über die Verbindung gesendet und empfangen werden. Falls Daten hinausgehen, aber nicht zurückkommen, handelt es sich um ein externes Problem. Wenn Sie festgestellt haben, ob es sich um ein lokales oder um ein externes Problem handelt, haben Sie zwei Möglichkeiten: Wenn es ein externes Problem ist, lesen Sie bitte bei weiter. Handelt es sich um ein lokales Problem, lesen Sie bitte . Was kann ich machen, wenn die Gegenstelle nicht antwortet? Hier können Sie wenig tun. Die meisten ISPs werden ablehnen, Ihnen zu helfen, wenn Sie kein Betriebssystem von µsoft; benutzen. Sie können enable lqr in Ihrer Datei ppp.conf angeben, wodurch &man.ppp.8; ermöglicht wird, ein externes Versagen zu erkennen und aufzulegen, aber diese Erkennung ist relativ langsam und deshalb nicht besonders nützlich. Evtl. sagen Sie Ihrem ISP nicht, dass Sie user-PPP benutzen. Versuchen Sie zunächst, jegliche Datenkompression auszuschalten, indem Sie folgendes zu Ihrer Konfiguration hinzufügen: disable pred1 deflate deflate24 protocomp acfcomp shortseq vj deny pred1 deflate deflate24 protocomp acfcomp shortseq vj Stellen Sie nun wieder eine Verbindung her, um festzustellen, ob sich etwas geändert hat. Falls es nun besser läuft oder falls das Problem vollständig behoben ist, versuchen Sie durch schrittweises Ändern der Einstellungen festzustellen, welche Einstellung den Unterschied bewirkt. Hierdurch erhalten Sie schlüssige Fakten für ein Gespräch mit Ihrem ISP (andererseits wird hierdurch offensichtlich, dass Sie kein µsoft;-Produkt benutzen). Aktivieren Sie asynchrones Logging und warten Sie, bis die Verbindung wieder hängt, bevor Sie sich an Ihren ISP wenden. Hierzu kann einiges an Plattenplatz nötig sein. Die Daten, die als letztes von dem Port gelesen wurden, könnten von Interesse sein. Für gewöhnlich handelt es sich um ASCII-Text, der sogar den Fehler beschreiben kann (Memory fault, Core dumped). Falls Ihr ISP hilfsbereit ist, sollte er in der Lage sein, an seinem Ende das Logging zu aktivieren und wenn das nächste Mal die Verbindung abbricht, könnte er Ihnen mitteilen, worin das Problem auf seiner Seite besteht. Gerne können Sie Details auch an &a.brian; schicken, oder Ihren ISP bitten, sich direkt an ihn zu wenden. Was kann ich tun, wenn sich &man.ppp.8; aufhängt? In diesem Fall erstellen Sie am besten &man.ppp.8; mit Debugging-Informationen neu und benutzen dann &man.gdb.1;, um von dem hängenden ppp Prozess eine Aufzeichnung des Stacks zu erstellen. Um die ppp Anwendung mit Debugging-Informationen zu übersetzen, geben Sie folgendes ein: &prompt.root; cd /usr/src/usr.sbin/ppp&prompt.root; env DEBUG_FLAGS='-g' make clean &prompt.root; env DEBUG_FLAGS='-g' make install Anschliessend sollten Sie ppp neu starten und darauf warten, dass es wieder hängt. Wenn die Debug-Version von ppp hängt, starten Sie gdb für den steckengebliebenen Prozess, indem Sie folgendes eingeben: &prompt.root; gdb ppp `pgrep ppp` An der Eingabeaufforderung von gdb können Sie die Befehle bt oder where benutzen, um eine Aufzeichnung des Stacks zu erhalten. Speichern Sie die Ausgabe der gdb-Sitzung und trennen Sie den laufenden Prozess über den quit Befehl von gdb. Schicken Sie zum Schluss das Log der gdb-Sitzung an &a.brian;. Warum passiert nach der Nachricht Login OK! nichts? Bei &os;-Versionen vor 2.2.5 wartete &man.ppp.8; darauf, dass der Partner das Line Control Protocol (LCP) initiiert. Viele ISPs starten nicht mit der Initiierung, sondern erwarten dies vom Client. Benutzen Sie die folgende Zeile, um &man.ppp.8; zu veranlassen, LCP zu initiieren: set openmode active Für gewöhnlich schadet es nicht, wenn beide Seiten versuchen, Verhandlungen einzuleiten. Deshalb ist openmode nun standardmäßig aktiv. Im nächsten Abschnitt wird allerdings erklärt, in welchen Fällen es doch schadet. Ich sehe ständig Fehlermeldungen über gleiche Magic Numbers Was heißt das? Nach dem Aufbau einer Verbindung kann es sein, dass Sie in der Logdatei gelegentlich Meldungen mit dem Hinweis magic is the same sehen. Manchmal sind diese Meldungen harmlos und manchmal bricht die eine oder andere Seite die Verbindung ab. Die meisten Implementationen von PPP können dieses Problem nicht handhaben und Sie werden wiederholte Konfigurationsanforderungen und -bestätigungen in der Logdatei finden, bis &man.ppp.8; schließlich aufgibt und die Verbindung beendet. Dies geschieht normalerweise auf Servern mit langsamen Festplatten, bei denen ein getty auf dem Port ausgeführt und &man.ppp.8; nach dem Einloggen von einem Login-Skript oder einem Programm aus gestartet wird. Es wurde auch schon berichtet, dass dies bei der Benutzung von slirp regelmäßig auftritt. Der Grund hierfür ist, dass das &man.ppp.8; auf der Client-Seite in der Zeit, die benötigt wird, &man.getty.8; zu beenden und &man.ppp.8; zu starten, bereits beginnt, Line Control Protocol (LCP) Pakete zu senden. Da ECHO auf dem Serverport weiterhin eingeschaltet ist, werden diese Pakete zum &man.ppp.8; auf der Client-Seite reflektiert. Ein Teil der LCP-Verhandlungen ist die Einrichtung einer Magic Number für jede Seite der Verbindung, damit Echos erkannt werden können. Das Protokoll besagt, dass, wenn der Partner versucht, die gleiche Magic Number auszuhandeln, ein NAK zurückgesendet und eine neue "Magic Number" gewählt werden soll. Während der Server das ECHO eingeschaltet hat, sendet der Client LCP Pakete, sieht die gleiche Magic Number im reflektierten Paket und erzeugt ein NAK. Er sieht auch das reflektierte NAK (was bedeutet, dass &man.ppp.8; seine "Magic Number" ändern muss). Hierdurch wird eine Vielzahl von Änderungen der Magic Number hervorgerufen, die sich allesamt im tty-Puffer des Servers ansammeln. Sobald &man.ppp.8; auf dem Server startet, wird es mit Änderungen der Magic Number überflutet und entscheidet, dass es sich zur Genüge mit den LCP-Verhandlungen beschäftigt hat und gibt auf. Und während sich der Client noch darüber freut, dass er keine weiteren Reflexionen sieht, wird ihm gemeldet, dass der Server auflegt. Dies kann verhindert werden, indem dem Partner durch die folgende Zeile in der Datei ppp.conf erlaubt wird, mit der Verhandlung zu beginnen: set openmode passive Hierdurch wird &man.ppp.8; mitgeteilt, darauf zu warten, dass der Server mit den LCP-Verhandlungen beginnt. Einige Server starten jedoch nie mit der Verhandlungen; falls dies der Fall ist, können Sie folgendes tun: set openmode active 3 Hierdurch bleibt &man.ppp.8; für drei Sekunden passiv und fängt dann erst an, LCP-Anforderungen zu senden. Falls der Partner während dieser Zeit beginnt, Anforderungen zu senden, wird &man.ppp.8; direkt antworten und nicht erst, nachdem die drei Sekunden abgelaufen sind. Die LCP-Verhandlungen dauern an, bis die Verbindung geschlossen wird. Was mache ich falsch? Es gibt eine Fehlfunktion in der Implementierung von &man.ppp.8;, die darin besteht, dass LCP-, CCP- & IPCP-Antworten nicht mit den ursprünglichen Anforderungen assoziiert werden. Für den Fall, dass eine Implementation von PPP mehr als sechs Sekunden langsamer ist, als die andere Seite, resultiert das darin, dass die andere Seite zwei weitere LCP-Konfigurationsanforderungen sendet, was fatale Auswirkungen hat. Stellen Sie sich vor, wir hätten es mit zwei Implementierungen A und B zu tun. A beginnt unmittelbar nach der Verbindung, LCP-Anforderungen zu senden und B benötigt sieben Sekunden, zu starten. Wenn B startet, hat A bereits drei LCP-Anforderungen gesendet. Wir nehmen an, dass ECHO ausgeschaltet ist; andernfalls würden wir Probleme mit der "Magic Number" beobachten, wie bereits im vorherigen Abschnitt beschrieben. B sendet eine Anforderung und anschließend eine Bestätigung der ersten Anforderung von A. Dies führt dazu, dass A in den Zustand OPENED übergeht und eine Bestätigung (die erste) zurück an B sendet. In der Zwischenzeit sendet B zwei weitere Bestätigungen als Antwort auf die zusätzlichen Anforderungen, die von A gesendet worden sind, bevor B gestartet ist. B empfängt dann die erste Bestätigung von A und geht in den Zustand OPENED über. A empfängt die zweite Bestätigung von B, geht zurück in den Zustand REQ-SENT und sendet eine weitere (vierte) Anforderung entsprechend dem RFC. A empfängt dann die dritte Bestätigung und geht in den Zustand OPENED über. In der Zwischenzeit empfängt B die vierte Anforderung von A, wechselt in den Zustand ACK-SENT und sendet eine weitere (zweite) Anforderung und (vierte) Bestätigung entsprechend dem RFC. A erhält die Anforderung, geht in den Zustand REQ-SENT über, sendet eine weitere Anforderung, erhält unverzüglich die nächste Bestätigung und geht in OPENED über. Das geht so weiter, bis eine Seite erkennt, dass man zu keinem Ergebnis gelangt und aufgibt. Am besten verhindert man solche Situationen, indem man eine Seite als passiv konfiguriert, also dafür sorgt, dass eine Seite darauf wartet, dass die andere mit den Verhandlungen beginnt. Das kann durch den folgenden Befehl geschehen: set openmode passive Diese Option sollten Sie mit Vorsicht genießen. Folgenden Befehl sollten Sie benutzen, um die Wartezeit auf den Beginn der Verhandlungen des Partners von &man.ppp.8; zu begrenzen: set stopped N Alternativ kann der folgende Befehl (wobei N die Wartezeit in Sekunden vor Beginn der Verhandlungen angibt) benutzt werden: set openmode active N Weitere Details finden Sie in den Manualpages. Warum reagiert &man.ppp.8; nicht mehr, wenn ich es mit shell verlassen habe? Wenn Sie den Befehl shell oder ! benutzen, führt &man.ppp.8; eine Shell aus (falls Sie Argumente übergeben haben, führt &man.ppp.8; diese Argumente aus). Das Programm ppp wartet auf die Beendigung des Befehls, bevor es seine Arbeit fortsetzt. Falls Sie versuchen, die PPP-Verbindung während der Programmausführung zu benutzen, wird es so aussehen, als wäre die Verbindung eingefroren. Das liegt daran, dass &man.ppp.8; auf die Beendigung des Befehls wartet. Falls Sie solche Befehle verwenden möchten, benutzen Sie stattdessen den Befehl !bg. Hierdurch wird der angegebene Befehl im Hintergrund ausgeführt und &man.ppp.8; kann fortfahren, die Verbindung zu bedienen. Warum wird &man.ppp.8; niemals beendet, wenn ich es über ein Nullmodem-Kabel benutze? Es gibt keine Möglichkeit für &man.ppp.8;, automatisch festzustellen, ob eine direkte Verbindung beendet worden ist. Das liegt an den Leitungen, die bei einem seriellen Nullmodem-Kabel benutzt werden. Wenn Sie diese Art der Verbindung verwenden, sollte LQR immer mit der folgenden Zeile aktiviert werden: enable lqr LQR wird standardmäßig akzeptiert, wenn es vom Partner ausgehandelt wird. Warum wählt &man.ppp.8; im Modus ohne Grund? Falls &man.ppp.8; unerwarteterweise wählt, müssen Sie den Grund herausfinden und Wählfilter (dfilters) einsetzen, um dies zu verhindern. Benutzen Sie die folgende Zeile, um den Grund herauszufinden: set log +tcp/ip Dadurch wird jeglicher Verkehr über die Verbindung geloggt. Wenn das nächste mal unerwartet eine Verbindung hergestellt wird, werden Sie den Grund zusammen mit einer hilfreichen Zeitangabe in der Logdatei finden. Sie können nun das Wählen aufgrund dieser Bedingungen verhindern. Normalerweise wird diese Art von Problemen durch Anfragen an den DNS verursacht. Um zu verhindern, dass DNS-Anfragen den Aufbau der Verbindung hervorrufen (das verhindert nicht, dass Pakete über eine bestehende Verbindung gesendet werden), benutzen Sie die folgenden Zeilen: set dfilter 1 deny udp src eq 53 set dfilter 2 deny udp dst eq 53 set dfilter 3 permit 0/0 0/0 Dies ist nicht immer brauchbar, weil es effektiv Ihre Fähigkeit, auf Anforderung wählen zu können einschränkt - die meisten Programme müssen eine DNS-Anfrage durchführen, bevor Sie andere, das Netzwerk betreffenden Dinge tun können. Im Fall von DNS sollten Sie versuchen, herauszufinden, welches Programm tatsächlich versucht, einen Hostnamen aufzulösen. Sehr oft handelt es sich hier um &man.sendmail.8;. Sie sollten sicherstellen, dass Sie sendmail in der Konfigurationsdatei sagen, dass keine DNS-Anfragen durchführen soll. Weitere Details enthält der Abschnitt E-Mail über Einwahl-Verbindungen des Handbuchs. Sie könnten z.B. die folgende Zeile in Ihre .mc-Datei einfügen: define(`confDELIVERY_MODE', `d')dnl Das veranlasst sendmail dazu, alles in eine Warteschlange einzureihen, bis die Warteschlange verarbeitet wird (normalerweise wird sendmail mit aufgerufen, was besagt, dass die Warteschlange alle 30 Minuten abgearbeitet wird) oder, bis ein sendmail ausgeführt wird (z.B. aus Ihrer Datei ppp.linkup heraus). Was bedeuten diese CCP-Fehler? Ich sehe ständig folgende Fehler in meiner Logdatei: CCP: CcpSendConfigReq CCP: Received Terminate Ack (1) state = Req-Sent (6) Das liegt daran, dass &man.ppp.8; versucht, die Komprimierung Predictor1 auszuhandeln und der Partner über keinerlei Komprimierung verhandeln will. Die Meldungen sind harmlos, aber wenn Sie sie beseitigen möchten, können Sie die Komprimierung Predictor1 auch lokal ausschalten: disable pred1 Warum loggt ppp die Geschwindigkeit meiner Verbindung nicht? Um alle Zeilen Ihrer Modemkonversation mitzuloggen, müssen Sie folgendes einstellen: set log +connect Dies veranlasst &man.ppp.8; dazu, alles bis zur letzten angeforderten expect-Zeile mitzuloggen. Falls Sie die Geschwindigkeit Ihrer Verbindung erfahren möchten und PAP oder CHAP (und deshalb nach dem CONNECT im Wählskript nichts mehr zu chatten haben - kein set login-Skript), müssen Sie sicherstellen, dass Sie &man.ppp.8; anweisen, die gesamte CONNECT-Zeile zu erwarten, etwa so: set dial "ABORT BUSY ABORT NO\\sCARRIER TIMEOUT 4 \"\" ATZ OK-ATZ-OK ATDT\\T TIMEOUT 60 CONNECT \\c \\n" Hier bekommen wir unser CONNECT, senden nichts, erwarten dann einen Line-Feed, der &man.ppp.8; zwingt, die gesamte CONNECT-Antwort zu lesen. Warum ignoriert &man.ppp.8; das Zeichen \ in meinem Chat-Skript? Das Programm ppp analysiert jede Zeile in Ihrer Konfigurationsdatei, damit es Zeichenketten wie z.B. set phone "123 456 789" korrekt interpretieren kann (und erkennen, dass es sich bei der Nummer tatsächlich nur um ein Argument handelt). Um das Zeichen " anzugeben, müssen Sie ihm einen Backslash (\) voranstellen. Wenn der Chat-Interpreter jedes Argument analysiert, reinterpretiert er die Argumente, um irgendwelche speziellen Escape-Sequenzen wie z.B. \P oder \T (sehen Sie in die Manualpage) zu finden. Das Ergebnis dieser Doppelanalyse ist, dass Sie daran denken müssen, die richtige Anzahl an Escape-Zeichen zu verwenden. Falls Sie tatsächlich das Zeichen \ z.B. zu Ihrem Modem senden möchten, brauchen Sie etwas ähnliches, wie: set dial "\"\" ATZ OK-ATZ-OK AT\\\\X OK" Woraus sich folgende Zeichen ergeben: ATZ OK AT\X OK Oder: set phone 1234567 set dial "\"\" ATZ OK ATDT\\T" Was folgende Zeichen ergibt: ATZ OK ATDT1234567 Warum gibt es die Datei ppp.core nicht, wenn &man.ppp.8; einen Segmentation fault erzeugt hat? Weder ppp noch andere Programme sollten Core-Dumps erzeugen. Da &man.ppp.8; mit der effektiven Benutzerkennung 0 ausgeführt wird, wird das Betriebssystem das Coreimage von &man.ppp.8; nicht auf die Festplatte schreiben, bevor es &man.ppp.8; beendet hat. Falls &man.ppp.8; jedoch tatsächlich aufgrund einer Speicherverletzung abbricht und Sie die aktuellste Version (siehe Anfang dieses Kapitels) benutzen, dann sollten Sie die Systemquellen installieren und folgendes tun: &prompt.root; cd /usr/src/usr.sbin/ppp &prompt.root; echo STRIP= >> /etc/make.conf &prompt.root; echo CFLAGS+= >> /etc/make.conf &prompt.root; make install clean Nun ist die installierte Version von &man.ppp.8; mit einem Debugger ausführbar. Sie können &man.ppp.8; nun nur noch als root ausführen, da alle vorherigen Zugriffsrechte aufgehoben worden sind. Achten Sie darauf, in welchem Verzeichnis Sie sich gerade befinden, wenn Sie &man.ppp.8; starten. Wenn nun wieder eine Speicherverletzung auftreten sollte, wird &man.ppp.8; einen Speicherauszug erzeugen, den Sie in der Datei ppp.core finden. Sie sollten dann folgendes tun: &prompt.user; su &prompt.root; gdb /usr/sbin/ppp ppp.core (gdb) bt ..... (gdb) f 0 .... (gdb) i args .... (gdb) l ..... Mit Hilfe all dieser Informationen sollte es möglich sein, das Problem zu diagnostizieren. Falls Sie mit &man.gdb.1; vertraut sind, könnten Sie weitere Einzelheiten herausfinden, z.B. wodurch der Fehler tatsächlich hervorgerufen wurde oder die Adressen und Werte der betreffenden Variablen. Warum bekommt das Programm, das eine Anwahl im Modus ausgelöst hat, keine Verbindung? Dies war ein bekanntes Problem bei &man.ppp.8;-Konfigurationen, bei denen im Modus dynamische, lokale IP-Adressen mit dem Partner ausgehandelt werden. Das Problem ist bereits seit einiger Zeit behoben - suchen Sie in den Manualpages nach iface. Das Problem bestand darin, dass, wenn das erste Programm &man.connect.2; aufruft, die IP-Adresse der &man.tun.4;-Schnittstelle dem Socketendpunkt zugeordnet wird. Der Kernel erstellt das erste ausgehende Paket und schreibt es in das &man.tun.4;-Gerät. &man.ppp.8; liest dann das Paket und baut eine Verbindung auf. Falls die Schnittstellenadresse sich nun aufgrund &man.ppp.8;s dynamischer Adresszuordnung ändert, wird der originale Socketendpunkt ungültig. Alle weiteren Pakete, die zum Partner gesendet werden, werden für gewöhnlich verworfen. Selbst wenn sie nicht verworfen werden würden, würden alle Antworten nicht an den betreffenden Rechner gelangen, weil die IP-Adresse nicht mehr zu diesem Rechner gehört. Theoretisch gibt es mehrere Möglichkeiten, dieses Problem anzugehen. Am schönsten wäre es, wenn der Partner die gleiche IP-Adresse wieder zuordnen würde, wenn möglich. Die derzeitige Version von &man.ppp.8; tut das, aber die meisten anderen Implementierungen nicht. Die einfachste Maßnahme von unserer Seite wäre die, niemals die IP-Adresse der &man.tun.4;-Schnittstelle zu ändern, sondern stattdessen alle ausgehenden Pakete so zu ändern, dass als Absender-IP-Adresse anstelle der IP-Adresse der Schnittstelle die ausgehandelte IP-Adresse gesetzt wird. Das ist im wesentlichen das, was durch die Option iface-alias in der aktuellsten Version von &man.ppp.8; bewirkt wird (mit Unterstützung von &man.libalias.3; und &man.ppp.8;'s Schalter) - alle Schnittstellenadressen werden beibehalten und auf die letzte ausgehandelte Adresse umgesetzt. Eine andere Alternative (und wahrscheinlich die zuverlässigste) wäre die, einen Systemaufruf zu implementieren der die IP-Adressen aller verbundenen Sockets von einer Adresse in eine andere ändert. &man.ppp.8; würde diesen Aufruf benutzen, um die Sockets aller laufenden Programme zu ändern, nachdem eine neue IP-Adresse ausgehandelt worden ist. Der gleiche Systemaufruf könnte von DHCP-Clients benutzt werden, wenn sie gezwungen werden, die bind()-Funktion auf ihren Sockets auszuführen. Noch eine andere Möglichkeit wäre die, das Aktivieren von Schnittstellen ohne IP-Adresse zu erlauben. Ausgehende Paketen würde die IP-Adresse 255.255.255.255 gegeben, bis der erste &man.ioctl.2; mit SIOCAIFADDR erfolgt. Dies würde in der vollständigen Verbindung des Sockets resultieren. Es wäre die Aufgabe von &man.ppp.8;, die Absender-IP-Adresse zu ändern, allerdings nur dann, wenn sie 255.255.255.255 lautet und nur die IP-Adresse und IP-Prüfsumme müssten geändert werden. Dies wäre allerdings keine besonders elegante Lösung, da der Kernel fehlerhafte Pakete an eine unzureichend konfigurierte Schnittstelle senden würde, in der Annahme, dass andere Mechanismen in der Lage sind, diese Dinge rückwirkend zu beheben. Warum laufen die meisten Spiele mit dem Schalter nicht? Der Grund dafür, dass Spiele und andere Programme nicht funktionieren, wenn &man.libalias.3; benutzt wird, ist der, dass der Rechner außerhalb des lokalen Netzes versucht, eine Verbindung aufzubauen und (unaufgefordert) UDP-Pakete an den Rechner innerhalb des lokalen Netzes zu senden. Die Software, die für die NAT zuständig ist, weiß nicht, dass sie diese Pakete an den internen Rechner weiterleiten soll. Um dies zu beheben, stellen Sie zunächst sicher, dass die Software, mit der Sie Probleme haben, die einzige ist, die gerade läuft. Benutzen Sie dann entweder &man.tcpdump.1; auf der &man.tun.4;-Schnittstelle des Gateways oder aktivieren Sie auf dem Gateway das Logging von TCP/IP (set log +tcp/ip) unter &man.ppp.8;. Wenn Sie nun das betreffende Programm starten, sollten Sie sehen, wie Pakete den Gateway-Rechner passieren. Wenn von außen etwas zurückkommt, wird es ignoriert (das ist das Problem). Merken Sie sich die Portnummer dieser Pakete und beenden Sie das betreffende Programm. Wiederholen Sie diesen Schritt einige Male, um festzustellen, ob die Portnummern konsistent sind. Falls dem so ist, wird die folgende Zeile im entsprechenden Abschnitt von /etc/ppp/ppp.conf dafür sorgen, dass das Programm funktioniert: nat port proto internalmachine:port port wobei für proto entweder tcp oder udp zu setzen ist, internalmachine den Rechner bezeichnet, an den die Pakete geschickt werden sollen und port die betreffende Portnummer. Sie können das Programm nicht auf einem anderen Rechner benutzen, ohne die obige Zeile abzuändern und die Benutzung des Programms auf zwei internen Rechnern steht außer Frage - schließlich sieht die Außenwelt Ihr gesamtes internes Netz so, als wäre es ein einzelner Rechner. Falls die Portnummern nicht konsistent sind, gibt es drei weitere Optionen: Ermöglichen Sie die Unterstützung durch &man.libalias.3;. Beispiele für spezielle Fälle finden Sie in /usr/src/sys/netinet/libalias/alias_*.c (alias_ftp.c ist ein schöner Prototyp). Hierzu gehört für gewöhnlich das Lesen bestimmter, erkannter, ausgehender Pakete, die Identifizierung der Instruktion, die den entfernten Rechner dazu veranlasst, auf einem bestimmten (wahlfreien) Port eine Verbindung zurück zum lokalen Rechner herzustellen, sowie das Erstellen einer Route in der Aliastabelle, so dass nachfolgende Pakete wissen, wohin sie gehören. Dieses ist zwar die komplizierteste Lösung, aber die beste, die auch dafür sorgt, dass die Software auf mehreren Rechnern funktioniert. Benutzen Sie einen Proxy. Die Anwendung könnte z.B. socks5 unterstützen, oder (wie im Fall von cvsup) eine Option passiv besitzen, die stets verhindert, dass verlangt wird, dass der Partner eine Verbindung zurück zur lokalen Maschine aufbaut. Leiten Sie mit nat addr alles zur lokalen Maschine um. Dieses Vorgehen ähnelt dem mit einem Vorschlaghammer. Hat jemand eine Liste mit nützlichen Portnummern erstellt? Noch nicht, aber hieraus könnte eine solche entstehen (falls Interesse besteht). In jedem Beispiel sollte internal durch die IP-Adresse der Maschine ersetzt werden, auf der das Spiel laufen soll. Asheron's Call nat port udp internal:65000 65000 Konfigurieren Sie das Spiel manuell auf Port 65000 um. Wenn Sie von mehreren Rechner aus spielen wollen, weisen Sie jedem eine eindeutige Portnummer zu (also 65001, 65002, u.s.w.) und fügen Sie für jede Maschine eine eigene nat port Zeile ein. Half Life nat port udp internal:27005 27015 PCAnywhere 8.0 nat port udp internal:5632 5632 nat port tcp internal:5631 5631 Quake nat port udp internal:6112 6112 Quake 2 nat port udp internal:27901 27910 nat port udp internal:60021 60021 nat port udp internal:60040 60040 Red Alert nat port udp internal:8675 8675 nat port udp internal:5009 5009 Was sind FCS-Fehler? FCS steht für Frame Check Sequence. Jedes PPP-Paket besitzt eine Checksumme, um sicherzustellen, dass die empfangenen Daten dieselben sind, wie die versendeten. Falls die FCS eines ankommenden Paketes fehlerhaft ist, wird das Paket verworfen und der Zähler HDLC FCS wird erhöht. Der HDLC-Fehlerwert kann durch den Befehl show hdlc angezeigt werden. Falls Ihre Leitung schlecht ist (oder falls Ihr serieller Treiber Pakete verwirft), werden sie gelegentliche FCS-Fehler sehen. Normalerweise lohnt es sich nicht, sich hierüber Gedanken zu machen, obwohl das Kompressionsprotokoll hierdurch wesentlich langsamer wird. Wenn Sie ein externes Modem besitzen, stellen Sie sicher, dass Ihr Kabel ausreichend gegen Interferenzen abgeschirmt ist - das könnte das Problem beseitigen. Falls Ihre Leitung einfriert, sobald die Verbindung steht, und viele FCS-Fehler auftreten, könnte das daran liegen, dass Ihre Leitung nicht 8-Bit-rein ist. Stellen Sie sicher, dass Ihr Modem keinen Software-Flow-Control (XON/XOFF) verwendet. Falls Ihre Datenschnittstelle Software-Flow-Control verwenden muss, benutzen Sie den Befehl set accmap 0x000a0000, um &man.ppp.8; zu sagen, dass es die Zeichen ^Q und ^S maskieren soll. Ein weiterer Grund dafür, dass zu viele FCS-Fehler auftreten, könnte der sein, dass das andere Ende aufgehört hat, ppp zu sprechen. Aktivieren Sie async Logging, um festzustellen, ob es sich bei den eingehenden Daten tatsächlich um einen login- oder Shell-Prompt handelt. Wenn Sie am anderen Ende einen Shell-Prompt haben, ist es möglich, durch den Befehl close lcp &man.ppp.8; zu beenden, ohne die Verbindung zu beenden (ein folgender term-Befehl wird Sie wieder mit der Shell auf dem entfernten Rechner verbinden. Falls nichts in Ihrer Logdatei darauf hindeutet, warum die Verbindung beendet wurde, sollten Sie den Administrator des externen Rechners (Ihren ISP?) fragen, warum die Sitzung beendet worden ist. Wieso hängen die Verbindungen meiner &macos;- und &windows; 98-Maschinen (und eventuell auch andere µsoft; Betriebssysteme), wenn auf meinem Gateway PPPoE läuft? Vielen Dank an Michael Wozniak mwozniak@netcom.ca für die Erklärung und an Dan Flemming danflemming@mac.com für die Lösung für &macos;. Die Ursache des Problems ist ein so genannter Black Hole Router. &macos; und &windows; 98 (und wahrscheinlich auch die anderen Betriebssysteme von µsoft;) senden TCP Pakete, bei denen zum einen die angeforderte Segmentgröße zu groß für einen PPPoE-Rahmen ist (die Default-MTU für Ethernet beträgt 1500 Byte) und bei denen das don't fragment Bit gesetzt ist (das ist bei TCP allerdings Standard). Außerdem sendet der Router beim Provider nicht die eigentlich notwendigen must fragment-Meldungen zu dem Webserver, von dem Sie gerade eine Seite laden wollen. Es ist auch möglich, dass diese Meldung zwar erzeugt, aber danach von einem Firewall vor dem Webserver abgefangen wird. Wenn Ihnen dieser Webserver nun ein Paket schickt, das nicht in einen PPPoE-Rahmen passt, dann verwirft der Router dieses Paket und die Seite wird nicht geladen (einige Seiten/Grafiken werden geladen, weil ihre Größe kleiner ist als die MSS). Dies scheint leider der Normalfall zu sein. Eine der möglichen Lösungen für dieses Problem ist die Erzeugung des folgenden Schlüssels in der Registry des Windows-Clients mit regedit: HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\Class\NetTrans\0000\MaxMTU Der Schlüssels sollte vom Typ String sein und den Wert 1436 haben, da einige ADSL-Router nicht mit größeren Paketen umgehen können. Wenn Sie &windows; 2000 verwenden, müssen Sie hingegen den Schlüssel Tcpip\Parameters\Interfaces\ID der Netzwerkkarte\MTU benutzen, außerdem müssen Sie als Typ DWORD verwenden. Die Knowledge Base von µsoft; enthält weitere Informationen darüber, wie sie die MTU einer &windows;-Maschine ändern, damit diese mit einem NAT-Router korrekt zusammenarbeitet. Vom besonderen Interesse sind die Artikel Q158474 - &windows; TCPIP Registry Entries und Q120642 - TCPIP & NBT Configuration Parameters for &windowsnt;. Bei &windows; 2000 können Sie alternativ auch, wie im Artikel 120642 beschrieben, mit regedit das DWORD Tcpip\Parameters\Interfaces\ID der Netzwerkkarte\EnablePMTUBHDetect auf 1 setzen. Mit den Bordmitteln von &macos; ist es leider nicht möglich, die TCP/IP-Einstellungen zu verändern. Es gibt jedoch kommerzielle Lösungen, mit denen man die TCP/IP-Einstellungen bearbeiten kann. Wenn Sie als &macos;-Anwender NAT benutzen, suchen Sie ihre MTU-Einstellungen und geben Sie dort 1450 statt 1500 ein. &man.ppp.8; kennt seit Version 2.3 den Befehl enable tcpmssfixup, mit dem die MSS automatisch korrigiert wird. Wenn Sie einen ältere Version von &man.ppp.8; benutzen müssen, könnte der Port net/tcpmssd für Sie interessant sein. Nichts von alledem hilft - ich bin verzweifelt! Was soll ich machen? Falls alles andere fehlschlägt, senden Sie möglichst umfangreiche Informationen, einschließlich Ihrer Konfigurationsdateien, wie Sie &man.ppp.8; starten, die relevanten Teile Ihrer Logdateien und die Ausgabe des Befehls netstat -rn (vor und nach Aufbau der Verbindung) an die Mailingliste &a.de.questions; oder die Newsgroup de.comp.os.unix.bsd. Irgend jemand sollte Ihnen dann weiterhelfen. Serielle Verbindungen Dieses Kapitel beantwortet häufig gestellte Fragen zu seriellen Verbindungen mit &os;. PPP und SLIP werden im Abschnitt Netzwerke behandelt. Wie kann ich feststellen, ob &os; meine seriellen Schnittstellen gefunden hat? Wenn der &os; Kernel bootet, testet er die seriellen Schnittstellen, für die er konfiguriert wurde. Sie können entweder Ihrem System aufmerksam beim Booten zusehen und die angezeigten Nachrichten lesen, oder Sie führen den folgenden Befehl aus, nachdem Ihr System hochgefahren ist und läuft: &prompt.user; dmesg | grep -E "^sio[0-9]" Hier ist ein Beispiel einer Ausgabe nach dem oben genannten Befehl: sio0: <16550A-compatible COM port> port 0x3f8-0x3ff irq 4 flags 0x10 on acpi0 sio0: type 16550A sio1: <16550A-compatible COM port> port 0x2f8-0x2ff irq 3 on acpi0 sio1: type 16550A Es zeigt zwei serielle Schnittstellen. Die erste verwendet Port-Adresse 0x3f8, IRQ 4 und hat einen 16550A UART Chip. Die zweite benutzt ebenfalls einen 16550A UART, jedoch Port-Adresse 0x2f8 und IRQ 3. Modemkarten werden wie serielle Schnittstellen behandelt. Der einzige Unterschied ist, dass an diesen Schnittstellen immer ein Modem angeschlossen ist. Der GENERIC Kernel beinhaltet Unterstützung für zwei serielle Schnittstellen, die den im Beispiel genannten Port und IRQ verwenden. Wenn diese Einstellungen nicht richtig für Ihr System sind, Sie Modemkarten hinzugefügt oder mehr serielle Schnittstellen haben als Ihre Kernelkonfiguration zulässt, konfigurieren Sie Ihren Kernel einfach neu. In dem Kapitel über die Kernelkonfiguration finden Sie mehr Details. Wie kann ich feststellen, ob &os; meine Modemkarten gefunden hat? Die vorherige Frage sollte darauf eine Antwort geben. Wie kann ich auf die seriellen Schnittstellen in &os; zugreifen? Die in &man.sio.4; beschriebene serielle Schnittstelle sio2 (COM3 unter &ms-dos;/&windows;), ist /dev/cuad2 für Geräte mit abgehenden Verbindungen und /dev/ttyd2 für Geräte mit eingehenden Verbindungen. Was ist der Unterschied zwischen den beiden Geräteklassen? Sie benutzen ttydX für eingehende Verbindungen. Wird /dev/ttydX im blockierenden Modus geöffnet, wartet ein Prozess darauf, dass das entsprechende cuadX Gerät inaktiv und der Empfangssignalpegel Mit Empfangssignalpegel oder Trägersignalerkennung wird hier die carrier detect Leitung bezeichnet. aktiv ist. Wird das cuadX Gerät geöffnet, vergewissert es sich, dass die serielle Schnittstelle nicht bereits von dem ttydX Gerät in Gebrauch ist. Sollte die Schnittstelle verfügbar sein, stiehlt es sie von dem ttydX Gerät. Das cuadX Gerät kümmert sich nicht um Trägersignalerkennung. Mit diesem Schema und einem automatisch antwortenden Modem, können sich Benutzer von aussen einloggen, Sie können weiterhin mit demselben Modem wählen und das System kümmert sich um die Konflikte. Wie kann ich die Unterstützung für eine Karte mit mehreren seriellen Schnittstellen aktivieren? Die Sektion über die Kernelkonfiguration bietet Informationen darüber, wie Sie Ihren Kernel konfigurieren. Für eine Karte mit mehreren seriellen Schnittstellen, schreiben Sie eine &man.sio.4; Zeile für jede serielle Schnittstelle auf der Karte in die Datei &man.device.hints.5;. Aber achten Sie darauf, den IRQ nur in einem der Einträge zu platzieren. Alle seriellen Schnittstellen auf der Karte sollten sich einen IRQ teilen. Daher sollten Sie den IRQ nur beim letzten Eintrag angeben. Aktivieren Sie auch die folgende Option in der Kernelkonfigurationsdatei: options COM_MULTIPORT Das folgende /boot/device.hints Beispiel ist geeignet für eine AST Karte mit 4 seriellen Schnittstellen, die IRQ 12 benutzt: hint.sio.4.at="isa" hint.sio.4.port="0x2a0" hint.sio.4.flags="0x701" hint.sio.5.at="isa" hint.sio.5.port="0x2a8" hint.sio.5.flags="0x701" hint.sio.6.at="isa" hint.sio.6.port="0x2b0" hint.sio.6.flags="0x701" hint.sio.7.at="isa" hint.sio.7.port="0x2b8" hint.sio.7.flags="0x701" hint.sio.7.irq="12" Die Flags zeigen an, dass die Master-Schnittstelle die Minor-Nummer 7 (0x700) hat und dass sich alle Schnittstellen einen IRQ teilen (0x001). Kann &os; mehrere Karten mit mehreren seriellen Schnittstellen mit den gleichen IRQs verwalten? Noch nicht. Sie müssen für jede Karte einen anderen IRQ verwenden. Kann ich die vorgegebenen seriellen Parameter für eine Schnittstelle einstellen? Lesen Sie den Abschnitt Serielle Datenübertragung im &os; Handbuch. Wie kann ich Einwahl-Logins über mein Modem aktivieren? Lesen Sie dazu bitte den Abschnitt über Einwählverbindungen im &os; Handbuch. Wie kann ich ein Hardware-Terminal mit meiner &os; Box verbinden? Diese Information können Sie im Abschnitt Terminals im &os; Handbuch finden. Warum kann ich tip oder cu nicht laufen lassen? Auf Ihrem System können die Programme &man.tip.1; und &man.cu.1; auf das Verzeichnis /var/spool/lock nur über den Benutzer uucp und die Gruppe dialer zugreifen. Sie können die Gruppe dialer verwenden, um zu kontrollieren wer Zugriff auf Ihr Modem oder entfernte Systeme hat. Fügen Sie sich einfach selbst zur Gruppe dialer hinzu. Als Alternative können Sie jeden Benutzer auf Ihrem System &man.tip.1; und &man.cu.1; verwenden lassen, dazu müssen Sie das folgende eingeben: &prompt.root; chmod 4511 /usr/bin/cu &prompt.root; chmod 4511 /usr/bin/tip Mein Hayes Modem wird nicht unterstützt – was kann ich tun? Lesen Sie diese Antwort im &os; Handbuch. Wie soll ich die AT Befehle eingeben? Im &os; Handbuch finden Sie dazu diese Antwort. Wieso funktioniert das @ Zeichen für die pn Fähigkeit nicht? Lesen Sie dazu diese Antwort im &os; Handbuch. Wie kann ich von der Kommandozeile eine Telefonnummer wählen? Lesen Sie diese Antwort im &os; Handbuch. Muss ich dabei jedes Mal die bps Rate angeben? Im &os; Handbuch finden Sie dazu diese Antwort. Wie kann ich möglichst komfortabel über einen Terminal-Server auf verschiedene Rechner zugreifen? Lesen Sie im &os; Handbuch diese Antwort. Kann tip mehr als eine Verbindung für jede Seite ausprobieren? Lesen Sie diese Antwort im &os; Handbuch. Warum muss ich zweimal CtrlP tippen, um ein CtrlP zu senden? Im &os; Handbuch finden Sie dazu diese Antwort. Warum ist auf einmal alles was ich schreibe in GROSSBUCHSTABEN?? Lesen Sie im &os; Handbuch diese Antwort. Wie kann ich Dateien mit tip übertragen? Lesen Sie diese Antwort im &os; Handbuch. Wie kann ich zmodem mit tip laufen lassen? Sie finden dazu diese Antwort im &os; Handbuch. Verschiedene Fragen &os; benutzt viel mehr Swap-Speicher als &linux;. Warum? Es sieht nur so aus, als ob &os; mehr Swap benutzt, als &linux;. Tatsächlich ist dies nicht der Fall. In dieser Hinsicht besteht der Hauptunterschied zwischen &os; und &linux; darin, dass &os; vorbeugend vollkommen untätige, unbenutzte Seiten aus dem Hauptspeicher in den Swap-Bereich auslagert, um mehr Hauptspeicher für die aktive Nutzung zur Verfügung zu stellen. &linux; tendiert dazu, nur als letzten Ausweg Seiten in den Swap-Bereich auszulagern. Die spürbar höhere Nutzung des Swap-Speichers wird durch die effizientere Nutzung des Hauptspeichers wieder ausgeglichen. Beachten Sie, dass &os; in dieser Hinsicht zwar vorbeugend arbeitet, es entscheidet jedoch nicht willkürlich, Seiten auszulagern, wenn das System vollkommen untätig ist. Deshalb werden Sie feststellen, dass nicht alle Seiten Ihres Systems ausgelagert wurden, wenn Sie morgens aufstehen, nachdem das System eine Nacht lang nicht benutzt worden ist. Warum zeigt mir &man.top.1; so wenig freien Speicher an, obwohl nur wenige Programme laufen? Die Antwort ist ganz einfach: Freier Speicher ist verschwendeter Speicher. Der &os; Kernel verwendet den von den Programmen nicht genutzten Speicher automatisch für den Plattencache. Die in &man.top.1; für Inact, Cache und Buf gemeldeten Werte stehen alle für zwischengespeicherte Daten mit unterschiedlichem Alter. Wenn das System wiederholt auf Daten zugreifen muss, braucht es nicht auf die langsame Platte zuzugreifen, da die Daten noch zwischengespeichert sind. Dadurch erhöht sich die Performance. Ganz generell ist es ein gutes Zeichen, wenn &man.top.1; einen kleinen Wert bei Free anzeigt, solange der Wert nicht extrem klein ist. Anmerkung des Übersetzers: Mit extrem klein sind hier Werte unterhalb 512 KByte gemeint. Warum ändert chmod die Zugriffsrechte auf symbolische Links nicht? Für symbolische Links gibt es keine separaten Zugriffsrechte und standardmäßig folgt &man.chmod.1; dem Link, wenn möglich; die Zugriffsrechte für die Datei, auf die der symbolische Link zeigt, werden also verändert. Wenn Sie eine Datei mit dem Namen foo und einen auf diese Datei zeigenden symbolischen Link mit dem Namen bar haben, wird das folgende Kommando niemals einen Fehler melden. &prompt.user; chmod g-w bar Trotzdem werden die Zugriffsrechte für bar nicht geändert. Wenn Sie die Zugriffsrechte in der Dateihierarchie an der Wurzeldatei anstatt der Datei selbst ändern möchten, müssen Sie entweder oder zusammen mit der Option benutzen. Weitere Informationen finden Sie in den Manualpages &man.chmod.1; und &man.symlink.7;. Die Option bewirkt ein rekursives &man.chmod.1;. Seien Sie vorsichtig, wenn Sie bei &man.chmod.1; Verzeichnisse oder symbolische Links zu Verzeichnissen angeben. Wenn Sie die Zugriffsrechte eines Verzeichnisses ändern möchten, das durch einen symbolischen Link referenziert wird, benutzen Sie &man.chmod.1; ohne irgendwelche Optionen und folgen dem symbolischen Link durch einen abschließenden Schrägstrich (/). Falls z.B. foo ein symbolischer Link zum Verzeichnis bar ist und Sie die Zugriffsrechte von foo (tatsächlich bar) ändern möchten, dann benutzen Sie etwas ähnliches wie: &prompt.user; chmod 555 foo/ Durch den abschließenden Schrägstrich folgt &man.chmod.1; dem symbolischen Link foo, um die Zugriffsrechte für das Verzeichnis bar zu ändern. Kann ich DOS-Programme unter &os; ausführen? Ja. Sie können emulators/doscmd verwenden, das über die Ports-Sammlung verfügbar ist. Falls doscmd nicht ausreicht, können Sie den Port emulators/pcemu verwenden, der einen 8088 und genug BIOS-Funktionen emuliert, um DOS-Textanwendungen laufen zu lassen. Der Port benötigt das X-Window-System. Sie können auch emulators/dosbox aus der &os; Ports Sammlung ausprobieren. Der Hauptaugenmerk liegt bei dieser Anwendung auf der Emulation alter DOS Spiele, deren Dateien sich im lokalen Dateisystem befinden. Was muss ich tun, um die &os;-Dokumentation in meine Muttersprache zu übersetzen? Informationen zu diesem Thema finden Sie auf der Webseite des &os; German Documentation Project. Warum kommen alle meine Mails, die ich an @FreeBSD.org schicke, wieder zurück? Das Mailsystem von FreeBSD.org verwendet einige der strengeren Überprüfungen von Postfix für eingehende Mails. Mails, bei denen es Anzeichen für Konfigurationsprobleme oder Spam gibt, werden nicht akzeptiert. Dies kann aus einem der folgenden Gründe geschehen: Die Mail kommt von einem System oder Netzwerk, dass für Spam-Aktivitäten bekannt ist. Die Mailserver von &os; akzeptierten keine Mails von bekannten Spam-Quellen. Wenn Sie eine Firma oder Domain benutzen, die Spam erzeugt oder verteilt, sollten Sie sich einen anderen ISP suchen. Der Mailtext enthält HTML. Mail sollte immer im Klartext gesendet werden, Sie sollten ihr Mailprogramm entsprechend einstellen. Das Mailsystem kann die IP-Adresse des einliefernden Systems nicht in einen symbolischen Namen umwandeln. Funktionierendes reverse DNS ist eine Vorbedingung, damit ihre Mails angenommen wird. Sorgen Sie dafür, dass der reverse DNS für Ihren Mailserver korrekt konfiguriert wird. Viele Anbieter für Privatkunden geben Ihnen diese Möglichkeit nicht. In diesem Fall sollten Sie Ihre Mails über den Mailserver Ihres Providers versenden. Der Rechnername, der im EHLO/HELO Teil der SMTP Kommunikation übergeben wird, kann nicht zu einer IP-Adresse aufgelöst werden. Damit die E-Mail akzeptiert wird, brauchen Sie einen voll qualifizierten Rechnernamen, der im DNS eingetragen ist. Wenn Sie diesen nicht besitzen, benutzen Sie bitte den Mailserver Ihres Providers, um E-Mails zu verschicken. Die Message-ID Ihrer Mail endet in localhost. Einige Mail-Clients generieren eine Message-ID, die nicht akzeptiert wird. Sie müssen Ihren Mail-Client so konfigurieren, dass er eine gültige Message-ID generiert. Alternativ können Sie die Message-ID von Ihrem Mailserver umschreiben lassen. Wo kann ich einen freien &os;-Account bekommen? Das &os; Project bietet zwar keinen freien Zugang zu seinen Servern an; andere Firmen bieten jedoch frei zugängliche &unix; Systeme. Die Kosten variieren und es kann sein, dass nicht alle Dienste zur Verfügung stehen. Arbornet, Inc, auch als M-Net bekannt, bietet seit 1983 uneingeschränkten Zugang zu &unix; Systemen. Zunächst wurde eine Altos-Maschine mit System III benutzt, 1991 erfolgte dann der Wechsel zu BSD/OS. Im Juni 2000 erfolgte ein erneuter Wechsel, diesmal zu &os;. M-Net bietet Zugang mit Telnet und SSH und den Zugang zur gesamten Software von &os;. Allerdings ist der Zugriff auf das Netzwerk auf Mitglieder und Gönner beschränkt, die eine Spende an die nicht-kommerzielle Organisation geleistet haben. M-Net stellt zusätzlich ein Mailbox-System und einen interaktiven Chat zur Verfügung. Grex bietet ein ganz ähnlichen Dienst wie M-Net an, dazu gehören auch das Mailbox-System und der interaktive Chat. Allerdings wird eine SUN 4M mit &sunos; benutzt. Was ist sup und wie benutze ich es? Der Name SUP steht für Software Update Protocol und wurde von der CMU (Carnegie Mellon University) entwickelt, um ihre Entwicklungszweige zu synchronisieren. Es wurde benutzt, um entfernte Sites mit den zentralen Quellcodeentwicklungen des Projekts zu synchronisieren. SUP ist nicht sehr bandbreitenfreundlich und wurde abgelöst. Die derzeit empfohlene Methode, um Ihren Quellcode auf dem neuesten Stand zu halten ist CVSup. Wie heißt das niedliche rote Kerlchen? Er ist namenlos, es ist einfach der der BSD Daemon. Wenn Sie ihm unbedingt einen Namen geben wollen, rufen Sie ihn beastie. Beachten Sie aber, dass beastie wie BSD ausgesprochen wird. Weitere Informationen über den BSD daemon finden Sie auf seiner Homepage. Kann ich Bilder des BSD Daemon verwenden? Eventuell. Der BSD Daemon unterliegt dem Copyright von Marshall Kirk McKusick. Wenn Sie genaue Informationen über die Einschränkungen bei der Nutzung brauchen, sollten Sie sein Statement on the Use of the BSD Daemon Figure lesen. Kurz gesagt, können Sie den BSD Daemon benutzen, solange es für einen privaten Zweck ist und die Nutzung geschmackvoll bleibt. Für den kommerziellen Einsatz brauchen Sie die Zustimmung von &a.mckusick;. Weitere Informationen erhalten Sie auf der Webseite BSD Daemon's home page. Woher kann ich Bilder des BSD Daemon bekommen? Einige Bilder in den Format xfig und eps sind unter /usr/share/examples/BSD_daemon/ zu finden. Ich habe in den Mailinglisten eine Abkürzung oder einen Begriff gesehen, den ich nicht kenne. Wo erhalte ich eine Erklärung dazu? Sehen Sie bitte im &os;-Glossar nach. Warum sollte mich die Farbe des Fahrradschuppens interessieren? Die ganz, ganz kurze Antwort ist: Überhaupt nicht. Die etwas längere Antwort lautet: Nur weil Sie in der Lage sind, einen Fahrradschuppen zu bauen, müssen Sie noch lange nicht andere davon abhalten, nur weil Ihnen die Farbe nicht gefällt. Dies ist natürlich eine Metapher dafür, dass Sie nicht eine Diskussion über jede kleine Änderung beginnen sollen, nur weil Sie das können. Einige Leute behaupten sogar, dass die Anzahl der (nutzlosen) Kommentare über eine Änderung umgekehrt proportional zur Komplexität der Änderung ist. Die noch längere und vollständigere Antwort ist, dass &a.phk; nach einen langen Diskussion über das Thema "Soll &man.sleep.1; Sekundenbruchteile als Parameter akzeptieren?" eine lange Mail mit dem Titel A bike shed (any colour will do) on greener grass... schrieb. Die einschlägigen Teile der Nachricht lauteten:
&a.phk; in &a.hackers.name;, 2.10.1999 Einige von Euch haben mich gefragt, Was meinst Du mit dem Fahrradschuppen? Es ist eine lange oder eigentlich eher eine sehr alte und doch sehr kurze Geschichte. C. Northcote Parkinson schrieb in den frühen Sechzigern ein Buch mit dem Namen Parkinson's Law, das viele Einblick in die Beziehungen innerhalb des Managements gibt. [ein paar Kommentare zum Buch gestrichen] In dem Beispiel mit dem Fahrradschuppen ist die andere wichtige Komponente ein Kernkraftwerk. Ich glaube, dass zeigt schon, wie alt dieses Buch ist. Parkinson zeigte, dass man zum Vorstand gehen kann und die Genehmigung für ein mehrere Millionen oder sogar Milliarden Dollar teures Kernkraftwerk bekommt; wenn man aber einen Fahrradschuppen bauen will, wird man in endlose Diskussionen verwickelt. Laut Parkinson liegt das daran, dass ein Kernkraftwerk so groß, so teuer und so kompliziert ist, dass die Leute es nicht verstehen. Und bevor sie versuchen, es zu verstehen, verlassen Sie sich lieber darauf, dass irgend jemand sicherlich die ganzen Details geprüft hat, bevor das Projekt bis zum Vorstand gekommen ist. Im Buch von Richard P. Feynmann finden sich einige interessante und sehr passende Beispiele aus dem Gebiet von Los Alamos. Ein Fahrradschuppen ist was anderes. Jeder kann an seinem freien Wochenende einen bauen und hat trotzdem noch genug Zeit für die Sportschau. Daher ist es unwichtig, wie gut man sich vorbereitet und wie sinnvoll der eigene Vorschlag ist. Irgend jemand wird die Möglichkeit nutzen und zeigen, dass er seine Arbeit tut, dass er aufmerksam ist, dass er da ist. In Dänemark nennen wir dieses Verhalten Seine Fingerabdrücke hinterlassen. Es geht um persönlichen Stolz und Prestige; die Chance, auf irgend etwas zu zeigen und zu sagen zu können: Da! Das habe Ich getan. Politiker leiden sehr stark darunter, aber viele Leute verhalten sich so, wenn sie die Chance haben. Denkt einfach mal an Fußabdrücke in feuchtem Zement.
Nicht ganz ernstgemeinte Fragen Wie cool ist &os;? Q. Hat irgend jemand Temperaturmessungen durchgeführt, während &os; läuft? Ich weiss, dass &linux; cooler läuft, als DOS, habe aber niemals gesehen, dass &os; erwähnt wurde. Es scheint sehr heiß zu laufen. A. Nein, aber wir haben zahlreiche Geschmackstests mit verblendeten Freiwilligen durchgeführt, denen außerdem zuvor 250 Mikrogramm LSD-25 verabreicht wurden. 35% der Freiwilligen sagte, dass &os; nach Orange schmeckte, &linux; hingegen schmecke wie purple haze (Anm. d. Übersetzers: Song von Jimmy Hendrix und LSD-Marke). Keine der Gruppen hat besondere Abweichungen der Temperatur erwähnt. Eventuell hätten wir sämtliche Ergebnisse dieser Untersuchung fortwerfen sollen, als wir festgestellt haben, dass zu viele der Freiwilligen den Raum während der Tests verlassen haben und dadurch die Ergebnisse verfälscht haben. Wir glauben, dass die meisten der Freiwilligen nun bei Apple sind und an ihrer neuen scratch and sniff Oberfläche arbeiten. Es ist ein lustiges, altes Geschäft, in dem wir uns befinden! Ernsthaft, &os; und &linux; benutzen beide die Instruktion HLT (halt), wenn das System untätig ist, wodurch der Energieverbrauch und dadurch die produzierte Wärme reduziert wird. Falls Sie auch noch APM (Advanced Power Management) konfiguriert haben, kann &os; Ihre CPU auch in einen Low-Power-Modus bringen. Wer kratzt in meinen Speicherbänken?? Q. Gibt es irgend etwas seltsames, das &os; tut, wenn ich den Kernel kompiliere, das dazu führt, dass der Speicher ein kratzendes Geräusch macht? Bei der Kompilierung (und auch für einen kurzen Moment nach der Erkennung des Floppy-Laufwerks beim Hochfahren), kommt ein seltsames kratzendes Geräusch von etwas das die Speicherbänke zu sein scheinen. A. Ja! In der BSD-Dokumentation finden Sie häufige Verweise auf Daemons und was die meisten Leute nicht wissen, ist, dass diese sich auf echte, nicht-körperlichen Wesen beziehen, die Besitz von Ihrem Computer ergriffen haben. Das kratzende Geräusch, das von Ihrem Speicher kommt, ist in Wirklichkeit hochtöniges Flüstern, das unter den Daemons ausgetauscht wird, während Sie entscheiden, wie Sie die verschiedenen Systemadministrationsaufgaben, am besten erledigen. Wenn Sie das Geräusch stört, wird ein fdisk /mbr sie vertreiben, aber wundern Sie sich nicht, wenn sie feindlich reagieren und versuchen, Sie aufzuhalten. Wenn Sie während der Ausführung zu irgendeinem Zeitpunkt die teuflische Stimme von Bill Gates aus dem eingebauten Lautsprecher kommen hören, laufen Sie weg und sehen Sie sich auf keinen Fall um! Befreit von dem ausgleichenden Einfluss der BSD Dämonen sind die beiden Dämonen von DOS und &windows; oft dazu in der Lage, die totale Kontrolle über Ihre Maschine für die ewige Verdammung Ihrer Seele zurückzuerlangen. Da Sie jetzt die Wahrheit kennen, würden Sie es vorziehen, sich an die Geräusche zu gewöhnen, wenn Sie die Wahl hätten. Wie viele &os;-Hacker braucht man, um eine Glühbirne auszuwechseln? Eintausendeinhundertundneunundsechzig: Dreiundzwanzig, die sich bei -CURRENT beschweren, dass das Licht aus ist; Vier, die behaupten, dass es sich um ein Konfigurationsproblem handelt und dass solche Dinge wirklich nach -questions gehören; Drei, die PRs hierzu einreichen, einer von ihnen wird falsch unter DOC abgelegt und fristet sein Dasein im Dunkeln; Einen, der eine ungetestete Glühbirne einreicht, wonach buildworld nicht mehr funktioniert, und sie dann fünf Minuten später wieder herausnimmt; Acht, die die PR-Erzeuger beschimpfen, weil sie zu ihren PRs keine Patche hinzugefügt haben; Fünf, die sich darüber beschweren, dass buildworld nicht mehr funktioniert; Einunddreißig, die antworten, dass es bei ihnen funktioniert und dass sie cvsup wohl zu einigem ungünstigen Zeitpunkt durchgeführt haben; Einen, der einen Patch für eine neue Glühbirne an -hackers schickt; Einen, der sich beschwert, dass es vor drei Jahren Patches hierfür hatte, aber als er sie nach -CURRENT schickte, sind sie einfach ignoriert worden und er hatte schlechte Erfahrungen mit dem PR-System; nebenbei ist die vorgeschlagene Glühbirne nicht reflexiv; Siebenunddreißig, die schreien, dass Glühbirnen nicht in das Basissystem gehören, dass Committer nicht das Recht haben, solche Dinge durchzuführen, ohne die Gemeinschaft zu konsultieren und WAS GEDENKT -CORE HIER ZU TUN!? Zweihundert, die sich über die Farbe des Fahrradschuppens beschweren; Drei, die darauf hinweisen, dass der Patch nicht mit &man.style.9; übereinstimmt; Siebzehn, die sich beschweren, dass die vorgeschlagene neue Glühbirne der GPL unterliegt; Fünfhundertundsechsundachtzig, die sich in einen Streit über die vergleichbaren Vorteile der GPL, der BSD-Lizenz, der MIT-Lizenz, der NPL und der persönlichen Hygiene nichtgenannter FSF-Gründer verwickeln; Sieben, die unterschiedliche Teile des Threads nach -chat und -advocacy weiterleiten; Einer, der die vorgeschlagene Glühbirne einbaut, obwohl sie dunkler leuchtet, als die alte; Zwei, die sie wieder ausbauen, und in einer wütenden Nachricht argumentieren, dass &os; besser ganz im Dunkeln dasteht, als mit einer dämmerigen Glühbirne; Sechsundvierzig, die sich lärmend wegen des Wiederausbaus der dämmerigen Glühbirne streiten und eine Erklärung von -core verlangen; Elf, die eine kleinere Glühbirne beantragen, damit sie in ihr Tamagotchi passt, falls wir irgendwann beschließen, &os; auf diese Plattform zu portieren; Dreiundsiebzig, die sich über die SNR auf -hackers und -chat beschweren und aus Protest abmelden; Dreizehn, die unsubscribe, How do I unsubscribe? oder Please remove me from the list gefolgt von der üblichen Fußzeile abschicken; Einen, der eine funktionierende Glühbirne einbaut, während alle zu beschäftigt damit sind, mit jedem zu streiten, um es zu bemerken; Einunddreißig, die herausstellen, dass die neue Glühbirne 0,364% heller leuchten würde, wenn sie mit TenDRA kompiliert werden würde (obwohl sie in einen Würfel umgeformt werden müsste) und dass &os; deshalb nach TenDRA, anstatt nach GCC wechseln sollte; Einen, der sich beschwert, dass bei der neuen Glühbirne die Verkleidung fehlt; Neun (einschließlich der PR-Ersteller), die fragen Was ist MFC? Siebenundfünfzig, die sich zwei Wochen, nachdem die Birne gewechselt worden ist, darüber beschweren, dass das Licht aus war. &a.nik; hat hinzugefügt: Ich habe ziemlich hierüber gelacht. Und dann dachte ich: "Halt, sollte in dieser Liste nicht irgendwo 'Einer, der es dokumentiert' sein?" Und dann wurde ich erleuchtet :-) &a.tabthorpe; sagt: Keine, echte &os; Hacker fürchten sich nicht vor der Dunkelheit! Was passiert mit den Daten, die nach /dev/null geschrieben werden? Sie werden in einer speziellen Datensenke der CPU in Wärme umgewandelt, die dann über den Kühlkörper und den Lüfter abgeführt wird. Dies ist einer der Gründe für die Kühlung von CPUs; die Anwender gewöhnen sich an die schnelleren Prozessoren, gehen nicht mehr so sorgfältig mit Ihren Daten um und so landen immer mehr Daten in /dev/null, was zur Überhitzung der CPU führt. Wenn Sie /dev/null löschen (was die Datensenke ziemlich sicher abschaltet), wird Ihre CPU zwar nicht mehr so heiß, dafür wird Ihr System aber sehr schnell von den überzähligen Daten überladen und merkwürdige Effekte zeigen. Wenn Sie eine sehr schnell Netzwerkverbindung haben, können Sie Ihre CPU kühlen, indem sie Daten aus /dev/random lesen und in die Weite des Netzwerkes schicken; allerdings besteht hier die Gefahr der Überhitzung von Netzwerk und /. Außerdem dürfte Ihr ISP ziemlich wütend werden, da der größte Teil der Daten von seinen Geräten in Hitze umgewandelt werden wird; da ISPs aber über Klimaanlagen verfügen, sollte das kein großes Problem sein, solange Sie es nicht übertreiben. Nachtrag Paul Robinson: Es gibt andere Mittel und Wege. Wie jeder gute Systemadministrator weiss, gehört es zum guten Ton, einigen Daten zum Bildschirm zu senden, damit die Leuchtkäferchen, die das Bild anzeigen, glücklich sind. Die Leuchtkäferchen werden nach der Farbe Ihrer Hüte (Rot, Grün, oder Blau) unterschieden und sie verstecken bzw. zeigen sich (wobei man die Farbe ihrer Hüte erkennen kann) bei jeder Nahrungsaufnahme. Grafikkarten wandeln Daten in Leuchkäfer-Nahrung um und schicken sie dann zu den Leuchtkäfern - teure Karten erzeugen bessere Nahrung und sorgen so für besseres Verhalten der Leuchtkäfer. Diese brauchen allerdings einen konstanten Stimulus - darum gibt es Bildschirmschoner. Darum lautet mein Vorschlag, die zufälligen Daten einfach zum Bildschirm zu schicken, damit sie von den Leuchtkäfern verzehrt werden. Dabei entsteht keine Hitze, die Leuchtkäfer bleiben glücklich und man wird seine überflüssigen Daten sehr schnell los, auch wenn der Bildschirm etwas merkwürdig aussieht. Übrigens: Als Ex-Admin eines großen ISPs, der so seine Probleme mit der Kühlung seines Rechenzentrums hatte, kann ich nur davon abraten, überflüssige Daten einfach in das Netzwerk zu schicken. Die Heinzelmännchen, die die Pakete verteilen und versenden, regen sich darüber ganz furchtbar auf. Weiterführende Themen Wie kann ich mehr über die Interna von &os; erfahren? Zurzeit gibt es nur ein Buch über die Interna von &os;, The Design and Implementation of the &os; Operating System von Marshall Kirk McKusick und George V. Neville-Neil, ISBN 0-201-70245-2, das sich auf &os; 5.X konzentriert. Allgemeines Wissen über &unix; kann allerdings in den meisten Fällen auf &os; angewendet werden. Eine Liste finden Sie im entsprechenden Abschnitt der Bibliographie. Wie kann ich bei der Entwicklung von &os; mitarbeiten? Genauere Informationen finden Sie im Artikel &os; unterstützen. Wir können Hilfe immer gut gebrauchen! Was sind Snapshots und RELEASEs? Derzeit existieren drei aktive/halbaktive Zweige im &os;-CVS-Repository. In früheren Zweigen ändert sich wenig, daher gibt es nur drei aktive Entwicklungszweige: RELENG_7 bzw. 6-STABLE RELENG_8 bzw. 7-STABLE HEAD bzw. -CURRENT oder 9-CURRENT HEAD ist keine wirkliche Bezeichnung für einen Zweig, wie die anderen beiden. Es ist lediglich eine symbolische Konstante für den aktuellen, nicht verzweigten Entwicklungsstrom, auf den wir uns einfach als -CURRENT beziehen. Derzeit steht -CURRENT für den 9.X-Entwicklungsstrom. Der 7-STABLE-Zweig (RELENG_7) wurde von -CURRENT im Februar 2008 und der 8-STABLE-Zweig (RELENG_7) im November 2009 von -CURRENT abgespalten. Wie kann ich meine eigene, angepasstes Release erstellen? Eine Anleitung dazu finden Sie im Artikel &os; Release Engineering. Wieso überschreibt make world das installierte System? Das ist beabsichtigt. Wie der Name schon andeutet, erstellt make world alle Systemdateien von Grund auf neu. Sie können also sicher sein, am Ende eine saubere, konsistente Umgebung zu haben (das ist der Grund, warum es so lange dauert). Falls die Umgebungsvariable DESTDIR während der Ausführung von make world oder make install definiert ist, werden die neu erstellten Binaries unter ${DESTDIR} in einem zum installierten identischen Verzeichnisbaum abgelegt. Einige zufällige Kombinationen von Änderungen von Shared Libraries und Neuerstellungen von Programmen können hierbei jedoch ein Scheitern von make world verursachen. Warum ist cvsup.FreeBSD.org kein Round-Robin-Eintrag im DNS, so dass Anfragen auf alle CVsup-Server verteilt werden? Die CVsup-Server gleichen sich stündlich mit dem Hauptserver ab. Allerdings findet der Abgleich nicht zur gleichen Zeit statt, daher können einige Server neuere Quellen bereitstellen als andere Server. Alle Server stellen jedoch Quellen bereit, die maximal eine Stunde alt sind. Wäre cvsup.FreeBSD.org ein Round-Robin-Eintrag im DNS, der Benutzern einen zufälligen Server zuteilt, könnten beim zweiten Lauf von CVsup ältere Quellen als beim ersten Lauf heruntergeladen werden. Kann ich -CURRENT mit begrenztem Internetzugang folgen? Ja, Sie können das tun, ohne den gesamten Quellbaum herunterzuladen, indem Sie die Einrichtung CTM benutzen. Wie haben Sie die Distribution in 1392 KB-Dateien aufgespalten? Bei neueren BSD-basierten Systemen gibt es eine Option zu &man.split.1;, die das Splitten von Dateien an willkürlichen Bytegrenzen erlaubt. Hier ist ein Beispiel aus /usr/src/release/Makefile. ZIPNSPLIT= gzip --no-name -9 -c | split -b 1392k - Ich habe eine Kernelerweiterung geschrieben. An wen sende ich sie? Lesen Sie bitte den Artikel &os; unterstützen. Und Danke, dass Sie darüber nachdenken! Wie werden Plug&Play ISA-Karten erkannt und initialisiert? Von: Frank Durda IV uhclem@nemesis.lonestar.org Kurz gesagt gibt es nur wenige I/O-Ports über die PnP-Karten antworten, wenn der Host fragt, ob jemand da ist. Wenn die PnP-Erkennungsroutine startet, fragt sie, ob irgendwelche PnP-Karten vorhanden sind und alle PnP-Karten antworten mit ihrer Modellnummer auf demselben Port, von dem sie auch gelesen haben. Die Erkennungsroutine erhält also ein geodertes Ja auf diese Frage. Mindestens ein Bit wird bei dieser Antwort gesetzt sein. Die Erkennungsroutine ist dann in der Lage, dafür zu sorgen, dass Karten mit Modellnummern (zugeordnet von µsoft;/&intel;) kleiner als X off-line gesetzt werden. Sie prüft dann, ob immer noch Karten da sind, die auf die Frage antworten. Falls die Antwort 0 war, sind keine Karten mit IDs größer X vorhanden. Die Erkennungsroutine wird daraufhin anfragen, ob Karten unterhalb X vorhanden sind. Schließlich setzt die Erkennungsroutine alle Karten größer als X - (limit / 4) off-line und wiederholt die Frage. Wenn diese halbbinäre Suche nach IDs in Folge genügend oft wiederholt worden ist, wird die Erkennungsroutine schließlich alle in einem Rechner befindlichen PnP-Karten identifiziert haben und das mit einer Iterationszahl sehr viel kleiner als 264. Die IDs bestehen aus zwei 32-Bit-Feldern (daher 264) + acht Bit Prüfsumme. Die ersten 32 Bit sind die Herstellerkennung. Es wurde zwar nicht bestätigt, aber es wird angenommen, dass unterschiedliche Kartentypen desselben Herstellers unterschiedliche 32-Bit Herstellerkennungen besitzen können. 32 Bit nur für eindeutige Hersteller zu benötigen, scheint etwas übertrieben. Die niedrigen 32 Bit sind eine Seriennummer oder etwas anderes, das die betreffende Karte einzigartig macht. Die Hersteller dürfen niemals eine zweite Karte mit denselben niedrigen 32 Bit herstellen, es sei denn, die höheren 32 Bit sind unterschiedlich. Sie können also mehrere Karten des selben Typs im Rechner haben und die gesamten 64 Bit bleiben stets eindeutig. Die 32-Bit-Gruppen können niemals nur aus Nullen bestehen. Das erlaubt es, bei der binären Suche zu Beginn nur auf von Null verschiedene Bits zu achten. Wenn das System alle vorhandenen Karten-IDs identifiziert hat, reaktiviert es jede Karte - eine nach der anderen (über dieselben I/O-Ports) und ermittelt, welche Ressourcen von der jeweiligen Karte benötigt werden, welche Wahlmöglichkeiten für Interrupts bestehen usw. Alle Karten werden abgefragt, um diese Informationen zusammenzustellen. Diese Informationen werden dann mit Informationen aus allen ECU-Dateien auf der Festplatte oder mit im MLB-BIOS verdrahteten Informationen verknüpft. Die ECU- und BIOS-PnP-Unterstützung für Hardware auf dem MLB ist für gewöhnlich künstlich und was die Peripheriegeräte tun ist nicht wirklich echtes PnP. Durch die Untersuchung der BIOS-Informationen und der ECU-Informationen können die Erkennungsroutinen jedoch die von PnP-Geräten benutzten Ressourcen so ändern, dass vermieden wird, dass bereits von anderen Geräten benutzte Ressourcen verwendet werden. Dann werden die PnP-Geräte nochmals besucht und ihre I/O, DMA, IRQ und Memory-Map-Adressen werden zugeordnet. Die Geräte werden an diesen Stellen sichtbar werden und dort bis zum nächsten Reboot verbleiben. Allerdings hindert Sie auch nichts daran, sie zu verschieben, wohin Sie wollen. Im obigen Teil wurde sehr viel vereinfacht, aber die grundlegende Idee sollte klar geworden sein. µsoft; hat einige der primären Druckerstatusports für PnP übernommen, da keine Karte diese Adressen für die entgegengesetzten I/O-Zyklen decodiert. Ich habe während der frühen Überprüfungsperiode des PnP-Vorschlags eine echte IBM Druckerkarte gefunden, die Schreibzugriffe auf dem Statusport decodiert hat, aber µsoft; hat nur tough gesagt. Also schreiben sie auf den Druckerstatusport, um Adressen zu setzen, benutzen zusätzlich diese Adresse + 0x800 und einen dritten I/O-Port zum Lesen, der irgendwo zwischen 0x200 und 0x3ff liegen kann. Wie bekomme ich eine Major-Number für einen Gerätetreiber, den ich geschrieben habe? &os; Versionen stellen seit Februar 2003 Major-Numbers für Geräte automatisch zur Laufzeit bereit (lesen Sie &man.devfs.5;), damit ist das nicht mehr nötig. Gibt es alternative Layoutverfahren für Verzeichnisse? Als Antwort auf die Frage nach alternativen Layoutverfahren für Verzeichnisse ist das Schema, das derzeit benutzt wird, unverändert von dem, das ich 1983 geschrieben habe. Ich habe das Vorgehen für das originale Fast-Filesystem geschrieben und es niemals überarbeitet. Es funktioniert gut, wenn es darum geht, zu verhindern, dass Zylindergruppen volllaufen. Wie viele von Ihnen angemerkt haben, funktioniert es schlecht für find. Die meisten Dateisysteme werden von Archiven erstellt, die mit einer Tiefensuche (also ftw) erstellt wurden. Diese Verzeichnisse werden über die Zylindergruppen hinweg entfaltet und erzeugen denkbar ungünstigste Voraussetzungen für zukünftige Tiefensuchen. Falls man die Gesamtzahl der zu erstellenden Verzeichnisse wüsste, wäre die Lösung die, (gesamt / fs_ncg) pro Zylindergruppe zu erstellen, bevor fortgefahren wird. Offensichtlich müsste man eine Heuristik erstellen, um die Zahl zu schätzen. Sogar die Benutzung einer kleinen, fixen Zahl, z.B. 10, würde eine Verbesserung um Größenordnungen ausmachen. Um Wiederherstellungen von normalem Betrieb (wo der derzeitige Algorithmus vermutlich sinnvoller ist) zu unterscheiden, könnten Sie die Clusterung von bis zu 10 benutzen, wenn sie alle innerhalb eines 10-Sekunden-Fensters durchgeführt würden. Jedenfalls ist mein Schluss, dass dies ein fruchtbares Gebiet für Experimente ist. &a.mckusick;, September 1998 Wie kann ich optimalen Nutzen aus einer kernel panic ziehen? Hier ist eine typische Kernel-Panic Fatal trap 12: page fault while in kernel mode fault virtual address = 0x40 fault code = supervisor read, page not present instruction pointer = 0x8:0xf014a7e5 stack pointer = 0x10:0xf4ed6f24 frame pointer = 0x10:0xf4ed6f28 code segment = base 0x0, limit 0xfffff, type 0x1b = DPL 0, pres 1, def32 1, gran 1 processor eflags = interrupt enabled, resume, IOPL = 0 current process = 80 (mount) interrupt mask = trap number = 12 panic: page fault Wenn Sie eine Meldung wie diese sehen, reicht es nicht, sie einfach zu reproduzieren und sie einzusenden. Der Wert des Instruktionszeigers ist wichtig; leider ist er auch konfigurationsabhängig. Mit anderen Worten variieren die Werte abhängig von dem Kernel-Image, das Sie tatsächlich benutzen. Wenn Sie ein GENERIC Kernelimage von einem der Snapshots benutzen, dann ist es für jemand anderen möglich, die fehlerhafte Instruktion herauszufinden, aber wenn Sie einen angepassten Kernel benutzen, können nur Sie uns sagen, wo der Fehler auftrat. Was Sie tun sollten, ist folgendes: Notieren Sie sich den Wert des Instruktionszeigers. Beachten Sie, dass der Teil 0x8: am Anfang in diesem Fall nicht von Bedeutung ist; der Teil 0xf0xxxxxx ist der, den wir wollen. Tun Sie folgendes, wenn das System rebootet: &prompt.user; nm /kernel.that.caused.the.panic | grep f0xxxxxx wobei 0xf0xxxxxx der Wert des Instruktionszeigers ist. Es besteht die Möglichkeit, dass Sie keinen exakten Treffer erzielen, weil die Symbole in der Symboltabelle des Kernels Funktionseinstiegspunkte sind und die Adresse des Instruktionszeigers irgendwo innerhalb einer Funktion liegen wird und nicht am Anfang. Falls sie keinen exakten Treffer erzielen, lassen Sie den letzten Teil des Werts des Instruktionszeigers weg und versuchen es noch einmal, z.B.: &prompt.user; nm /kernel.that.caused.the.panic | grep f0xxxxx Falls das kein Ergebnis liefert, hacken Sie eine weitere Ziffer ab. Wiederholen Sie die Schritte, bis Sie irgendeine Ausgabe erhalten. Das Ergebnis wird eine Liste möglicher Funktionen sein, die die Panik verursacht haben. Das ist zwar kein absolut genauer Mechanismus, um die Fehlerursache ausfindig zu machen, aber es ist besser als gar nichts. Wie dem auch sei, der beste Weg, den Grund für eine Panik herauszufinden, ist der, einen Crash-Dump festzuhalten und dann &man.kgdb.1; zu benutzen, um den Stack im Crash-Dump zurückzuverfolgen. Jedenfalls ist die Methode, die ich normalerweise benutze, folgende: Sorgen Sie dafür, dass die folgende Zeile in der Kernelkonfigurationsdatei (/usr/src/sys/arch/conf/MYKERNEL) enthalten ist: makeoptions DEBUG=-g # Build kernel with gdb(1) debug symbols Wechseln Sie in das Verzeichnis usr/src: &prompt.root; cd /usr/src Erstellen Sie den Kernel: &prompt.root; make buildkernel KERNCONF=MYKERNEL Warten Sie, bis &man.make.1; den Kernel fertig kompiliert hat. &prompt.root; make installkernel KERNCONF=MYKERNEL Starten Sie das System neu. Falls Sie die make-Variable KERNCONF nicht verwenden, wird ein GENERIC Kernel gebaut und installiert. Der &man.make.1;-Prozess wird zwei Kernel erstellt haben: /usr/obj/usr/src/sys/MYKERNEL/kernel und /usr/obj/usr/src/sys/MYKERNEL/kernel.debug. kernel wurde als /boot/kernel installiert, während kernel.debug als Quelle für Debuggersymbole für &man.kgdb.1; benutzt werden kann. Um sicherzustellen, dass ein Crash-Dump erhalten bleibt, müssen Sie /etc/rc.config editieren und dumpdev so setzen, dass es auf Ihre Swap-Partition zeigt. Das bewirkt, dass die &man.rc.8;-Skripte den Befehl &man.dumpon.8; benutzen, um Crash-Dumps zu ermöglichen. Sie können &man.dumpon.8; auch manuell ausführen. Nach einer Panik kann der Crash-Dump mit &man.savecore.8; wiederhergestellt werden; wenn dumpdev in /etc/rc.conf gesetzt ist, werden die &man.rc.8;-Skripte &man.savecore.8; automatisch ausführen und den Crash-Dump unter /var/crash ablegen. Crash-Dumps von &os; sind für gewöhnlich genauso groß wie der physikalische Hauptspeicher Ihres Rechners. Das heißt, wenn Sie 512MB RAM haben, werden sie einen 512MB Crash-Dump erhalten. Deshalb müssen Sie dafür sorgen, dass genügend Speicherplatz in /var/crash zur Verfügung steht, um den Dump aufnehmen zu können. Alternativ führen Sie &man.savecore.8; manuell aus und lassen es den Crash-Dump in einem anderen Verzeichnis wiederherstellen, in dem Sie mehr Platz haben. Es ist möglich, die Größe des Crash-Dumps zu begrenzen, indem options MAXMEM=N, wobei N die Größe des verwendeten Kernelspeichers in KBs ist. Wenn Sie z.B. 1 GB RAM haben, können Sie die Speicherbenutzung des Kernels damit auf 128 MB begrenzen, so dass die Größe Ihres Crash-Dumps 128 MB anstatt 1 GB betragen wird. Wenn Sie den Crash-Dump wiederhergestellt haben, können Sie den Stack mit &man.kgdb.1; so zurückverfolgen: &prompt.user; kgdb /usr/obj/usr/src/sys/MYKERNEL/kernel.debug /var/crash/vmcore.0 (kgdb) backtrace Beachten Sie, dass es mehrere Seiten mit wertvollen Informationen geben könnte; idealerweise sollten Sie &man.script.1; benutzen, um sie alle festzuhalten. Wenn Sie das vollständige Kernelimage mit allen Debugginginformationen benutzen, müssten Sie exakt die Zeile des Kernel-Sourcecodes finden, wo die Panik aufgetreten ist. Für gewöhnlich müssen Sie den Stack von unten an zurückverfolgen, um die genaue Ereignisabfolge, die zum Crash führte, zurückzuverfolgen. Sie können &man.kgdb.1; auch zum Ausdrucken der Inhalte verschiedener Variablen oder Strukturen benutzen, um den Systemstatus zum Zeitpunkt des Absturzes zu untersuchen. Wenn Sie nun wirklich verrückt sind und einen zweiten Computer haben, können Sie &man.kgdb.1; auch für entferntes Debugging konfigurieren, so dass Sie &man.kgdb.1; auf einem System benutzen können, um den Kernel auf einem anderen System zu debuggen, einschließlich dem Setzen von Haltepunkten und dem Bewegen in Einzelschritten durch den Kernelcode, genauso, wie Sie es mit einem normalen Benutzerprogramm tun können. Wenn Sie DDB aktiviert haben und der Kernel im Debugger landet, können Sie eine Panik (und einen Crash-Dump) erzwingen, indem Sie einfach panic am ddb-Prompt eingeben. Er könnte während der Panikphase wieder im Debugger stoppen. Falls er das tut, geben Sie continue ein, dann wird er den Crash-Dump beenden. Wieso funktioniert dlsym() nicht mehr für ELF-Executables? Die ELF-Werkzeuge machen die in einem Executable definierten Symbole dem dynamischen Linker nicht standardmäßig sichtbar. Konsequenterweise werden dlsym()-Suchen nach Handlern aus Aufrufen von dlopen(NULL, flags) diese Symbole nicht finden können. Wenn Sie mit dlsym() nach im Hauptexecutable eines Prozesses vorhandenen Symbolen suchen wollen, müssen Sie das Executable mit der Option von &man.ld.1; linken. Wie kann ich den Adressraum des Kernels auf i386 vergrössern oder verkleinern? Standardmäßig beträgt der Adressraum des Kernels 1 GB (2 GB für PAE) auf i386. Wenn Sie einen netzwerkintensiven Server (z.B. einen großen FTP- oder HTTP-Server) betreiben, oder ZFS verwenden möchten, kann es sein, dass Sie der Meinung sind, dass das nicht ausreichen. Fügen Sie die folgende Zeile zu ihrer Kernelkonfigurationsdatei hinzu, um den verfügbaren Speicher zu erhöhen und erstellen Sie dann einen neuen Kernel: options KVA_PAGES=N Um den richtigen Wert von N zu bestimmen, teilen Sie den gewünschte Größe des Addressraumes (in Megabyte) durch vier (z.B. beträgt er 512 für 2 GB). Danksagung Dieses kleine unschuldige Dokument mit Häufig gestellten Fragen wurde in den letzten 10 Jahren von Hunderten, wenn nicht Tausenden, geschrieben, neu geschrieben, überarbeitet, gefaltet, verdreht, durcheinander gebracht, wieder aufgebaut, verstümmelt, seziert, durchgekaut, überdacht, und wiederbelebt. Und das nicht nur einmal. Wir möchten allen dafür Verantwortlichen danken und wir fordern auch Sie auf, dieser Gruppe beizutreten, um diese FAQ noch besser zu machen. Folgende Personen haben durch die Beantwortung von Fragen, sowie durch Hinweise und Kommentare an der Entstehung der deutschen Übersetzung mitgewirkt: Ross Alexander &a.jhb; &a.nik; Glen Foster Oliver Fromme Frank Gruender Chris Hill James Howard &a.jkh; &a.alex; &a.jmas; Mike Meyer Dan O'Connor Eric Ogren &a.de.pierau; Oliver Schneider Christoph Sold Und an alle anderen, an die wir nicht gedacht haben. Entschuldigung und herzlichen Dank! &bibliography;
Index: head/de_DE.ISO8859-1/books/handbook/advanced-networking/chapter.sgml =================================================================== --- head/de_DE.ISO8859-1/books/handbook/advanced-networking/chapter.sgml (revision 36616) +++ head/de_DE.ISO8859-1/books/handbook/advanced-networking/chapter.sgml (revision 36617) @@ -1,6682 +1,6694 @@ Johann Kois Übersetzt von Weiterführende Netzwerkthemen Übersicht Dieses Kapitel beschreibt verschiedene weiterführende Netzwerkthemen. Nachdem Sie dieses Kapitel gelesen haben, werden Sie Die Grundlagen von Gateways und Routen kennen. &bluetooth;- sowie drahtlose, der Norm &ieee; 802.11 entsprechende, Geräte mit FreeBSD verwenden können. Eine Bridge unter FreeBSD einrichten können. Einen plattenlosen Rechner über das Netzwerk starten können. Wissen, wie man NAT (Network Address Translation) einrichtet. Zwei Computer über PLIP verbinden können. IPv6 auf einem FreeBSD-Rechner einrichten können. ATM einrichten können. CARP, das Common Address Redundancy Protocol, unter &os; einsetzen können. Bevor Sie dieses Kapitel lesen, sollten Sie Die Grundlagen der /etc/rc-Skripte verstanden haben. Mit der grundlegenden Netzwerkterminologie vertraut sein. Einen neuen FreeBSD-Kernel konfigurieren und installieren können (). Wissen, wie man zusätzliche Softwarepakete von Drittherstellern installiert (). Coranth Gryphon Beigetragen von Gateways und Routen Routing Gateway Subnetz Damit ein Rechner einen anderen über ein Netzwerk finden kann, muss ein Mechanismus vorhanden sein, der beschreibt, wie man von einem Rechner zum anderen gelangt. Dieser Vorgang wird als Routing bezeichnet. Eine Route besteht aus einem definierten Adressenpaar: Einem Ziel und einem Gateway. Dieses Paar zeigt an, dass Sie über das Gateway zum Ziel gelangen wollen. Es gibt drei Arten von Zielen: Einzelne Rechner (Hosts), Subnetze und das Standardziel. Die Standardroute wird verwendet, wenn keine andere Route zutrifft. Wir werden Standardrouten später etwas genauer behandeln. Außerdem gibt es drei Arten von Gateways: Einzelne Rechner (Hosts), Schnittstellen (Interfaces, auch als Links bezeichnet), sowie Ethernet Hardware-Adressen (MAC-Adressen). Ein Beispiel Um die verschiedenen Aspekte des Routings zu veranschaulichen, verwenden wir folgende Ausgaben von netstat: &prompt.user; netstat -r Routing tables Destination Gateway Flags Refs Use Netif Expire default outside-gw UGSc 37 418 ppp0 localhost localhost UH 0 181 lo0 test0 0:e0:b5:36:cf:4f UHLW 5 63288 ed0 77 10.20.30.255 link#1 UHLW 1 2421 example.com link#1 UC 0 0 host1 0:e0:a8:37:8:1e UHLW 3 4601 lo0 host2 0:e0:a8:37:8:1e UHLW 0 5 lo0 => host2.example.com link#1 UC 0 0 224 link#1 UC 0 0 Defaultroute Die ersten zwei Zeilen geben die Standardroute (die wir im nächsten Abschnitt behandeln), sowie die localhost Route an. Loopback-Gerät Das in der Routingtabelle für localhost festgelegte Interface (Netif-Spalte) lo0, ist auch als loopback-Gerät (Prüfschleife) bekannt. Das heißt, dass der ganze Datenverkehr für dieses Ziel intern (innerhalb des Gerätes) bleibt, anstatt ihn über ein Netzwerk (LAN) zu versenden, da das Ziel dem Start entspricht. Ethernet MAC-Adresse Der nächste auffällige Punkt sind die mit 0:e0: beginnenden Adressen. Es handelt sich dabei um Ethernet Hardwareadressen, die auch als MAC-Adressen bekannt sind. FreeBSD identifiziert Rechner im lokalen Netz automatisch (im Beispiel test0) und fügt eine direkte Route zu diesem Rechner hinzu. Dies passiert über die Ethernet-Schnittstelle ed0. Außerdem existiert ein Timeout (in der Spalte Expire) für diese Art von Routen, der verwendet wird, wenn dieser Rechner in einem definierten Zeitraum nicht reagiert. Wenn dies passiert, wird die Route zu diesem Rechner automatisch gelöscht. Rechner im lokalen Netz werden durch einen als RIP (Routing Information Protocol) bezeichneten Mechanismus identifiziert, der den kürzesten Weg zu den jeweiligen Rechnern bestimmt. Subnetz FreeBSD fügt außerdem Subnetzrouten für das lokale Subnetz hinzu (10.20.30.255 ist die Broadcast-Adresse für das Subnetz 10.20.30, example.com ist der zu diesem Subnetz gehörige Domainname). Das Ziel link#1 bezieht sich auf die erste Ethernet-Karte im Rechner. Sie können auch feststellen, dass keine zusätzlichen Schnittstellen angegeben sind. Routen für Rechner im lokalen Netz und lokale Subnetze werden automatisch durch den routed Daemon konfiguriert. Ist dieser nicht gestartet, sind nur statisch definierte (explizit eingegebene) Routen vorhanden. Die Zeile host1 bezieht sich auf unseren Rechner, der durch seine Ethernetadresse bekannt ist. Da unser Rechner der Sender ist, verwendet FreeBSD automatisch das Loopback-Gerät (lo0), anstatt den Datenverkehr über die Ethernetschnittstelle zu senden. Die zwei host2 Zeilen sind ein Beispiel dafür, was passiert, wenn wir ein &man.ifconfig.8; Alias verwenden (Lesen Sie dazu den Abschnitt über Ethernet, wenn Sie wissen wollen, warum wir das tun sollten.). Das Symbol => (nach der lo0-Schnittstelle) sagt aus, dass wir nicht nur das Loopbackgerät verwenden (da sich die Adresse auf den lokalen Rechner bezieht), sondern dass es sich zusätzlich auch um ein Alias handelt. Solche Routen sind nur auf Rechnern vorhanden, die den Alias bereitstellen; alle anderen Rechner im lokalen Netz haben für solche Routen nur eine einfache link#1 Zeile. Die letzte Zeile (Zielsubnetz 224) behandelt das Multicasting, das wir in einem anderen Abschnitt besprechen werden. Schließlich gibt es für Routen noch verschiedene Attribute, die Sie in der Spalte Flags finden. Nachfolgend finden Sie eine kurze Übersicht von einigen dieser Flags und ihrer Bedeutung: U Up: Die Route ist aktiv. H Host: Das Ziel der Route ist ein einzelner Rechner (Host). G Gateway: Alle Daten, die an dieses Ziel gesendet werden, werden von diesem System an ihr jeweiliges Ziel weitergeleitet. S Static: Diese Route wurde manuell konfiguriert, das heißt sie wurde nicht automatisch vom System erzeugt. C Clone: Erzeugt eine neue Route, basierend auf der Route für den Rechner, mit dem wir uns verbinden. Diese Routenart wird normalerweise für lokale Netzwerke verwendet. W WasCloned: Eine Route, die automatisch konfiguriert wurde. Sie basiert auf einer lokalen Netzwerkroute (Clone). L Link: Die Route beinhaltet einen Verweis auf eine Ethernetkarte (MAC-Adresse). Standardrouten Defaultroute Standardroute Defaultroute Wenn sich der lokale Rechner mit einem entfernten Rechner verbinden will, wird die Routingtabelle überprüft, um festzustellen, ob bereits ein bekannter Pfad vorhanden ist. Gehört dieser entfernte Rechner zu einem Subnetz, dessen Pfad uns bereits bekannt ist (Cloned route), dann versucht der lokale Rechner über diese Schnittstelle eine Verbindung herzustellen. Wenn alle bekannten Pfade nicht funktionieren, hat der lokale Rechner eine letzte Möglichkeit: Die Standardroute (Defaultroute). Bei dieser Route handelt es sich um eine spezielle Gateway-Route (gewöhnlich die einzige im System vorhandene), die im Flags-Feld immer mit C gekennzeichnet ist. Für Rechner im lokalen Netzwerk ist dieses Gateway auf welcher Rechner auch immer eine Verbindung nach außen hat gesetzt (entweder über eine PPP-Verbindung, DSL, ein Kabelmodem, T1 oder eine beliebige andere Netzwerkverbindung). Wenn Sie die Standardroute für einen Rechner konfigurieren, der selbst als Gateway zur Außenwelt funktioniert, wird die Standardroute zum Gateway-Rechner Ihres Internetanbieter (ISP) gesetzt. Sehen wir uns ein Beispiel für Standardrouten an. So sieht eine übliche Konfiguration aus: [Local2] <--ether--> [Local1] <--PPP--> [ISP-Serv] <--ether--> [T1-GW] Die Rechner Local1 und Local2 befinden sich auf Ihrer Seite. Local1 ist mit einem ISP über eine PPP-Verbindung verbunden. Dieser PPP-Server ist über ein lokales Netzwerk mit einem anderen Gateway-Rechner verbunden, der über eine Schnittstelle die Verbindung des ISP zum Internet herstellt. Die Standardrouten für Ihre Maschinen lauten: Host Standard Gateway Schnittstelle Local2 Local1 Ethernet Local1 T1-GW PPP Eine häufig gestellte Frage lautet: Warum (oder wie) sollten wir T1-GW als Standard-Gateway für Local1 setzen, statt den (direkt verbundenen) ISP-Server zu verwenden?. Bedenken Sie, dass die PPP-Schnittstelle für die Verbindung eine Adresse des lokalen Netzes des ISP verwendet. Daher werden Routen für alle anderen Rechner im lokalen Netz des ISP automatisch erzeugt. Daraus folgt, dass Sie bereits wissen, wie Sie T1-GW erreichen können! Es ist also unnötig, einen Zwischenschritt über den ISP-Server zu machen. Es ist üblich, die Adresse X.X.X.1 als Gateway-Adresse für ihr lokales Netzwerk zu verwenden. Für unser Beispiel bedeutet dies Folgendes: Wenn Ihr lokaler Klasse-C-Adressraum 10.20.30 ist und Ihr ISP 10.9.9 verwendet, sehen die Standardrouten so aus: Rechner (Host) Standardroute Local2 (10.20.30.2) Local1 (10.20.30.1) Local1 (10.20.30.1, 10.9.9.30) T1-GW (10.9.9.1) Sie können die Standardroute ganz einfach in der Datei /etc/rc.conf festlegen. In unserem Beispiel wurde auf dem Rechner Local2 folgende Zeile in /etc/rc.conf eingefügt: defaultrouter="10.20.30.1" Die Standardroute kann über &man.route.8; auch direkt gesetzt werden: &prompt.root; route add default 10.20.30.1 Weitere Informationen zum Bearbeiten von Netzwerkroutingtabellen finden Sie in &man.route.8;. Rechner mit zwei Heimatnetzen Dual-Homed-Hosts Es gibt noch eine Konfigurationsmöglichkeit, die wir besprechen sollten, und zwar Rechner, die sich in zwei Netzwerken befinden. Technisch gesehen, zählt jeder als Gateway arbeitende Rechner zu den Rechnern mit zwei Heimatnetzen (im obigen Beispiel unter Verwendung einer PPP-Verbindung). In der Praxis meint man damit allerdings nur Rechner, die sich in zwei lokalen Netzen befinden. Entweder verfügt der Rechner über zwei Ethernetkarten und jede dieser Karten hat eine Adresse in einem separaten Subnetz, oder der Rechner hat nur eine Ethernetkarte und verwendet &man.ifconfig.8; Aliasing. Die erste Möglichkeit wird verwendet, wenn zwei physikalisch getrennte Ethernet-Netzwerke vorhanden sind, die zweite, wenn es nur ein physikalisches Ethernet-Netzwerk gibt, das aber aus zwei logisch getrennten Subnetzen besteht. In beiden Fällen werden Routingtabellen erstellt, damit jedes Subnetz weiß, dass dieser Rechner als Gateway zum anderen Subnetz arbeitet (inbound route). Diese Konfiguration (der Gateway-Rechner arbeitet als Router zwischen den Subnetzen) wird häufig verwendet, wenn es darum geht, Paketfilterung oder eine Firewall (in eine oder beide Richtungen) zu implementieren. Soll dieser Rechner Pakete zwischen den beiden Schnittstellen weiterleiten, müssen Sie diese Funktion manuell konfigurieren und aktivieren. Lesen Sie den nächsten Abschnitt, wenn Sie weitere Informationen zu diesem Thema benötigen. Einen Router konfigurieren Router Ein Netzwerkrouter ist einfach ein System, das Pakete von einer Schnittstelle zur anderen weiterleitet. Internetstandards und gute Ingenieurspraxis sorgten dafür, dass diese Funktion in FreeBSD in der Voreinstellung deaktiviert ist. Sie können diese Funktion aktivieren, indem Sie in &man.rc.conf.5; folgende Änderung durchführen: gateway_enable="YES" # Auf YES setzen, wenn der Rechner als Gateway arbeiten soll Diese Option setzt die &man.sysctl.8;-Variable net.inet.ip.forwarding auf 1. Wenn Sie das Routing kurzzeitig unterbrechen wollen, können Sie die Variable auf 0 setzen. BGP RIP OSPF Ihr neuer Router benötigt nun noch Routen, um zu wissen, wohin er den Verkehr senden soll. Haben Sie ein (sehr) einfaches Netzwerk, können Sie statische Routen verwenden. FreeBSD verfügt über den Standard BSD-Routing-Daemon &man.routed.8;, der RIP (sowohl Version 1 als auch Version 2) und IRDP versteht. BGP v4, OSPF v2 und andere Protokolle werden von net/zebra unterstützt. Es stehen auch kommerzielle Produkte wie gated zur Verfügung. Al Hoang Beigetragen von Statische Routen einrichten Manuelle Konfiguration Nehmen wir an, dass wir über folgendes Netzwerk verfügen: INTERNET | (10.0.0.1/24) Default Router to Internet | |Interface xl0 |10.0.0.10/24 +------+ | | RouterA | | (FreeBSD gateway) +------+ | Interface xl1 | 192.168.1.1/24 | +--------------------------------+ Internal Net 1 | 192.168.1.2/24 | +------+ | | RouterB | | +------+ | 192.168.2.1/24 | Internal Net 2 RouterA, ein &os;-Rechner, dient als Router für den Zugriff auf das Internet. Die Standardroute ist auf 10.0.0.1 gesetzt, damit ein Zugriff auf das Internet möglich wird. Wir nehmen nun an, dass RouterB bereits konfiguriert ist und daher weiß, wie er andere Rechner erreichen kann. Dazu wird die Standardroute von RouterB auf 192.168.1.1 gesetzt, da dieser Rechner als Gateway fungiert. Sieht man sich die Routingtabelle für RouterA an, erhält man folgende Ausgabe: &prompt.user; netstat -nr Routing tables Internet: Destination Gateway Flags Refs Use Netif Expire default 10.0.0.1 UGS 0 49378 xl0 127.0.0.1 127.0.0.1 UH 0 6 lo0 10.0.0/24 link#1 UC 0 0 xl0 192.168.1/24 link#2 UC 0 0 xl1 Mit dieser Routingtabelle kann RouterA unser internes Netz 2 nicht erreichen, da keine Route zum Rechner 192.168.2.0/24 vorhanden ist. Um dies zu korrigieren, kann die Route manuell gesetzt werden. Durch den folgenden Befehl wird das interne Netz 2 in die Routingtabelle des Rechners RouterA aufgenommen, indem 192.168.1.2 als nächster Zwischenschritt verwenden wird: &prompt.root; route add -net 192.168.2.0/24 192.168.1.2 Ab sofort kann RouterA alle Rechner des Netzwerks 192.168.2.0/24 erreichen. Routen dauerhaft einrichten Das obige Beispiel ist für die Konfiguration einer statischen Route auf einem laufenden System geeignet. Diese Information geht jedoch verloren, wenn der &os;-Rechner neu gestartet werden muss. Um dies zu verhindern, wird diese Route in /etc/rc.conf eingetragen: # Add Internal Net 2 as a static route static_routes="internalnet2" route_internalnet2="-net 192.168.2.0/24 192.168.1.2" Die Variable static_routes enthält eine Reihe von Strings, die durch Leerzeichen getrennt sind. Jeder String bezieht sich auf den Namen einer Route. In unserem Beispiel hat static_routes internalnet2 als einzigen String. Zusätzlich verwendet man die Konfigurationsvariable route_internalnet2, in der alle sonstigen an &man.route.8; zu übergebenden Parameter festgelegt werden. In obigen Beispiel hätte man folgenden Befehl verwendet: &prompt.root; route add -net 192.168.2.0/24 192.168.1.2 Daher wird "-net 192.168.2.0/24 192.168.1.2" als Parameter der Variable route_ angegeben. Wie bereits erwähnt, können bei static_routes auch mehrere Strings angegeben werden. Dadurch lassen sich mehrere statische Routen anlegen. Durch folgende Zeilen werden auf einem imaginären Rechner statische Routen zu den Netzwerken 192.168.0.0/24 sowie 192.168.1.0/24 definiert: static_routes="net1 net2" route_net1="-net 192.168.0.0/24 192.168.0.1" route_net2="-net 192.168.1.0/24 192.168.1.1" Verteilung von Routing-Informationen routing propagation Wir haben bereits darüber gesprochen, wie wir unsere Routen zur Außenwelt definieren, aber nicht darüber, wie die Außenwelt uns finden kann. Wir wissen bereits, dass Routing-Tabellen so erstellt werden können, dass sämtlicher Verkehr für einen bestimmten Adressraum (in unserem Beispiel ein Klasse-C-Subnetz) zu einem bestimmten Rechner in diesem Netzwerk gesendet wird, der die eingehenden Pakete im Subnetz verteilt. Wenn Sie einen Adressraum für Ihre Seite zugewiesen bekommen, richtet Ihr Diensteanbieter seine Routingtabellen so ein, dass der ganze Verkehr für Ihr Subnetz entlang Ihrer PPP-Verbindung zu Ihrer Seite gesendet wird. Aber woher wissen die Seiten in der Außenwelt, dass sie die Daten an Ihren ISP senden sollen? Es gibt ein System (ähnlich dem verbreiteten DNS), das alle zugewiesenen Adressräume verwaltet und ihre Verbindung zum Internet-Backbone definiert und dokumentiert. Der Backbone ist das Netz aus Hauptverbindungen, die den Internetverkehr in der ganzen Welt transportieren und verteilen. Jeder Backbone-Rechner verfügt über eine Kopie von Haupttabellen, die den Verkehr für ein bestimmtes Netzwerk hierarchisch vom Backbone über eine Kette von Diensteanbietern bis hin zu Ihrer Seite leiten. Es ist die Aufgabe Ihres Diensteanbieters, den Backbone-Seiten mitzuteilen, dass sie mit Ihrer Seite verbunden wurden. Durch diese Mitteilung der Route ist nun auch der Weg zu Ihnen bekannt. Dieser Vorgang wird als Bekanntmachung von Routen (routing propagation) bezeichnet. Problembehebung traceroute Manchmal kommt es zu Problemen bei der Bekanntmachung von Routen, und einige Seiten sind nicht in der Lage, Sie zu erreichen. Vielleicht der nützlichste Befehl, um festzustellen, wo das Routing nicht funktioniert, ist &man.traceroute.8;. Er ist außerdem sehr nützlich, wenn Sie einen entfernten Rechner nicht erreichen können (lesen Sie dazu auch &man.ping.8;). &man.traceroute.8; wird mit dem zu erreichenden Rechner (Host) ausgeführt. Angezeigt werden die Gateway-Rechner entlang des Verbindungspfades. Schließlich wird der Zielrechner erreicht oder es kommt zu einem Verbindungsabbruch (beispielsweise durch Nichterreichbarkeit eines Gateway-Rechners). Weitere Informationen finden Sie in &man.traceroute.8;. Multicast-Routing Multicast-Routing Kerneloptionen MROUTING &os; unterstützt sowohl Multicast-Anwendungen als auch Multicast-Routing. Multicast-Anwendungen müssen nicht konfiguriert werden, sie laufen einfach. Multicast-Routing muss in der Kernelkonfiguration aktiviert werden: options MROUTING Zusätzlich muss &man.mrouted.8;, der Multicast-Routing-Daemon, über die Datei /etc/mrouted.conf eingerichtet werden, um Tunnel und DVMRP zu aktivieren. Weitere Informationen zu diesem Thema finden Sie in &man.mrouted.8;. Ab &os; 7.0 ist &man.mrouted.8; (der Multicast Routing Daemon) nicht mehr im Basissystem enthalten. Dieser Daemon verwendet das DVMRP Multicast Routing Protocol, das inzwischen in den meisten Multicast-Installationen durch &man.pim.4; ersetzt wurde. Die mit dem Daemon in Verbindung stehenden Werkzeuge &man.map-mbone.8; und &man.mrinfo.8; wurden ebenfalls aus dem Basissystem entfernt. All diese Programme sind aber weiterhin über die &os;-Ports-Sammlung (genauer den Port net/mrouted) verfügbar. Loader Marc Fonvieille Murray Stokely Drahtlose Netzwerke Netzwerke, drahtlos 802.11 drahtlose Netzwerke Grundlagen Die meisten drahtlosen Netzwerke basieren auf dem Standard &ieee; 802.11. Sie bestehen aus Stationen, die in der Regel im 2,4 GHz- oder im 5 GHz-Band miteinander kommunizieren. Es ist aber auch möglich, dass regional andere Frequenzen, beispielsweise im 2,3 GHz- oder 4,9 GHz-Band, verwendet werden. 802.11-Netzwerke können auf zwei verschiedene Arten aufgebaut sein: Im Infrastruktur-Modus agiert eine Station als Master, mit dem sich alle anderen Stationen verbinden. Die Summe aller Stationen wird als BSS (Basic Service Set), die Master-Station hingegen als Access Point (AP) bezeichnet. In einem BSS läuft jedwede Kommunikation über den Access Point. Die zweite Form drahtloser Netzwerke sind die sogenannten Ad-hoc-Netzwerke (auch als IBSS bezeichnet), in denen es keinen Access Point gibt und in denen die Stationen direkt miteinander kommunizieren. Die ersten 802.11-Netzwerke arbeiteten im 2,4 GHz-Band und nutzten dazu Protokolle der &ieee;-Standards 802.11 sowie 802.11b. Diese Standards legen unter anderem Betriebsfrequenzen sowie Merkmale des MAC-Layers (wie Frames und Transmissionsraten) fest. Später kam der Standard 802.11a hinzu, der im 5 GHz-Band, im Gegensatz zu den ersten beiden Standards aber mit unterschiedlichen Signalmechanismen und höheren Transmissionsraten arbeitet. Der neueste Standard 802.11g implementiert die Signal- und Transmissionsmechanismen von 802.11a im 2,4 GHz-Band, ist dabei aber abwärtskompatibel zu 802.11b-Netzwerken. Unabhängig von den zugrundeliegenden Transportmechanismen verfügen 802.11-Netzwerke über diverse Sicherheitsmechanismen. Der ursprüngliche 802.11-Standard definierte lediglich ein einfaches Sicherheitsprotokoll namens WEP. Dieses Protokoll verwendet einen fixen (gemeinsam verwendeten) Schlüssel sowie die RC4-Kryptografie-Chiffre, um Daten verschlüsselt über das drahtlose Netzwerk zu senden. Alle Stationen des Netzwerks müssen sich auf den gleichen fixen Schlüssel einigen, um miteinander kommunizieren zu können. Dieses Schema ist sehr leicht zu knacken und wird deshalb heute kaum mehr eingesetzt. Aktuelle Sicherheitsmechanismen bauen auf dem Standard &ieee; 802.11i auf, der neue kryptografische Schlüssel (Chiffren), ein neues Protokoll für die Anmeldung von Stationen an einem Access Point, sowie Mechanismen zum Austausch von Schlüsseln als Vorbereitung der Kommunikation zwischen verschiedenen Geräten festlegt. Kryptografische Schlüssel werden regelmäßig getauscht. Außerdem gibt es Mechanismen, um Einbruchsversuche zu entdecken (und Gegenmaßnahmen ergreifen zu können). Ein weiteres häufig verwendetes Sicherheitsprotokoll ist WPA. Dabei handelt es sich um einen Vorläufer von 802.11i, der von einem Industriekonsortium als Zwischenlösung bis zur endgültigen Verabschiedung von 802.11i entwickelt wurde. WPA definiert eine Untergruppe der Anforderungen des 802.11i-Standards und ist für den Einsatz in älterer Hardware vorgesehen. WPA benötigt nur den (auf dem ursprünglichen WEP-Code basierenden) TKIP-Chiffre. 802.11i erlaubt zwar auch die Verwendung von TKIP, fordert aber zusätzlich eine stärkere Chiffre (AES-CCM) für die Datenverschlüsselung. (AES war für WPA nicht vorgesehen, weil man es als zu rechenintensiv für den Einsatz in älteren Geräten ansah.) Neben den weiter oben erwähnten Standards ist auch der Standard 802.11e von großer Bedeutung. Dieser definiert Protokolle zur Übertragung von Multimedia-Anwendungen wie das Streaming von Videodateien oder Voice-over-IP (VoIP) in einem 802.11-Netzwerk. Analog zu 802.11i verfügt auch 802.11e über eine vorläufige Spezifikation namens WMM (ursprünglich WME), die von einem Industriekonsortium als Untergruppe von 802.11e spezifiziert wurde, um Multimedia-Anwendungen bereits vor der endgültigen Verabschiedung des 802.11e-Standards implementieren zu können. 802.11e sowie WME/WMM erlauben eine Prioritätenvergabe beim Datentransfer im einem drahtlosen Netzwerk. Möglich wird dies durch den Einsatz von Quality of Service-Protokollen (QoS) und erweiterten Medienzugriffsprotokollen. Werden diese Protokolle korrekt implementiert, erlauben sie daher hohe Datenübertragungsraten und einen priorisierten Datenfluss. &os; unterstützt seit der Version 6.0 die Standards 802.11a, 802.11b, sowie 802.11g. Ebenfalls unterstützt werden WPA sowie die Sicherheitsprotokolle gemäß 802.11i (dies sowohl für 11a, 11b als auch 11g). QoS und Verkehrspriorisierung, die von den WME/WMM-Protokollen benötigt werden, werden ebenfalls (allerdings nicht für alle drahtlosen Geräte) unterstützt. Basiskonfiguration Kernelkonfiguration Um ein drahtloses Netzwerk zu nutzen, benötigen Sie eine drahtlose Netzwerkkarte und einen Kernel, der drahtlose Netzwerke unterstützt. Der &os;-Kernel unterstützt den Einsatz von Kernelmodulen. Daher müssen Sie nur die Unterstützung für die von Ihnen verwendeten Geräte aktivieren. Als Erstes benötigen Sie ein drahtloses Gerät. Die meisten drahtlosen Geräte verwenden Bauteile von Atheros und werden deshalb vom &man.ath.4;-Treiber unterstützt. Um diesen Treiber zu verwenden, nehmen Sie die folgende Zeile in die Datei /boot/loader.conf auf: if_ath_load="YES" Der Atheros-Treiber besteht aus drei Teilen: dem Treiber selbst (&man.ath.4;), dem Hardware-Support-Layer für die chip-spezifischen Funktionen (&man.ath.hal.4;) sowie einem Algorithmus zur Auswahl der korrekten Frame-Übertragungsrate (ath_rate_sample). Wenn Sie die Unterstützung für diesen Treiber als Kernelmodul laden, kümmert sich dieses automatisch um diese Aufgaben. Verwenden Sie ein Nicht-Atheros-Gerät, so müssen Sie hingegen das für dieses Gerät geeignete Modul laden, beispielsweise if_wi_load="YES" für Geräte, die auf Bauteilen von Intersil Prism basieren und daher den Treiber &man.wi.4; voraussetzen. In den folgenden Abschnitten wird der &man.ath.4;-Treiber verwendet. Verwenden Sie ein anderes Gerät, müssen Sie diesen Wert daher an Ihre Konfiguration anpassen. Eine Liste aller verfügbaren Treiber und unterstützten drahtlosen Geräte finden sich in den &os; Hardware Notes. Diese sind für verschiedene Releases und Architekturen auf der Seite Release Information der &os; Homepage. Gibt es keinen nativen &os;-Treiber für Ihr drahtloses Gerät, können Sie möglicherweise mit NDIS einen &windows;-Treiber verwenden. Unter &os; 7.X benötigen Sie zusätlich zum korrekten Treiber auch die Unterstützung für 802.11-Netzwerke. Für den &man.ath.4;-Treiber werden dazu mindestens die Module &man.wlan.4;, wlan_scan_ap sowie wlan_scan_sta benötigt. Das &man.wlan.4;-Kernelmodul wird automatisch mit dem Treiber des drahtlosen Geräts geladen, die beiden anderen Module werden jeweils durch einen Eintrag in der Datei /boot/loader.conf beim Systemstart geladen: wlan_scan_ap_load="YES" wlan_scan_sta_load="YES" Ab &os; 8.0 sind diese Module Teil des &man.wlan.4;-Treibers und werden bei Bedarf automatisch geladen. Zusätzlich benötigen Sie noch Module zur Verschlüsselung ihres drahtlosen Netzwerks. Diese werden normalerweise dynamisch vom &man.wlan.4;-Modul geladen. Im folgenden Beispiel erfolgt allerdings eine manuelle Konfiguration. Folgende Module sind verfügbar: &man.wlan.wep.4;, &man.wlan.ccmp.4; sowie &man.wlan.tkip.4;. Sowohl &man.wlan.ccmp.4; als auch &man.wlan.tkip.4; werden nur benötigt, wenn Sie WPA und/oder die Sicherheitsprotokolle von 802.11i verwenden wollen. Wollen Sie Ihr Netzwerk hingegen ohne Verschlüsselung betreiben, benötigen Sie nicht einmal die &man.wlan.wep.4;-Unterstützung. Um alle drei Module beim Systemstart zu laden, fügen Sie folgende Zeilen in die Datei /boot/loader.conf ein: wlan_wep_load="YES" wlan_ccmp_load="YES" wlan_tkip_load="YES" Um diese neuen Einträge in der Datei /boot/loader.conf zu aktivieren, müssen Sie Ihr &os;-System neu starten. Alternativ können Sie die Kernelmodule aber auch manuell mit &man.kldload.8; laden. Wollen Sie keine Kernelmodule verwenden, können Sie die benötigten Treiber auch in Ihren Kernel kompilieren. Daz nehmen Sie folgende Zeilen in Ihre Kernelkonfigurationsdatei auf: device wlan # 802.11 support device wlan_wep # 802.11 WEP support device wlan_ccmp # 802.11 CCMP support device wlan_tkip # 802.11 TKIP support device wlan_amrr # AMRR transmit rate control algorithm device ath # Atheros pci/cardbus NIC's device ath_hal # pci/cardbus chip support options AH_SUPPORT_AR5416 # enable AR5416 tx/rx descriptors device ath_rate_sample # SampleRate tx rate control for ath Verwenden Sie &os; 7.X, müssen Sie auch die beiden Module wlan_scan_ap und wlan_scan_sta in den Kernel aufnehmen (unter &os; 8.X ist dies hingegen nicht mehr notwendig): device wlan_scan_ap # 802.11 AP mode scanning device wlan_scan_sta # 802.11 STA mode scanning Danach bauen Sie den neuen Kernel und starten Ihr &os;-System neu. Während des Systemstarts sollten nun einige Informationen ähnlich den folgenden über das von Ihnen verwendete drahtlose Gerät ausgegeben werden: - ath0: <Atheros 5212> mem 0xff9f0000-0xff9fffff irq 17 at device 2.0 on pci2 -ath0: Ethernet address: 00:11:95:d5:43:62 -ath0: mac 7.9 phy 4.5 radio 5.6 + ath0: <Atheros 5212> mem 0x88000000-0x8800ffff irq 11 at device 0.0 on cardbus1 +ath0: [ITHREAD] +ath0: AR2413 mac 7.9 RF2413 phy 4.5 Infrastruktur-Modus Drahtlose Netzwerke werden in der Regel im Infrastruktur-Modus (auch BSS-Modus genannt) betrieben. Dazu werden mehrere drahtlose Access Points zu einem gemeinsamen drahtlosen Netzwerk verbunden. Jedes dieser drahtlosen Netzwerke hat einen eigenen Namen, der als SSID bezeichnet wird. Alle Clients eines drahtlosen Netzwerks verbinden sich in diesem Modus mit einem Access Point. &os;-Clients Einen Access Point finden Um nach drahtlosen Netzwerken zu suchen verwenden Sie ifconfig. Dieser Scanvorgang kann einige Zei in Anspruch nehmen, da dazu jede verfügbare Frequenz auf verfügbare Access Points hin überprüft werden muss. Um die Suche zu starten, müssen Sie als Super-User angemeldet sein: &prompt.root; ifconfig wlan0 create wlandev ath0 &prompt.root; ifconfig wlan0 up scan -SSID BSSID CHAN RATE S:N INT CAPS +SSID/MESH ID BSSID CHAN RATE S:N INT CAPS dlinkap 00:13:46:49:41:76 11 54M -90:96 100 EPS WPA WME freebsdap 00:11:95:c3:0d:ac 1 54M -83:96 100 EPS WPA Ihre Netzwerkkarte muss in den Status versetzt werden, bevor Sie den ersten Scanvorgang starten können. Für spätere Scans ist dies aber nicht mehr erforderlich. Unter &os; 7.X wird der Gerätetreiber, beispielsweise ath0, direkt verwendet, anstatt auf das allgemeine Gerät wlan0 zuzugreifen. Verwenden Sie also &os; 7.X, müssen Sie die beiden Befehle im vorigen Beispiel durch den folgenden Befehl ersetzen: &prompt.root; ifconfig ath0 up scan Dies gilt auch für alle weiteren Ausführungen in diesem Kapitel. Unter &os; 7.X müssen analog alle Befehle und Konfigurationsdateien/Zeilen entsprechend angepasst werden. Als Ergebnis erhalten Sie eine Liste mit allen gefundenen BSS/IBSS-Netzwerken. Zusätzlich zur SSID (dem Namen des Netzwerks) wird auch die BSSID ausgegeben. Dabei handelt es sich um MAC-Adresse des Access Points. Das Feld CAPS gibt den Typ des Netzwerks sowie die Fähigkeiten der Stationen innerhalb des Netzwerks an: E Extended Service Set (ESS). Zeigt an, dass die Station Teil eines Infrastruktur-Netzwerks ist (und nicht eines IBSS/Ad-hoc-Netzwerks). I IBSS/Ad-hoc-Netzwerk. Die Station ist Teil eines Ad-hoc-Netzwerks (und nicht eines ESS-Netzwerks). P Privacy. Alle Datenframes, die innerhalb des BSS ausgetauscht werden, sind verschlüsselt. Dieses BSS verwendet dazu kryptografische Verfahren wie WEP, TKIP oder AES-CCMP. S Short Preamble. Das Netzwerk verwendet eine kurze Präambel (definiert in 802.11b High Rate/DSSS PHY). Eine kurze Präambel verwendet ein 56 Bit langes Sync-Feld (im Gegensatz zu einer langen Präambel, die ein 128 Bit langes Sync-Feld verwendet). s Short slot time. Das 802.11g-Netzwerk verwendet eine kurze Slotzeit, da es in diesem Netzwerk keine veralteten (802.11b) Geräte gibt. Um eine Liste der bekannten Netzwerke auszugeben, verwenden Sie den folgenden Befehl: &prompt.root; ifconfig wlan0 list scan Diese Liste kann entweder automatisch durch das drahtlose Gerät oder manuell durch eine -Aufforderung aktualisiert werden. Veraltete Informationen werden dabei automatisch entfernt. Basiseinstellungen Dieser Abschnitt beschreibt, wie Sie ein einfaches drahtloses Netzerk ohne Verschlüsselung unter &os; einrichten. Nachdem Sie sich mit den Informationen dieses Abschnitts vertraut gemacht haben, sollten Sie Ihr drahtloses Netzwerk mit WPA verschlüsseln. Das Einrichten eines drahtlosen Netzwerks erfolgt in drei Schritten: Der Auswahl eines Access Points, der Anmeldung Ihrer Station sowie der Konfiguration Ihrer IP-Adresse. Einen Access Point auswählen Im Normalfall wird sich Ihre Station automatisch mit einem der zur Verfügung stehenden Access Points verbinden. Sie müssen dazu lediglich Ihr drahtloses Gerät aktivieren. Alternativ können Sie auch einen Eintrag ähnlich dem folgenden in /etc/rc.conf aufnehmen: wlans_ath0="wlan0" ifconfig_wlan0="DHCP" Wie bereits erwähnt, benötigen Sie unter &os; 7.X anstelle dieser beiden Zeilen nur eine Zeile (mit dem entsprechenden Gerätetreiber): ifconfig_ath0="DHCP" Wollen Sie sich hingegen mit einem bestimmten Access Point verbinden, müssen Sie dessen SSID angeben: wlans_ath0="wlan0" ifconfig_wlan0="ssid Ihre_SSID DHCP" Gibt es in Ihrem Netzwerk mehrere Access Points mit der gleichen SSID (was der Einfachheit wegen häufig der Fall ist), können Sie sich dennoch mit einem bestimmten Access Point verbinden. Dazu müssen Sie lediglich die BSSID des Access Points angeben (die Angabe der SSID ist in diesem Fall nicht erforderlich): wlans_ath0="wlan0" ifconfig_wlan0="ssid Ihre_SSID bssid xx:xx:xx:xx:xx:xx DHCP" Es gibt noch weitere Möglichkeiten, den Zugriff auf bestimmte Access Point zu beschränken, beispielsweise durch die Begrenzung der Frequenzen, auf denen eine Station nach einem Access Point sucht. Sinnvoll ist ein solches Vorgehen beispielsweise, wenn Ihr drahtloses Gerät in verschiedenen Frequenzbereichen arbeiten kann, da in diesem Fall das Prüfen aller Frequenzen sehr zeitintensiv ist. Um nur innerhalb eines bestimmten Frequenzbereichs nach einem Access Point zu suchen, verwenden Sie die Option : wlans_ath0="wlan0" ifconfig_wlan0="mode 11g ssid Ihre_SSID DHCP" Dadurch sucht Ihr drahtloses Gerät nur im 2,4 GHz-Band (802.11g), aber nicht innerhalb des 5 GHz-Bandes nach einem Access Point. Mit der Option können Sie eine bestimmte Frequenz vorgeben, auf der gesucht werden soll. Die Option erlaubt die Angabe mehrerer erlaubter Frequenzen. Eine umfassende Beschreibung dieser Optionen finden Sie in der Manualpage &man.ifconfig.8;. Authentifizierung Wenn Sie einen Access Point gefunden haben, muss sich Ihrem Station am Access Point anmelden, bevor Sie Daten übertragen kann. Dazu gibt es verschiedene Möglichkeiten. Am häufigsten wird nach wie vor die sogenannte offene Authentifizierung verwendet. Dabei wird es jeder Station erlaubt, sich mit einem Netzwerk zu verbinden und Daten zu übertragen. Aus Sicherheitsgründen sollte diese Methode allerdings nur zu Testzwecken bei der erstmaligen Einrichtung eines drahtlosen Netzwerks verwendet werden. Andere Authentifizierungsmechanismen erfordern den Austausch kryptografischer Informationen, bevor Sie die Übertragung von Daten erlauben. Dazu gehören der Austausch fixer (vorher vereinbarter) Schlüssel oder Kennwörter sowie der Einsatz komplexerer Verfahren mit Backend-Diensten wie RADIUS. Die meisten Netzwerke nutzen allerdings nach wie vor die offene Authentifizierung, da dies die Voreinstellung ist. Am zweithäufigsten kommt das weiter unten beschriebene WPA-PSK (das auch als WPA Personal bezeichnet wird) zum Einsatz. Verwenden Sie eine &apple; &airport; Extreme-Basisstation als Access Point, benötigen Sie wahrscheinlich sowohl die Shared-Key-Authentifizierung als auch einen WEP-Schlüssel. Die entsprechende Konfiguration erfolgt entweder in der Datei /etc/rc.conf oder über das Programm &man.wpa.supplicant.8;. Verwenden Sie nur eine einzige &airport;-Basisstation, benötigen Sie einen Eintrag ähnlich dem folgenden: wlans_ath0="wlan0" ifconfig_wlan0="authmode shared wepmode on weptxkey 1 wepkey 01234567 DHCP" Normalerweise sollten Sie Shared-Key-Authentifizierung aber nicht verwenden, da diese die Sicherheit des WEP-Schlüssel noch weiter verringert. Müssen Sie WEP einsetzen (beispielsweise weil Sie zu veralteten Geräten kompatibel bleiben müssen), sollten Sie WEP nur zusammen mit der offenen Authentifizierung (open authentication) verwenden. WEP wird im näher beschrieben. Eine IP-Adresse über DHCP beziehen Nachdem Sie einen Access Point gefunden und sich authentifiziert haben, benötigen Sie noch eine IP-Adresse, die Sie in der Regel über DHCP zugewiesen bekommen. Dazu müssen Sie lediglich die Option DHCP in Ihre in der Datei /etc/rc.conf vorhandene Konfiguration Ihres drahtlosen Geräts aufnehmen: wlans_ath0="wlan0" ifconfig_wlan0="DHCP" Nun können Sie Ihr drahtloses Gerät starten: &prompt.root; /etc/rc.d/netif start Nachdem Sie das Gerät aktiviert haben, können Sie mit ifconfig den Status des Geräts ath0 abfragen: &prompt.root; ifconfig wlan0 wlan0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500 ether 00:11:95:d5:43:62 inet 192.168.1.100 netmask 0xffffff00 broadcast 192.168.1.255 media: IEEE 802.11 Wireless Ethernet OFDM/54Mbps mode 11g status: associated ssid dlinkap channel 11 (2462 Mhz 11g) bssid 00:13:46:49:41:76 country US ecm authmode OPEN privacy OFF txpower 21.5 bmiss 7 scanvalid 60 bgscan bgscanintvl 300 bgscanidle 250 roam:rssi 7 roam:rate 5 protmode CTS wme burst status: associated besagt, dass sich Ihr Gerät mit dem drahtlosen Netzwerk verbunden hat (konkret mit dem Netzwerk dlinkap). bssid 00:13:46:49:41:76 gibt die MAC-Adresse Ihres Access Points aus und die Zeile mit authmode OPEN informiert Sie darüber, dass Ihre Kommunikation nicht verschlüsselt wird. Statische IP-Adressen Alternativ zu dynamischen IP-Adressen können Sie auch eine statische IP-Adresse verwenden. Dazu ersetzen Sie in Ihrer Konfiguration DHCP durch die zu verwendende IP-Adresse. Beachten Sie dabei, dass Sie die anderen Konfigurationsparameter nicht versehentlich verändern: wlans_ath0="wlan0" -ifconfig_wlan0="ssid your_ssid_here inet 192.168.1.100 netmask 255.255.255.0" +ifconfig_wlan0="inet 192.168.1.100 netmask 255.255.255.0 ssid your_ssid_here" WPA Bei WPA (Wi-Fi Protected Access) handelt es sich um ein Sicherheitsprotokoll, das in 802.11-Netzwerken verwendet wird, um die Nachteile von WEP (fehlende Authentifizierung und schwache Verschlüsselung) zu vermeiden. WPA stellt das aktuelle 802.1X-Authentifizierungsprotokoll dar und verwendet eine von mehreren Chiffren, um die Datensicherheit zu gewährleisten. Die einzige Chiffre, die von WPA verlangt wird, ist TKIP (Temporary Key Integrity Protocol), eine Chiffre, die die von WEP verwendete RC4-Chiffre um Funktionen zur Prüfung der Datenintegrität und zur Erkennung und Bekämpfung von Einbruchsversuchen erweitert. TKIP ist durch Softwaremodifikationen auch unter veralteter Hardware lauffähig. Im Vergleich zu WEP ist WPA zwar sehr viel sicherer, es ist aber dennoch nicht völlig immun gegen Angriffe. WPA definiert mit AES-CCMP noch eine weitere Chiffre als Alternative zu TKIP. AES-CCMP (das häufig als WPA2 oder RSN bezeichnet wird) sollte, wenn möglich, eingesetzt werden. WPA definiert Authentifizierungs- und Verschlüsselungsprotokolle. Die Authentifizierung erfolgt in der Regel über eine der folgenden Techniken: 802.1X gemeinsam mit einem Backend-Authentifizierungsdienst wie RADIUS, oder durch einen Minimal-Handshake zwischen der Station und dem Access Point mit einem vorher vereinbarten gemeinsamen Schlüssel. Die erste Technik wird als WPA Enterprise, die zweite hingegen als WPA Personal bezeichnet. Da sich der Aufwand für das Aufsetzen eines RADIUS-Backend-Servers für die meisten drahtlosen Netzwerke nicht lohnt, wird WPA in der Regel als WPA-PSK (WPA, Pre-Shared-Key) konfiguriert. Die Kontrolle der drahtlosen Verbindung sowie die vorangehende Authentifizierung (über Schlüssel oder durch die Kommunikation mit einem Server) erfolgt über das Programm &man.wpa.supplicant.8;, das über die Datei /etc/wpa_supplicant.conf eingerichtet wird. Ausführliche Informationen zur Konfiguration des Programms finden sich in der Manualpage &man.wpa.supplicant.conf.5;. WPA-PSK WPA-PSK oder WPA-Personal basiert auf einem gemeinsamen (vorher vereinbarten) Schlüssel (PSK), der aus einem Passwort generiert und danach als Master-Key des drahtlosen Netzwerks verwendet wird. Jeder Benutzer des drahtlosen Netzwerks verwendet daher den gleichen Schlüssel. WPA-PSK sollte nur in kleinen Netzwerken eingesetzt werden, in denen die Konfiguration eines Authentifizierungsservers nicht möglich oder erwünscht ist. Achten Sie darauf, dass Sie immer starke Passwörter verwenden, die ausreichend lang sind und, wenn möglich, auch Sonderzeichen enthalten, damit diese nicht leicht erraten und/oder umgangen werden können. Der erste Schritt zum Einsatz von WPA-PSK ist die Konfiguration der SSID und des gemeinsamen Schlüssels Ihres Netzwerks in der Datei /etc/wpa_supplicant.conf: network={ ssid="freebsdap" psk="freebsdmall" } Danach geben Sie in /etc/rc.conf an, dass WPA zur Verschlüsselung eingesetzt werden soll und dass die IP-Adresse über DHCP bezogen wird: wlans_ath0="wlan0" ifconfig_wlan0="WPA DHCP" Nun können Sie Ihr Netzgerät aktivieren: &prompt.root; /etc/rc.d/netif start Starting wpa_supplicant. DHCPDISCOVER on wlan0 to 255.255.255.255 port 67 interval 5 DHCPDISCOVER on wlan0 to 255.255.255.255 port 67 interval 6 DHCPOFFER from 192.168.0.1 DHCPREQUEST on wlan0 to 255.255.255.255 port 67 DHCPACK from 192.168.0.1 bound to 192.168.0.254 -- renewal in 300 seconds. wlan0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500 ether 00:11:95:d5:43:62 inet 192.168.0.254 netmask 0xffffff00 broadcast 192.168.0.255 media: IEEE 802.11 Wireless Ethernet OFDM/36Mbps mode 11g status: associated ssid freebsdap channel 1 (2412 MHz 11g) bssid 00:11:95:c3:0d:ac country US ecm authmode WPA2/802.11i privacy ON deftxkey UNDEF AES-CCM 3:128-bit txpower 21.5 bmiss 7 scanvalid 450 bgscan bgscanintvl 300 bgscanidle 250 roam:rssi 7 roam:rate 5 protmode CTS wme burst roaming MANUAL Alternativ können Sie die Konfiguration von WPA-PSK auch manuell durchführen, wobei Sie wiederum die Konfigurationsdatei /etc/wpa_supplicant.conf verwenden: &prompt.root; wpa_supplicant -i wlan0 -c /etc/wpa_supplicant.conf Trying to associate with 00:11:95:c3:0d:ac (SSID='freebsdap' freq=2412 MHz) Associated with 00:11:95:c3:0d:ac WPA: Key negotiation completed with 00:11:95:c3:0d:ac [PTK=CCMP GTK=CCMP] CTRL-EVENT-CONNECTED - Connection to 00:11:95:c3:0d:ac completed (auth) [id=0 id_str=] Im zweiten Schritt starten Sie nun dhclient, um eine IP-Adresse vom DHCP-Server zu beziehen: &prompt.root; dhclient wlan0 DHCPREQUEST on wlan0 to 255.255.255.255 port 67 DHCPACK from 192.168.0.1 bound to 192.168.0.254 -- renewal in 300 seconds. &prompt.root; ifconfig wlan0 wlan0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500 ether 00:11:95:d5:43:62 inet 192.168.0.254 netmask 0xffffff00 broadcast 192.168.0.255 media: IEEE 802.11 Wireless Ethernet OFDM/36Mbps mode 11g status: associated ssid freebsdap channel 1 (2412 MHz 11g) bssid 00:11:95:c3:0d:ac country US ecm authmode WPA2/802.11i privacy ON deftxkey UNDEF AES-CCM 3:128-bit txpower 21.5 bmiss 7 scanvalid 450 bgscan bgscanintvl 300 bgscanidle 250 roam:rssi 7 roam:rate 5 protmode CTS wme burst roaming MANUAL Enthält Ihre /etc/rc.conf bereits die Zeile ifconfig_wlan0="DHCP", müssen Sie dhclient nicht mehr manuell aufrufen, da dhclient in diesem Fall automatisch gestartet wird, nachdem wpa_supplicant die Schlüssel übergibt. Sollte der Einsatz von DHCP nicht möglich sein, können Sie auch eine statische IP-Adresse angeben, nachdem wpa_supplicant Ihre Station authentifiziert hat: &prompt.root; ifconfig wlan0 inet 192.168.0.100 netmask 255.255.255.0 &prompt.root; ifconfig wlan0 wlan0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500 ether 00:11:95:d5:43:62 inet 192.168.0.100 netmask 0xffffff00 broadcast 192.168.0.255 media: IEEE 802.11 Wireless Ethernet OFDM/36Mbps mode 11g status: associated ssid freebsdap channel 1 (2412 MHz 11g) bssid 00:11:95:c3:0d:ac country US ecm authmode WPA2/802.11i privacy ON deftxkey UNDEF AES-CCM 3:128-bit txpower 21.5 bmiss 7 scanvalid 450 bgscan bgscanintvl 300 bgscanidle 250 roam:rssi 7 roam:rate 5 protmode CTS wme burst roaming MANUAL Verwenden Sie DHCP nicht, müssen Sie zusätzlich noch das Standard-Gateway sowie den/die Nameserver manuell festlegen: &prompt.root; route add default your_default_router &prompt.root; echo "nameserver your_DNS_server" >> /etc/resolv.conf WPA und EAP-TLS Die zweite Möglichkeit, WPA einzusetzen, ist die Verwendung eines 802.1X-Backend-Authentifizierungsservers. Diese Variante wird als WPA-Enterprise bezeichnet, um sie vom weniger sicheren WPA-Personal abzugrenzen, das auf dem Austausch gemeinsamer (und vorher vereinbarter Schlüssel) basiert. Die bei WPA-Enterprise verwendete Authentifizierung basiert auf EAP (Extensible Authentication Protocol). EAP selbst bietet keine Verschlüsselung, sondern operiert in einem verschlüsselten Tunnel. Es gibt verschiedene, auf EAP basierende Authentifizierungsmethoden, darunter EAP-TLS, EAP-TTLS sowie EAP-PEAP. Bei EAP-TLS (EAP with Transport Layers Security) handelt es sich um sehr gut unterstütztes Authentifizierungsprotokoll, da es sich dabei um die erste EAP-Methode handelt, die von der Wi-Fi Alliance zertifiziert wurde. EAP-TLS erfordert drei Zertifikate: Das (auf allen Rechnern installierte) CA-Zertifikat, das Server-Zertifikat Ihres Authentifizierungsservers, sowie ein Client-Zertifikat für jeden drahtlosen Client. Sowohl der Authentifizierungsservers als auch die drahtlosen Clients authentifizieren sich gegenseitig durch ihre Zertifikate, wobei sie überprüfen, ob diese Zertifikate auch von der Zertifizierungs-Authorität (CA) des jeweiligen Unternehmens signiert wurden. Die Konfiguration erfolgt (analog zu WPA-PSK) über die Datei /etc/wpa_supplicant.conf: network={ ssid="freebsdap" proto=RSN key_mgmt=WPA-EAP eap=TLS identity="loader" ca_cert="/etc/certs/cacert.pem" client_cert="/etc/certs/clientcert.pem" private_key="/etc/certs/clientkey.pem" private_key_passwd="freebsdmallclient" } Der Name des Netzwerks (die SSID). Das RSN/WPA2-Protokoll (&ieee; 802.11i) wird verwendet. Die key_mgmt-Zeile bezieht sich auf das verwendete Key-Management-Protokoll. In diesem Beispiel wird WPA gemeinsam mit der EAP-Authentifizierung verwendet (WPA-EAP). Die für die Verbindung verwendete EAP-Methode. Das identity-Feld enthält den von EAP verwendeten Identifizierungsstring. Das Feld ca_cert gibt den Pfad zum CA-Zertifikat an. Dieses Datei wird benötigt, um das Server-Zertifikat zu verifizieren. Die client_cert-Zeile gibt den Pfad zum Client-Zertifikat an. Jeder Client hat ein eigenes, innerhalb des Netzwerks eindeutiges, Zertifikat. Das Feld private_key gibt den Pfad zum privaten Schlüssel des Client-Zertifikat an. Das Feld private_key_passwd enthält die Passphrase für den privaten Schlüssel. Danach fügen Sie die folgende Zeile in /etc/rc.conf ein: wlans_ath0="wlan0" ifconfig_wlan0="WPA DHCP" Nun können Sie Ihr drahtloses Gerät über das rc.d-System aktivieren: &prompt.root; /etc/rc.d/netif start Starting wpa_supplicant. DHCPREQUEST on wlan0 to 255.255.255.255 port 67 interval 7 DHCPREQUEST on wlan0 to 255.255.255.255 port 67 interval 15 DHCPACK from 192.168.0.20 bound to 192.168.0.254 -- renewal in 300 seconds. wlan0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500 ether 00:11:95:d5:43:62 inet 192.168.0.254 netmask 0xffffff00 broadcast 192.168.0.255 media: IEEE 802.11 Wireless Ethernet DS/11Mbps mode 11g status: associated ssid freebsdap channel 1 (2412 MHz 11g) bssid 00:11:95:c3:0d:ac country US ecm authmode WPA2/802.11i privacy ON deftxkey UNDEF AES-CCM 3:128-bit txpower 21.5 bmiss 7 scanvalid 450 bgscan bgscanintvl 300 bgscanidle 250 roam:rssi 7 roam:rate 5 protmode CTS wme burst roaming MANUAL Alternativ können Sie Ihr drahtloses Gerält wiederum manuell über wpa_supplicant und ifconfig aktivieren. WPA und EAP-TTLS Bei EAP-TLS müssen sowohl der Authentifizierungsserver als auch die Clients jeweils ein eigenes Zertifikat aufweisen. Setzen Sie hingegen EAP-TTLS (EAP-Tunneled Transport Layer Security) ein, ist das Client-Zertifikat optional. EAP-TTLS geht dabei ähnlich vor wie verschlüsselte Webseiten, bei denen der Webserver einen sicheren SSL-Tunnel erzeugen kann, ohne dass der Besucher dabei über ein client-seitiges Zertifikat verfügen muss. EAP-TTLS verwendet einen verschlüsselten TLS-Tunnel zum sicheren Transport der Authentifizierungsdaten. Die Konfiguration von EAP-TTLS erfolgt in der Datei /etc/wpa_supplicant.conf: network={ ssid="freebsdap" proto=RSN key_mgmt=WPA-EAP eap=TTLS identity="test" password="test" ca_cert="/etc/certs/cacert.pem" phase2="auth=MD5" } Die für die Verbindung verwendete EAP-Methode. Das identity-Feld enthält den Identifizierungsstring für die EAP-Authentifizierung innerhalb des verschlüsselten TlS-Tunnels. Das password-Feld enthält die Passphrase für die EAP-Authentifizierung. Das Feld ca_cert gibt den Pfad zum CA-Zertifikat an, das benötigt wird, um das Server-Zertifikat zu verifizieren. Die innerhalb des verschlüsselten TLS-Tunnels verwendete Authentifizierungsmethode. In unserem Beispiel handelt es sich dabei um EAP und MD5. Diese Phase der inneren Authentifizierung wird oft als phase2 bezeichnet. Folgende Zeilen müssen zusätzlich in die Datei /etc/rc.conf aufgenommen werden: wlans_ath0="wlan0" ifconfig_wlan0="WPA DHCP" Nun können Sie Ihr drahtloses Gerät aktivieren: &prompt.root; /etc/rc.d/netif start Starting wpa_supplicant. DHCPREQUEST on wlan0 to 255.255.255.255 port 67 interval 7 DHCPREQUEST on wlan0 to 255.255.255.255 port 67 interval 15 DHCPREQUEST on wlan0 to 255.255.255.255 port 67 interval 21 DHCPACK from 192.168.0.20 bound to 192.168.0.254 -- renewal in 300 seconds. wlan0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500 ether 00:11:95:d5:43:62 inet 192.168.0.254 netmask 0xffffff00 broadcast 192.168.0.255 media: IEEE 802.11 Wireless Ethernet DS/11Mbps mode 11g status: associated ssid freebsdap channel 1 (2412 MHz 11g) bssid 00:11:95:c3:0d:ac country US ecm authmode WPA2/802.11i privacy ON deftxkey UNDEF AES-CCM 3:128-bit txpower 21.5 bmiss 7 scanvalid 450 bgscan bgscanintvl 300 bgscanidle 250 roam:rssi 7 roam:rate 5 protmode CTS wme burst roaming MANUAL WPA und EAP-PEAP PEAP (Protected EAP) wurde als Alternative zu EAP-TTLS entwickelt. Es gibt zwei verschiedene PEAP-Methoden, wobei es sich bei PEAPv0/EAP-MSCHAPv2 um die häufiger verwendete Methode handelt. In den folgenden Ausführungen wird der Begriff PEAP synonym für diese EAP-Methode verwendet. PEAP ist nach EAP-TLS der am häufigsten verwendete und am besten unterstützte EAP-Standard. PEAP arbeitet ähnlich wie EAP-TTLS: Es verwendet ein server-seitiges Zertifikat, um einen verschlüsselten TLS-Tunnel zu erzeugen, über den die sichere Authentifizierung zwischen den Clients und dem Authentifizierungsserver erfolgt. In Sachen Sicherheit unterscheiden sich EAP-TTLS und PEAP allerdings: PEAP überträgt den Benutzernamen im Klartext und verschlüsselt nur das Passwort, während EAP-TTLS sowohl den Benutzernamen als auch das Passwort über den TLS-Tunnel überträgt. Um EAP-PEAP einzurichten, müssen Sie die Konfigurationsdatei /etc/wpa_supplicant.conf anpassen: network={ ssid="freebsdap" proto=RSN key_mgmt=WPA-EAP eap=PEAP identity="test" password="test" ca_cert="/etc/certs/cacert.pem" phase1="peaplabel=0" phase2="auth=MSCHAPV2" } Die für die Verbindung verwendete EAP-Methode. Das identity-Feld enthält den Identifizierungsstring für die innerhalb des verschlüsselten TLS-Tunnels erfolgende EAP-Authentifizierung. Das Feld password enthält die Passphrase für die EAP-Authentifizierung. Das Feld ca_cert gibt den Pfad zum CA-Zertifikat an, das zur Verifizierung des Server-Zertifikats benötigt wird. Dieses Feld enthält die Parameter für die erste Phase der Authentifizierung (also den TLS-Tunnel). Je nach dem, welchen Authentifizierungsserver Sie verwenden, müssen Sie hier einen unterschiedlichen Wert angeben. In den meisten Fällen wird dieses Feld den Wert client EAP encryption aufweisen, der durch die Angabe von peaplabel=0 gesetzt wird. Weitere Informationen zur Konfiguration von PEAP finden Sie in der Manualpage &man.wpa.supplicant.conf.5;. Das innerhalb des verschlüsselten TLS-Tunnels verwendete Authentifizierungsprotokoll. In unserem Beispiel handelt es sich dabei um auth=MSCHAPV2. Danach fügen Sie die folgende Zeile in /etc/rc.conf ein: ifconfig_ath0="WPA DHCP" Zuletzt müssen Sie die Netzwerkkarte noch aktivieren: &prompt.root; /etc/rc.d/netif start Starting wpa_supplicant. DHCPREQUEST on wlan0 to 255.255.255.255 port 67 interval 7 DHCPREQUEST on wlan0 to 255.255.255.255 port 67 interval 15 DHCPREQUEST on wlan0 to 255.255.255.255 port 67 interval 21 DHCPACK from 192.168.0.20 bound to 192.168.0.254 -- renewal in 300 seconds. wlan0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500 ether 00:11:95:d5:43:62 inet 192.168.0.254 netmask 0xffffff00 broadcast 192.168.0.255 media: IEEE 802.11 Wireless Ethernet DS/11Mbps mode 11g status: associated ssid freebsdap channel 1 (2412 MHz 11g) bssid 00:11:95:c3:0d:ac country US ecm authmode WPA2/802.11i privacy ON deftxkey UNDEF AES-CCM 3:128-bit txpower 21.5 bmiss 7 scanvalid 450 bgscan bgscanintvl 300 bgscanidle 250 roam:rssi 7 roam:rate 5 protmode CTS wme burst roaming MANUAL WEP WEP (Wired Equivalent Privacy) ist Teil des ursprünglichen 802.11-Standards. Es enthält keinen Authentifzierungsmechanismus und verfügt lediglich über eine schwache Zugriffskontrolle, die sehr leicht umgangen werden kann. WEP kann über ifconfig aktiviert werden: &prompt.root; ifconfig wlan0 create wlandev ath0 -&prompt.root; ifconfig wlan0 ssid my_net wepmode on weptxkey 3 wepkey 3:0x3456789012 \ - inet 192.168.1.100 netmask 255.255.255.0 +&prompt.root; ifconfig wlan0 inet 192.168.1.100 netmask 255.255.255.0 \ + ssid my_net wepmode on weptxkey 3 wepkey 3:0x3456789012 Mit weptxkey geben Sie an, welcher WEP-Schlüssel für für die Datenübertragung verwendet wird (in unserem Beispiel ist dies der dritte Schlüssel). Der gleiche Schlüssel muss auch am Access Point eingestellt sein. Kennen Sie den vom Access Point verwendeten Schlüssel nciht, sollten Sie zuerst den Wert 1 (d.h. den ersten Schlüssel) für diese Variable verwenden. Mit wepkey legen Sie den zu verwendenden WEP-Schlüssel in der Form Nummer:Schlüssel fest. Ist der Schlüssel "Nummer" nicht vorhanden, wird automatisch Schlüssel 1 verwendet. Die Angabe von "Nummer" ist zwingend nötig, wenn Sie einen anderen als den ersten Schlüssel verwenden wollen. In Ihrer Konfiguration müssen Sie 0x3456789012 durch den an Ihrem Access Point konfigurierten Schlüssel ersetzen. Weitere Informationen finden Sie in der Manualpage &man.ifconfig.8;. Das Programm wpa_supplicant eignet sich ebenfalls dazu, WEP für Ihr drahtloses Gerät zu aktivieren. Obige Konfiguration lässt sich dabei durch die Aufnahme der folgenden Zeilen in die Datei /etc/wpa_supplicant.conf realisieren: network={ ssid="my_net" key_mgmt=NONE wep_key3=3456789012 wep_tx_keyidx=3 } Danach müssen Sie das Programm noch aufrufen: &prompt.root; wpa_supplicant -i wlan0 -c /etc/wpa_supplicant.conf Trying to associate with 00:13:46:49:41:76 (SSID='dlinkap' freq=2437 MHz) Associated with 00:13:46:49:41:76 Ad-hoc-Modus Der IBSS-Modus (auch als Ad-hoc-Modus bezeichnet), ist für Punkt-zu-Punkt-Verbindungen vorgesehen. Um beispielsweise eine Ad-hoc-Verbindung zwischen den Rechnern A und B aufzubauen, benötigen Sie lediglich zwei IP-Adressen und eine SSID. Auf dem Rechner A geben Sie Folgendes ein: - &prompt.root; ifconfig wlan0 create wlandev ath0 -&prompt.root; ifconfig wlan0 ssid freebsdap mediaopt adhoc inet 192.168.0.1 netmask 255.255.255.0 + &prompt.root; ifconfig wlan0 create wlandev ath0 wlanmode adhoc +&prompt.root; ifconfig wlan0 inet 192.168.0.1 netmask 255.255.255.0 ssid freebsdap &prompt.root; ifconfig wlan0 - wlan0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500 - ether 00:11:95:c3:0d:ac - inet 192.168.0.1 netmask 0xffffff00 broadcast 192.168.0.255 - media: IEEE 802.11 Wireless Ethernet autoselect <adhoc> (autoselect <adhoc>) - status: associated - ssid freebsdap channel 2 bssid 02:11:95:c3:0d:ac - authmode OPEN privacy OFF txpowmax 36 protmode CTS bintval 100 + wlan0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric 0 mtu 1500 + ether 00:11:95:c3:0d:ac + inet 192.168.0.1 netmask 0xffffff00 broadcast 192.168.0.255 + media: IEEE 802.11 Wireless Ethernet autoselect mode 11g <adhoc> + status: running + ssid freebsdap channel 2 (2417 Mhz 11g) bssid 02:11:95:c3:0d:ac + country US ecm authmode OPEN privacy OFF txpower 21.5 scanvalid 60 + protmode CTS wme burst Der adhoc-Parameter gibt an, dass die Schnittstelle im IBSS-Modus läuft. Rechner B sollte nun in der Lage sein, Rechner A zu finden: - &prompt.root; ifconfig wlan0 up scan - SSID BSSID CHAN RATE S:N INT CAPS - freebsdap 02:11:95:c3:0d:ac 2 54M -90:-96 100 IS + &prompt.root; ifconfig wlan0 create wlandev ath0 wlanmode adhoc +&prompt.root; ifconfig wlan0 up scan + SSID/MESH ID BSSID CHAN RATE S:N INT CAPS + freebsdap 02:11:95:c3:0d:ac 2 54M -64:-96 100 IS WME Der Wert I (Spalte CAPS) gibt an, dass sich Rechner A im Ad-hoc-Modus befindet. Nun müssen Sie nur noch Rechner B eine unterschiedliche IP-Adresse zuweisen: - &prompt.root; ifconfig wlan0 create wlandev ath0 -&prompt.root; ifconfig wlan0 ssid freebsdap mediaopt adhoc inet 192.168.0.2 netmask 255.255.255.0 + &prompt.root; ifconfig wlan0 inet 192.168.0.2 netmask 255.255.255.0 ssid freebsdap &prompt.root; ifconfig wlan0 - wlan0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500 - ether 00:11:95:d5:43:62 - inet 192.168.0.2 netmask 0xffffff00 broadcast 192.168.0.255 - media: IEEE 802.11 Wireless Ethernet autoselect <adhoc> (autoselect <adhoc>) - status: associated - ssid freebsdap channel 2 bssid 02:11:95:c3:0d:ac - authmode OPEN privacy OFF txpowmax 36 protmode CTS bintval 100 + wlan0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric 0 mtu 1500 + ether 00:11:95:d5:43:62 + inet 192.168.0.2 netmask 0xffffff00 broadcast 192.168.0.255 + media: IEEE 802.11 Wireless Ethernet autoselect mode 11g <adhoc> + status: running + ssid freebsdap channel 2 (2417 Mhz 11g) bssid 02:11:95:c3:0d:ac + country US ecm authmode OPEN privacy OFF txpower 21.5 scanvalid 60 + protmode CTS wme burst - Damit sind die Rechner A und - B bereit und können untereinander - Daten austauschen. + Damit sind die Rechner A und + B bereit und können untereinander + Daten austauschen. &os; Host Access Points &os; kann als Access Point (AP) agieren. Dies verhindert, dass man sich einen Hardware AP kaufen oder ein ad-hoc Netzwerk laufen lassen muss. Dies kann sinnvoll sein, falls Ihre &os;-Computer als Gateway zu einem anderen Netzwerk (z.B. Internet) fungiert. Grundeinstellungen Bevor Sie ihren &os;-Computer als einen AP konfigurieren, muss der Kernel mit dem für ihre Wireless-Karte entsprechenden Treibern konfiguriert werden. Sie müssen ebenfalls die Sicherheitsprotokolle, die Sie nutzen wollen, dem Kernel hinzufügen. Für weitere Informationen siehe: . Die Verwendung der NDIS und &windows; Treiber erlauben zur Zeit keinen AP-Modus. Nur die nativen &os;-Wireless-Treiber unterstüten den AP Modus. Nachdem die Unterstützung für ihr drahtloses Netzwerk geladen ist, können Sie überprüfen, ob Ihr Wireless-Gerät den hostbasierenden Access-Point Modus (auch bekannt als hostap Modus) unterstützt: - &prompt.root; ifconfig ath0 list caps -ath0=783ed0f<WEP,TKIP,AES,AES_CCM,IBSS,HOSTAP,AHDEMO,TXPMGT,SHSLOT,SHPREAMBLE,MONITOR,TKIPMIC,WPA1,WPA2,BURST,WME> + &prompt.root; ifconfig wlan0 create wlandev ath0 +&prompt.root; ifconfig wlan0 list caps +drivercaps=6f85edc1<STA,FF,TURBOP,IBSS,HOSTAP,AHDEMO,TXPMGT,SHSLOT,SHPREAMBLE,MONITOR,MBSS,WPA1,WPA2,BURST,WME,WDS,BGSCAN,TXFRAG> +cryptocaps=1f<WEP,TKIP,AES,AES_CCM,TKIPMIC> Diese Ausgabe zeigt die Möglichkeiten der Karte. Das Wort HOSTAP bestätigt, dass diese Wireless-Karte als Access Point agieren kann. Die verschiedenen unterstützten Algorithmen - (z.B. WEP, TKIP, WPA2, usw.) werden ebenfalls angezeigt. + (z.B. WEP, TKIP, AES usw.) werden ebenfalls angezeigt. Diese Informationen sind wichtig, wenn Sie wissen wollen, welche Sicherheitsprotokolle auf diesem Access Point verwendbar sind. - Das Wireless-Gerät kann nun in den hostap Modus - gesetzt werden und mit der korrekten SSID und IP-Adresse - konfiguriert werden: + Das Wireless-Gerät kann nur während der Erzeugung + des Pseudo-Geräts in den hostap-Modus gesetzt werden. + Zuvor erstellte Pseudo-Geräte müssen also vorher + zerstört werden: - &prompt.root; ifconfig ath0 ssid freebsdap mode 11g mediaopt hostap inet 192.168.0.1 netmask 255.255.255.0 + &prompt.root; ifconfig wlan0 destroy - Benutzen Sie nochmals den Befehl ifconfig, - um den Status von der - ath0-Schnittstelle abzufragen: + Danach muss das Gerät erneut erstellt werden, bevor + die restlichen Netzwerkparameter konfiguriert werden + können: - &prompt.root; ifconfig ath0 -ath0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500 - inet 192.168.0.1 netmask 0xffffff00 broadcast 192.168.0.255 - inet6 fe80::211:95ff:fec3:dac%ath0 prefixlen 64 scopeid 0x4 - ether 00:11:95:c3:0d:ac - media: IEEE 802.11 Wireless Ethernet autoselect mode 11g <hostap> - status: associated - ssid freebsdap channel 1 bssid 00:11:95:c3:0d:ac - authmode OPEN privacy OFF txpowmax 38 bmiss 7 protmode CTS burst dtimperiod 1 bintval 100 + &prompt.root; ifconfig wlan0 create wlandev ath0 wlanmode hostap +&prompt.root; ifconfig wlan0 inet 192.168.0.1 netmask 255.255.255.0 ssid freebsdap mode 11g channel 1 + Benutzen Sie danach erneut den Befehl + ifconfig, um den Status der + wlan0-Schnittstelle abzufragen: + + &prompt.root; ifconfig wlan0 + wlan0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric 0 mtu 1500 + ether 00:11:95:c3:0d:ac + inet 192.168.0.1 netmask 0xffffff00 broadcast 192.168.0.255 + media: IEEE 802.11 Wireless Ethernet autoselect mode 11g <hostap> + status: running + ssid freebsdap channel 1 (2412 Mhz 11g) bssid 00:11:95:c3:0d:ac + country US ecm authmode OPEN privacy OFF txpower 21.5 scanvalid 60 + protmode CTS wme burst dtimperiod 1 -dfs + Die hostap-Parameter geben die - Schnittselle an, die im hostbasierenden Access Point Modus + Schnittstelle an, die im hostbasierenden Access Point Modus läuft. Die Konfiguration der Schnittstelle kann durch - Hinzufügen der folgenden Zeile in die + Hinzufügen der folgenden Zeilen in die Datei /etc/rc.conf automatisch während des Bootvorganges erfolgen: - ifconfig_ath0="ssid freebsdap mode 11g mediaopt hostap inet 192.168.0.1 netmask 255.255.255.0" + wlans_ath0="wlan0" +create_args_wlan0="wlanmode hostap" +ifconfig_wlan0="inet 192.168.0.1 netmask 255.255.255.0 ssid freebsdap mode 11g channel 1" Hostbasierender Access Point ohne Authentifizierung oder Verschlüsselung Obwohl es nicht empfohlen wird, einen AP ohne jegliche Authentifizierung oder Verschlüsselung laufen zu lassen, ist es eine einfache Art zu testen, ob der AP funktioniert. Diese Konfiguration ist auch wichtig für die Fehlersuche bei Client-Problemen. Nachdem Sie den AP, wie oben beschrieben, konfiguriert haben, ist es möglich von einem anderen drahtlosen Computer eine Suche nach dem AP zu starten: - &prompt.root; ifconfig ath0 up scan -SSID BSSID CHAN RATE S:N INT CAPS -freebsdap 00:11:95:c3:0d:ac 1 54M 22:1 100 ES + &prompt.root; ifconfig wlan0 create wlandev ath0 +&prompt.root; ifconfig wlan0 up scan +SSID/MESH ID BSSID CHAN RATE S:N INT CAPS +freebsdap 00:11:95:c3:0d:ac 1 54M -66:-96 100 ES WME Der Client-Rechner fand den Access Point und kann mit ihm verbunden werden: - &prompt.root; ifconfig ath0 ssid freebsdap inet 192.168.0.2 netmask 255.255.255.0 -&prompt.root; ifconfig ath0 -ath0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500 - inet6 fe80::211:95ff:fed5:4362%ath0 prefixlen 64 scopeid 0x1 - inet 192.168.0.2 netmask 0xffffff00 broadcast 192.168.0.255 - ether 00:11:95:d5:43:62 - media: IEEE 802.11 Wireless Ethernet autoselect (OFDM/54Mbps) - status: associated - ssid freebsdap channel 1 bssid 00:11:95:c3:0d:ac - authmode OPEN privacy OFF txpowmax 36 protmode CTS bintval 100 + &prompt.root; ifconfig wlan0 inet 192.168.0.2 netmask 255.255.255.0 ssid freebsdap +&prompt.root; ifconfig wlan0 + wlan0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric 0 mtu 1500 + ether 00:11:95:d5:43:62 + inet 192.168.0.2 netmask 0xffffff00 broadcast 192.168.0.255 + media: IEEE 802.11 Wireless Ethernet OFDM/54Mbps mode 11g + status: associated + ssid freebsdap channel 1 (2412 Mhz 11g) bssid 00:11:95:c3:0d:ac + country US ecm authmode OPEN privacy OFF txpower 21.5 bmiss 7 + scanvalid 60 bgscan bgscanintvl 300 bgscanidle 250 roam:rssi 7 + roam:rate 5 protmode CTS wme burst WPA-basierender Host-Access Point Dieser Abschnitt beschäftigt sich mit dem Konfigurieren eines &os;-Access-Points mit dem WPA-Sicherheitsprotokoll. Weitere Einzelheiten zu WPA und der Konfiguration von Clients mit WPA finden Sie im . Der hostapd-Dienst wird genutzt, um die Client-Authentifizierung und das Schlüsselmanagement auf dem Access Point mit aktiviertem WPA zu nutzen. In den folgenden Abschnitten werden allen Konfigurationen auf dem &os;-Computer ausgeführt, der als AP agiert. Nachdem der AP korrekt arbeitet, sollte hostapd automatisch beim Booten durch folgende Zeile in der /etc/rc.conf aktiviert werden: hostapd_enable="YES" Bevor Sie versuchen hostapd zu konfigurieren, stellen Sie sicher, dass die Grundeinstellungen, wie in beschrieben, ausgeführt wurden. WPA-PSK WPA-PSK ist für kleine Netzwerke gedacht, in denen die Verwendung eines Authentifizierungs-Backend-Server nicht möglich oder erwünscht ist. Die Konfiguration wird in /etc/hostapd.conf durchgeführt: - interface=ath0 + interface=wlan0 debug=1 ctrl_interface=/var/run/hostapd ctrl_interface_group=wheel ssid=freebsdap wpa=1 wpa_passphrase=freebsdmall wpa_key_mgmt=WPA-PSK wpa_pairwise=CCMP TKIP Dieses Feld zeigt die Wireless-Schnittstelle an, die für den Access Point verwendet wird an. Dieses Feld legt den debuglevel von hostapd während der Ausführung fest. Ein Wert von 1 ist der kleinste zulässige Wert. Das ctrl_interface-Feld gibt den Pfadnamen des Verzeichnisses an, der von hostapd dazu genutzt wird, um die domain socket Dateien zu speichern, die für die Kommunikation mit externen Programmen, wie z.B. &man.hostapd.cli.8;, benutzt werden. Hier wurden die Standardwerte benutzt. Die Zeile ctrl_interface_group legt fest, welche Gruppe (hier ist es die wheel-Gruppe) die Erlaubnis hat, die Schnittstellendateien zu kontrollieren. Dieses Feld setzt den Netzwerknamen. Das wpa-Feld aktiviert WPA und gibt an welches WPA-Authentifizierungprotokoll benötigt wird. Ein Wert von 1 konfiguriert den AP mit WPA-PSK. Das wpa_passphrase-Feld beinhaltet das ASCII-Passwort für die WPA-Authentifikation. Verwenden Sie immer sichere Passwörter, die ausreichend lang sind und aus vielen unterschiedlichen Zeichen bestehen, damit sie nicht erraten werden oder umgangen werden können. Die wpa_key_mgmt Zeile bestimmt das Schlüsselmanagement-Protokoll, das benutzt wird. In unserem Fall ist es WPA-PSK. Das wpa_pairwise Feld zeigt die zulässigen Verschlüsselungs-Algorithmen des Access Points. Hier werden beide, TKIP (WPA) und CCMP (WPA2), akzeptiert. CCMP-Verschlüsselung ist eine Alternative zu TKIP und sollte wenn möglich eingesetzt werden. TKIP sollte nur da eingesetzt werden, wo kein CCMP möglich ist. Als nächstes wird der hostapd gestartet: - &prompt.root /etc/rc.d/hostapd forcestart + &prompt.root; /etc/rc.d/hostapd forcestart - &prompt.root; ifconfig ath0 -ath0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 2290 - inet 192.168.0.1 netmask 0xffffff00 broadcast 192.168.0.255 - inet6 fe80::211:95ff:fec3:dac%ath0 prefixlen 64 scopeid 0x4 - ether 00:11:95:c3:0d:ac - media: IEEE 802.11 Wireless Ethernet autoselect mode 11g <hostap> - status: associated - ssid freebsdap channel 1 bssid 00:11:95:c3:0d:ac - authmode WPA2/802.11i privacy MIXED deftxkey 2 TKIP 2:128-bit txpowmax 36 protmode CTS dtimperiod 1 bintval 100 + &prompt.root; ifconfig wlan0 + wlan0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 2290 + inet 192.168.0.1 netmask 0xffffff00 broadcast 192.168.0.255 + inet6 fe80::211:95ff:fec3:dac%ath0 prefixlen 64 scopeid 0x4 + ether 00:11:95:c3:0d:ac + media: IEEE 802.11 Wireless Ethernet autoselect mode 11g <hostap> + status: associated + ssid freebsdap channel 1 bssid 00:11:95:c3:0d:ac + authmode WPA2/802.11i privacy MIXED deftxkey 2 TKIP 2:128-bit txpowmax 36 protmode CTS dtimperiod 1 bintval 100 - Der Access Point ist nun am laufen, die Clients + Der Access Point läft nun, die Clients können mit ihm verbunden werden. Weitere Informationen finden Sie im . Es ist möglich zu sehen, welche Stationen mit dem AP verbunden sind. Dazu geben Sie den Befehl - ifconfig ath0 list sta + ifconfig wlan0 list sta ein. WEP hostbasierender Access Point Es ist nicht empfehlenswert, einen Access Point mit WEP zu konfigurieren, da es keine Authentifikationsmechanismen gibt und WEP leicht zu knacken ist. Einige ältere WLAN-Karten unterstützen nur WEP als Sicherheitsprotokoll. Für solche Karten ist es notwendig den AP ohne Authentifikation, Verschlüsselung oder mit dem WEP-Protokoll zu konfigurieren. - Das Wireless-Gerät kann nun in den hostap Modus + Das Wireless-Gerät kann nun in den hostap-Modus versetzt werden und mit der korrekten SSID und IP-Adresse konfiguriert werden: - &prompt.root; ifconfig ath0 ssid freebsdap wepmode on weptxkey 3 wepkey 3:0x3456789012 mode 11g mediaopt hostap \ -inet 192.168.0.1 netmask 255.255.255.0 + &prompt.root; ifconfig wlan0 create wlandev ath0 wlanmode hostap +&prompt.root; ifconfig wlan0 inet 192.168.0.1 netmask 255.255.255.0 \ + ssid freebsdap wepmode on weptxkey 3 wepkey 3:0x3456789012 mode 11g Der weptxkey gibt an, welcher WEP-Schlüssel bei der Übertragung benutzt wird. Hier nutzen wir den 3. Schlüssel (die Nummerierung der Schlüssel beginnt bei 1). Dieses Parameter muss angegeben sein, damit die Daten wirklich verschlüsselt werden. Der wepkey gibt den gewählten WEP-Schlüssel an. Er sollte im folgenden Format index:key vorliegen. Wenn kein Index vorhanden ist, wird der Schlüssel 1 benutzt. Das bedeutet wir brauchen einen Index, falls wir einen anderen Schlüssel als den ersten nutzen wollen. Benutzen Sie den Befehl ifconfig - noch einmal um den Status von der - ath0-Schnittstelle zu sehen: + noch einmal um den Status der + wlan0-Schnittstelle zu sehen: - &prompt.root; ifconfig ath0 -ath0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500 - inet 192.168.0.1 netmask 0xffffff00 broadcast 192.168.0.255 - inet6 fe80::211:95ff:fec3:dac%ath0 prefixlen 64 scopeid 0x4 - ether 00:11:95:c3:0d:ac - media: IEEE 802.11 Wireless Ethernet autoselect mode 11g <hostap> - status: associated - ssid freebsdap channel 1 bssid 00:11:95:c3:0d:ac - authmode OPEN privacy ON deftxkey 3 wepkey 3:40-bit txpowmax 36 protmode CTS dtimperiod 1 bintval 100 + &prompt.root; ifconfig wlan0 + wlan0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric 0 mtu 1500 + ether 00:11:95:c3:0d:ac + inet 192.168.0.1 netmask 0xffffff00 broadcast 192.168.0.255 + media: IEEE 802.11 Wireless Ethernet autoselect mode 11g <hostap> + status: running + ssid freebsdap channel 4 (2427 Mhz 11g) bssid 00:11:95:c3:0d:ac + country US ecm authmode OPEN privacy ON deftxkey 3 wepkey 3:40-bit + txpower 21.5 scanvalid 60 protmode CTS wme burst dtimperiod 1 -dfs - Es ist möglich von einem anderen drahtlosen - Computer eine Suche nach dem AP zu starten: + Es ist möglich, von einem anderen drahtlosen + Computer eine Suche nach dem AP zu starten: - &prompt.root; ifconfig ath0 up scan + &prompt.root; ifconfig wlan0 create wlandev ath0 +&prompt.root; ifconfig wlan0 up scan SSID BSSID CHAN RATE S:N INT CAPS freebsdap 00:11:95:c3:0d:ac 1 54M 22:1 100 EPS Der Client-Rechner fand den Access Point und kann mit den korrekten Parametern (Schlüssel usw.) mit ihm verbunden werden. Weitere Informationen gibt es in folgendem Benutzung von drahtgebundenen und drahtlosen Verbindungen Eine Verbindung per Kabel bietet eine bessere Leistung und eine höhere Zuverlässigkeit, während die Wireless-Verbindung eine höhere Flexibilität und Mobilität bietet. Benutzer von Laptops wollen normalerweise beides nutzen und zwischen beiden hin und her schalten. Unter &os; ist es möglich zwei oder mehr Netzwerkschnittstellen in einem failover-Mode zu kombinieren, so dass automatisch die beste verfügbare Verbindung aus der Gruppe ausgewählt wird, sobald der Linkstatus wechselt. Wir behandeln Link-Aggregation und Failover in dem Kapitel . Dort gibt es auch ein Beispiel () für die Verwendung von sowohl kabelgebundenen wie auch drahtlosen Verbindungen. Problembehandlung Die folgenden Auflistung zeigt, wie Sie einige häufig auftretende Probleme bei der Einrichtung Ihres drahtlosen Netzwerks beheben können. Wird Ihr Access Point bei der Suche nicht gefunden, sollten Sie überprüfen, ob Sie bei Konfiguration Ihres drahtlosen Geräts die Anzahl der Kanäle beschränkt haben. Wenn Sie sich nicht mit Ihrem Access Point verbinden können, sollten Sie überprüfen, ob die Konfiguration Ihrer Station auch der des Access Points entspricht. Achten Sie dabei speziell auf die Authentifzierungsmethode und die Sicherheitsprotokolle. Halten Sie Ihre Konfiguration so einfach wie möglich. Verwenden Sie ein Sicherheitsprotokoll wie WPA oder WEP, sollten Sie testweise Ihren Access Point auf offene Authentifizierung und keine Sicherheit einstellen. Danach versuchen Sie sich erneut mit Ihren Access Point zu verbinden. Nachdem Sie sich mit dem Access Point verbinden können, prüfen Sie die Sicherheitseinstellungen, beginnend mit einfachen Werkzeugen wie &man.ping.8;. Das Programm wpa_supplicant kann Ihnen bei der Fehlersuche helfen. Dazu starten Sie es manuell mit der Option und durchsuchen anschließend die Protokollinformationen nach eventuellen Fehlermeldungen. Zusätzlich gibt es auch zahlreiche Low-Level-Debugging-Werkzeuge. Die Ausgabe von Debugging-Informationen des 802.11 Protocol Support Layers lassen sich mit dem Programm wlandebug (das sich unter /usr/src/tools/tools/net80211 befindet) aktivieren. Um beispielsweise während der Suche nach Access Points und des Aufbaus von 802.11-Verbindungen (Handshake) auftretende Systemmeldungen auf die Konsole auszugeben, verwenden Sie den folgenden Befehl: &prompt.root; wlandebug -i ath0 +scan+auth+debug+assoc net.wlan.0.debug: 0 => 0xc80000<assoc,auth,scan> Der 802.11-Layer liefert umfangreiche Statistiken, die Sie mit dem Werkzeug wlanstats abrufen können. Diese Statistiken sollten alle Fehler identifizieren, die im 802.11-Layer auftreten. Beachten Sie aber, dass einige Fehler bereits im darunterliegenden Gerätetreiber auftreten und daher in diesen Statistiken nicht enthalten sind. Wie Sie Probleme des Gerätetreibers identifizieren, entnehmen Sie bitte der Dokumentation Ihres Gerätetreibers. Können Sie Ihr Problem durch diese Maßnahmen nicht lösen, sollten Sie einen Problembericht (PR) erstellen und die Ausgabe der weiter oben genannten Werkzeuge in den Bericht aufnehmen. Pav Lucistnik Beigetragen von
pav@FreeBSD.org
Bluetooth Bluetooth Übersicht Bluetooth ermöglicht die Bildung von persönlichen Netzwerken über drahtlose Verbindungen bei einer maximalen Reichweite von 10 Metern und operiert im unlizensierten 2,4-GHz-Band. Solche Netzwerke werden normalerweise spontan gebildet, wenn sich mobile Geräte, wie Mobiltelefone, Handhelds oder Notebooks miteinander verbinden. Im Gegensatz zu Wireless LAN ermöglicht Bluetooth auch höherwertige Dienste, wie FTP-ähnliche Dateiserver, Filepushing, Sprachübertragung, Emulation von seriellen Verbindungen und andere mehr. Der Bluetooth-Stack von &os; verwendet das Netgraph-Framework (&man.netgraph.4;). Viele Bluetooth-USB-Adapter werden durch den &man.ng.ubt.4;-Treiber unterstützt. Auf dem Chip BCM2033 von Broadcom basierende Bluetooth-Geräte werden von den Treibern &man.ubtbcmfw.4; sowie &man.ng.ubt.4; unterstützt. Die Bluetooth-PC-Card 3CRWB60-A von 3Com verwendet den &man.ng.bt3c.4;-Treiber. Serielle sowie auf UART basierende Bluetooth-Geräte werden von &man.sio.4;, &man.ng.h4.4; sowie &man.hcseriald.8; unterstützt. Dieses Kapitel beschreibt die Verwendung von USB-Bluetooth-Adaptern. Die Bluetooth-Unterstützung aktivieren Bluetooth-Unterstützung ist in der Regel als Kernelmodul verfügbar. Damit ein Gerät funktioniert, muss der entsprechende Treiber im Kernel geladen werden: &prompt.root; kldload ng_ubt Ist das Bluetooth-Gerät beim Systemstart angeschlossen, kann das entsprechende Modul auch von /boot/loader.conf geladen werden: ng_ubt_load="YES" Schließen Sie Ihren USB-Adapter an, sollte eine Meldung ähnlich der folgenden auf der Konsole (oder in syslog) erscheinen: ubt0: vendor 0x0a12 product 0x0001, rev 1.10/5.25, addr 2 ubt0: Interface 0 endpoints: interrupt=0x81, bulk-in=0x82, bulk-out=0x2 ubt0: Interface 1 (alt.config 5) endpoints: isoc-in=0x83, isoc-out=0x3, wMaxPacketSize=49, nframes=6, buffer size=294 Zum Starten und Beenden des Bluetooth-Stacks verwenden Sie das Skript /etc/rc.d/bluetooth. Es ist empfehlenswert, den Bluetooth-Stack zu beenden, bevor Sie den Adapter entfernen. Selbst wenn Sie dies nicht tun, kommt es (normalerweise) zu keinem fatalen Fehler. Wenn Sie den Bluetooth-Stack starten, erhalten Sie eine Meldung ähnlich der folgenden: &prompt.root; /etc/rc.d/bluetooth start ubt0 BD_ADDR: 00:02:72:00:d4:1a Features: 0xff 0xff 0xf 00 00 00 00 00 <3-Slot> <5-Slot> <Encryption> <Slot offset> <Timing accuracy> <Switch> <Hold mode> <Sniff mode> <Park mode> <RSSI> <Channel quality> <SCO link> <HV2 packets> <HV3 packets> <u-law log> <A-law log> <CVSD> <Paging scheme> <Power control> <Transparent SCO data> Max. ACL packet size: 192 bytes Number of ACL packets: 8 Max. SCO packet size: 64 bytes Number of SCO packets: 8 HCI Das Host Controller Interface (HCI) Das Host Controller Interface (HCI) bietet eine Befehlsschnittstelle zum Basisbandcontroller und Linkmanager, sowie Zugriff auf den Hardwarestatus und die Kontrollregister. Dadurch wird ein einheitlicher Zugriff auf die Fähigkeiten des Bluetooth-Basisbands möglich. Die HCI-Layer des Rechners tauschen Daten und Befehle mit der HCI-Firmware der Bluetooth-Geräte aus. Über den Host Controller Transport Layer-Treiber (also den physikalischen Bus) können beide HCI-Layer miteinander kommunizieren. Eine einzelne Netgraph-Gerätedatei vom Typ hci wird für ein einzelnes Bluetooth-Gerät erzeugt. Die HCI-Gerätedatei ist normalerweise mit der Bluetooth-Gerätetreiberdatei (downstream) sowie der L2CAP-Gerätedatei (upstream) verbunden. Alle HCI-Operationen müssen über die HCI-Gerätedatei und nicht über die Treiberdatei erfolgen. Der Standardname für die HCI-Gerätedatei (die in &man.ng.hci.4; beschrieben wird) lautet devicehci. Eine der wichtigsten Aufgaben ist das Auffinden von sich in Reichweite befindenden Bluetooth-Geräten. Diese Funktion wird als inquiry bezeichnet. Inquiry sowie andere mit HCI in Verbindung stehende Funktionen werden von &man.hccontrol.8; zur Verfügung gestellt. Das folgende Beispiel zeigt, wie man herausfindet, welche Bluetooth-Geräte sich in Reichweite befinden. Eine solche Abfrage dauert nur wenige Sekunden. Beachten Sie, dass ein Gerät nur dann antwortet, wenn es sich im Modus discoverable befindet. &prompt.user; hccontrol -n ubt0hci inquiry Inquiry result, num_responses=1 Inquiry result #0 BD_ADDR: 00:80:37:29:19:a4 Page Scan Rep. Mode: 0x1 Page Scan Period Mode: 00 Page Scan Mode: 00 Class: 52:02:04 Clock offset: 0x78ef Inquiry complete. Status: No error [00] BD_ADDR stellt, ähnlich der MAC-Adresse einer Netzwerkkarte, die eindeutige Adresse eines Bluetooth-Gerätes dar. Diese Adresse ist für die Kommunikation mit dem Gerät nötig. Es ist aber auch möglich, BD_ADDR einen Klartextnamen zuzuweisen. Die Datei /etc/bluetooth/hosts enthält Informationen über die bekannten Bluetooth-Rechner. Das folgende Beispiel zeigt, wie man den Klartextnamen eines entfernten Geräts in Erfahrung bringen kann: &prompt.user; hccontrol -n ubt0hci remote_name_request 00:80:37:29:19:a4 BD_ADDR: 00:80:37:29:19:a4 Name: Pav's T39 Wenn Sie ein entferntes Bluetooth-Gerät abfragen, wird dieses Ihren Rechner unter dem Namen your.host.name (ubt0) finden. Dieser Name kann aber jederzeit geändert werden. Bluetooth ermöglicht Punkt-zu-Punkt-Verbindungen (an denen nur zwei Bluetooth-Geräte beteiligt sind), aber auch Punkt-zu-Multipunkt-Verbindungen, bei denen eine Verbindung von mehreren Bluetooth-Geräten gemeinsam genutzt wird. Das folgende Beispiel zeigt, wie man die aktiven Basisbandverbindungen des lokalen Gerätes anzeigen kann: &prompt.user; hccontrol -n ubt0hci read_connection_list Remote BD_ADDR Handle Type Mode Role Encrypt Pending Queue State 00:80:37:29:19:a4 41 ACL 0 MAST NONE 0 0 OPEN Ein connection handle ist für die Beendigung einer Basisbandverbindung nützlich. Im Normalfall werden inaktive Verbindungen aber automatisch vom Bluetooth-Stack getrennt. &prompt.root; hccontrol -n ubt0hci disconnect 41 Connection handle: 41 Reason: Connection terminated by local host [0x16] Rufen Sie hccontrol help auf, wenn Sie eine komplette Liste aller verfügbaren HCI-Befehle benötigen. Die meisten dieser Befehle müssen nicht als root ausgeführt werden. L2CAP Das Logical Link Control and Adaptation Protocol (L2CAP) Das Logical Link Control and Adaptation Protocol (L2CAP) bietet höherwertigen Protokollen verbindungsorientierte und verbindungslose Datendienste an. Dazu gehören auch Protokollmultiplexing, Segmentierung und Reassemblierung. L2CAP erlaubt höherwertigen Protokollen und Programmen den Versand und Empfang von L2CAP-Datenpaketen mit einer Länge von bis zu 64 Kilobytes. L2CAP arbeitet kanalbasiert. Ein Kanal ist eine logische Verbindung innerhalb einer Basisbandverbindung. Jeder Kanal ist dabei an ein einziges Protokoll gebunden. Mehrere Geräte können an das gleiche Protokoll gebunden sein, es ist aber nicht möglich, einen Kanal an mehrere Protokolle zu binden. Jedes über einen Kanal ankommende L2CAP-Paket wird an das entsprechende höherwertige Protokoll weitergeleitet. Mehrere Kanäle können sich die gleiche Basisbandverbindung teilen. Eine einzelne Netgraph-Gerätedatei vom Typ l2cap wird für ein einzelnes Bluetooth-Gerät erzeugt. Die L2CAP-Gerätedatei ist normalerweise mit der Bluetooth-HCI-Gerätedatei (downstream) sowie der Bluetooth-Socket-Gerätedatei (upstream) verbunden. Der Standardname für die L2CAP-Gerätedatei, die in &man.ng.l2cap.4; beschrieben wird, lautet devicel2cap. Ein nützlicher Befehl zum Anpingen von anderen Geräten ist &man.l2ping.8;. Einige Bluetooth-Geräte senden allerdings nicht alle erhaltenen Daten zurück. Die Ausgabe 0 bytes ist also kein Fehler: &prompt.root; l2ping -a 00:80:37:29:19:a4 0 bytes from 0:80:37:29:19:a4 seq_no=0 time=48.633 ms result=0 0 bytes from 0:80:37:29:19:a4 seq_no=1 time=37.551 ms result=0 0 bytes from 0:80:37:29:19:a4 seq_no=2 time=28.324 ms result=0 0 bytes from 0:80:37:29:19:a4 seq_no=3 time=46.150 ms result=0 Das Programm &man.l2control.8; liefert Informationen über L2CAP-Dateien. Das folgende Beispiel zeigt, wie man die Liste der logischen Verbindungen (Kanäle) sowie die Liste der Basisbandverbindungen abfragen kann: &prompt.user; l2control -a 00:02:72:00:d4:1a read_channel_list L2CAP channels: Remote BD_ADDR SCID/ DCID PSM IMTU/ OMTU State 00:07:e0:00:0b:ca 66/ 64 3 132/ 672 OPEN &prompt.user; l2control -a 00:02:72:00:d4:1a read_connection_list L2CAP connections: Remote BD_ADDR Handle Flags Pending State 00:07:e0:00:0b:ca 41 O 0 OPEN &man.btsockstat.1; ist ein weiteres Diagnoseprogramm. Es funktioniert analog zu &man.netstat.1;, arbeitet aber mit Bluetooth-Datenstrukturen. Das folgende Beispiel zeigt die gleiche Liste der logischen Verbindungen wie &man.l2control.8; im vorherigen Beispiel. &prompt.user; btsockstat Active L2CAP sockets PCB Recv-Q Send-Q Local address/PSM Foreign address CID State c2afe900 0 0 00:02:72:00:d4:1a/3 00:07:e0:00:0b:ca 66 OPEN Active RFCOMM sessions L2PCB PCB Flag MTU Out-Q DLCs State c2afe900 c2b53380 1 127 0 Yes OPEN Active RFCOMM sockets PCB Recv-Q Send-Q Local address Foreign address Chan DLCI State c2e8bc80 0 250 00:02:72:00:d4:1a 00:07:e0:00:0b:ca 3 6 OPEN Das RFCOMM-Protokoll RFCOMM Das RFCOMM-Protokoll emuliert serielle Verbindungen über das L2CAP-Protokoll. Es basiert auf dem ETSI-Standard TS 07.10. Bei RFCOMM handelt es sich um ein einfaches Transportprotokoll, das um Funktionen zur Emulation der 9poligen Schaltkreise von mit RS-232 (EIATIA-232-E) kompatiblen seriellen Ports ergänzt wurde. RFCOMM erlaubt bis zu 60 simultane Verbindungen (RFCOMM-Kanäe) zwischen zwei Bluetooth-Geräten. Eine RFCOMM-Kommunikation besteht aus zwei Anwendungen (den Kommunikationsendpunkten), die über das Kommunikationssegment miteinander verbunden sind. RFCOMM unterstützt Anwendungen, die auf serielle Ports angewiesen sind. Das Kommunikationssegment entspricht der (direkten) Bluetooth-Verbindung zwischen den beiden Geräten. RFCOMM kümmert sich um die direkte Verbindung von zwei Geräten, oder um die Verbindung zwischen einem Gerät und einem Modem (Netzwerkverbindung). RFCOMM unterstützt auch andere Konfigurationen. Ein Beispiel dafür sind Module, die drahtlose Bluetooth-Geräte mit einer verkabelten Schnittstelle verbinden können. Unter &os; wurde das RFCOMM-Protokoll im Bluetooth Socket-Layer implementiert. Pairing Erstmaliger Verbindungsaufbau zwischen zwei Bluetooth-Geräten (<foreignphrase>Pairing</foreignphrase>) In der Voreinstellung nutzt Bluetooth keine Authentifizierung, daher kann sich jedes Bluetoothgerät mit jedem anderen Gerät verbinden. Ein Bluetoothgerät (beispielsweise ein Mobiltelefon) kann jedoch für einen bestimmten Dienst (etwa eine Einwählverbindung) eine Authentifizierung anfordern. Bluetooth verwendet zu diesem Zweck PIN-Codes. Ein PIN-Code ist ein maximal 16 Zeichen langer ASCII-String. Damit eine Verbindung zustande kommt, muss auf beiden Geräten der gleiche PIN-Code verwendet werden. Nachdem der Code eingegeben wurde, erzeugen beide Geräte einen link key, der auf den Geräten gespeichert wird. Beim nächsten Verbindungsaufbau wird der zuvor erzeugte Link Key verwendet. Diesen Vorgang bezeichnet man als Pairing. Geht der Link Key auf einem Gerät verloren, muss das Pairing wiederholt werden. Der &man.hcsecd.8;-Daemon verarbeitet alle Bluetooth-Authentifzierungsanforderungen und wird über die Datei /etc/bluetooth/hcsecd.conf konfiguriert. Der folgende Ausschnitt dieser Datei zeigt die Konfiguration für ein Mobiltelefon, das den PIN-Code 1234 verwendet: device { bdaddr 00:80:37:29:19:a4; name "Pav's T39"; key nokey; pin "1234"; } Von der Länge abgesehen, unterliegen PIN-Codes keinen Einschränkungen. Einige Geräte, beispielsweise Bluetooth-Headsets, haben einen festen PIN-Code eingebaut. Die Option sorgt dafür, dass der &man.hcsecd.8;-Daemon im Vordergrund läuft. Dadurch kann der Ablauf einfach verfolgt werden. Stellen Sie das entfernte Gerät auf receive pairing und initiieren Sie die Bluetoothverbindung auf dem entfernten Gerät. Sie erhalten die Meldung, dass Pairing akzeptiert wurde und der PIN-Code benötigt wird. Geben Sie den gleichen PIN-Code ein, den Sie in hcsecd.conf festgelegt haben. Ihr Computer und das entfernte Gerät sind nun miteinander verbunden. Alternativ können Sie das Pairing auch auf dem entfernten Gerät initiieren. Unter &os; 5.5, 6.1 und neuer können Sie hcsecd durch das Einfügen der folgenden Zeile in /etc/rc.conf beim Systemstart automatisch aktivieren: hcsecd_enable="YES" Es folgt nun eine beispielhafte Ausgabe des hcsecd-Daemons: hcsecd[16484]: Got Link_Key_Request event from 'ubt0hci', remote bdaddr 0:80:37:29:19:a4 hcsecd[16484]: Found matching entry, remote bdaddr 0:80:37:29:19:a4, name 'Pav's T39', link key doesn't exist hcsecd[16484]: Sending Link_Key_Negative_Reply to 'ubt0hci' for remote bdaddr 0:80:37:29:19:a4 hcsecd[16484]: Got PIN_Code_Request event from 'ubt0hci', remote bdaddr 0:80:37:29:19:a4 hcsecd[16484]: Found matching entry, remote bdaddr 0:80:37:29:19:a4, name 'Pav's T39', PIN code exists hcsecd[16484]: Sending PIN_Code_Reply to 'ubt0hci' for remote bdaddr 0:80:37:29:19:a4 SDP Das Service Discovery Protocol (SDP) Das Service Discovery Protocol (SDP) erlaubt es Clientanwendungen, von Serveranwendungen angebotene Dienste sowie deren Eigenschaften abzufragen. Zu diesen Eigenschaften gehören die Art oder die Klasse der angebotenen Dienste sowie der Mechanismus oder das Protokoll, die zur Nutzung des Dienstes notwendig sind. SDP ermöglicht Verbindungen zwischen einem SDP-Server und einem SDP-Client. Der Server enthält eine Liste mit den Eigenschaften der vom Server angebotenen Dienste. Jeder Eintrag beschreibt jeweils einen einzigen Serverdienst. Ein Client kann diese Informationen durch eine SDP-Anforderung vom SDP-Server beziehen. Wenn der Client oder eine Anwendung des Clients einen Dienst nutzen will, muss eine seperate Verbindung mit dem Dienstanbieter aufgebaut werden. SDP bietet einen Mechanismus zum Auffinden von Diensten und deren Eigenschaften an, es bietet aber keine Mechanismen zur Verwendung dieser Dienste. Normalerweise sucht ein SDP-Client nur nach Diensten, die bestimmte geforderte Eigenschaften erfüllen. Es ist aber auch möglich, anhand der Dienstbeschreibungen eine allgemeine Suche nach den von einem Server angebotenen Diensten durchzuführen. Diesen Vorgang bezeichnet man als Browsing. Der Bluetooth-SDP-Server &man.sdpd.8; und der Kommandozeilenclient &man.sdpcontrol.8; sind bereits in der Standardinstallation von &os; enthalten. Das folgende Beispiel zeigt, wie eine SDP-Abfrage durchgeführt wird: &prompt.user; sdpcontrol -a 00:01:03:fc:6e:ec browse Record Handle: 00000000 Service Class ID List: Service Discovery Server (0x1000) Protocol Descriptor List: L2CAP (0x0100) Protocol specific parameter #1: u/int/uuid16 1 Protocol specific parameter #2: u/int/uuid16 1 Record Handle: 0x00000001 Service Class ID List: Browse Group Descriptor (0x1001) Record Handle: 0x00000002 Service Class ID List: LAN Access Using PPP (0x1102) Protocol Descriptor List: L2CAP (0x0100) RFCOMM (0x0003) Protocol specific parameter #1: u/int8/bool 1 Bluetooth Profile Descriptor List: LAN Access Using PPP (0x1102) ver. 1.0 ... und so weiter. Beachten Sie, dass jeder Dienst eine Liste seiner Eigenschaften (etwa den RFCOMM-Kanal) zurückgibt. Je nach dem, welche Dienste Sie benötigen, sollten Sie sich einige dieser Eigenschaften notieren. Einige Bluetooth-Implementationen unterstützen kein Service Browsing und geben daher eine leere Liste zurück. Ist dies der Fall, ist es dennoch möglich, nach einem bestimmten Dienst zu suchen. Das folgende Beispiel demonstriert die Suche nach dem OBEX Object Push (OPUSH) Dienst: &prompt.user; sdpcontrol -a 00:01:03:fc:6e:ec search OPUSH Unter &os; ist es die Aufgabe des &man.sdpd.8;-Servers, Bluetooth-Clients verschiedene Dienste anzubieten. Unter &os; 5.5, 6.1 und neuer können Sie dazu die folgende Zeile in die Datei /etc/rc.conf einfügen: sdpd_enable="YES" Nun kann der sdpd-Daemon durch folgene Eingabe gestartet werden: &prompt.root; /etc/rc.d/sdpd start Der lokale Server, der den entfernten Clients Bluetooth-Dienste anbieten soll, bindet diese Dienste an den lokalen SDP-Daemon. Ein Beispiel für eine solche Anwendung ist &man.rfcomm.pppd.8;. Einmal gestartet, wird der Bluetooth-LAN-Dienst an den lokalen SDP-Daemon gebunden. Die Liste der vorhandenen Dienste, die am lokalen SDP-Server registriert sind, lässt sich durch eine SDP-Abfrage über einen lokalen Kontrollkanal abfragen: &prompt.root; sdpcontrol -l browse Einwahlverbindungen (Dial-Up Networking (DUN)) oder Netzwerkverbindungen mit PPP (LAN)-Profilen einrichten Das Dial-Up Networking (DUN)-Profil wird vor allem für Modems und Mobiltelefone verwendet. Dieses Profil ermöglicht folgende Szenarien: Die Verwendung eines Mobiltelefons oder eines Modems durch einen Computer als drahtloses Modem, um sich über einen Einwahlprovider mit dem Internet zu verbinden oder andere Einwahldienste zu benutzen. Die Verwendung eines Mobiltelefons oder eines Modems durch einen Computers, um auf Datenabfragen zu reagieren. Der Zugriff auf ein Netzwerk über das PPP (LAN)-Profil kann in folgenden Situationen verwendet werden: Den LAN-Zugriff für ein einzelnes Bluetooth-Gerät Den LAN-Zugriff für mehrere Bluetooth-Geräte Eine PC-zu-PC-Verbindung (unter Verwendung einer PPP-Verbindung über eine emulierte serielle Verbindung) Beide Profile werden unter &os; durch &man.ppp.8; sowie &man.rfcomm.pppd.8; implementiert - einem Wrapper, der RFCOMM Bluetooth-Verbindungen unter PPP nutzbar macht. Bevor ein Profil verwendet werden kann, muss ein neuer PPP-Abschnitt in /etc/ppp/ppp.conf erzeugt werden. Beispielkonfigurationen zu diesem Thema finden Sie in &man.rfcomm.pppd.8;. Im folgenden Beispiel verwenden wir &man.rfcomm.pppd.8;, um eine RFCOMM-Verbindung zu einem entfernten Gerät mit der BD_ADDR 00:80:37:29:19:a4 auf dem RFCOMM-Kanal DUN aufzubauen. Die aktuelle RFCOMM-Kanalnummer erhalten Sie vom entfernten Gerät über SDP. Es ist auch möglich, manuell einen RFCOMM-Kanal festzulegen. In diesem Fall führt &man.rfcomm.pppd.8; keine SDP-Abfrage durch. Verwenden Sie &man.sdpcontrol.8;, um die RFCOMM-Kanäle des entfernten Geräts herauszufinden. &prompt.root; rfcomm_pppd -a 00:80:37:29:19:a4 -c -C dun -l rfcomm-dialup Der &man.sdpd.8;-Server muss laufen, damit ein Netzzugriff mit dem PPP (LAN)-Profil möglich ist. Außerdem muss für den LAN-Client ein neuer Eintrag in /etc/ppp/ppp.conf erzeugt werden. Beispielkonfigurationen zu diesem Thema finden Sie in &man.rfcomm.pppd.8;. Danach starten Sie den RFCOMM PPP-Server über eine gültige RFCOMM-Kanalnummer. Der RFCOMM PPP-Server bindet dadurch den Bluetooth-LAN-Dienst an den lokalen SDP-Daemon. Das folgende Beispiel zeigt Ihnen, wie man den RFCOMM PPP-Server startet. &prompt.root; rfcomm_pppd -s -C 7 -l rfcomm-server OBEX Das Profil OBEX-Push (OPUSH) OBEX ist ein häufig verwendetes Protokoll für den Dateitransfer zwischen Mobilgeräten. Sein Hauptzweck ist die Kommunikation über die Infrarotschnittstelle. Es dient daher zum Datentransfer zwischen Notebooks oder PDAs sowie zum Austausch von Visitenkarten oder Kalendereinträgen zwischen Mobiltelefonen und anderen Geräten mit PIM-Funktionen. Server und Client von OBEX werden durch das Softwarepaket obexapp bereitgestellt, das als Port comms/obexapp verfügbar ist. Mit dem OBEX-Client werden Objekte zum OBEX-Server geschickt oder angefordert. Ein Objekt kann etwa eine Visitenkarte oder ein Termin sein. Der OBEX-Client fordert über SDP die Nummer des RFCOMM-Kanals vom entfernten Gerät an. Dies kann auch durch die Verwendung des Servicenamens anstelle der RFCOMM-Kanalnummer erfolgen. Folgende Dienste werden unterstützt: IrMC, FTRN und OPUSH. Es ist möglich, den RFCOMM-Kanal als Nummer anzugeben. Es folgt nun ein Beispiel für eine OBEX-Sitzung, bei der ein Informationsobjekt vom Mobiltelefon angefordert und ein neues Objekt (hier eine Visitenkarte) an das Telefonbuch des Mobiltelefons geschickt wird: &prompt.user; obexapp -a 00:80:37:29:19:a4 -C IrMC obex> get telecom/devinfo.txt Success, response: OK, Success (0x20) obex> put new.vcf Success, response: OK, Success (0x20) obex> di Success, response: OK, Success (0x20) Um OBEX-Push-Dienste anbieten zu können, muss der sdpd-Server gestartet sein. Ein Wurzelverzeichnis, in dem alle ankommenden Objekt gespeichert werden, muss zusätzlich angelegt werden. In der Voreinstellung ist dies /var/spool/obex. Starten Sie den OBEX-Server mit einer gültigen Kanalnummer. Der OBEX-Server registriert nun den OBEX-Push-Dienst mit dem lokalen SDP-Daemon. Um den OBEX-Server zu starten, geben Sie Folgendes ein: &prompt.root; obexapp -s -C 10 Das Profil Serial-Port (SPP) Durch dieses Profil können Bluetooth-Geräte RS232- (oder damit kompatible) serielle Kabelverbindungen emulieren. Anwendungen sind dadurch in der Lage, über eine virtuelle serielle Verbindung Bluetooth als Ersatz für eine Kabelverbindung zu nutzen. Das Profil Serial-Port wird durch &man.rfcomm.sppd.1; verwirklicht. Pseudo-tty wird hier als virtuelle serielle Verbindung verwendet. Das folgende Beispiel zeigt, wie man sich mit einem entfernten Serial-Port-Dienst verbindet. Beachten Sie, dass Sie den RFCOMM-Kanal nicht angeben müssen, da &man.rfcomm.sppd.1; diesen über SDP vom entfernten Gerät abfragen kann. Wenn Sie dies nicht wollen, können Sie einen RFCOMM-Kanal auch manuell festlegen. &prompt.root; rfcomm_sppd -a 00:07:E0:00:0B:CA -t /dev/ttyp6 rfcomm_sppd[94692]: Starting on /dev/ttyp6... Sobald die Verbindung hergestellt ist, kann pseudo-tty als serieller Port verwenden werden. &prompt.root; cu -l ttyp6 Problembehandlung Ein entferntes Gerät kann keine Verbindung aufbauen Einige ältere Bluetooth-Geräte unterstützen keinen Rollentausch. Wenn &os; eine neue Verbindung akzeptiert, wird versucht, die Rolle zu tauschen, um zum Master zu werden. Geräte, die dies nicht unterstützen, können keine Verbindung aufbauen. Beachten Sie, dass der Rollentausch ausgeführt wird, sobald eine neue Verbindung aufgebaut wird, daher ist es nicht möglich, das entfernte Gerät zu fragen, ob es den Rollentausch unterstützt. Dieses Verhalten von &os; kann aber durch eine HCI-Option geändert werden: &prompt.root; hccontrol -n ubt0hci write_node_role_switch 0 Wo finde ich genaue Informationen darüber, was schiefgelaufen ist? Verwenden Sie hcidump, das Sie über den Port comms/hcidump installieren können. hcidump hat Ähnlichkeiten mit &man.tcpdump.1;. Es dient zur Anzeige der Bluetooth-Pakete in einem Terminal oder zur Speicherung der Pakete in einer Datei (Dump).
Andrew Thompson Geschrieben von LAN-Kopplung mit einer Bridge Einführung Subnetz Bridge Manchmal ist es nützlich, ein physikalisches Netzwerk (wie ein Ethernetsegment) in zwei separate Netzwerke aufzuteilen, ohne gleich IP-Subnetze zu erzeugen, die über einen Router miteinander verbunden sind. Ein Gerät, das zwei Netze auf diese Weise verbindet, wird als Bridge bezeichnet. Jedes FreeBSD-System mit zwei Netzwerkkarten kann als Bridge fungieren. Die Bridge arbeitet, indem sie die MAC Layeradressen (Ethernet Adressen) der Geräte in ihren Netzwerksegmenten lernt. Der Verkehr wird nur dann zwischen zwei Segmenten weitergeleitet, wenn sich Sender und Empfänger in verschiedenen Netzwerksegmenten befinden. In vielerlei Hinsicht entspricht eine Bridge daher einem Ethernet-Switch mit sehr wenigen Ports. Situationen, in denen <emphasis>Bridging</emphasis> angebracht ist Es gibt zahlreiche Situationen, in denen der Einsatz einer Bridge sinnvoll ist: Verbinden von Netzwerken Die Hauptaufgabe einer Bridge ist die Verbindung von zwei oder mehreren Netzwerksegmenten zu einem gemeinsamen Netzwerk. Es ist oft sinnvoller, eine hostbasierte Bridge anstelle normaler Netzwerkkomponenten (wie Kabelverbindungen), Firewalls oder Pseudonetzwerken über die Schnittstelle einer virtuellen Maschine einzusetzen. - - - Eine Bridge kann außerdem ein drahtloses Gerät mit einem Kabelnetzwerk verbinden. Diese Fähigkeit der Bridge wird als HostAP-Modus bezeichnet. Die Bridge agiert in diesem Fall als Access Point für das drahtlose Gerät. Filtering/Traffic Shaping Firewall Firewall NAT Häufig kommt es vor, dass Firewallfunktionen benötigt werden, ohne dass Routing oder Network Adress Translation (NAT) verwendet werden soll. Ein Beispiel dafür wäre ein kleines Unternehmen, das über DSL oder ISDN an seinen ISP angebunden ist. Es verfügt über 13 weltweit erreichbare IP-Adressen, sein Netzwerk besteht aus 10 Rechnern. In dieser Situation ist der Einsatz von Subnetzen sowie einer routerbasierten Firewall schwierig. Router DSL ISDN Eine brigdebasierte Firewall kann konfiguriert und in den ISDN/DSL-Downstreampfad ihres Routers eingebunden werden, ohne dass Sie sich um IP-Adressen kümmern müssen. Netzwerküberwachung Eine Bridge kann zwei Netzwerksegmente miteinander verbinden und danach alle Ethernet-Rahmen überprüfen, die zwischen den beiden Netzwerksegmenten ausgetauscht werden. Dazu verwendet man entweder &man.bpf.4;/&man.tcpdump.1; auf dem Netzgerät der Bridge oder schickt Kopien aller Rahmen an ein zusätzliches Netzgerät (den sogenannten Span Port). Layer 2-VPN Zwei Ethernetnetzwerke können über einen IP-Link miteinander verbunden werden, indem Sie die beiden Netzwerke über einen EtherIP-Tunnel koppeln oder eine &man.tap.4;-basierte Lösung wie OpenVPN einsetzen. Layer 2-Redundanz Die Systeme eines Netzwerks können redundant miteinander verbunden sein. In diesem Fall verwenden Sie das Spanning Tree Protocol, um redundante Pfade zu blockieren. Damit ein Ethernetnetzwerk korrekt arbeitet, darf immer nur ein aktiver Pfad zwischen zwei Geräten des Netzwerks existieren. Aufgabe des Spanning Tree Protocols ist es daher, Schleifen zu entdecken und redundante Links in den Status blockiert zu versetzen. Fällt ein aktiver Link aus, so berechnet das Protokoll einen neuen Pfad. Dazu wird ein blockierter Pfad in den Status aktiv versetzt, damit alle Systeme des Netzwerks wieder miteinander kommunizieren können. Kernelkonfiguration Dieser Abschnitt beschreibt nur die &man.if.bridge.4;-Bridge-Implementierung. Ein Netgraph-Bridge-Treiber ist ebenfalls verfügbar, wird hier aber nicht behandelt. Lesen Sie die Manualpage &man.ng.bridge.4;, wenn Sie diesen Treiber einsetzen wollen. Bei diesem Treiber handelt es sich um ein Kernelmodul, das von &man.ifconfig.8; automatisch geladen wird, wenn ein Bridge-Interface erzeugt wird. Alternativ ist es aber auch möglich, die Unterstützung für den Treiber in Ihren Kernel zu kompilieren. Dazu fügen Sie die Zeile device if_bridge in Ihre Kernelkonfigurationsdatei ein und bauen danach den Kernel neu. Paketfilter können mit allen Firewallpaketen verwendet werden, die das &man.pfil.9;-Framework benutzen. Die Firewall kann dabei entweder als Kernelmodul geladen oder in den Kernel kompiliert werden. Eine Bridge kann auch als Traffic Shaper verwendet werden, wenn Sie &man.altq.4; oder &man.dummynet.4; einsetzen. Die LAN-Kopplung aktivieren Eine Bridge wird durch das Klonen von Schnittstellen erzeugt. Um eine Bridge zu erzeugen, verwenden Sie den Befehl &man.ifconfig.8;. Ist der Bridge-Treiber nicht in Ihren Kernel kompiliert, wird er automatisch geladen. &prompt.root; ifconfig bridge create bridge0 &prompt.root; ifconfig bridge0 bridge0: flags=8802<BROADCAST,SIMPLEX,MULTICAST> metric 0 mtu 1500 ether 96:3d:4b:f1:79:7a id 00:00:00:00:00:00 priority 32768 hellotime 2 fwddelay 15 maxage 20 holdcnt 6 proto rstp maxaddr 100 timeout 1200 root id 00:00:00:00:00:00 priority 0 ifcost 0 port 0 Im obigen Beispiel wird die Bridge erzeugt und erhält automatisch eine zufällig generierte Ethernet-Adresse zugewiesen. Die Parameter maxaddr sowie timeout legen fest, wie viele MAC-Adressen die Bridge in ihrer Forward-Tabelle halten kann beziehungsweise wie viele Sekunden jeder Eintrag erhalten bleiben soll, nachdem er zuletzt verwendet wurde. Die restlichen Parameter sind für die Konfiguration von Spanning Tree notwendig. Im nächsten Schritt werden die Schnittstellen, die die Bridge verbinden soll, zugewiesen. Damit die Bridge Datenpakete weiterleiten kann, müssen sowohl die Bridge als auch die Schnittstellen (der zu verbindenden Netzwerksegmente) aktiviert sein: &prompt.root; ifconfig bridge0 addm fxp0 addm fxp1 up &prompt.root; ifconfig fxp0 up &prompt.root; ifconfig fxp1 up Danach ist die Bridge in der Lage, Ethernet-Rahmen zwischen den Schnittstellen fxp0 und fxp1 weiterzuleiten. Um diese Konfiguration beim Systemstart automatisch zu aktivieren, müssen Sie folgende Einträge in die Datei /etc/rc.conf aufnehmen: cloned_interfaces="bridge0" ifconfig_bridge0="addm fxp0 addm fxp1 up" ifconfig_fxp0="up" ifconfig_fxp1="up" Benötigen Sie für die Bridge eine IP-Adresse, müssen Sie diese der Schnittstelle der Bridge zuweisen (und nicht einer der Schnittstellen der gekoppelten Netzwerksegmente). Dabei können Sie die IP-Adresse sowohl statisch als auch dynamisch über DHCP zuweisen: &prompt.root; ifconfig bridge0 inet 192.168.0.1/24 Sie können der Bridge-Schnittstelle auch eine IPv6-Adresse zuweisen. Firewalls firewall Nachdem ein Paketfilter aktiviert wurde, können Datenpakete, die von den Schnittstellen der gekoppelten Netzwerksegmente gesendet und empfangen werden, über die Bridge weitergeleitet oder nach bestimmten Regeln gefiltert oder auch komplett geblockt werden. Ist die Richtung des Paketflusses wichtig, ist es am besten, eine Firewall auf den Schnittstellen der einzelnen Netzwerksegmente einzurichten und nicht auf der Bridge selbst. Eine Bridge verfügt über verschiedene Optionen, über die Sie die Weiterleitung von Nicht-IP- und ARP-Paketen sowie den Einsatz von Layer 2-Firewalls (mit IPFW) steuern können. Lesen Sie die Manualpage &man.if.bridge.4;, wenn Sie diese Funktionen benötigen. Spanning Tree Der Bridge-Treiber implementiert das Rapid Spanning Tree Protocol (RSTP oder 802.1w), das abwärtskompatibel zum veralteten Spanning Tree Protocol (STP) ist. Spanning Tree dient dazu, Schleifen in einer Netzwerktopologie zu entdecken und zu entfernen. RSTP arbeitet dabei schneller als das veraltete STP. RSTP tauscht Informationen mit benachbarten Switchen aus, um Pakete korrekt weiterzuleiten und eine Schleifenbildung zu verhindern. Die folgende Tabelle listet die von den verschiedenen &os;-Versionen unterstützten Betriebsmodi auf: &os;-Version STP-Modus Standardmodus &os; 5.4—&os; 6.2 STP STP &os; 6.3+ RSTP oder STP STP &os; 7.0+ RSTP oder STP RSTP Spanning Tree kann auf den Schnittstellen der durch die Bridge verbundenen Netzwerksegmente über die Option stp aktiviert werden. Für eine Bridge, die die Schnittstellen fxp0 und fxp1 verbindet, aktivieren Sie STP wie folgt: &prompt.root; ifconfig bridge0 stp fxp0 stp fxp1 bridge0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric 0 mtu 1500 ether d6:cf:d5:a0:94:6d id 00:01:02:4b:d4:50 priority 32768 hellotime 2 fwddelay 15 maxage 20 holdcnt 6 proto rstp maxaddr 100 timeout 1200 root id 00:01:02:4b:d4:50 priority 32768 ifcost 0 port 0 member: fxp0 flags=1c7<LEARNING,DISCOVER,STP,AUTOEDGE,PTP,AUTOPTP> port 3 priority 128 path cost 200000 proto rstp role designated state forwarding member: fxp1 flags=1c7<LEARNING,DISCOVER,STP,AUTOEDGE,PTP,AUTOPTP> port 4 priority 128 path cost 200000 proto rstp role designated state forwarding Diese Bridge hat die Spanning-Tree-ID 00:01:02:4b:d4:50 und die Priorität 32768. Da diese ID mit der Root-ID identisch ist, handelt es sich um die Root-Bridge dieses Netzwerks. Auf einer anderen Bridge des Netzwerks ist Spanning Tree ebenfalls aktiviert: bridge0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric 0 mtu 1500 ether 96:3d:4b:f1:79:7a id 00:13:d4:9a:06:7a priority 32768 hellotime 2 fwddelay 15 maxage 20 holdcnt 6 proto rstp maxaddr 100 timeout 1200 root id 00:01:02:4b:d4:50 priority 32768 ifcost 400000 port 4 member: fxp0 flags=1c7<LEARNING,DISCOVER,STP,AUTOEDGE,PTP,AUTOPTP> port 4 priority 128 path cost 200000 proto rstp role root state forwarding member: fxp1 flags=1c7<LEARNING,DISCOVER,STP,AUTOEDGE,PTP,AUTOPTP> port 5 priority 128 path cost 200000 proto rstp role designated state forwarding Die Zeile root id 00:01:02:4b:d4:50 priority 32768 ifcost 400000 port 4 zeigt an, dass die Root-Bridge wie im obigen Beispiel die ID 00:01:02:4b:d4:50 hat. Die Pfadkosten hin zur Root-Bridge betragen 400000, wobei der Pfad zur Root-Bridge über Port 4 geht (der wiederum der Schnittstelle fxp0 entspricht). Fortgeschrittene Funktionen Den Datenfluss rekonstruieren Die Bridge unterstützt den Monitormodus. Dabei werden alle Pakete verworfen, nachdem sie von &man.bpf.4; verarbeitet wurden. In diesem Modus erfolgt keine weitere Bearbeitung und auch keine Weiterleitung von Datenpaketen. Es ist daher möglich, die Eingabe von zwei oder mehr Netzwerkschnittstellen in einen einzigen gemeinsamen &man.bpf.4;-Stream zu vereinen. Ein solcher Datenstrom ist beispielsweise nützlich, um den Datenverkehr für ""network taps"" zu rekonstruieren, die ihre RX/TX-Signale über verschiedene Schnittstellen senden. Um die Eingabe von vier Netzwerkschnittstellen in einzigen gemeinsamen Datenstrom zu vereinen, geben Sie Folgendes ein: &prompt.root; ifconfig bridge0 addm fxp0 addm fxp1 addm fxp2 addm fxp3 monitor up &prompt.root; tcpdump -i bridge0 Span Ports Eine Kopie jedes Ethernet-Rahmens, der an der Bridge ankommt, wird über einen festgelegten Span Port verschickt. Auf einer Bridge können beliebig viele Span Ports festgelegt werden. Wird eine Schnittstelle als Span Port konfiguriert, kann sie nicht mehr als normaler Bridge-Port verwendet werden. Eine derartige Konfiguration ist beispielsweise sinnvoll, um den Datenverkehr, der in einem Netzwerk über die Bridge läuft, auf einen Rechner zu übertragen, der mit einem Span Port der Bridge verbunden ist. Um eine Kopie aller Ethernet-Rahmen über die Schnittstelle fxp4 zu verschicken, geben Sie Folgendes ein: &prompt.root; ifconfig bridge0 span fxp4 Private Schnittstellen Eine private Schnittstelle leitet keine Daten an einen Port weiter, bei dem es sich ebenfalls um eine private Schnittstelle handelt. Der Datenverkehr wird dabei komplett blockiert, auch Ethernet-Rahmen und ARP-Pakete werden nicht weitergeleitet. Wollen Sie hingegen nur spezifische Datenpakete blockieren, sollten Sie eine Firewall einsetzen. Schnittstellen als <foreignphrase>sticky</foreignphrase> kennzeichnen Wenn die Schnittstelle eines über eine Bridge verbundenen Netzwerksegments als sticky gekennzeichnet wird, werden alle dynamisch gelernten Adressen als statische Adressen behandelt, sobald sie in den Forward-Cache der Bridge aufgenommen wurden. Sticky-Einträge werden niemals aus dem Cache entfernt oder ersetzt. Selbst dann nicht, wenn die Adresse von einer anderen Schnittstelle verwendet wird. Sie können dadurch die Vorteile statischer Adresseinträge nutzen, ohne die Forward-Tabelle vor dem Einsatz der Bridge mit statischen Einträgen füllen zu müssen. Clients, die sich in einem bestimmten von der Bridge verwalteten Segmente befinden, können dabei nicht in ein anderes Segment wechseln. Ein weiteres Beispiel für den Einsatz von Sticky-Adressen wäre die Kombination einer Bridge mit mehreren VLANs, um einen Router zu konfigurieren, der in in der Lage ist, einzelne Kundennetzwerke voneinander zu trennen, ohne IP-Adressbereiche zu verschwenden. Für das folgende Beispiel nehmen wir an, dass sich der Client CustomerA im VLAN vlan100 und der Client CustomerB im VLAN vlan101 befinden. Die Bridge hat die IP-Adresse 192.168.0.1 und ist als Internet-Router konfiguriert. &prompt.root; ifconfig bridge0 addm vlan100 sticky vlan100 addm vlan101 sticky vlan101 &prompt.root; ifconfig bridge0 inet 192.168.0.1/24 Beide Clients sehen 192.168.0.1 als Ihr Default-Gateway. Da der Brücken-Cache sticky ist, sind Sie nicht dazu in der Lage, die MAC-Adresse des anderen Kunden zu spoofen und dessen Datenverkehr abzufangen. Sie können die Kommunikation zwischen den VLANs vollständig unterbinden, wenn Sie private Schnittstellen (oder eine Firewall) einsetzen: &prompt.root; ifconfig bridge0 private vlan100 private vlan101 Die Kunden sind nun komplett voneinander isoliert und der komplette /24-Adressbereich kann zugewiesen werden, ohne dass Sie Subnetze einsetzen müssen. Adressen-Limitierung Die maximale mögliche Anzahl an eindeutigen MAC-Adressen hinter einer Schnittstelle kann festgelegt werden. Sobald das Limit erreicht ist, werden Pakete mit einer unbekannten Quell-Adresse solange verworfen, bis ein exisitierender Eintrag gelöscht wird oder abläuft. Das folgende Beispiel setzt die maximale Anzahl von Netzgeräten für CustomerA für das VLAN vlan100 auf 10. &prompt.root; ifconfig bridge0 ifmaxaddr vlan100 10 SNMP-Monitoring Die Schnittstelle der Bridge sowie die STP-Parameter können durch den bereits im Basissystem enthaltenen SNMP-Daemon überwacht werden. Die exportierten Bridge-MIBs entsprechen den IETF-Standards, daher können Sie einen beliebigen SNMP-Client oder ein beliebiges Monitoring-Werkzeug einsetzen, um die benötigten Daten zu erhalten. Auf dem Rechner, auf dem die Bridge konfiguriert ist, aktivieren Sie die Zeile begemotSnmpdModulePath."bridge" = "/usr/lib/snmp_bridge.so" in der Datei /etc/snmp.config und starten danach den bsnmpd-Daemon. Eventuell benötigen Sie noch weitere Konfigurationsparameter wie Community-Namen und Zugriffslisten. Die Konfiguration dieser Parameter wird in den Manualpages &man.bsnmpd.1; sowie &man.snmp.bridge.3; beschrieben. Die folgenden Beispiele verwenden das Softwarepaket Net-SNMP (net-mgmt/net-snmp), um die Bridge abzufragen. Alternativ können Sie dafür auch den Port net-mgmt/bsnmptools einsetzen. Auf dem SNMP-Client fügen Sie danach die folgenden Zeilen in die Datei $HOME/.snmp/snmp.conf ein, um die MIB-Definitionen der Bridge in Net-SNMP zu importieren: mibdirs +/usr/share/snmp/mibs mibs +BRIDGE-MIB:RSTP-MIB:BEGEMOT-MIB:BEGEMOT-BRIDGE-MIB Um eine einzelne Bridge über den IETF BRIDGE-MIB (RFC4188) zu überwachen, geben Sie Folgendes ein: &prompt.user; snmpwalk -v 2c -c public bridge1.example.com mib-2.dot1dBridge BRIDGE-MIB::dot1dBaseBridgeAddress.0 = STRING: 66:fb:9b:6e:5c:44 BRIDGE-MIB::dot1dBaseNumPorts.0 = INTEGER: 1 ports BRIDGE-MIB::dot1dStpTimeSinceTopologyChange.0 = Timeticks: (189959) 0:31:39.59 centi-seconds BRIDGE-MIB::dot1dStpTopChanges.0 = Counter32: 2 BRIDGE-MIB::dot1dStpDesignatedRoot.0 = Hex-STRING: 80 00 00 01 02 4B D4 50 ... BRIDGE-MIB::dot1dStpPortState.3 = INTEGER: forwarding(5) BRIDGE-MIB::dot1dStpPortEnable.3 = INTEGER: enabled(1) BRIDGE-MIB::dot1dStpPortPathCost.3 = INTEGER: 200000 BRIDGE-MIB::dot1dStpPortDesignatedRoot.3 = Hex-STRING: 80 00 00 01 02 4B D4 50 BRIDGE-MIB::dot1dStpPortDesignatedCost.3 = INTEGER: 0 BRIDGE-MIB::dot1dStpPortDesignatedBridge.3 = Hex-STRING: 80 00 00 01 02 4B D4 50 BRIDGE-MIB::dot1dStpPortDesignatedPort.3 = Hex-STRING: 03 80 BRIDGE-MIB::dot1dStpPortForwardTransitions.3 = Counter32: 1 RSTP-MIB::dot1dStpVersion.0 = INTEGER: rstp(2) Der Wert der Variable dot1dStpTopChanges.0 ist hier 2, die STP-Topologie der Bridge wurde also bereits zweimal geändert. Unter einer Änderung versteht man dabei die Anpassung eines oder mehrerer Links und die Kalkulation eines neuen Baums. Der Wert der Variable dot1dStpTimeSinceTopologyChange.0 gibt an, wann dies zuletzt geschah. Um mehrere Bridge-Schnittstellen zu überwachen, können Sie den privaten BEGEMOT-BRIDGE-MIB einsetzen: &prompt.user; snmpwalk -v 2c -c public bridge1.example.com enterprises.fokus.begemot.begemotBridge BEGEMOT-BRIDGE-MIB::begemotBridgeBaseName."bridge0" = STRING: bridge0 BEGEMOT-BRIDGE-MIB::begemotBridgeBaseName."bridge2" = STRING: bridge2 BEGEMOT-BRIDGE-MIB::begemotBridgeBaseAddress."bridge0" = STRING: e:ce:3b:5a:9e:13 BEGEMOT-BRIDGE-MIB::begemotBridgeBaseAddress."bridge2" = STRING: 12:5e:4d:74:d:fc BEGEMOT-BRIDGE-MIB::begemotBridgeBaseNumPorts."bridge0" = INTEGER: 1 BEGEMOT-BRIDGE-MIB::begemotBridgeBaseNumPorts."bridge2" = INTEGER: 1 ... BEGEMOT-BRIDGE-MIB::begemotBridgeStpTimeSinceTopologyChange."bridge0" = Timeticks: (116927) 0:19:29.27 centi-seconds BEGEMOT-BRIDGE-MIB::begemotBridgeStpTimeSinceTopologyChange."bridge2" = Timeticks: (82773) 0:13:47.73 centi-seconds BEGEMOT-BRIDGE-MIB::begemotBridgeStpTopChanges."bridge0" = Counter32: 1 BEGEMOT-BRIDGE-MIB::begemotBridgeStpTopChanges."bridge2" = Counter32: 1 BEGEMOT-BRIDGE-MIB::begemotBridgeStpDesignatedRoot."bridge0" = Hex-STRING: 80 00 00 40 95 30 5E 31 BEGEMOT-BRIDGE-MIB::begemotBridgeStpDesignatedRoot."bridge2" = Hex-STRING: 80 00 00 50 8B B8 C6 A9 Um die über den mib-2.dot1dBridge-Subtree überwachte Bridge-Schnittstelle zu ändern, geben Sie Folgendes ein: &prompt.user; snmpset -v 2c -c private bridge1.example.com BEGEMOT-BRIDGE-MIB::begemotBridgeDefaultBridgeIf.0 s bridge2 Andrew Thompson Geschrieben von Benedict Reuschling Übersetzt von Sharon Bahagi Link-Aggregation und Failover lagg failover fec lacp loadbalance roundrobin Einleitung Die &man.lagg.4;-Schnittstelle erlaubt die Aggregation von mehreren Netzwerkadaptern als eine virtuelle Schnittstelle mit dem Ziel, Ausfallsicherheit (Failover) und Hochgeschwindigkeitsverbindungen bereitzustellen. Anwendungsoptionen Ausfallsicherheit (Failover) Sendet und empfängt Netzwerkverkehr nur auf dem Masterport. Sollte der Masterport nicht zur Verfügung stehen, wird der nächste aktive Port verwendet. Der zuerst hinzugefügte Adapter wird zum Masterport, jeder weitere Adapter dient als Gerät zur Ausfallsicherheit. &cisco; Fast ðerchannel; &cisco; Fast ðerchannel; (FEC), ist eine statische Konfiguration und handelt weder Aggregation mit der Gegenstelle aus, noch werden Frames zur Überwachung der Verbindung ausgetauscht. Wenn der Switch LACP unterstützt, sollte diese Option auch verwendet werden. FEC balanciert den ausgehenden Verkehr über die aktiven Ports, basierend auf gehashten Protokollheaderinformationen und akzeptiert eingehenden Verkehr auf jedem aktiven Port. Der Hash enthält die Ethernet-Quell- und Zieladresse, und, falls verfügbar, den VLAN-Tag, sowie die IPv4/IPv6 Quell- und Zieladresse. LACP Das &ieee; 802.3ad Link-Aggregation Control Protokoll (LACP) und das Marker Protocol. LACP wird eine Menge von aggregierbaren Verbindungen mit der Gegenstelle in einer oder mehreren Link Aggregated Groups (LAG) aushandeln. Jede LAG besteht aus Ports der gleichen Geschwindigkeit, eingestellt auf Voll-Duplex-Betrieb. Der Verkehr wird über die Ports in der LAG mit der größten Gesamtgeschwindigkeit balanciert, in den meisten Fällen wird es nur eine LAG geben, die alle Ports enthält. Im Falle von Änderungen in der physischen Anbindung wird die Link-Aggregation schnell zu einer neuen Konfiguration konvergieren. LACP balanciert ausgehenden Verkehr über die aktiven Ports basierend auf der gehashten Protokollheaderinformation und akzeptiert eingehenden Verkehr auf jedem aktiven Port. Der Hash beinhaltet die Ethernet-Quell- und Zieladresse, und, soweit verfügbar, den VLAN-Tag, sowie die IPv4/IPv6 Quell- und Zieladresse. Lastverteilung (Loadbalance) Dabei handelt es sich um einen Alias des FEC-Modus. Round-Robin Verteilt ausgehenden Verkehr mittels einer Round-Robin-Zuteilung über alle aktiven Ports und akzeptiert eingehenden Verkehr auf jedem aktiven Port. Dieser Modus verletzt die Reihenfolge von Ethernet-Frames und sollte mit Vorsicht eingesetzt werden. Beispiele LACP Aggregation mit einem Switch von &cisco; Dieses Beispiel verbindet zwei Adapter auf einer &os;-Maschine mit dem Switch als eine einzelne, lastverteilte und ausfallsichere Verbindung. Weitere Adapter können hinzugefügt werden, um den Durchsatz zu erhöhen und die Ausfallsicherheit zu steigern. Da die Reihenfolge der Frames bei Ethernet zwingend eingehalten werden muss, fließt auch jeglicher Verkehr zwischen zwei Stationen über den gleichen physischen Kanal, was die maximale Geschwindigkeit der Verbindung auf die eines einzelnen Adapters beschränkt. Der Übertragungsalgorithmus versucht, so viele Informationen wie möglich zu verwenden, um die verschiedenen Verkehrsflüsse zu unterscheiden und balanciert diese über die verfügbaren Adapter. Fügen Sie auf dem &cisco;-Switch die Adapter FastEthernet0/1 und FastEthernet0/2 zu der channel-group 1 hinzu: interface FastEthernet0/1 channel-group 1 mode active channel-protocol lacp ! interface FastEthernet0/2 channel-group 1 mode active channel-protocol lacp Auf der Maschine mit &os; erstellen Sie die &man.lagg.4;-Schnittstelle unter Verwendung von fxp0 und fxp1: &prompt.root; ifconfig lagg0 create &prompt.root; ifconfig lagg0 up laggproto lacp laggport fxp0 laggport fxp1 Überprüfen Sie den Status der Schnittstelle, indem Sie folgendes eingeben: &prompt.root; ifconfig lagg0 Ports, die als ACTIVE markiert sind, sind Teil der aktiven Aggregations-Gruppe, die mit dem Switch ausgehandelt wurde und der Verkehr wird über diese übertragen und empfangen. Benutzen Sie die ausführliche Ausgabe von &man.ifconfig.8;, um sich die LAG-Identifikatoren anzeigen zu lassen. lagg0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric 0 mtu 1500 options=8<VLAN_MTU> ether 00:05:5d:71:8d:b8 media: Ethernet autoselect status: active laggproto lacp laggport: fxp1 flags=1c<ACTIVE,COLLECTING,DISTRIBUTING> laggport: fxp0 flags=1c<ACTIVE,COLLECTING,DISTRIBUTING> Um den Status der Ports auf dem Switch anzuzeigen, geben Sie show lacp neighbor ein: switch# show lacp neighbor Flags: S - Device is requesting Slow LACPDUs F - Device is requesting Fast LACPDUs A - Device is in Active mode P - Device is in Passive mode Channel group 1 neighbors Partner's information: LACP port Oper Port Port Port Flags Priority Dev ID Age Key Number State Fa0/1 SA 32768 0005.5d71.8db8 29s 0x146 0x3 0x3D Fa0/2 SA 32768 0005.5d71.8db8 29s 0x146 0x4 0x3D Benutzen Sie das Kommando show lacp neighbor detail, um weitere Informationen zu erhalten. Ausfallsicherer Modus Der ausfallsichere Modus kann verwendet werden, um zu einer zweiten Schnittstelle zu wechseln, sollte die Verbindung mit der Master-Schnittstelle ausfallen. Erstellen und konfigurieren Sie die lagg0-Schnittstelle mit fxp0 als Master und fxp1 als die sekundäre Schnittstelle: &prompt.root; ifconfig lagg0 create &prompt.root; ifconfig lagg0 up laggproto failover laggport fxp0 laggport fxp1 Die Schnittstelle wird so ähnlich wie im folgenden aussehen, mit dem großen Unterschied, dass die MAC-Adresse und die Gerätenamen unterschiedlich sein werden: &prompt.root; ifconfig lagg0 lagg0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric 0 mtu 1500 options=8<VLAN_MTU> ether 00:05:5d:71:8d:b8 media: Ethernet autoselect status: active laggproto failover laggport: fxp1 flags=0<> laggport: fxp0 flags=5<MASTER,ACTIVE> Der Verkehr wird auf fxp0 übertragen und empfangen. Wenn die Verbindung auf fxp0 abbricht, so wird fxp1 die Verbindung übernehmen. Sobald die Verbindung auf der Master-Schnittstelle wiederhergestellt ist, wird diese auch wieder als aktive Schnittstelle genutzt. Failover Modus zwischen drahtgebundenen und drahtlosen Schnittstellen Für Laptop-Benutzer ist es normalerweise wünschenswert, wireless als sekundäre Schnittstelle einzurichten, die verwendet wird, wenn die Verbindung via Kabel nicht verfügbar ist. Mit &man.lagg.4; ist es möglich, eine IP-Adresse für die Kabelverbindung zu verwenden. Sie ist leistungsfähig und sicher. Gleichzeitig haben Sie die Möglichkeit Daten über die drahtlose Verbindung zu übertragen. In dieser Konfiguration, müssen wir die zugrunde liegenden MAC-Adresse der WLAN-Schnittstelle überschreiben, damit sie zur Adresse von &man.lagg.4; passt, welche von der drahtgebundenen Masterschnittstelle vererbt wurde. In dieser Konfiguration behandeln wir die drahtgebundene Schnittstelle bge0 als die Master und die drahtlose Schnittstelle wlan0 als die Failover-Schnittstelle. Die wlan0 wurde von der iwn0 mit der MAC-Adresse der kabelgebundenen eingerichtet. Im ersten Schritt erhalten wir die MAC-Adresse der kabelgebundenen Schnittstelle: &prompt.root; ifconfig bge0 bge0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric 0 mtu 1500 options=19b<RXCSUM,TXCSUM,VLAN_MTU,VLAN_HWTAGGING,VLAN_HWCSUM,TSO4> ether 00:21:70:da:ae:37 inet6 fe80::221:70ff:feda:ae37%bge0 prefixlen 64 scopeid 0x2 nd6 options=29<PERFORMNUD,IFDISABLED,AUTO_LINKLOCAL> media: Ethernet autoselect (1000baseT <full-duplex>) status: active Sie können bge0 in ihre tatsächliche ändern und werden eine andere ether-Zeile mit der MAC-Adresse ihrer kabelgebundenen Schnittstelle erhalten. Nun ändern wir die zugrunde liegende drahtlose Schnittstelle iwn0: &prompt.root; ifconfig iwn0 ether 00:21:70:da:ae:37 Starten Sie den Wireless-Schnittstelle, aber ohne IP-Adresse: &prompt.root; ifconfig wlan0 create wlandev iwn0 ssid my_router up Erstellen Sie die &man.lagg.4; Schnittstelle mit bge0 als Master und wlan0 als Failover falls notwendig: &prompt.root; ifconfig lagg0 create &prompt.root; ifconfig lagg0 up laggproto failover laggport bge0 laggport wlan0 Die Schnittstelle sieht änhlich aus, die Hauptunterschiede werden die MAC-Adresse und die Gerätenamen sein: &prompt.root; ifconfig lagg0 lagg0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric 0 mtu 1500 options=8<VLAN_MTU> ether 00:21:70:da:ae:37 media: Ethernet autoselect status: active laggproto failover laggport: wlan0 flags=0<> laggport: bge0 flags=5<MASTER,ACTIVE> Um zu vermeiden, dass Sie dies nach jedem Neustart machen müssen, können Sie etwas in der Art in ihre /etc/rc.conf Datei schreiben: ifconfig_bge0="up" ifconfig_iwn0="ether 00:21:70:da:ae:37" wlans_iwn0="wlan0" ifconfig_wlan0="WPA" cloned_interfaces="lagg0" ifconfig_lagg0="laggproto failover laggport bge0 laggport wlan0 DHCP" Jean-François Dockès Aktualisiert von Alex Dupre Reorganisiert und erweitert von Start und Betrieb von FreeBSD über ein Netzwerk plattenloser Arbeitsplatz plattenloser Betrieb FreeBSD kann über ein Netzwerk starten und arbeiten, ohne eine lokale Festplatte zu verwenden, indem es Dateisysteme eines NFS-Servers in den eigenen Verzeichnisbaum einhängt. Dazu sind, von den Standardkonfigurationsdateien abgesehen, keine Systemänderungen nötig. Ein solches System kann leicht installiert werden, da alle notwendigen Elemente bereits vorhanden sind: Es gibt mindestens zwei Möglichkeiten, den Kernel über das Netzwerk zu laden: PXE: Das Preboot eXecution Environment System von &intel; ist eine Art intelligentes Boot-ROM, das in einigen Netzwerkkarten oder Hauptplatinen verwendet wird. Weitere Informationen finden Sie in &man.pxeboot.8;. Der Port Etherboot (net/etherboot) erzeugt ROM-fähigen Code, um einen Kernel über das Netzwerk zu laden. Dieser Code kann entweder auf ein Boot-PROM einer Netzwerkkarte gebrannt werden, was von vielen Netzwerkkarten unterstützt wird. Oder er kann von einer lokalen Diskette, Festplatte oder von einem laufenden &ms-dos;-System geladen werden. Das Beispielskript /usr/share/examples/diskless/clone_root erleichtert die Erzeugung und die Wartung des root-Dateisystems auf dem Server. Das Skript muss wahrscheinlich angepasst werden, dennoch werden Sie schnell zu einem Ergebnis kommen. Die Startdateien, die einen plattenlosen Systemstart erkennen und unterstützen, sind nach der Installation in /etc vorhanden. Dateiauslagerungen können sowohl via NFS als auch auf die lokale Platte erfolgen. Es gibt verschiedene Wege, einen plattenlosen Rechner einzurichten. Viele Elemente sind daran beteiligt, die fast immer an den persönlichen Geschmack angepasst werden können. Im folgenden Abschnitt wird die Installation eines kompletten Systems beschrieben, wobei der Schwerpunkt auf Einfachheit und Kompatibilität zu den Standardstartskripten von FreeBSD liegt. Das beschriebene System hat folgende Eigenschaften: Die plattenlosen Rechner haben ein gemeinsames /- sowie ein gemeinsames /usr-Dateisystem, die jeweils schreibgeschützt sind. Das root-Dateisystem ist eine Kopie eines Standardwurzelverzeichnisses von FreeBSD (üblicherweise das des Servers), bei dem einige Konfigurationsdateien durch für den plattenlosen Betrieb geeignete Versionen ersetzt wurden. Für die Bereiche des root-Dateisystems, die beschreibbar sein müssen, werden mit &man.md.4; virtuelle Dateisysteme erzeugt. Dies bedeutet aber auch, dass alle Veränderungen verloren gehen, wenn das System neu gestartet wird. Der Kernel wird, in Abhängigkeit von der jeweiligen Situation, entweder von Etherboot oder von PXE transferiert und geladen. Das hier beschriebene System ist nicht sicher. Es sollte nur in einem gesicherten Bereich eines Netzwerks verwendet werden und für andere Rechner nicht erreichbar sein. Alle Informationen in diesem Abschnitt wurden unter &os; 5.2.1-RELEASE getestet. Hintergrundinformationen Die Einrichtung von plattenlosen Rechnern ist einfach, aber auch fehleranfällig. Der Grund dafür sind auftretende Fehler, die sich oft nur schwer zuordnen lassen. Unter anderem sind dafür folgende Umstände verantwortlich: Kompilierte Optionen haben zur Laufzeit unterschiedliche Auswirkungen. Fehlermeldungen sind oft kryptisch oder fehlen vollständig. Daher ist es nützlich, über die im Hintergrund ablaufenden Mechanismen Bescheid zu wissen. Dadurch wird es einfacher, eventuell auftretende Fehler zu beheben. Verschiedene Operationen müssen ausgeführt werden, um ein System erfolgreich zu starten: Der Rechner benötigt einige Startparameter, wie seine IP-Adresse, die Namen ausführbarer Dateien, den Servernamen sowie den root-Pfad. Für die Übermittlung dieser Informationen wird entweder das DHCP- oder das BOOTP-Protokoll verwendet. Bei DHCP handelt es sich um eine abwärtskompatible Erweiterung von BOOTP, die die gleichen Portnummern und das gleiche Paketformat verwendet. Es ist möglich, das System so zu konfigurieren, dass es nur BOOTP verwendet. Das Serverprogramm &man.bootpd.8; ist bereits im &os;-Basissystem enthalten. DHCP hat im Vergleich zu BOOTP allerdings mehrere Vorteile (bessere Konfigurationsdateien, die Möglichkeit zur Verwendung von PXE, sowie viele andere, die nicht in direktem Zusammenhang mit dem plattenlosen Betrieb stehen). Dieser Abschnitt beschreibt die Konfiguration mittels DHCP. Wenn möglich, werden aber entsprechende Beispiele für &man.bootpd.8; angeführt. Die Beispielkonfiguration nutzt das Softwarepaket ISC DHCP. Der Rechner muss ein oder mehrere Programme in den lokalen Speicher laden. Dazu wird entweder TFTP oder NFS verwendet. Die Auswahl zwischen TFTP und NFS erfolgt über das Setzen von verschiedenen Kompilieroptionen. Ein häufig gemachter Fehler ist es, Dateinamen für das falsche Protokoll anzugeben: TFTP transferiert normalerweise alle Dateien aus einem einzigen Verzeichnis des Servers, und erwartet einen Pfad relativ zu diesem Verzeichnis. NFS verlangt hingegen absolute Dateipfade. Die möglichen Bootstrap-Programme und der Kernel müssen initialisiert und ausgeführt werden. Dabei gibt es zwei Möglichkeiten: PXE lädt &man.pxeboot.8;. Dabei handelt es sich um eine modifizierte Version des &os;-Laders der Boot-Phase drei. Der &man.loader.8; beschafft alle für den Systemstart notwendigen Parameter, und hinterlegt diese in der Kernelumgebung, bevor er die Kontrolle übergibt. Es ist hier möglich, den GENERIC-Kernel zu verwenden. Etherboot lädt den Kernel hingegen direkt. Dafür müssen Sie allerdings einen Kernel mit spezifischen Optionen erzeugen. PXE und Etherboot sind zwar im Großen und Ganzen gleichwertig, da der Kernel aber viele Aufgaben an &man.loader.8; übergibt, sollte bevorzugt PXE eingesetzt werden. Wenn Ihr BIOS und Ihre Netzwerkkarten PXE unterstützen, sollten Sie es auch verwenden. Zuletzt muss der Rechner auf seine Dateisysteme zugreifen können. Dafür wird stets NFS verwendet. Weitere Informationen finden Sie in &man.diskless.8;. Installationsanweisungen Konfiguration unter Verwendung von <application>ISC DHCP</application> DHCP plattenloser Betrieb Der ISC DHCP-Server kann Anfragen sowohl von BOOTP als auch von DHCP beantworten. isc-dhcp 3.0 ist nicht Teil des Basissystems. Sie müssen es daher zuerst installieren. Verwenden Sie dazu den Port net/isc-dhcp30-server oder das entsprechende Paket. Nachdem ISC DHCP installiert ist, muss das Programm konfiguriert werden (normalerweise in /usr/local/etc/dhcpd.conf). Im folgenden Beispiel verwendet Rechner margaux Etherboot, während Rechner corbieres PXE verwendet: default-lease-time 600; max-lease-time 7200; authoritative; option domain-name "example.com"; option domain-name-servers 192.168.4.1; option routers 192.168.4.1; subnet 192.168.4.0 netmask 255.255.255.0 { use-host-decl-names on; option subnet-mask 255.255.255.0; option broadcast-address 192.168.4.255; host margaux { hardware ethernet 01:23:45:67:89:ab; fixed-address margaux.example.com; next-server 192.168.4.4; filename "/tftpboot/kernel.diskless"; option root-path "192.168.4.4:/data/misc/diskless"; } host corbieres { hardware ethernet 00:02:b3:27:62:df; fixed-address corbieres.example.com; next-server 192.168.4.4; filename "pxeboot"; option root-path "192.168.4.4:/data/misc/diskless"; } } Diese Option weist dhcpd an, den Wert der host-Deklaration als Rechnernamen des plattenlosen Rechners zu senden. Alternativ kann man der host-Deklaration Folgendes hinzufügen: option host-name margaux Die Anweisung next-server bestimmt den TFTP- oder NFS-Server, von dem der Loader oder der Kernel geladen werden (in der Voreinstellung ist das der DHCP-Server selbst). Die Anweisung filename bestimmt die Datei, die Etherboot als nächstes lädt. Das genaue Format hängt von der gewählten Transfermethode ab. Etherboot kann sowohl mit NFS als auch mit TFTP kompiliert werden. In der Voreinstellung wird der &os;-Port mit NFS-Unterstützung kompiliert. PXE verwendet TFTP, daher wird im Beispiel ein relativer Dateipfad verwendet. Dies kann aber, je nach Konfiguration des TFTP-Servers, auch anders sein. Beachten Sie, dass PXE pxeboot lädt, und nicht den Kernel. Es ist auch möglich, das Verzeichnis /boot einer &os;-CD-ROM von pxeboot laden zu lassen. &man.pxeboot.8; kann einen GENERIC-Kernel laden, dadurch ist es möglich, PXE von einer entfernten CD-ROM zu starten. Die Option root-path bestimmt den Pfad des root-Dateisystems in normaler NFS-Schreibweise. Wird PXE verwendet, ist es möglich, die IP-Adresse des Rechners wegzulassen, solange nicht die Kerneloption BOOTP aktiviert wird. Der NFS-Server entspricht in diesem Fall dem TFTP-Server. Konfiguration bei Verwendung von BOOTP BOOTP plattenloser Betrieb Es folgt nun eine der Konfiguration von DHCP entsprechende Konfiguration (für einen Client) für bootpd. Zu finden ist die Konfigurationsdatei unter /etc/bootptab. Beachten Sie bitte, dass Etherboot mit der Option NO_DHCP_SUPPORT kompiliert werden muss, damit BOOTP verwendet werden kann. PXE hingegen benötigt DHCP. Der einzige offensichtliche Vorteil von bootpd ist, dass es bereits im Basissystem vorhanden ist. .def100:\ :hn:ht=1:sa=192.168.4.4:vm=rfc1048:\ :sm=255.255.255.0:\ :ds=192.168.4.1:\ :gw=192.168.4.1:\ :hd="/tftpboot":\ :bf="/kernel.diskless":\ :rp="192.168.4.4:/data/misc/diskless": margaux:ha=0123456789ab:tc=.def100 Ein Startprogramm unter Verwendung von <application>Etherboot</application> erstellen Etherboot Die Internetseite von Etherboot enthält ausführliche Informationen, die zwar vor allem für Linux gedacht sind, aber dennoch nützliche Informationen enthalten. Im Folgenden wird daher nur grob beschrieben, wie Sie Etherboot auf einem FreeBSD-System einsetzen können. Als Erstes müssen Sie net/etherboot als Paket oder als Port installieren. Sie können Etherboot so konfigurieren, dass TFTP anstelle von NFS verwendet wird, indem Sie die Datei Config im Quellverzeichnis von Etherboot bearbeiten. Für unsere Installation verwenden wir eine Startdiskette. Für Informationen zu anderen Methoden (PROM oder &ms-dos;-Programme) lesen Sie bitte die Dokumentation zu Etherboot. Um eine Startdiskette zu erzeugen, legen Sie eine Diskette in das Laufwerk des Rechners ein, auf dem Sie Etherboot installiert haben. Danach wechseln Sie in das Verzeichnis src des Etherboot-Verzeichnisbaums und geben Folgendes ein: &prompt.root; gmake bin32/devicetype.fd0 devicetype hängt vom Typ der Ethernetkarte ab, über die der plattenlose Rechner verfügt. Lesen Sie dazu NIC im gleichen Verzeichnis, um den richtigen Wert für devicetype zu bestimmen. Das System mit <acronym>PXE</acronym> starten In der Voreinstellung lädt der &man.pxeboot.8;-Loader den Kernel über NFS. Soll stattdessen TFTP verwendet werden, muss beim Kompilieren die Option LOADER_TFTP_SUPPORT in der Datei /etc/make.conf eingetragen sein. Sehen Sie sich die Datei /usr/share/examples/etc/make.conf für weitere Anweisungen an. Es gibt zwei Optionen für make.conf, die nützlich sein können, wenn Sie eine plattenlose serielle Konsole einrichten wollen: BOOT_PXELDR_PROBE_KEYBOARD, und BOOT_PXELDR_ALWAYS_SERIAL. Um PXE beim Systemstart zu verwenden, müssen Sie im BIOS des Rechner die Option Über das Netzwerk starten aktivieren. Alternativ können Sie während der PC-Initialisierung auch eine Funktionstaste drücken. Serverkonfiguration - <acronym>TFTP</acronym> und <acronym>NFS</acronym> TFTP plattenloser Betrieb NFS plattenloser Betrieb Wenn Sie PXE oder Etherboot so konfiguriert haben, dass diese TFTP verwenden, müssen Sie auf dem Dateiserver tftpd aktivieren: Erzeugen Sie ein Verzeichnis, in dem tftpd seine Dateien ablegt, beispielsweise /tftpboot. Fügen Sie folgende Zeile in /etc/inetd.conf ein: tftp dgram udp wait root /usr/libexec/tftpd tftpd -s /tftpboot Anscheinend benötigen zumindest einige PXE-Versionen die TCP-Version von TFTP. Sollte dies bei Ihnen der Fall sein, fügen Sie eine zweite Zeile ein, in der Sie dgram udp durch stream tcp ersetzen. Weisen Sie inetd an, seine Konfiguration erneut einzulesen (Damit der folgende Befehl funktioniert, muss die Option in der Datei /etc/rc.conf vorhanden sein.): &prompt.root; /etc/rc.d/inetd restart Sie können das Verzeichnis /tftpboot an einem beliebigen Ort auf dem Server ablegen. Stellen Sie aber sicher, dass Sie diesen Ort sowohl in inetd.conf als auch in dhcpd.conf eingetragen haben. Außerdem müssen Sie NFS aktivieren und die entsprechenden Verzeichnisse exportieren. Fügen Sie folgende Zeile in /etc/rc.conf ein: nfs_server_enable="YES" Exportieren Sie das Verzeichnis, in dem sich das Wurzelverzeichnis für den plattenlosen Betrieb befindet, indem Sie folgende Zeile in /etc/exports einfügen (passen Sie dabei den mountpoint an und ersetzen Sie margaux corbieres durch den Namen Ihres plattenlosen Rechners): /data/misc -alldirs -ro margaux Weisen sie nun mountd an, seine Konfigurationsdatei erneut einzulesen. Wenn Sie NFS erst in der Datei /etc/rc.conf aktivieren mussten, sollten Sie stattdessen den Rechner neu starten. Dadurch wird die Konfigurationsdatei ebenfalls neu eingelesen. &prompt.root; /etc/rc.d/mountd restart Einen plattenlosen Kernel erzeugen plattenloser Betrieb Kernelkonfiguration Wenn Sie Etherboot verwenden, müssen Sie in die Kernelkonfigurationsdatei Ihres plattenlosen Clients zusätzlich folgende Optionen einfügen: options BOOTP # Use BOOTP to obtain IP address/hostname options BOOTP_NFSROOT # NFS mount root file system using BOOTP info Außerdem können Sie die Optionen BOOTP_NFSV3, BOOT_COMPAT sowie BOOTP_WIRED_TO verwenden (sehen Sie sich dazu auch die Datei NOTES an). Die Namen dieser Optionen sind historisch bedingt. Sie ermöglichen eine unterschiedliche Verwendung von DHCP und BOOTP innerhalb des Kernels. Es ist auch möglich, eine strikte Verwendung von BOOTP oder DHCP zu erzwingen. Erzeugen Sie den neuen Kernel (lesen Sie dazu auch ) und kopieren Sie ihn an den in dhcpd.conf festgelegten Ort. Wenn Sie PXE verwenden, ist die Erzeugung eines Kernels zwar nicht unbedingt nötig, sie wird allerdings dennoch empfohlen. Die Aktivierung dieser Optionen bewirkt, dass die Anzahl der möglichen DHCP-Anforderungen während des Kernelstarts erhöht wird. Ein kleiner Nachteil sind eventuell auftretende Inkonsistenzen zwischen den neuen Werten und den von &man.pxeboot.8; erhaltenen Werten. Der große Vorteil dieser Variante ist es, dass dabei der Rechnername gesetzt wird, den Sie ansonsten durch eine andere Methode, beispielsweise in einer clientspezifischen rc.conf-Datei festlegen müssten. Damit der Kernel von Etherboot geladen werden kann, müssen device hints im Kernel einkompiliert sein. Dazu setzen Sie normalerweise folgende Option in die Kernelkonfigurationsdatei (sehen Sie sich dazu auch die kommentierte Datei NOTES an): hints "GENERIC.hints" Das root-Dateisystem erzeugen Root-Dateisystem plattenloser Betrieb Sie müssen für den plattenlosen Rechner ein root-Dateisystem erzeugen, und zwar an dem in dhcpd.conf als root-path festgelegten Ort. <command>make world</command> zum Füllen des Dateisystems einsetzen Diese schnelle Methode installiert ein komplettes jungfräuliches System (und nicht nur ein root-Dateisystem) nach DESTDIR. Dazu müssen Sie lediglich das folgende Skript ausführen: #!/bin/sh export DESTDIR=/data/misc/diskless mkdir -p ${DESTDIR} cd /usr/src; make buildworld && make buildkernel +make installworld && make installkernel cd /usr/src/etc; make distribution Danach müssen Sie noch die dadurch in DESTDIR erzeugten Dateien /etc/rc.conf sowie /etc/fstab Ihren Wünschen anpassen. Den Auslagerungsbereich konfigurieren Falls nötig, kann eine auf dem NFS-Server liegende Datei als Auslagerungsdatei eingerichtet werden. Eine <acronym>NFS</acronym>-Auslagerungsdatei einrichten Der Kernel unterstützt beim Systemstart keine NFS-Auslagerungsdatei. Diese muss daher in den Startskripten aktiviert werden, indem ein beschreibbares Dateisystem eingehängt wird, um dort die Auslagerungsdatei zu erzeugen und zu aktivieren. Um eine Auslagerungsdatei zu erzeugen, gehen Sie wie folgt vor: &prompt.root; dd if=/dev/zero of=/path/to/swapfile bs=1k count=1 oseek=100000 Um die Auslagerungsdatei zu aktivieren, fügen Sie folgende Zeile in rc.conf ein: swapfile=/path/to/swapfile Verschiedenes Schreibgeschütztes Dateisystem <filename>/usr</filename> plattenloser Betrieb /usr schreibgeschützt Wenn am plattenlosen Rechner X läuft, müssen Sie die Konfigurationsdatei von XDM anpassen, da Fehlermeldungen in der Voreinstellung auf /usr geschrieben werden. Der Server läuft nicht unter FreeBSD Wenn das root-Dateisystem nicht auf einem FreeBSD-Rechner liegt, muss das Dateisystem zuerst unter FreeBSD erzeugt werden. Anschließend wird es beispielsweise mit tar oder cpio an den gewünschten Ort kopiert. Dabei kann es Probleme mit den Gerätedateien in /dev geben, die durch eine unterschiedliche Darstellung der Major- und Minor-Number von Geräten auf beiden Systemen hervorgerufen werden. Eine Problemlösung besteht darin, das root-Verzeichnis auf einem FreeBSD-Rechner einzuhängen und die Gerätedateien dort mit &man.devfs.5; zu erzeugen. ISDN – diensteintegrierendes digitales Netzwerk ISDN Eine gute Quelle für Informationen zu ISDN ist die ISDN-Seite von Dan Kegel. Welche Informationen finden Sie in diesem Abschnitt? Wenn Sie in Europa leben, könnte der Abschnitt über ISDN-Karten für Sie interessant sein. Wenn Sie ISDN hauptsächlich dazu verwenden wollen, um sich über einen Anbieter ins Internet einzuwählen, sollten Sie den Abschnitt über Terminaladapter lesen. Dies ist die flexibelste Methode, die auch die wenigsten Probleme verursacht. Wenn Sie zwei Netzwerke miteinander verbinden, oder sich über eine ISDN-Standleitung mit dem Internet verbinden wollen, finden Sie entsprechende Informationen im Abschnitt über Router und Bridges. Bei der Wahl der gewünschten Lösung sind die entstehenden Kosten ein entscheidender Faktor. Die folgenden Beschreibungen reichen von der billigsten bis zur teuersten Variante. Hellmuth Michaelis Beigetragen von ISDN-Karten ISDN Karten Das ISDN-Subsystem von FreeBSD unterstützt den DSS1/Q.931- (oder Euro-ISDN)-Standard nur für passive Karten. Zusätzlich werden aber auch einige aktive Karten unterstützt, bei denen die Firmware auch andere Signalprotokolle unterstützt; dies schließt auch die erste ISDN-Karte mit Primärmultiplex-Unterstützung mit ein. isdn4bsd ermöglicht es Ihnen, sich unter Nutzung von IP over raw HDLC oder synchronem PPP mit anderen ISDN-Routern zu verbinden. Dazu verwenden Sie entweder Kernel-&man.ppp.8; (via isppp, einem modifizierten sppp-Treiber), oder Sie benutzen User-&man.ppp.8;. Wenn Sie User-&man.ppp.8; verwenden, können Sie zwei oder mehrere ISDN-B-Kanäle bündeln. Im Paket enthalten ist auch ein Programm mit Anrufbeantworterfunktion sowie verschiedene Werkzeuge, wie ein Softwaremodem, das 300 Baud unterstützt. FreeBSD unterstützt eine ständig wachsende Anzahl von PC-ISDN-Karten, die weltweit erfolgreich eingesetzt werden. Von FreeBSD unterstützte passive ISDN-Karten enthalten fast immer den ISAC/HSCX/IPAC ISDN-Chipsatz von Infineon (ehemals Siemens). Unterstützt werden aber auch Karten mit Cologne Chip (diese allerdings nur für den ISA-Bus), PCI-Karten mit Winbond W6692 Chipsatz, einige Karten mit dem Tiger 300/320/ISAC Chipsatz sowie einige Karten mit einem herstellerspezifischen Chipsatz, wie beispielsweise die Fritz!Card PCI V.1.0 und die Fritz!Card PnP von AVM. An aktiven ISDN-Karten werden derzeit die AVM B1 BRI-Karten (ISA und PCI-Version) sowie die AVM T1 PRI-Karten (PCI-Version) unterstützt. Informationen zu isdn4bsd finden Sie im Verzeichnis /usr/share/examples/isdn/ Ihres FreeBSD-Systems, oder auf der Internetseite von isdn4bsd. Dort finden Sie auch Verweise zu Tipps, Korrekturen, sowie weiteren Informationen, wie dem isdn4bsd-Handbuch. Falls Sie an der Unterstützung eines zusätzlichen ISDN-Protokolls, einer weiteren ISDN-Karte oder an einer anderen Erweiterung von isdn4bsd interessiert sind, wenden Sie sich bitte an &a.hm;. Für Fragen zur Installation, Konfiguration und zu sonstigen Problemen von isdn4bsd gibt es die Mailingliste &a.isdn.name;. ISDN-Terminaladapter Terminaladapter Terminaladapter (TA) sind für ISDN, was Modems für analoge Telefonleitungen sind. Modem Die meisten Terminaladapter verwenden den Standardbefehlssatz für Modems von Hayes (AT-Kommandos) und können daher als Modemersatz verwendet werden. Ein Terminaladapter funktioniert prinzipiell wie ein Modem, allerdings erfolgt der Verbindungsaufbau um einiges schneller. Die Konfiguration von PPP entspricht dabei exakt der eines Modems. Stellen Sie dabei allerdings die serielle Geschwindigkeit so hoch wie möglich ein. PPP Der Hauptvorteil bei der Verwendung eines Terminaladapters zur Verbindung mit einem Internetanbieter ist die Möglichkeit zur Nutzung von dynamischem PPP. Da IP-Adressen immer knapper werden, vergeben die meisten Provider keine statischen IP-Adressen mehr. Die meisten Router unterstützen allerdings keine dynamische Zuweisung von IP-Adressen. Der PPP-Daemon bestimmt die Stabilität und Eigenschaften der Verbindung, wenn Sie einen Terminaladapter verwenden. Daher können Sie unter FreeBSD einfach von einer Modemverbindung auf eine ISDN-Verbindung wechseln, wenn Sie PPP bereits konfiguriert haben. Allerdings bedeutet dies auch, das bereits bestehende Probleme mit PPP auch unter ISDN auftreten werden. Wenn Sie an maximaler Stabilität interessiert sind, verwenden Sie Kernel-PPP, und nicht das User-PPP. Folgende Terminaladapter werden von FreeBSD unterstützt: Motorola BitSurfer und Bitsurfer Pro Adtran Die meisten anderen Terminaladapter werden wahrscheinlich ebenfalls funktionieren, da die Hersteller von Terminaladaptern darauf achten, dass ihre Produkte den Standardbefehlssatz möglichst gut unterstützen. Das wirkliche Problem mit einem externen Terminaladapter ist, dass, ähnlich wie bei Modems, eine gute serielle Karte eine Grundvoraussetzung ist. Sie sollten sich die Anleitung für die Nutzung serieller Geräte unter FreeBSD ansehen, wenn Sie detaillierte Informationen über serielle Geräte und die Unterschiede zwischen asynchronen und synchronen seriellen Ports benötigen. Ein Terminaladapter, der an einem (asynchronen) seriellen Standardport angeschlossen ist, beschränkt Sie auf 115,2 Kbs. Dies selbst dann, wenn Sie eine Verbindung mit 128 Kbs haben. Um die volle Leistungsfähigkeit von ISDN (128 Kbs) nutzen zu können, müssen Sie den Terminaladapter daher an eine synchrone serielle Karte anschließen. Kaufen Sie keinen internen Terminaladapter in der Hoffnung, damit das synchron/asynchron-Problem vermeiden zu können. Interne Terminaladapter haben einen (asynchronen) seriellen Standardportchip eingebaut. Der einzige Vorteil interner Terminaladapter ist es, dass Sie ein serielles sowie ein Stromkabel weniger benötigen. Eine synchrone Karte mit einem Terminaladapter ist mindestens so schnell wie ein autonomer ISDN-Router, und, in Kombination mit einem einfachen 386-FreeBSD-System, wahrscheinlich flexibler. Die Entscheidung zwischen synchroner Karte/Terminaladapter und einem autonomen ISDN-Router ist beinahe eine religiöse Angelegenheit. Zu diesem Thema gibt es viele Diskussionen in den Mailinglisten. Suchen Sie in den Archiven danach, wenn Sie an der kompletten Diskussion interessiert sind. ISDN-Bridges und Router ISDN Autonome Bridge/Router ISDN-Bridges und Router sind keine Eigenheit von FreeBSD oder eines anderen Betriebssystems. Für eine vollständigere Beschreibung von Routing und Netzwerkkopplungen mit einer Bridge informieren Sie sich bitte durch weiterführende Literatur. In diesem Abschnitt werden die Begriffe Router und Bridge synonym verwendet. ISDN-Router und Bridges werden immer günstiger und damit auch immer beliebter. Ein ISDN-Router ist eine kleine Box, die direkt an Ihr lokales Ethernet-Netzwerk angeschlossen wird und sich mit einem Router oder einer Bridge verbindet. Die eingebaute Software ermöglicht die Kommunikation über PPP oder andere beliebte Protokolle. Ein Router ermöglicht einen deutlich höheren Datendurchsatz als ein herkömmlicher Terminaladapter, da er eine vollsynchrone ISDN-Verbindung nutzt. Das Hauptproblem mit ISDN-Routern und Bridges ist, dass die Zusammenarbeit zwischen Geräten verschiedener Hersteller nach wie vor ein Problem ist. Wenn Sie sich auf diese Weise mit einem Internetanbieter verbinden wollen, klären Sie daher vorher ab, welche Anforderungen Ihre Geräte erfüllen müssen. Eine ISDN-Bridge ist eine einfache und wartungsarme Lösung, zwei Netze, beispielsweise Ihr privates Netz und Ihr Firmennetz, miteinander zu verbinden. Da Sie die technische Ausstattung für beide Seiten kaufen müssen, ist sichergestellt, dass die Verbindung funktionieren wird. Um beispielsweise einen privaten Computer oder eine Zweigstelle mit dem Hauptnetzwerk zu verbinden, könnte folgende Konfiguration verwendet werden: Kleines Netzwerk (Privatnetz) 10 base 2 Das Netzwerk basiert auf der Bustopologie mit 10base2 Ethernet (Thinnet). Falls nötig, stellen Sie die Verbindung zwischen Router und Netzwerkkabel mit einem AUI/10BT-Transceiver her. ---Sun Workstation | ---FreeBSD Rechner | ---Windows 95 | Autonomer Router | ISDN BRI Verbindung 10Base2 - Ethernet Wenn Sie nur einen einzelnen Rechner verbinden wollen, können Sie auch ein Twisted-Pair-Kabel (Cross-Over) verwenden, das direkt an den Router angeschlossen wird. Großes Netzwerk (Firmennetz) 10 base T Dieses Netzwerk basiert auf der Sterntopologie und 10baseT Ethernet (Twisted Pair). -------Novell Server | H | | ---Sun | | | U ---FreeBSD | | | ---Windows 95 | B | |___---Autonomer Router | ISDN BRI Verbindung ISDN Netzwerkdiagramm Ein großer Vorteil der meisten Router und Bridges ist es, dass man gleichzeitig zwei unabhängige PPP-Verbindungen zu zwei verschiedenen Zielen aufbauen kann. Diese Funktion bieten die meisten Terminaladapter nicht. Die Ausnahme sind spezielle (meist teure) Modelle, die über zwei getrennte serielle Ports verfügen. Verwechseln Sie dies aber nicht mit Kanalbündelung oder MPP. Dies kann sehr nützlich sein, wenn Sie eine ISDN-Standleitung in Ihrem Büro haben, die sie aufteilen wollen, ohne eine zusätzliche ISDN-Leitung zu installieren. Ein ISDN-Router kann über einen B-Kanal (64 Kbps) eine dedizierte Verbindung ins Internet aufbauen, und gleichzeitig den anderen B-Kanal für eine separate Datenverbindung nutzen. Der zweite B-Kanal kann beispielsweise für ein- oder ausgehende Verbindungen verwendet werden. Sie können ihn aber auch dynamisch mit dem ersten B-Kanal bündeln, um Ihre Bandbreite zu erhöhen. IPX/SPX Eine Ethernet-Bridge kann Daten nicht nur im IP-Protokoll, sondern auch in beliebigen anderen Protokollen versenden. Chern Lee Beigetragen von NAT - Network Address Translation Überblick natd &man.natd.8;, der Network-Address-Translation-Daemon von FreeBSD, akzeptiert ankommende Raw-IP-Pakete, ändert den Sender der Daten in den eigenen Rechner und leitet diese Pakete in den ausgehenden IP-Paketstrom um, indem IP-Adresse und Port des Senders so geändert werden, dass bei einer Antwort der ursprüngliche Sender wieder bestimmt und die Daten an ihn weitergeleitet werden können. Internet connection sharing NAT Der häufigste Grund für die Verwendung von NAT ist die gemeinsame Nutzung einer Internetverbindung. Einrichtung Wegen der begrenzten Verfügbarkeit von IPv4-Adressen und der gestiegenen Anzahl von Breitbandverbindungen über Kabelmodem oder DSL, wird die gemeinsame Nutzung von Internetverbindungen immer wichtiger. Der &man.natd.8;-Daemon ermöglicht die Anbindung von mehreren Rechnern an das Internet unter Nutzung einer gemeinsamen Verbindung und einer IP-Adresse. Häufig soll ein über Kabelmodem oder DSL und eine IP-Adresse an das Internet angebundener Rechner mehreren Rechnern eines lokalen Netzwerks Internetdienste anbieten. Um dies zu ermöglichen, muss der FreeBSD-Rechner als Gateway fungieren. Dazu sind zwei Netzwerkkarten notwendig. Eine für die Verbindung zum Internet, die zweite für die Verbindung mit dem lokalen Netzwerk. Sämtliche Rechner des lokalen Netzwerks sind über einen Hub oder einen Switch miteinander verbunden. Es gibt verschiedene Möglichkeiten, ein LAN über ein &os;-Gateway an das Internet anzubinden. Das folgende Beispiel beschreibt ein Gateway, das zumindest zwei Netzwerkkarten enthält. _______ __________ ________ | | | | | | | Hub |-----| Client B |-----| Router |----- Internet |_______| |__________| |________| | ____|_____ | | | Client A | |__________| Network Layout Eine derartige Netzwerkkonfiguration wird vor allem zur gemeinsamen Nutzung einer Internetverbindung verwendet. Ein Rechner des lokalen Netzwerks (LAN) ist mit dem Internet verbunden. Alle anderen Rechner des lokalen Netzwerks haben nur über diesen Gateway-Rechner Zugriff auf das Internet. boot loader configuration Boot Loader Konfiguration Die Kerneleigenschaften für Network Address Translation mit &man.natd.8; sind im GENERIC-Kernel nicht aktiviert, können aber bereits zur Bootzeit geladen werden, indem ein paar Zeilen in die Datei /boot/loader.conf hinzugefügt werden: ipfw_load="YES" ipdivert_load="YES" Zusätzlich kann die Option net.inet.ip.fw.default_to_accept auf 1 gesetzt werden: net.inet.ip.fw.default_to_accept="1" Es ist eine gute Idee, diese Option während den ersten Versuchen, eine Firewall und ein NAT-Gateway aufzusetzen, zu aktivieren. Damit ist die Standardvorgehensweise von &man.ipfw.8; diejenige, allow ip from any to any, anstatt der weniger freizügigen deny ip from any to any. Es wird dadurch etwas schwieriger, sich aus Versehen nach einem Neustart aus dem System auszusperren. Kernelkonfiguration Kernel Konfiguration Wenn Module nicht in Frage kommen oder Sie bevorzugen, alle notwendigen Eigenschaften in den laufenden Kernel einzubauen, müssen die folgenden Optionen in die Kernelkonfigurationsdatei eingetragen werden: options IPFIREWALL options IPDIVERT Die folgende Optionen können ebenfalls eingetragen werden: options IPFIREWALL_DEFAULT_TO_ACCEPT options IPFIREWALL_VERBOSE System Bootkonfiguration Um Firewall- und NAT-Unterstützung zur Bootzeit zu aktivieren, tragen Sie Folgendes in /etc/rc.conf ein: gateway_enable="YES" firewall_enable="YES" firewall_type="OPEN" natd_enable="YES" natd_interface="fxp0" natd_flags="" Richtet den Rechner als Gateway ein. Die Ausführung von sysctl net.inet.ip.forwarding=1 hätte den gleichen Effekt. Aktiviert die Firewallregeln in /etc/rc.firewall beim Systemstart. Ein vordefinierter Satz von Firewallregeln, der alle Pakete durchlässt. Sehen Sie sich /etc/rc.firewall an, wenn Sie diese Option verwenden wollen. Die Netzwerkkarte, die Pakete weiterleitet (und mit dem Internet verbunden ist). Zusätzliche Konfigurationsoptionen, die beim Systemstart an &man.natd.8; übergeben werden. Durch die Definition dieser Optionen in /etc/rc.conf wird die Anweisung natd -interface fxp0 beim Systemstart ausgeführt. Dies kann aber auch manuell erfolgen. Falls Sie viele Optionen an &man.natd.8; übergeben müssen, können Sie auch eine Konfigurationsdatei verwenden. Dazu fügen Sie folgende Zeile in /etc/rc.conf ein: natd_flags="-f /etc/natd.conf" Die Datei /etc/natd.conf enthält verschiedene Konfigurationsoptionen, wobei jede Option in einer Zeile steht. Das Beispiel im nächsten Abschnitt würde folgende Konfigurationsdatei verwenden: redirect_port tcp 192.168.0.2:6667 6667 redirect_port tcp 192.168.0.3:80 80 Wenn Sie eine Konfigurationsdatei verwenden wollen, sollten Sie sich die Handbuchseite zu &man.natd.8; durchlesen, insbesondere den Abschnitt über die Nutzung der Option . Jedem Rechner und jeder Schnittstelle des lokalen Netzwerks sollte eine IP-Adresse des im RFC 1918 definierten privaten Adressraums zugewiesen werden. Der Standardgateway entspricht der internen IP-Adresse des natd-Rechners. Im Beispiel werden den LAN-Clients A und B die IP-Adressen 192.168.0.2 und 192.168.0.3 zugewiesen, während die LAN-Netzwerkkarte des natd-Rechners die IP-Adresse 192.168.0.1 erhält. Der natd-Rechner mit der IP-Adresse 192.168.0.1 wird als Standardgateway für die Clients A und B gesetzt. Die externe Netzwerkkarte des natd-Rechners muss für die korrekte Funktion von &man.natd.8; nicht konfiguriert werden. Ports umleiten Wenn Sie &man.natd.8; verwenden, sind Ihre LAN-Clients von aussen nicht erreichbar. LAN-Clients können zwar Verbindungen nach aussen aufbauen, sind aber für ankommende Verbindungen nicht erreichbar. Wenn Sie Internetdienste auf einem LAN-Client anbieten wollen, haben Sie daher ein Problem. Eine einfache Lösung ist die Umleitung von bestimmten Internetports des natd-Rechners auf einen LAN-Client. Beispielsweise könnte ein IRC-Server auf Client A und ein Webserver auf Client B laufen. Damit diese Konfiguration funktioniert, müssen Verbindungen, die auf den Ports 6667 (IRC) und 80 (Web) ankommen, auf die entsprechenden Clients umgeleitet werden. Dazu wird die Option unter Nutzung folgender Syntax an &man.natd.8; übergeben: -redirect_port proto targetIP:targetPORT[-targetPORT] [aliasIP:]aliasPORT[-aliasPORT] [remoteIP[:remotePORT[-remotePORT]]] Für unser Beispiel heißt das: -redirect_port tcp 192.168.0.2:6667 6667 -redirect_port tcp 192.168.0.3:80 80 Dadurch werden die entsprechenden tcp-Ports auf die jeweiligen LAN-Clients umgeleitet. Mit können auch ganze Portbereiche statt einzelner Ports umgeleitet werden. So werden mit tcp 192.168.0.2:2000-3000 2000-3000 alle Verbindungen, die auf den Ports 2000 bis 3000 ankommen, auf die entsprechenden Ports des Clients A umgeleitet. Diese Optionen können während des Betriebs von &man.natd.8; oder über die Option natd_flags="" in /etc/rc.conf gesetzt werden. Eine ausführliche Konfigurationsanleitung finden Sie in &man.natd.8;. Adressen umleiten address redirection Die Umleitung von Adressen ist nützlich, wenn mehrere IP-Adressen verfügbar sind, die aber alle auf einem Rechner verbleiben sollen. In diesem Fall kann &man.natd.8; jedem LAN-Client eine eigene externe IP-Adresse zuweisen. Ausgehende Pakete eines LAN-Clients werden so der entsprechenden externen IP-Adresse des Clients zugeordnet. Ankommender Verkehr für diese IP-Adresse wird automatisch an den entsprechenden LAN-Client weitergeleitet. Diesen Vorgang bezeichnet man auch als statisches NAT. Dem natd-Gatewayrechner könnten beispielsweise die IP-Adressen 128.1.1.1, 128.1.1.2 sowie 128.1.1.3 zugewiesen werden. 128.1.1.1 wird als die externe IP-Adresse des natd-Gatewayrechners verwendet, während 128.1.1.2 und 128.1.1.3 an die LAN-Clients A und B weitergegeben werden. benutzt folgende Syntax: -redirect_address localIP publicIP localIP Die interne IP-Adresse des LAN-Clients publicIP Die externe IP-Adresse des LAN-Clients Für unser Beispiel hieße dies: -redirect_address 192.168.0.2 128.1.1.2 -redirect_address 192.168.0.3 128.1.1.3 Analog zur Option können Sie diese Argumente auch in der Option natd_flags="" in /etc/rc.conf angeben. Bei der Nutzung der Adressumleitung ist die Portumleitung überflüssig, weil alle für eine bestimmte IP-Adresse ankommenden Daten umgeleitet werden. Die externe IP-Adresse des natd-Rechners muss aktiv sein und der externen Netzwerkkarte zugewiesen sein. Weitere Informationen zu diesem Thema finden Sie in &man.rc.conf.5;. PLIP – Parallel Line IP PLIP Parallel Line IP PLIP PLIP ermöglicht TCP/IP-Verbindungen zwischen zwei Rechnern, die über ihre parallelen Schnittstellen verbunden sind. Eine solche Verbindung ist nützlich, wenn zwei Rechner nicht mit Netzwerkkarten ausgestattet sind, oder wenn eine Installation auf einem Laptop erfolgen soll. Dieser Abschnitt behandelt folgende Themen: Die Herstellung eines parallelen (Laplink-) Kabels Die Verbindung von zwei Computern über PLIP Ein paralleles Kabel herstellen Ein paralleles (Laplink-)Kabel können Sie in fast jedem Computergeschäft kaufen. Falls dies nicht möglich sein sollte, oder Sie einfach wissen wollen, wie ein solches Kabel aufgebaut ist, sollten Sie sich die folgende Tabelle ansehen. Sie beschreibt die Herstellung eines parallelen Netzwerkkabels aus einem gewöhnlichen parallelen Druckerkabel. Die Netzwerk-Verdrahtung eines parallelen Kabels A-Name A-Ende B-Ende Beschreibung Post/Bit DATA0 -ERROR 2 15 15 2 Data 0/0x01 1/0x08 DATA1 +SLCT 3 13 13 3 Data 0/0x02 1/0x10 DATA2 +PE 4 12 12 4 Data 0/0x04 1/0x20 DATA3 -ACK 5 10 10 5 Strobe 0/0x08 1/0x40 DATA4 BUSY 6 11 11 6 Data 0/0x10 1/0x80 GND 18-25 18-25 GND -
PLIP einrichten Als Erstes benötigen Sie ein Laplink-Kabel. Danach müssen Sie sicherstellen, dass beide Computerkernel den &man.lpt.4;-Treiber unterstützen: &prompt.root; grep lp /var/run/dmesg.boot lpt0: <Printer> on ppbus0 lpt0: Interrupt-driven port Der Parallelport muss Interrupt-gesteuert sein, daher sollte die Datei /boot/device.hints zwei Zeilen ähnlich den folgenden enthalten: hint.ppc.0.at="isa" hint.ppc.0.irq="7" Danach überprüfen Sie, ob die Kernelkonfigurationsdatei die Zeile device plip enthält, oder ob das Kernelmodul plip.ko geladen wurde. In beiden Fällen sollte die parallele Schnittstelle von &man.ifconfig.8; angezeigt werden: &prompt.root; ifconfig plip0 plip0: flags=8810<POINTOPOINT,SIMPLEX,MULTICAST> mtu 1500 Verbinden Sie die parallelen Schnittstellen der beiden Computer über das (Laplink-)Kabel. Konfigurieren Sie die Netzwerkparameter auf beiden Rechnern als root. Wenn Sie beispielsweise den Rechner host1 mit dem Rechner host2 verbinden wollen, gehen Sie folgendermaßen vor: host1 <-----> host2 IP Address 10.0.0.1 10.0.0.2 Richten Sie die parallele Schnittstelle von host1 ein, indem Sie Folgendes eingeben: &prompt.root; ifconfig plip0 10.0.0.1 10.0.0.2 Danach richten Sie die parallele Schnittstelle von host2 ein: &prompt.root; ifconfig plip0 10.0.0.2 10.0.0.1 Sie sollten nun über eine funktionierende Verbindung verfügen. Bei Problemen lesen Sie bitte die Hilfeseiten &man.lp.4; sowie &man.lpt.4;. Zusätzlich sollten beide Rechner in /etc/hosts eingetragen werden: 127.0.0.1 localhost.my.domain localhost 10.0.0.1 host1.my.domain host1 10.0.0.2 host2.my.domain host2 Um die Verbindung zu überprüfen, pingen Sie jeden Rechner vom anderen Rechner aus an. Auf host1 gehen Sie dazu folgendermaßen vor: &prompt.root; ifconfig plip0 plip0: flags=8851<UP,POINTOPOINT,RUNNING,SIMPLEX,MULTICAST> mtu 1500 inet 10.0.0.1 --> 10.0.0.2 netmask 0xff000000 &prompt.root; netstat -r Routing tables Internet: Destination Gateway Flags Refs Use Netif Expire host2 host1 UH 0 0 plip0 &prompt.root; ping -c 4 host2 PING host2 (10.0.0.2): 56 data bytes 64 bytes from 10.0.0.2: icmp_seq=0 ttl=255 time=2.774 ms 64 bytes from 10.0.0.2: icmp_seq=1 ttl=255 time=2.530 ms 64 bytes from 10.0.0.2: icmp_seq=2 ttl=255 time=2.556 ms 64 bytes from 10.0.0.2: icmp_seq=3 ttl=255 time=2.714 ms --- host2 ping statistics --- 4 packets transmitted, 4 packets received, 0% packet loss round-trip min/avg/max/stddev = 2.530/2.643/2.774/0.103 ms
Aaron Kaplan Beigetragen von Tom Rhodes Überarbeitet und erweitert von Brad Davis Erweitert von IPv6 – Internet Protocol Version 6 Bei IPv6 (auch als IPng oder IP next generation bekannt) handelt es sich um die neueste Version des bekannten IP-Protokolls (das auch als IPv4 bezeichnet wird). FreeBSD enthält, genauso wie die anderen frei erhältlichen BSD-Systeme, die IPv6-Referenzimplementation von KAME. FreeBSD erfüllt damit bereits alle für die Nutzung von IPv6 nötigen Voraussetzungen. Dieser Abschnitt konzentriert sich daher auf die Konfiguration und den Betrieb von IPv6. Anfang der 90er Jahre wurde man auf den stark steigenden Verbrauch von IPv4-Adressen aufmerksam. Im Hinblick auf das Wachstums des Internets gab es zwei Hauptsorgen: Die drohende Knappheit von IPv4-Adressen. Dieses Problem konnte durch die Einführung von privaten Adressräumen gemäß RFC1918 (mit Adressen wie 10.0.0.0/8, 172.16.0.0/12, oder 192.168.0.0/16) sowie der Entwicklung von Network Address Translation (NAT) weitestgehend entschärft werden. Die immer größer werdenden Einträge in Router-Tabellen. Dieses Problem ist auch heute noch aktuell. IPv6 ist in der Lage, diese, aber auch viele andere Probleme zu lösen: IPv6 hat einen 128 Bit großen Adressraum. Es sind also theoretisch 340.282.366.920.938.463.463.374.607.431.768.211.456 Adressen verfügbar. In anderen Worten: Für jeden Quadratmeter der Erdoberfläche sind etwa 6,67 * 10^27 IPv6-Adressen verfügbar. Router speichern nur noch Netzwerk-Aggregationsadressen in Ihren Routingtabellen. Dadurch reduziert sich die durchschnittliche Größe einer Routingtabelle auf 8192 Einträge. Weitere nützliche Eigenschaften von IPv6 sind: Die automatische Konfiguration von Adressen, die im RFC2462 beschrieben wird. Anycast-Adressen (eine-von-vielen) Verpflichtende Multicast-Adressen Die Unterstützung von IPsec (IP-Security) Eine vereinfachte Headerstruktur Mobile IP-Adressen Die Umwandlung von IPv4- in IPv6-Adressen Weitere Informationsquellen: Beschreibung von IPv6 auf playground.sun.com KAME.net Hintergrundinformationen zu IPv6-Adressen Es gibt verschiedene Arten von IPv6-Adressen: Unicast-, Anycast- und Multicast-Adressen. Unicast-Adressen sind die herkömlichen Adressen. Ein Paket, das an eine Unicast-Adresse gesendet wird, kommt nur an der Schnittstelle an, die dieser Adresse zugeordnet ist. Anycast-Adressen unterscheiden sich in ihrer Syntax nicht von Unicast-Adressen, sie wählen allerdings aus mehreren Schnittstellen eine Schnittstelle aus. Ein für eine Anycast-Adresse bestimmtes Paket kommt an der nächstgelegenen (entsprechend der Router-Metrik) Schnittstelle an. Anycast-Adressen werden nur von Routern verwendet. Multicast-Adressen bestimmen Gruppen, denen mehrere Schnittstellen angehören. Ein Paket, das an eine Multicast-Adresse geschickt wird, kommt an allen Schnittstellen an, die zur Multicast-Gruppe gehören. Die von IPv4 bekannte Broadcast-Adresse (normalerweise xxx.xxx.xxx.255) wird bei IPv6 durch Multicast-Adressen verwirklicht. Reservierte IPv6-Adressen IPv6-Adresse Präfixlänge Beschreibung Anmerkungen :: 128 Bit nicht festgelegt entspricht 0.0.0.0 bei IPv4 ::1 128 Bit Loopback-Adresse entspricht 127.0.0.1 bei IPv4 ::00:xx:xx:xx:xx 96 Bit Eingebettete IPv4-Adresse Die niedrigen 32 Bit entsprechen der IPv4-Adresse. Wird auch als IPv4-kompatible IPv6-Adresse bezeichnet. ::ff:xx:xx:xx:xx 96 Bit Eine auf IPv6 abgebildete IPv4-Adresse Die niedrigen 32 Bit entsprechen der IPv4-Adresse. Notwendig für Rechner, die IPv6 nicht unterstützen. fe80:: - feb:: 10 Bit link-local Entspricht der Loopback-Adresse bei IPv4 fec0:: - fef:: 10 Bit site-local   ff:: 8 Bit Multicast   001 (im Dualsystem) 3 Bit Globaler Unicast Alle globalen Unicastadressen stammen aus diesem Pool. Die ersten 3 Bit lauten 001.
IPv6-Adressen verstehen Die kanonische Form von IPv6-Adressen lautet x:x:x:x:x:x:x:x, jedes x steht dabei für einen 16-Bit-Hexadezimalwert. Ein Beispiel für eine IPv6-Adresse wäre etwa FEBC:A574:382B:23C1:AA49:4592:4EFE:9982. Eine IPv6-Adresse enthält oft Teilzeichenfolgen aus lauter Nullen. Eine solche Zeichenfolge kann zu :: verkürzt werden. Bis zu drei führende Nullen eines Hexquads können ebenfalls weggelassen werden. fe80::1 entspricht also der Adresse fe80:0000:0000:0000:0000:0000:0000:0001. Eine weitere Möglichkeit ist die Darstellung der letzten 32 Bit in der bekannten (dezimalen) IPv4-Darstellung, bei der Punkte (.) zur Trennung verwendet werden. 2002::10.0.0.1 ist also nur eine andere Schreibweise für die (hexadezimale) kanonische Form 2002:0000:0000:0000:0000:0000:0a00:0001, die wiederum der Adresse 2002::a00:1 entspricht. Sie sollten nun in der Lage sein, die folgende Ausgabe zu verstehen: &prompt.root; ifconfig rl0: flags=8943<UP,BROADCAST,RUNNING,PROMISC,SIMPLEX,MULTICAST> mtu 1500 inet 10.0.0.10 netmask 0xffffff00 broadcast 10.0.0.255 inet6 fe80::200:21ff:fe03:8e1%rl0 prefixlen 64 scopeid 0x1 ether 00:00:21:03:08:e1 media: Ethernet autoselect (100baseTX ) status: active Bei fe80::200:21ff:fe03:8e1%rl0 handelt es sich um eine automatisch konfigurierte link-local-Adresse. Sie wird im Rahmen der automatischen Konfiguration aus der MAC-Adresse erzeugt. Weitere Informationen zum Aufbau von IPv6-Adressen finden Sie im RFC3513. Eine IPv6-Verbindung herstellen Es gibt derzeit vier Möglichkeiten, sich mit anderen IPv6-Rechnern oder Netzwerken zu verbinden: Fragen Sie Ihren Internetprovider, ob er IPv6 bereits unterstützt. SixXS bietet weltweit IPv6-Tunnelverbindungen an. Die Verwendung eines 6-nach-4-Tunnels (RFC3068). Die Verwendung des Ports /usr/ports/net/freenet6 bei der Einwahl ins Internet. DNS in der IPv6-Welt Ursprünglich gab es zwei verschiedene DNS-Einträge für IPv6. Da A6-Einträge von der IETF für obsolet erklärt wurden, sind AAAA-Einträge nun Standard. Weisen Sie die erhaltene IPv6-Adresse Ihrem Rechnernamen zu, indem Sie den Eintrag MYHOSTNAME AAAA MYIPv6ADDR in Ihre primäre DNS-Zonendatei einfügen. Falls Sie nicht für Ihre DNS-Zone verantwortlich sind, bitten Sie den dafür Zuständigen, diese Änderung durchzuführen. Die aktuellen Versionen von bind (Version 8.3 oder 9) sowie dns/djbdns (bei Verwendung des IPv6-Patches) unterstützen AAAA-Einträge. <filename>/etc/rc.conf</filename> für die Nutzung von IPv6 anpassen Einen Client unter IPv6 einrichten Dieser Abschnitt beschreibt die Konfiguration eines Rechners, der in Ihrem LAN als Client, aber nicht als Router verwendet wird. Um die Schnittstelle während des Systemstarts mit &man.rtsol.8; automatisch einzurichten, fügen Sie folgende Zeile in /etc/rc.conf ein: ipv6_enable="YES" Durch die folgende Zeile weisen Sie Ihrer Schnittstelle fxp0 die statische IP-Adresse 2001:471:1f11:251:290:27ff:fee0:2093 zu: ipv6_ifconfig_fxp0="2001:471:1f11:251:290:27ff:fee0:2093" Um 2001:471:1f11:251::1 als Standardrouter festzulegen, fügen Sie folgende Zeile in /etc/rc.conf ein: ipv6_defaultrouter="2001:471:1f11:251::1" Gateways und Router unter IPv6 einrichten Dieser Abschnitt beschreibt, wie Sie Ihren Rechner mit Hilfe der von Ihrem Tunnel-Anbieter erhaltenen Anweisungen dauerhaft für die Nutzung von IPv6 einrichten. Um den Tunnel beim Systemstart wiederherzustellen, passen Sie /etc/rc.conf wie folgt an: Listen Sie die einzurichtenden Tunnelschnittstellen (hier gif0) auf: gif_interfaces="gif0" Um den lokalen Endpunkt MY_IPv4_ADDR über diese Schnittstelle mit dem entfernten Endpunkt REMOTE_IPv4_ADDR zu verbinden, verwenden Sie folgende Zeile: gifconfig_gif0="MY_IPv4_ADDR REMOTE_IPv4_ADDR" Um die Ihnen zugewiesene IPv6-Adresse als Endpunkt Ihres IPv6-Tunnels zu verwenden, fügen Sie folgende Zeile ein: ipv6_ifconfig_gif0="MY_ASSIGNED_IPv6_TUNNEL_ENDPOINT_ADDR" Nun müssen Sie nur noch die IPv6-Standardroute angeben. Diese legt das andere Ende des IPv6-Tunnels fest. ipv6_defaultrouter="MY_IPv6_REMOTE_TUNNEL_ENDPOINT_ADDR" Einen IPv6-Tunnel einrichten Wenn Ihr Server IPv6-Verkehr zwischen Ihrem Netzwerk und der Außenwelt routen muss, benötigen Sie zusätzlich die folgenden Zeilen in Ihrer /etc/rc.conf: ipv6_gateway_enable="YES" Bekanntmachung von Routen und automatische Rechnerkonfiguration Dieser Abschnitt beschreibt die Einrichtung von &man.rtadvd.8;, das Sie bei der Bekanntmachung der IPv6-Standardroute unterstützt. Um &man.rtadvd.8; zu aktivieren, fügen Sie folgende Zeile in /etc/rc.conf ein: rtadvd_enable="YES" Es ist wichtig, die Schnittstelle anzugeben, über die IPv6-Routen bekanntgemacht werden sollen. Soll &man.rtadvd.8; fxp0 verwenden, ist folgender Eintrag nötig: rtadvd_interfaces="fxp0" Danach erzeugen Sie die Konfigurationsdatei /etc/rtadvd.conf. Dazu ein Beispiel: fxp0:\ :addrs#1:addr="2001:471:1f11:246::":prefixlen#64:tc=ether: Ersetzen Sie dabei fxp0 durch die zu verwendende Schnittstelle. Anschließend ersetzen Sie 2001:471:1f11:246:: durch das Präfix der Ihnen zugewiesenen Verbindung. Wenn Sie eine /64-Netzmaske verwenden, müssen Sie keine weiteren Anpassungen vornehmen. Anderenfalls müssen Sie prefixlen# auf den korrekten Wert setzen.
Harti Brandt Beigetragen von ATM - Asynchronous Transfer Mode <foreignphrase>Classical IP over ATM</foreignphrase> als PVC-Verbindung einrichten Classical IP over ATM (CLIP) ist die einfachste Möglichkeit, um IP-Verkehr über ATM (Asynchronous Transfer Mode-Verbindungen zu übertragen. CLIP kann sowohl mit geschalteten Verbindungen (SVCs) als auch mit permanenten Verbindungen (PVCs) verwendet werden. Dieser Abschnitt beschreibt die Einrichtung eines PVC-basierten Netzwerks. Ein vollständig vermaschtes Netzwerk aufbauen Bei einem vollständig vermaschten (fully meshed) Netzwerk ist jeder Rechner über eine dezidierte Verbindung mit jedem anderen Rechner des Netzwerks verbunden. Die Konfiguration ist - vor allem für kleinere Netzwerke - relativ einfach. Unser Beispielnetzwerk besteht aus vier Rechnern, die jeweils über eine ATM-Adapterkarte mit dem ATM-Netzwerk verbunden sind. Als ersten Konfigurationsschritt planen wir die Vergabe von IP-Adressen sowie die anzulegenden ATM-Verbindungen: Rechner IP-Adresse hostA 192.168.173.1 hostB 192.168.173.2 hostC 192.168.173.3 hostD 192.168.173.4 Um ein vollständiges Netz aufzubauen, benötigen wir für jedes Rechnerpaar eine eigene ATM-Verbindung: Rechnerpaar VPI.VCI-Paar hostA - hostB 0.100 hostA - hostC 0.101 hostA - hostD 0.102 hostB - hostC 0.103 hostB - hostD 0.104 hostC - hostD 0.105 Die Werte VPI und VCI an den Verbindungsenden können natürlich unterschiedlich sein. Wir nehmen hier aber an, dass sie gleich sind. Nun müssen wir die ATM-Schnittstellen auf jedem Rechner einrichten: hostA&prompt.root; ifconfig hatm0 192.168.173.1 up hostB&prompt.root; ifconfig hatm0 192.168.173.2 up hostC&prompt.root; ifconfig hatm0 192.168.173.3 up hostD&prompt.root; ifconfig hatm0 192.168.173.4 up Dabei setzen wir voraus, dass hatm0 auf allen Rechnern die ATM-Schnittstelle darstellt. Danach werden, beginnend mit hostA, die PVCs auf den einzelnen Rechnern eingerichtet (Wir nehmen an, dass die PVCs auf den ATM-Switches bereits eingerichet sind. Lesen Sie die entsprechenden Handbücher, wenn Sie einen Switch einrichten müssen.): hostA&prompt.root; atmconfig natm add 192.168.173.2 hatm0 0 100 llc/snap ubr hostA&prompt.root; atmconfig natm add 192.168.173.3 hatm0 0 101 llc/snap ubr hostA&prompt.root; atmconfig natm add 192.168.173.4 hatm0 0 102 llc/snap ubr hostB&prompt.root; atmconfig natm add 192.168.173.1 hatm0 0 100 llc/snap ubr hostB&prompt.root; atmconfig natm add 192.168.173.3 hatm0 0 103 llc/snap ubr hostB&prompt.root; atmconfig natm add 192.168.173.4 hatm0 0 104 llc/snap ubr hostC&prompt.root; atmconfig natm add 192.168.173.1 hatm0 0 101 llc/snap ubr hostC&prompt.root; atmconfig natm add 192.168.173.2 hatm0 0 103 llc/snap ubr hostC&prompt.root; atmconfig natm add 192.168.173.4 hatm0 0 105 llc/snap ubr hostD&prompt.root; atmconfig natm add 192.168.173.1 hatm0 0 102 llc/snap ubr hostD&prompt.root; atmconfig natm add 192.168.173.2 hatm0 0 104 llc/snap ubr hostD&prompt.root; atmconfig natm add 192.168.173.3 hatm0 0 105 llc/snap ubr Statt UBR können auch andere traffic contracts verwendet werden. Voraussetzung ist allerdings, dass diese von Ihrem ATM-Adapter unterstützt werden. Ist dies der Fall, folgen auf den Namen des traffic contracts die entsprechenden Konfigurationsparameter. Weitere Informationen zur Konfiguration von ATM-Adapterkarten erhalten Sie über den Befehl &prompt.root; atmconfig help natm add oder durch das Lesen von &man.atmconfig.8;. Die Konfiguration von ATM-Adaptern kann auch über die Datei /etc/rc.conf erfolgen. Für hostA sähe die Konfiguration so aus: network_interfaces="lo0 hatm0" ifconfig_hatm0="inet 192.168.173.1 up" natm_static_routes="hostB hostC hostD" route_hostB="192.168.173.2 hatm0 0 100 llc/snap ubr" route_hostC="192.168.173.3 hatm0 0 101 llc/snap ubr" route_hostD="192.168.173.4 hatm0 0 102 llc/snap ubr" Mit dem folgenden Befehl lässt sich der derzeitige Status aller CLIP-Routen anzeigen: hostA&prompt.root; atmconfig natm show Tom Rhodes Beigetragen von CARP - Common Address Redundancy Protocol CARP Common Address Redundancy Protocol (CARP) Das Common Address Redundancy Protocol (CARP) erlaubt es, mehreren Rechnern die gleiche IP-Adresse zuzuweisen. Durch ein solches Vorgehen läßt sich beispielsweise die Verfügbarkeit bestimmter Dienste verbessern oder die Last zwischen einzelnen Systemen besser verteilen. Den auf diese Art und Weise konfigurierten Systemen kann zusätzlich eine eigene (im Netzwerk eindeutige) IP-Adresse zugewiesen werden (wie dies auch im folgenden Beispiel erfolgt). Um CARP zu aktivieren, müssen Sie die &os;-Kernelkonfigurationsdatei um die folgende Option erweitern und danach den &os;-Kernel neu bauen: device carp Danach ist CARP auf Ihrem System verfügbar und kann über verschiedene sysctl-Optionen (OIDs) gesteuert werden. OID Beschreibung net.inet.carp.allow Akzeptiert ankommende CARP-Pakete. In der Voreinstellung aktiviert. net.inet.carp.preempt Diese Option deaktiviert alle CARP-Geräte, sobald eines von ihnen ausfällt. In der Voreinstellung deaktiviert. net.inet.carp.log Hat diese Variable den Wert 0, wird kein Protokoll generiert, während mit dem Wert 1 nur inkorrekte CARP-Pakete protokolliert werden. Hat die Variable einen Wert größer 1, werden nur die Statuswechsel von CARP-Geräten protokolliert. In der Voreinstellung hat diese Variable den Wert 1. net.inet.carp.arpbalance Gleicht die Netzwerklast im lokalen Netzwerk durch den Einsatz von ARP aus. In der Voreinstellung deaktiviert. net.inet.carp.suppress_preempt Eine nur lesbare OID, die den Preemption Suppression-Status anzeigt. Preemption kann verhindert werden. Dies auch dann, wenn ein Gerät ausfällt. Hat die Variable den Wert 0, bedeutet dies, dass Preemption nicht verhindert wird. Tritt ein Problem auf, wird der Wert dieser OID um 1 erhöht. Das CARP-Gerät selbst erzeugen Sie mit dem ifconfig-Befehl: &prompt.root; ifconfig carp0 create Damit Sie dieses Protokoll in Ihrem Netzwerk einsetzen können, muss jede Netzwerkkarte eine eindeutige Identifikationsnummer, die sogenannte VHID (Virtual Host Identification), besitzen, da sich ansonsten die Rechner Ihres Netzwerks nicht voneinander unterscheiden lassen. Die Serververfügbarkeit mit CARP verbessern Wie bereits weiter oben erwähnt wurde, können Sie CARP dazu verwenden, die Verfübarkeit Ihrer Server zu verbessern. Im folgenden Bespiel werden insgesamt drei Server (mit jeweils eigener, eindeutiger IP-Adresse), die alle den gleichen Inhalt anbieten, in einer Round Robin DNS-Konfiguration eingerichtet. Der Backup-Server verfügt über zwei CARP-Schnittstellen (für die beiden IP-Adressen der Content-Server). Tritt bei einem Content-Server ein Problem auf, übernimmt der Backup-Server die IP-Adresse des ausgefallenen Servers. Dadurch sollte die Auswahl eines Servers vom Anwender nicht bemerkt werden. Der Backup-Server muss identisch konfiguriert sein und die gleichen Daten und Dienste anbieten wie das System, das er ersetzen soll. Die beiden Content-Server werden (abgesehen von ihren jeweiligen Hostnamen und VHIDs) identisch konfiguriert und heißen in unserem Beispiel hosta.example.org beziehungsweise hostb.example.org. Damit Sie CARP einsetzen können, müssen Sie als Erstes die Datei rc.conf auf beiden Systemen anpassen. Für das System hosta.example.org nehmen Sie dazu folgende Zeilen in rc.conf auf: hostname="hosta.example.org" ifconfig_fxp0="inet 192.168.1.3 netmask 255.255.255.0" cloned_interfaces="carp0" ifconfig_carp0="vhid 1 pass testpass 192.168.1.50/24" Für das System hostb.example.org benötigen Sie zusätzlich folgende Zeilen in rc.conf: hostname="hostb.example.org" ifconfig_fxp0="inet 192.168.1.4 netmask 255.255.255.0" cloned_interfaces="carp0" ifconfig_carp0="vhid 2 pass testpass 192.168.1.51/24" Achten Sie unbedingt darauf, dass die durch die Option an ifconfig übergebenen Passwörter auf beiden Systemen identisch sind, da carp-Geräte nur mit Systemen kommunizieren können, die über ein korrektes Passwort verfügen. Beachten Sie weiters, dass sich die VHIDs der beiden Systeme unterscheiden müssen. Nun richten Sie noch das dritte System, provider.example.org, ein, das aktiviert wird, wenn eines der beiden zuvor konfigurierten Systeme ausfällt. Dieses dritte System benötigt zwei carp-Geräte, um bei Bedarf eines der beiden anderen Systeme ersetzen zu können. Dazu konfigurieren Sie rc.conf analog zur folgenden Beispielkonfiguration: hostname="provider.example.org" ifconfig_fxp0="inet 192.168.1.5 netmask 255.255.255.0" cloned_interfaces="carp0 carp1" ifconfig_carp0="vhid 1 advskew 100 pass testpass 192.168.1.50/24" ifconfig_carp1="vhid 2 advskew 100 pass testpass 192.168.1.51/24" Durch die beiden carp-Geräte ist es provider.example.org möglich, festzustellen, ob eines der beiden anderen Systeme nicht mehr reagiert. In diesem Fall übernimmt provider.example.org die IP-Adresse des betroffenen Systems. Ist im installierten &os;-Kernel die Option "preemption" aktiviert, kann es sein, dass provider.example.org die übernommene IP-Adresse nicht mehr an den Content-Server zurückgibt (wenn dieser wieder funktioniert). In diesem Fall muss ein Administrator die entsprechende Schnittstelle dazu zwingen, dies zu tun. Dazu gibt er auf dem Rechner provider.example.org den folgenden Befehl ein: &prompt.root; ifconfig carp0 down && ifconfig carp0 up Dieser Befehl muss auf das carp-Gerät ausgeführt werden, das dem betroffenen System zugeordnet ist. Damit ist CARP vollständig konfiguriert und der Testbetrieb kann beginnen. Zuvor müssen Sie allerdings noch alle Systeme neu starten (beziehungsweise die Netzwerkkonfiguration auf allen Systemen neu einlesen), um die Einstelllungen zu übernehmen. Für weitere Informtionen lesen Sie bitte die Manualpage &man.carp.4;.
Index: head/de_DE.ISO8859-1/books/handbook/config/chapter.sgml =================================================================== --- head/de_DE.ISO8859-1/books/handbook/config/chapter.sgml (revision 36616) +++ head/de_DE.ISO8859-1/books/handbook/config/chapter.sgml (revision 36617) @@ -1,3492 +1,3541 @@ Chern Lee Geschrieben von Mike Smith Nach einem Tutorium von Matt Dillon Basiert ebenfalls auf tuning(7) von Martin Heinen Übersetzt von Konfiguration und Tuning Übersicht System-Konfiguration System-Optimierung Ein korrekt konfiguriertes System kann die Arbeit, die bei der zukünftigen Pflege und bei Migrationen des Systems entsteht, erheblich reduzieren. Dieses Kapitel beschreibt die Konfiguration von &os; sowie Maßnahmen zur Leistungssteigerung von &os;-Systemen. Nachdem Sie dieses Kapitel durchgearbeitet haben, werden Sie Folgendes wissen: Wie Sie effizient Dateisysteme und Swap-Partitionen auf Ihrer Festplatte einrichten. Die Grundlagen der Konfiguration mit rc.conf und des Systems zum Starten von Anwendungen in /usr/local/etc/rc.d. Wie Sie Netzwerkkarten konfigurieren und testen. Wie Sie virtuelle Hosts und Netzwerkgeräte konfigurieren. Wie Sie die verschiedenen Konfigurationsdateien in /etc benutzen. Wie Sie mit sysctl-Variablen &os; einstellen können. Wie Sie die Platten-Performance einstellen und Kernel-Parameter modifizieren können. Bevor Sie dieses Kapitel lesen, sollten Sie die Grundlagen von &unix; und &os; () verstehen. Damit vertraut sein, wie Sie einen Kernel konfigurieren und kompilieren (). Vorbereitende Konfiguration Layout von Partitionen Layout von Partitionen /etc /var /usr Partitionen Wenn Sie Dateisysteme mit &man.bsdlabel.8; oder &man.sysinstall.8; anlegen, sollten Sie beachten, dass Festplatten auf Daten in den äußeren Spuren schneller zugreifen können als auf Daten in den inneren Spuren. Daher sollten die kleineren oft benutzten Dateisysteme, wie das Root-Dateisystem oder die Swap-Partition, an den äußeren Rand der Platte gelegt werden. Die größeren Partitionen wie /usr sollten in die inneren Bereiche gelegt werden. Es empfiehlt sich, die Partitionen in einer ähnlichen Reihenfolge wie Root-Partition, Swap, /var und /usr anzulegen. Die Größe der /var-Partition ist abhängig vom Zweck der Maschine. Das /var-Dateisystem enthält hauptsächlich Postfächer, den Spoolbereich zum Drucken und Logdateien. Abhängig von der Anzahl der Systembenutzer und der Aufbewahrungszeit für Logdateien, können gerade die Postfächer und Logdateien zu ungeahnten Größen wachsen. Die meisten Benutzer werden selten mehr als etwa ein Gigabyte in /var benötigen. Ein paar Mal wird es vorkommen, dass viel Festplattenspeicher in /var/tmp gebraucht wird. Wenn neue Software mit &man.pkg.add.1; installiert wird, extrahieren die Paketwerkzeuge eine vorübergehende Kopie der Pakete unter /var/tmp. Die Installation grosser Softwarepakete wie Firefox oder Openoffice kann sich wegen zu wenig Speicherplatz in /var/tmp als trickreich herausstellen. Die /usr-Partition enthält viele der Hauptbestandteile des Systems, dazu gehöhren die &man.ports.7;-Sammlung (empfohlen) und die Quellen (optional). Sowohl die Ports als auch die Quellen des Basissystems sind zum Zeitpunkt der Installation optional, trotzdem sollten Sie mindestens zwei Gigabyte für diese Partition vorsehen. Wenn Sie die Größe der Partitionen festlegen, beachten Sie bitte das Wachstum Ihres Systems. Wenn Sie den Platz auf einer Partition vollständig aufgebraucht haben, eine andere Partition aber kaum benutzen, kann die Handhabung des Systems schwierig werden. Die automatische Partitionierung von &man.sysinstall.8; mit Auto-defaults legt manchmal zu kleine / und /var-Partition an. Partitionieren Sie weise und großzügig. Swap Partition Swap-Partition Größe Swap-Partition Als Daumenregel sollten Sie doppelt soviel Speicher für die Swap-Partition vorsehen, als Sie Hauptspeicher haben. Verfügt die Maschine beispielsweise über 128 Megabyte Hauptspeicher, sollten Sie 256 Megabyte für den Swap-Bereich vorsehen. Systeme mit weniger Speicher werden wahrscheinlich mit viel mehr Swap mehr leisten. Es wird nicht empfohlen, weniger als 256 Megabyte Swap einzurichten. Außerdem sollten Sie künftige Speichererweiterungen beachten, wenn Sie die Swap-Partition einrichten. Die VM-Paging-Algorithmen im Kernel sind so eingestellt, dass Sie am besten laufen, wenn die Swap-Partition mindestens doppelt so groß wie der Hauptspeicher ist. Zu wenig Swap kann zu einer Leistungsverminderung im VM page scanning Code führen, sowie Probleme verursachen, wenn Sie später mehr Speicher in Ihre Maschine bauen. Auf größeren Systemen mit mehreren SCSI-Laufwerken (oder mehreren IDE-Laufwerken an unterschiedlichen Controllern) empfehlen wir Ihnen, Swap-Bereiche auf bis zu vier Laufwerken einzurichten. Diese Swap-Partitionen sollten ungefähr dieselbe Größe haben. Der Kernel kann zwar mit beliebigen Größen umgehen, aber die internen Datenstrukturen skalieren bis zur vierfachen Größe der größten Partition. Ungefähr gleich große Swap-Partitionen erlauben es dem Kernel, den Swap-Bereich optimal über die Laufwerke zu verteilen. Große Swap-Bereiche, auch wenn sie nicht oft gebraucht werden, sind nützlich, da sich ein speicherfressendes Programm unter Umständen auch ohne einen Neustart des Systems beenden lässt. Warum partitionieren? Gegen eine einzelne Partition sprechen mehrere Gründe. Jede Partition hat im Betrieb unterschiedliche Eigenschaften und die Trennung der Partitionen erlaubt es, die Dateisysteme an diese Eigenschaften anzupassen. Die Root- und /usr-Partitionen weisen meist nur lesende Zugriffe auf, während /var und /var/tmp hauptsächlich beschrieben werden. Indem Sie ein System richtig partitionieren, verhindern Sie, dass eine Fragmentierung in den häufig beschriebenen Partitionen auf die meist nur gelesenen Partitionen übergreift. Wenn Sie die häufig beschriebenen Partitionen an den Rand der Platte, legen, dann wird die I/O-Leistung diesen Partitionen steigen. Die I/O-Leistung ist natürlich auch für große Partitionen wichtig, doch erzielen Sie eine größere Leistungssteigerung, wenn Sie /var an den Rand der Platte legen. Schließlich sollten Sie noch die Stabilität des Systems beachten. Eine kleine Root-Partition, auf die meist nur lesend zugegriffen wird, überlebt einen schlimmen Absturz wahrscheinlich eher als eine große Partition. Basiskonfiguration rc-Dateien rc.conf Informationen zur Systemkonfiguration sind hauptsächlich in /etc/rc.conf, die meist beim Start des Systems verwendet wird, abgelegt. Der Name der Datei zeigt ihren Zweck an: Sie enthält die Konfigurationen für die rc* Dateien. In rc.conf werden die Vorgabewerte aus /etc/defaults/rc.conf überschrieben. Die Vorgabedatei sollte nicht nach /etc kopiert werden, da sie die Vorgabewerte und keine Beispiele enthält. Jede systemspezifische Änderung wird in rc.conf vorgenommen. Um den administrativen Aufwand gering zu halten, existieren in geclusterten Anwendungen mehrere Strategien, globale Konfigurationen von systemspezifischen Konfigurationen zu trennen. Der empfohlene Weg hält die globale Konfiguration in einer separaten Datei z.B. rc.conf.site. Diese Datei wird dann in /etc/rc.conf, die nur systemspezifische Informationen enthält, eingebunden. Da rc.conf von &man.sh.1; gelesen wird, ist das einfach zu erreichen: rc.conf: . /etc/rc.conf.site hostname="node15.example.com" network_interfaces="fxp0 lo0" ifconfig_fxp0="inet 10.1.1.1" rc.conf.site: defaultrouter="10.1.1.254" saver="daemon" blanktime="100" rc.conf.site kann dann auf jedes System mit rsync verteilt werden, rc.conf bleibt dabei systemspezifisch. Bei einem Upgrade des Systems mit &man.sysinstall.8; oder make world wird rc.conf nicht überschrieben, so dass die Systemkonfiguration erhalten bleibt. Konfiguration von Anwendungen Installierte Anwendungen haben typischerweise eigene Konfigurationsdateien, die eine eigene Syntax verwenden. Damit diese Dateien leicht von der Paketverwaltung gefunden und verwaltet werden können, ist es wichtig, sie vom Basissystem zu trennen. /usr/local/etc Für gewöhnlich werden diese Dateien in /usr/local/etc installiert. Besitzt eine Anwendung viele Konfigurationsdateien, werden diese in einem separaten Unterverzeichnis abgelegt. Wenn ein Port oder ein Paket installiert wird, werden normalerweise auch Beispiele für die Konfigurationsdateien installiert. Diese erkennt man gewöhnlich an dem Suffix .default. Wenn keine Konfigurationsdateien für eine Anwendung existieren, werden sie durch Kopieren der .default Dateien erstellt. Als Beispiel sei /usr/local/etc/apache gezeigt: -rw-r--r-- 1 root wheel 2184 May 20 1998 access.conf -rw-r--r-- 1 root wheel 2184 May 20 1998 access.conf.default -rw-r--r-- 1 root wheel 9555 May 20 1998 httpd.conf -rw-r--r-- 1 root wheel 9555 May 20 1998 httpd.conf.default -rw-r--r-- 1 root wheel 12205 May 20 1998 magic -rw-r--r-- 1 root wheel 12205 May 20 1998 magic.default -rw-r--r-- 1 root wheel 2700 May 20 1998 mime.types -rw-r--r-- 1 root wheel 2700 May 20 1998 mime.types.default -rw-r--r-- 1 root wheel 7980 May 20 1998 srm.conf -rw-r--r-- 1 root wheel 7933 May 20 1998 srm.conf.default Anhand der Dateigröße erkennen Sie, dass sich nur srm.conf geändert hat. Eine spätere Aktualisierung des Apache-Ports überschreibt diese Datei nicht. Tom Rhodes Beigetragen von Start von Diensten Dienste Viele Benutzer installieren Software Dritter auf &os; mithilfe der Ports-Sammlung. Häufig soll die Software bei einem Systemstart mitgestartet werden. Beispielsweise sollen die Dienste mail/postfix oder www/apache13 nach einem Systemstart laufen. Dieser Abschnitt stellt die Startprozeduren für Software Dritter vor. Unter &os; werden die meisten der im System enthaltenen Dienste wie &man.cron.8; mithilfe von Systemskripten gestartet. Diese Skripten sind abhängig von der &os;- oder Hersteller-Version. Allerdings kann ein Dienst mit einfachen Skripten gestartet werden. Dienste über das <filename>rc.d</filename>-System starten Mit rc.d lässt sich der Start von Anwendungen besser steuern als mit den vorher besprochenen Startskripten. Mit den im Abschnitt rc.d besprochenen Schlüsselwörtern können Anwendungen in einer bestimmten Reihenfolge (zum Beispiel nach DNS) gestartet werden und Optionen können in rc.conf statt fest im Startskript der Anwendung festgelegt werden. Ein einfaches Startskript sieht wie folgt aus: #!/bin/sh # # PROVIDE: utility # REQUIRE: DAEMON # KEYWORD: shutdown ./etc/rc.subr name="utility" rcvar=`set_rcvar` command="/usr/local/sbin/utility" load_rc_config $name # # DO NOT CHANGE THESE DEFAULT VALUES HERE # SET THEM IN THE /etc/rc.conf FILE # utility_enable=${utility_enable-"NO"} utility_pidfile=${utility_pidfile-"/var/run/utility.pid"} pidfile="${utility_pidfile}" run_rc_command "$1" Dieses Skript stellt sicher, dass utility nach den DAEMON-Pseudodiensten gestartet wird. Es stellt auch eine Methode bereit, die Prozess-ID (PID) der Anwendung in einer Datei zu speichern. In /etc/rc.conf könnte für diese Anwendung die folgende Zeile stehen: utility_enable="YES" Die Methode erleichtert den Umgang mit Kommandozeilenargumenten, bindet Funktionen aus /etc/rc.subr ein, ist kompatibel zum Werkzeug &man.rcorder.8; und lässt sich über rc.conf leichter konfigurieren. Andere Arten, um Dienste zu starten Dienste wie POP3 oder IMAP können über &man.inetd.8; gestartet werden. Nach der Installation der Anwendung aus der Ports-Sammlung muss eine Konfigurationszeile in der Datei /etc/inetd.conf hinzugefügt oder in der aktuellen Konfiguration durch Entfernen der Kommentare aktiviert werden. Der Abschnitt beschreibt den inetd und dessen Konfiguration. Systemdienste können auch mit &man.cron.8; gestartet werden. Dieser Ansatz hat einige Vorteile; nicht zuletzt, weil &man.cron.8; die Prozesse unter dem Eigentümer der crontab startet, ist es möglich, dass Dienste von nicht-root Benutzern gestartet und gepflegt werden können. Dies nutzt eine Eigenschaft von &man.cron.8;: Für die Zeitangabe kann @reboot eingesetzt werden. Damit wird das Kommando gestartet, wenn &man.cron.8; kurz nach dem Systemboot gestartet wird. Tom Rhodes Beigetragen von Programme mit <command>cron</command> starten cron Ein sehr nützliches Werkzeug von &os; ist &man.cron.8;. cron läuft im Hintergrund und überprüft fortlaufend die Datei /etc/crontab. Beim Start sucht cron neue crontab-Dateien im Verzeichnis /var/cron/tabs. In den crontab-Dateien wird festgelegt, welche Programme zu welchem Zeitpunkt laufen sollen. Das Werkzeug cron verwendet zwei verschiedene Konfigurationsdateien: Die System-crontab und die Benutzer-crontab. Der einzige Unterschied zwischen beiden Formaten ist das sechste Feld. In der System-crontab gibt das sechste Feld das Konto an, unter dem ein Kommando läuft. Aus der System-crontab können daher Kommandos unter beliebigen Konten gestartet werden. In der Benutzer-crontab gibt das sechste Feld das auszuführende Kommando an. Alle Kommandos laufen unter dem Konto, unter dem die crontab erstellt wurde (ein wichtiges Sicherheitsmerkmal). Benutzer können mit Benutzer-crontabs ohne root-Rechte Befehle terminieren. Die Kommandos in Benutzer-crontabs laufen unter dem Benutzer, der die crontab erstellt hat. Der Benutzer root kann, wie jeder andere Benutzer, eine Benutzer-crontab besitzen. Die Benutzer-crontab von root ist nicht mit der Datei /etc/crontab, der System-crontab, zu verwechseln. Normalerweise besitzt root, wegen der Existenz der System-crontab, keine eigene Benutzer-crontab. Der folgende Auszug aus der System-crontab /etc/crontab zeigt den Aufbau einer crontab-Datei: # /etc/crontab - root's crontab for FreeBSD # # $FreeBSD: src/etc/crontab,v 1.32 2002/11/22 16:13:39 tom Exp $ # # SHELL=/bin/sh PATH=/etc:/bin:/sbin:/usr/bin:/usr/sbin HOME=/var/log # # #minute hour mday month wday who command # # */5 * * * * root /usr/libexec/atrun Das Zeichen # leitet, wie in den meisten Konfigurationsdateien, einen Kommentar ein. Benutzen Sie Kommentare, um die Funktion eines Eintrags zu erläutern. Kommentare müssen in einer extra Zeile stehen. Sie können nicht in derselben Zeile wie ein Kommando stehen, da sie sonst Teil des Kommandos wären. Leerzeilen in dieser Datei werden ignoriert. Umgebungsvariablen werden mit dem Gleichheits-Zeichen (=) festgelegt. Im Beispiel werden die Variablen SHELL, PATH und HOME definiert. Wenn die Variable SHELL nicht definiert wird, benutzt cron die Shell sh. Wird die Variable PATH nicht gesetzt, müssen alle Pfadangaben absolut sein, da es keinen Vorgabewert für PATH gibt. Der Vorgabewert für HOME ist das Heimatverzeichnis des Accounts, dem die crontab gehört. In dieser Zeile werden sieben Felder beschrieben: minute, hour, mday, month, wday, who und command. Die ersten Felder legen den Zeitpunkt fest, an dem ein Kommando laufen soll. Das Feld minute legt die Minute fest, das Feld hour die Stunde, das Feld mday den Tag des Monats. Im Feld month wird der Monat und im Feld wday der Wochentag festgelegt. Alle Felder müssen numerische Werte enthalten und die Zeitangaben sind im 24-Stunden-Format. Das Feld who gibt es nur in der Datei /etc/crontab und gibt den Account an, unter dem das Kommando laufen soll. In den crontab-Dateien einzelner Accounts existiert dieses Feld nicht. Im letzten Feld wird schließlich das auszuführende Kommando angegeben. Diese Zeile definiert die Zeitpunkte an denen das Kommando atrun laufen soll. Beachten Sie die Zeichenfolge */5 gefolgt von mehreren *-Zeichen. Das Zeichen * ist ein Platzhalter und steht für jede mögliche Zeit. Diese Zeile führt das Kommando atrun unter dem root-Account alle fünf Minuten aus. Mehr über das Kommando atrun erfahren Sie in der Hilfeseite &man.atrun.8;. Bei den Kommandos können beliebige Optionen angegeben werden. Wenn das Kommando zu lang ist und auf der nächsten Zeile fortgesetzt werden soll, muss am Ende der Zeile das Fortsetzungszeichen (\) angegeben werden. Bis auf das sechste Feld, das den Account angibt, sieht jede crontab-Datei so wie das Beispiel aus. Das sechste Feld existiert nur in der Systemdatei /etc/crontab. In den restlichen crontab-Dateien fehlt dieses Feld. <filename>crontab</filename> installieren Die nachstehende Prozedur gilt nur für Benutzer-crontabs. Die System-crontab können Sie einfach mit Ihrem Lieblingseditor editieren. Das Werkzeug cron bemerkt, dass sich die Datei geändert hat und wird die neue Version benutzen. Lesen Sie bitte auch die FAQ zur Meldung root: not found. Eine Benutzer-crontab, beispielsweise die Datei crontab, können Sie mit jedem Editor erstellen. Die Benutzer-crontab installieren Sie mit dem nachstehenden Befehl: &prompt.root; crontab crontab Das Argument zum Befehl crontab ist die vorher erstellte Datei crontab. Der Befehl crontab -l zeigt die installierte crontab-Datei an. Benutzer, die eine eigene crontab-Datei ohne Vorlage erstellen wollen, können den Befehl crontab -e verwenden. Dieser Befehl ruft einen Editor auf und installiert beim Verlassen des Editors die crontab-Datei. Wollen Sie die installierte Benutzer-crontab entfernen, rufen Sie den Befehl crontab mit der Option auf. Tom Rhodes Beigetragen von Das rc-System für Systemdienste 2002 wurde das rc.d-System von NetBSD zum Start von Systemdiensten in &os; integriert. Die zu diesem System gehörenden Dateien sind im Verzeichnis /etc/rc.d abgelegt. Die Skripten in diesem Verzeichnis akzeptieren die Optionen , und . Beispielsweise kann &man.sshd.8; mit dem nachstehenden Kommando neu gestartet werden: &prompt.root; /etc/rc.d/sshd restart Analog können Sie andere Dienste starten und stoppen. Normalerweise werden die Dienste beim Systemstart über Einträge in der Datei &man.rc.conf.5; automatisch gestartet. Der Network Address Translation Dæmon wird zum Beispiel mit dem folgenden Eintrag in /etc/rc.conf aktiviert: natd_enable="YES" Wenn dort bereits die Zeile existiert, ändern Sie einfach in . Die rc-Skripten starten, wie unten beschrieben, auch abhängige Dienste. Da das rcNG-System primär zum automatischen Starten und Stoppen von Systemdiensten dient, funktionieren die Optionen , und nur, wenn die entsprechenden Variablen in /etc/rc.conf gesetzt sind. Beispielsweise funktioniert das Kommando sshd restart nur dann, wenn in /etc/rc.conf die Variable sshd_enable auf gesetzt wurde. Wenn Sie die Optionen , oder unabhängig von den Einstellungen in /etc/rc.conf benutzen wollen, müssen Sie den Optionen mit dem Präfix one verwenden. Um beispielsweise sshd unabhängig von den Einstellungen in /etc/rc.conf neu zu starten, benutzen Sie das nachstehende Kommando: &prompt.root; /etc/rc.d/sshd onerestart Ob ein Dienst in /etc/rc.conf aktiviert ist, können Sie leicht herausfinden, indem Sie das entsprechende rc.d-Skript mit der Option aufrufen. Ein Administrator kann beispielsweise wie folgt prüfen, ob der sshd-Dienst in /etc/rc.conf aktiviert ist: &prompt.root; /etc/rc.d/sshd rcvar # sshd $sshd_enable=YES Die zweite Zeile (# sshd) wird vom Kommando sshd ausgegeben; sie kennzeichnet nicht die Eingabeaufforderung von root. Ob ein Dienst läuft, kann mit der Option abgefragt werden. Das folgende Kommando überprüft, ob der sshd auch wirklich gestartet wurde: &prompt.root; /etc/rc.d/sshd status sshd is running as pid 433. Einige Dienste können über die Option neu initialisiert werden. Dazu wird dem Dienst über ein Signal mitgeteilt, dass er seine Konfigurationsdateien neu einlesen soll. Oft wird dazu das Signal SIGHUP verwendet. Beachten Sie aber, dass nicht alle Dienste diese Option unterstützen. Die meisten Systemdienste werden beim Systemstart vom rc.d-System gestartet. Zum Beispiel aktiviert das Skript bgfsck die Prüfung von Dateisystemen im Hintergrund. Das Skript gibt die folgende Meldung aus, wenn es gestartet wird: Starting background file system checks in 60 seconds. Viele Systemdienste hängen von anderen Diensten ab. NIS und andere RPC-basierende Systeme hängen beispielsweise von dem rpcbind-Dienst (portmapper) ab. Im Kopf der Startskripten befinden sich die Informationen über Abhängigkeiten von anderen Diensten und weitere Metadaten.Mithilfe dieser Daten bestimmt das Programm &man.rcorder.8; beim Systemstart die Startreihenfolge der Dienste. Folgende Schlüsselwörter müssen im Kopf aller Startskripten verwendet werden (da sie von &man.rc.subr.8; zum Aktivieren des Startskripts benötigt werden: PROVIDE: Gibt die Namen der Dienste an, die mit dieser Datei zur Verfügung gestellt werden. Die folgenden Schlüsselwörter können im Kopf des Startskripts angegeben werden. Sie sind zwar nicht unbedingt notwendig, sind aber hilfreich beim Umgang mit &man.rcorder.8;: REQUIRE: Gibt die Namen der Dienste an, von denen dieser Dienst abhängt. Diese Datei wird nach den angegebenen Diensten ausgeführt. BEFORE: Zählt Dienste auf, die auf diesen Dienst angewiesen sind. Diese Datei wird vor den angegebenen Diensten ausgeführt. Durch das Verwenden dieser Schlüsselwörter kann ein Administrator die Startreihenfolge von Systemdiensten feingranuliert steuern, ohne mit den Schwierigkeiten des runlevel-Systems anderer &unix; Systeme kämpfen zu müssen. Weitere Informationen über das rc.d-System finden sich in den Manualpages zu &man.rc.8; sowie &man.rc.subr.8;. Wenn Sie Ihre eigenen rc.d-Skripte schreiben wollen, sollten Sie den Artikel Practical rc.d scripting in BSD lesen. Marc Fonvieille Beigetragen von Einrichten von Netzwerkkarten Netzwerkkarten einrichten Ein Rechner ohne Netzanschluss ist heute nicht mehr vorstellbar. Die Konfiguration einer Netzwerkkarte gehört zu den alltäglichen Aufgaben eines &os; Administrators. Bestimmen des richtigen Treibers Netzwerkkarten Treiber Bevor Sie anfangen, sollten Sie das Modell Ihrer Karte kennen, wissen welchen Chip die Karte benutzt und bestimmen, ob es sich um eine PCI- oder ISA-Karte handelt. Eine Aufzählung der unterstützten PCI- und ISA-Karten finden Sie in der Liste der unterstützen Geräte. Schauen Sie nach, ob Ihre Karte dort aufgeführt ist. Wenn Sie wissen, dass Ihre Karte unterstützt wird, müssen Sie den Treiber für Ihre Karte bestimmen. /usr/src/sys/conf/NOTES und /usr/src/sys/arch/conf/NOTES enthalten eine Liste der verfügbaren Treiber mit Informationen zu den unterstützten Chipsätzen und Karten. Wenn Sie sich nicht sicher sind, ob Sie den richtigen Treiber ausgewählt haben, lesen Sie die Hilfeseite des Treibers. Die Hilfeseite enthält weitere Informationen über die unterstützten Geräte und macht auch auf mögliche Probleme aufmerksam. Wenn Sie eine gebräuchliche Karte besitzen, brauchen Sie meistens nicht lange nach dem passenden Treiber zu suchen. Die Treiber zu diesen Karten sind schon im GENERIC-Kernel enthalten und die Karte sollte während des Systemstarts erkannt werden: dc0: <82c169 PNIC 10/100BaseTX> port 0xa000-0xa0ff mem 0xd3800000-0xd38 000ff irq 15 at device 11.0 on pci0 -dc0: Ethernet address: 00:a0:cc:da:da:da miibus0: <MII bus> on dc0 -ukphy0: <Generic IEEE 802.3u media interface> on miibus0 -ukphy0: 10baseT, 10baseT-FDX, 100baseTX, 100baseTX-FDX, auto +bmtphy0: <BCM5201 10/100baseTX PHY> PHY 1 on miibus0 +bmtphy0: 10baseT, 10baseT-FDX, 100baseTX, 100baseTX-FDX, auto +dc0: Ethernet address: 00:a0:cc:da:da:da +dc0: [ITHREAD] dc1: <82c169 PNIC 10/100BaseTX> port 0x9800-0x98ff mem 0xd3000000-0xd30 000ff irq 11 at device 12.0 on pci0 -dc1: Ethernet address: 00:a0:cc:da:da:db miibus1: <MII bus> on dc1 -ukphy1: <Generic IEEE 802.3u media interface> on miibus1 -ukphy1: 10baseT, 10baseT-FDX, 100baseTX, 100baseTX-FDX, auto +bmtphy1: <BCM5201 10/100baseTX PHY> PHY 1 on miibus1 +bmtphy1: 10baseT, 10baseT-FDX, 100baseTX, 100baseTX-FDX, auto +dc1: Ethernet address: 00:a0:cc:da:da:db +dc1: [ITHREAD] Im Beispiel erkennt das System zwei Karten, die den &man.dc.4; Treiber benutzen. Ist der Treiber für Ihre Netzwerkkarte nicht in GENERIC enthalten, müssen Sie den Treiber laden, um die Karte zu benutzen. Sie können den Treiber auf zwei Arten laden: Am einfachsten ist es, das Kernelmodul für Ihre Karte mit &man.kldload.8; zu laden. Allerdings gibt es nicht für alle Karten Kernelmodule; zum Beispiel gibt es keine Kernelmodule für ISA-Karten. Alternativ können Sie den Treiber für die Karte fest in den Kernel einbinden. Schauen Sie sich dazu /usr/src/sys/conf/NOTES, /usr/src/sys/arch/conf/NOTES und die Hilfeseite des Treibers, den Sie in den Kernel einbinden möchten, an. Die Übersetzung des Kernels wird in beschrieben. Wenn Ihre Karte während des Systemstarts vom Kernel (GENERIC) erkannt wurde, müssen Sie den Kernel nicht neu übersetzen. &windows;-NDIS-Treiber einsetzen NDIS NDISulator &windows;-Treiber Microsoft Windows Microsoft Windows Gerätetreiber KLD (kernel loadable object) Leider stellen nach wie vor viele Unternehmen die Spezifikationen ihrer Treiber der Open Source Gemeinde nicht zur Verfügung, weil sie diese Informationen als Geschäftsgeheimnisse betrachten. Daher haben die Entwickler von FreeBSD und anderen Betriebssystemen nur zwei Möglichkeiten. Entweder versuchen sie in einem aufwändigen Prozess den Treiber durch Reverse Engineering nachzubauen, oder sie versuchen, die vorhandenen Binärtreiber der µsoft.windows;-Plattform zu verwenden. Die meisten Entwickler, darunter auch die an FreeBSD beteiligten, haben sich für den zweiten Ansatz entschieden. Bill Paul (wpaul) ist es zu verdanken, dass es seit FreeBSD 5.3-RELEASE eine native Unterstützung der Network Driver Interface Specification (NDIS) gibt. Der FreeBSD NDISulator (auch als Project Evil bekannt) nutzt den binären &windows;-Treiber, indem er diesem vorgibt, unter &windows; zu laufen. Da der &man.ndis.4;-Treiber eine &windows;-Binärdatei nutzt, kann er nur auf &i386;- und amd64-Systemen verwendet werden. Der &man.ndis.4;-Treiber unterstützt primär PCI-, CardBus- sowie PCMCIA-Geräte, USB-Geräte werden hingegen noch nicht unterstützt. Um den NDISulator zu verwenden, benötigen Sie drei Dinge: Die Kernelquellen Den &windowsxp;-Binärtreiber (mit der Erweiterung .SYS) Die Konfigurationsdatei des &windowsxp;-Treibers (mit der Erweiterung .INF) Suchen Sie die Dateien für Ihre Karte. Diese befinden sich meistens auf einer beigelegten CD-ROM, oder können von der Internetseite des Herstellers heruntergeladen werden. In den folgenden Beispielen werden die Dateien W32DRIVER.SYS und W32DRIVER.INF verwendet. Sie können einen &windows;/i386-Treiber nicht unter &os;/amd64 einsetzen, vielmehr benötigen Sie dafür einen &windows;/amd64-Treiber. Als Nächstes kompilieren Sie den binären Treiber, um ein Kernelmodul zu erzeugen. Dazu rufen Sie als root &man.ndisgen.8; auf: &prompt.root; ndisgen /path/to/W32DRIVER.INF /path/to/W32DRIVER.SYS &man.ndisgen.8; arbeitet interaktiv, benötigt es weitere Informationen, so fragt es Sie danach. Als Ergebnis erhalten Sie ein Kernelmodul im Arbeitsverzeichnis, das Sie wie folgt laden können: &prompt.root; kldload ./W32DRIVER.ko Neben dem vorhin erzeugten Kernelmodul müssen Sie auch die Kernelmodule ndis.ko und if_ndis.ko laden. Diese Module sollten automatisch geladen werden, wenn Sie ein von &man.ndis.4; abhängiges Modul laden. Wollen Sie die Module hingegen manuell laden, geben Sie die folgenden Befehle ein: &prompt.root; kldload ndis &prompt.root; kldload if_ndis Der erste Befehl lädt dabei den NDIS-Miniport-Treiber, der zweite das tatsächliche Netzwerkgerät. Überprüfen Sie nun die Ausgabe von &man.dmesg.8; auf eventuelle Fehler während des Ladevorgangs. Gab es dabei keine Probleme, sollten Sie eine Ausgabe ähnlich der folgenden erhalten: ndis0: <Wireless-G PCI Adapter> mem 0xf4100000-0xf4101fff irq 3 at device 8.0 on pci1 ndis0: NDIS API version: 5.0 ndis0: Ethernet address: 0a:b1:2c:d3:4e:f5 ndis0: 11b rates: 1Mbps 2Mbps 5.5Mbps 11Mbps ndis0: 11g rates: 6Mbps 9Mbps 12Mbps 18Mbps 36Mbps 48Mbps 54Mbps Ab jetzt können Sie mit dem Gerät ndis0 wie mit jeder anderen Gerätedatei (etwa dc0) arbeiten. Wie jedes Kernelmodul können auch die NDIS-Module beim Systemstart automatisch geladen werden. Dazu kopieren - Sie das erzeugte Modul (W32DRIVER.ko) + Sie das erzeugte Modul (W32DRIVER_SYS.ko) in das Verzeichnis /boot/modules. Danach fügen Sie die folgende Zeile in /boot/loader.conf ein: - W32DRIVER_load="YES" + W32DRIVER_SYS_load="YES" Konfiguration von Netzwerkkarten Netzwerkkarten einrichten Nachdem der richtige Treiber für die Karte geladen ist, muss die Karte konfiguriert werden. Unter Umständen ist die Karte schon während der Installation mit sysinstall konfiguriert worden. Das nachstehende Kommando zeigt die Konfiguration der Karten eines Systems an: &prompt.user; ifconfig -dc0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500 - inet 192.168.1.3 netmask 0xffffff00 broadcast 192.168.1.255 +dc0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric 0 mtu 1500 + options=80008<VLAN_MTU,LINKSTATE> ether 00:a0:cc:da:da:da + inet 192.168.1.3 netmask 0xffffff00 broadcast 192.168.1.255 media: Ethernet autoselect (100baseTX <full-duplex>) status: active -dc1: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500 - inet 10.0.0.1 netmask 0xffffff00 broadcast 10.0.0.255 +dc1: flags=8802<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric 0 mtu 1500 + options=80008<VLAN_MTU,LINKSTATE> ether 00:a0:cc:da:da:db + inet 10.0.0.1 netmask 0xffffff00 broadcast 10.0.0.255 media: Ethernet 10baseT/UTP status: no carrier -lp0: flags=8810<POINTOPOINT,SIMPLEX,MULTICAST> mtu 1500 -lo0: flags=8049<UP,LOOPBACK,RUNNING,MULTICAST> mtu 16384 +plip0: flags=8810<POINTOPOINT,SIMPLEX,MULTICAST> metric 0 mtu 1500 +lo0: flags=8049<UP,LOOPBACK,RUNNING,MULTICAST> metric 0 mtu 16384 + options=3<RXCSUM,TXCSUM> + inet6 fe80::1%lo0 prefixlen 64 scopeid 0x4 + inet6 ::1 prefixlen 128 inet 127.0.0.1 netmask 0xff000000 -tun0: flags=8010<POINTOPOINT,MULTICAST> mtu 1500 + nd6 options=3<PERFORMNUD,ACCEPT_RTADV> - - In alten Versionen von &os; müssen Sie vielleicht - noch auf der Kommandozeile von &man.ifconfig.8; - angeben. Hinweise zum Gebrauch von &man.ifconfig.8; entnehmen - Sie bitte der Hilfeseite. Beachten Sie, dass in diesem - Beispiel die IPv6-Ausgaben (inet6 etc.) - ausgelassen wurden. - - Im Beispiel werden Informationen zu den folgenden Geräten angezeigt: dc0: Der erste Ethernet-Adapter dc1: Der zweite Ethernet-Adapter - lp0: Die parallele - Schnittstelle + plip0: Die parallele + Schnittstelle (falls Ihr System über eine + derartige Schnittstelle verfügt) lo0: Das Loopback-Gerät - - - tun0: Das von - ppp benutzte Tunnel-Gerät - Der Name der Netzwerkkarte wird aus dem Namen des Treibers und einer Zahl zusammengesetzt. Die Zahl gibt die Reihenfolge an, in der die Geräte beim Systemstart erkannt wurden. Die dritte Karte, die den &man.sis.4; Treiber benutzt, würde beispielsweise sis2 heißen. Der Adapter dc0 aus dem Beispiel ist aktiv. Sie erkennen das an den folgenden Hinweisen: UP bedeutet, dass die Karte konfiguriert und aktiv ist. Der Karte wurde die Internet-Adresse (inet) 192.168.1.3 zugewiesen. Die Subnetzmaske ist richtig (0xffffff00 entspricht 255.255.255.0). Die Broadcast-Adresse 192.168.1.255 ist richtig. Die MAC-Adresse der Karte (ether) lautet 00:a0:cc:da:da:da. Die automatische Medienerkennung ist aktiviert (media: Ethernet autoselect (100baseTX <full-duplex>)). Der Adapter dc1 benutzt das Medium 10baseT/UTP. Weitere Informationen über die einstellbaren Medien entnehmen Sie bitte der Hilfeseite des Treibers. Der Verbindungsstatus (status) ist active, das heißt es wurde ein Trägersignal entdeckt. Für dc1 wird status: no carrier angezeigt. Das ist normal, wenn kein Kabel an der Karte angeschlossen ist. Wäre die Karte nicht konfiguriert, würde die Ausgabe von &man.ifconfig.8; so aussehen: -dc0: flags=8843<BROADCAST,SIMPLEX,MULTICAST> mtu 1500 - ether 00:a0:cc:da:da:da +dc0: flags=8843<BROADCAST,SIMPLEX,MULTICAST> metric 0 mtu 1500 + options=80008<VLAN_MTU,LINKSTATE> + ether 00:a0:cc:da:da:da + media: Ethernet autoselect (100baseTX <full-duplex>) + status: active Sie brauchen die Berechtigungen von root, um Ihre Karte zu konfigurieren. Die Konfiguration kann auf der Kommandozeile mit &man.ifconfig.8; erfolgen, allerdings müsste sie dann nach jedem Neustart wiederholt werden. Dauerhaft wird die Karte in /etc/rc.conf konfiguriert. Öffnen Sie /etc/rc.conf mit Ihrem Lieblingseditor und fügen Sie für jede Karte Ihres Systems eine Zeile hinzu. In dem hier diskutierten Fall wurden die nachstehenden Zeilen eingefügt: ifconfig_dc0="inet 192.168.1.3 netmask 255.255.255.0" ifconfig_dc1="inet 10.0.0.1 netmask 255.255.255.0 media 10baseT/UTP" Ersetzen Sie dc0, dc1 usw. durch die Gerätenamen Ihrer Karten und setzen Sie die richtigen IP-Adressen ein. Die Hilfeseiten des Treibers und &man.ifconfig.8; enthalten weitere Einzelheiten über verfügbare Optionen. Die Syntax von /etc/rc.conf wird in &man.rc.conf.5; erklärt. Wenn Sie das Netz während der Installation konfiguriert haben, existieren vielleicht schon Einträge für Ihre Karten. Überprüfen Sie /etc/rc.conf bevor Sie weitere Zeilen hinzufügen. In /etc/hosts können Sie die Namen und IP-Adressen der Rechner Ihres LANs eintragen. Weitere Informationen entnehmen Sie bitte &man.hosts.5; und /usr/share/examples/etc/hosts. + + + Soll Ihr System sich auch mit dem Internet verbinden + können, müssen Sie Default-Gateway und + Nameserver manuell konfigurieren: + + &prompt.root; echo 'defaultrouter="Ihr_Default_Gateway"' >> /etc/rc.conf +&prompt.root; echo 'nameserver Ihr_DNS_Server' >> /etc/resolv.conf + Test und Fehlersuche Nachdem Sie die notwendigen Änderungen in /etc/rc.conf vorgenommen haben, führen Sie einen Neustart Ihres Systems durch. Dadurch werden die Adapter konfiguriert und Sie stellen sicher, dass der Start ohne - Konfigurationsfehler erfolgt. + Konfigurationsfehler erfolgt. Alternativ können Sie + auch lediglich die Netzwerkeinstellungen neu initialisieren: + &prompt.root; /etc/rc.d/netif restart + + + Haben Sie ein Default-Gateway definiert (in der Datei + /etc/rc.conf), müssen Sie + auch den folgenden Befehl ausführen: + + &prompt.root; /etc/rc.d/routing restart + + Wenn das System gestartet ist, sollten Sie die Netzwerkkarten testen. Test der Ethernet-Karte Netzwerkkarten testen Mit zwei Tests können Sie prüfen, ob die Ethernet-Karte richtig konfiguriert ist. Testen Sie zuerst mit ping den Adapter selbst und sprechen Sie dann eine andere Maschine im LAN an. Zuerst, der Test des Adapters: &prompt.user; ping -c5 192.168.1.3 PING 192.168.1.3 (192.168.1.3): 56 data bytes 64 bytes from 192.168.1.3: icmp_seq=0 ttl=64 time=0.082 ms 64 bytes from 192.168.1.3: icmp_seq=1 ttl=64 time=0.074 ms 64 bytes from 192.168.1.3: icmp_seq=2 ttl=64 time=0.076 ms 64 bytes from 192.168.1.3: icmp_seq=3 ttl=64 time=0.108 ms 64 bytes from 192.168.1.3: icmp_seq=4 ttl=64 time=0.076 ms --- 192.168.1.3 ping statistics --- 5 packets transmitted, 5 packets received, 0% packet loss round-trip min/avg/max/stddev = 0.074/0.083/0.108/0.013 ms Jetzt versuchen wir, eine andere Maschine im LAN zu erreichen: &prompt.user; ping -c5 192.168.1.2 PING 192.168.1.2 (192.168.1.2): 56 data bytes 64 bytes from 192.168.1.2: icmp_seq=0 ttl=64 time=0.726 ms 64 bytes from 192.168.1.2: icmp_seq=1 ttl=64 time=0.766 ms 64 bytes from 192.168.1.2: icmp_seq=2 ttl=64 time=0.700 ms 64 bytes from 192.168.1.2: icmp_seq=3 ttl=64 time=0.747 ms 64 bytes from 192.168.1.2: icmp_seq=4 ttl=64 time=0.704 ms --- 192.168.1.2 ping statistics --- 5 packets transmitted, 5 packets received, 0% packet loss round-trip min/avg/max/stddev = 0.700/0.729/0.766/0.025 ms Sie können auch den Namen der Maschine anstelle von 192.168.1.2 benutzen, wenn Sie /etc/hosts entsprechend eingerichtet haben. Fehlersuche Netzwerkkarten Fehlersuche Fehler zu beheben, ist immer sehr mühsam. Indem Sie die einfachen Sachen zuerst prüfen, erleichtern Sie sich die Aufgabe. Steckt das Netwerkkabel? Sind die Netzwerkdienste richtig konfiguriert? Funktioniert die Firewall? Wird die Netwerkkarte von &os; unterstützt? Lesen Sie immer die Hardware-Informationen des Releases, bevor Sie einen Fehlerbericht einsenden. Aktualisieren Sie Ihre &os;-Version auf -STABLE. Suchen Sie in den Archiven der Mailinglisten oder auf dem Internet nach bekannten Lösungen. Wenn die Karte funktioniert, die Verbindungen aber zu langsam sind, lesen Sie bitte die Hilfeseite &man.tuning.7;. Prüfen Sie auch die Netzwerkkonfiguration, da falsche Einstellungen die Ursache für langsame Verbindungen sein können. Wenn Sie viele device timeout Meldungen in den Systemprotokollen finden, prüfen Sie, dass es keinen Konflikt zwischen der Netzwerkkarte und anderen Geräten Ihres Systems gibt. Überprüfen Sie nochmals die Verkabelung. Unter Umständen benötigen Sie eine neue Netzwerkkarte. Wenn Sie in den Systemprotokollen watchdog timeout Fehlermeldungen finden, kontrollieren Sie zuerst die Verkabelung. Überprüfen Sie dann, ob der PCI-Steckplatz der Karte Bus Mastering unterstützt. Auf einigen älteren Motherboards ist das nur für einen Steckplatz (meistens Steckplatz 0) der Fall. Lesen Sie in der Dokumentation Ihrer Karte und Ihres Motherboards nach, ob das vielleicht die Ursache des Problems sein könnte. Die Meldung No route to host erscheint, wenn Ihr System ein Paket nicht zustellen kann. Das kann vorkommen weil beispielsweise keine Default-Route gesetzt wurde oder das Netzwerkkabel nicht richtig steckt. Schauen Sie in der Ausgabe von netstat -rn nach, ob eine Route zu dem Zielsystem existiert. Wenn nicht, lesen Sie bitte das . Die Meldung ping: sendto: Permission denied wird oft von einer falsch konfigurierten Firewall verursacht. Wenn keine Regeln definiert wurden, blockiert eine aktivierte Firewall alle Pakete, selbst einfache ping-Pakete. Weitere Informationen erhalten Sie in . Falls die Leistung der Karte schlecht ist, setzen Sie die Medienerkennung von autoselect (automatisch) auf das richtige Medium. In vielen Fällen löst diese Maßnahme Leistungsprobleme. Wenn nicht, prüfen Sie nochmal die Netzwerkeinstellungen und lesen Sie die Hilfeseite &man.tuning.7;. Virtual Hosts virtual hosts IP-Aliase Ein gebräuchlicher Zweck von &os; ist das virtuelle Hosting, bei dem ein Server im Netzwerk wie mehrere Server aussieht. Dies wird dadurch erreicht, dass einem Netzwerkinterface mehrere Netzwerk-Adressen zugewiesen werden. Ein Netzwerkinterface hat eine echte Adresse und kann beliebig viele alias Adressen haben. Die Aliase werden durch entsprechende alias Einträge in /etc/rc.conf festgelegt. Ein alias Eintrag für das Interface fxp0 sieht wie folgt aus: ifconfig_fxp0_alias0="inet xxx.xxx.xxx.xxx netmask xxx.xxx.xxx.xxx" Beachten Sie, dass die Alias-Einträge mit alias0 anfangen müssen und weiter hochgezählt werden, das heißt _alias1, _alias2, und so weiter. Die Konfiguration der Aliase hört bei der ersten fehlenden Zahl auf. Die Berechnung der Alias-Netzwerkmasken ist wichtig, doch zum Glück einfach. Für jedes Interface muss es eine Adresse geben, die die Netzwerkmaske des Netzwerkes richtig beschreibt. Alle anderen Adressen in diesem Netzwerk haben dann eine Netzwerkmaske, die mit 1 gefüllt ist (also 255.255.255.255 oder hexadezimal 0xffffffff). Als Beispiel betrachten wir den Fall, in dem fxp0 mit zwei Netzwerken verbunden ist: dem Netzwerk 10.1.1.0 mit der Netzwerkmaske 255.255.255.0 und dem Netzwerk 202.0.75.16 mit der Netzwerkmaske 255.255.255.240. Das System soll die Adressen 10.1.1.1 bis 10.1.1.5 und 202.0.75.17 bis 202.0.75.20 belegen. Wie eben beschrieben, hat nur die erste Adresse in einem Netzwerk (hier 10.0.1.1 und 202.0.75.17) die richtige Netzwerkmaske. Alle anderen Adressen (10.1.1.2 bis 10.1.1.5 und 202.0.75.18 bis 202.0.75.20) erhalten die Maske 255.255.255.255. Die folgenden Einträge in /etc/rc.conf konfigurieren den Adapter entsprechend dem Beispiel: ifconfig_fxp0="inet 10.1.1.1 netmask 255.255.255.0" ifconfig_fxp0_alias0="inet 10.1.1.2 netmask 255.255.255.255" ifconfig_fxp0_alias1="inet 10.1.1.3 netmask 255.255.255.255" ifconfig_fxp0_alias2="inet 10.1.1.4 netmask 255.255.255.255" ifconfig_fxp0_alias3="inet 10.1.1.5 netmask 255.255.255.255" ifconfig_fxp0_alias4="inet 202.0.75.17 netmask 255.255.255.240" ifconfig_fxp0_alias5="inet 202.0.75.18 netmask 255.255.255.255" ifconfig_fxp0_alias6="inet 202.0.75.19 netmask 255.255.255.255" ifconfig_fxp0_alias7="inet 202.0.75.20 netmask 255.255.255.255" Konfigurationsdateien <filename class="directory">/etc</filename> Layout Konfigurationsdateien finden sich in einigen Verzeichnissen unter anderem in: /etc Enthält generelle Konfigurationsinformationen, die Daten hier sind systemspezifisch. /etc/defaults Default Versionen der Konfigurationsdateien. /etc/mail Enthält die &man.sendmail.8; Konfiguration und weitere MTA Konfigurationsdateien. /etc/ppp Hier findet sich die Konfiguration für die User- und Kernel-ppp Programme. /etc/namedb Das Vorgabeverzeichnis, in dem Daten von &man.named.8; gehalten werden. Normalerweise werden hier named.conf und Zonendaten abgelegt. /usr/local/etc Installierte Anwendungen legen hier ihre Konfigurationsdateien ab. Dieses Verzeichnis kann Unterverzeichnisse für bestimmte Anwendungen enthalten. /usr/local/etc/rc.d Ort für Start- und Stopskripten installierter Anwendungen. /var/db Automatisch generierte systemspezifische Datenbanken, wie die Paket-Datenbank oder die locate-Datenbank. Hostnamen hostname DNS <filename>/etc/resolv.conf</filename> resolv.conf Wie der &os;-Resolver auf das Internet Domain Name System (DNS) zugreift, wird in /etc/resolv.conf festgelegt. Die gebräuchlichsten Einträge in /etc/resolv.conf sind: nameserver Die IP-Adresse eines Nameservers, den der Resolver abfragen soll. Bis zu drei Server werden in der Reihenfolge, in der sie aufgezählt sind, abgefragt. search Suchliste mit Domain-Namen zum Auflösen von Hostnamen. Die Liste wird normalerweise durch den Domain-Teil des lokalen Hostnamens festgelegt. domain Der lokale Domain-Name. Beispiel für eine typische resolv.conf: search example.com nameserver 147.11.1.11 nameserver 147.11.100.30 Nur eine der Anweisungen search oder domain sollte benutzt werden. Wenn Sie DHCP benutzen, überschreibt &man.dhclient.8; für gewöhnlich resolv.conf mit den Informationen vom DHCP-Server. <filename>/etc/hosts</filename> hosts /etc/hosts ist eine einfache textbasierte Datenbank, die aus alten Internetzeiten stammt. Zusammen mit DNS und NIS stellt sie eine Abbildung zwischen Namen und IP-Adressen zur Verfügung. Anstatt &man.named.8; zu konfigurieren, können hier lokale Rechner, die über ein LAN verbunden sind, eingetragen werden. Lokale Einträge für gebräuchliche Internet-Adressen in /etc/hosts verhindern die Abfrage eines externen Servers und beschleunigen die Namensauflösung. # $FreeBSD$ # # # Host Database # # This file should contain the addresses and aliases for local hosts that # share this file. Replace 'my.domain' below with the domainname of your # machine. # # In the presence of the domain name service or NIS, this file may # not be consulted at all; see /etc/nsswitch.conf for the resolution order. # # ::1 localhost localhost.my.domain 127.0.0.1 localhost localhost.my.domain # # Imaginary network. #10.0.0.2 myname.my.domain myname #10.0.0.3 myfriend.my.domain myfriend # # According to RFC 1918, you can use the following IP networks for # private nets which will never be connected to the Internet: # # 10.0.0.0 - 10.255.255.255 # 172.16.0.0 - 172.31.255.255 # 192.168.0.0 - 192.168.255.255 # # In case you want to be able to connect to the Internet, you need # real official assigned numbers. Do not try to invent your own network # numbers but instead get one from your network provider (if any) or # from your regional registry (ARIN, APNIC, LACNIC, RIPE NCC, or AfriNIC.) # /etc/hosts hat ein einfaches Format: [Internet Adresse] [Offizieller Hostname] [Alias1] [Alias2] ... Zum Beispiel: 10.0.0.1 myRealHostname.example.com myRealHostname foobar1 foobar2 Weitere Informationen entnehmen Sie bitte &man.hosts.5;. Konfiguration von Logdateien Logdateien <filename>syslog.conf</filename> syslog.conf syslog.conf ist die Konfigurationsdatei von &man.syslogd.8;. Sie legt fest, welche syslog Meldungen in welche Logdateien geschrieben werden. # $FreeBSD$ # # Spaces ARE valid field separators in this file. However, # other *nix-like systems still insist on using tabs as field # separators. If you are sharing this file between systems, you # may want to use only tabs as field separators here. # Consult the syslog.conf(5) manpage. *.err;kern.debug;auth.notice;mail.crit /dev/console *.notice;kern.debug;lpr.info;mail.crit;news.err /var/log/messages security.* /var/log/security mail.info /var/log/maillog lpr.info /var/log/lpd-errs cron.* /var/log/cron *.err root *.notice;news.err root *.alert root *.emerg * # uncomment this to log all writes to /dev/console to /var/log/console.log #console.info /var/log/console.log # uncomment this to enable logging of all log messages to /var/log/all.log #*.* /var/log/all.log # uncomment this to enable logging to a remote log host named loghost #*.* @loghost # uncomment these if you're running inn # news.crit /var/log/news/news.crit # news.err /var/log/news/news.err # news.notice /var/log/news/news.notice !startslip *.* /var/log/slip.log !ppp *.* /var/log/ppp.log Weitere Informationen enthält &man.syslog.conf.5;. <filename>newsyslog.conf</filename> newsyslog.conf Die Konfigurationsdatei für &man.newsyslog.8;, das normalerweise von &man.cron.8; aufgerufen wird, ist newsyslog.conf. &man.newsyslog.8; stellt fest, ob Logdateien archiviert oder verschoben werden müssen. So wird logfile nach logfile.0 geschoben und logfile.0 nach logfile.1 usw. Zudem können Logdateien mit &man.gzip.1; komprimiert werden. Die Namen der Logdateien sind dann logfile.0.gz, logfile.1.gz usw. newsyslog.conf legt fest, welche Logdateien wann bearbeitet und wie viele Dateien behalten werden. Logdateien können auf Basis ihrer Größe oder zu einem gewissen Zeitpunkt archiviert bzw. umbenannt werden. # configuration file for newsyslog # $FreeBSD$ # # filename [owner:group] mode count size when [ZB] [/pid_file] [sig_num] /var/log/cron 600 3 100 * Z /var/log/amd.log 644 7 100 * Z /var/log/kerberos.log 644 7 100 * Z /var/log/lpd-errs 644 7 100 * Z /var/log/maillog 644 7 * @T00 Z /var/log/sendmail.st 644 10 * 168 B /var/log/messages 644 5 100 * Z /var/log/all.log 600 7 * @T00 Z /var/log/slip.log 600 3 100 * Z /var/log/ppp.log 600 3 100 * Z /var/log/security 600 10 100 * Z /var/log/wtmp 644 3 * @01T05 B /var/log/daily.log 640 7 * @T00 Z /var/log/weekly.log 640 5 1 $W6D0 Z /var/log/monthly.log 640 12 * $M1D0 Z /var/log/console.log 640 5 100 * Z Um mehr zu erfahren, lesen Sie bitte &man.newsyslog.8;. <filename>sysctl.conf</filename> sysctl.conf sysctl sysctl.conf sieht ähnlich wie rc.conf aus. Werte werden in der Form Variable=Wert gesetzt. Die angegebenen Werte werden gesetzt, nachdem sich das System bereits im Mehrbenutzermodus befindet. Allerdings lassen sich im Mehrbenutzermodus nicht alle Werte setzen. Um das Protokollieren von fatalen Signalen abzustellen und Benutzer daran zu hindern, von anderen Benutzern gestartete Prozesse zu sehen, können Sie in der Datei sysctl.conf die folgenden Variablen setzen: # Do not log fatal signal exits (e.g. sig 11) kern.logsigexit=0 # Prevent users from seeing information about processes that # are being run under another UID. security.bsd.see_other_uids=0 Einstellungen mit sysctl sysctl Einstellungen mit sysctl Mit &man.sysctl.8; können Sie Änderungen an einem laufenden &os;-System vornehmen. Unter anderem können Optionen des TCP/IP-Stacks oder des virtuellen Speichermanagements verändert werden. Unter der Hand eines erfahrenen Systemadministrators kann dies die Systemperformance erheblich verbessern. Über 500 Variablen können mit &man.sysctl.8; gelesen und gesetzt werden. Der Hauptzweck von &man.sysctl.8; besteht darin, Systemeinstellungen zu lesen und zu verändern. Alle auslesbaren Variablen werden wie folgt angezeigt: &prompt.user; sysctl -a Sie können auch eine spezielle Variable, z.B. kern.maxproc lesen: &prompt.user; sysctl kern.maxproc kern.maxproc: 1044 Um eine Variable zu setzen, benutzen Sie die Syntax Variable= Wert: &prompt.root; sysctl kern.maxfiles=5000 kern.maxfiles: 2088 -> 5000 Mit sysctl können Sie Strings, Zahlen oder Boolean-Werte setzen. Bei Boolean-Werten setzen sie 1 für wahr und 0 für falsch. Wenn Sie Variablen automatisch während des Systemstarts setzen wollen, fügen Sie die Variablen in die Datei /etc/sysctl.conf ein. Weiteres entnehmen Sie bitte der Hilfeseite &man.sysctl.conf.5; und dem . Tom Rhodes Contributed by Schreibgeschützte Variablen Schreibgeschützte sysctl-Variablen können nur während des Systemstarts verändert werden. Beispielsweise hat &man.cardbus.4; auf einigen Laptops Schwierigkeiten, Speicherbereiche zu erkennen. Es treten dann Fehlermeldungen wie die folgende auf: cbb0: Could not map register memory device_probe_and_attach: cbb0 attach returned 12 Um dieses Problem zu lösen, muss eine schreibgeschützte sysctl-Variable verändert werden. Eine OID kann in der Datei /boot/loader.conf überschrieben werden. Die Datei /boot/defaults/loader.conf enthält Vorgabewwerte für sysctl-Variablen. Das oben erwähnte Problem wird durch die Angabe von in /boot/loader.conf gelöst. Danach sollte &man.cardbus.4; fehlerfrei funktionieren. Tuning von Laufwerken Sysctl Variablen <varname>vfs.vmiodirenable</varname> vfs.vmiodirenable Die Variable vfs.vmiodirenable besitzt in der Voreinstellung den Wert 1. Die Variable kann auf den Wert 0 (ausgeschaltet) oder 1 (angeschaltet) gesetzt werden. Sie steuert, wie Verzeichnisse vom System zwischengespeichert werden. Die meisten Verzeichnisse sind klein und benutzen nur ein einzelnes Fragment, typischerweise 1 kB, im Dateisystem. Im Buffer-Cache verbrauchen sie mit 512 Bytes noch weniger Platz. Ist die Variable ausgeschaltet (auf 0) wird der Buffer-Cache nur eine limitierte Anzahl Verzeichnisse zwischenspeichern, auch wenn das System über sehr viel Speicher verfügt. Ist die Variable aktiviert (auf 1), kann der Buffer-Cache den VM-Page-Cache benutzen, um Verzeichnisse zwischenzuspeichern. Der ganze Speicher steht damit zum Zwischenspeichern von Verzeichnissen zur Verfügung. Der Nachteil bei dieser Vorgehensweise ist, dass zum Zwischenspeichern eines Verzeichnisses mindestens eine physikalische Seite im Speicher, die normalerweise 4 kB groß ist, anstelle von 512 Bytes gebraucht wird. Wir empfehlen, diese Option aktiviert zu lassen, wenn Sie Dienste zur Verfügung stellen, die viele Dateien manipulieren. Beispiele für solche Dienste sind Web-Caches, große Mail-Systeme oder Netnews. Die aktivierte Variable vermindert, trotz des verschwendeten Speichers, in aller Regel nicht die Leistung des Systems, obwohl Sie das nachprüfen sollten. <varname>vfs.write_behind</varname> vfs.write_behind In der Voreinstellung besitzt die Variable vfs.write_behind den Wert 1 (aktiviert). Mit dieser Einstellung schreibt das Dateisystem anfallende vollständige Cluster, die besonders beim sequentiellen Schreiben großer Dateien auftreten, direkt auf das Medium aus. Dies verhindert, dass sich im Buffer-Cache veränderte Puffer (dirty buffers) ansammeln, die die I/O-Verarbeitung nicht mehr beschleunigen würden. Unter bestimmten Umständen blockiert diese Funktion allerdings Prozesse. Setzen Sie in diesem Fall die Variable vfs.write_behind auf den Wert 0. <varname>vfs.hirunningspace</varname> vfs.hirunningspace Die Variable vfs.hirunningspace bestimmt systemweit die Menge ausstehender Schreiboperationen, die dem Platten-Controller zu jedem beliebigen Zeitpunkt übergeben werden können. Normalerweise können Sie den Vorgabewert verwenden. Auf Systemen mit vielen Platten kann der Wert aber auf 4 bis 5 Megabyte erhöht werden. Beachten Sie, dass ein zu hoher Wert (größer als der Schreib-Schwellwert des Buffer-Caches) zu Leistungverlusten führen kann. Setzen Sie den Wert daher nicht zu hoch! Hohe Werte können auch Leseoperationen verzögern, die gleichzeitig mit Schreiboperationen ausgeführt werden. Es gibt weitere Variablen, mit denen Sie den Buffer-Cache und den VM-Page-Cache beeinflussen können. Wir raten Ihnen allerdings davon ab, diese Variablen zu verändern, da das VM-System den virtuellen Speicher selbst sehr gut verwaltet. <varname>vm.swap_idle_enabled</varname> vm.swap_idle_enabled Die Variable vm.swap_idle_enabled ist für große Mehrbenutzer-Systeme gedacht, auf denen sich viele Benutzer an- und abmelden und auf denen es viele Prozesse im Leerlauf (idle) gibt. Solche Systeme fragen kontinuierlich freien Speicher an. Wenn Sie die Variable vm.swap_idle_enabled aktivieren, können Sie die Auslagerungs-Hysterese von Seiten mit den Variablen vm.swap_idle_threshold1 und vm.swap_idle_threshold2 einstellen. Die Schwellwerte beider Variablen geben die Zeit in Sekunden an, in denen sich ein Prozess im Leerlauf befinden muss. Wenn die Werte so eingestellt sind, dass Seiten früher als nach dem normalen Algorithmus ausgelagert werden, verschafft das dem Auslagerungs-Prozess mehr Luft. Aktivieren Sie diese Funktion nur, wenn Sie sie wirklich benötigen: Die Speicherseiten werden eher früher als später ausgelagert. Der Platz im Swap-Bereich wird dadurch schneller verbraucht und die Plattenaktivitäten steigen an. Auf kleine Systeme hat diese Funktion spürbare Auswirkungen. Auf großen Systemen, die sowieso schon Seiten auslagern müssen, können ganze Prozesse leichter in den Speicher geladen oder ausgelagert werden. <varname>hw.ata.wc</varname> hw.ata.wc In &os; 4.3 wurde versucht, den IDE-Schreib-Zwischenspeicher abzustellen. Obwohl dies die Bandbreite zum Schreiben auf IDE-Platten verringerte, wurde es aus Gründen der Datenkonsistenz als notwenig angesehen. Der Kern des Problems ist, dass IDE-Platten keine zuverlässige Aussage über das Ende eines Schreibvorgangs treffen. Wenn der Schreib-Zwischenspeicher aktiviert ist, werden die Daten nicht in der Reihenfolge ihres Eintreffens geschrieben. Es kann sogar passieren, dass das Schreiben mancher Blöcke im Fall von starker Plattenaktivität auf unbefristete Zeit verzögert wird. Ein Absturz oder Stromausfall zu dieser Zeit kann die Dateisysteme erheblich beschädigen. Wir entschieden uns daher für die sichere Variante und stellten den Schreib-Zwischenspeicher ab. Leider war damit auch ein großer Leistungsverlust verbunden, so dass wir die Variable nach dem Release wieder aktiviert haben. Sie sollten den Wert der Variable hw.ata.wc auf Ihrem System überprüfen. Wenn der Schreib-Zwischenspeicher abgestellt ist, können Sie ihn aktivieren, indem Sie die Variable auf den Wert 1 setzen. Dies muss zum Zeitpunkt des Systemstarts im Boot-Loader geschehen. Eine Änderung der Variable, nachdem der Kernel gestartet ist, hat keine Auswirkungen. Weitere Informationen finden Sie in &man.ata.4;. <literal>SCSI_DELAY</literal> (<varname>kern.cam.scsi_delay</varname>) kern.cam.scsi_delay Kerneloptionen SCSI_DELAY Mit der Kerneloption SCSI_DELAY kann die Dauer des Systemstarts verringert werden. Der Vorgabewert ist recht hoch und er verzögert den Systemstart um 15 oder mehr Sekunden. Normalerweise kann dieser Wert, insbesondere mit modernen Laufwerken, auf 5 Sekunden heruntergesetzt werden. Ab &os; 5.0 wird dazu die sysctl-Variable kern.cam.scsi_delay benutzt. Die Variable sowie die Kerneloption verwenden für die Zeitangabe Millisekunden und nicht Sekunden. Soft Updates Soft Updates tunefs Mit &man.tunefs.8; lassen sich Feineinstellungen an Dateisystemen vornehmen. Das Programm hat verschiedene Optionen, von denen hier nur Soft Updates betrachtet werden. Soft Updates werden wie folgt ein- und ausgeschaltet: &prompt.root; tunefs -n enable /filesystem &prompt.root; tunefs -n disable /filesystem Ein eingehängtes Dateisystem kann nicht mit &man.tunefs.8; modifiziert werden. Soft Updates werden am besten im Single-User Modus aktiviert, bevor Partitionen eingehangen sind. Durch Einsatz eines Zwischenspeichers wird die Performance im Bereich der Metadaten, vorwiegend beim Anlegen und Löschen von Dateien, gesteigert. Wir empfehlen, Soft Updates auf allen Dateisystemen zu aktivieren. Allerdings sollten Sie sich über die zwei Nachteile von Soft Updates bewusst sein: Erstens garantieren Soft Updates zwar die Konsistenz der Daten im Fall eines Absturzes, aber es kann leicht passieren, dass das Dateisystem über mehrere Sekunden oder gar eine Minute nicht synchronisiert wurde. Im Fall eines Absturzes verlieren Sie mit Soft Updates unter Umständen mehr Daten als ohne. Zweitens verzögern Soft Updates die Freigabe von Datenblöcken. Eine größere Aktualisierung eines fast vollen Dateisystems, wie dem Root-Dateisystem, z.B. während eines make installworld, kann das Dateisystem vollaufen lassen. Dadurch würde die Aktualisierung fehlschlagen. Details über Soft Updates Soft Updates Details Es gibt zwei klassische Herangehensweisen, wie man die Metadaten des Dateisystems (also Daten über Dateien, wie inode Bereiche oder Verzeichniseinträge) aktualisiert auf die Platte zurückschreibt: Das historisch übliche Verfahren waren synchrone Updates der Metadaten, d. h. wenn eine Änderung an einem Verzeichnis nötig war, wurde anschließend gewartet, bis diese Änderung tatsächlich auf die Platte zurückgeschrieben worden war. Der Inhalt der Dateien wurde im Buffer Cache zwischengespeichert und asynchron irgendwann später auf die Platte geschrieben. Der Vorteil dieser Implementierung ist, dass sie sicher funktioniert. Wenn während eines Updates ein Ausfall erfolgt, haben die Metadaten immer einen konsistenten Zustand. Eine Datei ist entweder komplett angelegt oder gar nicht. Wenn die Datenblöcke einer Datei im Fall eines Absturzes noch nicht den Weg aus dem Buffer Cache auf die Platte gefunden haben, kann &man.fsck.8; das Dateisystem reparieren, indem es die Dateilänge einfach auf 0 setzt. Außerdem ist die Implementierung einfach und überschaubar. Der Nachteil ist, dass Änderungen der Metadaten sehr langsam vor sich gehen. Ein rm -r beispielsweise fasst alle Dateien eines Verzeichnisses der Reihe nach an, aber jede dieser Änderungen am Verzeichnis (Löschen einer Datei) wird einzeln synchron auf die Platte geschrieben. Gleiches beim Auspacken großer Hierarchien (tar -x). Der zweite Fall sind asynchrone Metadaten-Updates. Das ist z. B. der Standard bei Linux/ext2fs oder die Variante mount -o async für *BSD UFS. Man schickt die Updates der Metadaten einfach auch noch über den Buffer Cache, sie werden also zwischen die Updates der normalen Daten eingeschoben. Vorteil ist, dass man nun nicht mehr auf jeden Update warten muss, Operationen, die zahlreiche Metadaten ändern, werden also viel schneller. Auch hier ist die Implementierung sehr einfach und wenig anfällig für Fehler. Nachteil ist, dass keinerlei Konsistenz des Dateisystems mehr gesichert ist. Wenn mitten in einer Operation, die viele Metadaten ändert, ein Ausfall erfolgt (Stromausfall, drücken des Reset-Tasters), dann ist das Dateisystem anschließend in einem unbestimmten Zustand. Niemand kann genau sagen, was noch geschrieben worden ist und was nicht mehr; die Datenblöcke einer Datei können schon auf der Platte stehen, während die inode Tabelle oder das zugehörige Verzeichnis nicht mehr aktualisiert worden ist. Man kann praktisch kein fsck mehr implementieren, das diesen Zustand wieder reparieren kann, da die dazu nötigen Informationen einfach auf der Platte fehlen. Wenn ein Dateisystem derart beschädigt worden ist, kann man es nur neu erzeugen (&man.newfs.8;) und die Daten vom Backup zurückspielen. Der historische Ausweg aus diesem Dilemma war ein dirty region logging (auch als Journalling bezeichnet, wenngleich dieser Begriff nicht immer gleich benutzt und manchmal auch für andere Formen von Transaktionsprotokollen gebraucht wird). Man schreibt die Metadaten-Updates zwar synchron, aber nur in einen kleinen Plattenbereich, die logging area. Von da aus werden sie dann asynchron auf ihre eigentlichen Bereiche verteilt. Da die logging area ein kleines zusammenhängendes Stückchen ist, haben die Schreibköpfe der Platte bei massiven Operationen auf Metadaten keine allzu großen Wege zurückzulegen, so dass alles ein ganzes Stück schneller geht als bei klassischen synchronen Updates. Die Komplexität der Implementierung hält sich ebenfalls in Grenzen, somit auch die Anfälligkeit für Fehler. Als Nachteil ergibt sich, dass Metadaten zweimal auf die Platte geschrieben werden müssen (einmal in die logging area, einmal an die richtige Stelle), so dass das im Falle regulärer Arbeit (also keine gehäuften Metadatenoperationen) eine Pessimisierung des Falls der synchronen Updates eintritt, es wird alles langsamer. Dafür hat man als Vorteil, dass im Falle eines Crashes der konsistente Zustand dadurch erzielbar ist, dass die angefangenen Operationen aus dem dirty region log entweder zu Ende ausgeführt oder komplett verworfen werden, wodurch das Dateisystem schnell wieder zur Verfügung steht. Die Lösung von Kirk McKusick, dem Schöpfer von Berkeley FFS, waren Soft Updates: die notwendigen Updates der Metadaten werden im Speicher gehalten und dann sortiert auf die Platte geschrieben (ordered metadata updates). Dadurch hat man den Effekt, dass im Falle massiver Metadaten-Änderungen spätere Operationen die vorhergehenden, noch nicht auf die Platte geschriebenen Updates desselben Elements im Speicher einholen. Alle Operationen, auf ein Verzeichnis beispielsweise, werden also in der Regel noch im Speicher abgewickelt, bevor der Update überhaupt auf die Platte geschrieben wird (die dazugehörigen Datenblöcke werden natürlich auch so sortiert, dass sie nicht vor ihren Metadaten auf der Platte sind). Im Fall eines Absturzes hat man ein implizites log rewind: alle Operationen, die noch nicht den Weg auf die Platte gefunden haben, sehen danach so aus, als hätten sie nie stattgefunden. Man hat so also den konsistenten Zustand von ca. 30 bis 60 Sekunden früher sichergestellt. Der verwendete Algorithmus garantiert dabei, dass alle tatsächlich benutzten Ressourcen auch in den entsprechenden Bitmaps (Block- und inode Tabellen) als belegt markiert sind. Der einzige Fehler, der auftreten kann, ist, dass Ressourcen noch als belegt markiert sind, die tatsächlich frei sind. &man.fsck.8; erkennt dies und korrigiert diese nicht mehr belegten Ressourcen. Die Notwendigkeit eines Dateisystem-Checks darf aus diesem Grunde auch ignoriert und das Dateisystem mittels mount -f zwangsweise eingebunden werden. Um noch allozierte Ressourcen freizugeben muss später ein &man.fsck.8; nachgeholt werden. Das ist dann auch die Idee des background fsck: beim Starten des Systems wird lediglich ein Schnappschuss des Filesystems gemacht, mit dem &man.fsck.8; dann später arbeiten kann. Alle Dateisysteme dürfen unsauber eingebunden werden und das System kann sofort in den Multiuser-Modus gehen. Danach wird ein Hintergrund-fsck für die Dateisysteme gestartet, die dies benötigen, um möglicherweise irrtümlich belegte Ressourcen freizugeben. (Dateisysteme ohne Soft Updates benötigen natürlich immer noch den üblichen (Vordergrund-)fsck, bevor sie eingebunden werden können.) Der Vorteil ist, dass die Metadaten-Operationen beinahe so schnell ablaufen wie im asynchronen Fall (also durchaus auch schneller als beim logging, das ja die Metadaten immer zweimal schreiben muss). Als Nachteil stehen dem die Komplexität des Codes (mit einer erhöhten Fehlerwahrscheinlichkeit in einem bezüglich Datenverlust hoch sensiblen Bereich) und ein erhöhter Speicherverbrauch entgegen. Außerdem muss man sich an einige Eigenheiten gewöhnen: Nach einem Absturz ist ein etwas älterer Stand auf der Platte – statt einer leeren, aber bereits angelegten Datei (wie nach einem herkömmlichen fsck Lauf) ist auf einem Dateisystem mit Soft Updates keine Spur der entsprechenden Datei mehr zu sehen, da weder die Metadaten noch der Dateiinhalt je auf die Platte geschrieben wurden. Weiterhin kann der Platz nach einem rm -r nicht sofort wieder als verfügbar markiert werden, sondern erst dann, wenn der Update auch auf die Platte vermittelt worden ist. Dies kann besonders dann Probleme bereiten, wenn große Datenmengen in einem Dateisystem ersetzt werden, das nicht genügend Platz hat, um alle Dateien zweimal unterzubringen. Einstellungen von Kernel Limits Einstellungen von Kernel Limits Datei und Prozeß Limits <varname>kern.maxfiles</varname> kern.maxfiles Abhängig von den Anforderungen Ihres Systems kann kern.maxfiles erhöht oder erniedrigt werden. Die Variable legt die maximale Anzahl von Dateideskriptoren auf Ihrem System fest. Wenn die Dateideskriptoren aufgebraucht sind, werden Sie die Meldung file: table is full wiederholt im Puffer für Systemmeldungen sehen. Den Inhalt des Puffers können Sie sich mit dmesg anzeigen lassen. Jede offene Datei, jedes Socket und jede FIFO verbraucht einen Dateideskriptor. Auf dicken Produktionsservern können leicht Tausende Dateideskriptoren benötigt werden, abhängig von der Art und Anzahl der gleichzeitig laufenden Dienste. In älteren &os;-Versionen wurde die Voreinstellung von kern.maxfile aus der Kernelkonfigurationsoption maxusers bestimmt. kern.maxfiles wächst proportional mit dem Wert von maxusers. Wenn Sie einen angepassten Kernel kompilieren, empfiehlt es sich diese Option entsprechend der maximalen Benutzerzahl Ihres Systems einzustellen. Obwohl auf einer Produktionsmaschine vielleicht nicht 256 Benutzer gleichzeitig angemeldet sind, können die benötigten Ressourcen ähnlich denen eines großen Webservers sein. Die Variable kern.maxusers wird beim Systemstart automatisch aus dem zur Verfügung stehenden Hauptspeicher bestimmt. Im laufenden Betrieb kann dieser Wert aus der (nur lesbaren) sysctl-Variable kern.maxusers ermittelt werden. Falls ein System für diese Variable einen anderen Wert benötigt, kann der Wert über den Loader angepasst werden. Häufig verwendete Werte sind dabei 64, 128, sowie 256. Es ist empfehlenswert, die Anzahl der Dateideskriptoren nicht auf einen Wert größer 256 zu setzen, es sei denn, Sie benötigen wirklich eine riesige Anzahl von ihnen. Viele der von kern.maxusers auf einen Standardwert gesetzten Parameter können beim Systemstart oder im laufenden Betrieb in der Datei /boot/loader.conf (sehen Sie sich dazu auch &man.loader.conf.5; sowie die Datei /boot/defaults/loader.conf an) an Ihre Bedürfnisse angepasst werden, so wie es bereits an anderer Stelle dieses Dokuments beschrieben ist. Ältere &os;-Versionen setzen diesen Wert selbst, wenn Sie in der Konfigurationsdatei den Wert 0 Der verwendete Algorithmus setzt maxusers auf die Speichergröße des Systems. Der minimale Wert beträgt dabei 32, das Maximum ist 384. angeben. Wenn Sie den Wert selbst bestimmen wollen, sollten Sie maxusers mindestens auf 4 setzen. Dies gilt insbesondere dann, wenn Sie beabsichtigen, das X Window-System zu benutzen oder Software zu kompilieren. Der Grund dafür ist, dass der wichtigste Wert, der durch maxusers bestimmt wird, die maximale Anzahl an Prozessen ist, die auf 20 + 16 * maxusers gesetzt wird. Wenn Sie also maxusers auf 1 setzen, können gleichzeitig nur 36 Prozesse laufen, von denen ungefähr 18 schon beim Booten des Systems gestartet werden. Dazu kommen nochmals etwa 15 Prozesse beim Start des X Window-Systems. Selbst eine einfache Aufgabe wie das Lesen einer Manualpage benötigt neun Prozesse zum Filtern, Dekomprimieren und Betrachten der Datei. Für die meisten Benutzer sollte es ausreichen, maxusers auf 64 zu setzen, womit 1044 gleichzeitige Prozesse zur Verfügung stehen. Wenn Sie allerdings den gefürchteten Fehler proc table full beim Start eines Programms oder auf einem Server mit einer großen Benutzerzahl (wie ftp.FreeBSD.org) sehen, dann sollten Sie den Wert nochmals erhöhen und den Kernel neu bauen. Die Anzahl der Benutzer, die sich auf einem Rechner anmelden kann, wird durch maxusers nicht begrenzt. Der Wert dieser Variablen legt neben der möglichen Anzahl der Prozesse eines Benutzers weitere sinnvolle Größen für bestimmte Systemtabellen fest. <varname>kern.ipc.somaxconn</varname> kern.ipc.somaxconn Die Variable kern.ipc.somaxconn beschränkt die Größe der Warteschlange (Listen-Queue) für neue TCP-Verbindungen. Der Vorgabewert von 128 ist normalerweise zu klein, um neue Verbindungen auf einem stark ausgelasteten Webserver zuverlässig zu handhaben. Auf solchen Servern sollte der Wert auf 1024 oder höher gesetzt werden. Ein Dienst (z.B. &man.sendmail.8;, oder Apache) kann die Größe der Queue selbst einschränken. Oft gibt es die Möglichkeit, die Größe der Listen-Queue in einer Konfigurationsdatei einzustellen. Eine große Listen-Queue übersteht vielleicht auch einen Denial of Service Angriff (DoS). Netzwerk Limits Die Kerneloption NMBCLUSTERS schreibt die Anzahl der Netzwerkpuffer (Mbufs) fest, die das System besitzt. Eine zu geringe Anzahl Mbufs auf einem Server mit viel Netzwerkverkehr verringert die Leistung von &os;. Jeder Mbuf-Cluster nimmt ungefähr 2 kB Speicher in Anspruch, so dass ein Wert von 1024 insgesamt 2 Megabyte Speicher für Netzwerkpuffer im System reserviert. Wie viele Cluster benötigt werden, lässt sich durch eine einfache Berechnung herausfinden. Wenn Sie einen Webserver besitzen, der maximal 1000 gleichzeitige Verbindungen servieren soll und jede der Verbindungen je einen 16 kB großen Puffer zum Senden und Empfangen braucht, brauchen Sie ungefähr 32 MB Speicher für Netzwerkpuffer. Als Daumenregel verdoppeln Sie diese Zahl, so dass sich für NMBCLUSTERS der Wert 2x32 MB / 2 kB = 32768 ergibt. Für Maschinen mit viel Speicher sollten Werte zwischen 4096 und 32768 genommen werden. Sie können diesen Wert nicht willkürlich erhöhen, da dies bereits zu einem Absturz beim Systemstart führen kann. Mit der Option von &man.netstat.1; können Sie den Gebrauch der Netzwerkpuffer kontrollieren. Die Netzwerkpuffer können beim Systemstart mit der Loader-Variablen kern.ipc.nmbclusters eingestellt werden. Nur auf älteren &os;-Systemen müssen Sie die Kerneloption NMBCLUSTERS verwenden. Die Anzahl der &man.sendfile.2; Puffer muss auf ausgelasteten Servern, die den Systemaufruf &man.sendfile.2; oft verwenden, vielleicht erhöht werden. Dazu können Sie die Kerneloption NSFBUFS verwenden oder die Anzahl der Puffer in /boot/loader.conf (siehe &man.loader.8;) setzen. Die Puffer sollten erhöht werden, wenn Sie Prozesse im Zustand sfbufa sehen. Die schreibgeschützte sysctl-Variable kern.ipc.nsfbufs zeigt die Anzahl eingerichteten Puffer im Kernel. Der Wert dieser Variablen wird normalerweise von kern.maxusers bestimmt. Manchmal muss die Pufferanzahl jedoch manuell eingestellt werden. Auch wenn ein Socket nicht blockierend angelegt wurde, kann der Aufruf von &man.sendfile.2; blockieren, um auf freie struct sf_buf Puffer zu warten. <varname>net.inet.ip.portrange.*</varname> net.inet.ip.portrange.* Die sysctl-Variable net.inet.ip.portrange.* legt die Portnummern für TCP- und UDP-Sockets fest. Es gibt drei Bereiche: den niedrigen Bereich, den normalen Bereich und den hohen Bereich. Die meisten Netzprogramme benutzen den normalen Bereich. Dieser Bereich umfasst in der Voreinstellung die Portnummern 500 bis 5000 und wird durch die Variablen net.inet.ip.portrange.first und net.inet.ip.portrange.last festgelegt. Die festgelegten Bereiche für Portnummern werden von ausgehenden Verbindungen benutzt. Unter bestimmten Umständen, beispielsweise auf stark ausgelasteten Proxy-Servern, sind alle Portnummern für ausgehende Verbindungen belegt. Bereiche für Portnummern spielen auf Servern keine Rolle, die hauptsächlich eingehende Verbindungen verarbeiten (wie ein normaler Webserver) oder nur eine begrenzte Anzahl ausgehender Verbindungen öffnen (beispielsweise ein Mail-Relay). Wenn Sie keine freien Portnummern mehr haben, sollten Sie die Variable net.inet.ip.portrange.last langsam erhöhen. Ein Wert von 10000, 20000 oder 30000 ist angemessen. Beachten Sie auch eine vorhandene Firewall, wenn Sie die Bereiche für Portnummern ändern. Einige Firewalls sperren große Bereiche (normalerweise aus den kleinen Portnummern) und erwarten, dass hohe Portnummern für ausgehende Verbindungen verwendet werden. Daher kann es erforderlich sein, den Wert von net.inet.ip.portrange.first zu erhöhen. TCP Bandwidth Delay Product Begrenzung TCP Bandwidth Delay Product Begrenzung net.inet.tcp.inflight.enable Die TCP Bandwidth Delay Product Begrenzung gleicht TCP/Vegas von NetBSD. Die Begrenzung wird aktiviert, indem Sie die sysctl-Variable net.inet.tcp.inflight.enable auf den Wert 1 setzen. Das System wird dann versuchen, für jede Verbindung, das Produkt aus der Übertragungsrate und der Verzögerungszeit zu bestimmen. Dieses Produkt begrenzt die Datenmenge, die für einen optimales Durchsatz zwischengespeichert werden muss. Diese Begrenzung ist nützlich, wenn Sie Daten über Verbindungen mit einem hohen Produkt aus Übertragungsrate und Verzögerungszeit wie Modems, Gigabit-Ethernet oder schnellen WANs, zur Verfügung stellen. Insbesondere wirkt sich die Begrenzung aus, wenn die Verbindung die TCP-Option Window-scaling verwendet oder große Sende-Fenster (send window) benutzt. Schalten Sie die Debug-Meldungen aus, wenn Sie die Begrenzung aktiviert haben. Dazu setzen Sie die Variable net.inet.tcp.inflight.debug auf 0. Auf Produktions-Systemen sollten Sie zudem die Variable net.inet.tcp.inflight.min mindestens auf den Wert 6144 setzen. Allerdings kann ein zu hoher Wert, abhängig von der Verbindung, die Begrenzungsfunktion unwirksam machen. Die Begrenzung reduziert die Datenmenge in den Queues von Routern und Switches, sowie die Datenmenge in der Queue der lokalen Netzwerkkarte. Die Verzögerungszeit (Round Trip Time) für interaktive Anwendungen sinkt, da weniger Pakete zwischengespeichert werden. Dies gilt besonders für Verbindungen über langsame Modems. Die Begrenzung wirkt sich allerdings nur auf das Versenden von Daten aus (Uploads, Server). Auf den Empfang von Daten (Downloads) hat die Begrenzung keine Auswirkungen. Die Variable net.inet.tcp.inflight.stab sollte nicht angepasst werden. Der Vorgabewert der Variablen beträgt 20, das heißt es werden maximal zwei Pakete zu dem Produkt aus Übertragungsrate und Verzögerungszeit addiert. Dies stabilisiert den Algorithmus und verbessert die Reaktionszeit auf Veränderungen. Bei langsamen Verbindungen können sich aber die Laufzeiten der Pakete erhöhen (ohne diesen Algorithmus wären sie allerdings noch höher). In solchen Fällen können Sie versuchen, den Wert der Variablen auf 15, 10 oder 5 zu erniedrigen. Gleichzeitig müssen Sie vielleicht auch net.inet.tcp.inflight.min auf einen kleineren Wert (beispielsweise 3500) setzen. Ändern Sie diese Variablen nur ab, wenn Sie keine anderen Möglichkeiten mehr haben. Virtueller Speicher (<foreignphrase>Virtual Memory</foreignphrase>) <varname>kern.maxvnodes</varname> Ein vnode ist die interne Darstellung einer Datei oder eines Verzeichnisses. Die Erhöhung der Anzahl der für das Betriebssystem verfügbaren vnodes verringert also die Schreib- und Lesezugriffe auf Ihre Festplatte. vnodes werden im Normalfall vom Betriebssystem automatisch vergeben und müssen nicht von Ihnen angepasst werden. In einigen Fällen stellt der Zugriff auf eine Platte allerdings einen Flaschenhals dar, daher sollten Sie in diesem Fall die Anzahl der möglichen vnodes erhöhen, um dieses Problem zu beheben. Beachten Sie dabei aber die Größe des inaktiven und freien Hauptspeichers. Um die Anzahl der derzeit verwendeten vnodes zu sehen, geben Sie Folgendes ein: &prompt.root; sysctl vfs.numvnodes vfs.numvnodes: 91349 Die maximal mögliche Anzahl der vnodes erhalten Sie durch die Eingabe von: &prompt.root; sysctl kern.maxvnodes kern.maxvnodes: 100000 Wenn sich die Anzahl der genutzten vnodes dem maximal möglichen Wert nähert, sollten Sie den Wert kern.maxvnodes zuerst um etwa 1.000 erhöhen. Beobachten Sie danach die Anzahl der vom System genutzten vfs.numvnodes. Nähert sich der Wert wiederum dem definierten Maximum, müssen Sie kern.maxvnodes nochmals erhöhen. Sie sollten nun eine Änderung Ihres Speicherverbrauches (etwa über &man.top.1;) registrieren können und über mehr aktiven Speicher verfügen. Hinzufügen von Swap-Bereichen Egal wie vorausschauend Sie planen, manchmal entspricht ein System einfach nicht Ihren Erwartungen. Es ist leicht, mehr Swap-Bereiche hinzuzufügen. Dazu stehen Ihnen drei Wege offen: Sie können eine neue Platte einbauen, den Swap-Bereich über NFS ansprechen oder eine Swap-Datei auf einer existierenden Partition einrichten. Für Informationen zur Verschlüsselung von Swap-Partitionen, zu den dabei möglichen Optionen sowie zu den Gründen für eine Verschlüsselung des Auslagerungsspeichers lesen Sie bitte des Handbuchs. Swap auf einer neuen Festplatte Der einfachste Weg, zusätzlich einen Swap-Bereich einzurichten, ist der Einbau einer neuen Platte, die Sie sowieso gebrauchen können. Die Anordnung von Swap-Bereichen wird in des Handbuchs besprochen. Swap-Bereiche über NFS Swap-Bereiche über NFS sollten Sie nur dann einsetzen, wenn Sie über keine lokale Platte verfügen, da es durch die zur Verfügung stehende Bandbreite limitiert wird und außerdem den NFS-Server zusätzlich belastet. Swap-Dateien Sie können eine Datei festgelegter Größe als Swap-Bereich nutzen. Im folgenden Beispiel werden wir eine 64 MB große Datei mit Namen /usr/swap0 benutzen, Sie können natürlich einen beliebigen Namen für den Swap-Bereich benutzen. Erstellen einer Swap-Datei Stellen Sie sicher, dass der Kernel RAM-Disks (&man.md.4;) unterstützt. Dies ist in der GENERIC-Konfiguration voreingestellt. device md # Memory "disks" Legen Sie die Swap-Datei /usr/swap0 an: &prompt.root; dd if=/dev/zero of=/usr/swap0 bs=1024k count=64 Setzen Sie die richtigen Berechtigungen für /usr/swap0: &prompt.root; chmod 0600 /usr/swap0 Aktivieren Sie die Swap-Datei /etc/rc.conf: swapfile="/usr/swap0" # Set to name of swapfile if aux swapfile desired. Um die Swap-Datei zu aktivieren, führen Sie entweder einen Neustart durch oder geben das folgende Kommando ein: &prompt.root; mdconfig -a -t vnode -f /usr/swap0 -u 0 && swapon /dev/md0 Hiten Pandya Verfasst von Tom Rhodes Energie- und Ressourcenverwaltung Es ist wichtig, Hardware effizient einzusetzen. Vor der Einführung des Advanced Configuration and Power Interface (ACPI) konnten Stromverbrauch und Wärmeabgabe eines Systems nur schlecht von Betriebssystemen gesteuert werden. Die Hardware wurde vom BIOS gesteuert, was die Kontrolle der Energieverwaltung für den Anwender erschwerte. Das Advanced Power Management (APM) erlaubte es lediglich, einige wenige Funktionen zu steuern, obwohl die Überwachung von Energie- und Ressourcenverbrauch zu den wichtigsten Aufgaben eines Betriebssystems gehört, um auf verschiedene Ereignisse, beispielsweise einen unerwarteten Temperaturanstieg, reagieren können. Dieser Abschnitt erklärt das Advanced Configuration and Power Interface (ACPI). Was ist ACPI? ACPI APM Advanced Configuration and Power Interface (ACPI) ist ein Standard verschiedener Hersteller, der die Verwaltung von Hardware und Energiesparfunktionen festlegt. Die ACPI-Funktionen können von einem Betriebssystem gesteuert werden. Der Vorgänger des ACPI, Advanced Power Management (APM), erwies sich in modernen Systemen als unzureichend. Mängel des Advanced Power Managements (APM) Das Advanced Power Management (APM) steuert den Energieverbrauch eines Systems auf Basis der Systemaktivität. Das APM-BIOS wird von dem Hersteller des Systems zur Verfügung gestellt und ist auf die spezielle Hardware angepasst. Der APM-Treiber des Betriebssystems greift auf das APM Software Interface zu, das den Energieverbrauch regelt. APM findet sich in der Regel nur noch in Systemen, die vor 2001 produziert wurden. Das APM hat hauptsächlich vier Probleme. Erstens läuft die Energieverwaltung unabhängig vom Betriebssystem in einem (herstellerspezifischen) BIOS. Beispielsweise kann das APM-BIOS die Festplatten nach einer konfigurierbaren Zeit ohne die Zustimmung des Betriebssystems herunterfahren. Zweitens befindet sich die ganze APM-Logik im BIOS; das Betriebssystem hat gar keine APM-Komponenten. Bei Problemen mit dem APM-BIOS muss das Flash-ROM aktualisiert werden. Diese Prozedur ist gefährlich, da sie im Fehlerfall das System unbrauchbar machen kann. Zum Dritten ist APM eine Technik, die herstellerspezifisch ist und nicht koordiniert wird. Fehler im BIOS eines Herstellers werden nicht unbedingt im BIOS anderer Hersteller korrigiert. Das letzte Problem ist, dass im APM-BIOS nicht genügend Platz vorhanden ist, um eine durchdachte oder eine auf den Zweck der Maschine zugeschnittene Energieverwaltung zu implementieren. Das Plug and Play BIOS (PNPBIOS) war ebenfalls unzureichend. Das PNPBIOS verwendet eine 16-Bit-Technik. Damit das Betriebssystem das PNPBIOS ansprechen kann, muss es in einer 16-Bit-Emulation laufen. Der APM-Treiber von &os; ist in der Hilfeseite &man.apm.4; beschrieben. Konfiguration des <acronym>ACPI</acronym> Das Modul acpi.ko wird standardmäßig beim Systemstart vom &man.loader.8; geladen und sollte daher nicht fest in den Kernel eingebunden werden. Dadurch kann acpi.ko ohne einen Neubau des Kernels ersetzt werden und das Modul ist leichter zu testen. Wenn Sie in der Ausgabe von &man.dmesg.8; das Wort ACPI sehen, ist das Modul geladen worden. Das ACPI-Modul im laufenden Betrieb zu laden, führt oft nicht zum gewünschten Ergebnis. Treten bei Ihrem System Probleme auf, können Sie ACPI auch komplett deaktivieren. Dazu definieren Sie die Variable hint.acpi.0.disabled="1" in der Datei /boot/loader.conf. Alternativ können Sie die Variable auch am &man.loader.8;-Prompt eingeben. Das Modul kann im laufenden Betrieb nicht entfernt werden, da es zur Kommunikation mit der Hardware verwendet wird. ACPI und APM können nicht zusammen verwendet werden. Das zuletzt geladene Modul beendet sich, sobald es bemerkt, dass das andere Modul geladen ist. Mit &man.acpiconf.8; können Sie das System in einen Ruhemodus (sleep mode) versetzen. Es gibt verschiedene Modi (von 1 bis 5), die Sie auf der Kommandozeile mit angeben können. Für die meisten Anwender sind die Modi 1 und 3 völlig ausreichend. Der Modus 5 schaltet das System aus (Soft-off) und entspricht dem folgenden Befehl: &prompt.root; halt -p Verschiedene Optionen können als &man.sysctl.8;-Variablen gesetzt werden. Lesen Sie dazu die Manualpages zu &man.acpi.4; sowie &man.acpiconf.8;. Nate Lawson Verfasst von Peter Schultz Mit Beiträgen von Tom Rhodes <acronym>ACPI</acronym>-Fehlersuche ACPI Probleme mit ACPI ist ein gänzlich neuer Weg, um Geräte aufzufinden und deren Stromverbrauch zu regulieren. Weiterhin bietet ACPI einen einheitlichen Zugriff auf Geräte, die vorher vom BIOS verwaltet wurden. Es werden zwar Fortschritte gemacht, dass ACPI auf allen Systemen läuft, doch tauchen immer wieder Fehler auf: fehlerhafter Bytecode der ACPI-Machine-Language (AML) einiger Systemplatinen, ein unvollständiges &os;-Kernel-Subsystem oder Fehler im ACPI-CA-Interpreter von &intel;. Dieser Abschnitt hilft Ihnen, zusammen mit den Betreuern des &os;-ACPI-Subsystems, Fehlerquellen zu finden und Fehler zu beseitigen. Danke, dass Sie diesen Abschnitt lesen; hoffentlich hilft er, Ihre Systemprobleme zu lösen. Fehlerberichte einreichen Bevor Sie einen Fehlerbericht einreichen, stellen Sie bitte sicher, dass Ihr BIOS und die Firmware Ihres Controllers aktuell sind. Wenn Sie sofort einen Fehlerbericht einsenden wollen, schicken Sie bitte die folgenden Informationen an die Mailingliste freebsd-acpi: Beschreiben Sie den Fehler und alle Umstände, unter denen der Fehler auftritt. Geben Sie ebenfalls den Typ und das Modell Ihres Systems an. Wenn Sie einen neuen Fehler entdeckt haben, versuchen Sie möglichst genau zu beschreiben, wann der Fehler das erste Mal aufgetreten ist. Die Ausgabe von &man.dmesg.8; nach der Eingabe von boot -v. Geben Sie auch alle Fehlermeldungen an, die erscheinen, wenn Sie den Fehler provozieren. Die Ausgabe von &man.dmesg.8; nach der Eingabe von boot -v und mit deaktiviertem ACPI, wenn das Problem ohne ACPI nicht auftritt. Die Ausgabe von sysctl hw.acpi. Dieses Kommando zeigt die vom System unterstützten ACPI-Funktionen an. Die URL, unter der die ACPI-Source-Language (ASL) liegt. Schicken Sie bitte nicht die ASL an die Mailingliste, da die ASL sehr groß sein kann. Eine Kopie der ASL erstellen Sie mit dem nachstehenden Befehl: &prompt.root; acpidump -td > name-system.asl Setzen Sie bitte für name den Namen Ihres Kontos und für system den Hersteller und das Modell Ihres Systems ein. Zum Beispiel: njl-FooCo6000.asl. Obwohl die meisten Entwickler die Mailingliste &a.current.name; lesen, sollten Sie Fehlerberichte an die Liste &a.acpi.name; schicken. Seien Sie bitte geduldig; wir haben alle Arbeit außerhalb des Projekts. Wenn der Fehler nicht offensichtlich ist, bitten wir Sie vielleicht, einen offiziellen Fehlerbericht (PR) mit &man.send-pr.1; einzusenden. Geben Sie im Fehlerbericht bitte dieselben Informationen wie oben an. Mithilfe der PRs verfolgen und lösen wir Probleme. Senden Sie bitte keinen PR ein, ohne vorher den Fehlerbericht an die Liste &a.acpi.name; zu senden. Wir benutzen die PRs als Erinnerung an bestehende Probleme und nicht zum Sammeln aller Probleme. Es kann sein, dass der Fehler schon von jemand anderem gemeldet wurde. <acronym>ACPI</acronym>-Grundlagen ACPI ACPI gibt es in allen modernen Rechnern der ia32- (x86), ia64- (Itanium) und amd64- (AMD) Architektur. Der vollständige Standard bietet Funktionen zur Steuerung und Verwaltung der CPU-Leistung, der Stromversorgung, von Wärmebereichen, Batterien, eingebetteten Controllern und Bussen. Auf den meisten Systemen wird nicht der vollständige Standard implementiert. Arbeitsplatzrechner besitzen meist nur Funktionen zur Verwaltung der Busse, während Notebooks Funktionen zur Temperaturkontrolle und Ruhezustände besitzen. Ein ACPI konformes System besitzt verschiedene Komponenten. Die BIOS- und Chipsatz-Hersteller stellen mehrere statische Tabellen bereit (zum Beispiel die Fixed-ACPI-Description-Table, FADT). Die Tabellen enthalten beispielsweise die mit SMP-Systemen benutzte APIC-Map, Konfigurationsregister und einfache Konfigurationen. Zusätzlich gibt es die Differentiated-System-Description-Table (DSDT), die Bytecode enthält. Die Tabelle ordnet Geräte und Methoden in einem baumartigen Namensraum an. Ein ACPI-Treiber muss die statischen Tabellen einlesen, einen Interpreter für den Bytecode bereitstellen und die Gerätetreiber im Kernel so modifizieren, dass sie mit dem ACPI-Subsystem kommunizieren. Für &os;, Linux und NetBSD hat &intel; den Interpreter ACPI-CA, zur Verfügung gestellt. Der Quelltext zu ACPI-CA befindet sich im Verzeichnis src/sys/contrib/dev/acpica. Die Schnittstelle von ACPI-CA zu &os; befindet sich unter src/sys/dev/acpica/Osd. Treiber, die verschiedene ACPI-Geräte implementieren, befinden sich im Verzeichnis src/sys/dev/acpica. Häufige Probleme ACPI Probleme mit Damit ACPI richtig funktioniert, müssen alle Teile funktionieren. Im Folgenden finden Sie eine Liste mit Problemen und möglichen Umgehungen oder Fehlerbehebungen. Die Liste ist nach der Häufigkeit, mit der die Probleme auftreten, sortiert. Mausprobleme Es kann vorkommen, dass die Maus nicht mehr funktioniert, wenn Sie nach einem Suspend weiterarbeiten wollen. Ist dies bei Ihnen der Fall, reicht es meistens aus, den Eintrag hint.psm.0.flags="0x3000" in Ihre /boot/loader.conf aufzunehmen. Besteht das Problem weiterhin, sollten Sie einen Fehlerbericht an das FreeBSD Project senden. Suspend/Resume ACPI kennt drei Suspend-to-RAM-Zustände (STR): S1-S3. Es gibt einen Suspend-to-Disk-Zustand: S4. Der Zustand S5 wird Soft-Off genannt. In diesem Zustand befindet sich ein Rechner, wenn die Stromversorgung angeschlossen ist, der Rechner aber nicht hochgefahren ist. Der Zustand S4 kann auf zwei Arten implementiert werden: S4BIOS und S4OS. Im ersten Fall wird der Suspend-to-Disk-Zustand durch das BIOS hergestellt im zweiten Fall alleine durch das Betriebssystem. Die Suspend-Zustände sind Ruhezustände, in denen der Rechner weniger Energie als im Normalbetrieb benötigt. Resume bezeichnet die Rückkehr zum Normalbetrieb. Die Suspend-Zustände können Sie mit dem Kommando sysctl hw.acpi ermitteln. Das Folgende könnte beispielsweise ausgegeben werden: hw.acpi.supported_sleep_state: S3 S4 S5 hw.acpi.s4bios: 0 Diese Ausgabe besagt, dass mit dem Befehl acpiconf -s die Zustände S3, S4OS und S5 eingestellt werden können. Hätte den Wert 1, gäbe es den Zustand S4BIOS anstelle von S4OS. Wenn Sie die Suspend- und Resume-Funktionen testen, fangen Sie mit dem S1-Zustand an, wenn er angeboten wird. Dieser Zustand wird am ehesten funktionieren, da der Zustand wenig Treiber-Unterstützung benötigt. Der Zustand S2 ist ähnlich wie S1, allerdings hat ihn noch niemand implementiert. Als nächstes sollten Sie den Zustand S3 ausprobieren. Dies ist der tiefste STR-Schlafzustand. Dieser Zustand ist auf massive Treiber-Unterstützung angewiesen, um die Geräte wieder richtig zu initialisieren. Wenn Sie Probleme mit diesem Zustand haben, können Sie die Mailingliste &a.acpi.name; anschreiben. Erwarten Sie allerdings nicht zu viel: Es gibt viele Treiber und Geräte, an denen noch gearbeitet und getestet wird. + + Ein häufiges Problem mit Suspend/Resume ist, + dass viele Gerätetreiber ihre Firmware, Register + und Gerätespeicher nicht korrekt speichern, + wiederherstellen und/oder reinitialisieren. Um dieses + Problem zu lösen, sollten Sie zuerst die + folgenden Befehle ausführen: + + &prompt.root; sysctl debug.bootverbose=1 +&prompt.root; sysctl debug.acpi.suspend_bounce=1 +&prompt.root; acpiconf -s 3 + + Dieser Test emuliert einen Suspend/Resume-Zyklus für + alle Geräte (ohne dass diese dabei wirklich in den Status + S3 wechseln). In vielen Fällen + reicht dies bereits aus, um Probleme (beispielsweise + verlorener Firmware-Status, Timeouts, hängende Geräte) + zu entdecken. Beachten Sie dabei, dass das Gerät bei + diesem Test nicht wirklich in den Status + S3 wechseln. Es kann also vorkommen, dass + manche Geräte weiterhin mit Strom versorgt werden (dies + wäre bei einem wirklichen Wechsel in den Status + S3 NICHT möglich. + Andere Geräte werden normal weiterarbeiten, weil sie + über keine Suspend/Resume-Funktionen verfügen. + + Schwierigere Fälle können den Einsatz + zusätzlicher Hardware (beispielsweise serielle + Ports/Kabel für die Verbindung über eine + serielle Konsole oder Firewire-Ports/Kabel für + &man.dcons.4;) sowie Kenntnisse im Bereich + Kerneldebugging erforderlich machen. Um das Problem einzugrenzen, entfernen Sie soviele Treiber wie möglich aus dem Kernel. Sie können das Problem isolieren, indem Sie einen Treiber nach dem anderen laden, bis der Fehler wieder auftritt. Typischerweise verursachen binäre Treiber wie nvidia.ko, X11-Grafiktreiber und USB-Treiber die meisten Fehler, hingegen laufen Ethernet-Treiber für gewöhnlich sehr zuverlässig. Wenn ein Treiber zuverlässig geladen und entfernt werden kann, können Sie den Vorgang automatisieren, indem Sie die entsprechenden Kommandos in die Dateien /etc/rc.suspend und /etc/rc.resume einfügen. In den Dateien finden Sie ein deaktiviertes Beispiel, das einen Treiber lädt und wieder entfernt. Ist die Bildschirmanzeige bei der Wiederaufnahme des Betriebs gestört, setzen Sie bitte die Variable auf 0. Versuchen Sie auch, die Variable auf kürzere Zeitspannen zu setzen. Die Suspend- und Resume-Funktionen können Sie auch auf einer neuen Linux-Distribution mit ACPI testen. Wenn es mit Linux funktioniert, liegt das Problem wahrscheinlich bei einem &os;-Treiber. Es hilft uns, das Problem zu lösen, wenn Sie feststellen können, welcher Treiber das Problem verursacht. Beachten Sie bitte, dass die ACPI-Entwickler normalerweise keine anderen Treiber pflegen (beispielsweise Sound- oder ATA-Treiber). Es ist wohl das beste, die Ergebnisse der Fehlersuche an die Mailingliste &a.current.name; und den Entwickler des Treibers zu schicken. Wenn Ihnen danach ist, versuchen Sie, den Fehler in der Resume-Funktion zu finden, indem Sie einige &man.printf.3;-Anweisungen in den Code des fehlerhaften Treibers einfügen. Schließlich können Sie ACPI noch abschalten und stattdessen APM verwenden. Wenn die Suspend- und Resume-Funktionen mit APM funktionieren, sollten Sie vielleicht besser APM verwenden (insbesondere mit alter Hardware von vor dem Jahr 2000). Die Hersteller benötigten einige Zeit, um ACPI korrekt zu implementieren, daher gibt es mit älterer Hardware oft ACPI-Probleme. Temporäre oder permanente Systemhänger Die meisten Systemhänger entstehen durch verlorene Interrupts oder einen Interrupt-Sturm. Probleme werden verursacht durch die Art, in der das BIOS Interrupts vor dem Systemstart konfiguriert, durch eine fehlerhafte APIC-Tabelle und durch die Zustellung des System-Control-Interrupts (SCI). Interrupt-Sturm Anhand der Ausgabe des Befehls vmstat -i können Sie verlorene Interrupts von einem Interrupt-Sturm unterscheiden. Untersuchen Sie die Ausgabezeile, die acpi0 enthält. Ein Interrupt-Sturm liegt vor, wenn der Zähler öfter als ein paar Mal pro Sekunde hochgezählt wird. Wenn sich das System aufgehangen hat, versuchen Sie mit der Tastenkombination Ctrl Alt Esc in den Debugger DDB zu gelangen. Geben Sie dort den Befehl show interrupts ein. APIC deaktivieren Wenn Sie Interrupt-Probleme haben, ist es vorerst wohl am besten, APIC zu deaktivieren. Tragen Sie dazu die Zeile hint.apic.0.disabled="1" in loader.conf ein. Abstürze (Panics) Panics werden so schnell wie möglich behoben; mit ACPI kommt es aber selten dazu. Zuerst sollten Sie die Panic reproduzieren und dann versuchen einen backtrace (eine Rückverfolgung der Funktionsaufrufe) zu erstellen. Richten Sie dazu den DDB über die serielle Schnittstelle (siehe ) oder eine gesonderte &man.dump.8;-Partition ein. In DDB können Sie den backtrace mit dem Kommando tr erstellen. Falls Sie den backtrace vom Bildschirm abschreiben müssen, schreiben Sie bitte mindestens die fünf ersten und die fünf letzten Zeile der Ausgabe auf. Versuchen Sie anschließend, das Problem durch einen Neustart ohne ACPI zu beseitigen. Wenn das funktioniert hat, können Sie versuchen, das verantwortliche ACPI-Subsystem durch Setzen der Variablen herauszufinden. Die Hilfeseite &man.acpi.4; enthält dazu einige Beispiele. Nach einem Suspend oder einem Stopp startet das System wieder Setzen Sie zuerst in &man.loader.conf.5; die Variable auf 0. Damit wird verhindert, dass ACPI während des Systemabschlusses die Bearbeitung verschiedener Ereignisse deaktiviert. Auf manchen Systemen muss die Variable den Wert 1 besitzen (die Voreinstellung). Normalerweise wird der unerwünschte Neustart des Systems durch Setzen dieser Variablen behoben. Andere Probleme Wenn Sie weitere Probleme mit ACPI haben (Umgang mit einer Docking-Station, nicht erkannte Geräte), schicken Sie bitte eine Beschreibung an die Mailingliste. Allerdings kann es sein, dass einige Probleme von noch unvollständigen Teilen des ACPI-Subsystems abhängen und es etwas dauern kann bis diese Teile fertig sind. Seien Sie geduldig und rechnen Sie damit, dass wir Ihnen Fehlerbehebungen zum Testen senden. <acronym>ASL</acronym>, <command>acpidump</command> und <acronym>IASL</acronym> ACPI ASL Ein häufiges Problem ist fehlerhafter Bytecode des BIOS-Herstellers. Dies erkennen Sie an Kernelmeldungen auf der Konsole wie die folgende: ACPI-1287: *** Error: Method execution failed [\\_SB_.PCI0.LPC0.FIGD._STA] \\ (Node 0xc3f6d160), AE_NOT_FOUND Oft können Sie das Problem dadurch lösen, dass Sie eine aktuelle BIOS-Version einspielen. Die meisten Meldungen auf der Konsole sind harmlos, wenn aber beispielsweise der Batteriestatus falsch angezeigt wird, können Sie in den Meldungen nach Problemen mit der AML-Machine-Language (AML) suchen. Der Bytecode der AML wird aus der ACPI-Source-Language (ASL) übersetzt und in einer Tabelle, der DSDT, abgelegt. Eine Kopie der ASL können Sie mit dem Befehl &man.acpidump.8; erstellen. Verwenden Sie mit diesem Befehl sowohl die Option (die Inhalte der statischen Tabellen anzeigen) als auch die Option (die AML in ASL zurückübersetzen). Ein Beispiel für die Syntax finden Sie im Abschnitt Fehlerberichte einreichen. Sie können einfach prüfen, ob sich die ASL übersetzen lässt. Für gewöhnlich können Sie Warnungen während des Übersetzens ignorieren. Fehlermeldungen führen normal dazu, dass ACPI fehlerhaft arbeitet. Ihre ASL übersetzen Sie mit dem nachstehenden Kommando: &prompt.root; iasl ihre.asl Die <acronym>ASL</acronym> reparieren ACPI ASL Auf lange Sicht ist es unser Ziel, dass ACPI ohne Eingriffe des Benutzers läuft. Zurzeit entwickeln wir allerdings noch Umgehungen für Fehler der BIOS-Hersteller. Der µsoft;-Interpreter (acpi.sys und acpiec.sys) prüft die ASL nicht streng gegen den Standard. Daher reparieren BIOS-Hersteller, die ACPI nur unter &windows; testen, ihre ASL nicht. Wir hoffen, dass wir das vom Standard abweichende Verhalten des µsoft;-Interpreters dokumentieren und in &os; replizieren können. Dadurch müssen Benutzer ihre ASL nicht selbst reparieren. Sie können Ihre ASL selbst reparieren, wenn Sie ein Problem umgehen und uns helfen möchten. Senden Sie uns bitte die mit &man.diff.1; erstellte Differenz zwischen alter und neuer ASL. Wir werden versuchen, den Interpreter ACPI-CA zu korrigieren, damit die Fehlerbehebung nicht mehr erforderlich ist. ACPI Fehlermeldungen Die nachfolgende Liste enthält häufige Fehlermeldungen, deren Ursache und eine Beschreibung, wie die Fehler korrigiert werden: Abhängigkeiten vom Betriebssystem Einige AMLs gehen davon aus, dass die Welt ausschließlich aus verschiedenen &windows;-Versionen besteht. &os; kann vorgeben, irgendein Betriebssystem zu sein. Versuchen Sie das Betriebssystem, das Sie in der ASL finden, in der Datei /boot/loader.conf anzugeben: hw.acpi.osname="Windows 2001". Fehlende Return-Anweisungen Einige Methoden verzichten auf die vom Standard vorgeschriebene Rückgabe eines Wertes. Obwohl der Interpreter ACPI-CA dies nicht beheben kann, besitzt &os; die Möglichkeit, den Rückgabewert implizit zu setzen. Wenn Sie wissen, welcher Wert zurückgegeben werden muss, können Sie die fehlenden Return-Anweisungen selbst einsetzen. Die Option zwingt iasl, die ASL zu übersetzen. Überschreiben der vorgegebenen <acronym>AML</acronym> Nachdem Sie Ihre ASL in der Datei ihre.asl angepasst haben, übersetzen Sie die ASL wie folgt: &prompt.root; iasl ihre.asl Mit der Option erzwingen Sie das Erstellen der AML auch wenn während der Übersetzung Fehler auftreten. Beachten Sie, dass einige Fehler, wie fehlende Return-Anweisungen, automatisch vom Interpreter umgangen werden. In der Voreinstellung erstellt der Befehl iasl die Ausgabedatei DSDT.aml. Wenn Sie diese Datei anstelle der fehlerhaften Kopie des BIOS laden wollen, editieren Sie /boot/loader.conf wie folgt: acpi_dsdt_load="YES" acpi_dsdt_name="/boot/DSDT.aml" Stellen Sie bitte sicher, dass sich die Datei DSDT.aml im Verzeichnis /boot befindet. <acronym>ACPI</acronym>-Meldungen zur Fehlersuche erzeugen ACPI Probleme mit ACPI Fehlersuche Der ACPI-Treiber besitzt flexible Möglichkeiten zur Fehlersuche. Sie können sowohl die zu untersuchenden Subsysteme als auch die zu erzeugenden Ausgaben festlegen. Die zu untersuchenden Subsysteme werden als so genannte layers angegeben. Die Subsysteme sind in ACPI-CA-Komponenten (ACPI_ALL_COMPONENTS) und ACPI-Hardware (ACPI_ALL_DRIVERS) aufgeteilt. Welche Meldungen ausgegeben werden, wird über level gesteuert. level reicht von ACPI_LV_ERROR (es werden nur Fehler ausgegeben) bis zu ACPI_LV_VERBOSE (alles wird ausgegeben). level ist eine Bitmaske, sodass verschiedene Stufen auf einmal (durch Leerzeichen getrennt) angegeben werden können. Die erzeugte Ausgabemenge passt vielleicht nicht in den Konsolenpuffer. In diesem Fall sollten Sie die Ausgaben mithilfe einer seriellen Konsole sichern. Die möglichen Werte für layers und level werden in der Hilfeseite &man.acpi.4; beschrieben. Die Ausgaben zur Fehlersuche sind in der Voreinstellung nicht aktiviert. Wenn ACPI im Kernel enthalten ist, fügen Sie options ACPI_DEBUG zur Kernelkonfigurationsdatei hinzu. Sie können die Ausgaben zur Fehlersuche global aktivieren, indem Sie in der Datei /etc/make.conf die Zeile ACPI_DEBUG=1 einfügen. Das Modul acpi.ko können Sie wie folgt neu übersetzen: &prompt.root; cd /sys/modules/acpi/acpi && make clean && make ACPI_DEBUG=1 Installieren Sie anschließend acpi.ko im Verzeichnis /boot/kernel. In der Datei loader.conf stellen Sie level und layer ein. Das folgende Beispiel aktiviert die Ausgabe von Fehlern für alle ACPI-CA-Komponenten und alle ACPI-Hardwaretreiber (wie CPU, LID): debug.acpi.layer="ACPI_ALL_COMPONENTS ACPI_ALL_DRIVERS" debug.acpi.level="ACPI_LV_ERROR" Wenn ein Problem durch ein bestimmtes Ereignis, beispielsweise den Start nach einem Ruhezustand, hervorgerufen wird, können Sie die Einstellungen für level und layer auch mit dem Kommando sysctl vornehmen. In diesem Fall müssen Sie die Datei loader.conf nicht editieren. Auf der sysctl-Kommandozeile geben Sie dieselben Variablennamen wie in loader.conf an. ACPI-Informationsquellen Weitere Informationen zu ACPI erhalten Sie an den folgenden Stellen: die &a.acpi; Mailingliste, die Archive der ACPI-Mailingliste: , die alten Archive der ACPI-Mailingliste: , die ACPI-Spezifikation (Version 2.0): , in den nachstehenden &os;-Hilfeseiten: &man.acpi.4;, &man.acpi.thermal.4;, &man.acpidump.8;, &man.iasl.8; und &man.acpidb.8;, DSDT debugging resource (als Beispiel wird Compaq erläutert, die Ressource ist aber dennoch nützlich). Index: head/de_DE.ISO8859-1/books/handbook/disks/chapter.sgml =================================================================== --- head/de_DE.ISO8859-1/books/handbook/disks/chapter.sgml (revision 36616) +++ head/de_DE.ISO8859-1/books/handbook/disks/chapter.sgml (revision 36617) @@ -1,4528 +1,4528 @@ Bernd Warken Übersetzt von Martin Heinen Speichermedien Übersicht Dieses Kapitel behandelt die Benutzung von Laufwerken unter FreeBSD. Laufwerke können speichergestützte Laufwerke, Netzwerklaufwerke oder normale SCSI/IDE-Geräte sein. Nachdem Sie dieses Kapitel gelesen haben, werden Sie Folgendes wissen: Die Begriffe, die FreeBSD verwendet, um die Organisation der Daten auf einem physikalischen Laufwerk zu beschreiben (Partitionen und Slices). Wie Sie ein weiteres Laufwerk zu Ihrem System hinzufügen. Wie virtuelle Dateisysteme, zum Beispiel RAM-Disks, eingerichtet werden. Wie Sie mit Quotas die Benutzung von Laufwerken einschränken können. Wie Sie Partitionen verschlüsseln, um Ihre Daten zu schützen. Wie unter FreeBSD CDs und DVDs gebrannt werden. Sie werden die Speichermedien, die Sie für Backups einsetzen können, kennen. Wie Sie die unter FreeBSD erhältlichen Backup Programme benutzen. Wie Sie ein Backup mit Disketten erstellen. Was Dateisystem-Schnappschüsse sind und wie sie eingesetzt werden. Bevor Sie dieses Kapitel lesen, sollten Sie einen einen &os;-Kernel installieren können (). Gerätenamen Die folgende Tabelle zeigt die von FreeBSD unterstützten Speichergeräte und deren Gerätenamen. Namenskonventionen von physikalischen Laufwerken Laufwerkstyp Gerätename IDE-Festplatten ad IDE-CD-ROM Laufwerke acd SCSI-Festplatten und USB-Speichermedien da SCSI-CD-ROM Laufwerke cd Verschiedene proprietäre CD-ROM-Laufwerke mcd Mitsumi CD-ROM und scd Sony CD-ROM Diskettenlaufwerke fd SCSI-Bandlaufwerke sa IDE-Bandlaufwerke ast Flash-Laufwerke fla für &diskonchip; Flash-Device RAID-Laufwerke aacd für &adaptec; AdvancedRAID, mlxd und mlyd für &mylex;, amrd für AMI &megaraid;, idad für Compaq Smart RAID, twed für &tm.3ware; RAID.
David O'Brian Im Original von Hinzufügen von Laufwerken Laufwerke hinzufügen Der folgende Abschnitt beschreibt, wie Sie ein neues SCSI-Laufwerk zu einer Maschine hinzufügen, die momentan nur ein Laufwerk hat. Dazu schalten Sie zuerst den Rechner aus und installieren das Laufwerk entsprechend der Anleitungen Ihres Rechners, Ihres Controllers und des Laufwerkherstellers. Den genauen Ablauf können wir wegen der großen Abweichungen leider nicht beschreiben. Nachdem Sie das Laufwerk installiert haben, melden Sie sich als Benutzer root an und kontrollieren Sie /var/run/dmesg.boot, um sicherzustellen, dass das neue Laufwerk gefunden wurde. Das neue Laufwerk wird, um das Beispiel fortzuführen, da1 heißen und soll unter /1 eingehängt werden. Fügen Sie eine IDE-Platte hinzu, wird diese den Namen ad1 erhalten. Partitionen Slices fdisk Da FreeBSD auf IBM-PC kompatiblen Rechnern läuft, muss es die PC BIOS-Partitionen, die verschieden von den traditionellen BSD-Partitionen sind, berücksichtigen. Eine PC Platte kann bis zu vier BIOS-Partitionen enthalten. Wenn die Platte ausschließlich für FreeBSD verwendet wird, können Sie den dedicated Modus benutzen, ansonsten muss FreeBSD in eine der BIOS-Partitionen installiert werden. In FreeBSD heißen die PC BIOS-Partitionen Slices, um sie nicht mit den traditionellen BSD-Partitionen zu verwechseln. Sie können auch Slices auf einer Platte verwenden, die ausschließlich von FreeBSD benutzt wird, sich aber in einem Rechner befindet, der noch ein anderes Betriebssystem installiert hat. Dadurch stellen Sie sicher, dass Sie fdisk des anderen Betriebssystems noch benutzen können. Im Fall von Slices wird die Platte als /dev/da1s1e hinzugefügt. Das heißt: SCSI-Platte, Einheit 1 (die zweite SCSI-Platte), Slice 1 (PC BIOS-Partition 1) und die e BSD-Partition. Wird die Platte ausschließlich für FreeBSD verwendet (dangerously dedicated), wird sie einfach als /dev/da1e hinzugefügt. Da &man.bsdlabel.8; zum Speichern von Sektoren 32-Bit Integer verwendet, ist das Werkzeug in den meisten Fällen auf 2^32-1 Sektoren pro Laufwerk oder 2 TB beschränkt. In &man.fdisk.8; darf der Startsektor nicht größer als 2^32-1 sein und Partitionen sind auf eine Länge von 2^32-1 beschränkt. In den meisten Fällen beschränkt dies die Größe einer Partition auf 2 TB und die maximale Größe eines Laufwerks auf 4 TB. Das &man.sunlabel.8;-Format ist mit 2^32-1 Sektoren pro Partition und 8 Partitionen auf 16 TB beschränkt. Mit größeren Laufwerken können &man.gpt.8;-Partitionen benutzt werden. Verwenden von &man.sysinstall.8; sysinstall hinzufügen von Laufwerken su Das <application>sysinstall</application> Menü Um ein Laufwerk zu partitionieren und zu labeln, kann das menügestützte sysinstall benutzt werden. Dazu melden Sie sich als root an oder benutzen su, um root zu werden. Starten Sie sysinstall und wählen das Configure Menü, wählen Sie dort den Punkt Fdisk aus. Partitionieren mit <application>fdisk</application> Innerhalb von fdisk geben Sie A ein, um die ganze Platte für FreeBSD zu benutzen. Beantworten Sie die Frage remain cooperative with any future possible operating systems mit YES. W schreibt die Änderung auf die Platte, danach können Sie fdisk mit Q verlassen. Da Sie eine Platte zu einem schon laufenden System hinzugefügt haben, beantworten Sie die Frage nach dem Master Boot Record mit None. Disk-Label-Editor BSD Partitionen Als nächstes müssen Sie sysinstall verlassen und es erneut starten. Folgen Sie dazu bitte den Anweisungen von oben, aber wählen Sie dieses Mal die Option Label, um in den Disk Label Editor zu gelangen. Hier werden die traditionellen BSD-Partitionen erstellt. Ein Laufwerk kann acht Partitionen, die mit den Buchstaben a-h gekennzeichnet werden, besitzen. Einige Partitionen sind für spezielle Zwecke reserviert. Die a Partition ist für die Root-Partition (/) reserviert. Deshalb sollte nur das Laufwerk, von dem gebootet wird, eine a Partition besitzen. Die b Partition wird für Swap-Partitionen benutzt, wobei Sie diese auf mehreren Platten benutzen dürfen. Im dangerously dedicated Modus spricht die c Partition die gesamte Platte an, werden Slices verwendet, wird damit die ganze Slice angesprochen. Die anderen Partitionen sind für allgemeine Zwecke verwendbar. Der Label Editor von sysinstall bevorzugt die e Partition für Partitionen, die weder Root-Partitionen noch Swap-Partitionen sind. Im Label Editor können Sie ein einzelnes Dateisystem mit C erstellen. Wählen Sie FS, wenn Sie gefragt werden, ob Sie ein FS (Dateisystem) oder Swap erstellen wollen, und geben Sie einen Mountpoint z.B. /mnt an. Wenn Sie nach einer FreeBSD-Installation ein Dateisystem mit sysinstall erzeugen, so werden die Einträge in /etc/fstab nicht erzeugt, so dass die Angabe des Mountpoints nicht wichtig ist. Sie können nun das Label auf das Laufwerk schreiben und das Dateisystem erstellen, indem Sie W drücken. Ignorieren Sie die Meldung von sysinstall, dass die neue Partition nicht angehangen werden konnte, und verlassen Sie den Label Editor sowie sysinstall. Ende Im letzten Schritt fügen Sie noch in /etc/fstab den Eintrag für das neue Laufwerk ein. Die Kommandozeile Anlegen von Slices Mit der folgenden Vorgehensweise wird eine Platte mit anderen Betriebssystemen, die vielleicht auf Ihrem Rechner installiert sind, zusammenarbeiten und nicht das fdisk Programm anderer Betriebssysteme stören. Bitte benutzen Sie den dedicated Modus nur dann, wenn Sie dazu einen guten Grund haben! &prompt.root; dd if=/dev/zero of=/dev/da1 bs=1k count=1 &prompt.root; fdisk -BI da1 # Initialisieren der neuen Platte &prompt.root; bsdlabel -B -w da1s1 auto #Labeln. &prompt.root; bsdlabel -e da1s1 # Editieren des Disklabels und Hinzufügen von Partitionen &prompt.root; mkdir -p /1 &prompt.root; newfs /dev/da1s1e # Wiederholen Sie diesen Schritt für jede Partition &prompt.root; mount /dev/da1s1e /1 # Anhängen der Partitionen &prompt.root; vi /etc/fstab # Ändern Sie /etc/fstab entsprechend Wenn Sie ein IDE-Laufwerk besitzen, ändern Sie da in ad. Dedicated OS/2 Wenn das neue Laufwerk nicht von anderen Betriebssystemen benutzt werden soll, können Sie es im dedicated Modus betreiben. Beachten Sie bitte, dass Microsoft-Betriebssysteme mit diesem Modus eventuell nicht zurechtkommen, aber es entsteht kein Schaden am Laufwerk. Im Gegensatz dazu wird IBMs &os2; versuchen, jede ihm nicht bekannte Partition zu reparieren. &prompt.root; dd if=/dev/zero of=/dev/da1 bs=1k count=1 &prompt.root; bsdlabel -Bw da1 auto &prompt.root; bsdlabel -e da1 # Erstellen der `e' Partition &prompt.root; newfs /dev/da1e &prompt.root; mkdir -p /1 &prompt.root; vi /etc/fstab # /dev/da1e hinzufügen &prompt.root; mount /1 Eine alternative Methode: &prompt.root; dd if=/dev/zero of=/dev/da1 count=2 &prompt.root; bsdlabel /dev/da1 | bsdlabel -BR da1 /dev/stdin &prompt.root; newfs /dev/da1e &prompt.root; mkdir -p /1 &prompt.root; vi /etc/fstab # /dev/da1e hinzufügen &prompt.root; mount /1 RAID Software-RAID Christopher Shumway Original von Jim Brown Überarbeitet von Concatenated-Disk (CCD) konfigurieren RAID Software RAID CCD Die wichtigsten Faktoren bei der Auswahl von Massenspeichern sind Geschwindigkeit, Zuverlässigkeit und Preis. Selten findet sich eine ausgewogene Mischung aller drei Faktoren. Schnelle und zuverlässige Massenspeicher sind für gewöhnlich teuer. Um die Kosten zu senken, muss entweder an der Geschwindigkeit oder an der Zuverlässigkeit gespart werden. Das unten beschriebene System sollte vor allem preiswert sein. Der nächst wichtige Faktor war die Geschwindigkeit gefolgt von der Zuverlässigkeit. Die Geschwindigkeit war nicht so wichtig, da über das Netzwerk auf das System zugegriffen wird. Da alle Daten schon auf CD-Rs gesichert sind, war die Zuverlässigkeit, obwohl wichtig, ebenfalls nicht von entscheidender Bedeutung. Die Bewertung der einzelnen Faktoren ist der erste Schritt bei der Auswahl von Massenspeichern. Wenn Sie vor allem ein schnelles und zuverlässiges Medium benötigen und der Preis nicht wichtig ist, werden Sie ein anderes System als das hier beschriebene zusammenstellen. Installation der Hardware Neben der IDE-Systemplatte besteht das System aus drei Western Digital IDE-Festplatten mit 5400 RPM und einer Kapazität von je 30 GB. Insgesamt stehen also 90 GB Speicherplatz zur Verfügung. Im Idealfall sollte jede Festplatte an einen eigenen Controller angeschlossen werden. Um Kosten zu sparen, wurde bei diesem System darauf verzichtet und an jeden IDE-Controller eine Master- und eine Slave-Platte angeschlossen. Beim Reboot wurde das BIOS so konfiguriert, dass es die angeschlossenen Platten automatisch erkennt und FreeBSD erkannte die Platten ebenfalls: ad0: 19574MB <WDC WD205BA> [39770/16/63] at ata0-master UDMA33 ad1: 29333MB <WDC WD307AA> [59598/16/63] at ata0-slave UDMA33 ad2: 29333MB <WDC WD307AA> [59598/16/63] at ata1-master UDMA33 ad3: 29333MB <WDC WD307AA> [59598/16/63] at ata1-slave UDMA33 Wenn FreeBSD die Platten nicht erkennt, überprüfen Sie, ob die Jumper korrekt konfiguriert sind. Die meisten IDE-Festplatten verfügen über einen Cable Select-Jumper. Die Master- und Slave-Platten werden mit einem anderen Jumper konfiguriert. Bestimmen Sie den richtigen Jumper mithilfe der Dokumentation Ihrer Festplatte. Als nächstes sollten Sie überlegen, auf welche Art der Speicher zur Verfügung gestellt werden soll. Schauen Sie sich dazu &man.vinum.8; () und &man.ccd.4; an. Im hier beschriebenen System wird &man.ccd.4; eingesetzt. Konfiguration von CCD Mit &man.ccd.4; können mehrere gleiche Platten zu einem logischen Dateisystem zusammengefasst werden. Um &man.ccd.4; zu benutzen, muss der Kernel mit der entsprechenden Unterstützung übersetzt werden. Ergänzen Sie die Kernelkonfiguration um die nachstehende Zeile. Anschließend müssen Sie den Kernel neu übersetzen und installieren. pseudo-device ccd Alternativ kann &man.ccd.4; auch als Kernelmodul geladen werden. Um &man.ccd.4; zu benutzen, müssen die Laufwerke zuerst mit einem Label versehen werden. Die Label werden mit &man.bsdlabel.8; erstellt: bsdlabel -w ad1 auto bsdlabel -w ad2 auto bsdlabel -w ad3 auto Damit wurden die Label ad1c, ad2c und ad3c erstellt, die jeweils das gesamte Laufwerk umfassen. Im nächsten Schritt muss der Typ des Labels geändert werden. Die Labels können Sie mit &man.bsdlabel.8; editieren: bsdlabel -e ad1 bsdlabel -e ad2 bsdlabel -e ad3 Für jedes Label startet dies den durch EDITOR gegebenen Editor, typischerweise &man.vi.1;. Ein unverändertes Label sieht zum Beispiel wie folgt aus: 8 partitions: # size offset fstype [fsize bsize bps/cpg] c: 60074784 0 unused 0 0 0 # (Cyl. 0 - 59597) Erstellen Sie eine e-Partition für &man.ccd.4;. Dazu können Sie normalerweise die Zeile der c-Partition kopieren, allerdings muss auf 4.2BSD gesetzt werden. Das Ergebnis sollte wie folgt aussehen: 8 partitions: # size offset fstype [fsize bsize bps/cpg] c: 60074784 0 unused 0 0 0 # (Cyl. 0 - 59597) e: 60074784 0 4.2BSD 0 0 0 # (Cyl. 0 - 59597) Erstellen des Dateisystems Nachdem alle Platten ein Label haben, kann das &man.ccd.4;-RAID aufgebaut werden. Dies geschieht mit &man.ccdconfig.8;: ccdconfig ccd0 32 0 /dev/ad1e /dev/ad2e /dev/ad3e Die folgende Aufstellung erklärt die verwendeten Kommandozeilenargumente: Das erste Argument gibt das zu konfigurierende Gerät, hier /dev/ccd0c, an. Die Angabe von /dev/ ist dabei optional. Der Interleave für das Dateisystem. Der Interleave definiert die Größe eines Streifens in Blöcken, die normal 512 Bytes groß sind. Ein Interleave von 32 ist demnach 16384 Bytes groß. Weitere Argumente für &man.ccdconfig.8;. Wenn Sie spiegeln wollen, können Sie das hier angeben. Die gezeigte Konfiguration verwendet keine Spiegel, sodass der Wert 0 angegeben ist. Das letzte Argument gibt die Geräte des Plattenverbundes an. Benutzen Sie für jedes Gerät den kompletten Pfadnamen. Nach Abschluß von &man.ccdconfig.8; ist der Plattenverbund konfiguriert und es können Dateisysteme auf dem Plattenverbund angelegt werden. Das Anlegen von Dateisystemen wird in der Hilfeseite &man.newfs.8; beschrieben. Für das Beispiel genügt der folgende Befehl: newfs /dev/ccd0c Automatisierung Damit &man.ccd.4; beim Start automatisch aktiviert wird, ist die Datei /etc/ccd.conf mit dem folgenden Kommando zu erstellen: ccdconfig -g > /etc/ccd.conf Wenn /etc/ccd.conf existiert, wird beim Reboot ccdconfig -C von /etc/rc aufgerufen. Damit wird &man.ccd.4; eingerichtet und die darauf befindlichen Dateisysteme können angehängt werden. Wenn Sie in den Single-User Modus booten, müssen Sie den Verbund erst konfigurieren, bevor Sie darauf befindliche Dateisysteme anhängen können: ccdconfig -C In /etc/fstab ist noch ein Eintrag für das auf dem Verbund befindliche Dateisystem zu erstellen, damit dieses beim Start des Systems immer angehängt wird: /dev/ccd0c /media ufs rw 2 2 Der Vinum-Volume-Manager RAID Software RAID Vinum Der Vinum Volume Manager ist ein Block-Gerätetreiber, der virtuelle Platten zur Verfügung stellt. Er trennt die Verbindung zwischen der Festplatte und dem zugehörigen Block-Gerät auf. Im Gegensatz zur konventionellen Aufteilung einer Platte in Slices lassen sich dadurch Daten flexibler, leistungsfähiger und zuverlässiger verwalten. &man.vinum.8; stellt RAID-0, RAID-1 und RAID-5 sowohl einzeln wie auch in Kombination zur Verfügung. Mehr Informationen über &man.vinum.8; erhalten Sie in . Hardware-RAID RAID Hardware FreeBSD unterstützt eine Reihe von RAID-Controllern. Diese Geräte verwalten einen Plattenverbund; zusätzliche Software wird nicht benötigt. Der Controller steuert mithilfe eines BIOS auf der Karte die Plattenoperationen. Wie ein RAID System eingerichtet wird, sei kurz am Beispiel des Promise IDE RAID-Controllers gezeigt. Nachdem die Karte eingebaut ist und der Rechner neu gestartet wurde, erscheint eine Eingabeaufforderung. Wenn Sie den Anweisungen auf dem Bildschirm folgen, gelangen Sie in eine Maske, in der Sie mit den vorhandenen Festplatten ein RAID-System aufbauen können. FreeBSD behandelt das RAID-System wie eine einzelne Festplatte. Wiederherstellen eines ATA-RAID-1 Verbunds Mit FreeBSD können Sie eine ausgefallene Platte in einem RAID-Verbund während des Betriebs auswechseln, vorausgesetzt Sie bemerken den Ausfall vor einem Neustart. Einen Ausfall erkennen Sie, wenn in der Datei /var/log/messages oder in der Ausgabe von &man.dmesg.8; Meldungen wie die folgenden auftauchen: ad6 on monster1 suffered a hard error. ad6: READ command timeout tag=0 serv=0 - resetting ad6: trying fallback to PIO mode ata3: resetting devices .. done ad6: hard error reading fsbn 1116119 of 0-7 (ad6 bn 1116119; cn 1107 tn 4 sn 11)\\ status=59 error=40 ar0: WARNING - mirror lost Überprüfen Sie den RAID-Verbund mit &man.atacontrol.8;: &prompt.root; atacontrol list ATA channel 0: Master: no device present Slave: acd0 <HL-DT-ST CD-ROM GCR-8520B/1.00> ATA/ATAPI rev 0 ATA channel 1: Master: no device present Slave: no device present ATA channel 2: Master: ad4 <MAXTOR 6L080J4/A93.0500> ATA/ATAPI rev 5 Slave: no device present ATA channel 3: Master: ad6 <MAXTOR 6L080J4/A93.0500> ATA/ATAPI rev 5 Slave: no device present &prompt.root; atacontrol status ar0 ar0: ATA RAID1 subdisks: ad4 ad6 status: DEGRADED Damit Sie die Platte ausbauen können, muss zuerst der ATA-Channel der ausgefallenen Platte aus dem Verbund entfernt werden: &prompt.root; atacontrol detach ata3 Ersetzen Sie dann die Platte. Nun aktivieren Sie den ATA-Channel wieder: &prompt.root; atacontrol attach ata3 Master: ad6 <MAXTOR 6L080J4/A93.0500> ATA/ATAPI rev 5 Slave: no device present Nehmen Sie die neue Platte in den Verbund auf: &prompt.root; atacontrol addspare ar0 ad6 Stellen Sie die Organisation des Verbunds wieder her: &prompt.root; atacontrol rebuild ar0 Sie können den Fortschritt des Prozesses durch folgende Befehle kontrollieren: &prompt.root; dmesg | tail -10 [output removed] ad6: removed from configuration ad6: deleted from ar0 disk1 ad6: inserted into ar0 disk1 as spare &prompt.root; atacontrol status ar0 ar0: ATA RAID1 subdisks: ad4 ad6 status: REBUILDING 0% completed Warten Sie bis die Wiederherstellung beendet ist. Marc Fonvieille Beigetragen von USB Speichermedien USB Speichermedien Der Universal Serial Bus (USB) wird heutzutage von vielen externen Speichern benutzt: Festplatten, USB-Thumbdrives oder CD-Brennern, die alle von &os; unterstützt werden. USB-Konfiguration USB-Massenspeicher werden vom Treiber &man.umass.4; betrieben. Wenn Sie den GENERIC-Kernel benutzen, brauchen Sie keine Anpassungen vorzunehmen. Benutzen Sie einen angepassten Kernel, müssen die nachstehenden Zeilen in der Kernelkonfigurationsdatei enthalten sein: device scbus device da device pass device uhci device ohci device ehci device usb device umass Der Treiber &man.umass.4; greift über das SCSI-Subsystem auf die USB-Geräte zu. Ihre USB-Geräte werden daher vom System als SCSI-Geräte erkannt. Abhängig vom Chipsatz Ihrer Systemplatine benötigen Sie in der Kernelkonfiguration entweder die Option device uhci oder die Option device ohci für die Unterstützung von USB 1.1. Die Kernelkonfiguration kann allerdings auch beide Optionen enthalten. Unterstützung für USB 2.0 Controller wird durch den &man.ehci.4;-Treiber geleistet (die device ehci Zeile). Vergessen Sie bitte nicht, einen neuen Kernel zu bauen und zu installieren, wenn Sie die Kernelkonfiguration verändert haben. Wenn es sich bei Ihrem USB-Gerät um einen CD-R- oder DVD-Brenner handelt, müssen Sie den Treiber &man.cd.4; für SCSI-CD-ROMs in die Kernelkonfiguration aufnehmen: device cd Da der Brenner als SCSI-Laufwerk erkannt wird, sollten Sie den Treiber &man.atapicam.4; nicht benutzen. Die USB-Konfiguration testen Sie können das USB-Gerät nun testen. Schließen Sie das Gerät an und untersuchen Sie die Systemmeldungen (&man.dmesg.8;), Sie sehen Ausgaben wie die folgende: umass0: USB Solid state disk, rev 1.10/1.00, addr 2 GEOM: create disk da0 dp=0xc2d74850 da0 at umass-sim0 bus 0 target 0 lun 0 da0: <Generic Traveling Disk 1.11> Removable Direct Access SCSI-2 device da0: 1.000MB/s transfers da0: 126MB (258048 512 byte sectors: 64H 32S/T 126C) Die Ausgaben, wie das erkannte Gerät oder der Gerätename (da0) hängen natürlich von Ihrer Konfiguration ab. Da ein USB-Gerät als SCSI-Gerät erkannt wird, können Sie USB-Massenspeicher mit dem Befehl camcontrol anzeigen: &prompt.root; camcontrol devlist <Generic Traveling Disk 1.11> at scbus0 target 0 lun 0 (da0,pass0) Wenn auf dem Laufwerk ein Dateisystem eingerichtet ist, sollten Sie das Dateisystem einhängen können. beschreibt, wie Sie USB-Laufwerke formatieren und Partitionen einrichten. Aus Sicherheitsgründen sollten Sie Benutzern, denen Sie nicht vertrauen, das Einhängen (z.B. durch die unten beschriebene Aktivierung von vfs.usermount) beliebiger Medien verbieten. Die meisten Dateisysteme in &os; wurden nicht entwickelt, um sich vor böswilligen Geräten zu schützen. Damit auch normale Anwender (ohne root-Rechte) USB-Laufwerke einhängen können, müssen Sie Ihr System erst entsprechend konfigurieren. Als erstes müssen Sie sicherstellen, dass diese Anwender auf die beim Einhängen eines USB-Laufwerks dynamisch erzeugten Gerätedateien zugreifen dürfen. Dazu können Sie beispielsweise mit &man.pw.8; alle potentiellen Benutzer dieser Gerätedateien in die Gruppe operator aufnehmen. Außerdem muss sichergestellt werden, dass Mitglieder der Gruppe operator Schreib- und Lesezugriff auf diese Gerätedateien haben. Dazu fügen Sie die folgenden Zeilen in die Konfigurationsdatei /etc/devfs.rules ein: [localrules=5] add path 'da*' mode 0660 group operator Verfügt Ihr System auch über SCSI-Laufwerke, gibt es eine Besonderheit. Haben Sie beispielsweise die SCSI-Laufwerke da0 bis da2 installiert, so sieht die zweite Zeile wie folgt aus: add path 'da[3-9]*' mode 0660 group operator Dadurch werden die bereits vorhandenen SCSI-Laufwerke nicht in die Gruppe operator aufgenommen. Vergessen Sie nicht, die &man.devfs.rules.5;-Regeln in der Datei /etc/rc.conf zu aktivieren: devfs_system_ruleset="localrules" Als nächstes müssen Sie Ihre Kernelkonfiguration anpassen, damit auch normale Benutzer Dateisysteme mounten dürfen. Dazu fügen Sie am besten folgende Zeile in die Konfigurationsdatei /etc/sysctl.conf ein: vfs.usermount=1 Damit diese Einstellung wirksam wird, müssen Sie Ihr System neu starten. Alternativ können Sie diese Variable auch mit &man.sysctl.8; setzen. Zuletzt müssen Sie noch ein Verzeichnis anlegen, in das das USB-Laufwerk eingehängt werden soll. Dieses Verzeichnis muss dem Benutzer gehören, der das USB-Laufwerk in den Verzeichnisbaum einhängen will. Dazu legen Sie als root ein Unterverzeichnis /mnt/username an (wobei Sie username durch den Login des jeweiligen Benutzers sowie usergroup durch die primäre Gruppe des Benutzers ersetzen): &prompt.root; mkdir /mnt/username &prompt.root; chown username:usergroup /mnt/username Wenn Sie nun beispielsweise einen USB-Stick anschließen, wird automatisch die Gerätedatei /dev/da0s1 erzeugt. Da derartige Geräte in der Regel mit dem FAT-Dateisystem formatiert sind, können Sie sie beispielsweise mit dem folgenden Befehl in den Verzeichnisbaum einhängen: &prompt.user; mount -t msdosfs -o -m=644,-M=755 /dev/da0s1 /mnt/username Wenn Sie das Gerät entfernen (das Dateisystem müssen Sie vorher abhängen), sehen Sie in den Systemmeldungen Einträge wie die folgenden: umass0: at uhub0 port 1 (addr 2) disconnected (da0:umass-sim0:0:0:0): lost device (da0:umass-sim0:0:0:0): removing device entry GEOM: destroy disk da0 dp=0xc2d74850 umass0: detached Weiteres zu USB Neben den Abschnitten Hinzufügen von Laufwerken und Anhängen und Abhängen von Dateisystemen lesen Sie bitte die Hilfeseiten &man.umass.4;, &man.camcontrol.8; für &os; 8.X oder &man.usbdevs.8; bei vorherigen Versionen. Mike Meyer Beigesteuert von CDs benutzen CD-ROM brennen Einführung CDs besitzen einige Eigenschaften, die sie von konventionellen Laufwerken unterscheiden. Zuerst konnten sie nicht beschrieben werden. Sie wurden so entworfen, dass sie ununterbrochen, ohne Verzögerungen durch Kopfbewegungen zwischen den Spuren, gelesen werden können. Sie konnten früher auch leichter als vergleichbar große Medien zwischen Systemen bewegt werden. CDs besitzen Spuren, aber damit ist der Teil Daten gemeint, der ununterbrochen gelesen wird, und nicht eine physikalische Eigenschaft der CD. Um eine CD mit FreeBSD zu erstellen, werden die Daten jeder Spur der CD in Dateien vorbereitet und dann die Spuren auf die CD geschrieben. ISO 9660 Dateisysteme ISO 9660 Das ISO 9660-Dateisystem wurde entworfen, um mit diesen Unterschieden umzugehen. Leider hat es auch damals übliche Grenzen für Dateisysteme implementiert. Glücklicherweise existiert ein Erweiterungsmechanismus, der es korrekt geschriebenen CDs erlaubt, diese Grenzen zu überschreiten und dennoch auf Systemen zu funktionieren, die diese Erweiterungen nicht unterstützen. sysutils/cdrtools Der Port sysutils/cdrtools enthält das Programm &man.mkisofs.8;, das eine Datei erstellt, die ein ISO 9660-Dateisystem enthält. Das Programm hat Optionen, um verschiedene Erweiterungen zu unterstützen, und wird unten beschrieben. CD-Brenner ATAPI Welches Tool Sie zum Brennen von CDs benutzen, hängt davon ab, ob Ihr CD-Brenner ein ATAPI-Gerät ist oder nicht. Mit ATAPI-CD-Brennern wird burncd benutzt, das Teil des Basissystems ist. SCSI- und USB-CD-Brenner werden mit cdrecord aus sysutils/cdrtools benutzt. Zusätzlich ist es möglich, über das Modul ATAPI/CAM SCSI-Werkzeuge wie cdrecord auch für ATAPI-Geräte einzusetzen. Wenn Sie eine Brennsoftware mit grafischer Benutzeroberfläche benötigen, sollten Sie sich X-CD-Roast oder K3b näher ansehen. Diese Werkzeuge können als Paket oder aus den Ports (sysutils/xcdroast und sysutils/k3b) installiert werden. Mit ATAPI-Hardware benötigt K3b das ATAPI/CAM-Modul. mkisofs Das Programm &man.mkisofs.8; aus dem Port sysutils/cdrtools erstellt ein ISO 9660-Dateisystem, das ein Abbild eines Verzeichnisbaumes ist. Die einfachste Anwendung ist wie folgt: &prompt.root; mkisofs -o Imagedatei /path/to/tree Dateisysteme ISO 9660 Dieses Kommando erstellt eine Imagedatei, die ein ISO 9660-Dateisystem enthält, das eine Kopie des Baumes unter /path/to/tree ist. Dabei werden die Dateinamen auf Namen abgebildet, die den Restriktionen des ISO 9660-Dateisystems entsprechen. Dateien mit Namen, die im ISO 9660-Dateisystem nicht gültig sind, bleiben unberücksichtigt. Dateisysteme HFS Dateisysteme Joliet Es einige Optionen, um diese Beschränkungen zu überwinden. Die unter &unix; Systemen üblichen Rock-Ridge-Erweiterungen werden durch aktiviert, aktiviert die von Microsoft Systemen benutzten Joliet-Erweiterungen und dient dazu, um das von &macos; benutzte HFS zu erstellen. Für CDs, die nur auf FreeBSD-Systemen verwendet werden sollen, kann genutzt werden, um alle Beschränkungen für Dateinamen aufzuheben. Zusammen mit wird ein Abbild des Dateisystems, ausgehend von dem Startpunkt im FreeBSD-Dateibaum, erstellt, obwohl dies den ISO 9660 Standard verletzen kann. CD-ROM bootbare erstellen Die letzte übliche Option ist . Sie wird benutzt, um den Ort eines Bootimages einer El Torito bootbaren CD anzugeben. Das Argument zu dieser Option ist der Pfad zu einem Bootimage ausgehend von der Wurzel des Baumes, der auf die CD geschrieben werden soll. In der Voreinstellung erzeugt &man.mkisofs.8; ein ISO-Image im Diskettenemulations-Modus. Dabei muss das Image genau 1200, 1440 oder 2880 KB groß sein. Einige Bootloader, darunter der auf den FreeBSD-Disks verwendete, kennen keinen Emulationsmodus. Daher sollten Sie in diesen Fällen die Option verwenden. Wenn /tmp/myboot ein bootbares FreeBSD-System enthält, dessen Bootimage sich in /tmp/myboot/boot/cdboot befindet, können Sie ein Abbild eines ISO 9660-Dateisystems in /tmp/bootable.iso wie folgt erstellen: &prompt.root; mkisofs -R -no-emul-boot -b boot/cdboot -o /tmp/bootable.iso /tmp/myboot Wenn Sie md in Ihrem Kernel konfiguriert haben, können Sie danach das Dateisystem einhängen: &prompt.root; mdconfig -a -t vnode -f /tmp/bootable.iso -u 0 &prompt.root; mount -t cd9660 /dev/md0 /mnt Jetzt können Sie überprüfen, dass /mnt und /tmp/myboot identisch sind. Sie können das Verhalten von &man.mkisofs.8; mit einer Vielzahl von Optionen beeinflussen. Insbesondere können Sie das ISO 9660-Dateisystem modifizieren und Joliet- oder HFS-Dateisysteme brennen. Details dazu entnehmen Sie bitte der Hilfeseite &man.mkisofs.8;. burncd CD-ROM brennen Wenn Sie einen ATAPI-CD-Brenner besitzen, können Sie burncd benutzen, um ein ISO-Image auf CD zu brennen. burncd ist Teil des Basissystems und unter /usr/sbin/burncd installiert. Da es nicht viele Optionen hat, ist es leicht zu benutzen: &prompt.root; burncd -f cddevice data imagefile.iso fixate Dieses Kommando brennt eine Kopie von imagefile.iso auf das Gerät cddevice. In der Grundeinstellung wird das Gerät /dev/acd0 benutzt. &man.burncd.8; beschreibt, wie die Schreibgeschwindigkeit gesetzt wird, die CD ausgeworfen wird und Audiodaten geschrieben werden. cdrecord Wenn Sie keinen ATAPI-CD-Brenner besitzen, benutzen Sie cdrecord, um CDs zu brennen. cdrecord ist nicht Bestandteil des Basissystems. Sie müssen es entweder aus den Ports in sysutils/cdrtools oder dem passenden Paket installieren. Änderungen im Basissystem können Fehler im binären Programm verursachen und führen möglicherweise dazu, dass Sie einen Untersetzer brennen. Sie sollten daher den Port aktualisieren, wenn Sie Ihr System aktualisieren bzw. wenn Sie STABLE verfolgen, den Port aktualisieren, wenn es eine neue Version gibt. Obwohl cdrecord viele Optionen besitzt, ist die grundlegende Anwendung einfacher als burncd. Ein ISO 9660-Image erstellen Sie mit: &prompt.root; cdrecord dev=device imagefile.iso Der Knackpunkt in der Benutzung von cdrecord besteht darin, das richtige Argument zu zu finden. Benutzen Sie dazu den Schalter von cdrecord, der eine ähnliche Ausgabe wie die folgende produziert: CD-ROM brennen &prompt.root; cdrecord -scanbus Cdrecord 1.9 (i386-unknown-freebsd7.0) Copyright (C) 1995-2004 Jörg Schilling Using libscg version 'schily-0.1' scsibus0: 0,0,0 0) 'SEAGATE ' 'ST39236LW ' '0004' Disk 0,1,0 1) 'SEAGATE ' 'ST39173W ' '5958' Disk 0,2,0 2) * 0,3,0 3) 'iomega ' 'jaz 1GB ' 'J.86' Removable Disk 0,4,0 4) 'NEC ' 'CD-ROM DRIVE:466' '1.26' Removable CD-ROM 0,5,0 5) * 0,6,0 6) * 0,7,0 7) * scsibus1: 1,0,0 100) * 1,1,0 101) * 1,2,0 102) * 1,3,0 103) * 1,4,0 104) * 1,5,0 105) 'YAMAHA ' 'CRW4260 ' '1.0q' Removable CD-ROM 1,6,0 106) 'ARTEC ' 'AM12S ' '1.06' Scanner 1,7,0 107) * Für die aufgeführten Geräte in der Liste wird das passende Argument zu gegeben. Benutzen Sie die drei durch Kommas separierten Zahlen, die zu Ihrem CD-Brenner angegeben sind, als Argument für . Im Beispiel ist das CDRW-Gerät 1,5,0, so dass die passende Eingabe dev=1,5,0 wäre. Einfachere Wege das Argument anzugeben, sind in &man.cdrecord.1; beschrieben. Dort sollten Sie auch nach Informationen über Audiospuren, das Einstellen der Geschwindigkeit und ähnlichem suchen. Kopieren von Audio-CDs Um eine Kopie einer Audio-CD zu erstellen, kopieren Sie die Stücke der CD in einzelne Dateien und brennen diese Dateien dann auf eine leere CD. Das genaue Verfahren hängt davon ab, ob Sie ATAPI- oder SCSI-Laufwerke verwenden. SCSI-Laufwerke Kopieren Sie die Audiodaten mit cdda2wav: - &prompt.user; cdda2wav -v255 -D2,0 -B -Owav + &prompt.user; cdda2wav -vall -D2,0 -B -Owav Die erzeugten .wav Dateien schreiben Sie mit cdrecord auf eine leere CD: &prompt.user; cdrecord -v dev=2,0 -dao -useinfo *.wav Das Argument von gibt das verwendete Gerät an, das Sie, wie in beschrieben, ermitteln können. ATAPI-Laufwerke Über das Modul ATAPI/CAM kann cdda2wav auch mit ATAPI-Laufwerken verwendet werden. Diese Methode ist für die meisten Anwender besser geeignet als die im folgenden beschriebenen Methoden (Jitter-Korrektur, Big-/Little-Endian-Probleme und anderes mehr spielen hierbei eine Rolle). Der ATAPI-CD-Treiber stellt die einzelnen Stücke der CD über die Dateien /dev/acddtnn, zur Verfügung. d bezeichnet die Laufwerksnummer und nn ist die Nummer des Stücks. Die Nummer ist immer zweistellig, das heißt es wird, wenn nötig, eine führende Null ausgegeben. Die Datei /dev/acd0t01 ist also das erste Stück des ersten CD-Laufwerks. /dev/acd0t02 ist das zweite Stück und /dev/acd0t03 das dritte. Überprüfen Sie stets, ob die entsprechenden Dateien im Verzeichnis /dev auch angelegt werden. Sind die Einträge nicht vorhanden, weisen Sie Ihr System an, das Medium erneut zu testen: &prompt.root; dd if=/dev/acd0 of=/dev/null count=1 Unter &os; 4.X werden diese Einträge nicht mit dem Wert Null vordefiniert. Falls die entsprechenden Einträge unter /dev nicht vorhanden sind, müssen Sie diese hier von MAKEDEV anlegen lassen: &prompt.root; cd /dev &prompt.root; sh MAKEDEV acd0t99 Die einzelnen Stücke kopieren Sie mit &man.dd.1;. Sie müssen dazu eine spezielle Blockgröße angeben: &prompt.root; dd if=/dev/acd0t01 of=track1.cdr bs=2352 &prompt.root; dd if=/dev/acd0t02 of=track2.cdr bs=2352 ... Die kopierten Dateien können Sie dann mit burncd brennen. Auf der Kommandozeile müssen Sie angeben, dass Sie Audio-Daten brennen wollen und dass das Medium fixiert werden soll: &prompt.root; burncd -f /dev/acd0 audio track1.cdr track2.cdr ... fixate Kopieren von Daten-CDs Sie können eine Daten-CD in eine Datei kopieren, die einem Image entspricht, das mit &man.mkisofs.8; erstellt wurde. Mit Hilfe dieses Images können Sie jede Daten-CD kopieren. Das folgende Beispiel verwendet acd0 für das CD-ROM-Gerät. Wenn Sie ein anderes Laufwerk benutzen, setzen Sie bitte den richtigen Namen ein. &prompt.root; dd if=/dev/acd0 of=file.iso bs=2048 Danach haben Sie ein Image, das Sie wie oben beschrieben, auf eine CD brennen können. Einhängen von Daten-CDs Nachdem Sie eine Daten-CD gebrannt haben, wollen Sie wahrscheinlich auch die Daten auf der CD lesen. Dazu müssen Sie die CD in den Dateibaum einhängen. Die Voreinstellung für den Typ des Dateisystems von &man.mount.8; ist UFS. Das System wird die Fehlermeldung Incorrect super block ausgeben, wenn Sie versuchen, die CD mit dem folgenden Kommando einzuhängen: &prompt.root; mount /dev/cd0 /mnt Auf der CD befindet sich ja kein UFS Dateisystem, so dass der Versuch, die CD einzuhängen fehlschlägt. Sie müssen &man.mount.8; sagen, dass es ein Dateisystem vom Typ ISO9660 verwenden soll. Dies erreichen Sie durch die Angabe von auf der Kommandozeile. Wenn Sie also die CD-ROM /dev/cd0 in /mnt einhängen wollen, führen Sie folgenden Befehl aus: &prompt.root; mount -t cd9660 /dev/cd0c /mnt Abhängig vom verwendeten CD-ROM kann der Gerätename von dem im Beispiel (/dev/cd0) abweichen. Die Angabe von führt &man.mount.cd9660.8; aus, so dass das Beispiel verkürzt werden kann: &prompt.root; mount_cd9660 /dev/cd0 /mnt Auf diese Weise können Sie Daten-CDs von jedem Hersteller verwenden. Es kann allerdings zu Problemen mit CDs kommen, die verschiedene ISO9660-Erweiterungen benutzen. So speichern Joliet-CDs alle Dateinamen unter Verwendung von zwei Byte langen Unicode-Zeichen. Zwar unterstützt der &os;-Kernel derzeit noch kein Unicode, der CD9660-Treiber erlaubt es aber, zur Laufzeit eine Konvertierungstabelle zu laden. Tauchen bei Ihnen also statt bestimmter Zeichen nur Fragezeichen auf, so müssen Sie über die Option den benötigten Zeichensatz angeben. Weitere Informationen zu diesem Problem finden Sie in der Manualpage &man.mount.cd9660.8;. Damit der Kernel diese Zeichenkonvertierung (festgelegt durch die Option ) erkennt, müssen Sie das Kernelmodul cd9660_iconv.ko laden. Dazu fügen Sie entweder folgende Zeile in die Datei loader.conf ein: cd9660_iconv_load="YES" Danach müssen Sie allerdings Ihr System neu starten. Alternativ können Sie das Kernelmodul auch direkt über &man.kldload.8; laden. Manchmal werden Sie die Meldung Device not configured erhalten, wenn Sie versuchen, eine CD-ROM einzuhängen. Für gewöhnlich liegt das daran, dass das Laufwerk meint es sei keine CD eingelegt, oder dass das Laufwerk auf dem Bus nicht erkannt wird. Es kann einige Sekunden dauern, bevor das Laufwerk merkt, dass eine CD eingelegt wurde. Seien Sie also geduldig. Manchmal wird ein SCSI-CD-ROM nicht erkannt, weil es keine Zeit hatte, auf das Zurücksetzen des Busses zu antworten. Wenn Sie ein SCSI-CD-ROM besitzen, sollten Sie die folgende Zeile in Ihre Kernelkonfiguration aufnehmen und einen neuen Kernel bauen: options SCSI_DELAY=15000 Die Zeile bewirkt, dass nach dem Zurücksetzen des SCSI-Busses beim Booten 15 Sekunden gewartet wird, um dem CD-ROM-Laufwerk genügend Zeit zu geben, darauf zu antworten. Brennen von rohen CDs Sie können eine Datei auch direkt auf eine CD brennen, ohne vorher auf ihr ein ISO 9660-Dateisystem einzurichten. Einige Leute nutzen dies, um Datensicherungen durchzuführen. Diese Vorgehensweise hat den Vorteil, dass Sie schneller als das Brennen einer normalen CD ist. &prompt.root; burncd -f /dev/acd1 -s 12 data archive.tar.gz fixate Wenn Sie die Daten von einer solchen CD wieder zurückbekommen wollen, müssen Sie sie direkt von dem rohen Gerät lesen: &prompt.root; tar xzvf /dev/acd1 Eine auf diese Weise gefertigte CD können Sie nicht in das Dateisystem einhängen. Sie können Sie auch nicht auf einem anderen Betriebssystem lesen. Wenn Sie die erstellten CDs in das Dateisystem einhängen oder mit anderen Betriebssystemen austauschen wollen, müssen Sie &man.mkisofs.8; wie oben beschrieben benutzen. Marc Fonvieille Beigetragen von CD-Brenner ATAPI/CAM Treiber Der ATAPI/CAM Treiber Mit diesem Treiber kann auf ATAPI-Geräte (wie CD-ROM-, CD-RW- oder DVD-Laufwerke) mithilfe des SCSI-Subsystems zugegriffen werden. Damit können Sie SCSI-Werkzeuge, wie sysutils/cdrdao oder &man.cdrecord.1;, zusammen mit einem ATAPI-Gerät benutzen. Wenn Sie den Treiber benutzen wollen, fügen Sie die folgende Zeile in /boot/loader.conf ein: atapicam_load="YES" Danach müssen Sie Ihr System neu starten, um den Treiber zu aktivieren. Alternativ können Sie die Unterstützung für &man.atapicam.4; auch in Ihren Kernel kompilieren. Dazu fügen Sie die folgende Zeile in Ihre Kernelkonfigurationsdatei ein: device atapicam Die folgenden Zeilen werden ebenfalls benötigt, sollten aber schon Teil der Kernelkonfiguration sein: device ata device scbus device cd device pass Übersetzen und installieren Sie den neuen Kernel. Der CD-Brenner sollte nun beim Neustart des Systems erkannt werden: acd0: CD-RW <MATSHITA CD-RW/DVD-ROM UJDA740> at ata1-master PIO4 cd0 at ata1 bus 0 target 0 lun 0 cd0: <MATSHITA CDRW/DVD UJDA740 1.00> Removable CD-ROM SCSI-0 device cd0: 16.000MB/s transfers cd0: Attempt to query device size failed: NOT READY, Medium not present - tray closed Über den Gerätenamen /dev/cd0 können Sie nun auf das Laufwerk zugreifen. Wenn Sie beispielsweise eine CD-ROM in /mnt einhängen wollen, benutzen Sie das nachstehende Kommando: &prompt.root; mount -t cd9660 /dev/cd0 /mnt Die SCSI-Adresse des Brenners können Sie als root wie folgt ermitteln: &prompt.root; camcontrol devlist <MATSHITA CDRW/DVD UJDA740 1.00> at scbus1 target 0 lun 0 (pass0,cd0) Die SCSI-Adresse 1,0,0 können Sie mit den SCSI-Werkzeugen, zum Beispiel &man.cdrecord.1;, verwenden. Weitere Informationen über das ATAPI/CAM- und das SCSI-System erhalten Sie in den Hilfeseiten &man.atapicam.4; und &man.cam.4;. Marc Fonvieille Beigetragen von Andy Polyakov Mit Beiträgen von DVDs benutzen DVD brennen Einführung Nach der CD ist die DVD die nächste Generation optischer Speichermedien. Auf einer DVD können mehr Daten als auf einer CD gespeichert werden. DVDs werden heutzutage als Standardmedium für Videos verwendet. Für beschreibbare DVDs existieren fünf Medienformate: DVD-R: Dies war das erste verfügbare Format. Das Format wurde vom DVD-Forum festgelegt. Die Medien sind nur einmal beschreibbar. DVD-RW: Dies ist die wiederbeschreibbare Version des DVD-R Standards. Eine DVD-RW kann ungefähr 1000 Mal beschrieben werden. DVD-RAM: Dies ist ebenfalls ein wiederbeschreibbares Format, das vom DVD-Forum unterstützt wird. Eine DVD-RAM verhält sich wie eine Wechselplatte. Allerdings sind die Medien nicht kompatibel zu den meisten DVD-ROM-Laufwerken und DVD-Video-Spielern. DVD-RAM wird nur von wenigen Brennern unterstützt. Wollen Sie DVD-RAM einsetzen, sollten Sie lesen. DVD+RW: Ist ein wiederbeschreibbares Format, das von der DVD+RW Alliance festgelegt wurde. Eine DVD+RW kann ungefähr 1000 Mal beschrieben werden. DVD+R: Dieses Format ist die nur einmal beschreibbare Variante des DVD+RW Formats. Auf einer einfach beschichteten DVD können 4.700.000.000 Bytes gespeichert werden. Das sind 4,38 GB oder 4485 MB (1 Kilobyte sind 1024 Bytes). Die physischen Medien sind unabhängig von der Anwendung. Ein DVD-Video ist eine spezielle Anordnung von Dateien, die auf irgendein Medium (zum Beispiel DVD-R, DVD+R oder DVD-RW) geschrieben werden kann. Bevor Sie ein Medium auswählen, müssen Sie sicherstellen, dass der Brenner und der DVD-Spieler (ein Einzelgerät oder ein DVD-ROM-Laufwerk eines Rechners) mit dem Medium umgehen können. Konfiguration Das Programm &man.growisofs.1; beschreibt DVDs. Das Kommando ist Teil der Anwendung dvd+rw-tools (sysutils/dvd+rw-tools). dvd+rw-tools kann mit allen DVD-Medien umgehen. Um die Geräte anzusprechen, brauchen die Werkzeuge das SCSI-Subsystem. Daher muss der Kernel den ATAPI/CAM-Treiber zur Verfügung stellen. Der Treiber ist mit USB-Brennern nutzlos; die Konfiguration von USB-Geräten behandelt . Für ATAPI-Geräte müssen Sie ebenfalls DMA-Zugriffe aktivieren. Fügen Sie dazu die nachstehende Zeile in die Datei /boot/loader.conf ein: hw.ata.atapi_dma="1" Bevor Sie dvd+rw-tools mit Ihrem DVD-Brenner benutzen, lesen Sie bitte die Hardware-Informationen auf der Seite dvd+rw-tools' hardware compatibility notes. Wenn Sie eine grafische Oberfläche bevorzugen, schauen Sie sich bitte den Port sysutils/k3b an. Der Port bietet eine leicht zu bedienende Schnittstelle zu &man.growisofs.1; und vielen anderen Werkzeugen. Daten-DVDs brennen &man.growisofs.1; erstellt mit dem Programm mkisofs das Dateisystem und brennt anschließend die DVD. Vor dem Brennen brauchen Sie daher kein Abbild der Daten zu erstellen. Wenn Sie von den Daten im Verzeichnis /path/to/data eine DVD+R oder eine DVD-R brennen wollen, benutzen Sie das nachstehende Kommando: &prompt.root; growisofs -dvd-compat -Z /dev/cd0 -J -R /path/to/data Die Optionen werden an &man.mkisofs.8; durchgereicht und dienen zum Erstellen des Dateisystems (hier: ein ISO-9660-Dateisystem mit Joliet- und Rock-Ridge-Erweiterungen). Weiteres entnehmen Sie bitte der Hilfeseite &man.mkisofs.8;. Die Option wird für die erste Aufnahme einer Session benötigt, egal ob Sie eine Multi-Session-DVD brennen oder nicht. Für /dev/cd0 müssen Sie den Gerätenamen Ihres Brenners einsetzen. Die Option schließt das Medium, weitere Daten können danach nicht mehr angehängt werden. Durch die Angabe dieser Option kann das Medium von mehr DVD-ROM-Laufwerken gelesen werden. Sie können auch ein vorher erstelltes Abbild der Daten brennen. Die nachstehende Kommandozeile brennt das Abbild in der Datei imagefile.iso: &prompt.root; growisofs -dvd-compat -Z /dev/cd0=imagefile.iso Die Schreibgeschwindigkeit hängt von den verwendeten Medium sowie dem verwendeten Gerät ab und sollte automatisch gesetzt werden. Falls Sie die Schreibgeschwindigkeit vorgeben möchten, verwenden Sie den Parameter . Weiteres erfahren Sie in der Hilfeseite &man.growisofs.1;. Um grössere Dateien als 4.38GB in ihre Sammlung aufzunehmen, ist es notwendig ein UDF/ISO-9660 Hybrid-Dateisystem zu erstellen. Dieses Dateisystem muss mit zusätzlichen Parametern bei &man.mkisofs.8; und allen relevanten Programmen (z.B. &man.growisofs.1;) erzeugt werden. Dies ist nur notwendig wenn Sie ein ISO-Image erstellen oder direkt auf eine DVD schreiben wollen. DVDs, die in dieser Weise hergestellt worden sind, müssen als UDF-Dateisystem mit &man.mount.udf.8; eingehangen werden. Sie sind nur auf Betriebssystemen, die UDF unterstützen brauchbar, ansonsten sieht es so aus, als ob sie kaputte Dateien enthalten würden. Um so eine ISO Datei zu bauen, geben Sie den folgenden Befehl ein: &prompt.user; mkisofs -R -J -udf -iso-level 3 -o imagefile.iso /path/to/data Um Daten direkt auf eine DVD zu brennen, geben Sie den folgenden Befehl ein: &prompt.root; growisofs -dvd-compat -udf -iso-level 3 -Z /dev/cd0 -J -R /path/to/data Wenn Sie ein ISO-Image haben das bereits grosse Dateien enthält, sind keine weiteren zusätzlichen Optionen für &man.growisofs.1; notwendig, um das Image auf die DVD zu brennen. Beachten Sie noch, dass Sie die aktuelle Version von sysutils/cdrtools haben (welche &man.mkisofs.8; enthält), da die älteren Versionen nicht den Support für grosse Dateien enthalten. Wenn Sie Probleme haben sollten, können Sie auch das Entwicklerpaket von sysutils/cdrtools-devel einsetzen und lesen Sie die &man.mkisofs.8; Manualpage. DVD DVD-Video DVD-Videos brennen Ein DVD-Video ist eine spezielle Anordnung von Dateien, die auf den ISO-9660 und den micro-UDF (M-UDF) Spezifikationen beruht. Ein DVD-Video ist auf eine bestimmte Datei-Hierarchie angewiesen. Daher müssen Sie DVDs mit speziellen Programmen wie multimedia/dvdauthor erstellen. Wenn Sie schon ein Abbild des Dateisystems eines DVD-Videos haben, brennen Sie das Abbild wie jedes andere auch. Eine passende Kommandozeile finden Sie im vorigen Abschnitt. Wenn Sie die DVD im Verzeichnis /path/to/video zusammengestellt haben, erstellen Sie das DVD-Video mit dem nachstehenden Kommando: &prompt.root; growisofs -Z /dev/cd0 -dvd-video /path/to/video Die Option wird an &man.mkisofs.8; weitergereicht. Dadurch erstellt &man.mkisofs.8; die Datei-Hierarchie für ein DVD-Video. Weiterhin bewirkt die Angabe von , dass &man.growisofs.1; mit der Option aufgerufen wird. DVD DVD+RW DVD+RW-Medien benutzen Im Gegensatz zu CD-RW-Medien müssen Sie DVD+RW-Medien erst formatieren, bevor Sie die Medien benutzen. Sie sollten &man.growisofs.1; einzetzen, da das Programm Medien automatisch formatiert, wenn es erforderlich ist. Sie können eine DVD+RW aber auch mit dem Kommando dvd+rw-format formatieren: &prompt.root; dvd+rw-format /dev/cd0 Sie müssen das Kommando nur einmal mit neuen Medien laufen lassen. Anschließend können Sie DVD+RWs, wie in den vorigen Abschnitten beschrieben, brennen. Wenn Sie auf einer DVD+RW ein neues Dateisystem erstellen wollen, brauchen Sie die DVD+RW vorher nicht zu löschen. Überschreiben Sie einfach das vorige Dateisystem indem Sie eine neue Session anlegen: &prompt.root; growisofs -Z /dev/cd0 -J -R /path/to/newdata Mit dem DVD+RW-Format ist es leicht, Daten an eine vorherige Aufnahme anzuhängen. Dazu wird eine neue Session mit der schon bestehenden zusammengeführt. Es wird keine Multi-Session geschrieben, sondern &man.growisofs.1; vergrößert das ISO-9660-Dateisystem auf dem Medium. Das folgende Kommando fügt weitere Daten zu einer vorher erstellten DVD+RW hinzu: &prompt.root; growisofs -M /dev/cd0 -J -R /path/to/nextdata Wenn Sie eine DVD+RW erweitern, verwenden Sie dieselben &man.mkisofs.8;-Optionen wie beim Erstellen der DVD+RW. Um die Kompatibilität mit DVD-ROM-Laufwerken zu gewährleisten, wollen Sie vielleicht die Option einsetzen. Zu einem DVD+RW-Medium können Sie mit dieser Option auch weiterhin Daten hinzufügen. Wenn Sie das Medium aus irgendwelchen Gründen doch löschen müssen, verwenden Sie den nachstehenden Befehl: &prompt.root; growisofs -Z /dev/cd0=/dev/zero DVD DVD-RW DVD-RW-Medien benutzen Eine DVD-RW kann mit zwei Methoden beschrieben werden: Sequential-Recording oder Restricted-Overwrite. Voreingestellt ist Sequential-Recording. Eine neue DVD-RW kann direkt beschrieben werden; sie muss nicht vorher formatiert werden. Allerdings muss eine DVD-RW, die mit Sequential-Recording aufgenommen wurde, zuerst gelöscht werden, bevor eine neue Session aufgenommen werden kann. Der folgende Befehl löscht eine DVD-RW im Sequential-Recording-Modus: &prompt.root; dvd+rw-format -blank=full /dev/cd0 Das vollständige Löschen () dauert mit einem 1x Medium ungefähr eine Stunde. Wenn die DVD-RW im Disk-At-Once-Modus (DAO) aufgenommen wurde, kann Sie mit der Option schneller gelöscht werden. Um eine DVD-RW im DAO-Modus zu brennen, benutzen Sie das folgende Kommando: &prompt.root; growisofs -use-the-force-luke=dao -Z /dev/cd0=imagefile.iso Die Option sollte nicht erforderlich sein, da &man.growisofs.1; den DAO-Modus erkennt. Der Restricted-Overwrite-Modus sollte mit jeder DVD-RW verwendet werden, da er flexibler als der voreingestellte Sequential-Recording-Modus ist. Um Daten auf eine DVD-RW im Sequential-Recording-Modus zu schreiben, benutzen Sie dasselbe Kommando wie für die anderen DVD-Formate: &prompt.root; growisofs -Z /dev/cd0 -J -R /path/to/data Wenn Sie weitere Daten zu einer Aufnahme hinzufügen wollen, benutzen Sie die Option von &man.growisofs.1;. Werden die Daten im Sequential-Recording-Modus hinzugefügt, wird eine neue Session erstellt. Das Ergebnis ist ein Multi-Session-Medium. Eine DVD-RW im Restricted-Overwrite-Modus muss nicht gelöscht werden, um eine neue Session aufzunehmen. Sie können das Medium einfach mit der Option überschreiben, ähnlich wie bei DVD+RW. Mit der Option können Sie das ISO-9660-Dateisystem, wie mit einer DVD+RW, vergrößern. Die DVD enthält danach eine Session. Benutzen sie das nachstehende Kommando, um den Restricted-Overwrite-Modus einzustellen: &prompt.root; dvd+rw-format /dev/cd0 Das folgende Kommando stellt den Modus wieder auf Sequential-Recording zurück: &prompt.root; dvd+rw-format -blank=full /dev/cd0 Multi-Session Nur wenige DVD-ROM-Laufwerke können Multi-Session-DVDs lesen. Meist lesen die Spieler nur die erste Session. Mehrere Sessions werden von DVD+R, DVD-R und DVD-RW im Sequential-Recording-Modus unterstützt. Im Modus Restricted-Overwrite gibt es nur eine Session. Wenn das Medium noch nicht geschlossen ist, erstellt das nachstehende Kommando eine neue Session auf einer DVD+R, DVD-R oder DVD-RW im Sequential-Recording-Modus: &prompt.root; growisofs -M /dev/cd0 -J -R /path/to/nextdata Wird diese Kommandozeile mit DVD+RW- oder DVD-RW-Medien im Restricted-Overwrite-Modus benutzt, werden die neuen Daten mit den Daten der bestehenden Session zusammengeführt. Das Medium enthält danach eine Session. Auf diesem Weg werden neue Daten zu einer bestehenden Session hinzugefügt. Für den Anfang und das Ende einer Session wird auf dem Medium zusätzlicher Platz verbraucht. Um den Speicherplatz auf dem Medium optimal auszunutzen, sollten Sie daher Sessions mit vielen Daten hinzufügen. Auf ein DVD+R-Medium passen maximal 154 Sessions, 2000 Sessions auf ein DVD-R-Medium und 127 Sessions auf eine DVD+R Double Layer. Weiterführendes Das Kommando dvd+rw-mediainfo /dev/cd0 zeigt Informationen über eine im Laufwerk liegende DVD an. Weiteres zu den dvd+rw-tools lesen Sie bitte in der Hilfeseite &man.growisofs.1;, auf der dvd+rw-tools Web-Seite oder in den Archiven der cdwrite-Mailingliste. DVD-RAM DVD DVD-RAM Konfiguration DVD-RAM-fähige Brenner werden sowohl mit SCSI- als auch mit ATAPI-Schnittstelle angeboten. Verwenden Sie ein ATAPI-Gerät, müssen Sie den DMA-Modus aktivieren. Dazu fügen Sie die folgende Zeile in /boot/loader.conf ein: hw.ata.atapi_dma="1" Das Medium vorbereiten Wie weiter oben in diesem Kapitel bereits erwähnt, kann man eine DVD-RAM mit einer Wechselplatte vergleichen. Wie diese muss auch eine DVD-RAM vor dem ersten Einsatz vorbereitet werden. In unserem Beispiel wird das gesamte Medium mit dem Standard-UFS2-Dateisystem formatiert. Dazu geben Sie als root bei eingelegter DVD-RAM die folgenden Befehle ein: &prompt.root; dd if=/dev/zero of=/dev/acd0 bs=2k count=1 &prompt.root; bsdlabel -Bw acd0 &prompt.root; newfs /dev/acd0 Denken Sie dabei daran, dass Sie gegebenenfalls die Gerätedatei (hier acd0) an Ihre Konfiguration anpassen müssen. Das Medium einsetzen Nachdem Sie das Medium vorbereitet haben, können Sie das DVD-RAM-Medium in Ihren Verzeichnisbaum einhängen: &prompt.root; mount /dev/acd0 /mnt Danach können Sie schreibend und lesend auf das Medium zugreifen. Julio Merino Original von Martin Karlsson Umgeschrieben von Disketten benutzen Disketten sind nützlich, wenn kein anderes bewegliches Speichermedium vorhanden ist oder wenn nur kleine Datenmengen transferiert werden sollen. Dieser Abschnitt beschreibt die Handhabung von Disketten unter FreeBSD. Hauptsächlich geht es um die Formatierung und Benutzung von 3,5 Zoll Disketten, doch lassen sich die Konzepte leicht auf Disketten anderer Formate übertragen. Disketten formatieren Die Gerätedateien Wie auf jedes andere Gerät auch, greifen Sie auf Disketten über Einträge im Verzeichnis /dev zu. Verwenden Sie dazu die Einträge /dev/fdN. Formatierung Bevor eine Diskette benutzt werden kann, muss Sie (low-level) formatiert werden, was normalerweise der Hersteller schon gemacht hat. Sie können die Diskette allerdings noch einmal formatieren, um das Medium zu überprüfen. Es ist möglich, die Kapazität der Diskette zu verändern, allerdings sind die meisten Disketten auf 1440 kB ausgelegt. Mit &man.fdformat.1; formatieren Sie eine Diskette. Das Kommando erwartet die Angabe eines Gerätenamens. Achten Sie bei der Formatierung auf Fehlermeldungen, die schlechte Speichermedien anzeigen. Disketten formatieren Die Disketten werden mithilfe der Gerätedatei /dev/fdN formatiert. Legen Sie eine 3,5 Zoll Diskette in Ihr Laufwerk ein und führen das folgende Kommando aus: &prompt.root; /usr/sbin/fdformat -f 1440 /dev/fd0 Das Disklabel Nach dem Formatieren muss auf der Diskette ein Disklabel erstellt werden. Das Disklabel wird später zerstört, ist aber notwendig, um die Größe und Geometrie der Diskette zu erkennen. Das Disklabel gilt für die ganze Diskette und enthält alle Informationen über die Geometrie der Diskette. Eine Liste der möglichen Geometrien finden Sie in /etc/disktab. Erstellen Sie nun das Label mit &man.bsdlabel.8;: &prompt.root; /sbin/bsdlabel -B -w /dev/fd0 fd1440 Das Dateisystem Auf der Diskette muss nun ein Dateisystem erstellt werden (high-level Formatierung), damit FreeBSD von der Diskette lesen und auf sie schreiben kann. Das Disklabel wird durch das Anlegen eines Dateisystems zerstört. Falls Sie die Diskette später erneut formatieren wollen, müssen Sie dann auch ein neues Disklabel anlegen. Sie können entweder UFS oder FAT als Dateisystem verwenden. Für Floppies ist FAT das beste Dateisystem. Das folgende Kommando legt ein Dateisystem auf der Diskette an: &prompt.root; /sbin/newfs_msdos /dev/fd0 Die Diskette kann nun benutzt werden. Verwenden der Diskette Zum Einhägen der Diskette in das Dateisystem verwenden Sie den Befehl &man.mount.msdosfs.8;. Sie können auch den Port emulators/mtools verwenden, um mit der Diskette zu arbeiten. Bandmedien benutzen Bandmedien Die wichtigsten Bandmedien sind 4mm, 8mm, QIC, Mini-Cartridge und DLT. 4mm (DDS: Digital Data Storage) Bandmedien DDS (4mm) Bänder Bandmedien QIC Bänder Die 4mm-Bänder ersetzen mehr und mehr das QIC-Format als Backupmedium der Wahl für Workstations. Dieser Trend nahm stark zu, als Conner die Firma Archive, einen führenden Hersteller von QIC-Laufwerken, aufkaufte und die Produktion von QIC-Laufwerken stoppte. 4mm-Laufwerke sind klein und ruhig, haben aber nicht den gleichen Ruf der Zuverlässigkeit, den die 8mm-Laufwerke genießen. Die 4mm-Kassetten sind preiswerter und mit den Maßen 76,2 x 50,8 x 12,7 mm (3 x 2 x 0,5 Inch) kleiner als die 8mm-Kassetten. Sowohl die 4mm- als auch die 8mm-Magnetköpfe haben eine relativ kurze Lebensdauer, weil beide die gleiche Helical-Scan-Technik benutzen. Der Datendurchsatz dieser Laufwerke beginnt bei etwa 150 kByte/s, Spitzenwerte liegen bei etwa 500 kByte/s. Die Datenkapazität liegt zwischen 1,3 GB und 2 GB. Die meisten Geräte haben eine Hardwarekompression eingebaut, die die Kapazität ungefähr verdoppelt. Es gibt Multi-Drive-Einheiten für Bandbibliotheken mit bis zu 6 Laufwerken in einem Gehäuse und automatischem Bandwechsel. Die Kapazität einer solchen Bibliothek liegt bei 240 GB. Der Standard DDS-3 unterstützt nun Bandkapazitäten bis zu 12 GB (oder komprimiert 24 GB). 4mm-Laufwerke, ebenso wie 8mm-Laufwerke, verwenden Helical-Scan. Alle Vor- und Nachteile von Helical-Scan gelten sowohl für 4mm- als auch für 8mm-Laufwerke. Bänder sollten nach 2.000 Banddurchläufen oder 100 vollen Backups ersetzt werden. 8mm (Exabyte) Bandmedien Exabyte (8mm) Bänder 8mm-Bänder sind die verbreitetsten SCSI-Bandlaufwerke; sie sind das geeignetste Bandformat zum Austausch von Bändern. Fast an jedem Standort gibt es ein 8mm-Bandlaufwerk mit 2 GB. 8mm-Bänder sind zuverlässig, gut zu handhaben und arbeiten leise. Bandkassetten sind preiswert und klein mit 122 x 84 x 15 mm (4,8 x 3,3 x 0,6 Inch). Ein Nachteil der 8mm-Technik ist die relativ kurze Lebensdauer des Schreib-/Lesekopfs und der Bänder auf Grund der hohen Relativgeschwindigkeit des Bandes über die Köpfe hinweg. Der Datendurchsatz liegt ungefähr zwischen 250 kByte/s und 500 kByte/s. Die Datenkapazität beginnt bei 300 MB und erreicht bis zu 7 GB bei den Spitzengeräten. Die meisten Geräte haben eine Hardwarekompression eingebaut, die die Kapazität ungefähr verdoppelt. Diese Laufwerke sind erhältlich in Form von Einzelgeräten oder als Multi-Drive-Bandbibliotheken mit 6 Laufwerken und 120 Bändern in einem Gehäuse. Die Bänder werden von der Geräteeinheit automatisch gewechselt. Die Kapazität einer solchen Bibliothek liegt bei 840 GB und mehr. Das Exabyte-Modell Mammoth unterstützt 12 GB auf einem Band (24 GB mit Kompression) und kostet etwa doppelt so viel wie ein konventionelles Bandlaufwerk. Die Daten werden mittels Helical-Scan auf das Band aufgezeichnet, die Köpfe sind leicht schräg zum Medium angebracht (mit einem Winkel von etwa 6 Grad). Das Band wickelt sich 270 Grad um die Spule, die die Köpfe trägt. Die Spule dreht sich, während das Band darüberläuft. Das Resultat ist eine hohe Datendichte und eng gepackte Spuren, die von einem Rand des Bands zum gegenüberliegenden quer über das Band abgewinkelt verlaufen. QIC Bandmedien QIC-150 QIC-150-Bänder und -Laufwerke sind wohl der am weitesten verbreitete Bandtyp überhaupt. QIC-Bandlaufwerke sind die preiswertesten seriösen Backupgeräte, die angeboten werden. Der Nachteil dabei ist der hohe Preis der Bänder. QIC-Bänder sind im Vergleich zu 8mm- oder 4mm-Bändern bis zu fünf Mal teurer, wenn man den Preis auf 1 GB Datenkapazität umrechnet. Aber wenn Ihr Bedarf mit einem halben Dutzend Bänder abgedeckt werden kann, mag QIC die richtige Wahl sein. QIC ist der gängigste Bandlaufwerkstyp. Jeder Standort hat ein QIC-Laufwerk der einen oder anderen Dichte. Aber gerade das ist der Haken an der Sache, QIC bietet eine große Anzahl verschiedener Datendichten auf physikalisch ähnlichen (manchmal gleichen) Bändern. QIC-Laufwerke sind nicht leise. Diese Laufwerke suchen lautstark die richtige Bandstelle, bevor sie mit der Datenaufzeichnung beginnen. Sie sind während des Lesens, Schreibens und Suchens deutlich hörbar. Die Abmessungen der QIC-Kassetten betragen 152 x 102 x 17 mm (6 x 4 x 0,7 Inch). Der Datendurchsatz liegt ungefähr zwischen 150 kByte/s und 500 kByte/s. Die Datenkapazität reicht von 40 MB bis zu 15 GB. Hardwarekompression ist in vielen der neueren QIC-Laufwerke eingebaut. QIC-Laufwerke werden heute seltener eingesetzt; sie werden von den DAT-Laufwerken abgelöst. Die Daten werden auf dem Band in Spuren aufgezeichnet. Die Spuren verlaufen entlang der Längsachse des Bandmediums von einem Ende zum anderen. Die Anzahl der Spuren, und damit auch die Breite einer Spur, variiert mit der Kapazität des Laufwerks. Die meisten, wenn nicht alle neueren Laufwerke sind rückwärtskompatibel, zumindest zum Lesen (aber oft auch zum Schreiben). QIC hat einen guten Ruf bezüglich der Datensicherheit (die Mechanik ist einfacher und robuster als diejenige der Helical-Scan-Laufwerke). Bänder sollten nach 5,000 Backups ersetzt werden. DLT Bandmedien DLT DLT hat die schnellste Datentransferrate von allen hier aufgelisteten Gerätetypen. Das 1/2-Inch-Band (12,7 mm) befindet sich in einer Spulkassette mit den Abmessungen 101,6 x 101,6 x 25,4 mm (4 x 4 x 1 Inch). Die eine Seite der Kassette hat eine bewegliche Abdeckung. Der Laufwerksmechanismus öffnet diese Abdeckung und zieht die Bandführung heraus. Die Bandführung trägt ein ovales Loch, die das Laufwerk zum Einhängen des Bandes benutzt. Die Aufwickelspule befindet sich im Innern des Bandlaufwerks. Bei allen anderen hier besprochenen Bandkassetten (9-Spur-Bänder sind die einzige Ausnahme) befinden sich sowohl die Auf- als auch die Abwickelspule im Inneren der Bandkassette. Der Datendurchsatz liegt bei etwa 1,5 MBytes/s, der dreifache Durchsatz der 4mm-, 8mm- oder QIC-Bandlaufwerke. Die Datenkapazität reicht von 10 GB bis 20 GB für Einfachlaufwerke. Auch Mehrfachbandgeräte sind erhältlich, sowohl als Bandwechsler wie auch als Multi-Drive-Bandbibliotheken, die Platz für 5 bis 900 Bänder verteilt auf 1 bis 20 Laufwerke enthalten, mit einer Speicherkapazität von 50 GB bis 9 TB. Mit Kompression unterstützt das Format DLT Type IV bis zu 70 GB Kapazität. Die Daten werden auf dem Band in Spuren aufgezeichnet, die parallel zur Bewegungsrichtung verlaufen (gerade so wie bei den QIC-Bändern). Zwei Spuren werden dabei gleichzeitig beschrieben. Die Lebenszeit der Lese- und Schreibköpfe sind relativ lang; denn sobald das Band anhält, gibt es keine Relativbewegung mehr zwischen den Köpfen und dem Band. AIT Bandmedien AIT AIT ist ein neues Format von Sony, das (mit Kompression) bis zu 50 GB pro Band speichern kann. Die Bänder haben einen Speicherchip, der einen Index mit dem Inhalt des Bandes anlegt. Dieser Index kann vom Bandlaufwerk zur schnellen Bestimmung der Lage von Dateien auf dem Band benutzt werden, während andere Bänder einige Minuten zur Lokalisierung benötigen. Entsprechende Software wie etwa SAMS:Alexandria können 40 oder mehr AIT-Bandbibliotheken verarbeiten, indem sie direkt mit dem Speicherchip des Bandes kommunizieren, wenn der Bandinhalt am Bildschirm dargestellt werden soll oder bestimmt werden soll, welche Dateien auf welchem Band gespeichert sind, oder um das richtige Band zu lokalisieren, zu laden und Daten vom Band zurückzuspielen. Bibliotheken dieser Art liegen in der Preiskategorie von $20,000, womit sie etwas aus dem Hobbymarkt herausfallen. Die erste Benutzung eines neuen Bands Der Versuch ein neues, vollkommen leeres Band ohne weiteres zu lesen oder zu beschreiben wird schief gehen. Auf der Konsole werden dann Meldungen ähnlich wie folgt ausgegeben: sa0(ncr1:4:0): NOT READY asc:4,1 0(ncr1:4:0): Logical unit is in process of becoming ready Das Band enthält nämlich keinen Identifier-Block (Blocknummer 0). Alle QIC-Bandlaufwerke seit der Einführung des QIC-525-Standards schreiben einen Identifier-Block auf das Band. Es gibt zwei Lösungen: mt fsf 1 veranlasst das Bandlaufwerk einen Identifier-Block auf das Band zu schreiben. Das Band durch Drücken des Bandauswurfknopfs an der Vorderseite des Bandgeräts auswerfen. Danach das Band wieder einlegen und mit dump Daten auf das Band übertragen. Das Kommando dump gibt die Meldung DUMP: End of tape detected zurück und die Konsole zeigt: HARDWARE FAILURE info:280 asc:80,96. Das Band zurückspulen mit dem Kommando: mt rewind. Nachfolgende Bandoperationen werden dann erfolgreich ausgeführt. Was ist mit Backups auf Disketten? Kann ich Disketten zum Backup meiner Daten verwenden? Backup Disketten Disketten Disketten sind kein wirklich geeignetes Medium für Backups aus folgenden Gründen: Disketten sind unzuverlässig, besonders langfristig. Speichern und Wiederherstellen ist sehr langsam. Sie haben eine sehr eingeschränkte Kapazität (Die Zeiten sind längst vorbei, wo eine ganze Festplatte auf ein Dutzend Floppies oder so gespeichert werden konnte). Wenn jedoch keine andere Möglichkeit zum Datenbackup vorhanden ist, dann sind Disketten immer noch besser als gar kein Backup. Wenn man gezwungen ist Disketten zu verwenden, dann sollte man auf eine gute Qualität achten. Floppies, die schon einige Jahre im Büro herumgelegen haben, sind eine schlechte Wahl. Ideal sind neue Disketten von einem renommierten Hersteller. Wie mache ich ein Backup auf Disketten? Die beste Art eines Diskettenbackups ist der Befehl &man.tar.1; mit der Mehrfachband-Option , die es ermöglicht ein Backup über mehrere Floppies zu verteilen. Ein Backup aller Dateien im aktuellen Verzeichnis einschließlich aller Unterverzeichnisse wird durch den folgenden Befehl veranlasst (als root): &prompt.root; tar Mcvf /dev/fd0 * Wenn die erste Floppy voll ist, meldet sich &man.tar.1; und verlangt einen Diskettenwechsel (weil &man.tar.1; unabhängig vom Medium arbeitet, wird das nächste Band (Volume) verlangt, was in diesem Zusammenhang eine Diskette bedeutet), in etwa wie folgt: Prepare volume #2 for /dev/fd0 and hit return: Dies wird mit steigender Volumenzahl wiederholt, bis alle angegebenen Dateien archiviert sind. Können Diskettenbackups komprimiert werden? tar gzip Kompression Leider erlaubt es &man.tar.1; nicht, die Option für Multi-Volume-Archive zu verwenden. Man kann natürlich alle Dateien mit &man.gzip.1; komprimieren, sie mit &man.tar.1; auf die Floppies aufspielen, und dann die Dateien wieder &man.gunzip.1; entkomprimieren! Wie werden Diskettenbackups wieder hergestellt? Zur Wiederherstellung des gesamten Archivs verwendet man: &prompt.root; tar Mxvf /dev/fd0 Eine Methode um nur bestimmte Dateien wieder her zu stellen ist mit der ersten Diskette den folgenden Befehl auszuführen: &prompt.root; tar Mxvf /dev/fd0 filename &man.tar.1; wird dann die folgenden Disketten anfordern, bis die benötigte Datei gefunden ist. Wenn man die Diskette kennt, auf der sich die Datei befindet, kann man alternativ diese Diskette auch direkt einlegen und den gleichen Befehl wie oben verwenden. Man beachte, dass, falls die erste Datei eine Fortsetzung einer Datei von einer der vorigen Disketten ist, &man.tar.1; die Warnung ausgibt, dass diese Datei nicht wiederhergestellt werden kann, selbst dann, wenn dies gar nicht verlangt wurde! Lowell Gilbert Beigetragen von Backup-Strategien Wenn Sie eine eigene Backup-Strategie planen, müssen Sie darauf achten, dass jedes der folgenden Probleme von Ihrer Strategie abgedeckt wird: Plattendefekte. Versehentliches Löschen von Dateien. Eine nicht vorhersehbare Korrumpierung von Dateien. Die vollständige Zerstörung Ihres Systems, etwa durch ein Feuer. Dazu gehört auch die Zerstörung von Backups, die am gleichen Ort aufbewahrt werden. Es ist nicht nur möglich, dass ein System für jedes dieser Probleme eine eigene (oft völlig unterschiedliche) Strategie benötigt. Es ist vielmehr unwahrscheinlich (sieht man von Systemen ab, die keine wichtigen Daten enthalten), dass eine Technik alle Problembereiche abdecken kann. Häufig verwendeten Techniken sind unter anderen: Die Archivierung des kompletten Systems auf externen Datenträgern, die an einem gesonderten Ort aufbewahrt werden. Dieser Ansatz schützt zwar vor allen oben angeführten Problemen, ist aber zeitaufwändig. Auch eine Wiederherstellung des Systems ist nicht ohne weiteres möglich. Zwar können Sie Kopien Ihrer Backups auch vor Ort und/oder auf online zugängigen Systemen aufbewahren, was aber nichts daran ändert, dass eine Wiederherstellung, insbesondere für nicht privilegierte Benutzer, nach wie vor nicht ohne weiteres möglich ist. Dateisystem-Snapshots. Diese Technik hilft zwar nur gegen das versehentliche Löschen von Dateien, in einem solchen Fall ist sie aber äußerst hilfreich. Vorteile dieser Technik sind außerdem die leichte und schnelle Implementierung und Handhabung. Das Erstellen von Kopien ganzer Dateisysteme und/oder Platten (etwa durch einen periodischen &man.rsync.1;-Transfer des kompletten Systems). Diese Technik ist insbesondere in Netzwerken mit besonderen Anforderungen nützlich. Der Schutz vor Plattendefekten ist allerdings schlechter als beim Einsatz von RAID. Die Fähigkeiten zur Wiederherstellung gelöschter Dateien sind mit denen von UFS-Snapshots vergleichbar. Ob diese Technik für Sie geeignet ist, hängt also letztlich von Ihren Anforderungen ab. RAID. Minimiert oder vermeidet Ausfallzeiten, die durch einen Plattendefekt verursacht werden könnten. Zwar können Plattendefekte (aufgrund der höheren Anzahl verwendeter Platten) häufiger auftreten, sie stellen aber dann kein so akutes Problem dar. Das Überprüfen von Datei-Fingerprints durch &man.mtree.8;. Dabei handelt es sich zwar um keine Backup-Technik im eigentlichen Sinne, Sie werden durch den Einsatz dieser Werkzeugs aber informiert, dass Sie auf Ihre Backups zurückgreifen müssen. Dies ist insbesondere beim Einsatz von Offline-Backups von großer Bedeutung. Daher sollte diese Technik regelmäßig eingesetzt werden. Es gibt noch zahlreiche weitere Techniken, von denen aber viele nur Variationen der eben beschriebenen Techniken sind. Spezielle Anforderungen erfordern dabei in der Regel auch spezielle Backup-Techniken (so erfordert das Backup einer aktiven Datenbank in der Regel ein auf die eingesetzte Datenbank-Software abgestimmtes Verfahren). Entscheidend ist daher immer, gegen welche Gefahren Sie sich schützen und wie Sie diesen Schutz realisieren wollen. Datensicherung Die drei wichtigsten Programme zur Sicherung von Daten sind &man.dump.8;, &man.tar.1; und &man.cpio.1;. Sichern und Wiederherstellen Datensicherung Backup Backup-Software dump Backup-Software restore dump restore dump und restore sind die traditionellen Backupprogramme in &unix; Systemen. Sie betrachten das Laufwerk als eine Ansammlung von Blöcken, operieren also unterhalb des Abstraktionslevels von Dateien, Links und Verzeichnissen, die die Grundlage des Dateisystemkonzepts bilden. Im Gegensatz zu anderen Backupprogrammen sichert dump ein ganzes Dateisystem auf einem Gerät. Es ist nicht möglich nur einen Teil des Dateisystems, oder einen Verzeichnisbaum, der mehr als ein Dateisystem umfasst, zu sichern. Das dump-Kommando schreibt keine Dateien oder Verzeichnise auf das Band, sondern die Blöcke, aus denen Dateien und Verzeichnisse bestehen. Wenn restore für das Extrahieren von Daten verwendet wird, werden temporäre Dateien standardmässig in /tmp/ abgelegt - wenn Sie von einer Platte mit einem kleinen /tmp-Verzeichnis zurücksichern, müssen Sie möglicherweise die Umgebungsvariable TMPDIR auf ein Verzeichnis mit mehr freiem Speicherplatz setzen, damit die Wiederherstellung gelingt. Wenn Sie mit dump das Root-Verzeichnis sichern, werden /home, /usr und viele andere Verzeichnisse nicht gesichert, da dies normalerweise Mountpunkte für andere Dateisysteme oder symbolische Links zu diesen Dateisystemen sind. dump hat einige Eigenarten, die noch aus den frühen Tagen der Version 6 von AT&T UNIX (ca. 1975) stammen. Die Parameter sind für 9-Spur-Bänder (6250 bpi) voreingestellt, nicht auf die heute üblichen Medien hoher Dichte (bis zu 62.182 ftpi). Bei der Verwendung der Kapazitäten moderner Bandlaufwerke muss diese Voreinstellung auf der Kommandozeile überschrieben werden. .rhosts rdump und rrestore können Daten über Netzwerk auf ein Band, das sich in einem Laufwerk eines anderen Computers befindet, überspielen. Beide Programme benutzen die Funktionen &man.rcmd.3; und &man.ruserok.3; zum Zugriff auf das entfernte Bandlaufwerk. Daher muss der Anwender, der das Backup durchführt, auf dem entfernten Rechner in .rhosts eingetragen sein. Die Argumente zu rdump und rrestore müssen zur Verwendung auf dem entfernten Computer geeignet sein. Wenn Sie zum Beispiel mit rdump von einem FreeBSD-Rechner aus auf ein Exabyte-Bandlaufwerk einer Sun mit Namen komodo zugreifen möchten, setzen Sie das folgende Kommando ab: &prompt.root; /sbin/rdump 0dsbfu 54000 13000 126 komodo:/dev/nsa8 /dev/da0a 2>&1 Zum Ausführen dieses Kommandos müssen Sie auf dem entfernten Rechner in .rhosts eingetragen sein. Die r-Kommandos sind ein großes Sicherheitsrisiko, daher sollten Sie deren Verwendung sorgfältig abwägen. Es ist auch möglich, dump und restore über eine gesicherte Verbindung mit ssh einzusetzen: <command>dump</command> mit <application>ssh</application> benutzen &prompt.root; /sbin/dump -0uan -f - /usr | gzip -2 | ssh -c blowfish \ targetuser@targetmachine.example.com dd of=/mybigfiles/dump-usr-l0.gz Sie können ebenfalls mit der internen Methode von dump auf entfernte Rechner zugreifen, indem Sie die Umgebungsvariable RSH setzen: <command>dump</command> über <application>ssh</application> mit gesetzter <envar>RSH</envar> benutzen &prompt.root; RSH=/usr/bin/ssh /sbin/dump -0uan -f tatargetuser@targetmachine.example.com:/dev/sa0 /usr <command>tar</command> Backup-Software tar &man.tar.1; stammt ebenfalls aus Version 6 von AT&T UNIX (ca. 1975). tar arbeitet mit dem Dateisystem, denn es schreibt Dateien und Verzeichnisse auf das Band. tar unterstützt zwar nicht alle Optionen, die bei &man.cpio.1; zur Verfügung stehen, aber dafür erfordert es auch nicht die ungewöhnliche Kommando-Pipeline, die von cpio verwendet wird. tar Seit FreeBSD 5.3 sind sowohl GNU tar als auch bsdtar verfügbar. Die GNU-Version starten Sie über gtar. Sie unterstützt auch entfernte Geräte, wobei die von rdump benutzte Syntax übernommen wurde. Um Daten mit tar auf ein an einer Sun-Workstation (namens komodo) angeschlossenes Exabyte-Bandlaufwerk zu archivieren, geben Sie Folgendes ein: &prompt.root; /usr/bin/gtar cf komodo:/dev/nsa8 . 2>&1 Alternativ können Sie für diese Sicherung auch bsdtar verwenden, indem Sie die Daten über eine Pipeline und rsh an das entfernte Laufwerk senden: &prompt.root; tar cf - . | rsh hostname dd of=tape-device obs=20b Wenn Sie Bedenken bezüglich der Sicherheit beim Backup über das Netz haben, sollten Sie ssh anstatt rsh benutzen. Cpio Backup-Software cpio cpio &man.cpio.1; ist das ursprüngliche Programm von &unix; Systemen zum Dateitransfer mit magnetischen Medien. cpio hat (neben vielen anderen Leistungsmerkmalen) Optionen zum Byte-Swapping, zum Schreiben einer Anzahl verschiedener Archivformate und zum Weiterleiten von Daten an andere Programme über eine Pipeline. Dieses letzte Leistungsmerkmal macht cpio zu einer ausgezeichneten Wahl für Installationsmedien. Leider kann cpio keine Dateibäume durchlaufen, so dass eine Liste der zu bearbeitenden Dateien über stdin angegeben werden muss. cpio unterstützt keine Backups über das Netzwerk. Man kann aber eine Pipeline und rsh verwenden, um Daten an ein entferntes Bandlaufwerk zu senden. &prompt.root; for f in directory_list; do find $f >> backup.list done &prompt.root; cpio -v -o --format=newc < backup.list | ssh user@host "cat > backup_device" Dabei steht directory_list für eine Aufzählung der Verzeichnisse, die Sie sichern wollen. user@host gibt den Benutzer auf dem Zielrechner an, der die Sicherung laufen lässt. Der Ort der Sicherung wird durch backup_device angegeben (z.B. /dev/nsa0). <command>pax</command> Backup-Software pax pax POSIX IEEE &man.pax.1; ist die Antwort von IEEE/&posix; auf tar und cpio. Über die Jahre hinweg sind die verschiedenen Versionen von tar und cpio leicht inkompatibel geworden. Daher hat &posix;, statt eine Standardisierung zwischen diesen auszufechten, ein neues Archivprogramm geschaffen. pax versucht viele der unterschiedlichen cpio- und tar-Formate zu lesen und zu schreiben, außerdem einige neue, eigene Formate. Die Kommandostruktur ähnelt eher cpio als tar. <application>Amanda</application> Backup-Software Amanda Amanda Amanda (Advanced Maryland Network Disk Archiver) ist ein Client/Server-Backupsystem, nicht nur ein einzelnes Programm. Ein Amanda-Server kann auf einem einzigen Bandlaufwerk Datensicherungen von jeder beliebigen Anzahl von Computern speichern, sofern auf diesen jeweils ein Amanda-Client läuft und sie über Netzwerk mit dem Amanda-Server verbunden sind. Ein häufiges Problem bei Standorten mit einer Anzahl großer Festplatten ist, dass das Kopieren der Daten auf Band langsamer vor sich geht als solche Daten anfallen. Amanda löst dieses Problem durch Verwendung einer Holding Disk, einer Festplatte zum gleichzeitigen Zwischenspeichern mehrerer Dateisysteme. Für Datensicherungen über einen längeren Zeitraum erzeugt Amanda Archivsets von allen Dateisystemen, die in Amandas Konfigurationsdatei genannt werden. Ein Archivset ist eine Gruppe von Bändern mit vollen Backups und Reihen von inkrementellen (oder differentiellen) Backups, die jeweils nur die Unterschiede zum vorigen Backup enthalten. Zur Wiederherstellung von beschädigten Dateisystemen benötigt man Das Letzte volle Backup und alle darauf folgenden inkrementellen Backups. Die Konfigurationsdatei ermöglicht die Feineinstellung der Backups und des Netzwerkverkehrs von Amanda. Amanda kann zum Schreiben der Daten auf das Band jedes der oben beschriebenen Backuprogramme verwenden. Amanda ist nicht Teil des Basissystems, Sie müssen Amanda über die Ports-Sammlung oder als Paket installieren. Tue nichts Tue nichts ist kein Computerprogramm, sondern die am häufigsten angewendete Backupstrategie. Diese kostet nichts, man muss keinen Backupplan befolgen, einfach nur nein sagen. Wenn etwas passiert, einfach grinsen und ertragen! Wenn Ihre Zeit und Ihre Daten nicht so wichtig sind, dann ist die Strategie Tue nichts das geeignetste Backupprogramm für Ihren Computer. Aber &unix; ist ein nützliches Werkzeug, Sie müssen damit rechnen, dass Sie innerhalb von sechs Monaten eine Sammlung von Dateien haben, die für Sie wertvoll geworden sind. Tue nichts ist die richtige Backupmethode für /usr/obj und andere Verzeichnisbäume, die vom Computer exakt wiedererzeugt werden können. Ein Beispiel sind die Dateien, die diese Handbuchseiten darstellen – sie wurden aus Quelldateien im Format SGML erzeugt. Es ist nicht nötig, Sicherheitskopien der Dateien in den sekundären Formaten wie etwa HTML zu erstellen. Die Quelldateien in SGML sollten jedoch in die regelmäßigen Backups mit einbezogen werden. Welches Backup-Programm ist am Besten? LISA dump, Punkt und Schluss. Elizabeth D. Zwicky hat alle hier genannten Backup-Programme bis zur Erschöpfung ausgetestet. Ihre eindeutige Wahl zur Sicherung aller Daten mit Berücksichtigung aller Besonderheiten von &unix; Dateisystemen ist dump. Elizabeth erzeugte Dateisysteme mit einer großen Vielfalt ungewöhnlicher Bedingungen (und einiger gar nicht so ungewöhnlicher) und testete jedes Programm durch ein Backup und eine Wiederherstellung dieser Dateisysteme. Unter den Besonderheiten waren Dateien mit Löchern, Dateien mit Löchern und einem Block mit Null-Zeichen, Dateien mit ausgefallenen Buchstaben im Dateinamen, unlesbare und nichtschreibbare Dateien, Gerätedateien, Dateien, deren Länge sich während des Backups ändert, Dateien, die während des Backups erzeugt und gelöscht werden, u.v.m. Sie berichtete über ihre Ergebnisse in LISA V im Oktober 1991, s. Torture-testing Backup and Archive Programs. Die Wiederherstellung in einem Notfall Vor dem Unglück Es sind nur vier Vorkehrungen zu treffen, um auf jedes erdenkliche Unglück vorbereitet zu sein. bsdlabel Als erstes drucken Sie das bsdlabel jeder Ihrer Festplatten (z.B. mittels bsdlabel da0 | lpr), die Partitions- und Dateisystemtabelle jeder Festplatte (mit /etc/fstab) sowie alle Bootmeldungen, jeweils in zweifacher Ausfertigung. Live-CD Zweitens brennen Sie eine livefs-CD. Diese CD-ROM enthält alle nötigen Programme, um in einen Reperaturmodus zu starten, aus dem heraus Sie unter anderem &man.dump.8;, &man.restore.8;, &man.fdisk.8;, &man.bsdlabel.8;, &man.newfs.8; sowie &man.mount.8; starten können. ISO-Abbilder für das livefs-System finden Sie unter . Drittens, machen Sie oft Backups auf Band. Jede Änderung seit Ihrem letzten Backup kann unwiederbringlich verloren gehen. Versehen Sie die Backup-Bänder mit Schreibschutz. Viertens, testen Sie das in Schritt 2 erstellte livefs-System sowie die für das Backup notwendigen Bänder. Dokumentieren Sie diesen Test und bewahren Sie diese Notizen zusammen mit der livefs-CD und den Bändern auf. Wenn der Ernstfall eintritt, werden Sie vielleicht so genervt sein, dass Sie ohne Ihre Notizen vielleicht das Backup auf Ihren Bändern zerstören. (Wie das geht? Man braucht nur unglücklicherweise den Befehl tar cvf /dev/sa0 einzugeben um ein Band zu überschreiben). Als zusätzliche Sicherheitsvorkehrung, kann man jeweils die livefs-CD und Bänder doppelt erstellen. Eine der Kopien sollte an einem entfernten Standort aufbewahrt werden. Ein entfernter Standort ist NICHT der Keller im gleichen Bürogebäude. Eine Anzahl von Firmen im World Trade Center musste diese Lektion auf die harte Tour lernen. Ein entfernter Standort sollte von Ihrem Computer und Ihren Festplatten physikalisch durch eine erhebliche Entfernung getrennt sein. Nach dem Unglück Die Schlüsselfrage ist, ob Ihre Hardware überlebt hat. Denn da Sie ja regelmäßig Backups angefertigt haben, brauchen Sie sich um die Software keine Sorgen zu machen. Falls die Hardware beschädigt wurde, ersetzen Sie zuerst die defekten Teile bevor Sie den Computer benutzen. Falls die Hardware funktioniert, legen Sie die livefs-CD in das Laufwerk ein und starten den Rechner, wodurch das originale Installationsprogramm von &os; gestartet wird. Legen Sie zuerst Ihr Land fest. Danach öffnen Sie das Menü Fixit -- Repair mode with CDROM/DVD/floppy or start a shell. und wählen den Eintrag CDROM/DVD -- Use the live filesystem CDROM/DVD aus. restore und die anderen Programme, die Sie benötigen, befinden sich dann im Verzeichnis /mnt2/rescue. Stellen Sie die Dateisysteme nacheinander wieder her. mount Root-Partition bsdlabel newfs Versuchen Sie die Root-Partition Ihrer ersten Festplatte einzuhängen (z.B. mit mount /dev/sd0a /mnt). Wenn das Bsdlabel beschädigt wurde, benutzen Sie bsdlabel um die Platte neu zu partitionieren und zu benennen und zwar so, dass die Festplatte mit dem Label übereinstimmt, das Sie ausgedruckt und aufbewahrt haben. Verwenden Sie newfs um neue Dateisysteme auf den Partitionen anzulegen. Hängen Sie nun die Root-Partition der Festplatte mit Schreibzugriff ein (mit mount -u -o rw /mnt). Benutzen Sie Ihr Backup-Programm um die Daten für das jeweilige Dateisystem aus den Backup-Bändern wieder her zu stellen (z.B. durch restore vrf /dev/sta). Hängen Sie das Dateisystem wieder aus (z.B. durch umount /mnt). Wiederholen Sie diesen Ablauf für jedes betroffene Dateisystem. Sobald Ihr System wieder läuft, machen Sie gleich wieder ein vollständiges Backup auf neue Bänder. Denn die Ursache für den Absturz oder den Datenverlust kann wieder zuschlagen. Eine weitere Stunde, die Sie jetzt noch dranhängen, kann Ihnen später ein weiteres Missgeschick ersparen. * Ich habe mich nicht auf Missgeschicke vorbereitet - was nun? ]]> Marc Fonvieille Verbessert und neu strukturiert von Netzwerk-, speicher- und dateibasierte Dateisysteme Laufwerke virtuelle Neben Laufwerken, die sich physikalisch im Rechner befinden wie Floppylaufwerke, CDs, Festplatten usw., kann FreeBSD auch mit anderen Laufwerken, den virtuellen Laufwerken, umgehen. NFS Coda Laufwerke speicherbasierte Laufwerke RAM-Disks Dazu zählen Netzwerkdateisysteme wie Network Filesystem und Coda, speicher- und dateibasierte Dateisysteme. Abhängig von der verwendeten FreeBSD Version werden speicher- und dateibasierte Dateisysteme mit unterschiedlichen Werkzeugen angelegt. Gerätedateien werden unter &os; automatisch von &man.devfs.5; angelegt. Dateibasierte Laufwerke unter FreeBSD Laufwerke dateibasierte Unter FreeBSD werden virtuelle Laufwerke (&man.md.4;) mit &man.mdconfig.8; erzeugt. Dazu muss das Modul &man.md.4; geladen sein oder das entsprechende Gerät in der Kernelkonfiguration aktiviert sein: device md Mit &man.mdconfig.8; können drei verschiedene virtuelle Laufwerke angelegt werden: speicherbasierte Laufwerke, deren Speicher von &man.malloc.9; zur Verfügung gestellt wird, oder dateibasierte Laufwerke, deren Speicher von einer Datei oder dem Swap-Bereich zur Verfügung gestellt wird. Eine mögliche Anwendung ist das Einhängen von Dateien, die Abbilder von CD-ROMs oder Floppies enthalten. Das Abbild eines Dateisystems wird wie folgt eingehangen: Einhängen eines existierenden Abbildes unter FreeBSD &prompt.root; mdconfig -a -t vnode -f diskimage -u 0 &prompt.root; mount /dev/md0 /mnt Ein neues Dateisystem-Abbild erstellen Sie mit &man.mdconfig.8; wie folgt: Erstellen eines dateibasierten Laufwerks mit <command>mdconfig</command> &prompt.root; dd if=/dev/zero of=newimage bs=1k count=5k 5120+0 records in 5120+0 records out &prompt.root; mdconfig -a -t vnode -f newimage -u 0 &prompt.root; bsdlabel -w md0 auto &prompt.root; newfs md0a /dev/md0a: 5.0MB (10224 sectors) block size 16384, fragment size 2048 using 4 cylinder groups of 1.25MB, 80 blks, 192 inodes. super-block backups (for fsck -b #) at: 160, 2720, 5280, 7840 &prompt.root; mount /dev/md0a /mnt &prompt.root; df /mnt Filesystem 1K-blocks Used Avail Capacity Mounted on /dev/md0a 4710 4 4330 0% /mnt Wenn Sie keine Gerätenummer mit dem Schalter angeben, wird von &man.md.4; automatisch eine ungenutzte Gerätenummer zugewiesen. Das zugewiesene Gerät wird auf der Standardausgabe ausgegeben (zum Beispiel md4). Weitere Informationen entnehmen Sie bitte der Hilfeseite &man.mdconfig.8;. Das Werkzeug &man.mdconfig.8; ist sehr nützlich, doch muss man viele Kommandos absetzen, um ein dateibasiertes Dateisystem zu erstellen. FreeBSD enthält das Werkzeug &man.mdmfs.8;, das die notwendigen Schritte in einem Befehl zusammenfasst. Es konfiguriert mit &man.mdconfig.8; ein &man.md.4;-Laufwerk, erstellt darauf mit &man.newfs.8; ein Dateisystem und hängt es anschließend mit &man.mount.8; ein. Das virtuelle Laufwerk aus dem obigen Beispiel kann somit einfach mit den nachstehenden Befehlen erstellt werden: Mit <command>mdmfs</command> ein dateibasiertes Dateisystem erstellen &prompt.root; dd if=/dev/zero of=newimage bs=1k count=5k 5120+0 records in 5120+0 records out &prompt.root; mdmfs -F newimage -s 5m md0 /mnt &prompt.root; df /mnt Filesystem 1K-blocks Used Avail Capacity Mounted on /dev/md0 4718 4 4338 0% /mnt Wenn sie die Option ohne Gerätenummer verwenden, wählt &man.md.4; automatisch ein ungenutztes Gerät aus. Weitere Einzelheiten entnehmen Sie bitte der Hilfeseite &man.mdmfs.8;. Speicherbasierte Laufwerke unter FreeBSD Laufwerke speicherbasierte Verwenden Sie ein speicherbasiertes Dateisystem, sollten Sie die Option swap backing aktivieren. Setzen Sie diese Option, heißt dies allerdings nicht, dass das speicherbasierte Laufwerk automatisch auf ihre Festplatte ausgelagert wird, vielmehr wird der Speicherplatz danach aus einem Speicherpool angefordert, der bei Bedarf auf die Platte ausgelagert werden kann. Zusätzlich ist es möglich, &man.malloc.9;-gestützte speicherbasierte Laufwerke zu erstellen. Das Anlegen solcher Laufwerke kann allerdings zu einer System-Panic führen, wenn der Kernel danach über zu wenig Speicher verfügt. Erstellen eines speicherbasierten Laufwerks mit <command>mdconfig</command> &prompt.root; mdconfig -a -t swap -s 5m -u 1 &prompt.root; newfs -U md1 /dev/md1: 5.0MB (10240 sectors) block size 16384, fragment size 2048 using 4 cylinder groups of 1.27MB, 81 blks, 192 inodes. with soft updates super-block backups (for fsck -b #) at: 160, 2752, 5344, 7936 &prompt.root; mount /dev/md1 /mnt &prompt.root; df /mnt Filesystem 1K-blocks Used Avail Capacity Mounted on /dev/md1 4718 4 4338 0% /mnt Erstellen eines speicherbasierten Laufwerks mit <command>mdmfs</command> &prompt.root; mdmfs -s 5m md2 /mnt &prompt.root; df /mnt &prompt.root; df /mnt Filesystem 1K-blocks Used Avail Capacity Mounted on /dev/md2 4846 2 4458 0% /mnt Virtuelle Laufwerke freigeben Laufwerke Freigabe von virtuellen Laufwerken Wenn ein virtuelles Laufwerk nicht mehr gebraucht wird, sollten Sie dem System die belegten Ressourcen zurückgeben. Hängen Sie dazu zuerst das Dateisystem ab und geben Sie dann die benutzten Ressourcen mit &man.mdconfig.8; frei. Alle von /dev/md4 belegten Ressourcen werden mit dem nachstehenden Kommando freigegeben: &prompt.root; mdconfig -d -u 4 Eingerichtete &man.md.4;-Geräte werden mit dem Befehl mdconfig -l angezeigt. Tom Rhodes Beigetragen von Schnappschüsse von Dateisystemen Schnappschüsse von Dateisystemen Zusammen mit Soft Updates bietet FreeBSD eine neue Funktion: Schnappschüsse von Dateisystemen. Schnappschüsse sind Dateien, die ein Abbild eines Dateisystems enthalten und müssen auf dem jeweiligen Dateisystem erstellt werden. Pro Dateisystem darf es maximal 20 Schnappschüsse, die im Superblock vermerkt werden, geben. Schnappschüsse bleiben erhalten, wenn das Dateisystem abgehangen, neu eingehangen oder das System neu gestartet wird. Wenn Sie einen Schnappschuss nicht mehr benötigen, können Sie ihn mit &man.rm.1; löschen. Es ist egal, in welcher Reihenfolge Schnappschüsse gelöscht werden. Es kann allerdings vorkommen, dass nicht der gesamte Speicherplatz wieder freigegeben wird, da ein anderer Schnappschuss einen Teil der entfernten Blöcke für sich beanspruchen kann. Das unveränderliche -Dateiflag wird nach der Erstellung des Snaphshots von &man.mksnap.ffs.8; gesetzt. Durch die Verwendung von &man.unlink.1; ist es allerdings möglich, einen Schnappschuss zu löschen. Schnappschüsse werden mit &man.mount.8; erstellt. Das folgende Kommando legt einen Schnappschuss von /var in /var/snapshot/snap ab: &prompt.root; mount -u -o snapshot /var/snapshot/snap /var Den Schnappschuss können Sie auch mit &man.mksnap.ffs.8; erstellen: &prompt.root; mksnap_ffs /var /var/snapshot/snap Um einen Schnappschuss auf Ihrem System zu finden, verwenden Sie &man.find.1;: &prompt.root; find /var -flags snapshot Nachdem ein Schnappschuss erstellt wurde, können Sie ihn für verschiedene Zwecke benutzen: Sie können den Schnappschuss für die Datensicherung benutzen und ihn auf eine CD oder ein Band schreiben. Sie können den Schnappschuss mit &man.fsck.8; manuell prüfen. Wenn das Dateisystem zum Zeitpunkt der Erstellung des Schnappschusses in Ordnung war, sollte &man.fsck.8; immer erfolgreich durchlaufen. Der Hintergrund-Prozess &man.fsck.8; hat im Übrigen genau diese Aufgabe. Sie können den Schnappschuss mit &man.dump.8; sichern. Sie erhalten dann eine konsistente Sicherung des Dateisystems zu dem Zeitpunkt, der durch den Zeitstempel des Schnappschusses gegeben ist. Der Schalter von &man.dump.8; erstellt für die Sicherung einen Schnappschuss und entfernt diesen am Ende der Sicherung wieder. Sie können einen Schnappschuss in den Verzeichnisbaum einhängen und sich dann den Zustand des Dateisystems zu dem Zeitpunkt ansehen, an dem der Schnappschuss erstellt wurde. Der folgende Befehl hängt den Schnappschuss /var/snapshot/snap ein: &prompt.root; mdconfig -a -t vnode -f /var/snapshot/snap -u 4 &prompt.root; mount -r /dev/md4 /mnt Sie können sich nun den eingefrorenen Stand des /var Dateisystems unterhalb von /mnt ansehen. Mit Ausnahme der früheren Schnappschüsse, die als leere Dateien auftauchen, wird zu Beginn alles so aussehen, wie zum Zeitpunkt der Erstellung des Schnappschusses. Wenn Sie den Schnappschuss nicht mehr benötigen, können Sie ihn, wie nachfolgend gezeigt, abhängen: &prompt.root; umount /mnt &prompt.root; mdconfig -d -u 4 Weitere Informationen über Soft Updates und Schnappschüsse von Dateisystemen sowie technische Artikel finden Sie auf der Webseite von Marshall Kirk McKusick. Dateisystem-Quotas Accounting Plattenplatz Disk Quotas Quotas sind eine optionale Funktion des Betriebssystems, die es Ihnen erlauben, den Plattenplatz und/oder die Anzahl der Dateien eines Benutzers oder der Mitglieder einer Gruppe, auf Dateisystemebene zu beschränken. Oft wird dies auf Timesharing-Systemen (Mehrbenutzersystemen) genutzt, da es dort erwünscht ist, die Ressourcen, die ein Benutzer oder eine Gruppe von Benutzern belegen können, zu limitieren. Das verhindert, dass ein Benutzer oder eine Gruppe von Benutzern den ganzen verfügbaren Plattenplatz belegt. Konfiguration des Systems, um Quotas zu aktivieren Bevor Quotas benutzt werden können, müssen sie im Kernel konfiguriert werden, wozu die folgende Zeile der Kernelkonfiguration hinzugefügt wird: options QUOTA Im gewöhnlichen GENERIC Kernel sind Quotas nicht aktiviert, so dass Sie einen angepassten Kernel konfigurieren und bauen müssen, um Quotas zu benutzen. Weitere Informationen finden Sie in . Durch Hinzufügen der folgenden Zeile in /etc/rc.conf wird das Quota-System aktiviert: enable_quotas="YES" Disk Quotas überprüfen Um den Start des Quota-Systems zu beeinflussen, steht eine weitere Variable zur Verfügung. Normalerweise wird beim Booten die Integrität der Quotas auf allen Dateisystemen mit &man.quotacheck.8; überprüft. &man.quotacheck.8; stellt sicher, dass die Quota-Datenbank mit den Daten auf einem Dateisystem übereinstimmt. Dies ist allerdings ein sehr zeitraubender Prozess, der die Zeit, die das System zum Booten braucht, signifikant beeinflusst. Eine Variable in /etc/rc.config erlaubt es Ihnen, diesen Schritt zu überspringen: check_quotas="NO" Schließlich müssen Sie noch in /etc/fstab die Plattenquotas auf Dateisystemebene aktivieren. Dort können Sie für alle Dateisysteme Quotas für Benutzer, Gruppen oder für beide aktivieren. Um Quotas pro Benutzer für ein Dateisystem zu aktivieren, geben Sie für dieses Dateisystem die Option im Feld Optionen von /etc/fstab an. Beispiel: /dev/da1s2g /home ufs rw,userquota 1 2 Um Quotas für Gruppen einzurichten, verwenden Sie anstelle von . Um Quotas für Benutzer und Gruppen einzurichten, ändern Sie den Eintrag wie folgt ab: /dev/da1s2g /home ufs rw,userquota,groupquota 1 2 Die Quotas werden jeweils im Rootverzeichnis des Dateisystems unter dem Namen quota.user für Benutzer-Quotas und quota.group für Gruppen-Quotas abgelegt. Obwohl &man.fstab.5; beschreibt, dass diese Dateien an anderer Stelle gespeichert werden können, wird das nicht empfohlen, da es den Anschein hat, dass die verschiedenen Quota-Utilities das nicht richtig unterstützen. Jetzt sollten Sie Ihr System mit dem neuen Kernel booten. /etc/rc wird dann automatisch die richtigen Kommandos aufrufen, die die Quota-Dateien für alle Quotas, die Sie in /etc/fstab definiert haben, anlegen. Deshalb müssen vorher auch keine leeren Quota-Dateien angelegt werden. Normalerweise brauchen Sie die Kommandos &man.quotacheck.8;, &man.quotaon.8; oder &man.quotaoff.8; nicht händisch aufzurufen, obwohl Sie vielleicht die entsprechenden Seiten im Manual lesen sollten, um sich mit ihnen vertraut zu machen. Setzen von Quota-Limits Disk Quotas Limits Nachdem Sie Quotas in Ihrem System aktiviert haben, sollten Sie überprüfen, dass Sie auch tatsächlich aktiviert sind. Führen Sie dazu einfach den folgenden Befehl aus: &prompt.root; quota -v Für jedes Dateisystem, auf dem Quotas aktiviert sind, sollten Sie eine Zeile mit der Plattenauslastung und den aktuellen Quota-Limits sehen. Mit &man.edquota.8; können Sie nun Quota-Limits setzen. Sie haben mehrere Möglichkeiten, die Limits für den Plattenplatz, den ein Benutzer oder eine Gruppe verbrauchen kann, oder die Anzahl der Dateien, die angelegt werden dürfen, festzulegen. Die Limits können auf dem Plattenplatz (Block-Quotas) oder der Anzahl der Dateien (Inode-Quotas) oder einer Kombination von beiden basieren. Jedes dieser Limits wird weiterhin in zwei Kategorien geteilt: Hardlimits und Softlimits. Hardlimit Ein Hardlimit kann nicht überschritten werden. Hat der Benutzer einmal ein Hardlimit erreicht, so kann er auf dem betreffenden Dateisystem keinen weiteren Platz mehr beanspruchen. Hat ein Benutzer beispielsweise ein Hardlimit von 500 Kilobytes auf einem Dateisystem und benutzt davon 490 Kilobyte, so kann er nur noch 10 weitere Kilobytes beanspruchen. Der Versuch, weitere 11 Kilobytes zu beanspruchen, wird fehlschlagen. Softlimit Im Gegensatz dazu können Softlimits für eine befristete Zeit überschritten werden. Diese Frist beträgt in der Grundeinstellung eine Woche. Hat der Benutzer das Softlimit über die Frist hinaus überschritten, so wird das Softlimit in ein Hardlimit umgewandelt und der Benutzer kann keinen weiteren Platz mehr beanspruchen. Wenn er einmal das Softlimit unterschreitet, wird die Frist wieder zurückgesetzt. Das folgende Beispiel zeigt die Benutzung von &man.edquota.8;. Wenn &man.edquota.8; aufgerufen wird, wird der Editor gestartet, der durch EDITOR gegeben ist oder vi falls EDITOR nicht gesetzt ist. In dem Editor können Sie die Limits eingeben. &prompt.root; edquota -u test Quotas for user test: /usr: kbytes in use: 65, limits (soft = 50, hard = 75) inodes in use: 7, limits (soft = 50, hard = 60) /usr/var: kbytes in use: 0, limits (soft = 50, hard = 75) inodes in use: 0, limits (soft = 50, hard = 60) Für jedes Dateisystem, auf dem Quotas aktiv sind, sehen Sie zwei Zeilen, eine für die Block-Quotas und die andere für die Inode-Quotas. Um ein Limit zu modifizieren, ändern Sie einfach den angezeigten Wert. Um beispielsweise das Blocklimit dieses Benutzers von einem Softlimit von 50 und einem Hardlimit von 75 auf ein Softlimit von 500 und ein Hardlimit von 600 zu erhöhen, ändern Sie die Zeile /usr: kbytes in use: 65, limits (soft = 50, hard = 75) zu: /usr: kbytes in use: 65, limits (soft = 500, hard = 600) Die neuen Limits sind wirksam, wenn Sie den Editor verlassen. Manchmal ist es erwünscht, die Limits für einen Bereich von UIDs zu setzen. Dies kann mit der Option von &man.edquota.8; bewerkstelligt werden. Weisen Sie dazu die Limits einem Benutzer zu und rufen danach edquota -p protouser startuid-enduid auf. Besitzt beispielsweise der Benutzer test die gewünschten Limits, können diese mit dem folgenden Kommando für die UIDs 10.000 bis 19.999 dupliziert werden: &prompt.root; edquota -p test 10000-19999 Weitere Informationen erhalten Sie in &man.edquota.8;. Überprüfen von Quota-Limits und Plattennutzung Disk Quotas überprüfen Sie können &man.quota.1; oder &man.repquota.8; benutzen, um Quota-Limits und Plattennutzung zu überprüfen. Um die Limits oder die Plattennutzung individueller Benutzer und Gruppen zu überprüfen, kann &man.quota.1; benutzt werden. Ein Benutzer kann nur die eigenen Quotas und die Quotas der Gruppe, der er angehört untersuchen. Nur der Superuser darf sich alle Limits ansehen. Mit &man.repquota.8; erhalten Sie eine Zusammenfassung von allen Limits und der Plattenausnutzung für alle Dateisysteme, auf denen Quotas aktiv sind. Das folgende Beispiel zeigt die Ausgabe von quota -v für einen Benutzer, der Quota-Limits auf zwei Dateisystemen besitzt: Disk quotas for user test (uid 1002): Filesystem usage quota limit grace files quota limit grace /usr 65* 50 75 5days 7 50 60 /usr/var 0 50 75 0 50 60 Disk Quotas Frist Im Dateisystem /usr liegt der Benutzer momentan 15 Kilobytes über dem Softlimit von 50 Kilobytes und hat noch 5 Tage seiner Frist übrig. Der Stern * zeigt an, dass der Benutzer sein Limit überschritten hat. In der Ausgabe von &man.quota.1; werden Dateisysteme, auf denen ein Benutzer keinen Platz verbraucht, nicht angezeigt, auch wenn diesem Quotas zugewiesen wurden. Mit werden diese Dateisysteme, wie /usr/var im obigen Beispiel, angezeigt. Quotas über NFS NFS Quotas werden von dem Quota-Subsystem auf dem NFS Server erzwungen. Der &man.rpc.rquotad.8; Dæmon stellt &man.quota.1; die Quota Informationen auf dem NFS Client zur Verfügung, so dass Benutzer auf diesen Systemen ihre Quotas abfragen können. Aktivieren Sie rpc.rquotad in /etc/inetd.conf wie folgt: rquotad/1 dgram rpc/udp wait root /usr/libexec/rpc.rquotad rpc.rquotad Anschließend starten Sie inetd neu: &prompt.root; /etc/rc.d/inetd restart Lucky Green Beigetragen von
shamrock@cypherpunks.to
Partitionen verschlüsseln Partitionen verschlüsseln FreeBSD bietet ausgezeichnete Möglichkeiten, Daten vor unberechtigten Zugriffen zu schützen. Wenn das Betriebssystem läuft, schützen Zugriffsrechte und vorgeschriebene Zugriffskontrollen (MAC) (siehe ) die Daten. Die Zugriffskontrollen des Betriebssystems schützen allerdings nicht vor einem Angreifer, der Zugriff auf den Rechner hat. Der Angreifer kann eine Festplatte einfach in ein anderes System einbauen und dort die Daten analysieren. Die für &os; verfügbaren kryptografischen Subsysteme GEOM Based Disk Encryption (gbde) und geli sind in der Lage, Daten auf Dateisystemen auch vor hoch motivierten Angreifern zu schützen, die über erhebliche Mittel verfügen. Dieser Schutz ist unabhängig von der Art und Weise, durch die ein Angreifer Zugang zu einer Festplatte oder zu einem Rechner erlangt hat. Im Gegensatz zu schwerfälligen Systemen, die einzelne Dateien verschlüsseln, verschlüsseln gbde und geli transparent ganze Dateisysteme. Auf der Festplatte werden dabei keine Daten im Klartext gespeichert. Plattenverschlüsselung mit <application>gbde</application> Wechseln sie zu <username>root</username> Sie benötigen Superuser-Rechte, um gbde einzurichten. &prompt.user; su - Password: Aktivieren Sie &man.gbde.4; in der Kernelkonfigurationsdatei Fügen Sie folgende Zeile in Ihre Kernelkonfigurationsdatei ein: options GEOM_BDE Übersetzen und installieren Sie den FreeBSD-Kernel wie in beschrieben. Starten sie das System neu, um den neuen Kernel zu benutzen. Alternativ zur Neukompilierung des Kernels können Sie auch kldload verwenden, um das Kernelmodul &man.gbde.4; zu laden: &prompt.root; kldload geom_bde Einrichten eines verschlüsselten Dateisystems Das folgende Beispiel beschreibt, wie ein Dateisystem auf einer neuen Festplatte verschlüsselt wird. Das Dateisystem wird in /private eingehangen. Mit gbde könnten auch /home und /var/mail verschlüsselt werden. Die dazu nötigen Schritte können allerdings in dieser Einführung nicht behandelt werden. Installieren der Festplatte Installieren Sie die Festplatte wie in beschrieben. Im Beispiel verwenden wir die Partition /dev/ad4s1c. Die Gerätedateien /dev/ad0s1* sind Standard-Partitionen des FreeBSD-Systems. &prompt.root; ls /dev/ad* /dev/ad0 /dev/ad0s1b /dev/ad0s1e /dev/ad4s1 /dev/ad0s1 /dev/ad0s1c /dev/ad0s1f /dev/ad4s1c /dev/ad0s1a /dev/ad0s1d /dev/ad4 Verzeichnis für gbde-Lock-Dateien anlegen &prompt.root; mkdir /etc/gbde Die Lock-Dateien sind für den Zugriff von gbde auf verschlüsselte Partitionen notwendig. Ohne die Lock-Dateien können die Daten nur mit erheblichem manuellen Aufwand wieder entschlüsselt werden (dies wird auch von der Software nicht unterstützt). Jede verschlüsselte Partition benötigt eine gesonderte Lock-Datei. Vorbereiten der gbde-Partition Eine von gbde benutzte Partition muss einmalig vorbereitet werden: &prompt.root; gbde init /dev/ad4s1c -i -L /etc/gbde/ad4s1c.lock &man.gbde.8; öffnet eine Vorlage in Ihrem Editor, in der Sie verschiedene Optionen einstellen können. Setzen Sie sector_size auf 2048, wenn Sie UFS1 oder UFS2 benutzen. $FreeBSD: src/sbin/gbde/template.txt,v 1.1 2002/10/20 11:16:13 phk Exp $ # # Sector size is the smallest unit of data which can be read or written. # Making it too small decreases performance and decreases available space. # Making it too large may prevent filesystems from working. 512 is the # minimum and always safe. For UFS, use the fragment size # sector_size = 2048 [...] &man.gbde.8; fragt dann zweimal eine Passphrase zum Schutz der Daten ab. Die Passphrase muss beides Mal gleich eingegeben werden. Die Sicherheit der Daten hängt alleine von der Qualität der gewählten Passphrase ab. Die Auswahl einer sicheren und leicht zu merkenden Passphrase wird auf der Webseite Diceware Passphrase beschrieben. Mit gbde init wurde im Beispiel auch die Lock-Datei /etc/gbde/ad4s1c.lock angelegt. gbde-Lockdateien müssen die Dateiendung .lock aufweisen, damit sie von /etc/rc.d/gbde, dem Startskript von gbde, erkannt werden. Sichern Sie die Lock-Dateien von gbde immer zusammen mit den verschlüsselten Dateisystemen. Ein entschlossener Angreifer kann die Daten vielleicht auch ohne die Lock-Datei entschlüsseln. Ohne die Lock-Datei können Sie allerdings nicht auf die verschlüsselten Daten zugreifen. Dies ist nur noch mit erheblichem manuellen Aufwand möglich, der weder von &man.gbde.8; noch seinem Entwickler unterstützt wird. Einbinden der verschlüsselten Partition in den Kernel &prompt.root; gbde attach /dev/ad4s1c -l /etc/gbde/ad4s1c.lock Das Kommando fragt die Passphrase ab, die Sie beim Vorbereiten der Partition eingegeben haben. Das neue Gerät erscheint danach als /dev/device_name.bde im Verzeichnis /dev: &prompt.root; ls /dev/ad* /dev/ad0 /dev/ad0s1b /dev/ad0s1e /dev/ad4s1 /dev/ad0s1 /dev/ad0s1c /dev/ad0s1f /dev/ad4s1c /dev/ad0s1a /dev/ad0s1d /dev/ad4 /dev/ad4s1c.bde Dateisystem auf dem verschlüsselten Gerät anlegen Wenn der Kernel die verschlüsselte Partition kennt, können Sie ein Dateisystem auf ihr anlegen. Benutzen Sie dazu den Befehl &man.newfs.8;. Da ein Dateisystem vom Typ UFS2 sehr viel schneller als eins vom Typ UFS1 angelegt wird, empfehlen wir Ihnen, die Option zu benutzen. &prompt.root; newfs -U -O2 /dev/ad4s1c.bde &man.newfs.8; muss auf einer dem Kernel bekannten gbde-Partition (einem Gerät mit dem Namen *.bde laufen. Einhängen der verschlüsselten Partition Legen Sie einen Mountpunkt für das verschlüsselte Dateisystem an: &prompt.root; mkdir /private Hängen Sie das verschlüsselte Dateisystem ein: &prompt.root; mount /dev/ad4s1c.bde /private Überprüfen des verschlüsselten Dateisystem Das verschlüsselte Dateisystem sollte jetzt von &man.df.1; erkannt werden und benutzt werden können. &prompt.user; df -H Filesystem Size Used Avail Capacity Mounted on /dev/ad0s1a 1037M 72M 883M 8% / /devfs 1.0K 1.0K 0B 100% /dev /dev/ad0s1f 8.1G 55K 7.5G 0% /home /dev/ad0s1e 1037M 1.1M 953M 0% /tmp /dev/ad0s1d 6.1G 1.9G 3.7G 35% /usr /dev/ad4s1c.bde 150G 4.1K 138G 0% /private Einhängen eines existierenden verschlüsselten Dateisystems Nach jedem Neustart müssen verschlüsselte Dateisysteme dem Kernel wieder bekannt gemacht werden, auf Fehler überprüft werden und eingehangen werden. Die dazu nötigen Befehle müssen als root durchgeführt werden. gbde-Partition im Kernel bekannt geben &prompt.root; gbde attach /dev/ad4s1c -l /etc/gbde/ad4s1c.lock Das Kommando fragt nach der Passphrase, die Sie beim Vorbereiten der verschlüsselten gbde-Partition festgelegt haben. Prüfen des Dateisystems Das verschlüsselte Dateisystem kann noch nicht automatisch über /etc/fstab eingehangen werden. Daher muss es vor dem Einhängen mit &man.fsck.8; geprüft werden: &prompt.root; fsck -p -t ffs /dev/ad4s1c.bde Einhängen des verschlüsselten Dateisystems &prompt.root; mount /dev/ad4s1c.bde /private Das verschlüsselte Dateisystem steht danach zur Verfügung. Verschlüsselte Dateisysteme automatisch einhängen Mit einem Skript können verschlüsselte Dateisysteme automatisch bekannt gegeben, geprüft und eingehangen werden. Wir raten Ihnen allerdings aus Sicherheitsgründen davon ab. Starten Sie das Skript manuell an der Konsole oder in einer &man.ssh.1;-Sitzung. Zu diesem Zweck existiert ein rc.d-Skript, an das über Einträge in der Datei &man.rc.conf.5; Argumente übergeben werden können. Dazu ein Beispiel: gbde_autoattach_all="YES" gbde_devices="ad4s1c" gbde_lockdir="/etc/gbde" Durch diese Argumente muss beim Systemstart die gbde-Passphrase eingegeben werden. Erst nach Eingabe der korrekten Passphrase wird die gbde-verschlüsselte Partition automatisch in den Verzeichnisbaum eingehängt. Dieses Vorgehen ist insbesondere dann nützlich, wenn Sie gbde auf einem Notebook einsetzen wollen. Kryptografische Methoden von gbde &man.gbde.8; benutzt den 128-Bit AES im CBC-Modus, um die Daten eines Sektors zu verschlüsseln. Jeder Sektor einer Festplatte wird mit einem unterschiedlichen AES-Schlüssel verschlüsselt. Mehr Informationen, unter anderem wie die Schlüssel für einen Sektor aus der gegebenen Passphrase ermittelt werden, erhalten Sie in &man.gbde.4;. Kompatibilität &man.sysinstall.8; kann nicht mit verschlüsselten gbde-Geräten umgehen. Vor dem Start von &man.sysinstall.8; sind alle *.bde-Geräte zu deaktivieren, da &man.sysinstall.8; sonst bei der Gerätesuche abstürzt. Das im Beispiel verwendete Gerät wird mit dem folgenden Befehl deaktiviert: &prompt.root; gbde detach /dev/ad4s1c Sie können gbde nicht zusammen mit vinum benutzen, da &man.vinum.4; das &man.geom.4;-Subsystem nicht benutzt. Daniel Gerzo Beigetragen von Plattenverschlüsselung mit <command>geli</command> Mit &os; 6.0 wurde eine neue kryptografische GEOM-Klasse eingeführt - geli. Diese wird derzeit von &a.pjd; weiterentwickelt. geli unterscheidet sich von gbde durch unterschiedliche Fähigkeiten und einen unterschiedlichen Ansatz für die Verschlüsselung von Festplatten. Die wichtigsten Merkmale von &man.geli.8; sind: Der Einsatz des &man.crypto.9;-Frameworks – verfügt das System über kryptografische Hardware, wird diese von geli automatisch verwendet. Die Unterstützung verschiedener kryptografischer Algorithmen (derzeit AES, Blowfish, sowie 3DES). Die Möglichkeit, die root-Partition zu verschlüsseln. Um auf die verschlüsselte root-Partition zugreifen zu können, muss beim Systemstart die Passphrase eingegeben werden. geli erlaubt den Einsatz von zwei voneinander unabhängigen Schlüsseln (etwa einem privaten Schlüssel und einem Unternehmens-Schlüssel). geli ist durch einfache Sektor-zu-Sektor-Verschlüsselung sehr schnell. Die Möglichkeit, Master-Keys zu sichern und wiederherzustellen. Wenn ein Benutzer seinen Schlüssel zerstört, kann er über seinen zuvor gesicherten Schlüssel wieder auf seine Daten zugreifen. geli erlaubt es, Platten mit einem zufälligen Einmal-Schlüssel einzusetzen, was insbesondere für Swap-Partitionen und temporäre Dateisysteme interessant ist. Weitere Informationen zu den Fähigkeiten von geli finden Sie in &man.geli.8;. Die folgenden Schritte beschreiben, wie Sie geli im &os;-Kernel aktivieren und einen geli-Verschlüsselungs-Provider anlegen können. Voraussetzung für die Nutzung von geli ist der Einsatz von &os; 6.0-RELEASE oder neuer. Da Sie Ihren Kernel anpassen müssen, benötigen Sie außerdem root-Privilegien. Aufnahme der <command>geli</command>-Unterstützung in Ihre Kernelkonfigurationsdatei Fügen Sie die folgenden Zeilen in Ihre Kernelkonfigurationsdatei ein: options GEOM_ELI device crypto Bauen und installieren Sie Ihren neuen Kernel wie in beschrieben. Alternativ können Sie aber auch das geli-Kernelmodul beim Systemstart laden. Dazu fügen Sie die folgende Zeile in /boot/loader.conf ein: geom_eli_load="YES" Ab sofort wird &man.geli.8; vom Kernel unterstützt. Erzeugen des Master-Keys Das folgende Beispiel beschreibt, wie Sie eine Schlüsseldatei erzeugen, die als Teil des Master-Keys für den Verschlüsselungs-Provider verwendet wird, der unter /private in den Verzeichnisbaum eingehängt (gemountet) wird. Diese Schlüsseldatei liefert zufällige Daten, die für die Verschlüsselung des Master-Keys benötigt werden. Zusätzlich wird der Master-Key durch eine Passphrase geschützt. Die Sektorgröße des Providers beträgt 4 KB. Außerdem wird beschrieben, wie Sie einen geli-Provider aktivieren, ein vom ihm verwaltetes Dateisystem erzeugen, es mounten, mit ihm arbeiten und wie Sie es schließlich wieder unmounten und den Provider deaktivieren. Um eine bessere Leistung zu erzielen, sollten Sie eine größere Sektorgröße (beispielsweise 4 KB) verwenden. Der Master-Key wird durch eine Passphrase sowie die Daten der Schlüsseldatei (die von /dev/random stammen) geschützt. Die Sektorgröße von /dev/da2.eli (das als Provider bezeichnet wird) beträgt 4 KB. &prompt.root; dd if=/dev/random of=/root/da2.key bs=64 count=1 &prompt.root; geli init -s 4096 -K /root/da2.key /dev/da2 Enter new passphrase: Reenter new passphrase: Es ist nicht zwingend nötig, sowohl eine Passphrase als auch eine Schlüsseldatei zu verwenden. Die einzelnen Methoden können auch unabhängig voneinander eingesetzt werden. Wird für die Schlüsseldatei der Wert - angegeben, wird dafür die Standardeingabe verwendet. Das folgende Beispiel zeigt, dass Sie auch mehr als eine Schlüsseldatei verwenden können. &prompt.root; cat keyfile1 keyfile2 keyfile3 | geli init -K - /dev/da2 Aktivieren des Providers mit dem erzeugten Schlüssel &prompt.root; geli attach -k /root/da2.key /dev/da2 Enter passphrase: Dadurch wird die (Normaltext-)Gerätedatei /dev/da2.eli angelegt. &prompt.root; ls /dev/da2* /dev/da2 /dev/da2.eli Das neue Dateisystem erzeugen &prompt.root; dd if=/dev/random of=/dev/da2.eli bs=1m &prompt.root; newfs /dev/da2.eli &prompt.root; mount /dev/da2.eli /private Das verschlüsselte Dateisystem wird nun von &man.df.1; angezeigt und kann ab sofort eingesetzt werden. &prompt.root; df -H Filesystem Size Used Avail Capacity Mounted on /dev/ad0s1a 248M 89M 139M 38% / /devfs 1.0K 1.0K 0B 100% /dev /dev/ad0s1f 7.7G 2.3G 4.9G 32% /usr /dev/ad0s1d 989M 1.5M 909M 0% /tmp /dev/ad0s1e 3.9G 1.3G 2.3G 35% /var /dev/da2.eli 150G 4.1K 138G 0% /private Das Dateisystem unmounten und den Provider deaktivieren Wenn Sie nicht mehr mit dem verschlüsselten Dateisystem arbeiten und die unter /private eingehängte Partition daher nicht mehr benötigen, sollten Sie diese unmounten und den geli-Verschlüsselungs-Provider wieder deaktivieren. &prompt.root; umount /private &prompt.root; geli detach da2.eli Weitere Informationen zum Einsatz von geli finden Sie in &man.geli.8;. Der Einsatz des <filename>geli</filename>- <filename>rc.d</filename>-Skripts geli verfügt über ein rc.d-Skript, das den Einsatz von geli deutlich vereinfacht. Es folgt nun ein Beispiel, in dem geli über die Datei &man.rc.conf.5; konfiguriert wird: geli_devices="da2" geli_da2_flags="-p -k /root/da2.key" Durch diese Einträge wird /dev/da2 als geli-Provider festgelegt. Der Master-Key befindet sich in /root/da2.key. Beim Aktivieren des geli-Providers wird keine Passphrase abgefragt (beachten Sie, dass dies nur dann möglich ist, wenn Sie geli mit dem Parameter initialisieren). Wird das System heruntergefahren, wird der geli-Provider zuvor deaktiviert. Weitere Informationen zur Konfiguration der rc.d-Skripten finden Sie im Abschnitt rc.d des Handbuchs.
Christian Brüffer Geschrieben von Den Auslagerungsspeicher verschlüsseln Auslagerungsspeicher verschlüsseln Die Verschlüsselung des Auslagerungsspeichers ist unter &os; einfach einzurichten und seit &os; 5.3-RELEASE verfügbar. Je nach dem, welche &os;-Version Sie einsetzen, können Konfiguration und mögliche Optionen allerdings unterschiedlich sein. Seit &os; 6.0-RELEASE können Sie entweder das &man.gbde.8;- oder das &man.geli.8;-Verschlüsselungs-Subsystem einsetzen. Verwenden Sie eine ältere &os;-Version, sind Sie hingegen auf &man.gbde.8; beschränkt. Beide Subsysteme werden über das rc.d-Skript encswap gestartet. Der letzte Abschnitt, Partitionen verschlüsseln, enthält eine kurze Beschreibung der verschiedenen Verschlüsselungs-Subsysteme. Warum sollte der Auslagerungsspeicher verschlüsselt werden? Wie die Verschlüsselung von Plattenpartitionen dient auch die Verschlüsselung des Auslagerungsspeichers dem Schutz sensitiver Informationen. Stellen Sie sich etwa eine Anwendung vor, die ein Passwort erfordert. Solange dieses Passwort im Hauptspeicher verbleibt, ist alles in Ordnung. Beginnt Ihr Betriebssystem allerdings, Daten auf die Festplatte auszulagern, um im Hauptspeicher Platz für andere Anwendungen zu schaffen, kann es passieren, dass Ihr Passwort im Klartext in den Auslagerungsspeicher geschrieben wird, was es einem potentiellen Angreifer leicht macht, Ihr Passwort herauszufinden. Die Verschlüsselung Ihres Auslagerungsspeichers kann dieses Problem lösen. Vorbereitungen Für die weiteren Ausführungen dieses Abschnitts stellt ad0s1b die Swap-Partition dar. Noch ist Ihr Auslagerungsspeicher nicht verschlüsselt. Es könnte allerdings sein, dass bereits Passwörter oder andere sensitive Daten als Klartext im Auslagerungsspeicher vorhanden sind. Daher sollten Sie den Auslagerungsspeicher komplett mit zufällig generierten Zeichen überschreiben, bevor Sie ihn verschlüsseln: &prompt.root; dd if=/dev/random of=/dev/ad0s1b bs=1m Den Auslagerungsspeicher mit &man.gbde.8; verschlüsseln Verwenden Sie &os; 6.0-RELEASE oder neuer, sollten Sie in /etc/fstab das Suffix .bde an den Gerätenamen der Swap-Partition anhängen: # Device Mountpoint FStype Options Dump Pass# /dev/ad0s1b.bde none swap sw 0 0 Für &os;-Versionen vor 6.0-RELEASE benötigen Sie zusätzlich folgende Zeile in /etc/rc.conf: gbde_swap_enable="YES" Den Auslagerungsspeicher mit &man.geli.8; verschlüsseln Alternativ können Sie Ihren Auslagerungsspeicher auch mit &man.geli.8; verschlüsseln. Die Vorgehensweise ist dabei ähnlich. Allerdings hängen Sie bei der Verwendung von &man.geli.8; in /etc/fstab das Suffix .eli an den Gerätenamen der Swap-Partition an: # Device Mountpoint FStype Options Dump Pass# /dev/ad0s1b.eli none swap sw 0 0 In der Voreinstellung verschlüsselt &man.geli.8; den Auslagerungsspeicher mit dem AES-Algorithmus und einer Schlüssellänge von 256 Bit. Es ist möglich, diese Optionen durch das Setzen der geli_swap_flags-Option in /etc/rc.conf anzupassen. Die folgende Zeile weist das rc.d-Skript encswap an, &man.geli.8;-Swap-Partitionen mit dem Blowfish-Algorithmus und einer Schlüssellänge von 128 Bit zu verschlüsseln. Zusätzlich wird die Sektorgröße auf 4 Kilobyte gesetzt und die Option detach on last close aktiviert: geli_swap_flags="-e blowfish -l 128 -s 4096 -d" Auf Systemen vor &os; 6.2-RELEASE verwenden Sie hingegen die folgende Zeile: geli_swap_flags="-a blowfish -l 128 -s 4096 -d" Eine Auflistung möglicher Optionen für den Befehl onetime finden Sie in der Manualpage zu &man.geli.8;. Die korrekte Funktion testen Nachdem Sie Ihr System neu gestartet haben, können Sie die korrekte Funktion Ihres verschlüsselten Auslagerungsspeichers prüfen, indem Sie sich die Ausgabe von swapinfo ansehen. Wenn Sie &man.gbde.8; einsetzen, erhalten Sie eine Meldung ähnlich der folgenden: &prompt.user; swapinfo Device 1K-blocks Used Avail Capacity /dev/ad0s1b.bde 542720 0 542720 0% Wenn Sie &man.geli.8; einsetzen, erhalten Sie hingegen ein Ausgabe ähnlich der folgenden: &prompt.user; swapinfo Device 1K-blocks Used Avail Capacity /dev/ad0s1b.eli 542720 0 542720 0%
Index: head/de_DE.ISO8859-1/books/handbook/eresources/chapter.sgml =================================================================== --- head/de_DE.ISO8859-1/books/handbook/eresources/chapter.sgml (revision 36616) +++ head/de_DE.ISO8859-1/books/handbook/eresources/chapter.sgml (revision 36617) @@ -1,2174 +1,2178 @@ Ressourcen im Internet Gedruckte Medien können mit der schnellen Entwicklung von FreeBSD nicht Schritt halten. Elektronische Medien sind häufig die einzige Möglichkeit, über aktuelle Entwicklungen informiert zu sein. Da FreeBSD ein Projekt von Freiwilligen ist, gibt die Benutzergemeinde selbst auch technische Unterstützung. Die Benutzergemeinde erreichen Sie am besten über E-Mail, Internetforen oder Usenet-News. Die wichtigsten Wege, auf denen Sie die FreeBSD-Benutzergemeinde erreichen können, sind unten dargestellt. Wenn Sie weitere Ressourcen kennen, die hier fehlen, schicken Sie diese bitte an die Mailingliste des &a.doc;, damit sie hier aufgenommen werden können. Mailinglisten Die Mailinglisten sind der direkteste Weg, um Fragen an das gesamte &os; Publikum zu stellen oder eine technische Diskussion zu beginnen. Es existiert eine grosse Vielfalt von Listen mit einer Reihe von verschiedenen FreeBSD Themen. Wenn Sie ihre Fragen an die richtige Mailingliste richten können Sie viel eher mit einer passenden Antwort darauf rechnen. Die Chartas der verschiedenen Listen sind unten wiedergegeben. Bevor Sie sich einer Mailingliste anschließen oder E-Mails an eine Liste senden, lesen Sie bitte die Charta der Liste. Die meisten Mitglieder unserer Mailinglisten erhalten Hunderte E-Mails zum Thema FreeBSD pro Tag. Die Chartas und Regeln, die den Gebrauch der Listen beschreiben, garantieren die hohe Qualität der Listen. Die Listen würden ihren hohen Wert für das Projekt verlieren, wenn wir weniger Regeln aufstellen würden. Um zu testen, ob Sie eine Nachricht an eine &os;-Liste senden können, verwenden Sie bitte Die Liste &a.test.name;. Schicken Sie derartige Nachrichten bitte nicht an eine der anderen Listen. Wenn Sie Sich nicht sicher sind, auf welcher Liste Sie Ihre Frage stellen sollen, sollten Sie den Artikel How to get best results from the FreeBSD-questions mailing list lesen. Bevor Sie eine Nachricht an eine Mailingliste senden, sollten Sie die korrekte Nutzung der Mailinglisten erlernen. Dazu gehört auch das Vermeiden von sich häufig wiederholenden Diskussionen (lesen Sie deshalb zuerst die Mailing List Frequently Asked Questions). Alle Mailinglisten werden archiviert und können auf dem FreeBSD World Wide Web Server durchsucht werden. Das nach Schlüsselwörtern durchsuchbare Archiv bietet die hervorragende Möglichkeit, Antworten auf häufig gestellte Fragen zu finden. Nutzen Sie bitte diese Möglichkeit, bevor Sie Fragen auf einer Liste stellen. Beachten Sie auch, dass das zur Folge hat, dass die Nachrichten an die &os; Mailinglisten für die Ewigkeit erhalten bleiben. Wenn Sie am Schutz ihrer Privatsphähre interessiert sind, ziehen Sie die Verwendung einer Wegwerf-E-Mail-Adresse in Betracht und schreiben Sie nur solche Nachrichten, die für die Öffentlichkeit bestimmt sind. Beschreibung der Mailinglisten Allgemeine Listen: Jeder kann die folgenden allgemeinen Listen abonnieren (und ist dazu aufgefordert): Mailingliste Zweck &a.advocacy.name; Verbreitung von FreeBSD &a.announce.name; Wichtige Ereignisse und Meilensteine des Projekts &a.arch.name; Architektur und Design von FreeBSD &a.bugbusters.name; Diskussionen über die Pflege der FreeBSD Fehlerberichte-Datenbank und die dazu benutzten Werkzeuge &a.bugs.name; Fehlerberichte &a.chat.name; Nicht technische Themen, die die FreeBSD-Gemeinschaft betreffen &a.current.name; Gebrauch von &os.current; &a.isp.name; Für Internet-Service-Provider, die FreeBSD benutzen &a.jobs.name; Anstellung und Beratung im FreeBSD-Umfeld &a.policy.name; Grundsatzentscheidungen des FreeBSD-Core-Teams. Wenig Verkehr und nur zum Lesen &a.questions.name; Benutzerfragen und technische Unterstützung &a.security-notifications.name; Ankündigungen zum Thema Sicherheit &a.stable.name; Gebrauch von &os.stable; &a.test.name; Schicken Sie Testnachrichten an diese Liste anstelle der wirklichen Listen Technische Listen: Auf den folgenden Listen werden technische Diskussionen geführt. Bevor Sie eine der Listen abonnieren oder Nachrichten an sie schicken, lesen Sie sich bitte die Charta der Liste durch, da der Inhalt und Zweck dieser Listen genau festgelegt ist. Mailingliste Zweck &a.acpi.name; Entwicklung von ACPI &a.afs.name; Portierung von AFS nach FreeBSD &a.aic7xxx.name; Entwicklung von &adaptec; AIC 7xxx Treibern &a.alpha.name; Portierung von FreeBSD auf Alpha-Maschinen &a.amd64.name; Portierung von FreeBSD auf AMD64-Systeme &a.apache.name; Diskussion über Ports, die mit Apache zusammenhängen. &a.arm.name; Portierung von FreeBSD auf &arm;-Prozessoren &a.atm.name; Benutzung von ATM-Netzen mit FreeBSD &a.audit.name; Audit der FreeBSD-Quellen &a.binup.name; Design und Entwicklung eines Systems, das es erlaubt, ein FreeBSD-System mit binären Paketen zu aktualisieren &a.bluetooth.name; &bluetooth; unter FreeBSD verwenden &a.cluster.name; Benutzung von FreeBSD in einem Cluster &a.cvsweb.name; Pflege von CVSweb &a.database.name; Diskussion über Datenbanken und Datenbankprogrammierung unter FreeBSD &a.doc.name; Erstellen der FreeBSD-Dokumentation &a.drivers.name; Gerätetreiber für &os; schreiben &a.eclipse.name; Für FreeBSD-Anwender, die die Eclipse IDE, deren Werkzeuge, Anwendungen und Ports einsetzen &a.embedded.name; FreeBSD in eingebetteten Anwendungen einsetzen &a.emulation.name; Emulation anderer Systeme wie Linux, &ms-dos; oder &windows; &a.eol.name; Support für FreeBSD-bezogene Software, die vom FreeBSD Project offiziell nicht mehr unterstützt wird. &a.firewire.name; Technische Diskussion über &firewire; (iLink, IEEE 1394) &a.fs.name; Dateisysteme &a.gecko.name; Angelegenheiten zur Gecko Rendering Engine &a.geom.name; Diskussion über GEOM &a.gnome.name; Portierung von GNOME und GNOME-Anwendungen &a.hackers.name; Allgemeine technische Diskussionen &a.hardware.name; Allgemeine Diskussion über Hardware, auf der FreeBSD läuft &a.i18n.name; Internationalisierung von FreeBSD &a.ia32.name; FreeBSD für die IA-32 (&intel; x86) Plattform &a.ia64.name; Portierung von FreeBSD auf &intel;s neue IA64-Systeme &a.ipfw.name; Technische Diskussion über die Neubearbeitung der IP-Firewall Quellen &a.isdn.name; Für Entwickler des ISDN-Systems &a.java.name; Für &java; Entwickler und Leute, die &jdk;s nach FreeBSD portieren &a.kde.name; Portierung von KDE und KDE-Anwendungen &a.lfs.name; Portierung von LFS nach FreeBSD &a.libh.name; Das nächste Installations- und Paketsystem &a.mips.name; Portierung von FreeBSD zu &mips; &a.mobile.name; Diskussionen über mobiles Rechnen &a.mono.name; Mono und C# Anwendungen auf FreeBSD &a.mozilla.name; Portierung von Mozilla nach FreeBSD &a.multimedia.name; Multimedia Anwendungen &a.newbus.name; Technische Diskussionen über die Architektur von Bussen &a.net.name; Diskussion über Netzwerke und den TCP/IP Quellcode &a.openoffice.name; Portierung von OpenOffice.org und &staroffice; nach FreeBSD &a.performance.name; Fragen zur Optimierung der Leistung stark ausgelasteter Systeme &a.perl.name; Pflege der portierten Perl-Anwendungen. &a.pf.name; Diskussionen und Fragen zu packet filter als Firewallsystem. &a.platforms.name; Portierungen von FreeBSD auf nicht-&intel; Architekturen &a.ports.name; Diskussion über die Ports-Sammlung &a.ports-bugs.name; Diskussion über Fehler und PRs der Ports &a.ppc.name; Portierung von FreeBSD auf den &powerpc; &a.proliant.name; Technische Diskussionen zum Einsatz von FreeBSD auf der ProLiant-Serverplattform von HP. &a.python.name; FreeBSD-spezifische Diskussionen zu Python &a.qa.name; Diskussion über Qualitätssicherung, normalerweise kurz vor einem Release &a.rc.name; Diskussion über das rc.d-System sowie dessen Weiterentwicklung &a.realtime.name; Entwicklung von Echtzeiterweiterungen für FreeBSD &a.ruby.name; FreeBSD-spezifische Diskussionen zu Ruby &a.scsi.name; Diskussion über das SCSI-Subsystem &a.security.name; Sicherheitsthemen &a.small.name; Gebrauch von FreeBSD in eingebetteten Systemen (obsolet; verwenden Sie stattdessen &a.embedded.name;) &a.smp.name; Diskussionen über das Design von asymmetrischen und symmetrischen Mehrprozessor-Programmen &a.sparc.name; Portierung von FreeBSD auf &sparc; Systeme &a.standards.name; Konformität von FreeBSD mit den C99- und POSIX-Standards &a.sun4v.name; Portierung von FreeBSD auf &ultrasparc;-T1-basierte Systeme &a.sysinstall.name; &man.sysinstall.8; Entwicklung &a.threads.name; Leichgewichtige Prozesse (Threads) in FreeBSD &a.testing.name; Leistungs- und Stabilitätstests von FreeBSD + &a.tilera.name; + Diskussionen zur Portierung von FreeBSD auf die + Tilera-CPU-Familie. + + + &a.tokenring.name; Token-Ring Unterstützung in FreeBSD &a.toolchain.name; Wartung der &os;-Toolchain &a.usb.name; USB-Unterstützung in FreeBSD &a.virtualization.name; Diskussion über verschiedene Virtualisierungsverfahren, die von &os; unterstützt werden &a.vuxml.name; Diskussion über die Infratruktur von VuXML &a.x11.name; Wartung und Unterstützung von X11 auf FreeBSD &a.xen.name; Diskussionen über die &os; Portierung auf &xen; - Implementierung und Verwendung - - Eingeschränkte Listen: Die folgenden Listen wenden sich an Zielgruppen mit speziellen Anforderungen und sind nicht für die Öffentlichkeit gedacht. Bevor Sie eine dieser Listen abonnieren, sollten Sie einige der technischen Listen abonniert haben, um mit den Umgangsformen vertraut zu sein. Mailingliste Zweck &a.hubs.name; Betrieb von FreeBSD-Spiegeln &a.usergroups.name; Koordination von Benutzergruppen &a.vendors.name; Koordination von Händlern vor einem Release &a.wip-status.name; Status von in Arbeit befindlichen &os;-Tätigkeiten &a.www.name; Betreuer von www.FreeBSD.org Zusammenfassungen: Alle eben aufgezählten Listen sind auch in zusammengefasster Form (digest) erhältlich. In den Einstellungen Ihres Accounts legen Sie fest, in welcher Form Sie die Listen empfangen. CVS & SVN Listen: Die folgenden Listen versenden die Log-Einträge zu Änderungen an verschiedenen Teilen des Quellbaums. Diese Listen sollen nur gelesen werden, schicken Sie bitte keine Nachrichten an eine der Listen. Mailingliste Teil des Quellbaums Beschreibung &a.cvsall.name; /usr/(CVSROOT|doc|ports) Alle Änderungen im Quellbaum (Obermenge der anderen Commit-Listen) &a.cvs-doc.name; /usr/(doc|www) Änderungen in den doc- und www Bäumen &a.cvs-ports.name; /usr/ports Änderungen im ports-Baum &a.cvs-projects.name; /usr/projects Änderungen im projects-Baum &a.cvs-src.name; /usr/src Änderungen im src-Baum (generiert aus den svn-zu-cvs Import-Commits &a.svn-src-all.name; /usr/src Änderungen im Subversion Repository (ausser für user und projects) &a.svn-src-head.name; /usr/src Änderungen im head Zweig des Subversion Repository (der &os;-CURRENT Zweig) &a.svn-src-projects.name; /usr/projects Änderungen im projects Bereich des src Subversion Repository &a.svn-src-release.name; /usr/src Änderungen im releases Bereich des src Subversion Repository &a.svn-src-releng.name; /usr/src Änderungen im releng Zweig des src Subversion Repository (der security / release engineering Zweige) &a.svn-src-stable.name; /usr/src Änderungen an allen stable Zweigen des src Subversion Repository &a.svn-src-stable-6.name; /usr/src Änderungen im stable/6 Zweig des src Subversion Repository &a.svn-src-stable-7.name; /usr/src Änderungen im stable/7 Zweig des src Subversion Repository &a.svn-src-stable-8.name; /usr/src Änderungen im stable/8 Zweig des src Subversion Repository &a.svn-src-stable-other.name; /usr/src Änderungen an älteren stable Zweigen des src Subversion Repository &a.svn-src-svnadmin.name; /usr/src Änderungen an den administrativen Skripten, hooks, and anderen Daten zur Konfiguration des src Subversion Repository &a.svn-src-user.name; /usr/src Änderungen am experimentellen user Bereich des src Subversion Repository &a.svn-src-vendor.name; /usr/src Änderungen am Herstellerbereich des src Subversion Repository Mailinglisten abonnieren Um eine Liste zu abonnieren, folgen Sie dem oben angegebenen Hyperlink der Liste oder Sie besuchen die Webseite &a.mailman.lists.link; und klicken dort auf die Liste, die Sie abonnieren wollen. Sie gelangen dann auf die Webseite der Liste, die weitere Anweisungen enthält. Um eine Nachricht an eine Mailingliste zu schicken, schreiben Sie einfach eine E-Mail an Liste@FreeBSD.org. Die E-Mail wird dann an alle Mitglieder der Mailingliste verteilt. Wenn Sie das Abonnement aufheben wollen, folgen Sie der URL, die am Ende jeder Mail der Liste angegeben ist. Sie können das Abonnement auch mit einer E-Mail an Liste-unsubscribe@FreeBSD.org aufheben. Verwenden Sie bitte die technischen Listen ausschließlich für technische Diskussionen. Wenn Sie nur an wichtigen Ankündigungen interessiert sind, abonnieren Sie die Mailingliste &a.announce;, auf der nur wenige Nachrichten versendet werden. Chartas der Mailinglisten Alle FreeBSD-Mailinglisten besitzen Grundregeln, die von jedem beachtet werden müssen. Für die ersten beiden Male, in denen ein Absender gegen diese Regeln verstößt, erhält er jeweils eine Warnung vom FreeBSD-Postmaster postmaster@FreeBSD.org. Ein dritter Verstoß gegen die Regeln führt dazu, dass der Absender in allen FreeBSD-Mailinglisten gesperrt wird und weitere Nachrichten von ihm nicht mehr angenommen werden. Wir bedauern sehr, dass wir solche Maßnahmen ergreifen müssen, aber heutzutage ist das Internet eine recht rauhe Umgebung, in der immer weniger Leute Rücksicht aufeinander nehmen. Die Regeln: Das Thema einer Nachricht soll der Charta der Liste, an die sie gesendet wird, entsprechen. Wenn Sie eine Nachricht an eine technische Liste schicken, sollte die Nachricht auch technische Inhalte haben. Fortwährendes Geschwätz oder Streit mindern den Wert der Liste für alle Mitglieder und wird nicht toleriert. Benutzen Sie &a.chat; für allgemeine Diskussionen über FreeBSD. Eine Nachricht sollte an nicht mehr als zwei Mailinglisten gesendet werden. Schicken Sie eine Nachricht nur dann an zwei Listen, wenn das wirklich notwendig ist. Viele Leute haben mehrere Mailinglisten abonniert und Nachrichten sollten nur zu ungewöhnlichen Kombinationen der Listen, wie -stable und -scsi, gesendet werden. Wenn Sie eine Nachricht erhalten, die im Cc-Feld mehrere Listen enthält, sollten Sie das Feld kürzen, bevor Sie eine Antwort darauf verschicken. Unabhängig von dem ursprünglichen Verteiler sind Sie für Ihre eigenen Mehrfach-Sendungen selbst verantwortlich. Persönliche Angriffe und Beschimpfungen sind in einer Diskussion nicht erlaubt. Dies gilt gleichermaßen für Benutzer wie Entwickler. Grobe Verletzungen der Netiquette, wie das Verschicken oder Zitieren von privater E-Mail ohne eine entsprechende Genehmigung, werden nicht gebilligt. Die Nachrichten werden aber nicht besonders auf Verletzungen der Netiquette untersucht. Es kann sein, dass eine Verletzung der Netiquette durchaus zu der Charta einer Liste passt, aber der Absender aufgrund der Verletzung eine Warnung erhält oder gesperrt wird. Werbung für Produkte oder Dienstleistungen, die nichts mit FreeBSD zu tun haben, sind verboten. Ist die Werbung als Spam verschickt worden, wird der Absender sofort gesperrt. Chartas einzelner Listen: &a.acpi.name; Die Entwicklung von ACPI und Energieverwaltungsfunktionen. &a.afs.name; Andrew File System Auf dieser Liste wird die Portierung des AFS von CMU/Transarc diskutiert. &a.announce.name; Wichtige Ereignisse und Meilensteine Diese Liste ist für Personen, die nur an den wenigen Ankündigungen wichtiger Ereignisse interessiert sind. Die Ankündigungen betreffen Schnappschüsse und Releases, neue Merkmale von FreeBSD und die Suche nach freiwilligen Mitarbeitern. Auf der Liste herrscht wenig Verkehr und sie wird streng moderiert. &a.arch.name; Architektur und Design von FreeBSD Auf dieser technischen Liste wird die FreeBSD-Architektur diskutiert. Beispiele für angemessene Themen sind: Wie das Bausystem zu verändern ist, damit verschiedene Läufe gleichzeitig möglich sind. Was am VFS geändert werden muss, damit Heidemann Schichten eingesetzt werden können. Wie die Schnittstelle der Gerätetreiber angepasst werden muss, damit derselbe Treiber auf verschiedenen Bussen und Architekturen eingesetzt werden kann. Wie ein Netzwerktreiber geschrieben wird. &a.audit.name; Source Code Audit Project Dies ist die Liste des FreeBSD-Source Code Audit Projects. Ursprünglich war vorgesehen, hier nur sicherheitsrelevante Änderungen zu diskutieren, doch ist die Charta auf alle Änderungen ausgedehnt worden. Zu dieser Liste werden viele Korrekturen gesandt, so dass sie für den normalen FreeBSD-Benutzer von wenig Wert ist. Diskussionen über Sicherheit, die sich nicht auf die Änderung von Quellcode beziehen, finden auf der Mailingliste &a.security; statt. Auf der anderen Seite sind aber alle Entwickler aufgefordert, ihre Korrekturen zur Überprüfung an diese Liste zu senden. Dies trifft besonders auf Änderungen zu, in denen ein Fehler die Integrität des Gesamtsystems gefährdet. &a.binup.name; FreeBSD Binary Update Project Auf dieser Liste wird das Design und die Implementierung von binup diskutiert. Weitere Themen sind Fehlerbehebungen, Fehlerberichte und Anfragen nach Neuerungen. Die CVS-Logmeldungen des Projekts werden ebenfalls auf diese Liste gesendet. &a.bluetooth.name; &bluetooth; unter FreeBSD Diese Liste diskutiert Probleme der Verwendung von &bluetooth; unter FreeBSD. Designprobleme, Implementierungsdetails, Patches, Fehler- und Statusberichte, Verbesserungsvorschläge sowie alle anderen mit &bluetooth; zusammenhängenden Themen werden hier behandelt. &a.bugbusters.name; Bearbeitung der Fehlerberichte Auf dieser Liste wird die Bearbeitung der Fehlerberichte (PR, engl. problem report) koordiniert. Sie dient dem Bugmeister und allen Leuten, die ein Interesse an der Datenbank der Fehlerberichte haben, als Diskussionsforum. Auf dieser Liste werden keine spezifischen Fehler, Fehlerbehebungen oder PRs diskutiert. &a.bugs.name; Fehlerberichte Auf dieser Liste werden Fehlerberichte gesammelt. Fehlerberichte sollten immer mit &man.send-pr.1; oder dem Web Formular erstellt werden. &a.chat.name; Nicht technische Themen, die die FreeBSD Gemeinschaft betreffen Auf dieser Liste werden nicht-technische soziale Themen diskutiert, die nicht auf die anderen Listen passen. Hier kann diskutiert werden, ob Jordan wie ein Frettchen aus einem Zeichentrickfilm aussieht oder nicht, ob grundsätzlich in Großbuchstaben geschrieben werden soll, wer zuviel Kaffee trinkt, wo das beste Bier gebraut wird und wer Bier in seinem Keller braut. Gelegentlich können auf den technischen Listen wichtige Ereignisse wie Feste, Hochzeiten oder Geburten angekündigt werden, aber nachfolgende Nachrichten sollten auf die Liste &a.chat; gesendet werden. &a.core.name; FreeBSD Core Team Dies ist eine interne Mailingliste des FreeBSD Core Teams. Wenn in einer wichtigen Angelegenheit, die FreeBSD betrifft, entschieden werden muss oder die Angelegenheit einer genauen Prüfung unterzogen werden muss, können Nachrichten an diese Liste gesendet werden. &a.current.name; Gebrauch von &os.current; Diese Mailingliste ist für die Benutzer von &os.current; eingerichtet. Auf ihr finden sich Ankündigungen über Besonderheiten von -CURRENT, von denen Benutzer betroffen sind. Sie enthält weiterhin Anweisungen, wie man ein System auf -CURRENT hält. Jeder, der ein -CURRENT System besitzt, muss diese Liste lesen. Die Liste ist nur für technische Inhalte bestimmt. &a.cvsweb.name; FreeBSD CVSweb Project Technische Diskussion über den Gebrauch, die Entwicklung und die Pflege von FreeBSD-CVSweb. &a.doc.name; Documentation Project Auf dieser Mailingliste werden Themen und Projekte diskutiert, die im Zusammenhang mit der Erstellung der FreeBSD Dokumentation stehen. The FreeBSD Documentation Project besteht aus den Mitgliedern dieser Liste. Diese Liste steht jedem offen, Sie sind herzlich eingeladen teilzunehmen und mitzuhelfen. &a.drivers.name; Gerätetreiber für &os; schreiben Ein Forum für technische Diskussionen über das Schreiben von Gerätetreibern für &os;. Daher werden hier vor allem Fragen behandelt, die sich um das Schreiben von Treibern, die die APIs des Kernels nutzen, drehen. &a.eclipse.name; Für FreeBSD-Anwender, die die Eclipse IDE deren Werkzeuge, Anwendungen und Ports einsetzen Das Ziel dieser Liste ist es, Unterstützung für all jene zu bieten, die mit der Installation, Verwendung, Entwicklung und Wartung der Eclipse-IDE sowie deren Werkzeugen und Anwendungen unter &os; zu tun haben. Außerdem wird Hilfe bei der Portierung der IDE und deren Plugins auf &os; geboten. Zusätzlich soll diese Liste einen Informationsaustausch zwischen der Eclipse- und der &os;-Gemeinde ermöglichen, von dem beide Seiten profitieren können. Obwohl sich diese Liste auf die Anforderungen von Anwendern konzentriert, möchte sie auch Entwickler unterstützen, die an der Entwicklung von &os;-spezifischen Anwendungen unter Nutzung des Eclipse-Frameworks arbeiten. &a.embedded.name; FreeBSD in eingebetteten Anwendungen einsetzen Diese Liste diskutiert Themen im Zusammenhang mit dem Einsatz von ungewöhnlich kleinen und eingebettenen FreeBSD-Installationen. Auf dieser Liste werden ausschließlich technische Diskussionen geführt. Unter eingebetteten Systemen versteht diese Liste Systeme, bei denen es sich nicht um Desktopsysteme handelt, und die in der Regel nur einem einzigen Zweck dienen (im Gegensatz zu Desktopsystemen, die für die Bewältigung verschiedenster Aufgaben geeignet sind). In die Gruppe der eingebetteten Systeme gehören beispielsweise Telephone, Netzwerkgeräte wie Router, Switche oder PBX-Systeme, PDAs, Verkaufsautomaten und andere mehr. &a.emulation.name; Emulation anderer Systeme wie Linux, &ms-dos; oder &windows; Hier werden technische Diskussionen zum Einsatz von Programmen, die für andere Betriebssysteme geschrieben wurden, geführt. &a.eol.name; Support für FreeBSD-bezogene Software, die vom FreeBSD Project offiziell nicht mehr unterstützt wird. Diese Liste ist für all jene interessant, die Unterstützung für vom FreeBSD Project offiziell nicht mehr (in Form von Security Advisories oder Patches) unterstützte Programme benötigen oder anbieten wollen. &a.firewire.name; &firewire; (iLink, IEEE 1394) Auf dieser Liste wird das Design und die Implementierung eines &firewire;-Subsystems (auch IEEE 1394 oder iLink) für FreeBSD diskutiert. Relevante Themen sind die Standards, Busse und ihre Protokolle, sowie Adapter, Karten und Chipsätze. Des Weiteren die Architektur und der Quellcode, die nötig sind, diese Geräte zu unterstützen. &a.fs.name; Dateisysteme Diskussionen über FreeBSD-Dateisysteme. Dies ist eine technische Liste, in der nur technische Inhalte erwartet werden. &a.gecko.name; Angelegenheiten zur Gecko Rendering Engine Dies ist ein Forum über Gecko-Anwendungen, die &os; verwenden. Die Diskussion dreht sich um die Portierung von Gecko-Anwendungen, deren Installation, die Entwicklung sowie deren Unterstützung innerhalb von &os;. &a.geom.name; GEOM Diskussion über GEOM und verwandte Implementierungen. Dies ist eine technische Liste, in der nur technische Inhalte erwartet werden. &a.gnome.name; GNOME Diskussionen über die grafische Benutzeroberfläche GNOME. Dies ist eine technische Liste, in der nur technische Inhalte erwartet werden. &a.ipfw.name; IP Firewall Diskussionen über eine Neubearbeitung des IP-Firewall Quelltexts in FreeBSD. Dies ist eine technische Liste, in der nur technische Inhalte erwartet werden. &a.ia64.name; Portierung von FreeBSD auf die IA64-Plattform Dies ist eine technische Liste für diejenigen, die FreeBSD auf die IA-64 Plattform von &intel; portieren. Themen sind die Probleme bei der Portierung und deren Lösung. Interessierte, die der Diskussion folgen wollen, sind ebenfalls willkommen. &a.isdn.name; ISDN Subsystem Mailingliste für die Entwickler des ISDN Subsystems von FreeBSD. &a.java.name; &java; Entwicklung Mailingliste, auf der die Entwicklung von &java; Anwendungen für FreeBSD sowie die Portierung und Pflege von &jdk;s diskutiert wird. &a.jobs.name; Stellenangebote und Stellengesuche In diesem Forum können Sie Stellenangebote und Stellengesuche, die mit &os; zu tun haben, aufgeben. Wenn Sie beispielsweise eine Beschäftigung im &os;-Umfeld suchen oder eine freie Stelle haben, die mit &os; zu tun hat, ist dies der richtige Ort. Diese Mailingliste ist nicht der Ort, um über allgemeine Beschäftigungsprobleme zu diskutieren; dazu gibt es anderswo geeignete Foren. Beachten Sie bitte, dass diese Liste, wie die anderen FreeBSD.org-Listen, weltweit gelesen wird. Geben Sie daher bitte den Arbeitsort genau an. Geben Sie bitte auch an, ob Telearbeit möglich ist und ob Hilfen für einen Umzug angeboten werden. Benutzen Sie in der E-Mail bitte nur offene Formate – vorzugsweise nur das Textformat. Andere Formate, wie PDF oder HTML, werden von den Lesern akzeptiert. Nicht offene Formate wie µsoft; Word (.doc) werden vom Server der Liste abgelehnt. &a.hackers.name; Technische Diskussionen Dies ist ein Forum für technische Diskussionen über FreeBSD. Leute, die aktiv an FreeBSD arbeiten, können hier Probleme und deren Lösungen diskutieren. Interessierte, die den Diskussionen folgen wollen, steht die Liste ebenfalls offen. Auf dieser Liste finden nur technische Diskussionen statt. &a.hardware.name; Allgemeine Diskussionen über Hardware Allgemeine Diskussionen über die Hardware, auf der FreeBSD läuft: Probleme und Ratschläge welche Hardware man kaufen sollte und welche nicht. &a.hubs.name; FreeBSD-Spiegel Ankündigungen und Diskussionsforum für Leute, die FreeBSD-Spiegel betreiben. &a.isp.name; Themen für Internet Service Provider Diese Liste ist für Internet Service Provider (ISP), die FreeBSD benutzen. Auf dieser Liste finden nur technische Diskussionen statt. &a.mono.name; Mono und C# Anwendungen auf FreeBSD Diese Liste beinhaltet Diskussionen über das Mono Entwicklungsframework auf &os;. Dies ist eine technische Mailingliste. Es ist für Personen gedacht, die aktiv an der Portierung von Mono oder C# Anwendungen auf &os; sind, um Probleme oder alternative Lösungen zu beratschlagen. Personen die der technischen Diskussion folgen möchten sind ebenso willkommen. &a.kde.name; KDE Diskussionen über KDE auf FreeBSD-Systemen. Dies ist eine technische Liste, in der nur technische Inhalte erwartet werden. &a.openoffice.name; OpenOffice.org Portierung und Pflege von OpenOffice.org und &staroffice;. &a.performance.name; Diskussionsforum mit dem Ziel, die Leistung von FreeBSD zu verbessern. Auf dieser Liste diskutieren Hacker, Systemadministratoren und andere Interessierte die Leistung von FreeBSD. Zulässige Themen sind beispielsweise Systeme unter hoher Last, Systeme mit Leistungsproblemen oder Systeme, die Leistungsgrenzen von FreeBSD überwinden. Jeder, der mithelfen will, die Leistung von FreeBSD zu verbessern, sollte diese Liste abonnieren. Die Liste ist technisch anspruchsvoll und geeignet für erfahrene FreeBSD-Benutzer, Hacker oder Administratoren, die FreeBSD schnell, robust und skalierbar halten wollen. Auf der Liste werden Beiträge gesammelt oder Fragen nach ungelösten Problemen beantwortet. Sie ist kein Ersatz für das gründliche Studium der Dokumentation. &a.pf.name; Diskussionen und Fragen zu packet filter als Firewallsystem. FreeBSD-spezische Diskussionen zur Benutzung von packet filter (pf) als Firewallsystem. Sowohl technische Diskussionen als auch Anwenderfragen sind auf dieser Liste willkommen. Fragen zum ALTQ QoS Framework können ebenfalls gestellt werden. &a.platforms.name; Portierung auf nicht-&intel; Plattformen Plattformübergreifende Themen und Vorschläge für die Portierung auf nicht-&intel; Plattformen. Auf dieser Liste finden nur technische Diskussionen statt. &a.policy.name; Grundsatzentscheidungen des Core Teams Diese Mailingliste ist für Grundsatzentscheidungen des FreeBSD-Core-Teams. Sie trägt wenige Nachrichten und ist nur zum Lesen gedacht. &a.ports.name; Diskussion über die Ports-Sammlung Diskussionen über die FreeBSD-Ports-Sammlung und die Infrastruktur der Sammlung. Die Liste dient auch der allgemeinen Koordination der Dinge, die die Ports-Sammlung betreffen. Auf dieser Liste finden nur technische Diskussionen statt. &a.ports-bugs.name; Diskussion über Fehler in den Ports Diskussion über Fehler in der Ports-Sammlung (/usr/ports), neue Ports oder Änderungen an bestehenden Ports. Auf dieser Liste finden nur technische Diskussionen statt. &a.proliant.name; Technische Diskussionen zum Einsatz von FreeBSD auf der ProLiant-Serverplattform von HP Diese Mailingliste bietet technische Diskussionen zum Einsatz von FreeBSD auf der ProLiant-Serverplattform von HP, darunter Fragen zu ProLiant-spezifischen Treibern, Konfigurationswerkzeugen sowie BIOS-Aktualisierungen. Daher ist sie die erste Anlaufstelle, um die Module hpasmd, hpasmcli, sowie hpacucli zu diskutieren. &a.python.name; Python unter FreeBSD Diese technische Liste dient der Verbesserung der Python-Unterstützung unter FreeBSD. Sie wird von Personen gelesen, die an der Portierung von Python, von Python-Modulen Dritter und von Zope nach FreeBSD arbeiten. Personen, die diese technischen Diskussion verfolgen wollen, sind ebenfalls willkommen. &a.questions.name; Benutzerfragen Auf dieser Mailingliste können Fragen zu FreeBSD gestellt werden. Fragen Sie bitte nicht nach Anleitungen, wenn Sie nicht sicher sind, dass Ihre Frage wirklich technischer Natur ist. &a.ruby.name; Ruby unter FreeBSD Diese technische Liste dient der Verbesserung der Ruby-Unterstützung unter FreeBSD. Sie wird von Personen gelesen, die an der Portierung von Ruby, von Bibliotheken Dritter und Frameworks arbeiten. Personen, die diese technischen Diskussionen verfolgen wollen, sind ebenfalls willkommen. &a.scsi.name; SCSI Subsystem Diese Mailingliste ist für die Entwickler des SCSI Subsystems von FreeBSD. Auf dieser Liste finden nur technische Diskussionen statt. &a.security.name; Sicherheitsthemen Sicherheitsthemen, die FreeBSD betreffen, wie DES, Kerberos, bekannte Sicherheitslöcher und Fehlerbehebungen. Stellen Sie bitte auf dieser Liste keine allgemeinen Fragen zum Thema Sicherheit. Willkommen sind allerdings Beiträge zur FAQ, das heißt eine Frage mit der passenden Antwort. Auf dieser Liste finden nur technische Diskussionen statt. &a.security-notifications.name; Ankündigungen zum Thema Sicherheit Ankündigungen über Sicherheitsprobleme von FreeBSD und deren Behebungen. Diese Liste ist kein Diskussionsforum, benutzen Sie &a.security;, um Sicherheitsthemen zu diskutieren. &a.small.name; Gebrauch von FreeBSD in eingebetteten Systemen. Diese Liste für ungewöhnlich kleine FreeBSD Installation oder den Einsatz von FreeBSD in eingebetteten Systemen gedacht. Auf dieser Liste finden nur technische Diskussionen statt. Diese Liste wurde durch &a.embedded.name; ersetzt. &a.stable.name; Gebrauch von &os.stable;. Diese Mailingliste ist für die Benutzer von &os.stable; eingerichtet. Auf ihr finden sich Ankündigungen über Besonderheiten von -STABLE, von denen Benutzer betroffen sind. Sie enthält weiterhin Anweisungen, wie man ein System auf -STABLE hält. Jeder, der ein -STABLE System besitzt, muss diese Liste lesen. Die Liste ist nur für technische Inhalte bestimmt. &a.standards.name; Konformität von FreeBSD mit den C99- und &posix; Standards Dieses Forum ist für technische Diskussionen über die Konformität von FreeBSD mit den C99- und POSIX-Standards. &a.toolchain.name; Wartung der &os;-Toolchain Auf dieser Mailingliste werden alle Themen rund um die &os;-Toolchain diskutiert. Dazu gehören der Status von Clang und GCC, aber auch Fragen zu Programmen wie Assemblern, Linkern und Debuggern. &a.usb.name; USB-Unterstützung in &os;. Auf dieser Liste finden nur technische Diskussionen statt. &a.usergroups.name; Koordination von Benutzergruppen Diese Liste ist für Koordinatoren lokaler Benutzergruppen und einem ausgesuchten Mitglied des Core Teams eingerichtet worden. Der Inhalt sollte Inhalte von Treffen und die Koordination von Projekten mehrerer Benutzergruppen beschränkt sein. &a.vendors.name; Koordination von Händlern Koordination zwischen dem FreeBSD Project und Händlern, die Soft- und Hardware für FreeBSD verkaufen. &a.virtualization.name; Diskussion über verschiedene Virtualisierungsverfahren, die von &os; unterstützt werden Eine Liste, auf der die verschiedenen Virtualisierungsverfahren, die von &os; unterstützt werden, diskutiert werden. Auf der einen Seite liegt der Fokus auf der Implementierung der zugrundeliegenden Funktionalitäten, ebenso wie das Hinzufügen neuer Eigenschaften. Auf der anderen Seite haben die Benutzer ein Forum, um Fragen bei Problemen zu stellen oder um ihre Anwendungsfälle zu besprechen. &a.wip-status.name; Status von in Arbeit befindlichen &os;-Tätigkeiten Diese Mailingliste kann dazu verwendet werden, eigene Kreationen und deren Fortschritt von &os;-verwandten Tätigkeiten anzukündigen. Die Nachrichten werden moderiert. Es wird vorgeschlagen, die Nachricht "An:" eine mehr themenverwandte &os;-Liste zu senden und diese Liste nur in Blindkopie zu setzen. Auf diese Weise kann ihre in Arbeit befindliche Tätigkeit auch auf der themenverwandten Liste diskutiert werden, da auf dieser Liste keine Diskussionen erlaubt sind. Sehen Sie sich das Archiv der Liste für passende Nachrichten an. Redaktionelle Auszüge der Nachrichten an diese Liste werden eventuell alle paar Monate auf die &os; Webseite als Teil der Statusberichte gestellt. Weitere Beispiele und zurückliegende Berichte können Sie auch dort finden. &a.xen.name; Diskussionen über die &os; Portierung auf &xen; - Implementierung und Verwendung Eine Liste, die die &os; Portierung auf &xen; behandelt. Das erwartete Nachrichtenaufkommen ist klein genug, so dass es als Forum für sowohl technische Diskussionen über die Implementierung und Entwurfsdetails, als auch administrative Verteilaspekte ausgelegt ist. Filter der Mailinglisten Um die Verbreitung von Spam, Viren und anderen nicht erwünschten E-Mails zu verhindern, werden auf den &os;-Mailinglisten Filter eingesetzt. Dieser Abschnitt beschreibt nur einen Teil der zum Schutz der Listen eingesetzten Filter. Auf den Mailinglisten sind nur die unten aufgeführten Anhänge erlaubt. Anhänge mit einem anderen MIME-Typ werden entfernt, bevor eine E-Mail an eine Liste verteilt wird. application/octet-stream application/pdf application/pgp-signature application/x-pkcs7-signature message/rfc822 multipart/alternative multipart/related multipart/signed text/html text/plain text/x-diff text/x-patch Einige Mailinglisten erlauben vielleicht Anhänge mit anderem MIME-Typ. Für die meisten Mailinglisten sollte die obige Aufzählung aber richtig sein. Wenn eine E-Mail sowohl aus einer HTML-Version wie auch aus einer Text-Version besteht, wird die HTML-Version entfernt. Wenn eine E-Mail nur im HTML-Format versendet wurde, wird sie in reinen Text umgewandelt. Usenet-News Neben den Gruppen, die sich ausschließlich mit BSD beschäftigen, gibt es viele weitere in denen über FreeBSD diskutiert wird, oder die für FreeBSD-Benutzer wichtig sind. Warren Toomey wkt@cs.adfa.edu.au stellte großzügig suchbare Archive einiger dieser Gruppen bereit. BSD spezifische Gruppen comp.unix.bsd.freebsd.announce comp.unix.bsd.freebsd.misc de.comp.os.unix.bsd (deutsch) fr.comp.os.bsd (französisch) it.comp.os.bsd (italienisch) tw.bbs.comp.386bsd (Traditionelles Chinesisch) Weitere UNIX Gruppen comp.unix comp.unix.questions comp.unix.admin comp.unix.programmer comp.unix.shell comp.unix.user-friendly comp.security.unix comp.sources.unix comp.unix.advocacy comp.unix.misc comp.bugs.4bsd comp.bugs.4bsd.ucb-fixes comp.unix.bsd X Window System comp.windows.x.i386unix comp.windows.x comp.windows.x.apps comp.windows.x.announce comp.windows.x.intrinsics comp.windows.x.motif comp.windows.x.pex comp.emulators.ms-windows.wine World Wide Web Server Foren, Blogs und soziale Netzwerke Die &os; Foren dienen als webbasiertes Diskussionsforum für Fragen und technische Diskussionen zu &os;. Planet FreeBSD bietet einen gesammelten Feed aus dutzenden von Blogs, die von den &os; Entwicklern geschrieben werden. Viele Entwickler nutzen dies, um schnell Aufzeichnungen darüber zu veröffentlichen, woran sie gerade arbeiten, welche neuen Erweiterungen es gibt und andere Arbeiten, die gerade im Gange sind. Der BSDConferences YouTube-Kanal beinhaltet eine Sammlung von qualitativ hochwertigen Videos von BSD Konferenzen aus der ganzen Welt. Dies ist eine ausgezeichnete Art und Weise, den Entwicklern beim Präsentieren von neuen Arbeiten an FreeBSD zuzuschauen. Official Mirrors &chap.eresources.www.inc; E-Mail Adressen Die folgenden Benutzergruppen stellen ihren Mitgliedern für die Arbeit an FreeBSD E-Mail-Adressen zur Verfügung. Der aufgeführte Administrator behält sich das Recht vor, die Adresse zu sperren, wenn sie missbraucht wird. Domain Angebot Benutzergruppe Administrator ukug.uk.FreeBSD.org nur zum Weiterleiten ukfreebsd@uk.FreeBSD.org Lee Johnston lee@uk.FreeBSD.org Index: head/de_DE.ISO8859-1/books/handbook/firewalls/chapter.sgml =================================================================== --- head/de_DE.ISO8859-1/books/handbook/firewalls/chapter.sgml (revision 36616) +++ head/de_DE.ISO8859-1/books/handbook/firewalls/chapter.sgml (revision 36617) @@ -1,576 +1,576 @@ Joseph J. Barbish Beigetragen von Brad Davis Nach SGML konvertiert und aktualisiert von Michael Bunzel Teilweise übersetzt von Firewalls firewall security firewalls Einführung Firewalls ermöglichen es, den ein- und ausgehenden Netzwerkverkehr Ihres Systems zu filtern. Dazu verwendet eine Firewall eine oder mehrere Gruppen von Regeln, um ankommende Netzwerkpakete zu untersuchen und entweder durchzulassen oder zu blockieren. Die Regeln einer Firewall untersuchen charakteristische Eigenschaften von Datenpaketen, darunter den Protokolltyp, die Quell- und Zieladresse sowie den Quell- und Zielport. Firewalls können die Sicherheit eines Rechners oder eines Netzwerks erhöhen, indem sie folgende Aufgaben übernehmen: Den Schutz der Anwendungen, Dienste und Rechner Ihres internen Netzwerks vor unerwünschtem Datenverkehr aus dem Internet. Die Beschränkung des Zugriffs von Rechnern des internen Netzwerk auf Rechner oder Dienste des externen Internets. Den Einsatz von Network Address Translation (NAT), die es Ihnen durch die Verwendung von privaten IP-Adressen ermöglicht, eine einzige gemeinsame Internetverbindung für mehrere Rechner zu nutzen (entweder über eine einzige Adresse oder über eine Gruppe von jeweils automatisch zugewiesenen öffentlichen IP-Adressen). Nachdem Sie dieses Kapitel gelesen haben, werden Sie: Wissen, wie man korrekte Paketfilterregeln erstellt. Die Unterschiede zwischen den in &os; eingebauten Firewalls kennen. Wissen, wie man die PF-Firewall von OpenBSD konfiguriert und einsetzt. IPFILTER konfigurieren und einsetzen können. Wissen, wie man IPFW konfiguriert und einsetzt. Bevor Sie dieses Kapitel lesen, sollten Sie: Die grundlegenden Konzepte von &os; und dem Internet verstehen. Firewallkonzepte firewall rulesets Es gibt zwei grundlegende Arten, Regelgruppen für Firewalls zu erstellen: einschließend (inclusive firewall) sowie auschließend (exclusive Firewall). Eine auschließende Firewall lässt jeden Datenverkehr durch, der nicht durch eine Regel ausgeschlossen wurde. Eine einschließende Firewall macht das genaue Gegenteil. Sie lässt Datenverkehr nur dann durch, wenn er einer der definierten Regeln entspricht. - Eine inclusive Firewall bietet eine wesentlich bessere Kontrolle + Eine inclusive Firewall bietet eine wesentlich bessere Kontrolle des ausgehenden Verkehrs, macht sie zur besseren Wahl für Systeme, - die Services für das Internet anbieten. Sie kontrolliert - auch den Verkehr vom Internet zu ihrem privaten Netzwerk. Jeder Verkehr, - der keiner Regel entspricht wird geblockt und geloggt. Inclusive - Firewalls sind generell sicherer als exclusive Firewalls, da sie das - Risiko, dass unerwünschter Verkehr hindurch geht, drastisch + die Services für das Internet anbieten. Sie kontrolliert + auch den Verkehr vom Internet zu ihrem privaten Netzwerk. Jeder Verkehr, + der keiner Regel entspricht wird geblockt und geloggt. Inclusive + Firewalls sind generell sicherer als exclusive Firewalls, da sie das + Risiko, dass unerwünschter Verkehr hindurch geht, drastisch reduzieren. - + - Wenn nicht anders vermerkt, verwenden alle Konfigurationen + Wenn nicht anders vermerkt, verwenden alle Konfigurationen und Beispielregelsets dieses Kapitels inclusive Firewalls. Die Sicherheit einer Firewall kann durch den Einsatz einer zustandsabhängigen Firewall (stateful firewall) weiter erhöht werden. Dieser Typ einer Firewall überwacht alle durch die Firewall gehenden offenen Verbindungen und erlaubt nur schon bestehenden Verkehr oder Datenverkehr, der eine neue Verbindung öffnet. Der Nachteil einer zustandsabhängigen Firewall ist allerdings, dass sie anfällig für Denial of Service (DoS) -Attacken ist, wenn sehr schnell sehr viele neue Verbindungen erstellt werden. Bei den meisten Firewalls können Sie eine Kombination aus zustandsabhängigem und nicht zustandsabhängigem Verhalten verwenden, um eine für Ihre Bedürfnisse optimale Firewall einzurichten. Firewallpakete Das Basissystem von &os; enthält bereits drei Firewallpakete: IPFILTER (auch als IPF bekannt), IPFIREWALL (auch als IPFW bezeichnet) sowie das von OpenBSD übernommene PacketFilter (das auch als PF bezeichnet wird). Zusätzlich verfügt &os; über zwei eingebaute Pakete für das sogenannte traffic shaping (dabei handelt es sich die Steuerung des Bandbreitenverbrauchs): &man.altq.4; sowie &man.dummynet.4;. Dummynet steht traditionell in enger Verbindung mit IPFW, während ALTQ gemeinsam mit PF eingesetzt wird. Traffic Shaping für IPFILTER ist derzeit mit IPFILTER für NAT sowie Filterung und mit IPFW und &man.dummynet.4; oder durch die Kombination von PF mit ALTQ möglich. Gemeinsam ist allen Firewallpaketen (IPF, IPFW sowie PF), dass sie Regeln einsetzen, um den Transfer von Datenpaketen auf und von Ihrem System zu regeln. Unterschiedlich sind aber die Art und Weise, wie dies realisiert wird. Auch die für diese Regeln verwendete Syntax ist unterschiedlich. &os; überlässt es dem Anwender, das Firewallsystem zu wählen, dass seinen Anforderungen und Vorlieben am Besten entspricht. Keines der im Basissystem enthaltenen Firewallpakete wird dabei als das beste angesehen. IPFILTER hat etwa den Vorteil, dass dessen zustandsabhängige Regeln relativ einfach in einer NAT-Umgebung implementiert werden können. Außerdem verfügt es über einen eigenen FTP-Proxy, der die Erstellung von sicheren Regeln für ausgehende FTP-Verbindungen vereinfacht. Da alle Firewalls auf der Untersuchung der Werte ausgewählter Kontrollfelder von Datenpaketen basieren, ist es für die Erstellung von Firewallregeln notwendig, die Funktionsweise von TCP/IP zu verstehen. Außerdem muss man dazu wissen, was die Werte der einzelnen Kontrollfelder bedeuten und wie diese während einer Verbindung eingesetzt werden. Eine gute Erklärung dieser Thematik finden Sie unter . John Ferrell Revised and updated by Paket Filter (PF) von OpenBSD und <acronym>ALTQ</acronym> firewall PF Im Juli 2003 wurde PF, die Standard-Firewall von OpenBSD, nach &os; portiert und in die &os;-Ports-Sammlung aufgenommen. 2004 war PF in &os; 5.3 Teil des Basissystems. Bei PF handelt es sich um eine komplette, vollausgestattete Firewall, die optional auch ALTQ (Alternatives Queuing) unterstützt. ALTQ bietet Ihnen Quality of Service (QoS)-Bandbreitenformung. - + Das OpenBSD-Projekt leistet bereits hervorragende Dokumentationsarbeit mit der PF FAQ. Aus diesem Grund konzentriert sich dieser Handbuchabschnitt nur auf diejenigen Besonderheiten von PF, die &os; betreffen, sowie ein paar allgemeine Informationen hinsichtlich der Verwendung. Genauere Informationen zum Einsatz erhalten Sie in der PF FAQ. Weitere Informationen zu PF für &os; finden Sie unter . Verwendung der PF-Kernelmodule - - Um die PF Kernel Module zu laden, fügen Sie folgende + + Um die PF Kernel Module zu laden, fügen Sie folgende Zeile in ihre /etc/rc.conf ein: - + pf_enable="YES" - - Danach starten Sie das Startup Script um die Module + + Danach starten Sie das Startup Script um die Module zu laden: - + &prompt.root; /etc/rc.d/pf start - - Das PF Modul wird nicht geladen, falls es die Ruleset - Konfigurationsdatei nicht findet. Standardmässig befindet - sich diese Datei in /etc/pf.conf. Falls das - PF Ruleset sich an einem anderen Platz befindet, können Sie das - durch Hinzufügen einer Zeile ähnlich der folgenden, in + + Das PF Modul wird nicht geladen, falls es die Ruleset + Konfigurationsdatei nicht findet. Standardmässig befindet + sich diese Datei in /etc/pf.conf. Falls das + PF Ruleset sich an einem anderen Platz befindet, können Sie das + durch Hinzufügen einer Zeile ähnlich der folgenden, in ihrer /etc/rc.conf ändern: - + pf_rules="/path/to/pf.conf" Seit &os; 7.0 ist die Beispiel-pf.conf aus dem Verzeichnis /etc nach /usr/share/examples/pf/ gewandert. Bei &os; Versionen vor 7.0 existiert standardmässig eine Datei /etc/pf.conf. Das PF-Modul kann auch manuell über die Kommandozeile geladen werden: &prompt.root; kldload pf.ko - - Protokollierungsfunktionen für PF werden durch das Modul + + Protokollierungsfunktionen für PF werden durch das Modul pflog.ko zur Verfügung gestellt und können durch folgenden Eintrag in der /etc/rc.conf aktiviert werden: - + pflog_enable="YES" - - Danach starten Sie das Startup Script, um das Modul + + Danach starten Sie das Startup Script, um das Modul zu laden: - + &prompt.root; /etc/rc.d/pflog start - - Falls Sie noch weitere Features für - PF benötigen, müssen Sie diese in den + + Falls Sie noch weitere Features für + PF benötigen, müssen Sie diese in den Kernel einbauen. PF Kernel-Optionen kernel options device pf kernel options device pflog kernel options device pfsync Es ist nicht zwingend nötig, dass Sie PF-Unterstützung in den &os; Kernel kompilieren. Sie werden dies tun müssen, um eine von PFs fortgeschritteneren Eigenschaften nutzen zu können, die nicht als Kernelmodul verfügbar ist. Genauer handelt es sich dabei um &man.pfsync.4;, ein Pseudo-Gerät, welches bestimmte Änderungen der PF-Zustandstabelle offenlegt. Es kann mit &man.carp.4; kombiniert werden, um ausfallsichere Firewalls mit PF zu realisieren. Weitere - Informationen zu CARP erhalten Sie in + Informationen zu CARP erhalten Sie in des Handbuchs. Die Kernelkonfigurationsoptionen von PF befinden sich in /usr/src/sys/conf/NOTES und sind im Folgenden wiedergegeben: device pf device pflog device pfsync Die Option device pf aktiviert die Unterstützung für die Packet Filter-Firewall (&man.pf.4;). Die Option device pflog aktiviert das optionale &man.pflog.4;-Pseudonetzwerkgerät, das zum Protokollieren des Datenverkehrs über einen &man.bpf.4;-Deskriptor dient. &man.pflogd.8; ist in der Lage, diese Protokolldateien auf Ihre Platte zu speichern. Die Option device pfsync aktiviert das optionale &man.pfsync.4;-Pseudonetzwerkgerät für die Überwachung von Statusänderungen. Verfügbare rc.conf-Optionen Die folgenden &man.rc.conf.5;-Einträge konfigurieren PF und &man.pflog.4; beim Systemstart: pf_enable="YES" # PF aktivieren (Modul, wenn nötig, aktivieren) pf_rules="/etc/pf.conf" # Datei mit Regeldefinitionen für pf pf_flags="" # zusätzliche Parameter für den Start von pfctl pflog_enable="YES" # starte pflogd(8) pflog_logfile="/var/log/pflog" # wo soll pflogd die Protokolldatei speichern pflog_flags="" # zusätzliche Parameter für den Start von pflogd Wenn Sie ein lokales Netzwerk hinter dieser Firewall betreiben und Pakete für dessen Rechner weiterleiten oder NAT verwenden wollen, benötigen Sie zusätzlich die folgende Option: gateway_enable="YES" # LAN Gateway aktivieren Filterregeln erstellen - + PF liest seine konfigurierten Regeln aus &man.pf.conf.5; (standardmässig /etc/pf.conf) und modifiziert, verwirft oder lässt Pakete passieren anhand der Regeln oder Definitionen, die in dieser Datei gespeichert sind. &os; enthält dazu nach der Installation mehrere Beispieldateien, die in /usr/share/examples/pf/ abgelegt sind. - Für eine ausführliche Behandlung des + Für eine ausführliche Behandlung des PF-Regelwerks lesen Sie bitte die PF FAQ. - + Beim Lesen der PF FAQ wollten Sie darauf achten, dass verschiedene Versionen von &os; auch unterschiedliche Versionen von PF enthalten. Das aktuelle &os; 7.X und neuere Versionen benutzen die selbe Version von PF wie OpenBSD 4.1. - + Die &a.pf; ist eine erste Anlaufstelle für Fragen zur Konfiguration und dem Einsatz der PF Firewall. Vergessen Sie nicht, vorher die Mailinglistenarchive zu durchsuchen, bevor Sie dort eine Frage stellen! Arbeiten mit PF - + Benutzen Sie &man.pfctl.8;, um PF zu steuern. Unten finden Sie ein paar nützliche Befehle (lesen Sie auch die Manualpage zu &man.pfctl.8;, um alle verfügbaren Optionen nachzuschlagen): - + Befehl Zweck - + pfctl PF aktivieren - + pfctl PF deaktivieren - + pfctl all /etc/pf.conf Alle Filterregeln zurücksetzen (NAT, Filter, Zustand, Tabelle, etc.) und erneut aus der Datei /etc/pf.conf auslesen - + pfctl [ Regeln | NAT | Zustand ] Bericht über die Filterregeln, NAT-Regeln, oder Zustandstabellen - + pfctl /etc/pf.conf überprüft /etc/pf.conf auf Fehler, lädt aber das Regelwerk nicht neu - - + + <acronym>ALTQ</acronym> aktivieren ALTQ muss vor der Verwendung in den &os;-Kernel kompiliert werden. Beachten Sie, dass ALTQ nicht von allen verfügbaren Netzwerkkartentreibern unterstützt wird. Sehen Sie daher zuerst in &man.altq.4; nach, ob Ihre Netzwerkkarte diese Funktion unter Ihrer &os;-Version unterstützt. - + Die folgenden Kerneloptionen aktivieren ALTQ sowie alle Zusatzfunktionen: options ALTQ options ALTQ_CBQ # Class Bases Queuing (CBQ) options ALTQ_RED # Random Early Detection (RED) options ALTQ_RIO # RED In/Out options ALTQ_HFSC # Hierarchical Packet Scheduler (HFSC) options ALTQ_PRIQ # Priority Queuing (PRIQ) options ALTQ_NOPCC # Wird von SMP benötigt options ALTQ aktiviert das ALTQ-Framework. options ALTQ_CBQ aktiviert das Class Based Queuing (CBQ). CBQ erlaubt es, die Bandbreite einer Verbindung in verschiedene Klassen oder Warteschlangen zu unterteilen, um die Priorität von Datenpaketen basierend auf Filterregeln zu ändern. - options ALTQ_RED aktiviert - Random Early Detection - (RED). RED wird - zur Vermeidung einer Netzwerkverstopfung verwendet. Dazu - ermittelt RED die Größe der - Warteschlange und vergleicht diesen Wert mit den minimalen - und maximalen Grenzwerten der Warteschlange. Ist die - Warteschlange größer als das erlaubte Maximum, - werden alle neuen Pakete verworfen. Getreu seinem Namen - verwirft RED Pakete unterschiedlicher + options ALTQ_RED aktiviert + Random Early Detection + (RED). RED wird + zur Vermeidung einer Netzwerkverstopfung verwendet. Dazu + ermittelt RED die Größe der + Warteschlange und vergleicht diesen Wert mit den minimalen + und maximalen Grenzwerten der Warteschlange. Ist die + Warteschlange größer als das erlaubte Maximum, + werden alle neuen Pakete verworfen. Getreu seinem Namen + verwirft RED Pakete unterschiedlicher Verbindungen nach dem Zufallsprinzip. options ALTQ_RIO aktiviert Random Early Detection In and Out. options ALTQ_HFSC aktiviert den Hierarchical Fair Service Curve -Paketplaner. Weitere Informationen zu HFSC finden Sie unter . options ALTQ_PRIQ aktiviert Priority Queuing (PRIQ). PRIQ lässt Verkehr einer Warteschlange mit höherer Priorität zuerst durch. options ALTQ_NOPCC aktiviert die SMP Unterstützung von ALTQ. Diese Option ist nur auf SMP-System erforderlich. Die IPFILTER-Firewall (IPF) Dieses Kapitel ist noch nicht übersetzt. Lesen Sie bitte das Original in englischer Sprache. Wenn Sie helfen wollen, dieses Kapitel zu übersetzen, senden Sie bitte eine E-Mail an die Mailingliste &a.de.translators;. IPFW Dieses Kapitel ist noch nicht übersetzt. Lesen Sie bitte das Original in englischer Sprache. Wenn Sie helfen wollen, dieses Kapitel zu übersetzen, senden Sie bitte eine E-Mail an die Mailingliste &a.de.translators;. Index: head/de_DE.ISO8859-1/books/handbook/x11/chapter.sgml =================================================================== --- head/de_DE.ISO8859-1/books/handbook/x11/chapter.sgml (revision 36616) +++ head/de_DE.ISO8859-1/books/handbook/x11/chapter.sgml (revision 36617) @@ -1,1840 +1,1843 @@ Ken Tom Erweitert um X.Orgs X11-Server von Marc Fonvieille Martin Heinen Übersetzt von Das X-Window-System Übersicht Mit X11 steht unter &os; eine leistungsfähige frei verfügbare grafische Benutzeroberfläche zur Verfügung, die sowohl in &xorg; und &xfree86; (sowie in weiteren, hier nicht diskutierten Varianten) implementiert wurde. Bis einschließlich &os; 5.2.1-RELEASE wurde standardmäßig &xfree86;, der X11-Server von The &xfree86; Project, Inc., installiert. Seit &os; 5.3-RELEASE ist &xorg; von der X.Org Foundation der voreingestellte X11-Server, der unter einer Lizenz ähnlich der von &os; steht. Zusätzlich sind einige kommerzielle X-Server für &os; verfügbar. Dieses Kapitel behandelt die Installation und Konfiguration von X11; der Schwerpunkt liegt auf &xorg; &xorg.version;. Informationen zur Konfiguration von &xfree86; (beispielsweise auf älteren Versionen von &os;, unter denen &xfree86; noch der Standard-X-Server war) sowie von äteren &xorg;-Versionen finden Sie weiterhin in den archivierten Versionen des &os;-Handbuchs unter . Auskunft über von X11 unterstützte Video-Hardware gibt die Webseite &xorg;. Nachdem Sie dieses Kapitel gelesen haben, werden Sie die Komponenten des X-Window-Systems und ihr Zusammenspiel kennen. Wissen, wie X11 installiert und konfiguriert wird. Wissen, wie Sie verschiedene Window-Manager installieren und benutzen. Wissen, wie &truetype;-Schriftarten mit X11 benutzt werden. Wissen, wie Sie die grafische Anmeldung (XDM) einrichten. Bevor Sie dieses Kapitel lesen, sollten Sie wissen, wie Sie Software Dritter installieren (). X-Grundlagen Anwendern anderer grafischer Benutzeroberflächen, wie µsoft.windows; oder &macos;, kommt X beim ersten Mal oft befremdlich vor. Man braucht kein weitreichendes Verständnis der X-Komponenten und Ihres Zusammenspiels, um X anzuwenden. Um die Stärken von X auszunutzen, sollten Sie allerdings die Grundlagen verstehen. Warum heißt es X? X ist nicht die erste grafische Benutzeroberfläche, die für &unix; geschrieben wurde. Die Entwickler von X arbeiteten vorher an einem anderen System, das W (von engl. window: Fenster) hieß. X ist schlicht der nächste Buchstabe im Alphabet. X wird X, X-Window-System oder X11 genannt. Sagen Sie bitte nicht X-Windows: das kommt bei einigen Leuten schlecht an (die Hilfeseite &man.X.7; führt dies näher aus). Das Client/Server-Modell von X X wurde von Anfang an netzwerktransparent entworfen und verwendet ein Client-Server-Modell. In diesem Modell läuft der Server auf dem Rechner, an dem die Tastatur, der Bildschirm und die Maus angeschlossen ist. Der Server ist für Dinge wie die Verwaltung des Bildschirms und die Verarbeitung von Tastatur- und Maus-Eingaben sowie anderer Ein- und Ausgabegeräte (beispielsweise könnte ein Tablet zur Eingabe oder ein Videoprojektor zur Ausgabe verwendet werden) verantwortlich. Jede X-Anwendung, beispielsweise ein XTerm oder &netscape; ist ein Client. Der Client sendet dem Server Nachrichten wie Zeichne an diesen Koordinaten ein Fenster und der Server sendet dem Client Nachrichten der Art Der Benutzer hat gerade den Ok-Knopf gedrückt. In kleinen Umgebungen laufen der X-Server und die X-Clients auf demselben Rechner. Es ist aber durchaus möglich, den X-Server auf einem weniger leistungsfähigen Arbeitsplatzrechner laufen zu lassen und die X-Anwendungen (die Clients) auf dem leistungsfähigen und teuren Server der Arbeitsgruppe zu betreiben. In diesem Fall kommunizieren der X-Server und die X-Clients über das Netz. Dieses Modell verwirrt viele Leute, die erwarten, dass der X-Server der dicke Rechner im Maschinenraum und der X-Client ihr Arbeitsplatzrechner ist. Merken Sie sich einfach, dass der X-Server der Rechner mit dem Bildschirm und der Maus ist und die X-Clients Programme sind, die in den Fenstern laufen. Das X-Protokoll ist unabhängig vom verwendeten Betriebssystem und Rechnertyp. Ein X-Server kann durchaus auch unter µsoft.windows; oder Apples &macos; betrieben werden, wie viele kostenlose und kommerzielle Anwendungen zeigen. Der Window-Manager Die X-Philosophie Werkzeuge statt Richtlinien ist wie die UNIX-Philosophie. Es wird nicht vorgeschrieben, wie eine Aufgabe zu lösen ist, stattdessen erhält der Benutzer Werkzeuge, über die er frei verfügen kann. Dies geht so weit, dass X nicht bestimmt, wie Fenster auf dem Bildschirm auszusehen haben, wie sie mit der Maus zu verschieben sind, welche Tastenkombination benutzt werden muss, um zwischen den Fenstern zu wechseln (z.B. Alt Tab unter µsoft.windows;), oder ob die Fensterrahmen Schaltflächen zum Schließen haben. X gibt die Verantwortung für all diese Sachen an eine Anwendung ab, die Window-Manager genannt wird. Unter X gibt es zahlreiche Window-Manager: AfterStep, Blackbox, ctwm, Enlightenment, fvwm, Sawfish, twm, Window Maker um nur einige zu nennen. Jeder dieser Window-Manager sieht anders aus: Manche stellen virtuelle Bildschirme zur Verfügung, in anderen lassen sich die Tastenkombinationen zur Verwaltung des Bildschirms anpassen, einige besitzen eine Startleiste oder etwas Ähnliches und in manchen lässt sich das Aussehen und Verhalten über die Anwendung von Themes beliebig einstellen. Die eben genannten Window-Manager und viele weitere finden Sie in der Kategorie x11-wm der Ports-Sammlung. Die grafischen Benutzeroberflächen KDE und GNOME besitzen eigene Window-Manager, die in den grafischen Arbeitsplatz integriert sind. Die Window-Manager werden unterschiedlich konfiguriert. Einige erwarten eine manuell erstellte Konfigurationsdatei, andere bieten grafische Werkzeuge für die meisten Konfigurationsarbeiten an. Die Konfigurationsdatei von Sawfish ist sogar in einem Lisp-Dialekt geschrieben. Fokus Der Window-Manager ist für die Methode, mit der ein Fenster den Fokus bekommt, verantwortlich. Jedes System, das Fenster verwendet, muss entscheiden, wie ein Fenster aktiviert wird, damit es Eingaben empfangen kann. Das aktive Fenster sollte zudem sichtbar gekennzeichnet werden. Eine geläufige Methode, den Fokus zu wechseln, wird click-to-focus genannt. Die Methode wird in µsoft.windows; benutzt: Ein Fenster wird aktiv, wenn es mit der Maus angeklickt wird. X legt nicht fest, wie der Fokus einzustellen ist, stattdessen bestimmt der Window-Manager welches Fenster den Fokus zu einem gegebenen Zeitpunkt erhält. Alle Window-Manager stellen die Methode click-to-focus bereit, die meisten stellen auch noch andere Methoden bereit. Verbreitete Methoden, den Fokus einzustellen, sind: focus-follows-mouse Den Fokus hat das Fenster, unter dem sich der Mauszeiger befindet. Das muss nicht unbedingt das Fenster, sein, das sich vorne befindet. Wird der Mauszeiger in ein anderes Fenster bewegt, so erhält dieses Fenster den Fokus, ohne das es angeklickt werden muss. sloppy-focus Diese Methode erweitert die Methode focus-follows-mouse. Wenn die Maus mit focus-follows-mouse aus dem Fenster auf die Oberfläche bewegt wird, verliert das aktive Fenster den Fokus. Da dann kein Fenster mehr den Fokus hat, gehen alle Eingaben verloren. Die Methode sloppy-focus wechselt den Fokus nur, wenn sich der Mauszeiger in ein neues Fenster bewegt und nicht, wenn er das aktive Fenster verlässt. click-to-focus Das aktive Fenster wird durch einen Mausklick festgelegt (dabei kann das Fenster vor alle anderen Fenster gesetzt werden). Alle Eingaben werden dann, unabhängig von der Position des Mauszeigers, dem aktiven Fenster zugeordnet. Viele Window-Manager unterstützen noch andere Methoden, so wie Abwandlungen der hier vorgestellten Methoden. Schauen Sie sich dazu bitte die Hilfeseiten Ihres Window-Managers an. Widgets Die X-Philosophie dehnt sich auch auf die Widgets aus, die von den Anwendungen benutzt werden. Ein Widget bezeichnet Objekte, die manipuliert werden können, wie buttons (Schaltflächen), check buttons (Mehrfachauswahlknopf), radio buttons (Einfachauswahlknopf), Icons und Auswahllisten. Unter µsoft.windows; werden Widgets Controls genannt. µsoft.windows; und Apples &macos; geben strenge Richtlinien für Widgets vor: Von den Entwicklern wird erwartet, dass Sie Anwendungen mit einheitlichem Aussehen und einheitlicher Bedienung (look and feel) entwickeln. X gibt weder einen Stil noch Widgets vor, die benutzt werden müssen. Erwarten Sie daher nicht, dass alle X-Anwendungen gleich aussehen oder sich gleich bedienen lassen. Es gibt mehrere verbreitete Widget-Sammlungen, beispielsweise die Athena-Widgets vom MIT, &motif; (abgeschrägte Ecken und drei Grautöne, danach wurden die Widgets von µsoft.windows; entworfen) oder OpenLook. Die meisten neuen X-Anwendungen benutzen heute modern aussehende Widgets, wie Qt, das von KDE benutzt wird oder GTK+, das von GNOME benutzt wird. Damit wird eine gewisse Einheitlichkeit in Bedienung und Aussehen erreicht, die sicher neuen Benutzern die Arbeit erleichtert. X11 installieren &xorg; ist der Standard-X-Server unter &os;. &xorg; ist der von der X.Org Foundation herausgegebene X-Server des Open-Source X Window Systems. &xorg; beruht auf &xfree86 4.4RC2 und X11R6.6. Derzeit ist die Version &xorg.version; von &xorg; in der Ports-Sammlung vorhanden. Die nachstehenden Kommandos bauen und installieren &xorg; aus der Ports-Sammlung: &prompt.root; cd /usr/ports/x11/xorg &prompt.root; make install clean Der komplette Bau von &xorg; benötigt mindestens 4 GB freien Plattenplatz. Mit &man.pkg.add.1; können Sie X11 direkt von fertigen Paketen installieren. Wenn &man.pkg.add.1; die Pakete herunterlädt, lassen Sie die Versionsnummer aus. &man.pkg.add.1; holt automatisch die aktuelle Version eines Pakets. Das &xorg;-Paket holen und installieren Sie wie folgt: &prompt.root; pkg_add -r xorg Die obigen Beispiele installieren die vollständige X11-Distribution, die unter anderem Server, Clients und Fonts enthält. Für die einzelnen Teile der Distribution gibt es ebenfalls separate Pakete. Alternativ können Sie x11/xorg-minimal verwenden, um eine minimale X11-Distribution zu installieren. Der Rest dieses Kapitels erklärt, wie Sie X11 konfigurieren und sich eine Arbeitsumgebung einrichten. Christopher Shumway Beigetragen von X11 konfigurieren &xorg; X11 Vorarbeiten Bevor Sie X11 konfigurieren, benötigen Sie folgende Informationen: die Spezifikationen des Monitors den Chipset des Grafikadapters die Speichergröße des Grafikadapters Synchronisationsfrequenz horizontale Synchronisationsfrequenz vertikale Aus den Spezifikationen des Monitors ermittelt X11 die Auflösung und die Wiederholrate für den Betrieb des X-Servers. Die Spezifikationen entnehmen Sie der Dokumentation des Monitors oder der Webseite des Herstellers. Sie benötigen die horizontale und die vertikale Synchronisationsfrequenz. Der Chipsatz der Grafikkarte bestimmt den Treiber, den X11 verwendet. Die meisten Chipsätze werden automatisch erkannt, Sie brauchen die Information jedoch, wenn die Erkennung fehlschlägt. Die Speichergröße der Grafikkarte bestimmt die maximal mögliche Auflösung und Farbtiefe. X11 konfigurieren Ab Version 7.4 kann &xorg; HAL verwenden, um Tastaturen und Mäuse automatisch zu erkennen. Die Ports sysutils/hal und devel/dbus werden als Abhängigkeiten von x11/xorg installiert, müssen aber durch die folgenden Einträge in /etc/rc.conf aktiviert werden: hald_enable="YES" dbus_enable="YES" Diese Dienste sollten (entweder manuell oder durch einen Neustart) gestartet werden, bevor mit der weiteren Konfiguration von &xorg; begonnen wird. Die automatische Konfiguration kann mit bestimmter Hardware fehlschlagen oder gewisse Dinge nicht so einrichten, wie gewünscht. In diesen Fällen ist eine manuelle Konfiguration notwendig. Grafische Oberflächen wie GNOME, KDE oder Xfce besitzen eigene Werkzeuge, die es dem Benutzer erlauben, auf einfache Art und Weise die Bildschirmparameter wie die Auflösung zu ändern. Falls die Standardkonfiguration für Sie nicht akzeptabel ist und die Installation einer grafischen Oberfläche geplant ist, fahren Sie damit fort und benutzen Sie dann das entsprechende Werkzeug für die Bildschirmeinstellungen. Die X11 Konfiguration spielt sich in mehreren Schritten ab. Dazu erstellen Sie als erstes eine Vorgabe für die Konfigurationsdatei. Setzen Sie dazu als root den folgenden Befehl ab: &prompt.root; Xorg -configure Die Vorgabe-Konfiguration wird dann unter dem Namen xorg.conf.new im Verzeichnis /root gespeichert (das verwendete Verzeichnis wird durch die Umgebungsvariable $HOME bestimmt und hängt davon ab, wie Sie zu root gewechselt sind). X11 hat in diesem Schritt versucht, die Grafik-Hardware des Systems zu erkennen und eine Konfigurationsdatei ausgeschrieben, die zur Hardware passende Treiber lädt. Im nächsten Schritt wird geprüft, ob &xorg; die Grafik-Hardware des Systems verwenden kann. Für &xorg;-Versionen bis 7.3, setzen Sie dazu den folgenden Befehl ab: &prompt.root; Xorg -config xorg.conf.new Mit &xorg; 7.4 und höher produziert dieser Test einen schwarzen Bildschirm, der es unter Umständen schwierig macht zu erkennen, ob X11 korrekt funktioniert. Das alte Verhalten ist immer noch durch die -Option verfügbar: &prompt.root; Xorg -config xorg.conf.new -retro Wenn jetzt ein graues Raster und der X-Mauszeiger erscheinen, war die Konfiguration erfolgreich. Beenden Sie den Test, indem Sie auf die virtuelle Konsole wechseln, die Sie verwendet haben, um den Test zu starten, durch gleichzeitiges drücken von Ctrl Alt Fn (F1 für die erste virtuelle Konsole) und drücken anschliessend Ctrl C . Bis zu Version 7.3 von &xorg; konnte die Tastenkombination Ctrl Alt Backspace verwendet werden, um &xorg; zu beenden. Um diese in Version 7.4 und danach zu aktivieren, fügen geben Sie entweder den folgenden Befehl von einem X-Terminalemulator ein: &prompt.user; setxkbmap -option terminate:ctrl_alt_bksp oder erstellen Sie eine Tastaturkonfigurationsdatei für hald, x11-input.fdi genannt, und legen Sie diese im Verzeichnis /usr/local/etc/hal/fdi/policy ab. Diese Datei sollte die folgenden Zeilen enthalten: <?xml version="1.0" encoding="ISO-8859-1"?> <deviceinfo version="0.2"> <device> <match key="info.capabilities" contains="input.keyboard"> <merge key="input.x11_XkbOptions" type="string">terminate:ctrl_alt_bksp</merge> </match> </device> </deviceinfo> Sie müssen anschliessend ihren Computer neu starten, um hald zu zwingen, diese Datei einzulesen. Die folgende Zeile muss ebenfalls zu xorg.conf.new hinzugefügt werden, entweder in den Abschnitt ServerLayout oder ServerFlags: Option "DontZap" "off" Wenn die Maus nicht funktioniert, prüfen Sie, ob die Maus konfiguriert wurde. Die Mauskonfiguration wird in im &os;-Installationskapitel beschrieben. Zusätzlich werden ab Version 7.4 die InputDevice-Abschnitte in xorg.conf ignoriert, um stattdessen die automatisch erkannten Geräte zu verwenden. Um das alte Verhalten wiederherzustellen, fügen Sie die folgende Zeile zum ServerLayout- oder dem ServerFlags-Abschnitt dieser Datei hinzu: Option "AutoAddDevices" "false" Eingabegeräte können dann wie in den vorherigen Versionen konfiguriert werden, zusammen mit anderen benötigen Optionen (z.B. wechseln des Tastaturlayouts). Wie zuvor erwähnt, wird seit Version 7.4 standardmässig der hald-Dienst automatisch Ihre Tastatur erkennen. Es kann passieren, dass ihr Tastaturlayout oder das Modell nicht korrekt erkannt wird. Grafische Oberflächen wie GNOME, KDE oder Xfce stellen Werkzeuge für die Konfiguration der Tastatur bereit. Es ist allerdings auch möglich, die Tastatureigenschaften direkt zu setzen, entweder mit Hilfe von &man.setxkbmap.1; oder mit einer Konfigurationsregel von hald. Wenn Sie zum Beispiel eine PC 102-Tasten Tastatur mit französischem Layout verwenden möchten, mössen Sie eine Tastaturkonfigurationsdatei für hald, genannt x11-input.fdi, im Verzeichnis /usr/local/etc/hal/fdi/policy ablegen. Diese Datei sollte die folgenden Zeilen enthalten: <?xml version="1.0" encoding="ISO-8859-1"?> <deviceinfo version="0.2"> <device> <match key="info.capabilities" contains="input.keyboard"> <merge key="input.x11_options.XkbModel" type="string">pc102</merge> <merge key="input.x11_options.XkbLayout" type="string">fr</merge> </match> </device> </deviceinfo> Wenn diese Datei bereits existiert, kopieren Sie nur die Zeilen in diese Datei, welche die Tastaturkonfiguration betreffen. Sie mössen Ihren Computer neu starten, um hald zu zwingen, diese Datei einzulesen. Es ist möglich, die gleiche Konfiguration von einem X-Terminal oder einem Skript über den folgenden Befehl heraus zu tätigen: &prompt.user; setxkbmap -model pc102 -layout fr Die Datei /usr/local/share/X11/xkb/rules/base.lst listet die verschiedenen Tastatur- und Layoutoptionen auf, die Ihnen zur Verfügung stehen. X11 anpassen Als Nächstes passen Sie xorg.conf.new an. Öffnen Sie die Datei in einem Editor, wie &man.emacs.1; oder &man.ee.1; und fügen Sie die Synchronisationsfrequenzen des Monitors ein. Die Frequenzen werden im Abschnitt "Monitor" eingetragen: Section "Monitor" Identifier "Monitor0" VendorName "Monitor Vendor" ModelName "Monitor Model" HorizSync 30-107 VertRefresh 48-120 EndSection Unter Umständen fehlen die Schlüsselwörter HorizSync und VertRefresh, die Sie dann nachtragen müssen. Geben Sie, wie im Beispiel gezeigt, die horizontale Synchronisationsfrequenz hinter HorizSync und die vertikale Synchronisationsfrequenz hinter VertRefresh an. X unterstützt die Energiesparfunktionen (DPMS, Energy Star) Ihres Monitors. Mit &man.xset.1; können Sie Zeitschranken für die DPMS-Modi standby, suspend, off vorgeben, oder diese zwingend aktivieren. Die DPMS-Funktionen können Sie mit der nachstehenden Zeile im "Monitor"-Abschnitt aktivieren: Option "DPMS" xorg.conf Die gewünschte Auflösung und Farbtiefe stellen Sie im Abschnitt "Screen" ein: Section "Screen" Identifier "Screen0" Device "Card0" Monitor "Monitor0" DefaultDepth 24 SubSection "Display" Viewport 0 0 Depth 24 Modes "1024x768" EndSubSection EndSection Mit DefaultDepth wird die Farbtiefe des X-Servers vorgegeben. Mit der Option -depth von &man.Xorg.1; lässt sich die vorgegebene Farbtiefe überschreiben. Modes gibt die Auflösung für die angegebene Farbtiefe an. Die Farbtiefe im Beispiel beträgt 24 Bits pro Pixel, die zugehörige Auflösung ist 1024x768 Pixel. Beachten Sie, dass in der Voreinstellung nur Standard-VESA-Modi der Grafikkarte angegeben werden können. Sichern Sie die Konfigurationsdatei und testen Sie die Konfiguration wie oben beschrieben. Bei der Fehlersuche sind Ihnen die Protokolle des X11-Servers behilflich. In den Protokollen wird die gefundene Graphik-Hardware protokolliert. Die Protokolle von &xorg; heißen /var/log/Xorg.0.log. Die Dateinamen enthalten eine laufende Nummer, der Name variiert daher von Xorg.0.log zu Xorg.8.log. Wenn alles funktioniert hat, installieren Sie die Datei an einen Ort, an dem &man.Xorg.1; sie findet. Normalerweise wird die Konfigurationsdatei unter /etc/X11/xorg.conf oder /usr/local/etc/X11/xorg.conf gespeichert: &prompt.root; cp xorg.conf.new /etc/X11/xorg.conf Damit ist die X11-Konfiguration beendet und &xorg; kann nun mithilfe von &man.startx.1; gestartet werden. Alternativ können Sie X11 auch mit &man.xdm.1; starten. Spezielle Konfigurationen Konfiguration des &intel; i810 Graphics Chipsets Intel i810 Chipset Der &intel; i810-Chipset benötigt den Treiber agpgart, die AGP-Schnittstelle von X11. Weitere Informationen finden sich in &man.agp.4;. Ab jetzt kann die Hardware wie jede andere Grafikkarte auch konfiguriert werden. Der Treiber &man.agp.4; kann nicht nachträglich mit &man.kldload.8; in einen laufenden Kernel geladen werden. Er muss entweder fest im Kernel eingebunden sein oder beim Systemstart über /boot/loader.conf geladen werden. Einen Widescreen-Monitor einsetzen Widescreen-Monitor, Konfiguration Dieser Abschnitt geht über die normalen Konfigurationsarbeiten hinaus und setzt einiges an Vorwissen voraus. Selbst wenn die Standardwerkzeuge zur X-Konfiguration bei diesen Geräten nicht zum Erfolg führen, sollten sich in den Logdateien genug Informationen finden, mit denen Sie letztlich doch einen funktionierenden X-Server konfigurieren können. Alles, was Sie dazu noch benötigen, ist ein Texteditor. Aktuelle Widescreen-Formate (wie WSXGA, WSXGA+, WUXGA, WXGA, WXGA+, und andere mehr) unterstützen Seitenverhältnisse wie 16:10 oder 10:9, die unter X Probleme verursachen können. Bei einem Seitenverhältnis von 16:10 sind beispielsweise folgende Auflösungen möglich: 2560x1600 1920x1200 1680x1050 1440x900 1280x800 Diese Konfiguration könnte so einfach sein wie das zusätzliche Anlegen eines Eintrags einer dieser Auflösungen als ein möglicher Mode in Section "Screen": Section "Screen" Identifier "Screen0" Device "Card0" Monitor "Monitor0" DefaultDepth 24 SubSection "Display" Viewport 0 0 Depth 24 Modes "1680x1050" EndSubSection EndSection &xorg; ist normalerweise intelligent genug, um die Informationen zu den erlaubten Auflösungen über I2C/DDC zu beziehen, und weiß daher, welche Auflösungen und Frequenzen Ihr Widescreen-Monitor unterstützt. Wenn diese ModeLines in den Treiberdateien nicht vorhanden sind, kann es sein, dass Sie &xorg; beim Finden der korrekten Werte unterstützen müssen. Dazu extrahieren Sie die benötigten Informationen aus der Datei /var/log/Xorg.0.log und erzeugen daraus eine funktionierende ModeLine. Dazu suchen Sie in dieser Datei nach Zeilen ähnlich den folgenden: (II) MGA(0): Supported additional Video Mode: (II) MGA(0): clock: 146.2 MHz Image Size: 433 x 271 mm (II) MGA(0): h_active: 1680 h_sync: 1784 h_sync_end 1960 h_blank_end 2240 h_border: 0 (II) MGA(0): v_active: 1050 v_sync: 1053 v_sync_end 1059 v_blanking: 1089 v_border: 0 (II) MGA(0): Ranges: V min: 48 V max: 85 Hz, H min: 30 H max: 94 kHz, PixClock max 170 MHz Diese Informationen werden auch als EDID-Informationen bezeichnet. Um daraus eine funktionierende ModeLine zu erzeugen, müssen Sie lediglich die Zahlen in die korrekte Reihenfolge bringen: ModeLine <name> <clock> <4 horiz. timings> <4 vert. timings> Die korrekte ModeLine in Section "Monitor" würde für dieses Beispiel folgendermaßen aussehen: Section "Monitor" Identifier "Monitor1" VendorName "Bigname" ModelName "BestModel" ModeLine "1680x1050" 146.2 1680 1784 1960 2240 1050 1053 1059 1089 Option "DPMS" EndSection Nachdem diese Äderungen durchgeführt sind, sollte X auch auf Ihrem neuen Widescreen-Monitor starten. Murray Stokely Beigetragen von Schriftarten in X11 benutzen Type 1 Schriftarten Die Schriftarten, die mit X11 geliefert werden, eignen sich ganz und gar nicht für Desktop-Publishing-Anwendungen. Große Schriftarten zeigen bei Präsentationen deutliche Treppenstufen und die kleinen Schriftarten in &netscape; sind fast unleserlich. Es gibt allerdings mehrere hochwertige Type 1 Schriftarten (&postscript;), die mit X11 benutzt werden können. Beispielsweise enthalten die URW-Schriftarten (x11-fonts/urwfonts) hochwertige Versionen gängiger Type 1 Schriftarten (zum Beispiel Times Roman, Helvetica, Palatino). Die Sammlung Freefonts (x11-fonts/freefonts) enthält noch mehr Schriftarten, doch sind diese für den Einsatz in Grafik-Programmen wie The Gimp gedacht. Es fehlen auch einige Schriftarten, sodass sich die Sammlung nicht für den alltäglichen Gebrauch eignet. Weiterhin kann X11 leicht so konfiguriert werden, dass es &truetype;-Schriftarten verwendet. Mehr dazu erfahren Sie in der Hilfeseite &man.X.7; und im Abschnitt &truetype; Schriftarten. Die Type 1 Schriftarten lassen sich aus der Ports-Sammlung wie folgt installieren: &prompt.root; cd /usr/ports/x11-fonts/urwfonts &prompt.root; make install clean Analog lassen sich Freefont und andere Sammlungen installieren. Die neuen Schriftarten müssen Sie in die Konfigurationsdatei des X-Servers im Verzeichnis /etc/X11 eintragen. Die Konfigurationsdatei von &xorg; heißt xorg.conf. Fügen Sie die folgende Zeile hinzu: FontPath "/usr/local/lib/X11/fonts/URW/" Sie können aber auch in der X-Sitzung das folgende Kommando absetzen: &prompt.user; xset fp+ /usr/local/lib/X11/fonts/URW &prompt.user; xset fp rehash Dann kennt der X-Server die neuen Schriftarten nur bis zum Ende der Sitzung. Wenn die Änderung dauerhaft sein soll, müssen Sie die Kommandos in ~/.xinitrc eintragen, wenn Sie X mit startx starten, oder in ~/.xsession, wenn Sie XDM benutzen. Sie können die Schriftarten auch in die neue Datei /usr/local/etc/fonts/local.conf, die im Abschnitt Anti-aliasing beschrieben wird, eintragen. &truetype;-Schriftarten TrueType-Schriftarten Schriftarten TrueType &xorg; kann &truetype;-Schriftarten mithilfe von zwei Modulen darstellen. Im folgenden Beispiel wird das Freetype-Modul benutzt, da es besser mit anderen Werkzeugen, die &truetype;-Schriftarten darstellen, übereinstimmt. Das Freetype-Modul aktivieren Sie im Abschnitt "Module" von /etc/X11/xorg.conf durch Einfügen der Zeile: Load "freetype" Erstellen Sie ein Verzeichnis für die &truetype;-Schriftarten (z.B. /usr/local/lib/X11/fonts/TrueType) und kopieren Sie alle Schriftarten dorthin. Die Schriftarten müssen im &unix;/&ms-dos;/&windows;-Format vorliegen, Schriftarten von einem &macintosh; können Sie nicht direkt übernehmen. Die Schriftarten müssen noch im Katalog fonts.dir erfasst werden. Den Katalog erzeugen Sie mit dem Kommando ttmkfdir aus dem Port x11-fonts/ttmkfdir: &prompt.root; cd /usr/local/lib/X11/fonts/TrueType &prompt.root; ttmkfdir -o fonts.dir Geben Sie dem System das &truetype;-Verzeichnis, wie im Abschnitt Type 1 Schriftarten beschrieben, bekannt: &prompt.user; xset fp+ /usr/local/lib/X11/fonts/TrueType &prompt.user; xset fp rehash Oder fügen Sie eine FontPath-Zeile in die Datei xorg.conf ein. Das war's. Jetzt sollten &netscape;, Gimp, &staroffice; und alle anderen X-Anwendungen die &truetype;-Schriftarten benutzen. Extrem kleine Schriftarten (Webseiten, die mit hoher Auflösung betrachtet werden) und sehr große Schriftarten (in &staroffice;) sollten jetzt viel besser aussehen. Joe Marcus Clarke Aktualisiert von Anti-aliasing Anti-aliasing Schriftarten Anti-aliasing Alle Schriftarten in X11, die in den Verzeichnissen /usr/local/lib/X11/fonts/ und ~/.fonts/ gefunden werden, werden automatisch für Anti-aliasing an Anwendungen zur Verfügung gestellt, die Xft beherrschen. Die meisten aktuellen Anwendungen beherrschen Xft, dazu gehören auch KDE, GNOME und Firefox. In der Datei /usr/local/etc/fonts/local.conf werden die Schriftarten, die mit dem Anti-aliasing-Verfahren benutzt werden sollen und die Eigenschaften des Verfahrens festgelegt. In diesem Abschnitt wird nur die grundlegende Konfiguration von Xft beschrieben. Weitere Details entnehmen Sie bitte der Hilfeseite &man.fonts-conf.5;. XML Die Datei local.conf ist ein XML-Dokument. Achten Sie beim Editieren der Datei daher auf die richtige Groß- und Kleinschreibung und darauf, dass alle Tags geschlossen sind. Die Datei beginnt mit der üblichen XML-Deklaration gefolgt von einer DOCTYPE-Definition und dem <fontconfig>-Tag: <?xml version="1.0"?> <!DOCTYPE fontconfig SYSTEM "fonts.dtd"> <fontconfig> Wie vorher erwähnt, stehen schon alle Schriftarten in /usr/local/lib/X11/fonts/ und ~/.fonts/ für Anwendungen, die Xft unterstützen, zur Verfügung. Wenn Sie ein Verzeichnis außerhalb dieser beiden Bäume benutzen wollen, fügen Sie eine Zeile wie die nachstehende zu /usr/local/etc/fonts/local.conf hinzu: <dir>/path/to/my/fonts</dir> Wenn Sie neue Schriftarten hinzugefügt haben, müssen Sie den Schriftarten-Cache neu aufbauen: &prompt.root; fc-cache -f Das Anti-aliasing-Verfahren zeichnet Ränder leicht unscharf, dadurch werden kleine Schriften besser lesbar und der Treppenstufen-Effekt bei wird großen Schriften vermieden. Auf normale Schriftgrößen sollte das Verfahren aber nicht angewendet werden, da dies die Augen zu sehr anstrengt. Um kleinere Schriftgrößen als 14 Punkt von dem Verfahren auszunehmen, fügen Sie in local.conf die nachstehenden Zeilen ein: <match target="font"> <test name="size" compare="less"> <double>14</double> </test> <edit name="antialias" mode="assign"> <bool>false</bool> </edit> </match> <match target="font"> <test name="pixelsize" compare="less" qual="any"> <double>14</double> </test> <edit mode="assign" name="antialias"> <bool>false</bool> </edit> </match> Schriftarten Abstände Das Anti-aliasing-Verfahren kann die Abstände einiger Fixschriften falsch darstellen, dies fällt besonders unter KDE auf. Sie können das Problem umgehen, indem Sie die Abstände dieser Schriften auf den Wert 100 festsetzen. Fügen Sie die nachstehenden Zeilen hinzu: <match target="pattern" name="family"> <test qual="any" name="family"> <string>fixed</string> </test> <edit name="family" mode="assign"> <string>mono</string> </edit> </match> <match target="pattern" name="family"> <test qual="any" name="family"> <string>console</string> </test> <edit name="family" mode="assign"> <string>mono</string> </edit> </match> Damit werden die Namen der gebräuchlichen Fixschriften auf "mono" abgebildet. Für diese Schriften setzen Sie dann den Abstand fest: <match target="pattern" name="family"> <test qual="any" name="family"> <string>mono</string> </test> <edit name="spacing" mode="assign"> <int>100</int> </edit> </match> Bestimmte Schriftarten, wie Helvetica, können Probleme mit dem Anti-Aliasing-Verfahren verursachen. In der Regel erscheinen diese Schriftarten dann vertikal halbiert. Im schlimmsten Fall stürzen Anwendungen als Folge davon ab. Sie vermeiden dies, indem Sie betroffene Schriftarten in local.conf von dem Verfahren ausnehmen: <match target="pattern" name="family"> <test qual="any" name="family"> <string>Helvetica</string> </test> <edit name="family" mode="assign"> <string>sans-serif</string> </edit> </match> Wenn Sie local.conf editiert haben, stellen Sie bitte sicher, dass die Datei mit dem Tag </fontconfig> endet. Ist das nicht der Fall, werden die Änderungen nicht berücksichtigt. Benutzer können eigene Einstellungen in der Datei ~/.fonts.conf vornehmen. Achten Sie auch hier auf die richtige XML-Syntax. LCD Schriftarten auf einem LCD Mit einem LCD können Sie sub-pixel sampling anstelle von Anti-aliasing einsetzen. Dieses Verfahren behandelt die horizontal getrennten Rot-, Grün- und Blau-Komponenten eines Pixels gesondert und verbessert damit (teilweise sehr wirksam) die horizontale Auflösung. Die nachstehende Zeile in local.conf aktiviert diese Funktion: <match target="font"> <test qual="all" name="rgba"> <const>unknown</const> </test> <edit name="rgba" mode="assign"> <const>rgb</const> </edit> </match> Abhängig von der Art Ihres Bildschirms müssen Sie anstelle von rgb eines der folgenden verwenden: bgr, vrgb oder vbgr. Experimentieren Sie und vergleichen, was besser aussieht. Seth Kingsley Beigetragen von Der X-Display-Manager Einführung X-Display-Manager Der X-Display-Manager (XDM), eine optionale Komponente des X-Window-Systems, verwaltet Sitzungen. Er kann mit vielen Komponenten, wie minimal ausgestatteten X-Terminals, Arbeitsplatz-Rechnern und leistungsfähigen Netzwerkservern, nutzbringend eingesetzt werden. Da das X-Window-System netzwerktransparent ist, gibt es zahlreiche Möglichkeiten, X-Clients und X-Server auf unterschiedlichen Rechnern im Netz laufen zu lassen. XDM stellt eine grafische Anmeldemaske zur Verfügung, in der Sie den Rechner, auf dem eine Sitzung laufen soll, auswählen können und in der Sie die nötigen Autorisierungs-Informationen, wie Benutzername und Passwort, eingeben können. Die Funktion des X-Display-Managers lässt sich mit der von &man.getty.8; (siehe ) vergleichen. Er meldet den Benutzer am ausgesuchten System an, startet ein Programm (meist einen Window-Manager) und wartet darauf, dass dieses Programm beendet wird, das heißt der Benutzer die Sitzung beendet hat. Nachdem die Sitzung beendet ist, zeigt XDM den grafischen Anmeldebildschirm für den nächsten Benutzer an. XDM einrichten Um XDM verwenden zu können, installieren Sie den Port x11/xdm (dieser wird standardmässig nicht in aktuellen &xorg;-Versionen mitinstalliert). Der XDM-Dæmon befindet sich dann in /usr/local/bin/xdm und kann jederzeit von root gestartet werden. Er verwaltet dann den X-Bildschirm des lokalen Rechners. XDM lässt sich bequem mit einem Eintrag in /etc/ttys (siehe ) bei jedem Start des Rechners aktivieren. In /etc/ttys sollte schon der nachstehende Eintrag vorhanden sein: ttyv8 "/usr/local/bin/xdm -nodaemon" xterm off secure In der Voreinstellung ist dieser Eintrag nicht aktiv. Um den Eintrag zu aktivieren, ändern Sie den Wert in Feld 5 von off zu on und starten Sie &man.init.8; entsprechend der Anleitung in neu. Das erste Feld gibt den Namen des Terminals an, auf dem das Programm läuft. Im Beispiel wird ttyv8 verwendet, das heißt XDM läuft auf dem neunten virtuellen Terminal. XDM konfigurieren Das Verhalten und Aussehen von XDM steuern Sie mit Konfigurationsdateien, die im Verzeichnis /usr/local/lib/X11/xdm stehen. Üblicherweise finden Sie dort die folgenden Dateien vor: Datei Beschreibung Xaccess Regelsatz, der zur Autorisierung von Clients benutzt wird. Xresources Vorgabewerte für X-Ressourcen. Xservers Liste mit lokalen und entfernten Bildschirmen, die verwaltet werden. Xsession Vorgabe für das Startskript der Sitzung. Xsetup_* Skript, das dazu dient, Anwendungen vor der Anmeldung zu starten. xdm-config Konfiguration für alle auf der Maschine verwalteten Bildschirme. xdm-errors Fehlermeldungen des Servers. xdm-pid Die Prozess-ID des gerade laufenden XDM-Prozesses. Im Verzeichnis /usr/local/lib/X11/xdm befinden sich auch noch Skripten und Programme, die zum Einrichten der XDM-Oberfläche dienen. Der Zweck dieser Dateien und der Umgang mit ihnen wird in der Hilfeseite &man.xdm.1; erklärt. Wir gehen im Folgenden nur kurz auf ein paar der Dateien ein. Die vorgegebene Einstellung zeigt ein rechteckiges Anmeldefenster, in dem der Rechnername in großer Schrift steht. Darunter befinden sich die Eingabeaufforderungen Login: und Password:. Mit dieser Maske können Sie anfangen, wenn Sie das Erscheinungsbild von XDM verändern wollen. Xaccess Verbindungen zu XDM werden über das X Display Manager Connection Protocol (XDMCP) hergestellt. XDMCP-Verbindungen von entfernten Maschinen werden über den Regelsatz in Xaccess kontrolliert. Diese Datei wird allerdings ignoriert, wenn in xdm-config keine Verbindungen entfernter Maschinen erlaubt sind (dies ist auch die Voreinstellung). Xresources In dieser Datei kann das Erscheinungsbild der Bildschirmauswahl und der Anmeldemasken festgelegt werden. Das Format entspricht den Dateien im Verzeichnis app-defaults, die in der X11-Dokumentation beschrieben sind. Xservers Diese Datei enthält eine Liste entfernter Maschinen, die in der Bildschirmauswahl angeboten werden. Xsession Dieses Skript wird vom XDM aufgerufen, nachdem sich ein Benutzer erfolgreich angemeldet hat. Üblicherweise besitzt jeder Benutzer eine angepasste Version dieses Skripts in ~/.xsession, das dann anstelle von Xsession ausgeführt wird. Xsetup_* Diese Skripten werden automatisch ausgeführt bevor die Bildschirmauswahl oder die Anmeldemasken angezeigt werden. Für jeden lokalen Bildschirm gibt es ein Skript, dessen Namen aus Xsetup_ gefolgt von der Bildschirmnummer gebildet wird (zum Beispiel Xsetup_0). Normalerweise werden damit ein oder zwei Programme, wie xconsole, im Hintergrund gestartet. xdm-config Diese Datei enthält Einstellungen, die für jeden verwalteten Bildschirm zutreffen. Das Format entspricht dem der Dateien aus app-defaults. xdm-errors Die Ausgaben jedes X-Servers, den XDM versucht zu starten, werden in dieser Datei gesammelt. Wenn ein von XDM verwalteter Bildschirm aus unbekannten Gründen hängen bleibt, sollten Sie in dieser Datei nach Fehlermeldungen suchen. Für jede Sitzung werden die Meldungen auch in die Datei ~/.xsession-errors des Benutzers geschrieben. Einrichten eines Bildschirm-Servers auf dem Netzwerk Damit sich Clients mit dem Bildschirm-Server verbinden können, muss der Zugriffsregelsatz editiert und der Listener aktiviert werden. Die Vorgabewerte sind sehr restriktiv eingestellt. Damit XDM Verbindungen annimmt, kommentieren Sie eine Zeile in der xdm-config Datei aus: ! SECURITY: do not listen for XDMCP or Chooser requests ! Comment out this line if you want to manage X terminals with xdm DisplayManager.requestPort: 0 Starten Sie danach XDM neu. Beachten Sie, dass Kommentare in den Ressourcen-Konfigurationsdateien mit einem ! anstelle des sonst üblichen Zeichens # beginnen. Wenn Sie strengere Zugriffskontrollen einrichten wollen, sehen Sie sich die Beispiele in Xaccess und die Hilfeseite &man.xdm.1; an. XDM ersetzen Es gibt mehrere Anwendungen, die XDM ersetzen können, zum Beispiel kdm, der Teil von KDE ist und später in diesem Kapitel besprochen wird. kdm ist ansprechender gestaltet und bietet neben einigen Schnörkeln die Möglichkeit, den zu verwendenden Window-Manager bei der Anmeldung auszuwählen. Valentino Vaschetto Beigetragen von Grafische Oberflächen Dieser Abschnitt beschreibt verschiedene grafische Oberflächen, die es für X unter FreeBSD gibt. Eine Oberfläche (desktop environment) kann alles von einem einfachen Window-Manager bis hin zu kompletten Anwendungen wie KDE oder GNOME sein. GNOME Über GNOME GNOME GNOME ist eine benutzerfreundliche Oberfläche, mit der Rechner leicht benutzt und konfiguriert werden können. GNOME besitzt eine Leiste, mit der Anwendungen gestartet werden und die Statusinformationen anzeigen kann. Programme und Daten können auf der Oberfläche abgelegt werden und Standardwerkzeuge stehen zur Verfügung. Es gibt Konventionen, die es Anwendungen leicht machen, zusammenzuarbeiten und ein konsistentes Erscheinungsbild garantieren. Benutzer anderer Betriebssysteme oder anderer Arbeitsumgebungen sollten mit der leistungsfähigen grafischen Oberfläche von GNOME sehr gut zurechtkommen. Auf der Webseite FreeBSD GNOME Project finden Sie weitere Informationen über GNOME auf FreeBSD. Zusätzlich finden Sie dort umfassende FAQs zur Installation, Konfiguration und zum Betrieb von GNOME. GNOME installieren Am einfachsten installieren Sie GNOME als Paket oder über die Ports-Sammlung. Wenn Sie das GNOME-Paket über das Netz installieren wollen, setzen Sie den nachstehenden Befehl ab: &prompt.root; pkg_add -r gnome2 Wenn Sie den Quellcode von GNOME übersetzen wollen, benutzen Sie die Ports-Sammlung: &prompt.root; cd /usr/ports/x11/gnome2 &prompt.root; make install clean Nachdem GNOME installiert ist, muss der X-Server GNOME anstelle eines Window-Managers starten. Der einfachste Weg, GNOME zu starten, ist GDM, der GNOME Display Manager. GDM, das als Teil des GNOME-Desktops installiert (aber in der Voreinstellung deaktiviert) wird, kann durch das Einfügen von gdm_enable="YES" in /etc/rc.conf beim Systemstart aktiviert werden. Nach einem Systemneustart wird GNOME nach dem Anmelden automatisch gestartet. Um zusätzlich alle GNOME-Dienste beim Start von GDM zu aktivieren, fügen Sie die Zeile gnome_enable="YES" zu der Datei /etc/rc.conf hinzu. GNOME kann auch von der Kommandozeile gestartet werden, wenn Sie eine entsprechend konfigurierte .xinitrc in Ihrem Heimatverzeichnis besitzen. Existiert eine solche Version, ersetzen Sie den Aufruf des Window-Managers durch /usr/local/bin/gnome-session. Wenn .xinitrc nicht gesondert angepasst wurde, reicht es, den nachstehenden Befehl abzusetzen: &prompt.user; echo "/usr/local/bin/gnome-session" > ~/.xinitrc Rufen Sie danach startx auf, um die GNOME Oberfläche zu starten. Wenn Sie einen älteren Display-Manager wie XDM verwenden, müssen Sie anders vorgehen. Legen Sie eine ausführbare .xsession an, die das Kommando zum Start von GNOME enthält. Ersetzen Sie dazu den Start des Window-Managers durch /usr/local/bin/gnome-session: &prompt.user; echo "#!/bin/sh" > ~/.xsession &prompt.user; echo "/usr/local/bin/gnome-session" >> ~/.xsession &prompt.user; chmod +x ~/.xsession Sie können den Display-Manager auch so konfigurieren, dass der Window-Manager beim Anmelden gewählt werden kann. Im Abschnitt Details zu KDE wird das für kdm, den Display-Manager von KDE erklärt. KDE Über KDE KDE KDE ist eine moderne, leicht zu benutzende Oberfläche, die unter anderem Folgendes bietet: eine schöne und moderne Oberfläche, eine Oberfläche, die völlig netzwerktransparent ist, ein integriertes Hilfesystem, das bequem und konsistent Hilfestellungen bezüglich der Bedienung der KDE-Oberfläche und ihrer Anwendungen gibt, ein konstantes Erscheinungsbild (look and feel) aller KDE-Anwendungen, einheitliche Menüs, Werkzeugleisten, Tastenkombinationen und Farbschemata, Internationalisierung: KDE ist in mehr als 40 Sprachen erhältlich, durch Dialoge gesteuerte zentrale Konfiguration der Oberfläche, viele nützliche KDE-Anwendungen. In KDE ist mit Konqueror auch ein Webbrowser enthalten, der sich durchaus mit anderen Webbrowsern auf &unix;-Systemen messen kann. Weitere Informationen über KDE erhalten Sie auf den KDE-Webseiten. Auf der Webseite KDE on FreeBSD finden Sie weitere FreeBSD-spezifische Informationen über KDE. Es sind zwei Versionen von KDE unter &os; verfügbar. Version 3 ist schon seit einiger Zeit erhältlich und ist sehr ausgereift. Version 4, die nächste Generation, ist ebenfalls über die Ports-Sammlung verfügbar. Beide Versionen können sogar gleichzeitig installiert werden. KDE installieren Am einfachsten installieren Sie KDE, wie jede andere grafische Oberfläche auch, als Paket oder über die Ports-Sammlung. Um KDE3 über das Netz zu installieren, setzen Sie den nachstehenden Befehl ab: &prompt.root; pkg_add -r kde Um KDE4 über das Netzwerk zu installieren, geben Sie folgendes ein: &prompt.root; pkg_add -r kde4 &man.pkg.add.1; installiert automatisch die neuste Version einer Anwendung. Benutzen Sie die Ports-Sammlung, wenn Sie den Quellcode von KDE3 übersetzen wollen: &prompt.root; cd /usr/ports/x11/kde3 &prompt.root; make install clean Um KDE4 aus dem Quellcode zu übersetzen, geben Sie folgendes ein: &prompt.root; cd /usr/ports/x11/kde4 &prompt.root; make install clean Nachdem KDE installiert ist, muss der X-Server KDE anstelle eines Window-Managers starten. Legen Sie dazu die Datei .xinitrc an: Für KDE3: &prompt.user; echo "exec startkde" > ~/.xinitrc Für KDE4: &prompt.user; echo "exec /usr/local/kde4/bin/startkde" > ~/.xinitrc Wenn das X-Window-System danach mit startx gestartet wird, erscheint die KDE-Oberfläche. Wird ein Display-Manager wie XDM benutzt, muss .xsession angepasst werden. Eine Anleitung für kdm folgt gleich in diesem Kapitel. Details zu KDE Wenn KDE erst einmal installiert ist, erschließen sich die meisten Sachen durch das Hilfesystem oder durch Ausprobieren. Benutzer von Windows oder &macos; werden sich sehr schnell zurecht finden. Die beste Referenz für KDE ist die Online-Dokumentation. KDE besitzt einen eigenen Webbrowser, sehr viele nützliche Anwendungen und ausführliche Dokumentation. Der Rest dieses Abschnitts beschäftigt sich daher mit Dingen, die schlecht durch einfaches Ausprobieren erlernbar sind. Der KDE-Display-Manager KDE Display-Manager Der Administrator eines Mehrbenutzersystems will den Benutzern vielleicht eine grafische Anmeldung wie mit XDM ermöglichen. KDE besitzt einen eigenen Display-Manager, der schöner aussieht und auch über mehr Optionen verfügt. Insbesondere können sich die Benutzer die Oberfläche für die Sitzung (beispielsweise KDE oder GNOME) aussuchen. - Um kdm zu aktivieren, müssen - Sie den Eintrag ttyv8 in der Datei - /etc/ttys anpassen. Die von Ihnen - angepasste Zeile sollte ähnlich der folgenden aussehen: + Die Art und Weise, wie kdm + aktiviert wird, hängt dabei von der von Ihnen + eingesetzten KDE-Version ab. - Für KDE3: + Für KDE3 müssen die + ttyv8-Zeile wie folgt anpassen: ttyv8 "/usr/local/bin/kdm -nodaemon" xterm on secure - Für KDE4: + Verwenden Sie hingegen KDE4, + müssen Sie folgende Zeilen in die Datei + /etc/rc.conf aufnehmen: - ttyv8 "/usr/local/kde4/bin/kdm -nodaemon" xterm on secure + local_startup="${local_startup} /usr/local/kde4/etc/rc.d" +kdm4_enable="YES" Xfce Über Xfce Xfce ist eine grafische Oberfläche, die auf den GTK+-Bibliotheken, die auch von GNOME benutzt werden, beruht. Die Oberfläche ist allerdings weniger aufwändig und für diejenigen gedacht, die eine schlichte und effiziente Oberfläche wollen, die dennoch einfach zu benutzen und zu konfigurieren ist. Die Oberfläche sieht ähnlich wie CDE aus, das in kommerziellen &unix; Systemen verwendet wird. Einige Merkmale von Xfce sind: eine schlichte einfach zu benutzende Oberfläche, vollständig mit Mausoperationen konfigurierbar, Unterstützung von drag and drop, ähnliche Hauptleiste wie CDE, die Menüs enthält und über die Anwendungen gestartet werden können, integrierter Window-Manager, Datei-Manager und Sound-Manager, GNOME-compliance-Modul, mit Themes anpassbar (da GTK+ benutzt wird), schnell, leicht und effizient: ideal für ältere oder langsamere Maschinen oder Maschinen mit wenig Speicher. Weitere Information über Xfce erhalten Sie auf der Xfce-Webseite. Xfce installieren Das Xfce-Paket installieren Sie mit dem nachstehenden Kommando: &prompt.root; pkg_add -r xfce4 Mit der Ports-Sammlung können Sie auch den Quellcode übersetzen: &prompt.root; cd /usr/ports/x11-wm/xfce4 &prompt.root; make install clean Damit beim nächsten Start des X-Servers Xfce benutzt wird, setzen Sie das folgende Kommando ab: &prompt.user; echo "/usr/local/bin/startxfce4" > ~/.xinitrc Wenn Sie einen Display-Manager benutzen, erstellen Sie die Datei .xsession, wie im GNOME Abschnitt beschrieben. Verwenden Sie jetzt allerdings das Kommando /usr/local/bin/startxfce4. Sie können auch den Display-Manager wie im kdm Abschnitt beschrieben, so konfigurieren, dass die Oberfläche für die Sitzung ausgewählt werden kann. Index: head/de_DE.ISO8859-1/books/porters-handbook/book.sgml =================================================================== --- head/de_DE.ISO8859-1/books/porters-handbook/book.sgml (revision 36616) +++ head/de_DE.ISO8859-1/books/porters-handbook/book.sgml (revision 36617) @@ -1,16073 +1,16112 @@ %books.ent; ]> Das FreeBSD Porter-Handbuch The FreeBSD German Documentation Project April 2000 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 The FreeBSD German Documentation Project &bookinfo.trademarks; &bookinfo.legalnotice; Einführung Die Ports-Sammlung von FreeBSD ist der gebräuchlichste Weg, um Anwendungen ("Ports") unter FreeBSD zu installieren. Wie alles andere in FreeBSD auch, ist sie hauptsächlich das Ergebnis der Arbeit von Freiwilligen. Es ist wichtig, diesen Aspekt beim Lesen im Hinterkopf zu behalten. In FreeBSD kann jeder einen neuen Port einsenden oder sich dazu bereit erklären, einen bereits vorhandenen Port zu pflegen, sofern der Port derzeit keinen Maintainer hat – dazu sind keine besonderen Rechte nötig. Einen neuen Port erstellen Sie sind also daran interessiert, einen neuen Port zu erstellen oder einen vorhandenen zu aktualisieren? Großartig! Die folgenden Kapitel beinhalten einige Richtlinien, um einen neuen Port für FreeBSD zu erstellen. Wenn Sie einen vorhandenen Port auf den neuesten Stand bringen wollen, sollten Sie mit fortfahren. Wenn Ihnen dieses Dokument nicht detailliert genug ist, sollten Sie einen Blick in /usr/ports/Mk/bsd.port.mk werfen. Das Makefile jedes Ports bindet diese Datei ein. Auch wenn Sie nicht täglich mit Makefiles arbeiten, sollten Sie gut damit zurecht kommen, da die Datei gut dokumentiert ist und Sie eine Menge Wissen daraus erlangen können. Zusätzlich können Sie speziellere Fragen an die &a.ports;-Mailingliste stellen. Nur ein Bruchteil der Variablen (VAR), die von Ihnen gesetzt werden können, finden hier Erwähnung. Die meisten von ihnen (wenn nicht sogar alle) sind am Anfang von /usr/ports/Mk/bsd.port.mk erläutert. Beachten Sie bitte, dass diese Datei eine nicht standardkonforme Tabulator-Einstellung verwendet. Emacs und Vim sollten diese Einstellung jedoch automatisch beim Öffnen der Datei setzen. Sowohl &man.vi.1; als auch &man.ex.1; können mit dem Befehl :set tabstop=4 dazu gebracht werden, die Datei richtig anzuzeigen, wenn sie geöffnet wird. Port erstellen auf die Schnelle Dieser Abschnitt beschreibt, wie Sie schnell einen Port erstellen können. In vielen Fällen ist dies allerdings nicht ausreichend, dann werden Sie in diesem Buch weiterlesen müssen. Als Erstes besorgen Sie sich das Original-Tarball (komprimiertes Archiv) und legen es im DISTDIR ab, welches standardmäßig /usr/ports/distfiles ist. Im Folgenden wird angenommen, dass die Software unverändert kompiliert werden konnte, dass also keinerlei Änderungen nötig waren, um den Port auf Ihrem FreeBSD-Rechner zum Laufen zu bringen. Falls Sie Änderungen vornehmen mussten, werden Sie auch den nächsten Abschnitt beachten müssen. Das <filename>Makefile</filename> schreiben Ein minimales Makefile sieht in etwa so aus: # New ports collection makefile for: oneko # Date created: 5 December 1994 # Whom: asami # # $FreeBSD$ # PORTNAME= oneko PORTVERSION= 1.1b CATEGORIES= games MASTER_SITES= ftp://ftp.cs.columbia.edu/archives/X11R5/contrib/ MAINTAINER= asami@FreeBSD.org COMMENT= A cat chasing a mouse all over the screen MAN1= oneko.1 MANCOMPRESSED= yes USE_IMAKE= yes .include <bsd.port.mk> Versuchen Sie es zu verstehen. Machen Sie sich keine Gedanken um die $FreeBSD$-Zeile, diese wird automatisch vom CVS eingefügt, wenn der Port in den Haupt-Ports-Tree importiert wird. Ein detailliertes Beispiel finden Sie im Abschnitt sample Makefile. Die Beschreibungsdateien erstellen Es gibt zwei Beschreibungsdateien, die für jeden Port benötigt werden, ob sie tatsächlich im Paket enthalten sind oder nicht. Dies sind pkg-descr und pkg-plist. Der pkg- Präfix unterscheidet sie von anderen Dateien. <filename>pkg-descr</filename> Diese enthält eine längere Beschreibung des Ports. Einer oder mehrere Absätze, die kurz und prägnant erklären, was der Port macht, sind ausreichend. pkg-descr enthält keine Anleitung oder detaillierte Beschreibung wie der Port benutzt oder kompiliert wird! Bitte seien Sie vorsichtig, wenn Sie aus dem README oder der Manualpage kopieren ; Diese sind oft keine prägnanten Beschreibungen des Ports oder sie sind in einem ungünstigen Format (Manualpages haben z.B. bündige Zwischenräume). Wenn es für die portierte Software eine offizielle Webseite gibt, sollten Sie diese hier angeben. Fügen Sie hierzu eine der Webseiten mit dem Präfix WWW: ein, damit automatische Werkzeuge korrekt arbeiten. Das folgende Beispiel zeigt wie Ihre pkg-descr aussehen sollte: This is a port of oneko, in which a cat chases a poor mouse all over the screen. : (etc.) WWW: http://www.oneko.org/ <filename>pkg-plist</filename> Diese Datei enthält eine Liste aller Dateien, die von diesem Port installiert werden. Sie wird auch die Packliste genannt, da das Paket durch die hier aufgeführten Dateien erstellt wird. Die Pfadangaben sind relativ zum Installationspräfix (für gewöhnlich /usr/local oder /usr/X11R6). Wenn Sie die MANn-Variablen verwenden (was Sie auch machen sollten), führen Sie hier keine Manualpages auf. Wenn der Port während der Installation Verzeichnisse erstellt, stellen Sie sicher entsprechende @dirrm-Zeilen einzufügen, um die Verzeichnisse zu entfernen, wenn das Paket gelöscht wird. Hier ist ein kleines Beispiel: bin/oneko lib/X11/app-defaults/Oneko lib/X11/oneko/cat1.xpm lib/X11/oneko/cat2.xpm lib/X11/oneko/mouse.xpm @dirrm lib/X11/oneko Für weitere Details zur Packliste lesen Sie in der &man.pkg.create.1; Manualpage nach. Es wird empfohlen alle Dateinamen in dieser Datei alphabetisch sortiert zu halten. Das erlaubt Ihnen die Änderungen bei einem Upgrade Ihres Ports deutlich einfacher zu Überprüfen. Eine Packlist von Hand zu erzeugen kann eine sehr mühsame Aufgabe sein. Wenn der Port eine große Anzahl Dateien installiert, kann es Zeit sparen, eine Packliste automatisch zu erstellen. Es gibt nur einen Fall, in dem pkg-plist weggelassen werden kann. Wenn der Port nur eine handvoll Dateien und Verzeichnisse installiert, können diese in den Variablen PLIST_FILES und PLIST_DIRS im Makefile aufgelistet werden. Zum Beispiel könnten wir im obigen Beispiel ohne pkg-plist für den oneko-Port auskommen, indem wir die folgenden Zeilen ins Makefile einfügen: PLIST_FILES= bin/oneko \ lib/X11/app-defaults/Oneko \ lib/X11/oneko/cat1.xpm \ lib/X11/oneko/cat2.xpm \ lib/X11/oneko/mouse.xpm PLIST_DIRS= lib/X11/oneko Natürlich sollte PLIST_DIRS ungesetzt bleiben, wenn der Port keine eigenen Verzeichnisse installiert. Der Preis für diese Art die Dateien eines Ports anzugeben ist, dass man keine Befehlsfolgen wie in &man.pkg.create.1; nutzen kann. Deshalb ist es nur für einfache Ports geeignet und macht diese noch einfacher. Gleichzeitig bringt es den Vorteil die Anzahl der Dateien in der Ports-Sammlung zu reduzieren. Deshalb ziehen Sie bitte diese Vorgehensweise in Erwägung, bevor Sie pkg-plist benutzen. Später werden wir uns ansehen, wie pkg-plist und PLIST_FILES benutzt werden können, um anspruchsvollere Aufgaben zu erfüllen. Die Checksummendatei erzeugen Geben Sie einfach make makesum ein. Die Regeln von Make sorgen dafür, dass die Datei distinfo automatisch erstellt wird. Wenn sich die Checksumme einer heruntergeladenen Datei regelmäßig ändert und Sie sicher sind, dass Sie der Quelle trauen können (weil sie z.B. von einer Hersteller-CD oder täglich erstellter Dokumentation stammt), sollten Sie diese Dateien in der Variable IGNOREFILES angeben. Dann wird die Checksumme für diese Datei bei make makesum nicht berechnet, sondern auf IGNORE gesetzt. Den Port testen Sie sollten sicherstellen, dass die Port-Regeln genau das einhalten, was Sie von ihnen erwarten, auch beim Erzeugen eines Pakets aus dem Port. Dies sind die wichtigen Punkte, die Sie überprüfen sollten. pkg-plist enthält nichts, das nicht von Ihrem Port installiert wurde. pkg-plist enthält alles, was von Ihrem Port installiert wurde. Ihr Port kann mit Hilfe von make reinstall mehrmals installiert werden. Ihr Port räumt bei der Deinstallation hinter sich auf. Empfohlene Testreihenfolge make install make package make deinstall pkg_add Paket-Name make deinstall make reinstall make package Stellen Sie bitte sicher, dass während make package und make deinstall keine Warnungen ausgegeben werden. Nach Schritt 3 überprüfen Sie bitte, ob alle neuen Verzeichnisse korrekt entfernt wurden. Und versuchen Sie die Software nach Schritt 4 zu benutzen, um sicherzustellen, dass sie korrekt funktioniert, wenn diese aus einem Paket installiert wird. Der gründlichste Weg diese Schritte zu automatisieren ist eine Tinderbox zu installieren. Diese verwaltet Jails, in denen Sie alle oben genannten Schritte durchführen können, ohne den Zustand Ihres laufenden Systems zu verändern. Mehr Informationen hierzu entält ports/ports-mgmt/tinderbox Ihren Port mit <command>portlint</command> überprüfen Bitte verwenden Sie portlint, um festzustellen, ob Ihr Port unseren Richtlinien entspricht. Das Programm ports-mgmt/portlint ist Teil der Ports-Sammlung. Stellen Sie vor allem sicher, dass das Makefile in der richtigen Form und das Paket passend benannt ist. Den Port einreichen Als Erstes sorgen Sie bitte dafür, dass Sie den Abschnitt DOs and DON'Ts gelesen haben. Nun, da Sie mit Ihrem Port zufrieden sind, müssen Sie ihn nur noch in den Haupt-Ports-Tree von &os; einbringen, damit alle daran teilhaben können. Wir benötigen nicht Ihr work-Verzeichnis oder Ihr pkgname.tgz-Paket – diese können Sie nun löschen. Wenn Ihr Port beispielsweise oneko heißt, wechseln Sie in das Verzeichnis, in dem sich das Verzeichnis oneko befindet und führen den Befehl shar `find oneko` > oneko.shar aus. Fügen Sie Ihre Datei oneko.shar einem Fehlerbericht an und senden Sie diesen mit Hilfe des Programms &man.send-pr.1; (unter Bug Reports and General Commentary finden Sie weitere Informationen über &man.send-pr.1;). Ordnen Sie den Fehlerbericht bitte in die Kategorie Ports mit der Klasse Change-Request ein (Markieren Sie den Bericht nicht als vertraulich (confidential)!). Fügen Sie bitte eine kurze Beschreibung des Programms, das Sie portiert haben, in das Beschreibungs-Feld des Problemberichts und die shar-Datei in das Fix-Feld ein. Sie können uns die Arbeit um einiges vereinfachen, wenn Sie eine gute Beschreibung in der Zusammenfassung des Problemberichtes verwenden. Wir bevorzugen etwas wie Neuer Port: <Kategorie>/<Portname><Kurzbeschreibung des Ports> für neue Ports und Update Port: <Kategorie>/<Portname> <Kurzbeschreibung des Updates> für Portupdates. Wenn Sie sich an dieses Schema halten, ist die Chance, dass sich jemand bald Ihren Bericht ansieht, deutlich besser. Noch einmal: Bitte fügen Sie nicht das distfile der Originalquelle, das work-Verzeichnis oder das Paket, das Sie mit make package erstellt haben, ein. Haben Sie bitte etwas Geduld, nachdem Sie den Port eingereicht haben. Manchmal kann es einige Monate dauern, bevor ein Port in &os; eingefügt wird, obwohl es wahrscheinlich nur ein paar Tage dauert. Sie können sich die Liste der Ports, die darauf warten in &os; committet zu werden, ansehen. Nachdem wir einen Blick auf Ihren Port geworfen haben, werden wir, wenn nötig, bei Ihnen nachfragen und ihn in die Ports-Sammlung übernehmen. Ihr Name taucht dann auch in der Liste der Additional FreeBSD Contributors und in anderen Dateien auf. Ist das nicht toll?! :-) Einen Port in aller Ruhe erstellen Ok, das war nicht ganz einfach und der Port hat einige Veränderungen erfordert, um funktionieren zu können. In diesem Abschnitt werden wir Schritt für Schritt erklären, wie man den funktionierenden Port den Vorgaben der Ports entsprechend anpasst. Die Funktionsweise Beginnen wir mit der Abfolge der Ereignisse, die eintreten, wenn der Nutzer das erste make in Ihrem Portsverzeichnis ausführt. Sie empfinden es für das Verständnis vielleicht hilfreich bsd.port.mk in einem anderen Fenster offen zu haben, während Sie diesen Abschnitt lesen. Aber machen Sie sich keine Sorgen, falls Sie nicht wirklich verstehen, was bsd.port.mk macht, die Wenigsten begreifen dies... :> Das Target fetch wird aufgerufen. Es ist dafür verantwortlich sicherzustellen, dass der Tarball lokal im DISTDIR verfügbar ist. Falls fetch die benötigten Dateien in DISTDIR nicht finden kann, durchsucht es die URL MASTER_SITES, welche im Makefile gesetzt ist, ebenso wie unsere Haupt-FTP-Seite unter ftp://ftp.freebsd.org/pub/FreeBSD/ports/distfiles/ , wo wir genehmigte Distfiles als Backup aufbewahren. Danach wird versucht, so eine direkte Internetverbindung besteht, dass genannte Distfile mit FETCH herunterzuladen. Falls dies gelingt, wird die Datei in DISTDIR für weitere Nutzung abgelegt und fährt fort. Das Target extract wird aufgerufen. Es sucht nach den Distfiles Ihres Ports (normalerweise ein gzip-komprimierter Tarball) in DISTDIR und entpackt diese in ein temporäres Unterverzeichnis, welches von WRKDIR festgelegt wird (standardmäßig work). Das Target patch wird aufgerufen. Zuerst werden alle in PATCHFILES festgelegten Patches eingespielt. Anschließend werden, falls Patches der Form patch-* in PATCHDIR (standardmäßig das files-Unterverzeichnis) gefunden werden, diese in alphabetischer Reihenfolge eingespielt. Das Target configure wird aufgerufen. Dieses kann viele verschiedene Dinge machen. Existiert scripts/configure, so wird es aufgerufen. Falls HAS_CONFIGURE oder GNU_CONFIGURE gesetzt sind, wird WRKSRC/configure ausgeführt. Falls USE_IMAKE gesetzt ist, wird XMKMF (standardmäßig xmkmf -a) ausgeführt. Das Target build wird aufgerufen. Es ist für das Wechseln in das private Arbeitsverzeichnis (WRKSRC) und das Bauen des Ports zuständig. Ist USE_GMAKE gesetzt, so wird GNU make verwendet, sonst das System-make. Die oben genannten Schritte sind die Standardaktionen. Zusätzlich können Sie pre- irgendwas oder post-irgendwas als Targets definieren oder Skripten mit diesen Namen in das scripts-Unterverzeichnis legen. Sie werden dann vor bzw. nach den Standardaktionen aufgerufen. Angenommen Sie haben das Target post-extract in Ihrem Makefile definiert und eine Datei pre-build im scripts Unterverzeichnis, so wird das Target post-extract nach dem normalen Entpacken aufgerufen und das Skript pre-build ausgeführt, bevor die vordefinierten Bau-Regeln abgearbeitet sind. Es wird empfohlen, dass Sie Makefile-Targets verwenden, falls die Aktionen es erlauben, da es so für jemanden einfacher sein wird herauszufinden, was für eine nicht-standardmäßige Aktion der Port benötigt. Die Standardaktionen werden aus den Targets bsd.port.mk do-irgendwas übernommen. Zum Beispiel sind die Befehle zum Entpacken eines Ports im Target do-extract zu finden. Falls Sie mit einem vorgegebenen Target nicht zufrieden sind, können Sie es verändern, indem Sie das Target do-irgendwas in Ihrem Makefile neu definieren. Die Haupt-Targets (z.B. extract, configure usw.) machen nicht mehr als sicherzustellen, dass bis hierhin alle Abschnitte abgeschlossen sind, um danach die eigentlichen Targets oder Skripte aufzurufen. Und es ist nicht beabsichtigt, dass diese geändert werden. Falls Sie das Entpacken verändern wollen, verändern Sie do-extract, aber niemals die Art, wie extract arbeitet! Jetzt, da Sie verstehen, was geschieht, wenn der Benutzer make eingibt, lassen Sie uns durch die empfohlenen Schritte gehen, um den perfekten Port zu erstellen. Den originalen Quelltext besorgen Normalerweise liegt der original Quelltext als gepackte Datei (foo.tar.gz oder foo.tar.Z) vor. Kopieren Sie diese nach DISTDIR. Nutzen Sie, soweit möglich, immer die Quellen aus dem Hauptzweig. Es ist notwendig die Variable MASTER_SITES anzupassen, um anzugeben, wo sich der originale Quelltext befindet. In bsd.sites.mk finden sich hilfreiche Definitionen für die gebräuchlichsten Seiten. Bitte nutzen Sie diese Seiten und die zugehörigen Definitionen, soweit dies möglich ist. Damit wird vermieden, immer und immer wieder dieselben Informationen zu wiederholen. Da die Hauptseiten regelmäßig angepasst werden müssen, vereinfacht dieses Vorgehen die Pflege der Dateien für jeden Beteiligten. Falls keine zuverlässige und gut erreichbare FTP/HTTP-Seite zu finden ist, oder nur Seiten auffindbar sind, die keinen Standards entsprechen, sollte eine Kopie des Quelltextes auf einer zuverlässigen Seite abgelegt werden. Dies könnte z.B. die eigene Internetseite sein. Ist kein geeigneter Ort zum Ablegen des Quelltextes auffindbar, ist es möglich diesen intern auf ftp.FreeBSD.org abzulegen; dies sollte jedoch als letzte Möglichkeit angesehen werden. Das Distfile muss in diesem Fall in ~/public_distfiles/ eines freefall-Accounts abgelegt werden. Bitten Sie den Committer Ihres Ports dies zu erledigen. Er wird außerdem MASTER_SITES nach MASTER_SITE_LOCAL und MASTER_SITE_SUBDIR auf den freefall-Benutzernamen angepasst. Sollte sich das Distfile des Ports regelmäßig ohne Versionsanpassungen des Autors ändern, sollte überlegt werden, das Disfile auf der eigenen Internetseite abzulegen und diese in der Liste der MASTER_SITES an die erste Stelle zu setzen. Falls möglich, sollte der Autor des Ports gebeten werden, dies zu erledigen; hierüber wird die Kontrolle des Quelltextes verbessert. Wird eine eigene Version des Quelltextes auf eigenen Internetseiten verfügbar gemacht, verhindert dies Warnungen von checksum mismatch und reduziert den Arbeitsaufwand der Maintainer der FTP-Seiten. Auch wenn nur eine Quelle für den Quelltext des Ports zur Verfügung steht, ist es empfohlen, ein Backup auf einer weiteren Seite abzulegen und diese als zweiten Eintrag in MASTER_SITES aufzunehmen. Sind für den Port zusätzlich aus dem Internet verfügbare Patches erforderlich, sollten diese ebenfalls in DISTDIR abgelegt werden. Sollten diese Patches von anderer Quelle als der Hauptseite des Ports stammen, ist das kein Grund zur Sorge. Es gibt Wege diesem Umstand gerecht zu werden (beachten Sie die unten stehende Beschreibung zu PATCHFILES ). Den Port bearbeiten Entpacken Sie eine Kopie des Tarballs in ein privates Verzeichnis und nehmen Sie alle Änderungen vor, die nötig sind, um den Port unter einer aktuellen &os;-Version kompilieren zu können. Protokollieren Sie sorgfältig alle Schritte, die Sie vornehmen, da Sie den Prozess in Kürze automatisieren werden. Alles, auch das Entfernen, Hinzufügen oder Bearbeiten von Dateien, sollte von einem automatisierten Skript oder einer Patch-Datei machbar sein, wenn Ihr Port fertig ist. Falls Ihr Port bedeutende Interaktionen/Veränderungen durch den Benutzer benötigt, um ihn zu Kompilieren oder zu Installieren, sollten Sie einen Blick auf Larry Walls klassische Configure-Skripte werfen oder vielleicht etwas Ähnliches selbst erstellen. Das Ziel der Ports-Sammlung ist es, jeden Port so plug-and-play-fähig wie möglich für den Endbenutzer zu machen, während ein Minimum an Speicherplatz gebraucht wird. Solange nicht anders angegeben wird von Patch-Dateien, Skripten und anderen Dateien, die Sie erstellt und der &os; Ports-Sammlung hinzugefügt haben, angenommen, dass Sie unter den standardmäßigen BSD-Copyright-Bedingungen stehen. Fehlerbehebung (Patches) Bei der Vorbereitung eines Ports können die Dateien, die hinzugefügt oder verändert wurden, mittels &man.diff.1; abgefangen werden, um Sie später an &man.patch.1; zu übergeben. Jeder Patch, der dem Quelltext übergeben werden soll, sollte in einer Datei patch-* abgelegt werden, wobei * dem Pfadnamen der zu korrigierenden Datei entspricht, wie er auch in patch-Imakefile oder im patch-src-config.h erscheint. Diese Dateien sollten in PATCHDIR (normalerweise files) abgelegt sein, von wo sie automatisch übernommen werden. Alle Patches müssen sich relativ zur WRKSRC-Variable (normalerweise dem Verzeichnis, in dem sich der Quelltext des Ports entpackt und wo auch der Bau stattfindet) befinden. Um Korrekturen und Updates zu vereinfachen, sollte es vermieden werden, mehr als einen Patch für eine Datei zu nutzen (z.B. patch-file und patch-file2, welche beide WRKSRC/foobar.c verändern). Beachten Sie, dass, falls der Pfad einer zu korrigierenden Datei einen Unterstrich (_) enthält, der Patch stattdessen zwei Unterstriche im Namen haben muss. Zum Beispiel muss der Patch, der eine Datei namens src/freeglut_joystick.c korrigieren soll, patch-src-freeglut__joystick.c genannt werden. Für die Benennung der Patches sollten nur die Zeichen [-+._a-zA-Z0-9] genutzt werden. Bitte verwenden Sie keine weiteren Zeichen als die angegebenen. Die Namensvergabe sollte nicht patch-aa oder patch-ab etc. entsprechen, erwähnen Sie immer den Pfad und Dateinamen. RCS-Zeichenketten sollten vermieden werden, da CVS diese verstümmeln würde, sobald wir diese Dateien in die Ports-Sammlung einpflegen. Wenn wir die Dateien wieder abrufen wären diese verändert und der Patch würde fehlschlagen. RCS-Zeichenketten sind in Dollar-Zeichen ($) eingefügte Zeichen und beginnen üblicherweise mit $Id oder $RCS. Die Option rekursiv () zu nutzen &man.diff.1;, um Patches zu erstellen, ist zulässig, jedoch sollte der Patch anschließend geprüft werden, um Unnötiges aus dem Patch zu entfernen. Im Einzelnen bedeutet dies, dass Diffs zwischen zwei Backup-Dateien, Makefiles oder wenn der Port Imake oder GNU configure usw. nutzt, überflüssig sind und entfernt werden sollten. Falls es es notwendig war, configure.in zu bearbeiten und es soll autoconf zum Neuerstellen von configure genutzt werden, sollten die Diffs aus configure nicht genutzt werden (diese werden oft einige tausend Zeilen groß!); – hier sollte USE_AUTOTOOLS=autoconf:261 definiert und das Diff aus configure.in genutzt werden. Zusätzlich sollte man unnötige Markup-Änderungen in Patches/Änderungen möglichst vermeiden. In der Open Source-Welt teilen sich Projekte häufig große Teile des Quellcodes. Allerdings verwenden die einzelnen Projekte oft unterschiedliche Programmierstile und Vorgaben für Einrückungen. Wenn man also einen funktionierenden Teil einer Funktion aus einem Projekt verwendet, um ein ähnliches Problem in einem anderen Projekt zu lösen, sollte man besonders vorsichtig sein, weil sich ansonsten die CVS-Änderungseinträge mit überflüssigen Einträgen füllen, die nur das Markup des Quellcodes betreffen, ohne dass sich an der Funktion des eigentlichen Quellcode etwas ändert (withspace-only changes). Solche Änderungen vergrößern nicht nur das CVS-Repository, sondern erschweren es auch die Ursache für eventuell auftretende Probleme zu finden. War es notwendig eine Datei zu entfernen, wird dies besser mittels des post-extract-Targets als über den Patch selbst realisiert. Ein einfacher Austausch kann direkt über das Makefile des Ports umgesetzt werden, indem der in-place-Modus von &man.sed.1; genutzt wird. Dies ist sehr hilfreich, wenn variable Werte korrigiert werden sollen. Beispiel: post-patch: @${REINPLACE_CMD} -e 's|for Linux|for FreeBSD|g' ${WRKSRC}/README @${REINPLACE_CMD} -e 's|-pthread|${PTHREAD_LIBS}|' ${WRKSRC}/configure Relativ häufig ergibt sich die Situation, in der die portierte Software die CR/LF-Konventionen für Zeilenenden nutzt (dies ist bei unter &windows; entwickelter Software häufig der Fall). Dies kann bei weiteren Patches Probleme (Compiler-Warnungen, Fehlermeldungen bei der Ausführung von Skripten wie z.B. /bin/sh^M not found) und anderes ergeben. Um schnell alle Dateien von CR/LF nach LF zu konvertieren, kann USE_DOS2UNIX=yes in das Makefile des Ports geschrieben werden. Hierzu kann eine Liste der zu konvertierenden Dateien erstellt werden: USE_DOS2UNIX= util.c util.h Sollen Gruppen von Dateien über verschiedene Unterverzeichnisse konvertiert werden, kann DOS2UNIX_REGEX genutzt werden, dessen Argumente find-kompatible, reguläre Ausdrücke sind. Mehr zur Formatierung findet sich in &man.re.format.7;. Diese Option ist beim Konvertieren aller Dateien mit definierter Endung, z.B. aller Dateien im Quellcode, wobei binäre Dateien unberührt bleiben, sinnvoll: USE_DOS2UNIX= yes DOS2UNIX_REGEX= .*\.(c|cpp|h) Wenn Sie einen Patch zu einer bereits existierenden Datei erstellen wollen, können Sie von ihr eine Kopie mit der Endung .orig erstellen und anschließend die Originaldatei bearbeiten. Das make-Ziel makepatch führt dann zu einer entsprechenden Patch-Datei im Verzeichnis files des Ports. Konfigurieren Fügen Sie alle zusätzlichen Veränderungsbefehle Ihrem Skript configure hinzu und speichern Sie es im scripts-Unterverzeichnis. Wie vorstehend schon erwähnt, können Sie dies auch mit den Targets Makefile und/oder Skripte mit dem Namen pre-configure oder post-configure erledigen. Handhabung von Benutzereingaben Sollte der Port Eingaben vom Benutzer benötigen, muss IS_INTERACTIVE im Makefile des Ports gesetzt werden. Dies erlaubt overnight builds Ihren Port zu überspringen, falls der Nutzer die Variable BATCH setzt (setzt der Nutzer hingegen die Variable INTERACTIVE, werden nur Ports gebaut, die Interaktion vom Nutzer erwarten). Dies erspart den Rechnern, welche kontinuierlich Ports bauen, eine Menge Zeit (siehe unten). Zudem ist es empfohlen, falls sinnvolle Vorgaben für interaktive Optionen gesetzt sind, die PACKAGE_BUILDING-Variable zu prüfen und das interaktive Skript abzuschalten. Dies macht es uns möglich, Pakete für CDROMs und FTP-Server zu bauen. Die Konfiguration des Makefile Das Konfigurieren des Makefile ist sehr einfach und wir schlagen vor, dass Sie zunächst einen Blick auf vorhandene Beispiele werfen. Zusätzlich gibt es ein Beispiel eines Makefile in diesem Handbuch. Schauen Sie es sich an und verfolgen Sie bitte die Abfolge der Variablen und Abschnitte in dieser Vorlage. Damit erleichtern Sie es anderen, Ihren Port zu lesen. Bedenken Sie bitte die folgenden Probleme in der hier vorgegebenen Abfolge der Unterabschnitte dieses Kapitels, wenn Sie Ihr neues Makefile erstellen: Der originale Quelltext Liegt der Quelltext in DISTDIR als eine standardisierte und mit gzip gepackte Datei in der Art foozolix-1.2.tar.gz? Falls ja, können Sie zum nächsten Schritt übergehen. Falls nicht, sollten Sie versuchen, die Variablen DISTVERSION, DISTNAME, EXTRACT_CMD, EXTRACT_BEFORE_ARGS, EXTRACT_AFTER_ARGS, EXTRACT_SUFX, oder DISTFILES zu ändern. Das hängt davon ab, wie fremdartig das Distributionsfile Ihres Ports ist (der häufigste Fall ist EXTRACT_SUFX=.tar.Z, wenn der Tarball durch ein normales compress und nicht durch gzip gepackt wurde). Im schlimmsten Fall können Sie einfach Ihre eigene Vorgabe mittels do-extract erzeugen und die Standardvorgabe überschreiben; aber dies sollte in den wenigsten Fällen, wenn überhaupt, notwendig sein. Bezeichnungen Der erste Teil des Makefile beschreibt die Versionsnummer des Ports und führt ihn in der richtigen Kategorie auf. <makevar>PORTNAME</makevar> und <makevar>PORTVERSION</makevar> Setzen Sie bitte die Variable PORTNAME auf den Basisnamen Ihres Ports und die Variable PORTVERSION auf dessen Versionsnummer. <makevar>PORTREVISION</makevar> und <makevar>PORTEPOCH</makevar> <makevar>PORTREVISION</makevar> Die PORTREVISION-Variable ist ein streng monoton wachsender Wert, welcher auf 0 zurückgesetzt wird, nachdem PORTVERSION erhöht wurde (d.h. jedes Mal, wenn ein offizielles Release erfolgt). Sie wird an den Namen des Pakets angehängt, wenn sie ungleich 0 ist. Änderungen an PORTREVISION werden von automatisierten Werkzeugen (z.B. &man.pkg.version.1;) genutzt, um anzuzeigen, dass ein neues Paket verfügbar ist. PORTREVISION sollte jedes Mal erhöht werden, wenn eine Änderung am Port erfolgt, die beträchtliche Auswirkungen auf den Inhalt oder Struktur des aus dem Port erzeugten Pakets zur Folge hat. Beispiele dafür, wann PORTREVISION erhöht werden sollte: Hinzufügen von Patches, welche Sicherheitslücken schließen, Fehler beseitigen oder neue Funktionalität zum Port hinzufügen. Änderungen am Makefile des Ports, welche compile-time-Optionen hinzufügen oder entfernen. Änderungen bezüglich Packliste oder am Verhalten während der Installation des Pakets (d.h. Änderungen an einem Skript, welches Ausgangsdaten für das Paket erzeugt, wie z.B. SSH-Hostschlüssel). Versionssprung einer Shared-Library, welche eine Abhängigkeit dieses Ports ist (In diesem Fall würde ein Anwender bei der Installation des alten Pakets scheitern, falls er eine neue Version der Abhängigkeit bereits installiert hat, weil nach der alten Bibliothek libfoo.x anstatt nach libfoo.(x+1)) gesucht wird). Schleichende Änderungen am Distfile, welche bedeutende funktionale Änderungen verursachen, d.h. Änderungen des Distfile erfordern eine Korrektur an distinfo, ohne dass damit zusammenhängend die PORTVERSION verändert wird, obwohl ein diff -ru zwischen der alten und der neuen Version bedeutende Veränderungen am Code nachweist. Beispiele für Änderungen, welche keine Erhöhung von PORTREVISION erfordern: Stilistische Änderungen am Grundgerüst des Ports ohne funktionale Änderungen am daraus resultierenden Paket. Änderungen an der Variable MASTER_SITES oder andere funktionale Änderungen, welche das resultierende Paket nicht verändern. Marginale Patches am Distfile wie die Korrektur von Tippfehlern, welche nicht wichtig genug sind, um dem Benutzer die Bürde eines Upgrades aufzuerlegen. Build fixes, die ein Paket erst kompilierbar machen, welches ohne diese Änderungen vorher nicht erzeugt werden konnte (solange die Änderungen keine funktionale Differenz bringen auf Plattformen, auf denen dieses Paket schon vorher gebaut werden konnte). Da PORTREVISION den Inhalt des Pakets wiederspiegelt, ist es nicht notwendig PORTREVISION zu erhöhen, wenn das Paket vorher nicht erstellt werden konnte. Als Faustregel gilt: Stellen Sie sich die Frage, ob die durchgeführte Änderung am Port jedem hilft (entweder aufgrund einer Verbesserung, Beseitigung eines Fehlers, oder der Annahme, dass das neue Paket überhaupt erst funktioniert) und wägen Sie es gegen den Umstand ab, dass jedermann, der seine Ports-Sammlung regelmässig auf dem neuesten Stand hält, zu einer Aktualisierung gezwungen wird. Falls Sie die Frage positiv beantworten sollten, erhöhen Sie die Variable PORTREVISION. <makevar>PORTEPOCH</makevar> Von Zeit zu Zeit geschieht es, dass irgendjemand (Drittanbieter von Software oder FreeBSD Ports Committer) etwas Dummes tut und eine Version einer Software veröffentlicht, deren Versionsnummer niedriger ist als die der vorherigen. Ein Beispiel hierfür ist ein Port, der von foo-20000801 auf foo-1.0 geändert wird (der Erstere wird fälschlicherweise als neue Version behandelt, weil 2000801 ein numerisch größerer Wert ist als 1). In Situationen wie diesen sollte die Variable PORTEPOCH erhöht werden. Wenn PORTEPOCH größer als 0 ist, wird sie an den Namen des Pakets angehängt, wie in Abschnitt 0 oberhalb bereits beschrieben. PORTEPOCH darf niemals verringert oder auf 0 gesetzt werden, weil der Vergleich des Pakets mit einem früheren Zeitpunkt scheitern würde (d.h. das Paket würde niemals als veraltet erkannt werden): Die neue Versionsnummer (1.0,1 im obigen Beispiel) ist immer noch numerisch kleiner als die vorherige Version (2000801), aber das Suffix ,1 wird von automatisierten Werkzeugen gesondert behandelt und wird als größer erkannt, als das implizit angenommene Suffix ,0 im früheren Paket. Das Entfernen oder Zurücksetzen von PORTEPOCH führt zu unendlichem Ärger. Wenn Sie die obigen Ausführungen nicht vollständig verstanden haben, lesen Sie es bitte unbedingt nochmals bis Sie es vollständig verinnerlicht haben, oder fragen Sie vor jeder Änderung auf den Mailinglisten nach! Es wird erwartet, dass PORTEPOCH für die weitaus überwiegende Zahl der Ports nicht verwendet wird und der verantwortungsvolle und vorausschauende Umgang mit PORTVERSION macht es meist überflüssig, falls ein späteres Release die Versionsstruktur ändern sollte. Vorsicht ist geboten, wenn ein Release einer Drittanbieter-Software ohne eine offizielle Versionsnummer veröffentlicht wird, wie z.B. bei Snapshot-Versionen. Man ist versucht, das Release mit dem jeweiligen Datum zu bezeichnen, was unweigerlich zu den oben beschriebenen Problemen führt, wenn das nächste offizielle Release erscheint. Wenn z.B. ein Snapshot zum Datum 20000917 veröffentlicht wird und die vorherige Version der Software war 1.2, dann sollte der Snapshot die PORTVERSION 1.2.20000917 oder ähnlich erhalten und nicht 20000917, damit das nachfolgende Release, angenommen 1.3, immer noch einen größeren numerischen Wert aufweist. Beispiel für den Gebrauch von <makevar>PORTREVISION</makevar> und <makevar>PORTEPOCH</makevar> Der gtkmumble-Port, Version 0.10, befindet sich in der Ports-Sammlung: PORTNAME= gtkmumble PORTVERSION= 0.10 PKGNAME wird zu gtkmumble-0.10. Ein Sicherheitsloch wurde entdeckt, das einen lokalen Patch von FreeBSD erforderlich macht. PORTREVISION wird entsprechend erhöht. PORTNAME= gtkmumble PORTVERSION= 0.10 PORTREVISION= 1 PKGNAME wird zu gtkmumble-0.10_1 Eine neue Version wird vom Software-Drittanbieter veröffentlicht, bezeichnet mit der Version 0.2 (es stellt sich heraus, dass der Autor beabsichtigte, dass 0.10 eigentlich 0.1.0 bedeuten sollte, nicht was kommt nach 0.9  – Hoppla, aber nun ist es zu spät). Da die neue Unterversion 2 numerisch kleiner ist als die vorherige Version 10, muss PORTEPOCH erhöht werden, um sicherzustellen, dass das neue Paket auch als neuer erkannt wird. Da es ein neues Release des Drittanbieters ist, wird PORTREVISION auf 0 zurückgesetzt (oder aus dem Makefile entfernt). PORTNAME= gtkmumble PORTVERSION= 0.2 PORTEPOCH= 1 PKGNAME wird zu gtkmumble-0.2,1 Das nächste Release ist 0.3. Da PORTEPOCH niemals verringert wird, sind die Versionsvariablen nun wie folgt: PORTNAME= gtkmumble PORTVERSION= 0.3 PORTEPOCH= 1 PKGNAME wird zu gtkmumble-0.3,1 Falls PORTEPOCH mit diesem Upgrade auf 0 zurückgesetzt worden wäre, dann würde jemand, der das Paket gtkmumble-0.10_1 installiert hätte, das Paket gtkmumble-0.3 nicht als neuer erkennen, da 3 immer noch numerisch kleiner ist als 10. Bedenken Sie, dass genau dies der springende Punkt an PORTEPOCH ist. <makevar>PKGNAMEPREFIX</makevar> und <makevar>PKGNAMESUFFIX</makevar> Zwei optionale Variablen, PKGNAMEPREFIX und PKGNAMESUFFIX, werden verknüpft mit PORTNAME und PORTVERSION, um PKGNAME zu bilden als ${PKGNAMEPREFIX}${PORTNAME}${PKGNAMESUFFIX}-${PORTVERSION} . Stellen Sie bitte unbedingt sicher, dass diese Variablen den Richtlinien für einen guten Paketnamen entsprechen. Insbesondere dürfen Sie keinesfalls einen Bindestrich (-) in PORTVERSION verwenden. Falls das Paket den language- oder -compiled.specifics-Teil aufweist (siehe unten) benutzen Sie PKGNAMEPREFIX oder PKGNAMESUFFIX respektive. Machen Sie diese Variablen nicht zum Bestandteil von PORTNAME! <makevar>LATEST_LINK</makevar> In einigen Fällen können mehrere Versionen einer Applikation gleichzeitig in der Ports-Sammlung sein. Das index build- und das package build-System müssen nun in der Lage sein, diese als unterschiedliche Ports zu erkennen, obwohl diese Versionen alle die gleichen Variablen PORTNAME, PKGNAMEPREFIX und sogar PKGNAMESUFFIX aufweisen. In solchen Fällen sollte die optionale Variable LATEST_LINK auf einen unterschiedlichen Wert für alle Ports gesetzt werden mit Ausnahme des Haupt-Ports. Beispiele hierfür sind die editors/vim5 und editors/vim-Ports und die www/apache*-Familie. Beachten Sie bitte, dass die Frage der Auswahl der wichtigsten Version (am populärsten, am besten Unterstützt, zuletzt gepatcht usw.) ausserhalb der Möglichkeiten dieses Handbuches liegt. Wir sagen Ihnen nur, wie Sie die anderen Ports spezifizieren, nachdem Sie den Haupt-Port erkoren haben. Namensregeln für Pakete Im Folgenden finden Sie die Regeln für die Benennung Ihrer Pakete. Diese sollen gewährleisten, dass das Paketverzeichnis leicht zu durchsuchen ist, da es bereits abertausende Pakete gibt und die Nutzer sich mit Schauder abwenden, wenn Ihre Augen überstrapaziert werden! Der Paketname soll aussehen wie language_region-name-compiled.specifics-version.numbers. Der Paketname ist definiert als ${PKGNAMEPREFIX}${PORTNAME}${PKGNAMESUFFIX}-${PORTVERSION} . Stellen Sie bitte sicher, dass die Variablen Ihres Ports diesem Format entsprechen. FreeBSD bemüht sich ausserordentlich, die Landessprachen seiner Nutzer zu unterstützen. Die language-Variable soll eine Abkürzung mit 2 Buchstaben sein der Sprachen gemäß ISO-639, falls der Port für eine bestimmte Sprache spezifisch ist. Beispiele hierfür sind ja für Japanisch, ru für Russisch, vi für Vietnamesisch, zh für Chinesisch, ko für Koreanisch und de für Deutsch. Sollte der Port spezifisch sein für eine gewisse Region innerhalb eines Sprachraumes, dann fügen Sie bitte auch den Ländercode mit 2 Buchstaben hinzu. Beispiele sind en_US für nordamerikanisches Englisch und fr_CH für schweizerisches Französisch. Der language-Teil muss in der PKGNAMEPREFIX-Variable gesetzt werden. Der erste Buchstabe des name-Teils muss kleingeschrieben werden (der Rest des Namens kann Großbuchstaben enthalten. Daher seien Sie bitte umsichtig, wenn Sie den Namen einer Software konvertieren, welche Grossbuchstaben enthält). Es ist Tradition, Perl 5-Module durch ein vorstehendes p5- und durch Umwandlung des doppelten Doppelpunktes in Bindestriche zu bezeichnen. So wird z.B. aus dem Data::Dumper-Modul der p5-Data-Dumper-Port. Vergewissern Sie sich, dass der Name des Ports und seine Versionsnummer klar getrennt sind und in den Variablen PORTNAME und PORTVERSION stehen. Der einzige Grund, um in PORTNAME einen Versionsteil aufzunehmen ist der, dass die Software wirklich so bezeichnet wird, wie z.B. die Ports textproc/libxml2 oder japanese/kinput2-freewnn. Ansonsten sollte PORTNAME keine versionsspezifischen Bestandteile aufweisen. Es ist vollkommen normal, dass viele Ports den gleichen PORTNAME aufweisen wie z.B. die www/apache*-Ports. In diesem Falle werden unterschiedliche Versionen (und unterschiedliche Indexeinträge) unterschieden durch die Werte von PKGNAMEPREFIX, PKGNAMESUFFIX und LATEST_LINK. Falls der Port mit verschiedenen, fest kodierten Vorgaben (üblicherweise Teil des Verzeichnisnamens in einer Familie von Ports) gebaut werden kann, dann soll der -compiled.specifics-Teil die einkompilierten Vorgaben anzeigen (der Bindestrich ist optional). Beispiele hierfür sind Papiergrößen und Font-Einheiten. Der -compiled.specifics-Teil muss in der Variablen PKGNAMESUFFIX gesetzt werden. Die Versionszeichenfolge sollte einen Bindestrich (-) am Schluss haben und eine von Punkten getrennte Liste von Integer-Zahlen und kleingeschriebenen Buchstaben sein. Es ist nicht zulässig, einen weiteren Bindestrich innerhalb des Versionsstrings zu verwenden! Die einzige Ausnahme hiervon ist die Zeichenfolge pl (bedeutet patchlevel), welche nur dann gebraucht werden darf, wenn die Applikation über keine Haupt– oder Unterversionsnummern verfügt. Wenn die Versionsbezeichnung der Software Zeichenketten wie alpha, beta, rc oder pre enthält, dann nehmen Sie bitte den ersten Buchstaben daraus und setzen ihn unmittelbar hinter einen Punkt. Falls die Versionszeichenfolge nach diesem Punkt fortgesetzt wird, sollen die Zahlen ohne einen Punkt zwischen den einzelnen Buchstaben folgen. Das Ziel ist es, die Ports anhand der Versionszeichenfolge zu sortieren. Stellen Sie bitte unbedingt sicher, dass die Bestandteile der Versionsnummer immer durch einen Punkt getrennt sind und falls Datumsangaben verwandt werden diese im Format yyyy.mm.dd und nicht dd.mm.yyyy oder gar dem nicht Y2K-kompatiblen Format yy.mm.dd vorliegen. Hier sind einige reale Beispiele, die aufzeigen, wie man den Namen einer Applikation zu einem vernünftigen Paketnamen umwandelt: Softwarename PKGNAMEPREFIX PORTNAME PKGNAMESUFFIX PORTVERSION Grund mule-2.2.2 (leer) mule (leer) 2.2.2 Keine Änderung erforderlich EmiClock-1.0.2 (leer) emiclock (leer) 1.0.2 keine Großbuchstaben für einzelne Applikationen rdist-1.3alpha (leer) rdist (leer) 1.3.a Keine Zeichenketten wie alpha erlaubt es-0.9-beta1 (leer) es (leer) 0.9.b1 keine Zeichenketten wie beta erlaubt mailman-2.0rc3 (leer) mailman (leer) 2.0.r3 keine Zeichenketten wie rc erlaubt v3.3beta021.src (leer) tiff (leer) 3.3 Was sollte denn das eigentlich sein? tvtwm (leer) tvtwm (leer) pl11 Versionsstring zwingend erforderlich piewm (leer) piewm (leer) 1.0 Versionsstring zwingend erforderlich xvgr-2.10pl1 (leer) xvgr (leer) 2.10.1 pl nur erlaubt, wenn keine Versionsnummer vorhanden gawk-2.15.6 ja- gawk (leer) 2.15.6 Japanische Sprachversion psutils-1.13 (leer) psutils -letter 1.13 Papergröße beim Paketbau fix kodiert pkfonts (leer) pkfonts 300 1.0 Paket für 300 DPI Schriftarten Falls es in der Originalquelle überhaupt keinen Anhaltspunkt für irgendeine Versionsbezeichnung gibt und es unwahrscheinlich ist, dass der Autor jemals eine neue Version veröffentlichen wird, dann setzen Sie bitte die Version einfach auf 1.0 (wie im obigen Beispiel piewm). Sie können auch den Autor fragen oder eine Datumszeichenfolge (yyyy.mm.dd) als Version verwenden. Kategorisierung <makevar>CATEGORIES</makevar> Wenn ein Paket erzeugt wird, dann wird es unter /usr/ports/packages/All abgelegt und von einem oder mehreren Unterverzeichnissen werden auf /usr/ports/packages Links erstellt. Die Namen dieser Unterverzeichnisse werden durch die Variable CATEGORIES festgelegt. Dies geschieht, um dem Nutzer zu helfen, eine große Zahl von Paketen auf einer FTP-Webseite oder einer CD/DVD zu durchsuchen. Bitte werfen Sie einen Blick auf die Aktuelle Liste der Kategorien und suchen Sie die beste Kategorie für Ihren Port aus. Diese Liste legt auch fest, an welcher Stelle in der Ports-Sammlung der Port eingefügt wird. Falls Sie mehrere Kategorien angeben wird angenommen, dass die Dateien des Ports im Unterverzeichnis mit dem Namen der ersten angegebenen Kategorie liegen. Schauen Sie bitte unten für weitere Informationen darüber, wie man die richtige Kategorie bestimmt. Aktuelle Liste der Kategorien Hier ist die aktuelle Liste der Kategorien. Die mit einem Asterisk (*) bezeichneten sind virtuelle Kategorien, also solche, welche über kein eigenes Unterverzeichnis in der Ports-Sammlung verfügen. Sie werden nur als Sekundärkategorien benutzt und sind nur für Suchzwecke eingerichtet worden. Für nicht-virtuelle Kategorien finden Sie eine einzeilige Beschreibung in der Variable COMMENT im Makefile des jeweiligen Unterverzeichnisses. Kategorie Beschreibung Anmerkung accessibility Ports für behinderte Menschen. afterstep* Ports für den AfterStep Window Manager. arabic Arabische Sprachunterstützung. archivers Archivierungswerkzeuge. astro Ports für Astronomie. audio Sound-Unterstützung. benchmarks Benchmarking-Werkzeuge. biology Software für Biologie. cad CAD-Werkzeuge. chinese Chinesische Sprachunterstützung. comms Kommunikationsprogramme. Hauptsächlich Software für serielle Schnittstellen. converters Zeichensatz-Konverter. databases Datenbanken. deskutils Dinge, die vor der Erfindung des Computers auf dem Schreibtisch waren. devel Entwicklungs-Werkzeuge. Legen Sie keine Bibliotheken hier ab, nur weil es Bibliotheken sind, es sei denn, sie gehören wirklich nirgendwo anders hin. dns DNS-bezogene Software. docs* Meta-Ports für die FreeBSD-Dokumentation. editors allgemeine Editoren. Spezielle Editoren gehören in Ihre jeweilige Kategorie, (z.B. gehört ein mathematischer Formeleditor in math). elisp* Emacs-lisp-Ports. emulators Emulatoren für andere Betriebssysteme. Terminal-Emulatoren gehören nicht hierher; X-basierende gehören zu x11 und text-basierende zu comms oder misc, abhängig von deren genauer Funktionalität. finance Finanz-Software und ähnliches. french Französische Sprachunterstützung. ftp FTP Client- und Server-Werkzeuge. Falls Ihr Port sowohl FTP als auch HTTP unterstützt, stellen Sie ihn in ftp mit der Zweitkategorie www. games Spiele. geography* geografische Software. german Deutsche Sprachunterstützung. gnome* Ports für GNOME gnustep* Software für GNUstep. graphics grafische Werkzeuge. hamradio* Software für Amateurfunk. haskell* Software für die Haskell-Programmiersprache. hebrew Hebräische Sprachunterstützung. hungarian Ungarische Sprachunterstützung. ipv6* IPv6-bezogene Software. irc Internet Relay Chat (IRC)-Werkzeuge. japanese Japanische Sprachunterstützung. java Software für die Java™-Programmiersprache. Die java-Kategorie sollte nicht die Einzige für einen Port sein mit Ausnahme der direkt nur mit der Programmiersprache zusammenhängenden Applikationen. Porter sollten java nicht als Hauptkategorie eines Ports wählen. kde* Ports für das K Desktop Environment (KDE)-Projekt. kld* Kernelmodule. korean Koreanische Sprachunterstützung. lang Programmiersprachen. linux* Linux-Applikationen und -Werkzeuge. lisp* Software für die Lisp-Programmiersprache. mail Mail-Software. math Numerische Berechnungen und andere mathematische Werkzeuge. mbone MBone-Applikationen. misc Verschiedene Werkzeuge. Hauptsächlich Werkzeuge, die nicht anderswo hingehören. Versuchen Sie, falls irgend möglich, eine bessere Kategorie für Ihren Port zu finden als misc, weil Ports hier leicht untergehen. multimedia Multimedia-Software. net Verschiedene Netzwerk-Software. net-im Instant Messaging-Software. net-mgmt Netzwerk-Management-Software. net-p2p Peer to peer-Netzwerkprogramme. news USENET News-Software. palm Software für Palm™. parallel* Applikationen für paralleles Rechnen. pear* Ports für das Pear PHP-Framework. perl5* Ports, welche Perl Version 5 benötigen. plan9* Verschiedene Programme von Plan9. polish Polnische Sprachunterstützung. ports-mgmt Hilfsprogramme für das Installieren und Entwickeln von FreeBSD Ports und Paketen. portuguese Portugiesische Sprachunterstützung. print Drucker-Software. Desktop Veröffentlichungs-Werkzeuge (DTP, Betrachter etc.) gehören auch hierher. python* Software für Python. ruby* Software für Ruby. rubygems* Ports für RubyGems-Pakete. russian Russische Sprachunterstützung. scheme* Software für die Scheme-Programmiersprache. science Wissenschaftliche Programme, die in keine andere Kategorie passen wie z.B. astro, biology und math. security Security-Werkzeuge. shells Shells. spanish* Spanische Sprachunterstützung. sysutils System-Werkzeuge. tcl* Ports, welche Tcl benötigen. textproc Textverarbeitungsprogramme. Dies beinhaltet nicht DTP-Werkzeuge, diese gehören in print. tk* Ports, welche Tk benötigen. ukrainian Ukrainische Sprachunterstützung. vietnamese Vietnamesische Sprachunterstützung. windowmaker* Ports für den WindowMaker Window-Manager. www Software für das World Wide Web (WWW). HTML-Werkzeuge gehören auch hierher. x11 X-Window-System und dergleichen. Diese Kategorie ist nur für Software, welche direkt X unterstützt. Fügen Sie keine normalen X-Applikationen hinzu. Die meisten davon gehören in eine andere x11-*-Kategorie (siehe unten). Falls Ihr Port eine X-Applikation ist, dann definieren Sie bitte USE_XLIB (impliziert durch USE_IMAKE) und fügen ihn der entsprechenden Kategorie hinzu. x11-clocks X11-Uhren. x11-drivers X11-Treiber. x11-fm X11-Dateimanager. x11-fonts X11-Schriftarten und Werkzeuge. x11-servers X11-Server. x11-themes X11-Themes. x11-toolkits X11-Toolkits. x11-wm X11-Window-Manager. xfce* Ports in Zusammenhang mit Xfce. zope* Zope-Unterstützung. Wählen der richtigen Kategorie Da viele der Kategorien sich überlappen, müssen Sie oft festlegen, welches die primäre Kategorie Ihres Ports ist. Hierzu gibt es einige Regeln, welche diese Auswahl bestimmen. Hier ist die Liste der Regeln mit abnehmender Wichtigkeit: Die erste (primäre) Kategorie muss eine physische (keine virtuelle, siehe oben) sein. Dies ist notwendig damit Pakete erstellt werden können. Die nachfolgenden Kategorien können wahllos virtuelle oder physische Kategorien sein. Sprachspezifische Kategorien kommen immer zuerst. Wenn Ihr Port z.B. Japanische X11-Schriftarten installiert, dann muss Ihre CATEGORIES-Zeile japanese x11-fonts enthalten. Spezifische Kategorien werden vor weniger spezifischen Kategorien aufgelistet. Ein HTML-Editor sollte z.B. als www editors aufgeführt werden und nicht umgekehrt. Genauso sollten Sie keinen Port unter net aufführen, wenn er zu irc, mail, mbone, news, security oder www passt, da net stillschweigend eingeschlossen ist in diesen Kategorien. x11 wird nur als sekundäre Kategorie benutzt, wenn die primäre Kategorie eine sprachspezifische ist. Keinesfalls sollten Sie x11 in die Kategorie-Zeile einer X-Applikation setzen. Emacs modes gehören in die gleiche Kategorie wie die vom jeweiligen mode unterstützte Applikation und nicht in editors. Ein Emacs mode z.B. für das Editieren von Quelltext einer bestimmten Programmiersprache gehört zur Kategorie lang. Für Ports, die vom Benutzer ladbare Kernelmodule installieren, sollte die virtuelle Kategorie kld in die CATEGORIES-Zeile aufgenommen werden. misc sollte nicht zusammen mit irgendeiner anderen nicht-virtuellen Kategorie auftreten. Falls Sie misc mit einer anderen Kategorie in CATEGORIES haben bedeutet dies, dass Sie gefahrlos misc streichen und die andere Kategorie alleine verwenden können! Falls Ihr Port wirklich in keine andere Kategorie passt, verwenden Sie bitte misc. Falls Sie sich über die Kategorie im Unklaren sind, hinterlassen Sie bitte einen Kommentar in Ihrem per &man.send-pr.1; eingereichten Bericht, damit wir diese Frage vor dem Import diskutieren können. Falls Sie ein Committer sind, schicken Sie bitte eine Nachricht an &a.ports;, damit die Frage im Vorhinein erörtert werden kann. Neue Ports werden zu häufig falsch kategorisiert und werden sofort wieder verschoben. Das bläht das Master Source Repository unnötig auf. Eine neue Kategorie vorschlagen Da die Ports-Sammlung über viele Jahre gewachsen ist, wurden viele neue Kategorien hinzugefügt. Neue Kategorien können virtuell (ohne eigenes Unterverzeichnis in der Ports-Sammlung) oder physisch sein. Der nachfolgende Text führt einige Punkte auf, welche bei der Neueinführung einer physischen Kategorie beachtet werden müssen, damit Sie dies bei einem eventuellen Vorschlag Ihrerseits berücksichtigen können. Unsere bestehende Maxime ist die Vermeidung der Neuanlage von physischen Kategorien, solange nicht eine große Zahl von Ports zugeordnet werden können oder falls ihr nicht Ports zugehören würden, welche eine logisch abgegrenzte Gruppe von limitiertem öffentlichem Interesse zugehören würden (zum Beispiel neue Sprachkategorien) oder vorzugsweise beides. Die Erklärung dafür ist, dass eine Neuanlage einer physischen Kategorie einen erheblichen Arbeitsaufwand sowohl für die Committer als auch diejenigen Nutzer bedeutet, welche die Änderungen der Ports-Sammlung nachvollziehen. Zusätzlich verursachen Vorschläge für neue Kategorien oftmals Kontroversen (natürlich deswegen, weil es keinen klaren Konsens darüber gibt, welche Kategorie als zu groß betrachtet werden muss noch ob sich bestimmte Kategorien zur einfachen Suche eignen (und wie viele Kategorien überhaupt ideal wären) und so weiter). Hier ist das Prozedere: Schlagen Sie die neue Kategorie auf &a.ports; vor. Sie sollten eine detaillierte Begründung für die neue Kategorie beifügen einschließlich einer Erklärung, warum Sie meinen, die existierenden Kategorien seien nicht ausreichend. Zeigen Sie außerdem eine Liste der zu verschiebenden Ports (falls neue Ports in GNATS auf ihren commit warten, die in diese Kategorie passen würden. Listen Sie diese bitte auch mit auf). Sind Sie der Maintainer oder Einreicher dieser Ports, erwähnen Sie es bitte. Es verleiht Ihrem Vorschlag mehr Gewicht. Nehmen Sie an der Diskussion teil. Falls es Unterstützung für Ihren Vorschlag geben sollte, reichen Sie bitte einen PR ein, welcher die Begründung und die Liste der betroffenen Ports enthält, die verschoben werden müssen. Idealerweise sollte der PR Patches für Folgendes enthalten: Makefiles für die neuen Ports nach dem Repocopy Makefile für die neue Kategorie Makefile für die alten Kategorien der betroffenen Ports Makefiles für Ports, welche von den alten Ports abhängen Für zusätzliches Ansehen sorgen Sie, wenn Sie die anderen Dateien, die geändert werden müssen, beifügen wie in der Direktive des Committer's Guide beschrieben. Da es die Ports-Infrastruktur beeinflusst und nicht nur die Durchführung von Repocopies und möglicherweise sogar Regressionstests auf dem Build Cluster durchgeführt werden müssen, sollte der PR dem Ports Management Team &a.portmgr; zugeordnet werden. Sobald der PR bestätigt wurde muss ein Committer den Rest der Prozedur durchführen, welche im Committers Guide beschrieben ist. Das Vorschlagen einer neuen virtuellen Kategorie ist ähnlich, aber wesentlich weniger aufwendig, weil keine Ports verschoben werden müssen. In diesem Falle müssen nur die Patches an den PR beigefügt werden, welche die neue Kategorie zur Variable CATEGORIES der betroffenen Ports hinzufügen. Vorschlagen einer Neuorganisation aller Kategorien Von Zeit zu Zeit schlägt jemand eine komplette Neuorganisation aller Ports, entweder mit einer zweistufigen Struktur oder irgendeiner Art von Schlüsselwörtern, vor. Bis heute wurde keiner dieser Vorschläge umgesetzt, weil sie zwar einfach zu machen sind, aber der Aufwand zur Umsetzung und Reorganisation der kompletten Ports-Sammlung schlichtweg mörderisch wäre. Bitte lesen Sie die Geschichte dieser Vorschläge in den Archiven der Mailinglisten nach, bevor Sie diese Ideen nochmals unterbreiten. Zudem sollten Sie gewappnet sein, dass man Sie auffordert, einen arbeitsfähigen Prototyp vorzulegen. Die Distributionsdateien Der zweite Teil des Makefile beschreibt die Dateien, welche heruntergeladen werden müssen, um den Port zu bauen und wo diese Dateien zu finden sind. <makevar>DISTVERSION/DISTNAME</makevar> DISTNAME ist der Name der Applikation wie er von den Autoren vergeben wurde. DISTNAME hat als Vorgabe ${PORTNAME}-${PORTVERSION} also überschreiben Sie diese Vorgabe nur, wenn es notwendig ist. DISTNAME wird nur an zwei Stellen genutzt. Erstens: (DISTFILES) hat als Vorgabe ${DISTNAME}${EXTRACT_SUFX}. Zweitens: Die Distributionsdatei soll in einem Unterverzeichnis namens WRKSRC extrahiert werden, dessen Vorgabe work/${DISTNAME} ist. Manche Drittanbieter-Namen, welche nicht in das Schema ${PORTNAME}-${PORTVERSION} passen, können durch Setzen von DISTVERSION automatisch behandelt werden. PORTVERSION und DISTNAME werden automatisch abgeleitet, können aber natürlich manuell überschrieben werden. Die folgende Tabelle führt einige Beispiele auf: DISTVERSION PORTVERSION 0.7.1d 0.7.1.d 10Alpha3 10.a3 3Beta7-pre2 3.b7.p2 8:f_17 8f.17 PKGNAMEPREFIX und PKGNAMESUFFIX beeinflussen DISTNAME nicht. Beachten Sie bitte auch, dass Sie DISTNAME unverändert lassen sollten, falls WRKSRC denselben Wert hat wie work/${PORTNAME}-${PORTVERSION} und gleichzeitig dass Archiv des originalen Quelltextes anders benannt ist als ${PORTNAME}-${PORTVERSION}${EXTRACT_SUFX}. Es ist einfacher DISTFILES zu definieren, als DISTNAME und WRKSRC (und möglicherweise EXTRACT_SUFX) zu setzen. <makevar>MASTER_SITES</makevar> Dokumentieren Sie das Verzeichnis der FTP/HTTP-URL, welche auf den originalen Tarball zeigt, in der Variable MASTER_SITES. Bitte vergessen Sie niemals den Schrägstrich (/) am Ende! Die make-Makros werden versuchen, diese Festlegung für die Aufbereitung der Distributionsdateien mittels FETCH zu benutzen, falls sie diese nicht schon auf dem System finden. Es wird empfohlen, mehrere Webseiten in dieser Liste aufzuführen, vorzugsweise auf verschiedenen Kontinenten. Dies ist ein Schutz gegen Probleme bei größeren Ausfällen im Internet. Wir planen sogar Unterstützung einzubauen, die automatisch einen Server in der Nähe zum Herunterladen bestimmt. Die Verfügbarkeit von vielen Webseiten wird dieses Vorhaben beträchtlich erleichtern. Falls der originale Tarball Teil eines populären Archivs ist, wie X-contrib, GNU oder Perl CPAN, können Sie möglicherweise auf diese Seiten in einer einfachen und kompakten Form mittels MASTER_SITE_* (d.h., MASTER_SITE_XCONTRIB, MASTER_SITE_GNU und MASTER_SITE_PERL_CPAN) referenzieren. Setzen Sie einfach MASTER_SITES auf eine dieser Variablen und MASTER_SITE_SUBDIR auf den Pfad innerhalb des Archivs. Hier ist ein Beispiel: MASTER_SITES= ${MASTER_SITE_XCONTRIB} MASTER_SITE_SUBDIR= applications Diese Variablen werden in /usr/ports/Mk/bsd.sites.mk definiert. Es werden ständig neue Einträge hinzugefügt, daher stellen Sie bitte unbedingt sicher, dass Sie die neueste Version verwenden, bevor Sie einen Port einschicken. Der Nutzer kann ebenfalls die Variable MASTER_SITE_* in der /etc/make.conf setzen. Dadurch werden unsere Vorgaben überschrieben und stattdessen werden die Spiegel-Server seiner Wahl für die populären Archive genutzt. <makevar>EXTRACT_SUFX</makevar> Falls Sie eine Distributionsdatei haben, die ein eigentümliches Suffix nutzt, um die Art der Kompression anzuzeigen, dann setzen Sie EXTRACT_SUFX. Ist die Distributionsdatei zum Beispiel im Stil von foo.tgz anstatt des normalen foo.tar.gz benannt, würden Sie schreiben: DISTNAME= foo EXTRACT_SUFX= .tgz Falls erforderlich, setzen die Variablen USE_BZIP2 und USE_ZIP automatisch EXTRACT_SUFX auf .tar.bz2 oder .zip. Falls keine der beiden gesetzt ist, dann verwendet EXTRACT_SUFX die Vorgabe .tar.gz. Sie müssen niemals beide Variablen EXTRACT_SUFX und DISTFILES setzen. <makevar>DISTFILES</makevar> Manchmal haben die zu ladenden Dateien keinerlei Ähnlichkeit mit dem Namen des Ports. Es könnte z.B. source.tar.gz oder ähnlich heißen. In anderen Fällen könnte der Quelltext in mehreren Archiven sein und alle müssen heruntergeladen werden. Falls dies der Fall ist, setzen Sie DISTFILES als eine durch Leerzeichen getrennte Liste aller Dateien, die geladen werden müssen. DISTFILES= source1.tar.gz source2.tar.gz Wenn nicht ausdrücklich gesetzt, verwendet DISTFILES als Vorgabe ${DISTNAME}${EXTRACT_SUFX}. <makevar>EXTRACT_ONLY</makevar> Falls nur einige der DISTFILES extrahiert werden müssen (z.B. eine Datei ist der Quelltext und eine andere ist ein unkomprimiertes Dokument), dann listen Sie die zu extrahierenden Dateien in EXTRACT_ONLY auf. DISTFILES= source.tar.gz manual.html EXTRACT_ONLY= source.tar.gz Falls keine der DISTFILES unkomprimiert sein sollte, dann setzen Sie EXTRACT_ONLY auf einen leeren String. EXTRACT_ONLY= <makevar>PATCHFILES</makevar> Falls Ihr Port zusätzliche Patches benötigt, welche per FTP oder HTTP verfügbar sind, dann setzen Sie PATCHFILES auf den Namen der Dateien und PATCH_SITES auf die URL des Verzeichnisses, das diese Patches enthält (das Format ist das gleiche wie MASTER_SITES). Falls ein Patch wegen einiger zusätzlicher Pfadnamen nicht relativ zum Anfang des Quelltextbaumes (d.h., WRKSRC) liegt, dann setzen Sie bitte PATCH_DIST_STRIP entsprechend. Wenn z.B. alle Pfadnamen in diesem Patch ein zusätzliches foozolix-1.0/ vor ihren Dateinamen aufweisen, dann setzen Sie bitte PATCH_DIST_STRIP=-p1. Kümmern Sie sich nicht darum, ob die Patches komprimiert sind. Sie werden automatisch dekomprimiert, wenn die Dateinamen auf .gz oder .Z enden. Falls der Patch zusammen mit anderen Dateien in einem gezippten Tarball verteilt wird (z.B. mit Dokumentation), dann können Sie nicht PATCHFILES verwenden. In diesem Fall fügen Sie den Namen und den Ort dieses Tarballs zu DISTFILES und MASTER_SITES. Benutzen Sie dann die EXTRA_PATCHES-Variable, um auf diese Dateien zu zeigen und bsd.port.mk wird automatisch diese Dateien nutzen. Kopieren Sie niemals Patch-Dateien in das PATCHDIR-Verzeichnis, weil es möglicherweise nicht beschreibbar ist. Der Tarball wird zusammen mit dem anderen Quelltext extrahiert werden. Eine ausdrückliche Dekomprimierung eines mit gzip oder compress erzeugten Tarball ist nicht notwendig. Sollten Sie dies dennoch vorgeben, so beachten Sie bitte peinlich genau, dass Sie nichts überschreiben, was bereits im Verzeichnis vorhanden ist. Vergessen Sie auch nicht den kopierten Patch im Target von pre-clean zu entfernen. Verschiedene Distributionsdateien oder Patches von verschiedenen Seiten und Verzeichnissen (<literal>MASTER_SITES:n</literal>) (Betrachten Sie es als in irgendeiner Form fortgeschrittenes Thema. Neulinge sollten möglicherweise diesen Abschnitt beim ersten Lesen überspringen). Dieser Abschnitt stellt Informationen über die Mechanismen zum Herunterladen von Dateien zur Verfügung und behandelt die Variablen MASTER_SITES:n und MASTER_SITES_NN. Wir beziehen uns im weiteren Text auf diese Variablen als MASTER_SITES:n. Etwas Hintergrundinformation zu Beginn: OpenBSD verfügt über eine sehr elegante Option innerhalb der Variablen DISTFILES und PATCHFILES. Sowohl Dateien als auch Patches können mit angehängten :n-Bezeichnern versehen werden wobei n in beiden Fällen [0-9] sein kann und eine Gruppenzugehörigkeit anzeigt. Ein Beispiel hierfür ist: DISTFILES= alpha:0 beta:1 In OpenBSD wird die Datei alpha mit der Variable MASTER_SITES0 verknüpft anstatt dem in FreeBSD gebräuchlichen MASTER_SITES und beta mit MASTER_SITES1. Das ist eine sehr interessante Möglichkeit, die endlose Suche nach der richtigen Download-Seite zu verkürzen. Stellen Sie sich zwei Dateien in DISTFILES und 20 Webseiten in der Variable MASTER_SITES vor. Alle Seiten sind erschreckend langsam, beta findet sich auf allen Seiten in MASTER_SITES und alpha kann nur auf der zwanzigsten Seite gefunden werden. Wäre es nicht reine Verschwendung, wenn der Maintainer alle Seiten zuvor überprüfen müsste? Kein guter Start für das wundervolle Wochenende! Übertragen Sie diesen Umstand auf noch mehr DISTFILES und mehr MASTER_SITES. Ganz sicher würde unser distfiles survey master die Erleichterung sehr zu schätzen wissen, die eine solche Verringerung der Netzwerkbelastung bringen würde. In den nächsten Abschnitten sehen Sie die Implementierung dieser Idee durch FreeBSD. Dabei wurde das Konzept von OpenBSD ein wenig verbessert. Prinzipielle Information Dieser Abschnitt informiert Sie, wie Sie schnell ein fein granuliertes Herunterladen von vielen Dateien und Fehlerbereinigungen von verschiedenen Webseiten und Unterverzeichnissen bewerkstelligen. Wir beschreiben hier den Fall der vereinfachten Nutzung von MASTER_SITES:n. Das ist für die meisten Szenarien ausreichend. Falls Sie weitere Informationen benötigen, sollten Sie den nächsten Abschnitt lesen. Einige Programme bestehen aus mehreren Dateien, welche von verschiedenen Webseiten heruntergeladen werden müssen. Zum Beispiel besteht Ghostscript aus dem Kern des Programms und einer großen Zahl von Treiberdateien, die vom Drucker des Benutzers abhängen. Einige dieser Treiberdateien werden mit der Kernapplikation mitgeliefert aber viele müssen von verschiedenen Webseiten heruntergeladen werden. Um das zu unterstützen, muss jeder Eintrag in DISTFILES mit einem Komma und einem tag name abgeschlossen werden. Jeder in MASTER_SITES aufgeführte Webseite folgt ein Komma und eine Marke (tag), die anzeigt, welche Datei von dieser Webseite heruntergeladen werden kann. Stellen Sie sich bitte eine Applikation vor, deren Quelltext in zwei Teile aufgeteilt ist, source1.tar.gz und source2.tar.gz, welche von zwei verschiedenen Webseiten heruntergeladen werden müssen. Das Makefile des Port würde Zeilen enthalten wie in . Vereinfachtes Beispiel für den Gebrauch von <literal>MASTER_SITES:n</literal> mit einer Datei pro Webseite MASTER_SITES= ftp://ftp.example1.com/:source1 \ ftp://ftp.example2.com/:source2 DISTFILES= source1.tar.gz:source1 \ source2.tar.gz:source2 Verschiedene Dateien können die gleiche Marke aufweisen. Ausgehend vom vorherigen Beispiel nehmen wir an, dass es noch eine dritte Datei gibt (source3.tar.gz), welche von ftp.example2.com heruntergeladen werden soll. Das Makefile würde dann aussehen wie . Vereinfachtes Beispiel für den Gebrauch von <literal>MASTER_SITES:n</literal> mit mehr als einer Datei pro Webseite MASTER_SITES= ftp://ftp.example1.com/:source1 \ ftp://ftp.example2.com/:source2 DISTFILES= source1.tar.gz:source1 \ source2.tar.gz:source2 \ source3.tar.gz:source2 Ausführliche Information In Ordnung, das vorherige Beispiel reicht nicht für Ihre Bedürfnisse? In diesem Abschnitt werden wir im Detail erklären, wie der fein granulierte Mechanismus zum Herunterladen (MASTER_SITES:n) funktioniert und wie Sie Ihre Ports modifizieren, um ihn zu nutzen. Elemente können nachstehend bezeichnet werden mit :n wobei n in diesem Falle [^:,]+ ist. Das heißt n könnte theoretisch jede alphanumerische Zeichenkette sein, aber wir beschränken sie auf [a-zA-Z_][0-9a-zA-Z_]+ für diesen Moment. Zudem ist die Zeichenkette case sensitive; d.h. n unterscheidet sich von N. Allerdings dürfen die folgenden Wörter nicht gebraucht werden, da sie spezielle Bedeutungen haben: default, all und ALL (diese Wörter werden intern genutzt in Punkt ). Ausserdem ist DEFAULT ein reserviertes Wort (beachten Sie ). Elemente mit angehängtem :n gehören zur Gruppe n, :m gehört zur Gruppe m und so weiter. Elemente ohne Anhängsel sind gruppenlos, d.h. sie gehören alle zu der speziellen Gruppe DEFAULT. Falls sie an irgendeinem Element DEFAULT hängen, ist dies überflüssig, es sei denn Sie wollen, dass ein Element sowohl zu DEFAULT als auch anderen Gruppen gleichzeitig gehört (beachten Sie ). Die folgenden Beispiele sind gleichwertig, aber das erste Beispiel ist vorzuziehen: MASTER_SITES= alpha MASTER_SITES= alpha:DEFAULT Gruppen sind nicht ausschliessend, d.h. ein Element kann mehreren Gruppen gleichzeitig angehören und eine Gruppe wiederum kann entweder mehrere Elemente oder überhaupt keine aufweisen. Wiederholte Elemente sind schlicht nur wiederholte Elemente. Wenn Sie wollen, dass ein Element gleichzeitig zu mehreren Gruppen gehört, dann können Sie diese durch ein Komma (,) trennen. Anstatt jedes Mal ein anderes Anhängsel zu verwenden und Wiederholungen aufzuführen, können Sie mehrere Gruppen auf einmal in einem einzigen Anhängsel bestimmen. Zum Beispiel markiert :m,n,o ein Element, welches zu den Gruppen m, n und o gehört. Alle folgenden Beispiele sind gleichwertig, aber das erste Beispiel ist vorzuziehen: MASTER_SITES= alpha alpha:SOME_SITE MASTER_SITES= alpha:DEFAULT alpha:SOME_SITE MASTER_SITES= alpha:SOME_SITE,DEFAULT MASTER_SITES= alpha:DEFAULT,SOME_SITE Alle Webseiten in einer Gruppe werden gemäß MASTER_SORT_AWK sortiert. Alle Gruppen innerhalb von MASTER_SITES und PATCH_SITES werden genauso sortiert. Gruppensemantik kann benutzt werden in den folgenden Variablen: MASTER_SITES, PATCH_SITES, MASTER_SITE_SUBDIR, PATCH_SITE_SUBDIR, DISTFILES und PATCHFILES entsprechend der folgenden Syntax: Elemente mit MASTER_SITES, PATCH_SITES, MASTER_SITE_SUBDIR und PATCH_SITE_SUBDIR müssen mit einem Schrägstrich beendet werden ( /). Falls Elemente zu irgendwelchen Gruppen gehören, muss :n direkt nach dem Trenner / stehen. Der MASTER_SITES:n-Mechanismus verlässt sich auf das Vorhandensein des Trennzeichens /, um verwirrende Elemente zu vermeiden in denen :n ein zulässiger Bestandteil des Elementes ist und das Auftreten von :n die Gruppe n anzeigt. Aus Kompatibilitätsgründen (da der /-Trenner sowohl in MASTER_SITE_SUBDIR als auch PATCH_SITE_SUBDIR-Elementen nicht erforderlich ist) wird, falls das auf das Anhängsel folgende nächste Zeichen kein / ist, auch :n als gültiger Teil des Elementes behandelt anstatt als Gruppenzusatz, selbst wenn ein Element ein angehängtes :n aufweist. Beachten Sie sowohl als auch . Ausführliches Beispiel von <literal>MASTER_SITES:n</literal> in <makevar>MASTER_SITE_SUBDIR</makevar> MASTER_SITE_SUBDIR= old:n new/:NEW Verzeichnisse innerhalb der Gruppe DEFAULT -> old:n Verzeichnisse innerhalb der Gruppe NEW -> new Ausführliches Beispiel von <literal>MASTER_SITES:n</literal> mit Komma-Operator, mehreren Dateien, mehreren Webseiten und mehreren Unterverzeichnissen MASTER_SITES= http://site1/%SUBDIR%/ http://site2/:DEFAULT \ http://site3/:group3 http://site4/:group4 \ http://site5/:group5 http://site6/:group6 \ http://site7/:DEFAULT,group6 \ http://site8/%SUBDIR%/:group6,group7 \ http://site9/:group8 DISTFILES= file1 file2:DEFAULT file3:group3 \ file4:group4,group5,group6 file5:grouping \ file6:group7 MASTER_SITE_SUBDIR= directory-trial:1 directory-n/:groupn \ directory-one/:group6,DEFAULT \ directory Das vorstehende Beispiel führt zu einem fein granulierten Herunterladen. Die Webseiten werden in der exakten Reihenfolge ihrer Nutzung aufgelistet. file1 wird heruntergeladen von MASTER_SITE_OVERRIDE http://site1/directory-trial:1/ http://site1/directory-one/ http://site1/directory/ http://site2/ http://site7/ MASTER_SITE_BACKUP file2 wird genauso heruntergeladen wie file1, da sie zur gleichen Gruppe gehören MASTER_SITE_OVERRIDE http://site1/directory-trial:1/ http://site1/directory-one/ http://site1/directory/ http://site2/ http://site7/ MASTER_SITE_BACKUP file3 wird heruntergeladen von MASTER_SITE_OVERRIDE http://site3/ MASTER_SITE_BACKUP file4 wird heruntergeladen von MASTER_SITE_OVERRIDE http://site4/ http://site5/ http://site6/ http://site7/ http://site8/directory-one/ MASTER_SITE_BACKUP file5 wird heruntergeladen von MASTER_SITE_OVERRIDE MASTER_SITE_BACKUP file6 wird heruntergeladen von MASTER_SITE_OVERRIDE http://site8/ MASTER_SITE_BACKUP Wie gruppiere ich eine der speziellen Variablen aus bsd.sites.mk, d.h. MASTER_SITE_SOURCEFORGE? Lesen Sie . Ausführliches Beispiel von <literal>MASTER_SITES:n</literal> mit <makevar>MASTER_SITE_SOURCEFORGE</makevar> MASTER_SITES= http://site1/ ${MASTER_SITE_SOURCEFORGE:S/$/:sourceforge,TEST/} DISTFILES= something.tar.gz:sourceforge something.tar.gz wird von allen Webseiten innerhalb von MASTER_SITE_SOURCEFORGE heruntergeladen. Wie nutze ich dies mit PATCH*-Variablen. In allen Beispielen wurden MASTER*-Variablen genutzt, aber sie funktionieren exakt genauso mit PATCH*-Variablen, wie Sie an . sehen können. Vereinfachte Nutzung von <literal>MASTER_SITES:n</literal> mit <makevar>PATCH_SITES</makevar>. PATCH_SITES= http://site1/ http://site2/:test PATCHFILES= patch1:test Was ändert sich für die Ports? Was ändert sich nicht? Alle bestehenden Ports bleiben gleich. Der Code für MASTER_SITES:n wird nur aktiviert, falls es Elemente mit angehängtem :n entsprechend den zuvor erwähnten Syntax-Regeln wie in gezeigt gibt. Das Target des Port bleibt gleich: checksum, makesum, patch, configure, build etc. Mit der offensichtlichen Ausnahme von do-fetch, fetch-list, master-sites und patch-sites. do-fetch: nutzt die neue Gruppierung DISTFILES und PATCHFILES mit ihren darauf zutreffenden Gruppenelementen in MASTER_SITES und PATCH_SITES welche zutreffende Gruppenelemente sowohl in MASTER_SITE_SUBDIR als auch PATCH_SITE_SUBDIR aufweisen. Sehen Sie hierzu . fetch-list: arbeitet wie das alte fetch-list mit der Ausnahme, dass es nur wie do-fetch gruppiert. master-sites und patch-sites: (inkompatibel zu älteren Versionen) geben nur die Elemente der Gruppe DEFAULT zurück. Beziehungsweise sie führen genau genommen die Targets von master-sites-default und patch-sites-default aus. Weiterhin ist der Gebrauch des Target entweder von master-sites-all oder patch-sites-all der direkten Überprüfung von MASTER_SITES oder PATCH_SITES vorzuziehen. Zudem ist nicht garantiert, dass das direkte Überprüfen in zukünftigen Versionen funktionieren wird. Sehen Sie für weitere Informationen zu diesen neuen Port-Targets. Neue Port-Targets Es gibt master-sites-n und patch-sites-n-Targets, welche die Elemente der jeweiligen Gruppe n innerhalb von MASTER_SITES und PATCH_SITES auflisten. Beispielweise werden sowohl master-sites-DEFAULT als auch patch-sites-DEFAULT die Elemente der Gruppe DEFAULT, master-sites-test und patch-sites-test der Gruppe test usw. zurückgeben. Es gibt das neue Target master-sites-all und patch-sites-all, welche die Arbeit der alten Targets master-sites und patch-sites übernehmen. Sie geben die Elemente aller Gruppen zurück,als würden sie zur gleichen Gruppe gehören - mit dem Vorbehalt, dass sie so viele MASTER_SITE_BACKUP und MASTER_SITE_OVERRIDE auflisten wie Gruppen mittels DISTFILES oder PATCHFILES definiert sind. Das gleiche gilt entsprechend für master-sites-all und patch-sites-all. <makevar>DIST_SUBDIR</makevar> Verhindern Sie, dass Ihr Port das Verzeichnis /usr/ports/distfiles in Unordnung bringt. Falls Ihr Port eine ganze Reihe von Dateien herunterladen muss oder eine Datei enthält, die einen Namen hat, der möglicherweise mit anderen Ports in Konflikt stehen könnte (d.h.Makefile), dann setzen Sie die Variable DIST_SUBDIR auf den Namen des Ports (${PORTNAME} oder ${PKGNAMEPREFIX}${PORTNAME} sollte hervorragend funktionieren). Dies wird DISTDIR von der Vorgabe /usr/ports/distfiles auf /usr/ports/distfiles/DIST_SUBDIR ändern und stellt tatsächlich alle für Ihren Port benötigten Dateien in dieses Unterverzeichnis. Es wird zusätzlich nach dem Unterverzeichnis mit dem gleichen Namen auf der Sicherung der Hauptseite auf ftp.FreeBSD.org suchen (das ausdrückliche Setzen von DISTDIR in Ihrem Makefile wird dies nicht gewährleisten, also nutzen Sie bitte DIST_SUBDIR). Dies hat keine Auswirkungen auf die Variable MASTER_SITES, die Sie in Ihrem Makefile definieren. <makevar>ALWAYS_KEEP_DISTFILES</makevar> Falls Ihr Port binäre Distfiles benutzt und eine Lizenz aufweist, die verlangt, dass das der Quelltext in Form binärer Pakete verteilt werden muss, z.B. GPL, dann wird ALWAYS_KEEP_DISTFILES den &os; Build Cluster anweisen eine Kopie der Dateien in DISTFILES vorzuhalten. Nutzer dieser Ports benötigen generell diese Dateien nicht, daher ist es ein gutes Konzept, nur dann die Distfiles zu DISTFILES hinzuzufügen, wenn PACKAGE_BUILDING definiert ist. Nutzung von <makevar>ALWAYS_KEEP_DISTFILES</makevar>. .if defined(PACKAGE_BUILDING) DISTFILES+= foo.tar.gz ALWAYS_KEEP_DISTFILES= yes .endif Wenn Sie zusätzliche Dateien zu DISTFILES hinzufügen, dann beachten Sie bitte, dass Sie diese auch in distinfo aufführen. Zudem werden die zusätzlichen Dateien normalerweise ebenso in WRKDIR extrahiert, was für einige Ports zu unbeabsichtigten Seiteneffekten führen mag und spezielle Behandlung erfordert. <makevar>MAINTAINER</makevar> Fügen Sie hier Ihre E-Mailadresse ein. Bitte. :-) Beachten Sie bitte, dass nur eine einzelne E-Mailadresse ohne Kommentar in der Variable MAINTAINER zulässig ist. Das Format sollte user@hostname.domain sein. Bitte fügen Sie keinen beschreibenden Text wie z.B. Ihren wirklichen Namen ein, dies verwirrt lediglich bsd.port.mk. Der Maintainer ist dafür verantwortlich, dass der Port aktuell gehalten wird und er sorgt dafür, dass der Port korrekt arbeitet. Für eine detaillierte Beschreibung der Verantwortlichkeiten eines Maintainers beachten Sie bitte den Abschnitt Die Herausforderung für einen Port-Maintainer. Änderungen am Port werden dem Maintainer zur Begutachtung und Zustimmung vorgelegt, bevor sie committed werden. Falls der Maintainer einem Aktualisierungs-Wunsch nicht binnen 2 Wochen (ausgenommen wichtige öffentliche Feiertage) zustimmt, dann wird dies als Maintainer-Timeout betrachtet und eine Aktualisierung kann ohne ausdrückliche Zustimmung des Maintainers erfolgen. Falls der Maintainer nicht binnen 3 Monaten zustimmt, wird er als abwesend ohne Grund betrachtet und kann als Maintainer des fraglichen Ports durch eine andere Person ersetzt werden. Ausgenommen davon ist alles, was durch das &a.portmgr; oder das &a.security-officer; betreut wird. Es dürfen niemals committs ohne vorherige Zustimmung an solchen Ports vorgenommen werden! Wir behalten uns das Recht vor, die Einreichungen eines Maintainers ohne ausdrückliche Zustimmung zu ändern, falls wir der Auffassung sind, dass dadurch die Einhaltung von Richtlinien und stilistischen Vorgaben für die Ports-Sammlung besser erfüllt wird. Zudem können größere Änderungen an der Infrastruktur der Ports zu Änderungen an einem bestimmten Port ohne Zustimmung des Maintainers führen. Diese Änderungen beeinflussen niemals die Funktionalität eines Ports. Das &a.portmgr; behält sich das Recht vor, die Maintainerschaft jedem aus irgendeinem Grund zu entziehen oder ausser Kraft zu setzen, und das Security Officer Team &a.security-officer; behält sich das Recht vor, jede Maintainerschaft aus Sicherheitsgründen aufzuheben oder ausser Kraft zu setzen. <makevar>COMMENT</makevar> Dies ist eine einzeilige Beschreibung des Ports. Bitte fügen Sie nicht den Paketnamen (oder die Version der Software) in den Kommentar ein. Der Kommentar soll mit einem Großbuchstaben beginnen und ohne Punkt enden. Hier ist ein Beispiel: COMMENT= A cat chasing a mouse all over the screen Die COMMENT-Variable soll unmittelbar nach der MAINTAINER-Variable im Makefile stehen. Bitte versuchen Sie die COMMENT-Zeile auf weniger als 70 Zeichen zu begrenzen, da sie den Nutzern als einzeilige Zusammenfassung des Ports angezeigt wird. Abhängigkeiten (dependencies) Viele Ports hängen von anderen Ports ab. Dies ist ein sehr praktisches und nettes Feature der meisten Unix-ähnlichen Betriebssysteme, &os; nicht ausgeschlossen. Es erlaubt, dass häufig vorkommende Abhängigkeiten nicht mit jedem Port oder Paket zusammen ausgeliefert werden müssen, da viele Ports diese gemeinsam benutzen. Es gibt sieben Variablen, die benutzt werden können, um sicherzustellen, dass alle benötigten Teile auf dem Rechner des Nutzers sind. Zusätzlich gibt es einige vordefinierte Variablen für Abhängigkeiten in häufigen Fällen und einige, welche das Verhalten der Abhängigkeiten bestimmen. <makevar>LIB_DEPENDS</makevar> Diese Variable spezifiziert die Shared-Libraries, von denen der Port abhängt. Es ist eine Liste von lib:dir:target-Tupeln wobei lib den Name der gemeinsam genutzten Bibliothek, dir das Verzeichnis, in welchem sie zu finden ist, falls nicht verfügbar, und target das Target in diesem Verzeichnis angeben. Zum Beispiel wird LIB_DEPENDS= jpeg.9:${PORTSDIR}/graphics/jpeg auf eine jpeg-Bibliothek mit der Hauptversionsnummer 9 prüfen, in das graphics/jpeg-Unterverzeichnis Ihrer Ports-Sammlung wechseln, es bauen und installieren, falls es nicht gefunden wird. Der target-Teil kann weggelassen werden, falls er identisch mit DEPENDS_TARGET ist (Vorgabe hierfür ist install). Der lib-Teil ist ein regulärer Ausdruck, welcher die Ausgabe von ldconfig -r ausgewertet. Werte wie intl.[5-7] und intl sind zulässig. Das erste Muster, intl.[5-7], stimmt überein mit: intl.5, intl.6 oder intl.7. Das zweite Muster, intl, stimmt überein mit jeder Version der intl-Bibliothek. Die Abhängigkeit wird zwei Mal überprüft, einmal innerhalb des extract-Target und dann innerhalb des install-Target. Zudem wird der Name der Abhängigkeit in das Paket eingefügt, damit &man.pkg.add.1; es automatisch installiert, falls es nicht auf dem Rechner des Nutzers ist. <makevar>RUN_DEPENDS</makevar> Diese Variable legt Binärdateien oder Dateien, von denen der Port abhängt, für die Laufzeit fest. Es ist eine Liste von path:dir:target-Tupeln, wobei path der Name der Binärdatei oder Datei, dir das Verzeichnis, in welchem sie gefunden werden kann, falls nicht vorhanden, und target das Target in diesem Verzeichnis angeben. Falls path mit einem Slash (/) beginnt, wird es als Datei behandelt und deren Vorhandensein wird mit test -e; überprüft. Andernfalls wird angenommen, dass es eine Binärdatei ist und which -s wird benutzt, um zu überprüfen, ob das Programm im Pfad vorhanden ist. Zum Beispiel wird RUN_DEPENDS= ${LOCALBASE}/etc/innd:${PORTSDIR}/news/inn \ xmlcatmgr:${PORTSDIR}/textproc/xmlcatmgr überprüfen, ob die Datei oder das Verzeichnis /usr/local/etc/innd existiert und es erstellen und installieren aus dem news/inn-Unterverzeichnis der Ports-Sammlung, falls es nicht gefunden wird. Es wird zudem überprüft, ob die Binärdatei namens xmlcatmgr im Suchpfad vorhanden ist und danach zum Unterverzeichnis textproc/xmlcatmgr in Ihrer Ports-Sammlung wechseln, es bauen und installieren, falls es nicht gefunden wird. In diesem Fall ist innd eine Binärdatei. Falls sich eine Binärdatei an einem ungewöhnlichen Platz befindet, der nicht im Suchpfad ist, dann sollten Sie die volle Pfadangabe verwenden. Der offizielle Suchpfad PATH, welcher im Ports Cluster benutzt wird, ist /sbin:/bin:/usr/sbin:/usr/bin:/usr/local/sbin:/usr/local/bin:/usr/X11R6/bin Die Abhängigkeit wird innerhalb des install-Target überprüft. Zudem wird der Name der Abhängigkeit in das Paket übernommen, damit &man.pkg.add.1; es automatisch installieren wird, falls es auf dem System des Nutzers nicht vorhanden ist. Der target-Teil kann weggelassen werden, wenn er der gleiche ist wie in der Variable DEPENDS_TARGET. Es kommt recht häufig vor, dass RUN_DEPENDS genau dasselbe enthält wie BUILD_DEPENDS, gerade dann, wenn die portierte Software in einer Skriptsprache geschrieben ist oder dieselbe Umgebung, die zum Bau verwendet wurde, zur Laufzeit gebraucht wird. In diesem Fall ist es sowohl verlockend als auch intuitiv, den Wert der einen Variable der anderen direkt zuzuweisen: RUN_DEPENDS= ${BUILD_DEPENDS} Jedoch kann eine solche Zuweisung dazu führen, dass die Liste der Laufzeitabhängigkeiten mit überflüssigen Einträgen belastet wird, die sich nicht in der ursprünglichen Liste BUILD_DEPENDS des Ports befanden, da sich &man.make.1; bei der Auswertung solcher Zuweisungen träge verhält. Stellen Sie sich ein Makefile mit USE_*-Variablen vor, die von ports/Mk/bsd.*.mk verarbeitet werden, um initiale Bauabhängigkeiten zusammenzutragen. Zum Beispiel fügt USE_GMAKE=yes devel/gmake zu BUILD_DEPENDS hinzu. Um zu verhindern, dass solche zusätzlichen Abhängigkeiten RUN_DEPENDS belasten, achten Sie darauf, bei gleichzeitiger Auswertung zuzuweisen, d.h. der Ausdruck wird ausgewertet, bevor er als Wert der Variablen zugewiesen wird: RUN_DEPENDS:= ${BUILD_DEPENDS} <makevar>BUILD_DEPENDS</makevar> Diese Variable legt Binärdateien oder Dateien fest, die dieser Port zur Erstellung benötigt. Wie RUN_DEPENDS ist es eine Liste von path:dir:target-Tupeln. Zum Beispiel wird BUILD_DEPENDS= unzip:${PORTSDIR}/archivers/unzip überprüfen, ob eine Binärdatei unzip vorhanden ist und in das Unterverzeichnis archivers/unzip Ihrer Ports-Sammlung wechseln und sie erstellen und installieren, falls sie nicht gefunden wird. Erstellen bedeutet hier alles von der Extraktion bis zur Kompilierung. Die Abhängigkeit wird im extract-Target überprüft. Der target-Teil kann weggelassen werden, falls er identisch mit der Variable DEPENDS_TARGET ist. <makevar>FETCH_DEPENDS</makevar> Diese Variable legt eine Binärdatei oder Datei fest, welche der Port benötigt, um heruntergeladen werden zu können. Wie die vorherigen beiden Variablen ist er eine Liste von path:dir:target-Tupeln. Zum Beispiel wird FETCH_DEPENDS= ncftp2:${PORTSDIR}/net/ncftp2 überprüfen, ob eine Binärdatei namens ncftp2 vorhanden ist, in das Unterverzeichnis net/ncftp2 Ihrer Ports-Sammlung wechseln, sie erstellen und installieren, falls sie nicht gefunden wird. Die Abhängigkeit wird innerhalb des fetch-Target überprüft. Der target-Teil kann weggelassen werden, falls er identisch mit der Variable DEPENDS_TARGET ist. <makevar>EXTRACT_DEPENDS</makevar> Diese Variable spezifiziert eine Binärdatei oder eine Datei, welche dieser Port für die Extraktion benötigt. Wie die vorherigen Variablen ist er eine Liste von path:dir:target-Tupeln. Zum Beispiel wird EXTRACT_DEPENDS= unzip:${PORTSDIR}/archivers/unzip überprüfen, ob eine Binärdatei namens unzip vorhanden ist, in das Unterverzeichnis archivers/unzip Ihrer Ports-Sammlung wechseln, sie erstellen und installieren, falls sie nicht gefunden wird. Die Abhängigkeit wird innerhalb des extract-Target überprüft. Der target-Teil kann weggelassen werden, falls er identisch mit der Variable DEPENDS_TARGET ist. Nutzen Sie diese Variable nur, wenn die Extraktion nicht funktioniert (die Vorgabe nimmt gzip an) und nicht mit USE_ZIP oder USE_BZIP2 wie in beschrieben zum Laufen gebracht werden kann. <makevar>PATCH_DEPENDS</makevar> Diese Variable legt eine Binärdatei oder eine Datei fest, welche dieser Port zum Patchen benötigt. Wie die vorhergehenden Variablen ist diese eine Liste von path:dir:target-Tupeln. Zum Beispiel wird PATCH_DEPENDS= ${NONEXISTENT}:${PORTSDIR}/java/jfc:extract in das Unterverzeichnis java/jfc Ihrer Ports-Sammlung wechseln, um es zu entpacken. Die Abhängigkeit wird innerhalb des patch-Target überprüft. Der target-Teil kann entfallen, falls er identisch mit der Variable DEPENDS_TARGET ist. <makevar>USE_<replaceable>*</replaceable></makevar> Es gibt eine Reihe von Variablen, um gebräuchliche Abhängigkeiten einzukapseln, die viele Ports aufweisen. Obwohl Ihre Verwendung optional ist, können sie helfen die Übersichtlichkeit des Makefile eines Ports zu erhöhen. Jede von ihnen ist im Stil von USE_*. Der Gebrauch dieser Variablen ist beschränkt auf das Makefile eines Ports und ports/Mk/bsd.*.mk. Es ist nicht entworfen worden, um durch den Nutzer setzbare Optionen einzukapseln; benutzen Sie WITH_* und WITHOUT_* für diese Zwecke. Es ist immer falsch, irgendeine USE_*-Variable in der /etc/make.conf zu setzen. Zum Beispiel würde das Setzen von USE_GCC=3.4 eine Abhängigkeit für GCC34 für jeden Port einschliesslich GCC34 selbst hinzufügen! Die <makevar>USE_<replaceable>*</replaceable></makevar>-Varibalen Variable Bedeutung USE_BZIP2 Der Tarball dieses Ports wird mit bzip2 komprimiert. USE_ZIP Der Tarball des Ports wird mit zip komprimiert. USE_BISON Der Port benutzt bison für die Erstellung. USE_CDRTOOLS Der Port erfordert cdrecord entweder von sysutils/cdrtools oder sysutils/cdrtools-cjk, abhängig davon, was der Nutzer vorgibt. USE_GCC Dieser Port benötigt eine bestimmte Version von gcc zur Erstellung. Die genaue Version kann festgelegt werden mit Werten wie 3.4. Mit 3.4+ kann die mindestens erforderliche Version spezifiziert werden. Der gcc aus dem Basissystem wird genutzt, wenn er die erforderliche Version erfüllt, andernfalls wird eine geeignete Version des gcc aus den Ports kompiliert und die Variablen CC und CXX werden angepasst.
Variablen zugehörig zu gmake und dem configure-Skript werden in beschrieben, währenddessen autoconf, automake und libtool in beschrieben sind. Perl-spezifische Variablen werden in behandelt. X11-Variablen sind aufgelistet in . behandelt GNOME-bezogene Variablen und KDE-bezogene Variablen. dokumentiert Java-Variablen, während Informationen zu Apache, PHP und PEAR-Modulen enthält. Python wird in und Ruby in erörtert. stellt Variablen für SDL-Programme zur Verfügung und enthält schliesslich Variablen für Xfce.
Minimale Version einer Abhängigkeit Eine minimale Version einer Abhängigkeit kann in jeder *_DEPENDS-Variable festgelegt werden mit Ausnahme von LIB_DEPENDS durch Anwendung folgender Syntax: p5-Spiffy>=0.26:${PORTSDIR}/devel/p5-Spiffy Das erste Feld enthält einen abhängigen Paketnamen, welcher einem Eintrag in der Paketdatenbank entsprechen muss und einen Vergleich mit einer Paketversion. Die Abhängigkeit wird erfüllt, wenn p5-Spiffy-0.26 oder eine neuere Version auf dem System installiert ist. Anmerkungen zu Abhängigkeiten Wie vorstehend beschrieben ist das Vorgabe-Target DEPENDS_TARGET, wenn eine Abhängigkeit benötigt wird. Die Vorgabe hierfür ist install. Dies ist eine Nutzer-Variable; sie wird niemals im Makefile eines Ports definiert. Falls Ihr Port einen besonderen Weg benötigt, um mit einer Abhängigkeit umzugehen, dann benutzen Sie bitte den :target-Teil der *_DEPENDS-Variablen, anstatt DEPENDS_TARGET zu ändern. Falls Sie make clean schreiben, werden dessen Abhängigkeiten auch gesäubert. Falls Sie dies nicht wollen, definieren Sie die Variable NOCLEANDEPENDS in Ihrer Umgebung. Dies kann besonders erstrebenswert sein, wenn der Port etwas in seiner Liste von Abhängigkeiten hat, das sehr viel Zeit für einen rebuild benötigt wie KDE, GNOME oder Mozilla. Um von einem anderen Port bedingungslos abhängig zu sein, benutzen Sie bitte die Variable ${NONEXISTENT} als erstes Feld von BUILD_DEPENDS oder RUN_DEPENDS. Benutzen Sie dies nur, wenn Sie den Quelltext eines anderen Port benötigen. Sie können auch oft Kompilierzeit sparen, wenn Sie das Target festlegen. Zum Beispiel wird BUILD_DEPENDS= ${NONEXISTENT}:${PORTSDIR}/graphics/jpeg:extract immer zum jpeg-Port wechseln und ihn extrahieren. Zirkuläre Abhängigkeiten sind fatal Führen Sie niemals irgendwelche zirkulären Abhängigkeiten in der Ports-Sammlung ein! Die Struktur für die Erstellung von Ports dulde keinerlei zirkuläre Abhängigkeiten. Falls Sie dennoch eine verwenden, wird es irgendjemanden irgendwo auf der Welt geben, dessen FreeBSD-Installation nahezu sofort zusammenbricht und vielen anderen wird es sehr schnell genauso ergehen. So etwas kann extrem schwer festzustellen sein. Falls Sie Zweifel haben vor einer Änderung, dann vergewissern Sie sich, dass Sie folgendes getan haben: cd /usr/ports; make index. Dieser Prozess kann auf alten Maschinen sehr langsam sein, aber Sie ersparen sich und einer Vielzahl von Menschen möglicherweise eine Menge Ärger.
<makevar>MASTERDIR</makevar> Falls Ihr Port wegen einer Variable, die verschiedene Werte annimmt (z.B. Auflösung oder Papiergröße), leicht unterschiedliche Versione von Paketen erzeugen muss, dann legen Sie bitte ein Unterverzeichnis pro Paket an, um es für den Nutzer einfacher begreiflich zu machen, was zu machen ist. Aber versuchen Sie dabei so viele Dateien wie möglich zwischen diesen Ports gemeinsam zu nutzen. Normalerweise benötigen Sie nur ein sehr kurzes Makefile in allen ausser einem Unterverzeichnis, wenn Sie Variablen intelligent nutzen. In diesem einzigen Makefile können Sie MASTERDIR verwenden, um anzugeben, wo der Rest der Dateien liegt. Benutzen Sie bitte auch eine Variable für PKGNAMESUFFIX, damit die Pakete unterschiedliche Namen haben werden. Wir demonstrieren dies am Besten an einem Beispiel. Es ist Teil von japanese/xdvi300/Makefile; PORTNAME= xdvi PORTVERSION= 17 PKGNAMEPREFIX= ja- PKGNAMESUFFIX= ${RESOLUTION} : # default RESOLUTION?= 300 .if ${RESOLUTION} != 118 && ${RESOLUTION} != 240 && \ ${RESOLUTION} != 300 && ${RESOLUTION} != 400 @${ECHO_MSG} "Error: invalid value for RESOLUTION: \"${RESOLUTION}\"" @${ECHO_MSG} "Possible values are: 118, 240, 300 (default) and 400." @${FALSE} .endif japanese/xdvi300 verfügt ebenfalls über alle Patches, Paket-Dateien usw. Wenn Sie make eintippen, wird der Port die Standardvorgabe für die Auflösung nehmen (300) und den Port ganz normal erstellen. Genauso wie für alle anderen Auflösungen ist dies das vollständige xdvi118/Makefile: RESOLUTION= 118 MASTERDIR= ${.CURDIR}/../xdvi300 .include "${MASTERDIR}/Makefile" (xdvi240/Makefile und xdvi400/Makefile sind ähnlich). Die MASTERDIR-Definition teilt dem bsd.port.mk mit, dass die normalen Unterverzeichnisse wie FILESDIR und SCRIPTDIR unter xdvi300 gefunden werden können. Die RESOLUTION=118-Zeile wird die RESOLUTION=300-Zeile in xdvi300/Makefile überschreiben und der Port wird mit einer Auflösung von 118 erstellt. Manualpages Die Variablen MAN[1-9LN] werden automatisch jede Manualpage zur pkg-plist hinzufügen (dies bedeutet, dass Sie Manualpages nicht in der pkg-plist auflisten dürfen, lesen Sie bitte Erstellung der PLIST für weitere Details). Sie veranlassen zudem den Installationsabschnitt dazu, die Manualpages zu Komprimieren oder zu Dekomprimieren abhängig vom gesetzten Wert der Variable NO_MANCOMPRESS in /etc/make.conf. Falls Ihr Port versucht verschiedene Namen für Manualpages unter Zuhilfenahme von Symlinks oder Hardlinks zu installieren, müssen Sie die Variable MLINKS nutzen, um diese zu identifizieren. Der von Ihrem Port installierte Link wird von bsd.port.mk gelöscht und wieder eingefügt, um sicherzustellen, dass er auf die korrekte Datei zeigt. Jede Manualpage, welche in MLINKS aufgeführt ist, darf nicht in der pkg-plist aufgenommen werden. Falls die Manualpages während der Installation komprimiert werden sollen, müssen Sie die Variable MANCOMPRESSED setzen. Diese Variable kann drei Werte annehmen, yes, no und maybe. yes bedeutet, dass Manualpages bereits komprimiert installiert sind, bei no sind sie es nicht und maybe bedeutet, dass die Software bereits den Wert von NO_MANCOMPRESS beachtet, damit bsd.port.mk nichts Besonderes auszuführen hat. MANCOMPRESSED wird automatisch auf yes gesetzt, wenn USE_IMAKE vorgegeben ist und gleichzeitig NO_INSTALL_MANPAGES nicht. Im umgekehrten Falle ist MANCOMPRESSED auf no gesetzt. Sie müssen es nicht explizit angeben, außer die Standardvorgabe ist für Ihren Port nicht passend. Wenn Ihr Port den man tree irgendwo anders als in der Variable MANPREFIX verankert, können Sie ihn mit MANPREFIX bestimmen. Sollten zudem Manualpages nur in bestimmten Abschnitten an einem nicht-standardkonformen Platz liegen, wie z.B. bestimmte Perl-Modul-Ports, dann können Sie mittels der Variable MANsectPREFIX (wobei sect ein Wert aus 1-9, L oder N ist) individuelle Pfade zu den Manualpages festlegen. Wenn Ihre Manualpages in sprachspezifische Unterverzeichnisse installiert werden, dann bestimmen Sie bitte den Namen der Sprache mit der Variable MANLANG. Der Wert dieser Variable ist mit "" vorgegeben (das bedeutet nur Englisch). Hier ist ein Beispiel, welches alles zusammenfasst. MAN1= foo.1 MAN3= bar.3 MAN4= baz.4 MLINKS= foo.1 alt-name.8 MANLANG= "" ja MAN3PREFIX= ${PREFIX}/share/foobar MANCOMPRESSED= yes Dies zeigt an, dass sechs Dateien von diesem Port installiert werden; ${MANPREFIX}/man/man1/foo.1.gz ${MANPREFIX}/man/ja/man1/foo.1.gz ${PREFIX}/share/foobar/man/man3/bar.3.gz ${PREFIX}/share/foobar/man/ja/man3/bar.3.gz ${MANPREFIX}/man/man4/baz.4.gz ${MANPREFIX}/man/ja/man4/baz.4.gz ${MANPREFIX}/man/man8/alt-name.8.gz kann zusätzlich von Ihrem Port installiert werden, oder auch nicht. Unabhängig davon wird ein Symlink erstellt, welcher die Manualpages foo(1) und alt-name(8) einbindet. Falls nur manche Manualpages übersetzt sind, können Sie einige dynamisch vom MANLANG-Inhalt erzeugte Variablen nutzen: MANLANG= "" de ja MAN1= foo.1 MAN1_EN= bar.1 MAN3_DE= baz.3 Dies führt zu folgender Liste von Dateien: ${MANPREFIX}/man/man1/foo.1.gz ${MANPREFIX}/man/de/man1/foo.1.gz ${MANPREFIX}/man/ja/man1/foo.1.gz ${MANPREFIX}/man/man1/bar.1.gz ${MANPREFIX}/man/de/man3/baz.3.gz Info-Dateien Falls Ihr Paket GNU-Info-Dateien installiert, sollten diese in der INFO-Variablen augelistet sein (ohne das angehängte .info) mit einem Eintrag für jedes Dokument. Von diesen Dateien wird angenommen, dass sie nach PREFIX/INFO_PATH installiert werden. Sie können INFO_PATH ändern, falls Ihr Paket einen anderen Ort vorsieht. Jedoch wird dies nicht empfohlen. Die Einträge enthalten nur den relativen Pfad zu PREFIX/INFO_PATH. Zum Beispiel installiert lang/gcc34 Info-Dateien nach PREFIX/INFO_PATH/gcc34, wobei INFO etwa so aussieht: INFO= gcc34/cpp gcc34/cppinternals gcc34/g77 ... Entsprechende Installations-/Deinstalltions-Codes werden vor der Paket-Registrierung automatisch der vorläufigen pkg-plist hinzugefügt. Makefile-Optionen Einige größere Applikationen können mit einer Reihe von Konfigurationen, die zusätzliche Funktionalitäten hinzufügen, erstellt werden, falls eine oder mehrere Bibliotheken oder Applikationen verfügbar sind. Dazu gehören die Auswahl von natürlichen Sprachen, GUI versus Kommandozeilen-Versionen oder die Auswahl aus mehreren Datenbank-Programmen. Da nicht alle Nutzer diese Bibliotheken oder Applikationen wollen, stellt das Ports-System hooks (Haken) zur Verfügung, damit der Autor des Ports bestimmen kann, welche Konfiguration erstellt werden soll. KNOBS (Einstellungen) <makevar>WITH_<replaceable>*</replaceable></makevar> und <makevar>WITHOUT_<replaceable>*</replaceable></makevar> Diese Variablen sind entworfen worden, um vom System-Administrator gesetzt zu werden. Es gibt viele, die in ports/KNOBS standardisiert sind. Benennen Sie Schalter bei der Erstellung eines Ports nicht programmspezifisch. Verwenden Sie zum Beispiel im Avahi-Port WITHOUT_MDNS anstelle von WITHOUT_AVAHI_MDNS. Sie sollten nicht annehmen, dass ein WITH_* notwendigerweise eine korrespondierende WITHOUT_*-Variable hat oder umgekehrt. Im Allgemeinen wird diese Vorgabe einfach unterstellt. Falls nicht anderweitig festgelegt, werden diese Variablen nur dahingehend überprüft, ob sie gesetzt sind oder nicht – nicht darauf, ob sie auf bestimmte Werte wie YES oder NO gesetzt sind. Häufige <makevar>WITH_<replaceable>*</replaceable></makevar> und <makevar> WITHOUT_<replaceable>*</replaceable></makevar>-Variablen Variable Bedeutung WITHOUT_NLS Falls gesetzt, bedeutet sie, dass eine Internationalisierung nicht benötigt wird, was Kompilierzeit sparen kann. Als Vorgabe wird Internationalisierung gebraucht. WITH_OPENSSL_BASE Nutze die Version von OpenSSL aus dem Basissystem. WITH_OPENSSL_PORT Installiert die Version von OpenSSL aus security/openssl, auch wenn das Basissystem auf aktuellem Stand ist. WITHOUT_X11 Falls der Port mit oder ohne Unterstützung für X erstellt werden kann, dann sollte normalerweise mit X-Unterstützung erstellt werden. Falls die Variable gesetzt ist, soll die Version ohne X-Unterstützung erstellt werden.
Benennung von Knobs (Einstellungen) Um die Anzahl der Knobs niedrig zu halten und zum Vorteil des Anwenders, wird empfohlen, dass Porter ähnliche Namen für Knobs verwenden. Eine Liste der beliebtesten Knobs kann in der KNOBS-Datei eingesehen werden. Knob-Namen sollten wiederspiegeln, was der Knob bedeutet und was er bewirkt. Wenn ein Port einen lib-Präfix im PORTNAME hat, dann soll das lib-Präfix im Knob-Namen entfallen.
<makevar>OPTIONS</makevar> Hintergrund Die OPTIONS-Variable gibt dem Nutzer, der diesen Port installiert, einen Dialog mit auswählbaren Optionen und speichert diese in /var/db/ports/portname/options. Bei der nächsten Neuerstellung des Ports werden diese Einstellungen wieder verwandt. Sie werden sich niemals mehr an all die zwanzig WITH_* und WITHOUT_*-Optionen erinnern müssen, die Sie benutzt haben, um diesen Port zu erstellen! Wenn der Anwender make config benutzt (oder ein make build das erste Mal laufen lässt) wird das Framework auf /var/db/ports/portname/options die Einstellungen prüfen. Falls die Datei nicht existiert, werden die Werte von OPTIONS genutzt, um eine Dialogbox zu erzeugen, in welcher die Optionen an- oder abgeschaltet werden können. Dann wird die options-Datei gespeichert und die ausgewählten Variablen werden bei der Erstellung des Ports benutzt. Falls eine neue Version des Ports OPTIONS hinzufügt, wird der Dialog mit den gespeicherten Werten dem Nutzer angezeigt. Benutzen Sie make showconfig, um die gespeicherte Konfiguration zu betrachten. Benutzen Sie make rmconfig, um die gespeicherte Konfiguration zu Löschen. Syntax Die Syntax für die OPTIONS-Variable lautet: OPTIONS= OPTION "descriptive text" default ... Der Wert als Vorgabe ist entweder ON oder OFF. Wiederholungen dieser drei Felder sind erlaubt. OPTIONS-Definitionen müssen vor der Einbindung von bsd.port.options.mk erscheinen. Die WITH_* und WITHOUT_*-Variablen können nur nach der Einbindung von bsd.port.options.mk getestet werden. bsd.port.pre.mk kann auch stattdessen eingebunden werden und wird immer noch von vielen Ports eingebunden, die vor der Einführung von bsd.port.options.mk erstellt wurden. Jedoch wirken manche Variablen nicht wie gewohnt nach der Einbindung von bsd.port.pre.mk, typischerweise USE_*-Optionen. Einfache Anwendung von <makevar>OPTIONS</makevar> OPTIONS= FOO "Enable option foo" On \ BAR "Support feature bar" Off .include <bsd.port.options.mk> .if defined(WITHOUT_FOO) CONFIGURE_ARGS+= --without-foo .else CONFIGURE_ARGS+= --with-foo .endif .if defined(WITH_BAR) RUN_DEPENDS+= bar:${PORTSDIR}/bar/bar .endif .include <bsd.port.mk> Veraltete Anwendung von <makevar>OPTIONS</makevar> OPTIONS= FOO "Enable option foo" On .include <bsd.port.pre.mk> .if defined(WITHOUT_FOO) CONFIGURE_ARGS+= --without-foo .else CONFIGURE_ARGS+= --with-foo .endif .include <bsd.port.post.mk> Automatische Aktivierung von Funktionen Wenn Sie ein GNU-Konfigurationsskript benutzen, sollten Sie ein Auge darauf werfen, welche Funktionen durch die automatische Erkennung aktiviert werden. Schalten Sie Funktionen, die Sie nicht möchten, ausdrücklich durch Verwendung von --without-xxx oder --disable-xxx in der Variable CONFIGURE_ARGS einzeln ab. Falsche Behandlung einer Option .if defined(WITH_FOO) LIB_DEPENDS+= foo.0:${PORTSDIR}/devel/foo CONFIGURE_ARGS+= --enable-foo .endif Stellen Sie sich vor im obigen Beispiel ist eine Bibliothek libfoo auf dem System installiert. Der Nutzer will nicht, dass diese Applikation libfoo benutzt, also hat er die Option auf "off" im make config-Dialog umgestellt. Aber das Konfigurationsskript der Applikation hat erkannt, dass die Bibliothek auf dem System vorhanden ist und fügt ihre Funktionen in die Binärdatei ein. Falls der Nutzer sich nun entschliesst libfoo von seinem System zu entfernen, dann wird das Ports-System nicht protestieren (es wurde keine Abhängigkeit von libfoo eingetragen), aber die Applikation bricht ab. Korrekte Behandlung einer Option .if defined(WITH_FOO) LIB_DEPENDS+= foo.0:${PORTSDIR}/devel/foo CONFIGURE_ARGS+= --enable-foo .else CONFIGURE_ARGS+= --disable-foo .endif Im zweiten Beispiel wird die Bibliothek libfoo explizit abgeschaltet. Das Konfigurationsskript aktiviert die entsprechenden Funktionen nicht in der Applikation trotz der Anwesenheit der Bibliothek auf dem System.
Die Festlegung des Arbeitsverzeichnisses Jeder Port wird extrahiert in ein Arbeitsverzeichnis, welches beschreibbar sein muss. Das Ports-System gibt als Standard vor, dass die DISTFILES in einem Verzeichnis namens ${DISTNAME} entpackt werden. Mit anderen Worten, wenn Sie: PORTNAME= foo PORTVERSION= 1.0 festgelegt haben, dann enthalten die Distributions-Dateien des Ports ein Verzeichnis auf oberster Ebene, foo-1.0, und der Rest der Dateien befindet sich unter diesem Verzeichnis. Es gibt eine Reihe von Variablen, die Sie überschreiben können, falls dies nicht der Fall sein sollte. <makevar>WRKSRC</makevar> Diese Variable listet den Namen des Verzeichnisses, welches erstellt wird, wenn die Distfiles der Applikation extrahiert werden. Wenn unser vorheriges Beispiel in einem Verzeichnis namens foo (und nicht foo-1.0) extrahiert wurde, würden Sie schreiben: WRKSRC= ${WRKDIR}/foo oder möglicherweise WRKSRC= ${WRKDIR}/${PORTNAME} <makevar>NO_WRKSUBDIR</makevar> Wenn der Port überhaupt nicht in einem Unterverzeichnis extrahiert wird, sollten Sie dies mit dem Setzen von NO_WRKSUBDIR anzeigen. NO_WRKSUBDIR= yes <makevar>CONFLICTS</makevar> Falls Ihr Paket nicht mit anderen Paketen koexistieren kann (wegen Dateikonflikten, Laufzeit-Inkompatibilitäten usw.), führen Sie bitte die anderen Paketnamen in der Variable CONFLICTS auf. Sie können hier Shell-Globs wie * und ? verwenden. Paketnamen sollten in der gleichen Weise aufgezählt werden, wie sie in /var/db/pkg auftauchen. Bitte stellen Sie sicher, dass CONFLICTS nicht mit dem Paket des Ports selbst übereinstimmt, da ansonsten das Erzwingen der Installation durch FORCE_PKG_REGISTER nicht länger funktionieren wird. CONFLICTS setzt automatisch die Variable IGNORE, welche ausführlicher in dokumentiert ist. Beim Entfernen eines von mehreren in Konflikt stehenden Ports ist es ratsam, die CONFLICTS-Einträge in den anderen Ports für einige Monate beizubehalten, um Nutzer zu unterstützen, die ihre Ports nur sporadisch aktualisieren. Installation von Dateien INSTALL_* macros Nutzen Sie die Makros in bsd.port.mk, um korrekte Modi und Eigentümer von Dateien in Ihren *-install-Targets sicherzustellen. INSTALL_PROGRAM ist ein Befehl, um binäre Binärdateien zu installieren. INSTALL_SCRIPT ist ein Befehl, um ausführbare Skripte zu installieren. INSTALL_KLD ist ein Befehl, mit dem Kernelmodule installiert werden können. Einige Architekturen haben Probleme mit stripped-Modulen. Daher sollten Sie diesen Befehl anstelle von INSTALL_PROGRAM verwenden. INSTALL_DATA ist ein Befehl, um gemeinsam nutzbare Daten zu installieren. INSTALL_MAN ist ein Befehl, um Manualpages oder andere Dokumentation zu installieren (es wird nichts komprimiert). Das sind grundsätzlich alle install-Befehle mit ihren passenden Flags. Zerlegen von Binärdateien Zerlegen Sie keine Binärdateien manuell, wenn Sie es nicht müssen. Alle Binaries sollten gestripped werden; allerdings vermag das INSTALL_PROGRAM-Makro gleichzeitig eine Binärdatei zu installieren und zu strippen (beachten Sie den nächsten Abschnitt). Wenn Sie eine Datei strippen müssen, aber nicht das INSTALL_PROGRAM-Makro nutzen wollen, dann kann ${STRIP_CMD} Ihr Programm strippen. Dies wird typischerweise innerhalb des post-install-Targets gemacht. Zum Beispiel: post-install: ${STRIP_CMD} ${PREFIX}/bin/xdl Nutzen Sie &man.file.1; für die installierte Applikation, um zu überprüfen, ob eine Binärdatei gestripped ist oder nicht. Wenn es nicht meldet not stripped, dann ist es bereits gestripped. Zudem wird &man.strip.1; nicht ein bereits gestripptes Programm nochmals versuchen zu strippen, sondern wird stattdessen einfach sauber beenden. Installation eines ganzen Verzeichnisbaums inklusive Dateien Manchmal muss man eine große Zahl von Dateien unter Erhalt ihrer hierarchischen Struktur installieren, d.h. Kopieraktionen über einen ganzen Verzeichnisbaum von WRKSRC zu einem Zielverzeichnis unter PREFIX. Für diesen Fall gibt es zwei Makros. Der Vorteil der Nutzung dieser Makros anstatt cp ist, dass sie korrekte Besitzer und Berechtigungen auf den Zieldateien garantieren. Das erste Makro, COPYTREE_BIN, wird alle installierten Dateien ausführbar markieren und damit passend für die Installation in PREFIX/bin vorbereiten. Das zweite Makro, COPYTREE_SHARE, setzt keine Ausführungsberechtigungen auf Dateien und ist daher geeignet für die Installation von Dateien im Target von PREFIX/share. post-install: ${MKDIR} ${EXAMPLESDIR} (cd ${WRKSRC}/examples/ && ${COPYTREE_SHARE} \* ${EXAMPLESDIR}) Dieses Beispiel wird den Inhalt des examples-Verzeichnisses im Distfile des Drittanbieters in das Beispielverzeichnis Ihres Ports kopieren. post-install: ${MKDIR} ${DATADIR}/summer (cd ${WRKSRC}/temperatures/ && ${COPYTREE_SHARE} "June July August" ${DATADIR}/summer/) Und dieses Beispiel wird die Daten der Sommermonate in das summer-Unterverzeichnis eines DATADIR installieren. Zusätzliche find-Argumente können mit dem dritten Argument an die COPYTREE_*-Makros übergeben werden. Um zum Beispiel alle Dateien aus dem 1. Beispiel ohne die Makefiles zu installieren, kann man folgenden Befehl benutzen. post-install: ${MKDIR} ${EXAMPLESDIR} (cd ${WRKSRC}/examples/ && \ ${COPYTREE_SHARE} \* ${EXAMPLESDIR} "! -name Makefile") Beachten Sie bitte, dass diese Makros die installierten Dateien nicht zur pkg-plist hinzufügen, Sie müssen sie immer noch selbst auflisten. Installation zusätzlicher Dokumentation Falls Ihre Software zusätzlich zu den üblichen Manualpages und Info-Seiten weitere Dokumentation hat und Sie diese für nützlich halten, dann installieren Sie sie unter PREFIX/share/doc. Dies kann wie vorstehend im Target des post-install geschehen. Legen Sie ein neues Verzeichnis für Ihren Port an. Das Verzeichnis sollte wiederspiegeln, was der Port ist. Das bedeutet normalerweise PORTNAME. Wie auch immer, wenn Sie meinen, der Nutzer möchte verschiedene Versionen des Ports zur gleichen Zeit installiert haben, dann können Sie die gesamte Variable PKGNAME nutzen. Machen Sie die Installation von der Variablen NOPORTDOCS abhängig, damit die Nutzer sie in /etc/make.conf abschalten können: post-install: .if !defined(NOPORTDOCS) ${MKDIR} ${DOCSDIR} ${INSTALL_MAN} ${WRKSRC}/docs/xvdocs.ps ${DOCSDIR} .endif Hier einige praktische Variablen und wie sie standardmässig bei Verwendung im Makefile expandiert werden: DATADIR wird expandiert zu PREFIX/share/PORTNAME. DATADIR_REL wird expandiert zu share/PORTNAME. DOCSDIR wird expandiert zu PREFIX/share/doc/PORTNAME. DOCSDIR_REL wird expandiert zu share/doc/PORTNAME. EXAMPLESDIR wird expandiert zu PREFIX/share/examples/PORTNAME. EXAMPLESDIR_REL wird expandiert zu share/examples/PORTNAME. NOPORTDOCS behandelt nur zusätzliche Dokumentation, die in DOCSDIR installiert ist. Für normale Manualpages und Info-Seiten wird die Variable benutzt. Dinge, welche in DATADIR und EXAMPLESDIR installiert werden, legen die Variablen NOPORTDATA und NOPORTEXAMPLES fest. Die Variablen werden nach PLIST_SUB exportiert. Ihre Werte erscheinen dort als Pfadnamen relativ zu PREFIX, falls möglich. Das bedeutet, dass share/doc/PORTNAME standardmässig ersetzt wird durch %%DOCSDIR%% in der Packliste usw. (mehr zur Ersetzung durch die pkg-plist finden Sie hier). Alle installierten Dokumentationsdateien und –Verzeichnisse sollten in der pkg-plist dem %%PORTDOCS%%-Präfix enthalten sein, zum Beispiel: %%PORTDOCS%%%%DOCSDIR%%/AUTHORS %%PORTDOCS%%%%DOCSDIR%%/CONTACT %%PORTDOCS%%@dirrm %%DOCSDIR%% Alternativ zur Auflistung der Dokumentationsdateien in der pkg-plist kann in einem Port auch die Variable PORTDOCS gesetzt werden für eine Liste von Dateien und Shell-Globs, um diese zur endgültigen Packliste hinzuzufügen. Die Namen werden relativ zur Variable DOCSDIR sein. Wenn Sie also einen Port haben, welcher PORTDOCS benutzt, und Sie haben eine vom Standard abweichenden Platz für seine Dokumentation, dann müssen Sie die Variable DOCSDIR entsprechend setzen. Wenn ein Verzeichnis in PORTDOCS aufgeführt ist, oder von einem Shell-Glob dieser Variable abgebildet wird, dann wird der komplette Verzeichnisbaum inklusive Dateien und Verzeichnissen in der endgültigen Packliste aufgenommen. Wenn die Variable NOPORTDOCS gesetzt ist, dann werden die Dateien und Verzeichnisse, die in PORTDOCS aufgelistet sind, nicht installiert und werden auch nicht zur Packliste des Ports hinzugefügt. Wie oben gezeigt bleibt es dem Port selbst überlassen, die Dokumentation in PORTDOCS zu installieren. Ein typisches Beispiel für den Gebrauch von PORTDOCS sieht wie folgt aus: PORTDOCS= README.* ChangeLog docs/* Die Äquivalente zu PORTDOCS für unter DATADIR und EXAMPLESDIR installierte Dateien sind PORTDATA beziehungsweise PORTEXAMPLES. Sie können auch pkg-message benutzen, um Meldungen während der Installation anzuzeigen. Lesen Sie diesen Abschnitt über den Gebrauch von pkg-message für weitere Details. Die pkg-message-Datei muss nicht zur pkg-plist hinzugefügt werden. Unterverzeichnisse mit PREFIX Lassen Sie den Port die Dateien in die richtigen Unterverzeichnisse von PREFIX verteilen. Einige Ports werfen alles in einen Topf und legen es im Unterverzeichnis mit dem Namen des Ports ab, was falsch ist. Ausserdem legen viele Ports alles ausser Binaries, Header-Dateien und Manualpages in ein Unterverzeichnis von lib, was natürlich auch nicht der BSD-Philosophie entspricht und nicht gut funktioniert. Viele der Dateien sollten in eines der folgenden Verzeichnisse geschoben werden: etc (Konfigurationsdateien), libexec (intern gestartete Binärdateien), sbin (Binärdateien für Superuser/Manager), info (Dokumentation für Info-Browser) oder share (Architektur-unabhängige Dateien). Lesen Sie hierzu &man.hier.7;; weitestgehend greifen die Regeln für /usr auch für /usr/local. Die Ausnahme sind Ports, welche mit news aus dem USENET arbeiten. In diesem Falle sollte PREFIX/news als Zielort für die Dateien benutzt werden.
Besonderheiten Es gibt einige Dinge mehr, die zu beachten sind, wenn man einen Port erstellt. Dieser Abschnitt erklärt die wichtigsten. Shared-Libraries Wenn Ihr Port eine oder mehrere Shared-Libraries installiert, dann definieren Sie bitte eine USE_LDCONFIG make-Variable, die bsd.port.mk anweisen wird, ${LDCONFIG} -m auf das Verzeichnis, in das die neue Library installiert wird (normalerweise PREFIX/lib), während des post-install-Targets anzuwenden, um sie im Shared-Library-Cache zu registrieren. Diese Variable, wenn definiert, wird auch dafür sorgen, dass ein entsprechendes @exec /sbin/ldconfig -m und @unexec /sbin/ldconfig -R-Paar zu Ihrer pkg-plist-Datei hinzugefügt wird, sodass ein Benutzer, der das Paket installiert, die Bibliothek danach sofort benutzen kann und das System nach deren Deinstallation nicht glaubt, die Bibliothek wäre noch da. USE_LDCONFIG= yes Wenn nötig, können Sie das Standardverzeichnis außer Kraft setzen, indem Sie den USE_LDCONFIG Wert auf eine Liste von Verzeichnissen setzen, in die Shared Libraries installiert werden sollen. Wenn Ihr Port z.B. diese Bibliotheken nach PREFIX/lib/foo und PREFIX/lib/bar installiert, könnten Sie folgendes in Ihrem Makefile benutzen: USE_LDCONFIG= ${PREFIX}/lib/foo ${PREFIX}/lib/bar Bitte überprüfen Sie dies genau. Oft ist das überhaupt nicht nötig oder kann durch -rpath oder das Setzen von LD_RUN_PATH während des Linkens umgangen werden (s. lang/moscow_ml für ein Beispiel), oder durch einen Shell-Wrapper, der LD_LIBRARY_PATH setzt, bevor er die Binärdatei ausführt, wie es www/mozilla tut. Wenn Sie 32-Bit Libraries auf 64-Bit Systemen installieren, benutzen Sie stattdessen USE_LDCONFIG32. Versuchen Sie Shared-Library-Versionsnummern im libfoo.so.0 Format zu halten. Unser Runtime-Linker kümmert sich nur um die Major (erste) Nummer. Wenn sich die Major-Library-Versionsnummer während der Aktualisierung zu einer neuen Portversion erhöht, sollte auch die PORTREVISION aller Ports, die die Shared-Library linken, erhöht werden, damit diese mit der neuen Version der Bibliothek neu kompiliert werden. Ports mit beschränkter Verbreitung Lizenzen variieren und manche geben Restriktionen vor, wie die Applikation gepackt werden oder ob sie gewinnorientiert verkauft werden kann, usw. Es liegt in Ihrer Verantwortung als Porter die Lizenzbestimmungen der Software zu lesen und sicherzustellen, dass das FreeBSD-Projekt nicht haftbar gemacht wird für Lizenzverletzungen durch Weiterverbreitung des Quelltextes oder kompilierter Binaries über FTP/HTTP oder CD-ROM. Im Zweifelsfall kontaktieren Sie bitte die &a.ports;. In solchen Situationen können die in den folgenden Abschnitten beschriebenen Variablen gesetzt werden. <makevar>NO_PACKAGE</makevar> Diese Variable zeigt an, dass wir keine binären Pakete dieser Applikation erzeugen dürfen - z.B. wenn die Lizenz die Weiterverteilung von binären Paketen oder Paketen verbietet, die aus verändertem Quelltext erzeugt wurden. Die DISTFILES des Ports dürfen allerdings frei über FTP/HTTP Mirrors weiterverbreitet werden. Sie dürfen auch auf CD-ROM (oder ähnlichen Medien) weiterverbreitet werden - es sei denn, NO_CDROM ist ebenfalls gesetzt. NO_PACKAGE sollte auch benutzt werden, wenn das binäre Paket nicht allgemein brauchbar ist und die Applikation immer aus dem Quelltext kompiliert werden sollte. Zum Beispiel, wenn die Applikation konfigurierte Informationen über den Rechner/Installationsort bei der Installation einkompiliert bekommt, setzen Sie NO_PACKAGE. NO_PACKAGE sollte auf eine Zeichenkette gesetzt werden, die den Grund beschreibt, warum kein Paket erzeugt werden soll. <makevar>NO_CDROM</makevar> Diese Variable gibt an, dassobwohl wir binäre Pakete erzeugen dürfen – wir weder diese Pakete noch die DISTFILES des Ports auf einer CD-ROM (oder ähnlichen Medien) verkaufen dürfen. Die DISTFILES des Ports dürfen allerdings immer noch auf FTP/HTTP Mirrors. Wenn diese Variable und auch NO_PACKAGE gesetzt ist, dann werden nur die DISTFILES des Ports erhältlich sein – und das nur mittels FTP/HTTP. NO_CDROM sollte auf eine Zeichenkette gesetzt werden, die den Grund beschreibt, warum der Port nicht auf CD-ROM weiterverbreitet werden kann. Das sollte z.B. gemacht werden, wenn die Lizenz des Ports nur für nichtkommerzielle Zwecke gilt. <makevar>NOFETCHFILES</makevar> Dateien, die in der Variable NOFETCHFILES aufgelistet sind, sind von keiner der MASTER_SITES abrufbar. Ein Beispiel solch einer Datei ist eine selbige, welche vom Anbieter auf CD-ROM bereitgestellt wird. Werkzeuge, die das Vorhandensein dieser Dateien auf den MASTER_SITES überprüfen, sollten diese Dateien ignorieren und sie nicht melden. <makevar>RESTRICTED</makevar> Setzen Sie diese Variable, wenn die Lizenz der Applikation weder das Spiegeln der DISTFILES der Applikation noch das Weiterverbreiten von binären Paketen in jedweder Art erlaubt. NO_CDROM oder NO_PACKAGE sollten nicht zusammen mit RESTRICTED gesetzt werden, weil letztere Variable die anderen beiden impliziert. RESTRICTED sollte auf eine Zeichenkette gesetzt werden, die den Grund beschreibt, warum der Port nicht weiterverbreitet werden kann. Typischerweise besagt dies, dass der Port proprietäre Software enthält und der Benutzer die DISTFILES manuell herunterladen muss – möglicherweise erst nachdem er sich für die Software registriert oder die Bedingungen eines Endbenutzer-Lizenzvertrags (EULA) akzeptiert hat. <makevar>RESTRICTED_FILES</makevar> Wenn RESTRICTED oder NO_CDROM gesetzt ist, ist diese Variable auf ${DISTFILES} ${PATCHFILES} voreingestellt, sonst ist sie leer. Wenn nicht jede dieser Dateien beschränkt ist, dann führen Sie die betroffenen Dateien in dieser Variable auf. Beachten Sie, dass der Porter für jede aufgeführte Distributionsdatei einen Eintrag zu /usr/ports/LEGAL hinzufügen sollte, der genau beschreibt, was die Beschränkung mit sich bringt. Build-Mechanismen Paralleles Bauen von Ports Das Ports-Framework von &os; unterstützt das parallele Bauen von Ports, indem es mehrere make-Instanzen ausführt, damit SMP-Systeme ihre gesamte CPU-Rechenleistung ausnützen können und so das Bauen von Ports schneller und effektiver werden kann. Dies ermöglicht der Parameter -jX an &man.make.1;, wenn Code von Drittanbietern kompiliert wird. Leider können nicht alle Ports wirklich gut mit dem Parallelbau umgehen. Deshalb ist es erforderlich, dass dieses Feature explizit durch MAKE_JOBS_SAFE=yes irgendwo unterhalb des Abschnitts für Abhängigkeiten im Makefile aktiviert wird. Eine weitere Möglichkeit im Umgang mit dieser Option besteht für den Maintainer darin, MAKE_JOBS_UNSAFE=yes zu setzen. Diese Variable wird dann verwendet, wenn ein Port bekannterweise mit -jX nicht gebaut werden kann, der Benutzer jedoch für alle Ports den Mehrprozessorbau durch FORCE_MAKE_JOBS=yes in /etc/make.conf erzwingt. <command>make</command>, <command>gmake</command> und <command>imake</command> Wenn Ihr Port GNU make benutzt, dann setzen Sie bitte USE_GMAKE=yes. Port-Variablen im Zusammenhang mit gmake Variable Bedeutung USE_GMAKE Der Port benötigt gmake für den Build. GMAKE Der ganze Pfad zu gmake, wenn es nicht im PATH ist.
Wenn Ihr Port eine X-Applikation ist, die Makefile-Dateien aus Imakefile-Dateien mit imake erzeugt, dann setzen Sie USE_IMAKE=yes. Das sorgt dafür, dass die Konfigurationsphase automatisch ein xmkmf -a ausführt. Wenn das Flag ein Problem für Ihren Port darstellt, setzen Sie XMKMF=xmkmf. Wenn der Port imake benutzt, aber das install.man-Target nicht versteht, dann sollte NO_INSTALL_MANPAGES=yes gesetzt werden. Wenn das Makefile im Quelltext Ihres Ports etwas anderes als all als Haupt-Build-Target hat, setzen Sie ALL_TARGET entsprechend. Das Gleiche gilt für install und INSTALL_TARGET.
<command>configure</command> Skript Wenn Ihr Port ein configure-Skript benutzt, um Makefile-Dateien aus Makefile.in-Dateien zu erzeugen, setzen Sie GNU_CONFIGURE=yes. Wenn Sie dem configure-Skript zusätzliche Argumente übergeben wollen (das Vorgabeargument ist --prefix=${PREFIX} --infodir=${PREFIX}/${INFO_PATH} --mandir=${MANPREFIX}/man --build=${CONFIGURE_TARGET}), setzen Sie diese zusätzlichen Argumente in CONFIGURE_ARGS. Zusätzliche Umgebungsvariablen können überdie Variable CONFIGURE_ENV übergeben werden. Variablen für Ports, die configure benutzen Variable Bedeutung GNU_CONFIGURE Der Port benutzt ein configure-Skript, um das Bauen vorzubereiten. HAS_CONFIGURE Wie GNU_CONFIGURE, nur dass kein Standard-Konfigurations-Target zu CONFIGURE_ARGS hinzugefügt wird. CONFIGURE_ARGS Zusätzliche Argumente für das configure-Skript. CONFIGURE_ENV Zusätzliche Umgebungsvariablen für die Abarbeitung des configure-Skriptes. CONFIGURE_TARGET Ersetzt das Standard-Konfigurations-Target. Vorgabewert ist ${MACHINE_ARCH}-portbld-freebsd${OSREL}.
Benutzung von <command>scons</command> Wenn Ihr Port SCons benutzt, definieren Sie USE_SCONS=yes. Variablen für Ports, die <command>scons</command> benutzen Variable Bedeutung SCONS_ARGS Port-spezifische SCons-Argumente, die der SCons-Umgebung übergeben werden. SCONS_BUILDENV Variablen, die in der System-Umgebung gesetzt werden sollen. SCONS_ENV Variablen, die in der SCons-Umgebung gesetzt werden sollen. SCONS_TARGET Letztes Argument, das SCons übergeben wird – ähnlich MAKE_TARGET.
Um SConstruct im Quelltext alles, was SCons in SCONS_ENV übergeben wird, respektieren zu lassen (das ist hauptsächlich CC/CXX/CFLAGS/CXXFLAGS), patchen Sie SConstruct, sodass das Build Environment wie folgt konstruiert wird: env = Environment(**ARGUMENTS) Es kann dann mit env.Append und env.Replace modifiziert werden.
Benutzung von GNU autotools Einführung Die verschiedenen GNU autotools stellen einen Abstraktionsmechanismus bereit für das Kompilieren von Software für eine Vielfalt von Betriebssystemen und Maschinenarchitekturen. Innerhalb der Ports-Sammlung kann ein einzelner Port diese Werkzeuge mit Hilfe eines einfachen Konstrukts benutzen: USE_AUTOTOOLS= tool:version[:operation] ... Als dies geschrieben wurde konnte tool eins von libtool, libltdl, autoconf, autoheader, automake oder aclocal sein. version gibt die einzelne Werkzeug-Revision an, die benutzt werden soll (siehe devel/{automake,autoconf,libtool}[0-9]+ für mögliche Versionen). operation ist eine optionale Angabe, die modifiziert, wie das Werkzeug benutzt wird. Es können auch mehrere Werkzeuge angegeben werden – entweder durch Angabe aller in einer einzigen Zeile oder durch Benutzung des += Makefile-Konstrukts. Schliesslich gibt es das spezielle Tool, genannt autotools, das der Einfachheit dient indem es von alle verfügbaren Versionen der Autotools abhängt, was sinnvoll für Cross-Development ist. Dies kann auch erreicht werden, indem man den Port devel/autotools installiert. <command>libtool</command> Shared-Libraries, die das GNU Build-System benutzen, verwenden normalerweise libtool, um die Kompilierung und Installation solcher Bibliotheken anzupassen. Die übliche Praxis ist, eine Kopie von libtool, die mit dem Quelltext geliefert wird, zu benutzen. Falls Sie ein externes libtool benötigen, können Sie die Version, die von der Ports-Sammlung bereitgestellt wird, benutzen: USE_AUTOTOOLS= libtool:version[:env] Ohne zusätzliche Angaben sagt libtool:version dem Build-System, dass es das Konfigurationsskript mit der auf dem System installierten Kopie von libtool patchen soll. Die Variable GNU_CONFIGURE ist impliziert. Außerdem werden einige make– und shell-Variablen zur weiteren Benutzung durch den Port gesetzt. Für Genaueres siehe bsd.autotools.mk. Mit der Angabe :env wird nur die Umgebung vorbereitet. Schließlich können optional LIBTOOLFLAGS und LIBTOOLFILES gesetzt werden, um die häufigsten Argumente und durch libtool gepatchten Dateien außer Kraft zu setzen. Die meisten Ports werden das aber nicht brauchen. Für Weiteres siehe bsd.autotools.mk. <command>libltdl</command> Einige Ports benutzen das libltdl-Bibliothekspaket, welches Teil der libtool-Suite ist. Der Gebrauch dieser Bibliothek macht nicht automatisch den Gebrauch von libtool selbst nötig, deshalb wird ein separates Konstrukt zur Verfügung gestellt. USE_AUTOTOOLS= libltdl:version Im Moment sorgt dies nur für eine LIB_DEPENDS-Abhängigkeit von dem entsprechenden libltdl-Port und wird zur Vereinfachung zur Verfügung gestellt, um Abhängigkeiten von den Autotools-Ports ausserhalb des USE_AUTOTOOLS-Systems zu eliminieren. Es gibt keine weiteren Angaben für dieses Werkzeug. <command>autoconf</command> und <command>autoheader</command> Manche Ports enthalten kein Konfigurationsskript, sondern eine autoconf-Vorlage in der configure.ac-Datei. Sie können die folgenden Zuweisungen benutzen, um autoconf das Konfigurationsskript erzeugen zu lassen, und auch autoheader Header-Vorlagen zur Benutzung durch das Konfigurationsskript erzeugen zu lassen. USE_AUTOTOOLS= autoconf:version[:env] und USE_AUTOTOOLS= autoheader:version welches auch die Benutzung von autoconf:version impliziert. Ähnlich wie bei libtool, bereitet die Angabe des optionalen :env nur die Umgebung für weitere Benutzung vor. Ohne dieses wird der Port auch gepatched und erneut konfiguriert. Die zusätzlichen optionalen Variablen AUTOCONF_ARGS und AUTOHEADER_ARGS können durch das Makefile des Ports ausser Kraft gesetzt werden, wenn erforderlich. Wie bei den libtool-Äquivalenten werden die meisten Ports dies aber nicht benötigen. <command>automake</command> und <command>aclocal</command> Manche Pakete enthalten nur Makefile.am-Dateien. Diese müssen durch automake in Makefile.in-Dateien konvertiert und dann durch configure weiterbearbeitet werden, um schließlich ein Makefile zu erzeugen. Ähnliches gilt für Pakete, die gelegentlich keine aclocal.m4-Dateien mitliefern, welche ebenfalls zum Erstellen der Software benötigt werden. Diese können durch aclocal erzeugt werden, welches configure.ac oder configure.in durchsucht. aclocal hat eine ähnliche Beziehung zu automake wie autoheader zu autoconf – beschrieben im vorherigen Abschnitt. aclocal impliziert die Benutzung von automake, also haben wir: USE_AUTOTOOLS= automake:version[:env] und USE_AUTOTOOLS= aclocal:version was auch die Benutzung von automake:version impliziert. Ähnlich wie bei libtool und autoconf, bereitet die optionale Angabe :env nur die Umgebung zur weiteren Benutzung vor. Ohne sie wird der Port erneut konfiguriert. Wie schon autoconf und autoheader, hat sowohl automake als auch aclocal eine optionale Argument-Variable AUTOMAKE_ARGS bzw. ACLOCAL_ARGS, die durch das Makefile des Ports, falls nötig, außer Kraft gesetzt werden kann. Benutzung von GNU <literal>gettext</literal> Grundlegende Benutzung Wenn Ihr Port gettext benötigt, setzen Sie einfach USE_GETTEXT auf yes, und Ihr Port bekommt die Abhängigkeit von devel/gettext. Der Wert von USE_GETTEXT kann auch die benötigte Version der libintl-Bibliothek angeben, der grundlegenden Teil von gettext – jedoch wird von der Benutzung dieser Funktion dringend abgeraten: Ihr Port sollte einfach nur mit der aktuellen Version von devel/gettext funktionieren. Ein ziemlich häufiger Fall ist, dass ein Port gettext und configure benutzt. Normalerweise sollte GNU configure gettext automatisch finden können. Sollte das einmal nicht funktionieren, können Hinweise über den Ort von gettext in CPPFLAGS und LDFLAGS wie folgt übergeben werden: USE_GETTEXT= yes CPPFLAGS+= -I${LOCALBASE}/include LDFLAGS+= -L${LOCALBASE}/lib GNU_CONFIGURE= yes CONFIGURE_ENV= CPPFLAGS="${CPPFLAGS}" \ LDFLAGS="${LDFLAGS}" Natürlich kann der Code kompakter sein, wenn es keine weiteren Flags gibt, die configure übergeben werden müssen: USE_GETTEXT= yes GNU_CONFIGURE= yes CONFIGURE_ENV= CPPFLAGS="-I${LOCALBASE}/include" \ LDFLAGS="-L${LOCALBASE}/lib" Optionale Benutzung Manche Softwareprodukte erlauben die Deaktivierung von NLS - z.B. durch Übergeben von an configure. In diesem Fall sollte Ihr Port gettext abhängig vom Status von WITHOUT_NLS benutzen. Für Ports mit niedriger bis mittlerer Komplexität können Sie sich auf das folgende Idiom verlassen: GNU_CONFIGURE= yes .if !defined(WITHOUT_NLS) USE_GETTEXT= yes PLIST_SUB+= NLS="" .else CONFIGURE_ARGS+= --disable-nls PLIST_SUB+= NLS="@comment " .endif Der nächste Punkt auf Ihrer Todo-Liste ist dafür zu sorgen, dass die Message-Catalog-Dateien nur bedingt in der Packliste aufgeführt werden. Der Makefile-Teil dieser Aufgabe ist schon durch obiges Idiom erledigt. Das wird im Abschnitt über Fortgeschrittene pkg-plist-Methoden erklärt. Kurz gesagt, jedes Vorkommen von %%NLS%% in pkg-plist wird durch @comment , wenn NLS abgeschaltet ist, oder durch eine leere Zeichenkette, wenn NLS aktiviert ist, ersetzt. Folglich werden die Zeilen, denen %%NLS%% vorangestellt ist, zu reinen Kommentaren in der endgültigen Packliste, wenn NLS abgeschaltet ist; andernfalls wird der Prefix einfach nur ausgelassen. Alles, was Sie jetzt noch machen müssen, ist %%NLS%% vor jedem Pfad zu einer Message-Catalog-Datei in pkg-plist einzufügen. Zum Beispiel: %%NLS%%share/locale/fr/LC_MESSAGES/foobar.mo %%NLS%%share/locale/no/LC_MESSAGES/foobar.mo In sehr komplexen Fällen müssen Sie eventuell fortgeschrittenere Techniken als die hier vorgestellte benutzen - wie z.B. Dynamische Packlistenerzeugung. Behandlung von Message-Catalog-Verzeichnissen Bei der Installation von Message-Catalog-Dateien gibt es einen Punkt zu beachten. Ihr Zielverzeichnis, das unter LOCALBASE/share/locale liegt, sollte nur selten von Ihrem Port erzeugt und gelöscht werden. Die Verzeichnisse für die gebräuchlichsten Sprachen sind in /etc/mtree/BSD.local.dist aufgelistet; das heisst, sie sind Teil des Systems. Die Verzeichnisse für viele andere Sprachen sind Teil des Ports devel/gettext. Sie wollen vielleicht dessen pkg-plist zur Hand nehmen, um festzustellen, ob Ihr Port eine Message-Catalog-Datei für eine seltene Sprache installiert. Die Benutzung von <literal>perl</literal> Wenn MASTER_SITES auf MASTER_SITE_PERL_CPAN gesetzt ist, dann ist der bevorzugte Wert von MASTER_SITE_SUBDIR der Top-Level-Name der Hierarchie. Zum Beispiel ist der empfohlene Wert für p5-Module-Name-Module. Die Top-Level-Hierarchie kann unter cpan.org angeschaut werden. Dies sorgt dafür, dass der Port weiter funktioniert, wenn sich der Autor des Moduls ändert. Die Ausnahme dieser Regel ist, dass das entsprechende Verzeichnis selber oder das Distfile in diesem Verzeichnis nicht existiert. In solchen Fällen ist die Benutzung der Id des Autors als MASTER_SITE_SUBDIR erlaubt. Jede der Einstellungen unten kann sowohl auf YES als auch auf eine Versionszeichenkette wie 5.8.0+ gesetzt werden. Wenn YES benutzt wird, bedeutet das, dass der Port mit jeder der unterstützten Perl-Versionen funktioniert. Falls ein Port nur mit einer bestimmten Perl-Version funktioniert, kann darauf mit einer Versionszeichenkette hingewiesen werden, die entweder eine Mindest- (z.B. 5.7.3+), Maximal- (z.B. 5.8.0-) oder Absolutversion (z.B. 5.8.3) festlegt. Variablen für Ports, die <literal>perl</literal> benutzen Variable Bedeutung USE_PERL5 Bedeutet, dass der Port perl 5 zum Erstellen und zum Ausführen benutzt. USE_PERL5_BUILD Bedeutet, dass der Port perl 5 zum Erstellen benutzt. USE_PERL5_RUN Bedeutet, dass der Port perl 5 zur Laufzeit benutzt. PERL Der gesamte Pfad zu perl 5 – entweder im Basissystem oder nachinstalliert über einen Port – ohne die Versionsnummer. Benutzen Sie diese Variable, wenn Sie #!-Zeilen in Skripten ersetzen müssen. PERL_CONFIGURE Perls MakeMaker für die Konfiguration benutzen. Dies impliziert USE_PERL5. PERL_MODBUILD Module::Build für configure, build und install benutzen. Dies impliziert PERL_CONFIGURE. Nur lesbare Variablen PERL_VERSION Die volle Version des installierten perl (z.B. 5.8.9). PERL_LEVEL Die installierte perl-Version als ein Integer der Form MNNNPP (z.B. 500809). PERL_ARCH Wo perl architektur abhängige Bibliotheken ablegt. Vorgabe ist ${ARCH}-freebsd. PERL_PORT Name des perl-Ports, der installiert ist (z.B. perl5). SITE_PERL Verzeichnis, in das die Site-spezifischen perl-Pakete kommen. Dieser Wert wird zu PLIST_SUB hinzugefügt.
Ports von Perl-Modulen, die keine offizielle Webseite haben, sollen in der WWW-Zeile ihrer pkg-descr-Datei auf cpan.org verlinken. Die bevorzugte URL-Form ist http://search.cpan.org/dist/Module-Name/ (inklusive des Slash am Ende).
Benutzung von X11 X.Org-Komponenten Die X11-Implementierung, welche die Ports-Sammlung bereitstellt, ist X.Org. Wenn Ihre Applikation von X-Komponenten abhängt, listen Sie die benötigten Komponenten in USE_XORG auf. Als dies geschrieben wurde, wurden die folgenden Komponenten bereitgestellt: bigreqsproto compositeproto damageproto dmx dmxproto evieproto fixesproto fontcacheproto fontenc fontsproto fontutil glproto ice inputproto kbproto libfs oldx printproto randrproto recordproto renderproto resourceproto scrnsaverproto sm trapproto videoproto x11 xau xaw xaw6 xaw7 xaw8 xbitmaps xcmiscproto xcomposite xcursor xdamage xdmcp xevie xext xextproto xf86bigfontproto xf86dgaproto xf86driproto xf86miscproto xf86rushproto xf86vidmodeproto xfixes xfont xfontcache xft xi xinerama xineramaproto xkbfile xkbui xmu xmuu xorg-server xp xpm xprintapputil xprintutil xpr oto xproxymngproto xrandr xrender xres xscrnsaver xt xtrans xtrap xtst xv xvmc xxf86dga xxf86misc xxf86vm. Die aktuelle Liste finden Sie immer in /usr/ports/Mk/bsd.xorg.mk. Das Mesa Projekt ist ein Versuch, eine freie OpenGL Implementierung bereitzustellen. Sie können eine Abhängigkeit von verschiedenen Komponenten diese Projektes in der Variable USE_GL spezifizieren. ouml;gliche Optionen sind: glut, glu, glw, glew, gl und linux. Für Abwärtskompatibilität gilt der Wert yes als glu. Beispiel für USE_XORG USE_XORG= xrender xft xkbfile xt xaw USE_GL= glu Viele Ports definieren USE_XLIB, was dafür sorgt, dass der Port von allen (rund 50) Bibliotheken abhängt. Diese Variable existiert, um Abwärtskompatibilität sicherzustellen (sie stammt noch aus der Zeit vor dem modularem X.Org), und sollte bei neuen Ports nicht mehr benutzt werden. Variablen für Ports, die X benutzen USE_XLIB Der Port benutzt die X-Bibliotheken. Soll nicht mehr verwendet werden - benutzen Sie stattdessen eine Liste von Komponenten in USE_XORG. USE_X_PREFIX Soll nicht mehr benutzt werden, ist jetzt äquivalent zu USE_XLIB und kann einfach durch letzteres ersetzt werden. USE_IMAKE Der Port benutzt imake. Impliziert USE_X_PREFIX. XMKMF Ist auf den Pfad zu xmkmf gesetzt, wenn nicht in PATH. Vorgabe ist xmkmf -a.
Variablen bei Abhängigkeit von einzelnen Teilen von X11 X_IMAKE_PORT Ein Port, der imake und einige andere Werkzeuge, die zum Erstellen von X11 benutzt werden, bereitstellt. X_LIBRARIES_PORT Ein Port, der die X11-Bibliotheken bereitstellt. X_CLIENTS_PORT Ein Port, der X11-Clients bereitstellt. X_SERVER_PORT Ein Port, der den X11-Server bereitstellt. X_FONTSERVER_PORT Ein Port, der den Fontserver bereitstellt. X_PRINTSERVER_PORT Ein Port, der den Printserver bereitstellt. X_VFBSERVER_PORT Ein Port, der den virtuellen Framebuffer-Server bereitstellt. X_NESTSERVER_PORT Ein Port, der einen nested X-Server bereitstellt. X_FONTS_ENCODINGS_PORT Ein Port, der Kodierungen für Schriftarten bereitstellt. X_FONTS_MISC_PORT Ein Port, der verschiedene Bitmap-Schriftarten bereitstellt. X_FONTS_100DPI_PORT Ein Port, der 100dpi Bitmap-Schriftarten bereitstellt. X_FONTS_75DPI_PORT Ein Port, der 75dpi Bitmap-Schriftarten bereitstellt. X_FONTS_CYRILLIC_PORT Ein Port, der kyrillische Bitmap-Schriftarten bereitstellt. X_FONTS_TTF_PORT Ein Port, der &truetype;-Schriftarten bereitstellt. X_FONTS_TYPE1_PORT Ein Port, der Type1-Schriftarten bereitstellt. X_MANUALS_PORT Ein Port, der entwicklerorientierte Manualpages bereitstellt.
Benutzung von X11-bezogenen Variablen in einem Port # Port benutzt X11-Bibliotheken und hängt vom Font-Server sowie # von kyrillischen Schriftarten ab. RUN_DEPENDS= ${LOCALBASE}/bin/xfs:${X_FONTSERVER_PORT} \ ${LOCALBASE}/lib/X11/fonts/cyrillic/crox1c.pcf.gz:${X_FONTS_CYRILLIC_PORT} USE_XORG= x11 xpm
Ports, die Motif benötigen Wenn Ihr Port eine Motif-Bibliothek benötigt, definieren Sie USE_MOTIF im Makefile. Die Standard-Motif-Implementierung ist x11-toolkits/open-motif. Benutzer können stattdessen x11-toolkits/lesstif wählen, indem Sie die WANT_LESSTIF-Variable setzen. Die Variable MOTIFLIB wird von bsd.port.mk auf die entsprechende Motif-Bibliothek gesetzt. Bitte patchen Sie den Quelltext Ihres Ports, sodass er überall ${MOTIFLIB} benutzt, wo die Motif-Bibliothek im Original Makefile oder Imakefile referenziert wird. Es gibt zwei verbreitete Fälle: Wenn sich der Port in seinem Makefile oder Imakefile auf die Motif-Bibliothek als -lXm bezieht, ersetzen Sie das einfach durch ${MOTIFLIB}. Wenn der Port in seinem Imakefile XmClientLibs benutzt, ersetzen Sie das durch ${MOTIFLIB} ${XTOOLLIB} ${XLIB}. Anmerkung: MOTIFLIB expandiert (normalerweise) zu -L/usr/X11R6/lib -lXm oder /usr/X11R6/lib/libXm.a - d.h. Sie müssen kein -L oder -l davor einfügen. X11 Schriftarten Wenn Ihr Port Schriftarten für das X-Window-System installiert, legen Sie diese nach LOCALBASE/lib/X11/fonts/local. Erzeugen eines künstlichen <envar>DISPLAY</envar> durch Xvfb Manche Applikationen benötigen ein funktionierendes X11-Display, damit die Kompilierung funktioniert. Das stellt für Systeme, die ohne Display laufen, ein Problem dar. Wenn die folgende Variable benutzt wird, startet die Bauumgebung den virtuellen Framebuffer-X-Server, und ein funktionierendes DISPLAY wird dem Build übergeben. USE_DISPLAY= yes Desktop-Einträge Desktop-Einträge (Freedesktop Standard) können in Ihrem Port einfach über die DESKTOP_ENTRIES-Variable erzeugt werden. Diese Einträge erscheinen dann im Applikationsmenü von standardkonformen Desktop-Umgebungen wie GNOME oder KDE. Die .desktop-Datei wird dann automatisch erzeugt, installiert und der pkg-plist hinzugefügt. Die Syntax ist: DESKTOP_ENTRIES= "NAME" "COMMENT" "ICON" "COMMAND" "CATEGORY" StartupNotify Die Liste der möglichen Kategorien ist auf der Freedesktop Webseite abrufbar. StartupNotify zeigt an, ob die Applikation den Status in Umgebungen, die Startup-Notifications kennen, löschen wird. Beispiel: DESKTOP_ENTRIES= "ToME" "Roguelike game based on JRR Tolkien's work" \ "${DATADIR}/xtra/graf/tome-128.png" \ "tome -v -g" "Application;Game;RolePlaying;" \ false
Benutzung von GNOME Das FreeBSD/GNOME-Projekt benutzt seine eigene Gruppe von Variablen, um zu definieren, welche GNOME-Komponenten ein bestimmter Port benutzt. Eine umfassende Liste dieser Variablen existiert innerhalb der Webseite des FreeBSD/GNOME-Projektes. Benutzung von Qt Ports, die Qt benötigen Variablen für Ports, die Qt benötigen USE_QT_VER Der Port benutzt das Qt-Toolkit. Mögliche Werte sind 3 und 4; diese spezifizieren die Major Version von Qt, die benutzt werden soll. Entsprechende Parameter werden an das configure-Skript und make übergeben. QT_PREFIX Enthält den Pfad, wohin Qt installiert ist (nur lesbare Variable). MOC Enthält den Pfad von moc (nur lesbare Variable). Voreingestellt entsprechend des USE_QT_VER-Werts. QTCPPFLAGS Zusätzliche Compiler-Flags, die über CONFIGURE_ENV an das Qt-Toolkit übergeben werden. Voreingestellt entsprechend des USE_QT_VER-Wertes. QTCFGLIBS Zusätzliche Bibliotheken, die über CONFIGURE_ENV für das Qt-Toolkit gelinkt werden sollen. Voreingestellt entsprechend des USE_QT_VER-Wertes. QTNONSTANDARD Änderungen von CONFIGURE_ENV, CONFIGURE_ARGS und MAKE_ENV sollen unterdrückt werden.
Zusätzliche Variablen für Ports, die Qt 4.xi benutzen QT_COMPONENTS Spezifiziert Tool– und Bibliothek-Abhängigkeiten für Qt4. Siehe unten für Details. UIC Enthält den Pfad von uic (nur lesbare Variable). Voreingestellt entsprechend des USE_QT_VER-Wertes. QMAKE Enthält den Pfad von qmake (nur lesbare Variable). Voreingestellt entsprechend des USE_QT_VER-Wertes. QMAKESPEC Enthält den Pfad der Konfigurationsdatei für qmake (nur lesbare Variable). Voreingestellt entsprechend des USE_QT_VER-Wertes.
Wenn USE_QT_VER gesetzt ist, werden dem configure-Skript einige nützliche Einstellungen übergeben: CONFIGURE_ARGS+= --with-qt-includes=${QT_PREFIX}/include \ --with-qt-libraries=${QT_PREFIX}/lib \ --with-extra-libs=${LOCALBASE}/lib \ --with-extra-includes=${LOCALBASE}/include CONFIGURE_ENV+= MOC="${MOC}" CPPFLAGS="${CPPFLAGS} ${QTCPPFLAGS}" LIBS="${QTCFGLIBS}" \ QTDIR="${QT_PREFIX}" KDEDIR="${KDE_PREFIX}" Wenn USE_QT_VER auf 4 gesetzt ist, werden auch die folgenden Einstellungen übergeben: CONFIGURE_ENV+= UIC="${UIC}" QMAKE="${QMAKE}" QMAKESPEC="${QMAKESPEC}" MAKE_ENV+= QMAKESPEC="${QMAKESPEC}"
Komponentenauswahl (nur bei Qt 4.x) Wenn USE_QT_VER auf 4 gesetzt ist, können individuelle Qt4-Tool- und Bibliotheksabhängigkeiten in der Variable QT_COMPONENTS angegeben werden. An jede Komponente kann _build oder _run als Suffix angehängt werden, was eine Abhängigkeit zur Build- bzw. Laufzeit angibt. Ohne Suffix gilt die Abhängigkeit sowohl zur Build- als auch zur Laufzeit. Bibliothekskomponenten sollten normalerweise ohne Suffix angegeben werden, Tool-Komponenten mit _build und Plugin-Komponenten mit _run. Die gebräuchlichsten Komponenten werden im Folgenden angegeben (alle verfügbaren Komponenten sind in _QT_COMPONENTS_ALL in /usr/ports/Mk/bsd.qt.mk aufgelistet): Verfügbare Qt4-Bibliothekskomponenten Name Beschreibung corelib Kern-Bibliothek (kann weggelassen werden– es sei denn, der Port benutzt nichts außer corelib) gui Graphische Benutzeroberflächen-Bibliothek network Netzwerk-Bibliothek opengl OpenGL-Bibliothek qt3support Qt3-Kompatibilitäts-Bibliothek qtestlib Modultest-Bibliothek script Skript-Bibliothek sql SQL-Bibliothek xml XML-Bibliothek
Sie können herausfinden, welche Bibliotheken die Applikation benötigt, indem Sie nach erfolgreicher Kompilierung ldd auf die Hauptbinärdatei anwenden. Verfügbare Qt4-Tool-Komponenten Name Beschreibung moc meta object compiler (wird zum Build fast jeder Qt-Applikation benötigt) qmake Makefile-Generator / Build-Werkzeug rcc Resource-Compiler (wird benötigt, falls die Applikation *.rc oder *.qrc Dateien enthält) uic User-Interface-Compiler (wird benötigt, falls die Applikation von Qt-Designer erzeugte *.ui Dateien enthält - gilt für praktisch jede Qt-Applikation mit einer GUI)
Verfügbare Qt4-Plugin-Komponenten Name Beschreibung iconengines SVG-Icon-Engine Plugin (wenn die Applikation SVG-Icons mitliefert) imageformats Bildformatplugins für GIF, JPEG, MNG und SVG (wenn die Applikation Bilddateien mitliefert)
Qt4-Komponenten auswählen In diesem Beispiel benutzt die portierte Applikation die Qt4 GUI-Bibliothek, die Qt4-Core-Bibliothek, alle Qt4-Codeerzeugungstools und Qt4's Makefile Generator. Da die GUI-Bibliothek eine Abhängigkeit von der Core-Bibliothek impliziert, muss corelib nicht angegeben werden. Die Qt4-Codeerzeugungstools moc, uic und rcc, sowie der Makefile Generator qmake werden nur für den Build benötigt, deshalb bekommen die den Suffix _build: USE_QT_VER= 4 QT_COMPONENTS= gui moc_build qmake_build rcc_build uic_build
Zusätzliche Besonderheiten Wenn die Applikation keine configure Datei, sondern eine .pro Datei hat, können Sie das Folgende benutzen: HAS_CONFIGURE= yes do-configure: @cd ${WRKSRC} && ${SETENV} ${CONFIGURE_ENV} \ ${QMAKE} -unix PREFIX=${PREFIX} texmaker.pro Beachten Sie die Ähnlichkeit mit der qmake-Zeile im mitgelieferten BUILD.sh-Skript. Die Übergabe von CONFIGURE_ENV stellt sicher, dass qmake die QMAKESPEC-Variable übergeben bekommt, ohne die es nicht funktioniert. qmake erzeugt Standard-Makefiles, sodass es nicht nötig ist ein eigenes neues build-Target zu schreiben. Qt-Applikationen sind oft so geschrieben, dass sie plattformübergreifend sind, und oft ist X11/Unix nicht die Plattform, auf der sie entwickelt werden. Das sorgt oft für bestimmte fehlende Kleinigkeiten wie z.B.: Fehlende zusätzliche Include-Pfade. Viele Applikationen kommen mit System-Tray-Icon Support– unterlassen es aber Includes oder Bibliotheken in den X11 Verzeichnissen zu suchen. Sie können qmake über die Kommandozeile sagen, es soll Verzeichnisse zu den Include- und Bibliotheks-Suchpfaden hinzufügen - z.B.: ${QMAKE} -unix PREFIX=${PREFIX} INCLUDEPATH+=${LOCALBASE}/include \ LIBS+=-L${LOCALBASE}/lib sillyapp.pro Falsche Installations-Pfade. Manchmal werden Daten wie Icons oder .desktop-Dateien per Vorgabe in Verzeichnisse installiert, die nicht von XDG-kompatiblen Applikationen durchsucht werden. editors/texmaker ist hierfür ein Beispiel– siehe patch-texmaker.pro im files-Verzeichnis dieses Ports als eine Vorlage, die zeigt, wie man dies direkt in der Qmake Projektdatei löst.
Benutzung von KDE Variablen-Definitionen (KDE 3) Variablen für Ports, die KDE 3 benutzen USE_KDELIBS_VER Der Port benutzt KDE-Bibliotheken. Die Variable spezifiziert die Major Version von KDE, die benutzt werden soll, und impliziert USE_QT_VER der entsprechenden Version. Der einzig mögliche Wert ist 3. USE_KDEBASE_VER Der Port benutzt die KDE-Base. Die Variable spezifiziert die Major Version von KDE, die benutzt werden soll, und impliziert USE_QT_VER der entsprechenden Version. Der einzig mögliche Wert ist 3.
Variablen-Definitionen (KDE 4) Falls Ihre Anwendung von KDE 4 abhängt, weisen Sie USE_KDE4 eine Liste mit benötigten Komponenten zu. Die am häufigsten gebrauchten sind unten aufgelistet (_USE_KDE4_ALL in /usr/ports/Mk/bsd.kde4.mk enthält stets die aktuelle Liste): Verfügbare KDE 4-Komponenten Name Beschreibung akonadi Personal Information Management (PIM)-Speicherdienst automoc4 Lässt den Port das Bauwerkzeug automoc4 verwenden. kdebase Grundlegende KDE-Anwendungen (Konqueror, Dolphin, Konsole) kdeexp Experimentelle KDE-Bibliotheken (mit einer API, die als non-stable eingestuft ist) kdehier Stellt allgemeine KDE-Verzeichnisse bereit kdelibs Die grundlegenden KDE-Bibliotheken kdeprefix Falls in der Liste vorhanden, wird der Port unter ${KDE4_PREFIX} statt ${LOCALBASE} installiert pimlibs PIM-Bibliotheken workspace Anwendungen und Bibliotheken, welche die Desktopumgebung gestalten (Plasma, KWin)
KDE 4-Ports werden unter ${KDE4_PREFIX}, zur Zeit /usr/local/kde4, installiert, um Konflikte mit KDE 3-Ports zu verhindern. Dies wird durch Auflisten der Komponente kdeprefix erreicht, welche die standardmäßig gesetzte Variable PREFIX überschreibt. Die Ports übernehmen jedoch, jeden über die Umgebungsvariable MAKEFLAGS oder make-Parameter festgelegten Wert für PREFIX. Es könnte bei der Installation von KDE 4-Ports zu Konflikten mit KDE 3-Ports kommen, sodass diese bei aktivierter kdeprefix-Komponente unter ${KDE4_PREFIX} installiert werden. Der Standardwert von KDE4_PREFIX ist zur Zeit /usr/local/kde4. Es ist auch möglich, KDE 4-Ports unter einem angepassten PREFIX zu installieren. Wenn PREFIX als MAKEFLAGS-Umgebungsvariable oder als make-Parameter gesetzt wird, überschreibt dies den von kdeprefix festgelegten Wert. <makevar>USE_KDE4</makevar>-Beispiel Dies ist ein einfaches Beispiel für einen KDE 4-Port. USE_CMAKE weist den Port an, CMake, ein unter KDE 4-Projekten weit verbreitetes Konfigurationswerkzeug, zu verwenden. USE_KDE4 legt die Abhängigkeit von KDE-Bibliotheken und die Verwendung von automoc4 während der Kompilierung fest. Mit Hilfe des configure-Protokolls können die KDE-Komponenten und andere Abhängigkeiten festgestellt werden. USE_KDE4 impliziert USE_QT_VER nicht. Falls der Port Qt 4-Komponenten benötigt, sollten USE_QT_VER gesetzt und verlangte Komponenten festgelegt werden. USE_CMAKE= yes USE_KDE4= automoc4 kdelibs kdeprefix USE_QT_VER= 4 QT_COMPONENTS= qmake_build moc_build rcc_build uic_build
Benutzung von Java Variablen-Definitionen Wenn Ihr Port ein Java™ Development Kit (JDK™) benötigt, entweder zum Bauen, zur Laufzeit oder sogar, um das Distfile auszupacken, dann sollten Sie USE_JAVA setzen. Es gibt mehrere JDKs in der Ports-Sammlung– von verschiedenen Anbietern und in verschiedenen Versionen. Wenn Ihr Port eine bestimmte dieser Versionen benötigt, können Sie definieren welche. Die aktuelle Version ist java/jdk16. Variablen, die von Ports, die Java benutzen, gesetzt werden müssen Variable Bedeutung USE_JAVA Sollte definiert sein, damit die übrigen Variablen irgendeinen Effekt haben. JAVA_VERSION Durch Leerzeichen getrennte Liste von geeigneten Java-Versionen für den Port. Ein optionales "+" ermöglicht die Angabe eines Bereiches von Versionen (mögliche Werte: 1.1[+] 1.2[+] 1.3[+] 1.4[+] 1.5[+] 1.6[+]). JAVA_OS Durch Leerzeichen getrennte Liste von geeigneten JDK-Port-Betriebssystemen für den Port. (erlaubte Werte: native linux). JAVA_VENDOR Durch Leerzeichen getrennte Liste von geeigneten JDK-Port-Anbietern für den Port. (erlaubte Werte: freebsd bsdjava sun ibm blackdown). JAVA_BUILD Bedeutet, falls gesetzt, dass der ausgewählte JDK-Port zu den Build-Abhängigkeiten des Ports hinzugefügt werden soll. JAVA_RUN Bedeutet, falls gesetzt, dass der ausgewählte JDK-Port zu den Laufzeit-Abhängigkeiten des Ports hinzugefügt werden soll. JAVA_EXTRACT Bedeutet, falls gesetzt, dass der ausgewählte JDK-Port zu den Extract-Abhängigkeiten des Ports hinzugefügt werden soll. USE_JIKES Legt fest, ob der Port den jikes Bytecode-Compiler zum Kompilieren benutzen soll. Wenn kein Wert für diese Variable gesetzt ist, wird der Port jikes für die Kompilierung benutzen– falls vorhanden. Sie können die Benutzung von jikes auch ausdrücklich verbieten oder erzwingen (durch Setzen auf 'no' oder 'yes'). Im letzteren Fall wird devel/jikes zu den Build-Abhängigkeiten des Ports hinzugefügt. In jedem Fall wird, wenn jikes tatsächlich statt javac zur Kompilierung benutzt wird, die Variable HAVE_JIKES von bsd.java.mk definiert.
Das Folgende ist eine Liste aller Variablen, die ein Port bekommt, nachdem er USE_JAVA gesetzt hat: Bereitgestellte Variablen für Ports, die Java benutzen Variable Wert JAVA_PORT Der Name des JDK-Ports (z.B. 'java/jdk14'). JAVA_PORT_VERSION Die volle Version des JDK Ports (z.B. '1.4.2'). Wenn Sie nur die ersten beiden Stellen dieser Versionsnummer benötigen, benutzen Sie ${JAVA_PORT_VERSION:C/^([0-9])\.([0-9])(.*)$/\1.\2/}. JAVA_PORT_OS Das vom JDK-Port benutzte Betriebssystem (z.B. 'linux'). JAVA_PORT_VENDOR Der Anbieter des JDK-Ports (z.B. 'sun'). JAVA_PORT_OS_DESCRIPTION Beschreibung des vom JDK-Port benutzten Betriebssystems (z.B. 'Linux'). JAVA_PORT_VENDOR_DESCRIPTION Beschreibung des Anbieters des JDK-Ports (z.B. 'FreeBSD Foundation'). JAVA_HOME Pfad zum Installationsverzeichnis des JDK (z.B. '/usr/local/jdk1.3.1'). JAVAC Pfad zum Java-Compiler, der benutzt werden soll (z.B. '/usr/local/jdk1.3.1/bin/javac' oder '/usr/local/bin/jikes'). JAR Pfad zum jar-Werkzeug, das benutzt werden soll (z.B. '/usr/local/jdk1.3.1/bin/jar' oder '/usr/local/bin/fastjar'). APPLETVIEWER Pfad zum appletviewer-Werkzeug (z.B. '/usr/local/linux-jdk1.3.1/bin/appletviewer'). JAVA Pfad zur java Binärdatei. Benutzen Sie dies, um Java-Programme auszuführen (z.B. '/usr/local/jdk1.3.1/bin/java'). JAVADOC Pfad zum javadoc-Werkzeug. JAVAH Pfad zum javah-Programm. JAVAP Pfad zum javap-Programm. JAVA_KEYTOOL Pfad zum keytool-Werkzeug. JAVA_N2A Pfad zum native2ascii-Werkzeug. JAVA_POLICYTOOL Pfad zum policytool Programm. JAVA_SERIALVER Pfad zum serialver-Werkzeug. RMIC Pfad zum RMI Stub/Skeleton-Generator, rmic. RMIREGISTRY Pfad zum RMI Registry-Werkzeug, rmiregistry. RMID Pfad zum RMI Daemon rmid. JAVA_CLASSES Pfad zum Archiv, das die JDK-Klassendateien enthält, ${JAVA_HOME}/jre/lib/rt.jar. HAVE_JIKES Ist dann gesetzt, wenn jikes vom Port benutzt wird (s. USE_JIKES oben).
Sie können das java-debug make-Target benutzen, um Information zum Debuggen Ihres Ports zu erhalten. Es wird die Werte vieler der obenangegebenen Variablen anzeigen. Zusätzlich sind die folgenden Konstanten definiert, damit alle Java-Ports auf eine konsistente Art installiert werden können: Konstanten, die für Ports, welche Java benutzen, definiert sind Konstante Wert JAVASHAREDIR Das Basis-Verzeichnis für alles, was mit Java zusammenhängt. Standardmäßig ${PREFIX}/share/java. JAVAJARDIR Das Verzeichnis, wohin JAR-Dateien installiert werden sollen. Standardmäßig ${JAVASHAREDIR}/classes. JAVALIBDIR Das Verzeichnis, in dem JAR-Dateien, die von anderen Ports installiert wurden, liegen. Standardmäßig ${LOCALBASE}/share/java/classes.
Die entsprechenden Einträge sind sowohl in PLIST_SUB (dokumentiert in ) als auch in SUB_LIST definiert.
Kompilieren mit Ant Wenn der Port mit Apache Ant kompiliert werden soll, muss er USE_ANT setzen. Ant wird dann als das sub-make-Kommando betrachtet. Wenn kein do-build-Target vom Port definiert ist, wird eine Standardvorgabe benutzt, die einfach Ant entsprechend MAKE_ENV, MAKE_ARGS und ALL_TARGET aufruft. Das ähnelt dem USE_GMAKE-Mechanismus, der in dokumentiert ist. Wenn jikes anstelle von javac benutzt wird (siehe USE_JIKES in ), dann wird Ant es automatisch benutzen, um den Port zu kompilieren. Optimales Verfahren Wenn Sie eine Java-Bibliothek portieren, sollte Ihr Port die JAR-Datei(en) in ${JAVAJARDIR} installieren, und alles andere unter ${JAVASHAREDIR}/${PORTNAME} (ausgenommen die Dokumentation - siehe unten). Um die Größe der Packlistendatei zu reduzieren, können die JAR-Datei(en) direkt im Makefile angegeben werden. Benutzen Sie einfach die folgende Anweisung (wobei myport.jar der Name der JAR-Datei ist, die als Teil des Ports installiert wird): PLIST_FILES+= %%JAVAJARDIR%%/myport.jar Beim Portieren einer Java-Applikation installiert der Port normalerweise alles unter einem einzigen Verzeichnis (inklusive seiner JAR-Abhängigkeiten). Die Benutzung von ${JAVASHAREDIR}/${PORTNAME} wird in dieser Beziehung dringend empfohlen. Es liegt im Entscheidungsbereich des Portierenden, ob der Port die zusätzlichen JAR-Abhängigkeiten unter diesem Verzeichnis installieren oder direkt die schon installierten (aus ${JAVAJARDIR}) benutzen soll. Unabhängig von der Art Ihres Ports (Bibliothek oder Applikation), sollte die zusätzliche Dokumentation an die gleiche Stelle installiert werden wie bei jedem anderen Port auch. Das JavaDoc-Werkzeug ist dafür bekannt einen unterschiedlichen Satz von Dateien abhängig von der Version des benutzten JDKs zu erstellen. Für Ports, die nicht die Benutzung eines bestimmten JDKs vorgeben, ist es deshalb eine komplexe Aufgabe die Packliste (pkg-plist) festzulegen. Dies ist ein Grund, warum dringend angeraten wird, das PORTDOCS-Makro zu benutzen. Außerdem, selbst wenn Sie den Satz von Dateien, den javadoc erzeugen wird, voraussagen können, die Größe der resultierenden pkg-plist befürwortet die Benutzung von PORTDOCS. Der Vorgabewert für DATADIR ist ${PREFIX}/share/${PORTNAME}. Es ist eine gute Idee, DATADIR für Java-Ports stattdessen auf ${JAVASHAREDIR}/${PORTNAME} zu setzen. In der Tat wird DATADIR automatisch zu PLIST_SUB (dokumentiert in ) hinzugefügt, d.h. Sie können %%DATADIR%% direkt in pkg-plist benutzen. Zu der Frage, ob Java-Ports aus dem Quelltext gebaut werden, oder direkt bereitgestellte binäre Distributionen benutzt werden sollten, gab es, als dies geschrieben wurde, keine definierte Richtlinie. Allerdings ermutigen Mitglieder des &os; Java-Projekts Porter dazu, Ihre Ports aus dem Quelltext kompilieren zu lassen, wann immer dies kein Problem darstellt. Alle Eigenschaften, die in diesem Abschnitt präsentiert wurden sind in bsd.java.mk implementiert. Sollten Sie jemals der Meinung sein, dass Ihr Port ausgefeiltere Java-Unterstützung benötigt, schauen Sie bitte erst in das bsd.java.mk CVS Log, weil es normalerweise immer etwas Zeit braucht bis die neuesten Eigenschaften dokumentiert sind. Wenn Sie glauben, dass der fehlende Support auch für viele andere Java Ports nützlich sein könnte, wenden Sie sich bitte an die &a.java;. Obwohl es eine java-Kategorie für Fehlerberichte gibt, bezieht sich diese auf die JDK-Portierungsbemühungen des &os; Java-Projektes. Deshalb sollten Sie Ihren Java-Port in der ports-Kategorie einreichen wie bei jeden anderen Port auch - es sei denn, die Angelegenheit, die Sie zu klären versuchen, steht in Zusammenhang entweder mit einer JDK-Implementierung oder bsd.java.mk. Gleichermaßen gibt es eine definierte Richtlinie für die CATEGORIES eines Java-Ports, die in erklärt wird.
Webanwendungen, Apache und PHP Apache Variablen für Ports, die Apache verwenden USE_APACHE Der Port benötigt Apache. Mögliche Werte: yes (beliebige Version), 1.3, 2.0, 2.2, 2.0+, etc. – Standard ist Version 1.3. WITH_APACHE2 Der Port benötigt Apache 2.0. Ist diese Variable nicht gesetzt, so benötigt der Port Apache 1.3. Diese Variable ist veraltet und sollte nicht mehr verwendet werden. APXS Vollständiger Pfad zu der apxs Binärdatei. Die Variable kann neu gesetzt werden. HTTPD Vollständiger Pfad zu der httpd Binärdatei. Die Variable kann neu gesetzt werden. APACHE_VERSION Beinhaltet die Versionsnummer des aktuell installierten Apache (nur lesbare Variable). Diese Variable ist nach Einbinden der Datei bsd.port.pre.mk verfügbar. Mögliche Werte: 13, 20, 22. APACHEMODDIR Verzeichnis der Apache-Module. Diese Variable wird automatisch in pkg-plist ersetzt. APACHEINCLUDEDIR Verzeichnis der Apache Header-Dateien. Diese Variable wird automatisch in pkg-plist ersetzt. APACHEETCDIR Verzeichnis der Apache-Konfigurationsdateien. Diese Variable wird automatisch in pkg-plist ersetzt.
Nützliche Variablen für Ports von Apache-Modulen MODULENAME Name des Moduls. Standardwert ist PORTNAME. Beispiel: mod_hello SHORTMODNAME Der gekürzte Name des Moduls. Standardmäßig wird der Wert von MODULENAME übernommen. Beispiel: hello AP_FAST_BUILD Verwende apxs zum Kompilieren und Installieren des Moduls. AP_GENPLIST Eine pkg-plist wird automatisch erzeugt. AP_INC Verzeichnis für zusätzliche Header-Dateien, die beim Kompilieren mitverwendet werden. AP_LIB Verzeichnis für zusätzliche Bibliothek-Dateien, welche beim Kompilieren mitverwendet werden. AP_EXTRAS Zusätzliche Flags für apxs.
Webanwendungen Webanwendungen sollten nach PREFIX/www/programmname installiert werden. Der Einfachheit halber ist dieser Pfad sowohl im Makefile als auch in pkg-plist als WWWDIR verfügbar. Der relative Pfad PREFIX ist hingegen im Makefile durch die Variable WWWDIR_REL festgelegt. Der Benutzername und die Benutzergruppe, mit deren Rechte Webanwendungen laufen, sind in WWWOWN und WWWGRP festgelegt. Standardwert ist bei beiden www. Falls ein Port mit anderen Rechten gestartet werden soll, so sollte die Anweisung WWWOWN?= myuser verwendet werden. Dies vereinfacht dem Benutzer eine Anpassung dieser Werte. Falls die Webanwendung nicht explizit Apache benötigt, so sollte dieser auch nicht als Abhängigkeit des Ports aufgeführt werden. Dadurch bleibt es dem Benutzer überlassen Apache oder einen anderen Webserver zu verwenden. PHP Variablen für Ports, die PHP verwenden USE_PHP Der Port benötigt PHP. Der Wert yes bewirkt eine Abhängigkeit des Ports von PHP. Es kann auch eine Liste der benötigten PHP-Erweiterungen angegeben werden. Beispiel: pcre xml gettext DEFAULT_PHP_VER Legt die Version von PHP fest, die standardmäßig installiert wird, falls noch kein PHP vorhanden ist. Standardwert ist 4. Mögliche Werte sind: 4,5 IGNORE_WITH_PHP Der Port funktioniert nicht mit der angegebenen Version von PHP. Mögliche Werte: 4, 5 USE_PHPIZE Der Port wird als PHP-Erweiterung gebaut. USE_PHPEXT Der Port wird wie eine PHP-Erweiterung behandelt – Installation und Eintragung in die PHP-Registry für Erweiterungen. USE_PHP_BUILD Setzt PHP als build-Anhängigkeit. WANT_PHP_CLI Benötigt die Kommandozeilen-Version von PHP. WANT_PHP_CGI Benötigt die CGI-Version von PHP. WANT_PHP_MOD Benötigt das Apache-Modul von PHP. WANT_PHP_SCR Benötigt die Kommandozeilen- oder die CGI-Version von PHP. WANT_PHP_WEB Benötigt das Apache-Modul oder die CGI-Version von PHP.
PEAR Module Das Portieren von PEAR-Modulen ist sehr einfach. Mit Hilfe der Variablen FILES, TESTS, DATA, SQLS, SCRIPTFILES, DOCS und EXAMPLES können die zu installierenden Dateien angegeben werden. Alle aufgeführten Dateien werden automatisch in die jeweiligen Verzeichnisse installiert und der Datei pkg-plist hinzugefügt. Die Datei ${PORTSDIR}/devel/pear/bsd.pear.mk muss am Ende des Makefiles eingebunden werden. Beispiel eines Makefiles für eine PEAR Klasse PORTNAME= Date PORTVERSION= 1.4.3 CATEGORIES= devel www pear MAINTAINER= example@domain.com COMMENT= PEAR Date and Time Zone Classes BUILD_DEPENDS= ${PEARDIR}/PEAR.php:${PORTSDIR}/devel/pear-PEAR RUN_DEPENDS= ${BUILD_DEPENDS} FILES= Date.php Date/Calc.php Date/Human.php Date/Span.php \ Date/TimeZone.php TESTS= test_calc.php test_date_methods_span.php testunit.php \ testunit_date.php testunit_date_span.php wknotest.txt \ bug674.php bug727_1.php bug727_2.php bug727_3.php \ bug727_4.php bug967.php weeksinmonth_4_monday.txt \ weeksinmonth_4_sunday.txt weeksinmonth_rdm_monday.txt \ weeksinmonth_rdm_sunday.txt DOCS= TODO _DOCSDIR= . .include <bsd.port.pre.mk> .include "${PORTSDIR}/devel/pear/bsd.pear.mk" .include <bsd.port.post.mk>
Python benutzen Die Ports unterstützen parallele Installationen mehrerer Python-Versionen. Ports sollten sicherstellen, dass der richtige python-Interpreter verwendet wird – entsprechend der durch den Benutzer definierbaren Variable PYTHON_VERSION. Häufig bedeutet dies, dass der Pfad zum python-Interpreter durch den Wert der Variablen PYTHON_CMD ersetzt werden muss. Ports, die Dateien unter PYTHON_SITELIBDIR installieren, sollten pyXY- als Präfix des Paketnamens haben, sodass in deren Paketname die zugehörige Python Version aufgeführt wird. PKGNAMEPREFIX= ${PYTHON_PKGNAMEPREFIX} Nützliche Variablen für Ports, die Python verwenden USE_PYTHON Der Port benötigt Python. Die minimal benötigte Version kann durch Werte wie 2.3+ angegeben werden. Bereiche von Versionsnummern können durch Angabe der minimalen und maximalen Versionsnummer, getrennt durch einen Gedankenstrich, festgelegt werden, z.B.: 2.1-2.3 USE_PYDISTUTILS Verwende Python-distutils zum Konfigurieren, Kompilieren und Installieren. Dies ist erforderlich, falls der Port eine setup.py-Datei beinhaltet. Dadurch werden die do-build und do-install-Ziele und eventuell auch das do-configure-Ziel übergangen, falls GNU_CONFIGURE nicht definiert ist. PYTHON_PKGNAMEPREFIX Wird als PKGNAMEPREFIX verwendet, um Pakete für unterschiedliche Python-Versionen zu trennen. Beispiel: py24- PYTHON_SITELIBDIR Verzeichnis des site-Pakete Baums, der das Installationsverzeichnis von Python (üblicherweise LOCALBASE) beinhaltet. Die PYTHON_SITELIBDIR-Variable kann sehr nützlich bei der Installation von Python-Modulen sein. PYTHONPREFIX_SITELIBDIR Die präfix-freie Variante von PYTHON_SITELIBDIR. Benutzen Sie immer %%PYTHON_SITELIBDIR%% in pkg-plist, wenn möglich. Der Standardwert von %%PYTHON_SITELIBDIR%% ist lib/python%%PYTHON_VERSION%%/site-packages PYTHON_CMD Kommandozeilen-Interpreter für Python mit Versionsnummer. PYNUMERIC Liste der Abhängigkeiten für numerische Erweiterungen. PYNUMPY Liste der Abhängigkeiten für die neue numerische Erweiterung numpy. (PYNUMERIC ist vom Anbieter als veraltet deklariert) PYXML Liste der Abhängigkeiten für XML-Erweiterungen (wird ab Python 2.0 nicht mehr benötigt, da im Basispaket enthalten). USE_TWISTED Setzt die Abhängigkeit des Ports von twistedCore. Die Liste der erforderlichen Komponenten kann als Wert spezifiziert werden. Beispiel: web lore pair flow USE_ZOPE Setzt Zope, eine Plattform für Webanwendungen, als Abhängigkeit des Ports. Setzt die Versionsabhängigkeit von Python auf 2.3. Setzt ZOPEBASEDIR auf das Verzeichnis, in welches Zope installiert wurde.
Eine vollständige Liste aller verfügbaren Variablen ist in /usr/ports/Mk/bsd.python.mk zu finden.
Benutzung von <application>Tcl/Tk</application> Die Ports-Sammlung unterstützt die parallele Installation mehrerer Tcl/Tk-Versionen. Ports sollten mindestens die vorgegebene Tcl/Tk-Version oder höher zu unterstützen versuchen anhand der Variablen USE_TCL und USE_TK. Es ist möglich, die gewünschte Version von tcl mit der Variable WITH_TCL_VER vorzuschreiben. Äußerst nützliche Variablen für Ports, die <application>Tcl/Tk</application> benutzen USE_TCL Der Port benötigt die Tcl-Bibliothek (nicht die Shell). Eine notwendige Mindestversion kann mit Werten wie 84+ angegeben werden. Einzelne nicht unterstützte Versionen können mit der Variable INVALID_TCL_VER festgelegt werden. USE_TCL_BUILD Der Port benötigt Tcl nur während der Zeit, in der er gebaut wird. USE_TCL_WRAPPER Ports, welche zwar die Tcl-Shell, aber nicht eine bestimmte Version von tclsh verlangen, sollten diese neue Variable verwenden. Ein Wrapperskript für tclsh wird auf dem System installiert. Der Benutzer kann festlegen, welche tcl-Shell gewünscht ist bzw. verwendet werden soll. WITH_TCL_VER Benutzerdefinierte Variable, welche die gewünschte Tcl-Version bestimmt. PORTNAME_WITH_TCL_VER Gleich wie WITH_TCL_VER, nur portspezifisch. USE_TCL_THREADS Fordere threadfähiges Tcl/Tk. USE_TK Der Port benötigt die Tk-Bibliothek (nicht die Wish-Shell). Impliziert USE_TCL mit dem gleichen Wert. Für weitere Informationen siehe die Beschreibung der Variable USE_TCL. USE_TK_BUILD Analog zur Variable USE_TCL_BUILD. USE_TK_WRAPPER Analog zur Variable USE_TCL_WRAPPER. WITH_TK_VER Analog zur Variable WITH_TCL_VER und impliziert WITH_TCL_VER mit dem gleichen Wert.
Eine vollständige Liste der zur Verfügung stehenden Variablen befindet sich in /usr/ports/Mk/bsd.tcl.mk.
Emacs benutzen Dieser Abschnitt muss noch geschrieben werden. Ruby benutzen Nützliche Variablen für Ports, die Ruby verwenden Variable Description USE_RUBY Der Port benötigt Ruby. USE_RUBY_EXTCONF Der Port verwendet extconf.rb für die Konfiguration. USE_RUBY_SETUP Der Port verwendet setup.rb für die Konfiguration. RUBY_SETUP Legt den alternativen Namen von setup.rb fest. Üblich ist der Wert install.rb.
Die folgende Tabelle listet ausgewählte Variablen auf, die Portautoren über die Port-Infrastruktur zur Verfügung stehen. Diese Variablen sollten für die Installation von Dateien in die entsprechenden Verzeichnisse verwendet werden. Sie sollten in pkg-plist so häufig wie möglich verwendet und in einem Port nicht neu definiert werden. Ausgewählte read-only-Variablen für Ports, die Ruby verwenden Variable Beschreibung Beispiel RUBY_PKGNAMEPREFIX Wird als PKGNAMEPREFIX verwendet, um Pakete für verschiedene Versionen von Ruby zu unterscheiden. ruby18- RUBY_VERSION Vollständige Version von Ruby in der Form x.y.z. 1.8.2 RUBY_SITELIBDIR Installationsverzeichnis der von der Rechnerarchitektur unabhängigen Bibliotheken. /usr/local/lib/ruby/site_ruby/1.8 RUBY_SITEARCHLIBDIR Installationsverzeichnis der von der Rechnerarchitektur abhängigen Bibliotheken. /usr/local/lib/ruby/site_ruby/1.8/amd64-freebsd6 RUBY_MODDOCDIR Installationsverzeichnis für die Dokumentation der Module. /usr/local/share/doc/ruby18/patsy RUBY_MODEXAMPLESDIR Installationsverzeichnis für die Beispiele der Module. /usr/local/share/examples/ruby18/patsy
Eine vollständige Liste der verfügbarenVariablen kann in /usr/ports/Mk/bsd.ruby.mk eingesehen werden.
SDL verwenden Die Variable USE_SDL wird für die automatische Konfiguration der Abhängigkeiten für Ports benutzt, die auf SDL basierende Bibliotheken wie devel/sdl12 und x11-toolkits/sdl_gui verwenden. Die folgenden SDL-Bibliotheken sind derzeit bekannt: sdl: devel/sdl12 gfx: graphics/sdl_gfx gui: x11-toolkits/sdl_gui image: graphics/sdl_image ldbad: devel/sdl_ldbad mixer: audio/sdl_mixer mm: devel/sdlmm net: net/sdl_net sound: audio/sdl_sound ttf: graphics/sdl_ttf Falls ein Port z.B. von net/sdl_net und audio/sdl_mixer abhängt, so wäre die Syntax: USE_SDL= net mixer Die Abhängigkeit von devel/sdl12, die durch net/sdl_net und audio/sdl_mixer entsteht, wird automatisch zum Port hinzugefügt. Falls USE_SDL im Port verwendet wird, so wird automatisch: die Abhängigkeit von sdl12-config zu BUILD_DEPENDS hinzugefügt die Variable SDL_CONFIG zu CONFIGURE_ENV hinzugefügt die Abhängigkeit der ausgewählten Bibliotheken zu LIB_DEPENDS hinzugefügt Um zu überprüfen, ob die SDL-Bibliotheken verfügbar sind, kann die Variable WANT_SDL verwendet werden: WANT_SDL=yes .include <bsd.port.pre.mk> .if ${HAVE_SDL:Mmixer}!="" USE_SDL+= mixer .endif .include <bsd.port.post.mk> <application>wxWidgets</application> verwenden Dieser Abschnitt beschreibt den Status der wxWidgets-Bibliotheken in den Ports und deren Einbindung in das Ports-System. Einführung Es gibt viele Probleme bei der gleichzeitigen Verwendung unterschiedlicher Versionen von wxWidgets-Bibliotheken (Dateien unterschiedlicher wxWidgets-Versionen haben denselben Dateinamen). In den Ports wurde das Problem dadurch gelöst, dass jede Version unter einem eigenen Namen installiert wird, der die Versionsnummer als Suffix beinhaltet. Der offensichtliche Nachteil dabei ist, dass jede Anwendung so verändert werden muss, dass sie die erwartete Version vorfindet. Die meisten solcher Anwendungen benutzen das wx-config-Skript, um die benötigten Compiler- und Linkerflags zu erhalten. Dieses Skript hat für jede verfügbare Version einen anderen Namen. Die meisten Anwendungen beachten eine Umgebungsvariable oder ein Argument beim configure-Skript, um das gewünschte wx-config-Skript festzulegen. Ansonsten müssen sie gepatcht werden. Auswahl der Version Um festzulegen, welche Version der wxWidgets verwendet werden soll, gibt es zwei Variablen (falls nur eine der beiden definiert wird, so wird die andere auf einen Standardwert gesetzt): Variablen, um die <application>wxWidgets</application>-Version festzulegen Variable Beschreibung Standardwert USE_WX Liste der Versionen, die der Port verwenden kann Alle verfügbaren Versionen USE_WX_NOT Liste der Versionen, die der Port nicht verwenden kann Nichts
Es folgt eine Liste an möglichen wxWidgets-Versionen und deren zugehöriger Port: Verfügbare <application>wxWidgets</application>-Versionen Version Port 2.4 x11-toolkits/wxgtk24 2.6 x11-toolkits/wxgtk26 2.8 x11-toolkits/wxgtk28
Ab Version 2.5 werden auch Versionen in Unicode unterstützt und über einen Unterport mit dem Suffix -unicode installiert. Dies kann aber auch über Variablen gehandhabt werden (siehe ). Die Variablen in können auf einen oder mehrere (durch Leerzeichen getrennt) der folgenden Werte gesetzt werden: Spezifikationen der <application>wxWidgets</application>-Versionen Beschreibung Beispiel Einzelne Version 2.4 Aufsteigende Versionsnummern 2.4+ Absteigende Versionsnummern 2.6- Versionsinterval (muss aufsteigend sein) 2.4-2.6
Desweiteren gibt es Variablen, über die eine bevorzugte Version festgelegt werden kann. Die Versionen können als Liste angegeben werden, wobei die Reihenfolge der Priorisierung entspricht. Variablen zur Festlegung der bevorzugten <application>wxWidgets</application>-Version Name Bestimmt für WANT_WX_VER den Port WITH_WX_VER den Benutzer
Komponentenauswahl Desweiteren gibt es Anwendungen, die nicht direkt wxWidgets-Bibliotheken sind, aber trotzdem mit diesen zusammenhängen. Diese Anwendungen können über die Variable WX_COMPS festgelegt werden. Die folgenden Komponenten sind verfügbar: Verfügbare <application>wxWidgets</application>-Komponenten Name Beschreibung Versionsbeschränkungen wx Hauptbibliothek Nichts contrib Beigesteuerte Bibliothek Nichts python wxPython (Python-Bindungen) 2.4-2.6 mozilla wxMozilla 2.4 svg wxSVG 2.6
Der Typ der Abhängigkeit kann für jede Komponente durch hinzufügen eines Suffix (durch Strichpunkt getrennt) festgelegt werden. Falls der Typ nicht angegeben wird, wird ein Standardwert verwendet (siehe ). Die folgenden Typen sind verfügbar: Verfügbare Typen von <application>wxWidgets</application>-Abhängigkeiten Name Beschreibung build Komponente wird zum Bau benötigt – äquivalent zu BUILD_DEPENDS run Komponente wird zum Ausführen benötigt – äquivalent zu RUN_DEPENDS lib Komponente wird zum Bau und Ausführen benötigt – äquivalent zu LIB_DEPENDS
Die Standardwerte für die einzelnen Komponenten sind in der folgenden Tabelle aufgeführt: Standardtypen der <application>wxWidgets</application>-Abhängigkeiten Komponente Typ der Abhängigkeit wx lib contrib lib python run mozilla lib svg lib
Auswahl von <application>wxWidgets</application>-Komponenten Der folgende Ausschnitt entspricht einem Port, der die wxWidgets-Version 2.4 und die zugehörigen Bibliotheken verwendet. USE_WX= 2.4 WX_COMPS= wx contrib
Unicode Die wxWidgets-Bibliotheken unterstützen Unicode seit der Version 2.5. In den Ports sind beide Versionen verfügbar und können über die folgenden Variablen ausgewählt werden: Variablen, um Unicode in den <application>wxWidgets</application>-Versionen auszuwählen Variable Beschreibung Bestimmt für WX_UNICODE Der Port funktioniert ausschließlich mit der Unicode-Version den Port WANT_UNICODE Der Port funktioniert in beiden Versionen – bevorzugt wird jedoch Unicode den Port WITH_UNICODE Der Port verwendet die Unicode-Version den Benutzer WITHOUT_UNICODE Der Port verwendet, falls unterstützt, die normale Version (falls WX_UNICODE nicht definiert ist) den Benutzer
Die Variable WX_UNICODE darf nicht bei Ports benutzt werden, die sowohl die Version mit als auch ohne Unterstützung für Unicode verwenden können. Falls der Port standardmäßig Unterstützung für Unicode bieten soll, verwenden Sie WANT_UNICODE stattdessen.
Feststellen der installierten Version Um eine bereits installierte Version zu finden, muss WANT_WX definiert werden. Falls diese Variable nicht auf eine bestimmte Versionsnummer gesetzt wird, werden die Komponenten einen Suffix mit der Versionsnummer tragen. Die Variable HAVE_WX wird gesetzt, falls eine installierte Version vorgefunden wurde. Installierte <application>wxWidgets</application>-Versionen und –Komponenten feststellen Der folgende Ausschnitt kann in einem Port verwendet werden, der wxWidgets verwendet, falls es installiert ist, oder falls eine Option dafür ausgewählt wurde. WANT_WX= yes .include <bsd.port.pre.mk> .if defined(WITH_WX) || ${HAVE_WX:Mwx-2.4} != "" USE_WX= 2.4 CONFIGURE_ARGS+=--enable-wx .endif Der folgende Ausschnitt kann verwendet werden, um die Unterstützung für wxPython zusätzlich zu der von wxWidgets zu aktivieren (beide in Version 2.6), wenn das installiert ist, oder die Option ausgewählt wurde. USE_WX= 2.6 WX_COMPS= wx WANT_WX= 2.6 .include <bsd.port.pre.mk> .if defined(WITH_WXPYTHON) || ${HAVE_WX:Mpython} != "" WX_COMPS+= python CONFIGURE_ARGS+=--enable-wxpython .endif Vordefinierte Variablen Die folgenden Variablen sind in den Ports verfügbar (nachdem sie entsprechend definiert wurden). Vordefinierte Variablen für Ports, die <application>wxWidgets</application> verwenden Name Beschreibung WX_CONFIG Pfad zum wxWidgets wx-config-Skript (mit unterschiedlichem Namen) WXRC_CMD Pfad zum wxWidgets wxrc-Programm (mit unterschiedlichem Namen) WX_VERSION Version der wxWidgets, die verwendet werden soll (z.B. 2.6) WX_UNICODE Falls Unterstützung für Unicode nicht explizit definiert, jedoch verwendet wird, dann wird die Unterstützung automatisch aktiviert.
Verarbeitung in <filename>bsd.port.pre.mk</filename> Falls die Variablen gleich nach dem Importieren von bsd.port.pre.mk benutzt werden sollen, so muss die Variable WX_PREMK definiert werden. Falls WX_PREMK definiert ist, so werden Version, Abhängigkeiten, Komponenten und vordefinierte Variablen nicht geändert, wenn die Variablen des wxWidgets-Ports nach dem Einbinden von bsd.port.pre.mk geändert werden. Verwendung von <application>wxWidgets</application>-Variablen in Kommandos Der folgende Ausschnitt zeigt die Verwendung von WX_PREMK durch Ausführen des wx-config-Skriptes, um die vollständige Version als Zeichenkette zu erhalten, diese dann einer Variablen zuzuweisen und die Variable anschließend einem Programm zu übergeben. USE_WX= 2.4 WX_PREMK= yes .include <bsd.port.pre.mk> .if exists(${WX_CONFIG}) VER_STR!= ${WX_CONFIG} --release PLIST_SUB+= VERSION="${VER_STR}" .endif Die wxWidgets-Variablen können problemlos in Kommandos benutzt werden, falls diese in Targets ohne gesetztes WX_PREMK verwendet werden. Weitere <command>configure</command>-Argumente Einige GNU configure-Skripte können wxWidgets nicht auffinden, falls nur die Umgebungsvariable WX_CONFIG gesetzt ist, sondern benötigen zusätzliche Argumente. Dafür kann die Variable WX_CONF_ARGS benutzt werden. Zulässige Werte für <makevar>WX_CONF_ARGS</makevar> Möglicher Wert Resultierendes Argument absolute --with-wx-config=${WX_CONFIG} relative --with-wx=${LOCALBASE} --with-wx-config=${WX_CONFIG:T}
Verwendung von <application>Lua</application> Dieser Abschnitt beschreibt den Status der Lua-Bibliotheken in den Ports und deren Einbindung in das Ports System. Einführung Es gibt viele Probleme bei der gleichzeitigen Verwendung unterschiedlicher Versionen von Lua-Bibliotheken (Dateien unterschiedlicher Versionen haben denselben Dateinamen). In den Ports wurde das Problem gelöst, indem jede Version unter einem eigenen Namen mit der Versionsnummer als Suffix installiert wird. Der offensichtliche Nachteil dabei ist, dass jede Anwendung so verändert werden muss, dass sie die erwartete Version vorfindet. Dies kann jedoch durch zusätzliche Flags für Compiler und Linker gelöst werden. Auswahl der Version Um festzulegen, welche Version von Lua verwendet werden soll, gibt es zwei Variablen (falls nur eine der beiden definiert ist, so wird die andere auf einen Standardwert gesetzt): Variablen, um die <application>Lua</application>-Version festzulegen Variable Beschreibung Standardwert USE_LUA Liste der Versionen, welche der Port verwenden kann Alle verfügbaren Versionen USE_LUA_NOT Liste der Versionen, die der Port nicht verwenden kann Nichts
Es folgt eine Liste an möglichen Lua-Versionen und deren zugehöriger Port: Verfügbare <application>Lua</application>-Versionen Version Port 4.0 lang/lua4 5.0 lang/lua50 5.1 lang/lua
Die Variablen in können auf einen oder mehrere (durch Leerzeichen getrennt) der folgenden Werte gesetzt werden: Spezifikationen der <application>Lua</application>-Versionen Beschreibung Beispiel Spezielle Version 4.0 Aufsteigende Versionen 5.0+ Absteigende Versionen 5.0- Versionenintervall (muss aufsteigend sein) 5.0-5.1
Desweiteren gibt es Variablen, über die eine bevorzugte Version festgelegt werden kann. Die Versionen können als Liste angegeben werden, wobei die Reihenfolge der Priorisierung entspricht. Variablen zur Festlegung der bevorzugten <application>Lua</application>-Version Name Bestimmt für WANT_LUA_VER den Port WITH_LUA_VER den Benutzer
Auswahl der <application>Lua</application>-Version Der folgende Ausschnitt entspricht einem Port, der Lua in den Versionen 5.0 oder 5.1 verwenden kann und standardmäßig 5.0 verwendet. Diese Einstellung kann durch die benutzerdefinierte Variable WITH_LUA_VER überschrieben werden. USE_LUA= 5.0-5.1 WANT_LUA_VER= 5.0
Komponentenauswahl Desweiteren gibt es Anwendungen, die nicht direkt Lua-Bibliotheken sind, aber trotzdem mit diesen zusammenhängen. Diese Anwendungen können über die Variable LUA_COMPS festgelegt werden. Die folgenden Komponenten sind verfügbar: Verfügbare <application>Lua</application>-Komponenten Name Beschreibung Versionseinschränkungen lua Hauptbibliothek Keine tolua Bibliothek für die Unterstützung von C/C++-Code 4.0-5.0 ruby Ruby-Bindungen 4.0-5.0
Es gibt weitere Komponenten, die jedoch Module für den Interpreter sind und nicht von Anwendungen benutzt werden (nur von anderen Modulen). Der Typ der Abhängigkeit kann für jede Komponente durch Hinzufügen eines Suffix (durch Strichpunkt getrennt) festgelegt werden. Falls der Typ nicht angegeben wird, wird ein Standardwert verwendet (siehe ). Die folgenden Typen sind verfügbar: Verfügbare Typen von <application>Lua</application>-Abhängigkeiten Name Beschreibung build Komponente wird zum Bau benötigt – äquivalent zu BUILD_DEPENDS run Komponente wird zum Ausführen benötigt – äquivalent zu RUN_DEPENDS lib Komponente wird zum Bau und zum Ausführen benötigt – äquivalent zu LIB_DEPENDS
Die Standardwerte für die einzelnen Komponenten sind in der folgenden Tabelle aufgeführt: Standardtypen für <application>Lua</application>-Abhängigkeiten Komponente Typ der Abhängigkeit lua lib für 4.0-5.0 (shared) und build für 5.1 (static) tolua build (static) ruby lib (shared)
Auswahl von <application>Lua</application>-Komponenten Der folgende Ausschnitt entspricht einem Port, welcher die Lua-Version 4.0 und die zugehörigen Ruby-Bindungen verwendet. USE_LUA= 4.0 LUA_COMPS= lua ruby
Feststellen der installierten Version Um eine bereits installierte Version zu finden, muss WANT_LUA definiert werden. Falls diese Variable nicht auf eine bestimmte Versionsnummer gesetzt wird, werden die Komponenten einen Suffix mit der Versionsnummer tragen. Die Variable HAVE_LUA wird gesetzt, falls eine installierte Version vorgefunden wurde. Installierte <application>Lua</application>-Versionen und– Komponenten feststellen Der folgende Ausschnitt kann in einem Port verwendet werden, der Lua benutzt, falls es installiert ist oder eine Option dafür ausgewählt wurde. WANT_LUA= yes .include <bsd.port.pre.mk> .if defined(WITH_LUA5) || ${HAVE_LUA:Mlua-5.[01]} != "" USE_LUA= 5.0-5.1 CONFIGURE_ARGS+=--enable-lua5 .endif Der folgende Ausschnitt kann verwendet werden, um die Unterstützung für tolua zusätzlich zu der von Lua zu aktivieren (beide in Version 4.0), wenn dies installiert ist oder die Option ausgewählt wurde. USE_LUA= 4.0 LUA_COMPS= lua WANT_LUA= 4.0 .include <bsd.port.pre.mk> .if defined(WITH_TOLUA) || ${HAVE_LUA:Mtolua} != "" LUA_COMPS+= tolua CONFIGURE_ARGS+=--enable-tolua .endif Vordefinierte Variablen Die folgenden Variablen sind in den Ports verfügbar (nachdem sie entsprechend definiert wurden). Vordefinierte Variablen für Ports, die <application>Lua</application> verwenden Name Beschreibung LUA_VER Die Lua-Version, die verwendet wird (z.B. 5.1) LUA_VER_SH Die Hauptversion für shared-Lua-Bibliotheken (z.B. 1) LUA_VER_STR Die Lua-Version ohne die Punkte (z.B. 51) LUA_PREFIX Der Präfix, unter dem Lua (und Komponenten) installiert ist LUA_SUBDIR Das Verzeichnis unter ${PREFIX}/bin, ${PREFIX}/share und ${PREFIX}/lib, in welchem Lua installiert ist LUA_INCDIR Das Verzeichnis, in dem Lua- und tolua-Header-Dateien installiert sind LUA_LIBDIR Das Verzeichnis, in dem Lua– und tolua-Bibliotheken installiert sind LUA_MODLIBDIR Das Verzeichnis, in dem Lua Modul-Bibliotheken (.so) installiert sind LUA_MODSHAREDIR Das Verzeichnis, in dem Lua-Module (.lua) installiert sind LUA_PKGNAMEPREFIX Der Paketnamen-Präfix, der von Lua-Modulen verwendet wird LUA_CMD Das Verzeichnis, in dem der Lua-Interpreter liegt LUAC_CMD Das Verzeichnis, in dem der Lua-Compiler liegt TOLUA_CMD Das Verzeichnis, in dem das tolua-Programm liegt
Einem Port mitteilen, in welchem Verzeichnis <application>Lua</application> liegt Der folgende Ausschnitt zeigt, wie einem Port, welcher ein configure-Skript verwendet, mitgeteilt werden kann, wo die Lua-Header-Dateien und Bibliotheken liegen. USE_LUA= 4.0 GNU_CONFIGURE= yes CONFIGURE_ENV= CPPFLAGS="-I${LUA_INCDIR}" LDFLAGS="-L${LUA_LIBDIR}"
Verarbeitung in <filename>bsd.port.pre.mk</filename> Falls die Variablen gleich nach dem Einbinden von bsd.port.pre.mk benutzt werden sollen, so muss die Variable LUA_PREMK definiert werden. Falls LUA_PREMK definiert ist, so werden Version, Abhängigkeiten, Komponenten und vordefinierte Variablen nicht geändert, wenn die Variablen des Lua-Ports nach dem Einbinden von bsd.port.pre.mk geändert werden. Verwendung von <application>Lua</application>-Variablen in Kommandos Der folgende Ausschnitt zeigt die Verwendung von LUA_PREMK durch Ausführen des Lua-Interpreters, um die vollständige Version als Zeichenkette zu erhalten, diese dann einer Variablen zuzuweisen und die Variable schließlich einem Programm zu übergeben. USE_LUA= 5.0 LUA_PREMK= yes .include <bsd.port.pre.mk> .if exists(${LUA_CMD}) VER_STR!= ${LUA_CMD} -v CFLAGS+= -DLUA_VERSION_STRING="${VER_STR}" .endif Die Lua-Variablen können problemlos in Befehlen benutzt werden, falls diese in Targets ohne gesetztes LUA_PREMK verwendet werden.
Xfce verwenden Die USE_XFCE-Variable wird für die automatische Konfiguration der Abhängigkeiten eingesetzt, welche die Xfce-Basisbibliotheken oder Anwendungen wie x11-toolkits/libxfce4gui und x11-wm/xfce4-panel verwenden. Die folgenden Xfce-Bibliotheken und -Anwendungen werden derzeit unterstützt: libexo: x11/libexo libgui: x11-toolkits/libxfce4gui libutil: x11/libxfce4util libmcs: x11/libxfce4mcs mcsmanager: sysutils/xfce4-mcs-manager panel: x11-wm/xfce4-panel thunar: x11-fm/thunar wm: x11-wm/xfce4-wm xfdev: dev/xfce4-dev-tools Die folgenden zusätzlichen Parameter werden unterstützt: configenv: Benutzen Sie dies, wenn Ihr Port eine speziell angepasste CONFIGURE_ENV-Variable benötigt, um seine erforderlichen Bibliotheken zu finden. -I${LOCALBASE}/include -L${LOCALBASE}/lib wird CPPFLAGS hinzugefügt und ergibt CONFIGURE_ENV. Wenn also ein Port von sysutils/xfce4-mcs-manager abhängt und die speziellen CPPFLAGS in seiner configure-Umgebung verlangt, dann würde die Syntax wie folgt aussehen: USE_XFCE= mcsmanager configenv Benutzung von Datenbanken Variablen für Ports, die Datenbanken benutzen Variable Bedeutung USE_BDB Falls die Variable auf yes gesetzt ist, füge eine Abhängigkeit von databases/db41 hinzu. Die Variable kann auch folgende Werte annehmen: 2, 3, 40, 41, 42, 43, 44, 45, 46 oder 47. Sie können eine Folge akzeptierter Werte angeben - USE_BDB=42+ stellt die höchste installierte Version fest und greift auf 42 zurück, falls sonst nichts installiert ist. USE_MYSQL Falls die Variable auf yes gesetzt ist, füge databases/mysql50-server als Abhängigkeit hinzu. Die damit verknüpfte Variable WANT_MYSQL_VER kann Werte wie 323, 40, 41, 50, 51 oder 60 annehmen. USE_PGSQL Falls die Variable auf yes gesetzt ist, füge eine Abhängigkeit von databases/postgresql82 hinzu. Die damit verknüpfte Variable WANT_PGSQL_VER kann Werte wie 73, 74, 80, 81, 82 oder 83 annehmen.
Starten und Anhalten von Diensten (rc Skripten) rc.d-Skripten werden zum Starten von Diensten während des Systemstarts verwendet und um den Administratoren einen Standardweg zum Anhalten und Starten von Diensten zu bieten. Ports halten sich an dieses systemweite rc.d-Framework. Details zu deren Benutzung können im rc.d Kapitel des Handbuchs nachgelesen werden. Ausführliche Beschreibungen der verfügbaren Befehle stehen in &man.rc.8; und &man.rc.subr.8;. Desweiteren gibt es einen Artikel zu praktischen Aspekten bezüglich rc.d-Skripten. Ein oder mehrere rc.d-Skripten können installiert werden mittels: USE_RC_SUBR= doormand Skripten müssen im Unterverzeichnis files abgelegt und jeder Skript-Datei muss ein .in-Suffix hinzugefügt werden. Standardmäßige SUB_LIST-Ersetzungen werden für diese Dateien unterstützt. Die Verwendung von %%PREFIX%% und %%LOCALBASE%% wird dringend empfohlen. Näheres zu SUB_LIST kann im zugehörigen Kapitel nachgelesen werden. Für &os;-Versionen, die älter als 6.1-RELEASE sind, ist die Integration mittels &man.rcorder.8; möglich, indem USE_RCORDER anstatt USE_RC_SUBR verwendet wird. Die Verwendung dieser Methode ist jedoch nur notwendig, wenn der Port in die Verzeichnisstruktur des Basissystems installiert werden kann oder der Dienst vor den FILESYSTEMS-Skripten in rc.d des Basissystems gestartet sein muss. Seit &os; 6.1-RELEASE sind lokale rc.d-Skripten (inklusive der durch Ports installierten) im allgemeinen &man.rcorder.8; des Basissystems. Beispiel eines einfachen rc.d-Skripts: #!/bin/sh # $FreeBSD$ # # PROVIDE: doormand # REQUIRE: LOGIN # KEYWORD: shutdown # # Add the following lines to /etc/rc.conf.local or /etc/rc.conf # to enable this service: # # doormand_enable (bool): Set to NO by default. # Set it to YES to enable doormand. # doormand_config (path): Set to %%PREFIX%%/etc/doormand/doormand.cf # by default. # . /etc/rc.subr name="doormand" rcvar=${name}_enable command=%%PREFIX%%/sbin/${name} pidfile=/var/run/${name}.pid load_rc_config $name : ${doormand_enable="NO"} : ${doormand_config="%%PREFIX%%/etc/doormand/doormand.cf"} command_args="-p $pidfile -f $doormand_config" run_rc_command "$1" Solange kein guter Grund dafür besteht, einen Dienst früher starten zu lassen, sollten alle Ports-Skripten REQUIRE: LOGIN verwenden. Falls der Port von einem bestimmten Benutzer (außer root) ausgeführt wird, ist dies zwingend. KEYWORD: shutdown ist im Skript oben deswegen vorhanden, weil der frei erfundene Beispiel-Port einen Dienst startet und dieser beim Herunterfahren des Systems sauber beendet werden sollte. Startete das Skript keinen persistenten Dienst, wäre dies nicht notwendig. Für die Wertzuweisung von Variablen sollte "=" anstatt ":=" verwendet werden, da bei Ersterem nur auf einen Standardwert gesetzt wird, wenn die Variable vorher noch nicht gesetzt war, und bei Letzterem dieser gesetzt wird, auch wenn der Wert vorher Null gewesen ist. Ein Benutzer kann durchaus einen Ausdruck wie doormand_flags="" in seiner rc.conf.local-Datei stehen haben, und eine Variablenzuweisung mittels ":=" würde in diesem Fall die Benutzerdefinition überschreiben. Es sollten keine weiteren Skripten mit der .sh-Endung hinzugefügt werden. Irgendwann wird es ein Massenumbenennen aller Skripten im Repository geben, die immer noch diese Endung haben. Anhalten und Deinstallieren von Diensten Es ist möglich, dass ein Dienst während der Deinstallation automatisch angehalten wird. Es wird empfohlen dieses Verhalten nur zu implementieren, wenn es unbedingt erforderlich ist zuerst den Dienst anzuhalten und dann die Dateien zu entfernen. Normalerweise sollte es dem Administrator überlassen werden, ob ein Dienst durch Deinstallieren angehalten werden soll. Dies betrifft auch den Vorgang des Aktualisierens. Der Datei pkg-plist sollte eine Zeile wie folgt zugefügt werden: @stopdaemon doormand Das Argument muss dabei mit dem Inhalt der USE_RC_SUBR-Variablen übereinstimmen. Hinzufügen von Benutzern und Gruppen Manche Ports setzen voraus, dass ein bestimmter Benutzer auf dem System angelegt ist. Wählen Sie in einem solchen Fall eine freie Kennnummer zwischen 50 und 999 aus und tragen Sie diese in ports/UIDs (für Benutzer) oder ports/GIDs (für Gruppen) ein. Stellen Sie dabei sicher, dass Sie keine Kennnummer auswählen, die bereits vom System oder von anderen Ports verwendet wird. Erstellen Sie bitte eine entsprechende Patch-Datei für diese beiden Dateien, wenn für Ihren Port ein neuer Benutzer oder eine neue Gruppe angelegt werden muss. Sie können dann die Variablen USERS und GROUPS im Makefile benutzen, um bei der Port-Installation das automatische Anlegen des Benutzers zu veranlassen. USERS= pulse GROUPS= pulse pulse-access pulse-rt Die Liste mit den momentan belegten UIDs (GIDs) befindet sich in ports/UIDs (ports/GIDs).
Fortgeschrittene <filename>pkg-plist</filename>-Methoden Änderungen an <filename>pkg-plist</filename> mit Hilfe von make-Variablen Einige Ports, insbesondere die p5--Ports, müssen, abhängig von ihren Konfigurationsoptionen (oder im Falle der p5-Ports von der perl-Version), die pkg-plist verändern. Um dies zu vereinfachen, werden für jeden Eintrag in pkg-plist die Variablen %%OSREL%%, %%PERL_VER%% und %%PERL_VERSION%% durch die jeweiligen Werte ersetzt. Der Wert von %%OSREL%% ist die Revisionsnummer des Betriebssystems (z.B. 4.9). %%PERL_VERSION%% und %%PERL_VER%% geben die vollständige Versionsnummer von perl (z.B. 5.8.9) an. Weitere, die Dokumentationsdateien des Ports betreffende %%VARS%%, werden im entsprechenden Abschnitt erläutert. Falls Sie weitere Ersetzungen von Variablen durchführen müssen, können Sie in der Variable PLIST_SUB eine Liste von VAR=VALUE-Paaren angeben, wobei in der pkg-plist %%VAR%% durch VALUE ersetzt wird. Wenn Sie z.B. einen Port haben, der viele Dateien in ein versionsspezifisches Unterverzeichnis installiert, dann können Sie etwas wie OCTAVE_VERSION= 2.0.13 PLIST_SUB= OCTAVE_VERSION=${OCTAVE_VERSION} in das Makefile schreiben und %%OCTAVE_VERSION%% verwenden, unabhängig davon, wo die Variable in pkg-plist verwendet wird. In diesem Fall müssen Sie bei einem Upgrade des Ports nicht dutzende (oder manchmal sogar hunderte) Zeilen in pkg-plist anpassen. Falls Ihr Port in Abhängigkeit von den ausgewählten Optionen Dateien installiert, ist es üblich, den entsprechenden Zeilen in der pkg-plist eine Zeichenfolge %%TAG%% voranzustellen, wobei der Platzhalter TAG der Variablen PLIST_SUB im Makefile bei gleichzeitiger Zuweisung des speziellen Werts @comment hinzugefügt wird, der die Paket-Werkzeuge die Zeile ignorieren lässt: .if defined(WITH_X11) PLIST_SUB+= X11="" .else PLIST_SUB+= X11="@comment " .endif und in der pkg-plist: %%X11%%bin/foo-gui Diese Ersetzung (ebenso wie das Hinzufügen weiterer Manualpages) wird zwischen den pre-install- und do-install-Targets ausgeführt, indem aus PLIST gelesen und in TMPPLIST geschrieben wird (Standard: WRKDIR/.PLIST.mktmp). Falls Ihr Port also PLIST während dem Erstellen generiert, so sollte dies vor oder in pre-install geschehen. Muss Ihr Port die resultierende Datei verändern, so sollte dies in post-install mit der Ausgabedatei TMPPLIST erfolgen. Eine weitere Möglichkeit, die Paketliste eines Ports zu verändern, besteht darin die Variablen PLIST_FILES und PLIST_DIRS zu setzen. Der Wert jeder der beiden Variablen stellt eine Liste von Pfadnamen dar, die zusammen mit dem Inhalt von PLIST in TMPPLIST geschrieben wird. Dabei unterliegen die Namen in PLIST_FILES und PLIST_DIRS der weiter oben beschriebenen Substitution von %%VAR%%. Die Namen aus PLIST_FILES werden ansonsten unverändert in die endgültige Paketliste übernommen, während den Namen aus PLIST_DIRS noch der Wert von @dirrm vorangestellt wird. Damit die Verwendung von PLIST_FILES und PLIST_DIRS überhaupt möglich ist, müssen diese gesetzt werden, bevor TMPPLIST geschrieben wird – z.B. in pre-install oder vorher. Leere Verzeichnisse Aufräumen leerer Verzeichnisse Bitte sorgen Sie dafür, dass ihre Ports bei der Deinstallation leere Verzeichnisse löschen. Dazu wird für jedes Verzeichnis, das der Port erzeugt hat, eine @dirrm-Zeile angegeben. Um ein Verzeichnis zu löschen müssen Sie zuerst dessen Unterverzeichnisse entfernen. : lib/X11/oneko/pixmaps/cat.xpm lib/X11/oneko/sounds/cat.au : @dirrm lib/X11/oneko/pixmaps @dirrm lib/X11/oneko/sounds @dirrm lib/X11/oneko Es kann allerdings auch vorkommen, dass @dirrm Fehler ausgibt, da andere Ports ein Verzeichnis ebenfalls nutzen. Deshalb können Sie @dirrmtry verwenden, um nur Verzeichnisse zu löschen, die wirklich leer sind, und damit Warnhinweise vermeiden. @dirrmtry share/doc/gimp Dadurch wird es weder eine Fehlermeldung geben noch wird &man.pkg.delete.1; abnormal beendet werden - auch dann nicht, wenn ${PREFIX}/share/doc/gimp nicht leer ist, da andere Ports hier ebenfalls Dateien installiert haben. Erstellen leerer Verzeichnisse Um leere Verzeichnisse während der Installation eines Ports zu erstellen, bedarf es etwas Aufmerksamkeit. Diese Verzeichnisse werden nicht erstellt, wenn das Paket installiert wird, da Pakete nur die Dateien speichern und &man.pkg.add.1; nur die Verzeichnisse erstellt, die dafür benötigt werden. Um sicher zu gehen, dass das leere Verzeichnis erstellt wird, wenn ein Paket installiert wird, muss die folgende Zeile in pkg-plist über der entsprechenden @dirrm Zeile eingetragen werden: @exec mkdir -p %D/share/foo/templates Konfigurationsdateien Sollte Ihr Port Konfigurationsdateien in PREFIX/etc benötigen, so sollten Sie diese nicht einfach installieren und in pkg-plist auflisten. Dies würde &man.pkg.delete.1; veranlassen, diese Dateien zu löschen, selbst wenn wenn sie vom Benutzer editiert wurden. Stattdessen sollten Beispieldateien mit einem entsprechenden Suffix (beispielsweise filename.sample) versehen werden. Ist die Konfigurationsdatei nicht vorhanden, so sollte die Beispieldatei an deren Platz kopiert werden. Bei der Deinstallation sollte die Konfigurationsdatei gelöscht werden, aber nur, wenn sie nicht vom Benutzer verändert wurde. Das alles muss sowohl im Makefile des Ports als auch in der pkg-plist (für die Installation aus einem Paket) sichergestellt werden. Beispiel aus einem Makefile: post-install: @if [ ! -f ${PREFIX}/etc/orbit.conf ]; then \ ${CP} -p ${PREFIX}/etc/orbit.conf.sample ${PREFIX}/etc/orbit.conf ; \ fi Beispiel aus einer pkg-plist: @unexec if cmp -s %D/etc/orbit.conf.sample %D/etc/orbit.conf; then rm -f %D/etc/orbit.conf; fi etc/orbit.conf.sample @exec if [ ! -f %D/etc/orbit.conf ] ; then cp -p %D/%F %B/orbit.conf; fi Wahlweise können Sie auch eine Nachricht ausgegeben lassen, in der Sie den Nutzer auffordern, die Datei an die richtige Stelle zu kopieren und zu bearbeiten, bevor das Programm ausgeführt werden kann. Dynamische oder statische Paketliste Eine statische Paketliste ist eine Paketliste, die in der Ports-Sammlung, entweder in Form der pkg-plist (mit oder ohne der Ersetzung von Variablen) oder durch PLIST_FILES und PLIST_DIRS im Makefile eingebettet, verfügbar ist. Selbst wenn der Inhalt durch ein Werkzeug oder ein Target im Makefile automatisch erzeugt wird, bevor die Datei von einem Committer in die Ports-Sammlung aufgenommen wird, so ist dies immer noch eine statische Liste, da es möglich ist den Dateiinhalt zu betrachten ohne ein Distfile Herunterladen oder Kompilieren zu müssen. Eine dynamische Paketliste ist eine Paketliste, die beim Kompilieren des Ports erstellt wird, abhängig davon, welche Dateien und Verzeichnisse installiert werden. Es ist nicht möglich diese Liste zu betrachten, bevor der Quelltext heruntergeladen und kompiliert oder nachdem ein make clean ausgeführt wurde. Der Einsatz dynamischer Paketlisten ist zwar nicht untersagt, aber Sie sollten, wann immer das möglich ist, statische Paketlisten verwenden, da die Nutzer dann &man.grep.1; auf alle verfügbaren Ports anwenden können, um z.B. herauszufinden, von welchem eine bestimmte Datei installiert wurde. Dynamische Paketlisten sollten für komplexe Ports verwendet werden, bei denen sich die Liste abhängig von den gewählten Funktionen sehr stark ändern kann (wodurch die Pflege von statischen Listen unmöglich wird), oder Ports, welche die Paketliste abhängig von den Versionen verwendeter Abhängigkeiten verändern (z.B. Ports, die Ihre Dokumentation mit Javadoc erzeugen). Maintainer, die dynamische Paketlisten bevorzugen, werden dazu aufgefordert, neue Targets zu Ihren Ports hinzuzufügen, welche die pkg-plist-Datei erzeugen, sodass Benutzer den Inhalt überprüfen können. Automatisiertes Erstellen von Paketlisten Als Erstes sollten Sie sich vergewissern, dass der Port bis auf pkg-plist vollständig ist. Als Nächstes erstellen Sie einen temporären Verzeichnisbaum, in welchem Ihr Port installiert werden kann, und installieren Sie alle Abhängigkeiten. &prompt.root; mkdir /var/tmp/$(make -V PORTNAME) &prompt.root; mtree -U -f $(make -V MTREE_FILE) -d -e -p /var/tmp/$(make -V PORTNAME) &prompt.root; make depends PREFIX=/var/tmp/$(make -V PORTNAME) Speichern Sie die Verzeichnisstruktur in einer neuen Datei. &prompt.root; (cd /var/tmp/$(make -V PORTNAME) && find -d * -type d) | sort > OLD-DIRS Erstellen Sie eine leere pkg-plist-Datei: &prompt.root; :>pkg-plist Wenn Ihr Port auf PREFIX achtet (was er machen sollte), so kann der Port nun installiert und die Paketliste erstellt werden. &prompt.root; make install PREFIX=/var/tmp/$(make -V PORTNAME) &prompt.root; (cd /var/tmp/$(make -V PORTNAME) && find -d * \! -type d) | sort > pkg-plist Sie müssen auch alle neu erstellten Verzeichnisse in die Paketliste aufnehmen. &prompt.root; (cd /var/tmp/$(make -V PORTNAME) && find -d * -type d) | sort | comm -13 OLD-DIRS - | sort -r | sed -e 's#^#@dirrm #' >> pkg-plist Zu guter Letzt muss die Paketliste noch manuell aufgeräumt werden - es funktioniert eben nicht alles automatisch. Manualpages sollten im Makefile des Ports unter MANn aufgeführt sein und nicht in der Paketliste. Konfigurationsdateien des Benutzers sollten entfernt oder als filename.sample installiert werden. Die info/dir-Datei sollte nicht aufgeführt sein und die zugehörigen install-info-Zeilen sollten hinzugefügt werden, wie im info files-Abschnitt beschrieben. Alle Bibliotheken, die der Port installiert, sollten aufgelistet werden, wie es im Shared Libraries-Abschnitt festgelegt ist. Alternativ dazu können Sie das plist-Skript in /usr/ports/Tools/scripts/ verwenden, um die Paketliste automatisch zu erstellen. Das plist-Skript ist ein Ruby-Skript, das die meisten der in den vorangehenden Absätzen kurz dargestellten manuellen Schritte automatisiert. Der erste Schritt ist derselbe wie oben: Nehmen Sie die ersten drei Zeilen, also mkdir, mtree und make depends. Installieren und bauen Sie dann den Port: &prompt.root; make install PREFIX=/var/tmp/$(make -V PORTNAME) Und lassen Sie plist die pkg-plist-Datei erstellen: &prompt.root; /usr/ports/Tools/scripts/plist -Md -m $(make -V MTREE_FILE) /var/tmp/$(make -V PORTNAME) > pkg-plist Die Paketliste muss immer noch von Hand aufgeräumt werden, wie es oben erklärt wurde. Ein weiteres Werkzeug zur Erzeugung einer ersten pkg-plist-Datei ist ports-mgmt/genplist. Wie bei jedem automatisierten Hilfswerkzeug, sollte die erzeugte pkg-plist-Datei überprüft und bei Bedarf von Hand nachbearbeitet werden. Die <filename>pkg-<replaceable>*</replaceable></filename> Dateien Es gibt noch einige Tricks mit pkg-*, die wir noch nicht erwähnt haben, die aber oft sehr praktisch sind. <filename>pkg-message</filename> Wenn Sie dem Anwender bei der Installation weitere Informationen anzeigen wollen, so können Sie diese Nachricht in pkg-message speichern. Diese Vorgehensweise ist oft nützlich, um zusätzliche Schritte anzuzeigen, die nach &man.pkg.add.1; durchgeführt werden müssen. Dadurch können Sie auch Lizenzinformationen darstellen. Wollen Sie nur ein paar Zeilen über die Einstellungen zum Erstellen des Ports oder Warnungen ausgeben, benutzen Sie ECHO_MSG. pkg-message ist nur für Schritte nach der Installation vorgesehen. Sie sollten den Unterschied zwischen ECHO_MSG und ECHO_CMD beachten: Ersteres wird benutzt, um Informationen auf dem Bildschirm auszugeben, während Letzteres für Kommando-Pipelining bestimmt ist. Ein gutes Beispiel für die Benutzung der beiden Befehle ist in shells/bash2/Makefile zu finden: update-etc-shells: @${ECHO_MSG} "updating /etc/shells" @${CP} /etc/shells /etc/shells.bak @( ${GREP} -v ${PREFIX}/bin/bash /etc/shells.bak; \ ${ECHO_CMD} ${PREFIX}/bin/bash) >/etc/shells @${RM} /etc/shells.bak Die pkg-message wird nicht zur pkg-plist hinzugefügt. Sie wird auch nicht automatisch angezeigt, falls ein Anwender den Port installiert. Sie müssen also die Ausgabe selbst im post-install-Ziel des Make-Vorgangs veranlassen. <filename>pkg-install</filename> Sollte es nötig sein, dass Ihr Port bei der Installation des Binärpakets mit &man.pkg.add.1; Befehle ausführt, können Sie das Skript pkg-install benutzen. Dieses Skript wird automatisch dem Paket hinzugefügt und zweimal von &man.pkg.add.1; ausgeführt: Zuerst als ${SH} pkg-install ${PKGNAME} PRE-INSTALL und beim zweiten Mal als ${SH} pkg-install ${PKGNAME} POST-INSTALL. $2 kann also getestet werden, um festzustellen, in welchem Modus das Skript ausgeführt wird. Die Umgebungsvariable PKG_PREFIX wird auf das Verzeichnis gesetzt, in welches das Paket installiert wird. Siehe &man.pkg.add.1; für weiterführende Informationen. Das Skript wird nicht automatisch ausgeführt, wenn Sie den Port mit make install installieren. Wenn Sie es ausführen lassen wollen, dann müssen Sie es im Makefile aufrufen: PKG_PREFIX=${PREFIX} ${SH} ${PKGINSTALL} ${PKGNAME} PRE-INSTALL. <filename>pkg-deinstall</filename> Dieses Skript wird ausgeführt, wenn ein Paket deinstalliert wird. Es wird zweimal von &man.pkg.delete.1; aufgerufen. Das erste Mal als ${SH} pkg-deinstall ${PKGNAME} DEINSTALL und dann als ${SH} pkg-deinstall ${PKGNAME} POST-DEINSTALL. <filename>pkg-req</filename> Muss Ihr Port entscheiden, ob er installiert werden soll oder nicht, können Sie ein pkg-req-Bedingungsskript verwenden. Dieses wird automatisch bei der Installation/ Deinstallation aufgerufen, um zu entscheiden, ob die Installation/ Deinstallation fortgesetzt werden soll. Das Skript wird während der Installation von &man.pkg.add.1; als pkg-req ${PKGNAME} INSTALL aufgerufen. Bei der Deinstallation wird es von &man.pkg.delete.1; als pkg-req ${PKGNAME} DEINSTALL ausgeführt. Ändern der Namen der <filename>pkg-<replaceable>*</replaceable></filename> Dateien Alle Namen der pkg-* Dateien werden durch Variablen festgelegt. Sie können sie bei Bedarf also im Makefile des Ports ändern. Das ist besonders nützlich, wenn Sie die gleichen pkg-* Dateien in mehreren Ports nutzen oder in eine der oben genannten Dateien schreiben wollen. Schreiben Sie niemals außerhalb des Unterverzeichnisses WRKDIR pkg-*, eine Erklärung hierzu finden Sie in Schreiben ausserhalb von WRKDIR. Hier ist eine Liste von Variablennamen und ihren Standardwerten (PKGDIR ist standardmäßig ${MASTERDIR}). Variable Standardwert DESCR ${PKGDIR}/pkg-descr PLIST ${PKGDIR}/pkg-plist PKGINSTALL ${PKGDIR}/pkg-install PKGDEINSTALL ${PKGDIR}/pkg-deinstall PKGREQ ${PKGDIR}/pkg-req PKGMESSAGE ${PKGDIR}/pkg-message Bitte benutzen Sie diese Variablen anstatt PKG_ARGS zu ändern. Wenn Sie PKG_ARGS modifizieren, werden diese Dateien bei der Installation des Ports nicht korrekt in /var/db/pkg installiert. Nutzung von <makevar>SUB_FILES</makevar> und <makevar>SUB_LIST</makevar> Die Variablen SUB_FILES und SUB_LIST sind nützlich, um dynamische Werte in Port-Dateien zu verwenden, wie beispielsweise der Installations-PREFIX in pkg-message. Die Variable SUB_FILES enthält eine Liste von Dateien, die automatisch verändert werden. Jede Datei in SUB_FILES muss ein entsprechendes Pendant datei.in im Verzeichnis FILESDIR haben. Die modifizierte Version wird in WRKDIR angelegt. Dateien, die als Werte von USE_RC_SUBR (oder veraltet in USE_RCORDER) gespeichert werden, werden automatisch zu SUB_FILES hinzugefügt. Für die Dateien pkg-message, pkg-install, pkg-deinstall und pkg-req werden die jeweiligen Makefile-Variablen selbsttätig auf die geänderte Version der Datei gesetzt. Die Variable SUB_LIST ist eine Liste von VAR=WERT-Paaren. Jedes Paar %%VAR%% in den Dateien von SUB_FILES wird mit WERT ersetzt. Einige gebräuchliche Paare werden automatisch definiert: PREFIX, LOCALBASE, DATADIR, DOCSDIR, EXAMPLESDIR. Jede Zeile, die mit @comment beginnt, wird nach der Variablen-Ersetzung aus der neu erstellten Datei gelöscht. Im folgenden Beispiel wird %%ARCH%% mit der Systemarchitektur in pkg-message ersetzt: SUB_FILES= pkg-message SUB_LIST= ARCH=${ARCH} Beachten Sie bitte, dass in diesem Beispiel die Datei pkg-message.in im Verzeichnis FILESDIR vorhanden sein muss. Hier ein Beispiel für eine gute pkg-message.in: Now it is time to configure this package. Copy %%PREFIX%%/share/examples/putsy/%%ARCH%%.conf into your home directory as .putsy.conf and edit it. Ihren Port testen <command>make describe</command> ausführen Einige der &os;-Werkzeuge zur Pflege von Ports, wie zum Beispiel &man.portupgrade.1;, verwenden eine Datenbank names /usr/ports/INDEX, welche Eigenschaften, wie z.B. Port-Abhängigkeiten, verfolgt. INDEX wird vom Makefile der höchsten Ebene, ports/Makefile, mittels make index erstellt, welches in das Unterverzeichnis jedes Ports wechselt und dort make describe ausführt. Wenn also make describe bei einem Port fehlschlägt, kann INDEX nicht generiert werden und schnell werden viele Leute darüber unzufrieden sein. Es ist wichtig diese Datei erzeugen zu können, unabhängig davon, welche Optionen in make.conf vorhanden sind. Bitte vermeiden Sie es daher beispielsweise .error-Anweisungen zu benutzen, wenn zum Beispiel eine Abhängigkeit nicht erfüllt wird (Lesen Sie dazu bitte ). Wenn make describe eine Zeichenkette anstatt einer Fehlermeldung erzeugt, sind Sie wahrscheinlich auf der sicheren Seite. Vergleichen Sie die erzeugte Zeichenkette mit bsd.port.mk, um mehr über deren Bedeutung zu erfahren. Beachten Sie bitte außerdem, dass die Benutzung einer aktuellen Version von portlint (wie im nächsten Abschnitt beschrieben) automatisch make describe startet. Portlint Bitte überprüfen Sie Ihre Arbeit stets mit portlint, bevor Sie diese einreichen oder committen. portlint warnt Sie bei häufigen Fehlern, sowohl funktionaler als auch stilistischer Natur. Für einen neuen (oder repokopierten) Port ist portlint -A die gründlichste Variante; für einen bereits existierenden Port ist portlint -C ausreichend. Da portlint heuristische Methoden zur Fehlersuche benutzt, kann es vorkommen, dass Warnungen für Fehler erzeugt werden, die keine sind. Gelegentlich kann etwas, das als Problem angezeigt wird, aufgrund von Einschränkungen im Port-System nicht anders gelöst werden. Wenn es Zweifel gibt, fragen Sie am besten auf &a.ports; nach. Port Tools Das Programm ports-mgmt/porttools ist Teil der Ports-Sammlung. port ist das Front-End-Skript, das Ihnen dabei behilflich sein kann Ihre Arbeit als Tester zu vereinfachen. Um einen neuen Port zu testen oder einen bereits bestehenden Port zu aktualisieren, können Sie port test verwenden, damit die Tests, inklusive der portlint-Überprüfung, durchgeführt werden. Dieser Befehl spürt ausserdem alle nicht in pkg-plist enthaltenen Dateien auf und gibt eine Liste dieser aus. Hier ein Beispiel: &prompt.root; port test /usr/ports/net/csup <makevar>PREFIX</makevar> und <makevar>DESTDIR</makevar> PREFIX bestimmt, an welche Stelle der Port installiert werden soll. In der Regel ist dies/usr/local oder /opt, was jedoch anpassbar ist. Ihr Port muss sich an diese Variable halten. DESTDIR, wenn es vom Benutzer gesetzt wird, bestimmt die alternative Umgebung (in der Regel eine Jail oder ein installiertes System, welches an anderer Stelle als / eingehängt ist). Ein Port wird unter DESTDIR/PREFIX installiert und registriert sich in der Paket-Datenbank unter DESTDIR/var/db/pkg. Da DESTDIR mittels eines &man.chroot.8;-Aufrufs vom Ports-System automatisch gesetzt wird, brauchen Sie keine Änderungen oder besondere Pflege für DESTDIR-konforme Ports. Der Wert von PREFIX wird auf LOCALBASE gesetzt (Standard ist /usr/local). Falls USE_LINUX_PREFIX gesetzt ist, wird PREFIX LINUXBASE annehmen (Standard ist /compat/linux). Die Vermeidung der hart kodierten Angaben von /usr/local oder /usr/X11R6 im Quelltext wird den Port viel flexibler machen und erleichtert es die Anforderungen anderer Einsatzorte zu erfüllen. Für X-Ports, die imake benutzen, geschieht dies automatisch; andernfalls kann dies erreicht werden, indem alle Angaben von /usr/local (oder /usr/X11R6 für X-Ports, die nicht imake benutzen) in den verschiedenen Makefiles im Port ersetzt werden, um ${PREFIX} zu lesen, da diese Variable automatisch an jede Stufe des Build- und Install-Prozesses übergeben wird. Vergewissern Sie sich bitte, dass Ihre Anwendung nichts unter /usr/local an Stelle von PREFIX installiert. Um dies festzustellen, können Sie folgendes machen: &prompt.root; make clean; make package PREFIX=/var/tmp/$(make -V PORTNAME) Wenn etwas außerhalb von PREFIX installiert wird, so gibt der Prozess der Paketerstellung eine Meldung aus, dass es die Dateien nicht finden kann. Dies prüft nicht das Vorhandensein eines internen Verweises oder die richtige Verwendung von LOCALBASE für Verweise auf Dateien anderer Ports. Das Testen der Installation in /var/tmp/$(make -V PORTNAME) würde dies erledigen. Die Variable PREFIX kann in Ihrem Makefile oder der Umgebung des Benutzers neu gesetzt werden. Allerdings wird für einzelne Ports dringend davon abgeraten diese Variable in den Makefiles direkt zu setzen. Verweisen Sie bitte außerdem auf Programme/Dateien von anderen Ports durch die oben erwähnten Variablen und nicht mit den eindeutigen Pfadnamen. Wenn Ihr Port zum Beispiel vom Makro PAGER erwartet, dass es den vollständigen Pfadnamen von less enthält, benutzen Sie folgendes Compiler-Flag: -DPAGER=\"${LOCALBASE}/bin/less\" anstatt -DPAGER=\"/usr/local/bin/less\". Somit ist die Wahrscheinlichkeit höher, dass es auch funktioniert, wenn der Administrator den ganzen /usr/local-Baum an eine andere Stelle verschoben hat. Die Tinderbox Wenn Sie ein begeisterter Ports-Entwickler sind möchten Sie vielleicht einen Blick auf die Tinderbox werfen. Es ist ein leistungsstarkes System zur Erstellung und zum Testen von Ports, welches auf Skripten basiert, die auf Pointyhat verwendet werden. Sie können Tinderbox installieren, indem Sie den Port ports-mgmt/tinderbox benutzen. Bitte lesen Sie die mitgelieferte Dokumentation gründlich, da die Konfiguration nicht einfach ist. Um Näheres darüber zu erfahren, besuchen Sie bitte die Tinderbox Homepage. Einen Port aktualisieren Wenn Sie feststellen, dass ein Port verglichen mit der neuesten Version des Originalautors nicht mehr auf dem aktuellen Stand ist, sollten Sie als Erstes sicherstellen, dass Sie die aktuellste Version des Ports haben. Diese finden Sie im Verzeichnis ports/ports-current der FreeBSD FTP-Spiegelseiten. Wenn Sie allerdings mit mehr als ein paar Ports arbeiten, werden Sie es wahrscheinlich einfacher finden CVSup zu benutzen, um Ihre gesamte Ports-Sammlung aktuell zu halten, wie es im Handbuch beschrieben wird. Das hat zusätzlich den Vorteil, dass Sie so auch alle Abhängigkeiten des Ports aktuell halten. Der nächste Schritt besteht darin festzustellen, ob bereits eine Aktualisierung des Ports darauf wartet committet zu werden. Um das sicherzustellen haben Sie folgende Möglichkeiten. Es gibt eine durchsuchbare Schnittstelle zur FreeBSD Problembericht Datenbank (PR - Problem Report) (auch bekannt als GNATS). Wählen Sie dazu Ports im Drop-Down-Menü und geben Sie den Namen des Ports ein. Allerdings wird manchmal vergessen den Namen des Ports eindeutig im Feld für die Zusammenfassung anzugeben. In diesem Fall können Sie das FreeBSD Ports Monitoring System (auch bekannt als portsmon) nutzen. Dieses versucht PRs von Ports nach Portname zu sortieren. Um PRs nach einem bestimmten Port zu durchsuchen können Sie die Übersicht eines Ports verwenden. Wenn es keine wartenden PRs gibt, ist der nächste Schritt eine E-Mail an den Maintainer des Ports zu schicken, wie von make maintainer gezeigt wird. Diese Person arbeitet vielleicht schon an einer Aktualisierung, oder hat einen guten Grund den Port im Moment nicht zu aktualisieren (z.B. wegen Stabilitätsproblemen der neuen Version). Sie wollen sicher nicht die Arbeit des Maintainers doppelt machen. Beachten Sie bitte, dass für Ports ohne Maintainer ports@FreeBSD.org eingetragen ist. Das ist nur die allgemeine &a.ports;-Mailingliste, deshalb wird es in diesem Fall wahrscheinlich nicht helfen eine E-Mail dorthin zu schicken. Wenn Sie der Maintainer bittet die Aktualisierung zu erledigen, oder falls es keinen Maintainer gibt, haben Sie Gelegenheit FreeBSD zu helfen, indem Sie die Aktualisierung selbst bereitstellen. Bitte führen Sie die Änderungen durch und speichern Sie die Ausgabe des rekursiven diff des neuen und alten Portverzeichnisses (wenn Ihr verändertes Portverzeichnis z.B. superedit und das Original superedit.bak heißt, dann speichern Sie bitte die Ergebnisse von diff -ruN superedit.bak superedit). Sowohl vereinheitlichendes als auch kontextabhängiges diff (Auflistung der Unterschiede zweier Dateien) sind akzeptabel, aber im Allgemeinen bevorzugen Port-Committer vereinheitlichende diffs. Bitte beachten Sie die Verwendung der -N-Option. Dies ist der gebräuchliche Weg diff dazu zu bewegen korrekt damit umzugehen, neue Dateien anzulegen und alte zu löschen. Bevor Sie das diff einsenden überprüfen Sie bitte die Ausgabe, um sicherzugehen, dass die Änderungen sinnvoll sind. Um gängige Operationen mit Korrekturdateien zu vereinfachen, können Sie /usr/ports/Tools/scripts/patchtool.py benutzen. Aber lesen Sie bitte vorher /usr/ports/Tools/scripts/README.patchtool. Falls der Port keinen Maintainer hat und Sie ihn selbst aktiv benutzen, ziehen Sie bitte in Erwägung sich als Maintainer zu melden. &os; hat mehr als 4000 Ports ohne Maintainer und in diesem Bereich werden immer zusätzliche Freiwillige benötigt (Für eine ausführliche Beschreibung der Verantwortlichkeiten eines Maintainers lesen Sie bitte im Developer's Handbook nach). Der beste Weg uns das diff zu schicken ist mittels &man.send-pr.1; (Kategorie Ports). Wenn Sie der Maintainer des Ports sind, fügen Sie bitte [maintainer update] an den Anfang Ihrer Zusammenfassung und setzen Sie die Klasse des PR auf maintainer-update. Ansonsten sollte die Klasse des PR change-request sein. Bitte erwähnen Sie alle hinzugefügten oder gelöschten Dateien in der Nachricht, da diese beim Commit ausdrücklich an &man.cvs.1; übergeben werden müssen. Wenn das diff größer ist als 20 Kilobyte komprimieren und uuencoden Sie es bitte. Ansonsten können Sie es in den PR einfügen wie es ist. Bevor Sie den PR mit &man.send-pr.1; abschicken, sollten Sie den Abschnitt Den Problembericht schreiben im Artikel über Problemberichte lesen. Dieser enthält sehr viel mehr Informationen darüber, wie man nützliche Problemberichte verfasst. Wenn Sie Ihre Aktualisierung aufgrund von Sicherheitsbedenken oder eines schwerwiegenden Fehlers bereitstellen wollen, informieren Sie bitte das &a.portmgr;, um einen sofortigen Rebuild und eine Neuverteilung des Pakets Ihres Ports durchzuführen. Sonst werden ahnungslose Nutzer von &man.pkg.add.1; über mehrere Wochen die alte Version durch pkg_add -r installieren. Noch einmal: Bitte verwenden Sie &man.diff.1; und nicht &man.shar.1;, um Aktualisierungen existierender Ports zu senden. Nun, da Sie all das geschafft haben, werden Sie in nachlesen können, wie Sie den Port aktuell halten. Sicherheit der Ports Warum Sicherheit so wichtig ist Es finden sich immer wieder Fehler in Software. Die gefährlichsten davon sind wohl jene, die Sicherheitslücken öffnen. Technisch gesehen müssen diese Lücken geschlossen werden, indem die Fehler, die Sie verursacht haben, beseitigt werden. Aber die Vorgehensweisen, wie mit bloßen Fehlern und Sicherheitslücken umgegangen wird, sind sehr unterschiedlich. Ein typischer kleiner Fehler betrifft nur Nutzer, die eine bestimmte Kombination von Optionen aktiviert haben, die den Fehler auslöst. Der Entwickler wird letztendlich einen Patch herausgeben, gefolgt von einer neuen Version des Programms, die den Fehler nicht mehr enthält – jedoch wird die Mehrheit der Nutzer nicht sofort aktualisieren, da sie von diesem Fehler nicht betroffen sind. Ein kritischer Fehler, der zu Datenverlust führen kann, stellt ein schwerwiegendes Problem dar. Dennoch sind sich umsichtige Nutzer bewusst, dass Datenverlust verschiedene Ursachen – neben Softwarefehlern – haben kann, und machen deshalb Sicherungskopien wichtiger Daten. Zumal ein kritischer Fehler sehr schnell entdeckt wird. Bei einer Sicherheitslücke ist dies ganz anders. Erstens wird sie vielleicht jahrelang nicht entdeckt, da dies oftmals keine Fehlfunktion im Programm verursacht. Zweitens kann eine böswillige Person unerlaubten Zugriff auf ein unsicheres System erlangen, um empfindliche Daten zu verändern oder zu zerstören; im schlimmsten Fall findet der Nutzer nicht einmal die Ursache des Schadens. Drittens hilft der Zugriff auf ein unsicheres System dem Angreifer oft in ein anderes System einzudringen, welches ansonsten nicht gefährdet wäre. Deshalb reicht es nicht aus eine Sicherheitslücke nur zu schließen: Die Zielgruppe sollte möglichst genau und umfassend darüber informiert werden, damit sie die Gefahr einschätzen und passende Maßnahmen ergreifen können. Sicherheitslücken schliessen Bei Ports und Paketen kann eine Sicherheitslücke im ursprünglichen Programm oder in den Port-Dateien verursacht werden. Im ersten Fall wird der ursprüngliche Entwickler den Fehler wahrscheinlich umgehend korrigieren oder eine neue Version herausgeben und Sie müssen den Port nur aktualisieren und die Korrekturen des Autors beachten. Falls sich die Korrektur aus irgendeinem Grund verzögert, sollten Sie den Port als FORBIDDEN markieren oder selbst den Fehler für den Port korrigieren. Falls die Sicherheitslücke im Port verursacht wird, sollten Sie ihn sobald wie möglich berichtigen. In jedem Fall sollte die Standardvorgehensweise zum Einreichen von Änderungen beachtet werden – es sei denn, Sie haben das Recht diese direkt in den Ports-Baum zu committen. Ports-Committer zu sein ist nicht genug, um Änderungen an einem beliebigen Port zu committen. Bitte denken Sie daran, dass Ports üblicherweise Maintainer haben, die Sie respektieren sollten. Bitte stellen Sie sicher, dass die Revision des Ports erhöht wird, sobald die Sicherheitslücke geschlossen wurde. Dadurch sehen die Nutzer, die installierte Pakete regelmäßig aktualisieren, dass es an der Zeit ist eine Aktualisierung durchzuführen. Außerdem wird ein neues Paket gebaut, über FTP– und WWW-Spiegel verteilt und die unsichere Version damit verdrängt. PORTREVISION sollte erhöht werden – es sei denn, PORTREVISION hat sich im Laufe der Korrektur des Fehlers geändert. Das heißt, Sie sollten PORTREVISION erhöhen, wenn Sie eine Korrektur hinzugefügt haben. Sie sollten diese aber nicht erhöhen, wenn Sie den Port auf die neueste Version des Programms gebracht haben und PORTREVISION somit schon verändert wurde. Bitte beachten Sie den betreffenden Abschnitt für weitere Informationen. Die Community informiert halten Die VuXML-Datenbank Ein sehr wichtiger und dringender Schritt, den man unternehmen muss, sobald eine Sicherheitslücke entdeckt wurde, ist die Gemeinschaft der Anwender des Ports über die Gefahr zu informieren. Diese Benachrichtigung hat zwei Gründe. Erstens wird es sinnvoll sein, wenn die Gefahr wirklich so groß ist, sofort Abhilfe zu schaffen, indem man z.B. den betreffenden Netzwerkdienst beendet oder den Port komplett deinstalliert, bis die Lücke geschlossen wurde. Und Zweitens pflegen viele Nutzer installierte Pakete nur gelegentlich zu aktualisieren. Sie werden aus der Mitteilung erfahren, dass Sie das Paket, sobald eine Korrektur verfügbar ist, sofort aktualisieren müssen. Angesichts der riesigen Zahl an Ports kann nicht für jeden Vorfall ein Sicherheitshinweis erstellt werden, ohne durch die Flut an Nachrichten die Aufmerksamkeit der Empfänger zu verlieren, im Laufe der Zeit kommt es so zu ernsten Problemen. Deshalb werden Sicherheitslücken von Ports in der FreeBSD VuXML-Datenbank aufgezeichnet. Das Team der Sicherheitsverantwortlichen beobachtet diese wegen Angelegenheiten, die Ihr Eingreifen erfordern. Wenn Sie Committerrechte haben, können Sie die VuXML-Datenbank selbst aktualisieren. Auf diese Weise helfen Sie den Sicherheitsverantwortlichen und liefern die kritischen Informationen frühzeitig an die Community. Aber auch wenn Sie kein Committer sind und glauben, Sie haben eine außergewöhnlich schwerwiegende Lücke gefunden – egal welche – zögern Sie bitte nicht die Sicherheitsverantwortlichen zu kontaktieren, wie es in den FreeBSD Sicherheitsinformationen beschrieben wird. In Ordnung, Sie haben sich also für den schwierigen Weg entschieden. Wie vielleicht aus dem Titel hervorgeht, ist die VuXMl-Datenbank hauptsächlich ein XML-Dokument. Die Quelldatei vuln.xml können Sie im Port security/vuxml finden. Deshalb wird der komplette Pfadname PORTSDIR/security/vuxml/vuln.xml lauten. Jedes Mal, wenn Sie eine Sicherheitslücke in einem Port entdecken, fügen Sie bitte einen Eintrag dafür in diese Datei ein. Solange Sie nicht mit VuXML vertraut sind, ist es das Beste, was Sie machen können, einen vorhandenen Eintrag, der zu Ihrem Fall passt, zu kopieren und als Vorlage zu verwenden. Eine kurze Einführung in VuXML Das komplette XML ist komplex und würde den Rahmen dieses Buches sprengen. Allerdings benötigen Sie für einen grundlegenden Einblick in die Struktur eines VuXML-Eintrags nur eine Vorstellung der Tags. XML-Tags bestehen aus Namen, die in spitzen Klammern eingeschlossen sind. Zu jedem öffnenden <Tag> muss ein passendes </Tag> existieren. Tags können geschachtelt werden. Wenn sie geschachtelt werden müssen die inneren Tags vor den Äußeren geschlossen werden. Es gibt eine Hierarchie von Tags – das heißt komplexere Regeln zur Schachtelung. Klingt so ähnlich wie HTML, oder? Der größte Unterschied ist: XML ist erweiterbar (eXtensible) – das heißt es basiert darauf maßgeschneiderte Tags zu definieren. Aufgrund seiner wesentlichen Struktur bringt XML ansonsten formlose Daten in eine bestimmte Form. VuXML ist speziell darauf zugeschnitten Beschreibungen von Sicherheitslücken zu verwalten. Lassen Sie uns nun einen realistischen VuXML-Eintrag betrachten: <vuln vid="f4bc80f4-da62-11d8-90ea-0004ac98a7b9"> <topic>Several vulnerabilities found in Foo</topic> <affects> <package> <name>foo</name> <name>foo-devel</name> <name>ja-foo</name> <range><ge>1.6</ge><lt>1.9</lt></range> <range><ge>2.*</ge><lt>2.4_1</lt></range> <range><eq>3.0b1</eq></range> </package> <package> <name>openfoo</name> <range><lt>1.10_7</lt></range> <range><ge>1.2,1</ge><lt>1.3_1,1</lt></range> </package> </affects> <description> <body xmlns="http://www.w3.org/1999/xhtml"> <p>J. Random Hacker reports:</p> <blockquote cite="http://j.r.hacker.com/advisories/1"> <p>Several issues in the Foo software may be exploited via carefully crafted QUUX requests. These requests will permit the injection of Bar code, mumble theft, and the readability of the Foo administrator account.</p> </blockquote> </body> </description> <references> <freebsdsa>SA-10:75.foo</freebsdsa> <freebsdpr>ports/987654</freebsdpr> <cvename>CAN-2010-0201</cvename> <cvename>CAN-2010-0466</cvename> <bid>96298</bid> <certsa>CA-2010-99</certsa> <certvu>740169</certvu> <uscertsa>SA10-99A</uscertsa> <uscertta>SA10-99A</uscertta> <mlist msgid="201075606@hacker.com">http://marc.theaimsgroup.com/?l=bugtraq&amp;m=203886607825605</mlist> <url>http://j.r.hacker.com/advisories/1</url> </references> <dates> <discovery>2010-05-25</discovery> <entry>2010-07-13</entry> <modified>2010-09-17</modified> </dates> </vuln> Die Namen der Tags sollten selbsterklärend sein  – also werfen wir einen genaueren Blick auf die Felder, die Sie selbst ausfüllen müssen: Dies ist die höchste Tag-Ebene eines VuXML-Eintrags. Es ist ein vorgeschriebenes Attribut vid, welches eine allgemein einzigartige Kennung (universally unique identifier, UUID) in Anführungszeichen für diesen Eintrag festlegt. Sie sollten eine UUID für jeden neuen VuXML-Eintrag erzeugen (und vergessen Sie nicht die UUID der Vorlage zu ersetzen, es sei denn, Sie schreiben den Eintrag von Grund auf selbst). Sie können &man.uuidgen.1; verwenden, um eine VuXML UUID zu erzeugen. Wahlweise können Sie, wenn Sie FreeBSD 4.x verwenden, den Port devel/p5-Data-UUID verwenden und folgenden Befehl aufrufen: perl -MData::UUID -le 'print lc new Data::UUID->create_str' Dies ist eine einzeilige Beschreibung des gefundenen Fehlers. Hier werden die Namen betroffener Pakete aufgeführt. Es können mehrere Namen angegeben werden, da mehrere Pakete von einem einzigen Master-Port oder Software-Produkt abhängen können. Das schließt Stable– und Developement-Zweige, lokalisierte Versionen und Slave-Ports ein, die verschiedene Auswahlmöglichkeiten wichtiger Kompilierungszeit-Optionen bieten. Es liegt in Ihrer Verantwortung all diese betroffenen Pakete zu finden, wenn Sie den VuXML-Eintrag schreiben.Behalten Sie im Hinterkopf, dass make search name=foo Ihr Freund ist. Die wichtigsten Punkte, auf die Sie achten sollten, sind die folgenden: die foo-devel Variante eines foo Ports; andere Varianten mit einem Suffix wie -a4 (für Druck-betreffende Pakete), -without-gui (für Pakete mit deaktivierter X-Unterstützung) oder ähnliche jp-, ru-, zh- und andere, eventuell lokalisierte, Varianten in den entsprechenden Länderkategorien der Ports-Sammlung Betroffene Versionen der Pakete werden hier als ein Bereich oder mehrere durch eine Kombination aus <lt>, <le> , <eq>, <ge>, und <gt>-Elementen ausgegeben. Die angegebenen Bereiche sollten sich nicht überschneiden. In einer Bereichsangabe steht * (Asterisk) für die kleinste Versionsnummer. Insbesondere ist 2.* kleiner als 2.a. Deshalb kann ein Stern benutzt werden, um auf alle möglichen Alpha -, Beta– und RC -Versionen zuzutreffen. Zum Beispiel passt <ge>2.*</ge><lt>3.* </lt> auf alle Versionen der Form 2.x, während <ge> 2.0</ge><lt>3.0</lt> das nicht erfüllt, da es nicht auf 2.r3 passt, auf 3.b aber schon. Das obige Beispiel legt fest, dass Versionen von 1.6 bis 1.9 betroffen sind – außerdem Versionen 2.x vor 2.4_1 und Version 3.0b1. Mehrere zusammenhängende Gruppen von Paketen (im wesentlichen Ports) können im Abschnitt <affected> aufgeführt werden. Das kann man benutzen, wenn sich Programme (sagen wir FooBar, FreeBar und OpenBar) denselben Quelltext als Grundlage haben und sich noch dessen Fehler und Sicherheitslücken teilen. Beachten Sie den Unterschied zum Anführen mehrerer Namen innerhalb eines <package> Abschnittes. Die Versionsbereiche sollten, wenn möglich, sowohl PORTEPOCH als auch PORTREVISION erlauben. Bitte denken Sie daran, dass gemäß der Vergleichsregeln eine Version mit einer PORTEPOCH, die nicht Null ist, größer ist als jede Version ohne PORTEPOCH. Das heißt, 3.0,1 ist größer als 3.1 oder sogar 8.9. Das ist die Zusammenfassung des Problems. In diesem Feld wird XHTML verwendet. Zumindest umschließende <p> und </p> sollten auftauchen. Komplexere Tags sind zwar möglich, aber sollten nur um der Genauigkeit und Klarheit willen verwendet werden: Bitte verwenden Sie hier kein Eye-Candy. Dieser Abschnitt enthält Verweise auf relevante Dokumente. Es wird empfohlen so viele Referenzen wie nötig aufzuführen. Das ist ein FreeBSD Sicherheitshinweis. Das ist ein FreeBSD Problembericht. Das ist eine Mitre CVE Kennung. Das ist eine SecurityFocus Fehler-Kennung. Das ist ein Sicherheitshinweis von US-CERT. Das ist eine Mitteilung über eine Schwachstelle von US-CERT. Das ist ein Cyber-Sicherheitsalarm von US-CERT. Das ist ein technischer Cyber-Sicherheitsalarm von US-CERT. Das ist eine URL zu einem archivierten Posting auf einer Mailingliste. Das Attribut msgid ist optional und gibt die Nachrichtenkennung des Postings an. Das ist eine gewöhnliche URL. Sie sollte nur verwendet werden, wenn keine der anderen Referenzkategorien verfügbar ist. Das ist das Datum, an dem die Sicherheitslücke bekannt wurde (JJJJ-MM-TT). Das ist das Datum, an dem der Eintrag hinzugefügt wurde (JJJJ-MM-TT). Das ist das Datum, an dem zuletzt irgendeine Information des Eintrags verändert wurde (JJJJ-MM-TT). Neue Einträge dürfen dieses Feld nicht enthalten. Es sollte beim Editieren eines existierenden Eintrags eingefügt werden. Ihre Änderungen an der VuXML-Datenbank testen Nehmen wir an, Sie haben gerade einen Eintrag für eine Sicherheitslücke in dem Paket clamav geschrieben oder ausgefüllt, die in der Version 0.65_7 korrigiert wurde. Als Voraussetzung sollten Sie eine neue Version der Ports ports-mgmt/portaudit und ports-mgmt/portaudit-db installieren. Zuerst überprüfen Sie bitte, ob bereits ein Eintrag für diese Schwachstelle existiert. Wenn es einen solchen Eintrag gibt, sollte er auf die vorige Version 0.65_6 zutreffen: &prompt.user; packaudit &prompt.user; portaudit clamav-0.65_6 Um packaudit auszuführen, müssen Sie die Berechtigung haben DATABASEDIR zu schreiben – üblicherweise ist das /var/db/portaudit. Wenn keine vorhandenen Einträge gefunden werden haben Sie grünes Licht einen neuen Eintrag für diese Sicherheitslücke anzulegen. Sie können nun eine neue UUID erzeugen (wir nehmen an, diese lautet 74a9541d-5d6c-11d8-80e3-0020ed76ef5a) und einen neuen Eintrag in der VuXML-Datenbank anlegen. Bitte überprüfen Sie danach die Syntax mit folgendem Befehl: &prompt.user; cd ${PORTSDIR}/security/vuxml && make validate Sie werden zumindest eines der folgenden Pakete benötigen: textproc/libxml2, textproc/jade. Jetzt bauen Sie bitte die portaudit-Datenbank aus der VuXML-Datei neu: &prompt.user; packaudit Um sicherzustellen, dass der Abschnitt <affected> Ihres Eintrags die richtigen Pakete betrifft, verwenden Sie bitte den folgenden Befehl: &prompt.user; portaudit -f /usr/ports/INDEX -r 74a9541d-5d6c-11d8-80e3-0020ed76ef5a Bitte lesen Sie in &man.portaudit.1; nach, um ein besseres Verständnis der Befehlssyntax zu entwickeln. Bitte stellen Sie sicher, dass Ihr Eintrag keine falschen Treffer in der Ausgabe erzeugt. Jetzt überprüfen Sie bitte, dass Ihr Eintrag die richtigen Versionen des Pakets angibt: &prompt.user; portaudit clamav-0.65_6 clamav-0.65_7 Affected package: clamav-0.65_6 (matched by clamav<0.65_7) Type of problem: clamav remote denial-of-service. Reference: <http://www.freebsd.org/ports/portaudit/74a9541d-5d6c-11d8-80e3-0020ed76ef5a.html> 1 problem(s) found. Offensichtlich sollte die erste Version ausgegeben werden – die zweite jedoch nicht. Abschließend überprüfen Sie bitte, ob die Webseite, die aus der VuXML-Datenbank erzeugt wird, wie erwartet aussieht: &prompt.user; mkdir -p ~/public_html/portaudit &prompt.user; packaudit &prompt.user; lynx ~/public_html/portaudit/74a9541d-5d6c-11d8-80e3-0020ed76ef5a.html Was man machen respektive vermeiden sollte Einführung Hier ist eine Liste von gebräuchlichen Dos and Don'ts (Dinge, die man machen oder vermeiden sollte), welchen Sie während des Portierungsprozesses begegnen werden. Sie sollten Ihren Port anhand dieser Liste überprüfen. Sie können auch Ports in der PR Datenbank, welche andere Menschen eingereicht haben, kontrollieren. Senden Sie bitte Kommentare zu Ports, die Sie verifizieren wie unter Bug Reports and General Commentary beschrieben. Der Abgleich von Ports aus der PR-Datenbank hilft uns diese schneller zu committen, und zeigt auch, dass Sie wissen, worum es geht. <makevar>WRKDIR</makevar> Schreiben Sie in keine Dateien außerhalb von WRKDIR. WRKDIR ist der einzige Ort, welcher während des Erstellen des Ports garantiert beschreibbar ist (siehe Ports Installieren von CDROM für ein Beispiel, um Ports in einem schreibgeschützen Zweig zu erstellen). Wenn Sie eine der pkg-* Dateien modifizieren müssen, sollten Sie eine Variable erneut definieren, anstatt die Datei zu überschreiben. <makevar>WRKDIRPREFIX</makevar> Vergewissern Sie sich, dass Ihr Port WRKDIRPREFIX beachtet. Die meisten Ports sollten sich darüber keine Sorgen machen. Beachten Sie bitte, falls auf WRKDIR eines anderen Ports verwiesen wird, dass die korrekte Position WRKDIRPREFIXPORTSDIR/subdir/name/work, und nicht etwa PORTSDIR/subdir/name/work, .CURDIR/../../subdir/name/work oder ähnliches ist. Falls Sie WRKDIR selbst definieren, sollten Sie sicherstellen, dass Sie ${WRKDIRPREFIX}${.CURDIR} am Anfang anfügen. Unterschiedliche Betriebssysteme und Betriebssystemversionen Sie können auf Quelltext treffen, welcher Modifizierungen oder bedingtes Kompilieren, abhängig davon, unter welcher Unix-Version er läuft, benötigt. Falls Sie Änderungen an solch einem Quelltext vornehmen müssen, stellen Sie bitte sicher, dass Sie Ihre Änderungen so allgemein wie möglich halten, damit wir den Quelltext auf ältere FreeBSD-Systeme portieren und zur Quer-Portierung auf andere BSD-Systeme, wie etwa 4.4BSD von CSRG, BSD/386, 386BSD, NetBSD und OpenBSD verwenden können. Der bevorzugte Weg, um 4.3BSD/Reno (1990) und neuere Versionen des BSD-Quelltextes zu unterscheiden, ist das BSD-Makro zu nutzen, welches in sys/param.h definiert ist. Hoffentlich ist diese Datei schon enthalten – falls nicht, so fügen Sie folgenden Quelltext: #if (defined(__unix__) || defined(unix)) && !defined(USG) #include <sys/param.h> #endif an der richtigen Stelle in der .c Datei hinzu. Wir glauben, dass jedes System, welches diese beiden Symbole definiert, die Datei sys/param.h besitzt. Wenn Sie auf Systeme stoßen, wo dies nicht so ist, würden wir gerne davon erfahren. Bitte senden Sie eine E-Mail an &a.ports;. Eine andere Möglichkeit zur Unterscheidung ist der GNU Autoconf-Stil: #ifdef HAVE_SYS_PARAM_H #include <sys/param.h> #endif Vergessen Sie nicht -DHAVE_SYS_PARAM_H zu den CFLAGS im Makefile hinzuzufügen, falls Sie diese Methode benutzen sollten. Sobald Sie sys/param.h hinzugefügt haben, können Sie mit Hilfe von #if (defined(BSD) && (BSD >= 199103)) unterscheiden, ob der Quelltext auf einer 4.3 Net2 Code-Basis oder neuer (z.B. FreeBSD 1.x, 4.3/Reno, NetBSD 0.9, 386BSD, BSD/386 1.1 und niedriger) kompiliert werden wird. Benutzen Sie: #if (defined(BSD) && (BSD >= 199306)) um zu differenzieren, ob der Quelltext auf der Basis von 4.4 Code oder neuer (z.B. FreeBSD 2.x, 4.4, NetBSD 1.0, BSD/386 2.0 oder höher) kompiliert werden wird. Der Wert des BSD-Makros ist 199506 für die 4.4BSD-Lite2 Codebasis. Beachten Sie bitte, dass dies hier nur der Information wegen angegeben ist. Das Makro sollte nicht dazu benutzt werden, um zwischen Versionen von FreeBSD, welche auf 4.4-Lite basieren, und Versionen, welche Änderungen von 4.4-Lite2 übernommen haben, zu unterscheiden. Das __FreeBSD__ Makro sollte stattdessen verwandt werden. Sparsam sollte eingesetzt werden: __FreeBSD__ ist in allen Versionen von FreeBSD definiert. Benutzen Sie dieses Makro, falls die Änderung(en), die Sie machen, nur FreeBSD betrifft. Portierungsfallen, wie der Gebrauch von sys_errlist[] gegenüber strerror() sind Berkeley-Eigenheiten, keine FreeBSD Änderungen. In FreeBSD 2.x, ist __FreeBSD__ auf 2 definiert. In älteren Versionen, ist es 1. Alle späteren Versionen erhöhen es, damit es mit der Haupt-Versionsnummer übereinstimmt. Falls Sie zwischen einem FreeBSD 1.x und einem FreeBSD 2.x (oder höher) System unterscheiden müssen, ist es normalerweise richtig, die BSD-Makros (wie oben beschrieben) zu benutzen. Gibt es tatsächlich eine FreeBSD-spezifische Änderung (wie z.B. spezielle Optionen von Shared-Libraries für ld), ist es nicht zu beanstanden __FreeBSD__ und #if __FreeBSD__ > 1 zu nutzen, um FreeBSD 2.x und spätere Systeme zu erkennen. Falls Sie eine höhere Genauigkeit benötigen, um FreeBSD Systeme seit 2.0-RELEASE zu erkennen, können Sie folgendes nutzen: #if __FreeBSD__ >= 2 #include <osreldate.h> # if __FreeBSD_version >= 199504 /* 2.0.5+ release specific code here */ # endif #endif In den Tausenden von Ports, die bis jetzt erstellt wurden, gab es nur ein oder zwei Fälle, in denen __FreeBSD__ hätte benutzt werden sollen. Nur weil ein früherer Port es an der falschen Stelle benutzt hatte, bedeutet das nicht, dass Sie dies auch machen sollten. __FreeBSD_version Werte Hier ist eine praktische Liste von __FreeBSD_version-Werten wie in sys/param.h definiert: __FreeBSD_version-Werte Wert Datum Release 119411 2.0-RELEASE 199501, 199503 19. März 1995 2.1-CURRENT 199504 9. April 1995 2.0.5-RELEASE 199508 26. August 1995 2.2-CURRENT vor 2.1 199511 10. November 1995 2.1.0-RELEASE 199512 10. November 1995 2.2-CURRENT vor 2.1.5 199607 10. Juli 1996 2.1.5-RELEASE 199608 12. Juli 1996 2.2-CURRENT vor 2.1.6 199612 15. November 1996 2.1.6-RELEASE 199612 2.1.7-RELEASE 220000 19. Februar 1997 2.2-RELEASE (nicht geändert) 2.2.1-RELEASE (nicht geändert) 2.2-STABLE nach 2.2.1-RELEASE 221001 15. April 1997 2.2-STABLE nach texinfo-3.9 221002 30. April 1997 2.2-STABLE nach top 222000 16. Mai 1997 2.2.2-RELEASE 222001 19. Mai 1997 2.2-STABLE nach 2.2.2-RELEASE 225000 2. Oktober 1997 2.2.5-RELEASE 225001 20. November 1997 2.2-STABLE nach 2.2.5-RELEASE 225002 27. Dezember 1997 2.2-STABLE nach der Aufnahme von ldconfig -R 226000 24. März 1998 2.2.6-RELEASE 227000 21. Juli 1998 2.2.7-RELEASE 227001 21. Juli 1998 2.2-STABLE nach 2.2.7-RELEASE 227002 19. September 1998 2.2-STABLE nach &man.semctl.2; Änderung 228000 29. November 1998 2.2.8-RELEASE 228001 29. November 1998 2.2-STABLE nach 2.2.8-RELEASE 300000 19. Februar 1996 3.0-CURRENT vor &man.mount.2; Änderung 300001 24. September 1997 3.0-CURRENT nach &man.mount.2; Änderung 300002 2. Juni 1998 3.0-CURRENT nach &man.semctl.2; Änderung 300003 7. Juni 1998 3.0-CURRENT nach ioctl arg Änderungen 300004 3. September 1998 3.0-CURRENT nach ELF-Konvertierung 300005 16. Oktober 1998 3.0-RELEASE 300006 16. Oktober 1998 3.0-CURRENT nach 3.0-RELEASE 300007 22. Januar 1999 3.0-STABLE nach 3/4 Zweig 310000 9. Februar 1999 3.1-RELEASE 310001 27. März 1999 3.1-STABLE nach 3.1-RELEASE 310002 14. April 1999 3.1-STABLE nach Änderung der C++ Konstruktor/Destruktor-Reihenfolge 320000 3.2-RELEASE 320001 8. Mai 1999 3.2-STABLE 320002 29. August 1999 3.2-STABLE nach binär-inkompatibler IPFW und Socket-Änderungen 330000 2. September 1999 3.3-RELEASE 330001 16. September 1999 3.3-STABLE 330002 24. November 1999 3.3-STABLE nach Hinzufügen von &man.mkstemp.3; zur libc 340000 5. Dezember 1999 3.4-RELEASE 340001 17. Dezember 1999 3.4-STABLE 350000 20. Juni 2000 3.5-RELEASE 350001 12. Juli 2000 3.5-STABLE 400000 22. Januar 1999 4.0-CURRENT nach 3.4 Zweig 400001 20. Februar 1999 4.0-CURRENT nach der Änderung im Verhalten des dynamischen Linkers. 400002 13. März 1999 4.0-CURRENT nach Änderung der C++ Konstruktor/Destruktor Reihenfolge. 400003 27. März 1999 4.0-CURRENT nach funktionierendem &man.dladdr.3;. 400004 5. April 1999 4.0-CURRENT nach der __deregister_frame_info Fehlerbehebung für den dynamischen Linker (auch 4.0-CURRENT nach EGCS 1.1.2 Integration). 400005 27. April 1999 4.0-CURRENT nach &man.suser.9; API Änderung (auch 4.0-CURRENT nach newbus). 400006 31. Mai 1999 4.0-CURRENT nach Änderung der cdevsw-Registrierung. 400007 17. Juni 1999 4.0-CURRENT nach Hinzufügen von so_cred für Zugangsberechtigungen auf Socket-Ebene. 400008 20. Juni 1999 4.0-CURRENT nach Hinzufügen eines poll Syscall-Wrappers zur libc_r. 400009 20. Juli 1999 4.0-CURRENT nach der Änderung des Kernel dev_t-Typs zum struct specinfo-Zeiger. 400010 25. September 1999 4.0-CURRENT nach dem Beseitigen eines Fehlers in &man.jail.2;. 400011 29. September 1999 4.0-CURRENT nach der sigset_t Datentyp Änderung. 400012 15. November 1999 4.0-CURRENT nach dem Wechsel zum GCC 2.95.2-Compiler. 400013 4. Dezember 1999 4.0-CURRENT nach Hinzufügen der erweiterbaren Linux Mode ioctl-Routinen. 400014 18. Januar 2000 4.0-CURRENT nach dem OpenSSL-Import. 400015 27. Januar 2000 4.0-CURRENT nach der C++ ABI Änderung in GCC 2.95.2 von -fvtable-thunks zu -fno-vtable-thunks als Standard. 400016 27. Februar 2000 4.0-CURRENT nach OpenSSH-Import. 400017 13. März 2000 4.0-RELEASE 400018 17. März 2000 4.0-STABLE nach 4.0-RELEASE 400019 5. Mai 2000 4.0-STABLE nach der Einführung von verzögerten Prüfsummen. 400020 4. Juni 2000 4.0-STABLE nach dem Einpflegen des libxpg4-Quelltextes in die libc. 400021 8. Juli 2000 4.0-STABLE nach der Aktualisierung von Binutils auf 2.10.0, Änderungen der binären ELF-Markierungen, Aufnahme von tcsh ins Basissystem. 410000 14. Juli 2000 4.1-RELEASE 410001 29. Juli 2000 4.1-STABLE nach 4.1-RELEASE 410002 16. September 2000 4.1-STABLE nachdem &man.setproctitle.3; von der libutil in die libc verschoben wurde. 411000 25. September 2000 4.1.1-RELEASE 411001 4.1.1-STABLE nach 4.1.1-RELEASE 420000 31. Oktober 2000 4.2-RELEASE 420001 10. Januar 2001 4.2-STABLE nach Kombinaion von libgcc.a und libgcc_r.a und zugehörigen Änderungen der GCC-Bindungen. 430000 6. März 2001 4.3-RELEASE 430001 18. Mai 2001 4.3-STABLE nach der Einführung von wint_t. 430002 22. Juli 2001 4.3-STABLE nach dem Einpflegen der PCI Stromstatus-API. 440000 1. August 2001 4.4-RELEASE 440001 23. Oktober 2001 4.4-STABLE nach der Einführung von d_thread_t. 440002 4. November 2001 4.4-STABLE nach den Änderungen der mount-Struktur (betrifft Dateisystem-Kernelmodule). 440003 18. Dezember 2001 4.4-STABLE nachdem die Userland-Komponenten von smbfs importiert worden sind. 450000 20. Dezember 2001 4.5-RELEASE 450001 24. Februar 2002 4.5-STABLE nach der Umbenennung von Elementen der USB-Struktur. 450004 16. April 2002 4.5-STABLE nachdem die sendmail_enable &man.rc.conf.5; Variable geändert worden ist, um den Wert NONE zu akzeptieren. 450005 27. April 2002 4.5-STABLE nachdem XFree86 4 als Standard zum Bauen der Pakete benutzt wird. 450006 1. Mai 2002 4.5-STABLE nach dem Reparieren des Empfangsfilters, welcher anfällig für einfache DoS-Attacken war. 460000 21. Juni 2002 4.6-RELEASE 460001 21. Juni 2002 4.6-STABLE &man.sendfile.2; repariert, um mit der Dokumentation übereinzustimmen, und nicht mehr die Anzahl der gesendeten Header mit der Anzahl der Daten, welche aus der Datei geschickt werden, gegenzurechnen. 460002 19. Juli 2002 4.6.2-RELEASE 460100 26. Juni 2002 4.6-STABLE 460101 26. Juni 2002 4.6-STABLE nach dem Einfließen von `sed -i' aus CURRENT. 460102 1. September 2002 4.6-STABLE nach dem Einfließen von vielen neuen pkg_install-Funktionen aus HEAD (HEAD = die aktuellste und letzte Version des Quellverzeichnisbaumes). 470000 8. Oktober 2002 4.7-RELEASE 470100 9. Oktober 2002 4.7-STABLE 470101 10. November 2002 Beginn von generierten __std{in,out,err}p Referenzen statt __sF. Dies ändert std{in,out,err} von einem Ausdruck während des Kompilierens zu einem Laufzeitausdruck. 470102 23. Januar 2003 4.7-STABLE nach dem Einfliessen von mbuf-Änderungen, um m_aux mbufs mit denen von m_tag zu ersetzen 470103 14. Februar 2003 4.7-STABLE erhält OpenSSL 0.9.7 480000 30. März 2003 4.8-RELEASE 480100 5. April 2003 4.8-STABLE 480101 22. Mai 2003 4.8-STABLE nachdem &man.realpath.3; Thread-sicher gemacht wurde. 480102 10. August 2003 4.8-STABLE Änderung der 3ware-API in twe. 490000 27. Oktober 2003 4.9-RELEASE 490100 27. Oktober 2003 4.9-STABLE 490101 8. Januar 2004 4.9-STABLE nachdem e_sid zu der Struktur kinfo_eproc hinzugefügt wurde. 490102 4. Februar 2004 4.9-STABLE nach dem Einfliessen der libmap-Funktionalität für rtld. 491000 25. Mai 2004 4.10-RELEASE 491100 1. Juni 2004 4.10-STABLE 491101 11. August 2004 4.10-STABLE nach dem Einfliessen von Revision 20040629 der Paket-Werkzeuge aus CURRENT. 491102 16. November 2004 4.10-STABLE nach der Fehlerbehebung in der VM, um das Freigeben von fiktiven Speicherseiten korrekt zu handhaben. 492000 17. Dezember 2004 4.11-RELEASE 492100 17. Dezember 2004 4.11-STABLE 492101 18. April 2006 4.11-STABLE nach dem Hinzufügen von libdata/ldconfig Verzeichnissen zu den mtree-Dateien. 500000 13. März 2000 5.0-CURRENT 500001 18. April 2000 5.0-CURRENT nach Hinzufügen von zusätzlichen Feldern in den ELF-Headern und Ändern der Methode zur ELF-Markierung von Binärdateien. 500002 2. Mai 2000 5.0-CURRENT nach kld-Metadaten Änderungen. 500003 18. Mai 2000 5.0-CURRENT nach buf/bio Änderungen. 500004 26. Mai 2000 5.0-CURRENT nach binutils Aktualisierung. 500005 3. Juni 2000 5.0-CURRENT nach dem Einfliessen des libxpg4 Quelltextes in die libc und der Einführung der TASKQ-Schnittstelle. 500006 10. Juni 2000 5.0-CURRENT nach dem Hinzufügen der AGP-Schnittstellen. 500007 29. Juni 2000 5.0-CURRENT nach der Aktualisierung von Perl auf Version 5.6.0. 500008 7. Juli 2000 5.0-CURRENT nach der Aktualisierung des KAME-Quelltextes zu den 2000/07-Quellen. 500009 14. Juli 2000 5.0-CURRENT nach ether_ifattach() und ether_ifdetach() Änderungen. 500010 16. Juli 2000 5.0-CURRENT nachdem die mtree-Standards zurück zur ursprünglichen Variante geändert wurden; -L hinzugefügt, um Symlinks zu folgen. 500011 18. Juli 2000 5.0-CURRENT nachdem die kqueue-API geändert worden ist. 500012 2. September 2000 5.0-CURRENT nachdem &man.setproctitle.3; von libutil nach libc verschoben worden ist. 500013 10. September 2000 5.0-CURRENT nach dem ersten SMPng-Commit. 500014 4. Januar 2001 5.0-CURRENT nachdem <sys/select.h> nach <sys/selinfo.h> verschoben worden ist. 500015 10. Januar 2001 5.0-CURRENT nach dem Kombinieren von libgcc.a und libgcc_r.a und damit verbundene Änderungen an GCC-Bindungen. 500016 24. Januar 2001 5.0-CURRENT nach der Änderung das Zusammenbinden von libc und libc_r zu erlauben, womit die -pthread Option veraltet ist. 500017 18. Februar 2001 5.0-CURRENT nach dem Umschalten von struct ucred zu struct xucred, um die vom Kernel exportierte API für mount u.a.zu stabilisieren. 500018 24. Februar 2001 5.0-CURRENT nach dem Hinzufügen der CPUTYPE make Variable zum Kontrollieren von CPU-spezifischen Optimierungen. 500019 9. Juni 2001 5.0-CURRENT nach dem Verschieben von machine/ioctl_fd.h nach sys/fdcio.h 500020 15. Juni 2001 5.0-CURRENT nach der Umbenennung der locale-Namen. 500021 22. Juni 2001 5.0-CURRENT nach dem Bzip2-Import. Kennzeichnet auch, dass S/Key entfernt wurde. 500022 12. Juli 2001 5.0-CURRENT nach SSE Unterstützung. 500023 14. September 2001 5.0-CURRENT nach KSE-Meilenstein 2. 500024 1. Oktober 2001 5.0-CURRENT nach d_thread_t, und nachdem UUCP in die Ports verschoben worden ist. 500025 4. Oktober 2001 5.0-CURRENT nach Änderungen in der ABI bei der Weitergabe von Deskriptoren und Berechtigungen auf 64 Bit Plattformen. 500026 9. Oktober 2001 5.0-CURRENT nachdem XFree86 4 als Standard zum Erstellen der Pakete benutzt wird und die neue libc strnstr()-Funktion hinzugefügt wurde. 500027 10. Oktober 2001 5.0-CURRENT nachdem die neue libc strcasestr()-Funktion hinzugefügt wurde. 500028 14. Dezember 2001 5.0-CURRENT nachdem die Userland-Komponenten von smbfs importiert wurden. (nicht geändert) 5.0-CURRENT nachdem die neuen C99-Ganzzahlen mit spezifischer Breite hinzugefügt wurden. 500029 29. Januar 2002 5.0-CURRENT nachdem eine Änderung im Rückgabewert von &man.sendfile.2; gemacht wurde. 500030 15. Februar 2002 5.0-CURRENT nach der Einführung des Types fflags_t, welches die passende Größe für Dateiflags hat. 500031 24. Februar 2002 5.0-CURRENT nach der Umbenennung der USB elements-Struktur. 500032 16. März 2002 5.0-CURRENT nach der Einführung von Perl 5.6.1. 500033 3. April 2002 5.0-CURRENT nachdem die sendmail_enable &man.rc.conf.5; Variable geändert worden ist, um den Wert NONE zu akzeptieren. 500034 30. April 2002 5.0-CURRENT nachdem mtx_init() einen dritten Parameter entgegen nimmt. 500035 13. Mai 2002 5.0-CURRENT mit GCC 3.1. 500036 17. Mai 2002 5.0-CURRENT ohne Perl in /usr/src 500037 29. Mai 2002 5.0-CURRENT nach dem Hinzufügen von &man.dlfunc.3; 500038 24. Juli 2002 5.0-CURRENT nachdem die Typen von einigen Elementen der sockbuf-Struktur geändert wurden und nachdem die Struktur neu geordnet wurde. 500039 1. September 2002 5.0-CURRENT nach dem GCC 3.2.1 Import. Und auch nachdem die Header nicht mehr _BSD_FOO_T_ sondern _FOO_T_DECLARED benutzen. Dieser Wert kann auch als konservative Schätzung für den Beginn der Unterstützung des &man.bzip2.1; Pakets verwendet werden. 500040 20. September 2002 5.0-CURRENT nachdem verschiedene Änderungen an Plattenfunktionen gemacht wurden, um die Anhängigkeit von Interna der disklabel-Struktur zu entfernen. 500041 1. Oktober 2002 5.0-CURRENT nach dem Hinzufügen von &man.getopt.long.3; zur libc. 500042 15. Oktober 2002 5.0-CURRENT nach der Aktualisierung von Binutils auf 2.13, bei denen die FreeBSD-Emulation, vec und das Ausgabeformat geändert wurden. 500043 1. November 2002 5.0-CURRENT nach dem Hinzufügen schwacher pthread_XXX Stubs zur libc, womit libXThrStub.so veraltet ist. 5.0-RELEASE. 500100 17. Januar 2003 5.0-CURRENT nach dem Erstellen des RELENG_5_0-Zweiges 500101 19. Februar 2003 <sys/dkstat.h> ist leer und sollte nicht inkludiert werden. 500102 25. Februar 2003 5.0-CURRENT nach der Änderung in der d_mmap_t-Schnittstelle. 500103 26. Februar 2003 5.0-CURRENT nachdem taskqueue_swi geädert wurde, um ohne Giant zu arbeiten, und taskqueue_swi_giant hinzugefügt wurde, um Giant zu verwenden. 500104 27. Februar 2003 cdevsw_add() und cdevsw_remove() gibt es nicht länger. Auftauchen der MAJOR_AUTO-Allokationsmöglichkeit. 500105 4. März 2003 5.0-CURRENT nach der neuen cdevsw-Initialisierungsmethode. 500106 8. März 2003 devstat_add_entry() wurde durch devstat_new_entry() ersetzt. 500107 15. März 2003 Devstat Schnittstellenänderung; siehe sys/sys/param.h 1.149. 500108 15. März 2003 Token-Ring Schnittstellenänderungen. 500109 25. März 2003 Hinzufügen von vm_paddr_t. 500110 28. März 2003 5.0-CURRENT nachdem &man.realpath.3; Thread-sicher gemacht wurde. 500111 9. April 2003 5.0-CURRENT nachdem &man.usbhid.3; mit NetBSD synchronisiert wurde. 500112 17. April 2003 5.0-CURRENT nach der neuen NSS Implementierung und Hinzufügen der POSIX.1 getpw*_r, getgr*_r Funktionen. 500113 2. Mai 2003 5.0-CURRENT nach Entfernen des alten rc-Systems. 501000 4. Juni 2003 5.1-RELEASE. 501100 2. Juni 2003 5.1-CURRENT nach dem Erstellen des RELENG_5_1 Zweiges. 501101 29. Juni 2003 5.1-CURRENT nachdem die Semantik von sigtimedwait(2) and sigwaitinfo(2) korrigiert wurden. 501102 3. Juli 2003 5.1-CURRENT nach dem Hinzufügen der lockfunc und lockfuncarg-Felder zu &man.bus.dma.tag.create.9;. 501103 31. Juli 2003 5.1-CURRENT nach der Integration des GCC 3.3.1-pre 20030711 Snapshots. 501104 5. August 2003 5.1-CURRENT 3ware-API Änderungen in twe. 501105 17. August 2003 5.1-CURRENT Unterstützung von dynamisch gebundenen /bin und /sbin und Verschieben von Bibliotheken nach /lib. 501106 8. September 2003 5.1-CURRENT nachdem im Kernel Unterstützung für Coda 6.x hinzugefügt wurden. 501107 17. September 2003 5.1-CURRENT nachdem die 16550 UART-Konstanten von <dev/sio/sioreg.h> nach <dev/ic/ns16550.h> verschoben wurden. Und nachdem die libmap Funktionalität vorbehaltlos vom rtld unterstützt wurde. 501108 23. September 2003 5.1-CURRENT nach Aktualisierung der PFIL_HOOKS API. 501109 27. September 2003 5.1-CURRENT nachdem kiconv(3) hinzugefügt wurde. 501110 28. September 2003 5.1-CURRENT nachdem der standardmäßige Ablauf von open und close in cdevsw geändert wurde. 501111 16. Oktober 2003 5.1-CURRENT nachdem das Layout von cdevsw geändert wurde. 501112 16. Oktober 2003 5.1-CURRENT nach dem Hinzufügen von Mehrfachvererbung in kobj. 501113 31. Oktober 2003 5.1-CURRENT nach der if_xname Änderung in der Struktur ifnet 501114 16. November 2003 5.1-CURRENT nachdem /bin und /sbin geändert wurden, um sie dynamisch zu binden. 502000 7. Dezember 2003 5.2-RELEASE 502010 23. Februar 2004 5.2.1-RELEASE 502100 7. Dezember 2003 5.2-CURRENT nach dem Erstellen des RELENG_5_2-Zweiges. 502101 19. Dezember 2003 5.2-CURRENT nachdem die __cxa_atexit/__cxa_finalize Funktionen zur libc hinzugefügt wurden. 502102 30. Januar 2004 5.2-CURRENT nachdem die Standard-Thread Bibliothek von libc_r zu libpthread geändert wurde. 502103 21. Februar 2004 5.2-CURRENT nach dem Gerätetreiber API Megapatch. 502104 25. Februar 2004 5.2-CURRENT nachdem getopt_long_only() hinzugefügt wurde. 502105 5. März 2004 5.2-CURRENT nachdem NULL für C in ((void *)0) geändert wurde, was mehr Warnungen erzeugt. 502106 8. März 2004 5.2-CURRENT nachdem pf beim Bauen und Installieren mit eingebunden wird. 502107 10. März 2004 5.2-CURRENT nachdem time_t auf der sparc64-Plattform in einen 64-bit Wert geändert wurde. 502108 12. März 2004 5.2-CURRENT nachdem sich die Unterstützung für den Intel C/C++-Compiler in einigen Headern und execve(2) geändert hat, um sich strikter an POSIX zu halten. 502109 22. März 2004 5.2-CURRENT nach der Einführung der bus_alloc_resource_any API 502110 27. März 2004 5.2-CURRENT nach dem Hinzufügen von UTF-8 locales 502111 11. April 2004 5.2-CURRENT nach dem Entfernen der getvfsent(3) API 502112 13. April 2004 5.2-CURRENT nach dem Hinzufügen der .warning Directive für make. 502113 4. Juni 2004 5.2-CURRENT nachdem ttyioctl() zwingend erforderlich für serielle Treiber gemacht wurde. 502114 13. Juni 2004 5.2-CURRENT nach dem Import des ALTQ-Frameworks. 502115 14. Juni 2004 5.2-CURRENT nachdem sema_timedwait(9) geändert wurde, 0 bei Erfolg und einen von 0 verschiedenen Fehlercode im Falle eines Fehlers zurückzuliefern. 502116 16. Juni 2004 5.2-CURRENT nach dem Ändern der Kernel Struktur dev_t, in ein Zeiger auf die Struktur cdev * 502117 17. Juni 2004 5.2-CURRENT nach dem Ändern der Kernelstruktur udev_t in dev_t. 502118 17. Juni 2004 5.2-CURRENT nachdem Unterstützung für CLOCK_VIRTUAL und CLOCK_PROF zu clock_gettime(2) und clock_getres(2) hinzugefügt wurde. 502119 22. Juni 2004 5.2-CURRENT nachdem die Überprüfung des Klonens von Netzwerk-Schnittstellen geändert wurde. 502120 2. Juli 2004 5.2-CURRENT nach dem Einfliessen von Revision 20040629 der Paket-Werkzeuge. 502121 9. Juli 2004 5.2-CURRENT nachdem Bluetooth-Quelltext als nicht i386-spezifisch markiert wurde. 502122 11. Juli 2004 5.2-CURRENT nach der Einführung des KDB Debugger Frameworks, der Umwandlung des DDB in ein Backend und der Einführung des GDB-Backends. 502123 12. Juli 2004 5.2-CURRENT nachdem VFS_ROOT geändert wurde, eine Struktur thread als Argument zu aktzeptieren, wie vflush. Die Struktur kinfo_proc enthält nun einen Zeiger auf Benutzer Daten. Der Umstieg auf xorg als standardmäßige X Implementierung wurde auch zu dieser Zeit durchgeführt. 502124 24. Juli 2004 5.2-CURRENT nachdem die Art und Weise, wie rc.d-Skripte von Ports und Altlasten gestartet werden, getrennt wurde. 502125 28. Juli 2004 5.2-CURRENT nachdem die vorherige Änderung rückgängig gemacht wurde. 502126 31. Juli 2004 5.2-CURRENT nach dem Entfernen von kmem_alloc_pageable() und dem Import von GCC 3.4.2. 502127 2. August 2004 5.2-CURRENT nachdem die UMA Kernel API geändert wurde, um Konstruktoren und Initialisierungsmethoden zu erlauben fehlzuschlagen. 502128 8. August 2004 5.2-CURRENT nach der Änderung in der vfs_mount Signatur sowie allgemeines Ersetzen von PRISON_ROOT durch SUSER_ALLOWJAIL in der suser(9) API. 503000 23. August 2004 5.3-BETA/RC vor der Änderung der pfil-API. 503001 22. September 2004 5.3-RELEASE 503100 16. Oktober 2004 5.3-STABLE nach dem Erstellen des RELENG_5_3-Zweiges. 503101 3. Dezember 2004 5.3-STABLE nach dem Hinzufügen von Fülloptionen im Stile der libc zu &man.strftime.3;. 503102 13. Februar 2005 5.3-STABLE nachdem OpenBSD's nc(1) von CURRENT importiert wurde. 503103 27. Februar 2005 5.4-PRERELEASE nach dem Einfliessen der Reparaturen aus CURRENT, in <src/include/stdbool.h> und <src/sys/i386/include/_types.h>, um die GCC-Kompatibilität des Intel C/C++-Compilers zu benutzen. 503104 28. Februar 2005 5.4-PRERELEASE nach dem Einfliessen der Änderung aus CURRENT in ifi_epoch statt der lokalen Zeit die Betriebszeit des Systems zu benutzen. 503105 2. März 2005 5.4-PRERELEASE nach dem Einfliessen der Reparaturen von EOVERFLOW in vswprintf(3) aus CURRENT. 504000 3. April 2005 5.4-RELEASE. 504100 3. April 2005 5.4-STABLE nach dem Erstellen des RELENG_5_4-Zweiges. 504101 11. Mai 2005 5.4-STABLE nach dem Vergrößern der standardmäßigen Stackgröße für Threads. 504102 24. Juni 2005 5.4-STABLE nach dem Hinzufügen von sha256. 504103 3. Oktober 2005 5.4-STABLE nach dem Einfliessen von if_bridge aus CURRENT. 504104 13. November 2005 5.4-STABLE nach dem Einfliessen von bsdiff und portsnap aus CURRENT. 504105 17. Januar 2006 5.4-STABLE nach dem Einfliessen der Änderung von ldconfig_local_dirs aus CURRENT. 505000 12. Mai 2006 5.5-RELEASE. 505100 12. Mai 2006 5.5-STABLE nach dem Erstellen des RELENG_5_5-Zweiges. 600000 18. August 2004 6.0-CURRENT 600001 27. August 2004 6.0-CURRENT nach der festen Aktivierung von PFIL_HOOKS im Kernel. 600002 30. August 2004 6.0-CURRENT nach der anfänglichen Einführung von ifi_epoch zur Struktur if_data. Wurde nach ein paar Tagen wieder rückgängig gemacht. Benutzen Sie diesen Wert bitte nicht. 600003 8. September 2004 6.0-CURRENT nach dem erneuten Hinzufügen des Elements ifi_epoch zur Struktur if_data. 600004 29. September 2004 6.0-CURRENT nach dem Hinzufügen der Struktur inpcb als Argument in der pfil API. 600005 5. Oktober 2004 6.0-CURRENT nach dem Hinzufügen des "-d DESTDIR" Schalters zu newsyslog. 600006 4. November 2004 6.0-CURRENT nach dem Hinzufügen von Fülloptionen im Style der libc zu &man.strftime.3;. 600007 12. Dezember 2004 6.0-CURRENT nach dem Hinzufügen von 802.11 Framework Neuerungen. 600008 25. Januar 2005 6.0-CURRENT Änderung an den VOP_*VOBJECT() Funktionen und Einführung des MNTK_MPSAFE Schalters für Dateisysteme, welche ohne Giant arbeiten. 600009 4. Februar 2005 6.0-CURRENT nach dem Hinzufügen von cpufreq Framework und Treibern. 600010 6. Februar 2005 6.0-CURRENT nachdem OpenBSD's nc(1) importiert wurde. 600011 12. Februar 2005 6.0-CURRENT nachdem der Anschein von matherr() Unterstützung in SVID2 entfernt wurde. 600012 15. Februar 2005 6.0-CURRENT nach dem Vergrößern der standardmäßigen Stackgröße für Threads. 600013 19. Februar 2005 6.0-CURRENT nach dem Einfliessen der Reparaturen in <src/include/stdbool.h> und <src/sys/i386/include/_types.h>, um die GCC-Kompatibilität des Intel C/C++-Compilers zu benutzen. 600014 21. Februar 2005 6.0-CURRENT nachdem die Überprüfungen auf EOVERFLOW in vswprintf(3) korrigiert wurden. 600015 25. Februar 2005 6.0-CURRENT nach dem Einfliessen der Änderung, in ifi_epoch, statt der lokalen Zeit, die Betriebzeit des Systems zu benutzen. 600016 26. Februar 2005 6.0-CURRENT nachdem das Format von LC_CTYPE auf der Festplatte verändert wurde. 600017 27. Februar 2005 6.0-CURRENT nachdem das Format der NLS-Kataloge auf der Festplatte verändert wurde. 600018 27. Februar 2005 6.0-CURRENT nachdem das Format von LC_COLLATE auf der Festplatte verändert wurde. 600019 28. Februar 2005 Installation der acpica Include-Dateien in /usr/include. 600020 9. März 2005 Hinzufügen des MSG_NOSIGNAL Schalters zur send(2) API. 600021 17. März 2005 Hinzufügen von Feldern zu cdevsw 600022 21. März 2005 gtar wurde aus dem Basissystem entfernt. 600023 13. April 2005 Die Optionen LOCAL_CREDS, LOCAL_CONNWAIT für Sockets wurde zu unix(4) hinzugefügt. 600024 19. April 2005 &man.hwpmc.4; und zugehörige Werkzeuge wurden zu 6.0-CURRENT hinzugefügt. 600025 26. April 2005 Die Struktur icmphdr wurden zu 6.0-CURRENT hinzugefügt. 600026 3. Mai 2005 pf Aktualisierung auf 3.7. 600027 6. Mai 2005 Kernel libalias und ng_nat wurden eingeführt. 600028 13. Mai 2005 POSIX ttyname_r(3) wurde über unistd.h und libc zur Verfügung gestellt. 600029 29. Mai 2005 6.0-CURRENT nachdem libpcap zu Version v0.9.1 alpha 096 aktualisiert wurde. 600030 5. Juni 2005 6.0-CURRENT nach dem Import von NetBSDs if_bridge(4). 600031 10. Juni 2005 6.0-CURRENT nachdem die Struktur ifnet aus dem Treiber softcs herausgelöst wurde. 600032 11. Juli 2005 6.0-CURRENT nach dem Import von libpcap v0.9.1. 600033 25. Juli 2005 6.0-STABLE nachdem die Versionen aller gemeinsam genutzten Bibliotheken, welche seit RELENG_5 nicht geändert wurden, erhöht wurden. 600034 13. August 2005 6.0-STABLE nachdem das Argument credential zu der dev_clone-Ereignisbehandlung hinzugefügt wurde. 6.0-RELEASE. 600100 1. November 2005 6.0-STABLE nach dem Erstellen des 6.0-RELEASE-Zweiges. 600101 21. Dezember 2005 6.0-STABLE nach dem Aufnehmen von Skripten aus den local_startup-Verzeichnissen in &man.rcorder.8; des Basissystems. 600102 30. Dezember 2005 6.0-STABLE nach dem Aktualisieren der ELF-Typen und Konstanten. 600103 15. Januar 2006 6.0-STABLE nach dem Einfliessen der pidfile(3)-API aus CURRENT. 600104 17. Januar 2006 6.0-STABLE nach dem Einfliessen der Änderung von ldconfig_local_dirs aus CURRENT. 600105 26. Februar 2006 6.0-STABLE nach der NLS-Katalogunterstützung von csh(1). 601000 6. Mai 2006 6.1-RELEASE 601100 6. Mai 2006 6.1-STABLE nach 6.1-RELEASE. 601101 22. Juni 2006 6.1-STABLE nach dem Import von csup. 601102 11. Juli 2006 6.1-STABLE nach der iwi(4)-Aktualisierung. 601103 17. Juli 2006 6.1-STABLE nach der Aktualisierung der Namensauflösung zu BIND9 und Aufnahme der ablaufinvarianten Versionen der netdb-Funktionen. 601104 8. August 2006 6.1-STABLE nachdem Unterstützung für DSO (dynamic shared objects - gemeinsam genutzte, dynamische Objekte) in OpenSSL aktiviert wurde. 601105 2. September 2006 6.1-STABLE nachdem 802.11 Reparaturen die API der IEEE80211_IOC_STA_INFO ioctl geändert haben. 602000 15. November 2006 6.2-RELEASE 602100 15. September 2006 6.2-STABLE nach 6.2-RELEASE. 602101 12. Dezember 2006 6.2-STABLE nach dem Hinzufügen der Wi-Spy Eigenart. 602102 28. Dezember 2006 6.2-STABLE nachdem pci_find_extcap() hinzugefügt wurde. 602103 16. Januar 2007 6.2-STABLE nach dem Einpflegen der dlsym Änderung aus CURRENT, ein angefordertes Symbol sowohl in der spezifizierten dso, als auch in den impliziten Abhängigkeiten nachzuschlagen. 602104 28. Januar 2007 6.2-STABLE nach dem Einpflegen von ng_deflate(4) und ng_pred1(4) netgraph Knoten und neuen Kompressions- und -Verschlüsselungmodi für den ng_ppp(4) Knoten aus CURRENT. 602105 20. Februar 2007 6.2-STABLE nach dem Einpflegen der BSD lizensierten Version von &man.gzip.1;, welche von NetBSD portiert wurde aus CURRENT. 602106 31. März 2007 6.2-STABLE nach dem Einpflegen der PCI MSI und MSI-X Unterstützung aus CURRENT. 602107 6. April 2007 6.2-STABLE nach dem Einpflegen von ncurses 5.6 und Unterstützung für Multibyte-Zeichen aus CURRENT. 602108 11. April 2007 6.2-STABLE nach dem Einpflegen des 'SG' Peripheriegerätes aus CURRENT in CAM, welches einen Teil der SCSI SG passthrough Geräte API von Linux enthält. 602109 17. April 2007 6.2-STABLE nach dem Einpflegen von readline 5.2 Patchset 002 aus CURRENT. 602110 2. Mai 2007 6.2-STABLE nach dem Einpflegen von pmap_invalidate_cache(), pmap_change_attr(), pmap_mapbios(), pmap_mapdev_attr(), und pmap_unmapbios() für amd64 und i386 aus CURRENT. 602111 11. Juni 2007 6.2-STABLE nach dem Einpflegen von BOP_BDFLUSH aus CURRENT und dem daraus resultierendem Bruch mit dem Dateisystemmodul KBI. 602112 21. September 2007 6.2-STABLE nach dem Einpflegen von libutil(3) aus CURRENT. 602113 25. Oktober 2007 6.2-STABLE, nach der Trennung in "wide und single byte ctype". Neu kompilierte Binärdateien, die ctype.h referenzieren, erfordern möglicherweise ein neues Symbol, __mb_sb_limit, das auf älteren Systemen nicht verfügbar ist. 602114 30. Oktober 2007 6.2-STABLE, nachdem die ctype ABI-Aufwärtskompatibilität wiederhergestellt wurde. 602115 21. November 2007 FreeBSD 6.2-STABLE nach der Entfernung/Eliminierung der wide und single Byte ctype-Trennung 603000 25. November 2007 6.3-RELEASE 603100 25. November 2007 6.3-STABLE nach 6.3-RELEASE. 603101 7. Dezember 2007 6.3-STABLE, nachdem der Support für den Multibyte-Datentyp im Bit-Makro gefixt wurde. 603102 24. April 2008 6.3-STABLE nach Hinzufügen von l_sysid zu struct flock. 603103 27. Mai 2008 6.3-STABLE nach Einfließen der memrchr-Funktion. 603104 15. Juni 2008 6.3-STABLE nach Übernahme der Unterstützung von :u als Variablenwandler in make(1). 604000 4. Oktober 2008 6.4-RELEASE 604100 4. Oktober 2008 6.4-STABLE nach 6.4-RELEASE. 700000 11. Juli 2005 7.0-CURRENT. 700001 23. Juli 2005 7.0-CURRENT nachdem die Versionen aller gemeinsam genutzten Bibliotheken, welche seit RELENG_5 nicht geändert wurden, erhöht wurden. 700002 13. August 2005 7.0-CURRENT nachdem ein Berechtigungs-Argument zur dev_clone-Ereignisroutine hinzugefügt wurde. 700003 25. August 2005 7.0-CURRENT nachdem memmem(3) zur libc hinzugefügt wurde. 700004 30. Oktober 2005 7.0-CURRENT nachdem die Argumente der Kernelfunktion solisten(9) modifiziert wurden, um einen Backlog-Parameter (Anzahl der maximalen wartenden Verbindungen) zu akzeptieren. 700005 11. November 2005 7.0-CURRENT nachdem IFP2ENADDR() geändert wurde, einen Zeiger auf IF_LLADDR() zurückzugeben. 700006 11. November 2005 7.0-CURRENT nach dem Hinzufügen des if_addr-Elements zur Struktur ifnet und dem Entfernen von IFP2ENADDR(). 700007 2. Dezember 2005 7.0-CURRENT nach dem Aufnehmen von Skripten aus den local_startup Verzeichnissen in &man.rcorder.8; des Basissystems. 700008 5. Dezember 2005 7.0-CURRENT nach dem Entfernen der MNT_NODEV mount-Option. 700009 19. Dezember 2005 7.0-CURRENT nach ELF-64 Typen Änderungen und Symbol Versionierung. 700010 20. Dezember 2005 7.0-CURRENT nach Hinzufügen der hostb und vgapci Treiber, Hinzufügen von pci_find_extcap() und Änderung der AGP Treiber die Apertur nicht länger abzubilden. 700011 31. Dezember 2005 7.0-CURRENT nachdem auf allen Plattformen außer Alpha tv_sec in time_t umgewandelt wurde. 700012 8. Januar 2006 7.0-CURRENT nach Änderung von ldconfig_local_dirs. 700013 12. Januar 2006 7.0-CURRENT nach Änderung in /etc/rc.d/abi um /compat/linux/etc/ld.so.cache als Symlink in ein schreibgeschütztes Dateisystem zu unterstützen. 700014 26. Januar 2006 7.0-CURRENT nach pts Import. 700015 26. März 2006 7.0-CURRENT nach Einführung von Version 2 der &man.hwpmc.4;'s ABI. 700016 22. April 2006 7.0-CURRENT nach dem Hinzufügen von &man.fcloseall.3; zur libc. 700017 13. Mai 2006 7.0-CURRENT nach dem Entfernen von ip6fw. 700018 15. Juli 2006 7.0-CURRENT nach dem Import von snd_emu10kx. 700019 29. Juli 2006 7.0-CURRENT nach dem Import von OpenSSL 0.9.8b. 700020 3. September 2006 7.0-CURRENT nach dem Hinzufügen der bus_dma_get_tag-Funktion 700021 4. September 2006 7.0-CURRENT nach dem Import von libpcap 0.9.4 und tcpdump 3.9.4. 700022 9. September 2006 7.0-CURRENT nach der dlsym Änderung, ein angefordertes Symbol sowohl in der spezifizierten dso, als auch in den impliziten Abhängigkeiten nachzuschlagen. 700023 23. September 2006 7.0-CURRENT nach dem Hinzufügen neuer Sound-IOCTLs für die OSSv4-Mixer-API. 700024 28. September 2006 7.0-CURRENT nach dem Import von OpenSSL 0.9.8d. 700025 11. November 2006 7.0-CURRENT nach dem Hinzufügen der libelf. 700026 26. November 2006 7.0-CURRENT nach größeren Änderungen an den Sound sysctls. 700027 30. November 2006 7.0-CURRENT nach dem Hinzufügen der Wi-Spy-Eigenart. 700028 15. Dezember 2006 7.0-CURRENT nach dem Hinzufügen von sctp-Aufrufen zur libc. 700029 26. Januar 2007 7.0-CURRENT nach dem Ersetzen von GNU &man.gzip.1; durch eine von NetBSD portierte Version, die unter BSD-Lizenz steht. 700030 7. Februar 2007 7.0-CURRENT nach dem Entfernen der IPIP Tunnelkapselung (VIFF_TUNNEL) aus dem IPv4 Multicast-Forwarding-Quelltext. 700031 23. Februar 2007 7.0-CURRENT nach den Modifizierungen an bus_setup_intr() (newbus). 700032 2. März 2007 7.0-CURRENT nach der Aufnahme der Firmware für ipw(4) und iwi(4). 700033 9. März 2007 7.0-CURRENT nach Unterstützung für Multibyte-Zeichen. 700034 19. März 2007 7.0-CURRENT nach Änderungen, wie insmntque(), getnewvnode() und vfs_hash_insert() arbeiten. 700035 26. März 2007 7.0-CURRENT nach Hinzufügen eines Benachrichtigungsmechanismus für CPU Frequenzänderungen. 700036 6. April 2007 7.0-CURRENT nach dem Import des ZFS Dateisystemes. 700037 8. April 2007 7.0-CURRENT nach dem Einpflegen des 'SG' Peripheriegerätes in CAM, welches einen Teil der SCSI SG passthrough Geräte API von Linux enthält. 700038 30. April 2007 7.0-CURRENT nachdem &man.getenv.3;, &man.putenv.3;, &man.setenv.3; und &man.unsetenv.3; geändert wurden, um POSIX konform zu sein. 700039 1. Mai 2007 7.0-CURRENT nachdem die Änderungen von 700038 rückgängig gemacht wurden. 700040 10. Mai 2007 7.0-CURRENT nach dem Hinzufügen von &man.flopen.3; zur libutil. 700041 13. Mai 2007 7.0-CURRENT nachdem Symbol Versionierung aktiviert und die standardmäßige Thread-Bibliothek zu libthr geändert wurde. 700042 19. Mai 2007 7.0-CURRENT nach dem Import von GCC 4.2.0. 700043 21. Mai 2007 7.0-CURRENT nachdem die Versionen aller Shared-Libraries, welche seit RELENG_6 nicht geändert wurden, erhöht worden sind. 700044 7. Juni 2007 7.0-CURRENT nachdem das Argument für vn_open()/VOP_OPEN() vom Dateideskriptorindex zur Struktur file * geädert wurde. 700045 10. Juni 2007 7.0-CURRENT nachdem &man.pam.nologin.8; geädert wurde, eine Kontoverwaltungs-Funktion statt einer Authentifizierungsfunktion für das PAM-Framework zur Verfügung zu stellen. 700046 11. Juni 2007 7.0-CURRENT nach aktualisierter 802.11 wireless Unterstützung. 700047 11. Juni 2007 7.0-CURRENT, nachdem TCP-LRO-Schnittstellen-Ressourcen hinzugefügt wurden. 700048 12. Juni 2007 7.0-CURRENT, nachdem die RFC 3678 API-Unterstützung zum IPv4-Stack hinzugefügt wurde. Veraltetes RFC 1724-Verhalten des IP_MULTICAST_IF ioctl wurde entfernt; 0.0.0.0/8 darf nicht länger als Schnittstellen-Index benutzt werden. Stattdessen sollte die Struktur ipmreqn verwendet werden. 700049 3. Juli 2007 7.0-CURRENT, nachdem pf von OpenBSD 4.1 importiert wurde (nicht geändert) 7.0-CURRENT, nachdem die IPv6-Unterstützung um FAST_IPSEC erweitert, KAME IPSEC entfernt und FAST_IPSEC in IPSEC umbenannt wurde. 700050 4. Juli 2007 7.0-CURRENT, nachdem Aufrufe von setenv/putenv/usw. von der traditionellen BSD-Art und Weise nach POSIX konvertiert wurden. 700051 4. Juli 2007 7.0-CURRENT, nachdem neue Systemaufrufe (mmap/lseek/usw.) implementiert wurden. 700052 6. Juli 2007 7.0-CURRENT, nachdem die I4B-Header nach include/i4b verschoben wurden. 700053 30. September 2007 7.0-CURRENT, nachdem die Unterstützung für PCI Domänen hinzugefügt wurde. 700054 25. Oktober 2007 7.0-CURRENT, nach der Trennung in "wide und single byte ctype". 700055 28. Oktober 2007 7.0-RELEASE sowie 7.0-CURRENT, nachdem die ABI-Abwärtskompatibilität für die FreeBSD 4/5/6-Versionen der PCIOCGETCONF-, PCIOCREAD- sowie PCIOCWRITE IOCTLs hinzugefügt wurde. Damit verbunden war, dass die ABI der PCIOCGETCONF IOCTL erneut deaktiviert werden musste. 700100 22. Dezember 2007 7.0-STABLE nach 7.0-RELEASE. 700101 8. Februar 2008 7.0-STABLE nach Einführung von m_collapse(). 700102 30. März 2008 7.0-STABLE nach Einfließen von kdb_enter_why(). 700103 10. April 2008 7.0-STABLE nach Hinzufügen von l_sysid zu struct flock. 700104 11. April 2008 7.0-STABLE nach Übernahme von procstat(1). 700105 11. April 2008 7.0-STABLE nach Einführung von umtx-Features. 700106 15. April 2008 7.0-STABLE nach Hinzufügen der Unterstützung von &man.write.2; zu &man.psm.4;. 700107 20. April 2008 7.0-STABLE nach Hinzufügen des Befehls F_DUP2FD zu &man.fcntl.2;. 700108 5. Mai 2008 7.0-STABLE nach einigen Änderungen an &man.lockmgr.9;, welche die Einbindung von sys/lock.h zur Verwendung von &man.lockmgr.9; voraussetzen. 700109 27. Mai 2008 7.0-STABLE nach Einfließen der memrchr-Funktion. 700110 5. August 2008 7.0-STABLE nach Einführung eines Clients für den Kernel NFS lockd. 700111 20. August 2008 7.0-STABLE nach Hinzufügen einer Unterstützung von physisch fortlaufender Jumbo Frames. 700112 27. August 2008 7.0-STABLE nach Einfließen einer Kernelunterstützung für DTrace. 701000 25. November 2008 7.1-RELEASE 701100 25. November 2008 7.1-STABLE nach 7.1-RELEASE. 701101 10. Januar 2009 7.1-STABLE nach Übernahme von strndup. 701102 17. Januar 2009 7.1-STABLE nach Hinzufügen einer Unterstützung von cpuctl(4). 701103 7. Februar 2009 7.1-STABLE nach Einfließen der Unterstützung von Jails mit keinen oder mehreren IPv4-/IPv6-Adressen. 701104 14. Februar 2009 7.1-STABLE, nachdem der Besitzer des Suspend in struct mount gespeichert wird und die Funktion vfs_susp_clean in struct vfsops aufgenommen ist. 701105 12. März 2009 7.1-STABLE nach der inkompatiblen Änderung am sysctl kern.ipc.shmsegs, um die Anforderung größerer Segmente von gemeinsam genutzten SysV-Speicher auf 64bit-Architekturen zu erlauben. 701106 14. März 2009 7.1-STABLE nach der Übernahme einer Fehlerbehebung für Warteoperationen, die POSIX-Semaphore verwenden. 702000 15. April 2009 7.2-RELEASE 702100 15. April 2009 7.2-STABLE nach 7.2-RELEASE. 702101 15. Mai 2009 7.2-STABLE, nachdem ichsmb(4) dahingehend geändert wurde, dass es links-ausgerichtete Adressierung von Slaves verwendet, um anderen SMBus-Kontrollertreibern zu entsprechen. 702102 28. Mai 2009 7.2-STABLE nach dem Einfließen der Funktion fdopendir. 702103 06. Juni 2009 7.2-STABLE nach dem Einfließen von PmcTools. 702104 14. Juli 2009 7.2-STABLE nach dem Einfließen des Systemaufrufs closefrom. 702105 31. Juli 2009 7.2-STABLE nach dem Einfließen der Änderung an der SYSVIPC-ABI. 702106 14. September 2009 7.2-STABLE nach dem Einfließen der PAT-Verbesserungen für x86-Prozessoren sowie dem Hinzufügen von d_mmap_single() und des VM-Objekttyps für scatter/gather-Listen. 703000 9. Februar 2010 7.3-RELEASE 703100 9. Februar 2010 7.3-STABLE nach 7.3-RELEASE. 800000 11. Oktober 2007 8.0-CURRENT. Nach der Trennung in "wide und single byte ctype". 800001 16. Oktober 2007 8.0-CURRENT, nachdem libpcap 0.9.8 und tcpdump 3.9.8 importiert wurden. 800002 21. Oktober 2007 8.0-CURRENT, nachdem kthread_create() und Konsorten in kproc_create() usw. umbenannt wurden. 800003 24. Oktober 2007 8.0-CURRENT, nachdem die ABI-Abwärtskompatibilität für die FreeBSD 4/5/6-Versionen der PCIOCGETCONF-, PCIOCREAD- sowie PCIOCWRITE IOCTLs hinzugefügt wurde. Damit verbunden war, dass die ABI der PCIOCGETCONF IOCTL erneut deaktiviert werden musste. 800004 12. November 2007 8.0-CURRENT, nachdem der agp(4) Treiber verschoben wurde von src/sys/pci nach src/sys/dev/agp. 800005 4. Dezember 2007 8.0-CURRENT nach Änderungen am Jumbo Frame Allocator. 800006 7. Dezember 2007 8.0-CURRENT, nach dem Hinzufügen der callgraph capture Funktionalität zu &man.hwpmc.4;. 800007 25. Dezember 2007 8.0-CURRENT nach dem Hinzufügen von "why" als Argument in kdb_enter(). 800008 28. Dezember 2007 8.0-CURRENT nach Entfernen der Option LK_EXCLUPGRADE. 800009 9. Januar 2008 8.0-CURRENT nach Einführung von &man.lockmgr.disown.9; 800010 10. Januar 2008 8.0-CURRENT nach Änderungen am &man.vn.lock.9;-Prototyp. 800011 13. Januar 2008 8.0-CURRENT nach Änderungen an den Prototypen von &man.VOP.LOCK.9; und &man.VOP.UNLOCK.9;. 800012 19. Januar 2008 8.0-CURRENT nach Einführung von &man.lockmgr.recursed.9;, &man.BUF.RECURSED.9; und &man.BUF.ISLOCKED.9; sowie Entfernung von BUF_REFCNT(). 800013 23. Januar 2008 8.0-CURRENT nach Einführung der ASCII-Kodierung. 800014 24. Januar 2008 8.0-CURRENT nach Änderungen am &man.lockmgr.9;-Prototyp und Entfernung von lockcount() sowie LOCKMGR_ASSERT(). 800015 26. Januar 2008 8.0-CURRENT nach Erweiterung der Datentypen der &man.fts.3;-Strukturen. 800016 1. Februar 2008 8.0-CURRENT nach Hinzufügen eines neuen Parameters zu MEXTADD(9). 800017 6. Februar 2008 8.0-CURRENT nach Einführung der Optionen LK_NODUP und LK_NOWITNESS in die &man.lockmgr.9;-Umgebung. 800018 8. Februar 2008 8.0-CURRENT nach Hinzufügen von m_collapse. 800019 9. Februar 2008 8.0-CURRENT nach Hinzufügen einer Arbeits-, Wurzel- und Jailverzeichnisunterstützung zur sysctl-Variable kern.proc.filedesc. 800020 13. Februar 2008 8.0-CURRENT nach Einführung der Funktionen &man.lockmgr.assert.9; und BUF_ASSERT. 800021 15. Februar 2008 8.0-CURRENT nach Einführung von &man.lockmgr.args.9; und Entfernung der Option LK_INTERNAL. 800022 (zurückgezogen) 8.0-CURRENT nach Setzen von BSD &man.ar.1; als Systemstandard. 800023 25. Februar 2008 8.0-CURRENT nach Prototypenänderungen an &man.lockstatus.9; und &man.VOP.ISLOCKED.9;, eigens zur Abschaffung des Parameters struct thread. 800024 1. März 2008 8.0-CURRENT nach Beseitigung der Funktionen lockwaiters und BUF_LOCKWAITERS, Änderung des Rückgabewerts der Funktion brelvp von void nach int sowie Einführung neuer Optionen für &man.lockinit.9;. 800025 8. März 2008 8.0-CURRENT nach Hinzufügen des Kommandos F_DUP2FD zu &man.fcntl.2;. 800026 12. März 2008 8.0-CURRENT nach Änderung des Parameters für die Priorität an cv_broadcastpri, sodass 0 für keine Priorität steht. 800027 24. März 2008 8.0-CURRENT nach Änderung der Monitoring ABI von BPF, als Zero-Copy Puffer hinzugefügt wurden. 800028 26. März 2008 8.0-CURRENT nach Hinzufügen von l_sysid zu struct flock. 800029 28. März 2008 8.0-CURRENT nach Wiedereingliederung der Funktion BUF_LOCKWAITERS und Hinzufügen von &man.lockmgr.waiters.9;. 800030 1. April 2008 8.0-CURRENT nach Einführung der Funktionen &man.rw.try.rlock.9; und &man.rw.try.wlock.9;. 800031 6. April 2008 8.0-CURRENT nach Einführung der Funktionen lockmgr_rw und lockmgr_args_rw. 800032 8. April 2008 8.0-CURRENT nach Implementierung des Systemaufrufs openat und seiner Verwandten, Einführung der Option O_EXEC in &man.open.2; und Bereitstellung der entsprechenden Systemaufrufe innerhalb der &linux;-Kompatibilitätsumgebung. 800033 8. April 2008 8.0-CURRENT nach Hinzufügen der Unterstützung von &man.write.2; in der nativen Operationsebene von &man.psm.4;. Es können nun beliebig Kommandos nach /dev/psm%d geschrieben und der Status dann von dort gelesen werden. 800034 10. April 2008 8.0-CURRENT nach Einführung der Funktion memrchr. 800035 16. April 2008 8.0-CURRENT nach Einführung der Funktion fdopendir. 800036 20. April 2008 8.0-CURRENT nach Umstellung des Standards 802.11 auf Unterstützung von Multi-BSS (auch vaps). 800037 9. Mai 2008 8.0-CURRENT nach Hinzufügen einer Unterstützung für Multi Routing-Tabellen (siehe setfib(1), setfib(2)). 800038 26. Mai 2008 8.0-CURRENT nach Entfernen von netatm und ISDN4BSD. 800039 14. Juni 2008 8.0-CURRENT nach Entfernen von sgtty. 800040 26. Juni 2008 8.0-CURRENT nach Einführung eines Clients für den Kernel NFS lockd. 800041 22. Juli 2008 8.0-CURRENT nach Hinzufügen von arc4random_buf(3) und arc4random_uniform(3). 800042 8. August 2008 8.0-CURRENT nach Hinzufügen von cpuctl(4). 800043 13. August 2008 8.0-CURRENT nach Änderung von bpf(4) zur Verwendung einer einzelnen Gerätedatei anstatt von Klonierung. 800044 17. August 2008 8.0-CURRENT nach Übernahme des ersten Teils aus dem vimage-Projekt durch Erweitern globaler Variablen um den Präfix V_. Zukünftig werden die virtualisierten Variablen dann mit Hilfe von Makros in ihre globalen Namen aufgelöst. 800045 20. August 2008 8.0-CURRENT nach Eingliederung des MPSAFE TTY-Layers, einschließlich Änderungen an diversen Treibern und Werkzeugen, die mit ihm kommunizieren. 800046 8. September 2008 8.0-CURRENT nach Abschottung der GDT pro CPU auf der AMD64-Architektur. 800047 10. September 2008 8.0-CURRENT nach Entfernen von VSVTX, VSGID und VSUID. 800048 16. September 2008 8.0-CURRENT nach Anpassung des Codes für Kernel NFS mount, sodass einzelne Mountoptionen im Parameter struct iovec an nmount() akzeptiert werden und nicht nur ein großes struct nfs_args. 800049 17. September 2008 8.0-CURRENT nach Entfernen von &man.suser.9; und &man.suser.cred.9;. 800050 20. Oktober 2008 8.0-CURRENT nach API-Änderungen im Umgang mit dem Buffer Cache. 800051 23. Oktober 2008 8.0-CURRENT nach Entfernen der Makros &man.MALLOC.9; und &man.FREE.9;. 800052 28. Oktober 2008 8.0-CURRENT nach Einführung von accmode_t und Umbennung des Parameters a_mode an VOP_ACCESS nach a_accmode. 800053 2. November 2008 8.0-CURRENT nach Änderung des Prototyps von &man.vfs.busy.9; und Einführung der Optionen MBF_NOWAIT sowie MBF_MNTLSTLOCK. 800054 22. November 2008 8.0-CURRENT nach Hinzufügen von Funktionen im Bereich buf_ring, Memory Barriers und ifnet, um mehrere Sendeschlangen auf Hardwareebene für Karten zu ermöglichen, die dies unterstützen, sowie einer Ring Buffer-Implementierung ohne Lock, um Treibern zu ermöglichen, Paketschlangen effizienter zu verwalten. 800055 27. November 2008 8.0-CURRENT nach Hinzufügen einer Unterstützung für &intel; Core, Core2 und Atom zu &man.hwpmc.4;. 800056 29. November 2008 8.0-CURRENT nach Einführung von Jails mit mehreren oder gar keinen IPv4-/IPv6-Adressen. 800057 1. Dezember 2008 8.0-CURRENT nach Wechsel zum ath_hal Quellcode. 800058 12. Dezember 2008 8.0-CURRENT nach Einführung der Funktion VOP_VPTOCNP. 800059 15. Dezember 2008 8.0-CURRENT gliedert das neue ARPv2 ein. 800060 19. Dezember 2008 8.0-CURRENT nach Hinzufügen von makefs. 800061 15. Januar 2009 8.0-CURRENT nach Umsetzung von TCP Appropriate Byte Counting. 800062 28. Januar 2009 8.0-CURRENT nach Entfernen von minor(), minor2unit(), unit2minor() usw. 800063 18. Februar 2009 8.0-CURRENT nach Änderung der GENERIC-Konfiguration zur Verwendung des USB2-Stack und Hinzufügen von fdevname(3). 800064 23. Februar 2009 8.0-CURRENT, nachdem der USB2-Stack nach dev/usb verschoben wurde, um es zu ersetzen. 800065 26. Februar 2009 8.0-CURRENT nach Umbenennen aller Funktionen in libmp(3). 800066 27. Februar 2009 8.0-CURRENT nach Anpassung des devfs-Verhaltens im Zusammenhang mit USB. 800067 28. Februar 2009 8.0-CURRENT nach Hinzufügen von getdelim(), getline(), stpncpy(), strnlen(), wcsnlen(), wcscasecmp() und wcsncasecmp(). 800068 2. März 2009 8.0-CURRENT nach Umbenennen der Geräteklasse ushub in uhub. 800069 9. März 2009 8.0-CURRENT nach Umbenennen von libusb20.so.1 in libusb.so.1. 800070 9. März 2009 8.0-CURRENT nach der Einführung von IGMPv3 und Source-Specific-Multicast (SSM) in den IPv4-Stack. 800071 14. März 2009 8.0-CURRENT nach der Anpassung von gcc zur Verwendung der C99-Inline-Semantik in den Modi c99 und gnu99. 800072 15. März 2009 8.0-CURRENT, nachdem die Option IFF_NEEDSGIANT entfernt wurde; Netzwerktreiber, die nicht MPSAFE sind, werden nicht mehr unterstützt. 800073 18. März 2009 8.0-CURRENT, nachdem die dynamische Ersetzung von Zeichenkettenkürzeln für rpath und benötigte Pfade implementiert wurde. 800074 24. März 2009 8.0-CURRENT nach dem Einfließen von tcpdump 4.0.0 und libpcap 1.0.0. 800075 6. April 2009 8.0-CURRENT, nachdem die Deklarationen von struct vnet_net, struct vnet_inet und struct vnet_ipfw geändert wurden. 800076 9. April 2009 8.0-CURRENT nach dem Hinzufügen von Laufzeitprofilen in dummynet. 800077 14. April 2009 8.0-CURRENT nach dem Entfernen von VOP_LEASE() und vop_vector.vop_lease. 800078 15. April 2009 8.0-CURRENT, nachdem die Felder aus struct rt_weight zu struct rt_metrics und struct rt_metrics_lite hinzugefügt wurden, wobei die Deklaration von struct rt_metrics_lite geändert wurde. RTM_VERSION wurde hochgezählt (zurückgezogen). 800079 15. April 2009 8.0-CURRENT, nachdem Pointer auf struct llentry zu struct route und struct route_in6 hinzugefügt wurden. 800080 15. April 2009 8.0-CURRENT nach Änderung der Deklaration von struct inpcb. 800081 19. April 2009 8.0-CURRENT nach Änderung der Deklaration von struct malloc_type. 800082 21. April 2009 8.0-CURRENT nach Änderung der Deklaration von struct ifnet und Hinzufügen von if_ref() und if_rele() zur Verwaltung von Referenzen auf ifnet. 800083 22. April 2009 8.0-CURRENT nach der Implementierung einer systemnahen Bluetooth-HCI-API. 800084 29. April 2009 8.0-CURRENT nach Änderungen an IPv6-SSM und MLDv2. 800085 30. April 2009 8.0-CURRENT, nachdem der Bau von VIMAGE-Kernel mit einem aktiven Image unterstützt wird. 800086 8. Mai 2009 8.0-CURRENT nach Hinzufügen der Unterstützung für Eingabezeilen mit beliebiger Länge durch patch(1). 800087 11. Mai 2009 8.0-CURRENT nach einigen Änderungen im Zusammenhang mit dem VFS-KPI. Der Thread-Parameter wurde von den FSD-Teilen des VFS entfernt. VFS_*-Funktionen benötigen den Kontext nicht mehr, da er sich immer auf curthread bezieht. In wenigen Sonderfällen ist das bisherige Verhalten nicht geändert worden. 800088 20. Mai 2009 8.0-CURRENT nach Änderungen am net80211-Monitormodus. 800089 23. Mai 2009 8.0-CURRENT nach dem Hinzufügen der Unterstützung von UDP-Kontrollblocks. 800090 23. Mai 2009 8.0-CURRENT nach der Virtualisierung der Schnittstellenklonierung. 800091 27. Mai 2009 8.0-CURRENT nach dem Hinzufügen von hierarchischen Jails und dem Entfernen des globalen securelevel. 800092 29. Mai 2009 8.0-CURRENT nach der Änderung des sx_init_flags()-KPI. SX_ADAPTIVESPIN wurde zurückgezogen und eine neue Option SX_NOADAPTIVE wurde eingeführt, um die umgekehrte Logik zu behandeln. 800093 29. Mai 2009 8.0-CURRENT nach dem Hinzufügen von mnt_xflag zu struct mount. 800094 30. Mai 2009 8.0-CURRENT nach dem Hinzufügen von &man.VOP.ACCESSX.9;. 800095 30. Mai 2009 8.0-CURRENT nach der Änderung des Polling-KPI. Die Polling-Handler liefern nun die Zahl der verarbeiteten Pakete zurück. Die neue Option IFCAP_POLLING_NOCOUNT wurde weiter eingeführt, um anzugeben, dass der Rückgabewert nicht von Bedeutung ist und das Zählen der Pakete ausgelassen werden soll. 800096 1. Juni 2009 8.0-CURRENT nach der Aktualisierung der netisr-Implementierung und nachdem die Weise, wie FIBs gespeichert werden und wie auf sie zugegriffen wird, geändert wurde. 800097 8. Juni 2009 8.0-CURRENT nach Einführung der Destruktor-Infrastruktur für vnet einschließlich Hooks. 800097 11. Juni 2009 8.0-CURRENT nach Einführung eines Erkennungssystems für ausgehende Pakete, die direkt wieder in netgraph gelangen und deswegen eingereiht werden. Dabei wurde auch die Definition von struct thread geändert. 800098 14. Juni 2009 8.0-CURRENT nach dem Einfließen von OpenSSL 0.9.8k. 800099 22. Juni 2009 8.0-CURRENT nach der Aktualisierung von NGROUPS und dem Verschieben der Routing-Virtualisierung in ein eigenes VImage-Modul. 800100 24. Juni 2009 8.0-CURRENT nach Änderung der SYSVIPC-ABI. 800101 29. Juni 2009 8.0-CURRENT nach dem Entfernen der zeichenorientierten Geräte aus /dev/net, von denen für jede Schnittstelle eines existiert. 800102 12. Juli 2009 8.0-CURRENT, nachdem struct sackhint, struct tcpcb und struct tcpstat mit Padding-Bytes aufgefüllt wurden. 800103 13. Juli 2009 8.0-CURRENT, nachdem struct tcpopt durch struct toeopt in der Schnittstelle zwischen dem TOE-Treiber und dem TCP-SYN-Cache ersetzt wurde. 800104 19. Juli 2009 8.0-CURRENT nach dem Hinzufügen einer vnet-spezifischen Speicherzuweisung, die auf dem Linker-Set-Verfahren basiert. 800105 19. Juli 2009 8.0-CURRENT nach der Inkrementierung der Versionsnummer aller Shared-Libraries, die Symbol-Versioning nicht aktiviert haben. 800106 24. Juli 2009 8.0-CURRENT nach Einführung des VM-Objekttyps OBJT_SG. 800107 2. August 2009 8.0-CURRENT nach Befreiung des Newbus-Subsystems von Giant durch Hinzufügen von sxlock und 8.0-RELEASE. 800108 21. November 2009 8.0-CURRENT nach Implementierung des kevent-Filters EVFILT_USER. 800500 7. Januar 2010 8.0-STABLE nach Erhöhung von __FreeBSD_version, damit pkg_add -r packages-8-stable verwendet. 800501 24. Januar 2010 8.0-STABLE, nachdem die Prototypen von scandir(3) und alphasort(3) geändert wurden, um der SUSv4 zu entsprechen. 800502 31. Januar 2010 8.0-STABLE nach Hinzufügen von sigpause(3). 800503 25. Februar 2010 8.0-STABLE nach dem Hinzufügen der ioctls SIOCGIFDESCR und SIOCSIFDESCR für Netzwerk-Schnittstellen. Diese ioctls können, nach dem Vorbild von OpenBSD, dazu verwendet werden, Schnittstellenbeschreibungen zu bearbeiten und auszulesen. 800504 1. März 2010 8.0-STABLE, nachdem x86emu, ein Software-Emulator von OpenBSD für x86-Prozessoren im Real-Mode, von CURRENT übernommen wurde. 800505 18. Mai 2010 8.0-STABLE nach dem Einfließen von liblzma, xz, xzdec und lzmainfo. 801000 14. Juni 2010 8.1-RELEASE 801500 14. Juni 2010 8.1-STABLE nach 8.1-RELEASE. + 801501 + November 3, 2010 + 8.1-STABLE nach der KBI-Änderung in + struct sysentve und der Implementierung von + PL_FLAG_SCE/SCX/EXEC/SI und + pl_siginfo für ptrace(PT_LWPINFO) . + + + 900000 22. August 2009 9.0-CURRENT. 900001 8. September 2009 9.0-CURRENT nach dem Import von x86emu, einem Software-Emulator von OpenBSD für x86-Prozessoren im Real-Mode. 900002 23. September 2009 9.0-CURRENT nach Implementierung des kevent-Filters EVFILT_USER. 900003 2. Dezember 2009 9.0-CURRENT nach Hinzufügen von sigpause(3) und der PIE-Unterstützung zu csu. 900004 6. Dezember 2009 9.0-CURRENT nach Hinzufügen von libulog und dessen libutempter-Kompatibilitätsschnittstelle. 900005 12. Dezember 2009 9.0-CURRENT nach Hinzufügen von sleepq_sleepcnt(), das dazu verwendet werden kann, die Anzahl der in einer bestimmten Warteschlange eingereihten Threads abzufragen. 900006 4. Januar 2010 9.0-CURRENT, nachdem die Prototypen von scandir(3) und alphasort(3) geändert wurden, um der SUSv4 zu entsprechen. 900007 13. Januar 2010 9.0-CURRENT nach dem Entfernen von utmp(5) und dem Hinzufügen von utmpx (siehe getutxent(3)) zur besseren Erfassung von Benutzeranmeldungen und Systemereignissen. 900008 20. Januar 2010 9.0-CURRENT nach der Einführung von BSDL bc/dc zur Ersetzung von GNU bc/dc. 900009 26. Januar 2010 9.0-CURRENT nach dem Hinzufügen der ioctls SIOCGIFDESCR und SIOCSIFDESCR für Netzwerk-Schnittstellen. Diese ioctls können, nach dem Vorbild von OpenBSD, dazu verwendet werden, Schnittstellenbeschreibungen zu bearbeiten und auszulesen. 900010 22. März 2010 9.0-CURRENT nach dem Import von zlib 1.2.4. 900011 24. April 2010 9.0-CURRENT nach Hinzufügen von Soft Updates Journaling. 900012 10. Mai 2010 9.0-CURRENT nach Hinzufügen von liblzma, xz, xzdec und lzmainfo. 900013 24. Mai 2010 9.0-CURRENT nach Einbringen von USB-Fehlerbehebungen in linux(4). 900014 10. Juni 2010 9.0-CURRENT nach Hinzufügen von Clang. 900015 22. Juli 2010 9.0-CURRENT nach dem Import von BSD grep. + 900016 + 28. Juli 2010 + 9.0-CURRENT, nachdem mti_zone zu + struct malloc_type_internal hinzugefügt + wurde. + + + 900017 23. August 2010 9.0-CURRENT nach dem Zurückkehren zu GNU grep als Standard und Hinzufügen der Option WITH_BSD_GREP. 900018 24. August 2010 9.0-CURRENT, nachdem das von pthread_kill(3) generierte Signal in si_code als SI_LWP bezeichnet wird. Zuvor war si_code SI_USER. 900019 28. August 2010 9.0-CURRENT nach Hinzufügen des Schalters MAP_PREFAULT_READ zu mmap(2). + + + 900020 + 9. September 2010 + 9.0-CURRENT, nachdem + drain-Funktionalität + in sbufs integriert wurde (wodurch sich auch das + Layout von struct sbuf geändert hat). + + + + 900021 + 13. September 2010 + 9.0-CURRENT, nachdem Userland + tracing in DTrace eingeführt + wurde. + + + + 900022 + 2. Oktober 2010 + 9.0-CURRENT nach Hinzufügen der + BSDL man-Utilities (und gleichzeitigem + Entfernen der GNU/GPL man-Utilities). + + + + 900023 + 11. Oktober 2010 + 9.0-CURRENT nach der Aktualisierung von + xz auf den git-Snapshot 20101010. + + + + 900024 + 11. November 2010 + 9.0-CURRENT, nachdem libgcc.a durch + libcompiler_rt.a. + + + + 900025 + 12. November 2010 + 9.0-CURRENT nach der Einführung + modularised congestion + control. +
Beachten Sie, dass 2.2-STABLE sich nach dem 2.2.5-RELEASE manchmal als 2.2.5-STABLE identifiziert. Das Muster war früher das Jahr gefolgt von dem Monat, aber wir haben uns entschieden, ab 2.2. einen geradlinigeren Ansatz mit major/minor-Nummern zu benutzen. Dies liegt daran, dass gleichzeitiges Entwickeln an mehreren Zweigen es unmöglich macht, die Versionen nur mit Hilfe des Datums des Releases zu unterteilen. Wenn Sie jetzt einen Port erstellen brauchen Sie sich nicht um alte -CURRENTs zu kümmern; diese sind hier nur als Referenz augeführt.
Etwas hinter die <filename>bsd.port.mk</filename>-Anweisung schreiben Schreiben Sie bitte nichts hinter die .include <bsd.port.mk>-Zeile. Normalerweise kann dies vermieden werden, indem Sie die Datei bsd.port.pre.mk irgendwo in der Mitte Ihres Makefiles und bsd.port.post.mk am Ende einfügen. Sie dürfen entweder nur das bsd.port.pre.mk/bsd.port.post.mk-Paar oder bsd.port.mk alleine hinzufügen; vermischen Sie diese Verwendungen nicht! bsd.port.pre.mk definiert nur einige Variablen, welche in Tests im Makefile benutzt werden können, bsd.port.post.mk definiert den Rest. Hier sind einige wichtige Variablen, welche in bsd.port.pre.mk definiert sind (dies ist keine vollständige Liste, lesen Sie bitte bsd.port.mk für eine vollständige Auflistung). Variable Beschreibung ARCH Die Architektur, wie von uname -m zurückgegeben (z.B. i386) OPSYS Der Typ des Betriebsystems, wie von uname -s zurückgegeben (z.B. FreeBSD) OSREL Die Release Version des Betriebssystems (z.B., 2.1.5 oder 2.2.7) OSVERSION Die numerische Version des Betriebssystems; gleichbedeutend mit __FreeBSD_version. PORTOBJFORMAT Das Objektformat des Systems (elf oder aout; beachten Sie, dass für moderne Versionen von FreeBSD aout veraltet ist). LOCALBASE Die Basis des local Verzeichnisbaumes (z.B. /usr/local/) PREFIX Wo der Port sich selbst installiert (siehe Mehr Informationen über PREFIX). Falls Sie die Variablen USE_IMAKE, USE_X_PREFIX, oder MASTERDIR definieren müssen, sollten Sie dies vor dem Einfügen von bsd.port.pre.mk machen. Hier sind ein paar Beispiele von Dingen, die Sie hinter die Anweisung bsd.port.pre.mk schreiben können: # lang/perl5 muss nicht kompliliert werden, falls perl5 schon auf dem System ist .if ${OSVERSION} > 300003 BROKEN= perl ist im System .endif # nur eine Versionsnummer für die ELF Version der shlib .if ${PORTOBJFORMAT} == "elf" TCL_LIB_FILE= ${TCL_LIB}.${SHLIB_MAJOR} .else TCL_LIB_FILE= ${TCL_LIB}.${SHLIB_MAJOR}.${SHLIB_MINOR} .endif # die Software erstellt schon eine Verknüpfung fü ELF, aber nicht fü a.out post-install: .if ${PORTOBJFORMAT} == "aout" ${LN} -sf liblinpack.so.1.0 ${PREFIX}/lib/liblinpack.so .endif Sie haben sich daran erinnert Tabulator statt Leerzeichen nach BROKEN= und TCL_LIB_FILE= zu benutzen, oder? :-). Benutzen Sie die <function>exec</function>-Anweisung in Wrapper-Skripten Falls der Port ein Shellskript installiert, dessen Zweck es ist ein anderes Programm zu starten, und falls das Starten des Programmes die letzte Aktion des Skripts ist, sollten Sie sicherstellen, dass Sie die Funktion exec dafür benutzen; zum Beispiel: #!/bin/sh exec %%LOCALBASE%%/bin/java -jar %%DATADIR%%/foo.jar "$@" Die Funktion exec ersetzt den Shell-Prozess mit dem angegebenen Programm. Falls exec ausgelassen wird, verbleibt der Shell-Prozess im Speicher während das Programm ausgefährt wird und verbraucht unnötig Systemressourcen. Aufgaben vernünftig lösen Das Makefile sollte die nötigen Schritte einfach und vernünftig durchführen. Wenn Sie ein einige Zeilen einsparen oder die Lesbarkeit verbessern können, dann machen Sie dies bitte. Beispiele sind: Ein make-Konstrukt .if anstatt eines Shellkonstrukt if zu verwenden, anstatt do-extract neu zu definieren, dies mit EXTRACT* machen, oder GNU_CONFIGURE anstelle von CONFIGURE_ARGS += --prefix=${PREFIX} zu verwenden. Falls Sie sich in einer Situation wiederfinden, in der Sie viel Code neu schreiben müssen, um etwas zu testen, sollten Sie zuerst bsd.port.mk erneut konsultieren und nachprüfen ob es nicht bereits eine Lösung für Ihr Problem enthält. Es ist zwar schwer zu lesen, beinhaltet jedoch eine Menge kurzer Lösungen für viele scheinbar schwierige Probleme. Berücksichtigen Sie sowohl <makevar>CC</makevar> als auch <makevar>CXX</makevar> Der Port sollte sowohl die CC- wie auch die CXX-Variable berücksichtigen. Damit ist gemeint, dass der Port diese Variablen nicht ohne Rücksicht auf eventuell schon gesetzte Werte einfach überschreiben sollte; stattdessen sollten neue Werte an schon existierende angehängt werden. Dadurch können Build-Optionen, die alle Ports betreffen, global definiert werden. Falls der Port diese Variablen nicht berücksichtigt, sollte NO_PACKAGE=ignores either cc or cxx ins Makefile eingefügt werden. Im Folgenden wird ein Beispiel eines Makefiles gezeigt, welches die beiden Variablen CC und CXX berücksichtigt. Beachten Sie das ?=: CC?= gcc CXX?= g++ Nachfolgend ein Beispiel, welches weder CC noch CXX berücksichtigt: CC= gcc CXX= g++ Die Variablen CC und CXX können auf FreeBSD-Systemen in /etc/make.conf definiert werden. Im ersten Beispiel wird ein Wert nur dann gesetzt, falls dieser vorher noch nicht gesetzt war, um so systemweite Definitionen zu berücksichtigen. Im zweiten Beispiel werden die Variablen ohne Rücksicht überschrieben. Berücksichtigen Sie <makevar>CFLAGS</makevar> Der Port sollte die Variable CFLAGS berücksichtigen. Damit ist gemeint, dass der Port den Wert dieser Variablen nicht absolut setzen und damit existierende Werte überschreiben sollte; stattdessen sollte er weitere Werte der Variablen durch Anhängen hinzufügen. Dadurch können Build-Optionen, die alle Ports betreffen, global definiert werden. Falls der Port diese Variablen nicht berücksichtigt, sollte NO_PACKAGE=ignores cflags ins Makefile eingefügt werden. Im Folgenden wird ein Beispiel eines Makefiles gezeigt, welches die Variable CFLAGS berücksichtigt. Beachten Sie das +=: CFLAGS+= -Wall -Werror Nachfolgend finden Sie ein Beispiel, welches die CFLAGS-Variable nicht berücksichtigt: CFLAGS= -Wall -Werror Die Variable CFLAGS wird auf FreeBSD-Systemen in /etc/make.conf definiert. Im ersten Beispiel werden weitere Flags an die Variable CFLAGS angehängt und somit der bestehende Wert nicht gelöscht. Im zweiten Beispiel wird die Variable ohne Rücksicht überschrieben. Sie sollten Optimierungsflags aus Makefiles Dritter entfernen. Die CFLAGS des Systems beinhalten systemweite Optimierungsflags. Ein Beispiel eines unveränderten Makefiles: CFLAGS= -O3 -funroll-loops -DHAVE_SOUND Werden nun systemweite Optimierungsflags verwendet so würde das Makefile in etwa folgendermaßen aussehen: CFLAGS+= -DHAVE_SOUND Threading-Bibliotheken Die Threading-Bibliothek muss mit Hilfe eines speziellen Linker-Flags -pthread in die Binärdateien unter &os; gebunden werden. Falls ein Port auf ein direktes Verlinken gegen -lpthread oder -lc_r besteht, passen Sie den Port bitte so an, dass er die durch das Port-Framework bereitgestellte Variable PTHREAD_LIBS verwendet. Diese Variable hat üblicherweise den Wert -pthread, kann aber auf einigen Architekturen und &os;-Versionen abweichende Werte haben und daher sollte nie -pthread direkt in Patches geschrieben werden, sondern immer PTHREAD_LIBS. Falls durch das Setzen von PTHREAD_LIBS der Bau des Ports mit der Fehlermeldung unrecognized option '-pthread' abbricht, kann die Verwendung des gcc als Linker durch setzen von CONFIGURE_ENV auf LD=${CC} helfen. Die Option -pthread wird nicht direkt von ld unterstützt. Rückmeldungen Brauchbare Änderungen/Patches sollten an den ursprünglichen Autor/Maintainer der Software geschickt werden, damit diese in der nächsten Version der Software mit aufgenommen werden können. Dadurch wird Ihre Aufgabe für die nächste Version der Software deutlich einfacher. <filename>README.html</filename> Nehmen Sie bitte keine README.html in den Port auf. Diese Datei ist kein Bestandteil der CVS-Sammlung sondern wird durch make readme erzeugt. Einen Port durch <makevar>BROKEN</makevar>, <makevar>FORBIDDEN</makevar> oder <makevar>IGNORE</makevar> als nicht installierbar markieren In manchen Fällen sollten Benutzer davon abgehalten werden einen Port zu installieren. Um einem Benutzer mitzuteilen, dass ein Port nicht installiert werden sollte, gibt es mehrere Variablen für make, die im Makefile des Ports genutzt werden können. Der Wert der folgenden make-Variablen wird dem Benutzer als Grund für die Ablehnung der Installation des Ports zurückgegeben. Bitte benutzen Sie die richtige make-Variable, denn jede enthält eine völlig andere Bedeutung für den Benutzer und das automatische System, das von dem Makefile abhängt, wie der Ports-Build-Custer, FreshPorts und portsmon. Variablen BROKEN ist reserviert für Ports, welche momentan nicht korrekt kompiliert, installiert oder deinstalliert werden. Es sollte für Ports benutzt werden, von denen man annimmt, dass dies ein temporäres Problem ist. Falls angegeben, wird der Build-Cluster dennoch versuchen den Port zu bauen, um zu sehen, ob das zugrunde liegende Problem behoben wurde (das ist jedoch im Allgemeinen nicht der Fall). Benutzen Sie BROKEN zum Beispiel, wenn ein Port: nicht kompiliert beim Konfiguration- oder Installation-Prozess scheitert Dateien außerhalb von ${LOCALBASE} installiert beim Deinstallieren nicht alle seine Dateien sauber entfernt (jedoch kann es akzeptable und wünschenswert sein, Dateien, die vom Nutzer verändert wurden, nicht zu entfernen) FORBIDDEN wird für Ports verwendet, die Sicherheitslücken enthalten oder die ernste Sicherheitsbedenken für das FreeBSD-System aufwerfen, wenn sie installiert sind (z.B. ein als unsicher bekanntes Programm, oder ein Programm, das einen Dienst zur Verfügung stellt, der leicht kompromittiert werden kann). Ports sollten als FORBIDDEN gekennzeichnet werden, sobald ein Programm eine Schwachstelle hat und kein Update veröffentlicht wurde. Idealerweise sollten Ports so bald wie möglich aktualisiert werden wenn eine Sicherheitslücke entdeckt wurde, um die Zahl verwundbarer FreeBSD-Hosts zu verringern (wir schätzen es für unsere Sicherheit bekannt zu sein), obwohl es manchmal einen beachtlichen Zeitabstand zwischen der Bekanntmachung einer Schwachstelle und dem entsprechenden Update gibt. Bitte kennzeichnen Sie einen Port nicht aus irgendeinem Grund außer Sicherheit als FORBIDDEN. IGNORE ist für Ports reserviert, die aus anderen Gründen nicht gebaut werden sollten. Es sollte für Ports verwendet werden, in denen ein strukturelles Problem vermutet wird. Der Build-Cluster wird unter keinen Umständen Ports, die mit IGNORE markiert sind, erstellen. Verwenden Sie IGNORE zum Beispiel, wenn ein Port: kompiliert, aber nicht richtig läuft nicht auf der installierten Version von &os; läuft &os; Kernelquelltext zum Bauen benötigt, aber der Benutzer diese nicht installiert hat ein Distfile benötigt, welches aufgrund von Lizenzbeschränkungen nicht automatisch abgerufen werden kann nicht korrekt mit einem momentan installiertem Port arbeitet (der Port hängt zum Beispiel von www/apache21 ab, aber www/apache13 ist installiert) Wenn ein Port mit einem momentan installiertem Port kollidiert (zum Beispiel, wenn beide eine Datei an die selbe Stelle installieren, diese aber eine andere Funktion hat), benutzen Sie stattdessen CONFLICTS. CONFLICTS setzt IGNORE dann selbstständig. Um einen Port nur auf bestimmte Systemarchitekturen mit IGNORE zu markieren, gibt es zwei Variablen, die automatisch IGNORE für Sie setzen: ONLY_FOR_ARCHS und NOT_FOR_ARCHS. Beispiele: ONLY_FOR_ARCHS= i386 amd64 NOT_FOR_ARCHS= alpha ia64 sparc64 Eine eigene IGNORE-Ausgabe kann mit ONLY_FOR_ARCHS_REASON und NOT_FOR_ARCHS_REASON festgelegt werden. Für eine bestimmte Architektur sind Angaben durch ONLY_FOR_ARCHS_REASON_ARCH und NOT_FOR_ARCHS_REASON_ARCH möglich. Wenn ein Port i386-Binärdateien herunterlädt und installiert, sollte IA32_BINARY_PORT gesetzt werden. Wenn die Variable gesetzt ist, wird überprüft, ob das Verzeichnis /usr/lib32 für IA32-Versionen der Bibliotheken vorhanden ist, und ob der Kernel mit IA32-Kompatibilität gebaut wurde. Wenn eine dieser zwei Voraussetzungen nicht erfüllt ist, wird IGNORE automatisch gesetzt. Anmerkungen zur Implementierung Zeichenketten sollten nicht in Anführungszeichen gesetzt werden. Auch die Wortwahl der Zeichenketten sollte die Art und Weise beachten, wie die Informationen dem Nutzer angezeigt werden. Beispiele: BROKEN= this port is unsupported on FreeBSD 5.x IGNORE= is unsupported on FreeBSD 5.x resultieren in den folgenden Ausgaben von make describe: ===> foobar-0.1 is marked as broken: this port is unsupported on FreeBSD 5.x. ===> foobar-0.1 is unsupported on FreeBSD 5.x. Kennzeichnen eines Ports zur Entfernung durch <makevar>DEPRECATED</makevar> oder <makevar>EXPIRATION_DATE</makevar> Denken Sie bitte daran, dass BROKEN und FORBIDDEN nur als temporärer Ausweg verwendet werden sollten, wenn ein Port nicht funktioniert. Dauerhaft defekte Ports sollten komplett aus der Ports-Sammlung entfernt werden. Wenn es sinnvoll ist, können Benutzer vor der anstehenden Entfernung eines Ports mit DEPRECATED und EXPIRATION_DATE gewarnt werden. Ersteres ist einfach eine Zeichenkette, die angibt, warum der Port entfernt werden soll. Letzteres ist eine Zeichenkette im ISO 8601-Format (JJJJ-MM-TT). Beides wird dem Benutzer gezeigt. Es ist möglich DEPRECATED ohne EXPIRATION_DATE zu setzen (zum Beispiel, um eine neuere Version des Ports zu empfehlen), aber das Gegenteil ist sinnlos. Es gibt keine Vorschrift wie lange die Vorwarnzeit sein muss. Gegenwärtig ist es üblich einen Monat für sicherheitsrelevante Probleme und zwei Monate für Build-Probleme anzusetzen. Dies gibt allen interessierten Committern ein wenig Zeit die Probleme zu beheben. Vermeiden Sie den Gebrauch des <literal>.error</literal>-Konstruktes Der korrekte Weg eines Makefile anzuzeigen, dass der Port aufgrund eines externen Grundes nicht installiert werden kann (zum Beispiel, weil der Benutzer eine ungültige Kombination von Build-Optionen angegeben hat), ist IGNORE auf einen nicht leeren Wert zu setzen. Dieser wird dann formatiert und dem Benutzer von make install ausgegeben. Es ist ein verbreiteter Fehler .error für diesem Zweck zu verwenden. Das Problem dabei ist, dass viele automatisierte Werkzeuge, die mit dem Ports-Baum arbeiten, in dieser Situation fehlschlagen. Am Häufigsten tritt das Problem beim Versuch /usr/ports/INDEX zu bauen auf (siehe ). Jedoch schlagen auch trivialere Befehle wie make maintainer in diesem Fall fehl. Dies ist nicht akzeptabel! Wie vermeidet man die Verwendung von <literal>.error</literal> Nehmen Sie an, dass die Zeile USE_POINTYHAT=yes in make.conf enthalten ist. Der erste der folgenden zwei Makefile-Schnipsel lässt make index fehlschlagen, während der zweite dies nicht tut. .if USE_POINTYHAT .error "POINTYHAT is not supported" .endif .if USE_POINTYHAT IGNORE=POINTYHAT is not supported .endif Verwendung von <filename>sysctl</filename> Vom Gebrauch von sysctl wird, außer in Targets, abgeraten. Das liegt daran, dass die Auswertung aller makevars, wie sie während make index verwendet werden, dann den Befehl ausführen muss, welches den Prozess weiter verlangsamt. Die Verwendung von &man.sysctl.8; sollte immer durch die Variable SYSCTL erfolgen, da diese den vollständigen Pfad enthält und überschrieben werden kann, so dies als notwendig erachtet wird. Erneutes Ausliefern von Distfiles Manchmal ändern die Autoren der Software den Inhalt veröffentlichter Distfiles, ohne den Dateinamen zu ändern. Sie müssen überprüfen, ob die Änderungen offizell sind und vom Autor durchgeführt wurden. Es ist in der Vergangenheit vorgekommen, dass Distfiles still und heimlich auf dem Download-Server geändert wurden, um Schaden zu verursachen oder die Sicherheit der Nutzer zu kompromittieren. Verschieben Sie das alte Distfile und laden Sie das neue herunter. Entpacken Sie es und vergleichen Sie den Inhalt mittels &man.diff.1;. Wenn Sie nichts Verdächtiges sehen können Sie distinfo aktualisieren. Stellen Sie sicher, dass die Änderungen in Ihrem PR oder Commit-Protokoll zusammengefasst sind, um zu Gewährleisten, dass nichts Negatives passiert ist. Sie können auch mit den Autoren der Software in Verbindung treten und sich die Änderungen bestätigen lassen. - - - - Notwendige Abhilfen (Workarounds) - - Manchmal ist es nötig Fehler in Programmen, die mit - älteren Versionen von &os; ausgeliefert werden, zu - umgehen. - - - - Einige Versionen von &man.make.1; waren zumindest - auf &os; 4.8 und 5.0 in Bezug auf die Behandlung von - Vergleichen mit OSVERSION defekt. Dies - führte häufig zu Fehlern während - make describe (und damit auch - während des make index für - alle Ports). Abhilfe schafft hier, den bedingten Vergleich - in Leerzeichen einzuschließen, z.B.: - if ( ${OSVERSION} > 500023 - ) Beachten Sie, dass eine - Test-Installation eines Ports auf 4.9 oder 5.2 dieses - Problem nicht aufspürt. - - Verschiedenes Die Dateien pkg-descr und pkg-plist sollten beide doppelt kontrolliert werden. Wenn Sie einen Port nachprüfen und glauben, dass man es besser machen kann, dann verbessern Sie ihn bitte. Bitte kopieren Sie nicht noch mehr Exemplare der GNU General Public License in unser System. Bitte überprüfen Sie alle gesetzlichen Punkte gründlich! Lassen Sie uns bitte keine illegale Software verbreiten!
Beispiel eines <filename>Makefile</filename> Hier ein Beispiel für ein Makefile, welches als Vorlage für einen neuen Port dienen kann. Alle zusätzlichen Kommentare in eckigen Klammern müssen entfernt werden! Es wird empfohlen, die hier gezeigte Formatierung zu übernehmen (Reihenfolge der Variablen, Leerzeichen zwischen einzelnen Abschnitten, usw.). Dadurch werden die wichtigen Informationen sofort ersichtlich. Zur Überprüfung Ihres Makefiles sollten Sie portlint verwenden. [the header...just to make it easier for us to identify the ports.] # New ports collection makefile for: xdvi [the "version required" line is only needed when the PORTVERSION variable is not specific enough to describe the port.] # Date created: 26 May 1995 [this is the person who did the original port to FreeBSD, in particular, the person who wrote the first version of this Makefile. Remember, this should not be changed when upgrading the port later.] # Whom: Satoshi Asami <asami@FreeBSD.org> # # $FreeBSD$ [ ^^^^^^^^^ This will be automatically replaced with RCS ID string by CVS when it is committed to our repository. If upgrading a port, do not alter this line back to "$FreeBSD$". CVS deals with it automatically.] # [section to describe the port itself and the master site - PORTNAME and PORTVERSION are always first, followed by CATEGORIES, and then MASTER_SITES, which can be followed by MASTER_SITE_SUBDIR. PKGNAMEPREFIX and PKGNAMESUFFIX, if needed, will be after that. Then comes DISTNAME, EXTRACT_SUFX and/or DISTFILES, and then EXTRACT_ONLY, as necessary.] PORTNAME= xdvi PORTVERSION= 18.2 CATEGORIES= print [do not forget the trailing slash ("/")! if you are not using MASTER_SITE_* macros] MASTER_SITES= ${MASTER_SITE_XCONTRIB} MASTER_SITE_SUBDIR= applications PKGNAMEPREFIX= ja- DISTNAME= xdvi-pl18 [set this if the source is not in the standard ".tar.gz" form] EXTRACT_SUFX= .tar.Z [section for distributed patches -- can be empty] PATCH_SITES= ftp://ftp.sra.co.jp/pub/X11/japanese/ PATCHFILES= xdvi-18.patch1.gz xdvi-18.patch2.gz [maintainer; *mandatory*! This is the person who is volunteering to handle port updates, build breakages, and to whom a users can direct questions and bug reports. To keep the quality of the Ports Collection as high as possible, we no longer accept new ports that are assigned to "ports@FreeBSD.org".] MAINTAINER= asami@FreeBSD.org COMMENT= A DVI Previewer for the X Window System [dependencies -- can be empty] RUN_DEPENDS= gs:${PORTSDIR}/print/ghostscript LIB_DEPENDS= Xpm.5:${PORTSDIR}/graphics/xpm [this section is for other standard bsd.port.mk variables that do not belong to any of the above] [If it asks questions during configure, build, install...] IS_INTERACTIVE= yes [If it extracts to a directory other than ${DISTNAME}...] WRKSRC= ${WRKDIR}/xdvi-new [If the distributed patches were not made relative to ${WRKSRC}, you may need to tweak this] PATCH_DIST_STRIP= -p1 [If it requires a "configure" script generated by GNU autoconf to be run] GNU_CONFIGURE= yes [If it requires GNU make, not /usr/bin/make, to build...] USE_GMAKE= yes [If it is an X application and requires "xmkmf -a" to be run...] USE_IMAKE= yes [et cetera.] [non-standard variables to be used in the rules below] MY_FAVORITE_RESPONSE= "yeah, right" [then the special rules, in the order they are called] pre-fetch: i go fetch something, yeah post-patch: i need to do something after patch, great pre-install: and then some more stuff before installing, wow [and then the epilogue] .include <bsd.port.mk> Auf dem Laufenden bleiben Die &os; Ports-Sammlung verändert sich ständig. Hier finden Sie einige Informationen, wie Sie auf dem Laufenden bleiben. FreshPorts Einer der einfachsten Wege, um sich über Aktualisierungen, die bereits durchgeführt wurden, zu informieren, ist sich bei FreshPorts anzumelden. Sie können dort beliebige Ports auswählen, die Sie beobachten möchten. Maintainern wird ausdrücklich empfohlen sich anzumelden, da Sie nicht nur über Ihre eigenen Änderungen informiert werden, sondern auch über die aller anderen Committer (Diese sind oft nötig, um über Änderungen des zugrunde liegenden Frameworks informiert zu bleiben. Obwohl es höflich wäre, vorher über solche Änderungen benachrichtigt zu werden, wird es manchmal vergessen oder ist einfach nicht möglich. Außerdem sind die Änderungen manchmal nur sehr klein. Wir erwarten von jedem in solchen Fällen nach bestem Gewissen zu urteilen). Wenn Sie Fresh-Ports benutzen möchten, benötigen Sie nur einen Account. Falls Sie sich mit einer @FreeBSD.org E-Mailadresse registriert haben, werden Sie den Anmeldelink am rechten Rand der Seite finden. Diejenigen, die bereits einen FeshPorts-Account haben, aber nicht Ihre @FreeBSD.org E-Mailadresse benutzen, können einfach Ihre E-Mailadresse auf @FreeBSD.org ändern, sich anmelden, und dann die Änderung rückgängig machen. FreshPorts bietet auch eine Überprüfungsfunktion, die automatisch alle Committs zum &os; Ports-Baum testet. Wenn Sie sich für diesen Dienst anmelden, werden Sie über alle Fehler, die bei der Überprüfung Ihres Committs auftreten, informiert. Die Webschnittstelle zum Quelltext-Repository Es ist möglich die Dateien des Quellen-Repositories mit Hilfe einer Webschnittstelle durchzusehen. Änderungen, die das gesamte Ports-System betreffen, werden jetzt in der Datei CHANGES dokumentiert. Solche, die nur bestimmte Ports betreffen, in der Datei UPDATING. Aber die maßgebliche Antwort auf alle Fragen liegt zweifellos darin, den Quelltext von bsd.port.mk und dazugehörige Dateien zu lesen. Die &os; Ports-Mailingliste Wenn Sie Maintainer sind, sollten Sie in Erwägung ziehen die &a.ports;-Mailingliste zu verfolgen. Wichtige Änderungen an der grundlegenden Funktionsweise von Ports werden dort angekündigt und dann in CHANGES committet. Der Cluster zum Bauen von &os;-Ports auf <hostid role="hostname">pointyhat.FreeBSD.org</hostid> Eine der weniger bekannten Stärken von &os; ist es, dass ein ganzer Cluster von Maschinen nur dafür reserviert ist, andauernd die Ports-Sammlung zu bauen, und zwar für jedes große &os; Release und jede Tier-1-Architektur. Die Ergebnisse können Sie unter package building logs and errors finden. Alle Ports ausser denjenigen, die als IGNORE markiert sind, werden gebaut. Ports, die als BROKEN markiert sind, werden dennoch ausprobiert, um zu sehen, ob das zugrunde liegende Problem gelöst wurde (Dies wird erreicht, indem TRYBROKEN an das Makefile des Ports übergeben wird). Der &os; Ports-Distfile-Scanner Der Build-Cluster ist dazu bestimmt, das neueste Release jedes Ports aus bereits heruntergeladenden Distfiles zu bauen. Da sich das Internet aber ständig verändert, können Distfiles schnell verloren gehen. Der FreeBSD Ports-Distfile-Scanner versucht jeden Download-Standort für jeden Port anzufragen, um herauszufinden, ob jedes Distfile noch verfügbar ist. Maintainer werden gebeten diesen Bericht regelmäßig durchzusehen, nicht nur, um den Build-Prozess für die Nutzer zu beschleunigen, sondern auch um zu vermeiden, dass auf den Maschinen, die freiwillig zur Verfügung gestellt werden, um all diese Dateien anzubieten, Ressourcen verschwendet werden. Das &os; Ports-Monitoring-System Eine weitere praktische Ressource ist das FreeBSD Ports-Monitoring-System (auch bekannt als portsmon). Dieses System besteht aus einer Datenbank, die Informationen von mehreren Quellen bezieht und es erlaubt diese über ein Webinterface abzufragen. Momentan werden die Ports-Problemberichte (PRs), die Fehlerprotokolle des Build-Clusters und die einzelnen Dateien der Ports-Sammlung verwendet. In Zukunft soll das auf die Distfile-Prüfung und weitere Informationsquellen ausgedehnt werden. Als Ausgangspunkt können Sie alle Informationen eines Ports mit Hilfe der Übersicht eines Ports betrachten. Zum Zeitpunkt des Schreibens ist dies die einzige Quelle, die GNATS PR-Einträge auf Portnamen abbildet (PR-Einreicher geben den Portnamen nicht immer in der Zusammenfassung an, obwohl wir uns das wünschen würden). Also ist portsmon ein guter Anlaufpunkt, wenn Sie herausfinden wollen, ob zu einem existierenden Port PRs oder Buildfehler eingetragen sind. Oder um herauszufinden, ob ein neuer Port, den Sie erstellen wollen, bereits eingereicht wurde.
Index: head/de_DE.ISO8859-1/share/sgml/mailing-lists.ent =================================================================== --- head/de_DE.ISO8859-1/share/sgml/mailing-lists.ent (revision 36616) +++ head/de_DE.ISO8859-1/share/sgml/mailing-lists.ent (revision 36617) @@ -1,649 +1,653 @@ FreeBSD list server"> &a.mailman.listinfo;"> de-bsd-translators@de.FreeBSD.org"> de-bsd-questions@de.FreeBSD.org"> FreeBSD ACPI"> freebsd-acpi"> FreeBSD advocacy"> freebsd-advocacy"> FreeBSD AFS porting"> freebsd-afs"> FreeBSD Adapteci AIC7xxx discussions"> freebsd-aic7xxx"> FreeBSD Alpha porting"> freebsd-alpha"> Porting FreeBSD to AMD64 systems"> freebsd-amd64"> FreeBSD announcements"> freebsd-announce"> FreeBSD Apache"> freebsd-apache"> FreeBSD architecture and design"> freebsd-arch"> FreeBSD ARM porting"> freebsd-arm"> FreeBSD ATM networking"> freebsd-atm"> FreeBSD source code audit"> freebsd-audit"> FreeBSD binary update system"> freebsd-binup"> FreeBSD Bluetooth mailing list"> freebsd-bluetooth"> FreeBSD bugbusters"> freebsd-bugbusters"> FreeBSD problem reports"> freebsd-bugs"> FreeBSD chat"> freebsd-chat"> FreeBSD clustering"> freebsd-cluster"> FreeBSD committers"> FreeBSD core team"> &os.current;"> freebsd-current"> CTM announcements"> ctm-announce"> CTM distribution of CVS files"> ctm-cvs-cur"> CTM 4-STABLE src branch distribution"> ctm-src-4"> CTM -CURRENT src branch distribution"> ctm-src-cur"> CTM user discussion"> ctm-users"> FreeBSD CVS commit message"> cvs-all"> FreeBSD CVS doc commit"> cvs-doc"> FreeBSD CVS ports commit"> cvs-ports"> FreeBSD CVS projects commit"> cvs-projects"> FreeBSD CVS src commit"> cvs-src"> FreeBSD CVSweb maintenance"> freebsd-cvsweb"> FreeBSD based Databases"> freebsd-database"> FreeBSD developers"> Writing device drivers for FreeBSD"> freebsd-drivers"> FreeBSD documentation project"> freebsd-doc"> FreeBSD doc/ Committer"> FreeBSD doc/ developers"> FreeBSD users of Eclipse EDI, tools, rich client apps and ports."> freebsd-eclipse"> FreeBSD-embedded mailing list"> freebsd-embedded"> FreeBSD-emulation"> freebsd-emulation"> FreeBSD-eol mailing list"> freebsd-eol"> FreeBSD FireWire (IEEE 1394) discussion"> freebsd-firewire"> FreeBSD filesystem project"> freebsd-fs"> FreeBSD gecko mailing list"> freebsd-gecko"> FreeBSD GEOM"> freebsd-geom"> FreeBSD GNOME and GNOME applications"> freebsd-gnome"> FreeBSD technical discussions"> freebsd-hackers"> FreeBSD hardware and equipment"> freebsd-hardware"> FreeBSD mirror sites"> freebsd-hubs"> FreeBSD internationalization"> freebsd-i18n"> FreeBSD i386-specific issues"> freebsd-i386"> FreeBSD IA32 porting"> freebsd-ia32"> FreeBSD IA64 porting"> freebsd-ia64"> FreeBSD IPFW code"> freebsd-ipfw"> FreeBSD ISDN"> freebsd-isdn"> FreeBSD Internet service providers"> freebsd-isp"> FreeBSD jails mailing list"> freebsd-jail"> FreeBSD Java Language"> freebsd-java"> FreeBSD related employment"> freebsd-jobs"> FreeBSD KDE/Qt and KDE applications"> freebsd-kde"> FreeBSD LFS porting"> freebsd-lfs"> FreeBSD libh installation and packaging system"> freebsd-libh"> FreeBSD MIPS porting"> freebsd-mips"> FreeBSD mirror site administrators"> mirror-announce"> FreeBSD laptop computer"> freebsd-mobile"> Mono and C# applications on FreeBSD"> freebsd-mono"> FreeBSD port of the Mozilla browser"> freebsd-mozilla"> FreeBSD multimedia"> freebsd-multimedia"> FreeBSD networking"> freebsd-net"> FreeBSD new users"> freebsd-newbies"> New Bus Architecture"> freebsd-new-bus"> FreeBSD OpenOffice"> freebsd-openoffice"> FreeBSD performance"> freebsd-performance"> FreeBSD Perl"> freebsd-perl"> FreeBSD packet filter mailing list"> freebsd-pf"> FreeBSD non-Intel platforms porting"> freebsd-platforms"> FreeBSD core team policy decisions"> freebsd-policy"> FreeBSD ports"> freebsd-ports"> FreeBSD ports/ developers"> FreeBSD ports bugs"> freebsd-ports-bugs"> FreeBSD ports/ Committer"> FreeBSD PowerPC porting"> freebsd-ppc"> Technical discussion of FreeBSD on HP ProLiant server platforms"> freebsd-proliant"> FreeBSD Python mailing list"> freebsd-python"> FreeBSD Quality Assurance"> freebsd-qa"> FreeBSD general questions"> freebsd-questions"> FreeBSD boot script system mailing list"> freebsd-rc"> FreeBSD realtime extensions"> freebsd-realtime"> FreeBSD Ruby mailing list"> freebsd-ruby"> FreeBSD SCSI subsystem"> freebsd-scsi"> FreeBSD security"> freebsd-security"> FreeBSD security notifications"> freebsd-security-notifications"> FreeBSD-small"> freebsd-small"> FreeBSD symmetric multiprocessing"> freebsd-smp"> FreeBSD SPARC porting"> freebsd-sparc64"> FreeBSD src/ Committer"> FreeBSD src/ developers"> &os.stable;"> freebsd-stable"> FreeBSD C99 and POSIX compliance"> freebsd-standards"> FreeBSD sun4v porting mailing list"> freebsd-sun4v"> SVN commit messages for the entire src tree (except for user and projects)"> svn-src-all"> SVN commit messages for the src tree for head/-current"> svn-src-head"> SVN commit messages for the src projects tree"> svn-src-projects"> SVN commit messages for releases in the src tree"> svn-src-release"> SVN commit messages for the release engineering / security commits to the src tree"> svn-src-releng"> SVN commit messages for all the -stable branches of the src tree"> svn-src-stable"> SVN commit messages for only the 6-stable src tree"> svn-src-stable-6"> SVN commit messages for only the 7-stable src tree"> svn-src-stable-7"> SVN commit messages for only the 8-stable src tree"> svn-src stable-8"> SVN commit messages for the old stable src trees"> svn-src-stable-other"> SVN commit messages for the admin / configuration tree"> svn-src-svnadmin"> SVN commit messages for the experimental user src tree"> svn-src-user"> SVN commit messages for the vendor work area tree"> svn-src-vendor"> Sysinstall development mailing list"> freebsd-sysinstall"> FreeBSD test"> freebsd-test"> FreeBSD performance and stability testing"> freebsd-testing"> FreeBSD threads"> freebsd-threads"> + + +Porting FreeBSD to the Tilera family of CPUs"> +freebsd-tilera"> FreeBSD tokenring"> freebsd-tokenring"> FreeBSD integrated toolchain"> freebsd-toolchain"> FreeBSD USB"> freebsd-usb"> FreeBSD user group coordination"> freebsd-user-groups"> FreeBSD vendors pre-release coordination"> freebsd-vendors"> Discussion of various virtualization techniques supported by FreeBSD"> freebsd-virtualization"> Diskussion über die Infrastruktur von VuXML"> freebsd-vuxml"> FreeBSD Work-In-Progress Status"> freebsd-wip-status"> FreeBSD Webmaster"> freebsd-www"> FreeBSD X11 mailing list"> freebsd-x11"> FreeBSD port to Xen mailing list"> freebsd-xen"> bug-followup@FreeBSD.org"> majordomo@FreeBSD.org">