Index: stable/12/sys/dev/e1000/if_em.c =================================================================== --- stable/12/sys/dev/e1000/if_em.c (revision 346335) +++ stable/12/sys/dev/e1000/if_em.c (revision 346336) @@ -1,4555 +1,4548 @@ /*- * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 2016 Nicole Graziano * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* $FreeBSD$ */ #include "if_em.h" #include #include #define em_mac_min e1000_82547 #define igb_mac_min e1000_82575 /********************************************************************* * Driver version: *********************************************************************/ char em_driver_version[] = "7.6.1-k"; /********************************************************************* * PCI Device ID Table * * Used by probe to select devices to load on * Last field stores an index into e1000_strings * Last entry must be all 0s * * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, String Index } *********************************************************************/ static pci_vendor_info_t em_vendor_info_array[] = { /* Intel(R) PRO/1000 Network Connection - Legacy em*/ PVID(0x8086, E1000_DEV_ID_82540EM, "Intel(R) PRO/1000 Network Connection"), PVID(0x8086, E1000_DEV_ID_82540EM_LOM, "Intel(R) PRO/1000 Network Connection"), PVID(0x8086, E1000_DEV_ID_82540EP, "Intel(R) PRO/1000 Network Connection"), PVID(0x8086, E1000_DEV_ID_82540EP_LOM, "Intel(R) PRO/1000 Network Connection"), PVID(0x8086, E1000_DEV_ID_82540EP_LP, "Intel(R) PRO/1000 Network Connection"), PVID(0x8086, E1000_DEV_ID_82541EI, "Intel(R) PRO/1000 Network Connection"), PVID(0x8086, E1000_DEV_ID_82541ER, "Intel(R) PRO/1000 Network Connection"), PVID(0x8086, E1000_DEV_ID_82541ER_LOM, "Intel(R) PRO/1000 Network Connection"), PVID(0x8086, E1000_DEV_ID_82541EI_MOBILE, "Intel(R) PRO/1000 Network Connection"), PVID(0x8086, E1000_DEV_ID_82541GI, "Intel(R) PRO/1000 Network Connection"), PVID(0x8086, E1000_DEV_ID_82541GI_LF, "Intel(R) PRO/1000 Network Connection"), PVID(0x8086, E1000_DEV_ID_82541GI_MOBILE, "Intel(R) PRO/1000 Network Connection"), PVID(0x8086, E1000_DEV_ID_82542, "Intel(R) PRO/1000 Network Connection"), PVID(0x8086, E1000_DEV_ID_82543GC_FIBER, "Intel(R) PRO/1000 Network Connection"), PVID(0x8086, E1000_DEV_ID_82543GC_COPPER, "Intel(R) PRO/1000 Network Connection"), PVID(0x8086, E1000_DEV_ID_82544EI_COPPER, "Intel(R) PRO/1000 Network Connection"), PVID(0x8086, E1000_DEV_ID_82544EI_FIBER, "Intel(R) PRO/1000 Network Connection"), PVID(0x8086, E1000_DEV_ID_82544GC_COPPER, "Intel(R) PRO/1000 Network Connection"), PVID(0x8086, E1000_DEV_ID_82544GC_LOM, "Intel(R) PRO/1000 Network Connection"), PVID(0x8086, E1000_DEV_ID_82545EM_COPPER, "Intel(R) PRO/1000 Network Connection"), PVID(0x8086, E1000_DEV_ID_82545EM_FIBER, "Intel(R) PRO/1000 Network Connection"), PVID(0x8086, E1000_DEV_ID_82545GM_COPPER, "Intel(R) PRO/1000 Network Connection"), PVID(0x8086, E1000_DEV_ID_82545GM_FIBER, "Intel(R) PRO/1000 Network Connection"), PVID(0x8086, E1000_DEV_ID_82545GM_SERDES, "Intel(R) PRO/1000 Network Connection"), PVID(0x8086, E1000_DEV_ID_82546EB_COPPER, "Intel(R) PRO/1000 Network Connection"), PVID(0x8086, E1000_DEV_ID_82546EB_FIBER, "Intel(R) PRO/1000 Network Connection"), PVID(0x8086, E1000_DEV_ID_82546EB_QUAD_COPPER, "Intel(R) PRO/1000 Network Connection"), PVID(0x8086, E1000_DEV_ID_82546GB_COPPER, "Intel(R) PRO/1000 Network Connection"), PVID(0x8086, E1000_DEV_ID_82546GB_FIBER, "Intel(R) PRO/1000 Network Connection"), PVID(0x8086, E1000_DEV_ID_82546GB_SERDES, "Intel(R) PRO/1000 Network Connection"), PVID(0x8086, E1000_DEV_ID_82546GB_PCIE, "Intel(R) PRO/1000 Network Connection"), PVID(0x8086, E1000_DEV_ID_82546GB_QUAD_COPPER, "Intel(R) PRO/1000 Network Connection"), PVID(0x8086, E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3, "Intel(R) PRO/1000 Network Connection"), PVID(0x8086, E1000_DEV_ID_82547EI, "Intel(R) PRO/1000 Network Connection"), PVID(0x8086, E1000_DEV_ID_82547EI_MOBILE, "Intel(R) PRO/1000 Network Connection"), PVID(0x8086, E1000_DEV_ID_82547GI, "Intel(R) PRO/1000 Network Connection"), /* Intel(R) PRO/1000 Network Connection - em */ PVID(0x8086, E1000_DEV_ID_82571EB_COPPER, "Intel(R) PRO/1000 Network Connection"), PVID(0x8086, E1000_DEV_ID_82571EB_FIBER, "Intel(R) PRO/1000 Network Connection"), PVID(0x8086, E1000_DEV_ID_82571EB_SERDES, "Intel(R) PRO/1000 Network Connection"), PVID(0x8086, E1000_DEV_ID_82571EB_SERDES_DUAL, "Intel(R) PRO/1000 Network Connection"), PVID(0x8086, E1000_DEV_ID_82571EB_SERDES_QUAD, "Intel(R) PRO/1000 Network Connection"), PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_COPPER, "Intel(R) PRO/1000 Network Connection"), PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_COPPER_LP, "Intel(R) PRO/1000 Network Connection"), PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_FIBER, "Intel(R) PRO/1000 Network Connection"), PVID(0x8086, E1000_DEV_ID_82571PT_QUAD_COPPER, "Intel(R) PRO/1000 Network Connection"), PVID(0x8086, E1000_DEV_ID_82572EI, "Intel(R) PRO/1000 Network Connection"), PVID(0x8086, E1000_DEV_ID_82572EI_COPPER, "Intel(R) PRO/1000 Network Connection"), PVID(0x8086, E1000_DEV_ID_82572EI_FIBER, "Intel(R) PRO/1000 Network Connection"), PVID(0x8086, E1000_DEV_ID_82572EI_SERDES, "Intel(R) PRO/1000 Network Connection"), PVID(0x8086, E1000_DEV_ID_82573E, "Intel(R) PRO/1000 Network Connection"), PVID(0x8086, E1000_DEV_ID_82573E_IAMT, "Intel(R) PRO/1000 Network Connection"), PVID(0x8086, E1000_DEV_ID_82573L, "Intel(R) PRO/1000 Network Connection"), PVID(0x8086, E1000_DEV_ID_82583V, "Intel(R) PRO/1000 Network Connection"), PVID(0x8086, E1000_DEV_ID_80003ES2LAN_COPPER_SPT, "Intel(R) PRO/1000 Network Connection"), PVID(0x8086, E1000_DEV_ID_80003ES2LAN_SERDES_SPT, "Intel(R) PRO/1000 Network Connection"), PVID(0x8086, E1000_DEV_ID_80003ES2LAN_COPPER_DPT, "Intel(R) PRO/1000 Network Connection"), PVID(0x8086, E1000_DEV_ID_80003ES2LAN_SERDES_DPT, "Intel(R) PRO/1000 Network Connection"), PVID(0x8086, E1000_DEV_ID_ICH8_IGP_M_AMT, "Intel(R) PRO/1000 Network Connection"), PVID(0x8086, E1000_DEV_ID_ICH8_IGP_AMT, "Intel(R) PRO/1000 Network Connection"), PVID(0x8086, E1000_DEV_ID_ICH8_IGP_C, "Intel(R) PRO/1000 Network Connection"), PVID(0x8086, E1000_DEV_ID_ICH8_IFE, "Intel(R) PRO/1000 Network Connection"), PVID(0x8086, E1000_DEV_ID_ICH8_IFE_GT, "Intel(R) PRO/1000 Network Connection"), PVID(0x8086, E1000_DEV_ID_ICH8_IFE_G, "Intel(R) PRO/1000 Network Connection"), PVID(0x8086, E1000_DEV_ID_ICH8_IGP_M, "Intel(R) PRO/1000 Network Connection"), PVID(0x8086, E1000_DEV_ID_ICH8_82567V_3, "Intel(R) PRO/1000 Network Connection"), PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M_AMT, "Intel(R) PRO/1000 Network Connection"), PVID(0x8086, E1000_DEV_ID_ICH9_IGP_AMT, "Intel(R) PRO/1000 Network Connection"), PVID(0x8086, E1000_DEV_ID_ICH9_IGP_C, "Intel(R) PRO/1000 Network Connection"), PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M, "Intel(R) PRO/1000 Network Connection"), PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M_V, "Intel(R) PRO/1000 Network Connection"), PVID(0x8086, E1000_DEV_ID_ICH9_IFE, "Intel(R) PRO/1000 Network Connection"), PVID(0x8086, E1000_DEV_ID_ICH9_IFE_GT, "Intel(R) PRO/1000 Network Connection"), PVID(0x8086, E1000_DEV_ID_ICH9_IFE_G, "Intel(R) PRO/1000 Network Connection"), PVID(0x8086, E1000_DEV_ID_ICH9_BM, "Intel(R) PRO/1000 Network Connection"), PVID(0x8086, E1000_DEV_ID_82574L, "Intel(R) PRO/1000 Network Connection"), PVID(0x8086, E1000_DEV_ID_82574LA, "Intel(R) PRO/1000 Network Connection"), PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_LM, "Intel(R) PRO/1000 Network Connection"), PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_LF, "Intel(R) PRO/1000 Network Connection"), PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_V, "Intel(R) PRO/1000 Network Connection"), PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_LM, "Intel(R) PRO/1000 Network Connection"), PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_LF, "Intel(R) PRO/1000 Network Connection"), PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_V, "Intel(R) PRO/1000 Network Connection"), PVID(0x8086, E1000_DEV_ID_PCH_M_HV_LM, "Intel(R) PRO/1000 Network Connection"), PVID(0x8086, E1000_DEV_ID_PCH_M_HV_LC, "Intel(R) PRO/1000 Network Connection"), PVID(0x8086, E1000_DEV_ID_PCH_D_HV_DM, "Intel(R) PRO/1000 Network Connection"), PVID(0x8086, E1000_DEV_ID_PCH_D_HV_DC, "Intel(R) PRO/1000 Network Connection"), PVID(0x8086, E1000_DEV_ID_PCH2_LV_LM, "Intel(R) PRO/1000 Network Connection"), PVID(0x8086, E1000_DEV_ID_PCH2_LV_V, "Intel(R) PRO/1000 Network Connection"), PVID(0x8086, E1000_DEV_ID_PCH_LPT_I217_LM, "Intel(R) PRO/1000 Network Connection"), PVID(0x8086, E1000_DEV_ID_PCH_LPT_I217_V, "Intel(R) PRO/1000 Network Connection"), PVID(0x8086, E1000_DEV_ID_PCH_LPTLP_I218_LM, "Intel(R) PRO/1000 Network Connection"), PVID(0x8086, E1000_DEV_ID_PCH_LPTLP_I218_V, "Intel(R) PRO/1000 Network Connection"), PVID(0x8086, E1000_DEV_ID_PCH_I218_LM2, "Intel(R) PRO/1000 Network Connection"), PVID(0x8086, E1000_DEV_ID_PCH_I218_V2, "Intel(R) PRO/1000 Network Connection"), PVID(0x8086, E1000_DEV_ID_PCH_I218_LM3, "Intel(R) PRO/1000 Network Connection"), PVID(0x8086, E1000_DEV_ID_PCH_I218_V3, "Intel(R) PRO/1000 Network Connection"), PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM, "Intel(R) PRO/1000 Network Connection"), PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V, "Intel(R) PRO/1000 Network Connection"), PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM2, "Intel(R) PRO/1000 Network Connection"), PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V2, "Intel(R) PRO/1000 Network Connection"), PVID(0x8086, E1000_DEV_ID_PCH_LBG_I219_LM3, "Intel(R) PRO/1000 Network Connection"), PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM4, "Intel(R) PRO/1000 Network Connection"), PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V4, "Intel(R) PRO/1000 Network Connection"), PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM5, "Intel(R) PRO/1000 Network Connection"), PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V5, "Intel(R) PRO/1000 Network Connection"), PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_LM6, "Intel(R) PRO/1000 Network Connection"), PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_V6, "Intel(R) PRO/1000 Network Connection"), PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_LM7, "Intel(R) PRO/1000 Network Connection"), PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_V7, "Intel(R) PRO/1000 Network Connection"), PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_LM8, "Intel(R) PRO/1000 Network Connection"), PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_V8, "Intel(R) PRO/1000 Network Connection"), PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_LM9, "Intel(R) PRO/1000 Network Connection"), PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_V9, "Intel(R) PRO/1000 Network Connection"), /* required last entry */ PVID_END }; static pci_vendor_info_t igb_vendor_info_array[] = { /* Intel(R) PRO/1000 Network Connection - igb */ PVID(0x8086, E1000_DEV_ID_82575EB_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"), PVID(0x8086, E1000_DEV_ID_82575EB_FIBER_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"), PVID(0x8086, E1000_DEV_ID_82575GB_QUAD_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"), PVID(0x8086, E1000_DEV_ID_82576, "Intel(R) PRO/1000 PCI-Express Network Driver"), PVID(0x8086, E1000_DEV_ID_82576_NS, "Intel(R) PRO/1000 PCI-Express Network Driver"), PVID(0x8086, E1000_DEV_ID_82576_NS_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"), PVID(0x8086, E1000_DEV_ID_82576_FIBER, "Intel(R) PRO/1000 PCI-Express Network Driver"), PVID(0x8086, E1000_DEV_ID_82576_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"), PVID(0x8086, E1000_DEV_ID_82576_SERDES_QUAD, "Intel(R) PRO/1000 PCI-Express Network Driver"), PVID(0x8086, E1000_DEV_ID_82576_QUAD_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"), PVID(0x8086, E1000_DEV_ID_82576_QUAD_COPPER_ET2, "Intel(R) PRO/1000 PCI-Express Network Driver"), PVID(0x8086, E1000_DEV_ID_82576_VF, "Intel(R) PRO/1000 PCI-Express Network Driver"), PVID(0x8086, E1000_DEV_ID_82580_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"), PVID(0x8086, E1000_DEV_ID_82580_FIBER, "Intel(R) PRO/1000 PCI-Express Network Driver"), PVID(0x8086, E1000_DEV_ID_82580_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"), PVID(0x8086, E1000_DEV_ID_82580_SGMII, "Intel(R) PRO/1000 PCI-Express Network Driver"), PVID(0x8086, E1000_DEV_ID_82580_COPPER_DUAL, "Intel(R) PRO/1000 PCI-Express Network Driver"), PVID(0x8086, E1000_DEV_ID_82580_QUAD_FIBER, "Intel(R) PRO/1000 PCI-Express Network Driver"), PVID(0x8086, E1000_DEV_ID_DH89XXCC_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"), PVID(0x8086, E1000_DEV_ID_DH89XXCC_SGMII, "Intel(R) PRO/1000 PCI-Express Network Driver"), PVID(0x8086, E1000_DEV_ID_DH89XXCC_SFP, "Intel(R) PRO/1000 PCI-Express Network Driver"), PVID(0x8086, E1000_DEV_ID_DH89XXCC_BACKPLANE, "Intel(R) PRO/1000 PCI-Express Network Driver"), PVID(0x8086, E1000_DEV_ID_I350_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"), PVID(0x8086, E1000_DEV_ID_I350_FIBER, "Intel(R) PRO/1000 PCI-Express Network Driver"), PVID(0x8086, E1000_DEV_ID_I350_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"), PVID(0x8086, E1000_DEV_ID_I350_SGMII, "Intel(R) PRO/1000 PCI-Express Network Driver"), PVID(0x8086, E1000_DEV_ID_I350_VF, "Intel(R) PRO/1000 PCI-Express Network Driver"), PVID(0x8086, E1000_DEV_ID_I210_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"), PVID(0x8086, E1000_DEV_ID_I210_COPPER_IT, "Intel(R) PRO/1000 PCI-Express Network Driver"), PVID(0x8086, E1000_DEV_ID_I210_COPPER_OEM1, "Intel(R) PRO/1000 PCI-Express Network Driver"), PVID(0x8086, E1000_DEV_ID_I210_COPPER_FLASHLESS, "Intel(R) PRO/1000 PCI-Express Network Driver"), PVID(0x8086, E1000_DEV_ID_I210_SERDES_FLASHLESS, "Intel(R) PRO/1000 PCI-Express Network Driver"), PVID(0x8086, E1000_DEV_ID_I210_FIBER, "Intel(R) PRO/1000 PCI-Express Network Driver"), PVID(0x8086, E1000_DEV_ID_I210_SERDES, "Intel(R) PRO/1000 PCI-Express Network Driver"), PVID(0x8086, E1000_DEV_ID_I210_SGMII, "Intel(R) PRO/1000 PCI-Express Network Driver"), PVID(0x8086, E1000_DEV_ID_I211_COPPER, "Intel(R) PRO/1000 PCI-Express Network Driver"), PVID(0x8086, E1000_DEV_ID_I354_BACKPLANE_1GBPS, "Intel(R) PRO/1000 PCI-Express Network Driver"), PVID(0x8086, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS, "Intel(R) PRO/1000 PCI-Express Network Driver"), PVID(0x8086, E1000_DEV_ID_I354_SGMII, "Intel(R) PRO/1000 PCI-Express Network Driver"), /* required last entry */ PVID_END }; /********************************************************************* * Function prototypes *********************************************************************/ static void *em_register(device_t dev); static void *igb_register(device_t dev); static int em_if_attach_pre(if_ctx_t ctx); static int em_if_attach_post(if_ctx_t ctx); static int em_if_detach(if_ctx_t ctx); static int em_if_shutdown(if_ctx_t ctx); static int em_if_suspend(if_ctx_t ctx); static int em_if_resume(if_ctx_t ctx); static int em_if_tx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int ntxqs, int ntxqsets); static int em_if_rx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int nrxqs, int nrxqsets); static void em_if_queues_free(if_ctx_t ctx); static uint64_t em_if_get_counter(if_ctx_t, ift_counter); static void em_if_init(if_ctx_t ctx); static void em_if_stop(if_ctx_t ctx); static void em_if_media_status(if_ctx_t, struct ifmediareq *); static int em_if_media_change(if_ctx_t ctx); static int em_if_mtu_set(if_ctx_t ctx, uint32_t mtu); static void em_if_timer(if_ctx_t ctx, uint16_t qid); static void em_if_vlan_register(if_ctx_t ctx, u16 vtag); static void em_if_vlan_unregister(if_ctx_t ctx, u16 vtag); static void em_if_watchdog_reset(if_ctx_t ctx); static void em_identify_hardware(if_ctx_t ctx); static int em_allocate_pci_resources(if_ctx_t ctx); static void em_free_pci_resources(if_ctx_t ctx); static void em_reset(if_ctx_t ctx); static int em_setup_interface(if_ctx_t ctx); static int em_setup_msix(if_ctx_t ctx); static void em_initialize_transmit_unit(if_ctx_t ctx); static void em_initialize_receive_unit(if_ctx_t ctx); static void em_if_enable_intr(if_ctx_t ctx); static void em_if_disable_intr(if_ctx_t ctx); static int em_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid); static int em_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid); static void em_if_multi_set(if_ctx_t ctx); static void em_if_update_admin_status(if_ctx_t ctx); static void em_if_debug(if_ctx_t ctx); static void em_update_stats_counters(struct adapter *); static void em_add_hw_stats(struct adapter *adapter); static int em_if_set_promisc(if_ctx_t ctx, int flags); static void em_setup_vlan_hw_support(struct adapter *); static int em_sysctl_nvm_info(SYSCTL_HANDLER_ARGS); static void em_print_nvm_info(struct adapter *); static int em_sysctl_debug_info(SYSCTL_HANDLER_ARGS); static int em_get_rs(SYSCTL_HANDLER_ARGS); static void em_print_debug_info(struct adapter *); static int em_is_valid_ether_addr(u8 *); static int em_sysctl_int_delay(SYSCTL_HANDLER_ARGS); static void em_add_int_delay_sysctl(struct adapter *, const char *, const char *, struct em_int_delay_info *, int, int); /* Management and WOL Support */ static void em_init_manageability(struct adapter *); static void em_release_manageability(struct adapter *); static void em_get_hw_control(struct adapter *); static void em_release_hw_control(struct adapter *); static void em_get_wakeup(if_ctx_t ctx); static void em_enable_wakeup(if_ctx_t ctx); static int em_enable_phy_wakeup(struct adapter *); static void em_disable_aspm(struct adapter *); int em_intr(void *arg); static void em_disable_promisc(if_ctx_t ctx); /* MSI-X handlers */ static int em_if_msix_intr_assign(if_ctx_t, int); static int em_msix_link(void *); static void em_handle_link(void *context); static void em_enable_vectors_82574(if_ctx_t); static int em_set_flowcntl(SYSCTL_HANDLER_ARGS); static int em_sysctl_eee(SYSCTL_HANDLER_ARGS); static void em_if_led_func(if_ctx_t ctx, int onoff); static int em_get_regs(SYSCTL_HANDLER_ARGS); static void lem_smartspeed(struct adapter *adapter); static void igb_configure_queues(struct adapter *adapter); /********************************************************************* * FreeBSD Device Interface Entry Points *********************************************************************/ static device_method_t em_methods[] = { /* Device interface */ DEVMETHOD(device_register, em_register), DEVMETHOD(device_probe, iflib_device_probe), DEVMETHOD(device_attach, iflib_device_attach), DEVMETHOD(device_detach, iflib_device_detach), DEVMETHOD(device_shutdown, iflib_device_shutdown), DEVMETHOD(device_suspend, iflib_device_suspend), DEVMETHOD(device_resume, iflib_device_resume), DEVMETHOD_END }; static device_method_t igb_methods[] = { /* Device interface */ DEVMETHOD(device_register, igb_register), DEVMETHOD(device_probe, iflib_device_probe), DEVMETHOD(device_attach, iflib_device_attach), DEVMETHOD(device_detach, iflib_device_detach), DEVMETHOD(device_shutdown, iflib_device_shutdown), DEVMETHOD(device_suspend, iflib_device_suspend), DEVMETHOD(device_resume, iflib_device_resume), DEVMETHOD_END }; static driver_t em_driver = { "em", em_methods, sizeof(struct adapter), }; static devclass_t em_devclass; DRIVER_MODULE(em, pci, em_driver, em_devclass, 0, 0); MODULE_DEPEND(em, pci, 1, 1, 1); MODULE_DEPEND(em, ether, 1, 1, 1); MODULE_DEPEND(em, iflib, 1, 1, 1); IFLIB_PNP_INFO(pci, em, em_vendor_info_array); static driver_t igb_driver = { "igb", igb_methods, sizeof(struct adapter), }; static devclass_t igb_devclass; DRIVER_MODULE(igb, pci, igb_driver, igb_devclass, 0, 0); MODULE_DEPEND(igb, pci, 1, 1, 1); MODULE_DEPEND(igb, ether, 1, 1, 1); MODULE_DEPEND(igb, iflib, 1, 1, 1); IFLIB_PNP_INFO(pci, igb, igb_vendor_info_array); static device_method_t em_if_methods[] = { DEVMETHOD(ifdi_attach_pre, em_if_attach_pre), DEVMETHOD(ifdi_attach_post, em_if_attach_post), DEVMETHOD(ifdi_detach, em_if_detach), DEVMETHOD(ifdi_shutdown, em_if_shutdown), DEVMETHOD(ifdi_suspend, em_if_suspend), DEVMETHOD(ifdi_resume, em_if_resume), DEVMETHOD(ifdi_init, em_if_init), DEVMETHOD(ifdi_stop, em_if_stop), DEVMETHOD(ifdi_msix_intr_assign, em_if_msix_intr_assign), DEVMETHOD(ifdi_intr_enable, em_if_enable_intr), DEVMETHOD(ifdi_intr_disable, em_if_disable_intr), DEVMETHOD(ifdi_tx_queues_alloc, em_if_tx_queues_alloc), DEVMETHOD(ifdi_rx_queues_alloc, em_if_rx_queues_alloc), DEVMETHOD(ifdi_queues_free, em_if_queues_free), DEVMETHOD(ifdi_update_admin_status, em_if_update_admin_status), DEVMETHOD(ifdi_multi_set, em_if_multi_set), DEVMETHOD(ifdi_media_status, em_if_media_status), DEVMETHOD(ifdi_media_change, em_if_media_change), DEVMETHOD(ifdi_mtu_set, em_if_mtu_set), DEVMETHOD(ifdi_promisc_set, em_if_set_promisc), DEVMETHOD(ifdi_timer, em_if_timer), DEVMETHOD(ifdi_watchdog_reset, em_if_watchdog_reset), DEVMETHOD(ifdi_vlan_register, em_if_vlan_register), DEVMETHOD(ifdi_vlan_unregister, em_if_vlan_unregister), DEVMETHOD(ifdi_get_counter, em_if_get_counter), DEVMETHOD(ifdi_led_func, em_if_led_func), DEVMETHOD(ifdi_rx_queue_intr_enable, em_if_rx_queue_intr_enable), DEVMETHOD(ifdi_tx_queue_intr_enable, em_if_tx_queue_intr_enable), DEVMETHOD(ifdi_debug, em_if_debug), DEVMETHOD_END }; /* * note that if (adapter->msix_mem) is replaced by: * if (adapter->intr_type == IFLIB_INTR_MSIX) */ static driver_t em_if_driver = { "em_if", em_if_methods, sizeof(struct adapter) }; /********************************************************************* * Tunable default values. *********************************************************************/ #define EM_TICKS_TO_USECS(ticks) ((1024 * (ticks) + 500) / 1000) #define EM_USECS_TO_TICKS(usecs) ((1000 * (usecs) + 512) / 1024) #define MAX_INTS_PER_SEC 8000 #define DEFAULT_ITR (1000000000/(MAX_INTS_PER_SEC * 256)) /* Allow common code without TSO */ #ifndef CSUM_TSO #define CSUM_TSO 0 #endif static SYSCTL_NODE(_hw, OID_AUTO, em, CTLFLAG_RD, 0, "EM driver parameters"); static int em_disable_crc_stripping = 0; SYSCTL_INT(_hw_em, OID_AUTO, disable_crc_stripping, CTLFLAG_RDTUN, &em_disable_crc_stripping, 0, "Disable CRC Stripping"); static int em_tx_int_delay_dflt = EM_TICKS_TO_USECS(EM_TIDV); static int em_rx_int_delay_dflt = EM_TICKS_TO_USECS(EM_RDTR); SYSCTL_INT(_hw_em, OID_AUTO, tx_int_delay, CTLFLAG_RDTUN, &em_tx_int_delay_dflt, 0, "Default transmit interrupt delay in usecs"); SYSCTL_INT(_hw_em, OID_AUTO, rx_int_delay, CTLFLAG_RDTUN, &em_rx_int_delay_dflt, 0, "Default receive interrupt delay in usecs"); static int em_tx_abs_int_delay_dflt = EM_TICKS_TO_USECS(EM_TADV); static int em_rx_abs_int_delay_dflt = EM_TICKS_TO_USECS(EM_RADV); SYSCTL_INT(_hw_em, OID_AUTO, tx_abs_int_delay, CTLFLAG_RDTUN, &em_tx_abs_int_delay_dflt, 0, "Default transmit interrupt delay limit in usecs"); SYSCTL_INT(_hw_em, OID_AUTO, rx_abs_int_delay, CTLFLAG_RDTUN, &em_rx_abs_int_delay_dflt, 0, "Default receive interrupt delay limit in usecs"); static int em_smart_pwr_down = FALSE; SYSCTL_INT(_hw_em, OID_AUTO, smart_pwr_down, CTLFLAG_RDTUN, &em_smart_pwr_down, 0, "Set to true to leave smart power down enabled on newer adapters"); /* Controls whether promiscuous also shows bad packets */ static int em_debug_sbp = TRUE; SYSCTL_INT(_hw_em, OID_AUTO, sbp, CTLFLAG_RDTUN, &em_debug_sbp, 0, "Show bad packets in promiscuous mode"); /* How many packets rxeof tries to clean at a time */ static int em_rx_process_limit = 100; SYSCTL_INT(_hw_em, OID_AUTO, rx_process_limit, CTLFLAG_RDTUN, &em_rx_process_limit, 0, "Maximum number of received packets to process " "at a time, -1 means unlimited"); /* Energy efficient ethernet - default to OFF */ static int eee_setting = 1; SYSCTL_INT(_hw_em, OID_AUTO, eee_setting, CTLFLAG_RDTUN, &eee_setting, 0, "Enable Energy Efficient Ethernet"); /* ** Tuneable Interrupt rate */ static int em_max_interrupt_rate = 8000; SYSCTL_INT(_hw_em, OID_AUTO, max_interrupt_rate, CTLFLAG_RDTUN, &em_max_interrupt_rate, 0, "Maximum interrupts per second"); /* Global used in WOL setup with multiport cards */ static int global_quad_port_a = 0; extern struct if_txrx igb_txrx; extern struct if_txrx em_txrx; extern struct if_txrx lem_txrx; static struct if_shared_ctx em_sctx_init = { .isc_magic = IFLIB_MAGIC, .isc_q_align = PAGE_SIZE, .isc_tx_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header), .isc_tx_maxsegsize = PAGE_SIZE, .isc_tso_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header), .isc_tso_maxsegsize = EM_TSO_SEG_SIZE, .isc_rx_maxsize = MJUM9BYTES, .isc_rx_nsegments = 1, .isc_rx_maxsegsize = MJUM9BYTES, .isc_nfl = 1, .isc_nrxqs = 1, .isc_ntxqs = 1, .isc_admin_intrcnt = 1, .isc_vendor_info = em_vendor_info_array, .isc_driver_version = em_driver_version, .isc_driver = &em_if_driver, .isc_flags = IFLIB_NEED_SCRATCH | IFLIB_TSO_INIT_IP | IFLIB_NEED_ZERO_CSUM, .isc_nrxd_min = {EM_MIN_RXD}, .isc_ntxd_min = {EM_MIN_TXD}, .isc_nrxd_max = {EM_MAX_RXD}, .isc_ntxd_max = {EM_MAX_TXD}, .isc_nrxd_default = {EM_DEFAULT_RXD}, .isc_ntxd_default = {EM_DEFAULT_TXD}, }; if_shared_ctx_t em_sctx = &em_sctx_init; static struct if_shared_ctx igb_sctx_init = { .isc_magic = IFLIB_MAGIC, .isc_q_align = PAGE_SIZE, .isc_tx_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header), .isc_tx_maxsegsize = PAGE_SIZE, .isc_tso_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header), .isc_tso_maxsegsize = EM_TSO_SEG_SIZE, .isc_rx_maxsize = MJUM9BYTES, .isc_rx_nsegments = 1, .isc_rx_maxsegsize = MJUM9BYTES, .isc_nfl = 1, .isc_nrxqs = 1, .isc_ntxqs = 1, .isc_admin_intrcnt = 1, .isc_vendor_info = igb_vendor_info_array, .isc_driver_version = em_driver_version, .isc_driver = &em_if_driver, .isc_flags = IFLIB_NEED_SCRATCH | IFLIB_TSO_INIT_IP | IFLIB_NEED_ZERO_CSUM, .isc_nrxd_min = {EM_MIN_RXD}, .isc_ntxd_min = {EM_MIN_TXD}, .isc_nrxd_max = {IGB_MAX_RXD}, .isc_ntxd_max = {IGB_MAX_TXD}, .isc_nrxd_default = {EM_DEFAULT_RXD}, .isc_ntxd_default = {EM_DEFAULT_TXD}, }; if_shared_ctx_t igb_sctx = &igb_sctx_init; /***************************************************************** * * Dump Registers * ****************************************************************/ #define IGB_REGS_LEN 739 static int em_get_regs(SYSCTL_HANDLER_ARGS) { struct adapter *adapter = (struct adapter *)arg1; struct e1000_hw *hw = &adapter->hw; struct sbuf *sb; u32 *regs_buff; int rc; regs_buff = malloc(sizeof(u32) * IGB_REGS_LEN, M_DEVBUF, M_WAITOK); memset(regs_buff, 0, IGB_REGS_LEN * sizeof(u32)); rc = sysctl_wire_old_buffer(req, 0); MPASS(rc == 0); if (rc != 0) { free(regs_buff, M_DEVBUF); return (rc); } sb = sbuf_new_for_sysctl(NULL, NULL, 32*400, req); MPASS(sb != NULL); if (sb == NULL) { free(regs_buff, M_DEVBUF); return (ENOMEM); } /* General Registers */ regs_buff[0] = E1000_READ_REG(hw, E1000_CTRL); regs_buff[1] = E1000_READ_REG(hw, E1000_STATUS); regs_buff[2] = E1000_READ_REG(hw, E1000_CTRL_EXT); regs_buff[3] = E1000_READ_REG(hw, E1000_ICR); regs_buff[4] = E1000_READ_REG(hw, E1000_RCTL); regs_buff[5] = E1000_READ_REG(hw, E1000_RDLEN(0)); regs_buff[6] = E1000_READ_REG(hw, E1000_RDH(0)); regs_buff[7] = E1000_READ_REG(hw, E1000_RDT(0)); regs_buff[8] = E1000_READ_REG(hw, E1000_RXDCTL(0)); regs_buff[9] = E1000_READ_REG(hw, E1000_RDBAL(0)); regs_buff[10] = E1000_READ_REG(hw, E1000_RDBAH(0)); regs_buff[11] = E1000_READ_REG(hw, E1000_TCTL); regs_buff[12] = E1000_READ_REG(hw, E1000_TDBAL(0)); regs_buff[13] = E1000_READ_REG(hw, E1000_TDBAH(0)); regs_buff[14] = E1000_READ_REG(hw, E1000_TDLEN(0)); regs_buff[15] = E1000_READ_REG(hw, E1000_TDH(0)); regs_buff[16] = E1000_READ_REG(hw, E1000_TDT(0)); regs_buff[17] = E1000_READ_REG(hw, E1000_TXDCTL(0)); regs_buff[18] = E1000_READ_REG(hw, E1000_TDFH); regs_buff[19] = E1000_READ_REG(hw, E1000_TDFT); regs_buff[20] = E1000_READ_REG(hw, E1000_TDFHS); regs_buff[21] = E1000_READ_REG(hw, E1000_TDFPC); sbuf_printf(sb, "General Registers\n"); sbuf_printf(sb, "\tCTRL\t %08x\n", regs_buff[0]); sbuf_printf(sb, "\tSTATUS\t %08x\n", regs_buff[1]); sbuf_printf(sb, "\tCTRL_EXIT\t %08x\n\n", regs_buff[2]); sbuf_printf(sb, "Interrupt Registers\n"); sbuf_printf(sb, "\tICR\t %08x\n\n", regs_buff[3]); sbuf_printf(sb, "RX Registers\n"); sbuf_printf(sb, "\tRCTL\t %08x\n", regs_buff[4]); sbuf_printf(sb, "\tRDLEN\t %08x\n", regs_buff[5]); sbuf_printf(sb, "\tRDH\t %08x\n", regs_buff[6]); sbuf_printf(sb, "\tRDT\t %08x\n", regs_buff[7]); sbuf_printf(sb, "\tRXDCTL\t %08x\n", regs_buff[8]); sbuf_printf(sb, "\tRDBAL\t %08x\n", regs_buff[9]); sbuf_printf(sb, "\tRDBAH\t %08x\n\n", regs_buff[10]); sbuf_printf(sb, "TX Registers\n"); sbuf_printf(sb, "\tTCTL\t %08x\n", regs_buff[11]); sbuf_printf(sb, "\tTDBAL\t %08x\n", regs_buff[12]); sbuf_printf(sb, "\tTDBAH\t %08x\n", regs_buff[13]); sbuf_printf(sb, "\tTDLEN\t %08x\n", regs_buff[14]); sbuf_printf(sb, "\tTDH\t %08x\n", regs_buff[15]); sbuf_printf(sb, "\tTDT\t %08x\n", regs_buff[16]); sbuf_printf(sb, "\tTXDCTL\t %08x\n", regs_buff[17]); sbuf_printf(sb, "\tTDFH\t %08x\n", regs_buff[18]); sbuf_printf(sb, "\tTDFT\t %08x\n", regs_buff[19]); sbuf_printf(sb, "\tTDFHS\t %08x\n", regs_buff[20]); sbuf_printf(sb, "\tTDFPC\t %08x\n\n", regs_buff[21]); free(regs_buff, M_DEVBUF); #ifdef DUMP_DESCS { if_softc_ctx_t scctx = adapter->shared; struct rx_ring *rxr = &rx_que->rxr; struct tx_ring *txr = &tx_que->txr; int ntxd = scctx->isc_ntxd[0]; int nrxd = scctx->isc_nrxd[0]; int j; for (j = 0; j < nrxd; j++) { u32 staterr = le32toh(rxr->rx_base[j].wb.upper.status_error); u32 length = le32toh(rxr->rx_base[j].wb.upper.length); sbuf_printf(sb, "\tReceive Descriptor Address %d: %08" PRIx64 " Error:%d Length:%d\n", j, rxr->rx_base[j].read.buffer_addr, staterr, length); } for (j = 0; j < min(ntxd, 256); j++) { unsigned int *ptr = (unsigned int *)&txr->tx_base[j]; sbuf_printf(sb, "\tTXD[%03d] [0]: %08x [1]: %08x [2]: %08x [3]: %08x eop: %d DD=%d\n", j, ptr[0], ptr[1], ptr[2], ptr[3], buf->eop, buf->eop != -1 ? txr->tx_base[buf->eop].upper.fields.status & E1000_TXD_STAT_DD : 0); } } #endif rc = sbuf_finish(sb); sbuf_delete(sb); return(rc); } static void * em_register(device_t dev) { return (em_sctx); } static void * igb_register(device_t dev) { return (igb_sctx); } static int em_set_num_queues(if_ctx_t ctx) { struct adapter *adapter = iflib_get_softc(ctx); int maxqueues; /* Sanity check based on HW */ switch (adapter->hw.mac.type) { case e1000_82576: case e1000_82580: case e1000_i350: case e1000_i354: maxqueues = 8; break; case e1000_i210: case e1000_82575: maxqueues = 4; break; case e1000_i211: case e1000_82574: maxqueues = 2; break; default: maxqueues = 1; break; } return (maxqueues); } #define LEM_CAPS \ IFCAP_HWCSUM | IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING | \ IFCAP_VLAN_HWCSUM | IFCAP_WOL | IFCAP_VLAN_HWFILTER #define EM_CAPS \ IFCAP_HWCSUM | IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING | \ IFCAP_VLAN_HWCSUM | IFCAP_WOL | IFCAP_VLAN_HWFILTER | IFCAP_TSO4 | \ IFCAP_LRO | IFCAP_VLAN_HWTSO #define IGB_CAPS \ IFCAP_HWCSUM | IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING | \ IFCAP_VLAN_HWCSUM | IFCAP_WOL | IFCAP_VLAN_HWFILTER | IFCAP_TSO4 | \ IFCAP_LRO | IFCAP_VLAN_HWTSO | IFCAP_JUMBO_MTU | IFCAP_HWCSUM_IPV6 |\ IFCAP_TSO6 /********************************************************************* * Device initialization routine * * The attach entry point is called when the driver is being loaded. * This routine identifies the type of hardware, allocates all resources * and initializes the hardware. * * return 0 on success, positive on failure *********************************************************************/ static int em_if_attach_pre(if_ctx_t ctx) { struct adapter *adapter; if_softc_ctx_t scctx; device_t dev; struct e1000_hw *hw; int error = 0; INIT_DEBUGOUT("em_if_attach_pre: begin"); dev = iflib_get_dev(ctx); adapter = iflib_get_softc(ctx); adapter->ctx = adapter->osdep.ctx = ctx; adapter->dev = adapter->osdep.dev = dev; scctx = adapter->shared = iflib_get_softc_ctx(ctx); adapter->media = iflib_get_media(ctx); hw = &adapter->hw; adapter->tx_process_limit = scctx->isc_ntxd[0]; /* SYSCTL stuff */ SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "nvm", CTLTYPE_INT|CTLFLAG_RW, adapter, 0, em_sysctl_nvm_info, "I", "NVM Information"); SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "debug", CTLTYPE_INT|CTLFLAG_RW, adapter, 0, em_sysctl_debug_info, "I", "Debug Information"); SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "fc", CTLTYPE_INT|CTLFLAG_RW, adapter, 0, em_set_flowcntl, "I", "Flow Control"); SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "reg_dump", CTLTYPE_STRING | CTLFLAG_RD, adapter, 0, em_get_regs, "A", "Dump Registers"); SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "rs_dump", CTLTYPE_INT | CTLFLAG_RW, adapter, 0, em_get_rs, "I", "Dump RS indexes"); /* Determine hardware and mac info */ em_identify_hardware(ctx); scctx->isc_tx_nsegments = EM_MAX_SCATTER; scctx->isc_nrxqsets_max = scctx->isc_ntxqsets_max = em_set_num_queues(ctx); if (bootverbose) device_printf(dev, "attach_pre capping queues at %d\n", scctx->isc_ntxqsets_max); if (adapter->hw.mac.type >= igb_mac_min) { scctx->isc_txqsizes[0] = roundup2(scctx->isc_ntxd[0] * sizeof(union e1000_adv_tx_desc), EM_DBA_ALIGN); scctx->isc_rxqsizes[0] = roundup2(scctx->isc_nrxd[0] * sizeof(union e1000_adv_rx_desc), EM_DBA_ALIGN); scctx->isc_txd_size[0] = sizeof(union e1000_adv_tx_desc); scctx->isc_rxd_size[0] = sizeof(union e1000_adv_rx_desc); scctx->isc_txrx = &igb_txrx; scctx->isc_tx_tso_segments_max = EM_MAX_SCATTER; scctx->isc_tx_tso_size_max = EM_TSO_SIZE; scctx->isc_tx_tso_segsize_max = EM_TSO_SEG_SIZE; scctx->isc_capabilities = scctx->isc_capenable = IGB_CAPS; scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP | CSUM_TSO | CSUM_IP6_TCP | CSUM_IP6_UDP; if (adapter->hw.mac.type != e1000_82575) scctx->isc_tx_csum_flags |= CSUM_SCTP | CSUM_IP6_SCTP; /* ** Some new devices, as with ixgbe, now may ** use a different BAR, so we need to keep ** track of which is used. */ scctx->isc_msix_bar = PCIR_BAR(EM_MSIX_BAR); if (pci_read_config(dev, scctx->isc_msix_bar, 4) == 0) scctx->isc_msix_bar += 4; } else if (adapter->hw.mac.type >= em_mac_min) { scctx->isc_txqsizes[0] = roundup2(scctx->isc_ntxd[0]* sizeof(struct e1000_tx_desc), EM_DBA_ALIGN); scctx->isc_rxqsizes[0] = roundup2(scctx->isc_nrxd[0] * sizeof(union e1000_rx_desc_extended), EM_DBA_ALIGN); scctx->isc_txd_size[0] = sizeof(struct e1000_tx_desc); scctx->isc_rxd_size[0] = sizeof(union e1000_rx_desc_extended); scctx->isc_txrx = &em_txrx; scctx->isc_tx_tso_segments_max = EM_MAX_SCATTER; scctx->isc_tx_tso_size_max = EM_TSO_SIZE; scctx->isc_tx_tso_segsize_max = EM_TSO_SEG_SIZE; scctx->isc_capabilities = scctx->isc_capenable = EM_CAPS; /* * For EM-class devices, don't enable IFCAP_{TSO4,VLAN_HWTSO} * by default as we don't have workarounds for all associated * silicon errata. E. g., with several MACs such as 82573E, * TSO only works at Gigabit speed and otherwise can cause the * hardware to hang (which also would be next to impossible to * work around given that already queued TSO-using descriptors * would need to be flushed and vlan(4) reconfigured at runtime * in case of a link speed change). Moreover, MACs like 82579 * still can hang at Gigabit even with all publicly documented * TSO workarounds implemented. Generally, the penality of * these workarounds is rather high and may involve copying * mbuf data around so advantages of TSO lapse. Still, TSO may * work for a few MACs of this class - at least when sticking * with Gigabit - in which case users may enable TSO manually. */ scctx->isc_capenable &= ~(IFCAP_TSO4 | IFCAP_VLAN_HWTSO); scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP | CSUM_IP_TSO; /* * We support MSI-X with 82574 only, but indicate to iflib(4) * that it shall give MSI at least a try with other devices. */ if (adapter->hw.mac.type == e1000_82574) { scctx->isc_msix_bar = PCIR_BAR(EM_MSIX_BAR); } else { scctx->isc_msix_bar = -1; scctx->isc_disable_msix = 1; } } else { scctx->isc_txqsizes[0] = roundup2((scctx->isc_ntxd[0] + 1) * sizeof(struct e1000_tx_desc), EM_DBA_ALIGN); scctx->isc_rxqsizes[0] = roundup2((scctx->isc_nrxd[0] + 1) * sizeof(struct e1000_rx_desc), EM_DBA_ALIGN); scctx->isc_txd_size[0] = sizeof(struct e1000_tx_desc); scctx->isc_rxd_size[0] = sizeof(struct e1000_rx_desc); scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP; scctx->isc_txrx = &lem_txrx; scctx->isc_capabilities = scctx->isc_capenable = LEM_CAPS; if (adapter->hw.mac.type < e1000_82543) scctx->isc_capenable &= ~(IFCAP_HWCSUM|IFCAP_VLAN_HWCSUM); /* INTx only */ scctx->isc_msix_bar = 0; } /* Setup PCI resources */ if (em_allocate_pci_resources(ctx)) { device_printf(dev, "Allocation of PCI resources failed\n"); error = ENXIO; goto err_pci; } /* ** For ICH8 and family we need to ** map the flash memory, and this ** must happen after the MAC is ** identified */ if ((hw->mac.type == e1000_ich8lan) || (hw->mac.type == e1000_ich9lan) || (hw->mac.type == e1000_ich10lan) || (hw->mac.type == e1000_pchlan) || (hw->mac.type == e1000_pch2lan) || (hw->mac.type == e1000_pch_lpt)) { int rid = EM_BAR_TYPE_FLASH; adapter->flash = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, RF_ACTIVE); if (adapter->flash == NULL) { device_printf(dev, "Mapping of Flash failed\n"); error = ENXIO; goto err_pci; } /* This is used in the shared code */ hw->flash_address = (u8 *)adapter->flash; adapter->osdep.flash_bus_space_tag = rman_get_bustag(adapter->flash); adapter->osdep.flash_bus_space_handle = rman_get_bushandle(adapter->flash); } /* ** In the new SPT device flash is not a ** separate BAR, rather it is also in BAR0, ** so use the same tag and an offset handle for the ** FLASH read/write macros in the shared code. */ else if (hw->mac.type >= e1000_pch_spt) { adapter->osdep.flash_bus_space_tag = adapter->osdep.mem_bus_space_tag; adapter->osdep.flash_bus_space_handle = adapter->osdep.mem_bus_space_handle + E1000_FLASH_BASE_ADDR; } /* Do Shared Code initialization */ error = e1000_setup_init_funcs(hw, TRUE); if (error) { device_printf(dev, "Setup of Shared code failed, error %d\n", error); error = ENXIO; goto err_pci; } em_setup_msix(ctx); e1000_get_bus_info(hw); /* Set up some sysctls for the tunable interrupt delays */ em_add_int_delay_sysctl(adapter, "rx_int_delay", "receive interrupt delay in usecs", &adapter->rx_int_delay, E1000_REGISTER(hw, E1000_RDTR), em_rx_int_delay_dflt); em_add_int_delay_sysctl(adapter, "tx_int_delay", "transmit interrupt delay in usecs", &adapter->tx_int_delay, E1000_REGISTER(hw, E1000_TIDV), em_tx_int_delay_dflt); em_add_int_delay_sysctl(adapter, "rx_abs_int_delay", "receive interrupt delay limit in usecs", &adapter->rx_abs_int_delay, E1000_REGISTER(hw, E1000_RADV), em_rx_abs_int_delay_dflt); em_add_int_delay_sysctl(adapter, "tx_abs_int_delay", "transmit interrupt delay limit in usecs", &adapter->tx_abs_int_delay, E1000_REGISTER(hw, E1000_TADV), em_tx_abs_int_delay_dflt); em_add_int_delay_sysctl(adapter, "itr", "interrupt delay limit in usecs/4", &adapter->tx_itr, E1000_REGISTER(hw, E1000_ITR), DEFAULT_ITR); hw->mac.autoneg = DO_AUTO_NEG; hw->phy.autoneg_wait_to_complete = FALSE; hw->phy.autoneg_advertised = AUTONEG_ADV_DEFAULT; if (adapter->hw.mac.type < em_mac_min) { e1000_init_script_state_82541(&adapter->hw, TRUE); e1000_set_tbi_compatibility_82543(&adapter->hw, TRUE); } /* Copper options */ if (hw->phy.media_type == e1000_media_type_copper) { hw->phy.mdix = AUTO_ALL_MODES; hw->phy.disable_polarity_correction = FALSE; hw->phy.ms_type = EM_MASTER_SLAVE; } /* * Set the frame limits assuming * standard ethernet sized frames. */ scctx->isc_max_frame_size = adapter->hw.mac.max_frame_size = ETHERMTU + ETHER_HDR_LEN + ETHERNET_FCS_SIZE; /* * This controls when hardware reports transmit completion * status. */ hw->mac.report_tx_early = 1; /* Allocate multicast array memory. */ adapter->mta = malloc(sizeof(u8) * ETH_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES, M_DEVBUF, M_NOWAIT); if (adapter->mta == NULL) { device_printf(dev, "Can not allocate multicast setup array\n"); error = ENOMEM; goto err_late; } /* Check SOL/IDER usage */ if (e1000_check_reset_block(hw)) device_printf(dev, "PHY reset is blocked" " due to SOL/IDER session.\n"); /* Sysctl for setting Energy Efficient Ethernet */ hw->dev_spec.ich8lan.eee_disable = eee_setting; SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "eee_control", CTLTYPE_INT|CTLFLAG_RW, adapter, 0, em_sysctl_eee, "I", "Disable Energy Efficient Ethernet"); /* ** Start from a known state, this is ** important in reading the nvm and ** mac from that. */ e1000_reset_hw(hw); /* Make sure we have a good EEPROM before we read from it */ if (e1000_validate_nvm_checksum(hw) < 0) { /* ** Some PCI-E parts fail the first check due to ** the link being in sleep state, call it again, ** if it fails a second time its a real issue. */ if (e1000_validate_nvm_checksum(hw) < 0) { device_printf(dev, "The EEPROM Checksum Is Not Valid\n"); error = EIO; goto err_late; } } /* Copy the permanent MAC address out of the EEPROM */ if (e1000_read_mac_addr(hw) < 0) { device_printf(dev, "EEPROM read error while reading MAC" " address\n"); error = EIO; goto err_late; } if (!em_is_valid_ether_addr(hw->mac.addr)) { device_printf(dev, "Invalid MAC address\n"); error = EIO; goto err_late; } /* Disable ULP support */ e1000_disable_ulp_lpt_lp(hw, TRUE); /* * Get Wake-on-Lan and Management info for later use */ em_get_wakeup(ctx); /* Enable only WOL MAGIC by default */ scctx->isc_capenable &= ~IFCAP_WOL; if (adapter->wol != 0) scctx->isc_capenable |= IFCAP_WOL_MAGIC; iflib_set_mac(ctx, hw->mac.addr); return (0); err_late: em_release_hw_control(adapter); err_pci: em_free_pci_resources(ctx); free(adapter->mta, M_DEVBUF); return (error); } static int em_if_attach_post(if_ctx_t ctx) { struct adapter *adapter = iflib_get_softc(ctx); struct e1000_hw *hw = &adapter->hw; int error = 0; /* Setup OS specific network interface */ error = em_setup_interface(ctx); if (error != 0) { goto err_late; } em_reset(ctx); /* Initialize statistics */ em_update_stats_counters(adapter); hw->mac.get_link_status = 1; em_if_update_admin_status(ctx); em_add_hw_stats(adapter); /* Non-AMT based hardware can now take control from firmware */ if (adapter->has_manage && !adapter->has_amt) em_get_hw_control(adapter); INIT_DEBUGOUT("em_if_attach_post: end"); return (error); err_late: em_release_hw_control(adapter); em_free_pci_resources(ctx); em_if_queues_free(ctx); free(adapter->mta, M_DEVBUF); return (error); } /********************************************************************* * Device removal routine * * The detach entry point is called when the driver is being removed. * This routine stops the adapter and deallocates all the resources * that were allocated for driver operation. * * return 0 on success, positive on failure *********************************************************************/ static int em_if_detach(if_ctx_t ctx) { struct adapter *adapter = iflib_get_softc(ctx); INIT_DEBUGOUT("em_if_detach: begin"); e1000_phy_hw_reset(&adapter->hw); em_release_manageability(adapter); em_release_hw_control(adapter); em_free_pci_resources(ctx); return (0); } /********************************************************************* * * Shutdown entry point * **********************************************************************/ static int em_if_shutdown(if_ctx_t ctx) { return em_if_suspend(ctx); } /* * Suspend/resume device methods. */ static int em_if_suspend(if_ctx_t ctx) { struct adapter *adapter = iflib_get_softc(ctx); em_release_manageability(adapter); em_release_hw_control(adapter); em_enable_wakeup(ctx); return (0); } static int em_if_resume(if_ctx_t ctx) { struct adapter *adapter = iflib_get_softc(ctx); if (adapter->hw.mac.type == e1000_pch2lan) e1000_resume_workarounds_pchlan(&adapter->hw); em_if_init(ctx); em_init_manageability(adapter); return(0); } static int em_if_mtu_set(if_ctx_t ctx, uint32_t mtu) { int max_frame_size; struct adapter *adapter = iflib_get_softc(ctx); if_softc_ctx_t scctx = iflib_get_softc_ctx(ctx); IOCTL_DEBUGOUT("ioctl rcv'd: SIOCSIFMTU (Set Interface MTU)"); switch (adapter->hw.mac.type) { case e1000_82571: case e1000_82572: case e1000_ich9lan: case e1000_ich10lan: case e1000_pch2lan: case e1000_pch_lpt: case e1000_pch_spt: case e1000_pch_cnp: case e1000_82574: case e1000_82583: case e1000_80003es2lan: /* 9K Jumbo Frame size */ max_frame_size = 9234; break; case e1000_pchlan: max_frame_size = 4096; break; case e1000_82542: case e1000_ich8lan: /* Adapters that do not support jumbo frames */ max_frame_size = ETHER_MAX_LEN; break; default: if (adapter->hw.mac.type >= igb_mac_min) max_frame_size = 9234; else /* lem */ max_frame_size = MAX_JUMBO_FRAME_SIZE; } if (mtu > max_frame_size - ETHER_HDR_LEN - ETHER_CRC_LEN) { return (EINVAL); } scctx->isc_max_frame_size = adapter->hw.mac.max_frame_size = mtu + ETHER_HDR_LEN + ETHER_CRC_LEN; return (0); } /********************************************************************* * Init entry point * * This routine is used in two ways. It is used by the stack as * init entry point in network interface structure. It is also used * by the driver as a hw/sw initialization routine to get to a * consistent state. * **********************************************************************/ static void em_if_init(if_ctx_t ctx) { struct adapter *adapter = iflib_get_softc(ctx); if_softc_ctx_t scctx = adapter->shared; struct ifnet *ifp = iflib_get_ifp(ctx); struct em_tx_queue *tx_que; int i; INIT_DEBUGOUT("em_if_init: begin"); /* Get the latest mac address, User can use a LAA */ bcopy(if_getlladdr(ifp), adapter->hw.mac.addr, ETHER_ADDR_LEN); /* Put the address into the Receive Address Array */ e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0); /* * With the 82571 adapter, RAR[0] may be overwritten * when the other port is reset, we make a duplicate * in RAR[14] for that eventuality, this assures * the interface continues to function. */ if (adapter->hw.mac.type == e1000_82571) { e1000_set_laa_state_82571(&adapter->hw, TRUE); e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, E1000_RAR_ENTRIES - 1); } /* Initialize the hardware */ em_reset(ctx); em_if_update_admin_status(ctx); for (i = 0, tx_que = adapter->tx_queues; i < adapter->tx_num_queues; i++, tx_que++) { struct tx_ring *txr = &tx_que->txr; txr->tx_rs_cidx = txr->tx_rs_pidx; /* Initialize the last processed descriptor to be the end of * the ring, rather than the start, so that we avoid an * off-by-one error when calculating how many descriptors are * done in the credits_update function. */ txr->tx_cidx_processed = scctx->isc_ntxd[0] - 1; } /* Setup VLAN support, basic and offload if available */ E1000_WRITE_REG(&adapter->hw, E1000_VET, ETHERTYPE_VLAN); /* Clear bad data from Rx FIFOs */ if (adapter->hw.mac.type >= igb_mac_min) e1000_rx_fifo_flush_82575(&adapter->hw); /* Configure for OS presence */ em_init_manageability(adapter); /* Prepare transmit descriptors and buffers */ em_initialize_transmit_unit(ctx); /* Setup Multicast table */ em_if_multi_set(ctx); /* * Figure out the desired mbuf * pool for doing jumbos */ if (adapter->hw.mac.max_frame_size <= 2048) adapter->rx_mbuf_sz = MCLBYTES; -#ifndef CONTIGMALLOC_WORKS else adapter->rx_mbuf_sz = MJUMPAGESIZE; -#else - else if (adapter->hw.mac.max_frame_size <= 4096) - adapter->rx_mbuf_sz = MJUMPAGESIZE; - else - adapter->rx_mbuf_sz = MJUM9BYTES; -#endif em_initialize_receive_unit(ctx); /* Use real VLAN Filter support? */ if (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) { if (if_getcapenable(ifp) & IFCAP_VLAN_HWFILTER) /* Use real VLAN Filter support */ em_setup_vlan_hw_support(adapter); else { u32 ctrl; ctrl = E1000_READ_REG(&adapter->hw, E1000_CTRL); ctrl |= E1000_CTRL_VME; E1000_WRITE_REG(&adapter->hw, E1000_CTRL, ctrl); } } /* Don't lose promiscuous settings */ em_if_set_promisc(ctx, IFF_PROMISC); e1000_clear_hw_cntrs_base_generic(&adapter->hw); /* MSI-X configuration for 82574 */ if (adapter->hw.mac.type == e1000_82574) { int tmp = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT); tmp |= E1000_CTRL_EXT_PBA_CLR; E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT, tmp); /* Set the IVAR - interrupt vector routing. */ E1000_WRITE_REG(&adapter->hw, E1000_IVAR, adapter->ivars); } else if (adapter->intr_type == IFLIB_INTR_MSIX) /* Set up queue routing */ igb_configure_queues(adapter); /* this clears any pending interrupts */ E1000_READ_REG(&adapter->hw, E1000_ICR); E1000_WRITE_REG(&adapter->hw, E1000_ICS, E1000_ICS_LSC); /* AMT based hardware can now take control from firmware */ if (adapter->has_manage && adapter->has_amt) em_get_hw_control(adapter); /* Set Energy Efficient Ethernet */ if (adapter->hw.mac.type >= igb_mac_min && adapter->hw.phy.media_type == e1000_media_type_copper) { if (adapter->hw.mac.type == e1000_i354) e1000_set_eee_i354(&adapter->hw, TRUE, TRUE); else e1000_set_eee_i350(&adapter->hw, TRUE, TRUE); } } /********************************************************************* * * Fast Legacy/MSI Combined Interrupt Service routine * *********************************************************************/ int em_intr(void *arg) { struct adapter *adapter = arg; if_ctx_t ctx = adapter->ctx; u32 reg_icr; reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR); if (adapter->intr_type != IFLIB_INTR_LEGACY) goto skip_stray; /* Hot eject? */ if (reg_icr == 0xffffffff) return FILTER_STRAY; /* Definitely not our interrupt. */ if (reg_icr == 0x0) return FILTER_STRAY; /* * Starting with the 82571 chip, bit 31 should be used to * determine whether the interrupt belongs to us. */ if (adapter->hw.mac.type >= e1000_82571 && (reg_icr & E1000_ICR_INT_ASSERTED) == 0) return FILTER_STRAY; skip_stray: /* Link status change */ if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) { adapter->hw.mac.get_link_status = 1; iflib_admin_intr_deferred(ctx); } if (reg_icr & E1000_ICR_RXO) adapter->rx_overruns++; return (FILTER_SCHEDULE_THREAD); } static void igb_rx_enable_queue(struct adapter *adapter, struct em_rx_queue *rxq) { E1000_WRITE_REG(&adapter->hw, E1000_EIMS, rxq->eims); } static void em_rx_enable_queue(struct adapter *adapter, struct em_rx_queue *rxq) { E1000_WRITE_REG(&adapter->hw, E1000_IMS, rxq->eims); } static void igb_tx_enable_queue(struct adapter *adapter, struct em_tx_queue *txq) { E1000_WRITE_REG(&adapter->hw, E1000_EIMS, txq->eims); } static void em_tx_enable_queue(struct adapter *adapter, struct em_tx_queue *txq) { E1000_WRITE_REG(&adapter->hw, E1000_IMS, txq->eims); } static int em_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid) { struct adapter *adapter = iflib_get_softc(ctx); struct em_rx_queue *rxq = &adapter->rx_queues[rxqid]; if (adapter->hw.mac.type >= igb_mac_min) igb_rx_enable_queue(adapter, rxq); else em_rx_enable_queue(adapter, rxq); return (0); } static int em_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid) { struct adapter *adapter = iflib_get_softc(ctx); struct em_tx_queue *txq = &adapter->tx_queues[txqid]; if (adapter->hw.mac.type >= igb_mac_min) igb_tx_enable_queue(adapter, txq); else em_tx_enable_queue(adapter, txq); return (0); } /********************************************************************* * * MSI-X RX Interrupt Service routine * **********************************************************************/ static int em_msix_que(void *arg) { struct em_rx_queue *que = arg; ++que->irqs; return (FILTER_SCHEDULE_THREAD); } /********************************************************************* * * MSI-X Link Fast Interrupt Service routine * **********************************************************************/ static int em_msix_link(void *arg) { struct adapter *adapter = arg; u32 reg_icr; ++adapter->link_irq; MPASS(adapter->hw.back != NULL); reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR); if (reg_icr & E1000_ICR_RXO) adapter->rx_overruns++; if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) { em_handle_link(adapter->ctx); } else { E1000_WRITE_REG(&adapter->hw, E1000_IMS, EM_MSIX_LINK | E1000_IMS_LSC); if (adapter->hw.mac.type >= igb_mac_min) E1000_WRITE_REG(&adapter->hw, E1000_EIMS, adapter->link_mask); } /* * Because we must read the ICR for this interrupt * it may clear other causes using autoclear, for * this reason we simply create a soft interrupt * for all these vectors. */ if (reg_icr && adapter->hw.mac.type < igb_mac_min) { E1000_WRITE_REG(&adapter->hw, E1000_ICS, adapter->ims); } return (FILTER_HANDLED); } static void em_handle_link(void *context) { if_ctx_t ctx = context; struct adapter *adapter = iflib_get_softc(ctx); adapter->hw.mac.get_link_status = 1; iflib_admin_intr_deferred(ctx); } /********************************************************************* * * Media Ioctl callback * * This routine is called whenever the user queries the status of * the interface using ifconfig. * **********************************************************************/ static void em_if_media_status(if_ctx_t ctx, struct ifmediareq *ifmr) { struct adapter *adapter = iflib_get_softc(ctx); u_char fiber_type = IFM_1000_SX; INIT_DEBUGOUT("em_if_media_status: begin"); iflib_admin_intr_deferred(ctx); ifmr->ifm_status = IFM_AVALID; ifmr->ifm_active = IFM_ETHER; if (!adapter->link_active) { return; } ifmr->ifm_status |= IFM_ACTIVE; if ((adapter->hw.phy.media_type == e1000_media_type_fiber) || (adapter->hw.phy.media_type == e1000_media_type_internal_serdes)) { if (adapter->hw.mac.type == e1000_82545) fiber_type = IFM_1000_LX; ifmr->ifm_active |= fiber_type | IFM_FDX; } else { switch (adapter->link_speed) { case 10: ifmr->ifm_active |= IFM_10_T; break; case 100: ifmr->ifm_active |= IFM_100_TX; break; case 1000: ifmr->ifm_active |= IFM_1000_T; break; } if (adapter->link_duplex == FULL_DUPLEX) ifmr->ifm_active |= IFM_FDX; else ifmr->ifm_active |= IFM_HDX; } } /********************************************************************* * * Media Ioctl callback * * This routine is called when the user changes speed/duplex using * media/mediopt option with ifconfig. * **********************************************************************/ static int em_if_media_change(if_ctx_t ctx) { struct adapter *adapter = iflib_get_softc(ctx); struct ifmedia *ifm = iflib_get_media(ctx); INIT_DEBUGOUT("em_if_media_change: begin"); if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) return (EINVAL); switch (IFM_SUBTYPE(ifm->ifm_media)) { case IFM_AUTO: adapter->hw.mac.autoneg = DO_AUTO_NEG; adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT; break; case IFM_1000_LX: case IFM_1000_SX: case IFM_1000_T: adapter->hw.mac.autoneg = DO_AUTO_NEG; adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL; break; case IFM_100_TX: adapter->hw.mac.autoneg = FALSE; adapter->hw.phy.autoneg_advertised = 0; if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL; else adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF; break; case IFM_10_T: adapter->hw.mac.autoneg = FALSE; adapter->hw.phy.autoneg_advertised = 0; if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL; else adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF; break; default: device_printf(adapter->dev, "Unsupported media type\n"); } em_if_init(ctx); return (0); } static int em_if_set_promisc(if_ctx_t ctx, int flags) { struct adapter *adapter = iflib_get_softc(ctx); u32 reg_rctl; em_disable_promisc(ctx); reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL); if (flags & IFF_PROMISC) { reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE); /* Turn this on if you want to see bad packets */ if (em_debug_sbp) reg_rctl |= E1000_RCTL_SBP; E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl); } else if (flags & IFF_ALLMULTI) { reg_rctl |= E1000_RCTL_MPE; reg_rctl &= ~E1000_RCTL_UPE; E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl); } return (0); } static void em_disable_promisc(if_ctx_t ctx) { struct adapter *adapter = iflib_get_softc(ctx); struct ifnet *ifp = iflib_get_ifp(ctx); u32 reg_rctl; int mcnt = 0; reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL); reg_rctl &= (~E1000_RCTL_UPE); if (if_getflags(ifp) & IFF_ALLMULTI) mcnt = MAX_NUM_MULTICAST_ADDRESSES; else mcnt = if_multiaddr_count(ifp, MAX_NUM_MULTICAST_ADDRESSES); /* Don't disable if in MAX groups */ if (mcnt < MAX_NUM_MULTICAST_ADDRESSES) reg_rctl &= (~E1000_RCTL_MPE); reg_rctl &= (~E1000_RCTL_SBP); E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl); } /********************************************************************* * Multicast Update * * This routine is called whenever multicast address list is updated. * **********************************************************************/ static void em_if_multi_set(if_ctx_t ctx) { struct adapter *adapter = iflib_get_softc(ctx); struct ifnet *ifp = iflib_get_ifp(ctx); u32 reg_rctl = 0; u8 *mta; /* Multicast array memory */ int mcnt = 0; IOCTL_DEBUGOUT("em_set_multi: begin"); mta = adapter->mta; bzero(mta, sizeof(u8) * ETH_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES); if (adapter->hw.mac.type == e1000_82542 && adapter->hw.revision_id == E1000_REVISION_2) { reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL); if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE) e1000_pci_clear_mwi(&adapter->hw); reg_rctl |= E1000_RCTL_RST; E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl); msec_delay(5); } if_multiaddr_array(ifp, mta, &mcnt, MAX_NUM_MULTICAST_ADDRESSES); if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES) { reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL); reg_rctl |= E1000_RCTL_MPE; E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl); } else e1000_update_mc_addr_list(&adapter->hw, mta, mcnt); if (adapter->hw.mac.type == e1000_82542 && adapter->hw.revision_id == E1000_REVISION_2) { reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL); reg_rctl &= ~E1000_RCTL_RST; E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl); msec_delay(5); if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE) e1000_pci_set_mwi(&adapter->hw); } } /********************************************************************* * Timer routine * * This routine schedules em_if_update_admin_status() to check for * link status and to gather statistics as well as to perform some * controller-specific hardware patting. * **********************************************************************/ static void em_if_timer(if_ctx_t ctx, uint16_t qid) { if (qid != 0) return; iflib_admin_intr_deferred(ctx); } static void em_if_update_admin_status(if_ctx_t ctx) { struct adapter *adapter = iflib_get_softc(ctx); struct e1000_hw *hw = &adapter->hw; device_t dev = iflib_get_dev(ctx); u32 link_check, thstat, ctrl; link_check = thstat = ctrl = 0; /* Get the cached link value or read phy for real */ switch (hw->phy.media_type) { case e1000_media_type_copper: if (hw->mac.get_link_status) { if (hw->mac.type == e1000_pch_spt) msec_delay(50); /* Do the work to read phy */ e1000_check_for_link(hw); link_check = !hw->mac.get_link_status; if (link_check) /* ESB2 fix */ e1000_cfg_on_link_up(hw); } else { link_check = TRUE; } break; case e1000_media_type_fiber: e1000_check_for_link(hw); link_check = (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU); break; case e1000_media_type_internal_serdes: e1000_check_for_link(hw); link_check = adapter->hw.mac.serdes_has_link; break; /* VF device is type_unknown */ case e1000_media_type_unknown: e1000_check_for_link(hw); link_check = !hw->mac.get_link_status; /* FALLTHROUGH */ default: break; } /* Check for thermal downshift or shutdown */ if (hw->mac.type == e1000_i350) { thstat = E1000_READ_REG(hw, E1000_THSTAT); ctrl = E1000_READ_REG(hw, E1000_CTRL_EXT); } /* Now check for a transition */ if (link_check && (adapter->link_active == 0)) { e1000_get_speed_and_duplex(hw, &adapter->link_speed, &adapter->link_duplex); /* Check if we must disable SPEED_MODE bit on PCI-E */ if ((adapter->link_speed != SPEED_1000) && ((hw->mac.type == e1000_82571) || (hw->mac.type == e1000_82572))) { int tarc0; tarc0 = E1000_READ_REG(hw, E1000_TARC(0)); tarc0 &= ~TARC_SPEED_MODE_BIT; E1000_WRITE_REG(hw, E1000_TARC(0), tarc0); } if (bootverbose) device_printf(dev, "Link is up %d Mbps %s\n", adapter->link_speed, ((adapter->link_duplex == FULL_DUPLEX) ? "Full Duplex" : "Half Duplex")); adapter->link_active = 1; adapter->smartspeed = 0; if ((ctrl & E1000_CTRL_EXT_LINK_MODE_MASK) == E1000_CTRL_EXT_LINK_MODE_GMII && (thstat & E1000_THSTAT_LINK_THROTTLE)) device_printf(dev, "Link: thermal downshift\n"); /* Delay Link Up for Phy update */ if (((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) && (hw->phy.id == I210_I_PHY_ID)) msec_delay(I210_LINK_DELAY); /* Reset if the media type changed. */ if ((hw->dev_spec._82575.media_changed) && (adapter->hw.mac.type >= igb_mac_min)) { hw->dev_spec._82575.media_changed = false; adapter->flags |= IGB_MEDIA_RESET; em_reset(ctx); } iflib_link_state_change(ctx, LINK_STATE_UP, IF_Mbps(adapter->link_speed)); } else if (!link_check && (adapter->link_active == 1)) { adapter->link_speed = 0; adapter->link_duplex = 0; adapter->link_active = 0; iflib_link_state_change(ctx, LINK_STATE_DOWN, 0); } em_update_stats_counters(adapter); /* Reset LAA into RAR[0] on 82571 */ if ((adapter->hw.mac.type == e1000_82571) && e1000_get_laa_state_82571(&adapter->hw)) e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0); if (adapter->hw.mac.type < em_mac_min) lem_smartspeed(adapter); E1000_WRITE_REG(&adapter->hw, E1000_IMS, EM_MSIX_LINK | E1000_IMS_LSC); } static void em_if_watchdog_reset(if_ctx_t ctx) { struct adapter *adapter = iflib_get_softc(ctx); /* * Just count the event; iflib(4) will already trigger a * sufficient reset of the controller. */ adapter->watchdog_events++; } /********************************************************************* * * This routine disables all traffic on the adapter by issuing a * global reset on the MAC. * **********************************************************************/ static void em_if_stop(if_ctx_t ctx) { struct adapter *adapter = iflib_get_softc(ctx); INIT_DEBUGOUT("em_if_stop: begin"); e1000_reset_hw(&adapter->hw); if (adapter->hw.mac.type >= e1000_82544) E1000_WRITE_REG(&adapter->hw, E1000_WUFC, 0); e1000_led_off(&adapter->hw); e1000_cleanup_led(&adapter->hw); } /********************************************************************* * * Determine hardware revision. * **********************************************************************/ static void em_identify_hardware(if_ctx_t ctx) { device_t dev = iflib_get_dev(ctx); struct adapter *adapter = iflib_get_softc(ctx); /* Make sure our PCI config space has the necessary stuff set */ adapter->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2); /* Save off the information about this board */ adapter->hw.vendor_id = pci_get_vendor(dev); adapter->hw.device_id = pci_get_device(dev); adapter->hw.revision_id = pci_read_config(dev, PCIR_REVID, 1); adapter->hw.subsystem_vendor_id = pci_read_config(dev, PCIR_SUBVEND_0, 2); adapter->hw.subsystem_device_id = pci_read_config(dev, PCIR_SUBDEV_0, 2); /* Do Shared Code Init and Setup */ if (e1000_set_mac_type(&adapter->hw)) { device_printf(dev, "Setup init failure\n"); return; } } static int em_allocate_pci_resources(if_ctx_t ctx) { struct adapter *adapter = iflib_get_softc(ctx); device_t dev = iflib_get_dev(ctx); int rid, val; rid = PCIR_BAR(0); adapter->memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, RF_ACTIVE); if (adapter->memory == NULL) { device_printf(dev, "Unable to allocate bus resource: memory\n"); return (ENXIO); } adapter->osdep.mem_bus_space_tag = rman_get_bustag(adapter->memory); adapter->osdep.mem_bus_space_handle = rman_get_bushandle(adapter->memory); adapter->hw.hw_addr = (u8 *)&adapter->osdep.mem_bus_space_handle; /* Only older adapters use IO mapping */ if (adapter->hw.mac.type < em_mac_min && adapter->hw.mac.type > e1000_82543) { /* Figure our where our IO BAR is ? */ for (rid = PCIR_BAR(0); rid < PCIR_CIS;) { val = pci_read_config(dev, rid, 4); if (EM_BAR_TYPE(val) == EM_BAR_TYPE_IO) { break; } rid += 4; /* check for 64bit BAR */ if (EM_BAR_MEM_TYPE(val) == EM_BAR_MEM_TYPE_64BIT) rid += 4; } if (rid >= PCIR_CIS) { device_printf(dev, "Unable to locate IO BAR\n"); return (ENXIO); } adapter->ioport = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid, RF_ACTIVE); if (adapter->ioport == NULL) { device_printf(dev, "Unable to allocate bus resource: " "ioport\n"); return (ENXIO); } adapter->hw.io_base = 0; adapter->osdep.io_bus_space_tag = rman_get_bustag(adapter->ioport); adapter->osdep.io_bus_space_handle = rman_get_bushandle(adapter->ioport); } adapter->hw.back = &adapter->osdep; return (0); } /********************************************************************* * * Set up the MSI-X Interrupt handlers * **********************************************************************/ static int em_if_msix_intr_assign(if_ctx_t ctx, int msix) { struct adapter *adapter = iflib_get_softc(ctx); struct em_rx_queue *rx_que = adapter->rx_queues; struct em_tx_queue *tx_que = adapter->tx_queues; int error, rid, i, vector = 0, rx_vectors; char buf[16]; /* First set up ring resources */ for (i = 0; i < adapter->rx_num_queues; i++, rx_que++, vector++) { rid = vector + 1; snprintf(buf, sizeof(buf), "rxq%d", i); error = iflib_irq_alloc_generic(ctx, &rx_que->que_irq, rid, IFLIB_INTR_RXTX, em_msix_que, rx_que, rx_que->me, buf); if (error) { device_printf(iflib_get_dev(ctx), "Failed to allocate que int %d err: %d", i, error); adapter->rx_num_queues = i + 1; goto fail; } rx_que->msix = vector; /* * Set the bit to enable interrupt * in E1000_IMS -- bits 20 and 21 * are for RX0 and RX1, note this has * NOTHING to do with the MSI-X vector */ if (adapter->hw.mac.type == e1000_82574) { rx_que->eims = 1 << (20 + i); adapter->ims |= rx_que->eims; adapter->ivars |= (8 | rx_que->msix) << (i * 4); } else if (adapter->hw.mac.type == e1000_82575) rx_que->eims = E1000_EICR_TX_QUEUE0 << vector; else rx_que->eims = 1 << vector; } rx_vectors = vector; vector = 0; for (i = 0; i < adapter->tx_num_queues; i++, tx_que++, vector++) { snprintf(buf, sizeof(buf), "txq%d", i); tx_que = &adapter->tx_queues[i]; iflib_softirq_alloc_generic(ctx, &adapter->rx_queues[i % adapter->rx_num_queues].que_irq, IFLIB_INTR_TX, tx_que, tx_que->me, buf); tx_que->msix = (vector % adapter->rx_num_queues); /* * Set the bit to enable interrupt * in E1000_IMS -- bits 22 and 23 * are for TX0 and TX1, note this has * NOTHING to do with the MSI-X vector */ if (adapter->hw.mac.type == e1000_82574) { tx_que->eims = 1 << (22 + i); adapter->ims |= tx_que->eims; adapter->ivars |= (8 | tx_que->msix) << (8 + (i * 4)); } else if (adapter->hw.mac.type == e1000_82575) { tx_que->eims = E1000_EICR_TX_QUEUE0 << i; } else { tx_que->eims = 1 << i; } } /* Link interrupt */ rid = rx_vectors + 1; error = iflib_irq_alloc_generic(ctx, &adapter->irq, rid, IFLIB_INTR_ADMIN, em_msix_link, adapter, 0, "aq"); if (error) { device_printf(iflib_get_dev(ctx), "Failed to register admin handler"); goto fail; } adapter->linkvec = rx_vectors; if (adapter->hw.mac.type < igb_mac_min) { adapter->ivars |= (8 | rx_vectors) << 16; adapter->ivars |= 0x80000000; } return (0); fail: iflib_irq_free(ctx, &adapter->irq); rx_que = adapter->rx_queues; for (int i = 0; i < adapter->rx_num_queues; i++, rx_que++) iflib_irq_free(ctx, &rx_que->que_irq); return (error); } static void igb_configure_queues(struct adapter *adapter) { struct e1000_hw *hw = &adapter->hw; struct em_rx_queue *rx_que; struct em_tx_queue *tx_que; u32 tmp, ivar = 0, newitr = 0; /* First turn on RSS capability */ if (adapter->hw.mac.type != e1000_82575) E1000_WRITE_REG(hw, E1000_GPIE, E1000_GPIE_MSIX_MODE | E1000_GPIE_EIAME | E1000_GPIE_PBA | E1000_GPIE_NSICR); /* Turn on MSI-X */ switch (adapter->hw.mac.type) { case e1000_82580: case e1000_i350: case e1000_i354: case e1000_i210: case e1000_i211: case e1000_vfadapt: case e1000_vfadapt_i350: /* RX entries */ for (int i = 0; i < adapter->rx_num_queues; i++) { u32 index = i >> 1; ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index); rx_que = &adapter->rx_queues[i]; if (i & 1) { ivar &= 0xFF00FFFF; ivar |= (rx_que->msix | E1000_IVAR_VALID) << 16; } else { ivar &= 0xFFFFFF00; ivar |= rx_que->msix | E1000_IVAR_VALID; } E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar); } /* TX entries */ for (int i = 0; i < adapter->tx_num_queues; i++) { u32 index = i >> 1; ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index); tx_que = &adapter->tx_queues[i]; if (i & 1) { ivar &= 0x00FFFFFF; ivar |= (tx_que->msix | E1000_IVAR_VALID) << 24; } else { ivar &= 0xFFFF00FF; ivar |= (tx_que->msix | E1000_IVAR_VALID) << 8; } E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar); adapter->que_mask |= tx_que->eims; } /* And for the link interrupt */ ivar = (adapter->linkvec | E1000_IVAR_VALID) << 8; adapter->link_mask = 1 << adapter->linkvec; E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar); break; case e1000_82576: /* RX entries */ for (int i = 0; i < adapter->rx_num_queues; i++) { u32 index = i & 0x7; /* Each IVAR has two entries */ ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index); rx_que = &adapter->rx_queues[i]; if (i < 8) { ivar &= 0xFFFFFF00; ivar |= rx_que->msix | E1000_IVAR_VALID; } else { ivar &= 0xFF00FFFF; ivar |= (rx_que->msix | E1000_IVAR_VALID) << 16; } E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar); adapter->que_mask |= rx_que->eims; } /* TX entries */ for (int i = 0; i < adapter->tx_num_queues; i++) { u32 index = i & 0x7; /* Each IVAR has two entries */ ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index); tx_que = &adapter->tx_queues[i]; if (i < 8) { ivar &= 0xFFFF00FF; ivar |= (tx_que->msix | E1000_IVAR_VALID) << 8; } else { ivar &= 0x00FFFFFF; ivar |= (tx_que->msix | E1000_IVAR_VALID) << 24; } E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar); adapter->que_mask |= tx_que->eims; } /* And for the link interrupt */ ivar = (adapter->linkvec | E1000_IVAR_VALID) << 8; adapter->link_mask = 1 << adapter->linkvec; E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar); break; case e1000_82575: /* enable MSI-X support*/ tmp = E1000_READ_REG(hw, E1000_CTRL_EXT); tmp |= E1000_CTRL_EXT_PBA_CLR; /* Auto-Mask interrupts upon ICR read. */ tmp |= E1000_CTRL_EXT_EIAME; tmp |= E1000_CTRL_EXT_IRCA; E1000_WRITE_REG(hw, E1000_CTRL_EXT, tmp); /* Queues */ for (int i = 0; i < adapter->rx_num_queues; i++) { rx_que = &adapter->rx_queues[i]; tmp = E1000_EICR_RX_QUEUE0 << i; tmp |= E1000_EICR_TX_QUEUE0 << i; rx_que->eims = tmp; E1000_WRITE_REG_ARRAY(hw, E1000_MSIXBM(0), i, rx_que->eims); adapter->que_mask |= rx_que->eims; } /* Link */ E1000_WRITE_REG(hw, E1000_MSIXBM(adapter->linkvec), E1000_EIMS_OTHER); adapter->link_mask |= E1000_EIMS_OTHER; default: break; } /* Set the starting interrupt rate */ if (em_max_interrupt_rate > 0) newitr = (4000000 / em_max_interrupt_rate) & 0x7FFC; if (hw->mac.type == e1000_82575) newitr |= newitr << 16; else newitr |= E1000_EITR_CNT_IGNR; for (int i = 0; i < adapter->rx_num_queues; i++) { rx_que = &adapter->rx_queues[i]; E1000_WRITE_REG(hw, E1000_EITR(rx_que->msix), newitr); } return; } static void em_free_pci_resources(if_ctx_t ctx) { struct adapter *adapter = iflib_get_softc(ctx); struct em_rx_queue *que = adapter->rx_queues; device_t dev = iflib_get_dev(ctx); /* Release all MSI-X queue resources */ if (adapter->intr_type == IFLIB_INTR_MSIX) iflib_irq_free(ctx, &adapter->irq); for (int i = 0; i < adapter->rx_num_queues; i++, que++) { iflib_irq_free(ctx, &que->que_irq); } if (adapter->memory != NULL) { bus_release_resource(dev, SYS_RES_MEMORY, rman_get_rid(adapter->memory), adapter->memory); adapter->memory = NULL; } if (adapter->flash != NULL) { bus_release_resource(dev, SYS_RES_MEMORY, rman_get_rid(adapter->flash), adapter->flash); adapter->flash = NULL; } if (adapter->ioport != NULL) { bus_release_resource(dev, SYS_RES_IOPORT, rman_get_rid(adapter->ioport), adapter->ioport); adapter->ioport = NULL; } } /* Set up MSI or MSI-X */ static int em_setup_msix(if_ctx_t ctx) { struct adapter *adapter = iflib_get_softc(ctx); if (adapter->hw.mac.type == e1000_82574) { em_enable_vectors_82574(ctx); } return (0); } /********************************************************************* * * Workaround for SmartSpeed on 82541 and 82547 controllers * **********************************************************************/ static void lem_smartspeed(struct adapter *adapter) { u16 phy_tmp; if (adapter->link_active || (adapter->hw.phy.type != e1000_phy_igp) || adapter->hw.mac.autoneg == 0 || (adapter->hw.phy.autoneg_advertised & ADVERTISE_1000_FULL) == 0) return; if (adapter->smartspeed == 0) { /* If Master/Slave config fault is asserted twice, * we assume back-to-back */ e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp); if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT)) return; e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp); if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) { e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_tmp); if(phy_tmp & CR_1000T_MS_ENABLE) { phy_tmp &= ~CR_1000T_MS_ENABLE; e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_tmp); adapter->smartspeed++; if(adapter->hw.mac.autoneg && !e1000_copper_link_autoneg(&adapter->hw) && !e1000_read_phy_reg(&adapter->hw, PHY_CONTROL, &phy_tmp)) { phy_tmp |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG); e1000_write_phy_reg(&adapter->hw, PHY_CONTROL, phy_tmp); } } } return; } else if(adapter->smartspeed == EM_SMARTSPEED_DOWNSHIFT) { /* If still no link, perhaps using 2/3 pair cable */ e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_tmp); phy_tmp |= CR_1000T_MS_ENABLE; e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_tmp); if(adapter->hw.mac.autoneg && !e1000_copper_link_autoneg(&adapter->hw) && !e1000_read_phy_reg(&adapter->hw, PHY_CONTROL, &phy_tmp)) { phy_tmp |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG); e1000_write_phy_reg(&adapter->hw, PHY_CONTROL, phy_tmp); } } /* Restart process after EM_SMARTSPEED_MAX iterations */ if(adapter->smartspeed++ == EM_SMARTSPEED_MAX) adapter->smartspeed = 0; } /********************************************************************* * * Initialize the DMA Coalescing feature * **********************************************************************/ static void igb_init_dmac(struct adapter *adapter, u32 pba) { device_t dev = adapter->dev; struct e1000_hw *hw = &adapter->hw; u32 dmac, reg = ~E1000_DMACR_DMAC_EN; u16 hwm; u16 max_frame_size; if (hw->mac.type == e1000_i211) return; max_frame_size = adapter->shared->isc_max_frame_size; if (hw->mac.type > e1000_82580) { if (adapter->dmac == 0) { /* Disabling it */ E1000_WRITE_REG(hw, E1000_DMACR, reg); return; } else device_printf(dev, "DMA Coalescing enabled\n"); /* Set starting threshold */ E1000_WRITE_REG(hw, E1000_DMCTXTH, 0); hwm = 64 * pba - max_frame_size / 16; if (hwm < 64 * (pba - 6)) hwm = 64 * (pba - 6); reg = E1000_READ_REG(hw, E1000_FCRTC); reg &= ~E1000_FCRTC_RTH_COAL_MASK; reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT) & E1000_FCRTC_RTH_COAL_MASK); E1000_WRITE_REG(hw, E1000_FCRTC, reg); dmac = pba - max_frame_size / 512; if (dmac < pba - 10) dmac = pba - 10; reg = E1000_READ_REG(hw, E1000_DMACR); reg &= ~E1000_DMACR_DMACTHR_MASK; reg |= ((dmac << E1000_DMACR_DMACTHR_SHIFT) & E1000_DMACR_DMACTHR_MASK); /* transition to L0x or L1 if available..*/ reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK); /* Check if status is 2.5Gb backplane connection * before configuration of watchdog timer, which is * in msec values in 12.8usec intervals * watchdog timer= msec values in 32usec intervals * for non 2.5Gb connection */ if (hw->mac.type == e1000_i354) { int status = E1000_READ_REG(hw, E1000_STATUS); if ((status & E1000_STATUS_2P5_SKU) && (!(status & E1000_STATUS_2P5_SKU_OVER))) reg |= ((adapter->dmac * 5) >> 6); else reg |= (adapter->dmac >> 5); } else { reg |= (adapter->dmac >> 5); } E1000_WRITE_REG(hw, E1000_DMACR, reg); E1000_WRITE_REG(hw, E1000_DMCRTRH, 0); /* Set the interval before transition */ reg = E1000_READ_REG(hw, E1000_DMCTLX); if (hw->mac.type == e1000_i350) reg |= IGB_DMCTLX_DCFLUSH_DIS; /* ** in 2.5Gb connection, TTLX unit is 0.4 usec ** which is 0x4*2 = 0xA. But delay is still 4 usec */ if (hw->mac.type == e1000_i354) { int status = E1000_READ_REG(hw, E1000_STATUS); if ((status & E1000_STATUS_2P5_SKU) && (!(status & E1000_STATUS_2P5_SKU_OVER))) reg |= 0xA; else reg |= 0x4; } else { reg |= 0x4; } E1000_WRITE_REG(hw, E1000_DMCTLX, reg); /* free space in tx packet buffer to wake from DMA coal */ E1000_WRITE_REG(hw, E1000_DMCTXTH, (IGB_TXPBSIZE - (2 * max_frame_size)) >> 6); /* make low power state decision controlled by DMA coal */ reg = E1000_READ_REG(hw, E1000_PCIEMISC); reg &= ~E1000_PCIEMISC_LX_DECISION; E1000_WRITE_REG(hw, E1000_PCIEMISC, reg); } else if (hw->mac.type == e1000_82580) { u32 reg = E1000_READ_REG(hw, E1000_PCIEMISC); E1000_WRITE_REG(hw, E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION); E1000_WRITE_REG(hw, E1000_DMACR, 0); } } /********************************************************************* * * Initialize the hardware to a configuration as specified by the * adapter structure. * **********************************************************************/ static void em_reset(if_ctx_t ctx) { device_t dev = iflib_get_dev(ctx); struct adapter *adapter = iflib_get_softc(ctx); struct ifnet *ifp = iflib_get_ifp(ctx); struct e1000_hw *hw = &adapter->hw; u16 rx_buffer_size; u32 pba; INIT_DEBUGOUT("em_reset: begin"); /* Let the firmware know the OS is in control */ em_get_hw_control(adapter); /* Set up smart power down as default off on newer adapters. */ if (!em_smart_pwr_down && (hw->mac.type == e1000_82571 || hw->mac.type == e1000_82572)) { u16 phy_tmp = 0; /* Speed up time to link by disabling smart power down. */ e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_tmp); phy_tmp &= ~IGP02E1000_PM_SPD; e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_tmp); } /* * Packet Buffer Allocation (PBA) * Writing PBA sets the receive portion of the buffer * the remainder is used for the transmit buffer. */ switch (hw->mac.type) { /* Total Packet Buffer on these is 48K */ case e1000_82571: case e1000_82572: case e1000_80003es2lan: pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */ break; case e1000_82573: /* 82573: Total Packet Buffer is 32K */ pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */ break; case e1000_82574: case e1000_82583: pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */ break; case e1000_ich8lan: pba = E1000_PBA_8K; break; case e1000_ich9lan: case e1000_ich10lan: /* Boost Receive side for jumbo frames */ if (adapter->hw.mac.max_frame_size > 4096) pba = E1000_PBA_14K; else pba = E1000_PBA_10K; break; case e1000_pchlan: case e1000_pch2lan: case e1000_pch_lpt: case e1000_pch_spt: case e1000_pch_cnp: pba = E1000_PBA_26K; break; case e1000_82575: pba = E1000_PBA_32K; break; case e1000_82576: case e1000_vfadapt: pba = E1000_READ_REG(hw, E1000_RXPBS); pba &= E1000_RXPBS_SIZE_MASK_82576; break; case e1000_82580: case e1000_i350: case e1000_i354: case e1000_vfadapt_i350: pba = E1000_READ_REG(hw, E1000_RXPBS); pba = e1000_rxpbs_adjust_82580(pba); break; case e1000_i210: case e1000_i211: pba = E1000_PBA_34K; break; default: if (adapter->hw.mac.max_frame_size > 8192) pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */ else pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */ } /* Special needs in case of Jumbo frames */ if ((hw->mac.type == e1000_82575) && (ifp->if_mtu > ETHERMTU)) { u32 tx_space, min_tx, min_rx; pba = E1000_READ_REG(hw, E1000_PBA); tx_space = pba >> 16; pba &= 0xffff; min_tx = (adapter->hw.mac.max_frame_size + sizeof(struct e1000_tx_desc) - ETHERNET_FCS_SIZE) * 2; min_tx = roundup2(min_tx, 1024); min_tx >>= 10; min_rx = adapter->hw.mac.max_frame_size; min_rx = roundup2(min_rx, 1024); min_rx >>= 10; if (tx_space < min_tx && ((min_tx - tx_space) < pba)) { pba = pba - (min_tx - tx_space); /* * if short on rx space, rx wins * and must trump tx adjustment */ if (pba < min_rx) pba = min_rx; } E1000_WRITE_REG(hw, E1000_PBA, pba); } if (hw->mac.type < igb_mac_min) E1000_WRITE_REG(&adapter->hw, E1000_PBA, pba); INIT_DEBUGOUT1("em_reset: pba=%dK",pba); /* * These parameters control the automatic generation (Tx) and * response (Rx) to Ethernet PAUSE frames. * - High water mark should allow for at least two frames to be * received after sending an XOFF. * - Low water mark works best when it is very near the high water mark. * This allows the receiver to restart by sending XON when it has * drained a bit. Here we use an arbitrary value of 1500 which will * restart after one full frame is pulled from the buffer. There * could be several smaller frames in the buffer and if so they will * not trigger the XON until their total number reduces the buffer * by 1500. * - The pause time is fairly large at 1000 x 512ns = 512 usec. */ rx_buffer_size = (pba & 0xffff) << 10; hw->fc.high_water = rx_buffer_size - roundup2(adapter->hw.mac.max_frame_size, 1024); hw->fc.low_water = hw->fc.high_water - 1500; if (adapter->fc) /* locally set flow control value? */ hw->fc.requested_mode = adapter->fc; else hw->fc.requested_mode = e1000_fc_full; if (hw->mac.type == e1000_80003es2lan) hw->fc.pause_time = 0xFFFF; else hw->fc.pause_time = EM_FC_PAUSE_TIME; hw->fc.send_xon = TRUE; /* Device specific overrides/settings */ switch (hw->mac.type) { case e1000_pchlan: /* Workaround: no TX flow ctrl for PCH */ hw->fc.requested_mode = e1000_fc_rx_pause; hw->fc.pause_time = 0xFFFF; /* override */ if (if_getmtu(ifp) > ETHERMTU) { hw->fc.high_water = 0x3500; hw->fc.low_water = 0x1500; } else { hw->fc.high_water = 0x5000; hw->fc.low_water = 0x3000; } hw->fc.refresh_time = 0x1000; break; case e1000_pch2lan: case e1000_pch_lpt: case e1000_pch_spt: case e1000_pch_cnp: hw->fc.high_water = 0x5C20; hw->fc.low_water = 0x5048; hw->fc.pause_time = 0x0650; hw->fc.refresh_time = 0x0400; /* Jumbos need adjusted PBA */ if (if_getmtu(ifp) > ETHERMTU) E1000_WRITE_REG(hw, E1000_PBA, 12); else E1000_WRITE_REG(hw, E1000_PBA, 26); break; case e1000_82575: case e1000_82576: /* 8-byte granularity */ hw->fc.low_water = hw->fc.high_water - 8; break; case e1000_82580: case e1000_i350: case e1000_i354: case e1000_i210: case e1000_i211: case e1000_vfadapt: case e1000_vfadapt_i350: /* 16-byte granularity */ hw->fc.low_water = hw->fc.high_water - 16; break; case e1000_ich9lan: case e1000_ich10lan: if (if_getmtu(ifp) > ETHERMTU) { hw->fc.high_water = 0x2800; hw->fc.low_water = hw->fc.high_water - 8; break; } /* FALLTHROUGH */ default: if (hw->mac.type == e1000_80003es2lan) hw->fc.pause_time = 0xFFFF; break; } /* Issue a global reset */ e1000_reset_hw(hw); if (adapter->hw.mac.type >= igb_mac_min) { E1000_WRITE_REG(hw, E1000_WUC, 0); } else { E1000_WRITE_REG(hw, E1000_WUFC, 0); em_disable_aspm(adapter); } if (adapter->flags & IGB_MEDIA_RESET) { e1000_setup_init_funcs(hw, TRUE); e1000_get_bus_info(hw); adapter->flags &= ~IGB_MEDIA_RESET; } /* and a re-init */ if (e1000_init_hw(hw) < 0) { device_printf(dev, "Hardware Initialization Failed\n"); return; } if (adapter->hw.mac.type >= igb_mac_min) igb_init_dmac(adapter, pba); E1000_WRITE_REG(hw, E1000_VET, ETHERTYPE_VLAN); e1000_get_phy_info(hw); e1000_check_for_link(hw); } /* * Initialise the RSS mapping for NICs that support multiple transmit/ * receive rings. */ #define RSSKEYLEN 10 static void em_initialize_rss_mapping(struct adapter *adapter) { uint8_t rss_key[4 * RSSKEYLEN]; uint32_t reta = 0; struct e1000_hw *hw = &adapter->hw; int i; /* * Configure RSS key */ arc4rand(rss_key, sizeof(rss_key), 0); for (i = 0; i < RSSKEYLEN; ++i) { uint32_t rssrk = 0; rssrk = EM_RSSRK_VAL(rss_key, i); E1000_WRITE_REG(hw,E1000_RSSRK(i), rssrk); } /* * Configure RSS redirect table in following fashion: * (hash & ring_cnt_mask) == rdr_table[(hash & rdr_table_mask)] */ for (i = 0; i < sizeof(reta); ++i) { uint32_t q; q = (i % adapter->rx_num_queues) << 7; reta |= q << (8 * i); } for (i = 0; i < 32; ++i) E1000_WRITE_REG(hw, E1000_RETA(i), reta); E1000_WRITE_REG(hw, E1000_MRQC, E1000_MRQC_RSS_ENABLE_2Q | E1000_MRQC_RSS_FIELD_IPV4_TCP | E1000_MRQC_RSS_FIELD_IPV4 | E1000_MRQC_RSS_FIELD_IPV6_TCP_EX | E1000_MRQC_RSS_FIELD_IPV6_EX | E1000_MRQC_RSS_FIELD_IPV6); } static void igb_initialize_rss_mapping(struct adapter *adapter) { struct e1000_hw *hw = &adapter->hw; int i; int queue_id; u32 reta; u32 rss_key[10], mrqc, shift = 0; /* XXX? */ if (adapter->hw.mac.type == e1000_82575) shift = 6; /* * The redirection table controls which destination * queue each bucket redirects traffic to. * Each DWORD represents four queues, with the LSB * being the first queue in the DWORD. * * This just allocates buckets to queues using round-robin * allocation. * * NOTE: It Just Happens to line up with the default * RSS allocation method. */ /* Warning FM follows */ reta = 0; for (i = 0; i < 128; i++) { #ifdef RSS queue_id = rss_get_indirection_to_bucket(i); /* * If we have more queues than buckets, we'll * end up mapping buckets to a subset of the * queues. * * If we have more buckets than queues, we'll * end up instead assigning multiple buckets * to queues. * * Both are suboptimal, but we need to handle * the case so we don't go out of bounds * indexing arrays and such. */ queue_id = queue_id % adapter->rx_num_queues; #else queue_id = (i % adapter->rx_num_queues); #endif /* Adjust if required */ queue_id = queue_id << shift; /* * The low 8 bits are for hash value (n+0); * The next 8 bits are for hash value (n+1), etc. */ reta = reta >> 8; reta = reta | ( ((uint32_t) queue_id) << 24); if ((i & 3) == 3) { E1000_WRITE_REG(hw, E1000_RETA(i >> 2), reta); reta = 0; } } /* Now fill in hash table */ /* * MRQC: Multiple Receive Queues Command * Set queuing to RSS control, number depends on the device. */ mrqc = E1000_MRQC_ENABLE_RSS_8Q; #ifdef RSS /* XXX ew typecasting */ rss_getkey((uint8_t *) &rss_key); #else arc4rand(&rss_key, sizeof(rss_key), 0); #endif for (i = 0; i < 10; i++) E1000_WRITE_REG_ARRAY(hw, E1000_RSSRK(0), i, rss_key[i]); /* * Configure the RSS fields to hash upon. */ mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 | E1000_MRQC_RSS_FIELD_IPV4_TCP); mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 | E1000_MRQC_RSS_FIELD_IPV6_TCP); mrqc |=( E1000_MRQC_RSS_FIELD_IPV4_UDP | E1000_MRQC_RSS_FIELD_IPV6_UDP); mrqc |=( E1000_MRQC_RSS_FIELD_IPV6_UDP_EX | E1000_MRQC_RSS_FIELD_IPV6_TCP_EX); E1000_WRITE_REG(hw, E1000_MRQC, mrqc); } /********************************************************************* * * Setup networking device structure and register interface media. * **********************************************************************/ static int em_setup_interface(if_ctx_t ctx) { struct ifnet *ifp = iflib_get_ifp(ctx); struct adapter *adapter = iflib_get_softc(ctx); if_softc_ctx_t scctx = adapter->shared; INIT_DEBUGOUT("em_setup_interface: begin"); /* Single Queue */ if (adapter->tx_num_queues == 1) { if_setsendqlen(ifp, scctx->isc_ntxd[0] - 1); if_setsendqready(ifp); } /* * Specify the media types supported by this adapter and register * callbacks to update media and link information */ if ((adapter->hw.phy.media_type == e1000_media_type_fiber) || (adapter->hw.phy.media_type == e1000_media_type_internal_serdes)) { u_char fiber_type = IFM_1000_SX; /* default type */ if (adapter->hw.mac.type == e1000_82545) fiber_type = IFM_1000_LX; ifmedia_add(adapter->media, IFM_ETHER | fiber_type | IFM_FDX, 0, NULL); ifmedia_add(adapter->media, IFM_ETHER | fiber_type, 0, NULL); } else { ifmedia_add(adapter->media, IFM_ETHER | IFM_10_T, 0, NULL); ifmedia_add(adapter->media, IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL); ifmedia_add(adapter->media, IFM_ETHER | IFM_100_TX, 0, NULL); ifmedia_add(adapter->media, IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL); if (adapter->hw.phy.type != e1000_phy_ife) { ifmedia_add(adapter->media, IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL); ifmedia_add(adapter->media, IFM_ETHER | IFM_1000_T, 0, NULL); } } ifmedia_add(adapter->media, IFM_ETHER | IFM_AUTO, 0, NULL); ifmedia_set(adapter->media, IFM_ETHER | IFM_AUTO); return (0); } static int em_if_tx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int ntxqs, int ntxqsets) { struct adapter *adapter = iflib_get_softc(ctx); if_softc_ctx_t scctx = adapter->shared; int error = E1000_SUCCESS; struct em_tx_queue *que; int i, j; MPASS(adapter->tx_num_queues > 0); MPASS(adapter->tx_num_queues == ntxqsets); /* First allocate the top level queue structs */ if (!(adapter->tx_queues = (struct em_tx_queue *) malloc(sizeof(struct em_tx_queue) * adapter->tx_num_queues, M_DEVBUF, M_NOWAIT | M_ZERO))) { device_printf(iflib_get_dev(ctx), "Unable to allocate queue memory\n"); return(ENOMEM); } for (i = 0, que = adapter->tx_queues; i < adapter->tx_num_queues; i++, que++) { /* Set up some basics */ struct tx_ring *txr = &que->txr; txr->adapter = que->adapter = adapter; que->me = txr->me = i; /* Allocate report status array */ if (!(txr->tx_rsq = (qidx_t *) malloc(sizeof(qidx_t) * scctx->isc_ntxd[0], M_DEVBUF, M_NOWAIT | M_ZERO))) { device_printf(iflib_get_dev(ctx), "failed to allocate rs_idxs memory\n"); error = ENOMEM; goto fail; } for (j = 0; j < scctx->isc_ntxd[0]; j++) txr->tx_rsq[j] = QIDX_INVALID; /* get the virtual and physical address of the hardware queues */ txr->tx_base = (struct e1000_tx_desc *)vaddrs[i*ntxqs]; txr->tx_paddr = paddrs[i*ntxqs]; } if (bootverbose) device_printf(iflib_get_dev(ctx), "allocated for %d tx_queues\n", adapter->tx_num_queues); return (0); fail: em_if_queues_free(ctx); return (error); } static int em_if_rx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs, int nrxqs, int nrxqsets) { struct adapter *adapter = iflib_get_softc(ctx); int error = E1000_SUCCESS; struct em_rx_queue *que; int i; MPASS(adapter->rx_num_queues > 0); MPASS(adapter->rx_num_queues == nrxqsets); /* First allocate the top level queue structs */ if (!(adapter->rx_queues = (struct em_rx_queue *) malloc(sizeof(struct em_rx_queue) * adapter->rx_num_queues, M_DEVBUF, M_NOWAIT | M_ZERO))) { device_printf(iflib_get_dev(ctx), "Unable to allocate queue memory\n"); error = ENOMEM; goto fail; } for (i = 0, que = adapter->rx_queues; i < nrxqsets; i++, que++) { /* Set up some basics */ struct rx_ring *rxr = &que->rxr; rxr->adapter = que->adapter = adapter; rxr->que = que; que->me = rxr->me = i; /* get the virtual and physical address of the hardware queues */ rxr->rx_base = (union e1000_rx_desc_extended *)vaddrs[i*nrxqs]; rxr->rx_paddr = paddrs[i*nrxqs]; } if (bootverbose) device_printf(iflib_get_dev(ctx), "allocated for %d rx_queues\n", adapter->rx_num_queues); return (0); fail: em_if_queues_free(ctx); return (error); } static void em_if_queues_free(if_ctx_t ctx) { struct adapter *adapter = iflib_get_softc(ctx); struct em_tx_queue *tx_que = adapter->tx_queues; struct em_rx_queue *rx_que = adapter->rx_queues; if (tx_que != NULL) { for (int i = 0; i < adapter->tx_num_queues; i++, tx_que++) { struct tx_ring *txr = &tx_que->txr; if (txr->tx_rsq == NULL) break; free(txr->tx_rsq, M_DEVBUF); txr->tx_rsq = NULL; } free(adapter->tx_queues, M_DEVBUF); adapter->tx_queues = NULL; } if (rx_que != NULL) { free(adapter->rx_queues, M_DEVBUF); adapter->rx_queues = NULL; } em_release_hw_control(adapter); if (adapter->mta != NULL) { free(adapter->mta, M_DEVBUF); } } /********************************************************************* * * Enable transmit unit. * **********************************************************************/ static void em_initialize_transmit_unit(if_ctx_t ctx) { struct adapter *adapter = iflib_get_softc(ctx); if_softc_ctx_t scctx = adapter->shared; struct em_tx_queue *que; struct tx_ring *txr; struct e1000_hw *hw = &adapter->hw; u32 tctl, txdctl = 0, tarc, tipg = 0; INIT_DEBUGOUT("em_initialize_transmit_unit: begin"); for (int i = 0; i < adapter->tx_num_queues; i++, txr++) { u64 bus_addr; caddr_t offp, endp; que = &adapter->tx_queues[i]; txr = &que->txr; bus_addr = txr->tx_paddr; /* Clear checksum offload context. */ offp = (caddr_t)&txr->csum_flags; endp = (caddr_t)(txr + 1); bzero(offp, endp - offp); /* Base and Len of TX Ring */ E1000_WRITE_REG(hw, E1000_TDLEN(i), scctx->isc_ntxd[0] * sizeof(struct e1000_tx_desc)); E1000_WRITE_REG(hw, E1000_TDBAH(i), (u32)(bus_addr >> 32)); E1000_WRITE_REG(hw, E1000_TDBAL(i), (u32)bus_addr); /* Init the HEAD/TAIL indices */ E1000_WRITE_REG(hw, E1000_TDT(i), 0); E1000_WRITE_REG(hw, E1000_TDH(i), 0); HW_DEBUGOUT2("Base = %x, Length = %x\n", E1000_READ_REG(&adapter->hw, E1000_TDBAL(i)), E1000_READ_REG(&adapter->hw, E1000_TDLEN(i))); txdctl = 0; /* clear txdctl */ txdctl |= 0x1f; /* PTHRESH */ txdctl |= 1 << 8; /* HTHRESH */ txdctl |= 1 << 16;/* WTHRESH */ txdctl |= 1 << 22; /* Reserved bit 22 must always be 1 */ txdctl |= E1000_TXDCTL_GRAN; txdctl |= 1 << 25; /* LWTHRESH */ E1000_WRITE_REG(hw, E1000_TXDCTL(i), txdctl); } /* Set the default values for the Tx Inter Packet Gap timer */ switch (adapter->hw.mac.type) { case e1000_80003es2lan: tipg = DEFAULT_82543_TIPG_IPGR1; tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT; break; case e1000_82542: tipg = DEFAULT_82542_TIPG_IPGT; tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT; tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT; break; default: if ((adapter->hw.phy.media_type == e1000_media_type_fiber) || (adapter->hw.phy.media_type == e1000_media_type_internal_serdes)) tipg = DEFAULT_82543_TIPG_IPGT_FIBER; else tipg = DEFAULT_82543_TIPG_IPGT_COPPER; tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT; tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT; } E1000_WRITE_REG(&adapter->hw, E1000_TIPG, tipg); E1000_WRITE_REG(&adapter->hw, E1000_TIDV, adapter->tx_int_delay.value); if(adapter->hw.mac.type >= e1000_82540) E1000_WRITE_REG(&adapter->hw, E1000_TADV, adapter->tx_abs_int_delay.value); if ((adapter->hw.mac.type == e1000_82571) || (adapter->hw.mac.type == e1000_82572)) { tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0)); tarc |= TARC_SPEED_MODE_BIT; E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc); } else if (adapter->hw.mac.type == e1000_80003es2lan) { /* errata: program both queues to unweighted RR */ tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0)); tarc |= 1; E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc); tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(1)); tarc |= 1; E1000_WRITE_REG(&adapter->hw, E1000_TARC(1), tarc); } else if (adapter->hw.mac.type == e1000_82574) { tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0)); tarc |= TARC_ERRATA_BIT; if ( adapter->tx_num_queues > 1) { tarc |= (TARC_COMPENSATION_MODE | TARC_MQ_FIX); E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc); E1000_WRITE_REG(&adapter->hw, E1000_TARC(1), tarc); } else E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc); } if (adapter->tx_int_delay.value > 0) adapter->txd_cmd |= E1000_TXD_CMD_IDE; /* Program the Transmit Control Register */ tctl = E1000_READ_REG(&adapter->hw, E1000_TCTL); tctl &= ~E1000_TCTL_CT; tctl |= (E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN | (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT)); if (adapter->hw.mac.type >= e1000_82571) tctl |= E1000_TCTL_MULR; /* This write will effectively turn on the transmit unit. */ E1000_WRITE_REG(&adapter->hw, E1000_TCTL, tctl); /* SPT and KBL errata workarounds */ if (hw->mac.type == e1000_pch_spt) { u32 reg; reg = E1000_READ_REG(hw, E1000_IOSFPC); reg |= E1000_RCTL_RDMTS_HEX; E1000_WRITE_REG(hw, E1000_IOSFPC, reg); /* i218-i219 Specification Update 1.5.4.5 */ reg = E1000_READ_REG(hw, E1000_TARC(0)); reg &= ~E1000_TARC0_CB_MULTIQ_3_REQ; reg |= E1000_TARC0_CB_MULTIQ_2_REQ; E1000_WRITE_REG(hw, E1000_TARC(0), reg); } } /********************************************************************* * * Enable receive unit. * **********************************************************************/ static void em_initialize_receive_unit(if_ctx_t ctx) { struct adapter *adapter = iflib_get_softc(ctx); if_softc_ctx_t scctx = adapter->shared; struct ifnet *ifp = iflib_get_ifp(ctx); struct e1000_hw *hw = &adapter->hw; struct em_rx_queue *que; int i; u32 rctl, rxcsum, rfctl; INIT_DEBUGOUT("em_initialize_receive_units: begin"); /* * Make sure receives are disabled while setting * up the descriptor ring */ rctl = E1000_READ_REG(hw, E1000_RCTL); /* Do not disable if ever enabled on this hardware */ if ((hw->mac.type != e1000_82574) && (hw->mac.type != e1000_82583)) E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN); /* Setup the Receive Control Register */ rctl &= ~(3 << E1000_RCTL_MO_SHIFT); rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT); /* Do not store bad packets */ rctl &= ~E1000_RCTL_SBP; /* Enable Long Packet receive */ if (if_getmtu(ifp) > ETHERMTU) rctl |= E1000_RCTL_LPE; else rctl &= ~E1000_RCTL_LPE; /* Strip the CRC */ if (!em_disable_crc_stripping) rctl |= E1000_RCTL_SECRC; if (adapter->hw.mac.type >= e1000_82540) { E1000_WRITE_REG(&adapter->hw, E1000_RADV, adapter->rx_abs_int_delay.value); /* * Set the interrupt throttling rate. Value is calculated * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns) */ E1000_WRITE_REG(hw, E1000_ITR, DEFAULT_ITR); } E1000_WRITE_REG(&adapter->hw, E1000_RDTR, adapter->rx_int_delay.value); /* Use extended rx descriptor formats */ rfctl = E1000_READ_REG(hw, E1000_RFCTL); rfctl |= E1000_RFCTL_EXTEN; /* * When using MSI-X interrupts we need to throttle * using the EITR register (82574 only) */ if (hw->mac.type == e1000_82574) { for (int i = 0; i < 4; i++) E1000_WRITE_REG(hw, E1000_EITR_82574(i), DEFAULT_ITR); /* Disable accelerated acknowledge */ rfctl |= E1000_RFCTL_ACK_DIS; } E1000_WRITE_REG(hw, E1000_RFCTL, rfctl); rxcsum = E1000_READ_REG(hw, E1000_RXCSUM); if (if_getcapenable(ifp) & IFCAP_RXCSUM && adapter->hw.mac.type >= e1000_82543) { if (adapter->tx_num_queues > 1) { if (adapter->hw.mac.type >= igb_mac_min) { rxcsum |= E1000_RXCSUM_PCSD; if (hw->mac.type != e1000_82575) rxcsum |= E1000_RXCSUM_CRCOFL; } else rxcsum |= E1000_RXCSUM_TUOFL | E1000_RXCSUM_IPOFL | E1000_RXCSUM_PCSD; } else { if (adapter->hw.mac.type >= igb_mac_min) rxcsum |= E1000_RXCSUM_IPPCSE; else rxcsum |= E1000_RXCSUM_TUOFL | E1000_RXCSUM_IPOFL; if (adapter->hw.mac.type > e1000_82575) rxcsum |= E1000_RXCSUM_CRCOFL; } } else rxcsum &= ~E1000_RXCSUM_TUOFL; E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum); if (adapter->rx_num_queues > 1) { if (adapter->hw.mac.type >= igb_mac_min) igb_initialize_rss_mapping(adapter); else em_initialize_rss_mapping(adapter); } /* * XXX TEMPORARY WORKAROUND: on some systems with 82573 * long latencies are observed, like Lenovo X60. This * change eliminates the problem, but since having positive * values in RDTR is a known source of problems on other * platforms another solution is being sought. */ if (hw->mac.type == e1000_82573) E1000_WRITE_REG(hw, E1000_RDTR, 0x20); for (i = 0, que = adapter->rx_queues; i < adapter->rx_num_queues; i++, que++) { struct rx_ring *rxr = &que->rxr; /* Setup the Base and Length of the Rx Descriptor Ring */ u64 bus_addr = rxr->rx_paddr; #if 0 u32 rdt = adapter->rx_num_queues -1; /* default */ #endif E1000_WRITE_REG(hw, E1000_RDLEN(i), scctx->isc_nrxd[0] * sizeof(union e1000_rx_desc_extended)); E1000_WRITE_REG(hw, E1000_RDBAH(i), (u32)(bus_addr >> 32)); E1000_WRITE_REG(hw, E1000_RDBAL(i), (u32)bus_addr); /* Setup the Head and Tail Descriptor Pointers */ E1000_WRITE_REG(hw, E1000_RDH(i), 0); E1000_WRITE_REG(hw, E1000_RDT(i), 0); } /* * Set PTHRESH for improved jumbo performance * According to 10.2.5.11 of Intel 82574 Datasheet, * RXDCTL(1) is written whenever RXDCTL(0) is written. * Only write to RXDCTL(1) if there is a need for different * settings. */ if (((adapter->hw.mac.type == e1000_ich9lan) || (adapter->hw.mac.type == e1000_pch2lan) || (adapter->hw.mac.type == e1000_ich10lan)) && (if_getmtu(ifp) > ETHERMTU)) { u32 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(0)); E1000_WRITE_REG(hw, E1000_RXDCTL(0), rxdctl | 3); } else if (adapter->hw.mac.type == e1000_82574) { for (int i = 0; i < adapter->rx_num_queues; i++) { u32 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i)); rxdctl |= 0x20; /* PTHRESH */ rxdctl |= 4 << 8; /* HTHRESH */ rxdctl |= 4 << 16;/* WTHRESH */ rxdctl |= 1 << 24; /* Switch to granularity */ E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl); } } else if (adapter->hw.mac.type >= igb_mac_min) { u32 psize, srrctl = 0; if (if_getmtu(ifp) > ETHERMTU) { /* Set maximum packet len */ if (adapter->rx_mbuf_sz <= 4096) { srrctl |= 4096 >> E1000_SRRCTL_BSIZEPKT_SHIFT; rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX; } else if (adapter->rx_mbuf_sz > 4096) { srrctl |= 8192 >> E1000_SRRCTL_BSIZEPKT_SHIFT; rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX; } psize = scctx->isc_max_frame_size; /* are we on a vlan? */ if (ifp->if_vlantrunk != NULL) psize += VLAN_TAG_SIZE; E1000_WRITE_REG(&adapter->hw, E1000_RLPML, psize); } else { srrctl |= 2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT; rctl |= E1000_RCTL_SZ_2048; } /* * If TX flow control is disabled and there's >1 queue defined, * enable DROP. * * This drops frames rather than hanging the RX MAC for all queues. */ if ((adapter->rx_num_queues > 1) && (adapter->fc == e1000_fc_none || adapter->fc == e1000_fc_rx_pause)) { srrctl |= E1000_SRRCTL_DROP_EN; } /* Setup the Base and Length of the Rx Descriptor Rings */ for (i = 0, que = adapter->rx_queues; i < adapter->rx_num_queues; i++, que++) { struct rx_ring *rxr = &que->rxr; u64 bus_addr = rxr->rx_paddr; u32 rxdctl; #ifdef notyet /* Configure for header split? -- ignore for now */ rxr->hdr_split = igb_header_split; #else srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF; #endif E1000_WRITE_REG(hw, E1000_RDLEN(i), scctx->isc_nrxd[0] * sizeof(struct e1000_rx_desc)); E1000_WRITE_REG(hw, E1000_RDBAH(i), (uint32_t)(bus_addr >> 32)); E1000_WRITE_REG(hw, E1000_RDBAL(i), (uint32_t)bus_addr); E1000_WRITE_REG(hw, E1000_SRRCTL(i), srrctl); /* Enable this Queue */ rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i)); rxdctl |= E1000_RXDCTL_QUEUE_ENABLE; rxdctl &= 0xFFF00000; rxdctl |= IGB_RX_PTHRESH; rxdctl |= IGB_RX_HTHRESH << 8; rxdctl |= IGB_RX_WTHRESH << 16; E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl); } } else if (adapter->hw.mac.type >= e1000_pch2lan) { if (if_getmtu(ifp) > ETHERMTU) e1000_lv_jumbo_workaround_ich8lan(hw, TRUE); else e1000_lv_jumbo_workaround_ich8lan(hw, FALSE); } /* Make sure VLAN Filters are off */ rctl &= ~E1000_RCTL_VFE; if (adapter->hw.mac.type < igb_mac_min) { if (adapter->rx_mbuf_sz == MCLBYTES) rctl |= E1000_RCTL_SZ_2048; else if (adapter->rx_mbuf_sz == MJUMPAGESIZE) rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX; else if (adapter->rx_mbuf_sz > MJUMPAGESIZE) rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX; /* ensure we clear use DTYPE of 00 here */ rctl &= ~0x00000C00; } /* Write out the settings */ E1000_WRITE_REG(hw, E1000_RCTL, rctl); return; } static void em_if_vlan_register(if_ctx_t ctx, u16 vtag) { struct adapter *adapter = iflib_get_softc(ctx); u32 index, bit; index = (vtag >> 5) & 0x7F; bit = vtag & 0x1F; adapter->shadow_vfta[index] |= (1 << bit); ++adapter->num_vlans; } static void em_if_vlan_unregister(if_ctx_t ctx, u16 vtag) { struct adapter *adapter = iflib_get_softc(ctx); u32 index, bit; index = (vtag >> 5) & 0x7F; bit = vtag & 0x1F; adapter->shadow_vfta[index] &= ~(1 << bit); --adapter->num_vlans; } static void em_setup_vlan_hw_support(struct adapter *adapter) { struct e1000_hw *hw = &adapter->hw; u32 reg; /* * We get here thru init_locked, meaning * a soft reset, this has already cleared * the VFTA and other state, so if there * have been no vlan's registered do nothing. */ if (adapter->num_vlans == 0) return; /* * A soft reset zero's out the VFTA, so * we need to repopulate it now. */ for (int i = 0; i < EM_VFTA_SIZE; i++) if (adapter->shadow_vfta[i] != 0) E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, i, adapter->shadow_vfta[i]); reg = E1000_READ_REG(hw, E1000_CTRL); reg |= E1000_CTRL_VME; E1000_WRITE_REG(hw, E1000_CTRL, reg); /* Enable the Filter Table */ reg = E1000_READ_REG(hw, E1000_RCTL); reg &= ~E1000_RCTL_CFIEN; reg |= E1000_RCTL_VFE; E1000_WRITE_REG(hw, E1000_RCTL, reg); } static void em_if_enable_intr(if_ctx_t ctx) { struct adapter *adapter = iflib_get_softc(ctx); struct e1000_hw *hw = &adapter->hw; u32 ims_mask = IMS_ENABLE_MASK; if (hw->mac.type == e1000_82574) { E1000_WRITE_REG(hw, EM_EIAC, EM_MSIX_MASK); ims_mask |= adapter->ims; } else if (adapter->intr_type == IFLIB_INTR_MSIX && hw->mac.type >= igb_mac_min) { u32 mask = (adapter->que_mask | adapter->link_mask); E1000_WRITE_REG(&adapter->hw, E1000_EIAC, mask); E1000_WRITE_REG(&adapter->hw, E1000_EIAM, mask); E1000_WRITE_REG(&adapter->hw, E1000_EIMS, mask); ims_mask = E1000_IMS_LSC; } E1000_WRITE_REG(hw, E1000_IMS, ims_mask); } static void em_if_disable_intr(if_ctx_t ctx) { struct adapter *adapter = iflib_get_softc(ctx); struct e1000_hw *hw = &adapter->hw; if (adapter->intr_type == IFLIB_INTR_MSIX) { if (hw->mac.type >= igb_mac_min) E1000_WRITE_REG(&adapter->hw, E1000_EIMC, ~0); E1000_WRITE_REG(&adapter->hw, E1000_EIAC, 0); } E1000_WRITE_REG(&adapter->hw, E1000_IMC, 0xffffffff); } /* * Bit of a misnomer, what this really means is * to enable OS management of the system... aka * to disable special hardware management features */ static void em_init_manageability(struct adapter *adapter) { /* A shared code workaround */ #define E1000_82542_MANC2H E1000_MANC2H if (adapter->has_manage) { int manc2h = E1000_READ_REG(&adapter->hw, E1000_MANC2H); int manc = E1000_READ_REG(&adapter->hw, E1000_MANC); /* disable hardware interception of ARP */ manc &= ~(E1000_MANC_ARP_EN); /* enable receiving management packets to the host */ manc |= E1000_MANC_EN_MNG2HOST; #define E1000_MNG2HOST_PORT_623 (1 << 5) #define E1000_MNG2HOST_PORT_664 (1 << 6) manc2h |= E1000_MNG2HOST_PORT_623; manc2h |= E1000_MNG2HOST_PORT_664; E1000_WRITE_REG(&adapter->hw, E1000_MANC2H, manc2h); E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc); } } /* * Give control back to hardware management * controller if there is one. */ static void em_release_manageability(struct adapter *adapter) { if (adapter->has_manage) { int manc = E1000_READ_REG(&adapter->hw, E1000_MANC); /* re-enable hardware interception of ARP */ manc |= E1000_MANC_ARP_EN; manc &= ~E1000_MANC_EN_MNG2HOST; E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc); } } /* * em_get_hw_control sets the {CTRL_EXT|FWSM}:DRV_LOAD bit. * For ASF and Pass Through versions of f/w this means * that the driver is loaded. For AMT version type f/w * this means that the network i/f is open. */ static void em_get_hw_control(struct adapter *adapter) { u32 ctrl_ext, swsm; if (adapter->vf_ifp) return; if (adapter->hw.mac.type == e1000_82573) { swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM); E1000_WRITE_REG(&adapter->hw, E1000_SWSM, swsm | E1000_SWSM_DRV_LOAD); return; } /* else */ ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT); E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD); } /* * em_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit. * For ASF and Pass Through versions of f/w this means that * the driver is no longer loaded. For AMT versions of the * f/w this means that the network i/f is closed. */ static void em_release_hw_control(struct adapter *adapter) { u32 ctrl_ext, swsm; if (!adapter->has_manage) return; if (adapter->hw.mac.type == e1000_82573) { swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM); E1000_WRITE_REG(&adapter->hw, E1000_SWSM, swsm & ~E1000_SWSM_DRV_LOAD); return; } /* else */ ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT); E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD); return; } static int em_is_valid_ether_addr(u8 *addr) { char zero_addr[6] = { 0, 0, 0, 0, 0, 0 }; if ((addr[0] & 1) || (!bcmp(addr, zero_addr, ETHER_ADDR_LEN))) { return (FALSE); } return (TRUE); } /* ** Parse the interface capabilities with regard ** to both system management and wake-on-lan for ** later use. */ static void em_get_wakeup(if_ctx_t ctx) { struct adapter *adapter = iflib_get_softc(ctx); device_t dev = iflib_get_dev(ctx); u16 eeprom_data = 0, device_id, apme_mask; adapter->has_manage = e1000_enable_mng_pass_thru(&adapter->hw); apme_mask = EM_EEPROM_APME; switch (adapter->hw.mac.type) { case e1000_82542: case e1000_82543: break; case e1000_82544: e1000_read_nvm(&adapter->hw, NVM_INIT_CONTROL2_REG, 1, &eeprom_data); apme_mask = EM_82544_APME; break; case e1000_82546: case e1000_82546_rev_3: if (adapter->hw.bus.func == 1) { e1000_read_nvm(&adapter->hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data); break; } else e1000_read_nvm(&adapter->hw, NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data); break; case e1000_82573: case e1000_82583: adapter->has_amt = TRUE; /* FALLTHROUGH */ case e1000_82571: case e1000_82572: case e1000_80003es2lan: if (adapter->hw.bus.func == 1) { e1000_read_nvm(&adapter->hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data); break; } else e1000_read_nvm(&adapter->hw, NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data); break; case e1000_ich8lan: case e1000_ich9lan: case e1000_ich10lan: case e1000_pchlan: case e1000_pch2lan: case e1000_pch_lpt: case e1000_pch_spt: case e1000_82575: /* listing all igb devices */ case e1000_82576: case e1000_82580: case e1000_i350: case e1000_i354: case e1000_i210: case e1000_i211: case e1000_vfadapt: case e1000_vfadapt_i350: apme_mask = E1000_WUC_APME; adapter->has_amt = TRUE; eeprom_data = E1000_READ_REG(&adapter->hw, E1000_WUC); break; default: e1000_read_nvm(&adapter->hw, NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data); break; } if (eeprom_data & apme_mask) adapter->wol = (E1000_WUFC_MAG | E1000_WUFC_MC); /* * We have the eeprom settings, now apply the special cases * where the eeprom may be wrong or the board won't support * wake on lan on a particular port */ device_id = pci_get_device(dev); switch (device_id) { case E1000_DEV_ID_82546GB_PCIE: adapter->wol = 0; break; case E1000_DEV_ID_82546EB_FIBER: case E1000_DEV_ID_82546GB_FIBER: /* Wake events only supported on port A for dual fiber * regardless of eeprom setting */ if (E1000_READ_REG(&adapter->hw, E1000_STATUS) & E1000_STATUS_FUNC_1) adapter->wol = 0; break; case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: /* if quad port adapter, disable WoL on all but port A */ if (global_quad_port_a != 0) adapter->wol = 0; /* Reset for multiple quad port adapters */ if (++global_quad_port_a == 4) global_quad_port_a = 0; break; case E1000_DEV_ID_82571EB_FIBER: /* Wake events only supported on port A for dual fiber * regardless of eeprom setting */ if (E1000_READ_REG(&adapter->hw, E1000_STATUS) & E1000_STATUS_FUNC_1) adapter->wol = 0; break; case E1000_DEV_ID_82571EB_QUAD_COPPER: case E1000_DEV_ID_82571EB_QUAD_FIBER: case E1000_DEV_ID_82571EB_QUAD_COPPER_LP: /* if quad port adapter, disable WoL on all but port A */ if (global_quad_port_a != 0) adapter->wol = 0; /* Reset for multiple quad port adapters */ if (++global_quad_port_a == 4) global_quad_port_a = 0; break; } return; } /* * Enable PCI Wake On Lan capability */ static void em_enable_wakeup(if_ctx_t ctx) { struct adapter *adapter = iflib_get_softc(ctx); device_t dev = iflib_get_dev(ctx); if_t ifp = iflib_get_ifp(ctx); int error = 0; u32 pmc, ctrl, ctrl_ext, rctl; u16 status; if (pci_find_cap(dev, PCIY_PMG, &pmc) != 0) return; /* * Determine type of Wakeup: note that wol * is set with all bits on by default. */ if ((if_getcapenable(ifp) & IFCAP_WOL_MAGIC) == 0) adapter->wol &= ~E1000_WUFC_MAG; if ((if_getcapenable(ifp) & IFCAP_WOL_UCAST) == 0) adapter->wol &= ~E1000_WUFC_EX; if ((if_getcapenable(ifp) & IFCAP_WOL_MCAST) == 0) adapter->wol &= ~E1000_WUFC_MC; else { rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL); rctl |= E1000_RCTL_MPE; E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl); } if (!(adapter->wol & (E1000_WUFC_EX | E1000_WUFC_MAG | E1000_WUFC_MC))) goto pme; /* Advertise the wakeup capability */ ctrl = E1000_READ_REG(&adapter->hw, E1000_CTRL); ctrl |= (E1000_CTRL_SWDPIN2 | E1000_CTRL_SWDPIN3); E1000_WRITE_REG(&adapter->hw, E1000_CTRL, ctrl); /* Keep the laser running on Fiber adapters */ if (adapter->hw.phy.media_type == e1000_media_type_fiber || adapter->hw.phy.media_type == e1000_media_type_internal_serdes) { ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT); ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA; E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT, ctrl_ext); } if ((adapter->hw.mac.type == e1000_ich8lan) || (adapter->hw.mac.type == e1000_pchlan) || (adapter->hw.mac.type == e1000_ich9lan) || (adapter->hw.mac.type == e1000_ich10lan)) e1000_suspend_workarounds_ich8lan(&adapter->hw); if ( adapter->hw.mac.type >= e1000_pchlan) { error = em_enable_phy_wakeup(adapter); if (error) goto pme; } else { /* Enable wakeup by the MAC */ E1000_WRITE_REG(&adapter->hw, E1000_WUC, E1000_WUC_PME_EN); E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol); } if (adapter->hw.phy.type == e1000_phy_igp_3) e1000_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw); pme: status = pci_read_config(dev, pmc + PCIR_POWER_STATUS, 2); status &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE); if (!error && (if_getcapenable(ifp) & IFCAP_WOL)) status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE; pci_write_config(dev, pmc + PCIR_POWER_STATUS, status, 2); return; } /* * WOL in the newer chipset interfaces (pchlan) * require thing to be copied into the phy */ static int em_enable_phy_wakeup(struct adapter *adapter) { struct e1000_hw *hw = &adapter->hw; u32 mreg, ret = 0; u16 preg; /* copy MAC RARs to PHY RARs */ e1000_copy_rx_addrs_to_phy_ich8lan(hw); /* copy MAC MTA to PHY MTA */ for (int i = 0; i < adapter->hw.mac.mta_reg_count; i++) { mreg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i); e1000_write_phy_reg(hw, BM_MTA(i), (u16)(mreg & 0xFFFF)); e1000_write_phy_reg(hw, BM_MTA(i) + 1, (u16)((mreg >> 16) & 0xFFFF)); } /* configure PHY Rx Control register */ e1000_read_phy_reg(&adapter->hw, BM_RCTL, &preg); mreg = E1000_READ_REG(hw, E1000_RCTL); if (mreg & E1000_RCTL_UPE) preg |= BM_RCTL_UPE; if (mreg & E1000_RCTL_MPE) preg |= BM_RCTL_MPE; preg &= ~(BM_RCTL_MO_MASK); if (mreg & E1000_RCTL_MO_3) preg |= (((mreg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT) << BM_RCTL_MO_SHIFT); if (mreg & E1000_RCTL_BAM) preg |= BM_RCTL_BAM; if (mreg & E1000_RCTL_PMCF) preg |= BM_RCTL_PMCF; mreg = E1000_READ_REG(hw, E1000_CTRL); if (mreg & E1000_CTRL_RFCE) preg |= BM_RCTL_RFCE; e1000_write_phy_reg(&adapter->hw, BM_RCTL, preg); /* enable PHY wakeup in MAC register */ E1000_WRITE_REG(hw, E1000_WUC, E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN | E1000_WUC_APME); E1000_WRITE_REG(hw, E1000_WUFC, adapter->wol); /* configure and enable PHY wakeup in PHY registers */ e1000_write_phy_reg(&adapter->hw, BM_WUFC, adapter->wol); e1000_write_phy_reg(&adapter->hw, BM_WUC, E1000_WUC_PME_EN); /* activate PHY wakeup */ ret = hw->phy.ops.acquire(hw); if (ret) { printf("Could not acquire PHY\n"); return ret; } e1000_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT)); ret = e1000_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, &preg); if (ret) { printf("Could not read PHY page 769\n"); goto out; } preg |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT; ret = e1000_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, preg); if (ret) printf("Could not set PHY Host Wakeup bit\n"); out: hw->phy.ops.release(hw); return ret; } static void em_if_led_func(if_ctx_t ctx, int onoff) { struct adapter *adapter = iflib_get_softc(ctx); if (onoff) { e1000_setup_led(&adapter->hw); e1000_led_on(&adapter->hw); } else { e1000_led_off(&adapter->hw); e1000_cleanup_led(&adapter->hw); } } /* * Disable the L0S and L1 LINK states */ static void em_disable_aspm(struct adapter *adapter) { int base, reg; u16 link_cap,link_ctrl; device_t dev = adapter->dev; switch (adapter->hw.mac.type) { case e1000_82573: case e1000_82574: case e1000_82583: break; default: return; } if (pci_find_cap(dev, PCIY_EXPRESS, &base) != 0) return; reg = base + PCIER_LINK_CAP; link_cap = pci_read_config(dev, reg, 2); if ((link_cap & PCIEM_LINK_CAP_ASPM) == 0) return; reg = base + PCIER_LINK_CTL; link_ctrl = pci_read_config(dev, reg, 2); link_ctrl &= ~PCIEM_LINK_CTL_ASPMC; pci_write_config(dev, reg, link_ctrl, 2); return; } /********************************************************************** * * Update the board statistics counters. * **********************************************************************/ static void em_update_stats_counters(struct adapter *adapter) { if(adapter->hw.phy.media_type == e1000_media_type_copper || (E1000_READ_REG(&adapter->hw, E1000_STATUS) & E1000_STATUS_LU)) { adapter->stats.symerrs += E1000_READ_REG(&adapter->hw, E1000_SYMERRS); adapter->stats.sec += E1000_READ_REG(&adapter->hw, E1000_SEC); } adapter->stats.crcerrs += E1000_READ_REG(&adapter->hw, E1000_CRCERRS); adapter->stats.mpc += E1000_READ_REG(&adapter->hw, E1000_MPC); adapter->stats.scc += E1000_READ_REG(&adapter->hw, E1000_SCC); adapter->stats.ecol += E1000_READ_REG(&adapter->hw, E1000_ECOL); adapter->stats.mcc += E1000_READ_REG(&adapter->hw, E1000_MCC); adapter->stats.latecol += E1000_READ_REG(&adapter->hw, E1000_LATECOL); adapter->stats.colc += E1000_READ_REG(&adapter->hw, E1000_COLC); adapter->stats.dc += E1000_READ_REG(&adapter->hw, E1000_DC); adapter->stats.rlec += E1000_READ_REG(&adapter->hw, E1000_RLEC); adapter->stats.xonrxc += E1000_READ_REG(&adapter->hw, E1000_XONRXC); adapter->stats.xontxc += E1000_READ_REG(&adapter->hw, E1000_XONTXC); adapter->stats.xoffrxc += E1000_READ_REG(&adapter->hw, E1000_XOFFRXC); /* ** For watchdog management we need to know if we have been ** paused during the last interval, so capture that here. */ adapter->shared->isc_pause_frames = adapter->stats.xoffrxc; adapter->stats.xofftxc += E1000_READ_REG(&adapter->hw, E1000_XOFFTXC); adapter->stats.fcruc += E1000_READ_REG(&adapter->hw, E1000_FCRUC); adapter->stats.prc64 += E1000_READ_REG(&adapter->hw, E1000_PRC64); adapter->stats.prc127 += E1000_READ_REG(&adapter->hw, E1000_PRC127); adapter->stats.prc255 += E1000_READ_REG(&adapter->hw, E1000_PRC255); adapter->stats.prc511 += E1000_READ_REG(&adapter->hw, E1000_PRC511); adapter->stats.prc1023 += E1000_READ_REG(&adapter->hw, E1000_PRC1023); adapter->stats.prc1522 += E1000_READ_REG(&adapter->hw, E1000_PRC1522); adapter->stats.gprc += E1000_READ_REG(&adapter->hw, E1000_GPRC); adapter->stats.bprc += E1000_READ_REG(&adapter->hw, E1000_BPRC); adapter->stats.mprc += E1000_READ_REG(&adapter->hw, E1000_MPRC); adapter->stats.gptc += E1000_READ_REG(&adapter->hw, E1000_GPTC); /* For the 64-bit byte counters the low dword must be read first. */ /* Both registers clear on the read of the high dword */ adapter->stats.gorc += E1000_READ_REG(&adapter->hw, E1000_GORCL) + ((u64)E1000_READ_REG(&adapter->hw, E1000_GORCH) << 32); adapter->stats.gotc += E1000_READ_REG(&adapter->hw, E1000_GOTCL) + ((u64)E1000_READ_REG(&adapter->hw, E1000_GOTCH) << 32); adapter->stats.rnbc += E1000_READ_REG(&adapter->hw, E1000_RNBC); adapter->stats.ruc += E1000_READ_REG(&adapter->hw, E1000_RUC); adapter->stats.rfc += E1000_READ_REG(&adapter->hw, E1000_RFC); adapter->stats.roc += E1000_READ_REG(&adapter->hw, E1000_ROC); adapter->stats.rjc += E1000_READ_REG(&adapter->hw, E1000_RJC); adapter->stats.tor += E1000_READ_REG(&adapter->hw, E1000_TORH); adapter->stats.tot += E1000_READ_REG(&adapter->hw, E1000_TOTH); adapter->stats.tpr += E1000_READ_REG(&adapter->hw, E1000_TPR); adapter->stats.tpt += E1000_READ_REG(&adapter->hw, E1000_TPT); adapter->stats.ptc64 += E1000_READ_REG(&adapter->hw, E1000_PTC64); adapter->stats.ptc127 += E1000_READ_REG(&adapter->hw, E1000_PTC127); adapter->stats.ptc255 += E1000_READ_REG(&adapter->hw, E1000_PTC255); adapter->stats.ptc511 += E1000_READ_REG(&adapter->hw, E1000_PTC511); adapter->stats.ptc1023 += E1000_READ_REG(&adapter->hw, E1000_PTC1023); adapter->stats.ptc1522 += E1000_READ_REG(&adapter->hw, E1000_PTC1522); adapter->stats.mptc += E1000_READ_REG(&adapter->hw, E1000_MPTC); adapter->stats.bptc += E1000_READ_REG(&adapter->hw, E1000_BPTC); /* Interrupt Counts */ adapter->stats.iac += E1000_READ_REG(&adapter->hw, E1000_IAC); adapter->stats.icrxptc += E1000_READ_REG(&adapter->hw, E1000_ICRXPTC); adapter->stats.icrxatc += E1000_READ_REG(&adapter->hw, E1000_ICRXATC); adapter->stats.ictxptc += E1000_READ_REG(&adapter->hw, E1000_ICTXPTC); adapter->stats.ictxatc += E1000_READ_REG(&adapter->hw, E1000_ICTXATC); adapter->stats.ictxqec += E1000_READ_REG(&adapter->hw, E1000_ICTXQEC); adapter->stats.ictxqmtc += E1000_READ_REG(&adapter->hw, E1000_ICTXQMTC); adapter->stats.icrxdmtc += E1000_READ_REG(&adapter->hw, E1000_ICRXDMTC); adapter->stats.icrxoc += E1000_READ_REG(&adapter->hw, E1000_ICRXOC); if (adapter->hw.mac.type >= e1000_82543) { adapter->stats.algnerrc += E1000_READ_REG(&adapter->hw, E1000_ALGNERRC); adapter->stats.rxerrc += E1000_READ_REG(&adapter->hw, E1000_RXERRC); adapter->stats.tncrs += E1000_READ_REG(&adapter->hw, E1000_TNCRS); adapter->stats.cexterr += E1000_READ_REG(&adapter->hw, E1000_CEXTERR); adapter->stats.tsctc += E1000_READ_REG(&adapter->hw, E1000_TSCTC); adapter->stats.tsctfc += E1000_READ_REG(&adapter->hw, E1000_TSCTFC); } } static uint64_t em_if_get_counter(if_ctx_t ctx, ift_counter cnt) { struct adapter *adapter = iflib_get_softc(ctx); struct ifnet *ifp = iflib_get_ifp(ctx); switch (cnt) { case IFCOUNTER_COLLISIONS: return (adapter->stats.colc); case IFCOUNTER_IERRORS: return (adapter->dropped_pkts + adapter->stats.rxerrc + adapter->stats.crcerrs + adapter->stats.algnerrc + adapter->stats.ruc + adapter->stats.roc + adapter->stats.mpc + adapter->stats.cexterr); case IFCOUNTER_OERRORS: return (adapter->stats.ecol + adapter->stats.latecol + adapter->watchdog_events); default: return (if_get_counter_default(ifp, cnt)); } } /* Export a single 32-bit register via a read-only sysctl. */ static int em_sysctl_reg_handler(SYSCTL_HANDLER_ARGS) { struct adapter *adapter; u_int val; adapter = oidp->oid_arg1; val = E1000_READ_REG(&adapter->hw, oidp->oid_arg2); return (sysctl_handle_int(oidp, &val, 0, req)); } /* * Add sysctl variables, one per statistic, to the system. */ static void em_add_hw_stats(struct adapter *adapter) { device_t dev = iflib_get_dev(adapter->ctx); struct em_tx_queue *tx_que = adapter->tx_queues; struct em_rx_queue *rx_que = adapter->rx_queues; struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(dev); struct sysctl_oid *tree = device_get_sysctl_tree(dev); struct sysctl_oid_list *child = SYSCTL_CHILDREN(tree); struct e1000_hw_stats *stats = &adapter->stats; struct sysctl_oid *stat_node, *queue_node, *int_node; struct sysctl_oid_list *stat_list, *queue_list, *int_list; #define QUEUE_NAME_LEN 32 char namebuf[QUEUE_NAME_LEN]; /* Driver Statistics */ SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "dropped", CTLFLAG_RD, &adapter->dropped_pkts, "Driver dropped packets"); SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "link_irq", CTLFLAG_RD, &adapter->link_irq, "Link MSI-X IRQ Handled"); SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "rx_overruns", CTLFLAG_RD, &adapter->rx_overruns, "RX overruns"); SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "watchdog_timeouts", CTLFLAG_RD, &adapter->watchdog_events, "Watchdog timeouts"); SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "device_control", CTLTYPE_UINT | CTLFLAG_RD, adapter, E1000_CTRL, em_sysctl_reg_handler, "IU", "Device Control Register"); SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "rx_control", CTLTYPE_UINT | CTLFLAG_RD, adapter, E1000_RCTL, em_sysctl_reg_handler, "IU", "Receiver Control Register"); SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "fc_high_water", CTLFLAG_RD, &adapter->hw.fc.high_water, 0, "Flow Control High Watermark"); SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "fc_low_water", CTLFLAG_RD, &adapter->hw.fc.low_water, 0, "Flow Control Low Watermark"); for (int i = 0; i < adapter->tx_num_queues; i++, tx_que++) { struct tx_ring *txr = &tx_que->txr; snprintf(namebuf, QUEUE_NAME_LEN, "queue_tx_%d", i); queue_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, namebuf, CTLFLAG_RD, NULL, "TX Queue Name"); queue_list = SYSCTL_CHILDREN(queue_node); SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "txd_head", CTLTYPE_UINT | CTLFLAG_RD, adapter, E1000_TDH(txr->me), em_sysctl_reg_handler, "IU", "Transmit Descriptor Head"); SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "txd_tail", CTLTYPE_UINT | CTLFLAG_RD, adapter, E1000_TDT(txr->me), em_sysctl_reg_handler, "IU", "Transmit Descriptor Tail"); SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO, "tx_irq", CTLFLAG_RD, &txr->tx_irq, "Queue MSI-X Transmit Interrupts"); } for (int j = 0; j < adapter->rx_num_queues; j++, rx_que++) { struct rx_ring *rxr = &rx_que->rxr; snprintf(namebuf, QUEUE_NAME_LEN, "queue_rx_%d", j); queue_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, namebuf, CTLFLAG_RD, NULL, "RX Queue Name"); queue_list = SYSCTL_CHILDREN(queue_node); SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "rxd_head", CTLTYPE_UINT | CTLFLAG_RD, adapter, E1000_RDH(rxr->me), em_sysctl_reg_handler, "IU", "Receive Descriptor Head"); SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "rxd_tail", CTLTYPE_UINT | CTLFLAG_RD, adapter, E1000_RDT(rxr->me), em_sysctl_reg_handler, "IU", "Receive Descriptor Tail"); SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO, "rx_irq", CTLFLAG_RD, &rxr->rx_irq, "Queue MSI-X Receive Interrupts"); } /* MAC stats get their own sub node */ stat_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "mac_stats", CTLFLAG_RD, NULL, "Statistics"); stat_list = SYSCTL_CHILDREN(stat_node); SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "excess_coll", CTLFLAG_RD, &stats->ecol, "Excessive collisions"); SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "single_coll", CTLFLAG_RD, &stats->scc, "Single collisions"); SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "multiple_coll", CTLFLAG_RD, &stats->mcc, "Multiple collisions"); SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "late_coll", CTLFLAG_RD, &stats->latecol, "Late collisions"); SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "collision_count", CTLFLAG_RD, &stats->colc, "Collision Count"); SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "symbol_errors", CTLFLAG_RD, &adapter->stats.symerrs, "Symbol Errors"); SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "sequence_errors", CTLFLAG_RD, &adapter->stats.sec, "Sequence Errors"); SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "defer_count", CTLFLAG_RD, &adapter->stats.dc, "Defer Count"); SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "missed_packets", CTLFLAG_RD, &adapter->stats.mpc, "Missed Packets"); SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_no_buff", CTLFLAG_RD, &adapter->stats.rnbc, "Receive No Buffers"); SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_undersize", CTLFLAG_RD, &adapter->stats.ruc, "Receive Undersize"); SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_fragmented", CTLFLAG_RD, &adapter->stats.rfc, "Fragmented Packets Received "); SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_oversize", CTLFLAG_RD, &adapter->stats.roc, "Oversized Packets Received"); SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_jabber", CTLFLAG_RD, &adapter->stats.rjc, "Recevied Jabber"); SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_errs", CTLFLAG_RD, &adapter->stats.rxerrc, "Receive Errors"); SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "crc_errs", CTLFLAG_RD, &adapter->stats.crcerrs, "CRC errors"); SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "alignment_errs", CTLFLAG_RD, &adapter->stats.algnerrc, "Alignment Errors"); /* On 82575 these are collision counts */ SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "coll_ext_errs", CTLFLAG_RD, &adapter->stats.cexterr, "Collision/Carrier extension errors"); SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xon_recvd", CTLFLAG_RD, &adapter->stats.xonrxc, "XON Received"); SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xon_txd", CTLFLAG_RD, &adapter->stats.xontxc, "XON Transmitted"); SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xoff_recvd", CTLFLAG_RD, &adapter->stats.xoffrxc, "XOFF Received"); SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xoff_txd", CTLFLAG_RD, &adapter->stats.xofftxc, "XOFF Transmitted"); /* Packet Reception Stats */ SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "total_pkts_recvd", CTLFLAG_RD, &adapter->stats.tpr, "Total Packets Received "); SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_pkts_recvd", CTLFLAG_RD, &adapter->stats.gprc, "Good Packets Received"); SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "bcast_pkts_recvd", CTLFLAG_RD, &adapter->stats.bprc, "Broadcast Packets Received"); SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_recvd", CTLFLAG_RD, &adapter->stats.mprc, "Multicast Packets Received"); SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_64", CTLFLAG_RD, &adapter->stats.prc64, "64 byte frames received "); SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_65_127", CTLFLAG_RD, &adapter->stats.prc127, "65-127 byte frames received"); SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_128_255", CTLFLAG_RD, &adapter->stats.prc255, "128-255 byte frames received"); SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_256_511", CTLFLAG_RD, &adapter->stats.prc511, "256-511 byte frames received"); SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_512_1023", CTLFLAG_RD, &adapter->stats.prc1023, "512-1023 byte frames received"); SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_1024_1522", CTLFLAG_RD, &adapter->stats.prc1522, "1023-1522 byte frames received"); SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_octets_recvd", CTLFLAG_RD, &adapter->stats.gorc, "Good Octets Received"); /* Packet Transmission Stats */ SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_octets_txd", CTLFLAG_RD, &adapter->stats.gotc, "Good Octets Transmitted"); SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "total_pkts_txd", CTLFLAG_RD, &adapter->stats.tpt, "Total Packets Transmitted"); SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_pkts_txd", CTLFLAG_RD, &adapter->stats.gptc, "Good Packets Transmitted"); SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "bcast_pkts_txd", CTLFLAG_RD, &adapter->stats.bptc, "Broadcast Packets Transmitted"); SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_txd", CTLFLAG_RD, &adapter->stats.mptc, "Multicast Packets Transmitted"); SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_64", CTLFLAG_RD, &adapter->stats.ptc64, "64 byte frames transmitted "); SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_65_127", CTLFLAG_RD, &adapter->stats.ptc127, "65-127 byte frames transmitted"); SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_128_255", CTLFLAG_RD, &adapter->stats.ptc255, "128-255 byte frames transmitted"); SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_256_511", CTLFLAG_RD, &adapter->stats.ptc511, "256-511 byte frames transmitted"); SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_512_1023", CTLFLAG_RD, &adapter->stats.ptc1023, "512-1023 byte frames transmitted"); SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_1024_1522", CTLFLAG_RD, &adapter->stats.ptc1522, "1024-1522 byte frames transmitted"); SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tso_txd", CTLFLAG_RD, &adapter->stats.tsctc, "TSO Contexts Transmitted"); SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tso_ctx_fail", CTLFLAG_RD, &adapter->stats.tsctfc, "TSO Contexts Failed"); /* Interrupt Stats */ int_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "interrupts", CTLFLAG_RD, NULL, "Interrupt Statistics"); int_list = SYSCTL_CHILDREN(int_node); SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "asserts", CTLFLAG_RD, &adapter->stats.iac, "Interrupt Assertion Count"); SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_pkt_timer", CTLFLAG_RD, &adapter->stats.icrxptc, "Interrupt Cause Rx Pkt Timer Expire Count"); SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_abs_timer", CTLFLAG_RD, &adapter->stats.icrxatc, "Interrupt Cause Rx Abs Timer Expire Count"); SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_pkt_timer", CTLFLAG_RD, &adapter->stats.ictxptc, "Interrupt Cause Tx Pkt Timer Expire Count"); SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_abs_timer", CTLFLAG_RD, &adapter->stats.ictxatc, "Interrupt Cause Tx Abs Timer Expire Count"); SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_queue_empty", CTLFLAG_RD, &adapter->stats.ictxqec, "Interrupt Cause Tx Queue Empty Count"); SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_queue_min_thresh", CTLFLAG_RD, &adapter->stats.ictxqmtc, "Interrupt Cause Tx Queue Min Thresh Count"); SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_desc_min_thresh", CTLFLAG_RD, &adapter->stats.icrxdmtc, "Interrupt Cause Rx Desc Min Thresh Count"); SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_overrun", CTLFLAG_RD, &adapter->stats.icrxoc, "Interrupt Cause Receiver Overrun Count"); } /********************************************************************** * * This routine provides a way to dump out the adapter eeprom, * often a useful debug/service tool. This only dumps the first * 32 words, stuff that matters is in that extent. * **********************************************************************/ static int em_sysctl_nvm_info(SYSCTL_HANDLER_ARGS) { struct adapter *adapter = (struct adapter *)arg1; int error; int result; result = -1; error = sysctl_handle_int(oidp, &result, 0, req); if (error || !req->newptr) return (error); /* * This value will cause a hex dump of the * first 32 16-bit words of the EEPROM to * the screen. */ if (result == 1) em_print_nvm_info(adapter); return (error); } static void em_print_nvm_info(struct adapter *adapter) { u16 eeprom_data; int i, j, row = 0; /* Its a bit crude, but it gets the job done */ printf("\nInterface EEPROM Dump:\n"); printf("Offset\n0x0000 "); for (i = 0, j = 0; i < 32; i++, j++) { if (j == 8) { /* Make the offset block */ j = 0; ++row; printf("\n0x00%x0 ",row); } e1000_read_nvm(&adapter->hw, i, 1, &eeprom_data); printf("%04x ", eeprom_data); } printf("\n"); } static int em_sysctl_int_delay(SYSCTL_HANDLER_ARGS) { struct em_int_delay_info *info; struct adapter *adapter; u32 regval; int error, usecs, ticks; info = (struct em_int_delay_info *) arg1; usecs = info->value; error = sysctl_handle_int(oidp, &usecs, 0, req); if (error != 0 || req->newptr == NULL) return (error); if (usecs < 0 || usecs > EM_TICKS_TO_USECS(65535)) return (EINVAL); info->value = usecs; ticks = EM_USECS_TO_TICKS(usecs); if (info->offset == E1000_ITR) /* units are 256ns here */ ticks *= 4; adapter = info->adapter; regval = E1000_READ_OFFSET(&adapter->hw, info->offset); regval = (regval & ~0xffff) | (ticks & 0xffff); /* Handle a few special cases. */ switch (info->offset) { case E1000_RDTR: break; case E1000_TIDV: if (ticks == 0) { adapter->txd_cmd &= ~E1000_TXD_CMD_IDE; /* Don't write 0 into the TIDV register. */ regval++; } else adapter->txd_cmd |= E1000_TXD_CMD_IDE; break; } E1000_WRITE_OFFSET(&adapter->hw, info->offset, regval); return (0); } static void em_add_int_delay_sysctl(struct adapter *adapter, const char *name, const char *description, struct em_int_delay_info *info, int offset, int value) { info->adapter = adapter; info->offset = offset; info->value = value; SYSCTL_ADD_PROC(device_get_sysctl_ctx(adapter->dev), SYSCTL_CHILDREN(device_get_sysctl_tree(adapter->dev)), OID_AUTO, name, CTLTYPE_INT|CTLFLAG_RW, info, 0, em_sysctl_int_delay, "I", description); } /* * Set flow control using sysctl: * Flow control values: * 0 - off * 1 - rx pause * 2 - tx pause * 3 - full */ static int em_set_flowcntl(SYSCTL_HANDLER_ARGS) { int error; static int input = 3; /* default is full */ struct adapter *adapter = (struct adapter *) arg1; error = sysctl_handle_int(oidp, &input, 0, req); if ((error) || (req->newptr == NULL)) return (error); if (input == adapter->fc) /* no change? */ return (error); switch (input) { case e1000_fc_rx_pause: case e1000_fc_tx_pause: case e1000_fc_full: case e1000_fc_none: adapter->hw.fc.requested_mode = input; adapter->fc = input; break; default: /* Do nothing */ return (error); } adapter->hw.fc.current_mode = adapter->hw.fc.requested_mode; e1000_force_mac_fc(&adapter->hw); return (error); } /* * Manage Energy Efficient Ethernet: * Control values: * 0/1 - enabled/disabled */ static int em_sysctl_eee(SYSCTL_HANDLER_ARGS) { struct adapter *adapter = (struct adapter *) arg1; int error, value; value = adapter->hw.dev_spec.ich8lan.eee_disable; error = sysctl_handle_int(oidp, &value, 0, req); if (error || req->newptr == NULL) return (error); adapter->hw.dev_spec.ich8lan.eee_disable = (value != 0); em_if_init(adapter->ctx); return (0); } static int em_sysctl_debug_info(SYSCTL_HANDLER_ARGS) { struct adapter *adapter; int error; int result; result = -1; error = sysctl_handle_int(oidp, &result, 0, req); if (error || !req->newptr) return (error); if (result == 1) { adapter = (struct adapter *) arg1; em_print_debug_info(adapter); } return (error); } static int em_get_rs(SYSCTL_HANDLER_ARGS) { struct adapter *adapter = (struct adapter *) arg1; int error; int result; result = 0; error = sysctl_handle_int(oidp, &result, 0, req); if (error || !req->newptr || result != 1) return (error); em_dump_rs(adapter); return (error); } static void em_if_debug(if_ctx_t ctx) { em_dump_rs(iflib_get_softc(ctx)); } /* * This routine is meant to be fluid, add whatever is * needed for debugging a problem. -jfv */ static void em_print_debug_info(struct adapter *adapter) { device_t dev = iflib_get_dev(adapter->ctx); struct ifnet *ifp = iflib_get_ifp(adapter->ctx); struct tx_ring *txr = &adapter->tx_queues->txr; struct rx_ring *rxr = &adapter->rx_queues->rxr; if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) printf("Interface is RUNNING "); else printf("Interface is NOT RUNNING\n"); if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) printf("and INACTIVE\n"); else printf("and ACTIVE\n"); for (int i = 0; i < adapter->tx_num_queues; i++, txr++) { device_printf(dev, "TX Queue %d ------\n", i); device_printf(dev, "hw tdh = %d, hw tdt = %d\n", E1000_READ_REG(&adapter->hw, E1000_TDH(i)), E1000_READ_REG(&adapter->hw, E1000_TDT(i))); } for (int j=0; j < adapter->rx_num_queues; j++, rxr++) { device_printf(dev, "RX Queue %d ------\n", j); device_printf(dev, "hw rdh = %d, hw rdt = %d\n", E1000_READ_REG(&adapter->hw, E1000_RDH(j)), E1000_READ_REG(&adapter->hw, E1000_RDT(j))); } } /* * 82574 only: * Write a new value to the EEPROM increasing the number of MSI-X * vectors from 3 to 5, for proper multiqueue support. */ static void em_enable_vectors_82574(if_ctx_t ctx) { struct adapter *adapter = iflib_get_softc(ctx); struct e1000_hw *hw = &adapter->hw; device_t dev = iflib_get_dev(ctx); u16 edata; e1000_read_nvm(hw, EM_NVM_PCIE_CTRL, 1, &edata); if (bootverbose) device_printf(dev, "EM_NVM_PCIE_CTRL = %#06x\n", edata); if (((edata & EM_NVM_MSIX_N_MASK) >> EM_NVM_MSIX_N_SHIFT) != 4) { device_printf(dev, "Writing to eeprom: increasing " "reported MSI-X vectors from 3 to 5...\n"); edata &= ~(EM_NVM_MSIX_N_MASK); edata |= 4 << EM_NVM_MSIX_N_SHIFT; e1000_write_nvm(hw, EM_NVM_PCIE_CTRL, 1, &edata); e1000_update_nvm_checksum(hw); device_printf(dev, "Writing to eeprom: done\n"); } } Index: stable/12/sys/net/iflib.c =================================================================== --- stable/12/sys/net/iflib.c (revision 346335) +++ stable/12/sys/net/iflib.c (revision 346336) @@ -1,6535 +1,6526 @@ /*- * Copyright (c) 2014-2018, Matthew Macy * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * 2. Neither the name of Matthew Macy nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include "opt_inet.h" #include "opt_inet6.h" #include "opt_acpi.h" #include "opt_sched.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "ifdi_if.h" #ifdef PCI_IOV #include #endif #include /* * enable accounting of every mbuf as it comes in to and goes out of * iflib's software descriptor references */ #define MEMORY_LOGGING 0 /* * Enable mbuf vectors for compressing long mbuf chains */ /* * NB: * - Prefetching in tx cleaning should perhaps be a tunable. The distance ahead * we prefetch needs to be determined by the time spent in m_free vis a vis * the cost of a prefetch. This will of course vary based on the workload: * - NFLX's m_free path is dominated by vm-based M_EXT manipulation which * is quite expensive, thus suggesting very little prefetch. * - small packet forwarding which is just returning a single mbuf to * UMA will typically be very fast vis a vis the cost of a memory * access. */ /* * File organization: * - private structures * - iflib private utility functions * - ifnet functions * - vlan registry and other exported functions * - iflib public core functions * * */ MALLOC_DEFINE(M_IFLIB, "iflib", "ifnet library"); struct iflib_txq; typedef struct iflib_txq *iflib_txq_t; struct iflib_rxq; typedef struct iflib_rxq *iflib_rxq_t; struct iflib_fl; typedef struct iflib_fl *iflib_fl_t; struct iflib_ctx; static void iru_init(if_rxd_update_t iru, iflib_rxq_t rxq, uint8_t flid); static void iflib_timer(void *arg); typedef struct iflib_filter_info { driver_filter_t *ifi_filter; void *ifi_filter_arg; struct grouptask *ifi_task; void *ifi_ctx; } *iflib_filter_info_t; struct iflib_ctx { KOBJ_FIELDS; /* * Pointer to hardware driver's softc */ void *ifc_softc; device_t ifc_dev; if_t ifc_ifp; cpuset_t ifc_cpus; if_shared_ctx_t ifc_sctx; struct if_softc_ctx ifc_softc_ctx; struct sx ifc_ctx_sx; struct mtx ifc_state_mtx; iflib_txq_t ifc_txqs; iflib_rxq_t ifc_rxqs; uint32_t ifc_if_flags; uint32_t ifc_flags; uint32_t ifc_max_fl_buf_size; int ifc_link_state; int ifc_link_irq; int ifc_watchdog_events; struct cdev *ifc_led_dev; struct resource *ifc_msix_mem; struct if_irq ifc_legacy_irq; struct grouptask ifc_admin_task; struct grouptask ifc_vflr_task; struct iflib_filter_info ifc_filter_info; struct ifmedia ifc_media; struct sysctl_oid *ifc_sysctl_node; uint16_t ifc_sysctl_ntxqs; uint16_t ifc_sysctl_nrxqs; uint16_t ifc_sysctl_qs_eq_override; uint16_t ifc_sysctl_rx_budget; uint16_t ifc_sysctl_tx_abdicate; qidx_t ifc_sysctl_ntxds[8]; qidx_t ifc_sysctl_nrxds[8]; struct if_txrx ifc_txrx; #define isc_txd_encap ifc_txrx.ift_txd_encap #define isc_txd_flush ifc_txrx.ift_txd_flush #define isc_txd_credits_update ifc_txrx.ift_txd_credits_update #define isc_rxd_available ifc_txrx.ift_rxd_available #define isc_rxd_pkt_get ifc_txrx.ift_rxd_pkt_get #define isc_rxd_refill ifc_txrx.ift_rxd_refill #define isc_rxd_flush ifc_txrx.ift_rxd_flush #define isc_rxd_refill ifc_txrx.ift_rxd_refill #define isc_rxd_refill ifc_txrx.ift_rxd_refill #define isc_legacy_intr ifc_txrx.ift_legacy_intr eventhandler_tag ifc_vlan_attach_event; eventhandler_tag ifc_vlan_detach_event; uint8_t ifc_mac[ETHER_ADDR_LEN]; char ifc_mtx_name[16]; }; void * iflib_get_softc(if_ctx_t ctx) { return (ctx->ifc_softc); } device_t iflib_get_dev(if_ctx_t ctx) { return (ctx->ifc_dev); } if_t iflib_get_ifp(if_ctx_t ctx) { return (ctx->ifc_ifp); } struct ifmedia * iflib_get_media(if_ctx_t ctx) { return (&ctx->ifc_media); } uint32_t iflib_get_flags(if_ctx_t ctx) { return (ctx->ifc_flags); } void iflib_set_mac(if_ctx_t ctx, uint8_t mac[ETHER_ADDR_LEN]) { bcopy(mac, ctx->ifc_mac, ETHER_ADDR_LEN); } if_softc_ctx_t iflib_get_softc_ctx(if_ctx_t ctx) { return (&ctx->ifc_softc_ctx); } if_shared_ctx_t iflib_get_sctx(if_ctx_t ctx) { return (ctx->ifc_sctx); } #define IP_ALIGNED(m) ((((uintptr_t)(m)->m_data) & 0x3) == 0x2) #define CACHE_PTR_INCREMENT (CACHE_LINE_SIZE/sizeof(void*)) #define CACHE_PTR_NEXT(ptr) ((void *)(((uintptr_t)(ptr)+CACHE_LINE_SIZE-1) & (CACHE_LINE_SIZE-1))) #define LINK_ACTIVE(ctx) ((ctx)->ifc_link_state == LINK_STATE_UP) #define CTX_IS_VF(ctx) ((ctx)->ifc_sctx->isc_flags & IFLIB_IS_VF) typedef struct iflib_sw_rx_desc_array { bus_dmamap_t *ifsd_map; /* bus_dma maps for packet */ struct mbuf **ifsd_m; /* pkthdr mbufs */ caddr_t *ifsd_cl; /* direct cluster pointer for rx */ bus_addr_t *ifsd_ba; /* bus addr of cluster for rx */ } iflib_rxsd_array_t; typedef struct iflib_sw_tx_desc_array { bus_dmamap_t *ifsd_map; /* bus_dma maps for packet */ bus_dmamap_t *ifsd_tso_map; /* bus_dma maps for TSO packet */ struct mbuf **ifsd_m; /* pkthdr mbufs */ } if_txsd_vec_t; /* magic number that should be high enough for any hardware */ #define IFLIB_MAX_TX_SEGS 128 #define IFLIB_RX_COPY_THRESH 128 #define IFLIB_MAX_RX_REFRESH 32 /* The minimum descriptors per second before we start coalescing */ #define IFLIB_MIN_DESC_SEC 16384 #define IFLIB_DEFAULT_TX_UPDATE_FREQ 16 #define IFLIB_QUEUE_IDLE 0 #define IFLIB_QUEUE_HUNG 1 #define IFLIB_QUEUE_WORKING 2 /* maximum number of txqs that can share an rx interrupt */ #define IFLIB_MAX_TX_SHARED_INTR 4 /* this should really scale with ring size - this is a fairly arbitrary value */ #define TX_BATCH_SIZE 32 #define IFLIB_RESTART_BUDGET 8 #define CSUM_OFFLOAD (CSUM_IP_TSO|CSUM_IP6_TSO|CSUM_IP| \ CSUM_IP_UDP|CSUM_IP_TCP|CSUM_IP_SCTP| \ CSUM_IP6_UDP|CSUM_IP6_TCP|CSUM_IP6_SCTP) struct iflib_txq { qidx_t ift_in_use; qidx_t ift_cidx; qidx_t ift_cidx_processed; qidx_t ift_pidx; uint8_t ift_gen; uint8_t ift_br_offset; uint16_t ift_npending; uint16_t ift_db_pending; uint16_t ift_rs_pending; /* implicit pad */ uint8_t ift_txd_size[8]; uint64_t ift_processed; uint64_t ift_cleaned; uint64_t ift_cleaned_prev; #if MEMORY_LOGGING uint64_t ift_enqueued; uint64_t ift_dequeued; #endif uint64_t ift_no_tx_dma_setup; uint64_t ift_no_desc_avail; uint64_t ift_mbuf_defrag_failed; uint64_t ift_mbuf_defrag; uint64_t ift_map_failed; uint64_t ift_txd_encap_efbig; uint64_t ift_pullups; uint64_t ift_last_timer_tick; struct mtx ift_mtx; struct mtx ift_db_mtx; /* constant values */ if_ctx_t ift_ctx; struct ifmp_ring *ift_br; struct grouptask ift_task; qidx_t ift_size; uint16_t ift_id; struct callout ift_timer; if_txsd_vec_t ift_sds; uint8_t ift_qstatus; uint8_t ift_closed; uint8_t ift_update_freq; struct iflib_filter_info ift_filter_info; bus_dma_tag_t ift_buf_tag; bus_dma_tag_t ift_tso_buf_tag; iflib_dma_info_t ift_ifdi; #define MTX_NAME_LEN 16 char ift_mtx_name[MTX_NAME_LEN]; char ift_db_mtx_name[MTX_NAME_LEN]; bus_dma_segment_t ift_segs[IFLIB_MAX_TX_SEGS] __aligned(CACHE_LINE_SIZE); #ifdef IFLIB_DIAGNOSTICS uint64_t ift_cpu_exec_count[256]; #endif } __aligned(CACHE_LINE_SIZE); struct iflib_fl { qidx_t ifl_cidx; qidx_t ifl_pidx; qidx_t ifl_credits; uint8_t ifl_gen; uint8_t ifl_rxd_size; #if MEMORY_LOGGING uint64_t ifl_m_enqueued; uint64_t ifl_m_dequeued; uint64_t ifl_cl_enqueued; uint64_t ifl_cl_dequeued; #endif /* implicit pad */ bitstr_t *ifl_rx_bitmap; qidx_t ifl_fragidx; /* constant */ qidx_t ifl_size; uint16_t ifl_buf_size; uint16_t ifl_cltype; uma_zone_t ifl_zone; iflib_rxsd_array_t ifl_sds; iflib_rxq_t ifl_rxq; uint8_t ifl_id; bus_dma_tag_t ifl_buf_tag; iflib_dma_info_t ifl_ifdi; uint64_t ifl_bus_addrs[IFLIB_MAX_RX_REFRESH] __aligned(CACHE_LINE_SIZE); caddr_t ifl_vm_addrs[IFLIB_MAX_RX_REFRESH]; qidx_t ifl_rxd_idxs[IFLIB_MAX_RX_REFRESH]; } __aligned(CACHE_LINE_SIZE); static inline qidx_t get_inuse(int size, qidx_t cidx, qidx_t pidx, uint8_t gen) { qidx_t used; if (pidx > cidx) used = pidx - cidx; else if (pidx < cidx) used = size - cidx + pidx; else if (gen == 0 && pidx == cidx) used = 0; else if (gen == 1 && pidx == cidx) used = size; else panic("bad state"); return (used); } #define TXQ_AVAIL(txq) (txq->ift_size - get_inuse(txq->ift_size, txq->ift_cidx, txq->ift_pidx, txq->ift_gen)) #define IDXDIFF(head, tail, wrap) \ ((head) >= (tail) ? (head) - (tail) : (wrap) - (tail) + (head)) struct iflib_rxq { /* If there is a separate completion queue - * these are the cq cidx and pidx. Otherwise * these are unused. */ qidx_t ifr_size; qidx_t ifr_cq_cidx; qidx_t ifr_cq_pidx; uint8_t ifr_cq_gen; uint8_t ifr_fl_offset; if_ctx_t ifr_ctx; iflib_fl_t ifr_fl; uint64_t ifr_rx_irq; uint16_t ifr_id; uint8_t ifr_lro_enabled; uint8_t ifr_nfl; uint8_t ifr_ntxqirq; uint8_t ifr_txqid[IFLIB_MAX_TX_SHARED_INTR]; struct lro_ctrl ifr_lc; struct grouptask ifr_task; struct iflib_filter_info ifr_filter_info; iflib_dma_info_t ifr_ifdi; /* dynamically allocate if any drivers need a value substantially larger than this */ struct if_rxd_frag ifr_frags[IFLIB_MAX_RX_SEGS] __aligned(CACHE_LINE_SIZE); #ifdef IFLIB_DIAGNOSTICS uint64_t ifr_cpu_exec_count[256]; #endif } __aligned(CACHE_LINE_SIZE); typedef struct if_rxsd { caddr_t *ifsd_cl; struct mbuf **ifsd_m; iflib_fl_t ifsd_fl; qidx_t ifsd_cidx; } *if_rxsd_t; /* multiple of word size */ #ifdef __LP64__ #define PKT_INFO_SIZE 6 #define RXD_INFO_SIZE 5 #define PKT_TYPE uint64_t #else #define PKT_INFO_SIZE 11 #define RXD_INFO_SIZE 8 #define PKT_TYPE uint32_t #endif #define PKT_LOOP_BOUND ((PKT_INFO_SIZE/3)*3) #define RXD_LOOP_BOUND ((RXD_INFO_SIZE/4)*4) typedef struct if_pkt_info_pad { PKT_TYPE pkt_val[PKT_INFO_SIZE]; } *if_pkt_info_pad_t; typedef struct if_rxd_info_pad { PKT_TYPE rxd_val[RXD_INFO_SIZE]; } *if_rxd_info_pad_t; CTASSERT(sizeof(struct if_pkt_info_pad) == sizeof(struct if_pkt_info)); CTASSERT(sizeof(struct if_rxd_info_pad) == sizeof(struct if_rxd_info)); static inline void pkt_info_zero(if_pkt_info_t pi) { if_pkt_info_pad_t pi_pad; pi_pad = (if_pkt_info_pad_t)pi; pi_pad->pkt_val[0] = 0; pi_pad->pkt_val[1] = 0; pi_pad->pkt_val[2] = 0; pi_pad->pkt_val[3] = 0; pi_pad->pkt_val[4] = 0; pi_pad->pkt_val[5] = 0; #ifndef __LP64__ pi_pad->pkt_val[6] = 0; pi_pad->pkt_val[7] = 0; pi_pad->pkt_val[8] = 0; pi_pad->pkt_val[9] = 0; pi_pad->pkt_val[10] = 0; #endif } static device_method_t iflib_pseudo_methods[] = { DEVMETHOD(device_attach, noop_attach), DEVMETHOD(device_detach, iflib_pseudo_detach), DEVMETHOD_END }; driver_t iflib_pseudodriver = { "iflib_pseudo", iflib_pseudo_methods, sizeof(struct iflib_ctx), }; static inline void rxd_info_zero(if_rxd_info_t ri) { if_rxd_info_pad_t ri_pad; int i; ri_pad = (if_rxd_info_pad_t)ri; for (i = 0; i < RXD_LOOP_BOUND; i += 4) { ri_pad->rxd_val[i] = 0; ri_pad->rxd_val[i+1] = 0; ri_pad->rxd_val[i+2] = 0; ri_pad->rxd_val[i+3] = 0; } #ifdef __LP64__ ri_pad->rxd_val[RXD_INFO_SIZE-1] = 0; #endif } /* * Only allow a single packet to take up most 1/nth of the tx ring */ #define MAX_SINGLE_PACKET_FRACTION 12 #define IF_BAD_DMA (bus_addr_t)-1 #define CTX_ACTIVE(ctx) ((if_getdrvflags((ctx)->ifc_ifp) & IFF_DRV_RUNNING)) #define CTX_LOCK_INIT(_sc) sx_init(&(_sc)->ifc_ctx_sx, "iflib ctx lock") #define CTX_LOCK(ctx) sx_xlock(&(ctx)->ifc_ctx_sx) #define CTX_UNLOCK(ctx) sx_xunlock(&(ctx)->ifc_ctx_sx) #define CTX_LOCK_DESTROY(ctx) sx_destroy(&(ctx)->ifc_ctx_sx) #define STATE_LOCK_INIT(_sc, _name) mtx_init(&(_sc)->ifc_state_mtx, _name, "iflib state lock", MTX_DEF) #define STATE_LOCK(ctx) mtx_lock(&(ctx)->ifc_state_mtx) #define STATE_UNLOCK(ctx) mtx_unlock(&(ctx)->ifc_state_mtx) #define STATE_LOCK_DESTROY(ctx) mtx_destroy(&(ctx)->ifc_state_mtx) #define CALLOUT_LOCK(txq) mtx_lock(&txq->ift_mtx) #define CALLOUT_UNLOCK(txq) mtx_unlock(&txq->ift_mtx) void iflib_set_detach(if_ctx_t ctx) { STATE_LOCK(ctx); ctx->ifc_flags |= IFC_IN_DETACH; STATE_UNLOCK(ctx); } /* Our boot-time initialization hook */ static int iflib_module_event_handler(module_t, int, void *); static moduledata_t iflib_moduledata = { "iflib", iflib_module_event_handler, NULL }; DECLARE_MODULE(iflib, iflib_moduledata, SI_SUB_INIT_IF, SI_ORDER_ANY); MODULE_VERSION(iflib, 1); MODULE_DEPEND(iflib, pci, 1, 1, 1); MODULE_DEPEND(iflib, ether, 1, 1, 1); TASKQGROUP_DEFINE(if_io_tqg, mp_ncpus, 1); TASKQGROUP_DEFINE(if_config_tqg, 1, 1); #ifndef IFLIB_DEBUG_COUNTERS #ifdef INVARIANTS #define IFLIB_DEBUG_COUNTERS 1 #else #define IFLIB_DEBUG_COUNTERS 0 #endif /* !INVARIANTS */ #endif static SYSCTL_NODE(_net, OID_AUTO, iflib, CTLFLAG_RD, 0, "iflib driver parameters"); /* * XXX need to ensure that this can't accidentally cause the head to be moved backwards */ static int iflib_min_tx_latency = 0; SYSCTL_INT(_net_iflib, OID_AUTO, min_tx_latency, CTLFLAG_RW, &iflib_min_tx_latency, 0, "minimize transmit latency at the possible expense of throughput"); static int iflib_no_tx_batch = 0; SYSCTL_INT(_net_iflib, OID_AUTO, no_tx_batch, CTLFLAG_RW, &iflib_no_tx_batch, 0, "minimize transmit latency at the possible expense of throughput"); #if IFLIB_DEBUG_COUNTERS static int iflib_tx_seen; static int iflib_tx_sent; static int iflib_tx_encap; static int iflib_rx_allocs; static int iflib_fl_refills; static int iflib_fl_refills_large; static int iflib_tx_frees; SYSCTL_INT(_net_iflib, OID_AUTO, tx_seen, CTLFLAG_RD, &iflib_tx_seen, 0, "# tx mbufs seen"); SYSCTL_INT(_net_iflib, OID_AUTO, tx_sent, CTLFLAG_RD, &iflib_tx_sent, 0, "# tx mbufs sent"); SYSCTL_INT(_net_iflib, OID_AUTO, tx_encap, CTLFLAG_RD, &iflib_tx_encap, 0, "# tx mbufs encapped"); SYSCTL_INT(_net_iflib, OID_AUTO, tx_frees, CTLFLAG_RD, &iflib_tx_frees, 0, "# tx frees"); SYSCTL_INT(_net_iflib, OID_AUTO, rx_allocs, CTLFLAG_RD, &iflib_rx_allocs, 0, "# rx allocations"); SYSCTL_INT(_net_iflib, OID_AUTO, fl_refills, CTLFLAG_RD, &iflib_fl_refills, 0, "# refills"); SYSCTL_INT(_net_iflib, OID_AUTO, fl_refills_large, CTLFLAG_RD, &iflib_fl_refills_large, 0, "# large refills"); static int iflib_txq_drain_flushing; static int iflib_txq_drain_oactive; static int iflib_txq_drain_notready; SYSCTL_INT(_net_iflib, OID_AUTO, txq_drain_flushing, CTLFLAG_RD, &iflib_txq_drain_flushing, 0, "# drain flushes"); SYSCTL_INT(_net_iflib, OID_AUTO, txq_drain_oactive, CTLFLAG_RD, &iflib_txq_drain_oactive, 0, "# drain oactives"); SYSCTL_INT(_net_iflib, OID_AUTO, txq_drain_notready, CTLFLAG_RD, &iflib_txq_drain_notready, 0, "# drain notready"); static int iflib_encap_load_mbuf_fail; static int iflib_encap_pad_mbuf_fail; static int iflib_encap_txq_avail_fail; static int iflib_encap_txd_encap_fail; SYSCTL_INT(_net_iflib, OID_AUTO, encap_load_mbuf_fail, CTLFLAG_RD, &iflib_encap_load_mbuf_fail, 0, "# busdma load failures"); SYSCTL_INT(_net_iflib, OID_AUTO, encap_pad_mbuf_fail, CTLFLAG_RD, &iflib_encap_pad_mbuf_fail, 0, "# runt frame pad failures"); SYSCTL_INT(_net_iflib, OID_AUTO, encap_txq_avail_fail, CTLFLAG_RD, &iflib_encap_txq_avail_fail, 0, "# txq avail failures"); SYSCTL_INT(_net_iflib, OID_AUTO, encap_txd_encap_fail, CTLFLAG_RD, &iflib_encap_txd_encap_fail, 0, "# driver encap failures"); static int iflib_task_fn_rxs; static int iflib_rx_intr_enables; static int iflib_fast_intrs; static int iflib_rx_unavail; static int iflib_rx_ctx_inactive; static int iflib_rx_if_input; static int iflib_rx_mbuf_null; static int iflib_rxd_flush; static int iflib_verbose_debug; SYSCTL_INT(_net_iflib, OID_AUTO, task_fn_rx, CTLFLAG_RD, &iflib_task_fn_rxs, 0, "# task_fn_rx calls"); SYSCTL_INT(_net_iflib, OID_AUTO, rx_intr_enables, CTLFLAG_RD, &iflib_rx_intr_enables, 0, "# rx intr enables"); SYSCTL_INT(_net_iflib, OID_AUTO, fast_intrs, CTLFLAG_RD, &iflib_fast_intrs, 0, "# fast_intr calls"); SYSCTL_INT(_net_iflib, OID_AUTO, rx_unavail, CTLFLAG_RD, &iflib_rx_unavail, 0, "# times rxeof called with no available data"); SYSCTL_INT(_net_iflib, OID_AUTO, rx_ctx_inactive, CTLFLAG_RD, &iflib_rx_ctx_inactive, 0, "# times rxeof called with inactive context"); SYSCTL_INT(_net_iflib, OID_AUTO, rx_if_input, CTLFLAG_RD, &iflib_rx_if_input, 0, "# times rxeof called if_input"); SYSCTL_INT(_net_iflib, OID_AUTO, rx_mbuf_null, CTLFLAG_RD, &iflib_rx_mbuf_null, 0, "# times rxeof got null mbuf"); SYSCTL_INT(_net_iflib, OID_AUTO, rxd_flush, CTLFLAG_RD, &iflib_rxd_flush, 0, "# times rxd_flush called"); SYSCTL_INT(_net_iflib, OID_AUTO, verbose_debug, CTLFLAG_RW, &iflib_verbose_debug, 0, "enable verbose debugging"); #define DBG_COUNTER_INC(name) atomic_add_int(&(iflib_ ## name), 1) static void iflib_debug_reset(void) { iflib_tx_seen = iflib_tx_sent = iflib_tx_encap = iflib_rx_allocs = iflib_fl_refills = iflib_fl_refills_large = iflib_tx_frees = iflib_txq_drain_flushing = iflib_txq_drain_oactive = iflib_txq_drain_notready = iflib_encap_load_mbuf_fail = iflib_encap_pad_mbuf_fail = iflib_encap_txq_avail_fail = iflib_encap_txd_encap_fail = iflib_task_fn_rxs = iflib_rx_intr_enables = iflib_fast_intrs = iflib_rx_unavail = iflib_rx_ctx_inactive = iflib_rx_if_input = iflib_rx_mbuf_null = iflib_rxd_flush = 0; } #else #define DBG_COUNTER_INC(name) static void iflib_debug_reset(void) {} #endif #define IFLIB_DEBUG 0 static void iflib_tx_structures_free(if_ctx_t ctx); static void iflib_rx_structures_free(if_ctx_t ctx); static int iflib_queues_alloc(if_ctx_t ctx); static int iflib_tx_credits_update(if_ctx_t ctx, iflib_txq_t txq); static int iflib_rxd_avail(if_ctx_t ctx, iflib_rxq_t rxq, qidx_t cidx, qidx_t budget); static int iflib_qset_structures_setup(if_ctx_t ctx); static int iflib_msix_init(if_ctx_t ctx); static int iflib_legacy_setup(if_ctx_t ctx, driver_filter_t filter, void *filterarg, int *rid, const char *str); static void iflib_txq_check_drain(iflib_txq_t txq, int budget); static uint32_t iflib_txq_can_drain(struct ifmp_ring *); #ifdef ALTQ static void iflib_altq_if_start(if_t ifp); static int iflib_altq_if_transmit(if_t ifp, struct mbuf *m); #endif static int iflib_register(if_ctx_t); static void iflib_init_locked(if_ctx_t ctx); static void iflib_add_device_sysctl_pre(if_ctx_t ctx); static void iflib_add_device_sysctl_post(if_ctx_t ctx); static void iflib_ifmp_purge(iflib_txq_t txq); static void _iflib_pre_assert(if_softc_ctx_t scctx); static void iflib_if_init_locked(if_ctx_t ctx); static void iflib_free_intr_mem(if_ctx_t ctx); #ifndef __NO_STRICT_ALIGNMENT static struct mbuf * iflib_fixup_rx(struct mbuf *m); #endif NETDUMP_DEFINE(iflib); #ifdef DEV_NETMAP #include #include #include MODULE_DEPEND(iflib, netmap, 1, 1, 1); static int netmap_fl_refill(iflib_rxq_t rxq, struct netmap_kring *kring, uint32_t nm_i, bool init); /* * device-specific sysctl variables: * * iflib_crcstrip: 0: keep CRC in rx frames (default), 1: strip it. * During regular operations the CRC is stripped, but on some * hardware reception of frames not multiple of 64 is slower, * so using crcstrip=0 helps in benchmarks. * * iflib_rx_miss, iflib_rx_miss_bufs: * count packets that might be missed due to lost interrupts. */ SYSCTL_DECL(_dev_netmap); /* * The xl driver by default strips CRCs and we do not override it. */ int iflib_crcstrip = 1; SYSCTL_INT(_dev_netmap, OID_AUTO, iflib_crcstrip, CTLFLAG_RW, &iflib_crcstrip, 1, "strip CRC on rx frames"); int iflib_rx_miss, iflib_rx_miss_bufs; SYSCTL_INT(_dev_netmap, OID_AUTO, iflib_rx_miss, CTLFLAG_RW, &iflib_rx_miss, 0, "potentially missed rx intr"); SYSCTL_INT(_dev_netmap, OID_AUTO, iflib_rx_miss_bufs, CTLFLAG_RW, &iflib_rx_miss_bufs, 0, "potentially missed rx intr bufs"); /* * Register/unregister. We are already under netmap lock. * Only called on the first register or the last unregister. */ static int iflib_netmap_register(struct netmap_adapter *na, int onoff) { struct ifnet *ifp = na->ifp; if_ctx_t ctx = ifp->if_softc; int status; CTX_LOCK(ctx); IFDI_INTR_DISABLE(ctx); /* Tell the stack that the interface is no longer active */ ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); if (!CTX_IS_VF(ctx)) IFDI_CRCSTRIP_SET(ctx, onoff, iflib_crcstrip); /* enable or disable flags and callbacks in na and ifp */ if (onoff) { nm_set_native_flags(na); } else { nm_clear_native_flags(na); } iflib_stop(ctx); iflib_init_locked(ctx); IFDI_CRCSTRIP_SET(ctx, onoff, iflib_crcstrip); // XXX why twice ? status = ifp->if_drv_flags & IFF_DRV_RUNNING ? 0 : 1; if (status) nm_clear_native_flags(na); CTX_UNLOCK(ctx); return (status); } static int netmap_fl_refill(iflib_rxq_t rxq, struct netmap_kring *kring, uint32_t nm_i, bool init) { struct netmap_adapter *na = kring->na; u_int const lim = kring->nkr_num_slots - 1; u_int head = kring->rhead; struct netmap_ring *ring = kring->ring; bus_dmamap_t *map; struct if_rxd_update iru; if_ctx_t ctx = rxq->ifr_ctx; iflib_fl_t fl = &rxq->ifr_fl[0]; uint32_t refill_pidx, nic_i; #if IFLIB_DEBUG_COUNTERS int rf_count = 0; #endif if (nm_i == head && __predict_true(!init)) return 0; iru_init(&iru, rxq, 0 /* flid */); map = fl->ifl_sds.ifsd_map; refill_pidx = netmap_idx_k2n(kring, nm_i); /* * IMPORTANT: we must leave one free slot in the ring, * so move head back by one unit */ head = nm_prev(head, lim); nic_i = UINT_MAX; DBG_COUNTER_INC(fl_refills); while (nm_i != head) { #if IFLIB_DEBUG_COUNTERS if (++rf_count == 9) DBG_COUNTER_INC(fl_refills_large); #endif for (int tmp_pidx = 0; tmp_pidx < IFLIB_MAX_RX_REFRESH && nm_i != head; tmp_pidx++) { struct netmap_slot *slot = &ring->slot[nm_i]; void *addr = PNMB(na, slot, &fl->ifl_bus_addrs[tmp_pidx]); uint32_t nic_i_dma = refill_pidx; nic_i = netmap_idx_k2n(kring, nm_i); MPASS(tmp_pidx < IFLIB_MAX_RX_REFRESH); if (addr == NETMAP_BUF_BASE(na)) /* bad buf */ return netmap_ring_reinit(kring); fl->ifl_vm_addrs[tmp_pidx] = addr; if (__predict_false(init) && map) { netmap_load_map(na, fl->ifl_ifdi->idi_tag, map[nic_i], addr); } else if (map && (slot->flags & NS_BUF_CHANGED)) { /* buffer has changed, reload map */ netmap_reload_map(na, fl->ifl_ifdi->idi_tag, map[nic_i], addr); } slot->flags &= ~NS_BUF_CHANGED; nm_i = nm_next(nm_i, lim); fl->ifl_rxd_idxs[tmp_pidx] = nic_i = nm_next(nic_i, lim); if (nm_i != head && tmp_pidx < IFLIB_MAX_RX_REFRESH-1) continue; iru.iru_pidx = refill_pidx; iru.iru_count = tmp_pidx+1; ctx->isc_rxd_refill(ctx->ifc_softc, &iru); refill_pidx = nic_i; if (map == NULL) continue; for (int n = 0; n < iru.iru_count; n++) { bus_dmamap_sync(fl->ifl_ifdi->idi_tag, map[nic_i_dma], BUS_DMASYNC_PREREAD); /* XXX - change this to not use the netmap func*/ nic_i_dma = nm_next(nic_i_dma, lim); } } } kring->nr_hwcur = head; if (map) bus_dmamap_sync(fl->ifl_ifdi->idi_tag, fl->ifl_ifdi->idi_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); if (__predict_true(nic_i != UINT_MAX)) { ctx->isc_rxd_flush(ctx->ifc_softc, rxq->ifr_id, fl->ifl_id, nic_i); DBG_COUNTER_INC(rxd_flush); } return (0); } /* * Reconcile kernel and user view of the transmit ring. * * All information is in the kring. * Userspace wants to send packets up to the one before kring->rhead, * kernel knows kring->nr_hwcur is the first unsent packet. * * Here we push packets out (as many as possible), and possibly * reclaim buffers from previously completed transmission. * * The caller (netmap) guarantees that there is only one instance * running at any time. Any interference with other driver * methods should be handled by the individual drivers. */ static int iflib_netmap_txsync(struct netmap_kring *kring, int flags) { struct netmap_adapter *na = kring->na; struct ifnet *ifp = na->ifp; struct netmap_ring *ring = kring->ring; u_int nm_i; /* index into the netmap kring */ u_int nic_i; /* index into the NIC ring */ u_int n; u_int const lim = kring->nkr_num_slots - 1; u_int const head = kring->rhead; struct if_pkt_info pi; /* * interrupts on every tx packet are expensive so request * them every half ring, or where NS_REPORT is set */ u_int report_frequency = kring->nkr_num_slots >> 1; /* device-specific */ if_ctx_t ctx = ifp->if_softc; iflib_txq_t txq = &ctx->ifc_txqs[kring->ring_id]; bus_dmamap_sync(txq->ift_buf_tag, txq->ift_ifdi->idi_map, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); /* * First part: process new packets to send. * nm_i is the current index in the netmap kring, * nic_i is the corresponding index in the NIC ring. * * If we have packets to send (nm_i != head) * iterate over the netmap ring, fetch length and update * the corresponding slot in the NIC ring. Some drivers also * need to update the buffer's physical address in the NIC slot * even NS_BUF_CHANGED is not set (PNMB computes the addresses). * * The netmap_reload_map() calls is especially expensive, * even when (as in this case) the tag is 0, so do only * when the buffer has actually changed. * * If possible do not set the report/intr bit on all slots, * but only a few times per ring or when NS_REPORT is set. * * Finally, on 10G and faster drivers, it might be useful * to prefetch the next slot and txr entry. */ nm_i = kring->nr_hwcur; if (nm_i != head) { /* we have new packets to send */ pkt_info_zero(&pi); pi.ipi_segs = txq->ift_segs; pi.ipi_qsidx = kring->ring_id; nic_i = netmap_idx_k2n(kring, nm_i); __builtin_prefetch(&ring->slot[nm_i]); __builtin_prefetch(&txq->ift_sds.ifsd_m[nic_i]); if (txq->ift_sds.ifsd_map) __builtin_prefetch(&txq->ift_sds.ifsd_map[nic_i]); for (n = 0; nm_i != head; n++) { struct netmap_slot *slot = &ring->slot[nm_i]; u_int len = slot->len; uint64_t paddr; void *addr = PNMB(na, slot, &paddr); int flags = (slot->flags & NS_REPORT || nic_i == 0 || nic_i == report_frequency) ? IPI_TX_INTR : 0; /* device-specific */ pi.ipi_len = len; pi.ipi_segs[0].ds_addr = paddr; pi.ipi_segs[0].ds_len = len; pi.ipi_nsegs = 1; pi.ipi_ndescs = 0; pi.ipi_pidx = nic_i; pi.ipi_flags = flags; /* Fill the slot in the NIC ring. */ ctx->isc_txd_encap(ctx->ifc_softc, &pi); DBG_COUNTER_INC(tx_encap); /* prefetch for next round */ __builtin_prefetch(&ring->slot[nm_i + 1]); __builtin_prefetch(&txq->ift_sds.ifsd_m[nic_i + 1]); if (txq->ift_sds.ifsd_map) { __builtin_prefetch(&txq->ift_sds.ifsd_map[nic_i + 1]); NM_CHECK_ADDR_LEN(na, addr, len); if (slot->flags & NS_BUF_CHANGED) { /* buffer has changed, reload map */ netmap_reload_map(na, txq->ift_buf_tag, txq->ift_sds.ifsd_map[nic_i], addr); } /* make sure changes to the buffer are synced */ bus_dmamap_sync(txq->ift_ifdi->idi_tag, txq->ift_sds.ifsd_map[nic_i], BUS_DMASYNC_PREWRITE); } slot->flags &= ~(NS_REPORT | NS_BUF_CHANGED); nm_i = nm_next(nm_i, lim); nic_i = nm_next(nic_i, lim); } kring->nr_hwcur = nm_i; /* synchronize the NIC ring */ bus_dmamap_sync(txq->ift_buf_tag, txq->ift_ifdi->idi_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); /* (re)start the tx unit up to slot nic_i (excluded) */ ctx->isc_txd_flush(ctx->ifc_softc, txq->ift_id, nic_i); } /* * Second part: reclaim buffers for completed transmissions. * * If there are unclaimed buffers, attempt to reclaim them. * If none are reclaimed, and TX IRQs are not in use, do an initial * minimal delay, then trigger the tx handler which will spin in the * group task queue. */ if (kring->nr_hwtail != nm_prev(kring->nr_hwcur, lim)) { if (iflib_tx_credits_update(ctx, txq)) { /* some tx completed, increment avail */ nic_i = txq->ift_cidx_processed; kring->nr_hwtail = nm_prev(netmap_idx_n2k(kring, nic_i), lim); } } if (!(ctx->ifc_flags & IFC_NETMAP_TX_IRQ)) if (kring->nr_hwtail != nm_prev(kring->nr_hwcur, lim)) { callout_reset_on(&txq->ift_timer, hz < 2000 ? 1 : hz / 1000, iflib_timer, txq, txq->ift_timer.c_cpu); } return (0); } /* * Reconcile kernel and user view of the receive ring. * Same as for the txsync, this routine must be efficient. * The caller guarantees a single invocations, but races against * the rest of the driver should be handled here. * * On call, kring->rhead is the first packet that userspace wants * to keep, and kring->rcur is the wakeup point. * The kernel has previously reported packets up to kring->rtail. * * If (flags & NAF_FORCE_READ) also check for incoming packets irrespective * of whether or not we received an interrupt. */ static int iflib_netmap_rxsync(struct netmap_kring *kring, int flags) { struct netmap_adapter *na = kring->na; struct netmap_ring *ring = kring->ring; uint32_t nm_i; /* index into the netmap ring */ uint32_t nic_i; /* index into the NIC ring */ u_int i, n; u_int const lim = kring->nkr_num_slots - 1; u_int const head = kring->rhead; int force_update = (flags & NAF_FORCE_READ) || kring->nr_kflags & NKR_PENDINTR; struct if_rxd_info ri; struct ifnet *ifp = na->ifp; if_ctx_t ctx = ifp->if_softc; iflib_rxq_t rxq = &ctx->ifc_rxqs[kring->ring_id]; iflib_fl_t fl = rxq->ifr_fl; if (head > lim) return netmap_ring_reinit(kring); /* XXX check sync modes */ for (i = 0, fl = rxq->ifr_fl; i < rxq->ifr_nfl; i++, fl++) { if (fl->ifl_sds.ifsd_map == NULL) continue; bus_dmamap_sync(rxq->ifr_fl[i].ifl_buf_tag, fl->ifl_ifdi->idi_map, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); } /* * First part: import newly received packets. * * nm_i is the index of the next free slot in the netmap ring, * nic_i is the index of the next received packet in the NIC ring, * and they may differ in case if_init() has been called while * in netmap mode. For the receive ring we have * * nic_i = rxr->next_check; * nm_i = kring->nr_hwtail (previous) * and * nm_i == (nic_i + kring->nkr_hwofs) % ring_size * * rxr->next_check is set to 0 on a ring reinit */ if (netmap_no_pendintr || force_update) { int crclen = iflib_crcstrip ? 0 : 4; int error, avail; for (i = 0; i < rxq->ifr_nfl; i++) { fl = &rxq->ifr_fl[i]; nic_i = fl->ifl_cidx; nm_i = netmap_idx_n2k(kring, nic_i); avail = iflib_rxd_avail(ctx, rxq, nic_i, USHRT_MAX); for (n = 0; avail > 0; n++, avail--) { rxd_info_zero(&ri); ri.iri_frags = rxq->ifr_frags; ri.iri_qsidx = kring->ring_id; ri.iri_ifp = ctx->ifc_ifp; ri.iri_cidx = nic_i; error = ctx->isc_rxd_pkt_get(ctx->ifc_softc, &ri); ring->slot[nm_i].len = error ? 0 : ri.iri_len - crclen; ring->slot[nm_i].flags = 0; bus_dmamap_sync(fl->ifl_ifdi->idi_tag, fl->ifl_sds.ifsd_map[nic_i], BUS_DMASYNC_POSTREAD); nm_i = nm_next(nm_i, lim); nic_i = nm_next(nic_i, lim); } if (n) { /* update the state variables */ if (netmap_no_pendintr && !force_update) { /* diagnostics */ iflib_rx_miss ++; iflib_rx_miss_bufs += n; } fl->ifl_cidx = nic_i; kring->nr_hwtail = nm_i; } kring->nr_kflags &= ~NKR_PENDINTR; } } /* * Second part: skip past packets that userspace has released. * (kring->nr_hwcur to head excluded), * and make the buffers available for reception. * As usual nm_i is the index in the netmap ring, * nic_i is the index in the NIC ring, and * nm_i == (nic_i + kring->nkr_hwofs) % ring_size */ /* XXX not sure how this will work with multiple free lists */ nm_i = kring->nr_hwcur; return (netmap_fl_refill(rxq, kring, nm_i, false)); } static void iflib_netmap_intr(struct netmap_adapter *na, int onoff) { struct ifnet *ifp = na->ifp; if_ctx_t ctx = ifp->if_softc; CTX_LOCK(ctx); if (onoff) { IFDI_INTR_ENABLE(ctx); } else { IFDI_INTR_DISABLE(ctx); } CTX_UNLOCK(ctx); } static int iflib_netmap_attach(if_ctx_t ctx) { struct netmap_adapter na; if_softc_ctx_t scctx = &ctx->ifc_softc_ctx; bzero(&na, sizeof(na)); na.ifp = ctx->ifc_ifp; na.na_flags = NAF_BDG_MAYSLEEP; MPASS(ctx->ifc_softc_ctx.isc_ntxqsets); MPASS(ctx->ifc_softc_ctx.isc_nrxqsets); na.num_tx_desc = scctx->isc_ntxd[0]; na.num_rx_desc = scctx->isc_nrxd[0]; na.nm_txsync = iflib_netmap_txsync; na.nm_rxsync = iflib_netmap_rxsync; na.nm_register = iflib_netmap_register; na.nm_intr = iflib_netmap_intr; na.num_tx_rings = ctx->ifc_softc_ctx.isc_ntxqsets; na.num_rx_rings = ctx->ifc_softc_ctx.isc_nrxqsets; return (netmap_attach(&na)); } static void iflib_netmap_txq_init(if_ctx_t ctx, iflib_txq_t txq) { struct netmap_adapter *na = NA(ctx->ifc_ifp); struct netmap_slot *slot; slot = netmap_reset(na, NR_TX, txq->ift_id, 0); if (slot == NULL) return; for (int i = 0; i < ctx->ifc_softc_ctx.isc_ntxd[0]; i++) { /* * In netmap mode, set the map for the packet buffer. * NOTE: Some drivers (not this one) also need to set * the physical buffer address in the NIC ring. * netmap_idx_n2k() maps a nic index, i, into the corresponding * netmap slot index, si */ int si = netmap_idx_n2k(na->tx_rings[txq->ift_id], i); netmap_load_map(na, txq->ift_buf_tag, txq->ift_sds.ifsd_map[i], NMB(na, slot + si)); } } static void iflib_netmap_rxq_init(if_ctx_t ctx, iflib_rxq_t rxq) { struct netmap_adapter *na = NA(ctx->ifc_ifp); struct netmap_kring *kring = na->rx_rings[rxq->ifr_id]; struct netmap_slot *slot; uint32_t nm_i; slot = netmap_reset(na, NR_RX, rxq->ifr_id, 0); if (slot == NULL) return; nm_i = netmap_idx_n2k(kring, 0); netmap_fl_refill(rxq, kring, nm_i, true); } static void iflib_netmap_timer_adjust(if_ctx_t ctx, uint16_t txqid, uint32_t *reset_on) { struct netmap_kring *kring; kring = NA(ctx->ifc_ifp)->tx_rings[txqid]; if (kring->nr_hwcur != nm_next(kring->nr_hwtail, kring->nkr_num_slots - 1)) { if (ctx->isc_txd_credits_update(ctx->ifc_softc, txqid, false)) netmap_tx_irq(ctx->ifc_ifp, txqid); if (!(ctx->ifc_flags & IFC_NETMAP_TX_IRQ)) { if (hz < 2000) *reset_on = 1; else *reset_on = hz / 1000; } } } #define iflib_netmap_detach(ifp) netmap_detach(ifp) #else #define iflib_netmap_txq_init(ctx, txq) #define iflib_netmap_rxq_init(ctx, rxq) #define iflib_netmap_detach(ifp) #define iflib_netmap_attach(ctx) (0) #define netmap_rx_irq(ifp, qid, budget) (0) #define netmap_tx_irq(ifp, qid) do {} while (0) #define iflib_netmap_timer_adjust(ctx, txqid, reset_on) #endif #if defined(__i386__) || defined(__amd64__) static __inline void prefetch(void *x) { __asm volatile("prefetcht0 %0" :: "m" (*(unsigned long *)x)); } static __inline void prefetch2cachelines(void *x) { __asm volatile("prefetcht0 %0" :: "m" (*(unsigned long *)x)); #if (CACHE_LINE_SIZE < 128) __asm volatile("prefetcht0 %0" :: "m" (*(((unsigned long *)x)+CACHE_LINE_SIZE/(sizeof(unsigned long))))); #endif } #else #define prefetch(x) #define prefetch2cachelines(x) #endif static void iflib_gen_mac(if_ctx_t ctx) { struct thread *td; MD5_CTX mdctx; char uuid[HOSTUUIDLEN+1]; char buf[HOSTUUIDLEN+16]; uint8_t *mac; unsigned char digest[16]; td = curthread; mac = ctx->ifc_mac; uuid[HOSTUUIDLEN] = 0; bcopy(td->td_ucred->cr_prison->pr_hostuuid, uuid, HOSTUUIDLEN); snprintf(buf, HOSTUUIDLEN+16, "%s-%s", uuid, device_get_nameunit(ctx->ifc_dev)); /* * Generate a pseudo-random, deterministic MAC * address based on the UUID and unit number. * The FreeBSD Foundation OUI of 58-9C-FC is used. */ MD5Init(&mdctx); MD5Update(&mdctx, buf, strlen(buf)); MD5Final(digest, &mdctx); mac[0] = 0x58; mac[1] = 0x9C; mac[2] = 0xFC; mac[3] = digest[0]; mac[4] = digest[1]; mac[5] = digest[2]; } static void iru_init(if_rxd_update_t iru, iflib_rxq_t rxq, uint8_t flid) { iflib_fl_t fl; fl = &rxq->ifr_fl[flid]; iru->iru_paddrs = fl->ifl_bus_addrs; iru->iru_vaddrs = &fl->ifl_vm_addrs[0]; iru->iru_idxs = fl->ifl_rxd_idxs; iru->iru_qsidx = rxq->ifr_id; iru->iru_buf_size = fl->ifl_buf_size; iru->iru_flidx = fl->ifl_id; } static void _iflib_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int err) { if (err) return; *(bus_addr_t *) arg = segs[0].ds_addr; } int iflib_dma_alloc_align(if_ctx_t ctx, int size, int align, iflib_dma_info_t dma, int mapflags) { int err; device_t dev = ctx->ifc_dev; err = bus_dma_tag_create(bus_get_dma_tag(dev), /* parent */ align, 0, /* alignment, bounds */ BUS_SPACE_MAXADDR, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ size, /* maxsize */ 1, /* nsegments */ size, /* maxsegsize */ BUS_DMA_ALLOCNOW, /* flags */ NULL, /* lockfunc */ NULL, /* lockarg */ &dma->idi_tag); if (err) { device_printf(dev, "%s: bus_dma_tag_create failed: %d\n", __func__, err); goto fail_0; } err = bus_dmamem_alloc(dma->idi_tag, (void**) &dma->idi_vaddr, BUS_DMA_NOWAIT | BUS_DMA_COHERENT | BUS_DMA_ZERO, &dma->idi_map); if (err) { device_printf(dev, "%s: bus_dmamem_alloc(%ju) failed: %d\n", __func__, (uintmax_t)size, err); goto fail_1; } dma->idi_paddr = IF_BAD_DMA; err = bus_dmamap_load(dma->idi_tag, dma->idi_map, dma->idi_vaddr, size, _iflib_dmamap_cb, &dma->idi_paddr, mapflags | BUS_DMA_NOWAIT); if (err || dma->idi_paddr == IF_BAD_DMA) { device_printf(dev, "%s: bus_dmamap_load failed: %d\n", __func__, err); goto fail_2; } dma->idi_size = size; return (0); fail_2: bus_dmamem_free(dma->idi_tag, dma->idi_vaddr, dma->idi_map); fail_1: bus_dma_tag_destroy(dma->idi_tag); fail_0: dma->idi_tag = NULL; return (err); } int iflib_dma_alloc(if_ctx_t ctx, int size, iflib_dma_info_t dma, int mapflags) { if_shared_ctx_t sctx = ctx->ifc_sctx; KASSERT(sctx->isc_q_align != 0, ("alignment value not initialized")); return (iflib_dma_alloc_align(ctx, size, sctx->isc_q_align, dma, mapflags)); } int iflib_dma_alloc_multi(if_ctx_t ctx, int *sizes, iflib_dma_info_t *dmalist, int mapflags, int count) { int i, err; iflib_dma_info_t *dmaiter; dmaiter = dmalist; for (i = 0; i < count; i++, dmaiter++) { if ((err = iflib_dma_alloc(ctx, sizes[i], *dmaiter, mapflags)) != 0) break; } if (err) iflib_dma_free_multi(dmalist, i); return (err); } void iflib_dma_free(iflib_dma_info_t dma) { if (dma->idi_tag == NULL) return; if (dma->idi_paddr != IF_BAD_DMA) { bus_dmamap_sync(dma->idi_tag, dma->idi_map, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(dma->idi_tag, dma->idi_map); dma->idi_paddr = IF_BAD_DMA; } if (dma->idi_vaddr != NULL) { bus_dmamem_free(dma->idi_tag, dma->idi_vaddr, dma->idi_map); dma->idi_vaddr = NULL; } bus_dma_tag_destroy(dma->idi_tag); dma->idi_tag = NULL; } void iflib_dma_free_multi(iflib_dma_info_t *dmalist, int count) { int i; iflib_dma_info_t *dmaiter = dmalist; for (i = 0; i < count; i++, dmaiter++) iflib_dma_free(*dmaiter); } #ifdef EARLY_AP_STARTUP static const int iflib_started = 1; #else /* * We used to abuse the smp_started flag to decide if the queues have been * fully initialized (by late taskqgroup_adjust() calls in a SYSINIT()). * That gave bad races, since the SYSINIT() runs strictly after smp_started * is set. Run a SYSINIT() strictly after that to just set a usable * completion flag. */ static int iflib_started; static void iflib_record_started(void *arg) { iflib_started = 1; } SYSINIT(iflib_record_started, SI_SUB_SMP + 1, SI_ORDER_FIRST, iflib_record_started, NULL); #endif static int iflib_fast_intr(void *arg) { iflib_filter_info_t info = arg; struct grouptask *gtask = info->ifi_task; int result; if (!iflib_started) return (FILTER_STRAY); DBG_COUNTER_INC(fast_intrs); if (info->ifi_filter != NULL) { result = info->ifi_filter(info->ifi_filter_arg); if ((result & FILTER_SCHEDULE_THREAD) == 0) return (result); } GROUPTASK_ENQUEUE(gtask); return (FILTER_HANDLED); } static int iflib_fast_intr_rxtx(void *arg) { iflib_filter_info_t info = arg; struct grouptask *gtask = info->ifi_task; iflib_rxq_t rxq = (iflib_rxq_t)info->ifi_ctx; if_ctx_t ctx = NULL;; int i, cidx, result; if (!iflib_started) return (FILTER_STRAY); DBG_COUNTER_INC(fast_intrs); if (info->ifi_filter != NULL) { result = info->ifi_filter(info->ifi_filter_arg); if ((result & FILTER_SCHEDULE_THREAD) == 0) return (result); } MPASS(rxq->ifr_ntxqirq); for (i = 0; i < rxq->ifr_ntxqirq; i++) { qidx_t txqid = rxq->ifr_txqid[i]; ctx = rxq->ifr_ctx; bus_dmamap_sync(rxq->ifr_ifdi->idi_tag, rxq->ifr_ifdi->idi_map, BUS_DMASYNC_POSTREAD); if (!ctx->isc_txd_credits_update(ctx->ifc_softc, txqid, false)) { IFDI_TX_QUEUE_INTR_ENABLE(ctx, txqid); continue; } GROUPTASK_ENQUEUE(&ctx->ifc_txqs[txqid].ift_task); } if (ctx->ifc_sctx->isc_flags & IFLIB_HAS_RXCQ) cidx = rxq->ifr_cq_cidx; else cidx = rxq->ifr_fl[0].ifl_cidx; if (iflib_rxd_avail(ctx, rxq, cidx, 1)) GROUPTASK_ENQUEUE(gtask); else { IFDI_RX_QUEUE_INTR_ENABLE(ctx, rxq->ifr_id); DBG_COUNTER_INC(rx_intr_enables); } return (FILTER_HANDLED); } static int iflib_fast_intr_ctx(void *arg) { iflib_filter_info_t info = arg; struct grouptask *gtask = info->ifi_task; int result; if (!iflib_started) return (FILTER_STRAY); DBG_COUNTER_INC(fast_intrs); if (info->ifi_filter != NULL) { result = info->ifi_filter(info->ifi_filter_arg); if ((result & FILTER_SCHEDULE_THREAD) == 0) return (result); } GROUPTASK_ENQUEUE(gtask); return (FILTER_HANDLED); } static int _iflib_irq_alloc(if_ctx_t ctx, if_irq_t irq, int rid, driver_filter_t filter, driver_intr_t handler, void *arg, const char *name) { int rc, flags; struct resource *res; void *tag = NULL; device_t dev = ctx->ifc_dev; flags = RF_ACTIVE; if (ctx->ifc_flags & IFC_LEGACY) flags |= RF_SHAREABLE; MPASS(rid < 512); irq->ii_rid = rid; res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &irq->ii_rid, flags); if (res == NULL) { device_printf(dev, "failed to allocate IRQ for rid %d, name %s.\n", rid, name); return (ENOMEM); } irq->ii_res = res; KASSERT(filter == NULL || handler == NULL, ("filter and handler can't both be non-NULL")); rc = bus_setup_intr(dev, res, INTR_MPSAFE | INTR_TYPE_NET, filter, handler, arg, &tag); if (rc != 0) { device_printf(dev, "failed to setup interrupt for rid %d, name %s: %d\n", rid, name ? name : "unknown", rc); return (rc); } else if (name) bus_describe_intr(dev, res, tag, "%s", name); irq->ii_tag = tag; return (0); } /********************************************************************* * * Allocate DMA resources for TX buffers as well as memory for the TX * mbuf map. TX DMA maps (non-TSO/TSO) and TX mbuf map are kept in a * iflib_sw_tx_desc_array structure, storing all the information that * is needed to transmit a packet on the wire. This is called only * once at attach, setup is done every reset. * **********************************************************************/ static int iflib_txsd_alloc(iflib_txq_t txq) { if_ctx_t ctx = txq->ift_ctx; if_shared_ctx_t sctx = ctx->ifc_sctx; if_softc_ctx_t scctx = &ctx->ifc_softc_ctx; device_t dev = ctx->ifc_dev; bus_size_t tsomaxsize; int err, nsegments, ntsosegments; bool tso; nsegments = scctx->isc_tx_nsegments; ntsosegments = scctx->isc_tx_tso_segments_max; tsomaxsize = scctx->isc_tx_tso_size_max; if (if_getcapabilities(ctx->ifc_ifp) & IFCAP_VLAN_MTU) tsomaxsize += sizeof(struct ether_vlan_header); MPASS(scctx->isc_ntxd[0] > 0); MPASS(scctx->isc_ntxd[txq->ift_br_offset] > 0); MPASS(nsegments > 0); if (if_getcapabilities(ctx->ifc_ifp) & IFCAP_TSO) { MPASS(ntsosegments > 0); MPASS(sctx->isc_tso_maxsize >= tsomaxsize); } /* * Set up DMA tags for TX buffers. */ if ((err = bus_dma_tag_create(bus_get_dma_tag(dev), 1, 0, /* alignment, bounds */ BUS_SPACE_MAXADDR, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ sctx->isc_tx_maxsize, /* maxsize */ nsegments, /* nsegments */ sctx->isc_tx_maxsegsize, /* maxsegsize */ 0, /* flags */ NULL, /* lockfunc */ NULL, /* lockfuncarg */ &txq->ift_buf_tag))) { device_printf(dev,"Unable to allocate TX DMA tag: %d\n", err); device_printf(dev,"maxsize: %ju nsegments: %d maxsegsize: %ju\n", (uintmax_t)sctx->isc_tx_maxsize, nsegments, (uintmax_t)sctx->isc_tx_maxsegsize); goto fail; } tso = (if_getcapabilities(ctx->ifc_ifp) & IFCAP_TSO) != 0; if (tso && (err = bus_dma_tag_create(bus_get_dma_tag(dev), 1, 0, /* alignment, bounds */ BUS_SPACE_MAXADDR, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ tsomaxsize, /* maxsize */ ntsosegments, /* nsegments */ sctx->isc_tso_maxsegsize,/* maxsegsize */ 0, /* flags */ NULL, /* lockfunc */ NULL, /* lockfuncarg */ &txq->ift_tso_buf_tag))) { device_printf(dev, "Unable to allocate TSO TX DMA tag: %d\n", err); goto fail; } /* Allocate memory for the TX mbuf map. */ if (!(txq->ift_sds.ifsd_m = (struct mbuf **) malloc(sizeof(struct mbuf *) * scctx->isc_ntxd[txq->ift_br_offset], M_IFLIB, M_NOWAIT | M_ZERO))) { device_printf(dev, "Unable to allocate TX mbuf map memory\n"); err = ENOMEM; goto fail; } /* * Create the DMA maps for TX buffers. */ if ((txq->ift_sds.ifsd_map = (bus_dmamap_t *)malloc( sizeof(bus_dmamap_t) * scctx->isc_ntxd[txq->ift_br_offset], M_IFLIB, M_NOWAIT | M_ZERO)) == NULL) { device_printf(dev, "Unable to allocate TX buffer DMA map memory\n"); err = ENOMEM; goto fail; } if (tso && (txq->ift_sds.ifsd_tso_map = (bus_dmamap_t *)malloc( sizeof(bus_dmamap_t) * scctx->isc_ntxd[txq->ift_br_offset], M_IFLIB, M_NOWAIT | M_ZERO)) == NULL) { device_printf(dev, "Unable to allocate TSO TX buffer map memory\n"); err = ENOMEM; goto fail; } for (int i = 0; i < scctx->isc_ntxd[txq->ift_br_offset]; i++) { err = bus_dmamap_create(txq->ift_buf_tag, 0, &txq->ift_sds.ifsd_map[i]); if (err != 0) { device_printf(dev, "Unable to create TX DMA map\n"); goto fail; } if (!tso) continue; err = bus_dmamap_create(txq->ift_tso_buf_tag, 0, &txq->ift_sds.ifsd_tso_map[i]); if (err != 0) { device_printf(dev, "Unable to create TSO TX DMA map\n"); goto fail; } } return (0); fail: /* We free all, it handles case where we are in the middle */ iflib_tx_structures_free(ctx); return (err); } static void iflib_txsd_destroy(if_ctx_t ctx, iflib_txq_t txq, int i) { bus_dmamap_t map; map = NULL; if (txq->ift_sds.ifsd_map != NULL) map = txq->ift_sds.ifsd_map[i]; if (map != NULL) { bus_dmamap_sync(txq->ift_buf_tag, map, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(txq->ift_buf_tag, map); bus_dmamap_destroy(txq->ift_buf_tag, map); txq->ift_sds.ifsd_map[i] = NULL; } map = NULL; if (txq->ift_sds.ifsd_tso_map != NULL) map = txq->ift_sds.ifsd_tso_map[i]; if (map != NULL) { bus_dmamap_sync(txq->ift_tso_buf_tag, map, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(txq->ift_tso_buf_tag, map); bus_dmamap_destroy(txq->ift_tso_buf_tag, map); txq->ift_sds.ifsd_tso_map[i] = NULL; } } static void iflib_txq_destroy(iflib_txq_t txq) { if_ctx_t ctx = txq->ift_ctx; for (int i = 0; i < txq->ift_size; i++) iflib_txsd_destroy(ctx, txq, i); if (txq->ift_sds.ifsd_map != NULL) { free(txq->ift_sds.ifsd_map, M_IFLIB); txq->ift_sds.ifsd_map = NULL; } if (txq->ift_sds.ifsd_tso_map != NULL) { free(txq->ift_sds.ifsd_tso_map, M_IFLIB); txq->ift_sds.ifsd_tso_map = NULL; } if (txq->ift_sds.ifsd_m != NULL) { free(txq->ift_sds.ifsd_m, M_IFLIB); txq->ift_sds.ifsd_m = NULL; } if (txq->ift_buf_tag != NULL) { bus_dma_tag_destroy(txq->ift_buf_tag); txq->ift_buf_tag = NULL; } if (txq->ift_tso_buf_tag != NULL) { bus_dma_tag_destroy(txq->ift_tso_buf_tag); txq->ift_tso_buf_tag = NULL; } } static void iflib_txsd_free(if_ctx_t ctx, iflib_txq_t txq, int i) { struct mbuf **mp; mp = &txq->ift_sds.ifsd_m[i]; if (*mp == NULL) return; if (txq->ift_sds.ifsd_map != NULL) { bus_dmamap_sync(txq->ift_buf_tag, txq->ift_sds.ifsd_map[i], BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(txq->ift_buf_tag, txq->ift_sds.ifsd_map[i]); } if (txq->ift_sds.ifsd_tso_map != NULL) { bus_dmamap_sync(txq->ift_tso_buf_tag, txq->ift_sds.ifsd_tso_map[i], BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(txq->ift_tso_buf_tag, txq->ift_sds.ifsd_tso_map[i]); } m_free(*mp); DBG_COUNTER_INC(tx_frees); *mp = NULL; } static int iflib_txq_setup(iflib_txq_t txq) { if_ctx_t ctx = txq->ift_ctx; if_softc_ctx_t scctx = &ctx->ifc_softc_ctx; if_shared_ctx_t sctx = ctx->ifc_sctx; iflib_dma_info_t di; int i; /* Set number of descriptors available */ txq->ift_qstatus = IFLIB_QUEUE_IDLE; /* XXX make configurable */ txq->ift_update_freq = IFLIB_DEFAULT_TX_UPDATE_FREQ; /* Reset indices */ txq->ift_cidx_processed = 0; txq->ift_pidx = txq->ift_cidx = txq->ift_npending = 0; txq->ift_size = scctx->isc_ntxd[txq->ift_br_offset]; for (i = 0, di = txq->ift_ifdi; i < sctx->isc_ntxqs; i++, di++) bzero((void *)di->idi_vaddr, di->idi_size); IFDI_TXQ_SETUP(ctx, txq->ift_id); for (i = 0, di = txq->ift_ifdi; i < sctx->isc_ntxqs; i++, di++) bus_dmamap_sync(di->idi_tag, di->idi_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); return (0); } /********************************************************************* * * Allocate DMA resources for RX buffers as well as memory for the RX * mbuf map, direct RX cluster pointer map and RX cluster bus address * map. RX DMA map, RX mbuf map, direct RX cluster pointer map and * RX cluster map are kept in a iflib_sw_rx_desc_array structure. * Since we use use one entry in iflib_sw_rx_desc_array per received * packet, the maximum number of entries we'll need is equal to the * number of hardware receive descriptors that we've allocated. * **********************************************************************/ static int iflib_rxsd_alloc(iflib_rxq_t rxq) { if_ctx_t ctx = rxq->ifr_ctx; if_shared_ctx_t sctx = ctx->ifc_sctx; if_softc_ctx_t scctx = &ctx->ifc_softc_ctx; device_t dev = ctx->ifc_dev; iflib_fl_t fl; int err; MPASS(scctx->isc_nrxd[0] > 0); MPASS(scctx->isc_nrxd[rxq->ifr_fl_offset] > 0); fl = rxq->ifr_fl; for (int i = 0; i < rxq->ifr_nfl; i++, fl++) { fl->ifl_size = scctx->isc_nrxd[rxq->ifr_fl_offset]; /* this isn't necessarily the same */ /* Set up DMA tag for RX buffers. */ err = bus_dma_tag_create(bus_get_dma_tag(dev), /* parent */ 1, 0, /* alignment, bounds */ BUS_SPACE_MAXADDR, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ sctx->isc_rx_maxsize, /* maxsize */ sctx->isc_rx_nsegments, /* nsegments */ sctx->isc_rx_maxsegsize, /* maxsegsize */ 0, /* flags */ NULL, /* lockfunc */ NULL, /* lockarg */ &fl->ifl_buf_tag); if (err) { device_printf(dev, "Unable to allocate RX DMA tag: %d\n", err); goto fail; } /* Allocate memory for the RX mbuf map. */ if (!(fl->ifl_sds.ifsd_m = (struct mbuf **) malloc(sizeof(struct mbuf *) * scctx->isc_nrxd[rxq->ifr_fl_offset], M_IFLIB, M_NOWAIT | M_ZERO))) { device_printf(dev, "Unable to allocate RX mbuf map memory\n"); err = ENOMEM; goto fail; } /* Allocate memory for the direct RX cluster pointer map. */ if (!(fl->ifl_sds.ifsd_cl = (caddr_t *) malloc(sizeof(caddr_t) * scctx->isc_nrxd[rxq->ifr_fl_offset], M_IFLIB, M_NOWAIT | M_ZERO))) { device_printf(dev, "Unable to allocate RX cluster map memory\n"); err = ENOMEM; goto fail; } /* Allocate memory for the RX cluster bus address map. */ if (!(fl->ifl_sds.ifsd_ba = (bus_addr_t *) malloc(sizeof(bus_addr_t) * scctx->isc_nrxd[rxq->ifr_fl_offset], M_IFLIB, M_NOWAIT | M_ZERO))) { device_printf(dev, "Unable to allocate RX bus address map memory\n"); err = ENOMEM; goto fail; } /* * Create the DMA maps for RX buffers. */ if (!(fl->ifl_sds.ifsd_map = (bus_dmamap_t *) malloc(sizeof(bus_dmamap_t) * scctx->isc_nrxd[rxq->ifr_fl_offset], M_IFLIB, M_NOWAIT | M_ZERO))) { device_printf(dev, "Unable to allocate RX buffer DMA map memory\n"); err = ENOMEM; goto fail; } for (int i = 0; i < scctx->isc_nrxd[rxq->ifr_fl_offset]; i++) { err = bus_dmamap_create(fl->ifl_buf_tag, 0, &fl->ifl_sds.ifsd_map[i]); if (err != 0) { device_printf(dev, "Unable to create RX buffer DMA map\n"); goto fail; } } } return (0); fail: iflib_rx_structures_free(ctx); return (err); } /* * Internal service routines */ struct rxq_refill_cb_arg { int error; bus_dma_segment_t seg; int nseg; }; static void _rxq_refill_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error) { struct rxq_refill_cb_arg *cb_arg = arg; cb_arg->error = error; cb_arg->seg = segs[0]; cb_arg->nseg = nseg; } /** * rxq_refill - refill an rxq free-buffer list * @ctx: the iflib context * @rxq: the free-list to refill * @n: the number of new buffers to allocate * * (Re)populate an rxq free-buffer list with up to @n new packet buffers. * The caller must assure that @n does not exceed the queue's capacity. */ static void _iflib_fl_refill(if_ctx_t ctx, iflib_fl_t fl, int count) { struct if_rxd_update iru; struct rxq_refill_cb_arg cb_arg; struct mbuf *m; caddr_t cl, *sd_cl; struct mbuf **sd_m; bus_dmamap_t *sd_map; bus_addr_t bus_addr, *sd_ba; int err, frag_idx, i, idx, n, pidx; qidx_t credits; sd_m = fl->ifl_sds.ifsd_m; sd_map = fl->ifl_sds.ifsd_map; sd_cl = fl->ifl_sds.ifsd_cl; sd_ba = fl->ifl_sds.ifsd_ba; pidx = fl->ifl_pidx; idx = pidx; frag_idx = fl->ifl_fragidx; credits = fl->ifl_credits; i = 0; n = count; MPASS(n > 0); MPASS(credits + n <= fl->ifl_size); if (pidx < fl->ifl_cidx) MPASS(pidx + n <= fl->ifl_cidx); if (pidx == fl->ifl_cidx && (credits < fl->ifl_size)) MPASS(fl->ifl_gen == 0); if (pidx > fl->ifl_cidx) MPASS(n <= fl->ifl_size - pidx + fl->ifl_cidx); DBG_COUNTER_INC(fl_refills); if (n > 8) DBG_COUNTER_INC(fl_refills_large); iru_init(&iru, fl->ifl_rxq, fl->ifl_id); while (n--) { /* * We allocate an uninitialized mbuf + cluster, mbuf is * initialized after rx. * * If the cluster is still set then we know a minimum sized packet was received */ bit_ffc_at(fl->ifl_rx_bitmap, frag_idx, fl->ifl_size, &frag_idx); if (frag_idx < 0) bit_ffc(fl->ifl_rx_bitmap, fl->ifl_size, &frag_idx); MPASS(frag_idx >= 0); if ((cl = sd_cl[frag_idx]) == NULL) { if ((cl = m_cljget(NULL, M_NOWAIT, fl->ifl_buf_size)) == NULL) break; cb_arg.error = 0; MPASS(sd_map != NULL); err = bus_dmamap_load(fl->ifl_buf_tag, sd_map[frag_idx], cl, fl->ifl_buf_size, _rxq_refill_cb, &cb_arg, BUS_DMA_NOWAIT); if (err != 0 || cb_arg.error) { /* * !zone_pack ? */ if (fl->ifl_zone == zone_pack) uma_zfree(fl->ifl_zone, cl); break; } bus_dmamap_sync(fl->ifl_buf_tag, sd_map[frag_idx], BUS_DMASYNC_PREREAD); sd_ba[frag_idx] = bus_addr = cb_arg.seg.ds_addr; sd_cl[frag_idx] = cl; #if MEMORY_LOGGING fl->ifl_cl_enqueued++; #endif } else { bus_addr = sd_ba[frag_idx]; } MPASS(sd_m[frag_idx] == NULL); if ((m = m_gethdr(M_NOWAIT, MT_NOINIT)) == NULL) { break; } sd_m[frag_idx] = m; bit_set(fl->ifl_rx_bitmap, frag_idx); #if MEMORY_LOGGING fl->ifl_m_enqueued++; #endif DBG_COUNTER_INC(rx_allocs); fl->ifl_rxd_idxs[i] = frag_idx; fl->ifl_bus_addrs[i] = bus_addr; fl->ifl_vm_addrs[i] = cl; credits++; i++; MPASS(credits <= fl->ifl_size); if (++idx == fl->ifl_size) { fl->ifl_gen = 1; idx = 0; } if (n == 0 || i == IFLIB_MAX_RX_REFRESH) { iru.iru_pidx = pidx; iru.iru_count = i; ctx->isc_rxd_refill(ctx->ifc_softc, &iru); i = 0; pidx = idx; fl->ifl_pidx = idx; fl->ifl_credits = credits; } } if (i) { iru.iru_pidx = pidx; iru.iru_count = i; ctx->isc_rxd_refill(ctx->ifc_softc, &iru); fl->ifl_pidx = idx; fl->ifl_credits = credits; } DBG_COUNTER_INC(rxd_flush); if (fl->ifl_pidx == 0) pidx = fl->ifl_size - 1; else pidx = fl->ifl_pidx - 1; bus_dmamap_sync(fl->ifl_ifdi->idi_tag, fl->ifl_ifdi->idi_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); ctx->isc_rxd_flush(ctx->ifc_softc, fl->ifl_rxq->ifr_id, fl->ifl_id, pidx); fl->ifl_fragidx = frag_idx; } static __inline void __iflib_fl_refill_lt(if_ctx_t ctx, iflib_fl_t fl, int max) { /* we avoid allowing pidx to catch up with cidx as it confuses ixl */ int32_t reclaimable = fl->ifl_size - fl->ifl_credits - 1; #ifdef INVARIANTS int32_t delta = fl->ifl_size - get_inuse(fl->ifl_size, fl->ifl_cidx, fl->ifl_pidx, fl->ifl_gen) - 1; #endif MPASS(fl->ifl_credits <= fl->ifl_size); MPASS(reclaimable == delta); if (reclaimable > 0) _iflib_fl_refill(ctx, fl, min(max, reclaimable)); } uint8_t iflib_in_detach(if_ctx_t ctx) { bool in_detach; STATE_LOCK(ctx); in_detach = !!(ctx->ifc_flags & IFC_IN_DETACH); STATE_UNLOCK(ctx); return (in_detach); } static void iflib_fl_bufs_free(iflib_fl_t fl) { iflib_dma_info_t idi = fl->ifl_ifdi; bus_dmamap_t sd_map; uint32_t i; for (i = 0; i < fl->ifl_size; i++) { struct mbuf **sd_m = &fl->ifl_sds.ifsd_m[i]; caddr_t *sd_cl = &fl->ifl_sds.ifsd_cl[i]; if (*sd_cl != NULL) { sd_map = fl->ifl_sds.ifsd_map[i]; bus_dmamap_sync(fl->ifl_buf_tag, sd_map, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(fl->ifl_buf_tag, sd_map); if (*sd_cl != NULL) uma_zfree(fl->ifl_zone, *sd_cl); // XXX: Should this get moved out? if (iflib_in_detach(fl->ifl_rxq->ifr_ctx)) bus_dmamap_destroy(fl->ifl_buf_tag, sd_map); if (*sd_m != NULL) { m_init(*sd_m, M_NOWAIT, MT_DATA, 0); uma_zfree(zone_mbuf, *sd_m); } } else { MPASS(*sd_cl == NULL); MPASS(*sd_m == NULL); } #if MEMORY_LOGGING fl->ifl_m_dequeued++; fl->ifl_cl_dequeued++; #endif *sd_cl = NULL; *sd_m = NULL; } #ifdef INVARIANTS for (i = 0; i < fl->ifl_size; i++) { MPASS(fl->ifl_sds.ifsd_cl[i] == NULL); MPASS(fl->ifl_sds.ifsd_m[i] == NULL); } #endif /* * Reset free list values */ fl->ifl_credits = fl->ifl_cidx = fl->ifl_pidx = fl->ifl_gen = fl->ifl_fragidx = 0; bzero(idi->idi_vaddr, idi->idi_size); } /********************************************************************* * * Initialize a receive ring and its buffers. * **********************************************************************/ static int iflib_fl_setup(iflib_fl_t fl) { iflib_rxq_t rxq = fl->ifl_rxq; if_ctx_t ctx = rxq->ifr_ctx; if_softc_ctx_t sctx = &ctx->ifc_softc_ctx; bit_nclear(fl->ifl_rx_bitmap, 0, fl->ifl_size - 1); /* ** Free current RX buffer structs and their mbufs */ iflib_fl_bufs_free(fl); /* Now replenish the mbufs */ MPASS(fl->ifl_credits == 0); /* * XXX don't set the max_frame_size to larger * than the hardware can handle */ if (sctx->isc_max_frame_size <= 2048) fl->ifl_buf_size = MCLBYTES; -#ifndef CONTIGMALLOC_WORKS else fl->ifl_buf_size = MJUMPAGESIZE; -#else - else if (sctx->isc_max_frame_size <= 4096) - fl->ifl_buf_size = MJUMPAGESIZE; - else if (sctx->isc_max_frame_size <= 9216) - fl->ifl_buf_size = MJUM9BYTES; - else - fl->ifl_buf_size = MJUM16BYTES; -#endif if (fl->ifl_buf_size > ctx->ifc_max_fl_buf_size) ctx->ifc_max_fl_buf_size = fl->ifl_buf_size; fl->ifl_cltype = m_gettype(fl->ifl_buf_size); fl->ifl_zone = m_getzone(fl->ifl_buf_size); /* avoid pre-allocating zillions of clusters to an idle card * potentially speeding up attach */ _iflib_fl_refill(ctx, fl, min(128, fl->ifl_size)); MPASS(min(128, fl->ifl_size) == fl->ifl_credits); if (min(128, fl->ifl_size) != fl->ifl_credits) return (ENOBUFS); /* * handle failure */ MPASS(rxq != NULL); MPASS(fl->ifl_ifdi != NULL); bus_dmamap_sync(fl->ifl_ifdi->idi_tag, fl->ifl_ifdi->idi_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); return (0); } /********************************************************************* * * Free receive ring data structures * **********************************************************************/ static void iflib_rx_sds_free(iflib_rxq_t rxq) { iflib_fl_t fl; int i, j; if (rxq->ifr_fl != NULL) { for (i = 0; i < rxq->ifr_nfl; i++) { fl = &rxq->ifr_fl[i]; if (fl->ifl_buf_tag != NULL) { if (fl->ifl_sds.ifsd_map != NULL) { for (j = 0; j < fl->ifl_size; j++) { if (fl->ifl_sds.ifsd_map[j] == NULL) continue; bus_dmamap_sync( fl->ifl_buf_tag, fl->ifl_sds.ifsd_map[j], BUS_DMASYNC_POSTREAD); bus_dmamap_unload( fl->ifl_buf_tag, fl->ifl_sds.ifsd_map[j]); } } bus_dma_tag_destroy(fl->ifl_buf_tag); fl->ifl_buf_tag = NULL; } free(fl->ifl_sds.ifsd_m, M_IFLIB); free(fl->ifl_sds.ifsd_cl, M_IFLIB); free(fl->ifl_sds.ifsd_ba, M_IFLIB); free(fl->ifl_sds.ifsd_map, M_IFLIB); fl->ifl_sds.ifsd_m = NULL; fl->ifl_sds.ifsd_cl = NULL; fl->ifl_sds.ifsd_ba = NULL; fl->ifl_sds.ifsd_map = NULL; } free(rxq->ifr_fl, M_IFLIB); rxq->ifr_fl = NULL; rxq->ifr_cq_gen = rxq->ifr_cq_cidx = rxq->ifr_cq_pidx = 0; } } /* * MI independent logic * */ static void iflib_timer(void *arg) { iflib_txq_t txq = arg; if_ctx_t ctx = txq->ift_ctx; if_softc_ctx_t sctx = &ctx->ifc_softc_ctx; uint64_t this_tick = ticks; uint32_t reset_on = hz / 2; if (!(if_getdrvflags(ctx->ifc_ifp) & IFF_DRV_RUNNING)) return; /* ** Check on the state of the TX queue(s), this ** can be done without the lock because its RO ** and the HUNG state will be static if set. */ if (this_tick - txq->ift_last_timer_tick >= hz / 2) { txq->ift_last_timer_tick = this_tick; IFDI_TIMER(ctx, txq->ift_id); if ((txq->ift_qstatus == IFLIB_QUEUE_HUNG) && ((txq->ift_cleaned_prev == txq->ift_cleaned) || (sctx->isc_pause_frames == 0))) goto hung; if (ifmp_ring_is_stalled(txq->ift_br)) txq->ift_qstatus = IFLIB_QUEUE_HUNG; txq->ift_cleaned_prev = txq->ift_cleaned; } #ifdef DEV_NETMAP if (if_getcapenable(ctx->ifc_ifp) & IFCAP_NETMAP) iflib_netmap_timer_adjust(ctx, txq->ift_id, &reset_on); #endif /* handle any laggards */ if (txq->ift_db_pending) GROUPTASK_ENQUEUE(&txq->ift_task); sctx->isc_pause_frames = 0; if (if_getdrvflags(ctx->ifc_ifp) & IFF_DRV_RUNNING) callout_reset_on(&txq->ift_timer, reset_on, iflib_timer, txq, txq->ift_timer.c_cpu); return; hung: device_printf(ctx->ifc_dev, "TX(%d) desc avail = %d, pidx = %d\n", txq->ift_id, TXQ_AVAIL(txq), txq->ift_pidx); STATE_LOCK(ctx); if_setdrvflagbits(ctx->ifc_ifp, IFF_DRV_OACTIVE, IFF_DRV_RUNNING); ctx->ifc_flags |= (IFC_DO_WATCHDOG|IFC_DO_RESET); iflib_admin_intr_deferred(ctx); STATE_UNLOCK(ctx); } static void iflib_init_locked(if_ctx_t ctx) { if_softc_ctx_t sctx = &ctx->ifc_softc_ctx; if_softc_ctx_t scctx = &ctx->ifc_softc_ctx; if_t ifp = ctx->ifc_ifp; iflib_fl_t fl; iflib_txq_t txq; iflib_rxq_t rxq; int i, j, tx_ip_csum_flags, tx_ip6_csum_flags; if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, IFF_DRV_RUNNING); IFDI_INTR_DISABLE(ctx); tx_ip_csum_flags = scctx->isc_tx_csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP | CSUM_SCTP); tx_ip6_csum_flags = scctx->isc_tx_csum_flags & (CSUM_IP6_TCP | CSUM_IP6_UDP | CSUM_IP6_SCTP); /* Set hardware offload abilities */ if_clearhwassist(ifp); if (if_getcapenable(ifp) & IFCAP_TXCSUM) if_sethwassistbits(ifp, tx_ip_csum_flags, 0); if (if_getcapenable(ifp) & IFCAP_TXCSUM_IPV6) if_sethwassistbits(ifp, tx_ip6_csum_flags, 0); if (if_getcapenable(ifp) & IFCAP_TSO4) if_sethwassistbits(ifp, CSUM_IP_TSO, 0); if (if_getcapenable(ifp) & IFCAP_TSO6) if_sethwassistbits(ifp, CSUM_IP6_TSO, 0); for (i = 0, txq = ctx->ifc_txqs; i < sctx->isc_ntxqsets; i++, txq++) { CALLOUT_LOCK(txq); callout_stop(&txq->ift_timer); CALLOUT_UNLOCK(txq); iflib_netmap_txq_init(ctx, txq); } #ifdef INVARIANTS i = if_getdrvflags(ifp); #endif IFDI_INIT(ctx); MPASS(if_getdrvflags(ifp) == i); for (i = 0, rxq = ctx->ifc_rxqs; i < sctx->isc_nrxqsets; i++, rxq++) { /* XXX this should really be done on a per-queue basis */ if (if_getcapenable(ifp) & IFCAP_NETMAP) { MPASS(rxq->ifr_id == i); iflib_netmap_rxq_init(ctx, rxq); continue; } for (j = 0, fl = rxq->ifr_fl; j < rxq->ifr_nfl; j++, fl++) { if (iflib_fl_setup(fl)) { device_printf(ctx->ifc_dev, "freelist setup failed - check cluster settings\n"); goto done; } } } done: if_setdrvflagbits(ctx->ifc_ifp, IFF_DRV_RUNNING, IFF_DRV_OACTIVE); IFDI_INTR_ENABLE(ctx); txq = ctx->ifc_txqs; for (i = 0; i < sctx->isc_ntxqsets; i++, txq++) callout_reset_on(&txq->ift_timer, hz/2, iflib_timer, txq, txq->ift_timer.c_cpu); } static int iflib_media_change(if_t ifp) { if_ctx_t ctx = if_getsoftc(ifp); int err; CTX_LOCK(ctx); if ((err = IFDI_MEDIA_CHANGE(ctx)) == 0) iflib_init_locked(ctx); CTX_UNLOCK(ctx); return (err); } static void iflib_media_status(if_t ifp, struct ifmediareq *ifmr) { if_ctx_t ctx = if_getsoftc(ifp); CTX_LOCK(ctx); IFDI_UPDATE_ADMIN_STATUS(ctx); IFDI_MEDIA_STATUS(ctx, ifmr); CTX_UNLOCK(ctx); } void iflib_stop(if_ctx_t ctx) { iflib_txq_t txq = ctx->ifc_txqs; iflib_rxq_t rxq = ctx->ifc_rxqs; if_softc_ctx_t scctx = &ctx->ifc_softc_ctx; if_shared_ctx_t sctx = ctx->ifc_sctx; iflib_dma_info_t di; iflib_fl_t fl; int i, j; /* Tell the stack that the interface is no longer active */ if_setdrvflagbits(ctx->ifc_ifp, IFF_DRV_OACTIVE, IFF_DRV_RUNNING); IFDI_INTR_DISABLE(ctx); DELAY(1000); IFDI_STOP(ctx); DELAY(1000); iflib_debug_reset(); /* Wait for current tx queue users to exit to disarm watchdog timer. */ for (i = 0; i < scctx->isc_ntxqsets; i++, txq++) { /* make sure all transmitters have completed before proceeding XXX */ CALLOUT_LOCK(txq); callout_stop(&txq->ift_timer); CALLOUT_UNLOCK(txq); /* clean any enqueued buffers */ iflib_ifmp_purge(txq); /* Free any existing tx buffers. */ for (j = 0; j < txq->ift_size; j++) { iflib_txsd_free(ctx, txq, j); } txq->ift_processed = txq->ift_cleaned = txq->ift_cidx_processed = 0; txq->ift_in_use = txq->ift_gen = txq->ift_cidx = txq->ift_pidx = txq->ift_no_desc_avail = 0; txq->ift_closed = txq->ift_mbuf_defrag = txq->ift_mbuf_defrag_failed = 0; txq->ift_no_tx_dma_setup = txq->ift_txd_encap_efbig = txq->ift_map_failed = 0; txq->ift_pullups = 0; ifmp_ring_reset_stats(txq->ift_br); for (j = 0, di = txq->ift_ifdi; j < sctx->isc_ntxqs; j++, di++) bzero((void *)di->idi_vaddr, di->idi_size); } for (i = 0; i < scctx->isc_nrxqsets; i++, rxq++) { /* make sure all transmitters have completed before proceeding XXX */ rxq->ifr_cq_gen = rxq->ifr_cq_cidx = rxq->ifr_cq_pidx = 0; for (j = 0, di = rxq->ifr_ifdi; j < sctx->isc_nrxqs; j++, di++) bzero((void *)di->idi_vaddr, di->idi_size); /* also resets the free lists pidx/cidx */ for (j = 0, fl = rxq->ifr_fl; j < rxq->ifr_nfl; j++, fl++) iflib_fl_bufs_free(fl); } } static inline caddr_t calc_next_rxd(iflib_fl_t fl, int cidx) { qidx_t size; int nrxd; caddr_t start, end, cur, next; nrxd = fl->ifl_size; size = fl->ifl_rxd_size; start = fl->ifl_ifdi->idi_vaddr; if (__predict_false(size == 0)) return (start); cur = start + size*cidx; end = start + size*nrxd; next = CACHE_PTR_NEXT(cur); return (next < end ? next : start); } static inline void prefetch_pkts(iflib_fl_t fl, int cidx) { int nextptr; int nrxd = fl->ifl_size; caddr_t next_rxd; nextptr = (cidx + CACHE_PTR_INCREMENT) & (nrxd-1); prefetch(&fl->ifl_sds.ifsd_m[nextptr]); prefetch(&fl->ifl_sds.ifsd_cl[nextptr]); next_rxd = calc_next_rxd(fl, cidx); prefetch(next_rxd); prefetch(fl->ifl_sds.ifsd_m[(cidx + 1) & (nrxd-1)]); prefetch(fl->ifl_sds.ifsd_m[(cidx + 2) & (nrxd-1)]); prefetch(fl->ifl_sds.ifsd_m[(cidx + 3) & (nrxd-1)]); prefetch(fl->ifl_sds.ifsd_m[(cidx + 4) & (nrxd-1)]); prefetch(fl->ifl_sds.ifsd_cl[(cidx + 1) & (nrxd-1)]); prefetch(fl->ifl_sds.ifsd_cl[(cidx + 2) & (nrxd-1)]); prefetch(fl->ifl_sds.ifsd_cl[(cidx + 3) & (nrxd-1)]); prefetch(fl->ifl_sds.ifsd_cl[(cidx + 4) & (nrxd-1)]); } static void rxd_frag_to_sd(iflib_rxq_t rxq, if_rxd_frag_t irf, int unload, if_rxsd_t sd) { int flid, cidx; bus_dmamap_t map; iflib_fl_t fl; iflib_dma_info_t di; int next; map = NULL; flid = irf->irf_flid; cidx = irf->irf_idx; fl = &rxq->ifr_fl[flid]; sd->ifsd_fl = fl; sd->ifsd_cidx = cidx; sd->ifsd_m = &fl->ifl_sds.ifsd_m[cidx]; sd->ifsd_cl = &fl->ifl_sds.ifsd_cl[cidx]; fl->ifl_credits--; #if MEMORY_LOGGING fl->ifl_m_dequeued++; #endif if (rxq->ifr_ctx->ifc_flags & IFC_PREFETCH) prefetch_pkts(fl, cidx); next = (cidx + CACHE_PTR_INCREMENT) & (fl->ifl_size-1); prefetch(&fl->ifl_sds.ifsd_map[next]); map = fl->ifl_sds.ifsd_map[cidx]; di = fl->ifl_ifdi; next = (cidx + CACHE_LINE_SIZE) & (fl->ifl_size-1); /* not valid assert if bxe really does SGE from non-contiguous elements */ MPASS(fl->ifl_cidx == cidx); bus_dmamap_sync(fl->ifl_buf_tag, map, BUS_DMASYNC_POSTREAD); if (unload) bus_dmamap_unload(fl->ifl_buf_tag, map); fl->ifl_cidx = (fl->ifl_cidx + 1) & (fl->ifl_size-1); if (__predict_false(fl->ifl_cidx == 0)) fl->ifl_gen = 0; bus_dmamap_sync(fl->ifl_ifdi->idi_tag, fl->ifl_ifdi->idi_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); bit_clear(fl->ifl_rx_bitmap, cidx); } static struct mbuf * assemble_segments(iflib_rxq_t rxq, if_rxd_info_t ri, if_rxsd_t sd) { int i, padlen , flags; struct mbuf *m, *mh, *mt; caddr_t cl; i = 0; mh = NULL; do { rxd_frag_to_sd(rxq, &ri->iri_frags[i], TRUE, sd); MPASS(*sd->ifsd_cl != NULL); MPASS(*sd->ifsd_m != NULL); /* Don't include zero-length frags */ if (ri->iri_frags[i].irf_len == 0) { /* XXX we can save the cluster here, but not the mbuf */ m_init(*sd->ifsd_m, M_NOWAIT, MT_DATA, 0); m_free(*sd->ifsd_m); *sd->ifsd_m = NULL; continue; } m = *sd->ifsd_m; *sd->ifsd_m = NULL; if (mh == NULL) { flags = M_PKTHDR|M_EXT; mh = mt = m; padlen = ri->iri_pad; } else { flags = M_EXT; mt->m_next = m; mt = m; /* assuming padding is only on the first fragment */ padlen = 0; } cl = *sd->ifsd_cl; *sd->ifsd_cl = NULL; /* Can these two be made one ? */ m_init(m, M_NOWAIT, MT_DATA, flags); m_cljset(m, cl, sd->ifsd_fl->ifl_cltype); /* * These must follow m_init and m_cljset */ m->m_data += padlen; ri->iri_len -= padlen; m->m_len = ri->iri_frags[i].irf_len; } while (++i < ri->iri_nfrags); return (mh); } /* * Process one software descriptor */ static struct mbuf * iflib_rxd_pkt_get(iflib_rxq_t rxq, if_rxd_info_t ri) { struct if_rxsd sd; struct mbuf *m; /* should I merge this back in now that the two paths are basically duplicated? */ if (ri->iri_nfrags == 1 && ri->iri_frags[0].irf_len <= MIN(IFLIB_RX_COPY_THRESH, MHLEN)) { rxd_frag_to_sd(rxq, &ri->iri_frags[0], FALSE, &sd); m = *sd.ifsd_m; *sd.ifsd_m = NULL; m_init(m, M_NOWAIT, MT_DATA, M_PKTHDR); #ifndef __NO_STRICT_ALIGNMENT if (!IP_ALIGNED(m)) m->m_data += 2; #endif memcpy(m->m_data, *sd.ifsd_cl, ri->iri_len); bus_dmamap_sync(rxq->ifr_fl->ifl_buf_tag, rxq->ifr_fl->ifl_sds.ifsd_map[ri->iri_frags[0].irf_idx], BUS_DMASYNC_PREREAD); m->m_len = ri->iri_frags[0].irf_len; } else { m = assemble_segments(rxq, ri, &sd); } m->m_pkthdr.len = ri->iri_len; m->m_pkthdr.rcvif = ri->iri_ifp; m->m_flags |= ri->iri_flags; m->m_pkthdr.ether_vtag = ri->iri_vtag; m->m_pkthdr.flowid = ri->iri_flowid; M_HASHTYPE_SET(m, ri->iri_rsstype); m->m_pkthdr.csum_flags = ri->iri_csum_flags; m->m_pkthdr.csum_data = ri->iri_csum_data; return (m); } #if defined(INET6) || defined(INET) static void iflib_get_ip_forwarding(struct lro_ctrl *lc, bool *v4, bool *v6) { CURVNET_SET(lc->ifp->if_vnet); #if defined(INET6) *v6 = VNET(ip6_forwarding); #endif #if defined(INET) *v4 = VNET(ipforwarding); #endif CURVNET_RESTORE(); } /* * Returns true if it's possible this packet could be LROed. * if it returns false, it is guaranteed that tcp_lro_rx() * would not return zero. */ static bool iflib_check_lro_possible(struct mbuf *m, bool v4_forwarding, bool v6_forwarding) { struct ether_header *eh; uint16_t eh_type; eh = mtod(m, struct ether_header *); eh_type = ntohs(eh->ether_type); switch (eh_type) { #if defined(INET6) case ETHERTYPE_IPV6: return !v6_forwarding; #endif #if defined (INET) case ETHERTYPE_IP: return !v4_forwarding; #endif } return false; } #else static void iflib_get_ip_forwarding(struct lro_ctrl *lc __unused, bool *v4 __unused, bool *v6 __unused) { } #endif static bool iflib_rxeof(iflib_rxq_t rxq, qidx_t budget) { if_ctx_t ctx = rxq->ifr_ctx; if_shared_ctx_t sctx = ctx->ifc_sctx; if_softc_ctx_t scctx = &ctx->ifc_softc_ctx; iflib_dma_info_t di; int avail, i; qidx_t *cidxp; struct if_rxd_info ri; int err, budget_left, rx_bytes, rx_pkts; iflib_fl_t fl; struct ifnet *ifp; int lro_enabled; bool v4_forwarding, v6_forwarding, lro_possible; /* * XXX early demux data packets so that if_input processing only handles * acks in interrupt context */ struct mbuf *m, *mh, *mt, *mf; lro_possible = v4_forwarding = v6_forwarding = false; ifp = ctx->ifc_ifp; mh = mt = NULL; MPASS(budget > 0); rx_pkts = rx_bytes = 0; if (sctx->isc_flags & IFLIB_HAS_RXCQ) cidxp = &rxq->ifr_cq_cidx; else cidxp = &rxq->ifr_fl[0].ifl_cidx; if ((avail = iflib_rxd_avail(ctx, rxq, *cidxp, budget)) == 0) { for (i = 0, fl = &rxq->ifr_fl[0]; i < sctx->isc_nfl; i++, fl++) __iflib_fl_refill_lt(ctx, fl, budget + 8); DBG_COUNTER_INC(rx_unavail); return (false); } for (budget_left = budget; budget_left > 0 && avail > 0;) { if (__predict_false(!CTX_ACTIVE(ctx))) { DBG_COUNTER_INC(rx_ctx_inactive); break; } /* * Reset client set fields to their default values */ rxd_info_zero(&ri); ri.iri_qsidx = rxq->ifr_id; ri.iri_cidx = *cidxp; ri.iri_ifp = ifp; ri.iri_frags = rxq->ifr_frags; di = rxq->ifr_fl[rxq->ifr_frags[0].irf_flid].ifl_ifdi; bus_dmamap_sync(di->idi_tag, di->idi_map, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); err = ctx->isc_rxd_pkt_get(ctx->ifc_softc, &ri); if (err) goto err; if (sctx->isc_flags & IFLIB_HAS_RXCQ) { *cidxp = ri.iri_cidx; /* Update our consumer index */ /* XXX NB: shurd - check if this is still safe */ while (rxq->ifr_cq_cidx >= scctx->isc_nrxd[0]) { rxq->ifr_cq_cidx -= scctx->isc_nrxd[0]; rxq->ifr_cq_gen = 0; } /* was this only a completion queue message? */ if (__predict_false(ri.iri_nfrags == 0)) continue; } MPASS(ri.iri_nfrags != 0); MPASS(ri.iri_len != 0); /* will advance the cidx on the corresponding free lists */ m = iflib_rxd_pkt_get(rxq, &ri); avail--; budget_left--; if (avail == 0 && budget_left) avail = iflib_rxd_avail(ctx, rxq, *cidxp, budget_left); if (__predict_false(m == NULL)) { DBG_COUNTER_INC(rx_mbuf_null); continue; } /* imm_pkt: -- cxgb */ if (mh == NULL) mh = mt = m; else { mt->m_nextpkt = m; mt = m; } } /* make sure that we can refill faster than drain */ for (i = 0, fl = &rxq->ifr_fl[0]; i < sctx->isc_nfl; i++, fl++) __iflib_fl_refill_lt(ctx, fl, budget + 8); lro_enabled = (if_getcapenable(ifp) & IFCAP_LRO); if (lro_enabled) iflib_get_ip_forwarding(&rxq->ifr_lc, &v4_forwarding, &v6_forwarding); mt = mf = NULL; while (mh != NULL) { m = mh; mh = mh->m_nextpkt; m->m_nextpkt = NULL; #ifndef __NO_STRICT_ALIGNMENT if (!IP_ALIGNED(m) && (m = iflib_fixup_rx(m)) == NULL) continue; #endif rx_bytes += m->m_pkthdr.len; rx_pkts++; #if defined(INET6) || defined(INET) if (lro_enabled) { if (!lro_possible) { lro_possible = iflib_check_lro_possible(m, v4_forwarding, v6_forwarding); if (lro_possible && mf != NULL) { ifp->if_input(ifp, mf); DBG_COUNTER_INC(rx_if_input); mt = mf = NULL; } } if ((m->m_pkthdr.csum_flags & (CSUM_L4_CALC|CSUM_L4_VALID)) == (CSUM_L4_CALC|CSUM_L4_VALID)) { if (lro_possible && tcp_lro_rx(&rxq->ifr_lc, m, 0) == 0) continue; } } #endif if (lro_possible) { ifp->if_input(ifp, m); DBG_COUNTER_INC(rx_if_input); continue; } if (mf == NULL) mf = m; if (mt != NULL) mt->m_nextpkt = m; mt = m; } if (mf != NULL) { ifp->if_input(ifp, mf); DBG_COUNTER_INC(rx_if_input); } if_inc_counter(ifp, IFCOUNTER_IBYTES, rx_bytes); if_inc_counter(ifp, IFCOUNTER_IPACKETS, rx_pkts); /* * Flush any outstanding LRO work */ #if defined(INET6) || defined(INET) tcp_lro_flush_all(&rxq->ifr_lc); #endif if (avail) return true; return (iflib_rxd_avail(ctx, rxq, *cidxp, 1)); err: STATE_LOCK(ctx); ctx->ifc_flags |= IFC_DO_RESET; iflib_admin_intr_deferred(ctx); STATE_UNLOCK(ctx); return (false); } #define TXD_NOTIFY_COUNT(txq) (((txq)->ift_size / (txq)->ift_update_freq)-1) static inline qidx_t txq_max_db_deferred(iflib_txq_t txq, qidx_t in_use) { qidx_t notify_count = TXD_NOTIFY_COUNT(txq); qidx_t minthresh = txq->ift_size / 8; if (in_use > 4*minthresh) return (notify_count); if (in_use > 2*minthresh) return (notify_count >> 1); if (in_use > minthresh) return (notify_count >> 3); return (0); } static inline qidx_t txq_max_rs_deferred(iflib_txq_t txq) { qidx_t notify_count = TXD_NOTIFY_COUNT(txq); qidx_t minthresh = txq->ift_size / 8; if (txq->ift_in_use > 4*minthresh) return (notify_count); if (txq->ift_in_use > 2*minthresh) return (notify_count >> 1); if (txq->ift_in_use > minthresh) return (notify_count >> 2); return (2); } #define M_CSUM_FLAGS(m) ((m)->m_pkthdr.csum_flags) #define M_HAS_VLANTAG(m) (m->m_flags & M_VLANTAG) #define TXQ_MAX_DB_DEFERRED(txq, in_use) txq_max_db_deferred((txq), (in_use)) #define TXQ_MAX_RS_DEFERRED(txq) txq_max_rs_deferred(txq) #define TXQ_MAX_DB_CONSUMED(size) (size >> 4) /* forward compatibility for cxgb */ #define FIRST_QSET(ctx) 0 #define NTXQSETS(ctx) ((ctx)->ifc_softc_ctx.isc_ntxqsets) #define NRXQSETS(ctx) ((ctx)->ifc_softc_ctx.isc_nrxqsets) #define QIDX(ctx, m) ((((m)->m_pkthdr.flowid & ctx->ifc_softc_ctx.isc_rss_table_mask) % NTXQSETS(ctx)) + FIRST_QSET(ctx)) #define DESC_RECLAIMABLE(q) ((int)((q)->ift_processed - (q)->ift_cleaned - (q)->ift_ctx->ifc_softc_ctx.isc_tx_nsegments)) /* XXX we should be setting this to something other than zero */ #define RECLAIM_THRESH(ctx) ((ctx)->ifc_sctx->isc_tx_reclaim_thresh) #define MAX_TX_DESC(ctx) max((ctx)->ifc_softc_ctx.isc_tx_tso_segments_max, \ (ctx)->ifc_softc_ctx.isc_tx_nsegments) static inline bool iflib_txd_db_check(if_ctx_t ctx, iflib_txq_t txq, int ring, qidx_t in_use) { qidx_t dbval, max; bool rang; rang = false; max = TXQ_MAX_DB_DEFERRED(txq, in_use); if (ring || txq->ift_db_pending >= max) { dbval = txq->ift_npending ? txq->ift_npending : txq->ift_pidx; ctx->isc_txd_flush(ctx->ifc_softc, txq->ift_id, dbval); txq->ift_db_pending = txq->ift_npending = 0; rang = true; } return (rang); } #ifdef PKT_DEBUG static void print_pkt(if_pkt_info_t pi) { printf("pi len: %d qsidx: %d nsegs: %d ndescs: %d flags: %x pidx: %d\n", pi->ipi_len, pi->ipi_qsidx, pi->ipi_nsegs, pi->ipi_ndescs, pi->ipi_flags, pi->ipi_pidx); printf("pi new_pidx: %d csum_flags: %lx tso_segsz: %d mflags: %x vtag: %d\n", pi->ipi_new_pidx, pi->ipi_csum_flags, pi->ipi_tso_segsz, pi->ipi_mflags, pi->ipi_vtag); printf("pi etype: %d ehdrlen: %d ip_hlen: %d ipproto: %d\n", pi->ipi_etype, pi->ipi_ehdrlen, pi->ipi_ip_hlen, pi->ipi_ipproto); } #endif #define IS_TSO4(pi) ((pi)->ipi_csum_flags & CSUM_IP_TSO) #define IS_TX_OFFLOAD4(pi) ((pi)->ipi_csum_flags & (CSUM_IP_TCP | CSUM_IP_TSO)) #define IS_TSO6(pi) ((pi)->ipi_csum_flags & CSUM_IP6_TSO) #define IS_TX_OFFLOAD6(pi) ((pi)->ipi_csum_flags & (CSUM_IP6_TCP | CSUM_IP6_TSO)) static int iflib_parse_header(iflib_txq_t txq, if_pkt_info_t pi, struct mbuf **mp) { if_shared_ctx_t sctx = txq->ift_ctx->ifc_sctx; struct ether_vlan_header *eh; struct mbuf *m; m = *mp; if ((sctx->isc_flags & IFLIB_NEED_SCRATCH) && M_WRITABLE(m) == 0) { if ((m = m_dup(m, M_NOWAIT)) == NULL) { return (ENOMEM); } else { m_freem(*mp); DBG_COUNTER_INC(tx_frees); *mp = m; } } /* * Determine where frame payload starts. * Jump over vlan headers if already present, * helpful for QinQ too. */ if (__predict_false(m->m_len < sizeof(*eh))) { txq->ift_pullups++; if (__predict_false((m = m_pullup(m, sizeof(*eh))) == NULL)) return (ENOMEM); } eh = mtod(m, struct ether_vlan_header *); if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) { pi->ipi_etype = ntohs(eh->evl_proto); pi->ipi_ehdrlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN; } else { pi->ipi_etype = ntohs(eh->evl_encap_proto); pi->ipi_ehdrlen = ETHER_HDR_LEN; } switch (pi->ipi_etype) { #ifdef INET case ETHERTYPE_IP: { struct mbuf *n; struct ip *ip = NULL; struct tcphdr *th = NULL; int minthlen; minthlen = min(m->m_pkthdr.len, pi->ipi_ehdrlen + sizeof(*ip) + sizeof(*th)); if (__predict_false(m->m_len < minthlen)) { /* * if this code bloat is causing too much of a hit * move it to a separate function and mark it noinline */ if (m->m_len == pi->ipi_ehdrlen) { n = m->m_next; MPASS(n); if (n->m_len >= sizeof(*ip)) { ip = (struct ip *)n->m_data; if (n->m_len >= (ip->ip_hl << 2) + sizeof(*th)) th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2)); } else { txq->ift_pullups++; if (__predict_false((m = m_pullup(m, minthlen)) == NULL)) return (ENOMEM); ip = (struct ip *)(m->m_data + pi->ipi_ehdrlen); } } else { txq->ift_pullups++; if (__predict_false((m = m_pullup(m, minthlen)) == NULL)) return (ENOMEM); ip = (struct ip *)(m->m_data + pi->ipi_ehdrlen); if (m->m_len >= (ip->ip_hl << 2) + sizeof(*th)) th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2)); } } else { ip = (struct ip *)(m->m_data + pi->ipi_ehdrlen); if (m->m_len >= (ip->ip_hl << 2) + sizeof(*th)) th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2)); } pi->ipi_ip_hlen = ip->ip_hl << 2; pi->ipi_ipproto = ip->ip_p; pi->ipi_flags |= IPI_TX_IPV4; /* TCP checksum offload may require TCP header length */ if (IS_TX_OFFLOAD4(pi)) { if (__predict_true(pi->ipi_ipproto == IPPROTO_TCP)) { if (__predict_false(th == NULL)) { txq->ift_pullups++; if (__predict_false((m = m_pullup(m, (ip->ip_hl << 2) + sizeof(*th))) == NULL)) return (ENOMEM); th = (struct tcphdr *)((caddr_t)ip + pi->ipi_ip_hlen); } pi->ipi_tcp_hflags = th->th_flags; pi->ipi_tcp_hlen = th->th_off << 2; pi->ipi_tcp_seq = th->th_seq; } if (IS_TSO4(pi)) { if (__predict_false(ip->ip_p != IPPROTO_TCP)) return (ENXIO); /* * TSO always requires hardware checksum offload. */ pi->ipi_csum_flags |= (CSUM_IP_TCP | CSUM_IP); th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr, htons(IPPROTO_TCP)); pi->ipi_tso_segsz = m->m_pkthdr.tso_segsz; if (sctx->isc_flags & IFLIB_TSO_INIT_IP) { ip->ip_sum = 0; ip->ip_len = htons(pi->ipi_ip_hlen + pi->ipi_tcp_hlen + pi->ipi_tso_segsz); } } } if ((sctx->isc_flags & IFLIB_NEED_ZERO_CSUM) && (pi->ipi_csum_flags & CSUM_IP)) ip->ip_sum = 0; break; } #endif #ifdef INET6 case ETHERTYPE_IPV6: { struct ip6_hdr *ip6 = (struct ip6_hdr *)(m->m_data + pi->ipi_ehdrlen); struct tcphdr *th; pi->ipi_ip_hlen = sizeof(struct ip6_hdr); if (__predict_false(m->m_len < pi->ipi_ehdrlen + sizeof(struct ip6_hdr))) { txq->ift_pullups++; if (__predict_false((m = m_pullup(m, pi->ipi_ehdrlen + sizeof(struct ip6_hdr))) == NULL)) return (ENOMEM); } th = (struct tcphdr *)((caddr_t)ip6 + pi->ipi_ip_hlen); /* XXX-BZ this will go badly in case of ext hdrs. */ pi->ipi_ipproto = ip6->ip6_nxt; pi->ipi_flags |= IPI_TX_IPV6; /* TCP checksum offload may require TCP header length */ if (IS_TX_OFFLOAD6(pi)) { if (pi->ipi_ipproto == IPPROTO_TCP) { if (__predict_false(m->m_len < pi->ipi_ehdrlen + sizeof(struct ip6_hdr) + sizeof(struct tcphdr))) { txq->ift_pullups++; if (__predict_false((m = m_pullup(m, pi->ipi_ehdrlen + sizeof(struct ip6_hdr) + sizeof(struct tcphdr))) == NULL)) return (ENOMEM); } pi->ipi_tcp_hflags = th->th_flags; pi->ipi_tcp_hlen = th->th_off << 2; pi->ipi_tcp_seq = th->th_seq; } if (IS_TSO6(pi)) { if (__predict_false(ip6->ip6_nxt != IPPROTO_TCP)) return (ENXIO); /* * TSO always requires hardware checksum offload. */ pi->ipi_csum_flags |= CSUM_IP6_TCP; th->th_sum = in6_cksum_pseudo(ip6, 0, IPPROTO_TCP, 0); pi->ipi_tso_segsz = m->m_pkthdr.tso_segsz; } } break; } #endif default: pi->ipi_csum_flags &= ~CSUM_OFFLOAD; pi->ipi_ip_hlen = 0; break; } *mp = m; return (0); } /* * If dodgy hardware rejects the scatter gather chain we've handed it * we'll need to remove the mbuf chain from ifsg_m[] before we can add the * m_defrag'd mbufs */ static __noinline struct mbuf * iflib_remove_mbuf(iflib_txq_t txq) { int ntxd, pidx; struct mbuf *m, **ifsd_m; ifsd_m = txq->ift_sds.ifsd_m; ntxd = txq->ift_size; pidx = txq->ift_pidx & (ntxd - 1); ifsd_m = txq->ift_sds.ifsd_m; m = ifsd_m[pidx]; ifsd_m[pidx] = NULL; bus_dmamap_unload(txq->ift_buf_tag, txq->ift_sds.ifsd_map[pidx]); if (txq->ift_sds.ifsd_tso_map != NULL) bus_dmamap_unload(txq->ift_tso_buf_tag, txq->ift_sds.ifsd_tso_map[pidx]); #if MEMORY_LOGGING txq->ift_dequeued++; #endif return (m); } static inline caddr_t calc_next_txd(iflib_txq_t txq, int cidx, uint8_t qid) { qidx_t size; int ntxd; caddr_t start, end, cur, next; ntxd = txq->ift_size; size = txq->ift_txd_size[qid]; start = txq->ift_ifdi[qid].idi_vaddr; if (__predict_false(size == 0)) return (start); cur = start + size*cidx; end = start + size*ntxd; next = CACHE_PTR_NEXT(cur); return (next < end ? next : start); } /* * Pad an mbuf to ensure a minimum ethernet frame size. * min_frame_size is the frame size (less CRC) to pad the mbuf to */ static __noinline int iflib_ether_pad(device_t dev, struct mbuf **m_head, uint16_t min_frame_size) { /* * 18 is enough bytes to pad an ARP packet to 46 bytes, and * and ARP message is the smallest common payload I can think of */ static char pad[18]; /* just zeros */ int n; struct mbuf *new_head; if (!M_WRITABLE(*m_head)) { new_head = m_dup(*m_head, M_NOWAIT); if (new_head == NULL) { m_freem(*m_head); device_printf(dev, "cannot pad short frame, m_dup() failed"); DBG_COUNTER_INC(encap_pad_mbuf_fail); DBG_COUNTER_INC(tx_frees); return ENOMEM; } m_freem(*m_head); *m_head = new_head; } for (n = min_frame_size - (*m_head)->m_pkthdr.len; n > 0; n -= sizeof(pad)) if (!m_append(*m_head, min(n, sizeof(pad)), pad)) break; if (n > 0) { m_freem(*m_head); device_printf(dev, "cannot pad short frame\n"); DBG_COUNTER_INC(encap_pad_mbuf_fail); DBG_COUNTER_INC(tx_frees); return (ENOBUFS); } return 0; } static int iflib_encap(iflib_txq_t txq, struct mbuf **m_headp) { if_ctx_t ctx; if_shared_ctx_t sctx; if_softc_ctx_t scctx; bus_dma_tag_t buf_tag; bus_dma_segment_t *segs; struct mbuf *m_head, **ifsd_m; void *next_txd; bus_dmamap_t map; struct if_pkt_info pi; int remap = 0; int err, nsegs, ndesc, max_segs, pidx, cidx, next, ntxd; ctx = txq->ift_ctx; sctx = ctx->ifc_sctx; scctx = &ctx->ifc_softc_ctx; segs = txq->ift_segs; ntxd = txq->ift_size; m_head = *m_headp; map = NULL; /* * If we're doing TSO the next descriptor to clean may be quite far ahead */ cidx = txq->ift_cidx; pidx = txq->ift_pidx; if (ctx->ifc_flags & IFC_PREFETCH) { next = (cidx + CACHE_PTR_INCREMENT) & (ntxd-1); if (!(ctx->ifc_flags & IFLIB_HAS_TXCQ)) { next_txd = calc_next_txd(txq, cidx, 0); prefetch(next_txd); } /* prefetch the next cache line of mbuf pointers and flags */ prefetch(&txq->ift_sds.ifsd_m[next]); prefetch(&txq->ift_sds.ifsd_map[next]); next = (cidx + CACHE_LINE_SIZE) & (ntxd-1); } map = txq->ift_sds.ifsd_map[pidx]; ifsd_m = txq->ift_sds.ifsd_m; if (m_head->m_pkthdr.csum_flags & CSUM_TSO) { buf_tag = txq->ift_tso_buf_tag; max_segs = scctx->isc_tx_tso_segments_max; map = txq->ift_sds.ifsd_tso_map[pidx]; MPASS(buf_tag != NULL); MPASS(max_segs > 0); } else { buf_tag = txq->ift_buf_tag; max_segs = scctx->isc_tx_nsegments; map = txq->ift_sds.ifsd_map[pidx]; } if ((sctx->isc_flags & IFLIB_NEED_ETHER_PAD) && __predict_false(m_head->m_pkthdr.len < scctx->isc_min_frame_size)) { err = iflib_ether_pad(ctx->ifc_dev, m_headp, scctx->isc_min_frame_size); if (err) { DBG_COUNTER_INC(encap_txd_encap_fail); return err; } } m_head = *m_headp; pkt_info_zero(&pi); pi.ipi_mflags = (m_head->m_flags & (M_VLANTAG|M_BCAST|M_MCAST)); pi.ipi_pidx = pidx; pi.ipi_qsidx = txq->ift_id; pi.ipi_len = m_head->m_pkthdr.len; pi.ipi_csum_flags = m_head->m_pkthdr.csum_flags; pi.ipi_vtag = (m_head->m_flags & M_VLANTAG) ? m_head->m_pkthdr.ether_vtag : 0; /* deliberate bitwise OR to make one condition */ if (__predict_true((pi.ipi_csum_flags | pi.ipi_vtag))) { if (__predict_false((err = iflib_parse_header(txq, &pi, m_headp)) != 0)) { DBG_COUNTER_INC(encap_txd_encap_fail); return (err); } m_head = *m_headp; } retry: err = bus_dmamap_load_mbuf_sg(buf_tag, map, m_head, segs, &nsegs, BUS_DMA_NOWAIT); defrag: if (__predict_false(err)) { switch (err) { case EFBIG: /* try collapse once and defrag once */ if (remap == 0) { m_head = m_collapse(*m_headp, M_NOWAIT, max_segs); /* try defrag if collapsing fails */ if (m_head == NULL) remap++; } if (remap == 1) { txq->ift_mbuf_defrag++; m_head = m_defrag(*m_headp, M_NOWAIT); } remap++; if (__predict_false(m_head == NULL)) goto defrag_failed; *m_headp = m_head; goto retry; break; case ENOMEM: txq->ift_no_tx_dma_setup++; break; default: txq->ift_no_tx_dma_setup++; m_freem(*m_headp); DBG_COUNTER_INC(tx_frees); *m_headp = NULL; break; } txq->ift_map_failed++; DBG_COUNTER_INC(encap_load_mbuf_fail); DBG_COUNTER_INC(encap_txd_encap_fail); return (err); } ifsd_m[pidx] = m_head; /* * XXX assumes a 1 to 1 relationship between segments and * descriptors - this does not hold true on all drivers, e.g. * cxgb */ if (__predict_false(nsegs + 2 > TXQ_AVAIL(txq))) { txq->ift_no_desc_avail++; bus_dmamap_unload(buf_tag, map); DBG_COUNTER_INC(encap_txq_avail_fail); DBG_COUNTER_INC(encap_txd_encap_fail); if ((txq->ift_task.gt_task.ta_flags & TASK_ENQUEUED) == 0) GROUPTASK_ENQUEUE(&txq->ift_task); return (ENOBUFS); } /* * On Intel cards we can greatly reduce the number of TX interrupts * we see by only setting report status on every Nth descriptor. * However, this also means that the driver will need to keep track * of the descriptors that RS was set on to check them for the DD bit. */ txq->ift_rs_pending += nsegs + 1; if (txq->ift_rs_pending > TXQ_MAX_RS_DEFERRED(txq) || iflib_no_tx_batch || (TXQ_AVAIL(txq) - nsegs) <= MAX_TX_DESC(ctx) + 2) { pi.ipi_flags |= IPI_TX_INTR; txq->ift_rs_pending = 0; } pi.ipi_segs = segs; pi.ipi_nsegs = nsegs; MPASS(pidx >= 0 && pidx < txq->ift_size); #ifdef PKT_DEBUG print_pkt(&pi); #endif bus_dmamap_sync(buf_tag, map, BUS_DMASYNC_PREWRITE); if ((err = ctx->isc_txd_encap(ctx->ifc_softc, &pi)) == 0) { bus_dmamap_sync(txq->ift_ifdi->idi_tag, txq->ift_ifdi->idi_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); DBG_COUNTER_INC(tx_encap); MPASS(pi.ipi_new_pidx < txq->ift_size); ndesc = pi.ipi_new_pidx - pi.ipi_pidx; if (pi.ipi_new_pidx < pi.ipi_pidx) { ndesc += txq->ift_size; txq->ift_gen = 1; } /* * drivers can need as many as * two sentinels */ MPASS(ndesc <= pi.ipi_nsegs + 2); MPASS(pi.ipi_new_pidx != pidx); MPASS(ndesc > 0); txq->ift_in_use += ndesc; /* * We update the last software descriptor again here because there may * be a sentinel and/or there may be more mbufs than segments */ txq->ift_pidx = pi.ipi_new_pidx; txq->ift_npending += pi.ipi_ndescs; } else { *m_headp = m_head = iflib_remove_mbuf(txq); if (err == EFBIG) { txq->ift_txd_encap_efbig++; if (remap < 2) { remap = 1; goto defrag; } } goto defrag_failed; } /* * err can't possibly be non-zero here, so we don't neet to test it * to see if we need to DBG_COUNTER_INC(encap_txd_encap_fail). */ return (err); defrag_failed: txq->ift_mbuf_defrag_failed++; txq->ift_map_failed++; m_freem(*m_headp); DBG_COUNTER_INC(tx_frees); *m_headp = NULL; DBG_COUNTER_INC(encap_txd_encap_fail); return (ENOMEM); } static void iflib_tx_desc_free(iflib_txq_t txq, int n) { uint32_t qsize, cidx, mask, gen; struct mbuf *m, **ifsd_m; bool do_prefetch; cidx = txq->ift_cidx; gen = txq->ift_gen; qsize = txq->ift_size; mask = qsize-1; ifsd_m = txq->ift_sds.ifsd_m; do_prefetch = (txq->ift_ctx->ifc_flags & IFC_PREFETCH); while (n-- > 0) { if (do_prefetch) { prefetch(ifsd_m[(cidx + 3) & mask]); prefetch(ifsd_m[(cidx + 4) & mask]); } if ((m = ifsd_m[cidx]) != NULL) { prefetch(&ifsd_m[(cidx + CACHE_PTR_INCREMENT) & mask]); if (m->m_pkthdr.csum_flags & CSUM_TSO) { bus_dmamap_sync(txq->ift_tso_buf_tag, txq->ift_sds.ifsd_tso_map[cidx], BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(txq->ift_tso_buf_tag, txq->ift_sds.ifsd_tso_map[cidx]); } else { bus_dmamap_sync(txq->ift_buf_tag, txq->ift_sds.ifsd_map[cidx], BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(txq->ift_buf_tag, txq->ift_sds.ifsd_map[cidx]); } /* XXX we don't support any drivers that batch packets yet */ MPASS(m->m_nextpkt == NULL); m_freem(m); ifsd_m[cidx] = NULL; #if MEMORY_LOGGING txq->ift_dequeued++; #endif DBG_COUNTER_INC(tx_frees); } if (__predict_false(++cidx == qsize)) { cidx = 0; gen = 0; } } txq->ift_cidx = cidx; txq->ift_gen = gen; } static __inline int iflib_completed_tx_reclaim(iflib_txq_t txq, int thresh) { int reclaim; if_ctx_t ctx = txq->ift_ctx; KASSERT(thresh >= 0, ("invalid threshold to reclaim")); MPASS(thresh /*+ MAX_TX_DESC(txq->ift_ctx) */ < txq->ift_size); /* * Need a rate-limiting check so that this isn't called every time */ iflib_tx_credits_update(ctx, txq); reclaim = DESC_RECLAIMABLE(txq); if (reclaim <= thresh /* + MAX_TX_DESC(txq->ift_ctx) */) { #ifdef INVARIANTS if (iflib_verbose_debug) { printf("%s processed=%ju cleaned=%ju tx_nsegments=%d reclaim=%d thresh=%d\n", __FUNCTION__, txq->ift_processed, txq->ift_cleaned, txq->ift_ctx->ifc_softc_ctx.isc_tx_nsegments, reclaim, thresh); } #endif return (0); } iflib_tx_desc_free(txq, reclaim); txq->ift_cleaned += reclaim; txq->ift_in_use -= reclaim; return (reclaim); } static struct mbuf ** _ring_peek_one(struct ifmp_ring *r, int cidx, int offset, int remaining) { int next, size; struct mbuf **items; size = r->size; next = (cidx + CACHE_PTR_INCREMENT) & (size-1); items = __DEVOLATILE(struct mbuf **, &r->items[0]); prefetch(items[(cidx + offset) & (size-1)]); if (remaining > 1) { prefetch2cachelines(&items[next]); prefetch2cachelines(items[(cidx + offset + 1) & (size-1)]); prefetch2cachelines(items[(cidx + offset + 2) & (size-1)]); prefetch2cachelines(items[(cidx + offset + 3) & (size-1)]); } return (__DEVOLATILE(struct mbuf **, &r->items[(cidx + offset) & (size-1)])); } static void iflib_txq_check_drain(iflib_txq_t txq, int budget) { ifmp_ring_check_drainage(txq->ift_br, budget); } static uint32_t iflib_txq_can_drain(struct ifmp_ring *r) { iflib_txq_t txq = r->cookie; if_ctx_t ctx = txq->ift_ctx; bus_dmamap_sync(txq->ift_ifdi->idi_tag, txq->ift_ifdi->idi_map, BUS_DMASYNC_POSTREAD); return ((TXQ_AVAIL(txq) > MAX_TX_DESC(ctx) + 2) || ctx->isc_txd_credits_update(ctx->ifc_softc, txq->ift_id, false)); } static uint32_t iflib_txq_drain(struct ifmp_ring *r, uint32_t cidx, uint32_t pidx) { iflib_txq_t txq = r->cookie; if_ctx_t ctx = txq->ift_ctx; struct ifnet *ifp = ctx->ifc_ifp; struct mbuf **mp, *m; int i, count, consumed, pkt_sent, bytes_sent, mcast_sent, avail; int reclaimed, err, in_use_prev, desc_used; bool do_prefetch, ring, rang; if (__predict_false(!(if_getdrvflags(ifp) & IFF_DRV_RUNNING) || !LINK_ACTIVE(ctx))) { DBG_COUNTER_INC(txq_drain_notready); return (0); } reclaimed = iflib_completed_tx_reclaim(txq, RECLAIM_THRESH(ctx)); rang = iflib_txd_db_check(ctx, txq, reclaimed, txq->ift_in_use); avail = IDXDIFF(pidx, cidx, r->size); if (__predict_false(ctx->ifc_flags & IFC_QFLUSH)) { DBG_COUNTER_INC(txq_drain_flushing); for (i = 0; i < avail; i++) { if (__predict_true(r->items[(cidx + i) & (r->size-1)] != (void *)txq)) m_free(r->items[(cidx + i) & (r->size-1)]); r->items[(cidx + i) & (r->size-1)] = NULL; } return (avail); } if (__predict_false(if_getdrvflags(ctx->ifc_ifp) & IFF_DRV_OACTIVE)) { txq->ift_qstatus = IFLIB_QUEUE_IDLE; CALLOUT_LOCK(txq); callout_stop(&txq->ift_timer); CALLOUT_UNLOCK(txq); DBG_COUNTER_INC(txq_drain_oactive); return (0); } if (reclaimed) txq->ift_qstatus = IFLIB_QUEUE_IDLE; consumed = mcast_sent = bytes_sent = pkt_sent = 0; count = MIN(avail, TX_BATCH_SIZE); #ifdef INVARIANTS if (iflib_verbose_debug) printf("%s avail=%d ifc_flags=%x txq_avail=%d ", __FUNCTION__, avail, ctx->ifc_flags, TXQ_AVAIL(txq)); #endif do_prefetch = (ctx->ifc_flags & IFC_PREFETCH); avail = TXQ_AVAIL(txq); err = 0; for (desc_used = i = 0; i < count && avail > MAX_TX_DESC(ctx) + 2; i++) { int rem = do_prefetch ? count - i : 0; mp = _ring_peek_one(r, cidx, i, rem); MPASS(mp != NULL && *mp != NULL); if (__predict_false(*mp == (struct mbuf *)txq)) { consumed++; reclaimed++; continue; } in_use_prev = txq->ift_in_use; err = iflib_encap(txq, mp); if (__predict_false(err)) { /* no room - bail out */ if (err == ENOBUFS) break; consumed++; /* we can't send this packet - skip it */ continue; } consumed++; pkt_sent++; m = *mp; DBG_COUNTER_INC(tx_sent); bytes_sent += m->m_pkthdr.len; mcast_sent += !!(m->m_flags & M_MCAST); avail = TXQ_AVAIL(txq); txq->ift_db_pending += (txq->ift_in_use - in_use_prev); desc_used += (txq->ift_in_use - in_use_prev); ETHER_BPF_MTAP(ifp, m); if (__predict_false(!(ifp->if_drv_flags & IFF_DRV_RUNNING))) break; rang = iflib_txd_db_check(ctx, txq, false, in_use_prev); } /* deliberate use of bitwise or to avoid gratuitous short-circuit */ ring = rang ? false : (iflib_min_tx_latency | err) || (TXQ_AVAIL(txq) < MAX_TX_DESC(ctx)); iflib_txd_db_check(ctx, txq, ring, txq->ift_in_use); if_inc_counter(ifp, IFCOUNTER_OBYTES, bytes_sent); if_inc_counter(ifp, IFCOUNTER_OPACKETS, pkt_sent); if (mcast_sent) if_inc_counter(ifp, IFCOUNTER_OMCASTS, mcast_sent); #ifdef INVARIANTS if (iflib_verbose_debug) printf("consumed=%d\n", consumed); #endif return (consumed); } static uint32_t iflib_txq_drain_always(struct ifmp_ring *r) { return (1); } static uint32_t iflib_txq_drain_free(struct ifmp_ring *r, uint32_t cidx, uint32_t pidx) { int i, avail; struct mbuf **mp; iflib_txq_t txq; txq = r->cookie; txq->ift_qstatus = IFLIB_QUEUE_IDLE; CALLOUT_LOCK(txq); callout_stop(&txq->ift_timer); CALLOUT_UNLOCK(txq); avail = IDXDIFF(pidx, cidx, r->size); for (i = 0; i < avail; i++) { mp = _ring_peek_one(r, cidx, i, avail - i); if (__predict_false(*mp == (struct mbuf *)txq)) continue; m_freem(*mp); DBG_COUNTER_INC(tx_frees); } MPASS(ifmp_ring_is_stalled(r) == 0); return (avail); } static void iflib_ifmp_purge(iflib_txq_t txq) { struct ifmp_ring *r; r = txq->ift_br; r->drain = iflib_txq_drain_free; r->can_drain = iflib_txq_drain_always; ifmp_ring_check_drainage(r, r->size); r->drain = iflib_txq_drain; r->can_drain = iflib_txq_can_drain; } static void _task_fn_tx(void *context) { iflib_txq_t txq = context; if_ctx_t ctx = txq->ift_ctx; struct ifnet *ifp = ctx->ifc_ifp; int abdicate = ctx->ifc_sysctl_tx_abdicate; #ifdef IFLIB_DIAGNOSTICS txq->ift_cpu_exec_count[curcpu]++; #endif if (!(if_getdrvflags(ctx->ifc_ifp) & IFF_DRV_RUNNING)) return; if (if_getcapenable(ifp) & IFCAP_NETMAP) { bus_dmamap_sync(txq->ift_ifdi->idi_tag, txq->ift_ifdi->idi_map, BUS_DMASYNC_POSTREAD); if (ctx->isc_txd_credits_update(ctx->ifc_softc, txq->ift_id, false)) netmap_tx_irq(ifp, txq->ift_id); IFDI_TX_QUEUE_INTR_ENABLE(ctx, txq->ift_id); return; } #ifdef ALTQ if (ALTQ_IS_ENABLED(&ifp->if_snd)) iflib_altq_if_start(ifp); #endif if (txq->ift_db_pending) ifmp_ring_enqueue(txq->ift_br, (void **)&txq, 1, TX_BATCH_SIZE, abdicate); else if (!abdicate) ifmp_ring_check_drainage(txq->ift_br, TX_BATCH_SIZE); /* * When abdicating, we always need to check drainage, not just when we don't enqueue */ if (abdicate) ifmp_ring_check_drainage(txq->ift_br, TX_BATCH_SIZE); if (ctx->ifc_flags & IFC_LEGACY) IFDI_INTR_ENABLE(ctx); else { #ifdef INVARIANTS int rc = #endif IFDI_TX_QUEUE_INTR_ENABLE(ctx, txq->ift_id); KASSERT(rc != ENOTSUP, ("MSI-X support requires queue_intr_enable, but not implemented in driver")); } } static void _task_fn_rx(void *context) { iflib_rxq_t rxq = context; if_ctx_t ctx = rxq->ifr_ctx; bool more; uint16_t budget; #ifdef IFLIB_DIAGNOSTICS rxq->ifr_cpu_exec_count[curcpu]++; #endif DBG_COUNTER_INC(task_fn_rxs); if (__predict_false(!(if_getdrvflags(ctx->ifc_ifp) & IFF_DRV_RUNNING))) return; more = true; #ifdef DEV_NETMAP if (if_getcapenable(ctx->ifc_ifp) & IFCAP_NETMAP) { u_int work = 0; if (netmap_rx_irq(ctx->ifc_ifp, rxq->ifr_id, &work)) { more = false; } } #endif budget = ctx->ifc_sysctl_rx_budget; if (budget == 0) budget = 16; /* XXX */ if (more == false || (more = iflib_rxeof(rxq, budget)) == false) { if (ctx->ifc_flags & IFC_LEGACY) IFDI_INTR_ENABLE(ctx); else { #ifdef INVARIANTS int rc = #endif IFDI_RX_QUEUE_INTR_ENABLE(ctx, rxq->ifr_id); KASSERT(rc != ENOTSUP, ("MSI-X support requires queue_intr_enable, but not implemented in driver")); DBG_COUNTER_INC(rx_intr_enables); } } if (__predict_false(!(if_getdrvflags(ctx->ifc_ifp) & IFF_DRV_RUNNING))) return; if (more) GROUPTASK_ENQUEUE(&rxq->ifr_task); } static void _task_fn_admin(void *context) { if_ctx_t ctx = context; if_softc_ctx_t sctx = &ctx->ifc_softc_ctx; iflib_txq_t txq; int i; bool oactive, running, do_reset, do_watchdog, in_detach; uint32_t reset_on = hz / 2; STATE_LOCK(ctx); running = (if_getdrvflags(ctx->ifc_ifp) & IFF_DRV_RUNNING); oactive = (if_getdrvflags(ctx->ifc_ifp) & IFF_DRV_OACTIVE); do_reset = (ctx->ifc_flags & IFC_DO_RESET); do_watchdog = (ctx->ifc_flags & IFC_DO_WATCHDOG); in_detach = (ctx->ifc_flags & IFC_IN_DETACH); ctx->ifc_flags &= ~(IFC_DO_RESET|IFC_DO_WATCHDOG); STATE_UNLOCK(ctx); if ((!running && !oactive) && !(ctx->ifc_sctx->isc_flags & IFLIB_ADMIN_ALWAYS_RUN)) return; if (in_detach) return; CTX_LOCK(ctx); for (txq = ctx->ifc_txqs, i = 0; i < sctx->isc_ntxqsets; i++, txq++) { CALLOUT_LOCK(txq); callout_stop(&txq->ift_timer); CALLOUT_UNLOCK(txq); } if (do_watchdog) { ctx->ifc_watchdog_events++; IFDI_WATCHDOG_RESET(ctx); } IFDI_UPDATE_ADMIN_STATUS(ctx); for (txq = ctx->ifc_txqs, i = 0; i < sctx->isc_ntxqsets; i++, txq++) { #ifdef DEV_NETMAP reset_on = hz / 2; if (if_getcapenable(ctx->ifc_ifp) & IFCAP_NETMAP) iflib_netmap_timer_adjust(ctx, txq->ift_id, &reset_on); #endif callout_reset_on(&txq->ift_timer, reset_on, iflib_timer, txq, txq->ift_timer.c_cpu); } IFDI_LINK_INTR_ENABLE(ctx); if (do_reset) iflib_if_init_locked(ctx); CTX_UNLOCK(ctx); if (LINK_ACTIVE(ctx) == 0) return; for (txq = ctx->ifc_txqs, i = 0; i < sctx->isc_ntxqsets; i++, txq++) iflib_txq_check_drain(txq, IFLIB_RESTART_BUDGET); } static void _task_fn_iov(void *context) { if_ctx_t ctx = context; if (!(if_getdrvflags(ctx->ifc_ifp) & IFF_DRV_RUNNING) && !(ctx->ifc_sctx->isc_flags & IFLIB_ADMIN_ALWAYS_RUN)) return; CTX_LOCK(ctx); IFDI_VFLR_HANDLE(ctx); CTX_UNLOCK(ctx); } static int iflib_sysctl_int_delay(SYSCTL_HANDLER_ARGS) { int err; if_int_delay_info_t info; if_ctx_t ctx; info = (if_int_delay_info_t)arg1; ctx = info->iidi_ctx; info->iidi_req = req; info->iidi_oidp = oidp; CTX_LOCK(ctx); err = IFDI_SYSCTL_INT_DELAY(ctx, info); CTX_UNLOCK(ctx); return (err); } /********************************************************************* * * IFNET FUNCTIONS * **********************************************************************/ static void iflib_if_init_locked(if_ctx_t ctx) { iflib_stop(ctx); iflib_init_locked(ctx); } static void iflib_if_init(void *arg) { if_ctx_t ctx = arg; CTX_LOCK(ctx); iflib_if_init_locked(ctx); CTX_UNLOCK(ctx); } static int iflib_if_transmit(if_t ifp, struct mbuf *m) { if_ctx_t ctx = if_getsoftc(ifp); iflib_txq_t txq; int err, qidx; int abdicate = ctx->ifc_sysctl_tx_abdicate; if (__predict_false((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || !LINK_ACTIVE(ctx))) { DBG_COUNTER_INC(tx_frees); m_freem(m); return (ENOBUFS); } MPASS(m->m_nextpkt == NULL); /* ALTQ-enabled interfaces always use queue 0. */ qidx = 0; if ((NTXQSETS(ctx) > 1) && M_HASHTYPE_GET(m) && !ALTQ_IS_ENABLED(&ifp->if_snd)) qidx = QIDX(ctx, m); /* * XXX calculate buf_ring based on flowid (divvy up bits?) */ txq = &ctx->ifc_txqs[qidx]; #ifdef DRIVER_BACKPRESSURE if (txq->ift_closed) { while (m != NULL) { next = m->m_nextpkt; m->m_nextpkt = NULL; m_freem(m); DBG_COUNTER_INC(tx_frees); m = next; } return (ENOBUFS); } #endif #ifdef notyet qidx = count = 0; mp = marr; next = m; do { count++; next = next->m_nextpkt; } while (next != NULL); if (count > nitems(marr)) if ((mp = malloc(count*sizeof(struct mbuf *), M_IFLIB, M_NOWAIT)) == NULL) { /* XXX check nextpkt */ m_freem(m); /* XXX simplify for now */ DBG_COUNTER_INC(tx_frees); return (ENOBUFS); } for (next = m, i = 0; next != NULL; i++) { mp[i] = next; next = next->m_nextpkt; mp[i]->m_nextpkt = NULL; } #endif DBG_COUNTER_INC(tx_seen); err = ifmp_ring_enqueue(txq->ift_br, (void **)&m, 1, TX_BATCH_SIZE, abdicate); if (abdicate) GROUPTASK_ENQUEUE(&txq->ift_task); if (err) { if (!abdicate) GROUPTASK_ENQUEUE(&txq->ift_task); /* support forthcoming later */ #ifdef DRIVER_BACKPRESSURE txq->ift_closed = TRUE; #endif ifmp_ring_check_drainage(txq->ift_br, TX_BATCH_SIZE); m_freem(m); DBG_COUNTER_INC(tx_frees); } return (err); } #ifdef ALTQ /* * The overall approach to integrating iflib with ALTQ is to continue to use * the iflib mp_ring machinery between the ALTQ queue(s) and the hardware * ring. Technically, when using ALTQ, queueing to an intermediate mp_ring * is redundant/unnecessary, but doing so minimizes the amount of * ALTQ-specific code required in iflib. It is assumed that the overhead of * redundantly queueing to an intermediate mp_ring is swamped by the * performance limitations inherent in using ALTQ. * * When ALTQ support is compiled in, all iflib drivers will use a transmit * routine, iflib_altq_if_transmit(), that checks if ALTQ is enabled for the * given interface. If ALTQ is enabled for an interface, then all * transmitted packets for that interface will be submitted to the ALTQ * subsystem via IFQ_ENQUEUE(). We don't use the legacy if_transmit() * implementation because it uses IFQ_HANDOFF(), which will duplicatively * update stats that the iflib machinery handles, and which is sensitve to * the disused IFF_DRV_OACTIVE flag. Additionally, iflib_altq_if_start() * will be installed as the start routine for use by ALTQ facilities that * need to trigger queue drains on a scheduled basis. * */ static void iflib_altq_if_start(if_t ifp) { struct ifaltq *ifq = &ifp->if_snd; struct mbuf *m; IFQ_LOCK(ifq); IFQ_DEQUEUE_NOLOCK(ifq, m); while (m != NULL) { iflib_if_transmit(ifp, m); IFQ_DEQUEUE_NOLOCK(ifq, m); } IFQ_UNLOCK(ifq); } static int iflib_altq_if_transmit(if_t ifp, struct mbuf *m) { int err; if (ALTQ_IS_ENABLED(&ifp->if_snd)) { IFQ_ENQUEUE(&ifp->if_snd, m, err); if (err == 0) iflib_altq_if_start(ifp); } else err = iflib_if_transmit(ifp, m); return (err); } #endif /* ALTQ */ static void iflib_if_qflush(if_t ifp) { if_ctx_t ctx = if_getsoftc(ifp); iflib_txq_t txq = ctx->ifc_txqs; int i; STATE_LOCK(ctx); ctx->ifc_flags |= IFC_QFLUSH; STATE_UNLOCK(ctx); for (i = 0; i < NTXQSETS(ctx); i++, txq++) while (!(ifmp_ring_is_idle(txq->ift_br) || ifmp_ring_is_stalled(txq->ift_br))) iflib_txq_check_drain(txq, 0); STATE_LOCK(ctx); ctx->ifc_flags &= ~IFC_QFLUSH; STATE_UNLOCK(ctx); /* * When ALTQ is enabled, this will also take care of purging the * ALTQ queue(s). */ if_qflush(ifp); } #define IFCAP_FLAGS (IFCAP_HWCSUM_IPV6 | IFCAP_HWCSUM | IFCAP_LRO | \ IFCAP_TSO | IFCAP_VLAN_HWTAGGING | IFCAP_HWSTATS | \ IFCAP_VLAN_MTU | IFCAP_VLAN_HWFILTER | \ IFCAP_VLAN_HWTSO | IFCAP_VLAN_HWCSUM) static int iflib_if_ioctl(if_t ifp, u_long command, caddr_t data) { if_ctx_t ctx = if_getsoftc(ifp); struct ifreq *ifr = (struct ifreq *)data; #if defined(INET) || defined(INET6) struct ifaddr *ifa = (struct ifaddr *)data; #endif bool avoid_reset = FALSE; int err = 0, reinit = 0, bits; switch (command) { case SIOCSIFADDR: #ifdef INET if (ifa->ifa_addr->sa_family == AF_INET) avoid_reset = TRUE; #endif #ifdef INET6 if (ifa->ifa_addr->sa_family == AF_INET6) avoid_reset = TRUE; #endif /* ** Calling init results in link renegotiation, ** so we avoid doing it when possible. */ if (avoid_reset) { if_setflagbits(ifp, IFF_UP,0); if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) reinit = 1; #ifdef INET if (!(if_getflags(ifp) & IFF_NOARP)) arp_ifinit(ifp, ifa); #endif } else err = ether_ioctl(ifp, command, data); break; case SIOCSIFMTU: CTX_LOCK(ctx); if (ifr->ifr_mtu == if_getmtu(ifp)) { CTX_UNLOCK(ctx); break; } bits = if_getdrvflags(ifp); /* stop the driver and free any clusters before proceeding */ iflib_stop(ctx); if ((err = IFDI_MTU_SET(ctx, ifr->ifr_mtu)) == 0) { STATE_LOCK(ctx); if (ifr->ifr_mtu > ctx->ifc_max_fl_buf_size) ctx->ifc_flags |= IFC_MULTISEG; else ctx->ifc_flags &= ~IFC_MULTISEG; STATE_UNLOCK(ctx); err = if_setmtu(ifp, ifr->ifr_mtu); } iflib_init_locked(ctx); STATE_LOCK(ctx); if_setdrvflags(ifp, bits); STATE_UNLOCK(ctx); CTX_UNLOCK(ctx); break; case SIOCSIFFLAGS: CTX_LOCK(ctx); if (if_getflags(ifp) & IFF_UP) { if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { if ((if_getflags(ifp) ^ ctx->ifc_if_flags) & (IFF_PROMISC | IFF_ALLMULTI)) { err = IFDI_PROMISC_SET(ctx, if_getflags(ifp)); } } else reinit = 1; } else if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { iflib_stop(ctx); } ctx->ifc_if_flags = if_getflags(ifp); CTX_UNLOCK(ctx); break; case SIOCADDMULTI: case SIOCDELMULTI: if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { CTX_LOCK(ctx); IFDI_INTR_DISABLE(ctx); IFDI_MULTI_SET(ctx); IFDI_INTR_ENABLE(ctx); CTX_UNLOCK(ctx); } break; case SIOCSIFMEDIA: CTX_LOCK(ctx); IFDI_MEDIA_SET(ctx); CTX_UNLOCK(ctx); /* falls thru */ case SIOCGIFMEDIA: case SIOCGIFXMEDIA: err = ifmedia_ioctl(ifp, ifr, &ctx->ifc_media, command); break; case SIOCGI2C: { struct ifi2creq i2c; err = copyin(ifr_data_get_ptr(ifr), &i2c, sizeof(i2c)); if (err != 0) break; if (i2c.dev_addr != 0xA0 && i2c.dev_addr != 0xA2) { err = EINVAL; break; } if (i2c.len > sizeof(i2c.data)) { err = EINVAL; break; } if ((err = IFDI_I2C_REQ(ctx, &i2c)) == 0) err = copyout(&i2c, ifr_data_get_ptr(ifr), sizeof(i2c)); break; } case SIOCSIFCAP: { int mask, setmask, oldmask; oldmask = if_getcapenable(ifp); mask = ifr->ifr_reqcap ^ oldmask; mask &= ctx->ifc_softc_ctx.isc_capabilities; setmask = 0; #ifdef TCP_OFFLOAD setmask |= mask & (IFCAP_TOE4|IFCAP_TOE6); #endif setmask |= (mask & IFCAP_FLAGS); setmask |= (mask & IFCAP_WOL); /* * If any RX csum has changed, change all the ones that * are supported by the driver. */ if (setmask & (IFCAP_RXCSUM | IFCAP_RXCSUM_IPV6)) { setmask |= ctx->ifc_softc_ctx.isc_capabilities & (IFCAP_RXCSUM | IFCAP_RXCSUM_IPV6); } /* * want to ensure that traffic has stopped before we change any of the flags */ if (setmask) { CTX_LOCK(ctx); bits = if_getdrvflags(ifp); if (bits & IFF_DRV_RUNNING && setmask & ~IFCAP_WOL) iflib_stop(ctx); STATE_LOCK(ctx); if_togglecapenable(ifp, setmask); STATE_UNLOCK(ctx); if (bits & IFF_DRV_RUNNING && setmask & ~IFCAP_WOL) iflib_init_locked(ctx); STATE_LOCK(ctx); if_setdrvflags(ifp, bits); STATE_UNLOCK(ctx); CTX_UNLOCK(ctx); } if_vlancap(ifp); break; } case SIOCGPRIVATE_0: case SIOCSDRVSPEC: case SIOCGDRVSPEC: CTX_LOCK(ctx); err = IFDI_PRIV_IOCTL(ctx, command, data); CTX_UNLOCK(ctx); break; default: err = ether_ioctl(ifp, command, data); break; } if (reinit) iflib_if_init(ctx); return (err); } static uint64_t iflib_if_get_counter(if_t ifp, ift_counter cnt) { if_ctx_t ctx = if_getsoftc(ifp); return (IFDI_GET_COUNTER(ctx, cnt)); } /********************************************************************* * * OTHER FUNCTIONS EXPORTED TO THE STACK * **********************************************************************/ static void iflib_vlan_register(void *arg, if_t ifp, uint16_t vtag) { if_ctx_t ctx = if_getsoftc(ifp); if ((void *)ctx != arg) return; if ((vtag == 0) || (vtag > 4095)) return; CTX_LOCK(ctx); IFDI_VLAN_REGISTER(ctx, vtag); /* Re-init to load the changes */ if (if_getcapenable(ifp) & IFCAP_VLAN_HWFILTER) iflib_if_init_locked(ctx); CTX_UNLOCK(ctx); } static void iflib_vlan_unregister(void *arg, if_t ifp, uint16_t vtag) { if_ctx_t ctx = if_getsoftc(ifp); if ((void *)ctx != arg) return; if ((vtag == 0) || (vtag > 4095)) return; CTX_LOCK(ctx); IFDI_VLAN_UNREGISTER(ctx, vtag); /* Re-init to load the changes */ if (if_getcapenable(ifp) & IFCAP_VLAN_HWFILTER) iflib_if_init_locked(ctx); CTX_UNLOCK(ctx); } static void iflib_led_func(void *arg, int onoff) { if_ctx_t ctx = arg; CTX_LOCK(ctx); IFDI_LED_FUNC(ctx, onoff); CTX_UNLOCK(ctx); } /********************************************************************* * * BUS FUNCTION DEFINITIONS * **********************************************************************/ int iflib_device_probe(device_t dev) { pci_vendor_info_t *ent; uint16_t pci_vendor_id, pci_device_id; uint16_t pci_subvendor_id, pci_subdevice_id; uint16_t pci_rev_id; if_shared_ctx_t sctx; if ((sctx = DEVICE_REGISTER(dev)) == NULL || sctx->isc_magic != IFLIB_MAGIC) return (ENOTSUP); pci_vendor_id = pci_get_vendor(dev); pci_device_id = pci_get_device(dev); pci_subvendor_id = pci_get_subvendor(dev); pci_subdevice_id = pci_get_subdevice(dev); pci_rev_id = pci_get_revid(dev); if (sctx->isc_parse_devinfo != NULL) sctx->isc_parse_devinfo(&pci_device_id, &pci_subvendor_id, &pci_subdevice_id, &pci_rev_id); ent = sctx->isc_vendor_info; while (ent->pvi_vendor_id != 0) { if (pci_vendor_id != ent->pvi_vendor_id) { ent++; continue; } if ((pci_device_id == ent->pvi_device_id) && ((pci_subvendor_id == ent->pvi_subvendor_id) || (ent->pvi_subvendor_id == 0)) && ((pci_subdevice_id == ent->pvi_subdevice_id) || (ent->pvi_subdevice_id == 0)) && ((pci_rev_id == ent->pvi_rev_id) || (ent->pvi_rev_id == 0))) { device_set_desc_copy(dev, ent->pvi_name); /* this needs to be changed to zero if the bus probing code * ever stops re-probing on best match because the sctx * may have its values over written by register calls * in subsequent probes */ return (BUS_PROBE_DEFAULT); } ent++; } return (ENXIO); } static void iflib_reset_qvalues(if_ctx_t ctx) { if_softc_ctx_t scctx = &ctx->ifc_softc_ctx; if_shared_ctx_t sctx = ctx->ifc_sctx; device_t dev = ctx->ifc_dev; int i; scctx->isc_txrx_budget_bytes_max = IFLIB_MAX_TX_BYTES; scctx->isc_tx_qdepth = IFLIB_DEFAULT_TX_QDEPTH; /* * XXX sanity check that ntxd & nrxd are a power of 2 */ if (ctx->ifc_sysctl_ntxqs != 0) scctx->isc_ntxqsets = ctx->ifc_sysctl_ntxqs; if (ctx->ifc_sysctl_nrxqs != 0) scctx->isc_nrxqsets = ctx->ifc_sysctl_nrxqs; for (i = 0; i < sctx->isc_ntxqs; i++) { if (ctx->ifc_sysctl_ntxds[i] != 0) scctx->isc_ntxd[i] = ctx->ifc_sysctl_ntxds[i]; else scctx->isc_ntxd[i] = sctx->isc_ntxd_default[i]; } for (i = 0; i < sctx->isc_nrxqs; i++) { if (ctx->ifc_sysctl_nrxds[i] != 0) scctx->isc_nrxd[i] = ctx->ifc_sysctl_nrxds[i]; else scctx->isc_nrxd[i] = sctx->isc_nrxd_default[i]; } for (i = 0; i < sctx->isc_nrxqs; i++) { if (scctx->isc_nrxd[i] < sctx->isc_nrxd_min[i]) { device_printf(dev, "nrxd%d: %d less than nrxd_min %d - resetting to min\n", i, scctx->isc_nrxd[i], sctx->isc_nrxd_min[i]); scctx->isc_nrxd[i] = sctx->isc_nrxd_min[i]; } if (scctx->isc_nrxd[i] > sctx->isc_nrxd_max[i]) { device_printf(dev, "nrxd%d: %d greater than nrxd_max %d - resetting to max\n", i, scctx->isc_nrxd[i], sctx->isc_nrxd_max[i]); scctx->isc_nrxd[i] = sctx->isc_nrxd_max[i]; } } for (i = 0; i < sctx->isc_ntxqs; i++) { if (scctx->isc_ntxd[i] < sctx->isc_ntxd_min[i]) { device_printf(dev, "ntxd%d: %d less than ntxd_min %d - resetting to min\n", i, scctx->isc_ntxd[i], sctx->isc_ntxd_min[i]); scctx->isc_ntxd[i] = sctx->isc_ntxd_min[i]; } if (scctx->isc_ntxd[i] > sctx->isc_ntxd_max[i]) { device_printf(dev, "ntxd%d: %d greater than ntxd_max %d - resetting to max\n", i, scctx->isc_ntxd[i], sctx->isc_ntxd_max[i]); scctx->isc_ntxd[i] = sctx->isc_ntxd_max[i]; } } } int iflib_device_register(device_t dev, void *sc, if_shared_ctx_t sctx, if_ctx_t *ctxp) { int err, rid, msix; if_ctx_t ctx; if_t ifp; if_softc_ctx_t scctx; int i; uint16_t main_txq; uint16_t main_rxq; ctx = malloc(sizeof(* ctx), M_IFLIB, M_WAITOK|M_ZERO); if (sc == NULL) { sc = malloc(sctx->isc_driver->size, M_IFLIB, M_WAITOK|M_ZERO); device_set_softc(dev, ctx); ctx->ifc_flags |= IFC_SC_ALLOCATED; } ctx->ifc_sctx = sctx; ctx->ifc_dev = dev; ctx->ifc_softc = sc; if ((err = iflib_register(ctx)) != 0) { device_printf(dev, "iflib_register failed %d\n", err); goto fail_ctx_free; } iflib_add_device_sysctl_pre(ctx); scctx = &ctx->ifc_softc_ctx; ifp = ctx->ifc_ifp; iflib_reset_qvalues(ctx); CTX_LOCK(ctx); if ((err = IFDI_ATTACH_PRE(ctx)) != 0) { device_printf(dev, "IFDI_ATTACH_PRE failed %d\n", err); goto fail_unlock; } _iflib_pre_assert(scctx); ctx->ifc_txrx = *scctx->isc_txrx; #ifdef INVARIANTS MPASS(scctx->isc_capabilities); if (scctx->isc_capabilities & IFCAP_TXCSUM) MPASS(scctx->isc_tx_csum_flags); #endif if_setcapabilities(ifp, scctx->isc_capabilities | IFCAP_HWSTATS); if_setcapenable(ifp, scctx->isc_capenable | IFCAP_HWSTATS); if (scctx->isc_ntxqsets == 0 || (scctx->isc_ntxqsets_max && scctx->isc_ntxqsets_max < scctx->isc_ntxqsets)) scctx->isc_ntxqsets = scctx->isc_ntxqsets_max; if (scctx->isc_nrxqsets == 0 || (scctx->isc_nrxqsets_max && scctx->isc_nrxqsets_max < scctx->isc_nrxqsets)) scctx->isc_nrxqsets = scctx->isc_nrxqsets_max; main_txq = (sctx->isc_flags & IFLIB_HAS_TXCQ) ? 1 : 0; main_rxq = (sctx->isc_flags & IFLIB_HAS_RXCQ) ? 1 : 0; /* XXX change for per-queue sizes */ device_printf(dev, "Using %d tx descriptors and %d rx descriptors\n", scctx->isc_ntxd[main_txq], scctx->isc_nrxd[main_rxq]); for (i = 0; i < sctx->isc_nrxqs; i++) { if (!powerof2(scctx->isc_nrxd[i])) { /* round down instead? */ device_printf(dev, "# rx descriptors must be a power of 2\n"); err = EINVAL; goto fail_iflib_detach; } } for (i = 0; i < sctx->isc_ntxqs; i++) { if (!powerof2(scctx->isc_ntxd[i])) { device_printf(dev, "# tx descriptors must be a power of 2"); err = EINVAL; goto fail_iflib_detach; } } if (scctx->isc_tx_nsegments > scctx->isc_ntxd[main_txq] / MAX_SINGLE_PACKET_FRACTION) scctx->isc_tx_nsegments = max(1, scctx->isc_ntxd[main_txq] / MAX_SINGLE_PACKET_FRACTION); if (scctx->isc_tx_tso_segments_max > scctx->isc_ntxd[main_txq] / MAX_SINGLE_PACKET_FRACTION) scctx->isc_tx_tso_segments_max = max(1, scctx->isc_ntxd[main_txq] / MAX_SINGLE_PACKET_FRACTION); /* TSO parameters - dig these out of the data sheet - simply correspond to tag setup */ if (if_getcapabilities(ifp) & IFCAP_TSO) { /* * The stack can't handle a TSO size larger than IP_MAXPACKET, * but some MACs do. */ if_sethwtsomax(ifp, min(scctx->isc_tx_tso_size_max, IP_MAXPACKET)); /* * Take maximum number of m_pullup(9)'s in iflib_parse_header() * into account. In the worst case, each of these calls will * add another mbuf and, thus, the requirement for another DMA * segment. So for best performance, it doesn't make sense to * advertize a maximum of TSO segments that typically will * require defragmentation in iflib_encap(). */ if_sethwtsomaxsegcount(ifp, scctx->isc_tx_tso_segments_max - 3); if_sethwtsomaxsegsize(ifp, scctx->isc_tx_tso_segsize_max); } if (scctx->isc_rss_table_size == 0) scctx->isc_rss_table_size = 64; scctx->isc_rss_table_mask = scctx->isc_rss_table_size-1; GROUPTASK_INIT(&ctx->ifc_admin_task, 0, _task_fn_admin, ctx); /* XXX format name */ taskqgroup_attach(qgroup_if_config_tqg, &ctx->ifc_admin_task, ctx, -1, "admin"); /* Set up cpu set. If it fails, use the set of all CPUs. */ if (bus_get_cpus(dev, INTR_CPUS, sizeof(ctx->ifc_cpus), &ctx->ifc_cpus) != 0) { device_printf(dev, "Unable to fetch CPU list\n"); CPU_COPY(&all_cpus, &ctx->ifc_cpus); } MPASS(CPU_COUNT(&ctx->ifc_cpus) > 0); /* ** Now set up MSI or MSI-X, should return us the number of supported ** vectors (will be 1 for a legacy interrupt and MSI). */ if (sctx->isc_flags & IFLIB_SKIP_MSIX) { msix = scctx->isc_vectors; } else if (scctx->isc_msix_bar != 0) /* * The simple fact that isc_msix_bar is not 0 does not mean we * we have a good value there that is known to work. */ msix = iflib_msix_init(ctx); else { scctx->isc_vectors = 1; scctx->isc_ntxqsets = 1; scctx->isc_nrxqsets = 1; scctx->isc_intr = IFLIB_INTR_LEGACY; msix = 0; } /* Get memory for the station queues */ if ((err = iflib_queues_alloc(ctx))) { device_printf(dev, "Unable to allocate queue memory\n"); goto fail_intr_free; } if ((err = iflib_qset_structures_setup(ctx))) goto fail_queues; /* * Group taskqueues aren't properly set up until SMP is started, * so we disable interrupts until we can handle them post * SI_SUB_SMP. * * XXX: disabling interrupts doesn't actually work, at least for * the non-MSI case. When they occur before SI_SUB_SMP completes, * we do null handling and depend on this not causing too large an * interrupt storm. */ IFDI_INTR_DISABLE(ctx); if (msix > 1 && (err = IFDI_MSIX_INTR_ASSIGN(ctx, msix)) != 0) { device_printf(dev, "IFDI_MSIX_INTR_ASSIGN failed %d\n", err); goto fail_queues; } if (msix <= 1) { rid = 0; if (scctx->isc_intr == IFLIB_INTR_MSI) { MPASS(msix == 1); rid = 1; } if ((err = iflib_legacy_setup(ctx, ctx->isc_legacy_intr, ctx->ifc_softc, &rid, "irq0")) != 0) { device_printf(dev, "iflib_legacy_setup failed %d\n", err); goto fail_queues; } } ether_ifattach(ctx->ifc_ifp, ctx->ifc_mac); if ((err = IFDI_ATTACH_POST(ctx)) != 0) { device_printf(dev, "IFDI_ATTACH_POST failed %d\n", err); goto fail_detach; } /* * Tell the upper layer(s) if IFCAP_VLAN_MTU is supported. * This must appear after the call to ether_ifattach() because * ether_ifattach() sets if_hdrlen to the default value. */ if (if_getcapabilities(ifp) & IFCAP_VLAN_MTU) if_setifheaderlen(ifp, sizeof(struct ether_vlan_header)); if ((err = iflib_netmap_attach(ctx))) { device_printf(ctx->ifc_dev, "netmap attach failed: %d\n", err); goto fail_detach; } *ctxp = ctx; NETDUMP_SET(ctx->ifc_ifp, iflib); if_setgetcounterfn(ctx->ifc_ifp, iflib_if_get_counter); iflib_add_device_sysctl_post(ctx); ctx->ifc_flags |= IFC_INIT_DONE; CTX_UNLOCK(ctx); return (0); fail_detach: ether_ifdetach(ctx->ifc_ifp); fail_intr_free: iflib_free_intr_mem(ctx); fail_queues: iflib_tx_structures_free(ctx); iflib_rx_structures_free(ctx); fail_iflib_detach: IFDI_DETACH(ctx); fail_unlock: CTX_UNLOCK(ctx); fail_ctx_free: if (ctx->ifc_flags & IFC_SC_ALLOCATED) free(ctx->ifc_softc, M_IFLIB); free(ctx, M_IFLIB); return (err); } int iflib_pseudo_register(device_t dev, if_shared_ctx_t sctx, if_ctx_t *ctxp, struct iflib_cloneattach_ctx *clctx) { int err; if_ctx_t ctx; if_t ifp; if_softc_ctx_t scctx; int i; void *sc; uint16_t main_txq; uint16_t main_rxq; ctx = malloc(sizeof(*ctx), M_IFLIB, M_WAITOK|M_ZERO); sc = malloc(sctx->isc_driver->size, M_IFLIB, M_WAITOK|M_ZERO); ctx->ifc_flags |= IFC_SC_ALLOCATED; if (sctx->isc_flags & (IFLIB_PSEUDO|IFLIB_VIRTUAL)) ctx->ifc_flags |= IFC_PSEUDO; ctx->ifc_sctx = sctx; ctx->ifc_softc = sc; ctx->ifc_dev = dev; if ((err = iflib_register(ctx)) != 0) { device_printf(dev, "%s: iflib_register failed %d\n", __func__, err); goto fail_ctx_free; } iflib_add_device_sysctl_pre(ctx); scctx = &ctx->ifc_softc_ctx; ifp = ctx->ifc_ifp; /* * XXX sanity check that ntxd & nrxd are a power of 2 */ iflib_reset_qvalues(ctx); if ((err = IFDI_ATTACH_PRE(ctx)) != 0) { device_printf(dev, "IFDI_ATTACH_PRE failed %d\n", err); goto fail_ctx_free; } if (sctx->isc_flags & IFLIB_GEN_MAC) iflib_gen_mac(ctx); if ((err = IFDI_CLONEATTACH(ctx, clctx->cc_ifc, clctx->cc_name, clctx->cc_params)) != 0) { device_printf(dev, "IFDI_CLONEATTACH failed %d\n", err); goto fail_ctx_free; } ifmedia_add(&ctx->ifc_media, IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL); ifmedia_add(&ctx->ifc_media, IFM_ETHER | IFM_AUTO, 0, NULL); ifmedia_set(&ctx->ifc_media, IFM_ETHER | IFM_AUTO); #ifdef INVARIANTS MPASS(scctx->isc_capabilities); if (scctx->isc_capabilities & IFCAP_TXCSUM) MPASS(scctx->isc_tx_csum_flags); #endif if_setcapabilities(ifp, scctx->isc_capabilities | IFCAP_HWSTATS | IFCAP_LINKSTATE); if_setcapenable(ifp, scctx->isc_capenable | IFCAP_HWSTATS | IFCAP_LINKSTATE); ifp->if_flags |= IFF_NOGROUP; if (sctx->isc_flags & IFLIB_PSEUDO) { ether_ifattach(ctx->ifc_ifp, ctx->ifc_mac); if ((err = IFDI_ATTACH_POST(ctx)) != 0) { device_printf(dev, "IFDI_ATTACH_POST failed %d\n", err); goto fail_detach; } *ctxp = ctx; /* * Tell the upper layer(s) if IFCAP_VLAN_MTU is supported. * This must appear after the call to ether_ifattach() because * ether_ifattach() sets if_hdrlen to the default value. */ if (if_getcapabilities(ifp) & IFCAP_VLAN_MTU) if_setifheaderlen(ifp, sizeof(struct ether_vlan_header)); if_setgetcounterfn(ctx->ifc_ifp, iflib_if_get_counter); iflib_add_device_sysctl_post(ctx); ctx->ifc_flags |= IFC_INIT_DONE; return (0); } _iflib_pre_assert(scctx); ctx->ifc_txrx = *scctx->isc_txrx; if (scctx->isc_ntxqsets == 0 || (scctx->isc_ntxqsets_max && scctx->isc_ntxqsets_max < scctx->isc_ntxqsets)) scctx->isc_ntxqsets = scctx->isc_ntxqsets_max; if (scctx->isc_nrxqsets == 0 || (scctx->isc_nrxqsets_max && scctx->isc_nrxqsets_max < scctx->isc_nrxqsets)) scctx->isc_nrxqsets = scctx->isc_nrxqsets_max; main_txq = (sctx->isc_flags & IFLIB_HAS_TXCQ) ? 1 : 0; main_rxq = (sctx->isc_flags & IFLIB_HAS_RXCQ) ? 1 : 0; /* XXX change for per-queue sizes */ device_printf(dev, "Using %d tx descriptors and %d rx descriptors\n", scctx->isc_ntxd[main_txq], scctx->isc_nrxd[main_rxq]); for (i = 0; i < sctx->isc_nrxqs; i++) { if (!powerof2(scctx->isc_nrxd[i])) { /* round down instead? */ device_printf(dev, "# rx descriptors must be a power of 2\n"); err = EINVAL; goto fail_iflib_detach; } } for (i = 0; i < sctx->isc_ntxqs; i++) { if (!powerof2(scctx->isc_ntxd[i])) { device_printf(dev, "# tx descriptors must be a power of 2"); err = EINVAL; goto fail_iflib_detach; } } if (scctx->isc_tx_nsegments > scctx->isc_ntxd[main_txq] / MAX_SINGLE_PACKET_FRACTION) scctx->isc_tx_nsegments = max(1, scctx->isc_ntxd[main_txq] / MAX_SINGLE_PACKET_FRACTION); if (scctx->isc_tx_tso_segments_max > scctx->isc_ntxd[main_txq] / MAX_SINGLE_PACKET_FRACTION) scctx->isc_tx_tso_segments_max = max(1, scctx->isc_ntxd[main_txq] / MAX_SINGLE_PACKET_FRACTION); /* TSO parameters - dig these out of the data sheet - simply correspond to tag setup */ if (if_getcapabilities(ifp) & IFCAP_TSO) { /* * The stack can't handle a TSO size larger than IP_MAXPACKET, * but some MACs do. */ if_sethwtsomax(ifp, min(scctx->isc_tx_tso_size_max, IP_MAXPACKET)); /* * Take maximum number of m_pullup(9)'s in iflib_parse_header() * into account. In the worst case, each of these calls will * add another mbuf and, thus, the requirement for another DMA * segment. So for best performance, it doesn't make sense to * advertize a maximum of TSO segments that typically will * require defragmentation in iflib_encap(). */ if_sethwtsomaxsegcount(ifp, scctx->isc_tx_tso_segments_max - 3); if_sethwtsomaxsegsize(ifp, scctx->isc_tx_tso_segsize_max); } if (scctx->isc_rss_table_size == 0) scctx->isc_rss_table_size = 64; scctx->isc_rss_table_mask = scctx->isc_rss_table_size-1; GROUPTASK_INIT(&ctx->ifc_admin_task, 0, _task_fn_admin, ctx); /* XXX format name */ taskqgroup_attach(qgroup_if_config_tqg, &ctx->ifc_admin_task, ctx, -1, "admin"); /* XXX --- can support > 1 -- but keep it simple for now */ scctx->isc_intr = IFLIB_INTR_LEGACY; /* Get memory for the station queues */ if ((err = iflib_queues_alloc(ctx))) { device_printf(dev, "Unable to allocate queue memory\n"); goto fail_iflib_detach; } if ((err = iflib_qset_structures_setup(ctx))) { device_printf(dev, "qset structure setup failed %d\n", err); goto fail_queues; } /* * XXX What if anything do we want to do about interrupts? */ ether_ifattach(ctx->ifc_ifp, ctx->ifc_mac); if ((err = IFDI_ATTACH_POST(ctx)) != 0) { device_printf(dev, "IFDI_ATTACH_POST failed %d\n", err); goto fail_detach; } /* * Tell the upper layer(s) if IFCAP_VLAN_MTU is supported. * This must appear after the call to ether_ifattach() because * ether_ifattach() sets if_hdrlen to the default value. */ if (if_getcapabilities(ifp) & IFCAP_VLAN_MTU) if_setifheaderlen(ifp, sizeof(struct ether_vlan_header)); /* XXX handle more than one queue */ for (i = 0; i < scctx->isc_nrxqsets; i++) IFDI_RX_CLSET(ctx, 0, i, ctx->ifc_rxqs[i].ifr_fl[0].ifl_sds.ifsd_cl); *ctxp = ctx; if_setgetcounterfn(ctx->ifc_ifp, iflib_if_get_counter); iflib_add_device_sysctl_post(ctx); ctx->ifc_flags |= IFC_INIT_DONE; return (0); fail_detach: ether_ifdetach(ctx->ifc_ifp); fail_queues: iflib_tx_structures_free(ctx); iflib_rx_structures_free(ctx); fail_iflib_detach: IFDI_DETACH(ctx); fail_ctx_free: free(ctx->ifc_softc, M_IFLIB); free(ctx, M_IFLIB); return (err); } int iflib_pseudo_deregister(if_ctx_t ctx) { if_t ifp = ctx->ifc_ifp; iflib_txq_t txq; iflib_rxq_t rxq; int i, j; struct taskqgroup *tqg; iflib_fl_t fl; /* Unregister VLAN events */ if (ctx->ifc_vlan_attach_event != NULL) EVENTHANDLER_DEREGISTER(vlan_config, ctx->ifc_vlan_attach_event); if (ctx->ifc_vlan_detach_event != NULL) EVENTHANDLER_DEREGISTER(vlan_unconfig, ctx->ifc_vlan_detach_event); ether_ifdetach(ifp); /* ether_ifdetach calls if_qflush - lock must be destroy afterwards*/ CTX_LOCK_DESTROY(ctx); /* XXX drain any dependent tasks */ tqg = qgroup_if_io_tqg; for (txq = ctx->ifc_txqs, i = 0; i < NTXQSETS(ctx); i++, txq++) { callout_drain(&txq->ift_timer); if (txq->ift_task.gt_uniq != NULL) taskqgroup_detach(tqg, &txq->ift_task); } for (i = 0, rxq = ctx->ifc_rxqs; i < NRXQSETS(ctx); i++, rxq++) { if (rxq->ifr_task.gt_uniq != NULL) taskqgroup_detach(tqg, &rxq->ifr_task); for (j = 0, fl = rxq->ifr_fl; j < rxq->ifr_nfl; j++, fl++) free(fl->ifl_rx_bitmap, M_IFLIB); } tqg = qgroup_if_config_tqg; if (ctx->ifc_admin_task.gt_uniq != NULL) taskqgroup_detach(tqg, &ctx->ifc_admin_task); if (ctx->ifc_vflr_task.gt_uniq != NULL) taskqgroup_detach(tqg, &ctx->ifc_vflr_task); if_free(ifp); iflib_tx_structures_free(ctx); iflib_rx_structures_free(ctx); if (ctx->ifc_flags & IFC_SC_ALLOCATED) free(ctx->ifc_softc, M_IFLIB); free(ctx, M_IFLIB); return (0); } int iflib_device_attach(device_t dev) { if_ctx_t ctx; if_shared_ctx_t sctx; if ((sctx = DEVICE_REGISTER(dev)) == NULL || sctx->isc_magic != IFLIB_MAGIC) return (ENOTSUP); pci_enable_busmaster(dev); return (iflib_device_register(dev, NULL, sctx, &ctx)); } int iflib_device_deregister(if_ctx_t ctx) { if_t ifp = ctx->ifc_ifp; iflib_txq_t txq; iflib_rxq_t rxq; device_t dev = ctx->ifc_dev; int i, j; struct taskqgroup *tqg; iflib_fl_t fl; /* Make sure VLANS are not using driver */ if (if_vlantrunkinuse(ifp)) { device_printf(dev, "Vlan in use, detach first\n"); return (EBUSY); } #ifdef PCI_IOV if (!CTX_IS_VF(ctx) && pci_iov_detach(dev) != 0) { device_printf(dev, "SR-IOV in use; detach first.\n"); return (EBUSY); } #endif STATE_LOCK(ctx); ctx->ifc_flags |= IFC_IN_DETACH; STATE_UNLOCK(ctx); CTX_LOCK(ctx); iflib_stop(ctx); CTX_UNLOCK(ctx); /* Unregister VLAN events */ if (ctx->ifc_vlan_attach_event != NULL) EVENTHANDLER_DEREGISTER(vlan_config, ctx->ifc_vlan_attach_event); if (ctx->ifc_vlan_detach_event != NULL) EVENTHANDLER_DEREGISTER(vlan_unconfig, ctx->ifc_vlan_detach_event); iflib_netmap_detach(ifp); ether_ifdetach(ifp); if (ctx->ifc_led_dev != NULL) led_destroy(ctx->ifc_led_dev); /* XXX drain any dependent tasks */ tqg = qgroup_if_io_tqg; for (txq = ctx->ifc_txqs, i = 0; i < NTXQSETS(ctx); i++, txq++) { callout_drain(&txq->ift_timer); if (txq->ift_task.gt_uniq != NULL) taskqgroup_detach(tqg, &txq->ift_task); } for (i = 0, rxq = ctx->ifc_rxqs; i < NRXQSETS(ctx); i++, rxq++) { if (rxq->ifr_task.gt_uniq != NULL) taskqgroup_detach(tqg, &rxq->ifr_task); for (j = 0, fl = rxq->ifr_fl; j < rxq->ifr_nfl; j++, fl++) free(fl->ifl_rx_bitmap, M_IFLIB); } tqg = qgroup_if_config_tqg; if (ctx->ifc_admin_task.gt_uniq != NULL) taskqgroup_detach(tqg, &ctx->ifc_admin_task); if (ctx->ifc_vflr_task.gt_uniq != NULL) taskqgroup_detach(tqg, &ctx->ifc_vflr_task); CTX_LOCK(ctx); IFDI_DETACH(ctx); CTX_UNLOCK(ctx); /* ether_ifdetach calls if_qflush - lock must be destroy afterwards*/ CTX_LOCK_DESTROY(ctx); device_set_softc(ctx->ifc_dev, NULL); iflib_free_intr_mem(ctx); bus_generic_detach(dev); if_free(ifp); iflib_tx_structures_free(ctx); iflib_rx_structures_free(ctx); if (ctx->ifc_flags & IFC_SC_ALLOCATED) free(ctx->ifc_softc, M_IFLIB); STATE_LOCK_DESTROY(ctx); free(ctx, M_IFLIB); return (0); } static void iflib_free_intr_mem(if_ctx_t ctx) { if (ctx->ifc_softc_ctx.isc_intr != IFLIB_INTR_MSIX) { iflib_irq_free(ctx, &ctx->ifc_legacy_irq); } if (ctx->ifc_softc_ctx.isc_intr != IFLIB_INTR_LEGACY) { pci_release_msi(ctx->ifc_dev); } if (ctx->ifc_msix_mem != NULL) { bus_release_resource(ctx->ifc_dev, SYS_RES_MEMORY, rman_get_rid(ctx->ifc_msix_mem), ctx->ifc_msix_mem); ctx->ifc_msix_mem = NULL; } } int iflib_device_detach(device_t dev) { if_ctx_t ctx = device_get_softc(dev); return (iflib_device_deregister(ctx)); } int iflib_device_suspend(device_t dev) { if_ctx_t ctx = device_get_softc(dev); CTX_LOCK(ctx); IFDI_SUSPEND(ctx); CTX_UNLOCK(ctx); return bus_generic_suspend(dev); } int iflib_device_shutdown(device_t dev) { if_ctx_t ctx = device_get_softc(dev); CTX_LOCK(ctx); IFDI_SHUTDOWN(ctx); CTX_UNLOCK(ctx); return bus_generic_suspend(dev); } int iflib_device_resume(device_t dev) { if_ctx_t ctx = device_get_softc(dev); iflib_txq_t txq = ctx->ifc_txqs; CTX_LOCK(ctx); IFDI_RESUME(ctx); iflib_if_init_locked(ctx); CTX_UNLOCK(ctx); for (int i = 0; i < NTXQSETS(ctx); i++, txq++) iflib_txq_check_drain(txq, IFLIB_RESTART_BUDGET); return (bus_generic_resume(dev)); } int iflib_device_iov_init(device_t dev, uint16_t num_vfs, const nvlist_t *params) { int error; if_ctx_t ctx = device_get_softc(dev); CTX_LOCK(ctx); error = IFDI_IOV_INIT(ctx, num_vfs, params); CTX_UNLOCK(ctx); return (error); } void iflib_device_iov_uninit(device_t dev) { if_ctx_t ctx = device_get_softc(dev); CTX_LOCK(ctx); IFDI_IOV_UNINIT(ctx); CTX_UNLOCK(ctx); } int iflib_device_iov_add_vf(device_t dev, uint16_t vfnum, const nvlist_t *params) { int error; if_ctx_t ctx = device_get_softc(dev); CTX_LOCK(ctx); error = IFDI_IOV_VF_ADD(ctx, vfnum, params); CTX_UNLOCK(ctx); return (error); } /********************************************************************* * * MODULE FUNCTION DEFINITIONS * **********************************************************************/ /* * - Start a fast taskqueue thread for each core * - Start a taskqueue for control operations */ static int iflib_module_init(void) { return (0); } static int iflib_module_event_handler(module_t mod, int what, void *arg) { int err; switch (what) { case MOD_LOAD: if ((err = iflib_module_init()) != 0) return (err); break; case MOD_UNLOAD: return (EBUSY); default: return (EOPNOTSUPP); } return (0); } /********************************************************************* * * PUBLIC FUNCTION DEFINITIONS * ordered as in iflib.h * **********************************************************************/ static void _iflib_assert(if_shared_ctx_t sctx) { MPASS(sctx->isc_tx_maxsize); MPASS(sctx->isc_tx_maxsegsize); MPASS(sctx->isc_rx_maxsize); MPASS(sctx->isc_rx_nsegments); MPASS(sctx->isc_rx_maxsegsize); MPASS(sctx->isc_nrxd_min[0]); MPASS(sctx->isc_nrxd_max[0]); MPASS(sctx->isc_nrxd_default[0]); MPASS(sctx->isc_ntxd_min[0]); MPASS(sctx->isc_ntxd_max[0]); MPASS(sctx->isc_ntxd_default[0]); } static void _iflib_pre_assert(if_softc_ctx_t scctx) { MPASS(scctx->isc_txrx->ift_txd_encap); MPASS(scctx->isc_txrx->ift_txd_flush); MPASS(scctx->isc_txrx->ift_txd_credits_update); MPASS(scctx->isc_txrx->ift_rxd_available); MPASS(scctx->isc_txrx->ift_rxd_pkt_get); MPASS(scctx->isc_txrx->ift_rxd_refill); MPASS(scctx->isc_txrx->ift_rxd_flush); } static int iflib_register(if_ctx_t ctx) { if_shared_ctx_t sctx = ctx->ifc_sctx; driver_t *driver = sctx->isc_driver; device_t dev = ctx->ifc_dev; if_t ifp; _iflib_assert(sctx); CTX_LOCK_INIT(ctx); STATE_LOCK_INIT(ctx, device_get_nameunit(ctx->ifc_dev)); ifp = ctx->ifc_ifp = if_alloc(IFT_ETHER); if (ifp == NULL) { device_printf(dev, "can not allocate ifnet structure\n"); return (ENOMEM); } /* * Initialize our context's device specific methods */ kobj_init((kobj_t) ctx, (kobj_class_t) driver); kobj_class_compile((kobj_class_t) driver); driver->refs++; if_initname(ifp, device_get_name(dev), device_get_unit(dev)); if_setsoftc(ifp, ctx); if_setdev(ifp, dev); if_setinitfn(ifp, iflib_if_init); if_setioctlfn(ifp, iflib_if_ioctl); #ifdef ALTQ if_setstartfn(ifp, iflib_altq_if_start); if_settransmitfn(ifp, iflib_altq_if_transmit); if_setsendqready(ifp); #else if_settransmitfn(ifp, iflib_if_transmit); #endif if_setqflushfn(ifp, iflib_if_qflush); if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST); ctx->ifc_vlan_attach_event = EVENTHANDLER_REGISTER(vlan_config, iflib_vlan_register, ctx, EVENTHANDLER_PRI_FIRST); ctx->ifc_vlan_detach_event = EVENTHANDLER_REGISTER(vlan_unconfig, iflib_vlan_unregister, ctx, EVENTHANDLER_PRI_FIRST); ifmedia_init(&ctx->ifc_media, IFM_IMASK, iflib_media_change, iflib_media_status); return (0); } static int iflib_queues_alloc(if_ctx_t ctx) { if_shared_ctx_t sctx = ctx->ifc_sctx; if_softc_ctx_t scctx = &ctx->ifc_softc_ctx; device_t dev = ctx->ifc_dev; int nrxqsets = scctx->isc_nrxqsets; int ntxqsets = scctx->isc_ntxqsets; iflib_txq_t txq; iflib_rxq_t rxq; iflib_fl_t fl = NULL; int i, j, cpu, err, txconf, rxconf; iflib_dma_info_t ifdip; uint32_t *rxqsizes = scctx->isc_rxqsizes; uint32_t *txqsizes = scctx->isc_txqsizes; uint8_t nrxqs = sctx->isc_nrxqs; uint8_t ntxqs = sctx->isc_ntxqs; int nfree_lists = sctx->isc_nfl ? sctx->isc_nfl : 1; caddr_t *vaddrs; uint64_t *paddrs; KASSERT(ntxqs > 0, ("number of queues per qset must be at least 1")); KASSERT(nrxqs > 0, ("number of queues per qset must be at least 1")); /* Allocate the TX ring struct memory */ if (!(ctx->ifc_txqs = (iflib_txq_t) malloc(sizeof(struct iflib_txq) * ntxqsets, M_IFLIB, M_NOWAIT | M_ZERO))) { device_printf(dev, "Unable to allocate TX ring memory\n"); err = ENOMEM; goto fail; } /* Now allocate the RX */ if (!(ctx->ifc_rxqs = (iflib_rxq_t) malloc(sizeof(struct iflib_rxq) * nrxqsets, M_IFLIB, M_NOWAIT | M_ZERO))) { device_printf(dev, "Unable to allocate RX ring memory\n"); err = ENOMEM; goto rx_fail; } txq = ctx->ifc_txqs; rxq = ctx->ifc_rxqs; /* * XXX handle allocation failure */ for (txconf = i = 0, cpu = CPU_FIRST(); i < ntxqsets; i++, txconf++, txq++, cpu = CPU_NEXT(cpu)) { /* Set up some basics */ if ((ifdip = malloc(sizeof(struct iflib_dma_info) * ntxqs, M_IFLIB, M_NOWAIT | M_ZERO)) == NULL) { device_printf(dev, "Unable to allocate TX DMA info memory\n"); err = ENOMEM; goto err_tx_desc; } txq->ift_ifdi = ifdip; for (j = 0; j < ntxqs; j++, ifdip++) { if (iflib_dma_alloc(ctx, txqsizes[j], ifdip, 0)) { device_printf(dev, "Unable to allocate TX descriptors\n"); err = ENOMEM; goto err_tx_desc; } txq->ift_txd_size[j] = scctx->isc_txd_size[j]; bzero((void *)ifdip->idi_vaddr, txqsizes[j]); } txq->ift_ctx = ctx; txq->ift_id = i; if (sctx->isc_flags & IFLIB_HAS_TXCQ) { txq->ift_br_offset = 1; } else { txq->ift_br_offset = 0; } /* XXX fix this */ txq->ift_timer.c_cpu = cpu; if (iflib_txsd_alloc(txq)) { device_printf(dev, "Critical Failure setting up TX buffers\n"); err = ENOMEM; goto err_tx_desc; } /* Initialize the TX lock */ snprintf(txq->ift_mtx_name, MTX_NAME_LEN, "%s:tx(%d):callout", device_get_nameunit(dev), txq->ift_id); mtx_init(&txq->ift_mtx, txq->ift_mtx_name, NULL, MTX_DEF); callout_init_mtx(&txq->ift_timer, &txq->ift_mtx, 0); snprintf(txq->ift_db_mtx_name, MTX_NAME_LEN, "%s:tx(%d):db", device_get_nameunit(dev), txq->ift_id); err = ifmp_ring_alloc(&txq->ift_br, 2048, txq, iflib_txq_drain, iflib_txq_can_drain, M_IFLIB, M_WAITOK); if (err) { /* XXX free any allocated rings */ device_printf(dev, "Unable to allocate buf_ring\n"); goto err_tx_desc; } } for (rxconf = i = 0; i < nrxqsets; i++, rxconf++, rxq++) { /* Set up some basics */ if ((ifdip = malloc(sizeof(struct iflib_dma_info) * nrxqs, M_IFLIB, M_NOWAIT | M_ZERO)) == NULL) { device_printf(dev, "Unable to allocate RX DMA info memory\n"); err = ENOMEM; goto err_tx_desc; } rxq->ifr_ifdi = ifdip; /* XXX this needs to be changed if #rx queues != #tx queues */ rxq->ifr_ntxqirq = 1; rxq->ifr_txqid[0] = i; for (j = 0; j < nrxqs; j++, ifdip++) { if (iflib_dma_alloc(ctx, rxqsizes[j], ifdip, 0)) { device_printf(dev, "Unable to allocate RX descriptors\n"); err = ENOMEM; goto err_tx_desc; } bzero((void *)ifdip->idi_vaddr, rxqsizes[j]); } rxq->ifr_ctx = ctx; rxq->ifr_id = i; if (sctx->isc_flags & IFLIB_HAS_RXCQ) { rxq->ifr_fl_offset = 1; } else { rxq->ifr_fl_offset = 0; } rxq->ifr_nfl = nfree_lists; if (!(fl = (iflib_fl_t) malloc(sizeof(struct iflib_fl) * nfree_lists, M_IFLIB, M_NOWAIT | M_ZERO))) { device_printf(dev, "Unable to allocate free list memory\n"); err = ENOMEM; goto err_tx_desc; } rxq->ifr_fl = fl; for (j = 0; j < nfree_lists; j++) { fl[j].ifl_rxq = rxq; fl[j].ifl_id = j; fl[j].ifl_ifdi = &rxq->ifr_ifdi[j + rxq->ifr_fl_offset]; fl[j].ifl_rxd_size = scctx->isc_rxd_size[j]; } /* Allocate receive buffers for the ring */ if (iflib_rxsd_alloc(rxq)) { device_printf(dev, "Critical Failure setting up receive buffers\n"); err = ENOMEM; goto err_rx_desc; } for (j = 0, fl = rxq->ifr_fl; j < rxq->ifr_nfl; j++, fl++) fl->ifl_rx_bitmap = bit_alloc(fl->ifl_size, M_IFLIB, M_WAITOK); } /* TXQs */ vaddrs = malloc(sizeof(caddr_t)*ntxqsets*ntxqs, M_IFLIB, M_WAITOK); paddrs = malloc(sizeof(uint64_t)*ntxqsets*ntxqs, M_IFLIB, M_WAITOK); for (i = 0; i < ntxqsets; i++) { iflib_dma_info_t di = ctx->ifc_txqs[i].ift_ifdi; for (j = 0; j < ntxqs; j++, di++) { vaddrs[i*ntxqs + j] = di->idi_vaddr; paddrs[i*ntxqs + j] = di->idi_paddr; } } if ((err = IFDI_TX_QUEUES_ALLOC(ctx, vaddrs, paddrs, ntxqs, ntxqsets)) != 0) { device_printf(ctx->ifc_dev, "Unable to allocate device TX queue\n"); iflib_tx_structures_free(ctx); free(vaddrs, M_IFLIB); free(paddrs, M_IFLIB); goto err_rx_desc; } free(vaddrs, M_IFLIB); free(paddrs, M_IFLIB); /* RXQs */ vaddrs = malloc(sizeof(caddr_t)*nrxqsets*nrxqs, M_IFLIB, M_WAITOK); paddrs = malloc(sizeof(uint64_t)*nrxqsets*nrxqs, M_IFLIB, M_WAITOK); for (i = 0; i < nrxqsets; i++) { iflib_dma_info_t di = ctx->ifc_rxqs[i].ifr_ifdi; for (j = 0; j < nrxqs; j++, di++) { vaddrs[i*nrxqs + j] = di->idi_vaddr; paddrs[i*nrxqs + j] = di->idi_paddr; } } if ((err = IFDI_RX_QUEUES_ALLOC(ctx, vaddrs, paddrs, nrxqs, nrxqsets)) != 0) { device_printf(ctx->ifc_dev, "Unable to allocate device RX queue\n"); iflib_tx_structures_free(ctx); free(vaddrs, M_IFLIB); free(paddrs, M_IFLIB); goto err_rx_desc; } free(vaddrs, M_IFLIB); free(paddrs, M_IFLIB); return (0); /* XXX handle allocation failure changes */ err_rx_desc: err_tx_desc: rx_fail: if (ctx->ifc_rxqs != NULL) free(ctx->ifc_rxqs, M_IFLIB); ctx->ifc_rxqs = NULL; if (ctx->ifc_txqs != NULL) free(ctx->ifc_txqs, M_IFLIB); ctx->ifc_txqs = NULL; fail: return (err); } static int iflib_tx_structures_setup(if_ctx_t ctx) { iflib_txq_t txq = ctx->ifc_txqs; int i; for (i = 0; i < NTXQSETS(ctx); i++, txq++) iflib_txq_setup(txq); return (0); } static void iflib_tx_structures_free(if_ctx_t ctx) { iflib_txq_t txq = ctx->ifc_txqs; if_shared_ctx_t sctx = ctx->ifc_sctx; int i, j; for (i = 0; i < NTXQSETS(ctx); i++, txq++) { iflib_txq_destroy(txq); for (j = 0; j < sctx->isc_ntxqs; j++) iflib_dma_free(&txq->ift_ifdi[j]); } free(ctx->ifc_txqs, M_IFLIB); ctx->ifc_txqs = NULL; IFDI_QUEUES_FREE(ctx); } /********************************************************************* * * Initialize all receive rings. * **********************************************************************/ static int iflib_rx_structures_setup(if_ctx_t ctx) { iflib_rxq_t rxq = ctx->ifc_rxqs; int q; #if defined(INET6) || defined(INET) int i, err; #endif for (q = 0; q < ctx->ifc_softc_ctx.isc_nrxqsets; q++, rxq++) { #if defined(INET6) || defined(INET) tcp_lro_free(&rxq->ifr_lc); if ((err = tcp_lro_init_args(&rxq->ifr_lc, ctx->ifc_ifp, TCP_LRO_ENTRIES, min(1024, ctx->ifc_softc_ctx.isc_nrxd[rxq->ifr_fl_offset]))) != 0) { device_printf(ctx->ifc_dev, "LRO Initialization failed!\n"); goto fail; } rxq->ifr_lro_enabled = TRUE; #endif IFDI_RXQ_SETUP(ctx, rxq->ifr_id); } return (0); #if defined(INET6) || defined(INET) fail: /* * Free RX software descriptors allocated so far, we will only handle * the rings that completed, the failing case will have * cleaned up for itself. 'q' failed, so its the terminus. */ rxq = ctx->ifc_rxqs; for (i = 0; i < q; ++i, rxq++) { iflib_rx_sds_free(rxq); rxq->ifr_cq_gen = rxq->ifr_cq_cidx = rxq->ifr_cq_pidx = 0; } return (err); #endif } /********************************************************************* * * Free all receive rings. * **********************************************************************/ static void iflib_rx_structures_free(if_ctx_t ctx) { iflib_rxq_t rxq = ctx->ifc_rxqs; for (int i = 0; i < ctx->ifc_softc_ctx.isc_nrxqsets; i++, rxq++) { iflib_rx_sds_free(rxq); } free(ctx->ifc_rxqs, M_IFLIB); ctx->ifc_rxqs = NULL; } static int iflib_qset_structures_setup(if_ctx_t ctx) { int err; /* * It is expected that the caller takes care of freeing queues if this * fails. */ if ((err = iflib_tx_structures_setup(ctx)) != 0) { device_printf(ctx->ifc_dev, "iflib_tx_structures_setup failed: %d\n", err); return (err); } if ((err = iflib_rx_structures_setup(ctx)) != 0) device_printf(ctx->ifc_dev, "iflib_rx_structures_setup failed: %d\n", err); return (err); } int iflib_irq_alloc(if_ctx_t ctx, if_irq_t irq, int rid, driver_filter_t filter, void *filter_arg, driver_intr_t handler, void *arg, const char *name) { return (_iflib_irq_alloc(ctx, irq, rid, filter, handler, arg, name)); } #ifdef SMP static int find_nth(if_ctx_t ctx, int qid) { cpuset_t cpus; int i, cpuid, eqid, count; CPU_COPY(&ctx->ifc_cpus, &cpus); count = CPU_COUNT(&cpus); eqid = qid % count; /* clear up to the qid'th bit */ for (i = 0; i < eqid; i++) { cpuid = CPU_FFS(&cpus); MPASS(cpuid != 0); CPU_CLR(cpuid-1, &cpus); } cpuid = CPU_FFS(&cpus); MPASS(cpuid != 0); return (cpuid-1); } #ifdef SCHED_ULE extern struct cpu_group *cpu_top; /* CPU topology */ static int find_child_with_core(int cpu, struct cpu_group *grp) { int i; if (grp->cg_children == 0) return -1; MPASS(grp->cg_child); for (i = 0; i < grp->cg_children; i++) { if (CPU_ISSET(cpu, &grp->cg_child[i].cg_mask)) return i; } return -1; } /* * Find the nth "close" core to the specified core * "close" is defined as the deepest level that shares * at least an L2 cache. With threads, this will be * threads on the same core. If the sahred cache is L3 * or higher, simply returns the same core. */ static int find_close_core(int cpu, int core_offset) { struct cpu_group *grp; int i; int fcpu; cpuset_t cs; grp = cpu_top; if (grp == NULL) return cpu; i = 0; while ((i = find_child_with_core(cpu, grp)) != -1) { /* If the child only has one cpu, don't descend */ if (grp->cg_child[i].cg_count <= 1) break; grp = &grp->cg_child[i]; } /* If they don't share at least an L2 cache, use the same CPU */ if (grp->cg_level > CG_SHARE_L2 || grp->cg_level == CG_SHARE_NONE) return cpu; /* Now pick one */ CPU_COPY(&grp->cg_mask, &cs); /* Add the selected CPU offset to core offset. */ for (i = 0; (fcpu = CPU_FFS(&cs)) != 0; i++) { if (fcpu - 1 == cpu) break; CPU_CLR(fcpu - 1, &cs); } MPASS(fcpu); core_offset += i; CPU_COPY(&grp->cg_mask, &cs); for (i = core_offset % grp->cg_count; i > 0; i--) { MPASS(CPU_FFS(&cs)); CPU_CLR(CPU_FFS(&cs) - 1, &cs); } MPASS(CPU_FFS(&cs)); return CPU_FFS(&cs) - 1; } #else static int find_close_core(int cpu, int core_offset __unused) { return cpu; } #endif static int get_core_offset(if_ctx_t ctx, iflib_intr_type_t type, int qid) { switch (type) { case IFLIB_INTR_TX: /* TX queues get cores which share at least an L2 cache with the corresponding RX queue */ /* XXX handle multiple RX threads per core and more than two core per L2 group */ return qid / CPU_COUNT(&ctx->ifc_cpus) + 1; case IFLIB_INTR_RX: case IFLIB_INTR_RXTX: /* RX queues get the specified core */ return qid / CPU_COUNT(&ctx->ifc_cpus); default: return -1; } } #else #define get_core_offset(ctx, type, qid) CPU_FIRST() #define find_close_core(cpuid, tid) CPU_FIRST() #define find_nth(ctx, gid) CPU_FIRST() #endif /* Just to avoid copy/paste */ static inline int iflib_irq_set_affinity(if_ctx_t ctx, int irq, iflib_intr_type_t type, int qid, struct grouptask *gtask, struct taskqgroup *tqg, void *uniq, const char *name) { int cpuid; int err, tid; cpuid = find_nth(ctx, qid); tid = get_core_offset(ctx, type, qid); MPASS(tid >= 0); cpuid = find_close_core(cpuid, tid); err = taskqgroup_attach_cpu(tqg, gtask, uniq, cpuid, irq, name); if (err) { device_printf(ctx->ifc_dev, "taskqgroup_attach_cpu failed %d\n", err); return (err); } #ifdef notyet if (cpuid > ctx->ifc_cpuid_highest) ctx->ifc_cpuid_highest = cpuid; #endif return 0; } int iflib_irq_alloc_generic(if_ctx_t ctx, if_irq_t irq, int rid, iflib_intr_type_t type, driver_filter_t *filter, void *filter_arg, int qid, const char *name) { struct grouptask *gtask; struct taskqgroup *tqg; iflib_filter_info_t info; gtask_fn_t *fn; int tqrid, err; driver_filter_t *intr_fast; void *q; info = &ctx->ifc_filter_info; tqrid = rid; switch (type) { /* XXX merge tx/rx for netmap? */ case IFLIB_INTR_TX: q = &ctx->ifc_txqs[qid]; info = &ctx->ifc_txqs[qid].ift_filter_info; gtask = &ctx->ifc_txqs[qid].ift_task; tqg = qgroup_if_io_tqg; fn = _task_fn_tx; intr_fast = iflib_fast_intr; GROUPTASK_INIT(gtask, 0, fn, q); ctx->ifc_flags |= IFC_NETMAP_TX_IRQ; break; case IFLIB_INTR_RX: q = &ctx->ifc_rxqs[qid]; info = &ctx->ifc_rxqs[qid].ifr_filter_info; gtask = &ctx->ifc_rxqs[qid].ifr_task; tqg = qgroup_if_io_tqg; fn = _task_fn_rx; intr_fast = iflib_fast_intr; GROUPTASK_INIT(gtask, 0, fn, q); break; case IFLIB_INTR_RXTX: q = &ctx->ifc_rxqs[qid]; info = &ctx->ifc_rxqs[qid].ifr_filter_info; gtask = &ctx->ifc_rxqs[qid].ifr_task; tqg = qgroup_if_io_tqg; fn = _task_fn_rx; intr_fast = iflib_fast_intr_rxtx; GROUPTASK_INIT(gtask, 0, fn, q); break; case IFLIB_INTR_ADMIN: q = ctx; tqrid = -1; info = &ctx->ifc_filter_info; gtask = &ctx->ifc_admin_task; tqg = qgroup_if_config_tqg; fn = _task_fn_admin; intr_fast = iflib_fast_intr_ctx; break; default: panic("unknown net intr type"); } info->ifi_filter = filter; info->ifi_filter_arg = filter_arg; info->ifi_task = gtask; info->ifi_ctx = q; err = _iflib_irq_alloc(ctx, irq, rid, intr_fast, NULL, info, name); if (err != 0) { device_printf(ctx->ifc_dev, "_iflib_irq_alloc failed %d\n", err); return (err); } if (type == IFLIB_INTR_ADMIN) return (0); if (tqrid != -1) { err = iflib_irq_set_affinity(ctx, rman_get_start(irq->ii_res), type, qid, gtask, tqg, q, name); if (err) return (err); } else { taskqgroup_attach(tqg, gtask, q, rman_get_start(irq->ii_res), name); } return (0); } void iflib_softirq_alloc_generic(if_ctx_t ctx, if_irq_t irq, iflib_intr_type_t type, void *arg, int qid, const char *name) { struct grouptask *gtask; struct taskqgroup *tqg; gtask_fn_t *fn; void *q; int irq_num = -1; int err; switch (type) { case IFLIB_INTR_TX: q = &ctx->ifc_txqs[qid]; gtask = &ctx->ifc_txqs[qid].ift_task; tqg = qgroup_if_io_tqg; fn = _task_fn_tx; if (irq != NULL) irq_num = rman_get_start(irq->ii_res); break; case IFLIB_INTR_RX: q = &ctx->ifc_rxqs[qid]; gtask = &ctx->ifc_rxqs[qid].ifr_task; tqg = qgroup_if_io_tqg; fn = _task_fn_rx; if (irq != NULL) irq_num = rman_get_start(irq->ii_res); break; case IFLIB_INTR_IOV: q = ctx; gtask = &ctx->ifc_vflr_task; tqg = qgroup_if_config_tqg; fn = _task_fn_iov; break; default: panic("unknown net intr type"); } GROUPTASK_INIT(gtask, 0, fn, q); if (irq_num != -1) { err = iflib_irq_set_affinity(ctx, irq_num, type, qid, gtask, tqg, q, name); if (err) taskqgroup_attach(tqg, gtask, q, irq_num, name); } else { taskqgroup_attach(tqg, gtask, q, irq_num, name); } } void iflib_irq_free(if_ctx_t ctx, if_irq_t irq) { if (irq->ii_tag) bus_teardown_intr(ctx->ifc_dev, irq->ii_res, irq->ii_tag); if (irq->ii_res) bus_release_resource(ctx->ifc_dev, SYS_RES_IRQ, rman_get_rid(irq->ii_res), irq->ii_res); } static int iflib_legacy_setup(if_ctx_t ctx, driver_filter_t filter, void *filter_arg, int *rid, const char *name) { iflib_txq_t txq = ctx->ifc_txqs; iflib_rxq_t rxq = ctx->ifc_rxqs; if_irq_t irq = &ctx->ifc_legacy_irq; iflib_filter_info_t info; struct grouptask *gtask; struct taskqgroup *tqg; gtask_fn_t *fn; int tqrid; void *q; int err; q = &ctx->ifc_rxqs[0]; info = &rxq[0].ifr_filter_info; gtask = &rxq[0].ifr_task; tqg = qgroup_if_io_tqg; tqrid = irq->ii_rid = *rid; fn = _task_fn_rx; ctx->ifc_flags |= IFC_LEGACY; info->ifi_filter = filter; info->ifi_filter_arg = filter_arg; info->ifi_task = gtask; info->ifi_ctx = ctx; /* We allocate a single interrupt resource */ if ((err = _iflib_irq_alloc(ctx, irq, tqrid, iflib_fast_intr_ctx, NULL, info, name)) != 0) return (err); GROUPTASK_INIT(gtask, 0, fn, q); taskqgroup_attach(tqg, gtask, q, rman_get_start(irq->ii_res), name); GROUPTASK_INIT(&txq->ift_task, 0, _task_fn_tx, txq); taskqgroup_attach(qgroup_if_io_tqg, &txq->ift_task, txq, rman_get_start(irq->ii_res), "tx"); return (0); } void iflib_led_create(if_ctx_t ctx) { ctx->ifc_led_dev = led_create(iflib_led_func, ctx, device_get_nameunit(ctx->ifc_dev)); } void iflib_tx_intr_deferred(if_ctx_t ctx, int txqid) { GROUPTASK_ENQUEUE(&ctx->ifc_txqs[txqid].ift_task); } void iflib_rx_intr_deferred(if_ctx_t ctx, int rxqid) { GROUPTASK_ENQUEUE(&ctx->ifc_rxqs[rxqid].ifr_task); } void iflib_admin_intr_deferred(if_ctx_t ctx) { #ifdef INVARIANTS struct grouptask *gtask; gtask = &ctx->ifc_admin_task; MPASS(gtask != NULL && gtask->gt_taskqueue != NULL); #endif GROUPTASK_ENQUEUE(&ctx->ifc_admin_task); } void iflib_iov_intr_deferred(if_ctx_t ctx) { GROUPTASK_ENQUEUE(&ctx->ifc_vflr_task); } void iflib_io_tqg_attach(struct grouptask *gt, void *uniq, int cpu, char *name) { taskqgroup_attach_cpu(qgroup_if_io_tqg, gt, uniq, cpu, -1, name); } void iflib_config_gtask_init(void *ctx, struct grouptask *gtask, gtask_fn_t *fn, const char *name) { GROUPTASK_INIT(gtask, 0, fn, ctx); taskqgroup_attach(qgroup_if_config_tqg, gtask, gtask, -1, name); } void iflib_config_gtask_deinit(struct grouptask *gtask) { taskqgroup_detach(qgroup_if_config_tqg, gtask); } void iflib_link_state_change(if_ctx_t ctx, int link_state, uint64_t baudrate) { if_t ifp = ctx->ifc_ifp; iflib_txq_t txq = ctx->ifc_txqs; if_setbaudrate(ifp, baudrate); if (baudrate >= IF_Gbps(10)) { STATE_LOCK(ctx); ctx->ifc_flags |= IFC_PREFETCH; STATE_UNLOCK(ctx); } /* If link down, disable watchdog */ if ((ctx->ifc_link_state == LINK_STATE_UP) && (link_state == LINK_STATE_DOWN)) { for (int i = 0; i < ctx->ifc_softc_ctx.isc_ntxqsets; i++, txq++) txq->ift_qstatus = IFLIB_QUEUE_IDLE; } ctx->ifc_link_state = link_state; if_link_state_change(ifp, link_state); } static int iflib_tx_credits_update(if_ctx_t ctx, iflib_txq_t txq) { int credits; #ifdef INVARIANTS int credits_pre = txq->ift_cidx_processed; #endif if (ctx->isc_txd_credits_update == NULL) return (0); bus_dmamap_sync(txq->ift_ifdi->idi_tag, txq->ift_ifdi->idi_map, BUS_DMASYNC_POSTREAD); if ((credits = ctx->isc_txd_credits_update(ctx->ifc_softc, txq->ift_id, true)) == 0) return (0); txq->ift_processed += credits; txq->ift_cidx_processed += credits; MPASS(credits_pre + credits == txq->ift_cidx_processed); if (txq->ift_cidx_processed >= txq->ift_size) txq->ift_cidx_processed -= txq->ift_size; return (credits); } static int iflib_rxd_avail(if_ctx_t ctx, iflib_rxq_t rxq, qidx_t cidx, qidx_t budget) { return (ctx->isc_rxd_available(ctx->ifc_softc, rxq->ifr_id, cidx, budget)); } void iflib_add_int_delay_sysctl(if_ctx_t ctx, const char *name, const char *description, if_int_delay_info_t info, int offset, int value) { info->iidi_ctx = ctx; info->iidi_offset = offset; info->iidi_value = value; SYSCTL_ADD_PROC(device_get_sysctl_ctx(ctx->ifc_dev), SYSCTL_CHILDREN(device_get_sysctl_tree(ctx->ifc_dev)), OID_AUTO, name, CTLTYPE_INT|CTLFLAG_RW, info, 0, iflib_sysctl_int_delay, "I", description); } struct sx * iflib_ctx_lock_get(if_ctx_t ctx) { return (&ctx->ifc_ctx_sx); } static int iflib_msix_init(if_ctx_t ctx) { device_t dev = ctx->ifc_dev; if_shared_ctx_t sctx = ctx->ifc_sctx; if_softc_ctx_t scctx = &ctx->ifc_softc_ctx; int vectors, queues, rx_queues, tx_queues, queuemsgs, msgs; int iflib_num_tx_queues, iflib_num_rx_queues; int err, admincnt, bar; iflib_num_tx_queues = ctx->ifc_sysctl_ntxqs; iflib_num_rx_queues = ctx->ifc_sysctl_nrxqs; if (bootverbose) device_printf(dev, "msix_init qsets capped at %d\n", imax(scctx->isc_ntxqsets, scctx->isc_nrxqsets)); bar = ctx->ifc_softc_ctx.isc_msix_bar; admincnt = sctx->isc_admin_intrcnt; /* Override by tuneable */ if (scctx->isc_disable_msix) goto msi; /* First try MSI-X */ if ((msgs = pci_msix_count(dev)) == 0) { if (bootverbose) device_printf(dev, "MSI-X not supported or disabled\n"); goto msi; } /* * bar == -1 => "trust me I know what I'm doing" * Some drivers are for hardware that is so shoddily * documented that no one knows which bars are which * so the developer has to map all bars. This hack * allows shoddy garbage to use MSI-X in this framework. */ if (bar != -1) { ctx->ifc_msix_mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &bar, RF_ACTIVE); if (ctx->ifc_msix_mem == NULL) { device_printf(dev, "Unable to map MSI-X table\n"); goto msi; } } #if IFLIB_DEBUG /* use only 1 qset in debug mode */ queuemsgs = min(msgs - admincnt, 1); #else queuemsgs = msgs - admincnt; #endif #ifdef RSS queues = imin(queuemsgs, rss_getnumbuckets()); #else queues = queuemsgs; #endif queues = imin(CPU_COUNT(&ctx->ifc_cpus), queues); if (bootverbose) device_printf(dev, "intr CPUs: %d queue msgs: %d admincnt: %d\n", CPU_COUNT(&ctx->ifc_cpus), queuemsgs, admincnt); #ifdef RSS /* If we're doing RSS, clamp at the number of RSS buckets */ if (queues > rss_getnumbuckets()) queues = rss_getnumbuckets(); #endif if (iflib_num_rx_queues > 0 && iflib_num_rx_queues < queuemsgs - admincnt) rx_queues = iflib_num_rx_queues; else rx_queues = queues; if (rx_queues > scctx->isc_nrxqsets) rx_queues = scctx->isc_nrxqsets; /* * We want this to be all logical CPUs by default */ if (iflib_num_tx_queues > 0 && iflib_num_tx_queues < queues) tx_queues = iflib_num_tx_queues; else tx_queues = mp_ncpus; if (tx_queues > scctx->isc_ntxqsets) tx_queues = scctx->isc_ntxqsets; if (ctx->ifc_sysctl_qs_eq_override == 0) { #ifdef INVARIANTS if (tx_queues != rx_queues) device_printf(dev, "queue equality override not set, capping rx_queues at %d and tx_queues at %d\n", min(rx_queues, tx_queues), min(rx_queues, tx_queues)); #endif tx_queues = min(rx_queues, tx_queues); rx_queues = min(rx_queues, tx_queues); } device_printf(dev, "Using %d rx queues %d tx queues\n", rx_queues, tx_queues); vectors = rx_queues + admincnt; if ((err = pci_alloc_msix(dev, &vectors)) == 0) { device_printf(dev, "Using MSI-X interrupts with %d vectors\n", vectors); scctx->isc_vectors = vectors; scctx->isc_nrxqsets = rx_queues; scctx->isc_ntxqsets = tx_queues; scctx->isc_intr = IFLIB_INTR_MSIX; return (vectors); } else { device_printf(dev, "failed to allocate %d MSI-X vectors, err: %d - using MSI\n", vectors, err); bus_release_resource(dev, SYS_RES_MEMORY, bar, ctx->ifc_msix_mem); ctx->ifc_msix_mem = NULL; } msi: vectors = pci_msi_count(dev); scctx->isc_nrxqsets = 1; scctx->isc_ntxqsets = 1; scctx->isc_vectors = vectors; if (vectors == 1 && pci_alloc_msi(dev, &vectors) == 0) { device_printf(dev,"Using an MSI interrupt\n"); scctx->isc_intr = IFLIB_INTR_MSI; } else { scctx->isc_vectors = 1; device_printf(dev,"Using a Legacy interrupt\n"); scctx->isc_intr = IFLIB_INTR_LEGACY; } return (vectors); } static const char *ring_states[] = { "IDLE", "BUSY", "STALLED", "ABDICATED" }; static int mp_ring_state_handler(SYSCTL_HANDLER_ARGS) { int rc; uint16_t *state = ((uint16_t *)oidp->oid_arg1); struct sbuf *sb; const char *ring_state = "UNKNOWN"; /* XXX needed ? */ rc = sysctl_wire_old_buffer(req, 0); MPASS(rc == 0); if (rc != 0) return (rc); sb = sbuf_new_for_sysctl(NULL, NULL, 80, req); MPASS(sb != NULL); if (sb == NULL) return (ENOMEM); if (state[3] <= 3) ring_state = ring_states[state[3]]; sbuf_printf(sb, "pidx_head: %04hd pidx_tail: %04hd cidx: %04hd state: %s", state[0], state[1], state[2], ring_state); rc = sbuf_finish(sb); sbuf_delete(sb); return(rc); } enum iflib_ndesc_handler { IFLIB_NTXD_HANDLER, IFLIB_NRXD_HANDLER, }; static int mp_ndesc_handler(SYSCTL_HANDLER_ARGS) { if_ctx_t ctx = (void *)arg1; enum iflib_ndesc_handler type = arg2; char buf[256] = {0}; qidx_t *ndesc; char *p, *next; int nqs, rc, i; MPASS(type == IFLIB_NTXD_HANDLER || type == IFLIB_NRXD_HANDLER); nqs = 8; switch(type) { case IFLIB_NTXD_HANDLER: ndesc = ctx->ifc_sysctl_ntxds; if (ctx->ifc_sctx) nqs = ctx->ifc_sctx->isc_ntxqs; break; case IFLIB_NRXD_HANDLER: ndesc = ctx->ifc_sysctl_nrxds; if (ctx->ifc_sctx) nqs = ctx->ifc_sctx->isc_nrxqs; break; default: panic("unhandled type"); } if (nqs == 0) nqs = 8; for (i=0; i<8; i++) { if (i >= nqs) break; if (i) strcat(buf, ","); sprintf(strchr(buf, 0), "%d", ndesc[i]); } rc = sysctl_handle_string(oidp, buf, sizeof(buf), req); if (rc || req->newptr == NULL) return rc; for (i = 0, next = buf, p = strsep(&next, " ,"); i < 8 && p; i++, p = strsep(&next, " ,")) { ndesc[i] = strtoul(p, NULL, 10); } return(rc); } #define NAME_BUFLEN 32 static void iflib_add_device_sysctl_pre(if_ctx_t ctx) { device_t dev = iflib_get_dev(ctx); struct sysctl_oid_list *child, *oid_list; struct sysctl_ctx_list *ctx_list; struct sysctl_oid *node; ctx_list = device_get_sysctl_ctx(dev); child = SYSCTL_CHILDREN(device_get_sysctl_tree(dev)); ctx->ifc_sysctl_node = node = SYSCTL_ADD_NODE(ctx_list, child, OID_AUTO, "iflib", CTLFLAG_RD, NULL, "IFLIB fields"); oid_list = SYSCTL_CHILDREN(node); SYSCTL_ADD_STRING(ctx_list, oid_list, OID_AUTO, "driver_version", CTLFLAG_RD, ctx->ifc_sctx->isc_driver_version, 0, "driver version"); SYSCTL_ADD_U16(ctx_list, oid_list, OID_AUTO, "override_ntxqs", CTLFLAG_RWTUN, &ctx->ifc_sysctl_ntxqs, 0, "# of txqs to use, 0 => use default #"); SYSCTL_ADD_U16(ctx_list, oid_list, OID_AUTO, "override_nrxqs", CTLFLAG_RWTUN, &ctx->ifc_sysctl_nrxqs, 0, "# of rxqs to use, 0 => use default #"); SYSCTL_ADD_U16(ctx_list, oid_list, OID_AUTO, "override_qs_enable", CTLFLAG_RWTUN, &ctx->ifc_sysctl_qs_eq_override, 0, "permit #txq != #rxq"); SYSCTL_ADD_INT(ctx_list, oid_list, OID_AUTO, "disable_msix", CTLFLAG_RWTUN, &ctx->ifc_softc_ctx.isc_disable_msix, 0, "disable MSI-X (default 0)"); SYSCTL_ADD_U16(ctx_list, oid_list, OID_AUTO, "rx_budget", CTLFLAG_RWTUN, &ctx->ifc_sysctl_rx_budget, 0, "set the rx budget"); SYSCTL_ADD_U16(ctx_list, oid_list, OID_AUTO, "tx_abdicate", CTLFLAG_RWTUN, &ctx->ifc_sysctl_tx_abdicate, 0, "cause tx to abdicate instead of running to completion"); /* XXX change for per-queue sizes */ SYSCTL_ADD_PROC(ctx_list, oid_list, OID_AUTO, "override_ntxds", CTLTYPE_STRING|CTLFLAG_RWTUN, ctx, IFLIB_NTXD_HANDLER, mp_ndesc_handler, "A", "list of # of tx descriptors to use, 0 = use default #"); SYSCTL_ADD_PROC(ctx_list, oid_list, OID_AUTO, "override_nrxds", CTLTYPE_STRING|CTLFLAG_RWTUN, ctx, IFLIB_NRXD_HANDLER, mp_ndesc_handler, "A", "list of # of rx descriptors to use, 0 = use default #"); } static void iflib_add_device_sysctl_post(if_ctx_t ctx) { if_shared_ctx_t sctx = ctx->ifc_sctx; if_softc_ctx_t scctx = &ctx->ifc_softc_ctx; device_t dev = iflib_get_dev(ctx); struct sysctl_oid_list *child; struct sysctl_ctx_list *ctx_list; iflib_fl_t fl; iflib_txq_t txq; iflib_rxq_t rxq; int i, j; char namebuf[NAME_BUFLEN]; char *qfmt; struct sysctl_oid *queue_node, *fl_node, *node; struct sysctl_oid_list *queue_list, *fl_list; ctx_list = device_get_sysctl_ctx(dev); node = ctx->ifc_sysctl_node; child = SYSCTL_CHILDREN(node); if (scctx->isc_ntxqsets > 100) qfmt = "txq%03d"; else if (scctx->isc_ntxqsets > 10) qfmt = "txq%02d"; else qfmt = "txq%d"; for (i = 0, txq = ctx->ifc_txqs; i < scctx->isc_ntxqsets; i++, txq++) { snprintf(namebuf, NAME_BUFLEN, qfmt, i); queue_node = SYSCTL_ADD_NODE(ctx_list, child, OID_AUTO, namebuf, CTLFLAG_RD, NULL, "Queue Name"); queue_list = SYSCTL_CHILDREN(queue_node); #if MEMORY_LOGGING SYSCTL_ADD_QUAD(ctx_list, queue_list, OID_AUTO, "txq_dequeued", CTLFLAG_RD, &txq->ift_dequeued, "total mbufs freed"); SYSCTL_ADD_QUAD(ctx_list, queue_list, OID_AUTO, "txq_enqueued", CTLFLAG_RD, &txq->ift_enqueued, "total mbufs enqueued"); #endif SYSCTL_ADD_QUAD(ctx_list, queue_list, OID_AUTO, "mbuf_defrag", CTLFLAG_RD, &txq->ift_mbuf_defrag, "# of times m_defrag was called"); SYSCTL_ADD_QUAD(ctx_list, queue_list, OID_AUTO, "m_pullups", CTLFLAG_RD, &txq->ift_pullups, "# of times m_pullup was called"); SYSCTL_ADD_QUAD(ctx_list, queue_list, OID_AUTO, "mbuf_defrag_failed", CTLFLAG_RD, &txq->ift_mbuf_defrag_failed, "# of times m_defrag failed"); SYSCTL_ADD_QUAD(ctx_list, queue_list, OID_AUTO, "no_desc_avail", CTLFLAG_RD, &txq->ift_no_desc_avail, "# of times no descriptors were available"); SYSCTL_ADD_QUAD(ctx_list, queue_list, OID_AUTO, "tx_map_failed", CTLFLAG_RD, &txq->ift_map_failed, "# of times dma map failed"); SYSCTL_ADD_QUAD(ctx_list, queue_list, OID_AUTO, "txd_encap_efbig", CTLFLAG_RD, &txq->ift_txd_encap_efbig, "# of times txd_encap returned EFBIG"); SYSCTL_ADD_QUAD(ctx_list, queue_list, OID_AUTO, "no_tx_dma_setup", CTLFLAG_RD, &txq->ift_no_tx_dma_setup, "# of times map failed for other than EFBIG"); SYSCTL_ADD_U16(ctx_list, queue_list, OID_AUTO, "txq_pidx", CTLFLAG_RD, &txq->ift_pidx, 1, "Producer Index"); SYSCTL_ADD_U16(ctx_list, queue_list, OID_AUTO, "txq_cidx", CTLFLAG_RD, &txq->ift_cidx, 1, "Consumer Index"); SYSCTL_ADD_U16(ctx_list, queue_list, OID_AUTO, "txq_cidx_processed", CTLFLAG_RD, &txq->ift_cidx_processed, 1, "Consumer Index seen by credit update"); SYSCTL_ADD_U16(ctx_list, queue_list, OID_AUTO, "txq_in_use", CTLFLAG_RD, &txq->ift_in_use, 1, "descriptors in use"); SYSCTL_ADD_QUAD(ctx_list, queue_list, OID_AUTO, "txq_processed", CTLFLAG_RD, &txq->ift_processed, "descriptors procesed for clean"); SYSCTL_ADD_QUAD(ctx_list, queue_list, OID_AUTO, "txq_cleaned", CTLFLAG_RD, &txq->ift_cleaned, "total cleaned"); SYSCTL_ADD_PROC(ctx_list, queue_list, OID_AUTO, "ring_state", CTLTYPE_STRING | CTLFLAG_RD, __DEVOLATILE(uint64_t *, &txq->ift_br->state), 0, mp_ring_state_handler, "A", "soft ring state"); SYSCTL_ADD_COUNTER_U64(ctx_list, queue_list, OID_AUTO, "r_enqueues", CTLFLAG_RD, &txq->ift_br->enqueues, "# of enqueues to the mp_ring for this queue"); SYSCTL_ADD_COUNTER_U64(ctx_list, queue_list, OID_AUTO, "r_drops", CTLFLAG_RD, &txq->ift_br->drops, "# of drops in the mp_ring for this queue"); SYSCTL_ADD_COUNTER_U64(ctx_list, queue_list, OID_AUTO, "r_starts", CTLFLAG_RD, &txq->ift_br->starts, "# of normal consumer starts in the mp_ring for this queue"); SYSCTL_ADD_COUNTER_U64(ctx_list, queue_list, OID_AUTO, "r_stalls", CTLFLAG_RD, &txq->ift_br->stalls, "# of consumer stalls in the mp_ring for this queue"); SYSCTL_ADD_COUNTER_U64(ctx_list, queue_list, OID_AUTO, "r_restarts", CTLFLAG_RD, &txq->ift_br->restarts, "# of consumer restarts in the mp_ring for this queue"); SYSCTL_ADD_COUNTER_U64(ctx_list, queue_list, OID_AUTO, "r_abdications", CTLFLAG_RD, &txq->ift_br->abdications, "# of consumer abdications in the mp_ring for this queue"); } if (scctx->isc_nrxqsets > 100) qfmt = "rxq%03d"; else if (scctx->isc_nrxqsets > 10) qfmt = "rxq%02d"; else qfmt = "rxq%d"; for (i = 0, rxq = ctx->ifc_rxqs; i < scctx->isc_nrxqsets; i++, rxq++) { snprintf(namebuf, NAME_BUFLEN, qfmt, i); queue_node = SYSCTL_ADD_NODE(ctx_list, child, OID_AUTO, namebuf, CTLFLAG_RD, NULL, "Queue Name"); queue_list = SYSCTL_CHILDREN(queue_node); if (sctx->isc_flags & IFLIB_HAS_RXCQ) { SYSCTL_ADD_U16(ctx_list, queue_list, OID_AUTO, "rxq_cq_pidx", CTLFLAG_RD, &rxq->ifr_cq_pidx, 1, "Producer Index"); SYSCTL_ADD_U16(ctx_list, queue_list, OID_AUTO, "rxq_cq_cidx", CTLFLAG_RD, &rxq->ifr_cq_cidx, 1, "Consumer Index"); } for (j = 0, fl = rxq->ifr_fl; j < rxq->ifr_nfl; j++, fl++) { snprintf(namebuf, NAME_BUFLEN, "rxq_fl%d", j); fl_node = SYSCTL_ADD_NODE(ctx_list, queue_list, OID_AUTO, namebuf, CTLFLAG_RD, NULL, "freelist Name"); fl_list = SYSCTL_CHILDREN(fl_node); SYSCTL_ADD_U16(ctx_list, fl_list, OID_AUTO, "pidx", CTLFLAG_RD, &fl->ifl_pidx, 1, "Producer Index"); SYSCTL_ADD_U16(ctx_list, fl_list, OID_AUTO, "cidx", CTLFLAG_RD, &fl->ifl_cidx, 1, "Consumer Index"); SYSCTL_ADD_U16(ctx_list, fl_list, OID_AUTO, "credits", CTLFLAG_RD, &fl->ifl_credits, 1, "credits available"); #if MEMORY_LOGGING SYSCTL_ADD_QUAD(ctx_list, fl_list, OID_AUTO, "fl_m_enqueued", CTLFLAG_RD, &fl->ifl_m_enqueued, "mbufs allocated"); SYSCTL_ADD_QUAD(ctx_list, fl_list, OID_AUTO, "fl_m_dequeued", CTLFLAG_RD, &fl->ifl_m_dequeued, "mbufs freed"); SYSCTL_ADD_QUAD(ctx_list, fl_list, OID_AUTO, "fl_cl_enqueued", CTLFLAG_RD, &fl->ifl_cl_enqueued, "clusters allocated"); SYSCTL_ADD_QUAD(ctx_list, fl_list, OID_AUTO, "fl_cl_dequeued", CTLFLAG_RD, &fl->ifl_cl_dequeued, "clusters freed"); #endif } } } void iflib_request_reset(if_ctx_t ctx) { STATE_LOCK(ctx); ctx->ifc_flags |= IFC_DO_RESET; STATE_UNLOCK(ctx); } #ifndef __NO_STRICT_ALIGNMENT static struct mbuf * iflib_fixup_rx(struct mbuf *m) { struct mbuf *n; if (m->m_len <= (MCLBYTES - ETHER_HDR_LEN)) { bcopy(m->m_data, m->m_data + ETHER_HDR_LEN, m->m_len); m->m_data += ETHER_HDR_LEN; n = m; } else { MGETHDR(n, M_NOWAIT, MT_DATA); if (n == NULL) { m_freem(m); return (NULL); } bcopy(m->m_data, n->m_data, ETHER_HDR_LEN); m->m_data += ETHER_HDR_LEN; m->m_len -= ETHER_HDR_LEN; n->m_len = ETHER_HDR_LEN; M_MOVE_PKTHDR(n, m); n->m_next = m; } return (n); } #endif #ifdef NETDUMP static void iflib_netdump_init(struct ifnet *ifp, int *nrxr, int *ncl, int *clsize) { if_ctx_t ctx; ctx = if_getsoftc(ifp); CTX_LOCK(ctx); *nrxr = NRXQSETS(ctx); *ncl = ctx->ifc_rxqs[0].ifr_fl->ifl_size; *clsize = ctx->ifc_rxqs[0].ifr_fl->ifl_buf_size; CTX_UNLOCK(ctx); } static void iflib_netdump_event(struct ifnet *ifp, enum netdump_ev event) { if_ctx_t ctx; if_softc_ctx_t scctx; iflib_fl_t fl; iflib_rxq_t rxq; int i, j; ctx = if_getsoftc(ifp); scctx = &ctx->ifc_softc_ctx; switch (event) { case NETDUMP_START: for (i = 0; i < scctx->isc_nrxqsets; i++) { rxq = &ctx->ifc_rxqs[i]; for (j = 0; j < rxq->ifr_nfl; j++) { fl = rxq->ifr_fl; fl->ifl_zone = m_getzone(fl->ifl_buf_size); } } iflib_no_tx_batch = 1; break; default: break; } } static int iflib_netdump_transmit(struct ifnet *ifp, struct mbuf *m) { if_ctx_t ctx; iflib_txq_t txq; int error; ctx = if_getsoftc(ifp); if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != IFF_DRV_RUNNING) return (EBUSY); txq = &ctx->ifc_txqs[0]; error = iflib_encap(txq, &m); if (error == 0) (void)iflib_txd_db_check(ctx, txq, true, txq->ift_in_use); return (error); } static int iflib_netdump_poll(struct ifnet *ifp, int count) { if_ctx_t ctx; if_softc_ctx_t scctx; iflib_txq_t txq; int i; ctx = if_getsoftc(ifp); scctx = &ctx->ifc_softc_ctx; if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != IFF_DRV_RUNNING) return (EBUSY); txq = &ctx->ifc_txqs[0]; (void)iflib_completed_tx_reclaim(txq, RECLAIM_THRESH(ctx)); for (i = 0; i < scctx->isc_nrxqsets; i++) (void)iflib_rxeof(&ctx->ifc_rxqs[i], 16 /* XXX */); return (0); } #endif /* NETDUMP */ Index: stable/12 =================================================================== --- stable/12 (revision 346335) +++ stable/12 (revision 346336) Property changes on: stable/12 ___________________________________________________________________ Modified: svn:mergeinfo ## -0,0 +0,1 ## Merged /head:r344817