diff --git a/sys/x86/iommu/intel_dmar.h b/sys/x86/iommu/intel_dmar.h index 8289478aed19..b7f0300e16f0 100644 --- a/sys/x86/iommu/intel_dmar.h +++ b/sys/x86/iommu/intel_dmar.h @@ -1,474 +1,473 @@ /*- * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 2013-2015 The FreeBSD Foundation * * This software was developed by Konstantin Belousov * under sponsorship from the FreeBSD Foundation. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #ifndef __X86_IOMMU_INTEL_DMAR_H #define __X86_IOMMU_INTEL_DMAR_H #include struct dmar_unit; /* * Locking annotations: * (u) - Protected by iommu unit lock * (d) - Protected by domain lock * (c) - Immutable after initialization */ /* * The domain abstraction. Most non-constant members of the domain * are protected by owning dmar unit lock, not by the domain lock. * Most important, the dmar lock protects the contexts list. * * The domain lock protects the address map for the domain, and list * of unload entries delayed. * * Page tables pages and pages content is protected by the vm object * lock pgtbl_obj, which contains the page tables pages. */ struct dmar_domain { struct iommu_domain iodom; int domain; /* (c) DID, written in context entry */ int mgaw; /* (c) Real max address width */ int agaw; /* (c) Adjusted guest address width */ int pglvl; /* (c) The pagelevel */ int awlvl; /* (c) The pagelevel as the bitmask, to set in context entry */ u_int ctx_cnt; /* (u) Number of contexts owned */ u_int refs; /* (u) Refs, including ctx */ struct dmar_unit *dmar; /* (c) */ LIST_ENTRY(dmar_domain) link; /* (u) Member in the dmar list */ LIST_HEAD(, dmar_ctx) contexts; /* (u) */ vm_object_t pgtbl_obj; /* (c) Page table pages */ u_int batch_no; }; struct dmar_ctx { struct iommu_ctx context; uint64_t last_fault_rec[2]; /* Last fault reported */ LIST_ENTRY(dmar_ctx) link; /* (u) Member in the domain list */ u_int refs; /* (u) References from tags */ }; #define DMAR_DOMAIN_PGLOCK(dom) VM_OBJECT_WLOCK((dom)->pgtbl_obj) #define DMAR_DOMAIN_PGTRYLOCK(dom) VM_OBJECT_TRYWLOCK((dom)->pgtbl_obj) #define DMAR_DOMAIN_PGUNLOCK(dom) VM_OBJECT_WUNLOCK((dom)->pgtbl_obj) #define DMAR_DOMAIN_ASSERT_PGLOCKED(dom) \ VM_OBJECT_ASSERT_WLOCKED((dom)->pgtbl_obj) #define DMAR_DOMAIN_LOCK(dom) mtx_lock(&(dom)->iodom.lock) #define DMAR_DOMAIN_UNLOCK(dom) mtx_unlock(&(dom)->iodom.lock) #define DMAR_DOMAIN_ASSERT_LOCKED(dom) mtx_assert(&(dom)->iodom.lock, MA_OWNED) #define DMAR2IOMMU(dmar) &((dmar)->iommu) #define IOMMU2DMAR(dmar) \ __containerof((dmar), struct dmar_unit, iommu) #define DOM2IODOM(domain) &((domain)->iodom) #define IODOM2DOM(domain) \ __containerof((domain), struct dmar_domain, iodom) #define CTX2IOCTX(ctx) &((ctx)->context) #define IOCTX2CTX(ctx) \ __containerof((ctx), struct dmar_ctx, context) #define CTX2DOM(ctx) IODOM2DOM((ctx)->context.domain) #define CTX2DMAR(ctx) (CTX2DOM(ctx)->dmar) #define DOM2DMAR(domain) ((domain)->dmar) struct dmar_msi_data { int irq; int irq_rid; struct resource *irq_res; void *intr_handle; int (*handler)(void *); int msi_data_reg; int msi_addr_reg; int msi_uaddr_reg; void (*enable_intr)(struct dmar_unit *); void (*disable_intr)(struct dmar_unit *); const char *name; }; #define DMAR_INTR_FAULT 0 #define DMAR_INTR_QI 1 #define DMAR_INTR_TOTAL 2 struct dmar_unit { struct iommu_unit iommu; - device_t dev; uint16_t segment; uint64_t base; /* Resources */ int reg_rid; struct resource *regs; struct dmar_msi_data intrs[DMAR_INTR_TOTAL]; /* Hardware registers cache */ uint32_t hw_ver; uint64_t hw_cap; uint64_t hw_ecap; uint32_t hw_gcmd; /* Data for being a dmar */ LIST_HEAD(, dmar_domain) domains; struct unrhdr *domids; vm_object_t ctx_obj; u_int barrier_flags; /* Fault handler data */ struct mtx fault_lock; uint64_t *fault_log; int fault_log_head; int fault_log_tail; int fault_log_size; struct task fault_task; struct taskqueue *fault_taskqueue; /* QI */ int qi_enabled; char *inv_queue; vm_size_t inv_queue_size; uint32_t inv_queue_avail; uint32_t inv_queue_tail; volatile uint32_t inv_waitd_seq_hw; /* hw writes there on wait descr completion */ uint64_t inv_waitd_seq_hw_phys; uint32_t inv_waitd_seq; /* next sequence number to use for wait descr */ u_int inv_waitd_gen; /* seq number generation AKA seq overflows */ u_int inv_seq_waiters; /* count of waiters for seq */ u_int inv_queue_full; /* informational counter */ /* IR */ int ir_enabled; vm_paddr_t irt_phys; dmar_irte_t *irt; u_int irte_cnt; vmem_t *irtids; /* * Delayed freeing of map entries queue processing: * * tlb_flush_head and tlb_flush_tail are used to implement a FIFO * queue that supports concurrent dequeues and enqueues. However, * there can only be a single dequeuer (accessing tlb_flush_head) and * a single enqueuer (accessing tlb_flush_tail) at a time. Since the * unit's qi_task is the only dequeuer, it can access tlb_flush_head * without any locking. In contrast, there may be multiple enqueuers, * so the enqueuers acquire the iommu unit lock to serialize their * accesses to tlb_flush_tail. * * In this FIFO queue implementation, the key to enabling concurrent * dequeues and enqueues is that the dequeuer never needs to access * tlb_flush_tail and the enqueuer never needs to access * tlb_flush_head. In particular, tlb_flush_head and tlb_flush_tail * are never NULL, so neither a dequeuer nor an enqueuer ever needs to * update both. Instead, tlb_flush_head always points to a "zombie" * struct, which previously held the last dequeued item. Thus, the * zombie's next field actually points to the struct holding the first * item in the queue. When an item is dequeued, the current zombie is * finally freed, and the struct that held the just dequeued item * becomes the new zombie. When the queue is empty, tlb_flush_tail * also points to the zombie. */ struct iommu_map_entry *tlb_flush_head; struct iommu_map_entry *tlb_flush_tail; struct task qi_task; struct taskqueue *qi_taskqueue; }; #define DMAR_LOCK(dmar) mtx_lock(&(dmar)->iommu.lock) #define DMAR_UNLOCK(dmar) mtx_unlock(&(dmar)->iommu.lock) #define DMAR_ASSERT_LOCKED(dmar) mtx_assert(&(dmar)->iommu.lock, MA_OWNED) #define DMAR_FAULT_LOCK(dmar) mtx_lock_spin(&(dmar)->fault_lock) #define DMAR_FAULT_UNLOCK(dmar) mtx_unlock_spin(&(dmar)->fault_lock) #define DMAR_FAULT_ASSERT_LOCKED(dmar) mtx_assert(&(dmar)->fault_lock, MA_OWNED) #define DMAR_IS_COHERENT(dmar) (((dmar)->hw_ecap & DMAR_ECAP_C) != 0) #define DMAR_HAS_QI(dmar) (((dmar)->hw_ecap & DMAR_ECAP_QI) != 0) #define DMAR_X2APIC(dmar) \ (x2apic_mode && ((dmar)->hw_ecap & DMAR_ECAP_EIM) != 0) /* Barrier ids */ #define DMAR_BARRIER_RMRR 0 #define DMAR_BARRIER_USEQ 1 struct dmar_unit *dmar_find(device_t dev, bool verbose); struct dmar_unit *dmar_find_hpet(device_t dev, uint16_t *rid); struct dmar_unit *dmar_find_ioapic(u_int apic_id, uint16_t *rid); u_int dmar_nd2mask(u_int nd); bool dmar_pglvl_supported(struct dmar_unit *unit, int pglvl); int domain_set_agaw(struct dmar_domain *domain, int mgaw); int dmar_maxaddr2mgaw(struct dmar_unit *unit, iommu_gaddr_t maxaddr, bool allow_less); vm_pindex_t pglvl_max_pages(int pglvl); int domain_is_sp_lvl(struct dmar_domain *domain, int lvl); iommu_gaddr_t pglvl_page_size(int total_pglvl, int lvl); iommu_gaddr_t domain_page_size(struct dmar_domain *domain, int lvl); int calc_am(struct dmar_unit *unit, iommu_gaddr_t base, iommu_gaddr_t size, iommu_gaddr_t *isizep); int dmar_load_root_entry_ptr(struct dmar_unit *unit); int dmar_inv_ctx_glob(struct dmar_unit *unit); int dmar_inv_iotlb_glob(struct dmar_unit *unit); int dmar_flush_write_bufs(struct dmar_unit *unit); void dmar_flush_pte_to_ram(struct dmar_unit *unit, iommu_pte_t *dst); void dmar_flush_ctx_to_ram(struct dmar_unit *unit, dmar_ctx_entry_t *dst); void dmar_flush_root_to_ram(struct dmar_unit *unit, dmar_root_entry_t *dst); int dmar_disable_protected_regions(struct dmar_unit *unit); int dmar_enable_translation(struct dmar_unit *unit); int dmar_disable_translation(struct dmar_unit *unit); int dmar_load_irt_ptr(struct dmar_unit *unit); int dmar_enable_ir(struct dmar_unit *unit); int dmar_disable_ir(struct dmar_unit *unit); bool dmar_barrier_enter(struct dmar_unit *dmar, u_int barrier_id); void dmar_barrier_exit(struct dmar_unit *dmar, u_int barrier_id); uint64_t dmar_get_timeout(void); void dmar_update_timeout(uint64_t newval); int dmar_fault_intr(void *arg); void dmar_enable_fault_intr(struct dmar_unit *unit); void dmar_disable_fault_intr(struct dmar_unit *unit); int dmar_init_fault_log(struct dmar_unit *unit); void dmar_fini_fault_log(struct dmar_unit *unit); int dmar_qi_intr(void *arg); void dmar_enable_qi_intr(struct dmar_unit *unit); void dmar_disable_qi_intr(struct dmar_unit *unit); int dmar_init_qi(struct dmar_unit *unit); void dmar_fini_qi(struct dmar_unit *unit); void dmar_qi_invalidate_locked(struct dmar_domain *domain, struct iommu_map_entry *entry, bool emit_wait); void dmar_qi_invalidate_sync(struct dmar_domain *domain, iommu_gaddr_t start, iommu_gaddr_t size, bool cansleep); void dmar_qi_invalidate_ctx_glob_locked(struct dmar_unit *unit); void dmar_qi_invalidate_iotlb_glob_locked(struct dmar_unit *unit); void dmar_qi_invalidate_iec_glob(struct dmar_unit *unit); void dmar_qi_invalidate_iec(struct dmar_unit *unit, u_int start, u_int cnt); vm_object_t domain_get_idmap_pgtbl(struct dmar_domain *domain, iommu_gaddr_t maxaddr); void put_idmap_pgtbl(vm_object_t obj); void domain_flush_iotlb_sync(struct dmar_domain *domain, iommu_gaddr_t base, iommu_gaddr_t size); int domain_alloc_pgtbl(struct dmar_domain *domain); void domain_free_pgtbl(struct dmar_domain *domain); extern const struct iommu_domain_map_ops dmar_domain_map_ops; int dmar_dev_depth(device_t child); void dmar_dev_path(device_t child, int *busno, void *path1, int depth); struct dmar_ctx *dmar_get_ctx_for_dev(struct dmar_unit *dmar, device_t dev, uint16_t rid, bool id_mapped, bool rmrr_init); struct dmar_ctx *dmar_get_ctx_for_devpath(struct dmar_unit *dmar, uint16_t rid, int dev_domain, int dev_busno, const void *dev_path, int dev_path_len, bool id_mapped, bool rmrr_init); int dmar_move_ctx_to_domain(struct dmar_domain *domain, struct dmar_ctx *ctx); void dmar_free_ctx_locked(struct dmar_unit *dmar, struct dmar_ctx *ctx); void dmar_free_ctx(struct dmar_ctx *ctx); struct dmar_ctx *dmar_find_ctx_locked(struct dmar_unit *dmar, uint16_t rid); void dmar_domain_free_entry(struct iommu_map_entry *entry, bool free); void dmar_dev_parse_rmrr(struct dmar_domain *domain, int dev_domain, int dev_busno, const void *dev_path, int dev_path_len, struct iommu_map_entries_tailq *rmrr_entries); int dmar_instantiate_rmrr_ctxs(struct iommu_unit *dmar); void dmar_quirks_post_ident(struct dmar_unit *dmar); void dmar_quirks_pre_use(struct iommu_unit *dmar); int dmar_init_irt(struct dmar_unit *unit); void dmar_fini_irt(struct dmar_unit *unit); extern int haw; extern int dmar_batch_coalesce; extern int dmar_rmrr_enable; static inline uint32_t dmar_read4(const struct dmar_unit *unit, int reg) { return (bus_read_4(unit->regs, reg)); } static inline uint64_t dmar_read8(const struct dmar_unit *unit, int reg) { #ifdef __i386__ uint32_t high, low; low = bus_read_4(unit->regs, reg); high = bus_read_4(unit->regs, reg + 4); return (low | ((uint64_t)high << 32)); #else return (bus_read_8(unit->regs, reg)); #endif } static inline void dmar_write4(const struct dmar_unit *unit, int reg, uint32_t val) { KASSERT(reg != DMAR_GCMD_REG || (val & DMAR_GCMD_TE) == (unit->hw_gcmd & DMAR_GCMD_TE), ("dmar%d clearing TE 0x%08x 0x%08x", unit->iommu.unit, unit->hw_gcmd, val)); bus_write_4(unit->regs, reg, val); } static inline void dmar_write8(const struct dmar_unit *unit, int reg, uint64_t val) { KASSERT(reg != DMAR_GCMD_REG, ("8byte GCMD write")); #ifdef __i386__ uint32_t high, low; low = val; high = val >> 32; bus_write_4(unit->regs, reg, low); bus_write_4(unit->regs, reg + 4, high); #else bus_write_8(unit->regs, reg, val); #endif } /* * dmar_pte_store and dmar_pte_clear ensure that on i386, 32bit writes * are issued in the correct order. For store, the lower word, * containing the P or R and W bits, is set only after the high word * is written. For clear, the P bit is cleared first, then the high * word is cleared. * * dmar_pte_update updates the pte. For amd64, the update is atomic. * For i386, it first disables the entry by clearing the word * containing the P bit, and then defer to dmar_pte_store. The locked * cmpxchg8b is probably available on any machine having DMAR support, * but interrupt translation table may be mapped uncached. */ static inline void dmar_pte_store1(volatile uint64_t *dst, uint64_t val) { #ifdef __i386__ volatile uint32_t *p; uint32_t hi, lo; hi = val >> 32; lo = val; p = (volatile uint32_t *)dst; *(p + 1) = hi; *p = lo; #else *dst = val; #endif } static inline void dmar_pte_store(volatile uint64_t *dst, uint64_t val) { KASSERT(*dst == 0, ("used pte %p oldval %jx newval %jx", dst, (uintmax_t)*dst, (uintmax_t)val)); dmar_pte_store1(dst, val); } static inline void dmar_pte_update(volatile uint64_t *dst, uint64_t val) { #ifdef __i386__ volatile uint32_t *p; p = (volatile uint32_t *)dst; *p = 0; #endif dmar_pte_store1(dst, val); } static inline void dmar_pte_clear(volatile uint64_t *dst) { #ifdef __i386__ volatile uint32_t *p; p = (volatile uint32_t *)dst; *p = 0; *(p + 1) = 0; #else *dst = 0; #endif } extern struct timespec dmar_hw_timeout; #define DMAR_WAIT_UNTIL(cond) \ { \ struct timespec last, curr; \ bool forever; \ \ if (dmar_hw_timeout.tv_sec == 0 && \ dmar_hw_timeout.tv_nsec == 0) { \ forever = true; \ } else { \ forever = false; \ nanouptime(&curr); \ timespecadd(&curr, &dmar_hw_timeout, &last); \ } \ for (;;) { \ if (cond) { \ error = 0; \ break; \ } \ nanouptime(&curr); \ if (!forever && timespeccmp(&last, &curr, <)) { \ error = ETIMEDOUT; \ break; \ } \ cpu_spinwait(); \ } \ } #ifdef INVARIANTS #define TD_PREP_PINNED_ASSERT \ int old_td_pinned; \ old_td_pinned = curthread->td_pinned #define TD_PINNED_ASSERT \ KASSERT(curthread->td_pinned == old_td_pinned, \ ("pin count leak: %d %d %s:%d", curthread->td_pinned, \ old_td_pinned, __FILE__, __LINE__)) #else #define TD_PREP_PINNED_ASSERT #define TD_PINNED_ASSERT #endif #endif diff --git a/sys/x86/iommu/intel_drv.c b/sys/x86/iommu/intel_drv.c index 9a2fedf90b6a..0b25620114cd 100644 --- a/sys/x86/iommu/intel_drv.c +++ b/sys/x86/iommu/intel_drv.c @@ -1,1358 +1,1357 @@ /*- * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 2013-2015 The FreeBSD Foundation * * This software was developed by Konstantin Belousov * under sponsorship from the FreeBSD Foundation. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include "opt_acpi.h" #if defined(__amd64__) #define DEV_APIC #else #include "opt_apic.h" #endif #include "opt_ddb.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef DEV_APIC #include "pcib_if.h" #include #include #include #endif #define DMAR_FAULT_IRQ_RID 0 #define DMAR_QI_IRQ_RID 1 #define DMAR_REG_RID 2 static device_t *dmar_devs; static int dmar_devcnt; typedef int (*dmar_iter_t)(ACPI_DMAR_HEADER *, void *); static void dmar_iterate_tbl(dmar_iter_t iter, void *arg) { ACPI_TABLE_DMAR *dmartbl; ACPI_DMAR_HEADER *dmarh; char *ptr, *ptrend; ACPI_STATUS status; status = AcpiGetTable(ACPI_SIG_DMAR, 1, (ACPI_TABLE_HEADER **)&dmartbl); if (ACPI_FAILURE(status)) return; ptr = (char *)dmartbl + sizeof(*dmartbl); ptrend = (char *)dmartbl + dmartbl->Header.Length; for (;;) { if (ptr >= ptrend) break; dmarh = (ACPI_DMAR_HEADER *)ptr; if (dmarh->Length <= 0) { printf("dmar_identify: corrupted DMAR table, l %d\n", dmarh->Length); break; } ptr += dmarh->Length; if (!iter(dmarh, arg)) break; } AcpiPutTable((ACPI_TABLE_HEADER *)dmartbl); } struct find_iter_args { int i; ACPI_DMAR_HARDWARE_UNIT *res; }; static int dmar_find_iter(ACPI_DMAR_HEADER *dmarh, void *arg) { struct find_iter_args *fia; if (dmarh->Type != ACPI_DMAR_TYPE_HARDWARE_UNIT) return (1); fia = arg; if (fia->i == 0) { fia->res = (ACPI_DMAR_HARDWARE_UNIT *)dmarh; return (0); } fia->i--; return (1); } static ACPI_DMAR_HARDWARE_UNIT * dmar_find_by_index(int idx) { struct find_iter_args fia; fia.i = idx; fia.res = NULL; dmar_iterate_tbl(dmar_find_iter, &fia); return (fia.res); } static int dmar_count_iter(ACPI_DMAR_HEADER *dmarh, void *arg) { if (dmarh->Type == ACPI_DMAR_TYPE_HARDWARE_UNIT) dmar_devcnt++; return (1); } int dmar_rmrr_enable = 1; static int dmar_enable = 0; static void dmar_identify(driver_t *driver, device_t parent) { ACPI_TABLE_DMAR *dmartbl; ACPI_DMAR_HARDWARE_UNIT *dmarh; ACPI_STATUS status; int i, error; if (acpi_disabled("dmar")) return; TUNABLE_INT_FETCH("hw.dmar.enable", &dmar_enable); if (!dmar_enable) return; TUNABLE_INT_FETCH("hw.dmar.rmrr_enable", &dmar_rmrr_enable); status = AcpiGetTable(ACPI_SIG_DMAR, 1, (ACPI_TABLE_HEADER **)&dmartbl); if (ACPI_FAILURE(status)) return; haw = dmartbl->Width + 1; if ((1ULL << (haw + 1)) > BUS_SPACE_MAXADDR) iommu_high = BUS_SPACE_MAXADDR; else iommu_high = 1ULL << (haw + 1); if (bootverbose) { printf("DMAR HAW=%d flags=<%b>\n", dmartbl->Width, (unsigned)dmartbl->Flags, "\020\001INTR_REMAP\002X2APIC_OPT_OUT"); } AcpiPutTable((ACPI_TABLE_HEADER *)dmartbl); dmar_iterate_tbl(dmar_count_iter, NULL); if (dmar_devcnt == 0) return; dmar_devs = malloc(sizeof(device_t) * dmar_devcnt, M_DEVBUF, M_WAITOK | M_ZERO); for (i = 0; i < dmar_devcnt; i++) { dmarh = dmar_find_by_index(i); if (dmarh == NULL) { printf("dmar_identify: cannot find HWUNIT %d\n", i); continue; } dmar_devs[i] = BUS_ADD_CHILD(parent, 1, "dmar", i); if (dmar_devs[i] == NULL) { printf("dmar_identify: cannot create instance %d\n", i); continue; } error = bus_set_resource(dmar_devs[i], SYS_RES_MEMORY, DMAR_REG_RID, dmarh->Address, PAGE_SIZE); if (error != 0) { printf( "dmar%d: unable to alloc register window at 0x%08jx: error %d\n", i, (uintmax_t)dmarh->Address, error); device_delete_child(parent, dmar_devs[i]); dmar_devs[i] = NULL; } } } static int dmar_probe(device_t dev) { if (acpi_get_handle(dev) != NULL) return (ENXIO); device_set_desc(dev, "DMA remap"); return (BUS_PROBE_NOWILDCARD); } static void dmar_release_intr(device_t dev, struct dmar_unit *unit, int idx) { struct dmar_msi_data *dmd; dmd = &unit->intrs[idx]; if (dmd->irq == -1) return; bus_teardown_intr(dev, dmd->irq_res, dmd->intr_handle); bus_release_resource(dev, SYS_RES_IRQ, dmd->irq_rid, dmd->irq_res); bus_delete_resource(dev, SYS_RES_IRQ, dmd->irq_rid); PCIB_RELEASE_MSIX(device_get_parent(device_get_parent(dev)), dev, dmd->irq); dmd->irq = -1; } static void dmar_release_resources(device_t dev, struct dmar_unit *unit) { int i; iommu_fini_busdma(&unit->iommu); dmar_fini_irt(unit); dmar_fini_qi(unit); dmar_fini_fault_log(unit); for (i = 0; i < DMAR_INTR_TOTAL; i++) dmar_release_intr(dev, unit, i); if (unit->regs != NULL) { bus_deactivate_resource(dev, SYS_RES_MEMORY, unit->reg_rid, unit->regs); bus_release_resource(dev, SYS_RES_MEMORY, unit->reg_rid, unit->regs); unit->regs = NULL; } if (unit->domids != NULL) { delete_unrhdr(unit->domids); unit->domids = NULL; } if (unit->ctx_obj != NULL) { vm_object_deallocate(unit->ctx_obj); unit->ctx_obj = NULL; } } static int dmar_alloc_irq(device_t dev, struct dmar_unit *unit, int idx) { device_t pcib; struct dmar_msi_data *dmd; uint64_t msi_addr; uint32_t msi_data; int error; dmd = &unit->intrs[idx]; pcib = device_get_parent(device_get_parent(dev)); /* Really not pcib */ error = PCIB_ALLOC_MSIX(pcib, dev, &dmd->irq); if (error != 0) { device_printf(dev, "cannot allocate %s interrupt, %d\n", dmd->name, error); goto err1; } error = bus_set_resource(dev, SYS_RES_IRQ, dmd->irq_rid, dmd->irq, 1); if (error != 0) { device_printf(dev, "cannot set %s interrupt resource, %d\n", dmd->name, error); goto err2; } dmd->irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &dmd->irq_rid, RF_ACTIVE); if (dmd->irq_res == NULL) { device_printf(dev, "cannot allocate resource for %s interrupt\n", dmd->name); error = ENXIO; goto err3; } error = bus_setup_intr(dev, dmd->irq_res, INTR_TYPE_MISC, dmd->handler, NULL, unit, &dmd->intr_handle); if (error != 0) { device_printf(dev, "cannot setup %s interrupt, %d\n", dmd->name, error); goto err4; } bus_describe_intr(dev, dmd->irq_res, dmd->intr_handle, "%s", dmd->name); error = PCIB_MAP_MSI(pcib, dev, dmd->irq, &msi_addr, &msi_data); if (error != 0) { device_printf(dev, "cannot map %s interrupt, %d\n", dmd->name, error); goto err5; } dmar_write4(unit, dmd->msi_data_reg, msi_data); dmar_write4(unit, dmd->msi_addr_reg, msi_addr); /* Only for xAPIC mode */ dmar_write4(unit, dmd->msi_uaddr_reg, msi_addr >> 32); return (0); err5: bus_teardown_intr(dev, dmd->irq_res, dmd->intr_handle); err4: bus_release_resource(dev, SYS_RES_IRQ, dmd->irq_rid, dmd->irq_res); err3: bus_delete_resource(dev, SYS_RES_IRQ, dmd->irq_rid); err2: PCIB_RELEASE_MSIX(pcib, dev, dmd->irq); dmd->irq = -1; err1: return (error); } #ifdef DEV_APIC static int dmar_remap_intr(device_t dev, device_t child, u_int irq) { struct dmar_unit *unit; struct dmar_msi_data *dmd; uint64_t msi_addr; uint32_t msi_data; int i, error; unit = device_get_softc(dev); for (i = 0; i < DMAR_INTR_TOTAL; i++) { dmd = &unit->intrs[i]; if (irq == dmd->irq) { error = PCIB_MAP_MSI(device_get_parent( device_get_parent(dev)), dev, irq, &msi_addr, &msi_data); if (error != 0) return (error); DMAR_LOCK(unit); (dmd->disable_intr)(unit); dmar_write4(unit, dmd->msi_data_reg, msi_data); dmar_write4(unit, dmd->msi_addr_reg, msi_addr); dmar_write4(unit, dmd->msi_uaddr_reg, msi_addr >> 32); (dmd->enable_intr)(unit); DMAR_UNLOCK(unit); return (0); } } return (ENOENT); } #endif static void dmar_print_caps(device_t dev, struct dmar_unit *unit, ACPI_DMAR_HARDWARE_UNIT *dmaru) { uint32_t caphi, ecaphi; device_printf(dev, "regs@0x%08jx, ver=%d.%d, seg=%d, flags=<%b>\n", (uintmax_t)dmaru->Address, DMAR_MAJOR_VER(unit->hw_ver), DMAR_MINOR_VER(unit->hw_ver), dmaru->Segment, dmaru->Flags, "\020\001INCLUDE_ALL_PCI"); caphi = unit->hw_cap >> 32; device_printf(dev, "cap=%b,", (u_int)unit->hw_cap, "\020\004AFL\005WBF\006PLMR\007PHMR\010CM\027ZLR\030ISOCH"); printf("%b, ", caphi, "\020\010PSI\027DWD\030DRD\031FL1GP\034PSI"); printf("ndoms=%d, sagaw=%d, mgaw=%d, fro=%d, nfr=%d, superp=%d", DMAR_CAP_ND(unit->hw_cap), DMAR_CAP_SAGAW(unit->hw_cap), DMAR_CAP_MGAW(unit->hw_cap), DMAR_CAP_FRO(unit->hw_cap), DMAR_CAP_NFR(unit->hw_cap), DMAR_CAP_SPS(unit->hw_cap)); if ((unit->hw_cap & DMAR_CAP_PSI) != 0) printf(", mamv=%d", DMAR_CAP_MAMV(unit->hw_cap)); printf("\n"); ecaphi = unit->hw_ecap >> 32; device_printf(dev, "ecap=%b,", (u_int)unit->hw_ecap, "\020\001C\002QI\003DI\004IR\005EIM\007PT\010SC\031ECS\032MTS" "\033NEST\034DIS\035PASID\036PRS\037ERS\040SRS"); printf("%b, ", ecaphi, "\020\002NWFS\003EAFS"); printf("mhmw=%d, iro=%d\n", DMAR_ECAP_MHMV(unit->hw_ecap), DMAR_ECAP_IRO(unit->hw_ecap)); } static int dmar_attach(device_t dev) { struct dmar_unit *unit; ACPI_DMAR_HARDWARE_UNIT *dmaru; uint64_t timeout; int disable_pmr; int i, error; unit = device_get_softc(dev); - unit->dev = dev; unit->iommu.unit = device_get_unit(dev); unit->iommu.dev = dev; dmaru = dmar_find_by_index(unit->iommu.unit); if (dmaru == NULL) return (EINVAL); unit->segment = dmaru->Segment; unit->base = dmaru->Address; unit->reg_rid = DMAR_REG_RID; unit->regs = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &unit->reg_rid, RF_ACTIVE); if (unit->regs == NULL) { device_printf(dev, "cannot allocate register window\n"); return (ENOMEM); } unit->hw_ver = dmar_read4(unit, DMAR_VER_REG); unit->hw_cap = dmar_read8(unit, DMAR_CAP_REG); unit->hw_ecap = dmar_read8(unit, DMAR_ECAP_REG); if (bootverbose) dmar_print_caps(dev, unit, dmaru); dmar_quirks_post_ident(unit); timeout = dmar_get_timeout(); TUNABLE_UINT64_FETCH("hw.iommu.dmar.timeout", &timeout); dmar_update_timeout(timeout); for (i = 0; i < DMAR_INTR_TOTAL; i++) unit->intrs[i].irq = -1; unit->intrs[DMAR_INTR_FAULT].name = "fault"; unit->intrs[DMAR_INTR_FAULT].irq_rid = DMAR_FAULT_IRQ_RID; unit->intrs[DMAR_INTR_FAULT].handler = dmar_fault_intr; unit->intrs[DMAR_INTR_FAULT].msi_data_reg = DMAR_FEDATA_REG; unit->intrs[DMAR_INTR_FAULT].msi_addr_reg = DMAR_FEADDR_REG; unit->intrs[DMAR_INTR_FAULT].msi_uaddr_reg = DMAR_FEUADDR_REG; unit->intrs[DMAR_INTR_FAULT].enable_intr = dmar_enable_fault_intr; unit->intrs[DMAR_INTR_FAULT].disable_intr = dmar_disable_fault_intr; error = dmar_alloc_irq(dev, unit, DMAR_INTR_FAULT); if (error != 0) { dmar_release_resources(dev, unit); return (error); } if (DMAR_HAS_QI(unit)) { unit->intrs[DMAR_INTR_QI].name = "qi"; unit->intrs[DMAR_INTR_QI].irq_rid = DMAR_QI_IRQ_RID; unit->intrs[DMAR_INTR_QI].handler = dmar_qi_intr; unit->intrs[DMAR_INTR_QI].msi_data_reg = DMAR_IEDATA_REG; unit->intrs[DMAR_INTR_QI].msi_addr_reg = DMAR_IEADDR_REG; unit->intrs[DMAR_INTR_QI].msi_uaddr_reg = DMAR_IEUADDR_REG; unit->intrs[DMAR_INTR_QI].enable_intr = dmar_enable_qi_intr; unit->intrs[DMAR_INTR_QI].disable_intr = dmar_disable_qi_intr; error = dmar_alloc_irq(dev, unit, DMAR_INTR_QI); if (error != 0) { dmar_release_resources(dev, unit); return (error); } } mtx_init(&unit->iommu.lock, "dmarhw", NULL, MTX_DEF); unit->domids = new_unrhdr(0, dmar_nd2mask(DMAR_CAP_ND(unit->hw_cap)), &unit->iommu.lock); LIST_INIT(&unit->domains); /* * 9.2 "Context Entry": * When Caching Mode (CM) field is reported as Set, the * domain-id value of zero is architecturally reserved. * Software must not use domain-id value of zero * when CM is Set. */ if ((unit->hw_cap & DMAR_CAP_CM) != 0) alloc_unr_specific(unit->domids, 0); unit->ctx_obj = vm_pager_allocate(OBJT_PHYS, NULL, IDX_TO_OFF(1 + DMAR_CTX_CNT), 0, 0, NULL); /* * Allocate and load the root entry table pointer. Enable the * address translation after the required invalidations are * done. */ iommu_pgalloc(unit->ctx_obj, 0, IOMMU_PGF_WAITOK | IOMMU_PGF_ZERO); DMAR_LOCK(unit); error = dmar_load_root_entry_ptr(unit); if (error != 0) { DMAR_UNLOCK(unit); dmar_release_resources(dev, unit); return (error); } error = dmar_inv_ctx_glob(unit); if (error != 0) { DMAR_UNLOCK(unit); dmar_release_resources(dev, unit); return (error); } if ((unit->hw_ecap & DMAR_ECAP_DI) != 0) { error = dmar_inv_iotlb_glob(unit); if (error != 0) { DMAR_UNLOCK(unit); dmar_release_resources(dev, unit); return (error); } } DMAR_UNLOCK(unit); error = dmar_init_fault_log(unit); if (error != 0) { dmar_release_resources(dev, unit); return (error); } error = dmar_init_qi(unit); if (error != 0) { dmar_release_resources(dev, unit); return (error); } error = dmar_init_irt(unit); if (error != 0) { dmar_release_resources(dev, unit); return (error); } disable_pmr = 0; TUNABLE_INT_FETCH("hw.dmar.pmr.disable", &disable_pmr); if (disable_pmr) { error = dmar_disable_protected_regions(unit); if (error != 0) device_printf(dev, "Failed to disable protected regions\n"); } error = iommu_init_busdma(&unit->iommu); if (error != 0) { dmar_release_resources(dev, unit); return (error); } #ifdef NOTYET DMAR_LOCK(unit); error = dmar_enable_translation(unit); if (error != 0) { DMAR_UNLOCK(unit); dmar_release_resources(dev, unit); return (error); } DMAR_UNLOCK(unit); #endif return (0); } static int dmar_detach(device_t dev) { return (EBUSY); } static int dmar_suspend(device_t dev) { return (0); } static int dmar_resume(device_t dev) { /* XXXKIB */ return (0); } static device_method_t dmar_methods[] = { DEVMETHOD(device_identify, dmar_identify), DEVMETHOD(device_probe, dmar_probe), DEVMETHOD(device_attach, dmar_attach), DEVMETHOD(device_detach, dmar_detach), DEVMETHOD(device_suspend, dmar_suspend), DEVMETHOD(device_resume, dmar_resume), #ifdef DEV_APIC DEVMETHOD(bus_remap_intr, dmar_remap_intr), #endif DEVMETHOD_END }; static driver_t dmar_driver = { "dmar", dmar_methods, sizeof(struct dmar_unit), }; DRIVER_MODULE(dmar, acpi, dmar_driver, 0, 0); MODULE_DEPEND(dmar, acpi, 1, 1, 1); static void dmar_print_path(int busno, int depth, const ACPI_DMAR_PCI_PATH *path) { int i; printf("[%d, ", busno); for (i = 0; i < depth; i++) { if (i != 0) printf(", "); printf("(%d, %d)", path[i].Device, path[i].Function); } printf("]"); } int dmar_dev_depth(device_t child) { devclass_t pci_class; device_t bus, pcib; int depth; pci_class = devclass_find("pci"); for (depth = 1; ; depth++) { bus = device_get_parent(child); pcib = device_get_parent(bus); if (device_get_devclass(device_get_parent(pcib)) != pci_class) return (depth); child = pcib; } } void dmar_dev_path(device_t child, int *busno, void *path1, int depth) { devclass_t pci_class; device_t bus, pcib; ACPI_DMAR_PCI_PATH *path; pci_class = devclass_find("pci"); path = path1; for (depth--; depth != -1; depth--) { path[depth].Device = pci_get_slot(child); path[depth].Function = pci_get_function(child); bus = device_get_parent(child); pcib = device_get_parent(bus); if (device_get_devclass(device_get_parent(pcib)) != pci_class) { /* reached a host bridge */ *busno = pcib_get_bus(bus); return; } child = pcib; } panic("wrong depth"); } static int dmar_match_pathes(int busno1, const ACPI_DMAR_PCI_PATH *path1, int depth1, int busno2, const ACPI_DMAR_PCI_PATH *path2, int depth2, enum AcpiDmarScopeType scope_type) { int i, depth; if (busno1 != busno2) return (0); if (scope_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT && depth1 != depth2) return (0); depth = depth1; if (depth2 < depth) depth = depth2; for (i = 0; i < depth; i++) { if (path1[i].Device != path2[i].Device || path1[i].Function != path2[i].Function) return (0); } return (1); } static int dmar_match_devscope(ACPI_DMAR_DEVICE_SCOPE *devscope, int dev_busno, const ACPI_DMAR_PCI_PATH *dev_path, int dev_path_len) { ACPI_DMAR_PCI_PATH *path; int path_len; if (devscope->Length < sizeof(*devscope)) { printf("dmar_match_devscope: corrupted DMAR table, dl %d\n", devscope->Length); return (-1); } if (devscope->EntryType != ACPI_DMAR_SCOPE_TYPE_ENDPOINT && devscope->EntryType != ACPI_DMAR_SCOPE_TYPE_BRIDGE) return (0); path_len = devscope->Length - sizeof(*devscope); if (path_len % 2 != 0) { printf("dmar_match_devscope: corrupted DMAR table, dl %d\n", devscope->Length); return (-1); } path_len /= 2; path = (ACPI_DMAR_PCI_PATH *)(devscope + 1); if (path_len == 0) { printf("dmar_match_devscope: corrupted DMAR table, dl %d\n", devscope->Length); return (-1); } return (dmar_match_pathes(devscope->Bus, path, path_len, dev_busno, dev_path, dev_path_len, devscope->EntryType)); } static bool dmar_match_by_path(struct dmar_unit *unit, int dev_domain, int dev_busno, const ACPI_DMAR_PCI_PATH *dev_path, int dev_path_len, const char **banner) { ACPI_DMAR_HARDWARE_UNIT *dmarh; ACPI_DMAR_DEVICE_SCOPE *devscope; char *ptr, *ptrend; int match; dmarh = dmar_find_by_index(unit->iommu.unit); if (dmarh == NULL) return (false); if (dmarh->Segment != dev_domain) return (false); if ((dmarh->Flags & ACPI_DMAR_INCLUDE_ALL) != 0) { if (banner != NULL) *banner = "INCLUDE_ALL"; return (true); } ptr = (char *)dmarh + sizeof(*dmarh); ptrend = (char *)dmarh + dmarh->Header.Length; while (ptr < ptrend) { devscope = (ACPI_DMAR_DEVICE_SCOPE *)ptr; ptr += devscope->Length; match = dmar_match_devscope(devscope, dev_busno, dev_path, dev_path_len); if (match == -1) return (false); if (match == 1) { if (banner != NULL) *banner = "specific match"; return (true); } } return (false); } static struct dmar_unit * dmar_find_by_scope(int dev_domain, int dev_busno, const ACPI_DMAR_PCI_PATH *dev_path, int dev_path_len) { struct dmar_unit *unit; int i; for (i = 0; i < dmar_devcnt; i++) { if (dmar_devs[i] == NULL) continue; unit = device_get_softc(dmar_devs[i]); if (dmar_match_by_path(unit, dev_domain, dev_busno, dev_path, dev_path_len, NULL)) return (unit); } return (NULL); } struct dmar_unit * dmar_find(device_t dev, bool verbose) { struct dmar_unit *unit; const char *banner; int i, dev_domain, dev_busno, dev_path_len; /* * This function can only handle PCI(e) devices. */ if (device_get_devclass(device_get_parent(dev)) != devclass_find("pci")) return (NULL); dev_domain = pci_get_domain(dev); dev_path_len = dmar_dev_depth(dev); ACPI_DMAR_PCI_PATH dev_path[dev_path_len]; dmar_dev_path(dev, &dev_busno, dev_path, dev_path_len); banner = ""; for (i = 0; i < dmar_devcnt; i++) { if (dmar_devs[i] == NULL) continue; unit = device_get_softc(dmar_devs[i]); if (dmar_match_by_path(unit, dev_domain, dev_busno, dev_path, dev_path_len, &banner)) break; } if (i == dmar_devcnt) return (NULL); if (verbose) { device_printf(dev, "pci%d:%d:%d:%d matched dmar%d by %s", dev_domain, pci_get_bus(dev), pci_get_slot(dev), pci_get_function(dev), unit->iommu.unit, banner); printf(" scope path "); dmar_print_path(dev_busno, dev_path_len, dev_path); printf("\n"); } return (unit); } static struct dmar_unit * dmar_find_nonpci(u_int id, u_int entry_type, uint16_t *rid) { device_t dmar_dev; struct dmar_unit *unit; ACPI_DMAR_HARDWARE_UNIT *dmarh; ACPI_DMAR_DEVICE_SCOPE *devscope; ACPI_DMAR_PCI_PATH *path; char *ptr, *ptrend; #ifdef DEV_APIC int error; #endif int i; for (i = 0; i < dmar_devcnt; i++) { dmar_dev = dmar_devs[i]; if (dmar_dev == NULL) continue; unit = (struct dmar_unit *)device_get_softc(dmar_dev); dmarh = dmar_find_by_index(i); if (dmarh == NULL) continue; ptr = (char *)dmarh + sizeof(*dmarh); ptrend = (char *)dmarh + dmarh->Header.Length; for (;;) { if (ptr >= ptrend) break; devscope = (ACPI_DMAR_DEVICE_SCOPE *)ptr; ptr += devscope->Length; if (devscope->EntryType != entry_type) continue; if (devscope->EnumerationId != id) continue; #ifdef DEV_APIC if (entry_type == ACPI_DMAR_SCOPE_TYPE_IOAPIC) { error = ioapic_get_rid(id, rid); /* * If our IOAPIC has PCI bindings then * use the PCI device rid. */ if (error == 0) return (unit); } #endif if (devscope->Length - sizeof(ACPI_DMAR_DEVICE_SCOPE) == 2) { if (rid != NULL) { path = (ACPI_DMAR_PCI_PATH *) (devscope + 1); *rid = PCI_RID(devscope->Bus, path->Device, path->Function); } return (unit); } printf( "dmar_find_nonpci: id %d type %d path length != 2\n", id, entry_type); break; } } return (NULL); } struct dmar_unit * dmar_find_hpet(device_t dev, uint16_t *rid) { return (dmar_find_nonpci(hpet_get_uid(dev), ACPI_DMAR_SCOPE_TYPE_HPET, rid)); } struct dmar_unit * dmar_find_ioapic(u_int apic_id, uint16_t *rid) { return (dmar_find_nonpci(apic_id, ACPI_DMAR_SCOPE_TYPE_IOAPIC, rid)); } struct rmrr_iter_args { struct dmar_domain *domain; int dev_domain; int dev_busno; const ACPI_DMAR_PCI_PATH *dev_path; int dev_path_len; struct iommu_map_entries_tailq *rmrr_entries; }; static int dmar_rmrr_iter(ACPI_DMAR_HEADER *dmarh, void *arg) { struct rmrr_iter_args *ria; ACPI_DMAR_RESERVED_MEMORY *resmem; ACPI_DMAR_DEVICE_SCOPE *devscope; struct iommu_map_entry *entry; char *ptr, *ptrend; int match; if (!dmar_rmrr_enable) return (1); if (dmarh->Type != ACPI_DMAR_TYPE_RESERVED_MEMORY) return (1); ria = arg; resmem = (ACPI_DMAR_RESERVED_MEMORY *)dmarh; if (resmem->Segment != ria->dev_domain) return (1); ptr = (char *)resmem + sizeof(*resmem); ptrend = (char *)resmem + resmem->Header.Length; for (;;) { if (ptr >= ptrend) break; devscope = (ACPI_DMAR_DEVICE_SCOPE *)ptr; ptr += devscope->Length; match = dmar_match_devscope(devscope, ria->dev_busno, ria->dev_path, ria->dev_path_len); if (match == 1) { entry = iommu_gas_alloc_entry(DOM2IODOM(ria->domain), IOMMU_PGF_WAITOK); entry->start = resmem->BaseAddress; /* The RMRR entry end address is inclusive. */ entry->end = resmem->EndAddress; TAILQ_INSERT_TAIL(ria->rmrr_entries, entry, dmamap_link); } } return (1); } void dmar_dev_parse_rmrr(struct dmar_domain *domain, int dev_domain, int dev_busno, const void *dev_path, int dev_path_len, struct iommu_map_entries_tailq *rmrr_entries) { struct rmrr_iter_args ria; ria.domain = domain; ria.dev_domain = dev_domain; ria.dev_busno = dev_busno; ria.dev_path = (const ACPI_DMAR_PCI_PATH *)dev_path; ria.dev_path_len = dev_path_len; ria.rmrr_entries = rmrr_entries; dmar_iterate_tbl(dmar_rmrr_iter, &ria); } struct inst_rmrr_iter_args { struct dmar_unit *dmar; }; static device_t dmar_path_dev(int segment, int path_len, int busno, const ACPI_DMAR_PCI_PATH *path, uint16_t *rid) { device_t dev; int i; dev = NULL; for (i = 0; i < path_len; i++) { dev = pci_find_dbsf(segment, busno, path->Device, path->Function); if (i != path_len - 1) { busno = pci_cfgregread(segment, busno, path->Device, path->Function, PCIR_SECBUS_1, 1); path++; } } *rid = PCI_RID(busno, path->Device, path->Function); return (dev); } static int dmar_inst_rmrr_iter(ACPI_DMAR_HEADER *dmarh, void *arg) { const ACPI_DMAR_RESERVED_MEMORY *resmem; const ACPI_DMAR_DEVICE_SCOPE *devscope; struct inst_rmrr_iter_args *iria; const char *ptr, *ptrend; device_t dev; struct dmar_unit *unit; int dev_path_len; uint16_t rid; iria = arg; if (!dmar_rmrr_enable) return (1); if (dmarh->Type != ACPI_DMAR_TYPE_RESERVED_MEMORY) return (1); resmem = (ACPI_DMAR_RESERVED_MEMORY *)dmarh; if (resmem->Segment != iria->dmar->segment) return (1); ptr = (const char *)resmem + sizeof(*resmem); ptrend = (const char *)resmem + resmem->Header.Length; for (;;) { if (ptr >= ptrend) break; devscope = (const ACPI_DMAR_DEVICE_SCOPE *)ptr; ptr += devscope->Length; /* XXXKIB bridge */ if (devscope->EntryType != ACPI_DMAR_SCOPE_TYPE_ENDPOINT) continue; rid = 0; dev_path_len = (devscope->Length - sizeof(ACPI_DMAR_DEVICE_SCOPE)) / 2; dev = dmar_path_dev(resmem->Segment, dev_path_len, devscope->Bus, (const ACPI_DMAR_PCI_PATH *)(devscope + 1), &rid); if (dev == NULL) { if (bootverbose) { printf("dmar%d no dev found for RMRR " "[%#jx, %#jx] rid %#x scope path ", iria->dmar->iommu.unit, (uintmax_t)resmem->BaseAddress, (uintmax_t)resmem->EndAddress, rid); dmar_print_path(devscope->Bus, dev_path_len, (const ACPI_DMAR_PCI_PATH *)(devscope + 1)); printf("\n"); } unit = dmar_find_by_scope(resmem->Segment, devscope->Bus, (const ACPI_DMAR_PCI_PATH *)(devscope + 1), dev_path_len); if (iria->dmar != unit) continue; dmar_get_ctx_for_devpath(iria->dmar, rid, resmem->Segment, devscope->Bus, (const ACPI_DMAR_PCI_PATH *)(devscope + 1), dev_path_len, false, true); } else { unit = dmar_find(dev, false); if (iria->dmar != unit) continue; iommu_instantiate_ctx(&(iria)->dmar->iommu, dev, true); } } return (1); } /* * Pre-create all contexts for the DMAR which have RMRR entries. */ int dmar_instantiate_rmrr_ctxs(struct iommu_unit *unit) { struct dmar_unit *dmar; struct inst_rmrr_iter_args iria; int error; dmar = IOMMU2DMAR(unit); if (!dmar_barrier_enter(dmar, DMAR_BARRIER_RMRR)) return (0); error = 0; iria.dmar = dmar; dmar_iterate_tbl(dmar_inst_rmrr_iter, &iria); DMAR_LOCK(dmar); if (!LIST_EMPTY(&dmar->domains)) { KASSERT((dmar->hw_gcmd & DMAR_GCMD_TE) == 0, ("dmar%d: RMRR not handled but translation is already enabled", dmar->iommu.unit)); error = dmar_disable_protected_regions(dmar); if (error != 0) printf("dmar%d: Failed to disable protected regions\n", dmar->iommu.unit); error = dmar_enable_translation(dmar); if (bootverbose) { if (error == 0) { printf("dmar%d: enabled translation\n", dmar->iommu.unit); } else { printf("dmar%d: enabling translation failed, " "error %d\n", dmar->iommu.unit, error); } } } dmar_barrier_exit(dmar, DMAR_BARRIER_RMRR); return (error); } #ifdef DDB #include #include static void dmar_print_domain_entry(const struct iommu_map_entry *entry) { struct iommu_map_entry *l, *r; db_printf( " start %jx end %jx first %jx last %jx free_down %jx flags %x ", entry->start, entry->end, entry->first, entry->last, entry->free_down, entry->flags); db_printf("left "); l = RB_LEFT(entry, rb_entry); if (l == NULL) db_printf("NULL "); else db_printf("%jx ", l->start); db_printf("right "); r = RB_RIGHT(entry, rb_entry); if (r == NULL) db_printf("NULL"); else db_printf("%jx", r->start); db_printf("\n"); } static void dmar_print_ctx(struct dmar_ctx *ctx) { db_printf( " @%p pci%d:%d:%d refs %d flags %x loads %lu unloads %lu\n", ctx, pci_get_bus(ctx->context.tag->owner), pci_get_slot(ctx->context.tag->owner), pci_get_function(ctx->context.tag->owner), ctx->refs, ctx->context.flags, ctx->context.loads, ctx->context.unloads); } static void dmar_print_domain(struct dmar_domain *domain, bool show_mappings) { struct iommu_domain *iodom; struct iommu_map_entry *entry; struct dmar_ctx *ctx; iodom = DOM2IODOM(domain); db_printf( " @%p dom %d mgaw %d agaw %d pglvl %d end %jx refs %d\n" " ctx_cnt %d flags %x pgobj %p map_ents %u\n", domain, domain->domain, domain->mgaw, domain->agaw, domain->pglvl, (uintmax_t)domain->iodom.end, domain->refs, domain->ctx_cnt, domain->iodom.flags, domain->pgtbl_obj, domain->iodom.entries_cnt); if (!LIST_EMPTY(&domain->contexts)) { db_printf(" Contexts:\n"); LIST_FOREACH(ctx, &domain->contexts, link) dmar_print_ctx(ctx); } if (!show_mappings) return; db_printf(" mapped:\n"); RB_FOREACH(entry, iommu_gas_entries_tree, &iodom->rb_root) { dmar_print_domain_entry(entry); if (db_pager_quit) break; } if (db_pager_quit) return; db_printf(" unloading:\n"); TAILQ_FOREACH(entry, &domain->iodom.unload_entries, dmamap_link) { dmar_print_domain_entry(entry); if (db_pager_quit) break; } } DB_SHOW_COMMAND_FLAGS(dmar_domain, db_dmar_print_domain, CS_OWN) { struct dmar_unit *unit; struct dmar_domain *domain; struct dmar_ctx *ctx; bool show_mappings, valid; int pci_domain, bus, device, function, i, t; db_expr_t radix; valid = false; radix = db_radix; db_radix = 10; t = db_read_token(); if (t == tSLASH) { t = db_read_token(); if (t != tIDENT) { db_printf("Bad modifier\n"); db_radix = radix; db_skip_to_eol(); return; } show_mappings = strchr(db_tok_string, 'm') != NULL; t = db_read_token(); } else { show_mappings = false; } if (t == tNUMBER) { pci_domain = db_tok_number; t = db_read_token(); if (t == tNUMBER) { bus = db_tok_number; t = db_read_token(); if (t == tNUMBER) { device = db_tok_number; t = db_read_token(); if (t == tNUMBER) { function = db_tok_number; valid = true; } } } } db_radix = radix; db_skip_to_eol(); if (!valid) { db_printf("usage: show dmar_domain [/m] " " \n"); return; } for (i = 0; i < dmar_devcnt; i++) { unit = device_get_softc(dmar_devs[i]); LIST_FOREACH(domain, &unit->domains, link) { LIST_FOREACH(ctx, &domain->contexts, link) { if (pci_domain == unit->segment && bus == pci_get_bus(ctx->context.tag->owner) && device == pci_get_slot(ctx->context.tag->owner) && function == pci_get_function(ctx->context.tag->owner)) { dmar_print_domain(domain, show_mappings); goto out; } } } } out:; } static void dmar_print_one(int idx, bool show_domains, bool show_mappings) { struct dmar_unit *unit; struct dmar_domain *domain; int i, frir; unit = device_get_softc(dmar_devs[idx]); db_printf("dmar%d at %p, root at 0x%jx, ver 0x%x\n", unit->iommu.unit, unit, dmar_read8(unit, DMAR_RTADDR_REG), dmar_read4(unit, DMAR_VER_REG)); db_printf("cap 0x%jx ecap 0x%jx gsts 0x%x fsts 0x%x fectl 0x%x\n", (uintmax_t)dmar_read8(unit, DMAR_CAP_REG), (uintmax_t)dmar_read8(unit, DMAR_ECAP_REG), dmar_read4(unit, DMAR_GSTS_REG), dmar_read4(unit, DMAR_FSTS_REG), dmar_read4(unit, DMAR_FECTL_REG)); if (unit->ir_enabled) { db_printf("ir is enabled; IRT @%p phys 0x%jx maxcnt %d\n", unit->irt, (uintmax_t)unit->irt_phys, unit->irte_cnt); } db_printf("fed 0x%x fea 0x%x feua 0x%x\n", dmar_read4(unit, DMAR_FEDATA_REG), dmar_read4(unit, DMAR_FEADDR_REG), dmar_read4(unit, DMAR_FEUADDR_REG)); db_printf("primary fault log:\n"); for (i = 0; i < DMAR_CAP_NFR(unit->hw_cap); i++) { frir = (DMAR_CAP_FRO(unit->hw_cap) + i) * 16; db_printf(" %d at 0x%x: %jx %jx\n", i, frir, (uintmax_t)dmar_read8(unit, frir), (uintmax_t)dmar_read8(unit, frir + 8)); } if (DMAR_HAS_QI(unit)) { db_printf("ied 0x%x iea 0x%x ieua 0x%x\n", dmar_read4(unit, DMAR_IEDATA_REG), dmar_read4(unit, DMAR_IEADDR_REG), dmar_read4(unit, DMAR_IEUADDR_REG)); if (unit->qi_enabled) { db_printf("qi is enabled: queue @0x%jx (IQA 0x%jx) " "size 0x%jx\n" " head 0x%x tail 0x%x avail 0x%x status 0x%x ctrl 0x%x\n" " hw compl 0x%x@%p/phys@%jx next seq 0x%x gen 0x%x\n", (uintmax_t)unit->inv_queue, (uintmax_t)dmar_read8(unit, DMAR_IQA_REG), (uintmax_t)unit->inv_queue_size, dmar_read4(unit, DMAR_IQH_REG), dmar_read4(unit, DMAR_IQT_REG), unit->inv_queue_avail, dmar_read4(unit, DMAR_ICS_REG), dmar_read4(unit, DMAR_IECTL_REG), unit->inv_waitd_seq_hw, &unit->inv_waitd_seq_hw, (uintmax_t)unit->inv_waitd_seq_hw_phys, unit->inv_waitd_seq, unit->inv_waitd_gen); } else { db_printf("qi is disabled\n"); } } if (show_domains) { db_printf("domains:\n"); LIST_FOREACH(domain, &unit->domains, link) { dmar_print_domain(domain, show_mappings); if (db_pager_quit) break; } } } DB_SHOW_COMMAND(dmar, db_dmar_print) { bool show_domains, show_mappings; show_domains = strchr(modif, 'd') != NULL; show_mappings = strchr(modif, 'm') != NULL; if (!have_addr) { db_printf("usage: show dmar [/d] [/m] index\n"); return; } dmar_print_one((int)addr, show_domains, show_mappings); } DB_SHOW_ALL_COMMAND(dmars, db_show_all_dmars) { int i; bool show_domains, show_mappings; show_domains = strchr(modif, 'd') != NULL; show_mappings = strchr(modif, 'm') != NULL; for (i = 0; i < dmar_devcnt; i++) { dmar_print_one(i, show_domains, show_mappings); if (db_pager_quit) break; } } #endif struct iommu_unit * iommu_find(device_t dev, bool verbose) { struct dmar_unit *dmar; dmar = dmar_find(dev, verbose); return (&dmar->iommu); } diff --git a/sys/x86/iommu/intel_intrmap.c b/sys/x86/iommu/intel_intrmap.c index 02bf58dde299..137801125c38 100644 --- a/sys/x86/iommu/intel_intrmap.c +++ b/sys/x86/iommu/intel_intrmap.c @@ -1,382 +1,382 @@ /*- * Copyright (c) 2015 The FreeBSD Foundation * * This software was developed by Konstantin Belousov * under sponsorship from the FreeBSD Foundation. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static struct dmar_unit *dmar_ir_find(device_t src, uint16_t *rid, int *is_dmar); static void dmar_ir_program_irte(struct dmar_unit *unit, u_int idx, uint64_t low, uint16_t rid); static int dmar_ir_free_irte(struct dmar_unit *unit, u_int cookie); int iommu_alloc_msi_intr(device_t src, u_int *cookies, u_int count) { struct dmar_unit *unit; vmem_addr_t vmem_res; u_int idx, i; int error; unit = dmar_ir_find(src, NULL, NULL); if (unit == NULL || !unit->ir_enabled) { for (i = 0; i < count; i++) cookies[i] = -1; return (EOPNOTSUPP); } error = vmem_alloc(unit->irtids, count, M_FIRSTFIT | M_NOWAIT, &vmem_res); if (error != 0) { KASSERT(error != EOPNOTSUPP, ("impossible EOPNOTSUPP from vmem")); return (error); } idx = vmem_res; for (i = 0; i < count; i++) cookies[i] = idx + i; return (0); } int iommu_map_msi_intr(device_t src, u_int cpu, u_int vector, u_int cookie, uint64_t *addr, uint32_t *data) { struct dmar_unit *unit; uint64_t low; uint16_t rid; int is_dmar; unit = dmar_ir_find(src, &rid, &is_dmar); if (is_dmar) { KASSERT(unit == NULL, ("DMAR cannot translate itself")); /* * See VT-d specification, 5.1.6 Remapping Hardware - * Interrupt Programming. */ *data = vector; *addr = MSI_INTEL_ADDR_BASE | ((cpu & 0xff) << 12); if (x2apic_mode) *addr |= ((uint64_t)cpu & 0xffffff00) << 32; else KASSERT(cpu <= 0xff, ("cpu id too big %d", cpu)); return (0); } if (unit == NULL || !unit->ir_enabled || cookie == -1) return (EOPNOTSUPP); low = (DMAR_X2APIC(unit) ? DMAR_IRTE1_DST_x2APIC(cpu) : DMAR_IRTE1_DST_xAPIC(cpu)) | DMAR_IRTE1_V(vector) | DMAR_IRTE1_DLM_FM | DMAR_IRTE1_TM_EDGE | DMAR_IRTE1_RH_DIRECT | DMAR_IRTE1_DM_PHYSICAL | DMAR_IRTE1_P; dmar_ir_program_irte(unit, cookie, low, rid); if (addr != NULL) { /* * See VT-d specification, 5.1.5.2 MSI and MSI-X * Register Programming. */ *addr = MSI_INTEL_ADDR_BASE | ((cookie & 0x7fff) << 5) | ((cookie & 0x8000) << 2) | 0x18; *data = 0; } return (0); } int iommu_unmap_msi_intr(device_t src, u_int cookie) { struct dmar_unit *unit; if (cookie == -1) return (0); unit = dmar_ir_find(src, NULL, NULL); return (dmar_ir_free_irte(unit, cookie)); } int iommu_map_ioapic_intr(u_int ioapic_id, u_int cpu, u_int vector, bool edge, bool activehi, int irq, u_int *cookie, uint32_t *hi, uint32_t *lo) { struct dmar_unit *unit; vmem_addr_t vmem_res; uint64_t low, iorte; u_int idx; int error; uint16_t rid; unit = dmar_find_ioapic(ioapic_id, &rid); if (unit == NULL || !unit->ir_enabled) { *cookie = -1; return (EOPNOTSUPP); } error = vmem_alloc(unit->irtids, 1, M_FIRSTFIT | M_NOWAIT, &vmem_res); if (error != 0) { KASSERT(error != EOPNOTSUPP, ("impossible EOPNOTSUPP from vmem")); return (error); } idx = vmem_res; low = 0; switch (irq) { case IRQ_EXTINT: low |= DMAR_IRTE1_DLM_ExtINT; break; case IRQ_NMI: low |= DMAR_IRTE1_DLM_NMI; break; case IRQ_SMI: low |= DMAR_IRTE1_DLM_SMI; break; default: KASSERT(vector != 0, ("No vector for IRQ %u", irq)); low |= DMAR_IRTE1_DLM_FM | DMAR_IRTE1_V(vector); break; } low |= (DMAR_X2APIC(unit) ? DMAR_IRTE1_DST_x2APIC(cpu) : DMAR_IRTE1_DST_xAPIC(cpu)) | (edge ? DMAR_IRTE1_TM_EDGE : DMAR_IRTE1_TM_LEVEL) | DMAR_IRTE1_RH_DIRECT | DMAR_IRTE1_DM_PHYSICAL | DMAR_IRTE1_P; dmar_ir_program_irte(unit, idx, low, rid); if (hi != NULL) { /* * See VT-d specification, 5.1.5.1 I/OxAPIC * Programming. */ iorte = (1ULL << 48) | ((uint64_t)(idx & 0x7fff) << 49) | ((idx & 0x8000) != 0 ? (1 << 11) : 0) | (edge ? IOART_TRGREDG : IOART_TRGRLVL) | (activehi ? IOART_INTAHI : IOART_INTALO) | IOART_DELFIXED | vector; *hi = iorte >> 32; *lo = iorte; } *cookie = idx; return (0); } int iommu_unmap_ioapic_intr(u_int ioapic_id, u_int *cookie) { struct dmar_unit *unit; u_int idx; idx = *cookie; if (idx == -1) return (0); *cookie = -1; unit = dmar_find_ioapic(ioapic_id, NULL); KASSERT(unit != NULL && unit->ir_enabled, ("unmap: cookie %d unit %p", idx, unit)); return (dmar_ir_free_irte(unit, idx)); } static struct dmar_unit * dmar_ir_find(device_t src, uint16_t *rid, int *is_dmar) { devclass_t src_class; struct dmar_unit *unit; /* * We need to determine if the interrupt source generates FSB * interrupts. If yes, it is either DMAR, in which case * interrupts are not remapped. Or it is HPET, and interrupts * are remapped. For HPET, source id is reported by HPET * record in DMAR ACPI table. */ if (is_dmar != NULL) *is_dmar = FALSE; src_class = device_get_devclass(src); if (src_class == devclass_find("dmar")) { unit = NULL; if (is_dmar != NULL) *is_dmar = TRUE; } else if (src_class == devclass_find("hpet")) { unit = dmar_find_hpet(src, rid); } else { unit = dmar_find(src, bootverbose); if (unit != NULL && rid != NULL) iommu_get_requester(src, rid); } return (unit); } static void dmar_ir_program_irte(struct dmar_unit *unit, u_int idx, uint64_t low, uint16_t rid) { dmar_irte_t *irte; uint64_t high; KASSERT(idx < unit->irte_cnt, ("bad cookie %d %d", idx, unit->irte_cnt)); irte = &(unit->irt[idx]); high = DMAR_IRTE2_SVT_RID | DMAR_IRTE2_SQ_RID | DMAR_IRTE2_SID_RID(rid); if (bootverbose) { - device_printf(unit->dev, + device_printf(unit->iommu.dev, "programming irte[%d] rid %#x high %#jx low %#jx\n", idx, rid, (uintmax_t)high, (uintmax_t)low); } DMAR_LOCK(unit); if ((irte->irte1 & DMAR_IRTE1_P) != 0) { /* * The rte is already valid. Assume that the request * is to remap the interrupt for balancing. Only low * word of rte needs to be changed. Assert that the * high word contains expected value. */ KASSERT(irte->irte2 == high, ("irte2 mismatch, %jx %jx", (uintmax_t)irte->irte2, (uintmax_t)high)); dmar_pte_update(&irte->irte1, low); } else { dmar_pte_store(&irte->irte2, high); dmar_pte_store(&irte->irte1, low); } dmar_qi_invalidate_iec(unit, idx, 1); DMAR_UNLOCK(unit); } static int dmar_ir_free_irte(struct dmar_unit *unit, u_int cookie) { dmar_irte_t *irte; KASSERT(unit != NULL && unit->ir_enabled, ("unmap: cookie %d unit %p", cookie, unit)); KASSERT(cookie < unit->irte_cnt, ("bad cookie %u %u", cookie, unit->irte_cnt)); irte = &(unit->irt[cookie]); dmar_pte_clear(&irte->irte1); dmar_pte_clear(&irte->irte2); DMAR_LOCK(unit); dmar_qi_invalidate_iec(unit, cookie, 1); DMAR_UNLOCK(unit); vmem_free(unit->irtids, cookie, 1); return (0); } static u_int clp2(u_int v) { return (powerof2(v) ? v : 1 << fls(v)); } int dmar_init_irt(struct dmar_unit *unit) { if ((unit->hw_ecap & DMAR_ECAP_IR) == 0) return (0); unit->ir_enabled = 1; TUNABLE_INT_FETCH("hw.dmar.ir", &unit->ir_enabled); if (!unit->ir_enabled) return (0); if (!unit->qi_enabled) { unit->ir_enabled = 0; if (bootverbose) - device_printf(unit->dev, + device_printf(unit->iommu.dev, "QI disabled, disabling interrupt remapping\n"); return (0); } unit->irte_cnt = clp2(num_io_irqs); unit->irt = kmem_alloc_contig(unit->irte_cnt * sizeof(dmar_irte_t), M_ZERO | M_WAITOK, 0, iommu_high, PAGE_SIZE, 0, DMAR_IS_COHERENT(unit) ? VM_MEMATTR_DEFAULT : VM_MEMATTR_UNCACHEABLE); if (unit->irt == NULL) return (ENOMEM); unit->irt_phys = pmap_kextract((vm_offset_t)unit->irt); unit->irtids = vmem_create("dmarirt", 0, unit->irte_cnt, 1, 0, M_FIRSTFIT | M_NOWAIT); DMAR_LOCK(unit); dmar_load_irt_ptr(unit); dmar_qi_invalidate_iec_glob(unit); DMAR_UNLOCK(unit); /* * Initialize mappings for already configured interrupt pins. * Required, because otherwise the interrupts fault without * irtes. */ intr_reprogram(); DMAR_LOCK(unit); dmar_enable_ir(unit); DMAR_UNLOCK(unit); return (0); } void dmar_fini_irt(struct dmar_unit *unit) { unit->ir_enabled = 0; if (unit->irt != NULL) { dmar_disable_ir(unit); dmar_qi_invalidate_iec_glob(unit); vmem_destroy(unit->irtids); kmem_free(unit->irt, unit->irte_cnt * sizeof(dmar_irte_t)); } } diff --git a/sys/x86/iommu/intel_quirks.c b/sys/x86/iommu/intel_quirks.c index 486bd1bc9496..b405a24c4c8c 100644 --- a/sys/x86/iommu/intel_quirks.c +++ b/sys/x86/iommu/intel_quirks.c @@ -1,243 +1,244 @@ /*- * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 2013, 2015 The FreeBSD Foundation * * This software was developed by Konstantin Belousov * under sponsorship from the FreeBSD Foundation. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include typedef void (*dmar_quirk_cpu_fun)(struct dmar_unit *); struct intel_dmar_quirk_cpu { u_int ext_family; u_int ext_model; u_int family_code; u_int model; u_int stepping; dmar_quirk_cpu_fun quirk; const char *descr; }; typedef void (*dmar_quirk_nb_fun)(struct dmar_unit *, device_t nb); struct intel_dmar_quirk_nb { u_int dev_id; u_int rev_no; dmar_quirk_nb_fun quirk; const char *descr; }; #define QUIRK_NB_ALL_REV 0xffffffff static void dmar_match_quirks(struct dmar_unit *dmar, const struct intel_dmar_quirk_nb *nb_quirks, int nb_quirks_len, const struct intel_dmar_quirk_cpu *cpu_quirks, int cpu_quirks_len) { device_t nb; const struct intel_dmar_quirk_nb *nb_quirk; const struct intel_dmar_quirk_cpu *cpu_quirk; u_int p[4]; u_int dev_id, rev_no; u_int ext_family, ext_model, family_code, model, stepping; int i; if (nb_quirks != NULL) { nb = pci_find_bsf(0, 0, 0); if (nb != NULL) { dev_id = pci_get_device(nb); rev_no = pci_get_revid(nb); for (i = 0; i < nb_quirks_len; i++) { nb_quirk = &nb_quirks[i]; if (nb_quirk->dev_id == dev_id && (nb_quirk->rev_no == rev_no || nb_quirk->rev_no == QUIRK_NB_ALL_REV)) { if (bootverbose) { - device_printf(dmar->dev, + device_printf(dmar->iommu.dev, "NB IOMMU quirk %s\n", nb_quirk->descr); } nb_quirk->quirk(dmar, nb); } } } else { - device_printf(dmar->dev, "cannot find northbridge\n"); + device_printf(dmar->iommu.dev, + "cannot find northbridge\n"); } } if (cpu_quirks != NULL) { do_cpuid(1, p); ext_family = (p[0] & CPUID_EXT_FAMILY) >> 20; ext_model = (p[0] & CPUID_EXT_MODEL) >> 16; family_code = (p[0] & CPUID_FAMILY) >> 8; model = (p[0] & CPUID_MODEL) >> 4; stepping = p[0] & CPUID_STEPPING; for (i = 0; i < cpu_quirks_len; i++) { cpu_quirk = &cpu_quirks[i]; if (cpu_quirk->ext_family == ext_family && cpu_quirk->ext_model == ext_model && cpu_quirk->family_code == family_code && cpu_quirk->model == model && (cpu_quirk->stepping == -1 || cpu_quirk->stepping == stepping)) { if (bootverbose) { - device_printf(dmar->dev, + device_printf(dmar->iommu.dev, "CPU IOMMU quirk %s\n", cpu_quirk->descr); } cpu_quirk->quirk(dmar); } } } } static void nb_5400_no_low_high_prot_mem(struct dmar_unit *unit, device_t nb __unused) { unit->hw_cap &= ~(DMAR_CAP_PHMR | DMAR_CAP_PLMR); } static void nb_no_ir(struct dmar_unit *unit, device_t nb __unused) { unit->hw_ecap &= ~(DMAR_ECAP_IR | DMAR_ECAP_EIM); } static void nb_5500_no_ir_rev13(struct dmar_unit *unit, device_t nb) { u_int rev_no; rev_no = pci_get_revid(nb); if (rev_no <= 0x13) nb_no_ir(unit, nb); } static const struct intel_dmar_quirk_nb pre_use_nb[] = { { .dev_id = 0x4001, .rev_no = 0x20, .quirk = nb_5400_no_low_high_prot_mem, .descr = "5400 E23" /* no low/high protected memory */ }, { .dev_id = 0x4003, .rev_no = 0x20, .quirk = nb_5400_no_low_high_prot_mem, .descr = "5400 E23" /* no low/high protected memory */ }, { .dev_id = 0x3403, .rev_no = QUIRK_NB_ALL_REV, .quirk = nb_5500_no_ir_rev13, .descr = "5500 E47, E53" /* interrupt remapping does not work */ }, { .dev_id = 0x3405, .rev_no = QUIRK_NB_ALL_REV, .quirk = nb_5500_no_ir_rev13, .descr = "5500 E47, E53" /* interrupt remapping does not work */ }, { .dev_id = 0x3405, .rev_no = 0x22, .quirk = nb_no_ir, .descr = "5500 E47, E53" /* interrupt remapping does not work */ }, { .dev_id = 0x3406, .rev_no = QUIRK_NB_ALL_REV, .quirk = nb_5500_no_ir_rev13, .descr = "5500 E47, E53" /* interrupt remapping does not work */ }, }; static void cpu_e5_am9(struct dmar_unit *unit) { unit->hw_cap &= ~(0x3fULL << 48); unit->hw_cap |= (9ULL << 48); } static const struct intel_dmar_quirk_cpu post_ident_cpu[] = { { .ext_family = 0, .ext_model = 2, .family_code = 6, .model = 13, .stepping = 6, .quirk = cpu_e5_am9, .descr = "E5 BT176" /* AM should be at most 9 */ }, }; void dmar_quirks_pre_use(struct iommu_unit *unit) { struct dmar_unit *dmar; dmar = IOMMU2DMAR(unit); if (!dmar_barrier_enter(dmar, DMAR_BARRIER_USEQ)) return; DMAR_LOCK(dmar); dmar_match_quirks(dmar, pre_use_nb, nitems(pre_use_nb), NULL, 0); dmar_barrier_exit(dmar, DMAR_BARRIER_USEQ); } void dmar_quirks_post_ident(struct dmar_unit *dmar) { dmar_match_quirks(dmar, NULL, 0, post_ident_cpu, nitems(post_ident_cpu)); } diff --git a/sys/x86/iommu/intel_utils.c b/sys/x86/iommu/intel_utils.c index b0f2d167658a..a66682b68a2b 100644 --- a/sys/x86/iommu/intel_utils.c +++ b/sys/x86/iommu/intel_utils.c @@ -1,593 +1,593 @@ /*- * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 2013 The FreeBSD Foundation * * This software was developed by Konstantin Belousov * under sponsorship from the FreeBSD Foundation. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include u_int dmar_nd2mask(u_int nd) { static const u_int masks[] = { 0x000f, /* nd == 0 */ 0x002f, /* nd == 1 */ 0x00ff, /* nd == 2 */ 0x02ff, /* nd == 3 */ 0x0fff, /* nd == 4 */ 0x2fff, /* nd == 5 */ 0xffff, /* nd == 6 */ 0x0000, /* nd == 7 reserved */ }; KASSERT(nd <= 6, ("number of domains %d", nd)); return (masks[nd]); } static const struct sagaw_bits_tag { int agaw; int cap; int awlvl; int pglvl; } sagaw_bits[] = { {.agaw = 30, .cap = DMAR_CAP_SAGAW_2LVL, .awlvl = DMAR_CTX2_AW_2LVL, .pglvl = 2}, {.agaw = 39, .cap = DMAR_CAP_SAGAW_3LVL, .awlvl = DMAR_CTX2_AW_3LVL, .pglvl = 3}, {.agaw = 48, .cap = DMAR_CAP_SAGAW_4LVL, .awlvl = DMAR_CTX2_AW_4LVL, .pglvl = 4}, {.agaw = 57, .cap = DMAR_CAP_SAGAW_5LVL, .awlvl = DMAR_CTX2_AW_5LVL, .pglvl = 5} /* * 6-level paging (DMAR_CAP_SAGAW_6LVL) is not supported on any * current VT-d hardware and its SAGAW field value is listed as * reserved in the VT-d spec. If support is added in the future, * this structure and the logic in dmar_maxaddr2mgaw() will need * to change to avoid attempted comparison against 1ULL << 64. */ }; bool dmar_pglvl_supported(struct dmar_unit *unit, int pglvl) { int i; for (i = 0; i < nitems(sagaw_bits); i++) { if (sagaw_bits[i].pglvl != pglvl) continue; if ((DMAR_CAP_SAGAW(unit->hw_cap) & sagaw_bits[i].cap) != 0) return (true); } return (false); } int domain_set_agaw(struct dmar_domain *domain, int mgaw) { int sagaw, i; domain->mgaw = mgaw; sagaw = DMAR_CAP_SAGAW(domain->dmar->hw_cap); for (i = 0; i < nitems(sagaw_bits); i++) { if (sagaw_bits[i].agaw >= mgaw) { domain->agaw = sagaw_bits[i].agaw; domain->pglvl = sagaw_bits[i].pglvl; domain->awlvl = sagaw_bits[i].awlvl; return (0); } } - device_printf(domain->dmar->dev, + device_printf(domain->dmar->iommu.dev, "context request mgaw %d: no agaw found, sagaw %x\n", mgaw, sagaw); return (EINVAL); } /* * Find a best fit mgaw for the given maxaddr: * - if allow_less is false, must find sagaw which maps all requested * addresses (used by identity mappings); * - if allow_less is true, and no supported sagaw can map all requested * address space, accept the biggest sagaw, whatever is it. */ int dmar_maxaddr2mgaw(struct dmar_unit *unit, iommu_gaddr_t maxaddr, bool allow_less) { int i; for (i = 0; i < nitems(sagaw_bits); i++) { if ((1ULL << sagaw_bits[i].agaw) >= maxaddr && (DMAR_CAP_SAGAW(unit->hw_cap) & sagaw_bits[i].cap) != 0) break; } if (allow_less && i == nitems(sagaw_bits)) { do { i--; } while ((DMAR_CAP_SAGAW(unit->hw_cap) & sagaw_bits[i].cap) == 0); } if (i < nitems(sagaw_bits)) return (sagaw_bits[i].agaw); KASSERT(0, ("no mgaw for maxaddr %jx allow_less %d", (uintmax_t) maxaddr, allow_less)); return (-1); } /* * Calculate the total amount of page table pages needed to map the * whole bus address space on the context with the selected agaw. */ vm_pindex_t pglvl_max_pages(int pglvl) { vm_pindex_t res; int i; for (res = 0, i = pglvl; i > 0; i--) { res *= IOMMU_NPTEPG; res++; } return (res); } /* * Return true if the page table level lvl supports the superpage for * the context ctx. */ int domain_is_sp_lvl(struct dmar_domain *domain, int lvl) { int alvl, cap_sps; static const int sagaw_sp[] = { DMAR_CAP_SPS_2M, DMAR_CAP_SPS_1G, DMAR_CAP_SPS_512G, DMAR_CAP_SPS_1T }; alvl = domain->pglvl - lvl - 1; cap_sps = DMAR_CAP_SPS(domain->dmar->hw_cap); return (alvl < nitems(sagaw_sp) && (sagaw_sp[alvl] & cap_sps) != 0); } iommu_gaddr_t pglvl_page_size(int total_pglvl, int lvl) { int rlvl; static const iommu_gaddr_t pg_sz[] = { (iommu_gaddr_t)IOMMU_PAGE_SIZE, (iommu_gaddr_t)IOMMU_PAGE_SIZE << IOMMU_NPTEPGSHIFT, (iommu_gaddr_t)IOMMU_PAGE_SIZE << (2 * IOMMU_NPTEPGSHIFT), (iommu_gaddr_t)IOMMU_PAGE_SIZE << (3 * IOMMU_NPTEPGSHIFT), (iommu_gaddr_t)IOMMU_PAGE_SIZE << (4 * IOMMU_NPTEPGSHIFT), (iommu_gaddr_t)IOMMU_PAGE_SIZE << (5 * IOMMU_NPTEPGSHIFT), }; KASSERT(lvl >= 0 && lvl < total_pglvl, ("total %d lvl %d", total_pglvl, lvl)); rlvl = total_pglvl - lvl - 1; KASSERT(rlvl < nitems(pg_sz), ("sizeof pg_sz lvl %d", lvl)); return (pg_sz[rlvl]); } iommu_gaddr_t domain_page_size(struct dmar_domain *domain, int lvl) { return (pglvl_page_size(domain->pglvl, lvl)); } int calc_am(struct dmar_unit *unit, iommu_gaddr_t base, iommu_gaddr_t size, iommu_gaddr_t *isizep) { iommu_gaddr_t isize; int am; for (am = DMAR_CAP_MAMV(unit->hw_cap);; am--) { isize = 1ULL << (am + IOMMU_PAGE_SHIFT); if ((base & (isize - 1)) == 0 && size >= isize) break; if (am == 0) break; } *isizep = isize; return (am); } int haw; int dmar_tbl_pagecnt; static void dmar_flush_transl_to_ram(struct dmar_unit *unit, void *dst, size_t sz) { if (DMAR_IS_COHERENT(unit)) return; /* * If DMAR does not snoop paging structures accesses, flush * CPU cache to memory. */ pmap_force_invalidate_cache_range((uintptr_t)dst, (uintptr_t)dst + sz); } void dmar_flush_pte_to_ram(struct dmar_unit *unit, iommu_pte_t *dst) { dmar_flush_transl_to_ram(unit, dst, sizeof(*dst)); } void dmar_flush_ctx_to_ram(struct dmar_unit *unit, dmar_ctx_entry_t *dst) { dmar_flush_transl_to_ram(unit, dst, sizeof(*dst)); } void dmar_flush_root_to_ram(struct dmar_unit *unit, dmar_root_entry_t *dst) { dmar_flush_transl_to_ram(unit, dst, sizeof(*dst)); } /* * Load the root entry pointer into the hardware, busily waiting for * the completion. */ int dmar_load_root_entry_ptr(struct dmar_unit *unit) { vm_page_t root_entry; int error; /* * Access to the GCMD register must be serialized while the * command is submitted. */ DMAR_ASSERT_LOCKED(unit); VM_OBJECT_RLOCK(unit->ctx_obj); root_entry = vm_page_lookup(unit->ctx_obj, 0); VM_OBJECT_RUNLOCK(unit->ctx_obj); dmar_write8(unit, DMAR_RTADDR_REG, VM_PAGE_TO_PHYS(root_entry)); dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd | DMAR_GCMD_SRTP); DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_RTPS) != 0)); return (error); } /* * Globally invalidate the context entries cache, busily waiting for * the completion. */ int dmar_inv_ctx_glob(struct dmar_unit *unit) { int error; /* * Access to the CCMD register must be serialized while the * command is submitted. */ DMAR_ASSERT_LOCKED(unit); KASSERT(!unit->qi_enabled, ("QI enabled")); /* * The DMAR_CCMD_ICC bit in the upper dword should be written * after the low dword write is completed. Amd64 * dmar_write8() does not have this issue, i386 dmar_write8() * writes the upper dword last. */ dmar_write8(unit, DMAR_CCMD_REG, DMAR_CCMD_ICC | DMAR_CCMD_CIRG_GLOB); DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_CCMD_REG + 4) & DMAR_CCMD_ICC32) == 0)); return (error); } /* * Globally invalidate the IOTLB, busily waiting for the completion. */ int dmar_inv_iotlb_glob(struct dmar_unit *unit) { int error, reg; DMAR_ASSERT_LOCKED(unit); KASSERT(!unit->qi_enabled, ("QI enabled")); reg = 16 * DMAR_ECAP_IRO(unit->hw_ecap); /* See a comment about DMAR_CCMD_ICC in dmar_inv_ctx_glob. */ dmar_write8(unit, reg + DMAR_IOTLB_REG_OFF, DMAR_IOTLB_IVT | DMAR_IOTLB_IIRG_GLB | DMAR_IOTLB_DR | DMAR_IOTLB_DW); DMAR_WAIT_UNTIL(((dmar_read4(unit, reg + DMAR_IOTLB_REG_OFF + 4) & DMAR_IOTLB_IVT32) == 0)); return (error); } /* * Flush the chipset write buffers. See 11.1 "Write Buffer Flushing" * in the architecture specification. */ int dmar_flush_write_bufs(struct dmar_unit *unit) { int error; DMAR_ASSERT_LOCKED(unit); /* * DMAR_GCMD_WBF is only valid when CAP_RWBF is reported. */ KASSERT((unit->hw_cap & DMAR_CAP_RWBF) != 0, ("dmar%d: no RWBF", unit->iommu.unit)); dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd | DMAR_GCMD_WBF); DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_WBFS) != 0)); return (error); } /* * Some BIOSes protect memory region they reside in by using DMAR to * prevent devices from doing any DMA transactions to that part of RAM. * AMI refers to this as "DMA Control Guarantee". * We need to disable this when address translation is enabled. */ int dmar_disable_protected_regions(struct dmar_unit *unit) { uint32_t reg; int error; DMAR_ASSERT_LOCKED(unit); /* Check if we support the feature. */ if ((unit->hw_cap & (DMAR_CAP_PLMR | DMAR_CAP_PHMR)) == 0) return (0); reg = dmar_read4(unit, DMAR_PMEN_REG); if ((reg & DMAR_PMEN_EPM) == 0) return (0); reg &= ~DMAR_PMEN_EPM; dmar_write4(unit, DMAR_PMEN_REG, reg); DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_PMEN_REG) & DMAR_PMEN_PRS) != 0)); return (error); } int dmar_enable_translation(struct dmar_unit *unit) { int error; DMAR_ASSERT_LOCKED(unit); unit->hw_gcmd |= DMAR_GCMD_TE; dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd); DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_TES) != 0)); return (error); } int dmar_disable_translation(struct dmar_unit *unit) { int error; DMAR_ASSERT_LOCKED(unit); unit->hw_gcmd &= ~DMAR_GCMD_TE; dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd); DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_TES) == 0)); return (error); } int dmar_load_irt_ptr(struct dmar_unit *unit) { uint64_t irta, s; int error; DMAR_ASSERT_LOCKED(unit); irta = unit->irt_phys; if (DMAR_X2APIC(unit)) irta |= DMAR_IRTA_EIME; s = fls(unit->irte_cnt) - 2; KASSERT(unit->irte_cnt >= 2 && s <= DMAR_IRTA_S_MASK && powerof2(unit->irte_cnt), ("IRTA_REG_S overflow %x", unit->irte_cnt)); irta |= s; dmar_write8(unit, DMAR_IRTA_REG, irta); dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd | DMAR_GCMD_SIRTP); DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_IRTPS) != 0)); return (error); } int dmar_enable_ir(struct dmar_unit *unit) { int error; DMAR_ASSERT_LOCKED(unit); unit->hw_gcmd |= DMAR_GCMD_IRE; unit->hw_gcmd &= ~DMAR_GCMD_CFI; dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd); DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_IRES) != 0)); return (error); } int dmar_disable_ir(struct dmar_unit *unit) { int error; DMAR_ASSERT_LOCKED(unit); unit->hw_gcmd &= ~DMAR_GCMD_IRE; dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd); DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_IRES) == 0)); return (error); } #define BARRIER_F \ u_int f_done, f_inproc, f_wakeup; \ \ f_done = 1 << (barrier_id * 3); \ f_inproc = 1 << (barrier_id * 3 + 1); \ f_wakeup = 1 << (barrier_id * 3 + 2) bool dmar_barrier_enter(struct dmar_unit *dmar, u_int barrier_id) { BARRIER_F; DMAR_LOCK(dmar); if ((dmar->barrier_flags & f_done) != 0) { DMAR_UNLOCK(dmar); return (false); } if ((dmar->barrier_flags & f_inproc) != 0) { while ((dmar->barrier_flags & f_inproc) != 0) { dmar->barrier_flags |= f_wakeup; msleep(&dmar->barrier_flags, &dmar->iommu.lock, 0, "dmarb", 0); } KASSERT((dmar->barrier_flags & f_done) != 0, ("dmar%d barrier %d missing done", dmar->iommu.unit, barrier_id)); DMAR_UNLOCK(dmar); return (false); } dmar->barrier_flags |= f_inproc; DMAR_UNLOCK(dmar); return (true); } void dmar_barrier_exit(struct dmar_unit *dmar, u_int barrier_id) { BARRIER_F; DMAR_ASSERT_LOCKED(dmar); KASSERT((dmar->barrier_flags & (f_done | f_inproc)) == f_inproc, ("dmar%d barrier %d missed entry", dmar->iommu.unit, barrier_id)); dmar->barrier_flags |= f_done; if ((dmar->barrier_flags & f_wakeup) != 0) wakeup(&dmar->barrier_flags); dmar->barrier_flags &= ~(f_inproc | f_wakeup); DMAR_UNLOCK(dmar); } int dmar_batch_coalesce = 100; struct timespec dmar_hw_timeout = { .tv_sec = 0, .tv_nsec = 1000000 }; static const uint64_t d = 1000000000; void dmar_update_timeout(uint64_t newval) { /* XXXKIB not atomic */ dmar_hw_timeout.tv_sec = newval / d; dmar_hw_timeout.tv_nsec = newval % d; } uint64_t dmar_get_timeout(void) { return ((uint64_t)dmar_hw_timeout.tv_sec * d + dmar_hw_timeout.tv_nsec); } static int dmar_timeout_sysctl(SYSCTL_HANDLER_ARGS) { uint64_t val; int error; val = dmar_get_timeout(); error = sysctl_handle_long(oidp, &val, 0, req); if (error != 0 || req->newptr == NULL) return (error); dmar_update_timeout(val); return (error); } SYSCTL_INT(_hw_iommu_dmar, OID_AUTO, batch_coalesce, CTLFLAG_RWTUN, &dmar_batch_coalesce, 0, "Number of qi batches between interrupt"); SYSCTL_PROC(_hw_iommu_dmar, OID_AUTO, timeout, CTLTYPE_U64 | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 0, dmar_timeout_sysctl, "QU", "Timeout for command wait, in nanoseconds");