diff --git a/en_US.ISO8859-1/books/handbook/basics/chapter.sgml b/en_US.ISO8859-1/books/handbook/basics/chapter.sgml index 24a989d99b..ff374ceff7 100644 --- a/en_US.ISO8859-1/books/handbook/basics/chapter.sgml +++ b/en_US.ISO8859-1/books/handbook/basics/chapter.sgml @@ -1,1479 +1,1479 @@ Chris Shumway Rewritten by Unix Basics Synopsis basics The following chapter will cover the basic commands and functionality of the FreeBSD operating system. Much of this material is relevant for any Unix-like operating system. Feel free to skim over this chapter if you are familiar with the material. If you are new to FreeBSD, then you will definitely want to read through this chapter carefully. After reading this chapter, you will know: How Unix file permissions work. What processes, daemons, and signals are. What a shell is, and how to change your default login environment. How to use basic text editors. How to read manual pages for more information. Permissions Unix FreeBSD, being a direct descendant of BSD Unix, is based on several key Unix concepts. The first, and most pronounced, is that FreeBSD is a multi-user operating system. The system can handle several users all working simultaneously on completely unrelated tasks. The system is responsible for properly sharing and managing requests for hardware devices, peripherals, memory, and CPU time evenly to each user. Because the system is capable of supporting multiple users, everything the system manages has a set of permissions governing who can read, write, and execute the resource. These permissions are stored as two octets broken into three pieces, one for the owner of the file, one for the group that the file belongs to, and one for everyone else. This numerical representation works like this: permissions file permissions Value Permission Directory Listing 0 No read, no write, no execute --- 1 No read, no write, execute --x 2 No read, write, no execute -w- 3 No read, write, execute -wx 4 Read, no write, no execute r-- 5 Read, no write, execute r-x 6 Read, write, no execute rw- 7 Read, write, execute rwx ls directories You can use the command line argument to &man.ls.1; to view a long directory listing that includes a column with information about a file's permissions for the owner, group, and everyone else. Here is how the first column of ls -l is broken up: -rw-r--r-- The first (leftmost) character tells if this file is a regular file, a directory, a special character device, a socket, or any other special pseudo-file device. In this case, the - indicates a regular file. The next three characters, rw- in this example, give the permissions for the owner of the file. The next three characters, r--, give the permissions for the group that the file belongs to. The final three characters, r--, give the permissions for the rest of the world. A dash means that the permission is turned off. In the case of this file, the permissions are set so the owner can read and write to the file, the group can read the file, and the rest of the world can only read the file. According to the table above, the permissions for this file would be 644, where each digit represents the three parts of the file's permission. This is all well and good, but how does the system control permissions on devices? FreeBSD actually treats most hardware devices as a file that programs can open, read, and write data to just like any other file. These special device files are stored on the /dev directory. Directories are also treated as files. They have read, write, and execute permissions. The executable bit for a directory has a slightly different meaning than that of files. When a directory is marked executable, it means it can be moved into, i.e. it is possible to cd into it. This also means that within the directory it is possible to access files whose names are known (subject, of course, to the permissions on the files themselves). In particular, in order to able to perform a directory listing, read permission must be set on the directory, whilst to delete a file that one knows the name of, it is necessary to have write and execute permissions to the directory containing the file. There are more permission bits, but they are primarily used in special circumstances such as setuid binaries and sticky directories. If you want more information on file permissions and how to set them, be sure to look at the &man.chmod.1; man page. Directory Structure directory hierarchy The FreeBSD directory hierarchy is fundamental to obtaining an overall understanding of the system. The most important concept to grasp is that of the root directory, /. This directory is the first one mounted at boot time and it contains the base system necessary to prepare the operating system for multi-user operation. The root directory also contains mount points for every other filesystem that you may want to mount. A mount point is a directory where additional filesystems can be grafted onto the root filesystem. Standard mount points include /usr, /var, /mnt, and /cdrom. These directories are usually referenced to entries in the file /etc/fstab. /etc/fstab is a table of various filesystems and mount points for reference by the system. Most of the filesystems in /etc/fstab are mounted automatically at boot time from the script &man.rc.8; unless they contain the option. Consult the &man.fstab.5; manual page for more information on the format of the /etc/fstab file and the options it contains. A complete description of the filesystem hierarchy is available in &man.hier.7;. For now, a brief overview of the most common directories will suffice. Directory Description / Root directory of the filesystem. /bin/ User utilities fundamental to both single-user and multi-user environments. /boot/ Programs and configuration files used during operating system bootstrap. /boot/defaults/ Default bootstrapping configuration files; see &man.loader.conf.5;. /dev/ Device nodes; see &man.intro.4;. /etc/ System configuration files and scripts. /etc/defaults/ Default system configuration files; see &man.rc.8;. /etc/mail/ Configuration files for mail transport agents such as &man.sendmail.8;. /etc/namedb/ named configuration files; see &man.named.8;. /etc/periodic/ Scripts that are run daily, weekly, and monthly, via &man.cron.8;; see &man.periodic.8;. /etc/ppp/ ppp configuration files; see &man.ppp.8;. /mnt/ Empty directory commonly used by system administrators as a temporary mount point. /proc/ Process filesystem; see &man.procfs.5;, &man.mount.procfs.8;. /root/ Home directory for the root account. /sbin/ System programs and administration utilities fundamental to both single-user and multi-user environments. /stand/ Programs used in a standalone environment. /tmp/ Temporary files, usually a &man.mfs.8; memory-based filesystem (the contents of /tmp are usually NOT preserved across a system reboot). /usr/ The majority of user utilities and applications. /usr/bin/ Common utilities, programming tools, and applications. /usr/include/ Standard C include files. /usr/lib/ Archive libraries. /usr/libdata/ Miscellaneous utility data files. /usr/libexec/ System daemons & system utilities (executed by other programs). /usr/local/ Local executables, libraries, etc. Also used as the default destination for the FreeBSD ports framework. Within /usr/local, the general layout sketched out by &man.hier.7; for /usr should be used. Exceptions are the man directory, which is directly under /usr/local rather than under /usr/local/share, and the ports documentation is in share/doc/port. /usr/obj/ Architecture-specific target tree produced by building the /usr/src tree. /usr/ports The FreeBSD ports collection (optional). /usr/sbin/ System daemons & system utilities (executed by users). /usr/share/ Architecture-independent files. /usr/src/ BSD and/or local source files. /usr/X11R6/ X11R6 distribution executables, libraries, etc (optional). /var/ Multi-purpose log, temporary, transient, and spool files. /var/log/ Miscellaneous system log files. /var/mail/ User mailbox files. /var/spool/ Miscellaneous printer and mail system spooling directories. /var/tmp/ Temporary files that are kept between system reboots. /var/yp NIS maps. Mounting and Unmounting Filesystems The filesystem is best visualized as a tree, rooted, as it were, at /. /dev, /usr, and the other directories in the root directory are branches, which may have their own branches, such as /usr/local, and so on. root filesystem There are various reasons to house some of these directories on separate filesystems. /var contains the directories log/, spool/, and various types of temporary files, and as such, may get filled up. Filling up the root filesystem is not a good idea, so splitting /var from / is often favorable. Another common reason to contain certain directory trees on other filesystems is if they are to be housed on separate physical disks, or are separate virtual disks, such as Network File System mounts, or CDROM drives. The <filename>fstab</filename> File filesystems mounted with fstab During the boot process, filesystems listed in /etc/fstab are automatically mounted (unless they are listed with the option). The /etc/fstab file contains a list of lines of the following format: device /mount-point fstype options dumpfreq passno device A device name (which should exist), as explained in . mount-point A directory (which should exist), on which to mount the filesystem. fstype The filesystem type to pass to &man.mount.8;. The default FreeBSD filesystem is ufs. options Either for read-write filesystems, or for read-only filesystems, followed by any other options that may be needed. A common option is for filesystems not normally mounted during the boot sequence. Other options are listed in the &man.mount.8; manual page. dumpfreq This is used by &man.dump.8; to determine which filesystems require dumping. If the field is missing, a value of zero is assumed. passno This determines the order in which filesystems should be checked. Filesystems that should be skipped should have their passno set to zero. The root filesystem (which needs to be checked before everything else) should have it's passno set to one, and other filesystems' passno should be set to values greater than one. If more than one filesystems have the same passno then &man.fsck.8; will attempt to check filesystems in parallel if possible. The <command>mount</command> Command filesystems mounting The &man.mount.8; command is what is ultimately used to mount filesystems. In its most basic form, you use: &prompt.root; mount device mountpoint There are plenty of options, as mentioned in the &man.mount.8; manual page, but the most common are: Mount Options Mount all the filesystems listed in /etc/fstab. Exceptions are those marked as noauto, excluded by the flag, or those that are already mounted. Do everything except for the actual system call. This option is useful in conjunction with the flag to determine what &man.mount.8; is actually trying to do. Force the mount of an unclean filesystem (dangerous), or forces the revocation of write access when downgrading a filesystem's mount status from read-write to read-only. Mount the filesystem read-only. This is identical to using the argument to the option. fstype Mount the given filesystem as the given filesystem type, or mount only filesystems of the given type, if given the option. ufs is the default filesystem type. Update mount options on the filesystem. Be verbose. Mount the filesystem read-write. The option takes a comma-separated list of the options, including the following: nodev Do not interpret special devices on the filesystem. This is a useful security option. noexec Do not allow execution of binaries on this filesystem. This is also a useful security option. nosuid Do not interpret setuid or setgid flags on the filesystem. This is also a useful security option. The <command>umount</command> Command filesystems unmounting The &man.umount.8; command takes, as a parameter, one of a mountpoint, a device name, or the or option. All forms take to force unmounting, and for verbosity. Be warned that is not generally a good idea. Forcibly unmounting filesystems might crash the computer or damage data on the filesystem. and are used to unmount all mounted filesystems, possibly modified by the filesystem types listed after . , however, does not attempt to unmount the root filesystem. Processes FreeBSD is a multi-tasking operating system. This means that it seems as though more than one program is running at once. Each program running at any one time is called a process. Every command you run will start at least one new process, and there are a number of system processes that run all the time, keeping the system functional. Each process is uniquely identified by a number called a process ID, or PID, and, like files, each process also has one owner and group. The owner and group information is used to determine what files and devices the process can open, using the file permissions discussed earlier. Most processes also have a parent process. The parent process is the process that started them. For example, if you are typing commands to the shell then the shell is a process, and any commands you run are also processes. Each process you run in this way will have your shell as its parent process. The exception to this is a special process called init. init is always the first process, so its PID is always 1. init is started automatically by the kernel when FreeBSD starts. Two commands are particularly useful to see the processes on the system, &man.ps.1; and &man.top.1;. The &man.ps.1; command is used to show a static list of the currently running processes, and can show their PID, how much memory they are using, the command line they were started with, and so on. The &man.top.1; command displays all the running processes, and updates the display every few seconds, so that you can interactively see what your computer is doing. By default, &man.ps.1; only shows you the commands that are running and are owned by you. For example: &prompt.user; ps PID TT STAT TIME COMMAND 298 p0 Ss 0:01.10 tcsh 7078 p0 S 2:40.88 xemacs mdoc.xsl (xemacs-21.1.14) 37393 p0 I 0:03.11 xemacs freebsd.dsl (xemacs-21.1.14) 48630 p0 S 2:50.89 /usr/local/lib/netscape-linux/navigator-linux-4.77.bi 48730 p0 IW 0:00.00 (dns helper) (navigator-linux-) 72210 p0 R+ 0:00.00 ps 390 p1 Is 0:01.14 tcsh 7059 p2 Is+ 1:36.18 /usr/local/bin/mutt -y 6688 p3 IWs 0:00.00 tcsh 10735 p4 IWs 0:00.00 tcsh 20256 p5 IWs 0:00.00 tcsh 262 v0 IWs 0:00.00 -tcsh (tcsh) 270 v0 IW+ 0:00.00 /bin/sh /usr/X11R6/bin/startx -- -bpp 16 280 v0 IW+ 0:00.00 xinit /home/nik/.xinitrc -- -bpp 16 284 v0 IW 0:00.00 /bin/sh /home/nik/.xinitrc 285 v0 S 0:38.45 /usr/X11R6/bin/sawfish As you can see in this example, the output from &man.ps.1; is organized into a number of columns. PID is the process ID discussed earlier. PIDs are assigned starting from 1, go up to 99999, and wrap around back to the beginning when you run out. TT shows the tty the program is running on, and can safely be ignored for the moment. STAT shows the program's state, and again, can be safely ignored. TIME is the amount of time the program has been running on the CPU—this is not necessarily the elapsed time since you started the program, as some programs spend a lot of time waiting for things to happen before they need to spend time on the CPU. Finally, COMMAND is the command line that was used to run the program. &man.ps.1; supports a number of different options to change the information that is displayed. One of the most useful sets is auxww. displays information about all the running processes, not just your own. displays the username of the process' owner, as well as memory usage. displays information about daemon processes, and causes &man.ps.1; to display the full command line, rather than truncating it once it gets too long to fit on the screen. The output from &man.top.1; is similar. A sample session looks like this: &prompt.user; top last pid: 72257; load averages: 0.13, 0.09, 0.03 up 0+13:38:33 22:39:10 47 processes: 1 running, 46 sleeping CPU states: 12.6% user, 0.0% nice, 7.8% system, 0.0% interrupt, 79.7% idle Mem: 36M Active, 5256K Inact, 13M Wired, 6312K Cache, 15M Buf, 408K Free Swap: 256M Total, 38M Used, 217M Free, 15% Inuse PID USERNAME PRI NICE SIZE RES STATE TIME WCPU CPU COMMAND 72257 nik 28 0 1960K 1044K RUN 0:00 14.86% 1.42% top 7078 nik 2 0 15280K 10960K select 2:54 0.88% 0.88% xemacs-21.1.14 281 nik 2 0 18636K 7112K select 5:36 0.73% 0.73% XF86_SVGA 296 nik 2 0 3240K 1644K select 0:12 0.05% 0.05% xterm 48630 nik 2 0 29816K 9148K select 3:18 0.00% 0.00% navigator-linu 175 root 2 0 924K 252K select 1:41 0.00% 0.00% syslogd 7059 nik 2 0 7260K 4644K poll 1:38 0.00% 0.00% mutt ... The output is split into two sections. The header (the first five lines) shows the PID of the last process to run, the system load averages (which are a measure of how busy the system is), the system uptime (time since the last reboot) and the current time. The other figures in the header relate to how many processes are running (47 in this case), how much memory and swap space has been taken up, and how much time the system is spending in different CPU states. Below that are a series of columns containing similar information to the output from &man.ps.1;. As before you can see the PID, the username, the amount of CPU time taken, and the command that was run. &man.top.1; also defaults to showing you the amount of memory space taken by the process. This is split into two columns, one for total size, and one for resident size—total size is how much memory the application has needed, and the resident size is how much it is actually using at the moment. In this example you can see that Netscape has - required almost 30 MB of RAM, but is currently only using 9 MB. + required almost 30 MB of RAM, but is currently only using 9 MB. &man.top.1; automatically updates this display every two seconds; this can be changed with the option. Daemons, Signals, and Killing Processes When you run an editor it is easy to control the editor, tell it to load files, and so on. You can do this because the editor provides facilities to do so, and because the editor is attached to a terminal. Some programs are not designed to be run with continuous user input, and so they disconnect from the terminal at the first opportunity. For example, a web server spends all day responding to web requests, it normally does not need any input from you. Programs that transport email from site to site are another example of this class of application. We call these programs daemons. Daemons were characters in Greek mythology; neither good or evil, they were little attendant spirits that, by and large, did useful things for mankind. Much like the web servers and mail servers of today do useful things. This is why the BSD mascot has, for a long time, been the cheerful looking daemon with sneakers and a pitchfork. There is a convention to name programs that normally run as daemons with a trailing d. BIND is the Berkeley Internet Name Daemon (and the actual program that executes is called named), the Apache web server program is called httpd, the line printer spooling daemon is lpd and so on. This is a convention, not a hard and fast rule; for example, the main mail daemon for the Sendmail application is called sendmail, and not maild, as you might imagine. Sometimes you will need to communicate with a daemon process. These communications are called signals, and you can communicate with daemons (or with any running process) by sending it a signal. There are a number of different signals that you can send—some of them have a specific meaning, others are interpreted by the application, and the application's documentation will tell you how that application interprets signals. You can only send a signal to a process that you own. If you send a signal to someone else's process with &man.kill.1; or &man.kill.2; permission will be denied. The exception to this is the root user, who can send signals to everyone's processes. FreeBSD will also send applications signals in some cases. If an application is badly written, and tries to access memory that it is not supposed to, FreeBSD sends the process the Segmentation Violation signal (SIGSEGV). If an application has used the &man.alarm.3; system call to be alerted after a period of time has elapsed then it will be sent the Alarm signal (SIGALRM), and so on. Two signals can be used to stop a process, SIGTERM and SIGKILL. SIGTERM is the polite way to kill a process; the process can catch the signal, realize that you want it to shut down, close any log files it may have open, and generally finish whatever it is doing at the time before shutting down. In some cases a process may even ignore SIGTERM if it is in the middle of some task that can not be interrupted. SIGKILL can not be ignored by a process. This is the I do not care what you are doing, stop right now signal. If you send SIGKILL to a process then FreeBSD will stop that process there and then Not quite true—there are a few things that can not be interrupted. For example, if the process is trying to read from a file that is on another computer on the network, and the other computer has gone away for some reason (been turned off, or the network has a fault), then the process is said to be uninterruptible. Eventually the process will time out, typically after two minutes. As soon as this time out occurs the process will be killed. . The other signals you might want to use are SIGHUP, SIGUSR1, and SIGUSR2. These are general purpose signals, and different applications will do different things when they are sent. Suppose that you have changed your web server's configuration file—you would like to tell the web server to re-read its configuration. You could stop and restart httpd, but this would result in a brief outage period on your web server, which may be undesirable. Most daemons are written to respond to the SIGHUP signal by re-reading their configuration file. So instead of killing and restarting httpd you would send it the SIGHUP signal. Because there is no standard way to respond to these signals, different daemons will have different behavior, so be sure and read the documentation for the daemon in question. Signals are sent using the &man.kill.1; command, as this example shows. Sending a Signal to a Process This example shows how to send a signal to &man.inetd.8;. The &man.inetd.8; configuration file is /etc/inetd.conf, and &man.inetd.8; will re-read this configuration file when it is sent SIGHUP. Find the process ID of the process you want to send the signal to. Do this using &man.ps.1; and &man.grep.1;. The &man.grep.1; command is used to search through output, looking for the string you specify. This command is run as a normal user, and &man.inetd.8; is run as root, so the options must be given to &man.ps.1;. &prompt.user; ps -ax | grep inetd 198 ?? IWs 0:00.00 inetd -wW So the &man.inetd.8; PID is 198. In some cases the grep inetd command might also occur in this output. This is because of the way &man.ps.1; has to find the list of running processes. Use &man.kill.1; to send the signal. Because &man.inetd.8; is being run by root you must use &man.su.1; to become root first. &prompt.user; su Password: &prompt.root; /bin/kill -s HUP 198 In common most with Unix commands, &man.kill.1; will not print any output if it is successful. If you send a signal to a process that you do not own then you will see kill: PID: Operation not permitted. If you mistype the PID you will either send the signal to the wrong process, which could be bad, or, if you are lucky, you will have sent the signal to a PID that is not currently in use, and you will see kill: PID: No such process. Why Use <command>/bin/kill</command>? Many shells provide the kill command as a built in command; that is, the shell will send the signal directly, rather than running /bin/kill. This can be very useful, but different shells have a different syntax for specifying the name of the signal to send. Rather than try to learn all of them, it can be simpler just to use the /bin/kill ... command directly. Sending other signals is very similar, just substitute TERM or KILL in the command line as necessary. Killing random process on the system can be a bad idea. In particular, &man.init.8;, process ID 1, is very special. Running /bin/kill -s KILL 1 is a quick way to shutdown your system. Always double check the arguments you run &man.kill.1; with before you press Return. Shells shells command line In FreeBSD, a lot of everyday work is done in a command line interface called a shell. A shell's main job is to take commands from the input channel and execute them. A lot of shells also have built in functions to help everyday tasks such as file management, file globbing, command line editing, command macros, and environment variables. FreeBSD comes with a set of shells, such as sh, the Bourne Shell, and tcsh, the improved C-shell. Many other shells are available from the FreeBSD Ports Collection, such as zsh and bash. Which shell do you use? It is really a matter of taste. If you are a C programmer you might feel more comfortable with a C-like shell such as tcsh. If you have come from Linux or are new to a Unix command line interface you might try bash. The point is that each shell has unique properties that may or may not work with your preferred working environment, and that you have a choice of what shell to use. One common feature in a shell is filename completion. Given the typing of the first few letters of a command or filename, you can usually have the shell automatically complete the rest of the command or filename by hitting the Tab key on the keyboard. Here is an example. Suppose you have two files called foobar and foo.bar. You want to delete foo.bar. So what you would type on the keyboard is: rm fo[Tab].[Tab]. The shell would print out rm foo[BEEP].bar. The [BEEP] is the console bell, which is the shell telling me it was unable to totally complete the filename because there is more than one match. Both foobar and foo.bar start with fo, but it was able to complete to foo. If you type in ., then hit Tab again, the shell would be able to fill in the rest of the filename for you. environment variables Another feature of the shell is the use of environment variables. Environment variables are a variable key pair stored in the shell's environment space. This space can be read by any program invoked by the shell, and thus contains a lot of program configuration. Here is a list of common environment variables and what they mean: environment variables Variable Description USER Current logged in user's name. PATH Colon separated list of directories to search for binaries. DISPLAY Network name of the X11 display to connect to, if available. SHELL The current shell. TERM The name of the user's terminal. Used to determine the capabilities of the terminal. TERMCAP Database entry of the terminal escape codes to perform various terminal functions. OSTYPE Type of operating system. e.g., FreeBSD. MACHTYPE The CPU architecture that the system is running on. EDITOR The user's preferred text editor. PAGER The user's preferred text pager. MANPATH Colon separated list of directories to search for manual pages. Bourne shells To set an environment variable differs somewhat from shell to shell. For example, in the C-Style shells such as tcsh and csh, you would use setenv to set environment variables. Under Bourne shells such as sh and bash, you would use export to set your current environment variables. For example, to set or modify the EDITOR environment variable, under csh or tcsh a command like this would set EDITOR to /usr/local/bin/emacs: &prompt.user; setenv EDITOR /usr/local/bin/emacs Under Bourne shells: &prompt.user; export EDITOR="/usr/local/bin/emacs" You can also make most shells expand the environment variable by placing a $ character in front of it on the command line. For example, echo $TERM would print out whatever $TERM is set to, because the shell expands $TERM and passes it on to echo. Shells treat a lot of special characters, called meta-characters as special representations of data. The most common one is the * character, which represents any number of characters in a filename. These special meta-characters can be used to do filename globbing. For example, typing in echo * is almost the same as typing in ls because the shell takes all the files that match * and puts them on the command line for echo to see. To prevent the shell from interpreting these special characters, they can be escaped from the shell by putting a backslash (\) character in front of them. echo $TERM prints whatever your terminal is set to. echo \$TERM prints $TERM as is. Changing Your Shell The easiest way to change your shell is to use the chsh command. Running chsh will place you into the editor that is in your EDITOR environment variable; if it is not set, you will be placed in vi. Change the Shell: line accordingly. You can also give chsh the option; this will set your shell for you, without requiring you to enter an editor. For example, if you wanted to change your shell to bash, the following should do the trick: &prompt.user; chsh -s /usr/local/bin/bash Running chsh with no parameters and editing the shell from there would work also. The shell that you wish to use must be present in the /etc/shells file. If you have installed a shell from the ports collection, then this should have been done for you already. If you installed the shell by hand, you must do this. For example, if you installed bash by hand and placed it into /usr/local/bin, you would want to: &prompt.root; echo "/usr/local/bin/bash" >> /etc/shells Then rerun chsh. Text Editors text editors editors A lot of configuration in FreeBSD is done by editing text files. Because of this, it would be a good idea to become familiar with a text editor. FreeBSD comes with a few as part of the base system, and many more are available in the ports collection. ee The easiest and simplest editor to learn is an editor called ee, which stands for easy editor. To start ee, one would type at the command line ee filename where filename is the name of the file to be edited. For example, to edit /etc/rc.conf, type in ee /etc/rc.conf. Once inside of ee, all of the commands for manipulating the editor's functions are listed at the top of the display. The caret ^ character means the Ctrl key on the keyboard, so ^e expands to the key combination Ctrle. To leave ee, hit the Esc key, then choose leave editor. The editor will prompt you to save any changes if the file has been modified. vi editors vi emacs editors emacs FreeBSD also comes with more powerful text editors such as vi as part of the base system, while other editors, like emacs and vim, are part of the FreeBSD Ports Collection. These editors offer much more functionality and power at the expense of being a little more complicated to learn. However if you plan on doing a lot of text editing, learning a more powerful editor such as vim or emacs will save you much more time in the long run. Devices and Device Nodes A device is a term used mostly for hardware-related activities in a system, including disks, printers, graphics cards, and keyboards. When FreeBSD boots, the majority of what FreeBSD displays are devices being detected. You can look through the boot messages again by viewing /var/run/dmesg.boot. For example, acd0 is the first IDE CDROM drive, while kbd0 represents the keyboard. Most of these devices in a Unix operating system must be accessed through special files called device nodes, which are located in the /dev directory. Creating Device Nodes When adding a new device to your system, or compiling in support for additional devices, you may need to create one or more device nodes for the new devices. MAKEDEV Script On systems without DEVFS, device nodes are created using the &man.MAKEDEV.8; script as shown below: &prompt.root; cd /dev &prompt.root; sh MAKEDEV ad1 This example would make the proper device nodes for the second IDE drive when installed. <literal>DEVFS</literal> (DEVice File System) The device filesystem, or DEVFS, provides access to kernel's device namespace in the global filesystem namespace. Instead of having to create and modify device nodes, DEVFS maintains this particular filesystem for you. See the &man.devfs.5; manual page for more information. - DEVFS is used by default in FreeBSD 5.0. + DEVFS is used by default in FreeBSD 5.0. For More Information Manual Pages manual pages The most comprehensive documentation on FreeBSD is in the form of manual pages. Nearly every program on the system comes with a short reference manual explaining the basic operation and various arguments. These manuals can be viewed with the man command. Use of the man command is simple: &prompt.user; man command command is the name of the command you wish to learn about. For example, to learn more about ls command type: &prompt.user; man ls The online manual is divided up into numbered sections: User commands. System calls and error numbers. Functions in the C libraries. Device drivers. File formats. Games and other diversions. Miscellaneous information. System maintenance and operation commands. Kernel developers. In some cases, the same topic may appear in more than one section of the online manual. For example, there is a chmod user command and a chmod() system call. In this case, you can tell the man command which one you want by specifying the section: &prompt.user; man 1 chmod This will display the manual page for the user command chmod. References to a particular section of the online manual are traditionally placed in parenthesis in written documentation, so &man.chmod.1; refers to the chmod user command and &man.chmod.2; refers to the system call. This is fine if you know the name of the command and simply wish to know how to use it, but what if you cannot recall the command name? You can use man to search for keywords in the command descriptions by using the switch: &prompt.user; man -k mail With this command you will be presented with a list of commands that have the keyword mail in their descriptions. This is actually functionally equivalent to using the apropos command. So, you are looking at all those fancy commands in /usr/bin but do not have the faintest idea what most of them actually do? Simply do: &prompt.user; cd /usr/bin &prompt.user; man -f * or &prompt.user; cd /usr/bin &prompt.user; whatis * which does the same thing. GNU Info Files Free Software Foundation FreeBSD includes many applications and utilities produced by the Free Software Foundation (FSF). In addition to manual pages, these programs come with more extensive hypertext documents called info files which can be viewed with the info command or, if you installed emacs, the info mode of emacs. To use the &man.info.1; command, simply type: &prompt.user; info For a brief introduction, type h. For a quick command reference, type ?. diff --git a/en_US.ISO8859-1/books/handbook/boot/chapter.sgml b/en_US.ISO8859-1/books/handbook/boot/chapter.sgml index 71b91a4f47..f1e557419f 100644 --- a/en_US.ISO8859-1/books/handbook/boot/chapter.sgml +++ b/en_US.ISO8859-1/books/handbook/boot/chapter.sgml @@ -1,690 +1,690 @@ The FreeBSD Booting Process Synopsis booting bootstrap The process of starting a computer and loading the operating system is referred to as the bootstrap process, or simply booting. FreeBSD's boot process provides a great deal of flexibility in customizing what happens when you start the system, allowing you to select from different operating systems installed on the same computer, or even different versions of the same operating system or installed kernel. This chapter details the configuration options you can set and how to customize the FreeBSD boot process. This includes everything that happens until the FreeBSD kernel has started, probed for devices, and started &man.init.8;. If you are not quite sure when this happens, it occurs when the text color changes from bright white to grey. After reading this chapter, you will know: What the components of the FreeBSD bootstrap system are, and how they interact. The options you can give to the components in the FreeBSD bootstrap to control the boot process. x86 only This chapter only describes the boot process for FreeBSD running on Intel x86 systems. The Booting Problem Turning on a computer and starting the operating system poses an interesting dilemma. By definition, the computer does not know how to do anything until the operating system is started. This includes running programs from the disk. So if the computer can not run a program from the disk without the operating system, and the operating system programs are on the disk, how is the operating system started? This problem parallels one in the book The Adventures of Baron Munchausen. A character had fallen part way down a manhole, and pulled himself out by grabbing his bootstraps, and lifting. In the early days of computing the term bootstrap was applied to the mechanism used to load the operating system, which has become shortened to booting. On x86 hardware the Basic Input/Output System (BIOS) is responsible for loading the operating system. To do this, the BIOS looks on the hard disk for the Master Boot Record (MBR), which must be located on a specific place on the disk. The BIOS has enough knowledge to load and run the MBR, and assumes that the MBR can then carry out the rest of the tasks involved in loading the operating system. BIOS Basic Input/Output System If you only have one operating system installed on your disks then the standard MBR will suffice. This MBR searches for the first bootable slice on the disk, and then runs the code on that slice to load the remainder of the operating system. If you have installed multiple operating systems on your disks then you can install a different MBR, one that can display a list of different operating systems, and allows you to choose the one to boot from. FreeBSD comes with one such MBR which can be installed, and other operating system vendors also provide alternative MBRs. The remainder of the FreeBSD bootstrap system is divided into three stages. The first stage is run by the MBR, which knows just enough to get the computer into a specific state and run the second stage. The second stage can do a little bit more, before running the third stage. The third stage finishes the task of loading the operating system. The work is split into these three stages because the PC standards put limits on the size of the programs that can be run at stages one and two. Chaining the tasks together allows FreeBSD to provide a more flexible loader. kernel init The kernel is then started and it begins to probe for devices and initialize them for use. Once the kernel boot process is finished, the kernel passes control to the user process &man.init.8;, which then makes sure the disks are in a usable state. &man.init.8; then starts the user-level resource configuration which mounts filesystems, sets up network cards to communicate on the network, and generally starts all the processes that usually are run on a FreeBSD system at startup. The MBR, and Boot Stages One, Two, and Three MBR, <filename>/boot/boot0</filename> Master Boot Record (MBR) The FreeBSD MBR is located in /boot/boot0. This is a copy of the MBR, as the real MBR must be placed on a special part of the disk, outside the FreeBSD area. boot0 is very simple, since the program in the MBR can only be 512 bytes in size. If you have installed the FreeBSD MBR and have installed multiple operating systems on your hard disks then you will see a display similar to this one at boot time: <filename>boot0</filename> Screenshot F1 DOS F2 FreeBSD F3 Linux F4 ?? F5 Drive 1 Default: F2 - Other operating systems, in particular Windows 95, have been known + Other operating systems, in particular Windows 95, have been known to overwrite an existing MBR with their own. If this happens to you, or you want to replace your existing MBR with the FreeBSD MBR then use the following command: &prompt.root; fdisk -B -b /boot/boot0 device Where device is the device that you boot from, such as ad0 for the first IDE disk, ad2 for the first IDE disk on a second IDE controller, da0 for the first SCSI disk, and so on. If you are a Linux user, however, and prefer that LILO control the boot process, you can edit the /etc/lilo.conf file for FreeBSD, or select during the FreeBSD installation process. If you have installed the FreeBSD boot manager, you can boot back into Linux and modify the LILO configuration file /etc/lilo.conf and add the following option: other=/dev/hdXY table=/dev/hdb loader=/boot/chain.b label=FreeBSD which will permit the booting of FreeBSD and Linux via LILO. In our example, we use XY to determine drive number and partition. If you are using a SCSI drive, you will want to change /dev/hdXY to read something similar to /dev/sdXY, which again uses the XY syntax. The can be omitted if you have both operating systems on the same drive. You can now run /sbin/lilo -v to commit your new changes to the system, this should be verified with screen messages. Stage One, <filename>/boot/boot1</filename>, and Stage Two, <filename>/boot/boot2</filename> Conceptually the first and second stages are part of the same program, on the same area of the disk. Because of space constraints they have been split into two, but you would always install them together. They are found on the boot sector of the boot slice, which is where boot0, or any other program on the MBR expects to find the program to run to continue the boot process. The files in the /boot directory are copies of the real files, which are stored outside of the FreeBSD filesystem. boot1 is very simple, since it too can only be 512 bytes in size, and knows just enough about the FreeBSD disklabel, which stores information about the slice, to find and execute boot2. boot2 is slightly more sophisticated, and understands the FreeBSD filesystem enough to find files on it, and can provide a simple interface to choose the kernel or loader to run. Since the loader is much more sophisticated, and provides a nice easy-to-use boot configuration, boot2 usually runs it, but previously it was tasked to run the kernel directly. <filename>boot2</filename> Screenshot >> FreeBSD/i386 BOOT Default: 0:ad(0,a)/kernel boot: If you ever need to replace the installed boot1 and boot2 use &man.disklabel.8;. &prompt.root; disklabel -B diskslice Where diskslice is the disk and slice you boot from, such as ad0s1 for the first slice on the first IDE disk. Dangerously Dedicated Mode If you use just the disk name, such as ad0, in the &man.disklabel.8; command you will create a dangerously dedicated disk, without slices. This is almost certainly not what you want to do, so make sure you double check the &man.disklabel.8; command before you press Return. Stage Three, <filename>/boot/loader</filename> boot-loader The loader is the final stage of the three-stage bootstrap, and is located on the filesystem, usually as /boot/loader. The loader is intended as a user-friendly method for configuration, using an easy-to-use built-in command set, backed up by a more powerful interpreter, with a more complex command set. Loader Program Flow During initialization, the loader will probe for a console and for disks, and figure out what disk it is booting from. It will set variables accordingly, and an interpreter is started where user commands can be passed from a script or interactively. loader loader configuration The loader will then read /boot/loader.rc, which by default reads in /boot/defaults/loader.conf which sets reasonable defaults for variables and reads /boot/loader.conf for local changes to those variables. loader.rc then acts on these variables, loading whichever modules and kernel are selected. Finally, by default, the loader issues a 10 second wait for key presses, and boots the kernel if it is not interrupted. If interrupted, the user is presented with a prompt which understands the easy-to-use command set, where the user may adjust variables, unload all modules, load modules, and then finally boot or reboot. Loader Built-In Commands These are the most commonly used loader commands. For a complete discussion of all available commands, please see &man.loader.8;. autoboot seconds Proceeds to boot the kernel if not interrupted within the time span given, in seconds. It displays a countdown, and the default time span is 10 seconds. boot -options kernelname Immediately proceeds to boot the kernel, with the given options, if any, and with the kernel name given, if it is. boot-conf Goes through the same automatic configuration of modules based on variables as what happens at boot. This only makes sense if you use unload first, and change some variables, most commonly kernel. help topic Shows help messages read from /boot/loader.help. If the topic given is index, then the list of available topics is given. include filename Processes the file with the given filename. The file is read in, and interpreted line by line. An error immediately stops the include command. load type filename Loads the kernel, kernel module, or file of the type given, with the filename given. Any arguments after filename are passed to the file. ls path Displays a listing of files in the given path, or the root directory, if the path is not specified. If is specified, file sizes will be shown too. lsdev Lists all of the devices from which it may be possible to load modules. If is specified, more details are printed. lsmod Displays loaded modules. If is specified, more details are shown. more filename Displays the files specified, with a pause at each LINES displayed. reboot Immediately reboots the system. set variable set variable=value Sets the loader's environment variables. unload Removes all loaded modules. Loader Examples Here are some practical examples of loader usage: single-user mode To simply boot your usual kernel, but in single-user mode: boot -s To unload your usual kernel and modules, and then load just your old (or another) kernel: kernel.old unload load kernel.old You can use kernel.GENERIC to refer to the generic kernel that comes on the install disk, or kernel.old to refer to your previously installed kernel (when you have upgraded or configured your own kernel, for example). Use the following to load your usual modules with another kernel: unload set kernel="kernel.old" boot-conf To load a kernel configuration script (an automated script which does the things you would normally do in the kernel boot-time configurator): load -t userconfig_script /boot/kernel.conf Kernel Interaction During Boot kernel boot interaction Once the kernel is loaded by either loader (as usual) or boot2 (bypassing the loader), it examines its boot flags, if any, and adjusts its behavior as necessary. kernel bootflags Kernel Boot Flags Here are the more common boot flags: during kernel initialization, ask for the device to mount as the root filesystem. boot from CDROM. run UserConfig, the boot-time kernel configurator boot into single-user mode be more verbose during kernel startup There are other boot flags, read &man.boot.8; for more information on them. init Init: Process Control Initialization Once the kernel has finished booting, it passes control to the user process &man.init.8;, which is located at /sbin/init, or the program path specified in the init_path variable in loader. Automatic Reboot Sequence The automatic reboot sequence makes sure that the filesystems available on the system are consistent. If they are not, and &man.fsck.8; cannot fix the inconsistencies, &man.init.8; drops the system into single-user mode for the system administrator to take care of the problems directly. Single-User Mode single-user mode console This mode can be reached through the automatic reboot sequence, or by the user booting with the option or setting the boot_single variable in loader. It can also be reached by calling &man.shutdown.8; without the reboot () or halt () options, from multi-user mode. If the system console is set to insecure in /etc/ttys, then the system prompts for the root password before initiating single-user mode. An Insecure Console in <filename>/etc/ttys</filename> # name getty type status comments # # If console is marked "insecure", then init will ask for the root password # when going to single-user mode. console none unknown off insecure An insecure console means that you consider your physical security to the console to be insecure, and want to make sure only someone who knows the root password may use single-user mode, and it does not mean that you want to run your console insecurely. Thus, if you want security, choose insecure, not secure. Multi-User Mode multi-user mode If &man.init.8; finds your filesystems to be in order, or once the user has finished in single-user mode, the system enters multi-user mode, in which it starts the resource configuration of the system. rc files Resource Configuration (rc) The resource configuration system reads in configuration defaults from /etc/defaults/rc.conf, and system-specific details from /etc/rc.conf, and then proceeds to mount the system filesystems mentioned in /etc/fstab, start up networking services, start up miscellaneous system daemons, and finally runs the startup scripts of locally installed packages. The &man.rc.8; manual page is a good reference to the resource configuration system, as is examining the scripts themselves. Shutdown Sequence shutdown Upon controlled shutdown, via &man.shutdown.8;, &man.init.8; will attempt to run the script /etc/rc.shutdown, and then proceed to send all processes the TERM signal, and subsequently the KILL signal to any that do not terminate timely. diff --git a/en_US.ISO8859-1/books/handbook/cutting-edge/chapter.sgml b/en_US.ISO8859-1/books/handbook/cutting-edge/chapter.sgml index 7529ec5dee..6964afd770 100644 --- a/en_US.ISO8859-1/books/handbook/cutting-edge/chapter.sgml +++ b/en_US.ISO8859-1/books/handbook/cutting-edge/chapter.sgml @@ -1,1822 +1,1822 @@ Jim Mock Restructured, reorganized, and parts updated by Jordan Hubbard Original work by Poul-Henning Kamp John Polstra Nik Clayton The Cutting Edge Synopsis &os; is under constant development between releases. For people who want to be on the cutting edge, there are several easy mechanisms for keeping your system in sync with the latest developments. Be warned—the cutting edge is not for everyone! This chapter will help you decide if you want to track the development system, or stick with one of the released versions. After reading this chapter, you will know: The difference between the two development branches; &os.stable; and &os.current;. How to keep your system up to date with CVSup, CVS, or CTM. How to rebuild and reinstall the entire base system with make world. Before reading this chapter, you should: Properly setup your network connection (). Know how to install additional third-party software (). &os.current; vs. &os.stable; -CURRENT -STABLE There are two development branches to FreeBSD; &os.current; and &os.stable;. This section will explain a bit about each and describe how to keep your system up-to-date with each respective tree. &os.current; will be discussed first, then &os.stable;. Staying Current with &os; As you read this, keep in mind that &os.current; is the bleeding edge of &os; development. &os.current; users are expected to have a high degree of technical skill, and should be capable of solving difficult system problems on their own. If you are new to &os;, think twice before installing it. What Is &os.current;? snapshot &os.current; is the latest working sources for &os;. This includes work in progress, experimental changes, and transitional mechanisms that might or might not be present in the next official release of the software. While many &os; developers compile the &os.current; source code daily, there are periods of time when the sources are not buildable. These problems are resolved as expeditiously as possible, but whether or not &os.current; brings disaster or greatly desired functionality can be a matter of which exact moment you grabbed the source code in! Who Needs &os.current;? &os.current; is made available for 3 primary interest groups: Members of the &os; group who are actively working on some part of the source tree and for whom keeping current is an absolute requirement. Members of the &os; group who are active testers, willing to spend time solving problems in order to ensure that &os.current; remains as sane as possible. These are also people who wish to make topical suggestions on changes and the general direction of &os;, and submit patches to implement them. Those who merely wish to keep an eye on things, or to use the current sources for reference purposes (e.g. for reading, not running). These people also make the occasional comment or contribute code. What Is &os.current; <emphasis>Not</emphasis>? A fast-track to getting pre-release bits because you heard there is some cool new feature in there and you want to be the first on your block to have it. Being the first on the block to get the new feature means that you're the first on the block to get the new bugs. A quick way of getting bug fixes. Any given version of &os.current; is just as likely to introduce new bugs as to fix existing ones. In any way officially supported. We do our best to help people genuinely in one of the 3 legitimate &os.current; groups, but we simply do not have the time to provide tech support. This is not because we are mean and nasty people who do not like helping people out (we would not even be doing &os; if we were). We simply cannot answer hundreds messages a day and work on FreeBSD! Given the choice between improving &os; and answering lots of questions on experimental code, the developers opt for the former. Using &os.current; Join the &a.current; and the &a.cvsall;. This is not just a good idea, it is essential. If you are not on the &a.current;, you will not see the comments that people are making about the current state of the system and thus will probably end up stumbling over a lot of problems that others have already found and solved. Even more importantly, you will miss out on important bulletins which may be critical to your system's continued health. The &a.cvsall; mailing list will allow you to see the commit log entry for each change as it is made along with any pertinent information on possible side-effects. To join these lists, send mail to &a.majordomo; and specify the following in the body of your message: subscribe freebsd-current subscribe cvs-all majordomo Optionally, you can also say help and Majordomo will send you full help on how to subscribe and unsubscribe to the various other mailing lists we support. Grab the sources from ftp.FreeBSD.org. You can do this in one of three ways: cvsup cron -CURRENT Syncing with CVSup Use the cvsup program with this supfile. This is the most recommended method, since it allows you to grab the entire collection once and then only what has changed from then on. Many people run cvsup from cron and keep their sources up-to-date automatically. You have to customize the sample supfile above, and configure cvsup for your environment. If you want help doing this configuration, simply type: &prompt.root; pkg_add -f ftp://ftp.freebsd.org/pub/FreeBSD/ports/i386/packages/Latest/cvsupit.tgz -CURRENT Downloading with ftp Use ftp. The source tree for &os.current; is always exported on: ftp://ftp.FreeBSD.org/pub/FreeBSD/FreeBSD-current/. Some of our FTP mirrors may also allow compressed/tarred grabbing of whole trees. e.g. you see: usr.bin/lex You can do the following to get the whole directory as a tar file: ftp> cd usr.bin ftp> get lex.tar -CURRENT Syncing with CTM Use the CTM facility. If you have very bad connectivity (high price connections or only email access) CTM is an option. However, it is a lot of hassle and can give you broken files. This leads to it being rarely used, which again increases the chance of it not working for fairly long periods of time. We recommend using CVSup - for anybody with a 9600bps modem or faster connection. + for anybody with a 9600 bps modem or faster connection. If you are grabbing the sources to run, and not just look at, then grab all of &os.current;, not just selected portions. The reason for this is that various parts of the source depend on updates elsewhere, and trying to compile just a subset is almost guaranteed to get you into trouble. Before compiling &os.current;, read the Makefile in /usr/src carefully. You should at least run a make world the first time through as part of the upgrading process. Reading the &a.current; will keep you up-to-date on other bootstrapping procedures that sometimes become necessary as we move towards the next release. Be active! If you are running &os.current;, we want to know what you have to say about it, especially if you have suggestions for enhancements or bug fixes. Suggestions with accompanying code are received most enthusiastically! Staying Stable with &os; What Is &os.stable;? -STABLE &os.stable; is our development branch from which major releases are made. Changes go into this branch at a different pace, and with the general assumption that they have first gone into &os.current; for testing. This is still a development branch, however, and this means that at any given time, the sources for &os.stable; may or may not be suitable for any particular purpose. It is simply another engineering development track, not a resource for end-users. Who Needs &os.stable;? If you are interested in tracking or contributing to the FreeBSD development process, especially as it relates to the next point release of FreeBSD, then you should consider following &os.stable;. While it is true that security fixes also go into the &os.stable; branch, you do not need to track &os.stable; to do this. Every security advisory for FreeBSD explains how to fix the problem for the releases it affects That is not quite true. We can not continue to support old releases of FreeBSD forever, although we do support them for many years. For a complete description of the current security policy for old releases of FreeBSD, please see http://www.FreeBSD.org/security/ , and tracking an entire development branch just for security reasons is likely to bring in a lot of unwanted changes as well. Although we endeavor to ensure that the &os.stable; branch compiles and runs at all times, this cannot be guaranteed. In addition, while code is developed in &os.current; before including it in &os.stable;, more people run &os.stable; than &os.current;, so it is inevitable that bugs and corner cases will sometimes be found in &os.stable; that were not apparent in &os.current;. For these reasons, we do not recommend that you blindly track &os.stable;, and it is particularly important that you do not update any production servers to &os.stable; without first thoroughly testing the code in your development environment. If you do not have the resources to do this then we recommend that you run the most recent release of FreeBSD, and use the binary update mechanism to move from release to release. Using &os.stable; -STABLE using Join the &a.stable;. This will keep you informed of build-dependencies that may appear in &os.stable; or any other issues requiring special attention. Developers will also make announcements in this mailing list when they are contemplating some controversial fix or update, giving the users a chance to respond if they have any issues to raise concerning the proposed change. The &a.cvsall; mailing list will allow you to see the commit log entry for each change as it is made along with any pertinent information on possible side-effects. To join these lists, send mail to &a.majordomo; and specify the following in the body of your message: subscribe freebsd-stable subscribe cvs-all majordomo Optionally, you can also say help and Majordomo will send you full help on how to subscribe and unsubscribe to the various other mailing lists we support. If you are installing a new system and want it to be as stable as possible, you can simply grab the latest dated branch snapshot from ftp://releng4.FreeBSD.org/pub/FreeBSD/ and install it like any other release. If you are already running a previous release of &os; and wish to upgrade via sources then you can easily do so from ftp.FreeBSD.org. This can be done in one of three ways: -STABLE syncing with CVSup Use the cvsup program with this supfile. This is the most recommended method, since it allows you to grab the entire collection once and then only what has changed from then on. Many people run cvsup from cron to keep their sources up-to-date automatically. For a fairly easy interface to this, simply type:
&prompt.root; pkg_add -f ftp://ftp.freebsd.org/pub/FreeBSD/ports/i386/packages/Latest/cvsupit.tgz
-STABLE downloading with FTP Use ftp. The source tree for &os.stable; is always exported on: ftp://ftp.FreeBSD.org/pub/FreeBSD/FreeBSD-stable/ Some of our FTP mirrors may also allow compressed/tarred grabbing of whole trees. e.g. you see: usr.bin/lex You can do the following to get the whole directory for you as a tar file: ftp> cd usr.bin ftp> get lex.tar -STABLE syncing with CTM Use the CTM facility. If you do not have a fast and inexpensive connection to the Internet, this is the method you should consider using.
Essentially, if you need rapid on-demand access to the source and communications bandwidth is not a consideration, use cvsup or ftp. Otherwise, use CTM. -STABLE compiling Before compiling &os.stable;, read the Makefile in /usr/src carefully. You should at least run a make world the first time through as part of the upgrading process. Reading the &a.stable; will keep you up-to-date on other bootstrapping procedures that sometimes become necessary as we move towards the next release.
Synchronizing Your Source There are various ways of using an Internet (or email) connection to stay up-to-date with any given area of the &os; project sources, or all areas, depending on what interests you. The primary services we offer are Anonymous CVS, CVSup, and CTM. While it is possible to update only parts of your source tree, the only supported update procedure is to update the entire tree and recompile both userland (i.e., all the programs that run in user space, such as those in /bin and /sbin) and kernel sources. Updating only part of your source tree, only the kernel, or only userland will often result in problems. These problems may range from compile errors to kernel panics or data corruption. anonymous CVS Anonymous CVS and CVSup use the pull model of updating sources. In the case of CVSup the user (or a cron script) invokes the cvsup program, and it interacts with a cvsupd server somewhere to bring your files up-to-date. The updates you receive are up-to-the-minute and you get them when, and only when, you want them. You can easily restrict your updates to the specific files or directories that are of interest to you. Updates are generated on the fly by the server, according to what you have and what you want to have. Anonymous CVS is quite a bit more simplistic than CVSup in that it is just an extension to CVS which allows it to pull changes directly from a remote CVS repository. CVSup can do this far more efficiently, but Anonymous CVS is easier to use. CTM CTM, on the other hand, does not interactively compare the sources you have with those on the master archive or otherwise pull them across. Instead, a script which identifies changes in files since its previous run is executed several times a day on the master CTM machine, any detected changes being compressed, stamped with a sequence-number and encoded for transmission over email (in printable ASCII only). Once received, these CTM deltas can then be handed to the &man.ctm.rmail.1; utility which will automatically decode, verify and apply the changes to the user's copy of the sources. This process is far more efficient than CVSup, and places less strain on our server resources since it is a push rather than a pull model. There are other trade-offs, of course. If you inadvertently wipe out portions of your archive, CVSup will detect and rebuild the damaged portions for you. CTM will not do this, and if you wipe some portion of your source tree out (and do not have it backed up) then you will have to start from scratch (from the most recent CVS base delta) and rebuild it all with CTM or, with anoncvs, simply delete the bad bits and resync. Using <command>make world</command> make world Once you have synchronized your local source tree against a particular version of &os; (&os.stable;, &os.current;, and so on) you can then use the source tree to rebuild the system. Take a Backup It cannot be stressed enough how important it is to take a backup of your system before you do this. While rebuilding the world is (as long as you follow these instructions) an easy task to do, there will inevitably be times when you make mistakes, or when mistakes made by others in the source tree render your system unbootable. Make sure you have taken a backup. And have a fix-it floppy to hand. You will probably never have to use it, but it is better to be safe than sorry! Subscribe to the Right Mailing List mailing list The &os.stable; and &os.current; branches are, by their nature, in development. People that contribute to &os; are human, and mistakes occasionally happen. Sometimes these mistakes can be quite harmless, just causing your system to print a new diagnostic warning. Or the change may be catastrophic, and render your system unbootable or destroy your filesystems (or worse). If problems like these occur, a heads up is posted to the appropriate mailing list, explaining the nature of the problem and which systems it affects. And an all clear announcement is posted when the problem has been solved. If you try to track &os.stable; or &os.current; and do not read the &a.stable; or the &a.current; respectively, then you are asking for trouble. Read <filename>/usr/src/UPDATING</filename> Before you do anything else, read /usr/src/UPDATING (or the equivalent file wherever you have a copy of the source code). This file should contain important information about problems you might encounter, or specify the order in which you might have to run certain commands. If UPDATING contradicts something you read here, UPDATING takes precedence. Reading UPDATING is not an acceptable substitute for subscribing to the correct mailing list, as described previously. The two requirements are complementary, not exclusive. Check <filename>/etc/make.conf</filename> make.conf Examine the files /etc/defaults/make.conf and /etc/make.conf. The first contains some default defines – most of which are commented out. To make use of them when you rebuild your system from source, add them to /etc/make.conf. Keep in mind that anything you add to /etc/make.conf is also used every time you run make, so it is a good idea to set them to something sensible for your system. A typical user will probably want to copy the CFLAGS and NOPROFILE lines found in /etc/defaults/make.conf to /etc/make.conf and uncomment them. Examine the other definitions (COPTFLAGS, NOPORTDOCS and so on) and decide if they are relevant to you. Update the files in <filename>/etc</filename> The /etc directory contains a large part of your system's configuration information, as well as scripts that are run at system startup. Some of these scripts change from version to version of FreeBSD. Some of the configuration files are also used in the day to day running of the system. In particular, /etc/group. There have been occasions when the installation part of make world has expected certain usernames or groups to exist. When performing an upgrade it is likely that these users or groups did not exist. This caused problems when upgrading. A recent example of this is when the smmsp user was added. Users had the installation process fail for them when mtree was trying to create /var/spool/clientmqueue. The solution is to examine /usr/src/etc/group and compare its list of groups with your own. If there are any groups in the new file that are not in your file then copy them over. Similarly, you should rename any groups in /etc/group which have the same GID but a different name to those in /usr/src/etc/group. Since 4.6-RELEASE you can run &man.mergemaster.8; in pre-buildworld mode by providing the option. This will compare only those files that are essential for the success of buildworld or installworld. If your old version of mergemaster does not support , use the new version in the source tree when running for the first time: &prompt.root; cd /usr/src/usr.sbin/mergemaster &prompt.root; ./mergemaster.sh -p If you are feeling particularly paranoid, you can check your system to see which files are owned by the group you are renaming or deleting. &prompt.root; find / -group GID -print will show all files owned by group GID (which can be either a group name or a numeric group ID). Drop to Single User Mode single-user mode You may want to compile the system in single user mode. Apart from the obvious benefit of making things go slightly faster, reinstalling the system will touch a lot of important system files, all the standard system binaries, libraries, include files and so on. Changing these on a running system (particularly if you have active users on the system at the time) is asking for trouble. multi-user mode Another method is to compile the system in multi-user mode, and then drop into single user mode for the installation. If you would like to do it this way, simply hold off on the following steps until the build has completed. You can postpone dropping to single user mode until you have to installkernel or installworld. As the superuser, you can execute &prompt.root; shutdown now from a running system, which will drop it to single user mode. Alternatively, reboot the system, and at the boot prompt, enter the flag. The system will then boot single user. At the shell prompt you should then run: &prompt.root; fsck -p &prompt.root; mount -u / &prompt.root; mount -a -t ufs &prompt.root; swapon -a This checks the filesystems, remounts / read/write, mounts all the other UFS filesystems referenced in /etc/fstab and then turns swapping on. If your CMOS clock is set to local time and not to GMT (this is true if the output of the date command does not show the correct time and zone), you may also need to run the following command: &prompt.root; adjkerntz -i This will make sure that your local timezone settings get set up correctly - without this, you may later run into some problems. Remove <filename>/usr/obj</filename> As parts of the system are rebuilt they are placed in directories which (by default) go under /usr/obj. The directories shadow those under /usr/src. You can speed up the make world process, and possibly save yourself some dependency headaches by removing this directory as well. Some files below /usr/obj may have the immutable flag set (see &man.chflags.1; for more information) which must be removed first. &prompt.root; cd /usr/obj &prompt.root; chflags -R noschg * &prompt.root; rm -rf * Recompile the Source Saving the Output It is a good idea to save the output you get from running &man.make.1; to another file. If something goes wrong you will have a copy of the error message. While this might not help you in diagnosing what has gone wrong, it can help others if you post your problem to one of the &os; mailing lists. The easiest way to do this is to use the &man.script.1; command, with a parameter that specifies the name of the file to save all output to. You would do this immediately before rebuilding the world, and then type exit when the process has finished. &prompt.root; script /var/tmp/mw.out Script started, output file is /var/tmp/mw.out &prompt.root; make TARGET … compile, compile, compile … &prompt.root; exit Script done, … If you do this, do not save the output in /tmp. This directory may be cleared next time you reboot. A better place to store it is in /var/tmp (as in the previous example) or in root's home directory. Compile and Install the Base System You must be in the /usr/src directory... &prompt.root; cd /usr/src (unless, of course, your source code is elsewhere, in which case change to that directory instead). make To rebuild the world you use the &man.make.1; command. This command reads instructions from the Makefile, which describes how the programs that comprise &os; should be rebuilt, the order in which they should be built, and so on. The general format of the command line you will type is as follows: &prompt.root; make -VARIABLE target In this example, is an option that you would pass to &man.make.1;. See the &man.make.1; manual page for an example of the options you can pass. passes a variable to the Makefile. The behavior of the Makefile is controlled by these variables. These are the same variables as are set in /etc/make.conf, and this provides another way of setting them. &prompt.root; make -DNOPROFILE target is another way of specifying that profiled libraries should not be built, and corresponds with the NOPROFILE= true # Avoid compiling profiled libraries lines in /etc/make.conf. target tells &man.make.1; what you want to do. Each Makefile defines a number of different targets, and your choice of target determines what happens. Some targets are listed in the Makefile, but are not meant for you to run. Instead, they are used by the build process to break out the steps necessary to rebuild the system into a number of sub-steps. Most of the time you will not need to pass any parameters to &man.make.1;, and so your command like will look like this: &prompt.root; make target Beginning with version 2.2.5 of &os; (actually, it was first created on the &os.current; branch, and then retrofitted to &os.stable; midway between 2.2.2 and 2.2.5) the world target has been split in two. buildworld and installworld. As the names imply, buildworld builds a complete new tree under /usr/obj, and installworld installs this tree on the current machine. This is very useful for 2 reasons. First, it allows you to do the build safe in the knowledge that no components of your running system will be affected. The build is self hosted. Because of this, you can safely run buildworld on a machine running in multi-user mode with no fear of ill-effects. It is still recommended that you run the installworld part in single user mode, though. Secondly, it allows you to use NFS mounts to upgrade multiple machines on your network. If you have three machines, A, B and C that you want to upgrade, run make buildworld and make installworld on A. B and C should then NFS mount /usr/src and /usr/obj from A, and you can then run make installworld to install the results of the build on B and C. Although the world target still exists, you are strongly encouraged not to use it. Run &prompt.root; make buildworld It is now possible to specify a option to make which will cause it to spawn several simultaneous processes. This is most useful on multi-CPU machines. However, since much of the compiling process is IO bound rather than CPU bound it is also useful on single CPU machines. On a typical single-CPU machine you would run: &prompt.root; make -j4 buildworld &man.make.1; will then have up to 4 processes running at any one time. Empirical evidence posted to the mailing lists shows this generally gives the best performance benefit. If you have a multi-CPU machine and you are using an SMP configured kernel try values between 6 and 10 and see how they speed things up. Be aware that this is still somewhat experimental, and commits to the source tree may occasionally break this feature. If the world fails to compile using this parameter try again without it before you report any problems. Timings make world timings - Many factors influence the build time, but currently a 500 MHz - Pentium III with 128 MB of RAM takes about 2 hours to build + Many factors influence the build time, but currently a 500 MHz + Pentium III with 128 MB of RAM takes about 2 hours to build the &os.stable; tree, with no tricks or shortcuts used during the process. A &os.current; tree will take somewhat longer. Compile and Install a New Kernel kernel compiling To take full advantage of your new system you should recompile the kernel. This is practically a necessity, as certain memory structures may have changed, and programs like &man.ps.1; and &man.top.1; will fail to work until the kernel and source code versions are the same. The simplest, safest way to do this is to build and install a kernel based on GENERIC. While GENERIC may not have all the necessary devices for your system, it should contain everything necessary to boot your system back to single user mode. This is a good test that the new system works properly. After booting from GENERIC and verifying that your system works you can then build a new kernel based on your normal kernel configuration file. If you are upgrading to &os; 4.0 or above then the old kernel build procedure (as described in ) is deprecated. Instead, you should run these commands after you have built the world with buildworld. &prompt.root; cd /usr/src &prompt.root; make buildkernel &prompt.root; make installkernel Note that if you have raised kern.securelevel above 1 and you have set either the noschg or similar flags to your kernel binary, you might find it necessary to drop into single user mode to use installkernel. Otherwise you should be able to run both these commands from multi user mode without problems. See &man.init.8; for details about kern.securelevel and &man.chflags.1; for details about the various file flags. If you are upgrading to a version of &os; below 4.0 you should use the old kernel build procedure. However, it is recommended that you use the new version of &man.config.8;, using a command line like this. &prompt.root; /usr/obj/usr/src/usr.sbin/config/config KERNELNAME Reboot into Single User Mode single-user mode You should reboot into single user mode to test the new kernel works. Do this by following the instructions in . Install the New System Binaries If you were building a version of &os; recent enough to have used make buildworld then you should now use installworld to install the new system binaries. Run &prompt.root; cd /usr/src &prompt.root; make installworld If you specified variables on the make buildworld command line, you must specify the same variables in the make installworld command line. This does not necessarily hold true for other options; for example, must never be used with installworld. For example, if you ran: &prompt.root; make -DNOPROFILE=true buildworld you must install the results with: &prompt.root; make -DNOPROFILE=true installworld otherwise it would try to install profiled libraries that had not been built during the make buildworld phase. Update Files Not Updated by <command>make world</command> Remaking the world will not update certain directories (in particular, /etc, /var and /usr) with new or changed configuration files. The simplest way to update these files is to use &man.mergemaster.8;, though it is possible to do it manually if you would prefer to do that. Regardless of which way you choose, be sure to make a backup of /etc in case anything goes wrong. <command>mergemaster</command> mergemaster The &man.mergemaster.8; utility is a Bourne script that will aid you in determining the differences between your configuration files in /etc, and the configuration files in the source tree /usr/src/etc. This is the recommended solution for keeping the system configuration files up to date with those located in the source tree. mergemaster was integrated into the FreeBSD base system between 3.3-RELEASE and 3.4-RELEASE, which means it is present in all -STABLE and -CURRENT systems since 3.3. To begin simply type mergemaster at your prompt, and watch it start going. mergemaster will then build a temporary root environment, from / down, and populate it with various system configuration files. Those files are then compared to the ones currently installed in your system. At this point, files that differ will be shown in &man.diff.1; format, with the sign representing added or modified lines, and representing lines that will be either removed completely, or replaced with a new line. See the &man.diff.1; manual page for more information about the &man.diff.1; syntax and how file differences are shown. &man.mergemaster.8; will then show you each file that displays variances, and at this point you will have the option of either deleting the new file (referred to as the temporary file), installing the temporary file in its unmodified state, merging the temporary file with the currently installed file, or viewing the &man.diff.1; results again. Choosing to delete the temporary file will tell &man.mergemaster.8; that we wish to keep our current file unchanged, and to delete the new version. This option is not recommended, unless you see no reason to change the current file. You can get help at any time by typing at the mergemaster prompt. If the user chooses to skip a file, it will be presented again after all other files have been dealt with. Choosing to install the unmodified temporary file will replace the current file with the new one. For most unmodified files, this is the best option. Choosing to merge the file will present you with a text editor, and the contents of both files. You can now merge them by reviewing both files side by side on the screen, and choosing parts from both to create a finished product. When the files are compared side by side, the key will select the left contents and the key will select contents from your right. The final output will be a file consisting of both parts, which can then be installed. This option is customarily used for files where settings have been modified by the user. Choosing to view the diff results again will show you the file differences just like &man.mergemaster.8; did before prompting you for an option. After &man.mergemaster.8; is done with the system files you will be prompted for other options. &man.mergemaster.8; may ask if you want to rebuild the password file and/or run MAKEDEV, and will finish up with an option to remove left-over temporary files. Manual Update If you wish to do the update manually, however, you cannot just copy over the files from /usr/src/etc to /etc and have it work. Some of these files must be installed first. This is because the /usr/src/etc directory is not a copy of what your /etc directory should look like. In addition, there are files that should be in /etc that are not in /usr/src/etc. If you are using &man.mergemaster.8; (as recommended), you can skip forward to the next section. The simplest way to do this by hand is to install the files into a new directory, and then work through them looking for differences. Backup Your Existing <filename>/etc</filename> Although, in theory, nothing is going to touch this directory automatically, it is always better to be sure. So copy your existing /etc directory somewhere safe. Something like: &prompt.root; cp -Rp /etc /etc.old does a recursive copy, preserves times, ownerships on files and suchlike. You need to build a dummy set of directories to install the new /etc and other files into. /var/tmp/root is a reasonable choice, and there are a number of subdirectories required under this as well. &prompt.root; mkdir /var/tmp/root &prompt.root; cd /usr/src/etc &prompt.root; make DESTDIR=/var/tmp/root distrib-dirs distribution This will build the necessary directory structure and install the files. A lot of the subdirectories that have been created under /var/tmp/root are empty and should be deleted. The simplest way to do this is to: &prompt.root; cd /var/tmp/root &prompt.root; find -d . -type d | xargs rmdir 2>/dev/null This will remove all empty directories. (Standard error is redirected to /dev/null to prevent the warnings about the directories that are not empty.) /var/tmp/root now contains all the files that should be placed in appropriate locations below /. You now have to go through each of these files, determining how they differ with your existing files. Note that some of the files that will have been installed in /var/tmp/root have a leading .. At the time of writing the only files like this are shell startup files in /var/tmp/root/ and /var/tmp/root/root/, although there may be others (depending on when you are reading this. Make sure you use The simplest way to do this is to use &man.diff.1; to compare the two files. &prompt.root; diff /etc/shells /var/tmp/root/etc/shells This will show you the differences between your /etc/shells file and the new /etc/shells file. Use these to decide whether to merge in changes that you have made or whether to copy over your old file. Name the New Root Directory (<filename>/var/tmp/root</filename>) with a Time Stamp, So You Can Easily Compare Differences Between Versions Frequently rebuilding the world means that you have to update /etc frequently as well, which can be a bit of a chore. You can speed this process up by keeping a copy of the last set of changed files that you merged into /etc. The following procedure gives one idea of how to do this. Make the world as normal. When you want to update /etc and the other directories, give the target directory a name based on the current date. If you were doing this on the 14th of February 1998 you could do the following. &prompt.root; mkdir /var/tmp/root-19980214 &prompt.root; cd /usr/src/etc &prompt.root; make DESTDIR=/var/tmp/root-19980214 \ distrib-dirs distribution Merge in the changes from this directory as outlined above. Do not remove the /var/tmp/root-19980214 directory when you have finished. When you have downloaded the latest version of the source and remade it, follow step 1. This will give you a new directory, which might be called /var/tmp/root-19980221 (if you wait a week between doing updates). You can now see the differences that have been made in the intervening week using &man.diff.1; to create a recursive diff between the two directories. &prompt.root; cd /var/tmp &prompt.root; diff -r root-19980214 root-19980221 Typically, this will be a much smaller set of differences than those between /var/tmp/root-19980221/etc and /etc. Because the set of differences is smaller, it is easier to migrate those changes across into your /etc directory. You can now remove the older of the two /var/tmp/root-* directories. &prompt.root; rm -rf /var/tmp/root-19980214 Repeat this process every time you need to merge in changes to /etc. You can use &man.date.1; to automate the generation of the directory names. &prompt.root; mkdir /var/tmp/root-`date "+%Y%m%d"` Update <filename>/dev</filename> DEVFS DEVFS If you are using DEVFS this is unnecessary. In most cases, the &man.mergemaster.8; tool will realize when it is necessary to update the devices, and offer to complete it automatically. These instructions tell how to update the devices manually. For safety's sake, this is a multi-step process. Copy /var/tmp/root/dev/MAKEDEV to /dev. &prompt.root; cp /var/tmp/root/dev/MAKEDEV /dev MAKEDEV If you used &man.mergemaster.8; to update /etc, then your MAKEDEV script should have been updated already, though it cannot hurt to check (with &man.diff.1;) and copy it manually if necessary. Now, take a snapshot of your current /dev. This snapshot needs to contain the permissions, ownerships, major and minor numbers of each filename, but it should not contain the time stamps. The easiest way to do this is to use &man.awk.1; to strip out some of the information. &prompt.root; cd /dev &prompt.root; ls -l | awk '{print $1, $2, $3, $4, $5, $6, $NF}' > /var/tmp/dev.out Remake all the devices. &prompt.root; sh MAKEDEV all Write another snapshot of the directory, this time to /var/tmp/dev2.out. Now look through these two files for any devices that you missed creating. There should not be any, but it is better to be safe than sorry. &prompt.root; diff /var/tmp/dev.out /var/tmp/dev2.out You are most likely to notice disk slice discrepancies which will involve commands such as &prompt.root; sh MAKEDEV sd0s1 to recreate the slice entries. Your precise circumstances may vary. Update <filename>/stand</filename> This step is included only for completeness. It can safely be omitted. For the sake of completeness, you may want to update the files in /stand as well. These files consist of hard links to the /stand/sysinstall binary. This binary should be statically linked, so that it can work when no other filesystems (and in particular /usr) have been mounted. &prompt.root; cd /usr/src/release/sysinstall &prompt.root; make all install Rebooting You are now done. After you have verified that everything appears to be in the right place you can reboot the system. A simple &man.fastboot.8; should do it. &prompt.root; fastboot Finished You should now have successfully upgraded your &os; system. Congratulations. If things went slightly wrong, it is easy to rebuild a particular piece of the system. For example, if you accidentally deleted /etc/magic as part of the upgrade or merge of /etc, the &man.file.1; command will stop working. In this case, the fix would be to run: &prompt.root; cd /usr/src/usr.bin/file &prompt.root; make all install Questions Do I need to re-make the world for every change? There is no easy answer to this one, as it depends on the nature of the change. For example, if you just ran CVSup, and it has shown the following files as being updated, src/games/cribbage/instr.c src/games/sail/pl_main.c src/release/sysinstall/config.c src/release/sysinstall/media.c src/share/mk/bsd.port.mk it probably is not worth rebuilding the entire world. You could just go to the appropriate sub-directories and make all install, and that's about it. But if something major changed, for example src/lib/libc/stdlib then you should either re-make the world, or at least those parts of it that are statically linked (as well as anything else you might have added that is statically linked). At the end of the day, it is your call. You might be happy re-making the world every fortnight say, and let changes accumulate over that fortnight. Or you might want to re-make just those things that have changed, and be confident you can spot all the dependencies. And, of course, this all depends on how often you want to upgrade, and whether you are tracking &os.stable; or &os.current;. My compile failed with lots of signal 11 (or other signal number) errors. What has happened? signal 11 This is normally indicative of hardware problems. (Re)making the world is an effective way to stress test your hardware, and will frequently throw up memory problems. These normally manifest themselves as the compiler mysteriously dying on receipt of strange signals. A sure indicator of this is if you can restart the make and it dies at a different point in the process. In this instance there is little you can do except start swapping around the components in your machine to determine which one is failing. Can I remove /usr/obj when I have finished? The short answer is yes. /usr/obj contains all the object files that were produced during the compilation phase. Normally, one of the first steps in the make world process is to remove this directory and start afresh. In this case, keeping /usr/obj around after you have finished makes little sense, and will free up a large chunk of disk space - (currently about 340MB). + (currently about 340 MB). However, if you know what you are doing you can have make world skip this step. This will make subsequent builds run much faster, since most of sources will not need to be recompiled. The flip side of this is that subtle dependency problems can creep in, causing your build to fail in odd ways. This frequently generates noise on the &os; mailing lists, when one person complains that their build has failed, not realising that it is because they have tried to cut corners. Can interrupted builds be resumed? This depends on how far through the process you got before you found a problem. In general (and this is not a hard and fast rule) the make world process builds new copies of essential tools (such as &man.gcc.1;, and &man.make.1;) and the system libraries. These tools and libraries are then installed. The new tools and libraries are then used to rebuild themselves, and are installed again. The entire system (now including regular user programs, such as &man.ls.1; or &man.grep.1;) is then rebuilt with the new system files. If you are at the last stage, and you know it (because you have looked through the output that you were storing) then you can (fairly safely) do … fix the problem … &prompt.root; cd /usr/src &prompt.root; make -DNOCLEAN all This will not undo the work of the previous make world. If you see the message -------------------------------------------------------------- Building everything.. -------------------------------------------------------------- in the make world output then it is probably fairly safe to do so. If you do not see that message, or you are not sure, then it is always better to be safe than sorry, and restart the build from scratch. How can I speed up making the world? Run in single user mode. Put the /usr/src and /usr/obj directories on separate filesystems held on separate disks. If possible, put these disks on separate disk controllers. Better still, put these filesystems across multiple disks using the &man.ccd.4; (concatenated disk driver) device. Turn off profiling (set NOPROFILE=true in /etc/make.conf). You almost certainly do not need it. Also in /etc/make.conf, set CFLAGS to something like . The optimization is much slower, and the optimization difference between and is normally negligible. lets the compiler use pipes rather than temporary files for communication, which saves disk access (at the expense of memory). Pass the option to &man.make.1; to run multiple processes in parallel. This usually helps regardless of whether you have a single or a multi processor machine. The filesystem holding /usr/src can be mounted (or remounted) with the option. This prevents the filesystem from recording the file access time. You probably do not need this information anyway. &prompt.root; mount -u -o noatime /usr/src The example assumes /usr/src is on its own filesystem. If it is not (if it is a part of /usr for example) then you will need to use that filesystem mount point, and not /usr/src. The filesystem holding /usr/obj can be mounted (or remounted) with the async option. This causes disk writes to happen asynchronously. In other words, the write completes immediately, and the data is written to the disk a few seconds later. This allows writes to be clustered together, and can be a dramatic performance boost. Keep in mind that this option makes your filesystem more fragile. With this option there is an increased chance that, should power fail, the filesystem will be in an unrecoverable state when the machine restarts. If /usr/obj is the only thing on this filesystem then it is not a problem. If you have other, valuable data on the same filesystem then ensure your backups are fresh before you enable this option. &prompt.root; mount -u -o async /usr/obj As above, if /usr/obj is not on its own filesystem, replace it in the example with the name of the appropriate mount point. What do I do if something goes wrong? Make absolutely sure your environment has no extraneous cruft from earlier builds. This is simple enough. &prompt.root; chflags -R noschg /usr/obj/usr &prompt.root; rm -rf /usr/obj/usr &prompt.root; cd /usr/src &prompt.root; make cleandir &prompt.root; make cleandir Yes, make cleandir really should be run twice. Then restart the whole process, starting with make buildworld. If you still have problems, send the error and the output of uname -a to &a.questions;. Be prepared to answer other questions about your setup! Mike Meyer Tracking for multiple machines NFS installing multiple machines If you have multiple machines that you want to track the same source tree, then having all of them download sources and rebuild everything seems like a waste of resources: disk space, network bandwidth, and CPU cycles. It is, and the solution is to have one machine do most of the work, while the rest of the machines mount that work via NFS. This section outlines a method of doing so. Preliminaries First, identify a set of machines that is going to run the same set of binaries, which we will call a build set. Each machine can have a custom kernel, but they will be running the same userland binaries. From that set, choose a machine to be the build machine. It is going to be the machine that the world and kernel are built on. Ideally, it should be a fast machine that has sufficient spare CPU to run make world. You will also want to choose a machine to be the test machine, which will test software updates before they are put into production. This must be a machine that you can afford to have down for an extended period of time. It can be the build machine, but need not be. All the machines in this build set need to mount /usr/obj and /usr/src from the same machine, and at the same point. Ideally, those are on two different drives on the build machine, but they can be NFS mounted on that machine as well. If you have multiple build sets, /usr/src should be on one build machine, and NFS mounted on the rest. Finally make sure that /etc/make.conf on all the machines in the build set agrees with the build machine. That means that the build machine must build all the parts of the base system that any machine in the build set is going to install. Also, each build machine should have its kernel name set with KERNCONF in /etc/make.conf, and the build machine should list them all in KERNCONF, listing its own kernel first. The build machine must have the kernel configuration files for each machine in /usr/src/sys/arch/conf if it is going to build their kernels. The base system Now that all that is done, you are ready to build everything. Build the kernel and world as described in on the build machine, but do not install anything. After the build has finished, go to the test machine, and install the kernel you just built. If this machine mounts /usr/src and /usr/obj via NFS, when you reboot to single user you will need to enable the network and mount them. The easiest way to do this is to boot to multi-user, then run shutdown now to go to single user mode. Once there, you can install the new kernel and world and run mergemaster just as you normally would. When done, reboot to return to normal multi-user operations for this machine. After you are certain that everything on the test machine is working properly, use the same procedure to install the new software on each of the other machines in the build set. Ports The same ideas can be used for the ports tree. The first critical step is mounting /usr/ports from the same machine to all the machines in the build set. You can then set up /etc/make.conf properly to share distfiles. You should set DISTDIR to a common shared directory that is writable by whichever user root is mapped to by your NFS mounts. Each machine should set WRKDIRPREFIX to a local build directory. Finally, if you are going to be building and distributing packages, you should set PACKAGES to a directory similar to DISTDIR.
diff --git a/en_US.ISO8859-1/books/handbook/disks/chapter.sgml b/en_US.ISO8859-1/books/handbook/disks/chapter.sgml index 40717e7265..ce3385f55f 100644 --- a/en_US.ISO8859-1/books/handbook/disks/chapter.sgml +++ b/en_US.ISO8859-1/books/handbook/disks/chapter.sgml @@ -1,2430 +1,2430 @@ Storage Synopsis This chapter covers the use of disks in FreeBSD. This includes memory-backed disks, network-attached disks, and standard SCSI/IDE storage devices. After reading this chapter, you will know: The terminology FreeBSD uses to describe the organization of data on a physical disk (partitions and slices). How to mount and unmount file systems. How to add additional hard disks to your system. How to setup virtual file systems, such as memory disks. How to use quotas to limit disk space usage. How to create and burn CDs and DVDs on FreeBSD. The various storage media options for backups. How to use backup programs available under FreeBSD. How to backup to floppy disks. Device Names The following is a list of physical storage devices supported in FreeBSD, and the device names associated with them. Physical Disk Naming Conventions Drive type Drive device name IDE hard drives ad IDE CDROM drives acd SCSI hard drives and USB Mass storage devices da SCSI CDROM drives cd Assorted non-standard CDROM drives mcd for Mitsumi CD-ROM, scd for Sony CD-ROM, matcd for Matsushita/Panasonic CD-ROM Floppy drives fd SCSI tape drives sa IDE tape drives ast Flash drives fla for DiskOnChip Flash device RAID drives myxd for Mylex, and amrd for AMI MegaRAID, idad for Compaq Smart RAID.
David O'Brien Originally contributed by Adding Disks disks adding Lets say we want to add a new SCSI disk to a machine that currently only has a single drive. First turn off the computer and install the drive in the computer following the instructions of the computer, controller, and drive manufacturer. Due to the wide variations of procedures to do this, the details are beyond the scope of this document. Login as user root. After you have installed the drive, inspect /var/run/dmesg.boot to ensure the new disk was found. Continuing with our example, the newly added drive will be da1 and we want to mount it on /1 (if you are adding an IDE drive, the device name will be wd1 in pre-4.0 systems, or ad1 in most 4.X systems). partitions slices fdisk Because FreeBSD runs on IBM-PC compatible computers, it must take into account the PC BIOS partitions. These are different from the traditional BSD partitions. A PC disk has up to four BIOS partition entries. If the disk is going to be truly dedicated to FreeBSD, you can use the dedicated mode. Otherwise, FreeBSD will have to live within one of the PC BIOS partitions. FreeBSD calls the PC BIOS partitions slices so as not to confuse them with traditional BSD partitions. You may also use slices on a disk that is dedicated to FreeBSD, but used in a computer that also has another operating system installed. This is to not confuse the fdisk utility of the other operating system. In the slice case the drive will be added as /dev/da1s1e. This is read as: SCSI disk, unit number 1 (second SCSI disk), slice 1 (PC BIOS partition 1), and e BSD partition. In the dedicated case, the drive will be added simply as /dev/da1e. Using &man.sysinstall.8; sysinstall adding disks su Navigating <application>Sysinstall</application> You may use /stand/sysinstall to partition and label a new disk using its easy to use menus. Either login as user root or use the su command. Run /stand/sysinstall and enter the Configure menu. Within the FreeBSD Configuration Menu, scroll down and select the Fdisk option. <application>fdisk</application> Partition Editor Once inside fdisk, we can type A to use the entire disk for FreeBSD. When asked if you want to remain cooperative with any future possible operating systems, answer YES. Write the changes to the disk using W. Now exit the FDISK editor by typing q. Next you will be asked about the Master Boot Record. Since you are adding a disk to an already running system, choose None. Disk Label Editor BSD partitions Next, you need to exit sysinstall and start it again. Follow the directions above, although this time choose the Label option. This will enter the Disk Label Editor. This is where you will create the traditional BSD partitions. A disk can have up to eight partitions, labeled a-h. A few of the partition labels have special uses. The a partition is used for the root partition (/). Thus only your system disk (e.g, the disk you boot from) should have an a partition. The b partition is used for swap partitions, and you may have many disks with swap partitions. The c partition addresses the entire disk in dedicated mode, or the entire FreeBSD slice in slice mode. The other partitions are for general use. sysinstall's Label editor favors the e partition for non-root, non-swap partitions. Within the Label editor, create a single file system by typing C. When prompted if this will be a FS (file system) or swap, choose FS and type in a mount point (e.g, /mnt). When adding a disk in post-install mode, sysinstall will not create entries in /etc/fstab for you, so the mount point you specify is not important. You are now ready to write the new label to the disk and create a file system on it. Do this by typing W. Ignore any errors from sysinstall that it could not mount the new partition. Exit the Label Editor and sysinstall completely. Finish The last step is to edit /etc/fstab to add an entry for your new disk. Using Command Line Utilities Using Slices This setup will allow your disk to work correctly with other operating systems that might be installed on your computer and will not confuse other operating systems' fdisk utilities. It is recommended to use this method for new disk installs. Only use dedicated mode if you have a good reason to do so! &prompt.root; dd if=/dev/zero of=/dev/rda1 bs=1k count=1 &prompt.root; fdisk -BI da1 #Initialize your new disk &prompt.root; disklabel -B -w -r da1s1 auto #Label it. &prompt.root; disklabel -e da1s1 # Edit the disklabel just created and add any partitions. &prompt.root; mkdir -p /1 &prompt.root; newfs /dev/da1s1e # Repeat this for every partition you created. &prompt.root; mount -t ufs /dev/da1s1e /1 # Mount the partition(s) &prompt.root; vi /etc/fstab # Add the appropriate entry/entries to your /etc/fstab. If you have an IDE disk, substitute ad for da. On pre-4.X systems use wd. Dedicated OS/2 If you will not be sharing the new drive with another operating system, you may use the dedicated mode. Remember this mode can confuse Microsoft operating systems; however, no damage will be done by them. IBM's OS/2 however, will appropriate any partition it finds which it does not understand. &prompt.root; dd if=/dev/zero of=/dev/rda1 bs=1k count=1 &prompt.root; disklabel -Brw da1 auto &prompt.root; disklabel -e da1 # create the `e' partition &prompt.root; newfs -d0 /dev/rda1e &prompt.root; mkdir -p /1 &prompt.root; vi /etc/fstab # add an entry for /dev/da1e &prompt.root; mount /1 An alternate method is: &prompt.root; dd if=/dev/zero of=/dev/rda1 count=2 &prompt.root; disklabel /dev/rda1 | disklabel -BrR da1 /dev/stdin &prompt.root; newfs /dev/rda1e &prompt.root; mkdir -p /1 &prompt.root; vi /etc/fstab # add an entry for /dev/da1e &prompt.root; mount /1 RAID Software RAID Christopher Shumway Written by Valentino Vaschetto Marked up by ccd (Concatenated Disk Configuration) When choosing a mass storage solution, the most important factors to consider are speed, reliability, and cost. It is very rare to have all three in favor, normally a fast, reliable mass storage device is expensive, and to cut back on cost either speed or reliability must be sacrificed. In designing my system, I ranked the requirements by most favorable to least favorable. In this situation, cost was the biggest factor. I needed a lot of storage for a reasonable price. The next factor, speed, is not quite as important, since most of the usage would be over a one hundred megabit switched Ethernet, and that would most likely be the bottleneck. The ability to spread the file input/output operations out over several disks would be more than enough speed for this network. Finally, the consideration of reliability was an easy one to answer. All of the data being put on this mass storage device was already backed up on CD-R's. This drive was primarily here for online live storage for easy access, so if a drive went bad, I could just replace it, rebuild the file system, and copy back the data from CD-R's. To sum it up, I need something that will give me the most amount of storage space for my money. The cost of large IDE disks are cheap these days. I found a place that was selling Western Digital 30.7gb 5400 RPM IDE disks for about one-hundred and thirty US dollars. I bought three of them, giving me approximately ninety gigabytes of online storage. Installing the Hardware I installed the hard drives in a system that already had one IDE disk in as the system disk. The ideal solution would be for each IDE disk to have its own IDE controller and cable, but without fronting more costs to acquire a dual IDE controller this would not be a possibility. So, I jumpered two disks as slaves, and one as master. One went on the first IDE controller as a slave to the system disk, and the other two where slave/master on the secondary IDE controller. Upon reboot, the system BIOS was configured to automatically detect the disks attached. More importantly, FreeBSD detected them on reboot: ad0: 19574MB <WDC WD205BA> [39770/16/63] at ata0-master UDMA33 ad1: 29333MB <WDC WD307AA> [59598/16/63] at ata0-slave UDMA33 ad2: 29333MB <WDC WD307AA> [59598/16/63] at ata1-master UDMA33 ad3: 29333MB <WDC WD307AA> [59598/16/63] at ata1-slave UDMA33 At this point, if FreeBSD does not detect the disks, be sure that you have jumpered them correctly. I have heard numerous reports with problems using cable select instead of true slave/master configuration. The next consideration was how to attach them as part of the file system. I did a little research on &man.vinum.8; () and &man.ccd.4;. In this particular configuration, &man.ccd.4; appeared to be a better choice mainly because it has fewer parts. Less parts tends to indicate less chance of breakage. Vinum appears to be a bit of an overkill for my needs. Setting up the CCD CCD allows me to take several identical disks and concatenate them into one logical file system. In order to use ccd, I need a kernel with ccd support built into it. I added this line to my kernel configuration file and rebuilt the kernel: pseudo-device ccd 4 ccd support can also be loaded as a kernel loadable module in FreeBSD 4.0 or later. To set up ccd, first I need to disklabel the disks. Here is how I disklabeled them: disklabel -r -w ad1 auto disklabel -r -w ad2 auto disklabel -r -w ad3 auto This created a disklabel ad1c, ad2c and ad3c that spans the entire disk. The next step is to change the disklabel type. To do that I had to edit the disklabel: disklabel -e ad1 disklabel -e ad2 disklabel -e ad3 This opened up the current disklabel on each disk respectively in whatever editor the EDITOR environment variable was set to, in my case, &man.vi.1;. Inside the editor I had a section like this: 8 partitions: # size offset fstype [fsize bsize bps/cpg] c: 60074784 0 unused 0 0 0 # (Cyl. 0 - 59597) I needed to add a new "e" partition for &man.ccd.4; to use. This usually can be copied of the "c" partition, but the must be 4.2BSD. Once I was done, my disklabel should look like this: 8 partitions: # size offset fstype [fsize bsize bps/cpg] c: 60074784 0 unused 0 0 0 # (Cyl. 0 - 59597) e: 60074784 0 4.2BSD 0 0 0 # (Cyl. 0 - 59597) Building the File System Now that I have all of the disks labeled, I needed to build the ccd. To do that, I used a utility called &man.ccdconfig.8;. ccdconfig takes several arguments, the first argument being the device to configure, in this case, /dev/ccd0c. The device node for ccd0c may not exist yet, so to create it, perform the following commands: cd /dev sh MAKEDEV ccd0 The next argument ccdconfig expects is the interleave for the file system. The interleave defines the size of a stripe in disk blocks, normally five hundred and twelve bytes. So, an interleave of thirty-two would be sixteen thousand three hundred and eighty-four bytes. After the interleave comes the flags for ccdconfig. If you want to enable drive mirroring, you can specify a flag here. In this configuration, I am not mirroring the ccd, so I left it as zero. The final arguments to ccdconfig are the devices to place into the array. Putting it all together I get this command: ccdconfig ccd0 32 0 /dev/ad1e /dev/ad2e /dev/ad3e This configures the ccd. I can now &man.newfs.8; the file system. newfs /dev/ccd0c Making it all Automatic Finally, if I want to be able to mount the ccd, I need to configure it first. I write out my current configuration to /etc/ccd.conf using the following command: ccdconfig -g > /etc/ccd.conf When I reboot, the script /etc/rc runs ccdconfig -C if /etc/ccd.conf exists. This automatically configures the ccd so it can be mounted. If you are booting into single user mode, before you can mount the ccd, you need to issue the following command to configure the array: ccdconfig -C Then, we need an entry for the ccd in /etc/fstab so it will be mounted at boot time. /dev/ccd0c /media ufs rw 2 2 The Vinum Volume Manager The Vinum Volume Manager is a block device driver which implements virtual disk drives. It isolates disk hardware from the block device interface and maps data in ways which result in an increase in flexibility, performance and reliability compared to the traditional slice view of disk storage. &man.vinum.8; implements the RAID-0, RAID-1 and RAID-5 models, both individually and in combination. See the for more information about &man.vinum.8;. Hardware RAID RAID Hardware FreeBSD also supports a variety of hardware RAID controllers. In which case the actual RAID system is built and controlled by the card itself. Using an on-card BIOS, the card will control most of the disk operations itself. The following is a brief setup using a Promise IDE RAID controller. When this card is installed and the system started up, it will display a prompt requesting information. Follow the on screen instructions to enter the cards setup screen. From here a user should have the ability to combine all the attached drives. When doing this, the disk(s) will look like a single drive to FreeBSD. Other RAID levels can be setup accordingly. Mike Meyer Contributed by Creating and Using Optical Media (CDs & DVDs) CDROMs creating Introduction CDs have a number of features that differentiate them from conventional disks. Initially, they were not writable by the user. They are designed so that they can be read continuously without delays to move the head between tracks. They are also much easier to transport between systems than similarly sized media were at the time. CDs do have tracks, but this refers to a section of data to be read continuously and not a physical property of the disk. To produce a CD on FreeBSD, you prepare the data files that are going to make up the tracks on the CD, then write the tracks to the CD. ISO 9660 file systems ISO-9660 The ISO 9660 file system was designed to deal with these differences. It unfortunately codifies file system limits that were common then. Fortunately, it provides an extension mechanism that allows properly written CDs to exceed those limits while still working with systems that do not support those extensions. sysutils/mkisofs The sysutils/mkisofs program is used to produce a data file containing an ISO 9660 file system. It has options that support various extensions, and is described below. You can install it with the sysutils/mkisofs ports. CD burner ATAPI Which tool to use to burn the CD depends on whether your CD burner is ATAPI or something else. ATAPI CD burners use the burncd program that is part of the base system. SCSI and USB CD burners should use cdrecord from the sysutils/cdrtools port. burncd has a limited number of supported drives. To find out if a drive is supported, see CD-R/RW supported drives. mkisofs sysutils/mkisofs produces an ISO 9660 file system that is an image of a directory tree in the Unix file system name space. The simplest usage is: &prompt.root; mkisofs -o imagefile.iso /path/to/tree file systems ISO-9660 This command will create an imagefile.iso containing an ISO 9660 file system that is a copy of the tree at /path/to/tree. In the process, it will map the file names to names that fit the limitations of the standard ISO 9660 file system, and will exclude files that have names uncharacteristic of ISO file systems. file systems HFS file systems Joliet A number of options are available to overcome those restrictions. In particular, enables the Rock Ridge extensions common to Unix systems, enables Joliet extensions used by Microsoft systems, and can be used to create HFS file systems used by MacOS. For CDs that are going to be used only on FreeBSD systems, can be used to disable all filename restrictions. When used with , it produces a file system image that is identical to the FreeBSD tree you started from, though it may violate the ISO 9660 standard in a number of ways. CDROMs creating bootable The last option of general use is . This is used to specify the location of the boot image for use in producing an El Torito bootable CD. This option takes an argument which is the path to a boot image from the top of the tree being written to the CD. So, given that /tmp/myboot holds a bootable FreeBSD system with the boot image in /tmp/myboot/boot/cdboot, you could produce the image of an ISO 9660 file system in /tmp/bootable.iso like so: &prompt.root; mkisofs -U -R -b boot/cdboot -o /tmp/bootable.iso /tmp/myboot Having done that, if you have vn configured in your kernel, you can mount the file system with: &prompt.root; vnconfig -e vn0c /tmp/bootable.iso &prompt.root; mount -t cd9660 /dev/vn0c /mnt At which point you can verify that /mnt and /tmp/myboot are identical. There are many other options you can use with sysutils/mkisofs to fine-tune its behavior. In particular: modifications to an ISO 9660 layout and the creation of Joilet and HFS discs. See the &man.mkisofs.8; manual page for details. burncd CDROMs burning If you have an ATAPI CD burner, you can use the burncd command to burn an ISO image onto a CD. burncd is part of the base system, installed as /usr/sbin/burncd. Usage is very simple, as it has few options: &prompt.root; burncd -f cddevice data imagefile.iso fixate Will burn a copy of imagefile.iso on cddevice. The default device is /dev/acd0c. See &man.burncd.8; for options to set the write speed, eject the CD after burning, and write audio data. cdrecord If you do not have an ATAPI CD burner, you will have to use cdrecord to burn your CDs. cdrecord is not part of the base system; you must install it from either the port at sysutils/cdrtools or the appropriate package. Changes to the base system can cause binary versions of this program to fail, possibly resulting in a coaster. You should therefore either upgrade the port when you upgrade your system, or if you are tracking -STABLE, upgrade the port when a new version becomes available. While cdrecord has many options, basic usage is even simpler than burncd. Burning an ISO 9660 image is done with: &prompt.root; cdrecord dev=device imagefile.iso The tricky part of using cdrecord is finding the to use. To find the proper setting, use the flag of cdrecord, which might produce results like this: CDROMs burning &prompt.root; cdrecord -scanbus Cdrecord 1.9 (i386-unknown-freebsd4.2) Copyright (C) 1995-2000 Jörg Schilling Using libscg version 'schily-0.1' scsibus0: 0,0,0 0) 'SEAGATE ' 'ST39236LW ' '0004' Disk 0,1,0 1) 'SEAGATE ' 'ST39173W ' '5958' Disk 0,2,0 2) * 0,3,0 3) 'iomega ' 'jaz 1GB ' 'J.86' Removable Disk 0,4,0 4) 'NEC ' 'CD-ROM DRIVE:466' '1.26' Removable CD-ROM 0,5,0 5) * 0,6,0 6) * 0,7,0 7) * scsibus1: 1,0,0 100) * 1,1,0 101) * 1,2,0 102) * 1,3,0 103) * 1,4,0 104) * 1,5,0 105) 'YAMAHA ' 'CRW4260 ' '1.0q' Removable CD-ROM 1,6,0 106) 'ARTEC ' 'AM12S ' '1.06' Scanner 1,7,0 107) * This lists the appropriate value for the devices on the list. Locate your CD burner, and use the three numbers separated by commas as the value for . In this case, the CRW device is 1,5,0, so the appropriate input would be . There are easier ways to specify this value; see &man.cdrecord.1; for details. That is also the place to look for information on writing audio tracks, controlling the speed, and other things. Duplicating Audio CDs You can duplicate an audio CD by extracting the audio data from the CD to a series of files, and then writing these files to a blank CD. The process is slightly different for ATAPI and SCSI drives. SCSI drives Use cdda2wav to extract the audio. &prompt.user; cdda2wav -v255 -D2,0 -B -Owav Use cdrecord to write the .wav files. &prompt.user; cdrecord -v dev=2,0 -dao -useinfo *.wav Make sure that 2.0 is set appropriately, as described in . ATAPI drives The ATAPI CD driver makes each track available as /dev/acddtn, where d is the drive number, and n is the track number. So the first track on the first disk is /dev/acd0t1. Make sure the appropriate files exist in /dev. &prompt.root; cd /dev &prompt.root; sh MAKEDEV acd0t99 Extract each track using &man.dd.1;. You must also use a specific blocksize when extracting the files. &prompt.root; dd if=/dev/acd0t1 of=track1.cdr bs=2352 &prompt.root; dd if=/dev/acd0t2 of=track2.cdr bs=2352 ... Burn the extracted files to disk using burncd. You must specify that these are audio files, and that burncd should fixate the disk when finished. &prompt.root; burncd -f /dev/acd0c audio track1.cdr track2.cdr ... fixate Duplicating Data CDs You can copy a data CD to a image file that is functionally equivalent to the image file created with sysutils/mkisofs, and you can use it to duplicate any data CD. The example given here assumes that your CDROM device is acd0. Substitute your correct CDROM device. A c must be appended to the end of the device name to indicate the entire partition or, in the case of CDROMs, the entire disc. &prompt.root; dd if=/dev/acd0c of=file.iso bs=2048 Now that you have an image, you can burn it to CD as described above. Using Data CDs Now that you have created a standard data CDROM, you probably want to mount it and read the data on it. By default, &man.mount.8; assumes that a file system is of type ufs. If you try something like: &prompt.root; mount /dev/cd0c /mnt you will get a complaint about Incorrect super block, and no mount. The CDROM is not a UFS file system, so attempts to mount it as such will fail. You just need to tell &man.mount.8; that the file system is of type ISO9660, and everything will work. You do this by specifying the option &man.mount.8;. For example, if you want to mount the CDROM device, /dev/cd0c, under /mnt, you would execute: &prompt.root; mount -t cd9660 /dev/cd0c /mnt Note that your device name (/dev/cd0c in this example) could be different, depending on the interface your CDROM uses. Also, the option just executes &man.mount.cd9660.8;. The above example could be shortened to: &prompt.root; mount_cd9660 /dev/cd0c /mnt You can generally use data CDROMs from any vendor in this way. Disks with certain ISO 9660 extensions might behave oddly, however. For example, Joliet disks store all filenames in two-byte Unicode characters. The FreeBSD kernel does not speak Unicode (yet!), so non-English characters show up as question marks. (If you are running FreeBSD 4.3 or later, the CD9660 driver includes hooks to load an appropriate Unicode conversion table on the fly. Modules for some of the common encodings are available via the sysutils/cd9660_unicode port.) Occasionally, you might get Device not configured when trying to mount a CDROM. This usually means that the CDROM drive thinks that there is no disk in the tray, or that the drive is not visible on the bus. It can take a couple of seconds for a CDROM drive to realize that it has been fed, so be patient. Sometimes, a SCSI CDROM may be missed because it didn't have enough time to answer the bus reset. If you have a SCSI CDROM please add the following option to your kernel configuration and rebuild your kernel. options SCSI_DELAY=15000 This tells your SCSI bus to pause 15 seconds during boot, to give your CDROM drive every possible chance to answer the bus reset. Burning Raw Data CDs You can choose to burn a file directly to CD, without creating an ISO 9660 file system. Some people do this for backup purposes. This runs more quickly than burning a standard CD: &prompt.root; burncd -f /dev/acd1c -s 12 data archive.tar.gz fixate In order to retrieve the data burned to such a CD, you must read data from the raw device node: &prompt.root; tar xzvf /dev/acd1c You cannot mount this disk as you would a normal CDROM. Such a CDROM cannot be read under any operating system except FreeBSD. If you want to be able to mount the CD, or share data with another operating system, you must use sysutils/mkisofs as described above. Julio Merino Contributed by Creating and Using Floppy Disks Floppy disks are, nowadays, an old-fashioned medium to store/share data. Although, there are still some times when you need to use them, because you do not have any other removable storage media or you need to use what you have saved in them on any other computer. This section will explain how to use floppy disks in FreeBSD, that is, formating and copying/restoring data from them. But... I really have written this to help you about how to create forced-size floppies. The device Floppy disks are accessed through entries in /dev (like any other device). To access the raw floppy disk you can use /dev/rfdX, where X stands for the drive number, usually 0. When the disk is formatted you can use /dev/fdX, or whichever of the other devices named /dev/fdXY, where Y stands for a letter. These are all the same. Other important devices are /dev/fdX.size, where size is a floppy disk size in kilobytes. These entries are used at low-level format time to determine the disk size. Sometimes you will have to (re)create these entries under /dev. To do it, you can issue: &prompt.root; cd /dev && ./MAKEDEV "fd*" Formatting A floppy disk needs to be low-level formated before it can be used. This is usually done by the vendor but you may want to do it to check media integrity or to force the disk capacity to be bigger. To format the floppy at a low-level fashion you need to use fdformat. This utility expects the device name as an argument. We will use those /dev/fdX.size devices, which will allow us to format the floppy to its real size, or force them. So you insert a new 3.5inch floppy disk in your drive and issue: &prompt.root; /usr/sbin/fdformat /dev/rfd0.1440 This will take a while... You should notice any disk error here (this can help you determining which disks are good or bad). To force the floppy disk size, we will use other entries in /dev. Get the same floppy and issue: &prompt.root; /usr/sbin/fdformat /dev/rfd0.1720 It will take some more time than before (forced disks are slower). When it finishes, you will have a 1720kb floppy disk, but for the moment you will not notice any difference. You may use other disk sizes that you can find in /dev, but the most stable/compatible is the 1720kb for 3.5inch disks. The disklabel After low-level formatting the disk, you will need to place a disklabel on it. This disklabel will be destroyed later, but it is needed by the system to determine the size of the disk and its geometry later. The new disklabel will take over the whole disk, and will contain all the proper information about the geometry of the normal or forced floppy. Take a look to /etc/disktab now; you will see geometry values of all kinds of floppy disks. You can run now disklabel like: &prompt.root; /sbin/disklabel -B -r -w /dev/rfd0 fdsize Replace fdsize with fd1440, fd1720 or whichever size you want. The last field instructs disklabel which entry to take from /etc/disktab to use. The file system Now your floppy is ready to be high-level formated. This will place a new file system on it, which will let FreeBSD read and write to the disk. After creating the new file system, the disklabel is destroyed, so if you want to reformat the disk, you will have to recreate the disklabel another time. You can choose now which file system to use on your floppy. You can use UFS or FAT, though UFS is not a good idea for floppies. Choose FAT which is nice for floppies. To put a new file system on the floppy do this: &prompt.root; /sbin/newfs_msdos /dev/fd0 As we created a disklabel before, newfs will be able to fetch disk data and construct the new file system. And now, your disk is ready for use... Using the floppy You have two choices to use the floppy. You can either mount the disk with mount_msdos, or you can use mtools. Mtools are great, but you will need to install them from the ports system. Try it; issue a mdir. If you forced the disk, you will notice its extra size! A last note about forced disks: they are compatible with practically all other operating systems without any external utility to read/write them. Microsoft systems will recognize them without problems. But note that there may be times when the floppy drive itself is not able to read them (this may happen with very old drives). Creating and Using Data Tapes tape media The major tape media are the 4mm, 8mm, QIC, mini-cartridge and DLT. 4mm (DDS: Digital Data Storage) tape media DDS (4mm) tapes tape media QIC tapes 4mm tapes are replacing QIC as the workstation backup media of choice. This trend accelerated greatly when Conner purchased Archive, a leading manufacturer of QIC drives, and then stopped production of QIC drives. 4mm drives are small and quiet but do not have the reputation for reliability that is enjoyed by 8mm drives. The cartridges are less expensive and smaller (3 x 2 x 0.5 inches, 76 x 51 x 12 mm) than 8mm cartridges. 4mm, like 8mm, has comparatively short head life for the same reason, both use helical scan. Data throughput on these drives starts ~150kB/s, peaking at ~500kB/s. Data capacity starts at 1.3 GB and ends at 2.0 GB. Hardware compression, available with most of these drives, approximately doubles the capacity. Multi-drive tape library units can have 6 drives in a single cabinet with automatic tape changing. Library capacities reach 240 GB. The DDS-3 standard now supports tape capacities up to 12 GB (or 24 GB compressed). 4mm drives, like 8mm drives, use helical-scan. All the benefits and drawbacks of helical-scan apply to both 4mm and 8mm drives. Tapes should be retired from use after 2,000 passes or 100 full backups. 8mm (Exabyte) tape media Exabyte (8mm) tapes 8mm tapes are the most common SCSI tape drives; they are the best choice of exchanging tapes. Nearly every site has an Exabyte 2 GB 8mm tape drive. 8mm drives are reliable, convenient and quiet. Cartridges are inexpensive and small (4.8 x 3.3 x 0.6 inches; 122 x 84 x 15 mm). One downside of 8mm tape is relatively short head and tape life due to the high rate of relative motion of the tape across the heads. Data throughput ranges from ~250kB/s to ~500kB/s. Data sizes start at 300 MB and go up to 7 GB. Hardware compression, available with most of these drives, approximately doubles the capacity. These drives are available as single units or multi-drive tape libraries with 6 drives and 120 tapes in a single cabinet. Tapes are changed automatically by the unit. Library capacities reach 840+ GB. The Exabyte Mammoth model supports 12 GB on one tape (24 GB with compression) and costs approximately twice as much as conventional tape drives. Data is recorded onto the tape using helical-scan, the heads are positioned at an angle to the media (approximately 6 degrees). The tape wraps around 270 degrees of the spool that holds the heads. The spool spins while the tape slides over the spool. The result is a high density of data and closely packed tracks that angle across the tape from one edge to the other. QIC tape media QIC-150 QIC-150 tapes and drives are, perhaps, the most common tape drive and media around. QIC tape drives are the least expensive "serious" backup drives. The downside is the cost of media. QIC tapes are expensive compared to 8mm or 4mm tapes, up to 5 times the price per GB data storage. But, if your needs can be satisfied with a half-dozen tapes, QIC may be the correct choice. QIC is the most common tape drive. Every site has a QIC drive of some density or another. Therein lies the rub, QIC has a large number of densities on physically similar (sometimes identical) tapes. QIC drives are not quiet. These drives audibly seek before they begin to record data and are clearly audible whenever reading, writing or seeking. QIC tapes measure (6 x 4 x 0.7 inches; 15.2 x 10.2 x 1.7 mm). Mini-cartridges, which also use 1/4" wide tape are discussed separately. Tape libraries and changers are not available. Data throughput ranges from ~150kB/s to ~500kB/s. Data capacity ranges from 40 MB to 15 GB. Hardware compression is available on many of the newer QIC drives. QIC drives are less frequently installed; they are being supplanted by DAT drives. Data is recorded onto the tape in tracks. The tracks run along the long axis of the tape media from one end to the other. The number of tracks, and therefore the width of a track, varies with the tape's capacity. Most if not all newer drives provide backward-compatibility at least for reading (but often also for writing). QIC has a good reputation regarding the safety of the data (the mechanics are simpler and more robust than for helical scan drives). Tapes should be retired from use after 5,000 backups. XXX* Mini-Cartridge DLT tape media DLT DLT has the fastest data transfer rate of all the drive types listed here. The 1/2" (12.5mm) tape is contained in a single spool cartridge (4 x 4 x 1 inches; 100 x 100 x 25 mm). The cartridge has a swinging gate along one entire side of the cartridge. The drive mechanism opens this gate to extract the tape leader. The tape leader has an oval hole in it which the drive uses to "hook" the tape. The take-up spool is located inside the tape drive. All the other tape cartridges listed here (9 track tapes are the only exception) have both the supply and take-up spools located inside the tape cartridge itself. Data throughput is approximately 1.5MB/s, three times the throughput of 4mm, 8mm, or QIC tape drives. Data capacities range from 10 GB to 20 GB for a single drive. Drives are available in both multi-tape changers and multi-tape, multi-drive tape libraries containing from 5 to 900 tapes over 1 to 20 drives, providing from 50 GB to 9 TB of storage. With compression, DLT Type IV format supports up to 70 GB capacity. Data is recorded onto the tape in tracks parallel to the direction of travel (just like QIC tapes). Two tracks are written at once. Read/write head lifetimes are relatively long; once the tape stops moving, there is no relative motion between the heads and the tape. AIT tape media AIT AIT is a new format from Sony, and can hold up to 50 GB (with compression) per tape. The tapes contain memory chips which retain an index of the tape's contents. This index can be rapidly read by the tape drive to determine the position of files on the tape, instead of the several minutes that would be required for other tapes. Software such as SAMS:Alexandria can operate forty or more AIT tape libraries, communicating directly with the tape's memory chip to display the contents on screen, determine what files were backed up to which tape, locate the correct tape, load it, and restore the data from the tape. Libraries like this cost in the region of $20,000, pricing them a little out of the hobbyist market. Using a New Tape for the First Time The first time that you try to read or write a new, completely blank tape, the operation will fail. The console messages should be similar to: sa0(ncr1:4:0): NOT READY asc:4,1 sa0(ncr1:4:0): Logical unit is in process of becoming ready The tape does not contain an Identifier Block (block number 0). All QIC tape drives since the adoption of QIC-525 standard write an Identifier Block to the tape. There are two solutions: mt fsf 1 causes the tape drive to write an Identifier Block to the tape. Use the front panel button to eject the tape. Re-insert the tape and dump data to the tape. dump will report DUMP: End of tape detected and the console will show: HARDWARE FAILURE info:280 asc:80,96. rewind the tape using: mt rewind. Subsequent tape operations are successful. Backups to Floppies Can I Use floppies for Backing Up My Data? backup floppies floppy disks Floppy disks are not really a suitable media for making backups as: The media is unreliable, especially over long periods of time. Backing up and restoring is very slow. They have a very limited capacity (the days of backing up an entire hard disk onto a dozen or so floppies has long since passed). However, if you have no other method of backing up your data then floppy disks are better than no backup at all. If you do have to use floppy disks then ensure that you use good quality ones. Floppies that have been lying around the office for a couple of years are a bad choice. Ideally use new ones from a reputable manufacturer. So How Do I Backup My Data to Floppies? The best way to backup to floppy disk is to use tar with the (multi volume) option, which allows backups to span multiple floppies. To backup all the files in the current directory and sub-directory use this (as root): &prompt.root; tar Mcvf /dev/fd0 * When the first floppy is full tar will prompt you to insert the next volume (because tar is media independent it refers to volumes; in this context it means floppy disk). Prepare volume #2 for /dev/fd0 and hit return: This is repeated (with the volume number incrementing) until all the specified files have been archived. Can I Compress My Backups? tar gzip compression Unfortunately, tar will not allow the option to be used for multi-volume archives. You could, of course, gzip all the files, tar them to the floppies, then gunzip the files again! How Do I Restore My Backups? To restore the entire archive use: &prompt.root; tar Mxvf /dev/fd0 There are two ways that you can use to restore only specific files. First, you can start with the first floppy and use: &prompt.root; tar Mxvf /dev/fd0 filename tar will prompt you to insert subsequent floppies until it finds the required file. Alternatively, if you know which floppy the file is on then you can simply insert that floppy and use the same command as above. Note that if the first file on the floppy is a continuation from the previous one then tar will warn you that it cannot restore it, even if you have not asked it to! Backup Basics backup software and basics The three major backup programs are &man.dump.8;, &man.tar.1;, and &man.cpio.1;. Dump and Restore backup software dump / restore dump restore The traditional Unix backup programs are dump and restore. They operate on the drive as a collection of disk blocks, below the abstractions of files, links and directories that are created by the file systems. dump backs up an entire file system on a device. It is unable to backup only part of a file system or a directory tree that spans more than one file system. dump does not write files and directories to tape, but rather writes the raw data blocks that comprise files and directories. If you use dump on your root directory, you would not back up /home, /usr or many other directories since these are typically mount points for other file systems or symbolic links into those file systems. dump has quirks that remain from its early days in Version 6 of AT&T Unix (circa 1975). The default parameters are suitable for 9-track tapes (6250 bpi), not the high-density media available today (up to 62,182 ftpi). These defaults must be overridden on the command line to utilize the capacity of current tape drives. .rhosts It is also possible to backup data across the network to a tape drive attached to another computer with rdump and rrestore. Both programs rely upon rcmd and ruserok to access the remote tape drive. Therefore, the user performing the backup must be listed in the .rhosts file on the remote computer. The arguments to rdump and rrestore must be suitable to use on the remote computer. When rdumping from a FreeBSD computer to an Exabyte tape drive connected to a Sun called komodo, use: &prompt.root; /sbin/rdump 0dsbfu 54000 13000 126 komodo:/dev/nrsa8 /dev/rda0a 2>&1 Beware: there are security implications to allowing .rhosts authentication. Evaluate your situation carefully. It is also possible to use dump and restore in a more secure fashion over ssh. Using <command>dump</command> over <application>ssh</application> &prompt.root; /sbin/dump -0uan -f - /usr | gzip -2 | ssh1 -c blowfish \ targetuser@targetmachine.example.com dd of=/mybigfiles/dump-usr-l0.gz <command>tar</command> backup software tar &man.tar.1; also dates back to Version 6 of AT&T Unix (circa 1975). tar operates in cooperation with the file system; tar writes files and directories to tape. tar does not support the full range of options that are available from &man.cpio.1;, but tar does not require the unusual command pipeline that cpio uses. tar Most versions of tar do not support backups across the network. The GNU version of tar, which FreeBSD utilizes, supports remote devices using the same syntax as rdump. To tar to an Exabyte tape drive connected to a Sun called komodo, use: &prompt.root; /usr/bin/tar cf komodo:/dev/nrsa8 . 2>&1 For versions without remote device support, you can use a pipeline and rsh to send the data to a remote tape drive. &prompt.root; tar cf - . | rsh hostname dd of=tape-device obs=20b If you are worried about the security of backing up over a network you should use the ssh command instead of rsh. <command>cpio</command> backup software cpio &man.cpio.1; is the original Unix file interchange tape program for magnetic media. cpio has options (among many others) to perform byte-swapping, write a number of different archive formats, and pipe the data to other programs. This last feature makes cpio and excellent choice for installation media. cpio does not know how to walk the directory tree and a list of files must be provided through stdin. cpio cpio does not support backups across the network. You can use a pipeline and rsh to send the data to a remote tape drive. &prompt.root; for f in directory_list; do find $f >> backup.list done &prompt.root; cpio -v -o --format=newc < backup.list | ssh user@host "cat > backup_device" Where directory_list is the list of directories you want to back up, user@host is the user/hostname combination that will be performing the backups, and backup_device is where the backups should be written to (e.g., /dev/nrsa0). <command>pax</command> backup software pax pax POSIX IEEE &man.pax.1; is IEEE/POSIX's answer to tar and cpio. Over the years the various versions of tar and cpio have gotten slightly incompatible. So rather than fight it out to fully standardize them, POSIX created a new archive utility. pax attempts to read and write many of the various cpio and tar formats, plus new formats of its own. Its command set more resembles cpio than tar. <application>Amanda</application> backup software Amanda Amanda Amanda (Advanced Maryland Network Disk Archiver) is a client/server backup system, rather than a single program. An Amanda server will backup to a single tape drive any number of computers that have Amanda clients and a network connection to the Amanda server. A common problem at sites with a number of large disks is that the length of time required to backup to data directly to tape exceeds the amount of time available for the task. Amanda solves this problem. Amanda can use a holding disk to backup several file systems at the same time. Amanda creates archive sets: a group of tapes used over a period of time to create full backups of all the file systems listed in Amanda's configuration file. The archive set also contains nightly incremental (or differential) backups of all the file systems. Restoring a damaged file system requires the most recent full backup and the incremental backups. The configuration file provides fine control of backups and the network traffic that Amanda generates. Amanda will use any of the above backup programs to write the data to tape. Amanda is available as either a port or a package, it is not installed by default. Do Nothing Do nothing is not a computer program, but it is the most widely used backup strategy. There are no initial costs. There is no backup schedule to follow. Just say no. If something happens to your data, grin and bear it! If your time and your data is worth little to nothing, then Do nothing is the most suitable backup program for your computer. But beware, Unix is a useful tool, you may find that within six months you have a collection of files that are valuable to you. Do nothing is the correct backup method for /usr/obj and other directory trees that can be exactly recreated by your computer. An example is the files that comprise the HTML or PostScript version of this Handbook. These document formats have been created from SGML input files. Creating backups of the HTML or PostScript files is not necessary. The SGML files are backed up regularly. Which Backup Program Is Best? LISA &man.dump.8; Period. Elizabeth D. Zwicky torture tested all the backup programs discussed here. The clear choice for preserving all your data and all the peculiarities of Unix file systems is dump. Elizabeth created filesystems containing a large variety of unusual conditions (and some not so unusual ones) and tested each program by doing a backup and restore of those file systems. The peculiarities included: files with holes, files with holes and a block of nulls, files with funny characters in their names, unreadable and unwritable files, devices, files that change size during the backup, files that are created/deleted during the backup and more. She presented the results at LISA V in Oct. 1991. See torture-testing Backup and Archive Programs. Emergency Restore Procedure Before the Disaster There are only four steps that you need to perform in preparation for any disaster that may occur. disklabel First, print the disklabel from each of your disks (e.g. disklabel da0 | lpr), your file system table (/etc/fstab) and all boot messages, two copies of each. fix-it floppies Second, determine that the boot and fix-it floppies (boot.flp and fixit.flp) have all your devices. The easiest way to check is to reboot your machine with the boot floppy in the floppy drive and check the boot messages. If all your devices are listed and functional, skip on to step three. Otherwise, you have to create two custom bootable floppies which have a kernel that can mount all of your disks and access your tape drive. These floppies must contain: fdisk, disklabel, newfs, mount, and whichever backup program you use. These programs must be statically linked. If you use dump, the floppy must contain restore. Third, create backup tapes regularly. Any changes that you make after your last backup may be irretrievably lost. Write-protect the backup tapes. Fourth, test the floppies (either boot.flp and fixit.flp or the two custom bootable floppies you made in step two.) and backup tapes. Make notes of the procedure. Store these notes with the bootable floppy, the printouts and the backup tapes. You will be so distraught when restoring that the notes may prevent you from destroying your backup tapes (How? In place of tar xvf /dev/rsa0, you might accidentally type tar cvf /dev/rsa0 and over-write your backup tape). For an added measure of security, make bootable floppies and two backup tapes each time. Store one of each at a remote location. A remote location is NOT the basement of the same office building. A number of firms in the World Trade Center learned this lesson the hard way. A remote location should be physically separated from your computers and disk drives by a significant distance. A Script for Creating a Bootable Floppy /mnt/sbin/init gzip -c -best /sbin/fsck > /mnt/sbin/fsck gzip -c -best /sbin/mount > /mnt/sbin/mount gzip -c -best /sbin/halt > /mnt/sbin/halt gzip -c -best /sbin/restore > /mnt/sbin/restore gzip -c -best /bin/sh > /mnt/bin/sh gzip -c -best /bin/sync > /mnt/bin/sync cp /root/.profile /mnt/root cp -f /dev/MAKEDEV /mnt/dev chmod 755 /mnt/dev/MAKEDEV chmod 500 /mnt/sbin/init chmod 555 /mnt/sbin/fsck /mnt/sbin/mount /mnt/sbin/halt chmod 555 /mnt/bin/sh /mnt/bin/sync chmod 6555 /mnt/sbin/restore # # create the devices nodes # cd /mnt/dev ./MAKEDEV std ./MAKEDEV da0 ./MAKEDEV da1 ./MAKEDEV da2 ./MAKEDEV sa0 ./MAKEDEV pty0 cd / # # create minimum file system table # cat > /mnt/etc/fstab < /mnt/etc/passwd < /mnt/etc/master.passwd < After the Disaster The key question is: did your hardware survive? You have been doing regular backups so there is no need to worry about the software. If the hardware has been damaged. First, replace those parts that have been damaged. If your hardware is okay, check your floppies. If you are using a custom boot floppy, boot single-user (type -s at the boot: prompt). Skip the following paragraph. If you are using the boot.flp and fixit.flp floppies, keep reading. Insert the boot.flp floppy in the first floppy drive and boot the computer. The original install menu will be displayed on the screen. Select the Fixit--Repair mode with CDROM or floppy. option. Insert the fixit.flp when prompted. restore and the other programs that you need are located in /mnt2/stand. Recover each file system separately. mount root partition disklabel newfs Try to mount (e.g. mount /dev/da0a /mnt) the root partition of your first disk. If the disklabel was damaged, use disklabel to re-partition and label the disk to match the label that you printed and saved. Use newfs to re-create the file systems. Re-mount the root partition of the floppy read-write (mount -u -o rw /mnt). Use your backup program and backup tapes to recover the data for this file system (e.g. restore vrf /dev/sa0). Unmount the file system (e.g. umount /mnt) Repeat for each file system that was damaged. Once your system is running, backup your data onto new tapes. Whatever caused the crash or data loss may strike again. Another hour spent now may save you from further distress later. * I did not prepare for the Disaster, What Now? ]]> Network, Memory, and File-Based File Systems virtual disks disks virtual Aside from the disks you physically insert into your computer: floppies, CDs, hard drives, and so forth; other forms of disks are understood by FreeBSD - the virtual disks. NFS Coda disks memory These include network file systems such as the Network File System and Coda, memory-based file systems such as md and file-backed file systems created by vnconfig or mdconfig. vnconfig: File-Backed File System disks file-backed &man.vnconfig.8; configures and enables vnode pseudo-disk devices. A vnode is a representation of a file, and is the focus of file activity. This means that &man.vnconfig.8; uses files to create and operate a file system. One possible use is the mounting of floppy or CD images kept in files. To mount an existing file system image: Using vnconfig to mount an Existing File System Image &prompt.root; vnconfig vn0 diskimage &prompt.root; mount /dev/vn0c /mnt To create a new file system image with vnconfig: Creating a New File-Backed Disk with vnconfig &prompt.root; dd if=/dev/zero of=newimage bs=1k count=5k 5120+0 records in 5120+0 records out &prompt.root; vnconfig -s labels -c vn0 newimage &prompt.root; disklabel -r -w vn0 auto &prompt.root; newfs vn0c Warning: 2048 sector(s) in last cylinder unallocated /dev/rvn0c: 10240 sectors in 3 cylinders of 1 tracks, 4096 sectors 5.0MB in 1 cyl groups (16 c/g, 32.00MB/g, 1280 i/g) super-block backups (for fsck -b #) at: 32 &prompt.root; mount /dev/vn0c /mnt &prompt.root; df /mnt Filesystem 1K-blocks Used Avail Capacity Mounted on /dev/vn0c 4927 1 4532 0% /mnt md: Memory File System disks memory file system md is a simple, efficient means to create memory file systems. Simply take a file system you have prepared with, for example, &man.vnconfig.8;, and: md Memory Disk &prompt.root; dd if=newimage of=/dev/md0 5120+0 records in 5120+0 records out &prompt.root; mount /dev/md0c /mnt &prompt.root; df /mnt Filesystem 1K-blocks Used Avail Capacity Mounted on /dev/md0c 4927 1 4532 0% /mnt Tom Rhodes Contributed by File System Snapshots File System Snapshots Snapshots - FreeBSD 5.0 offers a new feature in conjunction with + FreeBSD 5.0 offers a new feature in conjunction with Soft Updates: File system snapshots. Snapshots allow a user to create an image of specified file systems and treat this image as a file. Snapshot files must be created in the file system that the action is performed on, and a user may create no more than 20 snapshots per file system. Active snapshots are recorded in the superblock so they are persistent across unmount and remount operations along with system reboots. When a snapshot is no longer required, it can be removed with the standard &man.rm.1; command, like regular files. Snapshots may be removed in any order, however all the used space may not be acquired as another snapshot will possibly claim some of the blocks that were released. During initial creation, the flag (see &man.chflags.1; manual page) is set on to ensure that not even root can write to the snapshot. The &man.unlink.1; command makes an exception for snapshot files, however, in which it allows them to be removed even though they have the flag set, so it is not necessary to clear the flag before removing a snapshot file. Snapshots are created with the &man.mount.8; command. To place a snapshot of /var in the file /var/snapshot/snap use the following command: &prompt.root; mount -u -o snapshot /var/snapshot/snap /var Once a snapshot has been created, there are several interesting things that an administrator can do with them: Some administrators will use a snapshot file for backup purposes, where the snapshot can be transfered to a CD or tape. File integrity, &man.fsck.8; may be ran on the snapshot file. Assuming that the file system was clean when it was mounted, you should always get a clean (and unchanging) result from running &man.fsck.8; on the snapshot. This is essentially what the background &man.fsck.8; process does. Run the &man.dump.8; utility on the snapshot. A dump will be returned that is as consistent with the file system as the timestamp of the snapshot. As of this writing &man.dump.8; has not yet been changed to set the dumpdates file correctly, so do not use this feature in production until that fix is made. &man.mount.8; the snapshot as a frozen image of the file system. To &man.mount.8; the snapshot /var/snapshot/snap: &prompt.root; mdconfig -a -t vnode -f /var/snapshot/snap -u 4 &prompt.root; mount -r /dev/md4 /mnt You can now walk the hierarchy of your frozen /var file system mounted at /mnt. Everything will be in the same state it was during the snapshot creation time. The only exception being that any earlier snapshots will appear as zero length files. When the use of a snapshot has delimited, it can be unmounted with: &prompt.root; umount /mnt &prompt.root; mdconfig -d -u 4 For more information about and file system snapshots, including technical papers, you can visit Marshall Kirk McKusick's website at http://www.mckusick.com File System Quotas accounting disk space disk quotas Quotas are an optional feature of the operating system that allow you to limit the amount of disk space and/or the number of files a user or members of a group may allocate on a per-file system basis. This is used most often on timesharing systems where it is desirable to limit the amount of resources any one user or group of users may allocate. This will prevent one user or group of users from consuming all of the available disk space. Configuring Your System to Enable Disk Quotas Before attempting to use disk quotas, it is necessary to make sure that quotas are configured in your kernel. This is done by adding the following line to your kernel configuration file: options QUOTA The stock GENERIC kernel does not have this enabled by default, so you will have to configure, build and install a custom kernel in order to use disk quotas. Please refer to for more information on kernel configuration. Next you will need to enable disk quotas in /etc/rc.conf. This is done by adding the line: enable_quotas="YES" disk quotas checking For finer control over your quota startup, there is an additional configuration variable available. Normally on bootup, the quota integrity of each file system is checked by the quotacheck program. The quotacheck facility insures that the data in the quota database properly reflects the data on the file system. This is a very time consuming process that will significantly affect the time your system takes to boot. If you would like to skip this step, a variable in /etc/rc.conf is made available for the purpose: check_quotas="NO" If you are running FreeBSD prior to 3.2-RELEASE, the configuration is simpler, and consists of only one variable. Set the following in your /etc/rc.conf: check_quotas="YES" Finally you will need to edit /etc/fstab to enable disk quotas on a per-file system basis. This is where you can either enable user or group quotas or both for all of your file systems. To enable per-user quotas on a file system, add the userquota option to the options field in the /etc/fstab entry for the file system you want to enable quotas on. For example: /dev/da1s2g /home ufs rw,userquota 1 2 Similarly, to enable group quotas, use the groupquota option instead of userquota. To enable both user and group quotas, change the entry as follows: /dev/da1s2g /home ufs rw,userquota,groupquota 1 2 By default, the quota files are stored in the root directory of the file system with the names quota.user and quota.group for user and group quotas respectively. See &man.fstab.5; for more information. Even though the &man.fstab.5; manual page says that you can specify an alternate location for the quota files, this is not recommended because the various quota utilities do not seem to handle this properly. At this point you should reboot your system with your new kernel. /etc/rc will automatically run the appropriate commands to create the initial quota files for all of the quotas you enabled in /etc/fstab, so there is no need to manually create any zero length quota files. In the normal course of operations you should not be required to run the quotacheck, quotaon, or quotaoff commands manually. However, you may want to read their manual pages just to be familiar with their operation. Setting Quota Limits disk quotas limits Once you have configured your system to enable quotas, verify that they really are enabled. An easy way to do this is to run: &prompt.root; quota -v You should see a one line summary of disk usage and current quota limits for each file system that quotas are enabled on. You are now ready to start assigning quota limits with the edquota command. You have several options on how to enforce limits on the amount of disk space a user or group may allocate, and how many files they may create. You may limit allocations based on disk space (block quotas) or number of files (inode quotas) or a combination of both. Each of these limits are further broken down into two categories: hard and soft limits. hard limit A hard limit may not be exceeded. Once a user reaches his hard limit he may not make any further allocations on the file system in question. For example, if the user has a hard limit of 500 blocks on a file system and is currently using 490 blocks, the user can only allocate an additional 10 blocks. Attempting to allocate an additional 11 blocks will fail. soft limit Soft limits, on the other hand, can be exceeded for a limited amount of time. This period of time is known as the grace period, which is one week by default. If a user stays over his or her soft limit longer than the grace period, the soft limit will turn into a hard limit and no further allocations will be allowed. When the user drops back below the soft limit, the grace period will be reset. The following is an example of what you might see when you run the edquota command. When the edquota command is invoked, you are placed into the editor specified by the EDITOR environment variable, or in the vi editor if the EDITOR variable is not set, to allow you to edit the quota limits. &prompt.root; edquota -u test Quotas for user test: /usr: blocks in use: 65, limits (soft = 50, hard = 75) inodes in use: 7, limits (soft = 50, hard = 60) /usr/var: blocks in use: 0, limits (soft = 50, hard = 75) inodes in use: 0, limits (soft = 50, hard = 60) You will normally see two lines for each file system that has quotas enabled. One line for the block limits, and one line for inode limits. Simply change the value you want updated to modify the quota limit. For example, to raise this user's block limit from a soft limit of 50 and a hard limit of 75 to a soft limit of 500 and a hard limit of 600, change: /usr: blocks in use: 65, limits (soft = 50, hard = 75) to: /usr: blocks in use: 65, limits (soft = 500, hard = 600) The new quota limits will be in place when you exit the editor. Sometimes it is desirable to set quota limits on a range of uids. This can be done by use of the option on the edquota command. First, assign the desired quota limit to a user, and then run edquota -p protouser startuid-enduid. For example, if user test has the desired quota limits, the following command can be used to duplicate those quota limits for uids 10,000 through 19,999: &prompt.root; edquota -p test 10000-19999 For more information see &man.edquota.8;. Checking Quota Limits and Disk Usage disk quotas checking You can use either the quota or the repquota commands to check quota limits and disk usage. The quota command can be used to check individual user or group quotas and disk usage. A user may only examine his own quota, and the quota of a group he is a member of. Only the super-user may view all user and group quotas. The repquota command can be used to get a summary of all quotas and disk usage for file systems with quotas enabled. The following is some sample output from the quota -v command for a user that has quota limits on two file systems. Disk quotas for user test (uid 1002): Filesystem blocks quota limit grace files quota limit grace /usr 65* 50 75 5days 7 50 60 /usr/var 0 50 75 0 50 60 grace period On the /usr file system in the above example, this user is currently 15 blocks over the soft limit of 50 blocks and has 5 days of the grace period left. Note the asterisk * which indicates that the user is currently over his quota limit. Normally file systems that the user is not using any disk space on will not show up in the output from the quota command, even if he has a quota limit assigned for that file system. The option will display those file systems, such as the /usr/var file system in the above example. Quotas over NFS NFS Quotas are enforced by the quota subsystem on the NFS server. The &man.rpc.rquotad.8; daemon makes quota information available to the &man.quota.1; command on NFS clients, allowing users on those machines to see their quota statistics. Enable rpc.rquotad in /etc/inetd.conf like so: rquotad/1 dgram rpc/udp wait root /usr/libexec/rpc.rquotad rpc.rquotad Now restart inetd: &prompt.root; kill -HUP `cat /var/run/inetd.pid`
diff --git a/en_US.ISO8859-1/books/handbook/kernelconfig/chapter.sgml b/en_US.ISO8859-1/books/handbook/kernelconfig/chapter.sgml index a661f403a6..5e6bfd74e9 100644 --- a/en_US.ISO8859-1/books/handbook/kernelconfig/chapter.sgml +++ b/en_US.ISO8859-1/books/handbook/kernelconfig/chapter.sgml @@ -1,1396 +1,1396 @@ Jim Mock Updated and restructured by Jake Hamby Originally contributed by Configuring the FreeBSD Kernel Synopsis kernel building a custom kernel The kernel is the core of the FreeBSD operating system. It is responsible for managing memory, enforcing security controls, networking, disk access, and much more. While more and more of FreeBSD becomes dynamically configurable it is still occasionally necessary to reconfigure and recompile your kernel. After reading this chapter, you will know: Why you might need to build a custom kernel. How to write a kernel configuration file, or alter an existing configuration file. How to use the kernel configuration file to create and build a new kernel. How to install the new kernel. How to create any entries in /dev that may be required. How to troubleshoot if things go wrong. Why Build a Custom Kernel? Traditionally, FreeBSD has had what is called a monolithic kernel. This means that the kernel was one large program, supported a fixed list of devices, and if you wanted to change the kernel's behavior then you had to compile a new kernel, and then reboot your computer with the new kernel. Today, FreeBSD is rapidly moving to a model where much of the kernel's functionality is contained in modules which can be dynamically loaded and unloaded from the kernel as necessary. This allows the kernel to adapt to new hardware suddenly becoming available (such as PCMCIA cards in a laptop), or for new functionality to be brought into the kernel that was not necessary when the kernel was originally compiled. Colloquially these are called KLDs. Despite this, it is still necessary to carry out some static kernel configuration. In some cases this is because the functionality is so tied to the kernel that it can not be made dynamically loadable. In others it may simply be because no one has yet taken the time to write a dynamic loadable kernel module for that functionality yet. Building a custom kernel is one of the most important rites of passage nearly every Unix user must endure. This process, while time consuming, will provide many benefits to your FreeBSD system. Unlike the GENERIC kernel, which must support a wide range of hardware, a custom kernel only contains support for your PC's hardware. This has a number of benefits, such as: Faster boot time. Since the kernel will only probe the hardware you have on your system, the time it takes your system to boot will decrease dramatically. Less memory usage. A custom kernel often uses less memory than the GENERIC kernel, which is important because the kernel must always be present in real memory. For this reason, a custom kernel is especially useful on a system with a small amount of RAM. Additional hardware support. A custom kernel allows you to add in support for devices such as sound cards, which are not present in the GENERIC kernel. Building and Installing a Custom Kernel kernel building / installing First, let us take a quick tour of the kernel build directory. All directories mentioned will be relative to the main /usr/src/sys directory, which is also accessible through /sys. There are a number of subdirectories here representing different parts of the kernel, but the most important, for our purposes, are arch/conf, where you will edit your custom kernel configuration, and compile, which is the staging area where your kernel will be built. arch represents either i386, alpha, or pc98 (an alternative development branch of PC hardware, popular in Japan). Everything inside a particular architecture's directory deals with that architecture only; the rest of the code is common to all platforms to which FreeBSD could potentially be ported. Notice the logical organization of the directory structure, with each supported device, filesystem, and option in its own subdirectory. If there is not a /usr/src/sys directory on your system, then the kernel source has not been installed. The easiest way to do this is by running /stand/sysinstall as root, choosing Configure, then Distributions, then src, then sys. If you have an aversion to sysinstall and you have access to an official FreeBSD CDROM, then you can also install the source from the command line: &prompt.root; mount /cdrom &prompt.root; mkdir -p /usr/src/sys &prompt.root; ln -s /usr/src/sys /sys &prompt.root; cat /cdrom/src/ssys.[a-d]* | tar -xzvf - Next, move to the arch/conf directory and copy the GENERIC configuration file to the name you want to give your kernel. For example: &prompt.root; cd /usr/src/sys/i386/conf &prompt.root; cp GENERIC MYKERNEL Traditionally, this name is in all capital letters and, if you are maintaining multiple FreeBSD machines with different hardware, it is a good idea to name it after your machine's hostname. We will call it MYKERNEL for the purpose of this example. Storing your kernel config file directly under /usr/src can be a bad idea. If you are experiencing problems it can be tempting to just delete /usr/src and start again. Five seconds after you do that you realize that you have deleted your custom kernel config file. You might want to keep your kernel config file elsewhere, and then create a symbolic link to the file in the i386 directory. For example: &prompt.root; cd /usr/src/sys/i386/conf &prompt.root; mkdir /root/kernels &prompt.root; cp GENERIC /root/kernels/MYKERNEL &prompt.root; ln -s /root/kernels/MYKERNEL You must execute these and all of the following commands under the root account or you will get permission denied errors. Now, edit MYKERNEL with your favorite text editor. If you are just starting out, the only editor available will probably be vi, which is too complex to explain here, but is covered well in many books in the bibliography. However, FreeBSD does offer an easier editor called ee which, if you are a beginner, should be your editor of choice. Feel free to change the comment lines at the top to reflect your configuration or the changes you have made to differentiate it from GENERIC. SunOS If you have built a kernel under SunOS or some other BSD operating system, much of this file will be very familiar to you. If you are coming from some other operating system such as DOS, on the other hand, the GENERIC configuration file might seem overwhelming to you, so follow the descriptions in the Configuration File section slowly and carefully. Be sure to always check the file /usr/src/UPDATING, before you perform any update steps, in the case you sync your source tree with the latest sources of the FreeBSD project. In this file all important issues with updating FreeBSD are written down. /usr/src/UPDATING always fits to your version of the FreeBSD source, and is therefore more accurate for those information than the handbook. You must now compile the source code for the kernel. There are two procedures you can use to do this, and the one you will use depends on why you are rebuilding the kernel, and the version of FreeBSD you are running. If you have installed only the kernel source code, use procedure 1. If you are running a FreeBSD version prior to 4.0, and you are - not upgrading to FreeBSD 4.0 or higher using + not upgrading to FreeBSD 4.0 or higher using the make world procedure, use procedure 1. If you are building a new kernel without updating the source code (perhaps just to add a new option, such as IPFIREWALL) you can use either procedure. If you are rebuilding the kernel as part of a make world process, use procedure 2. Procedure 1. Building a kernel the <quote>traditional</quote> way Run &man.config.8; to generate the kernel source code. &prompt.root; /usr/sbin/config MYKERNEL Change into the build directory. &prompt.root; cd ../../compile/MYKERNEL Compile the kernel. &prompt.root; make depend &prompt.root; make Install the new kernel. &prompt.root; make install Procedure 2. Building a kernel the <quote>new</quote> way Change to the /usr/src directory. &prompt.root; cd /usr/src Compile the kernel. &prompt.root; make buildkernel KERNCONF=MYKERNEL Install the new kernel. &prompt.root; make installkernel KERNCONF=MYKERNEL - In FreeBSD 4.2 and older you must replace + In FreeBSD 4.2 and older you must replace KERNCONF= with KERNEL=. 4.2-STABLE that was fetched after Feb 2nd, 2001 does recognize KERNCONF=. cvsup anonymous CVS CTM CVS anonymous If you have not upgraded your source tree in any way (you have not run CVSup, CTM, or used anoncvs), then you should use the config, make depend, make, make install sequence. kernel.old The new kernel will be copied to the root directory as /kernel and the old kernel will be moved to /kernel.old. Now, shutdown the system and reboot to use your new kernel. In case something goes wrong, there are some troubleshooting instructions at the end of this chapter. Be sure to read the section which explains how to recover in case your new kernel does not boot. If you have added any new devices (such as sound cards) you may have to add some device nodes to your /dev directory before you can use them. For more information, take a look at Making Device Nodes section later on in this chapter. The Configuration File kernel LINT LINT kernel config file The general format of a configuration file is quite simple. Each line contains a keyword and one or more arguments. For simplicity, most lines only contain one argument. Anything following a # is considered a comment and ignored. The following sections describe each keyword, generally in the order they are listed in GENERIC, although some related keywords have been grouped together in a single section (such as Networking) even though they are actually scattered throughout the GENERIC file. An exhaustive list of options and more detailed explanations of the device lines is present in the LINT configuration file, located in the same directory as GENERIC. If you are in doubt as to the purpose or necessity of a line, check first in LINT. Quoting numbers In all versions of FreeBSD up to and including 3.X, &man.config.8; required that any strings in the configuration file that contained numbers used as text had to be enclosed in double quotes. This requirement was removed in the 4.X branch, which this book covers, so if you are on a pre-4.X system, see the /usr/src/sys/i386/conf/LINT and /usr/src/sys/i386/conf/GENERIC files on your system for examples. kernel example config file The following is an example GENERIC kernel configuration file with various additional comments where needed for clarity. This example should match your copy in /usr/src/sys/i386/conf/GENERIC fairly closely. For details of all the possible kernel options, see /usr/src/sys/i386/conf/LINT. # # GENERIC -- Generic kernel configuration file for FreeBSD/i386 # # For more information on this file, please read the handbook section on # Kernel Configuration Files: # # http://www.FreeBSD.org/doc/en_US.ISO8859-1/books/handbook/kernelconfig-config.html # # The handbook is also available locally in /usr/share/doc/handbook # if you've installed the doc distribution, otherwise always see the # FreeBSD World Wide Web server (http://www.FreeBSD.ORG/) for the # latest information. # # An exhaustive list of options and more detailed explanations of the # device lines is also present in the ./LINT configuration file. If you are # in doubt as to the purpose or necessity of a line, check first in LINT. # # $FreeBSD: src/sys/i386/conf/GENERIC,v 1.246 2000/03/09 16:32:55 jlemon Exp $ The following are the mandatory keywords required in every kernel you build: kernel options machine machine i386 This is the machine architecture. It must be either i386, alpha, or pc98. kernel options cpu cpu I386_CPU cpu I486_CPU cpu I586_CPU cpu I686_CPU The above specifies the type of CPU you have in your system. You may have multiple instances of the CPU line (i.e., you are not sure whether you should use I586_CPU or I686_CPU), however, for a custom kernel, it is best to specify only the CPU you have. If you are unsure of your CPU type, you can use the &man.dmesg.8; command to view your boot up messages. kernel options cpu type The Alpha architecture has different values for cpu. They include: cpu EV4 cpu EV5 If you are using an Alpha machine, you should be using one of the above CPU types. kernel options ident ident GENERIC This is the identification of the kernel. You should change this to whatever you named your kernel, as in our previous example, MYKERNEL. The value you put in the ident string will print when you boot up the kernel, so it is useful to give the new kernel a different name if you want to keep it separate from your usual kernel (i.e., you want to build an experimental kernel). kernel options maxusers maxusers n The maxusers option sets the size of a number of important system tables. This number is supposed to be roughly equal to the number of simultaneous users you expect to have on your machine. - Starting with FreeBSD 4.5, the system will auto-tune this setting + Starting with FreeBSD 4.5, the system will auto-tune this setting for you if you explicitly set it to 0 The auto-tuning algorithm sets maxuser equal to the amount of memory in the system, with a minimum of 32, and a maximum of 384.. If you are using an earlier version of FreeBSD, or you want to manage it yourself you will want to set maxusers to at least 4, especially if you are using the X Window System or compiling software. The reason is that the most important table set by maxusers is the maximum number of processes, which is set to 20 + 16 * maxusers, so if you set maxusers to 1, then you can only have 36 simultaneous processes, including the 18 or so that the system starts up at boot time, and the 15 or so you will probably create when you start the X Window System. Even a simple task like reading a manual page will start up nine processes to filter, decompress, and view it. Setting maxusers to 64 will allow you to have up to 1044 simultaneous processes, which should be enough for nearly all uses. If, however, you see the dreaded proc table full error when trying to start another program, or are running a server with a large number of simultaneous users (like ftp.FreeBSD.org), you can always increase the number and rebuild. maxusers does not limit the number of users which can log into your machine. It simply sets various table sizes to reasonable values considering the maximum number of users you will likely have on your system and how many processes each of them will be running. One keyword which does limit the number of simultaneous remote logins is pseudo-device pty 16. # Floating point support - do not disable. device npx0 at nexus? port IO_NPX irq 13 npx0 is the interface to the floating point math unit in FreeBSD, which is either the hardware co-processor or the software math emulator. This is not optional. # Pseudo devices - the number indicates how many units to allocate. pseudo-device loop # Network loopback This is the generic loopback device for TCP/IP. If you telnet or FTP to localhost (a.k.a., 127.0.0.1) it will come back at you through this pseudo-device. This is mandatory. Everything that follows is more or less optional. See the notes underneath or next to each option for more information. #makeoptions DEBUG=-g #Build kernel with gdb(1) debug symbols options MATH_EMULATE #Support for x87 emulation This line allows the kernel to simulate a math co-processor if your computer does not have one (386 or 486SX). If you have a 486DX, or a 386 or 486SX (with a separate 387 or 487 chip), or - higher (Pentium, Pentium II, etc.), you can comment this line + higher (Pentium, Pentium II, etc.), you can comment this line out. The normal math co-processor emulation routines that come with FreeBSD are not very accurate. If you do not have a math co-processor, and you need the best accuracy, it is recommended that you change this option to GPL_MATH_EMULATE to use the GNU math support, which is not included by default for licensing reasons. options INET #InterNETworking Networking support. Leave this in, even if you do not plan to be connected to a network. Most programs require at least loopback networking (i.e., making network connections within your PC), so this is essentially mandatory. options INET6 #IPv6 communications protocols This enables the IPv6 communication protocols. options FFS #Berkeley Fast Filesystem options FFS_ROOT #FFS usable as root device [keep this!] This is the basic hard drive filesystem. Leave it in if you boot from the hard disk. options UFS_DIRHASH #Improve performance on big directories This option includes some code to speed up disk operations on large directories, at the expense of using a some additional memory. You would normally keep this for a large server, or interactive workstation, and remove it if you are using FreeBSD on a smaller system where memory is at a premium and disk access speed is less important, such as a firewall. options SOFTUPDATES #Enable FFS soft updates support This option enables Soft Updates in the kernel, this will help speed up write access on the disks. They are enabled by default in the 4.X branch but may not be turned on. Review the output from &man.mount.8; to see if you have them enabled. If you do not see the soft-updates option then you will need to activate it using the &man.tunefs.8; or &man.newfs.8; for new filesystems. options MFS #Memory Filesystem options MD_ROOT #MD is a potential root device This is the memory-mapped filesystem. This is basically a RAM disk for fast storage of temporary files, useful if you have a lot of swap space that you want to take advantage of. A perfect place to mount an MFS partition is on the /tmp directory, since many programs store temporary data here. To mount an MFS RAM disk on /tmp, add the following line to /etc/fstab: /dev/ad1s2b /tmp mfs rw 0 0 Now you simply need to either reboot, or run the command mount /tmp. kernel options NFS kernel options NFS_ROOT options NFS #Network Filesystem options NFS_ROOT #NFS usable as root device, NFS required The network filesystem. Unless you plan to mount partitions from a Unix file server over TCP/IP, you can comment these out. kernel options MSDOSFS options MSDOSFS #MSDOS Filesystem The MS-DOS filesystem. Unless you plan to mount a DOS formatted hard drive partition at boot time, you can safely comment this out. It will be automatically loaded the first time you mount a DOS partition, as described above. Also, the excellent mtools software (in the ports collection) allows you to access DOS floppies without having to mount and unmount them (and does not require MSDOSFS at all). options CD9660 #ISO 9660 Filesystem options CD9660_ROOT #CD-ROM usable as root, CD9660 required The ISO 9660 filesystem for CDROMs. Comment it out if you do not have a CDROM drive or only mount data CDs occasionally (since it will be dynamically loaded the first time you mount a data CD). Audio CDs do not need this filesystem. options PROCFS #Process filesystem The process filesystem. This is a pretend filesystem mounted on /proc which allows programs like &man.ps.1; to give you more information on what processes are running. options COMPAT_43 #Compatible with BSD 4.3 [KEEP THIS!] Compatibility with 4.3BSD. Leave this in; some programs will act strangely if you comment this out. options SCSI_DELAY=15000 #Delay (in ms) before probing SCSI This causes the kernel to pause for 15 seconds before probing each SCSI device in your system. If you only have IDE hard drives, you can ignore this, otherwise you will probably want to lower this number, perhaps to 5 seconds, to speed up booting. Of course, if you do this, and FreeBSD has trouble recognizing your SCSI devices, you will have to raise it back up. options UCONSOLE #Allow users to grab the console Allow users to grab the console, which is useful for X users. For example, you can create a console xterm by typing xterm -C, which will display any &man.write.1;, &man.talk.1;, and any other messages you receive, as well as any console messages sent by the kernel. options USERCONFIG #boot -c editor This option allows you to boot the configuration editor from the boot menu. options VISUAL_USERCONFIG #visual boot -c editor This option allows you to boot the visual configuration editor from the boot menu. options KTRACE #ktrace(1) support This enables kernel process tracing, which is useful in debugging. options SYSVSHM #SYSV-style shared memory This option provides for System V shared memory. The most common use of this is the XSHM extension in X, which many graphics-intensive programs will automatically take advantage of for extra speed. If you use X, you will definitely want to include this. options SYSVSEM #SYSV-style semaphores Support for System V semaphores. Less commonly used but only adds a few hundred bytes to the kernel. options SYSVMSG #SYSV-style message queues Support for System V messages. Again, only adds a few hundred bytes to the kernel. The &man.ipcs.1; command will list any processes using each of these System V facilities. options P1003_1B #Posix P1003_1B real-time extensions options _KPOSIX_PRIORITY_SCHEDULING Real-time extensions added in the 1993 POSIX. Certain applications in the ports collection use these (such as StarOffice). kernel options ICMP_BANDLIM Denial of Service (DoS) options ICMP_BANDLIM #Rate limit bad replies This option enables ICMP error response bandwidth limiting. You typically want this option as it will help protect the machine from denial of service packet attacks. kernel options SMP # To make an SMP kernel, the next two are needed #options SMP # Symmetric MultiProcessor Kernel #options APIC_IO # Symmetric (APIC) I/O The above are both required for SMP support. device isa All PCs supported by FreeBSD have one of these. If you have an IBM PS/2 (Micro Channel Architecture), FreeBSD provides some limited support at this time. For more information about the MCA support, see /usr/src/sys/i386/conf/LINT. device eisa Include this if you have an EISA motherboard. This enables auto-detection and configuration support for all devices on the EISA bus. device pci Include this if you have a PCI motherboard. This enables auto-detection of PCI cards and gatewaying from the PCI to ISA bus. # Floppy drives device fdc0 at isa? port IO_FD1 irq 6 drq 2 device fd0 at fdc0 drive 0 device fd1 at fdc0 drive 1 This is the floppy drive controller. fd0 is the A: floppy drive, and fd1 is the B: drive. device ata This driver supports all ATA and ATAPI devices. You only need one device ata line for the kernel to detect all PCI ATA/ATAPI devices on modern machines. device atadisk # ATA disk drives This is needed along with device ata for ATA disk drives. device atapicd # ATAPI CDROM drives This is needed along with device ata for ATAPI CDROM drives. device atapifd # ATAPI floppy drives This is needed along with device ata for ATAPI floppy drives. device atapist # ATAPI tape drives This is needed along with device ata for ATAPI tape drives. options ATA_STATIC_ID #Static device numbering This makes the controller number static (like the old driver) or else the device numbers are dynamically allocated. # ATA and ATAPI devices device ata0 at isa? port IO_WD1 irq 14 device ata1 at isa? port IO_WD2 irq 15 Use the above for older, non-PCI systems. # SCSI Controllers device ahb # EISA AHA1742 family device ahc # AHA2940 and onboard AIC7xxx devices device amd # AMD 53C974 (Teckram DC-390(T)) device dpt # DPT Smartcache - See LINT for options! device isp # Qlogic family device ncr # NCR/Symbios Logic device sym # NCR/Symbios Logic (newer chipsets) device adv0 at isa? device adw device bt0 at isa? device aha0 at isa? device aic0 at isa? SCSI controllers. Comment out any you do not have in your system. If you have an IDE only system, you can remove these altogether. # SCSI peripherals device scbus # SCSI bus (required) device da # Direct Access (disks) device sa # Sequential Access (tape etc) device cd # CD device pass # Passthrough device (direct SCSI access) SCSI peripherals. Again, comment out any you do not have, or if you have only IDE hardware, you can remove them completely. # RAID controllers device ida # Compaq Smart RAID device amr # AMI MegaRAID device mlx # Mylex DAC960 family Supported RAID controllers. If you do not have any of these, you can comment them out or remove them. # atkbdc0 controls both the keyboard and the PS/2 mouse device atkbdc0 at isa? port IO_KBD The keyboard controller (atkbdc) provides I/O services for the AT keyboard and PS/2 style pointing devices. This controller is required by the keyboard driver (atkbd) and the PS/2 pointing device driver (psm). device atkbd0 at atkbdc? irq 1 The atkbd driver, together with atkbdc controller, provides access to the AT 84 keyboard or the AT enhanced keyboard which is connected to the AT keyboard controller. device psm0 at atkbdc? irq 12 Use this device if your mouse plugs into the PS/2 mouse port. device vga0 at isa? The video card driver. # splash screen/screen saver pseudo-device splash Splash screen at start up! Screen savers require this too. # syscons is the default console driver, resembling an SCO console device sc0 at isa? sc0 is the default console driver, which resembles a SCO console. Since most full-screen programs access the console through a terminal database library like termcap, it should not matter whether you use this or vt0, the VT220 compatible console driver. When you log in, set your TERM variable to scoansi if full-screen programs have trouble running under this console. # Enable this and PCVT_FREEBSD for pcvt vt220 compatible console driver #device vt0 at isa? #options XSERVER # support for X server on a vt console #options FAT_CURSOR # start with block cursor # If you have a ThinkPAD, uncomment this along with the rest of the PCVT lines #options PCVT_SCANSET=2 # IBM keyboards are non-std This is a VT220-compatible console driver, backward compatible to VT100/102. It works well on some laptops which have hardware incompatibilities with sc0. Also set your TERM variable to vt100 or vt220 when you log in. This driver might also prove useful when connecting to a large number of different machines over the network, where termcap or terminfo entries for the sc0 device are often not available — vt100 should be available on virtually any platform. # Power management support (see LINT for more options) device apm0 at nexus? disable flags 0x20 # Advanced Power Management Advanced Power Management support. Useful for laptops. # PCCARD (PCMCIA) support device card device pcic0 at isa? irq 10 port 0x3e0 iomem 0xd0000 device pcic1 at isa? irq 11 port 0x3e2 iomem 0xd4000 disable PCMCIA support. You want this if you are using a laptop. # Serial (COM) ports device sio0 at isa? port IO_COM1 flags 0x10 irq 4 device sio1 at isa? port IO_COM2 irq 3 device sio2 at isa? disable port IO_COM3 irq 5 device sio3 at isa? disable port IO_COM4 irq 9 These are the four serial ports referred to as COM1 through COM4 in the MS-DOS/Windows world. If you have an internal modem on COM4 and a serial port at COM2, you will have to change the IRQ of the modem to 2 (for obscure technical reasons, IRQ2 = IRQ 9) in order to access it from FreeBSD. If you have a multiport serial card, check the manual page for &man.sio.4; for more information on the proper values for these lines. Some video cards (notably those based on S3 chips) use IO addresses in the form of 0x*2e8, and since many cheap serial cards do not fully decode the 16-bit IO address space, they clash with these cards making the COM4 port practically unavailable. Each serial port is required to have a unique IRQ (unless you are using one of the multiport cards where shared interrupts are supported), so the default IRQs for COM3 and COM4 cannot be used. # Parallel port device ppc0 at isa? irq 7 This is the ISA-bus parallel port interface. device ppbus # Parallel port bus (required) Provides support for the parallel port bus. device lpt # Printer Support for parallel port printers. All three of the above are required to enable parallel printer support. device plip # TCP/IP over parallel This is the driver for the parallel network interface. device ppi # Parallel port interface device The general-purpose I/O (geek port) + IEEE1284 I/O. #device vpo # Requires scbus and da zip drive This is for an Iomega Zip drive. It requires scbus and da support. Best performance is achieved with ports in EPP 1.9 mode. # PCI Ethernet NICs. device de # DEC/Intel DC21x4x (Tulip) device fxp # Intel EtherExpress PRO/100B (82557, 82558) device tx # SMC 9432TX (83c170 EPIC) device vx # 3Com 3c590, 3c595 (Vortex) device wx # Intel Gigabit Ethernet Card (Wiseman) Various PCI network card drivers. Comment out or remove any of these not present in your system. # PCI Ethernet NICs that use the common MII bus controller code. device miibus # MII bus support MII bus support is required for some PCI 10/100 Ethernet NICs, namely those which use MII-compliant transceivers or implement transceiver control interfaces that operate like an MII. Adding device miibus to the kernel config pulls in support for the generic miibus API and all of the PHY drivers, including a generic one for PHYs that are not specifically handled by an individual driver. device dc # DEC/Intel 21143 and various workalikes device rl # RealTek 8129/8139 device sf # Adaptec AIC-6915 (Starfire) device sis # Silicon Integrated Systems SiS 900/SiS 7016 device ste # Sundance ST201 (D-Link DFE-550TX) device tl # Texas Instruments ThunderLAN device vr # VIA Rhine, Rhine II device wb # Winbond W89C840F device xl # 3Com 3c90x (Boomerang, Cyclone) Drivers that use the MII bus controller code. # ISA Ethernet NICs. device ed0 at isa? port 0x280 irq 10 iomem 0xd8000 device ex device ep # WaveLAN/IEEE 802.11 wireless NICs. Note: the WaveLAN/IEEE really # exists only as a PCMCIA device, so there is no ISA attachment needed # and resources will always be dynamically assigned by the pccard code. device wi # Aironet 4500/4800 802.11 wireless NICs. Note: the declaration below will # work for PCMCIA and PCI cards, as well as ISA cards set to ISA PnP # mode (the factory default). If you set the switches on your ISA # card for a manually chosen I/O address and IRQ, you must specify # those parameters here. device an # The probe order of these is presently determined by i386/isa/isa_compat.c. device ie0 at isa? port 0x300 irq 10 iomem 0xd0000 device fe0 at isa? port 0x300 device le0 at isa? port 0x300 irq 5 iomem 0xd0000 device lnc0 at isa? port 0x280 irq 10 drq 0 device cs0 at isa? port 0x300 device sn0 at isa? port 0x300 irq 10 # requires PCCARD (PCMCIA) support to be activated #device xe0 at isa? ISA Ethernet drivers. See /usr/src/sys/i386/conf/LINT for which cards are supported by which driver. pseudo-device ether # Ethernet support ether is only needed if you have an Ethernet card. It includes generic Ethernet protocol code. pseudo-device sl 1 # Kernel SLIP sl is for SLIP support. This has been almost entirely supplanted by PPP, which is easier to set up, better suited for modem-to-modem connection, and more powerful. The number after sl specifies how many simultaneous SLIP sessions to support. pseudo-device ppp 1 # Kernel PPP This is for kernel PPP support for dial-up connections. There is also a version of PPP implemented as a userland application that uses tun and offers more flexibility and features such as demand dialing. The number after ppp specifies how many simultaneous PPP connections to support. pseudo-device tun # Packet tunnel. This is used by the userland PPP software. A number after tun specifies the number of simultaneous PPP sessions to support. See the PPP section of this book for more information. pseudo-device pty # Pseudo-ttys (telnet etc) This is a pseudo-terminal or simulated login port. It is used by incoming telnet and rlogin sessions, xterm, and some other applications such as Emacs. A number after pty indicates the number of ptys to create. If you need more than the default of 16 simultaneous xterm windows and/or remote logins, be sure to increase this number accordingly, up to a maximum of 256. pseudo-device md # Memory disks Memory disk pseudo-devices. pseudo-device gif or pseudo-device gif 4 # IPv6 and IPv4 tunneling This implements IPv6 over IPv4 tunneling, IPv4 over IPv6 tunneling, IPv4 over IPv4 tunneling, and IPv6 over IPv6 tunneling. Beginning with - FreeBSD 4.4 the gif device is + FreeBSD 4.4 the gif device is auto-cloning, and you should use the first example (without the number after gif). Earlier versions of FreeBSD require the number. pseudo-device faith 1 # IPv6-to-IPv4 relaying (translation) This pseudo-device captures packets that are sent to it and diverts them to the IPv4/IPv6 translation daemon. # The `bpf' pseudo-device enables the Berkeley Packet Filter. # Be aware of the administrative consequences of enabling this! pseudo-device bpf # Berkeley packet filter This is the Berkeley Packet Filter. This pseudo-device allows network interfaces to be placed in promiscuous mode, capturing every packet on a broadcast network (e.g., an Ethernet). These packets can be captured to disk and or examined with the &man.tcpdump.1; program. The bpf pseudo-device is also used by &man.dhclient.8; to obtain the IP address of the default router (gateway) and so on. If you use DHCP, leave this uncommented. # USB support #device uhci # UHCI PCI->USB interface #device ohci # OHCI PCI->USB interface #device usb # USB Bus (required) #device ugen # Generic #device uhid # Human Interface Devices #device ukbd # Keyboard #device ulpt # Printer #device umass # Disks/Mass storage - Requires scbus and da #device ums # Mouse # USB Ethernet, requires mii #device aue # ADMtek USB ethernet #device cue # CATC USB ethernet #device kue # Kawasaki LSI USB ethernet Support for various USB devices. For more information and additional devices supported by FreeBSD, see /usr/src/sys/i386/conf/LINT. Making Device Nodes device nodes MAKEDEV Almost every device in the kernel has a corresponding node entry in the /dev directory. These nodes look like regular files, but are actually special entries into the kernel which programs use to access the device. The shell script /dev/MAKEDEV, which is executed when you first install the operating system, creates nearly all of the device nodes supported. However, it does not create all of them, so when you add support for a new device, it pays to make sure that the appropriate entries are in this directory, and if not, add them. Here is a simple example: Suppose you add the IDE CD-ROM support to the kernel. The line to add is: device acd0 This means that you should look for some entries that start with acd0 in the /dev directory, possibly followed by a letter, such as c, or preceded by the letter r, which means a raw device. It turns out that those files are not there, so you must change to the /dev directory and type: MAKEDEV &prompt.root; sh MAKEDEV acd0 When this script finishes, you will find that there are now acd0c and racd0c entries in /dev so you know that it executed correctly. For sound cards, the following command creates the appropriate entries: &prompt.root; sh MAKEDEV snd0 When creating device nodes for devices such as sound cards, if other people have access to your machine, it may be desirable to protect the devices from outside access by adding them to the /etc/fbtab file. See &man.fbtab.5; for more information. Follow this simple procedure for any other non-GENERIC devices which do not have entries. All SCSI controllers use the same set of /dev entries, so you do not need to create these. Also, network cards and SLIP/PPP pseudo-devices do not have entries in /dev at all, so you do not have to worry about these either. If Something Goes Wrong There are five categories of trouble that can occur when building a custom kernel. They are: config fails: If the &man.config.8; command fails when you give it your kernel description, you have probably made a simple error somewhere. Fortunately, &man.config.8; will print the line number that it had trouble with, so you can quickly skip to it with vi. For example, if you see: config: line 17: syntax error You can skip to the problem in vi by typing 17G in command mode. Make sure the keyword is typed correctly, by comparing it to the GENERIC kernel or another reference. make fails: If the make command fails, it usually signals an error in your kernel description, but not severe enough for &man.config.8; to catch it. Again, look over your configuration, and if you still cannot resolve the problem, send mail to the &a.questions; with your kernel configuration, and it should be diagnosed very quickly. Installing the new kernel fails: If the kernel compiled fine, but failed to install (the make install or make installkernel command failed), the first thing to check is if your system is running at securelevel 1 or higher (see &man.init.8;). The kernel installation tries to remove the immutable flag from your kernel and set the immutable flag on the new one. Since securelevel 1 or higher prevents unsetting the immutable flag for any files on the system, the kernel installation needs to be performed at securelevel 0 or lower. The kernel does not boot: If your new kernel does not boot, or fails to recognize your devices, do not panic! Fortunately, FreeBSD has an excellent mechanism for recovering from incompatible kernels. Simply choose the kernel you want to boot from at the FreeBSD boot loader. You can access this when the system counts down from 10. Hit any key except for the Enter key, type unload and then type boot kernel.old, or the filename of any other kernel that will boot properly. When reconfiguring a kernel, it is always a good idea to keep a kernel that is known to work on hand. After booting with a good kernel you can check over your configuration file and try to build it again. One helpful resource is the /var/log/messages file which records, among other things, all of the kernel messages from every successful boot. Also, the &man.dmesg.8; command will print the kernel messages from the current boot. If you are having trouble building a kernel, make sure to keep a GENERIC, or some other kernel that is known to work on hand as a different name that will not get erased on the next build. You cannot rely on kernel.old because when installing a new kernel, kernel.old is overwritten with the last installed kernel which may be non-functional. Also, as soon as possible, move the working kernel to the proper kernel location or commands such as &man.ps.1; will not work properly. The proper command to unlock the kernel file that make installs (in order to move another kernel back permanently) is: &prompt.root; chflags noschg /kernel If you find you cannot do this, you are probably running at a &man.securelevel.8; greater than zero. Edit kern_securelevel in /etc/rc.conf and set it to -1, then reboot. You can change it back to its previous setting when you are happy with your new kernel. And, if you want to lock your new kernel into place, or any file for that matter, so that it cannot be moved or tampered with: &prompt.root; chflags schg /kernel The kernel works, but &man.ps.1; does not work any more: If you have installed a different version of the kernel from the one that the system utilities have been built with, for example, a 4.X kernel on a 3.X system, many system-status commands like &man.ps.1; and &man.vmstat.8; will not work any more. You must recompile the libkvm library as well as these utilities. This is one reason it is not normally a good idea to use a different version of the kernel from the rest of the operating system.