diff --git a/fr_FR.ISO8859-1/books/handbook/advanced-networking/chapter.sgml b/fr_FR.ISO8859-1/books/handbook/advanced-networking/chapter.sgml index 8a921e176e..eb6cf2cc46 100644 --- a/fr_FR.ISO8859-1/books/handbook/advanced-networking/chapter.sgml +++ b/fr_FR.ISO8859-1/books/handbook/advanced-networking/chapter.sgml @@ -1,1649 +1,1656 @@ Advanced Networking ** Traduction en Cours ** &trans.a.fonvieille; Synopsis Ce chapitre abordera certains des services réseaux les plus fréquemment utilisés sur les systèmes &unix;. Nous verrons comment définir, mettre en place, tester et maintenir tous les services réseaux qu'utilise &os;. De plus, des exemples de fichier de configuration ont été inclus tout au long de ce chapitre pour que vous puissiez en bénéficier. Après la lecture de ce chapitre, vous connaîtrez: Les bases sur les passerelles et les routes. Comment utiliser &os; en tant que pont (“bridge”). Comment configurer le système de fichiers réseau. Comment configurer le démarrage via le réseau pour une machine sans disque dur. Comment mettre en place un serveur d'information sur le réseau pour partager les comptes utilisateurs. Comment configurer le paramétrage réseau automatique en utilisant DHCP. Comment configurer un serveur de noms de domaine. Comment synchroniser l'heure et la date, et mettre en place en serveur de temps, avec le protocole NTP. Comment configurer la translation d'adresse réseau. Comment gérer le “daemon” inetd. Comment connecter deux ordinateurs via PLIP. Comment configurer l'IPv6 sur une machine &os;. Avant de lire ce chapitre, vous devrez: Comprendre les bases des procédures /etc/rc. Etre familier avec la terminologie réseau de base. Gateways and Routes ** Traduction en Cours ** Wireless Networking ** Traduction en Cours ** Bluetooth ** Traduction en Cours ** Steve Peterson Ecrit par Bridging Introduction sous-réseau IP bridge/pont Il est parfois utile de diviser un réseau physique (comme un réseau Ethernet) en deux réseaux séparés sans avoir à créer de sous-réseaux IPs et à utiliser un routeur pour connecter ces réseaux entre eux. Le périphérique qui connecte ensemble deux réseaux de cette manière est appelé “bridge”—pont. Un système &os; avec deux cartes réseaux peut faire fonction de pont. Le pont apprend les adresses MAC (adresses Ethernet) des périphériques branchés sur chacune de ses interfaces réseaux. Il transmet le trafic entre deux réseaux uniquement quand la source et la destination sont sur des réseaux différents. Sous de nombreux aspects, un pont ressemble à un switch (commutateur) Ethernet avec très peu de ports. Situations où l'utilisation d'un pont est appropriée Il existe deux situations dans lesquelles un pont est de nos jours utilisé. Trafic important sur un segment La première situation apparaît quand un segment physique d'un réseau est submergé par le trafic, mais vous ne voulez pas, pour différentes raisons, subdiviser le réseau et interconnecter les sous-réseaux à l'aide d'un routeur. Prenons comme exemple un journal où les bureaux de la rédaction et de la production sont sur le même sous-réseau. Les utilisateurs de la rédaction utilisent tous le serveur de fichiers A, et les utilisateurs de la production le serveur B. Un réseau Ethernet est utilisé pour connecter ensemble les utilisateurs, et des surcharges du réseau ralentissent les échanges. Si les utilisateurs de la rédaction peuvent être cantonné sur un segment, et les utilisateurs de la production sur un autre, les deux réseaux pourront être connectés par un pont. Seul le trafic réseau destiné aux interfaces réseaux situées de l'“autre” côté du pont sera transmis à l'autre réseau, réduisant ainsi les congestions sur chaque segment. Coupe-feu filtrant/régulant le trafic coupe-feu translation d'adresses La deuxième situation est quand un coupe-feu est nécessaire mais sans translation d'adresses (NAT). Un exemple est une compagnie qui est connectée à son fournisseur d'accès internet par l'intermédiaire d'une connexion ISDN ou DSL. Elle dispose de 13 adresses IP routables fournies par le fournisseur d'accès et dispose de 10 PCs sur son réseau. Dans cette situation, utiliser un coupe-feu/routeur est complexe en raison des problèmes de sous-réseaux. routeur DSL ISDN Un coupe-feu basé sur un pont peut être configuré et positionné dans le flux juste en aval de leur routeur DSL/ISDN sans aucun problème d'adressage IP. Configuration d'un pont Choix des cartes réseaux Un pont nécessite au moins deux cartes réseaux pour fonctionner. Malheureusement toutes les cartes réseaux ne supportent pas le mode bridging. Lisez la page de manuel &man.bridge.4; pour des détails sur les cartes supportées. Installez et testez les deux cartes réseaux avant de poursuivre. Modification de la configuration du noyau options du noyau options BRIDGE Pour activer le support nécessaire pour mettre en place un pont ajouter la ligne suivante: options BRIDGE à votre fichier de configuration du noyau, et recompilez votre noyau. Support du coupe-feu coupe-feu Si vous projetez d'utiliser un pont en tant que coupe-feu, vous devrez également ajouter l'option IPFIREWALL. Lisez la pour des informations générales sur la configuration d'un pont en tant que coupe-feu. Si vous avez besoin de permettre le passage à travers le pont des paquets non-IP (comme ARP), il existe une option du coupe-feu qui doit être activée. Cette option est IPFIREWALL_DEFAULT_TO_ACCEPT. Prennez note que cela modifie le fonctionnement par défaut du coupe-feu, ce dernier acceptera alors tous les paquets. Assurez-vous de savoir ce que ce changement signifie pour votre ensemble de règles de filtrage avant de l'effectuer. Support de la régulation du trafic Si vous désirez utiliser le pont comme régulateur de trafic, vous devrez ajouter l'option DUMMYNET à votre fichier de configuration du noyau. Consultez la page de manuel &man.dummynet.4; pour plus d'information. Activer le pont Ajoutez la ligne: net.link.ether.bridge=1 au fichier /etc/sysctl.conf pour activer le pont au démarrage, et la ligne: net.link.ether.bridge_cfg=if1,if2 pour activer le mode bridging sur les interfaces spécifiées (remplacez if1 et if2 par les noms de vos interfaces réseaux). Si vous désirez que les paquets traversant le pont soient filtrés par &man.ipfw.8;, vous devrez ajouter également la ligne: net.link.ether.bridge_ipfw=1 + + Pour &os; 5.2-RELEASE et versions suivantes, utilisez + les lignes suivantes: + + net.link.ether.bridge.enable=1 +net.link.ether.bridge.config=if1,if2 +net.link.ether.bridge.ipfw=1 Informations supplémentaires Si vous désirez être en mesure de vous connecter au pont par l'intermédiaire de &man.telnet.1;, il est correct d'ajouter à l'une des cartes réseaux une adresse IP. Il existe un consensus sur le fait qu'assigner une adresse aux deux cartes est une mauvaise idée. Si vous avez plusieurs ponts sur votre réseau, il ne peut y en avoir plus d'un sur le chemin qui sera emprunté par le trafic entre deux stations de travail. Techniquement, cela signifie qu'il n'y a pas de support pour la gestion du “spanning tree”. Un pont peut ajouter des temps de latence lors de l'utilisation de &man.ping.8;, et tout particulièrement dans le cas du trafic d'un segment vers un autre. NFS ** Traduction en Cours ** Diskless Operation ** Traduction en Cours ** ISDN ISDN—(RNIS) Une bonne source d'information sur la technologie et le matériel ISDN (RNIS) est la page ISDN de Dan Kegel. Voici un rapide aperçu à propos de l'ISDN: Si vous résidez en Europe, vous devriez étudier la section sur les cartes ISDN. Si vous envisagez d'utiliser l'ISDN avant tout pour vous connecter à l'Internet par l'intermédiaire d'un fournisseur d'accès Internet et d'une ligne téléphoniaue non dédiée, vous devriez vous intéresser aux Adaptateurs Terminaux. C'est la solution la plus souple, qui vous posera le moins de problèmes si vous changez de fournisseur d'accès. Si vous interconnectez deux réseaux locaux, ou si vous vous connectez à l'Internet avec une liaison ISDN dédieé, vous devriez envisager un pont/routeur autonome. Le coût est un facteur déterminant de la solution que vous choisirez. Les options suivantes sont listées de la moins chère à la plus chère. Hellmuth Michaelis Contribution de Cartes ISDN ISDN cartes L'implémentation ISDN de &os; ne supporte que la norme DSS1/Q.931 (ou Euro-ISDN) utilisant des cartes passives. Depuis &os; 4.4, quelques cartes actives sont supportées où le firmware supporte également d'autres protocoles au niveau des signaux, cela inclut les premières cartes supportées du type “Primary Rate ISDN” (PRI). Le logiciel isdn4bsd vous permet de vous connecter à d'autres routeurs ISDN soit en utilisant l'IP sur de l'HDLC de base, soit en utilisant PPP synchrone: en employant PPP intégré au noyau avec isppp, une version modifiée du pilote de périphérique &man.sppp.4;, ou en employant &man.ppp.8; en mode utilisateur. L'utilisation de &man.ppp.8; en mode utilisateur rend possible l'agrégation de deux ou plus canaux ISDN de type B. Une application capable de répondre aux appels téléphoniques est également disponible, tout comme de nombreux utilitaires comme un modem logiciel 300 bauds. Un nombre croissant de cartes ISDN pour PC sont supportées sous &os; et les retours montrent qu'elles sont utilisées avec succès dans toute l'Europe et dans de nombreuses autres parties du monde. Les cartes ISDN passives supportées sont principalement celles avec le circuit ISDN ISAC/HSCX/IPAC d'Infineon (précédemment Siemens), mais également les cartes avec des circuits en provenance de Cologne Chip (cartes ISA uniquement), les cartes PCI avec les circuits Winbond W6692, quelques cartes avec les circuits Tiger300/320/ISAC et quelques cartes avec des circuits spécifiques comme l'AVM Fritz!Card PCI V.1.0 de l'AVM Fritz!Card PnP. Actuellement les cartes ISDN actives supportées sont les cartes AVM B1 (ISA et PCI) BRI et les cartes PCI AVM T1 PRI. Pour de la documentation sur isdn4bsd, consultez le répertoire /usr/share/examples/isdn/ sur votre système &os; ou sur la page web d'isdn4bsd qui propose également des astuces, des erratas et bien plus de documentation que le manuel d'isdn4bsd. Au cas où vous seriez intéressé par l'ajout du support pour un protocole ISDN différent, d'une carte ISDN pour PC non encore supportée ou par l'amélioration d'isdn4bsd, veuillez contacter &a.hm;. Pour les questions concernant l'installation, la configuration et le dépannage d'isdn4bsd, une liste de diffusion &a.isdn.name; est disponible. Adaptateurs terminaux ISDN Les adaptateurs terminaux—“Terminal adapters (TA)”; sont l'équivalent ISDN des modems pour les lignes téléphoniques ordinaires. modem La plupart des TA utilisent le jeu de commandes standard des modems Hayes, et peuvent être utilisés en remplacement d'un modem. Un TA fonctionne essentiellement de la même manière qu'un modem à la différence que la vitesse de la connexion sera plus élevée qu'avec votre vieux modem. Vous devrez configurer PPP de façon exactement identique que pour un modem classique. Assurez-vous de fixer la vitesse de votre port série la plus haute possible. PPP Le principal avantage d'utiliser un TA pour vous connecter à votre fournisseur d'accès Internet est de pouvoir utiliser PPP en mode dynamic. Comme l'espace d'adressage IP disponible devient de plus en plus restreint, la plupart des fournisseurs d'accès ne désirent plus vous fournir d'adresse IP statique. La plupart des routeurs autonomes ne peuvent pas fonctionner avec une allocation dynamique d'adresse IP. Les fonctionnalités et la stabilité de la connexion des adaptateurs terminaux reposent complètement sur le “daemon” PPP. Cela vous permet de passer facilement d'un modem classique à l'ISDN sur une machine &os;, si vous avez déjà configuré PPP. Cependant, les problèmes que vous avez éventuellement rencontrés avec PPP persisteront. Si vous désirez un maximum de stabilité, utilisez PPP intégré au noyau, à la place du PPP en mode utilisateur. Les adaptateurs suivants sont connus pour fonctionner avec &os;: Motorola BitSurfer et Bitsurfer Pro Adtran La plupart des adaptateurs terminaux fonctionneront probablement également, les fabricants de TA font en sorte que leurs produits acceptent la plupart du jeu de commandes AT des modems. Le vrai problème avec les adaptateurs terminaux est que comme pour les modems, il vous faudra une bonne interface série dans votre ordinateur. Vous devriez lire le document sur les ports série sous &os; pour comprendre en détail le fonctionnement des périphériques série et les différences entre les ports séries asynchrones et synchrones. Un adaptateur terminal sur un port série PC standard (asynchrone) vous limite à 115.2 Kbs, même si vous disposez d'une connexion à 128 Kbs. Pour utiliser complètement les 128 Kbs offert par l'ISDN, vous devez brancher l'adaptateur sur une carte série synchrone. Ne vous imaginez pas qu'il suffit d'acheter un adaptateur terminal interne pour s'affranchir du problème synchrone/asynchrone. Les adaptateurs internes disposent simplement d'un port série PC standard. Tout ce que vous y gagnerez sera d'économiser un câble série et de libérer une prise électrique. Une carte synchrone avec un adaptateur terminal est au moins aussi rapide qu'un routeur autonome, piloté par une simple machine &os;, et probablement plus souple. Le choix entre carte synchrone/adaptateur ou routeur autonome est une question de goût. Ce sujet a été aborbé dans les listes de diffusion. Nous vous suggerons de chercher dans les archives pour obtenir l'intégralité de la discussion. Ponts/Routeurs ISDN autonomes ISDN ponts/routeurs autonomes Les ponts ou routeurs ISDN ne sont pas spécifiques à &os; ou à tout autre système d'exploitation. Pour une description complète de la technologie du routage et des ponts, veuillez vous reportez à un ouvrage de référence sur les réseaux. Dans le contexte de cette section, les termes de routeur et de pont seront utilisés indifféremment. Comme le prix des routeurs/ponts ISDN d'entrée de gamme baissent, il est probable qu'ils deviennent un choix de plus en plus populaire. Un routeur ISDN est une petite boîte qui se branche directement sur votre réseau Ethernet, et gère sa propre connexion aux autres ponts/routeurs. Il intègre le logiciel nécessaire au support du protocole PPP et d'autres protocoles. Un routeur vous offrira un débit plus élevé qu'un adaptateur terminal standard, puisqu'il utilisera une connexion ISDN synchrone. Le principal problème avec les routeurs et ponts ISDN est que l'intéropérabilité entre les matériels des différents contructeurs n'est pas toujours garantie. Si vous projetez de vous connecter à un fournisseur d'accès Internet, vous devriez discuter de vos besoins avec ce dernier. Si vous envisagez de connecter ensemble deux réseaux locaux, comme le réseau de votre domicile et celui de votre bureau, c'est la solution la plus simple et celle qui demande le moins de maintenance. Etant donné que vous êtes la personne qui achète les équipements pour les deux extrémités, vous êtes sûr que cela fonctionnera. Par exemple pour connecter un ordinateur personnel situé à son domicile ou le réseau d'une agence à celui du siège social, la configuration suivante pourra être utilisée: Réseau d'agence ou à domicile 10 base 2 Le réseau utilise une topologie en bus avec une connectique Ethernet 10 base 2 (“thinnet”). Connectez le routeur au réseau à l'aide d'un émetteur/récepteur AUI/10BT si nécessaire. ---Station de travail Sun | ---Machine FreeBSD | ---Windows 95 | Routeur autonome | Liaison ISDN BRI Ethernet 10 Base 2 Si votre réseau de domicile/d'agence n'est constitué que d'un seul ordinateur, vous pouvez utiliser une paire torsadée croisée pour le connecter directement au routeur autonome. Siège social ou autre réseau 10 base T Le réseau utilise une topologie en étoile avec une connectique Ethernet 10 base T (“paire torsadée”). -------Serveur Novell | H | | ---Sun | | | U ---FreeBSD | | | ---Windows 95 | B | |___---Routeur autonome | Liaison ISDN BRI Architecture du Réseau ISDN Un des principaux avantages de la plupart des routeurs/ponts est le fait qu'ils permettent d'avoir deux connexions PPP séparées et indépendantes vers deux sites différents et cela en même temps. Ceci n'est pas supporté par la plupart des adaptateurs terminaux, en dehors de modèles spécifiques (en général coûteux) qui disposent de deux ports série. Ne confondez pas cette possibilité avec l'agrégation de canaux, MPP, etc. Ceci peut être une fonctionnalité très utile si, par exemple, vous disposez d'une connexion ISDN dédiée au bureau et vous voudriez en profiter mais vous ne voulez pas acquérir une nouvelle ligne ISDN. Un routeur au bureau peut gérer un canal B dédié (64 Kbps) vers l'Internet et utiliser l'autre canal B pour une autre connexion. Le deuxième canal B peut être utilisé pour les connexions entrantes, sortantes ou pour l'agrégation de canaux (MPP, etc.) avec le premier canal B pour augmenter la bande passante. IPX/SPX Un pont Ethernet vous permettra de transmettre autre chose que juste du trafic IP. Vous pouvez également faire passer de l'IPX/SPX ou tout autre protocole que vous utilisez. NIS/YP ** Traduction en Cours ** DHCP ** Traduction en Cours ** DNS ** Traduction en Cours ** Tom Hukins Contribution de NTP NTP Généralités Avec le temps, l'horloge d'un ordinateur tend à dériver. Comme le temps passe, l'horloge de l'ordinateur devient moins précise. Le protocole NTP (“Network Time Protocol”) est une des manières pour s'assurer que votre horloge est correcte. De nombreux services Internet ont besoin, ou tirent partie, de la précision des horloges des ordinateurs. Par exemple, un serveur Web, peut recevoir des requêtes pour n'envoyer un fichier que s'il a été modifié depuis un certain temps. Des services comme &man.cron.8; exécutent des commandes à des moments précis. Si l'horloge n'est pas précise, ces commandes peuvent de pas fonctionner au moment désiré. NTP ntpd &os; est fourni avec le serveur NTP &man.ntpd.8; qui peut être utilisé pour contacter d'autres serveurs NTP pour régler l'horloge de votre machine ou pour jouer le rôle de serveur de temps pour d'autres. Choisir les serveurs NTP appropriés NTP choisir les serveurs Afin de synchroniser votre horloge, vous devrez trouver un ou plusieurs serveurs NTP. Votre administrateur réseau ou votre FAI peuvent avoir mis en place un serveur NTP dans cet objectif—consultez leur documentation pour voir si c'est le cas. Il existe une liste de serveurs NTP accessibles par le publique que vous pouvez utiliser pour trouver un serveur NTP proche de vous. Assurez-vous d'avoir pris connaissance de la politique d'utilisation des serveurs que vous choisissez, et demandez la permission si nécessaire. Choisir plusieurs serveurs NTP non-connectés entre eux est une bonne idée au cas où un des serveurs que vous utilisez devient inaccessible ou que son horloge n'est plus fiable. &man.ntpd.8; utilise intelligemment les réponses qu'il reçoit d'autres serveurs—il favorisera les plus fiables par rapport aux moins fiables. Configuration de votre machine NTP configuration Configuration de base ntpdate Si vous désirez synchroniser votre horloge uniquement lors du démarrage de la machine, vous pouvez alors employer &man.ntpdate.8;. Cela peut être approprié pour certaines machines de bureau qui sont fréquemment rédémarrées et qui ne nécessites qu'une synchronisation épisodique, cependant la plupart des machines devraient utiliser &man.ntpd.8;. Utiliser &man.ntpdate.8; au moment du démarrage est également une bonne idée pour les machines qui exécutent &man.ntpd.8;. Le programme &man.ntpd.8; modifie l'horloge graduellement, alors que &man.ntpdate.8; change directement l'horloge, peu importe la différence entre l'heure actuelle de la machine et l'heure correcte. Pour activer &man.ntpdate.8; au démarrage, ajoutez la ligne ntpdate_enable="YES" au fichier /etc/rc.conf. Vous devrez également préciser tous les serveurs avec lesquels vous désirez vous synchroniser et tous les indicateurs devant être passés à &man.ntpdate.8; avec ntpdate_flags. NTP ntp.conf Configuration générale NTP est configuré par l'intermédiaire du fichier /etc/ntp.conf suivant le format décrit dans la page de manuel &man.ntp.conf.5;. Voici un exemple simple: server ntplocal.example.com prefer server timeserver.example.org server ntp2a.example.net driftfile /var/db/ntp.drift L'option server précise quels serveurs doivent être utilisés, avec un serveur listé par ligne. Si un serveur est spécifié avec l'argument prefer, comme c'est le cas pour ntplocal.example.com, ce serveur est préféré par rapport aux autres serveurs. Une réponse en provenance d'un serveur préféré sera ignorée si elle diffère de façon significative des réponses des autres serveurs, sinon elle sera utilisée sans considérer les autres réponses. L'argument prefer est normalement employé pour les serveurs NTP qui sont connus pour leur grande précision, comme ceux avec des systèmes spéciaux de contrôle du matériel. L'option driftfile précise quel fichier est utilisé pour stocker le décalage de fréquence de l'horloge. Le programmme &man.ntpd.8; l'utilise pour compenser automatiquement la dérive naturelle de l'horloge, permettant de maintenir un réglage raisonnablement correct même s'il est coupé d'autres sources extérieures de temps pendant une certaine période. L'option driftfile précise également quel fichier est utilisé pour stocker l'information concernant les réponses précédentes des serveurs NTP que vous utilisez. Il ne devrait pas être modifié par un autre processus. Contrôler l'accès à votre serveur Par défaut, votre serveur NTP sera accessible par toutes les machines sur l'Internet. L'option restrict du fichier /etc/ntp.conf vous permet de contrôler quelles machines peuvent accéder à votre serveur. Si vous voulez refuser à tout le monde l'accès à votre serveur NTP, ajoutez la ligne suivante au fichier /etc/ntp.conf: restrict default ignore Si vous désirez autoriser uniquement l'accès aux machines de votre réseau pour qu'elles puissent synchroniser leur horloge, tout en vous assurant qu'elles ne peuvent configurer le serveur ou être utilisées comme point de de synchronisation, ajoutez: restrict 192.168.1.0 mask 255.255.255.0 notrust nomodify notrap à la place, où 192.168.1.0 est une adresse IP de votre réseau et 255.255.255.0 est votre masque de sous-réseau. Le fichier /etc/ntp.conf peut contenir plusieurs options restrict. Pour plus de détails, lisez la section Access Control Support de la page de manuel &man.ntp.conf.5;. Exécuter le serveur NTP Pour s'assurer que le serveur NTP est lancé au démarrage, ajoutez la ligne xntpd_enable="YES" dans le fichier /etc/rc.conf. Si vous désirez passer des indicateurs supplémentaires à &man.ntpd.8;, éditez les paramètres de l'option xntpd_flags dans /etc/rc.conf. Pour lancer le serveur sans redémarrer votre machine, exécutez ntpd en étant sûr de préciser tout paramètre supplémentaire de xntpd_flags dans /etc/rc.conf. Par exemple: &prompt.root; ntpd -p /var/run/ntpd.pid Sous &os; 5.X, diverses options du fichier /etc/rc.conf ont été renommées. Ainsi, vous devez remplacer chaque xntpd par ntpd dans les options ci-dessus. Utiliser ntpd avec une connexion Internet temporaire Le programme &man.ntpd.8; n'a pas besoin d'une connexion permanente à l'Internet pour fonctionner correctement. Cependant, si vous disposez d'une connextion temporaire qui est configurée de telle sorte qu'il y ait établissement de la connexion à la demande, c'est une bonne idée d'empêcher le trafic NTP de déclencher la numérotation ou de maintenir constamment établie la connexion. Si vous utilisez PPP en mode utilisateur, vous pouvez employer les directives filter dans le fichier /etc/ppp/ppp.conf. Par exemple: set filter dial 0 deny udp src eq 123 # Empêche le trafic NTP de lancer une connexion set filter dial 1 permit 0 0 set filter alive 0 deny udp src eq 123 # Empêche le trafic NTP entrant de garder la connexion établie set filter alive 1 deny udp dst eq 123 # Empêche le trafic NTP sortant de garder la connexion établie set filter alive 2 permit 0/0 0/0 Pour plus de détails lisez la section PACKET FILTERING de la page de manuel &man.ppp.8; et les exemples du répertoire /usr/share/examples/ppp/. Certains fournisseurs d'accès Internet bloquent les ports dont le numéro est faible, empêchant NTP de fonctionner puisque les réponses n'atteingnent jamais votre machine. Information supplémentaire La documentation pour le serveur NTP peut être trouvé dans le répertoire /usr/share/doc/ntp/ sous le format HTML. Chern Lee Contribution de Translation d'adresses Généralités natd Le “daemon” de translation d'adresses (“Network Address Translation”—NAT) de &os;, généralement connu sous le nom de &man.natd.8; est un “daemon” qui accepte les paquets IP entrants, change l'adresse de la source par celle de la machine locale et ré-injecte les paquets dans le flux sortant des paquets IP. Le programme &man.natd.8; effectue cela en changeant l'adresse IP et le port source de sorte quand les données réponse arrivent il soit en mesure de déterminer la provenance des données d'origine et les transférer à l'émetteur original. Partage de connexion Internet IP masquerading L'utilisation classique de NAT est le partage de connexion Internet. Architecture du réseau En raison de la diminution du nombre d'adresses IP libres sous IPv4, et de l'augmentation du nombre d'utilisateurs de lignes haut-débit comme le câble ou l'ADSL, le besoin d'utiliser une solution de partage de connexion est donc en constante augmentation. La possibilité de connecter plusieurs ordinateurs par l'intermédiaire d'une connexion et d'une adresse IP fait de &man.natd.8; une solution de choix. Plus généralement, un utilisateur dispose d'une machine connecté sur la câble ou une ligne ADSL avec une adresse IP et désire utiliser cet ordinateur connecté pour fournir un accès Internet à d'autres machines du réseau local. Pour cela, la machine &os; sur Internet doit jouer le rôle de passerelle. Cette machine passerelle doit avoir deux cartes réseaux—l'une pour se connecter au routeur Internet, l'autre est connectée au réseau local. Toutes les machines du réseau local sont connectées par l'intermédiaire d'un hub ou d'un switch. _______ __________ _________ | | | | | | | Hub |-----| Client B |-----| Routeur |----- Internet |_______| |__________| |_________| | ____|_____ | | | Client A | |__________| Organisation du réseau Une telle configuration est communément utilisée pour partager une connexion Internet. Une des machines du réseau local est connectée à Internet. Le reste des machines accède à Internet par l'intermédiaire de cette machine “passerelle”. noyau configuration Configuration Les options suivantes doivent être présentes dans le fichier de configuration du noyau: options IPFIREWALL options IPDIVERT De plus, les options suivantes peuvent également être utiles: options IPFIREWALL_DEFAULT_TO_ACCEPT options IPFIREWALL_VERBOSE Ce qui suit doit figurer dans le fichier /etc/rc.conf: gateway_enable="YES" firewall_enable="YES" firewall_type="OPEN" natd_enable="YES" natd_interface="fxp0" natd_flags="" gateway_enable="YES" Configure la machine comme passerelle. Exécuter sysctl net.inet.ip.forwarding=1 aurait le même effet. firewall_enable="YES" Active les règles du coupe-feu se trouvant dans le fichier /etc/rc.firewall au démarrage. firewall_type="OPEN" Cela spécifie un ensemble de règles prédéfinies pour le coupe-feu qui autorise tous les paquets entrant. Consultez le fichier /etc/rc.firewall pour d'autres ensembles de régles. natd_interface="fxp0" Indique à travers quelle interface transférer les paquets (l'interface connectée à l'Internet). natd_flags="" Toutes options de configuration supplémentaires passées à &man.natd.8; au démarrage. Le fait d'avoir les options précédentes définies dans le fichier /etc/rc.conf lancera la commande /etc/rc.conf au démarrage. Cette commande peut être également exécutée à la main. A chaque machine et interface derrière le réseau local doit être assigné une adresse IP de l'espace d'adresses privées comme défini par la RFC 1918 et doit disposer d'une passerelle par défaut qui est l'adresse IP interne de la machine &man.natd.8;. Par exemple, les clients A et B du réseau local ont les adresses IP 192.168.0.2 et 192.168.0.3, tandis que l'interface sur le réseau local de la machine natd a pour adresse IP 192.168.0.1. La passerelle par défaut des clients A et B doit être l'adresse 192.168.0.1 de la machine natd. L'interface externe ou Internet de cette dernière ne demande aucune modification spécifique pour que &man.natd.8; puisse fonctionner. Redirection de ports L'inconvénient avec &man.natd.8; est que les clients du réseau local ne sont pas accessibles depuis l'Internet. Les clients sur le réseau local peuvent établir des connexions sortantes vers le monde extérieur mais ne peuvent recevoir de connexions entrantes. Cela présente un problème si l'on tente de faire tourner des services Internet sur une des machines du réseau local. Une solution simple à ce problème est de rediriger les ports Internet sélectionnés de la machine natd vers le client sur le réseau local. Par exemple, un serveur IRC tourne sur le client A, et un serveur web sur le client B. Pour que cela fonctionne correctement, les connections reçues sur les ports 6667 (IRC) et 80 (web) doivent être redirigées vers les machines correspondantes. L'option doit être passée à &man.natd.8; avec les autres options adéquates. La syntaxe est la suivante: -redirect_port proto targetIP:targetPORT[-targetPORT] [aliasIP:]aliasPORT[-aliasPORT] [remoteIP[:remotePORT[-remotePORT]]] Dans l'exemple précédent, l'argument passé à la commande devrait être: -redirect_port tcp 192.168.0.2:6667 6667 -redirect_port tcp 192.168.0.3:80 80 Cela va rediriger les ports tcp voulus vers les machines du réseau local. L'option peut être utilisée pour indiquer une plage de ports plutôt que des ports individuels. Par exemple tcp 192.168.0.2:2000-3000 2000-3000 redirigerait toutes les connexions reçues sur les ports 2000 à 3000 vers les ports 2000 à 3000 du client A. Ces options peuvent être utilisées quand on exécute directement &man.natd.8; ou placées dans l'option natd_flags="" du fichier /etc/rc.conf. Pour plus d'éléments et d'options de configuration consultez la page de manuel &man.natd.8; Redirection d'adresses redirection d'adresses La redirection d'adresses est utile si plusieurs adresses IP sont disponibles mais doivent se trouver sur une seule machine. Avec cela, &man.natd.8; peut assigner à chaque client du réseau local sa propre adresse IP externe. Le programme &man.natd.8; récrit alors les paquets sortant des clients du réseau local avec l'adresse IP externe correcte et redirige tout le trafic entrant sur une adresse IP particulière vers la machine du réseau local correspondante. Ce principe est également connu sous le nom de translation d'adresses statique. Par exemple, les adresses IP 128.1.1.1, 128.1.1.2, et 128.1.1.3 appartiennent à la passerelle natd. L'adresse 128.1.1.1 peut être utilisée comme adresse IP externe de la passerelle natd, tandis que 128.1.1.2 et 128.1.1.3 sont redirigées vers les machines A et B du réseau local. La syntaxe de l'option est la suivante: -redirect_address localIP publicIP localIP L'adresse IP interne du client sur le réseau local. publicIP L'adresse IP externe correspondant au client sur le réseau local. Dans l'exemple, les arguments passés à la commande seraient: -redirect_address 192.168.0.2 128.1.1.2 -redirect_address 192.168.0.3 128.1.1.3 Comme pour l'option , ces options peuvent être placées dans l'option natd_flags="" du fichier /etc/rc.conf. Avec la redirection d'adresse, il n'y a pas besoin de redirection de ports puisque toutes les données reçues sur une IP particulière sont redirigées. Les adresses IP sur la machine natd doivent être active et pointer sur l'interface externe. Consultez la page de manuel &man.rc.conf.5; pour cela. inetd <quote>Super-Server</quote> ** Traduction en Cours ** Overview Settings Command-Line Options <filename>inetd.conf</filename> Security Miscellaneous IP sur liaison parallèle (PLIP) PLIP IP sur liaison parallèle PLIP nous permet d'utiliser le protocole TCP/IP entre ports parallèles. C'est utile sur des machines sans cartes réseaux, ou pour effectuer une installation sur ordinateur portable. Dans cette section nous aborderons: La fabrication d'un câble parallèle (“laplink”). La connexion de deux ordinateurs via PLIP. Fabriquer un câble parallèle Vous pouvez acheter un câble parallèle auprès de la plupart des vendeurs de matériel informatique. Si ce n'est pas le cas, ou désirez savoir comment est fait un tel câble, le tableau suivant montre comment en faire un à partir d'un câble parallèle d'imprimante. Câblage d'un câble parallèle pour réseau A-name A-End B-End Descr. Post/Bit DATA0 -ERROR 2 15 15 2 Data 0/0x01 1/0x08 DATA1 +SLCT 3 13 13 3 Data 0/0x02 1/0x10 DATA2 +PE 4 12 12 4 Data 0/0x04 1/0x20 DATA3 -ACK 5 10 10 5 Strobe 0/0x08 1/0x40 DATA4 BUSY 6 11 11 6 Data 0/0x10 1/0x80 GND 18-25 18-25 GND -
Configurer PLIP Tout d'abord procurez-vous un câble “laplink”. Vérifiez ensuite que les deux ordinateurs disposent d'un noyau avec le support pour le pilote de périphérique &man.lpt.4;. &prompt.root; grep lp /var/run/dmesg.boot lpt0: <Printer> on ppbus0 lpt0: Interrupt-driven port Le port parallèle doit fonctionner sous interruption, sous &os; 4.X vous devriez avoir une ligne semblable à la ligne suivante dans le fichier de configuration du noyau: device ppc0 at isa? irq 7 Sous &os; 5.X, le fichier /boot/device.hints devrait contenir les lignes suivantes: hint.ppc.0.at="isa" hint.ppc.0.irq="7" Ensuite vérifiez si le fichier de configuration du noyau contient une ligne device plip ou si le module plip.ko est chargé. Dans les deux cas l'interface réseau parallèle devrait apparaître quand vous utilisez directement la commande &man.ifconfig.8;. Sous &os; 4.X de cette manière: &prompt.root; ifconfig lp0 lp0: flags=8810<POINTOPOINT,SIMPLEX,MULTICAST> mtu 1500 et sous &os; 5.X: &prompt.root; ifconfig plip0 plip0: flags=8810<POINTOPOINT,SIMPLEX,MULTICAST> mtu 1500 Le nom de périphérique utilisé pour l'interface parallèle est différent entre &os; 4.X (lpX) et &os; 5.X (plipX). Branchez le câble “laplink” sur les interfaces parallèles des deux ordinateurs. Configurez les paramètres de l'interface réseau des deux côtés en tant que root. Par exemple, si vous voulez connecter la machine host1 fonctionnant sous &os; 4.X avec la machine host2 tournant sous &os; 5.X: host1 <-----> host2 IP Address 10.0.0.1 10.0.0.2 Configurez l'interface sur host1 en tapant: &prompt.root; ifconfig lp0 10.0.0.1 10.0.0.2 Configurez l'interface sur host2 en tapant: &prompt.root; ifconfig plip0 10.0.0.2 10.0.0.1 Vous devriez avoir maintenant une connexion qui fonctionne. Veuillez consulter les pages de manuel &man.lp.4; et &man.lpt.4; pour plus de détails. Vous devriez également ajouter les deux noms de machines dans le fichier /etc/hosts: 127.0.0.1 localhost.my.domain localhost 10.0.0.1 host1.my.domain host1 10.0.0.2 host2.my.domain Pour vérifier le bon fonctionnement de la connexion, aller sur les deux machines et effectuez un “ping” vers l'autre machine. Par exemple, sur host1: &prompt.root; ifconfig lp0 lp0: flags=8851<UP,POINTOPOINT,RUNNING,SIMPLEX,MULTICAST> mtu 1500 inet 10.0.0.1 --> 10.0.0.2 netmask 0xff000000 &prompt.root; netstat -r Routing tables Internet: Destination Gateway Flags Refs Use Netif Expire host2 host1 UH 0 0 lp0 &prompt.root; ping -c 4 host2 PING host2 (10.0.0.2): 56 data bytes 64 bytes from 10.0.0.2: icmp_seq=0 ttl=255 time=2.774 ms 64 bytes from 10.0.0.2: icmp_seq=1 ttl=255 time=2.530 ms 64 bytes from 10.0.0.2: icmp_seq=2 ttl=255 time=2.556 ms 64 bytes from 10.0.0.2: icmp_seq=3 ttl=255 time=2.714 ms --- host2 ping statistics --- 4 packets transmitted, 4 packets received, 0% packet loss round-trip min/avg/max/stddev = 2.530/2.643/2.774/0.103 ms
IPv6 ** Traduction en Cours **