diff --git a/en_US.ISO8859-1/books/handbook/advanced-networking/chapter.sgml b/en_US.ISO8859-1/books/handbook/advanced-networking/chapter.sgml index 610f1873ba..3bcac303ab 100644 --- a/en_US.ISO8859-1/books/handbook/advanced-networking/chapter.sgml +++ b/en_US.ISO8859-1/books/handbook/advanced-networking/chapter.sgml @@ -1,4680 +1,4682 @@ Advanced Networking Synopsis This chapter will cover some of the more frequently used network services on Unix systems. We will cover how to define, setup, test and maintain all of the network services that FreeBSD utilizes. In addition, there have been example configuration files included throughout this chapter for you to benefit from. After reading this chapter you will know: The basics of gateways and routes. How to make FreeBSD act as a bridge. How to setup a network file system. How to setup network booting on a diskless machine. How to setup a network information server for sharing user accounts. How to setup automatic network settings using DHCP. How to setup a domain name server. How to setup network address translation. How to manage the inetd daemon. Before reading this chapter you should: The basics of the /etc/rc scripts. Basic network terminology. Coranth Gryphon Contributed by Gateways and Routes routing gateway subnet For one machine to be able to find another, there must be a mechanism in place to describe how to get from one to the other. This is called Routing. A route is a defined pair of addresses: a destination and a gateway. The pair indicates that if you are trying to get to this destination, send along through this gateway. There are three types of destinations: individual hosts, subnets, and default. The default route is used if none of the other routes apply. We will talk a little bit more about default routes later on. There are also three types of gateways: individual hosts, interfaces (also called links), and Ethernet hardware addresses. An Example To illustrate different aspects of routing, we will use the following example which is the output of the command netstat -r: Destination Gateway Flags Refs Use Netif Expire default outside-gw UGSc 37 418 ppp0 localhost localhost UH 0 181 lo0 test0 0:e0:b5:36:cf:4f UHLW 5 63288 ed0 77 10.20.30.255 link#1 UHLW 1 2421 foobar.com link#1 UC 0 0 host1 0:e0:a8:37:8:1e UHLW 3 4601 lo0 host2 0:e0:a8:37:8:1e UHLW 0 5 lo0 => host2.foobar.com link#1 UC 0 0 224 link#1 UC 0 0 default route The first two lines specify the default route (which we will cover in the next section) and the localhost route. loopback device The interface (Netif column) that it specifies to use for localhost is lo0, also known as the loopback device. This says to keep all traffic for this destination internal, rather than sending it out over the LAN, since it will only end up back where it started anyway. Ethernet MAC address The next thing that stands out are the 0:e0:... addresses. These are Ethernet hardware addresses. FreeBSD will automatically identify any hosts (test0 in the example) on the local Ethernet and add a route for that host, directly to it over the Ethernet interface, ed0. There is also a timeout (Expire column) associated with this type of route, which is used if we fail to hear from the host in a specific amount of time. In this case the route will be automatically deleted. These hosts are identified using a mechanism known as RIP (Routing Information Protocol), which figures out routes to local hosts based upon a shortest path determination. subnet FreeBSD will also add subnet routes for the local subnet (10.20.30.255 is the broadcast address for the subnet 10.20.30, and foobar.com is the domain name associated with that subnet). The designation link#1 refers to the first Ethernet card in the machine. You will notice no additional interface is specified for those. Both of these groups (local network hosts and local subnets) have their routes automatically configured by a daemon called routed. If this is not run, then only routes which are statically defined (ie. entered explicitly) will exist. The host1 line refers to our host, which it knows by Ethernet address. Since we are the sending host, FreeBSD knows to use the loopback interface (lo0) rather than sending it out over the Ethernet interface. The two host2 lines are an example of what happens when we use an &man.ifconfig.8; alias (see the section of Ethernet for reasons why we would do this). The => symbol after the lo0 interface says that not only are we using the loopback (since this is address also refers to the local host), but specifically it is an alias. Such routes only show up on the host that supports the alias; all other hosts on the local network will simply have a link#1 line for such. The final line (destination subnet 224) deals with MultiCasting, which will be covered in a another section. The other column that we should talk about are the Flags. Each route has different attributes that are described in the column. Below is a short table of some of these flags and their meanings: U Up: The route is active. H Host: The route destination is a single host. G Gateway: Send anything for this destination on to this remote system, which will figure out from there where to send it. S Static: This route was configured manually, not automatically generated by the system. C Clone: Generates a new route based upon this route for machines we connect to. This type of route is normally used for local networks. W WasCloned: Indicated a route that was auto-configured based upon a local area network (Clone) route. L Link: Route involves references to Ethernet hardware. Default Routes default route When the local system needs to make a connection to remote host, it checks the routing table to determine if a known path exists. If the remote host falls into a subnet that we know how to reach (Cloned routes), then the system checks to see if it can connect along that interface. If all known paths fail, the system has one last option: the default route. This route is a special type of gateway route (usually the only one present in the system), and is always marked with a c in the flags field. For hosts on a local area network, this gateway is set to whatever machine has a direct connection to the outside world (whether via PPP link, or your hardware device attached to a dedicated data line). If you are configuring the default route for a machine which itself is functioning as the gateway to the outside world, then the default route will be the gateway machine at your Internet Service Provider's (ISP) site. Let us look at an example of default routes. This is a common configuration: [Local2] <--ether--> [Local1] <--PPP--> [ISP-Serv] <--ether--> [T1-GW] The hosts Local1 and Local2 are at your site, with the formed being your PPP connection to your ISP's Terminal Server. Your ISP has a local network at their site, which has, among other things, the server where you connect and a hardware device (T1-GW) attached to the ISP's Internet feed. The default routes for each of your machines will be: host default gateway interface Local2 Local1 Ethernet Local1 T1-GW PPP A common question is Why (or how) would we set the T1-GW to be the default gateway for Local1, rather than the ISP server it is connected to?. Remember, since the PPP interface is using an address on the ISP's local network for your side of the connection, routes for any other machines on the ISP's local network will be automatically generated. Hence, you will already know how to reach the T1-GW machine, so there is no need for the intermediate step of sending traffic to the ISP server. As a final note, it is common to use the address ...1 as the gateway address for your local network. So (using the same example), if your local class-C address space was 10.20.30 and your ISP was using 10.9.9 then the default routes would be: Local2 (10.20.30.2) --> Local1 (10.20.30.1) Local1 (10.20.30.1, 10.9.9.30) --> T1-GW (10.9.9.1) Dual Homed Hosts dual homed hosts There is one other type of configuration that we should cover, and that is a host that sits on two different networks. Technically, any machine functioning as a gateway (in the example above, using a PPP connection) counts as a dual-homed host. But the term is really only used to refer to a machine that sits on two local-area networks. In one case, the machine as two Ethernet cards, each having an address on the separate subnets. Alternately, the machine may only have one Ethernet card, and be using &man.ifconfig.8; aliasing. The former is used if two physically separate Ethernet networks are in use, the latter if there is one physical network segment, but two logically separate subnets. Either way, routing tables are set up so that each subnet knows that this machine is the defined gateway (inbound route) to the other subnet. This configuration, with the machine acting as a Bridge between the two subnets, is often used when we need to implement packet filtering or firewall security in either or both directions. Routing Propagation routing propagation We have already talked about how we define our routes to the outside world, but not about how the outside world finds us. We already know that routing tables can be set up so that all traffic for a particular address space (in our examples, a class-C subnet) can be sent to a particular host on that network, which will forward the packets inbound. When you get an address space assigned to your site, your service provider will set up their routing tables so that all traffic for your subnet will be sent down your PPP link to your site. But how do sites across the country know to send to your ISP? There is a system (much like the distributed DNS information) that keeps track of all assigned address-spaces, and defines their point of connection to the Internet Backbone. The Backbone are the main trunk lines that carry Internet traffic across the country, and around the world. Each backbone machine has a copy of a master set of tables, which direct traffic for a particular network to a specific backbone carrier, and from there down the chain of service providers until it reaches your network. It is the task of your service provider to advertise to the backbone sites that they are the point of connection (and thus the path inward) for your site. This is known as route propagation. Troubleshooting traceroute Sometimes, there is a problem with routing propagation, and some sites are unable to connect to you. Perhaps the most useful command for trying to figure out where a routing is breaking down is the &man.traceroute.8; command. It is equally useful if you cannot seem to make a connection to a remote machine (i.e. &man.ping.8; fails). The &man.traceroute.8; command is run with the name of the remote host you are trying to connect to. It will show the gateway hosts along the path of the attempt, eventually either reaching the target host, or terminating because of a lack of connection. For more information, see the manual page for &man.traceroute.8;. Steve Peterson Written by Bridging Introduction IP subnet bridge It is sometimes useful to divide one physical network (i.e., an Ethernet segment) into two separate network segments, without having to create IP subnets and use a router to connect the segments together. A device that connects two networks together in this fashion is called a bridge. and a FreeBSD system with two network interface cards can act as a bridge. The bridge works by learning the MAC layer addresses (i.e., Ethernet addresses) of the devices on each of its network interfaces. It forwards traffic between two networks only when its source and destination are on different networks. In many respects, a bridge is like an Ethernet switch with very few ports. Situations Where Bridging Is Appropriate There are two common situations in which a bridge is used today. High Traffic on a Segment Situation one is where your physical network segment is overloaded with traffic, but you don't want for whatever reason to subnet the network and interconnect the subnets with a router. Let's consider an example of a newspaper where the Editorial and Production departments are on the same subnetwork. The Editorial users all use server A for file service, and the Production users are on server B. An Ethernet is used to connect all users together, and high loads on the network are slowing things down. If the Editorial users could be segregated on one network segment and the Production users on another, the two network segments could be connected with a bridge. Only the network traffic destined for interfaces on the "other" side of the bridge would be sent to the other network, reducing congestion on each network segment. Filtering/Traffic Shaping Firewall firewall IP Masquerading The second common situation is where firewall functionality is needed without IP Masquerading (NAT). An example is a small company that is connected via DSL or ISDN to their ISP. They have a 13 address global IP allocation for their ISP and have 10 PCs on their network. In this situation, using a router-based firewall is difficult because of subnetting issues. router DSL ISDN A bridge-based firewall can be configured and dropped into the path just downstream of their DSL/ISDN router without any IP numbering issues. Configuring a Bridge Network Interface Card Selection A bridge requires at least two network cards to function. Unfortunately, not all network interface cards as of FreeBSD 4.0 support bridging. Read &man.bridge.4; for details on the cards that are supported. Install and test the two network cards before continuing. Kernel Configuration Changes kernel configuration kernel configuration options BRIDGE To enable kernel support for bridging, add the options BRIDGE statement to your kernel configuration file, and rebuild your kernel. Firewall Support firewall If you are planning to use the bridge as a firewall, you will need to add the IPFIREWALL option as well. Read for general information on configuring the bridge as a firewall. If you need to allow non-IP packets (such as ARP) to flow through the bridge, there is an undocumented firewall option that must be set. This option is IPFIREWALL_DEFAULT_TO_ACCEPT. Note that this changes the default rule for the firewall to accept any packet. Make sure you know how this changes the meaning of your ruleset before you set it. Traffic Shaping Support If you want to use the bridge as a traffic shaper, you will need to add the DUMMYNET option to your kernel configuration. Read &man.dummynet.4; for further information. Enabling the Bridge Add the line net.link.ether.bridge=1 to /etc/sysctl.conf to enable the bridge at runtime. If you want the bridged packets to be filtered by &man.ipfw.8;, you should also add net.link.ether.bridge_ipfw=1 as well. Performance My bridge/firewall is a Pentium 90 with one 3Com 3C900B and one 3C905B. The protected side of the network runs at 10mbps half duplex and the connection between the bridge and my router (a Cisco 675) runs at 100mbps full duplex. With no filtering enabled, I've found that the bridge adds about 0.4 milliseconds of latency to pings from the protected 10mbps network to the Cisco 675. Other Information If you want to be able to telnet into the bridge from the network, it is OK to assign one of the network cards an IP address. The consensus is that assigning both cards an address is a bad idea. If you have multiple bridges on your network, there cannot be more than one path between any two workstations. Technically, this means that there is no support for spanning tree link management. Bill Swingle Written by NFS NFS Among the many different file systems that FreeBSD supports is the Network File System or NFS. NFS allows you to share directories and files on one machine with one or more other machines via the network they are attached to. Using NFS, users and programs can access files on remote systems as if they were local files. NFS has several benefits: Local workstations don't need as much disk space because commonly used data can be stored on a single machine and still remain accessible to everyone on the network. There is no need for users to have unique home directories on every machine on your network. Once they have an established directory that is available via NFS it can be accessed from anywhere. Storage devices such as floppies and CDROM drives can be used by other machines on the network eliminating the need for extra hardware. How It Works NFS is composed of two sides – a client side and a server side. Think of it as a want/have relationship. The client wants the data that the server side has. The server shares its data with the client. In order for this system to function properly a few processes have to be configured and running properly. The server has to be running the following daemons: NFS server portmap mountd nfsd nfsd - The NFS Daemon which services requests from NFS clients. mountd - The NFS Mount Daemon which actually carries out requests that &man.nfsd.8; passes on to it. portmap - The portmapper daemon which allows NFS clients to find out which port the NFS server is using. The client side only needs to run a single daemon: NFS client nfsiod nfsiod - The NFS async I/O Daemon which services requests from its NFS server. Configuring NFS NFS configuration Luckily for us, on a FreeBSD system this setup is a snap. The processes that need to be running can all be run at boot time with a few modifications to your /etc/rc.conf file. On the NFS server make sure you have: portmap_enable="YES" nfs_server_enable="YES" nfs_server_flags="-u -t -n 4" mountd_flags="-r" mountd is automatically run whenever the NFS server is enabled. The and flags to nfsd tell it to serve UDP and TCP clients. The flag tells nfsd to start 4 copies of itself. On the client, make sure you have: nfs_client_enable="YES" nfs_client_flags="-n 4" Like nfsd, the tells nfsiod to start 4 copies of itself. The last configuration step requires that you create a file called /etc/exports. The exports file specifies which file systems on your server will be shared (a.k.a., exported) and with what clients they will be shared. Each line in the file specifies a file system to be shared. There are a handful of options that can be used in this file but only a few will be mentioned here. You can find out about the rest in the &man.exports.5; manual page. Here are a few example /etc/exports entries: NFS exporting filesystems The following line exports /cdrom to three silly machines that have the same domain name as the server (hence the lack of a domain name for each) or have entries in your /etc/hosts file. The flag makes the shared file system read-only. With this flag, the remote system will not be able to make any changes to the shared file system. /cdrom -ro moe larry curly The following line exports /home to three hosts by IP address. This is a useful setup if you have a private network but do not have DNS running. The flag allows all the directories below the specified file system to be exported as well. /home -alldirs 10.0.0.2 10.0.0.3 10.0.0.4 The following line exports /a to two machines that have different domain names than the server. The flag allows the root user on the remote system to write to the shared file system as root. Without the -maproot=0 flag even if someone has root access on the remote system they won't be able to modify files on the shared file system. /a -maproot=0 host.domain.com box.example.com In order for a client to share an exported file system it must have permission to do so. Make sure your client is listed in your /etc/exports file. It's important to remember that you must restart mountd whenever you modify /etc/exports so that your changes take effect. This can be accomplished by sending the hangup signal to the mountd process : &prompt.root; kill -HUP `cat /var/run/mountd.pid` Now that you have made all these changes you can just reboot and let FreeBSD start everything for you at boot time or you can run the following commands as root: On the NFS server: &prompt.root; portmap &prompt.root; nfsd -u -t -n 4 &prompt.root; mountd -r On the NFS client: &prompt.root; nfsiod -n 4 Now you should be ready to actually mount a remote file system. This can be done one of two ways. In these examples the server's name will be server and the client's name will be client. If you just want to temporarily mount a remote file system or just want to test out your configuration you can run a command like this as root on the client: NFS mounting filesystems &prompt.root; mount server:/home /mnt This will mount /home on the server on /mnt on the client. If everything is setup correctly you should be able to go into /mnt on the client and see all the files that are on the server. If you want to permanently (each time you reboot) mount a remote file system you need to add it to your /etc/fstab file. Here is an example line: server:/home /mnt nfs rw 0 0 Read the &man.fstab.5; manual page for more options. Practical Uses There are many very cool uses for NFS. Some of the more common ones are listed below. NFS uses Have several machines on a network and share a CDROM or floppy drive among them. This is cheaper and often more convenient. With so many machines on a network, it gets old having your personal files strewn all over the place. You can have a central NFS server that houses all user home directories and shares them with the rest of the machines on the LAN, so no matter where you log in you will have the same home directory. When you get to reinstalling FreeBSD on one of your machines, NFS is the way to go! Just pop your distribution CDROM into your file server and away you go! Have a common /usr/ports/distfiles directory that all your machines share. That way, when you go to install a port that you've already installed on a different machine, you do not have to download the source all over again! Wylie Stilwell Contributed by Chern Lee Rewritten by amd amd automatic mounter daemon &man.amd.8;, which is also known as the automatic mounter daemon, is a useful utility used for automatically mounting a remote filesystem whenever a file or directory within that filesystem is accessed. Filesystems that are inactive for a period of time will also be automatically unmounted by amd. Using amd provides a simplistic alternative to static mounts. amd operates by attaching itself as an NFS server to the /host and /net directories. When a file is accessed within one of these directories, amd looks up the corresponding remote mount and automatically mounts it. /net is used to mount an exported filesystem from an IP address, while /host is used to mount an export from a remote hostname. An access to a file within /host/foobar/usr would tell amd to attempt to mount the /usr export on the host foobar. Mounting an Export with <application>amd</application> &prompt.user; showmount -e foobar Exports list on foobar: /usr 10.10.10.0 /a 10.10.10.0 &prompt.user; cd /host/foobar/usr As seen in the example, the showmount shows /usr as an export. When changing directories to /host/foobar/usr, amd attempts to resolve the hostname foobar and automatically mount the desired export. amd can be started through the rc.conf system by placing the following lines in /etc/rc.conf: amd_enable="YES" Additionally, custom flags can be passed to amd from the amd_flags option. By default, amd_flags is set to: amd_flags="-a /.amd_mnt -l syslog /host /etc/amd.map /net /etc/amd.map" The /etc/amd.map file defines the default options that exports are mounted with. The /etc/amd.conf file defines some of the more advanced features of amd. Consult the &man.amd.8; and &man.amd.conf.5; man pages for more information. John Lind Contributed by Problems Integrating with Other Systems Certain Ethernet adapters for ISA PC systems have limitations which can lead to serious network problems, particularly with NFS. This difficulty is not specific to FreeBSD, but FreeBSD systems are affected by it. The problem nearly always occurs when (FreeBSD) PC systems are networked with high-performance workstations, such as those made by Silicon Graphics, Inc., and Sun Microsystems, Inc. The NFS mount will work fine, and some operations may succeed, but suddenly the server will seem to become unresponsive to the client, even though requests to and from other systems continue to be processed. This happens to the client system, whether the client is the FreeBSD system or the workstation. On many systems, there is no way to shut down the client gracefully once this problem has manifested itself. The only solution is often to reset the client, because the NFS situation cannot be resolved. Though the correct solution is to get a higher performance and capacity Ethernet adapter for the FreeBSD system, there is a simple workaround that will allow satisfactory operation. If the FreeBSD system is the server, include the option on the mount from the client. If the FreeBSD system is the client, then mount the NFS file system with the option . These options may be specified using the fourth field of the fstab entry on the client for automatic mounts, or by using the parameter of the mount command for manual mounts. It should be noted that there is a different problem, sometimes mistaken for this one, when the NFS servers and clients are on different networks. If that is the case, make certain that your routers are routing the necessary UDP information, or you will not get anywhere, no matter what else you are doing. In the following examples, fastws is the host (interface) name of a high-performance workstation, and freebox is the host (interface) name of a FreeBSD system with a lower-performance Ethernet adapter. Also, /sharedfs will be the exported NFS filesystem (see man exports), and /project will be the mount point on the client for the exported file system. In all cases, note that additional options, such as or and may be desirable in your application. Examples for the FreeBSD system (freebox) as the client: in /etc/fstab on freebox: fastws:/sharedfs /project nfs rw,-r=1024 0 0 As a manual mount command on freebox: &prompt.root; mount -t nfs -o -r=1024 fastws:/sharedfs /project Examples for the FreeBSD system as the server: in /etc/fstab on fastws: freebox:/sharedfs /project nfs rw,-w=1024 0 0 As a manual mount command on fastws: &prompt.root; mount -t nfs -o -w=1024 freebox:/sharedfs /project Nearly any 16-bit Ethernet adapter will allow operation without the above restrictions on the read or write size. For anyone who cares, here is what happens when the failure occurs, which also explains why it is unrecoverable. NFS typically works with a block size of 8k (though it may do fragments of smaller sizes). Since the maximum Ethernet packet is around 1500 bytes, the NFS block gets split into multiple Ethernet packets, even though it is still a single unit to the upper-level code, and must be received, assembled, and acknowledged as a unit. The high-performance workstations can pump out the packets which comprise the NFS unit one right after the other, just as close together as the standard allows. On the smaller, lower capacity cards, the later packets overrun the earlier packets of the same unit before they can be transferred to the host and the unit as a whole cannot be reconstructed or acknowledged. As a result, the workstation will time out and try again, but it will try again with the entire 8K unit, and the process will be repeated, ad infinitum. By keeping the unit size below the Ethernet packet size limitation, we ensure that any complete Ethernet packet received can be acknowledged individually, avoiding the deadlock situation. Overruns may still occur when a high-performance workstations is slamming data out to a PC system, but with the better cards, such overruns are not guaranteed on NFS units. When an overrun occurs, the units affected will be retransmitted, and there will be a fair chance that they will be received, assembled, and acknowledged. Martin Renters Contributed by Diskless Operation diskless workstation netboot.com/netboot.rom allow you to boot your FreeBSD machine over the network and run FreeBSD without having a disk on your client. Under 2.0 it is now possible to have local swap. Swapping over NFS is also still supported. Supported Ethernet cards include: Western Digital/SMC 8003, 8013, 8216 and compatibles; NE1000/NE2000 and compatibles (requires recompile) Setup Instructions Find a machine that will be your server. This machine will require enough disk space to hold the FreeBSD 2.0 binaries and have bootp, tftp and NFS services available. Tested machines: HP-UX HP9000/8xx running HP-UX 9.04 or later (pre 9.04 doesn't work) Solaris Sun/Solaris 2.3. (you may need to get bootp) Set up a bootp server to provide the client with IP address, gateway, netmask. diskless:\ :ht=ether:\ :ha=0000c01f848a:\ :sm=255.255.255.0:\ :hn:\ :ds=192.1.2.3:\ :ip=192.1.2.4:\ :gw=192.1.2.5:\ :vm=rfc1048: TFTP bootp Set up a TFTP server (on same machine as bootp server) to provide booting information to client. The name of this file is cfg.X.X.X.X (or /tftpboot/cfg.X.X.X.X, it will try both) where X.X.X.X is the IP address of the client. The contents of this file can be any valid netboot commands. Under 2.0, netboot has the following commands: help print help list ip print/set client's IP address server print/set bootp/tftp server address netmask print/set netmask hostname name print/set hostname kernel print/set kernel name rootfs print/set root filesystem swapfs print/set swap filesystem swapsize set diskless swapsize in KBytes diskboot boot from disk autoboot continue boot process trans | turn transceiver on|off flags set boot flags A typical completely diskless config file might contain: rootfs 192.1.2.3:/rootfs/myclient swapfs 192.1.2.3:/swapfs swapsize 20000 hostname myclient.mydomain A config file for a machine with local swap might contain: rootfs 192.1.2.3:/rootfs/myclient hostname myclient.mydomain Ensure that your NFS server has exported the root (and swap if applicable) filesystems to your client, and that the client has root access to these filesystems A typical /etc/exports file on FreeBSD might look like: /rootfs/myclient -maproot=0:0 myclient.mydomain /swapfs -maproot=0:0 myclient.mydomain And on HP-UX: /rootfs/myclient -root=myclient.mydomain /swapfs -root=myclient.mydomain NFS swapping over If you are swapping over NFS (completely diskless configuration) create a swap file for your client using dd. If your swapfs command has the arguments /swapfs and the size 20000 as in the example above, the swapfile for myclient will be called /swapfs/swap.X.X.X.X where X.X.X.X is the client's IP address, e.g.: &prompt.root; dd if=/dev/zero of=/swapfs/swap.192.1.2.4 bs=1k count=20000 Also, the client's swap space might contain sensitive information once swapping starts, so make sure to restrict read and write access to this file to prevent unauthorized access: &prompt.root; chmod 0600 /swapfs/swap.192.1.2.4 Unpack the root filesystem in the directory the client will use for its root filesystem (/rootfs/myclient in the example above). On HP-UX systems: The server should be running HP-UX 9.04 or later for HP9000/800 series machines. Prior versions do not allow the creation of device files over NFS. When extracting /dev in /rootfs/myclient, beware that some systems (HPUX) will not create device files that FreeBSD is happy with. You may have to go to single user mode on the first bootup (press control-c during the bootup phase), cd /dev and do a sh ./MAKEDEV all from the client to fix this. Run netboot.com on the client or make an EPROM from the netboot.rom file Using Shared <filename>/</filename> and <filename>/usr</filename> Filesystems Although this is not an officially sanctioned or supported way of doing this, some people report that it works quite well. If anyone has any suggestions on how to do this cleanly, please tell &a.doc;. Compiling Netboot for Specific Setups Netboot can be compiled to support NE1000/2000 cards by changing the configuration in /sys/i386/boot/netboot/Makefile. See the comments at the top of this file. ISDN A good resource for information on ISDN technology and hardware is Dan Kegel's ISDN Page. A quick simple road map to ISDN follows: If you live in Europe you might want to investigate the ISDN card section. If you are planning to use ISDN primarily to connect to the Internet with an Internet Provider on a dial-up non-dedicated basis, you might look into Terminal Adapters. This will give you the most flexibility, with the fewest problems, if you change providers. If you are connecting two LANs together, or connecting to the Internet with a dedicated ISDN connection, you might consider the stand alone router/bridge option. Cost is a significant factor in determining what solution you will choose. The following options are listed from least expensive to most expensive. Hellmuth Michaelis Contributed by ISDN Cards ISDN cards This section is really only relevant to ISDN users in countries where the DSS1/Q.931 ISDN standard is supported. Some growing number of PC ISDN cards are supported under FreeBSD 2.2.X and up by the isdn4bsd driver package. It is still under development but the reports show that it is successfully used all over Europe. isdn4bsd The latest isdn4bsd version is available from ftp://isdn4bsd@ftp.consol.de/pub/, the main isdn4bsd FTP site (you have to log in as user isdn4bsd , give your mail address as the password and change to the pub directory. Anonymous FTP as user ftp or anonymous will not give the desired result). Isdn4bsd allows you to connect to other ISDN routers using either IP over raw HDLC or by using synchronous PPP. A telephone answering machine application is also available. Many ISDN PC cards are supported, mostly the ones with a Siemens ISDN chipset (ISAC/HSCX), support for other chipsets (from Motorola, Cologne Chip Designs) is currently under development. For an up-to-date list of supported cards, please have a look at the README file. In case you are interested in adding support for a different ISDN protocol, a currently unsupported ISDN PC card or otherwise enhancing isdn4bsd, please get in touch with hm@kts.org. A majordomo maintained mailing list is available. To join the list, send mail to &a.majordomo; and specify: subscribe freebsd-isdn in the body of your message. ISDN Terminal Adapters Terminal adapters(TA), are to ISDN what modems are to regular phone lines. modem Most TA's use the standard hayes modem AT command set, and can be used as a drop in replacement for a modem. A TA will operate basically the same as a modem except connection and throughput speeds will be much faster than your old modem. You will need to configure PPP exactly the same as for a modem setup. Make sure you set your serial speed as high as possible. PPP The main advantage of using a TA to connect to an Internet Provider is that you can do Dynamic PPP. As IP address space becomes more and more scarce, most providers are not willing to provide you with a static IP anymore. Most stand-alone routers are not able to accommodate dynamic IP allocation. TA's completely rely on the PPP daemon that you are running for their features and stability of connection. This allows you to upgrade easily from using a modem to ISDN on a FreeBSD machine, if you already have PPP setup. However, at the same time any problems you experienced with the PPP program and are going to persist. If you want maximum stability, use the kernel PPP option, not the user-land iijPPP. The following TA's are know to work with FreeBSD. Motorola BitSurfer and Bitsurfer Pro Adtran Most other TA's will probably work as well, TA vendors try to make sure their product can accept most of the standard modem AT command set. The real problem with external TA's is like modems you need a good serial card in your computer. You should read the FreeBSD Serial Hardware tutorial for a detailed understanding of serial devices, and the differences between asynchronous and synchronous serial ports. A TA running off a standard PC serial port (asynchronous) limits you to 115.2Kbs, even though you have a 128Kbs connection. To fully utilize the 128Kbs that ISDN is capable of, you must move the TA to a synchronous serial card. Do not be fooled into buying an internal TA and thinking you have avoided the synchronous/asynchronous issue. Internal TA's simply have a standard PC serial port chip built into them. All this will do, is save you having to buy another serial cable, and find another empty electrical socket. A synchronous card with a TA is at least as fast as a stand-alone router, and with a simple 386 FreeBSD box driving it, probably more flexible. The choice of sync/TA v.s. stand-alone router is largely a religious issue. There has been some discussion of this in the mailing lists. I suggest you search the archives for the complete discussion. Stand-alone ISDN Bridges/Routers ISDN stand-alone bridges/routers ISDN bridges or routers are not at all specific to FreeBSD or any other operating system. For a more complete description of routing and bridging technology, please refer to a Networking reference book. In the context of this page, the terms router and bridge will be used interchangeably. As the cost of low end ISDN routers/bridges comes down, it will likely become a more and more popular choice. An ISDN router is a small box that plugs directly into your local Ethernet network(or card), and manages its own connection to the other bridge/router. It has all the software to do PPP and other protocols built in. A router will allow you much faster throughput that a standard TA, since it will be using a full synchronous ISDN connection. The main problem with ISDN routers and bridges is that interoperability between manufacturers can still be a problem. If you are planning to connect to an Internet provider, you should discuss your needs with them. If you are planning to connect two LAN segments together, ie: home LAN to the office LAN, this is the simplest lowest maintenance solution. Since you are buying the equipment for both sides of the connection you can be assured that the link will work. For example to connect a home computer or branch office network to a head office network the following setup could be used. Branch Office or Home Network 10 base 2 Network uses a bus based topology with 10 base 2 Ethernet ("thinnet"). Connect router to network cable with AUI/10BT transceiver, if necessary. ---Sun workstation | ---FreeBSD box | ---Windows 95 (Do not admit to owning it) | Stand-alone router | ISDN BRI line 10 Base 2 Ethernet If your home/branch office is only one computer you can use a twisted pair crossover cable to connect to the stand-alone router directly. Head Office or Other LAN 10 base T Network uses a star topology with 10 base T Ethernet ("Twisted Pair"). -------Novell Server | H | | ---Sun | | | U ---FreeBSD | | | ---Windows 95 | B | |___---Stand-alone router | ISDN BRI line ISDN Network Diagram One large advantage of most routers/bridges is that they allow you to have 2 separate independent PPP connections to 2 separate sites at the same time. This is not supported on most TA's, except for specific(expensive) models that have two serial ports. Do not confuse this with channel bonding, MPP etc. This can be very useful feature, for example if you have an dedicated ISDN connection at your office and would like to tap into it, but don't want to get another ISDN line at work. A router at the office location can manage a dedicated B channel connection (64Kbs) to the Internet, as well as a use the other B channel for a separate data connection. The second B channel can be used for dial-in, dial-out or dynamically bond(MPP etc.) with the first B channel for more bandwidth. IPX/SPX An Ethernet bridge will also allow you to transmit more than just IP traffic, you can also send IPX/SPX or whatever other protocols you use. Bill Swingle Written by Eric Ogren Enhanced by Udo Erdelhoff NIS/YP What Is It? NIS Solaris HP-UX AIX Linux NetBSD OpenBSD NIS, which stands for Network Information Services, was developed by Sun Microsystems to centralize administration of Unix (originally SunOS) systems. It has now essentially become an industry standard; all major Unix systems (Solaris, HP-UX, AIX, Linux, NetBSD, OpenBSD, FreeBSD, etc) support NIS. yellow pagesNIS NIS was formerly known as Yellow Pages, but because of trademark issues, Sun changed the name. The old term (and yp) is still often seen and used. NIS domains It is a RPC-based client/server system that allows a group of machines within an NIS domain to share a common set of configuration files. This permits a system administrator to set up NIS client systems with only minimal configuration data and add, remove or modify configuration data from a single location. Windows NT It is similar to Windows NT's domain system; although the internal implementation of the two aren't at all similar, the basic functionality can be compared. Terms/Processes You Should Know There are several terms and several important user processes that you will come across when attempting to implement NIS on FreeBSD, whether you are trying to create an NIS server or act an NIS client: The NIS domainname. An NIS master server and all of its clients (including its slave servers) have a NIS domainname. Similar to an NT domain name, the NIS domainname does not have anything to do with DNS. portmap portmap. portmap must be running in order to enable RPC (Remote Procedure Call, a network protocol used by NIS). If portmap is not running, it will be impossible to run an NIS server, or to act as an NIS client. ypbind. ypbind “binds” an NIS client to its NIS server. It will take the NIS domainname from the system, and using RPC, connect to the server. ypbind is the core of client-server communication in an NIS environment; if ypbind dies on a client machine, it will not be able to access the NIS server. ypserv. ypserv, which should only be running on NIS servers, is the NIS server process itself. If &man.ypserv.8; dies, then the server will no longer be able to respond to NIS requests (hopefully, there is a slave server to take over for it). There are some implementations of NIS (but not the FreeBSD one), that don't try to reconnect to another server if the server it used before dies. Often, the only thing that helps in this case is to restart the server process (or even the whole server) or the ypbind process on the client. rpc.yppasswdd. rpc.yppasswdd, another process that should only be running on NIS master servers, is a daemon that will allow NIS clients to change their NIS passwords. If this daemon is not running, users will have to login to the NIS master server and change their passwords there. How Does It Work? There are three types of hosts in an NIS environment; master servers, slave servers, and clients. Servers act as a central repository for host configuration information. Master servers hold the authoritative copy of this information, while slave servers mirror this information for redundancy. Clients rely on the servers to provide this information to them. Information in many files can be shared in this manner. The master.passwd, group, and hosts files are commonly shared via NIS. Whenever a process on a client needs information that would normally be found in these files locally, it makes a query to the server it is bound to, to get this information. Machine Types NIS master server A NIS master server. This server, analogous to a Windows NT primary domain controller, maintains the files used by all of the NIS clients. The passwd, group, and other various files used by the NIS clients live on the master server. It is possible for one machine to be an NIS master server for more than one NIS domain. However, this will not be covered in this introduction, which assumes a relatively small-scale NIS environment. NIS slave server NIS slave servers. Similar to NT's backup domain controllers, NIS slave servers maintain copies of the NIS master's data files. NIS slave servers provide the redundancy, which is needed in important environments. They also help to balance the load of the master server: NIS Clients always attach to the NIS server whose response they get first, and this includes slave-server-replies. NIS client NIS clients. NIS clients, like most NT workstations, authenticate against the NIS server (or the NT domain controller in the NT Workstation case) to log on. Using NIS/YP This section will deal with setting up a sample NIS environment. This section assumes that you are running FreeBSD 3.3 or later. The instructions given here will probably work for any version of FreeBSD greater than 3.0, but there are no guarantees that this is true. Planning Let's assume that you are the administrator of a small university lab. This lab, which consists of 15 FreeBSD machines, currently has no centralized point of administration; each machine has its own /etc/passwd and /etc/master.passwd. These files are kept in sync with each other only through manual intervention; currently, when you add a user to the lab, you must run adduser on all 15 machines. Clearly, this has to change, so you have decided to convert the lab to use NIS, using two of the machines as servers. Therefore, the configuration of the lab now looks something like: Machine name IP address Machine role ellington 10.0.0.2 NIS master coltrane 10.0.0.3 NIS slave basie 10.0.0.4 Faculty workstation bird 10.0.0.5 Client machine cli[1-11] 10.0.0.[6-17] Other client machines If you are setting up a NIS scheme for the first time, it is a good idea to think through how you want to go about it. No matter what the size of your network, there are a few decisions that need to be made. Choosing a NIS Domain Name NIS domainname This might not be the domainname that you are used to. It is more accurately called the NIS domainname. When a client broadcasts its requests for info, it includes the name of the NIS domain that it is part of. This is how multiple servers on one network can tell which server should answer which request. Think of the NIS domainname as the name for a group of hosts that are related in some way. Some organizations choose to use their Internet domainname for their NIS domainname. This is not recommended as it can cause confusion when trying to debug network problems. The NIS domainname should be unique within your network and it is helpful if it describes the group of machines it represents. For example, the Art department at Acme Inc. might be in the "acme-art" NIS domain. For this example, assume you have chosen the name test-domain. SunOS However, some operating systems (notably SunOS) use their NIS domain name as their Internet domain name. If one or more machines on your network have this restriction, you must use the Internet domain name as your NIS domain name. Physical Server Requirements There are several things to keep in mind when choosing a machine to use as a NIS server. One of the unfortunate things about NIS is the level of dependency the clients have on the server. If a client cannot contact the server for its NIS domain, very often the machine becomes unusable. The lack of user and group information causes most systems to temporarily freeze up. With this in mind you should make sure to choose a machine that won't be prone to being rebooted regularly, or one that might be used for development. The NIS server should ideally be a stand alone machine whose sole purpose in life is to be an NIS server. If you have a network that is not very heavily used, it is acceptable to put the NIS server on a machine running other services, just keep in mind that if the NIS server becomes unavailable, it will affect all of your NIS clients adversely. NIS Servers The canonical copies of all NIS information are stored on a single machine called the NIS master server. The databases used to store the information are called NIS maps. In FreeBSD, these maps are stored in /var/yp/[domainname] where [domainname] is the name of the NIS domain being served. A single NIS server can support several domains at once, therefore it is possible to have several such directories, one for each supported domain. Each domain will have its own independent set of maps. NIS master and slave servers handle all NIS requests with the ypserv daemon. Ypserv is responsible for receiving incoming requests from NIS clients, translating the requested domain and map name to a path to the corresponding database file and transmitting data from the database back to the client. Setting Up a NIS Master Server NIS server configuration Setting up a master NIS server can be relatively straight forward, depending on your needs. FreeBSD comes with support for NIS out-of-the-box. All you need is to add the following lines to /etc/rc.conf, and FreeBSD will do the rest for you. nisdomainname="test-domain" This line will set the NIS domainname to test-domain upon network setup (e.g. after reboot). nis_server_enable="YES" This will tell FreeBSD to start up the NIS server processes when the networking is next brought up. nis_yppasswdd_enable="YES" This will enable the rpc.yppasswdd daemon, which, as mentioned above, will allow users to change their NIS password from a client machine. Now, all you have to do is to run the command /etc/netstart as superuser. It will setup everything for you, using the values you defined in /etc/rc.conf. Initializing the NIS Maps NIS maps The NIS maps are database files, that are kept in the /var/yp directory. They are generated from configuration files in the /etc directory of the NIS master, with one exception: the /etc/master.passwd file. This is for a good reason; you don't want to propagate passwords to your root and other administrative accounts to all the servers in the NIS domain. Therefore, before we initialize the NIS maps, you should: &prompt.root; cp /etc/master.passwd /var/yp/master.passwd &prompt.root; cd /var/yp &prompt.root; vi master.passwd You should remove all entries regarding system accounts - (bin, tty, kmem, games, etc), as well as any accounts that you + (bin, tty, kmem, + games, etc), as well as any accounts that you don't want to be propagated to the NIS clients (for example root and any other UID 0 (superuser) accounts). Make sure the /var/yp/master.passwd is neither group nor world readable (mode 600)! Use the chmod command, if appropriate. Tru64 Unix When you have finished, it's time to initialize the NIS maps! FreeBSD includes a script named ypinit to do this for you (see its manual page for more information). Note that this script is available on most Unix Operating Systems, but not on all. On Digital Unix/Compaq Tru64 Unix it is called ypsetup. Because we are generating maps for an NIS master, we are going to pass the option to ypinit. To generate the NIS maps, assuming you already performed the steps above, run: ellington&prompt.root; ypinit -m test-domain Server Type: MASTER Domain: test-domain Creating an YP server will require that you answer a few questions. Questions will all be asked at the beginning of the procedure. Do you want this procedure to quit on non-fatal errors? [y/n: n] n Ok, please remember to go back and redo manually whatever fails. If you don't, something might not work. At this point, we have to construct a list of this domains YP servers. rod.darktech.org is already known as master server. Please continue to add any slave servers, one per line. When you are done with the list, type a <control D>. master server : ellington next host to add: coltrane next host to add: ^D The current list of NIS servers looks like this: ellington coltrane Is this correct? [y/n: y] y [..output from map generation..] NIS Map update completed. ellington has been setup as an YP master server without any errors. ypinit should have created /var/yp/Makefile from /var/yp/Makefile.dist. When created, this file assumes that you are operating in a single server NIS environment with only FreeBSD machines. Since test-domain has a slave server as well, you must edit /var/yp/Makefile: ellington&prompt.root; vi /var/yp/Makefile You should comment out the line that says `NOPUSH = "True"' (if it is not commented out already). Setting up a NIS Slave Server NIS configuring a slave server Setting up an NIS slave server is even more simple than setting up the master. Log on to the slave server and edit the file /etc/rc.conf as you did before. The only difference is that we now must use the option when running ypinit. The option requires the name of the NIS master be passed to it as well, so our command line looks like: coltrane&prompt.root; ypinit -s ellington test-domain Server Type: SLAVE Domain: test-domain Master: ellington Creating an YP server will require that you answer a few questions. Questions will all be asked at the beginning of the procedure. Do you want this procedure to quit on non-fatal errors? [y/n: n] n Ok, please remember to go back and redo manually whatever fails. If you don't, something might not work. There will be no further questions. The remainder of the procedure should take a few minutes, to copy the databases from ellington. Transferring netgroup... ypxfr: Exiting: Map successfully transferred Transferring netgroup.byuser... ypxfr: Exiting: Map successfully transferred Transferring netgroup.byhost... ypxfr: Exiting: Map successfully transferred Transferring master.passwd.byuid... ypxfr: Exiting: Map successfully transferred Transferring passwd.byuid... ypxfr: Exiting: Map successfully transferred Transferring passwd.byname... ypxfr: Exiting: Map successfully transferred Transferring group.bygid... ypxfr: Exiting: Map successfully transferred Transferring group.byname... ypxfr: Exiting: Map successfully transferred Transferring services.byname... ypxfr: Exiting: Map successfully transferred Transferring rpc.bynumber... ypxfr: Exiting: Map successfully transferred Transferring rpc.byname... ypxfr: Exiting: Map successfully transferred Transferring protocols.byname... ypxfr: Exiting: Map successfully transferred Transferring master.passwd.byname... ypxfr: Exiting: Map successfully transferred Transferring networks.byname... ypxfr: Exiting: Map successfully transferred Transferring networks.byaddr... ypxfr: Exiting: Map successfully transferred Transferring netid.byname... ypxfr: Exiting: Map successfully transferred Transferring hosts.byaddr... ypxfr: Exiting: Map successfully transferred Transferring protocols.bynumber... ypxfr: Exiting: Map successfully transferred Transferring ypservers... ypxfr: Exiting: Map successfully transferred Transferring hosts.byname... ypxfr: Exiting: Map successfully transferred coltrane has been setup as an YP slave server without any errors. Don't forget to update map ypservers on ellington. You should now have a directory called /var/yp/test-domain. Copies of the NIS master server's maps should be in this directory. You will need to make sure that these stay updated. The following /etc/crontab entries on your slave servers should do the job: 20 * * * * root /usr/libexec/ypxfr passwd.byname 21 * * * * root /usr/libexec/ypxfr passwd.byuid These two lines force the slave to sync its maps with the maps on the master server. Although this is not mandatory, because the master server tries to make sure any changes to its NIS maps are communicated to its slaves, the password information is so vital to systems that depend on the server, that it is a good idea to force the updates. This is more important on busy networks where map updates might not always complete. Now, run the command /etc/netstart on the slave server as well, which again starts the NIS server. NIS Clients An NIS client establishes what is called a binding to a particular NIS server using the ypbind daemon. ypbind checks the system's default domain (as set by the domainname command), and begins broadcasting RPC requests on the local network. These requests specify the name of the domain for which ypbind is attempting to establish a binding. If a server that has been configured to serve the requested domain receives one of the broadcasts, it will respond to ypbind, which will record the server's address. If there are several servers available (a master and several slaves, for example), ypbind will use the address of the first one to respond. From that point on, the client system will direct all of its NIS requests to that server. Ypbind will occasionally ping the server to make sure it is still up and running. If it fails to receive a reply to one of its pings within a reasonable amount of time, ypbind will mark the domain as unbound and begin broadcasting again in the hopes of locating another server. Setting Up an NIS Client NIS client configuration Setting up a FreeBSD machine to be a NIS client is fairly straightforward. Edit the file /etc/rc.conf and add the following lines in order to set the NIS domainname and start ypbind upon network startup: nisdomainname="test-domain" nis_client_enable="YES" To import all possible password entries from the NIS server, add this line to your /etc/master.passwd file, using vipw: +::::::::: This line will afford anyone with a valid account in the NIS server's password maps an account. There are many ways to configure your NIS client by changing this line. See the netgroups part below for more information. For more detailed reading see O'Reilly's book on Managing NFS and NIS. To import all possible group entries from the NIS server, add this line to your /etc/group file: +:*:: After completing these steps, you should be able to run ypcat passwd and see the NIS server's passwd map. NIS Security In general, any remote user can issue an RPC to &man.ypserv.8; and retrieve the contents of your NIS maps, provided the remote user knows your domainname. To prevent such unauthorized transactions, &man.ypserv.8; supports a feature called securenets which can be used to restrict access to a given set of hosts. At startup, &man.ypserv.8; will attempt to load the securenets information from a file called /var/yp/securenets. This path varies depending on the path specified with the option. This file contains entries that consist of a network specification and a network mask separated by white space. Lines starting with # are considered to be comments. A sample securenets file might look like this: # allow connections from local host -- mandatory 127.0.0.1 255.255.255.255 # allow connections from any host # on the 192.168.128.0 network 192.168.128.0 255.255.255.0 # allow connections from any host # between 10.0.0.0 to 10.0.15.255 # this includes the machines in the testlab 10.0.0.0 255.255.240.0 If &man.ypserv.8; receives a request from an address that matches one of these rules, it will process the request normally. If the address fails to match a rule, the request will be ignored and a warning message will be logged. If the /var/yp/securenets file does not exist, ypserv will allow connections from any host. The ypserv program also has support for Wietse Venema's tcpwrapper package. This allows the administrator to use the tcpwrapper configuration files for access control instead of /var/yp/securenets. While both of these access control mechanisms provide some security, they, like the privileged port test, are vulnerable to IP spoofing attacks. All NIS-related traffic should be blocked at your firewall. Servers using /var/yp/securenets may fail to serve legitimate NIS clients with archaic TCP/IP implementations. Some of these implementations set all host bits to zero when doing broadcasts and/or fail to observe the subnet mask when calculating the broadcast address. While some of these problems can be fixed by changing the client configuration, other problems may force the retirement of the client systems in question or the abandonment of /var/yp/securenets. Using /var/yp/securenets on a server with such an archaic implementation of TCP/IP is a really bad idea and will lead to loss of NIS functionality for large parts of your network. tcpwrapper The use of the tcpwrapper package increases the latency of your NIS server. The additional delay may be long enough to cause timeouts in client programs, especially in busy networks or with slow NIS servers. If one or more of your client systems suffers from these symptoms, you should convert the client systems in question into NIS slave servers and force them to bind to themselves. Barring Some Users from Logging On In our lab, there is a machine basie that is supposed to be a faculty only workstation. We don't want to take this machine out of the NIS domain, yet the passwd file on the master NIS server contains accounts for both faculty and students. What can we do? There is a way to bar specific users from logging on to a machine, even if they are present in the NIS database. To do this, all you must do is add -username to the end of the /etc/master.passwd file on the client machine, where username is the username of the user you wish to bar from logging in. This should preferably be done using vipw, since vipw will sanity check your changes to /etc/master.passwd, as well as automatically rebuild the password database when you finish editing. For example, if we wanted to bar user bill from logging on to basie we would: basie&prompt.root; vipw [add -bill to the end, exit] vipw: rebuilding the database... vipw: done basie&prompt.root; cat /etc/master.passwd root:[password]:0:0::0:0:The super-user:/root:/bin/csh toor:[password]:0:0::0:0:The other super-user:/root:/bin/sh daemon:*:1:1::0:0:Owner of many system processes:/root:/sbin/nologin operator:*:2:5::0:0:System &:/:/sbin/nologin bin:*:3:7::0:0:Binaries Commands and Source,,,:/:/sbin/nologin tty:*:4:65533::0:0:Tty Sandbox:/:/sbin/nologin kmem:*:5:65533::0:0:KMem Sandbox:/:/sbin/nologin games:*:7:13::0:0:Games pseudo-user:/usr/games:/sbin/nologin news:*:8:8::0:0:News Subsystem:/:/sbin/nologin man:*:9:9::0:0:Mister Man Pages:/usr/share/man:/sbin/nologin bind:*:53:53::0:0:Bind Sandbox:/:/sbin/nologin uucp:*:66:66::0:0:UUCP pseudo-user:/var/spool/uucppublic:/usr/libexec/uucp/uucico xten:*:67:67::0:0:X-10 daemon:/usr/local/xten:/sbin/nologin pop:*:68:6::0:0:Post Office Owner:/nonexistent:/sbin/nologin nobody:*:65534:65534::0:0:Unprivileged user:/nonexistent:/sbin/nologin +::::::::: -bill basie&prompt.root; Udo Erdelhoff Contributed by Using Netgroups netgroups The method shown in the previous chapter works reasonably well if you need special rules for a very small number of users and/or machines. On larger networks, you will forget to bar some users from logging onto sensitive machines, or you may even have to modify each machine separately, thus losing the main benefit of NIS, centralized administration. The NIS developers' solution for this problem is called netgroups. Their purpose and semantics can be compared to the normal groups used by Unix file systems. The main differences are the lack of a numeric id and the ability to define a netgroup by including both user accounts and other netgroups. Netgroups were developed to handle large, complex networks with hundreds of users and machines. On one hand, this is a Good Thing if you are forced to deal with such a situation. On the other hand, this complexity makes it almost impossible to explain netgroups with really simple examples. The example used in the remainder of this chapter demonstrates this problem. Let us assume that your successful introduction of NIS in your laboratory caught your superiors' interest. Your next job is to extend your NIS domain to cover some of the other machines on campus. The two tables contain the names of the new users and new machines as well as brief descriptions of them. User Name(s) Description alpha, beta Normal employees of the IT department charlie, delta The new apprentices of the IT department echo, foxtrott, golf, ... Ordinary employees able, baker, ... The current interns Machine Name(s) Description war, death, famine, pollution Your most important servers. Only the IT employees are allowed to log onto these machines. pride, greed, envy, wrath, lust, sloth Less important servers. All members of the IT department are allowed to login onto these machines. one, two, three, four, ... Ordinary workstations. Only the real employees are allowed to use these machines. trashcan A very old machine without any critical data. Even the intern is allowed to use this box. If you tried to implement these restrictions by separately blocking each user, you would have to add one -user line to each system's passwd for each user who is not allowed to login onto that system. If you forget just one entry, you could be in trouble. It may be feasible to do this correctly during the initial setup, however you will eventually forget to add the lines for new users during day-to-day operations. After all, Murphy was an optimist. Handling this situation with netgroups offers several advantages. Each user need not be handled separately; you assign a user to one or more netgroups and allow or forbid logins for all members of the netgroup. If you add a new machine, you will only have to define login restrictions for netgroups. If a new user is added, you will only have to add the user to one or more netgroups. Those changes are independent of each other; no more for each combination of user and machine do... If your NIS setup is planned carefully, you will only have to modify exactly one central configuration file to grant or deny access to machines. The first step is the initialization of the NIS map netgroup. FreeBSD's &man.ypinit.8; does not create this map by default, but its NIS implementation will support it once it has been created. To create an empty map, simply type ellington&prompt.root; vi /var/yp/netgroup and start adding content. For our example, we need at least four netgroups: IT employees, IT apprentices, normal employees and interns. IT_EMP (,alpha,test-domain) (,beta,test-domain) IT_APP (,charlie,test-domain) (,delta,test-domain) USERS (,echo,test-domain) (,foxtrott,test-domain) \ (,golf,test-domain) INTERNS (,able,test-domain) (,baker,test-domain) IT_EMP, IT_APP etc. are the names of the netgroups. Each bracketed group adds one or more user accounts to it. The three fields inside a group are: The name of the host(s) where the following items are valid. If you do not specify a hostname, the entry is valid on all hosts. If you do specify a hostname, you will enter a realm of darkness, horror and utter confusion. The name of the account that belongs to this netgroup. The NIS domain for the account. You can import accounts from other NIS domains into your netgroup if you are one of unlucky fellows with more than one NIS domain. Each of these fields can contain wildcards. See &man.netgroup.5; for details. netgroups Netgroup names longer than 8 characters should not be used, especially if you have machines running other operating systems within your NIS domain. The names are case sensitive; using capital letters for your netgroup names is an easy way to distinguish between user, machine and netgroup names. Some NIS clients (other than FreeBSD) cannot handle netgroups with a large number of entries. For example, some older versions of SunOS start to cause trouble if a netgroup contains more than 15 entries. You can circumvent this limit by creating several sub-netgroups with 15 users or less and a real netgroup that consists of the sub-netgroups: BIGGRP1 (,joe1,domain) (,joe2,domain) (,joe3,domain) [...] BIGGRP2 (,joe16,domain) (,joe17,domain) [...] BIGGRP3 (,joe31,domain) (,joe32,domain) BIGGROUP BIGGRP1 BIGGRP2 BIGGRP3 You can repeat this process if you need more than 225 users within a single netgroup. Activating and distributing your new NIS map is easy: ellington&prompt.root; cd /var/yp ellington&prompt.root; make This will generate the three NIS maps netgroup, netgroup.byhost and netgroup.byuser. Use &man.ypcat.1; to check if your new NIS maps are available: ellington&prompt.user; ypcat -k netgroup ellington&prompt.user; ypcat -k netgroup.byhost ellington&prompt.user; ypcat -k netgroup.byuser The output of the first command should resemble the contents of /var/yp/netgroup. The second command will not produce output if you have not specified host-specific netgroups. The third command can be used to get the list of netgroups for a user. The client setup is quite simple. To configure the server war, you only have to start &man.vipw.8; and replace the line +::::::::: with +@IT_EMP::::::::: Now, only the data for the users defined in the netgroup IT_EMP is imported into war's password database and only these users are allowed to login. Unfortunately, this limitation also applies to the ~ function of the shell and all routines converting between user names and numerical user ids. In other words, cd ~user will not work, ls -l will show the numerical id instead of the username and find . -user joe -print will fail with No such user. To fix this, you will have to import all user entries without allowing them to login onto your servers. This can be achieved by adding another line to /etc/master.passwd. This line should contain +:::::::::/sbin/nologin, meaning Import all entries but replace the shell with /sbin/nologin in the imported entries. You can replace any field in the passwd entry by placing a default value in your /etc/master.passwd. Make sure that the line +:::::::::/sbin/nologin is placed after +@IT_EMP:::::::::. Otherwise, all user accounts imported from NIS will have /sbin/nologin as their login shell. After this change, you will only have to change one NIS map if a new employee joins the IT department. You could use a similar approach for the less important servers by replacing the old +::::::::: in their local version of /etc/master.passwd with something like this: +@IT_EMP::::::::: +@IT_APP::::::::: +:::::::::/sbin/nologin The corresponding lines for the normal workstations could be: +@IT_EMP::::::::: +@USERS::::::::: +:::::::::/sbin/nologin And everything would be fine until there is a policy change a few weeks later: The IT department starts hiring interns. The IT interns are allowed to use the normal workstations and the less important servers; and the IT apprentices are allowed to login onto the main servers. You add a new netgroup IT_INTERN, add the new IT interns to this netgroup and start to change the config on each and every machine... As the old saying goes: Errors in centralized planning lead to global mess. NIS' ability to create netgroups from other netgroups can be used to prevent situations like these. One possibility is the creation of role-based netgroups. For example, you could create a netgroup called BIGSRV to define the login restrictions for the important servers, another netgroup called SMALLSRV for the less important servers and a third netgroup called USERBOX for the normal workstations. Each of these netgroups contains the netgroups that are allowed to login onto these machines. The new entries for your NIS map netgroup should look like this: BIGSRV IT_EMP IT_APP SMALLSRV IT_EMP IT_APP ITINTERN USERBOX IT_EMP ITINTERN USERS This method of defining login restrictions works reasonably well if you can define groups of machines with identical restrictions. Unfortunately, this is the exception and not the rule. Most of the time, you will need the ability to define login restrictions on a per-machine basis. Machine-specific netgroup definitions are the other possibility to deal with the policy change outlined above. In this scenario, the /etc/master.passwd of each box contains two lines starting with ``+''. The first of them adds a netgroup with the accounts allowed to login onto this machine, the second one adds all other accounts with /sbin/nologin as shell. It is a good idea to use the ALL-CAPS version of the machine name as the name of the netgroup. In other words, the lines should look like this: +@BOXNAME::::::::: +:::::::::/sbin/nologin Once you have completed this task for all your machines, you will not have to modify the local versions of /etc/master.passwd ever again. All further changes can be handled by modifying the NIS map. Here is an example of a possible netgroup map for this scenario with some additional goodies. # Define groups of users first IT_EMP (,alpha,test-domain) (,beta,test-domain) IT_APP (,charlie,test-domain) (,delta,test-domain) DEPT1 (,echo,test-domain) (,foxtrott,test-domain) DEPT2 (,golf,test-domain) (,hotel,test-domain) DEPT3 (,india,test-domain) (,juliet,test-domain) ITINTERN (,kilo,test-domain) (,lima,test-domain) D_INTERNS (,able,test-domain) (,baker,test-domain) # # Now, define some groups based on roles USERS DEPT1 DEPT2 DEPT3 BIGSRV IT_EMP IT_APP SMALLSRV IT_EMP IT_APP ITINTERN USERBOX IT_EMP ITINTERN USERS # # And a groups for a special tasks # Allow echo and golf to access our anti-virus-machine SECURITY IT_EMP (,echo,test-domain) (,golf,test-domain) # # machine-based netgroups # Our main servers WAR BIGSRV FAMINE BIGSRV # User india needs access to this server POLLUTION BIGSRV (,india,test-domain) # # This one is really important and needs more access restrictions DEATH IT_EMP # # The anti-virus-machine mentioned above ONE SECURITY # # Restrict a machine to a single user TWO (,hotel,test-domain) # [...more groups to follow] If you are using some kind of database to manage your user accounts, you should be able to create the first part of the map with your database's report tools. This way, new users will automatically have access to the boxes. One last word of caution: It may not always be advisable to use machine-based netgroups. If you are deploying a couple dozen or even hundreds of identical machines for student labs, you should use role-based netgroups instead of machine-based netgroups to keep the size of the NIS map within reasonable limits. Important Things to Remember There are still a couple of things that you will need to do differently now that you are in an NIS environment. Every time you wish to add a user to the lab, you must add it to the master NIS server only, and you must remember to rebuild the NIS maps. If you forget to do this, the new user will not be able to login anywhere except on the NIS master. For example, if we needed to add a new user “jsmith” to the lab, we would: &prompt.root; pw useradd jsmith &prompt.root; cd /var/yp &prompt.root; make test-domain You could also run adduser jsmith instead of pw useradd jsmith. Keep the administration accounts out of the NIS maps. You don't want to be propagating administrative accounts and passwords to machines that will have users that shouldn't have access to those accounts. Keep the NIS master and slave secure, and minimize their downtime. If somebody either hacks or simply turns off these machines, they have effectively rendered many people without the ability to login to the lab. This is the chief weakness of any centralized administration system, and it is probably the most important weakness. If you do not protect your NIS servers, you will have a lot of angry users! NIS v1 Compatibility FreeBSD's ypserv has some support for serving NIS v1 clients. FreeBSD's NIS implementation only uses the NIS v2 protocol, however other implementations include support for the v1 protocol for backwards compatibility with older systems. The ypbind daemons supplied with these systems will try to establish a binding to an NIS v1 server even though they may never actually need it (and they may persist in broadcasting in search of one even after they receive a response from a v2 server). Note that while support for normal client calls is provided, this version of ypserv does not handle v1 map transfer requests; consequently, it cannot be used as a master or slave in conjunction with older NIS servers that only support the v1 protocol. Fortunately, there probably are not any such servers still in use today. NIS Servers that are also NIS Clients Care must be taken when running ypserv in a multi-server domain where the server machines are also NIS clients. It is generally a good idea to force the servers to bind to themselves rather than allowing them to broadcast bind requests and possibly become bound to each other. Strange failure modes can result if one server goes down and others are dependent upon on it. Eventually all the clients will time out and attempt to bind to other servers, but the delay involved can be considerable and the failure mode is still present since the servers might bind to each other all over again. You can force a host to bind to a particular server by running ypbind with the flag. libscrypt v.s. libdescrypt NIS crypto library One of the most common issues that people run into when trying to implement NIS is crypt library compatibility. If your NIS server is using the DES crypt libraries, it will only support clients that are using DES as well. To check which one your server and clients are using look at the symlinks in /usr/lib. If the machine is configured to use the DES libraries, it will look something like this: &prompt.user; ls -l /usr/lib/*crypt* lrwxrwxrwx 1 root wheel 13 Jul 15 08:55 libcrypt.a@ -> libdescrypt.a lrwxrwxrwx 1 root wheel 14 Jul 15 08:55 libcrypt.so@ -> libdescrypt.so lrwxrwxrwx 1 root wheel 16 Jul 15 08:55 libcrypt.so.2@ -> libdescrypt.so.2 lrwxrwxrwx 1 root wheel 15 Jul 15 08:55 libcrypt_p.a@ -> libdescrypt_p.a -r--r--r-- 1 root wheel 13018 Nov 8 14:27 libdescrypt.a lrwxr-xr-x 1 root wheel 16 Nov 8 14:27 libdescrypt.so@ -> libdescrypt.so.2 -r--r--r-- 1 root wheel 12965 Nov 8 14:27 libdescrypt.so.2 -r--r--r-- 1 root wheel 14750 Nov 8 14:27 libdescrypt_p.a If the machine is configured to use the standard FreeBSD MD5 crypt libraries they will look something like this: &prompt.user; ls -l /usr/lib/*crypt* lrwxrwxrwx 1 root wheel 13 Jul 15 08:55 libcrypt.a@ -> libscrypt.a lrwxrwxrwx 1 root wheel 14 Jul 15 08:55 libcrypt.so@ -> libscrypt.so lrwxrwxrwx 1 root wheel 16 Jul 15 08:55 libcrypt.so.2@ -> libscrypt.so.2 lrwxrwxrwx 1 root wheel 15 Jul 15 08:55 libcrypt_p.a@ -> libscrypt_p.a -r--r--r-- 1 root wheel 6194 Nov 8 14:27 libscrypt.a lrwxr-xr-x 1 root wheel 14 Nov 8 14:27 libscrypt.so@ -> libscrypt.so.2 -r--r--r-- 1 root wheel 7579 Nov 8 14:27 libscrypt.so.2 -r--r--r-- 1 root wheel 6684 Nov 8 14:27 libscrypt_p.a If you have trouble authenticating on an NIS client, this is a pretty good place to start looking for possible problems. If you want to deploy an NIS server for a heterogenous network, you will probably have to use DES on all systems because it is the lowest common standard. Greg Sutter Written by DHCP What Is DHCP? Dynamic Host Configuration Protocol DHCP Internet Software Consortium (ISC) DHCP, the Dynamic Host Configuration Protocol, describes the means by which a system can connect to a network and obtain the necessary information for communication upon that network. FreeBSD uses the ISC (Internet Software Consortium) DHCP implementation, so all implementation-specific information here is for use with the ISC distribution. What this Section Covers This handbook section attempts to describe only the parts of the DHCP system that are integrated with FreeBSD; consequently, the server portions are not described. The DHCP manual pages, in addition to the references below, are useful resources. How It Works UDP - When dhclient, the DHCP client, is executed on the client + When dhclient, the DHCP client, is executed on + the client machine, it begins broadcasting requests for configuration information. By default, these requests are on UDP port 68. The server replies on UDP 67, giving the client an IP address and other relevant network information such as netmask, router, and DNS servers. All of this information comes in the form of a DHCP "lease" and is only valid for a certain time (configured by the DHCP server maintainer). In this manner, stale IP addresses for clients no longer connected to the network can be automatically reclaimed. DHCP clients can obtain a great deal of information from the server. An exhaustive list may be found in &man.dhcp-options.5;. FreeBSD Integration FreeBSD fully integrates the ISC DHCP client, dhclient. DHCP client support is provided within both the installer and the base system, obviating the need for detailed knowledge of network configurations on any network that runs a DHCP server. dhclient has been included in all FreeBSD distributions since 3.2. sysinstall DHCP is supported by sysinstall. When configuring a network interface within sysinstall, the first question asked is, "Do you want to try DHCP configuration of this interface?" Answering affirmatively will - execute dhclient, and if successful, will fill in the network - configuration information automatically. + execute dhclient, and if successful, will fill + in the network configuration information automatically. There are two things you must do to have your system use DHCP upon startup: DHCP requirements Make sure that the bpf device is compiled into your kernel. To do this, add pseudo-device bpf to your kernel configuration file, and rebuild the kernel. For more information about building kernels, see . The bpf device is already part of the GENERIC kernel that is supplied with FreeBSD, so if you don't have a custom kernel, you shouldn't need to create one in order to get DHCP working. For those who are particularly security conscious, you should be warned that bpf is also the device that allows packet sniffers to work correctly (although they still have to be run as root). bpf is required to use DHCP, but if you are very sensitive about security, you probably shouldn't add bpf to your kernel in the expectation that at some point in the future you will be using DHCP. Edit your /etc/rc.conf to include the following: ifconfig_fxp0="DHCP" Be sure to replace fxp0 with the designation for the interface that you wish to dynamically configure. If you are using a different location for dhclient, or if you wish to pass additional flags to dhclient, also include the following (editing as necessary): dhcp_program="/sbin/dhclient" dhcp_flags="" DHCP server The DHCP server, dhcpd, is included as part of the isc-dhcp2 port in the ports collection. This port contains the full ISC DHCP distribution, consisting of client, server, relay agent and documentation. Files DHCP configuration files /etc/dhclient.conf dhclient requires a configuration file, /etc/dhclient.conf. Typically the file contains only comments, the defaults being reasonably sane. This configuration file is described by the &man.dhclient.conf.5; manual page. /sbin/dhclient dhclient is statically linked and resides in /sbin. The &man.dhclient.8; manual page gives more information about dhclient. /sbin/dhclient-script dhclient-script is the FreeBSD-specific DHCP client configuration script. It is described in &man.dhclient-script.8;, but should not need any user modification to function properly. /var/db/dhclient.leases The DHCP client keeps a database of valid leases in this file, which is written as a log. &man.dhclient.leases.5; gives a slightly longer description. Further Reading The DHCP protocol is fully described in RFC 2131. An informational resource has also been set up at dhcp.org. Chern Lee Contributed by DNS Overview BIND FreeBSD utilizes, by default, a version of BIND (Berkeley Internet Name Domain), which is the most common implementation of the DNS protocol. DNS is the protocol through which names are mapped to IP addresses, and vice versa. For example, a query for www.FreeBSD.org will receive a reply with the IP address of The FreeBSD Project's web server, whereas, a query for ftp.FreeBSD.org will return the IP address of the corresponding FTP machine. Likewise, the opposite can happen. A query for an IP address can resolve its hostname. It is not necessary to run a name server to perform DNS lookups on a system. DNS DNS is coordinated across the Internet through a somewhat complex system of authoritative root name servers, and other smaller-scale name servers who host and cache individual domain information. This document refers to BIND 8.x, as it is the stable version used in FreeBSD. BIND 9.x in FreeBSD can be installed through the net/bind9 port. RFC1034 and RFC1035 dictates the DNS protocol. Currently, BIND is maintained by the Internet Software Consortium (www.isc.org) Terminology To understand this document, some terms related to DNS must be understood. Term Definition forward DNS mapping of hostnames to IP addresses origin refers to the domain covered for the particular zone file named, bind, name server common names for the BIND name server package within FreeBSD resolver resolver a system process through which a machine queries a name server for zone information reverse DNS reverse DNS the opposite of forward DNS, mapping of IP addresses to hostnames root zone root zone literally, a ., refers to the root, or beginning zone. All zones fall under this, as do all files in fall under the root directory. It is the beginning of the Internet zone hierarchy. zone Each individual domain, subdomain, or area dictated by DNS zones examples Examples of zones: . is the root zone org. is a zone under the root zone foobardomain.org is a zone under the org. zone foo.foobardomain.org. is a subdomain, a zone under the foobardomain.org. zone 1.2.3.in-addr.arpa is a zone referencing all IP addresses which fall under the 3.2.1.* IP space. As one can see, the more specific part of a hostname appears to its left. For example, foobardomain.org. is more specific than org., as org. is more specific than the root zone. The layout of each part of a hostname is much like a filesystem: the /dev directory falls within the root, and so on. Reasons to Run a Name Server Name servers usually come in two forms: an authoritative name server, and a caching name server. An authoritative name server is needed when: one wants to serve DNS information to the world, replying authoritatively to queries. a domain, such as foobardomain.org, is registered and IP addresses need to be assigned to hostnames under it. an IP address block requires reverse DNS entries (IP to hostname). a backup name server, called a slave, must reply to queries when the primary is down or inaccessible. A caching name server is needed when: a local DNS server may cache and respond more quickly then querying an outside name server. a reduction in overall network traffic is desired. (DNS traffic has been measured to account for 5% or more of total Internet traffic) When one queries for www.FreeBSD.org, the resolver usually queries the uplink ISP's name server, and retrieves the reply. With a local, caching DNS server, the query only has to be made once to the outside world by the caching DNS server. Every additional query will not have to look to the outside of the local network, since the information is cached locally. How It Works In FreeBSD, the BIND daemon is called named for obvious reasons. File Description named the BIND daemon ndc name daemon control program /etc/namedb directory where BIND zone information resides /etc/namedb/named.conf daemon configuration file Zone files are usually contained within the /etc/namedb directory, and contain the DNS zone information served by the name server. Starting BIND BIND starting Since BIND is installed by default, configuring it all is relatively simple. To ensure the named daemon is started at boot, put the following modifications in /etc/rc.conf: named_enable="YES" To start the daemon manually (after configuring it) &prompt.root; ndc start Configuration Files BIND configuration files make-localhost Be sure to: &prompt.root; cd /etc/namedb &prompt.root; sh make-localhost to properly create the local reverse DNS zone file in /etc/namedb/localhost.rev. <filename>/etc/namedb/named.conf</filename> // $FreeBSD$ // // Refer to the named(8) manual page for details. If you are ever going // to setup a primary server, make sure you've understood the hairy // details of how DNS is working. Even with simple mistakes, you can // break connectivity for affected parties, or cause huge amount of // useless Internet traffic. options { directory "/etc/namedb"; // In addition to the "forwarders" clause, you can force your name // server to never initiate queries of its own, but always ask its // forwarders only, by enabling the following line: // // forward only; // If you've got a DNS server around at your upstream provider, enter // its IP address here, and enable the line below. This will make you // benefit from its cache, thus reduce overall DNS traffic in the Internet. /* forwarders { 127.0.0.1; }; */ Just as the comment says, to benefit from an uplink's cache, forwarders can be enabled here. Under normal circumstances, a name server will recursively query the Internet looking at certain name servers until it finds the answer it is looking for. Having this enabled will have it query the uplink's name server (or name server provided) first, taking advantage of its cache. If the uplink name server in question is a heavily trafficked, fast name server, enabling this may be worthwhile. 127.0.0.1 will not work here. Change this IP address to a name server at your uplink. /* * If there is a firewall between you and name servers you want * to talk to, you might need to uncomment the query-source * directive below. Previous versions of BIND always asked * questions using port 53, but BIND 8.1 uses an unprivileged * port by default. */ // query-source address * port 53; /* * If running in a sandbox, you may have to specify a different * location for the dumpfile. */ // dump-file "s/named_dump.db"; }; // Note: the following will be supported in a future release. /* host { any; } { topology { 127.0.0.0/8; }; }; */ // Setting up secondaries is way easier and the rough picture for this // is explained below. // // If you enable a local name server, don't forget to enter 127.0.0.1 // into your /etc/resolv.conf so this server will be queried first. // Also, make sure to enable it in /etc/rc.conf. zone "." { type hint; file "named.root"; }; zone "0.0.127.IN-ADDR.ARPA" { type master; file "localhost.rev"; }; zone "0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.IP6.INT" { type master; file "localhost.rev"; }; // NB: Do not use the IP addresses below, they are faked, and only // serve demonstration/documentation purposes! // // Example secondary config entries. It can be convenient to become // a secondary at least for the zone where your own domain is in. Ask // your network administrator for the IP address of the responsible // primary. // // Never forget to include the reverse lookup (IN-ADDR.ARPA) zone! // (This is the first bytes of the respective IP address, in reverse // order, with ".IN-ADDR.ARPA" appended.) // // Before starting to setup a primary zone, better make sure you fully // understand how DNS and BIND works, however. There are sometimes // unobvious pitfalls. Setting up a secondary is comparably simpler. // // NB: Don't blindly enable the examples below. :-) Use actual names // and addresses instead. // // NOTE!!! FreeBSD runs bind in a sandbox (see named_flags in rc.conf). // The directory containing the secondary zones must be write accessible // to bind. The following sequence is suggested: // // mkdir /etc/namedb/s // chown bind:bind /etc/namedb/s // chmod 750 /etc/namedb/s For more information on running BIND in a sandbox, see Running named in a sandbox. /* zone "domain.com" { type slave; file "s/domain.com.bak"; masters { 192.168.1.1; }; }; zone "0.168.192.in-addr.arpa" { type slave; file "s/0.168.192.in-addr.arpa.bak"; masters { 192.168.1.1; }; }; */ In named.conf, these are examples of slave entries for a forward and reverse zone. For each new zone served, a new zone entry must be added to named.conf For example, the simplest zone entry for foobardomain.org can look like: zone "foobardomain.org" { type master; file "foobardomain.org"; }; The zone is a master, as indicated by the statement, holding its zone information in /etc/namedb/foobardomain.org indicated by the statement. zone "foobardomain.org" { type slave; file "foobardomain.org"; }; In the slave case, the zone information is transferred from the master name server for the particular zone, and saved in the file specified. If and when the master server dies or is unreachable, the slave name server will have the transferred zone information and will be able to serve it. Zone Files An example master zone file for foobardomain.org (existing within /etc/namedb/foobardomain.org) is as follows: $TTL 3600 foobardomain.org. IN SOA ns1.foobardomain.org. admin.foobardomain.org. ( 5 ; Serial 10800 ; Refresh 3600 ; Retry 604800 ; Expire 86400 ) ; Minimum TTL ; DNS Servers @ IN NS ns1.foobardomain.org. @ IN NS ns2.foobardomain.org. ; Machine Names localhost IN A 127.0.0.1 ns1 IN A 3.2.1.2 ns2 IN A 3.2.1.3 mail IN A 3.2.1.10 @ IN A 3.2.1.30 ; Aliases www IN CNAME @ ; MX Record @ IN MX 10 mail.foobardomain.org. Note that every hostname ending in a . is an exact hostname, whereas everything without a trailing . is referenced to the origin. For example, www is translated into www + origin. In our fictitious zone file, our origin is foobardomain.org., so www would translate to www.foobardomain.org. The format of a zone file follows: recordname IN recordtype value DNS records The most commonly used DNS records: SOA start of zone authority NS an authoritative name server A A host address CNAME the canonical name for an alias MX mail exchange PTR a domain name pointer (used in reverse DNS) foobardomain.org. IN SOA ns1.foobardomain.org. admin.foobardomain.org. ( 5 ; Serial 10800 ; Refresh after 3 hours 3600 ; Retry after 1 hour 604800 ; Expire after 1 week 86400 ) ; Minimum TTL of 1 day foobardomain.org. the domain name, also the origin for this zone file. ns1.foobardomain.org. the primary/authoritative name server for this zone admin.foobardomain.org. the responsible person for this zone, email address with @ replaced. (admin@foobardomain.org becomes admin.foobardomain.org) 5 the serial number of the file. this must be incremented each time the zone file is modified. Nowadays, many admins prefer a yyyymmddrr format for the serial number. 2001041002 would mean last modified 04/10/2001, the latter 02 being the second time the zone file has been modified this day. The serial number is important as it alerts slave name servers for a zone when it is updated. @ IN NS ns1.foobardomain.org. This is an NS entry. Every name server that is going to reply authoritatively for the zone must have one of these entries. The @ as seen here could have been foobardomain.org. The @ translates to the origin. localhost IN A 127.0.0.1 ns1 IN A 3.2.1.2 ns2 IN A 3.2.1.3 mail IN A 3.2.1.10 @ IN A 3.2.1.30 The A record indicates machine names. As seen above, ns1.foobardomain.org would resolve to 3.2.1.2. Again, the origin symbol, @, is used here, thus meaning foobardomain.org would resolve to 3.2.1.30. www IN CNAME @ The canonical name record is usually used for giving aliases to a machine. In the example, www is aliased to the machine addressed to the origin, or foobardomain.org (3.2.1.30). CNAMEs can be used to provide alias hostnames, or round robin one hostname among multiple machines. @ IN MX 10 mail.foobardomain.org. The MX record indicates which mail servers are responsible for handling incoming mail for the zone. mail.foobardomain.org is the hostname of the mail server, and 10 being the priority of that mail server. One can have several mail servers, with priorities of 3, 2, 1. A mail server attempting to deliver to foobardomain.org would first try the highest priority MX, then the second highest, etc, until the mail can be properly delivered. For in-addr.arpa zone files (reverse DNS), the same format is used, except with PTR entries instead of A or CNAME. $TTL 3600 1.2.3.in-addr.arpa. IN SOA ns1.foobardomain.org. admin.foobardomain.org. ( 5 ; Serial 10800 ; Refresh 3600 ; Retry 604800 ; Expire 3600 ) ; Minimum @ IN NS ns1.foobardomain.org. @ IN NS ns2.foobardomain.org. 2 IN PTR ns1.foobardomain.org. 3 IN PTR ns2.foobardomain.org. 10 IN PTR mail.foobardomain.org. 30 IN PTR foobardomain.org. This file gives the proper IP address to hostname mappings of our above fictitious domain. Caching Name Server BIND caching name server A caching name server is a name server that is not authoritative for any zones. It simply asks queries of its own, and remembers them for later use. To set one up, just configure the name server as usual, omitting any inclusions of zones. Mike Makonnen Contributed by Running named in a Sandbox BIND running in a sandbox chroot For added security you may want to run &man.named.8; in a sandbox. This will reduce the potential damage should it be compromised. If you include a sandbox directory in its command line, named will &man.chroot.8; into that directory immediately upon finishing processing its command line. It is also a good idea to have named run as a non-privileged user in the sandbox. The default FreeBSD install contains a user bind with group bind. If we wanted the sandbox in the /etc/namedb/sandbox directory the command line for named would look like this: &prompt.root; /usr/sbin/named -u bind -g bind -t /etc/namedb/sandbox <path_to_named.conf> The following steps should be taken in order to successfully run named in a sandbox. Throughout the following discussion we will assume the path to your sandbox is /etc/namedb/sandbox Create the sandbox directory: /etc/namedb/sandbox Create other necessary directories off of the sandbox directory: etc and var/run copy /etc/localtime to sandbox/etc make bind:bind the owner of all files and directories in the sandbox: &prompt.root; chown -R bind:bind /etc/namedb/sandbox &prompt.root; chmod -R 750 /etc/namedb/sandbox There are some issues you need to be aware of when running named in a sandbox. Your &man.named.conf.5; file and all your zone files must be in the sandbox sandbox/etc/localtime is needed in order to have the correct time for your time zone in log messages. &man.named.8; will write its process id to a file in sandbox/var/run The Unix socket used for communication by the &man.ndc.8; utility will be created in sandbox/var/run When using the &man.ndc.8; utility you need to specify the location of the Unix socket created in the sandbox, by &man.named.8;, by using the -c switch: &prompt.root; ndc -c /etc/namedb/sandbox/var/run/ndc If you enable logging to file, the log files must be in the sandbox &man.named.8; can be started in a sandbox properly, if the following is in /etc/rc.conf: named_flags="-u bind -g bind -t /etc/namedb/sandbox <path_to_named.conf>" How to Use the Name Server If setup properly, the name server should be accessible through the network and locally. /etc/resolv.conf must contain a name server entry with the local IP address so it will query the local name server first. To access it over the network, the machine must have the name server's IP address set properly in its own name server configuration options. Security Although BIND is the most common implementation of DNS, there is always the issue of security. Possible and exploitable security holes are sometimes found. It is a good idea to subscribe to CERT and freebsd-announce to stay up to date with the current Internet and FreeBSD security issues. If a problem arises, keeping sources up to date and having a fresh build of named would not hurt. Further Reading BIND/named manual pages: &man.ndc.8; &man.named.8; &man.named.conf.5; Official ISC Bind Page BIND FAQ O'Reilly DNS and BIND 4th Edition RFC1034 - Domain Names - Concepts and Facilities RFC1035 - Domain Names - Implementation and Specification Chern Lee Contributed by Network Address Translation Overview natd FreeBSD's Network Address Translation daemon, commonly known as &man.natd.8; is a daemon that accepts incoming raw IP packets, changes the source to the local machine and re-injects these packets back into the outgoing IP packet stream. natd does this by changing the source IP address and port such that when data is received back, it is able to determine the original location of the data and forward it back to its original requester. Internet connection sharing IP masquerading The most common use of NAT is to perform what is commonly known as Internet Connection Sharing. Setup Due to the diminishing IP space in IPv4, and the increased number of users on high-speed consumer lines such as cable or DSL, people are in more and more need of an Internet Connection Sharing solution. The ability to connect several computers online through one connection and IP address makes &man.natd.8; a reasonable choice. Most commonly, a user has a machine connected to a cable or DSL line with one IP address and wishes to use this one connected computer to provide Internet access to several more over a LAN. To do this, the FreeBSD machine on the Internet must act as a gateway. This gateway machine must have two NICs--one for connecting to the Internet router, the other connecting to a LAN. All the machines on the LAN are connected through a hub or switch. _______ __________ ________ | | | | | | | Hub |-----| Client B |-----| Router |----- Internet |_______| |__________| |________| | ____|_____ | | | Client A | |__________| Network Layout With this setup, the machine without Internet access can use the machine with access as a gateway to access the outside world. kernel configuration Configuration The following options must be in the kernel configuration file: options IPFIREWALL options IPDIVERT Additionally, at choice, the following may also be suitable: options IPFIREWALL_DEFAULT_TO_ACCEPT options IPFIREWALL_VERBOSE The following must be in /etc/rc.conf: gateway_enable="YES" firewall_enable="YES" firewall_type="OPEN" natd_enable="YES" natd_interface="fxp0" natd_flags="" gateway_enable="YES" Sets up the machine to act as a gateway. Running sysctl -w net.inet.ip.forwarding=1 would have the same effect. firewall_enable="YES" Enables the firewall rules in /etc/rc.firewall at boot. firewall_type="OPEN" This specifies a predefined firewall ruleset that allows anything in. See /etc/rc.firewall for additional types. natd_interface="fxp0" Indicates which interface to forward packets through. (the interface connected to the Internet) natd_flags="" Any additional configuration options passed to &man.natd.8; on boot. Having the previous options defined in /etc/rc.conf would run natd -interface fxp0 at boot. This can also be run manually. Each machine and interface behind the LAN should be assigned IP address numbers in the private network space as defined by RFC 1918 and have a default gateway of the natd machine's internal IP address. For example, client a and b behind the LAN have IP addresses of 192.168.0.2 and 192.168.0.3, while the natd machine's LAN interface has an IP address of 192.168.0.1. Client a and b's default gateway must be set to that of the natd machine, 192.168.0.1. The natd machine's external, or Internet interface does not require any special modification for natd to work. Port Redirection The drawback with natd is that the LAN clients are not accessible from the Internet. Clients on the LAN can make outgoing connections to the world but cannot receive incoming ones. This presents a problem if trying to run Internet services on one of the LAN client machines. A simple way around this is to redirect selected Internet ports on the natd machine to a LAN client. For example, an IRC server runs on Client A, and a web server runs on Client B. For this to work properly, connections received on ports 6667 (irc) and 80 (web) must be redirected to the respective machines. The -redirect_port must be passed to &man.natd.8; with the proper options. The syntax is as follows: -redirect_port proto targetIP:targetPORT[-targetPORT] [aliasIP:]aliasPORT[-aliasPORT] [remoteIP[:remotePORT[-remotePORT]]] In the above example, the argument should be: -redirect_port tcp 192.168.0.2:6667 6667 -redirect_port tcp 192.168.0.3:80 80 This will redirect the proper tcp ports to the LAN client machines. The -redirect_port argument can be used to indicate port ranges over individual ports. For example, tcp 192.168.0.2:2000-3000 2000-3000 would redirect all connections received on ports 2000 to 3000 to ports 2000 to 3000 on Client A. These options can be used when directly running &man.natd.8; or placed within the natd_flags="" option in /etc/rc.conf. For further configuration options, consult &man.natd.8; Address Redirection address redirection Address redirection is useful if several IP addresses are available, yet they must be on one machine. With this, &man.natd.8; can assign each LAN client its own external IP address. &man.natd.8; then rewrites outgoing packets from the LAN clients with the proper external IP address and redirects all traffic incoming on that particular IP address back to the specific LAN client. This is also known as static NAT. For example, the IP addresses 128.1.1.1, 128.1.1.2, and 128.1.1.3 belong to the natd gateway machine. 128.1.1.1 can be used as the natd gateway machine's external IP address, while 128.1.1.2 and 128.1.1.3 are forwarded back to LAN clients A and B. The -redirect_address syntax is as follows: localIP The internal IP address of the LAN client. publicIP The external IP address corresponding to the LAN client. In the example, this argument would read: Like -redirect_port, these arguments are also placed within natd_flags of /etc/rc.conf. With address redirection, there is no need for port redirection since all data received on a particular IP address is redirected. The external IP addresses on the natd machine must be active and aliased to the external interface. Look at &man.rc.conf.5; to do so. Chern Lee Contributed by inetd <quote>Super-Server</quote> Overview &man.inetd.8; is referred to as the Internet Super-Server because it manages connections for several daemons. Programs that provide network service are commonly known as daemons. inetd serves as a managing server for other daemons. When a connection is received by inetd, it determines which daemon the connection is destined for, spawns the particular daemon and delegates the socket to it. Running one instance of inetd reduces the overall system load as compared to running each daemon individually in stand-alone mode. Primarily, inetd is used to spawn other daemons, but several trivial protocols are handled directly, such as chargen, auth, and daytime. This section will cover the basics in configuring inetd through its command-line options and it's configuration file, /etc/inetd.conf. Settings inetd is initialized through the /etc/rc.conf system. The inetd_enable option is set to NO by default, but is often times turned on by sysinstall with the medium security profile. Placing: inetd_enable="YES" or inetd_enable="NO" into /etc/rc.conf can enable or disable inetd starting at boot time. Additionally, different command-line options can be passed to inetd via the inetd_flags option. Command-Line Options inetd sypnosis: -d Turn on debugging. -l Turn on logging of successful connections. -w Turn on TCP Wrapping for external services. (on by default) -W Turn on TCP Wrapping for internal services which are built in to inetd. (on by default) -c maximum Specify the default maximum number of simultaneous invocations of each service; the default is unlimited. May be overridden on a per-service basis with the parameter. -C rate Specify the default maximum number of times a service can be invoked from a single IP address in one minute; the default is unlimited. May be overridden on a per-service basis with the parameter. -R rate Specify the maximum number of times a service can be invoked in one minute; the default is 256. A rate of 0 allows an unlimited number of invocations. -a Specify one specific IP address to bind to. Alternatively, a hostname can be specified, in which case the IPv4 or IPv6 address which corresponds to that hostname is used. Usually a hostname is specified when inetd is run inside a &man.jail.8;, in which case the hostname corresponds to the &man.jail.8; environment. When hostname specification is used and both IPv4 and IPv6 bindings are desired, one entry with the appropriate protocol type for each binding is required for each service in /etc/inetd.conf. For example, a TCP-based service would need two entries, one using ``tcp4'' for the protocol and the other using ``tcp6''. -p Specify an alternate file in which to store the process ID. These options can be passed to inetd using the inetd_flags option in /etc/rc.conf. By default, inetd_flags is set to -wW, which turns on TCP wrapping for inetd's internal and external services. For novice users, these parameters usually do not need to be modified or even entered in /etc/rc.conf An external service is a daemon outside of inetd, which is invoked when a connection is received for it. On the other hand, an internal service is one that inetd has the facility of offering within itself. <filename>inetd.conf</filename> Configuration of inetd is controlled through the /etc/inetd.conf file. When a modification is made to /etc/inetd.conf, inetd can be forced to re-read its configuration file by sending a HangUP signal to the inetd process as shown: Sending <application>inetd</application> a HangUP Signal &prompt.root kill -HUP `cat /var/run/inetd.pid` Each line of the configuration file specifies an individual daemon. Comments in the file are preceded by a #. The format of /etc/inetd.conf is as follows: service-name socket-type protocol {wait|nowait}[/max-child[/max-connections-per-ip-per-minute]] user[:group][/login-class] server-program server-program-arguments An example entry for the ftpd daemon using IPv4: ftp stream tcp nowait root /usr/libexec/ftpd ftpd -l service-name This is the service name of the particular daemon. It must correspond to a service listed in /etc/services. This determines which port inetd must listen to. If a new service is being created, it must be placed in /etc/services first. socket-type Either stream, dgram, raw, or seqpacket. stream must be used for connection-based, TCP daemons, while dgram is used for daemons utilizing the UDP transport protocol. protocol One of the following: Protocol Explanation tcp, tcp4 TCP IPv4 udp, udp4 UDP IPv4 tcp6 TCP IPv6 udp6 UDP IPv6 tcp46 Both TCP IPv4 and v6 udp46 Both UDP IPv4 and v6 {wait|nowait}[/max-child[/max-connections-per-ip-per-minute]] indicates whether the daemon invoked from inetd is able to handle its own socket or not. socket types must use the wait option, while stream socket daemons, which are usually multi-threaded, should use . usually hands off multiple sockets to a single daemon, while spawns a child daemon for each new socket. The maximum number of child daemons inetd may spawn can be set using the option. If a limit of ten instances of a particular daemon is needed, a /10 would be placed after . In addition to another option limiting the maximum connections from a single place to a particular daemon can be enabled. does just this. A value of ten here would limit any particular IP address connecting to a particular service to ten attempts per minute. This is useful to prevent intentional or unintentional resource consumption and Denial of Service (DoS) attacks to a machine. In this field, or is mandatory. and are optional. A stream-type multi-threaded daemon without any or limits would simply be: nowait The same daemon with a maximum limit of ten daemons would read: nowait/10 Additionally, the same setup with a limit of twenty connections per IP address per minute and a maximum total limit of ten child daemons would read: nowait/10/20 These options are all utilized by the default settings of the fingerd daemon, as seen here: finger stream tcp nowait/3/10 nobody /usr/libexec/fingerd fingerd -s user The user is the username that the particular daemon should run as. Most commonly, daemons run as the root user. For security purposes, it is common to find some servers running as the daemon user, or the least privileged nobody user. server-program The full path of the daemon to be executed when a connection is received. If the daemon is a service provided by inetd internally, then should be used. server-program-arguments This works in conjunction with by specifying the arguments, starting with argv[0], passed to the daemon on invocation. If mydaemon -d is the command line, mydaemon -d would be the value of . Again, if the daemon is an internal service, use here. Security Depending on the security profile chosen at install, many of inetd's daemons may be enabled by default. If there is no apparent need for a particular daemon, disable it! Place a # in front of the daemon in question, and send a hangup signal to inetd. Some daemons, such as fingerd, may not be desired at all because they provide an attacker with too much information. Some daemons are not security-conscious and have long, or non-existent timeouts for connection attempts. This allows an attacker to slowly send connections to a particular daemon, thus saturating available resources. It may be a good idea to place and limitations on certain daemons. By default, TCP wrapping is turned on. Consult the &man.hosts.access.5; manual page for more information on placing TCP restrictions on various inetd invoked daemons. Miscellaneous daytime, time, echo, discard, chargen, and auth are all internally provided services of inetd. The auth service provides identity (ident, identd) network services, and is configurable to a certain degree. Consult the &man.inetd.8; manual page for more in-depth information. diff --git a/en_US.ISO8859-1/books/handbook/disks/chapter.sgml b/en_US.ISO8859-1/books/handbook/disks/chapter.sgml index 4337cca380..c4e508727e 100644 --- a/en_US.ISO8859-1/books/handbook/disks/chapter.sgml +++ b/en_US.ISO8859-1/books/handbook/disks/chapter.sgml @@ -1,1284 +1,1285 @@ Disks Synopsis This chapter covers how to use disks, whether physical, memory, or networked, on FreeBSD. BIOS Drive Numbering Before you install and configure FreeBSD on your system, there is an important subject that you should be aware of, especially if you have multiple hard drives. DOS Microsoft Windows In a PC running DOS or any of the BIOS-dependent operating systems (WINxxx), the BIOS is able to abstract the normal disk drive order, and the operating system goes along with the change. This allows the user to boot from a disk drive other than the so-called primary master. This is especially convenient for some users who have found that the simplest and cheapest way to keep a system backup is to buy an identical second hard drive, and perform routine copies of the first drive to the second drive using Ghost or XCOPY . Then, if the first drive fails, or is attacked by a virus, or is scribbled upon by an operating system defect, he can easily recover by instructing the BIOS to logically swap the drives. It's like switching the cables on the drives, but without having to open the case. SCSI BIOS More expensive systems with SCSI controllers often include BIOS extensions which allow the SCSI drives to be re-ordered in a similar fashion for up to seven drives. A user who is accustomed to taking advantage of these features may become surprised when the results with FreeBSD are not as expected. FreeBSD does not use the BIOS, and does not know the logical BIOS drive mapping. This can lead to very perplexing situations, especially when drives are physically identical in geometry, and have also been made as data clones of one another. When using FreeBSD, always restore the BIOS to natural drive numbering before installing FreeBSD, and then leave it that way. If you need to switch drives around, then do so, but do it the hard way, and open the case and move the jumpers and cables. An Illustration from the Files of Bill and Fred's Exceptional Adventures: Bill breaks-down an older Wintel box to make another FreeBSD box for Fred. Bill installs a single SCSI drive as SCSI unit zero, and installs FreeBSD on it. Fred begins using the system, but after several days notices that the older SCSI drive is reporting numerous soft errors, and reports this fact to Bill. After several more days, Bill decides it's time to address the situation, so he grabs an identical SCSI drive from the disk drive "archive" in the back room. An initial surface scan indicates that this drive is functioning well, so Bill installs this drive as SCSI unit four, and makes an image copy from drive zero to drive four. Now that the new drive is installed and functioning nicely, Bill decides that it's a good idea to start using it, so he uses features in the SCSI BIOS to re-order the disk drives so that the system boots from SCSI unit four. FreeBSD boots and runs just fine. Fred continues his work for several days, and soon Bill and Fred decide that it's time for a new adventure -- time to upgrade to a newer version of FreeBSD. Bill removes SCSI unit zero because it was a bit flaky, and replaces it with another identical disk drive from the "archive." Bill then installs the new version of FreeBSD onto the new SCSI unit zero using Fred's magic Internet FTP floppies. The installation goes well. Fred uses the new version of FreeBSD for a few days, and certifies that it is good enough for use in the engineering department...it's time to copy all of his work from the old version. So Fred mounts SCSI unit four (the latest copy of the older FreeBSD version). Fred is dismayed to find that none of his precious work is present on SCSI unit four. Where did the data go? When Bill made an image copy of the original SCSI unit zero onto SCSI unit four, unit four became the "new clone," When Bill re-ordered the SCSI BIOS so that he could boot from SCSI unit four, he was only fooling himself. FreeBSD was still running on SCSI unit zero. Making this kind of BIOS change will cause some or all of the Boot and Loader code to be fetched from the selected BIOS drive, but when the FreeBSD kernel drivers take-over, the BIOS drive numbering will be ignored, and FreeBSD will transition back to normal drive numbering. In the illustration at hand, the system continued to operate on the original SCSI unit zero, and all of Fred's data was there, not on SCSI unit four. The fact that the system appeared to be running on SCSI unit four was simply an artifact of human expectations. We are delighted to mention that no data bytes were killed or harmed in any way by our discovery of this phenomenon. The older SCSI unit zero was retrieved from the bone pile, and all of Fred's work was returned to him, (and now Bill knows that he can count as high as zero). Although SCSI drives were used in this illustration, the concepts apply equally to IDE drives. Disk Naming IDE SCSI RAID fash memory Physical drives come in two main flavors, IDE, or SCSI; but there are also drives backed by RAID controllers, flash memory, and so forth. Since these behave quite differently, they have their own drivers and devices. Physical Disk Naming Conventions Drive type Drive device name IDE hard drives ad in 4.0-RELEASE, wd before 4.0-RELEASE. IDE CDROM drives acd from 4.1-RELEASE, wcd before 4.0-RELEASE. SCSI hard drives da from 3.0-RELEASE, sd before 3.0-RELEASE. SCSI CDROM drives cd Assorted non-standard CDROM drives mcd for Mitsumi CD-ROM, scd for Sony CD-ROM, matcd for Matsushita/Panasonic CD-ROM Floppy drives fd SCSI tape drives sa from 3.0-RELEASE, st before 3.0-RELEASE. IDE tape drives ast from 4.0-RELEASE, wst before 4.0-RELEASE. Flash drives fla for DiskOnChip Flash device from 3.3-RELEASE. RAID drives myxd for Mylex, and amrd for AMI MegaRAID, idad for Compaq Smart RAID. from 4.0-RELEASE. id between 3.2-RELEASE and 4.0-RELEASE.
Slices and Partitions slices partitions dangerously dedicated Physical disks usually contain slices, unless they are dangerously dedicated. Slice numbers follow the device name, prefixed with an s: da0s1. Slices, dangerously dedicated physical drives, and other drives contain partitions, which are represented as letters from a to h. b is reserved for swap partitions, and c is an unused partition the size of the entire slice or drive. This is explained in .
Mounting and Unmounting Filesystems The filesystem is best visualized as a tree, rooted, as it were, at /. /dev, /usr, and the other directories in the root directory are branches, which may have their own branches, such as /usr/local, and so on. root filesystem There are various reasons to house some of these directories on separate filesystems. /var contains the directories log/, spool/, and various types of temporary files, and as such, may get filled up. Filling up the root filesystem isn't a good idea, so splitting /var from / is often favorable. Another common reason to contain certain directory trees on other filesystems is if they are to be housed on separate physical disks, or are separate virtual disks, such as Network File System mounts, or CDROM drives. The <filename>fstab</filename> File filesystems mounted with fstab During the boot process, filesystems listed in /etc/fstab are automatically mounted (unless they are listed with ). The /etc/fstab file contains a list of lines of the following format: device /mount-point fstype options dumpfreq passno device A device name (which should exist), as explained in the Disk naming conventions above. mount-point A directory (which should exist), on which to mount the filesystem. fstype The filesystem type to pass to &man.mount.8;. The default FreeBSD filesystem is ufs. options Either for read-write filesystems, or for read-only filesystems, followed by any other options that may be needed. A common option is for filesystems not normally mounted during the boot sequence. Other options are listed in the &man.mount.8; manual page. dumpfreq The number of days the filesystem should be dumped, and passno is the pass number during which the filesystem is checked during the boot sequence. The mount Command filesystems mounting The &man.mount.8; command is what is ultimately used to mount filesystems. In its most basic form, you use: &prompt.root; mount device mountpoint There are plenty of options, as mentioned in the &man.mount.8; manual page, but the most common are: Mount Options Mount all the filesystems listed in /etc/fstab. Exceptions are those marked as noauto, excluded by the flag, or those that are already mounted. Do everything except for the actual system call. This option is useful in conjunction with the flag to determine what the mount is actually trying to do. Force the mount of an unclean filesystem (dangerous), or forces the revocation of write access when downgrading a filesystem's mount status from read-write to read-only. Mount the filesystem read-only. This is identical to using the argument to the option. fstype Mount the given filesystem as the given filesystem type, or mount only filesystems of the given type, if given the option. ufs is the default filesystem type. Update mount options on the filesystem. Be verbose. Mount the filesystem read-write. The option takes a comma-separated list of the options, including the following: nodev Do not interpret special devices on the filesystem. This is a useful security option. noexec Do not allow execution of binaries on this filesystem. This is also a useful security option. nosuid Do not interpret setuid or setgid flags on the filesystem. This is also a useful security option. The <command>umount</command> Command filesystems unmounting The &man.umount.8; command takes, as a parameter, one of a mountpoint, a device name, or the or option. All forms take to force unmounting, and for verbosity. and are used to unmount all mounted filesystems, possibly modified by the filesystem types listed after . , however, doesn't attempt to unmount the root filesystem. David O'Brien Originally contributed by Adding Disks disks adding Lets say we want to add a new SCSI disk to a machine that currently only has a single drive. First turn off the computer and install the drive in the computer following the instructions of the computer, controller, and drive manufacturer. Due the wide variations of procedures to do this, the details are beyond the scope of this document. Login as user root. After you've installed the drive, inspect /var/run/dmesg.boot to ensure the new disk was found. Continuing with our example, the newly added drive will be da1 and we want to mount it on /1 (if you are adding an IDE drive, the device name will be wd1 in pre-4.0 systems, or ad1 in most 4.X systems). partitions slices fdisk Because FreeBSD runs on IBM-PC compatible computers, it must take into account the PC BIOS partitions. These are different from the traditional BSD partitions. A PC disk has up to four BIOS partition entries. If the disk is going to be truly dedicated to FreeBSD, you can use the dedicated mode. Otherwise, FreeBSD will have to live within one of the PC BIOS partitions. FreeBSD calls the PC BIOS partitions slices so as not to confuse them with traditional BSD partitions. You may also use slices on a disk that is dedicated to FreeBSD, but used in a computer that also has another operating system installed. This is to not confuse the fdisk utility of the other operating system. In the slice case the drive will be added as /dev/da1s1e. This is read as: SCSI disk, unit number 1 (second SCSI disk), slice 1 (PC BIOS partition 1), and e BSD partition. In the dedicated case, the drive will be added simply as /dev/da1e. Using &man.sysinstall.8; sysinstall adding disks su Navigating <application>Sysinstall</application> You may use /stand/sysinstall to partition and label a new disk using its easy to use menus. Either login as user root or use the su command. Run /stand/sysinstall and enter the Configure menu. Within the FreeBSD Configuration Menu, scroll down and select the Partition item. Next you should be presented with a list of hard drives installed in your system. If you do not see da1 listed, you need to recheck your physical installation and dmesg output in the file /var/run/dmesg.boot. FDISK Partition Editor Select da1 to enter the FDISK Partition Editor. Type A to use the entire disk for FreeBSD. When asked if you want to remain cooperative with any future possible operating systems, answer YES. Write the changes to the disk using W. Now exit the FDISK editor by typing q. Next you will be asked about the Master Boot Record. Since you are adding a disk to an already running system, choose None. Disk Label Editor BSD partitions Next, Sysinstall will enter the Disk Label Editor. This is where you will create the traditional BSD partitions. A disk can have up to eight partitions, labeled a-h. A few of the partition labels have special uses. The a partition is used for the root partition (/). Thus only your system disk (e.g, the disk you boot from) should have an a partition. The b partition is used for swap partitions, and you may have many disks with swap partitions. The c partition addresses the entire disk in dedicated mode, or the entire FreeBSD slice in slice mode. The other partitions are for general use. Sysinstall's Label editor favors the e partition for non-root, non-swap partitions. Within the Label editor, create a single file system by typing C. When prompted if this will be a FS (file system) or swap, choose FS and type in a mount point (e.g, /mnt). When adding a disk in post-install mode, Sysinstall will not create entries in /etc/fstab for you, so the mount point you specify isn't important. You are now ready to write the new label to the disk and create a file system on it. Do this by typing W. Ignore any errors from Sysinstall that it could not mount the new partition. Exit the Label Editor and Sysinstall completely. Finish The last step is to edit /etc/fstab to add an entry for your new disk. Using Command Line Utilities Using Slices This setup will allow your disk to work correctly with other operating systems that might be installed on your computer and will not confuse other operating systems' fdisk utilities. It is recommended to use this method for new disk installs. Only use dedicated mode if you have a good reason to do so! &prompt.root; dd if=/dev/zero of=/dev/rda1 bs=1k count=1 &prompt.root; fdisk -BI da1 #Initialize your new disk &prompt.root; disklabel -B -w -r da1s1 auto #Label it. &prompt.root; disklabel -e da1s1 # Edit the disklabel just created and add any partitions. &prompt.root; mkdir -p /1 &prompt.root; newfs /dev/da1s1e # Repeat this for every partition you created. &prompt.root; mount -t ufs /dev/da1s1e /1 # Mount the partition(s) &prompt.root; vi /etc/fstab # Add the appropriate entry/entries to your /etc/fstab. If you have an IDE disk, substitute ad for da. On pre-4.X systems use wd. Dedicated OS/2 If you will not be sharing the new drive with another operating system, you may use the dedicated mode. Remember this mode can confuse Microsoft operating systems; however, no damage will be done by them. IBM's OS/2 however, will appropriate any partition it finds which it doesn't understand. &prompt.root; dd if=/dev/zero of=/dev/rda1 bs=1k count=1 &prompt.root; disklabel -Brw da1 auto &prompt.root; disklabel -e da1 # create the `e' partition &prompt.root; newfs -d0 /dev/rda1e &prompt.root; mkdir -p /1 &prompt.root; vi /etc/fstab # add an entry for /dev/da1e &prompt.root; mount /1 An alternate method is: &prompt.root; dd if=/dev/zero of=/dev/rda1 count=2 &prompt.root; disklabel /dev/rda1 | disklabel -BrR da1 /dev/stdin &prompt.root; newfs /dev/rda1e &prompt.root; mkdir -p /1 &prompt.root; vi /etc/fstab # add an entry for /dev/da1e &prompt.root; mount /1 Virtual Disks: Network, Memory, and File-Based Filesystems virtual disks disks virtual Aside from the disks you physically insert into your computer: floppies, CDs, hard drives, and so forth; other forms of disks are understood by FreeBSD - the virtual disks. NFS Coda disks memory These include network filesystems such as the Network Filesystem and Coda, memory-based filesystems such as md and file-backed filesystems created by vnconfig or mdconfig. + linkend="disks-vnconfig">vnconfig or + mdconfig. vnconfig: File-Backed Filesystem disks file-backed &man.vnconfig.8; configures and enables vnode pseudo-disk devices. A vnode is a representation of a file, and is the focus of file activity. This means that &man.vnconfig.8; uses files to create and operate a filesystem. One possible use is the mounting of floppy or CD images kept in files. To mount an existing filesystem image: Using vnconfig to mount an Existing Filesystem Image &prompt.root; vnconfig vn0 diskimage &prompt.root; mount /dev/vn0c /mnt To create a new filesystem image with vnconfig: Creating a New File-Backed Disk with vnconfig &prompt.root; dd if=/dev/zero of=newimage bs=1k count=5k 5120+0 records in 5120+0 records out &prompt.root; vnconfig -s labels -c vn0 newimage &prompt.root; disklabel -r -w vn0 auto &prompt.root; newfs vn0c Warning: 2048 sector(s) in last cylinder unallocated /dev/rvn0c: 10240 sectors in 3 cylinders of 1 tracks, 4096 sectors 5.0MB in 1 cyl groups (16 c/g, 32.00MB/g, 1280 i/g) super-block backups (for fsck -b #) at: 32 &prompt.root; mount /dev/vn0c /mnt &prompt.root; df /mnt Filesystem 1K-blocks Used Avail Capacity Mounted on /dev/vn0c 4927 1 4532 0% /mnt md: Memory Filesystem disks memory filesystem md is a simple, efficient means to create memory filesystems. Simply take a filesystem you've prepared with, for example, &man.vnconfig.8;, and: md Memory Disk &prompt.root; dd if=newimage of=/dev/md0 5120+0 records in 5120+0 records out &prompt.root; mount /dev/md0c /mnt &prompt.root; df /mnt Filesystem 1K-blocks Used Avail Capacity Mounted on /dev/md0c 4927 1 4532 0% /mnt Disk Quotas accounting disk space disk quotas Quotas are an optional feature of the operating system that allow you to limit the amount of disk space and/or the number of files a user, or members of a group, may allocate on a per-file system basis. This is used most often on timesharing systems where it is desirable to limit the amount of resources any one user or group of users may allocate. This will prevent one user from consuming all of the available disk space. Configuring Your System to Enable Disk Quotas Before attempting to use disk quotas it is necessary to make sure that quotas are configured in your kernel. This is done by adding the following line to your kernel configuration file: options QUOTA The stock GENERIC kernel does not have this enabled by default, so you will have to configure, build and install a custom kernel in order to use disk quotas. Please refer to for more information on kernel configuration. Next you will need to enable disk quotas in /etc/rc.conf. This is done by adding the line: enable_quotas=YES disk quotas checking For finer control over your quota startup, there is an additional configuration variable available. Normally on bootup, the quota integrity of each file system is checked by the quotacheck program. The quotacheck facility insures that the data in the quota database properly reflects the data on the file system. This is a very time consuming process that will significantly affect the time your system takes to boot. If you would like to skip this step, a variable in /etc/rc.conf is made available for the purpose: check_quotas=NO If you are running FreeBSD prior to 3.2-RELEASE, the configuration is simpler, and consists of only one variable. Set the following in your /etc/rc.conf: check_quotas=YES Finally you will need to edit /etc/fstab to enable disk quotas on a per-file system basis. This is where you can either enable user or group quotas or both for all of your file systems. To enable per-user quotas on a file system, add the userquota option to the options field in the /etc/fstab entry for the file system you want to enable quotas on. For example: /dev/da1s2g /home ufs rw,userquota 1 2 Similarly, to enable group quotas, use the groupquota option instead of the userquota keyword. To enable both user and group quotas, change the entry as follows: /dev/da1s2g /home ufs rw,userquota,groupquota 1 2 By default the quota files are stored in the root directory of the file system with the names quota.user and quota.group for user and group quotas respectively. See &man.fstab.5; for more information. Even though the &man.fstab.5; manual page says that you can specify an alternate location for the quota files, this is not recommended because the various quota utilities do not seem to handle this properly. At this point you should reboot your system with your new kernel. /etc/rc will automatically run the appropriate commands to create the initial quota files for all of the quotas you enabled in /etc/fstab, so there is no need to manually create any zero length quota files. In the normal course of operations you should not be required to run the quotacheck, quotaon, or quotaoff commands manually. However, you may want to read their manual pages just to be familiar with their operation. Setting Quota Limits disk quotas limits Once you have configured your system to enable quotas, verify that they really are enabled. An easy way to do this is to run: &prompt.root; quota -v You should see a one line summary of disk usage and current quota limits for each file system that quotas are enabled on. You are now ready to start assigning quota limits with the edquota command. You have several options on how to enforce limits on the amount of disk space a user or group may allocate, and how many files they may create. You may limit allocations based on disk space (block quotas) or number of files (inode quotas) or a combination of both. Each of these limits are further broken down into two categories; hard and soft limits. hard limit A hard limit may not be exceeded. Once a user reaches his hard limit he may not make any further allocations on the file system in question. For example, if the user has a hard limit of 500 blocks on a file system and is currently using 490 blocks, the user can only allocate an additional 10 blocks. Attempting to allocate an additional 11 blocks will fail. soft limit Soft limits, on the other hand, can be exceeded for a limited amount of time. This period of time is known as the grace period, which is one week by default. If a user stays over his or her soft limit longer than the grace period, the soft limit will turn into a hard limit and no further allocations will be allowed. When the user drops back below the soft limit, the grace period will be reset. The following is an example of what you might see when you run the edquota command. When the edquota command is invoked, you are placed into the editor specified by the EDITOR environment variable, or in the vi editor if the EDITOR variable is not set, to allow you to edit the quota limits. &prompt.root; edquota -u test Quotas for user test: /usr: blocks in use: 65, limits (soft = 50, hard = 75) inodes in use: 7, limits (soft = 50, hard = 60) /usr/var: blocks in use: 0, limits (soft = 50, hard = 75) inodes in use: 0, limits (soft = 50, hard = 60) You will normally see two lines for each file system that has quotas enabled. One line for the block limits, and one line for inode limits. Simply change the value you want updated to modify the quota limit. For example, to raise this users block limit from a soft limit of 50 and a hard limit of 75 to a soft limit of 500 and a hard limit of 600, change: /usr: blocks in use: 65, limits (soft = 50, hard = 75) to: /usr: blocks in use: 65, limits (soft = 500, hard = 600) The new quota limits will be in place when you exit the editor. Sometimes it is desirable to set quota limits on a range of uids. This can be done by use of the option on the edquota command. First, assign the desired quota limit to a user, and then run edquota -p protouser startuid-enduid. For example, if user test has the desired quota limits, the following command can be used to duplicate those quota limits for uids 10,000 through 19,999: &prompt.root; edquota -p test 10000-19999 For more information see &man.edquota.8;. Checking Quota Limits and Disk Usage disk quotas checking You can use either the quota or the repquota commands to check quota limits and disk usage. The quota command can be used to check individual user and group quotas and disk usage. Only the super-user may examine quotas and usage for other users, or for groups that they are not a member of. The repquota command can be used to get a summary of all quotas and disk usage for file systems with quotas enabled. The following is some sample output from the quota -v command for a user that has quota limits on two file systems. Disk quotas for user test (uid 1002): Filesystem blocks quota limit grace files quota limit grace /usr 65* 50 75 5days 7 50 60 /usr/var 0 50 75 0 50 60 grace period On the /usr file system in the above example this user is currently 15 blocks over the soft limit of 50 blocks and has 5 days of the grace period left. Note the asterisk * which indicates that the user is currently over his quota limit. Normally file systems that the user is not using any disk space on will not show up in the output from the quota command, even if he has a quota limit assigned for that file system. The option will display those file systems, such as the /usr/var file system in the above example. Quotas over NFS NFS Quotas are enforced by the quota subsystem on the NFS server. The &man.rpc.rquotad.8; daemon makes quota information available to the &man.quota.1; command on NFS clients, allowing users on those machines to see their quota statistics. Enable rpc.rquotad in /etc/inetd.conf like so: rquotad/1 dgram rpc/udp wait root /usr/libexec/rpc.rquotad rpc.rquotad Now restart inetd: &prompt.root; kill -HUP `cat /var/run/inetd.pid` Mike Meyer Contributed by Creating CDs CDROMs creating Introduction CDs have a number of features that differentiate them from conventional disks. Initially, they weren't writable by the user. They are designed so that they can be read continuously without delays to move the head between tracks. They are also much easier to transport between systems than similarly sized media were at the time. CDs do have tracks, but this refers to a section of data to be read continuously and not a physical property of the disk. To produce a CD on FreeBSD, you prepare the data files that are going to make up the tracks on the CD, then write the tracks to the CD. ISO 9660 filesystems ISO-9660 The ISO 9660 file system was designed to deal with these differences. It unfortunately codifies file system limits that were common then. Fortunately, it provides an extension mechanism that allows properly written CDs to exceed those limits while still working with systems that do not support those extensions. mkisofs The mkisofs program is used to produce a data file containing an ISO 9660 file system. It has options that support various extensions, and is described below. You can install it with the sysutils/mkisofs port. CD burner ATAPI Which tool to use to burn the CD depends on whether your CD burner is ATAPI or something else. ATAPI CD burners use the burncd program that is part of the base system. SCSI and USB CD burners should use the cdrecord from the sysutils/cdrtools port. burncd has a limited number of supported drives. To find out if a drive is supported, see CD-R/RW supported drives. mkisofs mkisofs produces an ISO 9660 file system that is an image of a directory tree in the Unix file system name space. The simplest usage is: &prompt.root; mkisofs imagefile.iso /path/to/tree filesystems ISO-9660 This command will create an imagefile containing an ISO 9660 file system that is a copy of the tree at /path/to/tree. In the process, it will map the file names to names that fit the limitations of the standard ISO 9660 file system, and will exclude files that have names uncharacteristic of ISO file systems. filesystems HFS filesystems Joliet A number of options are available to overcome those restrictions. In particular, enables the Rock Ridge extensions common to Unix systems, enables Joliet extensions used by Microsoft systems, and can be used to create HFS file systems used by MacOS. For CDs that are going to be used only on FreeBSD systems, can be used to disable all filename restrictions. When used with , it produces a file system image that is identical to the FreeBSD tree you started from, though it may violate the ISO 9660 standard in a number of ways. CDROMs creating bootable The last option of general use is . This is used to specify the location of the boot image for use in producing an El Torito bootable CD. This option takes an argument which is the path to a boot image from the top of the tree being written to the CD. So, given that /tmp/myboot holds a bootable FreeBSD system with the boot image in /tmp/myboot/boot/cdboot, you could produce the image of an ISO 9660 file system in /tmp/bootable.iso like so: &prompt.root; mkisofs boot/cdboot /tmp/bootable.iso /tmp/myboot Having done that, if you have vn configured in your kernel, you can mount the file system with: &prompt.root; vnconfig vn0c /tmp/bootable.iso &prompt.root; mount cd9660 /dev/vn0c /mnt At which point you can verify that /mnt and /tmp/myboot are identical. There are many other options you can use with mkisofs to fine-tune its behavior. In particular: modifications to an ISO 9660 layout and the creation of Joilet and HFS discs. See the &man.mkisofs.8; manual page for details. burncd CDROMs burning If you have an ATAPI CD burner, you can use the burncd command to burn an ISO image onto a CD. burncd is part of the base system, installed as /usr/sbin/burncd. Usage is very simple, as it has few options: &prompt.root; burncd cddevice data imagefile.iso fixate Will burn a copy of imagefile.iso on cddevice. The default device is /dev/acd0c. See &man.burncd.8; for options to set the write speed, eject the CD after burning, and write audio data. cdrecord If you do not have an ATAPI CD burner, you will have to use cdrecord to burn your CDs. cdrecord is not part of the base system; you must install it from either the port at sysutils/cdrtools or the appropriate package. Changes to the base system can cause binary versions of this program to fail, possibly resulting in a coaster. You should therefore either upgrade the port when you upgrade your system, or if you are tracking -STABLE, upgrade the port when a new version becomes available. While cdrecord has many options, basic usage is even simpler than burncd. Burning an ISO 9660 image is done with: &prompt.root; cdrecord device imagefile.iso The tricky part of using cdrecord is finding the to use. To find the proper setting, use the flag of cdrecord, which might produce results like this: CDROMs burning &prompt.root; cdrecord Cdrecord 1.9 (i386-unknown-freebsd4.2) Copyright (C) 1995-2000 Jörg Schilling Using libscg version 'schily-0.1' scsibus0: 0,0,0 0) 'SEAGATE ' 'ST39236LW ' '0004' Disk 0,1,0 1) 'SEAGATE ' 'ST39173W ' '5958' Disk 0,2,0 2) * 0,3,0 3) 'iomega ' 'jaz 1GB ' 'J.86' Removable Disk 0,4,0 4) 'NEC ' 'CD-ROM DRIVE:466' '1.26' Removable CD-ROM 0,5,0 5) * 0,6,0 6) * 0,7,0 7) * scsibus1: 1,0,0 100) * 1,1,0 101) * 1,2,0 102) * 1,3,0 103) * 1,4,0 104) * 1,5,0 105) 'YAMAHA ' 'CRW4260 ' '1.0q' Removable CD-ROM 1,6,0 106) 'ARTEC ' 'AM12S ' '1.06' Scanner 1,7,0 107) * This lists the appropriate value for the devices on the list. Locate your CD burner, and use the three numbers separated by commas as the value for . In this case, the CRW device is 1,5,0, so the appropriate input would be =1,5,0. There are easier ways to specify this value; see &man.cdrecord.1; for details. That is also the place to look for information on writing audio tracks, controlling the speed, and other things.
diff --git a/en_US.ISO8859-1/books/handbook/install/chapter.sgml b/en_US.ISO8859-1/books/handbook/install/chapter.sgml index 68a08bef0c..389b5b4b24 100644 --- a/en_US.ISO8859-1/books/handbook/install/chapter.sgml +++ b/en_US.ISO8859-1/books/handbook/install/chapter.sgml @@ -1,3494 +1,3505 @@ Jim Mock Restructured, reorganized, and parts rewritten by Installing FreeBSD Synopsis installation The following chapter will attempt to guide you through the installation of FreeBSD on your system. It can be installed through a variety of methods, including anonymous FTP (assuming you have network connectivity via modem or local network), CDROM, floppy disk, tape, an MS-DOS partition, or even NFS. No matter which method you choose, you will need to get started by creating the installation disks as described in the next section. Booting into the FreeBSD installer, even if you are not planning on installing FreeBSD right away, will provide important information about compatibility with your hardware. This information may dictate which installation options are even possible for you. It can also provide clues early-on in the process to potential problems you may come across later. installation network anonymous FTP If you plan to install FreeBSD via anonymous FTP, the only things you will need are the installation floppies. The installation program itself will handle anything else that is required. For more information about obtaining FreeBSD, see the Obtaining FreeBSD section of the Appendix. By now, you are probably wondering what exactly it is you need to do. Continue on to the installation guide. Preparing for Installation The following sections will guide you through preparing for and actually installing FreeBSD. If you find something missing, please let us know about it by sending email to the &a.doc;. Preparing for the Installation There are various things you should do in preparation for the installation. The following describes what needs to be done prior to each type of installation. The first thing to do is to make sure your hardware is supported by FreeBSD. The Hardware Notes document for your release of FreeBSD (which is usually named HARDWARE.TXT) should come in handy here. It would also be a good idea to make a list of any special cards you have installed, such as SCSI controllers, Ethernet cards, sound cards, etc.. The list should include their IRQs and IO port addresses. Creating the Installation Floppies installation boot floppies installation CDROM You may need to prepare some floppy disks. These disks will be used to boot your computer in to the FreeBSD install process. This step is not necessary if you are installing from CDROM, and your computer supports booting from the CDROM. If you do not meet these requirements then you will need to create some floppies to boot from. If you are not sure whether your computer can boot from the CDROM it does not hurt to try. Just insert the CDROM as normal and restart your computer. You might need to adjust some options in your BIOS so that your computer will try and boot from the CDROM drive before the hard disk. Even if you have the CDROM it might make sense for you to download the files. There have been occasions where bugs in the FreeBSD installer have been discovered after the CDs have been released. When this happens the copies of the images on the FTP site will be fixed as soon as possible. Obviously, it is not possible to update the CDs after they have been pressed. Acquire the Boot Floppy Images These are files with a .flp extension. If you have a CDROM release of FreeBSD then you will find the files in the floppies subdirectory. Alternatively, you can download the images from the floppies directory of the FreeBSD FTP site or your local mirror. The names of the files you will need varies between FreeBSD releases (sometimes) and the architecture you will be installing on. The installation boot image information on the FTP site provides up-to-the-minute information about the specific files you will need. Prepare the Floppy Disks You must prepare one floppy disk per image file you had to download. It is imperative that these disks are free from defects. The easiest way to test this is to format the disks for yourself. Do not trust pre-formatted floppies. If you try to install FreeBSD and the installation program crashes, freezes, or otherwise misbehaves one of the first things to suspect is the floppies. Try writing the floppy image files to some other disks, and try again. Write the Image Files to the Floppy Disks. The image files, such as kern.flp, are not regular files you copy to the disk. Instead, they are images of the complete contents of the disk. This means that you can not use commands like DOS' copy to write the files. Instead, you must use specific tools to write the images directly to the disk. DOS If you are creating the floppies on a computer running DOS then we provide a tool to do this called fdimage. If you are using the floppies from the CDROM, and your CDROM is the E: drive then you would run this: E:\> tools\fdimage floppies\kern.flp A: Repeat this command for each .flp file, replacing the floppy disk each time. Adjust the command line as necessary, depending on where you have placed the .flp files. If you do not have the CDROM then fdimage can be downloaded from the tools directory on the FreeBSD FTP site. If you are writing the floppies on a Unix system (such as another FreeBSD system) you can use the &man.dd.1; command to write the image files directly to disk. On FreeBSD you would run: &prompt.root; dd if=kern.flp of=/dev/fd0 On FreeBSD /dev/fd0 refers to the first floppy disk (the A: drive). /dev/fd1 would be the B: drive, and so on. Other Unix variants might have different names for the floppy disk devices, and you will need to check the documentation for the system as necessary. Before Installing from CDROM If your CDROM is of an unsupported type, please skip ahead to the MS-DOS Preparation section. There is not a whole lot of preparation needed if you are installing from a FreeBSD CDROM. You can either boot into the CD installation directly from DOS using the install.bat or you can make floppies with the makeflp.bat command. If the CD has El Torito boot support and your system supports booting directly from the CDROM drive (many older systems do NOT), simply insert the first CD of the set into the drive and reboot your system. You will be put into the installation menu directly from the CD. DOS If you are installing from an MS-DOS partition and have the proper drivers to access your CD, run the install.bat script provided on the CDROM. This will attempt to boot the FreeBSD installation directly from DOS. You must do this from actual DOS (i.e., boot in DOS mode) and not from a DOS window under Windows. For the easiest interface of all (from DOS), type view. This will bring up a DOS menu utility that leads you through all of the available options. Unix If you are creating the boot floppies from a Unix machine, see the Creating the Boot Floppies section of this guide for examples. Once you have booted from DOS or floppy, you should then be able to select CDROM as the media type during the install process and load the entire distribution from CDROM. No other types of installation media should be required. After your system is fully installed and you have rebooted (from the hard disk), you can mount the CDROM at any time by typing: &prompt.root; mount /cdrom Before removing the CD from the drive again, you must first unmount it. This is done with the following command: &prompt.root; umount /cdrom Do not just remove it from the drive! Before invoking the installation, be sure that the CDROM is in the drive so that the install probe can find it. This is also true if you wish the CDROM to be added to the default system configuration automatically during the installation (whether or not you actually use it as the installation media). installation network FTP Finally, if you would like people to be able to FTP install FreeBSD directly from the CDROM in your machine, you will find it quite easy. After the machine is fully installed, you simply need to add the following line to the password file (using the vipw command): ftp:*:99:99::0:0:FTP:/cdrom:/nonexistent Anyone with network connectivity to your machine can now chose a media type of FTP and type in ftp://your machine after picking Other in the FTP sites menu during the install. If you choose to enable anonymous FTP during the installation of your system, the installation program will do the above for you. Before Installing from Floppies installation floppies If you must install from floppy disk (which we suggest you do NOT do), either due to unsupported hardware or simply because you insist on doing things the hard way, you must first prepare some floppies for the installation. At a minimum, you will need as many 1.44MB or 1.2MB floppies as it takes to hold all the files in the bin (binary distribution) directory. If you are preparing the floppies from DOS, then they MUST be formatted using the MS-DOS FORMAT command. If you are using Windows, use Explorer to format the disks (right-click on the A: drive, and select "Format". Do NOT trust factory pre-formatted floppies! Format them again yourself, just to be sure. Many problems reported by our users in the past have resulted from the use of improperly formatted media, which is why we are making a point of it now. If you are creating the floppies on another FreeBSD machine, a format is still not a bad idea, though you do not need to put a DOS filesystem on each floppy. You can use the disklabel and newfs commands to put a UFS filesystem on them instead, as the following sequence of commands (for a 3.5" 1.44MB floppy) illustrates: &prompt.root; fdformat -f 1440 fd0.1440 &prompt.root; disklabel -w -r fd0.1440 floppy3 &prompt.root; newfs -t 2 -u 18 -l 1 -i 65536 /dev/fd0 Use fd0.1200 and floppy5 for 5.25" 1.2MB disks. Then you can mount and write to them like any other filesystem. After you have formatted the floppies, you will need to copy the files to them. The distribution files are split into chunks conveniently sized so that 5 of them will fit on a conventional 1.44MB floppy. Go through all your floppies, packing as many files as will fit on each one, until you have all of the distributions you want packed up in this fashion. Each distribution should go into a subdirectory on the floppy, e.g.: a:\bin\bin.aa, a:\bin\bin.ab, and so on. Once you come to the Media screen during the install process, select Floppy and you will be prompted for the rest. Before Installing from MS-DOS installation from MS-DOS To prepare for an installation from an MS-DOS partition, copy the files from the distribution into a directory named, for example, c:\FreeBSD. The directory structure of the CDROM or FTP site must be partially reproduced within this directory, so we suggest using the DOS xcopy command if you are copying it from a CD. For example, to prepare for a minimal installation of FreeBSD: C:\> md c:\FreeBSD C:\> xcopy e:\bin c:\FreeBSD\bin\ /s C:\> xcopy e:\manpages c:\FreeBSD\manpages\ /s Assuming that C: is where you have free space and E: is where your CDROM is mounted. If you do not have a CDROM drive, you can download the distribution from ftp.FreeBSD.org. Each distribution is in its own directory; for example, the bin distribution can be found in the &rel.current;/bin directory. For as many distributions you wish to install from an MS-DOS partition (and you have the free space for), install each one under c:\FreeBSD — the BIN distribution is the only one required for a minimum installation. Before Installing from QIC/SCSI Tape installation from QIC/SCSI Tape Installing from tape is probably the easiest method, short of an online FTP install or CDROM install. The installation program expects the files to be simply tarred onto the tape, so after getting all of the distribution files you are interested in, simply tar them onto the tape like so: &prompt.root; cd /freebsd/distdir &prompt.root; tar cvf /dev/rwt0 dist1 ... dist2 When you go to do the installation, you should also make sure that you leave enough room in some temporary directory (which you will be allowed to choose) to accommodate the full contents of the tape you have created. Due to the non-random access nature of tapes, this method of installation requires quite a bit of temporary storage. You should expect to require as much temporary storage as you have stuff written on tape. When starting the installation, the tape must be in the drive before booting from the boot floppy. The installation probe may otherwise fail to find it. Before Installing over a Network installation network serial (SLIP or PPP) installation network parallel (PLIP) installation network Ethernet There are three types of network installations you can do. Serial port (SLIP or PPP), Parallel port (PLIP (laplink cable)), or Ethernet (a standard Ethernet controller (includes some PCMCIA)). The SLIP support is rather primitive, and limited primarily to hard-wired links, such as a serial cable running between a laptop computer and another computer. The link should be hard-wired as the SLIP installation does not currently offer a dialing capability; that facility is provided with the PPP utility, which should be used in preference to SLIP whenever possible. If you are using a modem, then PPP is almost certainly your only choice. Make sure that you have your service provider's information handy as you will need to know it fairly early in the installation process. If you use PAP or CHAP to connect your ISP (in other words, if you can connect to the ISP in Windows without using a script), then all you will need to do is type in dial at the ppp prompt. Otherwise, you will need to know how to dial your ISP using the AT commands specific to your modem, as the PPP dialer provides only a very simple terminal emulator. Please refer to the user-ppp handbook and FAQ entries for further information. If you have problems, logging can be directed to the screen using the command set log local .... If a hard-wired connection to another FreeBSD (2.0-R or later) machine is available, you might also consider installing over a laplink parallel port cable. The data rate over the parallel port is much higher than what is typically possible over a serial line (up to 50kbytes/sec), thus resulting in a quicker installation. Finally, for the fastest possible network installation, an Ethernet adapter is always a good choice! FreeBSD supports most common PC Ethernet cards; a table of supported cards (and their required settings) is provided in the Hardware Notes for each release of FreeBSD. If you are using one of the supported PCMCIA Ethernet cards, also be sure that it is plugged in before the laptop is powered on! FreeBSD does not, unfortunately, currently support hot insertion of PCMCIA cards during installation. You will also need to know your IP address on the network, the netmask value for your address class, and the name of your machine. If you are installing over a PPP connection and do not have a static IP, fear not, the IP address can be dynamically assigned by your ISP. Your system administrator can tell you which values to use for your particular network setup. If you will be referring to other hosts by name rather than IP address, you will also need a name server and possibly the address of a gateway (if you are using PPP, it is your provider's IP address) to use in talking to it. If you want to install by FTP via a HTTP proxy (see below), you will also need the proxy's address. If you do not know the answers to all or most of these questions, then you should really probably talk to your system administrator or ISP before trying this type of installation. Before Installing via NFS installation network NFS The NFS installation is fairly straight-forward. Simply copy the FreeBSD distribution files you want onto a server somewhere and then point the NFS media selection at it. If this server supports only privileged port (as is generally the default for Sun workstations), you will need to set this option in the Options menu before installation can proceed. If you have a poor quality Ethernet card which suffers from very slow transfer rates, you may also wish to toggle the appropriate Options flag. In order for NFS installation to work, the server must support subdir mounts, e.g., if your FreeBSD 3.4 distribution directory lives on:ziggy:/usr/archive/stuff/FreeBSD, then ziggy will have to allow the direct mounting of /usr/archive/stuff/FreeBSD, not just /usr or /usr/archive/stuff. In FreeBSD's /etc/exports file, this is controlled by the . Other NFS servers may have different conventions. If you are getting permission denied messages from the server, then it is likely that you do not have this enabled properly. Before Installing via FTP installation network FTP FTP installation may be done from any FreeBSD mirror site containing a reasonably up-to-date version of FreeBSD. A full list of FTP mirrors located all over the world is provided during the install process. If you are installing from an FTP site not listed in this menu, or are having trouble getting your name server configured properly, you can also specify a URL to use by selecting the choice labeled Other in that menu. You can also use the IP address of a machine you wish to install from, so the following would work in the absence of a name server: ftp://209.55.82.20/pub/FreeBSD/&rel.current;-RELEASE There are three FTP installation modes you can choose from: active or passive FTP or via a HTTP proxy. FTP Active This option will make all FTP transfers use Active mode. This will not work through firewalls, but will often work with older FTP servers that do not support passive mode. If your connection hangs with passive mode (the default), try active! FTP Passive FTP Passive mode This option instructs FreeBSD to use Passive mode for all FTP operations. This allows the user to pass through firewalls that do not allow incoming connections on random port addresses. FTP via a HTTP proxy FTP via a HTTP proxy This option instructs FreeBSD to use the HTTP protocol (like a web browser) to connect to a proxy for all FTP operations. The proxy will translate the requests and send them to the FTP server. This allows the user to pass through firewalls that do not allow FTP at all, but offer a HTTP proxy. In this case, you have to specify the proxy in addition to the FTP server. There is another type of FTP proxy other tha HTTP proxies. This type is very uncommon, though. If you are not absolutely certain, you can assume that you have a HTTP proxy as described above. For a proxy FTP server, you should usually give the name of the server you really want as a part of the username, after an @ sign. The proxy server then fakes the real server. For example, assuming you want to install from ftp.FreeBSD.org, using the proxy FTP server foo.bar.com, listening on port 1024. In this case, you go to the options menu, set the FTP username to ftp@ftp.FreeBSD.org, and the password to your email address. As your installation media, you specify FTP (or passive FTP, if the proxy supports it), and the URL ftp://foo.bar.com:1234/pub/FreeBSD. Since /pub/FreeBSD from ftp.FreeBSD.org is proxied under foo.bar.com, you are able to install from that machine (which will fetch the files from ftp.FreeBSD.org as your installation requests them. Check Your BIOS Drive Numbering If you have used features in your BIOS to renumber your disk drives without re-cabling them then you should read first to avoid confusion. Installing FreeBSD Once you have completed the pre-installation step relevant to your situation, you are ready to install FreeBSD! Although you should not experience any difficulty, there is always the chance that you may, no matter how slight it is. If this is the case in your situation, then you may wish to go back and re-read the relevant preparation section or sections. Perhaps you will come across something you missed the first time. If you are having hardware problems, or FreeBSD refuses to boot at all, read the Hardware Guide for a list of possible solutions. sysinstall The FreeBSD boot floppies contain all of the online documentation you should need to be able to navigate through an installation. If it does not, please let us know what you found to be the most confusing or most lacking. Send your comments to the &a.doc;. It is the objective of the installation program (sysinstall) to be self-documenting enough that painful step-by-step guides are no longer necessary. It may take us a little while to reach that objective, but nonetheless, it is still our objective. Meanwhile, you may also find the following typical installation sequence to be helpful: Boot the kern.flp floppy and when asked, remove it and insert the mfsroot.flp and hit return. After a boot sequence which can take anywhere from 30 seconds to 3 minutes, depending on your hardware, you should be presented with a menu of initial choices. If the kern.flp floppy does not boot at all or the boot hangs at some stage, read the Q&A section of the Hardware Guide for possible causes. Press F1. You should see some basic usage instructions on the menu screen and general navigation. If you have not used this menu system before then please read this thoroughly. Select the Options item and set any special preferences you may have. installation standard installation express installation custom Select a Standard, Express, or Custom install, depending on whether or not you would like the installation to help you through a typical installation, give you a high degree of control over each step, or simply whiz through it (using reasonable defaults when possible) as fast as possible. If you have never used FreeBSD before, the Standard installation method is most recommended. The final configuration menu choice allows you to further configure your FreeBSD installation by giving you menu-driven access to various system defaults. Some items, like networking, may be especially important if you did a CDROM, tape, or floppy install and have not yet configured your network interfaces (assuming you have any). Properly configuring such interfaces here will allow FreeBSD to come up on the network when you first reboot from the hard disk. Pre-Installation Starting the installation will not make any changes to the system until this warning message appears : Last Chance: Are you SURE your want continue the installation? If you're running this on a disk with data you wish to save then WE STRONGLY ENCOURAGE YOU TO MAKE PROPER BACKUPS before proceeding! We can take no responsibility for lost disk contents! The install can be exited at any time prior to the final warning without changing the contents of the hard drive. Starting The Installation Process If booting from floppies, put the kern.flp disk in the floppy drive before booting the system. If the CDROM drive is a bootable type, it is not necessary to make the boot floppies. The CD must be in the drive before you boot in order to be sure it is found by the hardware probe. BIOS settings may need to be adjusted. It may be necessary to enter the BIOS setup and set it to use the CDROM or the floppy drive as the appropriate boot option. Be sure to change it back after installation to boot from the appropriate drive. It might also be necessary to turn off the BIOS Plug and Play (PnP) option so that some hardware will be detected correctly. Power down and restart the system. The normal BIOS startup screens display until it starts booting from the floppy or CDROM. If you are booting from floppies, it will ask for the mfsroot.flp floppy disk next, after which the installation will proceed. The "twirling baton" that is seen indicates that the installation program is loading. Typical booting from CDROM Verifying DMI Pool Data ........ Boot from ATAPI CD-ROM : 1. FD 2.88MB System Type-(00) /boot.config: -P Keyboard: yes BTX loader 1.00& BTX version is 1.01 Console: internal video/keyboard BIOS drive A: is disk0 BIOS drive B: is disk1 BIOS drive C: is disk2 BIOS drive C: is disk3 BIOS 639kB/64512kB available memory FreeBSD/i386 bootstrap loader, Revision 0.8 (jkh@bento.freebsd.org, Mon Nov 20 11:41:23 GMT 2000) | Hit [Enter] to boot immediately, or any other key for command prompt. Booting [kernel] in 9 seconds... _ Typical booting from floppies Verifying DMI Pool Data ........ BTX loader 1.00 BTX version is 1.01 Console: internal video/keyboard BIOS drive A: is disk0 BIOS drive C: is disk1 BIOS 639kB/261120kB available memory FreeBSD/i386 bootstrap loader, Revision 0.8 (jkh@narf.osd.bsdi.com, Sat Apr 21 08:46:19 GMT 2001) /kernel text=0x24f1bb data=0x307ac+0x2062c | Please insert MFS root floppy and press enter: A beep will sound and a screen message will say to remove the kern.flp disk, insert the mfsroot.flp disk and press ENTER. The loading of the installation program will then continue. Hit [Enter] to boot immediately, or any other key for command prompt. Booting [kernel] in 9 seconds... _ Regardless of how the installation program is started, the boot prompt will appear with a countdown to boot. Do nothing and in about 10 seconds, it will continue to boot or press ENTER to continue immediately. Starting UserConfig This starts the UserConfig program which is used to tell the system what hardware to probe and where to look. The best way to learn the UserConfig is to practice a few times. The method recommended for new users is "Start kernel configuration in full screen Visual mode". Press the down arrow key to highlight the item and then press ENTER.
Start Kernel Configuration Menu
Layout of UserConfig The first screen shows the layout of UserConfig and indicates the number of hardware conflicts present. The categories of device drivers (Storage, Network, etc.) are initially shown as a collapsed lists and can be expanded.
UserConfig
As the menu at the bottom indicates, pressing ? will display information about screen layout, moving around, altering the list/parameters, and saving changes. When finished reviewing the instructions, press Q to return to the UserConfig kernel settings editor. Resolve Hardware Conflicts The first operating system kernel installed is a "GENERIC" kernel. It includes a wide variety of hardware probes for different system hardware configurations. Probing is the name used for the process of detecting the presence of particular hardware. The drivers included in the GENERIC kernel often have the same IRQ/Port information and will be indicated as "Conflicts". The UserConfig utility is used to disable the unnecessary hardware probes and eliminate the conflicts. The objective is to specify the hardware probes to be "Active" in the system and have no conflicts between them. Certain situations will have "permitted conflicts" and will be indicated at the bottom of the Editor screen. Pressing X will expand all of the collapsed fields so the conflicts can be examined in detail.
Typical Hardware Conflicts
Most of the conflicts are generated by hardware that is not present and should be eliminated first. In general, do not disable the Keyboard (atkbd0) or the Syscons console driver (sc0). You need these. If a USB keyboard is being used, it may be necessary to disable the atkbd0 keyboard driver. Disable unused drivers by highlighting and pressing DELETE. This will move the driver to the Inactive Driver list and reduce the total number of conflicts if one had existed. Eliminate all the unused drivers first. The conflicts that are left need to be examined. If they do not have the indication of an "allowed conflict" in the message area, then either the IRQ/address for device probe will need to be changed - or - the IRQ/address on the hardware will need to be changed.
Start Hardware Probe When the hardware conflicts have been resolved, the probe is started. In this example, moving all the unused device probes to the "Inactive" list left no conflicts.
User Config Completed
The actual probing can now be started by pressing Q to quit. A message will appear : Save these parameters before exiting? ([Y]es/[N]o/[C]ancel) Answer Y to save the parameters and the probing will start. The results will scroll off the screen and the Main Installation screen will display.
Viewing Probe Results
Sysinstall Main Menu
The results of the probing can be viewed by pressing the SCROLL LOCK and using PageUp and PageDown to view the results. Pressing SCROLL LOCK again will return to the Main Installation screen. Typical hardware probe results: avail memory = 58880000 (57500K bytes) Preloaded elf kernel "kernel" at 0xc065d000. md1: Malloc disk npx0: <math processor> on motherboard npx0: INT 16 interface pcib0: <Host to PCI bridge> on motherboard pci0: <PCI bus> on pcib0 pcib1: <VIA 82C598MVP (Apollo MVP3) PCI-PCI (AGP bridge> at device 1.0 on pci0 pci1: <PCI bus> on pcib1 pci1: <Matrox MGA G200 AGP graphics accelerator> at 0.0 irq 11 isab0: <VIA 82C586 PCI-ISA bridge> at device 7.0 on pci0 isa0: <ISA bus> on isab0 atapci0: <VIA 82C586 ATA33 controller> port 0xe000-0xe00f at device 7.1 on pci0 ata0: at 0x1f0 irq 14 on atapci0 uhci0: <VIA 83C572 USB controller> port 0xe400-0xe41f irq 10 at device 7.2 on pci0 usb0: <VIA 83C572 USB controller> on uhci0 usb0: USB revision 1.0 uhub0: VIA UHCI root hub, class 9/0, rev 1.00/1.00, addr 1 uhub0: 2 ports with 2 removable, self powered chip1: <VIA 82C586B ACPI interface> at device 7.3 on pci0 isa0: too many dependant configs (8) isa0: unexpected small tag 14 fdc0: <NEC 72065B or clone> at port 0x3f0-0x3f5,0x3f7 irq6 drq2 on isa0 fdc0: FIFO enabled, 8 bytes threshold fd0: <1440-KB 3.5" drive> on fdc0 drive 0 atkbdc0: <keyboard controller (i8042)> at port 0x60-0x6f on isa0 atkbd0: <AT Keyboard> flags 0x1 irq 1 on atkbdc0 kbd0 at atkbd0 psm0: <PS/2 Mouse> irq 12 on atkbdc0 psm0: model Generic PS/2 mouse, device ID 0 vga0: <Generic ISA VGA> at port 0x3c0-0c3df iomem 0xa0000-0xbffff on isa0 sc0: <System console> at flags 0x100 on isa0 sc0: VGA <16 virtual consoles, flags-0x300> sio0 at port 0x3f8-0x3ff irq 4 flags 0x10 on isa0 sio0: type 16550A sio1: at port 0x2f8-0x2ff irq3 on isa0 sio1: type 16550A ppc0: <Parallel port> at port 0x378-0x37f irq 7 on isa0 ppc0: SMC-like chipset (ECP/EPP/PS2/NIBBLE) in COMPATIBLE mode ppc0: FIFO with 16/16/15 bytes threshold ppi0: <Parallel I/O> on ppbus0 plip0: <PLIP network interface> on ppbus0 ad0: 8063MB <IBM-DHEA-38451> [16383/16/63] at ata0-master using UDMA33 acd0: CDROM <DELTA OTC-H101/ST3 F/W by OIPD> at ata0-slave using PIO4 Mounting root from ufs:/dev/md0c /stand/sysinstall running as init on vty0 The results of the hardware probing will depend on the system hardware. Check it carefully to confirm it found the hardware. Hardware problems should be corrected before continuing with the installation. It might be useful to record the probe results until the system is up and running. This installation produced messages which needed checking. Information regarding these messages were found by searching the mailing lists (questions and bugs). - The "unexpected tag 14" or "unexpected small tag 14" + The unexpected tag 14 or + unexpected small tag 14 indication can be ignored. This should disappear in future releases. An ISA-device (AWE64 sound card) gave too many proposals for - possible PnP-Configurations and produced "isa0: too many - dependant configs (8)". This should be harmless. Support for + possible PnP-Configurations and produced isa0: too many + dependant configs (8). This should be harmless. Support for the sound card can be added after installation by building a new kernel with the sound driver or by loading the sound modules dynamically.
Changing UserConfig Device Probing If you need to make changes to the UserConfig device probing, its easy to exit the sysinstall program and start over again. Its also a good way to become more familar with the process.
Select Sysinstall Exit
Use the arrow keys to select "Exit Install" from the Main Install Screen menu. The following message will display: User Confirmation Requested Are you sure you wish to exit? The system will reboot (be sure to remove any floppies from the drives). [ Yes ] No The install program will start again if the CDROM is left in the drive and [Yes] is selected. If booting from floppies, to restart the installation it will be necessary to remove the mfs.root floppy and replace it with kern.flp before rebooting. This will allow trying the device probing a few times and fine-tune it before continuing with the installation process.
How To Use Sysinstall
Select Usage From Main Menu
To learn how to use the menu system, use the arrow keys to select "Usage" and press ENTER. The instructions for using the menu system will display. After reviewing, pressing ENTER will return to the Main Menu.
Selecting The Documentation Menu From the Main Menu, select "Doc" with the arrow keys and press ENTER.
Selecting Documentation Menu
This will display the Documentation Menu.
Sysinstall Documentation Menu
It is important to read the documents provided. To view a document, select it with the arrow keys and press ENTER. When finished reading a document, pressing ENTER will return to the Documentation Menu. To return to the Main Installation Menu, select "Exit" with the arrow keys and press ENTER.
Selecting The Keymap Menu To change the keyboard mapping, use the arrow keys to select "Keymap" from the menu and press ENTER
Sysinstall Main Menu
A different keyboard mapping may be chosen by selecting the menu item using up/down arrow keys and pressing SPACE. Pressing SPACE again will unselect the item. When finished, choose the [OK] item using the arrow keys and press ENTER. Only a partial list is shown in this screen representation. Selecting [CANCEL] will use the default keymap and return to the Main Install Menu.
Sysinstall Keymap Menu
Installation Options Screen Select "Options" and press ENTER
Sysinstall Main Menu
Sysinstall Options
The default values are usually fine for most users and do not need to be changed. The description of the selected item will appear at the bottom of the screen highlighted in blue. Notice that one of the options is "Use Defaults" to reset all values to startup defaults. Press F1 to read the help screen about the various options. Pressing Q will return to the Main Install menu.
Installation Begin A Standard Installation The "Standard" installation is the option recommended for those new to unix or FreeBSD. Use the arrow keys to select "Standard" and then press ENTER to start the installation.
Begin Standard Installation
FDISK Partition Editor Message In the next menu, you will need to set up a DOS-style ("fdisk") partitioning scheme for your hard disk. If you simply wish to devote all disk space to FreeBSD (overwriting anything else that might be on the disk(s) selected) then use the (A)ll command to select the default partitioning scheme followed by a (Quit. If you wish to allocate only free space to FreeBSD, move to a partition marked "unused" and use the (C)reate command. [ OK ] [ Press enter to continue ]
Select Drive for FDISK
The following instructions for FDISK are for using the entire hard disk for the FreeBSD installation. If you want to use multiple operating systems, please refer to the tutorials at http://www.freebsd.org/tutorials
FDISK Partition Editor The FDISK Partition Editor will display the current hard disk settings. The appearance of the screen will vary depending on the size of the hard disk installed and how it was set up previously. The following screen representation would be similar to a system which had DOS/Windows installed. Pressing F1 will display important information about using the FDISK Partition Editor.
Typical Fdisk Partitions Before Editing
Creating a FreeBSD Slice using the Entire Disk The tutorial Installing and Using FreeBSD With Other Operating Systems provides information on multi-os installations. For this particular system, A was selected to use the entire disk for the FreeBSD installation. Remember, all data currently on the hard disk will be lost using this method. The following illustrates how a FDISK Partition Editor screen will appear after choosing to use the entire hard disk and to remain compatible with future operating systems. The first line indicates the space allocated for the master boot record. The FreeBSD slice was created as shown on the second line. The next step is to set the freebsd slice as bootable.
Fdisk Partition Using Entire Disk
Use the arrow keys to highlight the FreeBSD slice and press S to set the slice as bootable. The illustration below shows the FreeBSD Slice as set as bootable. The flags should indicate "CA" before you leave this screen. When finished, press Q to save the changes and quit and continue with the installation.
Install a Boot Manager First, highlight the boot manager option desired using the arrow keys, then press SPACE. An asterik "*" will indicate the selection chosen. This installation was solely FreeBSD so a boot manager was not needed. When finished, select [OK] and press ENTER.
Sysinstall Boot Manager Menu
The help screen discusses the problems that can be encountered when trying to share the hard disk between operating systems. If there is more than one drive, it will return to the Select Drives screen after the boot manager selection.
Exit Select Drive
Make sure [OK] is highlighted, then press ENTER to continue with the installation.
Initial Disklabel Screen Message Now, you need to create BSD partitions inside of the fdisk partition(s) just created. If you have a reasonable amount of disk space (200MB or more) and don't have any special requirements, simply use the (A)uto command to allocate space automatically. If you have more specific needs or just don't care for the layout chosen by (A)uto, press F1 for more information on manual layout. [ OK ] [ Press enter to continue ] There are no partitions shown when you first enter the editor.
Sysinstall Disklabel Editor
Pressing F1 will give instructions for using the DiskLabel Editor. Press Q to continue.
Auto Defaults for Partitions Pressing A displayed the suggested disklabels for this particular disk size. If a small hard disk is being used, the default values may be appropriate.
Sysinstall Disklabel Editor With Auto Defaults
Creating Custom Partitions Write down the auto defaults for all the file systems (/, swap, /var, /usr). Using the arrow keys, select the first partition ( / ) and press D to delete the partition. Delete all the partitions in the same manner. It is easiest to create the partitions in the same order shown by the auto default. Example Custom Partition To create the root partition, first press C and a dialog box will appear showing the total space available in blocks :
Free Space For Root Partition
This example will set the root partition to 100M. First, delete the entry using the BACKSPACE and enter the desired value :
Edit Root Partition Size
With [OK] highlighted, then press ENTER. The following dialog box will display :
Choose The Root Partition Type
The root partition needs to be a file system. With "FS" and [OK] highlighted, press ENTER. The next dialog box to appear is to enter the mount point for the root partition. Enter "/" for the root partition mount point. With the [OK] highlighted, press ENTER.
Choose The Root Mount Point
The swap, /var and /usr partitions are created in the same way. Be sure to choose "swap" as the filesystem type for the swap partition. Generally the swap value is twice the amount of RAM in the system. For this system, the "swap" partition will be set to 516M. The "/var" partition will be set to 100M and the "/usr" partition will get the remaining amount of disk space. Your final FreeBSD DiskLabel Editor screen will appear similar although your values chosen may be different. Press Q to finish.
Sysinstall Disklabel Editor
Select The Distribution Set I chose to install everything using the "All" option since I had the hard drive space. If you're concerned about space, consider the other distribution options. Select "All" using the arrow keys to highlight the item and press the SPACEBAR. Notice that the instructions below give pressing [ENTER] as a means to exit.
Choose Distributions
Installing The Ports Collection User Confirmation Requested Would you like to install the FreeBSD ports collection? This will give you ready access to over 5000 ported software packages, at a cost of around 70MB of disk space when "clean" and possibly much more than that if a lot of the distribution tarballs are loaded (unless you have the extra CDs from a FreeBSD CDROM distribution available and can mount it on /cdrom, in which case this is far less of a problem). The ports collection is a very valuable resource and well worth having on your /usr partition, so it is advisable to say Yes to this option. For more information on the ports collection & the latest ports, visit: http://www.freebsd.org/ports [ Yes ] No The installation program does not check to see if you have adequate space. Select this option only if you have adequate hard disk space. The ports can be added as needed later. The install program returns to the Choose Distributions screen. Select "EXIT" with the arrow keys and press ENTER to continue with the installation.
Confirm Distributions
Installation Media If Installing from a CDROM, use the arrow keys to highlight the "Install from a FreeBSD CDROM" option. Make sure [OK] is highlighted, then press ENTER to proceed with installation.
Choose Installation Media
Press F1 to display the Online Help for installation media. Press ENTER to return to the media selection menu.
Final Warning The installation can now proceed if desired. This is also the last chance for aborting the installation to prevent changes to the hard drive. This is the point of no return. User Confirmation Requested Last Chance! Are you SURE you want to continue the installation? If you're running this on a disk with data you wish to save then WE STRONGLY ENCOURAGE YOU TO MAKE PROPER BACKUPS before proceeding! We can take no responsibility for lost disk contents! [ Yes ] No Continuing The Installation Select "Yes" and Press ENTER to proceed. The installation time will vary according to the distribution chosen and installation media used. There will be a series of messages displayed indicating the status. When the installation is complete when the following message is displayed : Message Congratulations! You now have FreeBSD installed on your system. We will now move on to the final configuration questions. For any option you do not wish to configure, simply select No. If you wish to re-enter this utility after the system is up, you may do so by typing: /stand/sysinstall . [ OK ] [ Press enter to continue ] Press ENTER to proceed with post-installation configurations. Aborting The Installation Selecting [No] and pressing ENTER will abort the installation so no changes will be made to your system. The following message will appear : Message Installation complete with some errors. You may wish to scroll through the debugging messages on VTY1 with the scroll-lock feature. You can also choose "No" at the next prompt and go back into the installation menus to try and retry whichever operations have failed. [ OK ] Pressing ENTER will return to the Main Installation Menu to exit the installation.
Post-installation Configuration of various options follows the successful installation. A option can be configured by re-entering the configuration options before booting the new FreeBSD system or after installation using /stand/sysinstall. Network Device Configuration If you previously configured PPP for an FTP install, this screen will not re-appear. For detailed information on Local Area Networks and configuring FreeBSD as a gateway/router refer to the tutorial PPP- Pendantic PPP Primer. User Confirmation Requested Would you like to configure Ethernet or SLIP/PPP network devices? [ Yes ] No This option allows configuration of network devices by selecting [Yes] and pressing ENTER
Selecting An Ethernet Device
Select the appropriate interface and press ENTER. User Confirmation Requested Do you want to try IPv6 configuration of the interface? Yes [ No ] In this private local area network the current Internet type protocol (IPv4) was sufficient and "No" was selected with the arrow keys and ENTER pressed. If you want to try the new Internet protocol (IPv6), choose [Yes] and press ENTER. If yes is chosen, it will take several seconds for scanning RA servers. User Confirmation Requested Do you want to try DHCP configuration of the interface? Yes [ No ] There is no DHCP (Dynamic Host Configuration Protocol) so "No" was selected with the arrow keys and ENTER pressed. - Answering [Yes] will execute dhclient, and if successful, + Answering [Yes] will execute dhclient, + and if successful, will fill in the network configuration information automatically. Refer to the FreeBSD Handbook for more information. The following Network Configuration screen shows the configuration of the ethernet device for a system that will act as the gateway for a Local Area Network.
Set Network Configuration For ed0
Use TAB to select the information fields and fill in appropriate information: Host The fully-qualified hostname, e.g. k6-2.weeble.com in this case. Domain The name of the domain that your machine is in, e.g. weeble.com for this case. IPv4 Gateway IP address of host forwarding packets to non-local destinations. Fill this in only if the machine is a node on the network. Leave this field blank if the machine is the gateway to the Internet for the network. Name server IP address of your local DNS server. There is no local DNS server on this private local area network so the IP address of the provider's DNS server (208.163.10.2) was used. IPv4 address The IP address to be used for this interface was (192.168.0.1). Netmask The address block being used for this local area network is a Class C block (192.168.0.0 - 192.168.255.255). The default netmask is for a Class C network (255.255.255.0). Extra options to ifconfig - Any interface-specific options to ifconfig you would - like to add. There were none in this case. + Any interface-specific options to ifconfig + you would like to add. There were none in this case. Use TAB to select [OK] when finished and press ENTER. User Confirmation Requested Would you like to Bring Up the ed0 interface right now? [ Yes ] No Choosing [Yes] and pressing ENTER will bring the machine up on the network and be ready for use after leaving leaving the installation.
Configure Gateway User Confirmation Requested Do you want this machine to function as a network gateway? [ Yes ] No [Yes] was selected and ENTER pressed since this machine will be acting as the gateway for a local area network and forwarding packets between other machines. Anonymous FTP Deny Anonymous FTP Selecting [No] and pressing ENTER will still allow users who have accounts with passwords to use ftp. User Confirmation Requested Do you want to have anonymous FTP access to this machine? Yes [ No ] With [No] highlighted, press ENTER to continue with post-installation configuration. Allow Anonymous FTP User Confirmation Requested Do you want to have anonymous FTP access to this machine? [ Yes ] No If you select [Yes] and press ENTER you would be allowing anonymous ftp connections. Be aware of the security considerations if you elect to allow this. To allow anonymous FTP, use the arrow keys to select [Yes] and press ENTER. The following screens (or similar) will appear :
Default Anonymous FTP Configuration
Pressing F1 will display the help : This screen allows you to configure the anonymous FTP user. The following configuration values are editable: UID: The user ID you wish to assign to the anonymous FTP user. All files uploaded will be owned by this ID. Group: Which group you wish the anonymous FTP user to be in. Comment: String describing this user in /etc/passwd FTP Root Directory: Where files available for anonymous FTP will be kept. Upload subdirectory: Where files uploaded by anonymous FTP users will go. The ftp root directory will be put in /var by default. If you do not have enough room there for the anticipated FTP needs, the /usr directory could be used by setting the FTP Root Directory to /usr/ftp. When you are satisfied with the values, press ENTER to continue. User Confirmation Requested Create a welcome message file for anonymous FTP users? [ Yes ] No If you select [Yes] and press ENTER, an editor will automatically start allowing you to edit the message.
Edit The FTP Welcome Message
This is a text editor called ee. Use the instructions to change the message or change the message later using a text editor of your choice. Note the file name/location at the bottom. Press ESC and a pop-up menu will default to "a) leave editor". Press ENTER to exit and continue.
Configure Network File Services NFS Server User Confirmation Requested Do you want to configure this machine as an NFS server? Yes [ No ] If there is no need for a Network File System server or client, select [No] and press ENTER. If [Yes] is chosen, a message will pop-up indicating that the the exports file must be created. Press Enter to continue. Message Operating as an NFS server means that you must first configure an /etc/exports file to indicate which hosts are allowed certain kinds of access to your local file systems. Press [ENTER] now to invoke an editor on /etc/exports [ OK ] A text editor will start allowing the exports file to be created and edited.
Editing the Exports File
Use the instructions to add the actual exported filesystems now or later using a text editor of your choice. Note the filename/location at the bottom. Press ESC and a pop-up menu will default to "a) leave editor". Press ENTER to exit and continue.
NFS Client With the arrow keys, select [Yes] or [No] as appropriate and press ENTER. This example shows the NFS client option as [No]. User Confirmation Requested Do you want to configure this machine as an NFS client? Yes [ No ]
Security Profile A "security profile" is a set of configuration options that attempts to achieve the desired ratio of security to convenience by enabling and disabling certain programs and other settings. Refer to the FAQ for more information. Selecting [No] and pressing ENTER will set the security profile to "medium" (recommended for new users) and continue the installation. User Confirmation Requested Do you want to select a default security profile for this host (select No for "medium" security)? [ Yes ] No Selecting [Yes] and pressing ENTER will allow selecting a different security profile.
Security Profile Options
Press F1 to display the help. Press ENTER to return to selection menu. Use the arrow keys to choose the medium level [DEFAULT] unless your are sure that another level is required for your needs. With [OK] highlighted, press ENTER. Message Moderate security settings have been selected. This means that most "popular" network services and mechanisms like inetd(8) have been enabled by default for a comfortable user experience but with possible trade-offs in system security. If this bothers you and you know exactly what your are doing, select the high high security profile instead. To change any of these settings later, edit /etc/rc.conf. [ OK ] [ Press enter to continue ] Press ENTER to continue with the post-installation configuration.
System Console Settings There are several options available to customize the system console. To view and configure the options, select [Yes] and press ENTER. User Confirmation Requested Would you like to customize your system console settings? [ Yes ] No A commonly used option is the screensaver. Use the arrow keys to select "Saver" and then press ENTER.
Screensaver Options
First, select the desired screen saver using the arrow keys and then press SPACE. The "X" will indicate the selected screensaver.
Screensaver Options
The default time interval is 300 seconds. To change the time interval, select "Timeout" using the arrow keys and press SPACE. A pop-up menu will appear :
Screensaver Timeout
The value can be changed, then select [OK] and press ENTER to return to the System Screensaver options menu. At the Screensaver Menu, select [OK] and press ENTER again to return to the System Console options menu.
System Console Configuration Exit
Selecting [EXIT] and pressing ENTER will continue with the post-installation configurations.
Setting The Time Zone Setting the timezone for your machine will allow it to automatically correct for any regional time changes and perform other timezone related functions properly. The selection menus will vary according to your geographical selections. User Confirmation Requested Would you like to set this machine's time zone now? [ Yes ] No Select [Yes] and press ENTER to set the time zone. User Confirmation Requested Is this machine's CMOS clock set to UTC? If it is set to local time please choose NO here! Yes [ No ] If the machine's CMOS clock is set to local time select [No] with the arrow keys and then press ENTER. If the CMOS clock is set to GMT or UTC, select [Yes] and press ENTER.
Select Your Region
The appropriate region is selected using the arrow keys and then press ENTER.
Select Your Country
Select the appropriate country using the arrow keys and press ENTER. This is a partial chart of the country selection menu.
Select Your Timezone
The appropriate time zone is selected using the arrow keys and pressing ENTER. Again, this is a partial chart. Confirmation Does the abbreviation 'EDT' look reasonable? [ Yes ] No Confirm the abbreviation for the time zone is correct. If it looks okay, press ENTER to continue with the post-installation configuration.
Linux Compatibility User Confirmation Requested Would you like to enable Linux binary compatibility? [ Yes ] No Selecting [Yes] and pressing ENTER will allow running Linux software on FreeBSD. The install will proceed to add the appropriate packages for Linux compatibility. If installing by FTP, the machine will need to be connected to the internet. Sometimes a remote ftp site will not have all the distributions like the Linux binary compatibility. This can be installed later if necessary. Mouse Settings This option will allow you to cut and past text in the console and user programs with a 3-button mouse. If using a 2-button mouse, refer to manual page, &man.moused.8;, after installation for details on emulating the 3-button style. This example depicts a non-USB mouse. User Confirmation Requested Does this system have a non-USB mouse attached to it? [ Yes ] No Select [Yes] for a non-USB mouse or [No] for a USB mouse and press ENTER.
Select Mouse Protocol Type
Use the arrow keys to select "Type" and press ENTER
Set Mouse Protocol
The mouse in this example is a PS/2 type, so the default "Auto" was appropriate. To change protocol, use the arrow keys and then press SPACE. Select [OK] and press ENTER to exit this menu.
Configure Mouse Port
Use the arrow keys to select "Port" and press ENTER.
Setting The Mouse Port
This system had a PS/2 mouse, so the default "PS/2" was appropriate. To change the port, use the arrow keys and then press the space bar. Select [OK] and press ENTER to exit this menu.
Enable The Mouse Daemon
Last, the mouse daemon is enabled and tested.
Test The Mouse Daemon
The cursor moved around the screen so the mouse daemon is running: Select [YES] to return to the previous menu then select "Exit" with the arrow keys and press ENTER to return to continue with the post-installation configuration.
Configure X-Server User Confirmation Requested Would you like to configure your X server at this time? [ Yes ] No This can be done later using /stand/sysinstall if you don't have graphics card and monitor information handy. Equipment damage can occur if settings are incorrect. Select [Yes] and press ENTER to proceed with configuring the X server. Select Configuration Method
Select Configuration Method Menu
There are several ways to configure the X server. XF86Setup is fully graphical and probably the easiest. Use the arrow keys to select the "XF86Setup" option and press ENTER. Message You have configured and been running the mouse daemon. Choose "/dev/sysmouse" as the mouse port and "SysMouse" or "MouseSystems" as the mouse protocol in the X configuration utility. [ OK ] [ Press enter to continue ] The mouse daemon previously configured has been detected. Press ENTER to continue. Press [Enter] to switch to graphics mode. This may take a while... [ OK ] Press ENTER to switch to the graphics mode and continue. It will not try to switch to the graphics mode until ENTER is pressed. The screen will go black and then shortly a screen with a large "X" in the center will appear. Be patient and wait. After a few more moments, the XF86 Setup Introduction will appear. Read all instructions carefully. Press ENTER to continue.
X-Mouse The mouse is the first item to be configured. The mouse daemon was already running and "Emulate3Buttons" was added for my mouse type. Click on "Apply" and check the mouse actions are working properly. X-Keyboard Click on the "Keyboard" menu item. The default settings were fine for my keyboard. Select the options appropriate for your situation then click on "Apply". Video Card Click on the "Card" menu item. Select the appropriate video card from the list using the scrollbar. Clicking on your card will show as "Card selected:" above the list box. Next, the "Detailed Setup" was selected just to check any details. Monitor Click on the "Monitor" menu item. There are two ways to proceed. One method requires that you enter the horizontal and vertical sweep capabilities of your monitor. Choosing one of the options listed that the monitor is the method used in the illustration. Do not exceed the ratings of your monitor. Damage could occur. If you have doubts select "ABORT" and get the information. The remainder of the installation process will be unaffected and configuring the X-Server can be done later using /stand/sysinstall. After selecting a listed option, the screen will display the horizontal and vertical sweep rates that will be used. Compare those to the monitor specifications. The monitor must be capable of using those ranges. Video Mode Selection Click on the "Modeselection" menu item. Selected the modes and color depth appropriate for the system. Other These are generally reasonable values. Verify all the settings once again and select "Done". It will then attempt to switch to x-mode to verify the settings. If nothing appears or appears wrong, kill the x-server using CTRLALTBACKSPACE and adjust the settings or revisit them after installation. Saving Configuration After selecting [DONE] the following message will display: If you've finished configuring everything press the Okay button to start the X server using the configuration you've selected. If you still wish to configure some things, press one of the buttons at the top and then press "Done" again, when you've finished. After selecting [OKAY], some messages will briefly appear advising to wait and attempting to start the x-server. This process takes a few moments, so be patient. The screen will go blank for a short period of time and then the following should appear: "Congratulations, you've got a running server! The configuration can now be saved in the location indicated and continue with the installation. - If the monitor display needs adjusted, xvidtune can be ran + If the monitor display needs adjusted, + xvidtune can be ran to adjust them. There are warnings that improper settings can damage your equipment. Heed them. If in doubt, don't do it. Instead, use the monitor controls to adjust the display for x-windows. There may be some display differences when switching back to text mode, but it's better than damaging equipment. The - xvidtune can be ran later using /stand/sysinstall. + xvidtune can be ran later using + /stand/sysinstall. If it doesn't appear or is distorted, kill the server with CTRLALTBACKSPACE to continue and configure the x-server after installation using /stand/sysinstall. The installation program will create the 'X' link to the server by selecting [Yes]: Do you want to create an 'X' link to the SVGA server? (the link will be created in the directory: /usr/X11R6/bin) Okay? [ Yes ] No Link created successfully. [ OK ] Press [ENTER] to continue configuration.
Select Default X Desktop I selected the K Desktop Environment with the arrow keys and then pressed ENTER to set it as my default window manager.
Select Default Desktop
The selected desktop package will then be loaded on they system.
Install Packages Only one package is shown being added for purposes of illustration. Additional packages can also be added at this time if desired. After installation /stand/sysinstall can be used to add additional packages. User Confirmation Requested The FreeBSD package collection is a collection of hundreds of ready-to-run applications, from text editors to games to WEB servers and more. Would you like to browse the collection now? [ Yes ] No Selecting [Yes] and pressing ENTER will be followed by the Package Selection screens:
Select Package Category
All packages available will be displayed if "All" is chosen. Additional packages may be on other CDs. These can also be added later using /stand/sysinstall. The bash shell is shown selected. Select as many as desired by highlighting the item and pressing the SPACE. A short description of each package will appear in the lower left corner of the screen.
Select Packages
When the package(s) are selected, select [OK] and then press ENTER to return to the Package Selection menu.
Install Packages
Use the arrow keys to select [INSTALL] and pressing ENTER will ask for confirmation.
Confirm Package Installation
Selecting [OK] and pressing ENTER will start the package installation. Installing messages will appear until completed. Make note if there are any error messages. The final configuration continues after packages are installed.
Add User/Groups User Confirmation Requested Would you like to add any initial user accounts to the system? Adding at least one account for yourself at this stage is suggested since working as the "root" user is dangerous (it is easy to do things which adversely affect the entire system). [ Yes ] No Select "Add User" with the arrow keys then and press ENTER.
Select Add User
Add User Information
The following descriptions will appear in the lower part of the screen as the items are selected with TAB Login ID The login name of the new user (mandatory) UID The numerical ID for this user (leave blank for automatic choice) Group The login group name for this user (leave blank for automatic choice) Password The password for this user (enter this field with care!) Full name The user's full name (comment) Member groups The groups this user belongs to (i.e. gets access rights for) Home directory The user's home directory (leave blank for default) Login shell The user's login shell (leave blank for default). (/bin/sh) The login shell was changed from /bin/sh to /usr/local/bin/bash to use the bash shell that was previously installed as a package. The user was also added to the group "wheel" to be able to become a superuser with root privileges. Groups could also be added at this time if specific needs are known. Otherwise, this may be accessed through using /stand/sysinstall after installation is completed.
Exit User and Group Management
I selected [Exit] with the arrow keys then [OK] and pressed ENTER to continue the installation.
Set Root Password Message Now you must set the system manager's password. This is the password you'll use to log in as "root". [ OK ] [ Press enter to continue ] The password will need to be typed in twice correctly. Needless to say, make sure you have a way of finding the password if you forget. Changing local password for root. New password : Retype new password : The installation will continue after the password is successfully entered. Exiting Install User Confirmation Requested Visit the general configuration menu for a chance to set any last options? Yes [ No ] Selecting [No] with the arrow keys and pressing ENTER returns to the Main Installallation Menu
Exit Install
Select [EXIT INSTALL] with the arrow keys and press ENTER. User Confirmation Requested Are you sure you wish to exit? The system will reboot (be sure to remove any floppies from the drives). [ Yes ] No Select [Yes] and remove floppy if booting from floppy. The CDROM drive is locked until you select yes to exit and press ENTER. The CDROM drive is then unlocked and can be removed from drive (quickly). The system will reboot so watch for any error messages that may appear.
FreeBSD Bootup If everything goes well, you will see similar messages scroll off the screen and you'll arrive at a login prompt. You can view the content of the messages by pressing SCROLL-LOCK and using PgUp and PgDn. Pressing SCROLL-LOCK again will return to the prompt. The entire message may not display (buffer limitation) but can be viewed from the command line after logging in by typing dmesg at the prompt will get similar information. Login using the user/password you set during installation (rpratt, in this example). Avoid logging in as root except when necessary. Typical boot messages : Copyright (c) 1992-2001 The FreeBSD Project. Copyright (c) 1982, 1986, 1989, 1991, 1993, 1994 The Regents of the University of California. All rights reserved. FreeBSD 4.3-RELEASE #0: Sat Apr 21 10:54:49 GMT 2001 jkh@narf.osd.bsdi.com:/usr/src/sys/compile/GENERIC Timecounter "i8254" frequency 1193182 Hz CPU: AMD-K6(tm) 3D processor (300.68-MHz 586-class CPU) Origin = "AuthenticAMD" Id = 0x580 Stepping = 0 Features=0x8001bf<FPU,VME,DE,PSE,TSC,MSR,MCE,CX8,MMX> AMD Features=0x80000800<SYSCALL,3DNow!> real memory = 268435456 (262144K bytes) config> di sn0 config> di lnc0 config> di le0 config> di ie0 config> di fe0 config> di cs0 config> di bt0 config> di ata1 config> di aic0 config> di aha0 config> di adv0 config> q avail memory = 256983040 (250960K bytes) Preloaded elf kernel "kernel" at 0xc044d000. Preloaded userconfig_script "/boot/kernel.conf" at 0xc044d09c. md0: Malloc disk npx0: <math processor> on motherboard npx0: INT 16 interface pcib0: <Host to PCI bridge> on motherboard pci0: <PCI bus> on pcib0 pcib1: <VIA 82C598MVP (Apollo MVP3) PCI-PCI (AGP) bridge> at device 1.0 on pci0 pci1: <PCI bus> on pcib1 pci1: <Matrox MGA G200 AGP graphics accelerator> at 0.0 irq 11 isab0: <VIA 82C586 PCI-ISA bridge> at device 7.0 on pci0 isa0: <ISA bus> on isab0 atapci0: <VIA 82C586 ATA33 controller> port 0xe000-0xe00f at device 7.1 on pci0 ata0: at 0x1f0 irq 14 on atapci0 ata1: at 0x170 irq 15 on atapci0 uhci0: <VIA 83C572 USB controller> port 0xe400-0xe41f irq 10 at device 7.2 on pci0 usb0: <VIA 83C572 USB controller> on uhci0 usb0: USB revision 1.0 uhub0: VIA UHCI root hub, class 9/0, rev 1.00/1.00, addr 1 uhub0: 2 ports with 2 removable, self powered chip1: <VIA 82C586B ACPI interface> at device 7.3 on pci0 ed0: <NE2000 PCI Ethernet (RealTek 8029)> port 0xe800-0xe81f irq 9 at device 10.0 on pci0 ed0: address 52:54:05:de:73:1b, type NE2000 (16 bit) isa0: too many dependant configs (8) isa0: unexpected small tag 14 fdc0: <NEC 72065B or clone> at port 0x3f0-0x3f5,0x3f7 irq 6 drq 2 on isa0 fdc0: FIFO enabled, 8 bytes threshold fd0: <1440-KB 3.5" drive> on fdc0 drive 0 atkbdc0: <keyboard controller (i8042)> at port 0x60-0x6f on isa0 atkbd0: <AT Keyboard> flags 0x1 irq 1 on atkbdc0 kbd0 at atkbd0 psm0: <PS/2 Mouse> irq 12 on atkbdc0 psm0: model Generic PS/2 mouse, device ID 0 vga0: <Generic ISA VGA> at port 0x3c0-0x3df iomem 0xa0000-0xbffff on isa0 sc0: <System console> at flags 0x1 on isa0 sc0: VGA <16 virtual consoles, flags=0x300> sio0 at port 0x3f8-0x3ff irq 4 flags 0x10 on isa0 sio0: type 16550A sio1 at port 0x2f8-0x2ff irq 3 on isa0 sio1: type 16550A ppc0: <Parallel port> at port 0x378-0x37f irq 7 on isa0 ppc0: SMC-like chipset (ECP/EPP/PS2/NIBBLE) in COMPATIBLE mode ppc0: FIFO with 16/16/15 bytes threshold ppi0: <Parallel I/O> on ppbus0 lpt0: <Printer> on ppbus0 lpt0: Interrupt-driven port plip0: <PLIP network interface> on ppbus0 ad0: 8063MB <IBM-DHEA-38451> [16383/16/63] at ata0-master using UDMA33 ad2: 8063MB <IBM-DHEA-38451> [16383/16/63] at ata1-master using UDMA33 acd0: CDROM <DELTA OTC-H101/ST3 F/W by OIPD> at ata0-slave using PIO4 Mounting root from ufs:/dev/ad0s1a swapon: adding /dev/ad0s1b as swap device Automatic boot in progress... /dev/ad0s1a: FILESYSTEM CLEAN; SKIPPING CHECKS /dev/ad0s1a: clean, 70119 free (655 frags, 8683 blocks, 0.7% fragmentation) /dev/ad0s1f: FILESYSTEM CLEAN; SKIPPING CHECKS /dev/ad0s1f: clean, 6976313 free (51774 frags, 829297 blocks, 0.7% fragmentation) /dev/ad0s1e: filesystem CLEAN; SKIPPING CHECKS /dev/ad0s1e: clean, 97952 free (9 frags, 12381 blocks, 0.0% fragmentation) Doing initial network setup: hostname. lo0: flags=8049<UP,LOOPBACK,RUNNING,MULTICAST> mtu 16384 inet6 fe80::1%lo0 prefixlen 64 scopeid 0x8 inet6 ::1 prefixlen 128 inet 127.0.0.1 netmask 0xff000000 Additional routing options: tcp extensions=NO IP gateway=YES TCP keepalive=YES routing daemons:. additional daemons: syslogd. Doing additional network setup: portmap. Starting final network daemons: creating ssh RSA host key Generating RSA keys: Key generation complete. Your identification has been saved in /etc/ssh/ssh_host_key. Your public key has been saved in /etc/ssh/ssh_host_key.pub. The key fingerprint is: 2d:02:37:d2:0e:68:93:8f:9c:46:de:92:f4:be:60:0a root@k6-2.weeble.com creating ssh DSA host key Generating DSA parameter and key. Your identification has been saved in /etc/ssh/ssh_host_dsa_key. Your public key has been saved in /etc/ssh/ssh_host_dsa_key.pub. The key fingerprint is: 38:af:d2:1f:63:14:00:d8:83:fd:dd:4b:97:1c:43:6d root@k6-2.weeble.com. setting ELF ldconfig path: /usr/lib /usr/lib/compat /usr/X11R6/lib /usr/local/lib setting a.out ldconfig path: /usr/lib/aout /usr/lib/compat/aout /usr/X11R6/lib/aout starting standard daemons: inetd cron sendmail sshd usbd. Initial rc.i386 initialization: linux. rc.i386 configuring syscons: blank_time screensaver moused. Additional ABI support: linux. Local package initilization:. Additional TCP options:. login: rpratt Password: Generating the RSA and DSA keys may take some time on slower machines. This happens only on the initial boot-up of a new installation. Subsequent boots will be faster. If the X server has been configured and a Default Desktop chosen, it can be started by typing startx at the command line. FreeBSD Shutdown It is important to properly shutdown the operating system. Do not just turn off power. First, become a superuser by typing su at the command line and entering the root password. This will work only if the user is a member of the group wheel. Otherwise, login as root and use shutdown -h now. The operating system has halted. Please press any key to reboot. It is safe to turn off the power after the shutdown command has been issued and the message "Please press any key to reboot" appears. If any key is pressed instead of turning off the power switch, the system will reboot.
Supported Hardware hardware FreeBSD currently runs on a wide variety of ISA, VLB, EISA, and PCI bus-based PCs with Intel, AMD, Cyrix, or NexGen x86 processors, as well as a number of machines based on the Compaq Alpha processor. Support for generic IDE or ESDI drive configurations, various SCSI controllers, PCMCIA cards, USB devices, and network and serial cards is also provided. FreeBSD also supports IBM's microchannel (MCA) bus. A list of supported hardware is provided with each FreeBSD release in the FreeBSD Hardware Notes. This document can usually be found in a file named HARDWARE.TXT, in the top-level directory of a CDROM or FTP distribution or in sysinstall's documentation menu. It lists, for a given architecture, what hardware devices are known to be supported by each release of FreeBSD. Troubleshooting installation troubleshooting The following section covers basic installation troubleshooting, such as common problems people have reported. There are also a few questions and answers for people wishing to dual-boot FreeBSD with MS-DOS. What to Do If Something Goes Wrong... Due to various limitations of the PC architecture, it is impossible for probing to be 100% reliable, however, there are a few things you can do if it fails. Check the Hardware Notes document for your version of FreeBSD to make sure your hardware is supported. If your hardware is supported and you still experience lock-ups or other problems, reset your computer, and when the visual kernel configuration option is given, choose it. This will allow you to go through your hardware and supply information to the system about it. The kernel on the boot disks is configured assuming that most hardware devices are in their factory default configuration in terms of IRQs, IO addresses, and DMA channels. If your hardware has been reconfigured, you will most likely need to use the configuration editor to tell FreeBSD where to find things. It is also possible that a probe for a device not present will cause a later probe for another device that is present to fail. In that case, the probes for the conflicting driver(s) should be disabled. Do not disable any drivers you will need during the installation, such as your screen (sc0). If the installation wedges or fails mysteriously after leaving the configuration editor, you have probably removed or changed something you should not have. Reboot and try again. In configuration mode, you can: List the device drivers installed in the kernel. Change device drivers for hardware that is not present in your system. Change IRQs, DRQs, and IO port addresses used by a device driver. After adjusting the kernel to match your hardware configuration, type Q to boot with the new settings. Once the installation has completed, any changes you made in the configuration mode will be permanent so you do not have to reconfigure every time you boot. It is still highly likely that you will eventually want to build a custom kernel. MS-DOS User's Questions and Answers DOS Many users wish to install FreeBSD on PCs inhabited by MS-DOS. Here are some commonly asked questions about installing FreeBSD on such systems. Help, I have no space! Do I need to delete everything first? If your machine is already running MS-DOS and has little or no free space available for the FreeBSD installation, all - hope is not lost! You may find the FIPS utility, provided + hope is not lost! You may find the FIPS + utility, provided in the tools directory on the FreeBSD CDROM or various FreeBSD FTP sites to be quite useful. FIPS - FIPS allows you to split an existing MS-DOS partition + FIPS allows you to split an + existing MS-DOS partition into two pieces, preserving the original partition and allowing you to install onto the second free piece. You first defragment your MS-DOS partition using the Windows - DEFRAG utility (go into Explorer, right-click on the + DEFRAG utility (go into Explorer, + right-click on the hard drive, and choose to defrag your - hard drive), or Norton Disk Tools. You then must run FIPS. It + hard drive), or Norton Disk Tools. You then must run + FIPS. It will prompt you for the rest of the information it needs. Afterwards, you can reboot and install FreeBSD on the new free slice. See the Distributions menu for an estimate of how much free space you will need for the kind of installation you want. Partition Magic There is also a very useful product from PowerQuest called Partition Magic. This - application has far more functionality than FIPS, and is + application has far more functionality than + FIPS, and is highly recommended if you plan to often add/remove operating systems (like me). However, it does cost money, and if you plan to install FreeBSD once and then - leave it there, FIPS will probably be fine for you. + leave it there, FIPS will probably + be fine for you. Can I use compressed MS-DOS filesystems from FreeBSD? No. If you are using a utility such as Stacker(tm) or DoubleSpace(tm), FreeBSD will only be able to use whatever portion of the filesystem you leave uncompressed. The rest of the filesystem will show up as one large file (the stacked/double spaced file!). Do not remove that file or you will probably regret it greatly! It is probably better to create another uncompressed primary MS-DOS partition and use this for communications between MS-DOS and FreeBSD. Can I mount my extended MS-DOS partition? partitions slices Yes. DOS extended partitions are mapped in at the end of the other slices in FreeBSD, e.g., your D: drive might be /dev/da0s5, your E: drive, /dev/da0s6, and so on. This example assumes, of course, that your extended partition is on SCSI drive 0. For IDE drives, substitute ad for da appropriately if installing 4.0-RELEASE or later, and substitute wd for da if you are installing a version of FreeBSD prior to 4.0. You otherwise mount extended partitions exactly like you would any other DOS drive, for example: &prompt.root; mount -t msdos /dev/ad0s5 /dos_d Valentino Vaschetto Contributed by Advanced Installation Guide This section describes how to install FreeBSD in exceptional cases. Installing FreeBSD on a System without a Monitor or Keyboard installation headless (serial console) serial console This type of installation is called a "headless install", because the machine that you are trying to install FreeBSD on either doesnt have a monitor attached to it, or doesnt even have a VGA output. How is this possible you ask? Using a serial console. A serial console is basically using another machine to act as the main display and keyboard for a system. To do this, just follow these steps: Fetch the Right Boot Floppy Images First you will need to get the right disk images so that you can boot into the install program. The secret with using a serial console is that you tell the boot loader to send I/O through a serial port instead of displaying console output to the VGA device and trying to read input from a local keyboard. Enough of that now, let's get back to getting these disk images. You will need to get kern.flp and mfsroot.flp from the floppies directory. Write the Image Files to the Floppy Disks. The image files, such as kern.flp, are not regular files that you copy to the disk. Instead, they are images of the complete contents of the disk. This means that you can not use commands like DOS' copy to write the files. Instead, you must use specific tools to write the images directly to the disk. fdimage If you are creating the floppies on a computer running DOS then we provide a tool to do this called fdimage. If you are using the floppies from the CDROM, and your CDROM is the E: drive then you would run this: E:\> tools\fdimage floppies\kern.flp A: Repeat this command for each .flp file, replacing the floppy disk each time. Adjust the command line as necessary, depending on where you have placed the .flp files. If you do not have the CDROM then fdimage can be downloaded from the tools directory on the FreeBSD FTP site. If you are writing the floppies on a Unix system (such as another FreeBSD system) you can use the &man.dd.1; command to write the image files directly to disk. On FreeBSD you would run: &prompt.root; dd if=kern.flp of=/dev/fd0 On FreeBSD /dev/fd0 refers to the first floppy disk (the A: drive). /dev/fd1 would be the B: drive, and so on. Other Unix variants might have different names for the floppy disk devices, and you will need to check the documentation for the system as necessary. Enabling the Boot Floppies to Boot into a Serial Console Do not try to mount the floppy if it is write-protected mount If you were to boot into the floppies that you just made, FreeBSD would boot into its normal install mode. We want FreeBSD to boot into a serial console for our install. To do this, you have to mount the kern.flp floppy onto your FreeBSD system using the &man.mount.8; command. &prompt.root; mount /dev/fd0 /mnt Now that you have the floppy mounted, you must change into the floppy directory &prompt.root; cd /mnt Here is where you must set the floppy to boot into a serial console. You have to make a file called boot.config containing "/boot/loader -h". All this does is pass a flag to the bootloader to boot into a serial console. &prompt.root; echo "/boot/loader -h" > boot.config Now that you have your floppy configured correctly, you must unmount the floppy using the &man.umount.8; command &prompt.root; cd / &prompt.root; umount /mnt Now you can remove the floppy from the floppy drive Connecting Your Null Modem Cable null-modem cable You now need to connect a null modem cable between the two machines. Just connect the cable to the serial ports of the 2 machines. A normal serial cable will not work here, you need a null modem cable because it has some of the wires inside crossed over. Booting Up for the Install It's now time to go ahead and start the install. Put the kern.flp floppy in the floppy drive of the machine you're doing the headless install on, and power on the machine. Connecting to Your Headless Machine cu Now you have to connect to that machine with &man.cu.1;: &prompt.root; cu -l /dev/cuaa0 That's it! You should be able to control the headless - machine through your cu session now. It will ask you to put + machine through your cu session now. It will ask + you to put in the mfsroot.flp, and then it will come up with a selection of what kind of terminal to use. Just select the FreeBSD color console and proceed with your install!
diff --git a/en_US.ISO8859-1/books/handbook/security/chapter.sgml b/en_US.ISO8859-1/books/handbook/security/chapter.sgml index e5c25173b1..b9385d687c 100644 --- a/en_US.ISO8859-1/books/handbook/security/chapter.sgml +++ b/en_US.ISO8859-1/books/handbook/security/chapter.sgml @@ -1,3100 +1,3122 @@ Matthew Dillon Much of this chapter has been taken from the security(7) manual page by Security security Synopsis The following chapter will provide a basic introduction to system security concepts, some general good rules of thumb, and some advanced topics such as S/Key, OpenSSL, Kerberos, and others. Introduction Security is a function that begins and ends with the system administrator. While all BSD Unix multi-user systems have some inherent security, the job of building and maintaining additional security mechanisms to keep those users honest is probably one of the single largest undertakings of the sysadmin. Machines are only as secure as you make them, and security concerns are ever competing with the human necessity for convenience. Unix systems, in general, are capable of running a huge number of simultaneous processes and many of these processes operate as servers – meaning that external entities can connect and talk to them. As yesterday's mini-computers and mainframes become today's desktops, and as computers become networked and internetworked, security becomes an ever bigger issue. Security is best implemented through a layered onion approach. In a nutshell, what you want to do is to create as many layers of security as are convenient and then carefully monitor the system for intrusions. You do not want to overbuild your security or you will interfere with the detection side, and detection is one of the single most important aspects of any security mechanism. For example, it makes little sense to set - the schg flags (see &man.chflags.1;) on every system binary because + the schg flags (see &man.chflags.1;) on every + system binary because while this may temporarily protect the binaries, it prevents an attacker who has broken in from making an easily detectable change that may result in your security mechanisms not detecting the attacker at all. System security also pertains to dealing with various forms of attack, including attacks that attempt to crash, or otherwise make a system unusable, but do not attempt to break root. Security concerns can be split up into several categories: Denial of service attacks. User account compromises. Root compromise through accessible servers. Root compromise via user accounts. Backdoor creation. DoS attacks Denial of Service (DoS) security DoS attacks Denial of Service (DoS) Denial of Service (DoS) A denial of service attack is an action that deprives the machine of needed resources. Typically, D.O.S. attacks are brute-force mechanisms that attempt to crash or otherwise make a machine unusable by overwhelming its servers or network stack. Some D.O.S. attacks try to take advantage of bugs in the networking stack to crash a machine with a single packet. The latter can only be fixed by applying a bug fix to the kernel. Attacks on servers can often be fixed by properly specifying options to limit the load the servers incur on the system under adverse conditions. Brute-force network attacks are harder to deal with. A spoofed-packet attack, for example, is nearly impossible to stop, short of cutting your system off from the Internet. It may not be able to take your machine down, but it can saturate your Internet connection. security account compromises - A user account compromise is even more common than a D.O.S. - attack. Many sysadmins still run standard telnetd, rlogind, rshd, - and ftpd servers on their machines. These servers, by default, do + A user account compromise is even more common than a DoS + attack. Many sysadmins still run standard + telnetd, rlogind, + rshd, + and ftpd servers on their machines. + These servers, by default, do not operate over encrypted connections. The result is that if you have any moderate-sized user base, one or more of your users logging into your system from a remote location (which is the most common and convenient way to login to a system) will have his or her password sniffed. The attentive system admin will analyze his remote access logs looking for suspicious source addresses even for successful logins. One must always assume that once an attacker has access to a user account, the attacker can break root. However, the reality is that in a well secured and maintained system, access to a user account does not necessarily give the attacker access to root. The distinction is important because without access to root the attacker cannot generally hide his tracks and may, at best, be able to do nothing more than mess with the user's files, or crash the machine. User account compromises are very common because users tend not to take the precautions that sysadmins take. security backdoors System administrators must keep in mind that there are potentially many ways to break root on a machine. The attacker may know the root password, the attacker may find a bug in a root-run server and be able to break root over a network connection to that server, or the attacker may know of a bug in an suid-root program that allows the attacker to break root once he has broken into a user's account. If an attacker has found a way to break root on a machine, the attacker may not have a need to install a backdoor. Many of the root holes found and closed to date involve a considerable amount of work by the attacker to cleanup after himself, so most attackers install backdoors. A backdoor provides the attacker with a way to easily regain root access to the system, but it also gives the smart system administrator a convenient way to detect the intrusion. Making it impossible for an attacker to install a backdoor may actually be detrimental to your security, because it will not close off the hole the attacker found to break in the first place. Security remedies should always be implemented with a multi-layered onion peel approach and can be categorized as follows: Securing root and staff accounts. Securing root – root-run servers and suid/sgid binaries. Securing user accounts. Securing the password file. Securing the kernel core, raw devices, and filesystems. Quick detection of inappropriate changes made to the system. Paranoia. The next section of this chapter will cover the above bullet items in greater depth. security securing Securing FreeBSD The sections that follow will cover the methods of securing your FreeBSD system that were mentioned in the last section of this chapter. Securing the <username>root</username> Account and Staff Accounts su First off, do not bother securing staff accounts if you have not secured the root account. Most systems have a password assigned to the root account. The first thing you do is assume that the password is always compromised. This does not mean that you should remove the password. The password is almost always necessary for console access to the machine. What it does mean is that you should not make it possible to use the password outside of the console or possibly even with the &man.su.1; command. For example, make sure that your pty's are specified as being unsecure in the /etc/ttys file so that direct root logins via telnet or rlogin are disallowed. If using other login services such as sshd, make sure that direct root logins are disabled there as well. Consider every access method – services such as FTP often fall through the cracks. Direct root logins should only be allowed via the system console. wheel Of course, as a sysadmin you have to be able to get to root, so we open up a few holes. But we make sure these holes require additional password verification to operate. One way to make root accessible is to add appropriate staff accounts to the wheel group (in /etc/group). The staff members placed in the wheel group are allowed to su to root. You should never give staff members native wheel access by putting them in the wheel group in their password entry. Staff accounts should be placed in a staff group, and then added to the wheel group via the /etc/group file. Only those staff members who actually need to have root access should be placed in the wheel group. It is also possible, when using an authentication method such as kerberos, to use kerberos' .k5login file in the root account to allow a &man.ksu.1; to root without having to place anyone at all in the wheel group. This may be the better solution since the wheel mechanism still allows an intruder to break root if the intruder has gotten hold of your password file and can break into a staff account. While having the wheel mechanism is better than having nothing at all, it is not necessarily the safest option. An indirect way to secure staff accounts, and ultimately root access is to use an alternative login access method and do what is known as *'ing out the crypted password for the staff accounts. Using the &man.vipw.8; command, one can replace each instance of a crypted password with a single * character. This command will update the /etc/master.passwd file and user/password database to disable password-authenticated logins. A staff account entry such as: foobar:R9DT/Fa1/LV9U:1000:1000::0:0:Foo Bar:/home/foobar:/usr/local/bin/tcsh Should be changed to this : foobar:*:1000:1000::0:0:Foo Bar:/home/foobar:/usr/local/bin/tcsh This change will prevent normal logins from occurring, since the encrypted password will never match *. With this done, staff members must use another mechanism to authenticate themselves such as &man.kerberos.1; or &man.ssh.1; using a public/private key pair. When using something like kerberos, one generally must secure the machines which run the kerberos servers and your desktop workstation. When using a public/private key pair with ssh, one must generally secure the machine used to login from (typically one's workstation). An additional layer of protection can be added to the key pair by password protecting the key pair when creating it with &man.ssh-keygen.1;. Being able to * out the passwords for staff accounts also guarantees that staff members can only login through secure access methods that you have setup. This forces all staff members to use secure, encrypted connections for all of their sessions, which closes an important hole used by many intruders: That of sniffing the network from an unrelated, less secure machine. The more indirect security mechanisms also assume that you are logging in from a more restrictive server to a less restrictive server. For example, if your main box is running all sorts of servers, your workstation should not be running any. In order for your workstation to be reasonably secure you should run as few servers as possible, up to and including no servers at all, and you should run a password-protected screen blanker. Of course, given physical access to a workstation an attacker can break any sort of security you put on it. This is definitely a problem that you should consider, but you should also consider the fact that the vast majority of break-ins occur remotely, over a network, from people who do not have physical access to your workstation or servers. Kerberos Using something like kerberos also gives you the ability to disable or change the password for a staff account in one place, and have it immediately effect all the machines on which the staff member may have an account. If a staff member's account gets compromised, the ability to instantly change his password on all machines should not be underrated. With discrete passwords, changing a password on N machines can be a mess. You can also impose re-passwording restrictions with kerberos: not only can a kerberos ticket be made to timeout after a while, but the kerberos system can require that the user choose a new password after a certain period of time (say, once a month). Securing Root-run Servers and SUID/SGID Binaries ntalk comsat finger sandboxes sshd telnetd rshd rlogind The prudent sysadmin only runs the servers he needs to, no more, no less. Be aware that third party servers are often the - most bug-prone. For example, running an old version of imapd or + most bug-prone. For example, running an old version of + imapd or popper is like giving a universal root ticket out to the entire world. Never run a server that you have not checked out carefully. Many servers do not need to be run as root. For example, the ntalk, comsat, and finger daemons can be run in special user sandboxes. A sandbox is not perfect, unless you go to a large amount of trouble, but the onion approach to security still stands: If someone is able to break in through a server running in a sandbox, they still have to break out of the sandbox. The more layers the attacker must break through, the lower the likelihood of his success. Root holes have historically been found in virtually every server ever run as root, including basic system servers. If you are running a machine through which people only login via sshd and never login via telnetd or rshd or rlogind, then turn off those services! FreeBSD now defaults to running ntalkd, comsat, and finger in a sandbox. Another program which may be a candidate for running in a sandbox is &man.named.8;. /etc/defaults/rc.conf includes the arguments necessary to run named in a sandbox in a commented-out form. Depending on whether you are installing a new system or upgrading an existing system, the special user accounts used by these sandboxes may not be installed. The prudent sysadmin would research and implement sandboxes for servers whenever possible. sendmail There are a number of other servers that typically do not run in sandboxes: sendmail, popper, imapd, ftpd, and others. There are alternatives to some of these, but installing them may require more work than you are willing to perform (the convenience factor strikes again). You may have to run these servers as root and rely on other mechanisms to detect break-ins that might occur through them. The other big potential root holes in a system are the suid-root and sgid binaries installed on the system. Most of these binaries, such as rlogin, reside in /bin, /sbin, /usr/bin, or /usr/sbin. While nothing is 100% safe, the system-default suid and sgid binaries can be considered reasonably safe. Still, root holes are occasionally found in these binaries. A root hole was found in Xlib in 1998 that made xterm (which is typically suid) vulnerable. It is better to be safe than sorry and the prudent sysadmin will restrict suid binaries, that only staff should run, to a special group that only staff can access, and get rid of (chmod 000) any suid binaries that nobody uses. A server with no display generally does not need an xterm binary. Sgid binaries can be almost as dangerous. If an intruder can break an sgid-kmem binary, the intruder might be able to read /dev/kmem and thus read the crypted password file, potentially compromising any passworded account. Alternatively an intruder who breaks group kmem can monitor keystrokes sent through pty's, including pty's used by users who login through secure methods. An intruder that breaks the tty group can write to almost any user's tty. If a user is running a terminal program or emulator with a keyboard-simulation feature, the intruder can potentially generate a data stream that causes the user's terminal to echo a command, which is then run as that user. Securing User Accounts User accounts are usually the most difficult to secure. While you can impose Draconian access restrictions on your staff and * out their passwords, you may not be able to do so with any general user accounts you might have. If you do have sufficient control, then you may win out and be able to secure the user accounts properly. If not, you simply have to be more vigilant in your monitoring of those accounts. Use of ssh and kerberos for user accounts is more problematic, due to the extra administration and technical support required, but still a very good solution compared to a crypted password file. Securing the Password File The only sure fire way is to * out as many passwords as you can and use ssh or kerberos for access to those accounts. Even though the crypted password file (/etc/spwd.db) can only be read by root, it may be possible for an intruder to obtain read access to that file even if the attacker cannot obtain root-write access. Your security scripts should always check for and report changes to the password file (see Checking file integrity below). Securing the Kernel Core, Raw Devices, and Filesystems If an attacker breaks root he can do just about anything, but there are certain conveniences. For example, most modern kernels have a packet sniffing device driver built in. Under FreeBSD it is called the bpf device. An intruder will commonly attempt to run a packet sniffer on a compromised machine. You do not need to give the intruder the capability and - most systems should not have the bpf device compiled in. + most systems should not have the bpf + device compiled in. sysctl - But even if you turn off the bpf device, you still have - /dev/mem and /dev/kmem + But even if you turn off the bpf + device, you still have + /dev/mem and + /dev/kmem to worry about. For that matter, the intruder can still write to raw disk devices. Also, there is another kernel feature called the module loader, &man.kldload.8;. An enterprising intruder can - use a KLD module to install his own bpf device, or other sniffing + use a KLD module to install his own bpf + device, or other sniffing device, on a running kernel. To avoid these problems you have to run the kernel at a higher secure level, at least securelevel 1. The securelevel can be set with a sysctl on the kern.securelevel variable. Once you have set the securelevel to 1, write access to raw devices will be - denied and special chflags flags, such as schg, + denied and special chflags flags, + such as schg, will be enforced. You must also ensure that the schg flag is set on critical startup binaries, directories, and script files – everything that gets run up to the point where the securelevel is set. This might be overdoing it, and upgrading the system is much more difficult when you operate at a higher secure level. You may compromise and run the system at a higher secure level but not set the schg flag for every system file and directory under the sun. Another possibility is to simply mount / and /usr read-only. It should be noted that being too Draconian in what you attempt to protect may prevent the all-important detection of an intrusion. Checking File Integrity: Binaries, Configuration Files, Etc. When it comes right down to it, you can only protect your core system configuration and control files so much before the convenience factor rears its ugly head. For example, using chflags to set the schg bit on most of the files in / and /usr is probably counterproductive, because while it may protect the files, it also closes a detection window. The last layer of your security onion is perhaps the most important – detection. The rest of your security is pretty much useless (or, worse, presents you with a false sense of safety) if you cannot detect potential incursions. Half the job of the onion is to slow down the attacker, rather than stop him, in order to give the detection side of the equation a chance to catch him in the act. The best way to detect an incursion is to look for modified, missing, or unexpected files. The best way to look for modified files is from another (often centralized) limited-access system. Writing your security scripts on the extra-secure limited-access system makes them mostly invisible to potential attackers, and this is important. In order to take maximum advantage you generally have to give the limited-access box significant access to the other machines in the business, usually either by doing a read-only NFS export of the other machines to the limited-access box, or by setting up ssh key-pairs to allow the limited-access box to ssh to the other machines. Except for its network traffic, NFS is the least visible method – allowing you to monitor the filesystems on each client box virtually undetected. If your limited-access server is connected to the client boxes through a switch, the NFS method is often the better choice. If your limited-access server is connected to the client boxes through a hub, or through several layers of routing, the NFS method may be too insecure (network-wise) and using ssh may be the better choice even with the audit-trail tracks that ssh lays. Once you give a limited-access box, at least read access to the client systems it is supposed to monitor, you must write scripts to do the actual monitoring. Given an NFS mount, you can write scripts out of simple system utilities such as &man.find.1; and &man.md5.1;. It is best to physically md5 the client-box files at least once a day, and to test control files such as those found in /etc and /usr/local/etc even more often. When mismatches are found, relative to the base md5 information the limited-access machine knows is valid, it should scream at a sysadmin to go check it out. A good security script will also check for inappropriate suid binaries and for new or deleted files on system partitions such as / and /usr. When using ssh rather than NFS, writing the security script is much more difficult. You - essentially have to scp the scripts to the client box in order to + essentially have to scp the scripts to the client + box in order to run them, making them visible, and for safety you also need to scp the binaries (such as find) that those scripts use. The ssh daemon on the client box may already be compromised. All in all, using ssh may be necessary when running over unsecure links, but it is also a lot harder to deal with. A good security script will also check for changes to user and staff members access configuration files: .rhosts, .shosts, .ssh/authorized_keys and so forth… files that might fall outside the purview of the MD5 check. If you have a huge amount of user disk space, it may take too long to run through every file on those partitions. In this case, setting mount flags to disallow suid binaries and devices on those partitions is a good idea. The nodev and nosuid options (see &man.mount.8;) are what you want to look into. You should probably scan them anyway, at least once a week, since the object of this layer is to detect a break-in whether or not the break-in is effective. Process accounting (see &man.accton.8;) is a relatively low-overhead feature of the operating system which might help as a post-break-in evaluation mechanism. It is especially useful in tracking down how an intruder has actually broken into a system, assuming the file is still intact after the break-in occurs. Finally, security scripts should process the log files, and the logs themselves should be generated in as secure a manner as possible – remote syslog can be very useful. An intruder tries to cover his tracks, and log files are critical to the sysadmin trying to track down the time and method of the initial break-in. One way to keep a permanent record of the log files is to run the system console to a serial port and collect the information on a continuing basis through a secure machine monitoring the consoles. Paranoia A little paranoia never hurts. As a rule, a sysadmin can add any number of security features, as long as they do not effect convenience, and can add security features that do effect convenience with some added thought. Even more importantly, a security administrator should mix it up a bit – if you use recommendations such as those given by this document verbatim, you give away your methodologies to the prospective attacker who also has access to this document. Denial of Service Attacks Denial of Service (DoS) This section covers Denial of Service attacks. A DoS attack is typically a packet attack. While there is not much you can do about modern spoofed packet attacks that saturate your network, you can generally limit the damage by ensuring that the attacks cannot take down your servers. Limiting server forks. Limiting springboard attacks (ICMP response attacks, ping broadcast, etc.). Kernel Route Cache. A common DoS attack is against a forking server that attempts to cause the server to eat processes, file descriptors, and memory, - until the machine dies. Inetd (see &man.inetd.8;) has several + until the machine dies. inetd + (see &man.inetd.8;) has several options to limit this sort of attack. It should be noted that while it is possible to prevent a machine from going down, it is not generally possible to prevent a service from being disrupted - by the attack. Read the inetd manual page carefully and pay + by the attack. Read the inetd manual + page carefully and pay specific attention to the , , and options. Note that spoofed-IP attacks - will circumvent the option to inetd, so + will circumvent the option to + inetd, so typically a combination of options must be used. Some standalone servers have self-fork-limitation parameters. Sendmail has its option, which tends to work much better than trying to use sendmail's load limiting options due to the load lag. You should specify a MaxDaemonChildren parameter, when you start sendmail, high enough to handle your expected load, but not so high that the computer cannot handle that number of sendmails without falling on its face. It is also prudent to run sendmail in queued mode () and to run the daemon (sendmail -bd) separate from the queue-runs (sendmail -q15m). If you still want real-time delivery you can run the queue at a much lower interval, such as , but be sure to specify a reasonable MaxDaemonChildren option for that sendmail to prevent cascade failures. Syslogd can be attacked directly and it is strongly recommended that you use the option whenever possible, and the option otherwise. You should also be fairly careful with connect-back services such as tcpwrapper's reverse-identd, which can be attacked directly. You generally do not want to use the reverse-ident feature of tcpwrappers for this reason. It is a very good idea to protect internal services from external access by firewalling them off at your border routers. The idea here is to prevent saturation attacks from outside your LAN, not so much to protect internal services from network-based root compromise. Always configure an exclusive firewall, i.e., firewall everything except ports A, B, C, D, and M-Z. This way you can firewall off all of your low ports except for certain specific services such as named (if you are primary for a zone), ntalkd, sendmail, and other Internet-accessible services. If you try to configure the firewall the other way – as an inclusive or permissive firewall, there is a good chance that you will forget to close a couple of services, or that you will add a new internal service and forget to update the firewall. You can still open up the high-numbered port range on the firewall, to allow permissive-like operation, without compromising your low ports. Also take note that FreeBSD allows you to control the range of port numbers used for dynamic binding, via the various net.inet.ip.portrange sysctl's (sysctl -a | fgrep portrange), which can also ease the complexity of your firewall's configuration. For example, you might use a normal first/last range of 4000 to 5000, and a hiport range of 49152 to 65535, then block off everything under 4000 in your firewall (except for certain specific Internet-accessible ports, of course). ICMP_BANDLIM Another common DoS attack is called a springboard attack – to attack a server in a manner that causes the server to generate responses which then overload the server, the local network, or some other machine. The most common attack of this nature is the ICMP ping broadcast attack. The attacker spoofs ping packets sent to your LAN's broadcast address with the source IP address set to the actual machine they wish to attack. If your border routers are not configured to stomp on ping's to broadcast addresses, your LAN winds up generating sufficient responses to the spoofed source address to saturate the victim, especially when the attacker uses the same trick on several dozen broadcast addresses over several dozen different networks at once. Broadcast attacks of over a hundred and twenty megabits have been measured. A second common springboard attack is against the ICMP error reporting system. By constructing packets that generate ICMP error responses, an attacker can saturate a server's incoming network and cause the server to saturate its outgoing network with ICMP responses. This type of attack can also crash the server by running it out of mbuf's, especially if the server cannot drain the ICMP responses it generates fast enough. The FreeBSD kernel has a new kernel compile option called ICMP_BANDLIM which limits the effectiveness of these sorts of attacks. The last major class of springboard - attacks is related to certain internal inetd services such as the + attacks is related to certain internal + inetd services such as the udp echo service. An attacker simply spoofs a UDP packet with the source address being server A's echo port, and the destination address being server B's echo port, where server A and B are both on your LAN. The two servers then bounce this one packet back and forth between each other. The attacker can overload both servers and their LANs simply by injecting a few packets in this manner. - Similar problems exist with the internal chargen port. A + Similar problems exist with the internal + chargen port. A competent sysadmin will turn off all of these inetd-internal test services. Spoofed packet attacks may also be used to overload the kernel route cache. Refer to the net.inet.ip.rtexpire, rtminexpire, and rtmaxcache sysctl parameters. A spoofed packet attack that uses a random source IP will cause the kernel to generate a temporary cached route in the route table, viewable with netstat -rna | fgrep W3. These routes typically timeout in 1600 seconds or so. If the kernel detects that the cached route table has gotten too big it will dynamically - reduce the rtexpire but will never decrease it to less than - rtminexpire. There are two problems: + reduce the rtexpire but will never decrease it + to less than rtminexpire. There are two + problems: The kernel does not react quickly enough when a lightly loaded server is suddenly attacked. The rtminexpire is not low enough for the kernel to survive a sustained attack. If your servers are connected to the Internet via a T3 or better, it may be prudent to manually override both rtexpire and rtminexpire via &man.sysctl.8;. Never set either parameter to zero (unless you want to crash the machine). Setting both parameters to 2 seconds should be sufficient to protect the route table from attack. Access Issues with Kerberos and SSH ssh Kerberos There are a few issues with both kerberos and ssh that need to be addressed if you intend to use them. Kerberos V is an excellent authentication protocol, but there are bugs in the kerberized telnet and rlogin applications that make them unsuitable for dealing with binary streams. Also, by default kerberos does not encrypt a session unless you use the option. ssh encrypts everything by default. ssh works quite well in every respect except that it forwards encryption keys by default. What this means is that if you have a secure workstation holding keys that give you access to the rest of the system, and you ssh to an unsecure machine, your keys becomes exposed. The actual keys themselves are not exposed, but ssh installs a forwarding port for the duration of your login, and if an attacker has broken root on the unsecure machine he can utilize that port to use your keys to gain access to any other machine that your keys unlock. We recommend that you use ssh in combination with kerberos whenever possible for staff logins. ssh can be compiled with kerberos support. This reduces your reliance on potentially exposable ssh keys while at the same time protecting passwords via kerberos. ssh keys should only be used for automated tasks from secure machines (something that kerberos is unsuited to). We also recommend that you either turn off key-forwarding in the ssh configuration, or that you make use of the from=IP/DOMAIN option that ssh allows in its authorized_keys file to make the key only usable to entities logging in from specific machines. Bill Swingle Parts rewritten and updated by DES, MD5, and Crypt security crypt crypt DES MD5 Every user on a Unix system has a password associated with their account. It seems obvious that these passwords need to be known only to the user and the actual operating system. In order to keep these passwords secret, they are encrypted with what is known as a one-way hash, that is, they can only be easily encrypted but not decrypted. In other words, what we told you a moment ago was obvious is not even true: the operating system itself does not really know the password. It only knows the encrypted form of the password. The only way to get the plain-text password is by a brute force search of the space of possible passwords. Unfortunately the only secure way to encrypt passwords when Unix came into being was based on DES, the Data Encryption Standard. This was not such a problem for users resident in the US, but since the source code for DES could not be exported outside the US, FreeBSD had to find a way to both comply with US law and retain compatibility with all the other Unix variants that still used DES. The solution was to divide up the encryption libraries so that US users could install the DES libraries and use DES but international users still had an encryption method that could be exported abroad. This is how FreeBSD came to use MD5 as its default encryption method. MD5 is believed to be more secure than DES, so installing DES is offered primarily for compatibility reasons. Recognizing Your Crypt Mechanism It is pretty easy to identify which encryption method FreeBSD is set up to use. Examining the encrypted passwords in the /etc/master.passwd file is one way. Passwords encrypted with the MD5 hash are longer than those encrypted with the DES hash and also begin with the characters $1$. DES password strings do not have any particular identifying characteristics, but they are shorter than MD5 passwords, and are coded in a 64-character alphabet which does not include the $ character, so a relatively short string which does not begin with a dollar sign is very likely a DES password. The libraries can identify the passwords this way as well. As a result, the DES libraries are able to identify MD5 passwords, and use MD5 to check passwords that were encrypted that way, and DES for the rest. They are able to do this because the DES libraries also contain MD5. Unfortunately, the reverse is not true, so the MD5 libraries cannot authenticate passwords that were encrypted with DES. Identifying which library is being used by the programs on your system is easy as well. Any program that uses crypt is linked against libcrypt, which for each type of library is a symbolic link to the appropriate implementation. For example, on a system using the DES versions: &prompt.user; ls -l /usr/lib/libcrypt* lrwxr-xr-x 1 root wheel 13 Mar 19 06:56 libcrypt.a -> libdescrypt.a lrwxr-xr-x 1 root wheel 18 Mar 19 06:56 libcrypt.so.2.0 -> libdescrypt.so.2.0 lrwxr-xr-x 1 root wheel 15 Mar 19 06:56 libcrypt_p.a -> libdescrypt_p.a On a system using the MD5-based libraries, the same links will be present, but the target will be libscrypt rather than libdescrypt. If you have installed the DES-capable crypt library libdescrypt (e.g. by installing the "crypto" distribution), then which password format will be used for new passwords is controlled by the passwd_format login capability in /etc/login.conf, which takes values of either des or md5. See the &man.login.conf.5; manual page for more information about login capabilities. S/Key S/Key security S/Key S/Key is a one-time password scheme based on a one-way hash function. FreeBSD uses the MD4 hash for compatibility but other systems have used MD5 and DES-MAC. S/Key has been part of the FreeBSD base system since version 1.1.5 and is also used on a growing number of other operating systems. S/Key is a registered trademark of Bell Communications Research, Inc. There are three different sorts of passwords which we will talk about in the discussion below. The first is your usual Unix-style or Kerberos password; we will call this a Unix password. The second sort is the one-time password which is generated by the S/Key key program and accepted by the keyinit program and the login prompt; we will call this a one-time password. The final sort of password is the secret password which you give to the key program (and sometimes the keyinit program) which it uses to generate one-time passwords; we will call it a secret password or just unqualified password. The secret password does not have anything to do with your Unix password; they can be the same but this is not recommended. S/Key secret passwords are not limited to 8 characters like Unix passwords, they can be as long as you like. Passwords of six or seven word long phrases are fairly common. For the most part, the S/Key system operates completely independently of the Unix password system. Besides the password, there are two other pieces of data that are important to S/Key. One is what is known as the seed or key and consists of two letters and five digits. The other is what is called the iteration count and is a number between 1 and 100. S/Key creates the one-time password by concatenating the seed and the secret password, then applying the MD4 hash as many times as specified by the iteration count and turning the result into six short English words. These six English words are your one-time password. The login and su programs keep track of the last one-time password used, and the user is authenticated if the hash of the user-provided password is equal to the previous password. Because a one-way hash is used it is impossible to generate future one-time passwords if a successfully used password is captured; the iteration count is decremented after each successful login to keep the user and the login program in sync. When the iteration count gets down to 1 S/Key must be reinitialized. There are four programs involved in the S/Key system which we will discuss below. The key program accepts an iteration count, a seed, and a secret password, and generates a one-time password. The keyinit program is used to initialize S/Key, and to change passwords, iteration counts, or seeds; it takes either a secret password, or an iteration count, seed, and one-time password. The keyinfo program examines the /etc/skeykeys file and prints out the invoking user's current iteration count and seed. Finally, the login and su programs contain the necessary logic to accept S/Key one-time passwords for authentication. The login program is also capable of disallowing the use of Unix passwords on connections coming from specified addresses. There are four different sorts of operations we will cover. The first is using the keyinit program over a secure connection to set up S/Key for the first time, or to change your password or seed. The second operation is using the keyinit program over an insecure connection, in conjunction with the key program over a secure connection, to do the same. The third is using the key program to log in over an insecure connection. The fourth is using the key program to generate a number of keys which can be written down or printed out to carry with you when going to some location without secure connections to anywhere. Secure Connection Initialization To initialize S/Key for the first time, change your password, or change your seed while logged in over a secure connection (e.g., on the console of a machine or via ssh), use the keyinit command without any parameters while logged in as yourself: &prompt.user; keyinit Adding unfurl: Reminder - Only use this method if you are directly connected. If you are using telnet or rlogin exit with no password and use keyinit -s. Enter secret password: Again secret password: ID unfurl s/key is 99 to17757 DEFY CLUB PRO NASH LACE SOFT At the Enter secret password: prompt you should enter a password or phrase. Remember, this is not the password that you will use to login with, this is used to generate your one-time login keys. The ID line gives the parameters of your particular S/Key instance; your login name, the iteration count, and seed. When logging in with S/Key, the system will remember these parameters and present them back to you so you do not have to remember them. The last line gives the particular one-time password which corresponds to those parameters and your secret password; if you were to re-login immediately, this one-time password is the one you would use. Insecure Connection Initialization To initialize S/Key or change your secret password over an insecure connection, you will need to already have a secure connection to some place where you can run the key program; this might be in the form of a desk accessory on a Macintosh, or a shell prompt on a machine you trust. You will also need to make up an iteration count (100 is probably a good value), and you may make up your own seed or use a randomly-generated one. Over on the insecure connection (to the machine you are initializing), use the keyinit -s command: &prompt.user; keyinit -s Updating unfurl: Old key: to17758 Reminder you need the 6 English words from the key command. Enter sequence count from 1 to 9999: 100 Enter new key [default to17759]: s/key 100 to 17759 s/key access password: To accept the default seed (which the keyinit program confusingly calls a key), press return. Then before entering an access password, move over to your secure connection or S/Key desk accessory, and give it the same parameters: &prompt.user; key 100 to17759 Reminder - Do not use this program while logged in via telnet or rlogin. Enter secret password: <secret password> CURE MIKE BANE HIM RACY GORE Now switch back over to the insecure connection, and copy the one-time password generated by key over to the keyinit program: s/key access password:CURE MIKE BANE HIM RACY GORE ID unfurl s/key is 100 to17759 CURE MIKE BANE HIM RACY GORE The rest of the description from the previous section applies here as well. Generating a Single one-time Password Once you've initialized S/Key, when you login you will be presented with a prompt like this: &prompt.user; telnet example.com Trying 10.0.0.1... Connected to example.com Escape character is '^]'. FreeBSD/i386 (example.com) (ttypa) login: <username> s/key 97 fw13894 Password: As a side note, the S/Key prompt has a useful feature (not shown here): if you press return at the password prompt, the login program will turn echo on, so you can see what you are typing. This can be extremely useful if you are attempting to type in an S/Key by hand, such as from a printout. Also, if this machine were configured to disallow Unix passwords over a connection from the source machine, the prompt would have also included the annotation (s/key required), indicating that only S/Key one-time passwords will be accepted. MS-DOS Windows MacOS At this point you need to generate your one-time password to answer this login prompt. This must be done on a trusted system that you can run the key command on. (There are versions of the key program for MS-DOS, Windows and MacOS as well.) The key program needs both the iteration count and the seed as command line options. You can cut-and-paste these right from the login prompt on the machine that you are logging in to. On the trusted system: &prompt.user; key 97 fw13894 Reminder - Do not use this program while logged in via telnet or rlogin. Enter secret password: WELD LIP ACTS ENDS ME HAAG Now that you have your one-time password you can continue logging in: login: <username> s/key 97 fw13894 Password: <return to enable echo> s/key 97 fw13894 Password [echo on]: WELD LIP ACTS ENDS ME HAAG Last login: Tue Mar 21 11:56:41 from 10.0.0.2 ... This is the easiest mechanism if you have a trusted machine. There is a Java S/Key key applet, The Java OTP Calculator, that you can download and run locally on any Java supporting browser. Generating Multiple one-time Passwords Sometimes you have to go places where you do not have access to a trusted machine or secure connection. In this case, it is possible to use the key command to generate a number of one-time passwords before hand to be printed out and taken with you. For example: &prompt.user; key -n 5 30 zz99999 Reminder - Do not use this program while logged in via telnet or rlogin. Enter secret password: <secret password> 26: SODA RUDE LEA LIND BUDD SILT 27: JILT SPY DUTY GLOW COWL ROT 28: THEM OW COLA RUNT BONG SCOT 29: COT MASH BARR BRIM NAN FLAG 30: CAN KNEE CAST NAME FOLK BILK The requests five keys in sequence, the specifies what the last iteration number should be. Note that these are printed out in reverse order of eventual use. If you are really paranoid, you might want to write the results down by hand; otherwise you can cut-and-paste into lpr. Note that each line shows both the iteration count and the one-time password; you may still find it handy to scratch off passwords as you use them. Restricting Use of Unix Passwords Restrictions can be placed on the use of Unix passwords based on the host name, user name, terminal port, or IP address of a login session. These restrictions can be found in the configuration file /etc/skey.access. The &man.skey.access.5; manual page has more info on the complete format of the file and also details some security cautions to be aware of before depending on this file for security. If there is no /etc/skey.access file (this is the FreeBSD default), then all users will be allowed to use Unix passwords. If the file exists, however, then all users will be required to use S/Key unless explicitly permitted to do otherwise by configuration statements in the skey.access file. In all cases, Unix passwords are permitted on the console. Here is a sample configuration file which illustrates the three most common sorts of configuration statements: permit internet 192.168.0.0 255.255.0.0 permit user fnord permit port ttyd0 The first line (permit internet) allows users whose IP source address (which is vulnerable to spoofing) matches the specified value and mask, to use Unix passwords. This should not be considered a security mechanism, but rather, a means to remind authorized users that they are using an insecure network and need to use S/Key for authentication. The second line (permit user) allows the specified username, in this case fnord, to use Unix passwords at any time. Generally speaking, this should only be used for people who are either unable to use the key program, like those with dumb terminals, or those who are uneducable. The third line (permit port) allows all users logging in on the specified terminal line to use Unix passwords; this would be used for dial-ups. Mark Murray Contributed by Mark Dapoz Based on a contribution by Kerberos Kerberos Kerberos is a network add-on system/protocol that allows users to authenticate themselves through the services of a secure server. Services such as remote login, remote copy, secure inter-system file copying and other high-risk tasks are made considerably safer and more controllable. The following instructions can be used as a guide on how to set up Kerberos as distributed for FreeBSD. However, you should refer to the relevant manual pages for a complete description. 4.4BSD-Lite In FreeBSD, the Kerberos is not that from the original 4.4BSD-Lite, distribution, but eBones, which had been previously ported to FreeBSD 1.1.5.1, and was sourced from outside the USA/Canada, and was thus available to system owners outside those countries during the era of restrictive export controls on cryptographic code from the USA. Creating the Initial Database This is done on the Kerberos server only. First make sure that you do not have any old Kerberos databases around. You should change to the directory /etc/kerberosIV and check that only the following files are present: &prompt.root; cd /etc/kerberosIV &prompt.root; ls README krb.conf krb.realms If any additional files (such as principal.* or master_key) exist, then use the kdb_destroy command to destroy the old Kerberos database, or if Kerberos is not running, simply delete the extra files. You should now edit the krb.conf and krb.realms files to define your Kerberos realm. In this case the realm will be GRONDAR.ZA and the server is grunt.grondar.za. We edit or create the krb.conf file: &prompt.root; cat krb.conf GRONDAR.ZA GRONDAR.ZA grunt.grondar.za admin server CS.BERKELEY.EDU okeeffe.berkeley.edu ATHENA.MIT.EDU kerberos.mit.edu ATHENA.MIT.EDU kerberos-1.mit.edu ATHENA.MIT.EDU kerberos-2.mit.edu ATHENA.MIT.EDU kerberos-3.mit.edu LCS.MIT.EDU kerberos.lcs.mit.edu TELECOM.MIT.EDU bitsy.mit.edu ARC.NASA.GOV trident.arc.nasa.gov In this case, the other realms do not need to be there. They are here as an example of how a machine may be made aware of multiple realms. You may wish to not include them for simplicity. The first line names the realm in which this system works. The other lines contain realm/host entries. The first item on a line is a realm, and the second is a host in that realm that is acting as a key distribution center. The words admin server following a hosts name means that host also provides an administrative database server. For further explanation of these terms, please consult the Kerberos manual pages. Now we have to add grunt.grondar.za to the GRONDAR.ZA realm and also add an entry to put all hosts in the .grondar.za domain in the GRONDAR.ZA realm. The krb.realms file would be updated as follows: &prompt.root; cat krb.realms grunt.grondar.za GRONDAR.ZA .grondar.za GRONDAR.ZA .berkeley.edu CS.BERKELEY.EDU .MIT.EDU ATHENA.MIT.EDU .mit.edu ATHENA.MIT.EDU Again, the other realms do not need to be there. They are here as an example of how a machine may be made aware of multiple realms. You may wish to remove them to simplify things. The first line puts the specific system into the named realm. The rest of the lines show how to default systems of a particular subdomain to a named realm. Now we are ready to create the database. This only needs to run on the Kerberos server (or Key Distribution Center). Issue the kdb_init command to do this: &prompt.root; kdb_init Realm name [default ATHENA.MIT.EDU ]: GRONDAR.ZA You will be prompted for the database Master Password. It is important that you NOT FORGET this password. Enter Kerberos master key: Now we have to save the key so that servers on the local machine can pick it up. Use the kstash command to do this. &prompt.root; kstash Enter Kerberos master key: Current Kerberos master key version is 1. Master key entered. BEWARE! This saves the encrypted master password in /etc/kerberosIV/master_key. Making It All Run Two principals need to be added to the database for each system that will be secured with Kerberos. Their names are kpasswd and rcmd These two principals are made for each system, with the instance being the name of the individual system. These daemons, kpasswd and rcmd allow other systems to change Kerberos passwords and run commands like rcp, rlogin and rsh. Now let's add these entries: &prompt.root; kdb_edit Opening database... Enter Kerberos master key: Current Kerberos master key version is 1. Master key entered. BEWARE! Previous or default values are in [brackets] , enter return to leave the same, or new value. Principal name: passwd Instance: grunt <Not found>, Create [y] ? y Principal: passwd, Instance: grunt, kdc_key_ver: 1 New Password: <---- enter RANDOM here Verifying password New Password: <---- enter RANDOM here Random password [y] ? y Principal's new key version = 1 Expiration date (enter yyyy-mm-dd) [ 2000-01-01 ] ? Max ticket lifetime (*5 minutes) [ 255 ] ? Attributes [ 0 ] ? Edit O.K. Principal name: rcmd Instance: grunt <Not found>, Create [y] ? Principal: rcmd, Instance: grunt, kdc_key_ver: 1 New Password: <---- enter RANDOM here Verifying password New Password: <---- enter RANDOM here Random password [y] ? Principal's new key version = 1 Expiration date (enter yyyy-mm-dd) [ 2000-01-01 ] ? Max ticket lifetime (*5 minutes) [ 255 ] ? Attributes [ 0 ] ? Edit O.K. Principal name: <---- null entry here will cause an exit Creating the Server File We now have to extract all the instances which define the services on each machine. For this we use the ext_srvtab command. This will create a file which must be copied or moved by secure means to each Kerberos client's /etc/kerberosIV directory. This file must be present on each server and client, and is crucial to the operation of Kerberos. &prompt.root; ext_srvtab grunt Enter Kerberos master key: Current Kerberos master key version is 1. Master key entered. BEWARE! Generating 'grunt-new-srvtab'.... Now, this command only generates a temporary file which must be renamed to srvtab so that all the servers can pick it up. Use the mv command to move it into place on the original system: &prompt.root; mv grunt-new-srvtab srvtab If the file is for a client system, and the network is not deemed safe, then copy the client-new-srvtab to removable media and transport it by secure physical means. Be sure to rename it to srvtab in the client's /etc/kerberosIV directory, and make sure it is mode 600: &prompt.root; mv grumble-new-srvtab srvtab &prompt.root; chmod 600 srvtab Populating the Database We now have to add some user entries into the database. First let's create an entry for the user jane. Use the kdb_edit command to do this: &prompt.root; kdb_edit Opening database... Enter Kerberos master key: Current Kerberos master key version is 1. Master key entered. BEWARE! Previous or default values are in [brackets] , enter return to leave the same, or new value. Principal name: jane Instance: <Not found>, Create [y] ? y Principal: jane, Instance: , kdc_key_ver: 1 New Password: <---- enter a secure password here Verifying password New Password: <---- re-enter the password here Principal's new key version = 1 Expiration date (enter yyyy-mm-dd) [ 2000-01-01 ] ? Max ticket lifetime (*5 minutes) [ 255 ] ? Attributes [ 0 ] ? Edit O.K. Principal name: <---- null entry here will cause an exit Testing It All Out First we have to start the Kerberos daemons. NOTE that if you have correctly edited your /etc/rc.conf then this will happen automatically when you reboot. This is only necessary on the Kerberos server. Kerberos clients will automagically get what they need from the /etc/kerberosIV directory. &prompt.root; kerberos & Kerberos server starting Sleep forever on error Log file is /var/log/kerberos.log Current Kerberos master key version is 1. Master key entered. BEWARE! Current Kerberos master key version is 1 Local realm: GRONDAR.ZA &prompt.root; kadmind -n & KADM Server KADM0.0A initializing Please do not use 'kill -9' to kill this job, use a regular kill instead Current Kerberos master key version is 1. Master key entered. BEWARE! Now we can try using the kinit command to get a ticket for the id jane that we created above: &prompt.user; kinit jane MIT Project Athena (grunt.grondar.za) Kerberos Initialization for "jane" Password: Try listing the tokens using klist to see if we really have them: &prompt.user; klist Ticket file: /tmp/tkt245 Principal: jane@GRONDAR.ZA Issued Expires Principal Apr 30 11:23:22 Apr 30 19:23:22 krbtgt.GRONDAR.ZA@GRONDAR.ZA Now try changing the password using passwd to - check if the kpasswd daemon can get authorization to the Kerberos - database: + check if the kpasswd daemon can get + authorization to the Kerberos database: &prompt.user; passwd realm GRONDAR.ZA Old password for jane: New Password for jane: Verifying password New Password for jane: Password changed. Adding <command>su</command> Privileges Kerberos allows us to give each user who needs root privileges their own separate supassword. We could now add an id which is authorized to su to root. This is controlled by having an instance of root associated with a principal. Using kdb_edit we can create the entry jane.root in the Kerberos database: &prompt.root; kdb_edit Opening database... Enter Kerberos master key: Current Kerberos master key version is 1. Master key entered. BEWARE! Previous or default values are in [brackets] , enter return to leave the same, or new value. Principal name: jane Instance: root <Not found>, Create [y] ? y Principal: jane, Instance: root, kdc_key_ver: 1 New Password: <---- enter a SECURE password here Verifying password New Password: <---- re-enter the password here Principal's new key version = 1 Expiration date (enter yyyy-mm-dd) [ 2000-01-01 ] ? Max ticket lifetime (*5 minutes) [ 255 ] ? 12 <--- Keep this short! Attributes [ 0 ] ? Edit O.K. Principal name: <---- null entry here will cause an exit Now try getting tokens for it to make sure it works: &prompt.root; kinit jane.root MIT Project Athena (grunt.grondar.za) Kerberos Initialization for "jane.root" Password: Now we need to add the user to root's .klogin file: &prompt.root; cat /root/.klogin jane.root@GRONDAR.ZA Now try doing the su: &prompt.user; su Password: and take a look at what tokens we have: &prompt.root; klist Ticket file: /tmp/tkt_root_245 Principal: jane.root@GRONDAR.ZA Issued Expires Principal May 2 20:43:12 May 3 04:43:12 krbtgt.GRONDAR.ZA@GRONDAR.ZA Using Other Commands In an earlier example, we created a principal called jane with an instance root. This was based on a user with the same name as the principal, and this is a Kerberos default; that a <principal>.<instance> of the form <username>.root will allow that <username> to su to root if the necessary entries are in the .klogin file in root's home directory: &prompt.root; cat /root/.klogin jane.root@GRONDAR.ZA Likewise, if a user has in their own home directory lines of the form: &prompt.user; cat ~/.klogin jane@GRONDAR.ZA jack@GRONDAR.ZA This allows anyone in the GRONDAR.ZA realm who has authenticated themselves to jane or jack (via kinit, see above) access to rlogin to jane's account or files on this system (grunt) via rlogin, rsh or rcp. For example, Jane now logs into another system, using Kerberos: &prompt.user; kinit MIT Project Athena (grunt.grondar.za) Password: &prompt.user; rlogin grunt Last login: Mon May 1 21:14:47 from grumble Copyright (c) 1980, 1983, 1986, 1988, 1990, 1991, 1993, 1994 The Regents of the University of California. All rights reserved. FreeBSD BUILT-19950429 (GR386) #0: Sat Apr 29 17:50:09 SAT 1995 Or Jack logs into Jane's account on the same machine (Jane having set up the .klogin file as above, and the person in charge of Kerberos having set up principal jack with a null instance: &prompt.user; kinit &prompt.user; rlogin grunt -l jane MIT Project Athena (grunt.grondar.za) Password: Last login: Mon May 1 21:16:55 from grumble Copyright (c) 1980, 1983, 1986, 1988, 1990, 1991, 1993, 1994 The Regents of the University of California. All rights reserved. FreeBSD BUILT-19950429 (GR386) #0: Sat Apr 29 17:50:09 SAT 1995 Gary Palmer Contributed by Alex Nash Firewalls firewall security firewalls Firewalls are an area of increasing interest for people who are connected to the Internet, and are even finding applications on private networks to provide enhanced security. This section will hopefully explain what firewalls are, how to use them, and how to use the facilities provided in the FreeBSD kernel to implement them. People often think that having a firewall between your internal network and the Big Bad Internet will solve all your security problems. It may help, but a poorly setup firewall system is more of a security risk than not having one at all. A firewall can add another layer of security to your systems, but it cannot stop a really determined cracker from penetrating your internal network. If you let internal security lapse because you believe your firewall to be impenetrable, you have just made the crackers job that much easier. What Is a Firewall? There are currently two distinct types of firewalls in common use on the Internet today. The first type is more properly called a packet filtering router, where the kernel on a multi-homed machine chooses whether to forward or block packets based on a set of rules. The second type, known as a proxy server, relies on daemons to provide authentication and to forward packets, possibly on a multi-homed machine which has kernel packet forwarding disabled. Sometimes sites combine the two types of firewalls, so that only a certain machine (known as a bastion host) is allowed to send packets through a packet filtering router onto an internal network. Proxy services are run on the bastion host, which are generally more secure than normal authentication mechanisms. FreeBSD comes with a kernel packet filter (known as IPFW), which is what the rest of this section will concentrate on. Proxy servers can be built on FreeBSD from third party software, but there is such a variety of proxy servers available that it would be impossible to cover them in this document. Packet Filtering Routers A router is a machine which forwards packets between two or more networks. A packet filtering router has an extra piece of code in its kernel which compares each packet to a list of rules before deciding if it should be forwarded or not. Most modern IP routing software has packet filtering code within it that defaults to forwarding all packets. To enable the filters, you need to define a set of rules for the filtering code so it can decide if the packet should be allowed to pass or not. To decide whether a packet should be passed on, the code looks through its set of rules for a rule which matches the contents of this packets headers. Once a match is found, the rule action is obeyed. The rule action could be to drop the packet, to forward the packet, or even to send an ICMP message back to the originator. Only the first match counts, as the rules are searched in order. Hence, the list of rules can be referred to as a rule chain. The packet matching criteria varies depending on the software used, but typically you can specify rules which depend on the source IP address of the packet, the destination IP address, the source port number, the destination port number (for protocols which support ports), or even the packet type (UDP, TCP, ICMP, etc). Proxy Servers Proxy servers are machines which have had the normal system - daemons (telnetd, ftpd, etc) replaced with special servers. These + daemons (telnetd, + ftpd, etc) replaced with special servers. + These servers are called proxy servers as they normally only allow onward connections to be made. This enables you to run (for example) a proxy telnet server on your firewall host, and people can telnet in to your firewall from the outside, go through some authentication mechanism, and then gain access to the internal network (alternatively, proxy servers can be used for signals coming from the internal network and heading out). Proxy servers are normally more secure than normal servers, and often have a wider variety of authentication mechanisms available, including one-shot password systems so that even if someone manages to discover what password you used, they will not be able to use it to gain access to your systems as the password instantly expires. As they do not actually give users access to the host machine, it becomes a lot more difficult for someone to install backdoors around your security system. Proxy servers often have ways of restricting access further, so that only certain hosts can gain access to the servers, and often they can be set up so that you can limit which users can talk to which destination machine. Again, what facilities are available depends largely on what proxy software you choose. What Does IPFW Allow Me to Do? ipfw IPFW, the software supplied with FreeBSD, is a packet filtering and accounting system which resides in the kernel, and has a user-land control utility, &man.ipfw.8;. Together, they allow you to define and query the rules currently used by the kernel in its routing decisions. There are two related parts to IPFW. The firewall section allows you to perform packet filtering. There is also an IP accounting section which allows you to track usage of your router, based on similar rules to the firewall section. This allows you to see (for example) how much traffic your router is getting from a certain machine, or how much WWW (World Wide Web) traffic it is forwarding. As a result of the way that IPFW is designed, you can use IPFW on non-router machines to perform packet filtering on incoming and outgoing connections. This is a special case of the more general use of IPFW, and the same commands and techniques should be used in this situation. Enabling IPFW on FreeBSD ipfw enabling As the main part of the IPFW system lives in the kernel, you will need to add one or more options to your kernel configuration file, depending on what facilities you want, and recompile your kernel. See reconfiguring the kernel for more details on how to recompile your kernel. There are currently three kernel configuration options relevant to IPFW: options IPFIREWALL Compiles into the kernel the code for packet filtering. options IPFIREWALL_VERBOSE Enables code to allow logging of packets through &man.syslogd.8;. Without this option, even if you specify that packets should be logged in the filter rules, nothing will happen. options IPFIREWALL_VERBOSE_LIMIT=10 Limits the number of packets logged through &man.syslogd.8; on a per entry basis. You may wish to use this option in hostile environments in which you want to log firewall activity, but do not want to be open to a denial of service attack via syslog flooding. When a chain entry reaches the packet limit specified, logging is turned off for that particular entry. To resume logging, you will need to reset the associated counter using the &man.ipfw.8; utility: &prompt.root; ipfw zero 4500 Where 4500 is the chain entry you wish to continue logging. Previous versions of FreeBSD contained an IPFIREWALL_ACCT option. This is now obsolete as the firewall code automatically includes accounting facilities. Configuring IPFW ipfw configuring The configuration of the IPFW software is done through the &man.ipfw.8; utility. The syntax for this command looks quite complicated, but it is relatively simple once you understand its structure. There are currently four different command categories used by the utility: addition/deletion, listing, flushing, and clearing. Addition/deletion is used to build the rules that control how packets are accepted, rejected, and logged. Listing is used to examine the contents of your rule set (otherwise known as the chain) and packet counters (accounting). Flushing is used to remove all entries from the chain. Clearing is used to zero out one or more accounting entries. Altering the IPFW Rules The syntax for this form of the command is: ipfw -N command index action log protocol addresses options There is one valid flag when using this form of the command: -N Resolve addresses and service names in output. The command given can be shortened to the shortest unique form. The valid commands are: add Add an entry to the firewall/accounting rule list delete Delete an entry from the firewall/accounting rule list Previous versions of IPFW used separate firewall and accounting entries. The present version provides packet accounting with each firewall entry. If an index value is supplied, it is used to place the entry at a specific point in the chain. Otherwise, the entry is placed at the end of the chain at an index 100 greater than the last chain entry (this does not include the default policy, rule 65535, deny). The log option causes matching rules to be output to the system console if the kernel was compiled with IPFIREWALL_VERBOSE. Valid actions are: reject Drop the packet, and send an ICMP host or port unreachable (as appropriate) packet to the source. allow Pass the packet on as normal. (aliases: pass and accept) deny Drop the packet. The source is not notified via an ICMP message (thus it appears that the packet never arrived at the destination). count Update packet counters but do not allow/deny the packet based on this rule. The search continues with the next chain entry. Each action will be recognized by the shortest unambiguous prefix. The protocols which can be specified are: all Matches any IP packet icmp Matches ICMP packets tcp Matches TCP packets udp Matches UDP packets The address specification is: from address/maskport to address/maskport via interface You can only specify port in conjunction with protocols which support ports (UDP and TCP). The is optional and may specify the IP address or domain name of a local IP interface, or an interface name (e.g. ed0) to match only packets coming through this interface. Interface unit numbers can be specified with an optional wildcard. For example, ppp* would match all kernel PPP interfaces. The syntax used to specify an address/mask is: address or address/mask-bits or address:mask-pattern A valid hostname may be specified in place of the IP address. is a decimal number representing how many bits in the address mask should be set. e.g. specifying 192.216.222.1/24 will create a mask which will allow any address in a class C subnet (in this case, 192.216.222) to be matched. is an IP address which will be logically AND'ed with the address given. The keyword any may be used to specify any IP address. The port numbers to be blocked are specified as: port,port,port to specify either a single port or a list of ports, or port-port to specify a range of ports. You may also combine a single range with a list, but the range must always be specified first. The options available are: frag Matches if the packet is not the first fragment of the datagram. in Matches if the packet is on the way in. out Matches if the packet is on the way out. ipoptions spec Matches if the IP header contains the comma separated list of options specified in spec. The supported list of IP options are: ssrr (strict source route), lsrr (loose source route), rr (record packet route), and ts (time stamp). The absence of a particular option may be denoted with a leading !. established Matches if the packet is part of an already established TCP connection (i.e. it has the RST or ACK bits set). You can optimize the performance of the firewall by placing established rules early in the chain. setup Matches if the packet is an attempt to establish a TCP connection (the SYN bit is set but the ACK bit is not). tcpflags flags Matches if the TCP header contains the comma separated list of flags. The supported flags are fin, syn, rst, psh, ack, and urg. The absence of a particular flag may be indicated by a leading !. icmptypes types Matches if the ICMP type is present in the list types. The list may be specified as any combination of ranges and/or individual types separated by commas. Commonly used ICMP types are: 0 echo reply (ping reply), 3 destination unreachable, 5 redirect, 8 echo request (ping request), and 11 time exceeded (used to indicate TTL expiration as with &man.traceroute.8;). Listing the IPFW Rules The syntax for this form of the command is: ipfw -a -t -N l There are three valid flags when using this form of the command: -a While listing, show counter values. This option is the only way to see accounting counters. -t Display the last match times for each chain entry. The time listing is incompatible with the input syntax used by the &man.ipfw.8; utility. -N Attempt to resolve given addresses and service names. Flushing the IPFW Rules The syntax for flushing the chain is: ipfw flush This causes all entries in the firewall chain to be removed except the fixed default policy enforced by the kernel (index 65535). Use caution when flushing rules, the default deny policy will leave your system cut off from the network until allow entries are added to the chain. Clearing the IPFW Packet Counters The syntax for clearing one or more packet counters is: ipfw zero index When used without an index argument, all packet counters are cleared. If an index is supplied, the clearing operation only affects a specific chain entry. Example Commands for ipfw This command will deny all packets from the host evil.crackers.org to the telnet port of the host nice.people.org: &prompt.root ipfw add deny tcp from evil.crackers.org to nice.people.org 23 The next example denies and logs any TCP traffic from the entire crackers.org network (a class C) to the nice.people.org machine (any port). &prompt.root; ipfw add deny log tcp from evil.crackers.org/24 to nice.people.org If you do not want people sending X sessions to your internal network (a subnet of a class C), the following command will do the necessary filtering: &prompt.root; ipfw add deny tcp from any to my.org/28 6000 setup To see the accounting records: &prompt.root; ipfw -a list or in the short form &prompt.root; ipfw -a l You can also see the last time a chain entry was matched with: &prompt.root; ipfw -at l Building a Packet Filtering Firewall The following suggestions are just that: suggestions. The requirements of each firewall are different and we cannot tell you how to build a firewall to meet your particular requirements. When initially setting up your firewall, unless you have a test bench setup where you can configure your firewall host in a controlled environment, it is strongly recommend you use the logging version of the commands and enable logging in the kernel. This will allow you to quickly identify problem areas and cure them without too much disruption. Even after the initial setup phase is complete, I recommend using the logging for `deny' as it allows tracing of possible attacks and also modification of the firewall rules if your requirements alter. If you use the logging versions of the accept command, it can generate large amounts of log data as one log line will be generated for every packet that passes through the firewall, so large FTP/http transfers, etc, will really slow the system down. It also increases the latencies on those packets as it requires more work to be done by the kernel before the - packet can be passed on. syslogd will also start using up a lot + packet can be passed on. syslogd will + also start using up a lot more processor time as it logs all the extra data to disk, and it could quite easily fill the partition /var/log is located on. You should enable your firewall from /etc/rc.conf.local or /etc/rc.conf. The associated manual page explains which knobs to fiddle and lists some preset firewall configurations. If you do not use a preset configuration, ipfw list will output the current ruleset into a file that you can pass to rc.conf. If you do not use /etc/rc.conf.local or /etc/rc.conf to enable your firewall, it is important to make sure your firewall is enabled before any IP interfaces are configured. The next problem is what your firewall should actually do! This is largely dependent on what access to your network you want to allow from the outside, and how much access to the outside world you want to allow from the inside. Some general rules are: Block all incoming access to ports below 1024 for TCP. This is where most of the security sensitive services are, like finger, SMTP (mail) and telnet. Block all incoming UDP traffic. There are very few useful services that travel over UDP, and what useful traffic there is, is normally a security threat (e.g. Suns RPC and NFS protocols). This has its disadvantages also, since UDP is a connectionless protocol, denying incoming UDP traffic also blocks the replies to outgoing UDP traffic. This can cause a problem for people (on the inside) using external archie (prospero) servers. If you want to allow access to archie, you will have to allow packets coming from ports 191 and 1525 to any internal UDP port - through the firewall. ntp is another service you may consider - allowing through, which comes from port 123. + through the firewall. ntp is another + service you may consider allowing through, which comes from port + 123. Block traffic to port 6000 from the outside. Port 6000 is the port used for access to X11 servers, and can be a security threat (especially if people are in the habit of doing xhost + on their workstations). X11 can actually use a range of ports starting at 6000, the upper limit being how many X displays you can run on the machine. The upper limit as defined by RFC 1700 (Assigned Numbers) is 6063. Check what ports any internal servers use (e.g. SQL servers, etc). It is probably a good idea to block those as well, as they normally fall outside the 1-1024 range specified above. Another checklist for firewall configuration is available from CERT at http://www.cert.org/tech_tips/packet_filtering.html As stated above, these are only guidelines. You will have to decide what filter rules you want to use on your firewall yourself. We cannot accept ANY responsibility if someone breaks into your network, even if you follow the advice given above. OpenSSL security OpenSSL OpenSSL As of FreeBSD 4.0, the OpenSSL toolkit is a part of the base system. OpenSSL provides a general-purpose cryptography library, as well as the Secure Sockets Layer v2/v3 (SSLv2/SSLv3) and Transport Layer Security v1 (TLSv1) network security protocols. However, one of the algorithms (specifically IDEA) included in OpenSSL is protected by patents in the USA and elsewhere, and is not available for unrestricted use. IDEA is included in the OpenSSL sources in FreeBSD, but it is not built by default. If you wish to use it, and you comply with the license terms, enable the MAKE_IDEA switch in /etc/make.conf and rebuild your sources using 'make world'. Today, the RSA algorithm is free for use in USA and other countries. In the past it was protected by a patent. OpenSSL install Source Code Installations OpenSSL is part of the src-crypto and src-secure cvsup collections. See the Obtaining FreeBSD section for more information about obtaining and updating FreeBSD source code. Yoshinobu Inoue Contributed by IPsec IPsec security IPsec The IPsec mechanism provides secure communication for IP layer and socket layer communication. This section should explain how to use them. For implementation details, please refer to The Developers' Handbook. The current IPsec implementation supports both transport mode and tunnel mode. However, tunnel mode comes with some restrictions. http://www.kame.net/newsletter/ has more comprehensive examples. Please be aware that in order to use this functionality, you must have the following options compiled into your kernel: options IPSEC #IP security options IPSEC_ESP #IP security (crypto; define w/IPSEC) Transport Mode Example with IPv4 Let us setup security association to deploy a secure channel between HOST A (10.2.3.4) and HOST B (10.6.7.8). Here we show a little complicated example. From HOST A to HOST B, only old AH is used. From HOST B to HOST A, new AH and new ESP are combined. Now we should choose an algorithm to be used corresponding to "AH"/"new AH"/"ESP"/"new ESP". Please refer to the &man.setkey.8; man page to know algorithm names. Our choice is MD5 for AH, new-HMAC-SHA1 for new AH, and new-DES-expIV with 8 byte IV for new ESP. Key length highly depends on each algorithm. For example, key length must be equal to 16 bytes for MD5, 20 for new-HMAC-SHA1, and 8 for new-DES-expIV. Now we choose "MYSECRETMYSECRET", "KAMEKAMEKAMEKAMEKAME", "PASSWORD", respectively. OK, let us assign SPI (Security Parameter Index) for each protocol. Please note that we need 3 SPIs for this secure channel since three security headers are produced (one for from HOST A to HOST B, two for from HOST B to HOST A). Please also note that SPI MUST be greater than or equal to 256. We choose, 1000, 2000, and 3000, respectively. (1) HOST A ------> HOST B (1)PROTO=AH ALG=MD5(RFC1826) KEY=MYSECRETMYSECRET SPI=1000 (2.1) HOST A <------ HOST B <------ (2.2) (2.1) PROTO=AH ALG=new-HMAC-SHA1(new AH) KEY=KAMEKAMEKAMEKAMEKAME SPI=2000 (2.2) PROTO=ESP ALG=new-DES-expIV(new ESP) IV length = 8 KEY=PASSWORD SPI=3000 Now, let us setup security association. Execute &man.setkey.8; on both HOST A and B: &prompt.root; setkey -c add 10.2.3.4 10.6.7.8 ah-old 1000 -m transport -A keyed-md5 "MYSECRETMYSECRET" ; add 10.6.7.8 10.2.3.4 ah 2000 -m transport -A hmac-sha1 "KAMEKAMEKAMEKAMEKAME" ; add 10.6.7.8 10.2.3.4 esp 3000 -m transport -E des-cbc "PASSWORD" ; ^D Actually, IPsec communication does not process until security policy entries are defined. In this case, you must setup each host. At A: &prompt.root; setkey -c spdadd 10.2.3.4 10.6.7.8 any -P out ipsec ah/transport/10.2.3.4-10.6.7.8/require ; ^D At B: &prompt.root; setkey -c spdadd 10.6.7.8 10.2.3.4 any -P out ipsec esp/transport/10.6.7.8-10.2.3.4/require ; spdadd 10.6.7.8 10.2.3.4 any -P out ipsec ah/transport/10.6.7.8-10.2.3.4/require ; ^D HOST A --------------------------------------> HOST E 10.2.3.4 10.6.7.8 | | ========== old AH keyed-md5 ==========> <========= new AH hmac-sha1 =========== <========= new ESP des-cbc ============ Transport Mode Example with IPv6 Another example using IPv6. ESP transport mode is recommended for TCP port number 110 between Host-A and Host-B. ============ ESP ============ | | Host-A Host-B fec0::10 -------------------- fec0::11 Encryption algorithm is blowfish-cbc whose key is "kamekame", and authentication algorithm is hmac-sha1 whose key is "this is the test key". Configuration at Host-A: &prompt.root; setkey -c <<EOF spdadd fec0::10[any] fec0::11[110] tcp -P out ipsec esp/transport/fec0::10-fec0::11/use ; spdadd fec0::11[110] fec0::10[any] tcp -P in ipsec esp/transport/fec0::11-fec0::10/use ; add fec0::10 fec0::11 esp 0x10001 -m transport -E blowfish-cbc "kamekame" -A hmac-sha1 "this is the test key" ; add fec0::11 fec0::10 esp 0x10002 -m transport -E blowfish-cbc "kamekame" -A hmac-sha1 "this is the test key" ; EOF and at Host-B: &prompt.root; setkey -c <<EOF spdadd fec0::11[110] fec0::10[any] tcp -P out ipsec esp/transport/fec0::11-fec0::10/use ; spdadd fec0::10[any] fec0::11[110] tcp -P in ipsec esp/transport/fec0::10-fec0::11/use ; add fec0::10 fec0::11 esp 0x10001 -m transport -E blowfish-cbc "kamekame" -A hmac-sha1 "this is the test key" ; add fec0::11 fec0::10 esp 0x10002 -m transport -E blowfish-cbc "kamekame" -A hmac-sha1 "this is the test key" ; EOF Note the direction of SP. Tunnel Mode Example with IPv4 Tunnel mode between two security gateways Security protocol is old AH tunnel mode, i.e. specified by RFC1826, with keyed-md5 whose key is "this is the test" as authentication algorithm. ======= AH ======= | | Network-A Gateway-A Gateway-B Network-B 10.0.1.0/24 ---- 172.16.0.1 ----- 172.16.0.2 ---- 10.0.2.0/24 Configuration at Gateway-A: &prompt.root; setkey -c <<EOF spdadd 10.0.1.0/24 10.0.2.0/24 any -P out ipsec ah/tunnel/172.16.0.1-172.16.0.2/require ; spdadd 10.0.2.0/24 10.0.1.0/24 any -P in ipsec ah/tunnel/172.16.0.2-172.16.0.1/require ; add 172.16.0.1 172.16.0.2 ah-old 0x10003 -m any -A keyed-md5 "this is the test" ; add 172.16.0.2 172.16.0.1 ah-old 0x10004 -m any -A keyed-md5 "this is the test" ; EOF If the port number field is omitted such as above then "[any]" is employed. `-m' specifies the mode of SA to be used. "-m any" means wild-card of mode of security protocol. You can use this SA for both tunnel and transport mode. and at Gateway-B: &prompt.root; setkey -c <<EOF spdadd 10.0.2.0/24 10.0.1.0/24 any -P out ipsec ah/tunnel/172.16.0.2-172.16.0.1/require ; spdadd 10.0.1.0/24 10.0.2.0/24 any -P in ipsec ah/tunnel/172.16.0.1-172.16.0.2/require ; add 172.16.0.1 172.16.0.2 ah-old 0x10003 -m any -A keyed-md5 "this is the test" ; add 172.16.0.2 172.16.0.1 ah-old 0x10004 -m any -A keyed-md5 "this is the test" ; EOF Making SA bundle between two security gateways AH transport mode and ESP tunnel mode is required between Gateway-A and Gateway-B. In this case, ESP tunnel mode is applied first, and AH transport mode is next. ========== AH ========= | ======= ESP ===== | | | | | Network-A Gateway-A Gateway-B Network-B fec0:0:0:1::/64 --- fec0:0:0:1::1 ---- fec0:0:0:2::1 --- fec0:0:0:2::/64 Tunnel Mode Example with IPv6 Encryption algorithm is 3des-cbc, and authentication algorithm for ESP is hmac-sha1. Authentication algorithm for AH is hmac-md5. Configuration at Gateway-A: &prompt.root; setkey -c <<EOF spdadd fec0:0:0:1::/64 fec0:0:0:2::/64 any -P out ipsec esp/tunnel/fec0:0:0:1::1-fec0:0:0:2::1/require ah/transport/fec0:0:0:1::1-fec0:0:0:2::1/require ; spdadd fec0:0:0:2::/64 fec0:0:0:1::/64 any -P in ipsec esp/tunnel/fec0:0:0:2::1-fec0:0:0:1::1/require ah/transport/fec0:0:0:2::1-fec0:0:0:1::1/require ; add fec0:0:0:1::1 fec0:0:0:2::1 esp 0x10001 -m tunnel -E 3des-cbc "kamekame12341234kame1234" -A hmac-sha1 "this is the test key" ; add fec0:0:0:1::1 fec0:0:0:2::1 ah 0x10001 -m transport -A hmac-md5 "this is the test" ; add fec0:0:0:2::1 fec0:0:0:1::1 esp 0x10001 -m tunnel -E 3des-cbc "kamekame12341234kame1234" -A hmac-sha1 "this is the test key" ; add fec0:0:0:2::1 fec0:0:0:1::1 ah 0x10001 -m transport -A hmac-md5 "this is the test" ; EOF Making SAs with the different end ESP tunnel mode is required between Host-A and Gateway-A. Encryption algorithm is cast128-cbc, and authentication algorithm for ESP is hmac-sha1. ESP transport mode is recommended between Host-A and Host-B. Encryption algorithm is rc5-cbc, and authentication algorithm for ESP is hmac-md5. ================== ESP ================= | ======= ESP ======= | | | | | Host-A Gateway-A Host-B fec0:0:0:1::1 ---- fec0:0:0:2::1 ---- fec0:0:0:2::2 Configuration at Host-A: &prompt.root; setkey -c <<EOF spdadd fec0:0:0:1::1[any] fec0:0:0:2::2[80] tcp -P out ipsec esp/transport/fec0:0:0:1::1-fec0:0:0:2::2/use esp/tunnel/fec0:0:0:1::1-fec0:0:0:2::1/require ; spdadd fec0:0:0:2::1[80] fec0:0:0:1::1[any] tcp -P in ipsec esp/transport/fec0:0:0:2::2-fec0:0:0:l::1/use esp/tunnel/fec0:0:0:2::1-fec0:0:0:1::1/require ; add fec0:0:0:1::1 fec0:0:0:2::2 esp 0x10001 -m transport -E cast128-cbc "12341234" -A hmac-sha1 "this is the test key" ; add fec0:0:0:1::1 fec0:0:0:2::1 esp 0x10002 -E rc5-cbc "kamekame" -A hmac-md5 "this is the test" ; add fec0:0:0:2::2 fec0:0:0:1::1 esp 0x10003 -m transport -E cast128-cbc "12341234" -A hmac-sha1 "this is the test key" ; add fec0:0:0:2::1 fec0:0:0:1::1 esp 0x10004 -E rc5-cbc "kamekame" -A hmac-md5 "this is the test" ; EOF Chern Lee Contributed by OpenSSH OpenSSH security OpenSSH Secure shell is a set of network connectivity tools used to access remote machines securely. It can be used as a direct replacement for rlogin, rsh, rcp, and telnet. Additionally, any other TCP/IP connections can be tunneled/forwarded securely through ssh. ssh encrypts all traffic to effectively eliminate eavesdropping, connection hijacking, and other network-level attacks. OpenSSH is maintained by the OpenBSD project, and is based upon SSH v1.2.12 with all the recent bug fixes and updates. It is compatible with both SSH protocols 1 and 2. OpenSSH has been in the base system since FreeBSD 4.0. Advantages of Using OpenSSH Normally, when using &man.telnet.1; or &man.rlogin.1;, data is sent over the network in an clear, un-encrypted form. Network sniffers anywhere in between the client and server can steal your user/password information or data transferred in your session. OpenSSH offers a variety of authentication and encryption methods to prevent this from happening. Enabling sshd OpenSSH enabling Be sure to make the following additions to your rc.conf file: sshd_enable="YES" This will load the ssh daemon the next time your system initializes. Alternatively, you can simply run the sshd daemon. SSH Client OpenSSH client The &man.ssh.1; utility works similarly to &man.rlogin.1;. &prompt.root ssh user@foobardomain.com Host key not found from the list of known hosts. Are you sure you want to continue connecting (yes/no)? yes Host 'foobardomain.com' added to the list of known hosts. user@foobardomain.com's password: ******* The login will continue just as it would have if a session was - created using rlogin or telnet. SSH utilizes a key fingerprint + created using rlogin or telnet. SSH utilizes a + key fingerprint system for verifying the authenticity of the server when the client connects. The user is prompted to enter 'yes' only when connecting for the first time. Future attempts to login are all verified against the saved fingerprint key. The SSH client will alert you if the saved fingerprint differs from the received fingerprint on future login attempts. The fingerprints are saved in ~/.ssh/known_hosts Secure Copy OpenSSH secure copy scp The scp command works similarly to rcp; it copies a file to or from a remote machine, except in a secure fashion. &prompt.root scp user@foobardomain.com:/COPYRIGHT COPYRIGHT user@foobardomain.com's password: COPYRIGHT 100% |*****************************| 4735 00:00 &prompt.root Since the fingerprint was already saved for this host in the previous example, it is verified when using scp here. Configuration OpenSSH configuration The system-wide configuration files for both the OpenSSH daemon and client reside within the /etc/ssh directory. ssh_config configures the client settings, while sshd_config configures the daemon. ssh-keygen Instead of using passwords, &man.ssh-keygen.1; can be used to generate RSA keys to authenticate a user. &prompt.user ssh-keygen Initializing random number generator... Generating p: .++ (distance 66) Generating q: ..............................++ (distance 498) Computing the keys... Key generation complete. Enter file in which to save the key (/home/user/.ssh/identity): Enter passphrase: Enter the same passphrase again: Your identification has been saved in /home/user/.ssh/identity. ... &man.ssh-keygen.1; will create a public and private key pair for use in authentication. The private key is stored in ~/.ssh/identity, whereas the public key is stored in ~/.ssh/identity.pub. The public key must be placed in ~/.ssh/authorized_keys of the remote machine in order for the setup to work. This will allow connection to the remote machine based upon RSA authentication instead of passwords. If a passphrase is used in &man.ssh-keygen.1;, the user will be prompted for a password each time in order to use the private key. &man.ssh-agent.1; and &man.ssh-add.1; are utilities used in managing multiple passworded private keys. SSH Tunneling OpenSSH tunneling OpenSSH has the ability to create a tunnel to encapsulate another protocol in an encrypted session. The following command tells &man.ssh.1; to create a tunnel for telnet. &prompt.user; ssh -2 -N -f -L 5023:localhost:23 user@foo.bar.com &prompt.user; -2 this forces &man.ssh.1 to use version 2 of the protocol. (Do not use if you are working with older ssh servers) -N indicates no command, or tunnel only. If omitted, &man.ssh.1; would initiate a normal session. -f forces &man.ssh.1; to run in the background. -L indicates a local tunnel in localport:localhost:remoteport fashion. foo.bar.com is the remote/target SSH server. An SSH tunnel works by creating a listen socket on the specified local host and port. It then forwards any connection to the local host/port via the SSH connection to the remote machine on the specified remote port. In the example, port 5023 on localhost is being forwarded to port 23 on the remote machine. Since 23 is telnet, this would create a secure telnet session through an SSH tunnel. This can be used to wrap any number of insecure TCP protocols such as smtp, pop3, ftp, etc. A typical SSH Tunnel &prompt.user; ssh -2 -N -f -L 5025:localhost:25 user@mailserver.foobar.com user@mailserver.foobar.com's password: ***** &prompt.user; telnet localhost 5025 Trying 127.0.0.1... Connected to localhost. Escape character is '^]'. 220 mailserver.foobar.com ESMTP This can be used in conjunction with an &man.ssh-keygen.1; and additional user accounts to create a more seamless/hassle-free SSH tunneling environment. Keys can be used in place of typing a password, and the tunnels can be run as a separate user. Further Reading OpenSSH &man.ssh.1; &man.scp.1; &man.ssh-keygen.1; &man.ssh-agent.1; &man.ssh-add.1; &man.sshd.8; &man.sftp-server.8; diff --git a/en_US.ISO8859-1/books/handbook/serialcomms/chapter.sgml b/en_US.ISO8859-1/books/handbook/serialcomms/chapter.sgml index e4230af6e3..d63c8e6079 100644 --- a/en_US.ISO8859-1/books/handbook/serialcomms/chapter.sgml +++ b/en_US.ISO8859-1/books/handbook/serialcomms/chapter.sgml @@ -1,2590 +1,2593 @@ Serial Communications Synopsis serial communications Unix has always had support for serial communications. In fact, the very first Unix machines relied on serial lines for user input and output. Things have changed a lot from the days when the average terminal consisted of a 10-character-per-second serial printer and a keyboard. This chapter will cover some of the ways in which FreeBSD uses serial communications. After reading this chapter you will know: How to connect terminals to your FreeBSD system. How to use a modem to dial out to remote hosts. How to allow remote users to login to your system with a modem. How to boot your system from a serial console. Before reading this chapter you should: Know how to configure and install a new kernel () Understand Unix permissions and processes () Have access to the technical manual for the serial hardware (modem or multi-port card) that you would like to use with FreeBSD. Introduction Terminology bits-per-second bps Bits per Second — the rate at which data is transmitted DTE DTE Data Terminal Equipment — for example, your computer DCE DCE Data Communications Equipment — your modem RS-232 RS-232C cables EIA standard for hardware serial communications When talking about communications data rates, the authors do not use the term baud. Baud refers to the number of electrical state transitions that may be made in a period of time, while bps (bits per second) is the correct term to use (at least it does not seem to bother the curmudgeons quite a much). Cables and Ports To connect a modem or terminal to your FreeBSD system, you will need a serial port on your computer and the proper cable to connect to your serial device. If you are already familiar with your hardware and the cable it requires, you can safely skip this section. Cables There are several different kinds of serial cables. The two most common types for our purposes are null-modem cables and standard ("straight") RS-232 cables. The documentation for your hardware should describe the type of cable required. Null-modem Cables null-modem cable A null-modem cable passes some signals straight through, like signal ground, but switches other signals. For example, the send data pin on one end goes to the receive data pin on the other end. If you like making your own cables, you can construct a null-modem cable for use with terminals. This table shows the RS-232C signal names and the pin numbers on a DB-25 connector. Signal Pin # Pin # Signal TxD 2 connects to 3 RxD RxD 3 connects to 2 TxD DTR 20 connects to 6 DSR DSR 6 connects to 20 DTR SG 7 connects to 7 SG DCD 8 connects to 4 RTS RTS 4 5 CTS CTS 5 connects to 8 DCD For DCD to RTS, connect pins 4 to 5 internally in the connector hood, and then to pin 8 in the remote hood. Standard RS-232C Cables RS-232C cables A standard serial cable passes all the RS-232C signals straight-through. That is, the send data pin on one end of the cable goes to the send data pin on the other end. This is the type of cable to connect a modem to your FreeBSD system, and the type of cable needed for some terminals. Ports Serial ports are the devices through which data is transferred between the FreeBSD host computer and the terminal. This section describes the kinds of ports that exist and how they are addressed in FreeBSD. Kinds of Ports Several kinds of serial ports exist. Before you purchase or construct a cable, you need to make sure it will fit the ports on your terminal and on the FreeBSD system. Most terminals will have DB25 ports. Personal computers, including PCs running FreeBSD, will have DB25 or DB9 ports. If you have a multiport serial card for your PC, you may have RJ-12 or RJ-45 ports. See the documentation that accompanied the hardware for specifications on the kind of port in use. A visual inspection of the port often works, too. Port Names In FreeBSD, you access each serial port through an entry in the /dev directory. There are two different kinds of entries: Call-in ports are named /dev/ttydN where N is the port number, starting from zero. Generally, you use the call-in port for terminals. Call-in ports require that the serial line assert the data carrier detect (DCD) signal to work. Call-out ports are named /dev/cuaaN. You usually do not use the call-out port for terminals, just for modems. You may use the call-out port if the serial cable or the terminal does not support the carrier detect signal. If you have connected a terminal to the first serial port (COM1 in MS-DOS parlance), then you want to use /dev/ttyd0 to refer to the terminal. If it is on the second serial port (also known as COM2), it is /dev/ttyd1, and so forth. Kernel Configuration FreeBSD supports four serial ports by default. In the MS-DOS world, these are known as COM1:, COM2:, COM3:, and COM4:. FreeBSD currently supports dumb multiport serial interface cards, such as the BocaBoard 1008 and 2016, as well as more intelligent multi-port cards such as those made by Digiboard and Stallion Technologies. The default kernel only looks for the standard COM ports, though. To see if your kernel recognizes any of your serial ports, watch for messages while the kernel is booting, or use the /sbin/dmesg command to replay the kernel's boot messages. In particular, look for messages that start with the characters sio. To view just the messages that have the word sio, use the command: &prompt.root; /sbin/dmesg | grep 'sio' For example, on a system with four serial ports, these are the serial-port specific kernel boot messages: sio0 at 0x3f8-0x3ff irq 4 on isa sio0: type 16550A sio1 at 0x2f8-0x2ff irq 3 on isa sio1: type 16550A sio2 at 0x3e8-0x3ef irq 5 on isa sio2: type 16550A sio3 at 0x2e8-0x2ef irq 9 on isa sio3: type 16550A If your kernel does not recognize all of your serial ports, you will probably need to configure a custom FreeBSD kernel for your system. For detailed information on configuring your kernel, please see . The relevant device lines for your kernel configuration file would look like this: device sio0 at isa? port "IO_COM1" tty irq 4 vector siointr device sio1 at isa? port "IO_COM2" tty irq 3 vector siointr device sio2 at isa? port "IO_COM3" tty irq 5 vector siointr device sio3 at isa? port "IO_COM4" tty irq 9 vector siointr You can comment-out or completely remove lines for devices you do not have. Please see the &man.sio.4; manual page for complete information on how to write configuration lines for multiport boards. Be careful if you are using a configuration file that was previously used for a different version of FreeBSD because the device flags have changed between versions. port "IO_COM1" is a substitution for port 0x3f8, IO_COM2 is 0x2f8, IO_COM3 is 0x3e8, and IO_COM4 is 0x2e8, which are fairly common port addresses for their respective serial ports; interrupts 4, 3, 5, and 9 are fairly common interrupt request lines. Also note that regular serial ports cannot share interrupts on ISA-bus PCs (multiport boards have on-board electronics that allow all the 16550A's on the board to share one or two interrupt request lines). Device Special Files Most devices in the kernel are accessed through device special files, which are located in the /dev directory. The sio devices are accessed through the /dev/ttydN (dial-in) and /dev/cuaaN (call-out) devices. FreeBSD also provides initialization devices (/dev/ttyidN and /dev/cuai0N) and locking devices (/dev/ttyldN and /dev/cual0N). The initialization devices are used to initialize communications port parameters each time a port is opened, such as crtscts for modems which use CTS/RTS signaling for flow control. The locking devices are used to lock flags on ports to prevent users or programs changing certain parameters; see the manual pages &man.termios.4;, &man.sio.4;, and &man.stty.1; for information on the terminal settings, locking and initializing devices, and setting terminal options, respectively. Making Device Special Files FreeBSD 5.0 includes the devfs filesystem which automatically creates device nodes as needed. If you are running a version of FreeBSD with devfs enabled then you can safely skip this section. A shell script called MAKEDEV in the /dev directory manages the device special files. To use MAKEDEV to make dial-up device special files for COM1: (port 0), cd to /dev and issue the command MAKEDEV ttyd0. Likewise, to make dial-up device special files for COM2: (port 1), use MAKEDEV ttyd1. MAKEDEV not only creates the /dev/ttydN device special files, but also creates the /dev/cuaaN, /dev/cuaiaN, /dev/cualaN, /dev/ttyldN, and /dev/ttyidN nodes. After making new device special files, be sure to check the permissions on the files (especially the /dev/cua* files) to make sure that only users who should have access to those device special files can read and write on them — you probably do not want to allow your average user to use your modems to dial-out. The default permissions on the /dev/cua* files should be sufficient: crw-rw---- 1 uucp dialer 28, 129 Feb 15 14:38 /dev/cuaa1 crw-rw---- 1 uucp dialer 28, 161 Feb 15 14:38 /dev/cuaia1 crw-rw---- 1 uucp dialer 28, 193 Feb 15 14:38 /dev/cuala1 These permissions allow the user uucp and users in the group dialer to use the call-out devices. Serial Port Configuration ttyd cuaa The ttydN (or cuaaN) device is the regular device you will want to open for your applications. When a process opens the device, it will have a default set of terminal I/O settings. You can see these settings with the command &prompt.root; stty -a -f /dev/ttyd1 When you change the settings to this device, the settings are in effect until the device is closed. When it is reopened, it goes back to the default set. To make changes to the default set, you can open and adjust the settings of the initial state device. For example, to turn on mode, 8 bit communication, and flow control by default for ttyd5, type: &prompt.root; stty -f /dev/ttyid5 clocal cs8 ixon ixoff rc files rc.serial System-wide initialization of the serial devices is controlled in /etc/rc.serial. This file affects the default settings of serial devices. To prevent certain settings from being changed by an application, make adjustments to the lock state device. For example, to lock the speed of ttyd5 to 57600 bps, type: &prompt.root; stty -f /dev/ttyld5 57600 Now, an application that opens ttyd5 and tries to change the speed of the port will be stuck with 57600 bps. MAKEDEV Naturally, you should make the initial state and lock state devices writable only by the root account. Sean Kelly Contributed by Terminals terminals Terminals provide a convenient and low-cost way to access the power of your FreeBSD system when you are not at the computer's console or on a connected network. This section describes how to use terminals with FreeBSD. Uses and Types of Terminals The original Unix systems did not have consoles. Instead, people logged in and ran programs through terminals that were connected to the computer's serial ports. It is quite similar to using a modem and some terminal software to dial into a remote system to do text-only work. Today's PCs have consoles capable of high quality graphics, but the ability to establish a login session on a serial port still exists in nearly every Unix-style operating system today; FreeBSD is no exception. By using a terminal attached to a unused serial port, you can log in and run any text program that you would normally run on the console or in an xterm window in the X Window System. For the business user, you can attach many terminals to a FreeBSD system and place them on your employees' desktops. For a home user, a spare computer such as an older IBM PC or a Macintosh can be a terminal wired into a more powerful computer running FreeBSD. You can turn what might otherwise be a single-user computer into a powerful multiple user system. For FreeBSD, there are three kinds of terminals: Dumb terminals PCs acting as terminals X terminals The remaining subsections describe each kind. Dumb Terminals Dumb terminals are specialized pieces of hardware that let you connect to computers over serial lines. They are called dumb because they have only enough computational power to display, send, and receive text. You cannot run any programs on them. It is the computer to which you connect them that has all the power to run text editors, compilers, email, games, and so forth. There are hundreds of kinds of dumb terminals made by many manufacturers, including Digital Equipment Corporation's VT-100 and Wyse's WY-75. Just about any kind will work with FreeBSD. Some high-end terminals can even display graphics, but only certain software packages can take advantage of these advanced features. Dumb terminals are popular in work environments where workers do not need access to graphic applications such as those provided by the X Window System. PCs Acting As Terminals If a dumb terminal has just enough ability to display, send, and receive text, then certainly any spare personal computer can be a dumb terminal. All you need is the proper cable and some terminal emulation software to run on the computer. Such a configuration is popular in homes. For example, if your spouse is busy working on your FreeBSD system's console, you can do some text-only work at the same time from a less powerful personal computer hooked up as a terminal to the FreeBSD system. X Terminals X terminals are the most sophisticated kind of terminal available. Instead of connecting to a serial port, they usually connect to a network like Ethernet. Instead of being relegated to text-only applications, they can display any X application. We introduce X terminals just for the sake of completeness. However, this chapter does not cover setup, configuration, or use of X terminals. Configuration This section describes what you need to configure on your FreeBSD system to enable a login session on a terminal. It assumes you have already configured your kernel to support the serial port to which the terminal is connected—and that you have connected it. Recall from that the init process is responsible for all process control and initialization at system startup. One of the tasks performed by init is to read the /etc/ttys file and start a getty process on the available terminals. The getty process is responsible for reading a login name and starting the login program. Thus, to configure terminals for your FreeBSD system the following steps should be taken as root : Add a line to /etc/ttys for the entry in the /dev directory for the serial port if it is not already there. Specify that /usr/libexec/getty be run on the port, and specify the appropriate getty type from the /etc/gettytab file. Specify the default terminal type. Set the port to on. Specify whether the port should be secure. Force init to reread the /etc/ttys file. As an optional step, you may wish to create a custom getty type for use in step 2 by making an entry in /etc/gettytab. This chapter does not explain how to do so; you are encouraged to see the &man.gettytab.5; and the &man.getty.8; manual pages for more information. Adding an Entry to <filename>/etc/ttys</filename> The /etc/ttys file lists all of the ports on your FreeBSD system where you want to allow logins. For example, the first virtual console ttyv0 has an entry in this file. You can log in on the console using this entry. This file also contains entries for the other virtual consoles, serial ports, and pseudo-ttys. For a hardwired terminal, just list the serial port's /dev entry without the /dev part. A default FreeBSD install includes a /etc/ttys file with support for the first four serial ports: ttyd0 through ttyd3. If you are attaching a terminal to one of those ports, you do not need to add another entry. Adding Terminal Entries to <filename>/etc/ttys</filename> Suppose we would like to connect two terminals to the system: a Wyse-50 and an old 286 IBM PC running Procomm terminal software emulating a VT-100 terminal. We connect the Wyse to the second serial port and the 286 to the sixth serial port (a port on a multiport serial card). The corresponding entries in the /etc/ttys file would look like this: ttyd1 "/usr/libexec/getty std.38400" wy50 on insecure ttyd5 "/usr/libexec/getty std.19200" vt100 on insecure The first field normally specifies the name of the terminal special file as it is found in /dev. The second field is the command to execute for this line, which is usually &man.getty.8;. getty initializes and opens the line, sets the speed, prompts for a user name and then executes the &man.login.1; program. The getty program accepts one (optional) parameter on its command line, the getty type. A getty type tells about characteristics on the terminal line, like bps rate and parity. The getty program reads these characteristics from the file /etc/gettytab. The file /etc/gettytab contains lots of entries for terminal lines both old and new. In almost all cases, the entries that start with the text std will work for hardwired terminals. These entries ignore parity. There is a std entry for each bps rate from 110 to 115200. Of course, you can add your own entries to this file. The &man.gettytab.5; manual page provides more information. When setting the getty type in the /etc/ttys file, make sure that the communications settings on the terminal match. For our example, the Wyse-50 uses no parity and connects at 38400 bps. The 286 PC uses no parity and connects at 19200 bps. The third field is the type of terminal usually connected to that tty line. For dial-up ports, unknown or dialup is typically used in this field since users may dial up with practically any type of terminal or software. For hardwired terminals, the terminal type does not change, so you can put a real terminal type from the &man.termcap.5; database file in this field. For our example, the Wyse-50 uses the real terminal type while the 286 PC running Procomm will be set to emulate at VT-100. The fourth field specifies if the port should be enabled. Putting on here will have the init process start the program in the second field, getty. If you put off in this field, there will be no getty, and hence no logins on the port. The final field is used to specify whether the port is secure. Marking a port as secure means that you trust it enough to allow the root account (or any account with a user ID of 0) to login from that port. Insecure ports do not allow root logins. On an insecure port, users must login from unprivileged accounts and then use &man.su.1; or a similar mechanism to gain superuser privileges. It is highly recommended that you use "insecure" even for terminals that are behind locked doors. It is quite easy to login and use su if you need superuser privileges. Force <command>init</command> to Reread <filename>/etc/ttys</filename> After making the necessary changes to the /etc/ttys file you should send a SIGHUP (hangup) signal to the init process to force it to re-read its configuration file. For example : &prompt.root; kill -HUP 1 If everything is set up correctly, all cables are in place, and the terminals are powered up, then a getty process should be running on each terminal and you should see login prompts on your terminals at this point. Troubleshooting Your Connection Even with the most meticulous attention to detail, something could still go wrong while setting up a terminal. Here is a list of symptoms and some suggested fixes. No login prompt appears Make sure the terminal is plugged in and powered up. If it is a personal computer acting as a terminal, make sure it is running terminal emulation software on the correct serial port. Make sure the cable is connected firmly to both the terminal and the FreeBSD computer. Make sure it is the right kind of cable. Make sure the terminal and FreeBSD agree on the bps rate and parity settings. If you have a video display terminal, make sure the contrast and brightness controls are turned up. If it is a printing terminal, make sure paper and ink are in good supply. Make sure that a getty process is running and serving the terminal. For example, to get a list of - running getty processes with ps, type: + running getty processes with + ps, type: &prompt.root; ps -axww|grep getty You should see an entry for the terminal. For example, the following display shows that a getty is running on the second serial port ttyd1 and is using the std.38400 entry in /etc/gettytab: 22189 d1 Is+ 0:00.03 /usr/libexec/getty std.38400 ttyd1 If no getty process is running, make sure you have enabled the port in /etc/ttys. Also remember to run kill -HUP 1 after modifying the ttys file. Garbage appears instead of a login prompt Make sure the terminal and FreeBSD agree on the bps rate and - parity settings. Check the getty processes to make sure the + parity settings. Check the getty processes + to make sure the correct getty type is in use. If not, edit /etc/ttys and run kill -HUP 1. Characters appear doubled; the password appears when typed Switch the terminal (or the terminal emulation software) from half duplex or local echo to full duplex. Guy Helmer Contributed by Sean Kelly Additions by Dial-in Service dial-in service Configuring your FreeBSD system for dial-in service is very similar to connecting terminals except that you're dealing with modems instead of terminals. External v.s. Internal Modems External modems seem to be more convenient for dial-up, because external modems often can be semi-permanently configured via parameters stored in non-volatile RAM and they usually provide lighted indicators that display the state of important RS-232 signals. Blinking lights impress visitors, but lights are also very useful to see whether a modem is operating properly. Internal modems usually lack non-volatile RAM, so their configuration may be limited only to setting DIP switches. If your internal modem has any signal indicator lights, it is probably difficult to view the lights when the system's cover is in place. Modems and Cables modem If you are using an external modem, then you will of course need the proper cable. A standard RS-232C serial cable should suffice as long as all of the normal signals are wired : Transmitted Data (SD) Received Data (RD) Request to Send (RTS) Clear to Send (CTS) Data Set Ready (DSR) Data Terminal Ready (DTR) Carrier Detect (CD) Signal Ground (SG) FreeBSD needs the RTS and CTS signals for flow-control at speeds above 2400bps, the CD signal to detect when a call has been answered or the line has been hung up, and the DTR signal to reset the modem after a session is complete. Some cables are wired without all of the needed signals, so if you have problems, such as a login session not going away when the line hangs up, you may have a problem with your cable. Like other Unix-like operating systems, FreeBSD uses the hardware signals to find out when a call has been answered or a line has been hung up and to hangup and reset the modem after a call. FreeBSD avoids sending commands to the modem or watching for status reports from the modem. If you are familiar with connecting modems to PC-based bulletin board systems, this may seem awkward. Serial Interface Considerations FreeBSD supports NS8250-, NS16450-, NS16550-, and NS16550A-based EIA RS-232C (CCITT V.24) communications interfaces. The 8250 and 16450 devices have single-character buffers. The 16550 device provides a 16-character buffer, which allows for better system performance. (Bugs in plain 16550's prevent the use of the 16-character buffer, so use 16550A's if possible). Because single-character-buffer devices require more work by the operating system than the 16-character-buffer devices, 16550A-based serial interface cards are much preferred. If the system has many active serial ports or will have a heavy load, 16550A-based cards are better for low-error-rate communications. Quick Overview getty As with terminals, init spawns a getty process for each configured serial port for dial-in connections. For example, if a modem is attached to /dev/ttyd0, the command ps ax might show this: 4850 ?? I 0:00.09 /usr/libexec/getty V19200 ttyd0 When a user dials the modem's line and the modems connect, the CD line is asserted by the modem. The kernel notices that carrier has been detected and completes getty's open of the port. getty sends a login: prompt at the specified initial line speed. getty watches to see if legitimate characters are received, and, in a typical configuration, if it finds junk (probably due to the modem's connection speed being different than getty's speed), getty tries adjusting the line speeds until it receives reasonable characters. /usr/bin/login After the user enters his/her login name, getty executes /usr/bin/login, which completes the login by asking for the user's password and then starting the user's shell. Configuration Files There are three system configuration files in the /etc directory that you will probably need to edit to allow dial-up access to your FreeBSD system. The first, /etc/gettytab, contains configuration information for the /usr/libexec/getty daemon. Second, /etc/ttys holds information that tells /sbin/init what tty devices should have getty processes running on them. Lastly, you can place port initialization commands in the /etc/rc.serial script. There are two schools of thought regarding dial-up modems on Unix. One group likes to configure their modems and systems so that no matter at what speed a remote user dials in, the local computer-to-modem RS-232 interface runs at a locked speed. The benefit of this configuration is that the remote user always sees a system login prompt immediately. The downside is that the system does not know what a user's true data rate is, so full-screen programs like Emacs will not adjust their screen-painting methods to make their response better for slower connections. The other school configures their modems' RS-232 interface to vary its speed based on the remote user's connection speed. For example, V.32bis (14.4 Kbps) connections to the modem might make the modem run its RS-232 interface at 19.2 Kbps, while 2400 bps connections make the modem's RS-232 interface run at 2400 bps. Because getty does not understand any particular modem's connection speed reporting, getty gives a login: message at an initial speed and watches the characters that come back in response. If the user sees junk, it is assumed that they know they should press the Enter key until they see a recognizable prompt. If the data rates do not match, getty sees anything the user types as junk, tries going to the next speed and gives the login: prompt again. This procedure can continue ad nauseam, but normally only takes a keystroke or two before the user sees a good prompt. Obviously, this login sequence does not look as clean as the former locked-speed method, but a user on a low-speed connection should receive better interactive response from full-screen programs. The authors will try to give balanced configuration information, but is biased towards having the modem's data rate follow the connection rate. <filename>/etc/gettytab</filename> /etc/gettytab /etc/gettytab is a &man.termcap.5;-style file of configuration information for &man.getty.8;. Please see the &man.gettytab.5; manual page for complete information on the format of the file and the list of capabilities. Locked-Speed Config If you are locking your modem's data communications rate at a particular speed, you probably will not need to make any changes to /etc/gettytab. Matching-Speed Config You will need to setup an entry in /etc/gettytab to give getty information about the speeds you wish to use for your modem. If you have a 2400 bps modem, you can probably use the existing D2400 entry. # # Fast dialup terminals, 2400/1200/300 rotary (can start either way) # D2400|d2400|Fast-Dial-2400:\ :nx=D1200:tc=2400-baud: 3|D1200|Fast-Dial-1200:\ :nx=D300:tc=1200-baud: 5|D300|Fast-Dial-300:\ :nx=D2400:tc=300-baud: If you have a higher speed modem, you will probably need to add an entry in /etc/gettytab; here is an entry you could use for a 14.4 Kbps modem with a top interface speed of 19.2 Kbps: # # Additions for a V.32bis Modem # um|V300|High Speed Modem at 300,8-bit:\ :nx=V19200:tc=std.300: un|V1200|High Speed Modem at 1200,8-bit:\ :nx=V300:tc=std.1200: uo|V2400|High Speed Modem at 2400,8-bit:\ :nx=V1200:tc=std.2400: up|V9600|High Speed Modem at 9600,8-bit:\ :nx=V2400:tc=std.9600: uq|V19200|High Speed Modem at 19200,8-bit:\ :nx=V9600:tc=std.19200: This will result in 8-bit, no parity connections. The example above starts the communications rate at 19.2 Kbps (for a V.32bis connection), then cycles through 9600 bps (for V.32), 2400 bps, 1200 bps, 300 bps, and back to 19.2 Kbps. Communications rate cycling is implemented with the nx= (next table) capability. Each of the lines uses a tc= (table continuation) entry to pick up the rest of the standard settings for a particular data rate. If you have a 28.8 Kbps modem and/or you want to take advantage of compression on a 14.4 Kbps modem, you need to use a higher communications rate than 19.2 Kbps. Here is an example of a gettytab entry starting a 57.6 Kbps: # # Additions for a V.32bis or V.34 Modem # Starting at 57.6 Kbps # vm|VH300|Very High Speed Modem at 300,8-bit:\ :nx=VH57600:tc=std.300: vn|VH1200|Very High Speed Modem at 1200,8-bit:\ :nx=VH300:tc=std.1200: vo|VH2400|Very High Speed Modem at 2400,8-bit:\ :nx=VH1200:tc=std.2400: vp|VH9600|Very High Speed Modem at 9600,8-bit:\ :nx=VH2400:tc=std.9600: vq|VH57600|Very High Speed Modem at 57600,8-bit:\ :nx=VH9600:tc=std.57600: If you have a slow CPU or a heavily loaded system and you do not have 16550A-based serial ports, you may receive sio silo errors at 57.6 Kbps. <filename>/etc/ttys</filename> /etc/ttys Configuration of the /etc/ttys file was covered in . Configuration for modems is similar but we must pass a different argument to getty and specify a different terminal type. The general format for both locked-speed and matching-speed configurations is: ttyd0 "/usr/libexec/getty xxx" dialup on The first item in the above line is the device special file for this entry — ttyd0 means /dev/ttyd0 is the file that this getty will be watching. The second item, "/usr/libexec/getty xxx" (xxx will be replaced by the initial gettytab capability) is the process init will run on the device. The third item, dialup, is the default terminal type. The fourth parameter, on, indicates to init that the line is operational. There can be a fifth parameter, secure, but it should only be used for terminals which are physically secure (such as the system console). The default terminal type (dialup in the example above) may depend on local preferences. dialup is the traditional default terminal type on dial-up lines so that users may customize their login scripts to notice when the terminal is dialup and automatically adjust their terminal type. However, the author finds it easier at his site to specify vt102 as the default terminal type, since the users just use VT102 emulation on their remote systems. After you have made changes to /etc/ttys, you may send the init process a HUP signal to re-read the file. You can use the command &prompt.root; kill -HUP 1 to send the signal. If this is your first time setting up the system, though, you may want to wait until your modem(s) are properly configured and connected before signaling init. Locked-Speed Config For a locked-speed configuration, your ttys entry needs to have a fixed-speed entry provided to getty. For a modem whose port speed is locked at 19.2 Kbps, the ttys entry might look like this: ttyd0 "/usr/libexec/getty std.19200" dialup on If your modem is locked at a different data rate, substitute the appropriate value for std.speed instead of std.19200. Make sure that you use a valid type listed in /etc/gettytab. Matching-Speed Config In a matching-speed configuration, your ttys entry needs to reference the appropriate beginning auto-baud (sic) entry in /etc/gettytab. For example, if you added the above suggested entry for a matching-speed modem that starts at 19.2 Kbps (the gettytab entry containing the V19200 starting point), your ttys entry might look like this: ttyd0 "/usr/libexec/getty V19200" dialup on <filename>/etc/rc.serial</filename> rc files rc.serial High-speed modems, like V.32, V.32bis, and V.34 modems, need to use hardware (RTS/CTS) flow control. You can add stty commands to /etc/rc.serial to set the hardware flow control flag in the FreeBSD kernel for the modem ports. For example to set the termios flag crtscts on serial port #1's (COM2:) dial-in and dial-out initialization devices, the following lines could be added to /etc/rc.serial : # Serial port initial configuration stty -f /dev/ttyid1 crtscts stty -f /dev/cuai01 crtscts Modem Settings If you have a modem whose parameters may be permanently set in non-volatile RAM, you will need to use a terminal program (such as Telix under MS-DOS or tip under FreeBSD) to set the parameters. Connect to the modem using the same communications speed as the initial speed getty will use and configure the modem's non-volatile RAM to match these requirements: CD asserted when connected DTR asserted for operation; dropping DTR hangs up line and resets modem CTS transmitted data flow control Disable XON/XOFF flow control RTS received data flow control Quiet mode (no result codes) No command echo Please read the documentation for your modem to find out what commands and/or DIP switch settings you need to give it. For example, to set the above parameters on a USRobotics Sportster 14,400 external modem, one could give these commands to the modem: ATZ AT&C1&D2&H1&I0&R2&W You might also want to take this opportunity to adjust other settings in the modem, such as whether it will use V.42bis and/or MNP5 compression. The USR Sportster 14,400 external modem also has some DIP switches that need to be set; for other modems, perhaps you can use these settings as an example: Switch 1: UP — DTR Normal Switch 2: Do not care (Verbal Result Codes/Numeric Result Codes) Switch 3: UP — Suppress Result Codes Switch 4: DOWN — No echo, offline commands Switch 5: UP — Auto Answer Switch 6: UP — Carrier Detect Normal Switch 7: UP — Load NVRAM Defaults Switch 8: Do not care (Smart Mode/Dumb Mode) Result codes should be disabled/suppressed for dial-up modems to avoid problems that can occur if getty mistakenly gives a login: prompt to a modem that is in command mode and the modem echoes the command or returns a result code. This sequence can result in a extended, silly conversation between getty and the modem. Locked-speed Config For a locked-speed configuration, you will need to configure the modem to maintain a constant modem-to-computer data rate independent of the communications rate. On a USR Sportster 14,400 external modem, these commands will lock the modem-to-computer data rate at the speed used to issue the commands: ATZ AT&B1&W Matching-speed Config For a variable-speed configuration, you will need to configure your modem to adjust its serial port data rate to match the incoming call rate. On a USR Sportster 14,400 external modem, these commands will lock the modem's error-corrected data rate to the speed used to issue the commands, but allow the serial port rate to vary for non-error-corrected connections: ATZ AT&B2&W Checking the Modem's Configuration Most high-speed modems provide commands to view the modem's current operating parameters in a somewhat human-readable fashion. On the USR Sportster 14,400 external modems, the command ATI5 displays the settings that are stored in the non-volatile RAM. To see the true operating parameters of the modem (as influenced by the USR's DIP switch settings), use the commands ATZ and then ATI4. If you have a different brand of modem, check your modem's manual to see how to double-check your modem's configuration parameters. Troubleshooting Here are a few steps you can follow to check out the dial-up modem on your system. Checking out the FreeBSD System Hook up your modem to your FreeBSD system, boot the system, and, if your modem has status indication lights, watch to see whether the modem's DTR indicator lights when the login: prompt appears on the system's console — if it lights up, that should mean that FreeBSD has started a getty process on the appropriate communications port and is waiting for the modem to accept a call. If the DTR indicator doesn't light, login to the FreeBSD system through the console and issue a ps ax to see if FreeBSD is trying to run a getty process on the correct port. You should see a lines like this among the processes displayed: 114 ?? I 0:00.10 /usr/libexec/getty V19200 ttyd0 115 ?? I 0:00.10 /usr/libexec/getty V19200 ttyd1 If you see something different, like this: 114 d0 I 0:00.10 /usr/libexec/getty V19200 ttyd0 and the modem has not accepted a call yet, this means that getty has completed its open on the communications port. This could indicate a problem with the cabling or a mis-configured modem, because getty should not be able to open the communications port until CD (carrier detect) has been asserted by the modem. If you do not see any getty processes waiting to open the desired ttydN port, double-check your entries in /etc/ttys to see if there are any mistakes there. Also, check the log file /var/log/messages to see if there are any log messages from init or getty regarding any problems. If there are any messages, triple-check the configuration files /etc/ttys and /etc/gettytab, as well as the appropriate device special files /dev/ttydN, for any mistakes, missing entries, or missing device special files. Try Dialing In Try dialing into the system; be sure to use 8 bits, no parity, 1 stop bit on the remote system. If you do not get a prompt right away, or get garbage, try pressing Enter about once per second. If you still do not see a login: prompt after a while, try sending a BREAK. If you are using a high-speed modem to do the dialing, try dialing again after locking the dialing modem's interface speed (via AT&B1 on a USR Sportster, for example). If you still cannot get a login: prompt, check /etc/gettytab again and double-check that The initial capability name specified in /etc/ttys for the line matches a name of a capability in /etc/gettytab Each nx= entry matches another gettytab capability name Each tc= entry matches another gettytab capability name If you dial but the modem on the FreeBSD system will not answer, make sure that the modem is configured to answer the phone when DTR is asserted. If the modem seems to be configured correctly, verify that the DTR line is asserted by checking the modem's indicator lights (if it has any). If you have gone over everything several times and it still does not work, take a break and come back to it later. If it still does not work, perhaps you can send an electronic mail message to the &a.questions;describing your modem and your problem, and the good folks on the list will try to help. Dial-out Service dial-out service The following are tips to getting your host to be able to connect over the modem to another computer. This is appropriate for establishing a terminal session with a remote host. This is useful to log onto a BBS. This kind of connection can be extremely helpful to get a file on the Internet if you have problems with PPP. If you need to FTP something and PPP is broken, use the terminal session to FTP it. Then use zmodem to transfer it to your machine. My Stock Hayes Modem Is Not Supported, What Can I Do? Actually, the manual page for tip is out of date. There is a generic Hayes dialer already built in. Just use at=hayes in your /etc/remote file. The Hayes driver is not smart enough to recognize some of the advanced features of newer modems—messages like BUSY, NO DIALTONE, or CONNECT 115200 will just confuse it. You should turn those messages off when you use tip (using ATX0&W). Also, the dial timeout for tip is 60 seconds. Your modem should use something less, or else tip will think there is a communication problem. Try ATS7=45&W. Actually, as shipped tip does not yet support it fully. The solution is to edit the file tipconf.h in the directory /usr/src/usr.bin/tip/tip Obviously you need the source distribution to do this. Edit the line #define HAYES 0 to #define HAYES 1. Then make and make install. Everything works nicely after that. How Am I Expected to Enter These AT Commands? /etc/remote Make what is called a direct entry in your /etc/remote file. For example, if your modem is hooked up to the first serial port, /dev/cuaa0, then put in the following line: cuaa0:dv=/dev/cuaa0:br#19200:pa=none Use the highest bps rate your modem supports in the br capability. Then, type tip cuaa0 and you will be connected to your modem. If there is no /dev/cuaa0 on your system, do this: &prompt.root; cd /dev &prompt.root; MAKEDEV cuaa0 - Or use cu as root with the following command: + Or use cu as root with the following + command: &prompt.root; cu -lline -sspeed line is the serial port (e.g./dev/cuaa0) and speed is the speed (e.g.57600). When you are done entering the AT commands hit ~. to exit. The <literal>@</literal> Sign for the pn Capability Does Not Work! The @ sign in the phone number capability tells tip to look in /etc/phones for a phone number. But the @ sign is also a special character in capability files like /etc/remote. Escape it with a backslash: pn=\@ How Can I Dial a Phone Number on the Command Line? Put what is called a generic entry in your /etc/remote file. For example: tip115200|Dial any phone number at 115200 bps:\ :dv=/dev/cuaa0:br#115200:at=hayes:pa=none:du: tip57600|Dial any phone number at 57600 bps:\ :dv=/dev/cuaa0:br#57600:at=hayes:pa=none:du: Then you can things like: &prompt.root; tip -115200 5551234 If you prefer cu over tip, - use a generic cu entry: + use a generic cu entry: cu115200|Use cu to dial any number at 115200bps:\ :dv=/dev/cuaa1:br#57600:at=hayes:pa=none:du: and type: &prompt.root; cu 5551234 -s 115200 Do I Have to Type in the bps Rate Every Time I Do That? Put in an entry for tip1200 or cu1200, but go ahead and use whatever bps rate is appropriate with the br capability. tip thinks a good default is 1200 bps which is why it looks for a tip1200 entry. You do not have to use 1200 bps, though. I Access a Number of Hosts through a Terminal Server. Rather than waiting until you are connected and typing CONNECT <host> each time, use tip's cm capability. For example, these entries in /etc/remote: pain|pain.deep13.com|Forrester's machine:\ :cm=CONNECT pain\n:tc=deep13: muffin|muffin.deep13.com|Frank's machine:\ :cm=CONNECT muffin\n:tc=deep13: deep13:Gizmonics Institute terminal server:\ :dv=/dev/cuaa2:br#38400:at=hayes:du:pa=none:pn=5551234: will let you type tip pain or tip muffin to connect to the hosts pain or muffin; and tip deep13 to get to the terminal server. Can Tip Try More Than one Line for each Site? This is often a problem where a university has several modem lines and several thousand students trying to use them... Make an entry for your university in /etc/remote and use @ for the pn capability: big-university:\ :pn=\@:tc=dialout dialout:\ :dv=/dev/cuaa3:br#9600:at=courier:du:pa=none: Then, list the phone numbers for the university in /etc/phones: big-university 5551111 big-university 5551112 big-university 5551113 big-university 5551114 tip will try each one in the listed order, then give up. If you want to keep retrying, run tip in a while loop. Why Do I Have to Hit <keycombo action="simul"> <keycap>Ctrl</keycap><keycap>P</keycap> </keycombo> Twice to Send <keycombo action="simul"> <keycap>Ctrl</keycap><keycap>P</keycap> </keycombo> Once? CtrlP is the default force character, used to tell tip that the next character is literal data. You can set the force character to any other character with the ~s escape, which means set a variable. Type ~sforce=single-char followed by a newline. single-char is any single character. If you leave out single-char, then the force character is the nul character, which you can get by typing Ctrl2 or CtrlSPACE . A pretty good value for single-char is Shift Ctrl 6 , which is only used on some terminal servers. You can have the force character be whatever you want by specifying the following in your $HOME/.tiprc file: force=<single-char> Suddenly Everything I Type Is in UPPER CASE?? You must have pressed Ctrl A , tip's raise character, specially designed for people with broken caps-lock keys. Use ~s as above and set the variable raisechar to something reasonable. In fact, you can set it to the same as the force character, if you never expect to use either of these features. Here is a sample .tiprc file perfect for Emacs users who need to type Ctrl2 and CtrlA a lot: force=^^ raisechar=^^ The ^^ is ShiftCtrl6 . How Can I Do File Transfers with <command>tip</command>? If you are talking to another Unix system, you can send and receive files with ~p (put) and ~t (take). These commands run cat and echo on the remote system to accept and send files. The syntax is: ~p local-file remote-file ~t remote-file local-file There is no error checking, so you probably should use another protocol, like zmodem. How Can I Run zmodem with <command>tip</command>? To receive files, start the sending program on the remote end. Then, type ~C rz to begin receiving them locally. To send files, start the receiving program on the remote end. Then, type ~C sz files to send them to the remote system. Kazutaka YOKOTA Contributed by Bill Paul Based on a document by Setting Up the Serial Console serial console Introduction FreeBSD boot on a system with only a dumb terminal on a serial port as a console. Such a configuration should be useful for two classes of people: system administrators who wish to install FreeBSD on machines that have no keyboard or monitor attached, and developers who want to debug the kernel or device drivers. As described in , FreeBSD employs a three stage bootstrap. The first two stages are in the boot block code which is stored at the beginning of the FreeBSD slice on the boot disk. The boot block will then load and run the boot loader (/boot/loader) as the third stage code. In order to set up the serial console you must configure the boot block code, the boot loader code and the kernel. Serial Console Configuration Prepare a serial cable. null-modem cable You will need either a null-modem cable or a standard serial cable and a null-modem adapter. See for a discussion on serial cables. Unplug your keyboard. Most PC systems probe for the keyboard during the Power-On Self-Test (POST) and will generate an error if the keyboard is not detected. Some machines complain loudly about the lack of a keyboard and will not continue to boot until it is plugged in. If your computer complains about the error, but boots anyway, then you do not have to do anything special. (Some machines with Phoenix BIOS installed merely say Keyboard failed and continue to boot normally.) If your computer refuses to boot without a keyboard attached then you will have to configure the BIOS so that it ignores this error (if it can). Consult your motherboard's manual for details on how to do this. Setting the keyboard to Not installed in the BIOS setup does not mean that you will not be able to use your keyboard. All this does is tell the BIOS not to probe for a keyboard at power-on so that it will not complain if the keyboard is not plugged in. You can leave the keyboard plugged in even with this flag set to Not installed and the keyboard will still work. If your system has a PS/2 mouse, chances are very good that you may have to unplug your mouse as well as your keyboard. This is because PS/2 mice share some hardware with the keyboard, and leaving the mouse plugged in can fool the keyboard probe into thinking the keyboard is still there. It is said that a Gateway 2000 Pentium 90MHz system with an AMI BIOS that behaves this way. In general this is not a problem since the mouse is not much good without the keyboard anyway. Plug a dumb terminal into COM1: (sio0). If you do not have a dumb terminal, you can use an old PC/XT with a modem program, or the serial port on another Unix box. If you do not have a COM1: (sio0), get one. At this time, there is no way to select a port other than COM1: for the boot blocks without recompiling the boot blocks. If you are already using COM1: for another device, you will have to temporarily remove that device and install a new boot block and kernel once you get FreeBSD up and running. (It is assumed that COM1: will be available on a file/compute/terminal server anyway; if you really need COM1: for something else (and you cannot switch that something else to COM2: (sio1)), then you probably should not even be bothering with all this in the first place.) Make sure the configuration file of your kernel has appropriate flags set for COM1: (sio0). Relevant flags are: 0x10 Enables console support for this unit. The other console flags are ignored unless this is set. Currently, at most one unit can have console support; the first one (in config file order) with this flag set is preferred. This option alone will not make the serial port the console. Set the following flag or use the option described below, together with this flag. 0x20 Forces this unit to be the console (unless there is another higher priority console), regardless of the option discussed below. This flag replaces the COMCONSOLE option in FreeBSD versions 2.X. The flag 0x20 must be used together with the flag. 0x40 Reserves this unit (in conjunction with 0x10) and makes the unit unavailable for normal access. You should not set this flag to the serial port unit which you want to use as the serial console. The only use of this flag is to designate the unit for kernel remote debugging. See The Developer's Handbook for more information on remote debugging. In FreeBSD 4.0-CURRENT or later the semantics of the flag 0x40 are slightly different and there is another flag to specify a serial port for remote debugging. Example: device sio0 at isa? port "IO_COM1" tty flags 0x10 irq 4 See the &man.sio.4; manual page for more details. If the flags were not set, you need to run UserConfig (on a different console) or recompile the kernel. Create boot.config in the root directory of the a partition on the boot drive. This file will instruct the boot block code how you would like to boot the system. In order to activate the serial console, you need one or more of the following options—if you want multiple options, include them all on the same line: Toggles internal and serial consoles. You can use this to switch console devices. For instance, if you boot from the internal (video) console, you can use to direct the boot loader and the kernel to use the serial port as its console device. Alternatively, if you boot from the serial port, you can use the to tell the boot loader and the kernel to use the video display as the console instead. Toggles single and dual console configurations. In the single configuration the console will be either the internal console (video display) or the serial port, depending on the state of the option above. In the dual console configuration, both the video display and the serial port will become the console at the same time, regardless of the state of the option. However, that the dual console configuration takes effect only during the boot block is running. Once the boot loader gets control, the console specified by the option becomes the only console. Makes the boot block probe the keyboard. If no keyboard is found, the and options are automatically set. Due to space constraints in the current version of the boot blocks, the option is capable of detecting extended keyboards only. Keyboards with less than 101 keys (and without F11 and F12 keys) may not be detected. Keyboards on some laptop computers may not be properly found because of this limitation. If this is to be the case with your system, you have to abandon using the option. Unfortunately there is no workaround for this problem. Use either the option to select the console automatically, or the option to activate the serial console. You may include other options described in &man.boot.8; as well. The options, except for , will be passed to the boot loader (/boot/loader). The boot loader will determine which of the internal video or the serial port should become the console by examining the state of the option alone. This means that if you specify the option but not the option in /boot.config, you can use the serial port as the console only during the boot block; the boot loader will use the internal video display as the console. Boot the machine. When you start your FreeBSD box, the boot blocks will echo the contents of /boot.config to the console. For example; /boot.config: -P Keyboard: no The second line appears only if you put in /boot.config and indicates presence/absence of the keyboard. These messages go to either serial or internal console, or both, depending on the option in /boot.config. Options Message goes to none internal console serial console serial and internal consoles serial and internal consoles , keyboard present internal console , keyboard absent serial console After the above messages, there will be a small pause before the boot blocks continue loading the boot loader and before any further messages printed to the console. Under normal circumstances, you do not need to interrupt the boot blocks, but you may want to do so in order to make sure things are set up correctly. Hit any key, other than Enter, at the console to interrupt the boot process. The boot blocks will then prompt you for further action. You should now see something like: >> FreeBSD/i386 BOOT Default: 0:wd(0,a)/boot/loader boot: Verify the above message appears on either the serial or internal console or both, according to the options you put in /boot.config. If the message appears in the correct console, hit Enter to continue the boot process. If you want the serial console but you do not see the prompt on the serial terminal, something is wrong with your settings. In the meantime, you enter and hit Enter/Return (if possible) to tell the boot block (and then the boot loader and the kernel) to choose the serial port for the console. Once the system is up, go back and check what went wrong. After the boot loader is loaded and you are in the third stage of the boot process you can still switch between the internal console and the serial console by setting appropriate environment variables in the boot loader. See . Summary Here is the summary of various settings discussed in this section and the console eventually selected. Case 1: You Set the flags to 0x10 for sio0 device sio0 at isa? port "IO_COM1" tty flags 0x10 irq 4 Options in /boot.config Console during boot blocks Console during boot loader Console in kernel nothing internal internal internal serial serial serial serial and internal internal internal serial and internal serial serial , keyboard present internal internal internal , keyboard absent serial and internal serial serial Case 2: You Set the flags to 0x30 for sio0 device sio0 at isa? port "IO_COM1" tty flags 0x30 irq 4 Options in /boot.config Console during boot blocks Console during boot loader Console in kernel nothing internal internal serial serial serial serial serial and internal internal serial serial and internal serial serial , keyboard present internal internal serial , keyboard absent serial and internal serial serial Tips for the Serial Console Setting a Faster Serial Port Speed By default the serial port settings are set to 9600 baud, 8 bits, no parity, 1 stop bit. If you wish to change the speed, you need to recompile at least the boot blocks. Add the following line to /etc/make.conf and compile new boot blocks: BOOT_COMCONSOLE_SPEED=19200 If the serial console is configured in some other way than by booting with , or if the serial console used by the kernel is different from the one used by the boot blocks, then you must also add the following option to the kernel configuration file and compile a new kernel: options CONSPEED=19200 Using Serial Port Other Than <devicename>sio0</devicename> for the Console Using a port other than sio0 as the console requires some recompiling. If you want to use another serial port for whatever reasons, recompile the boot blocks, the boot loader and the kernel as follows. Get the kernel source. Edit /etc/make.conf and set BOOT_COMCONSOLE_PORT to the address of the port you want to use (0x3F8, 0x2F8, 0x3E8 or 0x2E8). Only sio0 through sio3 (COM1: through COM4:) can be used; multiport serial cards will not work. No interrupt setting is needed. Create a custom kernel configuration file and add appropriate flags for the serial port you want to use. For example, if you want to make sio1 (COM2:) the console: device sio1 at isa? port "IO_COM2" tty flags 0x10 irq 3 or device sio1 at isa? port "IO_COM2" tty flags 0x30 irq 3 The console flags for the other serial ports should not be set. Recompile and install the boot blocks: &prompt.root; cd /sys/boot/i386/boot2 &prompt.root; make &prompt.root; make install Recompile and install the boot loader: &prompt.root; cd /sys/boot/i386/loader &prompt.root; make &prompt.root; make install Rebuild and install the kernel. Write the boot blocks to the boot disk with &man.disklabel.8; and boot from the new kernel. Entering the DDB Debugger from the Serial Line If you wish to drop into the kernel debugger from the serial console (useful for remote diagnostics, but also dangerous if you generate a spurious BREAK on the serial port!) then you should compile your kernel with the following options: options BREAK_TO_DEBUGGER options DDB Getting a Login Prompt on the Serial Console While this is not required, you may wish to get a login prompt over the serial line, now that you can see boot messages and can enter the kernel debugging session through the serial console. Here is how to do it. Open the file /etc/ttys with an editor and locate the lines: ttyd0 "/usr/libexec/getty std.9600" unknown off secure ttyd1 "/usr/libexec/getty std.9600" unknown off secure ttyd2 "/usr/libexec/getty std.9600" unknown off secure ttyd3 "/usr/libexec/getty std.9600" unknown off secure ttyd0 through ttyd3 corresponds to COM1 through COM4. Change off to on for the desired port. If you have changed the speed of the serial port, you need to change std.9600 to match the current setting, e.g. std.19200. You may also want to change the terminal type from unknown to the actual type of your serial terminal. After editing the file, you must kill -HUP 1 to make this change take effect. Changing Console from the Boot Loader Previous sections described how to set up the serial console by tweaking the boot block. This section shows that you can specify the console by entering some commands and environment variables in the boot loader. As the boot loader is invoked as the third stage of the boot process, after the boot block, the settings in the boot loader will override the settings in the boot block. Setting up the Serial Console You can easily specify the boot loader and the kernel to use the serial console by writing just one line in /boot/loader.rc: set console=comconsole This will take effect regardless of the settings in the boot block discussed in the previous section. You had better put the above line as the first line of /boot/loader.rc so as to see boot messages on the serial console as early as possible. Likewise, you can specify the internal console as: set console=vidconsole If you do not set the boot loader environment variable console, the boot loader, and subsequently the kernel, will use whichever console indicated by the option in the boot block. In versions 3.2 or later, you may specify the console in /boot/loader.conf.local or /boot/loader.conf, rather than in /boot/loader.rc. In this method your /boot/loader.rc should look like: include /boot/loader.4th start Then, create /boot/loader.conf.local and put the following line there. console=comconsole or console=vidconsole See &man.loader.conf.5; for more information. At the moment, the boot loader has no option equivalent to the option in the boot block, and there is no provision to automatically select the internal console and the serial console based on the presence of the keyboard. Using Serial Port Other than <devicename>sio0</devicename> for the Console You need to recompile the boot loader to use a serial port other than sio0 for the serial console. Follow the procedure described in . Caveats The idea here is to allow people to set up dedicated servers that require no graphics hardware or attached keyboards. Unfortunately, while most systems will let you boot without a keyboard, there are quite a few that will not let you boot without a graphics adapter. Machines with AMI BIOSes can be configured to boot with no graphics adapter installed simply by changing the `graphics adapter' setting in the CMOS configuration to `Not installed.' However, many machines do not support this option and will refuse to boot if you have no display hardware in the system. With these machines, you'll have to leave some kind of graphics card plugged in, (even if it's just a junky mono board) although you will not have to attach a monitor into it. You might also try installing an AMI BIOS. diff --git a/en_US.ISO8859-1/books/handbook/x11/chapter.sgml b/en_US.ISO8859-1/books/handbook/x11/chapter.sgml index e5d7d8236b..9bad8c3083 100644 --- a/en_US.ISO8859-1/books/handbook/x11/chapter.sgml +++ b/en_US.ISO8859-1/books/handbook/x11/chapter.sgml @@ -1,1390 +1,1393 @@ The X Window System Synopsis FreeBSD uses XFree86 to provide users with a powerful graphical user interface. XFree86 is a open-source implementation of the X Window System. The following chapter will cover installation and configuration of XFree86 on your FreeBSD system. For more information on X11 and to see whether your video card is supported, check the XFree86 web site. After reading this chapter you will know: How to install and configure XFree86. The various components of the X window system, and how they interoperate How to install and use different window managers How to use TrueType fonts in XFree86 How to setup your system for graphical logins (XDM). Before reading this chapter you should: Know how to install additional third-party software () Installing XFree86 XFree86 is available as a port and as a package, making it easy to install. You can also download the binaries directly from the XFree86 organization and install them by hand, following the instructions provided by the XFree86 group. Your only decision is which version of XFree86 to run. XFree86 3.X is the maintenance branch of XFree86 development. It's very stable, and it supports a huge number of graphics cards. However, no new development is happening there. XFree86 4.X is a redesign of XFree86. As well as introducing many new features (including much better support for fonts and anti-aliasing), XFree86 4.X supports slightly fewer graphics cards. If your card is supported we recommend you run 4.X. If it is not then run 3.X. The rest of this chapter will explain how to configure XFree86, and suggest various programs for X that you might want to try. Christopher Shumway XFree86 Configuration Introduction This chapter will introduce the steps necessary to install and configure the XFree86 X Windows System under FreeBSD. Once the server is installed and configured properly. The user can read to setup their desktop environment. XFree86 4.X XFree86 Before You Start Before the user is to start configuration of XFree86-4, the the following information will need to be known about the target system: Monitor specifications Video Adapter chipset Video Adapter memory horizontal scan rate vertical scan rate The specifications for the target system's monitor are used by XFree86 to determine the resolution and refresh rate to run at. These specifications can usually be obtained from the documentation that came with the target system's monitor or from the manufacturer's website. There are two ranges of numbers that are needed, the horizontal scan rate and the vertical synchronization rate. The video adapter's chipset defines what driver module XFree86 uses to talk to the graphics hardware. With most chipsets, this can be automatically determined, but it is still useful to know in case the automatic detection doesn't work correctly. Video memory on the graphic adapter determines the resolution and color depth the target system can run at. This is important to know so the user knows the limitations of the target system. Installing XFree86 4.X Software XFree86 4 can be installed using the FreeBSD ports system or using &man.pkg.add.1;. If the user is building XFree86-4 from source and has USA_RESIDENT set in /etc/make.conf, the user may first have to fetch Wraphelp.c if XDM-AUTHORIZATION-1 support is desired. This file is to be placed in the port's files/ sub-directory before the port is built. Configuring XFree86 4.X Configuration of XFree86 4.X is a several step process. The first step is to build an initial configuration file with the configure option to XFree86. As the super user, simply run: &prompt.root; XFree86 -configure This will generate a skeleton XFree86 configuration file in the current working directory called XF86Config.new. The XFree86 program will attempt to probe the graphics hardware on the system and will write a configuration file to load the proper drivers for the detected hardware on the target system. The next step is to test the currently existing configuration to verify that XFree86 can work with the graphics hardware on the target system. To preform this task, the user needs to run: &prompt.root; XFree86 -xf86config XF86Config.new If the user is presented with a black and grey grid and an X mouse cursor, then the configuration was successful. To exit the test, just press ctrl, alt and backspace simultaneously. XFree86 4 Tuning Next, the user needs to tune the XF86Config.new configuration file to their personal taste. Open up the file in a text editor such as &man.emacs.1; or &man.ee.1;. The first thing the user will want to do is add the frequencies for the target system's monitor. These are usually expressed as a horizontal and vertical synchronization rate. These values are added to the XF86Config.new file under the "Monitor" section as such: Section "Monitor" Identifier "Monitor0" VendorName "Monitor Vendor" ModelName "Monitor Model" Horizsync 30-107 VertRefresh 48-120 EndSection The Horizsync and VertRefresh keywords may not exist in the user's configuration file. If they do not, they need to be added, with the correct horizontal synchronization rate placed after the Horizsync keyword and the vertical synchronization rate after the VertRefresh keyword. In the example above the target monitor's rates where entered. XF86Config While the XF86Config.new configuration file is still open in an editor, next the user needs to select what the default resolution and color depth is desired. This is defined in the Screen section. Section "Screen" Identifier "Screen0" Device "Card0" Monitor "Monitor0" DefaultColorDepth 24 SubSection "Display" Depth 24 Modes "1024x768" EndSubSection EndSection The DefaultColorDepth keyword describes the color depth the user wishes to run at by default. This can be overridden with the -bpp command line switch to XFree86 1. The Modes keyword describes the resolution the user wishes to run at for the given color depth. In the example above, the default color depth is twenty four bits per pixel. At this color depth, the accepted resolution is one thousand twenty four pixels by seven hundred and sixty eight pixels. If a user wants to run at a resolution of one thousand twenty four pixels by seven hundred sixty eight pixels at twenty four bits per pixel, then the user needs to add the DefaultColorDepth keyword with the value of twenty four, and add to the "Display" subsection with the desired Depth the Modes keyword with the resolution the user wishes to run at. Note that only VESA standard modes are supported as defined by the target system's graphics hardware. Finally, the user can write out the configuration file and test it using the test mode given above. If all is well, then the configuration file needs to be installed in a common location where XFree86 1 can source it in the future. This is typically /etc/X11/XF86Config or /usr/X11R6/etc/X11/XF86Config. &prompt.root; cp XF86Config.new /etc/X11/XF86Config Once the configuration file has been placed in a common location, XFree86 can then be used through &man.xdm.1;. In order to use startx 1 the user will have to install the X11/wrapper port. Advanced Configuration Topics Configuration with Intel i810 Graphics Chipsets Intel i810 graphic chipset Configuration with Intel i810 integrated chipsets requires the agpgart AGP programming interface for XFree86 to be able to drive the card. To enable the agpgart programming interface, the agp.ko kernel loadable module needs to be loaded into the kernel with &man.kldload.8;. This can be done automatically with the &man.loader.8;. Simply add this line to /boot/loader.conf to have the loader load agp.ko at boot time: agp_load="YES" Next, a device node needs to be created for the programming interface. To create the AGP device node, run &man.MAKEDEV.8; in the /dev directory as such: &prompt.root; cd /dev &prompt.root; sh MAKEDEV agpgart This will allow the user to configure the graphics hardware as any other graphics board. Understanding X If you are familiar with using windowing systems that ship with other operating systems, such as Microsoft Windows, or MacOS, then you may find your first introduction to X to be something of a culture shock. - Today, as Unix desktop environments such as KDE and GNOME become + Today, as Unix desktop environments such as + KDE and GNOME become more prevalent it is less necessary to understand all the behind-the-scenes interaction between the various X components, or what those components actually are. However, one of X's strengths is its underlying design, which lends a great deal of flexibility, and makes it possible to do things with X that are impossible with other, more rigid, systems. Why X? X is not the first window system written for Unix, but it is the most popular. X's original development team had worked on another window system before writing X. That system's name was W (for Window, obviously). X is just the next letter in the Roman alphabet. X can be referred to variously as X, X Window System, X11, and other terms. X Windows is to be avoided wherever possible; see &man.X.1; for more information. The X Client/Server Model X was designed from the beginning to be network-centric, and adopts a client-server model. In the X model, the X server runs on the computer that has the keyboard, monitor, and mouse attached. The server is responsible for managing the display, handling input from the keyboard and mouse, and so on. Each X application (such as XTerm, or Netscape) is a client. A client sends messages to the server such as Please draw a window at these coordinates, and the server sends back messages such as The user just clicked on your OK button. If you are using FreeBSD in a home or small office environment where you only have one computer then you will be running the X server and the X clients on the same computer. However, if you have many machines running FreeBSD it is perfectly possible to run the X server on the computer by your desk (which might be quite a low specification machine) and run your X applications (the clients) on the powerful expensive server that serves your office. In this scenario the communication between the X client and server takes place over the network. This confuses a lot of people, because the X terminology is exactly backward to what they expect. They expect the X server to be the big powerful machine down the hall, and the X client to be the machine on their desk. As long as you remember that the X server is the machine with the monitor and keyboard, and the X clients are the programs that display the windows you will not get confused. There is an interesting side-effect to this design. There is nothing in the forces the client and server machines to be running the same operating system, or even to be running on the same type of computer. It is perfectly feasible to run an X server on Microsoft Windows or Apple's MacOS, and there are various free and commercial applications available that do exactly that. The X server that ships with FreeBSD is called XFree86, and is available for free, under a license very similar to the FreeBSD license. Commercial X servers for FreeBSD are also available, should you want one. The Window Manager The X design philosophy is much like the Unix design philosophy, tools, not policy. By this we mean that X (and Unix) does not try to dictate to the end user how they should accomplish whatever task they are trying to solve. Instead, they aim to provide the user tools to do the job, and it is the user's responsibility to decide how to use those tools. This philosophy extends to X not dictating what windows should look like on screen, how you move them around with your mouse, what keystrokes you should use to move between windows (i.e., Alt Tab , if you are familiar with Windows), what the title bars on each window should look like, whether or not they have close buttons on them, and so on. Instead, X delegates this responsibility to an application called the Window Manager. There are dozens of window managers available for X; AfterStep, Enlightenment, ctwm, ftwm, sawfish, twm, WindowMaker and more. Each of these window managers provides a different look and feel; some of them support virtual desktops some of them allow you to completely customise the keystrokes you can use to manage your desktop; some have a Start button, or similar device; some are themeable, allowing you to completely change the look-and-feel of your desktop by applying a new theme. These window managers, and many more, are available in the x11-wm category of the Ports Collection. In addition, the KDE and GNOME desktop environments both have their own window managers which integrate tightly with the desktop, although both of them allow you to replace the default window manager with your own choice. Each window manager also has a different configuration mechanism; some expect you to write a configuration file by hand; others feature GUI tools for carrying most of the configuration tasks; at least one (sawfish) has a configuration file written in a dialect of the Lisp language, which is very powerful (if you are in to that sort of thing). As you can imagine, this flexibility comes with a price. It can be very difficult for documents such as this one to guide you through choosing and configuring a window manager because the available choice is so wide. Focus Policy Another feature the window manager is responsible for is the mouse focus policy. Each windowing system, be it X, Microsoft Windows, or some other has an abstraction called the focus, and at any one time only one window can have the focus. The window that has the focus is the window that will receive all your keypresses and mouse clicks. You are probably familiar with a focus policy commonly called click-to-focus. This means that you must click on the window you want to have the focus. The window may then come to the top of the stack, and all your keypresses will now be directed to this window, even if you move the mouse outside the window. To give the focus to another window you must first click in it. X does not support any particular focus policy. Instead, the window manager controls which window has the focus at any one time. Different window managers will support different focus methods. All of them support click to focus, and the majority of them support several others. The two other most popular focus policies are: focus-follows-mouse With this policy, the window that is under the mouse pointer is the window that has the focus. This may not necessarily be the window that is on top of all the other windows. You can change the focus by pointing at another window, there is no need to click in it as well. After getting used to this policy it can be very disorientating going back to another system that uses click-to-focus. sloppy-focus This policy is a small extension to focus-follows-mouse. With focus-follows-mouse, if you move the mouse over the background (or desktop, also called the root window) then no window has the focus, and your keypresses go nowhere. If you use sloppy-focus and move the mouse pointer on the root window then the last window that had the focus will keep it. Your window manager will almost certainly support other policies, and variations on these two, so make sure you read the documentation it is supplied with. Widgets The X approach of providing tools and not policy extends to the widgets that you see on screen in each application. Widget is a GUI term for all the items in the user interface that you can click on and manipulate in some way; buttons, checkboxes, radio buttons, icons, lists, and so on. Microsoft Windows Developer documentation calls these things controls. Microsoft Windows and Apple's MacOS both have a very rigid widget policy. Application developers are supposed to ensure that their applications share a common look and feel. X was designed long before either of these windowing systems, when research into GUI systems was in its infancy, and it was felt that it would not be sensible to mandate a particular graphical style, or set of widgets that have to be adhered to. If you examine the evolution of the Windows or MacOS GUI over the past ten years you will see many examples of how the interfaces have been altered over time to reflect new thinking in the art of Human/Computer Interaction. The upshot of this is that you can not expect X applications to have a common look and feel. There are several popular widget sets (and variations), including the original Athena widget set (developed - at MIT), Motif (on which the widget set in Microsoft Windows was - modeled, all bevelled edges and three shades of grey), OpenLook, and - others. + at MIT), Motif (on which the widget set in + Microsoft Windows was modeled, all bevelled edges and three shades of + grey), OpenLook, and others. Most newer X applications today will use a modern-looking widget - set, probably either Qt, used by KDE, or GTK, used by the GNOME + set, probably either Qt, used by KDE, or + GTK, used by the + GNOME project. In this respect we are beginning to see a convergence in look-and-feel on the Unix desktop, which certainly makes things easier for the novice user. However, the sudden rise in popularity of theming, where window managers make it possible to dramatically personally your desktop and alter the look and feel of the widgets risks confusing the issue once more. Murray Stokely Section on fonts by Using Fonts in XFree86 Type1 Fonts The default fonts that ship with XFree86 are less than ideal for typical desktop publishing applications. Large presentation fonts show up jagged and unprofessional looking and small fonts in Netscape are almost completely unintelligible. However, there are several free, high quality Type1 (PostScript) fonts available which can be readily used with XFree86, either version 3.X or version 4.X. For instance, the URW font collection (x11-fonts/urwfonts) includes high quality versions of standard type1 fonts (Times Roman, Helvetica, Palatino and others). The Freefont collection (x11-fonts/freefont) includes many more fonts, but most of them are intended for use in graphics software such as the Gimp, and are not complete enough to serve as screen fonts. In addition, XFree86 can be configured to use TrueType fonts with a minimum of effort: see the section on TrueType fonts later. To install the above Type1 font collections from the ports collection you can run the following commands. &prompt.root; cd /usr/ports/x11-fonts/urwfonts &prompt.root; make install clean And likewise with the freefont or other collections. To tell the X server that these fonts exist, you can add an appropriate line to your XF86Config file (in /etc/ for XFree86 version 3, or in /etc/X11/ for version 4), which reads: FontPath "/usr/X11R6/lib/X11/fonts/URW/" Alternatively, at the command line in your X session you can write: &prompt.user; xset fp+ /usr/X11R6/lib/X11/fonts/URW &prompt.user; xset fp rehash This will work but will be lost when you log out from this session, unless you add it to your startup file (~/.xinitrc for a normal startx session, or ~/.xsession when logging in through a graphical login manager like XDM). A third way is to use the new XftConfig file: see the section on anti-aliasing, later. TrueType Fonts XFree86 4.0 has built in support for rendering TrueType fonts. There are two different modules that can enable this functionality. The "freetype" module is used in this example because it is more consistent with the other font rendering back-ends. To enable the freetype module just add the following line to the module section of your /etc/X11/XF86Config file. Load "freetype" For XFree86 3.3.X you will need to run a separate TrueType font server. Xfstt is commonly used for this purpose. To install x11-servers/Xfstt on your FreeBSD system simply install the port from /usr/ports/x11-servers/Xfstt You should now make a directory for your TrueType fonts (e.g. /usr/X11R6/lib/X11/fonts/TrueType) and copy all of your TrueType fonts into this directory. Keep in mind that you cannot take TrueType fonts directly from a Macintosh; they must be in Unix/DOS/Windows format for use by XFree86. Once you have copied the files into this directory you need to use ttmkfdir to create a fonts.dir file so that the X font renderer knows that you've installed these new files. There is a FreeBSD port for x11-fonts/ttmkfdir in /usr/ports/x11-fonts/ttmkfdir. &prompt.root; cd /usr/X11R6/lib/X11/fonts/TrueType &prompt.root; ttmkfdir > fonts.dir Now you need to add your TrueType directory to your fonts path. This is just the same as described above for Type1 fonts, that is, use &prompt.user; xset fp+ /usr/X11R6/lib/X11/fonts/TrueType &prompt.user; xset fp rehash or add a line to the XF86Config file. That's it. Now Netscape, Gimp, StarOffice, and all of your other X applications should now recognize your installed TrueType fonts. Extremely small fonts (as with text in a high resolution display on a web page) and extremely large fonts (within StarOffice) will look much better now. Anti-Aliasing Your Fonts Starting with version 4.0.2, XFree86 supports anti-aliased fonts. Currently, most software has not been updated to take advantage of this new functionality. However, Qt (the toolkit for the KDE desktop) does; so if you are running XFree86 4.0.2 (or higher), Qt 2.3 (or higher) and KDE, all your KDE/Qt applications can be made to use anti-aliased fonts. To configure anti-aliasing, you need to create (or edit, if it already exists) the file /usr/X11R6/lib/X11/XftConfig. Several advanced things can be done with this file; this section describes only the simplest possibilities. First, you need to tell the X server about the fonts which you want anti-aliased. To do that, for each font directory you have a line, which looks like this: dir "/usr/X11R6/lib/X11/Type1" And likewise for the other font directories (URW, truetype, etc) containing fonts you'd like anti-aliased. Anti-aliasing makes sense only for scalable fonts (basically, Type1 and TrueType) so don't include bitmap font directories here. The directories which you included here can now be commented out of your XF86Config file. Next, you may not want to anti-alias normal-sized text. (Antialiasing makes borders slightly fuzzy, which makes very small text more readable and removes "staircases" from large text, but can cause eyestrain if applied to normal text.) To exclude point sizes between 9 and 13 from anti-aliasing, include these lines: match any size > 8 any size < 14 edit antialias = false; You may also find that the spacing for some monospaced fonts gets messed up when you turn on anti-aliasing. This seems to be an issue with KDE, in particular. One possible fix for this is to force the spacing for such fonts to be 100: add the following lines: match any family == "fixed" edit family =+ "mono"; match any family == "console" edit family =+ "mono"; (this aliases the other common names for fixed fonts as "mono"), and then add: match any family == "mono" edit spacing = 100; Supposing you want to use the Lucidux fonts whenever monospaced fonts are required (these look nice, and don't seem to suffer from the spacing problem), you could replace that last line with these: match any family == "mono" edit family += "LuciduxMono"; match any family == "Lucidux Mono" edit family += "LuciduxMono"; match any family == "LuciduxMono" edit family =+ "Lucidux Mono"; (the last lines alias different equivalent family names). Finally, you want to allow users to add commands to this file, via their personal .xftconfig files. To do this, add a last line: includeif "~/.xftconfig" That's all; anti-aliasing should be enabled the next time you start the X server. However, note that your programs must know how to take advantage of it. At the present time, the toolkit Qt does, so the entire KDE environment can use anti-aliased fonts (see on KDE for details); there are patches for gtk+ to do the same, so if compiled against such a patched gtk+, the GNOME environment and Mozilla can also use anti-aliased fonts. Anti-aliasing is still new to FreeBSD and XFree86; configuring it should get easier with time, and it will soon be supported by many more applications. Seth Kingsley Section on XDM by The X Display Manager Overview The X Display Manager (XDM) is an optional part of the X Window System that is used for login session management. This is useful for several types of situations, including minimal X Terminals (see ), desktops, and large network display servers. Since the X Window System is network and protocol independent, there are a wide variety of possible configurations for running X clients and servers on different machines connected by a network. XDM provides a graphical interface for choosing which display server to connect to, and entering authorization information such as a login and password combination. You may think of XDM as providing the same functionality to the user as the &man.getty.8; utility (see for details). That is, it performs system logins to the display being connected to and then runs a session manager on behalf of the user (usually an X window manager). XDM then waits for this program to exit, signaling that the user is done and should be logged out of the display. At this point, XDM can display the login and display chooser screens for the next user to login. Using XDM The XDM daemon program is located in /usr/X11R6/bin/xdm. You can run this program at any time as root and it will start managing the X display on the local machine. If you want XDM to run in the background every time the machine boots up, a convenient way to do this is by adding an entry to /etc/ttys. For more information about the format and usage of this file, see . There is a line in the default /etc/ttys file for running the XDM daemon on a virtual terminal: ttyv8 "/usr/X11R6/bin/xdm -nodaemon" xterm off secure By default this entry is disabled, and in order to enable it you will need to change field 5 from off to on and then restart &man.init.8; using the directions in . The first field, the name of the terminal this program will manage, is ttyv8. This means that XDM will start running on the 9th virtual terminal. Configuring XDM The XDM configuration directory is located in /usr/X11R6/lib/X11/xdm. In this directory you will see several files used to change the behavior and appearance of XDM. Typically you will find these files: File Description Xaccess Client authorization ruleset. Xresources Default X resource values. Xservers List of remote and local displays to manage. Xsession Default session script for logins. Xsetup_* xdm-config Global configuration for all displays running on this machine. xdm-errors Errors generated by the server program. xdm-pid The process ID of the currently running XDM. Also in this directory are a few scripts and programs used to setup the desktop when XDM is running. In the next few sections I will briefly describe the purpose of each of these files. The exact syntax and usage of all of these files is described in &man.xdm.1; The default configuration is a simple rectangular login window with the hostname of the machine displayed at the top in a large font and Login: and Password: prompts below. This is a good starting point if you are planning to design your own look and feel for the XDM screens. Xaccess The protocol for connecting to XDM controlled displays is called the X Display Manager Connection Protocol (XDMCP). This file is basically just a ruleset for controlling XDMCP connections from remote machines. By default, it allows any client to connect, but you will see this will not matter because the default xdm-config file does not listen for remote connections. Xresources This is an application-defaults file for the display chooser and the login screens. This is where you can customize the appearance of the login program. The format is identical to the app-defaults file described in the XFree86 documentation. Xservers This is a list of the remote displays the chooser should provide as choices. Xsession This is the default session script for XDM to run after a user has logged in. Normally each user will have a customized session script in ~/.xsessionrc that overrides this script. Xsetup_* These files contain scripts that will be run automatically before displaying the chooser or login interfaces. There is a script for each display being used, named Xsetup_followed by the local display number (for instance Xsetup_0). Typically these scripts will run one or two programs in the background such as xconsole. xdm-config This file contains settings in the form of app-defaults that are applicable to every display that this installation manages. xdm-errors This file contains the output of the X servers that XDM is trying to run. If a display that XDM is trying to start hangs for some reason, this is a good place to look for error messages. These messages are also written to the user's ~/.xsession-errors file on a per-session basis Running a Network Display Server In order for other clients to connect to your display server, you will need to edit the access control rules, and enable the connection listener. By default these are set to conservative values, which is a good decision security-wise. To get XDM to listen for connections first comment out a line in the xdm-config file: ! SECURITY: do not listen for XDMCP or Chooser requests ! Comment out this line if you want to manage X terminals with xdm DisplayManager.requestPort: 0 and then restart XDM. Remember that comments in app-defaults files begin with a ! character, not a #. After this, you may need to put more strict access controls in place. Look at the example entries in Xaccess file, and refer to the &man.xdm.1; manual page. Replacements for XDM Several replacements for the default XDM program exist. One of them, KDM (bundled with KDE) is described in a later section. Apart from various visual improvements and cosmetic frills, it can be easily configured to let users choose their window manager of choice at the time they log in. Valentino Vaschetto Contributed by Desktop Environments This section describes the different desktop environments available for X-Windows on FreeBSD. For our purposes a "desktop environment" will mean anything ranging from a simple window manager, to a complete suite of desktop applications such as KDE or GNOME. GNOME About GNOME GNOME is a user-friendly desktop environment that enables users to easily use and configure their computers. GNOME includes a panel (for starting applications and displaying status), a desktop (where data and applications can be placed), a set of standard desktop tools and applications, and a set of conventions that make it easy for applications to cooperate and be consistent with each other. Users of other operating systems or environments should feel right at home using the powerful graphics-driven environment that GNOME provides. Installing GNOME To install GNOME from the network, simply type: &prompt.root; pkg_add -r gnome If you would rather build GNOME from source, then use the ports tree: &prompt.root; cd /usr/ports/x11/gnome &prompt.root; make install clean Once GNOME is installed, we must have the X server start GNOME instead of a default window manager. If you have already customized your .xinitrc file then you should simply replace the line that starts your current window manager with one that starts /usr/X11R6/bin/gnome-wm instead. If you haven't added anything special to your configuration file, then it is enough to simply type: &prompt.root; echo "/usr/X11R6/bin/gnome-wm" > ~/.xinitrc That's it. Type startx and you will be in the GNOME desktop environment. If you're running a display manager like XDM, this will not work. Instead, you should create an executable .xsession file with the same command in it. To do this, edit your file (if you already have one) and replace the existing window manager command with /usr/X11R6/bin/gnome-wm; or else, &prompt.root; echo "#!/bin/sh" > ~/.xsession &prompt.root; echo "/usr/X11R6/bin/gnome-wm" >> ~/.xsession &prompt.root; chmod +x ~/.xsession Another option is to configure your display manager to allow choosing the window manager at login time; the section on KDE2 details explains how to do this for kdm, the display manager of KDE. KDE2 About KDE2 KDE is an easy to use contemporary desktop environment. Some of the things that KDE brings to the user are: A beautiful contemporary desktop A desktop exhibiting complete network transparency An integrated help system allowing for convenient, consistent access to help on the use of the KDE desktop and its applications Consistent look and feel of all KDE applications Standardized menu and toolbars, keybindings, color-schemes, etc. Internationalization: KDE is available in more than 40 languages Centralized consisted dialog driven desktop configuration A great number of useful KDE applications KDE has an office application suite based on KDE's KParts technology consisting of a spread-sheet, a presentation application, an organizer, a news client and more. KDE is also comes with a web browser called Konqeuror, which represents already a solid competitor to other existing web browsers on Unix systems. More information on KDE can be found on the KDE website Installing KDE2 At the time of writing, a package for kde2 doesn't exist yet. No problem! The ports tree hides all the complexity of building a package from source. To install KDE2, do this : &prompt.root; cd /usr/ports/x11/kde2 &prompt.root; make install clean This command will fetch all the necessary files from the Internet, configure and compile KDE2, install the applications, and then clean up after itself. Now you're going to have to tell the X server to launch KDE2 instead of a default window manager. Do this by typing this: &prompt.root; echo "/usr/X11R6/bin/startkde" > ~/.xinitrc Now, whenever you go into X-Windows, KDE2 will be your desktop. (Note: this will not work if you're logging in via a display manager like xdm. In that case you have two options: create an .xsession file as described in the section on GNOME, but with the /usr/X11R6/bin/startkde command instead of the gnome-wm command; or, configure your display manager to allow choosing a desktop at login time. Below it is explained how to do this for kdm, KDE's display manager.) More Details on KDE2 Now that KDE2 is installed on your system, you'll find that you can learn a lot from its help pages, or just by pointing and clicking at various menus. Windows or Mac users will feel quite at home. The best reference for KDE is the on-line documentation. KDE comes with its own web browser, Konqueror, dozens of useful applications, and extensive documentation. This section only discusses somewhat technical things which are difficult to learn just by random exploration. The KDE display manager If you're an administrator on a multi-user system, you may like to have a graphical login screen to welcome users. You can use xdm, as described earlier. However, KDE includes an alternative, KDM, which is designed to look more attractive and include more login-time options. In particular, users can easily choose (via a menu) which desktop environment (KDE2, GNOME, or something else) to run after logging on. If you're slightly adventurous and you want this added flexibility and visual appeal, read on. To begin with, run the KDE2 control panel, kcontrol, as root. Note: it is generally considered unsafe to run your entire X environment as root. Instead, run your window manager as a normal user, open a terminal window (such as xterm or KDE's konsole, become root with su (you need to be in the wheel group in /etc/group for this), and then type kcontrol. Click on the icon on the left marked "System", then on "Login manager". On the right you'll see various configurable options, which the KDE manual will explain in greater detail. Click on "sessions" on the right. Depending on what window managers or desktop environments you have currently installed, you can type their names in "New type" and add them. (These are just labels so far, not commands, so you can write KDE and GNOME rather than startkde or gnome-wm.) Include a label failsafe. Play with the other menus as you like (those are mainly cosmetic and self-explanatory). When you're done, click on "Apply" at the bottom, and quit the control center. To make sure kdm understands what your above labels (KDE, GNOME etc) mean, you need to edit some more files: the same ones used by xdm. In your terminal window, as root, edit the file /usr/X11R6/lib/X11/xdm/Xsession. You will come across a section in the middle looking like this (by default): case $# in 1) case $1 in failsafe) exec xterm -geometry 80x24-0-0 ;; esac esac You will need to add a few lines to this section. Assuming the labels you gave earlier were KDE2 and GNOME, the following will do: case $# in 1) case $1 in KDE2) exec /usr/X11R6/bin/startkde ;; GNOME) exec /usr/X11R6/bin/gnome-wm ;; failsafe) exec xterm -geometry 80x24-0-0 ;; esac esac To make sure your KDE choice of a login-time desktop background is also honored, you will need to add the following line to /usr/X11R6/lib/X11/xdm/Xsetup_0: /usr/X11R6/bin/kdmdesktop Now, you need only to make sure kdm is started at the next bootup. To learn how to do this, read the section on xdm, and do the same thing replacing references to the xdm program by kdm. That's it. Your next login screen should have a pretty face and lots of menus. Anti-aliased Fonts Tired of blocky staircase edges to your fonts under X11? Tired of unreadable text in web browsers? Well, no more. Starting with version 4.0.2, XFree86 supports anti-aliasing via its "RENDER" extension, and starting with version 2.3, Qt (the toolkit used by KDE) supports this extension. Configuring this is described in on antialiasing X11 fonts. So if you're running up-to-date software, anti-aliasing is possible on your KDE2 desktop. Just go to your KDE2 menu, go to Preferences -> Look and Feel -> Style, and click on the checkbox "Use Anti-Aliasing for Fonts and Icons". That's all. If you're running a Qt application which is not part of KDE, you may need to set the environment variable QT_XFT to true before starting your program. XFCE About XFCE XFCE is based on the gtk+ toolkit used by GNOME, but is much more lightweight and meant for those who want a simple, efficient desktop which is nevertheless easy to use and configure. Visually, it looks very much like CDE, found on commercial Unix systems. Some of XFCE's features are: A simple, easy-to-handle desktop Fully configurable via mouse, with drag and drop, etc Main panel similar to CDE, with menus, applets and app launchers Integrated window manager, file manager, sound manager, GNOME compliance module, and other things Themeable (since it uses gtk+) Fast, light and efficient: ideal for older/slower machines or machines with memory limitations More information on XFCE can be found on the XFCE website. Installing XFCE A binary package for xfce exists (at the time of writing). To install, simply do this: &prompt.root; pkg_add -r xfce Alternatively, you may prefer to build from source. The ports tree comes to the rescue again: &prompt.root; cd /usr/ports/x11-wm/xfce &prompt.root; make install clean All necessary source packages (including dependencies) will be automagically fetched, built and installed, and the build areas cleaned up afterwards. Now you want to tell the X server to launch XFCE the next time you start X. Simply type this: &prompt.root; echo "/usr/X11R6/bin/startxfce" > ~/.xinitrc The next time you start X, XFCE will be your desktop. (Note, as before: if you're logging in via a display manager like xdm, you should either create an .xsession, as described in the section on GNOME, but with the /usr/X11R6/bin/startxfce command; or, configure your display manager to allow choosing a desktop at login time, as explained in the section on kdm.)