diff --git a/en_US.ISO8859-1/books/arch-handbook/book.sgml b/en_US.ISO8859-1/books/arch-handbook/book.sgml index 880ca4c6ca..ccca2c6086 100644 --- a/en_US.ISO8859-1/books/arch-handbook/book.sgml +++ b/en_US.ISO8859-1/books/arch-handbook/book.sgml @@ -1,313 +1,313 @@ %bookinfo; %man; %chapters; %authors %mailing-lists; ]> FreeBSD Developers' Handbook The FreeBSD Documentation Project August 2000 2000 2001 The FreeBSD Documentation Project &bookinfo.legalnotice; Welcome to the Developers' Handbook. This manual is a work in progress and is the work of many individuals. Many sections do not yet exist and some of those that do exist need to be updated. If you are interested in helping with this project, send email to the &a.doc;. The latest version of this document is always available - from the FreeBSD World + from the FreeBSD World Wide Web server. It may also be downloaded in a variety of formats and compression options from the FreeBSD FTP + url="ftp://ftp.FreeBSD.org/pub/FreeBSD/doc/">FreeBSD FTP server or one of the numerous mirror + url="../handbook/mirrors-ftp.html">mirror sites. Basics &chap.introduction; &chap.tools; &chap.secure; &chap.l10n; &chap.policies; Interprocess Communication * Signals Signals, pipes, semaphores, message queues, shared memory, ports, sockets, doors &chap.sockets; &chap.ipv6; Kernel * History of the Unix Kernel Some history of the Unix/BSD kernel, system calls, how do processes work, blocking, scheduling, threads (kernel), context switching, signals, interrupts, modules, etc. &chap.locking; &chap.kobj; &chap.sysinit; &chap.vm; &chap.dma; &chap.kerneldebug; * UFS UFS, FFS, Ext2FS, JFS, inodes, buffer cache, labeling, locking, metadata, soft-updates, LFS, portalfs, procfs, vnodes, memory sharing, memory objects, TLBs, caching * AFS AFS, NFS, SANs etc] * Syscons Syscons, tty, PCVT, serial console, screen savers, etc * Compatibility Layers * Linux Linux, SVR4, etc Device Drivers &chap.driverbasics; &chap.isa; &chap.pci; &chap.scsi; &chap.usb; * NewBus This chapter will talk about the FreeBSD NewBus architecture. * Sound subsystem OSS, waveforms, etc Architectures &chap.x86; * Alpha Talk about the architectural specifics of FreeBSD/alpha. Explanation of allignment errors, how to fix, how to ignore. Example assembly language code for FreeBSD/alpha. * IA-64 Talk about the architectural specifics of FreeBSD/ia64. Appendices Dave A Patterson John L Hennessy 1998Morgan Kaufmann Publishers, Inc. 1-55860-428-6 Morgan Kaufmann Publishers, Inc. Computer Organization and Design The Hardware / Software Interface 1-2 W. Richard Stevens 1993Addison Wesley Longman, Inc. 0-201-56317-7 Addison Wesley Longman, Inc. Advanced Programming in the Unix Environment 1-2 Marshall Kirk McKusick Keith Bostic Michael J Karels John S Quarterman 1996Addison-Wesley Publishing Company, Inc. 0-201-54979-4 Addison-Wesley Publishing Company, Inc. The Design and Implementation of the 4.4 BSD Operating System 1-2 Aleph One Phrack 49; "Smashing the Stack for Fun and Profit" Chrispin Cowan Calton Pu Dave Maier StackGuard; Automatic Adaptive Detection and Prevention of Buffer-Overflow Attacks Todd Miller Theo de Raadt strlcpy and strlcat -- consistent, safe string copy and concatenation. &chap.index; diff --git a/en_US.ISO8859-1/books/arch-handbook/driverbasics/chapter.sgml b/en_US.ISO8859-1/books/arch-handbook/driverbasics/chapter.sgml index a65ec54238..e73fa17cc3 100644 --- a/en_US.ISO8859-1/books/arch-handbook/driverbasics/chapter.sgml +++ b/en_US.ISO8859-1/books/arch-handbook/driverbasics/chapter.sgml @@ -1,391 +1,391 @@ Writing FreeBSD Device Drivers This chapter was written by &a.murray; with selections from a variety of sources including the intro(4) man page by &a.joerg;. Introduction This chapter provides a brief introduction to writing device drivers for FreeBSD. A device in this context is a term used mostly for hardware-related stuff that belongs to the system, like disks, printers, or a graphics display with its keyboard. A device driver is the software component of the operating system that controls a specific device. There are also so-called pseudo-devices where a device driver emulates the behaviour of a device in software without any particular underlying hardware. Device drivers can be compiled into the system statically or loaded on demand through the dynamic kernel linker facility `kld'. Most devices in a Unix-like operating system are accessed through device-nodes, sometimes also called special files. These files are usually located under the directory /dev in the file system hierarchy. Until devfs is fully integrated into FreeBSD, each device node must be created statically and independent of the existence of the associated device driver. Most device nodes on the system are created by running MAKEDEV. Device drivers can roughly be broken down into two categories; character and network device drivers. Dynamic Kernel Linker Facility - KLD The kld interface allows system administrators to dynamically add and remove functionality from a running system. This allows device driver writers to load their new changes into a running kernel without constantly rebooting to test changes. The kld interface is used through the following administrator commands : kldload - loads a new kernel module kldunload - unloads a kernel module kldstat - lists the currently loadded modules Skeleton Layout of a kernel module /* * KLD Skeleton * Inspired by Andrew Reiter's Daemonnews article */ #include <sys/types.h> #include <sys/module.h> #include <sys/systm.h> /* uprintf */ #include <sys/errno.h> #include <sys/param.h> /* defines used in kernel.h */ #include <sys/kernel.h> /* types used in module initialization */ /* * Load handler that deals with the loading and unloading of a KLD. */ static int skel_loader(struct module *m, int what, void *arg) { int err = 0; switch (what) { case MOD_LOAD: /* kldload */ uprintf("Skeleton KLD loaded.\n"); break; case MOD_UNLOAD: uprintf("Skeleton KLD unloaded.\n"); break; default: err = EINVAL; break; } return(err); } /* Declare this module to the rest of the kernel */ static moduledata_t skel_mod = { "skel", skel_loader, NULL }; DECLARE_MODULE(skeleton, skel_mod, SI_SUB_KLD, SI_ORDER_ANY); Makefile FreeBSD provides a makefile include that you can use to quickly compile your kernel addition. SRCS=skeleton.c KMOD=skeleton .include <bsd.kmod.mk> Simply running make with this makefile will create a file skeleton.ko that can be loaded into your system by typing : &prompt.root kldload -v ./skeleton.ko Accessing a device driver Unix provides a common set of system calls for user applications to use. The upper layers of the kernel dispatch these calls to the corresponding device driver when a user accesses a device node. The /dev/MAKEDEV script makes most of the device nodes for your system but if you are doing your own driver development it may be necessary to create your own device nodes with mknod Creating static device nodes The mknod command requires four arguments to create a device node. You must specify the name of this device node, the type of device, the major number of the device, and the minor number of the device. Dynamic device nodes The device filesystem, or devfs, provides access to the kernel's device namespace in the global filesystem namespace. This eliminates the problems of potentially having a device driver without a static device node, or a device node without an installed device driver. Devfs is still a work in progress, but it is already working quite nice. Character Devices A character device driver is one that transfers data directly to and from a user process. This is the most common type of device driver and there are plenty of simple examples in the source tree. This simple example pseudo-device remembers whatever values you write to it and can then supply them back to you when you read from it. /* * Simple `echo' pseudo-device KLD * * Murray Stokely */ #define MIN(a,b) (((a) < (b)) ? (a) : (b)) #include <sys/types.h> #include <sys/module.h> #include <sys/systm.h> /* uprintf */ #include <sys/errno.h> #include <sys/param.h> /* defines used in kernel.h */ #include <sys/kernel.h> /* types used in module initialization */ #include <sys/conf.h> /* cdevsw struct */ #include <sys/uio.h> /* uio struct */ #include <sys/malloc.h> #define BUFFERSIZE 256 /* Function prototypes */ d_open_t echo_open; d_close_t echo_close; d_read_t echo_read; d_write_t echo_write; /* Character device entry points */ static struct cdevsw echo_cdevsw = { echo_open, echo_close, echo_read, echo_write, noioctl, nopoll, nommap, nostrategy, "echo", 33, /* reserved for lkms - /usr/src/sys/conf/majors */ nodump, nopsize, D_TTY, -1 }; typedef struct s_echo { char msg[BUFFERSIZE]; int len; } t_echo; /* vars */ static dev_t sdev; static int len; static int count; static t_echo *echomsg; MALLOC_DECLARE(M_ECHOBUF); MALLOC_DEFINE(M_ECHOBUF, "echobuffer", "buffer for echo module"); /* * This function acts is called by the kld[un]load(2) system calls to * determine what actions to take when a module is loaded or unloaded. */ static int echo_loader(struct module *m, int what, void *arg) { int err = 0; switch (what) { case MOD_LOAD: /* kldload */ sdev = make_dev(&echo_cdevsw, 0, UID_ROOT, GID_WHEEL, 0600, "echo"); /* kmalloc memory for use by this driver */ /* malloc(256,M_ECHOBUF,M_WAITOK); */ MALLOC(echomsg, t_echo *, sizeof(t_echo), M_ECHOBUF, M_WAITOK); printf("Echo device loaded.\n"); break; case MOD_UNLOAD: destroy_dev(sdev); FREE(echomsg,M_ECHOBUF); printf("Echo device unloaded.\n"); break; default: err = EINVAL; break; } return(err); } int echo_open(dev_t dev, int oflags, int devtype, struct proc *p) { int err = 0; uprintf("Opened device \"echo\" successfully.\n"); return(err); } int echo_close(dev_t dev, int fflag, int devtype, struct proc *p) { uprintf("Closing device \"echo.\"\n"); return(0); } /* * The read function just takes the buf that was saved via * echo_write() and returns it to userland for accessing. * uio(9) */ int echo_read(dev_t dev, struct uio *uio, int ioflag) { int err = 0; int amt; /* How big is this read operation? Either as big as the user wants, or as big as the remaining data */ amt = MIN(uio->uio_resid, (echomsg->len - uio->uio_offset > 0) ? echomsg->len - uio->uio_offset : 0); if ((err = uiomove(echomsg->msg + uio->uio_offset,amt,uio)) != 0) { uprintf("uiomove failed!\n"); } return err; } /* * echo_write takes in a character string and saves it * to buf for later accessing. */ int echo_write(dev_t dev, struct uio *uio, int ioflag) { int err = 0; /* Copy the string in from user memory to kernel memory */ err = copyin(uio->uio_iov->iov_base, echomsg->msg, MIN(uio->uio_iov->iov_len,BUFFERSIZE)); /* Now we need to null terminate */ *(echomsg->msg + MIN(uio->uio_iov->iov_len,BUFFERSIZE)) = 0; /* Record the length */ echomsg->len = MIN(uio->uio_iov->iov_len,BUFFERSIZE); if (err != 0) { uprintf("Write failed: bad address!\n"); } count++; return(err); } DEV_MODULE(echo,echo_loader,NULL); To install this driver you will first need to make a node on your filesystem with a command such as : &prompt.root mknod /dev/echo c 33 0 With this driver loaded you should now be able to type something like : &prompt.root echo -n "Test Data" > /dev/echo &prompt.root cat /dev/echo Test Data Real hardware devices in the next chapter.. Additional Resources Dynamic Kernel Linker (KLD) Facility Programming Tutorial - - Daemonnews October 2000 + Daemonnews October 2000 How to Write Kernel Drivers with NEWBUS - Daemonnews July + url="http://www.daemonnews.org/">Daemonnews July 2000 Network Drivers Drivers for network devices do not use device nodes in order to be accessed. Their selection is based on other decisions made inside the kernel and instead of calling open(), use of a network device is generally introduced by using the system call socket(2). man ifnet(), loopback device, Bill Paul's drivers, etc.. diff --git a/en_US.ISO8859-1/books/arch-handbook/pci/chapter.sgml b/en_US.ISO8859-1/books/arch-handbook/pci/chapter.sgml index ca94063864..1598573616 100644 --- a/en_US.ISO8859-1/books/arch-handbook/pci/chapter.sgml +++ b/en_US.ISO8859-1/books/arch-handbook/pci/chapter.sgml @@ -1,372 +1,372 @@ PCI Devices This chapter will talk about the FreeBSD mechanisms for writing a device driver for a device on a PCI bus. Probe and Attach Information here about how the PCI bus code iterates through the unattached devices and see if a newly loaded kld will attach to any of them. /* * Simple KLD to play with the PCI functions. * * Murray Stokely */ #define MIN(a,b) (((a) < (b)) ? (a) : (b)) #include <sys/types.h> #include <sys/module.h> #include <sys/systm.h> /* uprintf */ #include <sys/errno.h> #include <sys/param.h> /* defines used in kernel.h */ #include <sys/kernel.h> /* types used in module initialization */ #include <sys/conf.h> /* cdevsw struct */ #include <sys/uio.h> /* uio struct */ #include <sys/malloc.h> #include <sys/bus.h> /* structs, prototypes for pci bus stuff */ #include <pci/pcivar.h> /* For get_pci macros! */ /* Function prototypes */ d_open_t mypci_open; d_close_t mypci_close; d_read_t mypci_read; d_write_t mypci_write; /* Character device entry points */ static struct cdevsw mypci_cdevsw = { mypci_open, mypci_close, mypci_read, mypci_write, noioctl, nopoll, nommap, nostrategy, "mypci", 36, /* reserved for lkms - /usr/src/sys/conf/majors */ nodump, nopsize, D_TTY, -1 }; /* vars */ static dev_t sdev; /* We're more interested in probe/attach than with open/close/read/write at this point */ int mypci_open(dev_t dev, int oflags, int devtype, struct proc *p) { int err = 0; uprintf("Opened device \"mypci\" successfully.\n"); return(err); } int mypci_close(dev_t dev, int fflag, int devtype, struct proc *p) { int err=0; uprintf("Closing device \"mypci.\"\n"); return(err); } int mypci_read(dev_t dev, struct uio *uio, int ioflag) { int err = 0; uprintf("mypci read!\n"); return err; } int mypci_write(dev_t dev, struct uio *uio, int ioflag) { int err = 0; uprintf("mypci write!\n"); return(err); } /* PCI Support Functions */ /* * Return identification string if this is device is ours. */ static int mypci_probe(device_t dev) { uprintf("MyPCI Probe\n" "Vendor ID : 0x%x\n" "Device ID : 0x%x\n",pci_get_vendor(dev),pci_get_device(dev)); if (pci_get_vendor(dev) == 0x11c1) { uprintf("We've got the Winmodem, probe successful!\n"); return 0; } return ENXIO; } /* Attach function is only called if the probe is successful */ static int mypci_attach(device_t dev) { uprintf("MyPCI Attach for : deviceID : 0x%x\n",pci_get_vendor(dev)); sdev = make_dev(&mypci_cdevsw, 0, UID_ROOT, GID_WHEEL, 0600, "mypci"); uprintf("Mypci device loaded.\n"); return ENXIO; } /* Detach device. */ static int mypci_detach(device_t dev) { uprintf("Mypci detach!\n"); return 0; } /* Called during system shutdown after sync. */ static int mypci_shutdown(device_t dev) { uprintf("Mypci shutdown!\n"); return 0; } /* * Device suspend routine. */ static int mypci_suspend(device_t dev) { uprintf("Mypci suspend!\n"); return 0; } /* * Device resume routine. */ static int mypci_resume(device_t dev) { uprintf("Mypci resume!\n"); return 0; } static device_method_t mypci_methods[] = { /* Device interface */ DEVMETHOD(device_probe, mypci_probe), DEVMETHOD(device_attach, mypci_attach), DEVMETHOD(device_detach, mypci_detach), DEVMETHOD(device_shutdown, mypci_shutdown), DEVMETHOD(device_suspend, mypci_suspend), DEVMETHOD(device_resume, mypci_resume), { 0, 0 } }; static driver_t mypci_driver = { "mypci", mypci_methods, 0, /* sizeof(struct mypci_softc), */ }; static devclass_t mypci_devclass; DRIVER_MODULE(mypci, pci, mypci_driver, mypci_devclass, 0, 0); Additional Resources - PCI + PCI Special Interest Group PCI System Architecture, Fourth Edition by Tom Shanley, et al. Bus Resources FreeBSD provides an object-oriented mechanism for requesting resources from a parent bus. Almost all devices will be a child member of some sort of bus (PCI, ISA, USB, SCSI, etc) and these devices need to acquire resources from their parent bus (such as memory segments, interrupt lines, or DMA channels). Base Address Registers To do anything particularly useful with a PCI device you will need to obtain the Base Address Registers (BARs) from the PCI Configuration space. The PCI-specific details of obtaining the BAR is abstracted in the bus_alloc_resource() function. For example, a typical driver might have something similar to this in the attach() function. : sc->bar0id = 0x10; sc->bar0res = bus_alloc_resource(dev, SYS_RES_MEMORY, &(sc->bar0id), 0, ~0, 1, RF_ACTIVE); if (sc->bar0res == NULL) { uprintf("Memory allocation of PCI base register 0 failed!\n"); error = ENXIO; goto fail1; } sc->bar1id = 0x14; sc->bar1res = bus_alloc_resource(dev, SYS_RES_MEMORY, &(sc->bar1id), 0, ~0, 1, RF_ACTIVE); if (sc->bar1res == NULL) { uprintf("Memory allocation of PCI base register 1 failed!\n"); error = ENXIO; goto fail2; } sc->bar0_bt = rman_get_bustag(sc->bar0res); sc->bar0_bh = rman_get_bushandle(sc->bar0res); sc->bar1_bt = rman_get_bustag(sc->bar1res); sc->bar1_bh = rman_get_bushandle(sc->bar1res); Handles for each base address register are kept in the softc structure so that they can be used to write to the device later. These handles can then be used to read or write from the device registers with the bus_space_* functions. For example, a driver might contain a shorthand function to read from a board specific register like this : uint16_t board_read(struct ni_softc *sc, uint16_t address) { return bus_space_read_2(sc->bar1_bt, sc->bar1_bh, address); } Similarly, one could write to the registers with : void board_write(struct ni_softc *sc, uint16_t address, uint16_t value) { bus_space_write_2(sc->bar1_bt, sc->bar1_bh, address, value); } These functions exist in 8bit, 16bit, and 32bit versions and you should use bus_space_{read|write}_{1|2|4} accordingly. Interrupts Interrupts are allocated from the object-oriented bus code in a way similar to the memory resources. First an IRQ resource must be allocated from the parent bus, and then the interrupt handler must be setup to deal with this IRQ. Again, a sample from a device attach() function says more than words. /* Get the IRQ resource */ sc->irqid = 0x0; sc->irqres = bus_alloc_resource(dev, SYS_RES_IRQ, &(sc->irqid), 0, ~0, 1, RF_SHAREABLE | RF_ACTIVE); if (sc->irqres == NULL) { uprintf("IRQ allocation failed!\n"); error = ENXIO; goto fail3; } /* Now we should setup the interrupt handler */ error = bus_setup_intr(dev, sc->irqres, INTR_TYPE_MISC, my_handler, sc, &(sc->handler)); if (error) { printf("Couldn't set up irq\n"); goto fail4; } sc->irq_bt = rman_get_bustag(sc->irqres); sc->irq_bh = rman_get_bushandle(sc->irqres); DMA On the PC, peripherals that want to do bus-mastering DMA must deal with physical addresses. This is a problem since FreeBSD uses virtual memory and deals almost exclusively with virtual addresses. Fortunately, there is a function, vtophys() to help. #include <vm/vm.h> #include <vm/pmap.h> #define vtophys(virtual_address) (...) The solution is a bit different on the alpha however, and what we really want is a function called vtobus(). #if defined(__alpha__) #define vtobus(va) alpha_XXX_dmamap((vm_offset_t)va) #else #define vtobus(va) vtophys(va) #endif Deallocating Resources It's very important to deallocate all of the resources that were allocated during attach(). Care must be taken to deallocate the correct stuff even on a failure condition so that the system will remain useable while your driver dies. diff --git a/en_US.ISO8859-1/books/corp-net-guide/book.sgml b/en_US.ISO8859-1/books/corp-net-guide/book.sgml index b817f240f8..57d5532a5d 100644 --- a/en_US.ISO8859-1/books/corp-net-guide/book.sgml +++ b/en_US.ISO8859-1/books/corp-net-guide/book.sgml @@ -1,3213 +1,3213 @@ - + The FreeBSD Corporate Networker's Guide Ted Mittelstaedt 2000 Addison-Wesley Longman, Inc ISBN: 0-201-70481-1 The eighth chapter of the book, The FreeBSD Corporate Networker's Guide is excerpted here with the permission of the publisher. No part of it may be further reproduced or distributed without the publisher's express written Chanda.Leary-Coutu@awl.com. The other chapters of - the + the book covers topics such as system administration, fileserving, and e-mail delivery. More information about this book is available from the publisher, with whom you can also sign up to receive news of related titles. The author's web site for the book includes sample code, working examples, errata and a Q&A forum, and is available at http://www.freebsd-corp-net-guide.com/. Printserving Printserving is a complicated topic. There are many different software interfaces to printers, as well as a wide variety of printer hardware interfaces. This chapter covers the basics of setting up a print queue, using Samba to print, and administering print queues and connections. PC printing history In the early days of the personal computer, printing was simple. The PC owner bought a cheap printer, usually a dot matrix that barely supported ASCII, and plugged it into the computer with a parallel cable. Applications would either work with the printer or not, and most did because all they could do was output DOS or ASCII text. The few software applications that supported graphics generally could only output on specific makes and models of printers. Shared network printing, if it existed, was usually done by some type of serial port switchbox. This was the general state of affairs with the PC until the Windows operating system was released. All at once, application programmers were finally free of the restrictions of worrying about how some printer manufacturer would change printer control codes. Graphics printing, in the form of fonts and images, was added to most applications, and demand for it rapidly increased across the corporation. Large, high-capacity laser printers designed for office printing appeared on the scene. Printing went from 150 to 300 to 600dpi for the common desktop laser printer. Today organizational network printing is complex, and printers themselves are more complicated. Most organizations find that sharing a few high-quality laser printers is much more cost effective than buying many cheaper dot matrix units. Good network print serving is a necessity, and it can be very well provided by the FreeBSD UNIX system. Printer communication protocols and hardware Printers that don't use proprietary vendor codes communicate with computers using one or more of three major printing protocols. The communication is done over a hardware cable that can be a parallel connection (printer port) or a serial connection (COM port). ASCII Printing Protocol The ASCII protocol is the simplest protocol used, as well as the oldest. ASCII is also used to represent text files internally in the DOS, UNIX, and Windows operating systems. Therefore, data taken from a text file or a directory listing generally requires little preparation before being sent to the printer, other than a newline-to-carriage return/linefeed conversion for UNIX. Printers usually follow the DOS text file convention of the print head requiring an explicit carriage return character followed by a linefeed character at the end of a line of text. Since UNIX uses only the linefeed character to terminate text, an additional carriage return character must be added to the end of each line in raw text print output; otherwise, text prints in a stairstep output. (Some printers have hardware or software switches to do the conversion) PostScript Printing Protocol Adobe introduced the PostScript language in 1985; it is used to enable the printout of high quality graphics and styled font text. PostScript is now the de-facto print standard in the UNIX community, and the only print standard in the Macintosh community. Numerous UNIX utilities exist to beautify and enhance text printing with PostScript. PostScript can be used to download font files into a printer as well as the data to be printed. PostScript commands can be sent to instruct the printer CPU to image, rotate, and scale complex graphics and images, thus freeing the host CPU. Scaling is particularly important with fonts since the document with the font has been produced on a computer screen with far lower resolution than the printer. For example, a 1024x768 computer screen on a 17-inch monitor allows for a resolution of approximately 82dpi, a modern desktop printer prints at a resolution of 600dpi. Therefore, a font must be scaled at least seven times larger for WYSIWYG output! PostScript printers generally come with a number of resident fonts. For example, the NEC Silentwriter 95 contains Courier, Helvetica, ITC Avant Garde Gothic Book, ITC Bookman Light, New Century Schoolbook Roman, Palatino Roman, Times Roman, and several symbol fonts. These are stored in Read Only Memory (ROM) in the printer. When a page is printed from a Windows client that contains a font not in the printer, a font substitution table is used. If no substitute can be made, Courier is usually used. The user should be conscious of this when creating documents - documents with fonts not listed in the substitution table may cause other users problems when printing. Avoid use of strange fonts for documents that will be widely distributed. The user program can choose to download different fonts as outline fonts to the PostScript printer if desired. Fonts that are commonly used by the user are often downloaded to PostScript printers that are connected directly to the user's computer, the fonts are then available to successive print jobs until the printer is turned off. When PostScript printers are networked, the clients must download any fonts desired with each print job. Since jobs come from different clients, the clients cannot assume that downloaded fonts will still be in the printer. PostScript print jobs also contain a header that is sent describing the page layout, among other things. On a shared network printer, this header must also be downloaded with each print job. Although some PostScript drivers allow downloading of the header only once, this usually requires a bi-directional serial connection to the printer, instead of a unidirectional parallel connection. PostScript print jobs can be sent either as binary data or as ASCII. The main advantage of binary data transmission is that it is faster. However, not all PostScript printers support it. Also, fonts can generally not be downloaded in binary. When FreeBSD is used as a printserver, ASCII PostScript printing should be selected on the clients, this is generally the default with most PostScript drivers. The Adobe company licenses PostScript interpreters as well as resident fonts to printer manufacturers, and extracts a hefty license fee from any printer manufacturer who wants to use them in its printer. This presents both a benefit and a problem to the end user. Although a single company holding control over a standard can guarantee compliance, it does significantly raise the cost of the printer. As a result, PostScript has not met with much success in lower-end laser and inkjet Windows printing market, despite the fact that Adobe distributes PostScript software operating system drivers for free. One issue that is a concern when networking PostScript printers is the selection of banner page, (also known as header page, or burst page) printing. UNIX shared printing began with ASCII line printers, and since UNIX is a multiuser system, often many different user print jobs piled up in the printer output hopper. To separate these jobs the UNIX printing system programs support banner page printing if the client program that submits jobs asks for them. These pages print at the beginning or end of every print job and contain the username, submittal date, and so on.. By default, most clients, whether remote (e.g., a Windows LPR client) or local (e.g., the /usr/bin/lpr program) trigger a banner page to be printed. One problem is that some PostScript printers abort the entire job if they get unformatted ASCII text instead of PostScript. (In general, PostScript printers compatible with Hewlett-Packard Printer Control Language [HPPCL] handle banners without problems) Banner printing should be disabled for any printers with this problem, unless PostScript banner page printing is set up on the server. HPPCL Printing Protocol The Hewlett Packard company currently holds the largest market share of desktop inkjet and office laser printers. Back when Windows was released, HP decided to expand into the desktop laser jet market with the first LaserJet series of printers. At the time there was much pressure on Microsoft to use Adobe Type Manager for scaleable fonts within Windows, and to print PostScript to higher-end printers. Microsoft decided against doing this and used a technically inferior font standard, Truetype. They thought that it would be unlikely that the user would download fonts to the printer, since desktop Publishing was not being done on PC's at the time. Instead users would rasterize the entire page to the printer using whatever proprietary graphics printer codes the selected printer needed. HP devised HPPCL for their LaserJets, and make PostScript an add-on. The current revision of HPPCL now allows for many of the same scaling and font download commands that PostScript does. HP laser jet printers that support PostScript can be distinguished by the letter "M" in their model number. (M is for Macintosh, since Macintosh requires PostScript to print) For example, the HP 6MP has PostScript, the 6P doesn't. HPPCL has almost no support in the UNIX applications market, and it is very unlikely that any will appear soon. One big reason is the development of the free Ghostscript PostScript interpreter. Ghostscript can take a PostScript input stream and print it on a PCL printer under UNIX. Another reason is the UNIX community's dislike of reinventing the wheel. HPPCL has no advantage over PostScript, and in many ways there are fewer problems with PostScript. Considering that PostScript can be added to a printer, either by hardware or use of Ghostscript, what is the point of exchanging an existing working solution for a slightly technically inferior one? Over the life of the printer, taking into account the costs of toner, paper, and maintenance, the initial higher cost of PostScript support is infinitesimal. Network Printing Basics The most common network printing implementation is a printserver accepting print jobs from clients tied to the server via a network cable. Printservers The term "printserver" is one of those networking terms, like packet, that has been carelessly tossed around until it's meaning has become somewhat confusing and blurred. To be specific, a printserver is simply a program that arbitrates print data from multiple clients for a single printer. Printservers can be implemented in one of the four methods described in the following sections. Printserver on the fileserver The printer can be physically cabled to the PC running the Network OS. Print jobs are submitted by clients to the printserver software on the fileserver, which sends them down the parallel or serial cable to the printer. The printer must be physically close to the fileserver. This kind of printserving is popular in smaller workgroup networks, in smaller offices.
Printserver on the fileserver ,---------. | ======= | Server | ======= | +---------------------+ ,-----. +-----------+ | +---------------+ | | | | Printer [ ]------------[ ] | Printserver | | |_____| +-----------+ Parallel | | Software | [ ]------_________ Cable | +---------------+ | / ::::::: \ +---------------------+ `---------' Network PC Printer, connected to a network server running printserver software, with one or more network PCs printing through it.
Printserver on a separate PC It is possible to run a print server program on a cheap PC that is located next to the printer and plugged into it via parallel cable. This program simply acts as a pass-through program, taking network packets from the network interface and passing them to the printer. This kind of server doesn't allow any manipulation of print jobs, jobs usually come from a central fileserver, where jobs are controlled.
Printserver on a separate PC Fileserver ,----------------. ,---------. .---| | === | | ======= | ,-----. | `----------======' | ======= | | | | +-----------+ |_____| | | Printer [ ]------------_________---------| Ethernet +-----------+ Parallel / ::::::: \ | Cable `---------' | Printserver | ,-----. | | | | |_____| `---------_________ / ::::::: \ `---------' Network PC Printer connected to a printserver (typically running FreeBSD), with network files hosted on a separate machine, and a network PC, able to access both resources.
Printserver on a separate hardware box A printserver on a separate hardware box is exemplified by network devices such as the Intel Netport, the HP JetDirect Ex, the Osicom/DPI NETPrint, and the Lexmark MarkNet. Basically, these are plastic boxes with an Ethernet connection on one side and a parallel port on the other. Like a printserver on a PC, these devices don't allow remote job manipulation, and merely pass packets from the network down the parallel port to the printer.
Printserver on a separate hardware box Fileserver ,----------------. ,---------. .---| | === | | ======= | | `----------======' | ======= | Printserver | +-----------+ ,--------. | | Printer [ ]-----------[ ] ooo [ ]-------| Ethernet +-----------+ Parallel `--------' | Cable | | ,-----. | | | | |_____| `---------_________ / ::::::: \ `---------' Network PC Printer connected to a dedicated print server appliance.
Printserver in the Printer The HP JetDirect Internal is the best known printserver of this type. It is inserted into a slot in the printer case, and it works identically to the external JetDirect units.
Printeserver in the printer Fileserver ,----------------. ,---------. .---| | === | | ======= | | `----------======' | ======= | | +-----------+ | | Printer [ ]------------------------------| Ethernet +-----------+ | | | ,-----. | | | | |_____| `---------_________ / ::::::: \ `---------' Network PC Printer with an embedded print server, connecting directly to the local network.
Printspools Printspooling is an integral part of network printing. Since the PC can spit out data much faster than the printer can accept it, the data must be buffered in a spool at some location. In addition, because many clients share printers, when clients send print jobs at the same time, jobs must be placed on a queue so that one can be printed after the other. Logical location of the print spool Printspooling can be implemented at one of three locations The client. Clients can be required to spool their own print jobs on their own disks. For example, when a Windows client application generates a print job the job must be placed on the local client's hard drive. Once the remote print server is free to accept the job it signals the client to start sending the job a bit at a time. Client spooling is popular in peer-to-peer networks with no defined central fileserver. However, it is impossible for a central administrator to perform advanced print job management tasks such as moving a particular print job ahead of another, or deleting jobs. The printserver. If each printer on the network is allocated their own combination print spooler-printserver, jobs can stack at the printer. Many of the larger printers with internal printservers have internal hard disks for this purpose. Although this enables basic job management, it still restricts the ability to move jobs from one printer to another. A central print spooler on a fileserver. Print jobs are received from all clients on the network in the spool and then dispatched to the appropriate printer. This scheme is the best for locations with several busy printers and many clients. Administration is extremely simple because all print jobs are spooled on a central server, which is particularly important in bigger organizations. Many large organizations have standardized on PostScript printing for all printing; in the event that a particular printer fails and is offline, incoming PostScript print jobs can be rerouted automatically to another printer. Since all printers and clients are using PostScript, clients don't need to be reconfigured when this happens. Print jobs appear the same whether printed on a 4 page-per-minute NEC Silentwriter 95, or a 24 page-per-minute HP LaserJet 5SiMX if both printers are defined in the client as PostScript printers.
Print spool locations Client ,---------. PC | ======= | ,-----. | ======= | | | +-----------+ |_____| | Printer [ ]---------------------------------------------------_________ +-----------+ / ::::::: \ `---------' Spool Printserver ,---------. PC | ======= | ,-----. | ======= | | | +-----------+ ,----------------. |_____| | Printer [ ]--------------| | === |-------------------_________ +-----------+ `----------======' / ::::::: \ Spool `---------' Fileserver ,---------. PC | ======= | ,-----. | ======= | Printserver Fileserver | | +-----------+ ,----------------. ,----------------. |_____| | Printer [ ]----| | === |-----| | === |------_________ +-----------+ `----------======' `----------======' / ::::::: \ Spool `---------' Possible locations for the print spool
FreeBSD is an excellent platform to implement centralized printserving and print spooling. The rest of this chapter concentrates on the centralized print spooler model. Note that PostScript printing is not a requirement for this model--the HPPCL protocol can be the standard print protocol as well. For transparent printing between printers with HPPCL, however, the printer models must be similar.
Physical location of the print spool In some companies, the central fileserver is often placed in a closet, locked away. Printers, on the other hand, are best located in high traffic areas for ease of use. Network printing works best when the printers are evenly distributed throughout the organization. Attempting to place all the major printers in one location, as technically advantageous as it may seem, merely provokes users to requisition smaller printers that are more convenient for that quick print job. The administrator may end up with a datacenter full of nice, expensive printers that are never used, while the smaller personal laser printers scattered throughout the plant bear most of the printing load. The big problem with this is that scattering printers through the organization makes it difficult to utilize the 3 possible parallel ports on the fileserver due to parallel port distance limitations. Although high-speed serial ports may extend the distance, not many printers have good serial ports on them. This is where the hardware network print server devices can come into play. I prefer using these devices because they are much cheaper and more reliable than a standalone PC running printserver software. For example, Castelle - http://www.castelle.com + http://www.castelle.com/ sells the LANpress 1P/10BT printserver for about $170.00. Using these devices a FreeBSD UNIX server can have dozens of print spools accepting print jobs and then route them back out over the network to these remote printserver boxes. If these hardware servers are used, they must support the Line Printer Daemon (LPD) print protocol. With a scheme like this it is important to have enough disk space on the spool to handle the print jobs. A single large PowerPoint presentation PostScript print job containing many graphics may be over 100MB. When many such jobs stack up in the print spool waiting to print, the print spooler should have several gigabytes of free disk space available. Network Printing to Remote Spools Although several proprietary network printing protocols such as Banyan Vines and NetWare, are tied to proprietary protocols, FreeBSD Unix can use two TCP/IP network printing protocols to print to remote print spools. The two print protocols available on TCP/IP with FreeBSD are the open LPD protocol and the NetBIOS-over-TCP/IP Server Messaging Block (SMB) print protocol first defined by Intel and Microsoft and later used by IBM and Microsoft. The LPD protocol is defined in RFC1179 This network protocol is the standard print protocol used on all UNIX systems. LPD client implementations exist for all Windows operating systems and DOS. Microsoft has written LPD for the Windows NT versions, the other Windows operating system implementations are provided by third parties. The Microsoft Networking network protocol that runs on top of SMB can use NetBIOS over TCP/IP as defined in RFC1001 and RFC1002. This protocol has a specification for printing that is the same print protocol used to send print jobs to NT Server by Microsoft clients. To implement this protocol on FreeBSD requires the installation of the Samba client suite of programs discussed in Chapter 7.
Setting up LPR on Windows clients The program clients use to print via LPD is the Line Printer Remote, or LPR program. The following instructions cover enabling this program on Windows clients. Windows 3.1/Windows for Workgroups 3.11 Several commercial TCP/IP stacks are available for Win31, that provide LPR client programs, in addition to the basic TCP/IP protocol to Win31. WfW has TCP/IP networking available for free from Microsoft, but it doesn't include an LPR client. Unfortunately, I have not come across a freeware implementation of a 16-bit Windows LPR client, so with the following instructions I use the Shareware program WLPRSPL available from http://www.winsite.com/info/pc/win3/winsock/wlprs41.zip. This program must be active during client printing, and is usually placed in the Startup group. Organizations that want to use UNIX as a printserver to a group of Win31 clients without using a commercial or shareware LPR program have another option. The Microsoft Networking client for DOS used underneath Win31 contains SMB-based printing which is covered later in the chapter. DOS networking client setup and use are covered in Chapter 2 and Chapter 7. If LPR-based client printing is desired and the organization doesn't want to upgrade to Win95, (which has several LPR clients available) the following instructions can be used. WLPRSPL needs a Winsock under Windows 3.1, so for the example I explain the setup of the Novell 16-bit TCP/IP client. The stack can be FTPed from Novell, and is easy to integrate into sites that already use the 16-bit NetWare networking client, usually NW 3.11 and 3.12. In most cases, however, sites that use NetWare + Win31 are probably best off printing through the NetWare server, then loading an LPR spooler as an Netware Loadable Module (NLM) to send the job over to FreeBSD. As an alternate, the Microsoft Networking DOS 16-bit TCP/IP client under Win31 contains a Winsock, as does Microsoft TCP/IP for WfW. The target machine used here is a Compaq Deskpro 386/33 with 12MB of ram with an operating version of Windows 3.1, and a 3com 3C579 EISA network card. The instructions assume an LPR printserver on the network, named mainprinter.my.domain.com with a print queue named RAW. Use the installation instructions in Exhibit 8.1 for a quick and dirty TCP/IP Winsock for Win31 systems. Administrators who already have the Novell IPX client installed should skip those steps. Installation of the Novell TCP/IP Winsock client Make sure that the machine has enough environment space (2048 bytes or more) by adding the following line to the config.sys file and rebooting: SHELL=C:\COMMAND.COM /E:2048 /P Obtain the TCP16.EXE file from - ftp3.novell.com/pub/updates/eol/nweol/tcp16.exe. + ftp://ftp3.novell.com/pub/updates/eol/nweol/tcp16.exe. Obtain the Network Adapter support diskette for the network card in your machine. This should be supplied with the card, or available via FTP from the network adapter manufacturer's FTP site. Now you need the file LSL.COM. This is available on some Network Adapter Driver diskettes, it used to be available from the VLM121_2.EXE file from Novell but unfortunately this file is no longer publicly accessible from Novell. If you have vlm121_2.exe in a temporary directory, run it. This will extract a number of files. One of the files extracted is LSL.CO_ extract this file with the command nwunpack lsl.co_. Create the directory c:\nwclient. Then, copy lsl.com from the temporary directory into the directory. Obtain and install the printer driver for the model of printer that you will be spooling to and point it to LPT1:. Win31 and WfW 3.11 have an incomplete printer driver list, so if you need a driver Microsoft has many Win16 printer drivers on their FTP site. A list is available at ftp://ftp.microsoft.com/Softlib/index.txt. In addition, if you are installing a PostScript printer driver for a printer supplied in Win31, it may be necessary to patch the driver. The Microsoft PostScript driver supplied in Win31 is version 3.5. (The patch named PSCRIP.EXE which brought the PostScript driver to version 3.58 is no longer publicly available.) WfW already uses the more recent PostScript driver, as does Win31 version A. Installing the Adobe Postscript driver for Win31 is also an option. (see http://www.adobe.com/support/downloads/pdrvwin.htm for the version 3.1.2 Win31 PostScript driver). Look on the network adapter driver disk for the subdirectory nwclient/ and then look for the ODI driver with the adapter card. For example, on the 3com 3C509/3C579 adapter driver disk, the driver and location are \NWCLIENT\3C5X9.COM. Copy this driver to the c:\nwclient directory. Create a file called NET.CFG in the c:\nwclient directory. Often, the network card adapter driver diskette has a template for this file in the same location as the ODI driver. This can be modified, as can the following example: LINK SUPPORT BUFFERS 4 1600 MEMPOOL 8192 LINK DRIVER 3C5X9 ; PORT 300 (these are optional, if needed by card uncomment) ; INT 10 (optional, uncomment and modify if needed) Attempt to load the network card driver. First load lsl, then the ODI driver. With the 3com card the commands are: lsl 3c5x9 If the driver properly loads it will list the hardware port and interrupt settings for the network adapter. If it has loaded properly, unload the drivers in reverse order with the command: 3c5x9 /u lsl /u Go to the temporary directory that contains the tcp16.exe file and extract it by running the program. Run the install batch file by typing installr. It should list New Installation detected. It will then copy a number of files into nwclient, add some commented-out sections to net.cfg, and call edit on net.cfg. Read the editing instructions and make the appropriate entries. The sample net.cfg file from above would look like this. LINK SUPPORT BUFFERS 4 1600 MEMPOOL 8192 LINK DRIVER 3C5X9 FRAME ETHERNET_II Protocol TCPIP PATH TCP_CFG c:\nwclient ip_address 192.168.1.54 LAN_NET ip_netmask 255.255.255.0 LAN_NET ip_router 192.168.1.1 LAN_NET Bind 3C5X9 #1 Ethernet_II LAN_NET Save and exit, the Installer should list TCP16 installation completed. Reload the client with the commands: lsl 3c5x9 tcpip The TCPIP driver should list the IP numbers and other information. Optionally, create either a HOSTS file, or a RESOLV.CFG file (pointing to a nameserver) in c:\nwclient. Check to see this is operating properly by pinging a hostname. Add the c:\nwclient directory to the PATH, as well as the 3 startup commands in step 15 in autoexec.bat Installation of the LPR client on 16-bit Windows with a Winsock installed The following assumes a running Win31 installation with a Winsock or a running WfW installation with the 32-bit Microsoft TCP/IP protocol installed. Install the printer driver desired. See step 8 of the previous set of instructions. Obtain and extract into a temporary directory the wlprs41.zip file from the location mentioned above. Run setup.exe from the temporary directory containing the wlprs files are. In setup, accept default directory, and check Yes to add to its own group. Click Continue when asked for group name, and check whatever choice you want when asked to copy the doc files. Click No when asked to add the program to Startup. On the Unix FreeBSD print spooler, make sure that there is an entry in /etc/hosts.lpd or /etc/hosts.equiv for the client workstation, thereby allowing it to submit jobs. Double-click the Windows LPR Spooler icon in the Windows LPR Spooler group that is opened. When it asks for a valid spool directory, just select the c:\wlprspl directory that the program installed its files into. When asked for a valid Queue Definition File, just click OK to use the default filename. The program automatically creates a queue definition file. The program opens up with it's menu. Click Setup in the top menu, then select Define New Queue. For a local spool filename, just use the name of the remote queue (RAW) to which the client prints. For the remote printer name, use the same name as the remote queue (RAW) to which the client prints. For the remote hostname, use the machine name of the FreeBSD print spooler. mainprinter.ayedomain.com. For the Description, enter a description such as 3rd floor Marketing printer. For the protocol, leave the default of BSD LPR/LPD selected. Click on the Queue Properties, and make sure that the Print unfiltered is selected. If you're printing PostScript, then also click the Advanced options button. Make sure that Remove trailing Ctrl-D is unchecked, and that Remove Leading Ctrl-D is checked. Also with PostScript, if the printer cannot print ASCII, uncheck the Send header page box. (PostScript header/banner pages are discussed later in this chapter) Click OK. At the main menu of the program, click File, then Control Panel/Printers to bring up the Printers control panel of Windows. Make sure that the Use Print Manager button is checked, then highlight the printer driver and click the Connect button. Scroll down to the C:\WLPRSPL\RAW entry for the spool that was built and highlight this. Click OK. Minimize the Windows LPR Spooler. Copy the Windows LPR Spooler icon to the Startup group. Click File/Properties with the Windows LPR Spooler icon highlighted in the Startup group. Check the Run Minimized button. Exit Windows, and when the Save queue changes? button comes up, click Yes. Restart windows and make sure that the spooler starts up. Open the Control Panel and look for a new yellow icon named Set Username If you are running the Novell or other Winsock under Win31, click on this icon and put the username of the person using this computer into the space provided. If you are running WfW, this isn't necessary because Windows will supply the username. If the spooler is not started properly in some installations, there may be a bug. If placing the icon in the StartUp group doesen't actually start the spooler, the program name can be placed in the run= line of win.ini. Try printing a print job from an application such as Notepad. If everything goes properly, clicking on the Queues/Show remote printer status" in the Windows LPR menu should show the print job spooled and printing on the remote printserver. Installation of LPR client on Windows 95/98 The wlprspl program also can be used under Windows 95, but as a 16-bit program, it is far from an optimal implementation on a 32-bit operating system. In addition, Win95 and it's derivatives fundamentally changed from Windows 3.1 in the printing subystem. For these reasons I use a different LPR client program for Win95/98 LPR printing instructions. It is a full 32-bit print program, and it installs as a Windows 32-bit printer port monitor. The program is called ACITS LPR Remote Printing for Windows 95 and it is located at http://shadowland.cc.utexas.edu/acitslpr.htm. ACITS stands for Academic Computing and Instructional Technologies Services. The ACITS LPR client includes software developed by the University of Texas at Austin and its contributors, it was written by Glenn K. Smith, a systems analyst with the Networking Services group at the university. The filename of the archive in the original program was ACITSLPR95.EXE and as of version 1.4 it was free for individuals or organizations to use for their internal printing needs. Since that time, it has gotten so popular that the university has taken over the program, incremented the version number (to get out from under the free license) and is now charging a $35 per copy fee for commercial use for the newer versions. The older free version can still be found on overseas FTP servers, such as http://www.go.dlr.de/fresh/pc/src/winsock/acitslpr95.exe. It is likely that the cost of a shareware/commercial LPR program for Win95 plus the cost of Win95 itself will meet or exceed that of Win2K. As such, users wishing to print via LPR to FreeBSD UNIX systems will probably find it cheaper to simply upgrade to Windows NT Workstation or Win2K. ACITS LPR and Win95 have a few printing idosyncracies. Most Win95 programs, such as Microsoft Word, expect print output to be spooled on the local hard drive and then metered out to a printer that is plugged into the parallel port. Network printing, on the other hand, assumes that print output will go directly from the application to the remote print server. Under Win95, local ports have a setting under Properties, Details, Spool Settings labeled "Print directly to the printer". If this is checked, the application running on the desktop (such as Microsoft Word) will not create a little Printer icon with pages coming out of it or use other means of showing the progress of the job as it is built. This can be very disconcerting to the user of a network printer, so this option should be checked only with printers plugged directly into the parallel port. Worse, if this is checked with ACITS, it can cause the job to abort if the remote print spooler momentarily goes offline. Another local setting also should be changed. Generally, with local ports, Win95 builds the first page in the spooler and then starts printing it while the rest of the pages spool. If ACITS starts printing the first page while the rest of the pages are building, timeouts at the network layer can sometimes cause very large jobs to abort. The entire job should be set to completely spool before the LPR client passes it to the Unix spooler. The problem is partly the result of program design: because ACITS is implemented as a local printer port instead of being embedded into Win95 networking (and available in Network Neighborhood) the program acts like a local printer port in some ways. The LPR program can be set to deselect banner/burst page printing if a PostScript printer that cannot support ASCII is used. The burst pages referred to here are NOT generated by the Windows machine. Use the instructions in Exhibit 8.3 to install LPR client on Win95/98 installation instructions Obtain the ACITSLPR95.EXE file and place it in a temporary directory such as c:\temp1. Close all running programs on the desktop. The computer must be rebooted at completion of installation or the program will not work. Click Start, Run and type in c:\temp1\acitslpr95 then click Yes at the InstallShield prompt. Click Next, then Yes. The program will run through some installation and then presents a Help screen that explains how to configure an LPR port. After the help screen closes, the program asks to reboot the system. Ensure that Yes is checked and click Finish to reboot. After the machine comes back up, install a Printer icon in the Start, Settings, Printers folder if one hasn't been created for the correct model of destination printer. With the Printers folder open, right-click over the printer icon that needs to use the LPR program and click on the Properties tab. Under the Details tab, click the Add Port tab, then click Other. Highlight the ACITS LPR Remote Printing line and click OK. The Add ACITS LPR screen opens. Type in the hostname of the UNIX system that the client spools through— mainprinter.ayedomain.com. Type in the Printer/Queue name and click OK. (Some versions have a "Verify Printer Information" button.) The LPR program then contacts the UNIX host and makes sure that the selected printer is available. If this fails the client machine name is probably not in the /etc/hosts.equiv or etc/hosts.lpd on the FreeBSD printserver. Most sites may simply decide to put a wildcard in hosts.equiv to allow printing, especially if DHCP is used, but many security-conscious sites may stick with individual entries in hosts.lpd. If the printer is PostScript and cannot print ASCII, make sure that the "No banner page control flag" is checked to turn off banner pages. Accessible under Port settings, this flag is overridden if the /etc/printcapfile specifies no banner pages. Review how the "send plain text control flag" is set. With this flag unchecked, the LPR code sent is L, (ie:, print unfiltered) meaning that the if filter gets called with the option. This is equivalent to the local invocation of /usr/bin/lpr -l. With the flag checked, the code is F, (formatted) meaning that the iffilter gets called without the option. This is equivalent to the default invocation /usr/bin/lpr. (This is also an issue under Windows NT, which retypes the print job to text if this flag is checked. Some filters understand the flag, which is used to preserve control characters, so it should generally remain unchecked. Leave the "Send data file before control file" box unchecked. This option is used only in rare mainframe spooling circumstances. Click OK, then click the Spool Settings button at the properties page. Make sure that the "Spool print jobs so program finishes printing faster" box is checked. Make sure that "Start printing after last page is spooled" box is checked. Make sure that "Disable bi-directional support for this printer" is checked, or greyed out. Make sure that the "Spool data format" is set to RAW. Some printer drivers present a choice of EMF or RAW, such as the Generic Text driver, in this case select RAW. Click OK, then OK again to close the Printer Properties. The printer icon now spools through FreeBSD. Installation of LPR client on Windows NT Unlike WfW and Win95 TCP/IP, Windows NT—both server and workstation—includes an LPR client as well as an LPD program that allows incoming print jobs to be printed from LPR clients, such as UNIX systems. To install the LPR client and daemon program under Windows NT 3.51, use the following instructions. The TCP/IP protocol should be installed beforehand and you must be logged in to the NT system as Administrator. This can be done at any time after the NT system is installed, or during OS installation: Double-click on Main, Control Panel, then Network Settings. In the Installed Network Software window, "Microsoft TCP/IP Printing" should be listed as well as "TCP/IP Protocol". Click the Add Software button to get the Add Network Software dialog box Click the down arrow and select TCP/IP Protocol and related components. Click Continue. Check the "TCP/IP Network Printing Support" box and click Continue. LPR printing is now installed. Follow the instructions to reboot to save changes. To install the LPR client and daemon program under Windows NT 4, use the following instructions. The TCP/IP protocol should be installed beforehand and you must be logged in to the NT system as Administrator. This can be done at any time after the NT system is installed, or during OS installation: Click on Start, Settings, Control Panel, and double-click on Network to open it up. Click on the Services tab. Microsoft TCP/IP Printing should be listed. If not, continue steps 3 - 4. Click Add, then select Microsoft TCP/IP Printing and click OK. Click Close. Follow instructions to reboot to save changes. Any NT Service Packs that were previously installed must be reapplied after these operations. Once LPR printing has been installed, the Printer icon or icons must be created on the NT system so that applications can print. Since this printer driver does all job formatting before passing the printing to the FreeBSD printserver, the print queues specified should be raw queues on the FreeBSD system, which don't do any job formatting. To install the printer icon in Print Manager and set it to send print jobs to the FreeBSD UNIX system, use the following instructions under NT 3.51. You must be logged in to the NT system as Administrator. This can be done at any time after the NT system is installed, or during OS installation. Click on Main, and open it. Then click on Print Manager to open it. Click on Printer, Create Printer. Select the appropriate printer driver. Click the down arrow under Print To and select Other. In the Available Print Monitors window select LPR port and click OK. Enter the hostname of the FreeBSD printserver, and the name of the printer queue and click OK Click OK to close the Create Printer window. The Printer icon is created. To install the printer icon in Print Manager and set it to send print jobs to the FreeBSD UNIX system, use the following instructions under NT 4. You must be logged in to the NT system as Administrator. This can be done at any time after the NT system is installed, or during OS installation: Click Start, Settings, Printers to open the printer folder. Double-click Add Printer to start the wizard. 3) Select the My Computer radio button, not the Network Print Server button and click Next. (The printer is a networked printer, it is managed on the local NT system. Microsoft used confusing terminology here. Click Add Port and select LPR Port, then click New Port. Enter the hostname and print queue for the FreeBSD printserver and click OK. Click Next and select the correct printer driver. Continue until the printer is set up. The LPR client in Windows NT allows DOS print jobs originating in DOS boxes to be routed to the central UNIX print spooler. This is an advantage over the Win95 and WfW LPR programs. Windows NT Registry Changes Using the LPR daemon program under Windows NT presents one problem. If the NT server is used as an LPR/LPD "relay", for example, to pass jobs from clients to LPR print queues on a UNIX system, to pass jobs from LPR programs on UNIX terminating at NT print queues, or to pass jobs from Appletalk clients to LPR printers, NT retypes the job if the type code is set to P (text). This can wreak havoc on PostScript files printed through HP LaserJet printers with internal MIO cards in them, if the job originates from the /usr/bin/lpr program under UNIX, which assigns a P type code. The printserver card treats PostScript jobs as text, and instead of the print job, the raw PostScript codes print. This problem often manifests in the following way: /usr/bin/lpr is used to print a PostScript file from UNIX directly to the remote printer printserver, which works fine, but spooling it through NT causes problems. A registry change that can override the NT Server formatting behavior is detailed in Microsoft Knowledge Base article ID Q150930. With Windows NT 3.51, and 4.0 up to service pack 1 the change is global. Starting with NT 4.0 Service pack 2 the change can be applied to specific print queues, (see Knowledge Base article ID Q168457). Under Windows NT 4.0, the change is: Run Registry Editor (REGEDT32.EXE) From the HKEY_LOCAL_MACHINE subtree, go to the following key: \SYSTEM\CurrentControlSet\Services\LPDSVC\Parameters On the Edit menu, click Add Value. Add the following: Value Name: SimulatePassThrough Data Type: REG_DWORD Data 1 The default value is 0, which informs LPD to assign datatypes according to the control commands. Under Windows NT 3.51, the change is: Run Registry Editor (REGEDT32.EXE) From the HKEY_LOCAL_MACHINE subtree, go to the following key: \SYSTEM\CurrentControlSet\Services\LPDSVC\Parameters On the Edit menu, click Add Value. Add the following: Value Name: SimulatePassThrough Data Type: REG_DWORD Data 1 The default value is 0, which informs LPD to assign datatypes according to the control commands. Create an LPD key at the same level as the LPDSVC key. Click the LPDSVC Key, click Save Key from the Registry menu, and then save the file as LPDSVC.KEY Click the LPD key created in step 5. Click Restore on the Registry menu, click the file created in step 6, and then click OK. A warning message appears. Click OK and then quit the Registry Editor. At a command prompt window, type: net stop lpdsvc net start lpdsvc Printing Postscript and DOS command files One problem with printing under Win31 and Win95 with the LPR methods discussed is the lack of a raw LPT1: device. This is annoying to the administrator who wants to print an occasional text file, such as a file full of printer control codes, without their being intercepted by the Windows printer driver. Of course this is also an issue with DOS programs, but a commercial site that runs significant DOS software and wants to print directly to UNIX with LPR really only has one option—to use a commercial TCP/IP stack containing a DOS LPR program. Normally, under Windows printing, virtually all graphical programs print through the Windows printer driver. This is true even of basic programs such as Notepad. For example, an administrator may have a DOS batch file named filename.txtcontaining the following line: echo \033&k2G > lpt1: This batch file switches a HP LasterJet from CR-LF, MS-DOS textfile printing into Newline termination UNIX textfile printing. Otherwise, raw text printed from UNIX on the HP prints with a stairstep effect. If the administrator opens this file with Notepad and prints it using a regular printer driver, such as an Epson LQ, the Windows printer driver encapsulates this print output into a series of printer-specific control codes that do things such as initialize the printer, install fonts, and so on. The printer won't interpret this output as control code input. Usually, if the printer is locally attached, the user can force a "raw text print" of the file by opening a DOS window and running: copy filename.txt lpt1: /b Since the LPR client program doesn't provide a DOS driver, it cannot reroute input from the LPT1: device ports. The solution is to use the Generic / Text Only printer driver in conjunction with Wordpad (under Win95); under Win31 use a different text editor. The Notepad editor supplied with Windows is unsuitable for this - it "helpfully" inserts a 1 inch margin of spaces around all printed output, as well as the filename title. Wordpad supplied with Win95, can be set to use margins of zero, and inserts no additions into the printed output. Also, make sure that banner pages are turned off, and the print type is set to raw. Checking PostScript Printer capabilities Following is a PostScript command file that can be used to get a PostScript printer to output a number of useful pieces of information that are needed to set up a printer icon under Windows properly. It was printed from Wordpad, in Win95, through the Generic / Text Only printer driver with the following instructions: Start, Run, type in Wordpad and press Enter. File, Open testps.txt File, Page Setup, Printer, select Generic / Text Only, click Properties Click Device Options, select TTY custom, click OK. Click OK, then set all four margins to 0; click OK. Click File, Print, OK. This could also have been printed with /usr/bin/lpr on a UNIX command prompt. The file prints Test Page and some printer statistics below that, as follows. % filename: testps.txt % purpose: to verify proper host connection and function of PostScript % printers. /buf 10 string def /CM { save statusdict/product get (Postscript) anchorsearch exch pop {length 0 eq {1}{2}ifelse } {2}ifelse exch restore }bind def /isCM { CM 1 ge }bind def /Times-BoldItalic findfont 75 scalefont setfont 150 500 moveto (Test Page) false charpath isCM{gsave 0.0 1.0 1.0 0.0 setcmykcolor fill grestore}if 2 setlinewidth stroke /Times-Roman findfont 10 scalefont setfont 150 400 moveto (Your PostScript printer is properly connected and operational.)show 150 380 moveto (The border around the page indicates your printer's printable region.)show { vmreclaim } stopped pop vmstatus exch sub exch pop 150 360 moveto (Max Available Printer Virtual Memory (KB):)show 150 340 moveto dup 1024 div truncate buf cvs show 150 320 moveto (Calculated memory size used for PostScript printer icon properties:) show 150 300 moveto 0.85 mul 1024 div truncate buf cvs show 150 280 moveto (Printer Model: )show statusdict begin product show end 150 260 moveto (PostScript Level: )show /languagelevel where { languagelevel 3 string cvs show pop } {(1) show } ifelse 150 240 moveto (PostScript Version: )show statusdict begin version show (.)show revision 40 string cvs show end clippath stroke showpage Setting up LPR/LPD on FreeBSD When a FreeBSD system is booted, it starts the LPD spooler control daemon program if the /etc/rc.conf file has lpd_enable="YES" set. If this is not set, attempts to print through and from the FreeBSD system will fail with an lpr: connect: No such file or directory error message. The LPD program manages all incoming print jobs, whether they come in from the network, or from local users on the UNIX system. It transfers print jobs to all locally attached parallel or serial printers, as well as defined remote printers. Several programs also are used to manipulate jobs in the print spools that LPD manages, as well as the user programs to submit them from the UNIX command prompt. All of these programs use the /etc/printcapfile, which is the master control file for the printing system. Back when printing was mostly text, it was common to place printers on a serial connection that stretched for long distances. Often, 9600bps was used because it could work reliably up to a block away, which allowed printers to be located almost anywhere on an office high-rise floor. Modern office print jobs, on the other hand, are generally graphics-laden and tend to be rather large. These jobs would take hours to transfer over a slower 9600bps serial printer connection. Today, most printers that are not connected to a remote hardware print server box are directly connected to the server using parallel cables. All of the examples shown here are direct connections that are parallel connections. The printcap configuration file, like most UNIX configuration files, indicates comment lines starting with a hash character. Lines without a hash character are meant to be part of a printer queue description line. Each printer queue description line starts with a symbolic name, and ends with a newline. Since the description lines are often quite long, they are often written to span multiple lines by escaping intermediate newlines with the backslash (\) character. The /etc/printcapfile, as supplied, defines a single printer queue, lp. The lpqueue is the default queue. Most UNIX-supplied printing utilities send print output to this queue if no printer is specified by the user. It should be set to point to the most popular print queue with local UNIX print users, (i.e.: users that have shell accounts). The layout of /etc/printcapis covered in the manual page, which is reached by running the man printcap command. The stock /etc/printcap file at the line defining the spool lpshows: # lp|local line printer:\ :lp=/dev/lpt0:sd=/var/spool/output/lpd:lf=/var/log/lpd-errs: # In this example the first line defines the names by which the printer is known, and ends with an escaped newline. The next line defines the physical device, the PC parallel port, by /dev/lpt0, and the directory in which the spool files are stored at /var/spool/output/lpd, and the error log file. Note that this particular error log file will not show all LPD errors, such as bad job submittals, it usually shows only the errors that originate within the printing system itself. In general, the administrator creates two print queues for every printer that is connected to the FreeBSD machine. The first queue entry contains whatever additional capabilities UNIX shell users on the server require. The second is a raw queue that performs no print processing on the incoming print job. This queue is used by remote clients, such as Windows clients, that format their own jobs. If the administrator is setting up the printer to allow incoming LPR jobs from network clients, such as other Windows or UNIX systems, those systems must be listed in /etc/hosts.lpd. Creating the spools Building new print spools is merely a matter of making an entry in the /etc/printcap file, creating the spool directories, and setting the correct permissions on them. For example, the following additional line defines a PostScript printer named NEC (in addition to the lp definition): # lp|local line printer:\ :lp=/dev/lpt0:sd=/var/spool/output/lpd:lf=/var/log/lpd-errs: NEC|NEC Silentwriter 95 Postscript printer:\ :lp=/dev/lpt0:sd=/var/spool/output/NEC:lf=/var/log/lpd-errs: # Because UNIX is case sensitive, NEC is different from nec in both the name of the printer and the name of the Spool directory. With the print spooler LPD, the Spool directories must be different from each other, or the spooler gets confused and doesen't print. After the /etc/printcapis modified, the root user must create the /var/spool/output/NEC directory and assign ownership of it to the bin user, assign group ownership to daemon, and set permissions with the following commands: &prompt.user; su root &prompt.root; cd /var/spool/output &prompt.root; mkdir NEC &prompt.root; chown bin NEC &prompt.root; chgrp daemon NEC &prompt.root; chmod 755 NEC Additional spool capabilities Because modern print jobs (especially PostScript) can sometimes reach hundreds of megabytes, the sd capability entry in the /etc/printcap file should always point to a Spool directory on a filesystem that has enough space. The /var directory on a default FreeBSD installation is generally set to a fairly small amount, which can easily overflow the spool. There are four ways to handle this problem: During FreeBSD installation, if the administrator knows a lot of print jobs are going to go through the spooler, /varshould be set to a large amount of free space. Modify the sd capability in the /etc/printcap file to point to a spool directory in a different, larger filesystem, such as /usr/spool. Use soft links to point the /var/spool/output directory to directories on a larger filesystem. Don't define a /var directory at all during FreeBSD installation; this would make the installer link /var to /usr/var. In addition to spools, the following other capabilities are usually placed in a production /etc/printcapfile. The entry fo prints a form feed when the printer is opened. It is handy for HPPCL (HP LaserJets) or other non-PostScript printers that are located behind electronic print sharing devices. It can also be used for printers that accept input from multiple connections, such as a parallel port, serial port, and localtalk port. An example is an HP LaserJet with an MIO card in it plugged into both Ethernet and LocalTalk networks. It will clear any garbage out of the printer before the job is processed. The entry mx defines the maximum size of a print job, which is a must for modern print jobs that frequently grow far past the default print size of a megabyte. The original intent of this capability was to prevent errant programs from stuffing the spool with jobs so large that they would use up all paper in a printer.. Graphics-heavy print jobs have made it impossible to depend on this kind of space limitation, so mx is usually set to zero, which turns it off. The entry sh suppresses printing of banner pages in case the printer cannot handle ASCII and the client mistakenly requests them. The entry ct denotes a TCP Connection timeout. This is useful if the remote print server doesn't close the connection properly. FreeBSD 2.2.5 contains a bug in the LPD system - as a workaround the ct capability needs to be set very large, such as 3600, or the appropriate patch installed and LPD recompiled. More recent versions of FreeBSD do not have this bug. Printing to hardware print server boxes or remote print servers. Hardware print server boxes, such as the HP JetDirect internal and external cards, need some additional capabilities defined in the /etc/printcap entry; rp, for remote print spool, and rmfor remote machine name. The rm capability is simply the DNS or /etc/hosts name of the IP number associated with the remote printserver device. Obviously, print server devices, such as the HP JetDirect, must not use a dynamic TCP/IP network numbering assignment. If they get their numbering via DHCP, the IP number should be assigned from the static pool; it should always be the same IP number. Determining the name used for rp, on the other hand, can be rather difficult. Here are some common names: Windows NT Server: Printer name of the printer icon created in Print Manager FreeBSD: Print queue name defined in /etc/printcap HP JetDirect: Either the name TEXT or the name RAW. TEXT automatically converts incoming UNIX newline text to DOS-like CR/LF text that the printer can print. RAW should be used for PostScript, and HPPCL printing. HP JetDirect EX +3: External, 3 port version of the JetDirect. Use RAW1, RAW2, RAW3, TEXT1, TEXT2, or TEXT3 depending on the port desired. Intel NetPort: Either use TEXT for UNIX text conversion printing or use PASSTHRU for normal printing. DPI: Use PORT1 or PORT2 depending on which port the printer is plugged into. For other manufacturer's print servers refer to the manuals supplied with those devices. The following is an example printcap that redefines the default lp print queue to send print jobs to the first parallel port on a remote HP LaserJet plugged into a JetDirect EX +3 named floor2hp4.biggy.com. # lp|local line printer:\ :rm=floor2hp4.biggy.com:rp=RAW1:\ :sd=/var/spool/output/lpd:\ :lf=/var/log/lpd-errs: # The rp capability must be defined or the job goes to the default print queue on the remote host. If the remote device does not have a single print queue, such as another UNIX system, this causes problems. For example, if the remote device was a JetDirect EX + 3 and rp was omitted, all queues defined would print out of the first parallel port. Filters The last two important printcap capabilities concern print filters, if (input filter) and of (output filter) If defined, incoming print jobs are run through the filters that these entries point to for further processing. Filters are the reason that the UNIX print spooling system is so much more powerful than any other commercial server operating system. Under FreeBSD, incoming print jobs are acted on by any filters specified in the /etc/printcap no matter where they originate. Incoming print jobs from remote Windows, Mac, NT, OS/2 or other clients can be intercepted and manipulated by any program specified as a filter. Want a PostScript Printer? There's a filter that adds PostScript capability to a non-PostScript printer. Want to make a cheap Epson MX 80 dot-matrix emulate an expensive Okidata Microline dot-matrix for some archaic mainframe application? Write a filter that will rewrite the print codes to do it. Want custom-built banner pages? Use a filter. Many UNIX /etc/printcap filters on many Internet sites can do a variety of interesting and unique things. Someone may have already written a filter that does what you want! Types of filters Three types of filters can be defined in the /etc/printcap file. In this book all filter examples are for Input filters. Input Filters Input filters are specified by the if capability. Every job that comes into the spool is acted on by any filter specified in the if entry for that spool. Virtually all filters that an administrator would use are specified here. These filters can be either shell scripts, or compiled programs. Fixed Filters Fixed filters are specified by separate capabilities, such as cf, df, and gf. Mostly, these exist for historical reasons. Originally, the idea of LPD was that incoming jobs would be submitted with the type fields set to trigger whatever filter was desired. However, type codes are confusing and annoying to the user, who has to remember which option is needed to trigger which type. It is much easier to set up multiple queues with different names, and this is what most sites do these days. For example, originally a DVI fixed filter might be specified in a spool for lp, triggered by the option passed to lpr. Jobs without this option aren't acted on by the DVI filter. However, the same thing can be done by creating a queue named lp that doesn't have a DVI filter, and a queue named lpdvi which has the DVI filter specified in the if capability. Users just need to remember which queue to print to, instead of what option needed for this or that program. Output Filters These are specified by the ofcapability. Output filters are much more complicated than input filters and are hardly ever used in normal circumstances. They also generally require a compiled program somewhere, either directly specified or wrapped in a shell script, since they have to do their own signal-handling. Printing raw Unix text with a filter One of the first thing that a new Unix user will discover when plugging a standard LaserJet or impact printer into a UNIX system is the stairstep problem. The symptom is that the user dumps text to the printer, either through LPR or redirection (by catting it to the parallel device) and instead of receiving the expected Courier 10-point printout, gets a page with a single line of text, or two lines of text "stairstepped", text and nothing else. The problem is rooted in how printers and UNIX handle textfiles internally. Printers by and large follow the "MS-DOS Textfile" convention of requiring a carriage return, then a linefeed, at the end of every text line. This is a holdover from the early days when printers were mechanical devices, and the print head needed to return and the platen to advance to start a new line. UNIX uses only the linefeed character to terminate a text line. So, simply dumping raw text out the parallel port works on MS-DOS, but not on UNIX. If the printer is a PostScript printer, and doesn't support standard ASCII, then dumping UNIX text to it doesn't work. But then, neither would dumping MS-DOS text to it. (Raw text printing on PostScript printers is discussed later in this chapter) Note also that if the printer is connected over the network to an HP JetDirect hardware print server, internal or external, the TEXT queue on the hardware print automatically adds the extra Carriage Return character to the end of a text line. If the printer is the garden-variety HP LaserJet, DeskJet, or an impact printer, and under DOS the administrator is used to printing raw text from the command line for directory listings, there are two ways to fix stairstep. The first is to send a command to the printer to make it print in "unix textfile" mode, which makes the printer supply it's own carriage return. This solution is ugly in a printer environment with UNIX and Windows machines attempting to share use of the same printer. Switching the printer to work with Unix disrupts DOS/Windows raw text printouts. The better solution is to use a simple filter that converts incoming text from UNIX style to DOS style. The following filter - posted on questions@freebsd.org and the sample + posted on questions@FreeBSD.org and the sample /etc/printcap entry can be used to do this: #!/bin/sh # /usr/local/libexec/crlfilter # # simple parlor trick to add CR to LF for printer # Every line of standard input is printed with CRLF # attached. # awk '{printf "%s\r\n", $0}' - An alternative filter posted using sed could be written as: #!/bin/sh # /usr/local/libexec/crlfilter # # Add CR to LF for printer # Every line of standard input is printed with CRLF # attached. # # Note, the ^M is a *real* ^M (^V^M if your typing in vi) # sed 's/$/^M/' - Here is an example of a filter that triggers the printers automatic LF-to-CR/LF converter (this option is only useful on HP LaserJets that support this command): #!/bin/sh # Simply copies stdin to stdout. Ignores all filter # arguments. # Tells printer to treat LF as CR+LF. Writes a form feed # character after printing job. printf "\033&k2G" && cat && printf "\f" && exit 0 exit 2 The printcap file used to trigger the filter is: #/etc/printcap # The trailer (tr) is used when the queue empties. I found that the # form feed (\f) was basically required for the HP to print properly. # Banners also need to be shut off. # lp|local line printer:\ :lp=/dev/lpt0:sd=/var/spool/output/lpd:lf=/var/log/lpd-errs: :if=/usr/local/libexec/crlfilter:sh:tr=\f:mx#0: # The pr filter Although most filters are built by scripts or programs and are added to the UNIX machine by the administrator, there is one filter that is supplied with the FreeBSD operating system is very useful for raw text files: the prfilter. It is most commonly used when printing from the UNIX command shell. The pr filter paginates and applies headers and footers to ASCII text files. It is automatically invoked with the option used with the lpr program at the UNIX command prompt. The pr filter is special - it runs in addition to any input filters specified for the print queue in /etc/printcap, if the user sets the option for a print job. This allows headers and pagination to be applied in addition to any special conversion, such as CR to LF that a specified input filter may apply. Printing PostScript banner pages with a Filter. Unfortunately, the canned banner page supplied in the LPD program prints only on a text-compatible printer. If the attached printer understands only PostScript and the administrator wants to print banner pages, it is possible to install a filterinto the /etc/printcapfile to do this. The following filter is taken from the FreeBSD Handbook. I've slightly changed it's invocation for a couple of reasons. First, some PostScript printers have difficulty when two print files are sent within the same print job or they lack the trailing Control-D. Second is that the handbook invocation uses the LPRPS program, which requires a serial connection to the printer. The following filter shows another trick: calling LPR from within a filter program to spin off another print job. Unfortunately, the problem with using this trick is that the banner page always gets printed after the job. This is because the incoming job spools first, and then FreeBSD runs the filter against it, so the banner page generated by the filter always spools behind the existing job. There are two scripts, both should be put in the /usr/local/libexec directory, and the modes set to executable. The printcap also must be modified to create the nonbanner and banner versions of the print queue. Following the scripts is the /etc/printcap file showing how they are called. Notice that the sh parameter is turned on since the actual printed banner is being generated on the fly by the filter: #!/bin/sh # Filename /usr/local/libexec/psbanner # parameter spacing comes from if= filter call template of: # if -c -w -l -i -n login -h host # parsing trickiness is to allow for the presence or absence of -c # sleep is in there for ickiness of some PostScript printers for dummy do case "$1" in -n) alogname="$2" ;; -h) ahostname="$2" ;; esac shift done /usr/local/libexec/make-ps-header $alogname $ahostname "PostScript" | \ lpr -P lpnobanner sleep 10 cat && exit 0 Here is the make-ps-headerlisting. #!/bin/sh # Filename /usr/local/libexec/make-ps-header # # These are PostScript units (72 to the inch). Modify for A4 or # whatever size paper you are using: # page_width=612 page_height=792 border=72 # # Save these, mostly for readability in the PostScript, below. # user=$1 host=$2 job=$3 date=`date` # # Send the PostScript code to stdout. # exec cat <<EOF %!PS % % Make sure we do not interfere with user's job that will follow % % % Make a thick, unpleasant border around the edge of the paper. % $border $border moveto $page_width $border 2 mul sub 0 rlineto 0 $page_height $border 2 mul sub rlineto currentscreen 3 -1 roll pop 100 3 1 roll setscreen $border 2 mul $page_width sub 0 rlineto closepath 0.8 setgray 10 setlinewidth stroke 0 setgray % % Display user's login name, nice and large and prominent % /Helvetica-Bold findfont 64 scalefont setfont $page_width ($user) stringwidth pop sub 2 div $page_height 200 sub moveto ($user) show % % Now show the boring particulars % /Helvetica findfont 14 scalefont setfont /y 200 def [ (Job:) (Host:) (Date:) ] { 200 y moveto show /y y 18 sub def } forall /Helvetica-Bold findfont 14 scalefont setfont /y 200 def [ ($job) ($host) ($date) ] { 270 y moveto show /y y 18 sub def } forall % % That is it % showpage Here is the /etc/printcap file. # lp|local line printer, PostScript, banner:\ :lp=/dev/lpt0:sd=/var/spool/output/lpd:lf=/var/log/lpd-errs: :if=/usr/local/libexec/psbanner:sh:mx#0: lpnobanner|local line printer, PostScript, no banner:\ :lp=/dev/lpt0:sd=/var/spool/output/lpd-noban:\ :lf=/var/log/lpd-errs:sh:mx#0: # Printer Accounting The FreeBSD print spooler can manage accounting statistics for printer usage. The spooler counts each page printed and generates totals for each user. In this manner departments or individuals can be charged money for their use of the printer. In the academic world, such as student computer labs, accounting is very political. Many schemes have been developed to attempt to gather statistics to charge people (generally students) for printing. Administrators in this environment who deal with printers can have almost as many accounting problems as printer problems. In the corporate environment, on the other hand, accounting is not as important. I strongly recommend against any corporation attempting to implement printer accounting on shared printers for a number of reasons: The entire UNIX accounting system is based on ASCII printouts. It is easy to count the number of ASCII pages, form feeds, or text lines in a print job. In corporations, however, PostScript and HPPCL are generally the order of the day. It is almost impossible to figure out by examining the datastream how many pages it will occupy, and even if this could be done accurately, it wastes significant computational resources. It is possible to get some PostScript printers to count pages, but doing so requires a bidirectional connection to the printer and additional programming on the UNIX system. This task is beyond the scope of this book. Banner pages aren't included in UNIX printer accounting counts. Therefore, someone submitting 20 two-page jobs uses much more paper than does someone submitting one 40 page job, yet both are charged the same amount. The username of the submitter can be easily forged, if the job is remotely submitted over the network from a client. (practically all jobs in a Windows client printing environment are remotely submitted) Although some LPR clients can be set to authenticate, and the rs capability can be set to enforce authentication, not all can, especially Windows LPR clients. It is more difficult for a submitter to hide the IP number or machine name of the remote client, but in a Windows environment there is no guarantee that someone was sitting at a particular desktop machine when the job was submitted. A business generates no revenue by monitoring printer usage. In the academic community, however, when a student lab charges for printouts the lab is actually extracting money from an entity (the student) that is separate from the lab. Within a corporation, the concept of department A getting revenue from user B is pointless and doesn't generate a net gain for the corporation as a whole. For my printer administration, I have found that I can save more money on printing costs by purchasing supplies wisely than by attempting to discourage printing through "chargebacks". What is the sense of being miserly with printing while spending double on toner cartridges because no one is willing to comparison shop, or signing a "lease" agreement that isn't beneficial for the printer? When you get down to it, corporate users don't care much for print sharing anyway, and they generally only agree to it because the administrator can buy a far bigger, faster, and fancier printer than they can requisition. Worse yet, if usage on a shared printer is charged, it encourages employees to look for other places to print. Inevitably, people run out buy cheap inkjet printers for their own use, and the business ends up spending more on paper and supplies for many poor-quality small printers, than it would for a few decent big ones. Moreover, the inferior output of these printers makes the organization as a whole look bad. The corporate spirit should be one of teamwork, not bickering. The surest way to kill a network in a corporation is to set up a situation that puts the administrator into the policeman position or pits one department against another. The only justification I've ever seen for running accounting on corporate printers is using the accounting system to automate reminders to the administrator to replace paper, or toner. Aside from this use, a corporation that implements accounting as a way of encouraging employees not to waste paper ends up defeating the purpose of turning on accounting. Microsoft Networking Client printing with Samba Although LPR is a time-tested and truly cross-platform printing solution, sites with a majority of Windows clients running Microsoft Networking have an alternate printing mechanism—Samba. Samba can provide print services to clients running SMB-compatible network clients. With a running Samba installation, the administrator may "share out" printers as well as filesystem directories from the FreeBSD system. Printers accessed with Samba must be defined both in the /etc/printcap file and the /usr/local/etc/smb.conf file. If the individual printers are defined in the smb.conf file with the printer driver= statement set to the exact model name of the printer, the "Auto printer driver install" feature of Windows NT and Win95/98 is activated. This automatically loads the correct printer driver if the user clicks on the print queue in Network Neighborhood under Windows 95 or NT 4.0 The restriction, of course, is that the printer model must be in the Windows client driver database. The smb.conf file also defines the print command used to pass jobs to the UNIX print spool. It is a good idea to redefine this via the print command option to lpr -s -P %p %s; rm %s. This turns on soft linking, so that large print jobs don't get truncated. In operation, the SMB-networking client builds the print job on itself and then transfers the entire job over the network to the Samba server. On the server, Samba has it's own temporary print spool directory to which the job is copied. Once the job has been completely received, it is then passed to the UNIX print spooler.
Microsoft Networking Client printing with Samba ,---------. | ======= | FreeBSD Server | ======= | +---------------------+ ,-----. +-----------+ | +---------------+ | | | | Printer [ ]------------[ ] | Samba | | |_____| +-----------+ Parallel | | Software | [ ]------_________ Cable | +---------------+ | / ::::::: \ | | `---------' | +---------------+ | Network PC | | Print | | | | Software | | | +---------------+ | +---------------------+ The Samba software and the print software run on the same host. Samba receives the print job, then hands it to the print spooler.
Client access issues Because a Windows client formats print jobs before sending them to the server, the administrator may want to hide some of the specialty print queues on the server. For example, the queue that converts LF to CRLF for UNIX text printouts would probably not be shared out. To make such queues invisible, the browseable=no option can be turned on in the smb.conf file. Also, the load printers option must be set to no to allow individual printer definitions. In general, the only print queues that should be visible through Samba are the "raw" print queues that are set up by the administrator to allow incoming preformatted print jobs. Windows clients that print to Samba print queues on the UNIX system can view and cancel print jobs in the print queue. They cannot pause them, however, which is a difference between Novell and Windows NT Server print queues. They also cannot prioritize print jobs from the print queue window, although the administrator can reprioritize print jobs that are in the queue from a command shell on the FreeBSD server. Printer entries in configuration files Following are listings of sample /etc/printcap file, and smb.conf files used on the system to provide print services. An explanation of the interaction of these files follows. <filename>/etc/printcap</filename> # # # The printer in lpt0 is a Postscript printer. The nec-crlf entry # is for testing the printer when it is switched into HP LaserJet III # mode. # lp|local line printer:\ :lp=/dev/lpt0:sd=/var/spool/output/lpd:\ :lf=/var/log/lpd-errs:sh:mx#0: # nec-crlf|NEC Silentwriter 95 in ASCII mode with Unix text filter:\ :lp=/dev/lpt0:sd=/usr/lpdspool/nec-crlf:\ :lf=/var/log/lpd-errs:sh:mx#0:\ :if=/usr/local/libexec/crlfilter:tr=\f: # nec-raw|NEC Silentwriter 95 used for PostScript passthrough printing:\ :lp=/dev/lpt0:sd=/usr/lpdspool/nec-raw:\ :lf=/var/log/lpd-errs:sh:mx#0: # nec-ps-banner|NEC Silentwriter 95 with Postscript banner page created:\ :lp=/dev/lpt0:sd=/usr/lpdspool/nec-ps-banner:\ :lf=/var/log/lpd-errs:sh:mx#0:if=/usr/local/libexec/psbanner: # # <filename>/usr/local/etc/smb.conf</filename> [global] comment = FreeBSD - Samba %v log file = /var/log/samba.log dont descend = /dev,/proc,/root,/stand print command = lpr -s -P %p %s; rm %s interfaces = X.X.X.X (the system IP number goes here) printing = bsd map archive = no status = yes public = yes read only = no preserve case = yes strip dot = yes security = share guest ok = no password level = 1 dead time = 15 domain master = yes workgroup = WORKGROUP [homes] browseable = no comment = User Home Directory create mode = 0775 public = no [printers] path = /var/spool comment = Printers create mode = 0700 browseable = no read only = yes public = no [lp] printable = yes browseable = no [nec-raw] comment = Main Postscript printer driver for Windows clients printer driver = NEC SilentWriter 95 printable = yes browseable = yes [wwwroot] path = /usr/local/www read only = no create mode = 0775 comment = Internal Web Server Browsing output Following is the output of a net view command executed at a DOS prompt under Windows 95: Shared resources at \\SERVER Sharename Type Comment -------------------------------------------------------------------- nec-crlf Print NEC Silentwriter 95 in ASCII mode nec-raw Print Main Postscript printer driver tedm Disk User Home Directory wwwroot Disk Internal Web Server The command was completed successfully. In the /etc/printcap file four print queues are defined, all tied to the printer plugged into the parallel port on the FreeBSD server. The first is lp, the generic local line printer. Since this print queue generally has a filter placed on it to format jobs from the UNIX print queue properly, it should not be visible on the SMB network. (ie: visible in Network Neighborhood) The second queue, nec-crlf, has a filter that converts UNIX text to text that prints without stairstepping, so it also should be hidden from the SMB network. The third, nec-raw, should be visible on the network because this is the spool that the Windows clients use. The last queue, nec-ps-banner, is another specialty queue for UNIX local printing and thus should not be visible. When the smb.conf file is parsed, the default entry [printers] is first read and used as a set of defaults for printers that are going to be shared out. Next, the /etc/printcap file is read to get a list of all printers on the server. Last, each printer is checked for a service name in the smb.conffile that contains settings that override the set of defaults. In the listing of what resources are visible on the network, both nec-crlf and nec-raw print queues are visible, and lpand nec-ps-banner is not. lp is not visible because there is a specific entry, [lp] in the smb.conf file that blocks it. nec-ps-banner doesen't have such an entry, but because the print queue name is not a legal length for a SMB name, it isn't shared out either. The nec-crlf printer is visible so as to illustrate another point - comments. If a print queue has no entry in the smb.conf file and is built by scanning the /etc/printcap file and using the [printers] defaults, the comment is taken from the /etc/printcap file next to the queue definition name. Otherwise, if an entry is made for the printer in the smb.conf file the comment is taken from the entry in smb.conf.
Printing between NT Server/NetWare and FreeBSD. Up to this point in the chapter, our main concern has been FreeBSD and Windows NT printing interoperability with NT as a print client passing jobs to the FreeBSD system. What happens if the situation is reversed and the FreeBSD system is itself a printing client of another LPD server? This situation can arise in a mixed UNIX/Netware or UNIX/NT environment. The administrator may elect to forgo the use of Samba, and use an NT server to provide print services. Alternatively, the administrator may have existing DOS Novell IPX clients that they don't want to change, printing to an existing IPX Novell NetWare server. Many of the earlier hardware print servers, such as the Intel NetPort 1 and NetPort 2 were IPX only. A site with a large number of these hardware servers may wish to move the clients to TCP/IP, but leave the existing IPX-based printing network intact. With NetWare it is possible to load an LPD NetWare loadable module (NLM) on the NetWare server that takes incoming LPR print jobs and prints them on IPX print queues. Later versions of NetWare may include this NLM, it was an extra cost add-on with NetWare 3.X With Windows NT Server, loading the TCP/IP LPR printing support also loads the LPD print server on NT. By using LPR client programs on UNIX, it is possible to submit, view status, and remove jobs remotely from an NT server that has LPR installed as a port for it's printers. Following is a sample /etc/printcapfile entry that defines a print queue named tankon the FreeBSD system pointed to an NT LPD server queue named sherman on a NT Server named big.army.mil in the DNS. This uses the rm printcap capability. Unlike the earlier examples, the output print jobs are sent out not by the PC parallel port but over the network to the NT server. # tank|sample remote printer:\ :rm=big.army.mil:rp=sherman:sd=/var/spool/output/lphost:\ :lf=/var/log/lpd-errs: # When using an NT server as an LPD server it may be necessary to make the NT registry changes mentioned under Windows NT Registry Changes, earlier in the chapter. Printing from Unix Two commands used at the FreeBSD command prompt are intended as general-purpose print commands: lp and lpr.. <command>lp</command> The lp command is simply a front end command that calls the lpr command with appropriate options. It's main use is to allow the running of precompiled binary programs and scripts that assume that the lp command is the official printing command. <command>lpr</command> The lpr command is the main command that is used to print files from the command prompts under the FreeBSD operating system. It is frequently spawned off as a child program, or used in pipes. For example, when the Netscape web browser's Print button is clicked, Netscape may create the PostScript output, but the output goes through the lpr command. The lpr command, like many UNIX command-line printing programs, assumes that the default print queue name is lp. When the FreeBSD machine is set up, the administrator usually sets the lp queue to print through a filter that allows raw UNIX text sent to it to print properly. For example, if an HP LaserJet printer that doesn't have Postscript is connected to the server, the lpqueue specifies in the /etc/printcap file the CRLF filter listed earlier. On the other hand, if an Apple Laserwriter that doesn't support ASCII is connected to the server, the a2psfilter would be specified in the /etc/printcap for the lp queue. When printing raw text files usually the option is specified to lpr. When printing preformatted files, such as PostScript files, the option is used, which selects whatever queue is used to handle these job types. Managing the Unix Print Queue Once the print jobs coming in from clients are received on the FreeBSD system and placed in the print spool, they are metered out at a slower rate to the various printers. If traffic activity is light, and few print jobs get sent through, the administrator can probably ignore the print queue as long as it continues to work. However, a busy network printer running at an optimal rate of speed usually has a backlog of unprinted jobs in the queue waiting for print time. To keep all users happy and to provide for the occasional rush print job, the Unix LPD/LPR printing system has several administration commands which are described here. Viewing the queue On busy printers, and to troubleshoot stopped printers, users sometimes need to view the print jobs in the queue. Administrators also need to view the queue to see what jobs may need to be expedited. This can be done from the workstation that remotely submitted the job if the LPR client has the ability to do this. The Windows 3.1 LPR client discussed earlier has this capability. Unfortunately, many LPR clients don't, which means that the administrator must Telnet into the UNIX machine that the print queues are on and view them there. The UNIX shell command used to view the queue is the lpq command It is frequently run as lpq -a which shows jobs in all queues. The following is a sample output of the command: &prompt.root; lpq -a nec-raw: Rank Owner Job Files Total Size 1st tedm 19 C:/WLPRSPL/SPOOL/~LP00018.TMP 105221 bytes 2nd tedm 20 C:/WLPRSPL/SPOOL/~LP00019.TMP 13488 bytes 3rd root 3 hosts 1220 bytes 4th tedm 1 Printer Test Page 765 bytes 5th tedm 2 Microsoft Word - CHAPTE10.DOC 15411 bytes The first two jobs and the last two jobs came from remote clients, the third came from the command prompt. Removing print jobs Deleting unwanted print jobs that haven't yet printed from the queue can be done by the remote workstations that submitted the job if their LPR implementations have the necessary commands. The Windows 3.1 LPR client I detailed earlier this capability. Many LPR clients don't, however, which means that the administrator must Telnet into the UNIX machine that the print queues are on and delete the jobs there. The administrator can delete any print jobs from any queues by running the lprm command followed by the specified print queue and the job number. Below is a sample output of the command: &prompt.root; lprm -P nec-raw 19 dfA019tedmitte dequeued cfA019dostest dequeued &prompt.root; lprm -P nec-raw 3 dfA003toybox.placo.com dequeued cfA003toybox.placo.com dequeued The lprm command is also used under UNIX to delete remote print jobs. Advanced management The administrator logged into the FreeBSD system as the root user can also perform several other operations that ordinary users cannot. These include turning the queues on and off, and moving print jobs within the print queues. The command used to do this is the lpc command. lpc has two modes of operation. In the first mode, the command is run by itself, which puts the administrator into an lpc prompt. Some general help is available for the commands, such as the following sample output: &prompt.root; lpc lpc> help Commands may be abbreviated. Commands are: abort enable disable help restart status topq ? clean exit down quit start stop up lpc> help disable disable turn a spooling queue off lpc> help status status show status of daemon and queue lpc> exit In the second mode of operation the lpc command is just run by itself, followed by the command and the print queue name. Following is a sample output: &prompt.root; lpc disable lp lp: queuing disabled Under FreeBSD, there is no command that specifically allows the administrator to move jobs from one queue to another. This can be done, however, by changing into the raw queue directory then rerunning the lpr command. Following is a sample run showing three print jobs moved from a dysfunctional queue to a good one: &prompt.root; lpq -a lp: Warning: lp is down: printing disabled printing disabled Rank Owner Job Files Total Size 1st root 51 hosts 1220 bytes 2nd root 52 services 60767 bytes 3rd root 53 printcap 2383 bytes &prompt.root; cd /var/spool/output/lpd &prompt.root; ls .seq cfA053toybox.placo.com dfA053toybox.placo.com cfA051toybox.placo.com dfA051toybox.placo.com lock cfA052toybox.placo.com dfA052toybox.placo.com status &prompt.root; lpr -P nec-raw dfA051toybox.placo.com &prompt.root; lpr -P nec-raw dfA052toybox.placo.com &prompt.root; lpr -P nec-raw dfA053toybox.placo.com &prompt.root; lprm -P lp - &prompt.root; lpq -a nec-raw: Warning: nec-raw is down: printing disabled Warning: no daemon present Rank Owner Job Files Total Size 1st root 5 dfA051toybox.placo.com 1220 bytes 2nd root 6 dfA052toybox.placo.com 60767 bytes 3rd root 7 dfA053toybox.placo.com 2383 bytes Moving jobs from queue to queue is feasible only when all printers are similar, as when all printers support PostScript. Remote Management Just as the root user can manipulate remotely submitted jobs in the print queue, print jobs can be remotely managed by regular users with the LPR clients that created them. Unfortunately, some LPR clients, such as Win95, don't have enough programming to be able to do this. Others, like the Win31 client, can manipulate the print jobs remotely. FreeBSD offers some level of protection against inadvertent deletion of print jobs from remote hosts by restricting manipulation of a job to the same host that originated it. Even if the owner of the job matches a local user account on the server, for an ordinary user to delete remotely submitted print jobs, the request still must come from the remote host. Advanced Printing Topics The FreeBSD UNIX LPR/LPD printing system is very flexible, and, with the addition of filters, can be adapted to very unusual printing environments. To enhance this flexibility, several useful printing utilities are supplied on the FreeBSD CDROM which the administrator might wish to install. Ghostscript The Ghostscript program, invoked as /usr/local/bin/gs, is one of the most useful printing utilities that have been developed for the free software community. Ghostscript reads incoming PostScript data, (or Adobe PDF files) interprets it, and outputs it as a raster image. This can be displayed on screen, for example, with the GhostView program under the X Window system, or printed on most graphics printers, such as Epson dot-matrix, HP DeskJet, or HP LaserJet. In effect, it is a way of adding PostScript printing capability to a printer that doesn't have PostScript firmware code. Ghostscript has been ported to numerous operating systems including Windows. The Ghostscript home page is located at http://www.cs.wisc.edu/~ghost/ and contains the most current version of the program. A prebuilt FreeBSD binary of Ghostscript located in the Packages section of the FreeBSD CDROM. This can be installed on the FreeBSD system by selecting the package from the prepackaged software list that is accessed through the /stand/sysinstall installation program. Many packaged programs on the CD depend on GhostScript, and so it may already be installed. Installation of the packaged version of GhostScript is recommended in the FreeBSD ports Section because it has been tested with the other packages that require it. The package creates a directory containing some documentation files in /usr/local/share/ghostscript/X.XX/doc. Unfortunately, because of the packaging process on the FreeBSD CDROM not all the useful installation files are copied into this location. So, if the package was version 5.03 (for example) the administrator will also want to get the file ftp://ftp.cs.wisc.edu/ghost/aladdin/gs503/ghostscript-5.03.tar.gz, and unzip and untar it into a temporary directory. Extracting the archive file creates a directory structure under the gs5.03 subdirectory. To install ghostscript in the /etc/printcap file, read the gs5.03/devs.mak file to determine which printer driver definition works with your printer and then use the following instructions: Change to the root user with su. In the gs5.03directory, copy the lprsetup.sh, unix-lpr.txt, and unix-lpr.sh files to /usr/local/share/ghostscript/5.03 Change to the /usr/local/share/ghostscript/5.03 directory. Edit lprsetup.sh with a text editor such as vi. Modify the DEVICES= entries to list your selected printer driver definitions per the instructions in unix-lpr.txt. Modify the PRINTERDEV= to /dev/lpt0, and the GSDIR= to /usr/local/share/ghostscript, and the SPOOLDIR= to /var/spool/output. Save the file. Edit the unix-lpr.sh file and change the PSFILTERPATH= to /usr/local/share/ghostscript. If the printer that you defined in the lprsetup.sh file is a monochrome printer, remove the "-dBitsPerPixel=${bpp}"and "$colorspec" entries on the gs invocation line and save the file. Otherwise, if it is a color definition leave them in. For example, the following line is for a monochrome LaserJet: ") | gs -q -dNOPAUSE -sDEVICE=${device} \" Don't remove anything else. Exit the editor, and save the unix-lpr.sh file. Copy the unix-lpr.sh file to the parent directory, /usr/local/share/ghostscript and set the execute bit on it. Set the execute bit on lprsetup.sh with chmod and run the file by typing ./lprsetup.sh Follow the instructions on creating the Spool directories. If you will be using accounting and a separate log file, run the touch command to create the empty files per directions in script output. The sample /etc/printcap is located in the current directory; the filename is printcap.insert. Use this as a template to modify the /etc/printcap file. A sample /etc/printcap file for a LaserJet 3 is below: # # ljet3.raw|Raw output device ljet3 for Ghostscript:\ :rm=big.army.mil:rp=sherman:sd=/var/spool/output/ljet3/raw:\ :mx#0:sf:sh:rs: # ljet3|Ghostscript device ljet3 (output to ljet3.raw):\ :lp=/dev/null:sd=/var/spool/output/ljet3:\ :lf=/var/log/lpd-errs:mx#0:sf:sh:rs:\ :if=/usr/local/share/ghostscript/filt/indirect/ljet3/gsif:\ :af=/var/spool/output/ljet3/acct: # a2ps filter Another handy utility is the a2ps, short for ASCII-to-PostScript. This program takes an incoming ASCII datastream and converts it into PostScript. It can also print multiple pages on a single sheet of paper by shrinking them down. It is a useful tool for a printer that cannot interpret ASCII, such as a PostScript-only printer. A2ps is not installed in the FreeBSD system by default; it is located in the ports section /usr/ports/print/a2ps43. A prepackaged binary can be installed with /stand/sysinstall but I have had problems with that port. It is best to install it by running make in the a2ps43 ports directory. A printcap entry and filter using this follow: <filename>/etc/printcap</filename> # lp|local line printer with output dumped through a2ps for raw listings:\ :lp=/dev/lpt0:sd=/var/spool/output/lpd:lf=/var/log/lpd-errs:sh:mx#0:\ :if=/usr/local/libexec/ascii2postscript: # <filename>/usr/local/libexec/ascii2postscript</filename> #!/bin/sh # # Simple filter that converts ASCII to Postscript for basic stuff like # directory listings. # /usr/local/bin/a2ps && exit 0 exit 2 Read the system manual page for a2ps to see the options available with this program, and remember to set the filter script ascii2postscript all-executable. Miscellaneous The large number of other printing utilities cannot be covered here. Some add features such as automatic job type sensing, others handle bidirectional communication between the server and the printer. There are also a few other experimental LPR printing replacement systems. Commands such as ghostscript and a2ps can also be used in pipes that create pretty output on an ordinary impact printer. One last hint - the system manual pages can be printed with the option which turns their ordinary ASCII output to beautifully formatted PostScript. Try the command man -t man and send the output through GhostScript or a PostScript printer for easier to read manual pages.
diff --git a/en_US.ISO8859-1/books/developers-handbook/book.sgml b/en_US.ISO8859-1/books/developers-handbook/book.sgml index 880ca4c6ca..ccca2c6086 100644 --- a/en_US.ISO8859-1/books/developers-handbook/book.sgml +++ b/en_US.ISO8859-1/books/developers-handbook/book.sgml @@ -1,313 +1,313 @@ %bookinfo; %man; %chapters; %authors %mailing-lists; ]> FreeBSD Developers' Handbook The FreeBSD Documentation Project August 2000 2000 2001 The FreeBSD Documentation Project &bookinfo.legalnotice; Welcome to the Developers' Handbook. This manual is a work in progress and is the work of many individuals. Many sections do not yet exist and some of those that do exist need to be updated. If you are interested in helping with this project, send email to the &a.doc;. The latest version of this document is always available - from the FreeBSD World + from the FreeBSD World Wide Web server. It may also be downloaded in a variety of formats and compression options from the FreeBSD FTP + url="ftp://ftp.FreeBSD.org/pub/FreeBSD/doc/">FreeBSD FTP server or one of the numerous mirror + url="../handbook/mirrors-ftp.html">mirror sites. Basics &chap.introduction; &chap.tools; &chap.secure; &chap.l10n; &chap.policies; Interprocess Communication * Signals Signals, pipes, semaphores, message queues, shared memory, ports, sockets, doors &chap.sockets; &chap.ipv6; Kernel * History of the Unix Kernel Some history of the Unix/BSD kernel, system calls, how do processes work, blocking, scheduling, threads (kernel), context switching, signals, interrupts, modules, etc. &chap.locking; &chap.kobj; &chap.sysinit; &chap.vm; &chap.dma; &chap.kerneldebug; * UFS UFS, FFS, Ext2FS, JFS, inodes, buffer cache, labeling, locking, metadata, soft-updates, LFS, portalfs, procfs, vnodes, memory sharing, memory objects, TLBs, caching * AFS AFS, NFS, SANs etc] * Syscons Syscons, tty, PCVT, serial console, screen savers, etc * Compatibility Layers * Linux Linux, SVR4, etc Device Drivers &chap.driverbasics; &chap.isa; &chap.pci; &chap.scsi; &chap.usb; * NewBus This chapter will talk about the FreeBSD NewBus architecture. * Sound subsystem OSS, waveforms, etc Architectures &chap.x86; * Alpha Talk about the architectural specifics of FreeBSD/alpha. Explanation of allignment errors, how to fix, how to ignore. Example assembly language code for FreeBSD/alpha. * IA-64 Talk about the architectural specifics of FreeBSD/ia64. Appendices Dave A Patterson John L Hennessy 1998Morgan Kaufmann Publishers, Inc. 1-55860-428-6 Morgan Kaufmann Publishers, Inc. Computer Organization and Design The Hardware / Software Interface 1-2 W. Richard Stevens 1993Addison Wesley Longman, Inc. 0-201-56317-7 Addison Wesley Longman, Inc. Advanced Programming in the Unix Environment 1-2 Marshall Kirk McKusick Keith Bostic Michael J Karels John S Quarterman 1996Addison-Wesley Publishing Company, Inc. 0-201-54979-4 Addison-Wesley Publishing Company, Inc. The Design and Implementation of the 4.4 BSD Operating System 1-2 Aleph One Phrack 49; "Smashing the Stack for Fun and Profit" Chrispin Cowan Calton Pu Dave Maier StackGuard; Automatic Adaptive Detection and Prevention of Buffer-Overflow Attacks Todd Miller Theo de Raadt strlcpy and strlcat -- consistent, safe string copy and concatenation. &chap.index; diff --git a/en_US.ISO8859-1/books/developers-handbook/driverbasics/chapter.sgml b/en_US.ISO8859-1/books/developers-handbook/driverbasics/chapter.sgml index a65ec54238..e73fa17cc3 100644 --- a/en_US.ISO8859-1/books/developers-handbook/driverbasics/chapter.sgml +++ b/en_US.ISO8859-1/books/developers-handbook/driverbasics/chapter.sgml @@ -1,391 +1,391 @@ Writing FreeBSD Device Drivers This chapter was written by &a.murray; with selections from a variety of sources including the intro(4) man page by &a.joerg;. Introduction This chapter provides a brief introduction to writing device drivers for FreeBSD. A device in this context is a term used mostly for hardware-related stuff that belongs to the system, like disks, printers, or a graphics display with its keyboard. A device driver is the software component of the operating system that controls a specific device. There are also so-called pseudo-devices where a device driver emulates the behaviour of a device in software without any particular underlying hardware. Device drivers can be compiled into the system statically or loaded on demand through the dynamic kernel linker facility `kld'. Most devices in a Unix-like operating system are accessed through device-nodes, sometimes also called special files. These files are usually located under the directory /dev in the file system hierarchy. Until devfs is fully integrated into FreeBSD, each device node must be created statically and independent of the existence of the associated device driver. Most device nodes on the system are created by running MAKEDEV. Device drivers can roughly be broken down into two categories; character and network device drivers. Dynamic Kernel Linker Facility - KLD The kld interface allows system administrators to dynamically add and remove functionality from a running system. This allows device driver writers to load their new changes into a running kernel without constantly rebooting to test changes. The kld interface is used through the following administrator commands : kldload - loads a new kernel module kldunload - unloads a kernel module kldstat - lists the currently loadded modules Skeleton Layout of a kernel module /* * KLD Skeleton * Inspired by Andrew Reiter's Daemonnews article */ #include <sys/types.h> #include <sys/module.h> #include <sys/systm.h> /* uprintf */ #include <sys/errno.h> #include <sys/param.h> /* defines used in kernel.h */ #include <sys/kernel.h> /* types used in module initialization */ /* * Load handler that deals with the loading and unloading of a KLD. */ static int skel_loader(struct module *m, int what, void *arg) { int err = 0; switch (what) { case MOD_LOAD: /* kldload */ uprintf("Skeleton KLD loaded.\n"); break; case MOD_UNLOAD: uprintf("Skeleton KLD unloaded.\n"); break; default: err = EINVAL; break; } return(err); } /* Declare this module to the rest of the kernel */ static moduledata_t skel_mod = { "skel", skel_loader, NULL }; DECLARE_MODULE(skeleton, skel_mod, SI_SUB_KLD, SI_ORDER_ANY); Makefile FreeBSD provides a makefile include that you can use to quickly compile your kernel addition. SRCS=skeleton.c KMOD=skeleton .include <bsd.kmod.mk> Simply running make with this makefile will create a file skeleton.ko that can be loaded into your system by typing : &prompt.root kldload -v ./skeleton.ko Accessing a device driver Unix provides a common set of system calls for user applications to use. The upper layers of the kernel dispatch these calls to the corresponding device driver when a user accesses a device node. The /dev/MAKEDEV script makes most of the device nodes for your system but if you are doing your own driver development it may be necessary to create your own device nodes with mknod Creating static device nodes The mknod command requires four arguments to create a device node. You must specify the name of this device node, the type of device, the major number of the device, and the minor number of the device. Dynamic device nodes The device filesystem, or devfs, provides access to the kernel's device namespace in the global filesystem namespace. This eliminates the problems of potentially having a device driver without a static device node, or a device node without an installed device driver. Devfs is still a work in progress, but it is already working quite nice. Character Devices A character device driver is one that transfers data directly to and from a user process. This is the most common type of device driver and there are plenty of simple examples in the source tree. This simple example pseudo-device remembers whatever values you write to it and can then supply them back to you when you read from it. /* * Simple `echo' pseudo-device KLD * * Murray Stokely */ #define MIN(a,b) (((a) < (b)) ? (a) : (b)) #include <sys/types.h> #include <sys/module.h> #include <sys/systm.h> /* uprintf */ #include <sys/errno.h> #include <sys/param.h> /* defines used in kernel.h */ #include <sys/kernel.h> /* types used in module initialization */ #include <sys/conf.h> /* cdevsw struct */ #include <sys/uio.h> /* uio struct */ #include <sys/malloc.h> #define BUFFERSIZE 256 /* Function prototypes */ d_open_t echo_open; d_close_t echo_close; d_read_t echo_read; d_write_t echo_write; /* Character device entry points */ static struct cdevsw echo_cdevsw = { echo_open, echo_close, echo_read, echo_write, noioctl, nopoll, nommap, nostrategy, "echo", 33, /* reserved for lkms - /usr/src/sys/conf/majors */ nodump, nopsize, D_TTY, -1 }; typedef struct s_echo { char msg[BUFFERSIZE]; int len; } t_echo; /* vars */ static dev_t sdev; static int len; static int count; static t_echo *echomsg; MALLOC_DECLARE(M_ECHOBUF); MALLOC_DEFINE(M_ECHOBUF, "echobuffer", "buffer for echo module"); /* * This function acts is called by the kld[un]load(2) system calls to * determine what actions to take when a module is loaded or unloaded. */ static int echo_loader(struct module *m, int what, void *arg) { int err = 0; switch (what) { case MOD_LOAD: /* kldload */ sdev = make_dev(&echo_cdevsw, 0, UID_ROOT, GID_WHEEL, 0600, "echo"); /* kmalloc memory for use by this driver */ /* malloc(256,M_ECHOBUF,M_WAITOK); */ MALLOC(echomsg, t_echo *, sizeof(t_echo), M_ECHOBUF, M_WAITOK); printf("Echo device loaded.\n"); break; case MOD_UNLOAD: destroy_dev(sdev); FREE(echomsg,M_ECHOBUF); printf("Echo device unloaded.\n"); break; default: err = EINVAL; break; } return(err); } int echo_open(dev_t dev, int oflags, int devtype, struct proc *p) { int err = 0; uprintf("Opened device \"echo\" successfully.\n"); return(err); } int echo_close(dev_t dev, int fflag, int devtype, struct proc *p) { uprintf("Closing device \"echo.\"\n"); return(0); } /* * The read function just takes the buf that was saved via * echo_write() and returns it to userland for accessing. * uio(9) */ int echo_read(dev_t dev, struct uio *uio, int ioflag) { int err = 0; int amt; /* How big is this read operation? Either as big as the user wants, or as big as the remaining data */ amt = MIN(uio->uio_resid, (echomsg->len - uio->uio_offset > 0) ? echomsg->len - uio->uio_offset : 0); if ((err = uiomove(echomsg->msg + uio->uio_offset,amt,uio)) != 0) { uprintf("uiomove failed!\n"); } return err; } /* * echo_write takes in a character string and saves it * to buf for later accessing. */ int echo_write(dev_t dev, struct uio *uio, int ioflag) { int err = 0; /* Copy the string in from user memory to kernel memory */ err = copyin(uio->uio_iov->iov_base, echomsg->msg, MIN(uio->uio_iov->iov_len,BUFFERSIZE)); /* Now we need to null terminate */ *(echomsg->msg + MIN(uio->uio_iov->iov_len,BUFFERSIZE)) = 0; /* Record the length */ echomsg->len = MIN(uio->uio_iov->iov_len,BUFFERSIZE); if (err != 0) { uprintf("Write failed: bad address!\n"); } count++; return(err); } DEV_MODULE(echo,echo_loader,NULL); To install this driver you will first need to make a node on your filesystem with a command such as : &prompt.root mknod /dev/echo c 33 0 With this driver loaded you should now be able to type something like : &prompt.root echo -n "Test Data" > /dev/echo &prompt.root cat /dev/echo Test Data Real hardware devices in the next chapter.. Additional Resources Dynamic Kernel Linker (KLD) Facility Programming Tutorial - - Daemonnews October 2000 + Daemonnews October 2000 How to Write Kernel Drivers with NEWBUS - Daemonnews July + url="http://www.daemonnews.org/">Daemonnews July 2000 Network Drivers Drivers for network devices do not use device nodes in order to be accessed. Their selection is based on other decisions made inside the kernel and instead of calling open(), use of a network device is generally introduced by using the system call socket(2). man ifnet(), loopback device, Bill Paul's drivers, etc.. diff --git a/en_US.ISO8859-1/books/developers-handbook/ipv6/chapter.sgml b/en_US.ISO8859-1/books/developers-handbook/ipv6/chapter.sgml index 0210d7ab45..5473da05a6 100644 --- a/en_US.ISO8859-1/books/developers-handbook/ipv6/chapter.sgml +++ b/en_US.ISO8859-1/books/developers-handbook/ipv6/chapter.sgml @@ -1,1587 +1,1587 @@ IPv6 Internals IPv6/IPsec Implementation Contributed by &a.shin;, 5 March 2000. This section should explain IPv6 and IPsec related implementation internals. These functionalities are derived from KAME project + url="http://www.kame.net/">KAME project IPv6 Conformance The IPv6 related functions conforms, or tries to conform to the latest set of IPv6 specifications. For future reference we list some of the relevant documents below (NOTE: this is not a complete list - this is too hard to maintain...). For details please refer to specific chapter in the document, RFCs, manpages, or comments in the source code. Conformance tests have been performed on the KAME STABLE kit at TAHI project. Results can be viewed at http://www.tahi.org/report/KAME/ . We also attended Univ. of New Hampshire IOL tests (http://www.iol.unh.edu/) in the past, with our past snapshots. RFC1639: FTP Operation Over Big Address Records (FOOBAR) RFC2428 is preferred over RFC1639. FTP clients will first try RFC2428, then RFC1639 if failed. RFC1886: DNS Extensions to support IPv6 RFC1933: Transition Mechanisms for IPv6 Hosts and Routers IPv4 compatible address is not supported. automatic tunneling (described in 4.3 of this RFC) is not supported. &man.gif.4; interface implements IPv[46]-over-IPv[46] tunnel in a generic way, and it covers "configured tunnel" described in the spec. See 23.5.1.5 in this document for details. RFC1981: Path MTU Discovery for IPv6 RFC2080: RIPng for IPv6 usr.sbin/route6d support this. RFC2292: Advanced Sockets API for IPv6 For supported library functions/kernel APIs, see sys/netinet6/ADVAPI. RFC2362: Protocol Independent Multicast-Sparse Mode (PIM-SM) RFC2362 defines packet formats for PIM-SM. draft-ietf-pim-ipv6-01.txt is written based on this. RFC2373: IPv6 Addressing Architecture supports node required addresses, and conforms to the scope requirement. RFC2374: An IPv6 Aggregatable Global Unicast Address Format supports 64-bit length of Interface ID. RFC2375: IPv6 Multicast Address Assignments Userland applications use the well-known addresses assigned in the RFC. RFC2428: FTP Extensions for IPv6 and NATs RFC2428 is preferred over RFC1639. FTP clients will first try RFC2428, then RFC1639 if failed. RFC2460: IPv6 specification RFC2461: Neighbor discovery for IPv6 See 23.5.1.2 in this document for details. RFC2462: IPv6 Stateless Address Autoconfiguration See 23.5.1.4 in this document for details. RFC2463: ICMPv6 for IPv6 specification See 23.5.1.9 in this document for details. RFC2464: Transmission of IPv6 Packets over Ethernet Networks RFC2465: MIB for IPv6: Textual Conventions and General Group Necessary statistics are gathered by the kernel. Actual IPv6 MIB support is provided as a patchkit for ucd-snmp. RFC2466: MIB for IPv6: ICMPv6 group Necessary statistics are gathered by the kernel. Actual IPv6 MIB support is provided as patchkit for ucd-snmp. RFC2467: Transmission of IPv6 Packets over FDDI Networks RFC2497: Transmission of IPv6 packet over ARCnet Networks RFC2553: Basic Socket Interface Extensions for IPv6 IPv4 mapped address (3.7) and special behavior of IPv6 wildcard bind socket (3.8) are supported. See 23.5.1.12 in this document for details. RFC2675: IPv6 Jumbograms See 23.5.1.7 in this document for details. RFC2710: Multicast Listener Discovery for IPv6 RFC2711: IPv6 router alert option draft-ietf-ipngwg-router-renum-08: Router renumbering for IPv6 draft-ietf-ipngwg-icmp-namelookups-02: IPv6 Name Lookups Through ICMP draft-ietf-ipngwg-icmp-name-lookups-03: IPv6 Name Lookups Through ICMP draft-ietf-pim-ipv6-01.txt: PIM for IPv6 &man.pim6dd.8; implements dense mode. &man.pim6sd.8; implements sparse mode. draft-itojun-ipv6-tcp-to-anycast-00: Disconnecting TCP connection toward IPv6 anycast address draft-yamamoto-wideipv6-comm-model-00 See 23.5.1.6 in this document for details. draft-ietf-ipngwg-scopedaddr-format-00.txt : An Extension of Format for IPv6 Scoped Addresses Neighbor Discovery Neighbor Discovery is fairly stable. Currently Address Resolution, Duplicated Address Detection, and Neighbor Unreachability Detection are supported. In the near future we will be adding Proxy Neighbor Advertisement support in the kernel and Unsolicited Neighbor Advertisement transmission command as admin tool. If DAD fails, the address will be marked "duplicated" and message will be generated to syslog (and usually to console). The "duplicated" mark can be checked with &man.ifconfig.8;. It is administrators' responsibility to check for and recover from DAD failures. The behavior should be improved in the near future. Some of the network driver loops multicast packets back to itself, even if instructed not to do so (especially in promiscuous mode). In such cases DAD may fail, because DAD engine sees inbound NS packet (actually from the node itself) and considers it as a sign of duplicate. You may want to look at #if condition marked "heuristics" in sys/netinet6/nd6_nbr.c:nd6_dad_timer() as workaround (note that the code fragment in "heuristics" section is not spec conformant). Neighbor Discovery specification (RFC2461) does not talk about neighbor cache handling in the following cases: when there was no neighbor cache entry, node received unsolicited RS/NS/NA/redirect packet without link-layer address neighbor cache handling on medium without link-layer address (we need a neighbor cache entry for IsRouter bit) For first case, we implemented workaround based on discussions on IETF ipngwg mailing list. For more details, see the comments in the source code and email thread started from (IPng 7155), dated Feb 6 1999. IPv6 on-link determination rule (RFC2461) is quite different from assumptions in BSD network code. At this moment, no on-link determination rule is supported where default router list is empty (RFC2461, section 5.2, last sentence in 2nd paragraph - note that the spec misuse the word "host" and "node" in several places in the section). To avoid possible DoS attacks and infinite loops, only 10 options on ND packet is accepted now. Therefore, if you have 20 prefix options attached to RA, only the first 10 prefixes will be recognized. If this troubles you, please ask it on FREEBSD-CURRENT mailing list and/or modify nd6_maxndopt in sys/netinet6/nd6.c. If there are high demands we may provide sysctl knob for the variable. Scope Index IPv6 uses scoped addresses. Therefore, it is very important to specify scope index (interface index for link-local address, or site index for site-local address) with an IPv6 address. Without scope index, scoped IPv6 address is ambiguous to the kernel, and kernel will not be able to determine the outbound interface for a packet. Ordinary userland applications should use advanced API (RFC2292) to specify scope index, or interface index. For similar purpose, sin6_scope_id member in sockaddr_in6 structure is defined in RFC2553. However, the semantics for sin6_scope_id is rather vague. If you care about portability of your application, we suggest you to use advanced API rather than sin6_scope_id. In the kernel, an interface index for link-local scoped address is embedded into 2nd 16bit-word (3rd and 4th byte) in IPv6 address. For example, you may see something like: fe80:1::200:f8ff:fe01:6317 in the routing table and interface address structure (struct in6_ifaddr). The address above is a link-local unicast address which belongs to a network interface whose interface identifier is 1. The embedded index enables us to identify IPv6 link local addresses over multiple interfaces effectively and with only a little code change. Routing daemons and configuration programs, like &man.route6d.8; and &man.ifconfig.8;, will need to manipulate the "embedded" scope index. These programs use routing sockets and ioctls (like SIOCGIFADDR_IN6) and the kernel API will return IPv6 addresses with 2nd 16bit-word filled in. The APIs are for manipulating kernel internal structure. Programs that use these APIs have to be prepared about differences in kernels anyway. When you specify scoped address to the command line, NEVER write the embedded form (such as ff02:1::1 or fe80:2::fedc). This is not supposed to work. Always use standard form, like ff02::1 or fe80::fedc, with command line option for specifying interface (like ping6 -I ne0 ff02::1). In general, if a command does not have command line option to specify outgoing interface, that command is not ready to accept scoped address. This may seem to be opposite from IPv6's premise to support "dentist office" situation. We believe that specifications need some improvements for this. Some of the userland tools support extended numeric IPv6 syntax, as documented in draft-ietf-ipngwg-scopedaddr-format-00.txt. You can specify outgoing link, by using name of the outgoing interface like "fe80::1%ne0". This way you will be able to specify link-local scoped address without much trouble. To use this extension in your program, you'll need to use &man.getaddrinfo.3;, and &man.getnameinfo.3; with NI_WITHSCOPEID. The implementation currently assumes 1-to-1 relationship between a link and an interface, which is stronger than what specs say. Plug and Play Most of the IPv6 stateless address autoconfiguration is implemented in the kernel. Neighbor Discovery functions are implemented in the kernel as a whole. Router Advertisement (RA) input for hosts is implemented in the kernel. Router Solicitation (RS) output for endhosts, RS input for routers, and RA output for routers are implemented in the userland. Assignment of link-local, and special addresses IPv6 link-local address is generated from IEEE802 address (Ethernet MAC address). Each of interface is assigned an IPv6 link-local address automatically, when the interface becomes up (IFF_UP). Also, direct route for the link-local address is added to routing table. Here is an output of netstat command: Internet6: Destination Gateway Flags Netif Expire fe80:1::%ed0/64 link#1 UC ed0 fe80:2::%ep0/64 link#2 UC ep0 Interfaces that has no IEEE802 address (pseudo interfaces like tunnel interfaces, or ppp interfaces) will borrow IEEE802 address from other interfaces, such as Ethernet interfaces, whenever possible. If there is no IEEE802 hardware attached, last-resort pseudorandom value, which is from MD5(hostname), will be used as source of link-local address. If it is not suitable for your usage, you will need to configure the link-local address manually. If an interface is not capable of handling IPv6 (such as lack of multicast support), link-local address will not be assigned to that interface. See section 2 for details. Each interface joins the solicited multicast address and the link-local all-nodes multicast addresses (e.g. fe80::1:ff01:6317 and ff02::1, respectively, on the link the interface is attached). In addition to a link-local address, the loopback address (::1) will be assigned to the loopback interface. Also, ::1/128 and ff01::/32 are automatically added to routing table, and loopback interface joins node-local multicast group ff01::1. Stateless address autoconfiguration on hosts In IPv6 specification, nodes are separated into two categories: routers and hosts. Routers forward packets addressed to others, hosts does not forward the packets. net.inet6.ip6.forwarding defines whether this node is router or host (router if it is 1, host if it is 0). When a host hears Router Advertisement from the router, a host may autoconfigure itself by stateless address autoconfiguration. This behavior can be controlled by net.inet6.ip6.accept_rtadv (host autoconfigures itself if it is set to 1). By autoconfiguration, network address prefix for the receiving interface (usually global address prefix) is added. Default route is also configured. Routers periodically generate Router Advertisement packets. To request an adjacent router to generate RA packet, a host can transmit Router Solicitation. To generate a RS packet at any time, use the rtsol command. &man.rtsold.8; daemon is also available. &man.rtsold.8; generates Router Solicitation whenever necessary, and it works great for nomadic usage (notebooks/laptops). If one wishes to ignore Router Advertisements, use sysctl to set net.inet6.ip6.accept_rtadv to 0. To generate Router Advertisement from a router, use the &man.rtadvd.8 daemon. Note that, IPv6 specification assumes the following items, and nonconforming cases are left unspecified: Only hosts will listen to router advertisements Hosts have single network interface (except loopback) Therefore, this is unwise to enable net.inet6.ip6.accept_rtadv on routers, or multi-interface host. A misconfigured node can behave strange (nonconforming configuration allowed for those who would like to do some experiments). To summarize the sysctl knob: accept_rtadv forwarding role of the node --- --- --- 0 0 host (to be manually configured) 0 1 router 1 0 autoconfigured host (spec assumes that host has single interface only, autoconfigured host with multiple interface is out-of-scope) 1 1 invalid, or experimental (out-of-scope of spec) RFC2462 has validation rule against incoming RA prefix information option, in 5.5.3 (e). This is to protect hosts from malicious (or misconfigured) routers that advertise very short prefix lifetime. There was an update from Jim Bound to ipngwg mailing list (look for "(ipng 6712)" in the archive) and it is implemented Jim's update. See 23.5.1.2 in the document for relationship between DAD and autoconfiguration. Generic tunnel interface GIF (Generic InterFace) is a pseudo interface for configured tunnel. Details are described in &man.gif.4;. Currently v6 in v6 v6 in v4 v4 in v6 v4 in v4 are available. Use &man.gifconfig.8; to assign physical (outer) source and destination address to gif interfaces. Configuration that uses same address family for inner and outer IP header (v4 in v4, or v6 in v6) is dangerous. It is very easy to configure interfaces and routing tables to perform infinite level of tunneling. Please be warned. gif can be configured to be ECN-friendly. See 23.5.4.5 for ECN-friendliness of tunnels, and &man.gif.4; for how to configure. If you would like to configure an IPv4-in-IPv6 tunnel with gif interface, read &man.gif.4; carefully. You will need to remove IPv6 link-local address automatically assigned to the gif interface. Source Address Selection Current source selection rule is scope oriented (there are some exceptions - see below). For a given destination, a source IPv6 address is selected by the following rule: If the source address is explicitly specified by the user (e.g. via the advanced API), the specified address is used. If there is an address assigned to the outgoing interface (which is usually determined by looking up the routing table) that has the same scope as the destination address, the address is used. This is the most typical case. If there is no address that satisfies the above condition, choose a global address assigned to one of the interfaces on the sending node. If there is no address that satisfies the above condition, and destination address is site local scope, choose a site local address assigned to one of the interfaces on the sending node. If there is no address that satisfies the above condition, choose the address associated with the routing table entry for the destination. This is the last resort, which may cause scope violation. For instance, ::1 is selected for ff01::1, fe80:1::200:f8ff:fe01:6317 for fe80:1::2a0:24ff:feab:839b (note that embedded interface index - described in 23.5.1.3 - helps us choose the right source address. Those embedded indices will not be on the wire). If the outgoing interface has multiple address for the scope, a source is selected longest match basis (rule 3). Suppose 3ffe:501:808:1:200:f8ff:fe01:6317 and 3ffe:2001:9:124:200:f8ff:fe01:6317 are given to the outgoing interface. 3ffe:501:808:1:200:f8ff:fe01:6317 is chosen as the source for the destination 3ffe:501:800::1. Note that the above rule is not documented in the IPv6 spec. It is considered "up to implementation" item. There are some cases where we do not use the above rule. One example is connected TCP session, and we use the address kept in tcb as the source. Another example is source address for Neighbor Advertisement. Under the spec (RFC2461 7.2.2) NA's source should be the target address of the corresponding NS's target. In this case we follow the spec rather than the above longest-match rule. For new connections (when rule 1 does not apply), deprecated addresses (addresses with preferred lifetime = 0) will not be chosen as source address if other choices are available. If no other choices are available, deprecated address will be used as a last resort. If there are multiple choice of deprecated addresses, the above scope rule will be used to choose from those deprecated addresses. If you would like to prohibit the use of deprecated address for some reason, configure net.inet6.ip6.use_deprecated to 0. The issue related to deprecated address is described in RFC2462 5.5.4 (NOTE: there is some debate underway in IETF ipngwg on how to use "deprecated" address). Jumbo Payload The Jumbo Payload hop-by-hop option is implemented and can be used to send IPv6 packets with payloads longer than 65,535 octets. But currently no physical interface whose MTU is more than 65,535 is supported, so such payloads can be seen only on the loopback interface (i.e. lo0). If you want to try jumbo payloads, you first have to reconfigure the kernel so that the MTU of the loopback interface is more than 65,535 bytes; add the following to the kernel configuration file: options "LARGE_LOMTU" #To test jumbo payload and recompile the new kernel. Then you can test jumbo payloads by the &man.ping6.8; command with -b and -s options. The -b option must be specified to enlarge the size of the socket buffer and the -s option specifies the length of the packet, which should be more than 65,535. For example, type as follows: &prompt.user; ping6 -b 70000 -s 68000 ::1 The IPv6 specification requires that the Jumbo Payload option must not be used in a packet that carries a fragment header. If this condition is broken, an ICMPv6 Parameter Problem message must be sent to the sender. specification is followed, but you cannot usually see an ICMPv6 error caused by this requirement. When an IPv6 packet is received, the frame length is checked and compared to the length specified in the payload length field of the IPv6 header or in the value of the Jumbo Payload option, if any. If the former is shorter than the latter, the packet is discarded and statistics are incremented. You can see the statistics as output of &man.netstat.8; command with `-s -p ip6' option: &prompt.user; netstat -s -p ip6 ip6: (snip) 1 with data size < data length So, kernel does not send an ICMPv6 error unless the erroneous packet is an actual Jumbo Payload, that is, its packet size is more than 65,535 bytes. As described above, currently no physical interface with such a huge MTU is supported, so it rarely returns an ICMPv6 error. TCP/UDP over jumbogram is not supported at this moment. This is because we have no medium (other than loopback) to test this. Contact us if you need this. IPsec does not work on jumbograms. This is due to some specification twists in supporting AH with jumbograms (AH header size influences payload length, and this makes it real hard to authenticate inbound packet with jumbo payload option as well as AH). There are fundamental issues in *BSD support for jumbograms. We would like to address those, but we need more time to finalize these. To name a few: mbuf pkthdr.len field is typed as "int" in 4.4BSD, so it will not hold jumbogram with len > 2G on 32bit architecture CPUs. If we would like to support jumbogram properly, the field must be expanded to hold 4G + IPv6 header + link-layer header. Therefore, it must be expanded to at least int64_t (u_int32_t is NOT enough). We mistakingly use "int" to hold packet length in many places. We need to convert them into larger integral type. It needs a great care, as we may experience overflow during packet length computation. We mistakingly check for ip6_plen field of IPv6 header for packet payload length in various places. We should be checking mbuf pkthdr.len instead. ip6_input() will perform sanity check on jumbo payload option on input, and we can safely use mbuf pkthdr.len afterwards. TCP code needs a careful update in bunch of places, of course. Loop prevention in header processing IPv6 specification allows arbitrary number of extension headers to be placed onto packets. If we implement IPv6 packet processing code in the way BSD IPv4 code is implemented, kernel stack may overflow due to long function call chain. sys/netinet6 code is carefully designed to avoid kernel stack overflow. Because of this, sys/netinet6 code defines its own protocol switch structure, as "struct ip6protosw" (see netinet6/ip6protosw.h). There is no such update to IPv4 part (sys/netinet) for compatibility, but small change is added to its pr_input() prototype. So "struct ipprotosw" is also defined. Because of this, if you receive IPsec-over-IPv4 packet with massive number of IPsec headers, kernel stack may blow up. IPsec-over-IPv6 is okay. (Off-course, for those all IPsec headers to be processed, each such IPsec header must pass each IPsec check. So an anonymous attacker won't be able to do such an attack.) ICMPv6 After RFC2463 was published, IETF ipngwg has decided to disallow ICMPv6 error packet against ICMPv6 redirect, to prevent ICMPv6 storm on a network medium. This is already implemented into the kernel. Applications For userland programming, we support IPv6 socket API as specified in RFC2553, RFC2292 and upcoming Internet drafts. TCP/UDP over IPv6 is available and quite stable. You can enjoy &man.telnet.1;, &man.ftp.1;, &man.rlogin.1;, &man.rsh.1;, &man.ssh.1, etc. These applications are protocol independent. That is, they automatically chooses IPv4 or IPv6 according to DNS. Kernel Internals While ip_forward() calls ip_output(), ip6_forward() directly calls if_output() since routers must not divide IPv6 packets into fragments. ICMPv6 should contain the original packet as long as possible up to 1280. UDP6/IP6 port unreach, for instance, should contain all extension headers and the *unchanged* UDP6 and IP6 headers. So, all IP6 functions except TCP never convert network byte order into host byte order, to save the original packet. tcp_input(), udp6_input() and icmp6_input() can't assume that IP6 header is preceding the transport headers due to extension headers. So, in6_cksum() was implemented to handle packets whose IP6 header and transport header is not continuous. TCP/IP6 nor UDP6/IP6 header structure don't exist for checksum calculation. To process IP6 header, extension headers and transport headers easily, network drivers are now required to store packets in one internal mbuf or one or more external mbufs. A typical old driver prepares two internal mbufs for 96 - 204 bytes data, however, now such packet data is stored in one external mbuf. netstat -s -p ip6 tells you whether or not your driver conforms such requirement. In the following example, "cce0" violates the requirement. (For more information, refer to Section 2.) Mbuf statistics: 317 one mbuf two or more mbuf:: lo0 = 8 cce0 = 10 3282 one ext mbuf 0 two or more ext mbuf Each input function calls IP6_EXTHDR_CHECK in the beginning to check if the region between IP6 and its header is continuous. IP6_EXTHDR_CHECK calls m_pullup() only if the mbuf has M_LOOP flag, that is, the packet comes from the loopback interface. m_pullup() is never called for packets coming from physical network interfaces. Both IP and IP6 reassemble functions never call m_pullup(). IPv4 mapped address and IPv6 wildcard socket RFC2553 describes IPv4 mapped address (3.7) and special behavior of IPv6 wildcard bind socket (3.8). The spec allows you to: Accept IPv4 connections by AF_INET6 wildcard bind socket. Transmit IPv4 packet over AF_INET6 socket by using special form of the address like ::ffff:10.1.1.1. but the spec itself is very complicated and does not specify how the socket layer should behave. Here we call the former one "listening side" and the latter one "initiating side", for reference purposes. You can perform wildcard bind on both of the address families, on the same port. The following table show the behavior of FreeBSD 4.x. listening side initiating side (AF_INET6 wildcard (connection to ::ffff:10.1.1.1) socket gets IPv4 conn.) --- --- FreeBSD 4.x configurable supported default: enabled The following sections will give you more details, and how you can configure the behavior. Comments on listening side: It looks that RFC2553 talks too little on wildcard bind issue, especially on the port space issue, failure mode and relationship between AF_INET/INET6 wildcard bind. There can be several separate interpretation for this RFC which conform to it but behaves differently. So, to implement portable application you should assume nothing about the behavior in the kernel. Using &man.getaddrinfo.3; is the safest way. Port number space and wildcard bind issues were discussed in detail on ipv6imp mailing list, in mid March 1999 and it looks that there's no concrete consensus (means, up to implementers). You may want to check the mailing list archives. If a server application would like to accept IPv4 and IPv6 connections, there will be two alternatives. One is using AF_INET and AF_INET6 socket (you'll need two sockets). Use &man.getaddrinfo.3; with AI_PASSIVE into ai_flags, and &man.socket.2; and &man.bind.2; to all the addresses returned. By opening multiple sockets, you can accept connections onto the socket with proper address family. IPv4 connections will be accepted by AF_INET socket, and IPv6 connections will be accepted by AF_INET6 socket. Another way is using one AF_INET6 wildcard bind socket. Use &man.getaddrinfo.3; with AI_PASSIVE into ai_flags and with AF_INET6 into ai_family, and set the 1st argument hostname to NULL. And &man.socket.2; and &man.bind.2; to the address returned. (should be IPv6 unspecified addr). You can accept either of IPv4 and IPv6 packet via this one socket. To support only IPv6 traffic on AF_INET6 wildcard binded socket portably, always check the peer address when a connection is made toward AF_INET6 listening socket. If the address is IPv4 mapped address, you may want to reject the connection. You can check the condition by using IN6_IS_ADDR_V4MAPPED() macro. To resolve this issue more easily, there is system dependent &man.setsockopt.2; option, IPV6_BINDV6ONLY, used like below. int on; setsockopt(s, IPPROTO_IPV6, IPV6_BINDV6ONLY, (char *)&on, sizeof (on)) < 0)); When this call succeed, then this socket only receive IPv6 packets. Comments on initiating side: Advise to application implementers: to implement a portable IPv6 application (which works on multiple IPv6 kernels), we believe that the following is the key to the success: NEVER hardcode AF_INET nor AF_INET6. Use &man.getaddrinfo.3; and &man.getnameinfo.3; throughout the system. Never use gethostby*(), getaddrby*(), inet_*() or getipnodeby*(). (To update existing applications to be IPv6 aware easily, sometime getipnodeby*() will be useful. But if possible, try to rewrite the code to use &man.getaddrinfo.3; and &man.getnameinfo.3;.) If you would like to connect to destination, use &man.getaddrinfo.3; and try all the destination returned, like &man.telnet.1; does. Some of the IPv6 stack is shipped with buggy &man.getaddrinfo.3;. Ship a minimal working version with your application and use that as last resort. If you would like to use AF_INET6 socket for both IPv4 and IPv6 outgoing connection, you will need to use &man.getipnodebyname.3;. When you would like to update your existing application to be IPv6 aware with minimal effort, this approach might be chosen. But please note that it is a temporal solution, because &man.getipnodebyname.3; itself is not recommended as it does not handle scoped IPv6 addresses at all. For IPv6 name resolution, &man.getaddrinfo.3; is the preferred API. So you should rewrite your application to use &man.getaddrinfo.3;, when you get the time to do it. When writing applications that make outgoing connections, story goes much simpler if you treat AF_INET and AF_INET6 as totally separate address family. {set,get}sockopt issue goes simpler, DNS issue will be made simpler. We do not recommend you to rely upon IPv4 mapped address. unified tcp and inpcb code FreeBSD 4.x uses shared tcp code between IPv4 and IPv6 (from sys/netinet/tcp*) and separate udp4/6 code. It uses unified inpcb structure. The platform can be configured to support IPv4 mapped address. Kernel configuration is summarized as follows: By default, AF_INET6 socket will grab IPv4 connections in certain condition, and can initiate connection to IPv4 destination embedded in IPv4 mapped IPv6 address. You can disable it on entire system with sysctl like below. sysctl -w net.inet6.ip6.mapped_addr=0 listening side Each socket can be configured to support special AF_INET6 wildcard bind (enabled by default). You can disable it on each socket basis with &man.setsockopt.2; like below. int on; setsockopt(s, IPPROTO_IPV6, IPV6_BINDV6ONLY, (char *)&on, sizeof (on)) < 0)); Wildcard AF_INET6 socket grabs IPv4 connection if and only if the following conditions are satisfied: there's no AF_INET socket that matches the IPv4 connection the AF_INET6 socket is configured to accept IPv4 traffic, i.e. getsockopt(IPV6_BINDV6ONLY) returns 0. There's no problem with open/close ordering. initiating side FreeBSD 4.x supports outgoing connection to IPv4 mapped address (::ffff:10.1.1.1), if the node is configured to support IPv4 mapped address. sockaddr_storage When RFC2553 was about to be finalized, there was discussion on how struct sockaddr_storage members are named. One proposal is to prepend "__" to the members (like "__ss_len") as they should not be touched. The other proposal was that don't prepend it (like "ss_len") as we need to touch those members directly. There was no clear consensus on it. As a result, RFC2553 defines struct sockaddr_storage as follows: struct sockaddr_storage { u_char __ss_len; /* address length */ u_char __ss_family; /* address family */ /* and bunch of padding */ }; On the contrary, XNET draft defines as follows: struct sockaddr_storage { u_char ss_len; /* address length */ u_char ss_family; /* address family */ /* and bunch of padding */ }; In December 1999, it was agreed that RFC2553bis should pick the latter (XNET) definition. Current implementation conforms to XNET definition, based on RFC2553bis discussion. If you look at multiple IPv6 implementations, you will be able to see both definitions. As an userland programmer, the most portable way of dealing with it is to: ensure ss_family and/or ss_len are available on the platform, by using GNU autoconf, have -Dss_family=__ss_family to unify all occurrences (including header file) into __ss_family, or never touch __ss_family. cast to sockaddr * and use sa_family like: struct sockaddr_storage ss; family = ((struct sockaddr *)&ss)->sa_family Network Drivers Now following two items are required to be supported by standard drivers: mbuf clustering requirement. In this stable release, we changed MINCLSIZE into MHLEN+1 for all the operating systems in order to make all the drivers behave as we expect. multicast. If &man.ifmcstat.8; yields no multicast group for a interface, that interface has to be patched. If any of the driver don't support the requirements, then the driver can't be used for IPv6 and/or IPsec communication. If you find any problem with your card using IPv6/IPsec, then, please report it to freebsd-bugs@FreeBSD.org. (NOTE: In the past we required all PCMCIA drivers to have a call to in6_ifattach(). We have no such requirement any more) Translator We categorize IPv4/IPv6 translator into 4 types: Translator A --- It is used in the early stage of transition to make it possible to establish a connection from an IPv6 host in an IPv6 island to an IPv4 host in the IPv4 ocean. Translator B --- It is used in the early stage of transition to make it possible to establish a connection from an IPv4 host in the IPv4 ocean to an IPv6 host in an IPv6 island. Translator C --- It is used in the late stage of transition to make it possible to establish a connection from an IPv4 host in an IPv4 island to an IPv6 host in the IPv6 ocean. Translator D --- It is used in the late stage of transition to make it possible to establish a connection from an IPv6 host in the IPv6 ocean to an IPv4 host in an IPv4 island. TCP relay translator for category A is supported. This is called "FAITH". We also provide IP header translator for category A. (The latter is not yet put into FreeBSD 4.x yet.) FAITH TCP relay translator FAITH system uses TCP relay daemon called &man.faithd.8; helped by the kernel. FAITH will reserve an IPv6 address prefix, and relay TCP connection toward that prefix to IPv4 destination. For example, if the reserved IPv6 prefix is 3ffe:0501:0200:ffff::, and the IPv6 destination for TCP connection is 3ffe:0501:0200:ffff::163.221.202.12, the connection will be relayed toward IPv4 destination 163.221.202.12. destination IPv4 node (163.221.202.12) ^ | IPv4 tcp toward 163.221.202.12 FAITH-relay dual stack node ^ | IPv6 TCP toward 3ffe:0501:0200:ffff::163.221.202.12 source IPv6 node &man.faithd.8; must be invoked on FAITH-relay dual stack node. For more details, consult src/usr.sbin/faithd/README IPsec IPsec is mainly organized by three components. Policy Management Key Management AH and ESP handling Policy Management The kernel implements experimental policy management code. There are two way to manage security policy. One is to configure per-socket policy using &man.setsockopt.2;. In this cases, policy configuration is described in &man.ipsec.set.policy.3;. The other is to configure kernel packet filter-based policy using PF_KEY interface, via &man.setkey.8;. The policy entry is not re-ordered with its indexes, so the order of entry when you add is very significant. Key Management The key management code implemented in this kit (sys/netkey) is a home-brew PFKEY v2 implementation. This conforms to RFC2367. The home-brew IKE daemon, "racoon" is included in the kit (kame/kame/racoon). Basically you'll need to run racoon as daemon, then setup a policy to require keys (like ping -P 'out ipsec esp/transport//use'). The kernel will contact racoon daemon as necessary to exchange keys. AH and ESP handling IPsec module is implemented as "hooks" to the standard IPv4/IPv6 processing. When sending a packet, ip{,6}_output() checks if ESP/AH processing is required by checking if a matching SPD (Security Policy Database) is found. If ESP/AH is needed, {esp,ah}{4,6}_output() will be called and mbuf will be updated accordingly. When a packet is received, {esp,ah}4_input() will be called based on protocol number, i.e. (*inetsw[proto])(). {esp,ah}4_input() will decrypt/check authenticity of the packet, and strips off daisy-chained header and padding for ESP/AH. It is safe to strip off the ESP/AH header on packet reception, since we will never use the received packet in "as is" form. By using ESP/AH, TCP4/6 effective data segment size will be affected by extra daisy-chained headers inserted by ESP/AH. Our code takes care of the case. Basic crypto functions can be found in directory "sys/crypto". ESP/AH transform are listed in {esp,ah}_core.c with wrapper functions. If you wish to add some algorithm, add wrapper function in {esp,ah}_core.c, and add your crypto algorithm code into sys/crypto. Tunnel mode is partially supported in this release, with the following restrictions: IPsec tunnel is not combined with GIF generic tunneling interface. It needs a great care because we may create an infinite loop between ip_output() and tunnelifp->if_output(). Opinion varies if it is better to unify them, or not. MTU and Don't Fragment bit (IPv4) considerations need more checking, but basically works fine. Authentication model for AH tunnel must be revisited. We'll need to improve the policy management engine, eventually. Conformance to RFCs and IDs The IPsec code in the kernel conforms (or, tries to conform) to the following standards: "old IPsec" specification documented in rfc182[5-9].txt "new IPsec" specification documented in rfc240[1-6].txt, rfc241[01].txt, rfc2451.txt and draft-mcdonald-simple-ipsec-api-01.txt (draft expired, but you can take from ftp://ftp.kame.net/pub/internet-drafts/). (NOTE: IKE specifications, rfc241[7-9].txt are implemented in userland, as "racoon" IKE daemon) Currently supported algorithms are: old IPsec AH null crypto checksum (no document, just for debugging) keyed MD5 with 128bit crypto checksum (rfc1828.txt) keyed SHA1 with 128bit crypto checksum (no document) HMAC MD5 with 128bit crypto checksum (rfc2085.txt) HMAC SHA1 with 128bit crypto checksum (no document) old IPsec ESP null encryption (no document, similar to rfc2410.txt) DES-CBC mode (rfc1829.txt) new IPsec AH null crypto checksum (no document, just for debugging) keyed MD5 with 96bit crypto checksum (no document) keyed SHA1 with 96bit crypto checksum (no document) HMAC MD5 with 96bit crypto checksum (rfc2403.txt) HMAC SHA1 with 96bit crypto checksum (rfc2404.txt) new IPsec ESP null encryption (rfc2410.txt) DES-CBC with derived IV (draft-ietf-ipsec-ciph-des-derived-01.txt, draft expired) DES-CBC with explicit IV (rfc2405.txt) 3DES-CBC with explicit IV (rfc2451.txt) BLOWFISH CBC (rfc2451.txt) CAST128 CBC (rfc2451.txt) RC5 CBC (rfc2451.txt) each of the above can be combined with: ESP authentication with HMAC-MD5(96bit) ESP authentication with HMAC-SHA1(96bit) The following algorithms are NOT supported: old IPsec AH HMAC MD5 with 128bit crypto checksum + 64bit replay prevention (rfc2085.txt) keyed SHA1 with 160bit crypto checksum + 32bit padding (rfc1852.txt) IPsec (in kernel) and IKE (in userland as "racoon") has been tested at several interoperability test events, and it is known to interoperate with many other implementations well. Also, current IPsec implementation as quite wide coverage for IPsec crypto algorithms documented in RFC (we cover algorithms without intellectual property issues only). ECN consideration on IPsec tunnels ECN-friendly IPsec tunnel is supported as described in draft-ipsec-ecn-00.txt. Normal IPsec tunnel is described in RFC2401. On encapsulation, IPv4 TOS field (or, IPv6 traffic class field) will be copied from inner IP header to outer IP header. On decapsulation outer IP header will be simply dropped. The decapsulation rule is not compatible with ECN, since ECN bit on the outer IP TOS/traffic class field will be lost. To make IPsec tunnel ECN-friendly, we should modify encapsulation and decapsulation procedure. This is described in http://www.aciri.org/floyd/papers/draft-ipsec-ecn-00.txt, chapter 3. IPsec tunnel implementation can give you three behaviors, by setting net.inet.ipsec.ecn (or net.inet6.ipsec6.ecn) to some value: RFC2401: no consideration for ECN (sysctl value -1) ECN forbidden (sysctl value 0) ECN allowed (sysctl value 1) Note that the behavior is configurable in per-node manner, not per-SA manner (draft-ipsec-ecn-00 wants per-SA configuration, but it looks too much for me). The behavior is summarized as follows (see source code for more detail): encapsulate decapsulate --- --- RFC2401 copy all TOS bits drop TOS bits on outer from inner to outer. (use inner TOS bits as is) ECN forbidden copy TOS bits except for ECN drop TOS bits on outer (masked with 0xfc) from inner (use inner TOS bits as is) to outer. set ECN bits to 0. ECN allowed copy TOS bits except for ECN use inner TOS bits with some CE (masked with 0xfe) from change. if outer ECN CE bit inner to outer. is 1, enable ECN CE bit on set ECN CE bit to 0. the inner. General strategy for configuration is as follows: if both IPsec tunnel endpoint are capable of ECN-friendly behavior, you'd better configure both end to "ECN allowed" (sysctl value 1). if the other end is very strict about TOS bit, use "RFC2401" (sysctl value -1). in other cases, use "ECN forbidden" (sysctl value 0). The default behavior is "ECN forbidden" (sysctl value 0). For more information, please refer to: http://www.aciri.org/floyd/papers/draft-ipsec-ecn-00.txt, RFC2481 (Explicit Congestion Notification), src/sys/netinet6/{ah,esp}_input.c (Thanks goes to Kenjiro Cho kjc@csl.sony.co.jp for detailed analysis) Interoperability Here are (some of) platforms that KAME code have tested IPsec/IKE interoperability in the past. Note that both ends may have modified their implementation, so use the following list just for reference purposes. Altiga, Ashley-laurent (vpcom.com), Data Fellows (F-Secure), Ericsson ACC, FreeS/WAN, HITACHI, IBM AIX, IIJ, Intel, Microsoft WinNT, NIST (linux IPsec + plutoplus), Netscreen, OpenBSD, RedCreek, Routerware, SSH, Secure Computing, Soliton, Toshiba, VPNet, Yamaha RT100i diff --git a/en_US.ISO8859-1/books/developers-handbook/kerneldebug/chapter.sgml b/en_US.ISO8859-1/books/developers-handbook/kerneldebug/chapter.sgml index 83899a6654..ca991b37bf 100644 --- a/en_US.ISO8859-1/books/developers-handbook/kerneldebug/chapter.sgml +++ b/en_US.ISO8859-1/books/developers-handbook/kerneldebug/chapter.sgml @@ -1,640 +1,640 @@ Kernel Debugging Contributed by &a.paul; and &a.joerg; Debugging a Kernel Crash Dump with <command>gdb</command> Here are some instructions for getting kernel debugging working on a crash dump. They assume that you have enough swap space for a crash dump. If you have multiple swap partitions and the first one is too small to hold the dump, you can configure your kernel to use an alternate dump device (in the config kernel line), or you can specify an alternate using the &man.dumpon.8; command. The best way to use &man.dumpon.8; is to set the dumpdev variable in /etc/rc.conf. Typically you want to specify one of the swap devices specified in /etc/fstab. Dumps to non-swap devices, tapes for example, are currently not supported. Config your kernel using config . See - The FreeBSD + The FreeBSD Handbook for details on configuring the FreeBSD kernel. Use the &man.dumpon.8; command to tell the kernel where to dump to (note that this will have to be done after configuring the partition in question as swap space via &man.swapon.8;). This is normally arranged via /etc/rc.conf and /etc/rc. Alternatively, you can hard-code the dump device via the dump clause in the config line of your kernel config file. This is deprecated and should be used only if you want a crash dump from a kernel that crashes during booting. In the following, the term gdb refers to the debugger gdb run in kernel debug mode. This can be accomplished by starting the gdb with the option . In kernel debug mode, gdb changes its prompt to (kgdb). If you are using FreeBSD 3 or earlier, you should make a stripped copy of the debug kernel, rather than installing the large debug kernel itself: &prompt.root; cp kernel kernel.debug &prompt.root; strip -g kernel This stage isn't necessary, but it is recommended. (In FreeBSD 4 and later releases this step is performed automatically at the end of the kernel make process.) When the kernel has been stripped, either automatically or by using the commands above, you may install it as usual by typing make install. Note that older releases of FreeBSD (up to but not including 3.1) used a.out kernels by default, which must have their symbol tables permanently resident in physical memory. With the larger symbol table in an unstripped debug kernel, this is wasteful. Recent FreeBSD releases use ELF kernels where this is no longer a problem. If you are testing a new kernel, for example by typing the new kernel's name at the boot prompt, but need to boot a different one in order to get your system up and running again, boot it only into single user state using the flag at the boot prompt, and then perform the following steps: &prompt.root; fsck -p &prompt.root; mount -a -t ufs # so your file system for /var/crash is writable &prompt.root; savecore -N /kernel.panicked /var/crash &prompt.root; exit # ...to multi-user This instructs &man.savecore.8; to use another kernel for symbol name extraction. It would otherwise default to the currently running kernel and most likely not do anything at all since the crash dump and the kernel symbols differ. Now, after a crash dump, go to /sys/compile/WHATEVER and run gdb . From gdb do: symbol-file kernel.debug exec-file /var/crash/kernel.0 core-file /var/crash/vmcore.0 and voila, you can debug the crash dump using the kernel sources just like you can for any other program. Here is a script log of a gdb session illustrating the procedure. Long lines have been folded to improve readability, and the lines are numbered for reference. Despite this, it is a real-world error trace taken during the development of the pcvt console driver. 1:Script started on Fri Dec 30 23:15:22 1994 2:&prompt.root; cd /sys/compile/URIAH 3:&prompt.root; gdb -k kernel /var/crash/vmcore.1 4:Reading symbol data from /usr/src/sys/compile/URIAH/kernel ...done. 5:IdlePTD 1f3000 6:panic: because you said to! 7:current pcb at 1e3f70 8:Reading in symbols for ../../i386/i386/machdep.c...done. 9:(kgdb) where 10:#0 boot (arghowto=256) (../../i386/i386/machdep.c line 767) 11:#1 0xf0115159 in panic () 12:#2 0xf01955bd in diediedie () (../../i386/i386/machdep.c line 698) 13:#3 0xf010185e in db_fncall () 14:#4 0xf0101586 in db_command (-266509132, -266509516, -267381073) 15:#5 0xf0101711 in db_command_loop () 16:#6 0xf01040a0 in db_trap () 17:#7 0xf0192976 in kdb_trap (12, 0, -272630436, -266743723) 18:#8 0xf019d2eb in trap_fatal (...) 19:#9 0xf019ce60 in trap_pfault (...) 20:#10 0xf019cb2f in trap (...) 21:#11 0xf01932a1 in exception:calltrap () 22:#12 0xf0191503 in cnopen (...) 23:#13 0xf0132c34 in spec_open () 24:#14 0xf012d014 in vn_open () 25:#15 0xf012a183 in open () 26:#16 0xf019d4eb in syscall (...) 27:(kgdb) up 10 28:Reading in symbols for ../../i386/i386/trap.c...done. 29:#10 0xf019cb2f in trap (frame={tf_es = -260440048, tf_ds = 16, tf_\ 30:edi = 3072, tf_esi = -266445372, tf_ebp = -272630356, tf_isp = -27\ 31:2630396, tf_ebx = -266427884, tf_edx = 12, tf_ecx = -266427884, tf\ 32:_eax = 64772224, tf_trapno = 12, tf_err = -272695296, tf_eip = -26\ 33:6672343, tf_cs = -266469368, tf_eflags = 66066, tf_esp = 3072, tf_\ 34:ss = -266427884}) (../../i386/i386/trap.c line 283) 35:283 (void) trap_pfault(&frame, FALSE); 36:(kgdb) frame frame->tf_ebp frame->tf_eip 37:Reading in symbols for ../../i386/isa/pcvt/pcvt_drv.c...done. 38:#0 0xf01ae729 in pcopen (dev=3072, flag=3, mode=8192, p=(struct p\ 39:roc *) 0xf07c0c00) (../../i386/isa/pcvt/pcvt_drv.c line 403) 40:403 return ((*linesw[tp->t_line].l_open)(dev, tp)); 41:(kgdb) list 42:398 43:399 tp->t_state |= TS_CARR_ON; 44:400 tp->t_cflag |= CLOCAL; /* cannot be a modem (:-) */ 45:401 46:402 #if PCVT_NETBSD || (PCVT_FREEBSD >= 200) 47:403 return ((*linesw[tp->t_line].l_open)(dev, tp)); 48:404 #else 49:405 return ((*linesw[tp->t_line].l_open)(dev, tp, flag)); 50:406 #endif /* PCVT_NETBSD || (PCVT_FREEBSD >= 200) */ 51:407 } 52:(kgdb) print tp 53:Reading in symbols for ../../i386/i386/cons.c...done. 54:$1 = (struct tty *) 0x1bae 55:(kgdb) print tp->t_line 56:$2 = 1767990816 57:(kgdb) up 58:#1 0xf0191503 in cnopen (dev=0x00000000, flag=3, mode=8192, p=(st\ 59:ruct proc *) 0xf07c0c00) (../../i386/i386/cons.c line 126) 60: return ((*cdevsw[major(dev)].d_open)(dev, flag, mode, p)); 61:(kgdb) up 62:#2 0xf0132c34 in spec_open () 63:(kgdb) up 64:#3 0xf012d014 in vn_open () 65:(kgdb) up 66:#4 0xf012a183 in open () 67:(kgdb) up 68:#5 0xf019d4eb in syscall (frame={tf_es = 39, tf_ds = 39, tf_edi =\ 69: 2158592, tf_esi = 0, tf_ebp = -272638436, tf_isp = -272629788, tf\ 70:_ebx = 7086, tf_edx = 1, tf_ecx = 0, tf_eax = 5, tf_trapno = 582, \ 71:tf_err = 582, tf_eip = 75749, tf_cs = 31, tf_eflags = 582, tf_esp \ 72:= -272638456, tf_ss = 39}) (../../i386/i386/trap.c line 673) 73:673 error = (*callp->sy_call)(p, args, rval); 74:(kgdb) up 75:Initial frame selected; you cannot go up. 76:(kgdb) quit 77:&prompt.root; exit 78:exit 79: 80:Script done on Fri Dec 30 23:18:04 1994 Comments to the above script: line 6: This is a dump taken from within DDB (see below), hence the panic comment because you said to!, and a rather long stack trace; the initial reason for going into DDB has been a page fault trap though. line 20: This is the location of function trap() in the stack trace. line 36: Force usage of a new stack frame; this is no longer necessary now. The stack frames are supposed to point to the right locations now, even in case of a trap. From looking at the code in source line 403, there is a high probability that either the pointer access for tp was messed up, or the array access was out of bounds. line 52: The pointer looks suspicious, but happens to be a valid address. line 56: However, it obviously points to garbage, so we have found our error! (For those unfamiliar with that particular piece of code: tp->t_line refers to the line discipline of the console device here, which must be a rather small integer number.) Debugging a Crash Dump with DDD Examining a kernel crash dump with a graphical debugger like ddd is also possible. Add the option to the ddd command line you would use normally. For example; &prompt.root; ddd -k /var/crash/kernel.0 /var/crash/vmcore.0 You should then be able to go about looking at the crash dump using ddd's graphical interface. Post-Mortem Analysis of a Dump What do you do if a kernel dumped core but you did not expect it, and it is therefore not compiled using config -g? Not everything is lost here. Do not panic! Of course, you still need to enable crash dumps. See above on the options you have to specify in order to do this. Go to your kernel config directory (/usr/src/sys/arch/conf) and edit your configuration file. Uncomment (or add, if it does not exist) the following line makeoptions DEBUG=-g #Build kernel with gdb(1) debug symbols Rebuild the kernel. Due to the time stamp change on the Makefile, there will be some other object files rebuild, for example trap.o. With a bit of luck, the added option will not change anything for the generated code, so you will finally get a new kernel with similar code to the faulting one but some debugging symbols. You should at least verify the old and new sizes with the &man.size.1; command. If there is a mismatch, you probably need to give up here. Go and examine the dump as described above. The debugging symbols might be incomplete for some places, as can be seen in the stack trace in the example above where some functions are displayed without line numbers and argument lists. If you need more debugging symbols, remove the appropriate object files and repeat the gdb session until you know enough. All this is not guaranteed to work, but it will do it fine in most cases. On-Line Kernel Debugging Using DDB While gdb as an off-line debugger provides a very high level of user interface, there are some things it cannot do. The most important ones being breakpointing and single-stepping kernel code. If you need to do low-level debugging on your kernel, there is an on-line debugger available called DDB. It allows to setting breakpoints, single-stepping kernel functions, examining and changing kernel variables, etc. However, it cannot access kernel source files, and only has access to the global and static symbols, not to the full debug information like gdb. To configure your kernel to include DDB, add the option line options DDB to your config file, and rebuild. (See The FreeBSD Handbook for details on + url="../handbook/index.html">The FreeBSD Handbook for details on configuring the FreeBSD kernel. If you have an older version of the boot blocks, your debugger symbols might not be loaded at all. Update the boot blocks; the recent ones load the DDB symbols automagically.) Once your DDB kernel is running, there are several ways to enter DDB. The first, and earliest way is to type the boot flag right at the boot prompt. The kernel will start up in debug mode and enter DDB prior to any device probing. Hence you can even debug the device probe/attach functions. The second scenario is a hot-key on the keyboard, usually Ctrl-Alt-ESC. For syscons, this can be remapped; some of the distributed maps do this, so watch out. There is an option available for serial consoles that allows the use of a serial line BREAK on the console line to enter DDB (options BREAK_TO_DEBUGGER in the kernel config file). It is not the default since there are a lot of crappy serial adapters around that gratuitously generate a BREAK condition, for example when pulling the cable. The third way is that any panic condition will branch to DDB if the kernel is configured to use it. For this reason, it is not wise to configure a kernel with DDB for a machine running unattended. The DDB commands roughly resemble some gdb commands. The first thing you probably need to do is to set a breakpoint: b function-name b address Numbers are taken hexadecimal by default, but to make them distinct from symbol names; hexadecimal numbers starting with the letters a-f need to be preceded with 0x (this is optional for other numbers). Simple expressions are allowed, for example: function-name + 0x103. To continue the operation of an interrupted kernel, simply type: c To get a stack trace, use: trace Note that when entering DDB via a hot-key, the kernel is currently servicing an interrupt, so the stack trace might be not of much use for you. If you want to remove a breakpoint, use del del address-expression The first form will be accepted immediately after a breakpoint hit, and deletes the current breakpoint. The second form can remove any breakpoint, but you need to specify the exact address; this can be obtained from: show b To single-step the kernel, try: s This will step into functions, but you can make DDB trace them until the matching return statement is reached by: n This is different from gdb's next statement; it is like gdb's finish. To examine data from memory, use (for example): x/wx 0xf0133fe0,40 x/hd db_symtab_space x/bc termbuf,10 x/s stringbuf for word/halfword/byte access, and hexadecimal/decimal/character/ string display. The number after the comma is the object count. To display the next 0x10 items, simply use: x ,10 Similarly, use x/ia foofunc,10 to disassemble the first 0x10 instructions of foofunc, and display them along with their offset from the beginning of foofunc. To modify memory, use the write command: w/b termbuf 0xa 0xb 0 w/w 0xf0010030 0 0 The command modifier (b/h/w) specifies the size of the data to be written, the first following expression is the address to write to and the remainder is interpreted as data to write to successive memory locations. If you need to know the current registers, use: show reg Alternatively, you can display a single register value by e.g. p $eax and modify it by: set $eax new-value Should you need to call some kernel functions from DDB, simply say: call func(arg1, arg2, ...) The return value will be printed. For a &man.ps.1; style summary of all running processes, use: ps Now you have examined why your kernel failed, and you wish to reboot. Remember that, depending on the severity of previous malfunctioning, not all parts of the kernel might still be working as expected. Perform one of the following actions to shut down and reboot your system: panic This will cause your kernel to dump core and reboot, so you can later analyze the core on a higher level with gdb. This command usually must be followed by another continue statement. call boot(0) Which might be a good way to cleanly shut down the running system, sync() all disks, and finally reboot. As long as the disk and file system interfaces of the kernel are not damaged, this might be a good way for an almost clean shutdown. call cpu_reset() is the final way out of disaster and almost the same as hitting the Big Red Button. If you need a short command summary, simply type: help However, it is highly recommended to have a printed copy of the &man.ddb.4; manual page ready for a debugging session. Remember that it is hard to read the on-line manual while single-stepping the kernel. On-Line Kernel Debugging Using Remote GDB This feature has been supported since FreeBSD 2.2, and it is actually a very neat one. GDB has already supported remote debugging for a long time. This is done using a very simple protocol along a serial line. Unlike the other methods described above, you will need two machines for doing this. One is the host providing the debugging environment, including all the sources, and a copy of the kernel binary with all the symbols in it, and the other one is the target machine that simply runs a similar copy of the very same kernel (but stripped of the debugging information). You should configure the kernel in question with config -g, include into the configuration, and compile it as usual. This gives a large blurb of a binary, due to the debugging information. Copy this kernel to the target machine, strip the debugging symbols off with strip -x, and boot it using the boot option. Connect the serial line of the target machine that has "flags 080" set on its sio device to any serial line of the debugging host. Now, on the debugging machine, go to the compile directory of the target kernel, and start gdb: &prompt.user; gdb -k kernel GDB is free software and you are welcome to distribute copies of it under certain conditions; type "show copying" to see the conditions. There is absolutely no warranty for GDB; type "show warranty" for details. GDB 4.16 (i386-unknown-freebsd), Copyright 1996 Free Software Foundation, Inc... (kgdb) Initialize the remote debugging session (assuming the first serial port is being used) by: (kgdb) target remote /dev/cuaa0 Now, on the target host (the one that entered DDB right before even starting the device probe), type: Debugger("Boot flags requested debugger") Stopped at Debugger+0x35: movb $0, edata+0x51bc db> gdb DDB will respond with: Next trap will enter GDB remote protocol mode Every time you type gdb, the mode will be toggled between remote GDB and local DDB. In order to force a next trap immediately, simply type s (step). Your hosting GDB will now gain control over the target kernel: Remote debugging using /dev/cuaa0 Debugger (msg=0xf01b0383 "Boot flags requested debugger") at ../../i386/i386/db_interface.c:257 (kgdb) You can use this session almost as any other GDB session, including full access to the source, running it in gud-mode inside an Emacs window (which gives you an automatic source code display in another Emacs window) etc. Debugging Loadable Modules Using GDB When debugging a panic that occurred within a module, or using remote GDB against a machine that uses dynamic modules, you need to tell GDB how to obtain symbol information for those modules. First, you need to build the module(s) with debugging information: &prompt.root; cd /sys/modules/linux &prompt.root; make clean; make COPTS=-g If you are using remote GDB, you can run kldstat on the target machine to find out where the module was loaded: &prompt.root; kldstat Id Refs Address Size Name 1 4 0xc0100000 1c1678 kernel 2 1 0xc0a9e000 6000 linprocfs.ko 3 1 0xc0ad7000 2000 warp_saver.ko 4 1 0xc0adc000 11000 linux.ko If you are debugging a crash dump, you'll need to walk the linker_files list, starting at linker_files->tqh_first and following the link.tqe_next pointers until you find the entry with the filename you are looking for. The address member of that entry is the load address of the module. Next, you need to find out the offset of the text section within the module: &prompt.root; objdump --section-headers /sys/modules/linux/linux.ko | grep text 3 .rel.text 000016e0 000038e0 000038e0 000038e0 2**2 10 .text 00007f34 000062d0 000062d0 000062d0 2**2 The one you want is the .text section, section 10 in the above example. The fourth hexadecimal field (sixth field overall) is the offset of the text section within the file. Add this offset to the load address of the module to obtain the relocation address for the module's code. In our example, we get 0xc0adc000 + 0x62d0 = 0xc0ae22d0. Use the add-symbol-file command in GDB to tell the debugger about the module: (kgdb) add-symbol-file /sys/modules/linux/linux.ko 0xc0ae22d0 add symbol table from file "/sys/modules/linux/linux.ko" at text_addr = 0xc0ae22d0? (y or n) y Reading symbols from /sys/modules/linux/linux.ko...done. (kgdb) You should now have access to all the symbols in the module. Debugging a Console Driver Since you need a console driver to run DDB on, things are more complicated if the console driver itself is failing. You might remember the use of a serial console (either with modified boot blocks, or by specifying at the Boot: prompt), and hook up a standard terminal onto your first serial port. DDB works on any configured console driver, of course also on a serial console. diff --git a/en_US.ISO8859-1/books/developers-handbook/pci/chapter.sgml b/en_US.ISO8859-1/books/developers-handbook/pci/chapter.sgml index ca94063864..1598573616 100644 --- a/en_US.ISO8859-1/books/developers-handbook/pci/chapter.sgml +++ b/en_US.ISO8859-1/books/developers-handbook/pci/chapter.sgml @@ -1,372 +1,372 @@ PCI Devices This chapter will talk about the FreeBSD mechanisms for writing a device driver for a device on a PCI bus. Probe and Attach Information here about how the PCI bus code iterates through the unattached devices and see if a newly loaded kld will attach to any of them. /* * Simple KLD to play with the PCI functions. * * Murray Stokely */ #define MIN(a,b) (((a) < (b)) ? (a) : (b)) #include <sys/types.h> #include <sys/module.h> #include <sys/systm.h> /* uprintf */ #include <sys/errno.h> #include <sys/param.h> /* defines used in kernel.h */ #include <sys/kernel.h> /* types used in module initialization */ #include <sys/conf.h> /* cdevsw struct */ #include <sys/uio.h> /* uio struct */ #include <sys/malloc.h> #include <sys/bus.h> /* structs, prototypes for pci bus stuff */ #include <pci/pcivar.h> /* For get_pci macros! */ /* Function prototypes */ d_open_t mypci_open; d_close_t mypci_close; d_read_t mypci_read; d_write_t mypci_write; /* Character device entry points */ static struct cdevsw mypci_cdevsw = { mypci_open, mypci_close, mypci_read, mypci_write, noioctl, nopoll, nommap, nostrategy, "mypci", 36, /* reserved for lkms - /usr/src/sys/conf/majors */ nodump, nopsize, D_TTY, -1 }; /* vars */ static dev_t sdev; /* We're more interested in probe/attach than with open/close/read/write at this point */ int mypci_open(dev_t dev, int oflags, int devtype, struct proc *p) { int err = 0; uprintf("Opened device \"mypci\" successfully.\n"); return(err); } int mypci_close(dev_t dev, int fflag, int devtype, struct proc *p) { int err=0; uprintf("Closing device \"mypci.\"\n"); return(err); } int mypci_read(dev_t dev, struct uio *uio, int ioflag) { int err = 0; uprintf("mypci read!\n"); return err; } int mypci_write(dev_t dev, struct uio *uio, int ioflag) { int err = 0; uprintf("mypci write!\n"); return(err); } /* PCI Support Functions */ /* * Return identification string if this is device is ours. */ static int mypci_probe(device_t dev) { uprintf("MyPCI Probe\n" "Vendor ID : 0x%x\n" "Device ID : 0x%x\n",pci_get_vendor(dev),pci_get_device(dev)); if (pci_get_vendor(dev) == 0x11c1) { uprintf("We've got the Winmodem, probe successful!\n"); return 0; } return ENXIO; } /* Attach function is only called if the probe is successful */ static int mypci_attach(device_t dev) { uprintf("MyPCI Attach for : deviceID : 0x%x\n",pci_get_vendor(dev)); sdev = make_dev(&mypci_cdevsw, 0, UID_ROOT, GID_WHEEL, 0600, "mypci"); uprintf("Mypci device loaded.\n"); return ENXIO; } /* Detach device. */ static int mypci_detach(device_t dev) { uprintf("Mypci detach!\n"); return 0; } /* Called during system shutdown after sync. */ static int mypci_shutdown(device_t dev) { uprintf("Mypci shutdown!\n"); return 0; } /* * Device suspend routine. */ static int mypci_suspend(device_t dev) { uprintf("Mypci suspend!\n"); return 0; } /* * Device resume routine. */ static int mypci_resume(device_t dev) { uprintf("Mypci resume!\n"); return 0; } static device_method_t mypci_methods[] = { /* Device interface */ DEVMETHOD(device_probe, mypci_probe), DEVMETHOD(device_attach, mypci_attach), DEVMETHOD(device_detach, mypci_detach), DEVMETHOD(device_shutdown, mypci_shutdown), DEVMETHOD(device_suspend, mypci_suspend), DEVMETHOD(device_resume, mypci_resume), { 0, 0 } }; static driver_t mypci_driver = { "mypci", mypci_methods, 0, /* sizeof(struct mypci_softc), */ }; static devclass_t mypci_devclass; DRIVER_MODULE(mypci, pci, mypci_driver, mypci_devclass, 0, 0); Additional Resources - PCI + PCI Special Interest Group PCI System Architecture, Fourth Edition by Tom Shanley, et al. Bus Resources FreeBSD provides an object-oriented mechanism for requesting resources from a parent bus. Almost all devices will be a child member of some sort of bus (PCI, ISA, USB, SCSI, etc) and these devices need to acquire resources from their parent bus (such as memory segments, interrupt lines, or DMA channels). Base Address Registers To do anything particularly useful with a PCI device you will need to obtain the Base Address Registers (BARs) from the PCI Configuration space. The PCI-specific details of obtaining the BAR is abstracted in the bus_alloc_resource() function. For example, a typical driver might have something similar to this in the attach() function. : sc->bar0id = 0x10; sc->bar0res = bus_alloc_resource(dev, SYS_RES_MEMORY, &(sc->bar0id), 0, ~0, 1, RF_ACTIVE); if (sc->bar0res == NULL) { uprintf("Memory allocation of PCI base register 0 failed!\n"); error = ENXIO; goto fail1; } sc->bar1id = 0x14; sc->bar1res = bus_alloc_resource(dev, SYS_RES_MEMORY, &(sc->bar1id), 0, ~0, 1, RF_ACTIVE); if (sc->bar1res == NULL) { uprintf("Memory allocation of PCI base register 1 failed!\n"); error = ENXIO; goto fail2; } sc->bar0_bt = rman_get_bustag(sc->bar0res); sc->bar0_bh = rman_get_bushandle(sc->bar0res); sc->bar1_bt = rman_get_bustag(sc->bar1res); sc->bar1_bh = rman_get_bushandle(sc->bar1res); Handles for each base address register are kept in the softc structure so that they can be used to write to the device later. These handles can then be used to read or write from the device registers with the bus_space_* functions. For example, a driver might contain a shorthand function to read from a board specific register like this : uint16_t board_read(struct ni_softc *sc, uint16_t address) { return bus_space_read_2(sc->bar1_bt, sc->bar1_bh, address); } Similarly, one could write to the registers with : void board_write(struct ni_softc *sc, uint16_t address, uint16_t value) { bus_space_write_2(sc->bar1_bt, sc->bar1_bh, address, value); } These functions exist in 8bit, 16bit, and 32bit versions and you should use bus_space_{read|write}_{1|2|4} accordingly. Interrupts Interrupts are allocated from the object-oriented bus code in a way similar to the memory resources. First an IRQ resource must be allocated from the parent bus, and then the interrupt handler must be setup to deal with this IRQ. Again, a sample from a device attach() function says more than words. /* Get the IRQ resource */ sc->irqid = 0x0; sc->irqres = bus_alloc_resource(dev, SYS_RES_IRQ, &(sc->irqid), 0, ~0, 1, RF_SHAREABLE | RF_ACTIVE); if (sc->irqres == NULL) { uprintf("IRQ allocation failed!\n"); error = ENXIO; goto fail3; } /* Now we should setup the interrupt handler */ error = bus_setup_intr(dev, sc->irqres, INTR_TYPE_MISC, my_handler, sc, &(sc->handler)); if (error) { printf("Couldn't set up irq\n"); goto fail4; } sc->irq_bt = rman_get_bustag(sc->irqres); sc->irq_bh = rman_get_bushandle(sc->irqres); DMA On the PC, peripherals that want to do bus-mastering DMA must deal with physical addresses. This is a problem since FreeBSD uses virtual memory and deals almost exclusively with virtual addresses. Fortunately, there is a function, vtophys() to help. #include <vm/vm.h> #include <vm/pmap.h> #define vtophys(virtual_address) (...) The solution is a bit different on the alpha however, and what we really want is a function called vtobus(). #if defined(__alpha__) #define vtobus(va) alpha_XXX_dmamap((vm_offset_t)va) #else #define vtobus(va) vtophys(va) #endif Deallocating Resources It's very important to deallocate all of the resources that were allocated during attach(). Care must be taken to deallocate the correct stuff even on a failure condition so that the system will remain useable while your driver dies. diff --git a/en_US.ISO8859-1/books/developers-handbook/policies/chapter.sgml b/en_US.ISO8859-1/books/developers-handbook/policies/chapter.sgml index c15c2ce893..29b376f578 100644 --- a/en_US.ISO8859-1/books/developers-handbook/policies/chapter.sgml +++ b/en_US.ISO8859-1/books/developers-handbook/policies/chapter.sgml @@ -1,400 +1,400 @@ Source Tree Guidelines and Policies Contributed by &a.phk;. This chapter documents various guidelines and policies in force for the FreeBSD source tree. <makevar>MAINTAINER</makevar> on Makefiles ports maintainer June 1996. If a particular portion of the FreeBSD distribution is being maintained by a person or group of persons, they can communicate this fact to the world by adding a MAINTAINER= email-addresses line to the Makefiles covering this portion of the source tree. The semantics of this are as follows: The maintainer owns and is responsible for that code. This means that he is responsible for fixing bugs and answer problem reports pertaining to that piece of the code, and in the case of contributed software, for tracking new versions, as appropriate. Changes to directories which have a maintainer defined shall be sent to the maintainer for review before being committed. Only if the maintainer does not respond for an unacceptable period of time, to several emails, will it be acceptable to commit changes without review by the maintainer. However, it is suggested that you try and have the changes reviewed by someone else if at all possible. It is of course not acceptable to add a person or group as maintainer unless they agree to assume this duty. On the other hand it doesn't have to be a committer and it can easily be a group of people. Contributed Software contributed software Contributed by &a.phk; and &a.obrien;. June 1996. Some parts of the FreeBSD distribution consist of software that is actively being maintained outside the FreeBSD project. For historical reasons, we call this contributed software. Some examples are perl, gcc and patch. Over the last couple of years, various methods have been used in dealing with this type of software and all have some number of advantages and drawbacks. No clear winner has emerged. Since this is the case, after some debate one of these methods has been selected as the official method and will be required for future imports of software of this kind. Furthermore, it is strongly suggested that existing contributed software converge on this model over time, as it has significant advantages over the old method, including the ability to easily obtain diffs relative to the official versions of the source by everyone (even without cvs access). This will make it significantly easier to return changes to the primary developers of the contributed software. Ultimately, however, it comes down to the people actually doing the work. If using this model is particularly unsuited to the package being dealt with, exceptions to these rules may be granted only with the approval of the core team and with the general consensus of the other developers. The ability to maintain the package in the future will be a key issue in the decisions. Because of some unfortunate design limitations with the RCS file format and CVS's use of vendor branches, minor, trivial and/or cosmetic changes are strongly discouraged on files that are still tracking the vendor branch. Spelling fixes are explicitly included here under the cosmetic category and are to be avoided for files with revision 1.1.x.x. The repository bloat impact from a single character change can be rather dramatic. The Tcl embedded programming language will be used as example of how this model works: src/contrib/tcl contains the source as distributed by the maintainers of this package. Parts that are entirely not applicable for FreeBSD can be removed. In the case of Tcl, the mac, win and compat subdirectories were eliminated before the import src/lib/libtcl contains only a "bmake style" Makefile that uses the standard bsd.lib.mk makefile rules to produce the library and install the documentation. src/usr.bin/tclsh contains only a bmake style Makefile which will produce and install the tclsh program and its associated man-pages using the standard bsd.prog.mk rules. src/tools/tools/tcl_bmake contains a couple of shell-scripts that can be of help when the tcl software needs updating. These are not part of the built or installed software. The important thing here is that the src/contrib/tcl directory is created according to the rules: It is supposed to contain the sources as distributed (on a proper CVS vendor-branch and without RCS keyword expansion) with as few FreeBSD-specific changes as possible. The 'easy-import' tool on freefall will assist in doing the import, but if there are any doubts on how to go about it, it is imperative that you ask first and not blunder ahead and hope it works out. CVS is not forgiving of import accidents and a fair amount of effort is required to back out major mistakes. Because of the previously mentioned design limitations with CVS's vendor branches, it is required that official patches from the vendor be applied to the original distributed sources and the result re-imported onto the vendor branch again. Official patches should never be patched into the FreeBSD checked out version and "committed", as this destroys the vendor branch coherency and makes importing future versions rather difficult as there will be conflicts. Since many packages contain files that are meant for compatibility with other architectures and environments that FreeBSD, it is permissible to remove parts of the distribution tree that are of no interest to FreeBSD in order to save space. Files containing copyright notices and release-note kind of information applicable to the remaining files shall not be removed. If it seems easier, the bmake Makefiles can be produced from the dist tree automatically by some utility, something which would hopefully make it even easier to upgrade to a new version. If this is done, be sure to check in such utilities (as necessary) in the src/tools directory along with the port itself so that it is available to future maintainers. In the src/contrib/tcl level directory, a file called FREEBSD-upgrade should be added and it should states things like: Which files have been left out Where the original distribution was obtained from and/or the official master site. Where to send patches back to the original authors Perhaps an overview of the FreeBSD-specific changes that have been made. However, please do not import FREEBSD-upgrade with the contributed source. Rather you should cvs add FREEBSD-upgrade ; cvs ci after the initial import. Example wording from src/contrib/cpio is below: This directory contains virgin sources of the original distribution files on a "vendor" branch. Do not, under any circumstances, attempt to upgrade the files in this directory via patches and a cvs commit. New versions or official-patch versions must be imported. Please remember to import with "-ko" to prevent CVS from corrupting any vendor RCS Ids. For the import of GNU cpio 2.4.2, the following files were removed: INSTALL cpio.info mkdir.c Makefile.in cpio.texi mkinstalldirs To upgrade to a newer version of cpio, when it is available: 1. Unpack the new version into an empty directory. [Do not make ANY changes to the files.] 2. Remove the files listed above and any others that don't apply to FreeBSD. 3. Use the command: cvs import -ko -m 'Virgin import of GNU cpio v<version>' \ src/contrib/cpio GNU cpio_<version> For example, to do the import of version 2.4.2, I typed: cvs import -ko -m 'Virgin import of GNU v2.4.2' \ src/contrib/cpio GNU cpio_2_4_2 4. Follow the instructions printed out in step 3 to resolve any conflicts between local FreeBSD changes and the newer version. Do not, under any circumstances, deviate from this procedure. To make local changes to cpio, simply patch and commit to the main branch (aka HEAD). Never make local changes on the GNU branch. All local changes should be submitted to "cpio@gnu.ai.mit.edu" for inclusion in the next vendor release. obrien@FreeBSD.org - 30 March 1997 Encumbered Files It might occasionally be necessary to include an encumbered file in the FreeBSD source tree. For example, if a device requires a small piece of binary code to be loaded to it before the device will operate, and we do not have the source to that code, then the binary file is said to be encumbered. The following policies apply to including encumbered files in the FreeBSD source tree. Any file which is interpreted or executed by the system CPU(s) and not in source format is encumbered. Any file with a license more restrictive than BSD or GNU is encumbered. A file which contains downloadable binary data for use by the hardware is not encumbered, unless (1) or (2) apply to it. It must be stored in an architecture neutral ASCII format (file2c or uuencoding is recommended). Any encumbered file requires specific approval from the - Core team before it is added to the + Core team before it is added to the CVS repository. Encumbered files go in src/contrib or src/sys/contrib. The entire module should be kept together. There is no point in splitting it, unless there is code-sharing with non-encumbered code. Object files are named arch/filename.o.uu>. Kernel files; Should always be referenced in conf/files.* (for build simplicity). Should always be in LINT, but the - Core team decides per case if it + Core team decides per case if it should be commented out or not. The - Core team can, of course, change + Core team can, of course, change their minds later on. The Release Engineer decides whether or not it goes in to the release. User-land files; core team - The Core team decides if + The Core team decides if the code should be part of make world. release engineer - The Release Engineer + The Release Engineer decides if it goes in to the release. Shared Libraries Contributed by &a.asami;, &a.peter;, and &a.obrien; 9 December 1996. If you are adding shared library support to a port or other piece of software that doesn't have one, the version numbers should follow these rules. Generally, the resulting numbers will have nothing to do with the release version of the software. The three principles of shared library building are: Start from 1.0 If there is a change that is backwards compatible, bump minor number (note that ELF systems ignore the minor number) If there is an incompatible change, bump major number For instance, added functions and bugfixes result in the minor version number being bumped, while deleted functions, changed function call syntax etc. will force the major version number to change. Stick to version numbers of the form major.minor (x.y). Our a.out dynamic linker does not handle version numbers of the form x.y.z well. Any version number after the y (ie. the third digit) is totally ignored when comparing shared lib version numbers to decide which library to link with. Given two shared libraries that differ only in the micro revision, ld.so will link with the higher one. Ie: if you link with libfoo.so.3.3.3, the linker only records 3.3 in the headers, and will link with anything starting with libfoo.so.3.(anything >= 3).(highest available). ld.so will always use the highest minor revision. Ie: it will use libc.so.2.2 in preference to libc.so.2.0, even if the program was initially linked with libc.so.2.0. In addition, our ELF dynamic linker does not handle minor version numbers at all. However, one should still specify a major and minor version number as our Makefiles "do the right thing" based on the type of system. For non-port libraries, it is also our policy to change the shared library version number only once between releases. In addition, it is our policy to change the major shared library version number only once between major OS releases. Ie: X.0 to (X+1).0. When you make a change to a system library that requires the version number to be bumped, check the Makefile's commit logs. It is the responsibility of the committer to ensure that the first such change since the release will result in the shared library version number in the Makefile to be updated, and any subsequent changes will not. diff --git a/en_US.ISO8859-1/books/developers-handbook/secure/chapter.sgml b/en_US.ISO8859-1/books/developers-handbook/secure/chapter.sgml index d9ff3c872a..6de1cbd200 100644 --- a/en_US.ISO8859-1/books/developers-handbook/secure/chapter.sgml +++ b/en_US.ISO8859-1/books/developers-handbook/secure/chapter.sgml @@ -1,514 +1,514 @@ Secure Programming This chapter was written by &a.murray;. Synopsis This chapter describes some of the security issues that have plagued Unix programmers for decades and some of the new tools available to help programmers avoid writing exploitable code. Secure Design Methodology Writing secure applications takes a very scrutinous and pessimistic outlook on life. Applications should be run with the principle of least privilege so that no process is ever running with more than the bare minimum access that it needs to accomplish its function. Previously tested code should be reused whenever possible to avoid common mistakes that others may have already fixed. One of the pitfalls of the Unix environment is how easy it is to make assumptions about the sanity of the environment. Applications should never trust user input (in all its forms), system resources, inter-process communication, or the timing of events. Unix processes do not execute synchronously so logical operations are rarely atomic. Buffer Overflows Buffer Overflows have been around since the very beginnings of the Von-Neuman architecture. buffer overflow Von-Neuman They first gained widespread notoriety in 1988 with the Morris Internet worm. Unfortunately, the same basic attack remains Morris Internet worm effective today. Of the 17 CERT security advisories of 1999, 10 CERTsecurity advisories of them were directly caused by buffer-overflow software bugs. By far the most common type of buffer overflow attack is based on corrupting the stack. stack arguments Most modern computer systems use a stack to pass arguments to procedures and to store local variables. A stack is a last in first out (LIFO) buffer in the high memory area of a process image. When a program invokes a function a new "stack frame" is LIFO process image stack pointer created. This stack frame consists of the arguments passed to the function as well as a dynamic amount of local variable space. The "stack pointer" is a register that holds the current stack frame stack pointer location of the top of the stack. Since this value is constantly changing as new values are pushed onto the top of the stack, many implementations also provide a "frame pointer" that is located near the beginning of a stack frame so that local variables can more easily be addressed relative to this value. The return address for function frame pointer process image frame pointer return address stack-overflow calls is also stored on the stack, and this is the cause of stack-overflow exploits since overflowing a local variable in a function can overwrite the return address of that function, potentially allowing a malicious user to execute any code he or she wants. Although stack-based attacks are by far the most common, it would also be possible to overrun the stack with a heap-based (malloc/free) attack. The C programming language does not perform automatic bounds checking on arrays or pointers as many other languages do. In addition, the standard C library is filled with a handful of very dangerous functions. strcpy(char *dest, const char *src) May overflow the dest buffer strcat(char *dest, const char *src) May overflow the dest buffer getwd(char *buf) May overflow the buf buffer gets(char *s) May overflow the s buffer [vf]scanf(const char *format, ...) May overflow its arguments. realpath(char *path, char resolved_path[]) May overflow the path buffer [v]sprintf(char *str, const char *format, ...) May overflow the str buffer. Example Buffer Overflow The following example code contains a buffer overflow designed to overwrite the return address and skip the instruction immediately following the function call. (Inspired by ) #include stdio.h void manipulate(char *buffer) { char newbuffer[80]; strcpy(newbuffer,buffer); } int main() { char ch,buffer[4096]; int i=0; while ((buffer[i++] = getchar()) != '\n') {}; i=1; manipulate(buffer); i=2; printf("The value of i is : %d\n",i); return 0; } Let us examine what the memory image of this process would look like if we were to input 160 spaces into our little program before hitting return. [XXX figure here!] Obviously more malicious input can be devised to execute actual compiled instructions (such as exec(/bin/sh)). Avoiding Buffer Overflows The most straightforward solution to the problem of stack-overflows is to always use length restricted memory and string copy functions. strncpy and strncat are part of the standard C library. string copy functions strncpy string copy functions strncat These functions accept a length value as a parameter which should be no larger than the size of the destination buffer. These functions will then copy up to `length' bytes from the source to the destination. However there are a number of problems with these functions. Neither function guarantees NUL termination if the size of the input buffer is as large as the NUL termination destination. The length parameter is also used inconsistently between strncpy and strncat so it is easy for programmers to get confused as to their proper usage. There is also a significant performance loss compared to strcpy when copying a short string into a large buffer since strncpy NUL fills up the size specified. In OpenBSD, another memory copy implementation has been OpenBSD created to get around these problem. The strlcpy and strlcat functions guarantee that they will always null terminate the destination string when given a non-zero length argument. For more information about these functions see . The OpenBSD strlcpy and strlcat instructions have been in FreeBSD since 3.3. string copy functions strlcpy string copy functions strlcat Compiler based run-time bounds checking bounds checking compiler-based Unfortunately there is still a very large assortment of code in public use which blindly copies memory around without using any of the bounded copy routines we just discussed. Fortunately, there is another solution. Several compiler add-ons and libraries exist to do Run-time bounds checking in C/C++. StackGuard gcc StackGuard is one such add-on that is implemented as a small patch to the gcc code generator. From the StackGuard website, http://immunix.org/stackguard.html :
"StackGuard detects and defeats stack smashing attacks by protecting the return address on the stack from being altered. StackGuard places a "canary" word next to the return address when a function is called. If the canary word has been altered when the function returns, then a stack smashing attack has been attempted, and the program responds by emitting an intruder alert into syslog, and then halts."
"StackGuard is implemented as a small patch to the gcc code generator, specifically the function_prolog() and function_epilog() routines. function_prolog() has been enhanced to lay down canaries on the stack when functions start, and function_epilog() checks canary integrity when the function exits. Any attempt at corrupting the return address is thus detected before the function returns."
buffer overflow Recompiling your application with StackGuard is an effective means of stopping most buffer-overflow attacks, but it can still be compromised.
Library based run-time bounds checking bounds checking library-based Compiler-based mechanisms are completely useless for binary-only software for which you cannot recompile. For these situations there are a number of libraries which re-implement the unsafe functions of the C-library (strcpy, fscanf, getwd, etc..) and ensure that these functions can never write past the stack pointer. libsafe libverify libparnoia Unfortunately these library-based defenses have a number of shortcomings. These libraries only protect against a very small set of security related issues and they neglect to fix the actual problem. These defenses may fail if the application was compiled with -fomit-frame-pointer. Also, the LD_PRELOAD and LD_LIBRARY_PATH environment variables can be overwritten/unset by the user.
SetUID issues seteuid There are at least 6 different IDs associated with any given process. Because of this you have to be very careful with the access that your process has at any given time. In particular, all seteuid applications should give up their privileges as soon as it is no longer required. user IDs real user ID user IDs effective user ID The real user ID can only be changed by a superuser process. The login program sets this when a user initially logs in and it is seldom changed. The effective user ID is set by the exec() functions if a program has its seteuid bit set. An application can call seteuid() at any time to set the effective user ID to either the real user ID or the saved set-user-ID. When the effective user ID is set by exec() functions, the previous value is saved in the saved set-user-ID. Limiting your program's environment chroot() The traditional method of restricting a process is with the chroot() system call. This system call changes the root directory from which all other paths are referenced for a process and any child processes. For this call to succeed the process must have execute (search) permission on the directory being referenced. The new environment does not actually take effect until you chdir() into your new environment. It should also be noted that a process can easily break out of a chroot environment if it has root privilege. This could be accomplished by creating device nodes to read kernel memory, attaching a debugger to a process outside of the jail, or in many other creative ways. The behavior of the chroot() system call can be controlled somewhat with the kern.chroot_allow_open_directories sysctl variable. When this value is set to 0, chroot() will fail with EPERM if there are any directories open. If set to the default value of 1, then chroot() will fail with EPERM if there are any directories open and the process is already subject to a chroot() call. For any other value, the check for open directories will be bypassed completely. FreeBSD's jail functionality jail The concept of a Jail extends upon the chroot() by limiting the powers of the superuser to create a true `virtual server'. Once a prison is setup all network communication must take place through the specified IP address, and the power of "root privilege" in this jail is severely constrained. While in a prison, any tests of superuser power within the kernel using the suser() call will fail. However, some calls to suser() have been changed to a new interface suser_xxx(). This function is responsible for recognizing or denying access to superuser power for imprisoned processes. A superuser process within a jailed environment has the power to : Manipulate credential with setuid, seteuid, setgid, setegid, setgroups, setreuid, setregid, setlogin Set resource limits with setrlimit Modify some sysctl nodes (kern.hostname) chroot() Set flags on a vnode: chflags, fchflags Set attributes of a vnode such as file permission, owner, group, size, access time, and modification time. Bind to privileged ports in the Internet domain (ports < 1024) Jail is a very useful tool for running applications in a secure environment but it does have some shortcomings. Currently, the IPC mechanisms have not been converted to the suser_xxx so applications such as MySQL cannot be run within a jail. Superuser access may have a very limited meaning within a jail, but there is no way to specify exactly what "very limited" means. POSIX.1e Process Capabilities POSIX.1e Process Capabilities TrustedBSD Posix has released a working draft that adds event auditing, access control lists, fine grained privileges, information labeling, and mandatory access control. This is a work in progress and is the focus of the TrustedBSD project. Some + url="http://www.trustedbsd.org/">TrustedBSD project. Some of the initial work has been committed to FreeBSD-current (cap_set_proc(3)). Trust An application should never assume that anything about the users environment is sane. This includes (but is certainly not limited to) : user input, signals, environment variables, resources, IPC, mmaps, the file system working directory, file descriptors, the # of open files, etc. positive filtering data validation You should never assume that you can catch all forms of invalid input that a user might supply. Instead, your application should use positive filtering to only allow a specific subset of inputs that you deem safe. Improper data validation has been the cause of many exploits, especially with CGI scripts on the world wide web. For filenames you need to be extra careful about paths ("../", "/"), symbolic links, and shell escape characters. Perl Taint mode Perl has a really cool feature called "Taint" mode which can be used to prevent scripts from using data derived outside the program in an unsafe way. This mode will check command line arguments, environment variables, locale information, the results of certain syscalls (readdir(), readlink(), getpwxxx(), and all file input. Race Conditions A race condition is anomalous behavior caused by the unexpected dependence on the relative timing of events. In other words, a programmer incorrectly assumed that a particular event would always happen before another. race conditions signals race conditions access checks race conditions file opens Some of the common causes of race conditions are signals, access checks, and file opens. Signals are asynchronous events by nature so special care must be taken in dealing with them. Checking access with access(2) then open(2) is clearly non-atomic. Users can move files in between the two calls. Instead, privileged applications should seteuid() and then call open() directly. Along the same lines, an application should always set a proper umask before open() to obviate the need for spurious chmod() calls.
diff --git a/en_US.ISO8859-1/books/developers-handbook/tools/chapter.sgml b/en_US.ISO8859-1/books/developers-handbook/tools/chapter.sgml index a939990c47..45c24ff136 100644 --- a/en_US.ISO8859-1/books/developers-handbook/tools/chapter.sgml +++ b/en_US.ISO8859-1/books/developers-handbook/tools/chapter.sgml @@ -1,2298 +1,2298 @@ Programming Tools This chapter was written by &a.jraynard;. Modifications for the Developers' Handbook by &a.murray;. Synopsis This document is an introduction to using some of the programming tools supplied with FreeBSD, although much of it will be applicable to many other versions of Unix. It does not attempt to describe coding in any detail. Most of the document assumes little or no previous programming knowledge, although it is hoped that most programmers will find something of value in it. Introduction FreeBSD offers an excellent development environment. Compilers for C, C++, and Fortran and an assembler come with the basic system, not to mention a Perl interpreter and classic Unix tools such as sed and awk. If that is not enough, there are many more compilers and interpreters in the Ports collection. FreeBSD is very compatible with standards such as POSIX and ANSI C, as well with its own BSD heritage, so it is possible to write applications that will compile and run with little or no modification on a wide range of platforms. However, all this power can be rather overwhelming at first if you've never written programs on a Unix platform before. This document aims to help you get up and running, without getting too deeply into more advanced topics. The intention is that this document should give you enough of the basics to be able to make some sense of the documentation. Most of the document requires little or no knowledge of programming, although it does assume a basic competence with using Unix and a willingness to learn! Introduction to Programming A program is a set of instructions that tell the computer to do various things; sometimes the instruction it has to perform depends on what happened when it performed a previous instruction. This section gives an overview of the two main ways in which you can give these instructions, or commands as they are usually called. One way uses an interpreter, the other a compiler. As human languages are too difficult for a computer to understand in an unambiguous way, commands are usually written in one or other languages specially designed for the purpose. Interpreters With an interpreter, the language comes as an environment, where you type in commands at a prompt and the environment executes them for you. For more complicated programs, you can type the commands into a file and get the interpreter to load the file and execute the commands in it. If anything goes wrong, many interpreters will drop you into a debugger to help you track down the problem. The advantage of this is that you can see the results of your commands immediately, and mistakes can be corrected readily. The biggest disadvantage comes when you want to share your programs with someone. They must have the same interpreter, or you must have some way of giving it to them, and they need to understand how to use it. Also users may not appreciate being thrown into a debugger if they press the wrong key! From a performance point of view, interpreters can use up a lot of memory, and generally do not generate code as efficiently as compilers. In my opinion, interpreted languages are the best way to start if you have not done any programming before. This kind of environment is typically found with languages like Lisp, Smalltalk, Perl and Basic. It could also be argued that the Unix shell (sh, csh) is itself an interpreter, and many people do in fact write shell scripts to help with various housekeeping tasks on their machine. Indeed, part of the original Unix philosophy was to provide lots of small utility programs that could be linked together in shell scripts to perform useful tasks. Interpreters available with FreeBSD Here is a list of interpreters that are available as FreeBSD + URL="ftp://ftp.FreeBSD.org/pub/FreeBSD/ports/packages/">FreeBSD packages, with a brief discussion of some of the more popular interpreted languages. To get one of these packages, all you need to do is to click on the hotlink for the package, then run &prompt.root; pkg_add package name as root. Obviously, you will need to have a fully functional FreeBSD 2.1.0 or later system for the package to work! BASIC Short for Beginner's All-purpose Symbolic Instruction Code. Developed in the 1950s for teaching University students to program and provided with every self-respecting personal computer in the 1980s, BASIC has been the first programming language for many programmers. It's also the foundation for Visual Basic. The Bywater + URL="ftp://ftp.FreeBSD.org/pub/FreeBSD/ports/packages/lang/bwbasic-2.10.tgz">Bywater Basic Interpreter and the Phil + URL="ftp://ftp.FreeBSD.org/pub/FreeBSD/ports/packages/lang/pbasic-2.0.tgz">Phil Cockroft's Basic Interpreter (formerly Rabbit Basic) are available as FreeBSD + URL="ftp://ftp.FreeBSD.org/pub/FreeBSD/ports/packages/">FreeBSD packages. Lisp A language that was developed in the late 1950s as an alternative to the number-crunching languages that were popular at the time. Instead of being based on numbers, Lisp is based on lists; in fact the name is short for List Processing. Very popular in AI (Artificial Intelligence) circles. Lisp is an extremely powerful and sophisticated language, but can be rather large and unwieldy. FreeBSD has GNU + URL="ftp://ftp.FreeBSD.org/pub/FreeBSD/ports/packages/gcl-2.0.tgz">GNU Common Lisp available as a package. Perl Very popular with system administrators for writing scripts; also often used on World Wide Web servers for writing CGI scripts. The latest version (version 5) comes with FreeBSD. Scheme A dialect of Lisp that is rather more compact and cleaner than Common Lisp. Popular in Universities as it is simple enough to teach to undergraduates as a first language, while it has a high enough level of abstraction to be used in research work. FreeBSD has packages of the Elk + URL="ftp://ftp.FreeBSD.org/pub/FreeBSD/ports/packages/lang/elk-3.0.tgz">Elk Scheme Interpreter, the MIT + URL="ftp://ftp.FreeBSD.org/pub/FreeBSD/ports/packages/lang/mit-scheme-7.3.tgz">MIT Scheme Interpreter and the SCM + URL="ftp://ftp.FreeBSD.org/pub/FreeBSD/ports/packages/lang/scm-4e1.tgz">SCM Scheme Interpreter. Icon The + URL="ftp://ftp.FreeBSD.org/pub/FreeBSD/ports/packages/lang/icon-9.0.tgz">The Icon Programming Language. Logo Brian + URL="ftp://ftp.FreeBSD.org/pub/FreeBSD/ports/packages/lang/ucblogo-3.3.tgz">Brian Harvey's LOGO Interpreter. Python The + URL="ftp://ftp.FreeBSD.org/pub/FreeBSD/ports/packages/lang/python-1.2.tgz">The Python Object-Oriented Programming Language Compilers Compilers are rather different. First of all, you write your code in a file (or files) using an editor. You then run the compiler and see if it accepts your program. If it did not compile, grit your teeth and go back to the editor; if it did compile and gave you a program, you can run it either at a shell command prompt or in a debugger to see if it works properly. If you run it in the shell, you may get a core dump. Obviously, this is not quite as direct as using an interpreter. However it allows you to do a lot of things which are very difficult or even impossible with an interpreter, such as writing code which interacts closely with the operating system—or even writing your own operating system! It's also useful if you need to write very efficient code, as the compiler can take its time and optimise the code, which would not be acceptable in an interpreter. And distributing a program written for a compiler is usually more straightforward than one written for an interpreter—you can just give them a copy of the executable, assuming they have the same operating system as you. Compiled languages include Pascal, C and C++. C and C++ are rather unforgiving languages, and best suited to more experienced programmers; Pascal, on the other hand, was designed as an educational language, and is quite a good language to start with. FreeBSD doesn't include Pascal support in the base system, but the GNU Pascal Compiler (gpc) is available in the ports collection. As the edit-compile-run-debug cycle is rather tedious when using separate programs, many commercial compiler makers have produced Integrated Development Environments (IDEs for short). FreeBSD does not include an IDE in the base system, but devel/kdevelop is available in the ports tree and many use Emacs for this purpose. Using Emacs as an IDE is discussed in . Compiling with <command>cc</command> This section deals only with the GNU compiler for C and C++, since that comes with the base FreeBSD system. It can be invoked by either cc or gcc. The details of producing a program with an interpreter vary considerably between interpreters, and are usually well covered in the documentation and on-line help for the interpreter. Once you've written your masterpiece, the next step is to convert it into something that will (hopefully!) run on FreeBSD. This usually involves several steps, each of which is done by a separate program. Pre-process your source code to remove comments and do other tricks like expanding macros in C. Check the syntax of your code to see if you have obeyed the rules of the language. If you have not, it will complain! Convert the source code into assembly language—this is very close to machine code, but still understandable by humans. Allegedly. To be strictly accurate, cc converts the source code into its own, machine-independent p-code instead of assembly language at this stage. Convert the assembly language into machine code—yep, we are talking bits and bytes, ones and zeros here. Check that you have used things like functions and global variables in a consistent way. For example, if you have called a non-existent function, it will complain. If you are trying to produce an executable from several source code files, work out how to fit them all together. Work out how to produce something that the system's run-time loader will be able to load into memory and run. Finally, write the executable on the file system. The word compiling is often used to refer to just steps 1 to 4—the others are referred to as linking. Sometimes step 1 is referred to as pre-processing and steps 3-4 as assembling. Fortunately, almost all this detail is hidden from you, as cc is a front end that manages calling all these programs with the right arguments for you; simply typing &prompt.user; cc foobar.c will cause foobar.c to be compiled by all the steps above. If you have more than one file to compile, just do something like &prompt.user; cc foo.c bar.c Note that the syntax checking is just that—checking the syntax. It will not check for any logical mistakes you may have made, like putting the program into an infinite loop, or using a bubble sort when you meant to use a binary sort. In case you didn't know, a binary sort is an efficient way of sorting things into order and a bubble sort isn't. There are lots and lots of options for cc, which are all in the man page. Here are a few of the most important ones, with examples of how to use them. The output name of the file. If you do not use this option, cc will produce an executable called a.out. The reasons for this are buried in the mists of history. &prompt.user; cc foobar.c executable is a.out &prompt.user; cc -o foobar foobar.c executable is foobar Just compile the file, do not link it. Useful for toy programs where you just want to check the syntax, or if you are using a Makefile. &prompt.user; cc -c foobar.c This will produce an object file (not an executable) called foobar.o. This can be linked together with other object files into an executable. Create a debug version of the executable. This makes the compiler put information into the executable about which line of which source file corresponds to which function call. A debugger can use this information to show the source code as you step through the program, which is very useful; the disadvantage is that all this extra information makes the program much bigger. Normally, you compile with while you are developing a program and then compile a release version without when you're satisfied it works properly. &prompt.user; cc -g foobar.c This will produce a debug version of the program. Note, we didn't use the flag to specify the executable name, so we will get an executable called a.out. Producing a debug version called foobar is left as an exercise for the reader! Create an optimised version of the executable. The compiler performs various clever tricks to try and produce an executable that runs faster than normal. You can add a number after the to specify a higher level of optimisation, but this often exposes bugs in the compiler's optimiser. For instance, the version of cc that comes with the 2.1.0 release of FreeBSD is known to produce bad code with the option in some circumstances. Optimisation is usually only turned on when compiling a release version. &prompt.user; cc -O -o foobar foobar.c This will produce an optimised version of foobar. The following three flags will force cc to check that your code complies to the relevant international standard, often referred to as the ANSI standard, though strictly speaking it is an ISO standard. Enable all the warnings which the authors of cc believe are worthwhile. Despite the name, it will not enable all the warnings cc is capable of. Turn off most, but not all, of the non-ANSI C features provided by cc. Despite the name, it does not guarantee strictly that your code will comply to the standard. Turn off all cc's non-ANSI C features. Without these flags, cc will allow you to use some of its non-standard extensions to the standard. Some of these are very useful, but will not work with other compilers—in fact, one of the main aims of the standard is to allow people to write code that will work with any compiler on any system. This is known as portable code. Generally, you should try to make your code as portable as possible, as otherwise you may have to completely re-write the program later to get it to work somewhere else—and who knows what you may be using in a few years time? &prompt.user; cc -Wall -ansi -pedantic -o foobar foobar.c This will produce an executable foobar after checking foobar.c for standard compliance. Specify a function library to be used during when linking. The most common example of this is when compiling a program that uses some of the mathematical functions in C. Unlike most other platforms, these are in a separate library from the standard C one and you have to tell the compiler to add it. The rule is that if the library is called libsomething.a, you give cc the argument . For example, the math library is libm.a, so you give cc the argument . A common gotcha with the math library is that it has to be the last library on the command line. &prompt.user; cc -o foobar foobar.c -lm This will link the math library functions into foobar. If you are compiling C++ code, you need to add , or if you are using FreeBSD 2.2 or later, to the command line argument to link the C++ library functions. Alternatively, you can run c++ instead of cc, which does this for you. c++ can also be invoked as g++ on FreeBSD. &prompt.user; cc -o foobar foobar.cc -lg++ For FreeBSD 2.1.6 and earlier &prompt.user; cc -o foobar foobar.cc -lstdc++ For FreeBSD 2.2 and later &prompt.user; c++ -o foobar foobar.cc Each of these will both produce an executable foobar from the C++ source file foobar.cc. Note that, on Unix systems, C++ source files traditionally end in .C, .cxx or .cc, rather than the MS-DOS style .cpp (which was already used for something else). gcc used to rely on this to work out what kind of compiler to use on the source file; however, this restriction no longer applies, so you may now call your C++ files .cpp with impunity! Common <command>cc</command> Queries and Problems I am trying to write a program which uses the sin() function and I get an error like this. What does it mean? /var/tmp/cc0143941.o: Undefined symbol `_sin' referenced from text segment When using mathematical functions like sin(), you have to tell cc to link in the math library, like so: &prompt.user; cc -o foobar foobar.c -lm All right, I wrote this simple program to practice using . All it does is raise 2.1 to the power of 6. #include <stdio.h> int main() { float f; f = pow(2.1, 6); printf("2.1 ^ 6 = %f\n", f); return 0; } and I compiled it as: &prompt.user; cc temp.c -lm like you said I should, but I get this when I run it: &prompt.user; ./a.out 2.1 ^ 6 = 1023.000000 This is not the right answer! What is going on? When the compiler sees you call a function, it checks if it has already seen a prototype for it. If it has not, it assumes the function returns an int, which is definitely not what you want here. So how do I fix this? The prototypes for the mathematical functions are in math.h. If you include this file, the compiler will be able to find the prototype and it will stop doing strange things to your calculation! #include <math.h> #include <stdio.h> int main() { ... After recompiling it as you did before, run it: &prompt.user; ./a.out 2.1 ^ 6 = 85.766121 If you are using any of the mathematical functions, always include math.h and remember to link in the math library. I compiled a file called foobar.c and I cannot find an executable called foobar. Where's it gone? Remember, cc will call the executable a.out unless you tell it differently. Use the option: &prompt.user; cc -o foobar foobar.c OK, I have an executable called foobar, I can see it when I run ls, but when I type in foobar at the command prompt it tells me there is no such file. Why can it not find it? Unlike MS-DOS, Unix does not look in the current directory when it is trying to find out which executable you want it to run, unless you tell it to. Either type ./foobar, which means run the file called foobar in the current directory, or change your PATH environment variable so that it looks something like bin:/usr/bin:/usr/local/bin:. The dot at the end means look in the current directory if it is not in any of the others. I called my executable test, but nothing happens when I run it. What is going on? Most Unix systems have a program called test in /usr/bin and the shell is picking that one up before it gets to checking the current directory. Either type: &prompt.user; ./test or choose a better name for your program! I compiled my program and it seemed to run all right at first, then there was an error and it said something about core dumped. What does that mean? The name core dump dates back to the very early days of Unix, when the machines used core memory for storing data. Basically, if the program failed under certain conditions, the system would write the contents of core memory to disk in a file called core, which the programmer could then pore over to find out what went wrong. Fascinating stuff, but what I am supposed to do now? Use gdb to analyse the core (see ). When my program dumped core, it said something about a segmentation fault. What's that? This basically means that your program tried to perform some sort of illegal operation on memory; Unix is designed to protect the operating system and other programs from rogue programs. Common causes for this are: Trying to write to a NULL pointer, eg char *foo = NULL; strcpy(foo, "bang!"); Using a pointer that hasn't been initialised, eg char *foo; strcpy(foo, "bang!"); The pointer will have some random value that, with luck, will point into an area of memory that isn't available to your program and the kernel will kill your program before it can do any damage. If you're unlucky, it'll point somewhere inside your own program and corrupt one of your data structures, causing the program to fail mysteriously. Trying to access past the end of an array, eg int bar[20]; bar[27] = 6; Trying to store something in read-only memory, eg char *foo = "My string"; strcpy(foo, "bang!"); Unix compilers often put string literals like "My string" into read-only areas of memory. Doing naughty things with malloc() and free(), eg char bar[80]; free(bar); or char *foo = malloc(27); free(foo); free(foo); Making one of these mistakes will not always lead to an error, but they are always bad practice. Some systems and compilers are more tolerant than others, which is why programs that ran well on one system can crash when you try them on an another. Sometimes when I get a core dump it says bus error. It says in my Unix book that this means a hardware problem, but the computer still seems to be working. Is this true? No, fortunately not (unless of course you really do have a hardware problem…). This is usually another way of saying that you accessed memory in a way you shouldn't have. This dumping core business sounds as though it could be quite useful, if I can make it happen when I want to. Can I do this, or do I have to wait until there's an error? Yes, just go to another console or xterm, do &prompt.user; ps to find out the process ID of your program, and do &prompt.user; kill -ABRT pid where pid is the process ID you looked up. This is useful if your program has got stuck in an infinite loop, for instance. If your program happens to trap SIGABRT, there are several other signals which have a similar effect. Alternatively, you can create a core dump from inside your program, by calling the abort() function. See the man page of &man.abort.3; to learn more. If you want to create a core dump from outside your program, but don't want the process to terminate, you can use the gcore program. See the man page of &man.gcore.1 for more information. Make What is <command>make</command>? When you're working on a simple program with only one or two source files, typing in &prompt.user; cc file1.c file2.c is not too bad, but it quickly becomes very tedious when there are several files—and it can take a while to compile, too. One way to get around this is to use object files and only recompile the source file if the source code has changed. So we could have something like: &prompt.user; cc file1.o file2.ofile37.c &hellip if we'd changed file37.c, but not any of the others, since the last time we compiled. This may speed up the compilation quite a bit, but doesn't solve the typing problem. Or we could write a shell script to solve the typing problem, but it would have to re-compile everything, making it very inefficient on a large project. What happens if we have hundreds of source files lying about? What if we're working in a team with other people who forget to tell us when they've changed one of their source files that we use? Perhaps we could put the two solutions together and write something like a shell script that would contain some kind of magic rule saying when a source file needs compiling. Now all we need now is a program that can understand these rules, as it's a bit too complicated for the shell. This program is called make. It reads in a file, called a makefile, that tells it how different files depend on each other, and works out which files need to be re-compiled and which ones don't. For example, a rule could say something like if fromboz.o is older than fromboz.c, that means someone must have changed fromboz.c, so it needs to be re-compiled. The makefile also has rules telling make how to re-compile the source file, making it a much more powerful tool. Makefiles are typically kept in the same directory as the source they apply to, and can be called makefile, Makefile or MAKEFILE. Most programmers use the name Makefile, as this puts it near the top of a directory listing, where it can easily be seen. They don't use the MAKEFILE form as block capitals are often used for documentation files like README. Example of using <command>make</command> Here's a very simple make file: foo: foo.c cc -o foo foo.c It consists of two lines, a dependency line and a creation line. The dependency line here consists of the name of the program (known as the target), followed by a colon, then whitespace, then the name of the source file. When make reads this line, it looks to see if foo exists; if it exists, it compares the time foo was last modified to the time foo.c was last modified. If foo does not exist, or is older than foo.c, it then looks at the creation line to find out what to do. In other words, this is the rule for working out when foo.c needs to be re-compiled. The creation line starts with a tab (press the tab key) and then the command you would type to create foo if you were doing it at a command prompt. If foo is out of date, or does not exist, make then executes this command to create it. In other words, this is the rule which tells make how to re-compile foo.c. So, when you type make, it will make sure that foo is up to date with respect to your latest changes to foo.c. This principle can be extended to Makefiles with hundreds of targets—in fact, on FreeBSD, it is possible to compile the entire operating system just by typing make world in the appropriate directory! Another useful property of makefiles is that the targets don't have to be programs. For instance, we could have a make file that looks like this: foo: foo.c cc -o foo foo.c install: cp foo /home/me We can tell make which target we want to make by typing: &prompt.user; make target make will then only look at that target and ignore any others. For example, if we type make foo with the makefile above, make will ignore the install target. If we just type make on its own, make will always look at the first target and then stop without looking at any others. So if we typed make here, it will just go to the foo target, re-compile foo if necessary, and then stop without going on to the install target. Notice that the install target doesn't actually depend on anything! This means that the command on the following line is always executed when we try to make that target by typing make install. In this case, it will copy foo into the user's home directory. This is often used by application makefiles, so that the application can be installed in the correct directory when it has been correctly compiled. This is a slightly confusing subject to try and explain. If you don't quite understand how make works, the best thing to do is to write a simple program like hello world and a make file like the one above and experiment. Then progress to using more than one source file, or having the source file include a header file. The touch command is very useful here—it changes the date on a file without you having to edit it. Make and include-files C code often starts with a list of files to include, for example stdio.h. Some of these files are system-include files, some of them are from the project you're now working on: #include <stdio.h> #include "foo.h" int main(.... To make sure that this file is recompiled the moment foo.h is changed, you have to add it in your Makefile: foo: foo.c foo.h The moment your project is getting bigger and you have more and more own include-files to maintain, it will be a pain to keep track of all include files and the files which are depending on it. If you change an include-file but forget to recompile all the files which are depending on it, the results will be devastating. gcc has an option to analyze your files and to produce a list of include-files and their dependencies: . If you add this to your Makefile: depend: gcc -E -MM *.c > .depend and run make depend, the file .depend will appear with a list of object-files, C-files and the include-files: foo.o: foo.c foo.h If you change foo.h, next time you run make all files depending on foo.h will be recompiled. Don't forget to run make depend each time you add an include-file to one of your files. FreeBSD Makefiles Makefiles can be rather complicated to write. Fortunately, BSD-based systems like FreeBSD come with some very powerful ones as part of the system. One very good example of this is the FreeBSD ports system. Here's the essential part of a typical ports Makefile: MASTER_SITES= ftp://freefall.cdrom.com/pub/FreeBSD/LOCAL_PORTS/ DISTFILES= scheme-microcode+dist-7.3-freebsd.tgz .include <bsd.port.mk> Now, if we go to the directory for this port and type make, the following happens: A check is made to see if the source code for this port is already on the system. If it isn't, an FTP connection to the URL in MASTER_SITES is set up to download the source. The checksum for the source is calculated and compared it with one for a known, good, copy of the source. This is to make sure that the source was not corrupted while in transit. Any changes required to make the source work on FreeBSD are applied—this is known as patching. Any special configuration needed for the source is done. (Many Unix program distributions try to work out which version of Unix they are being compiled on and which optional Unix features are present—this is where they are given the information in the FreeBSD ports scenario). The source code for the program is compiled. In effect, we change to the directory where the source was unpacked and do make—the program's own make file has the necessary information to build the program. We now have a compiled version of the program. If we wish, we can test it now; when we feel confident about the program, we can type make install. This will cause the program and any supporting files it needs to be copied into the correct location; an entry is also made into a package database, so that the port can easily be uninstalled later if we change our mind about it. Now I think you'll agree that's rather impressive for a four line script! The secret lies in the last line, which tells make to look in the system makefile called bsd.port.mk. It's easy to overlook this line, but this is where all the clever stuff comes from—someone has written a makefile that tells make to do all the things above (plus a couple of other things I didn't mention, including handling any errors that may occur) and anyone can get access to that just by putting a single line in their own make file! If you want to have a look at these system makefiles, they're in /usr/share/mk, but it's probably best to wait until you've had a bit of practice with makefiles, as they are very complicated (and if you do look at them, make sure you have a flask of strong coffee handy!) More advanced uses of <command>make</command> Make is a very powerful tool, and can do much more than the simple example above shows. Unfortunately, there are several different versions of make, and they all differ considerably. The best way to learn what they can do is probably to read the documentation—hopefully this introduction will have given you a base from which you can do this. The version of make that comes with FreeBSD is the Berkeley make; there is a tutorial for it in /usr/share/doc/psd/12.make. To view it, do &prompt.user; zmore paper.ascii.gz in that directory. Many applications in the ports use GNU make, which has a very good set of info pages. If you have installed any of these ports, GNU make will automatically have been installed as gmake. It's also available as a port and package in its own right. To view the info pages for GNU make, you will have to edit the dir file in the /usr/local/info directory to add an entry for it. This involves adding a line like * Make: (make). The GNU Make utility. to the file. Once you have done this, you can type info and then select make from the menu (or in Emacs, do C-h i). Debugging The Debugger The debugger that comes with FreeBSD is called gdb (GNU debugger). You start it up by typing &prompt.user; gdb progname although most people prefer to run it inside Emacs. You can do this by: M-x gdb RET progname RET Using a debugger allows you to run the program under more controlled circumstances. Typically, you can step through the program a line at a time, inspect the value of variables, change them, tell the debugger to run up to a certain point and then stop, and so on. You can even attach to a program that's already running, or load a core file to investigate why the program crashed. It's even possible to debug the kernel, though that's a little trickier than the user applications we'll be discussing in this section. gdb has quite good on-line help, as well as a set of info pages, so this section will concentrate on a few of the basic commands. Finally, if you find its text-based command-prompt style off-putting, there's a graphical front-end for it xxgdb in the ports collection. This section is intended to be an introduction to using gdb and does not cover specialised topics such as debugging the kernel. Running a program in the debugger You'll need to have compiled the program with the option to get the most out of using gdb. It will work without, but you'll only see the name of the function you're in, instead of the source code. If you see a line like: … (no debugging symbols found) … when gdb starts up, you'll know that the program wasn't compiled with the option. At the gdb prompt, type break main. This will tell the debugger to skip over the preliminary set-up code in the program and start at the beginning of your code. Now type run to start the program—it will start at the beginning of the set-up code and then get stopped by the debugger when it calls main(). (If you've ever wondered where main() gets called from, now you know!). You can now step through the program, a line at a time, by pressing n. If you get to a function call, you can step into it by pressing s. Once you're in a function call, you can return from stepping into a function call by pressing f. You can also use up and down to take a quick look at the caller. Here's a simple example of how to spot a mistake in a program with gdb. This is our program (with a deliberate mistake): #include <stdio.h> int bazz(int anint); main() { int i; printf("This is my program\n"); bazz(i); return 0; } int bazz(int anint) { printf("You gave me %d\n", anint); return anint; } This program sets i to be 5 and passes it to a function bazz() which prints out the number we gave it. When we compile and run the program we get &prompt.user; cc -g -o temp temp.c &prompt.user; ./temp This is my program anint = 4231 That wasn't what we expected! Time to see what's going on! &prompt.user; gdb temp GDB is free software and you are welcome to distribute copies of it under certain conditions; type "show copying" to see the conditions. There is absolutely no warranty for GDB; type "show warranty" for details. GDB 4.13 (i386-unknown-freebsd), Copyright 1994 Free Software Foundation, Inc. (gdb) break main Skip the set-up code Breakpoint 1 at 0x160f: file temp.c, line 9. gdb puts breakpoint at main() (gdb) run Run as far as main() Starting program: /home/james/tmp/temp Program starts running Breakpoint 1, main () at temp.c:9 gdb stops at main() (gdb) n Go to next line This is my program Program prints out (gdb) s step into bazz() bazz (anint=4231) at temp.c:17 gdb displays stack frame (gdb) Hang on a minute! How did anint get to be 4231? Didn't we set it to be 5 in main()? Let's move up to main() and have a look. (gdb) up Move up call stack #1 0x1625 in main () at temp.c:11 gdb displays stack frame (gdb) p i Show us the value of i $1 = 4231 gdb displays 4231 Oh dear! Looking at the code, we forgot to initialise i. We meant to put … main() { int i; i = 5; printf("This is my program\n"); &hellip but we left the i=5; line out. As we didn't initialise i, it had whatever number happened to be in that area of memory when the program ran, which in this case happened to be 4231. gdb displays the stack frame every time we go into or out of a function, even if we're using up and down to move around the call stack. This shows the name of the function and the values of its arguments, which helps us keep track of where we are and what's going on. (The stack is a storage area where the program stores information about the arguments passed to functions and where to go when it returns from a function call). Examining a core file A core file is basically a file which contains the complete state of the process when it crashed. In the good old days, programmers had to print out hex listings of core files and sweat over machine code manuals, but now life is a bit easier. Incidentally, under FreeBSD and other 4.4BSD systems, a core file is called progname.core instead of just core, to make it clearer which program a core file belongs to. To examine a core file, start up gdb in the usual way. Instead of typing break or run, type (gdb) core progname.core If you're not in the same directory as the core file, you'll have to do dir /path/to/core/file first. You should see something like this: &prompt.user; gdb a.out GDB is free software and you are welcome to distribute copies of it under certain conditions; type "show copying" to see the conditions. There is absolutely no warranty for GDB; type "show warranty" for details. GDB 4.13 (i386-unknown-freebsd), Copyright 1994 Free Software Foundation, Inc. (gdb) core a.out.core Core was generated by `a.out'. Program terminated with signal 11, Segmentation fault. Cannot access memory at address 0x7020796d. #0 0x164a in bazz (anint=0x5) at temp.c:17 (gdb) In this case, the program was called a.out, so the core file is called a.out.core. We can see that the program crashed due to trying to access an area in memory that was not available to it in a function called bazz. Sometimes it's useful to be able to see how a function was called, as the problem could have occurred a long way up the call stack in a complex program. The bt command causes gdb to print out a back-trace of the call stack: (gdb) bt #0 0x164a in bazz (anint=0x5) at temp.c:17 #1 0xefbfd888 in end () #2 0x162c in main () at temp.c:11 (gdb) The end() function is called when a program crashes; in this case, the bazz() function was called from main(). Attaching to a running program One of the neatest features about gdb is that it can attach to a program that's already running. Of course, that assumes you have sufficient permissions to do so. A common problem is when you are stepping through a program that forks, and you want to trace the child, but the debugger will only let you trace the parent. What you do is start up another gdb, use ps to find the process ID for the child, and do (gdb) attach pid in gdb, and then debug as usual. That's all very well, you're probably thinking, but by the time I've done that, the child process will be over the hill and far away. Fear not, gentle reader, here's how to do it (courtesy of the gdb info pages): &hellip if ((pid = fork()) < 0) /* _Always_ check this */ error(); else if (pid == 0) { /* child */ int PauseMode = 1; while (PauseMode) sleep(10); /* Wait until someone attaches to us */ &hellip } else { /* parent */ &hellip Now all you have to do is attach to the child, set PauseMode to 0, and wait for the sleep() call to return! Using Emacs as a Development Environment Emacs Unfortunately, Unix systems don't come with the kind of everything-you-ever-wanted-and-lots-more-you-didn't-in-one-gigantic-package integrated development environments that other systems have. Some powerful, free IDEs now exist, such as KDevelop in the ports collection. However, it is possible to set up your own environment. It may not be as pretty, and it may not be quite as integrated, but you can set it up the way you want it. And it's free. And you have the source to it. The key to it all is Emacs. Now there are some people who loathe it, but many who love it. If you're one of the former, I'm afraid this section will hold little of interest to you. Also, you'll need a fair amount of memory to run it—I'd recommend 8MB in text mode and 16MB in X as the bare minimum to get reasonable performance. Emacs is basically a highly customisable editor—indeed, it has been customised to the point where it's more like an operating system than an editor! Many developers and sysadmins do in fact spend practically all their time working inside Emacs, leaving it only to log out. It's impossible even to summarise everything Emacs can do here, but here are some of the features of interest to developers: Very powerful editor, allowing search-and-replace on both strings and regular expressions (patterns), jumping to start/end of block expression, etc, etc. Pull-down menus and online help. Language-dependent syntax highlighting and indentation. Completely customisable. You can compile and debug programs within Emacs. On a compilation error, you can jump to the offending line of source code. Friendly-ish front-end to the info program used for reading GNU hypertext documentation, including the documentation on Emacs itself. Friendly front-end to gdb, allowing you to look at the source code as you step through your program. You can read Usenet news and mail while your program is compiling. And doubtless many more that I've overlooked. Emacs can be installed on FreeBSD using the Emacs + URL="../../../../ports/editors.html">the Emacs port. Once it's installed, start it up and do C-h t to read an Emacs tutorial—that means hold down the control key, press h, let go of the control key, and then press t. (Alternatively, you can you use the mouse to select Emacs Tutorial from the Help menu). Although Emacs does have menus, it's well worth learning the key bindings, as it's much quicker when you're editing something to press a couple of keys than to try and find the mouse and then click on the right place. And, when you're talking to seasoned Emacs users, you'll find they often casually throw around expressions like M-x replace-s RET foo RET bar RET so it's useful to know what they mean. And in any case, Emacs has far too many useful functions for them to all fit on the menu bars. Fortunately, it's quite easy to pick up the key-bindings, as they're displayed next to the menu item. My advice is to use the menu item for, say, opening a file until you understand how it works and feel confident with it, then try doing C-x C-f. When you're happy with that, move on to another menu command. If you can't remember what a particular combination of keys does, select Describe Key from the Help menu and type it in—Emacs will tell you what it does. You can also use the Command Apropos menu item to find out all the commands which contain a particular word in them, with the key binding next to it. By the way, the expression above means hold down the Meta key, press x, release the Meta key, type replace-s (short for replace-string—another feature of Emacs is that you can abbreviate commands), press the return key, type foo (the string you want replaced), press the return key, type bar (the string you want to replace foo with) and press return again. Emacs will then do the search-and-replace operation you've just requested. If you're wondering what on earth the Meta key is, it's a special key that many Unix workstations have. Unfortunately, PC's don't have one, so it's usually the alt key (or if you're unlucky, the escape key). Oh, and to get out of Emacs, do C-x C-c (that means hold down the control key, press x, press c and release the control key). If you have any unsaved files open, Emacs will ask you if you want to save them. (Ignore the bit in the documentation where it says C-z is the usual way to leave Emacs—that leaves Emacs hanging around in the background, and is only really useful if you're on a system which doesn't have virtual terminals). Configuring Emacs Emacs does many wonderful things; some of them are built in, some of them need to be configured. Instead of using a proprietary macro language for configuration, Emacs uses a version of Lisp specially adapted for editors, known as Emacs Lisp. This can be quite useful if you want to go on and learn something like Common Lisp, as it's considerably smaller than Common Lisp (although still quite big!). The best way to learn Emacs Lisp is to download the Emacs + URL="ftp://prep.ai.mit.edu/pub/gnu/elisp-manual-19-2.4.tar.gz">Emacs Tutorial However, there's no need to actually know any Lisp to get started with configuring Emacs, as I've included a sample .emacs file, which should be enough to get you started. Just copy it into your home directory and restart Emacs if it's already running; it will read the commands from the file and (hopefully) give you a useful basic setup. A sample <filename>.emacs</filename> file Unfortunately, there's far too much here to explain it in detail; however there are one or two points worth mentioning. Everything beginning with a ; is a comment and is ignored by Emacs. In the first line, the -*- Emacs-Lisp -*- is so that we can edit the .emacs file itself within Emacs and get all the fancy features for editing Emacs Lisp. Emacs usually tries to guess this based on the filename, and may not get it right for .emacs. The tab key is bound to an indentation function in some modes, so when you press the tab key, it will indent the current line of code. If you want to put a tab character in whatever you're writing, hold the control key down while you're pressing the tab key. This file supports syntax highlighting for C, C++, Perl, Lisp and Scheme, by guessing the language from the filename. Emacs already has a pre-defined function called next-error. In a compilation output window, this allows you to move from one compilation error to the next by doing M-n; we define a complementary function, previous-error, that allows you to go to a previous error by doing M-p. The nicest feature of all is that C-c C-c will open up the source file in which the error occurred and jump to the appropriate line. We enable Emacs's ability to act as a server, so that if you're doing something outside Emacs and you want to edit a file, you can just type in &prompt.user; emacsclient filename and then you can edit the file in your Emacs! Many Emacs users set their EDITOR environment to emacsclient so this happens every time they need to edit a file. A sample <filename>.emacs</filename> file ;; -*-Emacs-Lisp-*- ;; This file is designed to be re-evaled; use the variable first-time ;; to avoid any problems with this. (defvar first-time t "Flag signifying this is the first time that .emacs has been evaled") ;; Meta (global-set-key "\M- " 'set-mark-command) (global-set-key "\M-\C-h" 'backward-kill-word) (global-set-key "\M-\C-r" 'query-replace) (global-set-key "\M-r" 'replace-string) (global-set-key "\M-g" 'goto-line) (global-set-key "\M-h" 'help-command) ;; Function keys (global-set-key [f1] 'manual-entry) (global-set-key [f2] 'info) (global-set-key [f3] 'repeat-complex-command) (global-set-key [f4] 'advertised-undo) (global-set-key [f5] 'eval-current-buffer) (global-set-key [f6] 'buffer-menu) (global-set-key [f7] 'other-window) (global-set-key [f8] 'find-file) (global-set-key [f9] 'save-buffer) (global-set-key [f10] 'next-error) (global-set-key [f11] 'compile) (global-set-key [f12] 'grep) (global-set-key [C-f1] 'compile) (global-set-key [C-f2] 'grep) (global-set-key [C-f3] 'next-error) (global-set-key [C-f4] 'previous-error) (global-set-key [C-f5] 'display-faces) (global-set-key [C-f8] 'dired) (global-set-key [C-f10] 'kill-compilation) ;; Keypad bindings (global-set-key [up] "\C-p") (global-set-key [down] "\C-n") (global-set-key [left] "\C-b") (global-set-key [right] "\C-f") (global-set-key [home] "\C-a") (global-set-key [end] "\C-e") (global-set-key [prior] "\M-v") (global-set-key [next] "\C-v") (global-set-key [C-up] "\M-\C-b") (global-set-key [C-down] "\M-\C-f") (global-set-key [C-left] "\M-b") (global-set-key [C-right] "\M-f") (global-set-key [C-home] "\M-<") (global-set-key [C-end] "\M->") (global-set-key [C-prior] "\M-<") (global-set-key [C-next] "\M->") ;; Mouse (global-set-key [mouse-3] 'imenu) ;; Misc (global-set-key [C-tab] "\C-q\t") ; Control tab quotes a tab. (setq backup-by-copying-when-mismatch t) ;; Treat 'y' or <CR> as yes, 'n' as no. (fset 'yes-or-no-p 'y-or-n-p) (define-key query-replace-map [return] 'act) (define-key query-replace-map [?\C-m] 'act) ;; Load packages (require 'desktop) (require 'tar-mode) ;; Pretty diff mode (autoload 'ediff-buffers "ediff" "Intelligent Emacs interface to diff" t) (autoload 'ediff-files "ediff" "Intelligent Emacs interface to diff" t) (autoload 'ediff-files-remote "ediff" "Intelligent Emacs interface to diff") (if first-time (setq auto-mode-alist (append '(("\\.cpp$" . c++-mode) ("\\.hpp$" . c++-mode) ("\\.lsp$" . lisp-mode) ("\\.scm$" . scheme-mode) ("\\.pl$" . perl-mode) ) auto-mode-alist))) ;; Auto font lock mode (defvar font-lock-auto-mode-list (list 'c-mode 'c++-mode 'c++-c-mode 'emacs-lisp-mode 'lisp-mode 'perl-mode 'scheme-mode) "List of modes to always start in font-lock-mode") (defvar font-lock-mode-keyword-alist '((c++-c-mode . c-font-lock-keywords) (perl-mode . perl-font-lock-keywords)) "Associations between modes and keywords") (defun font-lock-auto-mode-select () "Automatically select font-lock-mode if the current major mode is in font-lock-auto-mode-list" (if (memq major-mode font-lock-auto-mode-list) (progn (font-lock-mode t)) ) ) (global-set-key [M-f1] 'font-lock-fontify-buffer) ;; New dabbrev stuff ;(require 'new-dabbrev) (setq dabbrev-always-check-other-buffers t) (setq dabbrev-abbrev-char-regexp "\\sw\\|\\s_") (add-hook 'emacs-lisp-mode-hook '(lambda () (set (make-local-variable 'dabbrev-case-fold-search) nil) (set (make-local-variable 'dabbrev-case-replace) nil))) (add-hook 'c-mode-hook '(lambda () (set (make-local-variable 'dabbrev-case-fold-search) nil) (set (make-local-variable 'dabbrev-case-replace) nil))) (add-hook 'text-mode-hook '(lambda () (set (make-local-variable 'dabbrev-case-fold-search) t) (set (make-local-variable 'dabbrev-case-replace) t))) ;; C++ and C mode... (defun my-c++-mode-hook () (setq tab-width 4) (define-key c++-mode-map "\C-m" 'reindent-then-newline-and-indent) (define-key c++-mode-map "\C-ce" 'c-comment-edit) (setq c++-auto-hungry-initial-state 'none) (setq c++-delete-function 'backward-delete-char) (setq c++-tab-always-indent t) (setq c-indent-level 4) (setq c-continued-statement-offset 4) (setq c++-empty-arglist-indent 4)) (defun my-c-mode-hook () (setq tab-width 4) (define-key c-mode-map "\C-m" 'reindent-then-newline-and-indent) (define-key c-mode-map "\C-ce" 'c-comment-edit) (setq c-auto-hungry-initial-state 'none) (setq c-delete-function 'backward-delete-char) (setq c-tab-always-indent t) ;; BSD-ish indentation style (setq c-indent-level 4) (setq c-continued-statement-offset 4) (setq c-brace-offset -4) (setq c-argdecl-indent 0) (setq c-label-offset -4)) ;; Perl mode (defun my-perl-mode-hook () (setq tab-width 4) (define-key c++-mode-map "\C-m" 'reindent-then-newline-and-indent) (setq perl-indent-level 4) (setq perl-continued-statement-offset 4)) ;; Scheme mode... (defun my-scheme-mode-hook () (define-key scheme-mode-map "\C-m" 'reindent-then-newline-and-indent)) ;; Emacs-Lisp mode... (defun my-lisp-mode-hook () (define-key lisp-mode-map "\C-m" 'reindent-then-newline-and-indent) (define-key lisp-mode-map "\C-i" 'lisp-indent-line) (define-key lisp-mode-map "\C-j" 'eval-print-last-sexp)) ;; Add all of the hooks... (add-hook 'c++-mode-hook 'my-c++-mode-hook) (add-hook 'c-mode-hook 'my-c-mode-hook) (add-hook 'scheme-mode-hook 'my-scheme-mode-hook) (add-hook 'emacs-lisp-mode-hook 'my-lisp-mode-hook) (add-hook 'lisp-mode-hook 'my-lisp-mode-hook) (add-hook 'perl-mode-hook 'my-perl-mode-hook) ;; Complement to next-error (defun previous-error (n) "Visit previous compilation error message and corresponding source code." (interactive "p") (next-error (- n))) ;; Misc... (transient-mark-mode 1) (setq mark-even-if-inactive t) (setq visible-bell nil) (setq next-line-add-newlines nil) (setq compile-command "make") (setq suggest-key-bindings nil) (put 'eval-expression 'disabled nil) (put 'narrow-to-region 'disabled nil) (put 'set-goal-column 'disabled nil) ;; Elisp archive searching (autoload 'format-lisp-code-directory "lispdir" nil t) (autoload 'lisp-dir-apropos "lispdir" nil t) (autoload 'lisp-dir-retrieve "lispdir" nil t) (autoload 'lisp-dir-verify "lispdir" nil t) ;; Font lock mode (defun my-make-face (face colour &optional bold) "Create a face from a colour and optionally make it bold" (make-face face) (copy-face 'default face) (set-face-foreground face colour) (if bold (make-face-bold face)) ) (if (eq window-system 'x) (progn (my-make-face 'blue "blue") (my-make-face 'red "red") (my-make-face 'green "dark green") (setq font-lock-comment-face 'blue) (setq font-lock-string-face 'bold) (setq font-lock-type-face 'bold) (setq font-lock-keyword-face 'bold) (setq font-lock-function-name-face 'red) (setq font-lock-doc-string-face 'green) (add-hook 'find-file-hooks 'font-lock-auto-mode-select) (setq baud-rate 1000000) (global-set-key "\C-cmm" 'menu-bar-mode) (global-set-key "\C-cms" 'scroll-bar-mode) (global-set-key [backspace] 'backward-delete-char) ; (global-set-key [delete] 'delete-char) (standard-display-european t) (load-library "iso-transl"))) ;; X11 or PC using direct screen writes (if window-system (progn ;; (global-set-key [M-f1] 'hilit-repaint-command) ;; (global-set-key [M-f2] [?\C-u M-f1]) (setq hilit-mode-enable-list '(not text-mode c-mode c++-mode emacs-lisp-mode lisp-mode scheme-mode) hilit-auto-highlight nil hilit-auto-rehighlight 'visible hilit-inhibit-hooks nil hilit-inhibit-rebinding t) (require 'hilit19) (require 'paren)) (setq baud-rate 2400) ; For slow serial connections ) ;; TTY type terminal (if (and (not window-system) (not (equal system-type 'ms-dos))) (progn (if first-time (progn (keyboard-translate ?\C-h ?\C-?) (keyboard-translate ?\C-? ?\C-h))))) ;; Under UNIX (if (not (equal system-type 'ms-dos)) (progn (if first-time (server-start)))) ;; Add any face changes here (add-hook 'term-setup-hook 'my-term-setup-hook) (defun my-term-setup-hook () (if (eq window-system 'pc) (progn ;; (set-face-background 'default "red") ))) ;; Restore the "desktop" - do this as late as possible (if first-time (progn (desktop-load-default) (desktop-read))) ;; Indicate that this file has been read at least once (setq first-time nil) ;; No need to debug anything now (setq debug-on-error nil) ;; All done (message "All done, %s%s" (user-login-name) ".") Extending the Range of Languages Emacs Understands Now, this is all very well if you only want to program in the languages already catered for in the .emacs file (C, C++, Perl, Lisp and Scheme), but what happens if a new language called whizbang comes out, full of exciting features? The first thing to do is find out if whizbang comes with any files that tell Emacs about the language. These usually end in .el, short for Emacs Lisp. For example, if whizbang is a FreeBSD port, we can locate these files by doing &prompt.user; find /usr/ports/lang/whizbang -name "*.el" -print and install them by copying them into the Emacs site Lisp directory. On FreeBSD 2.1.0-RELEASE, this is /usr/local/share/emacs/site-lisp. So for example, if the output from the find command was /usr/ports/lang/whizbang/work/misc/whizbang.el we would do &prompt.root; cp /usr/ports/lang/whizbang/work/misc/whizbang.el /usr/local/share/emacs/site-lisp Next, we need to decide what extension whizbang source files have. Let's say for the sake of argument that they all end in .wiz. We need to add an entry to our .emacs file to make sure Emacs will be able to use the information in whizbang.el. Find the auto-mode-alist entry in .emacs and add a line for whizbang, such as: … ("\\.lsp$" . lisp-mode) ("\\.wiz$" . whizbang-mode) ("\\.scm$" . scheme-mode) This means that Emacs will automatically go into whizbang-mode when you edit a file ending in .wiz. Just below this, you'll find the font-lock-auto-mode-list entry. Add whizbang-mode to it like so: ;; Auto font lock mode (defvar font-lock-auto-mode-list (list 'c-mode 'c++-mode 'c++-c-mode 'emacs-lisp-mode 'whizbang-mode 'lisp-mode 'perl-mode 'scheme-mode) "List of modes to always start in font-lock-mode") This means that Emacs will always enable font-lock-mode (ie syntax highlighting) when editing a .wiz file. And that's all that's needed. If there's anything else you want done automatically when you open up a .wiz file, you can add a whizbang-mode hook (see my-scheme-mode-hook for a simple example that adds auto-indent). Further Reading Brian Harvey and Matthew Wright Simply Scheme MIT 1994. ISBN 0-262-08226-8 Randall Schwartz Learning Perl O'Reilly 1993 ISBN 1-56592-042-2 Patrick Henry Winston and Berthold Klaus Paul Horn Lisp (3rd Edition) Addison-Wesley 1989 ISBN 0-201-08319-1 Brian W. Kernighan and Rob Pike The Unix Programming Environment Prentice-Hall 1984 ISBN 0-13-937681-X Brian W. Kernighan and Dennis M. Ritchie The C Programming Language (2nd Edition) Prentice-Hall 1988 ISBN 0-13-110362-8 Bjarne Stroustrup The C++ Programming Language Addison-Wesley 1991 ISBN 0-201-53992-6 W. Richard Stevens Advanced Programming in the Unix Environment Addison-Wesley 1992 ISBN 0-201-56317-7 W. Richard Stevens Unix Network Programming Prentice-Hall 1990 ISBN 0-13-949876-1 diff --git a/en_US.ISO8859-1/books/faq/book.sgml b/en_US.ISO8859-1/books/faq/book.sgml index 814df87057..5bb0077bb6 100644 --- a/en_US.ISO8859-1/books/faq/book.sgml +++ b/en_US.ISO8859-1/books/faq/book.sgml @@ -1,12517 +1,12517 @@ %man; %freebsd; %authors; %bookinfo; %mailing-lists; ]> Frequently Asked Questions for FreeBSD 2.X, 3.X and 4.X The FreeBSD Documentation Project $FreeBSD$ 1995 1996 1997 1998 1999 2000 2001 The FreeBSD Documentation Project &bookinfo.legalnotice; This is the FAQ for FreeBSD versions 2.X, 3.X, and 4.X. All entries are assumed to be relevant to FreeBSD 2.0.5 and later, unless otherwise noted. Any entries with a <XXX> are under construction. If you are interested in helping with this project, send email to the &a.doc;. The latest version of this document is always available from the FreeBSD World Wide Web + URL="../../../../index.html">FreeBSD World Wide Web server. It may also be downloaded as one large HTML file with HTTP or as plain text, postscript, PDF, etc. from the FreeBSD FTP server. You may also want to Search the + URL="../../../../search/index.html">Search the FAQ. Introduction Welcome to the FreeBSD 2.X-4.X FAQ! As is usual with Usenet FAQs, this document aims to cover the most frequently asked questions concerning the FreeBSD operating system (and of course answer them!). Although originally intended to reduce bandwidth and avoid the same old questions being asked over and over again, FAQs have become recognized as valuable information resources. Every effort has been made to make this FAQ as informative as possible; if you have any suggestions as to how it may be improved, please feel free to mail them to the &a.faq;. What is FreeBSD? Briefly, FreeBSD is a UN*X-like operating system for the i386 and Alpha/AXP platforms based on U.C. Berkeley's 4.4BSD-Lite release, with some 4.4BSD-Lite2 enhancements. It is also based indirectly on William Jolitz's port of U.C. Berkeley's Net/2 to the i386, known as 386BSD, though very little of the 386BSD code remains. A fuller description of what FreeBSD is and how it can work for you may be found on - the FreeBSD home + the FreeBSD home page. FreeBSD is used by companies, Internet Service Providers, researchers, computer professionals, students and home users all over the world in their work, education and recreation. See some of them in the FreeBSD + URL="../../../../gallery/index.html">FreeBSD Gallery. For more detailed information on FreeBSD, please see the FreeBSD Handbook. What are the goals of FreeBSD? The goals of the FreeBSD Project are to provide software that may be used for any purpose and without strings attached. Many of us have a significant investment in the code (and project) and would certainly not mind a little financial compensation now and then, but we are definitely not prepared to insist on it. We believe that our first and foremost mission is to provide code to any and all comers, and for whatever purpose, so that the code gets the widest possible use and provides the widest possible benefit. This is, we believe, one of the most fundamental goals of Free Software and one that we enthusiastically support. That code in our source tree which falls under the GNU General Public + url="../../../../copyright/COPYING">GNU General Public License (GPL) or GNU Library + url="../../../../copyright/COPYING.LIB">GNU Library General Public License (LGPL) comes with slightly more strings attached, though at least on the side of enforced access rather than the usual opposite. Due to the additional complexities that can evolve in the commercial use of GPL software, we do, however, endeavor to replace such software with submissions under the more relaxed + url="../../../../copyright/freebsd-license.html"> FreeBSD copyright whenever possible. Why is it called FreeBSD? It may be used free of charge, even by commercial users. Full source for the operating system is freely available, and the minimum possible restrictions have been placed upon its use, distribution and incorporation into other work (commercial or non-commercial). Anyone who has an improvement and/or bug fix is free to submit their code and have it added to the source tree (subject to one or two obvious provisions). For those of our readers whose first language is not English, it may be worth pointing out that the word free is being used in two ways here, one meaning at no cost, the other meaning you can do whatever you like. Apart from one or two things you cannot do with the FreeBSD code, for example pretending you wrote it, you really can do whatever you like with it. What is the latest version of FreeBSD? Version &rel.current; is the latest STABLE version; it was released in &rel.current.date;. This is also the latest RELEASE version. Briefly explained, -STABLE is aimed at the ISP or other corporate user who wants stability and a low change count over the wizzy new features of the latest -CURRENT snapshot. Releases can come from either branch, but you should only use -CURRENT if you are sure that you are prepared for its increased volatility (relative to -STABLE, that is). Releases are only made every few months. While many people stay more up-to-date with the FreeBSD sources (see the questions on FreeBSD-CURRENT and FreeBSD-STABLE) than that, doing so is more of a commitment, as the sources are a moving target. What is FreeBSD-CURRENT? FreeBSD-CURRENT is the development version of the operating system, which will in due course become 5.0-RELEASE. As such, it is really only of interest to developers working on the system and die-hard hobbyists. See the relevant section in the handbook for details on running -CURRENT. If you are not familiar with the operating system or are not capable of identifying the difference between a real problem and a temporary problem, you should not use FreeBSD-CURRENT. This branch sometimes evolves quite quickly and can be un-buildable for a number of days at a time. People that use FreeBSD-CURRENT are expected to be able to analyze any problems and only report them if they are deemed to be mistakes rather than glitches. Questions such as make world produces some error about groups on the -CURRENT mailing list are sometimes treated with contempt. Every day, snapshot + URL="../../../../releases/snapshots.html">snapshot releases are made based on the current state of the -CURRENT and -STABLE branches. Nowadays, distributions of the occasional snapshot are now being made available. The goals behind each snapshot release are: To test the latest version of the installation software. To give people who would like to run -CURRENT or -STABLE but who do not have the time and/or bandwidth to follow it on a day-to-day basis an easy way of bootstrapping it onto their systems. To preserve a fixed reference point for the code in question, just in case we break something really badly later. (Although CVS normally prevents anything horrible like this happening :) To ensure that any new features in need of testing have the greatest possible number of potential testers. No claims are made that any -CURRENT snapshot can be considered production quality for any purpose. If you want to run a stable and fully tested system, you will have to stick to full releases, or use the -STABLE snaphosts. Snapshot releases are directly available from ftp://current.FreeBSD.org/pub/FreeBSD/ for 5.0-CURRENT and releng4.FreeBSD.org for 4-STABLE snapshots. 3-STABLE snapshots are not being produced at the time of this writing (May 2000). Snapshots are generated, on the average, once a day for all actively developed branches. What is the FreeBSD-STABLE concept? Back when FreeBSD 2.0.5 was released, we decided to branch FreeBSD development into two parts. One branch was - named -STABLE, + named -STABLE, with the intention that only well-tested bug fixes and small incremental enhancements would be made to it (for Internet Service Providers and other commercial enterprises for whom sudden shifts or experimental features are quite undesirable). The other branch was -CURRENT, which essentially has been one unbroken line leading towards 5.0-RELEASE (and beyond) since 2.0 was released. If a little ASCII art would help, this is how it looks: 2.0 | | | [2.1-STABLE] *BRANCH* 2.0.5 -> 2.1 -> 2.1.5 -> 2.1.6 -> 2.1.7.1 [2.1-STABLE ends] | (Mar 1997) | | | [2.2-STABLE] *BRANCH* 2.2.1 -> 2.2.2-RELEASE -> 2.2.5 -> 2.2.6 -> 2.2.7 -> 2.2.8 [end] | (Mar 1997) (Oct 97) (Apr 98) (Jul 98) (Dec 98) | | 3.0-SNAPs (started Q1 1997) | | 3.0-RELEASE (Oct 1998) | | [3.0-STABLE] *BRANCH* 3.1-RELEASE (Feb 1999) -> 3.2 -> 3.3 -> 3.4 -> 3.5 -> 3.5.1 | (May 1999) (Sep 1999) (Dec 1999) (June 2000) (July 2000) | | [4.0-STABLE] *BRANCH* 4.0 (Mar 2000) -> 4.1 -> 4.1.1 -> 4.2 -> 4.3 -> 4.4 -> ... future 4.x releases ... | | (July 2000) (Sep 2000) (Nov 2000) \|/ + [5.0-CURRENT continues] The 2.2-STABLE branch was retired with the release of 2.2.8. The 3-STABLE branch has ended with the release of 3.5.1, the final 3.X release. The only changes made to either of these branches will be, for the most part, security-related bug fixes. 4-STABLE is the actively developed -STABLE branch. The latest release on the 4-STABLE is &rel.current;-RELEASE, which was released in &rel.current.date;. The 5-CURRENT branch is slowly progressing toward 5.0-RELEASE and beyond. See What is FreeBSD-CURRENT? for more information on this branch. When are FreeBSD releases made? As a general principle, the FreeBSD core team only release a new version of FreeBSD when they believe that there are sufficient new features and/or bug fixes to justify one, and are satisfied that the changes made have settled down sufficiently to avoid compromising the stability of the release. Many users regard this caution as one of the best things about FreeBSD, although it can be a little frustrating when waiting for all the latest goodies to become available... Releases are made about every 4 months on average. For people needing (or wanting) a little more excitement, binary snapshots are made every day... see above. Who is responsible for FreeBSD? The key decisions concerning the FreeBSD project, such as the overall direction of the project and who is allowed to add code to the source tree, are made by a core team of + URL="../../articles/contributors/staff-core.html">core team of 9 people. There is a much larger team of more than 200 committers who + URL="../../articles/contributors/staff-committers.html">committers who are authorized to make changes directly to the FreeBSD source tree. However, most non-trivial changes are discussed in advance in the mailing lists, and there are no restrictions on who may take part in the discussion. Where can I get FreeBSD? Every significant release of FreeBSD is available via anonymous FTP from the FreeBSD FTP site: For the current 3.X-STABLE release, 3.5.1-RELEASE, see the 3.5.1-RELEASE directory. The current 4-STABLE release, &rel.current;-RELEASE can be found in the &rel.current;-RELEASE directory. 4.X snapshots are usually made once a day. 5.0 Snapshot releases are made once a day for the -CURRENT branch, these being of service purely to bleeding-edge testers and developers. Information about obtaining FreeBSD on CD, DVD, and other media can be found in the Handbook. Where do I find info on the FreeBSD mailing lists? You can find full information in the Handbook entry on mailing-lists. Where do I find the FreeBSD Y2K info? You can find full information in the FreeBSD Y2K + URL="../../../../y2kbug.html">FreeBSD Y2K page. What FreeBSD news groups are available? You can find full information in the Handbook entry on newsgroups. Are there FreeBSD IRC (Internet Relay Chat) channels? Yes, most major IRC networks host a FreeBSD chat channel: Channel #FreeBSD on EFNet is a FreeBSD forum, but do not go there for tech support or to try and get folks there to help you avoid the pain of reading man pages or doing your own research. It is a chat channel, first and foremost, and topics there are just as likely to involve sex, sports or nuclear weapons as they are FreeBSD. You Have Been Warned! Available at server irc.chat.org. Channel #FreeBSDhelp on EFNet is a channel dedicated to helping FreeBSD users. They are much more sympathetic to questions then #FreeBSD is. Channel #FreeBSD on DALNET is available at irc.dal.net in the US and irc.eu.dal.net in Europe. Channel #FreeBSD on UNDERNET is available at us.undernet.org in the US and eu.undernet.org in Europe. Since it is a help channel, be prepared to read the documents you are referred to. Channel #FreeBSD on HybNet. This channel is a help channel. A list of servers can be found on the HybNet web site. Each of these channels are distinct and are not connected to each other. Their chat styles also differ, so you may need to try each to find one suited to your chat style. As with all types of IRC traffic, if you are easily offended or cannot deal with lots of young people (and more than a few older ones) doing the verbal equivalent of jello wrestling, do not even bother with it. How do I access the Problem Report database? The Problem Report database of all user change requests may be queried (or submitted to) by using our web-based PR submission + URL="../../../../send-pr.html">submission and query interfaces. The &man.send-pr.1; command can also be used to submit problem reports and change requests via electronic mail. Is the documentation available in other formats, such as plain text (ASCII), or Postscript? Yes. The documentation is available in a number of different formats and compression schemes on the FreeBSD FTP site, in the /pub/FreeBSD/doc/ directory. The documentation is categorised in a number of different ways. These include: The document's name, such as faq, or handbook. The document's language and encoding. These are based on the locale names you will find under /usr/share/locale on your FreeBSD system. The current languages and encodings that we have for documentation are as follows: Name Meaning en_US.ISO8859-1 US English de_DE.ISO8859-1 German es_ES.ISO8859-1 Spanish fr_FR.ISO8859-1 French ja_JP.eucJP Japanese (EUC encoding) ru_RU.KOI8-R Russian (KOI8-R encoding) zh_TW.Big5 Chinese (Big5 encoding) Some documents may not be available in all languages. The document's format. We produce the documentation in a number of different output formats to try and make it as flexible as possible. The current formats are; Format Meaning html-split A collection of small, linked, HTML files. html One large HTML file containing the entire document pdb Palm Pilot database format, for use with the iSilo reader. pdf Adobe's Portable Document Format ps Postscript rtf Microsoft's Rich Text Format Page numbers are not automatically updated when loading this format in to Word. Press CTRLA, CTRLEND, F9 after loading the document, to update the page numbers. txt Plain text The compression and packaging scheme. There are three of these currently in use. Where the format is html-split, the files are bundled up using &man.tar.1;. The resulting .tar file is then compressed using the compression schemes detailed in the next point. All the other formats generate one file, called book.format (i.e., book.pdb, book.html, and so on). These files are then compressed using three compression schemes. Scheme Description zip The Zip format. If you want to uncompress this on FreeBSD you will need to install the archivers/unzip port first. gz The GNU Zip format. Use &man.gunzip.1; to uncompress these files, which is part of FreeBSD. bz2 The BZip2 format. Less widespread than the others, but generally gives smaller files. Install the archivers/bzip2 port to uncompress these files. So the Postscript version of the Handbook, compressed using BZip2 will be stored in a file called book.ps.bz2 in the handbook/ directory. The formatted documentation is also available as a FreeBSD package, of which more later. After choosing the format and compression mechanism that you want to download, you must then decide whether or not you want to download the document as a FreeBSD package. The advantage of downloading and installing the package is that the documentation can then be managed using the normal FreeBSD package management comments, such as &man.pkg.add.1; and &man.pkg.delete.1;. If you decide to download and install the package then you must know the filename to download. The documentation-as-packages files are stored in a directory called packages. Each package file looks like document-name.lang.encoding.format.tgz. For example, the FAQ, in English, formatted as PDF, is in the package called faq.en_US.ISO8859-1.pdf.tgz. Knowing this, you can use the following command to install the English PDF FAQ package. &prompt.root; pkg_add ftp://ftp.FreeBSD.org/pub/FreeBSD/doc/packages/faq.en_US.ISO8859-1.pdf.tgz Having done that, you can use &man.pkg.info.1; to determine where the file has been installed. &prompt.root; pkg_info -f faq.en_US.ISO8859-1.pdf Information for faq.en_US.ISO8859-1.pdf: Packing list: Package name: faq.en_US.ISO8859-1.pdf CWD to /usr/share/doc/en_US.ISO8859-1/books/faq File: book.pdf CWD to . File: +COMMENT (ignored) File: +DESC (ignored) As you can see, book.pdf will have been installed in to /usr/share/doc/en_US.ISO8859-1/books/faq. If you do not want to use the packages then you will have to download the compressed files yourself, uncompress them, and then copy the appropriate documents in to place. For example, the split HTML version of the FAQ, compressed using &man.gzip.1;, can be found in the - en_US.ISO8859-1/books/faq/book.html-split.tar.gz + doc/en_US.ISO8859-1/books/faq/book.html-split.tar.gz file. To download and uncompress that file you would have to do this. - &prompt.root; fetch ftp://ftp.freebsd.org/pub/FreeBSD/doc/en_US.ISO8859-1/books/faq/book.html-split.tar.gz + &prompt.root; fetch ftp://ftp.FreeBSD.org/pub/FreeBSD/doc/en_US.ISO8859-1/books/faq/book.html-split.tar.gz &prompt.root; gzip -d book.html-split.tar.gz &prompt.root; tar xvf book.html-split.tar You will be left with a collection of .html files. The main one is called index.html, which will contain the table of contents, introductory material, and links to the other parts of the document. You can then copy or move these to their final location as necessary. How do I become a FreeBSD Web mirror? Certainly! There are multiple ways to mirror the Web pages. Using CVSup: You can retrieve the formatted files using CVSup, and connecting to a CVSup server. To retrieve the webpages, please look at the example supfile, which can be found in /usr/share/examples/cvsup/www-supfile. Using FTP mirror: You can download the FTP server's copy of the web site sources using your favorite ftp mirror tool. Keep in mind that you have to build these sources before publishing them. Simply start at ftp://ftp.FreeBSD.org/pub/FreeBSD/FreeBSD-current/www. What other sources of information are there? The following newsgroups contain pertinent discussion for FreeBSD users: comp.unix.bsd.freebsd.announce (moderated) comp.unix.bsd.freebsd.misc comp.unix.bsd.misc Web resources: The FreeBSD Home Page. + URL="../../../../index.html">FreeBSD Home Page. If you have a laptop, be sure and see Tatsumi Hosokawa's Mobile Computing page in Japan. For information on SMP (Symmetric MultiProcessing), please see the SMP support page. For information on FreeBSD multimedia applications, please see the multimedia page. If you are interested specifically in the Bt848 video capture chip, then follow that link. The FreeBSD handbook also has a fairly complete bibliography section which is worth reading if you are looking for actual books to buy. Nik Clayton -
nik@freebsd.org
+
nik@FreeBSD.org
Installation Which file do I download to get FreeBSD? Prior to release 3.1, you only needed one floppy image to install FreeBSD, namely floppies/boot.flp. However, since release 3.1 the Project has added base support for a wide variety of hardware which needed more space, and thus for 3.x and 4.x we now use two floppy images, namely floppies/kernel.flp and floppies/mfsroot.flp. These images need to be copied onto floppies by tools like fdimage or &man.dd.1;. If you need to download the distributions yourself (for a DOS filesystem install, for instance), below are some recommendations for distributions to grab: bin/ manpages/ compat*/ doc/ src/ssys.* Full instructions on this procedure and a little bit more about installation issues in general can be found in the Handbook entry on installing FreeBSD. What do I do if the floppy images does not fit on a single floppy? A 3.5 inch (1.44MB) floppy can accomodate 1474560 bytes of data. The boot image is exactly 1474560 bytes in size. Common mistakes when preparing the boot floppy are: Not downloading the floppy image in binary mode when using FTP. Some FTP clients default their transfer mode to ascii and attempt to change any end-of-line characters received to match the conventions used by the client's system. This will almost invariably corrupt the boot image. Check the size of the downloaded boot image: if it is not exactly that on the server, then the download process is suspect. To workaround: type binary at the FTP command prompt after getting connected to the server and before starting the download of the image. Using the DOS copy command (or equivalent GUI tool) to transfer the boot image to floppy. Programs like copy will not work as the boot image has been created to be booted into directly. The image has the complete content of the floppy, track for track, and is not meant to be placed on the floppy as a regular file. You have to transfer it to the floppy raw, using the low-level tools (e.g. fdimage or rawrite) described in the installation guide to FreeBSD. Where are the instructions for installing FreeBSD? Installation instructions can be found in the Handbook entry on installing FreeBSD. What do I need in order to run FreeBSD? You will need a 386 or better PC, with 5 MB or more of RAM and at least 60 MB of hard disk space. It can run with a low end MDA graphics card but to run X11R6, a VGA or better video card is needed. See also the section on I have only 4 MB of RAM. Can I install FreeBSD? FreeBSD 2.1.7 was the last version of FreeBSD that could be installed on a 4MB system. Newer versions of FreeBSD, like 2.2, need at least 5MB to install on a new system. All versions of FreeBSD, including 3.0, will run in 4MB of RAM, they just cannot run the installation program in 4MB. You can add extra memory for the install process, if you like, and then after the system is up and running, go back to 4MB. Or you could always just swap your disk into a system which has >4MB, install onto it and then swap it back. There are also situations in which FreeBSD 2.1.7 will not install in 4 MB. To be exact: it does not install with 640 kB base + 3 MB extended memory. If your motherboard can remap some of the lost memory out of the 640kB to 1MB region, then you may still be able to get FreeBSD 2.1.7 up. Try to go into your BIOS setup and look for a remap option. Enable it. You may also have to disable ROM shadowing. It may be easier to get 4 more MB just for the install. Build a custom kernel with only the options you need and then get the 4MB out again. You may also install 2.0.5 and then upgrade your system to 2.1.7 with the upgrade option of the 2.1.7 installation program. After the installation, if you build a custom kernel, it will run in 4 MB. Someone has even succeeded in booting with 2 MB (the system was almost unusable though :-)) How can I make my own custom install floppy? Currently there is no way to just make a custom install floppy. You have to cut a whole new release, which will include your install floppy. To make a custom release, follow the instructions here. Can I have more than one operating system on my PC? Have a look at - + The multi-OS page. Can Windows 95/98 co-exist with FreeBSD? Install Windows 95/98 first, after that FreeBSD. FreeBSD's boot manager will then manage to boot Win95/98 and FreeBSD. If you install Windows 95/98 second, it will boorishly overwrite your boot manager without even asking. If that happens, see the next section. Windows 95/98 killed my boot manager! How do I get it back? You can reinstall the boot manager FreeBSD comes with in one of three ways: Running DOS, go into the tools/ directory of your FreeBSD distribution and look for bootinst.exe. You run it like so: ...\TOOLS> bootinst.exe boot.bin and the boot manager will be reinstalled. Boot the FreeBSD boot floppy again and go to the Custom installation menu item. Choose Partition. Select the drive which used to contain your boot manager (likely the first one) and when you come to the partition editor for it, as the very first thing (e.g. do not make any changes) select (W)rite. This will ask for confirmation, say yes, and when you get the Boot Manager selection prompt, be sure to select Boot Manager. This will re-write the boot manager to disk. Now quit out of the installation menu and reboot off the hard disk as normal. Boot the FreeBSD boot floppy (or CDROM) and choose the Fixit menu item. Select either the Fixit floppy or CDROM #2 (the live file system option) as appropriate and enter the fixit shell. Then execute the following command: Fixit# fdisk -B -b /boot/boot0 bootdevice substituting bootdevice for your real boot device such as ad0 (first IDE disk), ad4 (first IDE disk on auxiliary controller), da0 (first SCSI disk), etc. My A, T, or X series IBM Thinkpad locks up when I first booted up my FreeBSD installation. How can I solve this? A bug in early revisions of IBM's BIOS on these machines mistakenly identifies the FreeBSD partition as a potential FAT suspend-to-disk partition. When the BIOS tries to parse the FreeBSD partition it hangs. According to IBMIn an e-mail from Keith Frechette kfrechet@us.ibm.com., the following model/BIOS release numbers incorporate the fix. Model BIOS revision T20 IYET49WW or later T21 KZET22WW or later A20p IVET62WW or later A20m IWET54WW or later A21p KYET27WW or later A21m KXET24WW or later A21e KUET30WW It has been reported that later IBM BIOS revisions may have reintroduced the bug. This message from Jacques Vidrine to the &a.mobile; describes a procedure which may work if your newer IBM laptop does not boot FreeBSD properly, and you can upgrade or downgrade the BIOS.. If you have an earlier BIOS, and upgrading is not an option a workaround is to install FreeBSD, change the partition ID FreeBSD uses, and install new boot blocks that can handle the different partition ID. First, you will need to restore the machine to a state where it can get through its self-test screen. Doing this requires powering up the machine without letting it find a FreeBSD partition on its primary disk. One way is to remove the hard disk and temporarily move it to an older ThinkPad (such as a ThinkPad 600) or a desktop PC with an appropriate conversion cable. Once it is there, you can delete the FreeBSD partition and move the hard disk back. The ThinkPad should now be in a bootable state again. With the machine functional again, you can use the workaround procedure described here to get a working FreeBSD installation. Download boot1 and boot2 from http://people.freebsd.org/~bmah/ThinkPad/. + url="http://people.FreeBSD.org/~bmah/ThinkPad/">http://people.FreeBSD.org/~bmah/ThinkPad/. Put these files somewhere you will be able to retrieve them later. Install FreeBSD as normal on to the ThinkPad. Do not use Dangerously Dedicated mode. Do not reboot when the install has finished. Either switch to the Emergency Holographic Shell (ALT F4) or start a fixit shell. Use &man.fdisk.8; to change the FreeBSD partition ID from 165 to 166 (this is the type used by OpenBSD). Bring the boot1 and boot2 files to the local filesystem. Use &man.disklabel.8; to write boot1 and boot2 to your FreeBSD slice. &prompt.root; disklabel -B -b boot1 -s boot2 ad0sn n is the number of the slice where you installed FreeBSD. Reboot. At the boot prompt you will be given the option of booting OpenBSD. This will actually boot FreeBSD. Getting this to work in the case where you want to dual boot OpenBSD and FreeBSD on the same laptop is left as an exercise for the reader. Can I install on a disk with bad blocks? Prior to 3.0, FreeBSD included a utility known as bad144, which automatically remapped bad blocks. Because modern IDE drives perform this function themselves, bad144 has been removed from the FreeBSD source tree. If you wish to install FreeBSD 3.0 or later, we strongly suggest you purchase a newer disk drive. If you do not wish to do this, you must run FreeBSD 2.x. If you are seeing bad block errors with a modern IDE drive, chances are the drive is going to die very soon (the drive's internal remapping functions are no longer sufficient to fix the bad blocks, which means the disk is heavily corrupted); we suggest you buy a new hard drive. If you have a SCSI drive with bad blocks, see this answer. Strange things happen when I boot the install floppy! What is happening? If you are seeing things like the machine grinding to a halt or spontaneously rebooting when you try to boot the install floppy, here are three questions to ask yourself:- Did you use a new, freshly-formatted, error-free floppy (preferably a brand-new one straight out of the box, as opposed to the magazine coverdisk that has been lying under the bed for the last three years)? Did you download the floppy image in binary (or image) mode? (do not be embarrassed, even the best of us have accidentally downloaded a binary file in ASCII mode at least once!) If you are using Windows95 or Win98 did you run fdimage or rawrite in pure DOS mode? These OS's can interfere with programs that write directly to hardware, which the disk creation program does; even running it inside a DOS shell in the GUI can cause this problem. There have also been reports of Netscape causing problems when downloading the boot floppy, so it is probably best to use a different FTP client if you can. I booted from my ATAPI CDROM, but the install program says no CDROM is found. Where did it go? The usual cause of this problem is a mis-configured CDROM drive. Many PCs now ship with the CDROM as the slave device on the secondary IDE controller, with no master device on that controller. This is illegal according to the ATAPI specification, but Windows plays fast and loose with the specification, and the BIOS ignores it when booting. This is why the BIOS was able to see the CDROM to boot from it, but why FreeBSD cannot see it to complete the install. Reconfigure your system so that the CDROM is either the master device on the IDE controller it is attached to, or make sure that it is the slave on an IDE controller that also has a master device. Why can I not install from tape? If you are installing 2.1.7R from tape, you must create the tape using a tar blocksize of 10 (5120 bytes). The default tar blocksize is 20 (10240 bytes), and tapes created using this default size cannot be used to install 2.1.7R; with these tapes, you will get an error that complains about the record size being too big. Can I install on my laptop over PLIP (Parallel Line IP)? Connect the two computers using a Laplink parallel cable to use this feature: Wiring a parallel cable for networking A-name A-End B-End Descr. Post/Bit DATA0 -ERROR 2 15 15 2 Data 0/0x01 1/0x08 DATA1 +SLCT 3 13 13 3 Data 0/0x02 1/0x10 DATA2 +PE 4 12 12 4 Data 0/0x04 1/0x20 DATA3 -ACK 5 10 10 5 Strobe 0/0x08 1/0x40 DATA4 BUSY 6 11 11 6 Data 0/0x10 1/0x80 GND 18-25 18-25 GND -
See also this note on the Mobile Computing page.
Which geometry should I use for a disk drive? By the geometry of a disk, we mean the number of cylinders, heads and sectors/track on a disk - I will refer to this as C/H/S for convenience. This is how the PC's BIOS works out which area on a disk to read/write from. This seems to cause a lot of confusion for some reason. First of all, the physical geometry of a SCSI drive is totally irrelevant, as FreeBSD works in term of disk blocks. In fact, there is no such thing as the physical geometry, as the sector density varies across the disk - what manufacturers claim is the physical geometry is usually the geometry that they have worked out results in the least wasted space. For IDE disks, FreeBSD does work in terms of C/H/S, but all modern drives will convert this into block references internally as well. All that matters is the logical geometry - the answer that the BIOS gets when it asks what is your geometry? and then uses to access the disk. As FreeBSD uses the BIOS when booting, it is very important to get this right. In particular, if you have more than one operating system on a disk, they must all agree on the geometry, otherwise you will have serious problems booting! For SCSI disks, the geometry to use depends on whether extended translation support is turned on in your controller (this is often referred to as support for DOS disks >1GB or something similar). If it is turned off, then use N cylinders, 64 heads and 32 sectors/track, where N is the capacity of the disk in MB. For example, a 2GB disk should pretend to have 2048 cylinders, 64 heads and 32 sectors/track. If it is turned on (it is often supplied this way to get around certain limitations in MSDOS) and the disk capacity is more than 1GB, use M cylinders, 63 sectors per track (not 64), and 255 heads, where 'M' is the disk capacity in MB divided by 7.844238 (!). So our example 2GB drive would have 261 cylinders, 63 sectors per track and 255 heads. If you are not sure about this, or FreeBSD fails to detect the geometry correctly during installation, the simplest way around this is usually to create a small DOS partition on the disk. The correct geometry should then be detected (and you can always remove the DOS partition in the partition editor if you do not want to keep it, or leave it around for programming network cards and the like). Alternatively, there is a freely available utility distributed with FreeBSD called pfdisk.exe (located in the tools subdirectory on the FreeBSD CDROM or on the various FreeBSD FTP sites) which can be used to work out what geometry the other operating systems on the disk are using. You can then enter this geometry in the partition editor. Are there any restrictions on how I divide the disk up? Yes. You must make sure that your root partition is below 1024 cylinders so the BIOS can boot the kernel from it. (Note that this is a limitation in the PC's BIOS, not FreeBSD). For a SCSI drive, this will normally imply that the root partition will be in the first 1024MB (or in the first 4096MB if extended translation is turned on - see previous question). For IDE, the corresponding figure is 504MB. Is FreeBSD compatible with any disk managers? FreeBSD recognizes the Ontrack Disk Manager and makes allowances for it. Other disk managers are not supported. If you just want to use the disk with FreeBSD you do not need a disk manager. Just configure the disk for as much space as the BIOS can deal with (usually 504 megabytes), and FreeBSD should figure out how much space you really have. If you are using an old disk with an MFM controller, you may need to explicitly tell FreeBSD how many cylinders to use. If you want to use the disk with FreeBSD and another operating system, you may be able to do without a disk manager: just make sure the FreeBSD boot partition and the slice for the other operating system are in the first 1024 cylinders. If you are reasonably careful, a 20 megabyte boot partition should be plenty. When I boot FreeBSD I get Missing Operating System. What is happening? This is classically a case of FreeBSD and DOS or some other OS conflicting over their ideas of disk geometry. You will have to reinstall FreeBSD, but obeying the instructions given above will almost always get you going. Why can I not get past the boot manager's F? prompt? This is another symptom of the problem described in the preceding question. Your BIOS geometry and FreeBSD geometry settings do not agree! If your controller or BIOS supports cylinder translation (often marked as >1GB drive support), try toggling its setting and reinstalling FreeBSD. Do I need to install the complete sources? In general, no. However, we would strongly recommend that you install, at a minimum, the base source kit, which includes several of the files mentioned here, and the sys (kernel) source kit, which includes sources for the kernel. There is nothing in the system which requires the presence of the sources to operate, however, except for the kernel-configuration program &man.config.8;. With the exception of the kernel sources, our build structure is set up so that you can read-only mount the sources from elsewhere via NFS and still be able to make new binaries. (Because of the kernel-source restriction, we recommend that you not mount this on /usr/src directly, but rather in some other location with appropriate symbolic links to duplicate the top-level structure of the source tree.) Having the sources on-line and knowing how to build a system with them will make it much easier for you to upgrade to future releases of FreeBSD. To actually select a subset of the sources, use the Custom menu item when you are in the Distributions menu of the system installation tool. Do I need to build a kernel? Building a new kernel was originally pretty much a required step in a FreeBSD installation, but more recent releases have benefited from the introduction of a much friendlier kernel configuration tool. When at the FreeBSD boot prompt (boot:), use the flag and you will be dropped into a visual configuration screen which allows you to configure the kernel's settings for most common ISA cards. It is still recommended that you eventually build a new kernel containing just the drivers that you need, just to save a bit of RAM, but it is no longer a strict requirement for most systems. Should I use DES passwords, or MD5, and how do I specify which form my users receive? The default password format on FreeBSD is to use MD5-based passwords. These are believed to be more secure than the traditional Unix password format, which used a scheme based on the DES algorithm. DES passwords are still available if you need to share your password file with legacy operating systems which still use the less secure password format (they are available if you choose to install the crypto distribution in sysinstall, or by installing the crypto sources if building from source). Which password format to use for new passwords is controlled by the passwd_format login capability in /etc/login.conf, which takes values of either des (if available) or md5. See the &man.login.conf.5; manpage for more information about login capabilities. Why does the boot floppy start, but hang at the Probing Devices... screen? If you have a IDE Zip or Jaz drive installed, remove it and try again. The boot floppy can get confused by the drives. After the system is installed you can reconnect the drive. Hopefully this will be fixed in a later release. Why do I get a panic: can't mount root error when rebooting the system after installation? This error comes from confusion between the boot block's and the kernel's understanding of the disk devices. The error usually manifests on two-disk IDE systems, with the hard disks arranged as the master or single device on separate IDE controllers, with FreeBSD installed on the secondary IDE controller. The boot blocks think the system is installed on wd1 (the second BIOS disk) while the kernel assigns the first disk on the secondary controller device wd2. After the device probing, the kernel tries to mount what the boot blocks think is the boot disk, wd1, while it is really wd2, and fails. To fix the problem, do one of the following: For FreeBSD 3.3 and later, reboot the system and hit Enter at the Booting kernel in 10 seconds; hit [Enter] to interrupt prompt. This will drop you into the boot loader. Then type set root_disk_unit="disk_number" . disk_number will be 0 if FreeBSD is installed on the master drive on the first IDE controller, 1 if it is installed on the slave on the first IDE controller, 2 if it is installed on the master of the second IDE controller, and 3 if it is installed on the slave of the second IDE controller. Then type boot, and your system should boot correctly. To make this change permanent (ie so you do not have to do this every time you reboot or turn on your FreeBSD machine), put the line root_disk_unit="disk_number" in /boot/loader.conf.local . If using FreeBSD 3.2 or earlier, at the Boot: prompt, enter 1:wd(2,a)kernel and press Enter. If the system starts, then run the command echo "1:wd(2,a)kernel" > /boot.config to make it the default boot string. Move the FreeBSD disk onto the primary IDE controller, so the hard disks are consecutive. Rebuild your kernel, modify the wd configuration lines to read: controller wdc0 at isa? port "IO_WD1" bio irq 14 vector wdintr disk wd0 at wdc0 drive 0 # disk wd1 at wdc0 drive 1 # comment out this line controller wdc1 at isa? port "IO_WD2" bio irq 15 vector wdintr disk wd1 at wdc1 drive 0 # change from wd2 to wd1 disk wd2 at wdc1 drive 1 # change from wd3 to wd2 Install the new kernel. If you moved your disks and wish to restore the previous configuration, replace the disks in the desired configuration and reboot. Your system should boot successfully. What are the limits for memory? For memory, the limit is 4 gigabytes. This configuration has been tested, see wcarchive's configuration for more details. If you plan to install this much memory into a machine, you need to be careful. You will probably want to use ECC memory and to reduce capacitive loading use 9 chip memory modules versus 18 chip memory modules. What are the limits for ffs filesystems? For ffs filesystems, the maximum theoretical limit is 8 terabytes (2G blocks), or 16TB for the default block size of 8K. In practice, there is a soft limit of 1 terabyte, but with modifications filesystems with 4 terabytes are possible (and exist). The maximum size of a single ffs file is approximately 1G blocks (4TB) if the block size is 4K. Maximum file sizes fs block size 2.2.7-stable 3.0-current works should work 4K 4T-1 4T-1 4T-1 >4T 8K >32G 8T-1 >32G 32T-1 16K >128G 16T-1 >128G 32T-1 32K >512G 32T-1 >512G 64T-1 64K >2048G 64T-1 >2048G 128T-1
When the fs block size is 4K, triple indirect blocks work and everything should be limited by the maximum fs block number that can be represented using triple indirect blocks (approx. 1K^3 + 1K^2 + 1K), but everything is limited by a (wrong) limit of 1G-1 on fs block numbers. The limit on fs block numbers should be 2G-1. There are some bugs for fs block numbers near 2G-1, but such block numbers are unreachable when the fs block size is 4K. For block sizes of 8K and larger, everything should be limited by the 2G-1 limit on fs block numbers, but is actually limited by the 1G-1 limit on fs block numbers, except under -STABLE triple indirect blocks are unreachable, so the limit is the maximum fs block number that can be represented using double indirect blocks (approx. (blocksize/4)^2 + (blocksize/4)), and under -CURRENT exceeding this limit may cause problems. Using the correct limit of 2G-1 blocks does cause problems.
How can I put 1TB files on my floppy? I keep several virtual ones on floppies :-). The maximum file size is not closely related to the maximum disk size. The maximum disk size is 1TB. It is a feature that the file size can be larger than the disk size. The following example creates a file of size 8T-1 using a whole 32K of disk space (3 indirect blocks and 1 data block) on a small root partition. The dd command requires a dd that works with large files. &prompt.user; cat foo df . dd if=/dev/zero of=z bs=1 seek=`echo 2^43 - 2 | bc` count=1 ls -l z du z df . &prompt.user; sh foo Filesystem 1024-blocks Used Avail Capacity Mounted on /dev/da0a 64479 27702 31619 47% / 1+0 records in 1+0 records out 1 bytes transferred in 0.000187 secs (5346 bytes/sec) -rw-r--r-- 1 bde bin 8796093022207 Sep 7 16:04 z 32 z Filesystem 1024-blocks Used Avail Capacity Mounted on /dev/da0a 64479 27734 31587 47% / Bruce Evans, September 1998 Why do I get an error message, archsw.readin.failed after compiling and booting a new kernel? You can boot by specifying the kernel directly at the second stage, pressing any key when the | shows up before loader is started. More specifically, you have upgraded the source for your kernel, and installed a new kernel builtin from them without making world. This is not supported. Make world. How do I upgrade from 3.X -> 4.X? We strongly recommend that you use binary snapshots to do this. 4-STABLE snapshots are available at releng4.FreeBSD.org. + URL="ftp://releng4.FreeBSD.org/">ftp://releng4.FreeBSD.org/. If you wish to upgrade using source, please see the FreeBSD + URL="../handbook/cutting-edge.html">FreeBSD Handbook for more information. Upgrading via source is never recommended for new users, and upgrading from 3.X to 4.X is even less so; make sure you have read the instructions carefully before attempting to upgrade via source. What are these security profiles? A security profile is a set of configuration options that attempts to achieve the desired ratio of security to convenience by enabling and disabling certain programs and other settings. The more severe the security profile, the fewer programs will be enabled by default. This is one of the basic principles of security: do not run anything except what you must. Please note that the security profile is just a default setting. All programs can be enabled and disabled after you have installed FreeBSD by editing or adding the appropriate line(s) to /etc/rc.conf. For more information, please see the &man.rc.conf.5; manual page. The following table describes what each of the security profiles does. The columns are the choices you have for a security profile, and the rows are the program or feature that the profile enables or disables. Possible security profiles Extreme Moderate &man.sendmail.8; NO YES &man.sshd.8; NO YES &man.portmap.8; NO MAYBE The portmapper is enabled if the machine has been configured as an NFS client or server earlier in the installation. NFS server NO YES &man.securelevel.8; YES (2) If you choose a security profile that sets the securelevel (Extreme or High), you must be aware of the implications. Please read the &man.init.8; manual page and pay particular attention to the meanings of the security levels, or you may have significant trouble later! NO
The security profile is not a silver bullet! Even if you use the extreme setting, you need to keep up with security issues by reading an appropriate mailing list, using good passwords and passphrases, and generally adhering to good security practices. It simply sets up the desired security to convenience ratio out of the box. The security profile mechanism is meant to be used when you first install FreeBSD. If you already have FreeBSD installed, it would probably be more beneficial to simply enable or disable the desired functionality. If you really want to use a security profile, you can re-run &man.sysinstall.8; to set it.
Hardware compatibility Does FreeBSD support architectures other than the x86? Yes. FreeBSD currently runs on both Intel x86 and DEC (now Compaq) Alpha architectures. Interest has also been expressed in a port of FreeBSD to the SPARC architecture, join the freebsd-sparc@FreeBSD.org mailing list if you are interested in joining that project. Most recent additions to the list of upcoming platforms are IA-64 and PowerPC, join the freebsd-ia64@FreeBSD.org and/or freebsd-ppc@FreeBSD.org mailing lists for more information. For general discussion on new architectures, join the freebsd-platforms@FreeBSD.org mailing list. If your machine has a different architecture and you need something right now, we suggest you look at NetBSD or OpenBSD. What kind of hard drives does FreeBSD support? FreeBSD supports EIDE and SCSI drives (with a compatible controller; see the next section), and all drives using the original Western Digital interface (MFM, RLL, ESDI, and of course IDE). A few ESDI controllers that use proprietary interfaces may not work: stick to WD1002/3/6/7 interfaces and clones. Which SCSI controllers are supported? See the complete list in the Handbook. Which CDROM drives are supported by FreeBSD? Any SCSI drive connected to a supported controller is supported. The following proprietary CDROM interfaces are also supported: Mitsumi LU002 (8bit), LU005 (16bit) and FX001D (16bit 2x Speed). Sony CDU 31/33A Sound Blaster Non-SCSI CDROM Matsushita/Panasonic CDROM ATAPI compatible IDE CDROMs All non-SCSI cards are known to be extremely slow compared to SCSI drives, and some ATAPI CDROMs may not work. As of 2.2 the FreeBSD CDROM from the FreeBSD Mall supports booting directly from the CD. Which CD-RW drives are supported by FreeBSD? FreeBSD supports any ATAPI-compatible IDE CD-R or CD-RW drive. For FreeBSD versions 4.0 and later, see the man page for &man.burncd.8;. For earlier FreeBSD versions, see the examples in /usr/share/examples/atapi. FreeBSD also supports any SCSI CD-R or CD-RW drives. Install and use the cdrecord command from the ports or packages system, and make sure that you have the pass device compiled in your kernel. Does FreeBSD support ZIP drives? FreeBSD supports the SCSI ZIP drive out of the box, of course. The ZIP drive can only be set to run at SCSI target IDs 5 or 6, but if your SCSI host adapter's BIOS supports it you can even boot from it. It is not clear which host adapters support booting from targets other than 0 or 1, so you will have to consult your adapter's documentation if you would like to use this feature. ATAPI (IDE) Zip drives are supported in FreeBSD 2.2.6 and later releases. FreeBSD has contained support for Parallel Port Zip Drives since version 3.0. If you are using a sufficiently up to date version, then you should check that your kernel contains the scbus0, da0, ppbus0, and vp0 drivers (the GENERIC kernel contains everything except vp0). With all these drivers present, the Parallel Port drive should be available as /dev/da0s4. Disks can be mounted using mount /dev/da0s4 /mnt OR (for dos disks) mount_msdos /dev/da0s4 /mnt as appropriate. Also check out this note on removable drives, and this note on formatting. Does FreeBSD support JAZ, EZ and other removable drives? Apart from the IDE version of the EZ drive, these are all SCSI devices, so they should all look like SCSI disks to FreeBSD, and the IDE EZ should look like an IDE drive. I am not sure how well FreeBSD supports changing the media out while running. You will of course need to dismount the drive before swapping media, and make sure that any external units are powered on when you boot the system so FreeBSD can see them. See this note on formatting. Which multi-port serial cards are supported by FreeBSD? There is a list of these in the Miscellaneous + URL="../handbook/install.html#INSTALL-MISC">Miscellaneous devices section of the handbook. Some unnamed clone cards have also been known to work, especially those that claim to be AST compatible. Check the &man.sio.4; man page to get more information on configuring such cards. Does FreeBSD support my USB keyboard? USB device support was added to FreeBSD 3.1. However, it is still in preliminary state and may not always work as of version 3.2. If you want to experiment with the USB keyboard support, follow the procedure described below. Use FreeBSD 3.2 or later. Add the following lines to your kernel configuration file, and rebuild the kernel. device uhci device ohci device usb device ukbd options KBD_INSTALL_CDEV In versions of FreeBSD before 4.0, use this instead: controller uhci0 controller ohci0 controller usb0 controller ukbd0 options KBD_INSTALL_CDEV Go to the /dev directory and create device nodes as follows: &prompt.root; cd /dev &prompt.root; ./MAKEDEV kbd0 kbd1 Edit /etc/rc.conf and add the following lines: usbd_enable="YES" usbd_flags="" After the system is rebooted, the AT keyboard becomes /dev/kbd0 and the USB keyboard becomes /dev/kbd1, if both are connected to the system. If there is the USB keyboard only, it will be /dev/ukbd0. If you want to use the USB keyboard in the console, you have to explicitly tell the console driver to use the existing USB keyboard. This can be done by running the following command as a part of system initialization. &prompt.root; kbdcontrol -k /dev/kbd1 < /dev/ttyv0 > /dev/null Note that if the USB keyboard is the only keyboard, it is accessed as /dev/kbd0, thus, the command should look like: &prompt.root; kbdcontrol -k /dev/kbd0 < /dev/ttyv0 > /dev/null /etc/rc.i386 is a good place to add the above command. Once this is done, the USB keyboard should work in the X environment as well without any special settings. Hot-plugging and unplugging of the USB keyboard may not work quite right yet. It is a good idea to connect the keyboard before you start the system and leave it connected until the system is shutdown to avoid troubles. See the &man.ukbd.4; man page for more information. I have an unusual bus mouse. How do I set it up? FreeBSD supports the bus mouse and the InPort bus mouse from such manufactures as Microsoft, Logitech and ATI. The bus device driver is compiled in the GENERIC kernel by default in FreeBSD versions 2.X, but not included in version 3.0 or later. If you are building a custom kernel with the bus mouse driver, make sure to add the following line to the kernel config file In FreeBSD 3.0 or before, add: device mse0 at isa? port 0x23c tty irq5 vector mseintr In FreeBSD 3.X, the line should be: device mse0 at isa? port 0x23c tty irq5 And in FreeBSD 4.X and later, the line should read: device mse0 at isa? port 0x23c irq5 Bus mice usually comes with dedicated interface cards. These cards may allow you to set the port address and the IRQ number other than shown above. Refer to the manual of your mouse and the &man.mse.4; man page for more information. How do I use my PS/2 (mouse port or keyboard) mouse? If you are running a post-2.2.5 version of FreeBSD, the necessary driver, psm, is included and enabled in the kernel. The kernel should detect your PS/2 mouse at boot time. If you are running a previous but relatively recent version of FreeBSD (2.1.x or better) then you can simply enable it in the kernel configuration menu at installation time, otherwise later with at the boot: prompt. It is disabled by default, so you will need to enable it explicitly. If you are running an older version of FreeBSD then you will have to add the following lines to your kernel configuration file and compile a new kernel. In FreeBSD 3.0 or earlier, the line should be: device psm0 at isa? port "IO_KBD" conflicts tty irq 12 vector psmintr In FreeBSD 3.1 or later, the line should be: device psm0 at isa? tty irq 12 In FreeBSD 4.0 or later, the line should be: device psm0 at atkbdc? irq 12 See the Handbook entry on configuring the kernel if you have no experience with building kernels. Once you have a kernel detecting psm0 correctly at boot time, make sure that an entry for psm0 exists in /dev. You can do this by typing: &prompt.root; cd /dev; sh MAKEDEV psm0 when logged in as root. Is it possible to make use of a mouse in any way outside the X Window system? If you are using the default console driver, syscons, you can use a mouse pointer in text consoles to cut & paste text. Run the mouse daemon, moused, and turn on the mouse pointer in the virtual console: &prompt.root; moused -p /dev/xxxx -t yyyy &prompt.root; vidcontrol -m on Where xxxx is the mouse device name and yyyy is a protocol type for the mouse. See the &man.moused.8; man page for supported protocol types. You may wish to run the mouse daemon automatically when the system starts. In version 2.2.1, set the following variables in /etc/sysconfig. mousedtype="yyyy" mousedport="xxxx" mousedflags="" In versions 2.2.2 to 3.0, set the following variables in /etc/rc.conf. moused_type="yyyy" moused_port="xxxx" moused_flags="" In 3.1 and later, assuming you have a PS/2 mouse, all you need to is add moused_enable="YES" to /etc/rc.conf. In addition, if you would like to be able to use the mouse daemon on all virtual terminals instead of just console at boot-time, add the following to /etc/rc.conf. allscreens_flags="-m on" Staring from FreeBSD 2.2.6, the mouse daemon is capable of determining the correct protocol type automatically unless the mouse is a relatively old serial mouse model. Specify auto the protocol to invoke automatic detection. When the mouse daemon is running, access to the mouse needs to be coordinated between the mouse daemon and other programs such as the X Window. Refer to another section on this issue. How do I cut and paste text with mouse in the text console? Once you get the mouse daemon running (see previous section), hold down the button 1 (left button) and move the mouse to select a region of text. Then, press the button 2 (middle button) or the button 3 (right button) to paste it at the text cursor. In versions 2.2.6 and later, pressing the button 2 will paste the text. Pressing the button 3 will extend the selected region of text. If your mouse does not have the middle button, you may wish to emulate it or remap buttons using moused options. See the &man.moused.8; man page for details. Does FreeBSD support any USB mice? USB device support was added to FreeBSD 3.1. However, it is still in a preliminary state and may not always work as of version 3.2. If you want to experiment with the USB mouse support, follow the procedure described below. Use FreeBSD 3.2 or later. Add the following lines to your kernel configuration file, and rebuild the kernel. device uhci device ohci device usb device ums In versions of FreeBSD before 4.0, use this instead: controller uhci0 controller ohci0 controller usb0 device ums0 Go to the /dev directory and create a device node as follows: &prompt.root; cd /dev &prompt.root; ./MAKEDEV ums0 Edit /etc/rc.conf and add the following lines: moused_enable="YES" moused_type="auto" moused_port="/dev/ums0" moused_flags="" usbd_enable="YES" usbd_flags="" See the previous section for more detailed discussion on moused. In order to use the USB mouse in the X session, edit XF86Config. If you are using XFree86 3.3.2 or later, be sure to have the following lines in the Pointer section: Device "/dev/sysmouse" Protocol "Auto" If you are using earlier versions of XFree86, be sure to have the following lines in the Pointer section: Device "/dev/sysmouse" Protocol "SysMouse" Refer to another section on the mouse support in the X environment. Hot-plugging and unplugging of the USB mouse may not work quite right yet. It is a good idea connect the mouse before you start the system and leave it connected until the system is shutdown to avoid trouble. My mouse has a fancy wheel and buttons. Can I use them in FreeBSD? The answer is, unfortunately, It depends. These mice with additional features require specialized driver in most cases. Unless the mouse device driver or the user program has specific support for the mouse, it will act just like a standard two, or three button mouse. For the possible usage of wheels in the X Window environment, refer to that section. Why does my wheel-equipped PS/2 mouse cause my mouse cursor to jump around the screen? The PS/2 mouse driver psm in FreeBSD versions 3.2 or earlier has difficulty with some wheel mice, including Logitech model M-S48 and its OEM siblings. Apply the following patch to /sys/i386/isa/psm.c and rebuild the kernel. Index: psm.c =================================================================== RCS file: /src/CVS/src/sys/i386/isa/Attic/psm.c,v retrieving revision 1.60.2.1 retrieving revision 1.60.2.2 diff -u -r1.60.2.1 -r1.60.2.2 --- psm.c 1999/06/03 12:41:13 1.60.2.1 +++ psm.c 1999/07/12 13:40:52 1.60.2.2 @@ -959,14 +959,28 @@ sc->mode.packetsize = vendortype[i].packetsize; /* set mouse parameters */ +#if 0 + /* + * A version of Logitech FirstMouse+ won't report wheel movement, + * if SET_DEFAULTS is sent... Don't use this command. + * This fix was found by Takashi Nishida. + */ i = send_aux_command(sc->kbdc, PSMC_SET_DEFAULTS); if (verbose >= 2) printf("psm%d: SET_DEFAULTS return code:%04x\n", unit, i); +#endif if (sc->config & PSM_CONFIG_RESOLUTION) { sc->mode.resolution = set_mouse_resolution(sc->kbdc, - (sc->config & PSM_CONFIG_RESOLUTION) - 1); + (sc->config & PSM_CONFIG_RESOLUTION) - 1); + } else if (sc->mode.resolution >= 0) { + sc->mode.resolution + = set_mouse_resolution(sc->kbdc, sc->dflt_mode.resolution); + } + if (sc->mode.rate > 0) { + sc->mode.rate = set_mouse_sampling_rate(sc->kbdc, sc->dflt_mode.rate); } + set_mouse_scaling(sc->kbdc, 1); /* request a data packet and extract sync. bits */ if (get_mouse_status(sc->kbdc, stat, 1, 3) < 3) { Versions later than 3.2 should be all right. How do I use the mouse/trackball/touchpad on my laptop? Please refer to the answer to the previous question. And check out this note on the Mobile Computing page. What types of tape drives are supported? FreeBSD supports SCSI and QIC-36 (with a QIC-02 interface). This includes 8-mm (aka Exabyte) and DAT drives. Some of the early 8-mm drives are not quite compatible with SCSI-2, and may not work well with FreeBSD. Does FreeBSD support tape changers? FreeBSD 2.2 supports SCSI changers using the &man.ch.4; device and the &man.chio.1; command. The details of how you actually control the changer can be found in the &man.chio.1; man page. If you are not using AMANDA or some other product that already understands changers, remember that they only know how to move a tape from one point to another, so you need to keep track of which slot a tape is in, and which slot the tape currently in the drive needs to go back to. Which sound cards are supported by FreeBSD? FreeBSD supports the SoundBlaster, SoundBlaster Pro, SoundBlaster 16, Pro Audio Spectrum 16, AdLib and Gravis UltraSound sound cards. There is also limited support for MPU-401 and compatible MIDI cards. Cards conforming to the Microsoft Sound System specification are also supported through the pcm driver. This is only for sound! This driver does not support CDROMs, SCSI or joysticks on these cards, except for the SoundBlaster. The SoundBlaster SCSI interface and some non-SCSI CDROMS are supported, but you cannot boot off this device. Workarounds for no sound from es1370 with pcm driver? You can run the following command every time the machine booted up: &prompt.root; mixer pcm 100 vol 100 cd 100 Which network cards does FreeBSD support? See the + URL="../handbook/install.html#INSTALL-NICS"> Ethernet cards section of the handbook for a more complete list. I do not have a math co-processor - is that bad? This will only affect 386/486SX/486SLC owners - other machines will have one built into the CPU. In general this will not cause any problems, but there are circumstances where you will take a hit, either in performance or accuracy of the math emulation code (see the section on FP emulation). In particular, drawing arcs in X will be VERY slow. It is highly recommended that you buy a math co-processor; it is well worth it. Some math co-processors are better than others. It pains us to say it, but nobody ever got fired for buying Intel. Unless you are sure it works with FreeBSD, beware of clones. What other devices does FreeBSD support? See the Handbook for the list of other devices supported. Does FreeBSD support power management on my laptop? FreeBSD supports APM on certain machines. Please look in the LINT kernel config file, searching for the APM keyword. Further information can be found in &man.apm.4;. Why does my Micron system hang at boot time? Certain Micron motherboards have a non-conforming PCI BIOS implementation that causes grief when FreeBSD boots because PCI devices do not get configured at their reported addresses. Disable the Plug and Play Operating System flag in the BIOS to work around this problem. More information can be found at http://cesdis.gsfc.nasa.gov/linux/drivers/vortex.html#micron Why does FreeBSD not recognize my Adaptec SCSI controller card? The newer AIC789x series Adaptec chips are supported under the CAM SCSI framework which made it's debut in 3.0. Patches against 2.2-STABLE are in ftp://ftp.FreeBSD.org/pub/FreeBSD/development/cam/. A CAM-enhanced boot floppy is available at http://people.FreeBSD.org/~abial/cam-boot/. In both cases read the README before beginning. How come FreeBSD cannot find my internal Plug & Play modem? You will need to add the modem's PnP ID to the PnP ID list in the serial driver. To enable Plug & Play support, compile a new kernel with controller pnp0 in the configuration file, then reboot the system. The kernel will print the PnP IDs of all the devices it finds. Copy the PnP ID from the modem to the table in /sys/i386/isa/sio.c, at about line 2777. Look for the string SUP1310 in the structure siopnp_ids[] to find the table. Build the kernel again, install, reboot, and your modem should be found. You may have to manually configure the PnP devices using the pnp command in the boot-time configuration with a command like pnp 1 0 enable os irq0 3 drq0 0 port0 0x2f8 to make the modem show. How do I get the boot: prompt to show on the serial console? Build a kernel with options COMCONSOLE. Create /boot.config and place as the only text in the file. Unplug the keyboard from the system. See /usr/src/sys/i386/boot/biosboot/README.serial for information. Why doesn't my 3Com PCI network card work with my Micron computer? Certain Micron motherboards have a non-conforming PCI BIOS implementation that does not configure PCI devices at the addresses reported. This causes grief when FreeBSD boots. To work around this problem, disable the Plug and Play Operating System flag in the BIOS. More information on this problem is available at URL: http://cesdis.gsfc.nasa.gov/linux/drivers/vortex.html#micron Does FreeBSD support Symmetric Multiprocessing (SMP)? SMP is supported in 3.0-STABLE and later releases only. SMP is not enabled in the GENERIC kernel, so you will have to recompile your kernel to enable SMP. Take a look at /sys/i386/conf/LINT to figure out what options to put in your kernel config file. The boot floppy hangs on a system with an ASUS K7V motherboard. How do I fix this? Go in to the BIOS setup and disable the boot virus protection. Troubleshooting What do I do when I have bad blocks on my hard drive? With SCSI drives, the drive should be capable of re-mapping these automatically. However, many drives are shipped with this feature disabled, for some mysterious reason... To enable this, you will need to edit the first device page mode, which can be done on FreeBSD by giving the command (as root) &prompt.root; scsi -f /dev/rsd0c -m 1 -e -P 3 and changing the values of AWRE and ARRE from 0 to 1:- AWRE (Auto Write Reallocation Enbld): 1 ARRE (Auto Read Reallocation Enbld): 1 The following paragraphs were submitted by Ted Mittelstaedt tedm@toybox.placo.com: For IDE drives, any bad block is usually a sign of potential trouble. All modern IDE drives come with internal bad-block remapping turned on. All IDE hard drive manufacturers today offer extensive warranties and will replace drives with bad blocks on them. If you still want to attempt to rescue an IDE drive with bad blocks, you can attempt to download the IDE drive manufacturer's IDE diagnostic program, and run this against the drive. Sometimes these programs can be set to force the drive electronics to rescan the drive for bad blocks and lock them out. For ESDI, RLL and MFM drives, bad blocks are a normal part of the drive and are no sign of trouble, generally. With a PC, the disk drive controller card and BIOS handle the task of locking out bad sectors. This is fine for operating systems like DOS that use BIOS code to access the disk. However, FreeBSD's disk driver does not go through BIOS, therefore a mechanism, bad144, exists that replaces this functionality. bad144 only works with the wd driver (which means it is not supported in FreeBSD 4.0), it is NOT able to be used with SCSI. bad144 works by entering all bad sectors found into a special file. One caveat with bad144 - the bad block special file is placed on the last track of the disk. As this file may possibly contain a listing for a bad sector that would occur near the beginning of the disk, where the /kernel file might be located, it therefore must be accessible to the bootstrap program that uses BIOS calls to read the kernel file. This means that the disk with bad144 used on it must not exceed 1024 cylinders, 16 heads, and 63 sectors. This places an effective limit of 500MB on a disk that is mapped with bad144. To use bad144, simply set the Bad Block scanning to ON in the FreeBSD fdisk screen during the initial install. This works up through FreeBSD 2.2.7. The disk must have less than 1024 cylinders. It is generally recommended that the disk drive has been in operation for at least 4 hours prior to this to allow for thermal expansion and track wandering. If the disk has more than 1024 cylinders (such as a large ESDI drive) the ESDI controller uses a special translation mode to make it work under DOS. The wd driver understands about these translation modes, IF you enter the translated geometry with the set geometry command in fdisk. You must also NOT use the dangerously dedicated mode of creating the FreeBSD partition, as this ignores the geometry. Also, even though fdisk will use your overridden geometry, it still knows the true size of the disk, and will attempt to create a too large FreeBSD partition. If the disk geometry is changed to the translated geometry, the partition MUST be manually created with the number of blocks. A quick trick to use is to set up the large ESDI disk with the ESDI controller, boot it with a DOS disk and format it with a DOS partition. Then, boot the FreeBSD install and in the fdisk screen, read off and write down the blocksize and block numbers for the DOS partition. Then, reset the geometry to the same that DOS uses, delete the DOS partition, and create a cooperative FreeBSD partition using the blocksize you recorded earlier. Then, set the partition bootable and turn on bad block scanning. During the actual install, bad144 will run first, before any filesystems are created. (you can view this with an Alt-F2) If it has any trouble creating the badsector file, you have set too large a disk geometry - reboot the system and start all over again (including repartitioning and reformatting with DOS). If remapping is enabled and you are seeing bad blocks, consider replacing the drive. The bad blocks will only get worse as time goes on. How come FreeBSD does not recognize my Bustek 742a EISA SCSI controller? This info is specific to the 742a but may also cover other Buslogic cards. (Bustek = Buslogic) There are 2 general versions of the 742a card. They are hardware revisions A-G, and revisions H - onwards. The revision letter is located after the Assembly number on the edge of the card. The 742a has 2 ROM chips on it, one is the BIOS chip and the other is the Firmware chip. FreeBSD does not care what version of BIOS chip you have but it does care about what version of firmware chip. Buslogic will send upgrade ROMS out if you call their tech support dept. The BIOS and Firmware chips are shipped as a matched pair. You must have the most current Firmware ROM in your adapter card for your hardware revision. The REV A-G cards can only accept BIOS/Firmware sets up to 2.41/2.21. The REV H- up cards can accept the most current BIOS/Firmware sets of 4.70/3.37. The difference between the firmware sets is that the 3.37 firmware supports round robin The Buslogic cards also have a serial number on them. If you have a old hardware revision card you can call the Buslogic RMA department and give them the serial number and attempt to exchange the card for a newer hardware revision. If the card is young enough they will do so. FreeBSD 2.1 only supports Firmware revisions 2.21 onward. If you have a Firmware revision older than this your card will not be recognized as a Buslogic card. It may be recognized as an Adaptec 1540, however. The early Buslogic firmware contains an AHA1540 emulation mode. This is not a good thing for an EISA card, however. If you have an old hardware revision card and you obtain the 2.21 firmware for it, you will need to check the position of jumper W1 to B-C, the default is A-B. How come FreeBSD does not detect my HP Netserver's SCSI controller? This is basically a known problem. The EISA on-board SCSI controller in the HP Netserver machines occupies EISA slot number 11, so all the true EISA slots are in front of it. Alas, the address space for EISA slots >= 10 collides with the address space assigned to PCI, and FreeBSD's auto-configuration currently cannot handle this situation very well. So now, the best you can do is to pretend there is no address range clash :), by bumping the kernel option EISA_SLOTS to a value of 12. Configure and compile a kernel, as described in the Handbook entry on configuring the kernel. Of course, this does present you with a chicken-and-egg problem when installing on such a machine. In order to work around this problem, a special hack is available inside UserConfig. Do not use the visual interface, but the plain command-line interface there. Simply type eisa 12 quit at the prompt, and install your system as usual. While it is recommended you compile and install a custom kernel anyway. Hopefully, future versions will have a proper fix for this problem. You cannot use a dangerously dedicated disk with an HP Netserver. See this note for more info. What is going on with my CMD640 IDE controller? It is broken. It cannot handle commands on both channels simultaneously. There's a workaround available now and it is enabled automatically if your system uses this chip. For the details refer to the manual page of the disk driver (man 4 wd). If you are already running FreeBSD 2.2.1 or 2.2.2 with a CMD640 IDE controller and you want to use the second channel, build a new kernel with options "CMD640" enabled. This is the default for 2.2.5 and later. I keep seeing messages like ed1: timeout. What do these messages mean? This is usually caused by an interrupt conflict (e.g., two boards using the same IRQ). FreeBSD prior to 2.0.5R used to be tolerant of this, and the network driver would still function in the presence of IRQ conflicts. However, with 2.0.5R and later, IRQ conflicts are no longer tolerated. Boot with the -c option and change the ed0/de0/... entry to match your board. If you are using the BNC connector on your network card, you may also see device timeouts because of bad termination. To check this, attach a terminator directly to the NIC (with no cable) and see if the error messages go away. Some NE2000 compatible cards will give this error if there is no link on the UTP port or if the cable is disconnected. Why do I get Incorrect super block when mounting a CDROM? You have to tell &man.mount.8; the type of the device that you want to mount. By default, &man.mount.8; will assume the filesystem is of type ufs. You want to mount a CDROM filesystem, and you do this by specifying the option to &man.mount.8;. This does, of course, assume that the CDROM contains an ISO 9660 filesystem, which is what most CDROMs have. As of 1.1R, FreeBSD automatically understands the Rock Ridge (long filename) extensions as well. As an example, if you want to mount the CDROM device, /dev/cd0c, under /mnt, you would execute: &prompt.root; mount -t cd9660 /dev/cd0c /mnt Note that your device name (/dev/cd0c in this example) could be different, depending on the CDROM interface. Note that the option just causes the &man.mount.cd9660.8; command to be executed, and so the above example could be shortened to: &prompt.root; mount_cd9660 /dev/cd0c /mnt Why do I get Device not configured when mounting a CDROM? This generally means that there is no CDROM in the CDROM drive, or the drive is not visible on the bus. Feed the drive something, and/or check its master/slave status if it is IDE (ATAPI). It can take a couple of seconds for a CDROM drive to notice that it has been fed, so be patient. Sometimes a SCSI CDROM may be missed because it had not enough time to answer the bus reset. If you have a SCSI CDROM please try to add the following symbol into your kernel configuration file and recompile. options "SCSI_DELAY=15" Why do all non-English characters in filenames show up as ? on my CDs when mounted in FreeBSD? Most likely your CDROM uses the Joliet extension for storing information about files and directories. This extension specifies that all filenames are stored using Unicode two-byte characters. Currently, efforts are under way to introduce a generic Unicode interface into the FreeBSD kernel, but since that is not ready yet, the CD9660 driver does not have the ability to decode the characters in the filenames. As a temporary solution, starting with FreeBSD 4.3, a special hook has been added into the CD9660 driver to allow the user to load an appropriate conversion table on the fly. Modules for some of the common encodings are available via the sysutils/cd9660_unicode port. My printer is ridiculously slow. What can I do? If it is parallel, and the only problem is that it is terribly slow, try setting your printer port into polled mode: &prompt.root; lptcontrol -p Some newer HP printers are claimed not to work correctly in interrupt mode, apparently due to some (not yet exactly understood) timing problem. Why do my programs occasionally die with Signal 11 errors? Signal 11 errors are caused when your process has attempted to access memory which the operating system has not granted it access to. If something like this is happening at seemingly random intervals then you need to start investigating things very carefully. These problems can usually be attributed to either: If the problem is occurring only in a specific application that you are developing yourself it is probably a bug in your code. If it is a problem with part of the base FreeBSD system, it may also be buggy code, but more often than not these problems are found and fixed long before us general FAQ readers get to use these bits of code (that is what -current is for). In particular, a dead giveaway that this is not a FreeBSD bug is if you see the problem when you are compiling a program, but the activity that the compiler is carrying out changes each time. For example, suppose you are running make buildworld, and the compile fails while trying to compile ls.c in to ls.o. If you then run make buildworld again, and the compile fails in the same place then this is a broken build -- try updating your sources and try again. If the compile fails elsewhere then this is almost certainly hardware. What you should do: In the first case you can use a debugger e.g. gdb to find the point in the program which is attempting to access a bogus address and then fix it. In the second case you need to verify that it is not your hardware at fault. Common causes of this include: Your hard disks might be overheating: Check the fans in your case are still working, as your disk (and perhaps other hardware might be overheating). The processor running is overheating: This might be because the processor has been overclocked, or the fan on the processor might have died. In either case you need to ensure that you have hardware running at what it is specified to run at, at least while trying to solve this problem. i.e. Clock it back to the default settings. If you are overclocking then note that it is far cheaper to have a slow system than a fried system that needs replacing! Also the wider community is not often sympathetic to problems on overclocked systems, whether you believe it is safe or not. Dodgy memory: If you have multiple memory SIMMS/DIMMS installed then pull them all out and try running the machine with each SIMM or DIMM individually and narrow the problem down to either the problematic DIMM/SIMM or perhaps even a combination. Over-optimistic Motherboard settings: In your BIOS settings, and some motherboard jumpers you have options to set various timings, mostly the defaults will be sufficient, but sometimes, setting the wait states on RAM too low, or setting the RAM Speed: Turbo option, or similar in the BIOS will cause strange behaviour. A possible idea is to set to BIOS defaults, but it might be worth noting down your settings first! Unclean or insufficient power to the motherboard. If you have any unused I/O boards, hard disks, or CDROMs in your system, try temporarily removing them or disconnecting the power cable from them, to see if your power supply can manage a smaller load. Or try another power supply, preferably one with a little more power (for instance, if your current power supply is rated at 250 Watts try one rated at 300 Watts). You should also read the SIG11 FAQ (listed below) which has excellent explanations of all these problems, albeit from a Linux viewpoint. It also discusses how memory testing software or hardware can still pass faulty memory. Finally, if none of this has helped it is possible that you have just found a bug in FreeBSD, and you should follow the instructions to send a problem report. There is an extensive FAQ on this at the SIG11 problem FAQ Why does the screen go black and lose sync when I boot? This is a known problem with the ATI Mach 64 video card. The problem is that this card uses address 2e8, and the fourth serial port does too. Due to a bug (feature?) in the &man.sio.4; driver it will touch this port even if you do not have the fourth serial port, and even if you disable sio3 (the fourth port) which normally uses this address. Until the bug has been fixed, you can use this workaround: Enter at the boot prompt. (This will put the kernel into configuration mode). Disable sio0, sio1, sio2 and sio3 (all of them). This way the sio driver does not get activated -> no problems. Type exit to continue booting. If you want to be able to use your serial ports, you will have to build a new kernel with the following modification: in /usr/src/sys/i386/isa/sio.c find the one occurrence of the string 0x2e8 and remove that string and the preceding comma (keep the trailing comma). Now follow the normal procedure of building a new kernel. Even after applying these workarounds, you may still find that the X Window System does not work properly. If this is the case, make sure that the XFree86 version you are using is at least XFree86 3.3.3 or higher. This version and upwards has built-in support for the Mach64 cards and even a dedicated X server for those cards. How come FreeBSD uses only 64 MB of RAM when my system has 128 MB of RAM installed? Due to the manner in which FreeBSD gets the memory size from the BIOS, it can only detect 16 bits worth of Kbytes in size (65535 Kbytes = 64MB) (or less... some BIOSes peg the memory size to 16M). If you have more than 64MB, FreeBSD will attempt to detect it; however, the attempt may fail. To work around this problem, you need to use the kernel option specified below. There is a way to get complete memory information from the BIOS, but we do not have room in the bootblocks to do it. Someday when lack of room in the bootblocks is fixed, we will use the extended BIOS functions to get the full memory information...but for now we are stuck with the kernel option. options "MAXMEM=n" Where n is your memory in Kilobytes. For a 128 MB machine, you would want to use 131072. Why does FreeBSD 2.0 panic with kmem_map too small!? The message may also be mb_map too small! The panic indicates that the system ran out of virtual memory for network buffers (specifically, mbuf clusters). You can increase the amount of VM available for mbuf clusters by adding: options "NMBCLUSTERS=n" to your kernel config file, where n is a number in the range 512-4096, depending on the number of concurrent TCP connections you need to support. I would recommend trying 2048 - this should get rid of the panic completely. You can monitor the number of mbuf clusters allocated/in use on the system with netstat -m (see &man.netstat.1;). The default value for NMBCLUSTERS is 512 + MAXUSERS * 16. Why do I get an error reading CMAP busy when rebooting with a new kernel? The logic that attempts to detect an out of date /var/db/kvm_*.db files sometimes fails and using a mismatched file can sometimes lead to panics. If this happens, reboot single-user and do: &prompt.root; rm /var/db/kvm_*.db What does the message ahc0: brkadrint, Illegal Host Access at seqaddr 0x0 mean? This is a conflict with an Ultrastor SCSI Host Adapter. During the boot process enter the kernel configuration menu and disable uha0, which is causing the problem. Why does Sendmail give me an error reading mail loops back to myself? This is answered in the sendmail FAQ as follows:- * I'm getting "Local configuration error" messages, such as: 553 relay.domain.net config error: mail loops back to myself 554 <user@domain.net>... Local configuration error How can I solve this problem? You have asked mail to the domain (e.g., domain.net) to be forwarded to a specific host (in this case, relay.domain.net) by using an MX record, but the relay machine doesn't recognize itself as domain.net. Add domain.net to /etc/sendmail.cw (if you are using FEATURE(use_cw_file)) or add "Cw domain.net" to /etc/sendmail.cf. The current version of the sendmail FAQ is no longer maintained with the sendmail release. It is however regularly posted to comp.mail.sendmail, comp.mail.misc, comp.mail.smail, comp.answers, and news.answers. You can also receive a copy via email by sending a message to mail-server@rtfm.mit.edu with the command send usenet/news.answers/mail/sendmail-faq as the body of the message. Why do full screen applications on remote machines misbehave? The remote machine may be setting your terminal type to something other than the cons25 terminal type required by the FreeBSD console. There are a number of possible work-arounds for this problem: After logging on to the remote machine, set your TERM shell variable to ansi or sco if the remote machine knows about these terminal types. Use a VT100 emulator like screen at the FreeBSD console. screen offers you the ability to run multiple concurrent sessions from one terminal, and is a neat program in its own right. Each screen window behaves like a VT100 terminal, so the TERM variable at the remote end should be set to vt100. Install the cons25 terminal database entry on the remote machine. The way to do this depends on the operating system on the remote machine. The system administration manuals for the remote system should be able to help you here. Fire up an X server at the FreeBSD end and login to the remote machine using an X based terminal emulator such as xterm or rxvt. The TERM variable at the remote host should be set to xterm or vt100. Why does my machine print calcru: negative time...? This can be caused by various hardware and/or software ailments relating to interrupts. It may be due to bugs but can also happen by nature of certain devices. Running TCP/IP over the parallel port using a large MTU is one good way to provoke this problem. Graphics accelerators can also get you here, in which case you should check the interrupt setting of the card first. A side effect of this problem are dying processes with the message SIGXCPU exceeded cpu time limit. For FreeBSD 3.0 and later from Nov 29, 1998 forward: If the problem cannot be fixed otherwise the solution is to set this sysctl variable: &prompt.root; sysctl -w kern.timecounter.method=1 This means a performance impact, but considering the cause of this problem, you probably will not notice. If the problem persists, keep the sysctl set to one and set the NTIMECOUNTER option in your kernel to increasingly large values. If by the time you have reached NTIMECOUNTER=20 the problem is not solved, interrupts are too hosed on your machine for reliable timekeeping. I see pcm0 not found or my sound card is found as pcm1 but I have device pcm0 in my kernel config file. What is going on? This occurs in FreeBSD 3.x with PCI sound cards. The pcm0 device is reserved exclusively for ISA-based cards so, if you have a PCI card, then you will see this error, and your card will appear as pcm1. You cannot remove the warning by simply changing the line in the kernel config file to device pcm1 as this will result in pcm1 being reserved for ISA cards and your PCI card being found as pcm2 (along with the warning pcm1 not found). If you have a PCI sound card you will also have to make the snd1 device rather than snd0: &prompt.root; cd /dev &prompt.root; ./MAKEDEV snd1 This situation does not arise in FreeBSD 4.x as a lot of work has been done to make it more PnP-centric and the pcm0 device is no longer reserved exclusively for ISA cards Why is my PnP card no longer found (or found as unknown) since upgrading to FreeBSD 4.x? FreeBSD 4.x is now much more PnP-centric and this has had the side effect of some PnP devices (e.g. sound cards and internal modems) not working even though they worked under FreeBSD 3.x. The reasons for this behaviour are explained by the following e-mail, posted to the freebsd-questions mailing list by Peter Wemm, in answer to a question about an internal modem that was no longer found after an upgrade to FreeBSD 4.x (the comments in [] have been added to clarify the context.
The PNP bios preconfigured it [the modem] and left it laying around in port space, so [in 3.x] the old-style ISA probes found it there. Under 4.0, the ISA code is much more PnP-centric. It was possible [in 3.x] for an ISA probe to find a stray device and then for the PNP device id to match and then fail due to resource conflicts. So, it disables the programmable cards first so this double probing cannot happen. It also means that it needs to know the PnP id's for supported PnP hardware. Making this more user tweakable is on the TODO list.
To get the device working again requires finding its PnP id and adding it to the list that the ISA probes use to identify PnP devices. This is obtained using &man.pnpinfo.8; to probe the device, for example this is the output from &man.pnpinfo.8; for an internal modem: &prompt.root; pnpinfo Checking for Plug-n-Play devices... Card assigned CSN #1 Vendor ID PMC2430 (0x3024a341), Serial Number 0xffffffff PnP Version 1.0, Vendor Version 0 Device Description: Pace 56 Voice Internal Plug & Play Modem Logical Device ID: PMC2430 0x3024a341 #0 Device supports I/O Range Check TAG Start DF I/O Range 0x3f8 .. 0x3f8, alignment 0x8, len 0x8 [16-bit addr] IRQ: 4 - only one type (true/edge) [more TAG lines elided] TAG End DF End Tag Successfully got 31 resources, 1 logical fdevs -- card select # 0x0001 CSN PMC2430 (0x3024a341), Serial Number 0xffffffff Logical device #0 IO: 0x03e8 0x03e8 0x03e8 0x03e8 0x03e8 0x03e8 0x03e8 0x03e8 IRQ 5 0 DMA 4 0 IO range check 0x00 activate 0x01 The information you require is in the Vendor ID line at the start of the output. The hexadecimal number in parentheses (0x3024a341 in this example) is the PnP id and the string immediately before this (PMC2430) is a unique ASCII id. This information needs adding to the file /usr/src/sys/isa/sio.c. You should first make a backup of sio.c just in case things go wrong. You will also need it to make the patch to submit with your PR (you are going to submit a PR, aren't you?) then edit sio.c and search for the line static struct isa_pnp_id sio_ids[] = { then scroll down to find the correct place to add the entry for your device. The entries look like this, and are sorted on the ASCII Vendor ID string which should be included in the comment to the right of the line of code along with all (if it will fit) or part of the Device Description from the output of &man.pnpinfo.8;: {0x0f804f3f, NULL}, /* OZO800f - Zoom 2812 (56k Modem) */ {0x39804f3f, NULL}, /* OZO8039 - Zoom 56k flex */ {0x3024a341, NULL}, /* PMC2430 - Pace 56 Voice Internal Modem */ {0x1000eb49, NULL}, /* ROK0010 - Rockwell ? */ {0x5002734a, NULL}, /* RSS0250 - 5614Jx3(G) Internal Modem */ Add the hexadecimal Vendor ID for your device in the correct place, save the file, rebuild your kernel, and reboot. Your device should now be found as an sio device as it was under FreeBSD 3.x
Why do I get the error nlist failed when running, for example, top or systat? The problem is that the application you are trying to run is looking for a specific kernel symbol, but, for whatever reason, cannot find it; this error stems from one of two problems: Your kernel and userland are not synchronized (i.e., you built a new kernel but did not do an installworld, or vice versa), and thus the symbol table is different from what the user application thinks it is. If this is the case, simply complete the upgrade process (see /usr/src/UPDATING for the correct sequence). You are not using /boot/loader to load your kernel, but doing it directly from boot2 (see &man.boot.8;). While there is nothing wrong with bypassing /boot/loader, it generally does a better job of making the kernel symbols available to user applications. Why does it take so long to connect to my computer via ssh or telnet? The symptom: there is a long delay between the time the TCP connection is established and the time when the client software asks for a password (or, in &man.telnet.1;'s case, when a login prompt appears). The problem: more likely than not, the delay is caused by the server software trying to resolve the client's IP address into a hostname. Many servers, including the Telnet and SSH servers that come with FreeBSD, do this in order to, among other things, store the hostname in a log file for future reference by the administrator. The remedy: if the problem occurs whenever you connect from your computer (the client) to any server, the problem is with the client; likewise, if the problem only occurs when someone connects to your computer (the server) the problem is with the server. If the problem is with the client, the only remedy is to fix the DNS so the server can resolve it. If this is on a local network, consider it a server problem and keep reading; conversely, if this is on the global Internet, you will most likely need to contact your ISP and ask them to fix it for you. If the problem is with the server, and this is on a local network, you need to configure the server to be able to resolve address-to-hostname queries for your local address range. See the &man.hosts.5; and &man.named.8; manual pages for more information. If this is on the global Internet, the problem may be that your server's resolver is not functioning correctly. To check, try to look up another host--say, www.yahoo.com. If it does not work, that is your problem. What does stray IRQ mean? Stray IRQs are indications of hardware IRQ glitches, mostly from hardware that removes its interrupt request in the middle of the interrupt request acknowledge cycle. One has three options for dealing with this: Live with the warnings. All except the first 5 per irq are suppressed anyway. Break the warnings by changing 5 to 0 in isa_strayintr() so that all the warnings are suppressed. Break the warnings by installing parallel port hardware that uses irq 7 and the ppp driver for it (this happens on most systems), and install an ide drive or other hardware that uses irq 15 and a suitable driver for it. Why does file: table is full show up repeatedly in dmesg? This error is caused when you have exhausted the number of available file descriptors on your system. The file table in memory is full. The solution: Manually adjust the kern.maxfiles kernel limit setting. &prompt.root; sysctl -w kern.maxfiles=n Adjust n according to your system needs. Each open file, socket, or fifo uses one file descriptor. A large-scale server may easily require tens of thousands of file descriptors (10,000+), depending on the kind and number of services running concurrently. The number of default file descriptors set in the kernel is dictated by the maxusers 32 maxusers line in your kernel config file. Increasing this will proportionally increase kern.maxfiles. You can see what kern.maxfiles is currently set to by: &prompt.root; sysctl kern.maxfiles kern.maxfiles: 1064 Why does the clock on my laptop keep incorrect time? Your laptop has two or more clocks, and FreeBSD has chosen to use the wrong one. Run &man.dmesg.8;, and check for lines that contain Timecounter. The last line printed is the one that FreeBSD chose, and will almost certainly be TSC. &prompt.root; dmesg | grep Timecounter Timecounter "i8254" frequency 1193182 Hz Timecounter "TSC" frequency 595573479 Hz You can confirm this by checking the kern.timecounter.hardware &man.sysctl.3;. &prompt.root; sysctl kern.timecounter.hardware kern.timecounter.hardware: TSC The BIOS may modify the TSC clock—perhaps to change the speed of the processor when running from batteries, or going in to a power saving mode, but FreeBSD is unaware of these adjustments, and appears to gain or lose time. In this example, the i8254 clock is also available, and can be selected by writing its name to the kern.timecounter.hardware &man.sysctl.3;. &prompt.root; sysctl -w kern.timecounter.hardware=i8254 kern.timecounter.hardware: TSC -> i8254 Your laptop should now start keeping more accurate time. To have this change automatically run at boot time, add the following line to /etc/sysctl.conf. kern.timecounter.hardware=i8254 Why does FreeBSD's boot loader display Read error and stop after the BIOS screen? FreeBSD's boot loader is incorrectly recognizing the hard drive's geometry. This must be manually set within fdisk when creating or modifying FreeBSD's slice. The correct drive geometry values can be found within the machine's BIOS. Look for the number of cylinders, heads and sectors for the particular drive. Within &man.sysinstall.8;'s fdisk, hit G to set the drive geometry. A dialog will pop up requesting the number of cylinders, heads and sectors. Type the numbers found from the BIOS separates by forward slashes. 5000 cylinders, 250 sectors and 60 sectors would be entered as 5000/250/60 Press enter to set the values, and hit W to write the new partition table to the drive. Another operating system destroyed my Boot Manager. How do I get it back? Enter &man.sysinstall.8; and choose Configure, then Fdisk. Select the disk the Boot Manager resided on with the space key. Press W to write changes to the drive. A prompt will appear asking which boot loader to install. Select this, and it will be restored.
Commercial Applications This section is still very sparse, though we are hoping, of course, that companies will add to it! :) The FreeBSD group has no financial interest in any of the companies listed here but simply lists them as a public service (and feels that commercial interest in FreeBSD can have very positive effects on FreeBSD's long-term viability). We encourage commercial software vendors to send their entries here for inclusion. See the + URL="../../../../commercial/index.html">the Vendors page for a longer list. Where can I get an Office Suite for FreeBSD? - The FreeBSD Mall + The FreeBSD Mall offers a FreeBSD native version of VistaSource + url="http://www.vistasource.com/">VistaSource ApplixWare 5. ApplixWare is a rich full-featured, commercial Office Suite for FreeBSD containing a word processor, spreadsheet, presentation program, vector drawing package, and other applications. You can purchase ApplixWare for FreeBSD here. The Linux version of StarOffice + url="http://www.sun.com/staroffice/">StarOffice works flawlessly on FreeBSD. The easiest way to install the Linux version of StarOffice is through the FreeBSD Ports collection. Future versions of the open-source OpenOffice + url="http://www.openoffice.org/">OpenOffice suite should work as well. Where can I get Motif for FreeBSD? The Open Group has released the source code to Motif 2.1.30. You can install the open-motif package, or compile it from ports. Refer to the ports section of the Handbook for more information on how to do this. The Open Motif distribution only allows redistribution - if it is running on an + if it is running on an open source operating system. In addition, there are commercial distributions of the Motif software available. These, however, are not for free, but their license allows them to be used in closed-source software. Contact Apps2go for the least expensive ELF Motif 2.1.20 distribution for FreeBSD (either i386 or Alpha). There are two distributions, the developement edition and the runtime edition (for much less). These distributions includes: OSF/Motif manager, xmbind, panner, wsm. Development kit with uil, mrm, xm, xmcxx, include and Imake files. Static and dynamic ELF libraries (for use with FreeBSD 3.0 and above). Demonstration applets. Be sure to specify that you want the FreeBSD version of Motif when ordering (do not forget to mention the architecture you want too)! Versions for NetBSD and OpenBSD are also sold by Apps2go. This is currently a FTP only download. More info Apps2go WWW page or sales@apps2go.com or support@apps2go.com or phone (817) 431 8775 or +1 817 431-8775 Contact Metro Link for an either ELF or a.out Motif 2.1 distribution for FreeBSD. This distribution includes: OSF/Motif manager, xmbind, panner, wsm. Development kit with uil, mrm, xm, xmcxx, include and Imake files. Static and dynamic libraries (specify ELF for use with FreeBSD 3.0 and later; or a.out for use with FreeBSD 2.2.8 and earlier). Demonstration applets. Preformatted man pages. Be sure to specify that you want the FreeBSD version of Motif when ordering! Versions for Linux are also sold by Metro Link. This is available on either a CDROM or for FTP download. Contact Xi Graphics for an a.out Motif 2.0 distribution for FreeBSD. This distribution includes: OSF/Motif manager, xmbind, panner, wsm. Development kit with uil, mrm, xm, xmcxx, include and Imake files. Static and dynamic libraries (for use with FreeBSD 2.2.8 and earlier). Demonstration applets. Preformatted man pages. Be sure to specify that you want the FreeBSD version of Motif when ordering! Versions for BSDI and Linux are also sold by Xi Graphics. This is currently a 4 diskette set... in the future this will change to a unified CD distribution like their CDE. Where can I get CDE for FreeBSD? Xi Graphics used to sell CDE for FreeBSD, but no longer do. KDE is an open source X11 desktop which is similar to CDE in many respects. You might also like the look and feel of xfce. KDE and xfce are both - in the ports + in the ports system. Are there any commercial high-performance X servers? Yes, Xi Graphics and Metro Link sell Accelerated-X product for FreeBSD and other Intel based systems. The Metro Link offering is a high performance X Server that offers easy configuration using the FreeBSD Package suite of tools, support for multiple concurrent video boards and is distributed in binary form only, in a convenient FTP download. Not to mention the Metro Link offering is available at the very reasonable price of $39. Metro Link also sells both ELF and a.out Motif for FreeBSD (see above). More info Metro Link WWW page or sales@metrolink.com or tech@metrolink.com or phone (954) 938-0283 or +1 954 938-0283 The Xi Graphics offering is a high performance X Server that offers easy configuration, support for multiple concurrent video boards and is distributed in binary form only, in a unified diskette distribution for FreeBSD and Linux. Xi Graphics also offers a high performance X Server tailored for laptop support. There is a free compatibility demo of version 5.0 available. Xi Graphics also sells Motif and CDE for FreeBSD (see above). More info Xi Graphics WWW page or sales@xig.com or support@xig.com or phone (800) 946 7433 or +1 303 298-7478. Are there any Database systems for FreeBSD? Yes! See the + URL="../../../../commercial/software_bycat.html#CATEGORY_DATABASE"> Commercial Vendors section of FreeBSD's Web site. Also see the + URL="../../../../ports/databases.html"> Databases section of the Ports collection. Can I run Oracle on FreeBSD? Yes. The following pages tell you exactly how to setup Linux-Oracle on FreeBSD: http://www.scc.nl/~marcel/howto-oracle.html http://www.lf.net/lf/pi/oracle/install-linux-oracle-on-freebsd User Applications So, where are all the user applications? Please take a look at - the ports + the ports page for info on software packages ported to FreeBSD. The list currently tops 3400 and is growing daily, so come back to check often or subscribe to the freebsd-announce mailing list for periodic updates on new entries. Most ports should be available for the 2.2, 3.x and 4.x branches, and many of them should work on 2.1.x systems as well. Each time a FreeBSD release is made, a snapshot of the ports tree at the time of release in also included in the ports/ directory. We also support the concept of a package, essentially no more than a gzipped binary distribution with a little extra intelligence embedded in it for doing whatever custom installation work is required. A package can be installed and uninstalled again easily without having to know the gory details of which files it includes. Use the package installation menu in /stand/sysinstall (under the post-configuration menu item) or invoke the &man.pkg.add.1; command on the specific package files you are interested in installing. Package files can usually be identified by their .tgz suffix and CDROM distribution people will have a packages/All directory on their CD which contains such files. They can also be downloaded over the net for various versions of FreeBSD at the following locations: for 2.2.8-RELEASE/2.2.8-STABLE ftp://ftp.FreeBSD.org/pub/FreeBSD/ports/i386/packages-2.2.8/ for 3.X-RELEASE/3.X-STABLE ftp://ftp.FreeBSD.org/pub/FreeBSD/ports/i386/packages-3-stable/ for 4.X-RELEASE/4-STABLE ftp://ftp.FreeBSD.org/pub/FreeBSD/ports/i386/packages-4-stable/ for 5.X-CURRENT ftp://ftp.FreeBSD.org/pub/FreeBSD/ports/i386/packages-5-current or your nearest local mirror site. Note that all ports may not be available as packages since new ones are constantly being added. It is always a good idea to check back periodically to see which packages are available at the ftp.FreeBSD.org master site. Where do I find libc.so.3.0? You are trying to run a package built on 2.2 and later on a 2.1.x system. Please take a look at the previous section and get the correct port/package for your system. Why do I get a message reading Error: can't find libc.so.4.0? You accidently downloaded packages meant for 4.X and 5.X systems and attempted to install them on your 2.X or 3.X FreeBSD system. Please download the correct version of the packages. Why does ghostscript give lots of errors with my 386/486SX? You do not have a math co-processor, right? You will need to add the alternative math emulator to your kernel; you do this by adding the following to your kernel config file and it will be compiled in. options GPL_MATH_EMULATE You will need to remove the MATH_EMULATE option when you do this. Why do SCO/iBCS2 applications bomb on socksys? (FreeBSD 3.0 and older only). You first need to edit the /etc/sysconfig (or /etc/rc.conf, see &man.rc.conf.5;) file in the last section to change the following variable to YES: # Set to YES if you want ibcs2 (SCO) emulation loaded at startup ibcs2=NO It will load the ibcs2 kernel module at startup. You will then need to set up /compat/ibcs2/dev to look like: lrwxr-xr-x 1 root wheel 9 Oct 15 22:20 X0R@ -> /dev/null lrwxr-xr-x 1 root wheel 7 Oct 15 22:20 nfsd@ -> socksys -rw-rw-r-- 1 root wheel 0 Oct 28 12:02 null lrwxr-xr-x 1 root wheel 9 Oct 15 22:20 socksys@ -> /dev/null crw-rw-rw- 1 root wheel 41, 1 Oct 15 22:14 spx You just need socksys to go to /dev/null (see &man.null.4;) to fake the open & close. The code in -CURRENT will handle the rest. This is much cleaner than the way it was done before. If you want the spx driver for a local socket X connection, define SPX_HACK when you compile the system. How do I configure INN (Internet News) for my machine? After installing the inn package or port, an excellent place to start is Dave Barr's INN Page where you will find the INN FAQ. What version of Microsoft FrontPage should I get? Use the Port, Luke! A pre-patched version of Apache is available in the ports tree. Does FreeBSD support Java? Yes. Please see + URL="../../../../java/index.html"> http://www.FreeBSD.org/java/. Why can't I build this port on my 3.X-STABLE machine? If you are running a FreeBSD version that lags significantly behind -CURRENT or -STABLE, you may need a ports - upgrade kit from + upgrade kit from http://www.FreeBSD.org/ports/. If you are up to date, then someone might have committed a change to the port which works for -CURRENT but which broke the port for -STABLE. Please submit a bug report on this with the &man.send-pr.1; command, since the ports collection is supposed to work for both the -CURRENT and -STABLE branches. Where do I find ld.so? If you want to run some a.out applications like Netscape Navigator on an Elf'ened machine such as 3.1-R or later, it would need /usr/libexec/ld.so and some a.out libs. They are included in the compat22 distribution. Use /stand/sysinstall or install.sh in the compat22 subdirectory and install it. Also read ERRATAs for 3.1-R and 3.2-R. I updated the sources, now how do I update my installed ports? Unfortunately, there is no easy way to update installed ports. The &man.pkg.version.1; command can be used to generate a script that will update the installed ports with a newer version in the ports tree: &prompt.root; pkg_version > /tmp/myscript The output script must be edited by hand before you use it. Current versions of &man.pkg.version.1; force this by inserting an &man.exit.1; at the beginning of the script. You should save the output of the script, as it will note packages that depend on the one that has been updated. These may or may not need to be updated as well. The usual case where they need to be updated is that a shared library has changed version numbers, so the ports that used that library need to be rebuilt to use the new version. If your system is up full time, the &man.periodic.8 system can be used to generate a weekly list of ports that might need updating by setting weekly_status_pkg_enable="YES" in /etc/periodic.conf. Why is /bin/sh so minimal? Why doesn't FreeBSD use bash or another shell? Because POSIX says that there shall be such a shell. The more complicated answer: many people need to write shell scripts which will be portable across many systems. That is why POSIX specifies the shell and utility commands in great detail. Most scripts are written in Bourne shell, and because several important programming interfaces (&man.make.1;, &man.system.3;, &man.popen.3;, and analogues in higher-level scripting languages like Perl and Tcl) are specified to use the Bourne shell to interpret commands. Because the Bourne shell is so often and widely used, it is important for it to be quick to start, be deterministic in its behavior, and have a small memory footprint. The existing implementation is our best effort at meeting as many of these requirements simultaneously as we can. In order to keep /bin/sh small, we have not provided many of the convenience features that other shells have. That is why the Ports Collection includes more featureful shells like bash, scsh, tcsh, and zsh. (You can compare for yourself the memory utilization of all these shells by looking at the VSZ and RSS columns in a ps -u listing.) Kernel Configuration I would like to customize my kernel. Is it difficult? Not at all! Check out the kernel config section of the Handbook. It is recommended that you make a dated snapshot of your kernel in kernel.YYMMDD after you get it all working, that way if you do something dire the next time you play with your configuration you can boot that kernel instead of having to go all the way back to kernel.GENERIC. This is particularly important if you are now booting off a controller that is not supported in the GENERIC kernel. My kernel compiles fail because _hw_float is missing. How do I solve this problem? Let me guess. You removed npx0 (see &man.npx.4;) from your kernel configuration file because you do not have a math co-processor, right? Wrong! :-) The npx0 is MANDATORY. Even if you do not have a mathematic co-processor, you must include the npx0 device. Why is my kernel so big (over 10MB)? Chances are, you compiled your kernel in debug mode. Kernels built in debug mode contain many symbols that are used for debugging, thus greatly increasing the size of the kernel. Note that if you running a FreeBSD 3.0 or later system, there will be little or no performance decrease from running a debug kernel, and it is useful to keep one around in case of a system panic. However, if you are running low on disk space, or you simply do not want to run a debug kernel, make sure that both of the following are true: You do not have a line in your kernel configuration file that reads: makeoptions DEBUG=-g You are not running &man.config.8; with the option. Both of the above situations will cause your kernel to be built in debug mode. As long as you make sure you follow the steps above, you can build your kernel normally, and you should notice a fairly large size decrease; most kernels tend to be around 1.5MB to 2MB. Why do I get interrupt conflicts with multi-port serial code? When I compile a kernel with multi-port serial code, it tells me that only the first port is probed and the rest skipped due to interrupt conflicts. How do I fix this? The problem here is that FreeBSD has code built-in to keep the kernel from getting trashed due to hardware or software conflicts. The way to fix this is to leave out the IRQ settings on all but one port. Here is a example: # # Multiport high-speed serial line - 16550 UARTS # device sio2 at isa? port 0x2a0 tty irq 5 flags 0x501 vector siointr device sio3 at isa? port 0x2a8 tty flags 0x501 vector siointr device sio4 at isa? port 0x2b0 tty flags 0x501 vector siointr device sio5 at isa? port 0x2b8 tty flags 0x501 vector siointr Why does every kernel I try to build fail to compile, even GENERIC? There are a number of possible causes for this problem. They are, in no particular order: You are not using the new make buildkernel and make installkernel targets, and your source tree is different from the one used to build the currently running system (e.g., you are compiling 4.3-RELEASE on a 4.0-RELEASE system). If you are attempting an upgrade, please read the /usr/src/UPDATING file, paying particular attention to the COMMON ITEMS section at the end. You are using the new make buildkernel and make installkernel targets, but you failed to assert the completion of the make buildworld target. The make buildkernel target relies on files generated by the make buildworld target to complete its job correctly. Even if you are trying to build FreeBSD-STABLE, it is possible that you fetched the source tree at a time when it was either being modified, or broken for other reasons; only releases are absolutely guaranteed to be buildable, although FreeBSD-STABLE builds fine the majority of the time. If you have not already done so, try re-fetching the source tree and see if the problem goes away. Try using a different server in case the one you are using is having problems. System Administration Where are the system start-up configuration files? From 2.0.5R to 2.2.1R, the primary configuration file is /etc/sysconfig. All the options are to be specified in this file and other files such as /etc/rc (see &man.rc.8;) and /etc/netstart just include it. Look in the /etc/sysconfig file and change the value to match your system. This file is filled with comments to show what to put in there. In post-2.2.1 and 3.0, /etc/sysconfig was renamed to a more self-describing &man.rc.conf.5; file and the syntax cleaned up a bit in the process. /etc/netstart was also renamed to /etc/rc.network so that all files could be copied with a cp /usr/src/etc/rc* /etc command. And, in 3.1 and later, /etc/rc.conf has been moved to /etc/defaults/rc.conf. Do not edit this file! Instead, if there is any entry in /etc/defaults/rc.conf that you want to change, you should copy the line into /etc/rc.conf and change it there. For example, if you wish to start named, the DNS server included with FreeBSD in FreeBSD 3.1 or later, all you need to do is: &prompt.root; echo named_enable="YES" >> /etc/rc.conf To start up local services in FreeBSD 3.1 or later, place shell scripts in the /usr/local/etc/rc.d directory. These shell scripts should be set executable, and end with a .sh. In FreeBSD 3.0 and earlier releases, you should edit the /etc/rc.local file. The /etc/rc.serial is for serial port initialization (e.g. locking the port characteristics, and so on.). The /etc/rc.i386 is for Intel-specifics settings, such as iBCS2 emulation or the PC system console configuration. How do I add a user easily? Use the &man.adduser.8; command. For more complicated usage, the &man.pw.8; command. To remove the user again, use the &man.rmuser.8; command. Once again, &man.pw.8; will work as well. How can I add my new hard disk to my FreeBSD system? See the Disk Formatting Tutorial at + URL="../../articles/formatting-media/index.html"> www.FreeBSD.org. I have a new removable drive, how do I use it? Whether it is a removable drive like a ZIP or an EZ drive (or even a floppy, if you want to use it that way), or a new hard disk, once it is installed and recognized by the system, and you have your cartridge/floppy/whatever slotted in, things are pretty much the same for all devices. (this section is based on Mark Mayo's ZIP FAQ) If it is a ZIP drive or a floppy , you have already got a DOS filesystem on it, you can use a command like this: &prompt.root; mount -t msdos /dev/fd0c /floppy if it is a floppy, or this: &prompt.root; mount -t msdos /dev/da2s4 /zip for a ZIP disk with the factory configuration. For other disks, see how they are laid out using &man.fdisk.8; or &man.sysinstall.8;. The rest of the examples will be for a ZIP drive on da2, the third SCSI disk. Unless it is a floppy, or a removable you plan on sharing with other people, it is probably a better idea to stick a BSD file system on it. You will get long filename support, at least a 2X improvement in performance, and a lot more stability. First, you need to redo the DOS-level partitions/filesystems. You can either use &man.fdisk.8; or /stand/sysinstall, or for a small drive that you do not want to bother with multiple operating system support on, just blow away the whole FAT partition table (slices) and just use the BSD partitioning: &prompt.root; dd if=/dev/zero of=/dev/rda2 count=2 &prompt.root; disklabel -Brw da2 auto You can use disklabel or /stand/sysinstall to create multiple BSD partitions. You will certainly want to do this if you are adding swap space on a fixed disk, but it is probably irrelevant on a removable drive like a ZIP. Finally, create a new file system, this one is on our ZIP drive using the whole disk: &prompt.root; newfs /dev/rda2c and mount it: &prompt.root; mount /dev/da2c /zip and it is probably a good idea to add a line like this to /etc/fstab (see &man.fstab.5;) so you can just type mount /zip in the future: /dev/da2c /zip ffs rw,noauto 0 0 Why do I keep getting messages like root: not found after editing my crontab file? This is normally caused by editing the system crontab (/etc/crontab) and then using &man.crontab.1; to install it: &prompt.root; crontab /etc/crontab This is not the correct way to do things. The system crontab has a different format to the per-user crontabs which &man.crontab.1; updates (the &man.crontab.5; manual page explains the differences in more detail). If this is what you did, the extra crontab is simply a copy of /etc/crontab in the wrong format it. Delete it with the command: &prompt.root; crontab -r Next time, when you edit /etc/crontab, you should not do anything to inform &man.cron.8; of the changes, since it will notice them automatically. If you want something to be run once per day, week, or month, it is probably better to add shell scripts /usr/local/etc/periodic, and let the &man.periodic.8; command run from the system cron schedule it with the other periodic system tasks. The actual reason for the error is that the system crontab has an extra field, specifying which user to run the command as. In the default system crontab provided with FreeBSD, this is root for all entries. When this crontab is used as the root user's crontab (which is not the same as the system crontab), &man.cron.8; assumes the string root is the first word of the command to execute, but no such command exists. Why do I get the error, you are not in the correct group to su root when I try to su to root? This is a security feature. In order to su to root (or any other account with superuser privileges), you must be in the wheel group. If this feature were not there, anybody with an account on a system who also found out root's password would be able to gain superuser level access to the system. With this feature, this is not strictly true; &man.su.1; will prevent them from even trying to enter the password if they are not in wheel. To allow someone to su to root, simply put them in the wheel group. I made a mistake in rc.conf, or another startup file, and now I cannot edit it because the filesystem is read-only. What should I do? When you get the prompt to enter the shell pathname, simply press ENTER, and run mount / to re-mount the root filesystem in read/write mode. You may also need to run mount -a -t ufs to mount the filesystem where your favourite editor is defined. If your favourite editor is on a network filesystem, you will need to either configure the network manually before you can mount network filesystems, or use an editor which resides on a local filesystem, such as &man.ed.1;. If you intend to use a full screen editor such as &man.vi.1; or &man.emacs.1;, you may also need to run export TERM=cons25 so that these editors can load the correct data from the &man.termcap.5; database. Once you have performed these steps, you can edit /etc/rc.conf as you usually would to fix the syntax error. The error message displayed immediately after the kernel boot messages should tell you the number of the line in the file which is at fault. How do I mount a secondary DOS partition? The secondary DOS partitions are found after ALL the primary partitions. For example, if you have an E partition as the second DOS partition on the second SCSI drive, you need to create the special files for slice 5 in /dev, then mount /dev/da1s5: &prompt.root; cd /dev &prompt.root; sh MAKEDEV da1s5 &prompt.root; mount -t msdos /dev/da1s5 /dos/e Can I mount other foreign filesystems under FreeBSD? Digital UNIX UFS CDROMs can be mounted directly on FreeBSD. Mounting disk partitions from Digital UNIX and other systems that support UFS may be more complex, depending on the details of the disk partitioning for the operating system in question. Linux As of 2.2, FreeBSD supports ext2fs partitions. See &man.mount.ext2fs.8; for more information. NT A read-only NTFS driver exists for FreeBSD. For more information, see this tutorial by Mark Ovens at - http://ukug.uk.freebsd.org/~mark/ntfs_install.html. + URL="http://ukug.uk.FreeBSD.org/~mark/ntfs_install.html"> + http://ukug.uk.FreeBSD.org/~mark/ntfs_install.html. Any other information on this subject would be appreciated. How can I use the NT loader to boot FreeBSD? This procedure is slightly different for 2.2.x and 3.x (with the 3-stage boot) systems. The general idea is that you copy the first sector of your native root FreeBSD partition into a file in the DOS/NT partition. Assuming you name that file something like c:\bootsect.bsd (inspired by c:\bootsect.dos), you can then edit the c:\boot.ini file to come up with something like this: [boot loader] timeout=30 default=multi(0)disk(0)rdisk(0)partition(1)\WINDOWS [operating systems] multi(0)disk(0)rdisk(0)partition(1)\WINDOWS="Windows NT" C:\BOOTSECT.BSD="FreeBSD" C:\="DOS" For 2.2.x systems this procedure assumes that DOS, NT, FreeBSD, or whatever have been installed into their respective fdisk partitions on the same disk. This example was tested on a system where DOS & NT were on the first fdisk partition, and FreeBSD on the second. FreeBSD was also set up to boot from its native partition, not the disk's MBR. Mount a DOS-formatted floppy (if you have converted to NTFS) or the FAT partition, under, say, /mnt. &prompt.root; dd if=/dev/rda0a of=/mnt/bootsect.bsd bs=512 count=1 Reboot into DOS or NT. NTFS users copy the bootsect.bsd and/or the bootsect.lnx file from the floppy to C:\. Modify the attributes (permissions) on boot.ini with: C:\> attrib -s -r c:\boot.ini Edit to add the appropriate entries from the example boot.ini above, and restore the attributes: C:\> attrib +s +r c:\boot.ini If FreeBSD is booting from the MBR, restore it with the DOS fdisk command after you reconfigure them to boot from their native partitions. For FreeBSD 3.x systems the procedure is somewhat simpler. If FreeBSD is installed on the same disk as the NT boot partition simply copy /boot/boot1 to C:\BOOTSECT.BSD However, if FreeBSD is installed on a different disk /boot/boot1 will not work, /boot/boot0 is needed. DO NOT SIMPLY COPY /boot/boot0 INSTEAD OF /boot/boot1, YOU WILL OVERWRITE YOUR PARTITION TABLE AND RENDER YOUR COMPUTER UN-BOOTABLE! /boot/boot0 needs to be installed using sysinstall by selecting the FreeBSD boot manager on the screen which asks if you wish to use a boot manager. This is because /boot/boot0 has the partition table area filled with NULL characters but sysinstall copies the partition table before copying /boot/boot0 to the MBR. When the FreeBSD boot manager runs it records the last OS booted by setting the active flag on the partition table entry for that OS and then writes the whole 512-bytes of itself back to the MBR so if you just copy /boot/boot0 to C:\BOOTSECT.BSD then it writes an empty partition table, with the active flag set on one entry, to the MBR. How do I boot FreeBSD and Linux from LILO? If you have FreeBSD and Linux on the same disk, just follow LILO's installation instructions for booting a non-Linux operating system. Very briefly, these are: Boot Linux, and add the following lines to /etc/lilo.conf: other=/dev/hda2 table=/dev/hda label=FreeBSD (the above assumes that your FreeBSD slice is known to Linux as /dev/hda2; tailor to suit your setup). Then, run lilo as root and you should be done. If FreeBSD resides on another disk, you need to add loader=/boot/chain.b to the LILO entry. For example: other=/dev/dab4 table=/dev/dab loader=/boot/chain.b label=FreeBSD In some cases you may need to specify the BIOS drive number to the FreeBSD boot loader to successfully boot off the second disk. For example, if your FreeBSD SCSI disk is probed by BIOS as BIOS disk 1, at the FreeBSD boot loader prompt you need to specify: Boot: 1:da(0,a)/kernel On FreeBSD 2.2.5 and later, you can configure &man.boot.8; to automatically do this for you at boot time. The Linux+FreeBSD mini-HOWTO is a good reference for FreeBSD and Linux interoperability issues. How do I boot FreeBSD and Linux using BootEasy? Install LILO at the start of your Linux boot partition instead of in the Master Boot Record. You can then boot LILO from BootEasy. If you are running Windows-95 and Linux this is recommended anyway, to make it simpler to get Linux booting again if you should need to reinstall Windows95 (which is a Jealous Operating System, and will bear no other Operating Systems in the Master Boot Record). Will a dangerously dedicated disk endanger my health? The installation procedure allows you to chose two different methods in partitioning your harddisk(s). The default way makes it compatible with other operating systems on the same machine, by using fdisk table entries (called slices in FreeBSD), with a FreeBSD slice that employs partitions of its own. Optionally, one can chose to install a boot-selector to switch between the possible operating systems on the disk(s). The alternative uses the entire disk for FreeBSD, and makes no attempt to be compatible with other operating systems. So why it is called dangerous? A disk in this mode does not contain what normal PC utilities would consider a valid fdisk table. Depending on how well they have been designed, they might complain at you once they are getting in contact with such a disk, or even worse, they might damage the BSD bootstrap without even asking or notifying you. In addition, the dangerously dedicated disk's layout is known to confuse many BIOSsen, including those from AWARD (eg. as found in HP Netserver and Micronics systems as well as many others) and Symbios/NCR (for the popular 53C8xx range of SCSI controllers). This is not a complete list, there are more. Symptoms of this confusion include the read error message printed by the FreeBSD bootstrap when it cannot find itself, as well as system lockups when booting. Why have this mode at all then? It only saves a few kbytes of disk space, and it can cause real problems for a new installation. Dangerously dedicated mode's origins lie in a desire to avoid one of the most common problems plaguing new FreeBSD installers - matching the BIOS geometry numbers for a disk to the disk itself. Geometry is an outdated concept, but one still at the heart of the PC's BIOS and its interaction with disks. When the FreeBSD installer creates slices, it has to record the location of these slices on the disk in a fashion that corresponds with the way the BIOS expects to find them. If it gets it wrong, you will not be able to boot. Dangerously dedicated mode tries to work around this by making the problem simpler. In some cases, it gets it right. But it is meant to be used as a last-ditch alternative - there are better ways to solve the problem 99 times out of 100. So, how do you avoid the need for DD mode when you are installing? Start by making a note of the geometry that your BIOS claims to be using for your disks. You can arrange to have the kernel print this as it boots by specifying at the boot: prompt, or using boot -v in the loader. Just before the installer starts, the kernel will print a list of BIOS geometries. Do not panic - wait for the installer to start and then use scrollback to read the numbers. Typically the BIOS disk units will be in the same order that FreeBSD lists your disks, first IDE, then SCSI. When you are slicing up your disk, check that the disk geometry displayed in the FDISK screen is correct (ie. it matches the BIOS numbers); if it is wrong, use the g key to fix it. You may have to do this if there is absolutely nothing on the disk, or if the disk has been moved from another system. Note that this is only an issue with the disk that you are going to boot from; FreeBSD will sort itself out just fine with any other disks you may have. Once you have got the BIOS and FreeBSD agreeing about the geometry of the disk, your problems are almost guaranteed to be over, and with no need for DD mode at all. If, however, you are still greeted with the dreaded read error message when you try to boot, it is time to cross your fingers and go for it - there's nothing left to lose. To return a dangerously dedicated disk for normal PC use, there are basically two options. The first is, you write enough NULL bytes over the MBR to make any subsequent installation believe this to be a blank disk. You can do this for example with &prompt.root; dd if=/dev/zero of=/dev/rda0 count=15 Alternatively, the undocumented DOS feature C:\> fdisk /mbr will to install a new master boot record as well, thus clobbering the BSD bootstrap. How can I add more swap space? The best way is to increase the size of your swap partition, or take advantage of this convenient excuse to add another disk. The general rule of thumb is to have around 2x the swap space as you have main memory. However, if you have a very small amount of main memory you may want to configure swap beyond that. It is also a good idea to configure sufficient swap relative to anticipated future memory upgrades so you do not have to futz with your swap configuration later. Adding swap onto a separate disk makes things faster than simply adding swap onto the same disk. As an example, if you are compiling source located on one disk, and the swap is on another disk, this is much faster than both swap and compile on the same disk. This is true for SCSI disks specifically. When you have several disks, configuring a swap partition on each one is usually beneficial, even if you wind up putting swap on a work disk. Typically, each fast disk in your system should have some swap configured. FreeBSD supports up to 4 interleaved swap devices by default. When configuring multiple swap partitions you generally want to make them all about the same size, but people sometimes make their primary swap partition larger in order to accomodate a kernel core dump. Your primary swap partition must be at least as large as main memory in order to be able to accomodate a kernel core. IDE drives are not able to allow access to both drives on the same channel at the same time (FreeBSD does not support mode 4, so all IDE disk I/O is programmed). It is still suggested that you put your swap partition on a separate driver, however: the drives are so cheap, it is not worth worrying about. Swapping over NFS is only recommended if you do not have a local disk to swap to. Swapping over NFS is slow and inefficient in FreeBSD releases prior to 4.x, but reasonably fast in releases greater or equal to 4.0. Even so, it will be limited to the network bandwidth available and puts an additional burden on the NFS server. Here is an example for 64Mb vn-swap (/usr/swap0, though of course you can use any name that you want). Make sure your kernel was built with the line pseudo-device vn 1 #Vnode driver (turns a file into a device) in your config-file. The GENERIC kernel already contains this. create a vn-device &prompt.root; cd /dev &prompt.root; sh MAKEDEV vn0 create a swapfile (/usr/swap0) &prompt.root; dd if=/dev/zero of=/usr/swap0 bs=1024k count=64 set proper permissions on (/usr/swap0) &prompt.root; chmod 0600 /usr/swap0 enable the swap file in /etc/rc.conf swapfile="/usr/swap0" # Set to name of swapfile if aux swapfile desired. reboot the machine To enable the swap file immediately, type &prompt.root; vnconfig -e /dev/vn0b /usr/swap0 swap Why am I having trouble setting up my printer? Please have a look at the Handbook entry on printing. It should cover most of your problem. See the Handbook entry on printing. Some printers require a host-based driver to do any kind of printing. These so-called WinPrinters are not natively supported by FreeBSD. If your printer does not work in DOS or Windows NT 4.0, it is probably a WinPrinter. Your only hope of getting one of these to work is to check if the ports/print/pnm2ppa port supports it. From its + url="http://www.FreeBSD.org/cgi/url.cgi?ports/print/pnm2ppa/pkg-descr">its package description:
This software creates output using the PPA (printer performance architecture) protocol. This protocol is used by some HP "Windows-only" printers, including the HP Deskjet 820C series, the HP DeskJet 720 series, and the HP DeskJet 1000 series. [...] WWW: http://pnm2ppa.sourceforge.net/
How can I correct the keyboard mappings for my system? The kbdcontrol program has an option to load a keyboard map file. Under /usr/share/syscons/keymaps are a number of map files. Choose the one relevant to your system and load it. &prompt.root; kbdcontrol -l uk.iso Both the /usr/share/syscons/keymaps and the .kbd extension are assumed by &man.kbdcontrol.1;. This can be configured in /etc/sysconfig (or &man.rc.conf.5;). See the appropriate comments in this file. In 2.0.5R and later, everything related to text fonts, keyboard mapping is in /usr/share/examples/syscons. The following mappings are currently supported: Belgian ISO-8859-1 Brazilian 275 keyboard Codepage 850 Brazilian 275 keyboard ISO-8859-1 Danish Codepage 865 Danish ISO-8859-1 French ISO-8859-1 German Codepage 850 German ISO-8859-1 Italian ISO-8859-1 Japanese 106 Japanese 106x Latin American Norwegian ISO-8859-1 Polish ISO-8859-2 (programmer's) Russian Codepage 866 (alternative) Russian koi8-r (shift) Russian koi8-r Spanish ISO-8859-1 Swedish Codepage 850 Swedish ISO-8859-1 Swiss-German ISO-8859-1 United Kingdom Codepage 850 United Kingdom ISO-8859-1 United States of America ISO-8859-1 United States of America dvorak United States of America dvorakx Why do I get messages like: unknown: <PNP0303> can't assign resources on boot? The following is an excerpt from a post to the freebsd-current mailing list.
&a.wollman;, 24 April 2001 The can't assign resources messages indicate that the devices are legacy ISA devices for which a non-PnP-aware driver is compiled into the kernel. These include devices such as keyboard controllers, the programmable interrupt controller chip, and several other bits of standard infrastructure. The resources cannot be assigned because there is already a driver using those addresses.
How come I cannot get user quotas to work properly? Do not turn on quotas on /, Put the quota file on the file system that the quotas are to be enforced on. ie: Filesystem Quota file /usr /usr/admin/quotas /home /home/admin/quotas What is inappropriate about my ccd? The symptom of this is: &prompt.root; ccdconfig -C ccdconfig: ioctl (CCDIOCSET): /dev/ccd0c: Inappropriate file type or format This usually happens when you are trying to concatenate the c partitions, which default to type unused. The ccd driver requires the underlying partition type to be FS_BSDFFS. Edit the disklabel of the disks you are trying to concatenate and change the types of partitions to 4.2BSD. Why can't I edit the disklabel on my ccd? The symptom of this is: &prompt.root; disklabel ccd0 (it prints something sensible here, so let's try to edit it) &prompt.root; disklabel -e ccd0 (edit, save, quit) disklabel: ioctl DIOCWDINFO: No disk label on disk; use "disklabel -r" to install initial label This is because the disklabel returned by ccd is actually a fake one that is not really on the disk. You can solve this problem by writing it back explicitly, as in: &prompt.root; disklabel ccd0 > /tmp/disklabel.tmp &prompt.root; disklabel -Rr ccd0 /tmp/disklabel.tmp &prompt.root; disklabel -e ccd0 (this will work now) Does FreeBSD support System V IPC primitives? Yes, FreeBSD supports System V-style IPC. This includes shared memory, messages and semaphores. You need to add the following lines to your kernel config to enable them. options SYSVSHM # enable shared memory options SYSVSEM # enable for semaphores options SYSVMSG # enable for messaging In FreeBSD 3.2 and later, these options are already part of the GENERIC kernel, which means they should already be compiled into your system. Recompile and install your kernel. How do I use sendmail for mail delivery with UUCP? The sendmail configuration that ships with FreeBSD is suited for sites that connect directly to the Internet. Sites that wish to exchange their mail via UUCP must install another sendmail configuration file. Tweaking /etc/sendmail.cf manually is considered something for purists. Sendmail version 8 comes with a new approach of generating config files via some &man.m4.1; preprocessing, where the actual hand-crafted configuration is on a higher abstraction level. You should use the configuration files under /usr/src/usr.sbin/sendmail/cf If you did not install your system with full sources, the sendmail config stuff has been broken out into a separate source distribution tarball just for you. Assuming you have got your CDROM mounted, do: &prompt.root; cd /cdrom/src &prompt.root; cat scontrib.?? | tar xzf - -C /usr/src contrib/sendmail Do not panic, this is only a few hundred kilobytes in size. The file README in the cf directory can serve as a basic introduction to m4 configuration. For UUCP delivery, you are best advised to use the mailertable feature. This constitutes a database that sendmail can use to base its routing decision upon. First, you have to create your .mc file. The directory /usr/src/usr.sbin/sendmail/cf/cf is the home of these files. Look around, there are already a few examples. Assuming you have named your file foo.mc, all you need to do in order to convert it into a valid sendmail.cf is: &prompt.root; cd /usr/src/usr.sbin/sendmail/cf/cf &prompt.root; make foo.cf &prompt.root; cp foo.cf /etc/sendmail.cf A typical .mc file might look like: include(`../m4/cf.m4') VERSIONID(`Your version number') OSTYPE(bsd4.4) FEATURE(nodns) FEATURE(nocanonify) FEATURE(mailertable) define(`UUCP_RELAY', your.uucp.relay) define(`UUCP_MAX_SIZE', 200000) MAILER(local) MAILER(smtp) MAILER(uucp) Cw your.alias.host.name Cw youruucpnodename.UUCP The nodns and nocanonify features will prevent any usage of the DNS during mail delivery. The UUCP_RELAY clause is needed for bizarre reasons, do not ask. Simply put an Internet hostname there that is able to handle .UUCP pseudo-domain addresses; most likely, you will enter the mail relay of your ISP there. Once you have got this, you need this file called /etc/mailertable. A typical example of this gender again: # # makemap hash /etc/mailertable.db < /etc/mailertable # horus.interface-business.de uucp-dom:horus .interface-business.de uucp-dom:if-bus interface-business.de uucp-dom:if-bus .heep.sax.de smtp8:%1 horus.UUCP uucp-dom:horus if-bus.UUCP uucp-dom:if-bus . uucp-dom: As you can see, this is part of a real-life file. The first three lines handle special cases where domain-addressed mail should not be sent out to the default route, but instead to some UUCP neighbor in order to shortcut the delivery path. The next line handles mail to the local Ethernet domain that can be delivered using SMTP. Finally, the UUCP neighbors are mentioned in the .UUCP pseudo-domain notation, to allow for a uucp-neighbor !recipient override of the default rules. The last line is always a single dot, matching everything else, with UUCP delivery to a UUCP neighbor that serves as your universal mail gateway to the world. All of the node names behind the uucp-dom: keyword must be valid UUCP neighbors, as you can verify using the command uuname. As a reminder that this file needs to be converted into a DBM database file before being usable, the command line to accomplish this is best placed as a comment at the top of the mailertable. You always have to execute this command each time you change your mailertable. Final hint: if you are uncertain whether some particular mail routing would work, remember the option to sendmail. It starts sendmail in address test mode; simply enter 0, followed by the address you wish to test for the mail routing. The last line tells you the used internal mail agent, the destination host this agent will be called with, and the (possibly translated) address. Leave this mode by typing Control-D. &prompt.user; sendmail -bt ADDRESS TEST MODE (ruleset 3 NOT automatically invoked) Enter <ruleset> <address> > 0 foo@interface-business.de rewrite: ruleset 0 input: foo @ interface-business . de ... rewrite: ruleset 0 returns: $# uucp-dom $@ if-bus $: foo \ < @ interface-business . de > > ^D How do I set up mail with a dialup connection to the 'net? If you have got a statically assigned IP number, you should not need to adjust anything from the default. Set your host name up as your assigned Internet name and sendmail will do the rest. If you have got a dynamically assigned IP number and use a dialup ppp connection to the Internet, you will probably be given a mailbox on your ISPs mail server. Lets assume your ISPs domain is myISP.com, and that your user name is user. Lets also assume you have called your machine bsd.home and that your ISP has told you that you may use relay.myISP.com as a mail relay. In order to retrieve mail from your mailbox, you will need to install a retrieval agent. Fetchmail is a good choice as it supports many different protocols. Usually, POP3 will be provided by your ISP. If you have chosen to use user-ppp, you can automatically fetch your mail when a connection to the 'net is established with the following entry in /etc/ppp/ppp.linkup: MYADDR: !bg su user -c fetchmail If you are using sendmail (as shown below) to deliver mail to non-local accounts, put the command !bg su user -c "sendmail -q" after the above shown entry. This forces sendmail to process your mailqueue as soon as the connection to the 'net is established. I am assuming that you have an account for user on bsd.home. In the home directory of user on bsd.home, create a .fetchmailrc file: poll myISP.com protocol pop3 fetchall pass MySecret Needless to say, this file should not be readable by anyone except user as it contains the password MySecret. In order to send mail with the correct from: header, you must tell sendmail to use user@myISP.com rather than user@bsd.home. You may also wish to tell sendmail to send all mail via relay.myISP.com, allowing quicker mail transmission. The following .mc file should suffice: VERSIONID(`bsd.home.mc version 1.0') OSTYPE(bsd4.4)dnl FEATURE(nouucp)dnl MAILER(local)dnl MAILER(smtp)dnl Cwlocalhost Cwbsd.home MASQUERADE_AS(`myISP.com')dnl FEATURE(allmasquerade)dnl FEATURE(masquerade_envelope)dnl FEATURE(nocanonify)dnl FEATURE(nodns)dnl define(`SMART_HOST', `relay.myISP.com') Dmbsd.home define(`confDOMAIN_NAME',`bsd.home')dnl define(`confDELIVERY_MODE',`deferred')dnl Refer to the previous section for details of how to turn this .mc file into a sendmail.cf file. Also, don't forget to restart sendmail after updating sendmail.cf. What is this UID 0 toor account? Have I been compromised? Do not worry. toor is an alternative superuser account (toor is root spelt backwards). Previously it was created when the &man.bash.1; shell was installed but now it is created by default. It is intended to be used with a non-standard shell so you do not have to change root's default shell. This is important as shells which are not part of the base distribution (for example a shell installed from ports or packages) are likely be to be installed in /usr/local/bin which, by default, resides on a different filesystem. If root's shell is located in /usr/local/bin and /usr (or whatever filesystem contains /usr/local/bin) is not mounted for some reason, root will not be able to log in to fix a problem (although if you reboot into single user mode you will be prompted for the path to a shell). Some people use toor for day-to-day root tasks with a non-standard shell, leaving root, with a standard shell, for single user mode or emergencies. By default you cannot log in using toor as it does not have a password, so log in as root and set a password for toor if you want to use it. I have forgotten the root password! What do I do? Do not Panic! Simply restart the system, type boot -s at the Boot: prompt (just -s for FreeBSD releases before 3.2) to enter Single User mode. At the question about the shell to use, hit ENTER. You will be dropped to a &prompt.root; prompt. Enter mount -u / to remount your root filesystem read/write, then run mount -a to remount all the filesystems. Run passwd root to change the root password then run &man.exit.1; to continue booting. How do I keep Control-Alt-Delete from rebooting the system? If you are using syscons (the default console driver) in FreeBSD 2.2.7-RELEASE or later, build and install a new kernel with the line options SC_DISABLE_REBOOT in the configuration file. If you use the PCVT console driver in FreeBSD 2.2.5-RELEASE or later, use the following kernel configuration line instead: options PCVT_CTRL_ALT_DEL For older versions of FreeBSD, edit the keymap you are using for the console and replace the boot keywords with nop. The default keymap is /usr/share/syscons/keymaps/us.iso.kbd. You may have to instruct /etc/rc.conf to load this keymap explicitly for the change to take effect. Of course if you are using an alternate keymap for your country, you should edit that one instead. How do I reformat DOS text files to Unix ones? Simply use this perl command: &prompt.user; perl -i.bak -npe 's/\r\n/\n/g' file ... file is the file(s) to process. The modification is done in-place, with the original file stored with a .bak extension. Alternatively you can use the &man.tr.1; command: &prompt.user; tr -d '\r' < dos-text-file > unix-file dos-text-file is the file containing DOS text while unix-file will contain the converted output. This can be quite a bit faster than using perl. How do I kill processes by name? Use &man.killall.1;. Why is su bugging me about not being in root's ACL? The error comes from the Kerberos distributed authentication system. The problem is not fatal but annoying. You can either run su with the -K option, or uninstall Kerberos as described in the next question. How do I uninstall Kerberos? To remove Kerberos from the system, reinstall the bin distribution for the release you are running. If you have the CDROM, you can mount the cd (we will assume on /cdrom) and run &prompt.root; cd /cdrom/bin &prompt.root; ./install.sh Alternately, you can remove all "MAKE_KERBEROS" options from /etc/make.conf and rebuild world. How do I add pseudoterminals to the system? If you have lots of telnet, ssh, X, or screen users, you will probably run out of pseudoterminals. Here is how to add more: Build and install a new kernel with the line pseudo-device pty 256 in the configuration file. Run the commands &prompt.root; cd /dev &prompt.root; sh MAKEDEV pty{1,2,3,4,5,6,7} to make 256 device nodes for the new terminals. Edit /etc/ttys and add lines for each of the 256 terminals. They should match the form of the existing entries, i.e. they look like ttyqc none network The order of the letter designations is tty[pqrsPQRS][0-9a-v], using a regular expression. Reboot the system with the new kernel and you are ready to go. How come I cannot create the snd0 device? There is no snd device. The name is used as a shorthand for the various devices that make up the FreeBSD sound driver, such as mixer, sequencer, and dsp. To create these devices you should &prompt.root; cd /dev &prompt.root; sh MAKEDEV snd0 How do I re-read /etc/rc.conf and re-start /etc/rc without a reboot? Go into single user mode and then back to multi user mode. On the console do: &prompt.root; shutdown now (Note: without -r or -h) &prompt.root; return &prompt.root; exit What is a sandbox? Sandbox is a security term. It can mean two things: A process which is placed inside a set of virtual walls that are designed to prevent someone who breaks into the process from being able to break into the wider system. The process is said to be able to play inside the walls. That is, nothing the process does in regards to executing code is supposed to be able to breech the walls so you do not have to do a detailed audit of its code to be able to say certain things about its security. The walls might be a userid, for example. This is the definition used in the security and named man pages. Take the ntalk service, for example (see /etc/inetd.conf). This service used to run as userid root. Now it runs as userid tty. The tty user is a sandbox designed to make it more difficult for someone who has successfully hacked into the system via ntalk from being able to hack beyond that user id. A process which is placed inside a simulation of the machine. This is more hard-core. Basically it means that someone who is able to break into the process may believe that he can break into the wider machine but is, in fact, only breaking into a simulation of that machine and not modifying any real data. The most common way to accomplish this is to build a simulated environment in a subdirectory and then run the processes in that directory chroot'd (i.e. / for that process is this directory, not the real / of the system). Another common use is to mount an underlying filesystem read-only and then create a filesystem layer on top of it that gives a process a seemingly writeable view into that filesystem. The process may believe it is able to write to those files, but only the process sees the effects - other processes in the system do not, necessarily. An attempt is made to make this sort of sandbox so transparent that the user (or hacker) does not realize that he is sitting in it. Unix implements two core sandboxes. One is at the process level, and one is at the userid level. Every Unix process is completely firewalled off from every other Unix process. One process cannot modify the address space of another. This is unlike Windows where a process can easily overwrite the address space of any other, leading to a crash. A Unix process is owned by a particular userid. If the userid is not the root user, it serves to firewall the process off from processes owned by other users. The userid is also used to firewall off on-disk data. What is securelevel? The securelevel is a security mechanism implemented in the kernel. Basically, when the securelevel is positive, the kernel restricts certain tasks; not even the superuser (i.e., root) is allowed to do them. At the time of this writing, the securelevel mechanism is capable of, among other things, limiting the ability to, unset certain file flags, such as schg (the system immutable flag), write to kernel memory via /dev/mem and /dev/kmem, load kernel modules, and alter &man.ipfirewall.4; rules. To check the status of the securelevel on a running system, simply execute the following command: &prompt.root; sysctl kern.securelevel The output will contain the name of the &man.sysctl.8; variable (in this case, kern.securelevel) and a number. The latter is the current value of the securelevel. If it is positive (i.e., greater than 0), at least some of the securelevel's protections are enabled. You cannot lower the securelevel of a running system; being able to do that would defeat its purpose. If you need to do a task that requires that the securelevel be non-positive (e.g., an installworld or changing the date), you will have to change the securelevel setting in /etc/rc.conf (you want to look for the kern_securelevel and kern_securelevel_enable variables) and reboot. For more information on securelevel and the specific things all the levels do, please consult the &man.init.8; manual page. Securelevel is not a silver bullet; it has many known deficiencies. More often than not, it provides a false sense of security. One of its biggest problems is that in order for it to be at all effective, all files used in the boot process up until the securelevel is set must be protected. If an attacker can get the system to execute their code prior to the securelevel being set (which happens quite late in the boot process since some things the system must do at start-up cannot be done at an elevated securelevel), its protections are invalidated. While this task of protecting all files used in the boot process is not technically impossible, if it is achieved, system maintenance will become a nightmare since one would have to take the system down, at least to single-user mode, to modify a configuration file. This point and others are often discussed on the mailing lists, particularly freebsd-security. Please search the archives here for an + url="../../../../search/index.html">here for an extensive discussion. Some people are hopeful that securelevel will soon go away in favor of a more fine-grained mechanism, but things are still hazy in this respect. Consider yourself warned. How do I let ordinary users mount floppies, CDROMs and other removable media? Ordinary users can be permitted to mount devices. Here is how: As root set the sysctl variable vfs.usermount to 1. &prompt.root; sysctl -w vfs.usermount=1 As root assign the appropriate permissions to the block device associated with the removable media. For example, to allow users to mount the first floppy drive, use: &prompt.root; chmod 666 /dev/fd0 To allow users in the group operator to mount the CDROM drive, use: &prompt.root; chgrp operator /dev/cd0c &prompt.root; chmod 640 /dev/cd0c Finally, add the line vfs.usermount=1 to the file /etc/sysctl.conf so that it is reset at system boot time. All users can now mount the floppy /dev/fd0 onto a directory that they own: &prompt.user; mkdir ~/my-mount-point &prompt.user; mount -t msdos /dev/fd0 ~/my-mount-point Users in group operator can now mount the CDROM /dev/cd0c onto a directory that they own: &prompt.user; mkdir ~/my-mount-point &prompt.user; mount -t msdos /dev/cd0c ~/my-mount-point Unmounting the device is simple: &prompt.user; umount ~/my-mount-point Enabling vfs.usermount, however, has negative security implications. A better way to access MSDOS formatted media is to use the mtools package in the ports collection. + URL="http://www.FreeBSD.org/cgi/ports.cgi?query=%5Emtools-&stype=name">mtools package in the ports collection. How do I move my system over to my huge new disk? The best way is to reinstall the OS on the new disk, then move the user data over. This is highly recommended if you have been tracking -stable for more than one release, or have updated a release instead of installing a new one. You can install booteasy on both disks with &man.boot0cfg.8;, and dual boot them until you are happy with the new configuration. Skip the next paragraph to find out how to move the data after doing this. Should you decide not to do a fresh install, you need to partition and label the new disk with either /stand/sysinstall, or &man.fdisk.8; and &man.disklabel.8;. You should also install booteasy on both disks with &man.boot0cfg.8;, so that you can dual boot to the old or new system after the copying is done. See the - formatting-media tutorial for details on this + url="../../articles/formatting-media/index.html"> + formatting-media article for details on this process. Now you have the new disk set up, and are ready to move the data. Unfortunately, you cannot just blindly copy the data. Things like device files (in /dev), flags, and links tend to screw that up. You need to use tools that understand these things, which means &man.dump.8;. Although it is suggested that you move the data in single user mode, it is not required. You should never use anything but &man.dump.8; and &man.restore.8; to move the root file system. The &man.tar.1; command may work - then again, it may not. You should also use &man.dump.8; and &man.restore.8; if you are moving a single partition to another empty partition. The sequence of steps to use dump to move a partitions data to a new partition is: newfs the new partition. mount it on a temporary mount point. cd to that directory. dump the old partition, piping output to the new one. For example, if you are going to move root to /dev/ad1s1a, with /mnt as the temporary mount point, it is: &prompt.root; newfs /dev/ad1s1a &prompt.root; mount /dev/ad1s1a /mnt &prompt.root; cd /mnt &prompt.root; dump 0af - / | restore xf - Rearranging your partitions with dump takes a bit more work. To merge a partition like /var into it's parent, create the new partition large enough for both, move the parent partition as described above, then move the child partition into the empty directory that the first move created: &prompt.root; newfs /dev/ad1s1a &prompt.root; mount /dev/ad1s1a /mnt &prompt.root; cd /mnt &prompt.root; dump 0af - / | restore xf - &prompt.root; cd var &prompt.root; dump 0af - /var | restore xf - To split a directory from it's parent, say putting /var on it's own partition when it wasn't before, create both partitions, then mount the child partition on the approriate directory in the temporary mount point, then move the old single partition: &prompt.root; newfs /dev/ad1s1a &prompt.root; newfs /dev/ad1s1d &prompt.root; mount /dev/ad1s1a /mnt &prompt.root; mkdir /mnt/var &prompt.root; mount /dev/ad1s1d /mnt/var &prompt.root; cd /mnt &prompt.root; dump 0af - / | restore xf - You might prefer &man.cpio.1;, &man.pax.1;, &man.tar.1; to &man.dump.8; for user data. At the time of this writing, these are known to lose file flag information, so use them with caution. I tried to update my system to the latest -STABLE, but got -RC or -BETA! What is going on? Short answer: it is just a name. RC stands for Release Candidate. It signifies that a release is imminent. In FreeBSD, -BETA is typically synonymous with the code freeze before a release. Long answer: FreeBSD derives its releases from one of two places. Major, dot-zero, releases, such as 3.0-RELEASE and 4.0-RELEASE, are branched from the head of the development stream, commonly referred to as -CURRENT. Minor releases, such as 3.1-RELEASE or 4.2-RELEASE, have been snapshots of the active -STABLE branch. Starting with 4.3-RELEASE, each release also now has its own branch which can be tracked by people requiring an extremely conservative rate of development (typically only security advisories). When a release is about to be made, the branch from which it will be derived from has to undergo a certain process. Part of this process is a code freeze. When a code freeze is initiated, the name of the branch is changed to reflect that it is about to become a release. For example, if the branch used to be called 4.0-STABLE, its name will be changed to 4.1-BETA to signify the code freeze and signify that extra pre-release testing should be happening. Bug fixes can still be committed to be part of the release. When the source code is in shape for the release the name will be changed to 4.1-RC to signify that a release is about to be made from it. Once in the RC stage, only the most critical bugs found can be fixed. Once the release, 4.1-RELEASE in this example, has been made, the branch will be renamed to 4.1-STABLE. I tried to install a new kernel, and the chflags failed. How do I get around this? Short answer: You are probably at security level greater than 0. Reboot directly to single user mode to install the kernel. Long answer: FreeBSD disallows changing system flags at security levels greater than 0. You can check your security level with the command: &prompt.root; sysctl kern.securelevel You cannot lower the security level; you have to boot to single mode to install the kernel, or change the security level in /etc/rc.conf then reboot. See the &man.init.8; man page for details on securelevel, and see /etc/defaults/rc.conf and the &man.rc.conf.5; man page for more information on rc.conf. I cannot change the time on my system by more than one second! How do I get around this? Short answer: You are probably at security level greater than 1. Reboot directly to single user mode to change the date. Long answer: FreeBSD disallows changing the time by more that one second at security levels greater than 1. You can check your security level with the command: &prompt.root; sysctl kern.securelevel You cannot lower the security level; you have to boot to single mode to change the date, or change the security level in /etc/rc.conf then reboot. See the &man.init.8; man page for details on securelevel, and see /etc/defaults/rc.conf and the &man.rc.conf.5; man page for more information on rc.conf. Why is rpc.statd using 256 megabytes of memory? No, there is no memory leak, and it is not using 256 Mbytes of memory. It simply likes to (i.e., always does) map an obscene amount of memory into its address space for convenience. There is nothing terribly wrong with this from a technical standpoint; it just throws off things like &man.top.1; and &man.ps.1;. &man.rpc.statd.8; maps its status file (resident on /var) into its address space; to save worrying about remapping it later when it needs to grow, it maps it with a generous size. This is very evident from the source code, where one can see that the length argument to &man.mmap.2; is 0x10000000, or one sixteenth of the address space on an IA32, or exactly 256MB. Why can't I unset the schg file flag? You are running at an elevated (i.e., greater than 0) securelevel. Lower the securelevel and try again. For more information, see the FAQ entry on securelevel and the &man.init.8; manual page. Why doesn't SSH authentication through .shosts work by default in recent versions of FreeBSD? The reason why .shosts authentication does not work by default in more recent versions of FreeBSD is because &man.ssh.1; is not installed suid root by default. To fix this, you can do one of the following: As a permanent fix, set ENABLE_SUID_SSH to true in /etc/make.conf and rebuild ssh (or run make world). As a temporary fix, change the mode on /usr/bin/ssh to 4555 by running chmod 4755 /usr/bin/ssh as root. Then add ENABLE_SUID_SSH= true to /etc/make.conf so the change takes effect the next time make world is run.
The X Window System and Virtual Consoles I want to run X, how do I go about it? The easiest way is to simply specify that you want to run X during the installation process. Then read and follow the documentation on the xf86config tool, which assists you in configuring XFree86(tm) for your particular graphics card/mouse/etc. You may also wish to investigate the Xaccel server. See the section on Xi Graphics or Metro Link for more details. I tried to run X, but I get an KDENABIO failed (Operation not permitted) error when I type startx. What do I do now? Your system is running at a raised securelevel, is not it? It is, indeed, impossible to start X at a raised securelevel. To see why, look at the &man.init.8; man page. So the question is what else you should do instead, and you basically have two choices: set your securelevel back down to zero (usually from /etc/rc.conf), or run &man.xdm.1; at boot time (before the securelevel is raised). See for more information about running &man.xdm.1; at boot time. Why doesn't my mouse work with X? If you are using syscons (the default console driver), you can configure FreeBSD to support a mouse pointer on each virtual screen. In order to avoid conflicting with X, syscons supports a virtual device called /dev/sysmouse. All mouse events received from the real mouse device are written to the sysmouse device via moused. If you wish to use your mouse on one or more virtual consoles, and use X, see and set up moused. Then edit /etc/XF86Config and make sure you have the following lines. Section Pointer Protocol "SysMouse" Device "/dev/sysmouse" ..... The above example is for XFree86 3.3.2 or later. For earlier versions, the Protocol should be MouseSystems. Some people prefer to use /dev/mouse under X. To make this work, /dev/mouse should be linked to /dev/sysmouse (see &man.sysmouse.4;): &prompt.root; cd /dev &prompt.root; rm -f mouse &prompt.root; ln -s sysmouse mouse My mouse has a fancy wheel. Can I use it in X? Yes. But you need to customize X client programs. See Colas Nahaboo's web page (http://www.inria.fr/koala/colas/mouse-wheel-scroll/) . If you want to use the imwheel program, just follow these simple steps. Translate the Wheel Events The imwheel program works by translating mouse button 4 and mouse button 5 events into key events. Thus, you have to get the mouse driver to translate mouse wheel events to button 4 and 5 events. There are two ways of doing this, the first way is to have &man.moused.8; do the translation. The second way is for the X server itself to do the event translation. Using &man.moused.8; to Translate Wheel Events To have &man.moused.8; perform the event translations, simply add to the command line used to start &man.moused.8;. For example, if you normally start &man.moused.8; via moused -p /dev/psm0 you would start it by entering moused -p /dev/psm0 -z 4 instead. If you start &man.moused.8; automatically during bootup via /etc/rc.conf, you can simply add to the moused_flags variable in /etc/rc.conf. You now need to tell X that you have a 5 button mouse. To do this, simply add the line Buttons 5 to the Pointer section of /etc/XF86Config. For example, you might have the following Pointer section in /etc/XF86Config. <quote>Pointer</quote> Section for Wheeled Mouse in XFree86 3.3.x series XF86Config with moused Translation Section "Pointer" Protocol "SysMouse" Device "/dev/sysmouse" Buttons 5 EndSection <quote>InputDevice</quote> Section for Wheeled Mouse in XFree86 4.x series XF86Config with automatic protocol recognition and button mapping Translation Section "InputDevice" Identifier "Mouse1" Driver "mouse" Option "Protocol" "auto" Option "Device" "/dev/psm0" Option "Buttons" "5" Option "ZAxisMapping" "4 5" EndSection <quote>.emacs</quote> example for naive page scrolling with Wheeled Mouse ;; wheel mouse (global-set-key [mouse-4] 'scroll-down) (global-set-key [mouse-5] 'scroll-up) Using Your X Server to Translate the Wheel Events If you are not running &man.moused.8;, or if you do not want &man.moused.8; to translate your wheel events, you can have the X server do the event translation instead. This requires a couple of modifications to your /etc/XF86Config file. First, you need to choose the proper protocol for your mouse. Most wheeled mice use the IntelliMouse protocol. However, XFree86 does support other protocols, such as MouseManPlusPS/2 for the Logitech MouseMan+ mice. Once you have chosen the protocol you will use, you need to add a Protocol line to the Pointer section. Secondly, you need to tell the X server to remap wheel scroll events to mouse buttons 4 and 5. This is done with the ZAxisMapping option. For example, if you are not using &man.moused.8;, and you have an IntelliMouse attached to the PS/2 mouse port you would use the following in /etc/XF86Config. <quote>Pointer</quote> Section for Wheeled Mouse in <filename>XF86Config</filename> with X Server Translation Section "Pointer" Protocol "IntelliMouse" Device "/dev/psm0" ZAxisMapping 4 5 EndSection Install imwheel Next, install imwheel from the Ports collection. It can be found in the x11 category. This program will map the wheel events from your mouse into keyboard events. For example, it might send Page Up to a program when you scroll the wheel forwards. Imwheel uses a configuration file to map the wheel events to keypresses so that it can send different keys to different applications. The default imwheel configuration file is installed in /usr/X11R6/etc/imwheelrc. You can copy it to ~/.imwheelrc and then edit it if you wish to customize imwheel's configuration. The format of the configuration file is documented in &man.imwheel.1;. Configure Emacs to Work with Imwheel (optional) If you use emacs or Xemacs, then you need to add a small section to your ~/.emacs file. For emacs, add the following: <application>Emacs</application> Configuration for <application>Imwheel</application> ;;; For imwheel (setq imwheel-scroll-interval 3) (defun imwheel-scroll-down-some-lines () (interactive) (scroll-down imwheel-scroll-interval)) (defun imwheel-scroll-up-some-lines () (interactive) (scroll-up imwheel-scroll-interval)) (global-set-key [?\M-\C-\)] 'imwheel-scroll-up-some-lines) (global-set-key [?\M-\C-\(] 'imwheel-scroll-down-some-lines) ;;; end imwheel section For Xemacs, add the following to your ~/.emacs file instead: <application>Xemacs</application> Configuration for <application>Imwheel</application> ;;; For imwheel (setq imwheel-scroll-interval 3) (defun imwheel-scroll-down-some-lines () (interactive) (scroll-down imwheel-scroll-interval)) (defun imwheel-scroll-up-some-lines () (interactive) (scroll-up imwheel-scroll-interval)) (define-key global-map [(control meta \))] 'imwheel-scroll-up-some-lines) (define-key global-map [(control meta \()] 'imwheel-scroll-down-some-lines) ;;; end imwheel section Run Imwheel You can just type imwheel in an xterm to start it up once it is installed. It will background itself and take effect immediately. If you want to always use imwheel, simply add it to your .xinitrc or .xsession file. You can safely ignore any warnings imwheel displays about PID files. Those warnings only apply to the Linux version of imwheel. Why do X Window menus and dialog boxes not work right? Try turning off the Num Lock key. If your Num Lock key is on by default at boot-time, you may add the following line in the Keyboard section of the XF86Config file. # Let the server do the NumLock processing. This should only be # required when using pre-R6 clients ServerNumLock What is a virtual console and how do I make more? Virtual consoles, put simply, enable you to have several simultaneous sessions on the same machine without doing anything complicated like setting up a network or running X. When the system starts, it will display a login prompt on the monitor after displaying all the boot messages. You can then type in your login name and password and start working (or playing!) on the first virtual console. At some point, you will probably wish to start another session, perhaps to look at documentation for a program you are running or to read your mail while waiting for an FTP transfer to finish. Just do Alt-F2 (hold down the Alt key and press the F2 key), and you will find a login prompt waiting for you on the second virtual console! When you want to go back to the original session, do Alt-F1. The default FreeBSD installation has three virtual consoles enabled (8 starting with 3.3-RELEASE), and Alt-F1, Alt-F2, and Alt-F3 will switch between these virtual consoles. To enable more of them, edit /etc/ttys (see &man.ttys.5;) and add entries for ttyv4 to ttyvc after the comment on Virtual terminals: # Edit the existing entry for ttyv3 in /etc/ttys and change # "off" to "on". ttyv3 "/usr/libexec/getty Pc" cons25 on secure ttyv4 "/usr/libexec/getty Pc" cons25 on secure ttyv5 "/usr/libexec/getty Pc" cons25 on secure ttyv6 "/usr/libexec/getty Pc" cons25 on secure ttyv7 "/usr/libexec/getty Pc" cons25 on secure ttyv8 "/usr/libexec/getty Pc" cons25 on secure ttyv9 "/usr/libexec/getty Pc" cons25 on secure ttyva "/usr/libexec/getty Pc" cons25 on secure ttyvb "/usr/libexec/getty Pc" cons25 on secure Use as many or as few as you want. The more virtual terminals you have, the more resources that are used; this can be important if you have 8MB RAM or less. You may also want to change the secure to insecure. If you want to run an X server you must leave at least one virtual terminal unused (or turned off) for it to use. That is to say that if you want to have a login prompt pop up for all twelve of your Alt-function keys, you are out of luck - you can only do this for eleven of them if you also want to run an X server on the same machine. The easiest way to disable a console is by turning it off. For example, if you had the full 12 terminal allocation mentioned above and you wanted to run X, you would change settings for virtual terminal 12 from: ttyvb "/usr/libexec/getty Pc" cons25 on secure to: ttyvb "/usr/libexec/getty Pc" cons25 off secure If your keyboard has only ten function keys, you would end up with: ttyv9 "/usr/libexec/getty Pc" cons25 off secure ttyva "/usr/libexec/getty Pc" cons25 off secure ttyvb "/usr/libexec/getty Pc" cons25 off secure (You could also just delete these lines.) Once you have edited /etc/ttys, the next step is to make sure that you have enough virtualterminal devices. The easiest way to do this is: &prompt.root; cd /dev &prompt.root; sh MAKEDEV vty12 Next, the easiest (and cleanest) way to activate the virtual consoles is to reboot. However, if you really do not want to reboot, you can just shut down the X Window system and execute (as root): &prompt.root; kill -HUP 1 It is imperative that you completely shut down X Window if it is running, before running this command. If you don't, your system will probably appear to hang/lock up after executing the kill command. How do I access the virtual consoles from X? Use Ctrl Alt Fn to switch back to a virtual console. Ctrl Alt F1 would return you to the first virtual console. Once you are back to a text console, you can then use Alt Fn as normal to move between them. To return to the X session, you must switch to the virtual console running X. If you invoked X from the command line, (e.g., using startx) then the X session will attach to the next unused virtual console, not the text console from which it was invoked. If you have eight active virtual terminals then X will be running on the ninth, and you would use Alt F9 to return. How do I start XDM on boot? There are two schools of thought on how to start xdm. One school starts xdm from /etc/ttys (see &man.ttys.5;) using the supplied example, while the other simply runs xdm from rc.local (see &man.rc.8;) or from a X.sh script in /usr/local/etc/rc.d. Both are equally valid, and one may work in situations where the other does not. In both cases the result is the same: X will popup a graphical login: prompt. The ttys method has the advantage of documenting which vty X will start on and passing the responsibility of restarting the X server on logout to init. The rc.local method makes it easy to kill xdm if there is a problem starting the X server. If loaded from rc.local, xdm should be started without any arguments (i.e., as a daemon). xdm must start AFTER getty runs, or else getty and xdm will conflict, locking out the console. The best way around this is to have the script sleep 10 seconds or so then launch xdm. If you are to start xdm from /etc/ttys, there still is a chance of conflict between xdm and &man.getty.8;. One way to avoid this is to add the vt number in the /usr/X11R6/lib/X11/xdm/Xservers file. :0 local /usr/X11R6/bin/X vt4 The above example will direct the X server to run in /dev/ttyv3. Note the number is offset by one. The X server counts the vty from one, whereas the FreeBSD kernel numbers the vty from zero. Why do I get Couldn't open console when I run xconsole? If you start X with startx, the permissions on /dev/console will not get changed, resulting in things like xterm -C and xconsole not working. This is because of the way console permissions are set by default. On a multi-user system, one does not necessarily want just any user to be able to write on the system console. For users who are logging directly onto a machine with a VTY, the &man.fbtab.5; file exists to solve such problems. In a nutshell, make sure an uncommented line of the form /dev/ttyv0 0600 /dev/console is in /etc/fbtab (see &man.fbtab.5;) and it will ensure that whomever logs in on /dev/ttyv0 will own the console. Before, I was able to run XFree86 as a regular user. Why does it now say that I must be root? All X servers need to be run as root in order to get direct access to your video hardware. Older versions of XFree86 (<= 3.3.6) installed all bundled servers to be automatically run as root (setuid to root). This is obviously a security hazard because X servers are large, complicated programs. Newer versions of XFree86 do not install the servers setuid to root for just this reason. Obviously, running an X server as the root user is not acceptable, nor a good idea security-wise. There are two ways to be able to use X as a regular user. The first is to use xdm or another display manager (e.g., kdm); the second is to use the Xwrapper. xdm is a daemon that handles graphical logins. It is usually started at boot time, and is responsible for authenticating users and starting their sessions; it is essentially the graphical counterpart of &man.getty.8; and &man.login.1;. For more information on xdm see the XFree86 documentation, and the the FAQ entry on it. Xwrapper is the X server wrapper; it is a small utility to enable one to manually run an X server while maintaining reasonable safety. It performs some sanity checks on the command line arguments given, and if they pass, runs the appropriate X server. If you do not want to run a display manger for whatever reason, this is for you. If you have installed the complete ports collection, you can find the port in /usr/ports/x11/wrapper. Why does my PS/2 mouse misbehave under X? Your mouse and the mouse driver may have somewhat become out of synchronization. In versions 2.2.5 and earlier, switching away from X to a virtual terminal and getting back to X again may make them re-synchronized. If the problem occurs often, you may add the following option in your kernel configuration file and recompile it. options PSM_CHECKSYNC See the section on building a kernel if you have no experience with building kernels. With this option, there should be less chance of synchronization problem between the mouse and the driver. If, however, you still see the problem, click any mouse button while holding the mouse still to re-synchronize the mouse and the driver. Note that unfortunately this option may not work with all the systems and voids the tap feature of the ALPS GlidePoint device attached to the PS/2 mouse port. In versions 2.2.6 and later, synchronization check is done in a slightly better way and is standard in the PS/2 mouse driver. It should even work with GlidePoint. (As the check code has become a standard feature, PSM_CHECKSYNC option is not available in these versions.) However, in rare case the driver may erroneously report synchronization problem and you may see the kernel message: psmintr: out of sync (xxxx != yyyy) and find your mouse does not seem to work properly. If this happens, disable the synchronization check code by setting the driver flags for the PS/2 mouse driver to 0x100. Enter UserConfig by giving the option at the boot prompt: boot: -c Then, in the UserConfig command line, type: UserConfig> flags psm0 0x100 UserConfig> quit How come my PS/2 mouse from MouseSystems does not seem to work? There have been some reports that certain model of PS/2 mouse from MouseSystems works only if it is put into the high resolution mode. Otherwise, the mouse cursor may jump to the upper-left corner of the screen every so often. Unfortunately there is no workaround for versions 2.0.X and 2.1.X. In versions 2.2 through 2.2.5, apply the following patch to /sys/i386/isa/psm.c and rebuild the kernel. See the section on building a kernel if you have no experience with building kernels. @@ -766,6 +766,8 @@ if (verbose >= 2) log(LOG_DEBUG, "psm%d: SET_DEFAULTS return code:%04x\n", unit, i); + set_mouse_resolution(sc->kbdc, PSMD_RES_HIGH); + #if 0 set_mouse_scaling(sc->kbdc); /* 1:1 scaling */ set_mouse_mode(sc->kbdc); /* stream mode */ In versions 2.2.6 or later, specify the flags 0x04 to the PS/2 mouse driver to put the mouse into the high resolution mode. Enter UserConfig by giving the option at the boot prompt: boot: -c Then, in the UserConfig command line, type: UserConfig> flags psm0 0x04 UserConfig> quit See the previous section for another possible cause of mouse problems. When building an X app, imake cannot find Imake.tmpl. Where is it? Imake.tmpl is part of the Imake package, a standard X application building tool. Imake.tmpl, as well as several header files that are required to build X apps, is contained in the X prog distribution. You can install this from sysinstall or manually from the X distribution files. How do I reverse the mouse buttons? Run the command xmodmap -e "pointer = 3 2 1" from your .xinitrc or .xsession. How do I install a splash screen and where do I find them? Just prior to the release of FreeBSD 3.1, a new feature was added to allow the display of splash screens during the boot messages. The splash screens currently must be a 256 color bitmap (*.BMP) or ZSoft PCX (*.PCX) file. In addition, they must have a resolution of 320x200 or less to work on standard VGA adapters. If you compile VESA support into your kernel, then you can use larger bitmaps up to 1024x768. Note that VESA support requires the VM86 kernel option to be compiled into the kernel. The actual VESA support can either be compiled directly into the kernel with the VESA kernel config option or by loading the VESA kld module during bootup. To use a splash screen, you need to modify the startup files that control the boot process for FreeBSD. The files for this changed prior to the release of FreeBSD 3.2, so there are now two ways of loading a splash screen: FreeBSD 3.1 The first step is to find a bitmap version of your splash screen. Release 3.1 only supports Windows bitmap splash screens. Once you have found your splash screen of choice copy it to /boot/splash.bmp. Next, you need to have a /boot/loader.rc file that contains the following lines: load kernel load -t splash_image_data /boot/splash.bmp load splash_bmp autoboot FreeBSD 3.2+ In addition to adding support for PCX splash screens, FreeBSD 3.2 includes a nicer way of configuring the boot process. If you wish, you can use the method listed above for FreeBSD 3.1. If you do and you want to use PCX, replace splash_bmp with splash_pcx. If, on the other hand, you want to use the newer boot configuration, you need to create a /boot/loader.rc file that contains the following lines: include /boot/loader.4th start and a /boot/loader.conf that contains the following: splash_bmp_load="YES" bitmap_load="YES" This assumes you are using /boot/splash.bmp for your splash screen. If you would rather use a PCX file, copy it to /boot/splash.pcx, create a /boot/loader.rc as instructed above, and create a /boot/loader.conf that contains: splash_pcx_load="YES" bitmap_load="YES" bitmap_name="/boot/splash.pcx" Now all you need is a splash screen. For that you can surf on over to the gallery at http://www.baldwin.cx/splash/. Can I use the Windows(tm) keys on my keyboard in X? Yes. All you need to do is use &man.xmodmap.1; to define what function you wish them to perform. Assuming all Windows(tm) keyboards are standard then the keycodes for the 3 keys are 115 - Windows(tm) key, between the left-hand Ctrl and Alt keys 116 - Windows(tm) key, to the right of the Alt-Gr key 117 - Menu key, to the left of the right-hand Ctrl key To have the left Windows(tm) key print a comma, try this. &prompt.root; xmodmap -e "keycode 115 = comma" You will probably have to re-start your window manager to see the result. To have the Windows(tm) key-mappings enabled automatically every time you start X either put the xmodmap commands in your ~/.xinitrc file or, preferably, create a file ~/.xmodmaprc and include the xmodmap options, one per line, then add the line xmodmap $HOME/.xmodmaprc to your ~/.xinitrc. For example, you could map the 3 keys top be F13, F14, and F15, respectively. This would make it easy to map them to useful functions within applications or your window manager, as demonstrated further down. To do this put the following in ~/.xmodmaprc. keycode 115 = F13 keycode 116 = F14 keycode 117 = F15 If you use fvwm2, for example, you could map the keys so that F13 iconifies (or de-iconifies) the window the cursor is in, F14 brings the window the cursor is in to the front or, if it is already at the front, pushes it to the back, and F15 pops up the main Workplace (application) menu even if the cursor is not on the desktop, which is useful if you do not have any part of the desktop visible (and the logo on the key matches its functionality). The following entries in ~/.fvwmrc implement the aforementioned setup: Key F13 FTIWS A Iconify Key F14 FTIWS A RaiseLower Key F15 A A Menu Workplace Nop Networking Where can I get information on diskless booting? Diskless booting means that the FreeBSD box is booted over a network, and reads the necessary files from a server instead of its hard disk. For full details, please read the Handbook entry on diskless booting Can a FreeBSD box be used as a dedicated network router? Internet standards and good engineering practice prohibit us from providing packet forwarding by default in FreeBSD. You can however enable this feature by changing the following variable to YES in &man.rc.conf.5;: gateway_enable=YES # Set to YES if this host will be a gateway This option will put the &man.sysctl.8; variable net.inet.ip.forwarding to 1. In most cases, you will also need to run a routing process to tell other systems on your network about your router; FreeBSD comes with the standard BSD routing daemon &man.routed.8; or for more complex situations you may want to try GaTeD (available from http://www.gated.org/) which supports FreeBSD as of 3_5Alpha7. It is our duty to warn you that, even when FreeBSD is configured in this way, it does not completely comply with the Internet standard requirements for routers; however, it comes close enough for ordinary usage. Can I connect my Win95 box to the Internet via FreeBSD? Typically, people who ask this question have two PC's at home, one with FreeBSD and one with Win95; the idea is to use the FreeBSD box to connect to the Internet and then be able to access the Internet from the Windows95 box through the FreeBSD box. This is really just a special case of the previous question. ... and the answer is yes! In FreeBSD 3.x, user-mode ppp contains a option. If you run ppp with the , set gateway_enable to YES in /etc/rc.conf, and configure your Windows machine correctly, this should work fine. More detailed information about setting this up can be found in the + URL="../ppp-primer/index.html"> Pedantic PPP Primer by Steve Sims. If you are using kernel-mode ppp, or have an Ethernet connection to the Internet, you will have to use &man.natd.8;. Please look at the natd section of this FAQ. Why does recompiling the latest BIND from ISC fail? There is a conflict between the cdefs.h file in the distribution and the one shipped with FreeBSD. Just remove compat/include/sys/cdefs.h. Does FreeBSD support SLIP and PPP? Yes. See the manual pages for &man.slattach.8;, &man.sliplogin.8;, &man.ppp.8;, and &man.pppd.8;. &man.ppp.8; and &man.pppd.8; provide support for both incoming and outgoing connections, while &man.sliplogin.8; deals exclusively with incoming connections, and &man.slattach.8; deals exclusively with outgoing connections. For more information on how to use these, please see the Handbook chapter on PPP and SLIP. If you only have access to the Internet through a shell account, you may want to have a look at the slirp package. It can provide you with (limited) access to services such as ftp and http direct from your local machine. Does FreeBSD support NAT or Masquerading? If you have a local subnet (one or more local machines), but have been allocated only a single IP number from your Internet provider (or even if you receive a dynamic IP number), you may want to look at the &man.natd.8; program. &man.natd.8; allows you to connect an entire subnet to the Internet using only a single IP number. The &man.ppp.8; program has similar functionality built in via the switch. The alias library (&man.libalias.3;) is used in both cases. How do I connect two FreeBSD systems over a parallel line using PLIP? Get a laplink cable. Make sure both computer have a kernel with lpt driver support. &prompt.root; dmesg | grep lp lpt0 at 0x378-0x37f irq 7 on isa lpt0: Interrupt-driven lp0: TCP/IP capable interface Plug in the laplink cable into the parallel interface. Configure the network interface parameters for lp0 on both sites as root. For example, if you want connect the host max with moritz max <-----> moritz IP Address 10.0.0.1 10.0.0.2 on max start &prompt.root; ifconfig lp0 10.0.0.1 10.0.0.2 on moritz start &prompt.root; ifconfig lp0 10.0.0.2 10.0.0.1 Thats all! Please read also the manpages &man.lp.4; and &man.lpt.4; . You should also add the hosts to /etc/hosts. 127.0.0.1 localhost.my.domain localhost 10.0.0.1 max.my.domain max 10.0.0.2 moritz.my.domain To check if it works do: on max: &prompt.root; ifconfig lp0 lp0: flags=8851<UP,POINTOPOINT,RUNNING,SIMPLEX,MULTICAST> mtu 1500 inet 10.0.0.1 --> 10.0.0.2 netmask 0xff000000 &prompt.root; netstat -r Routing tables Internet: Destination Gateway Flags Refs Use Netif Expire moritz max UH 4 127592 lp0 &prompt.root; ping -c 4 moritz PING moritz (10.0.0.2): 56 data bytes 64 bytes from 10.0.0.2: icmp_seq=0 ttl=255 time=2.774 ms 64 bytes from 10.0.0.2: icmp_seq=1 ttl=255 time=2.530 ms 64 bytes from 10.0.0.2: icmp_seq=2 ttl=255 time=2.556 ms 64 bytes from 10.0.0.2: icmp_seq=3 ttl=255 time=2.714 ms --- moritz ping statistics --- 4 packets transmitted, 4 packets received, 0% packet loss round-trip min/avg/max/stddev = 2.530/2.643/2.774/0.103 ms How come I cannot create a /dev/ed0 device? In the Berkeley networking framework, network interfaces are only directly accessible by kernel code. Please see the /etc/rc.network file and the manual pages for the various network programs mentioned there for more information. If this leaves you totally confused, then you should pick up a book describing network administration on another BSD-related operating system; with few significant exceptions, administering networking on FreeBSD is basically the same as on SunOS 4.0 or Ultrix. How can I setup Ethernet aliases? Add netmask 0xffffffff to your &man.ifconfig.8; command-line like the following: &prompt.root; ifconfig ed0 alias 204.141.95.2 netmask 0xffffffff How do I get my 3C503 to use the other network port? If you want to use the other ports, you will have to specify an additional parameter on the &man.ifconfig.8; command line. The default port is link0. To use the AUI port instead of the BNC one, use link2. These flags should be specified using the ifconfig_* variables in /etc/rc.conf (see &man.rc.conf.5;). Why am I having trouble with NFS and FreeBSD? Certain PC network cards are better than others (to put it mildly) and can sometimes cause problems with network intensive applications like NFS. See the Handbook entry on NFS for more information on this topic. Why can't I NFS-mount from a Linux box? Some versions of the Linux NFS code only accept mount requests from a privileged port; try &prompt.root; mount -o -P linuxbox:/blah /mnt Why can't I NFS-mount from a Sun box? Sun workstations running SunOS 4.X only accept mount requests from a privileged port; try &prompt.root; mount -o -P sunbox:/blah /mnt Why does mountd keep telling me it can't change attributes and that I have a bad exports list on my FreeBSD NFS server? The most frequent problem is not understanding this passage from the &man.exports.5; manual page correctly:
Each line in the file (other than comment lines that begin with a #) specifies the mount point(s) and export flags within one local server filesystem for one or more hosts. A host may be specified only once for each local filesystem on the server and there may be only one default entry for each server filesystem that applies to all other hosts.
This is made more clear by an example of a common mistake. If everything above /usr is part of one filesystem (there are no mounts above /usr) the following exports list is not valid: /usr/src client /usr/ports client There are two lines specifying properties for one filesystem, /usr, exported to the same host, client. The correct format is: /usr/src /usr/ports client To rephrase the passage from the manual page, the properties of one filesystem exported to a given host (world-wide exports are treated like another unique host) must all occur on one line. And yes, this does cause limitation in how you can export filesystems without ugly workarounds, but for most people, this is not an issue. The following is an example of a valid export list, where /usr and /exports are local filesystems: # Export src and ports to client01 and client02, but only # client01 has root privileges on it /usr/src /usr/ports -maproot=0 client01 /usr/src /usr/ports client02 # The "client" machines have root and can mount anywhere # up /exports. The world can mount /exports/obj read-only /exports -alldirs -maproot=0 client01 client02 /exports/obj -ro
Why am I having problems talking PPP to NeXTStep machines? Try disabling the TCP extensions in /etc/rc.conf (see &man.rc.conf.5;) by changing the following variable to NO: tcp_extensions=NO Xylogic's Annex boxes are also broken in this regard and you must use the above change to connect thru them. How do I enable IP multicast support? Multicast host operations are fully supported in FreeBSD 2.0 and later by default. If you want your box to run as a multicast router, you will need to recompile your kernel with the MROUTING option and run &man.mrouted.8;. FreeBSD 2.2 and later will start &man.mrouted.8; at boot time if the flag mrouted_enable is set to "YES" in /etc/rc.conf. MBONE tools are available in their own ports category, mbone. If you are looking for the conference tools vic and vat, look there! For more information, see the Mbone Information Web. Which network cards are based on the DEC PCI chipset? Here is a list compiled by Glen Foster gfoster@driver.nsta.org, with some more modern additions: Network cards based on the DEC PCI chipset Vendor Model ASUS PCI-L101-TB Accton ENI1203 Cogent EM960PCI Compex ENET32-PCI D-Link DE-530 Dayna DP1203, DP2100 DEC DE435, DE450 Danpex EN-9400P3 JCIS Condor JC1260 Linksys EtherPCI Mylex LNP101 SMC EtherPower 10/100 (Model 9332) SMC EtherPower (Model 8432) TopWare TE-3500P Znyx (2.2.x) ZX312, ZX314, ZX342, ZX345, ZX346, ZX348 Znyx (3.x) ZX345Q, ZX346Q, ZX348Q, ZX412Q, ZX414, ZX442, ZX444, ZX474, ZX478, ZX212, ZX214 (10mbps/hd)
Why do I have to use the FQDN for hosts on my site? You will probably find that the host is actually in a different domain; for example, if you are in foo.example.org and you wish to reach a host called mumble in the example.org domain, you will have to refer to it by the fully-qualified domain name, mumble.example.org, instead of just mumble. Traditionally, this was allowed by BSD BIND resolvers. However the current version of bind (see &man.named.8;) that ships with FreeBSD no longer provides default abbreviations for non-fully qualified domain names other than the domain you are in. So an unqualified host mumble must either be found as mumble.foo.example.org, or it will be searched for in the root domain. This is different from the previous behavior, where the search continued across mumble.example.org, and mumble.edu. Have a look at RFC 1535 for why this was considered bad practice, or even a security hole. As a good workaround, you can place the line search foo.example.org example.org instead of the previous domain foo.example.org into your /etc/resolv.conf file (see &man.resolv.conf.5;). However, make sure that the search order does not go beyond the boundary between local and public administration, as RFC 1535 calls it. Why do I get an error, Permission denied, for all networking operations? If you have compiled your kernel with the IPFIREWALL option, you need to be aware that the default policy as of 2.1.7R (this actually changed during 2.1-STABLE development) is to deny all packets that are not explicitly allowed. If you had unintentionally misconfigured your system for firewalling, you can restore network operability by typing the following while logged in as root: &prompt.root; ipfw add 65534 allow all from any to any You can also set firewall_type="open" in /etc/rc.conf. For further information on configuring a FreeBSD firewall, see the Handbook section. How much overhead does IPFW incur? The answer to this depends mostly on your rule set and processor speed. For most applications dealing with Ethernet and small rule sets, the answer is, negligible. For those of you that need actual measurements to satisfy your curiosity, read on. The following measurements were made using 2.2.5-STABLE on a 486-66. IPFW was modified to measure the time spent within the ip_fw_chk routine, displaying the results to the console every 1000 packets. Two rule sets, each with 1000 rules were tested. The first set was designed to demonstrate a worst case scenario by repeating the rule: &prompt.root; ipfw add deny tcp from any to any 55555 This demonstrates worst case by causing most of IPFW's packet check routine to be executed before finally deciding that the packet does not match the rule (by virtue of the port number). Following the 999th iteration of this rule was an allow ip from any to any. The second set of rules were designed to abort the rule check quickly: &prompt.root; ipfw add deny ip from 1.2.3.4 to 1.2.3.4 The nonmatching source IP address for the above rule causes these rules to be skipped very quickly. As before, the 1000th rule was an allow ip from any to any. The per-packet processing overhead in the former case was approximately 2.703ms/packet, or roughly 2.7 microseconds per rule. Thus the theoretical packet processing limit with these rules is around 370 packets per second. Assuming 10Mbps Ethernet and a ~1500 byte packet size, we would only be able to achieve a 55.5% bandwidth utilization. For the latter case each packet was processed in approximately 1.172ms, or roughly 1.2 microseconds per rule. The theoretical packet processing limit here would be about 853 packets per second, which could consume 10Mbps Ethernet bandwidth. The excessive number of rules tested and the nature of those rules do not provide a real-world scenario -- they were used only to generate the timing information presented here. Here are a few things to keep in mind when building an efficient rule set: Place an established rule early on to handle the majority of TCP traffic. Do not put any allow tcp statements before this rule. Place heavily triggered rules earlier in the rule set than those rarely used (without changing the permissiveness of the firewall, of course). You can see which rules are used most often by examining the packet counting statistics with ipfw -a l. Why is my ipfw fwd rule to redirect a service to another machine not working? Possibly because you want to do network address translation (NAT) and not just forward packets. A fwd rule does exactly what it says; it forwards packets. It does not actually change the data inside the packet. Say we have a rule like: 01000 fwd 10.0.0.1 from any to foo 21 When a packet with a destination address of foo arrives at the machine with this rule, the packet is forwarded to 10.0.0.1, but it still has the destination address of foo! The destination address of the packet is not changed to 10.0.0.1. Most machines would probably drop a packet that they receive with a destination address that is not their own. Therefore, using a fwd rule does not often work the way the user expects. This behavior is a feature and not a bug. See the FAQ about redirecting services, the &man.natd.8; manual, or one of the several port redirecting utilities in the ports collection for a correct way to do + url="../../../../ports/index.html">ports collection for a correct way to do this. How can I redirect service requests from one machine to another? You can redirect FTP (and other service) request with the socket package, available in the ports tree in category sysutils. Simply replace the service's commandline to call socket instead, like so: ftp stream tcp nowait nobody /usr/local/bin/socket socket ftp.example.com ftp where ftp.example.com and ftp are the host and port to redirect to, respectively. Where can I get a bandwidth management tool? There are three bandwidth management tools available for FreeBSD. &man.dummynet.4; is integreated into FreeBSD (or more specifically, &man.ipfw.4;); ALTQ is available for free; Bandwidth Manager from Emerging Technologies is a commercial product. BIND (named) is listening on port 53 and some other high-numbered port. Has my host been compromised? Probably not. FreeBSD 3.0 and later use a version of BIND that uses a random high-numbered port for outgoing queries. If you want to use port 53 for outgoing queries, either to get past a firewall or to make yourself feel better, you can try the following in /etc/namedb/named.conf: options { query-source address * port 53; }; You can replace the * with a single IP address if you want to tighten things further. Congratulations, by the way. It is good practice to read your &man.sockstat.1; output and notice odd things! Why do I get /dev/bpf0: device not configured? The Berkeley Packet Filter (&man.bpf.4;) driver needs to be enabled before running programs that utilize it. Add this to your kernel config file and build a new kernel: pseudo-device bpf # Berkeley Packet Filter Secondly, after rebooting you will have to create the device node. This can be accomplished by a change to the /dev directory, followed by the execution of: &prompt.root; sh MAKEDEV bpf0 Please see the handbook's entry on device nodes for more information on creating devices. How do I mount a disk from a Windows machine that is on my network, like smbmount in Linux? Use the sharity light package in the ports collection. What are these messages about icmp-response bandwidth limit 300/200 pps in my log files? This is the kernel telling you that some activity is provoking it to send more ICMP or TCP reset (RST) responses than it thinks it should. ICMP responses are often generated as a result of attempted connections to unused UDP ports. TCP resets are generated as a result of attempted connections to unopened TCP ports. Among others, these are the kinds of activities which may cause these messages: Brute-force denial of service (DoS) attacks (as opposed to single-packet attacks which exploit a specific vulnerability). Port scans which attempt to connect to a large number of ports (as opposed to only trying a few well-known ports). The first number in the message tells you how many packets the kernel would have sent if the limit was not in place, and the second number tells you the limit. You can control the limit using the net.inet.icmp.icmplim sysctl variable like this, where 300 is the limit in packets per second: &prompt.root; sysctl -w net.inet.icmp.icmplim=300 If you do not want to see messages about this in your log files, but you still want the kernel to do response limiting, you can use the net.inet.icmp.icmplim_output sysctl variable to disable the output like this: &prompt.root; sysctl -w net.inet.icmp.icmplim_output=0 Finally, if you want to disable response limiting, you can set the net.inet.icmp.icmplim sysctl variable (see above for an example) to 0. Disabling response limiting is discouraged for the reasons listed above.
PPP I cannot make &man.ppp.8; work. What am I doing wrong? You should first read the &man.ppp.8; man page and the ppp section of the handbook. Enable logging with the command set log Phase Chat Connect Carrier lcp ipcp ccp command This command may be typed at the ppp command prompt or it may be entered in the /etc/ppp/ppp.conf configuration file (the start of the default section is the best place to put it). Make sure that /etc/syslog.conf (see &man.syslog.conf.5;) contains the lines !ppp *.* /var/log/ppp.log and that the file /var/log/ppp.log exists. You can now find out a lot about what is going on from the log file. Do not worry if it does not all make sense. If you need to get help from someone, it may make sense to them. If your version of ppp does not understand the set log command, you should download the latest version. It will build on FreeBSD version 2.1.5 and higher. Why does &man.ppp.8; hang when I run it? This is usually because your hostname will not resolve. The best way to fix this is to make sure that /etc/hosts is consulted by your resolver first by editing /etc/host.conf and putting the hosts line first. Then, simply put an entry in /etc/hosts for your local machine. If you have no local network, change your localhost line: 127.0.0.1 foo.bar.com foo localhost Otherwise, simply add another entry for your host. Consult the relevant man pages for more details. You should be able to successfully ping -c1 `hostname` when you are done. Why won't &man.ppp.8; dial in -auto mode? First, check that you have got a default route. By running netstat -rn (see &man.netstat.1;), you should see two entries like this: Destination Gateway Flags Refs Use Netif Expire default 10.0.0.2 UGSc 0 0 tun0 10.0.0.2 10.0.0.1 UH 0 0 tun0 This is assuming that you have used the addresses from the handbook, the man page or from the ppp.conf.sample file. If you haven't got a default route, it may be because you are running an old version of &man.ppp.8; that does not understand the word HISADDR in the ppp.conf file. If your version of ppp is from before FreeBSD 2.2.5, change the add 0 0 HISADDR line to one saying add 0 0 10.0.0.2 Another reason for the default route line being missing is that you have mistakenly set up a default router in your /etc/rc.conf (see &man.rc.conf.5;) file (this file was called /etc/sysconfig prior to release 2.2.2), and you have omitted the line saying delete ALL from ppp.conf. If this is the case, go back to the Final system configuration section of the handbook. What does No route to host mean? This error is usually due to a missing MYADDR: delete ALL add 0 0 HISADDR section in your /etc/ppp/ppp.linkup file. This is only necessary if you have a dynamic IP address or do not know the address of your gateway. If you are using interactive mode, you can type the following after entering packet mode (packet mode is indicated by the capitalized PPP in the prompt): delete ALL add 0 0 HISADDR Refer to the PPP and Dynamic IP addresses section of the handbook for further details. Why does my connection drop after about 3 minutes? The default ppp timeout is 3 minutes. This can be adjusted with the line set timeout NNN where NNN is the number of seconds of inactivity before the connection is closed. If NNN is zero, the connection is never closed due to a timeout. It is possible to put this command in the ppp.conf file, or to type it at the prompt in interactive mode. It is also possible to adjust it on the fly while the line is active by connecting to ppps server socket using &man.telnet.1; or &man.pppctl.8;. Refer to the &man.ppp.8; man page for further details. Why does my connection drop under heavy load? If you have Link Quality Reporting (LQR) configured, it is possible that too many LQR packets are lost between your machine and the peer. Ppp deduces that the line must therefore be bad, and disconnects. Prior to FreeBSD version 2.2.5, LQR was enabled by default. It is now disabled by default. LQR can be disabled with the line disable lqr Why does my connection drop after a random amount of time? Sometimes, on a noisy phone line or even on a line with call waiting enabled, your modem may hang up because it thinks (incorrectly) that it lost carrier. There is a setting on most modems for determining how tolerant it should be to temporary losses of carrier. On a USR Sportster for example, this is measured by the S10 register in tenths of a second. To make your modem more forgiving, you could add the following send-expect sequence to your dial string: set dial "...... ATS10=10 OK ......" Refer to your modem manual for details. Why does my connection hang after a random amount of time? Many people experience hung connections with no apparent explanation. The first thing to establish is which side of the link is hung. If you are using an external modem, you can simply try using &man.ping.8; to see if the TD light is flashing when you transmit data. If it flashes (and the RD light does not), the problem is with the remote end. If TD does not flash, the problem is local. With an internal modem, you will need to use the set server command in your ppp.conf file. When the hang occurs, connect to ppp using pppctl. If your network connection suddenly revives (ppp was revived due to the activity on the diagnostic socket) or if you cannot connect (assuming the set socket command succeeded at startup time), the problem is local. If you can connect and things are still hung, enable local async logging with set log local async and use &man.ping.8; from another window or terminal to make use of the link. The async logging will show you the data being transmitted and received on the link. If data is going out and not coming back, the problem is remote. Having established whether the problem is local or remote, you now have two possibilities: The remote end is not responding. What can I do? There is very little you can do about this. Most ISPs will refuse to help if you are not running a Microsoft OS. You can enable lqr in your ppp.conf file, allowing ppp to detect the remote failure and hang up, but this detection is relatively slow and therefore not that useful. You may want to avoid telling your ISP that you are running user-ppp.... First, try disabling all local compression by adding the following to your configuration: disable pred1 deflate deflate24 protocomp acfcomp shortseq vj deny pred1 deflate deflate24 protocomp acfcomp shortseq vj Then reconnect to ensure that this makes no difference. If things improve or if the problem is solved completely, determine which setting makes the difference through trial and error. This will provide good ammunition when you contact your ISP (although it may make it apparent that you are not running a Microsoft product). Before contacting your ISP, enable async logging locally and wait until the connection hangs again. This may use up quite a bit of disk space. The last data read from the port may be of interest. It is usually ascii data, and may even describe the problem (Memory fault, core dumped?). If your ISP is helpful, they should be able to enable logging on their end, then when the next link drop occurs, they may be able to tell you why their side is having a problem. Feel free to send the details to &a.brian;, or even to ask your ISP to contact me directly. &man.ppp.8; has hung. What can I do? Your best bet here is to rebuild ppp by adding CFLAGS+=-g and STRIP= to the end of the Makefile, then doing a make clean && make && make install. When ppp hangs, find the ppp process id with ps ajxww | fgrep ppp and run gdb ppp PID. From the gdb prompt, you can then use bt to get a stack trace. Send the results to brian@Awfulhak.org. Why does nothing happen after the Login OK! message? Prior to FreeBSD version 2.2.5, once the link was established, &man.ppp.8; would wait for the peer to initiate the Line Control Protocol (LCP). Many ISPs will not initiate negotiations and expect the client to do so. To force ppp to initiate the LCP, use the following line: set openmode active It usually does no harm if both sides initiate negotiation, so openmode is now active by default. However, the next section explains when it does do some harm. I keep seeing errors about magic being the same. What does it mean? Occasionally, just after connecting, you may see messages in the log that say magic is the same. Sometimes, these messages are harmless, and sometimes one side or the other exits. Most ppp implementations cannot survive this problem, and even if the link seems to come up, you will see repeated configure requests and configure acknowledgments in the log file until ppp eventually gives up and closes the connection. This normally happens on server machines with slow disks that are spawning a getty on the port, and executing ppp from a login script or program after login. I have also heard reports of it happening consistently when using slirp. The reason is that in the time taken between getty exiting and ppp starting, the client-side ppp starts sending Line Control Protocol (LCP) packets. Because ECHO is still switched on for the port on the server, the client ppp sees these packets reflect back. One part of the LCP negotiation is to establish a magic number for each side of the link so that reflections can be detected. The protocol says that when the peer tries to negotiate the same magic number, a NAK should be sent and a new magic number should be chosen. During the period that the server port has ECHO turned on, the client ppp sends LCP packets, sees the same magic in the reflected packet and NAKs it. It also sees the NAK reflect (which also means ppp must change its magic). This produces a potentially enormous number of magic number changes, all of which are happily piling into the server's tty buffer. As soon as ppp starts on the server, it is flooded with magic number changes and almost immediately decides it has tried enough to negotiate LCP and gives up. Meanwhile, the client, who no longer sees the reflections, becomes happy just in time to see a hangup from the server. This can be avoided by allowing the peer to start negotiating with the following line in your ppp.conf file: set openmode passive This tells ppp to wait for the server to initiate LCP negotiations. Some servers however may never initiate negotiations. If this is the case, you can do something like: set openmode active 3 This tells ppp to be passive for 3 seconds, and then to start sending LCP requests. If the peer starts sending requests during this period, ppp will immediately respond rather than waiting for the full 3 second period. LCP negotiations continue 'till the connection is closed. What is wrong? There is currently an implementation mis-feature in ppp where it does not associate LCP, CCP & IPCP responses with their original requests. As a result, if one ppp implementation is more than 6 seconds slower than the other side, the other side will send two additional LCP configuration requests. This is fatal. Consider two implementations, A and B. A starts sending LCP requests immediately after connecting and B takes 7 seconds to start. When B starts, A has sent 3 LCP REQs. We are assuming the line has ECHO switched off, otherwise we would see magic number problems as described in the previous section. B sends a REQ, then an ACK to the first of A's REQs. This results in A entering the OPENED state and sending and ACK (the first) back to B. In the meantime, B sends back two more ACKs in response to the two additional REQs sent by A before B started up. B then receives the first ACK from A and enters the OPENED state. A receives the second ACK from B and goes back to the REQ-SENT state, sending another (forth) REQ as per the RFC. It then receives the third ACK and enters the OPENED state. In the meantime, B receives the forth REQ from A, resulting in it reverting to the ACK-SENT state and sending another (second) REQ and (forth) ACK as per the RFC. A gets the REQ, goes into REQ-SENT and sends another REQ. It immediately receives the following ACK and enters OPENED. This goes on 'till one side figures out that they are getting nowhere and gives up. The best way to avoid this is to configure one side to be passive - that is, make one side wait for the other to start negotiating. This can be done with the set openmode passive command. Care should be taken with this option. You should also use the set stopped N command to limit the amount of time that ppp waits for the peer to begin negotiations. Alternatively, the set openmode active N command (where N is the number of seconds to wait before starting negotiations) can be used. Check the manual page for details. Why does &man.ppp.8; lock up shortly after connection? Prior to version 2.2.5 of FreeBSD, it was possible that your link was disabled shortly after connection due to ppp mis-handling Predictor1 compression negotiation. This would only happen if both sides tried to negotiate different Compression Control Protocols (CCP). This problem is now corrected, but if you are still running an old version of ppp, the problem can be circumvented with the line disable pred1 Why does &man.ppp.8; lock up when I shell out to test it? When you execute the shell or ! command, ppp executes a shell (or if you have passed any arguments, ppp will execute those arguments). Ppp will wait for the command to complete before continuing. If you attempt to use the ppp link while running the command, the link will appear to have frozen. This is because ppp is waiting for the command to complete. If you wish to execute commands like this, use the !bg command instead. This will execute the given command in the background, and ppp can continue to service the link. How come &man.ppp.8; over a null-modem cable never exits? There is no way for ppp to automatically determine that a direct connection has been dropped. This is due to the lines that are used in a null-modem serial cable. When using this sort of connection, LQR should always be enabled with the line enable lqr LQR is accepted by default if negotiated by the peer. Why does &man.ppp.8; dial for no reason in -auto mode? If ppp is dialing unexpectedly, you must determine the cause, and set up Dial filters (dfilters) to prevent such dialing. To determine the cause, use the following line: set log +tcp/ip This will log all traffic through the connection. The next time the line comes up unexpectedly, you will see the reason logged with a convenient timestamp next to it. You can now disable dialing under these circumstances. Usually, this sort of problem arises due to DNS lookups. To prevent DNS lookups from establishing a connection (this will not prevent ppp from passing the packets through an established connection), use the following: set dfilter 1 deny udp src eq 53 set dfilter 2 deny udp dst eq 53 set dfilter 3 permit 0/0 0/0 This is not always suitable, as it will effectively break your demand-dial capabilities - most programs will need a DNS lookup before doing any other network related things. In the DNS case, you should try to determine what is actually trying to resolve a host name. A lot of the time, &man.sendmail.8; is the culprit. You should make sure that you tell sendmail not to do any DNS lookups in its configuration file. See the section on Mail Configuration for details on how to create your own configuration file and what should go into it. You may also want to add the following line to your .mc file: define(`confDELIVERY_MODE', `d')dnl This will make sendmail queue everything until the queue is run (usually, sendmail is invoked with , telling it to run the queue every 30 minutes) or until a sendmail -q is done (perhaps from your ppp.linkup file). What do these CCP errors mean? I keep seeing the following errors in my log file: CCP: CcpSendConfigReq CCP: Received Terminate Ack (1) state = Req-Sent (6) This is because ppp is trying to negotiate Predictor1 compression, and the peer does not want to negotiate any compression at all. The messages are harmless, but if you wish to remove them, you can disable Predictor1 compression locally too: disable pred1 Why does &man.ppp.8; lock up during file transfers with IO errors? Under FreeBSD 2.2.2 and before, there was a bug in the tun driver that prevents incoming packets of a size larger than the tun interface's MTU size. Receipt of a packet greater than the MTU size results in an IO error being logged via syslogd. The ppp specification says that an MRU of 1500 should always be accepted as a minimum, despite any LCP negotiations, therefore it is possible that should you decrease the MTU to less than 1500, your ISP will transmit packets of 1500 regardless, and you will tickle this non-feature - locking up your link. The problem can be circumvented by never setting an MTU of less than 1500 under FreeBSD 2.2.2 or before. Why doesn't &man.ppp.8; log my connection speed? In order to log all lines of your modem conversation, you must enable the following: set log +connect This will make &man.ppp.8; log everything up until the last requested expect string. If you wish to see your connect speed and are using PAP or CHAP (and therefore do not have anything to chat after the CONNECT in the dial script - no set login script), you must make sure that you instruct ppp to expect the whole CONNECT line, something like this: set dial "ABORT BUSY ABORT NO\\sCARRIER TIMEOUT 4 \ \"\" ATZ OK-ATZ-OK ATDT\\T TIMEOUT 60 CONNECT \\c \\n" Here, we get our CONNECT, send nothing, then expect a line-feed, forcing ppp to read the whole CONNECT response. Why does &man.ppp.8; ignore the \ character in my chat script? Ppp parses each line in your config files so that it can interpret strings such as set phone "123 456 789" correctly (and realize that the number is actually only one argument. In order to specify a " character, you must escape it using a backslash (\). When the chat interpreter parses each argument, it re-interprets the argument in order to find any special escape sequences such as \P or \T (see the man page). As a result of this double-parsing, you must remember to use the correct number of escapes. If you wish to actually send a \ character to (say) your modem, you would need something like: set dial "\"\" ATZ OK-ATZ-OK AT\\\\X OK" resulting in the following sequence: ATZ OK AT\X OK or set phone 1234567 set dial "\"\" ATZ OK ATDT\\T" resulting in the following sequence: ATZ OK ATDT1234567 Why does &man.ppp.8; get a seg-fault, but I see no ppp.core file? Ppp (or any other program for that matter) should never dump core. Because ppp runs with an effective user id of 0, the operating system will not write ppp's core image to disk before terminating it. If, however ppp is actually terminating due to a segmentation violation or some other signal that normally causes core to be dumped, and you are sure you are using the latest version (see the start of this section), then you should do the following: &prompt.user; tar xfz ppp-*.src.tar.gz &prompt.user; cd ppp*/ppp &prompt.user; echo STRIP= >>Makefile &prompt.user; echo CFLAGS+=-g >>Makefile &prompt.user; make clean all &prompt.user; su &prompt.root; make install &prompt.root; chmod 555 /usr/sbin/ppp You will now have a debuggable version of ppp installed. You will have to be root to run ppp as all of its privileges have been revoked. When you start ppp, take a careful note of what your current directory was at the time. Now, if and when ppp receives the segmentation violation, it will dump a core file called ppp.core. You should then do the following: &prompt.user; su &prompt.root; gdb /usr/sbin/ppp ppp.core (gdb) bt ..... (gdb) f 0 .... (gdb) i args .... (gdb) l ..... All of this information should be given alongside your question, making it possible to diagnose the problem. If you are familiar with gdb, you may wish to find out some other bits and pieces such as what actually caused the dump and the addresses & values of the relevant variables. Why does the process that forces a dial in auto mode never connect? This was a known problem with ppp set up to negotiate a dynamic local IP number with the peer in auto mode. It is fixed in the latest version - search the man page for iface. The problem was that when that initial program calls &man.connect.2;, the IP number of the tun interface is assigned to the socket endpoint. The kernel creates the first outgoing packet and writes it to the tun device. ppp then reads the packet and establishes a connection. If, as a result of ppp's dynamic IP assignment, the interface address is changed, the original socket endpoint will be invalid. Any subsequent packets sent to the peer will usually be dropped. Even if they are not, any responses will not route back to the originating machine as the IP number is no longer owned by that machine. There are several theoretical ways to approach this problem. It would be nicest if the peer would re-assign the same IP number if possible :-) The current version of ppp does this, but most other implementations do not. The easiest method from our side would be to never change the tun interface IP number, but instead to change all outgoing packets so that the source IP number is changed from the interface IP to the negotiated IP on the fly. This is essentially what the iface-alias option in the latest version of ppp is doing (with the help of &man.libalias.3; and ppp's switch) - it is maintaining all previous interface addresses and NATing them to the last negotiated address. Another alternative (and probably the most reliable) would be to implement a system call that changes all bound sockets from one IP to another. ppp would use this call to modify the sockets of all existing programs when a new IP number is negotiated. The same system call could be used by dhcp clients when they are forced to re-bind() their sockets. Yet another possibility is to allow an interface to be brought up without an IP number. Outgoing packets would be given an IP number of 255.255.255.255 up until the first SIOCAIFADDR ioctl is done. This would result in fully binding the socket. It would be up to ppp to change the source IP number, but only if it is set to 255.255.255.255, and only the IP number and IP checksum would need to change. This, however is a bit of a hack as the kernel would be sending bad packets to an improperly configured interface, on the assumption that some other mechanism is capable of fixing things retrospectively. Why don't most games work with the -nat switch? The reason games and the like do not work when libalias is in use is that the machine on the outside will try to open a connection or send (unsolicited) UDP packets to the machine on the inside. The NAT software does not know that it should send these packets to the interior machine. To make things work, make sure that the only thing running is the software that you are having problems with, then either run tcpdump on the tun interface of the gateway or enable ppp tcp/ip logging (set log +tcp/ip) on the gateway. When you start the offending software, you should see packets passing through the gateway machine. When something comes back from the outside, it will be dropped (that is the problem). Note the port number of these packets then shut down the offending software. Do this a few times to see if the port numbers are consistent. If they are, then the following line in the relevant section of /etc/ppp/ppp.conf will make the software functional: nat port proto internalmachine:port port where proto is either tcp or udp, internalmachine is the machine that you want the packets to be sent to and port is the destination port number of the packets. You will not be able to use the software on other machines without changing the above command, and running the software on two internal machines at the same time is out of the question - after all, the outside world is seeing your entire internal network as being just a single machine. If the port numbers are not consistent, there are three more options: Submit support in libalias. Examples of special cases can be found in /usr/src/lib/libalias/alias_*.c (alias_ftp.c is a good prototype). This usually involves reading certain recognised outgoing packets, identifying the instruction that tells the outside machine to initiate a connection back to the internal machine on a specific (random) port and setting up a route in the alias table so that the subsequent packets know where to go. This is the most difficult solution, but it is the best and will make the software work with multiple machines. Use a proxy. The application may support socks5 for example, or (as in the cvsup case) may have a passive option that avoids ever requesting that the peer open connections back to the local machine. Redirect everything to the internal machine using nat addr. This is the sledge-hammer approach. Has anybody made a list of useful port numbers? Not yet, but this is intended to grow into such a list (if any interest is shown). In each example, internal should be replaced with the IP number of the machine playing the game. Asheron's Call nat port udp internal :65000 65000 Manually change the port number within the game to 65000. If you have got a number of machines that you wish to play on assign a unique port number for each (i.e. 65001, 65002, etc) and add a nat port line for each one. Half Life nat port udp internal:27005 27015 PCAnywhere 8.0 nat port udp internal:5632 5632 nat port tcp internal:5631 5631 Quake nat port udp internal:6112 6112 Alternatively, you may want to take a look at www.battle.net for Quake proxy support. Quake 2 nat port udp internal:27901 27910 nat port udp internal:60021 60021 nat port udp internal:60040 60040 Red Alert nat port udp internal:8675 8675 nat port udp internal:5009 5009 What are FCS errors? FCS stands for Frame Check Sequence. Each ppp packet has a checksum attached to ensure that the data being received is the data being sent. If the FCS of an incoming packet is incorrect, the packet is dropped and the HDLC FCS count is increased. The HDLC error values can be displayed using the show hdlc command. If your link is bad (or if your serial driver is dropping packets), you will see the occasional FCS error. This is not usually worth worrying about although it does slow down the compression protocols substantially. If you have an external modem, make sure your cable is properly shielded from interference - this may eradicate the problem. If your link freezes as soon as you have connected and you see a large number of FCS errors, this may be because your link is not 8 bit clean. Make sure your modem is not using software flow control (XON/XOFF). If your datalink must use software flow control, use the command set accmap 0x000a0000 to tell ppp to escape the ^Q and ^S characters. Another reason for seeing too many FCS errors may be that the remote end has stopped talking PPP. You may want to enable async logging at this point to determine if the incoming data is actually a login or shell prompt. If you have a shell prompt at the remote end, it is possible to terminate ppp without dropping the line by using the close lcp command (a following term command will reconnect you to the shell on the remote machine. If nothing in your log file indicates why the link might have been terminated, you should ask the remote administrator (your ISP?) why the session was terminated. Why do MacOS and Windows 98 connections freeze when running PPPoE on the gateway? Thanks to Michael Wozniak mwozniak@netcom.ca for figuring this out and Dan Flemming danflemming@mac.com for the Mac solution: This is due to what is called a Black Hole router. MacOS and Windows 98 (and maybe other Microsoft OSs) send TCP packets with a requested segment size too big to fit into a PPPoE frame (MTU is 1500 by default for Ethernet) and have the do not fragment bit set (default of TCP) and the Telco router is not sending ICMP must fragment back to the www site you are trying to load. (Alternatively, the router is sending the ICMP packet correctly, but the firewall at the www site is dropping it.) When the www server is sending you frames that do not fit into the PPPoE pipe the Telco router drops them on the floor and your page does not load (some pages/graphics do as they are smaller than a MSS.) This seems to be the default of most Telco PPPoE configurations (if only they knew how to program a router... sigh...) One fix is to use regedit on your 95/98 boxes to add the following registry entry... HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\Class\NetTrans\0000\MaxMTU It should be a string with a value 1436, as some ADSL routers are reported to be unable to deal with packets larger than this. This registry key has been changed to Tcpip\Parameters\Interfaces\ID for adapter\MTU in Windows 2000 and becomes a DWORD. Refer to the Microsoft Knowledge Base documents Q158474 - Windows TCPIP Registry Entries and Q120642 - TCPIP & NBT Configuration Parameters for Windows NT for more information on changing Windows MTU to work with a NAT router. Another regedit possibility under Windows 2000 is to set the Tcpip\Parameters\Interfaces\ID for adapter\EnablePMTUBHDetect DWORD to 1 as mentioned in the Microsoft document 120642 mentioned above. Unfortunately, MacOS does not provide an interface for changing TCP/IP settings. However, there is commercial software available, such as OTAdvancedTuner (OT for OpenTransport, the MacOS TCP/IP stack) by Sustainable Softworks, that will allow users to customize TCP/IP settings. MacOS NAT users should select ip_interface_MTU from the drop-down menu, enter 1450 instead of 1500 in the box, click the box next to Save as Auto Configure, and click Make Active. The latest version of ppp (2.3 or greater) has an enable tcpmssfixup command that will automatically adjust the MSS to an appropriate value. This facility is enabled by default. If you are stuck with an older version of ppp, you may want to look at the tcpmssd port. None of this helps - I am desperate! What can I do? If all else fails, send as much information as you can, including your config files, how you are starting ppp, the relevant parts of your log file and the output of the netstat -rn command (before and after connecting) to the &a.questions; or the comp.unix.bsd.freebsd.misc news group, and someone should point you in the right direction. Serial Communications This section answers common questions about serial communications with FreeBSD. PPP and SLIP are covered in the section. How do I tell if FreeBSD found my serial ports? As the FreeBSD kernel boots, it will probe for the serial ports in your system for which the kernel was configured. You can either watch your system closely for the messages it prints or run the command &prompt.user; dmesg | grep sio after your system is up and running. Here is some example output from the above command: sio0 at 0x3f8-0x3ff irq 4 on isa sio0: type 16550A sio1 at 0x2f8-0x2ff irq 3 on isa sio1: type 16550A This shows two serial ports. The first is on irq 4, is using port address 0x3f8, and has a 16550A-type UART chip. The second uses the same kind of chip but is on irq 3 and is at port address 0x2f8. Internal modem cards are treated just like serial ports---except that they always have a modem attached to the port. The GENERIC kernel includes support for two serial ports using the same irq and port address settings in the above example. If these settings are not right for your system, or if you've added modem cards or have more serial ports than your kernel is configured for, just reconfigure your kernel. See section about building a kernel for more details. How do I tell if FreeBSD found my modem cards? Refer to the answer to the previous question. I just upgraded to 2.0.5 and my tty0X are missing! How do I solve this problem? Do not worry, they have been merged with the ttydX devices. You will have to change any old configuration files you have, though. How do I access the serial ports on FreeBSD? The third serial port, sio2 (see &man.sio.4;, known as COM3 in DOS), is on /dev/cuaa2 for dial-out devices, and on /dev/ttyd2 for dial-in devices. What is the difference between these two classes of devices? You use ttydX for dial-ins. When opening /dev/ttydX in blocking mode, a process will wait for the corresponding cuaaX device to become inactive, and then wait for the carrier detect line to go active. When you open the cuaaX device, it makes sure the serial port is not already in use by the ttydX device. If the port is available, it steals it from the ttydX device. Also, the cuaaX device does not care about carrier detect. With this scheme and an auto-answer modem, you can have remote users log in and you can still dialout with the same modem and the system will take care of all the conflicts. How do I enable support for a multiport serial card? Again, the section on kernel configuration provides information about configuring your kernel. For a multiport serial card, place an &man.sio.4; line for each serial port on the card in the kernel configuration file. But place the irq and vector specifiers on only one of the entries. All of the ports on the card should share one irq. For consistency, use the last serial port to specify the irq. Also, specify the COM_MULTIPORT option. The following example is for an AST 4-port serial card on irq 7: options "COM_MULTIPORT" device sio4 at isa? port 0x2a0 tty flags 0x781 device sio5 at isa? port 0x2a8 tty flags 0x781 device sio6 at isa? port 0x2b0 tty flags 0x781 device sio7 at isa? port 0x2b8 tty flags 0x781 irq 7 vector siointr The flags indicate that the master port has minor number 7 (0x700), diagnostics enabled during probe (0x080), and all the ports share an irq (0x001). Can FreeBSD handle multiport serial cards sharing irqs? Not yet. You will have to use a different irq for each card. Can I set the default serial parameters for a port? The ttydX (or cuaaX) device is the regular device you will want to open for your applications. When a process opens the device, it will have a default set of terminal I/O settings. You can see these settings with the command &prompt.root; stty -a -f /dev/ttyd1 When you change the settings to this device, the settings are in effect until the device is closed. When it is reopened, it goes back to the default set. To make changes to the default set, you can open and adjust the settings of the initial state device. For example, to turn on CLOCAL mode, 8 bits, and XON/XOFF flow control by default for ttyd5, do: &prompt.root; stty -f /dev/ttyid5 clocal cs8 ixon ixoff A good place to do this is in /etc/rc.serial. Now, an application will have these settings by default when it opens ttyd5. It can still change these settings to its liking, though. You can also prevent certain settings from being changed by an application by making adjustments to the lock state device. For example, to lock the speed of ttyd5 to 57600 bps, do &prompt.root; stty -f /dev/ttyld5 57600 Now, an application that opens ttyd5 and tries to change the speed of the port will be stuck with 57600 bps. Naturally, you should make the initial state and lock state devices writable only by root. The &man.MAKEDEV.8; script does NOT do this when it creates the device entries. How can I enable dialup logins on my modem? So you want to become an Internet service provider, eh? First, you will need one or more modems that can auto-answer. Your modem will need to assert carrier-detect when it detects a carrier and not assert it all the time. It will need to hang up the phone and reset itself when the data terminal ready (DTR) line goes from on to off. It should probably use RTS/CTS flow control or no local flow control at all. Finally, it must use a constant speed between the computer and itself, but (to be nice to your callers) it should negotiate a speed between itself and the remote modem. For many Hayes command-set--compatible modems, this command will make these settings and store them in nonvolatile memory: AT &C1 &D3 &K3 &Q6 S0=1 &W See the section on sending AT commands below for information on how to make these settings without resorting to an MS-DOS terminal program. Next, make an entry in /etc/ttys (see &man.ttys.5;) for the modem. This file lists all the ports on which the operating system will await logins. Add a line that looks something like this: ttyd1 "/usr/libexec/getty std.57600" dialup on insecure This line indicates that the second serial port (/dev/ttyd1) has a modem connected running at 57600 bps and no parity (std.57600, which comes from the file /etc/gettytab, see &man.gettytab.5;). The terminal type for this port is dialup. The port is on and is insecure---meaning root logins on the port are not allowed. For dialin ports like this one, use the ttydX entry. It is common practice to use dialup as the terminal type. Many users set up in their .profile or .login files a prompt for the actual terminal type if the starting type is dialup. The example shows the port as insecure. To become root on this port, you have to login as a regular user, then &man.su.1; to become root. If you use secure then root can login in directly. After making modifications to /etc/ttys, you need to send a hangup or HUP signal to the &man.init.8; process: &prompt.root; kill -HUP 1 This forces the &man.init.8; process to reread /etc/ttys. The init process will then start getty processes on all on ports. You can find out if logins are available for your port by typing &prompt.user; ps -ax | grep '[t]tyd1' You should see something like: 747 ?? I 0:00.04 /usr/libexec/getty std.57600 ttyd1 How can I connect a dumb terminal to my FreeBSD box? If you are using another computer as a terminal into your FreeBSD system, get a null modem cable to go between the two serial ports. If you are using an actual terminal, see its accompanying instructions. Then, modify /etc/ttys (see &man.ttys.5;), like above. For example, if you are hooking up a WYSE-50 terminal to the fifth serial port, use an entry like this: ttyd4 "/usr/libexec/getty std.38400" wyse50 on secure This example shows that the port on /dev/ttyd4 has a wyse50 terminal connected at 38400 bps with no parity (std.38400 from /etc/gettytab, see &man.gettytab.5;) and root logins are allowed (secure). Why can't I run tip or cu? On your system, the programs &man.tip.1; and &man.cu.1; are probably executable only by uucp and group dialer. You can use the group dialer to control who has access to your modem or remote systems. Just add yourself to group dialer. Alternatively, you can let everyone on your system run &man.tip.1; and &man.cu.1; by typing: &prompt.root; chmod 4511 /usr/bin/cu &prompt.root; chmod 4511 /usr/bin/tip My stock Hayes modem is not supported---what can I do? Actually, the man page for &man.tip.1; is out of date. There is a generic Hayes dialer already built in. Just use at=hayes in your /etc/remote (see &man.remote.5;) file. The Hayes driver is not smart enough to recognize some of the advanced features of newer modems---messages like BUSY, NO DIALTONE, or CONNECT 115200 will just confuse it. You should turn those messages off when you use &man.tip.1; (using ATX0&W). Also, the dial timeout for &man.tip.1; is 60 seconds. Your modem should use something less, or else tip will think there is a communication problem. Try ATS7=45&W. Actually, as shipped &man.tip.1; does not yet support it fully. The solution is to edit the file tipconf.h in the directory /usr/src/usr.bin/tip/tip. Obviously you need the source distribution to do this. Edit the line #define HAYES 0 to #define HAYES 1. Then make and make install. Everything works nicely after that. How am I expected to enter these AT commands? Make what is called a direct entry in your /etc/remote file (see &man.remote.5;). For example, if your modem is hooked up to the first serial port, /dev/cuaa0, then put in the following line: cuaa0:dv=/dev/cuaa0:br#19200:pa=none Use the highest bps rate your modem supports in the br capability. Then, type tip cuaa0 (see &man.tip.1;) and you will be connected to your modem. If there is no /dev/cuaa0 on your system, do this: &prompt.root; cd /dev &prompt.root; sh MAKEDEV cuaa0 Or use cu as root with the following command: &prompt.root; cu -lline -sspeed with line being the serial port (e.g. /dev/cuaa0) and speed being the speed (e.g.57600). When you are done entering the AT commands hit ~. to exit. How come the <@> sign for the pn capability does not work? The <@> sign in the phone number capability tells tip to look in /etc/phones for a phone number. But the <@> sign is also a special character in capability files like /etc/remote. Escape it with a backslash: pn=\@ How can I dial a phone number on the command line? Put what is called a generic entry in your /etc/remote file (see &man.remote.5;). For example: tip115200|Dial any phone number at 115200 bps:\ :dv=/dev/cuaa0:br#115200:at=hayes:pa=none:du: tip57600|Dial any phone number at 57600 bps:\ :dv=/dev/cuaa0:br#57600:at=hayes:pa=none:du: Then you can do something like tip -115200 5551234. If you prefer &man.cu.1; over &man.tip.1;, use a generic cu entry: cu115200|Use cu to dial any number at 115200bps:\ :dv=/dev/cuaa1:br#57600:at=hayes:pa=none:du: and type cu 5551234 -s 115200. Do I have to type in the bps rate every time I do that? Put in an entry for tip1200 or cu1200, but go ahead and use whatever bps rate is appropriate with the br capability. &man.tip.1; thinks a good default is 1200 bps which is why it looks for a tip1200 entry. You do not have to use 1200 bps, though. How can I more easily access a number of hosts through a terminal server? Rather than waiting until you are connected and typing CONNECT host each time, use tip's cm capability. For example, these entries in /etc/remote (see &man.remote.5;): pain|pain.deep13.com|Forrester's machine:\ :cm=CONNECT pain\n:tc=deep13: muffin|muffin.deep13.com|Frank's machine:\ :cm=CONNECT muffin\n:tc=deep13: deep13:Gizmonics Institute terminal server:\ :dv=/dev/cuaa2:br#38400:at=hayes:du:pa=none:pn=5551234: will let you type tip pain or tip muffin to connect to the hosts pain or muffin; and tip deep13 to get to the terminal server. Can tip try more than one line for each site? This is often a problem where a university has several modem lines and several thousand students trying to use them... Make an entry for your university in /etc/remote (see &man.remote.5;) and use <\@> for the pn capability: big-university:\ :pn=\@:tc=dialout dialout:\ :dv=/dev/cuaa3:br#9600:at=courier:du:pa=none: Then, list the phone numbers for the university in /etc/phones (see &man.phones.5;): big-university 5551111 big-university 5551112 big-university 5551113 big-university 5551114 &man.tip.1; will try each one in the listed order, then give up. If you want to keep retrying, run &man.tip.1; in a while loop. Why do I have to hit CTRL+P twice to send CTRL+P once? CTRL+P is the default force character, used to tell &man.tip.1; that the next character is literal data. You can set the force character to any other character with the ~s escape, which means set a variable. Type ~sforce=single-char followed by a newline. single-char is any single character. If you leave out single-char, then the force character is the nul character, which you can get by typing CTRL+2 or CTRL+SPACE. A pretty good value for single-char is SHIFT+CTRL+6, which I have seen only used on some terminal servers. You can have the force character be whatever you want by specifying the following in your $HOME/.tiprc file: force=single-char Why is everything I type suddenly in UPPER CASE? You must have pressed CTRL+A, &man.tip.1; raise character, specially designed for people with broken caps-lock keys. Use ~s as above and set the variable raisechar to something reasonable. In fact, you can set it to the same as the force character, if you never expect to use either of these features. Here is a sample .tiprc file perfect for Emacs users who need to type CTRL+2 and CTRL+A a lot: force=^^ raisechar=^^ The ^^ is SHIFT+CTRL+6. How can I do file transfers with tip? If you are talking to another Unix system, you can send and receive files with ~p (put) and ~t (take). These commands run &man.cat.1; and &man.echo.1; on the remote system to accept and send files. The syntax is: ~p <local-file> [<remote-file>] ~t <remote-file> [<local-file>] There is no error checking, so you probably should use another protocol, like zmodem. How can I run zmodem with tip? First, install one of the zmodem programs from the ports collection (such as one of the two from the comms category, lrzsz or rzsz. To receive files, start the sending program on the remote end. Then, press enter and type ~C rz (or ~C lrz if you installed lrzsz) to begin receiving them locally. To send files, start the receiving program on the remote end. Then, press enter and type ~C sz files (or ~C lsz files) to send them to the remote system. How come FreeBSD cannot seem to find my serial ports, even when the settings are correct? Motherboards and cards with Acer UARTs do not probe properly under the FreeBSD sio probe. Obtain a patch from www.lemis.com to fix your problem. Miscellaneous Questions FreeBSD uses far more swap space than Linux. Why? FreeBSD only appears to use more swap than Linux. In actual fact, it does not. The main difference between FreeBSD and Linux in this regard is that FreeBSD will proactively move entirely idle, unused pages of main memory into swap in order to make more main memory available for active use. Linux tends to only move pages to swap as a last resort. The perceived heavier use of swap is balanced by the more efficient use of main memory. Note that while FreeBSD is proactive in this regard, it does not arbitrarily decide to swap pages when the system is truly idle. Thus you will not find your system all paged out when you get up in the morning after leaving it idle overnight. Why does top show very little free memory even when I have very few programs running? The simple answer is that free memory is wasted memory. Any memory that your programs do not actively allocate is used within the FreeBSD kernel as disk cache. The values shown by &man.top.1; labelled as Inact, Cache, and Buf are all cached data at different aging levels. This cached data means the system does not have to access a slow disk again for data it has accessed recently, thus increasing overall performance. In general, a low value shown for Free memory in &man.top.1; is good, provided it is not very low. Why use (what are) a.out and ELF executable formats? To understand why FreeBSD uses the ELF format, you must first know a little about the 3 currently dominant executable formats for Unix: Prior to FreeBSD 3.x, FreeBSD used the a.out format. &man.a.out.5; The oldest and classic unix object format. It uses a short and compact header with a magic number at the beginning that is often used to characterize the format (see &man.a.out.5; for more details). It contains three loaded segments: .text, .data, and .bss plus a symbol table and a string table. COFF The SVR3 object format. The header now comprises a section table, so you can have more than just .text, .data, and .bss sections. ELF The successor to COFF, featuring Multiple sections and 32-bit or 64-bit possible values. One major drawback: ELF was also designed with the assumption that there would be only one ABI per system architecture. That assumption is actually quite incorrect, and not even in the commercial SYSV world (which has at least three ABIs: SVR4, Solaris, SCO) does it hold true. FreeBSD tries to work around this problem somewhat by providing a utility for branding a known ELF executable with information about the ABI it is compliant with. See the man page for &man.brandelf.1; for more information. FreeBSD comes from the classic camp and has traditionally used the &man.a.out.5; format, a technology tried and proven through many generations of BSD releases. Though it has also been possible for some time to build and run native ELF binaries (and kernels) on a FreeBSD system, FreeBSD initially resisted the push to switch to ELF as the default format. Why? Well, when the Linux camp made their painful transition to ELF, it was not so much to flee the a.out executable format as it was their inflexible jump-table based shared library mechanism, which made the construction of shared libraries very difficult for vendors and developers alike. Since the ELF tools available offered a solution to the shared library problem and were generally seen as the way forward anyway, the migration cost was accepted as necessary and the transition made. In FreeBSD's case, our shared library mechanism is based more closely on Sun's SunOS-style shared library mechanism and, as such, is very easy to use. However, starting with 3.0, FreeBSD officially supports ELF binaries as the default format. Even though the a.out executable format has served us well, the GNU people, who author the compiler tools we use, have dropped support for the a.out format. This has forced us to maintain a divergent version of the compiler and linker, and has kept us from reaping the benefits of the latest GNU development efforts. Also the demands of ISO-C++, notably constructors and destructors, has also led to native ELF support in future FreeBSD releases. Yes, but why are there so many different formats? Back in the dim, dark past, there was simple hardware. This simple hardware supported a simple, small system. a.out was completely adequate for the job of representing binaries on this simple system (a PDP-11). As people ported Unix from this simple system, they retained the a.out format because it was sufficient for the early ports of Unix to architectures like the Motorola 68k, VAXen, etc. Then some bright hardware engineer decided that if he could force software to do some sleazy tricks, then he would be able to shave a few gates off the design and allow his CPU core to run faster. While it was made to work with this new kind of hardware (known these days as RISC), a.out was ill-suited for this hardware, so many formats were developed to get to a better performance from this hardware than the limited, simple a.out format could offer. Things like COFF, ECOFF, and a few obscure others were invented and their limitations explored before things seemed to settle on ELF. In addition, program sizes were getting huge and disks (and physical memory) were still relatively small so the concept of a shared library was born. The VM system also became more sophisticated. While each one of these advancements was done using the a.out format, its usefulness was stretched more and more with each new feature. In addition, people wanted to dynamically load things at run time, or to junk parts of their program after the init code had run to save in core memory and/or swap space. Languages became more sophisticated and people wanted code called before main automatically. Lots of hacks were done to the a.out format to allow all of these things to happen, and they basically worked for a time. In time, a.out was not up to handling all these problems without an ever increasing overhead in code and complexity. While ELF solved many of these problems, it would be painful to switch from the system that basically worked. So ELF had to wait until it was more painful to remain with a.out than it was to migrate to ELF. However, as time passed, the build tools that FreeBSD derived their build tools from (the assembler and loader especially) evolved in two parallel trees. The FreeBSD tree added shared libraries and fixed some bugs. The GNU folks that originally write these programs rewrote them and added simpler support for building cross compilers, plugging in different formats at will, etc. Since many people wanted to build cross compilers targeting FreeBSD, they were out of luck since the older sources that FreeBSD had for as and ld were not up to the task. The new gnu tools chain (binutils) does support cross compiling, ELF, shared libraries, C++ extensions, etc. In addition, many vendors are releasing ELF binaries, and it is a good thing for FreeBSD to run them. And if it is running ELF binaries, why bother having a.out any more? It is a tired old horse that has proven useful for a long time, but it is time to turn him out to pasture for his long, faithful years of service. ELF is more expressive than a.out and will allow more extensibility in the base system. The ELF tools are better maintained, and offer cross compilation support, which is important to many people. ELF may be a little slower than a.out, but trying to measure it can be difficult. There are also numerous details that are different between the two in how they map pages, handle init code, etc. None of these are very important, but they are differences. In time support for a.out will be moved out of the GENERIC kernel, and eventually removed from the kernel once the need to run legacy a.out programs is past. Why won't chmod change the permissions on symlinks? Symlinks do not have permissions, and by default, &man.chmod.1; will not follow symlinks to change the permissions on the target file. So if you have a file, foo, and a symlink to that file, bar, then this command will always succeed. &prompt.user; chmod g-w bar However, the permissions on foo will not have changed. You have to use either or together with the option to make this work. See the &man.chmod.1; and &man.symlink.7; man pages for more info. The option does a RECURSIVE &man.chmod.1;. Be careful about specifying directories or symlinks to directories to &man.chmod.1;. If you want to change the permissions of a directory referenced by a symlink, use &man.chmod.1; without any options and follow the symlink with a trailing slash (/). For example, if foo is a symlink to directory bar, and you want to change the permissions of foo (actually bar), you would do something like: &prompt.user; chmod 555 foo/ With the trailing slash, &man.chmod.1; will follow the symlink, foo, to change the permissions of the directory, bar. Why are login names still restricted to 8 characters? You would think it would be easy enough to change UT_NAMESIZE and rebuild the whole world, and everything would just work. Unfortunately there are often scads of applications and utilities (including system tools) that have hard-coded small numbers (not always 8 or 9, but oddball ones like 15 and 20) in structures and buffers. Not only will this get you log files which are trashed (due to variable-length records getting written when fixed records were expected), but it can break Suns NIS clients and potentially cause other problems in interacting with other Unix systems. In FreeBSD 3.0 and later, the maximum name length has been increased to 16 characters and those various utilities with hard-coded name sizes have been found and fixed. The fact that this touched so many areas of the system is why, in fact, the change was not made until 3.0. If you are absolutely confident in your ability to find and fix these sorts of problems for yourself when and if they pop up, you can increase the login name length in earlier releases by editing /usr/include/utmp.h and changing UT_NAMESIZE accordingly. You must also update MAXLOGNAME in /usr/include/sys/param.h to match the UT_NAMESIZE change. Finally, if you build from sources, do not forget that /usr/include is updated each time! Change the appropriate files in /usr/src/.. instead. Can I run DOS binaries under FreeBSD? Yes, starting with version 3.0 you can using BSDI's doscmd DOS emulation which has been integrated and enhanced. Send mail to the &a.emulation; if you are interested in joining this ongoing effort! For pre-3.0 systems, there is a neat utility called pcemu in the ports collection which emulates an 8088 and enough BIOS services to run DOS text mode applications. It requires the X Window System (provided as XFree86). What do I need to do to translate a FreeBSD document into my native language? See the Translation FAQ in the FreeBSD Documentation Project Primer. Where can I find a free FreeBSD account? While FreeBSD does not provide open access to any of their servers, others do provide open access Unix systems. The charge varies and limited services may be available. Arbornet, Inc, also known as M-Net, has been providing open access to Unix systems since 1983. Starting on an Altos running System III, the site switched to BSD/OS in 1991. In June of 2000, the site switched again to FreeBSD. M-Net can be accessed via telnet and SSH and provides basic access to the entire FreeBSD software suite. However, network access is limited to members and patrons who donate to the system, which is run as a non-profit organization. M-Net also provides an bulletin board system and interactive chat. Grex provides a site very similar to M-Net including the same bulletin board and interactive chat software. However, the machine is a Sun 4M and is running SunOS What is sup, and how do I use it? SUP stands for Software Update Protocol, and was developed by CMU for keeping their development trees in sync. We used it to keep remote sites in sync with our central development sources. SUP is not bandwidth friendly, and has been retired. The current recommended method to keep your sources up to date is Handbook entry on CVSup How cool is FreeBSD? Q. Has anyone done any temperature testing while running FreeBSD? I know Linux runs cooler than dos, but have never seen a mention of FreeBSD. It seems to run really hot. A. No, but we have done numerous taste tests on blindfolded volunteers who have also had 250 micrograms of LSD-25 administered beforehand. 35% of the volunteers said that FreeBSD tasted sort of orange, whereas Linux tasted like purple haze. Neither group mentioned any significant variances in temperature. We eventually had to throw the results of this survey out entirely anyway when we found that too many volunteers were wandering out of the room during the tests, thus skewing the results. We think most of the volunteers are at Apple now, working on their new scratch and sniff GUI. It's a funny old business we're in! Seriously, both FreeBSD and Linux use the HLT (halt) instruction when the system is idle thus lowering its energy consumption and therefore the heat it generates. Also if you have APM (advanced power management) configured, then FreeBSD can also put the CPU into a low power mode. Who is scratching in my memory banks?? Q. Is there anything odd that FreeBSD does when compiling the kernel which would cause the memory to make a scratchy sound? When compiling (and for a brief moment after recognizing the floppy drive upon startup, as well), a strange scratchy sound emanates from what appears to be the memory banks. A. Yes! You will see frequent references to daemons in the BSD documentation, and what most people do not know is that this refers to genuine, non-corporeal entities that now possess your computer. The scratchy sound coming from your memory is actually high-pitched whispering exchanged among the daemons as they best decide how to deal with various system administration tasks. If the noise gets to you, a good fdisk /mbr from DOS will get rid of them, but do not be surprised if they react adversely and try to stop you. In fact, if at any point during the exercise you hear the satanic voice of Bill Gates coming from the built-in speaker, take off running and don't ever look back! Freed from the counterbalancing influence of the BSD daemons, the twin demons of DOS and Windows are often able to re-assert total control over your machine to the eternal damnation of your soul. Now that you know, given a choice you would probably prefer to get used to the scratchy noises, no? What does MFC mean? MFC is an acronym for Merged From -CURRENT. It is used in the CVS logs to denote when a change was migrated from the CURRENT to the STABLE branches. What does BSD mean? It stands for something in a secret language that only members can know. It does not translate literally but its ok to tell you that BSD's translation is something between, Formula-1 Racing Team, Penguins are tasty snacks, and We have a better sense of humor than Linux. :-) Seriously, BSD is an acronym for Berkeley Software Distribution, which is the name the Berkeley CSRG (Computer Systems Research Group) chose for their Unix distribution way back when. What is a repo-copy? A repo-copy (which is a short form of repository copy) refers to the direct copying of files within the CVS repository. Without a repo-copy, if a file needed to be copied or moved to another place in the repository, the committer would run cvs add to put the file in its new location, and then cvs rm on the old file if the old copy was being removed. The disadvantage of this method is that the history (i.e. the entries in the CVS logs) of the file would not be copied to the new location. As the FreeBSD Project considers this history very useful, a repository copy is often used instead. This is a process where one of the repository meisters will copy the files directly within the repository, rather than using the &man.cvs.1; program. Why should I care what color the bikeshed is? The really, really short answer is that you should not. The somewhat longer answer is that just because you are capable of building a bikeshed doesn't mean you should stop others from building one just because you don't like the color they plan to paint it. This is a metaphor indicating that you need not argue about every little feature just because you know enough to do so. Some people have commented that the amount of noise generated by a change is inversely proportional to the complexity of the change. The longer and more complete answer is that after a very long argument about whether &man.sleep.1; should take fractional second arguments, &a.phk; posted a long message entitled A bike shed (any colour will do) on greener grass.... The appropriate portions of that message are quoted below.
&a.phk; on freebsd-hackers, October 2, 1999 What is it about this bike shed? Some of you have asked me. It is a long story, or rather it is an old story, but it is quite short actually. C. Northcote Parkinson wrote a book in the early 1960'ies, called Parkinson's Law, which contains a lot of insight into the dynamics of management. [snip a bit of commentary on the book] In the specific example involving the bike shed, the other vital component is an atomic power-plant, I guess that illustrates the age of the book. Parkinson shows how you can go in to the board of directors and get approval for building a multi-million or even billion dollar atomic power plant, but if you want to build a bike shed you will be tangled up in endless discussions. Parkinson explains that this is because an atomic plant is so vast, so expensive and so complicated that people cannot grasp it, and rather than try, they fall back on the assumption that somebody else checked all the details before it got this far. Richard P. Feynmann gives a couple of interesting, and very much to the point, examples relating to Los Alamos in his books. A bike shed on the other hand. Anyone can build one of those over a weekend, and still have time to watch the game on TV. So no matter how well prepared, no matter how reasonable you are with your proposal, somebody will seize the chance to show that he is doing his job, that he is paying attention, that he is here. In Denmark we call it setting your fingerprint. It is about personal pride and prestige, it is about being able to point somewhere and say There! I did that. It is a strong trait in politicians, but present in most people given the chance. Just think about footsteps in wet cement.
How many FreeBSD hackers does it take to change a lightbulb? One thousand, one hundred and seventy-two: Twenty-three to complain to -CURRENT about the lights being out; Four to claim that it is a configuration problem, and that such matters really belong on -questions; Three to submit PRs about it, one of which is misfiled under doc and consists only of "it's dark"; One to commit an untested lightbulb which breaks buildworld, then back it out five minutes later; Eight to flame the PR originators for not including patches in their PRs; Five to complain about buildworld being broken; Thirty-one to answer that it works for them, and they must have cvsupped at a bad time; One to post a patch for a new lightbulb to -hackers; One to complain that he had patches for this three years ago, but when he sent them to -CURRENT they were just ignored, and he has had bad experiences with the PR system; besides, the proposed new lightbulb is non-reflexive; Thirty-seven to scream that lightbulbs do not belong in the base system, that committers have no right to do things like this without consulting the Community, and WHAT IS -CORE DOING ABOUT IT!? Two hundred to complain about the color of the bicycle shed; Three to point out that the patch breaks &man.style.9;; Seventeen to complain that the proposed new lightbulb is under GPL; Five hundred and eighty-six to engage in a flame war about the comparative advantages of the GPL, the BSD license, the MIT license, the NPL, and the personal hygiene of unnamed FSF founders; Seven to move various portions of the thread to -chat and -advocacy; One to commit the suggested lightbulb, even though it shines dimmer than the old one; Two to back it out with a furious flame of a commit message, arguing that FreeBSD is better off in the dark than with a dim lightbulb; Forty-six to argue vociferously about the backing out of the dim lightbulb and demanding a statement from -core; Eleven to request a smaller lightbulb so it will fit their Tamagotchi if we ever decide to port FreeBSD to that platform; Seventy-three to complain about the SNR on -hackers and -chat and unsubscribe in protest; Thirteen to post "unsubscribe", "How do I unsubscribe?", or "Please remove me from the list", followed by the usual footer; One to commit a working lightbulb while everybody is too busy flaming everybody else to notice; Thirty-one to point out that the new lightbulb would shine 0.364% brighter if compiled with TenDRA (although it will have to be reshaped into a cube), and that FreeBSD should therefore switch to TenDRA instead of EGCS; One to complain that the new lightbulb lacks fairings; Nine (including the PR originators) to ask "what is MFC?"; Fifty-seven to complain about the lights being out two weeks after the bulb has been changed. &a.nik; adds: I was laughing quite hard at this. And then I thought, "Hang on, shouldn't there be '1 to document it.' in that list somewhere?" And then I was enlightened :-) This entry is Copyright (c) 1999 &a.des;. Please do not reproduce without attribution.
Advanced Topics What are SNAPs and RELEASEs? There are currently three active/semi-active branches in the FreeBSD CVS Repository (the RELENG_2 branch is probably only changed twice a year, which is why there are only three active branches of development): RELENG_2_2 AKA 2.2-STABLE RELENG_3 AKA 3.X-STABLE RELENG_4 AKA 4-STABLE HEAD AKA -CURRENT AKA 5.0-CURRENT HEAD is not an actual branch tag, like the other two; it is simply a symbolic constant for the current, non-branched development stream which we simply refer to as -CURRENT. Right now, -CURRENT is the 5.0 development stream and the 4-STABLE branch, RELENG_4, forked off from -CURRENT in Mar 2000. The 2.2-STABLE branch, RELENG_2_2, departed -CURRENT in November 1996, and has pretty much been retired. How do I make my own custom release? To make a release you need to do three things: First, you need to be running a kernel with the &man.vn.4; driver configured in. Add this to your kernel config file and build a new kernel: pseudo-device vn #Vnode driver (turns a file into a device) Second, you have to have the whole CVS repository at hand. To get this you can use CVSUP but in your supfile set the release name to cvs and remove any tag or date fields: *default prefix=/home/ncvs *default base=/a *default host=cvsup.FreeBSD.org *default release=cvs *default delete compress use-rel-suffix ## Main Source Tree src-all src-eBones src-secure # Other stuff ports-all www doc-all Then run cvsup -g supfile to suck all the good bits onto your box... Finally, you need a chunk of empty space to build into. Let's say it is in /some/big/filesystem, and from the example above you have got the CVS repository in /home/ncvs: &prompt.root; setenv CVSROOT /home/ncvs # or export CVSROOT=/home/ncvs &prompt.root; cd /usr/src &prompt.root; make buildworld &prompt.root; cd /usr/src/release &prompt.root; make release BUILDNAME=3.0-MY-SNAP CHROOTDIR=/some/big/filesystem/release Please note that you do not need to build world if you already have a populated /usr/obj. An entire release will be built in /some/big/filesystem/release and you will have a full FTP-type installation in /some/big/filesystem/release/R/ftp when you are done. If you want to build your SNAP along some other branch than -CURRENT, you can also add RELEASETAG=SOMETAG to the make release command line above, e.g. RELEASETAG=RELENG_2_2 would build an up-to-the- minute 2.2-STABLE snapshot. How do I create customized installation disks? The entire process of creating installation disks and source and binary archives is automated by various targets in /usr/src/release/Makefile. The information there should be enough to get you started. However, it should be said that this involves doing a make world and will therefore take up a lot of time and disk space. Why does make world clobber my existing installed binaries? Yes, this is the general idea; as its name might suggest, make world rebuilds every system binary from scratch, so you can be certain of having a clean and consistent environment at the end (which is why it takes so long). If the environment variable DESTDIR is defined while running make world or make install, the newly-created binaries will be deposited in a directory tree identical to the installed one, rooted at ${DESTDIR}. Some random combination of shared libraries modifications and program rebuilds can cause this to fail in make world however. How come when my system boots, it says (bus speed defaulted)? The Adaptec 1542 SCSI host adapters allow the user to configure their bus access speed in software. Previous versions of the 1542 driver tried to determine the fastest usable speed and set the adapter to that. We found that this breaks some users' systems, so you now have to define the TUNE_1542 kernel configuration option in order to have this take place. Using it on those systems where it works may make your disks run faster, but on those systems where it does not, your data could be corrupted. Can I follow current with limited Internet access? Yes, you can do this without downloading the whole source tree by using the CTM facility. How did you split the distribution into 240k files? Newer BSD based systems have a option to split that allows them to split files on arbitrary byte boundaries. Here is an example from /usr/src/Makefile. bin-tarball: (cd ${DISTDIR}; \ tar cf - . \ gzip --no-name -9 -c | \ split -b 240640 - \ ${RELEASEDIR}/tarballs/bindist/bin_tgz.) I have written a kernel extension, who do I send it to? Please take a look at The Handbook entry on how to + URL="../../articles/contributing/index.html">The contributing to FreeBSD article on how to submit code. And thanks for the thought! How are Plug N Play ISA cards detected and initialized? By: Frank Durda IV uhclem@nemesis.lonestar.org In a nutshell, there a few I/O ports that all of the PnP boards respond to when the host asks if anyone is out there. So when the PnP probe routine starts, he asks if there are any PnP boards present, and all the PnP boards respond with their model # to a I/O read of the same port, so the probe routine gets a wired-OR yes to that question. At least one bit will be on in that reply. Then the probe code is able to cause boards with board model IDs (assigned by Microsoft/Intel) lower than X to go off-line. It then looks to see if any boards are still responding to the query. If the answer was 0, then there are no boards with IDs above X. Now probe asks if there are any boards below X. If so, probe knows there are boards with a model numbers below X. Probe then asks for boards greater than X-(limit/4) to go off-line. If repeats the query. By repeating this semi-binary search of IDs-in-range enough times, the probing code will eventually identify all PnP boards present in a given machine with a number of iterations that is much lower than what 2^64 would take. The IDs are two 32-bit fields (hence 2ˆ64) + 8 bit checksum. The first 32 bits are a vendor identifier. They never come out and say it, but it appears to be assumed that different types of boards from the same vendor could have different 32-bit vendor ids. The idea of needing 32 bits just for unique manufacturers is a bit excessive. The lower 32 bits are a serial #, Ethernet address, something that makes this one board unique. The vendor must never produce a second board that has the same lower 32 bits unless the upper 32 bits are also different. So you can have multiple boards of the same type in the machine and the full 64 bits will still be unique. The 32 bit groups can never be all zero. This allows the wired-OR to show non-zero bits during the initial binary search. Once the system has identified all the board IDs present, it will reactivate each board, one at a time (via the same I/O ports), and find out what resources the given board needs, what interrupt choices are available, etc. A scan is made over all the boards to collect this information. This info is then combined with info from any ECU files on the hard disk or wired into the MLB BIOS. The ECU and BIOS PnP support for hardware on the MLB is usually synthetic, and the peripherals do not really do genuine PnP. However by examining the BIOS info plus the ECU info, the probe routines can cause the devices that are PnP to avoid those devices the probe code cannot relocate. Then the PnP devices are visited once more and given their I/O, DMA, IRQ and Memory-map address assignments. The devices will then appear at those locations and remain there until the next reboot, although there is nothing that says you cannot move them around whenever you want. There is a lot of oversimplification above, but you should get the general idea. Microsoft took over some of the primary printer status ports to do PnP, on the logic that no boards decoded those addresses for the opposing I/O cycles. I found a genuine IBM printer board that did decode writes of the status port during the early PnP proposal review period, but MS said tough. So they do a write to the printer status port for setting addresses, plus that use that address + 0x800, and a third I/O port for reading that can be located anywhere between 0x200 and 0x3ff. Can you assign a major number for a device driver I have written? This depends on whether or not you plan on making the driver publicly available. If you do, then please send us a copy of the driver source code, plus the appropriate modifications to files.i386, a sample configuration file entry, and the appropriate &man.MAKEDEV.8; code to create any special files your device uses. If you do not, or are unable to because of licensing restrictions, then character major number 32 and block major number 8 have been reserved specifically for this purpose; please use them. In any case, we would appreciate hearing about your driver on &a.hackers;. What about alternative layout policies for directories? In answer to the question of alternative layout policies for directories, the scheme that is currently in use is unchanged from what I wrote in 1983. I wrote that policy for the original fast filesystem, and never revisited it. It works well at keeping cylinder groups from filling up. As several of you have noted, it works poorly for find. Most filesystems are created from archives that were created by a depth first search (aka ftw). These directories end up being striped across the cylinder groups thus creating a worst possible scenario for future depth first searches. If one knew the total number of directories to be created, the solution would be to create (total / fs_ncg) per cylinder group before moving on. Obviously, one would have to create some heuristic to guess at this number. Even using a small fixed number like say 10 would make an order of magnitude improvement. To differentiate restores from normal operation (when the current algorithm is probably more sensible), you could use the clustering of up to 10 if they were all done within a ten second window. Anyway, my conclusion is that this is an area ripe for experimentation. Kirk McKusick, September 1998 How can I make the most of the data I see when my kernel panics? [This section was extracted from a mail written by &a.wpaul; on the freebsd-current mailing list by &a.des;, who fixed a few typos and added the bracketed comments] From: Bill Paul <wpaul@skynet.ctr.columbia.edu> Subject: Re: the fs fun never stops To: ben@rosengart.com Date: Sun, 20 Sep 1998 15:22:50 -0400 (EDT) Cc: current@FreeBSD.org [<ben@rosengart.com> posted the following panic message] > Fatal trap 12: page fault while in kernel mode > fault virtual address = 0x40 > fault code = supervisor read, page not present > instruction pointer = 0x8:0xf014a7e5 ^^^^^^^^^^ > stack pointer = 0x10:0xf4ed6f24 > frame pointer = 0x10:0xf4ed6f28 > code segment = base 0x0, limit 0xfffff, type 0x1b > = DPL 0, pres 1, def32 1, gran 1 > processor eflags = interrupt enabled, resume, IOPL = 0 > current process = 80 (mount) > interrupt mask = > trap number = 12 > panic: page fault [When] you see a message like this, it is not enough to just reproduce it and send it in. The instruction pointer value that I highlighted up there is important; unfortunately, it is also configuration dependent. In other words, the value varies depending on the exact kernel image that you are using. If you are using a GENERIC kernel image from one of the snapshots, then it is possible for somebody else to track down the offending function, but if you are running a custom kernel then only you can tell us where the fault occurred. What you should do is this: Write down the instruction pointer value. Note that the 0x8: part at the beginning is not significant in this case: it is the 0xf0xxxxxx part that we want. When the system reboots, do the following: &prompt.user; nm -n /kernel.that.caused.the.panic | grep f0xxxxxx where f0xxxxxx is the instruction pointer value. The odds are you will not get an exact match since the symbols in the kernel symbol table are for the entry points of functions and the instruction pointer address will be somewhere inside a function, not at the start. If you do not get an exact match, omit the last digit from the instruction pointer value and try again, i.e.: &prompt.user; nm -n /kernel.that.caused.the.panic | grep f0xxxxx If that does not yield any results, chop off another digit. Repeat until you get some sort of output. The result will be a possible list of functions which caused the panic. This is a less than exact mechanism for tracking down the point of failure, but it is better than nothing. I see people constantly show panic messages like this but rarely do I see someone take the time to match up the instruction pointer with a function in the kernel symbol table. The best way to track down the cause of a panic is by capturing a crash dump, then using &man.gdb.1; to generate a stack trace on the crash dump. In any case, the method I normally use is this: Set up a kernel config file, optionally adding options DDB if you think you need the kernel debugger for something. (I use this mainly for setting breakpoints if I suspect an infinite loop condition of some kind.) Use config -g KERNELCONFIG to set up the build directory. cd /sys/compile/ KERNELCONFIG; make Wait for kernel to finish compiling. make install reboot The &man.make.1; process will have built two kernels. kernel and kernel.debug. kernel was installed as /kernel, while kernel.debug can be used as the source of debugging symbols for &man.gdb.1;. To make sure you capture a crash dump, you need edit /etc/rc.conf and set dumpdev to point to your swap partition. This will cause the &man.rc.8; scripts to use the &man.dumpon.8; command to enable crash dumps. You can also run &man.dumpon.8; manually. After a panic, the crash dump can be recovered using &man.savecore.8;; if dumpdev is set in /etc/rc.conf, the &man.rc.8; scripts will run &man.savecore.8; automatically and put the crash dump in /var/crash. FreeBSD crash dumps are usually the same size as the physical RAM size of your machine. That is, if you have 64MB of RAM, you will get a 64MB crash dump. Therefore you must make sure there is enough space in /var/crash to hold the dump. Alternatively, you run &man.savecore.8; manually and have it recover the crash dump to another directory where you have more room. It is possible to limit the size of the crash dump by using options MAXMEM=(foo) to set the amount of memory the kernel will use to something a little more sensible. For example, if you have 128MB of RAM, you can limit the kernel's memory usage to 16MB so that your crash dump size will be 16MB instead of 128MB. Once you have recovered the crash dump, you can get a stack trace with &man.gdb.1; as follows: &prompt.user; gdb -k /sys/compile/KERNELCONFIG/kernel.debug /var/crash/vmcore.0 (gdb) where Note that there may be several screens worth of information; ideally you should use &man.script.1; to capture all of them. Using the unstripped kernel image with all the debug symbols should show the exact line of kernel source code where the panic occurred. Usually you have to read the stack trace from the bottom up in order to trace the exact sequence of events that lead to the crash. You can also use &man.gdb.1; to print out the contents of various variables or structures in order to examine the system state at the time of the crash. Now, if you are really insane and have a second computer, you can also configure &man.gdb.1; to do remote debugging such that you can use &man.gdb.1; on one system to debug the kernel on another system, including setting breakpoints, single-stepping through the kernel code, just like you can do with a normal user-mode program. I have not played with this yet as I do not often have the chance to set up two machines side by side for debugging purposes. [Bill adds: "I forgot to mention one thing: if you have DDB enabled and the kernel drops into the debugger, you can force a panic (and a crash dump) just by typing 'panic' at the ddb prompt. It may stop in the debugger again during the panic phase. If it does, type 'continue' and it will finish the crash dump." -ed] Why has dlsym() stopped working for ELF executables? The ELF toolchain does not, by default, make the symbols defined in an executable visible to the dynamic linker. Consequently dlsym() searches on handles obtained from calls to dlopen(NULL, flags) will fail to find such symbols. If you want to search, using dlsym(), for symbols present in the main executable of a process, you need to link the executable using the option to the ELF linker (&man.ld.1;). How can I increase or reduce the kernel address space? By default, the kernel address space is 256 MB on FreeBSD 3.x and 1 GB on FreeBSD 4.x. If you run a network-intensive server (e.g. a large FTP or HTTP server), you might find that 256 MB is not enough. So how do you increase the address space? There are two aspects to this. First, you need to tell the kernel to reserve a larger portion of the address space for itself. Second, since the kernel is loaded at the top of the address space, you need to lower the load address so it does not bump its head against the ceiling. The first goal is achieved by increasing the value of NKPDE in src/sys/i386/include/pmap.h. Here is what it looks like for a 1 GB address space: #ifndef NKPDE #ifdef SMP #define NKPDE 254 /* addressable number of page tables/pde's */ #else #define NKPDE 255 /* addressable number of page tables/pde's */ #endif /* SMP */ #endif To find the correct value of NKPDE, divide the desired address space size (in megabytes) by four, then subtract one for UP and two for SMP. To achieve the second goal, you need to compute the correct load address: simply subtract the address space size (in bytes) from 0x100100000; the result is 0xc0100000 for a 1 GB address space. Set LOAD_ADDRESS in src/sys/i386/conf/Makefile.i386 to that value; then set the location counter in the beginning of the section listing in src/sys/i386/conf/kernel.script to the same value, as follows: OUTPUT_FORMAT("elf32-i386", "elf32-i386", "elf32-i386") OUTPUT_ARCH(i386) ENTRY(btext) SEARCH_DIR(/usr/lib); SEARCH_DIR(/usr/obj/elf/home/src/tmp/usr/i386-unknown-freebsdelf/lib); SECTIONS { /* Read-only sections, merged into text segment: */ . = 0xc0100000 + SIZEOF_HEADERS; .interp : { *(.interp) } Then reconfig and rebuild your kernel. You will probably have problems with &man.ps.1; &man.top.1; and the like; make world should take care of it (or a manual rebuild of libkvm, &man.ps.1; and &man.top.1; after copying the patched pmap.h to /usr/include/vm/. NOTE: the size of the kernel address space must be a multiple of four megabytes. [&a.dg; adds: I think the kernel address space needs to be a power of two, but I am not certain about that. The old(er) boot code used to monkey with the high order address bits and I think expected at least 256MB granularity.] Acknowledgments
FreeBSD Core Team If you see a problem with this FAQ, or wish to submit an entry, please mail the &a.faq;. We appreciate your feedback, and cannot make this a better FAQ without your help!
&a.jkh; Occasional fits of FAQ-reshuffling and updating. &a.dwhite; Services above and beyond the call of duty on freebsd-questions &a.joerg; Services above and beyond the call of duty on Usenet &a.wollman; Networking and formatting Jim Lowe Multicast information &a.pds; FreeBSD FAQ typing machine slavey The FreeBSD Team Kvetching, moaning, submitting data And to any others we have forgotten, apologies and heartfelt thanks!
Bibliography 4.4BSD System Manager's Manual Computer Systems Research Group, University of California, Berkeley O'Reilly and Associates 1st Edition June 1994 804 pages ISBN 1-56592-080-5 4.4BSD User's Reference Manual Computer Systems Research Group, University of California, Berkeley O'Reilly and Associates 1st Edition June 1994 905 pages ISBN 1-56592-075-9 4.4BSD User's Supplementary Documents Computer Systems Research Group, University of California, Berkeley O'Reilly and Associates 1st Edition June 1994 712 pages ISBN 1-56592-076-7 4.4BSD Programmer's Reference Manual Computer Systems Research Group, University of California, Berkeley O'Reilly and Associates 1st Edition June 1994 866 pages ISBN 1-56592-078-3 4.4BSD Programmer's Supplementary Documents Computer Systems Research Group, University of California, Berkeley O'Reilly and Associates 1st Edition June 1994 596 pages ISBN 1-56592-079-1 The Design and Implementation of the 4.4BSD Operating System M. K. McKusick Kirk Marshall Keith Bostic Michael J Karels John Quarterman Addison-Wesley
Reading MA
1996 ISBN 0-201-54979-4
Unix System Administration Handbook Evi Nemeth Garth Snyder Scott Seebass Trent R. Hein John Quarterman Prentice-Hall 3rd edition 2000 ISBN 0-13-020601-6 The Complete FreeBSD Greg Lehey Walnut Creek 3rd edition June 1999 773 pages ISBN 1-57176-246-9 The FreeBSD Handbook FreeBSD Documentation Project BSDi 1st Edition November 1999 489 pages ISBN 1-57176-241-8 McKusick et al, 1994 Berkeley Software Architecture Manual, 4.4BSD Edition M. K. McKusick M. J. Karels S. J. Leffler W. N. Joy R. S. Faber 5:1-42
diff --git a/en_US.ISO8859-1/books/fdp-primer/overview/chapter.sgml b/en_US.ISO8859-1/books/fdp-primer/overview/chapter.sgml index 763ca39c2a..a58777cc30 100644 --- a/en_US.ISO8859-1/books/fdp-primer/overview/chapter.sgml +++ b/en_US.ISO8859-1/books/fdp-primer/overview/chapter.sgml @@ -1,300 +1,300 @@ Overview Welcome to the FreeBSD Documentation Project. Good quality documentation is very important to the success of FreeBSD, and the FreeBSD Documentation Project (FDP) is how a lot of that documentation is produced. Your contributions are very valuable. This document's main purpose is to clearly explain how the FDP is organised, how to write and submit documentation to the FDP, and how to effectively use the tools available to you when writing documentation. Membership Every one is welcome to join the FDP. There is no minimum membership requirement, no quota of documentation you need to produce per month. All you need to do is subscribe to the freebsd-doc@FreeBSD.org mailing list. After you have finished reading this document you should: Know which documentation is maintained by the FDP. Be able to read and understand the SGML source code for the documentation maintained by the FDP. Be able to make changes to the documentation. Be able to submit your changes back for review and eventual inclusion in the FreeBSD documentation. The FreeBSD Documentation Set The FDP is responsible for four categories of FreeBSD documentation. Manual pages The English language system manual pages are not written by the FDP, as they are part of the base system. However, the FDP can (and has) re-worded parts of existing manual pages to make them clearer, or to correct inaccuracies. The translation teams are responsible for translating the system manual pages in to different languages. These translations are kept within the FDP. FAQ The FAQ aims to address (in short question and answer format) questions that are asked, or should be asked, on the various mailing lists and newsgroups devoted to FreeBSD. The format does not permit long and comprehensive answers. Handbook The Handbook aims to be the comprehensive on-line resource and reference for FreeBSD users. Web site This is the main FreeBSD presence on the World Wide Web, visible at http://www.FreeBSD.org/ + url="../../../../index.html">http://www.FreeBSD.org/ and many mirrors around the world. The web site is many people's first exposure to FreeBSD. These four groups of documentation are all available in the FreeBSD CVS tree. This means that the logs of changes to these files are visible to anyone, and anyone can use a program such as CVSup or CTM to keep local copies of this documentation. In addition, many people have written tutorials or other web sites relating to FreeBSD. Some of these are stored in the CVS repository as well (where the author has agreed to this). In other cases the author has decided to keep his documentation separate from the main FreeBSD repository. The FDP endeavours to provide links to as much of this documentation as possible. Before you start This document assumes that you already know: How to maintain an up-to-date local copy of the FreeBSD documentation by maintaining a local copy of the FreeBSD CVS repository (using CVS and either CVSup or CTM) or by using CVSup to download just a checked-out copy. How to download and install new software using either the FreeBSD Ports system or &man.pkg.add.1;. Quick Start If you just want to get going, and feel confident you can pick things up as you go along, follow these instructions. Install the textproc/docproj meta-port. &prompt.root; cd /usr/ports/textproc/docproj &prompt.root; make JADETEX=no install Get a local copy of the FreeBSD doc tree. Either use CVSup in checkout mode to do this, or get a full copy of the CVS repository locally. If you have the CVS repository locally then as a minimum you will need to checkout the doc/share, and doc/en_US.ISO8859-1/share directories. &prompt.user; cvs checkout doc/share &prompt.user; cvs checkout doc/en_US.ISO8859-1/share If you have plenty of disk space then you could check out everything. &prompt.user; cvs checkout doc If you are preparing a change to an existing book or article, check it out of the repository as necessary. If you are planning on contributing a new book or article then use an existing one as a guide. For example, if you want to contribute a new article about setting up a VPN between FreeBSD and Windows 2000 you might do the following. Check out the articles directory. &prompt.user; cvs checkout doc/en_US.ISO8859-1/articles Copy an existing article to use as a template. In this case, you have decided that your new article belongs in a directory called vpn-w2k. &prompt.user; cd doc/en_US.ISO8859-1/articles &prompt.user; cp -r committers-guide vpn-w2k If you wanted to edit an existing document, such as the the FAQ, which is in doc/en_US.ISO8859-1/books/faq you would check it out of the repository like this. &prompt.user; cvs checkout doc/en_US.ISO8859-1/books/faq Edit the .sgml files using your editor of choice. Test the markup using the lint target. This will quickly find any errors in the document without actually performing the time-consuming transformation. &prompt.user; make lint When you are ready to actually build the document, you may specify a single format or a list of formats in the FORMATS variable. Currently, html, html-split, txt, ps, pdf, and rtf are supported. The most up to date list of supported formats is listed at the top of the doc/share/mk/doc.docbook.mk file. Make sure to use quotes around the list of formats when you build more than one format with a single command. For example, to convert the document to html only, you would use: &prompt.user; make FORMATS=html But when you want to convert the document to both html and txt format, you could use either two separate &man.make.1; runs, with: &prompt.user; make FORMATS=html &prompt.user; make FORMATS=txt or, you can do it in one command: &prompt.user; make FORMATS="html txt" Submit your changes using &man.send-pr.1;. diff --git a/en_US.ISO8859-1/books/fdp-primer/see-also/chapter.sgml b/en_US.ISO8859-1/books/fdp-primer/see-also/chapter.sgml index 981812ec6e..0d7f5b2aa0 100644 --- a/en_US.ISO8859-1/books/fdp-primer/see-also/chapter.sgml +++ b/en_US.ISO8859-1/books/fdp-primer/see-also/chapter.sgml @@ -1,134 +1,134 @@ See Also This document is deliberately not an exhaustive discussion of SGML, the DTDs listed, and the FreeBSD Documentation Project. For more information about these, you are encouraged to see the following web sites. The FreeBSD Documentation Project - The FreeBSD + The FreeBSD Documentation Project web pages - The FreeBSD Handbook + The FreeBSD Handbook SGML The SGML/XML web page, a comprehensive SGML resource Gentle introduction to SGML HTML The World Wide Web Consortium The HTML 4.0 specification DocBook The DocBook Technical Committee, maintainers of the DocBook DTD DocBook: The Definitive Guide, the online documentation for the DocBook DTD. - The DocBook Open + The DocBook Open Repository contains DSSSL stylesheets and other resources for people using DocBook. The Linux Documentation Project The Linux Documentation Project web pages diff --git a/en_US.ISO8859-1/books/fdp-primer/sgml-markup/chapter.sgml b/en_US.ISO8859-1/books/fdp-primer/sgml-markup/chapter.sgml index 39313fb747..7d90a804ad 100644 --- a/en_US.ISO8859-1/books/fdp-primer/sgml-markup/chapter.sgml +++ b/en_US.ISO8859-1/books/fdp-primer/sgml-markup/chapter.sgml @@ -1,2600 +1,2600 @@ SGML Markup This chapter describes the two markup languages you will encounter when you contribute to the FreeBSD documentation project. Each section describes the markup language, and details the markup that you are likely to want to use, or that is already in use. These markup languages contain a large number of elements, and it can be confusing sometimes to know which element to use for a particular situation. This section goes through the elements you are most likely to need, and gives examples of how you would use them. This is not an exhaustive list of elements, since that would just reiterate the documentation for each language. The aim of this section is to list those elements more likely to be useful to you. If you have a question about how best to markup a particular piece of content, please post it to the FreeBSD Documentation Project mailing list freebsd-doc@FreeBSD.org. Inline vs. block In the remainder of this document, when describing elements, inline means that the element can occur within a block element, and does not cause a line break. A block element, by comparison, will cause a line break (and other processing) when it is encountered. HTML HTML, the HyperText Markup Language, is the markup language of choice on the World Wide Web. More information can be found at <URL:http://www.w3.org/>. HTML is used to markup pages on the FreeBSD web site. It should not (generally) be used to mark up other documention, since DocBook offers a far richer set of elements to choose from. Consequently, you will normally only encounter HTML pages if you are writing for the web site. HTML has gone through a number of versions, 1, 2, 3.0, 3.2, and the latest, 4.0 (available in both strict and loose variants). The HTML DTDs are available from the ports collection in the textproc/html port. They are automatically installed as part of the textproc/docproj port. Formal Public Identifier (FPI) There are a number of HTML FPIs, depending upon the version (also known as the level) of HTML that you want to declare your document to be compliant with. The majority of HTML documents on the FreeBSD web site comply with the loose version of HTML 4.0. PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" Sectional elements An HTML document is normally split in to two sections. The first section, called the head, contains meta-information about the document, such as its title, the name of the author, the parent document, and so on. The second section, the body, contains the content that will be displayed to the user. These sections are indicated with head and body elements respectively. These elements are contained within the top-level html element. Normal HTML document structure <html> <head> <title>The document's title</title> </head> <body> … </body> </html> Block elements Headings HTML allows you to denote headings in your document, at up to six different levels. The largest and most prominent heading is h1, then h2, continuing down to h6. The element's content is the text of the heading. <sgmltag>h1</sgmltag>, <sgmltag>h2</sgmltag>, etc. Use: First section

This is the heading for the first section

This is the heading for the first sub-section

This is the heading for the second section

]]>
Generally, an HTML page should have one first level heading (h1). This can contain many second level headings (h2), which can in turn contain many third level headings. Each hn element should have the same element, but one further up the hierarchy, preceeding it. Leaving gaps in the numbering is to be avoided. Bad ordering of <sgmltag>h<replaceable>n</replaceable></sgmltag> elements Use: First section

Sub-section

]]>
Paragraphs HTML supports a single paragraph element, p. <sgmltag>p</sgmltag> Use: This is a paragraph. It can contain just about any other element.

]]>
Block quotations A block quotation is an extended quotation from another document that should not appear within the current paragraph. <sgmltag>blockquote</sgmltag> Use: A small excerpt from the US Constitution:

We the People of the United States, in Order to form a more perfect Union, establish Justice, insure domestic Tranquility, provide for the common defence, promote the general Welfare, and secure the Blessings of Liberty to ourselves and our Posterity, do ordain and establish this Constitution for the United States of America.
]]>
Lists You can present the user with three types of lists, ordered, unordered, and definition. Typically, each entry in an ordered list will be numbered, while each entry in an unordered list will be preceded by a bullet point. Definition lists are composed of two sections for each entry. The first section is the term being defined, and the second section is the definition of the term. Ordered lists are indicated by the ol element, unordered lists by the ul element, and definition lists by the dl element. Ordered and unordered lists contain listitems, indicated by the li element. A listitem can contain textual content, or it may be further wrapped in one or more p elements. Definition lists contain definition terms (dt) and definition descriptions (dd). A definition term can only contain inline elements. A definition description can contain other block elements. <sgmltag>ul</sgmltag> and <sgmltag>ol</sgmltag> Use: An unordered list. Listitems will probably be preceeded by bullets.

  • First item
  • Second item
  • Third item

An ordered list, with list items consisting of multiple paragraphs. Each item (note: not each paragraph) will be numbered.

  1. This is the first item. It only has one paragraph.

  2. This is the first paragraph of the second item.

    This is the second paragraph of the second item.

  3. This is the first and only paragraph of the third item.

]]>
Definition lists with <sgmltag>dl</sgmltag> Use:
Term 1

Paragraph 1 of definition 1.

Paragraph 2 of definition 1.

Term 2

Paragraph 1 of definition 2.

Term 3
Paragraph 1 of definition 3. Note that the <p> element is not required in the single paragraph case.
]]>
Pre-formatted text You can indicate that text should be shown to the user exactly as it is in the file. Typically, this means that the text is shown in a fixed font, multiple spaces are not merged in to one, and line breaks in the text are significant. In order to do this, wrap the content in the pre element. <sgmltag>pre</sgmltag> You could use pre to mark up an e-mail message; From: nik@FreeBSD.org To: freebsd-doc@FreeBSD.org Subject: New documentation available There's a new copy of my primer for contributers to the FreeBSD Documentation Project available at Comments appreciated. N]]> Tables Most text-mode browsers (such as Lynx) do not render tables particularly effectively. If you are relying on the tabular display of your content, you should consider using alternative markup to prevent confusion. Mark up tabular information using the table element. A table consists of one or more table rows (tr), each containing one or more cells of table data (td). Each cell can contain other block elements, such as paragraphs or lists. It can also contain another table (this nesting can repeat indefinitely). If the cell only contains one paragraph then you do not need to include the p element. Simple use of <sgmltag>table</sgmltag> Use: This is a simple 2x2 table.

Top left cell Top right cell
Bottom left cell Bottom right cell
]]>
A cell can span multiple rows and columns. To indicate this, add the rowspan and/or colspan attributes, with values indicating the number of rows of columns that should be spanned. Using <literal>rowspan</literal> Use: One tall thin cell on the left, two short cells next to it on the right.

Long and thin
Top cell Bottom cell
]]>
Using <literal>colspan</literal> Use: One long cell on top, two short cells below it.

Top cell
Bottom left cell Bottom right cell
]]>
Using <literal>rowspan</literal> and <literal>colspan</literal> together Use: On a 3x3 grid, the top left block is a 2x2 set of cells merged in to one. The other cells are normal.

Top left large cell Top right cell
Middle right cell
Bottom left cell Bottom middle cell Bottom right cell
]]>
In-line elements Emphasising information You have two levels of emphasis available in HTML, em and strong. em is for a normal level of emphasis and strong indicates stronger emphasis. Typically, em is rendered in italic and strong is rendered in bold. This is not always the case, however, and you should not rely on it. <sgmltag>em</sgmltag> and <sgmltag>strong</sgmltag> Use: This has been emphasised, while this has been strongly emphasised.

]]>
Bold and italics Because HTML includes presentational markup, you can also indicate that particular content should be rendered in bold or italic. The elements are b and i respectively. <sgmltag>b</sgmltag> and <sgmltag>i</sgmltag> This is in bold, while this is in italics.

]]>
Indicating fixed pitch text If you have content that should be rendered in a fixed pitch (typewriter) typeface, use tt (for teletype). <sgmltag>tt</sgmltag> Use: This document was originally written by Nik Clayton, who can be reached by e-mail as nik@FreeBSD.org.

]]>
Content size You can indicate that content should be shown in a larger or smaller font. There are three ways of doing this. Use big and small around the content you wish to change size. These tags can be nested, so <big><big>This is much bigger</big></big> is possible. Use font with the size attribute set to +1 or -1 respectively. This has the same effect as using big or small. However, the use of this approach is deprecated. Use font with the size attribute set to a number between 1 and 7. The default font size is 3. This approach is deprecated. <sgmltag>big</sgmltag>, <sgmltag>small</sgmltag>, and <sgmltag>font</sgmltag> The following fragments all do the same thing. This text is slightly smaller. But this text is slightly bigger.

This text is slightly smaller. But this text is slightly bigger

This text is slightly smaller. But this text is slightly bigger.

]]>
Links Links are also in-line elements. Linking to other documents on the WWW In order to include a link to another document on the WWW you must know the URL of the document you want to link to. The link is indicated with a, and the href attribute contains the URL of the target document. The content of the element becomes the link, and is normally indicated to the user in some way (underlining, change of colour, different mouse cursor when over the link, and so on). Using <literal><a href="..."></literal> Use: More information is available at the FreeBSD web site.

]]>
These links will take the user to the top of the chosen document.
Linking to other parts of documents Linking to a point within another document (or within the same document) requires that the document author include anchors that you can link to. Anchors are indicated with a and the name attribute instead of href. Using <literal><a name="..."></literal> Use: This paragraph can be referenced in other links with the name para1.

]]>
To link to a named part of a document, write a normal link to that document, but include the name of the anchor after a # symbol. Linking to a named part of another document Assume that the para1 example resides in a document called foo.html. More information can be found in the first paragraph of foo.html.

]]>
If you are linking to a named anchor within the same document then you can omit the document's URL, and just include the name of the anchor (with the preceeding #). Linking to a named part of the same document Assume that the para1 example resides in this document More information can be found in the first paragraph of this document.

]]>
DocBook DocBook was designed by the Davenport Group to be a DTD for writing technical documentation. As such, and unlike LinuxDoc and HTML, DocBook is very heavily oriented towards markup that describes what something is, rather than describing how it should be presented. <literal>formal</literal> vs. <literal>informal</literal> Some elements may exist in two forms, formal and informal. Typically, the formal version of the element will consist of a title followed by the information version of the element. The informal version will not have a title. The DocBook DTD is available from the ports collection in the textproc/docbook port. It is automatically installed as part of the textproc/docproj port. FreeBSD extensions The FreeBSD Documentation Project has extended the DocBook DTD by adding some new elements. These elements serve to make some of the markup more precise. Where a FreeBSD specific element is listed below it is clearly marked. Throughout the rest of this document, the term DocBook is used to mean the FreeBSD extended DocBook DTD. There is nothing about these extensions that is FreeBSD specific, it was just felt that they were useful enhancements for this particular project. Should anyone from any of the other *nix camps (NetBSD, OpenBSD, Linux, …) be interested in collaborating on a standard DocBook extension set, please get in touch with Nik Clayton nik@FreeBSD.org. The FreeBSD extensions are not (currently) in the ports collection. They are stored in the FreeBSD CVS tree, as doc/share/sgml/freebsd.dtd. + url="http://www.FreeBSD.org/cgi/cvsweb.cgi/doc/share/sgml/freebsd.dtd">doc/share/sgml/freebsd.dtd. Formal Public Identifier (FPI) In compliance with the DocBook guidelines for writing FPIs for DocBook customisations, the FPI for the FreeBSD extended DocBook DTD is; PUBLIC "-//FreeBSD//DTD DocBook V4.1-Based Extension//EN" Document structure DocBook allows you to structure your documentation in several ways. In the FreeBSD Documentation Project we are using two primary types of DocBook document: the book and the article. A book is organised into chapters. This is a mandatory requirement. There may be parts between the book and the chapter to provide another layer of organisation. The Handbook is arranged in this way. A chapter may (or may not) contain one or more sections. These are indicated with the sect1 element. If a section contains another section then use the sect2 element, and so on, up to sect5. Chapters and sections contain the remainder of the content. An article is simpler than a book, and does not use chapters. Instead, the content of an article is organised into one or more sections, using the same sect1 (and sect2 and so on) elements that are used in books. Obviously, you should consider the nature of the documentation you are writing in order to decide whether it is best marked up as a book or an article. Articles are well suited to information that does not need to be broken down into several chapters, and that is, relatively speaking, quite short, at up to 20-25 pages of content. Books are best suited to information that can be broken up into several chapters, possibly with appendices and similar content as well. - The FreeBSD + The FreeBSD tutorials are all marked up as articles, while this - document, the FreeBSD + document, the FreeBSD FAQ, and the FreeBSD Handbook are + url="../handbook/index.html">FreeBSD Handbook are all marked up as books. Starting a book The content of the book is contained within the book element. As well as containing structural markup, this element can contain elements that include additional information about the book. This is either meta-information, used for reference purposes, or additional content used to produce a title page. This additional information should be contained within bookinfo. Boilerplate <sgmltag>book</sgmltag> with <sgmltag>bookinfo</sgmltag> <book> <bookinfo> <title>Your title here</title> <author> <firstname>Your first name</firstname> <surname>Your surname</surname> <affiliation> <address><email>Your e-mail address</email></address> </affiliation> </author> <copyright> <year>1998</year> <holder role="mailto:your e-mail address">Your name</holder> </copyright> <pubdate role="rcs">$Date$</pubdate> <releaseinfo>$Id$</releaseinfo> <abstract> <para>Include an abstract of the book's contents here.</para> </abstract> </bookinfo> … </book> Starting an article The content of the article is contained within the article element. As well as containing structural markup, this element can contain elements that include additional information about the article. This is either meta-information, used for reference purposes, or additional content used to produce a title page. This additional information should be contained within articleinfo. Boilerplate <sgmltag>article</sgmltag> with <sgmltag>articleinfo</sgmltag> <article> <articleinfo> <title>Your title here</title> <author> <firstname>Your first name</firstname> <surname>Your surname</surname> <affiliation> <address><email>Your e-mail address</email></address> </affiliation> </author> <copyright> <year>1998</year> <holder role="mailto:your e-mail address">Your name</holder> </copyright> <pubdate role="rcs">$Date$</pubdate> <releaseinfo>$Id$</releaseinfo> <abstract> <para>Include an abstract of the article's contents here.</para> </abstract> </articleinfo> … </article> Indicating chapters Use chapter to mark up your chapters. Each chapter has a mandatory title. Articles do not contain chapters, they are reserved for books. A simple chapter The chapter's title ...
]]> A chapter cannot be empty; it must contain elements in addition to title. If you need to include an empty chapter then just use an empty paragraph. Empty chapters This is an empty chapter ]]> Sections below chapters In books, chapters may (but do not need to) be broken up into sections, subsections, and so on. In articles, sections are the main structural element, and each article must contain at least one section. Use the sectn element. The n indicates the section number, which identifies the section level. The first sectn is sect1. You can have one or more of these in a chapter. They can contain one or more sect2 elements, and so on, down to sect5. Sections in chapters A sample chapter Some text in the chapter. First section (1.1) Second section (1.2) First sub-section (1.2.1) First sub-sub-section (1.2.1.1) Second sub-section (1.2.2) ]]> This example includes section numbers in the section titles. You should not do this in your documents. Adding the section numbers is carried out by the stylesheets (of which more later), and you do not need to manage them yourself. Subdividing using <sgmltag>part</sgmltag>s You can introduce another layer of organisation between book and chapter with one or more parts. This cannot be done in an article. Introduction Overview ... What is FreeBSD? ... History ... ]]> Block elements Paragraphs DocBook supports three types of paragraphs: formalpara, para, and simpara. Most of the time you will only need to use para. formalpara includes a title element, and simpara disallows some elements from within para. Stick with para. <sgmltag>para</sgmltag> Use: This is a paragraph. It can contain just about any other element. ]]> Appearance: This is a paragraph. It can contain just about any other element. Block quotations A block quotation is an extended quotation from another document that should not appear within the current paragraph. You will probably only need it infrequently. Blockquotes can optionally contain a title and an attribution (or they can be left untitled and unattributed). <sgmltag>blockquote</sgmltag> Use: A small excerpt from the US Constitution;
Preamble to the Constitution of the United States Copied from a web site somewhere We the People of the United States, in Order to form a more perfect Union, establish Justice, insure domestic Tranquility, provide for the common defence, promote the general Welfare, and secure the Blessings of Liberty to ourselves and our Posterity, do ordain and establish this Constitution for the United States of America.
]]>
Appearance:
Preamble to the Constitution of the United States Copied from a web site somewhere We the People of the United States, in Order to form a more perfect Union, establish Justice, insure domestic Tranquility, provide for the common defence, promote the general Welfare, and secure the Blessings of Liberty to ourselves and our Posterity, do ordain and establish this Constitution for the United States of America.
Tips, notes, warnings, cautions, important information and sidebars. You may need to include extra information separate from the main body of the text. Typically this is meta information that the user should be aware of. Depending on the nature of the information, one of tip, note, warning, caution, and important should be used. Alternatively, if the information is related to the main text but is not one of the above, use sidebar. The circumstances in which to choose one of these elements over another is unclear. The DocBook documentation suggests; A Note is for information that should be heeded by all readers. An Important element is a variation on Note. A Caution is for information regarding possible data loss or software damage. A Warning is for information regarding possible hardware damage or injury to life or limb. <sgmltag>warning</sgmltag> Use: Installing FreeBSD may make you want to delete Windows from your harddisk. ]]> Installing FreeBSD may make you want to delete Windows from your harddisk. Lists and procedures You will often need to list pieces of information to the user, or present them with a number of steps that must be carried out in order to accomplish a particular goal. In order to do this, use itemizedlist, orderedlist, or procedureThere are other types of list element in DocBook, but we're not concerned with those at the moment. itemizedlist and orderedlist are similar to their counterparts in HTML, ul and ol. Each one consists of one or more listitem elements, and each listitem contains one or more block elements. The listitem elements are analagous to HTML's li tags. However, unlike HTML, they are required. procedure is slightly different. It consists of steps, which may in turn consists of more steps or substeps. Each step contains block elements. <sgmltag>itemizedlist</sgmltag>, <sgmltag>orderedlist</sgmltag>, and <sgmltag>procedure</sgmltag> Use: This is the first itemized item. This is the second itemized item. This is the first ordered item. This is the second ordered item. Do this. Then do this. And now do this. ]]> Appearance: This is the first itemized item. This is the second itemized item. This is the first ordered item. This is the second ordered item. Do this. Then do this. And now do this. Showing file samples If you want to show a fragment of a file (or perhaps a complete file) to the user, wrap it in the programlisting element. White space and line breaks within programlisting are significant. In particular, this means that the opening tag should appear on the same line as the first line of the output, and the closing tag should appear on the same line as the last line of the output, otherwise spurious blank lines may be included. <sgmltag>programlisting</sgmltag> Use: When you have finished, your program should look like this; #include <stdio.h> int main(void) { printf("hello, world\n"); }]]> Notice how the angle brackets in the #include line need to be referenced by their entities instead of being included literally. Appearance: When you have finished, your program should look like this; #include <stdio.h> int main(void) { printf("hello, world\n"); } Callouts A callout is a mechanism for referring back to an earlier piece of text or specific position within an earlier example without linking to it within the text. To do this, mark areas of interest in your example (programlisting, literallayout, or whatever) with the co element. Each element must have a unique id assigned to it. After the example include a calloutlist that refers back to the example and provides additional commentary. <sgmltag>co</sgmltag> and <sgmltag>calloutlist</sgmltag> When you have finished, your program should look like this; #include <stdio.h> int main(void) { printf("hello, world\n"); } Includes the standard IO header file. Specifies that main() returns an int. The printf() call that writes hello, world to standard output. ]]> Appearance: When you have finished, your program should look like this; #include <stdio.h> int main(void) { printf("hello, world\n"); } Includes the standard IO header file. Specifies that main() returns an int. The printf() call that writes hello, world to standard output. Tables Unlike HTML, you do not need to use tables for layout purposes, as the stylesheet handles those issues for you. Instead, just use tables for marking up tabular data. In general terms (and see the DocBook documentation for more detail) a table (which can be either formal or informal) consists of a table element. This contains at least one tgroup element, which specifies (as an attribute) the number of columns in this table group. Within the tablegroup you can then have one thead element, which contains elements for the table headings (column headings), and one tbody which contains the body of the table. Both tgroup and thead contain row elements, which in turn contain entry elements. Each entry element specifies one cell in the table. <sgmltag>informaltable</sgmltag> Use: This is column head 1 This is column head 2 Row 1, column 1 Row 1, column 2 Row 2, column 1 Row 2, column 2 ]]> Appearance: This is column head 1 This is column head 2 Row 1, column 1 Row 1, column 2 Row 2, column 1 Row 2, column 2 If you don't want a border around the table the frame attribute can be added to the informaltable element with a value of none (i.e., <informaltable frame="none">). Tables where <literal>frame="none"</literal> Appearance: This is column head 1 This is column head 2 Row 1, column 1 Row 1, column 2 Row 2, column 1 Row 2, column 2 Examples for the user to follow A lot of the time you need to show examples for the user to follow. Typically, these will consist of dialogs with the computer; the user types in a command, the user gets a response back, they type in another command, and so on. A number of distinct elements and entities come in to play here. screen Everything the user sees in this example will be on the computer screen, so the next element is screen. Within screen, white space is significant. prompt, &prompt.root; and &prompt.user; Some of the things the user will be seeing on the screen are prompts from the computer (either from the OS, command shell, or application. These should be marked up using prompt. As a special case, the two shell prompts for the normal user and the root user have been provided as entities. Every time you want to indicate the user is at a shell prompt, use one of &prompt.root; and &prompt.user; as necessary. They do not need to be inside prompt. &prompt.root; and &prompt.user; are FreeBSD extensions to DocBook, and are not part of the original DTD. userinput When displaying text that the user should type in, wrap it in userinput tags. It will probably be displayed differently to the user. <sgmltag>screen</sgmltag>, <sgmltag>prompt</sgmltag>, and <sgmltag>userinput</sgmltag> Use: &prompt.user; ls -1 foo1 foo2 foo3 &prompt.user; ls -1 | grep foo2 foo2 &prompt.user; su Password: &prompt.root; cat foo2 This is the file called 'foo2']]> Appearance: &prompt.user; ls -1 foo1 foo2 foo3 &prompt.user; ls -1 | grep foo2 foo2 &prompt.user; su Password: &prompt.root; cat foo2 This is the file called 'foo2' Even though we are displaying the contents of the file foo2, it is not marked up as programlisting. Reserve programlisting for showing fragments of files outside the context of user actions.
In-line elements Emphasising information When you want to emphasise a particular word or phrase, use emphasis. This may be presented as italic, or bold, or might be spoken differently with a text-to-speech system. There is no way to change the presentation of the emphasis within your document, no equivalent of HTML's b and i. If the information you are presenting is important then consider presenting it in important rather than emphasis. <sgmltag>emphasis</sgmltag> Use: FreeBSD is without doubt the premiere Unix like operating system for the Intel architecture.]]> Appearance: FreeBSD is without doubt the premiere Unix like operating system for the Intel architecture. Keys, mouse buttons, and combinations To refer to a specific key on the keyboard, use keycap. To refer to a mouse button, use mousebutton. And to refer to combinations of key presses or mouse clicks, wrap them all in keycombo. keycombo has an attribute called action, which may be one of click, double-click, other, press, seq, or simul. The last two values denote whether the keys or buttons should be pressed in sequence, or simultaneously. The stylesheets automatically add any connecting symbols, such as +, between the key names, when wrapped in keycombo. Keys, mouse buttons, and combinations Use: To switch to the second virtual terminal, press Alt F1. To exit vi without saving your work, type Esc: q!. My window manager is configured so that Alt right mouse button is used to move windows.]]> Appearance: To switch to the second virtual terminal, press Alt F1. To exit vi without saving your work, type Esc: q!. My window manager is configured so that Alt right mouse button is used to move windows. Applications, commands, options, and cites You will frequently want to refer to both applications and commands when writing for the Handbook. The distinction between them is simple: an application is the name for a suite (or possibly just 1) of programs that fulfil a particular task. A command is the name of a program that the user can run. In addition, you will occasionally need to list one or more of the options that a command might take. Finally, you will often want to list a command with its manual section number, in the command(number) format so common in Unix manuals. Mark up application names with application. When you want to list a command with its manual section number (which should be most of the time) the DocBook element is citerefentry. This will contain a further two elements, refentrytitle and manvolnum. The content of refentrytitle is the name of the command, and the content of manvolnum is the manual page section. This can be cumbersome to write, and so a series of general entities have been created to make this easier. Each entity takes the form &man.manual-page.manual-section;. The file that contains these entities is in doc/share/sgml/man-refs.ent, and can be referred to using this FPI: PUBLIC "-//FreeBSD//ENTITIES DocBook Manual Page Entities//EN" Therefore, the introduction to your documentation will probably look like this: <!DOCTYPE book PUBLIC "-//FreeBSD//DTD DocBook V4.1-Based Extension//EN" [ <!ENTITY % man PUBLIC "-//FreeBSD//ENTITIES DocBook Manual Page Entities//EN"> %man; … ]> Use command when you want to include a command name in-line but present it as something the user should type in. Use option to mark up a command's options. This can be confusing, and sometimes the choice is not always clear. Hopefully this example makes it clearer. Applications, commands, and options. Use: Sendmail is the most widely used Unix mail application. Sendmail includes the sendmail 8 , &man.mailq.8;, and &man.newaliases.8; programs. One of the command line parameters to sendmail 8 , , will display the current status of messages in the mail queue. Check this on the command line by running sendmail -bp.]]> Appearance: Sendmail is the most widely used Unix mail application. Sendmail includes the sendmail 8 , mailq 8 , and newaliases 8 programs. One of the command line parameters to sendmail 8 , , will display the current status of messages in the mail queue. Check this on the command line by running sendmail -bp. Notice how the &man.command.section; notation is easier to follow. Files, directories, extensions Whenever you wish to refer to the name of a file, a directory, or a file extension, use filename. <sgmltag>filename</sgmltag> Use: The SGML source for the Handbook in English can be found in /usr/doc/en/handbook/. The first file is called handbook.sgml in that directory. You should also see a Makefile and a number of files with a .ent extension.]]> Appearance: The SGML source for the Handbook in English can be found in /usr/doc/en/handbook/. The first file is called handbook.sgml in that directory. You should also see a Makefile and a number of files with a .ent extension. Devices FreeBSD extension These elements are part of the FreeBSD extension to DocBook, and do not exist in the original DocBook DTD. When referring to devices you have two choices. You can either refer to the device as it appears in /dev, or you can use the name of the device as it appears in the kernel. For this latter course, use devicename. Sometimes you will not have a choice. Some devices, such as networking cards, do not have entries in /dev, or the entries are markedly different from those entries. <sgmltag>devicename</sgmltag> Use: sio is used for serial communication in FreeBSD. sio manifests through a number of entries in /dev, including /dev/ttyd0 and /dev/cuaa0. By contrast, the networking devices, such as ed0 do not appear in /dev. In MS-DOS, the first floppy drive is referred to as a:. In FreeBSD it is /dev/fd0.]]> Appearance: sio is used for serial communication in FreeBSD. sio manifests through a number of entries in /dev, including /dev/ttyd0 and /dev/cuaa0. By contrast, the networking devices, such as ed0 do not appear in /dev. In MS-DOS, the first floppy drive is referred to as a:. In FreeBSD it is /dev/fd0. Hosts, domains, IP addresses, and so forth FreeBSD extension These elements are part of the FreeBSD extension to DocBook, and do not exist in the original DocBook DTD. You can markup identification information for networked computers (hosts) in several ways, depending on the nature of the information. All of them use hostid as the element, with the role attribute selecting the type of the marked up information. No role attribute, or role="hostname" With no role attribute (i.e., hostid...hostid the marked up information is the simple hostname, such as freefall or wcarchive. You can explicitly specify this with role="hostname". role="domainname" The text is a domain name, such as FreeBSD.org or ngo.org.uk. There is no hostname component. role="fqdn" The text is a Fully Qualified Domain Name, with both hostname and domain name parts. role="ipaddr" The text is an IP address, probably expressed as a dotted quad. role="ip6addr" The text is an IPv6 address. role="netmask" The text is a network mask, which might be expressed as a dotted quad, a hexadecimal string, or as a / followed by a number. role="mac" The text is an Ethernet MAC address, expressed as a series of 2 digit hexadecimal numbers separated by colons. <sgmltag>hostid</sgmltag> and roles Use: The local machine can always be referred to by the name localhost, which will have the IP address 127.0.0.1. The FreeBSD.org domain contains a number of different hosts, including freefall.FreeBSD.org and bento.FreeBSD.org. When adding an IP alias to an interface (using ifconfig) always use a netmask of 255.255.255.255 (which can also be expressed as 0xffffffff. The MAC address uniquely identifies every network card in existence. A typical MAC address looks like 08:00:20:87:ef:d0.]]> Appearance: The local machine can always be referred to by the name localhost, which will have the IP address 127.0.0.1. The FreeBSD.org domain contains a number of different hosts, including freefall.FreeBSD.org and bento.FreeBSD.org. When adding an IP alias to an interface (using ifconfig) always use a netmask of 255.255.255.255 (which can also be expressed as 0xffffffff. The MAC address uniquely identifies every network card in existence. A typical MAC address looks like 08:00:20:87:ef:d0. Usernames FreeBSD extension These elements are part of the FreeBSD extension to DocBook, and do not exist in the original DocBook DTD. When you need to refer to a specific username, such as root or bin, use username. <sgmltag>username</sgmltag> Use: To carry out most system administration functions you will need to be root.]]> Appearance: To carry out most system administration functions you will need to be root. Describing <filename>Makefile</filename>s FreeBSD extension These elements are part of the FreeBSD extension to DocBook, and do not exist in the original DocBook DTD. Two elements exist to describe parts of Makefiles, maketarget and makevar. maketarget identifies a build target exported by a Makefile that can be given as a parameter to make. makevar identifies a variable that can be set (in the environment, on the make command line, or within the Makefile) to influence the process. <sgmltag>maketarget</sgmltag> and <sgmltag>makevar</sgmltag> Use: Two common targets in a Makefile are all and clean. Typically, invoking all will rebuild the application, and invoking clean will remove the temporary files (.o for example) created by the build process. clean may be controlled by a number of variables, including CLOBBER and RECURSE.]]> Appearance: Two common targets in a Makefile are all and clean. Typically, invoking all will rebuild the application, and invoking clean will remove the temporary files (.o for example) created by the build process. clean may be controlled by a number of variables, including CLOBBER and RECURSE. Literal text You will often need to include literal text in the Handbook. This is text that is excerpted from another file, or which should be copied from the Handbook into another file verbatim. Some of the time, programlisting will be sufficient to denote this text. programlisting is not always appropriate, particularly when you want to include a portion of a file in-line with the rest of the paragraph. On these occasions, use literal. <sgmltag>literal</sgmltag> Use: The maxusers 10 line in the kernel configuration file determines the size of many system tables, and is a rough guide to how many simultaneous logins the system will support.]]> Appearance: The maxusers 10 line in the kernel configuration file determines the size of many system tables, and is a rough guide to how many simultaneous logins the system will support. Showing items that the user <emphasis>must</emphasis> fill in There will often be times when you want to show the user what to do, or refer to a file, or command line, or similar, where the user cannot simply copy the examples that you provide, but must instead include some information themselves. replaceable is designed for this eventuality. Use it inside other elements to indicate parts of that element's content that the user must replace. <sgmltag>replaceable</sgmltag> Use: &prompt.user; man command ]]> Appearance: &prompt.user; man command replaceable can be used in many different elements, including literal. This example also shows that replaceable should only be wrapped around the content that the user is meant to provide. The other content should be left alone. Use: The maxusers n line in the kernel configuration file determines the size of many system tables, and is a rough guide to how many simultaneous logins the system will support. For a desktop workstation, 32 is a good value for n.]]> Appearance: The maxusers n line in the kernel configuration file determines the size of many system tables, and is a rough guide to how many simultaneous logins the system will support. For a desktop workstation, 32 is a good value for n. Images Image support in the documentation is currently extremely experimental. I think the mechanisms described here are unlikely to change, but that's not guaranteed. You will also need to install the graphics/ImageMagick port, which is used to convert between the different image formats. This is a big port, and most of it is not required. However, while we're working on the Makefiles and other infrastructure it makes things easier. This port is not in the textproc/docproj meta port, you must install it by hand. The best example of what follows in practice is the - en_US.ISO8859-1/articles/vm-design/ document. + doc/en_US.ISO8859-1/articles/vm-design/ document. If you're unsure of the description that follows, take a look at the files in that directory to see how everything hangs togther. Experiment with creating different formatted versions of the document to see how the image markup appears in the formatted output. Image formats We currently support two formats for images. The format you should use will depend on the nature of your image. For images that are primarily vector based, such as network diagrams, timelines, and similar, use Encapsulated Postscript, and make sure that your images have the .eps extension. For bitmaps, such as screen captures, use the Portable Network Graphic format, and make sure that your images have the .png extension. These are the only formats in which images should be committed to the CVS repository. Use the right format for the right image. It is to be expected that your documentation will have a mix of EPS and PNG images. The Makefiles ensure that the correct format image is chosen depending on the output format that you use for your documentation. Do not commit the same image to the repository in two different formats. It is anticipated that the Documentation Project will switch to using the Scalable Vector Graphic (SVG) format for vector images. However, the current state of SVG capable editing tools makes this impractical. Markup The markup for an image is relatively simple. First, markup a mediaobject. The mediaobject can contain other, more specific objects. We are concerned with two, the imageobject and the textobject. You should include one imageobject, and two textobject elements. The imageobject will point to the name of the image file that will be used (without the extension). The textobject elements contain information that will be presented to the user as well as, or instead of, the image. There are two circumstances where this can happen. When the reader is viewing the documentation in HTML. In this case, each image will need to have associated alternate text to show the user, typically whilst the image is loading, or if they hover the mouse pointer over the image. When the reader is viewing the documentation in plain text. In this case, each image should have an ASCII art equivalent to show the user. An example will probably make things easier to understand. Suppose you have an image, called fig1, that you want to include in the document. This image is of a rectangle with an A inside it. The markup for this would be as follows. <mediaobject> <imageobject> <imagedata fileref="fig1"> </imageobject> <textobject> <literallayout class="monospaced">+---------------+ | A | +---------------+</literallayout> </textobject> <textobject> <phrase>A picture</phrase> </textobject> </mediaobject> Include an imagedata element inside the imageobject element. The fileref attribute should contain the filename of the image to include, without the extension. The stylesheets will work out which extension should be added to the filename automatically. The first textobject should contain a literallayout element, where the class attribute is set to monospaced. This is your opportunity to demonstrate your ASCII art skills. This content will be used if the document is converted to plain text. Notice how the first and last lines of the content of the literallayout element butt up next to the element's tags. This ensures no extraneous white space is included. The second textobject should contain a single phrase element. The contents of this will become the alt attribute for the image when this document is converted to HTML. <filename>Makefile</filename> entries Your images must be listed in the Makefile in the IMAGES variable. This variable should contain the name of all your source images. For example, if you have created three figures, fig1.eps, fig2.png, fig3.png, then your Makefile should have lines like this in it. … IMAGES= fig1.eps fig2.png fig3.png … or … IMAGES= fig1.eps IMAGES+= fig2.png IMAGES+= fig3.png … Again, the Makefile will work out the complete list of images it needs to build your source document, you only need to list the image files you provided. Images and chapters in subdirectories You must be careful when you separate your documentation in to smaller files (see ) in different directories. Suppose you have a book with three chapters, and the chapters are stored in their own directories, called chapter1/chapter.sgml, chapter2/chapter.sgml, and chapter3/chapter.sgml. If each chapter has images associated with it, I suggest you place those images in each chapter's subdirectory (chapter1/, chapter2/, and chapter3/). However, if you do this you must include the directory names in the IMAGES variable in the Makefile, and you must include the directory name in the imagedata element in your document. For example, if you have chapter1/fig1.png, then chapter1/chapter.sgml should contain <mediaobject> <imageobject> <imagedata fileref="chapter1/fig1"> </imageobject> … </mediaobject> The directory name must be included in the fileref attribute The Makefile must contain … IMAGES= chapter1/fig1.png … Then everything should just work. Links Links are also in-line elements. Linking to other parts of the same document Linking within the same document requires you to specify where you are linking from (i.e., the text the user will click, or otherwise indicate, as the source of the link) and where you are linking to (the link's destination). Each element within DocBook has an attribute called id. You can place text in this attribute to uniquely name the element it is attached to. This value will be used when you specify the link source. Normally, you will only be linking to chapters or sections, so you would add the id attribute to these elements. <literal>id on chapters and sections</literal> Introduction This is the introduction. It contains a subsection, which is identified as well. Sub-sect 1 This is the subsection. ]]> Obviously, you should use more descriptive values. The values must be unique within the document (i.e., not just the file, but the document the file might be included in as well). Notice how the id for the subsection is constructed by appending text to the id of the chapter. This helps to ensure that they are unique. If you want to allow the user to jump into a specific portion of the document (possibly in the middle of a paragraph or an example), use anchor. This element has no content, but takes an id attribute. <sgmltag>anchor</sgmltag> This paragraph has an embedded link target in it. It won't show up in the document.]]> When you want to provide the user with a link they can activate (probably by clicking) to go to a section of the document that has an id attribute, you can use either xref or link. Both of these elements have a linkend attribute. The value of this attribute should be the value that you have used in a id attribute (it does not matter if that value has not yet occurred in your document; this will work for forward links as well as backward links). If you use xref then you have no control over the text of the link. It will be generated for you. Using <sgmltag>xref</sgmltag> Assume that this fragment appears somewhere in a document that includes the id example; More information can be found in . More specific information can be found in .]]> The text of the link will be generated automatically, and will look like (emphasised text indicates the text that will be the link);
More information can be found in Chapter One. More specific information can be found in the section called Sub-sect 1.
Notice how the text from the link is derived from the section title or the chapter number. This means that you cannot use xref to link to an id attribute on an anchor element. The anchor has no content, so the xref cannot generate the text for the link. If you want to control the text of the link then use link. This element wraps content, and the content will be used for the link. Using <sgmltag>link</sgmltag> Assume that this fragment appears somewhere in a document that includes the id example. More information can be found in the first chapter. More specific information can be found in this section.]]> This will generate the following (emphasised text indicates the text that will be the link);
More information can be found in the first chapter. More specific information can be found in this section.
That last one is a bad example. Never use words like this or here as the source for the link. The reader will need to hunt around the surrounding context to see where the link is actually taking them. You can use link to include a link to an id on an anchor element, since the link content defines the text that will be used for the link.
Linking to documents on the WWW Linking to external documents is much simpler, as long as you know the URL of the document you want to link to. Use ulink. The url attribute is the URL of the page that the link points to, and the content of the element is the text that will be displayed for the user to activate. <sgmltag>ulink</sgmltag> Use: Of course, you could stop reading this document and - go to the FreeBSD + go to the FreeBSD home page instead.]]> Appearance: Of course, you could stop reading this document and go to the - FreeBSD home page + FreeBSD home page instead.
diff --git a/en_US.ISO8859-1/books/fdp-primer/the-website/chapter.sgml b/en_US.ISO8859-1/books/fdp-primer/the-website/chapter.sgml index 1cf48fb8ab..fb1614180a 100644 --- a/en_US.ISO8859-1/books/fdp-primer/the-website/chapter.sgml +++ b/en_US.ISO8859-1/books/fdp-primer/the-website/chapter.sgml @@ -1,218 +1,218 @@ The Website Preparation Get 200MB free disk space. You will need the disk space for the SGML tools, a subset of the CVS tree, temporary build space and the installed web pages. If you aready have installed the SGML tools and the CVS tree, you need only ~100MB free disk space. Make sure your documentation ports are up to date! When in doubt, remove the old ports using &man.pkg.delete.1; command before installing the port. For example, we currently depend on jade-1.2 and if you have installed jade-1.1, please do &prompt.root; pkg_delete jade-1.1 Setup a CVS repository. You need the directories www, doc and ports in the CVS tree (plus the CVSROOT of course). Please read the CVSup introduction - http://www.freebsd.org/handbook/synching.html#CVSUP how to + url="../handbook/synching.html#CVSUP"> + http://www.FreeBSD.org/handbook/synching.html#CVSUP how to mirror a CVS tree or parts of a CVS tree. The essential cvsup collections are: www, doc-all, cvs-base, and ports-base. These collections require ~100MB free disk space. A full CVS tree - including src, doc, www, and ports - is currently 650MB large. Build the web pages from scratch Go to into a build directory with at least 60MB of free space. &prompt.root; mkdir /var/tmp/webbuild &prompt.root; cd /var/tmp/webbuild Checkout the SGML files from the CVS tree. &prompt.root; cvs -R co www doc Change in to the www directory, and run the &man.make.1; links target, to create the necessary symbolic links. &prompt.root; cd www &prompt.root; make links Change in to the en directory, and run the &man.make.1; all target, to create the web pages. &prompt.root; cd en &prompt.root; make all Install the web pages into your web server If you have moved out of the en directory, change back to it. &prompt.root; cd path/www/en Run the &man.make.1; install target, setting the DESTDIR variable to the name of the directory you want to install the files to. &prompt.root; make DESTDIR=/usr/local/www install If you have previously installed the web pages in to the same directory the install process will not have deleted any old or outdated pages. For example, if you build and install a new copy of the site every day, this command will find and delete all files that have not been updated in three days. &prompt.root; find /usr/local/www -ctime 3 -print0 | xargs -0 rm Environment variables CVSROOT Location of the CVS tree. Essential. &prompt.root; CVSROOT=/home/ncvs; export CVSROOT ENGLISH_ONLY If set and not empty, the makefiles will build and install only the English documents. All translations will be ignored. E.g.: &prompt.root; make ENGLISH_ONLY=YES all install If you want unset the variable ENGLISH_ONLY and build all pages, including translations, set the variable ENGLISH_ONLY to an empty value &prompt.root; make ENGLISH_ONLY="" all install clean WEB_ONLY If set and not empty, the makefiles wil build and install only the HTML pages from the www directory. All documents from the doc directory (Handbook, FAQ, Tutorials) will be ignored. E.g.: &prompt.root; make WEB_ONLY=YES all install NOPORTSCVS If set, the makefiles will not checkout files from the ports cvs repository. Instead, it will copy the files from /usr/ports (or where the variable PORTSBASE points to). CVSROOT is an environment variable. You must set it on the commandline or in your dot files (~/.profile). WEB_ONLY, ENGLISH_ONLY and NOPORTSCVS are makefile variables. You can set the variables in /etc/make.conf, Makefile.inc or as environment variables on the commandline or in your dot files. diff --git a/en_US.ISO8859-1/books/fdp-primer/translations/chapter.sgml b/en_US.ISO8859-1/books/fdp-primer/translations/chapter.sgml index b5ebbeb5ad..43e1f0b044 100644 --- a/en_US.ISO8859-1/books/fdp-primer/translations/chapter.sgml +++ b/en_US.ISO8859-1/books/fdp-primer/translations/chapter.sgml @@ -1,482 +1,482 @@ Translations This is the FAQ for people translating the FreeBSD documentation (FAQ, Handbook, tutorials, man pages, and others) to different languages. It is very heavily based on the translation FAQ from the FreeBSD German Documentation Project, originally written by Frank Gründer elwood@mc5sys.in-berlin.de and translated back to English by Bernd Warken bwarken@mayn.de. The FAQ maintainer is Nik Clayton nik@FreeBSD.org. Why a FAQ? More and more people are approaching the freebsd-doc mailing list and volunteering to translate FreeBSD documentation to other languages. This FAQ aims to answer their questions so they can start translating documentation as quickly as possible. What do i18n and l10n mean? i18n means internationalisation and l10n means localisation. They are just a convenient shorthand. i18n can be read as i followed by 18 letters, followed by n. Similarly, l10n is l followed by 10 letters, followed by n. Is there a mailing list for translators? Yes, freebsd-translate@ngo.org.uk. Subscribe by sending a message to freebsd-translate-request@ngo.org.uk with the word subscribe in the body of the message. You will receive a reply asking you to confirm your subscription (in exactly the same manner as the FreeBSD lists at FreeBSD.org). The primary language of the mailing list is English. However, posts in other languages will be accepted. The mailing list is not moderated, but you need to be a member of the list before you can post to it. The mailing list is archived, but they are not currently searchable. Sending the message help to majordomo@ngo.org.uk will send back instructions on how to access the archive. It is expected that the mailing list will transfer to FreeBSD.org and therefore become official in the near future. Are more translators needed? Yes. The more people work on translation the faster it gets done, and the faster changes to the English documentation are mirrored in the translated documents. You do not have to be a professional translator to be able to help. What languages do I need to know? Ideally, you will have a good knowledge of written English, and obviously you will need to be fluent in the language you are translating to. English is not strictly necessary. For example, you could do a Hungarian translation of the FAQ from the Spanish translation. What software do I need to know? It is strongly recommended that you maintain a local copy of the FreeBSD CVS repository (at least the documentation part) either using CTM or CVSup. The "Staying current with FreeBSD" chapter in the Handbook explains how to use these applications. You should be comfortable using CVS. This will allow you to see what has changed between different versions of the files that make up the documentation. [XXX To Do -- write a tutorial that shows how to use CVSup to get just the documentation, check it out, and see what's changed between two arbitrary revisions] How do I find out who else might be translating to the same language? The Documentation + url="../../../../docproj/translations.html">Documentation Project translations page lists the translation efforts that are currently known about. If others are already working on translating documentation to your language, please don't duplicate their efforts. Instead, contact them to see how you can help. If no one is listed on that page as translating for your language, then send a message to freebsd-doc@FreeBSD.org in case someone else is thinking of doing a translation, but hasn't announced it yet. No one else is translating to my language. What do I do? Congratulations, you have just started the FreeBSD your-language-here Documentation Translation Project. Welcome aboard. First, decide whether or not you've got the time to spare. Since you are the only person working on your language at the moment it is going to be your responsibility to publicise your work and coordinate any volunteers that might want to help you. Write an e-mail to the Documentation Project mailing list, announcing that you are going to translate the documentation, so the Documentation Project translations page can be maintained. You should subscribe to the freebsd-translate@ngo.org.uk mailing list (as described earlier). If there is already someone in your country providing FreeBSD mirroring services you should contact them and ask if you can have some webspace for your project, and possibly an e-mail address or mailing list services. Then pick a document and start translating. It is best to start with something fairly small—either the FAQ, or one of the tutorials. I've translated some documentation, where do I send it? That depends. If you are already working with a translation team (such as the Japanese team, or the German team) then they will have their own procedures for handling submitted documentation, and these will be outlined on their web pages. If you are the only person working on a particular language (or you are responsible for a translation project and want to submit your changes back to the FreeBSD project) then you should send your translation to the FreeBSD project (see the next question). I'm the only person working on translating to this language, how do I submit my translation? or We're a translation team, and want to submit documentation that our members have translated for us? First, make sure your translation is organised properly. This means that it should drop in to the existing documentation tree and build straight away. Currently, the FreeBSD documentation is stored in a top level directory called doc/. Directories below this are named according to the language code they are written in, as defined in ISO639 (/usr/share/misc/iso639 on a version of FreeBSD newer than 20th January 1999). If your language can be encoded in different ways (for example, Chinese) then there should be directories below this, one for each encoding format you have provided. Finally, you should have directories for each document. For example, a hypothetical Swedish translation might look like doc/ sv_SE.ISO8859-1/ Makefile books/ faq/ Makefile book.sgml sv_SE.ISO8859-1 is the name of the translation, in lang.encoding form. Note the two Makefiles, which will be used to build the documentation. Use &man.tar.1; and &man.gzip.1; to compress up your documentation, and send it to the project. &prompt.user; cd doc &prompt.user; tar cf swedish-docs.tar sv &prompt.user; gzip -9 swedish-docs.tar Put swedish-docs.tar.gz somewhere. If you do not have access to your own webspace (perhaps your ISP does not let you have any) then you can e-mail Nik Clayton nik@FreeBSD.org, and arrange to e-mail the files when it is convenient. Either way, you should use &man.send-pr.1; to submit a report indicating that you have submitted the documentation. It would be very helpful if you could get other people to look over your translation and double check it first, since it is unlikely that the person committing it will be fluent in the language. Someone (probably the Documentation Project Manager, currently Nik Clayton nik@FreeBSD.org) will then take your translation and confirm that it builds. In particular, the following things will be looked at: Do all your files use RCS strings (such as "ID")? Does make all in the sv_SE.ISO8859-1 directory work correctly? Does make install work correctly? If there are any problems then whoever is looking at the submission will get back to you to try and work them out. If there are no problems your translation will be committed as soon as possible. Can I include language or country specific text in my translation? We would prefer that you did not. For example, suppose that you are translating the Handbook to Korean, and want to include a section about retailers in Korea in your Handbook. There's no real reason why that information should not be in the English (or German, or Spanish, or Japanese, or …) versions as well. It is feasible that an English speaker in Korea might try and pick up a copy of FreeBSD whilst over there. It also helps increase FreeBSD's perceived presence around the globe, which is not a bad thing. If you have country specific information, please submit it as a change to the English Handbook (using &man.send-pr.1;) and then translate the change back to your language in the translated Handbook. Thanks. How should language specific characters be included? Non-ASCII characters in the documentation should be included using SGML entities. Briefly, these look like an ampersand (&), the name of the entity, and a semi-colon (;). The entity names are defined in ISO8879, which is in the ports tree as textproc/iso8879. A few examples include Entity Appearance Description &eacute; é Small e with an acute accent &Eacute; É Large E with an acute accent &uuml; ü Small u with an umlaut After you have installed the iso8879 port, the files in /usr/local/share/sgml/iso8879 contain the complete list. Addressing the reader In the English documents, the reader is addressed as you, there is no formal/informal distinction as there is in some languages. If you are translating to a language which does distinguish, use whichever form is typically used in other technical documentation in your language. If in doubt, use a mildly polite form. Do I need to include any additional information in my translations? Yes. The header of the English version of each document will look something like this; <!-- The FreeBSD Documentation Project $FreeBSD: doc/en_US.ISO8859-1/books/fdp-primer/translations/chapter.sgml,v 1.5 2000/07/07 18:38:38 dannyboy Exp $ --> The exact boilerplate may change, but it will always include a $FreeBSD$ line and the phrase The FreeBSD Documentation Project. Note that the $FreeBSD part is expanded automatically by CVS, so it should be empty (just $FreeBSD$) for new files. Your translated documents should include their own $FreeBSD$ line, and change the FreeBSD Documentation Project line to The FreeBSD language Documentation Project. In addition, you should add a third line which indicates which revision of the English text this is based on. So, the Spanish version of this file might start <!-- The FreeBSD Spanish Documentation Project $FreeBSD: doc/es_ES.ISO8859-1/books/fdp-primer/translations/chapter.sgml,v 1.3 1999/06/24 19:12:32 jesusr Exp $ Original revision: 1.11 --> diff --git a/en_US.ISO8859-1/books/fdp-primer/writing-style/chapter.sgml b/en_US.ISO8859-1/books/fdp-primer/writing-style/chapter.sgml index 18c1e0ecdc..7112678304 100644 --- a/en_US.ISO8859-1/books/fdp-primer/writing-style/chapter.sgml +++ b/en_US.ISO8859-1/books/fdp-primer/writing-style/chapter.sgml @@ -1,388 +1,388 @@ Writing style In order to promote consistency between the myriad authors of the FreeBSD documentation, some guidelines have been drawn up for authors to follow. Do not use contractions Do not use contractions. Always spell the phrase out in full. Don't use contractions would be wrong. Avoiding contractions makes for a more formal tone, is more precise, and is slightly easier for translators. Use the serial comma In a list of items within a paragraph, separate each item from the others with a comma. Seperate the last item from the others with a comma and the word and. For example, look at the following:
This is a list of one, two and three items.
Is this a list of three items, one, two, and three, or a list of two items, one and two and three? It is better to be explicit and include a serial comma:
This is a list of one, two, and three items.
Avoid redundant phrases Try not to use redundant phrases. In particular, the command, the file, and man command are probably redundant. These two examples show this for commands. The second example is preferred. Use the command cvsup to update your sources Use cvsup to update your sources These two examples show this for filenames. The second example is preferred. … in the filename /etc/rc.local … in /etc/rc.local These two examples show this for manual references. The second example is preferred (the second example uses citerefentry). See man csh for more information. See &man.csh.1; Two spaces at the end of sentences Always use two spaces at the end of sentences, as this improves readability, and eases use of tools such as emacs. While it may be argued that a capital letter following a period denotes a new sentence, this is not the case, especially in name usage. Jordan K. Hubbard is a good example; it has a capital H following a period and a space, and there certainly isn't a new sentence there.
For more information about writing style, see Elements of + url="http://www.bartleby.com/141/">Elements of Style, by William Strunk. Style guide To keep the source for the Handbook consistent when many different people are editing it, please follow these style conventions. Letter case Tags are entered in lower case, <para>, not <PARA>. Text that appears in SGML contexts is generally written in upper case, <!ENTITY…>, and <!DOCTYPE…>, not <!entity…> and <!doctype…>. Indentation Each file starts with indentation set at column 0, regardless of the indentation level of the file which might contain this one. Every start tag increases the indentation level by 2 spaces, and every end tag decreases the indentation level by 2 spaces. Replace as many leading spaces with tabs as appropriate. Do not use spaces in front of tabs, and do not add extraneous whitespace at the end of a line. Content within elements should be indented by two spaces if the content runs over more than one line. For example, the source for this section looks something like: ... ... Indentation Each file starts with indentation set at column 0, regardless of the indentation level of the file which might contain this one. Every start tag increases the indentation level by 2 spaces, and every end tag decreases the indentation level by 2 spaces. Content within elements should be indented by two spaces if the content runs over more than one line. ...
]]> If you use Emacs or Xemacs to edit the files then sgml-mode should be loaded automatically, and the Emacs local variables at the bottom of each file should enforce these styles. Tag style Tag spacing Tags that start at the same indent as a previous tag should be separated by a blank line, and those that are not at the same indent as a previous tag should not: NIS October 1999 ... ... ... ... ... ... ... ]]> Separating tags Tags like itemizedlist which will always have further tags inside them, and in fact don't take character data themselves, are always on a line by themselves. Tags like para and term don't need other tags to contain normal character data, and their contents begin immediately after the tag, on the same line. The same applies to when these two types of tags close. This leads to an obvious problem when mixing these tags. When a starting tag which cannot contain character data directly follows a tag of the type that requires other tags within it to use character data, they are on separate lines. The second tag should be properly indented. When a tag which can contain character data closes directly after a tag which cannot contain character data closes, they co-exist on the same line. White space changes When committing changes, do not commit changes to the content at the same time as changes to the formatting. This is so that the teams that convert the Handbook to other languages can quickly see what content has actually changed in your commit, without having to decide whether a line has changed because of the content, or just because it has been refilled. For example, if you have added two sentences to a paragraph, such that the line lengths on the paragraph now go over 80 columns, first commit your change with the too-long line lengths. Then fix the line wrapping, and commit this second change. In the commit message for the second change, be sure to indicate that this is a whitespace-only change, and that the translation team can ignore it. Word list The following is a small list of words spelled the way they should be used in the FreeBSD Documentation Project. If the word you are looking for is not in this list, then please consult the O'Reilly word list. 2.2.X 4.X-STABLE DoS (Denial of Service) FreeBSD Ports Collection Internet CDROM MHz ports collection Unix email manual page(s) mail server name server web server