diff --git a/en_US.ISO8859-1/books/handbook/multimedia/chapter.sgml b/en_US.ISO8859-1/books/handbook/multimedia/chapter.sgml index d284f9117f..354ebb148c 100644 --- a/en_US.ISO8859-1/books/handbook/multimedia/chapter.sgml +++ b/en_US.ISO8859-1/books/handbook/multimedia/chapter.sgml @@ -1,1398 +1,1398 @@ Ross Lippert Edited by Multimedia Synopsis FreeBSD supports a wide variety of sound cards, allowing you to enjoy high fidelity output from your computer. This includes the ability to record and playback audio in the MPEG Audio Layer 3 (MP3), WAV, and Ogg Vorbis formats as well as many other formats. The FreeBSD Ports Collection also contains applications allowing you to edit your recorded audio, add sound effects, and control attached MIDI devices. With some willingness to experiment, FreeBSD can support playback of video files and DVD's. The number of applications to encode, convert, and playback various video media is more limited than the number of sound applications. For example as of this writing, there is no good re-encoding application in the FreeBSD Ports Collection, which could be use to interconvert between formats, as there is with audio/sox. However, the software landscape in this area is changing rapidly. This chapter will describe the necessary steps to configure your sound card. The configuration and installation of XFree86 () has already taken care of the hardware issues for your video card, though there may be some tweaks to apply for better playback. After reading this chapter, you will know: How to configure your system so that your sound card is recognized. Methods to test that your card is working using sample applications. How to troubleshoot your sound setup. How to playback and encode MP3s and other audio. How video is supported by XFree86. Some video player/encoder ports which give good results. How to playback DVD's, .mpg and .avi files. How to rip CD and DVD information into files. Before reading this chapter, you should: Know how to configure and install a new kernel (). For the video sections, it is assumed that XFree86 4.X (x11/XFree86-4) has been installed. XFree86 3.X may work, but it has not been tested with what is described in this chapter. If you find that something described here does work with XFree86 3.X please let us know. Trying to mount an audio CD or a video DVD with the &man.mount.8; command will result in an error, at least, and a kernel panic, at worst. These media have specialized encodings which differ from the usual ISO-filesystem. Moses Moore Contributed by Setting Up The Sound Card Locating the Correct Device PCI ISA sound cards Before you begin, you should know the model of the card you have, the chip it uses, and whether it is a PCI or ISA card. FreeBSD supports a wide variety of both PCI and ISA cards. If you do not see your card in the following list, check the &man.pcm.4; manual page. This is not a complete list; however, it does list some of the most common cards. Crystal 4237, 4236, 4232, 4231 Yamaha OPL-SAx OPTi931 Ensoniq AudioPCI 1370/1371 ESS Solo-1/1E NeoMagic 256AV/ZX Sound Blaster Pro, 16, 32, AWE64, AWE128, Live Creative ViBRA16 Advanced Asound 100, 110, and Logic ALS120 ES 1868, 1869, 1879, 1888 Gravis UltraSound Aureal Vortex 1 or 2 kernel configuration To use your sound device, you will need to load the proper device driver. This may be accomplished in one of two ways. The easiest way is to simply load a kernel module for your sound card with &man.kldload.8;. Alternatively, you may statically compile in support for your sound card in your kernel. The sections below provide the information you need to add support for your hardware in this manner. For more information about recompiling your kernel, please see . Creative, Advance, and ESS Sound Cards If you have one of the above cards, you will need to add: device pcm to your kernel configuration file. If you have a PnP ISA card, you will also need to add: device sbc For a non-PnP ISA card, add: device pcm device sbc0 at isa? port 0x220 irq 5 drq 1 flags 0x15 to your kernel configuration file. The settings shown above are the defaults. You may need to change the IRQ or the other settings to match your card. See the &man.sbc.4; manual page for more information. The Sound Blaster Live is not supported under FreeBSD 4.0 without a patch, which this section will not cover. It is recommended that you update to the latest -STABLE before trying to use this card. Gravis UltraSound Cards For a PnP ISA card, you will need to add: device pcm device gusc to your kernel configuration file. If you have a non-PnP ISA card, you will need to add: device pcm device gus0 at isa? port 0x220 irq 5 drq 1 flags 0x13 to your kernel configuration file. You may need to change the IRQ or the other settings to match your card. See the &man.gusc.4; manual page for more information. Crystal Sound Cards For Crystal cards, you will need to add: device pcm device csa to your kernel configuration file. Generic Support For PnP ISA or PCI cards, you will need to add: device pcm to your kernel configuration file. If you have a non-PnP ISA sound card that does not have a bridge driver, you will need to add: device pcm0 at isa? irq 10 drq 1 flags 0x0 to your kernel configuration file. You may need to change the IRQ or the other settings to match your card. Onboard Sound Some systems with built-in motherboard sound devices may require the following option in your kernel configuration: options PNPBIOS Creating and Testing the Device Nodes device nodes After you reboot, log in and run dmesg | grep pcm as shown below: &prompt.root; dmesg | grep pcm pcm0: <SB16 DSP 4.11> on sbc0 The output from your system may look different. If no pcm devices show up, something went wrong earlier. If that happens, go through your kernel configuration file again and make sure you chose the correct device. Common problems are listed in . If the previous command returned pcm0, you will have to run the following as root: &prompt.root; cd /dev &prompt.root; sh MAKEDEV snd0 If the command returned pcm1, follow the same steps as shown above, replacing snd0 with snd1. The above commands will not create a /dev/snd device! MAKEDEV will create a group of device nodes, including: Device Description /dev/audio SPARC-compatible audio device /dev/dsp Digitized voice device /dev/dspW Like /dev/dsp, but 16 bits per sample /dev/midi Raw midi access device /dev/mixer Control port mixer device /dev/music Level 2 sequencer interface /dev/sequencer Sequencer device /dev/pss Programmable device interface If all goes well, you should now have a functioning sound card. If your CD-ROM or DVD-ROM drive is properly coupled to your soundcard, you can put a CD in the drive and play it with &man.cdcontrol.1;. &prompt.user; cdcontrol -f /dev/acd0c play 1 Various applications, such as audio/workman offer a better interface. You may want to install an application such as audio/mpg123 to listen to MP3 audio files. Common Problems Error Solution device node unsupported subdevice XX One or more of the device nodes was not created correctly. Repeat the steps above. I/O port sb_dspwr(XX) timed out The I/O port is not set correctly. IRQ bad irq XX The IRQ is set incorrectly. Make sure that the set IRQ and the sound IRQ are the same. xxx: gus pcm not attached, out of memory There is not enough available memory to use the device. DSP xxx: can't open /dev/dsp! Check with fstat | grep dsp if another application is holding the device open. Noteworthy troublemakers are esound and KDE's sound support. Munish Chopra Contributed by Utilizing Multiple Sound Sources It is often desirable to have multiple sources of sound that are able to play simultaneously, such as when esound or artsd do not support sharing of the sound device with a certain application. FreeBSD lets you do this through Virtual Sound Channels, which can be set with the &man.sysctl.8; facility. Virtual channels allow you to multiplex your sound card's playback channels by mixing sound in the kernel. To set the number of virtual channels, there are two sysctl knobs which, if you are the root user, can be set like this: &prompt.root; sysctl hw.snd.pcm0.vchans=4 &prompt.root; sysctl hw.snd.maxautovchans=4 The above example allocates four virtual channels, which is a practical number for everyday use. hw.snd.pcm0.vchans is the number of virtual channels pcm0 has, and is configurable once a device has been attached. hw.snd.maxautovchans is the number of virtual channels a new audio device is given when it is attached using &man.kldload.8;. Since the pcm module can be loaded independently of the hardware drivers, hw.snd.maxautovchans can store how many virtual channels any devices which are attached later will be given. If you are not using &man.devfs.5;, you will have to point your applications at /dev/dsp0.x, where x is 0 to 3 if hw.snd.pcm.0.vchans is set to 4 as in the above example. On a system using &man.devfs.5;, the above will automatically be allocated transparently to the user. Chern Lee Contributed by MP3 Audio MP3 (MPEG Layer 3 Audio) accomplishes near CD-quality sound, leaving no reason to let your FreeBSD workstation fall short of its offerings. MP3 Players By far, the most popular XFree86 MP3 player is XMMS (X Multimedia System). Winamp skins can be used with XMMS since the GUI is almost identical to that of Nullsoft's Winamp. XMMS also has native plug-in support. XMMS can be installed from the audio/xmms port or package. XMMS' interface is intuitive, with a playlist, graphic equalizer, and more. Those familiar with Winamp will find XMMS simple to use. The audio/mpg123 port is an alternative, command-line MP3 player. mpg123 can be run by specifying the sound device and the MP3 file on the command line, as shown below: &prompt.root; mpg123 -a /dev/dsp1.0 Foobar-GreatestHits.mp3 High Performance MPEG 1.0/2.0/2.5 Audio Player for Layer 1, 2 and 3. Version 0.59r (1999/Jun/15). Written and copyrights by Michael Hipp. Uses code from various people. See 'README' for more! THIS SOFTWARE COMES WITH ABSOLUTELY NO WARRANTY! USE AT YOUR OWN RISK! Playing MPEG stream from BT - Foobar-GreastHits.mp3 ... MPEG 1.0 layer III, 128 kbit/s, 44100 Hz joint-stereo /dev/dsp1.0 should be replaced with the dsp device entry on your system. Ripping CD Audio Tracks Before encoding a CD or CD track to MP3, the audio data on the CD must be ripped onto the hard drive. This is done by copying the raw CDDA (CD Digital Audio) data to WAV files. The cdda2wav tool, which is a part of the sysutils/cdrtools suite, is used for ripping audio information from CDs and the information associated with them. With the audio CD in the drive, the following command can be issued (as root) to rip an entire CD into individual (per track) WAV files: &prompt.root; cdda2wav -D 0,1,0 -B cdda2wav will support ATAPI (IDE) CDROM drives. To rip from an IDE drive, specify the device name in place of the SCSI unit numbers. For example, to rip track 7 from an IDE drive: &prompt.root; cdda2wav -D /dev/acd0a -t 7 The indicates the SCSI device 0,1,0, which corresponds to the output of cdrecord -scanbus. To rip individual tracks, make use of the option as shown: &prompt.root; cdda2wav -D 0,1,0 -t 7 This example rips track seven of the audio CDROM. To rip a range of tracks, for example, track one to seven, specify a range: &prompt.root; cdda2wav -D 0,1,0 -t 1+7 Encoding MP3s Nowadays, the mp3 encoder of choice is lame. Lame can be found at audio/lame in the ports tree. Using the ripped WAV files, the following command will convert audio01.wav to audio01.mp3: &prompt.root; lame -h -b 128 \ --tt "Foo Song Title" \ --ta "FooBar Artist" \ --tl "FooBar Album" \ --ty "2001" \ --tc "Ripped and encoded by Foo" \ --tg "Genre" \ audio01.wav audio01.mp3 128 kbits seems to be the standard MP3 bitrate in use. Many enjoy the higher quality 160, or 192. The higher the bitrate, the more disk space the resulting MP3 will consume--but the quality will be higher. The option turns on the higher quality but a little slower mode. The options beginning with indicate ID3 tags, which usually contain song information, to be embedded within the MP3 file. Additional encoding options can be found by consulting the lame man page. Decoding MP3s In order to burn an audio CD from MP3s, they must be converted to a non-compressed WAV format. Both XMMS and mpg123 support the output of MP3 to an uncompressed file format. Writing to Disk in XMMS: Launch XMMS. Right-click on the window to bring up the XMMS menu. Select Preference under Options. Change the Output Plugin to Disk Writer Plugin. Press Configure. Enter (or choose browse) a directory to write the uncompressed files to. Load the MP3 file into XMMS as usual, with volume at 100% and EQ settings turned off. Press PlayXMMS will appear as if it is playing the MP3, but no music will be heard. It is actually playing the MP3 to a file. Be sure to set the default Output Plugin back to what it was before in order to listen to MP3s again. Writing to stdout in mpg123: Run mpg123 -s audio01.mp3 > audio01.pcm XMMS writes a file in the WAV format, while mpg123 converts the MP3 into raw PCM audio data. Both of these formats can be used with cdrecord or burncd to create audio CDROMs. Read for more information on using a CD burner in FreeBSD. Ross Lippert Contributed by Video Playback Video playback is a very new and rapidly developing application area. Be patient. Not everything is going to work as smoothly as it did with sound. Before you begin, you should know the model of the video card you have and the chip it uses. While XFree86 supports a wide variety of video cards, fewer give good playback performance. To obtain a list of extensions supported by the X server using your card use the command &man.xdpyinfo.1; while X11 is running. It is a good idea to have a short MPEG file which can be treated as a test file for evaluating various players and options. Since some DVD players will look for DVD media in /dev/dvd by default, or have this device name hardcoded in them, you might find it useful to make symbolic links to the proper devices: &prompt.root; ln -sf /dev/acd0c /dev/dvd &prompt.root; ln -sf /dev/racd0c /dev/rdvd On FreeBSD 5.X, which uses &man.devfs.5; there is a slightly different set of recommended links: &prompt.root; ln -sf /dev/acd0c /dev/dvd &prompt.root; ln -sf /dev/acd0c /dev/rdvd Additionally, DVD decryption, which requires invoking special DVD-ROM functions, requires write permission on the DVD devices. Some of the ports discussed rely on the following kernel options to build correctly. Before attempting to build, add these options to the kernel configuration file, build a new kernel, and reboot: option CPU_ENABLE_SSE option USER_LDT To enhance the shared memory X11 interface, it is recommended that the values of some &man.sysctl.8; variables should be increased: kern.ipc.shmmax=67108864 kern.ipc.shmall=32768 Determining Video capabilities XVideo SDL DGA kernel configuration options CPU_ENABLE_SSE kernel configuration options USER_LDT There are several possible ways to display video under X11. What will really work is largely hardware dependent. Each method described below will have varying quality across different hardware. Secondly, the rendering of video in X11 is a topic receiving a lot of attention lately, and with each version of XFree86 there may be significant improvement. A list of common video interfaces: X11: normal X11 output using shared memory. XVideo: an extension to the X11 interface which supports video in any X11 drawable. SDL: the Simple Directmedia Layer. DGA: the Direct Graphics Access. SVGAlib: low level console graphics layer. XVideo XFree86 4.X has an extension called XVideo (aka Xvideo, aka Xv, aka xv) which allows video to be directly displayed in drawable objects through a special acceleration. This extension provides very good quality playback even on low-end machines (for example my PIII 400Mhz laptop). Unfortunately, the list of cards in which this feature is supported out of the box is currently: 3DFX Voodoo 3 Intel i810 and i815 some S3 chips (such as Savage/IX and Savage/MX) If your card is not one of these, do not be disappointed yet. XFree86 4.X adds new xv capabilities with each release A popular familiar graphics card with generally very good XFree86 performance, nVidia, has yet to release the specifications on their XVideo support to the XFree86 team. It may be some time before XFree86 fully support XVideo for these cards. . To check whether the extension is running, use xvinfo: &prompt.user; xvinfo XVideo is supported for your card if the result looks like: X-Video Extension version 2.2 screen #0 Adaptor #0: "Savage Streams Engine" number of ports: 1 port base: 43 operations supported: PutImage supported visuals: depth 16, visualID 0x22 depth 16, visualID 0x23 number of attributes: 5 "XV_COLORKEY" (range 0 to 16777215) client settable attribute client gettable attribute (current value is 2110) "XV_BRIGHTNESS" (range -128 to 127) client settable attribute client gettable attribute (current value is 0) "XV_CONTRAST" (range 0 to 255) client settable attribute client gettable attribute (current value is 128) "XV_SATURATION" (range 0 to 255) client settable attribute client gettable attribute (current value is 128) "XV_HUE" (range -180 to 180) client settable attribute client gettable attribute (current value is 0) maximum XvImage size: 1024 x 1024 Number of image formats: 7 id: 0x32595559 (YUY2) guid: 59555932-0000-0010-8000-00aa00389b71 bits per pixel: 16 number of planes: 1 type: YUV (packed) id: 0x32315659 (YV12) guid: 59563132-0000-0010-8000-00aa00389b71 bits per pixel: 12 number of planes: 3 type: YUV (planar) id: 0x30323449 (I420) guid: 49343230-0000-0010-8000-00aa00389b71 bits per pixel: 12 number of planes: 3 type: YUV (planar) id: 0x36315652 (RV16) guid: 52563135-0000-0000-0000-000000000000 bits per pixel: 16 number of planes: 1 type: RGB (packed) depth: 0 red, green, blue masks: 0x1f, 0x3e0, 0x7c00 id: 0x35315652 (RV15) guid: 52563136-0000-0000-0000-000000000000 bits per pixel: 16 number of planes: 1 type: RGB (packed) depth: 0 red, green, blue masks: 0x1f, 0x7e0, 0xf800 id: 0x31313259 (Y211) guid: 59323131-0000-0010-8000-00aa00389b71 bits per pixel: 6 number of planes: 3 type: YUV (packed) id: 0x0 guid: 00000000-0000-0000-0000-000000000000 bits per pixel: 0 number of planes: 0 type: RGB (packed) depth: 1 red, green, blue masks: 0x0, 0x0, 0x0 Also note that the formats listed (YUV2, YUV12, etc) are not present with every implementation of XVideo and their absense may hinder some players. If the result looks like: X-Video Extension version 2.2 screen #0 no adaptors present Then XVideo is probably not supported for your card. If XVideo is not supported for your card, this only means that it will be more difficult for your display to meet the computational demands of rendering video. Depending on your video card and processor, though, you might still be able to have a satisfying experience. You should probably read about ways of improving performance in the advanced reading . Simple Directmedia Layer The Simple Directmedia Layer, SDL, was intended to be a porting layers between Microsoft Windows, BeOS, and Unix, allowing cross-platform applications to be developed which made efficient use of sound and graphics. The SDL layer provides a low-level abstraction to the hardware which can sometimes be more efficient than the X11 interface. The SDL can be found at devel/sdl12 Direct Graphics Access Direct Graphics Access is an XFree86 extension which allows a program to bypass the X server and directly alter the framebuffer. Because it relies on a low level memory mapping to effect this sharing, programs using it must must be run as root. The DGA extension can be tested and benchmarked by &man.dga.1;. When dga is running, it changes the colors of the display whenever a key is pressed. To quit, use q. Ports and Packages Dealing with Video video ports video packages This section discusses the software available from the FreeBSD Ports Collection which can be used for video playback. Video playback is a very active area of software development, and the capabilities of various applications are bound to diverge somewhat from the descriptions given here. Firstly, it is important to know that most of the video applications which run on FreeBSD were developed as Linux applications, originating in the past year. For this reason, they are both very experimental and riddled with Linux-isms which might prevent them from working at full efficiency on FreeBSD. By experimental, I mean that you should expect re-encoders, players, and DVD decrypters to have some major bugs, or interoperability problems with other programs. Here is a short list of the sort of things I mean: An application cannot playback a file which another application produced. An application cannot playback a file which the application itself produced. The same application on two different machines, rebuilt on each machine for that machine, plays back the same file differently. A seemingly trivial filter like rescaling of the image size results in very bad artifacts from a buggy rescaling routine. An application always dumping core. Documentation is not installed with the port and can be found either on the web or under PORTPATH/work/ . By Linux-isms, I mean that there are some issues resulting from the way some standard libraries are implemented in the Linux distributions, or some features of the Linux kernel which have been assumed by the authors of the applications, because that is where the authors are primarily developing. These issues may not be noticed and worked around by the port maintainers which can lead to some problems like these: The use of /proc/cpuinfo to detect processor characteristics. A misuse of threads which causes a program to hang upon completion instead of truly terminating. Software not yet in the FreeBSD Ports Collection which is commonly used in conjunction with the application. So far, these application developers have been cooperative with port maintainers to minimize the work-arounds needed for port-ing. MPlayer MPlayer is a recently developed and rapidly developing video player. The goals of the MPlayer team are speed and flexibility on Linux and other Unices. The project was started when the team founder got fed up with bad playback performance on then available players. Some would say that interface has been sacrificed for streamlined design, but once you get used to the command line options and the key-stroke controls, it works very well. Building MPlayer MPlayer making MPlayer resides in graphics/mplayer. MPlayer performs a variety of hardware checks during the build process, resulting in a binary which will not be portable from one system to another. Thus it is important to build it from ports and not to use a binary package. Additionally, a number of options can be specified in the make which echo at the start of the build. &prompt.root; cd /usr/ports/graphics/mplayer &prompt.root; make You can enable additional compilation optimizations by defining WITH_OPTIMIZED_CFLAGS You can enable GTK GUI by defining WITH_GUI. You can enable DVD support by defining WITH_DVD. You can enable SVGALIB support by defining WITH_SVGALIB. You can enable VORBIS sound support by defining WITH_VORBIS. You can enable XAnim DLL support by defining WITH_XANIM. If you have x11-toolkits/gtk12 installed, then you might as well enable the GUI. Otherwise, it is not worth the effort. If you intend to play (possibly CSS encoded) DVD's with MPlayer you must enable the DVD support option here Unauthorized DVD playback is a serious criminal act in some countries. Check local laws before enabling this option. . Some reasonable options are: &prompt.root; make WITH_DVD=yes WITH_SVGALIB=yes As of this writing, the MPlayer port will build its HTML documentation and one executable, mplayer. It can also be made to build an encoder, mencoder, which is a tool for re-encoding video. A modification to the Makefile can enable it. It may be enabled by default in subsequent versions of the port. The HTML documentation to MPlayer is very informative. If the reader finds the information on video hardware and interfaces in the chapter lacking, the MPlayer documentation is a very thorough alternative. You should definitely take the time to read the documentation of MPlayer, if you are looking for information about video support in Unix. Using MPlayer MPlayer use Any user of MPlayer must set up a .mplayer subdirectory directory of her home directory. To create this necessary subdirectory, you can do the following: &prompt.user; cd /usr/ports/graphics/mplayer &prompt.user; make install-user The command options for mplayer are listed in the manual page. For even more detail there is HTML documentation. In this section, we will give some of the common use cases. To play from file, such as testfile.avi through one of the various video interfaces set the : &prompt.user; mplayer -vo xv testfile.avi &prompt.user; mplayer -vo sdl testfile.avi &prompt.user; mplayer -vo x11 testfile.avi &prompt.root; mplayer -vo dga testfile.avi &prompt.root; mplayer -vo 'sdl:dga' testfile.avi It is worth trying all of these options, as their relative performance depends on many factors and will vary significantly with hardware. To play from a DVD, replace the testfile.avi with where <N> is the title number to play and DEVICE is the device node for the DVD-ROM. For example, to play title 3 from /dev/dvd: &prompt.root; mplayer -vo dga -dvd 2 /dev/dvd To stop, pause, advance and so on, consult the keybindings, which are output by running mplayer -h or read the manual page. Additional important options for playback are: which engages the fullscreen mode and which helps performance. In order for the mplayer command line to not become too large, the user can create a file .mplayer/config and set default options there: vo=xv fs=yes zoom=yes Finally, mplayer can be used to rip a DVD title into a .vob file. To dump out title 2 from a DVD: &prompt.root; mplayer -dumpstream -dumpfile out.vob -dvd 2 /dev/dvd The output file, out.vob, will be MPEG and can be manipulated by the other packages described in this section. mencoder mencoder If you opt to install mencoder when you build, be forewarned that it is still quite experimental. To use mencoder it is a good idea to familiarize yourself with the options from the HTML documentation. There is a manual page, but it is not very useful without the HTML. There are innummerable ways to improve quality, lower bitrate, and change formats, and some of these tricks may make the difference between good or bad performance. Here are a couple of examples to get you going. First a simple copy: &prompt.user; mencoder input.avi -oac copy -ovc copy -o output.avi It is easy to find examples where the output is unplayable even by mplayer. Thus, if you just want to rip to a file, stick to the in mplayer. To convert input.avi to the MPEG4 codec with MPEG3 audio encoding (audio/lame is required): &prompt.user; mencoder input.avi -oac mp3lame -lameopts br=192 \ -ovc lavc -lavcopts vcodec=mpeg4:vhq -o output.avi This has produced output playable by mplayer and xine. input.avi can be replaced with and run as root to re-encode a DVD title directly. Since you are likely to be dissatisfied with your results the first time around, it is recommended you dump the title to a file and work on the file. The xine Video Player The xine video player is a project of wide scope aiming not only at being an all in one video solution, but also in producing a reusable base library and a modular executable which can be extended with plugins. It comes both as a package and as a port, graphics/xine. The good news is that the above is pretty much true. The xine player is still very rough around the edges, but it is clearly off to a good start. In practice, xine requires either a fast CPU with a fast video card, or support for the XVideo extension. The GUI is usable, but a bit clumsy. As of this writing, there is no input module shipped with xine which will play CSS encoded DVD's. There are third party builds which do have modules for this built in them, but none of these are in the FreeBSD Ports Collection. Compared to MPlayer, xine does more for the user, but at the same time, takes some of the more fine-grained control away from the user. The xine video player also may perform much worse on the non-XVideo interfaces and has very few good alternatives to it. The xine FAQ highly recommends that you have a video card which supports it. The xine player can be started by itself: &prompt.user; xine The menus can then be used to open a file, or it can be started to play a file immediately without the GUI with the command: &prompt.user; xine -g -p mymovie.avi The transcode utilities The software transcode is not a player, but a suite of tools for - re-encoding .avi and .mpg files. With Transcode, one has the + re-encoding .avi and .mpg files. With transcode, one has the ability to merge video files, repair broken files, using command line tools with stdin/stdout stream interfaces. Like MPlayer, transcode is very experimental software which must be build from the port graphics/transcode. Using a great many options to the make command. I recommend: &prompt.root; make WITH_LIBMPEG2=yes If you plan to install graphics/avifile, then add the WITH_AVIFILE option to your make command line, as shown here: &prompt.root; make WITH_AVIFILE=yes WITH_LIBMPEG2=yes Here are two examples of using transcode for video conversion which produce rescaled output. The first encodes the output to an openDIVX AVI file, while the second encodes to the much more portable MPEG format. &prompt.user; transcode -i input.vob -x vob -V -Z 320x240 \ -y opendivx -N 0x55 -o output.avi &prompt.user; transcode -i input.vob -x vob -V -Z 320x240 \ -y mpeg -N 0x55 -o output.tmp &prompt.user; tcmplex -o output.mpg -i output.tmp.m1v -p output.tmp.mpa -m 1 There is a manual page for transcode, but for the various tc* utilities (such as tcmplex) which are also installed, there is only a curt output. In comparison, transcode runs significantly slower than mencoder, but it has a better chance of producing a more widely playable file. I can play transcode MPEGs on older copies of Windows Media Player and Apple's Quicktime, for example. Further Reading I have no doubt that within a year, much that is in this chapter will be out of date. Video will probably be much less problematic to get working well and a port will be in the collection which turns a FreeBSD system into a DVD-playing, PVR, and virtual A/V studio. Until that day arrives, those who want to get the very most out of FreeBSD's A/V capabilities will have to cobble together knowledge from several FAQs and tutorials and use a few different applications. This section exists to give the reader some links to learn more in case this chapter was just helpful enough. The MPlayer documentation is very technically informative. These documents should probably be consulted by anyone wishing to obtain a high level of expertise with Unix video. The MPlayer mailing list is hostile to anyone who has not bothered to read the documentation, so if you plan on making bug reports to them, RTFM. The xine HOWTO contains a chapter on performance improvement which is general to all players. Finally, there are some other promising applications which the reader may try: Avifile which is also a port graphics/avifile. Ogle which is also a port graphics/ogle. Xtheater