diff --git a/de_DE.ISO8859-1/books/handbook/Makefile b/de_DE.ISO8859-1/books/handbook/Makefile index 65b686d316..b8beaab98c 100644 --- a/de_DE.ISO8859-1/books/handbook/Makefile +++ b/de_DE.ISO8859-1/books/handbook/Makefile @@ -1,228 +1,241 @@ # # $FreeBSD$ -# $FreeBSDde: de-docproj/books/handbook/Makefile,v 1.53 2007/04/11 19:41:36 jkois Exp $ -# basiert auf: 1.102 +# $FreeBSDde: de-docproj/books/handbook/Makefile,v 1.54 2007/04/29 14:05:23 jkois Exp $ +# basiert auf: 1.103 # # Build the FreeBSD Handbook in its German translation. # .PATH: ${.CURDIR}/../../share/sgml/glossary MAINTAINER=de-bsd-translators@de.FreeBSD.org DOC?= book FORMATS?= html-split HAS_INDEX= true USE_PS2PDF= yes INSTALL_COMPRESSED?= gz INSTALL_ONLY_COMPRESSED?= IMAGES_EN = advanced-networking/isdn-bus.eps IMAGES_EN+= advanced-networking/isdn-twisted-pair.eps IMAGES_EN+= advanced-networking/natd.eps IMAGES_EN+= advanced-networking/net-routing.pic IMAGES_EN+= advanced-networking/static-routes.pic IMAGES_EN+= geom/striping.pic IMAGES_EN+= install/adduser1.scr IMAGES_EN+= install/adduser2.scr IMAGES_EN+= install/adduser3.scr IMAGES_EN+= install/boot-mgr.scr IMAGES_EN+= install/console-saver1.scr IMAGES_EN+= install/console-saver2.scr IMAGES_EN+= install/console-saver3.scr IMAGES_EN+= install/console-saver4.scr IMAGES_EN+= install/desktop.scr IMAGES_EN+= install/disklabel-auto.scr IMAGES_EN+= install/disklabel-ed1.scr IMAGES_EN+= install/disklabel-ed2.scr IMAGES_EN+= install/disklabel-fs.scr IMAGES_EN+= install/disklabel-root1.scr IMAGES_EN+= install/disklabel-root2.scr IMAGES_EN+= install/disklabel-root3.scr IMAGES_EN+= install/disk-layout.eps IMAGES_EN+= install/dist-set.scr IMAGES_EN+= install/dist-set2.scr IMAGES_EN+= install/docmenu1.scr IMAGES_EN+= install/ed0-conf.scr IMAGES_EN+= install/ed0-conf2.scr IMAGES_EN+= install/edit-inetd-conf.scr IMAGES_EN+= install/fdisk-drive1.scr IMAGES_EN+= install/fdisk-drive2.scr IMAGES_EN+= install/fdisk-edit1.scr IMAGES_EN+= install/fdisk-edit2.scr IMAGES_EN+= install/ftp-anon1.scr IMAGES_EN+= install/ftp-anon2.scr IMAGES_EN+= install/hdwrconf.scr IMAGES_EN+= install/keymap.scr IMAGES_EN+= install/main1.scr IMAGES_EN+= install/mainexit.scr IMAGES_EN+= install/main-std.scr IMAGES_EN+= install/main-options.scr IMAGES_EN+= install/main-doc.scr IMAGES_EN+= install/main-keymap.scr IMAGES_EN+= install/media.scr IMAGES_EN+= install/mouse1.scr IMAGES_EN+= install/mouse2.scr IMAGES_EN+= install/mouse3.scr IMAGES_EN+= install/mouse4.scr IMAGES_EN+= install/mouse5.scr IMAGES_EN+= install/mouse6.scr IMAGES_EN+= install/mta-main.scr IMAGES_EN+= install/net-config-menu1.scr IMAGES_EN+= install/net-config-menu2.scr IMAGES_EN+= install/nfs-server-edit.scr IMAGES_EN+= install/ntp-config.scr IMAGES_EN+= install/options.scr IMAGES_EN+= install/pkg-cat.scr IMAGES_EN+= install/pkg-confirm.scr IMAGES_EN+= install/pkg-install.scr IMAGES_EN+= install/pkg-sel.scr IMAGES_EN+= install/probstart.scr IMAGES_EN+= install/routed.scr IMAGES_EN+= install/security.scr IMAGES_EN+= install/sysinstall-exit.scr IMAGES_EN+= install/timezone1.scr IMAGES_EN+= install/timezone2.scr IMAGES_EN+= install/timezone3.scr IMAGES_EN+= install/userconfig.scr IMAGES_EN+= install/userconfig2.scr IMAGES_EN+= install/xf86setup.scr IMAGES_EN+= install/example-dir1.eps IMAGES_EN+= install/example-dir2.eps IMAGES_EN+= install/example-dir3.eps IMAGES_EN+= install/example-dir4.eps IMAGES_EN+= install/example-dir5.eps IMAGES_EN+= mail/mutt1.scr IMAGES_EN+= mail/mutt2.scr IMAGES_EN+= mail/mutt3.scr IMAGES_EN+= mail/pine1.scr IMAGES_EN+= mail/pine2.scr IMAGES_EN+= mail/pine3.scr IMAGES_EN+= mail/pine4.scr IMAGES_EN+= mail/pine5.scr IMAGES_EN+= security/ipsec-network.pic IMAGES_EN+= security/ipsec-crypt-pkt.pic IMAGES_EN+= security/ipsec-encap-pkt.pic IMAGES_EN+= security/ipsec-out-pkt.pic IMAGES_EN+= vinum/vinum-concat.pic IMAGES_EN+= vinum/vinum-mirrored-vol.pic IMAGES_EN+= vinum/vinum-raid10-vol.pic IMAGES_EN+= vinum/vinum-raid5-org.pic IMAGES_EN+= vinum/vinum-simple-vol.pic IMAGES_EN+= vinum/vinum-striped-vol.pic IMAGES_EN+= vinum/vinum-striped.pic +IMAGES_EN+= virtualization/parallels-freebsd1.png +IMAGES_EN+= virtualization/parallels-freebsd2.png +IMAGES_EN+= virtualization/parallels-freebsd3.png +IMAGES_EN+= virtualization/parallels-freebsd4.png +IMAGES_EN+= virtualization/parallels-freebsd5.png +IMAGES_EN+= virtualization/parallels-freebsd6.png +IMAGES_EN+= virtualization/parallels-freebsd7.png +IMAGES_EN+= virtualization/parallels-freebsd8.png +IMAGES_EN+= virtualization/parallels-freebsd9.png +IMAGES_EN+= virtualization/parallels-freebsd10.png +IMAGES_EN+= virtualization/parallels-freebsd11.png +IMAGES_EN+= virtualization/parallels-freebsd12.png +IMAGES_EN+= virtualization/parallels-freebsd13.png # Images from the cross-document image library IMAGES_LIB= callouts/1.png IMAGES_LIB+= callouts/2.png IMAGES_LIB+= callouts/3.png IMAGES_LIB+= callouts/4.png IMAGES_LIB+= callouts/5.png IMAGES_LIB+= callouts/6.png IMAGES_LIB+= callouts/7.png IMAGES_LIB+= callouts/8.png IMAGES_LIB+= callouts/9.png IMAGES_LIB+= callouts/10.png # # SRCS lists the individual SGML files that make up the document. Changes # to any of these files will force a rebuild # # SGML content SRCS+= audit/chapter.sgml SRCS+= book.sgml SRCS+= colophon.sgml SRCS+= freebsd-glossary.sgml SRCS+= advanced-networking/chapter.sgml SRCS+= basics/chapter.sgml SRCS+= bibliography/chapter.sgml SRCS+= boot/chapter.sgml SRCS+= config/chapter.sgml SRCS+= cutting-edge/chapter.sgml SRCS+= desktop/chapter.sgml SRCS+= disks/chapter.sgml SRCS+= eresources/chapter.sgml SRCS+= firewalls/chapter.sgml SRCS+= geom/chapter.sgml SRCS+= install/chapter.sgml SRCS+= introduction/chapter.sgml SRCS+= jails/chapter.sgml SRCS+= kernelconfig/chapter.sgml SRCS+= l10n/chapter.sgml SRCS+= linuxemu/chapter.sgml SRCS+= mac/chapter.sgml SRCS+= mail/chapter.sgml SRCS+= mirrors/chapter.sgml SRCS+= multimedia/chapter.sgml SRCS+= network-servers/chapter.sgml SRCS+= pgpkeys/chapter.sgml SRCS+= ports/chapter.sgml SRCS+= ppp-and-slip/chapter.sgml SRCS+= preface/preface.sgml SRCS+= printing/chapter.sgml SRCS+= security/chapter.sgml SRCS+= serialcomms/chapter.sgml SRCS+= users/chapter.sgml SRCS+= vinum/chapter.sgml SRCS+= virtualization/chapter.sgml SRCS+= x11/chapter.sgml # Entities SRCS+= chapters.ent SRCS+= newsgroups.ent # alle Kapitel bauen CHAPTERS?= ${SRCS:M*chapter.sgml} SGMLFLAGS+= ${CHAPTERS:S/\/chapter.sgml//:S/^/-i chap./} SGMLFLAGS+= -i chap.freebsd-glossary pgpkeyring: pgpkeys/chapter.sgml @${JADE} -V nochunks ${OTHERFLAGS} ${JADEOPTS} -d ${DSLPGP} -t sgml ${MASTERDOC} URL_RELPREFIX?= ../../../.. DOC_PREFIX?= ${.CURDIR}/../../.. # # rules generating lists of mirror site from XML database. # XMLDOCS= mirrors-ftp:::mirrors.sgml.ftp.inc.tmp \ mirrors-cvsup:::mirrors.sgml.cvsup.inc.tmp \ eresources:::eresources.sgml.www.inc.tmp DEPENDSET.DEFAULT= transtable mirror XSLT.DEFAULT= ${XSL_MIRRORS} XML.DEFAULT= ${XML_MIRRORS} NO_TIDY.DEFAULT= yes PARAMS.mirrors-ftp+= --param 'type' "'ftp'" \ --param 'proto' "'ftp'" \ --param 'target' "'handbook/mirrors/chapter.sgml'" PARAMS.mirrors-cvsup+= --param 'type' "'cvsup'" \ --param 'proto' "'cvsup'" \ --param 'target' "'handbook/mirrors/chapter.sgml'" PARAMS.eresources+= --param 'type' "'www'" \ --param 'proto' "'http'" \ --param 'target' "'handbook/eresources/chapter.sgml'" SRCS+= mirrors.sgml.ftp.inc \ mirrors.sgml.cvsup.inc \ eresources.sgml.www.inc CLEANFILES+= mirrors.sgml.ftp.inc mirrors.sgml.ftp.inc.tmp \ mirrors.sgml.cvsup.inc mirrors.sgml.cvsup.inc.tmp \ eresources.sgml.www.inc eresources.sgml.www.inc.tmp .include "${DOC_PREFIX}/share/mk/doc.project.mk" .for p in ftp cvsup mirrors.sgml.${p}.inc: mirrors.sgml.${p}.inc.tmp ${SED} -e 's,<\([^ >]*\)\([^>]*\)/>,<\1\2>,;s,,,'\ < $@.tmp > $@ || (${RM} -f $@ && false) .endfor eresources.sgml.www.inc: eresources.sgml.www.inc.tmp ${SED} -e 's,<\([^ >]*\)\([^>]*\)/>,<\1\2>,;s,,,'\ < $@.tmp > $@ || (${RM} -f $@ && false) diff --git a/de_DE.ISO8859-1/books/handbook/advanced-networking/chapter.sgml b/de_DE.ISO8859-1/books/handbook/advanced-networking/chapter.sgml index e2b494679b..ff888d908e 100644 --- a/de_DE.ISO8859-1/books/handbook/advanced-networking/chapter.sgml +++ b/de_DE.ISO8859-1/books/handbook/advanced-networking/chapter.sgml @@ -1,5396 +1,5487 @@ Johann Kois Übersetzt von Weiterführende Netzwerkthemen Übersicht Dieses Kapitel beschreibt verschiedene weiterführende Netzwerkthemen. Nachdem Sie dieses Kapitel gelesen haben, werden Sie Die Grundlagen von Gateways und Routen kennen. Bluetooth- sowie drahtlose, der Norm IEEE 802.11 entsprechende, Geräte mit FreeBSD verwenden können. Eine Bridge unter FreeBSD einrichten können. Einen plattenlosen Rechner über das Netzwerk starten können. Wissen, wie man NAT (Network Address Translation) einrichtet. Zwei Computer über PLIP verbinden können. IPv6 auf einem FreeBSD-Rechner einrichten können. ATM einrichten können. + + + CARP, das Common Access Redundancy Protocol, unter + &os; einsetzen können. + Bevor Sie dieses Kapitel lesen, sollten Sie Die Grundlagen der /etc/rc-Skripte verstanden haben. Mit der grundlegenden Netzwerkterminologie vertraut sein. Einen neuen FreeBSD-Kernel konfigurieren und installieren können (). Wissen, wie man zusätzliche Softwarepakete von Drittherstellern installiert (). Coranth Gryphon Beigetragen von Gateways und Routen Routing Gateway Subnetz Damit ein Rechner einen anderen über ein Netzwerk finden kann, muss ein Mechanismus vorhanden sein, der beschreibt, wie man von einem Rechner zum anderen gelangt. Dieser Vorgang wird als Routing bezeichnet. Eine Route besteht aus einem definierten Adressenpaar: Einem Ziel und einem Gateway. Dieses Paar zeigt an, dass Sie über das Gateway zum Ziel gelangen wollen. Es gibt drei Arten von Zielen: Einzelne Rechner (Hosts), Subnetze und das Standardziel. Die Standardroute wird verwendet, wenn keine andere Route zutrifft. Wir werden Standardrouten später etwas genauer behandeln. Außerdem gibt es drei Arten von Gateways: Einzelne Rechner (Hosts), Schnittstellen (Interfaces, auch als Links bezeichnet), sowie Ethernet Hardware-Adressen (MAC-Adressen). Ein Beispiel Um die verschiedenen Aspekte des Routings zu veranschaulichen, verwenden wir folgende Ausgaben von netstat: &prompt.user; netstat -r Routing tables Destination Gateway Flags Refs Use Netif Expire default outside-gw UGSc 37 418 ppp0 localhost localhost UH 0 181 lo0 test0 0:e0:b5:36:cf:4f UHLW 5 63288 ed0 77 10.20.30.255 link#1 UHLW 1 2421 example.com link#1 UC 0 0 host1 0:e0:a8:37:8:1e UHLW 3 4601 lo0 host2 0:e0:a8:37:8:1e UHLW 0 5 lo0 => host2.example.com link#1 UC 0 0 224 link#1 UC 0 0 Defaultroute Die ersten zwei Zeilen geben die Standardroute (die wir im nächsten Abschnitt behandeln), sowie die localhost Route an. Loopback-Gerät Das in der Routingtabelle für localhost festgelegte Interface (Netif-Spalte) lo0, ist auch als loopback-Gerät (Prüfschleife) bekannt. Das heißt, dass der ganze Datenverkehr für dieses Ziel intern (innerhalb des Gerätes) bleibt, anstatt ihn über ein Netzwerk (LAN) zu versenden, da das Ziel dem Start entspricht. Ethernet MAC-Adresse Der nächste auffällige Punkt sind die mit 0:e0: beginnenden Adressen. Es handelt sich dabei um Ethernet Hardwareadressen, die auch als MAC-Adressen bekannt sind. FreeBSD identifiziert Rechner im lokalen Netz automatisch (im Beispiel test0) und fügt eine direkte Route zu diesem Rechner hinzu. Dies passiert über die Ethernet-Schnittstelle ed0. Außerdem existiert ein Timeout (in der Spalte Expire) für diese Art von Routen, der verwendet wird, wenn dieser Rechner in einem definierten Zeitraum nicht reagiert. Wenn dies passiert, wird die Route zu diesem Rechner automatisch gelöscht. Rechner im lokalen Netz werden durch einen als RIP (Routing Information Protocol) bezeichneten Mechanismus identifiziert, der den kürzesten Weg zu den jeweiligen Rechnern bestimmt. Subnetz FreeBSD fügt außerdem Subnetzrouten für das lokale Subnetz hinzu (10.20.30.255 ist die Broadcast-Adresse für das Subnetz 10.20.30, example.com ist der zu diesem Subnetz gehörige Domainname). Das Ziel link#1 bezieht sich auf die erste Ethernet-Karte im Rechner. Sie können auch feststellen, dass keine zusätzlichen Schnittstellen angegeben sind. Routen für Rechner im lokalen Netz und lokale Subnetze werden automatisch durch den routed Daemon konfiguriert. Ist dieser nicht gestartet, sind nur statisch definierte (explizit eingegebene) Routen vorhanden. Die Zeile host1 bezieht sich auf unseren Rechner, der durch seine Ethernetadresse bekannt ist. Da unser Rechner der Sender ist, verwendet FreeBSD automatisch das Loopback-Gerät (lo0), anstatt den Datenverkehr über die Ethernetschnittstelle zu senden. Die zwei host2 Zeilen sind ein Beispiel dafür, was passiert, wenn wir ein &man.ifconfig.8; Alias verwenden (Lesen Sie dazu den Abschnitt über Ethernet, wenn Sie wissen wollen, warum wir das tun sollten.). Das Symbol => (nach der lo0-Schnittstelle) sagt aus, dass wir nicht nur das Loopbackgerät verwenden (da sich die Adresse auf den lokalen Rechner bezieht), sondern dass es sich zusätzlich auch um ein Alias handelt. Solche Routen sind nur auf Rechnern vorhanden, die den Alias bereitstellen; alle anderen Rechner im lokalen Netz haben für solche Routen nur eine einfache link#1 Zeile. Die letzte Zeile (Zielsubnetz 224) behandelt das Multicasting, das wir in einem anderen Abschnitt besprechen werden. Schließlich gibt es für Routen noch verschiedene Attribute, die Sie in der Spalte Flags finden. Nachfolgend finden Sie eine kurze Übersicht von einigen dieser Flags und ihrer Bedeutung: U Up: Die Route ist aktiv. H Host: Das Ziel der Route ist ein einzelner Rechner (Host). G Gateway: Alle Daten, die an dieses Ziel gesendet werden, werden von diesem System an ihr jeweiliges Ziel weitergeleitet. S Static: Diese Route wurde manuell konfiguriert, das heißt sie wurde nicht automatisch vom System erzeugt. C Clone: Erzeugt eine neue Route, basierend auf der Route für den Rechner, mit dem wir uns verbinden. Diese Routenart wird normalerweise für lokale Netzwerke verwendet. W WasCloned: Eine Route, die automatisch konfiguriert wurde. Sie basiert auf einer lokalen Netzwerkroute (Clone). L Link: Die Route beinhaltet einen Verweis auf eine Ethernetkarte (MAC-Adresse). Standardrouten Defaultroute Standardroute Defaultroute Wenn sich der lokale Rechner mit einem entfernten Rechner verbinden will, wird die Routingtabelle überprüft, um festzustellen, ob bereits ein bekannter Pfad vorhanden ist. Gehört dieser entfernte Rechner zu einem Subnetz, dessen Pfad uns bereits bekannt ist (Cloned route), dann versucht der lokale Rechner über diese Schnittstelle eine Verbindung herzustellen. Wenn alle bekannten Pfade nicht funktionieren, hat der lokale Rechner eine letzte Möglichkeit: Die Standardroute (Defaultroute). Bei dieser Route handelt es sich um eine spezielle Gateway-Route (gewöhnlich die einzige im System vorhandene), die im Flags-Feld immer mit C gekennzeichnet ist. Für Rechner im lokalen Netzwerk ist dieses Gateway auf welcher Rechner auch immer eine Verbindung nach außen hat gesetzt (entweder über eine PPP-Verbindung, DSL, ein Kabelmodem, T1 oder eine beliebige andere Netzwerkverbindung). Wenn Sie die Standardroute für einen Rechner konfigurieren, der selbst als Gateway zur Außenwelt funktioniert, wird die Standardroute zum Gateway-Rechner Ihres Internetanbieter (ISP) gesetzt. Sehen wir uns ein Beispiel für Standardrouten an. So sieht eine übliche Konfiguration aus: [Local2] <--ether--> [Local1] <--PPP--> [ISP-Serv] <--ether--> [T1-GW] Die Rechner Local1 und Local2 befinden sich auf Ihrer Seite. Local1 ist mit einem ISP über eine PPP-Verbindung verbunden. Dieser PPP-Server ist über ein lokales Netzwerk mit einem anderen Gateway-Rechner verbunden, der über eine Schnittstelle die Verbindung des ISP zum Internet herstellt. Die Standardrouten für Ihre Maschinen lauten: Host Standard Gateway Schnittstelle Local2 Local1 Ethernet Local1 T1-GW PPP Eine häufig gestellte Frage lautet: Warum (oder wie) sollten wir T1-GW als Standard-Gateway für Local1 setzen, statt den (direkt verbundenen) ISP-Server zu verwenden?. Bedenken Sie, dass die PPP-Schnittstelle für die Verbindung eine Adresse des lokalen Netzes des ISP verwendet. Daher werden Routen für alle anderen Rechner im lokalen Netz des ISP automatisch erzeugt. Daraus folgt, dass Sie bereits wissen, wie Sie T1-GW erreichen können! Es ist also unnötig, einen Zwischenschritt über den ISP-Server zu machen. Es ist üblich, die Adresse X.X.X.1 als Gateway-Adresse für ihr lokales Netzwerk zu verwenden. Für unser Beispiel bedeutet dies Folgendes: Wenn Ihr lokaler Klasse-C-Adressraum 10.20.30 ist und Ihr ISP 10.9.9 verwendet, sehen die Standardrouten so aus: Rechner (Host) Standardroute Local2 (10.20.30.2) Local1 (10.20.30.1) Local1 (10.20.30.1, 10.9.9.30) T1-GW (10.9.9.1) Sie können die Standardroute ganz einfach in der Datei /etc/rc.conf festlegen. In unserem Beispiel wurde auf dem Rechner Local2 folgende Zeile in /etc/rc.conf eingefügt: defaultrouter="10.20.30.1" Die Standardroute kann über &man.route.8; auch direkt gesetzt werden: &prompt.root; route add default 10.20.30.1 Weitere Informationen zum Bearbeiten von Netzwerkroutingtabellen finden Sie in &man.route.8;. Rechner mit zwei Heimatnetzen Dual-Homed-Hosts Es gibt noch eine Konfigurationsmöglichkeit, die wir besprechen sollten, und zwar Rechner, die sich in zwei Netzwerken befinden. Technisch gesehen, zählt jeder als Gateway arbeitende Rechner zu den Rechnern mit zwei Heimatnetzen (im obigen Beispiel unter Verwendung einer PPP-Verbindung). In der Praxis meint man damit allerdings nur Rechner, die sich in zwei lokalen Netzen befinden. Entweder verfügt der Rechner über zwei Ethernetkarten und jede dieser Karten hat eine Adresse in einem separaten Subnetz, oder der Rechner hat nur eine Ethernetkarte und verwendet &man.ifconfig.8; Aliasing. Die erste Möglichkeit wird verwendet, wenn zwei physikalisch getrennte Ethernet-Netzwerke vorhanden sind, die zweite, wenn es nur ein physikalisches Ethernet-Netzwerk gibt, das aber aus zwei logisch getrennten Subnetzen besteht. In beiden Fällen werden Routingtabellen erstellt, damit jedes Subnetz weiß, dass dieser Rechner als Gateway zum anderen Subnetz arbeitet (inbound route). Diese Konfiguration (der Gateway-Rechner arbeitet als Router zwischen den Subnetzen) wird häufig verwendet, wenn es darum geht, Paketfilterung oder eine Firewall (in eine oder beide Richtungen) zu implementieren. Soll dieser Rechner Pakete zwischen den beiden Schnittstellen weiterleiten, müssen Sie diese Funktion manuell konfigurieren und aktivieren. Lesen Sie den nächsten Abschnitt, wenn Sie weitere Informationen zu diesem Thema benötigen. Einen Router konfigurieren Router Ein Netzwerkrouter ist einfach ein System, das Pakete von einer Schnittstelle zur anderen weiterleitet. Internetstandards und gute Ingenieurspraxis sorgten dafür, dass diese Funktion in FreeBSD in der Voreinstellung deaktiviert ist. Sie können diese Funktion aktivieren, indem Sie in &man.rc.conf.5; folgende Änderung durchführen: gateway_enable=YES # Auf YES setzen, wenn der Rechner als Gateway arbeiten soll Diese Option setzt die &man.sysctl.8;-Variable net.inet.ip.forwarding auf 1. Wenn Sie das Routing kurzzeitig unterbrechen wollen, können Sie die Variable auf 0 setzen. BGP RIP OSPF Ihr neuer Router benötigt nun noch Routen, um zu wissen, wohin er den Verkehr senden soll. Haben Sie ein (sehr) einfaches Netzwerk, können Sie statische Routen verwenden. FreeBSD verfügt über den Standard BSD-Routing-Daemon &man.routed.8;, der RIP (sowohl Version 1 als auch Version 2) und IRDP versteht. BGP v4, OSPF v2 und andere Protokolle werden von net/zebra unterstützt. Es stehen auch kommerzielle Produkte wie gated zur Verfügung. Al Hoang Beigetragen von Statische Routen einrichten Manuelle Konfiguration Nehmen wir an, dass wir über folgendes Netzwerk verfügen: INTERNET | (10.0.0.1/24) Default Router to Internet | |Interface xl0 |10.0.0.10/24 +------+ | | RouterA | | (FreeBSD gateway) +------+ | Interface xl1 | 192.168.1.1/24 | +--------------------------------+ Internal Net 1 | 192.168.1.2/24 | +------+ | | RouterB | | +------+ | 192.168.2.1/24 | Internal Net 2 RouterA, ein &os;-Rechner, dient als Router für den Zugriff auf das Internet. Die Standardroute ist auf 10.0.0.1 gesetzt, damit ein Zugriff auf das Internet möglich wird. Wir nehmen nun an, dass RouterB bereits konfiguriert ist und daher weiß, wie er andere Rechner erreichen kann. Dazu wird die Standardroute von RouterB auf 192.168.1.1 gesetzt, da dieser Rechner als Gateway fungiert. Sieht man sich die Routingtabelle für RouterA an, erhält man folgende Ausgabe: &prompt.user; netstat -nr Routing tables Internet: Destination Gateway Flags Refs Use Netif Expire default 10.0.0.1 UGS 0 49378 xl0 127.0.0.1 127.0.0.1 UH 0 6 lo0 10.0.0/24 link#1 UC 0 0 xl0 192.168.1/24 link#2 UC 0 0 xl1 Mit dieser Routingtabelle kann RouterA unser internes Netz 2 nicht erreichen, da keine Route zum Rechner 192.168.2.0/24 vorhanden ist. Um dies zu korrigieren, kann die Route manuell gesetzt werden. Durch den folgenden Befehl wird das interne Netz 2 in die Routingtabelle des Rechners RouterA aufgenommen, indem 192.168.1.2 als nächster Zwischenschritt verwenden wird: &prompt.root; route add -net 192.168.2.0/24 192.168.1.2 Ab sofort kann RouterA alle Rechner des Netzwerks 192.168.2.0/24 erreichen. Routen dauerhaft einrichten Das obige Beispiel ist für die Konfiguration einer statischen Route auf einem laufenden System geeignet. Diese Information geht jedoch verloren, wenn der &os;-Rechner neu gestartet werden muss. Um dies zu verhindern, wird diese Route in /etc/rc.conf eingetragen: # Add Internal Net 2 as a static route static_routes="internalnet2" route_internalnet2="-net 192.168.2.0/24 192.168.1.2" Die Variable static_routes enthält eine Reihe von Strings, die durch Leerzeichen getrennt sind. Jeder String bezieht sich auf den Namen einer Route. In unserem Beispiel hat static_routes internalnet2 als einzigen String. Zusätzlich verwendet man die Konfigurationsvariable route_internalnet2, in der alle sonstigen an &man.route.8; zu übergebenden Parameter festgelegt werden. In obigen Beispiel hätte man folgenden Befehl verwendet: &prompt.root; route add -net 192.168.2.0/24 192.168.1.2 Daher wird "-net 192.168.2.0/24 192.168.1.2" als Parameter der Variable route_ angegeben. Wie bereits erwähnt, können bei static_routes auch mehrere Strings angegeben werden. Dadurch lassen sich mehrere statische Routen anlegen. Durch folgende Zeilen werden auf einem imaginären Rechner statische Routen zu den Netzwerken 192.168.0.0/24 sowie 192.168.1.0/24 definiert: static_routes="net1 net2" route_net1="-net 192.168.0.0/24 192.168.0.1" route_net2="-net 192.168.1.0/24 192.168.1.1" Verteilung von Routing-Informationen routing propagation Wir haben bereits darüber gesprochen, wie wir unsere Routen zur Außenwelt definieren, aber nicht darüber, wie die Außenwelt uns finden kann. Wir wissen bereits, dass Routing-Tabellen so erstellt werden können, dass sämtlicher Verkehr für einen bestimmten Adressraum (in unserem Beispiel ein Klasse-C-Subnetz) zu einem bestimmten Rechner in diesem Netzwerk gesendet wird, der die eingehenden Pakete im Subnetz verteilt. Wenn Sie einen Adressraum für Ihre Seite zugewiesen bekommen, richtet Ihr Diensteanbieter seine Routingtabellen so ein, dass der ganze Verkehr für Ihr Subnetz entlang Ihrer PPP-Verbindung zu Ihrer Seite gesendet wird. Aber woher wissen die Seiten in der Außenwelt, dass sie die Daten an Ihren ISP senden sollen? Es gibt ein System (ähnlich dem verbreiteten DNS), das alle zugewiesenen Adressräume verwaltet und ihre Verbindung zum Internet-Backbone definiert und dokumentiert. Der Backbone ist das Netz aus Hauptverbindungen, die den Internetverkehr in der ganzen Welt transportieren und verteilen. Jeder Backbone-Rechner verfügt über eine Kopie von Haupttabellen, die den Verkehr für ein bestimmtes Netzwerk hierarchisch vom Backbone über eine Kette von Diensteanbietern bis hin zu Ihrer Seite leiten. Es ist die Aufgabe Ihres Diensteanbieters, den Backbone-Seiten mitzuteilen, dass sie mit Ihrer Seite verbunden wurden. Durch diese Mitteilung der Route ist nun auch der Weg zu Ihnen bekannt. Dieser Vorgang wird als Bekanntmachung von Routen (routing propagation) bezeichnet. Problembehebung traceroute Manchmal kommt es zu Problemen bei der Bekanntmachung von Routen, und einige Seiten sind nicht in der Lage, Sie zu erreichen. Vielleicht der nützlichste Befehl, um festzustellen, wo das Routing nicht funktioniert, ist &man.traceroute.8;. Er ist außerdem sehr nützlich, wenn Sie einen entfernten Rechner nicht erreichen können (lesen Sie dazu auch &man.ping.8;). &man.traceroute.8; wird mit dem zu erreichenden Rechner (Host) ausgeführt. Angezeigt werden die Gateway-Rechner entlang des Verbindungspfades. Schließlich wird der Zielrechner erreicht oder es kommt zu einem Verbindungsabbruch (beispielsweise durch Nichterreichbarkeit eines Gateway-Rechners). Weitere Informationen finden Sie in &man.traceroute.8;. Multicast-Routing Multicast-Routing Kerneloptionen MROUTING &os; unterstützt sowohl Multicast-Anwendungen als auch Multicast-Routing. Multicast-Anwendungen müssen nicht konfiguriert werden, sie laufen einfach. Multicast-Routing muss in der Kernelkonfiguration aktiviert werden: options MROUTING Zusätzlich muss &man.mrouted.8;, der Multicast-Routing-Daemon, über die Datei /etc/mrouted.conf eingerichtet werden, um Tunnel und DVMRP zu aktivieren. Weitere Informationen zu diesem Thema finden Sie in &man.mrouted.8;. Loader Marc Fonvieille Murray Stokely Drahtlose Netzwerke Netzwerke, drahtlos 802.11 drahtlose Netzwerke Grundlagen Die meisten drahtlosen Netzwerke basieren auf dem Standard IEEE 802.11. Sie bestehen aus Stationen, die in der Regel im 2,4 GHz- oder im 5 GHz-Band miteinander kommunizieren. Es ist aber auch möglich, dass regional andere Frequenzen, beispielsweise im 2,3 GHz- oder 4,9 GHz-Band, verwendet werden. 802.11-Netzwerke können auf zwei verschiedene Arten aufgebaut sein: Im Infrastruktur-Modus agiert eine Station als Master, mit dem sich alle andere Stationen verbinden. Die Summe aller Stationen wird als BSS (Basic Service Set), die Master-Station hingegen als Access Point (AP) bezeichnet. In einem BSS läuft jedwede Kommunikation über den Access Point. Die zweite Form drahtloser Netzwerke sind die sogenannten Ad-hoc-Netzwerke (auch als IBSS bezeichnet), in denen es keinen Access Point gibt und in denen die Stationen direkt miteinander kommunizieren. Die ersten 802.11-Netzwerke arbeiteten im 2,4 GHz-Band und nutzten dazu Prokolle der IEEE-Standards 802.11 sowie 802.11b. Diese Standards legen unter anderem Betriebsfrequenzen sowie Merkmale des MAC-Layers (wie Frames und Transmissionsraten) fest. Später kam der Standard 802.11a hinzu, der im 5 GHz-Band, im Gegensatz zu den ersten beiden Standards aber mit unterschiedlichen Signalmechanismen und höheren Transmissionsraten arbeitet. Der neueste Standard 802.11g implementiert die Signal- und Transmissionsmechanismen von 802.11a im 2,4 GHz-Band, ist dabei aber abwärtskompatibel zu 802.11b-Netzwerken. Unabhängig von den zugrundeliegenden Transportmechanismen verfügen 802.11-Netzwerke über diverse Sicherheitsmechanismen. Der ursprüngliche 802.11-Standard definierte lediglich ein einfaches Sicherheitsprotokoll namens WEP. Dieses Protokoll verwendet einen fixen (gemeinsam verwendeten) Schlüssel sowie die RC4-Kryptografie-Chiffre, um Daten verschlüsselt über das drahtlose Netzwerk zu senden. Alle Stationen des Netzwerks müssen sich auf den gleichen fixen Schlüssel einigen, um miteinander kommunizieren zu können. Dieses Schema ist sehr leicht zu knacken und wird deshalb heute kaum mehr eingesetzt. Aktuelle Sicherheitsmechanismen bauen auf dem Standard IEEE 802.11i auf, der neue kryptografische Schlüssel (Chiffren), ein neues Protokoll für die Anmeldung von Stationen an einem Access Point sowie Mechanismen zum Austausch von Schlüsseln als Vorbereitung der Kommunikation zwischen verschiedenen Geräten festlegt. Kryptografische Schlüssel werden regelmäßig getauscht. Außerdem gibt es Mechanismen, um Einbruchsversuche zu entdecken (und Gegenmaßnahmen ergreifen zu können). Ein weiteres häufig verwendetes Sicherheitsprotokoll ist WPA. Dabei handelt es sich um einen Vorläufer von 802.11i, der von einem Industriekonsortium als Zwischenlösung bis zur endgültigen Verabschiedung von 802.11i entwickelt wurde. WPA definiert eine Untergruppe der Anforderungen des 802.11i-Standards und ist für den Einsatz in älterer Hardware vorgesehen. WPA benötigt nur den (auf dem ursprünglichen WEP-Code basierenden) TKIP-Chiffre. 802.11i erlaubt zwar auch die Verwendung von TKIP, fordert aber zusätzlich eine stärkere Chiffre (AES-CCM) für die Datenverschlüsselung. (AES war für WPA nicht vorgesehen, weil man es als zu rechenintensiv für den Einsatz in älteren Geräten ansah.) Neben den weiter oben erwähnten Standards ist auch der Standard 802.11e von großer Bedeutung. Dieser definiert Protokolle zur Übertragung von Multimedia-Anwendungen wie das Streaming von Videodateien oder Voice-over-IP (VoIP) in einem 802.11-Netzwerk. Analog zu 802.11i verfügt auch 802.11e über eine vorläufige Spezifikation namens WMM (ursprünglich WME), die von einem Industriekonsortium als Untergruppe von 802.11e spezifiziert wurde, um Multimedia-Anwendungen bereits vor der endgültigen Verabschiedung des 802.11e-Standards implementieren zu können. 802.11e sowie WME/WMM erlauben eine Prioritätenvergabe beim Datentransfer im einem drahtlosen Netzwerk. Möglich wird dies durch den Einsatz von Quality of Service-Protokollen (QoS) und erweiterten Medienzugriffsprotokollen. Werden diese Protokolle korrekt implementiert, erlauben sie daher hohe Datenübertragungsraten und einen priorisierten Datenfluss. &os; unterstützt seit der Version 6.0 die Standards 802.11a, 802.11b, sowie 802.11g. Ebenfalls unterstützt werden WPA sowie die Sicherheitsprotokolle gemäß 802.11i (dies sowohl für 11a, 11b als auch 11g). QoS und Verkehrpriorisierung, die von den WME/WMM-Protokollen benötigt werden, werden ebenfalls (allerdings nicht für alle drahtlosen Geräte) unterstützt. Basiskonfiguration Kernelkonfiguration Um ein drahtloses Netzwerk zu nutzen, benötigen Sie eine drahtlose Netzkarte und einen Kernel, der drahtlose Netzwerke unterstützt. Der &os;-Kernel unterstützt den Einsatz von Kernelmodulen. Daher müssen Sie nur die Unterstützung für die von Ihnen verwendeten Geräte aktivieren. Als Erstes benötigen Sie ein drahtloses Gerät. Die meisten drahtlosen Geräte verwenden Bauteile von Atheros und werden deshalb vom &man.ath.4;-Treiber unterstützt. Um diesen Treiber zu verwenden, nehmen Sie die folgende Zeile in die Datei /boot/loader.conf auf: if_ath_load="YES" Der Atheros-Treiber besteht aus drei Teilen: dem Treiber selbst (&man.ath.4;), dem Hardware-Support-Layer für die chip-spezifischen Funktionen (&man.ath.hal.4;) sowie einem Algorithmus zur Auswahl der korrekten Frame-Übertragungsrate (ath_rate_sample). Wenn Sie die Unterstützung für diesen Treiber als Kernelmodul laden, kümmert sich dieses automatisch um diese Aufgaben. Verwenden Sie ein Nicht-Atheros-Gerät, so müssen Sie hingegen das für dieses Gerät geeignete Modul laden, beispielsweise if_wi_load="YES" für Geräte, die auf Bauteilen von Intersil Prism basieren und daher den Treiber &man.wi.4; voraussetzen. In den folgenden Abschnitten wird der &man.ath.4;-Treiber verwendet. Verwenden Sie ein anderes Gerät, müssen Sie diesen Wert daher an Ihre Konfiguration anpassen. Eine Liste aller verfügbaren Treiber für drahtlose Geräte finden Sie in der Manualpage &man.wlan.4;. Gibt es keinen nativen &os;-Treiber für Ihr drahtloses Gerät, können Sie möglicherweise mit NDIS einen &windows;-Treiber verwenden. Neben dem korrekten Treiber benötigen Sie auch die Unterstützung für 802.11-Netzwerke. Für den &man.ath.4;-Treiber wird dazu automatisch das Kernelmodul &man.wlan.4; geladen. Zusätzlich benötigen Sie noch Module zur Verschlüsselung ihres drahtlosen Netzwerks. Diese werden normalerweise dynamisch vom &man.wlan.4;-Modul geladen. Im folgenden Beispiel erfolgt allerdings eine manuelle Konfiguration. Folgende Module sind verfügbar: &man.wlan.wep.4;, &man.wlan.ccmp.4; sowie &man.wlan.tkip.4;. Sowohl &man.wlan.ccmp.4; als auch &man.wlan.tkip.4; werden nur benötigt, wenn Sie WPA und/oder die Sicherheitsprotokolle von 802.11i verwenden wollen. Wollen Sie Ihr Netzwerk hingegen offen betreiben (also völlig ohne Verschlüsselung), benötigen Sie nicht einmal die &man.wlan.wep.4;-Unterstützung. Um alle drei Module beim Systemstart zu laden, fügen Sie folgende Zeilen in die Datei /boot/loader.conf ein: wlan_wep_load="YES" wlan_ccmp_load="YES" wlan_tkip_load="YES" Danach müssen Sie Ihr &os;-System neu starten. Alternativ können Sie die Kernelmodule aber auch manuell mit &man.kldload.8; laden. Wollen Sie keine Kernelmodule verwenden, können Sie die benötigten Treiber auch in Ihren Kernel kompilieren. Daz nehmen Sie folgende Zeilen in Ihre Kernelkonfigurationsdatei auf: device ath # Atheros IEEE 802.11 wireless network driver device ath_hal # Atheros Hardware Access Layer device ath_rate_sample # John Bicket's SampleRate control algorithm. device wlan # 802.11 support (Required) device wlan_wep # WEP crypto support for 802.11 devices device wlan_ccmp # AES-CCMP crypto support for 802.11 devices device wlan_tkip # TKIP and Michael crypto support for 802.11 devices Danach bauen Sie den neuen Kernel und starten Ihr &os;-System neu. Während des Systemstarts sollten nun einige Informationen ähnlich den folgenden über das von Ihnen verwendete drahtlose Gerät ausgegeben werden: ath0: <Atheros 5212> mem 0xff9f0000-0xff9fffff irq 17 at device 2.0 on pci2 ath0: Ethernet address: 00:11:95:d5:43:62 ath0: mac 7.9 phy 4.5 radio 5.6 Infrastruktur-Modus Drahtlose Netzwerke werden in der Regel im Infrastruktur-Modus (auch BSS-Modus genannt) betrieben. Dazu werden mehrere drahtlose Access Points zu einem gemeinsamen drahtlosen Netzwerk verbunden. Jedes dieser drahtlosen Netzwerke hat einen eigenen Namen, der als SSID bezeichnet wird. Alle Clients eines drahtlosen Netzwerks verbinden sich in diesem Modus mit einem Access Point. &os;-Clients Einen Access Point finden Um nach drahtlosen Netzwerken zu suchen, verwenden Sie ifconfig. Dieser Scanvorgang kann einige Zei in Anspruch nehmen, da dazu jede verfügbare Frequenz auf verfügbare Access Points hin überprüft werden muss. Um die Suche zu starten, müssen Sie als Super-User angemeldet sein: &prompt.root; ifconfig ath0 up scan SSID BSSID CHAN RATE S:N INT CAPS dlinkap 00:13:46:49:41:76 6 54M 29:0 100 EPS WPA WME freebsdap 00:11:95:c3:0d:ac 1 54M 22:0 100 EPS WPA Ihre Netzwerkkarte muss in den Status versetzt werden, bevor Sie den ersten Scanvorgang starten können. Für spätere Scans ist dies aber nicht mehr erforderlich. Als Ergebnis erhalten Sie eine Liste mit allen gefundenen BSS/IBSS-Netzwerken. Zusätzlich zur SSID (dem Namen des Netzwerks) wird auch die BSSID ausgegeben. Dabei handelt es sich um MAC-Adresse des Access Points. Das Feld CAPS gibt den Typ des Netzwerks sowie die Fähigkeiten der Stationen innerhalb des Netzwerks an: E Extended Service Set (ESS). Zeigt an, dass die Station Teil eines Infrastruktur-Netzwerks ist (und nicht eines IBSS/Ad-hoc-Netzwerks). I IBSS/Ad-hoc-Netzwerk. Die Station ist Teil eines Ad-hoc-Netzwerks (und nicht eines ESS-Netzwerks). P Privacy. Alle Datenframes, die innerhalb des BSS ausgetauscht werden, sind verschlüsselt. Dieses BSS verwendet dazu kryptografische Verfahren wie WEP, TKIP oder AES-CCMP. S Short Preamble. Das Netzwerk verwendet eine kurze Präambel (definiert in 802.11b High Rate/DSSS PHY). Eine kurze Präambel verwendet ein 56 Bit langes Sync-Feld (im Gegensatz zu einer langen Präambel, die ein 128 Bit langes Sync-Feld verwendet). s Short slot time. Das 802.11g-Netzwerk verwendet eine kurze Slotzeit, da es in diesem Netzwerk keine veralteten (802.11b) Geräte gibt. Um eine Liste der bekannten Netzwerke auszugeben, verwenden Sie den folgenden Befehl: &prompt.root; ifconfig ath0 list scan Diese Liste kann entweder automatisch durch das drahtlose Gerät oder manuell durch eine -Aufforderung aktualisiert werden. Veraltete Informationen werden dabei automatisch entfernt. Basiseinstellungen Dieser Abschnitt beschreibt, wie Sie ein einfaches drahtloses Netzerk ohne Verschlüsselung unter &os; einrichten. Nachdem Sie sich mit den Informationen dieses Abschnitts vertraut gemacht haben, sollten Sie Ihr drahtloses Netzwerk mit WPA verschlüsseln. Das Einrichten eines drahtlosen Netzwerks erfolgt in drei Schritten: Der Auswahl eines Access Points, der Anmeldung Ihrer Station sowie der Konfiguration Ihrer IP-Adresse. Einen Access Point auswählen Im Normalfall wird sich Ihre Station automatisch mit einem der zur Verfügung stehenden Access Points verbinden. Sie müssen dazu lediglich Ihr drahtloses Gerät aktivieren. Alternativ können Sie auch einen Eintrag ähnlich dem folgenden in /etc/rc.conf aufnehmen: ifconfig_ath0="DHCP" Wollen Sie sich hingegen mit einem bestimmten Access Point verbinden, müssen Sie dessen SSID angeben: ifconfig_ath0="ssid Ihre_SSID DHCP" Gibt es in Ihrem Netzwerk mehrere Access Points mit der gleichen SSID (was der Einfachheit wegen häufig der Fall ist), können Sie sich dennoch mit einem bestimmten Access Point verbinden. Dazu müssen Sie lediglich die BSSID des Access Points angeben (die Angabe der SSID ist in diesem Fall nicht erforderlich): ifconfig_ath0="ssid Ihre_SSID bssid xx:xx:xx:xx:xx:xx DHCP" Es gibt noch weitere Möglichkeiten, den Zugriff auf bestimmte Access Point zu beschränken, beispielsweise durch die Begrenzung der Frequenzen, auf denen eine Station nach einem Acces Point sucht. Sinnvoll ist ein solches Vorgehen beispielsweise, wenn Ihr drahtloses Gerät in verschiedenen Frequenzbereichen arbeiten kann, da in diesem Fall das Prüfen aller Frequenzen sehr zeitintensiv ist. Um nur innerhalb eines bestimmten Frequenzbereichs nach einem Access Point zu suchen, verwenden Sie die Option : ifconfig_ath0="mode 11g ssid Ihre_SSID DHCP" Dadurch sucht Ihr drahtloses Gerät nur im 2,4 GHz-Band (802.11g), aber nicht innerhalb des 5 GHz-Bandes nach einem Access Point. Mit der Option können Sie eine bestimmte Frequenz vorgeben, auf der gesucht werden soll. Die Option erlaubt die Angabe mehrerer erlaubter Frequenzen. Eine umfassende Beschreibung dieser Optionen finden Sie in der Manualpage &man.ifconfig.8;. Authentifizierung Wenn Sie einen Access Point gefunden haben, muss sich Ihrem Station am Access Point anmelden, bevor Sie Daten übertragen kann. Dazu gibt es verschiedene Möglichkeiten. Am häufigsten wird nach wie vor die sogenannte offene Authentifizierung verwendet. Dabei wird es jeder Station erlaubt, sich mit einem Netzwerk zu verbinden und Daten zu übertragen. Aus Sicherheitsgründen sollte diese Methode allerdings nur zu Testzwecken bei der erstmaligen Einrichtung eines drahtlosen Netzwerks verwendet werden. Andere Authentifizierungsmechanismen erfordern den Austausch kryptografischer Informationen, bevor Sie die Übertragung von Daten erlauben. Dazu gehören der Austausch fixer (vorher vereinbarter) Schlüssel oder Kennwörter sowie der Einsatz komplexerer Verfahren mit Backend-Diensten wie RADIUS. Die meisten Netzwerke nutzen allerdings nach wie vor die offene Authentifizierung, da dies die Voreinstellung ist. Am zweithäufigsten kommt das weiter unten beschriebene WPA-PSK (das auch als WPA Personal bezeichnet wird) zum Einsatz. Verwenden Sie eine &apple; &airport; Extreme-Basisstation als Access Point, benötigen Sie wahrscheinlich sowohl die Shared-Key-Authentifizierung als auch einen WEP-Schlüssel. Die entsprechende Konfiguration erfolgt entweder in der Datei /etc/rc.conf oder über das Programm &man.wpa.supplicant.8;. Verwenden Sie nur eine einzige &airport;-Basisstation, benötigen Sie einen Eintrag ähnlich dem folgenden: ifconfig_ath0="authmode shared wepmode on weptxkey 1 wepkey 01234567 DHCP" Normalerweise sollten Sie Shared-Key-Authentifizierung aber nicht verwenden, da diese die Sicherheit des WEP-Schlüssel noch weiter verringert. Müssen Sie WEP einsetzen (beispielsweise weil Sie zu veralteten Geräten kompatibel bleiben müssen), sollten Sie WEP nur zusammen mit der offenen Authentifizierung (open authentication) verwenden. WEP wird im näher beschrieben. Eine IP-Adresse über DHCP beziehen Nachdem Sie einen Access Point gefunden und sich authentifiziert haben, benötigen Sie noch eine IP-Adresse, die Sie in der Regel über DHCP zugewiesen bekommen. Dazu müssen Sie lediglich die Option DHCP in Ihre in der Datei /etc/rc.conf vorhandene Konfiguration Ihres drahtlosen Geräts aufnehmen: ifconfig_ath0="DHCP" Nun können Sie Ihr drahtloses Gerät starten: &prompt.root; /etc/rc.d/netif start Nachdem Sie das Gerät aktiviert haben, können Sie mit ifconfig den Status des Geräts ath0 abfragen: &prompt.root; ifconfig ath0 ath0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500 inet6 fe80::211:95ff:fed5:4362%ath0 prefixlen 64 scopeid 0x1 inet 192.168.1.100 netmask 0xffffff00 broadcast 192.168.1.255 ether 00:11:95:d5:43:62 media: IEEE 802.11 Wireless Ethernet autoselect (OFDM/54Mbps) status: associated ssid dlinkap channel 6 bssid 00:13:46:49:41:76 authmode OPEN privacy OFF txpowmax 36 protmode CTS bintval 100 status: associated besagt, dass sich Ihr Gerät mit dem drahtlosen Netzwerk verbunden hat (konkret mit dem Netzwerk dlinkap). bssid 00:13:46:49:41:76 gibt die MAC-Adresse Ihres Access Points aus und die Zeile mit authmode informiert Sie darüber, dass Ihre Kommunikation nicht verschlüsselt wird (OPEN). Statische IP-Adressen Alternativ zu dynamischen IP-Adressen können Sie auch eine statische IP-Adresse verwenden. Dazu ersetzen Sie in Ihrer Konfiguration DHCP durch die zu verwendende IP-Adresse. Beachten Sie dabei, dass Sie die anderen Konfigurationsparameter nicht versehentlich verändern: ifconfig_ath0="inet 192.168.1.100 netmask 255.255.255.0 ssid Ihre_SSID" WPA Bei WPA (Wi-Fi Protected Access) handelt es sich um ein Sicherheitsprotokoll, das in 802.11-Netzwerken verwendet wird, um die Nachteile von WEP (fehlende Authentifizierung und schwache Verschlüsselung) zu vermeiden. WPA stellt das aktuelle 802.1X-Authentifizierungsprotokoll dar und verwendet eine von mehreren Chiffren, um die Datensicherheit zu gewährleisten. Die einzige Chiffre, die von WPA verlangt wird, ist TKIP (Temporary Key Integrity Protocol), eine Chiffre, die die von WEP verwendete RC4-Chiffre um Funktionen zur Prüfung der Datenintegrität und zur Erkennung und Bekämpfung von Einbruchsversuchen erweitert. TKIP ist durch Softwaremodifikationen auch unter veralteter Hardware lauffähig. Im Vergleich zu WEP ist WPA zwar sehr viel sicherer, es ist aber dennoch nicht völlig immun gegen Angriffe. WPA definiert mit AES-CCMP noch eine weitere Chiffre als Alternative zu TKIP. AES-CCMP (das häufig als WPA2 oder RSN bezeichnet wird) sollte, wenn möglich, eingesetzt werden. WPA definiert Authentifizierungs- und Verschlüsselungsprotokolle. Die Authentifizierung erfolgt in der Regel über eine der folgenden Techniken: 802.1X gemeinsam mit einem Backend-Authentifizierungsdienst wie RADIUS, oder durch einen Minimal-Handshake zwischen der Station und dem Access Point mit einem vorher vereinbarten gemeinsamen Schlüssel. Die erste Technik wird als WPA Enterprise, die zweite hingegen als WPA Personal bezeichnet. Da sich der Aufwand für das Aufsetzen eines RADIUS-Backend-Servers für die meisten drahtlosen Netzwerke nicht lohnt, wird WPA in der Regel als WPA-PSK (WPA, Pre-Shared-Key) konfiguriert. Die Kontrolle der drahtlosen Verbindung sowie die vorangehende Authentifizierung (über Schlüssel oder durch die Kommunikation mit einem Server) erfolgt über das Programm &man.wpa.supplicant.8;, das über die Datei /etc/wpa_supplicant.conf eingerichtet wird. Ausführliche Informationen zur Konfiguration des Programms finden sich in der Manualpage &man.wpa.supplicant.conf.5;. WPA-PSK WPA-PSK oder WPA-Personal basiert auf einem gemeinsamen (vorher vereinbarten) Schlüssel (PSK), der aus einem Passwort generiert und danach als Master-Key des drahtlosen Netzwerks verwendet wird. Jeder Benutzer des drahtlosen Netzwerks verwendet daher den gleichen Schlüssel. WPA-PSK sollte nur in kleinen Netzwerken eingesetzt werden, in denen die Konfiguration eines Authentifizierungsservers nicht möglich oder erwünscht ist. Achten Sie darauf, dass Sie immer starke Passwörter verwenden, die ausreichend lang sind und, wenn möglich, auch Sonderzeichen enthalten, damit diese nicht leicht erraten und/oder geknackt werden können. Der erste Schritt zum Einsatz von WPA-PSK ist die Konfiguration der SSID und des gemeinsamen Schlüssels Ihres Netzwerks in der Datei /etc/wpa_supplicant.conf: network={ ssid="freebsdap" psk="freebsdmall" } Danach geben Sie in /etc/rc.conf an, dass WPA zur Verschlüsselung eingesetzt werden soll und dass die IP-Adresse über DHCP bezogen wird: ifconfig_ath0="WPA DHCP" Nun können Sie Ihr Netzgerät aktivieren: &prompt.root; /etc/rc.d/netif start Starting wpa_supplicant. DHCPDISCOVER on ath0 to 255.255.255.255 port 67 interval 5 DHCPDISCOVER on ath0 to 255.255.255.255 port 67 interval 6 DHCPOFFER from 192.168.0.1 DHCPREQUEST on ath0 to 255.255.255.255 port 67 DHCPACK from 192.168.0.1 bound to 192.168.0.254 -- renewal in 300 seconds. ath0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500 inet6 fe80::211:95ff:fed5:4362%ath0 prefixlen 64 scopeid 0x1 inet 192.168.0.254 netmask 0xffffff00 broadcast 192.168.0.255 ether 00:11:95:d5:43:62 media: IEEE 802.11 Wireless Ethernet autoselect (OFDM/36Mbps) status: associated ssid freebsdap channel 1 bssid 00:11:95:c3:0d:ac authmode WPA privacy ON deftxkey UNDEF TKIP 2:128-bit txpowmax 36 protmode CTS roaming MANUAL bintval 100 Alternativ können Sie die Konfiguration von WPA-PSK auch manuell durchführen, wobei Sie wiederum die Konfigurationsdatei /etc/wpa_supplicant.conf verwenden: &prompt.root; wpa_supplicant -i ath0 -c /etc/wpa_supplicant.conf Trying to associate with 00:11:95:c3:0d:ac (SSID='freebsdap' freq=2412 MHz) Associated with 00:11:95:c3:0d:ac WPA: Key negotiation completed with 00:11:95:c3:0d:ac [PTK=TKIP GTK=TKIP] Im zweiten Schritt starten Sie nun dhclient, um eine IP-Adresse vom DHCP-Server zu beziehen: &prompt.root; dhclient ath0 DHCPREQUEST on ath0 to 255.255.255.255 port 67 DHCPACK from 192.168.0.1 bound to 192.168.0.254 -- renewal in 300 seconds. &prompt.root; ifconfig ath0 ath0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500 inet6 fe80::211:95ff:fed5:4362%ath0 prefixlen 64 scopeid 0x1 inet 192.168.0.254 netmask 0xffffff00 broadcast 192.168.0.255 ether 00:11:95:d5:43:62 media: IEEE 802.11 Wireless Ethernet autoselect (OFDM/48Mbps) status: associated ssid freebsdap channel 1 bssid 00:11:95:c3:0d:ac authmode WPA privacy ON deftxkey UNDEF TKIP 2:128-bit txpowmax 36 protmode CTS roaming MANUAL bintval 100 Enthält Ihre /etc/rc.conf bereits die Zeile ifconfig_ath0="DHCP", müssen Sie dhclient nicht mehr manuell aufrufen, da dhclient in diesem Fall automatisch gestartet wird, nachdem wpa_supplicant die Schlüssel übergibt. Sollte der Einsatz von DHCP nicht möglich sein, können Sie auch eine statische IP-Adresse angeben, nachdem wpa_supplicant Ihre Station authentifiziert hat: &prompt.root; ifconfig ath0 inet 192.168.0.100 netmask 255.255.255.0 &prompt.root; ifconfig ath0 ath0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500 inet6 fe80::211:95ff:fed5:4362%ath0 prefixlen 64 scopeid 0x1 inet 192.168.0.100 netmask 0xffffff00 broadcast 192.168.0.255 ether 00:11:95:d5:43:62 media: IEEE 802.11 Wireless Ethernet autoselect (OFDM/36Mbps) status: associated ssid freebsdap channel 1 bssid 00:11:95:c3:0d:ac authmode WPA privacy ON deftxkey UNDEF TKIP 2:128-bit txpowmax 36 protmode CTS roaming MANUAL bintval 100 Verwenden Sie DHCP nicht, müssen Sie zusätzlich noch das Standard-Gateway sowie den/die Nameserver manuell festlegen: &prompt.root; route add default your_default_router &prompt.root; echo "nameserver your_DNS_server" >> /etc/resolv.conf WPA und EAP-TLS Die zweite Möglichkeit, WPA einzusetzen, ist die Verwendung eines 802.1X-Backend-Authentifizierungsservers. Diese Variante wird als WPA-Enterprise bezeichnet, um sie vom weniger sicheren WPA-Personal abzugrenzen, das auf dem Austausch gemeinsamer (und vorher vereinbarter Schlüssel) basiert. Die bei WPA-Enterprise verwendete Authentifizierung basiert auf EAP (Extensible Authentication Protocol). EAP selbst bietet keine Verschlüsselung, sondern operiert in einem verschlüsselten Tunnel. Es gibt verschiedene, auf EAP basierende Authentifizierungsmethoden, darunter EAP-TLS, EAP-TTLS sowie EAP-PEAP. Bei EAP-TLS (EAP with Transport Layers Security) handelt es sich um sehr gut unterstütztes Authentifizierungsprotokoll, da es sich dabei um die erste EAP-Methode handelt, die von der Wi-Fi Alliance zertifiziert wurde. EAP-TLS erfordert drei Zertifikate: Das (auf allen Rechnern installierte) CA-Zertifikat, das Server-Zertifikat Ihres Authentifizierungsservers, sowie ein Client-Zertifikat für jeden drahtlosen Client. Sowohl der Authentifizierungsservers als auch die drahtlosen Clients authentifizieren sich gegenseitig durch ihre Zertifikate, wobei sie überprüfen, ob diese Zertifikate auch von der Zertifizierungs-Authorität (CA) des jeweiligen Unternehmens signiert wurden. Die Konfiguration erfolgt (analog zu WPA-PSK) über die Datei /etc/wpa_supplicant.conf: network={ ssid="freebsdap" proto=RSN key_mgmt=WPA-EAP eap=TLS identity="loader" ca_cert="/etc/certs/cacert.pem" client_cert="/etc/certs/clientcert.pem" private_key="/etc/certs/clientkey.pem" private_key_passwd="freebsdmallclient" } Der Name des Netzwerks (die SSID). Das RSN/WPA2-Protokoll (IEEE 802.11i) wird verwendet. Die key_mgmt-Zeile bezieht sich auf das verwendete Key-Management-Protokoll. In diesem Beispiel wird WPA gemeinsam mit der EAP-Authentifizierung verwendet (WPA-EAP). Die für die Verbindung verwendete EAP-Methode. Das identity-Feld enthält den von EAP verwendeten Identifizierungsstring. Das Feld ca_cert gibt den Pfad zum CA-Zertifikat an. Dieses Datei wird benötigt, um das Server-Zertifikat zu verifizieren. Die client_cert-Zeile gibt den Pfad zum Client-Zertifikat an. Jeder Client hat ein eigenes, innerhalb des Netzwerks eindeutiges Zertifikat. Das Feld private_key gibt den Pfad zum privaten Schlüssel des Client-Zertifikat an. Das Feld private_key_passwd enthält die Passphrase für den privaten Schlüssel. Danach fügen Sie die folgende Zeile in /etc/rc.conf ein: ifconfig_ath0="WPA DHCP" Nun können Sie Ihr drahtloses Gerät über das rc.d-System aktivieren: &prompt.root; /etc/rc.d/netif start Starting wpa_supplicant. DHCPREQUEST on ath0 to 255.255.255.255 port 67 DHCPREQUEST on ath0 to 255.255.255.255 port 67 DHCPACK from 192.168.0.20 bound to 192.168.0.254 -- renewal in 300 seconds. ath0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500 inet6 fe80::211:95ff:fed5:4362%ath0 prefixlen 64 scopeid 0x1 inet 192.168.0.254 netmask 0xffffff00 broadcast 192.168.0.255 ether 00:11:95:d5:43:62 media: IEEE 802.11 Wireless Ethernet autoselect (DS/11Mbps) status: associated ssid freebsdap channel 1 bssid 00:11:95:c3:0d:ac authmode WPA2/802.11i privacy ON deftxkey UNDEF TKIP 2:128-bit txpowmax 36 protmode CTS roaming MANUAL bintval 100 Alternativ können Sie Ihr drahtloses Gerält wiederum manuell über wpa_supplicant und ifconfig aktivieren. WPA und EAP-TTLS Bei EAP-TLS müssen sowohl der Authentifizierungsserver als auch die Clients jeweils ein eigenes Zertifikat aufweisen. Setzen Sie hingegen EAP-TTLS (EAP-Tunneled Transport Layer Security) ein, ist das Client-Zertifikat optional. EAP-TTLS geht dabei ähnlich vor wie verschlüsselte Webseiten, bei denen der Webserver einen sicheren SSL-Tunnel erzeugen kann, ohne dass der Besucher dabei über ein client-seitiges Zertifikat verfügen muss. EAP-TTLS verwendet einen verschlüsselten TLS-Tunnel zum sicheren Transport der Authentifizierungsdaten. Die Konfiguration von EAP-TTLS erfolgt in der Datei /etc/wpa_supplicant.conf: network={ ssid="freebsdap" proto=RSN key_mgmt=WPA-EAP eap=TTLS identity="test" password="test" ca_cert="/etc/certs/cacert.pem" phase2="auth=MD5" } Die für die Verbindung verwendete EAP-Methode. Das identity-Feld enthält den Identifizierungsstring für die EAP-Authentifizierung innerhalb des verschlüsselten TlS-Tunnels. Das password-Feld enthält die Passphrase für die EAP-Authentifizierung. Das Feld ca_cert gibt den Pfad zum CA-Zertifikat an, das benötigt wird, um das Server-Zertifikat zu verifizieren. Die innerhalb des verschlüsselten TLS-Tunnels verwendete Authentifizierungsmethode. In unserem Beispiel handelt es sich dabei um EAP und MD5. Diese Phase der inneren Authentifizierung wird oft als phase2 bezeichnet. Folgende Zeile muss zusätzlich in die Datei /etc/rc.conf aufgenommen werden: ifconfig_ath0="WPA DHCP" Nun können Sie Ihr drahtloses Gerät aktivieren: &prompt.root; /etc/rc.d/netif start Starting wpa_supplicant. DHCPREQUEST on ath0 to 255.255.255.255 port 67 DHCPREQUEST on ath0 to 255.255.255.255 port 67 DHCPREQUEST on ath0 to 255.255.255.255 port 67 DHCPACK from 192.168.0.20 bound to 192.168.0.254 -- renewal in 300 seconds. ath0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500 inet6 fe80::211:95ff:fed5:4362%ath0 prefixlen 64 scopeid 0x1 inet 192.168.0.254 netmask 0xffffff00 broadcast 192.168.0.255 ether 00:11:95:d5:43:62 media: IEEE 802.11 Wireless Ethernet autoselect (DS/11Mbps) status: associated ssid freebsdap channel 1 bssid 00:11:95:c3:0d:ac authmode WPA2/802.11i privacy ON deftxkey UNDEF TKIP 2:128-bit txpowmax 36 protmode CTS roaming MANUAL bintval 100 WPA und EAP-PEAP PEAP (Protected EAP) wurde als Alternative zu EAP-TTLS entwickelt. Es gibt zwei verschiedene PEAP-Methoden, wobei es sich bei PEAPv0/EAP-MSCHAPv2 um die häufiger verwendete Methode handelt. In den folgenden Ausführungen wird der Begriff PEAP synonym für diese EAP-Methode verwendet. PEAP ist nach EAP-TLS der am häufigsten verwendete und am besten unterstützte EAP-Standard. PEAP arbeitet ähnlich wie EAP-TTLS: Es verwendet ein server-seitiges Zertifikat, um einen verschlüsselten TLS-Tunnel zu erzeugen, über den die sichere Authentifizierung zwischen den Clients und dem Authentifizierungsserver erfolgt. In Sachen Sicherheit unterscheiden sich EAP-TTLS und PEAP allerdings: PEAP überträgt den Benutzernamen im Klartext und verschlüsselt nur das Passwort, während EAP-TTLS sowohl den Benutzernamen als auch das Passwort über den TLS-Tunnel überträgt. Um EAP-PEAP einzurichten, müssen Sie die Konfigurationsdatei /etc/wpa_supplicant.conf anpassen: network={ ssid="freebsdap" proto=RSN key_mgmt=WPA-EAP eap=PEAP identity="test" password="test" ca_cert="/etc/certs/cacert.pem" phase1="peaplabel=0" phase2="auth=MSCHAPV2" } Die für die Verbindung verwendete EAP-Methode. Das identity-Feld enthält den Identifizierungsstring für die innerhalb des verschlüsselten TLS-Tunnels erfolgende EAP-Authentifizierung. Das Feld password enthält die Passphrase für die EAP-Authentifizierung. Das Feld ca_cert gibt den Pfad zum CA-Zertifikat an, das zur Verifizierung des Server-Zertifikats benötigt wird. Dieses Feld enthält die Parameter für die erste Phase der Authentifizierung (also den TLS-Tunnel). Je nach dem, welchen Authentifizierungsserver Sie verwenden, müssen Sie hier einen unterschiedlichen Wert angeben. In den meisten Fällen wird dieses Feld den Wert client EAP encryption aufweisen, der durch die Angabe von peaplabel=0 gesetzt wird. Weitere Informationen zur Konfiguration von PEAP finden Sie in der Manualpage &man.wpa.supplicant.conf.5;. Das innerhalb des verschlüsselten TLS-Tunnels verwendete Authentifizierungsprotokoll. In unserem Beispiel handelt es sich dabei um auth=MSCHAPV2. Danach fügen Sie die folgende Zeile in /etc/rc.conf ein: ifconfig_ath0="WPA DHCP" Zuletzt müssen Sie die Netzkarte noch aktivieren: &prompt.root; /etc/rc.d/netif start Starting wpa_supplicant. DHCPREQUEST on ath0 to 255.255.255.255 port 67 DHCPREQUEST on ath0 to 255.255.255.255 port 67 DHCPREQUEST on ath0 to 255.255.255.255 port 67 DHCPACK from 192.168.0.20 bound to 192.168.0.254 -- renewal in 300 seconds. ath0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500 inet6 fe80::211:95ff:fed5:4362%ath0 prefixlen 64 scopeid 0x1 inet 192.168.0.254 netmask 0xffffff00 broadcast 192.168.0.255 ether 00:11:95:d5:43:62 media: IEEE 802.11 Wireless Ethernet autoselect (DS/11Mbps) status: associated ssid freebsdap channel 1 bssid 00:11:95:c3:0d:ac authmode WPA2/802.11i privacy ON deftxkey UNDEF TKIP 2:128-bit txpowmax 36 protmode CTS roaming MANUAL bintval 100 WEP WEP (Wired Equivalent Privacy) ist Teil des ursprünglichen 802.11-Standards. Es enthält keinen Authentifzierungsmechanismus und verfügt lediglich über eine schwache Zugriffskontrolle, die sehr leicht geknackt werden kann. WEP kann über ifconfig aktiviert werden: &prompt.root; ifconfig ath0 inet 192.168.1.100 netmask 255.255.255.0 ssid my_net \ wepmode on weptxkey 3 wepkey 3:0x3456789012 Mit weptxkey geben Sie an, welcher WEP-Schlüssel für für die Datenübertragung verwendet wird (in unserem Beispiel ist dies der dritte Schlüssel). Der gleiche Schlüssel muss auch am Access Point eingestellt sein. Mit wepkey legen Sie den zu verwendenden WEP-Schlüssel in der Form Nummer:Schlüssel fest. Ist der Schlüssel "Nummer" nicht vorhanden, wird automatisch Schlüssel 1 verwendet. Die Angabe von "Nummer" ist zwingend nötig, wenn Sie einen anderen als den ersten Schlüssel verwenden wollen. In Ihrer Konfiguration müssen Sie 0x3456789012 durch den an Ihrem Access Point konfigurierten Schlüssel ersetzen. Weitere Informationen finden Sie in der Manualpage &man.ifconfig.8;. Das Programm wpa_supplicant eignet sich ebenfalls dazu, WEP für Ihr drahtloses Gerät zu aktivieren. Obige Konfiguration lässt sich dabei durch die Aufnahme der folgenden Zeilen in die Datei /etc/wpa_supplicant.conf realisieren: network={ ssid="my_net" key_mgmt=NONE wep_key3=3456789012 wep_tx_keyidx=3 } Danach müssen Sie das Programm noch aufrufen: &prompt.root; wpa_supplicant -i ath0 -c /etc/wpa_supplicant.conf Trying to associate with 00:13:46:49:41:76 (SSID='dlinkap' freq=2437 MHz) Associated with 00:13:46:49:41:76 Ad-hoc-Modus Der IBSS-Modus (auch als Ad-hoc-Modus bezeichnet), ist für Punkt-zu-Punkt-Verbindungen vorgesehen. Um beispielsweise eine Ad-hoc-Verbindung zwischen den Rechnern A und B aufzubauen, benötigen Sie lediglich zwei IP-Adressen und eine SSID. Auf dem Rechner A geben Sie Folgendes ein: &prompt.root; ifconfig ath0 inet 192.168.0.1 netmask 255.255.255.0 ssid freebsdap mediaopt adhoc &prompt.root; ifconfig ath0 ath0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500 inet 192.168.0.1 netmask 0xffffff00 broadcast 192.168.0.255 inet6 fe80::211:95ff:fec3:dac%ath0 prefixlen 64 scopeid 0x4 ether 00:11:95:c3:0d:ac media: IEEE 802.11 Wireless Ethernet autoselect <adhoc> (autoselect <adhoc>) status: associated ssid freebsdap channel 2 bssid 02:11:95:c3:0d:ac authmode OPEN privacy OFF txpowmax 36 protmode CTS bintval 100 Der adhoc-Parameter gibt an, dass die Schnittstelle im IBSS-Modus läuft. Rechner B sollte nun in der Lage sein, Rechner A zu finden: &prompt.root; ifconfig ath0 up scan SSID BSSID CHAN RATE S:N INT CAPS freebsdap 02:11:95:c3:0d:ac 2 54M 19:0 100 IS Der Wert I (Spalte CAPS) gibt an, dass sich Rechner A im Ad-hoc-Modus befindet. Nun müssen Sie nur noch Rechner B eine unterschiedliche IP-Adresse zuweisen: &prompt.root; ifconfig ath0 inet 192.168.0.2 netmask 255.255.255.0 ssid freebsdap mediaopt adhoc &prompt.root; ifconfig ath0 ath0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500 inet6 fe80::211:95ff:fed5:4362%ath0 prefixlen 64 scopeid 0x1 inet 192.168.0.2 netmask 0xffffff00 broadcast 192.168.0.255 ether 00:11:95:d5:43:62 media: IEEE 802.11 Wireless Ethernet autoselect <adhoc> (autoselect <adhoc>) status: associated ssid freebsdap channel 2 bssid 02:11:95:c3:0d:ac authmode OPEN privacy OFF txpowmax 36 protmode CTS bintval 100 Damit sind die Rechner A und B bereit und können untereinander Daten austauschen. Problembehandlung Die folgenden Auflistung zeigt, wie Sie einige häufig auftretende Probleme bei der Einrichtung Ihres drahtlosen Netzwerks beheben können. Wird Ihr Access Point bei der Suche nicht gefunden, sollten Sie überprüfen, ob Sie bei Konfiguration Ihres drahtlosen Geräts die Anzahl der Kanäle beschränkt haben. Wenn Sie sich nicht mit Ihrem Access Point verbinden können, sollten Sie überprüfen, ob die Konfiguration Ihrer Station auch der des Access Points entspricht. Achten Sie dabei speziell auf die Authentifzierungsmethode und die Sicherheitsprotokolle. Halten Sie Ihre Konfiguration so einfach wie möglich. Verwenden Sie ein Sicherheitsprotokoll wie WPA oder WEP, sollten Sie testweise Ihren Access Point auf offene Authentifizierung und keine Sicherheit einstellen. Danach versuchen Sie sich erneut mit Ihren Access Point zu verbinden. Nachdem Sie sich mit dem Access Point verbinden können, prüfen Sie die Sicherheitseinstellungen, beginnend mit einfachen Werkzeugen wie &man.ping.8;. Das Programm wpa_supplicant kann Ihnen bei der Fehlersuche helfen. Dazu starten Sie es manuell mit der Option und durchsuchen anschließend die Protokollinformationen nach eventuellen Fehlermeldungen. Zusätzlich gibt es auch zahlreiche Low-Level-Debugging-Werkzeuge. Die Ausgabe von Debugging-Informationen des 802.11 Protocol Support Layers lassen sich mit dem Programm wlandebug (das sich unter /usr/src/tools/tools/net80211 befindet) aktivieren. Um beispielsweise während der Suche nach Access Points und des Aufbaus von 802.11-Verbindungen (Handshake) auftretende Systemmeldungen auf die Konsole auszugeben, verwenden Sie den folgenden Befehl: &prompt.root; wlandebug -i ath0 +scan+auth+debug+assoc net.wlan.0.debug: 0 => 0xc80000<assoc,auth,scan> Der 802.11-Layer liefert umfangreiche Statistiken, die Sie mit dem Werkzeug wlanstats abrufen können. Diese Statistiken sollten alle Fehler identifizieren, die im 802.11-Layer auftreten. Beachten Sie aber, dass einige Fehler bereits im darunterliegenden Gerätetreiber auftreten und daher in diesen Statistiken nicht enthalten sind. Wie Sie Probleme des Gerätetreibers identifizieren, entnehmen Sie bitte der Dokumentation Ihres Gerätetreibers. Können Sie Ihr Problem durch diese Maßnahmen nicht lösen, sollten Sie einen Problembericht (PR) erstellen und die Ausgabe der weiter oben genannten Werkzeuge in den Bericht aufnehmen. Pav Lucistnik Beigetragen von
pav@FreeBSD.org
Bluetooth Bluetooth Übersicht Bluetooth ermöglicht die Bildung von persönlichen Netzwerken über drahtlose Verbindungen bei einer maximalen Reichweite von 10 Metern und operiert im unlizensierten 2,4-GHz-Band. Solche Netzwerke werden normalerweise spontan gebildet, wenn sich mobile Geräte, wie Mobiltelefone, Handhelds oder Notebooks miteinander verbinden. Im Gegensatz zu Wireless LAN ermöglicht Bluetooth auch höherwertige Dienste, wie FTP-ähnliche Dateiserver, Filepushing, Sprachübertragung, Emulation von seriellen Verbindungen und andere mehr. Der Bluetooth-Stack von &os; verwendet das Netgraph-Framework (&man.netgraph.4;). Viele Bluetooth-USB-Adapter werden durch den &man.ng.ubt.4;-Treiber unterstützt. Auf dem Chip BCM2033 von Broadcom basierende Bluetooth-Geräte werden von den Treibern &man.ubtbcmfw.4; sowie &man.ng.ubt.4; unterstützt. Die Bluetooth-PC-Card 3CRWB60-A von 3Com verwendet den &man.ng.bt3c.4;-Treiber. Serielle sowie auf UART basierende Bluetooth-Geräte werden von &man.sio.4;, &man.ng.h4.4; sowie &man.hcseriald.8; unterstützt. Dieses Kapitel beschreibt die Verwendung von USB-Bluetooth-Adaptern. Die Bluetooth-Unterstützung aktivieren Bluetooth-Unterstützung ist in der Regel als Kernelmodul verfügbar. Damit ein Gerät funktioniert, muss der entsprechende Treiber im Kernel geladen werden: &prompt.root; kldload ng_ubt Ist das Bluetooth-Gerät beim Systemstart angeschlossen, kann das entsprechende Modul auch von /boot/loader.conf geladen werden: ng_ubt_load="YES" Schließen Sie Ihren USB-Adapter an, sollte eine Meldung ähnlich der folgenden auf der Konsole (oder in syslog) erscheinen: ubt0: vendor 0x0a12 product 0x0001, rev 1.10/5.25, addr 2 ubt0: Interface 0 endpoints: interrupt=0x81, bulk-in=0x82, bulk-out=0x2 ubt0: Interface 1 (alt.config 5) endpoints: isoc-in=0x83, isoc-out=0x3, wMaxPacketSize=49, nframes=6, buffer size=294 Verwenden Sie &os; 6.0 oder eine 5.X-Version vor 5.5, müssen Sie den Bluetooth-Stack manuell starten. Ab &os; 5.5 beziehungsweise 6.1 und neuer wird der Stack hingegen automatisch von &man.devd.8; gestartet. Kopieren Sie /usr/share/examples/netgraph/bluetooth/rc.bluetooth nach /etc/rc.bluetooth. Über dieses Skript wird der Bluetooth-Stack gestartet und beendet. Es ist empfehlenswert, den Bluetooth-Stack zu beenden, bevor Sie den Adapter entfernen. Selbst wenn Sie dies nicht tun, kommt es (normalerweise) zu keinem fatalen Fehler. Wenn Sie den Bluetooth-Stack starten, erhalten Sie eine Meldung ähnlich der folgenden: &prompt.root; /etc/rc.bluetooth start ubt0 BD_ADDR: 00:02:72:00:d4:1a Features: 0xff 0xff 0xf 00 00 00 00 00 <3-Slot> <5-Slot> <Encryption> <Slot offset> <Timing accuracy> <Switch> <Hold mode> <Sniff mode> <Park mode> <RSSI> <Channel quality> <SCO link> <HV2 packets> <HV3 packets> <u-law log> <A-law log> <CVSD> <Paging scheme> <Power control> <Transparent SCO data> Max. ACL packet size: 192 bytes Number of ACL packets: 8 Max. SCO packet size: 64 bytes Number of SCO packets: 8 HCI Das Host Controller Interface (HCI) Das Host Controller Interface (HCI) bietet eine Befehlsschnittstelle zum Basisbandcontroller und Linkmanager, sowie Zugriff auf den Hardwarestatus und die Kontrollregister. Dadurch wird ein einheitlicher Zugriff auf die Fähigkeiten des Bluetooth-Basisbands möglich. Die HCI-Layer des Rechners tauschen Daten und Befehle mit der HCI-Firmware der Bluetooth-Geräte aus. Über den Host Controller Transport Layer-Treiber (also den physikalischen Bus) können beide HCI-Layer miteinander kommunizieren. Eine einzelne Netgraph-Gerätedatei vom Typ hci wird für ein einzelnes Bluetooth-Gerät erzeugt. Die HCI-Gerätedatei ist normalerweise mit der Bluetooth-Gerätetreiberdatei (downstream) sowie der L2CAP-Gerätedatei (upstream) verbunden. Alle HCI-Operationen müssen über die HCI-Gerätedatei und nicht über die Treiberdatei erfolgen. Der Standardname für die HCI-Gerätedatei (die in &man.ng.hci.4; beschrieben wird) lautet devicehci. Eine der wichtigsten Aufgaben ist das Auffinden von sich in Reichweite befindenden Bluetooth-Geräten. Diese Funktion wird als inquiry bezeichnet. Inquiry sowie andere mit HCI in Verbindung stehende Funktionen werden von &man.hccontrol.8; zur Verfügung gestellt. Das folgende Beispiel zeigt, wie man herausfindet, welche Bluetooth-Geräte sich in Reichweite befinden. Eine solche Abfrage dauert nur wenige Sekunden. Beachten Sie, dass ein Gerät nur dann antwortet, wenn es sich im Modus discoverable befindet. &prompt.user; hccontrol -n ubt0hci inquiry Inquiry result, num_responses=1 Inquiry result #0 BD_ADDR: 00:80:37:29:19:a4 Page Scan Rep. Mode: 0x1 Page Scan Period Mode: 00 Page Scan Mode: 00 Class: 52:02:04 Clock offset: 0x78ef Inquiry complete. Status: No error [00] BD_ADDR stellt, ähnlich der MAC-Adresse einer Netzkarte, die eindeutige Adresse eines Bluetooth-Gerätes dar. Diese Adresse ist für die Kommunikation mit dem Gerät nötig. Es ist aber auch möglich, BD_ADDR einen Klartextnamen zuzuweisen. Die Datei /etc/bluetooth/hosts enthält Informationen über die bekannten Bluetooth-Rechner. Das folgende Beispiel zeigt, wie man den Klartextnamen eines entfernten Geräts in Erfahrung bringen kann: &prompt.user; hccontrol -n ubt0hci remote_name_request 00:80:37:29:19:a4 BD_ADDR: 00:80:37:29:19:a4 Name: Pav's T39 Wenn Sie ein entferntes Bluetooth-Gerät abfragen, wird dieses Ihren Rechner unter dem Namen your.host.name (ubt0) finden. Dieser Name kann aber jederzeit geändert werden. Bluetooth ermöglicht Punkt-zu-Punkt-Verbindungen (an denen nur zwei Bluetooth-Geräte beteiligt sind), aber auch Punkt-zu-Multipunkt-Verbindungen, bei denen eine Verbindung von mehreren Bluetooth-Geräten gemeinsam genutzt wird. Das folgende Beispiel zeigt, wie man die aktiven Basisbandverbindungen des lokalen Gerätes anzeigen kann: &prompt.user; hccontrol -n ubt0hci read_connection_list Remote BD_ADDR Handle Type Mode Role Encrypt Pending Queue State 00:80:37:29:19:a4 41 ACL 0 MAST NONE 0 0 OPEN Ein connection handle ist für die Beendigung einer Basisbandverbindung nützlich. Im Normalfall werden inaktive Verbindungen aber automatisch vom Bluetooth-Stack getrennt. &prompt.root; hccontrol -n ubt0hci disconnect 41 Connection handle: 41 Reason: Connection terminated by local host [0x16] Rufen Sie hccontrol help auf, wenn Sie eine komplette Liste aller verfügbaren HCI-Befehle benötigen. Die meisten dieser Befehle müssen nicht als root ausgeführt werden. L2CAP Das Logical Link Control and Adaptation Protocol (L2CAP) Das Logical Link Control and Adaptation Protocol (L2CAP) bietet höherwertigen Protokollen verbindungsorientierte und verbindungslose Datendienste an. Dazu gehören auch Protokollmultiplexing, Segmentierung und Reassemblierung. L2CAP erlaubt höherwertigen Protokollen und Programmen den Versand und Empfang von L2CAP-Datenpaketen mit einer Länge von bis zu 64 Kilobytes. L2CAP arbeitet kanalbasiert. Ein Kanal ist eine logische Verbindung innerhalb einer Basisbandverbindung. Jeder Kanal ist dabei an ein einziges Protokoll gebunden. Mehrere Geräte können an das gleiche Protokoll gebunden sein, es ist aber nicht möglich, einen Kanal an mehrere Protokolle zu binden. Jedes über einen Kanal ankommende L2CAP-Paket wird an das entsprechende höherwertige Protokoll weitergeleitet. Mehrere Kanäle können sich die gleiche Basisbandverbindung teilen. Eine einzelne Netgraph-Gerätedatei vom Typ l2cap wird für ein einzelnes Bluetooth-Gerät erzeugt. Die L2CAP-Gerätedatei ist normalerweise mit der Bluetooth-HCI-Gerätedatei (downstream) sowie der Bluetooth-Socket-Gerätedatei (upstream) verbunden. Der Standardname für die L2CAP-Gerätedatei, die in &man.ng.l2cap.4; beschrieben wird, lautet devicel2cap. Ein nützlicher Befehl zum Anpingen von anderen Geräten ist &man.l2ping.8;. Einige Bluetooth-Geräte senden allerdings nicht alle erhaltenen Daten zurück. Die Ausgabe 0 bytes ist also kein Fehler: &prompt.root; l2ping -a 00:80:37:29:19:a4 0 bytes from 0:80:37:29:19:a4 seq_no=0 time=48.633 ms result=0 0 bytes from 0:80:37:29:19:a4 seq_no=1 time=37.551 ms result=0 0 bytes from 0:80:37:29:19:a4 seq_no=2 time=28.324 ms result=0 0 bytes from 0:80:37:29:19:a4 seq_no=3 time=46.150 ms result=0 Das Programm &man.l2control.8; liefert Informationen über L2CAP-Dateien. Das folgende Beispiel zeigt, wie man die Liste der logischen Verbindungen (Kanäle) sowie die Liste der Basisbandverbindungen abfragen kann: &prompt.user; l2control -a 00:02:72:00:d4:1a read_channel_list L2CAP channels: Remote BD_ADDR SCID/ DCID PSM IMTU/ OMTU State 00:07:e0:00:0b:ca 66/ 64 3 132/ 672 OPEN &prompt.user; l2control -a 00:02:72:00:d4:1a read_connection_list L2CAP connections: Remote BD_ADDR Handle Flags Pending State 00:07:e0:00:0b:ca 41 O 0 OPEN &man.btsockstat.1; ist ein weiteres Diagnoseprogramm. Es funktioniert analog zu &man.netstat.1;, arbeitet aber mit Bluetooth-Datenstrukturen. Das folgende Beispiel zeigt die gleiche Liste der logischen Verbindungen wie &man.l2control.8; im vorherigen Beispiel. &prompt.user; btsockstat Active L2CAP sockets PCB Recv-Q Send-Q Local address/PSM Foreign address CID State c2afe900 0 0 00:02:72:00:d4:1a/3 00:07:e0:00:0b:ca 66 OPEN Active RFCOMM sessions L2PCB PCB Flag MTU Out-Q DLCs State c2afe900 c2b53380 1 127 0 Yes OPEN Active RFCOMM sockets PCB Recv-Q Send-Q Local address Foreign address Chan DLCI State c2e8bc80 0 250 00:02:72:00:d4:1a 00:07:e0:00:0b:ca 3 6 OPEN Das RFCOMM-Protokoll RFCOMM Das RFCOMM-Protokoll emuliert serielle Verbindungen über das L2CAP-Protokoll. Es basiert auf dem ETSI-Standard TS 07.10. Bei RFCOMM handelt es sich um ein einfaches Transportprotokoll, das um Funktionen zur Emulation der 9poligen Schaltkreise von mit RS-232 (EIATIA-232-E) kompatiblen seriellen Ports ergänzt wurde. RFCOMM erlaubt bis zu 60 simultane Verbindungen (RFCOMM-Kanäe) zwischen zwei Bluetooth-Geräten. Eine RFCOMM-Kommunikation besteht aus zwei Anwendungen (den Kommunikationsendpunkten), die über das Kommunikationssegment miteinander verbunden sind. RFCOMM unterstützt Anwendungen, die auf serielle Ports angewiesen sind. Das Kommunikationssegment entspricht der (direkten) Bluetooth-Verbindung zwischen den beiden Geräten. RFCOMM kümmert sich um die direkte Verbindung von zwei Geräten, oder um die Verbindung zwischen einem Gerät und einem Modem (Netzwerkverbindung). RFCOMM unterstützt auch andere Konfigurationen. Ein Beispiel dafür sind Module, die drahtlose Bluetooth-Geräte mit einer verkabelten Schnittstelle verbinden können. Unter &os; wurde das RFCOMM-Protokoll im Bluetooth Socket-Layer implementiert. Pairing Erstmaliger Verbindungsaufbau zwischen zwei Bluetooth-Geräten (<foreignphrase>Pairing</foreignphrase>) In der Voreinstellung nutzt Bluetooth keine Authentifizierung, daher kann sich jedes Bluetoothgerät mit jedem anderen Gerät verbinden. Ein Bluetoothgerät (beispielsweise ein Mobiltelefon) kann jedoch für einen bestimmten Dienst (etwa eine Einwählverbindung) eine Authentifizierung anfordern. Bluetooth verwendet zu diesem Zweck PIN-Codes. Ein PIN-Code ist ein maximal 16 Zeichen langer ASCII-String. Damit eine Verbindung zustande kommt, muss auf beiden Geräten der gleiche PIN-Code verwendet werden. Nachdem der Code eingegeben wurde, erzeugen beide Geräte einen link key, der auf den Geräten gespeichert wird. Beim nächsten Verbindungsaufbau wird der zuvor erzeugte Link Key verwendet. Diesen Vorgang bezeichnet man als Pairing. Geht der Link Key auf einem Gerät verloren, muss das Pairing wiederholt werden. Der &man.hcsecd.8;-Daemon verarbeitet alle Bluetooth-Authentifzierungsanforderungen und wird über die Datei /etc/bluetooth/hcsecd.conf konfiguriert. Der folgende Ausschnitt dieser Datei zeigt die Konfiguration für ein Mobiltelefon, das den PIN-Code 1234 verwendet: device { bdaddr 00:80:37:29:19:a4; name "Pav's T39"; key nokey; pin "1234"; } Von der Länge abgesehen, unterliegen PIN-Codes keinen Einschränkungen. Einige Geräte, beispielsweise Bluetooth-Headsets, haben einen festen PIN-Code eingebaut. Die Option sorgt dafür, dass der &man.hcsecd.8;-Daemon im Vordergrund läuft. Dadurch kann der Ablauf einfach verfolgt werden. Stellen Sie das entfernte Gerät auf receive pairing und initiieren Sie die Bluetoothverbindung auf dem entfernten Gerät. Sie erhalten die Meldung, dass Pairing akzeptiert wurde und der PIN-Code benötigt wird. Geben Sie den gleichen PIN-Code ein, den Sie in hcsecd.conf festgelegt haben. Ihr Computer und das entfernte Gerät sind nun miteinander verbunden. Alternativ können Sie das Pairing auch auf dem entfernten Gerät initiieren. Unter &os; 5.5, 6.1 und neuer können Sie hcsecd durch das Einfügen der folgenden Zeile in /etc/rc.conf beim Systemstart automatisch aktivieren: hcsecd_enable="YES" Es folgt nun eine beispielhafte Ausgabe des hcsecd-Daemons: hcsecd[16484]: Got Link_Key_Request event from 'ubt0hci', remote bdaddr 0:80:37:29:19:a4 hcsecd[16484]: Found matching entry, remote bdaddr 0:80:37:29:19:a4, name 'Pav's T39', link key doesn't exist hcsecd[16484]: Sending Link_Key_Negative_Reply to 'ubt0hci' for remote bdaddr 0:80:37:29:19:a4 hcsecd[16484]: Got PIN_Code_Request event from 'ubt0hci', remote bdaddr 0:80:37:29:19:a4 hcsecd[16484]: Found matching entry, remote bdaddr 0:80:37:29:19:a4, name 'Pav's T39', PIN code exists hcsecd[16484]: Sending PIN_Code_Reply to 'ubt0hci' for remote bdaddr 0:80:37:29:19:a4 SDP Das Service Discovery Protocol (SDP) Das Service Discovery Protocol (SDP) erlaubt es Clientanwendungen, von Serveranwendungen angebotene Dienste sowie deren Eigenschaften abzufragen. Zu diesen Eigenschaften gehören die Art oder die Klasse der angebotenen Dienste sowie der Mechanismus oder das Protokoll, die zur Nutzung des Dienstes notwendig sind. SDP ermöglicht Verbindungen zwischen einem SDP-Server und einem SDP-Client. Der Server enthält eine Liste mit den Eigenschaften der vom Server angebotenen Dienste. Jeder Eintrag beschreibt jeweils einen einzigen Serverdienst. Ein Client kann diese Informationen durch eine SDP-Anforderung vom SDP-Server beziehen. Wenn der Client oder eine Anwendung des Clients einen Dienst nutzen will, muss eine seperate Verbindung mit dem Dienstanbieter aufgebaut werden. SDP bietet einen Mechanismus zum Auffinden von Diensten und deren Eigenschaften an, es bietet aber keine Mechanismen zur Verwendung dieser Dienste. Normalerweise sucht ein SDP-Client nur nach Diensten, die bestimmte geforderte Eigenschaften erfüllen. Es ist aber auch möglich, anhand der Dienstbeschreibungen eine allgemeine Suche nach den von einem Server angebotenen Diensten durchzuführen. Diesen Vorgang bezeichnet man als Browsing. Der Bluetooth-SDP-Server &man.sdpd.8; und der Kommandozeilenclient &man.sdpcontrol.8; sind bereits in der Standardinstallation von &os; enthalten. Das folgende Beispiel zeigt, wie eine SDP-Abfrage durchgeführt wird: &prompt.user; sdpcontrol -a 00:01:03:fc:6e:ec browse Record Handle: 00000000 Service Class ID List: Service Discovery Server (0x1000) Protocol Descriptor List: L2CAP (0x0100) Protocol specific parameter #1: u/int/uuid16 1 Protocol specific parameter #2: u/int/uuid16 1 Record Handle: 0x00000001 Service Class ID List: Browse Group Descriptor (0x1001) Record Handle: 0x00000002 Service Class ID List: LAN Access Using PPP (0x1102) Protocol Descriptor List: L2CAP (0x0100) RFCOMM (0x0003) Protocol specific parameter #1: u/int8/bool 1 Bluetooth Profile Descriptor List: LAN Access Using PPP (0x1102) ver. 1.0 ... und so weiter. Beachten Sie, dass jeder Dienst eine Liste seiner Eigenschaften (etwa den RFCOMM-Kanal) zurückgibt. Je nach dem, welche Dienste Sie benötigen, sollten Sie sich einige dieser Eigenschaften notieren. Einige Bluetooth-Implementationen unterstützen kein Service Browsing und geben daher eine leere Liste zurück. Ist dies der Fall, ist es dennoch möglich, nach einem bestimmten Dienst zu suchen. Das folgende Beispiel demonstriert die Suche nach dem OBEX Object Push (OPUSH) Dienst: &prompt.user; sdpcontrol -a 00:01:03:fc:6e:ec search OPUSH Unter &os; ist es die Aufgabe des &man.sdpd.8;-Servers, Bluetooth-Clients verschiedene Dienste anzubieten. Unter &os; 5.5, 6.1 und neuer können Sie dazu die folgende Zeile in die Datei /etc/rc.conf einfügen: sdpd_enable="YES" Nun kann der sdpd-Daemon durch folgene Eingabe gestartet werden: &prompt.root; /etc/rc.d/sdpd start Unter &os; 6.0 und &os; 5.X-Versionen vor 5.5 ist sdpd nicht in die &os;-Startskripten integriert. Daher müssen Sie den Damon durch folgende Eingabe manuell starten: &prompt.root; sdpd Der lokale Server, der den entfernten Clients Bluetooth-Dienste anbieten soll, bindet diese Dienste an den lokalen SDP-Daemon. Ein Beispiel für eine solche Anwendung ist &man.rfcomm.pppd.8;. Einmal gestartet, wird der Bluetooth-LAN-Dienst an den lokalen SDP-Daemon gebunden. Die Liste der vorhandenen Dienste, die am lokalen SDP-Server registriert sind, lässt sich durch eine SDP-Abfrage über einen lokalen Kontrollkanal abfragen: &prompt.root; sdpcontrol -l browse Einwahlverbindungen (Dial-Up Networking (DUN)) oder Netzwerkverbindungen mit PPP (LAN)-Profilen einrichten Das Dial-Up Networking (DUN)-Profil wird vor allem für Modems und Mobiltelefone verwendet. Dieses Profil ermöglicht folgende Szenarien: Die Verwendung eines Mobiltelefons oder eines Modems durch einen Computer als drahtloses Modem, um sich über einen Einwahlprovider mit dem Internet zu verbinden oder andere Einwahldienste zu benutzen. Die Verwendung eines Mobiltelefons oder eines Modems durch einen Computers, um auf Datenabfragen zu reagieren. Der Zugriff auf ein Netzwerk über das PPP (LAN)-Profil kann in folgenden Situationen verwendet werden: Den LAN-Zugriff für ein einzelnes Bluetooth-Gerät Den LAN-Zugriff für mehrere Bluetooth-Geräte Eine PC-zu-PC-Verbindung (unter Verwendung einer PPP-Verbindung über eine emulierte serielle Verbindung) Beide Profile werden unter &os; durch &man.ppp.8; sowie &man.rfcomm.pppd.8; implementiert - einem Wrapper, der RFCOMM Bluetooth-Verbindungen unter PPP nutzbar macht. Bevor ein Profil verwendet werden kann, muss ein neuer PPP-Abschnitt in /etc/ppp/ppp.conf erzeugt werden. Beispielkonfigurationen zu diesem Thema finden Sie in &man.rfcomm.pppd.8;. Im folgenden Beispiel verwenden wir &man.rfcomm.pppd.8;, um eine RFCOMM-Verbindung zu einem entfernten Gerät mit der BD_ADDR 00:80:37:29:19:a4 auf dem RFCOMM-Kanal DUN aufzubauen. Die aktuelle RFCOMM-Kanalnummer erhalten Sie vom entfernten Gerät über SDP. Es ist auch möglich, manuell einen RFCOMM-Kanal festzulegen. In diesem Fall führt &man.rfcomm.pppd.8; keine SDP-Abfrage durch. Verwenden Sie &man.sdpcontrol.8;, um die RFCOMM-Kanäle des entfernten Geräts herauszufinden. &prompt.root; rfcomm_pppd -a 00:80:37:29:19:a4 -c -C dun -l rfcomm-dialup Der &man.sdpd.8;-Server muss laufen, damit ein Netzzugriff mit dem PPP (LAN)-Profil möglich ist. Außerdem muss für den LAN-Client ein neuer Eintrag in /etc/ppp/ppp.conf erzeugt werden. Beispielkonfigurationen zu diesem Thema finden Sie in &man.rfcomm.pppd.8;. Danach starten Sie den RFCOMM PPP-Server über eine gültige RFCOMM-Kanalnummer. Der RFCOMM PPP-Server bindet dadurch den Bluetooth-LAN-Dienst an den lokalen SDP-Daemon. Das folgende Beispiel zeigt Ihnen, wie man den RFCOMM PPP-Server startet. &prompt.root; rfcomm_pppd -s -C 7 -l rfcomm-server OBEX Das Profil OBEX-Push (OPUSH) OBEX ist ein häufig verwendetes Protokoll für den Dateitransfer zwischen Mobilgeräten. Sein Hauptzweck ist die Kommunikation über die Infrarotschnittstelle. Es dient daher zum Datentransfer zwischen Notebooks oder PDAs sowie zum Austausch von Visitenkarten oder Kalendereinträgen zwischen Mobiltelefonen und anderen Geräten mit PIM-Funktionen. Server und Client von OBEX werden durch das Softwarepaket obexapp bereitgestellt, das als Port comms/obexapp verfügbar ist. Mit dem OBEX-Client werden Objekte zum OBEX-Server geschickt oder angefordert. Ein Objekt kann etwa eine Visitenkarte oder ein Termin sein. Der OBEX-Client fordert über SDP die Nummer des RFCOMM-Kanals vom entfernten Gerät an. Dies kann auch durch die Verwendung des Servicenamens anstelle der RFCOMM-Kanalnummer erfolgen. Folgende Dienste werden unterstützt: IrMC, FTRN und OPUSH. Es ist möglich, den RFCOMM-Kanal als Nummer anzugeben. Es folgt nun ein Beispiel für eine OBEX-Sitzung, bei der ein Informationsobjekt vom Mobiltelefon angefordert und ein neues Objekt (hier eine Visitenkarte) an das Telefonbuch des Mobiltelefons geschickt wird: &prompt.user; obexapp -a 00:80:37:29:19:a4 -C IrMC obex> get telecom/devinfo.txt Success, response: OK, Success (0x20) obex> put new.vcf Success, response: OK, Success (0x20) obex> di Success, response: OK, Success (0x20) Um OBEX-Push-Dienste anbieten zu können, muss der sdpd-Server gestartet sein. Ein Wurzelverzeichnis, in dem alle ankommenden Objekt gespeichert werden, muss zusätzlich angelegt werden. In der Voreinstellung ist dies /var/spool/obex. Starten Sie den OBEX-Server mit einer gültigen Kanalnummer. Der OBEX-Server registriert nun den OBEX-Push-Dienst mit dem lokalen SDP-Daemon. Um den OBEX-Server zu starten, geben Sie Folgendes ein: &prompt.root; obexapp -s -C 10 Das Profil Serial-Port (SPP) Durch dieses Profil können Bluetooth-Geräte RS232- (oder damit kompatible) serielle Kabelverbindungen emulieren. Anwendungen sind dadurch in der Lage, über eine virtuelle serielle Verbindung Bluetooth als Ersatz für eine Kabelverbindung zu nutzen. Das Profil Serial-Port wird durch &man.rfcomm.sppd.1; verwirklicht. Pseudo-tty wird hier als virtuelle serielle Verbindung verwendet. Das folgende Beispiel zeigt, wie man sich mit einem entfernten Serial-Port-Dienst verbindet. Beachten Sie, dass Sie den RFCOMM-Kanal nicht angeben müssen, da &man.rfcomm.sppd.1; diesen über SDP vom entfernten Gerät abfragen kann. Wenn Sie dies nicht wollen, können Sie einen RFCOMM-Kanal auch manuell festlegen. &prompt.root; rfcomm_sppd -a 00:07:E0:00:0B:CA -t /dev/ttyp6 rfcomm_sppd[94692]: Starting on /dev/ttyp6... Sobald die Verbindung hergestellt ist, kann pseudo-tty als serieller Port verwenden werden. &prompt.root; cu -l ttyp6 Problembehandlung Ein entferntes Gerät kann keine Verbindung aufbauen Einige ältere Bluetooth-Geräte unterstützen keinen Rollentausch. Wenn &os; eine neue Verbindung akzeptiert, wird versucht, die Rolle zu tauschen, um zum Master zu werden. Geräte, die dies nicht unterstützen, können keine Verbindung aufbauen. Beachten Sie, dass der Rollentausch ausgeführt wird, sobald eine neue Verbindung aufgebaut wird, daher ist es nicht möglich, das entfernte Gerät zu fragen, ob es den Rollentausch unterstützt. Dieses Verhalten von &os; kann aber durch eine HCI-Option geändert werden: &prompt.root; hccontrol -n ubt0hci write_node_role_switch 0 Wo finde ich genaue Informationen darüber, was schiefgelaufen ist? Verwenden Sie hcidump, das Sie über den Port comms/hcidump installieren können. hcidump hat Ähnlichkeiten mit &man.tcpdump.1;. Es dient zur Anzeige der Bluetooth-Pakete in einem Terminal oder zur Speicherung der Pakete in einer Datei (Dump).
Steve Peterson Geschrieben von LAN-Kopplung mit einer Bridge Einführung Subnetz Bridge Manchmal ist es nützlich, ein physikalisches Netzwerk (wie ein Ethernetsegment) in zwei separate Netzwerke aufzuteilen, ohne gleich IP-Subnetze zu erzeugen, die über einen Router miteinander verbunden sind. Ein Gerät, das zwei Netze auf diese Weise verbindet, wird als Bridge bezeichnet. Jedes FreeBSD-System mit zwei Netzkarten kann als Bridge fungieren. Die Bridge arbeitet, indem sie die MAC Layeradressen (Ethernet Adressen) der Geräte in ihren Netzsegmenten lernt. Der Verkehr wird nur dann zwischen zwei Netzsegmenten weitergeleitet, wenn sich Sender und Empfänger in verschiedenen Netzsegmenten befinden. In vielerlei Hinsicht entspricht eine Bridge daher einem Ethernet-Switch mit sehr wenigen Ports. Situationen, in denen <emphasis>Bridging</emphasis> angebracht ist Eine Bridge wird vor allem in folgenden zwei Situationen verwendet: Hohes Datenaufkommen in einem Segment In der ersten Situation wird Ihr physisches Netz mit Datenverkehr überschwemmt. Aus irgendwelchen Gründen wollen Sie allerdings keine Subnetze verwenden, die über einen Router miteinander verbunden sind. Stellen Sie sich einen Zeitungsverlag vor, in dem sich die Redaktions- und Produktionsabteilungen in verschiedenen Subnetzen befinden. Die Redaktionsrechner verwenden den Server A für Dateioperationen, und die Produktionsrechner verwenden den Server B. Alle Benutzer sind über ein gemeinsames Ethernet-LAN miteinander verbunden. Durch das hohe Datenaufkommen sinkt die Geschwindigkeit des gesamten Netzwerks. Würde man die Redaktionsrechner und die Produktionsrechner in separate Netzsegmente auslagern, könnte man diese beiden Segmente über eine Bridge verbinden. Nur der für Rechner im jeweils anderen Segment bestimmte Verkehr wird dann über die Brigde in das andere Netzsegment geleitet. Dadurch verringert sich das Gesamtdatenaufkommen in beiden Segmenten. Filtering/Traffic Shaping Firewall Firewall NAT Die zweite häufig anzutreffende Situation tritt auf, wenn Firewallfunktionen benötigt werden, ohne dass Network Adress Translation (NAT) verwendet wird. Ein Beispiel dafür wäre ein kleines Unternehmen, das über DSL oder ISDN an seinen ISP angebunden ist. Es verfügt über 13 weltweit erreichbare IP-Adressen, sein Netzwerk besteht aus 10 Rechnern. In dieser Situation ist die Verwendung von Subnetzen sowie einer routerbasierten Firewall schwierig. Router DSL ISDN Eine brigdebasierte Firewall kann konfiguriert und in den ISDN/DSL-Downstreampfad ihres Routers eingebunden werden, ohne sich um IP-Adressen kümmern zu müssen. Die LAN-Kopplung konfigurieren Auswahl der Netzkarten Eine Bridge benötigt mindestens zwei Netzkarten. Leider sind unter FreeBSD nicht alle verfügbaren Netzkarten dafür geeignet. Lesen Sie &man.bridge.4; für Informationen zu unterstützten Karten. Installieren und testen Sie beide Netzkarten, bevor Sie fortfahren. Anpassen der Kernelkonfiguration Kerneloptionen BRIDGE Um die Kernelunterstützung für die LAN-Kopplung zu aktivieren, fügen Sie options BRIDGE in Ihre Kernelkonfigurationsdatei ein, und erzeugen einen neuen Kernel. Firewallunterstützung Firewall Wenn Sie die Bridge als Firewall verwenden wollen, müssen Sie zusätzlich die Option IPFIREWALL einfügen. Die Konfiguration einer Firewall wird in des Handbuchs beschrieben. Wenn Sie Nicht-IP-Pakete (wie ARP-Pakete) durch Ihre Bridge leiten wollen, haben Sie drei Möglichkeiten. Eine Mögleichkeit wäre es, die folgende Option in Ihre Kernelkonfigurationsdatei aufzunehmen und den Kernel neu zu bauen: option IPFIREWALL_DEFAULT_TO_ACCEPT Alternativ können Sie den Firewall-Typ in der Datei rc.conf auf "open" setzen: firewall_type="open" Beachten Sie aber, dass Ihre Firewall durch diese Optionen per Voreinstellung alle Pakete und Verbindungen akzeptiert! Der Einsatz dieser Optionen erfordert also umfangreiche Anpassungen Ihrer Firewallregeln. Die dritte Möglichkeit ist der Einsatz der folgenden &man.ipfw.8;-Regel: &prompt.root; ipfw add allow mac-type arp layer2 Diese Regel können Sie auch in Ihren bereits existierenden Regelsatz aufnehmen. Da diese Regel &man.arp.8;-Pakete durchlassen soll, muss Sie am Beginn Ihrer Firewallregeln platziert werden. Unterstützung für Traffic Shaping Wenn Sie die Bridge als Traffic-Shaper verwenden wollen, müssen Sie die Option DUMMYNET in Ihre Kernelkonfigurationsdatei einfügen. Lesen Sie &man.dummynet.4;, um weitere Informationen zu erhalten. Die LAN-Kopplung aktivieren Fügen Sie die Zeile net.link.ether.bridge.enable=1 in /etc/sysctl.conf ein, um die Bridge zur Laufzeit zu aktivieren, sowie die Zeile net.link.ether.bridge.config=if1,if2 um die LAN-Kopplung für die festgelegten Geräte zu ermöglichen (ersetzen Sie dazu if1 und if2 durch die Namen Ihrer Netzkarten). Wenn Sie die Datenpakete via &man.ipfw.8; filtern wollen, sollten Sie zusätzlich folgende Zeile einfügen: net.link.ether.bridge.ipfw=1 Vor &os; 5.2-RELEASE verwenden Sie die folgenden Zeilen: net.link.ether.bridge=1 net.link.ether.bridge_cfg=if1,if2 net.link.ether.bridge_ipfw=1 Sonstige Informationen Wenn Sie via &man.ssh.1; auf die Bridge zugreifen wollen, können Sie einer der Netzkarten eine IP-Adresse zuzuweisen. Es besteht Einigkeit darüber, dass es eine schlechte Idee ist, beiden Karten eine IP-Adresse zuzuweisen. Wenn Sie verschiedene Bridges in Ihrem Netzwerk haben, kann es dennoch nicht mehr als einen Weg zwischen zwei Arbeitsplätzen geben. Das heißt, Spanning tree link Management wird nicht unterstützt. Eine Bridge kann, besonders für Verkehr über Segmente, die Laufzeiten von Paketen erhöhen. Jean-François Dockès Aktualisiert von Alex Dupre Reorganisiert und erweitert von Start und Betrieb von FreeBSD über ein Netzwerk plattenloser Arbeitsplatz plattenloser Betrieb FreeBSD kann über ein Netzwerk starten und arbeiten, ohne eine lokale Festplatte zu verwenden, indem es Dateisysteme eines NFS-Servers in den eigenen Verzeichnisbaum einhängt. Dazu sind, von den Standardkonfigurationsdateien abgesehen, keine Systemänderungen nötig. Ein solches System kann leicht installiert werden, da alle notwendigen Elemente bereits vorhanden sind: Es gibt mindestens zwei Möglichkeiten, den Kernel über das Netzwerk zu laden: PXE: Das Preboot eXecution Environment System von &intel; ist eine Art intelligentes Boot-ROM, das in einigen Netzkarten oder Hauptplatinen verwendet wird. Weitere Informationen finden Sie in &man.pxeboot.8;. Der Port Etherboot (net/etherboot) erzeugt ROM-fähigen Code, um einen Kernel über das Netzwerk zu laden. Dieser Code kann entweder auf ein Boot-PROM einer Netzkarte gebrannt werden, was von vielen Netzkarten unterstützt wird. Oder er kann von einer lokalen Diskette, Festplatte oder von einem laufenden &ms-dos;-System geladen werden. Das Beispielskript /usr/share/examples/diskless/clone_root erleichtert die Erzeugung und die Wartung des root-Dateisystems auf dem Server. Das Skript muss wahrscheinlich angepasst werden, dennoch werden Sie schnell zu einem Ergebnis kommen. Die Startdateien, die einen plattenlosen Systemstart erkennen und unterstützen, sind nach der Installation in /etc vorhanden. Dateiauslagerungen können sowohl via NFS als auch auf die lokale Platte erfolgen. Es gibt verschiedene Wege, einen plattenlosen Rechner einzurichten. Viele Elemente sind daran beteiligt, die fast immer an den persönlichen Geschmack angepasst werden können. Im folgenden Abschnitt wird die Installation eines kompletten Systems beschrieben, wobei der Schwerpunkt auf Einfachheit und Kompatibilität zu den Standardstartskripten von FreeBSD liegt. Das beschriebene System hat folgende Eigenschaften: Die plattenlosen Rechner haben ein gemeinsames /- sowie ein gemeinsames /usr-Dateisystem, die jeweils schreibgeschützt sind. Das root-Dateisystem ist eine Kopie eines Standardwurzelverzeichnisses von FreeBSD (üblicherweise das des Servers), bei dem einige Konfigurationsdateien durch für den plattenlosen Betrieb geeignete Versionen ersetzt wurden. Für die Bereiche des root-Dateisystems, die beschreibbar sein müssen, werden mit &man.md.4; virtuelle Dateisysteme erzeugt. Dies bedeutet aber auch, dass alle Veränderungen verloren gehen, wenn das System neu gestartet wird. Der Kernel wird, in Abhängigkeit von der jeweiligen Situation, entweder von Etherboot oder von PXE transferiert und geladen. Das hier beschriebene System ist nicht sicher. Es sollte nur in einem gesicherten Bereich eines Netzwerks verwendet werden und für andere Rechner nicht erreichbar sein. Alle Informationen in diesem Abschnitt wurden unter &os; 5.2.1-RELEASE getestet. Hintergrundinformationen Die Einrichtung von plattenlosen Rechnern ist einfach, aber auch fehleranfällig. Der Grund dafür sind auftretende Fehler, die sich oft nur schwer zuordnen lassen. Unter anderem sind dafür folgende Umstände verantwortlich: Kompilierte Optionen haben zur Laufzeit unterschiedliche Auswirkungen. Fehlermeldungen sind oft kryptisch oder fehlen vollständig. Daher ist es nützlich, über die im Hintergrund ablaufenden Mechanismen Bescheid zu wissen. Dadurch wird es einfacher, eventuell auftretende Fehler zu beheben. Verschiedene Operationen müssen ausgeführt werden, um ein System erfolgreich zu starten: Der Rechner benötigt einige Startparameter, wie seine IP-Adresse, die Namen ausführbarer Dateien, den Servernamen sowie den root-Pfad. Für die Übermittlung dieser Informationen wird entweder das DHCP- oder das BOOTP-Protokoll verwendet. Bei DHCP handelt es sich um eine abwärtskompatible Erweiterung von BOOTP, die die gleichen Portnummern und das gleiche Paketformat verwendet. Es ist möglich, das System so zu konfigurieren, dass es nur BOOTP verwendet. Das Serverprogramm &man.bootpd.8; ist bereits im &os;-Basissystem enthalten. DHCP hat im Vergleich zu BOOTP allerdings mehrere Vorteile (bessere Konfigurationsdateien, die Möglichkeit zur Verwendung von PXE, sowie viele andere, die nicht in direktem Zusammenhang mit dem plattenlosen Betrieb stehen). Dieser Abschnitt beschreibt die Konfiguration mittels DHCP. Wenn möglich, werden aber entsprechende Beispiele für &man.bootpd.8; angeführt. Die Beispielkonfiguration nutzt das Softwarepaket ISC DHCP. Der Rechner muss ein oder mehrere Programme in den lokalen Speicher laden. Dazu wird entweder TFTP oder NFS verwendet. Die Auswahl zwischen TFTP und NFS erfolgt über das Setzen von verschiedenen Kompilieroptionen. Ein häufig gemachter Fehler ist es, Dateinamen für das falsche Protokoll anzugeben: TFTP transferiert normalerweise alle Dateien aus einem einzigen Verzeichnis des Servers, und erwartet einen Pfad relativ zu diesem Verzeichnis. NFS verlangt hingegen absolute Dateipfade. Die möglichen Bootstrap-Programme und der Kernel müssen initialisiert und ausgeführt werden. Dabei gibt es zwei Möglichkeiten: PXE lädt &man.pxeboot.8;. Dabei handelt es sich um eine modifizierte Version des &os;-Laders der Boot-Phase drei. Der &man.loader.8; beschafft alle für den Systemstart notwendigen Parameter, und hinterlegt diese in der Kernelumgebung, bevor er die Kontrolle übergibt. Es ist hier möglich, den GENERIC-Kernel zu verwenden. Etherboot lädt den Kernel hingegen direkt. Dafür müssen Sie allerdings einen Kernel mit spezifischen Optionen erzeugen. PXE und Etherboot sind zwar im Großen und Ganzen gleichwertig, da der Kernel aber viele Aufgaben an &man.loader.8; übergibt, sollte bevorzugt PXE eingesetzt werden. Wenn Ihr BIOS und Ihre Netzkarten PXE unterstützen, sollten Sie es auch verwenden. Zuletzt muss der Rechner auf seine Dateisysteme zugreifen können. Dafür wird stets NFS verwendet. Weitere Informationen finden Sie in &man.diskless.8;. Installationsanweisungen Konfiguration unter Verwendung von <application>ISC DHCP</application> DHCP plattenloser Betrieb Der ISC DHCP-Server kann Anfragen sowohl von BOOTP als auch von DHCP beantworten. isc-dhcp 3.0 ist nicht Teil des Basissystems. Sie müssen es daher zuerst installieren. Verwenden Sie dazu den Port net/isc-dhcp3-server oder das entsprechende Paket. Nachdem ISC DHCP installiert ist, muss das Programm konfiguriert werden (normalerweise in /usr/local/etc/dhcpd.conf). Im folgenden Beispiel verwendet Rechner margaux Etherboot, während Rechner corbieres PXE verwendet: default-lease-time 600; max-lease-time 7200; authoritative; option domain-name "example.com"; option domain-name-servers 192.168.4.1; option routers 192.168.4.1; subnet 192.168.4.0 netmask 255.255.255.0 { use-host-decl-names on; option subnet-mask 255.255.255.0; option broadcast-address 192.168.4.255; host margaux { hardware ethernet 01:23:45:67:89:ab; fixed-address margaux.example.com; next-server 192.168.4.4; filename "/tftpboot/kernel.diskless"; option root-path "192.168.4.4:/data/misc/diskless"; } host corbieres { hardware ethernet 00:02:b3:27:62:df; fixed-address corbieres.example.com; next-server 192.168.4.4; filename "pxeboot"; option root-path "192.168.4.4:/data/misc/diskless"; } } Diese Option weist dhcpd an, den Wert der host-Deklaration als Rechnernamen des plattenlosen Rechners zu senden. Alternativ kann man der host-Deklaration Folgendes hinzufügen: option host-name margaux Die Anweisung next-server bestimmt den TFTP- oder NFS-Server, von dem der Loader oder der Kernel geladen werden (in der Voreinstellung ist das der DHCP-Server selbst). Die Anweisung filename bestimmt die Datei, die Etherboot als nächstes lädt. Das genaue Format hängt von der gewählten Transfermethode ab. Etherboot kann sowohl mit NFS als auch mit TFTP kompiliert werden. In der Voreinstellung wird der &os;-Port mit NFS-Unterstützung kompiliert. PXE verwendet TFTP, daher wird im Beispiel ein relativer Dateipfad verwendet. Dies kann aber, je nach Konfiguration des TFTP-Servers, auch anders sein. Beachten Sie, dass PXE pxeboot lädt, und nicht den Kernel. Es ist auch möglich, das Verzeichnis /boot einer &os;-CD-ROM von pxeboot laden zu lassen. &man.pxeboot.8; kann einen GENERIC-Kernel laden, dadurch ist es möglich, PXE von einer entfernten CD-ROM zu starten. Die Option root-path bestimmt den Pfad des root-Dateisystems in normaler NFS-Schreibweise. Wird PXE verwendet, ist es möglich, die IP-Adresse des Rechners wegzulassen, solange nicht die Kerneloption BOOTP aktiviert wird. Der NFS-Server entspricht in diesem Fall dem TFTP-Server. Konfiguration bei Verwendung von BOOTP BOOTP plattenloser Betrieb Es folgt nun eine der Konfiguration von DHCP entsprechende Konfiguration (für einen Client) für bootpd. Zu finden ist die Konfigurationsdatei unter /etc/bootptab. Beachten Sie bitte, dass Etherboot mit der Option NO_DHCP_SUPPORT kompiliert werden muss, damit BOOTP verwendet werden kann. PXE hingegen benötigt DHCP. Der einzige offensichtliche Vorteil von bootpd ist, dass es bereits im Basissystem vorhanden ist. .def100:\ :hn:ht=1:sa=192.168.4.4:vm=rfc1048:\ :sm=255.255.255.0:\ :ds=192.168.4.1:\ :gw=192.168.4.1:\ :hd="/tftpboot":\ :bf="/kernel.diskless":\ :rp="192.168.4.4:/data/misc/diskless": margaux:ha=0123456789ab:tc=.def100 Ein Startprogramm unter Verwendung von <application>Etherboot</application> erstellen Etherboot Die Internetseite von Etherboot enthält ausführliche Informationen, die zwar vor allem für Linux gedacht sind, aber dennoch nützliche Informationen enthalten. Im Folgenden wird daher nur grob beschrieben, wie Sie Etherboot auf einem FreeBSD-System einsetzen können. Als Erstes müssen Sie net/etherboot als Paket oder als Port installieren. Sie können Etherboot so konfigurieren, dass TFTP anstelle von NFS verwendet wird, indem Sie die Datei Config im Quellverzeichnis von Etherboot bearbeiten. Für unsere Installation verwenden wir eine Startdiskette. Für Informationen zu anderen Methoden (PROM oder &ms-dos;-Programme) lesen Sie bitte die Dokumentation zu Etherboot. Um eine Startdiskette zu erzeugen, legen Sie eine Diskette in das Laufwerk des Rechners ein, auf dem Sie Etherboot installiert haben. Danach wechseln Sie in das Verzeichnis src des Etherboot-Verzeichnisbaums und geben Folgendes ein: &prompt.root; gmake bin32/devicetype.fd0 devicetype hängt vom Typ der Ethernetkarte ab, über die der plattenlose Rechner verfügt. Lesen Sie dazu NIC im gleichen Verzeichnis, um den richtigen Wert für devicetype zu bestimmen. Das System mit <acronym>PXE</acronym> starten In der Voreinstellung lädt der &man.pxeboot.8;-Loader den Kernel über NFS. Soll stattdessen TFTP verwendet werden, muss beim Kompilieren die Option LOADER_TFTP_SUPPORT in der Datei /etc/make.conf eingetragen sein. Sehen Sie sich die Datei /usr/share/examples/etc/make.conf für weitere Anweisungen an. Es gibt zwei Optionen für make.conf, die nützlich sein können, wenn Sie eine plattenlose serielle Konsole einrichten wollen: BOOT_PXELDR_PROBE_KEYBOARD, und BOOT_PXELDR_ALWAYS_SERIAL. Um PXE beim Systemstart zu verwenden, müssen Sie im BIOS des Rechner die Option Über das Netzwerk starten aktivieren. Alternativ können Sie während der PC-Initialisierung auch eine Funktionstaste drücken. Serverkonfiguration - <acronym>TFTP</acronym> und <acronym>NFS</acronym> TFTP plattenloser Betrieb NFS plattenloser Betrieb Wenn Sie PXE oder Etherboot so konfiguriert haben, dass diese TFTP verwenden, müssen Sie auf dem Dateiserver tftpd aktivieren: Erzeugen Sie ein Verzeichnis, in dem tftpd seine Dateien ablegt, beispielsweise /tftpboot. Fügen Sie folgende Zeile in /etc/inetd.conf ein: tftp dgram udp wait root /usr/libexec/tftpd tftpd -s /tftpboot Anscheinend benötigen zumindest einige PXE-Versionen die TCP-Version von TFTP. Sollte dies bei Ihnen der Fall sein, fügen Sie eine zweite Zeile ein, in der Sie dgram udp durch stream tcp ersetzen. Weisen Sie inetd an, seine Konfiguration erneut einzulesen (Damit der folgende Befehl funktioniert, muss die Option in der Datei /etc/rc.conf vorhanden sein.): &prompt.root; /etc/rc.d/inetd restart Sie können das Verzeichnis /tftpboot an einem beliebigen Ort auf dem Server ablegen. Stellen Sie aber sicher, dass Sie diesen Ort sowohl in inetd.conf als auch in dhcpd.conf eingetragen haben. Außerdem müssen Sie NFS aktivieren und die entsprechenden Verzeichnisse exportieren. Fügen Sie folgende Zeile in /etc/rc.conf ein: nfs_server_enable="YES" Exportieren Sie das Verzeichnis, in dem sich das Wurzelverzeichnis für den plattenlosen Betrieb befindet, indem Sie folgende Zeile in /etc/exports einfügen (passen Sie dabei den mountpoint an und ersetzen Sie margaux corbieres durch den Namen Ihres plattenlosen Rechners): /data/misc -alldirs -ro margaux Weisen sie nun mountd an, seine Konfigurationsdatei erneut einzulesen. Wenn Sie NFS erst in der Datei /etc/rc.conf aktivieren mussten, sollten Sie stattdessen den Rechner neu starten. Dadurch wird die Konfigurationsdatei ebenfalls neu eingelesen. &prompt.root; /etc/rc.d/mountd restart Einen plattenlosen Kernel erzeugen plattenloser Betrieb Kernelkonfiguration Wenn Sie Etherboot verwenden, müssen Sie in die Kernelkonfigurationsdatei Ihres plattenlosen Clients zusätzlich folgende Optionen einfügen: options BOOTP # Use BOOTP to obtain IP address/hostname options BOOTP_NFSROOT # NFS mount root file system using BOOTP info Außerdem können Sie die Optionen BOOTP_NFSV3, BOOT_COMPAT sowie BOOTP_WIRED_TO verwenden (sehen Sie sich dazu auch die Datei NOTES an). Die Namen dieser Optionen sind historisch bedingt. Sie ermöglichen eine unterschiedliche Verwendung von DHCP und BOOTP innerhalb des Kernels. Es ist auch möglich, eine strikte Verwendung von BOOTP oder DHCP zu erzwingen. Erzeugen Sie den neuen Kernel (lesen Sie dazu auch ) und kopieren Sie ihn an den in dhcpd.conf festgelegten Ort. Wenn Sie PXE verwenden, ist die Erzeugung eines Kernels zwar nicht unbedingt nötig, sie wird allerdings dennoch empfohlen. Die Aktivierung dieser Optionen bewirkt, dass die Anzahl der möglichen DHCP-Anforderungen während des Kernelstarts erhöht wird. Ein kleiner Nachteil sind eventuell auftretende Inkonsistenzen zwischen den neuen Werten und den von &man.pxeboot.8; erhaltenen Werten. Der große Vorteil dieser Variante ist es, dass dabei der Rechnername gesetzt wird, den Sie ansonsten durch eine andere Methode, beispielsweise in einer clientspezifischen rc.conf-Datei festlegen müssten. Damit der Kernel von Etherboot geladen werden kann, müssen device hints im Kernel einkompiliert sein. Dazu setzen Sie normalerweise folgende Option in die Kernelkonfigurationsdatei (sehen Sie sich dazu auch die kommentierte Datei NOTES an): hints "GENERIC.hints" Das root-Dateisystem erzeugen Root-Dateisystem plattenloser Betrieb Sie müssen für den plattenlosen Rechner ein root-Dateisystem erzeugen, und zwar an dem in dhcpd.conf als root-path festgelegten Ort. <command>make world</command> zum Füllen des Dateisystems einsetzen Diese schnelle Methode installiert ein komplettes jungfräuliches System (und nicht nur ein root-Dateisystem) nach DESTDIR. Dazu müssen Sie lediglich das folgende Skript ausführen: #!/bin/sh export DESTDIR=/data/misc/diskless mkdir -p ${DESTDIR} cd /usr/src; make buildworld && make buildkernel cd /usr/src/etc; make distribution Danach müssen Sie noch die dadurch in DESTDIR erzeugten Dateien /etc/rc.conf sowie /etc/fstab Ihren Wünschen anpassen. Den Auslagerungsbereich konfigurieren Falls nötig, kann eine auf dem NFS-Server liegende Datei als Auslagerungsdatei eingerichtet werden. Eine <acronym>NFS</acronym>-Auslagerungsdatei einrichten Der Kernel unterstützt beim Systemstart keine NFS-Auslagerungsdatei. Diese muss daher in den Startskripten aktiviert werden, indem ein beschreibbares Dateisystem eingehängt wird, um dort die Auslagerungsdatei zu erzeugen und zu aktivieren. Um eine Auslagerungsdatei zu erzeugen, gehen Sie wie folgt vor: &prompt.root; dd if=/dev/zero of=/path/to/swapfile bs=1k count=1 oseek=100000 Um die Auslagerungsdatei zu aktivieren, fügen Sie folgende Zeile in rc.conf ein: swapfile=/path/to/swapfile Verschiedenes Schreibgeschütztes Dateisystem <filename>/usr</filename> plattenloser Betrieb /usr schreibgeschützt Wenn am plattenlosen Rechner X läuft, müssen Sie die Konfigurationsdatei von XDM anpassen, da Fehlermeldungen in der Voreinstellung auf /usr geschrieben werden. Der Server läuft nicht unter FreeBSD Wenn das root-Dateisystem nicht auf einem FreeBSD-Rechner liegt, muss das Dateisystem zuerst unter FreeBSD erzeugt werden. Anschließend wird es beispielsweise mit tar oder cpio an den gewünschten Ort kopiert. Dabei kann es Probleme mit den Gerätedateien in /dev geben, die durch eine unterschiedliche Darstellung der Major- und Minor-Number von Geräten auf beiden Systemen hervorgerufen werden. Eine Problemlösung besteht darin, das root-Verzeichnis auf einem FreeBSD-Rechner einzuhängen und die Gerätedateien dort mit &man.devfs.5; zu erzeugen. ISDN – diensteintegrierendes digitales Netzwerk ISDN Eine gute Quelle für Informationen zu ISDN ist die ISDN-Seite von Dan Kegel. Welche Informationen finden Sie in diesem Abschnitt? Wenn Sie in Europa leben, könnte der Abschnitt über ISDN-Karten für Sie interessant sein. Wenn Sie ISDN hauptsächlich dazu verwenden wollen, um sich über einen Anbieter ins Internet einzuwählen, sollten Sie den Abschnitt über Terminaladapter lesen. Dies ist die flexibelste Methode, die auch die wenigsten Probleme verursacht. Wenn Sie zwei Netzwerke miteinander verbinden, oder sich über eine ISDN-Standleitung mit dem Internet verbinden wollen, finden Sie entsprechende Informationen im Abschnitt über Router und Bridges. Bei der Wahl der gewünschten Lösung sind die entstehenden Kosten ein entscheidender Faktor. Die folgenden Beschreibungen reichen von der billigsten bis zur teuersten Variante. Hellmuth Michaelis Beigetragen von ISDN-Karten ISDN Karten Das ISDN-Subsystem von FreeBSD unterstützt den DSS1/Q.931- (oder Euro-ISDN)-Standard nur für passive Karten. Zusätzlich werden aber auch einige aktive Karten unterstützt, bei denen die Firmware auch andere Signalprotokolle unterstützt; dies schließt auch die erste ISDN-Karte mit Primärmultiplex-Unterstützung mit ein. isdn4bsd ermöglicht es Ihnen, sich unter Nutzung von IP over raw HDLC oder synchronem PPP mit anderen ISDN-Routern zu verbinden. Dazu verwenden Sie entweder Kernel-&man.ppp.8; (via isppp, einem modifizierten sppp-Treiber), oder Sie benutzen User-&man.ppp.8;. Wenn Sie User-&man.ppp.8; verwenden, können Sie zwei oder mehrere ISDN-B-Kanäle bündeln. Im Paket enthalten ist auch ein Programm mit Anrufbeantworterfunktion sowie verschiedene Werkzeuge, wie ein Softwaremodem, das 300 Baud unterstützt. FreeBSD unterstützt eine ständig wachsende Anzahl von PC-ISDN-Karten, die weltweit erfolgreich eingesetzt werden. Von FreeBSD unterstützte passive ISDN-Karten enthalten fast immer den ISAC/HSCX/IPAC ISDN-Chipsatz von Infineon (ehemals Siemens). Unterstützt werden aber auch Karten mit Cologne Chip (diese allerdings nur für den ISA-Bus), PCI-Karten mit Winbond W6692 Chipsatz, einige Karten mit dem Tiger 300/320/ISAC Chipsatz sowie einige Karten mit einem herstellerspezifischen Chipsatz, wie beispielsweise die Fritz!Card PCI V.1.0 und die Fritz!Card PnP von AVM. An aktiven ISDN-Karten werden derzeit die AVM B1 BRI-Karten (ISA und PCI-Version) sowie die AVM T1 PRI-Karten (PCI-Version) unterstützt. Informationen zu isdn4bsd finden Sie im Verzeichnis /usr/share/examples/isdn/ Ihres FreeBSD-Systems, oder auf der Internetseite von isdn4bsd. Dort finden Sie auch Verweise zu Tipps, Korrekturen, sowie weiteren Informationen, wie dem isdn4bsd-Handbuch. Falls Sie an der Unterstützung eines zusätzlichen ISDN-Protokolls, einer weiteren ISDN-Karte oder an einer anderen Erweiterung von isdn4bsd interessiert sind, wenden Sie sich bitte an &a.hm;. Für Fragen zur Installation, Konfiguration und zu sonstigen Problemen von isdn4bsd gibt es die Mailingliste &a.isdn.name;. ISDN-Terminaladapter Terminaladapter Terminaladapter (TA) sind für ISDN, was Modems für analoge Telefonleitungen sind. Modem Die meisten Terminaladapter verwenden den Standardbefehlssatz für Modems von Hayes (AT-Kommandos) und können daher als Modemersatz verwendet werden. Ein Terminaladapter funktioniert prinzipiell wie ein Modem, allerdings erfolgt der Verbindungsaufbau um einiges schneller. Die Konfiguration von PPP entspricht dabei exakt der eines Modems. Stellen Sie dabei allerdings die serielle Geschwindigkeit so hoch wie möglich ein. PPP Der Hauptvorteil bei der Verwendung eines Terminaladapters zur Verbindung mit einem Internetanbieter ist die Möglichkeit zur Nutzung von dynamischem PPP. Da IP-Adressen immer knapper werden, vergeben die meisten Provider keine statischen IP-Adressen mehr. Die meisten Router unterstützen allerdings keine dynamische Zuweisung von IP-Adressen. Der PPP-Daemon bestimmt die Stabilität und Eigenschaften der Verbindung, wenn Sie einen Terminaladapter verwenden. Daher können Sie unter FreeBSD einfach von einer Modemverbindung auf eine ISDN-Verbindung wechseln, wenn Sie PPP bereits konfiguriert haben. Allerdings bedeutet dies auch, das bereits bestehende Probleme mit PPP auch unter ISDN auftreten werden. Wenn Sie an maximaler Stabilität interessiert sind, verwenden Sie Kernel-PPP, und nicht das User-PPP. Folgende Terminaladapter werden von FreeBSD unterstützt: Motorola BitSurfer und Bitsurfer Pro Adtran Die meisten anderen Terminaladapter werden wahrscheinlich ebenfalls funktionieren, da die Hersteller von Terminaladaptern darauf achten, dass ihre Produkte den Standardbefehlssatz möglichst gut unterstützen. Das wirkliche Problem mit einem externen Terminaladapter ist, dass, ähnlich wie bei Modems, eine gute serielle Karte eine Grundvoraussetzung ist. Sie sollten sich die Anleitung für die Nutzung serieller Geräte unter FreeBSD ansehen, wenn Sie detaillierte Informationen über serielle Geräte und die Unterschiede zwischen asynchronen und synchronen seriellen Ports benötigen. Ein Terminaladapter, der an einem (asynchronen) seriellen Standardport angeschlossen ist, beschränkt Sie auf 115,2 Kbs. Dies selbst dann, wenn Sie eine Verbindung mit 128 Kbs haben. Um die volle Leistungsfähigkeit von ISDN (128 Kbs) nutzen zu können, müssen Sie den Terminaladapter daher an eine synchrone serielle Karte anschließen. Kaufen Sie keinen internen Terminaladapter in der Hoffnung, damit das synchron/asynchron-Problem vermeiden zu können. Interne Terminaladapter haben einen (asynchronen) seriellen Standardportchip eingebaut. Der einzige Vorteil interner Terminaladapter ist es, dass Sie ein serielles sowie ein Stromkabel weniger benötigen. Eine synchrone Karte mit einem Terminaladapter ist mindestens so schnell wie ein autonomer ISDN-Router, und, in Kombination mit einem einfachen 386-FreeBSD-System, wahrscheinlich flexibler. Die Entscheidung zwischen synchroner Karte/Terminaladapter und einem autonomen ISDN-Router ist beinahe eine religiöse Angelegenheit. Zu diesem Thema gibt es viele Diskussionen in den Mailinglisten. Suchen Sie in den Archiven danach, wenn Sie an der kompletten Diskussion interessiert sind. ISDN-Bridges und Router ISDN Autonome Bridge/Router ISDN-Bridges und Router sind keine Eigenheit von FreeBSD oder eines anderen Betriebssystems. Für eine vollständigere Beschreibung von Routing und Netzwerkkopplungen mit einer Bridge informieren Sie sich bitte durch weiterführende Literatur. In diesem Abschnitt werden die Begriffe Router und Bridge synonym verwendet. ISDN-Router und Bridges werden immer günstiger und damit auch immer beliebter. Ein ISDN-Router ist eine kleine Box, die direkt an Ihr lokales Ethernet-Netzwerk angeschlossen wird und sich mit einem Router oder einer Bridge verbindet. Die eingebaute Software ermöglicht die Kommunikation über PPP oder andere beliebte Protokolle. Ein Router ermöglicht einen deutlich höheren Datendurchsatz als ein herkömmlicher Terminaladapter, da er eine vollsynchrone ISDN-Verbindung nutzt. Das Hauptproblem mit ISDN-Routern und Bridges ist, dass die Zusammenarbeit zwischen Geräten verschiedener Hersteller nach wie vor ein Problem ist. Wenn Sie sich auf diese Weise mit einem Internetanbieter verbinden wollen, klären Sie daher vorher ab, welche Anforderungen Ihre Geräte erfüllen müssen. Eine ISDN-Bridge ist eine einfache und wartungsarme Lösung, zwei Netze, beispielsweise Ihr privates Netz und Ihr Firmennetz, miteinander zu verbinden. Da Sie die technische Ausstattung für beide Seiten kaufen müssen, ist sichergestellt, dass die Verbindung funktionieren wird. Um beispielsweise einen privaten Computer oder eine Zweigstelle mit dem Hauptnetzwerk zu verbinden, könnte folgende Konfiguration verwendet werden: Kleines Netzwerk (Privatnetz) 10 base 2 Das Netzwerk basiert auf der Bustopologie mit 10base2 Ethernet (Thinnet). Falls nötig, stellen Sie die Verbindung zwischen Router und Netzwerkkabel mit einem AUI/10BT-Transceiver her. ---Sun Workstation | ---FreeBSD Rechner | ---Windows 95 | Autonomer Router | ISDN BRI Verbindung 10Base2 - Ethernet Wenn Sie nur einen einzelnen Rechner verbinden wollen, können Sie auch ein Twisted-Pair-Kabel (Cross-Over) verwenden, das direkt an den Router angeschlossen wird. Großes Netzwerk (Firmennetz) 10 base T Dieses Netzwerk basiert auf der Sterntopologie und 10baseT Ethernet (Twisted Pair). -------Novell Server | H | | ---Sun | | | U ---FreeBSD | | | ---Windows 95 | B | |___---Autonomer Router | ISDN BRI Verbindung ISDN Netzwerkdiagramm Ein großer Vorteil der meisten Router und Bridges ist es, dass man gleichzeitig zwei unabhängige PPP-Verbindungen zu zwei verschiedenen Zielen aufbauen kann. Diese Funktion bieten die meisten Terminaladapter nicht. Die Ausnahme sind spezielle (meist teure) Modelle, die über zwei getrennte serielle Ports verfügen. Verwechseln Sie dies aber nicht mit Kanalbündelung oder MPP. Dies kann sehr nützlich sein, wenn Sie eine ISDN-Standleitung in Ihrem Büro haben, die sie aufteilen wollen, ohne eine zusätzliche ISDN-Leitung zu installieren. Ein ISDN-Router kann über einen B-Kanal (64 Kbps) eine dedizierte Verbindung ins Internet aufbauen, und gleichzeitig den anderen B-Kanal für eine separate Datenverbindung nutzen. Der zweite B-Kanal kann beispielsweise für ein- oder ausgehende Verbindungen verwendet werden. Sie können ihn aber auch dynamisch mit dem ersten B-Kanal bündeln, um Ihre Bandbreite zu erhöhen. IPX/SPX Eine Ethernet-Bridge kann Daten nicht nur im IP-Protokoll, sondern auch in beliebigen anderen Protokollen versenden. Chern Lee Beigetragen von NAT - Network Address Translation Überblick natd &man.natd.8;, der Network-Address-Translation-Daemon von FreeBSD, akzeptiert ankommende Raw-IP-Pakete, ändert den Sender der Daten in den eigenen Rechner und leitet diese Pakete in den ausgehenden IP-Paketstrom um, indem IP-Adresse und Port des Senders so geändert werden, dass bei einer Antwort der ursprüngliche Sender wieder bestimmt und die Daten an ihn weitergeleitet werden können. Internet connection sharing NAT Der häufigste Grund für die Verwendung von NAT ist die gemeinsame Nutzung einer Internetverbindung. Einrichtung Wegen der begrenzten Verfügbarkeit von IPv4-Adressen und der gestiegenen Anzahl von Breitbandverbindungen über Kabelmodem oder DSL, wird die gemeinsame Nutzung von Internetverbindungen immer wichtiger. Der &man.natd.8;-Daemon ermöglicht die Anbindung von mehreren Rechnern an das Internet unter Nutzung einer gemeinsamen Verbindung und einer IP-Adresse. Häufig soll ein über Kabelmodem oder DSL und eine IP-Adresse an das Internet angebundener Rechner mehreren Rechnern eines lokalen Netzwerks Internetdienste anbieten. Um dies zu ermöglichen, muss der FreeBSD-Rechner als Gateway fungieren. Dazu sind zwei Netzkarten notwendig. Eine für die Verbindung zum Internet, die zweite für die Verbindung mit dem lokalen Netzwerk. Sämtliche Rechner des lokalen Netzwerks sind über einen Hub oder einen Switch miteinander verbunden. Es gibt verschiedene Möglichkeiten, ein LAN über ein &os;-Gateway an das Internet anzubinden. Das folgende Beispiel beschreibt ein Gateway, das zumindest zwei Netzwerkkarten enthält. _______ __________ ________ | | | | | | | Hub |-----| Client B |-----| Router |----- Internet |_______| |__________| |________| | ____|_____ | | | Client A | |__________| Network Layout Eine derartige Netzwerkkonfiguration wird vor allem zur gemeinsamen Nutzung einer Internetverbindung verwendet. Ein Rechner des lokalen Netzwerks (LAN) ist mit dem Internet verbunden. Alle anderen Rechner des lokalen Netzwerks haben nur über diesen Gateway-Rechner Zugriff auf das Internet. Kernel Konfiguration Kernelkonfiguration Folgende Optionen müssen in die Kernelkonfigurationsdatei eingetragen werden: options IPFIREWALL options IPDIVERT Die folgende Optionen können ebenfalls eingetragen werden: options IPFIREWALL_DEFAULT_TO_ACCEPT options IPFIREWALL_VERBOSE In /etc/rc.conf tragen Sie Folgendes ein: gateway_enable="YES" firewall_enable="YES" firewall_type="OPEN" natd_enable="YES" natd_interface="fxp0" natd_flags="" Richtet den Rechner als Gateway ein. Die Ausführung von sysctl net.inet.ip.forwarding=1 hätte den gleichen Effekt. Aktiviert die Firewallregeln in /etc/rc.firewall beim Systemstart. Ein vordefinierter Satz von Firewallregeln, der alle Pakete durchlässt. Sehen Sie sich /etc/rc.firewall an, wenn Sie diese Option verwenden wollen. Die Netzkarte, die Pakete weiterleitet (und mit dem Internet verbunden ist). Zusätzliche Konfigurationsoptionen, die beim Systemstart an &man.natd.8; übergeben werden. Durch die Definition dieser Optionen in /etc/rc.conf wird die Anweisung natd -interface fxp0 beim Systemstart ausgeführt. Dies kann aber auch manuell erfolgen. Falls Sie viele Optionen an &man.natd.8; übergeben müssen, können Sie auch eine Konfigurationsdatei verwenden. Dazu fügen Sie folgende Zeile in /etc/rc.conf ein: natd_flags="-f /etc/natd.conf" Die Datei /etc/natd.conf enthält verschiedene Konfigurationsoptionen, wobei jede Option in einer Zeile steht. Das Beispiel im nächsten Abschnitt würde folgende Konfigurationsdatei verwenden: redirect_port tcp 192.168.0.2:6667 6667 redirect_port tcp 192.168.0.3:80 80 Wenn Sie eine Konfigurationsdatei verwenden wollen, sollten Sie sich die Handbuchseite zu &man.natd.8; durchlesen, insbesondere den Abschnitt über die Nutzung der Option . Jedem Rechner und jeder Schnittstelle des lokalen Netzwerks sollte eine IP-Adresse des im RFC 1918 definierten privaten Adressraums zugewiesen werden. Der Standardgateway entspricht der internen IP-Adresse des natd-Rechners. Im Beispiel werden den LAN-Clients A und B die IP-Adressen 192.168.0.2 und 192.168.0.3 zugewiesen, während die LAN-Netzkarte des natd-Rechners die IP-Adresse 192.168.0.1 erhält. Der natd-Rechner mit der IP-Adresse 192.168.0.1 wird als Standardgateway für die Clients A und B gesetzt. Die externe Netzkarte des natd-Rechners muss für die korrekte Funktion von &man.natd.8; nicht konfiguriert werden. Ports umleiten Wenn Sie &man.natd.8; verwenden, sind Ihre LAN-Clients von aussen nicht erreichbar. LAN-Clients können zwar Verbindungen nach aussen aufbauen, sind aber für ankommende Verbindungen nicht erreichbar. Wenn Sie Internetdienste auf einem LAN-Client anbieten wollen, haben Sie daher ein Problem. Eine einfache Lösung ist die Umleitung von bestimmten Internetports des natd-Rechners auf einen LAN-Client. Beispielsweise könnte ein IRC-Server auf Client A und ein Webserver auf Client B laufen. Damit diese Konfiguration funktioniert, müssen Verbindungen, die auf den Ports 6667 (IRC) und 80 (Web) ankommen, auf die entsprechenden Clients umgeleitet werden. Dazu wird die Option unter Nutzung folgender Syntax an &man.natd.8; übergeben: -redirect_port proto targetIP:targetPORT[-targetPORT] [aliasIP:]aliasPORT[-aliasPORT] [remoteIP[:remotePORT[-remotePORT]]] Für unser Beispiel heißt das: -redirect_port tcp 192.168.0.2:6667 6667 -redirect_port tcp 192.168.0.3:80 80 Dadurch werden die entsprechenden tcp-Ports auf die jeweiligen LAN-Clients umgeleitet. Mit können auch ganze Portbereiche statt einzelner Ports umgeleitet werden. So werden mit tcp 192.168.0.2:2000-3000 2000-3000 alle Verbindungen, die auf den Ports 2000 bis 3000 ankommen, auf die entsprechenden Ports des Clients A umgeleitet. Diese Optionen können während des Betriebs von &man.natd.8; oder über die Option natd_flags="" in /etc/rc.conf gesetzt werden. Eine ausführliche Konfigurationsanleitung finden Sie in &man.natd.8;. Adressen umleiten address redirection Die Umleitung von Adressen ist nützlich, wenn mehrere IP-Adressen verfügbar sind, die aber alle auf einem Rechner verbleiben sollen. In diesem Fall kann &man.natd.8; jedem LAN-Client eine eigene externe IP-Adresse zuweisen. Ausgehende Pakete eines LAN-Clients werden so der entsprechenden externen IP-Adresse des Clients zugeordnet. Ankommender Verkehr für diese IP-Adresse wird automatisch an den entsprechenden LAN-Client weitergeleitet. Diesen Vorgang bezeichnet man auch als statisches NAT. Dem natd-Gatewayrechner könnten beispielsweise die IP-Adressen 128.1.1.1, 128.1.1.2 sowie 128.1.1.3 zugewiesen werden. 128.1.1.1 wird als die externe IP-Adresse des natd-Gatewayrechners verwendet, während 128.1.1.2 und 128.1.1.3 an die LAN-Clients A und B weitergegeben werden. benutzt folgende Syntax: -redirect_address localIP publicIP localIP Die interne IP-Adresse des LAN-Clients publicIP Die externe IP-Adresse des LAN-Clients Für unser Beispiel hieße dies: -redirect_address 192.168.0.2 128.1.1.2 -redirect_address 192.168.0.3 128.1.1.3 Analog zur Option können Sie diese Argumente auch in der Option natd_flags="" in /etc/rc.conf angeben. Bei der Nutzung der Adressumleitung ist die Portumleitung überflüssig, weil alle für eine bestimmte IP-Adresse ankommenden Daten umgeleitet werden. Die externe IP-Adresse des natd-Rechners muss aktiv sein und der externen Netzkarte zugewiesen sein. Weitere Informationen zu diesem Thema finden Sie in &man.rc.conf.5;. PLIP – Parallel Line IP PLIP Parallel Line IP PLIP PLIP ermöglicht TCP/IP-Verbindungen zwischen zwei Rechnern, die über ihre parallelen Schnittstellen verbunden sind. Eine solche Verbindung ist nützlich, wenn zwei Rechner nicht mit Netzkarten ausgestattet sind, oder wenn eine Installation auf einem Laptop erfolgen soll. Dieser Abschnitt behandelt folgende Themen: Die Herstellung eines parallelen (Laplink-) Kabels Die Verbindung von zwei Computern über PLIP Ein paralleles Kabel herstellen Ein paralleles (Laplink-)Kabel können Sie in fast jedem Computergeschäft kaufen. Falls dies nicht möglich sein sollte, oder Sie einfach wissen wollen, wie ein solches Kabel aufgebaut ist, sollten Sie sich die folgende Tabelle ansehen. Sie beschreibt die Herstellung eines parallelen Netzwerkkabels aus einem gewöhnlichen parallelen Druckerkabel. Die Netzwerk-Verdrahtung eines parallelen Kabels A-Name A-Ende B-Ende Beschreibung Post/Bit DATA0 -ERROR 2 15 15 2 Data 0/0x01 1/0x08 DATA1 +SLCT 3 13 13 3 Data 0/0x02 1/0x10 DATA2 +PE 4 12 12 4 Data 0/0x04 1/0x20 DATA3 -ACK 5 10 10 5 Strobe 0/0x08 1/0x40 DATA4 BUSY 6 11 11 6 Data 0/0x10 1/0x80 GND 18-25 18-25 GND -
PLIP einrichten Als Erstes benötigen Sie ein Laplink-Kabel. Danach müssen Sie sicherstellen, dass beide Computerkernel den &man.lpt.4;-Treiber unterstützen: &prompt.root; grep lp /var/run/dmesg.boot lpt0: <Printer> on ppbus0 lpt0: Interrupt-driven port Der Parallelport muss Interrupt-gesteuert sein, daher sollte die Datei /boot/device.hints zwei Zeilen ähnlich den folgenden enthalten: hint.ppc.0.at="isa" hint.ppc.0.irq="7" Danach überprüfen Sie, ob die Kernelkonfigurationsdatei die Zeile device plip enthält, oder ob das Kernelmodul plip.ko geladen wurde. In beiden Fällen sollte die parallele Schnittstelle von &man.ifconfig.8; angezeigt werden: &prompt.root; ifconfig plip0 plip0: flags=8810<POINTOPOINT,SIMPLEX,MULTICAST> mtu 1500 Verbinden Sie die parallelen Schnittstellen der beiden Computer über das (Laplink-)Kabel. Konfigurieren Sie die Netzwerkparameter auf beiden Rechnern als root. Wenn Sie beispielsweise den Rechner host1 mit dem Rechner host2 verbinden wollen, gehen Sie folgendermaßen vor: host1 <-----> host2 IP Address 10.0.0.1 10.0.0.2 Richten Sie die parallele Schnittstelle von host1 ein, indem Sie Folgendes eingeben: &prompt.root; ifconfig plip0 10.0.0.1 10.0.0.2 Danach richten Sie die parallele Schnittstelle von host2 ein: &prompt.root; ifconfig plip0 10.0.0.2 10.0.0.1 Sie sollten nun über eine funktionierende Verbindung verfügen. Bei Problemen lesen Sie bitte die Hilfeseiten &man.lp.4; sowie &man.lpt.4;. Zusätzlich sollten beide Rechner in /etc/hosts eingetragen werden: 127.0.0.1 localhost.my.domain localhost 10.0.0.1 host1.my.domain host1 10.0.0.2 host2.my.domain Um die Verbindung zu überprüfen, pingen Sie jeden Rechner vom anderen Rechner aus an. Auf host1 gehen Sie dazu folgendermaßen vor: &prompt.root; ifconfig plip0 plip0: flags=8851<UP,POINTOPOINT,RUNNING,SIMPLEX,MULTICAST> mtu 1500 inet 10.0.0.1 --> 10.0.0.2 netmask 0xff000000 &prompt.root; netstat -r Routing tables Internet: Destination Gateway Flags Refs Use Netif Expire host2 host1 UH 0 0 plip0 &prompt.root; ping -c 4 host2 PING host2 (10.0.0.2): 56 data bytes 64 bytes from 10.0.0.2: icmp_seq=0 ttl=255 time=2.774 ms 64 bytes from 10.0.0.2: icmp_seq=1 ttl=255 time=2.530 ms 64 bytes from 10.0.0.2: icmp_seq=2 ttl=255 time=2.556 ms 64 bytes from 10.0.0.2: icmp_seq=3 ttl=255 time=2.714 ms --- host2 ping statistics --- 4 packets transmitted, 4 packets received, 0% packet loss round-trip min/avg/max/stddev = 2.530/2.643/2.774/0.103 ms
Aaron Kaplan Beigetragen von Tom Rhodes Überarbeitet und erweitert von Brad Davis Erweitert von IPv6 – Internet Protocol Version 6 Bei IPv6 (auch als IPng oder IP next generation bekannt) handelt es sich um die neueste Version des bekannten IP-Protokolls (das auch als IPv4 bezeichnet wird). FreeBSD enthält, genauso wie die anderen frei erhältlichen BSD-Systeme, die IPv6-Referenzimplementation von KAME. FreeBSD erfüllt damit bereits alle für die Nutzung von IPv6 nötigen Voraussetzungen. Dieser Abschnitt konzentriert sich daher auf die Konfiguration und den Betrieb von IPv6. Anfang der 90er Jahre wurde man auf den stark steigenden Verbrauch von IPv4-Adressen aufmerksam. Im Hinblick auf das Wachstums des Internets gab es zwei Hauptsorgen: Die drohende Knappheit von IPv4-Adressen. Dieses Problem konnte durch die Einführung von privaten Adressräumen gemäß RFC1918 (mit Adressen wie 10.0.0.0/8, 172.16.0.0/12, oder 192.168.0.0/16) sowie der Entwicklung von Network Address Translation (NAT) weitestgehend entschärft werden. Die immer größer werdenden Einträge in Router-Tabellen. Dieses Problem ist auch heute noch aktuell. IPv6 ist in der Lage, diese, aber auch viele andere Probleme zu lösen: IPv6 hat einen 128 Bit großen Adressraum. Es sind also theoretisch 340.282.366.920.938.463.463.374.607.431.768.211.456 Adressen verfügbar. In anderen Worten: Für jeden Quadratmeter der Erdoberfläche sind etwa 6,67 * 10^27 IPv6-Adressen verfügbar. Router speichern nur noch Netzwerk-Aggregationsadressen in Ihren Routingtabellen. Dadurch reduziert sich die durchschnittliche Größe einer Routingtabelle auf 8192 Einträge. Weitere nützliche Eigenschaften von IPv6 sind: Die automatische Konfiguration von Adressen, die im RFC2462 beschrieben wird. Anycast-Adressen (eine-von-vielen) Verpflichtende Multicast-Adressen Die Unterstützung von IPsec (IP-Security) Eine vereinfachte Headerstruktur Mobile IP-Adressen Die Umwandlung von IPv4- in IPv6-Adressen Weitere Informationsquellen: Beschreibung von IPv6 auf playground.sun.com KAME.net - - - 6bone.net - Hintergrundinformationen zu IPv6-Adressen Es gibt verschiedene Arten von IPv6-Adressen: Unicast-, Anycast- und Multicast-Adressen. Unicast-Adressen sind die herkömlichen Adressen. Ein Paket, das an eine Unicast-Adresse gesendet wird, kommt nur an der Schnittstelle an, die dieser Adresse zugeordnet ist. Anycast-Adressen unterscheiden sich in ihrer Syntax nicht von Unicast-Adressen, sie wählen allerdings aus mehreren Schnittstellen eine Schnittstelle aus. Ein für eine Anycast-Adresse bestimmtes Paket kommt an der nächstgelegenen (entsprechend der Router-Metrik) Schnittstelle an. Anycast-Adressen werden nur von Routern verwendet. Multicast-Adressen bestimmen Gruppen, denen mehrere Schnittstellen angehören. Ein Paket, das an eine Multicast-Adresse geschickt wird, kommt an allen Schnittstellen an, die zur Multicast-Gruppe gehören. Die von IPv4 bekannte Broadcast-Adresse (normalerweise xxx.xxx.xxx.255) wird bei IPv6 durch Multicast-Adressen verwirklicht. Reservierte IPv6-Adressen IPv6-Adresse Präfixlänge Beschreibung Anmerkungen :: 128 Bit nicht festgelegt entspricht 0.0.0.0 bei IPv4 ::1 128 Bit Loopback-Adresse entspricht 127.0.0.1 bei IPv4 ::00:xx:xx:xx:xx 96 Bit Eingebettete IPv4-Adresse Die niedrigen 32 Bit entsprechen der IPv4-Adresse. Wird auch als IPv4-kompatible IPv6-Adresse bezeichnet. ::ff:xx:xx:xx:xx 96 Bit Eine auf IPv6 abgebildete IPv4-Adresse Die niedrigen 32 Bit entsprechen der IPv4-Adresse. Notwendig für Rechner, die IPv6 nicht unterstützen. fe80:: - feb:: 10 Bit link-local Entspricht der Loopback-Adresse bei IPv4 fec0:: - fef:: 10 Bit site-local   ff:: 8 Bit Multicast   001 (im Dualsystem) 3 Bit Globaler Unicast Alle globalen Unicastadressen stammen aus diesem Pool. Die ersten 3 Bit lauten 001.
IPv6-Adressen verstehen Die kanonische Form von IPv6-Adressen lautet x:x:x:x:x:x:x:x, jedes x steht dabei für einen 16-Bit-Hexadezimalwert. Ein Beispiel für eine IPv6-Adresse wäre etwa FEBC:A574:382B:23C1:AA49:4592:4EFE:9982. Eine IPv6-Adresse enthält oft Teilzeichenfolgen aus lauter Nullen. Eine solche Zeichenfolge kann zu :: verkürzt werden. Bis zu drei führende Nullen eines Hexquads können ebenfalls weggelassen werden. fe80::1 entspricht also der Adresse fe80:0000:0000:0000:0000:0000:0000:0001. Eine weitere Möglichkeit ist die Darstellung der letzten 32 Bit in der bekannten (dezimalen) IPv4-Darstellung, bei der Punkte (.) zur Trennung verwendet werden. 2002::10.0.0.1 ist also nur eine andere Schreibweise für die (hexadezimale) kanonische Form 2002:0000:0000:0000:0000:0000:0a00:0001, die wiederum der Adresse 2002::a00:1 entspricht. Sie sollten nun in der Lage sein, die folgende Ausgabe zu verstehen: &prompt.root; ifconfig rl0: flags=8943<UP,BROADCAST,RUNNING,PROMISC,SIMPLEX,MULTICAST> mtu 1500 inet 10.0.0.10 netmask 0xffffff00 broadcast 10.0.0.255 inet6 fe80::200:21ff:fe03:8e1%rl0 prefixlen 64 scopeid 0x1 ether 00:00:21:03:08:e1 media: Ethernet autoselect (100baseTX ) status: active Bei fe80::200:21ff:fe03:8e1%rl0 handelt es sich um eine automatisch konfigurierte link-local-Adresse. Sie wird im Rahmen der automatischen Konfiguration aus der MAC-Adresse erzeugt. Weitere Informationen zum Aufbau von IPv6-Adressen finden Sie im RFC3513. Eine IPv6-Verbindung herstellen - Es gibt derzeit vier Möglichkeiten, sich mit anderen + Es gibt derzeit drei Möglichkeiten, sich mit anderen IPv6-Rechnern oder Netzwerken zu verbinden: - - Die Teilnahme am experimentellen 6bone. - - Die Teilnahme am IPv6-Netzwerk Ihres Providers. Wenn Sie daran interessiert sind, wenden Sie sich an Ihren Provider. Die Verwendung eines 6-nach-4-Tunnels (RFC3068). Die Verwendung des Ports /usr/ports/net/freenet6 bei der Einwahl ins Internet. - - In diesem Abschnitt wird die Einrichtung einer Verbindung - zum 6bone beschrieben, da dies derzeit der beliebteste Weg ist. - - Suchen Sie sich zuerst auf der Internetseite des - 6bone-Projekts - einen 6bone-Knoten in Ihrer Nähe. Schreiben Sie an - die verantwortliche Person und mit etwas Glück erhalten - Sie entsprechende Anweisungen, um Ihre Verbindung einzurichten. - Dazu gehört üblicherweise die Einrichtung - eines GRE-(gif)-Tunnels. - - Typischerweise wird ein &man.gif.4;-Tunnels wie folgt - eingerichtet: - - &prompt.root; ifconfig gif0 create -&prompt.root; ifconfig gif0 -gif0: flags=8010<POINTOPOINT,MULTICAST> mtu 1280 -&prompt.root; ifconfig gif0 tunnel MY_IPv4_ADDR MY_IPv4_REMOTE_TUNNEL_ENDPOINT_ADDR -&prompt.root; ifconfig gif0 inet6 alias MY_ASSIGNED_IPv6_TUNNEL_ENDPOINT_ADDR MY_IPv6_REMOTE_TUNNEL_ENDPOINT_ADDR - - Ersetzen Sie die in Großbuchstaben geschriebenen - Werte durch die Informationen, die Sie für Ihren - 6bone-Knoten erhalten haben. - - Die gezeigten Befehle bauen den Tunnel auf. - Überprüfen Sie die korrekte Funktion, indem Sie - ff02::1%gif0 an&man.ping6.8;en. - Sie sollten zwei Antworten erhalten. - - - Bei ff02:1%gif0 - handelt es sich um eine Multicast-Adresse. - %gif0 legt fest, dass die Multicast-Adresse - der Schnittstelle gif0 verwendet - werden soll. Da wir - eine Multicast-Adresse ange&man.ping6.8;t haben, sollte der - andere Endpunkt des Tunnels ebenfalls antworten. - - - Eine Route zu Ihrem 6bone-Knoten können Sie - einfach wie folgt einrichten: - - &prompt.root; route add -inet6 default -interface gif0 -&prompt.root; ping6 -n MY_UPLINK - - &prompt.root; traceroute6 www.jp.FreeBSD.org -(3ffe:505:2008:1:2a0:24ff:fe57:e561) from 3ffe:8060:100::40:2, 30 hops max, 12 byte packets - 1 atnet-meta6 14.147 ms 15.499 ms 24.319 ms - 2 6bone-gw2-ATNET-NT.ipv6.tilab.com 103.408 ms 95.072 ms * - 3 3ffe:1831:0:ffff::4 138.645 ms 134.437 ms 144.257 ms - 4 3ffe:1810:0:6:290:27ff:fe79:7677 282.975 ms 278.666 ms 292.811 ms - 5 3ffe:1800:0:ff00::4 400.131 ms 396.324 ms 394.769 ms - 6 3ffe:1800:0:3:290:27ff:fe14:cdee 394.712 ms 397.19 ms 394.102 ms - - Diese Ausgabe kann auf Ihrem Rechner unterschiedlich sein. - Sie sollten aber jetzt die IPv6-Seite - www.kame.net erreichen - und die tanzende Schildkröte sehen können – - vorausgesetzt, Sie haben einen IPv6-fähigen Browser wie - www/mozilla, - Konqueror (als Teil des Pakets - x11/kdebase3) oder - www/epiphany - installiert. DNS in der IPv6-Welt Ursprünglich gab es zwei verschiedene DNS-Einträge für IPv6. Da A6-Einträge von der IETF für obsolet erklärt wurden, sind AAAA-Einträge nun Standard. Weisen Sie die erhaltene IPv6-Adresse Ihrem Rechnernamen zu, indem Sie den Eintrag MYHOSTNAME AAAA MYIPv6ADDR in Ihre primäre DNS-Zonendatei einfügen. Falls Sie nicht für Ihre DNS-Zone verantwortlich sind, bitten Sie den dafür Zuständigen, diese Änderung durchzuführen. Die aktuellen Versionen von bind (Version 8.3 oder 9) sowie dns/djbdns (bei Verwendung des IPv6-Patches) unterstützen AAAA-Einträge. <filename>/etc/rc.conf</filename> für die Nutzung von IPv6 anpassen Einen Client unter IPv6 einrichten Dieser Abschnitt beschreibt die Konfiguration eines Rechners, der in Ihrem LAN als Client, aber nicht als Router verwendet wird. Um die Schnittstelle während des Systemstarts mit &man.rtsol.8; automatisch einzurichten, fügen Sie folgende Zeile in /etc/rc.conf ein: ipv6_enable="YES" Durch die folgende Zeile weisen Sie Ihrer Schnittstelle fxp0 die statische IP-Adresse 2001:471:1f11:251:290:27ff:fee0:2093 zu: ipv6_ifconfig_fxp0="2001:471:1f11:251:290:27ff:fee0:2093" Um 2001:471:1f11:251::1 als Standardrouter festzulegen, fügen Sie folgende Zeile in /etc/rc.conf ein: ipv6_defaultrouter="2001:471:1f11:251::1" Gateways und Router unter IPv6 einrichten Dieser Abschnitt beschreibt, wie Sie Ihren Rechner mit - Hilfe der von Ihrem Tunnel-Anbieter, beispielsweise - 6bone, erhaltenen + Hilfe der von Ihrem Tunnel-Anbieter erhaltenen Anweisungen dauerhaft für die Nutzung von IPv6 einrichten. Um den Tunnel beim Systemstart wiederherzustellen, passen Sie /etc/rc.conf wie folgt an: Listen Sie die einzurichtenden Tunnelschnittstellen (hier gif0) auf: gif_interfaces="gif0" Um den lokalen Endpunkt MY_IPv4_ADDR über diese Schnittstelle mit dem entfernten Endpunkt REMOTE_IPv4_ADDR zu verbinden, verwenden Sie folgende Zeile: gifconfig_gif0="MY_IPv4_ADDR REMOTE_IPv4_ADDR" Um die Ihnen zugewiesene IPv6-Adresse als Endpunkt Ihres IPv6-Tunnels zu verwenden, fügen Sie folgende Zeile ein: ipv6_ifconfig_gif0="MY_ASSIGNED_IPv6_TUNNEL_ENDPOINT_ADDR" Nun müssen Sie nur noch die IPv6-Standardroute angeben. Diese legt das andere Ende des IPv6-Tunnels fest. ipv6_defaultrouter="MY_IPv6_REMOTE_TUNNEL_ENDPOINT_ADDR" Einen IPv6-Tunnel einrichten Wenn Ihr Server IPv6-Verkehr zwischen Ihrem Netzwerk und der Außenwelt routen muss, benötigen Sie zusätzlich die folgenden Zeilen in Ihrer /etc/rc.conf: ipv6_gateway_enable="YES" Bekanntmachung von Routen und automatische Rechnerkonfiguration Dieser Abschnitt beschreibt die Einrichtung von &man.rtadvd.8;, das Sie bei der Bekanntmachung der IPv6-Standardroute unterstützt. Um &man.rtadvd.8; zu aktivieren, fügen Sie folgende Zeile in /etc/rc.conf ein: rtadvd_enable="YES" Es ist wichtig, die Schnittstelle anzugeben, über die IPv6-Routen bekanntgemacht werden sollen. Soll &man.rtadvd.8; fxp0 verwenden, ist folgender Eintrag nötig: rtadvd_interfaces="fxp0" Danach erzeugen Sie die Konfigurationsdatei /etc/rtadvd.conf. Dazu ein Beispiel: fxp0:\ :addrs#1:addr="2001:471:1f11:246::":prefixlen#64:tc=ether: Ersetzen Sie dabei fxp0 durch die zu verwendende Schnittstelle. Anschließend ersetzen Sie 2001:471:1f11:246:: durch das Präfix der Ihnen zugewiesenen Verbindung. Wenn Sie eine /64-Netzmaske verwenden, müssen Sie keine weiteren Anpassungen vornehmen. Anderenfalls müssen Sie prefixlen# auf den korrekten Wert setzen.
Harti Brandt Beigetragen von ATM - Asynchronous Transfer Mode <foreignphrase>Classical IP over ATM</foreignphrase> als PVC-Verbindung einrichten Classical IP over ATM (CLIP) ist die einfachste Möglichkeit, um IP-Verkehr über ATM (Asynchronous Transfer Mode-Verbindungen zu übertragen. CLIP kann sowohl mit geschalteten Verbindungen (SVCs) als auch mit permanenten Verbindungen (PVCs) verwendet werden. Dieser Abschnitt beschreibt die Einrichtung eines PVC-basierten Netzwerks. Ein vollständig vermaschtes Netzwerk aufbauen Bei einem vollständig vermaschten (fully meshed) Netzwerk ist jeder Rechner über eine dezidierte Verbindung mit jedem anderen Rechner des Netzwerks verbunden. Die Konfiguration ist - vor allem für kleinere Netzwerke - relativ einfach. Unser Beispielnetzwerk besteht aus vier Rechnern, die jeweils über eine ATM-Adapterkarte mit dem ATM-Netzwerk verbunden sind. Als ersten Konfigurationsschritt planen wir die Vergabe von IP-Adressen sowie die anzulegenden ATM-Verbindungen: Rechner IP-Adresse hostA 192.168.173.1 hostB 192.168.173.2 hostC 192.168.173.3 hostD 192.168.173.4 Um ein vollständiges Netz aufzubauen, benötigen wir für jedes Rechnerpaar eine eigene ATM-Verbindung: Rechnerpaar VPI.VCI-Paar hostA - hostB 0.100 hostA - hostC 0.101 hostA - hostD 0.102 hostB - hostC 0.103 hostB - hostD 0.104 hostC - hostD 0.105 Die Werte VPI und VCI an den Verbindungsenden können natürlich unterschiedlich sein. Wir nehmen hier aber an, dass sie gleich sind. Nun müssen wir die ATM-Schnittstellen auf jedem Rechner einrichten: hostA&prompt.root; ifconfig hatm0 192.168.173.1 up hostB&prompt.root; ifconfig hatm0 192.168.173.2 up hostC&prompt.root; ifconfig hatm0 192.168.173.3 up hostD&prompt.root; ifconfig hatm0 192.168.173.4 up Dabei setzen wir voraus, dass hatm0 auf allen Rechnern die ATM-Schnittstelle darstellt. Danach werden, beginnend mit hostA, die PVCs auf den einzelnen Rechnern eingerichtet (Wir nehmen an, dass die PVCs auf den ATM-Switches bereits eingerichet sind. Lesen Sie die entsprechenden Handbücher, wenn Sie einen Switch einrichten müssen.): hostA&prompt.root; atmconfig natm add 192.168.173.2 hatm0 0 100 llc/snap ubr hostA&prompt.root; atmconfig natm add 192.168.173.3 hatm0 0 101 llc/snap ubr hostA&prompt.root; atmconfig natm add 192.168.173.4 hatm0 0 102 llc/snap ubr hostB&prompt.root; atmconfig natm add 192.168.173.1 hatm0 0 100 llc/snap ubr hostB&prompt.root; atmconfig natm add 192.168.173.3 hatm0 0 103 llc/snap ubr hostB&prompt.root; atmconfig natm add 192.168.173.4 hatm0 0 104 llc/snap ubr hostC&prompt.root; atmconfig natm add 192.168.173.1 hatm0 0 101 llc/snap ubr hostC&prompt.root; atmconfig natm add 192.168.173.2 hatm0 0 103 llc/snap ubr hostC&prompt.root; atmconfig natm add 192.168.173.4 hatm0 0 105 llc/snap ubr hostD&prompt.root; atmconfig natm add 192.168.173.1 hatm0 0 102 llc/snap ubr hostD&prompt.root; atmconfig natm add 192.168.173.2 hatm0 0 104 llc/snap ubr hostD&prompt.root; atmconfig natm add 192.168.173.3 hatm0 0 105 llc/snap ubr Statt UBR können auch andere traffic contracts verwendet werden. Voraussetzung ist allerdings, dass diese von Ihrem ATM-Adapter unterstützt werden. Ist dies der Fall, folgen auf den Namen des traffic contracts die entsprechenden Konfigurationsparameter. Weitere Informationen zur Konfiguration von ATM-Adapterkarten erhalten Sie über den Befehl &prompt.root; atmconfig help natm add oder durch das Lesen von &man.atmconfig.8;. Die Konfiguration von ATM-Adaptern kann auch über die Datei /etc/rc.conf erfolgen. Für hostA sähe die Konfiguration so aus: network_interfaces="lo0 hatm0" ifconfig_hatm0="inet 192.168.173.1 up" natm_static_routes="hostB hostC hostD" route_hostB="192.168.173.2 hatm0 0 100 llc/snap ubr" route_hostC="192.168.173.3 hatm0 0 101 llc/snap ubr" route_hostD="192.168.173.4 hatm0 0 102 llc/snap ubr" Mit dem folgenden Befehl lässt sich der derzeitige Status aller CLIP-Routen anzeigen: hostA&prompt.root; atmconfig natm show + + + + + + Tom + Rhodes + Beigetragen von + + + + + CARP - Common Access Redundancy Protocol + + CARP + Common Access Redundancy Protocol (CARP) + + Das Common Access Redundancy + Protocol (CARP) erlaubt es, + mehreren Rechnern die gleiche IP-Adresse + zuzuweisen. Durch ein solches Vorgehen läßt sich + beispielsweise die Verfügbarkeit bestimmter Dienste + verbessern oder die Last zwischen einzelnen Systemen besser + verteilen. Den auf diese Art und Weise konfigurierten Systemen + kann zusätzlich eine eigene (im Netzwerk eindeutige) + IP-Adresse zugewiesen werden (wie dies auch + im folgenden Beispiel erfolgt). + + Um CARP zu aktivieren, müssen Sie die + &os;-Kernelkonfigurationsdatei um die folgende Option erweitern + und danach den &os;-Kernel neu bauen: + + device carp + + Danach ist CARP auf Ihrem System + verfügbar und kann über verschiedene + sysctl-Optionen (OIDs) + gesteuert werden. Zuerst müssen Sie CARP + jedoch mit ifconfig aktivieren: + + &prompt.root; ifconfig carp0 create + + Damit Sie dieses Protokoll in Ihrem Netzwerk einsetzen + können, muss jede Netzkarte eine eindeutige + Identifikationsnummer, die sogenannte VHID + (Virtual Host Identification), + besitzen, da sich ansonsten die Rechner Ihres Netzwerks nicht + voneinander unterscheiden lassen. + + + Die Serververfügbarkeit mit CARP + verbessern + + Wie bereits weiter oben erwähnt wurde, können Sie + CARP dazu verwenden, die Verfübarkeit + Ihrer Server zu verbessern. Im folgenden Bespiel werden + insgesamt drei Server (mit jeweils eigener, eindeutiger + IP-Adresse), die alle den gleichen Inhalt + anbieten, in einer Round Robin + DNS-Konfiguration eingerichtet. + Der Backup-Server verfügt über zwei + CARP-Schnittstellen (für die beiden + IP-Adressen der Content-Server). Tritt bei + einem Content-Server ein Problem auf, übernimmt der + Backup-Server die IP-Adresse des + ausgefallenen Servers. Dadurch sollte die Auswahl eines Servers + vom Anwender nicht bemerkt werden. Der Backup-Server muss + identisch konfiguriert sein und die gleichen Daten und Dienste + anbieten wie das System, das er ersetzen soll. + + Die beiden Content-Server werden (abgesehen von ihren + jeweiligen Hostnamen und VHIDs) identisch + konfiguriert und heißen in unserem Beispiel + hosta.example.org beziehungsweise + hostb.example.org. Damit Sie + CARP einsetzen können, müssen + Sie als Erstes die Datei rc.conf auf + beiden Systemen anpassen. Für das System + hosta.example.org nehmen Sie dazu folgende + Zeilen in rc.conf auf: + + hostname="hosta.example.org" +ifconfig_fxp0="inet 192.168.1.3 netmask 255.255.255.0" +cloned_interfaces="carp0" +ifconfig_carp0="vhid 1 pass testpast 192.168.1.50/24" + + Für das System hostb.example.org + benötigen Sie zusätzlich folgende Zeilen in + rc.conf: + + hostname="hostb.example.org" +ifconfig_fxp0="inet 192.168.1.4 netmask 255.255.255.0" +cloned_interfaces="carp0" +ifconfig_carp0="vhid 2 pass testpass 192.168.1.51/24" + + + Achten Sie unbedingt darauf, dass die durch die Option + an ifconfig + übergebenen Passwörter auf beiden Systemen + identisch sind, da + carp-Geräte nur mit Systemen + kommunizieren können, die über ein korrektes Passwort + verfügen. Beachten Sie weiters, dass sich die + VHIDs der beiden Systeme unterscheiden + müssen. + + + Nun richten Sie noch das dritte System, + provider.example.org, ein, das aktiviert + wird, wenn eines der beiden zuvor konfigurierten Systeme + ausfällt. Dieses dritte System benötigt zwei + carp-Geräte, um bei Bedarf + eines der beiden anderen + Systeme ersetzen zu können. Dazu konfigurieren Sie + rc.conf analog zur folgenden + Beispielkonfiguration: + + hostname="provider.example.org" +ifconfig_fxp0="inet 192.168.1.5 netmask 255.255.255.0" +cloned_interfaces="carp0 carp1" +ifconfig_carp0="vhid 1 advskew 100 pass testpass 192.168.1.50/24" +ifconfig_carp1="vhid 2 advskew 100 pass testpass 192.168.1.51/24" + + Durch die beiden carp-Geräte + ist es provider.example.org möglich, + festzustellen, ob eines der beiden anderen Systeme nicht mehr + reagiert. In diesem Fall übernimmt + provider.example.org die + IP-Adresse des betroffenen Systems. + + + Ist im installierten &os;-Kernel die Option + "preemption" aktiviert, kann es sein, dass + provider.example.org die übernommene + IP-Adresse nicht mehr an den + Content-Server zurückgibt (wenn dieser wieder + funktioniert). In diesem Fall muss ein Administrator die + entsprechende Schnittstelle zurücksetzen. + Dazu gibt er auf dem Rechner + provider.example.org den folgenden + Befehl ein: + + &prompt.root; ifconfig carp0 down && ifconfig carp0 up + + Dieser Befehl muss auf das + carp-Gerät ausgeführt + werden, das dem betroffenen System zugeordnet ist. + + + Damit ist CARP vollständig + konfiguriert und der Testbetrieb kann beginnen. Zuvor + müssen Sie allerdings noch alle Systeme neu starten + (beziehungsweise die Netzwerkkonfiguration auf allen + Systemen neu einlesen), um die Einstelllungen zu + übernehmen. + + Für weitere Informtionen lesen Sie bitte die Manualpage + &man.carp.4;. + +
diff --git a/de_DE.ISO8859-1/books/handbook/firewalls/chapter.sgml b/de_DE.ISO8859-1/books/handbook/firewalls/chapter.sgml index 05221d7894..752b0c7c5f 100644 --- a/de_DE.ISO8859-1/books/handbook/firewalls/chapter.sgml +++ b/de_DE.ISO8859-1/books/handbook/firewalls/chapter.sgml @@ -1,486 +1,486 @@ Joseph J. Barbish Beigetragen von Brad Davis Nach SGML konvertiert und aktualisiert von Michael Bunzel Teilweise übersetzt von Firewalls firewall security firewalls Einführung Firewalls ermöglichen es, den ein- und ausgehenden Netzwerkverkehr Ihres Systems zu filtern. Dazu verwendet eine Firewall eine oder mehrere Gruppen von Regeln, um ankommende Netzwerkpakete zu untersuchen und entweder durchzulassen oder zu blockieren. Die Regeln einer Firewall untersuchen charakteristische Eigenschaften von Datenpaketen, darunter den Protokolltyp, die Quell- und Zieladresse sowie den Quell- und Zielport. Firewalls können die Sicherheit eines Rechners oder eines Netzwerks erhöhen, indem sie folgende Aufgaben übernehmen: Den Schutz der Anwendungen, Dienste und Rechner Ihres internen Netzwerks vor unerwünschtem Datenverkehr aus dem Internet. Die Beschränkung des Zugriffs von Rechnern des internen Netzwerk auf Rechner oder Dienste des externen Internets. Den Einsatz von Network Address Translation (NAT), die es Ihnen durch die Verwendung von privaten IP-Adressen ermöglicht, eine einzige gemeinsame Internetverbindung für mehrere Rechner zu nutzen (entweder über eine einzige Adresse oder über eine Gruppe von jeweils automatisch zugewiesenen öffentlichen IP-Adressen). Nachdem Sie dieses Kapitel gelesen haben, werden Sie: Wissen, wie man korrekte Paketfilterregeln erstellt. Die Unterschiede zwischen den in &os; eingebauten Firewalls kennen. Wissen, wie man die PF-Firewall von OpenBSD konfiguriert und einsetzt. IPFILTER konfigurieren und einsetzen können. Wissen, wie man IPFW konfiguriert und einsetzt. Bevor Sie dieses Kapitel lesen, sollten Sie: Die grundlegenden Konzepte von &os; und dem Internet verstehen. Firewallkonzepte firewall rulesets Es gibt zwei grundlegende Arten, Regelgruppen für Firewalls zu erstellen: einschließend (inclusive firewall) sowie auschließend (exclusive Firewall). Eine auschließende Firewall lässt jeden Datenverkehr durch, der nicht durch eine Regel ausgeschlossen wurde. Eine einschließende Firewall macht das genaue Gegenteil. Sie lässt Datenverkehr nur dann durch, wenn er einer der definierten Regeln entspricht. Einschließende Firewalls sind tendentiell sicherer als ausschließende Firewalls, da sie das Risiko, dass unerwünschter Datenverkehr die Firewall passiert, signifikant reduzieren. Die Sicherheit einer Firewall kann durch den Einsatz einer zustandsabhängigen Firewall (stateful firewall) weiter erhöht werden. Eine zustandsabhängige Firewall überwacht alle durch die Firewall gehenden offenen Verbindungen und erlaubt nur schon bestehenden Verkehr oder Datenverkehr, der eine neue Verbindung öffnet. Der Nachteil einer zustandsabhängigen Firewall ist allerdings, dass sie anfällig für Denial of Service (DoS) -Attacken ist, wenn sehr schnell sehr viele neue Verbindungen erstellt werden. Bei den meisten Firewalls können Sie eine Kombination aus zustandsabhängigem und nicht zustandsabhängigem Verhalten verwenden, um eine für Ihre Bedürfnisse optimale Fireall einzurichten. Firewallpakete Das Basissystem von &os; enthält bereits drei Firewallpakete: IPFILTER (auch als IPF bekannt), IPFIREWALL (auch als IPFW bezeichnet) sowie das von OpenBSD übernommene PacketFilter (das auch als PF bezeichnet wird). Zusätzlich verfügt &os; über zwei eingebaute Pakete für das sogenannte traffic shaping (dabei handelt es sich die Steuerung des Bandbreitenverbrauchs): &man.altq.4; sowie &man.dummynet.4;. Dummynet steht traditionell in enger Verbindung mit IPFW, während ALTQ gemeinsam mit IPF/PF eingesetzt wird. Gemeinsam ist allen Firewallpaketen (IPF, IPFW sowie PF), dass sie Regeln einsetzen, um den Transfer von Datenpaketen auf und von Ihrem System zu regeln. Unterschiedlich sind aber die Art und Weise, wie dies realisiert wird. Auch die für diese Regeln verwendete Syntax ist unterschiedlich. &os; überlässt es dem Anwender, das Firewallsystem zu wählen, dass seinen Anforderungen und Vorlieben am Besten entspricht. Keines der im Basissystem enthaltenen Firewallpakete wird dabei als das beste angesehen. IPFILTER hat etwa den Vorteil, dass dessen zustandsabhängige Regeln relativ einfach in einer NAT-Umgebung implementiert werden können. Außerdem verfügt es über einen eigenen FTP-Proxy, der die Erstellung von sicheren Regeln für ausgehende FTP-Verbindungen vereinfacht. Da alle Firewalls auf der Untersuchung der Werte ausgewählter Kontrollfelder von Datenpaketen basieren, ist es für die Erstellung von Firewallregeln notwendig, die Funktionsweise von TCP/IP zu verstehen. Außerdem muss man dazu wissen, was die Werte der einzelnen Kontrollfelder bedeuten und wie diese während einer Verbindung eingesetzt werden. Eine gute Erklärung dieser Thematik finden Sie unter . Paket Filter (PF) von OpenBSD und <acronym>ALTQ</acronym> firewall PF Im Juli 2003 wurde PF, die Standard-Firewall von OpenBSD, nach &os; portiert und in die &os;-Ports-Sammlung aufgenommen. Die erste &os;-Version, die PF als Teil des Basisssytems enthielt, war &os; 5.3 im November 2004. Bei PF handelt es sich um eine komplette, vollausgestattete Firewall, die optional auch ALTQ (Alternatives Queuing) unterstützt. ALTQ bietet Ihnen Quality of Service (QoS)-Bandbreitenformung. Dadurch können Sie, basierend auf Filterregeln, unterschiedlichen Diensten eine bestimmte Bandbreite garantieren. Da das OpenBSD-Projekt bereits über eine hervorragende Dokumentation verfügt, wurde das PF-Handbuch nicht in dieses Kapitel aufgenommen. Weitere Informationen finden Sie unter . PF aktivieren PF ist in Standardinstallationen von &os; 5.3 oder neuer als eigenes, zur Laufzeit ladbares Kernelmodul enthalten. Das System lädt das PF-Kernelmodul automatisch, wenn die Anweisung pf_enable="YES" in /etc/rc.conf enthalten ist. Das ladbare Kernelmodul wurde mit aktivierter &man.pflog.4;-Protokollierung erstellt. Das Kernelmodul geht davon aus, dass die Einträge options INET sowie device bpf in Ihrer Kernelkonfigurationsdatei vorhanden sind. Haben Sie NO_INET6 (seit &os; 6.X) oder NOINET6 (in &os;-Versionen vor 6.X) nicht definiert, benötigen Sie (etwa in &man.make.conf.5;) zusätzlich die Option options INET6. Nachdem Sie das Kernelmodul geladen oder die PF-Unterstützung statisch in Ihren Kernel kompiliert haben, können Sie pf über den Befehl pfctl aktivieren beziehungsweise deaktivieren. Das folgende Beispiel zeigt, wie Sie pf aktivieren: &prompt.root; pfctl -e pfctl ermöglicht es Ihnen, die pf-Firewall zu steuern. Lesen Sie &man.pfctl.8;, bevor Sie das Programm einsetzen. Kernel-Optionen kernel options device pf kernel options device pflog kernel options device pfsync Es ist nicht zwingend nötig, dass Sie PF durch die Angabe der folgenden Optionen in den &os;-Kernel kompilieren. Kompilieren Sie die PF-Unterstützung in Ihren Kernel, so wird das Kernelmodul nie verwendet werden. Die folgenden Angaben dienen daher nur als Hintergrundinformationen. /usr/src/sys/conf/NOTES enthält Beispiele für die Kernelkonfigurationsoptionen von PF: device pf device pflog device pfsync device pf aktiviert die Unterstützung für die Packet Filter-Firewall. device pflog aktiviert das optionale &man.pflog.4;-Pseudonetzwerkgerät, das zum Protokollieren des Datenverkehrs über einen &man.bpf.4;-Deskriptor dient. &man.pflogd.8; ist in der Lage, diese Protokolldateien auf Ihre Platte zu speichern. device pfsync aktiviert das optionale &man.pfsync.4;-Pseudonetzwerkgerät für die Überwachung von Statusänderungen. Da es sich dabei nicht um einen Bestandteil des Kernelmoduls handelt, muss diese Option auf jeden Fall in den Kernel kompiliert werden, bevor man sie verwenden kann. Diese Einstellungen werden erst dann übernommen, wenn man einen Kernel mit diesen Optionen kompiliert und installiert. Verfügbare rc.conf-Optionen Um PF beim Systemstart zu aktivieren, benötigen Sie die folgenden Einträge in /etc/rc.conf: pf_enable="YES" # PF aktivieren(Modul, wenn nötig, aktivieren) pf_rules="/etc/pf.conf" # Datei mit Regeldefinitionen für pf pf_flags="" # zusätzliche Parameter für den Start von pfctl pflog_enable="YES" # stare pflogd(8) pflog_logfile="/var/log/pflog" # wo soll pflogd die Protokolldatei speichern pflog_flags="" # zusätzliche Parameter für den Start von pflogd Wenn Sie ein lokales Netzwerk hinter dieser Firewall betreiben, und Pakete für dessen Rechner weiterleiten oder NAT verwenden wollen, benötigen Sie zusätzlich die folgende Option: gateway_enable="YES" # LAN Gateway aktivieren <acronym>ALTQ</acronym> aktivieren ALTQ muss vor der Verwendung in den &os;-Kernel kompiliert werden. Beachten Sie, dass ALTQ nicht von allen verfügbaren Netzwerkkartentreibern unterstützt wird. Sehen Sie daher zuerst in &man.altq.4; nach, ob Ihre Netzwerkkarte diese Funktion unter Ihrer &os;-Version unterstützt. Die folgenden Kerneloptionen aktivieren ALTQ sowie alle Zusatzfunktionen: options ALTQ options ALTQ_CBQ # Class Bases Queuing (CBQ) options ALTQ_RED # Random Early Detection (RED) options ALTQ_RIO # RED In/Out options ALTQ_HFSC # Hierarchical Packet Scheduler (HFSC) options ALTQ_PRIQ # Priority Queuing (PRIQ) options ALTQ_NOPCC # Wird von SMP benötigt options ALTQ aktiviert das ALTQ-Framework. options ALTQ_CBQ aktiviert das Class Based Queuing (CBQ). CBQ erlaubt es, die Bandbreite einer Verbindung in verschiedene Klassen oder Warteschlangen zu unterteilen, um die Priorität von Datenpaketen basierend auf Filterregeln zu ändern. options ALTQ_RED aktiviert Random Early Detection (RED). RED wird zur Vermeidung einer Netzwerkverstopfung verwendet. Dazu ermittelt RED die Größe der Warteschlange und vergleicht diesen Wert mit den minimalen und maximalen Grenzwerten der Warteschlange. Ist die Warteschlange größer als das erlaubte Maximum, werden alle neuen Pakete verworfen. Getreu seinem Namen verwirft RED Pakete unterschiedlicher Verbindungen nach dem Zufallsprinzip. options ALTQ_RIO aktiviert Random Early Detection In and Out. options ALTQ_HFSC aktiviert den Hierarchical Fair Service Curve -Paketplaner. Weitere Informationen zu HFSC finden Sie unter . options ALTQ_PRIQ aktiviert Priority Queuing (PRIQ). PRIQ lässt Verkehr einer Warteschlange mit höherer Priorität zuerst durch. options ALTQ_NOPCC aktiviert die SMP Unterstützung von ALTQ. Diese Option ist nur auf SMP-System erforderlich. Filterregeln generieren Der Packetfilter liest seine Konfiguration aus der Datei &man.pf.conf.5; ein, um entsprechend der dort definierten Regeln Pakete durchzulassen oder zu verwerfen. Die Standardinstallation von &os; enthält bereits eine beispielhafte Version der Datei /etc/pf.conf mit einigen hilfreichen Beispielen und Erklärungen. Obwohl &os; eine eigene Version der Datei /etc/pf.conf enthält, wird dennoch die gleiche Syntax wie unter OpenBSD verwendet. Das OpenBSD-Team hat eine großartige Dokumentation zur Konfiguration von pf geschrieben, die unter erhältlich ist. Denken Sie beim Lesen des pf-Handbuch daran, dass die verschiedenen &os;-Versionen unterschiedliche Versionen der pf-Firewall einsetzen. So wird unter &os; 5.X noch die OpenBSD-Version 3.5 der Firewall eingesetzt, während in den &os;-6.X-Versionen die OpenBSD-Version 3.7 zum Einsatz kommt. Haben Sie weitere Fragen zur pf-Firewall, so können Sie auf der Mailingliste &a.pf; stellen. Vergessen Sie aber nicht, vorher die Archive der Mailinglisten zu durchsuchen, bevor Sie dort eine Frage stellen. Die IPFILTER-Firewall (IPF) Dieses Kapitel ist noch nicht übersetzt. Lesen Sie bitte das Original in englischer Sprache. Wenn Sie helfen wollen, dieses Kapitel zu übersetzen, senden Sie bitte eine E-Mail an die Mailingliste &a.de.translators;. IPFW Dieses Kapitel ist noch nicht übersetzt. Lesen Sie bitte das Original in englischer Sprache. Wenn Sie helfen wollen, dieses Kapitel zu übersetzen, senden Sie bitte eine E-Mail an die Mailingliste &a.de.translators;. diff --git a/de_DE.ISO8859-1/books/handbook/virtualization/chapter.sgml b/de_DE.ISO8859-1/books/handbook/virtualization/chapter.sgml index f18128d833..85d84d6a14 100644 --- a/de_DE.ISO8859-1/books/handbook/virtualization/chapter.sgml +++ b/de_DE.ISO8859-1/books/handbook/virtualization/chapter.sgml @@ -1,31 +1,631 @@ + + + + Murray + Stokely + Beigetragen von + + + + + Oliver + Peter + Übersetzt von + + + - Virtualisierung (noch nicht übersetzt) + Virtualisierung - Dieses Kapitel ist noch nicht übersetzt. - Lesen Sie bitte - das Original in englischer Sprache. Wenn Sie helfen - wollen, dieses Kapitel zu übersetzen, senden Sie bitte - eine E-Mail an die Mailingliste &a.de.translators;. + + Übersicht + + Virtualisierungssoftware erlaubt es, mehrere Betriebssysteme + gleichzeitig auf dem selben Computer laufen zu lassen. Derartige + Softwaresysteme für PCs setzen in der Regel ein + Host-Betriebssystem voraus, auf dem die + Virtualisierungssoftware läuft und unterstützen eine + nahezu beliebige Anzahl von Gast-Betriebssystemen. + + Nachdem Sie dieses Kapitel gelesen haben, + + + + Kennen Sie den Unterscheid zwischen einem + Host-Betriebssystem und einem Gast-Betriebssystem. + + + + Wissen Sie, wie man FreeBSD unter Linux mit + &xen; installiert. + + + + Können Sie FreeBSD auf einem &intel;-basierenden + &apple; &macintosh; installieren. + + + + Wissen Sie, wie man ein virtualisiertes FreeBSD-System + für optimale Leistung konfiguriert. + + + + Bevor Sie dieses Kapitel lesen, sollten Sie + + + + Die Grundlagen von &unix; und FreeBSD verstehen + (). + + + + FreeBSD installieren können + (). + + + + Wissen, wie man seine Netzwerkverbindung + konfiguriert (). + + + + Software Dritter installieren können + (). + + + + + + FreeBSD als Gast-Betriebssystem + + + Parallels unter MacOS X + + Parallels Desktop für &mac; + ist ein kommerzielles Softwareprodukt, welches für + &intel;-basierende &apple; &mac;-Computer mit + &macos; X 10.4.6 + oder höher verfügbar ist. FreeBSD wird von diesem + Softwarepaket als Gast-Betriebssystem vollständig + unterstützt. Nach der Installation von + Parallels auf &macos; X + konfigurieren Sie als erstes eine virtuelle Maschine, + in der Sie danach das gewünschte Gast-Betriebssystem (in + unserem Fall FreeBSD) installieren. + + + Installation von FreeBSD unter + Parallels/&macos; X + + Der erste Schritt bei der Installation von FreeBSD unter + Parallels/&macos; X ist es, + eine virtuelle Maschine zu konfigurieren, in der Sie + FreeBSD installieren können. Dazu wählen Sie bei + der Frage nach dem Guest OS Type + FreeBSD aus: + + + + + + + + Danach legen Sie geeignete Größen für + Festplatten- und Arbeitsspeicher für die zu erstellende + FreeBSD-Instanz fest. 4 GB Plattenplatz sowie + 512 MB RAM sind in der Regel für die Arbeit unter + Parallels ausreichend: + + + + + + + + + + + + + + + + + + + + + + + + + + Wählen Sie den gewünschten Netzwerktyp + aus und konfigurieren Sie Ihre Netzwerkverbindung: + + + + + + + + + + + + + + Speichern Sie Ihre Eingaben, um die Konfiguration + abzuschließen: + + + + + + + + + + + + + + Nachdem Sie die virtuelle Maschine erstellt haben, + installieren Sie im nächsten Schritt FreeBSD in dieser + virtuellen Maschine. Dazu verwenden Sie am besten eine + offizielle FreeBSD-CDROM oder Sie laden von einem offiziellen + FTP-Server ein ISO-Abbild auf Ihren &mac; herunter. Danach + klicken Sie auf das Laufwerksymbol in der rechten unteren + Ecke des Parallels-Fensters, um + ihr virtuelles Laufwerk mit dem ISO-Abbild oder mit dem + physikalischen CD-ROM-Laufwerk ihres Computers zu + verknüpfen. + + + + + + + + Nachdem Sie diese Verknüpfung hergestellt haben, + starten sie die virtuelle FreeBSD-Maschine neu, indem Sie + wie gewohnt auf das Symbol "Neustarten" klicken. + Parallels startet nun ein + Spezial-BIOS, das zuerst prüft, ob Sie eine CD-ROM + eingelegt haben (genau so, wie es auch ein echtes BIOS + machen würde). + + + + + + + + In unserem Fall findet das BIOS ein + FreeBSD-Installationsmedium und beginnt daher eine normale + Installation mit sysinstall + (wie in des Handbuchs + beschreiben). + + + + + + + + Nachdem die Installation abgeschlossen ist, können + Sie die virtuelle Maschine starten. + + + + + + + + + + FreeBSD für den Einsatz unter + Parallels/&macos; X optimieren + + Nachdem Sie FreeBSD erfolgreich unter &macos; X mit + Parallels installiert haben, sollten + Sie ihr virtuelles FreeBSD-System für virtualisierte + Operationen optimieren: + + + + Setzen der Bootloader-Variablen + + Die wichtigste Änderung ist es, die Variable + zu verkleinern, um so die + CPU-Auslastung in der + Parallels-Umgebung zu + verringern. + + kern.hz=100 + + Ohne diese Einstellung kann ein unbeschäftigtes + FreeBSD unter Parallels trotzdem + rund 15 Prozent der CPU-Leistung eines Single Prozessor + &imac;'s verbrauchen. Nach dieser Änderung reduziert + sich dieser Wert auf etwa 5 Prozent. + + + + Erstellen einer neuen Kernelkonfigurationsdatei + + Sie können alle SCSI-, FireWire- und + USB-Laufwerks-Treiber entfernen. + Parallels stellt einen + virtuellen Netzwerkadapter bereit, der den + &man.ed.4;-Treiber verwendet. Daher können alle + Netzwerkgeräte bis auf &man.ed.4; und + &man.miibus.4; aus dem Kernel entfernt werden. + + + + Netzwerkbetrieb einrichten + + Die einfachste Netzwerkkonfiguration ist der Einsatz + von DHCP, um Ihre virtuelle Maschine mit dem gleichen + lokalen Netzwerk, in dem sich der Host-&mac; befindet, zu + verbinden. Dazu fügen Sie die Zeile + ifconfig_ed0="DHCP" in die Datei + /etc/rc.conf ein. Weitere + Informationen zur Konfiguration des Netzwerks unter + FreeBSD finden Sie im des Handbuchs. + + + + + + + + + + Fukang + Chen (Loader) + Beigetragen von + + + + + FreeBSD mit &xen; unter Linux einsetzen + + Der &xen; Hypervisor ist ein + als Open Source verfügbares Para-Virtualisierungsprodukt, + welches aktuell von + der kommerzellen Firma XenSource unterstützt wird. + Gast-Betriebssysteme werden dabei als domU-Domains, + Host-Betriebssysteme hingegen als dom0 bezeichnet. Um eine + virtuelle FreeBSD-Instanz unter Linux auszuführen, + müssen Sie zuerst &xen; + für Linux dom0 installieren. Als Host-Betriebssystem + wird im folgenden Beispiel die Distribution Slackware + verwendet. + + + &xen; 3 unter Linux dom0 + + + + &xen; 3.0 von XenSource herunterladen + + Laden Sie die Datei xen-3.0.4_1-src.tgz + von + herunter. + + + + Den Tarball entpacken + + &prompt.root; cd xen-3.0.4_1-src +&prompt.root; KERNELS="linux-2.6-xen0 linux-2.6-xenU" make world +&prompt.root; make install + + + Den dom0-Kernel neu kompilieren: + + &prompt.root; cd xen-3.0.4_1-src/linux-2.6.16.33-xen0 +&prompt.root; make menuconfig +&prompt.root; make +&prompt.root; make install + + Ältere Versionen von + &xen; müssen + gegebenenfalls mit + make ARCH=xen menuconfig näher + spezifiziert werden. + + + + + Einen Menü-Eintrag in die menu.lst von Grub + aufnehmen + + Editieren Sie /boot/grub/menu.lst + und fügen Sie die folgenden Zeilen hinzu: + + title Xen-3.0.4 +root (hd0,0) +kernel /boot/xen-3.0.4-1.gz dom0_mem=262144 +module /boot/vmlinuz-2.6.16.33-xen0 root=/dev/hda1 ro + + + + Starten Sie Ihren Computer neu, um &xen; zu + aktivieren + + Anschließend editieren Sie + /etc/xen/xend-config.sxp und + fügen die folgenden Zeilen hinzu: + + (network-script 'network-bridge netdev=eth0') + + Danach kann &xen; + gestartet werden: + + &prompt.root; /etc/init.d/xend start +&prompt.root; /etc/init.d/xendomains start + + Damit ist dom0 gestartet: + + &prompt.root; xm list +Name ID Mem VCPUs State Time(s) +Domain-0 0 256 1 r----- 54452.9 + + + + + + FreeBSD 7-CURRENT als domU verwenden + + Laden Sie den FreeBSD-dumU-Kernel für + &xen; 3.0 sowie + das Festplattenabbild von http://www.fsmware.com/ + herunter: + + + + kernel-current + + + + mdroot-7.0.bz2 + + + + xmexample1.bsd + + + + Kopieren Sie xmexample1.bsd + nach /etc/xen/ und passen Sie + die Einträge für Kernel und Festplattenabbild an + Ihre Konfiguration an. Ihre Konfiguration sollte + ähnlich dem folgenden Beispiel aussehen: + + kernel = "/opt/kernel-current" +memory = 256 +name = "freebsd" +vif = [ '' ] +disk = [ 'file:/opt/mdroot-7.0,hda1,w' ] +#on_crash = 'preserve' +extra = "boot_verbose" +extra += ",boot_single" +extra += ",kern.hz=100" +extra += ",vfs.root.mountfrom=ufs:/dev/xbd769a" + + Die Datei mdroot-7.0.bz2 sollte + unkomprimiert sein. + + Als Nächstes muss der __xen_guest-Abschnitt in + kernel-current verändert und das + von &xen; 3.0.3 benötigte + VIRT_BASE hinzugefügt werden: + + &prompt.root; objcopy kernel-current -R __xen_guest +&prompt.root; perl -e 'print "LOADER=generic,GUEST_OS=freebsd,GUEST_VER=7.0,XEN_VER=xen-3.0,BSD_SYMTAB,VIRT_BASE=0xC0000000\x00"' > tmp +&prompt.root; objcopy kernel-current --add-section __xen_guest=tmp + + &prompt.root; objdump -j __xen_guest -s kernel-current + +kernel-current: file format elf32-i386 + +Contents of section __xen_guest: + 0000 4c4f4144 45523d67 656e6572 69632c47 LOADER=generic,G + 0010 55455354 5f4f533d 66726565 6273642c UEST_OS=freebsd, + 0020 47554553 545f5645 523d372e 302c5845 GUEST_VER=7.0,XE + 0030 4e5f5645 523d7865 6e2d332e 302c4253 N_VER=xen-3.0,BS + 0040 445f5359 4d544142 2c564952 545f4241 D_SYMTAB,VIRT_BA + 0050 53453d30 78433030 30303030 3000 SE=0xC0000000. + + Nun kann die domU erstellt und gestartet werden: + + &prompt.root; xm create /etc/xen/xmexample1.bsd -c +Using config file "/etc/xen/xmexample1.bsd". +Started domain freebsd +WARNING: loader(8) metadata is missing! +Copyright (c) 1992-2006 The FreeBSD Project. +Copyright (c) 1979, 1980, 1983, 1986, 1988, 1989, 1991, 1992, 1993, 1994 +The Regents of the University of California. All rights reserved. +FreeBSD 7.0-CURRENT #113: Wed Jan 4 06:25:43 UTC 2006 + kmacy@freebsd7.gateway.2wire.net:/usr/home/kmacy/p4/freebsd7_xen3/src/sys/i386-xen/compile/XENCONF +WARNING: DIAGNOSTIC option enabled, expect reduced performance. +Xen reported: 1796.927 MHz processor. +Timecounter "ixen" frequency 1796927000 Hz quality 0 +CPU: Intel(R) Pentium(R) 4 CPU 1.80GHz (1796.93-MHz 686-class CPU) + Origin = "GenuineIntel" Id = 0xf29 Stepping = 9 + Features=0xbfebfbff<FPU,VME,DE,PSE,TSC,MSR,PAE,MCE,CX8,APIC,SEP,MTRR,PGE,MCA,CMOV,PAT,PSE36,CLFLUSH, + DTS,ACPI,MMX,FXSR,SSE,SSE2,SS,HTT,TM,PBE> + Features2=0x4400<CNTX-ID,<b14>> +real memory = 265244672 (252 MB) +avail memory = 255963136 (244 MB) +xc0: <Xen Console> on motherboard +cpu0 on motherboard +Timecounters tick every 10.000 msec +[XEN] Initialising virtual ethernet driver. +xn0: Ethernet address: 00:16:3e:6b:de:3a +[XEN] +Trying to mount root from ufs:/dev/xbd769a +WARNING: / was not properly dismounted +Loading configuration files. +No suitable dump device was found. +Entropy harvesting: interrupts ethernet point_to_point kickstart. +Starting file system checks: +/dev/xbd769a: 18859 files, 140370 used, 113473 free (10769 frags, 12838 blocks, 4.2% fragmentation) +Setting hostname: demo.freebsd.org. +lo0: flags=8049<UP,LOOPBACK,RUNNING,MULTICAST> mtu 16384 + inet6 ::1 prefixlen 128 + inet6 fe80::1%lo0 prefixlen 64 scopeid 0x2 + inet 127.0.0.1 netmask 0xff000000 +Additional routing options:. +Mounting NFS file systems:. +Starting syslogd. +/etc/rc: WARNING: Dump device does not exist. Savecore not run. +ELF ldconfig path: /lib /usr/lib /usr/lib/compat /usr/X11R6/lib /usr/local/lib +a.out ldconfig path: /usr/lib/aout /usr/lib/compat/aout /usr/X11R6/lib/aout +Starting usbd. +usb: Kernel module not available: No such file or directory +Starting local daemons:. +Updating motd. +Starting sshd. +Initial i386 initialization:. +Additional ABI support: linux. +Starting cron. +Local package initialization:. +Additional TCP options:. +Starting background file system checks in 60 seconds. + +Sun Apr 1 02:11:43 UTC 2007 + +FreeBSD/i386 (demo.freebsd.org) (xc0) + +login: + + Die domU sollte nun den + &os; 7.0-CURRENT-Kernel ausführen: + + &prompt.root; uname -a +FreeBSD demo.freebsd.org 7.0-CURRENT FreeBSD 7.0-CURRENT #113: Wed Jan 4 06:25:43 UTC 2006 +kmacy@freebsd7.gateway.2wire.net:/usr/home/kmacy/p4/freebsd7_xen3/src/sys/i386-xen/compile/XENCONF i386 + + Das Netzwerk kann nun unter der domU konfiguriert werden. + Die &os;-domU wird ein spezielles Gerät namens + xn0 verwenden: + + &prompt.root; ifconfig xn0 10.10.10.200 netmask 255.0.0.0 +&prompt.root; ifconfig +xn0: flags=843<UP,BROADCAST,RUNNING,SIMPLEX> mtu 1500 + inet 10.10.10.200 netmask 0xff000000 broadcast 10.255.255.255 + ether 00:16:3e:6b:de:3a +lo0: flags=8049<UP,LOOPBACK,RUNNING,MULTICAST> mtu 16384 + inet6 ::1 prefixlen 128 + inet6 fe80::1%lo0 prefixlen 64 scopeid 0x2 + inet 127.0.0.1 netmask 0xff000000 + + Unter der Slackware-dom0 sollten einige + &xen;-spezifische + Netzwerkgeräte erscheinen: + + &prompt.root; ifconfig +eth0 Link encap:Ethernet HWaddr 00:07:E9:A0:02:C2 + inet addr:10.10.10.130 Bcast:0.0.0.0 Mask:255.0.0.0 + UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 + RX packets:815 errors:0 dropped:0 overruns:0 frame:0 + TX packets:1400 errors:0 dropped:0 overruns:0 carrier:0 + collisions:0 txqueuelen:0 + RX bytes:204857 (200.0 KiB) TX bytes:129915 (126.8 KiB) + +lo Link encap:Local Loopback + inet addr:127.0.0.1 Mask:255.0.0.0 + UP LOOPBACK RUNNING MTU:16436 Metric:1 + RX packets:99 errors:0 dropped:0 overruns:0 frame:0 + TX packets:99 errors:0 dropped:0 overruns:0 carrier:0 + collisions:0 txqueuelen:0 + RX bytes:9744 (9.5 KiB) TX bytes:9744 (9.5 KiB) + +peth0 Link encap:Ethernet HWaddr FE:FF:FF:FF:FF:FF + UP BROADCAST RUNNING NOARP MTU:1500 Metric:1 + RX packets:1853349 errors:0 dropped:0 overruns:0 frame:0 + TX packets:952923 errors:0 dropped:0 overruns:0 carrier:0 + collisions:0 txqueuelen:1000 + RX bytes:2432115831 (2.2 GiB) TX bytes:86528526 (82.5 MiB) + Base address:0xc000 Memory:ef020000-ef040000 + +vif0.1 Link encap:Ethernet HWaddr FE:FF:FF:FF:FF:FF + UP BROADCAST RUNNING NOARP MTU:1500 Metric:1 + RX packets:1400 errors:0 dropped:0 overruns:0 frame:0 + TX packets:815 errors:0 dropped:0 overruns:0 carrier:0 + collisions:0 txqueuelen:0 + RX bytes:129915 (126.8 KiB) TX bytes:204857 (200.0 KiB) + +vif1.0 Link encap:Ethernet HWaddr FE:FF:FF:FF:FF:FF + UP BROADCAST RUNNING NOARP MTU:1500 Metric:1 + RX packets:3 errors:0 dropped:0 overruns:0 frame:0 + TX packets:2 errors:0 dropped:157 overruns:0 carrier:0 + collisions:0 txqueuelen:1 + RX bytes:140 (140.0 b) TX bytes:158 (158.0 b) + +xenbr1 Link encap:Ethernet HWaddr FE:FF:FF:FF:FF:FF + UP BROADCAST RUNNING NOARP MTU:1500 Metric:1 + RX packets:4 errors:0 dropped:0 overruns:0 frame:0 + TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 + collisions:0 txqueuelen:0 + RX bytes:112 (112.0 b) TX bytes:0 (0.0 b) + + &prompt.root; brctl show +bridge name bridge id STP enabled interfaces +xenbr1 8000.feffffffffff no vif0.1 + peth0 + vif1.0 + + + + + VMware unter &windows;/&mac;/&linux; + + Dieser Abschnitt wurde noch nicht geschrieben. + + + + + + FreeBSD als Host-Betriebssystem + + FreeBSD wird derzeit offiziell von keiner + Virtualisierungssoftware als Host-Betriebssystem + unterstützt. Viele Anwender verwenden aber noch + ältere VMware-Versionen, die + FreeBSD noch als Host-Betriebssystem unterstützen. + Zusätzlich wird + daran gearbeitet, &xen; als + funktionierende Host-Umgebung (dom0) für FreeBSD + verfügbar zu machen. +