diff --git a/en_US.ISO8859-1/books/handbook/linuxemu/chapter.sgml b/en_US.ISO8859-1/books/handbook/linuxemu/chapter.sgml index ba1120a0f9..67db423a39 100644 --- a/en_US.ISO8859-1/books/handbook/linuxemu/chapter.sgml +++ b/en_US.ISO8859-1/books/handbook/linuxemu/chapter.sgml @@ -1,794 +1,797 @@ Linux Binary Compatibility Restructured and parts updated by &a.jim;, 22 March 2000. Originally contributed by &a.handy; and &a.rich; Synopsis The following chapter will cover FreeBSD's Linux binary compatibility features, how to install it, and how it works. At this point, you may be asking yourself why exactly, does FreeBSD need to be able to run Linux binaries? The answer to that question is quite simple. Many companies and developers develop only for Linux, since it is the latest hot thing in the computing world. That leaves the rest of us FreeBSD users bugging these same companies and developers to put out native FreeBSD versions of their applications. The problem is, that most of these companies do not really realize how many people would use their product if there were FreeBSD versions too, and most continue to only develop for Linux. So what is a FreeBSD user to do? This is where the Linux binary compatibility of FreeBSD comes into play. In a nutshell, the compatibility allows FreeBSD users to run about 90% of all Linux applications without modification. This includes applications such as Star Office, the Linux version of Netscape, Adobe Acrobat, RealPlayer 5 and 7, VMWare, Oracle, WordPerfect, Doom, Quake, and more. It is also reported that in some situations, Linux binaries perform better on FreeBSD than they do under Linux. There are, however, some Linux-specific operating system features that are not supported under FreeBSD. Linux binaries will not work on FreeBSD if they overly use the Linux /proc filesystem (which is different from FreeBSD's /proc filesystem), or i386-specific calls, such as enabling virtual 8086 mode. For information on installing the Linux binary compatibility mode, see the next section. Installation With the advent of 3.0-RELEASE, it is no longer necessary to specify options LINUX or options COMPAT_LINUX in your kernel configuration. The Linux binary compatibility is now done via a KLD object (Kernel LoaDable object), so it can be installed on-the-fly without having to reboot. You will, however, need to have the following in /etc/rc.conf: linux_enable=YES This, in turn, triggers the following action in /etc/rc.i386: # Start the Linux binary compatibility if requested. # case ${linux_enable} in [Yy][Ee][Ss]) echo -n ' linux'; linux > /dev/null 2>&1 ;; esac If you wish to verify that the KLD is loaded, kldstat will do that: &prompt.user; kldstat Id Refs Address Size Name 1 2 0xc0100000 16bdb8 kernel 7 1 0xc24db000 d000 linux.ko If for some reason you do not want to or cannot load the KLD, then you may statically link the binary compatibility in the kernel by adding options LINUX to your kernel configuration file. Then install your new kernel as described in the kernel configuration section of this handbook. Installing Linux Runtime Libraries This can be done one of two ways, either by using the linux_base port, or by installing them manually. Installing using the linux_base port This is by far the easiest method to use when installing the runtime libraries. It is just like installing any other port from the ports collection. Simply do the following: &prompt.root; cd /usr/ports/emulators/linux_base &prompt.root; make install distclean You should now have working Linux binary compatibility. Some programs may complain about incorrect minor versions of the system libraries. In general, however, this does not seem to be a problem. Installing libraries manually If you do not have the ports collection installed, you can install the libraries by hand instead. You will need the Linux shared libraries that the program depends on and the runtime linker. Also, you will need to create a shadow root directory, /compat/linux, for Linux libraries on your FreeBSD system. Any shared libraries opened by Linux programs run under FreeBSD will look in this tree first. So, if a Linux program loads, for example, /lib/libc.so, FreeBSD will first try to open /compat/linux/lib/libc.so, and if that does not exist, it will then try /lib/libc.so. Shared libraries should be installed in the shadow tree /compat/linux/lib rather than the paths that the Linux ld.so reports. Generally, you will need to look for the shared libraries that Linux binaries depend on only the first few times that you install a Linux program on your FreeBSD system. After a while, you will have a sufficient set of Linux shared libraries on your system to be able to run newly imported Linux binaries without any extra work. How to install additional shared libraries What if you install the linux_base port and your application still complains about missing shared libraries? How do you know which shared libraries Linux binaries need, and where to get them? Basically, there are 2 possibilities (when following these instructions you will need to be root on your FreeBSD system). If you have access to a Linux system, see what shared libraries the application needs, and copy them to your FreeBSD system. Look at the following example: Let us assume you used FTP to get the Linux binary of Doom, and put it on a Linux system you have access to. You then can check which shared libraries it needs by running ldd linuxdoom, like so: &prompt.user; ldd linuxdoom libXt.so.3 (DLL Jump 3.1) => /usr/X11/lib/libXt.so.3.1.0 libX11.so.3 (DLL Jump 3.1) => /usr/X11/lib/libX11.so.3.1.0 libc.so.4 (DLL Jump 4.5pl26) => /lib/libc.so.4.6.29 You would need to get all the files from the last column, and put them under /compat/linux, with the names in the first column as symbolic links pointing to them. This means you eventually have these files on your FreeBSD system: /compat/linux/usr/X11/lib/libXt.so.3.1.0 /compat/linux/usr/X11/lib/libXt.so.3 -> libXt.so.3.1.0 /compat/linux/usr/X11/lib/libX11.so.3.1.0 /compat/linux/usr/X11/lib/libX11.so.3 -> libX11.so.3.1.0 /compat/linux/lib/libc.so.4.6.29 /compat/linux/lib/libc.so.4 -> libc.so.4.6.29
Note that if you already have a Linux shared library with a matching major revision number to the first column of the ldd output, you will not need to copy the file named in the last column to your system, the one you already have should work. It is advisable to copy the shared library anyway if it is a newer version, though. You can remove the old one, as long as you make the symbolic link point to the new one. So, if you have these libraries on your system: /compat/linux/lib/libc.so.4.6.27 /compat/linux/lib/libc.so.4 -> libc.so.4.6.27 and you find a new binary that claims to require a later version according to the output of ldd: libc.so.4 (DLL Jump 4.5pl26) -> libc.so.4.6.29 If it is only one or two versions out of date in the in the trailing digit then do not worry about copying /lib/libc.so.4.6.29 too, because the program should work fine with the slightly older version. However, if you like, you can decide to replace the libc.so anyway, and that should leave you with: /compat/linux/lib/libc.so.4.6.29 /compat/linux/lib/libc.so.4 -> libc.so.4.6.29
The symbolic link mechanism is only needed for Linux binaries. The FreeBSD runtime linker takes care of looking for matching major revision numbers itself and you do not need to worry about it.
Installing Linux ELF binaries ELF binaries sometimes require an extra step of branding. If you attempt to run an unbranded ELF binary, you will get an error message like the following; &prompt.user; ./my-linux-elf-binary ELF binary type not known Abort To help the FreeBSD kernel distinguish between a FreeBSD ELF binary from a Linux binary, use the &man.brandelf.1; utility. &prompt.user; brandelf -t Linux my-linux-elf-binary The GNU toolchain now places the appropriate branding information into ELF binaries automatically, so you this step should become increasingly more rare in the future. Configuring the host name resolver If DNS does not work or you get this message: resolv+: "bind" is an invalid keyword resolv+: "hosts" is an invalid keyword You will need to configure a /compat/linux/etc/host.conf file containing: order hosts, bind multi on The order here specifies that /etc/hosts is searched first and DNS is searched second. When /compat/linux/etc/host.conf is not installed, linux applications find FreeBSD's /etc/host.conf and complain about the incompatible FreeBSD syntax. You should remove bind if you have not configured a name server using the /etc/resolv.conf file.
Installing Mathematica Updated for Mathematica version 4.x by &a.murray and merged with work by Bojan Bistrovic bojanb@physics.odu.edu. This document describes the process of installing the Linux version of Mathematica 4.X onto a FreeBSD system. The Linux version of Mathematica runs perfectly under FreeBSD however the binaries shipped by Wolfram need to be branded so that FreeBSD knows to use the Linux ABI to execute them. The Linux version of Mathematica or Mathematica for Students can be ordered directly from Wolfram at http://www.wolfram.com/. Branding the Linux binaries The Linux binaries are located in the Unix directory of the Mathematica CDROM distributed by Wolfram. You need to copy this directory tree to your local hard drive so that you can brand the Linux binaries with &man.brandelf.1; before running the installer: &prompt.root; mount /cdrom &prompt.root; cp -rp /cdrom/Unix/ /localdir/ &prompt.root; brandelf -t Linux /localdir/Files/SystemFiles/Kernel/Binaries/Linux/* &prompt.root; brandelf -t Linux /localdir/Files/SystemFiles/FrontEnd/Binaries/Linux/* &prompt.root; brandelf -t Linux /localdir/Files/SystemFiles/Installation/Binaries/Linux/* +&prompt.root; brandelf -t Linux /localdir/Files/SystemFiles/Graphics/Binaries/Linux/* +&prompt.root; brandelf -t Linux /localdir/Files/SystemFiles/Converters/Binaries/Linux/* +&prompt.root; brandelf -t Linux /localdir/Files/SystemFiles/LicenseManager/Binaries/Linux/mathlm &prompt.root; cd /localdir/Installers/Linux/ &prompt.root; ./MathInstaller Alternatively, you can simply set the default ELF brand to Linux for all unbranded binaries with the command: &prompt.root; sysctl -w kern.fallback_elf_brand=3 This will make FreeBSD assume that unbranded ELF binaries use the Linux ABI and so you should be able to run the installer straight from the CDROM. Obtaining your Mathematica Password Before you can run Mathematica you will have to obtain a password from Wolfram that corresponds to your machine ID. Once you have installed the Linux compatibility runtime libraries and unpacked Mathematica you can obtain the machine ID by running the program mathinfo in the Install directory. This machine ID is based solely on the MAC address of your first ethernet card. &prompt.root; cd /localdir/Files/SystemFiles/Installation/Binaries/Linux &prompt.root; mathinfo disco.example.com 7115-70839-20412 When you register with Wolfram, either by email, phone or fax, you will give them the machine ID and they will respond with a corresponding password consisting of groups of numbers. You can then enter this information when you attempt to run Mathematica for the first time exactly as you would for any other Mathematica platform. Running the Mathematica front end over a network Mathematica uses some special fonts to display characters not present in any of the standard font sets (integrals, sums, greek letters, etc.). The X protocol requires these fonts to be install locally. This means you will have to copy these fonts from the CDROM or from a host with Mathematica installed to your local machine. These fonts are normally stored in /cdrom/Unix/Files/SystemFiles/Fonts on the CDROM, or /usr/local/mathematica/SystemFiles/Fonts on your hard drive. The actual fonts are in the subdirectories Type1 and X. There are several ways to use them, as described below. The first way is to copy them into one of the existing font directories in /usr/X11R6/lib/X11/fonts. This will require editing the fonts.dir file, adding the font names to it, and changing the number of fonts on the first line. Alternatively, you should also just be able to run mkfontdir in the directory you have copied them to. The second way to do this is to copy the directories to /usr/X11R6/lib/X11/fonts: &prompt.root; cd /usr/X11R6/lib/X11/fonts &prompt.root; mkdir X &prompt.root; mkdir MathType1 &prompt.root; cd /cdrom/Unix/Files/SystemFiles/Fonts &prompt.root; cp X/* /usr/X11R6/lib/X11/fonts/X &prompt.root; cp Type1/* /usr/X11R6/lib/X11/fonts/MathType1 &prompt.root; cd /usr/X11R6/lib/X11/fonts/X &prompt.root; mkfontdir &prompt.root; cd ../MathType1 &prompt.root; mkfontdir Now add the new font directories to your font path: &prompt.root; xset fp+ /usr/X11R6/lib/X11/fonts/X &prompt.root; xset fp+ /usr/X11R6/lib/X11/fonts/MathType1 &prompt.root; xset fp rehash If you are using the XFree86 server, you can have these font directories loaded automatically by adding them to your XF86Config file. If you do not already have a directory called /usr/X11R6/lib/X11/fonts/Type1, you can change the name of the MathType1 directory in the example above to Type1. Installing Oracle Contributed by Marcel Moolenaar marcel@cup.hp.com Preface This document describes the process of installing Oracle 8.0.5 and Oracle 8.0.5.1 Enterprise Edition for Linux onto a FreeBSD machine Installing the Linux environment Make sure you have both linux_base and linux_devtools from the ports collection installed. These ports are added to the collection after the release of FreeBSD 3.2. If you are using FreeBSD 3.2 or an older version for that matter, update your ports collection. You may want to consider updating your FreeBSD version too. If you run into difficulties with linux_base-6.1 or linux_devtools-6.1 you may have to use version 5.2 of these packages. If you want to run the intelligent agent, you'll also need to install the Red Hat TCL package: tcl-8.0.3-20.i386.rpm. The general command for installing packages with the official RPM port is : &prompt.root; rpm -i --ignoreos --root /compat/linux --dbpath /var/lib/rpm package Installation of the package should not generate any errors. Creating the Oracle environment Before you can install Oracle, you need to set up a proper environment. This document only describes what to do specially to run Oracle for Linux on FreeBSD, not what has been described in the Oracle installation guide. Kernel Tuning As described in the Oracle installation guide, you need to set the maximum size of shared memory. Don't use SHMMAX under FreeBSD. SHMMAX is merely calculated out of SHMMAXPGS and PGSIZE. Therefore define SHMMAXPGS. All other options can be used as described in the guide. For example: options SHMMAXPGS=10000 options SHMMNI=100 options SHMSEG=10 options SEMMNS=200 options SEMMNI=70 options SEMMSL=61 Set these options to suit your intended use of Oracle. Also, make sure you have the following options in your kernel config-file: options SYSVSHM #SysV shared memory options SYSVSEM #SysV semaphores options SYSVMSG #SysV interprocess communication Oracle account Create an Oracle account just as you would create any other account. The Oracle account is special only that you need to give it a Linux shell. Add /compat/linux/bin/bash to /etc/shells and set the shell for the Oracle account to /compat/linux/bin/bash. Environment Besides the normal Oracle variables, such as ORACLE_HOME and ORACLE_SID you must set the following environment variables: Variable Value LD_LIBRARY_PATH $ORACLE_HOME/lib CLASSPATH $ORACLE_HOME/jdbc/lib/classes111.zip PATH /compat/linux/bin /compat/linux/sbin /compat/linux/usr/bin /compat/linux/usr/sbin /bin /sbin /usr/bin /usr/sbin /usr/local/bin $ORACLE_HOME/bin It is advised to set all the environment variables in .profile. A complete example is: ORACLE_BASE=/oracle; export ORACLE_BASE ORACLE_HOME=/oracle; export ORACLE_HOME LD_LIBRARY_PATH=$ORACLE_HOME/lib export LD_LIBRARY_PATH ORACLE_SID=ORCL; export ORACLE_SID ORACLE_TERM=386x; export ORACLE_TERM CLASSPATH=$ORACLE_HOME/jdbc/lib/classes111.zip export CLASSPATH PATH=/compat/linux/bin:/compat/linux/sbin:/compat/linux/usr/bin:/compat/linux/usr/sbin:/bin:/sbin:/usr/bin:/usr/sbin:/usr/local/bin:$ORACLE_HOME/bin export PATH Installing Oracle Due to a slight inconsistency in the Linux emulator, you need to create a directory named .oracle in /var/tmp before you start the installer. Either make it world writable or let it be owner by the oracle user. You should be able to install Oracle without any problems. If you have problems, check your Oracle distribution and/or configuration first! After you have installed Oracle, apply the patches described in the next two subsections. A frequent problem is that the TCP protocol adapter is not installed right. As a consequence, you cannot start any TCP listeners. The following actions help solve this problem: &prompt.root; cd $ORACLE_HOME/network/lib &prompt.root; make -f ins_network.mk ntcontab.o &prompt.root; cd $ORACLE_HOME/lib &prompt.root; ar r libnetwork.a ntcontab.o &prompt.root; cd $ORACLE_HOME/network/lib &prompt.root; make -f ins_network.mk install Don't forget to run root.sh again! Patching root.sh When installing Oracle, some actions, which need to be performed as root, are recorded in a shell script called root.sh. root.sh is written in the orainst directory. Apply the following patch to root.sh, to have it use to proper location of chown or alternatively run the script under a Linux native shell. *** orainst/root.sh.orig Tue Oct 6 21:57:33 1998 --- orainst/root.sh Mon Dec 28 15:58:53 1998 *************** *** 31,37 **** # This is the default value for CHOWN # It will redefined later in this script for those ports # which have it conditionally defined in ss_install.h ! CHOWN=/bin/chown # # Define variables to be used in this script --- 31,37 ---- # This is the default value for CHOWN # It will redefined later in this script for those ports # which have it conditionally defined in ss_install.h ! CHOWN=/usr/sbin/chown # # Define variables to be used in this script When you don't install Oracle from CD, you can patch the source for root.sh. It is called rthd.sh and is located in the orainst directory in the source tree. Patching genclntsh The script genclntsh is used to create a single shared client library. It is used when building the demos. Apply the following patch to comment out the definition of PATH: *** bin/genclntsh.orig Wed Sep 30 07:37:19 1998 --- bin/genclntsh Tue Dec 22 15:36:49 1998 *************** *** 32,38 **** # # Explicit path to ensure that we're using the correct commands #PATH=/usr/bin:/usr/ccs/bin export PATH ! PATH=/usr/local/bin:/bin:/usr/bin:/usr/X11R6/bin export PATH # # each product MUST provide a $PRODUCT/admin/shrept.lst --- 32,38 ---- # # Explicit path to ensure that we're using the correct commands #PATH=/usr/bin:/usr/ccs/bin export PATH ! #PATH=/usr/local/bin:/bin:/usr/bin:/usr/X11R6/bin export PATH # # each product MUST provide a $PRODUCT/admin/shrept.lst Running Oracle When you have followed the instructions, you should be able to run Oracle as if it was run on Linux itself. Advanced Topics If you are curious as to how the Linux binary compatibility works, this is the section you want to read. Most of what follows is based heavily on an email written to &a.chat; by Terry Lambert tlambert@primenet.com (Message ID: <199906020108.SAA07001@usr09.primenet.com>). How Does It Work? FreeBSD has an abstraction called an execution class loader. This is a wedge into the &man.execve.2; system call. What happens is that FreeBSD has a list of loaders, instead of a single loader with a fallback to the #! loader for running any shell interpreters or shell scripts. Historically, the only loader on the UNIX platform examined the magic number (generally the first 4 or 8 bytes of the file) to see if it was a binary known to the system, and if so, invoked the binary loader. If it was not the binary type for the system, the &man.execve.2; call returned a failure, and the shell attempted to start executing it as shell commands. The assumption was a default of whatever the current shell is. Later, a hack was made for &man.sh.1; to examine the first two characters, and if they were :\n, then it invoked the &man.csh.1; shell instead (we believe SCO first made this hack). What FreeBSD does now is go through a list of loaders, with a generic #! loader that knows about interpreters as the characters which follow to the next whitespace next to last, followed by a fallback to /bin/sh. For the Linux ABI support, FreeBSD sees the magic number as an ELF binary (it makes no distinction between FreeBSD, Solaris, Linux, or any other OS which has an ELF image type, at this point). The ELF loader looks for a specialized brand, which is a comment section in the ELF image, and which is not present on SVR4/Solaris ELF binaries. For Linux binaries to function, they must be branded as type Linux; from &man.brandelf.1;: &prompt.root; brandelf -t Linux file When this is done, the ELF loader will see the Linux brand on the file. When the ELF loader sees the Linux brand, the loader replaces a pointer in the proc structure. All system calls are indexed through this pointer (in a traditional UNIX system, this would be the sysent[] structure array, containing the system calls). In addition, the process flagged for special handling of the trap vector for the signal trampoline code, and sever other (minor) fix-ups that are handled by the Linux kernel module. The Linux system call vector contains, among other things, a list of sysent[] entries whose addresses reside in the kernel module. When a system call is called by the Linux binary, the trap code dereferences the system call function pointer off the proc structure, and gets the Linux, not the FreeBSD, system call entry points. In addition, the Linux mode dynamically reroots lookups; this is, in effect, what the union option to FS mounts (not the unionfs!) does. First, an attempt is made to lookup the file in the /compat/linux/original-path directory, then only if that fails, the lookup is done in the /original-path directory. This makes sure that binaries that require other binaries can run (e.g., the Linux toolchain can all run under Linux ABI support). It also means that the Linux binaries can load and exec FreeBSD binaries, if there are no corresponding Linux binaries present, and that you could place a &man.uname.1; command in the /compat/linux directory tree to ensure that the Linux binaries could not tell they were not running on Linux. In effect, there is a Linux kernel in the FreeBSD kernel; the various underlying functions that implement all of the services provided by the kernel are identical to both the FreeBSD system call table entries, and the Linux system call table entries: file system operations, virtual memory operations, signal delivery, System V IPC, etc… The only difference is that FreeBSD binaries get the FreeBSD glue functions, and Linux binaries get the Linux glue functions (most older OS's only had their own glue functions: addresses of functions in a static global sysent[] structure array, instead of addresses of functions dereferenced off a dynamically initialized pointer in the proc structure of the process making the call). Which one is the native FreeBSD ABI? It does not matter. Basically the only difference is that (currently; this could easily be changed in a future release, and probably will be after this) the FreeBSD glue functions are statically linked into the kernel, and the Linux glue functions can be statically linked, or they can be accessed via a kernel module. Yeah, but is this really emulation? No. It is an ABI implementation, not an emulation. There is no emulator (or simulator, to cut off the next question) involved. So why is it sometimes called Linux emulation? To make it hard to sell FreeBSD! 8-). Really, it is because the historical implementation was done at a time when there was really no word other than that to describe what was going on; saying that FreeBSD ran Linux binaries was not true, if you did not compile the code in or load a module, and there needed to be a word to describe what was being loaded—hence the Linux emulator.
diff --git a/en_US.ISO_8859-1/books/handbook/linuxemu/chapter.sgml b/en_US.ISO_8859-1/books/handbook/linuxemu/chapter.sgml index ba1120a0f9..67db423a39 100644 --- a/en_US.ISO_8859-1/books/handbook/linuxemu/chapter.sgml +++ b/en_US.ISO_8859-1/books/handbook/linuxemu/chapter.sgml @@ -1,794 +1,797 @@ Linux Binary Compatibility Restructured and parts updated by &a.jim;, 22 March 2000. Originally contributed by &a.handy; and &a.rich; Synopsis The following chapter will cover FreeBSD's Linux binary compatibility features, how to install it, and how it works. At this point, you may be asking yourself why exactly, does FreeBSD need to be able to run Linux binaries? The answer to that question is quite simple. Many companies and developers develop only for Linux, since it is the latest hot thing in the computing world. That leaves the rest of us FreeBSD users bugging these same companies and developers to put out native FreeBSD versions of their applications. The problem is, that most of these companies do not really realize how many people would use their product if there were FreeBSD versions too, and most continue to only develop for Linux. So what is a FreeBSD user to do? This is where the Linux binary compatibility of FreeBSD comes into play. In a nutshell, the compatibility allows FreeBSD users to run about 90% of all Linux applications without modification. This includes applications such as Star Office, the Linux version of Netscape, Adobe Acrobat, RealPlayer 5 and 7, VMWare, Oracle, WordPerfect, Doom, Quake, and more. It is also reported that in some situations, Linux binaries perform better on FreeBSD than they do under Linux. There are, however, some Linux-specific operating system features that are not supported under FreeBSD. Linux binaries will not work on FreeBSD if they overly use the Linux /proc filesystem (which is different from FreeBSD's /proc filesystem), or i386-specific calls, such as enabling virtual 8086 mode. For information on installing the Linux binary compatibility mode, see the next section. Installation With the advent of 3.0-RELEASE, it is no longer necessary to specify options LINUX or options COMPAT_LINUX in your kernel configuration. The Linux binary compatibility is now done via a KLD object (Kernel LoaDable object), so it can be installed on-the-fly without having to reboot. You will, however, need to have the following in /etc/rc.conf: linux_enable=YES This, in turn, triggers the following action in /etc/rc.i386: # Start the Linux binary compatibility if requested. # case ${linux_enable} in [Yy][Ee][Ss]) echo -n ' linux'; linux > /dev/null 2>&1 ;; esac If you wish to verify that the KLD is loaded, kldstat will do that: &prompt.user; kldstat Id Refs Address Size Name 1 2 0xc0100000 16bdb8 kernel 7 1 0xc24db000 d000 linux.ko If for some reason you do not want to or cannot load the KLD, then you may statically link the binary compatibility in the kernel by adding options LINUX to your kernel configuration file. Then install your new kernel as described in the kernel configuration section of this handbook. Installing Linux Runtime Libraries This can be done one of two ways, either by using the linux_base port, or by installing them manually. Installing using the linux_base port This is by far the easiest method to use when installing the runtime libraries. It is just like installing any other port from the ports collection. Simply do the following: &prompt.root; cd /usr/ports/emulators/linux_base &prompt.root; make install distclean You should now have working Linux binary compatibility. Some programs may complain about incorrect minor versions of the system libraries. In general, however, this does not seem to be a problem. Installing libraries manually If you do not have the ports collection installed, you can install the libraries by hand instead. You will need the Linux shared libraries that the program depends on and the runtime linker. Also, you will need to create a shadow root directory, /compat/linux, for Linux libraries on your FreeBSD system. Any shared libraries opened by Linux programs run under FreeBSD will look in this tree first. So, if a Linux program loads, for example, /lib/libc.so, FreeBSD will first try to open /compat/linux/lib/libc.so, and if that does not exist, it will then try /lib/libc.so. Shared libraries should be installed in the shadow tree /compat/linux/lib rather than the paths that the Linux ld.so reports. Generally, you will need to look for the shared libraries that Linux binaries depend on only the first few times that you install a Linux program on your FreeBSD system. After a while, you will have a sufficient set of Linux shared libraries on your system to be able to run newly imported Linux binaries without any extra work. How to install additional shared libraries What if you install the linux_base port and your application still complains about missing shared libraries? How do you know which shared libraries Linux binaries need, and where to get them? Basically, there are 2 possibilities (when following these instructions you will need to be root on your FreeBSD system). If you have access to a Linux system, see what shared libraries the application needs, and copy them to your FreeBSD system. Look at the following example: Let us assume you used FTP to get the Linux binary of Doom, and put it on a Linux system you have access to. You then can check which shared libraries it needs by running ldd linuxdoom, like so: &prompt.user; ldd linuxdoom libXt.so.3 (DLL Jump 3.1) => /usr/X11/lib/libXt.so.3.1.0 libX11.so.3 (DLL Jump 3.1) => /usr/X11/lib/libX11.so.3.1.0 libc.so.4 (DLL Jump 4.5pl26) => /lib/libc.so.4.6.29 You would need to get all the files from the last column, and put them under /compat/linux, with the names in the first column as symbolic links pointing to them. This means you eventually have these files on your FreeBSD system: /compat/linux/usr/X11/lib/libXt.so.3.1.0 /compat/linux/usr/X11/lib/libXt.so.3 -> libXt.so.3.1.0 /compat/linux/usr/X11/lib/libX11.so.3.1.0 /compat/linux/usr/X11/lib/libX11.so.3 -> libX11.so.3.1.0 /compat/linux/lib/libc.so.4.6.29 /compat/linux/lib/libc.so.4 -> libc.so.4.6.29
Note that if you already have a Linux shared library with a matching major revision number to the first column of the ldd output, you will not need to copy the file named in the last column to your system, the one you already have should work. It is advisable to copy the shared library anyway if it is a newer version, though. You can remove the old one, as long as you make the symbolic link point to the new one. So, if you have these libraries on your system: /compat/linux/lib/libc.so.4.6.27 /compat/linux/lib/libc.so.4 -> libc.so.4.6.27 and you find a new binary that claims to require a later version according to the output of ldd: libc.so.4 (DLL Jump 4.5pl26) -> libc.so.4.6.29 If it is only one or two versions out of date in the in the trailing digit then do not worry about copying /lib/libc.so.4.6.29 too, because the program should work fine with the slightly older version. However, if you like, you can decide to replace the libc.so anyway, and that should leave you with: /compat/linux/lib/libc.so.4.6.29 /compat/linux/lib/libc.so.4 -> libc.so.4.6.29
The symbolic link mechanism is only needed for Linux binaries. The FreeBSD runtime linker takes care of looking for matching major revision numbers itself and you do not need to worry about it.
Installing Linux ELF binaries ELF binaries sometimes require an extra step of branding. If you attempt to run an unbranded ELF binary, you will get an error message like the following; &prompt.user; ./my-linux-elf-binary ELF binary type not known Abort To help the FreeBSD kernel distinguish between a FreeBSD ELF binary from a Linux binary, use the &man.brandelf.1; utility. &prompt.user; brandelf -t Linux my-linux-elf-binary The GNU toolchain now places the appropriate branding information into ELF binaries automatically, so you this step should become increasingly more rare in the future. Configuring the host name resolver If DNS does not work or you get this message: resolv+: "bind" is an invalid keyword resolv+: "hosts" is an invalid keyword You will need to configure a /compat/linux/etc/host.conf file containing: order hosts, bind multi on The order here specifies that /etc/hosts is searched first and DNS is searched second. When /compat/linux/etc/host.conf is not installed, linux applications find FreeBSD's /etc/host.conf and complain about the incompatible FreeBSD syntax. You should remove bind if you have not configured a name server using the /etc/resolv.conf file.
Installing Mathematica Updated for Mathematica version 4.x by &a.murray and merged with work by Bojan Bistrovic bojanb@physics.odu.edu. This document describes the process of installing the Linux version of Mathematica 4.X onto a FreeBSD system. The Linux version of Mathematica runs perfectly under FreeBSD however the binaries shipped by Wolfram need to be branded so that FreeBSD knows to use the Linux ABI to execute them. The Linux version of Mathematica or Mathematica for Students can be ordered directly from Wolfram at http://www.wolfram.com/. Branding the Linux binaries The Linux binaries are located in the Unix directory of the Mathematica CDROM distributed by Wolfram. You need to copy this directory tree to your local hard drive so that you can brand the Linux binaries with &man.brandelf.1; before running the installer: &prompt.root; mount /cdrom &prompt.root; cp -rp /cdrom/Unix/ /localdir/ &prompt.root; brandelf -t Linux /localdir/Files/SystemFiles/Kernel/Binaries/Linux/* &prompt.root; brandelf -t Linux /localdir/Files/SystemFiles/FrontEnd/Binaries/Linux/* &prompt.root; brandelf -t Linux /localdir/Files/SystemFiles/Installation/Binaries/Linux/* +&prompt.root; brandelf -t Linux /localdir/Files/SystemFiles/Graphics/Binaries/Linux/* +&prompt.root; brandelf -t Linux /localdir/Files/SystemFiles/Converters/Binaries/Linux/* +&prompt.root; brandelf -t Linux /localdir/Files/SystemFiles/LicenseManager/Binaries/Linux/mathlm &prompt.root; cd /localdir/Installers/Linux/ &prompt.root; ./MathInstaller Alternatively, you can simply set the default ELF brand to Linux for all unbranded binaries with the command: &prompt.root; sysctl -w kern.fallback_elf_brand=3 This will make FreeBSD assume that unbranded ELF binaries use the Linux ABI and so you should be able to run the installer straight from the CDROM. Obtaining your Mathematica Password Before you can run Mathematica you will have to obtain a password from Wolfram that corresponds to your machine ID. Once you have installed the Linux compatibility runtime libraries and unpacked Mathematica you can obtain the machine ID by running the program mathinfo in the Install directory. This machine ID is based solely on the MAC address of your first ethernet card. &prompt.root; cd /localdir/Files/SystemFiles/Installation/Binaries/Linux &prompt.root; mathinfo disco.example.com 7115-70839-20412 When you register with Wolfram, either by email, phone or fax, you will give them the machine ID and they will respond with a corresponding password consisting of groups of numbers. You can then enter this information when you attempt to run Mathematica for the first time exactly as you would for any other Mathematica platform. Running the Mathematica front end over a network Mathematica uses some special fonts to display characters not present in any of the standard font sets (integrals, sums, greek letters, etc.). The X protocol requires these fonts to be install locally. This means you will have to copy these fonts from the CDROM or from a host with Mathematica installed to your local machine. These fonts are normally stored in /cdrom/Unix/Files/SystemFiles/Fonts on the CDROM, or /usr/local/mathematica/SystemFiles/Fonts on your hard drive. The actual fonts are in the subdirectories Type1 and X. There are several ways to use them, as described below. The first way is to copy them into one of the existing font directories in /usr/X11R6/lib/X11/fonts. This will require editing the fonts.dir file, adding the font names to it, and changing the number of fonts on the first line. Alternatively, you should also just be able to run mkfontdir in the directory you have copied them to. The second way to do this is to copy the directories to /usr/X11R6/lib/X11/fonts: &prompt.root; cd /usr/X11R6/lib/X11/fonts &prompt.root; mkdir X &prompt.root; mkdir MathType1 &prompt.root; cd /cdrom/Unix/Files/SystemFiles/Fonts &prompt.root; cp X/* /usr/X11R6/lib/X11/fonts/X &prompt.root; cp Type1/* /usr/X11R6/lib/X11/fonts/MathType1 &prompt.root; cd /usr/X11R6/lib/X11/fonts/X &prompt.root; mkfontdir &prompt.root; cd ../MathType1 &prompt.root; mkfontdir Now add the new font directories to your font path: &prompt.root; xset fp+ /usr/X11R6/lib/X11/fonts/X &prompt.root; xset fp+ /usr/X11R6/lib/X11/fonts/MathType1 &prompt.root; xset fp rehash If you are using the XFree86 server, you can have these font directories loaded automatically by adding them to your XF86Config file. If you do not already have a directory called /usr/X11R6/lib/X11/fonts/Type1, you can change the name of the MathType1 directory in the example above to Type1. Installing Oracle Contributed by Marcel Moolenaar marcel@cup.hp.com Preface This document describes the process of installing Oracle 8.0.5 and Oracle 8.0.5.1 Enterprise Edition for Linux onto a FreeBSD machine Installing the Linux environment Make sure you have both linux_base and linux_devtools from the ports collection installed. These ports are added to the collection after the release of FreeBSD 3.2. If you are using FreeBSD 3.2 or an older version for that matter, update your ports collection. You may want to consider updating your FreeBSD version too. If you run into difficulties with linux_base-6.1 or linux_devtools-6.1 you may have to use version 5.2 of these packages. If you want to run the intelligent agent, you'll also need to install the Red Hat TCL package: tcl-8.0.3-20.i386.rpm. The general command for installing packages with the official RPM port is : &prompt.root; rpm -i --ignoreos --root /compat/linux --dbpath /var/lib/rpm package Installation of the package should not generate any errors. Creating the Oracle environment Before you can install Oracle, you need to set up a proper environment. This document only describes what to do specially to run Oracle for Linux on FreeBSD, not what has been described in the Oracle installation guide. Kernel Tuning As described in the Oracle installation guide, you need to set the maximum size of shared memory. Don't use SHMMAX under FreeBSD. SHMMAX is merely calculated out of SHMMAXPGS and PGSIZE. Therefore define SHMMAXPGS. All other options can be used as described in the guide. For example: options SHMMAXPGS=10000 options SHMMNI=100 options SHMSEG=10 options SEMMNS=200 options SEMMNI=70 options SEMMSL=61 Set these options to suit your intended use of Oracle. Also, make sure you have the following options in your kernel config-file: options SYSVSHM #SysV shared memory options SYSVSEM #SysV semaphores options SYSVMSG #SysV interprocess communication Oracle account Create an Oracle account just as you would create any other account. The Oracle account is special only that you need to give it a Linux shell. Add /compat/linux/bin/bash to /etc/shells and set the shell for the Oracle account to /compat/linux/bin/bash. Environment Besides the normal Oracle variables, such as ORACLE_HOME and ORACLE_SID you must set the following environment variables: Variable Value LD_LIBRARY_PATH $ORACLE_HOME/lib CLASSPATH $ORACLE_HOME/jdbc/lib/classes111.zip PATH /compat/linux/bin /compat/linux/sbin /compat/linux/usr/bin /compat/linux/usr/sbin /bin /sbin /usr/bin /usr/sbin /usr/local/bin $ORACLE_HOME/bin It is advised to set all the environment variables in .profile. A complete example is: ORACLE_BASE=/oracle; export ORACLE_BASE ORACLE_HOME=/oracle; export ORACLE_HOME LD_LIBRARY_PATH=$ORACLE_HOME/lib export LD_LIBRARY_PATH ORACLE_SID=ORCL; export ORACLE_SID ORACLE_TERM=386x; export ORACLE_TERM CLASSPATH=$ORACLE_HOME/jdbc/lib/classes111.zip export CLASSPATH PATH=/compat/linux/bin:/compat/linux/sbin:/compat/linux/usr/bin:/compat/linux/usr/sbin:/bin:/sbin:/usr/bin:/usr/sbin:/usr/local/bin:$ORACLE_HOME/bin export PATH Installing Oracle Due to a slight inconsistency in the Linux emulator, you need to create a directory named .oracle in /var/tmp before you start the installer. Either make it world writable or let it be owner by the oracle user. You should be able to install Oracle without any problems. If you have problems, check your Oracle distribution and/or configuration first! After you have installed Oracle, apply the patches described in the next two subsections. A frequent problem is that the TCP protocol adapter is not installed right. As a consequence, you cannot start any TCP listeners. The following actions help solve this problem: &prompt.root; cd $ORACLE_HOME/network/lib &prompt.root; make -f ins_network.mk ntcontab.o &prompt.root; cd $ORACLE_HOME/lib &prompt.root; ar r libnetwork.a ntcontab.o &prompt.root; cd $ORACLE_HOME/network/lib &prompt.root; make -f ins_network.mk install Don't forget to run root.sh again! Patching root.sh When installing Oracle, some actions, which need to be performed as root, are recorded in a shell script called root.sh. root.sh is written in the orainst directory. Apply the following patch to root.sh, to have it use to proper location of chown or alternatively run the script under a Linux native shell. *** orainst/root.sh.orig Tue Oct 6 21:57:33 1998 --- orainst/root.sh Mon Dec 28 15:58:53 1998 *************** *** 31,37 **** # This is the default value for CHOWN # It will redefined later in this script for those ports # which have it conditionally defined in ss_install.h ! CHOWN=/bin/chown # # Define variables to be used in this script --- 31,37 ---- # This is the default value for CHOWN # It will redefined later in this script for those ports # which have it conditionally defined in ss_install.h ! CHOWN=/usr/sbin/chown # # Define variables to be used in this script When you don't install Oracle from CD, you can patch the source for root.sh. It is called rthd.sh and is located in the orainst directory in the source tree. Patching genclntsh The script genclntsh is used to create a single shared client library. It is used when building the demos. Apply the following patch to comment out the definition of PATH: *** bin/genclntsh.orig Wed Sep 30 07:37:19 1998 --- bin/genclntsh Tue Dec 22 15:36:49 1998 *************** *** 32,38 **** # # Explicit path to ensure that we're using the correct commands #PATH=/usr/bin:/usr/ccs/bin export PATH ! PATH=/usr/local/bin:/bin:/usr/bin:/usr/X11R6/bin export PATH # # each product MUST provide a $PRODUCT/admin/shrept.lst --- 32,38 ---- # # Explicit path to ensure that we're using the correct commands #PATH=/usr/bin:/usr/ccs/bin export PATH ! #PATH=/usr/local/bin:/bin:/usr/bin:/usr/X11R6/bin export PATH # # each product MUST provide a $PRODUCT/admin/shrept.lst Running Oracle When you have followed the instructions, you should be able to run Oracle as if it was run on Linux itself. Advanced Topics If you are curious as to how the Linux binary compatibility works, this is the section you want to read. Most of what follows is based heavily on an email written to &a.chat; by Terry Lambert tlambert@primenet.com (Message ID: <199906020108.SAA07001@usr09.primenet.com>). How Does It Work? FreeBSD has an abstraction called an execution class loader. This is a wedge into the &man.execve.2; system call. What happens is that FreeBSD has a list of loaders, instead of a single loader with a fallback to the #! loader for running any shell interpreters or shell scripts. Historically, the only loader on the UNIX platform examined the magic number (generally the first 4 or 8 bytes of the file) to see if it was a binary known to the system, and if so, invoked the binary loader. If it was not the binary type for the system, the &man.execve.2; call returned a failure, and the shell attempted to start executing it as shell commands. The assumption was a default of whatever the current shell is. Later, a hack was made for &man.sh.1; to examine the first two characters, and if they were :\n, then it invoked the &man.csh.1; shell instead (we believe SCO first made this hack). What FreeBSD does now is go through a list of loaders, with a generic #! loader that knows about interpreters as the characters which follow to the next whitespace next to last, followed by a fallback to /bin/sh. For the Linux ABI support, FreeBSD sees the magic number as an ELF binary (it makes no distinction between FreeBSD, Solaris, Linux, or any other OS which has an ELF image type, at this point). The ELF loader looks for a specialized brand, which is a comment section in the ELF image, and which is not present on SVR4/Solaris ELF binaries. For Linux binaries to function, they must be branded as type Linux; from &man.brandelf.1;: &prompt.root; brandelf -t Linux file When this is done, the ELF loader will see the Linux brand on the file. When the ELF loader sees the Linux brand, the loader replaces a pointer in the proc structure. All system calls are indexed through this pointer (in a traditional UNIX system, this would be the sysent[] structure array, containing the system calls). In addition, the process flagged for special handling of the trap vector for the signal trampoline code, and sever other (minor) fix-ups that are handled by the Linux kernel module. The Linux system call vector contains, among other things, a list of sysent[] entries whose addresses reside in the kernel module. When a system call is called by the Linux binary, the trap code dereferences the system call function pointer off the proc structure, and gets the Linux, not the FreeBSD, system call entry points. In addition, the Linux mode dynamically reroots lookups; this is, in effect, what the union option to FS mounts (not the unionfs!) does. First, an attempt is made to lookup the file in the /compat/linux/original-path directory, then only if that fails, the lookup is done in the /original-path directory. This makes sure that binaries that require other binaries can run (e.g., the Linux toolchain can all run under Linux ABI support). It also means that the Linux binaries can load and exec FreeBSD binaries, if there are no corresponding Linux binaries present, and that you could place a &man.uname.1; command in the /compat/linux directory tree to ensure that the Linux binaries could not tell they were not running on Linux. In effect, there is a Linux kernel in the FreeBSD kernel; the various underlying functions that implement all of the services provided by the kernel are identical to both the FreeBSD system call table entries, and the Linux system call table entries: file system operations, virtual memory operations, signal delivery, System V IPC, etc… The only difference is that FreeBSD binaries get the FreeBSD glue functions, and Linux binaries get the Linux glue functions (most older OS's only had their own glue functions: addresses of functions in a static global sysent[] structure array, instead of addresses of functions dereferenced off a dynamically initialized pointer in the proc structure of the process making the call). Which one is the native FreeBSD ABI? It does not matter. Basically the only difference is that (currently; this could easily be changed in a future release, and probably will be after this) the FreeBSD glue functions are statically linked into the kernel, and the Linux glue functions can be statically linked, or they can be accessed via a kernel module. Yeah, but is this really emulation? No. It is an ABI implementation, not an emulation. There is no emulator (or simulator, to cut off the next question) involved. So why is it sometimes called Linux emulation? To make it hard to sell FreeBSD! 8-). Really, it is because the historical implementation was done at a time when there was really no word other than that to describe what was going on; saying that FreeBSD ran Linux binaries was not true, if you did not compile the code in or load a module, and there needed to be a word to describe what was being loaded—hence the Linux emulator.